FIXED POINT AND INVARIANT

Introduction

In their discussion of Axiomatic Semantics Programming Language textbooks give an approach to handling assignment and decision statements which is straightforward. Consideration of simple unnested whiles and the invariants necessary for their proof however is not straightforward. What is required of an invariant is clearer, than what it is. Here we explore the assertion that an invariant for a while is equivalent to the fixed point of a related recursive definition. Those tail-recursive definitions equivalent to whiles in a program that have fixed points can usually be represented as assignments. Where it is possible to replace a simple while in a Program P with an assignment statement, proof of the consequence of larger parts programs may become feasible.

Relation Of Recursion And while

A recursive definition consists of a set of conditioned equalities. Each equality is asserted to hold under a condition involving the relation of its parameters. The fixed point of a recursive function definition, R, is a function, \(gfp(X) \) (\(X \) is a set of parameters) which satisfies the equalities of R. The object of including the recursive definition facility in a programming language in which a desired function, \(gfp(X) \), is not directly available, is to be able to realize \(gfp(X) \). The programmer usually has in mind this closed (non-recursive) form version of the function \(gfp(X) \) when writing the recursive definition. Proof that recursive definition R realizes \(gfp(X) \) requires showing that when each parameter appearing on the left of an equality is substituted for its appearance on the right equality holds under the condition associated with that equality. Proof of termination is also required.

In a tail recursive function definition \(g(X) \) the form of non-terminal lines is \(g(X) = g(h(X)) \), and terminal lines \(g(X) = t(X) \). \(h(X) \) and \(g(X) \) are each a set of functions, on the parameters \(X \). So the line

\[
f(n) = f(n-1) + f(n-2) : n > 1 \text{ (read “:” as “if”)}
\]

could not appear in a tail recursive definition.

The tail recursive definition form is of interest because it can be evaluated by a simple while program, namely one whose body contains assignment and conditional statements. For example, the tail recursive
schema shown on the left of figure 1 represents a broad class of *tail recursive* definitions. The equivalent *while* is shown on the right. The notation is explained in the figure. Notice that on each pass through the *while* the components of X are transformed into a set of equinumerous components, oX. The variable F, holding the eventual result of the *while* computation, is altered by a function pX. In the simplest case X is a single variable. This is virtually the same way in which an equivalent *tail recursive* function would be evaluated.

<table>
<thead>
<tr>
<th>Basic Form Of Tail Recursion for the Function $g(F,X)$</th>
<th>Equivalent while</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X_T = \text{terminal value of } X)$</td>
<td>$(X_T = \text{terminal value of } X)$</td>
</tr>
<tr>
<td>$F = F_0$</td>
<td>$F = F_0$</td>
</tr>
<tr>
<td>$X = X_0$</td>
<td>$X = X_0$</td>
</tr>
<tr>
<td>$g(F,X) = g[F \ pX, oX]$: $X \neq X_T$</td>
<td>${ F = F \ pX; X = oX; }$: Assumed to be run in parallel</td>
</tr>
<tr>
<td>$g(F, X) = F$: $X = X_T$</td>
<td></td>
</tr>
</tbody>
</table>

In this and other figures unsubscripted upper case letters, X and F, represent ordered sets of variables, i.e. $<X_1, ..., X_n>$ and $<F_1, ..., F_m>$ respectively. The lower-case letter o, in oX represents n functions each applied to the components of X i.e. $oX = <o_1(X_1,..X_n), o_2(X_1,..X_n), ..., o_n(X_1,..X_n)>$, similarly $pX = <p_1(X_1,..X_n), p_2(X_1,..X_n), ..., p_n(X_1,..X_n)>$. \cdot represents an infix operator with vector arguments, so $F \ pX = <F_1 \ p_j, ..., F_{j'} \ p_j, ..., F_{n \ p_j}>$ where $P_j = p_j(X)$.

