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ABSTRACT OF THE DISSERTATION

Generalized Quasi Poisson Structures and

Noncommutative Integrable Systems

By SEMEN ARTAMONOV

Dissertation Director:

Prof. Vladimir Retakh

The dissertation is devoted to the applications of the Noncommutative Geometry

Program to the study of Integrable Systems and Cluster Algebras.

In particular, it is shown that cluster algebras introduced by A. Goncharov and

R. Kenyon admit a noncommutative generalization. This generalization can be viewed

as a family of categories equipped with a double Quasi Poisson bracket and a family

of functors between these categories which preserve the double bracket. From this

perspective, the commutative cluster algebra appears as the coordinate ring of the

moduli space of one dimensional representations of the noncommutative cluster algebra.

It is shown that Noncommutative systems of ODEs, suggested earlier by M. Kont-

sevich and A. Usnich, admit a formulation as Noncommutative Hamilton flows.

Finally, a non-skew-symmetric generalization of the double Poisson bracket is consi-

dered. It is shown that such modified double Poisson brackets inherit major properties

of double Poisson brackets.
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Preface

The theory of Integrable Systems was originally developed as an algebraic tool for the

study of Hamiltonian Ordinary Differential Equations. The main advantage of the

Hamilton formalism is that it reduces the problem of finding the first integrals of ODE

(conserved quantities) to the purely algebraic problem of finding the maximal “Poisson-

commuting” subalgebra of the algebra of smooth functions C∞(M) on some manifold

M. When this subalgebra is large enough, the system of ODE is called Integrable in the

Liouville sense and can be integrated by quadratures [Arn78]. It appeared later that

Integrable Systems have applications well beyond the original framework; in particular

Quantum Integrable Systems play a fundamental role in representation theory [Eti07]

and low-dimensional topology [RT90].

It seems natural to ask what happens if we follow the concept of noncommutative

geometry and replace the commutative algebra of smooth functions on a manifold with

some abstract associative algebra, in general noncommutative. My thesis was largely

motivated by an idea that Noncommutative Integrable Systems can play the role of a

unifying concept in the theory of Hamilton flows on representation varieties, much in

the same way that quantum Integrable Systems do in representation theory.
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Chapter 1

Introduction

1.1 Noncommutative Geometry

The conventional “commutative geometry” was born with a Hilbert Nullstellensatz the-

orem in 1893 which established the correspondence between algebraic sets and radical

ideals of the polynomial ring [Hil93]. It appeared later that this correspondence between

commutative algebra and geometry goes much further. In 1939 Gelfand and Kolmo-

goroff showed that algebraic structure of the ring of continuous functions defines the

compact topological space up to a homeomorphism [GK39]. This opened up a broad

program of studying the topology and geometry of spaces in terms of the algebraic

properties of certain commutative rings associated with these spaces.

In 1985 Alain Connes in his monograph “Non-commutative differential geometry”

[Con85] suggested to go beyond commutative rings, and announced a series of seven

papers intended to extend the familiar notions of commutative geometry for general

associative algebras. The program then received a common name — Noncommutative

geometry. Or, as it was suggested by V. Ginzburg [Gin05] it should be better referred

to as “general associative geometry” vs the “commutative associative geometry”.

Shortly after A. Connes’ original paper, the noncommutative analogue of the

De Rham complex of differential forms was introduced by M. Karoubi [Kar87] fol-

lowed by a series of papers which extended familiar notions of commutative geometry

to the context of general associative algebras. For example, in [CQ95] J. Cuntz and

D. Quillen introduced the notion of a smooth noncommutative algebras, in [Lod98]

J.-L. Loday introduced noncommutative Lie algebras and their homology.

A remarkable interplay between noncommutative and commutative geometries was
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suggested in [Kon93]. Following a general philosophy formulated by M. Kontsevich any

algebraic property that makes geometric sense is mapped to its commutative counter-

part by the functor RepN :

RepN : fin. gen. Associative algebras→ Affine schemes,

which assigns to a finitely generated associative algebra A the scheme of its’ N × N

matrix representations

RepN (A) = Hom(A,MatN (k)),

where k denotes some field of characteristic zero. This idea has allowed to study the

geometry of representation varieties by means of noncommutative geometry. It is worth

mentioning here that one of the most recent advances of this kind was the formulation

of derived representation schemes in [BCER12, BKR13].

1.2 Polyvector fields and Double Geometry

From the algebraic viewpoint, a vector field d on a manifold M is nothing but the

derivation of C∞(M), the algebra of smooth functions on M

d : C∞(M)→ C∞(M), d(fg) = fd(g) + d(f)g, (1.1)

for all f, g ∈ C∞(M). The space D1 = Der(C∞(M), C∞(M)) of all such derivations

is naturally a C∞(M)-module. As a result, one can define the algebra of polyvector

fields as a tensor algebra D• = TC∞(M)D
1 over the C∞(M) generated by the module

of vectorfields D1.

The above definitions can be translated literally to the language of affine schemes

if we replace C∞(M) with some finitely generated commutative algebra over k. Howe-

ver, if we try to naively extend definition (1.1) of a vector field to a general associative

algebra A, we would immediately run into the problem that Der(A,A) is no longer an

A-bimodule for a general noncommutative algebra A. To overcome this issue it was

suggested independently by M. Van den Bergh in [VdB08] and W. Crawley-Boevey,
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P. Etingof, V. Ginzburg in [CBEG07] to define a vector field over A as a double deri-

vation, a notion introduced earlier in [RSS80]

δ : A → A⊗A, δ(ab) = (a⊗ 1)δ(b) + δ(a)(1⊗ b)

The space of all biderivationsDA = Der(A,A⊗A) is then equipped with anA-bimodule

structure.

1.3 Double Quasi Poisson Brackets

In line with Kontsevich’s philosophy, M. Van den Bergh [VdB08] proposed a definition

of the double Poisson bracket on an associative algebra which induces a conventional

Poisson bracket on the coordinate ring of matrix representations. On the contrary,

W. Crawley-Boevey [CB11, CBEG07] suggested yet another related definition of the

noncommutative analogue of the Poisson bracket, the so-called H0-Poisson structure.

The latter has weaker requirements and in general provides a conventional Poisson

bracket only on the moduli space of representations. A double Poisson bracket induces

an H0-Poisson structure but not vice versa.

One of the major advantages of the double Poisson bracket as opposed to an H0-

Poisson structure is that for a finitely generated associative algebra it is defined comple-

tely by its action on generators. This allows one to provide numerous explicit examples

of double Poisson brackets [PVdW08, BT16] and even carry out certain partial classi-

fication problems [ORS13].

However, double Poisson brackets do not give rise to all H0-Poisson structures, less

so to all Poisson brackets on the moduli space of representations. The reason is that it

is by no means necessary to have a Poisson bracket on the full coordinate ring of matrix

representations in order to induce a Poisson bracket on the GL(N,C)-invariant subring

i.e., on a coordinate ring of the moduli space. The most interesting example of this

kind is the Quasi Poisson bracket introduced in [AKSM02] based on the earlier work

[AMM98] about the group-valued moment maps. To describe quasi brackets from the

noncommutative geometry point of view, M. Van den Bergh has introduced the notion

of the double Quasi Poisson bracket [VdB08].
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1.4 Poisson brackets on the character varieties of fundamental groups

It was first proved by W. Goldman [Gol86] that the character variety of a fundamental

group of a closed oriented surface can be equipped with canonical Poisson bracket. Later

this result was extended for Riemann surfaces with nonempty boundary [FR93, FR99],

where the authors defined first a Poisson bracket on the full coordinate ring of all matrix

representations using r-matrix, and then took a quotient with respect to the Poisson

action of the gauge group. An expected property of such construction was that the

resulting bracket on the coordinate ring of the moduli space of matrix representation

depends only on the symmetric part of r-matrix, and is the same up to a constant for

all proper choices of an r-matrix.

Taking this into account it would seem natural to define the bracket on the coordi-

nate ring of all matrix representations on the fundamental group using only the symme-

tric part of the r-matrix, however such a bracket would not satisfy the Jacobi identity.

Instead, it would satisfy the quasi Jacobi identity defined in [AKSM02, AKS00]. For a

recent proof see [Nie13].

G. Massuyeau and V. Turaev have shown in [MT12] that one can introduce the Quasi

Poisson Bracket on the coordinate ring of matrix representations of the fundamental

group by means of noncommutative geometry. Namely, one can define a double Quasi

Poisson bracket on the group algebra of the fundamental groupoid of a surface with

nontrivial boundary.

The double analog of the homotopy intersection form proposed in [MT12] immedi-

ately suggests that such brackets have a categorical flavour. This observation is also

noted in [MT13].

1.5 Cluster algebras

Cluster algebras were originally introduced in [FZ02] largely motivated by the notion of

a “canonical basis” in irreducible representations which was suggested earlier in [GZ86].

Each cluster algebra can be described as a commutative ring B with a distinguished set

of generators known as cluster variables. It comes equipped with a family of maximally
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algebraically independent subsets of generators known as cluster charts. The relations

in B are of a very special type, such that for each cluster {x1, . . . xn} the rest of the

generators {y1, . . . , ym} can be expressed at a general point as Laurent polynomials in

{x1, . . . , xn}. It was shown by M. Gekhtman, M. Shapiro, and A. Vanstein [GSV03] that

cluster charts can be equipped with a Poisson bracket in such a way that any cluster

transformation becomes a homomorphism of Poisson algebras. Cluster algebras have

found major applications in Teichmüller theory [GSV05, FG06] and its quantization

[FC99].

A relation between cluster algebras and topology was suggested in [FST08], where

the authors have defined cluster algebras associated to ideal triangulations of surfaces

with marked points. Cluster transformations then correspond to a sequence of flips of

ideal triangulations. The edge weights of this cluster algebras can be interpreted as

holonomies of a rank one connection on the graph associated to the triangulation. This

idea was later developed in [GK13], where the authors introduced a Poisson bracket

on rank one graph connections and shown that flips of triangulations define Poisson

homomorphisms of cluster charts.

This immediately raises a question about the higher rank generalizations of the

above construction. One of the goals of the thesis is to show that Noncommutative

Geometry allows one to give a positive answer to such question. It was suggested

by A. Berenstein and V. Retakh [BR05, BR18] that one can consider noncommutative

cluster algebras with edge weights being an elements of some general associative algebra.

1.6 Outline

The text of the dissertation is organized as follows:

In chapter 2 we start with a review of Noncommutative Poisson Geometry on linear

categories. For a general k-linear category C, we introduce an associated category V of

polyvector fields, a category K of differential forms, and an evaluation map of n-forms

on degree n polyvector fields. This material is a straightforward generalization of the

corresponding notions for a category with a single object defined in [VdB08, CBEG07].
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Similar definitions are also given in the recent preprint [Yeu18] with applications to

derived representation schemes, which appeared when the work on the thesis was at

the final stage. We conclude the chapter with an alternative definition of the Double

Quasi Poisson bracket on a category 2.78. We show that one can avoid the introduction

of a quiver path algebra when defining the right hand side of the double Quasi Jacobi

Identity (2.79)

YR =
1

4

∑
V ∈Obj C

∂V ? ∂V ? ∂V .

This useful technical point allows us to simplify the proofs in the following chapter 3,

however it can be interesting on its own.

In chapter 3 we show that cluster algebras introduced by A. Goncharov and R. Ke-

nyon admit a noncommutative generalization. We define a family of categories equip-

ped with a double Quasi Poisson bracket, which are associated to the bipartite ribbon

graphs. We then show that noncommutative mutations can be realized as functors

between such categories. The main result of the chapter is formulated in Theorem 3.12

where we prove that the above functors preserve the double Quasi Poisson bracket. As

an example of such quasi Poisson homomorphism in Section 3.3 we consider a particular

case of the Kontsevich map suggested in [Kon11].

