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ABSTRACT OF THE DISSERTATION

MOBILE INTELLIGENCE ANALYTICS FOR URBAN SMART LIVING

By ZIJUN YAO

Dissertation Director: Dr. Hui Xiong

Today, as the sensing technology and mobile computing have been popularized, a

variety of mobile data related to human mobility and urban geography have been

accumulated in a large amount. This type of data comprehensively records the fine-

grain events of our cities through “4W” aspects of information: What happened?

Where it happened? When it happened? And who did it? By proper analysis,

this data can be a rich source of mobile intelligence to support various location-

based and real-time decision-making solutions for a broad range of urban smart living

applications. Indeed, mobile intelligence analytics plays an important role in urban

life because city residents often make choices under more uncertainty and can benefit

more from personalized advice based on their preferences and contexts. Therefore, it

is especially meaningful to develop data-driven methodologies which can effectively

and efficiently guide users to make optimal decisions to achieve the goal of urban

smart living.

In this dissertation, we aim to address the unique challenges of urban smart living

in mobile and pervasive business environments from both theoretical and practical

perspectives. Specifically, we first develop a safety-aware house ranking system by

considering the impact of neighborhood criminal offenses on house values. The pro-

posed framework extracts features regarding community safety conditions of different
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houses, and utilizes multiply safety features to rank houses by unit value. To enhance

safety-aware ranking, we introduce major characteristics of house profile to control

the similarity between houses during pair-wise ranker learning. The experimental

results show that the proposed method substantially outperforms the baseline learn-

to-rank methods for safety-aware house ranking. Moreover, in the second study, we

introduce an effective point-of-interest (POI) recommender system to consider the

temporal compatibility between POI popularity and user regularity. We propose to

use the massive human mobility data to profile the temporal pattern of POI popular-

ity, and infer the regularity pattern of users based on the POI they visited through

a modeling intuition “you are where you go”. We demonstrate the effectiveness of

the proposed model through the extensive experiments on the real-world datasets of

New York City. Finally, we introduce a zone embedding framework to identify the

urban functions of city zones by studying massive origin-destination transportation

data. We focus on exploiting the idea of word embedding in natural language pro-

cessing domain to learn zone functions in urban computing domain by developing a

novel analog from word co-occurrence to zone co-occurrence using human mobility

patterns. To incorporate the contexts of human mobility in our framework, we de-

velop the directed and temporal co-occurrence for considering mobility direction and

time, and the different importance of co-occurrence for considering travel distance

and zone attractiveness. The evaluation validates the proposed method and shows

that the learned embeddings can comprehensively capture the urban functions of city

zones. From the three studies, we conclude that mobile intelligence analytics can be

powerful at disclosing patterns, relations and hidden knowledge, and it is promising
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to explore the power of mobile intelligence to provide location-based insights, and

ultimately, to improve business performance.
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CHAPTER 1

INTRODUCTION

Recent years have witnessed an unprecedented advancement in the technologies of

mobile computing and positioning. Mobile devices equipped with GPS, WiFi and

LTE have enable us to collect a massive amount of location traces from multiple

sources, such as public safety, social network and city transportation. These mobile

data are fine-grained on location, time and description, and comprehensively record

the major human activities in urban areas. Given this rich information resource,

we have a tremendous opportunity to understand the hidden knowledge behind the

data. As a result, we can deliver valuable intelligence for supporting location-based

and real-time decision-making in various smart living scenarios.

Urban smart living refers to the tasks for helping users make optimal decisions in

various urban scenarios. For example, considering the community safety conditions,

a potential home buyer needs to find out which house has a higher unit value. For

another example, based on the personal preference and context, a potential customer

needs to decide which restaurant can meet his expectation to the most degree. Since

this type of smart living applications can effectively and efficiently provide personal-

ized, location-based, and real-time services, mobile intelligence analytics is expecting

to be hugely beneficial for urban life. Alone this line, it is important to investigate

the uniqueness that distinguishes mobile intelligence analytics from traditional intel-



- 2 -

ligence analytics. In this dissertation, we aim to exploit the patterns and knowledge

of location data to contributes urban smart living in mobile and pervasive business

environments from both theoretical and practical perspectives.

1.1 Research Motivation

In the first study, we develop a safety-aware house ranking system. We aim to access

the local safety conditions with careful designed features and build the relationship

between house value and neighborhood safety. Although there are a few studies

which have investigated the impacts of crime on house appraisals (Gibbons, 2004;

Pope, 2008; Linden & Rockoff, 2008), they suffer from two limitations: 1) naive

crime statistics (e.g., counting crime cases) which fails to develop sophisticated crime

evaluation features to get in-depth understanding of community safety; 2) traditional

appraisal models (e.g., Hedonic regression) which include multiply influencing as-

pects in house appraisal function, mask the impacts of community safety. Unlike

prior studies, we want to comprehensively learn the local criminal offense data with

consideration such as repeatability and temporality. Moreover, we want to solely

focus on the influence of community safety on house appraisal. To tackle these two

research limitations, it is critical to generate effective features from crime data, and

systematically modeling the impacts of community safety without effects of other

aspects, such as neighborhood income level and rating of nearby schools.

In the second study, we develop a mobile recommender system to consider tempo-

ral matching between user regularity and point-of-interest (POI) popularity. Unlike

traditional interest-oriented merchandise recommendation (e.g., books, films, etc.),
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POI recommendation is more complex and challenging due to the contextual charac-

teristics of location-based service. For example, besides personal interest, the recom-

mended POI should also fit the user on time aspect. Recent studies have considered

temporal influences on POI recommendation, such as time-aware POI recommenda-

tion which recommends different POIs to users at different time. For example, (Gao,

Tang, Hu, & Liu, 2013a) applies user-item matrix factorization for each time slot and

assumes every user has similar preferences in consecutive time slots for regulariza-

tion. (Q. Yuan, Cong, Ma, Sun, & Thalmann, 2013a) computes user similarity via

the same spatio-temporal check-ins in the past and conducts a user-based recommen-

dation approach. (Xiong, Chen, Huang, Schneider, & Carbonell, 2010) adds the time

dimension to user-item matrix and applies tensor factorization for recommendations.

However, these studies overlooked that the temporal preference of users is effected

by their regularity, and the popularity of POIs is varying according to locations and

categories. They also didn’t consider the influence of temporal compatibility between

users and POIs. Moreover, they solely depended on the time input of history check-

ins, and suffered from the sparsity problem of check-in data. In order to address

these limitations, it is appealing to incorporate the temporal compatibility between

user regularities and POI popularities into POI recommendation, and utilize human

mobility data to boost recommendation performances.

In the third study, we develop a zone function identification system to quanti-

tatively profile the similarity between city zones in terms of urban functions. While

the literature has shown promising effectiveness of analyzing massive positioning data

for urban exploration (Cranshaw, Schwartz, Hong, & Sadeh, 2012; J. Yuan, Zheng,
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& Xie, 2012; Z. Cheng, Caverlee, Lee, & Sui, 2011; Silva, de Melo, Almeida, Salles,

& Loureiro, 2012), there are limited studies aiming to provide an integrated and

principled approach to the representation learning of city zones in terms of urban

functions. In this study, we aim to propose an effective solution to learn the dis-

tributed and low-dimensional embeddings of city zones. Zones with similar urban

functions are geometrically closer in the embedding space. Using zone embeddings,

we are able to identify functional regions of cities which consist of several zones with

similar functions. Furthermore, many analytic models can be empowered by using

these extracted representations as inputs. To achieve this goal, it is important to

tackle two critical challenges toward learning effective zone representations by in-

ferring urban functions through inter-zone human mobility rather than intra-zone

POI visiting activity, and effectively exploiting spatio-temporal contexts of human

mobility patterns for effective zone embedding.

1.2 Contribution

In this dissertation, we study the unique characteristics of urban smart living tasks

and demonstrate how to develop mobile intelligence analytic methods in different

application scenarios. We list the research contribution of each study as follows:

• House ranking system: We identify two categories of discriminative crime

evidences that comprehensively describe community safety. The first category is

based on crime severity which focuses on property losses led by different burglary

crimes. The second category is based on temporal correlation which considers

the correlation of crimes to learn community safety. Moreover, we propose a
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ranking model to understand the impacts of community safety. Since mostly

investors want to compare houses rather than knowing the exact value, ranking

houses from the perspective of community safety can help investors differentiate

low value houses from the other houses. Specifically, we propose a house safety-

aware (HSA) ranker which combines all extracted community safety features

to rank houses according to house values. In addition, we integrate distinctive

house profile such as neighborhood income, nearby school rating and house

build year to differentiate the comparability of house pairs in pair-wise ranking

objective function. Last, we optimize the ranking model by jointly preserving

the house ranking consistency and maximizing the value prediction accuracy.

Last, we validate our method with real-world dataset. Experiments shows that

our proposed ranking method not only provides better explanations in safety

impacts on house values, but also demonstrates a substantial improvement in

ranking accuracy compared with baseline ranking methods (Yao, Fu, Liu, &

Xiong, 2016).

• Mobile recommender system: We propose a Temporal Matching Poisson

Factorization Model (TM-PFM) to profile the popularity of POIs, model the

regularity of users, and incorporate the temporal matching between users and

POIs into overall recommending consideration. We first present a new frame-

work to profile a time-varying popularity of POIs (e.g., hourly visiting change in

a day). Traditional methods usually capture this temporal variation by count-

ing POIs’ check-in frequencies therefore suffer from check-in data sparsity. We
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utilize heterogeneous human mobility data to evaluate POI popularity. The

benefits of employing human mobility data include (i) it is more abundant and

less biased than check-in data, and (ii) it reveals which areas are currently ac-

tive which is a determinant of POI popularity. Moreover, we further analyze

POIs by categories and adopt a mixture model to obtain the final POI temporal

popularity pattern. Secondly, except some particular events (e.g., parties, con-

certs), people’s availability is usually determined by their routines, thus there is

a predictable regularity. Therefore, we consider temporal regularity of each user

which describes their daily regular availability for POI exploration. We learn

the latent regularity patterns of users by finding the best match with the pop-

ularity patterns of visited POI based on check-in frequencies. We validate our

proposed method with real-world LBSN check-in and human mobility datasets.

The effectiveness of temporal matching in POI recommendation is proven by

extensive experiments and a substantial improvement in recommendation per-

formances over baseline methods is demonstrated (Yao, Fu, Liu, Liu, & Xiong,

2016).

• Zone function identification: We present a novel human mobility based

zone embedding framework to represent urban functions with distributed and

low-dimensional vectors. We treat the origin-destination pair of a mobility pat-

tern as a co-occurrence of two zones for learning zone embeddings. Since urban

functions are also jointly reflected by mobility direction, and departure/arrival

time, we need the embedding method to take into account “leaving for” and
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“arriving from” at “different time” for modeling a zone co-occurrence. We de-

fine a set of human mobility events which contain zone, time and status of

mobility patterns, to serve as embedding “contexts” of target zones, for in-

corporating zone co-occurrence with spatio-temporal characteristics. Moreover,

during the learning of zone embeddings, we give different importance to differ-

ent co-occurrences by calculating the travel demand of origin-destination pairs

with destination attraction (e.g., total mobility pattern arrivals) and travel dis-

tance (e.g., average mobility pattern length) information. Finally, we conduct

extensive experiments with real-world urban datasets of New York City to show

the effectiveness of the proposed method (Yao, Fu, Liu, Hu, & Xiong, 2018).

1.3 Overview

Chapter 2 addresses the community safety modeling for house ranking using spatio-

temporal criminal offense data. Two types of features are extracted to effectively

identify local conditions of safety. A novel ranking model which considers the pro-

file similarity between houses is proposed to achieve optimal safety-aware ranking

performance.

Chapter 3 presents a POI recommender system which focuses on the temporal

matching between the POI popularity and the user regularity. Massive human mobil-

ity data is introduced to profile the popularity patterns of POIs. Meanwhile, we model

users’ temporal regularity by developing a user-POI temporal matching function into

the overall preference estimation. Last, we propose a factorization based POI rec-

ommendation algorithm which combines the user-POI general interest and user-POI
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temporal matching degree to improve the overall quality of recommendation.

Chapter 4 presents a zone embedding framework to identify zone functions using

massive inter-zone transportation data. The framework learns the embedding of zones

from its associated zones by considering the frequency of different origin-destination

mobility patterns. To incorporate the contexts of mobility patterns, we define a set

of human mobility events which contain zone, time and status of mobility patterns,

to serve as co-occurrence of target zones. In addition, during the learning of zone

embeddings, we give different importance to different co-occurrences by calculating

the travel demand of origin-destination pairs with destination attraction (e.g., total

mobility pattern arrivals) and travel distance (e.g., average mobility pattern length)

information.
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CHAPTER 2

THE IMPACTS OF COMMUNITY SAFETY ON HOUSE RANKING

It is well recognized that community safety which affects people’s right to live without

fear of crime has considerable impacts on housing investments. Housing investors can

make more informed decisions if they are fully aware of safety related factors. To this

end, we develop a safety-aware house ranking method by incorporating community

safety into house assessment. Specifically, we first propose a novel framework to

infer community safety level by mining community crime evidences from rich spatio-

temporal historical crime data. Then we develop a ranking model which fuses multiply

community safety features to rank house value based on the degree of community

safety. Finally, we conduct a comprehensive evaluation of the proposed method with

real-world crime and house data. The experimental results show that the proposed

method substantially outperforms the baseline methods for house ranking.

2.1 Introduction

Community safety describes the degree that people live without fear of crime, such

as the risk of being victimized in burglary, robbery, or assault. It has become a fun-

damental buying factor of houses nowadays. Community safety issues can severely

damage the value of a house by: 1) endangering occupants and properties; 2) degrad-

ing living and business environments, e.g., people are less likely to rent for living or
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business; 3) obstructing the development of the area, e.g., new houses or infrastruc-

ture are less likely to be built nearby. Therefore, from the perspective of investors, it

is requisite to be aware of potential community safety issues.

Empirical studies have confirmed the importance of community safety factors for

house appraisals. For example, a standard deviation increase in the local density of

property crime causes a 10% decrease in the price of an average property in London

(Gibbons, 2004); the move-in of a sex offender leads to a 2.3% fall in nearby housing

prices in Hillsborough County, Florida (Pope, 2008). These evidences show that the

value of houses can be significantly influenced by community safety issues.

Motivated by the above, it is appealing to provide a tool for investors to rank

house values based on the degree of community safety. For investigating the impacts

of community safety on house values, historical crime especially house burglary (also

called break-in) is a valuable resource for the following reasons: 1) burglary directly

threats houses, 2) burglary is commonly spread in all locations, 3) burglary provides

sufficient historical cases for investigation. With rapid advances in positioning tech-

nology, data with fine-grained locations such as coordinates of crime records is now

available. This allows us to appraise houses via their neighboring crimes which make

direct impacts.

Although there are a few studies which have investigated the impacts of crime on

house appraisals (Gibbons, 2004; Pope, 2008; Linden & Rockoff, 2008), they suffer

from two limitations: 1) naive crime statistics (e.g., counting crime cases), which

can be improved by sophisticated crime analysis to get in-depth understanding of

community safety; 2) traditional appraisal models (e.g., Hedonic regression) which
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include multiply influencing aspects in house appraisal function, mask the impacts of

community safety. Unlike prior studies, we want to comprehensively learn local safety

levels by employing factors not limited to naive crime statistics. Moreover, we want

to solely focus on the influence of community safety on house appraisal. Therefore,

we tackle two research challenges in this chapter, Challenge 1: what crime analysis

can be done to generate in-depth understanding of community safety; Challenge

2: how to systematically model the impacts of community safety on house values

without effects of other aspects, such as neighborhood income level and rating of

nearby schools?

