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THESIS ABSTRACT

DDoS Detection and Mitigation using Machine Learning

By

ARPIT RAMESH GAWANDE

Thesis Director:

Dr. Jean-Camille Birget

Distributed Denial of Service (DDoS) attacks are very common nowadays. It is

evident that the current industry solutions, such as completely relying on the In-

ternet Service Provider (ISP) or setting up a DDoS defense infrastructure, are not

sufficient in detecting and mitigating DDoS attacks, hence consistent research is

needed. In this thesis we first tried to understand how DDoS attacks happen, then

we discussed a way to detect DDoS attacks using machine learning tools at the

routers, instead of setting up a centralized analysis system. We have proposed a

standard communication architecture which can be used across all the networking

devices for mitigating DDoS attacks. We have also created a simulation program

to demonstrate our detection technique.
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1 Understanding a DDoS attack

1.1 What is a DDoS attack?

A Distributed Denial of Service (DDoS) attack is a way to jam a host network or

its resources with a large number of data packets1 [1] —or connections, so that

the host becomes disabled. There are different types of DDoS attacks such as:

1. Volume-based, e.g., SYN Flood Attacks, in which the victim is flooded with a

high volume of Transmission Control Protocol (TCP)/ User Datagram Protocol

(UDP) packets or connections. 2. Application-based, in which an application

such as Domain Name Service (DNS), Voice over Internet Protocol (VoIP), or

Hypertext Transfer Protocol (HTTP) are attacked. 3. Low-rate, in which the

attacker exploits a vulnerability in the application design, e.g., Slowloris. [2]

1.2 Challenges in dealing with a DDoS attack

Many DDoS attacks happen every day [3]. Some are reported on the news, while

many remain unnoticed. The real challenge in detecting and defending the DDoS

attack is its dynamic nature. The source2 is not just a single node or a system

on the Internet. There can be many systems participating in a DDoS attack, and

often these systems are distributed over different regions of the Internet. Also, the

source of the packet is often spoofed3 [4]. The original attack source is changed

in a spoofed data packet, which makes it harder to know the actual IP address

of the system from where the attack has originated. In addition, oftentimes the

source system itself is not aware that it is compromised, and it’s being used as a

bot [5] by an attacker to launch a DDoS attack.

As the source address can’t be a reliable way of knowing the attack source

1A messages sent on the Internet is broken into shorter messages for transmission. These
short messages are called packets. Packet term was coined by Donald Watts Davies.

2The source is a system/device on the Internet that has an IP address and that is under a
DDoS attack

3Spoofing is the way to change the source IP address of the message. This is a known issue
in the protocol itself, not in the implementation
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(because of spoofing), detecting and mitigating an attack at the destination4 is

not very useful. The destination may know that the attack is happening but

to stop it happening it will have to block all the incoming traffic, including the

legitimate traffic. To avoid blocking legitimate traffic, companies, such as Cisco

and Netgear have come up with some solutions. Many of the solutions provided

by these giants—like most of the research that is done in this field—is focused on

collecting network traffic flow information [6] at routers (i.e., gateways). A flow

consists of several Internet packets captured during a fixed time interval. The

router sends that captured flow information to the central system for analysis.

The central system is a hardware and software infrastructure which is capable of

processing and analyzing large flow information.

Internet Protocol Flow Information Export (IPFIX) protocol created by the

Internet Engineering Task Force (IETF), NetFlow protocol created by Ciscos [7],

and Sflow (Sampled flow) [8], are some of the major protocols which are widely

used for flow collection and analysis. These protocols define a standard way to

export the flow information from a router and similar devices. All these flow mon-

itoring protocols gather information and send the consolidated flow information to

the centralized server where the user can login and perform functions; such as, se-

curity monitoring, bandwidth monitoring, resource management, traffic analysis,

performance management etc. On such systems, there are some modules which

are specifically used for anomaly/DDoS attack detection.

For example, Cisco netflow has a flow exporter, flow collector, and analysis

modules. Flow exporter modules are installed on the routers. The routers, which

have flow exporter module, send flow information to the collector module installed

on the server. Along with the collector module, the server also has an analysis

module, which can be used to detect different patterns in the flow.

These technologies scale well and can be sufficient to indicate trends in network

traffic; however, they have limitations. 1) They are not cross platform, e.g., the

4System under a DDoS attack
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router with Sflow protocol won’t work with Cisco routers. 2) They involve setting

up expensive hardware, which acts as a collector server. 3) The source address

is used for flow analysis, which is not reliable due to IP spoofing in the case of a

DDoS attack.

1.3 A DDoS attack detection and mitigation

A DDoS attack can be detected by checking if there is any anomalous behavior in

the network traffic, such as, a sudden increase in the number of packets going to

a destination. Detection can occur at the server by observing all of the incoming

traffic or it can be done by observing all of the outgoing/incoming traffic at the

ISP or at every router. The attack can be mitigated if the anomalous packets are

blocked from reaching their destination.

