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ABSTRACT OF THE DISSERTATION

Towards Risk Models in Machine Learning

By CONSTANTINE ALEXANDER VITT

Dissertation Director:

Hui Xiong

This thesis explores new models for some machine learning problems based on recent

developments in the theory and methods of risk analysis and risk-averse optimization.

Two types of risk models are used: coherent measures of risk and a dynamic model

based on stochastic differential equations. These models are applied to two areas of

machine learning: classification and identification of the impact of patent activity on

the stock-price dynamics of companies in the technology sector.

We propose a new approach to classification, which aims at determining a risk-

averse classifier. It allows different attitude to misclassification risk for the different

classes. This is accomplished by the application of non-linear risk functions specific

to each class. The structure of the new classification problems is analyzed and opti-

mality conditions are obtained. We show that the risk-averse classification problem is

equivalent to an optimization problem with unequal, implicitly defined but unknown
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weights for each data point. The new methodology is implemented in a binary clas-

sification scenario in several versions. One type of risk-averse SVM is based on a

soft-margin classifier using various coherent measures of risk as objectives. Another

type of risk-averse SVM problems determine a classifier with a normalized vector of

the separation plane using again several sets of risk measures in the respective ob-

jectives. We propose a numerical method for solving the classification problem with

normalization constraint. Numerical test are performed on several data sets with dif-

ferent levels of separation difficulty. The results are compared to classification with

benchmark loss functions, which are well established in the literature.

In the second part of the thesis, we consider patent activity in the technology

sector and their impact on the stock-price dynamics. We show the promises of ex-

ploiting patent data for the analysis and prospecting of high-tech companies in the

stock market. A new approach to analyze the relationships between patent activities

and statistical characteristics of the stock price is developed, which may be of interest

to discovery of statistical relations among sequential data beyond this context. We

demonstrate the relationships between the monthly drift and volatility of the market

adjusted stock returns and the number of patent applications as well as the diversity of

the corresponding patent categories. We use a widely accepted model of the market-

adjusted stock returns and estimate its parameters. Adopting the moving window

technique, we fit models by introducing various lagged terms of patent activity char-

acteristics. For each company, we consider the coefficients of each significant term

over the entire time horizon and perform further statistical hypothesis testing on the

overall significance of the corresponding indicator. The analysis has been performed

on real-world stock trading data as well as patent data. The results confirm the

impact of innovations on stock movement and show that the market-adjusted stock
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returns do exhibit more volatility if the company has been extending their patents

to new areas. On the other hand, the statistical relation between the drift of stock

returns and the patent activity of a company appears to be of more complex nature

involving other latent factors.
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Chapter 1

Introduction

Due to the rapid development of technology in recent years, large sets of observa-

tional data have become available in almost all areas of science, engineering, and

business. This creates the opportunity of analyzing data and extracting information,

which opens new perspectives, scientific discoveries, as well as business advantages

for the successful explorers. This opportunity has motivated the recent interest in

data mining.

Most data sets are gathered from dynamical systems whose evolution is of interest.

In some cases, we seek to discover typical patterns of evolution, which are inherent

for the systems. We may be interested in predicting the future behavior, or we

look for anomalies in the current behavior. The theoretical and numerical challenges

associated with the analysis of large data sets have attracted the attention of many

highly qualified scientists who have developed a number of new algorithms to classify,

cluster, segment, index, model, and detect anomalies in them.

In every specific problem arising in machine learning, we deal with a given dataset,

which we may want to represent by mapping each instance to a space of features. The

features may be continuous, categorical or binary and are supposed to express the

essence of the information contained in each record. Feature selection is an important

process in which, we identify the most relevant features of each instance in the dataset

to our task; we remove redundant features or transform the instances to obtain new

(transformed) features. This process reduces the dimensionality of the data and
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facilitates the operation of data mining algorithms. We talk about supervised learning

when the instances are given with known labels assigning them to some categories or

classes. In contrast to this, unsupervised learning deals with unlabeled instances.

Typical techniques of machine learning are the following.

• Classification: It is the most notable technique of supervised learning. Given

a task and a dataset, the goal is to identify a function, which will output an

proper assignment to any future instance to one of two or more predefined

classes [38, 50, 54].

• Clustering: Data clustering is one of the most popular data labeling tech-

niques. Its goal is to determine task-appropriate groupings of the instances in a

database under some similarity (or dissimilarity) measure D(·, ·) [45, 59, 78, 50].

Clustering can be applied to an exploratory task or as a preprocessing step for

further machine learning work.

• Indexing (Query by Content): Given a query X, and some similarity (or

dissimilarity) measure D(·, ·), identify the most similar instance in a database

[25, 70, 80, 49].

• Motif Discovery is the detection of previously unknown, frequently occurring

patterns (see, e.g.,[21, 101]);

• Statistical analysis: several typical tasks include segmentation of sequential

data into sections of stationary processes with similar characteristics, create an

approximation of X which retains its essential features but is of much smaller

size (also known as summarization); most notably Prediction of future val-

ues and Anomaly detection. Anomaly may be considered “unexpected /

unusual / novelty” occurrences, which may lead to a big risk or to high profit.

This task is also associated with outliers detections [5] or rare events discovery

[18].
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In all of these tasks, we see the essential role of a proper statistical model and a

good way to identify patterns of interest. That is why, in this thesis, we present a

contribution to those two areas. In the first part of the thesis, we focus of classification

problems and develop a risk-averse approach to such problems. In the second part

of the thesis, we focus on a dynamical system and propose a new methodology for

gaining insight into its dynamics.

Classification is one of the most frequently used data-mining method. It is a fun-

damental tool used in anomaly detection, serving to detect fraud, equipment failure,

insider trading, health anomalies, security bridges, e-mail spam and phishing, etc.

In our numerical work, we have used data to identify health anomaly and patterns

associated with seismic activities pertaining to mining and safety.

The problem of detecting anomalous, unusual and or novel patterns has been a

point of focus for many researchers. The problem of anomaly detection consists in

defining what constitutes an anomalous pattern. In order to do this, we must first

determine what is considered a normal state or pattern. Next, we must ascertain what

magnitude of deviation from this normal state is to be considered abnormal. Online

detection of abnormal patterns/subsequence requires efficient treatment of dynamic

data steam, availability of data for training and validation purposes, striking a good

balance between rapid detection and low false alarm rate. Additionally, we need to

monitor and identify changes in the boarders of normal and abnormal regions. The

available data may be noisy or the system may be subject to changes. These challenges

are known in statistical analysis and many scientist have suggested analytical and

numerical tools to address them to some extent. We refer to the surveys [66, 17, 46]

for systematic presentation of the anomaly detection techniques. Classification based

anomaly detection techniques are developed on the basis of binary separation, as well

as multi-class separation. A binary classifier is a function on the space of features

with a binary output. Given an observation, the task is to classify it as anomalous,

in which case, the classifier outputs one after reading it, or normal; the output of
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the classifier is zero. This approach requires a training set, in which the normal

sequences are known/labeled. In many applications, multiple normal classes can be

identified. In that context, a binary classifier is trained to distinguish between each

normal class and the rest of the classes. Each subsequent instance is considered

anomalous if it is not classified as normal by any of the classifiers. Other application

(e.g., [91]) associates multiple classes of anomalous (malicious) rare events which have

different nature. A new instance is considered normal, if it is not classified as malicious

(anomalous) of any kind. The theoretical analysis in this thesis will cover those type

of classifications. The methodology proposed here contributes to the stability and

robustness of the classification by involving the modern tools of coherent measures

of risk. Additionally, we provide a method to construct confidence intervals of the

risk associated with the new type of classifiers. This is a novel information supplied

in addition to the confidence score currently associated with the prediction made by

the classifier.

Time series data accounts for an increasingly large fraction of the world’s supply of

data. A random sample of 4,000 graphics from 15 of the world’s newspapers published

from 1974 to 1989 found that more than 75% of all graphics were time series [100].

Time-series data mining addresses a wide range of real-life tasks in various fields

of research. Some examples include economic forecasting [32], intrusion detection

[15, 13], gene expression analysis [84], medical surveillance [14], hydrology [77], and

virtually all areas of human activity. In the medical domain alone, large streams of

data such as gene expression data [11], electrocardiograms, electroencephalograms,

growth development charts are routinely recorded and analyzed. A lot of interest and

attention attracts data related to finance, as well as data related to entertainment,

meteorology, and many other industries. In finance, a new research area, called high-

frequency data analysis, has emerged [35], which seeks to extract information from

almost continuous data streams. On-line identification of specific rare events for

high-frequency data in the context of quantitative finance is discussed in [10].
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We shall outline a specific application of time series data-mining techniques in

finance, where we analyze what impact the patent activity of a high-tech company

has on the dynamics of its stock.

In this thesis, we have used publicly available data with an appropriate prepro-

cessing. The raw recorded data coming from dynamical systems are usually high-

dimensional streams which are often recorded with errors; they may contain data

gaps, erroneous records, duplicate records, or disordered sequences. All these prob-

lems specifically occurred in relation to the problem presented in chapter 3. Some

type of erroneous records are relatively easy to address and tools for their removal are

available. The procedures to mitigate these errors are referred to as “data cleaning”,

but, to the best or our knowledge, no formal definition of this process exists. Addi-

tionally, no clear delineation between data cleaning and data quality exists. Usually

the existing literature suggests to combine several methods in order to increase the

power of detecting errors in the data. In many cases, gaps are present in the data

series. Several methods are available for dealing with this problem. The simplest

method is to use statistical estimates such as a mean or a median value instead of

a missing value; such estimates can be calculated on the basis of the neighboring

values (cf. [42, 30, 61]). It is accepted that good practice for data management re-

quire proper documentation of all procedures associated with it. Data cleaning is as

an essential aspect of quality assurance and it is important when one seeks to com-

pare algorithms or validate the studies using the data. We discuss the specific data

preprocessing methods germane to our study in due course.
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Chapter 2

Risk Sharing

2.1 Introduction

Classification is one of the fundamental tasks of the data mining and machine learning

community. The need for accurate and effective solution of classification problems

proliferates throughout the business world, engineering, and the sciences. Our goal is

to propose a new approach to classification problems and to develop a methodology

for reliable risk-averse classifiers design which has the flexibly to allow customers

choice of risk measurement for the misclassification errors in various classes. The

proposed approach has its foundation in the theory of coherent measures of risk and

risk sharing. Although, this theory is well advanced in the field of mathematical

finance and actuarial analysis, the classification problem does not fit the problem

setting analyzed in those fields. The theoretical results on risk sharing are inapplicable

here. The classification problem raises new issues, poses new challenges, and requires

a dedicated analysis.

We consider labeled data consisting of k subsets S1, . . . , Sk of n-dimensional vec-

tors. The labels of the data points in Si will be denoted by yi and yi = i. The

cardinality of Si is |Si| = mi, i = 1, . . . , k. The data points represent observations in

the space of “features” (i.e., the number of features is n). Analytically, classification

problem consists in identifying a mapping ϕ, whose image can be partitioned into k

subsets corresponding to each class of data, so that ϕ(·) can be used as an indicator

function of each class. We adopt the following definition.

Definition 1. A classifier is a function ϕ : Rn → R
d and a collection of nonempty
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sets Ki ⊂ Rd, i = 1, . . . , k, such that

ϕ(x) ∈ Ki for all x ∈ Si, i = 1, . . . , k,

Ki ∩Kj = ∅ for all i, j = 1, . . . , k, i 6= j.

In our discussion, we assume that the classifier belongs to a certain functional

family depending on a finite number of parameters, which we denote by π ∈ Rs. The

task is to choose a suitable values for the parameter π, that is, we deal with a vector

valued classifier ϕ(x; π) = (ϕ1(x; π), . . . , ϕd(x; π))> and regions Ki ∈ Rd, i = 1, . . . , k.

Some examples of this point of view are the following.

Example 1 (The support vector machine).

When support vector machine is formulated, we seek to distinguish two classes, i.e.,

k = 2. The classifier is a linear function ϕ(x; π) : Rn → R, defined by setting

ϕ(x; π) = v>x−γ for any x ∈ Rn. The classifier is determined by the parameters π =

(v, γ) ∈ Rn+1. The regions the classifier maps to are K1 = [0,+∞), K2 = (−∞, 0).

Example 2 (Polyhedral classifier for multiple classes).

Let us consider the case of separating many classes, e.g., k ≥ 3 by the creating

a linear classifier on the principle “one vs. all”. Then effectively, our goal is to

determine functions ϕj(x; aj, bj) := 〈aj, x〉 − bj, where x is a data point from the

feature space, aj ∈ Rn, j = 1, . . . k − 1, are the normals of the separating planes and

bj determine the location of the j-th plane. Plane j is meant to separate the data

points from class j from the rest of the data points. This means that

ϕj(x; aj, bj) =


≥ 0 for x ∈ Sj

< 0 for x 6∈ Sj.
(2.1)

We define a k− 1× n matrix A whose rows are the vectors aj, and a vector b ∈ Rk−1

whose components are bj. The classifier for this problem can be viewed as a vector

function ϕ(·;A, b) : Rn → Rk−1 by setting ϕ(x;A, b) = Ax− b. The parameter space
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is π = (A, b) ∈ R(k−1)(n+1). Requirement (2.1) means that the regions Kj are the

orthants

Ki = {z ∈ Rk−1 : zi ≥ 0, zj < 0, j 6= i, j = 1, . . . , k − 1}, i = 1, . . . k − 1;

Kk = {z ∈ Rk−1 : zi < 0, i = 1, . . . , k − 1}

This setting may be used for classification in the anomaly detection scenario. Two

approaches are possible. One setting may require to distinguish between several

distinct normal regimes or features of normal operational status. In that case, the

class k may contain the anomalous instances, while classes i = 1, . . . k−1 represent the

normal operation. Another problem deals with several rare undesirable phenomena

with distinct features. In such a scenario, we may associate classes i = 1, . . . k − 1

with those anomalous events and class k with a normal operation.

Example 3 (Kernel-based classifier).

Kernel methods for classification assume that the data is mapped to a high dimen-

sional space of features where the classes of data are more likely to be separable. That

space must be a pre-Hilbert space, i.e., a space Z, where inner product is defined and

a reproducing kernel K : Z ×Z → R exists. More precisely, the non-linear mapping

ψ is such that ψ : Rn → Z

K(x, x′) = 〈ψ(x), ψ(x′)〉Z ,

where 〈·, ·〉Z denotes the inner product in Z. The function ψ is defined implicitly by

the choice of the kernel. In this case, we transfer our analysis to the new feature space

Z: we determine the regions Ki, i = 1, . . . k as being part of Z and consider classifiers

ϕ defined on Z. We intend to provide more precise formulation in due course.

2.2 Loss Functions

A key element, which distinguishes various classification approaches, is the choice

of a loss function, which combines several goals. On the one hand, it serves as a
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model fitting loss function in the statistical sense while minimizing misclassification.

On the other hand, it also controls model flexibility and numerical stability when

the classification problem is solved. Typically, the loss function is chosen as one of

the known risk functionals in statistical model fitting. The quality of every model is

determined by analysis of the residuals, e.g. the error. Let us introduce the following

notation. For a random observation z ∈ Rn, we calculate ϕ(z; π) and note that

misclassification occurs when ϕ(z; π) 6∈ Ki, while z ∈ Si for any i = 1, . . . , k. In

statistical terms, we try to predict the membership y ∈ {1, . . . , k} of a data point to

one of the classes. Therefore, we try to determine ϕ(x;A, b) in such a way that the

probability of the following events is maximized

P
{ k⋂
i=1

(
ϕ(x; π) ∈ Ki|x ∈ Si

)}
.

Alternatively, we are interested in minimizing the probability of the event

P
{ k⋃
i=1

(
ϕ(x; π) 6∈ Ki|x ∈ Si

)}
.

Using the indicator function of an event, we can estimate the aforementioned proba-

bility as follows:

P
(
ϕ(x; π) 6∈ Ki|x ∈ Si

)
=

1

mi

∑
xj∈Si

1̄IKi(xj),

where 1̄IKi(x) =


0 if ϕ(x; π) ∈ Ki

1 if ϕ(x; π) 6∈ Ki.

The classification error can be defined as the distance of a particular record to the

classification set, to which it should belong. Here the distance from a point r to a set

K is defined by using a suitable norm in Rn:

dist(r,K) = min{‖r − a‖ : a ∈ K}.

Note that here we assumes implicitly that the set K is convex and closed. Indeed,

the sets Ki, i = 1 . . . , k are closed convex set for most classification problems, as

evidenced by the examples in the previous section.
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In statistical terms, the records in every data class Si, i = 1, . . . , k constitute a

sample of an unknown distribution of a random vector X i defined on a probability

space (Ω,F , P ). The random variables defined as follows

Zi(π) = dist(ϕ(X i; π), Ki), i = 1, . . . k, (2.2)

represent the misclassification of records in class i when parameter π is used. These

are univariate random variables defined on the same probability space and are repre-

sented by the sampled observations

Zi
j(π) = dist(ϕ(xj; π), Ki) with xj ∈ Si j = 1, . . . ,mi.

The expected misclassification error for each class can be estimated as follows:

Ẑi(π) =
∑
xj∈Si

1

mi

dist(ϕ(xj; π), Ki)

The following figure illustrates how the classification error for a certain binary clas-

sifier is measured. In our examples, we consider the distance of the points ϕ(x; π) to

dist(ϕ(x2*;π),K2)
dist(ϕ(x1*;π),K1)

ϕ(·;π)

K2

K1

Figure 2.1: Classification error calculation

the sets Ki, i = 1, . . . , k

Example 4 (The support vector machine continued).

In the support vector machine the classification error is computed by

dist
(
ϕ(x; v, γ), Ki

)
=


max(0, 〈v, x〉 − γ) for x ∈ S1,

max(0, γ − 〈v, x〉) for x ∈ S2.
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We classify every new observation x in Si, if dist
(
ϕ(x; v, γ), Ki

)
= 0, i,= 1, 2. In the

case of SVM, the regions cover the entire image space of the classifier R = K1 ∪K2.

Therefore, the condition dist
(
ϕ(x; v, γ), Ki

)
= 0, i,= 1, 2, always holds for exactly

one class.

Example 5 (Polyhedral classifier for multiple classes continued).

Observe that in this case, the regions Ki, i = 1, . . . k do not cover the entire image

space of the classifier. Therefore, it is possible to to observe a future instance x

such that dist
(
ϕ(x;A, b), Ki

)
> 0 for all i = 1, . . . k. In that case, we could classify

according to the smallest distance

x ∈ Sj iff dist
(
ϕ(x;A, b), Kj

)
= min

1≤i≤k
dist

(
ϕ(x;A, b), Ki

)
, j ∈ {1, . . . , k}.

Another problem arises, if the the minimum distance is achieved for several classes.

