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ABSTRACT OF THE DISSERTATION 

SCIENTIFIC MAPS AND INNOVATION: IMPACT OF THE HUMAN GENOME ON 

DRUG DISCOVERY 

By SEBASTIAN JAYARAJ 

 

Dissertation Director: Dr. Michelle Gittelman 

 

Scientific mapping projects like the ongoing US BRAIN initiative and Human Cell Atlas 

are data and resource intensive endeavors that curate immense amounts of information. 

While both public and private funds support such mapping of the scientific knowledge 

landscape, the impact of such projects on innovation is not well understood.  Innovation 

can be conceptualized as a spatial process, where firms and inventors search either locally 

or in distant, lesser explored, territories. In my dissertation, I asked whether scientific 

maps influence technological search, and if so how. 

 

 To address this empirically, I chose the Human Genome Project (HGP) as my 

context and asked how it affected drug discovery. HGP, the largest publicly-funded 

biology project, released the complete human genome map in 2000, enabling scientists to 

identify and focus on disease-causing genes as targets for drug discovery. Using a novel 

dataset of chemistry drug patents, I tracked firm search processes pre- and post-HGP. To 

measure how the HGP map impacts firm exploration, I also developed a novel method 

based on chemical similarities to capture search trajectories over time. My conclusions on 

how the HGP map influenced inventive activity, innovation strategy and outcomes are 
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detailed in three essays and build on existing theories in the innovation literature. Briefly, 

I found that the HGP map increased the rate of novel compound production, exploration 

and impacted firm innovation strategies. This was influenced by prior firm knowledge, 

market competition and product market specialization.  

 

 This study informs on mechanisms by which basic science driven scientific maps 

influence industry innovation. My findings bear implications on public policy, R&D 

management and firm strategy.   
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SUMMARY: IMPACT OF THE HUMAN GENOME ON DRUG DISCOVERY 

 

Scientific mapping projects like the ongoing US BRAIN initiative and Human 

Cell Atlas are data and resource intensive endeavors that curate immense amounts of 

information. In the past, early human dissections and detailed anatomical maps laid the 

groundwork for modern surgical training and practice. While both public and private 

funds support such mapping of the scientific knowledge landscape, the economic value of 

such projects to markets and innovation is not yet well established. Theorists indicate that 

empirical studies on how scientific knowledge influences technological search can lead to 

new insights on the process and mechanisms driving innovation. I address this gap by 

building on existing theories of science as a map, technological change and evolutionary 

perspectives (Nelson & Winter, 1982; Utterback, 1994; Fleming & Sorenson, 2001). In 

my dissertation, I asked whether scientific maps influence technological search, and if so 

how. To address this empirically, I chose the Human Genome Project (HGP) as my 

context and examined how it affected drug discovery. 

 

 The Human Genome Project (HGP) is the largest publicly-funded biology project. 

In 2000, HGP released a precise and detailed map of the human genome, which allowed 

scientists to predict disease-related gene targets and enabled targeted drug design. These 

changes in the nature of drug discovery provide a unique opportunity to study the process 

of innovation. Prior studies on the HGP have examined the role of institutional 

arrangements and patenting strategies related to innovation (Huang & Murray, 2010; 

Huang & Murray, 2013). Recent research on the human genome examines the role of 
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intellectual property rights on follow-on innovation by comparing the effect of patent 

protected and publicly available gene sequences (Williams, 2013; Sampat & Williams, 

2017). Other work on the role of mapping on innovation indicate the positive effect of 

publicly available geographical maps on gold-mining efforts (Nagaraj, 2015). But the 

mechanisms by which a scientific map influences innovation remain yet to be 

established. Building on this literature, I examine how the HGP map impacts the process 

of innovation and outcomes in the drug industry. 

 The process of innovation is conceptualized as a spatial process (technological 

search), where firms and inventors search either locally or in unknown, new areas 

(March, 1991). This search process progresses by combining new and existing 

technological knowledge technologies (Nelson & Winter, 1982; Henderson & Clark, 

1990). Innovation theorists suggest that scientific knowledge enables predictive 

capabilities and reduces uncertainty in the search for new products. (Fleming & 

Sorenson, 2001). Predictive learning routines based on abstracted representations of the 

search space are theorized as leading to successful outcomes in complex technological 

landscapes as they provide an unbiased representation (Arora and Gambardella, 1998; 

Gavetti and Levinthal, 2000). Puranam & Swamy (2010) argue that mental 

representations like maps, even if incomplete, can be useful in situations involving 

coordinated problem-solving. Therefore, it is theorized that mapping of scientific 

knowledge can help firms predict innovation outcomes without full experimentation.   

 My research setting is drug discovery in the biopharmaceutical industry – a sector 

driven by high costs and high failure rates. In 2015, the US biopharma industry spent $59 

billion on R&D; it costs $2.6 billion and 10-15 years to develop a single drug, of which 
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less than 12% succeeded (PhRMA, 2016). Drug discovery is a complex problem as drug-

target interactions are unpredictable and can lead to off-target effects (Scannell, et al, 

2012; Gittelman, 2016). In drug discovery, scientists work towards identifying drug 

targets and biological mechanisms responsible for the disease. Given a drug target, 

medicinal chemists then try to design compounds that can bind to the drug target. To do 

this, they comb through a large theoretical landscape of solutions called chemical space – 

containing more than 1060 possible combinations. Without a map to navigate this high-

dimensional search space, medicinal chemists rely on available disease knowledge and 

prior experience to make calculated guesses on the types of chemicals that could work.  

 The human genome map helped in navigating his chemical search space by 

providing an accurate list of about 10,000 potential disease targets. This made it possible 

to model disease targets and design compounds that could fit precisely with the target 

(Drews, 2000; Gittelman, 2016). Thus, the availability of an accurate human genome 

allowed for predictive search and a high level of specificity in the search for novel 

compounds. 

 I utilize a novel dataset of chemistry-based drug patents called Markush patents to 

contrast the process of technological search before and after the HGP map. Patents are 

central to intellectual property protection and appropriation in biopharmaceutical industry 

and widely used in economic analyses (Scott & Sampat, 2012). As of 2016, more than 

90% of marketed drugs are small molecules making this class of drugs economically 

important and relevant for this study. Very early in the drug discovery stage, a special 

type of patent known as Markush patent allows applicants to apply claims for broad 
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regions of chemical space. These Markush patents predate all other drug-related patents 

and mark the starting point of small-molecule discovery projects. 

 While not all Markush patent applications end up becoming granted patents or 

lead to a drug, they represent the universe of early stage small-molecule R&D activity – 

not just the discovery projects that become successful. This makes Markush patents 

especially useful for analyzing the effects of technological change on search trajectories 

of firms. For my empirical study, I have collected about 39,000 drug-related Markush 

patent applications filed between 1990-2004, and extracted millions of novel compounds 

embedded in them to analyze the regions captured in chemical space. A detailed 

discussion of data sampling and Markush patents is provided in the data section of essay 

one of the dissertation. 

 The dissertation is composed of three essays that study the impact of the human 

genome map on drug innovation. In essay one, I explore the overall effect of the human 

genome on drug discovery at the industry level. Two mechanisms are explored by which 

scientific maps can influence the search process: i) predictive power of the map’s impact 

on novel compound production and firm search strategies, and ii) open accessibility of 

the map’s impact on competition. Using a differences-in-differences estimation I test the 

impact of the human genome map on novel compound production. 

 In essay two, I examine the map’s impact on the adoption of targeted drug 

strategies by incumbent firms. The map increased the number of disease gene targets and 

made accessible new regions of the genome, opening up new market opportunities. Since 

the detailed map was beneficial mainly to target-based strategies, firms experienced in 

this approach had an advantage compared to other firms. To unpack the organizational 
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factors driving adoption of target-based strategies, I examine the role of prior firm 

knowledge, specialized capabilities and competition.   

 In essay three, I examine how the map impacted firm exploration in chemical 

space. I build on prior methodological advances in the innovation literature and 

computational chemistry to introduce a novel technique to measure technological 

distance between patents based on chemical structures. Using computational chemistry 

search techniques, I measure chemical structural similarities to calculate technological 

distance between patents (Johnson & Maggiora, 1992). This technique is applied on a 

sample of small molecule drug patents to examine exploration trajectories pre and post 

the HGP map and to assess the role of search strategies in exploration. 

 To summarize, in my dissertation research I found that the human genome map 

increased the rate of invention, novel compound production and altered technological 

search strategies in firms. Further, I found that prior firm knowledge, market competition 

and product market specialization are influential in adopting targeted strategies. Overall, 

targeted strategies lead to broad exploration compared to non-target based strategies. 

These results reveal an interesting finding: scientific maps not only increase the rate and 

intensity of technological search but also impact exploration. This study informs on 

mechanisms by which basic science driven scientific maps influence industry innovation. 

These findings bear implications for public policy, R&D management and firm strategy.   
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1. SCIENTIFIC MAPS AND INNOVATION: IMPACT OF THE HUMAN 

GENOME ON DRUG DISCOVERY 

 

Abstract 

How scientific maps influence technological search is not well understood. In this study, 

I analyze the impact of the human genome - a precise scientific map, on drug discovery. 

In the drug industry, deep understanding of the disease is essential for designing new 

therapeutics. Two mechanisms are explored by which scientific maps influence 

technological search: 1) predictive power and precision of the map can alter existing 

search strategies and rate of invention 2) public nature of the map can influence 

competition and intensity of search. Using a unique data set of chemistry drug patents, 

analyses show a rapid increase in patenting and novel compounds correlated with the 

availability of the human genome. Difference-in-differences estimation indicate that the 

map increases novel compound production across the industry by 64%, controlling for 

other technological changes like combinatorial chemistry. Overall, scientific maps 

increase the rate of invention and novel compound production suggesting that scientific 

mapping projects can enhance industry innovation.  

  

  

  

Keywords: scientific maps, technological search, drug innovation, human genome 
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Introduction 

Scientific maps like cartographic maps provide a high-level representation of the 

knowledge landscape aiding researchers in charting new discoveries and exploration. For 

example, early human dissections and detailed drawings (anatomical maps) laid the 

groundwork for modern surgical training and practice. Public scientific mapping projects 

like the Human Genome Project (HGP), the on-going Human Cell Atlas, European 

Human Brain Project and US BRAIN initiative organize immense amounts of scientific 

knowledge offering researchers a birds-eye view of the terrain and new paths to explore. 

While considerable resources are spent on public mapping projects, the economic value 

of maps to markets and innovation is not well understood. Theorists suggest that 

empirical studies on how scientific knowledge influences technological search can lead to 

new insights on the process and mechanisms driving innovation (Fleming & Sorenson, 

2001). In this study, I examine how the introduction of a scientific map influences the 

process of innovation across an industry. 

 

 The role of scientific maps on technological innovation or mapping as an 

economic activity is not yet well established. Recently, scholars have examined the role 

of the Human Genome in the context of follow on innovations and intellectual property 

rights (Sampat & Williams, 2015; Williams, 2013). Others have examined how 

differences in the accessibility and quality of geographic maps impact gold mining 

activity (Nagaraj, 2015). But very few empirical studies are available on the impact of 

scientific maps on technological search and innovation. Science mapping provides 

organized and detailed representations of scientific knowledge, that facilitate rapid 
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knowledge sharing and advancement. For example, the Allen Brain Atlas details 

taxonomies, images and cellular descriptions of human and mouse brains facilitating 

research in academia and industry. Some scholars indicate that new scientific knowledge 

can direct innovated-related search towards more useful knowledge combinations in 

complex landscapes and predict their outcomes (Nelson, 1982; Fleming & Sorenson, 

2004). Other scholars have argued that in complex fields, such predictive search may be 

of limited value; instead, experiential, feedback-based learning is associated with creative 

insights, and therefore, more successful technological innovation (Gittelman, 2016; 

Nightingale, 1998; Vincenti, 1990). Therefore, the exact mechanisms by which science 

and mapping influence processes of innovation are not well understood. 

 

 In 2000, the Human Genome Project (HGP), the world’s largest publicly-funded 

biology project, made available the first draft of the human genome. This was essentially 

a scientific map that allowed for identification of human genes and their exact DNA 

sequences enabling a high level of specificity in the search for potential drug candidates. 

At around the same time, a novel technology called combinatorial chemistry emerged, 

that allowed chemists to create millions of related compounds at relatively low cost in a 

single step. Together, the technological and scientific breakthroughs transformed the 

search process by making possible efficient search of much greater scale, along with a 

higher precision in the target of search. These changes in the nature of discovery provide 

a unique opportunity to study the process of technological innovation under different 

informational and technological contexts like a scientific map. 
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Prior research on the HGP has examined how the map influenced institutional 

arrangements and intellectual property rights related to innovation, but the role of the 

human genome as a scientific map remains unexplored (Huang & Murray, 2010; 

Williams, 2013). I explore two mechanisms by which scientific maps influence 

technological search: 1) predictive power and precision of a scientific map increases 

knowledge recombination leading to more search and diverse solutions 2) public nature 

of the map increases competition and stronger efforts to protect intellectual property. 

  

I have assembled an original and unique database of 39,000 small molecule drug patent 

applications over 15-years. Small-molecules drugs are economically important as they 

account for 90% of all marketed drugs as of 2016. These early-stage chemistry drug 

patent applications known as Markush patents allow for granular and precise tracking of 

firm level technological search pre and post the human genome map. Results presented in 

this exploratory study shed new light on important but largely unexplored questions on 

the scientific maps and their impact on innovative activity. Understanding the role of 

scientific maps in innovation is important for management theory, public policy and firm 

strategy. 

 

Theory 

Scientific Maps and Technological Search 

In evolutionary perspectives, innovations have two dimensions: technical novelty and 

market selection, and firm innovative activities are aimed at developing novelty of 

economic value (Nelson & Winter, 1982). The generation of technical novelty – driven 
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by new knowledge and technology - leads to diversity and a better chance of market 

selection. In this search for technical novelty, firms can both explore new technological 

space and/or exploit prior knowledge (March, 1991). The balance depends partly on the 

relative costs of exploration and exploitation and the ability to apply prior expertise 

towards future projects.  

 

 Innovation scholars theorize invention as a search process over technological 

landscapes, involving recombination of new and existing component technologies 

(Henderson & Clark, 1990; Fleming & Sorenson, 2001). In the absence of broader 

knowledge about the search space or predictive theory, experiential, feedback-based 

learning guides the search process. (Cohen & Levinthal, 1990). Some scholars indicate 

that scientific knowledge can act as a map that improves firms’ ability to explore the 

technological landscape, by reducing uncertainty in technological search and lower the 

cost of exploration. And that science can help direct towards more useful new 

combinations when the search landscape is complex – like drug discovery, which 

requires inter-disciplinary knowledge (Fleming & Sorenson, 2004). Predictive learning 

routines based on abstracted representations of the search space are theorized as leading 

to successful outcomes in complex landscapes as they provide an accurate, unbiased 

representation of the search space (Arora and Gambardella, 1998; Gavetti and Levinthal, 

2000). Thus, scientific knowledge is theorized as allowing firms to predict outcomes 

without full experimentation, enabling them to work with a smaller set of possible 

combinations.   

 



13 
 

 In the context of small molecule drug discovery, searching for an optimal 

compound in chemical space is a time-consuming and complex task (Scannell, et al, 

2012). This is partly because chemical space is a high-dimensional search space with 1060 

possible combinations of novel compounds. The process of drug discovery can be 

conceptualized as a Kauffman fitness landscape1, where two main components 

(biological gene targets and chemical agents; N=2) interact with high-interdependence 

(K). In this landscape multiple compounds can interact with varying efficacy with one 

target or more targets, thus making the interactions multiplex, interdependent and 

overlapping. Interdependence or coupling between components occurs where changes 

made to one component requires changes to another for the system to work properly 

(Ulrich, 1995; Fleming & Sorenson, 2001). In the case of drug discovery, this implies 

that disease target and designed compounds are tightly inter-related and change in 

knowledge about one of them will impact the other, thereby impacting coordinated 

outcomes.  

 With an estimated 20,000 human gene targets and 1060 possible novel compounds, 

for a drug to work effectively there needs to be tight coupling between the disease target 

and therapeutic compound. Mismatches in coupling can lead to suboptimal outcomes, 

such as off-target effects that result in clinical trial failures. Therefore, biological targets 

and chemistry-based drugs are tightly-coupled components with high degree of 

interdependence. The large scale of possible interactions makes it an increasingly 

difficult task to find useful combinations (i.e. successful drugs) (Kauffman et al, 2000; 

                                                           
1 Drawing on evolutionary biology, Stuart Kaufmann's fitness landscape is a mathematical model to describe the 
evolution of populations. It is visualized as having peaks and valleys across which populations evolve and follow 
different paths. 
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Rivkin, 2000). In fact, phenotypic screening and serendipitous discoveries have led to a 

majority of modern medicine’s successful drugs (Sampat, 2012). Without a scientific 

map of either component available, novel recombination would be difficult. But with 

access to a scientific map of at least one component (i.e. human genome), recombination 

and predictive capabilities become feasible. New knowledge occurs when new 

information is integrated and/or recombined with existing knowledge of the problem 

giving rise to breakthrough ideas and innovations (Schilling & Green, 2011).  

 

 Puranam & Swamy (2010) argue that mental representations like maps, even if 

incomplete, can be useful in situations involving coordinated problem-solving. In drug 

discovery, when local search breaks down due to reuse and re-optimization of existing 

compounds (i.e. phenotypic search paradigm), science acts as map in transforming the 

process of drug discovery into more directed identification of useful components. Access 

to new technological tools and scientific maps can be expected to reduce firms’ 

dependence on local, feedback-based search, and learning-by-doing, in their R&D 

activities. The new gains in predictive power and increased efficiency could result in 

modified or new search strategies. Thus, a scientific map like the human genome can 

direct search towards more useful combinations and potentially alter modes of search in 

drug discovery. 

 

Hypothesis 1a: Scientific maps will increase overall inventive activity  

Hypothesis 1b: Scientific maps will alter technological search strategies 
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Scientific Maps and Competition 

Drug patenting can be compared to the mineral claim system instituted by the American 

West in the middle-to-late 1800’s (Kitch, 1977). Exclusive prospecting rights whether 

gold, oil or valuable minerals were given to the finder who was first to file claims to a 

piece of land. Similarly, in fields like chemicals and pharmaceuticals, firms aggressively 

try to “patent block” rivals from patenting related inventions or developing substitutes. 

These defensive patents fence off competitors and are also used to force rivals into 

negotiations (Cohen, Nelson & Walsh, 2000; Ziedonis, 2004; McGrath & Nerkar, 2003). 

In the drug industry, firms patent aggressively to block rivals from entering their product 

markets and disease areas.  

 

 The emergence of combinatorial chemistry and the human genome within the 

same decade provided a synergistic effect in the search for drugs. The map was a source 

of new genetic information that could be exploited to identify new drug targets and 

disease mechanisms (Triggle, 2006). The map supplied much useful information about 

“where to search” for new targets compared to hypotheses generated by researchers. Easy 

accessibility to off-the-shelf tools enabled assembly of combinatorial chemistry platforms 

in-house. Instead of just shooting at a broad region of a target with a single-loading rifle, 

firms now could locate and take aim at precise molecular targets (with the genome map), 

and fire at them with an automatic weapon (combinatorial chemistry tools).  

 

 The chemical space associated with new drug targets is prime real-estate and can 

lead to aggressive patenting and patent blocking activity – where competing firms try to 
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capture as much territory as possible. This has important financial and downstream 

implications – firms can enter new disease and product markets, out license valuable 

chemical space and potentially block competitors from entering markets. These 

conditions can lead to patent races and aggressive protection of firm intellectual 

properties in an attempt to obtain exclusive and broad prospecting rights. Williams’ 

(2010) analysis of differences in intellectual property rights between the Human Genome 

Project (public domain) and Celera’s gene sequences (privately held) indicate a 20-30% 

drop in scientific research and product development. Even small firms will try to capture 

as much chemical territory as possible: 

“Smaller companies are quicker to patent to establish room to operate.  You would think 
that a (large) firm misses something, let’s do something similar with better properties.  
You make a series of compounds, write down 18 permutations that you could exploit that 
their patent didn’t cover very well, then find one that’s interesting, better 
pharmacokinetics, more potent, etc.  To the point where you have a patentably distinct 
advantage over theirs (large firms).” – Interview with Industry Expert, 2016  
 

 With specific gene targets as starting points for discovery, firms and inventors 

could narrow their focus and concentrate their efforts on making only target-specific 

solutions. One could argue, that firms will now make a smaller set of accurate keys to fit 

the lock, resulting in fewer but more specific compounds. But the public nature of the 

map – that is, competitors also get to work on same targets, combined with availability of 

patents in the public domain, could instead drive inventors and firms to develop more 

compounds to block off competitors. Patent protection of novel compounds gives firms 

the ability to exclude competitors from copying, entering a product market or 

downstream negotiation rights. But publishing the compounds and their structures in 

patents has a flipside – competing firms can examine, learn and copy the designs. 
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Medicinal chemists call such unpatented chemical opportunities “holes” and try to 

capture closely related chemical space, as their closeness is also translatable into 

biological activity (Southall & Ajay, 2005). For example, Pfizer’s Viagra and Eli Lilly’s 

Cialis are closely related chemical structures. Hence, to fence out regions of chemical 

space and block competitors from entering, search efforts around gene targets will 

intensify after the availability of the map. This competitive pressure and race to patent 

chemical space will increase rate and intensity of search activity.  

 

Therefore, the human genome map can be expected to increase industry competition, 

resulting in an increase in diversity of solutions produced. 

 

Hypothesis 2: Scientific maps will increase intensity of search  

 

Research Setting 

The research setting for this study is drug discovery in the biopharmaceutical industry – a 

sector driven by high research and development (R&D) investment, long development 

cycles and a high rate of failure. In 2015, the US biopharma industry spent $59 billion on 

R&D; it costs $2.6 billion and 10-15 years to develop a single drug, of which less than 

12% succeeded (PhRMA, 2016). The human body is a complex system where drug-target 

interactions are unpredictable and lead to off-target effects and undesirable drug-drug 

interactions making drug discovery a challenging and costly task (Drews, 2000; Scannell, 

et al, 2012). 
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Process of Drug Discovery: In the early days of drug discovery, natural products, crude 

extracts or purified compounds were screened for biological activity. When an active 

compound or natural product was found, it was tested or modified into a therapeutic 

agent. For example, aspirin is a natural product derived from trees and flowers. This 

approach of separating bioactive compounds, or synthesizing and modifying them 

without a clear understanding of the drug mechanisms involved, is known as phenotypic 

drug discovery (Scannell, et al, 2012; Lipinski & Hopkins 2004).  