Note that the recursive definition in figure 1 defines a *parallel* computation i.e. the value of the parameters on the right depend only on their values on the left of the equality. They do not depend on the order in which the arguments occur. In the *while* however, the order in which the recomputation of X and F are written can make a difference. So if $X = oX$ precedes $F = F \ pX$ in the *while* the result would differ, though interchanging the parameters in the tail recursive definition would not. In our notation, unless otherwise specified, the assignments in the body of the *while* are assumed to be done in parallel. An equivalent iterative computation in the *while* will transform the invariant in the same way as the parallel computation. (Given an iterative computation in the *while* one can get a parallel version easily by listing all the variables which are changed in the body of the *while* as a post condition. The precondition for each of these give the computation which led to that post condition.

Tail Recursion And The while Invariant

An Invariant of a *while* is a statement S which is true after the last instruction of the *while*’s body and which, together with the condition which allows the *while* to continue, is also the weakest precondition before the first instruction of that body. S is certainly related to the function performed by the *while*, but
the nature of that relation is not always clear. Most textbooks give the property that the invariant must have—but do not say what it is. This is probably because generally there are many statements which can serve as the invariant. As a concrete statement that will often serve as the invariant I propose using the statement “The invariant involves the fixed point $gfp(X)$ represented by $K = gfp(L)$”, K being constant within the body of the while. Any property of $gfp(X)$ also will serve as the invariant and there are some tail recursive functions which do not have a simple $gfp(X)$. Showing that this Invariant has the correct properties by finding the weakest precondition involves a similar process as proving that $gfp(X)$ is the fixed point of the equivalent tail recursive definition.

In the recursive definition case, one simply substitutes for parameters on the left, the corresponding parameter on the right side of the conditioned equations and shows that the resultant right and left sides are equal under these conditions. Now consider the while case. Assume the body of the while consists of a set of parallel conditioned assignments statements and S is the invariant after the body of the while. Then one substitutes in S with the right side of these assignments for the occurrences of the left sides of the assignments found in S. These two forms of proof are virtually identical.

In the class of whiles in figure 2 sequential assignment is equivalent to parallel assignment. Whether parallel or sequential in the while the assignments, must be equivalent to the parallel substitution for parameters in the recursive definition case. So the results should be the same.

In figure 2 the tail recursive function is shown again with its equivalent while. This time with the invariant included together with its weakest pre-conditions.

<table>
<thead>
<tr>
<th>Basic Form Of Tail Recursion for the Function $g(F,X)$</th>
<th>Equivalent while with Invariant and Proof Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X_T = \text{terminal value of } X)$</td>
<td></td>
</tr>
<tr>
<td>$F = F_0$</td>
<td>$F = F_0$;</td>
</tr>
<tr>
<td>$X = X_0$</td>
<td>$X = X_0$;</td>
</tr>
<tr>
<td>a) $g(F, X) = g[F ; pX, ; oX] : X \neq X_T$</td>
<td>while($X \neq X_T$)</td>
</tr>
<tr>
<td>b) $g(F, X) = F$</td>
<td>{ ${ K = gfp(F ; pX, ; oX) && X \neq X_T }$</td>
</tr>
<tr>
<td>$g(F, X) = gfp(F,X)$) the fixed point</td>
<td>$F = F ; pX ;$</td>
</tr>
<tr>
<td>if</td>
<td>{ ${ K = gfp(F, X) && X \neq X_T }$</td>
</tr>
<tr>
<td>a) $gfp(F,X)] == gfp(F ; pX, ; oX) : X \neq X_T$</td>
<td>$F = F ; pX ;$</td>
</tr>
<tr>
<td>b) $gfp(F,X)] == F$</td>
<td>{ ${ K = gfp(F, X) && X \neq X_T</td>
</tr>
<tr>
<td></td>
<td>$X = oX ;$</td>
</tr>
<tr>
<td></td>
<td>{ ${ K = gfp(F, X) && X \neq X_T</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td></td>
<td>$X = X_T$</td>
</tr>
<tr>
<td></td>
<td>{ ${ K = F && X = X_T }$</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
</tbody>
</table>

In figures 3a there is an example of the proof scheme of figure 2 a. The tail recursive definition defines the minimum Index J at which Z is found in array $X[1...N]$ when for at least one J between 1 and N, $X[J] == Z$.

© 2007 M C Paull
Tail Recursive definition for the minimum Index \(J \) at which \(X[J] = Z \) in array \(X[1...N] \)- given that for at least one \(J \) between 1 and \(N \), \(X[J] = Z \).