Chapter 4 is devoted to the examples of Noncommutative Integrable Systems. We

show that noncommutative ODE suggested in [Usn08] and [Kon11] can be presented as

a Hamilton flows. Moreover, we show that they belong to the infinite family of pairwise

commuting Hamilton flows on the same algebra. This chapter is largely based on a

paper [Art15] by the author of the dissertation.

Finally, in chapter 5 a non-skew-symmetric generalization of the double Poisson

bracket is considered, following the paper [Art17] by the author of the dissertation. It

is defined as the most general biderivation which gives rise to an H0-Poisson bracket. It

is shown that such modified double Poisson brackets inherit major properties of double

Poisson brackets.
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Chapter 2

Noncommutative Poisson Geometry

Throughout the chapter we fix a ground field k of characteristic zero, char k = 0. All

vector spaces, unadorned tensor products etc. are considered over k. We then fix an

underlying k-linear category C and assume that C is small.

2.1 Categorification of Noncommutative Differential Geometry

2.1.1 Vector Fields on linear Categories

Definition 2.1. Let C be a k-linear category. For each ordered pair of objects V,W ∈

Obj C we say that a map

δ : Mor C → hom(W,−)⊗ hom(−, V ) (2.2)

is a (V,W )-derivation if

• For all objects A,B ∈ Obj C, the restriction

δ : hom(A,B)→ hom(W,B)⊗ hom(A, V )

is a k-linear map.

• For all morphisms f, g ∈ Mor C which are composable, i.e., the source of f coin-

cides with the target of g, the map δ satisfies the double Leibnitz identity

δ(f ◦ g) = (f ⊗ 1V ) ◦ δ(g) + δ(f) ◦ (1W ⊗ g). (2.3)

Here 1V and 1W are the corresponding identity morphisms on V and W .

The collection of all (V,W )-derivations associated to a given pair of objects is de-

noted as DV,W and called a space of (V,W )-vector fields.
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Remark 2.4. Note that for all objects V ∈ C, the collection of endomorphisms A =

hom(V, V ) = End(V ) forms an associative algebra. When C has a single object, say

V , Definition 2.1 becomes DV,V = Der(A,A⊗A). In such form it was first suggested

simultaneously in [VdB08] and [CBEG07].

Definition 2.5. Let C be a k-linear category. We call a k-linear spaceM a left module

over C (or left C-module) if

• As a linear space M is graded by objects of C

M =
⊕

X∈Obj C
MX

• For each A,B ∈ Obj C and every f ∈ hom(A,B) there is a linear map

ϕ(f) : MA →MB.

• For all A,B,C ∈ Obj C and all f ∈ hom(A,B), g ∈ hom(B,C) we have

ϕ(g) ◦ ϕ(f) = ϕ(g ◦ f).

In other words, ϕ is a covariant functor.

A homomorphism F : (M, ϕ) → (M′, ϕ′) of left C-modules is defined as a natural

transformation, i.e., a family of k-linear maps F : MA → M′A for all objects of C,

which makes the following diagram commutative

MA MB

M′A M′B

ϕ(f)

F F

ϕ′(f)

(2.6)

for all A,B ∈ Obj C and all f ∈ hom(A,B). In what follows we denote the category of

left C-modules by C-mod.

Similarly, we introduce the category mod-C of right C-modules:

Definition 2.7. Let C be a k-linear category we call a k-linear spaceM a right module

over C if it is a left module over the opposite category Cop, i.e.,
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• As a linear space M is graded by objects of C

M =
⊕

X∈Obj C
MX

• For each A,B ∈ Obj C and every f ∈ hom(A,B) there is a linear map

ϕ(f) : MB →MA.

• For all A,B,C ∈ Obj C and all f ∈ hom(A,B), g ∈ hom(B,C) we have

ϕ(f) ◦ ϕ(g) = ϕ(g ◦ f).

Or, equivalently, one can say that ϕ is a contrvariant functor.

As a corollary, each homogeneous componentMX is a left (resp. right) module over

End(X).

Definition 2.8. We call M a bimodule over C (or C-bimodule) if it is simultaneously

a left and a right module over C in the sense of Definitions 2.5 and 2.7, such that the

two actions commute with each other.

Throughout the text we denote the category of all C-bimodules as C-mod-C. Note,

that each C-bimodule M as a linear space is a direct sum

M =
⊕

X,Y ∈Obj C
MX,Y ,

where each homogeneous component MX,Y is an End(X)− End(Y ) bimodule.

Remark 2.9. Every k-linear bifunctor [Mit65] on a small k-linear category C which is

covariant in the first component and contrvariant in the second component defines a

C-bimodule, and vice versa.

Lemma 2.10. The space of vector fields

D1 =
⊕

V,W∈Obj C
DV,W

is equipped with a C-bimodule structure.
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Proof. For each homogeneous component DV,W labeled by V,W ∈ Obj C we define the

left action of hom(V, ) and right action of hom( ,W ) as follows. Let δ ∈ DV,W and

f ∈Mor C. Then 1

δ(f) = δ′(f)⊗ δ′′(f).

For all X,Y ∈ Obj C and a ∈ hom(V, Y ) and for each b ∈ hom(X,W ) we set

(a ? δ)(f) = δ′(f)⊗ (a ◦ δ′′(f)), (δ ? b)(f) = (δ′(f) ◦ b)⊗ δ′′(f). (2.11)

As a result, a ? δ : Mor C → hom(W,−) ⊗ hom(−, Y ) satisfies the Leibnitz identity

(2.3), namely

(a ? δ)(f ◦ g) =(1t(f) ⊗ a) ◦ (f ⊗ 1V ) ◦ δ(g) + (1t(f) ⊗ a) ◦ δ(f) ◦ (1W ⊗ g)

=(f ⊗ 1V ) ◦ (a ? δ)(g) + (a ? δ)(f) ◦ (1W ⊗ g)

and thus a ? δ ∈ DY,W . Similar reasoning shows that δ ? b ∈ DV,X . Moreover, by (2.11)

the two actions commute with each other

(a ? δ) ? b = a ? (δ ? b) ∈ DY,X .

Next, from the fact that composition in C is associative we get

(a1 ◦ a2) ? δ = a1 ? (a2 ? δ),

for all a1, a2 s.t. s(a2) = V and s(a1) = t(a2). Finally, since the proof holds for

arbitrary V,W ∈ Obj C, we conclude that D1 is a left C-module w.r.t. the action (2.11).

Applying similar reasoning to δ ? b we prove that D1 is also a right C-module.

Corollary 2.12. The space DV,W of (V,W )-vector fields is a left module over End(V )

and a right module over End(W ) such that the two actions commute with each other

DV,W ∈ End(V )-mod- End(W ).

1Hereafter we use Sweedler notations to omit the summation index in a tensor product whenever it
doesn’t lead to any confusion. Thus δ(f) =

∑k
i=1 δ

′
i(f)⊗ δ′′i (f) is written as δ′(f)⊗ δ′′(f)
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2.1.2 Gerstenhaber Category of Polyvector Fields

Recall that for each pair of right and left C-modules

R ∈mod-C, L ∈ C-mod

one can define their tensor product over C as the following quotient

R⊗C L =

 ⊕
V ∈Obj C

RV ⊗ LV

 /J (2.13)

where J is the k-span of the elements of the form

ρ ◦ f ⊗ λ− ρ⊗ f ◦ λ,

for all objects A,B ∈ C and all ρ ∈ RB, f ∈ hom(A,B), λ ∈ LA.

Remark 2.14. Note that the quotient (2.13) is not graded by V ∈ Obj C, because J

contains elements which mix different homogeneous components.

Quotient (2.13) allows one to define a composition map

RV × LV −→ R⊗C L

The C-bimodule structure on the space of vector fields D1 introduced in Lemma 2.10

allows one to define a composition of vector fields. Now, let V,W,U0, . . . , Uk−1 ∈ Obj C

and

δ(1) ∈ DV,U1 , δ(2) ∈ DU1,U2 , . . . , δ(k) ∈ DUk−1,W

be a chain of vector fields. One can define the sequential composition of δ(1), . . . , δ(k)

as the following tensor product

δ(1) ? δ(2) ? · · · ? δ(k) = δ(1) ⊗C δ(2) ⊗C · · · ⊗C δ(k). (2.15)

Definition 2.16. Let V,W ∈ Obj C be a pair of objects in a k-linear category C. We

define the space of k-vector fields associated to (V,W ) for all k ≥ 0 as

Dk
V,W =

⊕
U1,...,Uk−1∈Obj C

DV,U1 ⊗C . . . ⊗C DUk−1,W , (2.17a)



12

where for k = 0, 1 we assume that

D0
V,W = hom(W,V ), D1

V,W = DV,W . (2.17b)

Note that the space of k-vector fields Dk
V,W for k ≥ 1 is spanned by elementary

k-vector fields of the form (2.15).

Lemma 2.18. The space of all k-vector fields on a k-linear category C

Dk =
⊕

V,W∈Obj C
Dk
V,W (2.19)

forms a C-bimodule.

Proof. For k = 0 the statement is trivial, since the category C is a bimodule over itself.

We have shown in Lemma 2.10 that the statement holds for k = 1 as well. For k > 1

we have

Dk
V,W =

⊕
U1∈Obj C

DV,U1 ⊗C Dk−1
U1,W

. (2.20)

where each of the summands is a left EndV -module by Corollary 2.12. This allows one

to define the action of hom(V, ) on (2.20) componentwise. Since this action is End(V )-

linear, we conclude that Dk is a left C-module. Similar reasoning can be applied to show

that Dk is a right C-module. The two actions commute with each other by construction,

which finalizes the proof.

Definition 2.21. For each pair of objects V,W ∈ Obj C, we refer to the direct sum

D•V,W =

∞⊕
k=0

Dk
V,W (2.22)

as a space of (V,W )-polyvector fiels.

From the definition above it follows that the space D•V,W of (V,W )-polyvector fields

is graded by nonnegative integers. In what follows we say that a k-vector field δ ∈

Dk
V,W ⊂ D•V,W has degree k.

As an immediate corollary of Lemma 2.18 we have
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Lemma 2.23. The space of all polyvector fields on a k-linear category C

D• =
⊕

V,W∈Obj C
D•V,W

forms a C-bimodule.

Definition 2.24. For a k-linear category C we define an associated category of poly-

vector fields V as a category with the same collection of objects Obj V = Obj C as in

category C, morphisms

homV(W,V ) = D•V,W ,

and composition ? defined as

? : D•V,W ×D•W,X −→ D•V,X , ρ1 × ρ2 7→ ρ1 ⊗C ρ2

for all objects V,W,X ∈ Obj V.

Associativity of the composition follows immediately from the associativity of the

tensor product. Identity morphisms 1V for all V ∈ Obj V are precisely the identity

morphisms in C, using the identification D0
V,W = hom(W,V ).

Lemma 2.25. The category V of polyvector fields on a k-linear category C is graded by

the degrees of vector fields.

Proof. Indeed, for all objects V,W ∈ Obj V the space of morphisms (2.22) is graded

and composition ? is a graded map of degree zero

Dk
V,W ? Dm

W,X ⊂ Dk+m
V,X .

2.1.3 Traces of Polyvector Fields and Polyderivations

Let M be a C-bimodule for a k-linear category C. One defines the trace map (over C)

as follows

trC : M→M\ :=

 ⊕
X∈Obj C

MX,X

/[M, C], (2.26)
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where

trCMX,Y = 0, for X 6= Y, X, Y ∈ Obj C,

and [M, C] is the k-linear space spanned by the elements of the form

f ◦m−m ◦ f (2.27)

for all A,B ∈ Obj C and all m ∈MA,B, f ∈ hom(A,B).

Remark 2.28. Note that M\ is not graded by objects of the category C as opposed to

⊕X∈Obj CMX,X . It happens because elements of the form (2.27) mix different homoge-

neous components.