  

In contrast to this trial-and-error process, target-based discovery starts with a therapeutic 

area of interest (e.g. coronary artery disease) along with a competitive analysis of existing 

drugs and patent landscapes. A drug target is any protein (e.g. enzymes, receptors) or 

nucleic acid (DNA, RNA) involved in a disease related biological pathway to which a 

drug can bind and alter its state. For example, Pfizer’s Lipitor, the best-selling drug of all 

time, is a lipid-lowering compound which works by inhibiting HMG-CoA reductase, an 

enzyme responsible for cholesterol production in the liver. Starting with a drug target, 

medicinal chemists design and synthesize compounds that can bind to the target. For this, 

medicinal chemists search in chemical space – which is extremely large containing 1060 

possible combinations of unique drug-like molecules. Through design and testing, a 

candidate compound is developed that is as specific as possible to the drug target and 

disease (Drews, 2000).  

 

Human Genome Project and Drug Discovery: On June 26, 2000, the Human Genome 

Project (HGP), an international public-private consortium, sequenced and publicly 
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released the first complete draft of the human genome. It was the world’s largest 

collaborative biology project costing $3 billion and an important development in human 

biology that was aimed, in part, at revolutionizing the way in which new drugs were 

discovered (Gittelman, 2016). The human genome is a digital map of 3 billion DNA base 

pairs revealing the location and identity of genes which encoded various proteins in cells. 

An important milestone of the HGP was the revision of possible human genes - the 

number of available disease targets increased from a few hundred to at least 10,000 

targets (Drews, 2000; Tripp & Grueber, 2011). These were important advances for drug 

discovery, as the new map allowed for predictive search and a high level of specificity in 

the search for lead candidates. The human genome map was a major scientific advance 

that drew a lot of public attention. 

 

“Without a doubt, this is the most important, most wondrous map ever produced by 
humankind.” - US President Bill Clinton, 2000  
 

 For drug discovery, the human genome provided a precise map of genes and gene 

variants.  Scientists could predict 3-dimensional protein structures using gene sequences 

– a field known as structural genomics. This substituted for the prior method in which 

labs would spend many years trying to solve the 3-dimensional crystal structures of 

proteins. Prior to HGP, there were less than 2000 human protein structures available 

(RCSB PDB, 2016). But having the ability to predict protein structures using gene 

sequences allowed scientists to rapidly identify disease mechanisms. The map was a 

disruptive event that fundamentally changed the way pharmaceutical firms approached 

the problem of drug discovery.  
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Combinatorial Chemistry and High-throughput Capabilities: Automated technology 

complemented the discovery of new compounds impacting the cost and speed of search. 

A novel technique called combinatorial chemistry emerged in the mid 1990’s, that 

allowed chemists to create millions of related compounds in a single step. This 

technology significantly reduced the time taken to synthesize novel compounds which at 

the time was a rate limiting issue in drug discovery. In 1996, a chemist made 4 

compounds/month at an average cost of $7500/compound.  Using combinatorial 

chemistry, a chemist could make 3,300 compounds at an average cost of $12/compound 

(See cost comparison in Appendix). This led to rapid adoption of combinatorial 

chemistry in the drug industry.  

 “In the late ‘90s people started to believe that if you made larger “lead-like”2 

libraries of compounds, your odds of success would improve. A lot of technologies 

evolved to enable machine-based synthesis in parallel with computer-based tracking of 

compounds for screening. The excitement around the technologies inspired creation of a 

new ACS Journal of Combinatorial Chemistry”. - Interview with Industry Expert, 2016 

 Computational tools allowed modeling of the 3-dimensional structures of gene 

targets with millions of chemical structures. This allowed efficient and rapid sampling of 

the very large chemistry landscape. Parallel advances in industrial robotics facilitated 

screening of millions of compounds for pharmacological properties – a process known as 

high-throughput screening. Together the combined availability of powerful 

computational tools, combinatorial techniques and the human genome map gave firms the 

                                                           
2 A lead compound is a chemical compound that has pharmacological and biological activity that could be 
therapeutically useful, but needs to be optimized to fit better with the disease target 
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ability to search rapidly in chemical space. These changes were expected to, in turn, 

vastly improve the number of new drugs entering into trials and the rate at which new 

compounds could be discovered. 

 

Methods 

 

Data 

In this study, I am interested testing the impact of the human genome map on drug 

discovery projects. So ideally, this would include project level data that captured the 

early stage drug discovery efforts of all firms, which could then be analyzed for 

influences of the human genome map. Such a set up would allow me to categorize 

projects and test firm and industry level effects of the scientific map. Given the difficulty 

and secrecy involved in obtaining firm’s internal R&D investments, I looked for external 

indicators of early stage R&D activity that could be both comprehensive across the 

industry and also accurate. In the innovation and strategy field, patents are well 

established as a measure of innovation and have been used to study R&D activity and 

knowledge in firms for a long time (Jaffe, 1986; Jaffe, et al; 1993).  

For my empirical research, I utilize a novel dataset of chemistry-based drug patents called 

Markush patents3 to contrast the process of technological search before and after the map. 

These are early stage drug discovery patents and are well suited to test the effect of the 

human genome map. This section provides an introduction to Markush patents and 

describes the study’s data collection process in further detail. 

                                                           
3 These chemistry patents contain a special place-holder structure called Markush structure (first appeared in a patent in 
1924) named after their inventor Eugene Markush, to capture a broad set of compounds.  
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Drug Patents: Patents are central to intellectual property protection and appropriation in 

biopharmaceutical industry and widely used in economic analyses (Scott & Sampat, 

2012). In the United States, there are four main classes of patents: composition of matter, 

method, machine and article of manufacture. While there are several types of patents 

available, the following are relevant for the drug industry: composition of matter or 

product patent, process patent, formulation patent and method of use patent. Process 

patents claim the specific compound or processes involved in making the drug. 

Formulation patents contain the pharmaceutical dosage form of the drug. Method of use 

patents capture the use of the drug for a particular disease, preventing others from doing 

the same.  

 Drug patents can be grouped based on the type of drug product – namely 

biologics (protein, antibodies, DNA based therapies) and small molecules (chemistry-

based drugs). The drug discovery process is very different for each of these drug 

therapies, involves very specialized knowledge and the products mode of intervention is 

also distinct. For my analysis, I focus only small molecule patents as they comprise more 

than 90% of marketed drugs and are economically important. Focusing on only one type 

of drug patent (chemistry-based) implies uniformity in selection and comparison of drug 

projects across firms. 

 

Markush Patents in Drug Discovery 

New chemical substances are specified as composition of matter patents. This type of 

product patent is considered superior to the other patents in terms of broad claims and 
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gives the patent assignee full rights to make, sell or license this property. The new 

chemical entities can be claimed by chemical name or by chemical structure, or claimed 

within a broad Markush structure. Apart from the drug industry, Markush patents are also 

used in other areas which involve chemicals like materials science, industrial chemicals 

and agrobiotechnology. The common aspect in all Markush patents is the presence of a 

special place-holder structure called Markush structure named after their inventor Eugene 

Markush, to capture a broad set of compounds and was used for the first time in a patent 

in 1924. Figure 1 below shows a Markush structure that claims a broad range of actual 

compounds that can be synthesized. 

  

 

Figure 1: Example Markush structure with R groups representing various chemical 

groups.  Each such Markush structure can represent hundreds of actual compounds 

(image source: ChemAxon Inc.) 

  

The chemical structure on the left is the backbone structure on which various R-groups 

are situated on. This structural backbone is known as the chemical scaffold. In the 
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example provided above, R1-R4 are the placeholders that can accept different chemical 

groups for each position. In this case R1 has 2 options, R2-R4 have 3 options, thus 

yielding 2 x 3 x 3 x 3 = 54 novel combinations. Instead of listing out these 54 

combinations, the Markush structure efficiently captures this combinatorial set of novel 

compounds. A Markush structure is used in patent applications to define the scope of a 

chemical series (Langdon, et al, 2011). Markush patents can try to capture a broad region 

sometimes going into thousands of combinations, but if these claims are construed as too 

broad they can be rejected by the patent examiner. 

 Markush patents are filed very early in the discovery stage where a firm makes 

general claims for a number of molecules without revealing the identity of the exact 

compound or compounds it is pursuing. In the drug industry, Markush patents are very 

specific to small molecule or chemistry drugs (compared to biologics patents) and mark 

the starting point where firms begin to claim intellectual property rights by planting 

“flags” in chemical space (Southall & Ajay, 2005).  The compounds of interest are 

hidden among hundreds of other similar looking compounds with the same basic scaffold 

structure (Figure 1). Other drug patents like process, method of use and formulation 

patents sequentially follow the Markush patent in terms of timing and normally reference 

this starting patent. In fact, some Markush patents are also found in the Food & Drug 

Administration’s Orange Book database of approved drug products. 

 

 Are Markush patents optional? In the drug industry, Markush patents are de facto 

starting points that all firms tend to file to protect their intellectual property. It does not 
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make sense for a firm to file only one chemical compound (and structure) if competitors 

can find ways to replicate it by making slight alterations to the protected structure. 

 

“I'm not sure if I've ever seen a (modern) non-Markush drug patent, come to think of it. 
The only time you'd do that is if you're claiming a completely new (unexpected, not 
taught toward, etc.) use for a known compound, and then you're not claiming the 
chemical matter per se. But I've never seen a chemical matter claim that didn't have 
variable groups in it, somewhere.” – Interview with Industry expert  
 
 An interesting feature of Markush patents is that they encapsulate the actual 

compounds made, and those that the firm or inventor plans to protect for future use – 

sometimes, running into the hundreds or thousands of novel compounds. Thus, these 

compounds within Markush patents represent the explorative effort undertaken by the 

firm or inventor in chemical space and the chemical compounds they wish to protect. For 

example, the drug project and compound that became the blockbuster drug Viagra was 

initially aimed at reducing hypertension and chest pain due to heart disease (Figure 2). A 

side effect of the drug allowed it to be repurposed to a new market. While not all 

Markush patent applications end up becoming granted patents or lead to a drug, they 

represent the small-molecule related R&D activity and explorative effort of the firm – not 

just the compounds that end up becoming successful. In 2002, Pfizer used a Markush 

patent US6469012 B1 to sue ICOS and Eli Lilly for marketing Cialis and infringing upon 

their chemical space (a similar looking chemical structure).  
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Chemical structure for 

Sildenafil (Viagra) 

  

 

Figure 2: Original Markush patent assigned to Pfizer that covers the blockbuster drug 

Viagra (left) and actual chemical structure (right). The Markush structure is shown in the 

abstract with the R-groups. 

 

 Even though, composition of matter or formulation patents that cover the actual 

drug compound (e.g. Sildenafil) can be used to represent a firm’s drug efforts, they do not 

completely represent the origin or original range of compounds claimed. Since, they are 

filed after the original Markush patent, a granted composition of matter or formulation 

patent does not capture the correct time of the project’s origin. That is, the explorative 

effort in chemical space or project timing is missed when sampling non-Markush patents. 
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Importantly, these follow on patents can bias analyses due to endogeneity by representing 

only the projects that progressed far enough or were successful enough to enter clinical 

trials and get approved for market use.  

 

 Thus, in drug discovery Markush patents are a) specific to only small molecule or 

chemistry-based drug projects b) mark the origin of the drug discovery project c) capture 

a region of chemical space the applicant is interested in filing claims for, and d) a 

Markush patent can lead to multiple follow on patents (republished Markush patents, 

composition of matter and process patents). These unique properties of Markush patents 

and applications, and their starting position in terms of timing make them especially 

useful for analyzing the evolution of technological search in firms. I exploit these unique 

features of Markush patents to measure longitudinal R&D activity and track search 

trajectories over time.  

 

Data Collection of Markush Patents  

Data source: The source for Markush patents is the Chemical Abstract Society's (CAS) 

Scifinder product. Scifinder is the world's largest repository of chemical structures, 

published articles and patents and provides access to MARPAT – a comprehensive 

database of Markush patents that cover all 9 major patent offices and 63 patent authorities 

worldwide. More than 1 million Markush structures and about 481,000 Markush patents 

and applications from 1988-present are available for searching. In a recent comparative 

analysis of patented compound databases, CAS’s Scifinder was found to be more 
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comprehensive and accurate compared to the Derwent World Patents Index and Reaxys 

(Ede, et al, 2016).  

Since MARPAT contains Markush patents that also belong to other chemistry-based 

industries, I had to sort these patents into drug and non-drug related categories. For this, I 

consulted database experts at CAS, and mapped out how each Markush patent is curated, 

categorized and organized. Scifinder database has 80 section codes under the broad 

categories of Biochemistry, Organic, Macromolecular, Applied and Physical, Inorganic 

& Analytical. Each new Markush patent is manually analyzed by a trained chemist and 

assigned to a category using a specific section code. I consulted both CAS and industry 

experts in medicinal chemistry to help identify and shortlist section codes that were at 

risk of being drug patents. This exercise resulted in a set of 28 section codes that are 

drug-related. Full list in Appendix Table A.  

  

Using the Scifinder web-based search interface, I restricted search to only 28 

specific section codes (e.g. Pharmacology, Heterocyclic compounds, Pharmaceuticals, 

etc.) and manually downloaded the Markush records. This strategy captured drug patents 

and applications while eliminating non-drug chemistry areas like Ceramics, Dyes, Fuels 

and Materials Science.  

 For the study, I am interested in capturing effects of the human genome on drug 

discovery and needed a sample set that included pre-and post-release of the map 

(between 1998-2000). Though the Human Genome Project was started in 1990, gene 

sequences were not released publicly until 1998. In June 2000, the first complete draft of 

the human genome was made available. Hence, I restricted the search for patent 
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applications filed between 1990 and 2004 to cover a window of time broad enough to 

measure pre-post effects of the map. This resulted in a dataset of 88,160 Markush patent 

records, comprised of 29,309 granted patents and 58,851 patent applications. 

 

Sample selection 

The dataset is comprised of WIPO patent applications (38,672), US patents and patent 

applications (12,656) and EP patents and patent applications (10,055) accounting for 70% 

of all Markush records collected between 1990-2004. Patents are associated with a 

distinct code appended to their identifiers, known as patent kind codes which identifies 

their status such as A, A1, A2, B1, B2. For example, the code A1 indicates patent 

application publication, while A2 indicates patent application republication. ‘A’ indicates 

a US grant date (replaced by B1 and B2 since 2001). Thus, a Markush patent application 

(first to be filed), can be refiled or result in a granted patent.  

 

 For example, the Markush patent US5137884A (A indicating granted status) 

assigned to Merck & Co has a grant date of 1992-08-11. But the original Markush 

application is actually US06552570 filed in 1983-11-16, almost a decade earlier. In 

addition, the granted patent could differ in content (due to republication, modifications) 

compared to the original Markush patent filed. Also, only a small proportion of all 

Markush applications become granted patents – most are rejected, discontinued or 

abandoned projects. Thus, if Merck had invested in 10 drug discovery projects leading up 

to a Markush application stage in 1983 and only 3 got granted status, we would be 
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missing the remaining 7 projects. Thus, sampling only granted patents would not be 

reliable. 

 

 Markush patent applications comprise 68% of the downloaded dataset (patents + 

applications). A breakup of this based on priority application country is shown in Figure 

3. Patents filed in the World Intellectual Property Organization (WIPO) patent office 

form the majority of patents (74%), followed by the European Patent Office (17%) and 

United States Patent & Trademark Office (8%). Under a revised law in all US patent 

applications filed on or after November 29, 2000 were published within 18 months. Prior 

to this they were filed in the patent office but not available or disclosed to others. 

Corroborating with changes in the patent offices, in my sample I observed that US 

applications are under-represented as they were not published prior to 2000. Thus, 

including US patent applications would represent an unbalanced dataset and skew 

representation post-2000.  

 

 European patents comprise about 16% of the patent applications, but are not well 

represented post-1995. This could possibly be due to applicants switching to WIPO 

applications for broad coverage instead of filing EP patents. The WIPO’s Patent 

Cooperation Treaty (PCT) assists applicants in seeking international patent protection for 

their inventions. That is, by filing one international patent application in the WIPO office, 

applicants can simultaneously seek protection for an invention in a large number of 

countries. In 2018, this included 152 PCT countries. This wide international coverage 

also implies that WO applications by applicants are also more likely to be important and 
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broader as they are intended for multiple markets, and may therefore also be used to keep 

out smaller firms or competitors in other countries. Thus, the WIPO patent applications in 

the sample represent a strong and reliable measure of firm R&D activity in small-

molecule drug discovery.  

 

 For cross-sectional analyses, including both EP and US patent applications with 

the WIPO patent applications would be appropriate depending on the selected time 

period. But for the longitudinal analysis in this study covering 15 years, I risk under-

representing the US and EP Markush patents for the entire time period. For these reasons, 

I have selected only the WIPO or WO Markush patent applications for empirical analysis 

in the time period 1990-2003. There are no granted WIPO Markush patents in the dataset.  

After eliminating redundant records based on unique priority application number, a total 

of 38, 673 WIPO Markush patent applications were obtained. A breakdown of the 

assignees and priority application countries are shown in Figure 4 below.  
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Figure 3:  Applications separated by the top three patent offices – WIPO (WO), EP and 

US 

  

 

Distribution by Assignees 

 

Assignee Type 

WIPO 

applications 

Firms 32733 

Academic & 

Research Centers 
4571 

Individual 

Inventors 
664 

Collaborations 341 

Not drug related 363 

Total 38672 

 

Figure 4: Distribution of drug patents in sample after selecting only WIPO patent 

applications 

 A sample CAS record and fields in a Markush patent are provided in the 

Appendix. Using a standard text parser written in Python, each of the patent fields was 

extracted and stored in a MySQL relational database for querying.  
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Exemplified Compounds:  Exemplified compounds, also known as prophetic substances, 

are the novel compounds that are listed in the Markush patent records obtained from 

Scifinder. The Scifinder database extracts the novel compounds registered in the Markush 

patent application and assigns a unique CAS identification number to each compound 

(e.g. the CAS Registry Number for Viagra is 139755-83-2).  From the WIPO patent 

applications records that were downloaded, 8,217,103 exemplified compounds and 

unique identifiers were extracted. Using these CAS numbers, I create a count of novel 

compounds reported for each patent.  

 

Patent Assignees: Assignees were extracted from patent records and stored separately. 

Assignees have a name and location associated with them. Each assignee is categorized 

into a separate category: firms, universities, medical centers and collaborations. This 

classification process yielded 4486 firms, 1500 universities and medical centers. For the 

analysis, only firm assigned Markush patent applications were selected and does not 

include any collaborations between firms or between academia-industry. 

  

Identification of Drug Discovery Strategies 

I interviewed discovery scientists to understand what drug discovery strategies firms and 

how to identify them using patent records. Target-based patents in their description 

would normally name a disease target gene or gene symbol in addition to mentioning 

specific keywords that indicated the search strategy used to make the compounds. Figure 

3 below shows the abstract of a Markush patent where a molecular target (COX-2, 
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cyclooxygenase-2), specific keywords related to target-based approach (inhibiting 

activity) and disease indications (inflammation) can be obtained by reading the abstract.  

 

 To identify the presence of targeted strategies, I developed a text-based 

classification method based on patent text. Initial versions of this method included the 

text of the title, abstract and description section of the patent. But this yielded false 

positives, as inventors and examiners would reference other patents, titles or references 

that could contain a gene name, but not be used in the discovery approach. Hence, a non-

targeted approach could be mis-classified as a target-based strategy. To overcome this 

problem, I compared and contrasted the merits of using abstract versus description before 

settling on just using the patent title and abstract that captured the main aspects of the 

patent and its strategy. In addition, CAS provides two human curated fields known as 

Index Terms and Supplementary Terms – these are short keyword summaries of the 

patent provided by internal knowledge experts.  The text from these fields is then 

compared to gene names and gene symbols derived from two sources: the National 

Center for Biotechnology Information (NCBI) database and the HUGO Gene 

Nomenclature Committee’s (HGNC) database. The HGNC is a committee of the Human 

Genome Organization that sets standards for naming genes and assigning gene symbols. 

For example, the drug target for Viagra is the enzyme phosphodiesterase 5A, written 

using the symbol PDE5A or PDE5. A patent could use any of these versions of the gene 

name or symbol, hence, the algorithm should be able to account for this variation. 
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 The counter this problem, the gene database from the National Center for 

Biotechnology Information (NCBI) was also used as it provides a list of gene synonyms 

and old names that were previously used. Thus, together a comprehensive collection of 

61, 561 gene symbols and identifiers were created. Using this combined data, patent 

abstracts, titles and curated sections from Scifinder were scanned using custom software 

developed for this purpose.  

Figure 5: Sample patent abstract from United States Patent & Trademark Office database 

is analyzed using custom algorithms to identify target-based keywords, gene target and 

disease indications and classified as using a target-based drug discovery strategy. 

 

 A custom algorithm was implemented in the Python language using the open 

source Natural Language Toolkit library to mine the text of all the Markush patents in the 

sample. In addition to the gene identifiers, a set of keywords gathered from interviews 

indicating a target-based approach were also screened. These words include versions of 

relevant keywords like 'gene', 'genes', 'genomic', ‘genomics’, 'receptor', 'receptors', 

‘inhibit’, 'inhibitor', 'inhibitors', ‘target’, ‘targeted’. Wild-card matching (e.g. inhibit*) 

was implemented to account for these variants.   

 

 The text mining and classification using this approach led to identification of gene 

names and symbols appearing patent titles and abstracts. False positives can occur when 
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the algorithm tags a patent as target-based when the actual gene symbol could be used in 

a different context. For example, the valid gene symbols ‘CAT’, ‘MICE’ and ‘PIGS’ can 

be misconstrued as gene names when used in the context of compounds being tested for 

toxicity on these animals. Or the gene ‘BOC’ has a different connotation when used in a 

chemistry patent. In chemistry, BOC groups refer to tert-butyloxycarbonyl, a protecting 

group in organic synthesis. To ensure reliability, I tag false positives using a special list 

of such terms (see Appendix) and manually inspect patents to ensure that the algorithm 

driven classification is accurate and false positives eliminated. This sorting created two 

broad categories of patents based on their search strategy: 60% non-target based and 40% 

target-based. 

