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Thesis Abstract

A Construction of the Stone–Čech Compactification and Dynamical Applications

By NICHOLAS SALVATORE

Thesis Director:

Mahesh Nerurkar

The ultimate goal of this thesis is to present how the Stone–Čech Compactification can be

used to capture the asymptotic behavior of dynamical systems.

We will first cover preliminary definitions and properties of dynamical systems and ε-semigroups.

Then we will construct the Stone-Cech compactification using ultrafilters. The final section will

recharacterize the dynamical structures in the first section in terms of the Stone-Cech Compact-

ification and contain a proof of the Auslander Ellis lemma.
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1 Introduction

The ultimate goal of this thesis is to present how the Stone–Čech Compactification can be used

to capture the asymptotic behavior of dynamical systems.

We will first cover preliminary definitions and properties of dynamical systems and ε-semigroups.

Then we will construct the Stone-Cech compactification using ultrafilters. The final section will

recharacterize the dynamical structures in the first section in terms of the Stone-Cech Compact-

ification and contain a proof of the Auslander Ellis lemma.



2

2 Basic Notions and Minimality

We begin with the basic setting, the topological dynamical system.

2.1 Definitions and basic lemmas

Def 2.1 Topological Dynamical System:

Let T be a group/ semigroup, X be a locally compact Hausdorff topological space π

be a continuous function from X × T to X. We use the notation π(x, t) = xt and observe

the following properties:

(i) If T has identity e, xe = x.

(ii) for s, t ∈ T and x ∈ X, (xs)t = x(st)

The ordered triple (X,π, T ) is defined as a topological dynamical system. In most situ-

ations we will be able to suppress the π without loss of generality and simply write (X,T ).

We will henceforth assume that T is a group unless otherwise stated. We may note that if T

is a group, Xt is a homeomorphism. This follows from the fact that (xt)t−1 = x(tt−1) = x for

each x ∈ X and t ∈ T . We will now observe an example.

Example 2.2 The Shift System:

Here we introduce an example which we will develop through the section and will

become very fruitful later. Let X = NC where C = {c1, ...cn} is a finite collection of

elements. That is to say, X is the collection of all sequences of C. In addition, let X have

the metric d(x, y) = k if for all n < k, xn = yn, xk 6= yk. It is clear that X is compact

and T2. Finally, we will assign N the discrete topology.

Now, let T : X → X where T (x) = y if and only if yn = xn+1. We call T the shift

function. To show that T is continuous, let y′ ∈ X and V be the basis set {y|d(y′, y) < 1
k}.

We can first observe that T−1(y′) = {xci |x1 = ci, xn = yn−1}. Thus, for each y ∈ V ,

T−1(y) ∈ ∪{x|d(x, xci) <
1
k} = ∪Uci and so T−1(V ) ⊂ ∪Uci . Further, if x ∈ ∪Uci , then

Tx ∈ V . So, T−1(V ) is the finite union of open basis sets, hence T is continuous.

Finally, let T (T (x)) = T 2(x). We can observe that T 2(x)n = xn+2, so inductively
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T i(x)n = xn+i. That (X,T,N) is a topological dynamical system follows.

Our concern in this section is to examine the existence and properties of invariant structures

that arise in (X,T ).

Def 2.3 Orbit:

The orbit of x ∈ X, denoted Orb(x) or O(x) is given by xT = {xt|t ∈ T}.

Def 2.4 Invariant Set:

A set A ⊆ X is invariant if for all t ∈ T , At ⊆ A.

We will sometimes refer to invariant sets as subsystems.

Lemma 2.5 :

i) M is invariant implies M is invariant

ii) O(x) is invariant

iii) O(x) is invariant

iv) if M and N are invariant, M ∩N is invariant.

i) Let M be invariant. Let t ∈ T , x ∈ σM and V ⊆ X be any open set containing xt.

Since Xt : X → X is continuous, (Xt)−1(V ) = U is an open set containing x. Since

x ∈ σM , there is a point y ∈ U which is in the interior of M . Of course, this means

yt ∈ V . Thus, for any open set V containing xt, we can find a yt ∈ M̊ also contained in

V . Thus, xt ∈M and so, M is invariant.

ii) and iv) are clear from the definitions.

iii) follows from i) and ii).

We now define minimal sets. Minimal sets are of interest because they have very nice asymp-

totic behavior, which shall be seen later in this section.

Def 2.6 Minimal Set:

M ⊆ X is said to be minimal if it is a closed, invariant set which contains no proper
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closed invariant subsets.

Lemma 2.7 :

Let (X,T ) be a tds. X has a nonempty minimal set.

First, observe that (X,T ) itself is an invariant set. Either X is minimal, or it has an

invariant subset. Assuming the latter, we name this set M . By the previous lemma,

we know that M is also invariant. Now, let I be a collection of invariant sets ordered

by inclusion. We can leverage the previous lemma which states that the intersection of

invariant sets is invariant to construct a set ordered by inclusion from the intersections

of I. Since X is locally compact, this set has a minimal element, namely ∩I. Thus, by

Zorn’s Lemma there exists minimal sets.

Let us note that in general, X cannot be found to be the disjoint union of minimal sets. We

will now begin to characterize minimal sets in more useful ways.

Lemma 2.8 :

M is minimal iff O(x) = M ∀x ∈M .

The first direction is trivial as M could not be minimal if O(x) 6= M , as O(x) is itself a

closed invariant subset of M .

Now, given M ⊂ X, let O(x) = M for all x ∈ M . First, it is clear M is closed and in-

variant, we need only observe minimality. Let N ⊆M be closed and invariant. We know

that for any x ∈ N , O(x) = M . Thus, M ⊆ O(x) ⊆ N . Hence, M = N and M is minimal.

2.2 Recurrence and Minimality

We are now going to use a family of ideas surrounding a point being recurrent to characterize

minimality. The most basic form of recurrence is periodicity of a point x, where given a tds

there exists some t ∈ T such that x = xt. From here we obtain the concept of almost recurrence,

which is a point getting close to itself often. To make this idea rigorous, we have a few definitions.

Def 2.9 Syndetic:
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Let T be a topological group. S ⊂ T is said to be right syndetic if there is a compact

F ⊂ T such that SF = T .

