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ABSTRACT OF THE THESIS 

 

ASSESMENT OF PATIENT RESPONSE TO TARGETED 

CANCER THERAPY USING MULTI-FREQUENCY 

IMPEDANCE CYTOMETRY AND SUPERVISED MACHINE 

LEARNING 

by KARAN SHASHI AHUJA 

THESIS DIRECTOR: 

Dr. Mehdi Javanmard 

 

We present a novel method to rapidly assess patient response to targeted cancer therapy, 

where anti-neoplastic agents are conjugated to antibodies targeting surface markers on 

tumor cells. We have fabricated and characterized a device capable of rapidly assessing 

tumor cell viability in response to the drug using multi-frequency impedance spectroscopy 

in combination with supervised machine learning for enhanced classification accuracy. 

Currently commercially available devices for the analysis of cell viability are based on 

staining with Trypan blue. Staining fundamentally limits the subsequent characterization 

of these cells as well as further molecular analysis, and requires 0.5-1.0 milliliter of 
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volume. Our approach only requires 50 microliters of volume and avoids staining allowing 

for further molecular analysis. To the best of our knowledge, this work presents the first 

comprehensive attempt in using phase change obtained from impedance cytometry data to 

assess viability of cells. Use of impedance cytometry to quantify cancer cells from blood 

cells was also explored. 
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Chapter 1 

Introduction 

 

1.1 Cancer and Targeted Therapy 

Cancer is one of the diseases which continuously threatens human life. It accounts to 13% 

of the deaths worldwide [1]. It is a disease in which abnormal cells divide uncontrollably 

and destroy body tissues. Cancer can occur anywhere in the human body. Normally, human 

cells grow and divide to form new cells as the body needs them. When normal human cells 

grow old or become damaged, they die, and new cells take their place. When cancer 

develops, however, this orderly process breaks down. As cells become abnormal, old or 

damaged cells survive when they should die. Thus, new cells are formed even if they are 

not needed. These extra cells can divide without stopping and may form tumors [2]. Figure 

1.1 and 1.2 illustrate how normal cells divide and how abnormal cells multiply 

uncontrollably. 

 

Figure 1.1. Illustration of normal cells dividing 
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Figure 1. 2. Illustration of abnormal cells dividing, leading to tumor formation 

 

The primary treatment options for cancer include surgery [3], chemotherapy [4], radiation 

therapy [5], hormonal therapy [6], targeted therapy [7] and palliative care [8]. The choice 

of therapy mainly depends upon type and stage of cancer, legal issues, clinical 

infrastructure, past response rates and patient’s health conditions. Of these treatment 

options, a corner stone of precision medicine which uses a person’s genes and proteins to 

prevent, diagnose and treat a disease is targeted cancer therapy [9].  Targeted therapy is a 

cancer treatment that uses drugs. It is different from traditional chemotherapy. The drugs 

known as targeted therapy help stop cancer from growing and spreading. They work by 

targeting specific genes or proteins. These genes and proteins are found in cancer cells or 

in cells related to cancer growth, like blood vessel cells [10]. In the past use of targeted 

cancer therapy combined with other therapies like surgery, radiation therapy etc. has 

proven to be useful in the treatment of cancer. In targeted cancer therapy it is very important 

to determine whether a patient’s tumor has a specific gene mutation that codes for the 

target. This can be determined by analyzing the viability of tumor cells. If the tumor cells 
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die, the patient’s tumor has a specific gene mutation coding to the target. Figure 1.3 

presents a simplified version of targeted cancer therapy. Matriptase a protease which is 

expressed on the surface of various circulating tumor cells. Anti-matriptase antibody is 

conjugated with anti-neoplastic agents which are highly toxic in nature. When the anti-

matriptase antibody binds to the protein, the anti-neoplastic agents specifically kill the 

cancer cells and do not harm blood cells. 

 

Figure 1.3. Targeted Cancer Therapy 

1.2 Research Goals  

 

In the past there has been significant development in label free separation of tumor cells 

from whole blood. Label free methods such as filtration, hydrodynamic chromatography 

and di-electrophoresis are well understood [11]. Despite significant achievement in label 

free separation of tumor cells, label free viability analysis of tumor cells hasn’t achieved 

significant progress. The current techniques to analyze cell viability rely on staining. 
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Staining fundamentally limits the subsequent characterization of these cells as well as 

further molecular analysis, and requires 0.5-1 milliliter of volume.  

There arises a need to develop a low cost, label free and portable device which can be used 

to analyze cell viability. Emerging BioMEMS technologies are showing promise to play 

an ever-increasing role in diagnosing chronic diseases such as cancer and infectious 

diseases like HIV, and proteomic and genomic studies [12,13,14]. In this work our goal 

was to fabricate and characterize a device capable of rapidly assessing tumor cell viability 

in response to the drug by using multi-frequency impedance cytometry and machine 

learning for enhanced classification accuracy. The use of impedance cytometry allows 

measurement of single-cell electrical properties. Machine learning can then be used to 

accurately analyze the electrical properties of tumor cells.  