 

Research Design 

 

Dependent variable 

Number of exemplified (novel) compounds: Each novel compound listed in a Markush 

patent is an original and tangible chemical entity with a unique chemical structure. These 

chemical compounds are structurally based on the Markush structure, and required to 

support the invention and substantiate patent claims. Patents that do not have broad 

claims and considered weak have a stronger likelihood of being challenged or broken by 

competitors (Hemphill & Sampat, 2011). Hence, a set of exemplified compounds in a 

patent indicate the firm’s search activity in chemical space and intent to protect a region 

of chemical space. Novel compounds arise as a result of knowledge recombination, 

search strategy and explorative intensity.  
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 The number of compounds encoded in Markush patents is then a factor of search 

effort, dedicated resources and strategic intent of the firm and inventors (Drews, 200; 

DiMasi et al, 2010). And, more compounds in a patent imply the intensity of research 

efforts, knowledge flows and specialized skills in the firm (Jaffe & Trajtenberg, 1999; 

Alacacer & Gittelman, 2006; Henderson & Cockburn, 1996). Thus, number of patented 

compounds provide a quantitative representation of the intensity of search effort and 

suited as a measure for analysis of innovation novelty. 

 

Difference-in-Differences Estimation 

Difference-in-Differences (DID) estimations are used to study the role of interventions 

like economic policies and events in natural experiments. This statistical technique 

analyzes the differential effect of the intervention or treatment on a treatment group and 

compares it to a control group that is not exposed to the treatment (Angrist & Krueger, 

2001; Imbens & Woolbridge, 2007). A common experimental setup is observing two 

groups over two-time periods, where the first group is exposed to treatment in the 

second-time period, while the control group is not exposed to the treatment the entire 

period. To eliminate biases in second time period comparisons due to trends or inherent 

differences, the average gains in the control group is subtracted from the average gain in 

the treatment group (Card & Krueger, 1994). 

 

 In this study, the dependent variable (exemplified compounds) is affected by two 

well technological factors – the availability of combinatorial chemistry and the human 

genome. While combinatorial chemistry preceded the arrival of the map, it is difficult to 
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pinpoint its exact arrival or separate out only those patents that used it for making 

compounds (Asgari et al, 2016; Persidis, 1998). In contrast the public release of human 

genome DNA sequences is well documented. In 1998, only about 8% of the genome was 

publicly available, but within two years 90% of the map was made public in 2000 

(Collins, et al, 1998). The first complete draft of the human genome was completed and 

announced on June 26, 2000. Thus, the partial map of the human genome was available 

1998 onwards, while the complete draft appeared in 2000. These two-time points can be 

used as intervention periods in the estimation. 

 

 To estimate only the effect of the human genome on small molecule drug 

discovery using a difference-in-differences approach, a control set of non-drug patents 

was required that was also impacted by combinatorial chemistry but not by the human 

genome. I surveyed other chemistry industries that were also impacted by combinatorial 

chemistry and found two fields: materials science and agrochemicals. 

 The agrochemical industry is involved in making plant-related products like 

fertilizers, herbicides and insecticides. The products they produce can also include small-

molecules and utilize similar search processes. While agrochemicals had a number of 

similarities to the drug industry, it did not satisfy an important criterion – not being 

impacted by scientific maps. Private and public plant genome mapping efforts were 

already in place during the time period of interest and could influence the direction of 

search in the agrochemical industry (Waterhouse & Helliwell, 2003).  
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 In contrast, the materials science industry was only influenced by combinatorial 

chemistry technologies but not plant or human genomes. After detailed comparisons and 

analysis of patent data, I chose Materials Science patents as a control group for the 

difference-in-differences estimation.  

 

Combinatorial chemistry in Materials Science: Since the early 1990’s combinatorial 

chemistry methods have been used in drug discovery (Ellman, et al, 1997). During this 

time, a parallel adoption of the technique took place in materials science. Materials 

science is a broad interdisciplinary area drawing from physics, chemistry, engineering, 

biology, medicine and nanotechnology, and is used in the development of new materials 

for electronics, energy systems, aerospace, nanotechnology, industrial chemicals, 

polymers and catalysts.  Adoption of combinatorial chemistry in non-drug industries 

quickly followed: 

 

 "Now this idea, known as “combinatorial chemistry” ... is spreading outside 
medicine. The electronics industry, for example, thrives on new materials with exotic 
properties, such as emitting light of a certain colour when pumped with electricity 
(electroluminescence), or conducting electricity without resistance (superconductivity). 
But these materials are usually compounds of several elements arranged in complicated 
crystalline structures. ... researchers have just published the results of their attempts to 
make this technique work." - Combinatorial Chemistry Material Gains, The Economist, 
1998. 
 
 
 “Pioneered by the pharmaceutical industry and adapted for the purposes of 
materials science and engineering, the combinatorial approach represents a watershed in 
the process of accelerated discovery, development and optimization of materials. To 
survey large compositional landscapes rapidly, thousands of compositionally varying 
samples may be synthesized, processed and screened in a single experiment.” - Koinuma 
& Takeuchi, 2004 
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 Adoption of combinatorial chemistry in materials science research led to new 

types of compounds and associated materials for electroluminescence, 

photoluminescence and semi-conductors (Koinuma & Takeuchi, 2004; Economist, 1998). 

New techniques were developed for manufacturing advanced inorganic materials like 

optical, glass, dielectric and magnetic materials, catalytic powders, polymers and 

biofunctional materials (Resetar & Eiseman, 2001; Takeuchi et al, 2005). Based on 

sampling and suitability for difference-in-differences analysis, materials science broad 

chemistry patents were selected as a control group. Using similar techniques that I had 

used to separate out only drug patents, I collected materials science patents using relevant 

CAS category codes. From this I selected patents filed only in the United States.  See 

Figure 6 and Appendix showing comparative growth and adoption of combinatorial 

chemistry in materials science and drug discovery research patenting and publications. 

 

 To ensure that the differences-in-differences estimation is robust and the comparison of 

drug patents is made to a relevant control group, I collected and tested patents from the 

field of agribiotech and materials science. Agribiotech was also influenced by 

combinatorial chemistry, but it was unsuitable as control since the agribiotech sector was 

also being influenced by the availability of plant genomes. Comparatively, materials 

science as an industry was going through similar changes as the drug industry and 

adopting combinatorial chemistry in its product development cycles (Appendix Figures 

C-E). Compound growth trends for both drug industry and material sciences is shown in 

Figure 7. There are remarkable similarities in compound growth rates over a 15-year 

period, with drug patents having much higher compound production.  
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Figure 6: Comparison of novel compound production derived from Markush patent 

applications for treatment (drug) and control group (materials science).  

 

Data Matching for Difference-in-Differences Estimation: For the difference-in-

differences estimation, a focused subset of the drug patents is used. Countries can differ 

in access to new technologies (like combinatorial chemistry, high-speed computers), 

scientific resources and manpower, and organizational cultures. To control for these 

exogenous factors that could bias the analysis, only WIPO patent applications filed in the 

United States are selected. The United States accounts for nearly half of all the 

applications filed world-wide, and is suitable for this selection. Similarly, the control 

group is also comprised of only materials science patents filed in the United States. I 

restricted both control and treatment samples to the same country to ensure reduce 

unexplained effects due to inter-country variation in firm R&D. Combinatorial chemistry 

was a novel technique with specialized supporting infrastructure like robotics and high-

throughput screening. The United States is also the largest market for chemicals and 
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firms interested in this market would typically file patents here (Ahuja & Lampert, 2001). 

Restricting the sample to the United States maintains consistency, reliability and 

comparability in factors like accessibility to combinatorial chemistry technologies and 

resources needed for technological search.  

 

Treatment group: 14,677 US small-molecule drug firm patent applications (1990-2005) 

Control group: 4,313 US materials-science firm patents and applications (1990-2005) 

Intervention Period: 1998. See genome sequence release dates in Appendix Figure A. 

 

Model 

The generic difference-in-differences (DID) model is specified as: 

y =  β0 + β1dB + δ0d2 + δ1d2.dB + u 

where y is the outcome variable (compounds), d2 is a dummy variable for the second 

time period (post-Human Genome Map), the dummy variable dB captures differences 

between treatment and control groups before the second time period (treatment). The 

coefficient of interest is δ1d2.dB. The difference-in-differences estimate is, 

δ̂1 = (ȳB,2  - ȳB,1) – (ȳA,2  - ȳA,1) 
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Figure 7: Experimental setup to test the effect of the human genome and combinatorial 

chemistry on novel compound production. In the post-intervention time period, the 

separate effect of the map is calculated by subtracting out the effect of only combinatorial 

chemistry. 

 Therefore, Estimation of HGP Map Effect = (Drug compounds – Material Science 

compounds) post-Map – (Drug compounds – Material Science compounds) pre-Map 

  

  

  

Results 
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Figure 8: Industry patenting increases 60% between 1998-2003 

 

 

 Figure 9: Number of firms patenting per year increases 70% between 1998-2003 
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Figure 10: Average number of patent applications filed per firm increases 33% after 

1998. 

 

Figure 11: Targeted strategies increase from ~30% of total projects in the early 1990's to 

~50% in 2003.  

 

 Changes in firm patenting activity are shown in Figures 8-11.  Figure 8 shows a 

60% increase in firm patenting between 1998-2003, the period when more than 90% of 

the human genome sequences was released (see Appendix A). In Figure 9, number of 

firms between 1998-2003 go up by 70% indicating an increase in firms engaged in drug 
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discovery. To capture the rate of inventive activity among drug firms, I calculated an 

average score (total patents per year/total unique firms per year) and for each year. 

Compared to gross yearly patent counts that do not account for firm-level heterogeneity 

in patenting, this measure provides an average estimate of overall industry inventive 

activity across time. The trend line is shown in Figure 10. I observe a 33% increase over 

the 14-year time period with firm inventive activity being the highest post-1998.  

 

 Changes in drug discovery strategies are shown in Figure 11. Firm patents are 

clustered based on their search strategies (target or non-target based) and plotted along 

with the target-to-non-target proportion over time. An industry-wide shift towards target-

based strategies is shown (almost 90% by 2003) with a nearly 50% increase in target-

based strategies between 1998-2003. In sum, post human genome I observe more 

patenting activity, more number of firms engaged in drug discovery, drastic change in 

drug search strategies and overall inventive activity increasing across the industry 

(Figures 8-11), supporting Hypothesis 1a and 1b. 

  

  

Gene Name 

Gene 

Symbol 

or 

keyword

s 

Thera

peutic 

Area 

Patent 

Applications 

citing gene 

(pre-map) 

Patents 

Applications 

citing gene 

(post-map) 

Firms 

(pre-

map) 

Firms 

(post-

map) 

tumor necrosis 

factor receptor 
tnf 

Oncol

ogy 
174 291 67 96 
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cyclooxygenas

e 

cox 

Infla

mmat

ion & 

Pain 

123 281 61 104 

mitogen-

activated 

protein (MAP) 

kinases 

p38 

Autoi

mmu

ne  

57 140 26 42 

peroxisome 

proliferator-

activated 

receptors 

ppar 

Meta

bolic 

diseas

es 

(like 

Diabe

tes) 

22 128 11 54 

vascular 

endothelial 

growth factor 

vegf 

Oncol

ogy, 

Opht

halm

ology 

7 104 2 40 

mitogen-

activated 

map 

Autoi

mmu

ne  

11 74 8 36 
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protein (MAP) 

kinases 

Dipeptidyl 

peptidase-4 

dpp-

4/dpp-IV 

Oncol

ogy, 

Viral 

3 66 1 31 

 

Table 1: Competition and crowding around top gene targets: List of small-molecule 

patents and drug firms citing top gene targets before-after the human genome map. 

Genentech’s drug Avastin is a VEGF inhibitor that was approved in 2004 and had sales 

of $7 billion in 2015. Tnf is the second most studied gene in the human genome (Dolgin, 

2017). 

 

 Table 1 shows a list of top gene targets that experienced rapid increase in 

patenting and in number of firms working on them. In the post-map period, I see more 

firms and patents around the same gene targets indicating intense competition for disease 

markets in the industry. These point to an increase in patenting around similar disease 

targets. Thus, with more firms, more patent applications and crowding around genes in 

the drug industry the search intensity increases, supporting Hypothesis 2. 



49 
 

 

Figure 12: Novel compounds for target and non-target patents, where the gap increases 

after 1998. 

 

 Figure 12 captures an interesting trend – novel compounds are consistently higher 

for target-based search strategies, and the gap between target non-target strategies widens 

after the release of gene sequences. Search strategies have differential compound yield 

and the difference in novel compounds patented is amplified with the availability of a 

scientific map. There appears to be a specific advantage or characteristic that target based 

strategies have over non-target based approaches in producing novel compounds. 
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Figure 13: Novel compounds increase 63% for drugs and 56% for materials science from 

1998-2004 (post-map). Mean value of compounds for drug patents pre-map is 107 and 

post-map is 174.  

 

 Drug Patent Applications 

(Treatment) 

Materials Science Patents (Control) 

Patent Priority 

Application Country 

United States United States 

Time Period 1990-2005 1990-2005 

Observations 14,677 2,811 

Compound Output Mean: 136.21 

Min: 0 

Max: 8916 

Std Dev: 324.70 

Mean: 18.42 

Min: 1 

Max: 757 

Std Dev: 26.28 

Table 2: Descriptive statistics for treatment and control groups 
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HGP Map Treatment Period 1998-2004 2000-2004 

 (1) (2) (3) (4) 

VARIABLESa Model 1: 

OLS Fixed 

Effects 

Model 2: 

OLS 

Model 3: 

OLS Fixed 

Effects 

Model 4: 

OLS 

     

DtrXDpost 68.80*** 58.12***   

 (10.10) (9.864)   

Dpost 8.294** 9.090***   

 (3.496) (1.872)   

Dtr 31.61 91.00*** 43.92 101.0*** 

 (33.98) (10.48) (33.51) (11.09) 

DtrXDpost2   63.27*** 57.28*** 

   (11.46) (12.34) 

Dpost2   8.095** 7.438*** 

   (4.079) (2.472) 

Constant 56.73** 16.03*** 59.13** 17.90*** 

 (26.00) (0.873) (25.84) (0.928) 

     

Observations 20,340 20,340 20,340 20,340 

R-squared 0.009 0.040 0.008 0.041 

Number of orgnamecode 3,054  3,054  

Robust standard errors in parentheses. Standard errors clustered at firm level. 
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*** p<0.01, ** p<0.05, * p<0.1 

aLegend:  

Dtr = Dummy for treatment (Drug patents) 

Dpost = Dummy for Post-intervention period (1 if year between 1998-2004)  

DtrXDpost = Interaction term for Treatment and Post-intervention period 1998-2004 

(Diff-in-Diff estimator) 

Dpost2 = Dummy for Post-intervention period (1 if year between 2000-2004)  

DtrXDpost2 = Interaction term for Treatment and Post-intervention period 2000-2004 

(Diff-in-Diff estimator) 

 

Table 3: Difference-in-differences estimate for the effect of the human genome map on 

novel compound production. Treatment group is US drug and control is US materials 

science patents and applications.  

 

Table 2 and 3 show descriptive statistics and results for the Difference-in-Differences 

estimation. 

In Model 1, the difference-in-differences estimator (DtrXDpost) is calculated using 

Ordinary Least Squares (OLS) regression with firm fixed effects and the standard errors 

clustered for robustness at firm level for the intervention time period 1998-2004. The 

difference-in-difference estimate for the effect of only the human genome map is 68.80. 

To check whether these effects are consistent even after the arrival of the complete 

human genome map in 2000, Model 2 measures the effect for the 2000-2004 time period. 

Results are similar and statistically significant. 
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 This implies that controlling for the independent effect of combinatorial chemistry 

(using materials science patents), the genome map accounted for 69 more compounds for 

each patent. This result is statistically significant and consistent with Model 2 and 4 (run 

without fixed effects). This implies that the availability of human genome map increased 

compound output by 69 compounds per patent in the 1998-2004 intervention period, and 

by 63 compounds per patent with the arrival of the complete human genome (2000-

2004). These results support Hypothesis 2. 

 

 The DID estimator in all four regression models are positive and statistically 

significant at p<0.01. The difference-in-differences estimation (Model 1) indicates a 64% 

increase in novel compound production across the industry attributed to the effect of the 

human genome.  

 

Robustness Checks 

Our analysis of small-molecule patents shows a transition from non-target to target-based 

approaches in the mid-to-late 1990’s. This observation in my data (Figure 11) is 

supported by a number of reports in drug discovery and management research that also 

point to a shift in search strategies in the 1990’s marking the entry of the genomics era 

(Scannell, et al, 2012; Drews, 2000; Triggle, 2006; Zucker & Darby, 2002; Lipinski & 

Hopkins, 2004; Gittelman, 2016). The change in internal search processes has been 

attributed to the availability of high-throughput technologies and genomics-driven search 

paradigms. 
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 “The 1990s saw a major shift in small-molecule drug discovery strategies, from 
iterative low-throughput in vivo screening and medicinal chemistry optimization to 
target-based high-throughput screening (HTS) of large compound libraries.  … the 
former is slow and expensive in terms of the number of compounds that can be tested, 
whereas the latter is fast and cheap.” – Scannell, et al, 2016 
 

 Given that the uncertainty in drug discovery and pharma industry extremely 

competitive, it is expected that drug firms will try to capture as much chemical space as 

possible since it is not clear which of these compounds will do well in preclinical and 

clinical trials. This could explain the increase in novel compound production with the 

arrival of the human genome map. 

 

 I have tried to rule out alternate explanations for the increase in compound 

production in drug patents like combinatorial chemistry (see Discussion), R&D 

expenditures and outsourcing of R&D projects. One possible rationale for increased 

compound production could be higher R&D investments, which would mean more 

resources for each project. This could be translated into more manpower, funding or 

technologies to make new compounds. Appendix Figure F shows R&D spending by drug 

and chemical companies from 1990-2000. The trends do not show a major increase in 

R&D spending after mid-1990’s or after 1998 that could account for the increase in 

compound counts I observe in the period after the human genome was made public.  

 

 Difference-in-difference estimates are run with clustered standard errors and firm 

fixed effects. Clustered standard errors provide a way to get unbiased standard errors of 

OLS coefficients and account for heteroscedasticity. Standard errors are clustered at the 

firm level and firm fixed effects are used in the OLS regression to account for omitted 
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variable bias. In this panel, longitudinal observations are captured for the same firms and 

compound means are being measured for each observation, hence, the firm fixed effects 

model is suitable for this analysis.  

 

To rule out any specific year’s influence on the overall difference-in-differences trends, 

robustness tests were carried out by dropping out high-influence years like 2003. In 

figure 6, the gap between average compounds for materials science and drugs is 

maximum due to the sharp drop in materials science compounds. To ensure that this 

increased does not bias the difference-in-differences (DID) estimator I ran the DID 

estimation for the entire time period except observations for the year 2003. The DID 

estimator for this robustness checking model (excluding year 2003) was 65 compounds, 

consistent with the main model results and these were significant at p<0.001. This 

robustness check model is included in the Appendix Table D. 

 

Value and Importance of Markush Patents in Sample: Firms could be patenting large 

portions of chemical space using the Markush patents to fence out competitors or claim 

important space. And it could be argued that firms could be blocking out regions of space 

without really meaning to pursue those compounds into marketable drugs. To test 

whether the patent applications in my sample was not just placeholder patents in an inter-

firm fencing strategy, I had to check whether these patents were important to the firm and 

industry. To do this, I screened all the patents in the data sample against the Organization 

for Economic Cooperation and Development (OECD) Triadic patent database. This 

database captures triadic patent families – defined as a set of patents registered in the 
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three major patent offices: United States Patent and Trademark Office (USPTO), the 

European Patent Office (EPO) and the Japan Patent Office (JPO).  

Filing patents in all three offices indicates high-value and intent to take the drug 

to market in economically important markets. By screening the World Intellectual 

Property Office (WIPO) patent applications against this OECD Triadic database, I could 

identify those patents that were part of patent triads filed in USPTO, EPO and JPO. I 

found that about 38% (37.78) of the patent applications in the sample are part of the 

OECD Triadic database families and are economically important to the firm. This implies 

that a significant portion of the patents in this study are economically important and 

indicate a focused approach by the firms to strategically capture chemical space and 

fence out smaller firms and competitors. 

 

Effect of Drug Discovery Strategy on Novel Compound Production: There is also an 

underlying factor that could contribute to the increase in compound production – the 

search strategies involved. Figure 14 shows differences in compound output based on 

search strategies. 
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Figure 14: Comparison of novel compound production for the two drug discovery 

strategies 

 

 Markush patent applications that indicate a target-based strategy have generally 

higher compound output compared to the non-targeted approach. This gap in novel 

compound production increases considerably post-1997. To estimate, the effect of just 

target-based strategies on novel compound production, I used the same differences-in-

differences estimation approach for the same time period, but only on the Markush drug 

patent applications filed in the United States. Similar to the main model, I used two 

intervention time periods to test the impact of the map on drug discovery strategies. The 

target-based patents are the treatment group as their approach benefits most with the 

availability of the human genome. The non-target-based patents act as a control. Both 

groups are equally impacted by combinatorial chemistry and the standard errors of the 

difference-in-differences estimation is clustered at the firm-level. This controls for within 

firm differences in use of technologies needed for drug discovery. Results are shown in 

Table 4. 
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HGP Map Treatment Period 1998-2004 2000-2004 

 (1) (2) (3) (4) 

VARIABLESb Model 1: 

OLS Fixed 

Effects 

Model 2: 

OLS 

Model 3: 

OLS Fixed 

Effects 

Model 4: 

OLS 

     

TgtXDpost 41.23** 60.54***   

 (18.10) (15.18)   

Dpost 13.92 -21.99   

 (25.13) (18.90)   

is_target 15.78 5.526 17.92** 14.02* 

 (12.72) (9.622) (8.390) (7.801) 

TgtXDpost2   49.26*** 60.66*** 

   (15.27) (14.92) 

Dpost2   -6.354 -27.58 

   (17.87) (21.31) 

Constant 80.18*** 99.69*** 92.44*** 100.1*** 

 (18.57) (14.07) (11.14) (15.58) 

     

Observations 15,602 15,602 15,602 15,602 

R-squared 0.012 0.015 0.012 0.015 

Number of orgnamecode 2,247  2,247  

Robust standard errors in parentheses. Standard errors clustered at firm level. 
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*** p<0.01, ** p<0.05, * p<0.1 

bsLegend:  

Is_target = Dummy for treatment (Target-based drug patents) 

Dpost = Dummy for Post-intervention period (1 if year between 1998-2004)  

TgtXDpost = Interaction term for Treatment and Post-intervention period 1998-2004 

(Diff-in-Diff estimator) 

Dpost2 = Dummy for Post-intervention period (1 if year between 2000-2004)  

TgtXDpost2 = Interaction term for Treatment and Post-intervention period 2000-2004 

(Diff-in-Diff estimator) 

 

Table 4: Difference-in-differences estimate for the effect of the human genome map on 

novel compound production based on drug discovery strategies. Treatment group is 

target-based patent applications and control is non-target based patent applications.  