The ambiguity could be resolved in several ways as a sequential classification proce-

dure but this question is beyond the scope of our study.

Example 6 (Kernel based classifiers continued).

If we have chosen a kernel with associated mapping ψ such that

K(x, x′) = 〈ψ(x), ψ(x′)〉Z ,

then the relevant distances become dist
(
ϕ
(
ψ(x); π

)
, Ki

)
, i = 1, . . . k. We shall con-

tinue the analysis of this example for binary classification in section 2.9.

2.3 Robust Classification Design and Robust Statistics

The design of robust estimators, robust classifiers in particular, has attracted atten-

tion of statisticians as well as of data scientists. Additionally, the distributions of the

populations providing the currently available records may not be well represented by

the current sample (e.g., it might have heavy tails, not be unimodal, etc.) Further-

more, misclassification may lead to different cost with different probability depending
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on the error. An example for such a case is the damage caused by a hurricane. If we

fail to predict correctly that a hurricane will take place in certain region, the cost of

the damage depends on the features used for classification and is highly non-linear

with respect to those features (see [24]).

We refer to [43, 31, ?, 40] and the references therein for methods of robust classi-

fication design. Most cases address binary classification.

Support vector machines are widely used and most popular classification tools.

They appear also as part of sequential classification methods for multiple classes.

Various approaches in the literature address the design of a robust classifier specifically

for the support vector machine.

We start with the formulation of an optimization problem based on the loss func-

tion expressing the minimization of the (estimated) expected total classification error.

The design of a binary classifier can be accomplished by solving the following opti-

mization problem:

min
v,γ,Z1,Z2

1

m1

m1∑
j=1

z1j +
1

m2

m2∑
j=1

z2j

s. t. 〈v, x1j〉 − γ + z1j ≥ 0, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ 0, j = 1, . . . ,m2,

‖v‖ = 1,

Z1 ≥ 0, Z2 ≥ 0.

(2.3)

In this formulation, Z1 and Z2 are random variables expressing the magnitude of

the classification error for class 1 and class 2, respectively. Those variables have

realizations z1i and z2i . The parameters of the classifier are π = (v, γ). Note that

proper calculation of the magnitude of classification error requires the use of the

Euclidean norm of v. In that case, 〈v, x〉 = γ is the equation of a plane and the value

ϕ(x; π) = 〈v, x〉 − γ is indicative of the position of the point x relative to that plane:

the sign of ϕ(x; π) indicates on which side of the plane the point is located and the

absolute value of ϕ(x; π) indicates how far is the point from the plane.
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The presence of the constraint ‖v‖ = 1 makes problem (2.3) non-convex and,

therefore, difficult to solve. The problem is frequently replaced by the so-called soft-

margin SVM, which is formulated as follows:

min
v,γ,Z1,Z2

1

m1

m1∑
j=1

z1j +
1

m2

m2∑
j=1

z2j + δ‖v‖2

s. t. 〈v, x1j〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

Z1 ≥ 0, Z2 ≥ 0.

(2.4)

Here δ > 0 is a small number. The objective function of problem (2.4) uses addi-

tional regularization term consisting of the squared norm of the normal vector to the

separating hyperplane. In problem (2.4), the normal vector v can be of any positive

length. Note that v = 0 would result in large error and it is, therefore, not a candidate

for the optimal solution. Additionally, the regularization term δ‖v‖2 prevents vector

v to become too large in the optimal solution. Observe that multiplying the solution

of problem (2.4), v and γ, by a positive constant does not change the separating

plane. In problem (2.4), the estimated expected total classification error equals

1

m1‖v‖

m1∑
i=1

max(z1i − 1, 0) +
1

m2‖v‖

m2∑
j=1

max(z2j − 1, 0)

This means that the objective function does not necessarily minimize the expected

classification error although the variables z1j and z2j are indicative of misclassification

occurrence. Therefore, it only makes sense to compare the quality of normalized

classifiers, where the length of v is one.

Most notable approach to robust binary classification is provided by the theory

and methods of robust statistics. In this approach, the model is fit using the Huber

risk function, which is defined for z ∈ Si, i = 1, 2 as follows:

LH(z; v, γ) =



[
max

(
0, 1 + (−1)i(γ − 〈v, z〉)

)]2
if

(−1)i(γ − 〈v, z〉) ≥ −1

(−1)i(〈v, z〉 − γ) otherwise.

(2.5)
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Another approach is presented in [57, 31], where the tools of robust optimization are

employed. The idea there is that the future instance will come a distribution, which

is close to the observed empirical distribution in some sense. Therefore, some set of

distrributions is constructed, called uncertainty set, and the minimization is carried

out over all distributions in that set. In [57, 31], the uncertainty sets are defined by

allowing all distributions on the smape space, which have the same mean and the

same covariance as the estimated empirical mean and covariance. In [67] the authors

look at the median hinge loss determined for each class and minimize the sum of the

two median losses.

Our proposed approach suggests to minimize the classification error in a risk

averse manner. For this purpose, we propose new family of loss functions, which use

coherent measures of risk.

2.4 Coherent Measures of Risk

Measures of risk are widely used in finance and insurance. Additionally, the signal

to noise measures, used in engineering and statistics (Fano factor [34] or the index of

dispersion [22]) are of similar spirit.

An axiomatic theory of measures of risk is presented in [75, 3, 36, 51, 85] In

a more general setting risk measures are analyzed in [90]. For p ∈ [1,∞] and a

probability space (Ω,F , P ), we use the notation Lp(Ω,F , P ), for the space of random

variables with finite p-th moments. We use R to denote the extended real line R =

R ∪ {+∞} ∪ {−∞}. We use Lp(Ω) for short whenever no ambiguity arises.

Definition 2. A coherent measure of risk is a functional % : Lp(Ω) → R satisfying

the following axioms:

Convexity:

%(γX + (1− γ)Y ) ≤ γ%(X) + (1− γ)%(Y )

for all X, Y and γ ∈ [0, 1].
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Monotonicity:

If Xω ≥ Yω for P -a.a ω ∈ Ω, then %(X) ≥ %(Y ).

Translation Equivariance:

For any a ∈ R, %(X + a) = %(X) + a for all X.

Positive Homogeneity:

If t > 0 then %(tX) = t%(X) for any X.

For an overview of the theory of coherent measures of risk, we refer to [94] and

the references therein.

A risk measure %(·) is called law-invariant if %(X) = %(Y ) whenever the random

variables X and Y have the same distributions. It is clear that in our context, only

law invariant measures of risk are relevant.

The following result is know as a dual representation of coherent measures of risk.

The space Lp(Ω) and the space Lq(Ω) with 1
p

+ 1
q

= 1 are viewed as paired vector

spaces with respect to the bilinear form

〈ζ, Z〉 =

∫
Ω

ζ(ω)Z(ω)dP (ω), ζ ∈ Lq(Ω), Z ∈ Lp(Ω). (2.6)

For any ζ ∈ Lp(Ω), we can view 〈ζ, Z〉 as the expectation EQ[Z] taken with respect

to the probability measure dQ = ζdP , defined by the density ζ, i.e., Q is absolutely

continuous with respect to P and its Radon-Nikodym derivative is dQ/dP = ζ.

Theorem 3 ([94]). If % is a finite-valued coherent measure of risk on Lp, where

1 ≤ p <∞, then a convex subset A of probability density functions ζ ∈ Lq(Ω) exists,

such that for any random variable Z ∈ Lp(Ω), it holds

%(Z) = sup
ζ∈A
〈ζ, Z〉 = sup

dQ/dP∈A
EQ[Z]. (2.7)

For every coherent measure of risk, the set A is the convex subdifferential of the

functional %(·) calculated at 0, i.e., A = ∂%(0). We note that this result reveals how
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measures of risk provide robustness with respect to the changes of the distribution.

Their application constitutes a new approach to robust statistical inference.

For a random variable X ∈ Lp(Ω) with distribution function FX(η) = P{X ≤ η},

we consider the survival function

F̄X(η) = P (X > η)

and the left-continuous inverse of the cumulative distribution function defined as

follows:

F
(−1)
X (α) = inf {η : FX(η) ≥ α} for 0 < α < 1.

It is clear that F
(−1)
X (α) is the left α-quantile of X.

We intend to apply the theory to investigate the distribution of classification errors

and that is why we have a preference to small outcomes (small errors). We define the

Value at Risk at level α of a random error X by setting

VaRα(X) = F
(−1)
X (1− α),

which implies that

P (V > VaRα(X)) ≤ α.

The risk here is defined as the probability of the error X obtaining a large value. For a

given α, we can minimize the value at risk by appropriately selecting the parameters

of the classifier. This point of view corresponds to minimizing the probability of

misclassification. Although Value at Risk is intuitively appealing measure, it is not

coherent.

In the theory of measures of risk a special role is played by the functional called

the Average Value-at-Risk and denoted AVaR(·) (see [1, 76, 87]). The Average Value

at Risk of X at level α is defined as

AVaRα(X) =
1

α

∫ α

0

VaRt(X) dt. (2.8)
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Consider the integrated survival function of the random variable X,

F̄
(2)
X (η) =

∫ ∞
η

F̄X(t)
]
dt = E[(X − η)+].

The second equality is shown in [26]. The upper Lorenz function F̄
(−2)
X : R → R is

introduced in [26] as a counterpart of the absolute Lorenz function (cf. [64, 2, 37]).

It is defined as follows:

F̄
(−2)
X (α) =

∫ 1

α

F−1X (t) dt for 0 < α < 1. (2.9)

Additionally, F̄
(−2)
X (1) = 0, F̄

(−2)
X (0) = E(X), and F̄

(−2)
X (α) = −∞ for α 6∈ [0, 1]. The

function F̄
(2)
X (·) is concave because its derivative is monotonically non-increasing.

Recall that, for a convex function f : Rn → R, its Fenchel conjugate function, f ∗,

is defined as follows:

f ∗(w) = sup
v
{〈v, w〉 − f(v)}.

The following result is shown in [26].

Theorem 4. The Fenchel conjugate function of the integrated survival function F̄
(2)
X (·)

is the function −F̄ (−2)
X (· + 1). Furthermore, whenever η is a α-quantile of X, where

α ∈ (0, 1), then

E(Z − η)+ − η(α− 1) = F̄
(−2)
X (α).

This statement is a counterpart of the conjugate duality relation for the abso-

lute Lorenz curve, which has been first established in [74, Theorem 3.1]. From the

definition of the upper Lorenz function, we obtain that it represents the Average

Value-at-Risk:

F̄
(−2)
X (1− α) =

∫ 1

1−α
VaR1−t(X) dt =

∫ α

0

VaRβ(X) dβ for 0 < α < 1. (2.10)

We obtain

AVaRα(X) =
1

α
F̄

(−2)
X (1− α) for 0 < α < 1.
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Thus, using Theorem 4, we obtain

AVaRα(X) =
1

α
F̄

(−2)
X (1− α)

= − 1

α
sup
η

{
− αη − E[max(0, X − η)]

}
= inf

η

{
η +

1

α
E[max(0, X − η)]

}
.

This is the representation (cf. also [94]) suitable for optimization problems.

Due to Kusuoka theorem ([56],[94, Thm. 6.24]), every law invariant, finite-valued

coherent measure of risk on Lp(Ω) for non-atomic probability space can be repre-

sented as a mixture of Average Value-at-Risk at all probability levels. This result can

be extended for finite probability spaces with equally likely observations. Kusuoka

representations allows to extend statistical estimators of Lorenz curves to spectral

law-invariant measures of risk as shown in [27]. Central limit theorems for general

composite risk functionals is established in [29].

Other popular coherent measures of risk (when small outcomes are preferred)

include the upper mean-semi-deviations of order p, defined as

σ+
p [Z] := E[Z] + κ

(
E
[(
Z − E[Z]

)p
+

])1/p
, (2.11)

where p ∈ [1,∞) is a fixed parameter. It is well defined for all random variables Z

with finite p-th order moments and is coherent for κ ∈ [0, 1]. In the special case of

p = 1, the upper semi-deviation is equal to 1/2 of the absolute deviation, i.e.,

E
[(
Z − E[Z]

)
+

]
=

1

2
E
[∣∣Z − E[Z]

∣∣]
Other classes of coherent measures of risk were proposed and analyzed in [20, 28, 55,

76, 94] and the references therein.

In [86], the use of coherent measures of risk for generalized regression and model

fit was proposed. This point of view was also utilized in SVM in the report [?]. While

those works recognize the need of expressing different attitude to errors in fitting
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statistical models, the authors propose using one overall measure of risk as an objec-

tive in the regression problem, respectively in the SVM problem. The classification

design based on a single measure of risk does not allow for differentiation between the

classes. Our point of view is that different attitude should be allowed to classification

errors for the different classes.

2.5 Risk Sharing Preliminaries

The notion of risk sharing and analysis of this topic is a subject of intensive investi-

gations in the community of economics, quantitative finance and risk management.

This is due to the fact that the sum of the risk of each component in a system does

not equal the risk of the entire system. Risk allocation assumes that there is a quan-

titative assessment undertaken by a higher authority within a firm, which divides

the firm’s costs between the constituents. The main focus in the extant literature on

risk-sharing is on the choice of decomposition of a random variable X into k terms

X = X1 + · · · + Xk, so that when each component is measured by a specific risk

measure, the associated total risk is in some sense optimal. The variable X repre-

sents the total random loss of the firm and the question addressed is about splitting

the loss among the constituents. Assigning coherent measures of risk %i to each term

X i, the adopted point of view is that the outcome
(
%1(X

1), . . . , %k(X
k)
)

should be

Pareto-optimal among the feasible allocations.

The main results in risk-sharing theory accomplish the decomposition of X into

terms by looking at the infimal convolution of the measures of risk, which is defined

as follows. Given convex functions fi : Rn → R, i = 1, . . . k, their infimal convolution

is the function f1� · · ·�fk : Rn → R (see,[88, p. 57]) defined by

[f1� · · ·�fk](x) = inf{f1(x1) + · · ·+ fk(xk) : x1 + · · ·+ xk = x}.

The infimal convolution is a convex function and its Fenchel-conjugate satisfies is the
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sum of the conjugate function f ∗i , i = 1, . . . , k, i.e.,

[f1� · · ·�fk]∗ = f ∗1 + · · ·+ f ∗k .

The risk-sharing problem amounts to the evaluation of the infimal convolution

[%1� · · ·�%k](X).

It is observed (see, e.g., [58, 65]) that the random variables X i, i = 1, . . . , k, which

solve this problem, satisfy a co-monotonicity property as follows

(
X i(ω)−X i(ω′)

)(
Xj(ω)−Xj(ω′)

)
≥ 0, for all ω, ω′ ∈ Ω, i, j = 1, . . . , k.

We shall discuss the optimality of a risk allocation decision in due course. At the

moment, we note that the problem setting and the results associate with risk sharing

of losses in financial institutions are inapplicable to the classification problem. We

cannot expect co-monotonicity properties of the class errors because not all decompo-

sition of the total random error can be obtained via some classifier. The presence of

constraints in the optimization problem, the functional dependence of the misclassifi-

cation error on the classifier’s parameters, and the complex nature of design problem

require dedicated analysis.

2.6 Risk Sharing in Classification

If the distribution of the vectors X i, i = 1, . . . , k, are known, then the optimal risk-

neutral classifier would be obtained by minimizing the expected error. This would be

the solution of the following optimization problem:

min
k∑
i=1

E
[
Zi(π)

]
subject to Zi(π) = dist(ϕ(X i; π), Ki), i = 1, . . . , k,

π ∈ D.

(2.12)



– 21 –

A formulation in line with the least-square approach in statistics uses the second-order

moments as follows

min
k∑
i=1

E
[
(Zi(π))2

]
subject to Zi(π) = dist(ϕ(X i; π), Ki), i = 1, . . . , k,

π ∈ D.

(2.13)

We shall introduce the notion of a risk-averse classifier. Let a set of labeled

data, a parametric classifier family ϕ(·; π) with the associated collection of sets Ki,

i = 1 . . . , k, and the law-invariant coherent risk measures %i, i = 1 . . . , k be given.

The presumption is that we have different attitude to misclassification risk in the

various classes and the total risk is shared among the classes according to risk-averse

preferences.

We assume throughout that the set of feasible parameters π is a closed convex set

D ⊆ Rs. Let Y denote the set of all random vectors (Z1(π), . . . , Zk(π)) obtained as

Zi(π) = dist(ϕ(X i; π), Ki), i.e., Y is the set of all attainable classification errors con-

sidered as random vectors in the corresponding probability space. In the classification

problem, we deal with their representation from the available sample calculated as

follows:

zij(π) = dist(ϕ(xj; π), Ki), xj ∈ Si, j = 1, . . . ,mi, i = 1, . . . k.

for a given parameter π ∈ D.

Definition 5. A vector w ∈ Rk represents an attainable risk allocation for the

classification problem, if a parameter π ∈ D exists such that

w =
(
%1(Z

1(π)), . . . , %k(Z
k(π))

)
∈ Rk for

(
Z1(π), . . . , Zk(π)

)
∈ Y .

We denote the set of all attainable risk allocations by X . Assume that a partial

order on Rk is induced by a pointed convex cone K ⊂ Rk, i.e.,

v �K w if and only if w − v ∈ K.
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Recall that a point v ∈ A ⊂ Rk is called K-minimal point of the set A if no point

w ∈ A exists such that v−w ∈ K. If K = Rk
+, then the notion of K-minimal points of

a set corresponds to the well-known notion of Pareto-efficiency or Pareto-optimality

in Rk.

Definition 6. A classifier ϕ(·; π) is called K-optimal risk-averse classifier, if its risk-

allocation is a K-minimal element of X . If K = R
k
+, then the classifier is called

Pareto-optimal.

From now on, we focus on Pareto-optimality, but our results are extend-able to

the case of more general orders defined by pointed cones.

Definition 7. A risk-sharing classification problem (RSCP) is given by the set of

labeled data, a parametric classifier family ϕ(·; π) with the associated collection of

sets Ki, i = 1 . . . , k, and a set of law-invariant risk measures %i, i = 1 . . . , k. The

risk-sharing classification problem consists of identifying a parameter π ∈ D resulting

in a Pareto-optimal classifier ϕ(·; π).

We shall see that the Pareto-minimal risk allocations are produced by random

vectors, which are minimal points in the set Y with respect to the usual stochastic

order, defined next.

Definition 8. A random variable Z is stochastically larger than a random variable

Z ′ with respect to the usual stochastic order (denoted Z �(1) Z
′), if

P(Z > η) ≥ P(Z ′ > η) ∀ η ∈ R, (2.14)

or, equivalently, FZ(η) ≤ FZ′(η).

The relation is strict (denoted Z �(1) Z
′), if additionally, inequality (2.14) is strict

for some η ∈ R.

