
STOCHASTIC ALTERNATING OPTIMIZATION
METHODS FOR SOLVING LARGE-SCALE MACHINE

LEARNING PROBLEMS

By

KAICHENG WU

A dissertation submitted to the

Graduate School—Newark

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

written under the direction of

Dr. Xiaodong Lin and Dr. Andrzej Ruszczyński

and approved by

Newark, New Jersey

May, 2018

ABSTRACT OF THE DISSERTATION

Stochastic Alternating Optimization Methods For Solving

Large-Scale Machine Learning Problems

By KAICHENG WU

Dissertation Director:

Dr. Xiaodong Lin and Dr. Andrzej Ruszczyński

In this dissertation, we propose two stochastic alternating optimization methods for solving

structured regularization problems, which have been widely used in machine learning and

data mining. The first algorithm is called Stochastic Alternating Linearization (SALIN),

which is an stochastic extension of the Alternating Linearization (ALIN) in solving convex

optimization problems with complex non-smooth regularization term. SALIN linearizes the

loss function and penalty function alternatively at each iteration, based on the stochastic

approximation of sub-gradients. By applying a special update test at each iteration, and

a carefully designed sub-gradients update scheme, the algorithm achieves fast and stable

convergence. The update test just relies on a fixed pre-defined set, and we show that

the choice of the test set has little influence on the overall performance of the algorithm.

Therefore SALIN is a robust method.

The other algorithm is called preconditioned stochastic Alternating Direction Method of

Multipliers, which is specially designed to handle structured regularized regression problems

such as Fused LASSO, but with the design matrix being ill-conditioned. We prove its

O(1/
√
t) convergence rate for general convex functions and O(log t/t) for strongly convex

functions, and show that the constant depends only on the lower dimension of the data

ii

matrix.

We present results of extensive numerical experiments for structured regularization prob-

lems such as Fused LASSO and graph-guided SVM, with both synthetic and real-world

datasets. The numerical results demonstrate the efficacy and accuracy of our methods.

iii

Acknowledgments

I would like to express my most sincere appreciation to my advisors, Professor Xiaodong

Lin and Professor Andrzej Ruszczyński, for their dedication and encouragement in my

PhD life. I still remember five years ago when I attended optimization courses taught by

Prof. Ruszczyński, I was deeply impressed by the beauty of the rigorous yet interesting

optimization theory. I was also fortunate enough to have discussions with Prof. Lin during

seminars and symposiums to learn about statistical learning. I am truly grateful to them

for inspiring me to pursue PhD in optimization and statistical learning.

During my PhD study, Prof. Lin gives me so many interesting projects to work on,

from which I have gained precious experiences in both practical and theoretical aspects. He

always encourages me to keep up with the most recent research trends in statistical machine

learning, and gives me guidance to understand and answers any of my questions. He also

gives greatest support to my internship and job search.

Prof. Ruszczyński plays the most fundamental role in my dissertation. His series of

optimization courses inspire me and gives me a solid knowledge foundation. He gives me

precious guidance and insightful discussions of my research, and always encourages me to

pursue creative ideas. His commitment to excellence, optimistic altitudes towards life, and

great sense of humor also touch me a lot and will benefit my life.

I also want to thank Professor Mert Gurbuzbalaban for his guidance and advices in both

theoretical proof part and numerical experiments; and thank Professor Darinka Dentcheva

for the advice and suggestion to my dissertation. I also want to thank all the professors and

staff members in MSIS department and RUTCOR, for providing such an excellent research

environment. I also feel grateful to for time spent with my colleagues and friends, for the

discussion and happy moments.

Most of all, I would like to thank my Mom and Dad. They raised me up with their

iv

uttermost care, love and hard work. They give me unconditional support for studying

abroad, and sacrifice the time that could have been spent with me. I want to thank my

loving and supportive wife who accompanies me with my PhD life.

v

Dedication

To my wife and my parents.

vi

Table of Contents

Abstract . ii

Acknowledgments . iv

Dedication . vi

List of Tables . x

List of Figures . xi

1. Introduction and Preliminaries . 1

1.1. Introduction . 1

1.2. Problem Formulation . 3

1.3. Mathematical Notations . 4

1.4. Dissertation Outline . 5

2. Review of related optimization methods . 6

2.1. Alternating Direction Method of Multipliers (ADMM) 6

2.1.1. Deterministic ADMM . 7

2.1.2. Stochastic ADMM . 8

2.2. Operator Splitting Method . 10

2.3. Alternating Linearization Method . 12

2.4. Selected Optimization Methods . 13

2.4.1. Coordinate Descent Method . 13

2.4.2. Conjugate Gradient Method . 14

vii

3. Stochastic ADMM with randomized preconditioning and weighted sam-

pling . 16

3.1. Overview . 16

3.2. Preliminaries . 17

3.3. Outline of pwSADMM . 18

3.4. Remarks on the algorithm . 20

3.5. Theoretical Results . 22

3.6. Proofs . 24

3.6.1. Proof for Proposition (3.1) . 24

3.6.2. Proof of Theorem (3.1) (1/
√
t rate) 26

3.6.3. Proof of Theorem (3.2) (log t/t rate) 28

4. Stochastic Alternating Linearization (SALIN) 29

4.1. Overview . 29

4.2. Outline of the SALIN Algorithm . 30

4.3. Remarks on the algorithm . 36

4.4. Application to LASSO . 38

4.5. Application to SVM with generalized structural regularization 40

5. Numerical Experiments . 44

5.1. Fused LASSO . 44

5.1.1. SALIN: comparison study of different choices of S 45

5.1.2. Comparison of stochastic methods 48

5.2. Signal Smoothing and Detection . 52

5.3. Graph-Guided SVM . 54

6. Conclusion and Future Plans . 57

6.1. Conclusion . 57

6.2. Future Plans . 58

viii

References . 59

ix

List of Tables

5.1. Summary statistics of objective value, by using different test sample size. . 47

5.2. Performance comparison of different stochastic methods. 49

5.3. Summary of datasets. 55

5.4. Performance comparison of SALIN and SADMM. 55

x

List of Figures

5.1. Plot of value pairs: fΩ(x̂) + h(x̂) & fS(x̂) + h(x̂) over 500 repetitions, sorted

by fS(x̂) + h(x̂). S is independently drawn for each repetition, with fixed

size 64. 46

5.2. Histogram of f(x̂) + h(x̂) by SALIN and deterministic ADMM on solving

reduced problem. 500 repetitions. 48

5.3. Relative error of objective value against iteration number. 50

5.4. Relative error of objective value against CPU time (in ms). 50

5.5. Relative distance of x against iteration number. 51

5.6. Relative distance of x against CPU time (in ms). 51

5.7. Blue dots are observed signals; red line is Fused LASSO approximation by

SALIN . 53

5.8. Mutual relations of the 100 words, from 20news dataset. 54

5.9. Convergence behavior of the two methods. Dataset: a9a. 56

xi

1

Chapter 1

Introduction and Preliminaries

1.1 Introduction

Structured regularization is a very useful modeling technique in machine learning and data

mining. Large number of problems and applications can benefit from structured regu-

larization, such as regression, classification, prediction, pattern recognition. The use of

regularization will reduce the solution’s over-fitting to training data and thus improve its

generalization on unseen data; and will also guarantee the solvability when system is under-

determined. In certain applications such as signal processing in electrical engineering or

image processing in biology and medicine, the regularizer is derived from domain knowl-

edge, thus regularization is crucial to the feasibility of the solution and the solvability of

the problem. Structured regularization problems have a general form of minimizing a sum

of two functions:

min
x

: f(x) + h(x) (1.1)

where f(·) is the loss function such as squared loss, and h(·) is the penalty function, such

as ‖Gx‖1, where G encodes structural prior information to the specific problem.

Solving such problems is usually non-trivial, especially when the regularization part

h(·) has a complex form. When the structural matrix G has simple form, such as G =

I in LASSO problem, traditional path algorithm and coordinate descent algorithm can

efficiently solve the optimization problem (Friedman, Hastie, Hoefling, & Tibshirani, 2007).

These methods have being widely implemented in various optimization software packages.

However, for a complex G matrix, these methods are usually no longer applicable, due to

the non-separable nature of the regularization function.

2

Many deterministic methods have been proposed to solve (1.1), including operator split-

ting methods (Douglas & Rachford, 1956; Lions & Mercier, 1979; Eckstein & Bertsekas,

1992; Combettes, 2009; Bauschke & Combettes, 2011), and their dual version: Alternat-

ing Direction method of Multipliers (ADMM) (Gabay & Mercier, 1976; Glowinski & Tallec,

1989; Boyd, Parikh, Chu, Peleato, & Eckstein, 2010). The Alternating Linearization method

(ALIN) (Kiwiel, Rosa, & Ruszczyński, 1999) is an extension of the operator splitting method

and the bundle methods (Kiwiel, 1985; Ruszczyński, 2006) in non-smooth optimization; it

incorporates an additional improvement test to guarantee the monotonic decrease of the ob-

jective function. ALIN has been applied to various structured regularization problems such

as fused LASSO or image reconstruction, and exhibits fast and stable convergence as well

as scalability to high dimensions (Lin, Minh, & Ruszczyński, 2014). Recently, a multi-block

extension called Selective Alternating Linearization method (SLIN) has been proposed by

(Du, Lin, & Ruszczyński, 2017), which proved global convergence for an arbitrary number

of operators without artificial duplicates of variables; the rate of convergence is derived as

well.

In recent years, with the explosive growth of data volume, optimization problems tend

to deal with datasets of large size. In those optimization problems, the loss function is

usually expressed to represent the average of loss over all observations:

f(x) =
1

n

n∑
i=1

fi(x)

where n is the sample size which is assumed to be very large. In this ”big-data” setting, de-

terministic methods become computationally expensive, because they process full samples

at each pass. Stochastic methods, on the other hand, at each pass deal with a random sam-

ple or a batch of samples. They consume less memory than the deterministic methods and

make more updates for the same amount of data processed. They have potential to converge

to neighbor of the optimal solution much faster. For the above reasons, stochastic methods

are very popular in modern computing, for example in training artificial neural networks,

stochastic gradient descent (SGD) and its variants including Momentum method, Adap-

tive sub-gradient descent (Adagrad), Adaptive Moment Estimation (Aadm) (Qian, 1999;

Duchi, Hazan, & Singer, 2011; Kingma & Ba, 2014) have been widely used. And for solving

3

structural regularization problems where the objective function contains a non-separable

penalty term, many stochastic optimization methods have been proposed: including Online

Alternating Direction Method of Multipliers (ADMM) (Wang & Banerjee, 2012), stochastic

ADMM (Ouyang, He, Tran, & Gray, 2013), etc. Though popular, those stochastic methods

have some drawbacks. They usually suffer from high variance at tail because of the ran-

domness of samples. They use the gradient information only to update the solution, but not

to update the approximation of function, which makes them less competitive compared to

operator splitting or bundle methods when dealing with functions with highly complicated

form.

In this dissertation, we propose two algorithms to solve structured regularization prob-

lems. The first one is Stochastic Alternating Linearization (SALIN), a stochastic extension

of the Alternating Linearization method (Kiwiel et al., 1999). SALIN alternatively linearizes

component functions from the approximated subgradient built from random samples, and

thus saves the memory usage per iteration. By a carefully designed approximation scheme

and update test, SALIN is able to achieve fast convergence speed and stabilized convergence

at the tail. The other method is Preconditioned Stochastic ADMM, which uses precondi-

tioner derived by randomized linear algebra techniques.

We also pay specific attention to the ubiquitous `1 and `2 regression problem with reg-

ularization, but with ill-conditioned design matrix. In such cases, generic methods without

preconditioning would require excessive number of iterations to converge or even suffer

from non-convergence. Recently a stochastic gradient descent with preconditioning called

pwSGD (Yang, Chow, Ré, & Mahoney, 2016) has been proposed to solve ill-conditioned `1

and `2 regression problems and achieves good results. With the utilization of precondition-

ing techniques, both of our proposed methods can handle the ill-conditioned regularization

problems and achieve good performance.

1.2 Problem Formulation

The optimization problem we consider here has the following general form:

min
x

: f(x) + h(x) =
1

n

n∑
i=1

fi(x) + h(x) (1.2)

4

where f(·) and h(·) are convex, but not necessarily continuously differentiable. Usually

fi(·) represents the loss function of each observation i ∈ [1, ...n]; and h(·) is the regularizer

that imposes structure to solution x. Popular choices of loss function include squared

loss or absolute deviation for regression problems, and hinge loss or cross entropy loss for

classification problems. Popular choices of regularization function h(·) include `2 ridge, `1

LASSO, elastic-nets (convex combination of `2 and `1) or generalized LASSO.

We can also formulate the problem into a stochastic optimization problem:

min
x

1

n
Eξ∼P [f(x, ξ)/pξ] + h(x) (1.3)

where a sequence of identical and independent (i.i.d.) observations can be drawn from the

random vector ξ, which follows a fixed but unknown distribution P = {pi}ni=1. When ξ is

drawn uniformly random, i.e., P = {1/n}ni=1, the problem has simpler form:

min
x

Eξ∼P [f(x, ξ)] + h(x) (1.4)

We draw specific attention to the overdetermined ill-conditioned `2 and `1 regularized

regression problem:

min
x

1

2n
‖Wx− b‖22 + h(x) or min

x

1

n
‖Wx− b‖1 + h(x)

where W ∈ Rn×d(n � d) is the design matrix, possibly ill-conditioned, h(x) is a con-

vex regularization term, not necessarily continuously differentiable. A popular example is

generalized LASSO (Tibshirani & Taylor, 2011):

min
x

1

2n
‖Wx− b‖22 + λ‖Gx‖1 (1.5)

1.3 Mathematical Notations

We denote xT and W T for the transpose of vector x and matrix W . For a positive definite

matrix D ∈ Rd×d, we define the D-norm of a vector x as ‖x‖D :=
√
xTDx. We use ‖ · ‖♦ to

denote the general norm, and its dual norm is expressed as ‖ · ‖∗; when not specified, ‖ · ‖

means Euclidean norm ‖·‖2. We use 〈·, ·〉 to denote the inner product in a finite dimensional

Euclidean space. Whole population is denoted by Ω = {i|i = 1, ..., n}. The cardinality of a

set S is |S|, which represents the number of elements of that set.