We can note that on N with the discrete topology syndetic sets are those with ”bounded

gaps”, that is to say F is finite in addition to being compact. (This is, to the best of my

knowledge the notion that was made rigorous by the above definition). We will later show for

our purposes, the discrete topology is enough. But for now we work in a general topological

semigroup.

Def 2.10 Almost Periodic Orbit:

x is said to be almost periodic if for every open U which contains x, the set R(x, U) =

{t ∈ T : xt ∈ U} is right syndetic.

Example 2.11 The shift system:

We will return to the shift system for an example of almost periodic points. Let

X be the shift system, and let x ∈ X be almost periodic. Then for any basis set

U = {y|d(x, y) < 1
k}, R(x, U) is syndetic. Let n ∈ R(x, U). Then d(x, xn) < 1

k which

is to say, xi = xni for each i < k. We can observe from this that the first k terms of

the sequence x repeat very often, and using the definition of syndetic we can figure out

how often. Let F = {f1, ..., fn} be increasing, and R(x, U)F = N and let n ∈ R(x, U).

Then xi = xi+n for all i < k. Since R(x, U) is syndetic, there is some n′ such that

k + n < n′ < n+ k + fn and d(xn′, x) < 1
k .

We now arrive at the first characterization of minimality, and our first important theorem.

Theorem 2.12 :

Let (X,T ) be a tds, with x0 ∈ X, T a discrete topological group, and X a locally compact

Hausdorff space.

O(x0) is a compact, minimal set if and only if x0 is almost periodic.

We first note that since T is discrete, S is a syndetic set implies there is a finite F ⊂ T

such that SF = T .

[I] Let x0 be an almost periodic point. That is to say, given any open U that contains

x0, R(x0, U), the set of return times to U is syndetic. We will first show that O(x0) is
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compact, then that it is minimal.

To show compactness, we first show that if FU is the finite set corresponding to

R(x0, U), O(x0) ⊂ UFU = T . Let y ∈ O(x0). Then y = x0ty. By the definition of

syndetic, there is some t0 ∈ R(x0, U) and f0 ∈ FU such that t0f0 = ty. Hence, (xt0)f0 = y

and since xt0 ∈ U , y = (xt0)f0 ∈ Uf0. So, for any y ∈ O(x0) there is f0 ∈ FU such that

y ∈ Uf0.

Finally, since X is locally compact Hausdorff, given open U containing x0, we can find

open V containing x0 such that x0 ⊂ V ⊂ V ⊂ U and V is compact. By the previous

argument, V FV covers O(x0), so O(x0) ⊆ V FV . Since V FV is the finite union of compact

sets, O(x0) is a compact set.

To show that O(x0) is minimal, we use the lemma above that states M is an minimal

set if and only if O(x) = M for every x ∈ M . So all we need to do is show that for any

x ∈ O(x0), O(x) is dense in O(x0). Let x, y ∈ O(x0). We will show that there is t ∈ T

such that for open V containing y, xt ∈ V . This can be achieved almost trivially in the

group setting as x = x0tx and y = x0ty. Hence, the statement holds if t = t−1
x ty. So,

O(x) = O(x0) for every x ∈ O(x0) and by the above lemma also in O(x0).

[II] Now, let O(x0) be compact and minimal. We shall show that it is almost periodic or

equivalently, R(x0, U) is syndetic for all open U containing x0.

We will first observe that for any open U containing x0, UT is an open cover of O(x0)

indexed by T . By compactness, we may choose a finite subcover indexed by a finite

FU ⊂ T , where FU = {f1, ..., fn}.

For syndecity, we will show that given t ∈ T , there is s ∈ R(x0), U) and f ∈ F such

that t = sf . Let t be given. We know that there exists f ∈ FU such that V = Uf

contains x0t. Now, let V̂ be the open neighborhoods of xt intersected with V . Also, let

Û = {vf−1|v ∈ V̂ }.

Now, by lemma 1.7, O(x0) is dense in itself since it is minimal. Thus, we can choose

a net {xu}Û ⊂ U where xu ∈ u ∈ Û . Now, we can observe that {xu}Ûf is a net such that

we may find an element in every neighborhood of xt by construction. Thus, it converges

uniquely (Hausdorff) to xt. Finally, we note that each xuf can be written as x0suf , where

su ∈ T . By continuity, this means su → s where s ∈ R(x0, U) and t = sf . Thus, R(x0, U)

is syndetic.

Our goal in all of this is to capture the behavior of certain points, namely to capture effi-
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ciently the concept of a proximal point.

Def 2.13 Proximal pairs:

Let x, y ∈ X. Then (x, y) ∈ P (X) (the set of proximal pairs in X) if and only if there

exists a net tα ∈ T such that limxtα = lim ytα.

In order to do this, we must construct a set in which we can embed T to capture limits in

general, which is the purpose of section 3. We also need a relationship between semigroups and

idempotents, elements u such that u2 = u. This will be explored in the next brief section.
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3 The ε semigroup

In this section, we will set up our second foundational structure, the ε-semigroup. This section

will cover the basic definition of the ε-semigroup, and end with the introduction of minimal

idempotents, which we will ultimately use to re-characterize recurrence.

Def 3.1 :

i) E is an ε-semigroup if it is compact, Hausdorff, and the left multiplication Lp(q) = pq

is continuous for every p ∈ E.

ii) w ∈ E is an idempotent if and only if w2 = w

The importance of the ε-semigroup to us is its relationship to the idempotent. We will first

show that the collection of idempotents is nonempty.

Lemma 3.2 :

Let E be an ε-semigroup, then E contains an idempotent. We refer to the collection

of idempotents in E as J(E).

Let us consider the family F = {∅ 6= N ⊂ E|N ·N ⊆ N, N closed}. We can see that

this set has minimal elements as we can construct nested families by intersection whose

total intersection is nonempty by compactness. Let M ∈ F be minimal. Then, if w ∈M ,

wM ⊂M by definition, and also a subset of F. Hence by minimality wM = M . Then we

can observe that Q = {q ∈ M |wq = w} = L−1
w (w) is nonempty, and closed by continuity

of left multiplication and in F. Thus, Q = M and since w ∈M , w2 = w.

With the existence of idempotents, we are free to develop a further structure for the ε-

semigroup. We will find that there is a very fundamental connection between idempotents and

right ideals.