A random vector Z = (Z1, . . . Zk) is stochastically larger than Z′ = (Z ′1, . . . Z
′
k)

(denoted Z � Z′) if Zi �(1) Z
′
i for all i = 1, . . . k. The relation is strict if for some

component Zi �(1) Z
′
i.
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The random vectors of Y , which are non-dominated with respect to this order will

be called minimal points of Y .

For more information on stochastic orders see, e.g., [92].

The following result is known for non-atomic probability spaces. We verify it for

a sample space in order to deal with the empirical distributions.

Theorem 9. Suppose the probability space (Ω,F , P ) is finite with equal probabilities

of all simple events. Then every law-invariant risk functional % is consistent with the

usual stochastic order if and only if it satisfies the monotonicity axiom. If % is strictly

monotonic with respect to the almost sure relation, then % is consistent with the strict

dominance relation, i.e. %(Z1) < %(Z2) whenever Z2 �(1) Z1.

Proof. Assuming that Ω = {ω1, . . . , ωm}, let the random variable U(ωi) = i
m

for all

i = 1, . . . ,m. If Z2 �(1) Z1, then defining Ẑ1 := F−1Z1
(U) and Ẑ2 := F−1Z2

(U), we obtain

Ẑ2(ω) ≥ Ẑ1(ω) for all ω ∈ Ω. Due to the monotonicity axiom, %(Ẑ2) ≥ %(Ẑ1). The

random variables Ẑi and Zi, i = 1, 2, have the same distribution by construction. This

entails that %(Z2) ≥ %(Z1) because the risk measure is law invariant. Consequently,

the risk measure % is consistent with the usual stochastic order. The other direction

is straightforward.

This observation justifies our restriction to risk measures, which are consistent

with the usual stochastic order, also known as the first order stochastic dominance

relation. Furthermore, when dealing with non-negative random variables as in the

context of classification, then strictly monotonic risk measures associate no risk only

when no misclassification occurs, as shown by the following statement.

Lemma 10. If % is a law invariant strictly monotonic coherent measure of risk, then

%(Z) > 0 for all random variables Z ≥ 0 a.s., Z 6≡ 0

%(Z) < 0 for all random variables Z ≤ 0 a.s., Z 6≡ 0.
(2.15)
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Proof. Denote the random variable, which is identically equal zero by 0. Notice that

%(0) = %(2 · 0) = 2%(0), which implies that %(0) = 0. If Z ≥ 0 a.s. and Z 6≡ 0,

then %(Z) > %(0) = 0 by the strict monotonicity of %. The second statement follows

analogously.

This statement implies that %i(Z
i(π)) ≥ 0 for all π ∈ D and for all i = 1, . . . k

and, therefore, the attainable allocations lie in the positive orthant, i.e., X ⊆ Rk
+.

We assume everywhere that the risk measures %i used for evaluation of classifica-

tion errors in classes i = 1, ..., k are coherent, law invariant, and finite-valued.

Theorem 11. Assume that the random vectors X i, i = 1, . . . k, have bounded support.

If the function ϕ(x, ·) is continuous for every argument x ∈ Rn and the sets Ki,

i = 1, . . . k are non-empty, closed and convex, then the components of the attainable

risk allocations %i(Z
i(·)), i = 1, . . . k, are continuous functions. If additionally, each

component of the vector function ϕ(x, ·) is an affine function, then %i(Z
i(·)), i =

1, . . . k are convex functions.

Proof. The distance functions z 7→ dist(z,Ki) are continuous convex functions (see,

e.g., [4]) and dist(z,Ki) < ∞ for all z ∈ Rn. Thus, the composition of the distance

function with the continuous function ϕ(x; ·) is continuous, meaning that the random

variable Zi(π) = dist(ϕ(X i; π), Ki) has realizations, which are continuous functions

of π. Furthermore, the variables Zi have bounded support due to the boundedness

assumption of the theorem. Therefore, Zi(·) is continuous with respect to the norm

in the space Lp(Ω). Since the risk measures %i(·) are convex and finite, they are

continuous on Lp for p ≥ 1. We conclude that its composition with the risk measure:

%i(Z
i(·)), is continuous.

In order to prove convexity, let λ ∈ (0, 1) and let πλ = λπ + (1− λ)π′.
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Let zi(π), zi(π′) ∈ Ki be the points such that

‖ϕ(x; π)− zi(π)‖ = min
z∈Ki
‖ϕ(x; π)− z‖ (2.16)

‖ϕ(x; π)− zi(π′)‖ = min
z∈Ki
‖ϕ(x; π′)− z‖ (2.17)

We define zλ = λzi(π) + (1− λ)zi(π′). Due to the convexity of Ki, we have zλ ∈ Ki.

As ϕ(x, ·) is affine, we obtain

ϕ(x; πλ) = λϕ(x; π) + (1− λ)ϕ(x; π′).

This entails the following inequality for all i = 1, . . . k and all z ∈ Rd:

min
z∈Ki
‖ϕ(x; πλ)− z‖ ≤ ‖ϕ(x; πλ)− ziλ‖ = ‖ϕ(x; πλ)− λzi(π)− (1− λ)zi(π′)‖

= ‖λ
(
ϕ(x; π)− zi(π)

)
+ (1− λ)

(
ϕ(x; π′)− zi(π′)

)∥∥
≤ λ‖ϕ(x; π)− zi(π)‖+ (1− λ)‖ϕ(x; π′)− zi(π′))

∥∥
= λmin

z∈Ki
‖ϕ(x; π)− z‖+ (1− λ) min

z∈Ki
(ϕ(x; π′)− z)

∥∥.
Therefore,

dist(ϕ(x; πλ), Ki) ≤ λ dist(ϕ(x; π), Ki) + (1− λ) dist(ϕ(x; π′), Ki).

The monotonicity and convexity axioms for the risk measures imply that

%i
(

dist(ϕ(X; πλ), Ki)
)
≤ λ%i

(
dist(ϕ(X; π), Ki)

)
+ (1 − λ)%i

(
dist(ϕ(X; π′), Ki)

)
.

This result implies the existence of Pareto-optimal classifier. Furthermore, the

convexity property allows us to identify the Pareto-optimal risk-allocations by using

scalarization techniques.

Corollary 12. Assume that the function ϕ(x, ·) is affine for every argument x ∈ Rn,

the sets D ⊆ Rs, and Ki i = 1, . . . k are non-empty, closed, and convex. Then a

parameter π defines a Pareto-optimal classifier ϕ(·, π) for the given RSCP if and only
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if a scalarization vector w ∈ Rk
+ exists with

∑k
i=1wi = 1, such that π is a solution of

the problem

min
π∈D

k∑
i=1

wi%i
(

dist(ϕ(Xi; π), Ki)
)
. (2.18)

Proof. Statement follows form the well-known scalarization theorem in vector opti-

mization problems ([69]) and Theorem 11.

Theorem 13. Assume that the risk measures %i are law invariant and strictly mono-

tonic for all i = 1, . . . k. If a classifier ϕ(·; π) is Pareto-optimal, then its corresponding

random vector (Z1(π), . . . , Zk(π)) is a minimal point of Y with respect to the order

of Definition 8.

Proof. Suppose that ϕ(·; π) is Pareto-optimal and the point Z(π) = (Z1(π), . . . , Zk(π))

is not minimal. Then a parameter π′ exists, such that the corresponding vector Z(π′)

is strictly stochastically dominated by Z, which implies Zi(π) �(1) Z
i(π′) with a strict

relation for some component. We obtain %i(Z
i(π)) ≥ %i(Z

i(π′)) for all i = 1, . . . , k

with a strict inequality for some i due to the consistency of the coherent measures of

risk with the strong stochastic order relation, which contradicts the Pareto-optimality

of ϕ(·; π).

We consider the sample space Ω =
∏k

i=1Ωi where (Ωi,Fi, Pi) is a finite space

with mi simple events ωj ∈ Ωi, Pi(ωj) = 1
mi

, and Fi consisting of all subsets of Ωi.

Theorem 14. Suppose each component of the vector function ϕ(x, ·) is affine for

every x ∈ Rn and the sets D and Ki, i = 1, . . . , k, are non-empty, convex, and closed.

If the parameter π̂ defines a Pareto-optimal classifier ϕ(·, π̂) for the RSCP, then a

probability measure µ on Ω exists so that π̂ is an optimal solution for the problem

min
π∈D

k∑
i=1

mi∑
j=1

µij dist(ϕ(xij; π), Ki). (2.19)

Proof. Since the parameter π̂ defines a Pareto-optimal classifier ϕ(·, π̂) for the RSCP

and all conditions of Corollary 12 are satisfied, then π̂ is an optimal solution of prob-

lem (2.18) for some scalarization w. Let Ai denotes the set of probability measures
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corresponding to the risk measure %i , i = 1, . . . , k in representation (2.7). Since the

risk measures %i take finite values on Ωi, the sets Ai are non-empty and compact.

Thus, the supremum in the dual representation (2.7) is achieved at some elements

ζ i ∈ Ai. We have ζ ij ≥ 0,
∑mi

j=1

ζij
mi

= 1 because ζi are probability densities. We obtain

%i(dist(ϕ(X i; π), Ki)) =

mi∑
j=1

ζ ij
mi

dist(ϕ(xij; π), Ki).

Setting

µij = wi
ζ ij
mi

, j = 1, . . . ,mi, i = 1, . . . , k

we observe that the vector µ ∈ Rm1+...mk constitutes a probability mass function.

Thus, problem (2.18) can be reformulated as (2.19).

This result shows that the RSCP can be viewed as a classification problem in which

the expectation error is minimized, however, the expectation is not calculated with

respect to the empirical distribution but with respect to another measure µ, which

is implicitly determined by the chosen measures of risk. It is the worst expectation

according to our risk-averse preferences, which are represented by the choice of the

measures %i, i = 1, . . . , k.

2.7 Optimization of Risk Sharing

We analyze the risk-sharing classification problem (2.18) with the purpose of sug-

gesting a way of treating it numerically efficiently. First, we formulate optimality

conditions for this problem. The composite nature of the problem (2.18) is diffi-

cult and that is why we reformulate the problem. We introduce auxiliary variables

Y ∈ Lp(Ω,F , P ;Rm), i = 1, . . . k, which are defined by the constraints:

ϕ(X i; π) + Y i ∈ Ki ∀i = 1, . . . , k.
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Problem (2.18) can be reformulated to

min
π,Y

k∑
i=1

wi%i(‖Y i‖)

s.t. ϕ(X i; π) + Y i ∈ Ki, ∀i = 1, . . . , k,

π ∈ D.

(2.20)

We shall show that this problem is equivalent to (2.18).

Lemma 15. For any solution π̂ of problem (2.18), random vectors Ŷ i exist, so that

(π̂, Ŷ ) solves problem (2.20) as well, where Ŷ = (Ŷ k, . . . , Ŷ k) and for any solution

(π̂, Ŷ ) of problem (2.20), the vector π̂ is a solution of problem (2.18) as well.

Proof. Observe that for any fixed point π ∈ D, the function
∑k

i=1wi%i(‖Y i‖) achieves

minimal value with respect to the constraints on the variables Y i using the projections

of the realizations of X i onto Ki:

Y i(ω) = ProjKi
(
(ϕ(X(ω); π)

)
− ϕ(X(ω);π). (2.21)

Here ProjKi(z) denotes the Euclidean projection of the point z onto the set Ki.

Then, ‖Y i‖ = dist(ϕ(X i; π), Ki) and the objective functions of both problems have

the same value. Therefore, the minimal value is achieved at the same point π̂ and

the corresponding Ŷ i
j is obtained from equation (2.21).

Recall that the normal cone to a set D ⊂ Rs is defined as

ND(π) = {a ∈ Rs : 〈a, d− π〉 ≤ 0 for all d ∈ D}.

For brevity, we denote the normal cone to the feasible set of problem (2.20) by N

and the normal cones to the sets Ki by Ni, i = 1, . . . , k. We formulate optimality

conditions for problem (2.20).

We denote the realizations of the random vectors Y i, i = 1, . . . , k, by yij(π),

j = 1, . . .mi, i = 1, . . . , k. More precisely, we have

yij(π) = ProjKi
(
(ϕ(xij; π)

)
− ϕ(xij; π) j = 1, . . .mi, i = 1, . . . , k.
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We suppress the argument π whenever it does not lead to confusion. Additionally, we

denote the Jacobian of ϕ with respect to π by Dϕ(x; π). Consider the sample-based

version of problem (2.20):

min
π,Y

k∑
i=1

wi%i(‖Y i‖)

s.t. ϕ(xij; π) + yij ∈ Ki, ∀j = 1, . . . ,mi, i = 1, . . . , k,

π ∈ D.

(2.22)

Theorem 16. Assume that the sets Ki, i = 1, . . . , k are closed convex polyhedral

cones and ϕ(x; ·) is an affine vector function. A feasible point (π̂, Ŷ ) is optimal for

problem (2.22) if and only if probability mass functions ζ i ∈ ∂%i(0) and vectors gij

from ∂‖ŷij‖ exist such that

0 ∈ −
k∑
i=1

mi∑
j=1

wiζ
i
j(g

i
j)
>Dϕ(X i; π̂) +ND(π̂) (2.23)

wiζ
i
jg
i
j ∈ Ni

(
ϕ(xij; π̂) + ŷij

)
for all j = 1, . . .mi, i = 1, . . . k. (2.24)

Proof. We assign Lagrange multipliers λij to the inclusion constraints and define the

Lagrange function as follows:

L(π, Y, λ) =
k∑
i=1

(
wi%i(‖Y i‖) +

mi∑
j=1

〈
ϕ(xij; π) + yij, λ

i
j

〉)
.

Using optimality conditions [9, Theorem 3.4], we obtain that (π̂, Ŷ ) is optimal for

problem (2.22) if and only if λ̂ exists such that

0 ∈ ∂(π,Y )L(π̂, Ŷ , λ̂) +N (π̂, Ŷ )

λ̂ij ∈ Ni
(
ϕ(xij; π̂) + ŷij)

)
.
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Considering the partial derivatives of the Lagrangian with respect to the two compo-

nents, we obtain

0 ∈
k∑
i=1

mi∑
j=1

(λ̂ij)
>Dϕ(xij; π̂) +ND(π̂) (2.25)

0 = wi∂Y %i(‖Y ‖) + λ̂i, i = 1, . . . k, (2.26)

λ̂ij ∈ Ni
(
ϕ(xij; π̂) + ŷij

)
, j = 1, . . . ,mi, i = 1, . . . k. (2.27)

We calculate the multipliers λ̂i from the equation (2.26) using elements ζ i ∈ ∂%i(0)

and gij from ∂‖ŷij‖. We obtain:

λ̂ij = −wiζ ijgij, j = 1, . . . ,mi, i = 1, . . . k.

Notice that gij =
ŷij
‖ŷij‖

whenever ŷij 6= 0, otherwise gij ∈ Rd can be any vector with

‖gij‖ ≤ 1. Substituting the value of λ̂i into (2.25) and (2.27), we obtain condition

(2.23) and (2.24).

We note that, we can define again a probability mass function µ by setting µij =

wiζ
i
j and interpret the Karush-Kuhn-Tucker condition as follows:

Eµ(gij)
>Dϕ(X i; π̂) ∈ ND(π̂)

µijg
i
j ∈ Ni

(
ϕ(xij; π̂) + ŷij

)
for all j = 1, . . .mi, i = 1, . . . k.

Problem (2.22) can be reformulated as a risk-averse two-stage optimization prob-

lem (cf. [93]). The first stage decision is π and the first stage problem is

min
π∈D

k∑
i=1

wi%i
(
Zi(π))

)
. (2.28)

Given π, the calculation of each realization of Zi(π) amounts to solving the following

problem

zij(π) = min
y∈Ki
‖ϕ(xij; π)− y‖, j = 1, . . .mi, i = 1, . . . k. (2.29)

Calculating zij(π) might be very easy for specific regions Ki such as the cones in the

example of the polyhedral classifier. Every component of the solution vector ẑij to
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problem (2.29) can be computed as follows:

(ẑij)` =


max{0,−(ϕ(xij; π))`} for ` = i;

max{0, (ϕ(xij; π))`} for ` 6= i;

` = 1, . . . , k.

Then the optimal value of (2.29) is

zij(π) =
( k∑
`=1

(ẑij)
2
`

) 1
2
.

This point of view facilitates the application of stochastic optimization methods to

solve the problem.

2.8 Confidence Intervals for the Risk

In this section, we analyze the risk-averse classification problem when we increase

the data sets and derive confidence intervals for the misclassification risk. We use

the results on statistical inference for composite risk functionals presented in [29]. In

[29], a composite risk functional is defined in the following way.

%(X) = E [f1 (E [f2 (E [· · · f` (E [f`+1 (X)] , X)] · · · , X)] , X)] (2.30)

where X is an n−dimensional random vector with unknown distribution, PX . The

functions fj are such that fj(ηj, x) : Rnj × Rn → Rnj−1 for j = 1, . . . , ` and n0 = 1.

The function f`+1 is such that f`+1(x) : Rn → Rn` .

A law-invariant risk-measure %(X) is an unknown characteristic of the distribution

PX . The empirical estimate of %(X) given N independent and identically distributed

observations of X is given by the plug-in estimate

%(N) =
N∑
i0=1

1

N

[
f1

( N∑
i1=1

1

N

[
f2
( N∑
i2=1

1

N
[ · · · f`(

N∑
i`=1

1

N
f`+1(Xi`), Xi`−1

)]

· · · , Xi1

)]
, Xi0

)] (2.31)

It is shown in [29] that the most popular measures of risk fit the structure (2.30).

It is established that the plug-in estimator satisfies a central limit formula and the
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limiting distribution is described. This is the distribution of the Hadamard-directional

derivative of the risk functional % when a normal random variable is plugged in. Recall

the notion of Hadamard directional derivatives of the functions fj
(
·, x) at points µj+1

in directions ζj+1. It is given by

f ′j
(
µj+1, x; ζj+1) = lim

t↓0
s→ζj+1

1

t

[
fj
(
µj+1 + ts, x)− fj

(
µj+1, x)

]
.

The central limit formula holds under the following conditions:

(i)
∫
‖fj(ηj, x)‖2 P (dx) <∞ for all ηj ∈ Ij, and

∫
dist2(ϕ(X i; π), Ki)P (dx) <∞;

(ii) For all realizations x of X i, the functions fj(·, x), j = 1, . . . , `, are Lipschitz

continuous:

‖fj(η′j, x)− fj(η′′j , x)‖ ≤ γj(x)‖η′j − η′′j ‖, ∀ η′j, η′′j ,

and
∫
γ2j (x) P (dx) <∞.

(iii) For all realizations x of X i, the functions fj(·, x), j = 1, . . . , `, are Hadamard

directionally differentiable.

These properties are satisfied for the mean-semideviation risk measures as shown

in [29]. Furthermore, it is shown that similar construction represents the Average-

Value-at-Risk.