For Challenge 1, we identify two categories of discriminative crime evidences

that comprehensively describe community safety. The first category is based on crime

severity which focuses on property losses led by different burglary crimes. Since avail-

able crime information does not provide actual losses explicitly, we derive evidences

to infer the severity of crimes implicitly: occurrence address evidence and occurrence

time evidence of crimes. The second category is based on temporal correlation which

considers the correlation of crimes to learn community safety. The crime tempo-

ral correlation reflects an important phenomenon called near repeat in criminology,

which implies degraded community safety and increased victimization risk (Ratcliffe

& Rengert, 2008; Kleemans, 2001). Therefore, we mine near repeat series to dis-

cover temporal correlations of crimes around houses. Based on near repeat series, we

extract evidences to detect temporal correlations: series size evidence, series length

evidence and series intensity evidence.

For Challenge 2, we propose a ranking model to understand the impacts of com-
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munity safety. Since mostly investors want to compare houses rather than knowing

the exact value, ranking houses from the perspective of community safety can help

investors differentiate low value houses from the other houses. Therefore, we propose

a house safety-aware (HSA) ranker which combines all extracted community safety

features to rank houses according to house values. In addition, we integrate distinc-

tive house profile such as neighborhood income, nearby school rating and house build

year to differentiate the comparability of house pairs in pair-wise ranking objective

for enhancing ranking accuracy of community safety features. Last, we optimize the

ranking model by jointly preserving the house ranking consistency and maximizing

the value prediction accuracy.

In summary, in this chapter we strategically leverage rich spatio-temporal crime

data for effective house ranking. We highlight our key contributions as follows:

• We present an advanced crime analysis (e.g., crime evidence mining) to com-

prehensively infer the community safety by exploiting historical crime data.

• We develop a safety-aware ranking model by incorporating the comparability of

house pairs into the optimization of pair-wise ranking objective, in a way that

we better model the impact of community safety without the effects of other

aspects, and thereby enhance the ranking accuracy.

• We validate our method with real-world dataset. Experiments shows that our

proposed ranking method not only provides better explanations in safety im-

pacts on house values, but also demonstrates a substantial improvement in

ranking accuracy compared with baseline ranking methods.
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2.2 Problem Definition

Usually, when people use house values to indicate the quality and benefits of a houses,

they actually mean unit values (e.g., values per square footage) since total values are

also affected by floor areas of houses. Moreover, from the perspective of investors,

ranking houses in terms of their quality and benefits, instead of predicting absolute

appraised values, is more needed for making investment decisions. Therefore, to

provide investors with a tool to compare houses, we rank houses based on unit values

by taking community safety degrees into account. In the rest of this chapter, “house

value” will be used to represent the unit value of a house.

We are given a set of I houses H = {h1, h2, ..., hI} where each house has a location

(e.g., latitude and longitude) and corresponding house values Y = {y1, y2, ..., yI}

where yi denotes the value per square footage in dollar of house hi. We are also given

profiles of houses in H where each house has several house characteristics such as

neighborhood income, nearby school rating and house build year. Last, we are given

the complete historical house burglary records of the area, each burglary crime is

denoted by < loc, add, t >, which has a location loc, an address add and an occurrence

timestamp t. The task is training a model to rank a testing set of houses in an

ascending order according to their house value by exploiting historical burglary data.

We propose to accomplish the task with a two-step framework: 1) extracting and

aggregating community crime evidences for learning the community safety of different

houses from historical crime data, 2) ranking houses by incorporating the impacts of

community safety.
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Figure 2.1: Examples of (a) surrounding crimes of a house, and (b) a crime record.

2.3 Community Crime Evidence Extraction

In this section, we study how to extract and aggregate community crime evidence

for learning community safety features of houses. Figure 2.1a shows an example

how we collect five historical crimes around house hi to form its crime sequence

Ci = {c1, c2, ..., c5}. To get the crime sequence of a house, we collect all the historical

crimes which occurred within d meters (e.g., 200 meters) of the house and order the

crimes by occurrence time from oldest to newest. We mine crime evidences for house

hi based on its specific crime sequence Ci. Figure 2.1b shows a sample of crime

records. In the following, we will extract crime evidences in two categories: 1) crime

severity, and 2) crime temporal correlation. Finally we aggregate crime evidences by

each evidence type to generate house-level community safety features.

2.3.1 Category Based on Crime Severity.

Crime severity indicates the damage level made by a crime. For burglary, it is usually

determined by the property losses in a crime. However, we do not have the explicit
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description about the actual losses of valuables from available crime information.

Therefore, we attempt to infer the severity of a burglary implicitly from other crime

information. To this end, we propose to mine two evidences for a burglary to assess

its severity.

Occurrence Address Evidence.

Knowing the detailed occurrence address of burglaries, we can retrieve the appraisal

of the victimized houses (e.g., 265900 dollars). Intuitively, the loss led by a burglary

is proportional to the appraisal of the victimized house. Higher appraisal usually

means the victimized house has more rooms or the house is more luxury. Either

possibility gives burglars a higher chance to collect more valuables. Based on this

intuition, we can infer the possible loss in a burglary crime by knowing the appraisal

of the victimized house via the burglary address. Therefore, we propose the first type

of evidence:

E1(c) = Appraisal(addc), (2.1)

where c is a burglary crime. addc is the occurrence address of burglaries. Appraisal

denotes the appraisal of the victimized house located at burglary address.

Occurrence Time Evidence.

The occurrence time of crimes is another information for inferring the severity of

a burglary. House burglary has a unique character that burglars always have to

make sure there is no occupant at home to commit crimes. Since the most common

cause of people leaving home is for work or school, the confidence for committing

burglaries should be strongly correlated to people’s working schedule. In Figure 2.2a
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Figure 2.2: Hourly and daily number of burglaries in a residential area during 2009-

2014.

which shows the number of burglary by every two hours in workdays, most of the

burglaries concentrate in the time range from 6:00 to 16:00 which is the time people

are usually out for work. In Figure 2.2b which shows the number of burglary by

every day in weeks, burglaries happened much more frequently in workday (Monday

to Friday) compare to in weekend (Saturday, Sunday). Based on this observation,

during different time slots, the general confidence of burglars for committing a crime

should be different.

We propose a time entropy to model the burglary confidence of different time slots

by analyzing how many houses were victimized during the time slots. Specifically,

we define a time slot in two dimensions: 1) two hours of a day and 2) workday or

weekend. For example, a time slot can be 8:00 to 10:00 in every workday. Then let

k denotes a time slot, Ck,i is the set of burglaries occurred in kth time slot at ith

house, and Ck is the set of all burglaries occurred in kth time slot. The probability
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that a randomly picked burglary occurred in kth time slot belongs to the ith house

is Pk,i = |Ck,i|/|Ck|. We define the Shannon entropy of time slot k as follow:

Entropy(k) = −
∑

i:Pk,i 6=0

Pk,i · logPk,i. (2.2)

A higher time entropy implies a confident time slot during which houses’ occupants

are more possible to be not at home. On the other hand, a lower time entropy

indicate a worse time slot during which occupants are less possible to be not at

home. Therefore, we infer the severity of a burglary by the entropy of the time slot

it occurred in. If a burglary occurred during a high entropy time slot, we consider

it may result more losses since burglars can take longer time for searching valuables

and have fewer chance to be discovered. We propose the second type of evidence:

E2(c) = Entropy(tsc), (2.3)

where c is a burglary crime and tsc is the time slot during which the burglary occurred.

2.3.2 Category Based on Temporal Correlation.

Given a crime sequence of a house, the temporal correlation evidence aims to con-

sider the temporal proximity among burglaries. By analyzing temporal correlation of

crimes, we can infer the local community safety. Figure 2.3 shows the weekly statistics

of burglary happened within 400 meters of two houses respectively during 2013-2014.

Figure 2.3a shows the burglary near a low value house, we can see that many burglar-

ies tend to cluster together temporally. On the contrary, Figure 2.3b shows burglary

near a normal value house, we can see that these crimes behave more independently.

This temporal correlation can be explained by near repeat phenomenon in criminology
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Figure 2.3: Weekly number of burglaries near two houses during 2009-2010.

research (Kleemans, 2001; Ratcliffe & Rengert, 2008). Usually, the burglaries which

repeatedly occurred in the same area within short interval means that they are very

likely to be committed by the same burglars. Preference by returning burglars implies

worse community safety issues and brings higher crime risks to the area (Hearnden

& Magill, 2004). Therefore, we can expect that a stronger temporal correlation of

crimes leads to worse community safety of houses.

For capturing the temporal correlation, we propose to mine near repeat series for

houses. Basically, a near repeat series is mined from the crime sequence of a house

and it is a set of crimes in which every crime happened very shortly after the previous

one except the first. A house can have none to multiple near repeat series. Formally,

we define a near repeat series as follows:

Definition 1 A near repeat series s of a house hi consists of N adjacent crimes

s = {c1, c2, ..., cN} in which every crime cn belong to the hi’s crime sequence: cn ∈ Ci
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Figure 2.4: An example of near repeat series mining.

and there is no other near repeat series s′ makes that s ⊆ s′. Every near repeat series

meets two conditions: 1) the number of crimes in s should be not less than a minimum

size threshold θ: |s| > θ, and 2) the interval between any two adjacent crimes should

be not longer than a maximum time threshold τ : ∀n ∈ [2, N ], tcn − tcn−1 6 τ where tc

represents the timestamp of a crime c.

Figure 2.4 shows an example of mining near repeat series. Given a crime sequence

Ci = {c1, ..., c10} with their occurrence date of a house hi, c1 is the oldest crime while

c10 is the latest one. Suppose we define the maximum time threshold to be 7 days

while the minimum size threshold to be 3 crimes. We can find the first near repeat

series to be s1 = {c1, c2, c3} since tc2− tc1 = 2 and tc3− tc2 = 6. Because tc4− tc3 = 12,

repeat series s1 stops at c3. Although the interval between c5 and c6 is less than 7

days, they can not find c4 or c7 to reach the minimum size threshold. Last, from c8

to c10, each of them has a less than 7 days interval from its previous one, therefore

we find the second near repeat series s2 = {c7, c8, c9, c10} by qualified intervals of

adjacent crimes and qualified series size.

We propose three evidences based on near repeat series to assess local community
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safety.

Series Size Evidence.

Series size evidence which measures the number of crimes in a near repeat series, is

a significant indicator for community safety situation. For a house with less safety

issues, the nearby crimes should act independently and they are unlikely to form large

size near repeat series. If a near repeat series has large size, there is high probability

that the area of house has serious safety issues. Therefore, we propose the third

evidence:

E3(s) = |s|, (2.4)

where s is a near repeat series consists of crimes.

Series Length Evidence.

Series length evidence measures the length of period a series lasts in order to learn the

community safety situation. As the near repeat series lasts longer, it is more difficult

for burglars to commit repeat crime because of increasing police attention. If near

repeat series lasts long, it means that the area is promising for burglars, therefore it

indicates a worse community safety situation for local houses. We propose the forth

evidence:

E4(s) = tcN − tc1 + 1, (2.5)

where tc1 and tcN represent the date of the first crime c1 and the last crime cN of the

near repeat series s.
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Series Intensity Evidence.

Series intensity uses the shortest interval occurred in a near repeat series to learn the

community safety situation. An intensive near repeat series means that at least two

crimes of it have very short interval thus shows a dangerous sign of the area. For

example, given two size-3 near repeat series with similar length, the first series has the

interval {0− day, 7− day} while the second series has the interval {3− day, 4− day}.

The first series has a higher intensity since the first two crimes of it occurred in a

the same day with 0-day interval. The second series has a lower intensity since the

shortest interval in the second series is 3-day. Therefore, we propose the fifth evidence:

E5(s) = max
2≤n≤N

{τ − (tcn − tcn−1) + 1}, (2.6)

where tcn − tcn−1 represents the interval days between crime cn and its previous adja-

cent crime cn−1 of series s, τ represents the maximum time threshold.

2.3.3 Evidence Aggregation.

We aggregate evidences by types for generating house-level community safety features.

As we introduced, for a house hi, we have a crime sequence Ci = {c1, c2, ..., cKi
}

and a set of near repeat series Si = {s1, s2, ..., sJi}. The evidence belongs to crime

severity category (E1(c), E2(c)) is extracted by crime cases while the evidence belongs

to temporal correlation category (E3(s), E4(s), E5(s)) is extracted by near repeat

series. Therefore, for a house hi, we will have a community safety feature vector



- 22 -

Xi = {xi1, xi2, ..., xi5} as following:

xim =


∑
c∈Ci

Em(c) if m ∈ (1, 2)

∑
s∈Si

Em(s) if m ∈ (3, 4, 5)

(2.7)

2.4 A Safety-Aware House Ranking Model

In this section, we propose a House Safety-Aware (HSA) model which ranks houses

by incorporating the degrees of community safety.

2.4.1 Model Specification.

Let us define the input of the model to be Xi, yi and Pi for a house hi, where Xi

denotes M-size vector of community safety features, yi denotes the ground truth of

house value and Pi denotes the L-size vector of house profile characteristics. We want

to train a function fi = W TXi which formulates the house value by having yi = fi+ ε

, where W denotes the vector of weights for safety features and ε denotes the error

term which subjects to Gaussian noise ε ∼ N (0, σ2). Thus, we have yi ∼ N (fi, σ
2).

2.4.2 Objective Function.

We propose to jointly model the accuracy of house value prediction and the consis-

tency of house ranking prediction in an objective function. Let the parameter for

estimation to be W , model hyperparameter to be Φ = {σ2, b2}, observed ground

truth to be O = {Y,R} where Y and R denote the value and rank of houses. Then

we have the posterior probability:

Pr(W |O,Φ) = Pr(O|W,Φ)Pr(W |Φ). (2.8)
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First, let us address the probability of observed data. We model Pr(O|W,Φ) as

a joint probability of house value prediction Pr(Y |W,Φ) and house ranking prediction

Pr(R|W,Φ). Modeling prediction accuracy, we use Pr(Y |W,Φ) =
∏I

i=1N (yi|fi, σ2)

to ensure value prediction accuracy of houses. Modeling ranking consistency, we

adopt a pair-wise probability to ensure ranking correctness of all house pairs. Sup-

pose the I houses has already been ranked by house value in ascending order. Given

two index i, j which has i < j, we should always have yi < yj and hi → hj which

means the rank of house hi is higher than the rank of hj in ground truth. There-

fore, we use Pr(R|W,Φ) =
∏I−1

i=1

∏I
j=i+1 Pr(hi → hj|W,Φ) to represent the proba-

bility that hi is correctly ranked higher than hj by model for all house pairs. We

adopt Sigmoid function to represent the probability of pair-wise ranking consistency:

Pr(hi → hj) = 1
1+exp(−(fj−fi)) .

Integrating house profile into ranking consistency. House is a kind of dis-

tinctive property which has various characteristics, such as the house profile shown in

Table 2.1. If two houses have too large differences in house profile, their value differ-

ence does not help the model to learn the impacts of community safety. For example, if

two houses have too different build year (e.g., 1950 vs. 2010), then the impact of com-

munity safety on house value may be overridden by the impact of build year. There-

fore, including the rank observation of dissimilar house pair in optimization objective

will jeopardize the ranking prediction capacity of community safety features. Based

on this motivation, we propose to weight house pairs differently by the comparability

of house pairs by exploiting profile data. Specifically, we use characteristics in Table

2.1 to compute the similarity between every house pair by Dij = −
√∑L

l=1|pil − p
j
l |
2
,
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Table 2.1: Characteristics in house profile.