5

1.4 Dissertation Outline

Chapter two will give a literature review to the type of alternating optimization methods,

including operator splitting methods, alternating direction method of multiplier and its

stochastic variants, as well as the alternating linearization method. The optimization meth-

ods used in solving their sub-problems will also be reviewed. We will also give a brief review

of the preconditioning technique. Chapter three will introduce our proposed preconditioned

stochastic ADMM algorithm, its application on ill-conditioned regularized regression prob-

lem, and its rate of convergence analysis. Chapter four presents our main algorithm: the

Stochastic ALIN, and its application to LASSO and generalized LASSO regularizations.

Chapter five will present results of numerical experiments, including LASSO, generalized

LASSO, sparse signal reconstruction, graph-guided support vector machine (SVM), etc.

Chapter six contains the conclusion of the dissertation.

6

Chapter 2

Review of related optimization methods

2.1 Alternating Direction Method of Multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) (Gabay & Mercier, 1976; Glowin-

ski & Tallec, 1989) is a method that minimizes the sum of two convex functions. It was

developed in the 1970s and receives increasing attention recent years because of its capabil-

ity to carry out large-scale distributed optimization (Boyd et al., 2010). ADMM is closely

related to many other methods, such as dual decomposition, the method of multipliers,

DouglasRachford splitting, Spingarns method of partial inverses, Dykstras alternating pro-

jections, Bregman iterative algorithms for `1 problems and proximal methods (Douglas &

Rachford, 1956; Lions & Mercier, 1979; Gabay & Mercier, 1976); see (Boyd et al., 2010)

Chapter 2 and 3 for details.

ADMM has been widely studied and many theoretical results on its properties have

been established. The global convergence was established in (Glowinski & Tallec, 1989;

Eckstein & Bertsekas, 1992). The rate of convergence has been shown to be O(1/T) for

general convex problems (He & Yuan, 2012), where T is the number of iteration; and

O(αT), α ∈ (0, 1), when the objective functions are strongly convex and smooth (Hong &

Luo, 2017; Deng & Yin, 2016). ADMM has been shown to perform well in a wide range of

real-world applications such as compressed sensing (Yang & Zhang, 2011), image restoration

(Goldstein & Osher, 2009), matrix estimation and matrix completion (Y. Xu, Yin, Wen, &

Zhang, 2011; F. Xu, Huang, & Wen, 2015; Goldfarb, Ma, & Scheinberg, 2013), etc.

Deterministic ADMM has to compute the empirical loss function from the whole training

set at each iteration, which makes its computational complexity to be proportional to the

number of samples. Thus the method is unable to handle large-scale problems. To overcome

this issue, a number of stochastic versions of ADMM were proposed, which process only

7

a random sample (or a mini-batch) of data at each iteration. Online ADMM (Wang &

Banerjee, 2012) replaces the objective function with an online function at each iteration,

and establishes regret bounds for objective function and constraints violation separately.

However, the x-optimization step in Online ADMM is not easy to solve. To address this

issue, Stochastic ADMM (Ouyang et al., 2013) further replaces the online loss function

with its first order approximation at current solution point. The sub-gradient used for

linearization is constructed from a uniformly randomly drawn data sample; moreover, a

time-varying proximal term is added to the online loss function to guarantee convergence.

The two methods can both achieve convergence rate ofO(1/
√
T) for general convex objective

functions and O(log T/T) for strongly convex case.

To introduce ADMM, we rewrite (1.2) in the following form:

min
x,y

f(x) + h(y)

s.t.Ax+By − c = 0

(2.1)

It differs from the usual problem representation in a way that variable x is split into two

parts: x and y, which are related by the linear equation constraint Ax + By = c. In our

case, B = −I, c = 0, while A and the function h(.) depend on the regularization term. In

the simplest case, we can use A = G and keep the same h(·) as in (1.2). The augmented

Lagrangian of the problem is given by:

Lρ(x, y, z) = f(x) + h(y) + zT (Ax+By − c) +
ρ

2
||Ax+By − c||22 (2.2)

where z is the dual variable or called Lagrangian multiplier, and ρ > 0 is called the penalty

parameter, which is also used as step size. As a precursor of ADMM, the method of

multipliers has the following form:

(xk+1, yk+1)← arg min
x,y

Lρ(x, y, zk)

zk+1 ← zk + ρ(Axk+1 +Byk+1 − c)

where x and y are minimized jointly.

2.1.1 Deterministic ADMM

Compared to the method of multipliers, ADMM minimizes x and y in an alternating fashion,

which accounts for the term alternating direction. The Deterministic ADMM algorithm

8

mainly consists of the three repeated iterates: the x-minimization step, the y-minimization

step, and a dual variable z update step. The method has the following form:

Algorithm 1 Deterministic ADMM

1: Initialize y0 and z0 = 0.
2: for k = 0, 1, 2, ... do
3: xk+1 ← arg minx

{
f(x) + ρ

2 ||Ax+Byk − c+ zk/ρ||2
}

4: yk+1 ← arg miny
{
h(y) + ρ

2 ||Axk+1 +By − c+ zk/ρ||2
}

5: zk+1 ← zk + ρ(Axk+1 +Byk+1 − c)
6: end for

For general convex problems, deterministic ADMM can achieve a convergence rate of

O(1/T) (He & Yuan, 2012), and linear convergence if objective functions are strongly convex

and smooth (Hong & Luo, 2017; Deng & Yin, 2016).

There is a variant called Generalized ADMM, which adds a proximal term into the

x-optimization step:

xk+1 ← arg min
x

{
f(x) +

ρ

2
‖(Ax+Byk − c) + zk/ρ‖2 +

1

2
‖x− xk‖2G

}
(2.3)

where G is positive semidefinite. When G = 0, it is exactly the deterministic ADMM (1).

When G = 1
η I − ρA

TA, it is equivalent to the following variant (2.4) called Linearized

ADMM:

xk+1 ← arg min
x

{
f(x) + ρ(x− xk)T [AT (Axk +Byk − c+ zk/ρ)] +

‖x− xk‖2

2η

}
(2.4)

where the quadratic term has been linearized at xk. This approximation may help in cases

where the x-minimization problem does not produce a closed form solution, e.g., when

f(x) = ‖x‖1 and A 6= I; and when f(·) is differentiable, (2.4) reduces to a gradient step for

unconstrained x.

2.1.2 Stochastic ADMM

When the data set is large, solving the x-minimization step is computationally expensive,

and to overcome this issue, stochastic variants of ADMM have been proposed recently. One

stochastic ADMM algorithm (Ouyang et al., 2013) uses stochastic linear approximation

of f , and an `2-norm prox-function with time-varying step-size ηk at each iteration. The

9

x-minimization step is then given by:

xk+1 ← arg min
x

{
f(xk) + 〈f ′(xk, ξk+1), x〉+

ρ

2
‖(Ax+Byk − c) + uk‖2 +

‖x− xk‖2

2ηk+1

}
(2.5)

where ξk+1 is a randomly drawn sample, and u = z/ρ is the scaled Lagrangian variable.

From now on, we will use scaled Lagrangian variable u for simpler representation. version

for simplicity. In (2.5), the first-order approximation of f simplifies the nonlinear program-

ming step, and the monotonically decreasing factor ηk would guarantee convergence. For

unconstrained problems, stochastic-ADMM gives the x-update step as:

xk+1 =

(
1

ηk+1
I + ρA>A

)−1 [xk
ηk+1

−∇f(xk, ξk+1)− ρA>(Byk − c+ uk)

]
This is a symmetric linear system, which can be solved by the conjugate gradient method.

For large-scale problems, the time-varying step-size ηk can be replaced by a fixed one to

reduce computation complexity, while still maintaining convergence.

One drawback of this stochastic ADMM algorithm is that even if we use fixed step

size, we still need to calculate the matrix-vector multiplication which has O(d2) cost per

iteration.

There is another variant of the stochastic ADMM called Online Proximal Gradient

Descent ADMM (OPG-ADMM) (Suzuki, 2013). The author deals with the special

case of B = −I, c = 0, but it can be extended to general ADMM equation constraint. In

OPG-ADMM, both f(x) and the quadratic term ‖Axk− yk +uk‖2 are linearized at current

solution point xk in favor of computational efficiency. Similar to (2.3), a general form of

the x-update step is:

xk+1 ← arg min
x

{
〈∇f(xk, ξk+1), x〉+

ρ

2
‖Axk − yk + uk‖2 +

‖x− xk‖2Gk+1

2

}
(2.6)

When Gk+1 = 1
ηk+1

I − ρATA � 0, solving the above linear system can be avoided. The

x-update will be effectively reduced to:

xk+1 ← arg min
x

{
〈∇f(xk, ξk+1), x〉+ ρ(x− xk)T [AT (Axk − yk + uk)] +

‖x− xk‖2

2ηk+1

}
(2.7)

This is a type of inexact ADMM (Boyd et al., 2010). This step can be expressed in an SGD

type projection step:

xk+1 = ΠX

[
xk − ηk+1

(
∇f(xk, ξk+1) + ρA>(Axk − yk + uk)

)]
(2.8)

10

Note that for this implementation, a fixed step-size ηk satisfying ηk <
1

ρ‖ATA‖ could be used

and still achieves good convergence.

2.2 Operator Splitting Method

Both ADMM and ALIN stem from the operator splitting method which was invented for

more than a half century ago. The operator splitting method and its variants were widely

used to solve ordinary differential equations (ODE) and partial differential equations (PDE).

Consider problem (1.2), the optimal solution x̂ would satisfy

0 ∈ ∂f(x̂) + ∂h(x̂)

thus we can view the original minimization problem (1.2) as finding zero of sum of two

maximum monotone operators:

0 ∈ (F +H)(x) (2.9)

where F (·) = ∂f(·), H(·) = ∂h(·). The definition of maximum monotone operator is given

as follows:

Definition 2.1. Maximum Monotone Operator. Suppose u ∈ F (x) and v ∈ F (y); F is

monotone if (u− v)T (x− y) ≥ 0,∀(x, y), (u, v) ∈ F . F is maximum monotone if there is no

monotone operator that properly contains it.

The Peaceman-Rachford (Peaceman & Rachford, 1955) and Douglas-Rachford method

(Douglas & Rachford, 1956) for solving (2.9) are listed separately as follows:

xk+1 ← (I + ρH)−1(I − ρF)(I + ρF)−1(I − ρH)xk (2.10)

xk+1 ← (I + ρH)−1[(I + ρF)−1(I − ρH) + ρH]xk (2.11)

where ρ is a positive parameter and I is identity matrix.

For solving problem (1.2), the Peaceman-Rachford method works as follows:

11

Algorithm 2 Peaceman-Rachford

1: Initialize x̂, x̃f , sf .

2: repeat

3: Linearize f(·): f̃(x) = f(x̃f) + sTf (x− x̃f)

4: x̃h ← arg minx

{
f̃(x) + h(x) + 1

2ρ‖x− x̂‖
2
}

5: sh ← −sf − 1
ρ(x̃h − x̂)

6: x̂← x̃h

7: Linearize h(·): h̃(x) = f(x̃h) + sTh (x− x̃h)

8: x̃f ← arg minx

{
f(x) + h̃(x) + 1

2ρ‖x− x̂‖
2
}

9: sf ← −sh − 1
ρ(x̃f − x̂)

10: x̂← x̃f

11: until Stopping test passed

In the Peaceman-Rachford method, the proximal center x̂ always gets updated after

every proximal step (step 3 and 6). However, global convergence is not guaranteed for

general two maximum monotone operators.

If we remove the update step say after step 4, we get the Douglass-Rachford method:

Algorithm 3 Douglass-Rachford

1: Initialize x̂, x̃f , sf .

2: repeat

3: Linearize f(·): f̃(x) = f(x̃f) + sTf (x− x̃f)

4: x̃h ← arg minx

{
f̃(x) + h(x) + 1

2ρ‖x− x̂‖
2
}

5: sh ← −sf − 1
ρ(x̃h − x̂)

6: Linearize h(·): h̃(x) = f(x̃h) + sTh (x− x̃h)

7: x̃f ← arg minx

{
f(x) + h̃(x) + 1

2ρ‖x− x̂‖
2
}

8: sf ← −sh − 1
ρ(x̃f − x̂)

9: x̂← x̃f

10: until Stopping test passed

Note that the order of f(·) and h(·) can be switched, so the method where x̂ updates

happen only after step 6 but never after step 9, is also a Douglass-Rachford method.

12

The Peaceman-Rachford and Douglass-Rachford methods have been developed and an-

alyzed (Lions & Mercier, 1979; Eckstein & Bertsekas, 1992; Combettes, 2009; Bauschke

& Combettes, 2011), with variants such as the version with over- and under- relaxation

when updating proximal center. Global convergence is guaranteed for Douglass-Rachford

method, but not for Peaceman-Rachford method; and the convergence is expressed based

on monotonicity of the distance to the optimal solution of the problem (Lions & Mercier,

1979; Eckstein & Bertsekas, 1992). Note that operator splitting methods are not monotonic

with respect to the objective function value.

2.3 Alternating Linearization Method

The Alternating Linearization Method (ALIN) (Kiwiel et al., 1999) is based on the operator

splitting method, and uses some ideas from the bundle method (Kiwiel, 1985) of non-smooth

optimization. The most important improvement of ALIN over operator splitting method is

the introduction of a special update test, and thus the monotonicity of objective function

value is guaranteed. After solving the h or f proximal step, ALIN uses an update test

to decide whether to update the proximal center x̂ or not. So during each iteration, the

proximal center x̂ can get updated once, twice, or not at all, depending on the update

criterion.