From the previous section we know that the router-based flow analysis can

be useful for anomaly detection, but it has limitations because of the way it is

implemented. We don’t want to set up expensive hardware, we want to have

a protocol or a system which is compatible with other routers. Also, we don’t

want a source IP address for detection analysis. If we can come up with a way to

detect anomalies in the traffic at the intermediate devices on the Internet—such as

routers–and create a communication protocol between routers and the destination

server or network, then better decisions regarding regulating the packet flow can

be made.
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2 Network functioning

A switch creates a network and a router connects those networks. A router links

a computer to the Internet through other routers. Routers are the backbone of

the network that helps to forward packets from one point to another point on

the Internet. Every packet traveling on the Internet goes through a router [9].

A router knows the destination of a packet, hence it could serve as a first point

of knowledge about the change in the packet flow information for a destination.

Each router has interfaces to which hosts or other networks are connected. So, a

router is aware to what it is connected. It uses protocols to communicate among

other routers and by that it gathers knowledge about other routers on the Internet.

Internet Control Message Protocol (ICMP) [10] is one of the most frequently used

protocol by routers for sharing operational information.

Figure 1: Network Example

Let’s illustrate this using an example. In the above figure we can see that

hosts S1, S2, and S3 are connected to router R1. Router R1 is connected to the

Internet through router R2, R3, and R4, thus every packet traveling to system

S2 is coming from either of these three routers. All three routers are located in

different geographical regions. Most of the websites are regionally-based, either by

county, state, or nation (if we exclude global websites), and hence they are mostly
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accessed from those regions.

Using traceroute tool we can see how many hops5 away the destination is.

Following is one of the captured route for the Rutgers University website.

Figure 2: Trace Route: All the routers in the path to destination

We can see that the packet traveled through 15 routers to reach camden.rutgers.edu

server. This route information is found from a location in New Jersey.

5Hops are intermediate routers in the communication channel
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3 Our approach

3.1 The router as a point of analysis

From Figure 1 and 2 we know that routers are located at different geographical

locations and also there are specific regions from which a given website or web

server is accessed (with a few exceptions). To know the locations from where

the web server/site has been accessed we can use services, called GeoIP services.

These services can detect the geographical location of the system from where the

IP-packet has originated, but that is just an approximation, based on the source

IP and is not always correct. In the case of a DDoS attack, this information is

unreliable because the packet source address is often spoofed, hence it’s difficult

to know the actual geographical location from which the packet has come. If the

router through which that packet has traveled can provide its own geographical

information, then such information can be useful to understand the path through

which the packet has traveled and thus we know the region from where the packet

originated.

Also, in a normal scenario, there is a consistency in which a website is ac-

cessed from different geographical regions, and this consistency can be found by

measuring the features, e.g., number of packets that traveled from a router to a

destination server. This behavior, i.e., the consistency in which different feature

appears in the traffic, can be learned over time. Thus, learning this behavior in

the traffic at the router can form the basis of analysis in this thesis. For learning

the behavior we will be using the k-means clustering and the one-class SVM clas-

sifier algorithms (we are going to explain both these algorithms in detail in coming

sections). If there is a significant deviation from the learned behavior of the traffic

(i.e., packet flow) to a particular destination then that can be considered as DDoS

attack, and that traffic can be bloked at the router. The change in behavior, as

well as router geographical region information can also be communicated to the

destination which is under a DDoS attack. The destination, on receiving that in-
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formation, can decide whether it wants the reporting router to discard or forward

the traffic for it. This is a selective process in which traffic from only a specific

routers is blocked while traffic from other routers remains unaffected.

Figure 3: DDoS Attack path

In the above figure an attack is initiated from the region where router R6

is located and, from router R6 data packets traveled to the victim6 system S2.

Attack packets traveled through routers R3 and R1 to reach system S2. If we can

detect an attack at router R6, then router R6 can discard all the packets heading

towards system S2. In this process, only the traffic from router R6 is affected,

while traffic from all other routers remain unaffected.

With the advance of electronics and the Internet of Things, processing speed

and storage capacity of electronic devices have increased. Routers are no excep-

tion; however, storage capacity is always significantly less compared to servers

which collect flow data for network traffic analysis. If we use learning techniques

that don’t need much storage, then we don’t have to store large chunk of packets

on the router. Instead of storing large chunk of data gather over a longer periods

of time for the analysis, we can learn from a relatively small chunk of packets

6Victim is a computer system which is under a DDoS attack
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and then discard those packets once the learning is done, leaving behind only the

learned information on the router. This is necessary because the number of entries

on the Internet routing table has steadily grown. The table has passed 500,000

routes [11], so storing each and every packet information for all the routes for a

longer period of time could be difficult.