Fixed Point and Proof

a) \(g(F, <X,N,Z>) = g(F+1, <X,N,Z>) : X[F] \neq Z \)

b) \(g(F, <X,N,Z>) = F : X[F] = Z \)

\(g \)fp\((F, <X,N,Z>) = \min J \geq F \ X[J] = Z \)

if

a) \(gfp((F, <X,N,Z>) = \min J \geq F + 1 \ X[J] = Z \)

\(= \min J \geq F \ X[J] = Z \)

b) \(gfp((F, <X,N,Z>) = \min J \geq F \ X[J] = Z : X[F] = Z \)

\(= Z \)

In figures 3b another example of use of the proof scheme given in figure 2 is shown. There a tail recursive definition for the minimum Index \(J \) at which the value \(Z \) is found in array \(X[1...N] \)- given that for at least one \(J \) between 1 and \(N \), \(X[J] = Z \). The while realization, invariant and proof is included.

EXAMPLE

Tail Recursion Definition for Integer Division of \(R \) by \(D \), its Fixed Point and Proof

\(F=F_0 ; R=R_0 \ D > 0 \)

a) \(g(F, <R, D>) = g(F+1, <R-D, D>) : R >= D > 0 \)

b) \(g(F, <R, D>) = F \) : \(D > R >= 0, \ D > 0 \)

\(g(F, <R, D>) = F + \lfloor R/D \rfloor \)

if

a) \(F + \lfloor R/D \rfloor = F + 1 + \lfloor R-D/D \rfloor : R >= D > 0 \)

\(= F + 1 + \lfloor R/D \rfloor \)

\(= F + \lfloor R/D \rfloor \)

yes

b) \(F + \lfloor R/D \rfloor = F \) : \(R + D >= D > 0, \ R > 0 \)

\(F + 0 = F \)

yes

*\(\lfloor R/D \rfloor \) represents integer division of \(R \) by \(D \).

Equivalent while with Invariant and Proof

Can be replaced by

\(F = min (1 >= F) \ X[J] = Z \&\& X[F] = Z \}

\(K = \min (1 >= F) \ X[J] = Z \&\& X[F] = Z \}

\(F = 1; X = an array \)

while \((X[F] = Z) \)

\{ \(K = \min J \geq F + 1 \ X[J] = Z \}

\(\) \(\) \(\)

\{ \(K = \min J \geq F \ X[J] = Z \}

\(F = F + 1; \ X = an array \)

\{ \(K = \min J \geq F \ X[J] = Z \)

or \(\)

\{ \(K = F \}

*since \(X[F] = Z \)

\(\)

**Note that if, on the right, the instruction preceding \(\{ K = F_0 + \lfloor R_0/D_0 \rfloor \} \) was \(F_0 = 0 \) then \(\{ K = \lfloor R_0/D_0 \rfloor \} \) must be true before that instruction. It follows that \(\{ K = F \} \) is true after the given code iff \(K = \lfloor R_0/D_0 \rfloor \), i.e. the while can be replaced by the assignment \(F = F_0 + \lfloor R_0/D_0 \rfloor \)

\(\)

© 2007 M C Paull
General Form Of Tail Recursion

Figure 4 gives another general form of the *tail recursive* definition with the conditions which determine the computations at each pass through the *while* given explicitly. It has the property that all computation on the right of a recursive line with \(g(X) \) on the left is done within the argument structure of \(g \). For each of the mutually exclusive conditions: \(\text{cond}_1, \ldots, \text{cond}_m \), the function that transforms the argument structure differ. Similarly for each of the mutually exclusive terminal condition, \(\text{cond}_{T1}, \ldots, \text{cond}_{Tm} \), there is a terminal value \(s_1X, \ldots, s_mX \). Every one is tested, only one succeeds.

These conditions appear in the equivalent *while* function. They are, of course, still mutually exclusive there. This is likely to be an inefficient way of actually implementing the selection of cases. In an iterative representation there are many more efficient alternatives: a jump to the end of all decisions could be executed once a true outcome occurs, or a decision could be made initially which bifurcates the possible true decisions so one need not test every conditions or etc. Despite all these alternative possible iterative implementations: given a post condition at the end of the body of the *while*, the resultant precondition before the body of that *while* is independent of the choice of equivalent ways of determining which mutually exclusive conditions is true. So the invariance does not depend on these details of the iterative implementation. Figure 4 is then shows the same parallel representation of the *while* as in the recursive definition.