Def 3.3 :

Let E be a ε-semigroup. I ⊂ E is a right ideal if it is closed and IE ⊆ I. I is said to

be a minimal right ideal if it does not contain any proper right ideals of E. The definitions

of left ideals and two sided ideals are analogous.
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The existence of minimal ideals in E follows from Zorn’s lemma and compactess.

Proposition 3.4 :

Let E be an ε-semigroup and I be a minimal right ideal. Then:

i) J(I) is nonempty

ii) vp = p for all v ∈ J(I) and p ∈ I

iii) I = {Iv|v ∈ J(I)} where the union is a disjoint one and each Iv is a group with

identity v.

iv) qI is a minimal right ideal of E

i) J(I) is nonempty as I is a closed subsemigroup of E and is hence itself an ε-semigroup.

ii) If v ∈ J(I), by minimality vI = I and there is q ∈ I such that vq = p. This means

that v(vq) = vp, so v2q = vq = p = vp.

iii) First, we will show that v is an identity for I. As above, let pv = q. Then q = pv =

(pv)v = qv. Thus, v is an identity for I. Now, let q ∈ I. Then qI = I by minimality and

so there is r ∈ I such that qr = v and so q(rv) = v2 = v and rv ∈ Iv is a right inverse for

q. Now, let x ∈ Iv be the right inverse of rv. Then q = qv = q(rvx) = (qrv)x = vx = x,

which makes rv the left inverse of q as well and Iv is a group with identity v.

Now, let p ∈ I. Since pI = I, {q ∈ I|pq = p} is a closed subsemigroup (and therefore

a ε-semigroup) and hence contains an idempotent v such that pv = p, so p ∈ Iv. Thus,

I = ∪J(I)Iv.

Finally, we show that the Iv’s are disjoint. Let u, v ∈ J(I), and let p ∈ Iu∩ Iv. Since

Iu is a group, there is r ∈ Iu such that rp = u. This of course means that u ∈ Iv.

However, since vv = v, v must be the identity, and so v = u. This completes the proof of

ii).

iii) Let q ∈ E. It is clear that qI is a right ideal. In addition, if K is a right ideal,

L−1
q (K) is also a right ideal. The minimality of q follows from the minimality of I.

Finally, we will define and examine the concept of a minimal idempotent. To do this, we

define a quasi order < on J(E), where if u, v ∈ J(E), v < u if and only if vu = v. This leads

to a natural equivalence relation, where we would say that u v if and only if u < v and v < u.



10

The notion of a minimal idempotent follows as one would expect it to. Now, we will attempt to

show the existence and nature of minimal idempotents in ε-semigroups.

Lemma 3.5 :

Let u ∈ J(E) and I ⊂ E be a right ideal. Then uI contains an idempotent θ such

that θ < u.

Let u ∈ J(E) and I be a right ideal. Then uI is a right ideal and must contain some ideal

r. Let r = uv where v ∈ I. Finally, set θ = ru = uvu ∈ uI. Then θ2 = (uvu)(uvu) =

(uv)u2(vu) = (uv)(uv)u = r2u = ru = θ. Then θu = (ru)u = ru2 = ru = θ. Thus θ < u.

It is natural at this point to inquire about the connection between minimal ideals and mini-

mal idempotents. The next proposition will tie the two together.

Proposition 3.6 :

An idempotent is minimal if and only if it is contained in a minimal right ideal.

Let u be a minimal idempotent in E and I be a minimal right ideal. Then uI is a minimal

right ideal which contains an idempotent θ such that θ < u. By minimality, u < θ. Hence,

uθ = u ∈ uI.

Now let I be a minimal right ideal. Then I contains an idempotent, say u. Let θ

be some idempotent such that θ < u. Then (uθ)(uθ) = u(θu)θ = uθ2 = uθ. So uθ

is an idempotent in uI. Since I is minimal, u acts as a left ideal for elements of I, so

u = uθu = uθ. Thus, u < θ.

This is enough of the theory of ε-semigroups for our purposes.
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4 The Stone-Čech Compactification and its action on X

This section will first detail the construction of the Stone-Čech (βT ) compactification. We will

accomplish this via the set of ultrafilters on T . Following this, we will examine the unique ex-

tensions of functions of T to functions of βT and we will culminate the section by examining the

necessary semigroup structure induced by the operation on T .

4.1 βT As constructed By Ultrafilters

For our purposes, we need only use T with the discrete topology.

Let T be a topological space, Y be a compact Hausdorff space, f : T → Y be continuous and

i be the inclusion map. We define βT to be a Hausdorff compactification such that there is a

unique continuous function φ such that the following diagram commutes:

T βT

Y

i

f
φ

The first thing to note is that βT is unique up to homeomorphism. This is simply a result

of the fact that we may find a unique extension of the inclusion map from T to βT to any other

construction of the Stone-Čech compactification.

We will use ultrafilters to construct βT . The following two sections will establish the basics

of maximal filters. Following this, we will construct the inclusion map from T to βT and show

that our construction is indeed the Stone-Čech compactification.

4.1.1 Filters

Def 4.1 Filter:

Given a set T , (usually assumed to be infinite), a filter F on T is a collection of subsets

which satisfy the following conditions:

i) ∅ 6∈ F

ii) for A,B ∈ F, A ∩B ∈ F
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iii) If A ∈ F and A ⊂ B, then B ∈ F.

Example 4.2 Fréchet Filter:

Let us look at an example that will prove quite fruitful later. The Fréchet filter, or

cofinite filter is given by C = {A ⊂ T : |Ac| <∞}.

Def 4.3 Principal Filter:

We say Fx0 = {A ⊆ T |x0 ∈ A} is the principal filter corresponding to x0 ∈ T .

Def 4.4 Filter Base:

Let β be a collection of subsets of T . We say β is a filter base if

i) ∅ /∈ β

ii) If A,B ∈ β, then we can find C ∈ β such that C ∈ A ∩B.

Lemma 4.5 :

Let β be a filter base. Then

i)β̂ = {A|C ⊆ A for B ∈ β} is a filter

ii) β ⊂ β̂

iii) If C is a filter, that contains β, β̂ ⊆ C

i) To show β̂ is a filter, first observe that ∅ /∈ β̂ by definition.

Then, let A,B be elements of β̂.