 Difference-in-differences estimation shows that the human genome map increases 

novel compound production in target-based strategies by 34% in the 1998-2004 time 

period, and by 38% in the time period when the complete map is available (2000-2004). 

Thus, the map impacts targeted strategies more and this is evidenced by a higher 

production of novel compounds in those Markush patents. 

 

 

Discussion and Conclusions 

Using a novel dataset of chemistry drug patent applications, I find that the human 

genome map is correlated with an increased rate in drug patenting, novel compounds and 
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a change in discovery strategies. These findings point to the role of scientific maps as 

catalysts in knowledge recombination, focusing search processes and enabling firms to 

explore more of the technological landscape.  

The economic and social cost of being unable to develop adequate drugs for unmet 

medical needs is high. This is further compounded by not having enough research 

funding for basic science projects, which is required to understand the science behind 

diseases and their mechanisms. Despite considerable pushback, the Human Genome 

Project – a basic science project was launched with public-funding in 1990 with much 

skepticism about its impact on biology and disease. By the time the project was 

completed, new firms were launched to exploit the genome, large amounts of investor 

funds were pumped into the biotechnology industry and academic scientist-entrepreneur 

led firms became more common (Zucker & Darby, 1996). While most industry and 

academic articles report an overall decline in new drug development in the post-genome 

era, there has been no systematic empirical analysis of how the processes of drug 

discovery changed with the advent of the human genome map (Scannell, 2012; 

Gittelman, 2016). In this study, I open the black box of drug innovation using a novel and 

focused data set of early stage drug patents that have not been used previously in 

management research.  

 

 The human genome provided a precise map of gene targets that could be used to 

predict outcomes and focus the search for new drugs – complementing the search 

process. Combinatorial chemistry represented a substitute technology that could replace 

the skills and tacit knowledge of experienced medicinal chemists which was a prized 
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commodity of larger pharmaceutical firms. I proposed that the map facilitated focused 

search, while the new tools made compound production more efficient - resulting in more 

inventive activity and adoption of targeted strategies. I also predicted that the open 

accessibility of the map combined with low cost screening technologies, would lead to 

patent races prompting firms to capture valuable chemical space and intensify intellectual 

property protection. My results support these hypotheses (1a, 1b and 2).  

 

 These results also support prior studies on the role of mapping and science as a 

map. By showing a significant effect on the production of compounds in the time period 

1998-2000 when only a portion of the map was available, this results empirically support 

Puranam & Swamy’s (2010) recent theoretical models on the role of incomplete maps on 

exploration and innovation.  The significant effect of the map on novel compounds in the 

time periods (2000-2004) when the complete map was available, and the increase in 

production seen in targeted strategies support prior work on the idea that science acts as 

map in accelerating the rate and intensity of technological search (Fleming & Sorenson, 

2004). 

 

The human genome was a technological disruption that impacted the biopharmaceutical 

industry. Availability of a precise scientific map and genetic targets allowed firms to 

sharpen or enhance their search efforts. In this regard, the map acts as a form of 

complementary asset that allowed firms to map out their search strategies in advance and 

create search efficiencies in the drug discovery process (Teece, 1986). Having a target to 

focus their search compared to working through trial-and-error was itself a paradigm shift 
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in firms’ modes of drug discovery. But the map also presents a dilemma that firms have 

to respond to. The public nature of the map meant that competitors and new entrants also 

had access to this search-enhancing tool and could potentially lead them to valuable new 

targets and compounds. The lowering of entry barriers to new scientific knowledge 

provided by the map could potentially create a race like condition to capture chemical 

space around new disease targets.  

 

In parallel, the adoption and wide spread availability of combinatorial chemistry created 

an opportunity to make novel and more compounds at low cost. Combinatorial chemistry 

technology in effect was a substitute to the resource intensive manual process of making 

novel compounds using medicinal chemists. The ability to assemble in-house 

combinatorial chemistry capabilities using off-shelf robotic components and vendor 

libraries had a major impact on drug discovery groups across the industry. In the late 

1990’s firms were replacing synthetic and medicinal chemists with combinatorial 

chemistry tools. Industry experts we interviewed had accounts of chemistry teams being 

replaced with automated combinatorial chemistry workflows during this time period. The 

important change during this period was the lowering of the cost per molecule achieved 

due to combinatorial chemistry. 

 

Thus, a dual force was a play here: publicly available search enhancing-capability 

provided by the map and lowered cost of compound production due to combinatorial 

chemistry. This coupled with the lowered barriers to entry created race-like conditions 

leading to an increase in novel compound production per patent as shown in our results. 
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The separate effect of the map (60+ compounds) per patent is supported by the 

difference-in-difference estimations controlling for just the effect of combinatorial 

chemistry.  

From a policy perspective, this result is interesting as the map shows a stronger and 

separate effect on new compound production compared to just the productivity gains 

achieved by combinatorial chemistry. This is due to the map opening up new territories in 

chemical space that was previously unexplored. Thus, public investment in basic science 

projects like the Human Genome led to more exploration of chemical space, increased 

novel compound output per patent and created increased market competition – in essence, 

creating conditions ripe for technological innovation. 

 

With a number of scientific mapping projects in progress, understanding their economic 

impact and how they influence innovation processes is important for public policy, R&D 

management and firm strategy.  By linking a basic science project with industry 

innovation, this empirical analysis sheds new light on important but largely unexplored 

questions in the literature on technological search. A scientific map by providing accurate 

coordinates of the solution landscape makes the search process less undirected and 

random, but also increases crowding. These results reveal an interesting finding: 

scientific maps not only increase the rate of invention, but also impact the nature of 

technological search and underlying strategies, suggesting that scientific mapping 

projects can enhance the quality of industry innovation.  
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APPENDIX 

Figure A: Release of the human genome sequences in Megabases (Y axis) – the standard 

measure of genome segments. While 6% of genome was available in 1998, the complete 

draft released in 2000 covered more than 90% (Collins, et al. Science, 1998). Difference 

between the draft-finished genome versions is defined by coverage, number of gaps and 

error rate. Image: Lander, et al, Nature, 2001 

  

Figure B: Cost comparison of traditional versus combinatorial chemistry (source: 

Persidis, 1998) 

 

 
Richard A. Houghten, president of Torrey Pines Institute for Molecular Studies, San 
Diego, and one of the pioneers of the field says: " It's really quite spectacular how quickly 
it's become almost an accepted routine. Whereas 10 years ago a good medicinal chemist 
might make 50 to 100 compounds a year, that same chemist is probably expected to make 
in the thousands or tens of thousands today."  
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Peter L. Myers, chief scientific officer of CombiChem, San Diego, agrees. "The 
pharmaceutical industry, in particular, has embraced it totally. Every company now has 
some aspect of this in-house." – Chemical & Engineering News, April 6, 1998 
 

Figure C: Year-on-year compound growth rate for material science and drug patents 

follow similar trends indicating related adoption of combinatorial chemistry 

 

 

Figure D: Comparison of patents found in LexisNexis for material science and drug 

discovery 

 

Figure E: Comparison of scientific publications for material science and drug discovery 

(source: Scopus) 
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Figure F: R&D investment from 1990-2000 (American Chemical Society report, 

Chemical & Engineering News, 2008) 

 

 

Table A: Curated list of Drug-related categories used to search Scifinder 
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Heterocyclic Compounds (More Than One Hetero Atom)  

Heterocyclic Compounds (One Hetero Atom)  

Benzene, Its Derivatives, and Condensed Benzenoid Compounds  

Pharmacology  

Amino Acids, Peptides, and Proteins  

Pharmaceuticals  

Aliphatic Compounds  

Carbohydrates  

Organometallic and Organometalloidal Compounds  

Biomolecules and Their Synthetic Analogs  

Industrial Organic Chemicals, Leather, Fats, and Waxes  

Fermentation and Bioindustrial Chemistry  

Biochemical Methods  

Steroids  

Alicyclic Compounds  

Terpenes and Terpenoids  

Alkaloids  

Enzymes  

General Organic Chemistry  

Biochemical Genetics  

Radiation Biochemistry  

Mammalian Hormones  

General Biochemistry  
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Toxicology  

Microbial, Algal, and Fungal Biochemistry  

Mammalian Biochemistry  

Microbial Biochemistry  

Immunochemistry  

 

Table B: Sample Markush record obtained from the CAS Scifinder database for this 

study. 

START_RECORD 

FIELD Copyright:Copyright (C) 2017 American Chemical Society (ACS). All Rights 

Reserved. 

FIELD Database:CAPLUS 

FIELD Title:Preparation of 1-[(indolylazacycloalkyl)alkyl]-2,1,3-benzothiadiazole 2,2-

dioxides exhibiting 5-HT2A receptor activity. 

FIELD Accession Number:AN 2000:592717 

FIELD Abstract: The title compds. [I; m = 0-2; n = 1-2; p = 1-2; q = 1-6; r = 0-3; R1 = 

halo, alkyl, CN, etc.; R2, R3 = H, alkyl; R4 = H, alkyl, (un)substituted Ph, phenylalkyl; 

R5 = alkyl, alkoxy, CO2H, etc.] and their salts which are active at 5-HT2A receptor, 

were prepd. and formulated.  E.g., a synthesis of II.HCl which showed Ki of < 15 nM 

against 5-HT2A receptor binding, was given. [on SciFinder(R)] 

FIELD Author: 

FIELD Chemical Abstracts Number(CAN):CAN 133:177178 

FIELD Section Code:28-10 
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FIELD Section Title:Heterocyclic Compounds (More Than One Hetero Atom) 

FIELD CA Section Cross-references:1, 63 

FIELD Corporate Source: 

FIELD URL: 

FIELD Document Type:Patent 

FIELD CODEN:PIXXD2 

FIELD Internat.Standard Doc. Number: 

FIELD Journal Title:PCT Int. Appl. 

FIELD Full Journal Title: 

FIELD Language:written in English 

FIELD Volume: 

FIELD Issue: 

FIELD Page:31 pp. 

FIELD Publication Year:2000 

FIELD Publication Date:20000824 

FIELD Index Terms:5-HT receptors Role: BSU (Biological study, unclassified), MSC 

(Miscellaneous), BIOL (Biological study)    (5-HT2A; prepn. of 1-

[(indolylazacycloalkyl)alkyl]-2,1,3-benzothiadiazole 2,2-dioxides exhibiting 5-HT2A 

receptor activity) 

FIELD Index Terms(2): 

FIELD CAS Registry Numbers:288606-13-3P Role: BAC (Biological activity or 

effector, except adverse), BSU (Biological study, unclassified), SPN (Synthetic 

preparation), THU (Therapeutic use), BIOL (Biological study), PREP (Preparation), 
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USES (Uses)    (prepn. of 1-[(indolylazacycloalkyl)alkyl]-2,1,3-benzothiadiazole 2,2-

dioxides exhibiting 5-HT2A receptor activity); 4760-34-3; 120192-70-3; 180161-14-2; 

288606-14-4; 709046-15-1 Role: RCT (Reactant), RACT (Reactant or reagent)    

(prepn. of 1-[(indolylazacycloalkyl)alkyl]-2,1,3-benzothiadiazole 2,2-dioxides 

exhibiting 5-HT2A receptor activity); 399-51-9P (6-Fluoroindole); 443987-59-5P 

Role: RCT (Reactant), SPN (Synthetic preparation), PREP (Preparation), RACT 

(Reactant or reagent)    (prepn. of 1-[(indolylazacycloalkyl)alkyl]-2,1,3-

benzothiadiazole 2,2-dioxides exhibiting 5-HT2A receptor activity); 749837-42-1P 

Role: SPN (Synthetic preparation), PREP (Preparation)    (prepn. of 1-

[(indolylazacycloalkyl)alkyl]-2,1,3-benzothiadiazole 2,2-dioxides exhibiting 5-HT2A 

receptor activity) 

FIELD Supplementary Terms:indolylazacycloalkylalkylbenzothiadiazole dioxide 

prepn formulation serotonin receptor selective ligand; benzothiadiazole 

indolylazacycloalkylalkyl dioxide prepn formulation serotonin receptor selective 

ligand 

FIELD PCT Designated States:Designated States W: AE, AL, AM, AT, AU, AZ, BA, 

BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, 

GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, 

LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, 

SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, 

KZ, MD, RU, TJ, TM. 
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FIELD PCT Reg. Des. States:Designated States RW: AT, BE, CH, CY, DE, DK, ES, 

FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, ML, MR, 

NE, SN, TD, TG. 

FIELD Reg.Pat.Tr.Des.States: 

FIELD Main IPC:C07D417-14. 

FIELD IPC: 

FIELD Secondary IPC:A61K031-41; A61P025-00. 

FIELD Additional IPC: 

FIELD Index IPC: 

FIELD Inventor Name:Fairhurst, John. 

FIELD National Patent Classification: 

FIELD Patent Application Country:Application: WO 

FIELD Patent Application Date:20000211. 

FIELD Patent Application Number:2000-GB469 

FIELD Patent Assignee:(Eli Lilly and Company Limited, UK). 

FIELD Patent Country:WO 

FIELD Patent Kind Code:A1 

FIELD Patent Number:2000049017 

FIELD Priority Application Country:GB 

FIELD Priority Application Number:1999-3784 

FIELD Priority Application Date:19990218 

FIELD Citations:Boehringer Ingelheim Ltd; EP 0058975 A 1982|Eli Lilly And 

Company Limited; EP 0897921 A 1999|Eli Lilly And Company Ltd; EP 0854146 A 
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1998|Janssen Pharmaceutica N V; EP 0013612 A 1980|Janssen Pharmaceutica N V; EP 

0184258 A 1986|Rhone-Poulenc, S; EP 0433149 A 1991|Roussel-Uclaf; FR 2621588 

A 1989|Takeda Chemical Industries Ltd; WO 9914203 A 1999 

FIELD DOI: 

END_RECORD 

 

Table C: Gene Symbols that cause False Positives during Classification 

ALK 

BOC 

CR2 

C3 

C2 

C6 

C7 

CS 

NA 

AR 

MICE 

NME2 

COMP 

WAS 

PREP 

SPN 
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PIGS 

MAX 

MSC 

T 

REST 

IV 

CAT 

LARGE 

SET 

PROC 

NM 

IMPACT 

ICOS 

HOAC 

 

 

Table D: Differences-in-Differences Robustness Test (without year 2003). The effect of 

the map (DtrXDpost) is consistent and significant. 
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VARIABLES Model without Year 2003 

  

DtrXDpost 65.06*** 

 (9.672) 

Dpost 8.933** 

 (3.823) 

Dtr 33.11 

 (36.85) 

Constant 56.61** 

 (28.41) 

  

Observations 17,399 

Number of orgnamecode 2,707 

R-squared 0.009 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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2. SCIENTIFIC MAPS AND INNOVATION STRATEGY: IMPACT OF THE 

HUMAN GENOME ON THE ADOPTION OF TARGETED STRATEGIES 

 

Abstract 

When new technologies emerge, incumbent firms are faced with decisions regarding the 

adoption of the new advances into their innovation processes. What drives firm decision-

making in this tension between existing capabilities and new market opportunities? Using 

the context of drug discovery, I analyze how drug firms changed innovation strategies in 

response to a technological event. The human genome map was a major breakthrough for 

both the academic community and drug industry. The map increased the number of 

disease gene targets and made accessible new regions of the genome, opening up new 

market opportunities. Since the detailed map was beneficial mainly to target-based 

strategies, firms experienced in this approach had an advantage compared to other firms. 

To unpack the organizational factors driving adoption, I examine the role of prior 

knowledge, specialized capabilities and competition. Using a novel dataset of early stage 

drug projects, I find that the human genome map moderates the impact of these firm-

related factors. This study provides novel insights on firm preadaptation, knowledge 

capabilities and the moderating effect of a scientific map in refocusing innovation 

strategies. 

 

Keywords: technological change, firm adaptation, strategic refocusing, innovation 

strategy 
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Introduction 

Firms maintain a fine balance between what they know and what products they make. 

When technological breakthroughs emerge, firms have to carefully strategize how they 

design new products and enter new markets. These strategic decisions are driven by prior 

knowledge of the firm, product portfolios and adaptive organizational capabilities (Zott & 

Amit, 2007; Helfat & Raubitschek, 2000; Teece, et al, 1997). The process of 

technological change and its broad impact on markets has been explored by management 

scholars for a long time but the mechanisms and conditions affecting innovation are not 

well understood (Utterback, 1994). Innovation scholars suggest that regular 

experimentation and engagement in learning allow firms to develop absorptive capacities 

over time, which in turn allows them to adapt during periods of technological change 

(Nelson & Winter, 1982; Cohen & Levinthal, 1990). Also, by chance some firms due to 

prior experimentation and explorative activities may be preadapted to exploit emergent 

technological change (Cattani, 2005; 2006). Over time, firm level differences in 

capabilities, resources and knowledge due to varying levels of intent and investment form 

the basis for firm heterogeneity and differential performance (Wernerfelt, 

1984). Therefore, what firms know and the capabilities they have evolved play a critical 

role in understanding how firms adapt during periods of technological change. 

 

Innovation scholars argue that firms develop resilience to technological change as a result 

of deeply entrenched capabilities that accumulate and coevolve with products and 

markets (Helfat & Raubitschek, 2000; Zollo & Winter, 2002). Other scholars indicate 



84 
 

that technological change can be Schumpeterian in nature destroying markets and 

incumbent advantages, instead favoring the competencies of new entrants unencumbered 

by firm history (Tripsas, 1997; Tripsas & Gavetti, 2000; Christensen, 1993). Hence, a 

debate exists between the role of path-dependent capabilities of incumbent firms and 

opportunity seeking nimbleness of entrants in managing technological change. While 

prior studies have shown the effect of new to market technologies like digital cameras, 

typesetting and disk drives on incumbent strategies, few studies examine the effect of 

novel or breakthrough scientific discoveries on innovation. In this study, I address this 

gap in empirical research by examining how a disruptive technological change influences 

the role of organizational capabilities and market conditions in determining innovation 

strategy.  

 

In the early 1990’s, the predominant drug discovery strategy was non-target based or 

phenotypic drug discovery. Biopharmaceutical firms engaged in relatively low levels of 

target-based strategies as it was resource intensive and required deep background 

knowledge of gene targets, computational drug design and high-throughput screening 

capabilities. In contrast, the phenotypic approach based on iterative trial-and-error 

learning was long established in firms (Gittelman, 2016). At the time, few disease related 

genes were well studied, hence the range of disease markets that firms could exploit were 

also limited. Adding to this, private firms and consortiums were patenting new disease 

related genes causing high-walled barriers to entry. Under these conditions, firms 

engaged in target-based research were either large firms that were diversified, resource-
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rich and had found a niche space, or smaller specialized biotech firms with unique 

intellectual properties (Zucker, et al, 1994).  

 

In the late 1990’s the largest publicly funded science project, the Human Genome Project 

was working towards completely mapping the 3 billion base pairs of human DNA. 

Researchers in academia and industry could use this map to understand basic mechanisms 

in biology and potentially develop new life-saving drugs. Following an open-sharing 

agreement known as the Bermuda Principle, HGP scientists started releasing gene 

sequences into the public domain as soon as they became available. Between 1998-2000, 

more than 99% of the human genome was released. The public nature of a detailed, 

scientific map was a major breakthrough for researchers (Lander, et al, 2001).  

 

A few characteristics of the human genome make it interesting in the context of drug 

discovery: a) the map was made freely available on the internet for download and 

intellectual property rights on individual genes were restricted (Cook-Deegan & Heaney, 

2010) b) scientists had developed sophisticated software, high-throughput robotics and 

screening systems to speed up the search process. The advance in supporting 

technological capabilities like genomics and high-throughput screening lowered the cost 

of adopting the targeted strategies. This, combined with the public availability of the 

human genome map potentially enhanced the appeal of target-based strategies to drug 

firms.  
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Recent research on the human genome examines the role of intellectual property rights on 

follow-on innovation by comparing the effect of patent protected and publicly available 

gene sequences (Williams, 2013; Sampat & Williams, 2017). Other research on the role 

of mapping on innovation indicates the positive effect of publicly available geographical 

maps on gold-mining efforts by entrants (Nagaraj, 2015). Building on this literature, I 

find that the role of scientific maps’ impact on the process of innovation and an 

understanding of underlying mechanisms remains unknown. I address this gap in the 

literature by examining incumbent firms’ search strategies in response to a technological 

change, like the human genome map, shining a lens on the role of prior firm capabilities 

and market conditions during this phase of transition. Empirical analyses show that 

certain firm specific factors change their effect during this technological change, 

suggesting a moderating effect of a scientific map on factors driving innovation strategy. 

 

Theory 

 

The nature of technological change can be competence enhancing or destroying, in turn 

altering the trajectories of technological search and innovation strategies. Scholars have 

shown that factors internal and external to the firm also contribute to shaping these 

trajectories. An important factor driving innovation in firms is organizational learning 

(Levitt & March, 1998; Argote & Miron-Spektor, 2011). Another is selection, which is 

strongly influenced by downstream market forces and product areas that firms derive 

their revenues from (Kapoor & Klueter, 2015). Competition can also influence R&D 

strategy and product lines (March, 1991; Cockburn, et al, 2000). Thus, a host of firm and 
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market related factors work in tandem to affect innovation strategies and outcomes. I 

examine the literature on these factors in detail below. 

 

Organizational learning and search: In evolutionary perspectives, firm survival is an 

outcome of fit between the environment and the firm. This fit is dependent on routines 

and firm search for new solutions. These routines stabilize over time and are influenced 

by learning and experience which in turn drive search processes. The stochastic nature of 

market selection leads to differential search outcomes leading to variation in firm growth 

and survival. Thus, through joint action of search and selection, firms evolve over time 

(Nelson & Winter, 1982; Cyert & March, 1992). A key aspect of the search and selection 

process in knowledge-driven firms is organizational learning. Cohen & Levinthal (1990) 

indicate that firms need to invest in R&D projects and continual learning in order to make 

effective use of new knowledge that is external to the firm.  

 

Underlying systems of learning can over time lead to the co-evolution of products, 

capabilities and knowledge leading to valuable learning routines that will condition 

firms’ adaptation to any exogenous shift like new scientific knowledge (Helfat & 

Raubitschek, 2000). The type of search strategy is also deeply entrenched in the 

organizational core capabilities and routines as a result of path-dependent processes and 

technological paradigms (Dosi, 1982; Nelson & Winter, 1982). Some scholars have 

argued that in complex fields, predictive search may be of limited value; instead, 

experiential, feedback-based learning is likely to be associated with creative insights, and 

therefore, more successful technological innovation (Gittelman, 2016; Nightingale, 1998; 
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Vincenti, 1990). Hence, the types of learning and path-dependent nature of knowledge 

and evolved capabilities can have influence how firms respond to new scientific 

knowledge and utilize them. 

