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Road maintenance is crucial for the purpose of retarding deterioration of pavement, 

which is a complex and continuous process due to the interaction of heavy traffic, 

environmental condition, and material aging. The combination of increased traffic and 

lack of appropriate maintenance causes a higher rate of degeneration in the roads. 

Transportation agencies need to develop a system for disseminating limited funds and 

decide the timing to conduct maintenance and repairs. In order to establish a cost-

effective budget and achieve the optimum utilization of available resources, the agency 

needs to decide which maintenance treatment to use and where and when to apply it. 

The primary objective of this dissertation is to develop network-level pavement 

preservation decisions considering multiple objectives of cost and environmental impacts. 

This research will produce multi-objective optimization models designed to provide 

highway agencies with means of making road maintenance decisions among different 

concerns. Therefore, this study developed regression models of CO2 emissions for four 

vehicle types to quantify the environmental impact at the use stage.  
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The simulated constraint boundary method (SCBM) was used as a tool to find Pareto 

optimal solutions for the pavement multi-objective optimization problem of minimizing 

agency costs and minimizing CO2 emissions by minimizing average network IRI value. 

This method is based on solving one objective and converting the other objective to 

constraint, so the decision makers need to decide first which objective should be 

considered as the primary objective (the objective that deserves the most attention among 

the competing objectives). The results show that the crack seal is still the most dominant 

preservation treatments compared to thin overlay although it has less effect on the 

reduction of IRI than the thin overlay treatment. So, the objective of minimizing agency 

cost controls the optimization results although the minimization of CO2 emissions was 

considered in the optimization process. 

Another method that was used in this research to achieve both objectives of 

minimizing agency costs and emissions is the Weighted Sum method. Weighted sum 

method is based on converting the two objectives into one single objective by adding 

both objectives together after multiplying each objective by a weighting factor. The value 

of weighting factor should be considerable relative to other weighting factors and 

comparative to its corresponding objective function. The results for the distribution of 

pavement preservation treatments show that less costly preservation treatments were 

selected for the most segments of the network when the priority of optimization was 

given to the objective of minimization agency cost. The treatments that have higher 

effectiveness on pavement condition were selected for the most segments of the network 

when the objective of minimization CO2 emission is the main objective compared to the 

other objective.    
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND  

Economy, society, and environment are three significant elements of sustainability. 

Recently, environmental sustainability becomes more recognized due to the concern of 

climate change and human health. Although pavement management system is used to 

maintain the acceptable condition of pavements and keep pavements smooth and safe, it 

is desired to investigate the tradeoff between cost and environmental effects of pavement 

investments. 

Many sustainable practices have been implemented for pavements through improved 

or innovative design such as long-lasting pavement and porous pavement, utilization of 

recycled material and industry by-products, such as recycled asphalt and concrete 

materials. Permeable pavements have been designed to decrease the need for storm-water 

reservation tanks and develop the quality of storm-water runoff, while long-lasting used 

to increase sustainability through long service lives, minimum maintenance and repair, 

and reduced traffic disruptions. Recycled asphalt pavement (RAP) is becoming 

commonly recycled materials in flexible pavements to reduce construction costs and the 

use of non-renewable resources. Likewise, the increasing use of high percentages of 

additional cementitious materials in rigid pavements cannot only recycle waste material 

but also produces significant greenhouse gas (GHG) emissions. In the recent years, the 

use of warm mix asphalt (WMA) has been encouraged because of its energy and 

environmental benefits. 

On the other hand, road maintenance is crucial for the purpose of retarding 

deterioration of pavement, which is a complex and continuous process due to the 
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interaction of heavy traffic, environmental condition, and material aging. The pavement 

deteriorates gradually and becomes uneven and potholed. The combination of increased 

traffic and lack of appropriate maintenance causes a higher rate of degeneration in the 

roads. Transportation agencies need to develop a system for disseminating limited funds 

and decide the timing to conduct maintenance and repairs. In order to establish a cost-

effective budget and achieve the optimum utilization of available resources, the agency 

needs to decide which maintenance treatment to use and where and when to apply it. In 

addition, rolling resistance due to tire-pavement interaction and pavement surface 

condition causes direct effects on vehicle operation costs, fuel consumption, and 

greenhouse gas (GHG) emissions particularly. In 2008, the road transport produced 

thirty-three percent of the GHG emissions in the U.S. The economic and environmental 

impacts of different pavement maintenance and preservation activities are important for 

the selection of pavement repair. These issues need to be taken into account to formulate 

a sustainable strategy for pavement maintenance. 

 

1.2 PROBLEM STATEMENT  

Recently, transportation agencies started to increase focus on preservation and 

address the deterioration of the nation’s highways. Compared to rehabilitation, pavement 

preservation (or preventive maintenance) treatments mainly focus on surface refreshment 

to alleviate functional distresses of pavement and retard pavement deterioration. At the 

construction stage of pavement maintenance and repair, there are significant differences 

in energy consumption and GHG emissions among various treatments mainly due to 

different raw material components and manufacturing processes. At the usage stage of 
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pavement after treatments, fuel consumptions and vehicle emission vary significantly 

depending on tire rolling resistance that is affected by pavement surface roughness, 

macro-texture, and deflection. Therefore; it is needed to develop an efficient approach to 

quantify environmental impacts of pavement preservation during its whole life cycle 

including the usage stage. 

Most of the previous studies focused on the environmental impact of pavements at 

material and construction phases while neglected their impacts at usage phase. This is 

mainly due to the lack of a model that can quantify the relationship between vehicle 

emission and pavement surface characteristics for different vehicle types and operation 

statuses. It is not sure if the current available models will produce the consistent results. 

For example, several studies tried to quantify the energy consumptions and emissions of 

pavement at usage stage through running Motor Vehicle Emission Simulator (MOVES) 

with different input parameters. By changing and updating input values in MOVES, 

exporting and importing files consumes much time in addition to execution time. For this 

reason, it is important to develop an emission rate function with respect to different 

parameters through running MOVES and regression analysis. 

Some existing studies have been carried out about multi-objective optimization 

models for the purpose of optimizing pavement maintenance in the time horizon. 

Nevertheless, one of the notable gaps in the existing literature is that few studies had the 

goal of considering cost and environmental impacts for the optimum application of 

different pavement preservation treatments at the network level. This becomes more 

critical for the situation that there is an annual budget set separately for pavement 

preservation. In addition, there is a lack of existing research focusing on the integration of 
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the development of the multi-objective model and the post-optimization decision making. 

The Pareto optimal concept, an approach that is ideal for generating nondominant 

solutions, need be used to get solutions for multi-objective problems.  

 

1.3 RESEARCH OBJECTIVES AND SCOPE 

The primary objective of this dissertation is to develop network-level pavement 

preservation decisions considering multiple objectives of cost and environmental impacts. 

During last few years, most of the research focused on the environmental impact of 

pavement at material and construction stages but neglected the use stage. For this reason, 

this work will cover the use stage to quantify the impact of pavement preservation on 

energy consumption and CO2 emissions. This research will produce multi-objective 

optimization models designed to provide highway agencies with means of making road 

maintenance decisions among different concerns.  

 To achieve this objective, the following research tasks are conducted:  

1. Develop emission rate functions with respect to vehicle speed and pavement 

surface characteristics through running MOVES and regression analysis;  

2. Quantity life-cycle energy and emission of pavement preservation treatments with 

different application strategies; 

3. Develop network-level optimization on pavement preservation strategy 

considering multiple objectives of cost and environmental impacts. 
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1.4 DISSERTATION OUTLINE 

This dissertation is divided into seven chapters. The first chapter introduces the 

problem statement, objective, and methodology of the dissertation. The second chapter 

summarizes an extensive literature review, which will describe the previous studies 

conducted on existing pavement preservation techniques and optimization methods.  

In chapter three, emission rate functions were developed with respect to vehicle speed 

and pavement surface characteristics through running MOVES and regression analysis. 

Chapter four focused on quantifying environmental impact of three pavement 

preservation treatments, chip seal, crack seal, and thin overlay, with different application 

strategies and scenarios at construction and use stage using life-cycle assessment (LCA) 

approach. 

Chapter five focused on developing pavement preservation strategy at the network 

level considering multi-objective optimization of minimizing agency costs and 

minimizing environmental impacts in terms of CO2 emissions by using SCBM method. 

Chapter six aimed to find the optimal timing of pavement preservation strategy at the 

network level considering multi-objective optimization of minimizing agency costs and 

minimizing CO2 emissions by using Weighted Sum method. 

Finally, Chapter 7 summarizes the key findings and conclusions of the dissertation 

and provides recommendations for future research to further explore the potential of 

applying multi-objective optimization techniques in pavement preservation. 
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CHAPTER 2 LITERATURE REVIEW  

2.1  PAVEMENT MANAGEMENT SYSTEM 

2.1.1 Pavement Management Activities 

Hass and Hutchinson (1970) first put forward the PMS concept in 1970 in their 

seminal work “A Management System for Highway Pavement." The PMS framework, 

according to the American Association of State Highway and Transportation Officials 

(Guide, 2002), is a cohesive and formal method of organizing all pavement management 

activities effectively. There are a set of key elements that must comprise an effective 

PMS to facilitate decision-making activities on different levels of management, namely 

surveys focused on the condition and serviceability of roads, a database of all information 

relating to pavements, an analysis scheme, decision criteria and implementation processes.  

There are three primary categories of pavement management activities in terms of 

intensity and the structural changes involved. These three types are Maintenance, 

Rehabilitation, and Reconstruction (MR&R). The FHWA (2005) divide pavement 

management activities into four groups on the basis of their objectives, namely corrective 

maintenance, pavement preservation, major rehabilitation, and reconstruction. 

Furthermore, pavement preservation activities can be sub-divided into routine 

maintenance, preventative maintenance, and minor rehabilitation.  

Corrective maintenance (CM) refers to the activities that are taken to overcome 

any defects or deficiencies that may endanger the safe and efficient function of the 

facility and compromise the integrity of the pavement in the future (FHWA, 2005). These 

activities are typically reactive in nature and are undertaken to maintain all pavements to 

a minimum standard in light of unexpected damage or events. CM is also performed to 
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enhance the structural capacity of the facility on a local level and can include the repair of 

potholes or the patching of small areas of pavement damage.  

Pavement preservation (PP) is defined as the long-term activities taken on a network 

level to improve the functionality of pavements based on a cohesive and cost-intensive 

range of strategies that enhance safety, satisfy the needs of motorists and extend the 

lifespan of pavements. Thus, pavement preservation refers to all activities that are 

performed to ensure that roadways are maintained to a specific standard. The main 

purpose of such activities is to improve performance, reduce costs, minimize user delays 

and extend pavement life and can include minor, routine or preventative maintenance. 

However, pavement perseveration does not include construction, reconstruction or the 

enhancement of the structural capacity of pavements.  

Routine maintenance (RM) is defined as activities that are scheduled and 

undertaken periodically to ensure the long-term performance of the highway system and 

to respond efficiently to specific conditions or events to maintain an adequate level of 

user service (FHWA, 2005). These activities are performed on a regular basis and can 

include crack filling, ditch cleaning, line striping, and mowing. All of these activities are 

non-pavement related except crack filling.  

Preventative maintenance (PM) is defined as a cost-effective strategy designed to 

maintain existing roadway systems in a way that hinders future damage, maintains or 

enhances functionality without enhancing structural capacity to any large extent and 

ensures that the facility continues to meet minimum requirements (FHWA, 2005). Such 

activities include surface treatments, like cape sealing, scrub sealing, chip sealing, fog 

sealing or crack sealing.  



8 

 

Pavement rehabilitation is defined as structural improvement activities that 

increase the load carrying capacity of pavements or extends their lifecycle. Such 

activities include structural overlays and restoration works. Non-structural improvements, 

such as the overlay of 1.5 inches of asphalt are referred to as minor rehabilitation works. 

On the other hand, major rehabilitation works include structural enhancements that 

increase the lifecycle of existing pavements and enhance its load carrying capacity, such 

as the overlay of 3 or 4 inches of asphalt.  

Pavement reconstruction refers to the complete replacement of an existing 

pavement network through the application of the same or an extended pavement structure 

(FHWA, 2005). The end result in this case is a completely new pavement structure, 

which is essentially the same as new construction.  

According to Zaniewski and Mamlouk (1996), crack filling and sealing can be 

regarded as preventative maintenance activities as their function is to prevent further 

damage, hinder progressive deterioration, and lower routine maintenance or service 

requirements. It is common for researchers to define activities as corrective or 

preventative in terms of how long the treatment takes as opposed to the treatment itself as 

a specific type of treatment can be used in both corrective and preventative maintenance 

activities. For instance, crack sealing activities on a highly functioning pavement may be 

regarded as preventative whereas crack sealing on a defective or deteriorating pavement 

may be regarded as corrective as the aim is to seal the surface and alleviate mild-

moderate distress. Nonetheless, this ambiguity can cause issues for agencies attempting 

to deploy an effective pavement management system as similar treatments are used for 

routine, corrective and preventative maintenance activities.  
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2.1.2 Consideration of Pavement Preventive Maintenance in PMS 

Preventative maintenance as a key element in the pavement preservation process 

has become a more popular strategy for highway agencies as it helps to maintain existing 

roadways and prevent the need for more cost-intensive rehabilitation works. This 

approach also improves the user quality, reduces user costs and ensures a higher level of 

user satisfaction. In the past, agencies prioritized routine, and corrective maintenance 

works as opposed to minor rehabilitative work or preventative maintenance. These 

activities are generally performed when signs of damage or threshold values are detected, 

and major rehabilitative work is often neglected as a result.  

The efficacy of various kinds of Pavement Preventive Maintenance (PPM) has 

been modeled by some scholars (Hicks et al. 1997), and some have sought to determine 

the ideal time for PPM treatments to be performed (Mamlouk & Zaniewski, 2001). These 

studies indicate that treatments applied at the most optimal time effectively reduce costs 

as they delay the need to perform major rehabilitative works for several years and 

increase the cost-effectiveness of the whole network over the course of its lifecycle. 

Further studies indicate that every dollar spent on effective preventative activities can 

lead to savings of up to $6 over the course of the lifecycle (Robert & Jim, 2003; Jackson 

2001). These studies indicate the value of effective pavement preservation.  

In 2001, a survey performed by the Foundation for Pavement Preservation (FP2) 

discovered that 10 of every 34 highway agencies surveyed have yet to implement a 

formal PPM system while 5 of every 23 agencies that have already deployed a PPM 

system feel that the program is inadequate. The findings also indicate that the majority of 

agencies believe that PPM can reduce costs and ensure better quality pavement 
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conditions. However, the system has yet to be deployed on a nationwide level. Further 

still, when PPM is implemented, it often performs ineffectively.  

A range of challenges must be overcome by decision makers when establishing a 

PPM program, particularly in terms of PPM treatments. A survey performed in 2005 by 

the National Center for Pavement Preservation (NCPP) and the FHWA revealed that 66% 

of state transportation departments had implemented PPMs into their cohesive network 

strategies that cover both reconstruction projects and rehabilitation works. In addition, 59 % 

of agencies have autonomous preservation systems and pavement management systems 

in place (Peshkin and Hoerner, 2005). However, few take PPM treatments and MR&R 

activities into account or focus only on reconstruction activities or PPM. As a result, it is 

often difficult to persuade agencies to abandon the “worst first” approach as some of 

these models recommend performing preventative maintenance on roads that are already 

in relatively good condition despite other pavements requiring rehabilitation works Due 

to insufficient funding, all of these treatments cannot be performed simultaneously, 

which indicates the need to assess all different kinds of treatment collectively, in light of 

available funding to determine best practice. In effect, an integrated optimization model 

is required that takes all treatment types into account and considers all potential sources 

of finance that could be used to facilitate the implementation of a PMS. 

The absence of a cohesive practical planning guide is another issue despite that 

several studies were conducted for prioritization models and optimized planning 

strategies. The main issue with these models is that they apply very basic solutions for 

rather complex mathematical problems or conduct a cost-benefit timing strategy for only 

one treatment type at a time. Thus, agencies lack confidence in the real world application 
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of these models as they are unable to take network issues into account or generate a 

completely optimal planning program.  

There is a lack of knowledge regarding the efficacy of different treatment options, 

preventative treatments in particular. According to Wu and Groeger (2010), a lack of 

knowledge regarding the impact of pavement preservation activities in the US means that 

the system is hard to apply in practice despite being theoretically sound. The widespread 

lack of pavement preservation programs may be attributable to the absence of 

fundamental knowledge and information regarding treatment performance. For instance, 

as several treatment options for high load roadways are regarded as inadequate, such as 

chip seals, information related to the performance of this treatment on roads of varying 

traffic loads is inaccurate. Also, federal funding for preventive maintenance has only 

been available for 20 years to evaluate the effectiveness of the treatments and to collect 

the information about in-service performance and effectiveness. Furthermore, different 

tools and standards are applied in different states to measure the performance and 

condition of roads. Thus, nationwide standards are required to provide more insight into 

the performance of preventative maintenance activities and to facilitate more effective 

decision-making activities. Lastly, effectiveness analysis from a long-term perspective is 

compromised by the absence of a cohesive long-term monitoring strategy for the nation’s 

roadways.  

 

2.1.3 The effectiveness of Pavement Preservation on Pavement Performance 

Eltahan et al. (1999) studied the performance of the LTPP SPS-3 test sections in 

the southern region. The performance of the treatment sections was compared with 
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control sections on the basis of three existing conditions: good, fair, and poor. The study 

concluded that if the existing pavement is in a fair condition, the treatments make the 

most significant difference. For thin overlay, the average benefit compared with no 

treatment is 4.8 years, whereas it is 3.5 years for slurry seal and 5.7 years for crack seal. 

The study also concluded that chip seal outperformed all the other treatments. 

Chen et al. (2003) conducted a study in the Texas DOT reviewed fourteen LTPP 

test sites. In terms of the overall performance, chip seal was ranked first, followed by thin 

overlay, and slurry seal, which is tied with crack seal. The most comprehensive study on 

the LTPP SPS-3 experiment was conducted under the National Cooperative Highway 

Research Program’s (NCHRP) Project 20-50 (03/04), which analyzed data from all the 

SPS-3 sites. The study found that the thin overlay treatment was the only one of the four 

treatments to have a significant initial effect on rutting, and crack seals did not 

demonstrate any initial or long-term effect with respect to the international roughness 

index (IRI), rutting, or cracking (Hall et al. 2002). 

Lu and Tolliver (2012) designed an optimization model to minimize total agency 

costs and minimize pavement network average roughness based on the Pareto optimal 

concept to solve all types of constraints. In their study, Lu and Tolliver evaluated the 

short-term effectiveness of the IRI change, using Long-Term Pavement Performance 

(LTPP) data. They found that the short-term pavement treatment effectiveness in terms of 

IRI followed a polynomial relationship with the pre-treatment condition. The main 

conclusion of that study is that they observed average reductions of IRI equal to 1.44, 

0.27, and 0.72 m/km for mill overlay, crack sealing, and chip seal, respectively. In 
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addition to Lu and Tolliver’s (2012) study, Wang et al. (2012) completed a study on 

preservation treatments using LTPP roughness data from multiple experiment sites.  

With many treatment types, Hot Mix Asphalt (HMA) overlay had the highest 

performance time, followed by micro-surfacing with chip seal, slurry seal, crack filling, 

and crack sealing. Furthermore, thin overlay was the most expensive treatment, followed 

by micro-surfacing and chip seal tied with slurry seal. Wang et al. (2012) used statistical 

tests, such as a paired t-test, to compare the LTPP control sections with the treatment 

section roughness. They found that all treatments used in their study caused a significant 

roughness reduction. They also ordered the effectiveness of the treatments based on 

roughness reduction. HMA overlay had the most significant effect on roughness 

reduction, followed by chip seal, crack seal, and slurry seal. Finally, comparing the 

average difference of International Roughness Index (ΔIRI) between the control section 

and the treatment sections, crack seal, slurry seal, and overlay were found to be 0.124, 

0.083, and 0.407 with a standard deviation of 0.269, 0.04, and 0.618, respectively. 

After extensive studies, Carvalho et al. (2011) presented the effects of several 

design parameters on pavement responses and performance using rigid and flexible 

pavements. Weighted distress was utilized in that study as a performance indicator, which 

represents the total normalized area under the distress-time curve. The main results of 

Carvalho et al.’s (2011) study showed that thin overlay performed better than other 

treatments in terms of with a Weighted Distress-IRI. The Weighted Distress-IRI of thin 

overlay and slurry seal equals 4.80 ft/mile (0.91 m/km) and 7.66 ft/mile (1.45 m/km), 

respectively. Additionally, slurry seal treatment showed the worst performance over an 

eight-year period. 
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2.2 PAVEMENT PERFORMANCE MODELING 

2.2.1 Pavement Performance Models 

The most important element in a pavement management plan is the prediction of 

the future performance and conditions of roads. Effective PPMs incorporate pavement 

forecasting models that have a direct influence over the actions of decision makers. In 

fact, PMSs are now increasingly reliant on the anticipation of pavement conditions in the 

future. As such, dependable prediction models have become invaluable.  

Such prediction tools are commonly applied to forecast future changes to the 

performance or condition of pavements along with a range of explanatory variables. 

These models are referred to as mechanistic, mechanistic-empirical or empirical 

(AASHTO, 2001). A general review of the different types of models as presented by the 

AASHTO Pavement Management Guide (AASHTO, 2001) is presented in Table 2.1. 

Predictions made by mechanistic models are based on the evaluation of the degradation 

process as performance is regarded as a function of a set of parameters that are identified 

using mechanical means. The most common parameters are loading factors and climatic 

history. On the other hand, empirical models seek to find a connection between the 

performance of pavements and other types of field data that influence pavement 

performance and can be directly observed. Mechanistic-empirical models operate on the 

basis of a mechanistic model focusing on the materials response as calibrated with 

recorded field data (ARA, 2004). As the available data is LTTP in-service data, this 

section will offer an overview of empirical pavement deterioration models to determine 

varying deterioration behaviors under varying conditions. This review will also explore 
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the explanatory variables used by previous authors and will discuss how these influence 

rehabilitation and maintenance work.  

Table 2.1 Performance Prediction Models Summary (After AASHTO 2001) 

Model Description Strengths Weaknesses 

M
ec

ha
ni

st
ic

 

Performance as a 

function of a number of 

parameters which is 

mechanically determined 

Predict future changes in 

mechanistic response of the 

pavement such as strain, stress 

as a function of some factors 

that would cause changes in 

those responses 

Each currently used measure of 

condition is affected by different 

factors, some of which cannot 

be described in purely 

mechanistic terms 

E
m

pi
ri

ca
l R

eg
re

ss
io

n 

A
na

ly
si

s 

Statistical method using 

historical data to develop 

relationship between 

performance indicator 

and explanatory variables 

Better practical value because 

of the infinite complexity of 

the underlying 

Phenomena 

Limited to the conditions of 

segments data used to develop 

the model 

Unknown factors may affect the 

precision of the model 

E
m

pi
ri

ca
l 

Fu
zz

y 
se

ts
 Instead of assuming 

crisp data it uses fuzzy 

set 

It handles uncertainties and 

randomness well 

Modeling fuzziness is difficult 

because of complex interactions 

among factors  

E
m

pi
ri

ca
l A

rt
ifi

ci
al

 N
eu

ra
l N

et
w

or
k 

ANN mimic the actions 

of human brain to sort out 

patterns and learn 

from trial and error, 

discerning and extracting 

the relationship that 

underlie the data 

Capability of learning from 

past examples 

 

Produce correct responses 

when presented with 

partially incorrect or 

incomplete data 

Demanding a large amount of 

good quality data  

 

Difficult to explain the 

relationship to link the data 

 

Difficult to understand how 

input data influence the output 

data through learning 
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M
ec

ha
ni

st
ic

-E
m

pi
ri

ca
l 

M
od

el
s 

Using mechanistic 

analysis to predict the 

pavement response and 

empirical analysis to 

relate the responses to 

observed condition 

Reduce the amount of data 

needed results based on 

mechanics are not limited by 

the range over which the tests 

were conducted 

Still need a relative huge 

amount of data 

Pr
ob

ab
ili

st
ic

 M
ar

ko
v 

m
od

el
s 

Use transition matrices 

describe the probability 

that a pavement in a 

known condition state at 

a known time will change 

to some other condition 

state in the next time 

period 

Stochastic process models 

represents actual pavement 

performance process 

Demanding large amount of 

transition matrixes fixed time 

interval 

Pr
ob

ab
ili

st
ic

 

Su
rv

iv
or

 c
ur

ve
s 

Markov process with 

random time intervals 

Reducing the size of the 

problem using random time 

intervals 

Demanding adequate data to 

develop the probability 

distributions of time intervals 

between consecutive stages 

Pr
ob

ab
ili

st
ic

 

B
ay

es
ia

n 

Combining observed data 

with expert experience 

using Bayesian statistical 

approaches 

Using field data or expert 

opinion to adjust model 

Requiring expert opinion and 

Previous experiences. 

 

Previous studies most commonly employ empirical regression models as they are 

more applicable in practice due to the inherent complexity of the processes under 

investigation (AASHTO, 2001). These models offer insights into the future performance 

of pavements under certain conditions and also address the relationship that exists 
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between performance indicators and influencing variables. The examination of this 

relationship is crucial in this case in demonstrating how performance indicators are 

affected by influencing variables.  

An empirical pavement performance prediction model can be either deterministic 

or probabilistic (Gendreau & Soriano, 1998). The former offers an absolute measure of 

how a pavement is likely to perform in the future and is a commonly used method due to 

its inherent simplicity and insights into how pavements will likely deteriorate with the 

passing of time. Probabilistic models, on the contrary, offer a measurement distribution 

of the future performance of pavements and offer a range of potential future conditions 

using a stochastic process. The majority of scholars show a preference for the 

deterministic model as it is much easier and quicker to apply. 

A limited number of explanatory variables are used by most deterioration models 

in this review, namely traffic loading, pavement age and climatic conditions (Hein & 

Watt, 2005; Isa et al. 2005). The use of a small number of variables is largely attributable 

to the complexity in understanding how certain factors, including initial structure quality 

and environmental information, affect the long-term damage of pavements. Traffic 

loading, age, and climatic conditions are often treated as exogenous factors (AASHTO, 

2001; Gendreau & Soriano, 1998) as well soil and construction factors in some cases 

(Gendreau & Soriano, 1998). 

 

2.2.2 Previous Studies on Pavement Performance Models 

Focusing on traffic loading and age, Hein and Watt (2005) put forward a 

pavement performance prediction model while Ozbay and Laub (2001) formulated a 
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simple IRI prediction model using structural number, analysis age, pavement age, initial 

IRI value and the age of cumulative ESAL during analysis. On the other hand, Gibby and 

Kitamura (1992) determined what factors had the most impact on pavement condition, 

the namely prior condition of pavements, date of last rehabilitation activity, soil profile of 

roadway drainage, surface thickness, functional classification, and jurisdiction. 

According to Paterson and Attoh-Okine (1992), the roughness progression of flexible 

pavement is formulated on the basis of environmental variables, age, strength and traffic 

loading. In the event that all distress parameters become available, the model should also 

incorporate cracking, patching and rutting.  