3.2 Internet packet flow capturing at the router

To do the analysis we have to first gather the flow information within a time

window (e.g., 300 seconds) which will be fixed at the beginning. Thus, a flow will

contain all the packets that are traveled from a router to different destinations

during a time span of 300 seconds. We can also combine such flows to form a

new flow with larger time windows. For example, if we combine two flows of 300

seconds then we will have a flow of 600 seconds. This flow information can be

captured during a particular period or throughout the day. Once we have a flow

information, we can apply learning techniques on each flow iteratively to gain

deeper knowledge about normal behavior of the flow. For example, an average,

how many packets of different protocols are traveling to a given destination from

a given router/region during a particular time of the day.

Figure 4: A 300 second time segment corresponds to a flow of information. The

number of packets can vary in a flow.
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3.3 Analysis technique

In the proposed system, each router will itself act as an analyzer. An Internet

traffic will be captured on a router. The captured traffic will then be analyzed

and features will be extracted from it. Features will be based on the destination

IP address (e.g., how many packets of different protocols are observed traveling to

a given destination). The extracted features will be used for training a learning

algorithm. A learning algorithm creates a model which can be used to predict the

behavior of a traffic for a destination. If at any moment in time, the predicted

behavior of a traffic for a destination does not match with the actual behavior,

then we can say that the destination is under a DDoS attack.

A router will constantly keep learning and updating the learned parameters

for different time windows. This window could be any time span in a day, a week,

or a month. Before learning from a traffic for a destination, we will use previous

learned information to verify that the current traffic for a destination is not an

attack traffic.
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4 Implementation

As discussed previously, there are different types of DDoS attacks, such as volume-

based, application-based, and low-rate DDoS attacks. Among these different types

of attacks, the volume-based attack is the most common. In a volume-based attack

a destination server is flooded with a high volume of Internet packets (TCP, UDP,

HTTP or ICMP), which makes the server unable to serve the requests.

To demonstrate the suggested approach, we simulated a volume-based attack.

In a real world, volume-based attacks are orchestrated using bots. Bot [5] is com-

puter program designed to perform a particular task and is under the control of an

attacker. Bots are installed on a compromised computer systems by an attacker.

Bots are not bound by geographical boundaries, they can be anywhere on the

Internet. The Internet is a connection of different computer systems communicat-

ing with each other through different channels, such as cables, satellite, or radio

devices, and these communication channels run throughout the globe. A botnet

(i.e. a network of bots) is created by an attacker to launch a DDoS attack.

For our simulation, instead of designing a bot program, we have used Low

Orbit Ion Canon(LOIC) tool which is a free DDoS attack launching tool. Even

attackers use this tool in the real world to launch a DDoS attacks.

We used Wireshark, an open source tool, for capturing Internet traffic. Wire-

shark can capture all digital information received or sent through different devices

such as Ethernet or Wi-Fi devices. It also helps identify different protocol packets

(e.g., TCP, UDP), within the wrapper packet created at Data Link Layer.
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Figure 5: Wireshark Tool: snippet of captured packets

For the demonstration of our approach, we have created a small network which

has one router and a couple of host machines. Each machine can be a victim of

a DDoS attack. We installed the Wireshark tool on one of the machine in this

network. For capturing traffic in the network, we used Wireshark’s Promiscuous

mode. In a Promiscuous mode, a network interface can record not only the traffic

that it is intended to send-receive, but all the traffic on the network. This allows

us to capture all the traffic on the network. This setup is similar to a router on

the Internet which captures all the traffic going to different destination through

it.
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Figure 6: Network for simulating a DDoS attack detection

To capture a normal traffic, we started Wireshark tool and let it run for couple

of hours. To capture an attack traffic, we orchestrated a DDoS attack on one of

the host (e.g., 192.168.0.7 in Figure 6) in our network. This attack was engineered

using the LOIC tool that was installed on another host (e.g., 192.168.0.10 in Figure

6). This tool allowed us to launch TCP and UDP flood attack on any destination.

All the traffic, including the normal and the attack traffic, was captured using

Wireshark. Packets are captured for about five hours in the given network. Once

the packets are captured, they were saved as pcapng file, which is a Wireshark

file format for captured packets. The packets captured during a normal traffic,

and during an attack were saved separately on the file system. The normal traffic

information was used for training and testing the learning algorithms (we will

explain them in later sections), while an attack traffic was used for detecting an

attack. Wireshark captures every detail of a packet, but we didn’t need all of

the information, we were interested only in the IP layer information of a packet.