Characteristics Description

Neighborhood Characteristics

Household Income Average annual household income

High Educated Ratio Ratio of residents with least bachelors degree to resi-

dents who are at least 25 years old

Population Growth Percentage growth of population from 2000 to 2010

Surrounding Characteristics

School Rating Average rating of the nearest public high, middle and

primary schools (A school has rating 1 to 5)

Point-of-Interest (POI)

Diversity

Number of diverse categorical tags extracted from all

the POIs which locate within d meters of the house

Check-in Density Average number of social network check-in within d me-

ters in every workday after hours 6 PM to 6 AM

Build Characteristics

Land Area (in sqft), Bedroom Number and Build Year
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where i and j denote the house pair, pl denotes the lth characteristic in profile vectors.

Dij is normalized as a real number between 0 and 1. Then, we incorporate Dij as

the comparability into the pair-wise probability of ranking consistency. We have the

new ranking consistency probability: Pr(hi → hj|W,Φ)Dij , where Dij is assigned as

an exponent to corresponding house pair’s ranking consistency probability. Benefit:

when the similarity Dij between hi and hj is high such as the extreme 1, the impact

of their ranking probability Pr(hi → hj) will be fully preserved in objective function.

On the other hand, when Dij is low such as the extreme 0, the impact of Pr(hi → hj)

will be fully blocked outside of objective function. In this way, we differentiate the

importance of different house pairs for objective function, thus we can better use

community safety for house ranking.

We present the final probability of observed data:

Pr(O|W,Φ) = Pr(Y |W,Φ)Pr(R|W,Φ)

=
I∏
i=1

N (yi|fi, σ2) ·
I−1∏
i=1

I∏
j=i+1

(
1

1 + exp(−(fj − fi))
)
Dij

.

(2.9)

Next, let us address the prior distribution of W which is the last part in posterior

distribution. We model Pr(W |Φ) as Gaussian distribution with 0 mean, where b2

represents the variance of parameter wm. We have the prior distribution formally:

Pr(W |Φ) =
M∏
m=1

N (wm|0, b2). (2.10)
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2.4.3 Parameter Estimation.

Given the posterior distribution in Equation 2.8, we want to find the optimal W to

maximize the probability. The log posterior distribution is:

L(W |Y,R, σ2, b2) = − 1

2σ2

I∑
i=1

(yi − fi)2

+
I−1∑
i=1

I∑
j=i+1

Dijln
1

1 + exp(−(fj − fi))
− 1

2b2

M∑
m=1

w2
m.

(2.11)

To maximize the log posterior, we utilize gradient ascent method to update pa-

rameter wm by w
(t+1)
m = w

(t)
m + α × ∂L

∂wm
, where α is the learning rate and ∂L

∂wm
is the

derivatives according to Equation 2.11:

∂L
∂wm

=
1

σ2

I∑
i=1

(yi − fi)xim −
1

b2
wm

+
I−1∑
i=1

I∑
j=i+1

Dij
exp(−(fj − fi))

1 + exp(−(fj − fi))
(xjm − xim).

(2.12)

2.5 Experimental Results

In this section, we present a comprehensive experiment to evaluate the proposed

method on real-world dataset.

2.5.1 Experimental Data.

All the data of houses and crimes are collected from Denver Open Data Catalog

(Denver Open Data Catalog , n.d.). For houses dataset, since house comparisons

usually happen in the same type with not very far distance, we restrict the house

type to only single family detached home which is the major type in U.S., and collect

3000 houses evenly spread in a major residential region of north Denver which consists

of five adjacent official neighborhoods as shown in Figure 2.5a, 2.5b. All the house
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(a) (b) (c)

Figure 2.5: (a) Official neighborhoods. (b) Houses. (c) Burglary crimes.

values are appraised in 2015. Figure 2.6a shows the values of 3000 houses in ascending

order. For ranking purpose, we evenly split of range of house value into 10 levels and

give the level of lower values the higher relevance score. Therefore, as shown in Figure

2.6b, the real house value yi in experiment is the relevance score from 0 to 9 which

shows how low a house value is. For crime dataset, we collect residential forcible

burglaries happened in Denver during 2009 to 2014. Totally, we find 1131 forcible

burglary crimes which are related to our collected houses as shown in Figure 2.5c. For

house profiles, we collect neighborhood data from demographic of 2010 & 2000 US

Census, POIs and check-in (9/2010 to 1/2011) data from Foursquare, public school

data from official public school rating (School Performance Framework , n.d.).

2.5.2 Baseline Algorithms.

To validate the effectiveness of our proposed method, we compare it with several

traditional ranking algorithm: 1) LambdaMART (Burges, 2010), which employs the

Lambda function of LambdaRank as gradients in the learning of Multiple Additive
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(a) (b)

Figure 2.6: (a) Value of ranked houses. (b) Relevance score of ranked houses.

Regression Trees (MART). 2) AdaRank (Xu & Li, 2007), which plugs the evaluation

measures into the framework for boosting optimization. 3) RankBoost (Freund, Iyer,

Schapire, & Singer, 2003), which adopts AdaBoost (Freund & Schapire, 1997) for the

pair-wise classification. 4) Coordinate Ascent (Metzler & Croft, 2007), which applies

coordinate ascent technique in unconstrained optimization. 5) ListNet (Cao, Qin,

Liu, Tsai, & Li, 2007), which defines the loss function by the probability distribution

on permutations.

We adopt RankLib (The Lemur Project/RankLib, n.d.) for baseline algorithm im-

plementation. For LambdaMART, we set number of trees = 300, number of leaves =

10. For AdaRank, we set number of round = 500, tolerance = 0.002. For RankBoost,

we set number of rounds = 300. For Coordinate Ascent, we set number of random

restarts = 5, tolerance = 0.001. We randomly split 3000 houses to be 4:1 where 2400

for training set and 600 for testing set.
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2.5.3 Evaluation Metrics

Normalized Discounted Cumulative Gain (NDCG).

NDCG is obtained from Discounted Cumulative Gain (DCG) which measures the

ranking quality by calculating the cumulative gain from the top of the result list to

the particular rank position K. DCG@K = rel1 +
∑K

i=2
reli

log2 (i)
where reli represents

the relevance score of the result at position i. Then we compute Ideal DCG (IDCN)

which represents the maximum possible DCG till position K by sorting the result list

by relevance. Last we obtain the normalized DCG: NDCG@K = DCG@K
IDCG@K

.

Kendall’s tau coefficient (Tau).

Kendall’s Tau coefficient measures the ranking quality by rank correlation: the sim-

ilarity of the orderings of houses between predicted ranking list and ground truth

ranking list. Let (r̂i, ri) be the rank of house hi in predicted ranking list and ground

truth ranking list. Any pair of houses (r̂i, ri) and (r̂j, rj) are concordant if both

r̂i > r̂j and ri > rj or if both r̂i < r̂j and ri < rj. They are discordant, if r̂i > r̂j

and ri < rj or if r̂i < r̂j and ri > rj. We obtain the Kendall’s tau coefficient:

Tau = #concordant−#discordant
#concordant+#discordant

.

Precision and Recall.

Precision measure the fraction of retrieved houses which are relevant. Recall measure

the fraction of relevant houses that are retrieved. In our case, we consider the low

value house with 7-9 relevance score as relevant, and consider other house with 0-6

relevance score as irrelevant. In retrieved top K ranking houses, we calculate the



- 30 -

0 1 0 2 0 3 0 4 0 5 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

 

 

ND
CG

@ K

 H S A
 L a m b M A R T
 A d a R a n k
 R a n k B o o s t
 C o o r A s c e n t
 L i s t N e t

Figure 2.7: NDCG performance comparison.

precision by Precision@K =
|hK∩h≥7|
|hK |

and the recall by Recall@K =
|hK∩h≥7|
|h≥7|

, where

hK and h≥7 denote the set of retrieved houses and the set of relevant houses.

2.5.4 Performance Evaluation on House Safety-Aware (HSA) Ranking.

We compare the performance of proposed HSA and baseline algorithms with the

metrics of NDCG and Kendall’s tau coefficient. Figure 2.7 shows the NDCG@K of

each algorithm from K=1 to K=50. Overall, we can see that HSA outperforms all

baselines. The improvement start to be obvious since K = 15. Second, we notice that

LambdaRank and AdaRank which performance closely reach the second best overall

performance. Compared to the rest of baseline algorithms, these two achieve obvious

improvement of NDCG performance when K is smaller than 10. Moreover, RankBoost

and Coordinate Ascent perform similarly. They both do not perform well when K is

smaller than 15. Then their performance returns when K grows large. Last, ListNet

makes the lowest performance, which is far behind other baseline algorithms. Table
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Table 2.2: Performance of each algorithm.

Metrics
Lamb

MART

Ada

Rank

Rank

Boost

Coor

Ascnt

List

Net

HSA

NDCG@5 0.8788 0.9023 0.7967 0.8015 0.7408 0.9160

NDCG@7 0.8537 0.8532 0.8026 0.7890 0.7664 0.9013

NDCG@10 0.8280 0.8590 0.8320 0.8003 0.7159 0.8666

NDCG@15 0.8309 0.8197 0.8113 0.8015 0.6733 0.8429

NDCG@25 0.8007 0.7993 0.8025 0.7859 0.6839 0.8457

Tau 0.2137 0.2733 0.1611 0.2326 0.2471 0.3146
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(a) NDCG@K (b) Kendall’s Tau

(c) Precision@K (d) Recall@K

Figure 2.8: Performance of different crime evidences.
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2.2 shows the numerical result of NDCG at small K and Kendall’s Tau coefficient.

On NDCG @5, @7, @10, @15 and @25, HSA shows the consistent advantage. On

Kendall’s Tau coefficient, HSA achieves the best performance of 0.3146, the second

best is AdaRank which gets 0.2733. Overall, HSA shows obvious advance in both

NDCG and Kendall’s Tau coefficient. In summary, the results shows that HSA model

which incorporates house pairs comparability into ranking objective optimization can

effectively increase the performance of house ranking with community safety.

2.5.5 Performance of Different Crime Evidences.

We compare the performance of every single evidence type as well as two evidence

combinations in NDCG, Tau, Precision and Recall. In Figure 2.8, E1 (Occurrence

address), E2 (Occurrence time), E3 (Series size), E4 (Series length) and E5 (Series

intensity) represent the five evidence types we extract. The combination of E1+E2

denotes the crime severity based category while the combination of E3+E4+E5 de-

notes the temporal correlation based category. First let us see the performance of

single evidences. From the perspective of top K ranking measured by NDCG, E3 and

E5 have the best performance and E2 preforms well too. In Precision and Recall, E5

performs the best. E2 and E3 perform well too. For the overall ranking consistency

by Kendall’s Tau, E1 and E2 show the best performance, E5 also does well. Then let

us see the performance of evidence combinations based on two evidence categories.

The crime severity based combination E1+E2 outperforms the single evidence E1

or E2 in ranking quality of both NDCG and Tau coefficient. The temporal corre-

lation based combination E3+E4+E5 outperforms the single evidence E3, E4 or E5
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in both of NDCG and Tau coefficient as well as Precision and Recall. Comparing

E1+E2 with E3+E4+E5, we find that E3+E4+E5 consistently provides better top

K ranking quality. Generally, the temporal correlation category evidences perform

better than crime severity category evidences in differentiating low value houses via

community safety conditions.

2.5.6 Performance of Different Crime Collection Radius.

Since we only consider the crimes which occurred within a certain distance of a house

as impactful crimes, we want to explore what the proper distance is for learning a

house’s community safety. For example, if the radius is 400M, we will learn com-

munity safety by the crimes within 400 meter of a house. Figure 2.9 shows the

performance on 5 different radius: 200M, 400M, 600M, 800M and 1000M in metrics

of NDCG, Tau, Precision and Recall. From Kendall’s Tau coefficient, we can see

that radius in 400M, 600M and 800M outperform other distance in the quality of

overall ranking. From NDCG, we can observe that 800M and 400M perform the best

but the performance of 600M falls. One possible reason is that some houses can not

cover more burglaries when the radius increases because it may cover non-residential

blocks (e.g., square). When the radius continuously increases to 800M, the circle area

overcomes the effects of non-residential blocks and reaches sufficient crimes for safety

assessments. Therefore, we can have two insights from the results: 1) The distance

from 400M to 600M which is a walking distance provides the most impactful crime

for a house. 200M is too short to collect sufficient crimes while 1000M overly collects

crime which do not generate real impacts. 2) Proper radius also depends on specific
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(a) NDCG@K (b) Kendall’s Tau

(c) Precision@K (d) Recall@K

Figure 2.9: Performance of different crime collection radius.

geographical situation which may disable some radius.

2.6 Related Work

This work can be grouped into three research categories. The first category is the

study of the appraisal and ranking of real property. The works in (Pope, 2008; Linden

& Rockoff, 2008) show that after a registered sex offender moves into a neighborhood,

nearby housing prices would be declined in response. The work in (Gibbons, 2004)

reports that property crimes have a significant negative impact on property price in
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London area. The work in (Buonanno, Montolio, & Raya-Vı́lchez, 2013) concludes

that decreases of perceived security level in victimization survey is associated with

decreases of the real property valuation of a district. The works in (Fu, Xiong, et al.,

2014; Fu et al., 2015) model the effects of geographical dependencies and function

diversities for ranking estate investment values. The work in (Fu, Ge, et al., 2014)

explores the effects of people’s moving behaviors and online reviews on real estate

ranking.

The second category belongs to criminology research. The work in (Polvi, Looman,

Humphries, & Pease, 1991) finds that there is a dramatically enhanced risk of repeat

burglaries for a house immediately after an initial burglary happened. The work in

(Kleemans, 2001) shows that repeat victimization is more likely in high-crime than

in low-crime areas, and that the re-committing by same offenders plays a key role in

repeat victimization. The works in (Townsley, Homel, & Chaseling, 2003; Ratcliffe

& Rengert, 2008) show that the elevated crime risk after the initial crime not only

comes to the victims itself but also spread to nearby areas.

The last category is the research in Learning-to-rank (LTR) algorithm. There are

three categories of LTR algorithm, point-wise ranking directly predicts the relevance

degree of a document, such as (Cooper, Gey, & Dabney, 1992) which adopts regression

to solve the problem of ranking. Pair-wise ranking output the relative order for a pair

of two documents. The work in (Herbrich, Graepel, & Obermayer, 1999) applies the

SVM technique to classify orders for document pairs. Last, list-wise ranking model

the entire ranking of a whole set of documents. The work in (Cao et al., 2007) defines

the loss function by using the probability distribution on permutations.
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2.7 Concluding Remarks

In this chapter, we presented a systematic study on ranking house by leveraging

spatio-temporal crime data. Specifically, we first extracted community crime evi-

dences in two categories: crime severity and crime temporal correlation. Moreover

we proposed effective approach to ranking houses based on value by incorporating

the house specific features of community safety. Also, we integrated the impacts of

popular house profile in optimization to enhance the proposed ranking model. Fi-

nally, extensive experimental results on real-world crime and house data validated

the performance of the proposed method.
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CHAPTER 3

POI RECOMMENDATION: A TEMPORAL MATCHING BETWEEN POI

POPULARITY AND USER REGULARITY

Point of interest (POI) recommendation, which provides personalized recommenda-

tion of places to mobile users, is an important task in location-based social networks

(LBSNs). However, unlike traditional interest-oriented merchandise recommendation,

POI recommendation is more complex due to the timing effects: we need to examine

whether the POI fits a user’s availability. While there are some prior studies which

included the temporal effect into POI recommendations, they overlooked the compati-

bility between time-varying popularity of POIs and regular availability of users, which

we believe has a non-negligible impact on user decision-making. To this end, in this

chapter, we present a novel method which incorporates the degree of temporal match-

ing between users and POIs into personalized POI recommendations. Specifically, we

first profile the temporal popularity of POIs to show when a POI is popular for visit

by mining the spatio-temporal human mobility and POI category data. Secondly,

we propose latent user regularities to characterize when a user is regularly available

for exploring POIs, which is learned with a user-POI temporal matching function.