 

The degree to which scientific maps and new analytical tools increase exploratory search 

is likely to be unevenly distributed across firms. While science is a public good, it is not 

“free” in the sense that firms may exploit knowledge off the shelf; prior investments in 

R&D will influence firms’ ability to identify, evaluate, and assimilate new scientific 

knowledge (Rosenberg, 1990). Cattani (2005) indicates that technological preadaptation 

(i.e. skills, capabilities, knowledge) are beneficial during periods of technological change 

leading to more valuable inventions. Preadaptation with regard to knowledge and 

specialized capabilities is similar to the concept of absorptive capacity wherein it allows 

firms to capture the gains of new technological advances. In the drug discovery context, 

preadaptation could be prior experience or knowledge in genome technologies, 

combinatorial chemistry tools, or experience in certain diseases that are more amenable 

to target-based approaches. Therefore, firms engaged in explorative research and learning 

that is aligned with target-based search could be already preadapted to exploit the 

opportunities provided by the human genome.  

 

Internal research projects, collaborations with academia and scientific publishing can 

help bridge resource gaps that incumbent firms may face and increase absorptive 

capacities (Cockburn & Henderson, 1998; Gittelman & Kogut, 2003). Another aspect of 

acquiring knowledge that can be relevant during periods of technological change is 
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through in-licensing or acquisition of knowledge assets. These complementary assets can 

immediately provide specific domain knowledge (or resources) to the focal firm and/or 

can be repurposed for new opportunities during later periods of technological change 

(Helfat & Lieberman, 2002; Veugelers, 1997). While not actively planned for, the prior 

exposure and experience are repurposed to take advantage of new opportunities. A new 

innovation strategy may require intricate coordination among various organizational units 

and supporting specialists, and having prior knowledge of the search strategy or 

possessing specialized capabilities could be an advantage in adopting it. Thus, 

 

H1a: Prior R&D knowledge and related experience will positively impact adoption of 

target-based strategies 

 

H1b: Specialized organizational capabilities will positively impact adoption of target-

based strategies 

 

Product market focus: Strategy scholars examining the fit between product market 

strategy and business models, show that product strategies that focus on specialized 

market segments (differentiation) have better firm performance (Zott & Amit, 2007). 

Other scholars have indicated that the commercialization environment in product markets 

is tightly linked to entrepreneurial ideas and firm strategy (Gans & Scott, 2003). Broader 

studies examining product diversification at the country level indicate a negative 

relationship with innovation (Hitt, et al, 1994; 1997). Hence, the products and markets in 

which firms operate are closely tied to research and development (R&D) strategy. That 
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is, whether firms are specialized in their product offering (e.g. Novo Nordisk focuses on 

diabetes drugs) or diversified (e.g. Pfizer makes drugs for cardiology, cancer, pain) 

influences the selection on new research projects. Such product market focus can guide 

the direction and composition of upstream R&D strategy (Kapoor & Klueter, 2015). The 

pressure to serve existing customers, available infrastructure and organizational 

capabilities can influence how business managers decide upon new R&D projects. 

Therefore, depending on the nature of technological change and firm preparedness, 

selection of R&D projects can vary based on firm characteristics like prior market focus 

and internal capabilities.  

 

Availability of the human genome map did not automatically provide therapeutic targets 

for all disease areas. Areas like cancer which has been supported by strong academic 

research (i.e. knowledge of disease mechanisms, gene targets and pathways) benefitted 

enormously from the map and new gene targets, while nascent areas like neurology and 

neuroscience were not readily amenable to target-based research. If benefits of target-

based projects (i.e. relevance of gene targets to existing markets) are perceived to not be 

aligned with existing market strategies or supported by internal capabilities, firms would 

bypass or reduce exposure such projects. Diversified firms that address multiple disease 

markets would be more open to targeted approaches if their activities fall within the 

scope of a viable gene target. In contrast, specialized firms that focused on a narrow 

range of diseases would be skeptical of adopting targeted strategies if there is no fit 

between their activities and available gene targets. Therefore, firms’ product market 

focus will be a strong determinant of adoption of targeted strategies, especially when 
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knowledge of the human genome is incomplete (before the map). Hence, firms with 

diverse disease market interests will be stronger candidates for target-based discovery, 

while specialized firms will be less prone to adopting target-driven strategies prior to 

having a complete genome map. 

 

H2: Disease market diversification will positively impact adoption of target-based 

strategies prior to the human genome 

 

Competition: Bringing a drug to market takes about a decade, involves high R&D costs 

and the chances of success are very low. Firms take a real-options view of R&D investing 

and try to offset their bets on projects by taking on risky projects or entering new disease 

areas (McGrath, 1997; McGrath & Nerkar, 2004). The drug industry also faces intense 

competition in lucrative disease markets with multiple players offering alternative 

product options. When competitors adopt new innovation strategies or new technologies, 

focal firms are under pressure to play catch up or increase investments in innovation 

(Utterback & Suarez, 1993). Thus, when close competitors adopt target-based drug 

discovery, it can put pressure on focal firms to also adopt similar strategies (Henderson & 

Cockburn, 1996). The easy accessibility of the human genome combined with 

complementary technologies like high-throughput screening potentially enhances the 

viability of target-based approach, especially for firms that did not have deep knowledge 

or prior experience. This could in essence bring in more entrants and firms to switch 

search strategies thereby increasing overall competition in the market place. Thus, the 
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public nature of the map creates race-like conditions to capture new territory and disease 

markets by enticing firms to be the first to file patents around new disease targets. Hence, 

 

H3: Competitive pressure from other firms engaged in targeted drug discovery will 

positively impact adoption of target-based strategies 

 

Moderating Effect of a Scientific Map: The strategy and innovation literature has 

explored how disruptive technological changes can diminish the advantages of 

incumbents leading to gales of creative destruction. Scholars have shown the effects of 

complementary assets and competence enhancing innovations during technological 

change (Anderson & Tushman, 1990; 1991). The Human Genome Project’s release of 

gene sequences in the public domain made knowledge of the human genome accessible 

to all altering the intellectual property landscape (Cook-Deegan & Heaney, 2010; 

Gittelman, 2016). The map was not as much a technological discontinuity or competence 

destroying as it was a complementary innovation that could be competence enhancing 

(Tripsas & Gavetti, 2000; Rothaermel, 2010). The human genome provided basic 

scientific knowledge that allowed scientists to better understand the molecular basis of 

biological processes (Scannell, 2012; Drews, 2000). Using the map as guide, researchers 

could probe and test hypotheses related to the cause of disease and explore underlying 

disease mechanisms. This knowledge was useful to biologists, medicinal chemists and 

pharmacologists – enhancing coordinated search efforts in drug discovery. But the map 

had special relevance for target-based drug discovery: an approach that was based on 

molecular targets and focused search processes was poised to gain from an accurate 
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parts-list of 10,000 druggable genes. For such directed target-based discovery strategies, 

the map complemented the search strategies by providing a clearer picture of the target 

landscape. 

 

The availability of the map also influenced other factors that were linked to the adoption 

of target-based strategies. By opening up the landscape of gene targets, the human 

genome map made the target-based approach more accessible and valuable to disease 

specialized firms. Secondly, firms that had deep knowledge and specialized capabilities 

related to target-based paradigms like genomics would have an advantage compared to 

others at exploiting the map. Therefore, firms with related absorptive capacities will have 

a stronger effect on target-based adoption. Competitive pressures directly created by the 

open access nature of the human genome, will also have a positive effect on target-based 

adoption. Thus, 

 

H4: Public availability of the human genome map will increase adoption of target-based 

strategies by positively moderating the effect of firm’s product market focus, knowledge 

capabilities and external competition. 

 

Research Setting 

 

Our research setting is drug discovery in the biopharmaceutical industry – a sector driven 

by high research and development (R&D) investment, long development cycles and a 

high rate of failure. In 2015, the US biopharma industry spent $59 billion on R&D; it 
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costs $2.6 billion and 10-15 years to develop a single drug, of which less than 12% 

succeeded (PhRMA, 2016). The human body is a complex system where drug-target 

interactions are unpredictable and lead to off-target effects and undesirable drug-drug 

interactions making drug discovery a challenging and costly task (Drews, 2000; Scannell, 

et al, 2012; Gittelman, 2016). 

 

Technological Search Landscape 

In the early days of drug discovery, natural products, crude extracts or purified 

compounds were screened for biological activity. In most cases, the scientists did not 

know what the mechanism of action was or the drug target. Once, an active compound or 

natural product was found, it was tested and/or modified into a therapeutic agent. For 

example, Aspirin - one of the oldest marketed drugs since the late 1800’s, had its origins 

a few thousand years ago, as a natural product derived from trees and flowers as a 

therapeutic agent. This method of separating bioactive compounds, or synthesizing 

compounds de novo and modifying them without a clear understanding of the drug target 

or mechanisms involved, and testing them for efficacy in animals is known as classical 

pharmacology, forward pharmacology or phenotypic drug discovery (Scannell, et al, 

2012; Lipinski & Hopkins 2004). 

 

In modern drug discovery, the search for a new drug starts with a therapeutic area of 

interest (e.g. coronary artery disease) along with a competitive analysis of existing drugs 

and patent landscapes. Scientists mine scientific literature to identify drug targets, genes 

and biological mechanisms responsible for the disease. A drug target is any protein (e.g. 
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enzymes, receptors) or nucleic acid (DNA, RNA) involved in a disease related biological 

pathway to which a drug can bind and alter its state. For example, Pfizer’s Lipitor, the 

best-selling drug of all time, is a lipid-lowering compound which works by inhibiting 

HMG-CoA reductase, an enzyme responsible for cholesterol production in the liver. With 

information on the drug target, medicinal chemists design and synthesize compounds that 

can bind to the target. To do this, drug discovery scientists comb through a large 

theoretical landscape of solutions called chemical space.  

 

Chemical space is an extremely large landscape containing 1060 possible combinations of 

unique drug-like molecules. Through iterative cycles of design and testing, a candidate 

compound is developed that is as specific as possible to the drug target and disease. The 

top lead candidates are then selected for advancement into clinical trials. This approach 

which starts with knowledge of the disease mechanisms and then translates into a viable 

drug candidate is known as reverse pharmacology, rational or target-based drug 

discovery (Drews, 2000).  

 

Technological Change 

The Human Genome Project (HGP), was the world’s largest collaborative biology project 

and an important development in human biology that was aimed, in part, at 

revolutionizing the way in which new drugs were discovered (Gittelman, 2016). The 

human genome is a digital map of 3 billion DNA base pairs revealing the location and 

identity of genes which encoded various proteins in cells. An important milestone 

established by the HGP was revising the number of human genes to only 21,000. This list 
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of human gene sequences increased the number of available disease targets to at least 

10,000 (Drews, 2000; Tripp & Grueber, 2011). The map allowed for predictive search 

and a high level of specificity in the search for lead candidates, chemical starting points 

in the search for novel drugs.  

 

Scientists could use this map to search for specific genes and gene variants. A powerful 

use of the genome was the ability to predict 3-dimensional protein structures using just 

the gene sequences – a field known as structural genomics. This substituted for the prior 

method in which firms and academic labs would spend many years trying to solve the 3-

dimensional crystal structures of proteins. Prior to HGP, there were less than 2000 human 

protein structures available (RCSB PDB, 2016). Having a protein structure (even a 

predicted model structure) allowed scientists to identify active sites responsible for 

biological action and modify compounds to block this activity. The human genome 

represents a disruptive event that empowered how pharmaceutical firms approached drug 

discovery by providing new knowledge and information of the problem space.  

 

Innovation Strategies 

In the non-target or phenotypic search paradigm, medicinal chemists were central actors 

in the process of drug discovery. They were central to the process and responsible for 

conceiving, designing and optimizing drug candidates. Apart from the ability to 

synthesize organic molecules, medicinal chemists were required to have a good 

understanding of biology, pharmacology and drug toxicity. Experiential learning acquired 

by working with particular class of compounds (e.g. statins, antipsychotics) made some 
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medicinal chemists develop specialized skills and tacit knowledge of in optimizing 

compounds. This helped them pick the most promising drug candidates – a key 

differentiating factor in successful drug discovery and a source of firm competitive 

advantage.  

 

Figure 1: Differences in workflow of the two drug discovery strategies are shown here. 

Organizational processes and underlying capabilities are distinctively different in the two 

search strategies. 

 

In the target-based approach, the organization of drug discovery involved more actors 

and interactions, facilitated by new specialists and firm capabilities like genomics, 

bioinformatics and high-throughput screening. This difference became more pronounced 

with the entry of the new tools like combinatorial chemistry, computational sciences and 

the human genome. With increasing knowledge specialization and a greater reliance on 

technological tools, new scientific team members emerged – computational chemists, 

bioinformatics specialists, and robotics personnel, along with high-throughput screening 

facilities, new software tools and techniques. The medicinal chemist’s increased 
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interactions and coordination with team members indicates changing organizational 

processes and related knowledge capabilities (Figure 1).  In sum, the availability of high-

throughput methods accompanied with the precision of the genome map made viable the 

targeted approach guided by the genomics – the adoption of which altered innovation 

processes, workflows and organizational capabilities.   

 

Methods 

 

Data  

This study introduces a novel and unique data set known as broad chemistry or Markush 

patents. Data collection and sample selection criteria are described below.  

 

Patents are central to intellectual property protection and appropriation in 

biopharmaceutical industry and widely used in economic analyses (Scott & Sampat, 

2012). As of 2016, more than 90% of marketed drugs are small molecules making 

chemistry-based patents relevant for this analysis. I utilize a novel dataset comprised of a 

special type of chemistry drug patent called Markush patents to test my method and 

reveal insights on firm level exploration. An inventor or firm uses a Markush patent to 

make general claims for use of a molecule without revealing its exact structure – this 

compound is hidden among hundreds of other similar looking compounds.  

Markush or Broad chemistry patents: Markush patents are used across industries which 

work with chemicals like drugs, materials science, industrial chemicals and 

agrobiotechnology. These patents contain a special structure called Markush structure, 
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named after Eugene Markush, to capture a broad set of compounds. This type of patents 

is filed very early in search process where a firm makes general claims for use of a 

molecule without revealing the exact compound they are pursuing. The compound that 

could make it to market is hidden among hundreds of other similar looking compounds. 

In the drug discovery stage, Markush patents are very specific to small molecule drugs 

(compared to biologics or process patents) and mark the starting point where firms begin 

to claim intellectual property rights in chemical space (Southall & Ajay, 2005).  Follow 

on drug patents and granted patents are based on this original Markush patent.  

Another interesting feature of Markush patents is that they encapsulate the actual 

compounds made, and those that the firm or inventor plans to protect for future use – 

sometimes, running into the hundreds or thousands of novel compounds. Thus, these 

compounds within Markush patents represent the explorative effort undertaken by the 

firm or inventor in chemical space. While granted patents or single compound patents 

that cover a drug (like Viagra) are important for intellectual property protection, they do 

not indicate the original explorative effort undertaken by the firm. Invariably, all such 

granted patents will reference the starting Markush patent or application. While not all 

Markush patent applications end up becoming granted patents or lead to a drug, they 

represent capture all small-molecule related R&D activity and explorative research – not 

just the ones that become successful.  

 

I exploit these unique features of Markush patents and the “flags” firms plant in chemical 

space to measure their exploration over time. This non-bias in the nature of Markush 

patent applications make them especially useful for analyzing overall technological 
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search trajectories of firms and estimating the broad effects of technological change. 

These unique properties of Markush patents make them well suited to study firms’ 

technological search trajectories over time. For my empirical research, I have collected 

39,000 drug related Markush patent applications filed in the WIPO patent office from 

1990-2004, and extracted millions of novel compounds embedded in them.  

 

Data source and collection: The source for Markush patents is the Chemical Abstract 

Society's (CAS) Scifinder product. Scifinder is the world's largest repository of chemical 

structures, published articles and patents and provides access to MARPAT – a 

comprehensive database of Markush patents that cover all 9 major patent offices and 63 

patent authorities worldwide. More than 1 million Markush structures and about 481,000 

Markush patents and applications from 1988-present are available for searching. In a 

recent comparative analysis of patented compound databases, CAS’s Scifinder was found 

to be more comprehensive and accurate compared to the Derwent World Patents Index 

and Reaxys (Ede, et al, 2016). 

A full discussion of data sampling and Markush patents is provided in essay one of the 

dissertation 

 

In this study I focus on the impact of the human genome on the adoption of targeted-

strategies by incumbent firms, and hence eliminate patents assigned to academic, medical 

and research institutes.  After eliminating non-firm assignees and collaborations, I have 

32,733 Markush patent applications assigned to firms. These Markush patent applications 
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cover multiple priority application countries and their share of the patents is shown in 

Figure 2.  

 

The top patenters in the sample were United States, Japanese and European 

biopharmaceutical companies. With the human genome being publicly accessible these 

firms and their modes of drug discovery were equally at risk of being impacted by the 

human genome map. Therefore, the sample for this study includes international WIPO 

Markush patent applications filed assigned only to firms. 

 

 

Figure 2: Distribution of WIPO patent applications by patent application country. 

 

Firm selection and Sample selection: In this study, I examine how the search strategies of 

incumbent firms changed after a technological event – i.e. the human genome map. To 

analyze this empirically, I would need to measure differences in drug discovery strategies 

at the firm-level pre and post the arrival of the map.  

US
48%

JP
14%

GB
12%
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Distribution of WIPO patent Applications by Country
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To be able to test changes in search strategy, I only require firms that experienced the 

technological change and are supported by sufficient number of projects to make 

inferences on their search strategies. For example, a firm that emerged after 2000 would 

already be exposed to the treatment (map) and will not provide information on how their 

strategies changed in response to the map. Similarly, a firm that patented only in the pre 

map period or did not consistently engage in R&D activity will not be able to inform on 

strategic changes in drug discovery across the entire time period. Figure 3, describes the 

process of constructing a longitudinal panel with the firm level observations needed for 

this analysis. 

 

Figure 3: View of the selection criteria for constructing the longitudinal panel needed for 

testing change in drug discovery strategies. Firms with observations that are not present 

both pre-and post map period are dropped. Each observation is a Markush patent 

application filed by a firm in a given year. 
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To ensure that the longitudinal panel I constructed is consistent and reliable, I restricted 

selection of firms to the following criteria: i) firms had to be present in both pre (1990-

1997) and post (1998-2004) human genome time periods ii) firms needed to show that 

they patented in most years of this time period. This requirement indicates continuous 

R&D activity and shows firm exposure to the technological change iii) firms on average 

needed to have a minimum of 2 patents a year resulting in a cut-off of at least 30 patents 

in the sample (i.e. 2 x 15 years). Having these cutoff criteria ensured that I did not bias 

the sample with firms that emerged only after the human genome or had firms that only 

saw the first period but not the impact of the human genome. Also, having a minimal 

count cutoff of 30 patents eliminated firms that were not actively engaged in R&D 

activities throughout this period.  

 

Applying these cutoffs, resulted in 131 firms having 30 or more patents. The constructed 

panel contains 21, 315 patent applications from 131 firms that were filed between 1990-

2004. This sample represented more than 65% of all WIPO firm patent applications 

initially collected for analysis.  

 

The patent application counts and proportion of targeted-strategies for the top 30 firms 

are shown in Table 1 below. 
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Firm  

Patent Application 

Count 

Target-Based 

Strategy 

% Target-

based 

Smithkline 

Beecham 
1325 601 

45.36 

Merck & Co 1139 474 41.62 

Pfizer 832 339 40.75 

AstraZeneca 788 408 51.78 

Eli Lilly 682 315 46.19 

Pharmacia 559 200 35.78 

Glaxo 550 303 55.09 

Novartis 527 233 44.21 

Schering 512 240 46.88 

Bristol-Myers 

Squibb 
484 225 

46.49 

Bayer 458 122 26.64 

Warner-

Lambert 
458 161 

35.15 

Wyeth-AHP 443 187 42.21 

F.Hoffmann-

La Roche 
397 208 

52.39 

Takeda 

Chemical 

Industries 

397 166 

41.81 
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Novo-Nordisk 389 150 38.56 

Fujisawa 

Pharmaceutica

l Co 

349 92 

26.36 

Abbott 

Laboratories 
347 114 

32.85 

Boehringer 

Ingelheim 
346 131 

37.86 

Janssen 

Pharmaceutica 
304 103 

33.88 

Aventis 

Pharma 
288 73 

25.35 

DuPont 270 80 29.63 

Rhone-

Poulenc Rorer 
270 90 

33.33 

BASF 243 58 23.87 

Merck Sharp 

& Dohme 
243 176 

72.43 

The Procter & 

Gamble 
234 69 

29.49 

G.D. Searle 213 48 22.54 

Zeneca 205 54 26.34 
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Merck Patent 

Gmbh 
204 70 

34.31 

Shionogi & 

Co 
203 66 

32.51 

Total 13,659 5556  

  

Table 1:  Top 30 firms account for 64% of all Markush patent applications filed between 

1990-2004 (total: 21,315) 

 

Identification of Drug Discovery Strategies 

I interviewed discovery scientists to understand what drug discovery strategies firms and 

how to identify them using patent records. Target-based patents in their description 

would normally name a disease target gene or gene symbol in addition to mentioning 

specific keywords that indicated the search strategy used to make the compounds. Figure 

3 below shows the abstract of a Markush patent where a molecular target (COX-2, 

cyclooxygenase-2), specific keywords related to target-based approach (inhibiting 

activity) and disease indications (inflammation) can be obtained by reading the abstract.  

 

To identify the presence of targeted strategies, I developed a text-based classification 

method based on patent text. Initial versions of this method included the text of the title, 

abstract and description section of the patent. But this yielded false positives, as inventors 

and examiners would reference other patents, titles or references that could contain a 

gene name, but not be used in the discovery approach. Hence, a non-targeted approach 
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could be mis-classified as a target-based strategy. To overcome this problem, I compared 

and contrasted the merits of using abstract versus description before settling on just using 

the patent title and abstract that captured the main aspects of the patent and its strategy. In 

addition, CAS provides two human curated fields known as Index Terms and 

Supplementary Terms – these are short keyword summaries of the patent provided by 

internal knowledge experts.  The text from these fields is then compared to gene names 

and gene symbols derived from two sources: the National Center for Biotechnology 

Information (NCBI) database and the HUGO Gene Nomenclature Committee’s (HGNC) 

database. The HGNC is a committee of the Human Genome Organization that sets 

standards for naming genes and assigning gene symbols. For example, the drug target for 

Viagra is the enzyme phosphodiesterase 5A, written using the symbol PDE5A or PDE5. 