We give the outline of ALIN as follows:

The update test after h-problem has the following form:

f(x̃h) + h(x̃h) ≤ (1− γ)[f(x̂) + h(x̂)] + γ[f̃(x̃h) + h(x̃h)]

for 0 < γ < 1. Before the update test, the following stop test is applied first to determine

whether to terminate the algorithm.

f̃(x̃h) + h(x̃h) ≥ f(x̂) + h(x̂)− ε

The stop and update test after f -problem has a similar form, where h-function is linearized

instead and x̃h is replaced by x̃f .

The update test basically tests whether the current candidate x̃h (or x̃f) has enough

improvement on objective value; and the proximal center x̂ will change to current candidate

13

Algorithm 4 Alternating Linearization Method (ALIN)

1: Initialize x̂, x̃f , sf .
2: repeat
3: Linearize f(·): f̃(x) = f(x̃f) + sTf (x− x̃f)

4: x̃h ← arg minx

{
f̃(x) + h(x) + 1

2‖x− x̂‖
2
D

}
5: sh ← sf −D(x̃h − x̂)
6: if Update test passed then
7: x̂← x̃h
8: end if
9: Linearize h(·): h̃(x) = f(x̃h) + sTh (x− x̃h)

10: x̃f ← arg minx

{
f(x) + h̃(x) + ‖x− x̂‖2D

}
11: sf ← sh −D(x̃f − x̂)
12: if Update test passed then
13: x̂← x̃f
14: end if
15: until Stopping test passed

only if the test passed. The introduction of this update-test guarantees the monotone

decrease of objective value and also guarantees the global convergence.

The proof of global convergence of ALIN was provided in (Kiwiel et al., 1999). In (Lin et

al., 2014), ALIN was compared with other algorithms on different structured regularization

problems, and achieved very good results. Compared to others, it shows shorter compu-

tational time monotone and stable tail convergence. Recently, (Du et al., 2017) extended

two-block ALIN to multi-block case and proved global convergence for an arbitrary number

of operators without artificial duplicates of variables; the rate of convergence was derived

as well.

2.4 Selected Optimization Methods

In this section we review two optimization methods that are used in solving sub-problems

in Stochastic Alternating Linearization method framework.

2.4.1 Coordinate Descent Method

Coordinate descent method (also known as Gauss-Seidel method) is an optimization al-

gorithm that successively minimizes along coordinate direction to find the minimum of a

function. At each iteration, coordinate descent (CD) method determines one coordinate (or

14

one coordinates block) to solve its univariate minimization problem, while fixing all other

coordinates fixed.

Suppose CD is used to solve the problem: minx f(x), where f(·) is convex, and x =

(x1, x2, ..., xm). Then starting from initial point x0 = (x0
1, x

0
2, ..., x

0
m), coordinate descent

iteratively solves univariate minimization problem:

xk+1
i = arg min

ω
f(xk1, ..., x

k
i−1, ω, x

k
i+1, ..., x

k
m) (2.12)

The coordinate direction can be chosen in cyclic order or by certain selection rule. The

following theorem shows that the sequence generated by CD converges to stationary point

when objective function is continuously differentiable.

Theorem 2.1. (Ruszczyński, 2006) Assume function f(·) is continuously differentiable and

the set X0 = {x ∈ Rd : f(x) ≤ f(x0)} is bounded. Moreover, assume that for every direction

(or block) i and x ∈ X0, the following minimization problem

min
ω
f(xk1, ..., x

k
i−1, ω, x

k
i+1, ..., x

k
m)

has a unique solution. Then every accumulation point x∗ of the sequence {xk} by the

coordinate descent method satisfies the equation ∇f(x∗).

The block coordinate descent (BCD) is a block extension to the standard CD method,

where the indices of coordinates are replaced by the indices of the blocks that they belong to.

BCD proceeds in the same way as CD, and is highly efficient for problems where objective

function and constraint have partially decomposable structure in terms of decision variable.

2.4.2 Conjugate Gradient Method

Conjugate gradient method can be used to find minimum of a quadratic function:

min
x

1

2
xTQx+ cTx (2.13)

where x ∈ Rn and Q ∈ Rn×n is a positive definite matrix. It will successively minimize f(·)

along conjugate directions, which are defined as follows:

15

Definition 2.2. Q-conjugate. Let Q be a symmetric positive definite matrix of dimension

n. Vectors d1, d2, ..., dn are called Q-conjugate (Q-orthogonal) if they are all nonzero and

〈di, Qdj〉 = 0 for all i 6= j

The conjugate gradient descent algorithm is described in the following:

Algorithm 5 Conjugate Gradient Descent

1: for k = 1, ... do
2: Calculate ∇f(xk).
3: if ∇f(xk) = 0 then
4: Stop
5: end if
6: Calculate

dk =

{
−∇f(xk) if k = 1
−∇f(xk) + αkd

k−1 if k > 1

where

αk =
〈∇f(xk),∇f(xk)−∇f(xk−1)〉

‖∇f(xk−1)‖2

7: Calculate the next point
xk+1 = xk + τkd

k

such that
f(xk+1) = min

τ≥0
f(xk + τdk)

8: end for

The following theorem suggests that conjugate gradient descent is able to find the min-

imum of (2.13) in no more than n steps, where n is dimension of x.

Theorem 2.2. (Ruszczyński, 2006) Assume that d1, d2, ..., dn are conjugate directions and

that the sequence {x1, x2, ..., xn+1} is obtained by successive minimization of function (2.13)

in direction dk, k = 1, ..., n:

xk+1 = xk + τkd6k,

f(xk+1) = min
τ∈R

f(xk + τdk).

Then for every k = 1, 2, ..., n the points xk+1 is the minimum of f(x) in the linear manifold

Lk = x1 + lin{d1, d2, ..., dn}.

Coordinate descent and conjugate gradient method will serve as building blocks in the

framkework of Stochastic Alternating Linearization Method.

16

Chapter 3

Stochastic ADMM with randomized preconditioning and

weighted sampling

3.1 Overview

In this chapter we describe our first proposed method called Stochastic ADMM with ran-

domized preconditioning and weighted sampling (pwSADMM). The method is specifically

designed to solved the overdetermined ill-conditioned `1 and `2 regularized regression prob-

lem:

min
x,y

1

2n
‖Wx− b‖22 + h(y)

s.t.Ax+By − c = 0

or
min
x,y

1

n
‖Wx− b‖1 + h(y)

s.t.Ax+By − c = 0

(3.1)

where W ∈ Rn×d(n � d) is the design matrix, presumed to be ill-conditioned; h(x) is

a convex regularization term, not necessarily continuously differentiable. We specifically

consider the regression problem with generalized LASSO regularization:

min
x,y

1

2
‖Wx− b‖22 + λ‖y‖1

s.t.Gx− y = 0

or
min
x,y
‖Wx− b‖1 + λ‖y‖1

s.t.Gx− y = 0

(3.2)

where G encodes structural prior information to the specific problem. We omit the denom-

inator n for simpler notation in the proof later on; we can always make them equivalent by

scaling λ by n.

The method uses two important concepts: randomized preconditioning and non-uniform

importance sampling distribution, to deal with ill-conditioned design matrix and guarantee

strong performance. The method constructs a preconditioner and an importance sampling

distribution, using randomized linear algebra (RLA) (Drineas, Mahoney, Muthukrishnan, &

Sarlos, 2011); and then applies ADMM-type iterations on the preconditioned system, with

17

samples drawn from the importance sampling distribution. The method inherits the strong

performance guarantees of RLA and the capability of ADMM of dealing with two-block

objective functions.

We show that the asymptotic convergence rate of pwSADMM is as good as any other

stochastic ADMM algorithms, i.e., O(1/
√
t) for general convex objective function and

O(log t/t) for strongly convex objective function. Moreover, given a relative error level,

the constants in the rate only depend on the lower dimension of the design matrix.

3.2 Preliminaries

Before we describe our proposed algorithm we first specify some notations. We denote by

κ(W) the conventional condition number of a matrix W . We denote by |·|p the element-wise

`p norm of a matrix: |W |p = (Σi,j |Wij |p)1/p. In particular, when p = 2, | · |2 is the Frobenius

norm ‖ · ‖F .

Below we discuss two critical ideas used in pwSADMM: well-conditioned basis and lever-

age scores. The notion of well-conditioned basis was originally introduced by (Clarkson,

2005) as conditioning of `1 regression problem, and later stated more precisely and extended

to `p problem by (Dasgupta, Drineas, Harb, Kumar, & Mahoney, 2009).

Definition 3.1. ((α, β, p)-conditioning and well-conditioned basis). W ∈ Rn×d is (α, β, p)-

conditioned if |W |p ≤ α and for all x ∈ Rd, β‖Wx‖p ≥ ‖x‖q, where 1/p + 1/q = 1. The

condition number κ̄p(W) is defined as the minimum value of αβ such that W is (α, β, p)-

conditioned. A basis U of range(W) is well-conditioned if κ̄p(U) is a low-degree polynomial

in d, independent of n.

Note that when W is a square matrix, κ̄p(W) is equivalent to the conventional condition

number |W |p|W−1|p. Below is the definition of leverage score for each row of observation

in a design matrix.

Definition 3.2. (`p leverage score). Given W ∈ Rn×d, suppose U is an (α, β, p) well-

conditioned basis of range(W). The i-th leverage score si of W is defined as si = ‖Ui‖pp,∀i =

1, ..., n, and p = 1 or 2.

18

Preconditioning

One can found a detailed summary of various `p preconditioning methods in (Yang, Meng, &

Mahoney, 2014, 2016). In our pwSADMM algorithm, we use the following preconditioning

procedure similar to (Yang, Chow, et al., 2016). It consists of two steps:

1. Given a matrix W ∈ Rn×d with full rank, first build a sketch SW ∈ Rs×d for W that

satisfies:

σS · ‖Wx‖p ≤ ‖SWx‖1 ≤ κSσS · ‖Wx‖p (3.3)

where κS is the distortion factor, independent of n.

2. Compute the QR decomposition of SW whose size only depends on d. Return R−1.

The following Lemma guarantees that WR−1 is well-conditioned since κS and s depend on

lower dimension d, independent of higher dimension n.

Lemma 3.1. (Yang, Chow, et al., 2016) Let R be the matrix returned by the above

preconditioning procedure, then

κ̄p(WR−1) ≤ κSdmax{ 1
2
, 1
p
}
s
| 1
p
− 1

2
|
.

A sketching matrix S satisfying (3.3) can be calculated by various methods in nearly

input-sparsity time O(nnz(W)), with the use of random projections (Clarkson & Woodruff,

2013; Meng & Mahoney, 2013; Woodruff & Zhang, 2013). One can find a summary of these

sketching methods and resulting time complexity and condition number in (Yang, Chow,

et al., 2016).

3.3 Outline of pwSADMM

We now summarize the main steps and implementation details of pwSADMM as follows.

The first step is to compute U such that U = WR−1 is a well-conditioned basis for

range(W). This can be done using the ”sketch then QR decomposition” approach that

we just discussed, or through other methods. Note that if R were obtained from the QR-

decomposition of the original design matrix W , then U would be a perfectly conditioned

basis.

19

The second step is to obtain leverage score and build importance sampling distribution.

The leverage score {si}ni=1 here is the row norm of U , which can be either calculated exactly

(calculate U = WR−1 with complexity O(nd2)) or approximated as a by-product of the

sketching-based preconditioning methods, see (Yang et al., 2014; Yang, Meng, & Mahoney,

2016) for details. The leverage score of any row i satisfies:

(1− ι)‖Ui‖pp ≤ si ≤ (1 + ι)‖Ui‖pp (3.4)

where p = 1, 2 and ι is an approximation factor. When the leverage score is calculated

exactly, ι = 0. Based on leverage scores, the non-uniform importance sampling distribution

P is defined based on leverage scores:

pi =
si

Σn
i=1si

, i = 1, ..., n (3.5)

In next step we calculate the preconditioner F , which transforms WF into a well-

conditioned base. The preconditioner F can be chosen as R−1, or diagonal matrix that

scales R to have unit column norms; or just an identity matrix, same as no preconditioning.

H = (FF T)−1 is calculated and cached.

Then the ADMM iterative phase starts. At each iteration a new random sample is drawn

according to the defined sampling distribution P . We can also draw a mini-batch according

to P , or using volume sampling, which picks a subset of rows with probabilities proportional

to the squared ovlumes of the simplicies defined by them. An example of volume sampling

algorithm can be found in (Deshpande & Rademacher, 2010).

The loss function is linearized at current solution point using the gradient built from this

sample. The x-optimization step is to minimize the sum of linearized f function, quadratic

term and proximal term.

We summarize the pwSADMM algorithm below:

20

Algorithm 6 Preconditioned Weighted Stochastic ADMM

1: Input: Design matrix W ∈ Rn×d; penalty matrix G, parameter λ, ρ; Initialized y0, u0.

2: Compute R ∈ Rd×d such that U = WR−1 is a well-conditioned basis for range(W).

3: Compute or approximate ‖Ui‖1 or ‖Ui‖22 with leverage scores si for i ∈ [n]

4: Define the distribution P = {pi = si/Σsi}ni=1.

5: Construct the preconditioner F ∈ Rd×d based on R; H = (FF T)−1.

6: for k = 0, 1, 2, ..., t do

7: Pick ξk+1 ∈ [1...n] according to {pi}ni=1.

8:

gk+1 =

 W T
ξk+1

sgn(Wξk+1
xk − bξk+1

)/pξk+1
, for `1 case

W T
ξk+1

(Wξk+1
xk − bξk+1

)/pξk+1
, for `2 case

9: Update steps:

xk+1 ← arg min
x

{
gTk+1x+

ρ

2
||Ax+Byk − c+ uk||22 +

||x− xk||2H
2ηk+1

}
(3.6)

10: yk+1 ← arg miny
{
h(y) + ρ

2‖Axk+1 +By − c+ uk‖22
}

11: uk+1 ← uk + (Axk+1 +Byk+1 − c)

12: end for

13: return (x̄, ȳ, ū) for `1 regression or (xt, yt, ut) for `2 regression.