Finally, results of extensive experiments with real-world POI check-in and human

mobility data demonstrate that our proposed user-POI temporal matching method

delivers substantial advantages over baseline models for POI recommendation tasks.
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3.1 Introduction

The rapid development of GPS equipped mobile devices (e.g., smartphones) has pow-

ered large location-based social networks (LBSNs) (e.g., Foursquare), raised the num-

ber of mobile users, and enabled various location-based services (LBS). Using these

LBS, users share their experiences of places, also known as Point of interests (POIs)

such as restaurants or museums. Meanwhile, data collected through LBS activity

enable better personalized recommendations of POIs. As a result, POI recommenda-

tion, which suggests personalized POIs to users, becomes an important component

to improve user experiences and services provided by LBS.

Different from traditional interest-oriented merchandise recommendation (e.g.,

books, films, etc.), POI recommendation is more complex and challenging due to

the unique characteristics of LBS. Firstly, besides personal interest, the timing of rec-

ommended POIs should be compatible with users’ personal availability. For example,

if a user is usually available to explore POIs during morning hours, he would be more

likely to visit POIs with morning popularity (e.g., coffee shops, brunch restaurants).

Similarly, if a POI is more popular during night hours (e.g., bars), it is more ratio-

nal to recommend it to users who are available at nights. Secondly, area activity

(or volume of people in an area) changes over time as people concentration to dif-

ferent places at different times throughout a day (e.g., work, entertainment). The

area where recommended POIs reside should be active at a given time to increase the

chance of visiting. For example, in the morning of weekdays, users are concentrated

surrounding office/business locations, while at night time of weekends, nightlife and
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restaurant regions are most active.

Recent studies have considered temporal influences on POI recommendation, such

as time-aware POI recommendation which recommends different POIs to users at

different time. For example, (Gao et al., 2013a) applies user-item matrix factorization

for each time slot and assumes every user has similar preferences in consecutive time

slots for regularization. (Q. Yuan et al., 2013a) computes user similarity via the same

spatio-temporal check-ins in the past and conducts a user-based recommendation

approach. (Xiong et al., 2010) adds the time dimension to user-item matrix and

applies tensor factorization for recommendations. However, these studies overlooked

temporal regularity of users, and time-varying popularity of POI. They also didn’t

consider the influence of temporal compatibility between users and POIs. In addition,

they solely depended on the time input of history check-ins, and suffered from the

sparsity problem of check-in data. Last, these studies didn’t fully utilize spatio-

temporal human mobility patterns which reflect the changes of areas’ activity over

time. In order to address these limitations, in this chapter, we introduce a novel

model which incorporates the temporal compatibility between user regularities and

POI popularities into POI recommendation, and utilize human mobility data to boost

recommendation performances.

In this chapter, we propose a Temporal Matching Poisson Factorization Model

(TM-PFM) to profile the popularity of POIs, model the regularity of users, and in-

corporate the temporal matching between users and POIs into overall recommending

consideration. We first present a new framework to profile a time-varying popularity

of POIs (e.g., hourly visiting change) in a day. Traditional methods usually capture
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this temporal variation by counting POIs’ check-in frequencies therefore suffer from

check-in data sparsity. Previous studies (Zheng, Li, Chen, Xie, & Ma, 2008; Cho,

Myers, & Leskovec, 2011) and (Y. Wang et al., 2015) have demonstrated that human

mobility is highly regular and predictable, and human mobility data from heteroge-

neous sources display similar patterns. Therefore, we utilize heterogeneous human

mobility data to evaluate POI popularity. The benefits of employing human mobil-

ity data include (i) it is more abundant and less biased than check-in data, and (ii)

it reveals which areas are currently active which is a determinant of POI popularity.

Moreover, we further analyze POIs by categories and adopt a mixture model to obtain

the final POI temporal popularity pattern. Secondly, except some particular events

(e.g., parties, concerts), people’s availability is usually determined by their routines,

thus there is a predictable regularity. Therefore, we consider temporal regularity of

each user which describes their regular available time every day for POI exploration.

We propose to learn the latent regularity patterns of users by finding the best match

with the popularity patterns of visited POI based on check-in frequencies. Finally,

with the learned user regularity, we are able to match users with POIs they have

not visited yet, and evaluate the temporal matching degree and the general user-POI

interest to make recommendations.

In summary, in this chapter we propose a novel temporal matching method be-

tween users and POIs for POI recommendation, and strategically leverage rich spatio-

temporal human mobility data to boost the performance of the model. We highlight

our key contributions as follows:
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• We propose a factorization based POI recommendation model which incorpo-

rates the temporal matching between user regularity and POI popularity to

improve POI recommendations.

• We present a novel framework which utilizes heterogeneous human mobility

data to profile time-varying popularity of POIs which bypass the check-in data

sparsity issue. Meanwhile, we model users’ temporal regularity by incorporating

user-POI temporal matching into preference estimation.

• We validate our proposed method with real-world LBSN check-in and human

mobility datasets. The effectiveness of temporal matching in POI recommen-

dation is proven by extensive experiments and a substantial improvement in

recommendation performances over baseline methods is demonstrated.

3.2 Methodology Overview

We first provide some basic concepts in LBS, then formulate the problem of POI

recommendation, and finally show the overview of the proposed temporal pattern

matching based framework.

3.2.1 Preliminary

Definition 2 (Check-in) A check-in is an event that a LBSN user reports his/her

physical visit to a POI. Generally, a check-in contains the following information:

LBSN user, check-in POI with location (e.g., longitude and latitude), category (e.g.,

Italian restaurant), and check-in timestamp.

Definition 3 (Taxi trip) A taxi trip is a route that a taxi delivers passengers
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Table 3.1: Mathematical notations.

Symbol Size Description

YYY M ×N user-POI check-in count matrix

TTT 1× 2 day type = {wd(weekday), we(weekend)}

Q∗Q∗Q∗ N × S POI temporal popularity matrix, ∗ ∈ TTT

P ∗P ∗P ∗ M × S user temporal regularity matrix, ∗ ∈ TTT

UUU M ×K user latent factor matrix

VVV N ×K item latent factor matrix

µ∗µ∗µ∗ 1×M user temporal regularity parameter vector, ∗ ∈ TTT

from one location to another. Every taxi trip starts with a passenger pick-up event

and ends with a passenger drop-off event. Each pick-up and drop-off contains the

information of location and timestamp.

3.2.2 Problem Definition

Let U = {u1, u2, ..., uM} be a set of LBSN users and V = {v1, v2, ..., vN} be a set

of POIs where each POI has a location (e.g., latitude and longitude). Consider the

existence of the historical check-ins where each record indicates a user ui checked into

a POI vj once, we can extract the check-in number that ui preformed check-in to vj,

named yij. The objective of personalized POI recommendation is to recommend

POIs to users based on personal check-in history. In addition, we integrate the large-

scale spatio-temporal taxi trip data, where each trip ends with a drop-off event which
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indicates human arrivals with location and timestamp. We refer i as user and j as

POI in following sections for simplicity. The important notations used in this chapter

are listed in Table 3.1.

3.2.3 General Framework

We propose a two-step method which includes (i) profiling temporal patterns of POI

popularity and (ii) modeling temporal matching of user-POI pairs.

Step 1: Profiling Temporal Patterns of POI Popularity. We aim at pro-

filing the temporal popularity of POIs which describes how the popularity of a POI

varies during a day. Specifically, we split a day into S equal-sized time slots (e.g., 24

hours), and each time slot is associated with a probability describing the ratio of the

in time slot visit volume to the whole-day visit volume. We package these S prob-

abilities chronologically as a vector which is the temporal pattern of popularity to

be profiled. To achieve this, we first extract the area activity (e.g., how many active

people in the area) around POI locations by utilizing human mobility data. Subse-

quently, we extract the category popularity by aggregating the check-in frequencies

at the POI category level to refine the profiling. Lastly, we use a mixture model to

smooth and further characterize the temporal pattern of POI popularity.

Step 2: Modeling Temporal Matching of user-POI pairs. We aim to

develop a user-POI temporal matching model to infer the temporal regularity of users.

First, we consider that each user has regular available times every day due to personal

routines. Meanwhile, users are more likely to visit a POI at its popular times. We

associate S equal-sized time slots with probabilities to show how likely a user may
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explore POIs during a specific time slot in a day. By vectorizing these probabilities,

a user’s temporal regularities are defined. Furthermore, we present a function which

matches a user’s latent regularity with a POI’s profiled popularity. We combine

the temporal matching degree with the general interest as the overall preferences.

Finally, we learn the users’ temporal regularity by optimizing the distance between

the estimated preferences and the frequencies of history check-in at POIs.

3.3 Profiling Temporal Patterns of POI Popularity

In this section, we introduce how to profile the temporal popularity for POIs. Intu-

itively, counting the check-in frequency during each time slot for a POI can complete

this job. However, the POI level check-in records are too few to provide valid results.

Thus we propose to alternatively analyze the temporal popularity in an implicit way.

Generally, the current popularity of a POI is affected by two aspects: (i) how many

active people are around the POI, and (ii) what type of service this POI provides.

For the former one, we assess the area activity by mining how many people come to a

POI’s area during a time slot with taxi trip data. For the later aspect, we profile the

category popularity by answering how many people visit a POI category in a time

slot with check-in and POI category data. We combine these two effects to generate

rough popularity patterns for POIs. Last, we utilize the mixture Gaussian model

to smooth and characterize the popularity variations to obtain the final popularity

patterns.

At the beginning, let us define the temporal popularity. We assign a unique

popularity pattern to every POI to describe the visit volume changes over time slots
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every day. To profile this temporal pattern, we use a size-S vector to represent the

ratio of each time slot’s visits to the whole day’s visits. All the ratios are organized

chronologically and their sum for a day equals to 1. Usually, the temporal pattern of

a POI’s popularity changes largely from weekdays (Monday to Friday) to weekends

(Saturday, Sunday). Therefore, for each POI, we identify two types of temporal

pattern: (1) weekday pattern qwd
j and (2) weekend pattern qwe

j . Formally, we denote

temporal patterns of a POI’s popularity as following:

q∗j = {q∗j,1, ..., q∗j,S}, ∗ ∈ {wd,we}, (3.1)

where q∗j,s represents the probability that visitors will check-in to the POI j in the time

slot s with respect to weekday wd or weekend we. For each q∗j we have
∑S

s=1 q
∗
j,s = 1

and q∗j,s ≥ 0.

3.3.1 Assessing Temporal Patterns with Area Activity

Every day, people concentrate to different places at different times for daily purposes

(e.g., working, entertaining). Given a particular time, if a POI’s is in the area where

contains high volume of people, the POI is expecting to have more visits. Taxi is a

fundamental transportation tool for people who live in large cities (e.g., New York

City). Since each taxi trip ends with a destination, given massive and comprehensive

taxi trips of a city, we are able to know where concentrates high volume of people at

different times. Therefore, we collect taxi drop-offs which happened within walking

distance (e.g., 100 meters) of each POI’s location as shown in Figure 3.1a. The

reason of choosing 100-meter for drop-off collection is that a longer distance makes

the collection area too large that the unique characteristic of POI location can not
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Figure 3.1: (a) Method of collecting taxi drop-offs for a POI. (b) Time-varying taxi

drop-off frequency around an office POI.

be captured, meanwhile, a shorter distance may not cover the nearest street crossing

or road segment, thus POI locations may not be able to collect enough drop-offs to

profile area activity. We count taxi drop-offs by time slots and day types (e.g., the

drop-offs during 10AM-11AM in weekend days) as the example shown in Figure 3.1b.

Through this taxi data processing, we profile the temporal pattern of area activity

around POIs and denote them as:

D∗j = {D∗j,1, ...,D∗j,S}, ∗ ∈ {wd,we}, (3.2)

where D∗j,s represents the portion of taxi drop-offs around POI j during s-th time slot

in a type of day. For each D∗j we have
∑S

s=1D∗j,s = 1 and D∗j,s ≥ 0.

3.3.2 Refining Temporal Patterns with Category Popularity

At the same time, the popularity pattern of a POI is not only dominated by area

activity but also related to its category. For example, at mid-night, even though an

area may be highly active by having many visits, a museum at this place can not be

popular. Therefore, the profiled patterns based on area activity need to be further
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refined by integrating the category popularity. At the level of POI category (e.g.,

department stores), the sparsity problem of check-in data is alleviated. Therefore,

we count check-ins frequencies for categories over time slots. We denote the category

pattern as:

C∗v = {C∗v,1, ..., C∗v,S}, ∗ ∈ {wd,we}, (3.3)

where C∗v,s represents the portion of check-in at the category v during s-th time slot

in a type of day. For each C∗v we have
∑S

s=1 C∗v,s = 1 and C∗v,s ≥ 0.

Next, by combining the effects of category popularity with the effects of area activ-

ity, we obtain the refined POI temporal popularity which is more close to the reality.

We denote the combined temporal popularity of POIs as q′∗j , whose probability for

each time slot is:

q′
∗
j,s = ϕD∗j,s + (1− ϕ)C∗c(j),s, ∗ ∈ {wd,we}, (3.4)

where c(j) is the operation to get the category v of POI j, 0 < ϕ < 1 controls the

weights.

3.3.3 Enhancing Temporal Patterns with Mixture Model

In the last part of temporal popularity profiling, we want to describe each temporal

pattern with a proper distribution. The first motivation is to smooth the visit prob-

ability over time slots because artificial spiting of drop-offs into time slots may cause

volatile patterns especially in adjacent time slots as shown in Figure 3.2. Another

motivation which is more important is that we want to strategically characterize the

popularity pattern to be more discriminative by weakening the idle time slots and

highlighting the popular time slots.
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Figure 3.2: Example of two POI popularity patterns in hours of day. Blue and Red:

before and after GMM smoothing.

To achieve the requirements raised by above motivations, we propose to adopt

Gaussian Mixture Model (GMM) to model popularity patterns for several advan-

tages. First, GMM can express one or more visit peaks in a day as a POI usually

behaves in reality. Second, the Gaussian distribution can well simulate the process

of visit changes of POIs. For example, a POI’s popularity often starts from idle

to busy and gets back to idle. Usually one process last for several time slots and

the popularity changes smoothly. Third, for the idle times, the visit probability are

weaken. Meanwhile, for the busy times, probability are enhanced and concentrated

to the peak point. Therefore, we formally define the probability over time slots of a

POI popularity pattern q∗j with GMM as:

q∗j,s =
R∑
r=1

w∗j,r · N (s|µ∗j,r, σ∗2j,r), ∗ ∈ {wd,we}, (3.5)

where s represents the s-th time slots and R represents the number of Gaussian

components in a daily temporal pattern. w∗j,r represents the mixture weight of rth

Gaussian distribution. In our observation, most of the POIs have no more than

two visiting peaks in a day such as restaurants. Therefore we predefine the number
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of Gaussian components R = 2 for all GMM modeling. Input the POI temporal

patterns q′∗j we obtained in previous step, we apply Expectation–Maximization (EM)

algorithm to estimate the GMM for each pattern as shown in Figure 3.2. Last, we

obtain the final popularity patterns q∗j for each POI.

3.4 Recommendations via Temporal Matching

In this section, we first introduce how to model the temporal matching between user

and POI, then we present the parameter estimation of the model.