For every parameter π the risk of misclassification for a given class i = 1, . . . , k

can be fit to the setting (2.30) by choosing the innermost function f`+1(x) : Rd → R

to be f`+1(x) = dist(ϕ(x; π), Ki) whenever ϕ satisfies properties i–iii.

In our setting each misclassification risk %i

(
dist

(
ϕ(X i; π), Ki

))
is estimated by

%
(mi)
i

(
‖Ŷ i‖

)
, where (Ŷ i; π̂) is the solution of problem (2.22). Denoting the estimated

variance of the limiting distribution of %
(mi)
i

(
‖Ŷ i‖

)
(briefly %

(mi)
i ) by σ2

i , we obtain

the following confidence interval:[
%
(mi)
i − tα,df

σi√
mi

, %
(mi)
i + tα,df

σi√
mi

]
.
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Here α is the desired level of confidence, tα,df is the corresponding quantile of the

t-distribution with degrees of freedom df . The degrees of freedom depend on the

choice if risk measure and can be calculated as df = mi − `, where ` is the number

of compositions in formula (2.31). The decrease of the degrees of freedom form mi is

due to the estimation of the expected value associated with each composition. The

total risk is estimated by

%̂ =
k∑
i=1

wi%
(mi)
i

(
‖Ŷ i‖

)
.

We obtain that %̂ has an approximately normal distribution with expected value %

and variance
∑k

i=1
w2
i σ

2
i

mi
. A confidence interval for % is given by %̂− tα,df

√√√√ k∑
i=1

w2
i σ

2
i

mi

, %̂+ tα,df

√√√√ k∑
i=1

w2
i σ

2
i

mi

 .
2.9 Risk Sharing in SVM

We analyze the SVM problem in more detail. We consider only law-invariant strictly

monotonic coherent measures of risk %1, %2 for the two classes S1 and S2.

The risk-sharing SVM problem (RSSVM) consists in identifying a parameter π =

(v, γ) ∈ Rn corresponding to a Pareto-minimal point of the attainable risk-allocation

X for the affine classifier ϕ(z; π) = 〈v, z〉 − γ. Due to Corollary‘12, we can determine

a risk-averse classifier by solving the following problem:

min
v,γ,Z1,Z2

λ%1(Z
1) + (1− λ)%2(Z

2)

s. t. 〈v, x1j〉 − γ + z1j ≥ 0, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ 0, j = 1, . . . ,m2,

〈v, v〉 = 1,

Z1 ≥ 0, Z2 ≥ 0.

(2.32)

Here λ ∈ (0, 1) is a parameter and the vectors Zi have realization zij, i = 1, 2 and

j = 1, . . . ,mi, representing the classification error for the sample of each class. The
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random vectors Zi can be represented by a deterministic vectors stacking all realiza-

tions zij as components (sub-vectors) of it. Abusing notation, we shall use Zi also for

those long vectors in Rnmi .

We note that the normalization of the vector v automatically bounds γ because

for any fixed v, the component γ can be considered restricted in a compact set

[γm(v), γM(v)], where

γM = max
1≤j≤mi, i=1,2

v>xij γm = min
1≤j≤mi, i=1,2

v>xij.

Thus, in this case, we can set D = R
n. We also consider a soft-margin risk-averse

SVM based on problem (2.3), although the classification error might not be calculated

properly. The problem reads

min
v,γ,Z1,Z2

λ%1(Z
1) + (1− λ)%2(Z

2) + δ‖v‖2

s. t. 〈v, x1j〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

Z1 ≥ 0, Z2 ≥ 0.

(2.33)

In this problem, δ > 0 is a small number. The objective function grows to infinity

when the norm of v increases. Thus, we do not need to bound the norm of the vector

v. It also automatically bounds γ, similar to problem (2.32).

We observe that the parameter (v, γ) for each Pareto-optimal classifier can be

obtained by solving the following problem:

min
v,γ,Z1,Z2

%1(Z
1) + %2(Z

2)

s. t. 〈v, x1i 〉 − γ +
1

λ
z1i ≥ 0, i = 1, . . . ,m1,

〈v, x2j〉 − γ −
1

1− λ
z2j ≤ 0, j = 1, . . . ,m2,

〈v, v〉 = 1,

Z1 ≥ 0, Z2 ≥ 0.

(2.34)

Lemma 17. Problem (2.34) is equivalent to problem (2.32).
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Proof. The equivalence follows from the axiom of positive homogeneity for the risk

measures:

λ%1(Z
1) = %1(λZ

1) and (1− λ)%2(Z
2) = %2((1− λ)Z2).

Defining new random variables Z̃1 = λZ1 and Z̃2 = (1 − λ)Z2, we can rescale the

variables in their respective inequality constraint.

This observation is a counterpart of the result in [48] for the risk sharing of ran-

dom losses among constituents.

In order to solve problem (2.32) numerically, we use sequential local convex ap-

proximation to problem (2.32). Let v̄ be a fixed point. The non-convex constraint

can be approximated locally by using Taylor expansion:

〈v, v〉 − 1 ≈ 〈v̄, v̄〉 − 1 + 2〈v̄, v − v̄〉 = 2〈v̄, v〉 − 〈v̄, v̄〉 − 1.

If ‖v̄‖ = 1, then we obtain:

〈v, v〉 − 1 ≈ 2(〈v̄, v〉 − 1).

The following auxiliary problem is a convex approximation of problem (2.32):

min
v,γ,Z1,Z2

λ%1(Z
1) + (1− λ)%2(Z

2)

s. t. 〈v, x1i 〉 − γ + z1i ≥ 0, i = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ 0, j = 1, . . . ,m2,

〈v̄, v〉 = 1,

Z1 ≥ 0, Z2 ≥ 0.

(2.35)

We shall denote the objective function by f :

f(Z1, Z2, v, γ) = λ%1(Z
1) + (1− λ)%2(Z

2)
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Observe that for a vector v whose norm is different than one, the misclassification

errors are 1
‖v‖Z

1 and 1
‖v‖Z

2. Thus, using the positive homogeneity property of the

risk measures, the true risk of misclassification is

1

‖v‖
(
λ%1(Z

1) + (1− λ)%2(Z
2)
)
,

We propose the following method for solving problem (2.32).

Step 0. Set ` = 1; choose initial points v1 and γ1 with ‖v1‖ = 1 and calculate the

corresponding Z1
1 , Z2

1 , and f(Z1
1 , Z

2
1 , v1, γ1).

Step 1. Solve problem (2.35) with v̄ = v`.

Denote its solution by (Z1
`+1, Z

2
`+1, v̂`, γ`+1).

Step 2. If f(Z1
`+1, Z

2
`+1, v̂`, γ`+1) = f(Z1

` , Z
2
` , v`, γ`), then stop; otherwise set v`+1 =

v̂`
‖v̂`‖

, increase ` by one and go to Step 1.

When the method stops, then the point (Z1
` , Z

2
` , v`, γ`) satisfies the optimality

conditions for problem (2.32). Otherwise, the method generates a sequence of points

{(Z1
` , Z

2
` , v`, γ`)}

∞
`=1, which converges to a point satisfying the optimality conditions

for problem (2.32).

2.10 Kernel-based Risk-averse Binary Classification

We adopt the formulation (2.33) and use Average-Value at Risk at level α ∈ (0, 1)

for both classes. Assume that we have chosen a kernel K with associated mapping
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ψ. The classification problem becomes

min
v,γ,t1,t2,Z1,Z2,Y 1,Y 2

λ
(
t1 +

1

αm1

m1∑
j=1

y1j
)

+ (1− λ)
(
t2 +

1

αm2

m2∑
j=1

y2j
)

+ δ‖v‖2 (2.36)

s. t. 〈v, ψ(x1j)〉 − γ + z1j ≥ 1, j = 1, . . . ,m1, (2.37)

〈v, ψ(x2j)〉 − γ − z2j ≤ −1, j = 1, . . . ,m2, (2.38)

yij ≥ zij − ti, j = 1, . . . ,mi, i = 1, 2, (2.39)

Z1 ≥ 0, Z2 ≥ 0, Y 1 ≥ 0, Y 2 ≥ 0. (2.40)

Without loss of generality, we may assume γ = 0.

We assign Lagrange multipliers µ1
j , j = 1, . . . ,m1, to constraints (2.37) and µ2

j ,

j = 1, . . . ,m2, to constraints (2.38), respectively. The Lagrange multipliers associated

with constraints (2.39) are denoted ζ ij, j = 1, . . . ,mi, i = 1, 2. The Lagrange function

has the form

L(v, γ, t1, t2, Z
1, Z2, Y 1, Y 2, µ1, µ2, ζ1, ζ2) =

λ
(
t1 +

1

αm1

m1∑
j=1

y1j
)

+ (1− λ)
(
t2 +

1

αm2

m2∑
j=1

y2j
)

+ δ‖v‖2

+

m1∑
j=1

µ1
j(1− 〈v, ψ(x1j)〉 − z1j ) +

m2∑
j=1

µ2
j(1 + 〈v, ψ(x2j)〉 − z2j )

+

m1∑
j=1

ζ1j (z1j − t1 − y1j ) +

m2∑
j=1

ζ2j (z2j − t2 − y2j ). (2.41)
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The optimality conditions for problem (2.36)–(2.40) yield

2δv =

m1∑
j=1

µ1
jψ(x1j)−

m2∑
j=1

µ2
jψ(x2j) (2.42)

λ =

m1∑
j=1

ζ1j (2.43)

1− λ =

m2∑
j=1

ζ2j (2.44)

0 ≤ ζ1j ≤
λ

αm1

, j = 1, . . .m1 (2.45)

0 ≤ ζ2j ≤
1− λ
αm2

, j = 1, . . .m2 (2.46)

0 ≤ µij ≤ ζ ij j = 1, . . .mi, i = 1, 2. (2.47)

(2.48)

Let v̂ be the optimal solution when minimizing the Lagrangian with respect to the

non-negativity constraints (2.40). Using the optimality conditions, the dual function

becomes

δ‖v̂‖2 −
m1∑
j=1

µ1
j〈v̂, ψ(x1j)〉+

m2∑
j=1

µ2
j〈v̂, ψ(x2j)〉+

m1∑
j=1

µ1
j +

m2∑
j=1

µ2
j (2.49)

= δ‖v̂‖2 − 〈v̂,
m1∑
j=1

µ1
jψ(x1j)−

m2∑
j=1

µ2
jψ(x2j)〉+

m1∑
j=1

µ1
j +

m2∑
j=1

µ2
j (2.50)

= δ‖v̂‖2 − 2δ〈v̂, v̂〉 = −δ‖v̂‖2 +

m1∑
j=1

µ1
j +

m2∑
j=1

µ2
j . (2.51)

Substituting the form of v̂ from the optimality conditions, we obtain the following

form of the dual function:

− 1

4δ

[ 2∑
i=1

mi∑
j=1

mi∑
`=1

µijµ
i
`〈ψ(xij), ψ(xi`)〉−2

m1∑
j=1

m2∑
`

µ1
jµ

2
`〈ψ(x1j), ψ(x2`)〉

]
+

m1∑
j=1

µ1
j +

m2∑
j=1

µ2
j .

Using the form of the kernel, the dual function becomes

− 1

4δ

[ 2∑
i=1

mi∑
j=1

mi∑
`=1

µijµ
i
`K(xij, x

i
j)− 2

m1∑
j=1

m2∑
`=1

µ1
jµ

2
`K(x1j , x

2
`)
]

+

m1∑
j=1

µ1
j +

m2∑
j=1

µ2
j .
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This form is valid under the relations given by the optimality conditions. We eliminate

the ζ variables by noticing that they induce the constraints

0 ≤ µ1
j ≤

λ

αm1

0 ≤ µ2
j ≤

1− λ
αm2

m1∑
j=1

µ1
j ≤

m1∑
j=1

ζ1j = λ

m2∑
j=1

µ2
j ≤

m2∑
j=1

ζ2j = 1− λ

Using the form of the kernel, the dual problem to problem (2.36)–(2.40) can be

formulated as follows:

min
2∑
i=1

mi∑
j=1

mi∑
`=1

µijµ
i
`K(xij, x

i
`)− 2

m1∑
j=1

m2∑
`=1

µ1
jµ

2
`K(x1j , x

2
`)− 4δ

[ m1∑
j=1

µ1
j +

m2∑
j=1

µ2
j

]
s. t.

m1∑
j=1

µ1
j ≤ λ,

m2∑
j=1

µ2
j ≤ 1− λ

0 ≤ µ1
j ≤

λ

αm1

, j = 1, . . .m1,

0 ≤ µ2
j ≤

1− λ
αm2

, j = 1, . . .m2.

After solving the dual problem, we obtain µ̂i, j, j = 1, . . . ,mi, i = 1, 2. To

calculate the value of the classifier for a new observation x, we calculate

〈v, x〉 =
1

2δ

m1∑
j=1

µ̂1
j〈ψ(x1j), ψ(x)〉 − 1

2δ

m2∑
j=1

µ̂2
j〈ψ(x2j), ψ(x)〉

=
1

2δ

m1∑
j=1

µ̂1
jK(x1j , x)− 1

2δ

m2∑
j=1

µ̂2
jK(x2j , x).

Therefore, we do not need to know the form of the mapping ψ and the kernel trick

works for the RSSVM as well.
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2.11 Numerical Experiments

In the previous sections, we have shown the solid theoretical foundation supporting

our approach. In this section, we display the performance of the proposed framework,

as well as its flexibility. To this end, we use several publicly available data sets and

compare the performance of our approach to some existing formulations, in terms

of F1–score. Further, we showcase the flexibility of the framework by exploring the

Pareto-efficient frontier of various classifiers derived from our framework. In our

numerical experiments, we have used the Average Value-at-Risk and the mean semi-

deviation of order one.

2.11.1 Data

We compare our approach to other known approaches on several datasets. More

specifically, we use three data sets obtained from the UCI Machine Learning Repos-

itory [60]. These data sets exhibit different degrees of class imbalance, that is the

proportion of records in one class versus that of the other class. A summary of basic

characteristics of the data sets is shown in the following table.

Data Set Features
Observations Class

Class0 Class1 (%) Balance
wdbc 30 357 211 (37.1) 0.591
pima-indians-diabetes 7 500 267 (34.8) 0.534
seismic-bumps 18 2414 170 ( 6.6) 0.070

Table 2.1: Data summary

2.11.2 Model Formulations

We consider several scenarios for choices of measures of risk. In the first scenario,

we treat one of the classes (Class0) in a risk neutral manner, while applying the

mean-semi-deviation measure to the classification error of the second class. We call

this loss function “asym risk” (see Table 2.2). In the same table, we provide the risk
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measure combinations for other loss functions which we have used in our numeri-

cal experiments. The loss functions called “risk cvar” and “two cvar” use a convex

combination of the expected error and the Average Value-at-Risk of the classification

error. These convex combinations use an additional model parameter β ∈ (0, 1). We

note that such a convex combination is a coherent measure of risk. Recall that AVaRα

can be calculated by a linear optimization problem.

AVaRα(Z) = min
η

{
η +

1

α
E
[
Z − η

]
+

}
The formulation (2.33) for these loss function require modification due to the use of

the variational form of the Average-Value at Risk at level α ∈ (0, 1). We have already

formulated the problem for minimizing the Average-Value at Risk at level α ∈ (0, 1)

for both classes in section 2.10 in the case of using a mapping to a higher dimensional

space.

Table 2.2 displays the chosen combinations of risk measure pairs for the binary

classification scenario in order to give an easy overview.

Loss Function Class0 – %1(Z
1) Class1 – %2(Z

2)

exp val E[Z1] E[Z2]
joint cvar βE[Z1 + Z2] + (1− β)AVaRα(Z1 + Z2)

asym risk E[Z1] E[Z2] + cσ+[Z2]
one cvar E[Z1] + cσ+[Z1] AVaRα(Z2)
risk cvar E[Z1] + cσ+[Z1] βE[Z2] + (1− β)AVaRα(Z2)
two risk E[Z1] + cσ+[Z1] E[Z2] + cσ+[Z2]
two cvar βE[Z1] + (1− β)AVaRα1(Z1) βE[Z2] + (1− β2)AVaRα2(Z2)

Table 2.2: Risk measure combinations used as loss functions in the experiments

We note that calculation of the first order semi-deviation and the average value at

risk can be formulated as linear optimization problems. Therefore, their application

does not increase the complexity of RSSVM in comparison to the soft-margin SVM.

However, if we use higher order semi-deviations or higher order inverse risk measures,

the problem becomes more difficult. Further experiments are necessary to access the

effect of higher order measures of risk.
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We compare our results against three different benchmarks: two risk-neutral for-

mulations and one risk-averse formulation with a single risk measure. The first risk-

neutral formulation is the soft-margin SVM as formulated in (2.3). The second risk-

neutral formulation uses the Huber loss function and leads to the following problem

formulation

min
v,γ,Z1,Z2

1

m1

m1∑
i=1

min
(
z1i , (z

1
i )

2
)

+
1

m2

m2∑
j=1

min
(
z2j , (z

2
j )

2
)

+ δ‖v‖2

s. t. 〈v, x1i 〉 − γ + z1i ≥ 1, i = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

Z1 ≥ 0, Z2 ≥ 0.

(2.52)

The third benchmark uses a single risk measure (2.53) on the total error as pro-

posed in [?]. It has the following formulation.

min
v,γ,t,Z1,Z2,Y 1,Y 2

β
( 1

m1

m1∑
j=1

z1j +
1

m2

m2∑
j=1

z2j

)
+

(1− β)

(
t+

1

α(m1 +m2)

( m1∑
j=1

y1j +

m2∑
j=1

y2j

))
+ δ‖v‖2

s. t. 〈v, x1i 〉 − γ + z1i ≥ 1, i = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

yij ≥ zij − t, j = 1, . . . ,mi, i = 1, 2,

Z1 ≥ 0, Z2 ≥ 0, Y 1 ≥ 0, Y 2 ≥ 0.

(2.53)

Interestingly, both risk-neutral formulations produce identical results on all data

sets. Subsequently we only report one of them under the name “exp val”. In the

presented figures and tables below, we refer to the loss function consisting of a single

Average Value-at-Risk measure, as “joint cvar”.

The problem formulations which we use in our experiments are the following.
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Expected value vs. Average Value-at-Risk – “asym risk”

min
v,γ,t,Z1,Z2,Y

λ

m1

m1∑
j=1

z1j +
1− λ
m2

m2∑
j=1

(yj + z2j ) + δ‖v‖2

s. t. 〈v, x1j〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

yj ≥ z2j − t, j = 1, . . . ,m2,

Z1 ≥ 0, Z2 ≥ 0, Y ≥ 0.