For each pair of objects V,W ∈ Mor C we have introduced a space of polyvector

fields. When the two objects V and W coincide with each other, the corresponding

space of polyvector fields D•V,V has a nontrivial trace over C

trC : D•V,V → (D•)\. (2.29)

Example 2.30. Let δ ∈ DV,V ⊂ D•V,V be a vector field. From (2.3) we have

δ : Mor C → hom(V,−)⊗ hom(−, V ).

Let f ∈ Mor C, in Sweedler notations we have δ(f) = δ′(f) ⊗ δ′′(f), and taking the

trace of both sides we get

trC(δ(f)) = trC
(
δ′(f)⊗ δ′′(f)

)
= trC

(
δ′(f) ◦ δ′′(f)⊗ 1s(f)

)
So the trace trC δ of a (V, V )-vector field δ is equivalent to the map

δ : Mor C →Mor C, δ(f) = δ′(f) ◦ δ′′(f).

For all objects A,B ∈ Obj C, the restriction

δ : hom(A,B)→ hom(A,B)

is a k-linear map. Moreover, as a corollary of (2.3) we get that δ satisfies the Leibnitz

identity

δ(f ◦ g) = f ◦ δ(g) + δ(f) ◦ g

for all morphisms f, g ∈Mor C which are composable, i.e., f ◦ g is well defined.
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Now, consider a closed chain of vector fields

δ1 ∈ DV,X1 , δ2 ∈ DX1,X2 , . . . , δk ∈ DXk−1,V (2.31)

where V,X1, . . . , Xk−1 ∈ Obj C are some objects. Then (δ1 ? · · · ? δk) ∈ Dk
V,V is an ele-

mentary (V, V )-polyvector field of degree k. The trace trC(δ1? · · ·?δk) of this polyvector

field is equivalent to the following map

δ1 ? · · · ? δk : (Mor C)⊗k → (Mor C)⊗k,

f1 ⊗ · · · ⊗ fk 7→ (δ′k(fk) ◦ δ′′1(f1))⊗ (δ′1(f1) ◦ δ′′2(f2))⊗ . . . ⊗ (δ′k−1(fk−1) ◦ δ′′k(fk))

(2.32)

for all f1, . . . fk ∈Mor C.

Remark 2.33. The order of morphisms on the right hand side of (2.32) is conventio-

nal. However, our choice guarantees that the sources of morphisms are not permuted.

Namely, for all Xi, Yi ∈ Obj C we have

δ1 ? · · · ? δk : hom(X1, Y1)⊗ · · · ⊗ hom(Xk, Yk) →

hom(X1, Yk)⊗ · · · ⊗ hom(Xk, Yk−1).

Definition 2.34. A map ∆ : (Mor C)⊗k → (Mor C)⊗k is called a polyderivation if

∆(h1⊗ · · · ⊗ f ◦ g
↑
j

⊗ · · · ⊗ hk)

=(1t(hk) ⊗ · · · ⊗ f
↑
j+1

⊗ · · · ⊗ 1t(hk−1)) ◦∆(h1 ⊗ · · · ⊗ g
↑
j

⊗ · · · ⊗ hk)

+ ∆(h1 ⊗ · · · ⊗ f
↑
j

⊗ · · · ⊗ hk) ◦ (1s(h1) ⊗ · · · ⊗ g
↑
j

⊗ · · · ⊗ 1s(hk))

(2.35)

for all morphisms f, g, h1, . . . hk ∈Mor C and all 1 ≤ j ≤ k.

Proposition 2.36. Let γ ∈ Dk
V,V be a (V, V )-derivation of degree k, for some object

V ∈ Obj C. The map

γ : (Mor C)⊗k → (Mor C)⊗k

is a polyderivation in the sense of Definition 2.34.
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Proof. First, note that Dk
V,V is spanned by elementary polyvector fields of the form

δ1 ? · · · ? δk, where δ1, . . . , δk is a closed chain of vector fields (2.31). So it would be

enough for us to prove the statement only for the case

γ = δ1 ? · · · ? δk,

and the rest will follow by linearity of (2.35).

Recall that each of the vector fields satisfy the double Leibnitz identity (2.3), in

particular for δj ∈ DXj−1,Xj

δj(f ◦ g) = (f ⊗ 1Xj−1) ◦ δ(g) + δ(f) ◦ (1Xj ⊗ g). (2.37)

Combining (2.37) with (2.32) we get

δ1 ? · · · ? δk(h1 ⊗ · · · ⊗ f ◦ g
↑
j

⊗ · · · ⊗ hk)

=(1t(h1) ⊗ · · · ⊗ f
↑
j+1

⊗ · · · ⊗ 1t(hk)) ◦ δ1 ? · · · ? δk(h1 ⊗ · · · ⊗ g
↑
j

⊗ · · · ⊗ hk)

+ δ1 ? · · · ? δk(h1 ⊗ · · · ⊗ f
↑
j

⊗ · · · ⊗ hk) ◦ (1s(h1) ⊗ · · · ⊗ g
↑
j

⊗ · · · ⊗ 1s(hk)).

where s(hj) and t(hj) denote the source and target of morphism hj respectively.

2.1.4 Category of Differential Forms

The A-bimodule of noncommutative 1-forms over a general associative algebra A ori-

ginally defined by M. Karoubi [Kar87] can be viewed as kernel of the multiplication

map

Ω1(A) = ker µ, µ : A⊗A → A. (2.38)

Remark 2.39. The definition above was based on the earlier observation by D. Quillen,

who have noted in [Qui70] that in the commutative case Ω1(A)\ = Ω1(A)
[Ω1(A),A]

is isomor-

phic to the module of Kähler differentials. When A becomes noncommutative, Ω1(A)\

is no longer an A-bimodule, so one should use (2.38) instead. Moreover, as noted in

[CBEG07], after we have defined noncommutative vector fields as double derivations

Der(A,A⊗A), it is precisely the Ω1(A) which would satisfy the universal property.
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The straightforward translation of the definition (2.38) to the context of categories

reads:

Definition 2.40. For a k-linear category C, let X,Y ∈ Obj C be a pair objects. We

define Ω1
X,Y , the space of 1-forms associated to (X,Y ), as the kernel of the composition

map. In other words, we have the following short exact sequence

0 −→ Ω1
X,Y ↪−−−→

⊕
V ∈Obj C

(hom(V,X)⊗ hom(Y, V ))
◦−−−−→ hom(Y,X) −→ 0. (2.41)

Then the space of all 1-forms Ω1 and 0-forms Ω0 are defined as

Ω1 =
⊕

X,Y ∈Obj C
Ω1
X,Y , Ω0 =

⊕
X,Y ∈Obj C

hom(Y,X). (2.42)

Lemma 2.43. The space of 1-forms Ω1 on a k-linear category C comes equipped with

a C-bimodule structure. Moreover,

0 −→ Ω1 ↪−−−→
⊕

X,Y,V ∈Obj C
(hom(V,X)⊗ hom(Y, V ))

◦−−−−→ Ω0 −→ 0 (2.44)

is an exact sequence of C-bimodules.

Proof. Let

β =

k∑
i=1

fi ⊗ gi ⊂
⊕

V ∈Obj C
(hom(V,X)⊗ hom(Y, V ))

be an arbitrary linear combination of composable morphisms. We set

x.β.y =

k∑
i=1

(x ◦ fi)⊗ (gi ◦ y) (2.45)

for all x ∈ hom(X, ), y ∈ hom( , Y ). It is easy to see that (2.45) is a C-bimodule action.

Then by associativity of composition we get

◦(x.β.y) =
k∑
i=1

(x ◦ fi ◦ gi ◦ y) = x.(◦(β)).y.

So the composition map is a homomorphism of C-bimodules, and as a corollary (2.44)

is an exact sequence of C-bimodules.



18

For k > 2 we define k-forms associated to X,Y ∈ Obj C to be

Ωk
X,Y =

⊕
Z1,...,Zk−1∈Obj C

Ω1
X,Z1

⊗C Ω1
Z1,Z2

⊗C . . . ⊗C Ω1
Zk−1,Y

and denote the space of all forms associated to (X,Y ) by

Ω•X,Y =
∞⊕
k=0

Ωk
X,Y .

Lemma 2.46. For all k ≥ 0, the space of all k-forms

Ωk =
⊕
X,Y

Ωk
X,Y

comes equipped with a C-bimodule structure.

Proof. Completely analogous to the proof of Lemma 2.18.

As an immediate corollary, the space of all forms on a k-linear category C

Ω• =
∞⊕
k=0

Ωk

becomes a C-bimodule graded by the degree k of a differential form.

Definition 2.47. For a k-linear category C we define an associated category of poly-

vector fields K as a category with the same collection of objects ObjK = ObjC as in

category C, morphisms

homK(Y,X) = Ω•X,Y

and composition “.” defined as

“.” : Ω•X,Y × Ω•Y,Z −→ Ω•X,Z , ω1 × ω2 7→ ω1 ⊗C ω2

for all objects X,Y, Z ∈ ObjK.

2.1.5 Duality and Evaluation Map

To evaluate differential forms on vector fields we will show that Ω1
X,Y satisfies a certain

universal property which generalizes the universal property of Kähler differentials. For
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each object V ∈ Obj C we introduce the uniderivation ∂V as follows:

∂V : Mor C → hom(V,−)⊗ hom(−, V )

∂V (f) =



f ⊗ 1V − 1V ⊗ f t(f) = V, s(f) = V,

−1V ⊗ f t(f) = V, s(f) 6= V,

f ⊗ 1V t(f) 6= V, s(f) = V,

0 t(f) 6= V, s(f) 6= V.

(2.48)

for all f ∈Mor C.

Lemma 2.49. The map defined in (2.48) is a (V, V )-vector field: ∂V ∈ DV,V .

Proof. We have to show that for all composable morphisms f, g ∈Mor C

∂V (f ◦ g) = (f ⊗ 1V ) ◦ ∂V (g) + ∂V (f) ◦ (1V ⊗ g). (2.50)

When t(f) = V , both sides of (2.50) receive equal contributions −1V ⊗ (f ◦ g). When

s(f) = t(g) = V , the right hand side of (2.50) receives a trivial contribution f ⊗ g −

f ⊗ g = 0 while the left hand side remain unchanged. Finally, when s(g) = V , both

sides of (2.50) receive an equal contribution (f ◦ g) ⊗ 1V . Altogether, we have taken

into account all 23 = 8 possible cases.

Corollary 2.51. For any object V ∈ Obj C, the map ∂V associated to the trace of the

corresponding uniderivation satisfies the Leibnitz identity

∂V (f ◦ g) = f ◦ ∂V (g) + ∂V (f) ◦ g

for all composable morphisms f, g ∈Mor C.

Definition 2.52. Define d : Mor C →Mor C ⊗Mor C by

d =
∑

V ∈Obj C
∂V . (2.53)

We refer to d as a universal derivation on C.

Note that the sum in (2.53) is well defined since for any particular f ∈ Mor C we

have at most two terms with nontrivial contribution. Indeed,

d(f) = 1t(f) ⊗ f − f ⊗ 1s(f) (2.54)
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for all morphisms f ∈Mor C.

By Corollary 2.51, the universal derivation on C satisfies the Leibnitz identity

d(f ◦ g) = f ◦ d(g) + d(f) ◦ g

for all composable morphisms f, g ∈Mor C.

Formula (2.54) allows us to describe the image of the universal derivation d(Mor C).

For all objects X,Y ∈ Obj C we have

d : hom(Y,X) ↪→ Ω1
X,Y ,

Moreover, the restriction of a universal derivation d considered above is a k-linear map,

so by (2.42) we have

dΩ0 ⊂ Ω1. (2.55)

In other words, the image dΩ0 can be viewed as a subspace of exact forms in the space

Ω1 of all 1-forms on C.