Most routers analyze only the IP layer information for routing, having said that,

there is no reason that information present at other layers of a packet cannot be

analyzed. For our demonstration purpose we choose only the IP layer information

of a packet.
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A data extraction program was written in the Python language to extract the

IP layer information from a captured packet. This program extracts IP address,

port and time information from each captured IP-packet7.

Destination IP Address Protocol Time stamp(Sec.) Sample Number

52.6.129.72 6 1512094785.928596000 1

192.168.0.4 6 1512094785.946987000 1

192.168.0.4 17 1512094786.148488000 1

Table 1: Sample file snippet (row represents an IP-packet)

The data extraction program divides the captured traffic into samples. In our

case, a sample was a traffic captured during a 300 seconds time window. Samples

were stored on a file system for further processing. This sampling of traffic is a

continuous process. We then ran another program to extract the flow information

from a sample file. A “flow” for a destination contains a count of different types

of packets captured for a destination in a sample file. This flow represents a

“training example” for the learning algorithm we used (see Table 2). Thus, A flow

information for a single destination is regarded as a training example and flow

information for all the destinations in a sample file regarded as one training set.

Each training example is labeled with destination IP address.

IP-Packet count

Destination IP Address ICMP TCP UDP

172.217.10.134 0 8 12

65.19.96.252 5 0 192

68.67.178.134 0 78 0

Table 2: Three training examples represent “flow” for three destination addresses

In above figure 2, ICMP, TCP, and UDP packets count for each destination is

calculated during a time window of 300 seconds, so, it’s a training set with three

7A packet containing IP layer information
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training examples. We kept aside few training sets for testing our algorithms.

We trained our algorithms using multiple training sets. After training, a

trained model was created, and stored on file system. Sample files were discarded,

and new samples were created for further training. This training process has to

be continuous process in order to correctly reflect the overall traffic behavior at a

router. Every time the new information was learned, it was augmented with the

previous learned information, so that we have correct model for a DDoS attack

detection. Learning process can be done over the course of a day, a week, a year

and so on. We can have separate learning information for the traffic in the morn-

ing from 9 a.m. to 12 p.m., and the traffic in the evening 6 p.m. to 12 p.m. Thus,

a router will have multiple trained models, one model for one specific time span.

Because an attacker oftentimes uses different ports and employ spoofing tech-

nique for a DDoS attack, destination port number and source IP address are not

reliable features for detecting a DDoS attack. Packet analyzing is often difficult

due to the size and the encryption, while flow based model is more reliable and

fast. Due to these reasons, we did not consider features hidden inside the packet

(e.g., information available at different layer of a packet), and also did not con-

sider a source IP address or a destination port information for building prediction

models.

We used the Python program to create training sets as given in Table 2. Each

row in a training set is one training example with the destination IP address

as a label. A training example is R3 vector whose elements are the number of

packets observed for a particular protocol for a destination during a fixed time

(e.g., 300 second window). There are around 150 protocols managed and assigned

by the Internet Assigned Numbers Authority (IANA), but the most commonly

used protocols in a DDoS attack are ICMP, TCP, and UDP. Hence, for the training

and analysis purpose we used only these three protocols as the desired features.

Each sample file was processed, and corresponding train and test set was cre-

ated. Train and test sets were stored on the file systems, so that, they can be used
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by our programs for training the algorithms and testing the model.

4.1 Machine learning

According to Tom Mitchell [12], a computer program is said to learn from an

experience E with respect to some task T and some performance measure P, if its

performance on T, as measured by P, improves with experience.

A learning algorithm builds a hypothesis using a training set as an input. The

hypothesis is then used to perform predictions. Most common categorization of

machine learning algorithms are Supervised and Unsupervised.

Let f : Rd → Rd be the function that we need to guess from input vectors

x1, x2, ..., xn, also called as ‘input variables’ or ‘feature vectors’. Let Ξ be a set

of such input vectors. Let n be the number of input vectors in training set Ξ.

Let H be any set of functions. Let h : Rd → Rd ∈ H be the hypothesis about

function f ∈ H. We selected h based on training set X ⊆ Ξ, of m input vectors.

In supervised learning, we know the values of f for m samples, in training set

X. We assume, if we can find hypothesis h that closely agrees with f for the

members of X, then this hypothesis will be a good guess for f when X is large. In

unsupervised learning, we simply have a training set of vectors without function

values for them. The problem in this case, typically, is to partition the training

set into subsets, X1, .., XN , in some appropriate way. [13]

A supervised algorithm, such as one-class Support Vector Machine (one-class

SVM) [14], is efficient in identifying anomalies in a data; however this algorithm

is process-and memory-intensive. Training such algorithm for each and every IP

address is very costly in terms of resources. So, our approach was to first cluster

the IP addresses based on the features using unsupervised learning algorithm,

such as k-means, and then applying one-class SVM on the clusters to decide their

boundaries. K-means algorithm is fast and consumes fewer resource compared to

one-class SVM. This makes it a good first choice for routers (traditionally router

has less processing power and less memory).
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4.1.1 Feature scaling