A patent could use any of these versions of the gene name or symbol, hence, the 

algorithm should be able to account for this variation. 

 

The counter this problem, the gene database from the National Center for Biotechnology 

Information (NCBI) was also used as it provides a list of gene synonyms and old names 

that were previously used. Thus, together a comprehensive collection of 61, 561 gene 

symbols and identifiers were created. Using this combined data, patent abstracts, titles 

and curated sections from Scifinder were scanned using custom software developed for 

this purpose.  
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Figure 4: Sample patent abstract from United States Patent & Trademark Office database 

is analyzed using custom algorithms to identify target-based keywords, gene target and 

disease indications and classified as using a target-based drug discovery strategy. 

 

A custom algorithm was implemented in the Python language using the open source 

Natural Language Toolkit library to mine the text of all the Markush patents in the 

sample. In addition to the gene identifiers, a set of keywords gathered from interviews 

indicating a target-based approach were also screened. These words include versions of 

relevant keywords like 'gene', 'genes', 'genomic', ‘genomics’, 'receptor', 'receptors', 

‘inhibit’, 'inhibitor', 'inhibitors', ‘target’, ‘targeted’. Wild-card matching (e.g. inhibit*) 

was implemented to account for these variants.   

 

The text mining and classification using this approach led to identification of gene names 

and symbols appearing patent titles and abstracts. False positives can occur when the 

algorithm tags a patent as target-based when the actual gene symbol could be used in a 

different context. For example, the valid gene symbols ‘CAT’, ‘MICE’ and ‘PIGS’ can 

be misconstrued as gene names when used in the context of compounds being tested for 

toxicity on these animals. Or the gene ‘BOC’ has a different connotation when used in a 

chemistry patent. In chemistry, BOC groups refer to tert-butyloxycarbonyl, a protecting 

group in organic synthesis. To ensure reliability, I tag false positives using a special list 
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of such terms (see Appendix) and manually inspect patents to ensure that the algorithm 

driven classification is accurate and false positives eliminated. This sorting created two 

broad categories of patents based on their search strategy: 60% non-target based and 40% 

target-based. 

 

Disease Market Focus 

Firms can be focused on developing drugs for multiple disease areas (diversified) or a 

few areas (specialized). A Herfindahl-Hirschman Index (HHI) is an established measure 

of market concentration, used for identifying market monopolies and competition. It is 

calculated by taking the market share of each firm, squaring it and summing the end 

result. A resulting measure is a proportion between 0 and 1; and score under 0.15 

indicates an unconcentrated industry and greater than 0.25 high concentration. This 

method and measure is applied to calculating disease market concentration for each firm 

in the sample.  It is calculated as 

 

HHI = i=1Σn di
2  

 

where d is a disease area's share of the total diseases explored in clinical trials in the prior 

3 years. 

A firm’s engagement in a clinical trial indicates intent to enter that disease market. 

Successful clinical trial results in market entry or product launch for a specific disease 

area.  
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Using Clarivate Analytics Cortellis database (formerly Thomson Reuters) of clinical 

trials outcomes, I collected disease areas that firms had run clinical trials from mid-1980s 

to 2004. Using Cortellis's disease hierarchy I categorized 881 diseases into 27 broad 

categories (e.g. Ocular Disease, Respiratory). See Appendix Table A for full list of broad 

categories. For each firm and specific year, the prior 3 years market share of each disease 

is calculated (derived from clinical trials participated in) and a HHI score generated. 

Thus, for any given firm-year, a HHI score provides an accurate picture of the firm's prior 

3 years disease focus. I chose a prior 3-year window as it adequately captures firm 

activities in various disease areas as compared to calculating HHI in the current year. For 

instance, diversified firms may be conducting clinical trials in non-overlapping disease 

areas across years and it will be hard to capture this diversity with single year measures. 

A similar time window is also used to capture firm experiences and knowledge 

capabilities in biotechnology by other scholars (Kapoor & Klueter, 2015). 

 

Genomics Capabilities: Ability to engage in gene related research that requires high 

levels of expertise is a strong indicator of firm capabilities in genomics. When firm 

scientists publish gene related research in journals they are required to submit the gene 

sequences that they cite in their research to a central, public sequence repository like 

GenBank. GenBank is the largest genome database for genome sequences hosted and 

supported by the National Center for Biotechnology Information (NCBI). GenBank 

curates the sequence, provides an accession number to the gene and makes it accessible 

to the community. Zucker & Darby (2001) use GenBank sequence counts assigned to 

Japanese inventors to measure the effect of star scientists. I use a similar approach to 
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capture firm-level genomics capabilities by identifying GenBank sequences assigned to 

firms. For each firm in my sample, I retrieved all genomic sequences (for any organism) 

submitted to GenBank form mid-1980s to 2004.  

 

Genomic sequence counts using firm name was carried out using a BioPython script that 

queried the publicly available NCBI GenBank web database for each year in the time 

period (1990-2004). Using a sliding window of 3 years, I the program counted the 

number of gene sequences submitted by a firm in the prior 3 years starting from 1990. 

Thus, if Merck submitted DNA sequences between 1987-1989, the total sequence count 

was assigned to Merck-1990. The GenBank sequence count provides an unbiased 

estimate of the firm's engagement in genomics research and capabilities accumulated in 

the prior 3 years. This data collection was carried out for all 131 firms in the sample. 

 

Related R&D Knowledge 

Prior scholars in the innovation field have used firm publications as a measure of internal 

knowledge stocks (Cockburn & Henderson, 1998; Gittelman & Kogut, 2003). There are 

both private and publicly available literature databases like Scopus, Thomson Web of 

Science and Google Scholar. The NCBI’s PubMed is the largest open access citation 

repository of life science related research literature containing more than 27 million 

records obtained from MEDLINE, books, journals and other scientific sources. I 

comparing these various databases for coverage specifically related to life sciences and 

drug discovery publishing and found the PubMed database to be most comprehensive. 
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An interesting feature of the PubMed database is the categorization of each article using 

special scientific terms called Medical Subject Headings (MeSH). MeSH are the National 

Library of Medicine’s controlled vocabulary thesaurus used for indexing articles 

in PubMed. Recent work by Li, et al (2015) uses MeSH terms to indicate whether patents 

are disease targeted. These features of PubMed make it appropriate for collecting 

research & development related scientific publications for the firms in the sample.  

 

To identify publications that are related specifically to the target-based drug discovery, I 

interviewed drug discovery scientists and asked them to curate a list of target-based 

MeSH terms. A full list of the MeSH terms is included in the Appendix. Using these 

target-specific MeSH terms and keywords selected from MEDLINE’s target-based 

vocabulary and the firm names from the sample, I created a Python program to query 

PubMed for research articles. This resulted in articles that used target-based technologies 

like combinatorial chemistry, genomics, computer-based drug design, protein modeling 

and computational chemistry.  

 

Using the PubMed database and creating yearly cutoff windows for each firm, I collected 

field-specific research articles affiliated with the firm in the prior 3 years. Other scholars 

have also used similar time windows to capture recently acquired firm knowledge and 

capabilities (Kapoor & Klueter, 2015; Henderson & Cockburn, 1996). The surveyed 

articles also included those published by the firm in collaboration with academic centers 

or other firms as it was evidence that the firm scientists were engaged in cutting edge 
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research. The target-related publication counts are linked to each firm in the sample by 

year. 

 

Firm Information 

Assignees were extracted from patent records and stored separately. Assignees have a 

name and location associated with them. Each assignee is categorized into a separate 

category: firms, universities, medical centers and collaborations. This classification 

process yielded 3300 firms, 1500 universities and medical centers. For the analysis, only 

131 firms and the Markush patent applications assigned to them were selected. 

 

 

Research Design 

 

Unit of Analysis 

The unit of analysis is a drug patent application filed each year by a firm (total: 21,315 

patents). Hence, each observation is an individual patent application which employs a 

specific drug discovery strategy and is associated with originating firm characteristics 

like knowledge, capabilities and experience. 

e.g. Patent number [US6603008] filed in [1999] having a [Target-based] strategy belongs 

to [Pfizer] which had [310 publications] and [713 genbank sequences] 

 

Dependent Variable 
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Is Target Based (adoption model): The dependent variable Is_Target is a binary variable 

– 1 if the patent employs a target-based strategy, 0 if it is a non-target based strategy. 

Since, I interested in the adoption of target-based search strategies and the various factors 

that influence it, a simple categorical dependent variable is specified for logistic 

regression purposes. 

 

Independent Variables 

Disease Market Specialization: Herfindahl-Hirschman index of firm’s disease market 

focus in prior 3 years (specialized vs diversified) calculated as the sum of the squared 

disease shares for each firm. 

 

Genomics Capabilities: This is a count of all DNA sequence records submitted to the 

public GenBank database by the firm the in prior 3 years. This measure of genomics 

capabilities indicates if firms had any genomics experience prior to when the small 

molecule patents were being filed. 

 

Related R&D Knowledge: This is a count of all scientific publications related to 

combinatorial chemistry and genomics published by the firm in the prior 3 years. I use 

the 3-year cutoff as this captures a time period when the knowledge is relatively recent 

and can influence the selection of current projects. This measure captures combinatorial 

chemistry or genome specific learning that the firm has engaged in the prior 3 years.  
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Human Genome Map: This is a categorical variable (0/1) indicating public availability of 

human genome sequences released by the Human Genome Project. The public access to 

gene sequences started in 1998, hence, 1998-2004 is the post-map period and 1990-1997 

is the pre-map period.  

 

Target-based Experience: This is the number of target based patent applications filed by 

the firm in prior 3 years. I apply the same logic for time window selection as R&D 

knowledge above, given that target-based discovery strategies are knowledge and 

capabilities driven. 

 

Competition: This is the yearly increase in the number of target-based patents filed by 

competitors in the same year. Instead of defining market-specific competition for each 

firm, all target-based patents filed minus the focal firm’s patents are counted and the 

difference with the previous year is calculated (i.e. competitor’s target patents in yearx – 

competitor’s target patents in yearx-1). This year-on-year increase in competitor’s target 

patents captures the yearly difference in level of competition on the focal firm. That is, it 

represents how actively other competing firms are engaged in target-based drug 

discovery. Thus, the competition variable is the increase in number of target-based 

patents compared to the previous year. Though we cannot completely separate out the 

effect of the map on competitor’s target-based patents, the year-on-year increase measure 

allows us to reliably detect changes in competition with regard to the availability of the 

map. 
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Firm size: The Mergent Online database of firms was to categorize firm sizes. Large 

firms were coded based on a threshold of having at least 10,000 employees. This resulted 

in 83 large firms and 48 small firms (total 131). 

 

Logistic Regression Model 

Logistic regression is a non-parametric model suited to predict the probability of a binary 

response on one or more independent variables. The logit estimate is a function of the 

predictors allowing us to capturing effects for a per unit increase in predictor. It allows 

one to say whether the presence of a risk factor (e.g. specialized capabilities) increases 

the odd of a given outcome (i.e. adoption of target-based) by a specific factor, all other 

factors held constant. The predictors in this model include firm level characteristics (size, 

prior experience in target-based, specialized capabilities related to target-based, 

knowledge), market factors (competition, product market focus) and role of technological 

event (introduction of human genome map). Prior innovation studies have used logistic 

regression to estimate R&D strategy models (Cassiman & Veugelers, 2006). The logit 

model is suited to test the effect of these predictors on the adoption of target-based 

strategy. 

 

The logit model is specified as: y =  β0 + β1X + e 

 

where, e is an error distributed by a standard logistic distribution and X is the predictor. 
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Interaction Effects: To test for moderating effects, an interaction between the independent 

variable and moderating variable is specified. A moderating variable (M) changes the 

direction or magnitude of the relationship between two variables. The test of the 

moderating effect of M is a comparison of the following two logit specifications: 

 

   y =  β0 + β1X + e 

and 

 y =  β0 + β1X + β2M + β3XM + e 

 

where the β3XM is the product of the predictor and moderating variable. 

 

For model fitting, logistic regression uses a maximum likelihood approach to find the 

smallest possible deviance between the observed and predicted values. 

 

Results 
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Figure 5: Increase in the adoption of target-based drug discovery strategies observed in 

patents between 1990-2003 

 

Figure 6: Changes in target-based drug discovery strategy pre-post human genome map. 

Asterisks indicate firms that were acquired or merged during this time period. 
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Table 2: Correlation table of outcome variable and predictors. Asterisk indicates p<0.05 

 

 

Logit Model 

 (1) (2) (3) (4) 

VARIABLES Model 1 Model 2 Model 3 Model 4 

     

diseasefocus -0.143 0.373 0.0769 -0.143 

 (0.156) (0.271) (0.162) (0.156) 

genbank -0.00108** 6.79e-07 -5.60e-05 -0.00108** 

 (0.000431) (0.000162) (0.000147) (0.000431) 

publications -3.32e-05 4.21e-05 3.59e-05 -3.32e-05 

 (0.00105) (0.000497) (0.000463) (0.00105) 

priortargetexp 0.00654*** 0.00482*** 0.00496*** 0.00654*** 
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 (0.00250) (0.00112) (0.00112) (0.00250) 

competition 0.00116** -9.33e-05 -7.68e-05 0.00116** 

 (0.000504) (7.99e-05) (7.52e-05) (0.000504) 

map   0.465*** 0.447*** 

   (0.0669) (0.136) 

disease_focus_map    0.516* 

    (0.281) 

genbank_map    0.00108** 

    (0.000430) 

publications_map    7.54e-05 

    (0.00107) 

priortargetexp_map    -0.00172 

    (0.00267) 

competition_map    -0.00125** 

    (0.000518) 

Constant -0.975*** -0.529*** -0.928*** -0.975*** 

 (0.107) (0.0933) (0.0818) (0.107) 

     

Observations 7,504 13,620 21,124 21,124 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 3:  Logistic regression estimates (baseline probabilities) for the adoption of target-
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based strategy with clustered standard errors 

 

OLS Model with Firm Fixed Effects 

 (5) (6) (7) (8) 

VARIABLES Model 5 Model 6 Model 7 Model 8 

     

diseasefocus -0.0495* -0.0226 -0.0456** -0.0367 

 (0.0276) (0.0700) (0.0229) (0.0234) 

genbank -3.19e-06 0.000109*** 8.95e-05*** 3.43e-05 

 (5.70e-05) (3.07e-05) (2.93e-05) (7.42e-05) 

publications 0.000350 8.23e-05 5.99e-05 0.000186 

 (0.000218) (0.000216) (9.45e-05) (0.000179) 

priortargetexp 0.000136 0.000369 0.000609* 0.000710 

 (0.000586) (0.000356) (0.000324) (0.000642) 

competition 0.000276*** -4.02e-05** -3.00e-05 0.000272*** 

 (9.79e-05) (1.96e-05) (1.89e-05) (9.76e-05) 

map   0.0906*** 0.142*** 

   (0.0147) (0.0251) 

disease_focus_map    -0.0481 

    (0.0627) 

genbank_map    7.03e-05 

    (7.84e-05) 

publications_map    -0.000200 
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    (0.000260) 

priortargetexp_map    -0.000107 

    (0.000671) 

competition_map    -0.000307*** 

    (0.000102) 

Constant 0.270*** 0.405*** 0.310*** 0.270*** 

 (0.0122) (0.0280) (0.0179) (0.0169) 

     

Observations 7,504 13,620 21,124 21,124 

R-squared 0.003 0.005 0.019 0.020 

Number of firmid 122 127 131 131 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table 4:  Ordinary Least Squares with fixed effects estimates for adoption of target-based 

strategy with clustered standard errors 

 

Figures 5 and 6 are descriptive charts indicating the increase in target-based strategies in 

the pre and post human genome time periods. Figure 6 shows this change in strategy at 

the firm level for the top patenting firms in the sample. Table 2 provides a correlation 

measure of the dependent and independent variables. 

 

Adoption of Target-Based Search Strategy 

Logistic regression is a non-parametric model suited to predict the probability of a drug 
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patent adopting a target-based or non-target based approach for drug discovery. The 

predictors in this model include firm level characteristics (size, prior experience in target-

based, specialized capabilities related to target-based, knowledge), market factors 

(competition, product market focus) and role of technological event (introduction of 

human genome map). Logistic regression analyses were performed using the STATA 

14.2 statistical package and results are presented in Table 3 and 4. 

 

Related R&D Experience (publications and prior target experience): This measure 

captures the number of scientific articles related to the target-based approach published 

by the firm in prior 3 years. Related scientific knowledge has a weak but positive effect 

on the adoption of target-based strategies (Models 2 and 3). My second measure of 

related R&D experience was the number of target-based patents filed by the firm in prior 

3 years. This firm-specific predictor is positive and significant (p<0.001) across models 

1-4 and when controlled for firm fixed effects in model 7. This effect is also present 

when interacted with the availability of the human genome (1998-2004). Together, these 

results indicate that prior R&D experience in terms of scientific publishing and patenting 

that is target-oriented is a strong predictor of adoption of target-based strategy. This result 

supports Hypothesis 1a. 

 

Specialized Genomics Capabilities (genbank): The number of gene sequences submitted 

in prior 3 years to the GenBank database is used as a proxy for the firm’s specialized 

capabilities in genomics – the ability to manipulate and analyze genes or parts of the 

genome. In the models tested (1 and 4) specialized genomics capabilities had a negative 
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and significant effect (p<0.001) on adoption of target-based strategy for drug discovery. 

This is in contrast to what I predicted and does not support Hypothesis 1b.  

 

Product Market Focus (disease_focus): In the period before the human genome map was 

available publicly (pre-map), disease specialization is a negative predictor of the target-

based drug strategy (model 1 and 5). But in the period after the genome became 

accessible (post-map), disease specialization is a positive predictor of adoption of the 

target-based approach (model 2) but is not significant. Thus, product market focus has a 

contextual effect on adoption of target-based strategy – disease diversification helped 

prior to the map but disease specialization appears to be a predictor in the time period 

after the human genome. This result provides partial support to Hypothesis 2. 

 

Competition: Competitive pressure from other drug firms in the industry to engage in 

target-based strategy was coded as the year-on-year increase in target-based drug patents 

filed by other firms in prior 3 years. Though this does not capture direct product-market 

competition (i.e. for specific firm products or markets), it is an indirect measure of the 

general trend in the drug industry. In an industry as competitive as the biopharmaceutical 

industry where intellectual property rights play a strong role in strategic positioning, 

competitor actions and industry trends are a considerable force in setting firm R&D 

strategy. In models 1-4, competitive pressure has a positive and significant effect on the 

adoption of target-based strategies. This effect is also positive and consistent when 

estimated with firm fixed effects (models 5-8). These results support Hypothesis 3. 
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Moderating Effects of the Human Genome: The time period during which the majority of 

the map (>90%) became publicly available was coded with a dummy variable and 

interacted with the main predictors. The availability of the map has a strong and 

significant impact on the adoption of target-based strategies as shown in model 3 and 4. 

When estimated with firm fixed effects (model 7 and 8) I observe a similar positive effect 

on adoption of the target-based approach. The moderating effect of the map on the other 

predictors is tested using interactions shown in model 4. Disease specialized firms have a 

stronger and significant effect on adoption of target strategies with the availability of the 

map. Compared to models 1-3, firms with genomics experience have a strong and 

positive effect on the adoption of target-based strategy with the availability of the human 

genome in model 4. Similarly, I see scientific publishing having a weak but positive 

effect on adoption, and that prior target-based experience have a negative effect but these 

effects are not statistically significant. A moderator changes the direction or magnitude of 

the relationship between two variables and I see the availability of the human genome 

following this behavior. These results support the moderating effect of the human 

genome map on factors which influence the adoption of target-based strategy. Thus, 

supporting Hypothesis 4. 

 

Robustness checks: To check for multicollinearity among the predictor variables in the 

OLS regressions, a variance inflation factor (VIF) measure was calculated. The variance 

inflation factor is the ratio of the variance in a regression model with multiple predictors, 

divided by the variance of the model with one predictor only. This calculation quantifies 

the severity of multicollinearity and provides an index measure. The VIF was calculated 
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in STATA and mean value of 1.98 was obtained for the predictors. VIF less than 10 

indicates low collinearity between the predictors in the model. Hence, multicollinearity 

effects were ruled out in this regression model. 

 

A Wald Chi squared test was used to test the statistical significance of each coefficient in 

the model (in STATA 14.2) including interaction effects (moderation). That is, whether 

they can be removed from the model without affecting it in any meaningful way (null 

hypothesis). The Wald test uses a Z-statistic to yield a chi-squared distribution and 

appropriate for large sample data (Frazier, et al, 2004). Two Wald tests were conducted, 

one with only the primary predictors (chi2=90.75, p=0.0, degrees of freedom=6) and 

another with the interaction effects included (chi2=761.09, p=0.0, degrees of 

freedom=11). Both Wald tests resulted in chi-squared parameters greater than zero, 

indicating that the effect of these predictors are significant and necessary for this 

regression model. 

 

Discussion and Conclusion 

This study examines how technological search strategies are impacted when disruptive 

new technologies enter the market. I focused on understanding the organizational and 

external conditions that influenced how incumbent drug firms selected their drug 

discovery strategies with the arrival of the human genome. Logistic regression models 

show that prior R&D experience, specialized genomics capabilities, product market focus 

and competition have a significant effect on the adoption of target-based strategies.  
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In my analysis, related R&D knowledge has a positive impact on the adoption of target-

based strategies. This empirical result supports other studies in the literature that point to 

the role of absorptive capacities and explorative research in adapting to new 

technological change and exploiting them (Cohen & Levinthal, 1990; Cockburn & 

Henderson, 1998; Gittelman & Kogut, 2003). Firms with diverse portfolios can capture 

internal/external knowledge spillovers through cross-pollination of ideas and movement 

of personnel. Prior studies show that alignment of complementary projects can have a 

positive internal spillover effect (Henderson & Cockburn, 1996; Cassiman & Veugelers, 

2006). Firm investments in basic projects and learning, builds up knowledge stocks that 

can be applied to new to industry technologies providing firms with strategic and 

competitive advantages (Cattani, 2005). Hence, firms that were preadapted in target-

related technologies like genomics and high-throughput screening were in a favorable 

position to adopt target-based strategies. 

 

The direct role of specialized genomic capabilities (Hypothesis 1a) shows a negative 

effect on adoption, but these specialized capabilities show a positive effect on adoption 

when moderated by the availability of the human genome map. This result is very 

interesting as it adds a contextual aspect to the role of specialized capabilities in firm 

strategy. Firm capabilities or core competencies provide platforms for product 

exploration and represent investments in future opportunities. For example, Merck, a 

global leader in small-molecule drug discovery, led a collaboration with Washington 

University in 1995 to sequence 300,000 gene sequences. These investments are path 
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dependent and irreversible due to complex interdependencies between organizational and 

technological elements (Kogut & Kulatilaka, 2001).  