Remark 2.56. Recall that in commutative geometry, the space of Kähler differentials

is generated by exact forms df as a module over the coordinate ring. The analogous

statement holds for (2.55) on a category C.

Lemma 2.57. The subspace dΩ0 ⊂ Ω1 of exact 1-forms on a k-linear category C

generates the space Ω1 of all 1-forms as a left C-module (resp. right module or bimodule).

Proof. Below we consider only left action, the other case is essentially equivalent. Let

ω =
k∑
i=1

fi ⊗ gi ∈ Ω1
X,Y

where fi, gi ∈Mor C for 1 ≤ i ≤ k. By (2.41) we thus have
∑k

i=1 fi◦gi = 0 ∈ hom(Y,X).

On the other hand

ω =

k∑
i=1

fi ⊗ gi =

k∑
i=1

(fi ⊗ gi − (fi ◦ gi)⊗ 1Y ) = −
k∑
i=1

fi . d(gi)
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Proposition 2.58 (Universal property of 1-forms). Fix arbitrary objects V,W ∈ Obj C.

Then for each (V,W )-vector field δ ∈ DV,W there is a unique homomorphism of C-

bimodules ϕδ which makes the following diagram commutative

D0 = Ω0 =
⊕

X,Y ∈Obj C
hom(Y,X) Ω1

⊕
X,Y ∈Obj C

hom(W,X)⊗ hom(Y, V )

d

δ ∃!ϕδ (2.59)

Proof. Let us first prove the uniqueness. Assume both ϕδ and ϕ̃δ are C-bimodule

homomorphisms which make (2.59) commutative. Then their difference ψ = ϕ − ϕ̃δ

necessarily vanishes on the image of d:

ψ(d(h)) = ψ(1t(h) ⊗ h− h⊗ 1s(h)) = 0

for all h ∈ Mor C. On the other hand, by Lemma 2.57 we know that Ω1 is generated

as a C-bimodule by dΩ0. Since ϕδ is a C-bimodule homomorphism, we conclude that it

vanishes on all 1-forms and as a consequence

ϕδ(ω) = ϕ̃δ(ω)

for all ω ∈ Ω1.

To show the existence, recall that all of the spaces in diagram (2.59) are doubly

graded by the objects of C, and both d and δ are graded maps of degree zero. So it will

be enough for us to define ϕδ on each homogeneous component Ω1
X,Y and then extend

it to Ω1 by linearity. In other words, we have to show that for all objects X,Y ∈ Obj C

there exists φ which makes the following diagram commutative.

hom(Y,X) Ω1
X,Y

hom(W,X)⊗ hom(Y, V )

d

δ
∃φ (2.60)
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By the definition of Ω1
X,Y in (2.41) we can view it as a subspace of the direct sum

Ω1
X,Y ⊂

⊕
Z∈Obj C

hom(Z,X)⊗ hom(Y, Z).

Define φ on the full space

φ :
⊕

Z∈Obj C
hom(Z,X)⊗ hom(Y,Z) −→ hom(W,X)⊗ hom(Y, V )

as follows: For each object Z ∈ Obj C, and each pair of morphisms f ∈ hom(Z,X), g ∈

hom(Y, Z) set

φ(f ⊗ g) = (f ⊗ 1V ) ◦ δ(g). (2.61)

Since we have constructed the map φ for an arbitrary pair of objects X,Y ∈ Obj C it

can be defined on the direct sum Ω1 =
⊕

X,Y ∈Obj C Ω1
X,Y .

We claim that φ when restricted to the subspace Ω1
X,Y will make diagram (2.60)

commutative. Indeed, for arbitrary h ∈ hom(Y,X), we have

φ(d(h))
(2.54)

= φ(1X ⊗ h− h⊗ 1Y )
(2.61)

= (1X ⊗ 1V ) ◦ δ(h) + (f ⊗ 1V ) ◦ δ(1Y ) = δ(h).

Here we have used the fact that δ(1Y ) = 0, which is an immediate consequence of

double Leibnitz identity (2.3).

The next thing we prove is that φ is a homomorphism of C-bimodules. Indeed, let

ω =
k∑
i=1

fi ⊗ gi ∈ Ω1
X,Y

where fi, gi ∈ Mor C for 1 ≤ i ≤ k. Then for all morphisms x ∈ hom(X, ) and

y ∈ hom( , Y ) we get

φ
(
x.ω.y

) (2.45)
= φ

( k∑
i=1

(x ◦ fi)⊗ (gi ◦ y)
)

=

k∑
i=1

((x ◦ fi)⊗ 1V ) ◦ δ(gi ◦ y)

(2.3)
=

k∑
i=1

(
((x ◦ fi ◦ gi)⊗ 1V ) ◦ δ(y) + ((x ◦ fi)⊗ 1V ) ◦ δ(gi) ◦ (1W ⊗ gi)

)
(2.41)

=
k∑
i=1

((x ◦ fi)⊗ 1V ) ◦ δ(gi) ◦ (1W ⊗ gi) = x.φ(ω).y.

So φ is a homomorphism of C-bimodules. Together with uniqueness which we proved

earlier this gives the statement of the Proposition.
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Proposition 2.59 allows one to define an evaluation map of 1-forms on vector fields.

Indeed, by universal property we have

〈, 〉 : DV,W ⊗ Ω1
X,Y −→ hom(W,X)⊗ hom(Y, V ),

〈δ, ω〉 = ϕδ(ω).

(2.62)

Proposition 2.63. The evaluation map (2.62) defines a homomorphism of

C-quadmodules

〈, 〉 : D1 ⊗ Ω1 −→
⊕

V,W,X,Y ∈Obj C
hom(W,X)⊗ hom(Y, V )

Namely, the following holds

〈a ? δ ? b, c.ω.d〉 = (c⊗ a) ◦ 〈δ, ω〉 ◦ (b⊗ d). (2.64)

for all A,B,C,D, V,W,X, Y ∈ Obj C, for all ω ∈ Ω1
X,Y , δ ∈ D1

V,W , and all a ∈

hom(V,A), b ∈ hom(B,W ), c ∈ hom(X,C), d ∈ hom(D,Y ).

Proof. From (2.62) we have

〈a ? δ ? b, c.ω.d〉 = ϕa?δ?b(c.ω.d). (2.65a)

Recall that ϕ was defined as a map which makes diagram (2.60) commutative, so by

Lemma 2.10 we have further

ϕa?δ?b(c.ω.d) = (1C ⊗ a) ◦ ϕδ(c.ω.d) ◦ (b⊗ 1D). (2.65b)

Next, by Proposition 2.58 we know that ϕδ is a C-bimodule homomorphism. This gives

ϕδ(c.ω.d) = (c⊗ 1V ) ◦ ϕδ(ω) ◦ (1W ⊗ d). (2.65c)

Combining (2.65a), (2.65b), and (2.65c) we get precisely (2.64).

From Lemmas 2.18 and 2.43 we know that D1 ⊗ Ω1 comes equipped with a C × C-

bimodule structure. Together with Proposition 2.63 this allows one to extend evalua-

tion map on k-vector fields and k-forms as follows. Pick arbitrary objects X0, . . . , Xk,
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V0, . . . , Vk in Obj C and let ω1, . . . , ωk and δ1, . . . , δk be some chains of 1-forms and

vector fields respectively

ω1 ∈ Ω1
X0,X1

, . . . , ωk ∈ Ω1
Xk−1,Xk

,

δ1 ∈ DV0,V1 , . . . , δk ∈ DVk−1,Vk .

We set

〈
δ1 ? δ2 ? · · · ? δk, ω1.ω2. · · · .ωk

〉
= 〈ω1, δ1〉 ⊗C×C · · · ⊗C×C 〈ωk, δk〉. (2.66)

Corollary 2.67. The evaluation map (2.66) defines a C × C-bimodule homomorphism

〈, 〉 : Ωk ⊗Dk →
⊕

X0,Xk,V0,Vk∈Obj C
hom(Vk, X0)⊗ hom(Xk, V0). (2.68)

This corollary allows us to introduce three factorizations of the evaluation map:

• Taking the trace (2.26) of the first C-bimodule we define a map 〈, 〉1, which makes

the following diagram commutative.

Dk ⊗ Ωk
⊕

V0,Vk,X0,Xk∈Obj C
hom(Vk, X0)⊗ hom(Xk, V0)

Dk
\ ⊗ Ωk

⊕
X0,Xk∈Obj C

hom(Xk, X0)

〈,〉

trC⊗Id
trCouter

〈,〉1

As a corollary 〈, 〉1 is a C-bimodule homomorphism with respect to the remaining

C-bimodule structure. In particular, it is bigraded by objects of C, namely

〈, 〉1 : Dk
V0,Vk

⊗ Ωk
\ → hom(Vk, V0)

for all pairs of objects V0, Vk ∈ Obj C.
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• Similarly, taking the trace of the second C-bimodule we define a C-bimodule ho-

momorphism 〈, 〉2.

Dk ⊗ Ωk
⊕

V0,Vk,X0,Xk∈Obj C
hom(Vk, X0)⊗ hom(Xk, V0)

Dk ⊗ Ωk
\

⊕
V0,Vk∈Obj C

hom(Vk, V0)

Dk
\ ⊗ Ωk

\ k

〈,〉

Id⊗trC
trCinner

trC

〈,〉2

trC

〈,〉

• Finally, taking the trace in both components we get a k-linear evaluation map 〈, 〉

In particular, the evaluation map 〈, 〉 allows us to evaluate closed chains of differential

forms on closed chains of vector fields.

Remark 2.69. When C is a freely generated category by a double of the quiver, the

evaluation map 〈, 〉 becomes essentially equivalent to the contraction map on the so-

called noncommutative cotangent bundle suggested in [CBEG07].

2.2 Double (Quasi) Poisson Brackets on Categories

2.2.1 Double Derivations and Skew-Symmetry

Recall that according to Definition 2.34 we call map

R : (Mor C)⊗2 → (Mor C)⊗2 (2.70)

a biderivation if for all morphisms f, g, h ∈Mor C

R((f ◦ g)⊗ h) =(1t(h) ⊗ f) ◦R(g ⊗ h) +R(f ⊗ h) ◦ (g ⊗ 1s(h)) when t(g) = s(f),

R(f ⊗ (g ◦ h)) =(g ⊗ 1t(f)) ◦R(f ⊗ h) +R(f ⊗ g) ◦ (1s(f) ⊗ h) when t(h) = s(g).

(2.71)

In particular, from (2.71) we conclude that the restriction

R : hom(X1, Y1)⊗ hom(X2, Y2)) → hom(X1, Y2)⊗ hom(X2, Y1) (2.72)

is a k-linear map for all objects W,X, Y, Z ∈ Obj C.
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Definition 2.73. [VdB08] We call a biderivation R skew-symmetric if for all morphisms

f, g ∈Mor C we have

R(f ⊗ g) = −
(
R(g ⊗ f)

)op
. (2.74)

Here (−)op is a permutation of components in the tensor product: (a⊗ b)op = b⊗ a for

all a, b ∈MorC.

Note that the skew symmetry condition (2.74) is compatible with property (2.72),

i.e. both sides of (2.74) are elements of hom(s(f), t(g))⊗ hom(s(g), t(f)).

2.2.2 Yang-Baxter Operator and Quasi Brackets

For each k-linear map (2.70) one can associate a family of maps for all 1 ≤ i, j ≤ n,

defined as

Ri,j : (Mor C)⊗n → (Mor C)⊗n,

Ri,j(f1 ⊗ · · · ⊗ fn) =f1 ⊗ · · · ⊗R′(fi ⊗ fj)︸ ︷︷ ︸
i

⊗ · · · ⊗R′′(fi ⊗ fj)︸ ︷︷ ︸
j

⊗ · · · ⊗ fn.
(2.75)

Here we have used Sweedler notations R(fi ⊗ fj) = R′(fi ⊗ fj) ⊗ R′′(fi ⊗ fj) to omit

summation index in a tensor product.