Before feeding training data acquired in an earlier stage, to a learning algorithm,

we had to do feature scaling (which is also called Standardizing). Feature scaling is

done by subtracting the mean and scaling the feature to a unit variance value. It’s

necessary because, different features which are at different scales, could cause one

feature to dominate others in the algorithm output result. For example, consider

two vectors (1, 2, 3000) and (1, 3, 2000). If we calculate the Euclidean distance

between these two vectors using formula
√∑n

i=1(pi − qi)2, then the distance is√
(1− 1)2 + (2− 3)2 + (3000− 2000)2 . This show, the larger term is dominating

the resultant distance.

If we consider a training example without a label (i.e., without destination IP

address) as a vector, then each coordinate in the vector is a feature. To standard-

ize the vector—mean and standard deviation was calculated for the set of input

vectors. Then, a new vector was created by subtracting the mean from each fea-

ture vector and dividing that feature vector by its standard deviation. The new

vector created after this step was standardized vector. A set of such standardized

vectors was used as input to learning algorithms.

Standardization formula: x′ = x−x̄
σ

,

where x is a feature vector, x̄ is the mean and σ is its standard deviation.

4.1.2 Clustering

A clustering algorithm will take training vectors as input, and then group them

with some scheme. K-means [15] clustering is one of the most efficient algorithms

for creating clusters. This algorithm initially takes any k randomly chosen points

µ1, µ2, ..., µk (called, “centroids” or “cluster centers”), as a input, from training set

X = {x1, x2, ..., xm}, xi ∈ Rd, i = 1, 2, ..m, and then group elements in training

set based on how close they are from the centroid. The centroids are recalculated

after every cluster assignment. Following is Lloyd’s algorithm. It is the most

popular heuristic algorithm for k-means clustering.
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Algorithm 1 k-means

1: Random choose any k points ∈ X as centroids.

2: repeat

3: Calculate distance for each element (or data point) of the training set to

all the centroids.

4: For each element, assign centroid which is nearest to it.

5: Recalculate new centroid for all the elements in one cluster by taking the

mean. If xj1, x
j2 , ..., xjn are the elements of the cluster j, then for cluster j new

centroid will be µj = 1
n
[xj1 + xj2 + ... + xjn ], where n is the number of points

assigned to cluster j. Do this for all the clusters.

6: until No data point is reassigned to a different centroid.

For this thesis we used k-means++ algorithm. It is an improvement of k-

means. In k-means++ algorithm an arbitrarily initialization step is replaced by

simple, randomized seeding technique. K-means++ tries to find the centroids

as far away from each other. If D(x) is the shortest distance from a data point

x ∈ X to the closest centroid we have already chosen, then following is k-means++

algorithm [16].

Algorithm 2 k-means++

1: Select a centroid µ1, chosen uniformly at random from X, as first centroid.

2: Choose a new centroid µi ∈ X, such that the probability D(µi)
2∑

x∈X D(x)2
is highest.

3: Repeat Step 2. until all k centroids are taken.

4: Proceed with the Lloyd’s k-means algorithm, skipping random initialization

stage.

For our DDoS attack detection program, we used Scikit-learn libraries. Scikit-

learn is most popular and rich open-source machine learning software library for

Python programming language, and it has implementation for both k-means++

and one-class SVM machine learning algorithms. It also has data preprocessing

programs, such as feature scaling.
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We took a training set (in the format given in figure 2) and we clustered them

using k-means++ clustering algorithm from Scikit-learn.

Figure 7: One training example

Before doing clustering, we had to first determine the number of clusters and

centroids8. A centroid represents a cluster in a training set. Deciding number of

clusters is important, because randomly choosing the number of clusters may not

have correct clustering. To find the optimal number of clusters in our training

set, we used Elbow method. Elbow method checks the portion of the variance

explained by a function of the number of clusters. The cluster number that has

produced least variance for the next cluster number was selected as best choice

for clustering our training set. The following is an elbow diagram produced using

Elbow method. In this diagram, x-axis represents the number of clusters and y-

axis represents the variance explained. The cluster number at the “elbow” of the

diagram is the best choice.

8A centroid is a vector which is an arithmetic mean of all the points in a cluster.
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Figure 8: Elbow Method for cluster count determination

As we had multiple training sets. We first ran k-means++ algorithm on all

training sets using the number of clusters found in Elbow method as input. After

clustering was done, we got one centroid set for each training set (One centroid in

a centroid set represents one cluster in a training set). For our detection technique,

we needed only one set of centroids that can correctly cluster the traffic. If we

choose k number of clusters for the clustering, then this set will contain k centroids.