The roughness progression in an AC pavement is largely influenced by 

environmental variables (Perera & Kohn, 2001). In this case, the researchers indicate that 

the impact of such variables may be undetectable if the pavement has been developed by 

taking site conditions such as traffic and climate into account. The authors discussed also 

concur that pavement deterioration is significantly affected by climate and age factors. 

However, none of these studies have examined the impact of different treatment options 

on pavement performance, and the majority of these studies do not incorporate valid 

maintenance and rehabilitation data as it is difficult to source. Thus, a limited number of 

models consider how deterioration is affected by maintenance (Ramaswamy & Ben- 

Akiva, 1990). 

It is widely acknowledged that pavement performance is strongly influenced by 

maintenance and rehabilitation works. However, it has also been argued that these factors 

are considered as endogenous variables (Prozzi & Mandanat, 2004; Ramaswamy & Ben-

Akiva, 1990) as their inclusion as explanatory variables in the models would lead to 
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endogeneity bias (Madanat et al. 1995). According to Ramaswamy and Ben-Akiva 

(1990), the parameter estimates of key explanatory variables are counterintuitive due to 

endogeneity and multicollinearity bias. Typically, roads subject to larger traffic loads 

exhibit signs of damage more quickly. Such roads are usually maintained more 

effectively and are generally in relatively good condition. Thus, by including traffic and 

maintenance in the model, it would be natural to surmise that roads with high traffic loads 

are in a better state of repair. Knowledge of these scenarios can facilitate the avoidance of 

endogeneity bias and multicollinearity as both are taken directly into consideration.  

Lytton (1987), along with several others, acknowledges the need for more 

cohesive models that take exogenous interventions into consideration while also 

integrating them with the impacts of maintenance works. Several studies have attempted 

to achieve this by taking maintenance and rehabilitation effects into consideration while 

simultaneously preventing endogeneity and multicollinearity bias. The condition of 

pavements is significantly affected by maintenance and rehabilitation activities, which is 

why it is advised to exclude both factors as exogenous explanatory variables 

(Ramaswamy & Ben-Akiva, 1990). 

A model has been formulated by Fwa and Sinha (1986b) that combines general 

pavement performance and average routine maintenance expenses. The implementation 

of this model provides insights into the impact of routine maintenance on pavement 

performance based on the measurement of how much is spent on the activity. This model 

provides knowledge on how routine maintenance affects pavement condition but fails to 

determine specific causes of distress to pavements or the most suitable kinds of 

maintenance or rehabilitation options.  
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A model presented by Ramaswamy and Ben-Akiva (1990) can address how 

exogenous factors affect the deterioration of pavements at the same time as maintenance 

activities undertaken to remediate the damage. Maintenance and pavement condition are 

mutually dependent and also dependent on exogenous factors. The authors used 

maintenance as the exogenous variable when comparing the outcome of a single 

regression equation to the outcome of a simultaneous equation, the latter of which is 

estimated at the same time using a series of maintenance equations. The findings indicate 

that considerable improvements were achieved by acquiring all the expected signs for 

significant parameters. Thus, this particular model seems to be more reliable and 

applicable in estimating the deterioration of pavements considering the impact of 

maintenance works. This study highlighted the complexity in considering both 

maintenance and deterioration collectively and is limited by the fact that while the 

simultaneous equation estimator eliminates the endogeneity bias, the fit of the model 

becomes less accurate as a result (R2 values is 0.28). In addition, as the model operates on 

the assumption that both factors are mutually dependent, it can be hard to accurately 

predict future conditions in light of numerous M&R policies. Thus, the model is not as 

beneficial in facilitating more effective M&R decision-making.  

The independent estimation of maintenance effectiveness and pavement 

performance models is an alternative method. A serial performance model was devised 

by Al-Mansour and Sinha (1994) comprising five maintenance categories and two classes 

of highways. Pavement age and mean annual ESALs are the exogenous factors with the 

region as the dummy variable for modeling the impact of climatic conditions. The results 

of maintenance affect pavement performance models tend to be consistent with 
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anticipated findings. However, the maintenance effectiveness indices can rise in line with 

pavement age.  

To explore different maintenance and rehabilitation works, a model was devised 

by Madanat and Mishalani (1998) using the grouping approach. According to Chu and 

Durango-Cohen (2008), these models offer approximations of how pavement 

performance can be enhanced by different maintenance and rehabilitative works as a 

function of cumulative exogenous factors. That being said, it is more difficult to unite 

separate maintenance and deterioration models in order to predict future performance in 

light of various M&R policies, primarily because performance models and maintenance 

effectiveness models deal with continuous deterioration and incremental condition 

changes respectively. It is hard to apply these models to facilitate decision-making in 

relation to M&R as all performance models for different maintenance activities are 

distinct as they have been formulated using the maintenance grouping approach. In effect, 

the model considers pavements that have been subject to a specific kind of maintenance 

treatment in a similar way but fails to consider the impact of the timing of the 

maintenance work. Decision makers want information regarding the optimal timing of 

specific treatments and the different outcomes of different treatment options. However, 

these models cannot offer information of this nature.  

Several scholars state that advanced yet easily applied models are required to 

facilitate the delineation of M&R policies that take endogeneity bias into account as well 

as the impacts of maintenance and rehabilitation.  

A performance model was formulated by Gao and Zhang (2010) that has the 

capacity to determine which observations were most likely influenced by maintenance 
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interventions. However, this model failed to describe how the data identified could be 

used to formulate the performance model. In addition, the model is unable to distinguish 

between different levels of maintenance.  

Using a combination of experimental and in-service field observations, Prozzi and 

Madanat (2004) presented a model using ASSHO road test experimental data initially 

before approximating the parameters once more through the application of joint 

estimation in conjunction with the field data set. Endogeneity bias can be avoided by 

using experimental data that has been carefully designed. However, Prozzi and Madanat 

(2004) failed to include seasonal effects and maintenance works, although they do claim 

that such data, if available, can be included in the model. This model demonstrates the 

value in applying joint estimation to enhance the accuracy of forecasts, reduce variance in 

estimations and prevent parameter bias. However, the model is limited by the fact that 

field data and experimental data is necessary for areas that experience similar weather 

conditions and maintenance activity level in the event that such information cannot be 

sourced.  

A rather simple system for modeling the direct analysis of pre-treatment and post-

treatment performance curves as well as treatment performance changes was developed 

by Haider and Dwaikat (2010). Treatment performance changes moderate the 

relationship between pre- and post-treatment performance curves. The authors examine 

the impacts of different treatment timings and cross-analyze the performance of 

pavements before and after treatment at different timing intervals. This approach 

distinguishes between pavement performance and maintenance effect models and also 

determines how to unify the effects with the performance model. However, this model is 
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limited by the fact that it needs historical data relating to pre-treatment conditions in 

order to generate the post-performance curves and a variety of post-treatment datasets to 

generate a variety of post-treatment performance curves. The determination of the 

impacts of different treatment timings also necessitates the use of excessive post-

treatment datasets, many of which may be difficult or too expensive to source.  

 

2.3 MULTI-OBJECTIVE DECISION MAKINGS  IN PMS  

2.3.1 Pavement Management Decision Makings 

The sections of pavement that require treatment are identified using decision 

support analysis tools. These tools also indicate what kind of treatment is needed and 

how much it will cost. Examples of such tools include ranking approaches and 

optimization techniques as presented in the AASHTO Pavement Management Guide 

(2001). 

The ranking is a rather basic technique, and the results can be easily interpreted. 

Nonetheless, the ranking method is limited by its inability to incorporate varying 

constraints and does not typically generate the most optimal results. Optimization models 

are generally more effective at incorporating multiple constraints and resolving several 

issues at the same time. Theoretically speaking, optimization models are advantageous 

for PMSs in terms of operation research. However, in practice, these models have been 

heavily criticized for being overly complicated with results that cannot be easily 

interpreted. The optimal solution generated also requires modification in most cases 

taking into account political, social, economic or environmental factors that affect 

decision-making with regard to project selection (AASHTO, 2001). In order to obtain 
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more equitable pavement management decisions, several highway agencies have 

implemented optimization models. Some others have implemented ranking methods due 

to a lack of expertise in the use of optimization models, insufficient data, or the absence 

of administrative support.  

Optimization models used to perform network-level analysis can be either 

macroscopic or microscopic-based on how they are developed. It is possible to make 

model formulations and the determination of solutions easier by incorporating a range of 

various pavement classes as a proportion of the pavements used in macroscopic models, 

thus limiting the number of variables included. Nonetheless, decision variables pertaining 

to individual sections of pavement are incorporated into microscopic models, meaning 

that there is an excess of decision variables which causes the optimization process to 

become overly complex (Abaza, 2007).  

A mathematical model that is used to determine the most appropriate pavement 

preservation or reconstruction treatments in terms of efficacy and cost-effectiveness is 

referred to as a maintenance optimization model. These models are often used in 

pavement management programs and are classified as either single objective or multi-

objective.  

According to Mbwana (2000), single objective optimization models generally 

have a number of different aims, namely to reduce costs, enhance the efficacy of 

treatments and enhance the condition or lifespan of the pavement. The costs incurred by 

the user and agency collectively throughout the lifetime of the facility are referred to as 

agency costs and are measured as a function of preservation activities. The costs incurred 

by users include accident costs, travel delays and vehicle operation in normal and work 
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zone operations (Walls & Smith, 1998). These costs are measured as a function of 

pavement performance and the preservation activities performed (ARA, 2004). By 

seeking only to lower costs, the roughness of the pavement may increase. On the other 

hand, by seeking only to enhance pavement condition, the costs may increase.  

In some cases, decision-makers may be satisfied to achieve only a single objective. 

Nonetheless, in most cases, the agency will seek to find an optimal solution that satisfies 

multiple objectives at the same time. There is a range of measures that can be taken to 

unify objectives that appear to be contradictory (Mbwana, 2000; Abaza, 2007; Lu 2011). 

Firstly, one objective can be optimized while applying the other objectives as fixed 

boundary constraints. For instance, the condition of pavements could be enhanced while 

limiting the amount of funding that can be allocated towards the activity or costs could be 

reduced while ensuring that a minimum standard of facility quality is maintained. 

Secondly, all objectives can be combined to form a single cohesive objective. For 

instance, user costs and agency costs are treated as a single objective as opposed to two 

contradicting objectives (Mbwana, 2000). Thirdly, a direct multi-objective optimization 

can be undertaken that takes all objectives into account. For instance, solution measures 

that seek to reduce agency costs while also enhancing pavement quality can be identified 

(Wu & Flintsch, 2008).  

There are, however, limitations to these different methods. The first method is 

limited by the fact that it assumes knowledge of the optimal levels of the constraints 

applied and the fixed boundaries limit the optimal levels of the objectives. The second 

method is limited by the fact that all objectives must be transformed into a single unit and 

it is quite hard to convert certain costs into a single objective along with pavement 
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roughness. In addition, while agency and user costs may be successfully converted into a 

single unit, many argue that this method assumes that marginal user costs are the same as 

marginal agency costs when non-highway users are taken into account (Mbwana, 2000). 

It has also been argued that the relatively large scale of user costs causes them to take 

precedence of lower agency costs (Wu & Flintsch, 2009) and the attempt to unify two 

costs is essentially unfeasible. The third method is limited by how difficult it is for the 

model to generate an optimal solution, particularly when multiple contradictory 

objectives are incorporated. As such, authors who implement a true multi-objective 

optimization model in the literature reviewed do not attempt to unify all objectives with 

many focusing on direct agency costs and pavement condition while others focus on 

direct agency costs and partial user costs (Worm & Harten, 1996; Labi & Sinha, 2003b; 

Wu & Flintsch, 2009; Wu & Flintsch, 2008).  Broadly speaking, such models are limited 

by the fact that objectives cannot be assessed accurately and objectively (Wu & Flintsch, 

2008). The models are also quite hard to develop on account of the complex objectives 

and constraints applied. 

 

2.3.2 Multi-Objective Optimization Theories  

The concept of optimization when dealing with single objectives is defined as the 

minimization or maximization of a specific objective. However, for problems that 

involve multiple objectives, an optimal solution can be hard to identify unless an 

improvement in one objective also leads to improvements in the others. In most cases, 

there is unlikely to be a single optimal solution for multiple objectives.  
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Highway maintenance agencies seek to reduce costs while also maintaining a low 

level of pavement roughness.  However, these two objectives are directly contradictory as 

a reduction in costs will likely cause an increase in road roughness. In theory, an ideal 

solution would be to maintain roads with a low level of roughness at no cost. In practice, 

it is impossible to satisfy both objectives as there is no single optimal solution that 

successfully satisfies both criteria. Thus, the aim is to generate a range of solution options 

where pavement roughness and costs are applied as boundary conditions. In such cases, 

all proposed solutions will inevitably compromise one objective for the benefit of another. 

As such, the goal is to find a solution that is acceptable and balanced.  

The range of solutions generated to resolve a multi-objective problem suffers 

from Pareto Efficiency or Pareto Optimality as there is no way to achieve improvements 

in one objective without compromising another.  

Pareto optimality or Pareto efficiency is named after the Italian economist 

Vilfredo Pareto, who first introduced the concept in his studies (Pareto, 1906). Figure 1a 

illustrates the concept of Pareto optimality considering two objectives. The feasible 

region shown in Figure 1a represents all practical solutions for all objective functions in 

the system that satisfy all constraints. In the case of minimization function, the optimal 

solutions lie on the outermost lower-left edge of the feasible region. These sets of Pareto-

optimal solutions are called the Pareto front. In multi-objective optimization, Pareto front 

sorting may be used to measure the fitness of a solution in a given iteration.  



28 

 

  

a. The concept of Pareto optimality b. Pareto-front sorting. 

Figure 2.1 Concept of Pareto optimality and Pareto-front sorting (after El-Beltagy 

2010) 

Using Pareto-front sorting, the set of non-dominated solutions defining the Pareto 

front is identified and assigned a rank of one. These solutions are then set apart, and the 

remaining solutions are compared to identify a new set of non-dominated solutions with a 

rank of two. This process continues until the entire population is ranked, as shown in 

Figure 1b. A solution with a lower-numbered rank is assigned a higher fitness than a 

solution with a higher-numbered rank. Accordingly, for minimization problems, the 

fitness of each solution i is calculated by Equation 2.1 (El-Beltagy et al. 2010). 

(Fitness)i = 1
(rank)i�  ………..(2.1) 

Where, fitness and rank are the new fitness value and rank number, respectively, for 

solution i. 

A balance between well-converged and well-distributed optimal solutions is the 

main goal of the multi-objective optimization process. The more diverse the solution, the 
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better informed the decision maker is in the range of possible solutions. A multi-objective 

optimization is defined as the result vector of the decision variables that satisfy the 

constraints to give reasonable values to all objective functions. 

The identification of a vector of decision variables that adhere to constraints and 

generate values for each objective function that are considered acceptable is referred to as 

multi-objective optimization. In mathematical terms, this is defined the vector X* = 

[𝑥𝑥1∗ 𝑥𝑥2∗ … 𝑥𝑥𝑚𝑚∗ ]𝑇𝑇of m decision variables to optimize n objectives. 

𝐹𝐹(𝑋𝑋) = [𝑓𝑓1(𝑋𝑋), 𝑓𝑓2(𝑋𝑋), … 𝑓𝑓𝑛𝑛(𝑋𝑋)]𝑇𝑇………(2.2) 

subject to p inequality constraints 

  𝑓𝑓𝑖𝑖(𝑋𝑋) ≤ 0 ,          𝑖𝑖 = 1, . . . . . ,𝑝𝑝 

And q equality constraints 

  ℎ𝑗𝑗(𝑋𝑋) = 0 ,     𝑗𝑗 = 1, . . . . . , 𝑞𝑞 

Where, X = [𝑥𝑥1∗ 𝑥𝑥2∗ … 𝑥𝑥𝑚𝑚∗ ]𝑇𝑇 is the vector of m decision variables, and F(X) = 𝐹𝐹(𝑋𝑋) =

[𝑓𝑓1(𝑋𝑋), 𝑓𝑓2(𝑋𝑋), … 𝑓𝑓𝑛𝑛(𝑋𝑋)]𝑇𝑇  is the vector of n objective functions, which must all be 

minimized. 

Decision vector X* represents Pareto Optimality as it satisfies equality and 

inequality constraints in the feasible solution region Ω. Pareto Optimality is achieved 

only when or if ∀𝑖𝑖∈  {1,2, … ,𝑛𝑛},𝑓𝑓𝑖𝑖(𝑋𝑋∗) ≤ 𝑓𝑓𝑖𝑖(𝑋𝑋)U ∃j   ∈ �1,2, …𝑛𝑛},𝑓𝑓𝑗𝑗(𝑋𝑋∗) < 𝑓𝑓𝑗𝑗(𝑋𝑋):𝑋𝑋 ∈

Ω. 

In effect, X* achieves Pareto Optimality when there are no additional solutions 

that will dominate X * by benefiting all objectives at the same time. Typically, a multi-

objective problem can be solved using a range of Pareto optimal solutions, also referred 

to as non-dominant solutions. All Pareto optimal vectors are contained in a Pareto set P*. 
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A Pareto front PF* is a set of vectors of objective functions that are generated by 

employing the decision variables vectors contained within the Pareto set. This is 

expressed as follows: 

PF* = { 𝐹𝐹(𝑋𝑋)= (𝑓𝑓1(𝑋𝑋), 𝑓𝑓2(𝑋𝑋), … 𝑓𝑓𝑛𝑛(𝑋𝑋)): X ∈  P*}…….(2.3) 

To find a feasible solution for a multi-objective problem, it is necessary first to 

identify the Pareto set and its relevant Pareto front. A suitable solution can be selected 

from the Pareto set in light of personal preferences or other criteria.  

 

2.3.3 Multi-Objective Optimization Solvers  

The most common problem associated with multi-objective optimization is the 

fact that none of the feasible solutions generated offer optimal solutions that satisfy all 

objectives equally. While there are several methods of resolving multi-objective issues, 

they can be broadly classified as either the converted single objective approach or the 

Pareto non-dominant solutions approach (Messac 2003). The former aims to create a 

single objective function that reflects the needs of the decision maker with the solutions 

generated assumed to be optimal. The latter approach, on the other hand, generates Pareto 

optimal solutions and the decision maker then determines which is most suitable in light 

of their own preferences or requirements.  

 

2.3.3.1 Goal Programming 

Goal programming is perhaps the most widely applied first class solver approach, 

and this aims to assign a specific numeric goal to each objective and enables deviation in 

a negative or positive direction, or perhaps even both. Lower bound, upper bound and 
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two-sided bounds are the three-goal types. This approach can also be classified on the 

basis of goal prioritization as non-preemptive goal programming and preemptive 

programming.   

A priority hierarchy is needed for preemptive goal programming and is easy to 

apply when one goal is clearly more important than the rest. Thus, the most important 

goal is assigned first priority while the others are ranked in descending order of 

importance. Using this system, the aim is to find a solution that deviates the least from 

the highest priority goals.  

On the other hand, using the non-preemptive approach, it is assumed that all goals 

are of equal importance and they are thus assigned equal priority. In such scenarios, the 

objective function is measured as the overall sum of how far these objectives deviate 

from their goals. Alternatively, the penalty-weighted sum of all deviations can be used. 

Using this approach, the aim is to identify a solution that limits the overall extent to 

which these objective functions deviate from their respective goals. 

For multi-objective problems with conflicting goals, goal programming is a 

dependable, flexible and easy to use the method of finding an optimal solution. 

According to Wu and Flintsch (2008), this method’s main aim is to limit deviations, 

which distinguishes it from the relative scales of the original objective functions. 

However, goal programming is limited by the need for decision-makers to have prior 

knowledge of how to allocate and rationalize relative weights to each deviation and how 

to clearly determine which objectives should be given priority. The solution generated 

using this method is presumably optimal in terms of the decision maker’s personal 

requirements. This method is also limited by the fact that it directly compromises the 
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goals of certain objectives and does not facilitate a trade-off between goals of varying 

priority levels using the preemptive method. Furthermore, goal programming is unable to 

generate Pareto optimal solutions every time. According to Marler and Arora (2004), goal 

programming generates Pareto optimal solutions in the event that all goals are 

unachievable while non-Pareto optimal solutions can be generated using the non-

preemptive method. 

 

2.3.3.2 Weighted Sum Method 

Another kind of solver is to identify the Pareto optimal solutions for all 

contradictory objectives, an approach that is ideal as it can generate solutions that cause 

minimal conflict and does not necessitate previous experience in allocating weight 

(Pareto, 1906). The weighted sum method is one of the most common means of 

determining Pareto optimal solutions (Wu & Flintsch, 2009; Das & Dennis, 1996; 

Srinivas & Deb, 1994; Cohon, 2013). Using this method, the multiple objectives are 

weighted and converted into Z – a single objective function – which can be expressed as 

follows: 

𝑍𝑍 = ∑ 𝜔𝜔𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=1 ……………… (2.4) 

In the above equation, the fractional weight values in the range 0-1 are denoted by 

(𝜔𝜔𝑖𝑖). 

Using this approach, the control of the weight vector for all possible weight 

situations along with an incremental step in 𝜔𝜔𝑖𝑖  facilitates the identification of Pareto 

optimal solutions as all weights are converted into a single unit. The weight of each 

respective objective can be modified to assign priority. This method is widely used in the 
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literature as it is easy to apply and relatively intuitive (Wu & Flintsch, 2009). The weight 

assigned to each objective is determined on the basis of the size of each objective 

function. However, the weight values do not reflect the relative importance of each 

objective but the relative significance of relationships (Wu & Flintsch, 2009). For 

instance, while 𝜔𝜔1 > 𝜔𝜔2 implies that f1(x) is of greater importance than objective f2(x), 

but cannot assume that objective f1(x) is (𝜔𝜔1/𝜔𝜔2) times more important than objective 

f2(x). This reflects one of the limitations of the model as decision makers often find it 

hard to interpret the quantitative relationships between objectives and thus have difficulty 

choosing the ideal solution for their own requirements. For instance, the difference 

between 𝜔𝜔1 = 0.6 & 𝜔𝜔1= 0.4 and 𝜔𝜔1 = 0.7 & 𝜔𝜔1 = 0.3 is hard to identify as each weight 

set implies that f2(x) is less important than f1(x) but does not offer any additional 

information. According to Wu and Flintsch (2009), the decision maker using the 

incremental weight step approach requires theoretical knowledge of their own 

preferences before choosing the most suitable Pareto optimal solution. In addition, the 

decision maker will struggle to select and interpret a weight factor as the weights do not 

offer any qualitative information.  

The concern in which the objectives are converted into a single objective using 

different scales is an additional limitation of this method as the widely used weighted 

linear sum approach necessitates that all weighted objective functions are transformed 

into a single objective function. The user must then identify the Pareto optimal solution 

by minimizing or maximizing one of the objectives. The scales employed and the 

objective function units often vary. For instance, the user may seek to reduce agency 

costs and enhance the IRI values of pavement surface condition. Agency costs are 
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typically calculated in dollars within a range of $1,000 to $100,000 or more. IRI values, 

on the other hand, are calculated in m/km on a scale of 0.5 to 3m/km. Thus, the scale for 

each objective is clearly different as well as the objective units and to combine the total 

of each is essentially unfeasible (Messac, 2003). Wu and Flintsch (2009) argue that while 

the user may attempt to convert the values using the same scale, the variation in objective 

units would still limit the applicability of the totals. Therefore, as variation in units 

prevents summation offering any meaningful data, weights are allocated to each objective. 

Nonetheless, these weights do not provide any insights into how each objective is related. 

Finally, in the event that the true Pareto frontier or the objective to be minimized is not 

globally concave, the weighted sum method is unlikely to generate any valid or 

meaningful solutions (Das & Dennis, 1997). 

Alternatively, there are other ways of finding Pareto optimal solutions. For 

instance, the objectives can be converted into aggregate objective functions (AOF) where 

several objectives are combined into one. By developing AOF using the weights 

originally assigned to each objective where a Pareto optimal solution is generated for 

each set of weights, the normal boundary intersection method (NBI) (Das & Dennis, 

1996), the normal constraint method (NC) (Messac 2003), and successive Pareto 

optimization method (SPO) can be used to resolve the multi-objective problem. These 

methods overcome at least one of the limitations associated with the weighted sum 

approach. More specifically, the NBI method has the ability to find Pareto solutions for a 

Pareto frontier that is non-convex while the NC method can generate solutions along the 

periphery or true Pareto front. NBI and NC can also generate a Pareto frontier than is 

distributed evenly as they resolve the issues associated with the relative scale of 
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objectives. SPO, on the other hand, has the ability to systematically find solutions near 

the periphery. All of these approaches, the weighted sum method included, can be 

classified as AOF approaches as their function lies in creating a single objective by 

combining multiple objectives and experience in allocating weight to each objective is 

needed in order to select the most suitable Pareto optimal solution. Wu and Flintsch 

(2009) argue that these methods are all equally as effective and the choice of solution 

relies largely on the requirements of the decision maker, available data and software 

resources (Marler & Arora, 2004).  

 

2.3.3.3 Genetic Algorithm 

The use of a single-objective optimization engine to resolve multi-objective issues 

forms the basis of the multi-objective methods discussed thus far. These methods are 

often deployed using classical search engines in conjunction with a point-by-point rule. 

Thus, they must be implemented several times in order to generate Pareto optimal 

solutions as only one solution can be generated per iteration. Nonetheless, there are 

alternatives that can be used. For instance, in 1984, the genetic algorithm (GA) was put 

forward by Holland (1975) as an evolutionary algorithm that has been widely used for 

multi-objective problems from 1993 onwards. This method is a non-standardized 

optimization approach that is population-based and is perhaps the most widely used 

algorithm for finding direct Pareto-optimal solutions in a single iteration.  

GA seeks to emulate the theory of natural selection as it is assumed that those 

who are fitter and healthier will naturally survive in a given environment and reproduce. 

Every person within a specific environment has a number of attributes that measure their 
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level of suitability. The fittest of these people generally survive, and the subsequent 

generations inherit these attributes and increase their odds of survival as they inherit the 

best attributes from each parent. Thus, beneficial attributes are maintained in the 

environment while unfavorable ones are eliminated, thus ensuring the positive 

development of the population.  

Every person has a string of genes or DNA that determines their unique 

characteristics. During reproduction, the DNA strings of two people combine to create a 

brand new string of DNA for the offspring that contains elements of each parent strand. 

Mutation occurs when a specific gene does replicate that of the parent exactly.  

The following processes form the basis of the GA:  

• Encoding – the string of DNA is defined, incorporating the variables and 

characteristics of decisions and, and the objectives are delineated. 

• Initialization – an initial population of possible solutions is presented. 

• Evaluation – the effectiveness or ‘fitness’ of each proposed solution is assessed in 

light of objectives and other constraints. 

• Selection – two of the most favorable solutions are selected.  

• Crossover – offspring of these two solutions are generated at different points on 

the DNA string to create two additional solutions.  