Lemma 2.76. Let R be a skew-symmetric biderivation, i.e. satisfying (2.71) and (2.74)

on a k-linear category C. Then operator YR defined as

YR : (Mor C)⊗3 → (Mor C)⊗3

YR =R1,2 ◦R2,3 +R2,3 ◦R3,1 +R3,1 ◦R1,2.

becomes a triderivation in the sense of Definition 2.34.

Proof. First, note that by (2.72) for all objects X1, X2, X3, Y1, Y2, Y3 ∈ Obj C we have

YR : hom(X1, Y1)⊗ hom(X2, Y2)⊗ hom(X3, Y3) →

hom(X1, Y3)⊗ hom(X2, Y1)⊗ hom(X3, Y2)
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so the right hand side of Leibnitz identity (2.35) is well-defined. From formula (2.75)

it follows that YR commutes with the cyclic permutations of monomials, so it would be

enough for us to prove the Leibnitz identity w.r.t. the first argument only

YR(f1 ◦ f2 ⊗ g ⊗ h)− (1t(h) ⊗ f1 ⊗ 1t(g)) ◦ YR(f2 ⊗ g ⊗ h)

− YR(f1 ⊗ g ⊗ h) ◦ (f2 ⊗ 1s(g) ⊗ 1s(h))

=R′′(h, f2)⊗R′(g, f1)⊗R′′(g, f1) ◦R′(h, f2)

+R′′(h, f2)⊗R′′(f1, g)⊗R′(f1, g) ◦R′(h, f2)
(2.74)

= 0.

Definition 2.77. We refer to a map R : (Mor C)⊗2 → (Mor C)⊗2 as a Double

Poisson Bracket on a k-linear category C if it satisfies the following conditions

• Double Leibnitz Identity (2.71)

• Skew-Symmetry (2.74)

• Jacobi Idenity

YR(f ⊗ g ⊗ h) = 0

for all f, g, h ∈Mor C.

Definition 2.78. We refer to a map R : (Mor C)⊗2 → (Mor C)⊗2 as a Double

Quasi-Poisson Bracket on a k-linear category C if it satisfies:

• Double Leibnitz Identity (2.71)

• Skew-Symmetry (2.74)

• Quasi Jacobi Identity

YR =
1

4

∑
V ∈Obj C

∂V ? ∂V ? ∂V . (2.79)

where ∂V denotes the uniderivation associated to an object V ∈ Obj C, which and was

defined in (2.48).
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Note that the sum on the right hand side of (2.79) is well-defined as an operator

on (Mor C)⊗3; this follows from (2.48). Indeed, when the sum is applied to any pure

tensor product of morphisms, only finitely many terms give a nontrivial contribution.

2.2.3 Derivations and Localization

The notion of a localization of a category was first introduced in [GZ67] (for a modern

review see [KS05]). We would be interested in a k-linear version of the definition

Definition 2.80. Let W ⊂Mor C be a collection of morphisms of a k-linear category

C. We refer to the pair (C[W−1],F) consisting of a k-linear category C[W−1] and a

k-linear faithful functor F : C → C[W−1] as a localization of C w.r.t. W if

• Every morphism f ∈ F [W−1] in the image of W is an isomorphism in a category

C[W−1].

• For any k-linear category E and any k-linear functor G : C → E such that all

morphisms in G(W ) are invertible, there is a unique functor Φ : C[W−1] → E

which makes the following diagram commutative

C C[W−1]

E

F

G
Φ

From the definition it immediately follows that when a localization exists, it is

unique up to a k-linear isomorphism. In the current subsection we would leave aside

rather complicated question of existence of C[W−1] for a given collection of morphisms

W ⊂Mor C and prove the following

Lemma 2.81. Let C[W−1] be a localization of a k-linear category C with respect to W .

For every polyderivation

∆ : (Mor C)⊗n → (Mor C)⊗n

satisfying the double Leibnitz identity (2.35) there is a unique extension

∆̃ :
(
Mor C[W−1]

)⊗n → (
Mor C[W−1]

)⊗n



29

satisfying (2.35), which makes the following diagram commutative

(Mor C)⊗n (Mor C)⊗n

(
Mor C[W−1]

)⊗2 (
Mor C[W−1]

)⊗n
F

∆

F

∆̃

(2.82)

Proof. Indeed, if such ∆̃ exists, it necessarily satisfies

∆̃(h1 ⊗ · · · ⊗ (Fw)−1

↑
j

⊗ · · · ⊗ hn) = −(1t(hn) ⊗ · · · ⊗ (Fw)−1

↑
j+1

⊗ · · · ⊗ 1thn−1
)

◦ ∆̃(h1 ⊗ · · · ⊗ (Fw)
↑
j

⊗ · · · ⊗ hn) ◦ (1s(h1) ⊗ · · · ⊗ (Fw)−1

↑
j

⊗ · · · ⊗ 1s(hn)).

(2.83)

On the other hand, C[W−1] is generated by morphisms of the form {Ff | f ∈ Mor C}

and {(Fw)−1 |w ∈W}, so we conclude that ∆̃ exists and unique.

In what follows we say that ∆̃ is an extension of ∆ on C[W−1].

Proposition 2.84. Let R be a Double Quasi Poisson bracket on a k-linear category C

in the sense of Definition 2.78 and let C[W−1] be a localization of C with respect to W .

Then there is a unique Double Quasi Poisson bracket

R̃ : (Mor C[W−1])⊗2 → (Mor C[W−1])⊗2 (2.85)

extending R on C[W−1].

Proof. Indeed, by Lemma 2.81 we conclude that there is a unique biderivation (2.85)

extending R. Next, using Proposition 2.36 and Lemma 2.76 we conclude that

Y
R̃
− 1

4

∑
V ∈Obj C

∂V ? ∂V ? ∂V (2.86)

is a triderivation on (Mor C[W−1])⊗3 which vanishes on (Mor C)⊗3. As a result (2.86)

vanishes identically on (Mor C[W−1])⊗3 and thus R̃ is a Double Quasi Poisson bracket.
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Chapter 3

Categorification of Cluster Algebras

3.1 Double Quasi Poisson Brackets for Conjugate Surfaces

3.1.1 Graph Connections and Cluster Algebras

A ribbon graph Γ is defined as a graph with an additional structure, namely, for each

vertex of Γ we fix a cyclic order of edges adjacent to this vertex. Hereinafter we require

that Γ has only one connected component, assuming that the generalization to the case

of several connected components is straightforward.

One can associate an oriented surface with boundary SΓ to a ribbon graph by

replacing each edge of Γ by a ribbon and replacing each vertex by a disc with ribbons

attached according to the cyclic order.

(a) Ribbon Graph (b) Disc in SΓ corresponding to the vertex.

Figure 3.1: Surface with boundary SΓ associated to a ribbon graph.

Definition 3.1 ([GK13]). A conjugate surface ŜΓ associated to the ribbon graph Γ is

a surface corresponding to the ribbon graph with reversed cyclic order of edges at each

vertex.
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Both ŜΓ and SΓ have the same fundamental group as the underlying graph

π1(ŜΓ) = π1(SΓ) = π1(Γ). (3.2)

The identification (3.2) allows one to introduce two different Poisson structures on the

character variety of π1(Γ).

Example 3.3. The coordinate ring of one dimensional representations of π1(Γ) is freely

generated by finitely many holonomies. Indeed, pick closed loops in general position

M1, . . . , Mn on ŜΓ which freely generate the fundamental group of a graph Γ. Then

each representation

ϕ ∈ Hom(π1(SΓ),C×)

is determined by

x1 = ϕ(M1), . . . , xn = ϕ(Mn).

We can equip C[x1, . . . , xn] with a Poisson bracket as follows

{, } :
(
C[x1, . . . , xn]

)⊗2 → C[x1, . . . , xn]

{xi, xj} =
∑
p

εi,j(p)xixj

where the sum is taken over all intersection points of Mi and Mj on ŜΓ

εij(p) =



+1

Mj Mi

p

−1

Mi Mj

p

Now let Σ be an oriented surface, possibly with boundary, with a fixed collection

V1, . . . , Vn of distinct marked points. For each ideal triangulation with vertices precisely

at V1, . . . , Vn of Σ we can associate a bipartite ribbon graph Γ as follows:
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• Each vertex of the triangulation would correspond to a white vertex of Γ.

• Each face of the triangulation would correspond to a black vertex of Γ.

• A white vertex is connected to a black vertex if and only if they belong to the

same triangle.

Figure 3.2: Bipartile ribbon graph associated to triangulation of surface Σ.

As a result we obtain a bipartite ribbon graph with trivalent black vertices. Similarly,

each bipartite ribbon graph with trivalent black vertices defines a triangulation of some

surface Σ, in general, with boundary.

Different ideal triangulations of the same surface Σ are related by a sequence of

rectangular moves, where for a rectangle formed by two adjacent triangles we replace

the diagonal. On the level of associated trivalent ribbon graphs it corresponds to the

transformation shown on Figure 3.3 and known as a rectangle move.

y1

y2 y3

y4

y0

(a) Fragment of graph Γ1.

z1

z2 z3

z4

z0

(b) Fragment of graph Γ2.

Figure 3.3: Rectangle move in one dimensional case.

It was shown by A. Goncharov and R. Kenyon that with each rectangle move one

can associate a Poisson homomorphism of the corresponding moduli spaces of one di-

mensional representations. To describe such homomorphism suppose that Γ1 and Γ2
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are bipartite ribbon graphs corresponding to the ideal triangulation of a surface before

and after a rectangular move. As we have mentioned in Example 3.3 the coordinate

ring of Hom(π1(Γ1,C×) is freely generated by n monodromies y0, . . . , yn. Consider the

fragment of Γ1 shown on Figure 3.3a and assume that all five faces of the graph which

present on the figure are distinct. Denote by y0, . . . , y4 precisely the five monodromies

corresponding to the boundary cycles oriented counterclockwise for five faces shown on

the figure. Similarly, one picks z0, . . . , z4 according to the Figure 3.3b. Since away from

the fragments displayed on Figure 3.3 the two graphs coincide, one can chose the rest

of y5, . . . , yn and z5, . . . , zn consistently.1

Proposition 3.4 ([GK13]). The following map

τ :



z0 → y−1
0 ,

zi → yi(1 + y0), i = 1, 3,

zi → yi(1 + y−1
0 )−1, i = 2, 4,

zi → yi, i ≥ 5.

(3.5)

extends to a homomorphism of Poisson algebras

τ : C[z0, . . . , zn]→ C[y0, . . . , yn], τ({f, g}2) = {τ(f), τ(g)}1

for all f, g ∈ C[z0, . . . , zn]. Here {, }1 and {, }2 are the Poisson brackets on ŜΓ1 and ŜΓ2

respectively.

The main goal of this chapter is to show that Proposition 3.4 holds in a much

more general context. In Section 3.2 we show that Poisson homomorphism (3.5) can

be formulated as a “Quasi Poisson” functor between the categories associated to the

ribbon graphs Γ1 and Γ2.

3.1.2 Category associated with a ciliated bipartite ribbon graph

In order to associate a category to a bipartite ribbon graph Γ we have to endow Γ with

an additional structure, for each white vertex Vi we pick a distinguished edge which we

1We will not discuss some technical details concerning degenerate cases until Section 3.2 where we
develop a theory for general character varieties.
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call first. Together with a given cyclic order, this makes the edges adjacent to Vi into an

ordered set. Following terminology suggested in [FR99] we call such a graph “ciliated”.

As we will show further, the induced Poisson brackets on the character variety will not

depend on the choice of this additional data.