3.4.1 Model Specification

To generate recommendation of a POI j for a user i, we assume the overall preference

on the user-POI pair fij is impacted by (i) the user-POI general interest score, δ(i, j),

and (ii) the user-POI temporal matching score, m(i, j):

fij = δ(i, j) ·m(i, j). (3.6)

The user-POI general interest score δ(i, j) is learned from classic matrix factorization

methods, by combining K-dimensional user latent factor vector ui and POI latent

factor vector vj as follows: δ(i, j) = u>i vj . The user-POI temporal matching score

m(i, j) is the degree of matching between users and POIs, based on S-dimensional

user temporal regularity vectors ρ∗i and POI temporal popularity vectors q∗j , where

∗ ∈ {wd,we}, wd and we respectively represent the day type of weekday and weekend.

Next, we present the detailed temporal matching modeling.

Capturing User Daily Temporal Regularity Except some special events, the

available hours for exploring POIs are usually regular for users due to personal daily
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routines. For example, if a user always have a long lunch break, thus he may regularly

explore POIs during 12PM to 2PM. Therefore, we propose that every LBSN user has

a latent daily-repeated personalized temporal regularity which decides when he/she

is likely to explore POIs every day. Usually a individual’s temporal regularities is

different in weekday and weekend, we define two types of daily temporal regularities

for each user:

ρ∗i = {ρ∗i,1, ..., ρ∗i,S}, ∗ ∈ {wd,we}, (3.7)

where ρ∗i,s represent user i’s exploring probabilities during time slot s for weekdays wd

or weekend we. For each regularity pattern ρ∗i , we have
∑S

s=1 ρ
∗
i,s = 1 and ρ∗i,s ≥ 0.

At the same time, we also want to regularize user’s availability distribution over

time slots. In reality, users usually plan one trip in a day and their availability does

not fluctuate largely in adjacent time slots, therefore we assume one window per day

for each user for POI exploration. We exploit a Gaussian distribution to regularize

each regularity pattern. For ρ∗i , we have the probability in each time slots as:

ρ∗i,s = N (s|µ∗i , ε∗2i ), ∗ ∈ {wd,we}. (3.8)

Here we model the check-in probability of s-th time slot as the probability density at

s (e.g., s = 5).

Modeling User-POI Temporal Matching Here we present how we match the

user’s temporal regularities with the POI’s temporal popularities. The objective of

temporal matching for a user-POI pair is to examine if the POI is well-timed for the

user’s temporal regularity. For example, for a user who explores POI in the morning

time, a coffee shop is more well-timed than a bar. Since the popularity pattern can
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indicate the optimum time slots of POIs, our method is to find out if the regularity

pattern of users has any common time slots to favor a POI’s popularity. We define

the temporal matching score m(i, j) for user i and POI j as following:

m(i, j) = γρwd>
i qwd

j + (1− γ)ρwe>
i qwe

j , (3.9)

where 0 < γ < 1 controls the weights of temporal matching score on weekday and

weekend. For example, we can assume that the importance of each day of a week

would be the same for each user, therefore γ = 5
7

for five days of weekday and the

rest 2
7

for two days of weekend.

In this model, we have four latent variables to be learned: POI interest latent

factors vj , user interest latent factors ui, and user daily temporal regularities ρ∗i ,

where ∗ ∈ {wd,we} for day types of weekday and weekend respectively. vj and ui

are K-dimensional vectors while ρ∗i are S-dimensional vectors. Since we model the

regularity on every time slot s to be ρ∗i,s = N (s|µ∗i , ε∗2i ) for user temporal regularity

ρ∗i as Equation (3.8), we further translate user temporal regularity factors ρ∗i into µ∗i

and ε∗i . For reducing parameters to learn and improving computational efficiency, we

predefine a unified ε for all user temporal regularities by referring a usual availability

window of people (e.g., 4 hours). Therefore, we rewrite the temporal matching score

m(i, j) in Equation (3.9) as following:

m(i, j) = γ

S∑
s=1

N (s|µwdi , ε2)qwdj,s + (1− γ)
S∑
s=1

N (s|µwei , ε2)qwej,s . (3.10)

Finally, to infer the latent factors vj , ui and µ∗i , we need to formulate the esti-

mated user-POI preference fij to follow a probability distribution Pr(yij|fij), where

yij is the user-POI check-in count as the groundtruth of user preference. Also, since
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all the user-POI visit count yij are non-negative, we expect our estimated preference

fij to be non-negative. We use a Bayesian non-negative latent factor model.

Given the heavy skewness and wide range of discrete check-in count data as shown

in Figure 3.3b, we adopt a Poisson distribution to model Pr(yij|fij):

yij ∼ Poisson(fij)

Pr(yij|fij) = (fij)
yij exp{−fij}

yij!
,

(3.11)

where fij = u>i vj ·m(i, j) refers to Equation (3.6), m(i, j) refers to Equation (3.10).

Furthermore, vjk, uik can be given Gamma distributions while µ∗i can be given

Gaussian distribution as empirical priors. Therefore, the user-POI preferences can be

modeled as a generative process:

1. For each POI j, generate K-dim POI latent factor:

vjk ∼ Gamma(αV , βV ), (3.12)

2. For each user i, generate K-dim user latent factor:

uik ∼ Gamma(αU , βU), (3.13)

Also, generate user temporal regularity factor for weekday and weekend:

µ∗i ∼ N (αµ, σ
2
µ), ∗ ∈ {wd,we}, (3.14)

3. For each user-POI pair < i, j >, generate response:

Pr(yij|vj ,ui, µ
wd
i , µwei ) = (fij)

yij exp{−fij}
yij!

, (3.15)

where Θ = {V ,U ,µwd,µwe} are parameters for estimation, and Φ = {αV , βV , αU , βU , αµ, σ2
µ}

are hyperparameters.
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3.4.2 Parameter Estimation

Given the observations of user-POI check-in count Y and the hyperparameters Φ,

according to Maximum a posteriori (MAP) estimation, we optimize parameters V ,

U , µwd, µwe by maximizing the posterior probability:

Pr(V ,U ,µwd,µwe|Y ,Φ) ∝ Pr(Y |V ,U ,µwd,µwe) Pr(V ,U ,µwd,µwe|Φ). (3.16)

For Pr(yij|vj ,ui, µ
wd
i , µwdi ), we use Equation (3.15) to compute:

Pr(Y |V ,U ,µwd,µwe,Φ) =
M∏
i=1

N∏
j=1

(fij)
yij exp{−fij}

yij!
(3.17)

For Pr(vj ,ui, µ
wd
i , µwei |αV , βV , αU , βU , αµ, σ2

µ) which are the prior distributions of

V , U , µwd, and µwe, we use Equation (3.12, 3.13, 3.14) to generate:

Pr(V |αV , βV ) =
N∏
j=1

K∏
k=1

vαV −1
jk exp(−vjk/βV )

βαV
V Γ(αV )

Pr(U |αU , βU) =
M∏
i=1

K∏
k=1

uαU−1
ik exp(−uik/βU)

βαU
U Γ(αU)

Pr(µ∗|αµ, σ2
µ) =

M∏
i=1

1

σµ
√

2π
exp{−(µ∗i − αµ)2

2σ2
µ

}, ∗ ∈ {wd,we}.

(3.18)

Then we have the log posterior of Equation (3.16) as:

L(V ,U ,µwd,µwe|Y ,Φ) =
M∑
i=1

N∑
j=1

(yij ln fij − fij)

+
N∑
j=1

K∑
k=1

(
(αV − 1) ln vjk − vjk/βV

)
+

M∑
i=1

K∑
k=1

(
(αU − 1) lnuik − uik/βU

)
+

M∑
i=1

(
− 1

2
lnσ2

µ −
(µwdi − αµ)

2

2σ2
µ

)
+

M∑
i=1

(
− 1

2
lnσ2

µ −
(µwei − αµ)2

2σ2
µ

)
+ const.

(3.19)
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Taking derivatives on L with respect to vjk, uik, µ
wd
i and µwei , we have:

∂L
∂vjk

=
αV − 1

vjk
− 1

βV
+

M∑
i=1

(yij
fij
− 1
)
uik ·m(i, j)

∂L
∂uik

=
αU − 1

uik
− 1

βU
+

N∑
j=1

(yij
fij
− 1
)
vjk ·m(i, j)

∂L
∂µ∗i

= −µ
∗
i − αµ
σ2
µ

+
N∑
j=1

(
(
yij
fij
− 1) · u>i vj

·
S∑
s=1

(γ∗q∗js(s− µ∗i )
ε3
√

2π
exp{−(s− µ∗i )

2

2ε2
}
))

, ∗ ∈ {wd,we},

(3.20)

where γwd and γwe are γ and 1 − γ. We use gradient ascending method to infer

the parameters. Specifically, we maximize the posterior by updating parameters as

υ(t+1) ← υ(t) + ε × ∂L
∂υ

, where υ is an element in {U ,V ,µ∗}, ∂L
∂υ

is the derivatives

according to Equation (3.20), and ε is the learning rate.

3.5 Experiments

In this section, we empirically evaluate the performance of our proposed methods.

We perform all the experiments on real-world datasets: LSBN data from Foursquare,

human mobility data from taxi trip records of New York City.

3.5.1 Experimental Data

For LBSN dataset, we use the Foursquare dataset which is formulated in work (Yang,

Zhang, Zheng, & Yu, 2015a). The dataset includes the check-in data in New York

City (NYC) for 10 months (April 2012 to February 2013). Each check-in contains the

information such as user ID, POI ID, location, timestamp and POI category. To work

with NYC taxis which mainly drive in the city area, we limit the POIs to the most

densely populated borough - Manhattan. Also, we remove the users and POIs with
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Figure 3.3: (a) POI geographical distribution. (b) Check-in response distribution.

too few check-ins (e.g., less than 3) from our dataset to avoid cold start problem. We

finalized a dataset of 975 users for 4722 POIs with 64702 check-in observations. The

user-POI check-in count matrix has a sparsity of 99.24 percent. Each user performs

66 check-ins to POIs on average. The number of check-ins for a POI ranges from

1 to 257. Figure 3.3 provides the geographical distribution of POIs as well as the

distribution of user-POI check-in responses.

For human mobility data, we use yellow cab trip records from NYC taxi & limou-

sine commission1 covering the time range of check-in dataset. Due to the large size

of taxi trips in NYC, we randomly sample 2 million trips in Manhattan. Each taxi

trip contains an origin and a destination with information of location and timestamp.

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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3.5.2 Experimental Metrics

In our experiments, we recommend each user a list of N POIs which have the highest

predicted values but are not visited in training set. Then we evaluate the lists based

on the recommended POIs which are actually visited by users in testing set.

Precision and Recall: Given a top-N recommendation list of POIs LN,rec, pre-

cision and recall are defined as:

Precision@N =
|LN,rec ∩ Lvisited|

N

Recall@N =
|LN,rec ∩ Lvisited|
|Lvisited|

,

(3.21)

where LN,rec represents the recommended list of N POIs for a user, and Lvisited repre-

sents the visited POIs of the user in test set. By averaging the precision and call value

of all users, we obtain the overall precision and recall for a recommender system.

F-measure: F-measure is the harmonic mean of precision and recall. We adopt a

unbalance F-measure Fβ which put more emphasis on precision than recall by setting

β = 0.5:

Fβ = (1 + β2) · Precision · Recall

β2Precision + Recall
. (3.22)

3.5.3 Baseline Algorithms

The experimental study compares our proposed temporal matching Poisson factor

model (TM-PFM) with state-of-the-art factor-based models. Specifically, we compare

our proposed TM-PFM model with following algorithms:

• Probabilistic Matrix Factorization (PMF) (Mnih & Salakhutdinov, 2008): a

widely used probabilistic factor-based model with Gaussian observation noise.
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• Non-negative Matrix Factorization (NMF)(Lee & Seung, 2001): a matrix fac-

torization model with the constrain of non-negative latent variables.

• Bayesian Probabilistic Tensor Factorization (BPTF)(Xiong et al., 2010): a

model which introduces time dimension to traditional user-item factor-based

collaborative filtering method.

• Location Recommendation with Temporal effects (LRT)(Gao et al., 2013a): a

factor-based model which learns users’ time-aware preferences at separated time

slots and use the preference similarity in consecutive times as regularization.

Since BPTF and LRT are temporal recommendation model, therefore, we need to

obtain the overall preference for POIs. We aggregate the preference at each time slot

by two ways.

• Sum: we consider a user’s overall preference on a POI as the sum of his prefer-

ence at each time slot.

• Voting: for each time slot, we make a separate recommendation list and give the

recommended POIs a nomination. The overall preference on a POI is obtained

by the number of nominations.

For the experiment setup, we randomly divided the user-item check-in count data

into 80 percent for training and 20 percent for testing. We set λU = λV = 0.005 for

PMF. We set να = Wα = β = 1 for BPTF. For TM-PFM, we set αU = αV = 4 when

K = 10, and αU = αV = 3 when K = 20. For both K, we set S = 24, ϕ = 0.6,

γ = 5
7
, βU = βV = 0.2, ε = 3, α = 11.5, and σµ = 3.5.
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(a) Precision, K=10.
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(b) Precision, K=20.
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(c) Recall, K=10.
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(d) Recall, K=20.
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(e) Fβ measure, K=10.
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(f) Fβ measure, K=20.

Figure 3.4: Precision, recall, and Fβ measure @1, @5 and @10 with two different

latent dimensions K.
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3.5.4 Overall Performances

Figure 3.4 shows the precision@N, recall@N and Fβ measure@N (β = 0.5) of all

compared approaches on our dataset. For top-N position, we examine N = 1, 5, 10.

For latent factor dimension, we explore K = 10 and K = 20.

Generally, we can see that our proposed approach TM-PFM consistently outper-

form baseline methods, including traditional recommendation models (PMF, NMF)

as well as the temporal recommendation model (BPTF, LRT) for different N and dif-

ferent K. Specifically, we find that PMF performances similarly as BPTF approach

with aggregation rule of voting or sum. NMF outperforms the previous three ap-

proach (PMF, BPTF-Voting, BPTF-Sum) by making latent variables non-negative.

Furthermore, LRT approach (LRT-Sum, LRT-Voting) with either voting or sum rule

outperforms NMF by learning time-aware preferences and assuming similarities for

consecutive time slots. For temporal recommendation models BPTF and LRT, we

find that the sum aggregation rule generally performs better than voting aggrega-

tion rule, especially on LRT with quilt significant differences. Last, our proposed

TM-PFM model further outperforms LRT significantly on precision, recall and Fβ

measure, with respect to K = 10 and K = 20.

At the same time, from the experiment results we can see that the non-negative

factor models (NMF, LRT and TM-PFM) preform better than the regular factor

models (PMF, BPTF). One reason is that regular models are more suitable for explicit

response (e.g., rating), but for implicit response such as check-in count data which

is heavily skewed to 1, non-negative models provide better performance. Comparing
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Figure 3.5: Precision and recall of proposed model with different time slot number S

of temporal patterns (K=10).

our proposed model with other non-negative models (NMF, LRT), our model which

adopts Poisson observation noise is more appropriate for modeling count data. Also,

while the other non-negative models can only apply an approximation of probabilistic

generative process, our proposed model provides a more authentic way. Compare to

all baseline methods, our model demonstrates the effectiveness of incorporating user-

POI temporal matching consideration into POI recommendations.

3.5.5 Performance with Different Time Slot Number

We study the model performance in different time slot numbers as shown in Figure 3.5.

As we equally split one day into multiple time slots to construct temporal patterns,
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the number of time slots S decide the length of each single slot. We compare four dif-

ferent numbers of time slots in this study: 12 time slots for 2-hour/slot, 24 time slots

for 1-hour/slot, 48 time slots for 30-minute/slot and 96 time slots for 15-minute/slot.