Since for each Y ∈ β̂ there is an element Y ∗ ∈ β such that Y ∗ ⊂ Y , we can choose

two such sets A∗ ⊂ A and B∗ ⊂ B where A∗, B∗ ∈ β. Then by definition, we can choose

E∗ ∈ β so that E ⊂ A∗ ∩ B∗ Then, we observe that as E∗ ⊂ A∗ ∩ B∗ ⊂ A ∩ B, and by

definition, A ∩B ∈ β̂.

the fact that if A ∈ β̂ then any B such that A ⊂ B is also in β is trivial from the

definition of β̂.

ii) This is trivial.
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iii) Let C be a filter which contains β. If A ∈ β̂, there is some A∗ ∈ β that is a subset

of A. Since β ⊆ C, A ∈ C. Then by the definition of filter, A must also be in C as it

contains A∗. So, β̂ ⊂ C.

Def 4.6 Finite Intersection Property:

A family of sets S is said to have the FIP if any intersection over a finite set of members

of S is nonempty.

Corollary 4.7 :

If S has FIP, then B̂ = {∩i∈FBi|Bi ∈ S; |F | <∞} is a filter base.

To show that B is a filter base, we return to the definition. i) is obvious as the FIP is

given.for ii), let A,B ∈ B̂. Then A = ∩B must itself be an element of B̂ by definition.

Corollary 4.8 :

The FAE:

i) S has FIP

ii) There exists a filter F containing every set in S.

This is almost trivial due to the previous corollary.

4.1.2 Ultrafilters

Def 4.9 Ultrafilter:

An ultrafilter u on T is a maximal element of the collection of filters on T . In other

words, u is an ultrafilter iff u ≤ v =⇒ u = v where u ≤ v iff A ∈ u =⇒ A ∈ v.

The first order of business is to show that ultrafilters must exist on any set T .

Lemma 4.10 :

The family of filters on T contains maximal elements.

We wish to use Zorn’s lemma to show there exists maximal filters. Let F = {fα|α ∈

Σ, where Σ is ordered and the index corresponds with the ordering on F}. be a linearly
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ordered collection of filters on T . To use Zorn’s lemma, we must show that F has a

maximal element. We use the set F = ∪ΣFα to construct it. Since F has FIP, it is a filter

base for some F̂ which contains it. However, we can also note that if A ∈ Fα then A ∈ F̂

by a previous lemma. Thus, F̂ is an upper bound of F and by Zorn’s lemma, there must

exist at least one maximal element for the collection of filters on T .

We will hence call the collection of ultrafilters on T βT For the sake of notation. The lack

of proof that the collection of ultrafilters is the Stone-Céch compactification will soon be rectified.

First, a Lemma:

Lemma 4.11 :

For ever filter f on T , there is an ultrafilter u that contains f .

We have already shown that βT is nonempty. Now, let f be a filter, and F be the

collection of filters that contain f . Since this set is partially ordered by the previously

defined relation ≤, we may choose a maximal linearly ordered subset T of F by HMP. In

addition, let g = ∪T . We may observe that g is a filter.

i) ∅ 6∈ g by construction. ii) If A,B ∈ g, there are filters f1 and f2 in T such that

A ∈ f1 and B ∈ f2. Since T is linearly ordered, then WLOG we can say that f1 ⊂ f2,

which means A ∈ f2 and so, A ∩ B ∈ f2. iii) Since A ∈ g implies there is a filter f0 ∈ T

that contains A, then any B containing A must also be a subset of f0 by its definition.

g is an upper bound of T trivially, so all that remains is to show that g ∈ βT . Let v

be a filter on T such that u ≤ v. We can observe that the set T {v} is a totally ordered

set, and that v is an upper bound. However since T is maximal, This cannot be unless

v = u. Thus, u is an ultrafilter.

Corollary 4.12 :

If u ∈ βT and there is some non empty A ∈ T such that ∩u = A, then u is a principal

ultrafilter.

Let ∩u = A. Then for all a ∈ A, Na must contain A by the definition of filter. By

maximality, u = Na .

Lemma 4.13 :
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Let u ∈ βT , E ⊆ T . Then E ∈ u if and only if E ∩ F 6= ∅ for all F ∈ U .

Assuming E ∈ u, the statement is trivial.

Now let E ∩ F 6= ∅ for all F ∈ u. First, let S = {E ∩ F |F ∈ u}. We can observe

that S has FIP as A,B ∈ S implies A = E ∩ F1 and B = E ∩ F2, where F1, F2 ∈ u, and

A ∩B = (E ∩ F1) ∩ (E ∩ F2) = E ∩ (F1 ∩ F2) 6= ∅ by construction.

Thus, S is a filter base and there is a filter f that contains it. Finally, we will show

that u ≤ f . Let A ∈ u. Then E ∩A ∈ S and E ∩A ∈ f so A ∈ f . Since u is an ultrafilter

this means u = f and so, E ∈ u.

The following theorem relates two useful characterizations of ultrafilters.

Theorem 4.14 :

The following are equivalent:

i) u is an ultrafilter on T

ii) If A ∪B ∈ u, then A ∈ u or B ∈ u

iii) For any A ⊂ T , either A or Ac is an element of u

Let u be an ultrafilter, A,B ⊂ T and A ∪ B ∈ u. For contradiction, assume A,B 6∈ u.

This would imply that there was some C,D ∈ u such that A ∩ C = B ∩D = ∅ However,

this means (A ∩ C) ∪ (B ∩D) = (A ∪ B) ∩ (A ∪D) ∩ (B ∪ C) ∩ (B ∪D) = ∅. This is of

course a contradiction because each of the components on the lhs is in u. So, i) =⇒ ii).

Now, let A ⊂ T . Since A ∪ Ac = T ∈ u, then by ii) A or Ac is an element of u. Since

A ∩Ac = ∅, only one of the sets can be in u.

Finally, let u be a filter with the property for all A ⊂ T , either A or Ac is in u. In

addition, let f be an ultrafilter such that f ≥ u. Now, let F ∈ f . We know that either F

or F c is an element of u. If F c were an element of u, then F c would also have to be an

element of f . This is impossible however since f is an ultrafilter and this implies iii). So,

u ≥ f and so u = f . Thus, iii) =⇒ i).