• Mutation – Use mutation probability to mutate the DNA of the offspring solutions.  

• Evaluation – Assess the feasibility of the new solutions in light of the objectives. 

• Reiteration – Repeat the cycle again 

A considerable number of cycles are usually performed using this method with a 

large number of populations to find the most suitable Pareto optimal solutions. 
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Population size, iteration number, crossover rate and mutation rate are the primary 

criteria applied when using GA.  

There are several key differences between GA and other optimization methods 

(Liu & Hammad, 1997). For instance, GA does not generate a single solution but instead 

seeks to enhance the feasibility of a range of solutions based on random initialized 

populations, data derived from prior cycles and the objectives. Thus, GA can be modified 

with ease to generate Pareto optimal solutions. On the other hand, traditional optimization 

models generally focus on generating one solution at a time. Furthermore, GA facilitates 

the incorporation of a wide range of parameters as objective functions or decision 

variables, which means that the method can generate valid solutions irrespective of the 

specific decision variables or objectives. In effect, the method operates autonomously 

from the nature of objective functions and constraints (Liu & Hammad, 1997). Thus, GA 

is an ideal method when using a wide range of contradictory objectives or decision 

variables. GA also enhances the outcome of the solution identification process by 

incorporating non-fit characteristics and maintaining the most favorable as opposed to 

performing the search on the best-fit string alone. This method also enhances the process 

by enabling population variation on account of mutation, which is why GA would 

perform well as a global searching instrument. 

According to Liu and Hammad (1997), the effectiveness of GA in assessing the 

feasibility of solutions to multi-objective problems is the main issue as the concept of 

fitness determines the assessment methods used by the model. Marler and Arora (2004) 

classify these methods as (1) vector evaluated genetic algorithm (VEGA); (2) ranking; (3) 

Pareto-set filter; (4) tournament selection; (5) niche techniques; (6) fitness sharing; and (7) 
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additional techniques.  That being said, none of these methods is inherently better than 

the others as the most suitable method will depend on the needs of the decision maker 

and any other relevant data (Marler & Arora, 2004). In terms of negative criticism 

regarding the GA model, several authors have argued that the quality of convergence to 

true Pareto-optimal solutions generating using this method varies according to population 

size and number of cycles while the model is also cost-intensive to run in terms of 

computational power (Marler & Arora, 2004; Harik, 1997). Also, there is no single 

generality that can be applied to perform GAs and the values of parameters are different 

in different circumstances. The management of constraints is an additional issue that 

could potentially compromise the quality of the convergence to Pareto optimal solutions. 

In conclusion, no problem-solving operation or process that performs more 

efficiently than the others when attempting to resolve multi-objective optimization 

problems. The method used will depend on the needs of the decision makers (agencies), 

available data, software resources and the anticipated outcome. In this case, the author 

intends to develop a brand new simulated constraint boundary model that can generate 

Pareto optimal solutions. This new solver model will be formulated using Statistical 

Analysis Software (SAS) version 9.3. 
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2.4 ENVIRONMENTALLY PREFERABLE PAVEMENT MANAGEMENT 

SYSTEM 

2.4.1 The relationship between Pavement Roughness and Fuel Consumption and 

Greenhouse Gas Emission 

Studies have shown increased in vehicle operation costs on rough pavement due 

to the decrease in fuel economy. World Bank performed the main studies on the effect of 

pavement roughness on fuel economy on unpaved, gravel, or earthen roadway surfaces in 

developing countries in order to improve and revise the Highway Design and 

Maintenance (HDM) models that excessively applied (Bennett and Greenwood 2001; 

Chesher and Harrison 1987; Watanatada et al. 1987). These models were calibrated to 

U.S. roadway status since they were not developed on roughness data in the U.S. (Chatti 

and Zaabar, 2012) 

De Weille (1966) used the data from previous literature in US to find a 

relationship between fuel consumption and pavement surface type. The researcher used 

three different pavements surfaces in his study; gravel, earthen, and smoother paved 

roadways. The researcher mentioned that the fuel consumption was 20% higher on gravel 

roads than paved roads and 40 % higher on an earthen road. Also, Missouri  Department 

of  Transportation  (MoDOT)  reported about 2.5% increase in fuel efficiency on new 

pavement comparative to the rough pavement before resurfacing (Amos, 2006).   

Ross (1986) found a nonlinear relationship between fuel consumption and 

pavement roughness using five test sites with serviceability index (SI) ranged from 0.9 to 

4.4.  This study reported that about  3%  increase in fuel consumption between the 

smoothest (SI = 4.4) and roughest (SI = 0.9). Another conclusion found in Ross study is 
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that the increase in fuel consumption could be estimated with a  linear function even the 

relationship was nonlinear such that 1.5% more fuel would be consumed on the pavement 

with an SI of 1.5. 

Regardless of the lack of statistical calculations to determine the association 

between roadway roughness and fuel consumption, such an association is still proposed 

by various researchers. Sandberg (1990) determined that that up to a 12% increase in fuel 

consumption is seen when a surface alters from a smooth to rougher texture. Nevertheless, 

the impact on fuel consumption of pavement roughness is difficult to calculate with a 

discounting of additional variables, thus is difficult to support with quantitative data. 

  Hugo and Martin (2004) also emphasized that a 2% elevation in fuel consumption 

is an outcome of an alteration in IRI to 1.18 m/km (75 in/mi) from 1.08 m/km (68 in/mi). 

Regardless, Gillespie and McGhee (2007) noted that the age of a vehicle was not taken 

into consideration. Santero (2009) suggested that roughness would not appear to have 

such an impact on the calculated values for fuel consumption if vehicle age was 

accounted for. 

  On the other hand, there are many experimental and theoretical methodologies 

were used to investigate the effect of pavements stiffness, smoothness, and texture on 

rolling resistance and fuel consumptions. Surface texture and roughness generate 

vibrations in vehicle tires that cause an increase in fuel consumption.  

 For passenger cars, Beuving et al. (2004) reported that different pavement 

textures influence fuel consumption by approximately 10% and there is no difference in 

fuel consumption between asphalt and concrete road surfaces. Furthermore, surface 

roughness has a proven enormous influence on the fuel consumption and noise 
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development. Taken these aspects into consideration the total truck and passenger car 

population might easily result in an advantage in fuel consumption for asphalt pavements.  

  In order to predict the total fuel consumption, Bester (1984) investigated the 

effect of pavement type and roughness on the rolling resistance of vehicles. Except for 

gravel pavement surfaces, the researcher found that the pavement type has an 

insignificant effect on fuel consumption and the roughness correlates strongly with 

rolling resistance.  

Ardekani and Sumitsawan (2010) undertook research for the University of Texas, 

Arlington, replicating a city driving environment on both Portland Cement Concrete and 

Asphalt Concrete surfaces, to investigate the relationship between CO2 emissions and 

fuel consumption. The assessment considered vehicle speed, acceleration, roadway grade, 

IRI and pavement type. The association between pavement materials and fuel 

consumption levels to more effectively design urban environments, in terms of longevity 

of surfaces and reducing expenditure, was the primary aim of the investigation, regardless 

of the assessment of IRI. Consequently, the association of CO2 emissions and fuel 

consumption to IRI was not the focus of the research.  

Kalemb et al. (2011) investigated the correlation between CO2 emissions and the 

pavement roughness. CO2 emissions quantities were computed using MOVES2010a, a 

vehicle emission modeling software program. They concluded that there is a slight 

increase in the mean speed value from roads in poor condition to roads in either fair or 

good condition, which causes a decrease in CO2 emissions.   

In term of GHG emissions and costs associated with roughness, the effects of 

roughness on fuel economy and costs has been quantified by several researchers 



42 

 

(Schuring 1988). The Schuring (1988) study is motivated by the tire industry’s analysis 

of rolling resistance due to various tire formulations.  

For non-fuel-based user costs, the challenge is to find user costs as a function of 

pavement roughness. The Paterson (1987) study is a standard reference, but the age of the 

study and the fact that the costs are estimates in Brazilian pesos makes application to 

California over twenty years later less than ideal. Barnes and Langworthy (2004) 

published a semi-meta-analysis on this issue (“semi-meta” as some data is original). The 

non-fuel-based user costs due to pavement roughness (maintenance/repair, tires, and 

depreciation) used in the case studies are based on their results. 

Recently, two common models related to rolling resistance and fuel consumption 

were developed. One of these models was developed by Chatti and Zaabar (2012) for 

vehicle operating costs. The fuel consumption model was adjusted over several 

pavements using light, medium and heavy vehicles. The second model was developed for 

rolling resistance In Road Infrastructure Asset Management systems called (MIRIAM) 

(Hammarstom et al. (2012). The model was developed based on empirical results from 

coast-down measurements in Sweden, and includes impacts of pavement roughness, 

macrotexture, temperature, speed, horizontal curvature and the road grade. The model 

was developed for three vehicle types: car, heavy truck, and  heavy truck with a trailer. 

 

2.4.2 Life-Cycle Assessment of Pavement Maintenance and Preservation 

The concept of life-cycle assessment is to evaluate the environmental effects 

associated with any given activity from the initial gathering of raw material from the 

earth until the point at which all residuals are returned to the earth. This concept often 
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referred to as “cradle to grave” assessment, is not new. While the practice of conducting 

life-cycle studies has existed for more than 30 years, there has been few comprehensive 

studies to describe the procedure in a manner that would facilitate understanding of the 

entire process, the underlying data, and the inherent assumptions.  

Life Cycle Assessment (LCA) is the most popular approach to assessing the 

effects of transportation on the environment. On pavement systems, the goal of LCA is to 

fully explain the direct and indirect processes that are associated with infrastructure 

decisions. This approach is therefore very useful in evaluating the environmental 

performance of pavements throughout their life cycle.  

A major issue of usage phase revolves around the consequences of pavement and 

vehicle interaction on the environment. These consequences are influenced by pavement 

properties, including surface characteristics (roughness and texture) and structural 

deformation. Pavement LCAs typically insufficiently address the environmental impacts 

of the use phase because of time, data, and model constraints (Santero et al. 2011). The 

phases of pavement LCAs focus on construction, with evaluators using comparative 

analyses to justify the disregard of use phase effects and adopting simplified assumptions 

(such as the use of average speed) to develop rough estimates that do not fully account 

for the impacts of different pavement types (Hakkinen and Makela 1996; Treloar et al. 

2004). In general, different degrees of pavement stiffness, roughness, and degradation 

result in varying energy consumption and emission levels. Taylor and Patten (2006) 

compared emissions from tandem drive tractors that pull semi-trailers on asphalt and 

concrete roadways and found that traveling at 100 km/h on concrete road surfaces 

produced fewer emissions. 
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Many studies have been done for life cycle assessment (LCA) of pavements. For 

example, Yanowitz et al. (2000) reviewed the in-use emissions from over-the-road 

heavy-duty diesel vehicles. Many techniques were used in their study measuring 

emissions, such as chassis dynamometer, tunnel studies, and remote sensing. They 

concluded that carbon monoxide (CO) and particulate matter (PM) emissions increased 

significantly with an increase in the inertial weight. The researchers also observed little 

change in emissions between different vehicle sizes, and nitrogen oxides (NOx) remained 

the same. In this study, the energy was calculated using vehicles per pavement section, 

considering the traffic in each direction. They concluded that the energy and GHG 

emissions caused by traffic were greater than the energy and emissions during the 

construction phase. Additionally, the researchers found that the change in traffic intensity 

produced more GHG emissions.  

 Most studies have been directed to provide sustainability indicators for pavement 

systems using LCA. Different structural design and rehabilitation techniques were 

considered, including flexible and rigid pavement, overlay, reconstruction, and cold in-

place recycling (Thenoux et al. 2006; Weiland and Muench 2010; Yu and Lu 2012). The 

surprising results showed that the Hot Mix Asphalt (HMA) consumed a high amount of 

energy as compared with the other preservation options, while the global warming impact 

is highest in the Portland cement concrete (PCC) option. On the other hand, the smallest 

effect on the environment from the viewpoint of energy consumption is also achieved by 

cold in-place recycling. 

 Many studies evaluated the cost-effectiveness of pavement preservation and their 

energy and environmental impacts. As known, Pavement preservation treatments 
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considered as the most consuming amounts of energy and generate GHG emissions. 

Different pavement preservation techniques can produce different pavement surfaces 

with various amounts of emissions. Preservation type has a significant effect on the usage 

cost of vehicle operation. Therefore, efficient preservation techniques are preferred to 

estimate the environmental impacts of its whole life cycle.  

 Mallela and Sadasivam (2011) calculated emission vehicle costs as a function of 

vehicle miles traveled and unit costs ($/ton) by the emission type. They included Volatile 

Organic Compounds (VOC), carbon monoxide (CO), oxides of nitrogen (NOx), sulfur 

dioxide (SOx), and Carbon dioxide (CO2) for calculating air pollutant emissions and 

GHG emission. They also estimated that emissions costs were a function of vehicle miles 

traveled (VMT) and unit costs (dollars per ton). 

Wang et al. (2012) confirmed that during the usage phase of pavement, the 

savings in energy and GHG emissions increased as the tire rolling resistance decreased. 

In addition, they concluded that the rehabilitation of higher traffic volume pavement with 

a rough surface had more potential to reduce fuel consumption and GHG emission, while 

the construction quality and materials for a low traffic road played a significant role in 

payback time for energy use and emissions. In other words, rehabilitation of a rough 

pavement surface with high traffic volume causes a higher reduction in fuel consumption 

and GHG emissions if compared to pavement with low traffic volume. Furthermore, 

Wang et al. (2012) incorporated the effects of IRI by developing equations that relate IRI 

to the default parameters in MOVES to examine the effect of pavement roughness on 

energy consumption; however, these modified equations have yet to be applied for the 

use phase. In addition, their approach did not consider vehicle type responses to 
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pavement degradation. Wang et al. (2012) proposed updating the rolling resistance 

coefficient (A) in MOVES using the ratio of the rolling resistance on existing pavement 

surface on the default rolling resistance on a smooth surface. 

In 2014, Gangaram developed LCA model to quantify the impact of pavement 

preservation on energy consumption and GHG emissions. The Highway Development 

and Management Model (HDM-4) and the Motor Vehicle Emission Simulator (MOVES) 

were used in this study. HDM-4 was used to measure the effect of tire rolling resistance 

on pavement surface characteristics, and MOVES was used to get the vehicle energy 

consumption and GHG emissions. Gangaram stated that “the thin overlay had the highest 

energy consumption and emissions among four preservation treatments during the 

construction stage, but at the same time resulted in the greatest reduction of energy and 

emission at usage stage.” In addition, the reductions in GHG emissions at the usage stage 

are much higher than the GHG emission produced in the construction stage for all 

preservation treatments. 

 

2.4.3 Multi-Decision Making in PMS considering Cost and Environmental Impact 

The impact of pavement maintenance on rolling resistance and vehicle operating 

costs from a lifecycle perspective should be considered in PMS. For example, the 

minimal maintenance cost alternative for rehabilitating a pavement may be to apply 

minor maintenance at a defined number of intervals. However, a more extensive 

rehabilitation may reduce the rate of deterioration of pavement distresses and the rate of 

increase in surface roughness, which leads to a reduction in the fuel consumption, total 

vehicle operating costs, and vehicle emissions. 
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Several studies have attempted to integrate pavement management operations 

with LCA to reduce environmental impacts. Zhang et al. (2010) developed a life-cycle 

optimization (LCO) model to calculate an optimal preservation planning for a pavement 

overlay system and to reduce the greenhouse gas (GHG) emissions, total life-cycle 

energy consumption, and costs within an analysis period. Zhang et al. (2010) used 

dynamic programming optimization techniques to minimize the environmental impacts in 

the pavement life cycle for project level case studies and a very small local road network, 

respectively and used relatively simple emission models by optimizing the M&R 

frequency and intensity through multicriteria decision analysis. The LCO model has 

applied both concrete and hot mix asphalt overlay system. For the concrete, the LCO 

results showed that the optimal preservation strategies would reduce the total life-cycle 

energy consumption, GHG emissions and costs by 5–30%, 4–40%, and 0.4–12% 

respectively.  

Giustozzi et al. (2012) presented a multi-criteria approach for evaluating 

preventive maintenance activities that included costs, performance, and environmental 

impact measures during the analysis. Several maintenance strategies were evaluated 

based on the measures, and a method for comparing all strategies by rescaling each 

measure was developed. The first step in their analysis was to define the strategies, as 

well as the associated life-cycle cost for each strategy. Then the performance was 

calculated as the area under the curve defining the condition as a function of time. Finally, 

the energy consumption and emissions related to each strategy were calculated for the 

materials and construction phase of the LCA. The measures were all scaled between zero 
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and one, with one representing the worst case and zero representing the worst case value, 

and the rescaled values were weighted and summed to calculate a single index. 

At the network level,  sustainable pavement management practices include 

designing maintenance strategies and selecting projects considering impacts related to the 

triple bottom line of sustainability. This may include modifying the objectives of a 

network level analysis to consider multiple criteria beyond cost and condition. The 

resulting multi-objective decision problem of the network level pavement management 

was converted to a single objective problem by treating some of the objectives as the 

constraints (Wu and Flintsch 2009). In this way, an agency seeks to maximize or 

minimize one particular objective (e.g., minimizing the cost divided by the performance 

of the pavement condition) subject to constraints that arise from the original objectives 

(e.g., budgetary constraints or constraints defining a minimum allowable pavement 

condition). 

At the project and network levels of pavement management, Bryce (2014) 

presented in his dissertation many papers about the impact of decision making on the 

environmental impact of pavement. Bryce et al. (2014) revealed that the required energy 

consumption from maintenance can be offset by improving road conditions that resulted 

in the reduced rolling resistance. However, for a given network condition this adjustment 

of reduced energy consumption also included the increased costs. Based on their results, 

it is not necessary that the lowest energy consumption values place along the line defined 

by reducing the cost divided by the pavement condition. 

On pavement resurfacing problems, Lidicker et al. (2013) extended the 

continuous-time to solve the multi-criteria problem based on two main objectives; 
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minimum cost and emission. Two case studies in California with two different traffic 

volumes (high and light) were used in their study. The researchers concluded that 

minimum achievable roughness and traffic loadings had a significant role to increases or 

decrease total GHG emissions. For the same smoother rehabilitated pavement, the low 

traffic volume produced lower emission than heavy traffic. Heavy traffic sections forced 

more frequent overlays, while the smoother pavement created more emissions. 

To improve the pavement maintenance schedule optimizations, Yu et al. (2013) 

developed a methodology to incorporate the environmental damage cost (EDC) in the 

cost evaluation systems. In general, The researchers combined life cycle assessment 

(LCA) to life-cycle cost analysis (LCCA) model to optimize the pavement maintenance 

plans using EDC. Three overlay systems were used a case study which is hot mix asphalt 

(HMA) overlay, Portland cement concrete (PCC) overlay, and crack, seat, and overlay 

(CSOL). The optimized maintenance plans a reduction between 9–13 % energy/GHGs 

and 6–10% regarding holistic costs compared to the before optimization plans. 

On concrete bridge infrastructure, Kendall et al. (2008) developed an integrated 

life-cycle assessment and life-cycle cost analysis model (LCA-LCCA) to enhance the 

sustainability. Two different bridge decks were used in their study: a conventional 

mechanical steel expansion joint design and an Engineered Cementitious Composite 

(ECC) link slab design. When these bridge decks were evaluated over the entire life cycle, 

the study concluded that the slab design resulted in lower life-cycle costs and reduced 

environmental impacts. Due to traffic delay caused by construction, costs to the funding 

agency include less than 3%  and 0.5 % of total costs and environmental costs, 
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respectively. Also, an integrated model; LCA-LCCA; was applied to other road 

infrastructure applications including pavement overlays. 

Gosse et al. (2013) proposed an expanded PMS framework to include greenhouse 

gas (GHG) emissions by utilizing a multiobjective genetic algorithm (GA). In this study, 

the model suggested different maintenance plans that produce higher network pavement 

performance with lower costs and GHG emissions. Also, this study found that the 

optimized management strategy could achieve the same network pavement performance 

with 60%  and 50% of the cost and GHG emissions respectively. 

  



51 

 

CHAPTER 3 EMISSION MODELS DEVELOPED WITH MOTOR 

VEHICLE EMISSION SIMULATOR (MOVES)  

3.1 OVERVIEW OF MOTOR VEHICLE EMISSION SIMULATOR (MOVES) 

Motor vehicle emissions are a crucial factor in estimations of air pollution, which 

is a critical concern for planners, engineers, and policymakers. Many tools, such as the 

U.S. Environmental Protection Agency’s (EPA), Motor Vehicle Emission Simulator 

(MOVES), the California Air Resources Board’s Emission Factors (EMFAC) model, and 

the Comprehensive Modal Emissions Model (CMEM), have been developed to calculate 

and measure pollutant emissions from motor vehicles (EPA 2012). 

HC, CO, CO2, NOx, CH4, N2O, PM10, and PM2.5 are a conventional vehicle and 

pavement outputs that adversely affect human life. Taking these emissions into account is 

very useful in estimating the discharge of different kinds of harmful pollutants on the 

basis of vehicular volumes and environmental conditions (Ozguven et al. 2013). Since 

2010, two officially approved mobile source emission models have been typically used in 

transportation conformity: the MOVES and EMFAC models developed by the EPA and 

California Air Resources Board, respectively. Many studies focused on comparing these 

models to estimate emission levels accurately. Examples include the research conducted 

by Chamberlin et al. (2011) and Bai et al. (2009). The authors indicated that the new 

features of MOVES make it a superior tool for emission modeling and analysis.  

MOVES is Motor Vehicle Emission Simulator that is used to calculate emissions 

from all on-road vehicles that travel over various types of roads (EPA 2012). MOVES 

was developed in 2010 and updated in late 2012. The EPA replaced previous emissions 

model for on-road mobile sources, namely, the MOBILE model with MOVES. MOVES 
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more accurately estimates the impacts of changes in operational traffic than do older 

MOBILE models, as determined by comprehensive analyses of the differences between 

MOVES and the latest version of MOBILE. These studies revealed that apart from the 

distinct advantage of the new interface provided by MOVES, more accurate database 

development and increased availability of default data are presented by the model. 

Compared with MOBILE, MOVES is more sensitive to speeds and estimates higher 

levels of emissions, except for CO. It also includes an analysis of emissions from idle 

vehicles feature that adds a more active and influential factor to the model.  

The MOVES interface presents different geographical scales, such as national, 

county, state, and multi-state levels, but a user must provide all necessary geographical 

information, including grade, vehicle type and speed, road type, fuel type, and time frame. 

There are many calculations steps for predicting energy consumption and emission by 

using the input and the default information present in the MOVES model. Two of the 

important steps are the importing and exporting of files from MOVES. These data 

include information about vehicle specific power (VSP), rolling resistance coefficient, 

vehicle age distribution, vehicles miles traveled (VMT), and vehicle age distribution. 

MOVES files also contain various types of information that are related to different 

parameters, such as speed, grade, roughness, texture depth, traffic volume, and engine 

running status. The model simultaneously analyzes these parameters to derive emission 

level output.  

Vehicle Specific Power (VSP), which distinguishes between running modes, is 

one of the important factors in calculating engine running status. It is indirectly related to 

energy consumption and traffic emissions (EPA 2012). The VSP indicated in MOVES 
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represents the engine running status for emission calculation, as presented in Equation 3.1. 

This equation is defined as the engine power per unit mass of a vehicle and reflects a 

vehicle’s power demand for operation over various conditions and speeds. VSP also 

includes some important components for calculating vehicle speed second by second for 

different emission types. Equation 3.1 is expressed as follows: 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐴𝐴
𝑀𝑀

× 𝑣𝑣 + 𝐵𝐵
𝑀𝑀

× 𝑣𝑣2 + 𝐶𝐶
𝑀𝑀
𝑣𝑣3 + (𝑎𝑎(1 + 𝜀𝜀𝑖𝑖) + 𝑔𝑔 × 𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔) × 𝑣𝑣…….. (3.1) 

Model coefficients A, B, and C refer to rolling resistance components, higher order 

rolling resistance and mechanical rotating friction, and air drag, respectively, with the 

coefficients expressed in units of kW·s/m, kW·s2/m2, and kW·s3/m3, respectively; M is 

the vehicle mass; and v denotes the instantaneous speed. Coefficients a and 𝜀𝜀𝑖𝑖 are the 

vehicle acceleration and mass factor terms. A, B, and C are not input data but are stored in 

the MOVES model database. They are unique to each vehicle type and can be modified 

by users. Modifying these coefficients for different levels of roughness enables the 

consideration of roadway surface conditions in simulations. 

The default values of A, B, and C are derived from the track load horsepower 

indicated in the Mobile Source Observation Database (MSOD) (U.S. EPA 2010a). The 

default value of the rolling resistance coefficient (A) is obtained from vehicle 

dynamometer tests, in which vehicles run on a smooth surface, usually steel (EPA 2010b). 

For this reason, the influence of pavement surface characteristics on vehicle operation is 

disregarded by the default VSP model in MOVES. Furthermore, A-value cannot be used 

directly in MOVES without adjustments. 
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3.2 CONSIDERATION OF ROAD SURFACE CHARACTERISTICS IN MOVES 

Pavement life cycle assessment at the use stage mainly focuses on fuel 

consumption and consequently, pollutant emissions due to the effect of tire rolling 

resistance on vehicle operations. The rolling resistance is the vehicle energy loss 

associated with the tire-pavement interaction, which is affected by tire properties, 

pavement surface deflection, and surface characteristics at a different wavelength 

(roughness and surface texture) (Descornet, 1990). 

To calculate the VSP terms, two types of models were used in this work with 

different terms. The first model was based on Wang et al. (2012) study, which considered 

the effect of rolling resistance coefficient (A) in MOVES and speed on emission. The 

other model was based on Ghosh et al. (2015) study using rolling resistance coefficient 

(A), air drag coefficient term (C), and speed.  

 

3.2.1 Model 1: Updating Rolling Resistance Coefficient (A)  

Wang et al. (2012) incorporated the effects of IRI by developing equations that 

relate IRI to the default parameters in MOVES to examine the effect of pavement 

roughness on energy consumption; however, these modified equations have yet to be 

applied for the use phase. In addition, their approach did not consider vehicle type 

responses to pavement degradation. Wang et al. (2012) proposed updating the rolling 

resistance coefficient (A) in MOVES using the ratio of the rolling resistance on existing 

pavement surface on the default rolling resistance on a smooth surface. The relationship 

is presented in Equation 3.2 below. In Wang et al.’s procedure, the rolling resistance at 

the tire-pavement interface was calculated based on the Highway Development and 
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Management Tool (HDM-4). The HDM-4 presented by World Bank included a model to 

quantify the vehicle operating cost for road management and planning (Bennett and 

Greenwood, 2003). The rolling resistance forces are functions of different parameters, 

such as pavement conditions, tire parameters, and vehicle characteristics. Equation 3.3 

shows the effects of pavement surface roughness, macro-texture, and deflection on tire 

rolling. Two steps are required to estimate emissions. Equations 3.2, 3.3, and 3.4 by the 

HDM-4 model were used to calculate rolling resistance as the first step, and then the 

MOVES model was used to calculate the fuel consumption and emissions as the second 

step. The MOVES default values of rolling resistance coefficient (A) and the parameters 

(α0, α1, α2, and α3) in the HDM-4 model are listed in Table 3.1.  