The larger number of time slots means the patterns of popularity or regularity are

more fine-grained. Figure 3.5 shows the precision and recall performance of model

at top-N position 1,5, and 10. We have two observations. Firstly, we can see that,

as the number goes higher, the model achieve better performance. The only excep-

tion appears at precision@1 and recall@1 where performance decrease a few from 48

time slots to 96 time slots. However, the overall increasing trend still exists. The

reason is that the popularity patterns characterize every POI to be more distinctive

as the number of time slot goes up. By matching users’ regularity with their visited

POIs, the regularity patterns can be inferred with finer resolution. Therefore, the

performance can be boosted by larger time slot numbers generally. Secondly, we can

find out that the increase slows down when time slot number goes large. The largest

increase usually happened at 12 time slots. After that, the performance does not

increase strongly as before. One reason is that each time slot starts to lack sufficient

observations (e.g., taxi drop-offs) for popularity profiling as the number of time slot

becomes large. On the efficiency aspect, larger time slot number means more compu-

tation in temporal matching analysis, thus increase the training time. Therefore, 24

(1 hour per slot) and 48 (30-minute per slot) are relatively optimal time slot numbers

which take account of both model performance and computation efficiency.
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Figure 3.6: Precision and recall of proposed model with different weight ϕ of area-

activity for mixing with category popularity (1− ϕ) (K=10).

3.5.6 Tuning the Weight ϕ for Area Activity

As shown in Figure 3.6, we tune the weight ϕ of area activity pattern to test the

performances of our model. For profiling the final popularity patterns of POIs, we

propose to combine the patterns of both area activity and category popularity with

a mixing parameter ϕ. Recalling Equation (3.4), ϕ decides the mix ratio of the two

patterns. For example, ϕ = 0.8 means we combine 0.8 times area activity effects

and 0.2 times POI category effects to generate popularity patterns. Here we study

what ϕ value gives good performances with four ϕ configuration: from ϕ = 0.8 which

emphasizes more on area activity to ϕ = 0.2 which favors more on POI category. Here
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we can see that ϕ = 0.6 provides the best performance and ϕ = 0.4 gets the second

place. From the observation, we can conclude that both the area activity and the

category popularity provide the important knowledge for POI popularity profiling.

Specifically, area activity studied by taxi trips makes the larger contribution in POI

profiling.

3.5.7 Tuning the Ratio θ of Weekday to Weekend

In our original configuration, we assume that each day of the week has the same weight

for modeling user-POI temporal matching. Therefore, we set the matching score of

a user-POI pair m(i, j) in Equation (3.9) to have γ = 5
7

because of 5 weekdays in a

week while 1 − γ = 2
7

comes from two days in weekend. However, people may have

unbalance weight on the days of weekdays or weekends. In this study, we want to

tune the trade-off between weekdays and weekend to explore the day importance of

LBSN users in New York City. We use the ratio θ to denote the trade-off:

θ =
Daywd

Daywe
, (3.23)

where Daywd denotes the weight of a day of weekday and Daywe denotes the weight

of a day of weekend. For example, if θ = 1
2

which means a day of weekend is twice

important than a day of weekday, we have γ = 5
9

for weekday and 1 − γ = 4
9

for

weekend by considering 5 days as weekday and 2 days as weekend in a week.

Figure 3.7 shows the performance comparison of different weight ratios θ. We

test θ from 1/3 which means a day of weekend is three times more important than a

day of weekday to 3/1 which means the opposite. The top-N performances in terms

of precision, recall are visualized. We can observe that the performance at θ = 1/1
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Figure 3.7: Precision and recall of proposed model with different weekday/weekend

ratio θ for computing temporal match scores (K=10).

achieves the highest, which means the importance of weekdays and weekends are

almost the same for modeling the user-POI temporal compatibility. Also, as the ratio

θ goes more and more unbalance, the performance becomes worse generally, except

precision and recall @1 from θ = 2/1 to θ = 3/1. From this study, we can see that

large city such as NYC provides rich lifestyles in weekdays as in weekends.

3.5.8 Correlation between Taxi Trips and LBSN Check-ins

Here we conduct a case study to explore the spatio-temporal correlation between

heterogeneous taxi rider mobility and LSBN user check-in behavior. We randomly

sample taxi drop-offs and POI check-ins during different time period of weekday and
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(a) Taxi drop-off 8–9AM. (b) Check-in 8–9AM.

(c) Taxi drop-off 8–9PM. (d) Check-in 8–9PM.

Figure 3.8: Heatmap of mobility of taxi riders and LBSN users at different time slot

of weekday.
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plot their locations to make the heatmaps. Figure 3.8 shows the heatmaps of two

different period: 8AM–9AM and 8PM–9PM in weekdays. For visualization purpose,

we only show the heat color on relatively high density areas, therefore the plain areas

do not mean there are no events of drop-off or check-in.

Figure 3.8a, 3.8b show the human mobility of taxi riders and LBSN users in

morning hour 8AM to 9AM. We can find that in the morning people are mainly con-

centrated in two business regions of NYC: Midtown (area around Rockefeller Center)

and Financial District (area around Wall Street). Because of worse traffic, people

who take taxi to Financial District are fewer than those take taxi to Midtown. Com-

pare the taxi drop-off with check-in in morning hour, we can see that the taxi riders

are relatively strong co-located with LBSN user mobility. Figure 3.8c, 3.8d show

the taxi drop-offs and check-ins in night hour 8PM to 9PM. We can see that people

leave business regions where they work in daytime. Meanwhile, they are going to

residential areas (e.g., Upper Each, Upper West) where do not have many POIs for

check-in as well as restaurant & nightlife areas (e.g., Greenwich Village, East Village,

Fashion District) where have dense check-ins. Significantly, the check-in distribution

is spatio-temporal correlated with the mobility trend of taxi riders. This case study

supports our idea that the temporal patterns of LBSN users’ check-in behavior are

predictable via heterogeneous massive human mobility data, which can be utilized

for boosting recommendation performance.

3.6 Related Work

In this section, we introduce the related work from three research angle: personalized

recommendation methodology especially latent factor model, temporal influence en-
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hanced POI recommender system, and human mobility analysis especially in LBSN

environment.

Collaborative filtering technique, especially the factorization based approach has

shown its importance to the field of recommender system. It has been widely used

for various classic recommendation algorithms. The basic factorization algorithms

include matrix factorization (Koren, Bell, & Volinsky, 2009), probabilistic matrix

factorization (Mnih & Salakhutdinov, 2008) and its Bayesian version (Salakhutdinov

& Mnih, 2008), as well as other variants (Agarwal & Chen, 2009; Koren, 2008). Most

of these algorithms are majorly developed for explicit user response (e.g., rating),

and assumes that the responses follow a Gaussian distribution over the predicted

preferences. As more and more emerging recommendation applications which only

have implicit user responses (e.g., count of web-click or check-in) came to the research

filed, recommender systems are also required to infer user preferences from these heavy

skew and wide range data. However, Gaussian-based latent factor models show their

limitation on prediction performance. Under this circumstance, researchers devel-

oped latent factor models which is more suitable for implicit responses by setting

non-negative constraints on latent variables (Gu, Zhou, & Ding, 2010; Lee & Seung,

2001; Zhang, Wang, Ford, & Makedon, 2006), which aims to force the predicted

preferences into a wider range to adapt implicit responses. Furthermore, by better

modeling heavy skew data and providing rigorous probabilistic generative process,

Poisson distribution became popular in recommendation modeling especially for im-

plicit response (Ma, Liu, King, & Lyu, 2011; Chen, Kapralov, Canny, & Pavlov, 2009;

Liu, Xiong, Papadimitriou, Fu, & Yao, 2015; Liu, Kong, et al., 2015).
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The second group is more specific to incorporate temporal influences into rec-

ommender system for better understanding users’ temporal preferences. The first

category can be summarized as time-aware recommendation which learns temporal

preferences to recommend items for specific time slots (e.g., an hour of a day). The

early work in (Koren, 2010; Ding & Li, 2005) discover the dynamic of user preference

or interests over time. More recently, researchers start to investigate periodic patterns

of user preferences (e.g., hourly interests of every day). One direct solution is to add

an time dimension to user-item matrix and apply tensor factorization (Xiong et al.,

2010; Bhargava, Phan, Zhou, & Lee, 2015). The work in (Gao et al., 2013a) considers

a user’s separated latent variables at different time slots, and preserves the similarity

of personal preference in consecutive times. The work in (Q. Yuan et al., 2013a)

makes time-aware recommendations by a user-based collaborative filtering method

which computes the similarity between users by finding the same POIs at the same

times in their check-in history. The work in (McInerney, Zheng, Rogers, & Jennings,

2013) learns temporal preferences by adopting topic model and training unique tem-

poral features for each topic. Relevant work can also be found in (Q. Yuan, Cong,

Ma, Sun, & Thalmann, 2013b; Gao, Tang, Hu, & Liu, 2013b). Our work is mostly

related to this category. Meanwhile, there exists the other category which can be

concluded as successive POI recommendation. The objective of this category aim to

learn sequential patterns to predict user preferences for next POI, such as the work in

(C. Cheng, Yang, Lyu, & King, 2013; Mathew, Raposo, & Martins, 2012) which train

personalized Markov chain to capture sequential check-in preferences. More relevant

work can be found in (Noulas, Scellato, Lathia, & Mascolo, 2012; Gao, Tang, & Liu,
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2012).

The last group of research concentrates on human mobility analysis of LBSN

users. The work in (D. Wang, Pedreschi, Song, Giannotti, & Barabasi, 2011) shows

that users’ mobility similarity is strongly correlated with their social proximity. The

work in (Cho et al., 2011) utilizes Gaussian mixture model to capture users’ periodic

mobility at different states (e.g., home/work). The work in (Noulas, Shaw, Lambiotte,

& Mascolo, 2015) explores the connectivity among urban places via the mobility of

LBSN users. The work in (Y. Wang et al., 2015) uses heterogeneous mobility data

to measure a static connectivity among areas for boosting the performance of user

location prediction. The work in (N. J. Yuan et al., 2013) explores and categorize

urban lifestyles with the mobility of LBSN users. More relevant work can be found

in (Song, Qu, Blumm, & Barabási, 2010; Gonzalez, Hidalgo, & Barabasi, 2008).

3.7 Concluding Remarks

In this chapter, we developed a POI recommendation model by considering the tem-

poral matching between users and POIs. Firstly, we presented a method to profile the

temporal popularity of POIs by (i) mining area activity patterns with taxi trips, (ii)

integrating category popularity pattern with POI category level check-ins, and (iii)

enhancing patterns with mixture mode. Moreover, we learned the latent temporal

regularity of users by incorporating the temporal matching degrees of user-POI pairs

into user overall preference estimation. Finally, we conducted extensive experiments

with POI check-in and human mobility data. As demonstrated by the experimental

results, the consideration of temporal matching between users and POIs can bet-
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ter model LBSN users’ choosing processes. The performance improvement of our

proposed method is substantial compared to benchmark methods.
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CHAPTER 4

REPRESENTING URBAN FUNCTIONS THROUGH ZONE EMBEDDING

WITH HUMAN MOBILITY PATTERNS

Urban functions refer to the purposes of land use in cities where each zone plays a

distinct role and cooperates with each other to serve peoples various life needs. Un-

derstanding zone functions helps to solve a variety of urban related problems, such

as increasing traffic capacity and enhancing location-based services. Therefore, it is

beneficial to investigate how to learn the representations of city zones in terms of ur-

ban functions, for better supporting urban analytic applications. To this end, in this

chapter, we propose a framework to learn a vector representation (embedding) for city

zones by exploiting large-scale taxi trajectories. Specifically, we extract human mobil-

ity patterns from taxi trajectories, and use the “co-occurrence” of origin-destination

zones to learn zone embeddings. To utilize the spatio-temporal characteristics of

human mobility patterns, we incorporate mobility direction, departure/arrival time,

destination attraction, and travel distance into the modeling of zone embeddings. We

conduct extensive experiments with real-world urban datasets of New York City to

evaluate our proposed method. Experimental results demonstrate the effectiveness

of the proposed embedding model to represent urban functions of zones with human

mobility data.
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4.1 Introduction

A city consists of a variety of zones providing different functions to support diverse

demands of urban residents, such as working, recreation, and residence. Studying the

urban functions of city zones provides indispensable information which is useful in

solving many urban challenges, therefore plays a critical role in urban analytics. Re-

cent years, the advent of sensing technologies and mobile computing has accumulated

a variety of data related to human mobility in urban areas. As a result, data-driven

approaches have been increasingly applied to explore urban functions of cities.

While the literature has shown promising effectiveness of analyzing massive po-

sitioning data for urban exploration (Cranshaw et al., 2012; J. Yuan et al., 2012;

Z. Cheng et al., 2011; Silva et al., 2012), there are limited studies aiming to provide

an integrated and principled approach to the representation learning of city zones in

terms of urban functions. In this chapter, we aim to propose an effective solution

to learn the distributed and low-dimensional embeddings of city zones. Zones with

similar urban functions are geometrically closer in the embedding space. Using zone

embeddings, we are able to identify functional regions of cities which consist of several

zones with similar functions. Furthermore, many analytic models can be empowered

by using these extracted representations as inputs.

Generally, there are two critical challenges toward learning effective zone repre-

sentations of urban functions: (i) how to infer urban functions: through intra-zone

human activity or inter-zone human mobility; (ii) how to effectively exploit human

mobility patterns containing spatio-temporal characteristics for the zone embedding.
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First, by providing intelligence to profile human activity categories (e.g., shopping)

within city zones, location-based social network (LBSN) data have been widely used in

urban analytics. However, LBSN data has reliability issues due to (i) biased check-ins

in entertaining related Point-of-Interest (POI) categories; (ii) sparse check-ins outside

hot areas or time periods; and (iii) significant discrepancies between check-ins and

actual user mobility (G. Wang, Schoenebeck, Zheng, & Zhao, 2016). More impor-

tantly, by analyzing intra-zone human activities, it is difficult to obtain association

information between any two zones, which is essential in zone embedding learning for

capturing “contexts”. On the contrary, human mobility data (e.g., vehicle trajecto-

ries) reveal important associations between any two zones through origin-destination

human mobility patterns which are mainly function dependent (e.g., commuters usu-

ally travel to an office zone around 9 a.m. from residential or transportation zones).

In addition, human mobility data usually cover a wider range of areas and time pe-

riods. Therefore, analyzing human mobility has a potential to better learn urban

functions with zone embeddings.

Second, an effective framework is highly needed to learn zone embeddings with

human mobility patterns across city zones. For this purpose, we bring in the idea of

word2vec (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Cor-

rado, & Dean, 2013), which is originally a Natural Language Processing (NLP) model

for word semantic learning. In word2vec, the embedding of a word is learned from

its co-occur words which appear nearby in sentences. Therefore, two semantically

similar words are likely to share similar vector representations. For example, “queen”

and “king” would be close in the embedding space because both co-occur with the
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same nearby word “kingdom” frequently. Similarly, by analyzing a zone based on

its “co-occur” zones between which human mobility patterns exist (e.g., a residential

zone and an office zone “co-occur” when people travel from one to another), we can

learn zone embeddings by analyzing association strength of every zone pair. With

zone embeddings, zones with similar functions are geometrically close, whereas zones

with different functions are distant.

Based on the above idea, a potential solution is to treat the origin-destination pair

of a mobility pattern as a co-occurrence of two zones for learning zone embeddings.