(2.54)

Mean-semi-deviation vs. Average Value-at-Risk – “one cvar”

min
v,γ,t,Z1,Z2,Y 1,Y 2

λ

m1

m1∑
j=1

(y1j + z1j ) + (1− λ)
(
t+

1

αm2

m2∑
j=1

y2j
)

+ δ‖v‖2

s. t. 〈v, x1j〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

y1j ≥ z1j −
1

m1

m1∑
j=1

z1j , j = 1, . . . ,m1,

y2j ≥ z2j − t, j = 1, . . . ,m2,

Z1 ≥ 0, Z2 ≥ 0, Y 1 ≥ 0, Y 2 ≥ 0.

(2.55)

Mean-semi-deviation vs. Expecatation and AVaR – “risk cvar”

min
v,γ,t,Z1,Z2,Y 1,Y 2

λ

m1

m1∑
j=1

(y1j + z1j ) +
β(1− λ)

m1

m2∑
j=1

z2j

+ (1− β)(1− λ)

(
t+

1

αm2

m2∑
j=1

y2j

)
+ δ‖v‖2

s. t. 〈v, x1j〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

y1j ≥ z1j −
1

m1

m1∑
j=1

z1j , j = 1, . . . ,m1,

y2j ≥ z2j − t, j = 1, . . . ,m2,

Z1 ≥ 0, Z2 ≥ 0, Y 1 ≥ 0, Y 2 ≥ 0.

(2.56)
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Mean-semi-deviation for both classes – “two risk”

min
v,γ,Z1,Z2,Y 1,Y 2

λ

m1

m1∑
j=1

(y1j + z1j ) +
1− λ
m2

m2∑
j=1

(y2j + z2j ) + δ‖v‖2

s. t. 〈v, x1j〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

yij ≥ zij −
1

mi

mi∑
j=1

zij, , j = 1, . . . ,mi, i = 1, 2,

Z1 ≥ 0, Z2 ≥ 0, Y 1 ≥ 0, Y 2 ≥ 0.

(2.57)

Average-Value at Risk for both classes – “two cvar”

min
v,γ,t1,t2,Z1,Z2,Y 1,Y 2

δ‖v‖2 + λβ1

m1∑
j=1

z1j + λ(1− β1)

(
t1 +

1

αm1

m1∑
j=1

y1j

)

+ (1− λ)β2

m1∑
j=1

z2j + (1− λ)(1− β2)

(
t2 +

1

αm2

m2∑
j=1

y2j

)

s. t. 〈v, x1j〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

yij ≥ zij − ti, j = 1, . . . ,mi, i = 1, 2,

Z1 ≥ 0, Z2 ≥ 0, Y 1 ≥ 0, Y 2 ≥ 0.

(2.58)

2.11.3 Performance

We perform k-fold cross-validation and all reported results are out of sample. In

Tables 2.3, 2.5, and 2.7, we report the F1–score and AUC, along with recall, precision,

as well as false positive rate (FPR) for all loss functions. Additionally, we report

the number of misclassified observations, as well as the chosen parameters where

applicable. In light of the fact that the F1–score and AUC are competing metrics, for

each dataset we present one of results results optimized for each metric. We use this

highlight the additional flexibility that the proposed method introduces, in the next

section.
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F1-score Optimized Classifiers

exp val joint cvar asym risk one cvar risk cvar two risk two cvar

lambda 0.70 0.57 0.56 0.60 0.64
alpha 1 0.62
alpha 2 0.55 0.88 0.75 0.62

C0 Errors 21 17 16 13 11 15 12
C1 Errors 15 11 11 10 9 9 9

FPR 0.05882 0.04762 0.04482 0.03641 0.03081 0.04202 0.03361
Recall 0.92925 0.94811 0.94811 0.95283 0.95755 0.95755 0.95755

Precision 0.90367 0.92202 0.92627 0.93953 0.94860 0.93119 0.94419
F1-score 0.91628 0.93488 0.93706 0.94614 0.95305 0.94419 0.95082

AUC 0.97904 0.98426 0.98569 0.98764 0.98535 0.98442 0.98451

AUC Optimized Classifiers

exp val joint cvar asym risk one cvar risk cvar two risk two cvar

lambda 0.43 0.57 0.69 0.37 0.42
alpha 1 0.61
alpha 2 0.65 0.88 0.66 0.61

C0 Errors 21 21 18 13 14 23 16
C1 Errors 15 13 11 10 13 12 13

FPR 0.05882 0.05882 0.05042 0.03641 0.03922 0.06443 0.04482
Recall 0.92925 0.93868 0.94811 0.95283 0.93868 0.94340 0.93868

Precision 0.90367 0.90455 0.91781 0.93953 0.93427 0.89686 0.92558
F1-score 0.91628 0.92130 0.93271 0.94614 0.93647 0.91954 0.93208

AUC 0.97904 0.98471 0.98697 0.98764 0.98776 0.98629 0.98922

Table 2.3: Main results table for the WDBC dataset – Displaying the model pa-
rameters for the each model formulation as well as the corresponding performance
metrics.

In the above Table 2.3, we show the best value for each metric for each set in

bold face. We observe that for this particular dataset, the best performing model

formulation with respect to the F1-score is the “risk cvar” model; outperforming the

risk neutral formulations by more than 0.04. On the other hand, if we consider the

AUC to be the target metric, we notice the “two cvar” formulation has the highest

value. Further, we note that the “one cvar” model has the same parameters for both

target metrics. We find this to be unusual in our experiments. While this formulation

does not have the best value for the target metric, it too significantly outperforms

the risk neutral formuations.

Further, this formulation does have the best value for the competing metric in
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Figure 2.2: ROC plots for the best performing model formulations on the WDBC
data: “risk cvar” with the best F1-score, “two cvar” with the best AUC value, and
“one cvar” for the alternate metric.

both cases. The respective ROC curves for each of the classifiers are displayed in

Figure 2.2. The color on each curve represents the value of the F1-score. High values

are represented by the bright green color, and low values are represented by the dark

red color. The two dotted lines indicate the threshold at which the classifier is set to

operate.

We can certainly see the classifier performs very well on this data. Table 2.4 con-

tains the calulations of risk, with respect to each model formulation. More specifically,

for each obtained classifier we caculate the value of the risk functionals on the out

of the sample data points during cross-validation. We consider the raw expectation,

mean semi-deviation, as well as the avarage value at risk for the α quantiles 0.75,

0.85, and 0.95.

Indeed, we can observe that our models reduce the risk for each class with respect

to each risk calculation, compared to the benchmarks. More specifically, we notice

that the “one cvar” model, which does not attain the best performance in terms of F1-

score, but does, in fact, attain the lowest total risk value. Its value is approximately

one half that of the risk neutral formulation, and that of the other benchmark. The

“risk cvar” model does perform nearly identically, albeit having at slightly larger

values across the board. Further, we note that the “two cvar” model, which performes
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WDBC

Expectation MSD AVaR0.75 AVaR0.85 AVaR0.95

exp val
C0 Risk 0.000189 0.000368 0.000252 0.000223 0.000199
C1 Risk 0.000343 0.000663 0.000457 0.000403 0.000361

Total 0.000532 0.001030 0.000709 0.000626 0.000560

joint cvar
C0 Risk 0.000158 0.000309 0.000211 0.000186 0.000167
C1 Risk 0.000241 0.000470 0.000322 0.000284 0.000254

Total 0.000400 0.000779 0.000533 0.000470 0.000421

asym risk
C0 Risk 0.000121 0.000237 0.000161 0.000142 0.000127
C1 Risk 0.000194 0.000378 0.000259 0.000228 0.000204

Total 0.000315 0.000615 0.000420 0.000371 0.000332

one cvar
C0 Risk 0.000085 0.000166 0.000113 0.000100 0.000089
C1 Risk 0.000172 0.000335 0.000229 0.000202 0.000181

Total 0.000256 0.000501 0.000342 0.000302 0.000270

risk cvar
C0 Risk 0.000080 0.000157 0.000106 0.000094 0.000084
C1 Risk 0.000185 0.000363 0.000247 0.000218 0.000195

Total 0.000265 0.000520 0.000353 0.000312 0.000279

two risk
C0 Risk 0.000125 0.000246 0.000167 0.000148 0.000132
C1 Risk 0.000182 0.000356 0.000242 0.000214 0.000191

Total 0.000307 0.000601 0.000410 0.000361 0.000323

two cvar
C0 Risk 0.000085 0.000167 0.000113 0.000100 0.000089
C1 Risk 0.000235 0.000460 0.000314 0.000277 0.000248

Total 0.000320 0.000628 0.000427 0.000377 0.000337

Table 2.4: Risk Evalutation for the WDBC data set – Displaying the expectation of
error, Mean Semi-deviation, and Avarage Value at Risk for the α quantiles 0.75, 0.85,
and 0.95

best with respect to the AUC metric is the worst performing, benchmarks excluded.

Looking closely at the corresponding ROC curve in Figure 2.2 one can argue that the

performance with respect to the AUC metric, comes at the expense of robustness and

generalization.

Looking at the results on the “pima-indians-diabetes” data set in Table 2.5 we ob-

serve that the best performing model with respect to F1-score is the again “risk cvar”

model with 0.68581 compared to the 0.66785 of the risk neutral formulations. Sim-

ilarly, the “one cvar” model is again second in this conext, at the same time hav-

ing the largest AUC value for the group. Surprisingly, the benchmark formulation

“joint cvar” has the lowest score here. Switching the attention to the AUC section of

the table, we notice that “one cvar” is the best performing model in that regard well;
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with the “risk cvar” being second best. However, the gain in AUC value with the

changed parameters is minimal with a considerable reduction in the alternate target

metric; “one cvar” shifting from 0.68581 F1-score to 0.65377 in exchange for 0.0027

gain in AUC, and “risk cvar” shifting from 0.68781 F1 to 0.65504 for a gain of 0.003.

F1-score Optimized Classifiers

exp val joint cvar asym risk one cvar risk cvar two risk two cvar

lambda 0.48 0.51 0.49 0.48 0.44
alpha 1 0.58
alpha 2 0.90 0.68 0.56 0.58

C0 Errors 107 92 158 121 125 129 157
C1 Errors 80 93 46 65 62 63 48

FPR 0.21400 0.18400 0.31600 0.24200 0.25000 0.25800 0.31400
Recall 0.70149 0.65299 0.82836 0.75746 0.76866 0.76493 0.82090

Precision 0.63729 0.65543 0.58421 0.62654 0.62236 0.61377 0.58355
F1-score 0.66785 0.65421 0.68519 0.68581 0.68781 0.68106 0.68217

AUC 0.83039 0.83243 0.82900 0.83078 0.83033 0.82967 0.82830

AUC Optimized Classifiers

exp val joint cvar asym risk one cvar risk cvar two risk two cvar

lambda 0.51 0.54 0.54 0.50 0.60
alpha 1 0.69
alpha 2 0.59 0.86 0.76 0.69

C0 Errors 107 87 140 80 79 113 74
C1 Errors 80 98 59 99 99 78 106

FPR 0.21400 0.17400 0.28000 0.16000 0.15800 0.22600 0.14800
Recall 0.70149 0.63433 0.77985 0.63060 0.63060 0.70896 0.60448

Precision 0.63729 0.66148 0.59885 0.67871 0.68145 0.62706 0.68644
F1-score 0.66785 0.64762 0.67747 0.65377 0.65504 0.66550 0.64286

AUC 0.83039 0.83279 0.83081 0.83348 0.83332 0.83049 0.83267

Table 2.5: Main results table for the “pima-indians-diabetes” dataset – Displaying
the model parameters for the each model formulation as well as the corresponding
performance metrics.

Looking closely at the ROC curves in Figure 2.3 we can see that the AUC pioritized

“one cvar” actually does not classify at its maximum potential in terms of F1-score,

indicated by the fact that the threshold is not at the lightest green segment of the

curve. This requires additional investigation and exploration.

Figure 2.4 shows how the empirical distribution of error realizations from applying

the classifier to out-of-sample records on the left, and the overlayed ROC curves
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Figure 2.3: ROC plots for the best performing model formulations on the “pima-
indians-diabetes” data: “risk cvar” with the best F1-score, “one cvar” featuring both
parameter sets, and finally the “asym risk” formulation featuring the best AUC value

for the various classifiers on the right. Negative values indicate correctly classified

observations, while positive values indicate misclassification. We compare the select

loss functions to eachother and the benchmarks. Virtually no distinction can be made

between the ROC curves for the various classifiers. However, looking at the error

distribution plot on the left, we notice that the the two benchmarks misclassify less

of the default class and more of the target class. On the other hand, the “two cvar”

formulation underperforms for the opposite reason, in relation to the target metric

and the best performing formulation “risk cvar”.
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tion formulations to benchmarks [F1-score] on the “pima-indians-diabetes” dataset
(left) and the corresponding ROC curves (right)
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pima-indians-diabetes

Expectation MSD AVaR0.75 AVaR0.85 AVaR0.95

exp val
C0 Risk 0.164317 0.296266 0.219089 0.193314 0.172965
C1 Risk 0.183513 0.318461 0.244684 0.215898 0.193172

Total 0.347830 0.614727 0.463773 0.409212 0.366137

joint cvar
C0 Risk 0.132718 0.242794 0.176957 0.156138 0.139703
C1 Risk 0.226791 0.383421 0.302387 0.266812 0.238727

Total 0.359508 0.626215 0.479344 0.422951 0.378430

asym risk
C0 Risk 0.251054 0.431147 0.334738 0.295357 0.264267
C1 Risk 0.092539 0.169554 0.123385 0.108869 0.097409

Total 0.343593 0.600701 0.458124 0.404227 0.361676

one cvar
C0 Risk 0.167050 0.296830 0.222733 0.196529 0.175842
C1 Risk 0.128815 0.229708 0.171754 0.151547 0.135595

Total 0.295865 0.526538 0.394487 0.348077 0.311437

risk cvar
C0 Risk 0.168882 0.299515 0.225176 0.198685 0.177771
C1 Risk 0.123088 0.220300 0.164118 0.144810 0.129567

Total 0.291970 0.519815 0.389294 0.343495 0.307337

two risk
C0 Risk 0.152290 0.269093 0.203053 0.179165 0.160305
C1 Risk 0.110126 0.195772 0.146835 0.129560 0.115922

Total 0.262416 0.464865 0.349888 0.308725 0.276227

two cvar
C0 Risk 0.240685 0.415233 0.320913 0.283158 0.253352
C1 Risk 0.103057 0.188842 0.137409 0.121244 0.108481

Total 0.343742 0.604075 0.458322 0.404402 0.361833

Table 2.6: Risk Evalutation for the “pima-indians-diabetes” data set – Displaying
the expectation of error, Mean Semi-deviation, and Avarage Value at Risk for the α
quantiles 0.75, 0.85, and 0.95

Table 2.7 contains the risk functional evalutation for the “pima-indians-data”.

It is interesting that the “two risk” model has the lowest total risk with respect to

every risk functional, despite the fact that is not the best performing model in terms

of F1-score or AUC. This leads us to believe that there may be room for additional

exploration with regard to performance metrics and evaluation.

We continue with the performance evalution on the third and final dataset, whose

main performance metrics are shown in Table 2.7. One can immediately observe, that

no model performs particularly well on this dataset. We have chosen this data set for

being particularly imbalanced and containing categorical varibles.

Again, we see the “risk cvar” formulation as having the best F1-score, followed

very closely by the “joint cvar” formulation. In terms of AUC, it is the “two cvar”
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F1-score Optimized Classifiers

exp val joint cvar asym risk one cvar risk cvar two risk two cvar

lambda 0.61 0.60 0.59 0.53 0.70
alpha 1 0.92
alpha 2 0.60 0.86 0.84 0.92

C0 Errors 471 203 269 248 230 270 201
C1 Errors 64 93 83 85 87 83 94

FPR 0.19511 0.08409 0.11143 0.10273 0.09528 0.11185 0.08326
Recall 0.62353 0.45294 0.51176 0.50000 0.48824 0.51176 0.44706

Precision 0.18371 0.27500 0.24438 0.25526 0.26518 0.24370 0.27437
F1-score 0.28380 0.34222 0.33080 0.33797 0.34369 0.33017 0.34004

AUC 0.76157 0.75482 0.76187 0.75595 0.75496 0.75133 0.75629

AUC Optimized Classifiers

exp val joint cvar asym risk one cvar risk cvar two risk two cvar

lambda 0.60 0.47 0.47 0.49 0.47
alpha 1 0.56
alpha 2 0.93 0.75 0.58 0.56

C0 Errors 471 261 292 812 817 571 633
C1 Errors 64 84 82 50 48 62 54

FPR 0.19511 0.10812 0.12096 0.33637 0.33844 0.23654 0.26222
Recall 0.62353 0.50588 0.51765 0.70588 0.71765 0.63529 0.68235

Precision 0.18371 0.24784 0.23158 0.12876 0.12993 0.15906 0.15487
F1-score 0.28380 0.33269 0.32000 0.21779 0.22002 0.25442 0.25245

AUC 0.76157 0.76068 0.76360 0.76489 0.76611 0.76344 0.76637

Table 2.7: Main results table for the “seismic-bumps” dataset – Displaying the model
parameters for the each model formulation as well as the corresponding performance
metrics.

formulation that leads group, but again at a significant cost of the F1-score. Looking

at Figure 2.5, we can see room for improvemnts to the this by changing the threshold

on the AUC prioritzed “two cvar” model. We observe that in terms of stability to

that respect, the “asy risk” formulation along with “joint cvar” benchmark have less

variation.

Turning the attention to the risk functional evaluation in Table 2.8, we observe

that the “exp val” benchmark model has the lowest total on the “seismic-bumps”.

However, being that this dataset is very imbalanced, we can see how significantly

different the risk functional evaluation is between the two classes for each model

formulation.
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Figure 2.5: ROC plots for the best performing model formulations on the “seismic-
bumps” data: “risk cvar” with the best F1-score, “one cvar”, “joint cvar”, “two cvar”
formulation featuring the best AUC value

Notice, in Figure 2.6, how the “exp val” benchmark stands alone compared to the

well grouped risk aware models, which includes the benchmark formulation “joint cvar”.

Similarly, as on the previous dataset, the ROC curves are very much grouped.