Aupdated= Adefault *(CR2pavement/CR2dynamometer) ………………………….. (3.2) 

(Frolling)HDM−4 = CR 2. FCLIM × (b11 . Nw + CR1 × (b12 M + b13 . v2))…… (3.3) 

CR2 = Kcr2 . (α0 + α1 . MPD + α2 . IRI + α3 . DEF)  …………….…… (3.4) 

Where, 

Aupdated = updated rolling resistance coefficient used in the calculation,  

Adefault = default rolling resistance coefficient in MOVES, 

CR2pavement = rolling resistance on real pavement surface, 

CR2dynamometer = rolling resistance on a smooth surface (both IRI and MPD vlaues are 

zero), 

(Frolling)HDM−4 = rolling resistance from HDM-4 software;  

CR1 = rolling resistance tire factor;  

CR2 = rolling resistance surface factor;  

M = mass of the vehicles;  
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Nw = number of wheels; and  

v = speed  

b11, b12, and b13 = coefficients related to tire type and other technologies;  

Kcr2 = a calibration factor 

FCLIM = climatic factor related to the percentage of driving snow and rain;  

α0, α1, α2, and α3 = coefficients for pavement surface characteristics from HDM-4 model;  

MPD = mean profile depth in mm, 

IRI = international roughness index in m/km, and  

DEF = pavement surface deflection in mm (using Benkelman Beam).  

The MOVES model is equipped with a built-in database that is used as default 

data based on some inputs in the first step to calculate emissions. The MOVES model 

default data need to be combined with the other input data of the project to get emission 

outputs.  

Some default data result from dynamometer tests of vehicles. A dynamometer test 

is conducted by running the vehicle on a smooth steel surface (Wang et al., 2011). Based 

on this test, both IRI and MPD values are zero because a steel surface is much smoother 

than the actual pavement while the passenger car DEF is also zero. Thus, the contribution 

of pavement surface characteristics to vehicle operation is considered by updating the 

rolling resistance coefficient (A) in MOVES. Wang et al. (2012) established a 

relationship between Aupdated and Adefault, which is mentioned in Equation 3.2.  

IRI must be updated for different preservation cases for the selected pavement 

section in the CR2 pavement Equation 3.4. The updated value has to be used in MOVES 

to “Generic/sourceusetypephysics” file to predict the emissions. The deflection value was 
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set to zero for passenger cars and 0.3556 mm for the other two vehicle types (passenger 

truck and single unit short-haul truck).  

The whole process of predicting emissions using MOVES and HDM-4 starts with 

using the HDM-4 model to calculate the value of Aupdated. In the HDM-4 model, the 

rolling resistance values can be calculated depending on the equations that are functions 

of IRI, MPD, and DEF for each vehicle type. These updated values were used as input 

values in MOVES (EPA, 2010b). By selecting the values of link traffic volume, link 

speed, link length, source type fractions, and Aupdated, energy consumption and CO2 

emissions were calculated by setting updated values into MOVES for execution. Table 

3.1 shows the default HDM-4 model parameters and A-default in MOVES. Finally, all 

this information including traffic information and roughness data for different 

preservation treatments was used by MOVES to calculate the vehicle fuel consumption 

and GHG emissions. 

Table 3.1 Parameters for CR2 model in HDM-4 Model and A-default in MOVES 

Vehicle A-default Vehicle weight (kg) a0 a1 a2 a3 

Passenger Car 0.1565 <=2500 0.5 0.02 0.1 0 

Passenger Truck 0.2211 >2500 0.57 0.04 0.04 1.34 

Single Unit Short Haul 

Truck 

0.6122 >2500 0.57 0.04 0.04 1.34 

 

3.2.2 Model 2: Updating Rolling Resistance Coefficient (A) and Air Drag Term (c) 

Ghosh et al. (2015) developed the vehicle specific power (VSP) equation as a 

function of IRI based on the rolling term (A) and air drag term (C) to examine the effect 
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of pavement roughness on energy consumption. The previous model used by Wang et al. 

(2012) recommended that MOVES default coefficient values correspond to the scenario 

in which IRI = 0 because the sources from which MOVES obtained values for the 

coefficients were computed using a dynamometer test on a steel or similarly smooth 

surface. This means the coefficients were not affected by pavement conditions. However, 

the results from this method do not seem to match MOVES default values, suggesting 

that the HDM-4 provided coefficients that are different from the default case. To resolve 

this issue, each suggested parameter value was examined in Ghosh et al. (2015) study.  

The VSP in terms of engine power per unit of vehicle mass that MOVES uses to 

calculate the energy consumption and emission is shown in Equation 3.5 as a 

representative for the engine running status.  

VSP = A
M

× V + B
M

× 𝑉𝑉2 + C
M

 𝑉𝑉3 + (a(1 + εi) + g × grade) × V ………. (3.5) 

Where, 

A                is the coefficient of rolling resistance component in MOVES; 

B                is the coefficient of higher order rolling resistance factors and mechanical         

rotating friction losses in MOVES; 

C                is the coefficient of air drag term in MOVES;         

M                is the mass of vehicles in kg; 

V                 is the vehicle speed in m/s; 

grade          is the gradient, which is vertical rise divided by slope length; 

g                 is the acceleration of gravity in m2/s; 

a                 is vehicle acceleration in m2/s; and 
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εi               is the “mass factor,” which is the equivalent translational mass of the rotating 

components (wheels, gears, shafts, etc.) of the powertrain; 

The connection between MOVES and HDM-4 has been established by 

considering three main resistances—rolling, aerodynamic, and inertia and gradient—that 

VSP must overcome as shown in Equations 3.6 (Wang et al., 2012).  

VSP = Rolling resistance + Air resistance + Inertial and Gradient resistance….. (3.6) 

        = Frolling × V
M

+ Faerodynamic × V
M

+ Finerttial and gradient × V
M

 ……. (3.6a) 

 = CRg × V + 1
2

× ρaCDAfront
M

 (V + Vw)2 × V + (a(1 + εi) + g × grade) × V… (3.6b) 

Where, 

Frolling                 is the rolling resistance in Newtons; 

Faerodynamic            is the aerodynamic resistance in Newtons; 

Finertial and gradient   is the inertial resistance (if in acceleration) and gradient resistance (if on 

hill) in Newtons; 

𝑉𝑉𝑤𝑤                      is the speed of headwind into the vehicle in m/s; 

CR                      is the rolling resistance coefficient; 

𝜌𝜌𝑎𝑎                         is the ambient air density (1.207 kg/m3, at 20°C); 

Afront                     is the front area of the vehicle in m2; and 

CD                      is the aerodynamic drag coefficient; 

 

According to HDM-4 such as Zaabar and Chatti Report, the rolling resistance 

term (Frolling) is the only factor that is a function of IRI as shown in Equations 3.7 and 

3.8. The other resistances in VSP-aerodynamic resistance (Faerodynamic) and inertia and 

gradient resistance (Finertia and gradient)-are independent of roadway surface roughness. 
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Frolling = CR2. FCLIM �b11Nw + CR1(b12M + b13V2)� …………..….(3.7) 

𝐶𝐶𝐶𝐶2 = 𝐾𝐾𝑐𝑐𝑐𝑐2(𝑎𝑎0 + 𝑎𝑎1 × 𝑇𝑇𝑔𝑔𝑇𝑇𝑝𝑝 + 𝑎𝑎2 × 𝐼𝐼𝐶𝐶𝐼𝐼 + 𝑎𝑎3 × 𝐷𝐷𝐷𝐷𝐹𝐹)  …………..… (3.8) 

Where, 

𝐶𝐶𝐶𝐶2                         is the factor of surface characteristics influenced by IRI; 

𝐶𝐶𝐶𝐶1                       is a function of tire type, 1.3 for cross-ply bias, 1.0 for radial, and 0.9 

for low profile tires; 

𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹                  is the climate factor related to the percentage of driving done in snow 

and rain; 

𝑁𝑁𝑤𝑤                           is the total number of wheels; 

b11, b12, and b13     are the coefficients related to tire type and technologies; 

Kcr2                         is a calibration factor; 

Tdsp                        is the texture depth from the sand patch method in mm, which can be 

calculated from MPD as: Tdsp = 1.02*MPD + 0.28 for asphalt 

pavement; for concrete pavement, MTD is used to represent Tdsp 

directly; 

IRI                           is the International Roughness Index in m/km; 

DEF                         is the Benkelman Beam rebound deflection in mm, a measure of 

pavement elastic deflection; and  

a0, a1, a2, and a3    are coefficients for different surface characteristics. 

By equating Equations 3.5 and 3.6a, 

A
M

× V +
B
M

× V2 +
C
M

 V3 + (a(1 + εi) + g × grade) × v = Frolling ×
V
M

+ Faerodynamic ×
V
M

+ Finerttial and gradient ×
V
M
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A
M

× V +
B
M

× V2 +
C
M

× V3 + (a(1 + εi) + g × grade) × V

= CR2 × FCLIM�b11Nw + CR1(b12M + b13V2)� ×
V
M

+
1
2

×
ρaCDAfront(V + Vw)2

M
× V

+ Finertial and gradient ×
V
M

 

 

V
M

(A + BV + CV2 + (a(1 + εi) + g × grade)M)

=
V
M
�CR2 × FCLIM�b11Nw + CR1(b12M + b13V2)� +

1
2
ρaCDAfront(V + Vw)2

+ Finertial and gradient� 

 

A + BV + CV2 = CR2 × FCLIM(B11Nw + CR1b12M + CR1b13V2) +
1
2
ρaCDAfront(V + Vw)2 

A + BV + CV2 = CR2 × FCLIM × 𝑏𝑏11 × 𝑁𝑁𝑤𝑤 + CR2 × 𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹 × CR1 × b12 × M + CR2 × 𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹 × CR1

× b13 × 𝑉𝑉2 +
1
2
ρaCDAfront(V + Vw)2 

 

A + BV + CV2 = CR2 × FCLIM(𝑏𝑏11 × 𝑁𝑁𝑤𝑤 + CR1 × b12 × M) + CR2 × 𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹 × CR1 × b13 × 𝑉𝑉2

+
1
2
ρaCDAfront(V + Vw)2 

Then, 

𝐴𝐴 = 𝐶𝐶𝐶𝐶2 × 𝑘𝑘𝐴𝐴 ……………………………………(3.9) 

𝐶𝐶 = 𝐶𝐶𝐶𝐶2 × 𝑘𝑘𝑐𝑐 + 𝑏𝑏𝑐𝑐 …………………………..…(3.10) 

Where, 𝑘𝑘𝐴𝐴 and 𝑘𝑘𝑐𝑐 represent the effect from rolling resistance, and 𝑏𝑏𝑐𝑐 is that from 

aerodynamic resistance as shown in Equations 3.11 through 3.13 

 

𝑘𝑘𝐴𝐴 = 𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹 (𝑏𝑏11𝑁𝑁𝑤𝑤 + 𝐶𝐶𝐶𝐶1 𝑏𝑏12 𝐹𝐹) ……………………(3.11) 

𝑘𝑘𝑐𝑐 = 𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹 𝐶𝐶𝐶𝐶1 𝑏𝑏13 ………………………..…(3.12) 
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𝑏𝑏𝑐𝑐 = 1

2
ρaCDAfront ………………………………(3.13) 

Theoretically, it is feasible to compute MOVES model coefficients A and C using the 

Equations 3.8 through 3.13. 

 

3.3 PAVEMENT FACTORS AFFECTING VEHICLE EMISSION 

To exemplify the proposed methodology and to show the importance of 

considering the two models parameters when calculating Carbon Dioxide emissions 

(CO2), a sensitivity analysis was conducted for one-lane mile segment with speed limit of 

65 mph. In this study, it was assumed that the AADTT is 1500 ESALs and the analysis 

period is 20 years (2015-2035). 

To evaluate the effect of different surface characteristics parameters on the 

emission, both models results will be compared with MOVES real results. Range of 

values was selected for MPD, IRI, DEF, and speed as input data for the three vehicle 

types as shown in Table 3.2. 

As mentioned in Table 3.2, three types of vehicles are considered in this study; 

passenger car (PC) and passenger truck (PT) with gasoline fuel, and single unit short-haul 

truck (SUSHT) with diesel fuel. Also, the road type that was considered is a restricted 

urban road with one lane-mile preservation treatments (one mile by 12 ft). By changing 

one factor in Table 3.2 while keeping the others constant, different values of CO2 

emissions were obtained for three vehicle types using MOVES as shown in Figures 3.1 

through 3.4. 
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Table 3.2 Variables used in sensitivity analysis 

Variables Range Default value 

MPD (mm) 1.1-2.63 1.4 

IRI (m/Km) 0.8-3.2 2 

DEF (mm) 0.2032-0.5080 0.356 

Speed (mph) 5-65 65 

Type of vehicles 3 Passenger car (21), Passenger truck (31),  

and Single unit short-haul truck (52) 

 

Pavement texture in mean profile depth (MPD) has a significant effect on rolling 

resistance due to vehicle vibration that causes an excess fuel consumption (Sandberg, 

2011). In this study, a range of MPD values (1.1, 1.4, 1.71, 2.01, 2.32, and 2.63 mm) was 

selected to perform a sensitivity analysis of emissions in MOVES using model 1 and 2 

while other factors (IRI, DEF, and speed) were kept constant, as shown in Figure 3.1. 

Figure 3.1 shows that the CO2 emissions increase when MPD was increased for 

passenger cars, passenger trucks, and single unit short-haul truck.  
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(a)  

 
(b)  

 
(c) 

Figure 3.1 Effect of MPD on Carbon Dioxide emissions (CO2) emission with (a) 

Passenger Car (21); (b) Passenger Truck (31); (c) Single Unit Short Haul Truck (52) 
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Neglecting the traffic load effect, flexible pavement offers higher surface 

deflection (DEF) than rigid pavement which requires more energy to keep the vehicle 

movement because of the tire rolling resistance (Lenz, 2011). A sensitivity analysis of 

CO2 emissions in MOVES was performed by selecting range values of DEF (0.2032, 

0.356, 0.4572, and 0.508 mm) and keeping other factors (IRI, MPD, and speed) constant, 

as shown in Figure 3.2. Using models 1 and 2, Figure 3.2 shows that the CO2 emissions 

increase when the pavement deflection was increased for passenger truck and passenger 

single unit short-haul truck, while the CO2 emission remains constant with the increase of 

deflection values for passenger cars because the value of a3 in CR2 is zero (Equation 3.8). 
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(c) 

Figure 3.2 Effect of deflection on Carbon Dioxide emissions (CO2) emission with (a) 

Passenger Car (21); (b) Passenger Truck (31); (c) Single Unit Short Haul Truck (52) 

 

In most state agencies, International Roughness Index (IRI) is used to quantify the 
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Figure 3.3 shows the sensitivity analysis of CO2 emissions with IRI for the three vehicle 

types. The MPD, DEF, and speed were kept constant, while the IRI values range were 0.8, 

1.4, 2.0, 2.6, and 3.2 m/km. The Figure shows that the CO2 emissions increase when the 

IRI values were increased for passenger cars, passenger trucks, and single unit short-haul 

truck due to the energy dissipation in tire and vehicle suspension system. 
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(b) 

 
(c) 

Figure 3.3 Effect of IRI on Carbon Dioxide emissions (CO2) emission with (a) 

Passenger Car (21); (b) Passenger Truck (31); (c) Single Unit Short Haul Truck (52) 

 

IRI, MPD, and DEF are all pavement related factors that affect emissions and 

energy consumptions. In order to study the speed factor which is related to the vehicle, a 

sensitivity analysis of CO2 emissions with vehicle speed for the three vehicle types was 

conducted as shown in Figure 3.4. The IRI, DEF, and MPD were kept constant, while the 

speed was changed from 5 to 65 mph by an increment of 5 mph. In Figures 3.4, the CO2 

emissions decrease when the speed was increased for the three vehicle types.  
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(a) 

 

(b) 

 
(c) 

Figure 3.4 Effect of speed on Carbon Dioxide emissions (CO2) emission with (a) 

Passenger Car (21); (b) Passenger Truck (31); (c) Single Unit Short Haul Truck (52) 
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3.4 DEVELOPMENT OF REGRESSION MODELS 

To simplify the calculation process and make the run faster in the optimization 

process later, 450 and 6300 MOVES runs were used to develop regression models for 

predicting total energy consumptions (TEC) and Carbon Dioxide emissions (CO2) for 

four vehicle types for model 1 and 2 respectively. In general, 15 values of speeds (0-75 

mph), 30 values of A (0.1-3) and 14 values of C  (0.0003-0.005) were used to develop 

regression equations to predict the emission and energy consumption.  
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Table 3.3 Variables used in regression model development 

Variables Range Default value 

Speed (mph) 0-75 40, 65 

Type of vehicles 4 Passenger car (21), passenger truck 

(31), single unit short-haul truck (52), 

and combination long-haul truck (62)  

A-value (rolling term) in 

MOVES 

0.1- 3 PC = 0.1565 

PT = 0.2211 

SUSHT = 0.6122 

CLHT = 1.5522 

C- Value (Drag term) in 

MOVES 

0.0003-0.005 PC = 0.0005 

PT = 0.0007 

SUSHT = 0.0016 

CLHT = 0.0039 

Section length (lane-mile) 1  

AADTT (ESALs) 1500  

Fuel type 

 

Gasoline (PC & PT) 

Diesel (SUSHT & 

CLHT) 

 

 

Regression statistics using ANOVA was used to find a relationship between CO2 

emission and total energy consumption as a Y-value variable with two different X-values, 

speed, and A-value for four vehicle types as shown in Table 3.4. Also, Table 3.5 shows a 
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relationship between CO2 emission and total energy consumption as a Y-value variable 

with three different X-values, speed, A-value, and C-value for the four types of vehicles. 

  

Table 3.4 CO2 emission and total energy consumption (TEC) relationship with 

speed and A-Value for different vehicles 

 Vehicle Type Equation R2 

C
O

2 e
m

is
si

on
 (K

g/
V

eh
-m

ile
) 

Passenger Car  
𝐶𝐶𝐶𝐶2𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛_21 = 1.1437 +  0.17797 𝐴𝐴 −  0.05298 𝑉𝑉 

+  0.001111  𝑉𝑉2  −  0.000008  𝑉𝑉3 
0.906 

Passenger Truck 
𝐶𝐶𝐶𝐶2𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛_31 = 1.2831 +  0.18961 𝐴𝐴 −  0.0632 𝑉𝑉 

+  0.001369  𝑉𝑉2 − 0.000009 𝑉𝑉3 
0.924 

Single Unit Short-

Haul Truck 

𝐶𝐶𝐶𝐶2𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛_52 = 2.8587 +  0.16305 𝐴𝐴 −  0.14508 𝑉𝑉 

+  0.002818 𝑉𝑉2 −  0.000018 𝑉𝑉3 
0.933 

Combination Long 

Haul-Truck 

𝐶𝐶𝐶𝐶2𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛_62 = 4.5053 +  0.2177 𝐴𝐴 −  0.17907 𝑉𝑉 

+  0.003223 𝑉𝑉2 − 0.000018 𝑉𝑉3 
0.924 

T
ot

al
 E

ne
rg

y 
C

on
su

m
pt

io
n 

(M
J/

V
eh

-m
ile

) Passenger Car  
𝑇𝑇𝐷𝐷𝐶𝐶_21 = 15.914 +  2.4763 𝐴𝐴 −  0.7371 𝑉𝑉 

+  0.015453 𝑉𝑉2  −  0.000106 𝑉𝑉3 
0.906 

Passenger Truck 
𝑇𝑇𝐷𝐷𝐶𝐶_31 = 17.853 +  2.6383 𝐴𝐴 −  0.8794 𝑉𝑉 

+  0.019046 𝑉𝑉2 − 0.000131 𝑉𝑉3 
0.924 

Single Unit Short-

Haul Truck 

𝑇𝑇𝐷𝐷𝐶𝐶_52 = 38.809 +  2.213 𝐴𝐴 −  1.9695 𝑉𝑉 

+  0.03826 𝑉𝑉2 − 0.00024 𝑉𝑉3 
0.933 

Combination Long 

Haul-Truck 

𝑇𝑇𝐷𝐷𝐶𝐶_62 = 61.163 +  2.955 𝐴𝐴 −  2.431 𝑉𝑉 

+  0.04376  𝑉𝑉2 − 0.000249 𝑉𝑉3 
0.924 

Where A=Rolling term and V=Speed (mph) 
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Table 3.5 CO2 Emission and total energy consumption relationship with speed, A-

value, and C-value for different vehicles 

 Vehicle Type Equation R2 
C

O
2 e

m
is

si
on

 (K
g/

V
eh

-m
ile

) 

Passenger Car  
CO2emission_21 = 1.1582 +  0.12377 A +  61.61 C 

−  6502 C2 − 0.049636 𝑉𝑉 

+  0.001061 V2  −  0.000008  V3 

0.844 

Passenger Truck 
CO2emission_31 = 1.25761 +  0.13829 A +  83.1 C 

−  8796 C2 − 0.060537 V 

+  0.001358 V2  −  0.00001 V3 

0.855 

Single Unit Short-

Haul Truck 

CO2emission_52 = 2.6886 +  0.16013 A 

+  69.67 C +  2634 C2 − 0.14533 V 

+  0.002869 V2  −  0.000018 V3 

0.903 

Combination 

Long Haul Truck 

CO2emission_62 = 4.3724 +  0.19071 A +  73.93 C  

+  4730 C2 − 0.18485 V 

+  0.003304 V2  −  0.00002 V3 

0.926 

T
ot

al
 E

ne
rg

y 
C

on
su

m
pt

io
n 

(M
J/

V
eh

-m
ile

) Passenger Car  
TEC_21 = 16.116 +  1.7223 A +  857.3 C  −  90470 C2

− 0.69067 V +  0.014764 V2  

−  0.000105 V3  

0.844 

Passenger Truck 
TEC_31 = 17.4993 +  1.9242 A +  1156.2 C  

−  122398 C2 − 0.84235 V 

+  0.018897 V2  −  0.000135 V3  

0.855 

Single Unit Short-

Haul Truck 

TEC_52 = 36.499 +  2.1739 A +  945.8 C +  35757 C2

− 1.973 V +  0.03895 V2  

−  0.000244 V3  

0.903 

Combination 

Long Haul Truck 

TEC_62 = 59.359 +  2.589 A +  1004 C  +  64218 C2

− 2.5095 V +  0.044857  V2  

−  0.000266 V3  

0.926 

Where A=Rolling term, C=Air drag term and V=Speed (mph) 

 

A review of the statistical literature (Neter et al., 1990; Snee 1977) suggests the 

following methods for validating a regression model: 
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1. Check on model predictions and coefficients 

2. Collection of new data 

3. Comparison with previously developed models 

4. Data splitting 

5. Predicted residual error sum of squares (PRESS) 

The literature suggests that all available methods of validation could be used. 

However, it is not possible to use all the methods of validation. Therefore, the 

applicability of each method in terms of the validation of the developed models will be 

discussed, and the most appropriate methods of validation will be selected. 

The first method (check on model predictions and coefficients) attempts to make 

sure that the selected model agrees with the physical theory. This essentially has been 

already checked during the development process. The second method (collection of new 

data) suggests that a new dataset should be collected. Unfortunately, the collection of the 

new data is not possible due to time constraints. The third method (comparison with 

previously developed models) compares the results of a newly developed model with a 

previously developed model or with a theoretical model. The fourth method (data 

splitting) has recommended that one may not consider data splitting unless N > 2P+25, 

where N is the sample size and P is a number of estimated parameters. The last method 

(prediction sum of squares) is a form of data splitting, and it is not feasible because of the 

available large sample size. 

Based on the details mentioned above and to minimize the error of mean for the 

accuracy requirements, a scatter plot graphs the actual MOVES outputs data against the 

values predicted by the model 1 and 2. The scatter plot displays the predicted values 
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along the X-axis and shows the actual values along the Y-axis. It also shows a line that 

illustrates the perfect prediction, where the predicted value exactly matches the actual 

value. The distance of a point from this ideal 45-degree angle line indicates how well or 

how poorly the prediction performed. In addition, the adjusted R2 of the line shows the 

degree of correlation between the two results. 

Figures 3.5, 3.6, 3.7, and 3.8 show the relationships of the CO2 emissions and 

TEC for MOVES outputs with CO2 emissions and TEC from model 1 for the four 

vehicle types of 21, 31, 52 and 62, respectively.  In Figures 3.5, 3.6, 3.7, and 3.8, the 

values of R2 for CO2 emissions are 0.883, 0.880, 0.930 and 0.923, respectively, and for 

TEC are 0.907, 0.925, 0.934 and 0.925, respectively.  

  

(a) (b) 

Figure 3.5 Passenger cars predicted vs. actual values of (a) CO2 emission (b) TEC 
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(a) (b) 

Figure 3.6 Passenger trucks predicted vs. actual values of (a) CO2 emission (b) TEC 

  

(a) (b) 

Figure 3.7 Single unit short-haul truck predicted vs. actual values of (a) CO2 

emission (b) TEC 
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(a) (b) 

Figure 3.8 Combination long haul-truck predicted vs. actual values of (a) CO2 

emission (b) TEC 

Figures 3.9, 3.10, 3.11 and 3.12 show the relationships of the CO2 emissions and 

TEC for MOVES outputs with CO2 emissions and TEC from model 2 for the four 

vehicle types of 21, 31, 52 and 62, respectively.  In Figures 3.9, 3.10, 3.11 and 3.12, the 

values of R2 for CO2 emissions are 0.809, 0.839, 0.904 and 0.924, respectively. In 

Figures 3.9 through 3.12, the R2 values for TEC are 0.844, 0.856, 0.904 and  0.926 for 

passenger cars, passenger truck, single short-haul truck and combination long-haul truck, 

respectively.  
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(a) (b) 

Figure 3.9 Passenger cars predicted vs. actual values of (a) CO2 emission (b) TEC 

  

(a) (b) 

Figure 3.10 Passenger trucks predicted vs. actual values of (a) CO2 emission (b) 
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(a) (b) 

Figure 3.11 Single unit short-haul truck predicted vs. actual values of (a) CO2 

emission (b) TEC 

  

(a) (b) 

Figure 3.12 Combination long-haul truck predicted vs. actual values of (a) CO2 

emission (b) TEC 
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other model was based on Ghosh et al. (2015) study using rolling resistance coefficient 

(A), air drag coefficient term (C), and speed.  