To determine such centroids (i.e., centroids set), we first removed the outliers

among all the centroids (one per training set), and then calculated the median of

all the remaining centroids. Such median is a good estimate of all the centroids.

These estimated centroids were used for clustering the samples in the future.

Following is the example of centroid vectors with two clusters. A row represents

a cluster and a column represents a feature.

Cluster ICMP TCP UDP

0 -0.16815612 -0.14928111 -0.16948046

1 -0.18181818 5.13527652 5.68956244

Table 3: Example of cluster centroids: A row is a cluster and a column is a feature

The estimated centroids were used to cluster all the training sets and to label

each training example with cluster number.
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After clustering is done, it needed to be tested for accuracy, i.e., how similar

the test set clustering is with training set clustering. This can be done by checking

whether or not an IP address has the same cluster number assigned in both the

training and the test sets. For measuring this similarity Rand Index(RI) [17] was

used. RI is a measure of how well does the test clustering matches with the trained

model:

RI = TP+TN
TP+FP+FN+TN

,

TP = true positives, TN = true negatives, FP = false positives, and

FN = false negatives

Because training sets contain the flow information for different IP addresses

on a router during a fixed time window, there is a very high probability that the

same destination IP address is captured in multiple training sets. Our goal was

to find correct cluster for each destination IP address. To achieve this goal, we

labeled the IP addresses with clusters in which they found most of the time, e.g.,

if an IP address is labeled with cluster ‘0’ in five training sets and cluster ‘1’ in two

training sets, then the IP address was labeled with cluster ‘0’. We also calculated

and stored the total packet count for a destination in a flow.

Destination IP Address Cluster Packet Count

74.125.141.106 1 113

72.30.2.182 0 16

64.94.191.14 0 22

Table 4: Learned information after clustering

Clustering information tells us the normal behavior of packets traveling from

a router to a destination, i.e., for normal traffic, every time we do clustering, we

should expect an IP address to be found in the same cluster it was found during

the training. But if there is a DDoS attack on a destination, then the destination

IP address can be found in different cluster.
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4.1.3 Anomaly detection using one-class Support Vector Machine

From the experiments on different training sets, we found that the destination

under attack is sometime labeled with the same cluster number that we had after

training. We had a fixed number of clusters, so the training example for a desti-

nation IP address gets assigned to the cluster whose centroid is the nearest (which

was the same cluster it was labeled in the training). To avoid such a situation, we

had to create boundaries for the clusters. If any IP address was found outside of

the cluster boundaries, then traffic for that destination was considered suspicious.

This provision made sure that the attack on a destination IP address was detected

even if traffic for that destination was assigned to the same cluster it was assigned

in the past.

To create cluster boundaries, we used one-class SVM classifier. One-class SVM

classifier is used when we have only one type of training examples. It classifies the

training examples into one class. In our case, training vectors (also called as data

points) in a cluster formed a class. So, for each cluster we had one classifier that

classifies whether or not a training example is inside the cluster.

Support Vector Machine (SVM): SVM is a supervised learning algorithm

which tries to classify training examples into two classes. Classification is based

on the labels of a training set. Consider training set {(x1, y1), .., (xm, ym)}, where

xi ∈ Rd is the training example, and yi ∈ {−1,+1} is the label (or a class) for xi.

SVM will separate these classes using a line or a curve.

SVM tries to create a non-linear separation boundary by projecting data points

using a non-linear function Φ : x → φ(x) (called “kernel” trick) to higher dimen-

sional space. The data points in space I which can’t be separated by a line are

projected to feature space F ⊆ Rd, where, there can be a hyperplane that sep-

arates data points of one-class from another. If that separating hyperplane is

projected back on the original space I then we get a non-linear curve. [14]
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Figure 9: Linear Separation using Support Vector

The hyperplane is represented with the equation wTφ(x)+b = 0, where x ∈ Rd,

w ∈ F and b ∈ R. This hyperplane separates the training examples labeled with

−1 and 1. The position of the hyperplane is such that, the distance from the

closest point in each class to the hyperplane is same. To avoid over-fitting, slack

variable ξi is introduced. Over-fitting happens because the learned hypothesis

fits training examples so well that it fails to generalize new examples. The SVM

classification is an optimization problem stated as follows: [14] [18]

minw,b,ξi
||w||2

2
+ C

∑m
i=1 ξ

i

subject to:

yi(wTφ(xi) + b) ≥ 1− ξi for all i = 1, . . . ,m

where yi ∈ {−1,+1}, x ∈ Rd, b ∈ R and ξi ≥ 0 for all i = 1, . . . ,m

The constant C > 0 is the regularization parameter. If C is chosen large,

misclassification of training examples can be avoided. If C chosen small, then we

may misclassify a few examples, but the margin will be large. So, most of the

points will be far away from the decision boundary. If this optimization problem

is solved using Lagrange multipliers, then the classification function is:

sign(
∑m

i=1 α
iyiK(x, xi) + b)

αi are the Lagrange multipliers, αiyi are called the support vectors and func-

tion K(x, xi) = φ(x)Tφ(xi) is the kernel function. Kernel function is a similarity
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function which is a dot product of data points mapped in the higher dimensional

feature space by function Φ.