We define a k-linear category C assoiated to the ciliated bipartite ribbon graph Γ

as follows. First we draw the corresponding conjugate surface ŜΓ. In the case of a

bipartite ribbon graph the conjugate surface can be obtained from SΓ if we twist once

each ribbon corresponding to the edge of graph Γ. For each disk on ŜΓ corresponding

to white vertex we mark a point Vi on the boundary in between the first and last ribbon

attached to the disk. Next, we consider a fundamental groupoid π1(ŜΓ, V1, . . . , Vn) and

let the category C0 be generated by this groupoid as a free k-module

C0 = kπ1(ŜΓ, V1, . . . , Vn). (3.6)

Then objects of C0 are precisely the marked points Obj C0 = {Vi} and the morphisms

of C0 are formal linear combinations of homotopy equivalence classes of paths between

these points.

x3

x1
x2

(a) Disk corresponding to white vertex

f1f2

f−1
1 ◦ f−1

2

(b) Disc corresponding to black vertex

Figure 3.4: Building blocks for bipartite graph with trivalent black vertices

In the next step we define a category C associated to the ribbon graph Γ as a

universal localization of C0.
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3.1.3 Double Quasi-Poisson Bivector

Double Quasi Poisson brackets for oriented surfaces were first introduced by G. Mas-

suyeau and V. Turaev in [MT12]. In the original definition they have considered a

surface Σ with a marked point p ∈ ∂Σ on the boundary and defined a double bracket

on a group algebra of the fundamental group π1(Σ, p). In a subsequent paper [MT13]

the same authors suggested to generalize the notion of a double Quasi Poisson Bracket

for a linear category. In this section we calculate the double Quasi Poisson Bracket

on a category C defined in (3.6). We show that the corresponding double Quasi Pois-

son bivector can be presented as a sum over contributions from each of the marked

points associated to white vertices of the ribbon graph (see Figure 3.4a). Such a local

formulation will later allow us to prove Theorem 3.12.

Again, let Γ be a ciliated bipartite ribbon graph with trivalent black vertices and C

be the associated category defined in (3.6). The fundamental groupoid π1(ŜΓ) is then

freely generated by 2k paths f1, . . . , f2k, where k is the number of black vertices, as

shown on Figure 3.4b. If we fix some choice of generators, then each marked point V on

the boundary carries an information on the order of generating paths starting/ending at

V . Let {x1, . . . , xm} be the corresponding ordered set, where each xj = f
ε(j)
l(j) , ε(j) = ±1.

Then the contribution to the Quasi Poisson bivector reads

PV =
1

2

∑
i<j

(
xj ?

∂

∂xi
? xi ?

∂

∂xj
− xi ?

∂

∂xj
? xj ?

∂

∂xi

)
. (3.7a)

Here ∂
∂fi
∈ Ds(fi),t(fi) is a vector field on a category C defined on generators as

∂

∂fi
(fj) =

 1t(fi) ⊗ 1s(fi), i = j,

0, i 6= j.

The derivation w.r.t. the inverses of generators is defined as

∂

∂(f−1
i )

= −fi ?
∂

∂fi
? fi.

The double Quasi Poisson Bracket on C reads

{{, }}=
∑

Vm∈Obj C
trEnd(Vm)PVm . (3.7b)
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Proposition 3.8. Biderivation (3.7b) is a double Quasi Poisson Bracket, i.e. it satis-

fies the double Quasi Jacobi Identity (2.79).

Proof. By Lemma 2.76 and Proposition 2.84 it is enough to prove the Quasi jacobi

Identity on the generators f1, . . . , fn only. The latter is checked by a straightforward

calculation.

3.2 Noncommutative Mutations

In this subsection we show that Proposition 3.4 is a corollary of a much more general

statement which can be formulated purely in terms of a category C associated to the

bipartite ribbon graph. As in Section 3.1.1, let Γ1 and Γ2 be two bipartite ribbon graphs

with trivalent black vertices which differ precisely in six edges as shown on Figure 3.5.

The rectangle move induces a functor between the associated categories C1 and

C2 as follows. Let Csub1 ⊂ C1 be a subcategory with four objects v1, v2, v3, v4 and

morphisms generated by Y ±1
1 , Y ±1

2 , Y ±1
3 , Y ±1

4 as shown on Figure 3.5a. Similarly we

define a subcategory Csub2 ⊂ C2 as generated by Z±1 , Z
±1
2 , Z±1

3 , Z±4 shown on Figure

3.5b.

Y1

Y2 Y3

Y4

v1

v2

v3

v4

(a) Original morphisms

Z1

Z2 Z3

Z4

v1

v2

v3

v4

(b) Morphisms after the move

Figure 3.5: Rectangle move

Note that EndCsub1
(v1) = k(M) is a commutative algebra with unit 1v1 consisting of

rational functions in

M = Y4 ◦ Y3 ◦ Y2 ◦ Y1
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Now let τ sub : Csub2 → Csub1 be a functor which is the identity on objects and acts on

generators of Csub2 as

τ sub(Z1) =Y1 ◦ f1(M), τ sub(Z4) =f4(M) ◦ Y4,

τ sub(Z2) =Y2 ◦ Y1 ◦ f2(M) ◦ Y −1
1 , τ sub(Z3) =Y −1

4 ◦ f3(M) ◦ Y4 ◦ Y3,

(3.9a)

where f1, . . . , f4 are the same as in one-dimensional case:

f1(M) = f3(M) = (1v1 +M)−1, f2(M) = f4(M) = 1v1 +M−1. (3.9b)

Remark 3.10. Since the algebra EndCsub1
= k(M) is commutative, the form of f1, . . . , f4

does not depend on the particular identification, e.g.

Z3 = Y3 ◦ Y2 ◦ Y1 ◦ f3(M) ◦ Y −1
1 ◦ Y −1

2 = Y −1
4 ◦ f3(M) ◦ Y4 ◦ Y3.

The double bracket (3.7b) on Cloc1 and Cloc2 then reads

{{Y1 ⊗ Y2}}=−
1

2
Y2 ◦ Y1 ⊗ e2, {{Z1 ⊗ Z2}}=

1

2
Z2 ◦ Z1 ⊗ e1,

{{Y1 ⊗ Y3}}=0, {{Z1 ⊗ Z3}}=0,

{{Y1 ⊗ Y4}}=−
1

2
e1 ⊗ Y1 ◦ Y4, {{Z1 ⊗ Z4}}=

1

2
e1 ⊗ Z1 ◦ Z4,

{{Y2 ⊗ Y3}}=
1

2
Y3 ◦ Y2 ⊗ e3, {{Z2 ⊗ Z3}}=−

1

2
Z3 ◦ Z2 ⊗ e3,

{{Y2 ⊗ Y4}}=0, {{Z2 ⊗ Z4}}=0,

{{Y3 ⊗ Y4}}=−
1

2
Y4 ◦ Y3 ⊗ e4, {{Z3 ⊗ Z4}}=

1

2
Z4 ◦ Z3 ⊗ e4.

(3.11)

Graphs Γ1 and Γ2 are identical away from the subgraphs shown on Figure 3.5, so the

remaining generators Y5, . . . , Yn and Z5, . . . , Zn of C1 and C2 can be chosen identically.

Now let τ be an extension of τ loc which fixes all the remaining generators:

τ : C2 → C1, τ
∣∣
Csub2

= τ sub, τ(Zi) = Yi i ≥ 5.

Theorem 3.12. The functor τ preserves Double Quasi Poisson Bracket:

τ
(
{{Zi ⊗ Zj}}

)
= {{τ(Zi)⊗ τ(Zj)}}, 1 ≤ i, j ≤ n. (3.13)
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Proof. Note that (3.13) holds when both i, j ≥ 5. Next, when both i, j ≤ 4 the

statement follows from (3.11) by a direct computation. Indeed, for i = 1, j = 2 we get

{{τ(Z1 ⊗ Z2)}}={{
(
Y1 ◦ (1v1 +M)−1

)
⊗
(
Y2 ◦ Y1 ◦ (1v1 +M−1) ◦ Y −1

1

)
}}

=
1

2

(
Y −1

3 ◦ Y −1
4 ◦ (1v1 +M)−1

)
⊗ 1v2

+
(
Y2 ◦ Y1 ◦ (1v1 +M)−1

)
⊗
(
Y1 ◦ (1v1 +M)−1 ◦ Y −1

1

)
+
(
Y2 ◦ Y1 ◦ (1v1 +M)−1

)
⊗
(
Y1 ◦ (1v1 +M)−1) ◦M ◦ Y −1

1

− 1

2
Y2 ◦ Y1 ◦ (1v1 +M)−1 ⊗ 1v2

=
1

2
Y −1

3 ◦ Y −1
4 ◦ Y1 ◦ (1v1 +M−1)⊗ 1v2

+
1

2
Y2 ◦ Y1 ◦ Y1 ◦ (1v1 +M−1)⊗ 1v2

=τ
(
Z2 ◦ Z1 ⊗ e1

)
= τ

(
{{Z1 ⊗ Z2}}

)
.

The calculation for the remaining five pairs is analogous.

The last thing to prove is that (3.9) preserves the brackets with generators Zi, i ≥ 5.

It follows from (3.7b) that brackets on C1 (respectively C2) can be decomposed as a sum

of the two terms

{{, }}C1=

4∑
i=1

P C1vi +

n∑
i=5

P C1vi

where the second summand satisfies

τ

(
n∑
i=5

P C2vi
(
Zi ⊗ Zj)

)
=

n∑
i=5

P C1vi
(
τ(Zi)⊗ τ(Zj)

)
1 ≤ i, j ≤ n.

As a corollary (3.13) holds for the generators with sources and targets away from

v1, . . . , v4.

It would be enough for us to prove the statement for the four half edges adjacent to

v1 and v2 as shown on Figure 3.6. The calculation is essentially based on the following
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Y1

Y2 Y3

Y4

Y5Y6

Y7

Y8

v1

v2

v3

v4

Z1

Z2 Z3

Z4

Z5Z6

Z7

Z8

v1

v2

v3

v4

Figure 3.6: Rectangle move with generic half edges

property of M :

{{Y5,M}}=
−M ⊗ Y5 + 1v1 ⊗ Y5 ◦M

2
, (3.14a)

{{Y6,M}}=
M ⊗ Y6 − 1v1 ⊗ Y6 ◦M

2
, (3.14b)

{{Y7, M̃}}=
−M̃ ⊗ Y7 + 1v2 ⊗ Y7 ◦ M̃

2
, (3.14c)

{{Y8, M̃}}=
M̃ ⊗ Y8 − 1v2 ⊗ Y8 ◦ M̃

2
. (3.14d)

Here M̃ = Y1 ◦M ◦ Y −1
1 = Y1 ◦ Y4 ◦ Y3 ◦ Y2.

From the double Leibnitz Identity (2.71) it follows that (3.14a)–(3.14b) holds if we

replace M with f(M), where f(M) ∈ EndCsub1
(v1) = k(M) is an arbitrary rational

function in M . In particular, for f1(M) = (1v1 +M)−1

{{Y5 ⊗ (1v1 +M)−1}}= 1v1 ⊗ Y5 ◦ (1v1 +M)−1 − (1v1 +M)−1 ⊗ Y5

2
.