Based on the current output of these two models and sensitivity analysis, model 2 

was selected because it contains more efficient coefficients than model 1. In general, 

model 2 uses HDM-4 to develop equations for vehicles specific power (VSP) as a 

function of IRI.  Model 2 outputs revised MOVES coefficients A and C, which enables 

MOVES simulation to consider the effect of road roughness on energy consumption and 

CO2 emissions. In the next Chapters, energy consumption and CO2 emissions will be 

quantified using Model 2 only.    
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CHAPTER 4 QUANTIFYING ENVIRONMENTAL IMPACT OF 

ASPHALT PAVEMENT PRESERVATION AT CONSTRUCTION 

AND USE STAGE 

4.1 INTRODUCTION 

The issue of transportation and the environment is conflicting in nature since 

transportation carries essential socioeconomic benefits, but at the same time 

transportation is impacting environmental systems. In recent decades, the growth of 

freight mobility has expanded the role of transportation as a main source of emission of 

pollutants and their multiple impacts on the environment (Rodrigue and Comtois, 2013). 

In addition, Cross et al. (2011) mentioned that transportation takes the second place after 

electricity in generating of greenhouse gas emissions. They indicated that transportation 

causes about one-third of all U.S. end-use sector carbon dioxide (CO2) emissions. 

  Construction, rehabilitation, and maintenance of highway pavements require 

obtaining, processing, transporting, manufacturing, and placement of large amounts of 

construction materials. A sustainable pavement comes with the combination of durability, 

cost-effectiveness, eco-efficiency, and longevity. Recently, transportation agencies start 

to increase focus on preservation to prevent deterioration of the nation’s highways. 

Compared to rehabilitation, preventive maintenance treatments mainly focus on surface 

refreshment to alleviate functional indicators of pavement deterioration, such as friction, 

minor cracking or oxidation of asphalt pavements, rather than repair structural 

deterioration. Therefore, preventive maintenance can retard pavement failures and reduce 

the need for corrective maintenance or rehabilitation and eventually prolong pavement 

service life.  

https://people.hofstra.edu/geotrans/eng/ch8en/conc8en/envisys.html
https://people.hofstra.edu/geotrans/eng/ch8en/conc8en/tenvitbl.html


81 

 

 The economic impacts of different pavement maintenance and preservation 

activities are important for the selection of pavement repair alternative. A lot of studies 

have been conducted to evaluate the cost-effectiveness of pavement preservation using 

life-cycle cost analysis (LCCA) (Pittenger et al. 2011; Wang et al. 2013). However, few 

studies have been conducted to evaluate and select appropriate pavement preservation 

treatments considering its environmental impacts.  

 Life-cycle Assessment (LCA) is a technique for assessing potential environmental 

burdens and impacts throughout a product’s life from raw material acquisition through 

production, use, and disposal (ISO 2006). LCA is an appropriate tool for assessing the 

environmental impacts and helps to identify which impacts are the most significant across 

the life-cycle. As such, the LCA should be based on an understanding of all pavement-

related processes, including material extraction and processing, construction, operation, 

preservation, rehabilitation, and disposal that go into all phases of the life-cycle of 

pavement. 

A number of studies have been conducted to provide sustainability indicators for 

pavement systems using LCA. In these studies, different structural design and 

rehabilitation techniques were considered including asphalt or concrete, overlay, 

reconstruction, and cold in-place recycling (Thenoux et al. 2006; Weiland and Muench 

2010; Yu and Lu 2012; Chong and Wang 2017). Chehovits and Galehouse (2010) 

focused on the construction stage only by calculating and comparing energy usage and 

GHG emissions for construction, rehabilitation, and preservation of asphalt pavements.  

 Recently, studies have shown that Greenhouse Gas (GHG) emission at use stage 

is affected by pavement surface characteristics (roughness and texture) and pavement 
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deflection resulted from tire-pavement interaction (Chatti and Zaabar 2012; Akbarian et 

al. 2012; Hammarstrom et al. 2012). The role of use stage is more critical in the 

pavement life-cycle assessment for highway sections with high traffic volumes (Huang et 

al. 2009; Zhang et al. 2010; Wang et al. 2012; Trupia et al. 2017).  

Pavement preservation treatments consume massive amounts of nonrenewable 

resources and generate GHG emissions at construction stage. At use stage of pavement 

after treatments, fuel consumptions and vehicle emission vary significantly depending on 

tire rolling resistance that is affected by pavement surface roughness, macro-texture, and 

deflection. Therefore, a systematic approach is needed to evaluate the environmental 

impacts of pavement preservation at its whole life-cycle. 

 

4.2 LIFE-CYCLE ASSESSMENT FRAMEWORK 

The formal structure of LCA was framed by International Standards Organization 

(ISO) with three basic stages: goal definition, inventory analysis, and impact assessment 

(ISO 2006). The goal is to define the questions that are to be answered, such as 

identifying the environmental impact of each material/process and find an alternative 

approach to reduce the impact. Inventory analysis is analyzing an inventory flow for a 

product or process from cradle stage to end stage. Impact assessment is to assess the 

influences on specific environmental categories and rank relative seriousness of the 

influences. 

The LCA framework used in this study is shown in Figure 4.1, respectively, for 

construction and use stages. Material production stage includes each step in the materials 

manufacturing process, from the extraction of raw materials to their changeover into a 

pavement input material. It also includes any necessary transportation that occurs 
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between facilities. The construction stage is all the processes used in the placement of 

pavement materials at the project location. It includes onsite construction equipment and 

transportation. 

The use stage follows the construction stage in which the pavement is used for 

traffic. A comprehensive LCA of pavement should include traffic delay, rolling 

resistance, concrete carbonation, pavement albedo, lighting, leachate, and end of life 

allocation (Santero et al. 2011).  However, there are still many areas in the use stage 

where supporting data are incomplete that may cause great uncertainty if considering the 

whole pavement LCA framework. This study only considers the effects of traffic 

parameters and pavement surface conditions on vehicle emission in the use stage because 

there are models available to quantify these effects. Since pavement preservation 

treatments are usually conducted at nights, the traffic interruption caused by construction 

can be minimized. Therefore, traffic delay due to work zone is considered negligible for 

pavement preservation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 LCA framework of pavement preservation at construction and use stages 

 

Use 
 

Materials 

 
• On-site transportation 
• Construction equipment 

usage 

 

Construction 

• Pavement- vehicle 
interaction 

• Roughness 

 

 

End of Life  
 

Maintenance & 
Rahabilitation 

 

• Raw material 
• Extraction & production 
• Transportation 
• Final product 

 
• Materials 
• Construction 

 

• Landfill 
• Recycle 

 



84 

 

4.3 EMISSION OF PRESERVATION TREATMENTS AT CONSTRUCTION 

STAGE 

4.3.1 Types of Pavement Preservation 

Thin overlay is a popular preservation approach to improve pavement surface 

condition, protect pavement structure, reduce the pavement deterioration rate, correct 

surface deficiencies, reduce permeability, and improve the ride quality of the pavement. 

The hot-mix asphalt (HMA) overlay is usually applied with a thickness range of 0.5-2 

inches. Thin overlays are generally used with a relatively high cost with greater 

performance exception compared to other preservation treatments.  

Chip seal is a surface treatment in which pavement surface is sprayed with asphalt 

emulsion and then immediately covered with aggregate and compacted by the roller. 

Chip seals are used primarily to seal pavement with non-load-associated cracks and to 

improve surface friction. They are commonly used as a wearing course on low volume 

roads. In chip seal, the adhesion of emulsion and aggregate is crucial, and aggregates 

should be completely dry and clean to prevent the adhesion failure. Failure of chip seal 

occurs mainly because of two reasons: stripping and bleeding. 

Crack seal is one of the most common preservation treatments because it is cost-

effective and can be easily applied. It extends the service life of pavement through 

reducing the amount of moisture that can infiltrate pavement structure and prevent 

incompressible materials into existing cracks. One of the most important steps for the 

crack seal is to prepare (clean) the cracks and then filling it with crack sealant. The crack 

sealant is usually rubberized asphalt or polymer modified asphalt with a small amount of 

filler. 
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Although the material designs of preservation treatments may vary slightly 

depending on local experience, assumptions were made in this study based on typical 

practice. The thickness of thin overlay is 1.5 inch, and the proportion of asphalt and 

aggregate is 5% and 95% respectively. The chip seal has an application rate of 1.632 

kg/m2 and 15 kg/m2 for emulsion and aggregate, respectively. The crack seal has an 

application rate of 0.37 kg/m2 for pavement surface with a crack density of 0.37 m/m2 

(Peshkin et al. 2004; Caltrans 2003). 

 

4.3.2 Effectiveness of Pavement Preservation on Pavement Performance 

Eltahan et al. (1999) studied the performance of the LTPP SPS-3 test sections in 

the southern region. The performance of the treatment sections was compared with 

control sections on the basis of three existing conditions: good, fair, and poor. The study 

concluded that if the existing pavement is in a fair condition, the treatments make the 

most significant difference. For thin overlay, the average benefit compared with no 

treatment is 4.8 years, whereas it is 3.5 years for slurry seal and 5.7 years for crack seal. 

The study also concluded that chip seal outperformed all the other treatments. 

Chen et al. (2003) conducted a study in the Texas DOT reviewed fourteen LTPP 

test sites. In terms of the overall performance, chip seal was ranked first, followed by thin 

overlay, and slurry seal, which is tied with crack seal. The most comprehensive study on 

the LTPP SPS-3 experiment was conducted under the National Cooperative Highway 

Research Program’s (NCHRP) Project 20-50 (03/04), which analyzed data from all the 

SPS-3 sites. The study found that the thin overlay treatment was the only one of the four 

treatments to have a significant initial effect on rutting, and crack seals did not 
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demonstrate any initial or long-term effect with respect to the international roughness 

index (IRI), rutting, or cracking (Hall et al. 2002). 

With many treatment types, Hot Mix Asphalt (HMA) overlay had the highest 

performance time, followed by micro-surfacing with chip seal, slurry seal, crack filling, 

and crack sealing. Furthermore, thin overlay was the most expensive treatment, followed 

by micro-surfacing and chip seal tied with slurry seal. Wang et al. (2012) used statistical 

tests, such as a paired t-test, to compare the LTPP control sections with the treatment 

section roughness. They found that all treatments used in their study caused a significant 

roughness reduction. They also ordered the effectiveness of the treatments based on 

roughness reduction. HMA overlay had the most significant effect on roughness 

reduction, followed by chip seal, crack seal, and slurry seal. Finally, comparing the 

average difference of International Roughness Index (ΔIRI) between the control section 

and the treatment sections, crack seal, slurry seal, and overlay were found to be 0.124, 

0.083, and 0.407 with a standard deviation of 0.269, 0.04, and 0.618, respectively. 

After extensive studies, Carvalho et al. (2011) presented the effects of several 

design parameters on pavement responses and performance using rigid and flexible 

pavements. A weighted distress was utilized in that study as a performance indicator, 

which represents the total normalized area under the distress-time curve. The main results 

of Carvalho et al.’s (2011) study showed that thin overlay performed better than other 

treatments in terms of Weighted Distress-IRI. The Weighted Distress-IRI of thin overlay 

and slurry seal equals 4.80 ft/mile (0.91 m/km) and 7.66 ft/mile (1.45 m/km), respectively. 

Additionally, slurry seal treatment showed the worst performance over an eight-year 

period. 
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4.3.3 Life-Cycle Inventory Data 

In order to quantify energy consumption and emission of preservation treatments, 

the first need is to determine the material components and manufacturing processes for 

each treatment.  Life inventory data of raw materials, manufacturing, transport, and 

placement were reviewed from published reports by a number of researchers, mainly 

including the Portland Cement Association (Marceau et al. 2007), the Swedish 

Environmental Research Institute (Stripple 2001), the ATHENA Sustainable Material 

Institute (ATHENA 2006), the University of BATH at UK (Hammond and Jone 2008), 

and Swiss Centre for Life Cycle Inventories (2011). Although multiple data sources are 

available for life-cycle inventory data of typical construction materials, discrepancies 

may exist due to different local conditions, technologies, and system boundaries.  

Table 4.1 lists the inventory data for energy and emission, respectively for 

construction materials and processes used in three preservation treatments considered in 

this study. The fuel and electricity that are used in plant operations and transportation of 

raw materials cause direct energy consumption and emissions, while energy and 

emissions related to the production of fuels and electricity are considered as indirect 

energy usage and emissions (upstream) (Harvey et al. 2016). However, the energy and 

emission data listed in Table 4.1 include upstream processes. The emission rates of CO2 

and CH4 are presented in Table 4.1. The other types of pollutant emissions were found 

negligible in the analysis. Life inventory of asphalt products was mainly obtained from 

the data published by European bitumen industry (Eurobitume 2012) that covers 

extraction of crude oil, manufacturing of asphalt product, storage, and construction of 

refinery facility. A report published by Swedish Environmental Research Institute (IVL) 
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(Stripple 2001) was mainly used to obtain energy consumption and emission data for 

aggregate production, manufacturing of HMA, transportation, and machinery used in 

construction.  

For the production of asphalt products, the energy sources are diesel oil, 

electricity, fuel used for producing electricity (biomass fuel, peat, coal, uranium), and 

natural gas. The emissions are computed starting from oil extraction and passing through 

the process of transportation, processing, refining, and storage. Energy consumption for 

aggregate production includes quarrying, hauling, crushing, and screening. 

Manufacturing of HMA includes handling, storing, drying, and mixing.  

As for the laying down process of the material (in-place works), the mechanical 

performance of the most common machines and standard construction procedure have 

been considered. For example, HMA thin overlay is constructed by using an asphalt 

paver and roller compaction. For chip seal, asphalt emulsion is spread over pavement 

surface, and then aggregate is laid. Crack seal includes both sawing and sealing work 

using diesel driven equipment.  

For transportation of materials to the construction site, it is assumed to be done by 

a distribution truck with 100% full front haul and an empty backhaul. Air emissions are 

strictly dependent on fuel consumptions used by construction equipment and transport 

vehicles.  
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Table 4.1 Life Inventory Data Related to Preservation Treatments (Sources: IVL 

and Eurobitume) 

Product/Process Energy CO2 CH4 

Asphalt 3.08E+09 J/ton 
1.76E+02 

kg/ton 

6.00E-01  

kg/ton 

Aggregate 3.20E+07 J/ton 
1.42E+00 

kg/ton 

3.82E-06 

kg/ton 

Asphalt emulsion 3.09E+09 J/ton 
2.04E+02 

kg/ton 

6.40E-01 

kg/ton 

Polymer modified crack sealant 5.94E+09 J/ton 
2.96E+02 

kg/ton 

1.09E+00 

kg/ton 

Production of hot-mix asphalt 3.69E+08 J/ton 
2.23E+01 

kg/ton 

5.04E-06 

kg/ton 

Transportation 
9.00E+05 J/ton-

km 

6.70E-02 

kg/ton-km 

4.23E-08 

kg/ton-km 

Laying of thin overlay (paving + 

compaction) 
1.3E+06 J/m2 

9.60E-02 

kg/m2 

6.06E-08 

kg/m2 

Laying of chip seal 

(spraying + roll) 
6.00E+05 J/m2 

4.70E-02 

kg/m2 

2.67E-08 

kg/m2 

Crack sealing 

(crack density of 0.37 m/m2) 
2.60E+05 J/m2 

1.90E-02 

kg/m2 

1.18E-08 

kg/m2 
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4.3.4 CO2 Emission of Preservation Treatments at Construction Stage 

At construction stage, energy consumptions and pollutant emissions of 

preservation treatments are calculated, respectively, for production of raw material, 

manufacturing of treatment material to be used on pavement, transportation of material to 

the site, and placement of the material. Table 4.2 shows the calculated pollutant 

emissions at construction stage for one lane-mile of pavement surface area, respectively, 

for thin overlay, chip seal and crack seal.  

The results indicate that there are significant differences in energy consumptions 

among various preservation treatments mainly due to different raw material components 

and manufacturing processes. Thin HMA overlay is similar to traditional pavement 

construction including plant production, laying down loose asphalt material, and 

compacting to an acceptable density. Application of chip seal requires a spray of asphalt 

emulsion and aggregate followed by rolling on aggregate; while crack seal only requires 

sawing of crack faces and pouring of crack sealant. Overall, thin HMA overlay requires 

the greatest energy consumption because the operation of asphalt plant is required to 

produce the HMA and a large amount of raw material is needed. As expected, crack seal 

requires the least amount of energy because the small amount of material is consumed in 

the entire process. 
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Table 4.2 Pollutant Emissions of Preservation Treatments (per lane-mile) 

Emission 
Raw 

material 
Manufacture 

Transport 

(20 mile) 
Placement Total 

Thin overlay 

CO2 (kg) 5.27E+03 1.16E+04 1.12E+03 5.65E+02 1.86E+04 

CH4 (kg) 1.56E+01 2.61E-03 7.05E-04 3.57E-04 15.60E+00 

Chip seal 

CO2 (kg) 2.16E+03 - 2.09E+02 2.77E+02 2.65E+03 

CH4 (kg) 6.40E+00 - 1.32E-04 1.57E-04 6.40E+00 

Crack seal 

CO2 (kg) 2.96E+02 - 2.16E+00 1.12E+02 4.10E+02 

CH4 (kg) 1.09E+00 - 1.36E-06 6.95E-05 1.09E+00 

 

4.4 VEHICLE EMISSION AT PAVEMENT USE STAGE  

4.4.1 Vehicle Specific Power Model in MOVES 

Pavement life cycle assessment at the use stage mainly focuses on fuel 

consumption and consequently, pollutant emissions due to the effect of tire rolling 

resistance on vehicle operations. The rolling resistance is the vehicle energy loss 

associated with tire-pavement interaction, which is affected by tire properties, pavement 

surface deflection, and surface characteristics at a different wavelength (roughness and 

surface texture) (Descornet, 1990). 
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Vehicle Specific Power (VSP), which distinguishes between running modes, is 

one of the important factors in calculating engine running status. It is indirectly related to 

energy consumption and traffic emissions (EPA 2012). The VSP indicated in MOVES 

represents the engine running status for emission calculation, as shown in Equation 4.1. 

This equation is defined as the engine power per unit mass of a vehicle and reflects a 

vehicle’s power demand for operation over various conditions and speeds.  

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐴𝐴
𝑀𝑀

× 𝑣𝑣 + 𝐵𝐵
𝑀𝑀

× 𝑣𝑣2 + 𝐶𝐶
𝑀𝑀
𝑣𝑣3 + (𝑎𝑎(1 + 𝜀𝜀𝑖𝑖) + 𝑔𝑔 × 𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔) × 𝑣𝑣                (4.1) 

 

Where, A, B, and C refer to rolling resistance components, namely higher-order rolling 

resistance and mechanical rotating friction, and air drag, respectively; M is the vehicle 

mass; v denotes the instantaneous speed; a and 𝜀𝜀𝑖𝑖 are the vehicle acceleration and mass 

factor terms.  

The model coefficients A, B, and C are not input data but are stored in the 

MOVES model database. They are unique to each vehicle type and can be modified by 

users. Modifying these coefficients for different levels of roughness enables the 

consideration of roadway surface conditions in simulations. The default values of A, B, 

and C are derived from the track load horsepower indicated in the Mobile Source 

Observation Database (MSOD) (EPA 2010a). The default value of rolling resistance 

coefficient (A) is obtained from vehicle dynamometer tests, in which vehicles run on a 

smooth steel surface (EPA 2010b). For this reason, the influence of pavement surface 

characteristics on vehicle operation is disregarded by the default VSP model in MOVES.  
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4.4.2 Updating Rolling Resistance Coefficient 

The rolling resistance at the tire-pavement interface has been calculated based on 

the Highway Development and Management Tool (HDM-4). The HDM-4 presented by 

World Bank included a model to quantify the vehicle operating cost for road management 

and planning (Bennett and Greenwood, 2003). The rolling resistance forces are functions 

of different parameters, such as pavement conditions, tire parameters, and vehicle 

characteristics. Equations 4.2 and 4.3 shows the effects of pavement surface roughness, 

macro-texture, and deflection on tire rolling.  

 

(Frolling)HDM−4 = CR2 . FCLIM × (b11 . Nw + CR1 × (b12 M + b13 . v2))      (4.2) 

CR2 = Kcr2. (a0 + a1×MPD + a2×IRI + a3×DEF)                       (4.3) 

 

Where, Aupdated is updated rolling resistance coefficient used in the calculation; Adefault is 

default rolling resistance coefficient in MOVES; CR2pavement is rolling resistance on real 

pavement surface; CR2dynamometer is rolling resistance on a smooth surface (both IRI and 

MPD values are zero); (Frolling)HDM−4 is rolling resistance from HDM-4 software version 

2.05; CR1 is rolling resistance tire factor; CR2 is rolling resistance surface factor; M is mass 

of the vehicles; Nw is number of wheels; v is speed; b11, b12, and b13 are coefficients related 

to tire type and other technologies; Kcr2 is calibration factor; FCLIM is climatic factor 

related to the percentage of driving snow and rain; a0, a1, a2, and a3 are coefficients for 

pavement surface characteristics from HDM-4 model; MPD is mean profile depth in mm; 

IRI is international roughness index in m/km; and  DEF ispavement surface deflection in 

mm (using Benkelman Beam).  
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Wang et al. (2012) proposed updating the rolling resistance coefficient (A) in 

MOVES using the ratio of the rolling resistance on pavement surface on the default 

rolling resistance on a smooth surface. However, the results from this method do not 

seem to match default values in MOVES as IRI equal to zero. To resolve this issue, each 

parameter in the VSP model should be examined. Ghosh et al. (2015) developed the 

vehicle specific power (VSP) equation as a function of IRI based on rolling term (A) and 

air drag term (C) to examine the effect of pavement roughness on energy consumption. 

The connection between MOVES and HDM-4 has been established by considering three 

main resistances - rolling, aerodynamic, and inertia and gradient, as shown in Equation 

4.4.  

VSP = Rolling resistance + Air resistance + Inertial and Gradient resistance 

= Frolling × 𝑣𝑣
M

+ Faerodynamic × 𝑣𝑣
M

+ Finerttial and gradient × v
M

  

= CR2 × FCLIM�b11Nw + CR1(b12M + b13𝑣𝑣2)� × V
M

+ 1
2

× ρaCDAfront𝑣𝑣2

M
× V 

+Finertial and gradient × 𝑣𝑣
M

                                                                     (4.4) 

Where, Frolling is the rolling resistance in Newtons; Faerodynamic is the aerodynamic 

resistance in Newtons; Finertial and gradient is the inertial resistance (if in acceleration) and 

gradient resistance (if on hill) in Newtons; 𝜌𝜌𝑎𝑎  is the ambient air density (1.207 kg/m3, at 

20°C); Afront is the front area of the vehicle in m2; and CD is the aerodynamic drag 

coefficient; 

According to HDM-4, the rolling resistance term (Frolling) is the only factor that 

is a function of IRI. The other resistances in VSP are aerodynamic resistance (Faerodynamic) 

and inertia and gradient resistance (Finertia and gradient), which are independent of roadway 

surface characteristics. 
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By equating Equations 4.1 and 4.4, Equations 4.5 and 4.6 can be obtained as follows: 

𝐴𝐴 = 𝐶𝐶𝐶𝐶2 × 𝑘𝑘𝐴𝐴                                                               (4.5) 

𝐶𝐶 = 𝐶𝐶𝐶𝐶2 × 𝑘𝑘𝑐𝑐 + 𝑏𝑏𝑐𝑐                                                         (4.6) 

Where, 𝑘𝑘𝐴𝐴 and 𝑘𝑘𝑐𝑐 represent the effect from rolling resistance (Equations 4.7 and 4.8); and 

𝑏𝑏𝑐𝑐 is that from aerodynamic resistance (Equation 4.9). 

𝑘𝑘𝐴𝐴 = 𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹 (𝑏𝑏11𝑁𝑁𝑤𝑤 + 𝐶𝐶𝐶𝐶1 𝑏𝑏12 𝐹𝐹)                                     (4.7) 

𝑘𝑘𝑐𝑐 = 𝐹𝐹𝐶𝐶𝐹𝐹𝐼𝐼𝐹𝐹 𝐶𝐶𝐶𝐶1 𝑏𝑏13                                                   (4.8) 

𝑏𝑏𝑐𝑐 = 1

2
ρaCDAfront                                                       (4.9) 

In this study, the model parameters for tire rolling resistance used are based on the 

calibrated HDM-4 parameters based on U.S. conditions (Chatti and Zaabar 2012). The 

pre- and post-treatment IRI values were considered as time-dependent functions that vary 

between pavement sections with different preservation treatments. The deflection value 

was set to be constant at 0.356 mm that is a typical value for thick flexible pavements 

(Nasimifar et al. 2016). This is because the main function of pavement preservation is to 

restore pavement serviceability and it will not increase pavement structure capacity. The 

MPD value was set to be 2 mm for the pavement section with chip seal, but 1.4 mm for 

control pavement section and the pavement sections with crack seal and thin overlay 

(McGhee and Flintsch 2003; Adams and Kim 2014). Both macro-texture depth and 

deflection are assumed constant within the analysis period. 

 

4.4.3 IRI Jumps and Development Functions for Different Treatments 

Pavement performance data collected at long-term pavement performance (LTPP) 

program specific pavement studies 3 (SPS-3) were used to develop IRI models before 
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and after preservation treatments. The SPS-3 includes the performance of four 

maintenance treatment alternatives (thin overlay, chip seal, crack seal, and slurry seal) 

under three design factors which include climate (precipitation and temperature), 

pavement structure (subgrade type and existing pavement condition) and traffic loading. 

The IRI changes due to preservation treatments include the immediate IRI jump at the 

timing of preservation treatments and the pre-treatment and post-treatment IRI 

development functions, respectively (Labi et al. 2007).  

It is expected that IRI drops to some extent after treatment application. The 

application timing of preservation treatment affects the jump between post-treatment and 

pre-treatment IRI. For example, when the IRI is low, the preservation treatment may not 

change the existing IRI much. Using LTPP data, Lu and Tolliver (2012) found that after 

preservation treatment, the short-term jump of IRI followed a polynomial relationship 

with the pre-pretreatment IRI (IRIexisting), as denoted in Equation 4.10. Table 4.3 

represents the performance jump IRI equations with α, β and γ values for each treatment 

type that are used in this study. They focused in their study only on three design factors 

of SPS-3 data which include precipitation, temperature, and existing pavement condition. 

The average reductions in IRI for thin overlay, chip seal, and crack seal were calculated 

to be 1.44 m/km, 0.72 m/km, and 0.27 m/km, respectively.  

 

𝐼𝐼𝐶𝐶𝐼𝐼𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗 = α × 𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒3 + 𝛽𝛽 × 𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒 + 𝛾𝛾                          (4.10) 
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Where, 𝐼𝐼𝐶𝐶𝐼𝐼𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗  is the difference between immediate before and immediate after 

treatment; 𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒 is the IRI value immediate before treatment; and 𝛼𝛼,𝛽𝛽, and 𝛾𝛾 are the 

estimated parameters for each treatment type . 

The results indicate that maximum IRI jumps exist at the specific pre-treatment 

condition for crack seal and chip seal. As the pre-treatment IRI value moves away from 

the specific IRI values, the treatment becomes less effective. This trend is consistent with 

the expectation and past research that identified the ceiling for treatment effectiveness 

(Markow 1991). However, for thin asphalt overlay, the pavement with the higher pre-

treatment IRI value has more significant IRI jump after treatment. 