One-class Support Vector Machine: One-class SVM is an extension of SVM

which detects boundaries of the training sets, so that, every new training example

can be classified inside or outside the boundary. It separates all data point in

feature space F , and maximizes the distance of hyperplane from F . This creates a

binary function which returns +1 for the training example that fits in the trained

region, otherwise it returns -1.

Following is the optimization function of one-class SVM. It’s slightly different

than the SVM. [14]

minw,ρ,ξi
||w||2

2
+ 1

νm

∑m
i=1 ξ

i − ρ

subject to:

(w.φ(xi)) ≥ ρ− ξi for all i = 1, . . . ,m

ξi ≥ 0 for all i = 1, . . . ,m

New parameter ν ∈ (0, 1] introduced in place of C (from previous SVM equa-

tion) is used to set upper bound on outliers/anomalies, and lower bound on the

number of training examples.

Because SVM solves a quadratic programming problem (QP), compute and

storage requirements of SVM increase rapidly with the number of training vec-

tors. The approach presented in this thesis is more efficient because the number

of clusters is limited and always far less than the number of destination IP ad-

dresses. Creating small number of classifiers for clusters will be far less process-and

memory-intensive than creating classifiers for a large number of IP addresses, e.g.,

in our simulation training sets we had 4 four clusters, while the unique number

of destination IP addresses was 268, which is more than 60 times the count of

clusters we have found.

To classify a test example to be part of a cluster or not, we needed classifier

for each cluster. In other words, if we have four clusters, we need to create four
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one-class SVM classifiers—one for each cluster.
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5 Detection

To detect an attack, we had captured Internet traffic at the router during a time

interval that we had fixed while creating the training sets (e.g., 300 second win-

dow). We transformed the captured flow into a detection set by using the same

program which was used to create training sets from the sample files.

Detection is a two pass process. In the first pass—detection set was clustered

using k-means++ algorithm by giving already calculated centroids as an input.

We then checked the cluster assignment for each destination IP address in the

detection set. If there was any destination IP address for which the new cluster

assignment does not match with the cluster label it was labeled during training,

then that destination IP address was suspected to be under the DDoS attack.

Every such suspected IP address was added to the suspect list.

In second pass—if the cluster label for an IP address matched with the cluster

label it was assigned during training, then the feature vector for that destination

IP address was passed to the cluster classifier. Classifier checks if an IP address

is inside the boundary of the cluster or not. As explained in the previous section,

we used one-class SVM classifier to decide the boundaries. For example, if an IP

address was labeled with cluster number 0, then we used one-class SVM classifier

model that was trained on cluster 0. If the output of the classifier is -1, then the

destination IP address was added to the suspect list. Not being identified inside

the cluster boundary, it was in in the past, was a sign of significant change in

the behavior of the traffic for a given destination IP address. We also recorded

the average number of packets observed. The packet count acted as a filter to

eliminate any misclassification after predictions.
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6 Detection simulation

We have created a simulation for detecting DDoS attacks using the approach

outlined in this thesis. As explained in section 4 on page 10, we had a small

network of three computers and a router. Normal as well as orchestrated DDoS

attacks traffic was capture in that network. Captured traffic was then converted

into samples to form training sets. Training sets created from the normal traffic

were used for labeling IP addresses with cluster numbers, and then training the

classifiers.

Elbow method explained in section 4.1.2 on page 16 was used to detect the

optimal cluster count. In our training set, the optimal cluster count was found to

be 4.

Figure 10: Elbow method to find number of clusters

We then applied k-means++ clustering, as explained in section 4.1.2 on page

16, to find the correct centroids for our training examples. We found the following

centroids for our training sets.
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Cluster ICMP TCP UDP

0 -0.16815612 -0.14928111 -0.16948046

1 -0.18181818 5.13527652 5.68956244

2 5.08663322 -0.27110845 -0.099885

3 -0.18670401 -0.18804342 -0.018538

Table 5: Cluster centroids for our training examples

Those centroids were used for clustering our training sets. To draw the clusters

in two dimensional space we had to reduce the three dimensions training example

into two dimensions without losing much information. This was achieved by using

Principal-Component Analysis (PCA). PCA is a technique which takes a set of

tuples representing points in a high-dimensional space as input, and then finds

the directions along which the tuples line up best. [19]. We used the Scikit-learn

PCA module for this purpose.