3.4 Remarks on the algorithm

Equivalence with applying ordinary ADMM iterations to well-conditioned base

Here we prove that the application of the preconditioned Stochastic ADMM to an ill-

conditioned system is equivalent to applying standard Stochastic ADMM to a transformed

well-conditioned system.

Suppose we are working on a well-conditioned base U = WF and the variable corre-

sponds to this base is x′, where x = Fx′. We have the following equivalence:

Ux′ = WFx′ = Wx

21

Rewrite the problem (1.2) in terms of x′:

min
x,y

f(x) + h(y)

s.t.Ax+By = c

⇐⇒
min
x′,y

f(Fx′) + h(y)

s.t.AFx′ +By = c

⇐⇒
min
x′,y

q(x′) + h(y)

s.t. (AF)x′ +By = c

where q(z) = f(Fz). If we apply the standard ADMM to this problem, the x′-optimization

step will have the following form:

min
x′

{
q(x′) +

ρ

2
||AFx′ +Byk − c+ uk||22 +

||x′ − x′k||2

2ηk+1

}
(3.7)

By using the relation x = Fx′, this is equivalent to:

min
x

{
f(x) +

ρ

2
||Ax+Byk − c+ uk||22 +

||F−1(x− xk)||2

2ηk+1

}
(3.8)

This is exactly the x-optimization step in pwSADMM.

So far, we have shown that applying preconditioned stochastic ADMM to original basis

is equivalent to applying a conventional stochastic ADMM to projected well-conditioned

basis.

Different choice of preconditioner F

• When F = R−1, H = (FF>)−1 = R>R is a good approximation to the Hessian

W>W since H = R>R = R>QTQR = (SW)T (SW) ≈ W TW . This makes the x-

optimization step close to a Newton-type step, which is highly efficient for convex

functions but at the cost of doing dense matrix multiplication.

• When F = D is the diagonal matrix that scales R to have unit column norms, κ(RD)

is always upper-bounded by the original condition number κ(R). The computational

cost per iteration is only O(d) compared to O(d2) with dense F matrix. When di-

mension d is high the diagonal matrix is preferred.

• When F = I, then the method reduces to stochastic ADMM.

22

Comparison with Stochastic ADMM method

We give a brief comparison of our pwSADMM with Stochastic ADMM (SADMM) method

of (Ouyang et al., 2013). Recalled the x-optimization step of SADMM:

xk+1 ← arg min
x

{
〈f ′(xk, ξk+1), x〉+

ρ

2
‖(Ax+Byk − c) + uk‖2 +

‖x− xk‖22
2ηk+1

}
where ξk+1 is drawn uniformly random, and the proximal term is a simple half squared

norm. In comparison, the x-optimization step in pwSADMM is:

xk+1 ← arg min
x

{
〈f ′(xk, ξk+1), x〉+

ρ

2
‖(Ax+Byk − c) + uk‖2 +

‖x− xk‖2H
2ηk+1

}
where ξk+1 is drawn from a sampling distribution defined by leverage scores of design matrix

W ; and the use of the H-norm in the proximal term acts as preconditioning. Both methods

use a random loss function f(x, ξ) to replace the empirical lossf(x), but the difference lies in

the way that ξ is sampled. The introduction of ‖ · ‖2H norm transforms original system into

a well-conditioned system and helps pwSADMM handle ill-conditioned problems. The two

improvements over SADMM greatly improve the convergence speed, especially in problems

with an ill-conditioned design matrix.

3.5 Theoretical Results

This section is devoted to the analysis of expected convergence rate of the pwSADMM

method, and the propositions that serve as basics of main results. First we define some

useful notations that appear in our results and proofs:

δk+1 ≡ f ′(xk, ξk+1)− f ′(xk)

DH(X) ≡ sup
xa,xb∈X

‖xa − xb‖H , Dy∗,B ≡ ‖B(y0 − y∗)‖

wk =

xk

yk

uk

 , Θ(w) =

ATu

BTu

c−Ax−By

Before we provide the main theorems on convergence rates, we present a proposition

about an upper bound of objective value distance and variation of the Lagrangian function

based on each iteration points.

23

Proposition 3.1. (Progress Bound). Define a norm ‖ · ‖♦ that satisfies: ∃λ, s.t. λ2‖ · ‖
2
♦ ≤

1
2‖ · ‖

2
2. Denote its dual norm as ‖ · ‖∗. Then for all k ≥ 1, we have:

f(xk) + h(yk+1)− f(x)− h(y) + ρ(wk+1 −w)>Θ(wk+1) ≤ ηk+1‖Ff ′(xk, ξk+1)‖2∗
2λ

+
1

2ηk+1
(||xk − x||2H − ||xk+1 − x||2H) +

ρ

2
(||Ax+Byk − c||2 − ||Ax+Byk+1 − c||2)

+
ρ

2
(||u− uk||22 − ||u− uk+1||22) + 〈δk+1, x− xk〉 (3.9)

Based on this proposition we derive the estimate of convergence rate for general convex

objective function.

General Convex Function

Theorem 3.1. (1/
√
t rate for general convex function).

Assume E[‖Ff ′(x, ξ)‖2∗] ≤ M2, where ‖ · ‖∗ is the dual norm to ‖ · ‖♦ as stated in

Proposition (3.1). Let step size ηk =
√
λDH(X)

M
√

2k
, for ∀t, we have:

E[f(x̄t) + h(ȳt)− f(x∗)− h(y∗) +$||Ax̄t +Bȳt − c||] ≤
√

2/λMDH(X)√
t

+
ρD2

y∗,B + ρ$2

2t

(3.10)

We can apply the above result to the `1 regularized regression problem, where we can

further express the constant M exactly. For `1 problem, define ‖ · ‖♦ ≡ ‖ · ‖∞; note that it

satisfies 1
2‖ · ‖

2
∞ ≤ 1

2‖ · ‖
2
2. The dual norm of ‖ · ‖∞ is ‖ · ‖∗ = ‖ · ‖1. Thus

‖Ff ′(x, ξ)‖∗ = ‖Ff ′(x, ξ)‖1 = ‖f ′(x′, ξ)‖1 = ‖UξRF · sgn(UiRFx
′ − bξ)‖1/pξ

= |RF |1‖Uξ‖1
1 + ι

1− ι
· |U |1
‖Uξ‖1

≤ α|RF |1
1 + ι

1− ι

where the second equation is due to ∂f(x)
∂x′ = ∂f(x)

∂x ·
∂x
∂x′ and x = Fx′; and the last inequality

is due to the definition of (α, β, p)-conditioning of basis U : |U | ≤ α. Thus M is set to be

α|RF |1 1+ι
1−ι .

Therefore, we can see for `1 regularized regression problem, the convergence rate is

O(1/
√
t) and the constants are independent of the higher dimension n.

24

Strongly Convex Function

When f is strongly convex, the estimate of convergence rate can be further improved to

log(t)/t.

Theorem 3.2. (log(t)/t rate for strongly convex problem)

Assume f(·) is strongly convex with modulus µ, and ∀x ∈ X ,E[‖Ff ′(x, ξ)‖22] ≤ M2.

Taking step size ηt = 1/tµ, we have:

E[f(x̄t)+h(ȳt)−f(x∗)−h(y∗)+$‖Ax̄t+Bȳt− c‖] ≤
M2 log t

λµt
+
µD2

H(X) + ρD2
y∗,B + ρ$2

2t

(3.11)

For `2 regression problem where f(·) is least squares loss, we can bound the convexity

modulus µ exactly:

µ = 2σ2
min(WF) =

2

‖((URF)TURF)−1‖2
≥ 2

‖(UTU)−1‖2 · ‖(RF)−1‖22
=

2

β2 · ‖(RF)−1‖22
.

where U is an (α, β, 2)-conditioned basis of range(W).

3.6 Proofs

3.6.1 Proof for Proposition (3.1)

Lemma 3.2. Let l(x) be a convex differentiable function. Let scalar s > 0. Denote the

Bregman divergence as D(x, u) = w(x)−w(u)− 〈∇w(u), x− u〉, e.g. 1
2‖x− u‖

2
H . Consider

x∗ ≡ arg min
x

l(x) + sD(x, u) (3.12)

then

〈∇l(x∗), x∗ − x〉 ≤ s[D(x, u)−D(x, x∗)−D(x∗, u)]

Proof. From the optimality condition for (3.12), we have

〈∇l(x∗) + s∇D(x∗, u), x− x∗〉 ≥ 0,∀x ∈ X

and thus

〈∇l(x∗), x∗ − x〉 ≤ 〈∇sD(x∗, xk), x− x∗〉

= s〈∇w(x∗)−∇w(u), x− x∗〉

= s[D(x, u)−D(x, x∗)−D(x∗, u)]

25

Apply the above Lemma to the x-update step of our ADMM algorithm, where the

Bregman divergence is D(x, u) = 1
2‖x− u‖

2
H . We got:

〈f ′(xk, ξk+1) + ρAT [Ak+1 +Byk − c+ uk], xk+1 − x〉

≤ 1

2ηk+1
(‖xk − x‖2H − ‖xk+1 − x‖2H − ‖xk − xk+1‖2H)

(3.13)

Also due to convexity of f :

f(xk)−f(x) ≤ 〈f ′(xk), xk−x〉 = 〈f ′(xk, ξk+1), xk+1−x〉+〈δk+1, x−xk〉+〈f ′(xk, ξk+1), xk−xk+1〉

(3.14)

And by combining (3.13) and (3.14) we will have:

f(xk)− f(x) + 〈xk+1 − x, ρA>uk+1〉

=f(xk)− f(x) + 〈xk+1 − x, ρA>[Axk+1 +Byk+1 − c+ uk]〉

≤ 1

2ηk+1
(‖xk − x‖2H − ‖xk+1 − x‖2H − ‖xk − xk+1‖2H) + 〈δk, x− xk〉+

〈x− xk+1, ρA
>B(yk − yk+1)〉+ 〈f ′(xk, ξk), xk − xk+1〉

(3.15)

We deal with the last two terms. For the first term:

〈x− xk+1, ρA
>B(yk − yk+1)〉 = ρ〈Ax−Axk+1, Byk −Byk+1〉

=
ρ

2
[(‖Ax+Byk − c‖2 − ‖Ax+Byk+1 − c‖2) + (‖Axk+1 +Byk+1 − c‖2 − ‖Axk+1 +Byk − c‖2)]

≤ ρ

2
(‖Ax+Byk − c‖2 − ‖Ax+Byk+1 − c‖2) +

ρ

2
‖uk+1 − uk‖2

(3.16)

and for the last term, using the Fenchel-Young Inequality applied to the conjugate pair

1
2‖ · ‖

2
♦,

1
2‖ · ‖

2
∗ (see (Boyd & Vandenberghe, 2004) Example 3.27):

〈f ′(xk, ξk), xk−xk+1〉 = 〈Ff ′(xk, ξk), F−1(xk−xk+1)〉 ≤ ηk‖Ff ′(xk, ξk)‖2∗
2λ

+
λ‖F−1(xk − xk+1)‖2♦

2ηk
(3.17)

and by the assumption that λ
2‖ · ‖

2
♦ ≤

1
2‖ · ‖

2
2, we have:

λ‖F−1(xk − xk+1)‖2♦
2

≤ ‖F
−1(xk − xk+1)‖22

2
=
‖xk − xk+1‖2H

2

26

Thus we have

f(xk)− f(x) + 〈xk+1 − x, ρA>uk+1〉

≤ 1

2ηk+1
(‖xk − x‖2H − ‖xk+1 − x‖2H) +

ηk+1‖Ff ′(xk, ξk)‖2∗
2λ

+ 〈ξk+1, x− xk〉

+
ρ

2
(‖Ax+Byk − c‖2 − ‖Ax+Byk+1 − c‖2) +

ρ

2
‖uk+1 − uk‖2

(3.18)

Now we move to the y-step. Due to convexity of h(·) and optimality condition for the

y-update step, we have

h(yk+1)− h(y) + 〈yk+1 − y, ρB>uk+1〉 ≤ 0 (3.19)

and finally according to update rule for dual variable u

〈(uk+1 − u), ρ(Axk+1 +Byk+1 − c)〉

=ρ〈uk+1 − u, uk − uk+1〉

=
ρ

2
(‖u− uk‖2 − ‖u− uk+1‖2 − ‖uk+1 − uk‖2)

(3.20)

By adding them together we have proved Proposition (3.1):

f(xk) + h(yk+1)− f(x)− h(y) + ρ(wk+1 −w)>Θ(wk+1) ≤ ηk+1‖Ff
′
(x, ξ)‖2∗

2λ

+
1

2ηk+1
(||xk − x||2H − ||xk+1 − x||2H) +

ρ

2
(||Ax+Byk − c||2 − ||Ax+Byk+1 − c||2)

+
ρ

2
(||u− uk||22 − ||u− uk+1||22) + 〈δk, x− xk〉

(3.21)

3.6.2 Proof of Theorem (3.1) (1/
√
t rate)

Due to convexity of f(x) and h(y) we have ∀w ∈ W:

f(x̄t) + h(ȳt)− f(x)− h(y) + ρ(w̄t −w)>Θ(w̄t)

≤ 1

t

t−1∑
k=0

[f(xk) + h(yk+1)− f(x)− h(y) + ρ(wk+1 −w)>Θ(wk+1)]
(3.22)

27

then applying Proposition (3.1) at the optimal (x∗, y∗), we have ∀u:

f(x̄t)−f(x∗) + h(ȳt)− h(y∗) + (x̄t − x∗)>(ρA>ūt)

+ (ȳt − y∗)>(ρB>ūt) + ρ(ūt − u)>(Ax̄t +Bȳt − c)

≤ 1

t

t−1∑
k=0

[
ηk‖Ff ′(xk, ξk)‖2∗

2λ
+

1

2ηk
(‖xk − x‖2H − ‖xk+1 − x‖2H) + 〈δk, x∗ − xk〉

]
+
ρ

2t

(
‖Ax∗ +By0 − c‖2 + ‖u− u0‖2

)
≤1

t

t−1∑
k=0

[
ηk‖Ff ′(xk, ξk)‖2∗

2λ
+ 〈δk, x∗ − xk〉

]
+

1

2t

(
(DHX)2

ηt
+ ρ‖B(y0 − y∗)‖2 + ρ‖u− u0‖2

)
(3.23)