Microfluidic impedance based cytometry has advantages of being label-free, compatible 

with mass manufacturing, inexpensive, requirement of low sample volume, and it can be 

miniaturized into a small instrument with tiny foot print. In this work we also extended the 

analysis of impedance cytometry data. We have worked on metrics such as impedance 

change and phase change at various frequencies to assess cell viability. 

1.3 Thesis Organization 

 

Chapter 2 presents an overview of current techniques to analyze cell viability. We briefly 

discuss about trypan blue dye exclusion method, optical coherence chromatography (OCT) 

and overview of various microfluidic platforms which are used to analyze cell viability. 

We also look at commercially available product to analyze cell viability and discuss 

advantages of each technique.  
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Chapter 3 focuses on our novel approach to analyze cell viability. We first discuss in brief 

about impedance cytometry in chapter 3.1. In chapter 3.2 we look at the steps involved in 

fabrication and integration of our bio-sensing device. Chapter 3.3 focuses on the sample 

preparations and anti-matriptase drug. Chapter 3.4 introduces about machine learning and 

its applications, especially in the BioMEMS field. 

In chapter 4 we have a look at results and discuss more about our approach. We discuss 

about the electrical model of a cell proposed in literature. We also look at how Support 

Vector Machine (SVM) is used to classify cells. We analyze the results in detail and make 

a comprehensive attempt to use phase change as an important feature for classification. We 

compare our approach with the current gold standard i.e Trypan Blue Dye Exclusion 

method.   

In chapter 5 we discuss how we used this novel platform technology to quantify cancer 

cells in blood cells. We classified cultured cancer cells and blood cells using impedance 

cytometry data. 

Finally, in chapter 6 we discuss about the conclusions and future scope. We discuss how 

we can use this novel approach can be improvised and used towards personalized 

therapeutics. We present how impedance cytometry is made portable which can help to 

develop this method as a point of care diagnostic device to assess cell viability. 
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Chapter 2 

Cell Viability Analysis 

 

2.1 Trypan Blue Dye Exclusion Method 

Trypan blue is commonly used in microscopy (for cell counting) and in laboratory mice 

for assessment of tissue viability. In the field of biosciences, it is used as a vital stain to 

selectively color dead tissues or cells blue [15]. Trypan blue dye exclusion method is based 

on the principle that live cells possess intact cell membranes that exclude certain dyes, such 

as trypan blue or eosin whereas dead cells do not. The dye exclusion process is pictorially 

shown in figure 2.1. 

 

Figure 2. 1 Trypan blue dye exclusion method 
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The unstained (viable) and stained (dead) cells are counted under a hemocytometer and the 

percentage viability is calculated. The manual process of cell counting can sometime lead 

to inaccurate or inconsistent results. One of the commercially available product to 

automatically perform the trypan blue dye exclusion method is Vi-Cell Analyzer by 

Beckman Coulter®. This eliminates variability and thus ensures accurate results. Fig 2.2 

shows an image of the Vi-Cell Analyzer. 

 

Figur.2. Vi-Cell Analyzer used for automated viability analysis by Beckman Coulter® 

 

Although trypan blue dye exclusion method can be used to rapidly analyze cell viability, it 

relies on staining which fundamentally limits subsequent characterization of cells and 

requires large sample volume (0.5 ml – 1ml). In addition the cost of analysis of cell viability 

using automated products is exorbitant. 
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2.2 Optical Coherence Tomography (OCT) 

Optical coherence tomography (OCT) is an imaging technique that utilizes coherent light 

to capture micrometer-resolution, two- and three-dimensional images from within optical 

scattering media (e.g., biological tissue). It is widely used in medical imaging and 

destructive testing (NDT) [16]. Low-coherence interferometry is used in OCT to produce 

images of optical scattering from internal tissue microstructures [17]. A simple OCT 

architecture consists of a light source with a large bandwidth, a beam splitter, mirror and a 

spectrometer. Light from the light source is split into a sample field and reference field, the 

sample field is incident on the sample (target) and reference field is reflected off form a 

reference mirror. The recombined light is then detected using a spectrometer which then 

performs imaging. Recently, OCT has been used for quantitative tracking of cell death and 

viability in a 3D tumor model [18]. Although OCT is a label free technique to analyze cell 

and tissue viability, developing a point of care miniaturized system using OCT is  

challenging and costly. 