Figure 11: Clustering using k-means++ algorithm
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The k-means++ algorithm gave a label to each training example. This label

was the cluster number to which a training example was assigned. The new labeled

data look like below (table 6).

Destination IP Address ICMP TCP UDP Cluster

172.217.10.134 0 8 12 1

65.19.96.252 5 0 192 0

68.67.178.134 0 78 0 2

Table 6: Labeled Training Set (with cluster number)

We also checked the clustering accuracy using the Rand Index explained in the

section 4.1.2 on page 16. With more training sets, we observed that the RI index

improves. A tag file with IP addresses, their cluster labels, and average packet

count was created. This tag file was used in first pass for detecting any anomaly

in the network traffic.

As explained in the section 4.1.3 on page 21, we trained the model and created

the classifier for each cluster. We used Scikit-learn’s OneClassSVM library to

achieve this. The input vector to the classifier was the set of all the training

examples belonging to the same cluster. Thus, for our four clusters, we had four

classifiers. The input vector to the classifier is in the form shown in table 6 on

page 28.

The following is the result of modeling on the training data sets. Each cluster

has its own model. We used PCA component analysis to draw the models.
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Figure 12: one-class SVM

At the end of the training, we had a file containing IP addresses labeled with

the cluster numbers, and four classifiers for four clusters.

We applied the detection techniques explained in section 5 on page 25 on

the detection set. The detection set was created by capturing packets during

the orchestrated DDoS attacks (IP address 92.168.0.7 was attacked). Using the

detection techniques we were able to detect an attack on destination 92.168.0.7 in

our modeled network.

Figure 13: Program output
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7 Mitigation

By now we have a computer program (consisting of a few modules, i.e., clustering,

classification and detection) which can run on a router and can be used to detect a

DDoS attack. There are many routers through which a destination can be reached,

so, to correctly detect a DDoS attack, we should have our program on every

router on the Internet. We can do this, either by manually installing the program

on each router, or by using Network Function Virtualization (NFV) [20]. NFV

is an advanced technology which allows us to manage network devices remotely,

and also allows us to add functionality to those networking devices. Because of

this virtual technology we don’t have to manually install computer programs on

routers; rather, we can do it any time from anywhere. Although this technology

is new, it’s spreading very fast, and soon it will be available for every commercial

router.

After detecting an attack a router can choose to block all the packets going to

the destination under attack, or it can communicate the attack information to the

destination. The attack information can contain region name and packet count.

If an attack information is communicated to the destination, destination can

know the nature of the attack, i.e., it can know where the attack is originated and

how intense it is. Destination can also query the router for more information, such

as the source IP address of the packets captured during an attack.

The control of blocking the traffic at a router can also be given to the desti-

nation. In this case, the destination can perform its own analysis, understand the

nature of the attack, and then decide whether or not the incoming packets from

the reporting router should be blocked. There can be different parameters based

on which the destination server can decide to block the traffic. Those parameters

can be provided by the router as additional information. Many questions can be

asked before making the decision at a destination—such as: How many routers

have reported a change in traffic, and is the attack information coming from a

region which never had traffic in the past—etc.
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Figure 14: Blocking traffic at a router: The out-bound traffic for S2 is blocked

from router R6, because attack has been detected. Traffic from all other routers

is unaffected

A router can use the existing Internet Control Message Protocol (ICMP) to

communicate with a destination network. This protocol is used to provide feedback

about the problems in the communication environment. ICMP messages are sent

in several situations such as: 1) when a datagram cannot reach its destination; 2)

when the gateway does not have the buffering capacity to forward a datagram; 3)

when the gateway can direct the host to send traffic on a shorter route etc. [10]

Similarly we can use the ICMP protocol to inform the destination about the

anomalies in the traffic. This protocol has many unused “types” (there can be

0-255 types but as of now only 0-41 are in use). We can create a new ICMP “type”

to send DDoS attack detection information from a router to a destination server,

and then the destination server can send mitigation instructions to a routers.
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Figure 15: Communication between a router and a destination server
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8 Conclusion

DDoS attacks are a real threat to everyone on the Internet, and their detection is

difficult because of the spoofing techniques employed by the attackers. We have

discussed how we can combine two machine learning algorithms (clustering and

classification) to efficiently detect DDoS attacks at the router. We also discussed

how to create a program that uses learning algorithms, and then how to installed

that program on routers. Having detection program on the routers eliminate the

need for extra infrastructure for detection of a DDoS attack. With the advance-

ment of Network Function Virtualization (NFV), it’s easy to push the learning

program on the routers. We also discussed how a router can stop an attack and

how it can communicate the attack information with the stake holders (e.g., server)

for taking better decisions about blocking the attack traffic.
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