4.1.3 A topology on βT

We now wish to supply βT with a topology.
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Given A ⊆ T , h(A) is defined as the collection of ultrafilters containing A. We will observe

that T = {h(A)|A ⊆ T} is a topological base. If Y, Z ∈ T , and Y = h(A);Z = h(B), it follows

Y ∩ Z = h(A) ∩ h(B) = h(A ∩ B), as f ∈ h(A) ∩ h(B) =⇒ A,B ∈ f =⇒ A ∩ B ∈ f and

f ∈ h(A ∩B) =⇒ f ∈ h(A) ∩ h(B) trivially.

The topology generated by the above base is an example of the hull-kernel topology. We will

employ the mapping h as our inclusion map T ↪→ βT We highlight three properties:

Lemma 4.15 :

i) h(A) ∩ h(B) = ∅ iff A ∩B = ∅.

ii) h(A)c = h(Ac) (Each h(A) is open and closed)

iii) h(A) ∪ h(B) = h(A ∪B)

We can now proceed to the main properties, that βT is both Hausdorff and compact.

Proposition 4.16 :

βT is Hausdorff.

Let p, q ∈ βT , p 6= q. That is, there is some A ∈ p that is not in q. By theorem 2.12,

Ac ∈ q. Hence, p ∈ h(A) and q ∈ h(Ac). By property ii) above, q ∈ h(A)c, which is an

open set. Hence, we can separate p and q by disjoint open sets.

Proposition 4.17 :

βT is compact.

We will use a proof by contradiction to prove compactness. Let Σ be an indexing set, and

C = {U}Σ be an open basic cover of βT . Also, let F be the collection of all finite subsets

of Σ. We assume for contradiction that there is no finite subcover of C covering βT , that

is to say for F ∈ F , βT 6⊂ ∪{U}F . Since each Uf (with f ∈ F) is a basic set, there is a

set Af ∈ T such that Uf = h(Af ). Hence, {U}F = {h(∪Af )}F .

Since {U}F is not a cover of βT , {U}cF = {h(Acf )}F 6= ∅ by Lemma 2.18. We may

push this further and observe that given F1, F2 ∈ F , ((∪F1
U)∪ (∪F2

U))c 6= ∅. Otherwise,

{U}F1∪F2 is a finite open cover of βT which is false by assumption. Finally, we might

observe the implication, that (∪F1
h(Acf )) ∩ (∪F2

h(Acf )) = h(∪F1
Acf ) ∩ h(∪F2

Acf ) 6= ∅. We
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know by lemma 2.18 that this implies (∪F1
Acf ) ∩ (∪F2

Acf ) 6= ∅. Thus, {∪FAcf}F has FIP

and is a filter base. Thus, there is an ultrafilter v that contains it. However, by construc-

tion v 6∈ ∪ΣU . Thus, C cannot be a cover of βT . This is a contradiction drawn from

assuming βT is not compact. Therefore, βT is compact.

finally, we have a compact Hausdorff space in which to embed our group T .

4.2 βT as the Stone-Čech Compactification

We have observed that βT is a compact Hausdorff space that can be constructed from the collec-

tion of ultrafilters on a set T . We will now observe that βT is a construction of the Stone-Čech

compactification. From here on, we define i(x) = h(x), as we will be considering the map from

elements of the underlying space to their principal ultrafilters our inclusion map.

To begin, we prove that i is continuous, and that i(T ) is a dense subset of βT . Unless oth-

erwise stated, T will be equipped with the discrete topology.

Proposition 4.18 :

i) i : T → βT is injective, continuous and i(T ) is dense in βT .

i is 1 to 1 as the principal ultrafilter generated by a point is unique. Likewise the func-

tion is continuous because we assumed the discrete topology. For the density of i(T ), let

p ∈ βT and U be an open set containing p. We can choose A ⊂ T such that p ∈ h(A) ⊂ U ,

and observe that for any t ∈ A, i(t) ∈ h(A).

Finally, we prove the universal property.

Theorem 4.19 The Universal Property:

Let T be a set with the discrete topology, Y be compact Hausdorff, and f : T → Y be

a continuous function. Then, there exists a unique continuous function φ : βT → Y such

that φ(i(t)) = f(t).

Let T be discrete, Y be compact Hausdorff, and f : T → Y . We will leverage the

properties of ultrafilters found in Appendix A. Let u ∈ βT . We will define φ(u) to be

lim f(u).
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First, we will show that the diagram commutes. Let t ∈ T . Since f is trivially

continuous, lim f(i(t)) = f(t) by the filter characterization of continuity. Hence, the

diagram commutes.

Now, we wish to observe that the function as extended to βT is also continuous. The

first thing we can note is that on all of βT the function φ(u) = lim f(u) is well defined, as

Y is a compact Hausdorff space, so each ultrafilter f(u) converges to a single point in Y .

Now, let V ⊂ Y be an open set. To prove continuity, we will use the filter definition:

φ is continuous if and only if for any convergent filter F → u, φ(F )→ φ(u).

Let F → u be a filter on βT . By definition of continuity by filters, for any basis set

U containing u, there is a set f ∈ F such that f ⊂ U . Now, let V be an open set in Y

containing φ(u) = lim f(u). Since lim f(u) ∈ Y , there is a V̂ ∈ f(u) such that V̂ ⊂ V .

As V̂ ∈ f(u), there is A ⊂ T such that f(A) = V̂ . Since f(A) ∈ u, u ∈ h(A). We can

see that since F → u, there is B ∈ F such that B ⊂ h(A). Finally, φ(B) ⊂ V , since

φ(B) ⊂ φ(h(A)) = V̂ ⊂ V . Hence, lim f(F ) = lim f(u)

4.3 Extending Multiplication to βT

In order to capture dynamics through βT , we require another large piece of machinery. This is a

semigroup structure on βT . We desire it to reflect the multiplication on T in the multiplication

on βT .

To accomplish this, we apply the universal property. Let t ∈ T , and L̂t : T → βT be the map

s→ i(ts) for s ∈ T . The function is trivially continuous as T has the discrete topology. Therefore

by the Universal Property there exists a continuous function Lt such that Lt(i(s)) = i(ts) and

Lt(u) = lim L̂t(u). We examine L̂t(u).

L̂t(u) = {tA|A ∈ u} = tu. Let us examine the structure of this set. We will first prove that

tu is itself an ultrafilter, and provide a more useful way of expressing it.

Remark 4.20

We use the fact that T is a group freely here by exploiting the inverse; however, the

the multiplication can be extended for a semigroup just as well by using the inverse of the

left multiplication.