 

2.3 Microfluidic platforms to analyze cell viability 

To overcome the sample input problem, microfluidic platforms have been vastly explored 

to analyze cell viability, dose response screening and cell culture. Various microfluidic 

techniques have used trypan blue staining to assess cell viability. Komen et al. 

demonstrated two microfluidic devices to validate cell culture and analyze chemo 

sensitivity of MCF-7 cells [38]. Again, some form of staining was used to assess the 

viability of cells, Calcein-AM (CAAM; Molecular Probes Invitrogen) and 10 μg/ml 

Propidium Iodide (PI; Sigma, St. Louis, MO, USA) was used.  
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Swastika et al. demonstrated a microfluidic platform to analyze viability in tumor clusters 

and single cells. Here the live dead cell imaging kit by Life Technologies was used to 

perform the assay [39].   

Mazutis et. al explored droplet microfluidics to analyze and sort singe cells [40].  The 

Schematic of their system is shown in figure 2.3.  Fluorescence techniques were used to 

analyze antigen-antibody interaction. Fluorescent die was thus used to analyze cell 

viability.  

 

Figure 2.3 Fluorescence imaging utilized by Mazutis et. al to analyze cell viability.  
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Chapter 3 

Methodology 

 

3.1 Proposed Approach 

Figure 3.1 presents the block diagram of our system. It consists of microfluidic channel 

embedded on a glass wafer with gold electrodes, multi-frequency lock-in amplifier (Zurich 

Instruments®) and software to record and analyze the data. This novel approach requires 

only 50ul of sample and avoids staining, allowing further molecular analysis. Each 

individual block is explained in the following sections. 

 

Figure 3.1. Schematic Diagram of the system. Multi-frequency impedance cytometry 

measures the response across a broad range of frequencies for assessment of cellular 

response to target drug. Live Cells and Dead Cells are assessed using machine learning 

algorithm to predict their viability. 
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3.2 Device Fabrication 

Device fabrication for impedance cytometry consists of four major steps, namely: 

fabrication of sensor, fabrication of master mold for microfluidic channels, soft-

lithography and bonding. 

3.2.1 Sensor Fabrication 

The fabrication process of electrodes consists of standard photolithography on a 3” fused 

silica wafer. The process consists of photo-patterning resist on the fused silica wafer, 

electron beam metal evaporation and liftoff processing. The process of photo-patterning 

includes wafer cleaning, spin coating the photoresist (AZ5214), soft bake of the resist, 

ultraviolet light exposure through a chromium mask printed on a 4” x 4” glass plate, resist 

development (AZ5214 MIF Developer) and hard bake of the resist. Following the photo-

patterning process a 100nm gold layer is deposited on the substrate using electron beam 

evaporation. A 10nm layer of chromium is used to enhance the adhesion of gold film to 

the glass wafer; otherwise the gold film gets peeled off easily. We chose gold as the 

electrode due to its resistance to corrosion and inert nature. Figure 3.2 represents the 

processes involved in sensor fabrication and Figure 3.3 presents the fabricated sensor using 

these processes. 
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Figure 3.2. Processes involved in sensor fabrication. 
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Figure 3.3. Picture of fabricated electrodes. Device also contains multi-electrodes but only 

2 electrode system is used. 

 

3.2.2 Fabrication of Master Mold for Microfluidic Channels 

Fabrication of master mold for microfluidic channel consists of patterning photoresist 

(SU8-10) on a silicon wafer. The process of photo-patterning includes wafer cleaning, 

exposing the wafer to oxygen plasma, spin coating the photoresist, soft bake of the resist, 

ultraviolet light exposure through a chromium mask printed on a 4” x 4” glass plate, resist 

development (SU8-10 Developer) and hard bake of the resist. The Microfluidic channel 

was 100um wide and 28um high. Figure 3.4 represents the fabrication processes involved 
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in fabrication of master mold and Figure 3.5 presents the fabricated mold using these 

processes. SU8-10 is a negative photoresist, meaning the unexposed region dissolves after 

development. SU8-10 is highly viscous, hence the silicon wafer should be exposed to 

oxygen plasma prior to spin-coating which will ensure that the photoresist is spread evenly.  

 

Figure 3.4 Processes involved in fabrication of master mold. 
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Figure 3.5. Picture of fabricated master mold. Several microfluidic channels can be then 

fabricated by using this mold. 

 

3.2.3 Soft-lithography 

Compared to traditional lithographic techniques, soft-lithography is well suited for 

applications in biotechnology and has lower cost. We used Polydimethylsiloxane (PDMS) 

to form microfluidic channels. PDMS is a moldable elastomer and is deformable, 

chemically unreactive and transparent and is thus widely used to make microfluidic 

channels. After the master mold was fabricated, PDMS (10:1 pre-polymer/ curing agent) 

was poured onto the master mold and baked at 80֯ C over two hours for curing. The liquid 

(PDMS and curing agent) is thus cured into a rubbery solid that matches the original 
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pattern. The PDMS channel was then peeled off from the mold. Figure 3.6 presents the 

processes involved in soft-lithography.  