Table 4.3 IRI jumps after preservation treatments (after Lu and Tolliver 2012) 

Treatment R2 Polynomial regression function (𝑰𝑰𝑰𝑰𝑰𝑰𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋) 

Thin overlay 0.88 −0.008𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒3 + 0.971𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒 − 0.726         (4.11) 

Chip seal 0.52 −0.081𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒3 + 1.606𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒 − 1.637         (4.12) 

Crack seal 0.83 −0.052𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒3 + 0.774𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒 − 0.749         (4.13) 

 

The most previous studies examined the development of IRI as an exponential 

function of pavement age (Haider and Dwaikat, 2010). It is rational that the traffic should 

have a certain influence on the IRI deterioration rate. Previous studies have 

recommended considering AADTT into a different form of the IRI deterioration function 

(Huang and Dong 2009; Ong et al., 2010). Wang and Wang (2017) proposed an 

exponential model to describe the development of IRI as a function of initial pavement 

condition and traffic. In other words, different treatments with different traffic volume 

can directly affect the overall IRI deterioration rate over time. Based on LTPP database, 



98 

 

Wang and Wang (2017) determined the initial IRI (IRIo) and the deterioration rate of IRI 

(𝐶𝐶) through nonlinear regression of IRI data with pavement age. Their analysis found 

that the average IRI deterioration rates (in m/km per year) were 0.0327, 0.0345, 0.0353, 

and 0.0289 for the pavement section with chip seal, crack seal, do-nothing, and thin 

overlay respectively. The researchers analyzed the effect of traffic on the deterioration 

rates for each site to get the two model coefficients a and 𝑏𝑏, as denoted in Equation 4.14 

for each treatment type. Table 4.4 represents the IRI development equations with a and 𝑏𝑏 

values for each treatment type that are used in this study.  

 

IRI(t) =  IRI0. eR.t =  IRI0e(a+b∗AADTT).t                                                 (4.14) 

 

Where, IRI0 is the initial value of IRI (t=0); R is pavement deterioration rate with time;  a 

is the treatment effect on IRI deterioration rate; b is the traffic effect on IRI deterioration 

rate, AADTT is average annual daily truck traffic in ESALs, and t is pavement age in 

year. 

Table 4.4 IRI development equations for preservation treatments (after Wang and 

Wang  2017) 

Treatment R2 IRI Development 

Control section 0.48 IRI(t) =  IRI0 e�2.22×10−2+2.83×10−5×AADTT�t         (4.15) 

Chip seal 0.63 IRI(t) =  IRI0 e�2.08×10−2+2.71×10−5×AADTT�t         (4.16) 

Crack seal 0.68 IRI(t) =  IRI0 e�2.21×10−2+2.76×10−5×AADTT�t         (4.17) 

Thin overlay 0.71 IRI(t) =  IRI0 e�1.66×10−2+2.55×10−5×AADTT�t         (4.18) 
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4.5 LIFE-CYCLE IMPACT OF PAVEMENT PRESERVATION ON EMISSION 

The life-cycle impact of pavement preservation on emission was analyzed for 

different treatments as compared to the control pavement section (do-nothing scenario). 

At the current stage of analysis, it is assumed that only one preservation treatment is 

applied before IRI reaches the terminal value. Since the pavement section with 

preservation treatment reaches the terminal IRI value at a later time, the IRI at control 

pavement section is kept unchanged after reaching the terminal IRI value in order to have 

the same analysis period between control section and treatment sections. The initial and 

terminal IRI values were set to be 1 m/km and 2.714 m/km for the reference case, 

respectively. It is assumed that average annual daily traffic (AADT) is 15,000 and the 

percentages of passenger car, passenger truck, and combination long-haul truck in the 

traffic stream are 45%, 45%, and 10%, respectively. Assuming that combination truck 

has a truck factor of 1.0, the AADTT in ESALs will be 1500 for the reference case. The 

analysis was conducted for one lane-mile asphalt pavement segment with a speed limit of 

65 mph. 

Figure 4.2 shows examples of development curves of IRI for control section and 

the pavement section with chip seal applied. The line curve represents IRI values at each 

year for control section. The dotted curve represents the IRI values after chip seal 

treatment considering both short-term and long-term effectiveness. After capturing the 

post-treatment IRI values, both rolling term (A) and air drag term (C) were updated using 

the procedure described above to calculate the emission for each vehicle type. 

The life-cycle benefit of pavement preservation on emission is defined by the 

reduction of emission at the use stage due to pavement preservation subtracted by the 
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emission caused by construction of preservation treatment. It is expected that the 

application timings of preservation treatments have significant effects on emission at the 

use stage and therefore the life-cycle impact of pavement preservation.  

 
 

Figure 4.2 Example of IRI development curves before and after chip seal 

preservation treatment 

 
Figure 4.3 shows the effect of application timing on CO2 emission in the 

pavement life-cycle for three types of preservation treatments, respectively. The results 

show that the CO2 emission at use stage is two to three orders greater than the one at 

construction stage. In general, the emission reductions increase until reaching peak values 

and then decreases when the application time of treatment changes over the years. This 

implies that the optimal timing of preservation treatment exists to achieve the maximum 

life-cycle benefit of preservation on CO2 emission. For example, the maximum 

reductions in CO2 emissions were observed at the year of 9, 8 and 7 for chip seal, crack 

seal, and thin overlay, respectively.  
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It is obvious that thin overlay treatment has the highest reduction of CO2 emission 

due to the fact that pavement surface after thin overlay has the lowest roughness value at 

the use stage as compared to the other two treatments, although thin overlay generates the 

highest emission at the construction stage. On the other hand, crack seal has the lowest 

reduction of CO2 emission due to the small changes in the short-term and long-term 

development of IRI values.  

 

Figure 4.3 Effect of application time on CO2 reduction in the pavement life-cycle for 

different preservation treatments  (AADTT=1500 ESALs, Initial IRI=1.0 m/km) 

 
Figure 4.4 shows the reductions of CO2 emission at different initial IRI values 

(1.0, 1.1, 1.2, 1.3, and 1.4 m/km). In general, the optimum timing of treatment application 

becomes earlier when the initial IRI value increases. This is due to the fact that the 

pavement with the higher value of initial IRI (poor condition) needs to be treated earlier 

in order to reduce CO2 emission at the use stage. On the other hand, the maximum 

reductions of CO2 emission due to preservation treatments increase as the initial IRI 
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increases for chip seal and thin overlay, while the maximum reduction of CO2 emission 

has negligible variations with the initial IRI values for crack seal. 
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(c) 

Figure 4.4 Effect of different initial IRI on application time and CO2 reductions in 

the use and construction stages using (a) chip seal (b) crack seal (c) thin overlay 

(AADTT-1500 ESALs) 

 

Figure 4.5 shows the reductions in CO2 emission at three different AADTT levels 

(1500, 2000, and 2500 ESALs). The results show that the optimum timing of treatment 

application becomes earlier for chip seal and crack seal when the traffic volume increases; 

while the optimum timing of treatment keeps relatively constant for thin overlay when 

the traffic volume changes. On the other hand, the maximum reductions of CO2 emission 

increase generally as traffic volume increases. This is due to the fact that the higher 

traffic volume results in the higher impact of CO2 emission at the use stage regardless of 

the timing of treatment application. In general, the results here indicate that the 

environmental benefits of pavement preservation at the use stage of pavement should not 

be neglected.  
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(c) 

Figure 4.5 Effect of different AADTT values on application time and CO2 

reductions in the use and construction stages using (a) chip seal (b) crack seal (c) 

thin overlay (Initial IRI=1.0 m/km) 

 

4.6 SUMMARY 

In this chapter, only carbon dioxide (CO2) emissions are quantified for both 

construction and use stages.  Preservation treatments considered in this study include thin 

asphalt overlay, chip seal, and crack seal. The entire process of each treatment, including 

raw material, manufacturing, transport, and placement, were considered as appropriate 

for quantification of CO2 emission at construction stage. The pre- and post-treatment IRI 

models were developed using the data obtained from the Long-Term Pavement 

Performance (LTPP) program Specific Pavement Studies (SPS-3). The effect of 

pavement surface characteristics on vehicle fuel consumption at use stage was 

investigated using the Highway Development and Management Tool (HDM-4) and the 

Motor Vehicle Emission Simulator (MOVES) version 2014a considering different 
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vehicle types, speeds, and surface characteristics. The environmental impact of pavement 

preservation treatments was evaluated through the life-cycle reduction of CO2 emission 

considering different application timings of treatments in the pavement life. 
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CHAPTER 5 MULTI-OBJECTIVE OPTIMIZATION OF 

PAVEMENT PRESERVATION STRATEGY CONSIDERING 

AGENCY COST AND ENVIRONMENTAL IMPACT 

5.1 INTRODUCTION  

Highway maintenance agencies seek to reduce agency costs while also 

maintaining a low level of pavement roughness.  However, these two objectives are 

directly contradictory as a reduction in cost will likely cause an increase in road 

roughness. In theory, an ideal solution would be to maintain roads with a low level of 

roughness at no cost. In practice, it is impossible to satisfy both objectives as there is no 

single optimal solution that successfully satisfies both criteria.  

The most common multi-objective problem in pavement management can be 

assumed to have two performance measures or objectives. In this particular problem, both 

objectives are in linear forms so that the problem can be considered as a linear multi-

objective optimization problem. When decision makers consider additional objectives 

that can be in non-linear form, the problem will be considered as a nonlinear, multi-

objective optimization problem. For example, the decision makers may want to maintain 

highway network with evenly distributed smoothness, the other objective, which can be a 

measure of standard deviation of the pavement network roughness index, will be added to 

the objectives. The objective will be in a nonlinear format of the decision variable. In 

such a case, the problem will be viewed as a non-linear, multi-objective optimization 

problem. 

For pavement management system, a mathematical model that is used to 

determine the most appropriate pavement preservation or reconstruction treatments 
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regarding efficacy and cost-effectiveness is referred to as a maintenance optimization 

model. These models are often used in pavement management programs and are 

classified as either single objective or multi-objective.  

The general form of single-objective optimization model is to minimize 

(maximize) X subjected to (constraint 1, constraint 2, constraint n). X is the single 

objective to be optimized. For instance, most of the agencies try to minimize agency costs, 

or user costs, or maximize pavement condition. The constraints usually include budget 

limitation of the agency, pavement threshold condition, etc. 

Multi-objective optimization is needed if the decision makers look for achieving two 

or more objectives together. For example, transportation agencies try to find an adequate 

maintenance strategy to minimize agency cost and at the same time user cost. The 

minimization of user costs requires keeping pavement in good condition with a high level 

of service, which leads to increase in agency cost. In other words, these two competing 

objectives (agency cost and user cost) are contradictory. There is a range of measures that 

can be taken to unify objectives that appear to be contradictory (Mbwana 2001; Abaza 

2007).  

According to Mbwana (2001), single objective optimization models generally 

have number of different aims, namely to reduce costs, enhance the efficacy of treatments 

and enhance the condition or lifespan of the pavement. The costs incurred by the agency 

collectively throughout the lifespan of the facility are referred to as agency costs and are 

measured as a function of preservation activities. The costs incurred by users include 

accident costs, travel delays and vehicle operation in normal and work zone operations 

(Walls & Smith, 1998). These costs are measured as a function of pavement performance 
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and the preservation activities performed (ARA, 2004). By seeking only to lower costs, 

the roughness of the pavement may increase. On the other hand, by seeking only to 

enhance pavement condition, the costs may increase. 

In some cases, decision-makers may be satisfied to achieve only a single objective. 

Nonetheless, in most cases, the agency will seek to find an optimal solution that satisfies 

multiple objectives at the same time. There are some common techniques that can be 

taken to unify objectives that appear to be contradictory (Mbwana, 2001; Abaza, 2007). 

One method to achieve multiple-objectives is to optimize one objective while imposing 

competing objectives to serve as constraints in the optimization formulation (Grivas et al. 

1993; Chen et al. 1996; Liu and Wang 1996; Li et al. 1998; Shivakoti and Soleymani 

2006).  This approach exhibits some limitations such as selection of the objective that 

deserves the most attention among the competing objectives and selection of the proper 

range values for those objectives that are not included in the objective function but 

instead set as constraints. These limitations may lead to suboptimal solutions concerning 

those derived directly from multi-objective considerations (Fwa et al. 2000; Wang et al. 

2003; Yoo 2004). The prior knowledge is needed about the required level of the 

objectives that are converted to constraints. Therefore, it may lead to unacceptable results 

since the required level of competing objectives may differ depending on different 

assumptions.  

In the second method which is called weighted sum method, all objectives can be 

combined to form a single cohesive objective. For instance, user costs and agency costs 

are treated as a single objective as opposed to two contradicting objectives (Mbwana, 

2001). This method is limited by the fact that all objectives must be transformed into a 
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single unit and it is quite hard to convert certain costs into a single objective along with 

pavement roughness. In addition, while agency and user costs may be successfully 

converted into a single unit, many argue that this method assumes that marginal user 

costs are the same as marginal agency costs when non-highway users are taken into 

account (Mbwana, 2001). It has also been argued that the relatively large scale of user 

costs cause them to take precedence of lower agency costs (Wu & Flintsch, 2009) and the 

attempt to unify two costs is essentially unfeasible.   

The third method is a direct multi-objective optimization that takes all objectives 

into account. This method is limited by the ability of model solving to generate an 

optimal solution, particularly when multiple contradictory objectives are incorporated. 

Broadly speaking, such models are limited by the fact that objectives cannot be assessed 

accurately and objectively (Wu & Flintsch, 2009). The models are also quite hard to 

develop considering the complex objectives and constraints applied. As such, most 

previous studies that derived the multi-objective optimization model in the literature do 

not attempt to unify all objectives on agency costs, pavement condition, and user costs 

(Worm & Harten, 1996; Labi & Sinha, 2003; Wu & Flintsch, 2009). 

Although existing studies have been conducted using single and multi-objective 

optimization models for pavement maintenance, one of the notable gaps is that few 

studies focused pavement preservation that intends to extend pavement life and improve 

pavement smoothness. It is expected that the application of pavement preservation would 

directly benefit the saving of vehicle operating cost and fuel consumption. Few studies 

have considered both agency cost and environmental impacts in the optimum selection of 

different pavement preservation treatments at the network level.  
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The concept of optimization when dealing with single objective is defined as the 

minimization or maximization of a specific objective. However, for problems that 

involve multiple objectives, an optimal solution can be hard to identify unless an 

improvement in one objective also leads to improvements in the others. In most cases, 

there is unlikely to be a single optimal solution for multiple objectives. Also, there is a 

lack of existing research focusing on the integration of the development of the multi-

objective model and the post-optimization decision making. The Pareto optimal concept, 

an approach that is ideal for generating nondominant solutions, need be used to get 

solutions for multi-objective problems.  

During last few years, many studies recommend single objective optimization for 

simplicity, while other studies suggest multi-objective optimization for accuracy. Thus, 

this paper was elaborated on the mathematical statements of the problem by providing a 

detailed on single and multi-objective optimization formulation. For multi-objective 

optimization, the aim is to generate a range of solution options where pavement 

roughness and costs are applied as boundary conditions. In such cases, all proposed 

solutions will inevitably compromise one objective for the benefit of another. As such, 

the goal is to find a solution that is acceptable and balanced.  

 

5.2 PAVEMENT PRESERVATION TREATMENTS 

5.2.1 Cost of Pavement Preservation Treatments 

In this study, three typical preservation treatments were considered, including 

crack seal, chip seal, and thin overlay. Crack seal is conducted by filling cracks with a 

crack sealant that is usually rubberized asphalt or polymer modified asphalt. It extends 
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the service life of pavement through preventing moisture infiltration and incompressible 

materials in existing cracks. Chip seal is a surface treatment in which pavement surface is 

sprayed with asphalt emulsion and then immediately covered with aggregate and 

compacted by the roller. Chip seals are used primarily to seal pavement with non-load-

associated cracks and to improve surface friction. The thin overlay is usually applied with 

using a thin layer (0.5-2 inches) of hot-mix asphalt (HMA). It can improve pavement 

surface condition, reduce permeability, and improve the ride quality of pavement. 

  The agency costs of different preservation treatments were selected from a 

previous study that summarized the costs from different state agencies (Wang et al. 2013), 

as shown in Table 5.1.  

  

Table 5.1 Agency Costs of Preservation Treatments (After Wang et al. 2013) 

Preservation Treatment Crack seal Chip Seal Thin overlay 

Agency cost ($/lane-mile) 2,000 10,000 30,000 

 

5.2.2 Pavement IRI Before and After Preservation Treatments 

The benefits of pavement preservation treatments on pavement smoothness are 

expressed using the short-term and long-term change of International Roughness Index 

(IRI). The short-term change is the reduction of IRI right after preservation treatment; 

while the long-term change is the change of development curve of IRI over time due to 

the application of preservation treatment. In the authors’ previous work, the IRI data in 

the Long-Term Pavement Performance (LTPP) database was used to develop the IRI 
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models before and after preservation treatment. The short-term and long-term change of 

IRI models are shown in Tables 5.2 and 5.3, respectively (Lu and Tolliver 2013; Wang 

and Wang 2017). 

 

Table 5.2 Performance jump in IRI after preservation treatments 

Treatment Polynomial regression function R2 

Thin overlay 𝐈𝐈𝐈𝐈𝐈𝐈 𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣 = −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝟎𝟎.𝟗𝟗𝟕𝟕𝟕𝟕 0.88 

Chip seal 𝐈𝐈𝐈𝐈𝐈𝐈 𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣 = −𝟎𝟎.𝟎𝟎𝟎𝟎𝟗𝟗𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑 + 𝟗𝟗.𝟕𝟕𝟎𝟎𝟕𝟕𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝟗𝟗.𝟕𝟕𝟑𝟑𝟗𝟗 0.52 

Crack seal 𝐈𝐈𝐈𝐈𝐈𝐈 𝐣𝐣𝐣𝐣𝐣𝐣𝐣𝐣 = −𝟎𝟎.𝟎𝟎𝟎𝟎𝟕𝟕𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝟑𝟑 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟕𝟕𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝟎𝟎.𝟗𝟗𝟕𝟕𝟗𝟗 0.83 

 

Table 5.3 IRI development equations for each treatment type 

Treatment IRI Development R2 

Control section 𝐈𝐈𝐈𝐈𝐈𝐈(𝐭𝐭) =  𝐈𝐈𝐈𝐈𝐈𝐈𝟎𝟎 𝐞𝐞�𝟕𝟕.𝟕𝟕𝟕𝟕×𝟗𝟗𝟎𝟎−𝟕𝟕+𝟕𝟕.𝟎𝟎𝟑𝟑×𝟗𝟗𝟎𝟎−𝟎𝟎×𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀�𝐭𝐭 0.48 

Chip seal 𝐈𝐈𝐈𝐈𝐈𝐈(𝐭𝐭) =  𝐈𝐈𝐈𝐈𝐈𝐈𝟎𝟎 𝐞𝐞�𝟕𝟕.𝟎𝟎𝟎𝟎×𝟗𝟗𝟎𝟎−𝟕𝟕+𝟕𝟕.𝟗𝟗𝟗𝟗×𝟗𝟗𝟎𝟎−𝟎𝟎×𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀�𝐭𝐭 0.63 

Crack seal 𝐈𝐈𝐈𝐈𝐈𝐈(𝐭𝐭) =  𝐈𝐈𝐈𝐈𝐈𝐈𝟎𝟎 𝐞𝐞�𝟕𝟕.𝟕𝟕𝟗𝟗×𝟗𝟗𝟎𝟎−𝟕𝟕+𝟕𝟕.𝟗𝟗𝟕𝟕×𝟗𝟗𝟎𝟎−𝟎𝟎×𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀�𝐭𝐭 0.68 

Thin overlay 𝐈𝐈𝐈𝐈𝐈𝐈(𝐭𝐭) =  𝐈𝐈𝐈𝐈𝐈𝐈𝟎𝟎 𝐞𝐞�𝟗𝟗.𝟕𝟕𝟕𝟕×𝟗𝟗𝟎𝟎−𝟕𝟕+𝟕𝟕.𝟎𝟎𝟎𝟎×𝟗𝟗𝟎𝟎−𝟎𝟎×𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀�𝐭𝐭 0.71 
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5.2.3 CO2 Emission from Vehicles 

Although empirical models exist between pavement surface roughness and 

vehicle fuel consumption and CO2 emission, they were developed using specific datasets 

and thus cannot cover general scenarios with different pavement conditions and vehicle 

types (Hammarstrom et al., 2012).  

In this study, the effect of pavement smoothness on CO2 emission of vehicles was 

calculated using the Motor Vehicle Emission Simulator (MOVES). In the MOVES, 

Vehicle Specific Power (VSP) functions are used to calculate the energy consumption 

and traffic emissions considering the effects of rolling resistance, vehicle mass, speed, 

road grade, and vehicle operation status, as shown in Equation 5.1. However, the 

influence of pavement smoothness is disregarded by the default VSP model in MOVES. 

Ghosh et al. (2015) developed an approach to consider the effect of pavement surface 

condition on rolling resistance by adjusting the values of the rolling term (A) and air drag 

term (C) in the VSP model based on IRI values, which was used in this study to consider 

the effect of pavement roughness on vehicle emission.   

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐴𝐴
𝑀𝑀

× 𝑣𝑣 + 𝐵𝐵
𝑀𝑀

× 𝑣𝑣2 + 𝐶𝐶
𝑀𝑀
𝑣𝑣3 + (𝑎𝑎(1 + 𝜀𝜀𝑖𝑖) + 𝑔𝑔 × 𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔) × 𝑣𝑣                (5.1) 

Where, A, B, and C refer to rolling resistance components, namely higher-order rolling 

resistance and mechanical rotating friction, and air drag, respectively; M is the vehicle 

mass; v denotes the instantaneous speed; and a and 𝜀𝜀𝑖𝑖 are the vehicle acceleration and 

mass factor terms. 

To simplify the calculation process and avoid running large number of cases using 

MOVES in the optimization process, totally 7140 runs with MOVES were used to 

develop regression models for predicting CO2 emission. The variables considered in the 
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analysis include vehicle types, speed, rolling resistance (expressed by A and C values due 

to different IRI values). Table 5.4 shows the developed regression models with R-square 

values. In general, the high R-square values indicate that the regression models can be 

used for prediction of CO2 emission with acceptable accuracy. 

 

Table 5.4 Regression Models for CO2 Emission 

Vehicle Type Equation for CO2 Emission (kg/veh-mile) R2 

Passenger Car  

𝐂𝐂𝐂𝐂𝟕𝟕𝐞𝐞𝐣𝐣𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐_𝟕𝟕𝟗𝟗 = 𝟗𝟗.𝟗𝟗𝟎𝟎𝟎𝟎𝟕𝟕 +  𝟎𝟎.𝟗𝟗𝟕𝟕𝟑𝟑𝟗𝟗𝟗𝟗 𝐀𝐀 +  𝟕𝟕𝟗𝟗.𝟕𝟕𝟗𝟗 𝐂𝐂 −  𝟕𝟕𝟎𝟎𝟎𝟎𝟕𝟕 𝐂𝐂𝟕𝟕

− 𝟎𝟎.𝟎𝟎𝟕𝟕𝟗𝟗𝟕𝟕𝟑𝟑𝟕𝟕 𝑽𝑽 +  𝟎𝟎.𝟎𝟎𝟎𝟎𝟗𝟗𝟎𝟎𝟕𝟕𝟗𝟗 𝐕𝐕𝟕𝟕  

−  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎  𝐕𝐕𝟑𝟑 

0.844 

Passenger Truck 

𝐂𝐂𝐂𝐂𝟕𝟕𝐞𝐞𝐣𝐣𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐_𝟑𝟑𝟗𝟗 = 𝟗𝟗.𝟕𝟕𝟎𝟎𝟗𝟗𝟕𝟕𝟗𝟗 +  𝟎𝟎.𝟗𝟗𝟑𝟑𝟎𝟎𝟕𝟕𝟗𝟗 𝐀𝐀 +  𝟎𝟎𝟑𝟑.𝟗𝟗 𝐂𝐂 

−  𝟎𝟎𝟗𝟗𝟗𝟗𝟕𝟕 𝐂𝐂𝟕𝟕 − 𝟎𝟎.𝟎𝟎𝟕𝟕𝟎𝟎𝟎𝟎𝟑𝟑𝟗𝟗 𝐕𝐕 +  𝟎𝟎.𝟎𝟎𝟎𝟎𝟗𝟗𝟑𝟑𝟎𝟎𝟎𝟎 𝐕𝐕𝟕𝟕  

−  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟗𝟗 𝐕𝐕𝟑𝟑 

0.855 

Single Unit Short-

Haul Truck 

𝐂𝐂𝐂𝐂𝟕𝟕𝐞𝐞𝐣𝐣𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐_𝟎𝟎𝟕𝟕 = 𝟕𝟕.𝟕𝟕𝟎𝟎𝟎𝟎𝟕𝟕 +  𝟎𝟎.𝟗𝟗𝟕𝟕𝟎𝟎𝟗𝟗𝟑𝟑 𝐀𝐀 +  𝟕𝟕𝟗𝟗.𝟕𝟕𝟗𝟗 𝐂𝐂 +  𝟕𝟕𝟕𝟕𝟑𝟑𝟕𝟕 𝐂𝐂𝟕𝟕

− 𝟎𝟎.𝟗𝟗𝟕𝟕𝟎𝟎𝟑𝟑𝟑𝟑 𝐕𝐕 +  𝟎𝟎.𝟎𝟎𝟎𝟎𝟕𝟕𝟎𝟎𝟕𝟕𝟗𝟗 𝐕𝐕𝟕𝟕  

−  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟗𝟗𝟎𝟎 𝐕𝐕𝟑𝟑 

0.903 

Combination Long 

Haul Truck 

𝐂𝐂𝐂𝐂𝟕𝟕𝐞𝐞𝐣𝐣𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐_𝟕𝟕𝟕𝟕 = 𝟕𝟕.𝟑𝟑𝟗𝟗𝟕𝟕𝟕𝟕 +  𝟎𝟎.𝟗𝟗𝟗𝟗𝟎𝟎𝟗𝟗𝟗𝟗 𝐀𝐀 +  𝟗𝟗𝟑𝟑.𝟗𝟗𝟑𝟑 𝐂𝐂  

+  𝟕𝟕𝟗𝟗𝟑𝟑𝟎𝟎 𝐂𝐂𝟕𝟕 − 𝟎𝟎.𝟗𝟗𝟎𝟎𝟕𝟕𝟎𝟎𝟎𝟎 𝐕𝐕 +  𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑𝟑𝟑𝟎𝟎𝟕𝟕 𝐕𝐕𝟕𝟕  

−  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟕𝟕 𝐕𝐕𝟑𝟑 

0.926 

Where, A=Rolling term, C=Air drag term and V=Speed (mph) 
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5.3 OPTIMIZATION MODEL FORMULATION 

5.3.1 Optimization Objectives and Constraints 

The two main objectives considered here are the minimization of agency costs 

and the minimization of network CO2 emissions. Due to the variation of IRI values at 

different pavement segments, the minimization of average IRI in the pavement network is 

used for the approximate estimation of CO2 emissions. For single optimization, only one 

objective was considered each time. For multi-objective optimization, minimization of 

agency cost was used as study objective and minimization of average roughness was 

considered as constraint.  