Let Â, B̂ ∈ tu. Then as a result of T being a group there exists A,B ∈ u such that t−1Â and

t−1B̂ = B. Since u is a filter, A∩B ∈ U . Therefore, t(A∩B) ∈ tu and since t(A∩B) ⊂ tA∩ tB,
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∅ 6= Â ∩ B̂ ∈ tu.

Now, let Ĉ ⊂ T such that Â ⊂ Ĉ. Then A = t−1Â ⊂ t−1Ĉ. Thus, C ∈ tu. This shows that

tu is a filter. To prove that it is an ultrafilter, Let D ⊂ T . Then, either (t−1D)c = t−1Dc or

t−1(D) is an element of u, which implies that either D or Dc is an element of tu, which implies

that tu is an ultrafilter.

Since L̂t(u) is an ultrafilter, we may simply say that lim L̂t(u) = {tA|A ∈ u} = tu. In general

then, we can refer to tu as the set {A ⊂ T |t−1A ∈ u}.

We almost have a left multiplication on βT . To complete the concept, we will have to define

left multiplication by an ultrafilter.

Let u, v ∈ βT . We wish to extend the above multiplication to these generic members. To

do this, we will will need a more sophisticated method than simply examining the sets t−1A.

To do this, we will define the operation Ap = {t|∃B ∈ p s.t. Bt ⊂ A}. We can note that when

u = i(s) for some s ∈ T , Au = {t|∃B 3 s s.t. Bt ⊂ A}, which in context is simply s−1A as above.

Our natural extension then would be to say that uv = {A ⊂ T |Au ∈ v}. It is clear that this

is the operation above when u is a principal ultrafilter, we will now show that uv is itself an

ultrafilter. First, some properties:

Lemma 4.21 :

i) A ⊂ B implies Ap ⊂ Bp

ii)(A ∪B)u = Au ∪Bu

iii)(A ∩B)u = Au ∩Bu

iv) Acu = (Au)c

i) is clear

ii) If t ∈ (A∪B)u, then there is some C ∈ u such that Ct ⊂ A∪B. We can reconstitute

C as C1 ∪ C2, where C1 = {s ∈ C|st ∈ A} and likewise C2 = {s ∈ C|st ∈ B}. By the

properties of ultrafilters, either C1 or C2 is in u. WLOG let C1 ∈ u, then t ∈ Au and so

t ∈ Au ∪Bu.

We can directly observe that Au ∪Bu ⊂ (A ∪B)u by i).
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iii) Let t ∈ Au ∩ Bu. Then there is C1, C2 ∈ u such that C1t ⊂ A and C2t ⊂ B. As

C3 = C1 ∩ C2, and C3t ∈ A ∩B, t ∈ (A ∩B)u as well.

Once again, we can directly observe that (A ∩B)u ⊂ Au ∩Bu by ii).

iv) By iii), Acu∩Au = (A∩Ac)u = ∅u = ∅ and by ii) Acu∪Au = (Ac∪A)u = Tu = T .

Thus Acu = (Au)c.

Let uv be defined as above. First, definitionally it is impossible for the empty set to be in

uv.

Next, let U, V ∈ uv. By definition, Uu, V u ∈ v and therefore Uu ∩ V u ∈ v. By iii),

Uu ∩ V u = (U ∩ V )u ∈ v and so U ∩ V ∈ uv.

Now, let U ∈ uv and A ⊂ T such that U ⊂ A. Then Uu ⊂ Au by i), so U ∈ uv.

Finally, let A ⊂ T . We know by definition that either Au or (Au)c is in v. By property iv),

this means either Au or Acu is in v, which means either A or Ac is in uv. This completes the

proof that uv is an ultrafilter.

To make βT a topological semigroup, we must now observe that the left multiplication above

is continuous.

Proposition 4.22 :

i) Lu(v) = uv is continuous where Lu(v) = {A ⊂ T |Au ∈ v}

ii) Rt(p) is continuous for all t ∈ T .

We have already showed that when s ∈ T , u ∈ βT , u → i(s)u is the unique contin-

uous extension of left multiplication on T . Therefore by the density of T ⊂ βT , it is

enough now to show that i(s) → ui(s) is also continuous. Let F → u be a conver-

gent filter on βT and s ∈ T ; also, let h(A′) 3 ui(s) where A′ ⊂ T . By definition

A′ ∈ ui(s) = {A ⊂ T |s ∈ Au}, that is to say s ∈ {t ∈ T |∃B ∈ u s.t. Bt ⊂ A′}. So, there

is B ∈ u such that Bs ⊂ A′. Finally, we observe that u ∈ B; hence there is F ∈ F such

that F ⊆ B. Let f ∈ F . Then B ∈ f . Hence B is a member of f such that Bs ∈ A′. That

means that s ∈ {t ∈ T |∃B ∈ f s.t. Bt ⊂ A′}, so fi(s) ∈ A′ and Fi(s) ⊂ A′. We have thus

found F ∈ F such that F → Fi(s) ⊂ A′. So, for every basis open set containing ui(s)

there is a member of F mapped into it, therefore Fi(s)→ ui(s), completing the proof.
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ii) To show that Rt(p) is continuous, it is enough to show that it is continuous for

i(s), s ∈ T as the rest follows from the continuity of left multiplication. let F → i(s) be

a filter and h(B) = V 3 i(s)i(t) be an open set. We have already shown that i(s)i(t)

is the principal ultrafilter i(st), So {st} ∈ V and so s ∈ V t−1. Now, we want to show

that h(V t−1) ⊂ R−1(h(B)). Let p ∈ h(s−1V ). Then pt = {A|t ∈ Ap}. To show that

pt ∈ h(B), we have to show B ∈ pt. Note that Bp = {r|∃b′ ∈ p st B′r ⊂ B}. Since

Bt−1 ∈ p, (Bt−1)t = B so t ∈ Bp and so B ∈ pt and finally, p ∈ R−1
t (V ).

Now, for any open set containing i(t) such as h(s−1V ) there is F ∈ F such that

F ⊂ h(V ). Since F ⊂ R−1
t (V ), Ft ∈ V . This completes the proof.