In summary, the F1-score prioritized model consistently provides small but signif-

icant improvement over the baseline models.
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Figure 2.6: Empirical distribution of error realizations comparing risk-averse loss
function formulations to benchmarks [F1-score] on the “seismic-bumps” dataset (left)
and the corresponding ROC curves (right)
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seismic-bumps

Expectation MSD AVaR0.75 AVaR0.85 AVaR0.95

exp val
C0 Risk 0.039589 0.072043 0.052786 0.046576 0.041673
C1 Risk 0.064462 0.106979 0.085950 0.075838 0.067855

Total 0.104052 0.179022 0.138735 0.122414 0.109528

joint cvar
C0 Risk 0.015641 0.030007 0.020854 0.018401 0.016464
C1 Risk 0.131682 0.199685 0.175576 0.154920 0.138613

Total 0.147323 0.229693 0.196430 0.173321 0.155077

asym risk
C0 Risk 0.018930 0.035855 0.025239 0.022270 0.019926
C1 Risk 0.099935 0.156758 0.133246 0.117570 0.105194

Total 0.118864 0.192613 0.158485 0.139840 0.125120

one cvar
C0 Risk 0.019387 0.036922 0.025850 0.022809 0.020408
C1 Risk 0.116238 0.179858 0.154983 0.136750 0.122355

Total 0.135625 0.216780 0.180833 0.159559 0.142763

risk cvar
C0 Risk 0.015942 0.030445 0.021256 0.018755 0.016781
C1 Risk 0.107669 0.164839 0.143559 0.126669 0.113336

Total 0.123611 0.195284 0.164814 0.145424 0.130116

two risk
C0 Risk 0.015797 0.029943 0.021062 0.018584 0.016628
C1 Risk 0.088633 0.139315 0.118177 0.104274 0.093298

Total 0.104430 0.169258 0.139239 0.122858 0.109926

two cvar
C0 Risk 0.013332 0.025589 0.017776 0.015685 0.014034
C1 Risk 0.110821 0.167536 0.147762 0.130378 0.116654

Total 0.124153 0.193126 0.165538 0.146063 0.130688

Table 2.8: Risk Evalutation for the “seismic-bumps” data set – Displaying the expec-
tation of error, Mean Semi-deviation, and Avarage Value at Risk for the α quantiles
0.75, 0.85, and 0.95

2.11.4 Flexibility

Our approach provides additional flexibility which is generally not available for classi-

fication methods like SVM. We allow the user to implement a predetermined attitude

toward risk of misclassification, and to explore the Pareto-efficient frontier of clas-

sifiers. The efficient frontier can be used to chose a risk-averse classifier according

additional criterion as the F1–score, AUC, or other similar performance metrics, as

discussed in the previsou section.

We traverse the Pareto frontier by varying λ from 0.4 to 0.7 and observe that the

solution is rather sensitive to the scalarization used in the loss function. In Figures

2.7 , we show the resulting error densities from such a traversal. We can observe

how varying the weight between the two risk measures allows us to obtain a family
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Figure 2.7: The distribution of error displayed as smoothed histogram for each of five
proposed formulations for the risk-averse SVM problem e.g. “asym risk”, “one cvar”,
“risk cvar”, “two risk”, and “two cvar” all using the same set of λ values, with other
parameters fixed, on the “seismic-bumps” dataset

of risk-averse Pareto-optimal classifiers.

The Pareto frontier looks substantially different when different combinations of

risk measures are used. Further research would reveal the effect of higher order risk

measures and their ability to create a classifier with highly discriminant powers. We

have chosen the probability level for the Average Value-at-Risk in a similar way. We

observe that the loss function “one cvar” consistently provides the best performance.

A close second, is the loss function “risk cvar,” which has a similar structure. Inter-

estingly, using the same risk measure on both classes does not perform as well.



– 55 –

2.12 Concluding remarks

This thesis proposes a novel approach to classification problems by leveraging math-

ematical models of risk. We have formulated several optimization problems for op-

timizing a classifier over a parametric family of functions. The problem’s objective

is a weighted sum of risk measures, associated with the classification error of the

classes: each class may be treated with an individual risk preference. We have shown

the existence of an optimal risk-sharing classifier under mild assumptions. Addi-

tionally, we have demonstrated that the optimal risk-sharing classifier also solves a

risk-neutral classification problem, in which the empirical probabilities of the data

points are replaced by a probability distribution determined implicitly by the risk

measures. The risk-averse classification problem provides a robust classifier due to

the dual representation of risk measures.

We have provided a more specific problem formulation for the case of binary clas-

sification and have shown how the methodology allows for the use of kernel functions.

Additionally, we have proposed an efficient numerical method for solving a version of

the binary risk-averse classification by determining a separating plane with a normal

vector of length one. This allows for precise calculation of the classification error.

We have conducted experiments on three data sets and we have compared our

approach to three benchmarks, which use the minimization of the total expected

error, the Huber function, and the Average Value-at-Risk for the total classification

error as presented in [?]. Our observations are the following. On the data sets for

which traditional formulations perform well, the novel approach performs on par or

slightly better depending on the particular choice of risk measures and parameters.

The proposed approach has an advantage on all data sets as measured by the F1-

score. Exploring the Pareto-efficient frontier provides additional flexibility and is a

tool for customizing the classifier. As we see from the numerical results, we achieve

larger recall or precision by adjusting the scalarization factor λ. Overall, this is
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an extremely flexible approach which allows fine-tuning leading allowing the user to

achieve the best possible result in the chosen metric.
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Chapter 3

The Impact of Patent Activity on Stock Dynamics

in the Technology Sector

3.1 Introduction

The prospect of a company in the stock market is traditionally evaluated by financial

statement analysis [23]. However, the performances of high-tech companies on the

stock market are also strongly related to their technology innovations, which are often

protected by patents. Also, while stock forecasting is a topic of general interest and

has been studied extensively in the literature, much less efforts have been devoted

to the study of the impact of patent activities on stock movement patterns. Indeed,

rich information about the prospects of the high-tech companies is available in patent

data. For instance, patent data can be used to reveal the characteristics of innovative

activities in the companies, such as emerging technologies developed in the compa-

nies, knowledge diffusion and technological change in the companies, and the global

strategies of firms. These characteristics are important factors of long-term future

market performances of companies. Here, we assume that research and development

investments, strategic technological investments, and market aspirations of a com-

pany are reflected in its patent activity. Also, we consider the quantity of developed

patented innovations in a given period as well as the span of those innovations in

terms of patent category relevant factors for the company’s development. Indeed, in

this thesis, we focus on the analysis and discovery of the relations between patent

activities of a company and its market performance. Our aim is to provide a new

perspective and to illustrate the potential of exploiting the information available in
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patent data for stock prospecting.

Along these lines, we investigate the relationship between the patent activities of

high-tech companies and the return of the company’s stock, its drift and volatility.

We adopt the most popular model for the movement of a stock price over time and

use it to determine the drift and volatility changes over a relevant time horizon.

The drift of a stock refers to the changes of the average return. Volatility in stock

markets refers to the variance range of stock tracking. We emphasize that, while the

drift of a stock is essential, the volatility is crucial both as a risk factor, as well as

an indicator of investment opportunities. In the stock market, volatility is a major

indicator of market stability. Volatility within a certain range indicates stock market

running in a steady pace. However, if the stock price exhibits high volatility, from a

market macro-structure point of view, the risk of the whole financial system will be

increased. From a micro-structure point of view, the investors will face a higher risk on

their investment. Proper evaluation of the company’s prospects may aid the decision

whether a certain investment should be increased or decreased in a period of high

volatility. Additionally, the internal review of a company’s efficiency is often judged

by the market performance of its stock. Therefore, it is very important to monitor and

perhaps even anticipate large fluctuations in stock prices. In the literature, researchers

investigate stock volatility directly through the trading data. This usually provides

a short-term view of the market stability and investment prospects. In contrast,

the analysis of the impact of patent activities on stock volatility has the promise to

provide a long-term view of the market stability of a high-tech company.

To the best of our knowledge, we are the first to attempt to marry the areas of

patent data mining and financial modeling. In the context of this investigation, we

have developed a new approach to establish relations between the patent activities

of high-tech companies and the dynamics of their stock price movement. Specifically,

we develop a stochastic model to characterize the relationships between the monthly

drift/volatility of stock prices and patent activities, which have been reflected by the
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number of patent applications and the diversity of the corresponding patent cate-

gories. To gain an insight into the patent activities, we extract all patent events in

the form of applications as well as their categories for every company we have decided

to investigate. Also, we determine how many patents contribute to new innovation

categories and how many new categories are produced each month. For the financial

data, we employ daily stock trading data to calculate returns. We consider the influ-

ence of the market and adjust the return to extract the movement of the stock price,

which is due purely to the activity and the market evaluation of the specific company

and not to the general movements of the entire market. Additionally, by considering

various lagged terms, we produce a number of fitted models with a moving window

technique. We then analyze how the average performance and the volatility relate to

the chosen factors (patent activity indicators). Finally, we perform statistical testing

on the models and their coefficients to establish statistical significance.

The validation has been performed on real-world stock trading data as well as

patent data. We notice that there is a statistically significant impact of the patent

activities on the market-adjusted stock return process, as well as on its drift and

volatility. While known approaches to relating sequential data consists of relating the

time series directly, our new method reveals the impact of the chosen patent-activity

indicators on the stock’s volatility, which would be impossible to infer otherwise. The

results confirm the impact of innovations on stock price movement and show that

the stock prices can exhibit more volatility if the company has been extending their

patents to new areas. This is reflected in the positive coefficients for innovation terms

in our models for volatility.
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3.2 A Literature Review

3.2.1 Stochastic Models of Dynamic Systems

We mention here the most popular statistical model for time-series data.

Autoregressive Moving Average (ARMA) models allow us to describe

stochastic processes in terms of two polynomials by combining a purely auto-regressive

model and a moving average model. A critical assumption, for all three model types,

is that the process being described be weakly stationary, and since strict stationarity

does not exist in practice, from here on out referred to as stationary. Given a time

series Xt, AR(p) model has the following form

Xt = c+

p∑
i=1

ϕiXt−i + εt. (3.1)

Model MA(q) has the following form

Xt = µ+

q∑
i=1

θiεt−i + εt (3.2)

where µ = E[Xt], θ1, ..., θp’s are model parameters and εt, εt−1, ..., εt−p are error terms.

Combining (3.1) and (3.2) we obtain the form for the ARMA(p, q) model

Xt = c+

p∑
i=1

ϕiXt−i +

q∑
i=1

θiεt−i + εt (3.3)

The models are used under the assumption that the error terms εt = {ε1, ...εT} are

independent identically distributed random variables following a normal distribution

with mean zero and equal variance. This assumption is frequently used to test model

fit.

Generalized Autoregressive Conditional Heteroskedastic (GARCH) mod-

els, first introduced by Bollerslev in [7], are a generalization of the ARCH model in-

troduced by Engle in [33]. Both use an exact function to govern the evolution of the

conditional standard deviation of a time series, commonly referred to as volatility.
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Let Ft be a filtration on Xt, which is the time series we wish to model. We can

denote the conditional mean and variance of Xt given Ft−1 as follows

µt = E(Xt|Ft−1)

σ2
t = Var(Xt|Ft−1) = E[(Xt − µt)2|Ft−1]

(3.4)

Further, suppose, Xt follows some simple time series model, a stationary ARMA(p, q)

for instance. That is, we can consider the following model structure for Xt

Xt = µt + at

µt =

p∑
i=1

φiyt−i −
q∑
i=1

θiat−i

Yt = Xt − φ0 −
k∑
i=1

βirit

(3.5)

where k,p and q are nonnegative integers, and rit are the explanatory variables associ-

ated with the ARMA(p, q) model. We use Yt to denote the time series after adjusting

for the effect of the mean equation µt. Combining (3.4) and (3.5), we obtain

σ2
t = Var(Xt|Ft−1) = Var(at|Ft−1) (3.6)

In many econometric and finance problems one needs to model the amount of

increase or decrease of investments per time period. For that purpose, ARCH models

are created. They model the changing variance of a time series. The ARCH(m)

Model has the form

at = σtεt

σ2
t = α0 + α1a

2
t−1 + · · ·+ αma

2
t−m

(3.7)

where εt is a sequence of independent identically distributed random variables with

mean zero and variance 1, α0 > 0 and αi ≥ 0 for i > 0 A more general model is a

GARCH (generalized autoregressive conditionally heteroscedastic) model. It uses the

past squared observations and past variances to model the variance at a given time.
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GARCH(m, s) Model has the form

at = σtεt

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j

(3.8)

where εt is a sequence of iid random variables with mean zero and variance 1, α0 > 0

and αi ≥ 0, βj ≥ 0 and
∑max(m,s)

i=1 (αi + βi) < 1. Here it is understood that αi = 0 for

i > m and βj = 0 for j > s.

In practice, it is often assumed that εt follow a standard normal, standardized

Student-t distribution, or a generalized error distribution.

Markov chains are the most popular models of stochastic processes. We assume

that the process, which we observe takes finitely many states, which we number,

i.e., the state space is S = {1, . . . , S}. Markov chain is a good model for such a

system, if we determine that only the current state is necessary for the identification

of the probability distribution of the next state of the system. Mathematically, the

following property is required. A random process X is called a Markov chain if it has

the following Markov property

P(Xn = i|X0 = x0, X1 = x1, · · · , Xn−1 = xn−1) = P(Xn = i|Xn−1 = xn−1)

for all n ≥ 1 and all states i, x0, x1, . . . , xn−1 ∈ S.

The Markov chain X is called homogeneous, if

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i).

The probabilities pij = P(Xn = j|Xn−1 = i) are called transition probabilities.

This chain is completely characterized by its transition probabilities comprised in the

matrix P = (pij)i,j∈S, which is called the transition matrix. The n-step transition

matrix Pn = (pij(n))i,j∈S is the matrix of the n-step transition probabilities:

pij(n) = P(Xn+m = j|Xm = i) = P(Xn = j|X0 = i).
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It is well-known that Pn = P n. The unconditional probability distribution of any

state of the system Xn can be obtained from the initial probability distribution and

the transition matrix. Denoting the mass function by a row vector π(n), i.e., π
(n)
i =

P(Xn = i), we have π(m+n) = π(m)Pn, and, hence, π(n) = π(0)P n with π(0) being the

initial distribution. The distribution π is called stationary distribution of the chain if

π = πP, i.e., πj =
∑
i∈S

πipij for all j ∈ S.

The assumption of stationarity is implicit in data mining applications, in particular

in Bayesian learning models.

One example of how we can associate a Markov chain with a collection of time-

series is the following. We assume that each time-series is given by vector in Rn and

all time-series constitute the set S ⊂ Rn. Let % be a similarity measure which we

shall use to compare the points of S. We assume that in addition to the axioms of

the definition % is positive semi-definite. This means, that for all bounded functions

f : S → R, we have ∑
x,y∈S

%(x, y)f(x)f(y) ≥ 0.

We define the following general relation of a time-series x ∈ S :

d(x) =
∑
y∈S

%(x, y). (3.9)

Then, we can associate a Markov transition matrix P defined by setting

px,y =
%(x, y)

d(x)
.

We can easily verify that P is a stochastic matrix because its entries are non-negative

and the elements in each row sum to 1. These are the probabilities to move from

state x to another state in one time step, i.e., the conditional distribution of the future

state given the current state x. These probabilities provide a normalized measure of

similarity between the time-series in the data-base. The stationary distribution of
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the Markov chain with this transition matrix is proportional to the total association

d(x).

π(y) =
d(y)∑
z∈S d(z)

.

Geometric Brownian Motion Models are use to model many physical pro-

cesses. Recently, this model became popular also for processes in the area of finance.

Originally, the Brownian motion was introduce to describe the motion of particles

suspended in a fluid. The idea is that the motion of the particle is due to the sum of

a large number of very small random forces.

A stochastic process {Wt; t0} with continuous sample paths is called standard

Brownian motion if it has the following properties.

1. W0 = 0.

2. W has independent stationary increments Wt −Ws, 0 ≤ s < t.

3. Wt −Ws has a normal distribution with mean zero and variance t− s, 0 ≤ s < t.

A process Xt is a Brownian motion with variance σ and drift µ if it has the form

Xt = σWt + µt.

A Brownian motion with drift has properties 1. and 2. above but property 3. is

modified to state that the distribution of XtXs has a normal distribution with mean

(ts) and variance σ.

Geometric Brownian motion can be defined as the process {St; t0} defined by

St = S0e
Xt ,

where Xt is a Brownian motion with variance σ and drift µ and S0 > 0 is the initial

value. Using this formula, it can be shown that the Geometric Brownian Motion

satisfies the Markov Chain property. This type of stochastic processes are adopted in

quantitative finance for the purpose of describing the dynamics of stock prices. We

shall use it in our analysis as well.
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3.2.2 Patent Data Analysis

There is significant amount of research into leveraging patent data in a variety of

ways. Many researchers have attempted to parse the actual text of various parts of

patent documents [98, 39, 63] in order to ascribe economic value to a patent, or a set of

patents, or alternatively to establish quality metrics for ranking patents. For instance,

the authors [98] introduced “SIMPLE,” a piece of software designed to provide an

interactive way to analyze unstructured data such as patents and other scientific

texts. This is accomplished by taking a set of keywords as input and generating

multiple queries for each of them. Some of the keywords may be related and the

software attempts to discover the relationship and structure the queries accordingly.

The queries are then executed on the document database and the software provides

detailed statistics about their occurrences within documents. Also, Hasan et al. [39]

propose a method for discovering and ranking novel patents. The software starts by

directly parsing the text in the “claims” section of the patent document, then rates

patents based on how recent they are, and how impactful the phrases discovered in

the text are. In addition, Liu et al. developed a latent graphical model in [63], which

infers patent quality. They utilized natural language processing techniques in order

to capture quality measures such as originality, clarity of claims, and importance of

the prior works cited in the patent.

Another branch of research into patent data mining considers using topic models.

For example, Tang [99] presented a system for mining patent data which uses topic

models in order to facilitate the collection and analysis of the information from a

heterogeneous patent network. Using a probabilistic model, they derived a ranking

method for a set of patents, as well as the methods to summarize search results, and

an efficient algorithm for the topic-level competitor evolution analysis.

Attempting to establish patent trends in order to gain competitive advantage in

business is the focus in [97], where the authors develop an approach for identify-

ing patent trends. They have considered company-level trends and related them to
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industry-level trends by leveraging association rules. In contrast, the authors of [47]

tried to minimize patent maintenance cost by proposing a method for analysis, pre-

diction, and recommendation of patent maintenance policy. Here, the patents are

modeled as a dynamic, heterogeneous information network, which changes with time.

Kim et al. adopted a citation network perspective in [52], and proposed a tech-

nique for automating the detection of influential patents via their novel centrality

measure based on the change of a node similarity matrix. The authors alleviated the

problem of computational intensity for centrality measures through new and clever

way of updating values in the similarity matrix.

Unlike the above mentioned works, the focus of our thesis is on establishing rela-

tions between the patent activities of high-tech companies and the dynamics of their

stock price movement. The goal is to show the promises of exploiting patent data for

the analysis and prospecting of high-tech companies in the stock market.

In the literature, one of the most popular and widely accepted model of stock

prices, respectively stock return, is based on the geometric Brownian motion pro-

cess. In this setting, the stock price return is a solution of a stochastic differential

equation. The essential ingredients of the model are a drift term and a volatility

term. Substantial part of the research effort, in the quantitative finance community,

is devoted to investigating the effect of various factors influencing the stock returns.