For the left hand side, ∀u ∈ Rd, we restrict it in the ball B0 = {u : ‖u‖2 ≤ $/ρ}.

max
u∈B0

f(x̄t)− f(x∗) + h(ȳt)− h(y∗)

+ (x̄t − x∗)>(ρA>ūt) + (ȳt − y∗)>(ρB>ūt) + ρ(ūt − u)>(Ax̄t +Bȳt − c)

= max
u∈B0

f(x̄t)− f(x∗) + h(ȳt)− h(y∗)− ρū>(Ax∗ +By∗ − c) + ρu>(Ax̄t +Bȳt − c)

= max
u∈B0

f(x̄t)− f(x∗) + h(ȳt)− h(y∗) + ρu>(Ax̄t +Bȳt − c)

=f(x̄t)− f(x∗) + h(ȳt)− h(y∗) +$‖Ax̄t +Bȳt − c‖2

(3.24)

Taking expectation over (3.24), and note that we have a bound for gradient: E[‖Ff ′(x, ξ)2‖]∗ ≤

M2 or more strictly, ‖Ff ′(x, ξ)‖∗ ≤M ; we have:

E[f(x̄t)− f(x∗) + h(ȳt)− h(y∗) +$‖Ax̄t +Bȳt − b‖2]

≤1

t

(
M2

2λ

t∑
k=1

ηk +
(DHX)2

2ηt

)
+
ρ‖B(y0 − y∗)‖2

2t
+
ρ$2

2t
+

1

t

t∑
k=1

E[〈δk, x∗ − xk〉]

=

(
M2

2λt

t∑
k=1

ηk +
(DHX)2

2tηt

)
+
ρ‖B(y0 − y∗)‖2

2t
+
ρ$2

2t

(3.25)

Since ηk is monotonically decreasing, there exist:

M2

2λt

t∑
k=1

ηk +
D2
X

2tηt
≥ M2ηk

2λ
+
D2
X

2ηt

28

To optimize the rate of convergence, we take step size ηk to be equal to DHX
M
√

2t/λ
. Finally

we find the tightest bound of the inequality:

E[f(x̄t)−f(x∗)+h(ȳt)−h(y∗)+$‖Ax̄t+Bȳt−b‖2] ≤
√

2DHXM√
λt

+
ρ‖B(y0 − y∗)‖2

2t
+
ρ$2

2t

(3.26)

3.6.3 Proof of Theorem (3.2) (log t/t rate)

By the strong convexity of f we have ∀x :

f(xk)− f(x) ≤ 〈f ′(xk), xk − x〉 −
µ

2
‖x− xk‖2

= 〈f ′(xk, ξk), xk+1 − x〉+ 〈ξk, x− xk〉+ 〈Ff ′(xk, ξk), F−1(xk − xk+1)〉 − µ

2
‖x− xk‖2H

similar with the proof for `1 case, but taking step size ηk = 1/µk, we have:

E[f(x̄t) + h(ȳt)− f(x∗)− h(y∗) +$||Ax̄t +Bȳt − c||2]

≤ E

{
1

t

t−1∑
k=0

[
ηk‖Ff ′(xk, ξk)‖2

2
+

(
1

2ηk
− µ

2

)
‖xk − x∗‖2H −

‖xk+1 − x∗‖2H
2ηk

]}

+
ρ‖B(y0 − y∗)‖2

2t
+ E

[
max
u∈B0

{ ρ
2t
‖u− u0‖2

}]
≤ M2

2λt

t∑
k=1

1

µk
+

1

t

t−1∑
k=0

E
[
µk

2
‖xk − x∗‖2H −

µ(k + 1)

2
‖xk+1 − x∗‖2H

]
+
ρ‖B(y0 − y∗)‖2

2t
+
ρ$2

2t

≤ M2 log t

λµt
+
µ(DHX)2

2t
+
ρ‖B(y0 − y∗)‖2

2t
+
ρ$2

2t

This completes our proof.

29

Chapter 4

Stochastic Alternating Linearization (SALIN)

4.1 Overview

In this section we describe the algorithm of Stochastic Alternating Linearization (SALIN)

for solving the following structured regularization problem:

min
x

: f(x) + h(x) =
1

n

n∑
i=1

fi(x) + h(x)

where f(x) is the loss function with n being large, and h(x) is the structured regularization

term. Both f(x) and h(x) are convex but not necessarily continuously differentiable. SALIN

is developed to solve the above optimization problems in the large-size dataset setting.

We first give a brief review of the key features of the deterministic ALIN method (4)

and describe the main changes that we have developed with SALIN. ALIN is an iterative

method which alternatively solves two sub-problems: h- and f -subproblem corresponding

to f̃+h and h̃+f , where f̃ , h̃ is linear minorant of f, h. It generates two auxiliary sequences

{x̃h} and {x̃f}, and an approximation sequence {x̂} that converges to the solution of the

problem. At each iteration after solving the h-subproblem, ALIN updates sh from the

optimality condition and uses it for linearizing h in solving the next f -subproblem: h̃+ f ;

however, the point x̂ only gets updated if the designed h update test is passed. Analogous

procedures will be carried out after the f -subproblem. The update test guarantees the

monotone decrease of objective value, which is the main attracting feature of ALIN.

SALIN works in a similar way as ALIN, but differs in several aspects which make SALIN

applicable to the stochastic setting. These differences will not only save computational cost

per iteration, but also guarantee nice convergence behavior. The differences are mainly

affecting two aspects of the method:

• The update mechanism for the sub-gradient of the loss function, i.e., sf . It is updated

30

not only when the f -subproblem is solved, but also when a new random sample is

drawn.

• The update test being applied after each sub-problem. It evaluates function values

on a predefined fixed sample, not on the whole dataset.

The vector sf is the estimate of sub-gradient of the loss function f . In deterministic ALIN,

sf is initialized as f ′(x̃f) using the whole dataset; e.g., s0
f = W T (Wx̃f − b) when f(x) =

1
2‖Wx − b‖22. However in the stochastic setting, it is impossible to initialize sf using the

whole dataset; sf can only be approximated gradually as more data are revealed over

iterations. Therefore in SALIN, we design a special update schedule for sf : sf is updated

when f -subproblem is solved, using optimality condition; and is also updated when a new

data sample is drawn, using a weighted averaging scheme, as will be discussed in (4.1).

By doing so, SALIN avoids approximating sf using the whole dataset at once, but

manages to gradually obtain an accurate approximation over iterations, at a much lower

computation cost per iteration. Moreover, the tail convergence is also stabilized by this

update schedule.

And for the update test, deterministic ALIN evaluates function value and its linear

approximation value using the whole dataset. In the stochastic setting, this is not possible.

Instead, SALIN uses a pre-defined fixed sample S for update tests. We will show that the

choice of S has little impact on the final solution; and the larger the size of S, the higher

probability that SALIN returns a better solution in terms of objective value and solution

distance. In short, SALIN is a robust method under different S.

4.2 Outline of the SALIN Algorithm

We give the description of SALIN here. Similar to ALIN, SALIN is an iterative method

which generates an approximation sequence {x̂k} converging to the solution of the problem,

and two auxiliary sequences: {x̃kh} and {x̃kf}, where k is the iteration number. There are also

three sequences for sub-gradients: candidate sf from the sample ξ: {skf (ξ)}; approximated

sf : {ŝkf}; and approximated sh: {ŝkh}. At the beginning, we initialize x̃0
f = x̂0, the starting

point of the method; and also initialize ŝ0
f = 0. We suppress the superscript k from now on

31

for simplicity.

The h-subproblem

We draw a random variable ξ from [1, ..., n], define fξ(x) ≡ 1
|ξ|
∑

i∈ξ fi(x). Calculate the

candidate sub-gradient sf (ξ): sf (ξ) = ∇fξ(x̃f) if f(·) is differentiable; sf (ξ) ∈ ∂fξ(x̃f) if

f(·) is general convex.

The vector sf (ξ) is not used directly for linearizing f , instead it is averaged with the

previous approximation ŝf to make a new approximation of sf :

ŝf ← (1− ω)ŝf + ωsf (ξ) (4.1)

where ω ∈ [0, 1]. We can set ω fixed, e.g., ω = 0.25; or make it time-varying. We found

that a monotonically decreasing ω accelerates convergence speed.

After updating ŝf , we use it to linearize f(·) at x̃f :

f̃(x) = f(x̃f) + ŝTf (x− x̃f)

The h-subproblem is to solve:

x̃kh = arg min
x

{
f̃(x) + h(x) +

1

2η
‖x− x̂‖2D

}
(4.2)

where D is a diagonal positive definite matrix, and η is a decaying step size.

Next we calculate the sub-gradient of h(·) at x̃h, based on the optimality condition for

the minimum at (4.2):

0 ∈ ŝf + ∂h(x̃h) + η−1D(x̃h − x̂)

which yields the right sub-gradient ŝh ∈ ∂h(x̃h):

ŝh = −ŝf − η−1D(x̃h − x̂) (4.3)

The vector ŝh will be used to linearize h(·) in the next sub-problem.

The decision of whether to make the update x̂ ← x̃h depends on the outcome of the

update test, which will be explained later.

32

The f-subproblem

We first construct a linear minorant of the regularization function h(·) (usually non-smooth),

using ŝh obtained from last h-subproblem:

h̃(x) = h(x̃h) + ŝTh (x− x̃h)

Then we solve the f -subproblem:

x̃f = arg min
x

{
fξ(x) + h̃(x) +

1

2η
‖x− x̂‖2D

}
(4.4)

The minimizer x̃f will be used in the linearization of f(·) at the next iteration.

To conclude the current iteration we update ŝf , similar to (4.3):

ŝf = −ŝh − η−1D(x̃f − x̂) (4.5)

At the beginning of the next iteration when a new sample ξ is drawn, this current ŝf will

be averaged with sf (ξ) to form an updated approximation ŝf , as in (4.1).

The decision of whether to make the update x̂ ← x̃f depends on the outcome of the

update test, which is explained in the following section.

The update step

The update step is used to decide whether to change the current solution approximation

x̂ or not. It can be applied after any of the sub-problems, or after both of them. Here we

describe the update step after the h-subproblem; analogous procedures would apply to the

update step after the f -subproblem.

The predefined fixed sample S is used for estimating the loss function value f(·), instead

of the whole dataset. The test sample S is chosen at random before iteration phase and is

not used for solving any subproblems. We denote by fS(·) the loss function value evaluated

on sample S, and fΩ(·) the loss function value evaluated on the whole population Ω.

Now we use sample S to estimate the f function value in the update test, i.e., we replace

the theoretical inequality of ALIN:

fΩ(x̃h) + h(x̃h) ≤ (1− γ)[fΩ(x̂) + h(x̂)] + γ[f̃Ω(x̃h) + h(x̃h)] (4.6)

33

with

fS(x̃h) + h(x̃h) ≤ (1− γ)[fS(x̂) + h(x̂)] + γ[f̃S(x̃h) + h(x̃h)]. (4.7)

We need to test how confident we are to update x̂ using the update test outcome based on

sample S, other than Ω. To do this, we first separate out all terms in 4.6 (or 4.7) related

to the f(·)-function, and include them in one function Φ(·):

Φ(x̂, x̃h, γ) = f(x̂)− f(x̃h)− γ(f(x̂)− f̃(x̃h)).

where γ ∈ (0, 1). In our experiments we set γ = 0.2; the choice of γ does not affect overall

performance of SALIN.

We want to test that given x̂, x̃h, whether ΦΩ(x̂, x̃h, γ) is statistically different than φS ,

where

φS ≡ ΦS(x̂, x̃h, γ) = fS(x̂)− fS(x̃h)− γ(fS(x̂)− f̃S(x̃h))

can be calculated and thus viewed as a deterministic value for each given iteration. To do

this, we carry out the following t-test:

Test 4.1. T-Test of H0 : ΦΩ(x̂, x̃h, γ) = φS.

Pick a random sample ζ ∈ {i ∈ Ω|i /∈ S} with size nζ . Calculate Φi(x̂, x̃h, γ) = fζ(x̂)−

fζ(x̃h)− γ(fζ(x̂)− f̃ζ(x̃h)), ∀i ∈ ζ. Build the following t-statistics:

t =

1
nζ

∑
i∈ζ Φi(x̂, x̃h, γ)− φS√

σ̂2
ζ

nζ

(4.8)

where σ̂2
ζ is the sample variance of {Φi(x̂, x̃h, γ), i ∈ ζ}. The t statistics follows the Student’s

t distribution when nζ is large. We reject the null hypothesis H0 if |t| > T1−α/2,|ζ|−1, at

significance level α.

Based on the two outcomes of the above t-test, we take different actions correspondingly:

• If the null hypothesis of the above t-test is rejected, i.e., ΦΩ(x̂, x̃h, γ) 6= ΦS(x̂, x̃h, γ)

we skip the remainder of the current update step and jump to the next iteration.

• If the null hypothesis is not rejected, we continue with the following stop test and

update test.

34

By taking the above step we can ensure that (4.7) provides close enough approximation

to (4.6) and thus can be trusted. The decision of whether to make the update x̂ ← x̃h

afterwards, is based on the consideration of the whole objective function fΩ(·) + h(·), not

on the randomness of a particular training sample ξ.

Test 4.2. Stopping test. The stopping test is carried out before the update test. Here ε

is the stopping parameter independent of S. If:

f̃S(x̃h) + h(x̃h) ≥ fS(x̂) + h(x̂)− ε, (4.9)

then we terminate the SALIN algorithm and output x̂. Otherwise continue.

In practice, we can also use ‖x̂− x̃h‖ ≤ ε as the stopping criterion.

Test 4.3. Update test. If (4.7) is satisfied, i.e.,

fS(x̃h) + h(x̃h) ≤ (1− γ)[fS(x̂) + h(x̂)] + γ[f̃S(x̃h) + h(x̃h)],

then x̂← x̃h. Otherwise keep x̂ unchanged.