 

Figure 3.6. Utilizing soft-lithography to form microfluidic channels. 
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3.2.4 Device Bonding 

Resistor lags were bonded to the sensors using epoxy and curing agent. The bonded epoxy 

was kept overnight to form irreversible bond. 5mm and 1.5mm holes were punched onto 

the cured PDMS to form inlet and outlet respectively. PDMS substrate was then cleaned 

with iso-propyl alcohol and sensors was cleaned using acetone. PDMS substrate was then 

aligned and bonded to the electrode chip after both substrates have undergone oxygen 

plasma treatment. The bonded chip was then baked at 70֯C for 30 minutes to form 

irreversible bond. Figure 3.7 represents the bonded device and Figure 3.8 presents 

microscopic view of microfabricated electrodes bonded with the channel. 

 

Figure 3.7. Image of PDMS microfluidic channel bonded to electrodes. The two ends of 

the electrodes are further connected to a multi-frequency lock-in amplifier. 
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Figure 3.8. Microfabricated electrodes at the channel. 

 

3.3 Cell Culture 

For cell culture RPMI 1640 media, Dulbecco’s modified Eagles medium (DMEM) and 

Fetal bovine serum albumin from Invitrogen (Fischer Scientific) were used. T47D cells 

(breast cancer cells) were cultured in RPMI 1640 media containing 10% fetal bovine 

serum. To perform the cytotoxicity assay seven thousand cells per well were plated in 

RPMI 1640/DMEM media (Gibco) supplemented with 10% FBS (Invitrogen). After 

overnight culture, spent media was removed and fresh media containing drug was added 

and plates were incubated for different time periods. To assess cell viability of breast cancer 

cell line (T47d cell line), at the end of the experiment 3-(4,5- dimethylthiazol-2-yl)-5- (3-

carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H- tetrazolium, inner salt (MTS) assay was 
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performed according to the Cell Titer 96 Aqueous One Solution protocol (Promega, 

Madison, WI). The cytotoxicity data were further analyzed using GraphPad Prism 4 

software (GraphPad Software Inc., CA). The 50% inhibitory concentration (IC50; the drug 

concentration required to obtain 50% cell kill compared to control) was determined using 

the non-linear regression curve fit of the graphs drawn by GraphPad Prism 4 software. All 

experiments were performed in triplicate wells and all experiments were repeated at least 

three times.  

A subset of the cells was treated with monomethyl auristatin in conjunction with anti-

matriptase antibody for targeted drug delivery. Matriptase is a protease expressed on the 

surface of various tumor cells. After the cell culture was performed, the cells in the media 

(RPMI 1640) were centrifuged (290 G for 5 minutes) and suspended in PBS to perform the 

impedance cytometry experiments.  

 

3.4 Electrical Impedance Cytometry 

Electrical impedance spectroscopy/ cytometry enable measuring of AC electrical 

properties of particles in suspension through which dielectric parameters of the particles 

can be obtained. The primary advantage of impedance cytometry is that it is label free and 

analysis can be done at a single cell level.  The use of bio-impedance measurements can be 

dated back to the early 1910s [19-21] where low and high frequency conductivity of 

erythrocytes was measured. Since then there have been numerous advancements in the 

field of microfluidic single cell impedance analysis [22].  Microfluidic impedance 

cytometry has shown promising results in various fields such as analysis and differentiation 
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of leukocytes [23] and platelets [24], whole blood cell differentiation [25], Nano-electronic 

barcoding of particles [26], tumor cell characterization and classification [27] and 

PicoMolar level detection of protein biomarkers [28]. We extend the advancements made 

in impedance cytometry towards a new direction where analysis of cell viability of the 

cancer cells is based on their impedance response in conjunction with machine learning. 

In impedance cytometry, we apply an AC voltage between a pair of electrodes, this results 

in current flowing through the system. A drop in ionic current or voltage across the 

electrodes occurs when the impedance of the particle crossing the pair of electrodes is 

relatively high compared to impedance of the buffer [29].  Electrical impedance cytometry 

thus allows screening of biological cells based on their dielectric properties. Figure 3.9 

presents a simplified structure of an impedance cytometer. As microparticles (beads, 

biological cells etc.) pass through the electrodes, blockage of ionic currents results in 

voltage drop. The resulting peak information can then be extracted and used to analyze 

properties of biological particles. 