Remark 4.23

We now briefly note that i(ts) = i(t)i(s) for s, t ∈ T , if A ∈ i(t)i(s), then ∃B ∈ i(t)

such that Bs ∈ A. But since t ∈ B, ts ∈ A and so A ∈ i(ts). Now, let A ∈ i(ts). Then

ts ∈ A, so t ∈ As−1. Hence, there is a member B of i(t) such that Bs ∈ i(t). Thus,

A ∈ i(t)i(s).

Now we may prove that the left multiplication on βT is indeed an operation and so βT is a

semigroup.

Proposition 4.24 :

For p, q, r ∈ βT , (pq)r = p(qr).

The proposition follows from the remark above and the continuity of left multiplication.

Thus, βT is a ε-semigroup, and we may now eap the benefits.
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5 Dynamical applications of βT

in order to proceed, we can now begin to describe an action of βT on X, and begin to charac-

terize minimality and other dynamical properties in terms of idempotents of βT . We will use

two different actions of βT ; one of them on X and the other on subsets of βT itself.

Def 5.1 :

i) Let A ⊂ βT , p ∈ βT . Then A ∗ p = L−1
p (A)

ii) Let x ∈ X and u ∈ βT . Then xu = limLx(u) in X.

Let us observe that these proposed operations are right actions.

i) is clearly continuous, as A is both open and closed. Now, let p, q ∈ βT . Then (A ∗ p) ∗ q =

(L−1
q (A ∗ p)) = Lq(Lp(A)) = Lq(Lp(A)) = Lpq(A) = (A) ∗ (pq)

ii) Let x ∈ X, t ∈ T , and p, q ∈ βT . The first thing to note, as that lim(xt)p is the unique

extension of

Equipped with these tools, we can approach recurrence. The first order of business is to find

a βT definition for syndecity. We will let S denote the collection of syndetic sets.

Proposition 5.2 Characterization of Syndetic Sets:

Let A ⊆ T , then the following are equivalent:

i)A ∈ S

ii) A ∗ p 6= ∅ for all p ∈ βT

iii)A ∗ p 6= ∅ for all minimal idempotents p ∈ βT

Let A ∈ S, and p ∈ βT ; we will first show that A ∗ p is nonempty. First, by defi-

nition there exists finite F ⊂ T such that AF = T . This implies that for all t ∈ T ,

there is f ∈ F and a ∈ A such that af = t or tf−1 = a ∈ A. Thus, T = ∪FAf−1 and

so βT = ∪FAi(f−1). Hence, there is f ∈ F such that pi(f−1) ∈ A making A∗p nonempty.

i)→ ii) clearly.
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Now, let A ∗ u be nonempty for all minimal idempotents u in βT . Assume for con-

tradiction that ∪FAf−1 6= T for all finite F ⊂ T . Let BF = ∩F (T\A)f−1. Then

{BF |F is finite} has FIP. By the compactness of βT , there is a p ∈ βT such that

pt ∈ T\A = βT\A and so pT ⊂ βT\A. Since pT is invariant, it contains a minimal

subset M which in turn contains a minimal idempotent u such that ut ∈ βT\A for all

t ∈ T and so A ∗ u = ∅ which is a contradiction. Thus, A ∈ S.

Lemma 5.3 :

The following are equivalent:

i) For every U 3 x, R(x, U) is infinite

ii) There exists u ∈ βT\T such that xu = x.

Assume that R(x, U) is infinite for every U 3 x. Consider R = {R(x, U)\T |U 3 x}.

Proposition 5.4 Chracterization of Almost Periodicity:

x is almost periodic if and only if every minimal set M ⊂ βT contains an idempotent

such u such that xu = x

Let x be almost periodic. Then O(x) is minimal by Theorem 2.12. Now, let M be any

minimal subset of βT . Then since MT = M , xM is a minimal subset of xM and thus

xM = O(x). It follows that x ∈ xM , so L = {p|xp = x} is non-empty. Further, it is

clearly closed under left multiplication so it is a subsemigroup, which is in turn topologi-

cally closed (as left multiplication is continuous, and open sets are closed in βT ). Hence,

L is an ε-semigroup and contains an idempotent.

Now, let x ∈ X, and any minimal set M ⊂ βT contain an idempotent u such that

xu = x. We must show that given open U 3 x, R(x, U)∗p 6= ∅ for any minimal idempotent

p ∈ βT . Let v be any minimal idempotent in βT . Then v is contained in some minimal

right ideal M ⊂ βT , in which by hypothesis is an idempotent u such that xu = x. So, for

any open U 3 x, there must be A ∈ u such that xA ⊂ U . Hence, u ∈ R(x, U). Since this

means u2 ∈ R(x, U), u ∈ L−1
u (R(x, U) = R(x, U) ∗ u = R(x, U) ∗ (vu) = (R(x, U) ∗ v) ∗ u.

The fact the left hand side is nonempty requires that R(x, U) ∗ v is nonempty as well.

This completes the proof.
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Now, we will capture proximality in terms of βT so that we may prove the Ellis Auslander

lemma and press forward to a combinatorial result.

Proposition 5.5 Characterization of Proximality:

Let x, y ∈ X. Then the following are equivalent:

i) (x, y) ∈ P (X)

ii) There exists an idempotent u ∈ βT such that xu = yu

iii) There exists a minimal idempotent u ∈ βT such that xu = yu

Let (x, y) be a proximal pair. That is to say, There exists a net tα ⊂ T such that

limxtα = lim ytα. By compact Hausdorff, there is some subnet t′α of tα which converges

uniquely, say to p ∈ βT . Without loss of generality, we let tα = t′α. Thus, Q = {p|xp = yp}

is nonempty and A closed right ideal. Thus, it contains a minimal right ideal and a min-

imal idempotent.

That iii)→ii) is immediate by minimality, and ii) =⇒ i) is clear as we can construct

a net corresponding to u.

All of this work leads us to a deceptively simple proof of a very powerful result.

Lemma 5.6 Ellis-Auslander:

Let (X,T ) be a dynamical system. For every x ∈ X, there is a y ∈ O(x) such that y

is almost periodic and (x, y) ∈ P (X).

Let x ∈ X,u ∈ βT be a minimal idempotent, and y = xu. First, we can observe that

y is almost periodic as for any idempotent v ∈ βT , yv = (xu)v = x(uv) = xu = y by

minimality of u. In addition, proximality is achieved trivially as yu = (xu)u = xu2 = xu.