 

Adner & Levinthal (2004) explain that this path dependence that affects technological 

search arises due to endogenous rather than exogenous factors.  Recent research by 

Teodoridis et al (2017) argues that in fast-evolving knowledge domains like theoretical 

mathematics, specialists have an advantage in identifying new creative opportunities. 

Building on these studies, my results show that while firms engaged in genomics 

capabilities prior to the availability of the map, it did not have an effect on target-based 

projects. But with the availability of the human genome, specialists in genomics 

capabilities could exploit the map better than others – resulting in more target-based 

discovery projects. Thus, firm investments in developing specialized capabilities and 

exploratory research may not have immediate payoffs but provide strategic advantages 

when competence enhancing technological changes emerge. 

 

Diversified disease market focus had a positive effect in the time period prior to the map. 

This finding is consistent what I predicted and with the strategy literature on 

diversification strategy (Rumelt, 1982; Hitt, et al, 1994). But this effect changes in the 

time period after the map, showing that disease market specialization in firms is a 

positive indicator of adoption. This reflects a larger underlying change in R&D strategy 

at the industry level, where firms are becoming more diversified in general (see Table 2). 

Specialized firms that were reluctant to engage in target-based search previously (before 

the map) are adopting it at higher levels after the map. This result is interesting from a 
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strategic perspective – open access technologies and publicly available knowledge 

appears to be a catalyst in promoting a switch in innovation strategy. 

 

Competition from other firms that are adopting the target-based strategy has a positive 

effect on focal firm’s adoption of similar strategy. This result supports prior studies that 

report the influence of competitive pressure on firm strategy (Hoskisson, et al, 2000; 

Zahra, 1996). The availability of the genome is in essence providing all firms with the 

same map of the search landscape. Privately held advantages related to the map, through 

private sequencing efforts or collaborations, are eliminated with the public release of 

sequence information (Williams, 2013; Sampat & Williams, 2015). This puts pressure on 

both incumbents and entrants to dig deeper and wider on the human genome before 

competitors lock up valuable regions. This effect is positive in the time period prior to the 

map.  

 

In this background of organizational and market factors, the human genome plays a 

significant role in moderating the influence of firm specific capabilities. The precise, 

detailed nature of the map by providing the location and identity of genetic sequences is 

directly beneficial to firms engaged in the target-based approach (Drews, 2000). In the 

statistical models, we the that the introduction of the human genome map positively 

moderates the effect of competition, specialized genomics capabilities and the firm’s 

disease market focus on adoption of targeted strategies. This has interesting strategic 

implications as firms that had invested in genomics capabilities were better positioned to 

exploit the rich new information provided by the map. For example, firms like Merck and 
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GlaxoSmithKline reorganized their internal R&D groups and invested heavily in 

genomics technologies, gene sequencing projects and collaborations with academia to 

prepare for the flood of genomic data that would arrive with the completion of the 

Human Genome Project. Thus, the map was seen as a new tool, technology and 

knowledge source to complement their existing knowledge capabilities and reinforce 

their target-based strategies. 

 

The results from the statistical models support these trends. While diversified firms were 

at a higher risk of adopting target-based prior to the map, we see firms that were disease 

market focused increased their adoption of targeted strategies after the map. Disease 

specialized firms’ prior knowledge and capabilities in specific product markets serves as 

an advantage in exploiting the new map. Instead of substituting their strategic 

capabilities, the human genome map acts as a complement and strengthens their adoption 

of target-based strategies. For example, the discovery of new gene analogs for existing 

disease targets that firms were already working on or had expertise in, opened up new 

markets and better clinical targeting of existing drugs and indications. Thus, the human 

genome map enhances the adoption of targeted strategies by positively moderating the 

effect of prior specialized genomics capabilities, product market focus and competition. 

Hence, the map acts as a complement in the adoption of targeted strategies. 

 

This study addresses a gap in empirical research: understanding how technological 

change impacts innovation strategy. My analyses show a nuanced understanding of the 

conditions and factors that influence strategic refocusing related to R&D projects. 
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Contrary to creative destruction, the human genome enhances adoption of targeted 

strategies by incumbent firms and increases exploration by specialized firms. For 

practitioners, firm capabilities have to continually evolve during disruptive technological 

change to avoid losing their innovative edge. Engaging in explorative research projects 

and continuous organizational learning buffer the effects of disruptive change and 

preadapt firms to take advantage of emerging new technologies.  
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APPENDIX 

 

Table A: List of main diseases categorized based on the Cortellis database clinical 

disease hierarchy. 881 different diseases were grouped into 27 broad categories which 

were used to calculate the Herfindahl-Hirschman Index for each firm. 

 

Main Disease Category Number of Specific Indications 

Infectious Disease 179 

Cancer 89 

Neuro 81 

Uncategorized 55 

GI 55 

Cardio 53 

Hematological 47 

Endocrine Disease 34 
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Dermatological 33 

Metabolic 30 

Genitourinary 30 

Respiratory 25 

Ocular Disease 25 

Gynecology Obstetrics 25 

Immune 23 

Musculoskeletal Disease 22 

Inflammatory Disease 14 

Psychiatric Disorder 13 

Toxicity Intoxication 11 

Genetic Disorder 11 

Andrology 9 

Injury 6 

Otorhino 4 

Nutritional 3 

Mouth Disease 2 

Fatigue 1 

Growth Disorder 1 

 

Table B: List of MeSH keywords used to select target-based publications assigned to 

firms 
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Base Sequence 

Genes 

Catalytic Domain 

Crystallography, X-Ray 

Chemical Synthesis 

DNA, Complementary/genetics 

Models, Molecular 

Molecular Conformation 

Molecular Structure 

Algorithms* 

Combinatorial Chemistry Techniques 

Computer Graphics 

Computer Simulation 

Drug Design* 

Models, Genetic 

Models, Molecular 

Molecular Structure 

Mutation 

Models, Chemical 

Pharmaceutical Preparations/chemical synthesis* 

Biopolymers/chemistry 

Database Management Systems 

Models, Molecular* 
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Solvents 

Structure-Activity Relationship 

CDC2-CDC28 Kinases* 

Combinatorial Chemistry Techniques 

Crystallography, X-Ray 

Drug Design 

Enzyme Inhibitors/chemical synthesis 

Enzyme Inhibitors/chemistry* 

Fluorenes/chemical synthesis 

Fluorenes/chemistry* 

Isoindoles 

Magnetic Resonance Spectroscopy 

Models, Molecular 

Protein Binding 

Protein-Serine-Threonine Kinases/chemistry 

Proto-Oncogene Proteins* 

Pyridines/chemical synthesis 

Pyridines/chemistry* 

Structure-Activity Relationship 

Urea/analogs & derivatives* 

Urea/chemical synthesis 

Urea/chemistry* 

Biotechnology* 
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Centrifugation 

Computer Simulation* 

Computer-Aided Design 

Models, Biological* 

Software* 

Software Design 
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3. SCIENTIFIC MAPS AND EXPLORATION: TRACKING TECHNOLOGICAL 

SEARCH TRAJECTORIES IN DRUG DISCOVERY 

 

 

Abstract 

Innovation scholars theorize that explorative search can lead to novel knowledge 

recombination and valuable outcomes, but this type of search is both costly and risky. 

How scientific maps influence firm exploration is not well established. In this study, I 

explore how the human genome map impacted firms’ exploration for novel compounds. I 

build on prior methodological advances in the innovation literature and computational 

chemistry to introduce a novel technique to measure technological distance between 

patents based on chemical structures. This technique is applied on a sample of small 

molecule drug patents to examine exploration trajectories over a 14-year time period. 

Analyses show that overall firm search trajectories become narrower over time, and that 

targeted strategies have broader exploration compared to non-targeted strategies. By 

capturing firm level technological search trajectories over time, this study provides 

insights on the evolution of firm exploration and the effect of a scientific map on search 

trajectories. 

 

 

 

Keywords: technological search, technological distances, chemical similarities, drug 

discovery 
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Introduction 

The process of innovation is conceptualized as a spatial process (technological search), 

where firms and inventors search either locally or in unknown, new areas (Cyert & 

March, 1963; March, 1991). Innovation theorists suggests that broad exploration can lead 

to new knowledge and increase technical novelty (Nelson & Winter, 1982). Innovation 

theorists suggest that scientific knowledge can aid in the navigation of such complex 

landscapes, enable predictive capabilities and reduce uncertainty in the search for new 

products (Fleming & Sorenson, 2001). In the context of small molecule drug discovery, 

searching for an optimal compound in chemical space is time-consuming and complex 

(Scannell, et al, 2012). This is mainly because chemical space is a high-dimensional 

search space with 1060 possible combinations of novel compounds. To empirically test 

the influence of a map on technological search trajectories, I build on existing theories in 

the innovation literature and introduce a novel technological distance measure to capture 

firm exploration over time. 

 

In 2000, the Human Genome Project (HGP), the world’s largest publicly-funded biology 

project, made available the first draft of the human genome. The human genome is a 

digital map of 3 billion DNA base pairs revealing the location and identity of genes 

which encode various proteins in cells. The human genome map provides a list of about 

10,000 potential disease targets (Drews, 2000). Given a drug target, medicinal chemists 

can design and synthesize small molecules or compounds that can bind to it. To do this, 

they comb through a large theoretical landscape of solutions called chemical space - 
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containing 1060 possible combinations. So how does a scientific map like the human 

genome map influence how scientists search for new compounds?  

 

In a high-dimensional search space like chemical space, which has a large number of 

possible solutions identifying the correct or even a set of optimal solutions is a hard task. 

Without a map to navigate this massive landscape, medicinal chemists would rely on 

disease knowledge and prior experience to make calculated guesses on the types of 

chemicals that could work (Scannell, 2012). In contrast, having the human genome map 

allowed scientists to construct detailed models of disease targets using computational 

tools. This drastically reduced the search space (chemical space) of possible options, 

making it possible for the medicinal chemists to sample a reduced search space and 

design compounds that could fit precisely with the target (Lipinski & Hopkins, 2004; 

Gittelman, 2016). Therefore, the availability of a scientific map like the human genome 

had important consequences for the nature of drug discovery and its outcomes.  

 

I use this context of small molecule drug discovery, to test the effect of the human 

genome map on firm exploration for new drugs. My dataset is comprised of a special type 

of drug patent called Markush or broad chemistry patents. In drug discovery, Markush 

patents are very specific to small molecule drugs and mark the starting point where firms 

begin to claim intellectual property rights in chemical space. An inventor or firm uses a 

Markush patent to make general claims for use of a molecule without revealing its exact 

structure – this compound is hidden among hundreds of other similar looking 

compounds. Thus, these compounds within Markush patents represent the explorative 
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effort undertaken by the firm or inventor. I exploit these unique features of Markush 

patents and the “flags” firms plant in chemical space to measure their exploration over 

time. For this, I introduce a novel technique from computational chemistry to capture 

chemical structural similarities between patents (Johnson & Maggiora, 1992). I test this 

method on a sample of Markush patents to identify firm level search trajectories 

(exploration) across time periods and based on search strategies. Results presented in this 

study are exploratory and inform on the nature of technological search and exploration 

when impacted by scientific maps.  

 

Background on Technological Search and Distances 

Innovation scholars theorize invention as a search process over technological landscapes 

combining new and existing knowledge and technologies (Henderson & Clark, 1990). 

This search is tied to the generation of technical novelty and driven by new knowledge 

and technology, which can lead to a better chance of market selection (Nelson & Winter, 

1982). In this search for technical novelty, firms can both explore new technological 

space and/or exploit prior knowledge (March, 1991). Explorative search can lead to novel 

knowledge recombination and valuable outcomes, but this type of search is both costly 

and risky. The balance depends partly on the relative costs of exploration and exploitation 

and the ability to apply prior expertise as a useful input for future projects. Some 

innovation scholars argue that firms tend to search locally, enter markets related to their 

capabilities, and use prior expertise to select future projects (Sorenson & Fleming, 2004; 

Stuart & Podolny, 1996; Helfat & Raubitschek, 2000). Thus, exploration in knowledge 
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landscapes is conditioned by what firms already know and the relative costs of 

undertaking the search. 

 

The process of drug discovery can be conceptualized as a Kauffman fitness landscape, 

where two main components (biological gene targets and chemical agents; N=2) interact 

with high-interdependence (K). In this landscape multiple compounds can interact with 

varying efficacy with one target or more targets, thus making the interactions multiplex, 

interdependent and overlapping. Interdependence or coupling between components 

occurs where changes made to one component requires changes to another for the system 

to work properly (Ulrich, 1995; Fleming & Sorenson, 2001). In the case of drug 

discovery, this implies that disease target and designed compounds are tightly inter-

related, and that deep knowledge and prior experience can influence how technological 

exploration occurs.   

 

Empiricists utilize a range of tools and methods to probe how firms navigate this 

technological landscape. Technological positions are identified, distances between 

positions measured and high dimensional search spaces are computationally modeled. In 

the innovation literature exploration in technological space is captured through various 

measures like SIC codes, networks, patent classes, patent citations and recently, topic 

modeling. Stuart & Podolny (1996) use network ties to track the evolution of firms’ 

technological positions. Ahuja & Katila (2002) follow patent citations and patterns to 

identify search scope and depth in technological search. Rosenkopf & Nerkar (2001) 

have examined exploration across organizational and technological boundaries using the 
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3-digit technical classes in patents. Yoon & Kim (2012) utilize the text description of 

patents to extract technological positions between patents. Tzabbar (2009) uses vector 

distances calculated from patent technology classes to identify technological 

repositioning in firms. Recently, Aharonson & Schilling (2016) measure technological 

distance between patents using vector distance computed from the patent subclasses. 

Kaplan & Vakili (2015) use topic modeling of patent text to examine technological 

distances and breakthrough innovation.  

 

Thus, a range of measures have been developed and established to capture exploration in 

technological space. And most of these methods develop distance measures based on 

citations or patent technology classes. To classify patents, patent offices have categories 

of patent classes or subclasses that examiners assign new patents to. Hence, a 

semiconductor chemistry patent will be assigned differently than a drug chemistry patent. 

Using patent classes to differentiate between these two patents or measure distance using 

vectors works well in this case. Most of the patent innovation literature builds on these 

methodical advances to empirically capture firm and industry exploration over time.  

 

But if we would like to measure exploration between firms in the same industry, 

operating in similar product markets, this approach of using patent classes becomes less 

reliable. For example, if we compare technological distance or exploration for two drug 

companies making small molecule colon cancer drug their patents classes will overlap for 

the most part, indicating close distance between the two patents. This makes sense as 

both firms operate in similar areas. But what if the two drugs operated on completely 
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different drug targets or employed vastly different chemical structures that are not 

related? Drug industry experts would categorize these patents as being distant, while their 

patent classes would make them appear close. This also has implications for studying 

longitudinal aspects of exploration.  

 

Drug firms that only specialize in small-molecule drugs or work in a specific disease area 

will show no exploration if we rely only on patent classes or subclasses. Even if these 

firms are using new methods, disease targets or exploring completely new chemical 

scaffolds to design their drugs. We risk losing this granularity and nuance by aggregating 

patents at the class and subclass level, even though patent class-based differences are an 

excellent and robust method to capture distance at the industry level. For example, how 

does one test if Firm A’s compounds in 2004 look similar to prior years or if they made 

completely new structures. This question is similar to examining Intel’s processors from 

different time periods: how different are the Xeon processors from the old Pentium 

processors. They are in the same product category - processors, but the underlying 

architecture and design is very different - implying broad exploration in their innovative 

processes. To address issues like this, I introduce a granular technique drawing from 

computational chemistry. I exploit the richness of chemistry patents and the chemical 

structures contained within them to determine distance between patents and firm level 

exploration. By examining differences in chemical structures (between patents and firms) 

I can reconstruct their search paths in chemical space over time. A full description of this 

method is discussed below. 

 



150 
 

Data 

Patents are central to intellectual property protection and appropriation in 

biopharmaceutical industry and widely used in economic analyses (Scott & Sampat, 

2012). As of 2016, more than 90% of marketed drugs are small molecules making 

chemistry-based patents relevant for this analysis. I utilize a novel dataset comprised of a 

special type of chemistry drug patent called Markush patents to test my method and 

reveal insights on firm level exploration.  

 

An inventor or firm uses a Markush patent to make general claims for use of a molecule 

without revealing its exact structure – this compound is hidden among hundreds of other 

similar looking compounds.  

 

Markush or Broad chemistry patents: Markush patents are used across industries which 

work with chemicals like drugs, materials science, industrial chemicals and 

agrobiotechnology. These patents contain a special structure called Markush structure, 

named after Eugene Markush, to capture a broad set of compounds. This type of patents 

is filed very early in search process where a firm makes general claims for use of a 

molecule without revealing the exact compound they are pursuing. The compound that 

could make it to market is hidden among hundreds of other similar looking compounds. 

In the drug discovery stage, Markush patents are very specific to small molecule drugs 

(compared to biologics or process patents) and mark the starting point where firms begin 

to claim intellectual property rights in chemical space (Southall & Ajay, 2005).  Follow 

on drug patents and granted patents are based on this original Markush patent.  
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Another interesting feature of Markush patents is that they encapsulate the actual 

compounds made, and those that the firm or inventor plans to protect for future use – 

sometimes, running into the hundreds or thousands of novel compounds. Thus, these 

compounds within Markush patents represent the explorative effort undertaken by the 

firm or inventor in chemical space. While granted patents or single compound patents 

that cover a drug (like Viagra) are important for intellectual property protection, they do 

not indicate the original explorative effort undertaken by the firm. Invariably, all such 

granted patents will reference the starting Markush patent or application. While not all 

Markush patent applications end up becoming granted patents or lead to a drug, they 

represent capture all small-molecule related R&D activity and explorative research – not 

just the ones that become successful.  

 

I exploit these unique features of Markush patents and the “flags” firms plant in chemical 

space to measure their exploration over time. This non-bias in the nature of Markush 

patent applications make them especially useful for analyzing overall technological 

search trajectories of firms and estimating the broad effects of technological change. 

These unique properties of Markush patents make them well suited to study firms’ 

technological search trajectories over time. For my empirical research, I have collected 

39,000 drug related Markush patent applications filed in the WIPO patent office from 

1990-2004, and extracted millions of novel compounds embedded in them.  
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Data source and collection: The source for Markush patents is the Chemical Abstract 

Society's (CAS) Scifinder product. Scifinder is the world's largest repository of chemical 

structures, published articles and patents and provides access to MARPAT – a 

comprehensive database of Markush patents that cover all 9 major patent offices and 63 

patent authorities worldwide. More than 1 million Markush structures and about 481,000 

Markush patents and applications from 1988-present are available for searching. In a 

recent comparative analysis of patented compound databases, CAS’s Scifinder was found 

to be more comprehensive and accurate compared to the Derwent World Patents Index 

and Reaxys (Ede, et al, 2016).  

A full discussion of data sampling and Markush patents is provided in essay one of the 

dissertation. To measure technological distance, a sample of 21,334 drug-related 

Markush patents and patent applications filed between 1990-2004 are used. This sample 

includes 570 firms. 

 

Data source for Chemical Structures: SureChEMBL is an open access database that 

contains compounds extracted from the full text, images and attachments of patent 

documents. The SureChEMBL database contains 17 million compounds extracted from 

14 million patent documents belonging to the US, European and WIPO patent office 

(Papadatos, et al, 2015). The extraction of chemical content is performed in an automated 

way by mining patent text, images and associated structure files for compound 

information. Methods like name-to-structure and image-to-structure conversion are 

applied to capture patented compounds. The extracted compounds are available in an 

open data format known as SMILES that allows distance measures (Weininger, 1988). 



153 
 

The entire compound database of SMILES strings was downloaded and linked to the 

Markush patents using unique patent identifiers assigned by the patent offices (e.g. WO-

1234567-A1 or US-5678901). Using this concordance, Markush patent compounds for 

firms in the dataset were extracted and organized by year.  

 

ChemmineR tools software: This is an open source cheminformatics toolkit created by an 

academic group (Cao, et al, 2008). The software provides tools for data conversion, 

compound mining, structural similarity searching and clustering of small molecules. It is 

written in R and C++ and is among the fastest implementations for chemical structure 

comparisons. This software was used to cluster the patented compounds for the time 

period 1990-2004. These are computationally intensive processes and can take a few days 

to a week to run on a standard single-processor laptop for a single firm. 

 

 

Method 

 

Technological Distance Measure based on Chemical Structural Similarity 

I introduce a novel technological distance measure using the compounds filed by the 

firms and inventors in the Markush patents. To understand how and what is measured, we 

need to understand the nature of the solution space – the region from where the solution 

to a problem exists. In the case of small molecule drug discovery where finding an 

optimal compound for a disease target is the problem, the solution space is the entire 

universe of compounds, called chemical space. 
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Chemical Similarity: Chemical space is immense – more than 1060 possible combinations 

for just known organic compounds, and all known drugs inhabit this space and occupy 

specific coordinates defined by chemical structure. The drug Fentanyl occupies a very 

different location than Aspirin. An important concept in chemistry is that structurally 

similar looking compounds have similar properties (Johnson & Maggiora, 1992). This 

similarity between chemical structures is captured as the inverse of the distance in 

chemical space (further apart indicates less similarity, just as Aspirin’s properties are 

quite different from Fentanyl’s). One such standard distance measure is the Tanimoto 

similarity, a form of Jaccard coefficient4, widely used in chemical informatics and drug 

discovery for chemical structure similarity measurements (Bajusz, et al, 2015). Recently, 

Krieger et al (2017) have used the Tanimoto similarity measure to capture novelty of new 

drugs by comparing to previously approved drugs.  

 

Tanimoto similarity coefficient: The Tanimoto similarity is central to this method and 

captures distance between compounds.  