                  

Figure 3.9. Simplified schematic of an impedance cytometer. Each peak corresponds to a single 

particle passing by. 
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In our system we conducted electrical measurements of cells across a wide range of 

frequencies. Multi-frequency impedance cytometry allows simultaneous probing of 

dielectric properties across a wide range of frequencies. In our design, we assumed an ideal 

polarizable electrode system with no faradic reactions as we used gold was the electrode 

material. When a voltage is applied across the two electrodes, it results in a double layer of 

ions with opposing polarity forming a boundary and acting as a capacitance, which is 

commonly referred to as the double-layer capacitance. A simplified circuit model proposed 

by Gawad et. al [30] to detect impedance change in the presence of cell along with the 

readout circuit is presented in figure 3.10. It consists of solution resistance (Rsol) parallel 

to membrane capacitance (Cm) and membrane resistance (Rm), which is in series with the 

double layer capacitance (Cdl).  

 

Fig 3.10 Equivalent circuit model of the electrode-electrolyte interface in the 

microchannel along with the readout circuit for measuring changes in resistance across 

the channel. 
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The change in impedance as each bead passes through the sensing region (Deblois and 

Bean 1970 [41]) is given as: 

 

∆𝑅 =  2𝜌𝑠𝑜𝑙
(

 tan−1

(

 𝑑

2√
𝐴𝑐
𝜋
− 
𝑑2

4

2

)

  

)

 

𝜋√
𝐴𝑐
𝜋
− 
𝑑2

4

−
𝑑

2𝐴𝑐
 

 

 
 
 
(1) 

Where Ac is the area of the channel which is nothing but the product of height and length 

of the channel and ρsol is the resistivity of the solution. The change in amplitude of the 

signal when a cell passes through is: 

 
∆𝐼 =

∆𝑅

𝑅2
𝑉𝑖𝑛 

 

(2) 

 

3.5 Signal Processing and Machine Learning 

The recorded data was then post processed using an algorithm to detrend and denoise the 

data which helped to analyze the cytometry data with minimal error. The algorithm was 

implemented in MATLAB®. Major part of this algorithm was developed and analyzed by 

Xinnan Cao from our group [31]. After detrending and denoising the data, peak location 

was found out using the findpeaks [32] function in MATLAB®. Based on the peak 

locations we implemented a code to find real and imaginary value of each peak. These 

values were further used to calculate electrical parameters of each peak. 

Machine learning is a field of computer science that enables computers to learn without 

explicitly being programmed. Evolved from the study of pattern recognition and 

computational learning theory in artificial intelligence, machine learning plays a pivotal 
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role in the study and construction of algorithms which learn and make predictions on data. 

In machine learning, support vector machines (SVM’s) are supervised learning models that 

have learning algorithms associated with it to analyze data for classification and regression 

[33]. SVM’s are highly efficient in performing nonlinear classification, implicitly mapping 

their inputs to high dimensional feature spaces. Machine learning has found wide 

applications within biology and bioinformatics to make accurate predictions [34-36]. In the 

next chapter we discuss more about SVM to analyze cancer cell viability. 
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Chapter 4 

Results and Discussions 

 

We performed impedance cytometry measurements for the following viability percentages: 

100% live cells, 100% dead cells, 50% live cells, 90% live cells and 82% live cells. 

Different viability percentages were obtained by exposing the drug to longer incubation 

periods. For 100% dead cells, we suspended live cancer cells in Phosphate Buffered Saline 

(PBS) for more than 72 hours. This resulted in lack of nutrition for cancer cells which 

ultimately led to 100% dead cells. Before performing the experiments, the viability was 

measured using trypan blue dye exclusion method. We conducted the measurements at 16 

different frequencies ranging from 500KHz to 30 MHz. 

Once the data was post processed and the real and imaginary value was found, we 

calculated amplitude change and phase change produced by each peak. Qualitatively, 

amplitude change is the change in impedance level when a cell pass by. It is the difference 

between the baseline voltage and the voltage when a cell passes by. Phase change is the 

change in angular position of the complex impedance when a cell passes by.  We found the 

phase change and amplitude change for each single cell passing by and at all frequencies 

at which the measurements were conducted. In the following sections we discuss more 

about SVM classifier, performance of SVM classifier and discuss results obtained using 

our SVM classifier. 
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4.1 Support Vector Machine Classifier 

Support Vector Machines (SVM’s) are among the best “off-the-shelf” supervised learning 

algorithm widely used for classification and regression. In other words, provided a labeled 

training data which is nothing but supervised learning, the algorithm will output an optimal 

hyperplane which can categorize new examples (not used in the training data). To improve 

the classification accuracy, we used SVM with a Gaussian Kernel. A Kernel function is a 

form of mapping done to the training data to transform the data in higher dimensions. Using 

a kernel enables working with highly complex, efficient to compute data without using 

potentially infinite dimensional feature vectors. A Gaussian Kernel works on calculating 

the squared Euclidian distance between two feature vectors. The data used for training 

consisted of features extracted from 100% live and 100% dead cells. SVM algorithm with 

Gaussian Kernel was used in MATLAB®. 