To the best of our knowledge, all models relate the direct observations of the stock

price or stock return to the value of the factors at a given time. For example, in

[62], the author explored the efficiency impacts of Nikkei 225 future contracts on the

underlying stocks. In [89], the predictive ability of economic indicators in the context

of RTS index was studied. Also, in [81], the predictability of spot rates of the US

dollar against British pound was investigated and the effect of brand acquisitions and

disposals on the stock market was studied in [105].

The work presented in [79] and [72] are closely related to ours. Looking at patent
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citations, the authors proposed an empirical strategy to estimate competition of com-

panies based on their innovation record. In [79], the authors related the company’s

market return to information about their patent citations. In their paper, citation

patterns are created and related to the area of science, in which the company patents.

The authors have provided empirical evidence that markets positively reward com-

panies when patents are granted and furthermore, the market value of the company

increases when its patent portfolio is cited. In [72], the authors analyzed the effect

of innovation markets on the market value of publicly traded companies in Japan.

They developed a strategy using patent citation patterns to measures both patent im-

portance and the emergence of potentially competing technologies. They suggested

an estimator of market value, which addresses the potential endogeneity of R&D to

company value.

Complementary to [79], we propose to investigate the impact of patent applica-

tions by looking separately at the innovations of the company in their traditional area

of business and those which are in areas that are new to the company. Furthermore,

we shall relate not only the stock return process but also its main characteristics, drift

and volatility. Additionally, our basic assumptions are that a major factor explain-

ing the movement of the stock price is the market movement itself. This is why we

consider it important to account for this factor before analyzing the impact of patent

activity. We explain the mathematical tools employed and further elaborate on their

novelty in Section 3.3.

While our focus is primarily from the investment perspective, there is a significant

amount of work that focuses on mining patent data for a myriad of other applications.

To the best of our knowledge, there is no other work in this direction. Furthermore,

our approach in establishing the impact of patent activity on the characteristics of

the stock return process is novel and has not been proposed elsewhere.
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3.3 The Adjusted Return Process

Undoubtedly, the overall stock market performance has a significant impact on in-

dividual stocks. This is the reason that we look at the returns of the stock only

after removing that effect. This step allows us to address more accurately the im-

pact of patent activities on the movement of the stock return. We call the obtained

market-independent component of the stock return the market-adjusted return, whose

calculation constitutes the first step of our data analysis. In a second step, we relate

the return process to the selected patent activity factors. Subsequently, we develop

a model to discover the impact of patent activity on the drift and volatility of the

market-adjusted stock return process.

Basic models of stock prices assume that the price deviates from a certain steady

state as a result of the trading process, i.e., ask and bid in financial markets. If

we consider a stock with price St at time t and an expected rate of return µ, then

the return or the relative change of the price during the next period of time dt is

composed of two parts:

1. A part, which can be described as predictable, deterministic and anticipated, that

is the expected return from the stock hold during a period of time dt; this return

is assumed to be equal to µStdt.

2. A stochastic part, which reflects the random changes in stock prices during the

interval of time dt attributed to external effects such as news, reports, random

fluctuations in the market demands, etc. A frequently adopted assumption is

that this contribution is proportional to the stock price. For a constant σt and a

random walk process dWt, this part of the return is assumed equal to σSt dWt.

These modeling assumptions lead to the stochastic differential equation followed

by the stock price (see, e.g., [71, Section 5.1]):

dSt = µSt dt+ σSt dWt (3.10)
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or, equivalently,

dSt
St

= µ dt+ σ dWt (3.11)

The stochastic differential Equation (3.10) describes the Brownian motion with drift

followed by the stock price St. The return on St in the period of time dt follows an

Itô’s process. For every interval of time of length dt between two consecutive instants,

the return can be represented as follows:

dSt
St

= d
(

ln(St)
)

= ln(St)− ln(St−dt) = ln
( St
St−dt

)
Thus, the model can be written as follows:

ln
( St
St−dt

)
= µ dt+ σ dWt. (3.12)

The solution of this stochastic differential equation is

ln(St) = ln(St−dt) +
(
µ− 1

2
σ2
)
dt+ σε

√
dt
′

(3.13)

(see e.g. [53, Chap. 4, p. 105]), or equivalently,

St = St−dt exp
((
µ− 1

2
σ2
)
dt+ σε

)
. (3.14)

For the purpose of removing the market effect, we use the Capital Asset Pricing

Model (CAPM), which involves one of the most significant characteristics of a stock,

called Beta (β). In 1990, William Sharpe won a Nobel Prize in Economics for his

work in developing the model [95]. In finance, the Beta of a stock or a portfolio is a

number describing how the return of an asset is predicted by a benchmark. The Beta

is usually estimated via the use of representative indices, such as the Standard and

Poor 500 (S&P 500) index. We will discuss this issue in due course. It is assumed

that Beta measures systematic risk based on how returns co-move with the overall

market. Beta is also referred to as financial elasticity or correlated relative volatility.

It has the following interpretation:
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β < 0 Asset generally moves in the opposite direction as compared to the bench-

mark.

β = 0 Movement of the asset is uncorrelated with the movement of the benchmark.

β ∈ (0, 1) Movement of the asset is generally in the same direction as, but less than

the movement of the benchmark

β = 1 Movement of the asset is about the same as the movement of the benchmark

β > 1 Movement of the asset is generally in the same direction as, but more than

the movement of the benchmark

Another theory, called the arbitrage pricing theory (APT) introduces multiple

factors into consideration at the same time. According to this theory, the model

has multiple betas associated with multiple risk factors. Each risk factor has a cor-

responding beta indicating the responsiveness of the asset being priced to that risk

factor. Multiple-factor models contradict CAPM by claiming that some other factors

can influence return significantly, therefore one may find two stocks with equal beta

but they may not be equally good investment.

We adopt the point of view that the market is a major factor in the movement

of the price with much grater significance than other possible factors. Therefore,

our proposed approach accounts first for the market impact before other factors’

influence on the price movement are investigated. We first adjust the returns (3.12)

by removing the component related to the market.

More formally, let us consider the stochastic process of a representative index It

over a period of time t = 1 . . . T . The CAPM model implies that the stock price St

is related to the index It as follows:

dSt
St
− Jf = β(

dIt
It
− Jf ) +Rt. (3.15)

Here Jf is the risk-free rate andRt is the component of the process St, which represents

the part of change not explained by the changes of the market as a whole.
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The process Rt will be the subject of our investigation and we shall investigate

how this process is influenced by the patent activity of a company in the technology

sector. It can also be viewed as the premium over an investment in Exchange-traded

fund (ETF) representing the index It. We shall refer to it the market-adjusted stock

premium.

3.4 Patent-Activity Factors Affecting the Stock Return

In order to relate the adjusted return to the patent related indicators, we consult

the multi-factor models establishing the impact of certain indicator of the financial

instruments. Many studies are available on multi-factor models in asset pricing (see,

e.g., [103, 96, 73, 8, 16, 19, 68]). Factors that change in time are of particular interest

to risk premium forecasting and fit our goal as well. One of the multi-factor models

most widely used in research and in practice is the APT model described in [19] as

follows:

Rt = α + β1I
1
t + β2I

2
t + . . . βkI

k
t , (3.16)

where Rt stands for asset return and the factors Ij are major external economic

factors, such as industrial production, inflation, interest rates, business cycle, etc.

Models of this type relate the securities prices to the economic conditions. The same

model is also applied to investment portfolios helping investors to determine factor

sensitivity of their entire portfolio rather than of individual securities.

In [73], the authors also investigated a multi-factor model in which they separated

the impacting quantities as static and dynamic. Another approach is suggested in

[68], where the authors developed a time-series multi-factor portfolio analysis model,

which was named as Constrained Flexible Least Squares (CFLS).

Our approach, which will be presented in Section 3.4.2, differs from the factor

models in the extant literature. Due to the latent character of research and develop-

ment with respect to stock market performance, we propose to extend model (3.16)
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by introducing l lagged variables of the patent activity factors.

Rt = α + β1
0I

1
t + β1

1I
1
t−1 + ...+ β1

l I
1
t−l+

β2
0I

2
t + β2

1I
2
t−1 + ...+ β2

l I
2
t−l+

β3
0I

3
t + β3

1I
3
t−1 + ...+ β3

l I
3
t−l

(3.17)

Note that we will use this extended version of the model as a baseline in our

experiments. We consider this setting a new way of formulating factor models.

3.4.1 Consistency of Time Scales

For the process of returns Rt, we assume that a model analogous to (3.12) is valid.

Also, we make the following modeling assumptions.

1. The process Rt is approximated by an aggregate process Rτ of a larger time scale,

where one time unit τ aggregates κ time intervals of the finer time-scale, for some

natural number κ.

2. Within each time period τ = 1, . . .Θ in the new time scale, the process Rt follows

the following model

Rt = µτ dt+ στ dWt

t = κτ, κτ + 1, ..., κ ∗ (τ + 1)− 1,
(3.18)

with a constant drift µτ , and volatility στ .

3. Patent activities of the company impact the drift and/or the volatility of the

adjusted aggregate process Rτ .

The uniformity of aggregation is not essential for our analysis. Our methods apply

equally well to a non-uniform time-scale, i.e., earlier periods may be aggregated in

larger batches. In a non-homogeneous time frame, we need only set suitable time

intervals τ = 1, . . .Θ and establish kτ as the number of time intervals from the finer

time-scale, which comprise the time period τ . We shall use model (3.18) to analyze

further the drift µτ and volatility στ of the adjusted returns process Rτ .
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3.4.2 Model of the Relationship

We denote the number of granted patents to the company in one period of time by

Xτ and the number of the patent categories spanned by the patent activities of the

company during the same period by Yτ . Additionally, we split the categories into

patent categories traditional for the company, denoted by Y e
τ and new categories,

which indicate innovation in the activities of the company. The latter will be denoted

by Y n
τ . Our goal is to study the impact and statistical significance of these factors on

the adjusted aggregate return process Rτ .

We adopt a point of view, in which, we model not only the direct impact of

the dynamic factors on the path of the stock return process but we also look at

their impact on the features of the process {Rt} as characterized by the drift µ and

volatility σ.

We investigate the relation of the processes µτ and στ to the processes Xτ , Y
e
τ , and

Y n
τ . To this end, we shall establish a statistical autoregressive model of the following

form:

µτ = βσ0 στ + βµ0µτ−1+

β1Xτ + β2Xτ−1 + · · ·+ βθXτ−θ+1+

βe1Y
e
τ + βe2Y

e
τ−1 + · · ·+ βeθY

e
τ−θ+1+

βn1 Y
n
τ + βn2 Y

n
τ−1 + · · ·+ βnθ Y

n
τ−θ+1 + εµτ .

(3.19)

στ = αµ0µτ + ασ0στ−1+

α1Xτ + α2Xτ−1 + · · ·+ αθXτ−θ+1+

αe1Y
e
τ + αe2Y

e
τ−1 + · · ·+ αeθY

e
τ−θ+1+

αn1Y
n
τ + αn2Y

n
τ−1 + · · ·+ αnθY

n
τ−θ+1 + εστ .

(3.20)

The equations describe the evolution of the drift and volatility process in response

to the vector of weakly exogenous or lagged dependent variables X, Y e, Y n. In addi-

tion, we analyze the significance of the relation and the number of appropriate delay
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terms.

If our analysis encompass a long period of time, the models (3.20) may not be

sufficiently accurate. One common approach to this problem is the moving window

technique, which is widely used to estimate dynamic changes in factor exposures (see,

e.g., [96]). In this case, the model (3.20) will be limited to observations in a portion

of the time horizon (a window). In that case, the regression coefficients will change

as the portion of data moves from the beginning to the end of the time horizon. The

moving window technique has limitations and deficiencies pertaining mainly to the

fact that reliable estimates of model parameters can be obtained only if the window

is sufficiently large. This approach limits the ability to detect changes that were

occurred within a short period of time or very quick, abrupt changes that can occur

due to trading. However, our presumption is that the impact of patent activity does

not lead to abrupt moves of the stock price but has rather, a longer-term effect. We

shall see empirically that this assumption is in-line with the empirical evidence.

A version of the moving window technique is described in [106]. According to

this methodology, the regression window that is used for estimation of the model

parameters is formed in each point of estimate based on the k-nearest neighbor rule.

This method is motivated by the fact that, if no prior information is available, then

at any point in the past, observations on both sides of that point are equally impor-

tant for the estimation process. Therefore, the regression window always includes k

observations that are closest in time to the point of estimate. Each data point within

the window is assigned a weight decreasing exponentially from the estimation point

to both edges of the window. The window is centered around the estimation point,

except at the beginning and at the end, where all k-nearest returns are the returns

that immediately follow or precede the point of estimate respectively.

Using exponential weights in the moving window technique was suggested in [12]

and expanded in [41]. In this approach, the more recent observations have a larger
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Figure 3.1: Hitachi Ltd. - Patent Activity, Drift, and Volatility

effect than the earlier ones; the weights would gradually decrease within the esti-

mation window from the point of estimate to the end of the window. Furthermore,

the weight decrease exponentially with time as each weight is set to be equal to the

preceding one multiplied by a number δ, δ ∈ (0, 1), which is called a decay factor.

Alternative approach is suggested in [68], where the authors determine dynamic

regression coefficients considering the entire data set without the use of predetermined

window size for the validity of local models.

Note that we adopt the technique of considering the point of estimation to always

be the most recent point of the moving window.

3.4.3 Estimation of Parameters

In order to apply the models described in the previous section, we must compute and

estimate the various features characterizing the market-adjusted return process.

To this end, we must first obtain the market-adjusted return process itself. We

employ (3.15), where St are the focus company’s stock prices and It are the prices of

the Standart & Poor 500 index. We perform the estimation of the market influence

coefficient Beta (β) on the entire time horizon. Using this parameter, we obtain the

market-adjusted return process Rt.
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Using Rt, we perform the estimation of the drift µτ and the volatility στ of the

aggregate market-adjusted return process Rτ in the following way.

Focusing on a time interval [κ ∗ τ, κ ∗ (τ + 1) − 1], we denote vi = Rκ∗τ+i. We

calculate an unbiased estimator for the logarithm of the adjusted returns process:

v̄τ =
1

κ

κ∑
i=1

vi, τ = 1, . . . , T.

The unbiased estimator of the standard deviation for the same quantities is:

στ =

√√√√ 1

κ− 1

κ∑
i=1

(
vi − v̄τ

)2
, τ = 1, . . . , T. (3.21)

Due to the adopted model of form (3.12) and the form of the solution (3.13), we

can estimate the drift by setting

µτ = v̄τ +
1

2
στ . (3.22)

The coefficients in models (3.19) and (3.20) are estimated by using multivariate

linear regression on the available data. In a second step, we optimize the model by

removing the statistically insignificant regressors. This is accomplished by considering

the p-Values of the estimators in conjunction with the Akaiki Information Criterion.

In addition, we employ the moving window technique in order to create a dynamic

version of models (3.17), (3.19) and (3.20). The estimation only considers data within

a window of size w of the adjusted return process Rτ . An additional parameter

$ is introduced controlling the step size of the moving windown. Estimation of

the coefficients for the models (3.17), (3.19), and (3.20) is performed while only

considering the data available in the window wi. After estimating the coefficients

in first time window w1, the window is moved by $ and another set coefficients is

estimated. All models are subjected to the optimization step mentioned previously

and are subsequently stored in their entirety, including all data points and residuals.
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3.5 Experimental Results

In this section, we present extensive experiments on real-world patent data as well as

stock trading data. Our experiments involve several stages of data retrieval and pre-

processing before performing model parameter estimations and the statistical analysis

of their results.

The first stage of data retrieval consists of the automatic download of stock data

and subsequent filtering. In the next phase, all available patent assignment data is

parsed for companies of interest. We consolidate the results from the initial parse,

generate some meta data in the process and perform additional filtering. We estimate

the degree to which the market affects each company and remove this influence from

the return process. Considering a set of models for the market-adjusted return process

and its characteristics we perform parameter estimation. Finally, we generate a set

of models using the moving window technique for a fixed number of lagged patent

activity terms. Also, for each set of models, we perform t-test for each of the estimated

coefficients.
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Figure 3.2: Data Flow Diagram – Displays how data is extracted, processed, and combined for modeling and output
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3.5.1 Data & Preprocessing

Our focus is on companies in the technology sector, and therefore we use the list of

682 companies included in the NASDAQ as a basis. Additionally, we include two

small sets of companies for further support of our claims. The first set of companies

(Hitachi Ltd., LG Electronics, Panasonic Corporation, Samsung Electronics Co.) are

not traded on the New York Stock Exchange, but are large foreign companies which

we consider big players in the technology sector. The second set of companies are

being traded on the NYSE, however are not included in the NASDAQ index, these

companies (e.g. Amazon.com, Inc., AT&T Inc., eBay Inc., and Sony Corp) are of

general interest to us due to their size success. As a result, our initial list of companies

comes to a total of 720.

Our initial filtering occurs here, where we ensure that we have sufficient data to

perform our analysis. Our estimates indicate that we ought to have approximately

ten years of stock trading data in order to generate a sufficiently accurate results.

This filtering removes 302 companies and we perform a download of all available

daily stock price data for each of the remaining 418 companies.

We retrieved all patent assignment data, which is published by the United States

Patent and Trademark Office, and made available as bulk downloads by Google [44].

This data is in the form of compressed XML files containing patent assignment records

and totals approximately 30GB when decompressed. Each record may contain mul-

tiple assignee fields, all of which are checked in the course of our initial parse. If

any of the assignee fields match a company on our list, the parser additionally checks

and extracts the unique application, patent, and publication numbers, when avail-

able, as well as each of the respective dates. Each patent is associated with one

or more classification categories (e.g. “USER INTERFACE, GUI”) denoted by United

States Patent Classification (USPC) codes. These codes are contained in a separate

text file which may contain multiple entries for each patent. Every entry contains

the patent number followed by the assigned category, thus if a patent is classified



– 80 –

into five categories there will be five entries in the classification file. This single clas-

sification file contains more than 32,000,000 entries. The parser creates a separate

file for each company and enters each patent assignment record discovered including

the collected categories. We extract a total of 775,395 patent assignment records for

our 418 companies. Operating under the assumption that a company announces it’s

discoveries to the public in conjunction with filing for a patent, the date associated

with the patent assignment event is the application date. This stage of processing is

indeed the most time consuming portion of the entire process.