And, consequently

{{τ(Z5)⊗ τ(Z1)}}={{Y5 ⊗ Y1 ◦ (1v1 +M)−1}}= {{Y5 ⊗ Y1}}◦(1v1 ⊗ (1v1 +M)−1)

+ (Y1 ⊗ 1t(Y5)) ◦ {{Y5 ⊗ (1v1 +M)−1}}

=− 1

2
Y1 ⊗ Y5 ◦ (1v1 +M)−1

+
1

2
(Y1 ⊗ 1t(Y5)) ◦

(
1v1 ⊗ Y5 ◦ (1v1 +M)−1 − (1v1 +M)−1 ⊗ Y5

)
=− 1

2
Y1 ◦ (1v1 +M)−1 ⊗ Y5

=τ(−Z1 ⊗ Z5) = τ
(
{{Z5 ⊗ Z1}}

)
.
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Similarly, for f4(M) = 1v1 +M−1

{{Y5 ⊗ f4(M)}}= 1v1 ⊗ Y5 ◦ f4(M)− f4(M)⊗ Y5

2

and, as a result

{{τ(Z5)⊗ τ(Z4)}}={{Y5 ⊗ f4(M) ◦ Y4}}

={{Y5 ⊗ f4(M)}}◦(1v1 ⊗ Y4) + (f4(M)⊗ 1t(Y5)) ◦ {{Y5 ⊗ Y4}}

=
1

2
(1v1 ⊗ Y5 ◦ f4(M)− f4(M)⊗ Y5) ◦ (1v1 ⊗ Y4)

+
1

2
(f4(M)⊗ 1t(Y5)) ◦ (1v1 ⊗ Y5 ◦ Y4)

=
1

2
1v1 ⊗ Y5 ◦ f4(M) ◦ Y4 = τ(1v1 ⊗ Z5 ◦ Z4)

=τ
(
{{Z5 ⊗ Z4}}

)
The calculations for the other six cases are essentially the same.

3.3 Bracket on a torus and Kontsevich map

Consider a bipartite ribbon graph with two vertices and three edges ordered as shown

on the Figure 3.7a. The corresponding conjugate surface is precisely the torus with

one boundary component depicted on Figure 3.7b. The category CK associated to such

a
b
c

(a) Original ribbon graph

a

b

c

v

u

(b) Conjugate surface T\D

Figure 3.7: Conjugate surface for Kronecker quiver with three vertices

ribbon graph is nothing but a noncommutative fraction field [Coh95] freely generated

by u and v. The Quasi Poisson bivector (3.7) on CK is determined by the ordered set

of half edges adjacent to the single object{
u−1, v, u, v−1

}
.
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The resulting double Quasi Poisson Bracket then reads:

{{u⊗ u}}=1⊗ u2 − u2 ⊗ 1

2
, {{v ⊗ v}}= v2 ⊗ 1− 1⊗ v2

2
,

{{u⊗ v}}=u⊗ v − v ⊗ u− vu⊗ 1− 1⊗ uv
2

.

(3.15)

As an immediate corollary of a topological interpretation [MT12] we get the following

Lemma 3.16. Bracket (3.15) is equivariant under the action of the automorphisms

Da, Db of CK defined on generators as

Da :

 u→ u

v → vu
Db :

 u→ uv−1

v → v
(3.17)

Proof. Direct computation on generators.

Remark 3.18. Note that Da, Db preserve π1(T\K) = 〈u, v〉 ⊂ CK embedded in CK as

a monoid. These automorphisms correspond to Dehn Twists of the underlying surface

and satisfy Da ◦Db ◦Da = Db ◦Da ◦Db.

However, the automorphisms (3.17) are not the only ones which preserve the bracket

(3.15).

Proposition 3.19. Let K be an automorphism of CK defined on generators as

K :

 u→ uvu−1,

v → u−1 + v−1u−1.

Bracket (3.15) is equivariant under the action of K

K
(
{{a, b}}

)
= {{K(a),K(b)}} (3.20)

for all a, b ∈ CK

Proof. It is enough for us to check (3.20) on generators. We have:

2{{K(u)⊗K(v)}}=2{{vuv−1 ⊗ (u−1 + v−1u−1)}}= −u−1 ⊗ uvu−1 − u−1 ⊗ 1

− vu−1 ⊗ 1− v−1u−1 ⊗ uvu−1 + uvu−1 ⊗ u−1

+ uvu−1 ⊗ v−1u−1 − 1⊗ uvu−2 − 1⊗ uvu−1v−1u−1

=K(u⊗ v − v ⊗ u− vu⊗ 1− 1⊗ uv) = 2K
(
{{u⊗ v}}

)
.
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Similar calculations show that {{K(u) ⊗K(u)}}= K
(
{{u ⊗ u}}) and {{K(v) ⊗K(v)}}=

K
(
{{v ⊗ v}}).
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Chapter 4

Noncommutative Integrable Systems

The idea to study of Hamiltonian equations over noncommutative algebras and their

integrability was originated in the Gelfand school [GD81, Dor87, DF92] around the

same time as the first papers on noncommutative geometry appeared [Con85]. The

theory of Noncommutative Integrable Systems was later developed by many authors,

including [Kri, Kon93, EGR97, OS98, EGR98, HT03, RR10]. On the other hand, a re-

markable interplay between the noncommutative geometry and commutative geometry

of representation schemes was discovered in [Kon93, KR00]. This opened up a program

of studying Hamilton flows on representation algebras by means of noncommutative

geometry and was later developed in papers [VdB08, CB11, CBEG07]. In this chap-

ter we show that noncommutative integrable systems suggested earlier in [Usn08] and

[Kon11] admit a formulation as noncommutative Hamilton flows on the corresponding

associative algebras.

4.1 Hamilton flows on associative algebras

A one-dimensional flow on associative algebra A is defined by a derivation d
dt which

satisfies the Leibnitz rule

∀a, b ∈ A, d

dt
(ab) = a

(
d

dt
b

)
+

(
d

dt
a

)
b

To present this flow in the Hamilton form

∀a ∈ A da

dt
= {h, a}
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we must provide a bracket such that, for each hamiltonian h, it defines a derivation of

A and thus should satisfy the Leibnitz rule in the second argument

∀a, b, c ∈ A {a, bc} = {a, b}c+ b{a, c}. (4.1)

However, the Leibnitz rule in the first argument is not required.

It was first suggested in [MS00] that Hamiltonians for integrable system over non-

commutative algebra A should be viewed as elements of the cyclic space

A\ = A/[A,A] (4.2)

which is the quotient of algebra A (as linear space) by the commutant

[A,A] = span{ab− ba | a, b ∈ A}. (4.3)

In general, the resulting quotient space (4.2) is no longer an associative algebra, since

the commutant (4.3) is not necessary an associative ideal of A.

In contrast to the commutative case, the arguments of the bracket are elements of

the two different spaces

{ , } : A\ ×A → A

where the first argument is an element of the cyclic space A\ = A/[A,A] — the natural

space for Hamiltonians.

Hamilton flows in classical integrable systems form a representation of a Poisson

Lie algebra of functions. This is secured by Jacobi identity, which means that the

commutator of the Hamilton vector fields, generated by two different functions H1 and

H2, is the Hamilton vector field corresponding to their Poisson bracket {H1, H2}:

{H1, {H2, x}} − {H2, {H1, x}} = {{H1, H2}, x}. (4.4)

To define a noncommutative analogue of (4.4) we would need a Lie bracket on Hamil-

tonians

{ , }\ : A\ ×A\ → A\
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which is skew-symmetric

{H1, H2}\ = −{H2, H1}\ (4.5)

for all H1, H2 ∈ A\, and satisfies the Jacobi identity

{H1, {H2, H3}\}\ + {H2, {H3, H1}\}\ + {H3, {H1, H2}\}\ = 0 (4.6)

for all H1, H2, H3 ∈ A\. In addition, we would also need a representation of the above

Lie bracket in derivations of A, i.e. map {, } : A\ × A → A satisfying the following

condition

{H1, {H2, x}} − {H2, {H1, x}} = {{H1, H2}\, x} (4.7)

for all H1, H2 ∈ A\ and for all x ∈ A. Note that the order of arguments for brackets

above becomes essential. In addition, the inner bracket on the right hand side of (4.7)

is of the different type.

Definition 4.8 ([CB11]). A pair of brackets {, }\ and {, } satisfying (4.5), (4.6), and

(4.7) is called an H0-Poisson structure.

Remark 4.9. Identity (4.7) first appeared in a book by J.-L. Loday [Lod98] in the context

of homology of Noncommutative Lie Algebras. It was suggested later by Y. Kosmann-

Schwarzbach that (4.7) should be referred to as the left Loday-Jacobi identity.

Definition 4.8 is the most general noncommutative analogue of the Poisson bracket

known to this date. However, an apparent disadvantage as compared to the commuta-

tive case is that the bracket {, } satisfies the Leibnitz rule only in the second argument.

This prevents us from defining an H0-Poisson bracket on generators of associative al-

gebra A and then extending it to the entire algebra. Luckily, the large class of Loday

brackets can be constructed by means of the double Quasi-Poisson brackets [VdB08].

Now suppose we have a Hamilton dynamics ∀f ∈ A d
dtf = {h, f}.

Definition 4.10. The space of Hamiltonians (or “trace”-integrals) is the subspace

H ⊂ A/[A,A] such that

x ∈ H ⇔ ∀x′ ∈ A s.t. π(x′) = x
d

dt
x′ ≡ 0 mod [A,A] (4.11)

Or, equivalently, one can say that {h, x}\ = 0.
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As in the commutative case each Hamiltonian defines a Hamilton flow, such that all

other Hamiltonians (as elements of A/[A,A]) are invariant under this flow. This can

be presented in the following way

Proposition 4.12. The H is a maximal commutative Lie subalgebra in A/[A,A] with

respect to bracket { , }\.

Proof. Since h ∈ H, maximality follows directly from definition. Next, if h1, h2 ∈ H

then from (4.6) {h1, h2}\ ∈ H.

4.2 Casimir elements

The analog of the classical Casimir functions is the right Casimir of bracket { , }.

Definition 4.13. We say that c ∈ A is the Casimir element of bracket { , } if ∀a ∈

A/[A,A] {a, c} = 0.

The latter implies only that any element in A/[A,A] defines a derivation of A which

fixes c. But π(c) doesn’t have to define a trivial Hamilton flow, the counterexample

was presented in (4.44).

However, we can formulate the following

Proposition 4.14. If c is a Casimir in a sense of Def. 4.13, then its image in the cyclic

space π(c) necessarily belongs to the center of the Lie bracket { , }\ on Hamiltonians.

4.3 Kontsevich system

Let A = C〈u±1, v±1〉 denote the associative group algebra over C of the free group

G = 〈u, v〉 with two generators. Kontsevich proposed a noncommutative system of

ODE’s on this algebra 
du

dt
= uv − uv−1 − v−1,

dv

dt
= −vu+ vu−1 + u−1,

(4.15)
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which admits the following discrete symmetry

u→ uvu−1, v → u−1 + v−1u−1. (4.16)

The latter can be viewed as a noncommutative analog of Bäcklund transformations.

Based on this data Kontsevich conjectured that (4.15) is integrable.

In paper [EW12] it was proved that system (4.15) admits the Lax representation

dL

dt
= [L,M ] (4.17)

with the following Lax pair

L =

 v−1 + u λv + v−1u−1 + u−1 + 1

v−1 + 1
λu v + v−1u−1 + u−1 + 1

λ

 , M =

 v−1 − v + u λv

v−1 u

 .

(4.18)

This Lax pair gives a rise to an infinite number of Hamiltonians which cover all inde-

pendent first integrals of (4.15) as was conjectured in [EW12].

4.3.1 Classical or commutative counterpart

Note, that in the commutative (classical) case the equations (4.15) are Hamilton

du

dt
= {h, u}, dv

dt
= {h, v}

with respect to the Hamiltonian

h = u+ v + u−1 + v−1 + u−1v−1 (4.19)

and Poisson bracket defined by

{v, u} = uv. (4.20)

This implies that the commutative counterpart of (4.15) is trivially integrable in the

Liouville sense.

Bracket (4.20) can be transformed to canonical one via change of variables u =

ep, v = eq, which gives {p, q} = 1. Then the Hamiltonian acquires the following form

h = ep + e−p + eq + e−q + e−p−q (4.21)
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4.3.2 Hamiltonians and first integrals

Equations (4.15) preserve the commutator of the underlying free group 〈u, v〉:

uvu−1v−1 = c. (4.22)

In particular, when c is central, the group algebra C〈u±1, v±1〉 turns into a “quantum

group” and this restriction is consistent with equations (4.15). Later in the text we

show that this is a noncommutative analog of the Casimir element.