Basic Form Of Tail Recursion for the Function \(g(X) \)

\[
X_0 = < x_{01}, \ldots, x_{0n} >
\]

1. \(g(X) = g(h_{11}(X), \ldots, h_{1n}(X)) \) \(X \neq X_T \) \& \(\text{cond}_1(X) \)
2. \(g(X) = g(h_{n1}(X), \ldots, h_{nn}(X)) \) \(X \neq X_T \) \& \(\text{cond}_n(X) \)

Equivalent *while* with Invariant with Proof Scheme

\[
X = X_0 = < x_{01}, \ldots, x_{0n} >
\]

\[
\text{while}(X \neq \text{cond}_{T_k}(X); \ k=1\text{ to } m)
\]

\[
\{ \ K = g_{fp}(h_{11}(X), \ldots, h_{1n}(X)) \& \& X \neq X_T \& \& \text{cond}_1(X) \} \\
\vdots \\
\{ \ K = g_{fp}(h_{n1}(X), \ldots, h_{nn}(X)) \& \& X \neq X_T \& \& \text{cond}_n(X) \}
\]

\[
\text{if} (\text{cond}_1(X)) \{ X = < h_{11}(X), \ldots, h_{1n}(X) > ; \} \ |^* \\
\vdots \\
\text{if} (\text{cond}_T(X)) \{ X = < h_{T1}(X), \ldots, h_{Tn}(X) > ; \}
\]

\[
\{ K = .g_{fp}(X) \& \& X = X_T \& \& X \neq X_T \} \\
\vdots \\
\{ X = s_1X ; \text{if} (\text{cond}_{T1}(X)) \}
\]

\[
\{ X = s_mX ; \text{if} (\text{cond}_{T_m}(X)) \}
\]

[^*]: Must be parallel because assignment on a true statement may make following statements also true. Can be made effectively parallel with use of ‘elises or with case statements.

© 2007 M C Paull 5
Figure 5 is an example of a definition which involves two recursive equations which are invoked under mutually exclusive conditions and in the corresponding while two if statements under mutually exclusive conditions. These could alternatively be one if than else statement as shown. Also the conversion from that serial equivalent back to to the original parallel form is shown

EXAMPLE

Greatest Common Divisor

1) \(g(X, Y) = g(X-Y, Y) \) : \(X > 0 \) \&\& \(Y > 0 \) \(X > Y \)

2) \(g(X, b) = g((X, Y-X) : X > 0 \) \&\& \(Y > 0, X <= Y \)

T1) \(g(X, b) = X \) : \(X == Y \)

\[\gcd(X, Y) \]

\[\text{if} \]

1) \(\gcd(X,Y) = \gcd(X-Y, Y) \) : \(X > Y \)

2) \(\gcd(X,Y) = \gcd(X, Y-X) \) : \(X < Y \)

T1) \(\gcd(X,Y) = X \) : \(X == Y \)

We show that

1) \(\gcd(X,Y) = \gcd(X-Y, Y) \) : \(X > Y \)

Assume \(X > b \) and \(g = \gcd(X,Y) \) then \(g \)
divides both \(X \) and \(Y \) (\(X/g \) and \(Y/g \) are integers). \(X > Y \) so \(X/g - Y/g = \text{integer} \ \ h \)

Therefore \((X-Y)/g = h \),
i.e., \(X-Y \) is divided by \(\gcd(X,Y)=g \)
similar argument works for 2) and

T1) is obvious

\[\{ (X > Y) \Rightarrow X = X-Y \&\& (X <= Y) \Rightarrow Y = Y - X; \} \]

Parallel Equivalent

if(\(X > Y \)) \(X = X - Y \) else \(Y = Y - X; \) Serial Alternative

© 2007 M C Paull
in the definition and equivalent while. This still leaves open proof of properties of the tail recursion definition (and while) which are not the fixed points, but rather properties of the fixed points. These also are often more easily handled directly using the definition rather putting them into the form of an invariant of the while.

REFERENCES

KEYWORDS

program correctness, axiomatic semantics