However, urban functions are also jointly reflected by mobility direction, and depar-

ture/arrival time. In other words, the embedding method should be able to take into

account “leaving for” and “arriving from” at “different time” for modeling a zone

co-occurrence. To that end, we define a set of human mobility events which contain

zone, time and status of mobility patterns, to serve as embedding “contexts” of target

zones, for incorporating zone co-occurrence with spatio-temporal characteristics. In

addition, during the learning of zone embeddings, we give different importance to

different co-occurrences by calculating the travel demand of origin-destination pairs

with destination attraction (e.g., total mobility pattern arrivals) and travel distance

(e.g., average mobility pattern length) information.

Along these lines, in this chapter, we present a novel human mobility based

zone embedding framework to represent urban functions with distributed and low-

dimensional vectors. Specifically, we develop a co-occurrence based method to learn

zone embeddings with human mobility patterns. Based on that, we take into account

mobility direction and departure/arrival time to model spatio-temporal co-occurrence
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of zones, and jointly incorporate destination attraction and travel distance to give

different co-occurrences different importance in the embedding learning. Finally, we

conduct extensive experiments with real-world urban datasets of New York City to

show the effectiveness of the proposed method.

4.2 Preliminary

Recent years, representation learning have been making large progress in NLP (Bengio,

Ducharme, Vincent, & Jauvin, 2003; Collobert & Weston, 2008; Bengio, Courville,

& Vincent, 2013). Learning vector representation of words aims to extract useful

semantic information from corpus by embedding vocabulary into vector space. The

semantic similarity between any two words can be measured by the distance between

two corresponding vectors. Word2vec method (Mikolov, Chen, et al., 2013; Mikolov,

Sutskever, et al., 2013) which trains a two-layer neural network to learn distributed

embedding of words has been successful in many NLP tasks such as word analog.

The idea to utilize the sequential order of words appear in sentences or documents,

by assuming that every word and its surrounding words (i.e., context words) have

dependencies with each other. By optimizing word embeddings based on observed

word-word dependencies (i.e., co-occurrence), we extract the vector representations

of semantic meanings of every word. Next we will introduce the techniques that are

related to our work.

4.2.1 Skip-Gram

Proposed in (Mikolov, Sutskever, et al., 2013), Skip-gram is one of the original models

of word2vec. For each word, it learns vector representation which can well predict its
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t-th word

Input

Projection

Output ... ...

Surrounding words

Figure 4.1: Skip-gram model.

surroundings words. As shown in Figure 4.1, from a training sentence or document,

we can observe a sequence of words w1, w2, w3, ..., wT . The objective of Skip-gram is

to maximize following average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt), (4.1)

where c is a predefined size of context window. Then the conditional probability

p(wt+j|wt) can be defined using softmax function:

p(wt+j|wt) =
exp(v′wO

>vwI
)∑W

w=1 exp(v′w
>vwI))

, (4.2)

where vw and v′w are the input and output vector representations of w while W is the

vocabulary size. For each word, two vectors vw and v′w are learned to maximize the

softmax probability of the co-occurrence of every word and its surrounding words.

Finally, we take trained vw as a word’s embedding. In real training, since computing

softmax for large vocabulary is too expensive, two techniques (i) Hierarchical softmax,

and (ii) Negative sampling are developed to accelerate learning process. Here we will

not extend the details of them.
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Figure 4.2: Continuous bag-of-word (CBOW) Model. The embedding vwt of

each word wt is learned by maximizing the co-occurrence of input word sequence

{wt−c, · · · , wt−1, wt+1, · · · , wt+c} with output word wt.

4.2.2 Continuous Bag-of-Word (CBOW)

Continuous bag-of-word (CBOW) (Mikolov, Chen, et al., 2013) is another effective

model of word2vec. As shown in Figure 4.2, a two-layer neural network aims to learn

word embeddings from a sentence where the sequences of words w1, w2, w3, ..., wT can

be obtained. Each word wt serves as the predicting target as the model output, the

input of the model are the contexts (neighboring words) wt−c...wt−1, wt+1...wt+c where

c is a window size (e.g., 5) for contexts observation. The objective of CBOW is to

predict targeting word given its context words. Formally, it aims to maximize the

following log-likelihood:

T∑
t=1

log p(wt|wt−c...wt−1, wt+1...wt+c), (4.3)

where c is the predefined context window, and the conditional probability

p(wt|wt−c...wt−1, wt+1...wt+c) is generally modeled using a softmax function:

p(wt|wt−c...wt−1, wt+1...wt+c) =
exp(v′wt

>vI)∑W
w=1 exp(v′w

>vI)
, (4.4)
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where v and v′ are the input and output vector representations respectively, and W is

the vocabulary size. The input vector vI is generated by averaging all context words’

vector:

vI =
1

2c

∑
−c≤j≤c,j 6=0

vt+j. (4.5)

For each word in the sequence, input vector vw and output vector v′w of words are

optimized to maximize the conditional probability of the co-occurrence of every word

and its surrounding words. After training all the words in corpus, input vector vwt is

viewed as the word embedding for word wt.

4.3 Problem Statement

We first define some concepts in our work, then we proceed to the problem statement

of zone embedding learning.

Definition 4 (Human mobility pattern) Given a taxi trip, we extract the human

mobility pattern with the following information: (i) the origin-destination (O-D) pair

of zone; (ii) the time of the departure (e.g., taxi passenger pick-up) and the arrival

(e.g., taxi passenger drop-off); and (ii) travel distance.

Definition 5 (Human mobility event) Given a human mobility pattern, we ex-

tract two human mobility events: one for the departure and one for the arrival with

the following information: (i) event occurrence zone; (ii) event occurrence time; and

(iii) event status: a departure or an arrival.

Given a set of city zones Z = {z1, z2, ..., zN} and a set of taxi trips. Each trip

contains a passenger travel with the information of locations and timestamps for the
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departure and the arrival. From taxi trips, we extract a set of zone level mobility

patterns P = {p1, p2, ..., pm}, where each mobility pattern p = (p.zO, p.zD, p.tO, p.tD)

includes the zones of origin p.zO and destination p.zD, as well as the time of departure

p.tO and arrival p.tD. Each time is converted from a timestamp to a 〈timeslot, daytype〉

combination. We define {ts1, ts2, ..., tsJ} to be a set of time slots of a day (e.g., 24

hours), and {wd,we} to be a set of day types: weekday and weekend. Figure 4.3

illustrates the departure locations of human mobility events, and the city zones in

urban areas.

The objective is to learn the distributed and low-dimensional embeddings of city

zones through the spatio-temporal human mobility patterns to represent their urban

functions in a city.

4.4 Methodology

In this section, we start from the word2vec model. Then we show how to learn zone

embeddings by incorporating spatio-temporal characteristics. Last, we present the

model specification.

4.4.1 Word Embedding

A fundamental observation in word embedding literature is that semantically similar

words often have similar “contexts” (i.e., the words appear around them) in sentences

(Levy & Goldberg, 2014; Mikolov, Sutskever, et al., 2013) in a corpus. By modeling

the association strength of each word pair based on the frequencies they co-occur

within a small context window (e.g., a window size of 5 means 5 words behind and

5 words ahead of the target word are contexts), the embedding vw of word w can be
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(a) (b)

Figure 4.3: (a) Locations of taxi pick-up in New York City (NYC). (b) City zones of

NYC.

learned by

vw
ᵀv′c ≈ PMI(D)w,c, (4.6)

where v′c is the embedding of context word c.

PMI(D) is a |W | × |W | pointwise mutual information (PMI) matrix calculated

by word co-occurrence frequencies in corpus D with vocabulary size |W |. Each PMI

value in a 〈w, c〉 entry is computed as

PMI(D)w,c = log

(
#(w, c) · |D|
#(w) ·#(c)

)
, (4.7)

where #(w, c) counts the frequency that words w and c co-occur, and #(w), #(c)

counts the number of single occurrences of words w and c. |D| is the total number of

word-context pairs in the corpus.
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Figure 4.4: An example of finding relevant zones (gray zones) for pick-up/drop-off

locations (red star). Dots are zone centers.

4.4.2 Extracting Zone Level Mobility Patterns

Given the city zones and taxi trips, we need to extract zone level mobility patterns,

i.e., the pairs of zones as the origin and the destination of trips. A simple way can be

only extracting the zones where the pick-up and drop-off of a trip locate. However,

one characteristic of taxi trip data is that the pick-up and drop-off locations tend to

concentrate around road network. As a result, many of them locate near the boundary

of zones. Therefore, it is reasonable to consider adjacent city zones which may be

relevant as well for pick-up and drop-off locations.

Motivated by the above, we first calculate the center location of city zones. Sec-

ondly, in addition to the zone where each pick-up/drop-off locates, we use a walking

distance (e.g., 200 meters) to examine whether the centers of other zones are also

located in the covered area. If yes, we count covered zones as relevant as well, as
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shown in Figure 4.4.

Therefore, for each trip’s pick-up or drop-off location, we consider all potentially

relevant zones (one or more):

zone(l) = {l.z1, l.z2, l.z3..., l.zN}, (4.8)

where l means the location of a pick-up/drop-off, l.z means the relevant zones of it.

Last, by pairing each relevant zone of the pick-up with each relevant zone of the

drop-off in a trip, we obtain the zone level human mobility patterns:

p = (p.zO, p.zD, p.tO, p.tD), (4.9)

where p.zO, p.zD are city zones of origin and destination. p.tO, p.tD are times of

departure and arrival which are converted from timestamps to 〈timeslot, daytype〉

combinations. We define T = {t1, t2, ..., tS} to be a set of time slots of a day (e.g., 24

hours), and D = {wd,we} to be a set of day types: weekday and weekend.

4.4.3 Spatio-Temporal Zone Embedding

We propose to learn the embedding of zones from its associated zones based on human

mobility. People leave zones and arrive at zones at different time for different trip

purposes, which reveals a function dependent association between zones. As shown

in Figure 4.5, a transportation zone of Pennsylvania train station in NYC usually

shows a heavy mobility volume heading to office zones in the midtown in weekday

mornings (8-9 a.m.), and shows a huge mobility volume returning from office zones

after working (5-6 p.m.). Therefore, we could define that when two zones form a

origin-destination pair, one zone co-occurrence happens. By counting the number
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(a) (b)

Figure 4.5: An example of top mobility patterns in a transportation zone (red): (a)

people move out to office zones (green) in 8-9 a.m., and (b) move back (yellow) in 5-6

p.m..

of origin-destination patterns, the frequency of zone co-occurrence can be obtained.

Then zone embeddings can be learned by factorizing PMIs of zone pairs.

However, a problem of using the above simple zone co-occurrence is that the

critical spatio-temporal characteristics of mobility patterns (e.g., mobility direction

and departure/arrival time) are not incorporated into the embedding learning. For

example, given a mobility pattern which involves zone A and zone B, to study the zone

functions, the embedding framework not only needs to incorporate the co-occurrence

of A and B, but also the corresponding mobility direction (e.g., A → B) and the

departure/arrival time (e.g., at night).

To address this problem, we define human mobility events E to serve as embedding

contexts (i.e., the mobility events appear with zones in mobility patterns) so that the
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model includes zone co-occurrence, mobility direction, and departure/arrival time in

the embedding learning. Specifically, a mobility event e is defined as follows:

e = (e.z, e.t, e.sta), (4.10)

where e.z is the zone, e.t is the time by time slot and day type, and e.sta ∈

{arrive, leave} is the mobility status which shows direction of the human mobility

pattern. For example, a human mobility event can be defined as 〈zi, 12p.m.-weekday, arrive〉

which means a human mobility pattern arrive at zone zi during the time slot of 12

p.m.-1 p.m. on weekday.

From each mobility pattern p = (p.zO, p.zD, p.tO, p.tD), we obtain two co-occurrences

consisting of a zone as embedding target and a mobility event as embedding context:

zone mobility event

p.zO (p.zD, p.tD, arrive)

p.zD (p.zO, p.tO, leave)

Using this new type of co-occurrences, we incorporate mobility direction and de-

parture/arrival time of human mobility patterns to enable zone embedding.

Table 4.1 shows an analog between word embedding and zone embedding. In word

embedding, every word serves as a target word and a context word. The association

between a target word and a context word is learned from the frequency of word co-

occurrences in sentences. Unlike traditional word embedding framework, city zones

only serve as target “words” and mobility events only serve as context “words” in

zone embedding. Accordingly, we use the co-occurrences of a zone and a mobility

event in human mobility patterns to learn the pairwise zone associations.
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Table 4.1: Analog between word embedding and zone embedding.

word embedding zone embedding

target word zone

context word mobility event

co-occur in sentence mobility pattern

4.4.4 Modeling Importance of Co-occurrences

A unique characteristic of zone embedding is that different zones in context has

different impacts based on how attractive the destination is and how far the mobility

travels. Based on that, we propose to give different zone co-occurrences different

importance for better optimizing zone embeddings.

For each origin-destination (O-D) pair of zones, we calculate the travel demand

between them based on two factors: (i) destination attraction (e.g., total mobility

patterns arrival at destination zones) and (ii) travel distance (e.g., average mobility

pattern travel distance) with the gravity model (Cascetta, Pagliara, & Papola, 2007)

in traffic analysis. Then we use the travel demand of the O-D zone pair to guide its

importance of co-occurrence in the embedding learning with a 0-1 weight.

Specifically, we define G as a |Z|×|Z| gravity matrix (|Z| is the total zone number)

where row dimension means each zone as an origin, column dimension means each

zones as a destination. Each row of G is a distribution for the 0-1 probabilities of

every destination zone zD to attract a mobility pattern from a specific origin zone zO,
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with sum of 1.

In detail, a 〈zO, zD〉 entry of G is calculated as

G(zO, zD) =
AzDFzO,zD∑
z∈Z AzFzO,z

, (4.11)

where Az denotes the total number of mobility patterns arrive at zone z . FzO,zD is the

friction factor to serve as a cost for traveling between two zones, which is calculated

based on the travel distance with a negative exponential function:

FzO,zD = e−βdzO,zD , (4.12)

where dzO,zD is the travel distance between zone zO and zD calculated by averaging

the travel distances of mobility patterns. β is the parameter which is obtained by

minimizing ∑
zO∈Z

∑
zD∈Z

(TzO,zD − T̂zO,zD)
2

(4.13)

with a genetic algorithm (Deb, Pratap, Agarwal, & Meyarivan, 2002), where TzO,zD

is the observed mobility pattern number from zO to zD. T̂zO,zD denotes the estimated

mobility pattern number calculated by T̂zO,zD = PzO
AzD

FzO,zD∑
z∈Z AzFzO,z

, where PzO is the

total number of mobility patterns leave zO. Also, since the mobility distributions are

usually different on weekday and weekend, we calculate the gravity matrices Gwd and

Gwe by day types.

4.4.5 Model Specification

To learn the zone embeddings proposed in our framework, we minimize the following

objective function over all co-occurrence of zones and mobility events:

min
V,V ′

1

2

∑
z∈Z

∑
e∈E

(
M(z, e)− vzᵀv′e

)2
·G∗(zO, zD), (4.14)
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where M denoted the |Z| × |E| matrix of positive pointwise mutual information

(PPMI) which measures every co-occurrence of zones and mobility events, and G∗ ∈

{Gwe, Gwd} denotes the gravity matrix for every origin-destination zone pair by day

types.

In the first part, each value of M is computed as M(z, e) = max
(

0, log(#(z,e)·|T |
#(z)·#(e)

)
)
,

where #(z, e) counts the number of times that zone z and mobility event e co-occur,

#(z),#(e) count the numbers of single occurrence of z and e, and |T | is the observed

number of co-occurrence from all mobility patterns.1 vz is the D-dimensional

embedding of zone z and v′e is the D-dimensional embedding of mobility event e.

We factorize PPMI matrix M into vz and v′e by minimize the square error for all

co-occurrences.