Hence, we have chosen y ∈ O(x) such that y is almost periodic and (x, y) ∈ P (X).

The Ellis Auslander Lemma is a very powerful and deep tool for capturing the structure of

a dynamical system. One of its corollaries is Schur’s Coloring Theorem.
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6 Appendix

6.1 A: Convergence By Filters

It will be Very useful to work out the elements of the theory of convergence by filters here. The

goal in this section is to establish the filter analogue to sequential compactness in a Hausdorff

space. All unstated definitions for this section are taken from Section 2 where the basic theory

of filters is established.

Def 6.1 Convergence of a Filter:

Let X be a topological space and F be a filter. F converges to x ∈ X if and only if for

every open U containing x, There is A ∈ F such that A ⊂ U . we notate this limF = x

Let us now derive two analogous properties of filters to those of nets. The first, is that we

may define a Hausdorff space as one in which all convergent filters converge to unique points.

The second is that a space is compact if and only if all ultrafilters are convergent.

Proposition 6.2 :

i) X is Hausdorff if and only if the limit of every convergent filter is unique.

ii) X is compact if and only if every ultrafilter on X converges.

i) Let F be a filter on X and limF = x ∈ X. Suppose X is Hausdorff. If there were an-

other point, say y ∈ X such that limF = y. Let U, V ⊂ X be disjoint sets which contain

x and y respectively. Then by the definition of convergence there are sets A,B ∈ F such

that A ⊂ U and B ⊂ V . This cannot be however as A∩B = ∅ and thus violate the finite

intersection property of filter elements. Therefore, F converges to only x or y.

Now, let every convergent filter have a unique limit. For contradiction, let X not be

Hausdorff. That is to say, there exists x, y ∈ X such that every open set U 3 x contains y,

and the converse. Now, let u be the principal ultrafilter generated by x. Thus, limu = x.

Now, let U 3 y be open. Since x ∈ V by assumption, there is some A ∈ u such that

A ⊂ U . This of course means that y ∈ limu. This cannot be, as we assumed u had a

unique limit. Therefore, X must be Hausdorff.

ii) Let X be compact and let u be an ultrafilter on X. Recall if X is compact, any family

of subsets of X having the FIP has non-empty intersection. Let F = {A|A ∈ u}. Then
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F is a filter, and since it has FIP, ∩F 6= ∅. Let x ∈ ∩F and U 3 x be open. Then it is

clear that U ∩ A is nonempty for any A ∈ F . Therefore, F ∪ {U} is a filter containing

F . Since u contains any refinement of F by the ultrafilter lemma, U ∈ u. Hence, any

open set containing x ∈ ∩F is an element of u and x ∈ limu. Thus we have shown that

u converges to at least one point if X is compact.

Now let X be a topological space on which every ultrafilter converges. We will prove the

compactness of X using the property that X is compact if and only if every collection of

closed sets with FIP has nonempty intersection.

Let A = {Ai}I be a collection of closed sets with FIP. Then A is a filter base, and

there is an ultrafilter u that contains A. By hypothesis, u converges. That is to say, there

is at least one x ∈ X such that x ∈ limu. Hence, if V 3 is an open set there is a subset

of V in u, which means V ∈ u. So, for any U ∈ u, V ∩ U is nonempty. Therefore, for

any such U , x ∈ U . So, every closed set in u contains x. Finally, this means that for each

Ai ∈ A, x ∈ Ai and so ∩A 6= ∅ making X compact.

To make our useful analogues to sequences complete, we will now define continuity in terms

of ultrafilters. To do this, we must first note that if f : X → Y , and f is a filter on X, then f(F )

is also a filter. The finite intersection property is clear as A∩B is nonempty implies f(A)∩f(B)

is nonempty. In addition, if we let C = f−1(f(A) ∩ f(B)) we may note that C must include

A ∩ B. Therefore, C ∈ F and f(A) ∩ f(B) = f(C), giving f(F ) property ii of the definition

of a filter. For property iii, we can let D ⊂ Y contain f(A). Then f−1(D) contains A and is

therefore an element of F . Thus, f(F ) has property iii of the filter definition.

The extension of this idea to ultrafilters follows from Theorem 2.14. Let u ∈ βX, and

f : X → Y as before. If A ⊂ Y , then B = f−1(A) or Bc = f−1(A)c is in u.

Now we are ready to establish continuity.

Def 6.3 Continuity of a function in terms of filters:

We say a function f : X → Y is continuous if and only if for every filter F → x ∈ X,

f(F )→ f(x).

Proposition 6.4 :

The definition of continuity in terms of filters is equivalent to the standard definition.
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Let f : X → Y be continuous and F be a filter on X such that limF = x. Since we have

already established that f(F ) is a filter, to show lim f(F ) = f(x), we need only show that

for any open V 3 f(x), there is B ∈ f(F ) such that B ⊂ V . This is clear however, as

f−1(B) is an open set containing x, and therefore there is A ∈ F which is a subset of

f−1(B). The desired property follows, as f(A) ∈ f(F ), and f(A) ⊂ B.

Now, let f : X → Y and assume that for any filter F on X such that limF = x,

lim f(F ) = f(x).

WLOG, we will restrict the codomain to the range and assume that f is onto and that

Y has the relevant relative topology. Let V be an open set in Y and x ∈ f−1(V ) = U and

let y = f(x). We will show that U is open.

First, we will construct a specific filter, Fx. Let Fx to be the filter {A|A contains an open set containing x}.

We will quickly verify that this family is indeed a filter. Let A,B ∈ Fx, and let Â, B̂ be

open sets containing x in A and B respectively. Then A∩B are nonempty as AÂ∩ B̂ 6= ∅.

In addition, A∩B ∈ Fx as Â∩ B̂ is open. Finally, if A ⊂ C, C ∈ Fx as ∩A ⊂ C. We may

also observe that Fx → x trivially since every open set containing x is in Fx.

By hypothesis, lim(Fx) = f(x) = y. Thus, there is some A ∈ Fx such that f(A) ⊂ V

and A ⊂ U . In addition, There is an open Â ⊂ A which contains x. Hence, since

f(A) ⊂ V , Â ⊂ A ⊂ U . Hence, given x ∈ f−1(V ), there is an open set Â ⊂ U which

contains x. Thus, U is open and the continuity of f follows by definition.

This completes the needed theory of convergence by ultrafilters.
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