 For training the data we labeled the features from live cells as 1 and features from live 

cells as 0. Features were nothing but individual properties of measured phenomenon. Our 

feature matrix contained a matrix of amplitude change and phase change at different 

frequencies. Rows corresponded to features and columns corresponded to training data 

points (amplitude and phase change of each peak at different frequencies).  Training data 

size was more than 1000 samples to make sure the SVM classifier does not face problem 

of over fitting. As the number of features were reasonable, we did not face the problem of 

underfitting. To test the robustness and accuracy of our SVM classifier, we tested it three 

different viability percentages (90% live, 50% live and 82% live). The number of 1’s 

predicted by the SVM classifier divided by the total number of samples/data points gave 

us the viability percentage predicted by the SVM classifier. 
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4.2 Performance of the SVM Classifier 

To evaluate the performance of our SVM classifier, we used confusion matrix on a set of 

test data for which the true values were known. A part of training data which included 

features from 100% live and 100% dead cells was used for testing which then built the 

confusion matrix. Following performance metrics which helped us evaluate the SVM 

classifier: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇. 𝑃.+𝑇.𝑁. )/𝑁 (3) 

Where True Positives (T.P.) is the number of times the classifier predicts the cell was live, 

given that the cell was live, True Negatives (T.N.) is the number of times the classifier 

predicts the cell was dead, given that the cell was dead and N is the number of data points 

used for training. 

Similarly, False Positives (F.P.) is the number of times the classifier predicts the cell is 

live, given the cell was dead and False Negatives (F.N.) is the number of the times the 

classifier predicts the cell was dead, given the cell was live. 

Based on this performance metrics we build a confusion matrix which helped us to analyze 

the results in detail. Generally false positives in our case are undesirable. Predicting a live 

cancer cell to be dead can lead to severe loss of life. 

4.3 Amplitude Change as a feature for classification 

 We explored the amplitude change at different frequencies as features for our SVM 

classifier. Figure 4.1 and 4.2 represents normalized impedance response of live cancer cells 

and dead cancer cells at 500KHz,20MHz and 30MHz. Higher frequencies (> 10MHz) 

probe the internal properties of the cell [22]. 
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Figure 4.1. Normalized impedance response of live cancer cells at 500KHz, 20MHz and 

30MHz. Each peak corresponds to a single cell passing by. 

 

Figure 4.2 Normalized impedance response of dead cancer cells at 500KHz, 20MHz and 

30MHz. Each peak corresponds to a single cell passing by. 
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At higher frequencies we not only probe the internal properties of the cell but also 

distinguish live and dead cells based on size. As a cell dies, it’s size tend to shrink.  Figure 

4.3 presents the amplitude spectrum of live cancer cells and dead cancer cells across a wide 

range of frequencies. Also, from the scatter plot at different frequencies we can visually 

distinguish between live and dead cancer cells. Figure 4.4, 4.5 and 4.6 presents scatter plot 

of live cancer cells and dead cancer at different frequencies. 

 

Figure 4.3. Amplitude spectrum of live cancer cells and dead cancer cells from 500KHz 

to 30MHz frequency. 
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Figure 4.4. Scatter plot of live cancer cells and dead cancer cells at 500KHz and 20MHz. 

 

Figure 4.5. Scatter plot of live cancer cells and dead cancer cells at 500KHz and 25 MHz. 
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Figure 4.6. Scatter plot of live cancer cells and dead cancer cells at 500KHz and 30MHz. 

We used the amplitude change at 4 different frequencies (500kHz, 20MHz, 25MHz and 

30MHz) to train our SVM classifier with gaussian kernel. We then tested the SVM model 

with the amplitude change data from different viability percentages of cancer cells.  The 

confusion matrix for the SVM classifier using amplitude change as feature is shown in 

figure 4.7. Our classifier reported to have an accuracy of 89.7%, True Positive Rate and 

True Negative Rate of 90% each. Figure 4.8 represents a bar graph comparing between the 

analysis of cell viability by trypan blue dye exclusion method (ground truth) and multi-

frequency impedance spectroscopy with SVM using amplitude change as features for the 

SVM classifier. 
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Figure 4.7. Confusion matrix of the SVM classifier while using impedance change as 

features while training the SVM. 

 

Figure 4.8. Comparison between the analysis of cell viability by trypan blue staining 

method (ground truth) and multi-frequency impedance spectroscopy with SVM using 

impedance change as features for the SVM classifier. 
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4.4 Phase Change as Feature for Classification 

As discussed previously, whenever a cell passes by, it results in a momentary change in 

the position of complex impedance. We defined phase change as the difference of inverse 

tangent of imaginary to real part when a cell passes through the electrodes. For phase 

change, we observed a general trend wherein phase change was negative at lower 

frequencies (<1MHz) and positive at higher frequencies. Figure 4.9, 4.10 and 4.11 presents 

scatter plots representing phase change for live cancer cells and dead cancer cells at various 

frequencies.  We tested our SVM classifier for all the 4 frequency sets. The frequency set 

consisting of phase change at 500KHz, 20MHz, 25MHz and 30MHz reported to have 

higher accuracy and accurate predictions for different viability percentages. 