If the update step is applied after f -subproblem, then h is linearized instead, and func-

tions are evaluated at x̃f and x̂. The final outcome determines whether to update x̂ = x̃f .

Below is the summary of the entire update step after the h-subproblem.

35

Algorithm 7 Update step after the h-subproblem

1: Input γ, ε and nζ .

2: Define Φ(x̂, x̃h, γ) = f(x̂)− f(x̃h)− γ(f(x̂)− f̃(x̃h)).

3: Calculate φS = ΦS(x̂, x̃h, γ).

4: Draw a random sample ζ ∈ {i ∈ Ω|i /∈ S} with size nζ . Calculate {Φi(x̂, x̃h, γ), i ∈ ζ}.

5: Build the t-statistics:

t =

1
nζ

∑
i∈ζ Φi(x̂, x̃h, γ)− φS√

σ̂2
ζ/nζ

(4.10)

where σ̂2
ζ is the sample variance of {Φi(x̂, x̃h, γ), i ∈ ζ}.

6: if |t| > T1−α/2, nζ−1 then

7: Skip the rest and jump to next iteration.

8: end if

9: if f̃S(x̃h) + h(x̃h) ≥ fS(x̂) + h(x̂)− ε then

10: Terminate SALIN algorithm.

11: else

12: if fS(x̃h) + h(x̃h) ≤ (1− γ)[fS(x̂) + h(x̂)] + γ[f̃S(x̃h) + h(x̃h)] then

13: return x̂ = x̃h

14: end if

15: end if

36

Summary of SALIN

We have described all the details about the SALIN algorithm, below is a summary:

Algorithm 8 Stochastic Alternating Linearization (SALIN)

1: Initialize x̂, ŝf and D.

2: Initialize S for update tests.

3: repeat:

4: Calculate candidate sub-gradient sf (ξ) based on a newly drawn sample ξ.

5: ŝf ← (1− ω)ŝf + ωsf (ξ), where ω ∈ [0, 1]

6: x̂h ← arg minx{ŝTf (x− x̃f) + h(x) + 1
2η‖x− x̂‖

2
D}

7: ŝh ← ŝf − η−1D(x̃h − x̂)

8: if h-update test passed then

9: x̂← x̃h

10: end if

11: x̃f ← arg min{fξ(x) + ŝTh (x− x̃h) + 1
2η‖x− x̂‖

2
D}

12: ŝf ← ŝh − η−1D(x̃f − x̂)

13: if f -update test passed then

14: x̂← x̃f

15: end if

16: until Stop test passed

4.3 Remarks on the algorithm

Discussion of the update step

As we mentioned before, the update test and the ŝf averaging update schedule will help

SALIN stabilize tail convergence. If we implement SALIN without the update test, then it

will always update x̂ to the noisy approximation of x̃h (or x̃f). However, this leads to very

bumpy tail convergence caused by the randomness of samples.

With the update test, SALIN updates x̂ less often: it only updates x̂ when x̃h (or

x̃f) exhibit enough improvement on fS(·) + h(·). Because the t-test (4.1) guarantees that

the summary statistics ΦS(x̂, x̃h, γ) used in update test inequality is close to ΦΩ(x̂, x̃h, γ),

37

therefore we are confident to use the test result based on S in lieu of the true but unknown

test result based on the whole population Ω.

Discussion of the predefined test sample S

The sample S is chosen uniformly random from the whole population Ω at the beginning.

We now argue that different choice of S (assume same size) has little influence on the

final solution of the SALIN algorithm. The sub-gradient approximations ŝf and ŝh are

updated regardless of the outcome of the update test. This means that f and h functions

are approximated more and more accurately over iterations towards their true forms, not

affected by S. And as long as test sample size |S| is same, fS(x) of different S gives

same interval estimate to f(x). Therefore, different choices of S do not affect final solution

directly, and they act similar in the update test.

However, larger size S is better than smaller size S, because fS(x) gives more accurate

estimate to f(x). This also agrees with our numerical experiments findings: for the same

problem, SALIN with larger size S will return solutions more concentrated around the true

optimal point.

Moreover, because S is not used for training, it will also act as validation set for the

SALIN algorithm, and thus reduce over-fitting and improve generalization.

In experiment 5.1.1, we will compare results of SALIN running on different choice of S

and different size of S. We also compare SALIN with deterministic methods solving the

reduced-size problem defined over those training samples that SALIN uses, and show that

SALIN stochastically beats those deterministic methods.

Discussion of the ŝf update schedule

The use of the ŝf averaging schedule ŝf ← (1− ω)ŝf + ωsf (ξ) is also critical. It combines

two types of updates on sf :

• Through optimality condition: ŝh = −ŝf −D(x̃h − x̂) and ŝf = −ŝh −D(x̃f − x̂).

• Through the reveal of a new data sample: sf (ξ) = f ′(x̃f , ξ).

38

The first type of update is essential to the bundle method and ALIN, where the f and h

are approximated alternatively over iterations. This type of update helps SALIN to handle

complex and non-smooth objective functions. The second type of update is essential to most

stochastic methods where they can make updates rapidly and as larger number of samples

are learned, the aggregate gradient direction will point to the true gradient direction.

The averaging schedule (4.1) combines the advantages of both worlds, to make SALIN

handle the stochastic setting and complex objective functions.

Moreover, we find a monotonically decreasing ω makes SALIN perform even better. At

the beginning, more weight is put on the sf (ξ) part, making SALIN benefit from randomness

by making greedy descent steps. As the iterations continue, more weight is shifted to existing

approximation ŝf part, thus ŝf gets better approximated to true sf and SALIN acts more

like a deterministic method. This also has an effect of reducing noise at tail.

4.4 Application to LASSO

We first consider the application of Stochastic Alternating Linearization (SALIN) to the

LASSO regression problem, one of the most widely used regularization problems. Because

the penalty function is separable, the coordinate descent method is very efficient at solving

it (Tseng, 2001), but here we want to demonstrate SALIN’s capability to handle the most

popular case.

The LASSO regression problem has the following form:

min
x
f(x) + h(x) =

1

2n

n∑
i=1

(bi −Wix)2 + λ‖x‖1

where W ∈ Rn×d is the design matrix, y is the response variable vector, λ > 0 is the LASSO

parameter, and x is the estimator we want to get.

For the proximal term 1
2‖x − x̂‖

2
D in the sub-problems, we found the diagonal matrix

D = diag(W TW)/n, i.e., dj = W T
j Wj/n, j = 1, ..., d, is essential for solving this problem.

This has the same flavor with the x-update step in the preconditioned Stochastic ADMM

method when the a diagonal D matrix is used. This is also related to the diagonal quadratic

approximation of the squared error loss function f(x) = 1
2n‖y−Wx‖2, which was employed

in (Ruszczyński, 1995) in similar objective function of augmented Lagrangian minimization.

39

Indeed, D is a very good diagonal approximation to the Hessian of f(·). Note that the

calculation of the diagonal matrix D does not require explicit form of W TW , only d times

of vector-vector multiplications are required.

Another way to build D is to use a sketched matrix, like we did with the preconditioned

Stochastic ADMM method. Here D = diag(W T
skWsk)/nrow(Wsk), where Wsk is a pre-

calculated sketched matrix of W and nrow(·) represents number of rows of a matrix. By

doing so we would save even more computational cost while maintain similar accuracy.

During our numerical studies, we found that for the LASSO regression problem, sampling

10% rows to form sketch matrix Wsk is enough for the algorithm to perform well, any higher

proportion has negligible marginal improvement.

The h-subproblem

At the beginning of the h-subproblem we first draw a random sample ξ ∈ [1, ..., n] to form

candidate sub-gradient sf = 1
|ξ|W

T
ξ (Wξx̃f − yξ). The updated approximation of ŝf is given

by:

ŝf = (1− ω)ŝf + ωsf

We can use fixed ω, or use monotonically decreasing ω. For LASSO example, making ω

proportional to the decaying step size η is a good choice.

After linearizing the squared loss function f using ŝf , the h-subproblem of LASSO

regression reduces to:

x̃h = arg min
x

{
ŝTf x+ λ‖x‖1 +

1

2η
‖x− x̂‖2D

}
(4.11)

It has closed form solution: write τj = x̂j − ŝfjη/dj , we can compute x̃h element-wise:

x̃hj = sgn(τj) max

(
0, |τj | −

λ

dj

)
, j = 1, ..., d (4.12)

The updated approximation ŝh is given by ŝh = ŝf − η−1D(x̃h − x̂); and we apply the

update step to decide whether to update x̂← xh.

40

The f-subproblem

The f -subproblem simplifies to an unconstrained quadratic programming problem:

x̃f = arg min
x

{
sThx+

1

2
‖yξ −Wξx‖22 +

1

2η
‖x− x̂‖2D

}
(4.13)

The solution can be obtained by solving the following symmetric linear system in δ = x− x̂:

(W T
ξ Wξ + η−1D)δ = W T

ξ (yξ −Wξx̂)− sh (4.14)

The system can be solved efficiently by preconditioned conjugate gradient method (Golub &

Loan, 1996), with the diagonal preconditioned D as discussed before. This is equivalent to

applying a conventional conjugate gradient method to a system with a symmetric positive

definite matrix H̄ = D−
1
2HD−

1
2 , whose condition index is bounded by

√
d+ 1. See Lemma

3 of (Lin et al., 2014) for detailed proofs.

There is another way to solve (4.13) approximately: to further linearize 1
2‖yξ −Wξx‖22

at x̂ and then apply a gradient step:

x̃f = x̂− ηD−1
(
sh +W T

ξ (Wξx̂− yξ)
)

(4.15)

where D−1 is a diagonal matrix and can be cached before iterations.

4.5 Application to SVM with generalized structural regularization

Stochastic Alternating Linearization is more powerful in solving problems with complex

regularization terms, for which methods such as coordinate descent or proximal splitting

methods no longer work, since they don’t produce a closed form solution like in the simple

LASSO case. One example is the generalized LASSO problem (Tibshirani & Taylor, 2011):

min
x

1

2n
‖b−Wx‖2 + ‖Gx‖1

where the matrix G encodes the structural prior. When G = I, it recovers LASSO problem

of the previous section; when G is the following d× (d− 1) matrix:

G =

1 −1 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 −1

41

it recovers the fused LASSO problem.

A concrete example of generalized LASSO is the graph-guided Fused LASSO (GFLasso)

framework (Kim, Sohn, & Xing, 2009), a graphical extension of Fused LASSO. In graph-

guided Fused LASSO, the structural matrix G encodes the mutual relation of variables

which can be expressed by a graph G = {V, E}. In the graph G, V = {v1, ...vd} is the set

of variables and E = {e1, ...e|E|} is the set of edges, each edge ek = {i, j} with weight wij ,

where i, j ∈ V. Thus Gki = wij and Gkj = −wij for any edge ek = {i, j} ∈ G. The

graph-guided Fused LASSO has the following form:

min
x

1

2n

n∑
i=1

(bi −W T
i x)2 + ν‖x‖1 + λ

∑
{i,j}∈E

wij |xi − xj |

In order to perform classification, we replace the squared loss with a non-smooth hinge

loss: fi(x) = max{0, 1− biW T
i x} = (1− biW T

i x)+, and replace ν‖x‖1 with ν
2‖x‖

2
2 to enforce

large margin of SVM classifier. After the fusion penalty is added into the objective, the

Graph-Guided SVM (known as GGSVM) (Ouyang et al., 2013) has the following objective

function:

min
x

1

n

n∑
i=1

[1− biW T
i x]+ +

ν

2
‖x‖22 + λ‖Gx‖1

SALIN is able to handle any general norm ‖ · ‖♦, not only the `1 norm here. We express

SALIN for solving SVM with a more general regularization term:

min
x

1

n

n∑
i=1

[1− biW T
i x]+ +

ν

2
‖x‖22 + λ‖Gx‖♦ (4.16)

We denote f -function by 1
n

∑n
i=1(1−biW T

i x)+ + ν
2‖x‖

2
2, and h-function by λ‖Gx‖♦; and

consider their corresponding sub-problems.

The h-subproblem

We draw a random sample ξ from [1, ..., n] and calculate the candidate sub-gradient sf (ξ):

sf (ξ) ∈ ∂x[1− bξW T
ξ x̃f]+ + νx̃f

and the approximation ŝf is updated by:

ŝf ← (1− ω)ŝf + ωsf (ξ)

42

The h-subproblem has the following form:

min
x,z

ŝTf x+ λ‖z‖♦ +
1

2η
‖x− x̂‖2D, s.t. Gx = z (4.17)

Note that for hinge loss function, D is identity matrix; but it can be generalized to any

forms for different problems.

The Lagrangian can be formulated as:

L(x, z, µ) = ŝTf x+ λ‖z‖♦ + µT (Gx− z) +
1

2η
‖x− x̂‖2D

where µ is the Lagrangian dual variable. The dual norm of ‖ · ‖♦ is defined as:

‖µ‖∗ = max
‖z‖♦≤1

µT z, ‖z‖♦ = max
‖µ‖∗≤1

zTµ (4.18)

Notice that infz L(x, z, µ) is finite with respect to z if an only if λ‖z‖♦ − µT z ≥ 0, that is

‖µ‖∗ ≤ λ. And under such condition z-terms actually vanish, so we get the reduced form

of the Lagrangian:

L̂(x, µ) = sTf x+ µTGx+
1

2η
‖x− x̂‖2D (4.19)

The dual function is given by minx L̂(x, µ), and its solution is:

x̃h = x̂− ηD−1(ŝf +GTµ) (4.20)

Substituting it back to (4.19) and we can get the dual problem:

max
µ
−1

2
µTGD−1GTµ+ µTG(η−1x̂−D−1sf) s.t. ‖µ‖∗ ≤ λ (4.21)

This is a quadratic programming problem with norm constraints. We discuss the `1-norm

constraint here, which is the case of Graph-Guided SVM.