“The Tanimoto coefficient is defined as c/(a+b+c), which is the proportion of the features 

shared among two compounds divided by their union. The variable c is the number of 

features (or on-bits in binary fingerprint) common in both compounds, while a and b are 

the number of features that are unique in one or the other compound, respectively. The 

                                                           
1 The Jaccard index or similarity coefficient is a statistic to measure the overlap that two sample 
sets share in their attributes. 
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Tanimoto coefficient has a range from 0 to 1 with higher values indicating greater 

similarity than lower ones.”– ChemMine Tools tutorial 

The Tanimoto coefficient between two points, a and b, with k dimensions is calculated 

as: 

 

 

 

In the Tanimoto approach, compound structures are converted into 2-D fingerprints, a 

string of unique bits, and compared for similarity (Lipinski, 2000; Lipinski & Hopkins, 

2004; Johnson & Maggiora, 1992). A well established 2-D format in the cheminformatics 

area is known as the simplified molecular-input line-entry system (SMILES). The 

SMILES notation facilitates accurate capture of compounds and efficient search methods 

(Weininger, 1988). See Figure 1 for calculation of chemical fingerprints and Tanimoto 

similarity. 
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Figure 1: Chemical similarity used as a measure of distance between compounds (figure 

source: Jeliazkowa & Jaworska, Proctor & Gamble, 2005) 

 

Examples of Chemical Similarities using Tanimoto Coefficient 

To understand how the Tanimoto coefficient measure can be applied to identifying 

chemical similarities, I 

Present below two well-known classes of chemical drugs – antibiotics and proton-pump 

inhibitors and their differences. Proton-pump inhibitors are gastrointestinal drugs used to 

reduce gastric acid production.  

 

Antibiotics 

 

Carbenicillin 

 

Ticarcillin 

 

Ampicillin 

 

 

Nystatin 



157 
 

 

Proton-Pump Inhibitors (PPI) 

 

Omeprazole 

 

 

Pantoprazole 

 

 

Lansoprazole 

 

 

Rabeprazole 

 

 

Figure 2: Structural comparison of compounds for two classes of drugs – Antibiotics and 

Proton-Pump Inhibitors. 

 

The antibiotic compounds Carbenicillin, Ticarcillin and Ampicillin look closer to each 

other in structure compared to Nystatin. Based on simple visual similarities, we can 

expect their Tanimoto coefficients to reflect their structural similarity (See top row Figure 

2). For the PPI compounds, the Omeprazole and Pantoprazole look similar compared to 

the other two compounds (See bottom row Figure 2). The calculated pairwise Tanimoto 

coefficients for these 8 compounds are shown below. For example, Carbenicillin is 

compared to Ticarcillin, Ampicillin and so on and its coefficients recorded. 

 

 

Pairwise Chemical Similarity Scores using Tanimoto Atom Pair Similarity 

Compound Name Carbenicillin Ticarcillin Ampicillin Nystatin 

Carbenicillin 1 0.79 0.72 0.06 
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Ticarcillin 0.79 1 0.58 0.04 

Ampicillin 0.72 0.58 1 0.05 

Nystatin 0.06 0.04 0.05 1 

     

Proton Pump Inhibitors    

Compound Name Omeprazole Pantoprazole Lansoprazole Rabeprazole 

Omeprazole 1 0.51 0.38 0.41 

Pantoprazole 0.51 1 0.41 0.38 

Lansoprazole 0.38 0.41 1 0.53 

Rabeprazole 0.41 0.38 0.53 1 

 

Comparison of 

Both     

Compound Name Carbenicillin Ticarcillin Omeprazole Pantoprazole 

Carbenicillin 1 0.79 0.11 0.11 

Ticarcillin 0.79 1 0.09 0.09 

Omeprazole 0.11 0.09 1 0.51 

Pantoprazole 0.11 0.09 0.51 1 

 

Table 1: Pairwise Tanimoto coefficients shown for each compound. Scores above 0.60 

are highlighted. In the third table, two representatives of each group are selected and 
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compared to show differences in similarity scores. Tanimoto coefficients were calculated 

using the software ChemmineR Tools. 

 

The coefficient values in Table 1 correlate with the structural differences that can be 

observed in Figure 2. Carbenicillin is closest in structure to Ticarcillin and Ampicillin; 

the Tanimoto coefficients are 0.79 and 0.72 (closer to 1 means more similar). Similarity 

cut-offs above 0.60 are a recommended threshold to identify similar looking compounds. 

Thus, we see 3 antibiotics (Carbenicillin, Ticarcillin and Ampicillin) and 2 PPI 

(Omeprazole and Pantoprazole) drugs that appear closer in distance in chemical space. 

When sample compounds of each group are compared (Group 3), we see the Tanimoto 

coefficients reduce further, thereby implying more distance between the compound 

structures for these two different classes of drugs. 

  

Clustering of chemical compounds: For pairwise similarities between compounds, 

applying the Tanimoto coefficient is a reliable method in chemical informatics. To 

calculate distances for large numbers of compounds (as in a patent), these compounds are 

compared using a clustering technique.  Using the pairwise Tanimoto distances, these 8 

compounds can be clustered to identify similar clusters of compounds. For this, a 

clustering approach called binning clustering from ChemmineR Tools is used. 

 

“Binning clustering assigns compounds to similarity groups based on a user-definable 

similarity cutoff. For instance, if a Tanimoto coefficient of 0.6 is chosen then compounds 
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will be joined into groups that share a similarity of this value or greater using a single 

linkage rule for cluster joining.” – ChemmineR tutorial 

 

Results of clustering the 8 compounds are shown in Appendix Figure B. The three 

antibiotics Carbenicillin, Ticarcillin and Ampicillin fall in the same cluster, while all the 

other compounds appear in separate, independent clusters. This technique can be used to 

identify clusters of structurally similar compounds. The ChemmineR software is 

implemented for high-throughput clustering and is very efficient at calculating pairwise 

Tanimoto coefficients. 

 

Applying Tanimoto Coefficients to Measure Chemical Distance Between Markush 

Patents: 

Broad chemistry or Markush patents contain unique compounds encoded in the 

description and methods section based on a central design known as a chemical scaffold. 

This generic chemical scaffold is also called a Markush structure first appeared in 1923 

and is named after its inventor, Eugene Markush. 

Compounds listed in a broad chemistry patent have to be unique (exact similarity to any 

prior known compound cannot be patented), so the complete set of listed patent 

compounds constitutes a unique and diverse set of molecules (see Figure 3). 
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Figure 3: Example Markush structure with R groups representing various chemical 

groups. Each such Markush structure can represent hundreds of actual compounds (image 

source: ChemAxon Inc.) 

 

Using the SureChEMBL database of patents and patented compounds, novel compounds 

contained within each Markush patent in my sample was collected and stored into 

separate firm specific files that could be processed. The ChemMine Tools software is 

applied on this data to calculate Tanimoto similarity scores for the exemplified 

compounds in the Markush patents. Compounds for a set of Markush patents are 

clustered based on the similarity cut-off (0.6). Compounds that fall in the same cluster are 

structurally similar and closer in chemical space. These clusters of exemplified 

compounds of different Markush patents are then examined for their source (firm names), 

year and patent identifiers. Patents that contain structurally similar compounds will show 

up occupying similar regions in chemical space. Figure 4 is a clustering of patented 

compounds for one company across several years. 
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Figure 4: Tanimoto similarity coefficient-based clustering of Bristol-Myer Squibb’s 

Markush compounds between 1989 and 1997. Colored groups represent similar clusters, 

for example pink dots represent a neighborhood of chemical space occupied by 

structurally similar compounds. Image created using ChemmineR and R Studio. 

 

Using these Tanimoto clustering measures, we can now look at measuring the distance 

between patents at the firm level. For this, I apply set theory logic of intersections and 

overlaps between sets of objects. 

 

Distance Measure Between Patents Using Tanimoto Coefficients: The compound clusters 

for a pair of patents represents a set of objects that can be used estimate distance between 

the two patents. If two patents have more compound clusters in common, then building 

from Tanimoto coefficient logic, we can infer that these two patents (and their 

compounds) are closer in chemical space. For two patents that represent different regions 

of chemical space, we do not expect to see high overlap in clusters. 
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To calculate this overlap, a measure called Jaccard index is used. A Jaccard Index is the 

intersection of two sets divided by the union.  

 

 

This measure introduced by Paul Jaccard, is a statistic used to compare similarity and 

diversity of sample sets. Application of this measure is found in object recognition in 

computer vision and machine learning algorithms. The Jaccard Distance which measures 

dissimilarity between sample sets (in this case compounds) is complementary to the 

Jaccard Index (JI), obtained by subtracting the JI from 1. 

 

Thus, Jaccard Distance = 1 – Jaccard Index 

 

For a given pair of Markush patents, the Jaccard Distance (JD) represents a distance in 

chemical space (0 to 1) calculated using the set objects (in this case, the compound 

clusters). A score of 0 indicates perfect similarity while a distance of 1 implies complete 

dissimilarity. Two patents with a score of 1 imply no compound structural features in 

common, implying a novel Markush scaffold. This would represent a new region in 

chemical space and thus, exploration by the firm.  

 

Example of Chemical Distance Between Two Markush Patents using Jaccard Index: 

Two patents belonging to the same firm, Pfizer, were selected for this analysis. The 

patents are two years apart and related to the same class of drugs – Phosphodiesterase 

(PDE) Inhibitors. This class of drugs contains drugs like Viagra, a Pfizer product and 
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PDE inhibitor. The number of exemplified compounds in each patent is also provided. 

Given the similarity in scope and class of drug target, these two patents have a higher 

probability of having similar looking compounds. The third patent is a completely 

different class of drugs known as Opiates (like Fentanyl). This is added as a control to 

test this measure of distance. 

 

Patent 

Applicatio

n Number Title 

 Priority 

Applicatio

n Year 

Patent 

Assigne

e 

Co

mp

ou

nd

s 

Typ

e 

WO-

200102711

3-A2 

Preparation of 5-(3-pyridyl)-

substituted pyrazolo[4,3-

d]pyrimidinones as 

phosphodiesterase inhibitors. 1999 

Pfizer 

Limited, 

UK 

18

4 

PD

E 

Inhi

bito

r 

WO-

200207477

4-A1 

Preparation of 

pyrazolopyrimidines as cyclic 

guanosine 3',5'-monophosphate 

phosphodiesterase inhibitors for 

sexual dysfunction. 2001 

Pfizer 

Limited, 

UK 77 

PD

E 

Inhi

bito

r 
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WO-

200303562

2-A1 

3-Azabicyclo[3.1.0]hexane 

derivatives as opioid receptor 

antagonists. 2001 

Pfizer 

Product

s Inc., 

USA. 

11

9 

 

Opi

ate 

 

Table 2: Three sample Markush Patents belonging to Pfizer are used to measure distance 

 

Using ChemMine Tools, each of the compounds in the two PDE inhibitor patents are 

compared structurally to calculate Tanimoto similarity scores. These scores are then used 

to cluster the compounds. Each cluster is then analyzed to generate a Jaccard Index for a 

patent pair. Shown below is a table used to derive the Jaccard Index. 

 

                  

 Cluster Ids  

Patent 

Applicatio

n 

Number 

2 

1 

5 

7 

6 

9 

4 

4 

4 

0 

2 

8 4 

2 

0 

3 

5 

4 

4 

0 

3 

4 

4 

0 

0 

9 

4 

0 

2 

7 

4

0

1

2 

4

0

3

9 

4

0

1

8 

2

0

4

6

5 

4

0

2

2 

4

0

3

6 

2

0

3

6

7 

4

0

1

9 

2

0

4

7

0 Overlap 

WO-

20010271

13-A2 4 1 2 1 7 1 1 1 1 1 1 2 1 1 4 1 1 31 
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WO-

20020747

74-A1 4 11 2 3 2 1 1 1 1 1 1 4 1 1 1 1 1 37 

 

Table 3: Application of the clustering method to two patents 

 

Jaccard Index = Intersection of Sets / Union of Sets 

Jaccard Index (WO-2001027113-A2, WO-2002074774-A1) = Total Compounds in 

Intersection/ Total Compounds in Both Patents 

Jaccard Index (WO-2001027113-A2, WO-2002074774-A1) = 68/261 => 0.26 

Therefore, Jaccard Distance (WO-2001027113-A2, WO-2002074774-A1) = 1 – 0.26 = 

0.74 or 74% dissimilar. 

 

A similar table was created to measure the distance between a PDE inhibitor patent (WO-

2001027113-A2) and the opioid receptor patent (WO-2003035622-A1). Only one cluster 

was found in common between these two patents containing 16 compounds (out of a total 

of 184 + 119 compounds). Thus, 

Jaccard Index = 16/303 => 0.05  

Jaccard Distance (WO-2001027113-A2, WO-2003035622-A1) = 1 – 0.05 = 0.95 or 95% 

dissimilar. 

 

Thus, this method shows that the PDE inhibitors are closer in chemical space compared 

to their distance to the Opiate patent, controlled for the same firm. Figure 5 provides an 
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overview of the chemical distance measurement for any two patents containing 

compounds. 

 

 

Figure 5: Overview of technological distance measure using chemical structural 

similarities for two patents containing compounds 

 

Firm-level chemical distances: For each firm in the sample, Markush patents are 

collected and organized by year. The first year in the sample is marked as the reference 

year. The compounds that were created in this year are marked in chemical space as 

“reference markers” – base to which subsequent patents are measured against. Every 

novel compound in every subsequent patent is measured against these reference marker 

compounds and their distance in chemical space recorded using Tanimoto coefficients. 

Building up from the pairwise compound similarities and cluster similarities, the average 

chemical distance is calculated for each year.  
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Two versions of firm-level distances have been implemented: a) distance to prior year 

and b) cumulative distance. In the distance to prior year, the reference markers are 

updated to the prior year’s compounds in chemical space. In the cumulative distance, all 

prior years’ compounds are marked for comparison. These two approaches provide a 

finer-grained approach to measuring exploration in relation to previous year’s search 

behavior and cumulative search behavior over a period of time.  

 

 

Results 

 

Application of the Chemical Distance Method to Small Molecule Markush Patents 

 

I apply the technological distance measure to a sample of Markush drug patent 

applications and granted patents using the chemistry-based method introduced here. The 

exploration scores are aggregated by year, drug discovery strategy and trends for 

cumulative and prior year are compared (see Figures 6-10). 
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Figure 6: Firm exploration calculated using chemical structural similarities for 3 firms 

between 1990-2004. Average cumulative exploration scores for each patent are grouped 

by year and compared. 
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Figure 7: Firm exploration calculated using chemical structural similarities within 

patents. Markush patents (granted and applications) for 578 firms are represented here 

from 1990-2004. 

 

 

 

Figure 8: Firm exploration for target-based drug discovery is shown here. 
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Figure 9: Firm exploration for non-target based drug discovery is shown here. 

 

 

Figure 10: Targeted strategies show more exploration compared to non-target based drug 

discovery  

 

Figure 6 shows variation in explorative paths for three firms. A score closer to 1 indicates 

maximal dissimilarity – indicating exploration. The similarity here is calculated based on 

chemical scaffolds, which are the primary backbone structures of compounds. The 

Jaccard distance for any given year (e.g. 0.96) is read as: average dissimilarity to prior 

year is 0.96 or about 96% of current portfolio of compounds are not similar to all the 

prior year’s compounds. Hence, indicating a higher level of exploration.  

The average of all such explorative paths is shown in Figure 7. As one would expect, the 

prior year comparison trends are slightly higher compared to cumulative. Matching only 

against prior year compounds is a subset of the history of all compounds made by the 

firm. Figures 8-9 compare the explorative paths of the firms based on their search 
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strategy. Figure 10 compares average firm exploration based on search strategies 

(cumulative comparison). Overall, targeted strategies indicate more exploration than non-

targeted strategies.  

 

Comparison to Euclidean Distance Measure 

In the innovation literature, technological distances have been previously measured using 

different spatial distance measures like Euclidean, Cosine and Jaccard distances. These 

distances are derived from spatial coordinates specified by patent classes and subclasses. 

The United States Patent Office provides a well-structured patent class system that is 

used to captures distances. For example, a patent with class 514 and subclass 18.7 

indicates Drug and Body Treating Compositions (class 514) for an Anti-Inflammatory 

(sub-class 18.7). Using such detailed classes, vector distances can be calculated for any 

two patents or groups of patents. A well-used method for measuring technological 

distances in the innovation literature is the Euclidean distance based on patent classes 

(Jaffe, 1989; Aharonson & Schilling, 2016; Tzabbar, 2009; McNamee, 2013).  

To compare the chemical distance method to existing approaches, I focused on 

technological distances that use patent class information derived from the US patent 

classification system. 

 

An algorithm was implemented in the Python programming language using the Scientific 

Python (SciPy) library to capture the inter-patent distances using USPTO classes and 

subclasses. To measure technological distance between two sets of patents, centroid 

distances were used. Patents were grouped by year for a firm or group of firms depending 
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on the analysis. The centroid for a group of patents (or n-dimensional space object) is the 

arithmetic mean position of all the points in the shape. The Euclidean distance between 

any two patent-years is calculated using the centroids between those years. This centroid-

based measure captured the technological distance groups of patents for a firm or 

collection of firms grouped by years.  

The general formula for Euclidean distance is, 

 

where, x and y are any two vectors. 

 

Cumulative versus Prior-Year Distances:  Similar to the chemical distance measure, two 

versions of distance measures were implemented to capture firm level exploration. A 

cumulative distance measure captures distance compared to all the previous years’ patent 

classes. That is patents in 1999 are compared to all prior year patents (1990-1998).  A 

prior-year distance measure compares the classes to only the prior year’s classes. That is 

1999 is compared to 1998 only. This dual measure provides a granular account of the 

firm’s year-by-year exploration. 

 

Firm-Level Technological Distances 

Data sample: For this firm level comparison, I selected about 1000 US patent 

applications that had patent class information for three firms – Merck (422), BMS (312), 

Pfizer (290). Results are show in Figure 11 and 12 below. 
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Figure 11: Firm exploration calculated using USPTO classes (Euclidean distance) for 3 

firms between 1990-2004. Patents are grouped by year, their centroids calculated and 

distance compared. 
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Figure 12: Firm exploration calculated using chemical structural similarities for 3 firms 

between 1990-2004. Average cumulative exploration scores for each patent are grouped 

by year and compared. 

 

Industry-level Technological Distances 

Data sample: For the industry level comparison, I selected about US patent applications 

for 3000 firms filed between 1990-2004. Results are show in Figure 13 and 14 below. 

 

 

Figure 13: Industry level exploration calculated using USPTO classes (Euclidean 

distance) between patents. Markush patents (granted and applications) for 3000 firms are 

represented here from 1990-2004. 
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Figure 14: Firm exploration calculated using chemical structural similarities within 

patents. Markush patents (granted and applications) for 570 firms are represented here 

from 1990-2004. 

 

Discussion of Chemical and Euclidean distances 
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distances based on Tanimoto chemical similarities are used to capture centroid distances 

between groups of patents. This measure is built upon actual compounds made and 

registered in patents and is an accurate measure of the exploration in chemical space by 

the firm.  

The industry exploration for patent based approach does not show any clear or consistent 

trends over time. The exploration trends for chemical based distances show a clear 

decrease in exploration over time, showing that firms are tending to make the same kind 

of compounds over time. Thus, showing that technological exploration is decreasing with 

time. 

 

 

Discussion and Conclusions 

To empirically assess the impact of the human genome map on exploration a novel 

distance measure was developed and tested on a sample of Markush drug patents and 

applications comprising 570 firms from 1990-2004. Results indicate an overall decrease 

in exploration, while targeted strategies showing more exploration than non-target based 

approaches (Figures 6-10). These results support underlying events in in the context of 

drug discovery and are discussed in detail below. 

 

Overall, we see a general narrowing of firm exploration between 1990-2004. Two 

interesting trends are consistent across these figures – a dip in exploration in 1995 and a 

period of increased exploration subsequent to that. In this particular time period, two 

major events occurred related to drug discovery and novel compound search. 
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Combinatorial chemistry, a novel technology to make large number of compounds at low 

cost and high diversity entered the industry (Persidis, 1998). From the late 1990’s leading 

up to June 2000, the Human Genome Map was released in the public domain. These two 

developments are critical to understanding the exploration trends we observe in Figures 

6-10. 

 

In general, exploration could be declining over time as firms tend to make compounds 

similar to what they know or what their inventors are experts in. In our interviews with 

industry experts, we found that some medicinal chemists have preferred chemical 

scaffolds in which they are specialists and tend to exploit their expertise in manipulating 

those structures across projects. It is also possible that firms could be working on similar 

looking chemical structures driven by focused disease markets and targets areas that they 

already operate in (e.g. antibiotics versus pain drugs). These constraints could be 

narrowing the search process over time.  

 

In the mid-1990’s, there was broad adoption of combinatorial chemistry techniques 

across the drug industry. Firms built their own libraries of compounds and also had 

access to vendor libraries that contained millions of new compounds. Since firms were no 

longer limited by their medicinal chemists’ skills, with combinatorial chemistry they 

could to experiment with new compound structures and screen them in a high-throughput 

manner. This accessibility to new diverse compounds and novel chemical scaffolds due 

to combinatorial chemistry could explain the sudden increase in chemical exploration 

across the industry post-1995. 
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We observe targeted strategies having higher levels of exploration in most years 

compared to non-targeted. The underlying differences in search strategies could also 

explain the contrasting exploration trends between targeted and non-targeted strategies. 

Non-target based or phenotypic search is based on iterative testing and modification of a 

small set of chemical structures, until the desired effect is found. It is possible, that 

chemical space exploration in the non-targeted approach is encumbered by two limiting 

factors: medicinal chemist’s bias in selection of chemical structures based on preferences 

and focused iteration/selection of compounds based on privately accumulated internal 

libraries. In contrast, the target-based approach is defined by having a focused disease 

target (a lock) for which combinatorial libraries can be screened in a high-through way 

for available hits (keys). The diverse nature of externally sourced libraries could be the 

reason for the increase in chemical space exploration compared to non-target based 

exploration that we observe in Figure 10. Here, the disease or gene target combined with 

combinatorial libraries is driving exploration, not the tacit knowledge and prior 

experience of medicinal chemists and firms.  

 

We also observe an increase in exploration for target-based strategies post-2000 

coinciding with the release of the human genome (Figures 9-10). A possible explanation 

for this bump in exploration could be the availability of about 10,000 targets – many new 

genes and exact DNA sequences that could be used to model the target protein structures. 

The availability of new gene targets combined with combinatorial chemistry libraries 

(new, diverse chemical scaffolds) could be increasing overall exploration in chemical 
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space. Interestingly, we observe exploration also increasing in non-targeted strategies 

towards the early 2000’s suggesting that firms could be integrating combinatorial 

chemistry and high-throughput methods across both strategies (Kotz, 2012).  

 

While the technological distance measure introduced here can provide granular tracking 

of exploration paths compared to patent classes, more testing is needed using different 

patent datasets and across different time periods to improve robustness. In summary, this 

study introduces a novel technique using chemical similarities to measure technological 

distance and firm exploration using patents. By capturing technological search 

trajectories over time this study provides insights on the effect of the human genome map 

on chemical space exploration. 
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Appendix 

 

Figure A: Structural comparison of 8 compounds 

 

 

Figure B: Binning clustering algorithm results from ChemmineR 
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