All the objectives should be subject to constraints. The constraints depend on 

agency policy, which typically include performance requirement and available budget.  In 

this study, the total budget ceiling amount and the unacceptable level of roughness for 

each road segment are formulated as constraints. It was assumed that only one treatment 

can be applied at each roadway segment.  

The multi-objective optimization problem can be expressed mathematically, as 

shown in Equations 5.2-5.6. 

𝒋𝒋𝒆𝒆𝒆𝒆��𝐶𝐶𝑖𝑖𝑗𝑗 × 𝑿𝑿𝒆𝒆𝒋𝒋

𝒋𝒋

𝒋𝒋=𝟗𝟗

𝒆𝒆

𝒆𝒆=𝟗𝟗

 

 

(5.2) 

𝐣𝐣𝟐𝟐𝟐𝟐�𝟗𝟗/�𝒅𝒅𝒆𝒆

𝒆𝒆

𝒆𝒆=𝟗𝟗

� × ��𝒅𝒅𝒆𝒆 × �𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒋𝒋𝟗𝟗 × 𝑿𝑿𝒆𝒆𝒋𝒋

𝒋𝒋

𝒋𝒋=𝟗𝟗

�
𝒆𝒆

𝒆𝒆=𝟗𝟗

 
(5.3) 

subjected to:   ∑ 𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒋𝒋𝟗𝟗 × 𝒆𝒆𝒆𝒆𝒋𝒋 ≤ 𝑰𝑰𝑰𝑰𝑰𝑰𝒋𝒋𝒆𝒆 ∀𝒋𝒋
𝒋𝒋=𝟗𝟗  𝒆𝒆 ∈ {𝟗𝟗,𝟕𝟕, … ,𝒆𝒆} (5.4) 

��𝑪𝑪𝒆𝒆𝒋𝒋 × 𝒆𝒆𝒆𝒆𝒋𝒋 ≤ 𝑩𝑩
𝒋𝒋

𝒋𝒋=𝟗𝟗

𝒆𝒆

𝒆𝒆=𝟗𝟗

 
(5.5) 
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�𝒆𝒆𝒆𝒆𝒋𝒋 = 𝟗𝟗 ∀ 𝒆𝒆 ∈  {𝟗𝟗,𝟕𝟕, … . ,𝒆𝒆}
𝒋𝒋

𝒋𝒋=𝟗𝟗

 

 

 (5.6) 

Where,  

Cij = cost of treatment j applied for pavement segment i;  

 𝑔𝑔𝑖𝑖= distance weight parameter to pavement segement i (lane mile of the segment i); 

IRIij1 = IRI value 1 year later for treatment j applied to pavement segment i;  

IRIui = unacceptable IRI level for pavement segments i;  

B = annual budget level for the pavement network;  

n = the total number of pavement segments in the network ;  

m = the total number of pavement treatment options;  

xij = �1        if treatment j selected to pavement segment i
0   if treatment j not selected to pavement segemnt i. 

 

To simplify the problem and include all variables, some assumptions were used in 

this study. A roadway network consisting of 30 road segments with different initial IRI 

values was considered. A base case scenario was first built, and sensitivity analysis was 

conducted to investigate the effect of various factors. For the base case, 15 segments are 

assumed in good condition with IRI values ranging from 1.0 to 1.5 m/km, and the other 

15 segments are assumed in fair condition with IRI values ranging from 1.5 to 2.5 m/km. 

The annual network budget level was set at $750,000. The unacceptable level of IRI was 

set at 2.5 m/km for all segments. The analysis period was one year assuming the 

treatment was conducted at the beginning of the year, which simulates the situation where 

an annual budget is set separately for pavement preservation. It was also assumed that 

average annual daily traffic (AADT) was 15,000 which was the same for all segments. 
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The percentages of passenger car, passenger truck, single unit short-haul truck, and 

combination long-haul truck in the traffic stream were 45%, 45%, 5%, and 5%, 

respectively. Assuming that single unit truck and combination truck had the same truck 

factor of 1.0, the average annual daily truck traffic (AADTT) in ESALs would be 1,500 

for the base case. The distance for each segment was assumed the same (one lane-mile), 

and the speed limit was 65 mph. 

 

5.3.2 Simulated Constraint Boundary Model 

The Simulated Constraint Boundary Model (SCBM) was used in this study to 

solve the multi-objective optimization problem (Mbwana, 2001; Abaza, 2007; Lu & 

Tolliver, 2013). This technique often assumes a known optimal level for the bounded or 

converted objective by providing a fixed boundary (Mbwana, 2001). In this study, the 

multi-objective problem (minimizing agency cost and average network roughness) was 

converted into single objective problem by converting the objective of minimizing 

pavement network average roughness (Equation 5.3) to the bounded constraint (Equation 

5.7) which is mathematically expressed as follows: 

 

𝐣𝐣𝟐𝟐𝟐𝟐�𝟗𝟗/�𝒅𝒅𝒆𝒆

𝒆𝒆

𝒆𝒆=𝟗𝟗

� × ��𝒅𝒅𝒆𝒆 × �𝑰𝑰𝑰𝑰𝑰𝑰𝒆𝒆𝒋𝒋𝟗𝟗 × 𝑿𝑿𝒆𝒆𝒋𝒋

𝒋𝒋

𝒋𝒋=𝟗𝟗

�
𝒆𝒆

𝒆𝒆=𝟗𝟗

 ≤ 𝑰𝑰𝑰𝑰𝑰𝑰𝒂𝒂𝒂𝒂𝒆𝒆𝒂𝒂𝒂𝒂𝒆𝒆𝒆𝒆 
(5.7) 

 

Where 𝐼𝐼𝐶𝐶𝐼𝐼𝑎𝑎𝑣𝑣𝑒𝑒𝑐𝑐𝑎𝑎𝑒𝑒𝑒𝑒 = predefined network average roughness. 

The simulated constraint boundary model seeks the Pareto optimal solutions by 

fine changing IRIaverage. Then, the corresponding network average CO2 emission for each 
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predefined IRIaverage value was calculated using the developed regression models of CO2 

emission in Table 5.4. For each calculated average CO2 emission value, one potential 

Pareto optimal solution can be obtained. The evenly distributed potential Pareto optimal 

solutions are obtained by indirectly fine changing average CO2 emission value.  

The SCBM does not require decision makers’ prior knowledge about the optimal 

level of the converted or bounded objective. In other words, the approach does not 

require the boundaries for the converted objective. Moreover, the method is independent 

on the scales of objectives. There is no need to transform different units of objectives to 

dimensionless units or the monetary units. The objectives can be in different units and 

scales that can be handled directly. Finally, the technique can also provide decision 

makers with evenly distributed Pareto optimal solutions if the steps of the boundary 

change are fine enough. The multi-objective problem was solved using the PROC 

OPTMODEL module of SAS/OR software version 9.4. 

 

5.3.3 Generation of Pareto Optimal Solutions 

The range of solutions generated to resolve multi-objective problem suffers from 

Pareto efficiency or Pareto optimality as there is no way to achieve improvements in one 

objective without compromising another. It is not difficult to perform one run to simulate 

all possible boundaries for the objective with a fine changing step in SCBM. One 

potential Pareto solution is obtained with each boundary. Thus, with simulating fine 

changed boundary values for the objective, the Pareto optimal solutions can be found for 

the multi-objective problem. 
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In this study, the SCBM seeks the Pareto optimal solutions by fine changing the 

network average IRI value which leads to the change of CO2 emission in the road 

network. The network average IRI for the base case is set between 0.7 to 2.5 m/km with 

the changing interval of 0.001 m/km. For each fixed average IRI value (average CO2 

emission), one potential Pareto optimal solution was obtained.  

After finding the complete Pareto optimal solutions, the next step is selecting the 

final solution among many Pareto solutions (Zeleny 1982). Marler and Arora (2004) 

summarized some existing methods for selecting the final solution among Pareto optimal 

solutions. One of the most important methods is Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS). The selected point is as close as possible to the 

positive ideal solution, utopia point. The positive ideal solution can be understood as the 

solution that is composed of the best or most desirable solution for the objective functions. 

This method was selected in this study to demonstrate the final decision-making 

procedure after obtaining the Pareto solutions. 

The ideal solution will achieve zero CO2 emissions with zero agency cost which 

is impossible. The more realistic utopia point should be the least CO2 emission value and 

the least total agency cost that can be achieved without violating constraints. So, the 

realistic utopia point for the base case is ($2,000, 68,400,000 kg).  

In order to apply the TOPSIS, the closest point on Pareto frontier to the utopia 

point should be chosen. For the optimization problem with two objectives, the distance 

between the utopia point and the points on Pareto frontier was calculated using Equation 

5.8.  

𝐷𝐷𝑖𝑖 = �[𝑓𝑓𝑖𝑖1(𝑋𝑋) − 𝑓𝑓1∗]2 + [𝑓𝑓𝑖𝑖2(𝑋𝑋) − 𝑓𝑓2∗]2                                      (5.8) 
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Where, 

Di = distance between the ith Pareto solution and utopia point;  

fi1(X)= first objective value corresponding to the ith Pareto solution;  

fi2(X)= second objective value corresponding to the ith Pareto solution;  

f*
1 = the ideal utopia point value for first objective; and 

f*
2 = the ideal utopia point value for second objective. 

 

Note that the scales of objectives will affect the calculated distances. If the scales 

of objectives are very close, the distances are comparable using Equation 5.8. If the 

scales of objectives are different, the objective with the greater scale will dominate the 

other. In other words, the results will favor the objective with the greater scale. In this 

case, the calculated distance will be dominated by CO2 emissions and almost 

independent on agency costs.  

Therefore, the normalized Pareto optimal point is used to avoid such bias due to 

scale effect. One way is to normalize the data into a common scale (0–1). The method 

can be expressed as shown in Equation 5.9. 

𝑓𝑓𝑖𝑖𝑛𝑛𝑒𝑒𝑐𝑐𝑚𝑚 = 𝑓𝑓𝑖𝑖−𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚

                                                       (5.9) 

 

Where: 

 𝑓𝑓𝑖𝑖𝑛𝑛𝑒𝑒𝑐𝑐𝑚𝑚 = normalized objective value corresponding to the ith Pareto solution; 

𝑓𝑓𝑖𝑖 = objective value corresponding to the ith Pareto solution; 

𝑓𝑓𝑚𝑚𝑎𝑎𝑒𝑒 = maximum objective value corresponding to the ith Pareto solution; 

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = minimum objective value corresponding to the ith Pareto solution. 
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In this study, Equation 5.9 was used to normalize the Pareto optimal points and 

utopia point. For the base case, the (fmin, fmax) values are ($2,000, $750,000) for agency 

cost and (68,496,900 kg, 69,150,000) for CO2 emission, respectively. After normalizing 

the Pareto optimal points for the two objectives (𝑓𝑓𝑖𝑖1𝑛𝑛𝑒𝑒𝑐𝑐𝑚𝑚, 𝑓𝑓𝑖𝑖2𝑛𝑛𝑒𝑒𝑐𝑐𝑚𝑚), the distance between the 

utopia point and the ith points on Pareto frontier was calculated using Equation 5.8. Then, 

the final solution was obtained according to the minimum distance.   

 

5.4 RESULTS AND DISCUSSION  

5.4.1 Comparison of Single and Multi-Objective Optimization Results 

Both single-objective and multi-objective optimization problems were solved. 

Table 5.5 shows the optimization results corresponding to the minimization of either 

agency costs or CO2 emission or both. As expected, the single objective of minimizing 

agency cost keeps the road segments in poor condition that leads to the highest amount of 

CO2 emission. On the other hand, the agency cost increases to the budget constraint 

($750,000) for the single objective of minimizing CO2 emissions. In addition, the single 

objective of minimizing agency cost has the highest value of cost-effectiveness in 

emission reduction compared to do do-nothing because this objective has the lowest 

value of agency cost and the highest value of emission compared to other objectives.  
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Table 5.5 Single objective optimization results 

Scenario 
Agency Cost 

($) 

CO2 Emission 

(kg) 

Cost-effectiveness in 

emission reduction (kg/$) 

Do nothing 0 68,839,612 / 

Minimize agency cost 2,000 68,834,648 2.482 

Minimize CO2 

emission 
750,000 68,496,682 0.457 

Minimize agency cost 

and CO2 emission 
136,000 68,687,382 1.119 

 

Figure 5.1 presents the minimum distance between Pareto frontier and utopia 

point for multi-objective optimization. For multi-objective optimization of both agency 

costs and CO2 emission, the final solution (point A) has the minimum distance between 

Pareto solutions and the realistic utopia point which is ($136,000, 68,687,382 kg). The 

result falls into the middle part of the Pareto frontier that matches the expectation because 

selecting the mid-point on the frontier curve will improve both objectives, while selecting 

any point at the end sections on the curve will be incorrect for one objective 
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Figure 5.1 Final solution from Pareto frontier for multi-objective optimization 

 

Figure 5.2 shows the comparison of treatment selection strategies between single-

objective and multi-objective optimization solutions. It is obvious that do-nothing 

treatment is dominant for single objective of minimizing agency cost; while thin overlay 

is dominant in the case of minimizing emission because it causes the higher IRI reduction 

as compared to the other two treatments (crack seal and chip seal). To achieve the 

minimization of both agency cost and emission, crack seal was selected for most sections 

and thin overlay was selected for the remaining sections, which is the balance of 

treatment cost and effectiveness. 
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Figure 5.2 Comparison of treatment selection strategies between single objective 

and multi-objective optimization solutions 

To study the effect of annual  budget on multi-objective optimization results, the 

analysis was repeated for varying budget levels ranging from $250,000 to $1,500,000. 

Figure 5.3 shows the selection of preservation treatments in road network with the results 

of agency cost and CO2 emission at different network budget levels. The results show 

that when the annual budget increases, the agency cost increases until reached a constant 

value, while the CO2 emission decreases to a constant value. The number of segments 

treated with do-nothing decreases and the number of segments treated with thin overlay 

increases until that the annual budget reaches $1,000,000. This indicates that the multi-

objective optimization results are not affected by the network budget after it reaches a 

certain level, which is due to the balance between two contradictory objectives. 
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(a) (b) 

Figure 5.3 Effect of annual budget on multi-objective optimization with (a) agency 

cost; and (b) CO2 emission 

 

5.4.2 Effect of Pavement Condition on Optimization Results 

The effect of changing the number of segments in GOOD condition (IRI = 1.0-1.5 

m/km) and FAIR condition (IRI = 1.5 – 2.5 m/km) on the optimization results for both 

single and multi-objective optimization were investigated. Three different types of 

pavement conditions were assumed in this study, which are LS (5 segments under good 

condition and 25 segments under fair condition), ES (15 segments under good condition 

and 15 segments under fair condition), and HS (25 segments under good condition and 5 

segments under fair condition). 

Figure 5.4 shows the treatments distribution between segments as the pavement 

condition was changed from LS to HS for the two single objectives. In general for the 

two single objectives, the number of segments that are treated with do nothing increases 
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when the pavement condition was improved from LS to HS. When the pavement 

condition was improved, this means the IRI values decrease and no need to any treatment 

action or maintenance repair to keep the agency cost and CO2 emissions at the minimum 

value.     

 

Figure 5.4 Effect of pavement condition on treatment selection for single-objective 

optimization 

 

Figure 5.5 shows the selection of preservation treatments in a road network with 

the results of agency cost and CO2 emission at different pavement conditions. The results 

show that both agency cost and CO2 emission decrease when the initial pavement 

condition is improved. The number of segments that are treated with thin overlay and 

crack seal decreases when the initial pavement condition is improved. 
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(a) (b) 

Figure 5.5 Effect of pavement condition on multi-objective optimization with (a) 

agency cost (b) CO2 emission 

 

5.4.3 Effect of Truck Percentage on Optimization Results 

In order to study the effect of truck percentage on the optimization of pavement 

preservation strategy, the study assumed three different values of truck percentage which 

are 10%, 20%, and 30% of traffic stream with AADT of 15,000. By assuming the truck 

factor is 1.0, the calculated AADTT were 1,500, 3,000, and 4,500 ESALs for the truck 

percentage of 10%, 20%, and 30%, respectively. 

Figure 5.6 shows the treatments distribution between segments as the truck 

percentage was increased for single objective optimization. When the truck percentage 

was increased, the number of segments treated with do nothing decreases and the number 

of segments treated with crack seal increases in the case of minimizing agency cost. For 

the single objective of minimizing CO2 emissions with 10% truck, 25 segments were 
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selected to be treated with thin overlay which causes a total agency cost of $750,000 

(maximum annual network budget). Therefore, the number of segments treated with do 

nothing decreases and the number of segments treated with crack seal instead of thin 

overlay increases when the truck percentage was increased from 10% to 30% since crack 

seal has the lowest agency cost value.   

 

Figure 5.6 Effect of truck percentage on treatments distribution for the two single 

objectives optimization. 

 

Figure 5.7 shows the selection of preservation treatments in a road network with 

the results of agency cost and CO2 emission at different truck percentages. The results 

show that both the agency cost and CO2 emission increase when the truck percentage 

increased. In addition, the number of segments that are treated with crack seal increases 

when the truck percentage increased because the network with higher truck percentage 

has higher deterioration rate (higher values of IRI) which needs to crack seal preservation 

treatment to minimize the agency cost and CO2 emission at the same time. 
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(a) (b) 

Figure 5.7 Effect of truck percentage on multi-objective optimization with (a) 

agency cost; and (b) CO2 emission 

 

5.4.4 Effect of Unacceptable IRI Level on Optimization Results 

In this study, the unacceptable level of IRI (IRIuaacceptable) was considered as a 

constraint in the optimization process that is equal to 2.5 m/km for the base case. Three 

different unacceptable levels of IRI (1.5, 2.0, and 2.5 m/km) were selected to investigate 

their effects on optimization results.  

Figure 5.8 shows the treatment distribution between segments as the IRIunacceptable 

level was increased for single objective optimization. When the IRIunacceptable was 

decreased to 1.5 m/km (the IRI of each segment should be less than 1.5 m/km) for 

minimizing agency cost, the number of segments treated with do nothing decreases and 

the number of segments treated with chip seal increases since the chip seal treatment has 

higher reduction of IRI compared to crack seal. On the other hand, the number of 
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segments that are treated with thin overlay and chip seal increases when the IRIunacceptable 

level was decreased to 1.5 m/km for the case of minimizing CO2 emissions. 

Figure 5.9 shows the selection of preservation treatments in a road network with 

the results of agency cost and CO2 emission at different unacceptable levels of IRI. The 

results show that the agency cost decreases when the unacceptable level of IRI increases 

from 1.5 to 2.5 m/km. This is because keeping the IRI value for each segment at the 

higher threshold causes the fewer number of segments that need be treated with thin 

overlay. Accordingly, this causes the greater emission values when the unacceptable level 

of IRI increases. 

 

Figure 5.8 Effect of unacceptable IRI level on treatments distribution for the two 

single objectives optimization. 

  

0

5

10

15

20

25

30

1.5 2.0 2.5 1.5 2.0 2.5

Minimize Agency Cost Minimize CO2 emission

N
um

be
r 

of
 S

eg
m

en
ts

 

Unacceptable IRI level (m/km)

Do nothig Crack Seal Chip seal Thin overlay



132 

 

  

(a) (b) 

Figure 5.9 Effect of unacceptable IRI level on multi-objective optimization (a) 

agency cost (b) CO2 emission 

 

5.4.5 Effect of Analysis Period 

The analysis period for base case in this study is one year with the assumption 

that the preservation treatment is applied at the beginning of year one. So, the analysis 

period is another factor that should be considered in the sensitivity to find its effect on 

optimization results. However, three different analysis periods of 1, 3, and 5 years are 

considered in this study with the assumption that the preservation treatment is still 

applied at the beginning of year one. 

Figure 5.10 shows the treatment distribution between segments as the analysis 

period was increased from 1 to 3 years for single objective optimization. When the 

analysis period was increased for minimizing agency cost, the number of segments 

treated with do nothing decreases and the number of segments treated with crack seal 
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increases since the crack seal has the lowest value of agency cost. For minimizing CO2 

emission, thin overlay is still the dominant preservation treatment for about 24 segments 

of the network since it causes a higher reduction on IRI compared to other treatments 

when the analysis period was increased from 1 to 5 years.      

 

Figure 5.10 Effect of analysis period on treatments distribution for the two single 

objectives optimization. 

 

For multi-objective optimization of minimizing agency cost and CO2 emission, 

Figure 5.11 shows the treatment selection strategy at different analysis periods. The 

results show that both agency cost and CO2 emission increase when the analysis period 

increases. However, the selection strategy does not have significant changes as the 

analysis period increases. Although the number of segment for thin overlay increases 

slightly, crack seal is still selected for most segments in the network.  
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(a) (b) 

Figure 5.11 Effect of analysis period on multi-objective optimization (a) agency cost 

(b) CO2 emission 

 

5.5 SUMMARY 

This chapter aims to develop pavement preservation strategy at the network level 

considering multi-objective optimization of minimizing agency costs and minimizing 

network average CO2 emissions by minimizing pavement network average roughness.  

The multi-objective optimization problem is solved using Simulated Constraint 

Boundary Model (SCBM) method which is based on solving one objective (agency cost) 

and converting the other objective (average network roughness) to constraint. Also, the 

annual network budget and unacceptable level of roughness are considered as constraints 

in the optimization. The multi-objective optimization results on pavement preservation 
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minimizing either agency costs or CO2 emissions. The single and multi-objective 

problems were solved using the PROC OPTMODEL module of SAS/OR software 

version 9.4. A base case study was built to perform the optimization process, and 

sensitivity analyses were performed to study the effect of other factors on the pavement 

preservation strategy.  
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CHAPTER 6 WEIGHTED SUM METHOD FOR MULTI-

OBJECTIVE OPTIMIZATION OF PAVEMENT PRESERVATION 

STRATEGY 

6.1 INTRODUCTION OF WEIGHT SUM METHOD 

Design optimization is to seek the best design that minimizes or maximizes the 

objective function by changing design variables while satisfying design constraints. 

During design optimization, one often needs to consider several design criteria or 

objective functions simultaneously. When more than one design objective is associated, 

the design problem becomes multi-objective, in which case the usual design optimization 

for a scalar objective function cannot be used.  

To generate the set of Pareto optimal solution, many optimization methods can be 

used such as the standard constraint method (Messac et al. 2003), genetic algorithms 

(Holland 1975), the multiobjective simplex method (Cohon 1978), and the weighting sum 

method (Zadeh 1963). The selection of a specific method depends on the type of 

information provided, users’ preferences, the availability of software, and the solution 

requirements (Marler and Arora 2004).  

Stadler (1979 and 1984) applied the notion of Pareto optimality to the fields of 

engineering and science in the 1970s. The most widely-used method for multiobjective 

optimization is the weighted sum method (Wu & Flintsch, 2009; Das & Dennis, 1996; 

Srinivas & Deb, 1994; Cohon, 2013). The method transforms multiple objectives into an 

aggregated objective function. This method combines multiple objectives into a single 

objective by multiplying each objective by a weighting factor. Using this method, the 
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multiple objectives are weighted and converted into Z– a single objective function – 

which can be expressed as follows: 

𝑍𝑍 = ∑ 𝜔𝜔𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=1                                                                    (1) 

Where, 𝜔𝜔𝑖𝑖 is the fractional weight value in the range 0-1 for objective i; 𝑓𝑓𝑖𝑖(𝑥𝑥) is the 

objective function i; and n is the number of objective functions.  

Obviously, setting relative weights for individual objectives becomes a primary 

issue in applying this method. As the weight vector for the multiple objectives often 

depends highly on the magnitude of each objective function, it is desirable to normalize 

those objectives to achieve roughly the same scale of magnitude. This study used the 

weighting sum method as it is an approach sufficient for Pareto optimality and simple to 

implement. 

Using this approach, the control of the weight vector for all possible weight 

situations along with an incremental step in 𝜔𝜔𝑖𝑖  facilitates the identification of Pareto 

optimal solutions as all weights are converted into a single unit. The weight of each 

respective objective can be modified to assign priority. This method is widely used in the 

literature as it is easy to apply and relatively intuitive (Wu & Flintsch, 2009). The weight 

assigned to each objective is determined on the basis of the size of each objective 

function. However, the weight values do not reflect the relative importance of each 

objective but the relative significance of relationships between objectives (Wu & Flintsch, 

2009). For instance, while 𝜔𝜔1  > 𝜔𝜔2  implies that f1(x) is of greater importance than 

objective f2(x), but cannot assume that objective f1(x) is (𝜔𝜔1/𝜔𝜔2) times more important 

than objective f2(x). This reflects one of the limitations of the model as decision makers 

often find it hard to interpret the quantitative relationships between objectives and thus 
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have difficulty choosing the ideal solution for their own requirements. For instance, the 

difference between 𝜔𝜔1 = 0.6 & 𝜔𝜔2= 0.4 and 𝜔𝜔1 = 0.7 & 𝜔𝜔2 = 0.3 is hard to identify as 

each weight set implies that f2(x) is less important than f1(x) but does not offer any 

additional information. According to Wu and Flintsch (2009), the decision maker using 

the incremental weight step approach requires theoretical knowledge of their own 

preferences before choosing the most suitable Pareto optimal solution. In addition, the 

decision maker will struggle to select and interpret a weight factor as the weights do not 

offer any qualitative information.  

The concern in which the objectives are converted into a single objective using 

different scales is an additional limitation of weighting sum method. The scales employed 

and the objective function units often vary. For instance, the user may seek to reduce 

agency costs and enhance the IRI values of pavement surface condition. Agency costs are 

typically calculated in dollars within a range of $1,000 to $100,000 or more. IRI values, 

on the other hand, are calculated in m/km on a scale of 0.5 to 3m/km. Thus, the scale for 

each objective is clearly different as well as the objective units and to combine the total 

of each is essentially unfeasible (Messac et al. 2003). Wu and Flintsch (2009) argue that 

while the user may attempt to convert the values using the same scale, the variation in 

objective units would still limit the applicability of the totals. Therefore, as variation in 

units prevents summation offering any meaningful data, weights are allocated to each 

objective. Nonetheless, these weights do not provide any insights into how each objective 

is related. 
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6.2 PAVEMENT PERFORMANCE BACKGROUND 

Pavement preservation has been widely applied to pavements in order to repair 

minor distressed, retard failures and prolong the serviceable lifespan of the pavement. 

The effectiveness of pavement preservation treatments can be measured in terms of 

friction and life extension. There has been much research into the effectiveness of 

pavement preservation. 

Research has been varied and includes a cost effective analysis of thin surface 

maintenance treatments such as chip seal, crack seal, thin overlay and microsurfacing 

(Morian, 2011), and assessment of the effectiveness of preservation treatments on surface 

friction such as the long-term discrepancy analysis of surface friction conducted by Wang 

and Wang in 2013. Three methods to measure the short-term effectiveness of pavement 

preservation have been identified and examined as Performance Jump, Deterioration Rate 

Reduction and Deterioration Reduction Level (Labi et al., 2003). 