The dual norm to ‖ · ‖1 is the infinity norm:

‖µ‖∗ = ‖µ‖1 = max
1≤j≤d

|µj |

which makes (4.21) a box-constrained quadratic programming problem. This can be solved

very efficiently by coordinate descent algorithm. The returned solution µ̃ would be substi-

tuted into (4.20) to obtained primal solution x̃h.

43

The f-subproblem

x̃f = arg min
x

{
ŝThx+ [1− bξW T

ξ x̂]+ +
1

2η
‖x− x̂‖2D

}
(4.22)

There is no closed-form solution due to the non-separable nature of the hinge loss, thus

(4.22) is solved approximately by taking a sub-gradient step:

x̃f = x̂− ηD−1
(
ŝh + ∂x[1− bξW T

ξ x̂]+ + νx̂
)

(4.23)

44

Chapter 5

Numerical Experiments

In this section, we present results of experiments on different problems, with both simulated

and real-world data. We mainly focus on problems with non-differentiable penalty functions.

All the studies are performed in an Intel dual core 2.7GHZ, 16GB RAM laptop using

MATLAB.

5.1 Fused LASSO

The first example is the Fused LASSO least square regression problem:

min
x

1

2n
‖y −Wx‖2 + λ‖Gx‖1, λ > 0 (5.1)

where W ∈ Rn×d is an ill-conditioned design matrix, and G is the fusion matrix:

G =

1 −1 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 −1

The fusion penalty term penalizes the difference of neighboring coefficients of the estimator

x.

The data are generated from a linear regression model: b = Wx + ε with pre-specified

coefficient x. To generate the ill-conditioned matrix W , we first generate a diagonal matrix

Σ where we can easily control its condition number by setting the diagonal entries. We then

calculate W using W = UΣV T , where U and V are orthogonal matrices. For the predefined

coefficient x, 10% of the entries are 1, 20% are 2, and the remaining are zero. For example,

45

with d = 100, we have

xj =

1, for j = 11, 12, ..., 20

2, for j = 21, ..., 40

0, otherwise

The noise ε is drawn from the normal distribution with zero mean and variance equal to

0.01.

5.1.1 SALIN: comparison study of different choices of S

In this section we focus on the Stochastic Alternating Linearization (SALIN) method. We

first evaluate the impact of different choices of the predefined test sample S on the final

solution of SALIN, and then evaluate the impact of different size of S.

For this study the data setting is as follows: W is n = 218 by d = 28 matrix, with

condition number κ(W) = 26.5, moderately ill-conditioned; and λ = 10−3. SALIN is

implemented in mini-batch mode with batch-size equal to 32; and the stopping criterion

is: ‖x̃h − x̂‖2 ≤ 10−3; γ for both update tests are 0.2. Note that the true optimal value is

8.98× 10−3.

Different random samples of S

We fix the test sample size |S| to be 64, and independently sample S for each repetition.

We run SALIN for 500 repetitions, and at each repetition we output the objective value

fΩ(x̂) + h(x̂) and the objective value evaluated at sample S : fS(x̂) + h(x̂). Below is the

plot of the 500 value pairs, sorted in ascending order of fS(x̂) + h(x̂).

46

0 50 100 150 200 250 300 350 400 450 500
repetition number

6

7

8

9

10

11

12

ob
je

ct
iv

e
va

lu
e

10 -3

Figure 5.1: Plot of value pairs: fΩ(x̂) +h(x̂) & fS(x̂) +h(x̂) over 500 repetitions, sorted by

fS(x̂) + h(x̂). S is independently drawn for each repetition, with fixed size 64.

We can see that although the values of fS(x̂) + h(x̂) are from a relatively broad range

(0.006 ∼ 0.013) because of randomness, the global objective values fΩ(x̂)+h(x̂) are concen-

trated on a much smaller range, and are unrelated to fS(x̂)+h(x̂). The above experimental

finding supports the theoretical claim we made in the last chapter: the choice of S has little

influence on the quality of the final solution of SALIN.

Different size of S

Next, we study the influence of the test sample size |S| on the final solution and on the

running time. We still use the previous experiment setting, and run 500 repetitions for each

of test sample size from 22 to 28. Below is the statistical summary.

47

|S| Mean ± Standard Deviation 95% quantile CPU time (s)

4 0.0093± 5.4× 10−4 0.0107 0.4989

8 0.0090± 1.5× 10−4 0.0093 0.2255

16 0.0090± 6.1× 10−6 0.0091 0.1998

32 0.0090± 5.7× 10−6 0.0090 0.1579

64 0.0090± 5.8× 10−6 0.0090 0.1546

128 0.0090± 5.7× 10−6 0.0090 0.1841

256 0.0090± 6.1× 10−6 0.0090 0.1879

Table 5.1: Summary statistics of objective value, by using different test sample size.

From Table 5.1, we can see that usually large sample size |S| leads to better solution;

but once |S| exceeds a certain level, the marginal improvement on the objective is negligible,

but the increase in running time is significant. For this study, a moderate sample size |S|

from 32 to 64 seems to be the best choice.

Last, we show that no matter what size S has, SALIN stochastically beats the solution

of reduced problem, whose loss function is defined on the samples that SALIN observes.

Note that for this example, SALIN learns 8122(≈ 3.1%) samples on average before it stops.

To show this, at each repetition, we implement SALIN and keep a record of all the data

samples that it observes. We then solve the problem defined on these data samples, using

deterministic pre-conditioned ADMM. Based on the analysis from the above table, we just

have to show that SALIN with |S| = 4 beats the solution on the reduced-problem.

48

Figure 5.2: Histogram of f(x̂)+h(x̂) by SALIN and deterministic ADMM on solving reduced

problem. 500 repetitions.

We can see that the objective value of SALIN is stochastically smaller than the objective

value of the reduced problem. Combining the results with Table 5.1, we can conclude that

no matter what the size |S| is, SALIN is better than solving the reduced-problem.

5.1.2 Comparison of stochastic methods

In this section, we evaluate the performance of three stochastic methods for solving the

ill-conditioned Fused LASSO regression problem. The three methods are: stochastic al-

ternating linearization (SALIN), pre-conditioned weighted Stochastic Alternating Direction

Method of Multipliers (pwSADMM), and Stochastic ADMM.

To make fair comparison, we make the following specifications. All three methods

are implemented in mini-batch training mode with batch-size 32. Stopping criterion for

SALIN is ‖x̂ − x̃h‖ ≤ 10−3, and ‖xk+1 − xk‖ ≤ 10−3 for pwSADMM and SADMM.

We use exponential decaying step-size for each method, and tune the step-size separately

such that best performance is achieved for each method. For SALIN, we set test sample

size |S| = 32, γ = 0.2, nζ = 32, α = 0.05 for two update test; D matrix is constructed

from sketched Wsk, where nrow(Wsk) = 0.01×nrow(W). For pwSADMM, a diagonal pre-

conditioner is used (hence diagonal H in the proximal term
‖x−xk‖2H

2ηk+1
at x-step) for low

computational cost; and the pre-conditioner is constructed from sketched W with 1% rows,

49

same as SALIN.

The following table shows the performance of the three methods in different parameter

settings. Each method is repeated 500 times on each parameter setting.

Parameters Methods Iteration Time (s)

n = 218, d = 28 SALIN 302± 12 0.132± 0.016

κ(W) = 3.55 pwSADMM 587± 13 0.136± 0.010

λ = 10−3 SADMM 652± 20 0.142± 0.013

n = 218, d = 28 SALIN 344± 13 0.155± 0.028

κ(W) = 26.5 pwSADMM 838± 14 0.181± 0.013

λ = 10−3 SADMM 1420± 27 0.290± 0.016

n = 218, d = 28 SALIN 347± 13 0.166± 0.042

κ(W) = 256 pwSADMM 957± 17 0.205± 0.052

λ = 10−3 SADMM 1696± 31 0.512± 0.283

n = 218, d = 29 SALIN 365± 13 0.460± 0.065

κ(W) = 26.5 pwSADMM 908± 12 0.415± 0.100

λ = 10−3 SADMM 1606± 22 0.685± 0.360

n = 218, d = 28 SALIN 332± 13 0.148± 0.025

κ(W) = 26.5 pwSADMM 813± 12 0.175± 0.013

λ = 10−4 SADMM 1258± 23 0.262± 0.015

Table 5.2: Performance comparison of different stochastic methods.

Table 5.2 suggests that both SALIN and pwSADMM are very efficient at solving ill-

conditioned Fused LASSO regression problems; while for standard Stochastic ADMM, the

running time increases rapidly with the increase of condition number. Moreover, SALIN

requires much fewer iterations to converge than the other two ADMM methods in almost all

the parameter settings. This is because of the sub-gradient update schedule, and the main

philosophy of SALIN: SALIN uses gradient information not only to update solution, but

also to approximate functions. If we are able to build a subroutine that calculates function

value faster, SALIN will also outperform pwSADMM in terms of running time.

50

Next we show how these three methods approach the optimal point, on the second

parameter setting above: n = 218, d = 28, κ(W) = 26.5, λ = 10−3. We plot the relative

error of the objective value, i.e., (F(x̂)−F(x∗))/F(x∗) against iteration and running time,

where F(·) ≡ f(·) + h(·). We also plot the relative distance to the optimal point, i.e.,

‖x− x∗‖2/‖x∗‖2 against iteration number and running time.

0 500 1000 1500
0.005

0.01

0.015

0.02

0.025

0.03

0.035

SALIN
SADMM
pwSADMM

Figure 5.3: Relative error of objective value against iteration number.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

SALIN
SADMM
pwSADMM

Figure 5.4: Relative error of objective value against CPU time (in ms).

Figure 5.3 shows that SALIN requires least number of iterations to converge, followed

by pwSADMM. Standard Stochastic ADMM requires significantly more than the other

two. In figure 5.4, we can see that at the beginning, SALIN and pwSADMM require similar

51

amounts of time to compute the matrices D and H from sketched data matrix W . Once they

complete this setting-up phase, they are able to catch up with SADMM quickly and finally

beat it. Moreover,SALIN converges very smoothly, whereas the convergence of pwSADMM

and ADMM is a little bumpy.

0 50 100 150 200 250
time (in ms)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

re
la

tiv
e

er
ro

r o
f x

SALIN
SADMM
pwSADMM

Figure 5.5: Relative distance of x against iteration number.

0 500 1000 1500
iteration

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

re
la

tiv
e

er
ro

r o
f x

SALIN
SADMM
pwSADMM

Figure 5.6: Relative distance of x against CPU time (in ms).

Figure 5.6 and 5.5 of ‖x− x∗‖2/‖x∗‖2 show similar patterns with 5.3 and 5.4.

52

5.2 Signal Smoothing and Detection

In this example, we evaluate SALIN’s performance on a signal smoothing and detection

task: comparative genomic hybridization (CGH) analysis. CGH analysis is a technique in

bio-informatics for measuring number of DNA copies of gene cells along genome. The CGH

signals measure the log difference between DNA copy number on tumor cells and that of

reference cells. A CGH signal with zero value corresponds to normal copy of the gene cell,

while a non-zero CGH signal, also known as hot spot, is likely to be an irregular gene copy

of tumor cell.

A fused LASSO model was proposed by (Tibshirani & Wang, 2008) to detect this copy

number variation. This is a one-dimensional signal approximation problem with the design

matrix X being the identity matrix, which has the following form:

min
x∈Rn

1

2n
‖x− b‖2 + λ1‖x‖1 + λ2

n∑
j=2

‖xj − xj−1‖1 (5.2)

The first squared loss term controls the distance between the observed signals and the

approximated ones; the second LASSO penalty term imposes sparsity to the approximator;

and the third fused LASSO penalty imposes a piece-wise linear structure. We can combine

the last two penalty terms into one generalized LASSO penalty term ‖Gx‖1, with G being:

G =

1 −1 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 −1

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 1

The resulting generalized LASSO problem can be easily handled by SALIN and stochastic

ADMM. Because the design matrix is identity matrix which is perfectly conditioned, thus

pwSADMM is exactly the same as Stochastic ADMM.

The dataset is available in the Matlab build-in Coriell cell dataset. In our experiment,

we set λ1 = 0.01, λ2 = 0.05 for the model. Both SALIN and SADMM run in mini-batch

53

mode, with batch-size 32. Below is a plot that shows the solution quality returned by

SALIN (because SADMM returns exactly same solution with SALIN, so we just output the

solution of SALIN).

0 500 1000 1500 2000 2500
genome order

-1.5

-1

-0.5

0

0.5

1

1.5

lo
g2

ra
tio

observed log ratio
Fused LASSO �tted

Figure 5.7: Blue dots are observed signals; red line is Fused LASSO approximation by

SALIN

Figure 5.7 shows that both SALIN and SADMM return a smoothed piece-wise linear

approximation to the original data, which is the desired approximator of this Fused LASSO

model. The two methods shrink non-significant variables to zero while successfully detect

the those regions with significant non-zero variables, which corresponds suspected abnormal

cell in the CGH study.

54

5.3 Graph-Guided SVM

The Graph-Guided SVM (Ouyang et al., 2013) is a graphical extension to support vector

machine (SVM) used in classification. As described in (4.16), the objective is to minimize:

min
x

1

n

n∑
i=1

[1− biW T
i x]+ +

ν

2
‖x‖22 + λ‖y‖1

s.t. Gx− y = 0

(5.3)

where bi is the label for instance vector Wi ∈ R1×d, and [z]+ = max(0, z). The regulariza-

tion matrix G is constructed based on graph G = {V, E}, which represents the connection

of variables. For this example, we construct graph G = {V, E} using sparse inverse covari-

ance estimation (Banerjee, Ghaoui, & d’Aspremont, 2008) (also known as graphical lasso)

(Friedman & Tibshirani, 2007; Boyd et al., 2010) and determine the sparsity pattern of the

inverse covariance matrix Σ−1. We threshold components of Σ−1
ij to 0 and 1, and construct

the G matrix accordingly, i.e., we append a row to G with ith entry being 1 and jth entry

being −1, when Σ−1
ij = 1. In the 20-news example, the relation of the 100 different words

can be visualized as follows (Ouyang et al., 2013):

Figure 5.8: Mutual relations of the 100 words, from 20news dataset.