 

Figure 4.9. Scatter plot of live cancer cells and dead cancer cells representing phase 

change at 500KHz and 20MHz. 
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Figure 4.10. Scatter plots of live cancer cells and dead cancer cells representing phase 

change at 500KHz and 25MHz. 

 

Figure 4.11. Scatter plots of live cancer cells and dead cancer cells representing phase 

change at 500KHz and 30MHz. 
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The confusion matrix for the SVM classifier using phase change as feature is shown in 

figure 4.12.  Our classifier reported to have an accuracy of 90.6%, True Positive Rate of 

90% and True Negative Rate of 93%. Figure 4.13 represents a bar graph comparing 

between the analysis of cell viability by trypan blue dye exclusion method (ground truth) 

and multi-frequency impedance spectroscopy with SVM using phase change as features 

for the SVM classifier. 

 

Figure 4.12. Confusion matrix of the SVM classifier while using phase change as features 

while training the SVM. 
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Figure 4.13. Comparison between the analysis of cell viability by trypan blue staining 

method (ground truth) and multi-frequency impedance spectroscopy with SVM using 

phase change as features for the SVM classifier. 

4.5 Amplitude Change and Phase Change as features for the SVM 

classifier 

Lastly, we explored using amplitude change and phase change as features for the SVM 

classifier. Since for the same frequency sets (500KHz, 20 MHz, 25 MHz and 30 MHz) 

amplitude change and phase change individually gave good results we built an 8-feature 

matrix which included both amplitude change and phase change. Before training the 8-

feature matrix with the SVM classifier the data points were normalized to ensure that all 

the data points lie within a specified range. Normalizing the data helps any machine 

learning classifier to perform faster. The confusion matrix for the SVM classifier amplitude 

change and phase change as features is shown in figure 4.14.  Our classifier reported to 
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have an accuracy of 95.9%, True positive Rate of 95% and True Negative Rate of 97%. 

Figure 4.15 represents a bar graph comparing between the analysis of cell viability by 

trypan blue dye exclusion method (ground truth) and multi-frequency impedance 

spectroscopy with SVM using phase change as features for the SVM classifier. In all the 

three different scenarios the trained SVM model could predict viability accurately. While 

phase change followed a general trend (negative at lower frequencies and positive at higher 

frequencies), the actual value of phase change helped to classify between live and dead 

cells. 

 

Figure 4.14. Confusion matrix of the SVM classifier while using phase change and 

amplitude change as features while training the SVM. 
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Figure 4.15. Comparison between the analysis of cell viability by trypan blue staining 

method (ground truth) and multi-frequency impedance spectroscopy with SVM using 

phase change and impedance change as features for the SVM classifier. 

 

 

 

 

 

 

 

 



38 
 

 
 

Chapter 5 

Exploring Use of Impedance Cytometry for Quantification of 

Cancer Cells in Blood Cells 

 

We extended our work to explore use of impedance cytometry to quantify cancer cells in 

blood cells. In the past many methods have been proposed for cancer cell detection, 

characterization and separation including chromatography, magnetic activated cell sorting 

and di-electrophoresis [38,39]. Currently commercially available devices to isolate and 

characterize cancer cells from blood rely on size based separation or by using surface 

antigens like epithelial cell adhesion molecule (EpCAM). Here we demonstrate a novel 

method to rapidly characterize cancer cells from blood by referring to phase change in 

impedance cytometry. This helps to electrically classify cancer cells from whole blood, 

rather than relying on size only. 

 Figure 5.1 shows the schematic diagram of our experimental setup. This includes a 

microfluidic channel embedded on glass wafer with gold electrodes, a multi-frequency lock 

in amplifier (Zurich Instruments ®), and software to record to analyze the data. The 

schematic is like the one used in previous experiments, where we relied on phase change 

only to quantify cancer cells from blood.  
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Figure 5.1.  Schematic Diagram of the system. Multi-frequency impedance cytometry 

measures the response over a broad range of frequencies. 

We measured the impedance response of breast cancer cells (t47d) and healthy blood. 

These cells were suspended in Phosphate Buffered Saline. The impedance response of 

cancer cells and blood cells was recorded at 16 different frequencies ranging from 500KHz 

to 30MHz. The recorded data was then processed and analyzed in MATLAB. We 

implemented different machine learning classifiers for accurate classification. The 

classifiers used were namely Logistic Regression, K Nearest Neighbors and Support 

Vector Machine. 