In the second phase of preprocessing, the parser reads the files generated during

the first phase, sorting and aggregating the information; that is, the patent entries

for each company are sorted in chronological order since the original entries in the

patent assignment records do not appear this way. Intuitively, patent activity does

not occur with a fixed time interval between occurrences. Thus the initial data set

is event driven rather than a time series, with a consistent scale. In order to remedy

this, we create a multivariate time series with a consistent time scale by considering

the data on a monthly basis and aggregating the patent events which occurred within

a given month. In other words, we count how many patents are filed by the company

every month and how many patent categories are covered by these patents; of these

categories, how many are new categories, which we will call “innovations,” and how

many have been previously observed or “traditional.” It should be noted, this type

of information naturally tapers down in availability the closer we move to the present

point in time. This is due to the length of the patent granting process, which averages

about two years. Subsequently, we chose to limit the data we use in our experiments

to points before January 2013, in order to ensure a high degree of data availability

and completeness, as well as avoid any distortions of the statistical models.

Another issue of significance is that some of the companies from the NASDAQ

index hold very few, if any, patents. More specifically, we found that of the 418

companies for which we extracted patent-activity data, only 170 companies actually
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hold a significant number of patents. Combined, these 170 companies account for

637,478 patents spanning 123,215 unique categories across a total number of 1,589,073

categorical entries.

Although all analysis is conducted for every one of the 170 companies, we cannot

possibly display all the results within the page limit allotted. Therefore, we display

a representative set of results in Table 3.1 and subsequent figures. The full set of

results is made available online.1

The series representing patent activity can be seen in the top section of Figure

3.1. In this figure, the two sections of discarded data are shaded grey.

3.5.2 Market Adjustment

To aid us in our investigation, we use the statistical computing platform R from this

point forward.

In our experiments, we use the adjusted daily closing price of the company stocks

from the New York Stock Exchange to calculate daily log returns for the companies

under investigation. We have chosen to represent our market the S&P 500 index and

we perform the same calculation for its closing price.

In order to maintain a consistent time unit between to the two time series data

sets, we choose a monthly time scale, denoted by τ . This choice implies that we have

chosen a non-uniform segmentation of the entire time horizon corresponding to the

different number of trading days in the different months.

We should note, that the baseline model requires additional special considerations

since it still utilizes the daily price data. In order to bring it to a comparable scale to

the other two models and facilitate the comparison of the results, we do not compute

the daily log returns but rather the monthly log returns. In this sense, the aggregation

and unification of time scale for the baseline model happens before removing the

market effect. This order of operations provides us with a more accurate aggregate

1http://www.constantinevitt.com/patentProject/



– 82 –

process Rτ only in the case of the baseline model (3.17). All other estimations,

including the estimation of the Beta (β) coefficients is performed on the daily log

return process.

Using Equation (3.15), we fit a model for each company, obtaining the Beta (β)

coefficients as well as its adjusted return process Rτ . We proceed by employing

standard Q-Q plots, as shown in Figure 3.3, to verify that the observed quantiles are

not even close the theoretical quantiles.Indeed, this indicates that there exist external

influences on the market-adjusted return process of the stock which we hope to relate

to the patent activity.
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Figure 3.3: Q-Q plots of Rt for Apple, eBay, and Hitachi

Table 3.1 reveals an extremely high correlation of company stock returns compared

to the market. Many researchers in quantitative finance recognize the dynamic nature

of beta. In the literature, several methods for adjusting betas are avalable, including

the most popular ones by [102] and [6].
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USPC codes Market Effect
Name Symbol Patents Unique Total Beta p-Value Models

Adobe Systems Incorporated ADBE 3033 2837 6943 1.346380675 1.80E-306 133
Advanced Micro Devices, Inc. AMD 10478 11602 40775 1.558245636 0 154

Apple Inc. AAPL 9632 7959 16143 1.220812219 1.02E-255 162
Google Inc. GOOGL 9216 6081 17517 0.920376644 7.62E-152 25

Intel Corporation INTC 29855 21156 77791 1.326085408 0 172
International Business Machines IBM 94947 43154 235104 0.982076122 0 233

Microsoft Corporation MSFT 36279 12691 69038 1.135971032 1.72E-320 136
Nokia Corporation NOK 14422 8612 25675 1.37439089 4.24E-152 88

Red Hat, Inc. RHT 1513 1397 2765 1.202637025 3.21E-134 55
Amazon.com, Inc. AMZN 147 298 526 1.384886922 8.68E-157 69

AT&T Inc. T 1255 2081 3192 0.746224584 4.09E-262 146
eBay Inc. EBAY 2185 1169 2706 1.398315771 2.51E-164 61

Sony Corp SNE 47967 36309 137718 0.906769155 0 206
LG Electronics 066570.KS 24232 16797 47049 0.221982485 4.69E-11 39

Hitachi Ltd. HTHIY 32980 39916 108521 0.832883463 0 159
Panasonic Corporation PCRFY 15219 12742 22689 0.724566669 4.78E-119 151

Samsung Electronics Co 005930.KS 82007 43076 171651 0.213280285 2.59E-12 53

Table 3.1: Companies along with their β values
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Figure 3.4: Google Inc. - Coefficient sensitivity analysis for (3.17) using 6 lagged
terms
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Figure 3.5: Google Inc. - Coefficient sensitivity analysis for (3.19) using 6 lagged
terms

The work by [104] contains an extensive comparison of methods of estimation of

time-varying betas and filtering techniques, which are commonly used for estimation

of individual stock betas. However, our model with a constant beta over the entire

time horizon demonstrates extremely high correlation, and thus eliminates the need

to create a dynamic model of β for our purposes. Therefore, we have not estimated

Beta (β) in a dynamic fashion.

An interesting byproduct of our analysis is the observation of the global impact

of the American stock market. We have observed that large companies which are not

traded on the New York Exchange, exemplified in this case by Samsung Electronics
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Figure 3.6: Google Inc. - Coefficient sensitivity analysis for (3.20) using 6 lagged
terms

and LG Electronics, are substantially influenced by its movement: their beta is smaller

than one but still a substantial positive number and their correlation to the Standard

& Poor Index is significant.

We apply Equations (3.22) and (3.21) to the market-adjusted return process Rt

to obtain the monthly drift and volatility estimates µτ and στ while considering τ to

be one month. The resulting series, illustrated by data for Hitachi Ltd., can be seen

in the lower part of Figure 3.1.

3.5.3 Model Fitting

Our model fitting procedure has three primary parameters in addition to the input

data. In the experiments, we consider a window size w of 48 months and a step

size $ of 3 months. Additionally, we consider an array of options for the number

of lagged terms to include in the model fitting. We apply the models in an iterative

manner, using a fixed number of lagged patent activity terms, moving the window

by $ until we traverse the entire set of available data for the focus company. On

the first set of iterations we consider the patent activity from current month as well

as the most recent 6 months, thus 7 observations on each of the model parameters

Xτ number of patents, Y e
τ number of traditional categories, and Y n

τ the number of
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innovative categorie spanned by the patent activities. The resulting models (3.17)

and (3.19) have a total of 22 factors when considering the one autoregressive term

in them. The volatility model (3.20) has an additionally term for the current drift,

thus totaling 23 factors. After the initial parameter estimation during each iteration,

the models go through a recursive subroutine being reduced and further optimized by

excluding statistically insignificant regressors. As previously mentioned, we leverage

the p-Values of the estimated coefficients in conjunction with the Akaiki Information

Criterion for the model in order to determine the best combination factors. This

process leads to a relatively wide variety of models with varying numbers of significant

regression terms. Therefore, once the available data is traversed for the chosen number

of lagged terms, we collect the estimated coefficients. The coefficients from a given

model are recorded as a vertical vector in an m by n matrix C where m is total

number of coefficients in the set of models before reduction and n are the number of

models.

In the case where a coefficient i from a model j has been eliminated during the

model reduction phase, we insert zero for cij. After completing this procedure for

every lag term option in the array and model formulation, we move on to the next

company and restart the model fitting procedure. The matrix C is collected and

written to a file for every model type, every company, and every fixed lag term

option. We have considered between six and twelve lagged patent activity terms.

In our case, since we have considered between six and twelve lagged patent activity

terms and three model types, we generate 21 output files per company.

We are able to establish statistically significant models of all three forms (3.17),

(3.19), and (3.20) for all of the companies under consideration. However, the esti-

mated coefficients are company specific and do not seem consistent accross compa-

nies in the same time window. Further analysis may try to establish whether there

is leader-follower effect responsible for this inconsistency. The impact of patent ac-

tivities as reflected in the model coefficients also changes in time when following a
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specific company over the time horizon in our study. More detailed comments in that

regard are presented in the next section.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Applications Lag 0
Applications Lag 1
Applications Lag 2
Applications Lag 3
Applications Lag 4
Applications Lag 5
Applications Lag 6
Applications Lag 7
Innovations Lag 0
Innovations Lag 1
Innovations Lag 2
Innovations Lag 3
Innovations Lag 4
Innovations Lag 5
Innovations Lag 6
Innovations Lag 7
Traditional Lag 0
Traditional Lag 1
Traditional Lag 2
Traditional Lag 3
Traditional Lag 4
Traditional Lag 5
Traditional Lag 6
Traditional Lag 7

−0.002 −0.001 0.000 0.001 0.002

Figure 3.7: Model coefficients for eBay with 7 sets of lagged terms

3.5.4 Impact Significance

An illustration of the estimates and their sensitivity analysis can be seen displayed in

Figure 3.7, for our eBay example using 7 lagged terms and showcasing the volatility

model formulation (3.20). Figures 3.4, a3.5, and 3.6 show the same analysis applied

to all three models types (3.17), (3.19) and (3.20) when applied to Google’s data.

Recall that the columns of matrix C contain the estimated model coefficients for

each time window. We would like to analyze the statistical significance on the sample

of estimated coefficients for each model type, number of lagged terms, and company.

We perform a t-test on the rows of matrix C, thus obtaining a mean estimate and

the 95% confidence interval for each model coefficient. The significance of a factor

over the entire time horizon is evidenced by the exclusion of zero from its confidence

interval.

Taking a closer look at Figure 3.7, we observe that eBay’s innovations from two

months prior have significantly positive impact on the current volatility, while tra-

ditional category contributions as well as applications from two months prior have

a significantly negative impact on the current volatility. In other words, the results
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indicate that the applications and traditional categories help stabilize the price, while

innovations spark investor interest and induce speculation. It should be noted that

the autoregressive volatility term from model (3.20) is always present with a positive

relatively large coefficient and thus for the sake of preserving the scale of the graph

is not included. Similarly, the current drift term from model (3.20) is also excluded

from the graphic for the sake of scale, despite being highly significant with a negative

coefficient.

Figures 3.4, 3.5, and 3.6 showcase a recurring theme in our results. We can

clearly observe that the coefficients for the formulations (3.17) and (3.19) have a very

similar pattern. Their analysis is displayed in the top and middle graphs respectively.

This is natural and expected, due to the nature of the two processes being modeled.

However, the coefficients for (3.20) display a very different pattern. The latter pattern

is impossible to infer from the standard approach to factor investigation, relating the

process itself to the factors. Our observations only came to light due to the innovative

approach of relating the stock volatility directly to the patent-activity indicators.

The impact of the factors varies across companies. This may be an indicator that

a non-linear relation between the volatility and the patent activity exists.

3.6 Concluding Remarks

In this thesis, we provided a focused study of the relationship between the patent

activities of high-tech companies and the dynamics of their stock price movement.

To the best of our knowledge, we are the first to propose a model for relating patent

data mining and financial data modeling. Along this line, our findings indicate that

the patent activities of the company play a role as a latent factor of the stock process.

By exploiting a stock-price model based on stochastic differential equations, we have

revealed that the chosen patent-activity indicators have significant impact on the

process itself, as well as on its drift and volatility. The introduction of the new
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approach of modeling the drift and volatility directly in addition to the adjusted

returns, allows us to establish the influence of these factors on the most important

features of the adjusted stock returns, which would be otherwise hard to extract.

The proposed approach of modeling the impact of the factors directly on the features

of the process may be of independent interest when relating dynamic data streets

and looking to establish relations. Furthermore, our results have implied that the

factors pertaining to number of patent categories are most influential. This may

indicate that the company has created and patented influential technology relevant

for many business activities. The patent activity of this type has a bigger impact in

the business area of this company, which results in a bigger movement in the market,

thus, manifesting in a bigger volatility. Moreover, the presence of different signs of

the regressor coefficients may indicate that the effect of patent activity is different

depending on the relation of the drift to its expected value. This may also indicate

that a non-linear models including cross terms may be relevant.
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Chapter 4

Future work

In this thesis, we have explored recent developments of risk theory and have applied

two recently introduced models of risk: coherent measures of risk and a basic stochas-

tic differential equation for stock returns. We have applied these models to two areas

of machine learning: classification and identification of the impact of patent activity

on the stock-price dynamics of high-tech companies. Our theoretical analysis and

numerical experiments demonstrate that new insight is provided when this type of

models are used. In the course of our investigation, we have encountered a variety of

questions, some of which go beyond this thesis and are subject of future research. We

mention here some of the most closely related questions that we find of interest. Of

course, other risk models may prove relevant to these or other problems of machine

learning.

4.1 Risk-averse Classification Methods

In the context of classification, it is desirable to explore the effect of using higher

order measures of risk. In the reported experiments, we have used only first order

measures of risk: the average value at risk and the mean-semideviation of order one

in combination with the expected value. Using higher order (dual) measures of risk

or mean-semi-deviation of higher order requires the application of numerical methods

for general non-linear optimization.

Furthermore, one has to take into account the effect of a more general non-linear

objective on the numerical method for solving the RSSVM with normalization of
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the classifier. The method needs more extensive exposure to different data sets and

comparison with a larger variety of classification techniques.

The implementation of the risk-averse approach on multiple classes is another

challenge given the very large set of possible risk measures. When dealing with very

large datasets with many classes, we may consider non-linear scalarizations rather

than linear one for obtaining an efficient risk allocation. This approach may prove

more efficient numerically. Larger data sets would require a distributed implementa-

tion of the proposed classification methodology.

Further theoretical analysis of the asymptotic behavior of the risk-averse classifier

is of interest, which would allow us to obtain a confidence region of the classifier. To

that effect, new research in the area optimization problems with coherent measures

of risk is necessary, which would address statistical inference of problems involving

multiple populations.

4.2 The Impact of Patent Activity

In the context of patent activity and its impact on the dynamics of the stock re-

turns, one may explore other stochastic models for the market-adjusted return pro-

cess {Rt, t ≥ 0}. One possibility would be to adopt regime-switching models for the

marked-adjusted return, as well as for its drift and volatility. This approach may be

very relevant particularly to the influence of patent activity on the volatility, since

that impact may be different in the context of positive and negative drift. Statistical

test for change point detection and regime switching would facilitate discovery of the

point of impact of specific patent activity.

Given the importance of patent activity in the technology sector and our current

findings, an autoregressive model of the drift µτ and a threshold model for the variance

may provide new insight into the impact of patent activity on the company’s stock

price.
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Another unexplored avenue is the adoption of heavy tailed process models such as

Paretian-type models as described in [83, 82]. Many experts in mathematical finance

claim that models with heavier tails than the normal distribution are more relevant

and fit better to the dynamics of the stock prices or stock returns, respectively. In

our context, we could fit a heavy-tailed model for the process Rτ and test statistically

whether that model represents the process in a better way. By adopting this point

of view, it is possible to have a new insight into the impact of patent activity on the

stock movement.
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stochastic programming: modeling and theory, volume 16. SIAM, 2014.

[95] William F Sharpe. Capital asset prices: A theory of market equilibrium under
conditions of risk*. The journal of finance, 19(3):425–442, 1964.

[96] William F Sharpe. Asset allocation: Management style and performance mea-
surement. The Journal of Portfolio Management, 18(2):7–19, 1992.



– 100 –

[97] Meng-Jung Shih, Duen-Ren Liu, and Ming-Li Hsu. Mining changes in patent
trends for competitive intelligence. In Takashi Washio, Einoshin Suzuki, KaiM-
ing Ting, and Akihiro Inokuchi, editors, Advances in Knowledge Discovery and
Data Mining, volume 5012 of Lecture Notes in Computer Science, pages 999–
1005. Springer Berlin Heidelberg, 2008.

[98] S. Spangler, Ying Chen, J. Kreulen, S. Boyer, T. Griffin, A Alba, L. Kato,
A Lelescu, and Su Yan. Simple: Interactive analytics on patent data. In Data
Mining Workshops (ICDMW), 2010 IEEE International Conference on, pages
426–433, Dec 2010.

[99] Jie Tang, Bo Wang, Yang Yang, Po Hu, Yanting Zhao, Xinyu Yan, Bo Gao,
Minlie Huang, Peng Xu, Weichang Li, and Adam K. Usadi. Patentminer: Topic-
driven patent analysis and mining. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’12,
pages 1366–1374, New York, NY, USA, 2012. ACM.

[100] Edward R Tufte. The visual display of quantitative information. Journal for
Healthcare Quality, 7(3):15, 1985.

[101] Alireza Vahdatpour, Navid Amini, and Majid Sarrafzadeh. Toward unsuper-
vised activity discovery using multi-dimensional motif detection in time series.
In IJCAI, volume 9, pages 1261–1266, 2009.

[102] Oldrich A Vasicek. A note on using cross-sectional information in bayesian
estimation of security betas. The Journal of Finance, 28(5):1233–1239, 1973.

[103] Mark W Watson and Robert F Engle. Alternative algorithms for the estimation
of dynamic factor, mimic and varying coefficient regression models. Journal of
Econometrics, 23(3):385–400, 1983.

[104] Curt Wells. The Kalman filter in finance, volume 32. Springer, 1996.

[105] Michael A Wiles, Neil A Morgan, and Lopo L Rego. The effect of brand ac-
quisition and disposal on stock returns. Journal of Marketing, 76(1):38–58,
2012.

[106] Viktor Zurakhinsky. Capturing changes in style exposure. The Journal of
Performance Measurement, pages 48–50, 1997.


	Abstract
	Acknowledgments
	Dedication
	List of Tables
	List of Figures
	Introduction
	Risk Sharing
	Introduction
	Loss Functions
	Robust Classification Design and Robust Statistics
	Coherent Measures of Risk
	Risk Sharing Preliminaries
	Risk Sharing in Classification
	Optimization of Risk Sharing
	Confidence Intervals for the Risk
	Risk Sharing in SVM
	Kernel-based Risk-averse Binary Classification
	Numerical Experiments
	Data
	Model Formulations
	Performance
	Flexibility

	Concluding remarks

	The Impact of Patent Activity on Stock Dynamics in the Technology Sector
	Introduction
	A Literature Review
	Stochastic Models of Dynamic Systems
	Patent Data Analysis

	The Adjusted Return Process
	Patent-Activity Factors Affecting the Stock Return
	Consistency of Time Scales
	Model of the Relationship
	Estimation of Parameters

	Experimental Results
	Data & Preprocessing
	Market Adjustment
	Model Fitting
	Impact Significance

	Concluding Remarks

	Future work
	Risk-averse Classification Methods
	The Impact of Patent Activity

	References