55

To evaluate the performance, we test SALIN and SADMM on two real-world datasets

which are publicly available. The first dataset is ’20newsgroup’, downloaded from www.cs

.nyu.edu/~roweis/data.html; the second is ’a9a’, downloaded from LIBSVM website.

Each original dataset is split into 80% for training and 20% for testing. The summary of

datasets is given in Table 5.3:

Dataset class Training examples Testing examples Features

news20 4 12994 3248 100

a9a 2 39074 9768 123

Table 5.3: Summary of datasets.

For ”new20groups” dataset, we use the ”one-vs-rest” scheme for multi-class classifica-

tion. We set the parameters in the GGSVM model to be: ν = λ = 1/n. Each method is

implemented in mini-batch mode with batch-size 32; SALIN has test sample size |S| = 128.

The step size in each method is exponential decaying, and be tuned to achieve maximum

performance correspondingly.

All the experiments were repeated 100 times, and at each time, each method is run for 2

epochs (when algorithm processes 2n data samples). The results are reported by averaging

over 100 repetitions. We evaluate the two methods by measuring objective values, out-

sample test error rate, and running time. The comparison results are given in Table 5.4.

Task Methods Objective value Test error rate Time (s)

news20 SALIN 0.280± 10−7 0.1510± 0.010 0.928

SADMM 0.278± 0.0021 0.1525± 0.020 0.281

a9a SALIN 0.359± 10−7 0.1524± 0.0012 0.272

SADMM 0.358± 0.0034 0.1533± 0.0027 0.169

Table 5.4: Performance comparison of SALIN and SADMM.

The summary shows that both methods are able to acquire a good solution in very

short amount of time. SALIN gives slightly lower test error and smaller variance than

SADMM. Moreover, SALIN returns almost same objective value over different repetitions,

www.cs.nyu.edu/~roweis/data.html
www.cs.nyu.edu/~roweis/data.html
Table 5.4

56

which means that SALIN is not affected by randomness and very robust. SALIN requires

more computing time due to the fact that it has to compute multiple objective function

values at each iteration.

Next we show how each method approaches convergence. The demonstrated example

is from ”a9a” dataset. We record the objective value every 16 iterations (at each iteration

the algorithm observes 32 samples). The x-axis is iteration number divided by 16, and the

y-axis records the test error on the testing set, averaged over 100 repetitions.

0 20 40 60 80 100 120 140
iteration/16

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

te
st

 e
rr

or
 ra

te

SALIN
SADMM

Figure 5.9: Convergence behavior of the two methods. Dataset: a9a.

Figure 5.9 shows that the tail convergence of SALIN is very smooth and almost mono-

tonic, compared to that of SADMM. This favorable property is due to the special update

test and the sub-gradient update schedule.

57

Chapter 6

Conclusion and Future Plans

6.1 Conclusion

In this dissertation, we propose two stochastic alternating optimization methods for solving

structured regularization problems, which have been widely used in machine learning and

data mining. The first algorithm is called Stochastic Alternating Linearization (SALIN),

which is an stochastic extension of the Alternating Linearization (ALIN) in solving convex

optimization problems with complex non-smooth regularization term. SALIN linearizes the

loss function and penalty function alternatively at each iteration, based on the stochastic

approximation of sub-gradients. By applying a special update test at each iteration, and

a carefully designed sub-gradients update scheme, the algorithm achieves fast and stable

convergence. The update test just relies on a fixed pre-defined sample set, and we show that

the choice of the test set has little influence on the overall performance of the algorithm.

Therefore SALIN is a robust method.

The other algorithm is called preconditioned stochastic Alternating Direction Method of

Multipliers, which is specially designed to handle structured regularized regression problems

such as Fused LASSO, but with the design matrix being ill-conditioned. We prove its

O(1/
√
t) convergence rate for general convex functions and O(log t/t) for strongly convex

functions, and show that the constant depends only on the lower dimension of the data

matrix.

We evaluate our proposed methods in extensive numerical experiments of structured

regularization problems. The experiments include Fused LASSO regression, signal smooth-

ing, and graph-guided SVM, with both synthetic and real-world datasets. The numerical

results demonstrate the efficacy and accuracy of our methods. We especially demonstrate

that SALIN is a robust method that gives consistent results with different choice of test

58

sample; and it has stable tail convergence.

6.2 Future Plans

Our next step is to develop theoretical results and proofs for SALIN. The numerical exper-

iments have demonstrated that SALIN has competitive and sometimes better convergence

behavior than other stochastic methods, e.g., stochastic ADMM. Thus we expect SALIN

to have good theoretical guarantee.

It is also interesting to develop an adaptive version of SALIN: in the proximal term

‖x−x̂‖2D
2η of the h- and f -subproblem, the matrix D could be time-varying instead of fixed

over iterations. Similar ideas have been applied to stochastic gradient descent and stochastic

ADMM already, and demonstrated satisfactory results. We expect this variation will also

benefit SALIN in certain problem types.

We will also consider extending SALIN to online learning setting, where new data sam-

ples come in a sequential fashion. In the online setting, the design of update test is of

critical importance. It should consider both existing and incoming samples, and maintain

low computational cost as well.

Moreover, we will apply SALIN to more problems that are currently of interest, such as

high-dimensional problems, or problems with highly complicated regularization terms.

59

References

Banerjee, O., Ghaoui, L., & d’Aspremont. (2008). Model selection through sparse maximum

likelihood estimation for multivariate gaussian or binary data. Journal of Machine

Learning Research, 9 , 485-516.

Bauschke, H., & Combettes, P. (2011). Convex analysis and monotone operator theory in

hilbert spaces. New York: Springer.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Founda-

tions and Trends in Machine Learning , 1-122.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization.

Clarkson, K. L. (2005). Subgradient and sampling algorithms for `1 regression. In Proceed-

ings of the sixteenth annual acm-siam symposium on discrete algorithms (p. 257-266).

Clarkson, K. L., & Woodruff, D. P. (2013). Low rank approximation and regression in

input sparsity time. In Symposium on theory of computing (stoc) (p. 81-90).

Combettes, P. L. (2009). Iterative construction of the resolvent of a sum of maximal

monotone operators. J. Convex Anal., 16 (3-4), 727-748.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., & Mahoney, M. W. (2009). Sampling

algorithms and coresets for `p regression. SIAM J. on Computing , 38 , 2060-2078.

Deng, W., & Yin, W. (2016). On the global and linear convergence of the generalized

alternating direction method of multipliers. Journal of Scientific Computing , 66 ,

889-916.

Deshpande, A., & Rademacher, L. (2010, Oct). Efficient volume sampling for row/column

subset selection. In 2010 ieee 51st annual symposium on foundations of computer

science (p. 329-338).

Douglas, J., & Rachford, H. H. (1956). On the numerical solution of heat conduction

problems in two and three space variables. Trans. Amer. Math. Soc., 82 (2), 421-439.

60

Drineas, P., Mahoney, M. W., Muthukrishnan, S., & Sarlos, T. (2011). Faster least squares

approximation. Numer. Math., 117 , 219-249.

Du, Y., Lin, X., & Ruszczyński, A. (2017). Selective linearization method for multiblock

convex optimization. SIAM Journal on Optimization, 27 (2), 1102-1117.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12 , 2121-2159.

Eckstein, J., & Bertsekas, D. P. (1992). On the douglas-rachford splitting method and the

proximal point algorithm for maximal monotone operators. Mathematical Program-

ming , 55 (3), 293-318.

Friedman, J., Hastie, T., Hoefling, H., & Tibshirani, R. (2007). Pathwise coordinate

optimization. Annals of Applied Statistics, 1 (2), 302-332.

Friedman, J., & Tibshirani, R. (2007). Sparse inverse covariance estimation with the

graphical lasso. Biostatistics, 432-441.

Gabay, D., & Mercier, B. (1976). A dual algorithm for the solution of nonlinear varia-

tional problems via finite element approximation. Computers & Mathematics with

Applications, 2 (1), 17-40.

Glowinski, R., & Tallec, P. L. (1989). Augmented lagrangian and operator-splitting methods

in nonlinear mechanics. SIAM.

Goldfarb, D., Ma, S., & Scheinberg, K. (2013). Fast alternating linearization methods

for minimizing the sum of two convex functions. Mathematical Programming , 141 ,

349-382.

Goldstein, T., & Osher, S. (2009). The split bregman method for `1-regularized problems.

SIAM Journal on Imaging Sciences, 2 (2), 323-343.

Golub, G. H., & Loan, C. F. V. (1996). Matrix computations, johns hopkins studies in the

mathematical sciences. Baltimore, MD: Johns Hopkins University Press.

He, B., & Yuan, X. (2012). On the o(1/n) convergence rate of the douglas-rachford alter-

nating direction method. SIAM Journal on Numerical Analysis, 50 , 700-709.

Hong, M., & Luo, Z. (2017). On the linear convergence of the alternating direction method

of multipliers. Mathematical Programming , 162 (1-2), 165-199.

Kim, S., Sohn, K., & Xing, E. (2009). A multivariate regression approach to association

61

analysis of a quantitative trait network. Bioinformatics, 25 , 204-212.

Kingma, D., & Ba, J. L. (2014). Adam: a method for stochastic optimization. International

Conference on Learning Representations, 1-13.

Kiwiel, K. (1985). Methods of descent for non-differentiable optimization. Springer.

Kiwiel, K., Rosa, C., & Ruszczyński, A. (1999). Proximal decomposition via alternating

linearization. SIAM Journal on Optimization, 9 (3), 668-689.

Lin, X., Minh, P., & Ruszczyński, A. (2014). Alternating linearization for structured

regularization problems. Journal of Machine Learning Research, 15 , 3447-3481.

Lions, P. L., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear

operators. SIAM J. Numer. Anal., 16 (6), 964-979.

Meng, X., & Mahoney, M. (2013). Low-distortion subspace embeddings in input-sparsity

time and applications to robust linear regression. Symposium on the Theory of Com-

puting (STOC), 91-100.

Ouyang, H., He, N., Tran, L., & Gray, A. (2013). Stochastic alternating direction method

of multipliers. International Conference on Machine Learning , 80-88.

Peaceman, D. W., & Rachford, H. H. (1955). The numerical solution of parabolic and

elliptic differential equations. J. Soc. Indust. Appl. Math., 3 , 28-41.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. The

Official Journal of the International Neural Network Society , 12 , 145-151.

Ruszczyński, A. (1995). On convergence of an augmented lagrangian decomposition method

for sparse convex optimization. Math. Oper. Res., 20 , 634-656.

Ruszczyński, A. (2006). Nonlinear optimization. Princeton University Press.

Suzuki, T. (2013). Dual averaging and proximal gradient descent for online alternating

direction multiplier method. International Conference on Machine Learning , 392-

400.

Tibshirani, R., & Taylor, J. (2011). The solution path of the generalized lasso. Annual of

Statistics, 39 , 1335-1371.

Tibshirani, R., & Wang, P. (2008). Spatial smoothing and hot spot detection for cgh data

using the fused lasso. Biostatistics, 9 (1), 18-29.

Tseng, P. (2001). Convergence of block coordinate descent method for nondifferentiable

62

minimization. Journal of Optimization Theory and Applications, 109 , 474-494.

Wang, H., & Banerjee, A. (2012). Online alternating direction method. International

Conference on Machine Learning , 1119-1126.

Woodruff, D., & Zhang, Q. (2013). Subspace embeddings and `p-regression using exponen-

tial random variables. JMLR: Workshop and Conference Proceedings, 30 , 1-22.

Xu, F., Huang, H., & Wen, Z. (2015). High dimensional covariance matrix estimation

using multi-factor models from incomplete information. Science China Mathematics,

4 , 829-844.

Xu, Y., Yin, W., Wen, Z., & Zhang, Y. (2011). An alternating direction algorithm for

matrix completion with nonnegative factors. Frontiers of Mathematics in China, 7 ,

365-384.

Yang, J., Chow, Y., Ré, C., & Mahoney, M. (2016). Weighted sgd for `p regression with

randomized preconditioning. In Proceedings of the twenty-seventh annual acm-siam

symposium on discrete algorithms (p. 558-569).

Yang, J., Meng, X., & Mahoney, M. W. (2014). Quantile regression for large-scale applica-

tions. SIAM J. Scientific Computing , 36 (5), S78-S110.

Yang, J., Meng, X., & Mahoney, M. W. (2016). Implementing randomized matrix algorithms

in parallel and distributed environments. In Proceedings of the ieee (Vol. 104, p. 58-

92).

Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for `1-problems in compres-

sive sensing. SIAM J. on Scientific Computing , 33 , 250-278.

	Abstract
	Acknowledgments
	Dedication
	List of Tables
	List of Figures
	Introduction and Preliminaries
	Introduction
	Problem Formulation
	Mathematical Notations
	Dissertation Outline

	Review of related optimization methods
	Alternating Direction Method of Multipliers (ADMM)
	Deterministic ADMM
	Stochastic ADMM

	Operator Splitting Method
	Alternating Linearization Method
	Selected Optimization Methods
	Coordinate Descent Method
	Conjugate Gradient Method

	Stochastic ADMM with randomized preconditioning and weighted sampling
	Overview
	Preliminaries
	Outline of pwSADMM
	Remarks on the algorithm
	Theoretical Results
	Proofs
	Proof for Proposition (3.1)
	Proof of Theorem (3.1) (1/t rate)
	Proof of Theorem (3.2) (logt/t rate)

	Stochastic Alternating Linearization (SALIN)
	Overview
	Outline of the SALIN Algorithm
	Remarks on the algorithm
	Application to LASSO
	Application to SVM with generalized structural regularization

	Numerical Experiments
	Fused LASSO
	SALIN: comparison study of different choices of S
	Comparison of stochastic methods

	Signal Smoothing and Detection
	Graph-Guided SVM

	Conclusion and Future Plans
	Conclusion
	Future Plans

	References