Passage of beads/cells over the sensor electrodes in the microfluidic channel results in 

modulation of impedance. This momentarily changes the angular position (phase) of the 

complex impedance when a cell passes by. Figure 5.2 and 5.3 represent scatter plots of 

phase change for blood and cancer cells at different frequencies and figure 5.4 represents 
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normalized impedance response for cancer cells at different frequencies. Normalized 

impedance response for blood cells in represented in Figure 5.5. 

 

Figure 5.2. Scatter plots of phase change for live cancer cells and whole blood cells at 

500KHz and 1MHz. 

 

Figure 5.3. Scatter plots of phase change for live cancer cells and whole blood cells at 

500KHz and 20MHz. 



41 
 

 
 

 

Figure 5.4. Normalized amplitude response of live cancer cells at 500KKz, 300KHz and 

1MHz. 

 

Figure 5.5. Normalized amplitude response of whole blood cells at 500KKz, 300KHz and 

1MHz. 
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From the scatter plot, we see that visual inspection helps us clearly differentiate between 

cancer cells and blood cells, machine learning algorithms are implemented to enable higher 

classification accuracy in a higher dimension. Table 5.1 represents accuracy in percentage 

of different machine learning classifiers like Logistic Regression, K Nearest Neighbors and 

Support Vector Machine. We are successfully able to distinguish between cultured cancer 

cells and whole blood using phase properties of a cell obtained from impedance cytometry 

data. 

 

Table 5.1. Accuracy of different machine learning classifiers to classify between blood 

cells and cancer cells. 
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Chapter 6 

Conclusion and Future Scope 

 

In this work we present a novel method to rapidly assess patient response to targeted cancer 

therapy using multi-frequency impedance cytometry and supervised machine learning. Our 

SVM classifier reported to have high accuracy which rightly matched with the ground truth 

i.e. trypan blue dye exclusion method.  We were also able to effectively analyze impedance 

cytometry data and use electrical properties, like amplitude change and phase change to 

analyze viability of cancer cells. We found that phase change follows a trend wherein phase 

change is negative at lower frequencies and positive at higher frequencies, but the 

quantitative change in phase for different type of cells helps accurate classification. 

Compared to optical techniques for label free analysis of cell viability our novel method 

can rapidly analyze cell viability with minimal cost. 

We also explored use of impedance cytometry to quantify cancer cells from blood cells. 

The heterogeneity between cancer cells and blood allows us to rapidly measure their 

properties. We envision this preliminary result as benchmark which can further be used to 

accurately quantify circulating tumor cells from blood in patients. This quantification helps 

to characterize cancer cells using their electrical properties rather than size which can yield 

more accurate results. We envision using this device as a point-of-care diagnostic for 

assessing patient response and personalization of therapeutics. 

 



44 
 

 
 

Chapter 7 

Appendix 

 

 

7.1 Oxygen Plasma Etching 

PDMS is usually hydrophobic in nature. Surface treatment is believed to expose silanol 

(OH) groups at the surface of PDMS that when brought together form Si-‐O-‐Si covalent 

bonds. Oxygen plasma thus changes the surface properties of PDMS to render it 

hydrophilic [37].  

 

7.2 Support Vector Machine 

In this section we discuss more about support vector machine and the mathematics behind 

it. Given a set of points xi in an n dimensional space with the corresponding classes 

{ 𝑦𝑖: 𝑦𝑖 ∈ {−1,1}}then the SVM training algorithm will attempt to place a hyperplane 

between the points {-1,1}. A new pattern x can then be classified by testing which side of 

the hyper plane the point lies on. 

For classification, given a training data, suppose the two classes can be separated by a 

hyperplane 

 (𝜔𝑥) + 𝑏 = 0 (1) 

Let us assume that all the training data satisfies the following constraints to describe the 

separating hyperplane: 

 (𝜔. 𝑥𝑖) + 𝑏 ≥ +1 𝑓𝑜𝑟 𝑦𝑖 = +1 (2) 

 (𝜔. 𝑥𝑖) + 𝑏 ≤ −1 𝑓𝑜𝑟 𝑦𝑖 = −1 (3) 
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This can be then combined into one set of inequalities. These equations can be solved to 

find which points lie on the two planes. The optimal solution can be found by solving the 

equation: 

 𝑎𝑟𝑔𝑚𝑎𝑥 ∑𝛼𝑗 −

𝑘

0.5∑𝛼𝑗𝛼𝑘𝑦𝑗𝑦𝑘(𝑥𝑗𝑥𝑘)

𝑗,𝑘

  (4) 

 

Once we have found the vector 𝛼 the margin can be computed with the equation: 

 𝜔 = ∑𝛼𝑗𝑥𝑗
𝑗

 
(5) 

Upon analysis of the equation, we find that the solution has a single global optimum which 

can be found efficiently.  
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