A recent life-cycle cost analysis of different pavement preservation treatments 

examined the cost of the lifespan analysis analytical technology to determine the 

association between overall performance index and pavement life extension. The results 

were displayed using second-order polynomial regression methods (Wang et al., 2013). 

Earlier research created a decision tree to select various functional pavement classes 

based on the costs and results of different preservation treatments (Wei and Tighe, 2004). 

Peshkin et al. (2004) show that NCHRP report 523 examined pavement performance and 

cost data to conclude the optimal timing for pavements to be treated in order to enhance 

preservation, and presented the outcome using MS Excel-based software called OPTime. 

Agency costs, user delay costs and benefit-cost ratios are all taken into consideration to 
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decide the ideal time for treatments. Haider and Dwaikat (2010) progressed a number of 

statistical methods to evaluate the best time for a variety of maintenance treatments, 

founded on different evaluation criteria. 

Dong and Huang (2012), Lu and Tolliver (2012) and Wang and Wang (2012) all 

conducted research into preservation treatments and concluded that treatments could offer 

significant advantages in the reduction of International Roughness Index (IRI). It was 

found that thin overlay, poor rehabilitation condition and high traffic levels can increase 

the corrosion of newly applied overlay (Dong et al. 2012). This research was conducted 

by examining the effectiveness and cost-effectiveness of various asphalt restorations 

against the long-term pavement performance (LTPP) database. In other research, the life 

extension of thin overlay was measured against the effectiveness and cost of preventive 

treatments for flexible pavements (Wang and Mastin, 2012). Results showed that the 

increase in life extension of thin overlay was 5.4 years, crack sealing was 1.7 years, and 

ship sealing was 1.9 years. 

The improvements of pavement condition and the reduction of deterioration as a 

result of treatment are short-term measures of effectiveness (Labi at al., 2007). The 

treatment service life and the area bounded by pavement performance curve are long-

term measures of effectiveness in preservation treatments (Dong and Huang, 2012). By 

examining the characteristics of the studied of pavement performance both under the 

influence of preservation treatments, and with no treatment, the value of treatments in the 

long- and the short-term can be evaluated. 

Haider and Baladi (2010) studied the increase of IRI as an exponential function of 

pavement age, however, they did not include the traffic volume. Huang and Dong (2009) 
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and Ong et al. (2010) recognized the importance of the traffic volume on the deterioration 

rate of IRI and citied its significance when conducting research. Labi et al. (2007) 

reported that the long-term value of pavement preservation treatments is influenced by 

factors including traffic, age and pavement type while short-term effectiveness is largely 

influenced by pre-treatment condition. 

 

6.3 OPTIMIZATION MODEL FORMULATION 

6.3.1 Optimization Objectives and Constraints 

This study focused on two main objectives which are the minimization of agency 

costs and CO2 emissions at the network level. All the objectives should be subjected to 

constraints. The constraints depend on agency policy, which typically include 

performance requirement and available budget.  In this study, the annual network budget 

ceiling amount and the unacceptable level of roughness for each road segment are 

formulated as constraints. It was also assumed that only one treatment can be applied at 

each roadway segment. On the basis of these assumptions, the optimization models are 

formulated as follows: 

 

minimize                         𝑍𝑍1 =  ∑ ∑ ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚
𝑖𝑖=1 × 𝐶𝐶𝑖𝑖 × 𝑙𝑙𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑒𝑒
𝑖𝑖=1                                        (6.1) 

 

minimize                                     𝑍𝑍2 =  ∑ ∑ 𝐷𝐷𝑖𝑖𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑒𝑒
𝑖𝑖=1                                                    (6.2) 

 

Subject to: 
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𝐶𝐶𝑖𝑖
𝑗𝑗 =  𝐶𝐶𝑖𝑖−1

𝑗𝑗  �1 −  ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚
𝑖𝑖=1 � + ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚

𝑖𝑖=1  �𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 × 𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝑇𝑇𝑗𝑗�     ∀  𝑘𝑘, 𝑗𝑗             (6.3) 

 

𝐼𝐼𝐶𝐶𝐼𝐼𝑖𝑖𝑗𝑗𝑖𝑖
𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗 =  𝛼𝛼𝑖𝑖 × 𝐼𝐼𝐶𝐶𝐼𝐼𝑖𝑖−1

𝑗𝑗3 + 𝛽𝛽𝑖𝑖 × 𝐼𝐼𝐶𝐶𝐼𝐼𝑖𝑖−1
𝑗𝑗 + 𝛾𝛾𝑖𝑖        ∀  𝑘𝑘, 𝑖𝑖, 𝑗𝑗                        (6.4) 

    

𝐼𝐼𝐶𝐶𝐼𝐼𝑖𝑖
𝑗𝑗 =  𝑔𝑔𝑅𝑅𝑘𝑘

𝑗𝑗
�𝐼𝐼𝐶𝐶𝐼𝐼𝑖𝑖−1

𝑗𝑗 −  ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖  × 𝐼𝐼𝐶𝐶𝐼𝐼𝑖𝑖𝑗𝑗𝑖𝑖
𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗𝑚𝑚

𝑖𝑖=1 �   ∀ 𝑘𝑘, 𝑗𝑗                     (6.5) 

 

       ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖  ≤ 1   ∀ 𝑘𝑘, 𝑗𝑗𝑚𝑚
𝑖𝑖=1                                                (6.6)  

∑ ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖 ×  𝐶𝐶𝑗𝑗  ×  𝑙𝑙𝑗𝑗𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑗𝑗=1 ≤  𝐵𝐵𝑖𝑖  ∀  𝑘𝑘                                     (6.7) 

𝐼𝐼𝐶𝐶𝐼𝐼𝑖𝑖
𝑗𝑗  ≤  𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑜𝑜𝑜𝑜   ∀   𝑘𝑘, 𝑗𝑗                                        (6.8) 

𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖 =  {0,1}   ∀  𝑘𝑘, 𝑖𝑖, 𝑗𝑗                                            (6.9) 

Where; 

Z1 = total network cost of treatment i applied for pavement segment j in planning horizon 

k; 

Z2 = total network CO2 emission from vehicles driving on segment j in planning horizon 

k; 

n = total number of pavement segments in the network; 

m = total number of pavement treatment options; 

k = total number of years in planning horizon; 

Ekj= CO2 emission from vehicles driving on pavement segment j in planning horizon k 

which is a function of 𝐴𝐴,𝐶𝐶,𝑎𝑎𝑛𝑛𝑔𝑔 𝑣𝑣 (Table 3.5); 
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𝐶𝐶𝑖𝑖 = cost of treatment i ($/veh.mile); 

𝑙𝑙𝑗𝑗 = length of segment j (miles); 

j
kR =deterioration rate of segment j in year k; 

jump
ijkIRI = jump value of IRI of segment j caused by the treatment i in year k; 

j
kIRI = international roughness index of segment j in year k; 

𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 = two model coefficients for treatment i (Equation 4.14 and Table 4.4); 

𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝑇𝑇𝑗𝑗 = annual average daily truck traffic for segment j (ESALs); 

𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖,𝑎𝑎𝑛𝑛𝑔𝑔 𝛾𝛾𝑖𝑖 = three model coefficients for treatment i (Equation 4.10 and Table 4.3); 

𝐵𝐵𝑖𝑖 = annual budget level for the pavement network in year k; 

𝐼𝐼𝐶𝐶𝐼𝐼𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑜𝑜𝑜𝑜 = unacceptable IRI level that IRI of each segment j in yaer k cannot exceed; 

𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖= �1        if treatment i selected to pavement segment j
0   if treatment i not selected to pavement segemnt j;  

 

6.3.2 Case Study 

To simplify the problem and include all variables, some assumptions were used in 

this study. A roadway network consisting of 30 road segments with different initial IRI 

values was considered to be treated with three preservation treatments: chip seal, crack 

seal, and thin overlay. For the base case, 15 segments are assumed in good condition with 

IRI values ranging from 1.0 to 1.5 m/km, and the other 15 segments are assumed in fair 
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condition with IRI values ranging from 1.5 to 2.5 m/km. The annual network budget level 

was set at $750,000. The unacceptable level of IRI was set at 2.5 m/km for all segments.  

The analysis period was 20 years assuming the treatment was conducted at the 

beginning of the year. It was also assumed that average annual daily traffic (AADT) was 

15,000 which was the same for all segments. The percentages of passenger car, passenger 

truck, single unit short-haul truck, and combination long-haul truck in the traffic stream 

were 45%, 45%, 5%, and 5%, respectively. Assuming that single unit truck and 

combination truck had the same truck factor of 1.0, the average annual daily truck traffic 

(AADTT) in ESALs would be 1,500. The distance for each segment was assumed the 

same (one lane-mile), and the speed limit was 40 mph.  

 

6.3.3 Model Transformation 

Weighted sum is the method that was used in this study to solve the multi-

objective optimization problem which includes the minimization of both agency cost and 

emission. This method sums the two objective values into a single objective measure 

after multiplying each objective by a weighting factor. Since the two objectives have 

different scales, the first step is to normalize each objective by using Equation (6.10): 

 

𝑍𝑍𝑖𝑖𝑛𝑛𝑒𝑒𝑐𝑐𝑚𝑚 =  𝑍𝑍𝑖𝑖 −min(𝑍𝑍𝑖𝑖)
max(𝑍𝑍𝑖𝑖)−min (𝑍𝑍𝑖𝑖)

                                                   (6.10) 

 

Where, the values of max(𝑍𝑍𝑖𝑖)  𝑎𝑎𝑛𝑛𝑔𝑔 min (𝑍𝑍𝑖𝑖) can be estimated or calculated by solving 

each objective individually. 
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The second step is converting the two objectives into single objective after 

normalization step, as shown in Equation (6.11): 

 

min
𝑋𝑋∈𝑋𝑋�

𝑍𝑍1(𝑋𝑋) 𝑎𝑎𝑛𝑛𝑔𝑔 min
𝑋𝑋∈𝑋𝑋�

𝑍𝑍2(𝑋𝑋)   →   min
𝑋𝑋∈𝑋𝑋�

𝑍𝑍(𝑋𝑋) =  [𝑤𝑤1𝑍𝑍1𝑛𝑛𝑒𝑒𝑐𝑐𝑚𝑚 +  𝑤𝑤2𝑍𝑍2𝑛𝑛𝑒𝑒𝑐𝑐𝑚𝑚]                   (6.11) 

 

Where, 𝑋𝑋� is the feasible solution set; and 𝑤𝑤1𝑎𝑎𝑛𝑛𝑔𝑔 𝑤𝑤2 is the two weighting factors between 

the two objectives 𝑍𝑍1 𝑎𝑎𝑛𝑛𝑔𝑔 𝑍𝑍2, respectively; 𝑤𝑤1, 𝑤𝑤2 > 0;𝑎𝑎𝑛𝑛𝑔𝑔 𝑤𝑤1 +  𝑤𝑤2 = 1. By changing 

𝑤𝑤1𝑎𝑎𝑛𝑛𝑔𝑔 𝑤𝑤2 values, range of non-dominated solutions of Pareto Frontier can be obtained. 

  

6.4 RESULTS AND DISCUSSION  

6.4.1 Generation of Pareto Optimal Solutions 

The converted optimization model in this study was solved by using the 

commercial software, AIMMS (Advanced Integrated Multidimensional Modeling 

Software) version 4.43. This software was put in as an integrated collection of a modeling 

language, a graphical user interface, and numerical solvers. AIMMS is one of the most 

developed expansion environments for building optimization-based decision support uses 

and advanced design frameworks. 

Different combinations of weighting (w1 and w2) factors lead to different 

solutions. The different combinations of the two weighting factors reflect the differences 

in decision makers’ value systems for judging the relative importance between the two 

objectives, “minimization of total agency cost, Z1” and “minimization of total CO2 

emission, Z2.” Figure 6.1 shows the frontier curve made by the non-dominated solutions 
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of Z1 and Z2 while changing the weighting ratio between the two excessive situations of 

minimizing both agency costs and CO2 emissions. 

Figure 6.1 shows that an increase in agency cost leads to a decrease in the CO2 

emission, while CO2 emissions increase when the agency costs is decreased. So, any loss 

in one objective is included with a progression in the other objective, and it is difficult to 

get the best values of both objectives at the same time. Therefore, it is the decision 

maker’s responsibility to decide the point (Pareto optimal solution) on the frontier curve 

that caused a large improvement in one objective at a small loss in the other. It is obvious 

in Figure 6.1 that selecting the mid-point on the frontier curve will improve both 

objectives, while selecting any point at the end sections on the curve will be incorrect for 

one objective. 

 

Figure 6.1 Pareto frontier of non-dominated solutions for multi-objective 

optimization 
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6.4.2 Effect of Annual Network Budget on Optimization Results 

In order to study the effect of annual network budget constraint on the feasible 

solutions of objectives Z1 and Z2, a sensitivity analysis was performed in this study. 

Weight combinations of w1/w2 = 0.75/0.25 and w1/w2 = 0.25/0.75 were selected for the 

sensitivity analysis of objectives Z1 and Z2 as shown in Figures 6.2 and 6.3, respectively. 

In general, Figures 6.2 and 6.3 show that the agency cost increases and the CO2 emission 

decreases when the annual budget was increased from $250,000 to $1,500,000. Since the 

weighting factor w1 of minimizing agency cost objective, Z1 in Figure 6.2 is higher than 

its value in Figure 6.3, the values of agency cost in Figure 6.2 is about 10 times less than 

their values in Figure 6.3. This is because considering a higher weighting factor for one 

objective makes the optimization process gives priority to that objective.  

In addition, since the objective Z1 has the priority of the minimization in Figure 

6.2, the increase in agency cost value becomes insensitive to the budget increase after 

$750,000 once a feasible solution was reached. In Figure (6.3), the decrease in CO2 

emission becomes insensitive after an annual budget of $1,000,000 since the emission 

objective Z2 has the priority. 
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Figure 6.2 Effect of annual budget on two objectives for w1/w2=0.75/0.25 

 

 

Figure 6.3 Effect of annual budget on two objectives for w1/w2=0.25/0.75 
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annual budget levels of $250,000 and $750,000, respectively. In Table 6.1, the number of 

chip seal, crack seal, and thin overlay preservation treatments that were selected for the 

network segments are 20, 23, and 104, respectively at network annual budget level of 

$250,000. When the network annual budget level was increased to $500,000 as shown in 

Table 6.2, the number of chip seal and crack seal preservation treatments decrease to 15 

and 5 respectively and thin overlay increases to 117 in order to achieve the two objectives 

of minimizing agency costs and minimizing CO2 emissions.  

Tables 6.3 and 6.4 show the distribution of preservation treatments (chip seal, 

crack seal, and thin overlay) at same annual budget constraint of $750,000 for weighting 

factors ratio of w1/w2 = 0.75/0.25 and w1/w2 = 0.25/0.75, respectively. When a large 

weight factor of w1=0.75 was given to the agency cost objective Z1 in Table 6.3, the 

optimization process looks for treatment types that have less cost without violation of 

constraints and at the same time keeps the network in good condition to minimize the 

total emission. Therefore, the most selected types of treatments in Table 6.3 is crack seal 

since it has the lowest value of agency cost. On the other hand, the optimization process 

gives the priority to the minimization of CO2 emission objective Z2 when a large weight 

factor of w2=0.75 was selected to Z2 objective as shown in Table 6.4. It is obvious in 

Table 6.4 that thin overlay is the dominant preservation treatment for the most segments 

in the network since it has the highest effectiveness on pavement condition which 

achieves the objective Z2 of minimizing network CO2 emission. 
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Table 6.1 Optimal Decision Variables of w1/w2 = 0.25/0.75 at annual budget of 

$250,000 

Year 
 
 
Segment 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

Sum 

1                     4 
2                     4 
3                     5 
4                     4 
5                     3 
6                     7 
7                     4 
8                     5 
9                     5 
10                     4 
11                     5 
12                     4 
13                     5 
14                     4 
15                     5 
16                     4 
17                     6 
18                     6 
19                     4 
20                     5 
21                     5 
22                     5 
23                     5 
24                     5 
25                     4 
26                     7 
27                     7 
28                     5 
29                     5 
30                     6 

Note:  = chip seal; = crack seal; and = thin overlay 
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Table 6.2 Optimal Decision Variables of w1/w2 = 0.25/0.75 at annual budget of 

$500,000 

Year 
 
 
Segment 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

Sum 

1                     4 
2                     4 
3                     4 
4                     5 
5                     4 
6                     5 
7                     4 
8                     4 
9                     5 
10                     4 
11                     5 
12                     4 
13                     4 
14                     4 
15                     5 
16                     4 
17                     5 
18                     4 
19                     4 
20                     5 
21                     5 
22                     6 
23                     5 
24                     4 
25                     5 
26                     5 
27                     5 
28                     5 
29                     5 
30                     5 

Note:  = chip seal; = crack seal; and = thin overlay 
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Table 6.3 Optimal Decision Variables of w1/w2 = 0.75/0.25 at annual budget of 

$750,000 

Year 
 
 
Segment 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

Sum 

1                     11 
2                     11 
3                     10 
4                     11 
5                     11 
6                     11 
7                     12 
8                     13 
9                     13 
10                     14 
11                     13 
12                     12 
13                     12 
14                     13 
15                     10 
16                     11 
17                     8 
18                     14 
19                     8 
20                     12 
21                     12 
22                     12 
23                     11 
24                     11 
25                     12 
26                     12 
27                     12 
28                     12 
29                     11 
30                     12 

Note:  = chip seal; and = crack seal 
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Table 6.4 Optimal Decision Variables of w1/w2 = 0.25/0.75 at annual budget of 

$750,000 

Year 
 
 
Segment 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

Sum 

1                     4 
2                     4 
3                     4 
4                     4 
5                     4 
6                     4 
7                     4 
8                     4 
9                     4 
10                     4 
11                     5 
12                     4 
13                     5 
14                     5 
15                     5 
16                     5 
17                     5 
18                     5 
19                     5 
20                     4 
21                     5 
22                     5 
23                     4 
24                     5 
25                     4 
26                     5 
27                     5 
28                     5 
29                     4 
30                     4 

Note:  = chip seal; and = thin overlay  
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6.4.3 Effect of Including Construction Stage Emissions on Optimization Results 

In order to study the effect of including the emission of construction stage for 

each type of preservation treatment (Table 4.2) on the optimization results, the objective 

Z2 of minimizing CO2 emissions in Equation 6.2 was modified  in AIMMS software to 

include the emission of construction stage for each preservation treatment in addition to 

the emission of the use stage. Table 6.5 and Table 6.6 show the distribution of 

preservation treatments at annual budget constraint of $750,000 for weighting factors 

ratio of w1/w2 = 0.75/0.25 and w1/w2 = 0.25/0.75, respectively.  

In general, the number of segments treated with chip seal and crack seal decrease 

as shown in Table 6.5 compared to Table 6.3 to minimize both the agency cost and CO2 

emissions since the crack seal has the lowest value of both agency cost and CO2 emission 

at construction stage. On the other hand, the dominant preservation treatment in Table 6.6 

is crack seal compared to Table 6.4 which was thin overlay because thin overlay has the 

highest value of emission at the construction stage.  
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Table 6.5 Optimal Decision Variables of w1/w2 = 0.75/0.25 at annual budget of 

$750,000 including construction stage emissions 

Year 
 
 
Segment 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

Sum 

1                     8 
2                     8 
3                     8 
4                     8 
5                     9 
6                     9 
7                     9 
8                     10 
9                     10 
10                     9 
11                     10 
12                     10 
13                     10 
14                     10 
15                     11 
16                     11 
17                     11 
18                     11 
19                     11 
20                     9 
21                     11 
22                     11 
23                     11 
24                     9 
25                     12 
26                     11 
27                     12 
28                     11 
29                     11 
30                     10 

Note:  = chip seal; and = crack seal 
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Table 6.6 Optimal Decision Variables of w1/w2 = 0.25/0.75 at annual budget of 

$750,000 including construction stage emissions 

Year 
 
 
Segment 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

Sum 

1                     17 
2                     17 
3                     18 
4                     18 
5                     18 
6                     19 
7                     19 
8                     19 
9                     9 
10                     18 
11                     18 
12                     18 
13                     18 
14                     18 
15                     18 
16                     18 
17                     18 
18                     18 
19                     18 
20                     18 
21                     18 
22                     19 
23                     19 
24                     19 
25                     19 
26                     19 
27                     19 
28                     19 
29                     19 
30                     18 

Note:  = chip seal; = crack seal; and = thin overlay  
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6.5 SUMMARY 

This Chapter aims to find the optimal timing of pavement preservation strategy at 

the network level considering multi-objective optimization of minimizing agency costs 

and minimizing CO2 emissions. The multi-objective optimization problem was solved 

using Weighted Sum method which is based on converting the two objectives (agency 

cost and emission) into one single objective by adding both objectives together after 

multiplying each objective by a weighting factor. AIMMS software version 4.43 was 

used to solve and optimize the converted objective model. A case study was built to 

perform the optimization process, and a sensitivity analysis was conducted to study the 

effect of annual network budget constraint on the optimization of two objectives and 

pavement preservation strategy. 
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CHAPTER 7 FINDINGS, CONCLUSIONS AND 

RECOMMENDATIONS 

7.1 FINDINGS 

The major findings that represent different stages of the research undertaken 

include the following: 

7.1.1 Development of Emission Models  

1. Two regression models were developed for predicting total energy consumption 

(TEC) and Carbon Dioxide Emissions (CO2) for four vehicle types. Model 1 

considered the effect of rolling resistance coefficient (A) and speed on emission 

and energy consumption, and model 2 considered the effect of rolling resistance 

coefficient (A), air drag coefficient term (C), and speed on emission and energy 

consumption. Model 2 was used in the analyses of this research since it contains 

more effective coefficients than model 1. 

 

7.1.2 Effect of Pavement Preservation on Life-Cycle Energy and Emission 

1. At construction stage, there are significant differences in energy and emissions 

among various preservation treatments mainly due to different raw material 

components and manufacturing processes. Compared to chip seal and crack seal, 

thin overlay has the greatest CO2 emissions because large amount of raw material 

and operation of asphalt plant are needed. 

2. The IRI development trends after preservation treatment are affected by pre-

treatment IRI and traffic loading. Quantitative relationships were developed to 
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determine the short-term IRI jump and long-term IRI models for different 

preservation treatments using LTPP SPS-3 data. 

3. Pavement preservation brings environmental benefit in reduction of CO2 emission 

due to the improved pavement surface condition despite the emission generated at 

construction stage. Thin overlay produces the highest life-cycle reduction in CO2 

emission due to the significant IRI jump after treatment; while crack seal has the 

lowest reduction of CO2 emission. 

4. The application timing of preservation treatment has significant effects on 

emission at use stage, and there is an optimal timing of preservation treatment to 

achieve the maximum life-cycle benefit of preservation. The optimal timing of 

treatment becomes earlier as traffic volume or the initial IRI value increases. 

 

7.1.3 Multi-objective optimization 

A. Simulated Constraint Boundary Model (SCBM)  

1. For the single objective optimization of minimizing agency costs, most of the 

segments in the network are selected to be treated with crack seal since it has the 

lowest agency costs compared to chip seal and thin overlay treatments.  

2. For the single objective optimization of minimizing CO2 emissions, the thin 

overlay is the dominant preservation treatment for most of the segments because it 

causes the lowest IRI value after adding treatment (higher IRI jump) as compared 

to the other treatments. 

3. For multi-objective optimization of minimizing both agency costs and emissions, 

the distribution of preservation treatments between segments is a combination of 
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the results for the two single objectives. The crack seal is still the most dominant 

preservation treatments compared to thin overlay although it has less effect on the 

reduction of IRI than the thin overlay treatment. So, the objective of minimizing 

agency cost controls the optimization results although the minimization of CO2 

emissions was considered in the optimization process. 

4. The SCBM is a useful technique for solving the multi-objective optimization 

problems, but the decision makers need to decide first which objective should be 

considered as the primary objective (the objective that deserves the most attention 

among the competing objectives).   

 

B. Weighted Sum Method  

1. The weighted sum method provides an essential and easy way to use for multi-

objective optimization. The value of weighting factor should be considerable 

relative to other weighting factors and comparative to its corresponding objective 

function when setting weighting factors for articulation preferences between 

objectives.  

2. Sensitivity analysis results of annual budget constraint indicate that the 

minimization of network CO2 emission is achieved with the increase of budget, 

while the objective of minimization total agency cost ultimately is insensitive to 

budget increase. When the annual budget was increased for the same weighting 

factor, the number of segments treated with chip seal and crack seal decrease and 

the number of segments treated with thin overlay increases.  
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3. The results for the distribution of pavement preservation treatments appeared that 

less costly preservation treatments were selected for the most segments of the 

network when the priority of optimization was given to the objective of 

minimization agency cost. The treatments that have higher effectiveness on 

pavement condition were selected for the most segments of the network when the 

objective of minimization CO2 emission is the primary objective compared to the 

other objective.    

 

7.2 CONCLUSIONS  

Preserving network-level road pavements typically involves decisions about how, 

where, and when to maintain and rehabilitate to keep the pavement conditions at a 

reasonable level using the limited budget. This research used SCBM and weighted sum 

methods procedure to solve multi-objective network-level pavement maintenance 

programming problems. The conclusions can be drawn as follows based on the summary 

and main findings:  

1. SCBM method is independent on the scales of objectives, and there is no need to 

transform different units of objectives to dimensionless units. The objectives can 

be in different units and scales that can be handled directly. On the other hand, 

this method requires the selection of the objective that deserves the most attention 

among the competing objectives and selection of the proper range values for those 

objectives that are not included in the objective function but instead set as 

constraints. 



162 

 

2. Although the weighted sum method is limited by the fact that all objectives must 

be transformed into a single unit, this method provides an essential and easy way 

to use for multi-objective optimization.   

3. Finding the Pareto-optimal frontier is just the first step in the complete pavement 

maintenance scheduling decision-making process, however, the decision makers 

need to subsequently pick up the best compromise solution from the Pareto-

optimal frontier between selected objectives and constraints. Given the selected 

best solution, the proportion of each road segment that needs a certain 

maintenance treatment can be accordingly determined.  

 

7.3 RECOMMENDATIONS  

The following recommendations are made based on the results gained in this 

research: 

1. The effect of climate and road grade need to be considered in the developed 

regression models of CO2 emissions by updating these factors in MOVES. 

2. Since this study focused on the environmental impact of pavement preservation 

treatment at use stage, other phases of LCA need to be included for future work.   

3. It is necessary to consider the work zone effect and traffic delay into life-cycle 

assessment model since the work zone has two major effects on road users; 

reduction in operating speed and increase in travel time; that result in a higher 

environmental impact. 

4. The minimization of agency costs and emissions are the only two objectives 

considered in this study. The minimization of user costs (vehicle operating costs) 
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is another objective that should be included in the future work since this cost is 

affected directly by pavement surface characteristics. 

5. This study focused on solving multi-objective optimization problems using 

SCBM and Weighted Sum methods. Genetic Algorithm method is an effective 

tool to solve multi-objective optimization problems that should be used in future 

work.  
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