In the second part, G∗(zO, zD) denotes the weight corresponding to the current

co-occurrence which is retrieved by the origin-destination zones zO,zD and the day

type ∗ ∈ {wd,we} interpreted from the current target zone and mobility event. We

use it to apply different importance on co-occurrences to guide the optimization of

zone embeddings

Parameter Estimation: Given the objective function in Equation 4.14, we take

derivatives with respect to vz and v′e, and adopt gradient descent method to optimize

embeddings. For experimental setup, we empirically set embedding dimension D =

50. Gravity matricesGwd andGwe are calculated with βwd = 0.4674 and βwe = 0.3881.

1We use PPMI to obtain a stable value because PMI can result in large negative values caused

by log operation.
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4.5 Evaluation

In this section, we empirically evaluate the performance of our proposed methods.

We perform all the experiments on real-world datasets of New York City (NYC).

We choose NYC because of following reasons: (1) NYC contains massive population,

diverse urban functions and highly active economics. (2) Our experimental data has

the best coverage in NYC, therefore we are able to have convincing results.

4.5.1 Data Description

The first dataset is the human mobility data. We use the trip records of yellow taxi

from NYC taxi & limousine commission2 to obtain people’s mobility patterns. Since

people in NYC seldom own cars, taxi is one of the most frequent and representative

ground transportation choice. We use complete trip records of three month (June to

August) of 2013. Finally we obtain 33,842,934 trips as our training data. Each taxi

trip contains the locations of an origin and a destination as well as timestamps and

trip distance.

The second dataset is the zone data. We use the city zones designed by US Census

Bureau3 for zone embedding learning. Using these zones has three benefits: (i)

they are professionally designed to contain homogeneous population and environment;

(ii) they are separated by major road network therefore they make interpretable

study results; (iii) their areas are relatively small therefore can provide relatively fine

resolution of analytic results. At last we obtain 193 city zones for urban function

2http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
3https://catalog.data.gov/dataset
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(a) Land use map (b) Land use types

Figure 4.6: Land use of NYC for validation.

study.

Since we compare proposed model against state-of-the-art baseline methods which

utilize Location-base social network (LBSN) data, such as check-ins and Point-of-

interests (POIs), the last dataset is the Foursquare data formulated by the work in

(Yang, Zhang, Zheng, & Yu, 2015b). The dataset includes the check-in data in NYC

for 10 months during 2012 to 2013. Each check-in contains the information such as

user ID, POI ID, location, timestamp and POI category. Finally we have 17,009 POIs

across 139 fine grained categories, 1,046 LBSN users, and 109,073 check-ins.

4.5.2 Evaluation Metrics

For evaluation, we conduct k-means clustering on zone embeddings with multiple

cluster number setting K. We wish that zones with similar functions are assigned to

the same clusters. To validate zone clustering performance, we utilized the official

land use dataset4 of NYC as ground-truth of zone function. This dataset describes

4maps.nyc.gov/zola
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the land use designation of every lot (e.g., land of a building) in 11 land use types

as shown in Figure 4.6. We aggregate all lots on the zone level. Finally, for each

zone, we have a vector which contains percentages of zone area for 11 different land

use types. For obtaining the ground-truth cluster label for city zones, we apply k-

means clustering on land use vectors with different cluster number K. Then we use

following metrics to evaluate clustering results on proposed zone embeddings as well

as baselines:

• Normalized Mutual Information (NMI), defined as

NMI =
I(L;C)

[H(L) +H(C)]/2
, (4.15)

where L is the set of true labels and C is the set of clusters. I(L;C) denotes the

sum of mutual information between any cluster ci and any label lj. H(L) and H(C)

denote the entropy for labels and clusters, respectively. This metric evaluates the

purity of clustering results from an information-theoretic perspective.

• Adjusted Rand Index (ARI), defined as

ARI =
RI − Expected RI

Max RI − Expected RI
, (4.16)

which is the corrected-for-chance version of the Rand index (RI). By viewing ev-

ery pair of zones as a series of decisions, we can calculate correctness by RI =

TP+TN
TP+FP+TN+FN

, where TP/FP denotes true/false positive and TN/FN denotes true/false

negative. ARI has a score between -1.0 and 1.0 that random labeling has an ARI

close to 0 and 1 stands for perfect match.
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• F-measure, defined as

Fβ =
(β2 + 1) · Precision ·Recall
β2 · Precision+Recall

, (4.17)

where Precision = TP
TP+FP

and Recall = TP
TP+FN

. Similarly to ARI, we view the

clustering result of each pair of zones as a decision, then we can have precision and

recall. F-measure is the harmonic mean of precision and recall. We put more emphasis

on precision than recall by β = 0.5.

• Cluster Internal Difference (CID), defined as

CID =
1

N

N∑
i

d(zi, czi), (4.18)

where N is the total number of zones. zi is the land use vector of zone i and czi is

the average land use vector of i’s assigned cluster. d(x, y) calculates the Euclidean

distance between the two vectors. Finally, we obtain the average distance from each

zone’s land use to its cluster’s average land use. A smaller value means the zones

assigned to the same cluster are more similar in terms of urban functions.

4.5.3 Baseline Approaches

The experimental study compares our proposed Mobility-based Zone Embeddings

(ZE-Mob) with the following zone representations for zone clustering.

• TF-IDF (POI): A direct approach is to represent urban functions is using in-zone

human activity types from LBSN data (e.g., POI category). We use Term Frequency-

Inverse Document Frequency (TF-IDF) to measure the importance of different POI

categories (“term”) to a zone (“document”). Specifically, each zone can be represented

by a |C|-dimensional vector where |C| is the total number of unique POI categories.
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Each value indicates the TF-IDF of a category which is calculated based on the

number of its corresponding POIs. Then we apply k-means on TF-IDF vectors for

zone clustering.

• TF-IDF (Check-in): This baseline adopts the same method to calculate TF-IDF.

The difference is that we use check-in instead of POI to count the term frequency of

categories.

• Livehoods: The work in (Cranshaw et al., 2012) proposes a clustering method to

POIs by utilizing social similarity (e.g., check-in by the same user) and geographical

proximity (e.g., distance between two POIs) in LSBN data. We aggregate POIs on

the zone level and set locations of zones by zone centers to apply this baseline.

• LDA Mobility: The work in (J. Yuan et al., 2012) proposes to mine human

mobility data to learn zone urban function by Latent Dirichlet allocation (LDA)

model. The idea is to view zones as “document” and mobility events as “word”. By

having each zone as a “bag of mobility events” with observed frequencies, we learn a

vector of latent urban function topics. Then we apply k-means on topic vectors for

zone clustering.

• ZE-Mob (No Gravity): This baseline is the same with propose method, except

that we remove the impact of gravity matrices G∗. Therefore, we do not model

the importance of zone co-occurrence in embedding learning with incorporation of

destination attraction and travel distance.
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Figure 4.7: Performance comparisons on different cluster number K.
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4.5.4 Performance Comparisons

Figure 4.7 shows the Normalized Mutual Information (NMI), Adjusted Rand Index

(ARI), F-measure, and Cluster Internal Difference (CID) of zone clustering results on

all approaches with 4 different cluster number K: 5, 10, 15, and 20. Overall, we can

see that our proposed approach ZE-Mob outperforms baseline methods on all metrics

and all cluster number K.

Specifically, TF-IDF (POI) does not perform well. An important reason is that

POIs in unpopular places such as residential areas are sparse. Meanwhile, since most

of POIs concentrate in several categories (e.g., dinning), even the zones with sufficient

POIs can not be differentiated by TF-IDF vector effectively. TF-IDF (check-in)

performs the worst because check-in records are quite uneven on different POIs, which

makes popular zones and unpopular zones more indistinguishable. Livehoods gives

similar or better results than TF-IDF (POI) methods by modeling affinity value based

on user sharing and geographical proximity. LDA Mobility gives better performance

by learning latent urban function topics. Last, ZE-Mob and ZE-Mob (No Gravity)

achieve the best performances. Based on the better performance of ZE-Mob with

gravity, we validate that the incorporation of co-occurrence importance effectively

improves zone embeddings.

4.5.5 Identifying Functional Regions

We perform k-means clustering (K=10) on zone embeddings to identify functional

regions of NYC, such as residential regions, entertaining regions, and so on. As shown

in Figure 4.8, each cluster is denoted by a color and used to identify a functional
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(a) TF-IDF (POI) (b) TF-IDF (Chk-in)

(c) Livehoods (d) LDA Mobility

(e) ZE-Mob (No G.) (f) ZE-Mob

Figure 4.8: City zone clustering (K = 10) by different methods. Each cluster is

denoted by a unique color.
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region. With TD-IDF methods (POI and check-in), the functional regions are weakly

identified since the city is mainly partitioned into the zone clusters with POI and

the zone clusters without POI. With livehoods, the clustering does better job than

TF-IDF using the same LBSN data, because it considers geographic proximity in the

clustering analysis. However, its algorithm prevents POIs with far distances to be in

the same cluster, as a result, the shape of clusters can not be extended which does

not fit the real situation of NYC. LDA Mobility gives better performance than all

LBSN based methods by utilizing mobility data with topic modeling. We can see that

it makes more reasonable identification than Livehood. However, some clusters are

still mixed with each other, which make functional regions not clear enough. ZE-Mob

and ZE-Mob (No Gravity) give the most satisfied functional region identification.

For both approaches, we can see that upper town, middle town, lower town are

clearly identified, and the lower town is correctly separated into the Financial District

and the East/West Village (two famous entertaining regions). Compared with ZE-

Mob, ZE-Mob (No Gravity) assigns all mid-town zones into a single cluster, but

different functions exist on the east side (manufacturing region) and the west side

(commercial region) refers to the land use map in Figure 4.6a. Also, ZE-Mob (No

Gravity) incorrectly merges the 5th Ave shopping region into the Upper East region

which mainly provides a residential function.

4.6 Related Work

In the section, we introduce the related works from three research angles: urban

function learning, human mobility analysis, and embedding learning techniques.
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Urban function study is an important research topic for city planners and urban

designers in a long time for supporting decision making of city development. Early

studies mainly rely on classic theory, long-term observation, and case-by-case survey

for investigation. The work in (Goddard, 1970) surveys the taxi flow to analyze

complex linkage system exists in center of London to study the location of activities.

The work in (Putnam, 2001) discusses the change of community in a perspective of

people’s social interactions. More recently, a series of work (Cranshaw et al., 2012;

J. Yuan et al., 2012; N. J. Yuan et al., 2015; Kling & Pozdnoukhov, 2012) use large-

scale positioning data to perform data-driven urban function analysis.

Human mobility study has attracted many attentions in urban data analytics.

Early work in (McFadden, 1974) develops a multiple dimensions to analyze people’s

travel demands from their traveling behavior. More recently, availability of vehicle

GPS traces has empower many urban related applications. The work in (Zheng, Liu,

Yuan, & Xie, 2011) uses trajectories of taxicabs to detect flawed urban planning areas,

such as O-D region pairs with traffic issues. The work in (Ge et al., 2010; J. Yuan,

Zheng, Zhang, Xie, & Sun, 2011) analyzes spetiotemporal patterns of city taxi’s pick-

up and drop-up behavior and driving route to find the optimal strategy for helping

taxi driver increase their cars’ occupancy rate. The work in (Y. Wang et al., 2015)

uses heterogeneous mobility data including taxi, bus, and subway to measure spatial

connectivity among areas for boosting the performance of user location prediction.

Word embedding learning has been studied in recent years through deep neu-

ral networks (Bengio et al., 2003; Collobert & Weston, 2008). Later, the work in

GloVE (Pennington, Socher, & Manning, 2014) and word2vec (Mikolov, Sutskever,
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et al., 2013; Mikolov, Chen, et al., 2013) which utilize word dependency for semantic

analysis, have shown greatly increasement on performance in key NLP tasks, like

document clustering (Kusner, Sun, Kolkin, & Weinberger, 2015), and word similarity

(Levy, Goldberg, & Dagan, 2015). Recenltly, the work in (Levy & Goldberg, 2014)

shows an equivalence of matrix factorization of a shifted PMI matrix to word2vec

skip-gram.

4.7 Concluding Remarks

In this chapter, we presented a city zone embedding framework using human mobility

patterns to represent urban functions with distributed and low-dimensional vectors.

For this purpose, we exploited the human mobility patterns from massive taxi tra-

jectories to model the embeddings with zone associations. Specifically, we developed

a spatio-temporal embedding model for incorporating mobility directions and depar-

ture/arrival times for learning zone dependencies, and calculated the travel demands

of origin-destination zones with destination attraction and travel distance for guiding

the importance of zone co-occurrence in embedding optimization. Extensive experi-

ments on real-world datasets demonstrated the effectiveness of proposed method with

a consistent performance improvement over baseline methods.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we identified several unique challenges of mobile intelligence ana-

lytics for urban smart living, and then introduced how we use advanced data mining

techniques to address these challenges.

First, we presented a systematic study on ranking house by leveraging spatio-

temporal crime data. Specifically, we first extracted community crime evidences in

two categories: crime severity and crime temporal correlation. Moreover, we pro-

posed an effective approach to ranking houses based on value using the house specific

features of community safety. Also, we integrated the impacts of major house profile

in optimization to enhance the proposed ranking model. Finally, extensive experi-

mental results on real-world crime and house data validated the performance of the

proposed method.

Second, we developed a POI recommendation model by considering the temporal

matching between users and POIs. Firstly, we presented a method to profile the

temporal popularity of POIs by (i) mining area activity patterns with taxi trips, (ii)

integrating category popularity pattern with POI category level check-ins, and (iii)

enhancing patterns with mixture mode. Moreover, we learned the latent temporal

regularity of users by incorporating the temporal matching degrees of user-POI pairs

into user overall preference estimation. Finally, we conducted extensive experiments
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with POI check-in and human mobility data. As demonstrated by the experimental

results, the consideration of temporal matching between users and POIs can bet-

ter model LBSN users’ choosing processes. The performance improvement of our

proposed method is substantial compared to benchmark methods.

Last, we presented a city zone embedding framework using human mobility pat-

terns to represent urban functions with distributed and low-dimensional vectors. For

this purpose, we exploited the human mobility patterns from massive taxi trajecto-

ries to model the embeddings with zone associations. Specifically, we developed a

spatio-temporal embedding model for incorporating mobility directions and depar-

ture/arrival times for learning zone dependencies, and calculated the travel demands

of origin-destination zones with destination attraction and travel distance for guiding

the importance of zone co-occurrence in embedding optimization. Extensive experi-

ments on real-world datasets demonstrated the effectiveness of proposed method with

a consistent performance improvement over baseline methods.

5.1 Future Work

In the era of big data, scientific discovery and business solution are demanded to be

more detailed, updated, and intelligent. Therefore, data-driven approaches is being

increasingly critical for more research and application problems. Meanwhile, data

sources are becoming more diverse. Data from multiple and heterogeneous sources

are increasingly being incorporated together for solving problems.

I will extend, generalize, and deepen my previous work on mobile intelligence ana-

lytics for urban smart living. First, I plan to extend my urban function research from



- 102 -

static modeling to dynamic modeling, therefore we can track the function changing

of city areas. Furthermore, I want to incorporate local business data such as point-of-

interest prosperity to assess the impact of function change for local business. Second,

I plan to enhance the research of mobile recommender systems by jointly considering

Who (personalized preference), What (purpose characteristics), When (temporal de-

pendency), Where (geographic influence), and introducing deep learning techniques

to recommendation models. Last, I will generalize the modeling of safety awareness

of real estate to more geographical items (e.g., retail stores, restaurants, etc.) for

business site selection and taxi routing optimization.
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