On the classical level, we have another integral of motion, namely Hamiltonian

(4.19). Consider its noncommutative analog1

h = u+ v + u−1 + v−1 + u−1v−1. (4.23)

It is no longer a first integral of equations of motion. Indeed

d

dt
h(t) = u−1 − vuv−1 + uv − vu+ v−1u−1 − u−1v−1 + u−1v−1u−1 − u−2v−1 6= 0.

However, if we consider a matrix representation ϕ : A→Mat(N,C) for any N we get

d

dt
Trϕ(h) = 0. (4.24)

Following terminology of [MS00, EW12] we call h a ”trace”-integral. Indeed, even more

interesting property holds: for any representation ϕ we have

d

dt
Trϕ(hk) = 0. (4.25)

In other terms for all representations ϕ(h)(t) has adjoint dynamics under (4.15)

ϕ(h)(t) = g(t)ϕ(h)(0)g−1(t). (4.26)

4.3.3 Noncommutative Hamilton equations of motion for Kontsevich

system

To present equations of motion (4.15) in the Hamilton form

u = {h, u}K , v = {h, v}K

1Note, that the ordering in the last term doesn’t matter, due to the trivial symmetry of equations
of motion u↔ v, t→ −t.
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with Hamiltonian (4.23) we must provide a bracket s.t. for each Hamiltonian it defines

a derivation of A = C〈u, v〉:

∀a ∈ A da

dt
= {h, a}K

and thus should satisfy the Leibnitz rule in the second argument. On the other hand

we already pointed out that in the case of noncommutative integrable systems the

Hamiltonians are not literaly invariant under dynamics (4.26). The invariant in this

case is the image of π(h) in the cyclic space, so we should require the bracket to

be invariant under the cyclic permutations of monomials of the first argument. Or,

equivalently we can say that the first argument of the bracket is actually the element

of the cyclic space.

Now, the bracket becomes a function of elements in two different spaces and the

exact anticommutativity cannot be imposed. Keeping this in mind, we immediately

have a lot of inequivalent forms of Jacobi identity, and to restore the proper ordering

we should go back to properties we want to be secured by it. From the point of view

of Integrable Systems, the Jacobi identity is used to ensure that the commutator of the

vector fields generated by two different Hamiltonians is the vector field corresponding

to their commutator:

∀H1, H2, x ∈ A {H1, {H2, x}} − {H2, {H1, x}} = {{H1, H2}, x} (4.27)

4.3.4 Modified Double Poisson bracket for Kontsevitch system

In this section we construct a bracket on associative algebra A = C〈u±1, v±1〉 which

allows us to present equation (4.15) in the Hamilton form. We define { }K : A×A→ A

as a composition of modified double quasi-Poisson bracket and multiplication map µ

{a, b}K = µ ({{a⊗ b}}K) (4.28)

Where the modified double quasi-Poisson bracket {{ }}K is defined by its action on the

generators

{{u, v}}K= −vu⊗ 1, {{v, u}}K= uv ⊗ 1, {{u, u}}K= {{v, v}}K= 0. (4.29)

along with the following requirements
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1. Bilinearity: {{ }}K is bilinear and thus extends to

{{ }}K : A⊗A→ A⊗A

Again, we use further the same notation {{ }}K for extension of this bracket to

A⊗A as well as for operation defined on A×A.

2. Leibnitz Identity:

{{a⊗ bc}}K={{a⊗ b}}K(1⊗ c) + (b⊗ 1){{a⊗ c}}K (4.30a)

{{ab⊗ c}}K={{a⊗ c}}K(b⊗ 1) + (1⊗ a){{b⊗ c}}K (4.30b)

Remark 4.31. Brackets (4.29) and (5.27) provide an equivalent H0-Poisson structu-

res (see also Appendix 6.2). Throughout this section we will use biderivation (4.29)

following [Art15].

Properties (1)–(2) along with formulae (4.29) define {{ }}K completely. We employ

useful notations following [VdB08]. Let x, y ∈ A then we define the components of the

bracket of their product via
(
{{x, y}}′K

)
i

and
(
{{x, y}}′′K

)
i

as below

{{x⊗ y}}K=
∑
i

(
{{x, y}}′K

)
i
⊗
(
{{x, y}}′′K

)
i
.

In our case the sum is actually redundant. Rewriting (4.29) we immediately get

{{u⊗ v}}K={{u, v}}′K⊗{{u, v}}
′′
K= −vu⊗ 1,

{{v ⊗ u}}K={{v, u}}′K⊗{{v, u}}
′′
K= uv ⊗ 1,

{{u⊗ u}}K={{v ⊗ v}}K= 0,
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and then extend it to u±1, v±1 by Leibnitz identity (4.30)

{{u−1 ⊗ v−1}}K=(v−1 ⊗ u−1){{u⊗ v}}K(u−1 ⊗ v−1) = −1⊗ u−1v−1,

{{v−1 ⊗ u−1}}K=(u−1 ⊗ v−1){{v ⊗ u}}K(v−1 ⊗ u−1) = 1⊗ v−1u−1,

{{u−1 ⊗ v}}K=− (1⊗ u−1){{u⊗ v}}K(u−1 ⊗ 1) = v ⊗ u−1,

{{v ⊗ u−1}}K=− (u−1 ⊗ 1){{v ⊗ u}}K(1⊗ u−1) = −v ⊗ u−1,

{{u⊗ v−1}}K=− (v−1 ⊗ 1){{u⊗ v}}K(1⊗ v−1) = u⊗ v−1,

{{v−1 ⊗ u}}K=− (1⊗ v−1){{v ⊗ u}}K(v−1 ⊗ 1) = −u⊗ v−1.

If a, b ∈ A are monomials, then we can present them in the following form

a = a1a2 . . . ak, ai = u±1, v±1, b = b1b2 . . . bm, bj = u±1, v±1.

With this notation we have

{{a⊗ b}}K=
∑
i,j

(
b1 . . . bj−1{{ai, bj}}′Kai+1 . . . ak

)
⊗
(
a1a2 . . . ai−1{{ai, bj}}′′Kbj+1 . . . bm

)
(4.32)

and by linearity this formula extends to the full tensor product A⊗A.

Now recall (4.28): {x, y}K = µ({{x ⊗ y}}K), this defines an operation { , }K :

A×A→ A.

Proposition 4.33. { , }K satisfies the following properties:

(1) Bilinearity: { , }K is bilinear and thus extends to

{ }K : A⊗A→ A;

(2a) Leibnitz Identity in the second argument:

{a, bc}K = {a, b}Kc+ b{a, c}K ;

(2b) Invariance under cyclic permutations of monomials in the first argu-

ment:

{ab, c}K = {ba, c}K ;
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(3) Skew-symmetricity modulo [A,A]:

{a, b}K ≡ −{b, a}K mod [A,A];

(4) Jacobi Identity

∀H1, H2, x ∈ A : {H1, {H2, x}K}K − {H2, {H1, x}K}K = {{H1, H2}K , x}K .

Proof. Part (1) is trivial. Part (2a) is provided by the outer bimodule structure of the

double bracket. Indeed, apply µ to both sides of (4.30a), this reads

{a, bc} :=µ({{a⊗ bc}}K) = µ({{a⊗ b}}K(1⊗ c)) + µ((b⊗ 1){{a⊗ b}}K) =

=µ({{a⊗ b}}K)c+ bµ({{a⊗ c}}K) = {a, b}Kc+ b{a, c}K .

Part (2b) is provided by the inner bimodule structure of the double bracket. Here

{ab, c}K :=µ({{ab⊗ c}}K) = by (4.30b)

=µ({{a⊗ c}}K(b⊗ 1)) + µ((1⊗ c){{a⊗ b}}K) =

=µ((1⊗ b){{a⊗ c}}K) + µ({{a⊗ b}}K(c⊗ 1)) =

=µ({{ba, c}}K) =: {ba, c}K .

Using Proposition 4.33 we conclude that { , }K is well-defined on A/[A,A]×A and

provide a desired Loday bracket.

4.3.5 Lax Matrix, Hamiltonians and Casimir elements.

Note first that

d

dt
h = {h, h}K = [h, v + u−1]. (4.34)

This equation was first presented in [EW12]. It is a noncommutative analog of the Lax

equation, where the role of the first Lax matrix is played by the element h, whereas

M = v + u−1 plays the role of the second Lax matrix. It was claimed in paper [EW12]
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that Eq. (4.34) cannot be considered as a Lax equation since this equation doesn’t

solely define derivatives for generators of associative algebra A. However, we point out

that it is already enough to define a Loday bracket { , }K along with h to completely

define a derivation of A. From this point of view the Lax equation (4.34) plays the

role of the condition that secures π(hk) to be invariant.

Actually, even stronger statement is true, namely π(hk) is an infinite chain of com-

muting Hamiltonians in A/[A,A]. This is shown by the following proposition.

Proposition 4.35. For all N,M > 0 the corresponding hamiltonians π(hN ) and π(hM )

are in involution: {hN , hM}K ≡ 0 mod [A,A].

Proof.

{hN , hM}K = µ({{hN , hM}}K) = µ

 N∑
j=0

M∑
k=0

(hk ⊗ hj){{h, h}}K(hN−j−1 ⊗ hM−k−1)

 .

(4.36)

On the other hand

{{h, h}}K=1⊗ a− h⊗ b+ e⊗ 1, where (4.37)

a =u−1 + v−1 − u−1v−1 + v−1u−1 + u−1v−1u−1 + v−1u−1v−1 + u−1v−1u−1v−1,

b =u−1v−1,

e =uv − vu.

Combining (4.36) with (4.37) we get

{hN , hM}K =µ
(N−1∑
j=0

M−1∑
k=0

(
hN+k−j−1 ⊗ hjahM−k−1 − hN+k−j ⊗ hjbhM−k−1 (4.38)

+ hkehN−j−1 ⊗ hM+j−k−1
))

=

N−1∑
j=0

M−1∑
k=0

(
hN+k−1ahM−k−1 − hN+kbhM−k−1 + hkehN+M−k−2

)
(4.39)

≡MN(a+ e− hb)hM+N−2 mod [A,A].

But, for N = M = 1 we have (4.34), so using the last but one line of (4.39) we get

(a+ e− hb) = [h, v + u−1].
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And finally

{hN , hM}K ≡MN [h, v + u−1]hM+N+2 mod [A,A]

≡0 mod [A,A].

Corollary 4.40. For all k > 0, π(hk) is integral of a system of equations (4.15).

Proof. π( d
dth

k) = π([hk, v + u−1]) = 0.

Here we should point out the fact that π(hk) as elements of the cyclic space are

independent, whereas all hk are generated by a single element. When we come to the

quotient space A/[A,A] it is no longer have a natural multiplication. Or in other words

given an equivalence class π(h) ∈ A/[A,A] we cannot pick a proper representative h ∈ A

which generates the whole series. This makes π(h2) to be in principle unidentified by

π(h). Namely, given the equivalence class π(h) we don’t have Lax equation (4.34) for

each representative of each class in A.

Lemma 4.41. The infinite series of commuting hamiltonians π(hk) is linearly inde-

pendent over C.

Proof. It is enough to consider highest term in u in π(hk).

This brings us to conclusion that h is a noncommutative analog of the Lax matrix.

In each representation it has adjoint dynamics (4.26), as well as it generates the infinite

series of commuting hamiltonians π(hk). Here π is a projection to the cyclic space

which can be treated as noncommutative analog of Tr.

Now, we left with the task to understand the meaning of Casimir functions. We

already pointed out that (4.22) is invariant under dynamics (4.15). However it appears

that even stronger statement is true.

Proposition 4.42. For each H ∈ A/[A,A] the corresponding Hamilton flow {H, }K

with respect to bracket (4.28) preserves the group commutator c = uvu−1v−1
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Proof. Direct computation shows that

{{u⊗ c}}K=uv ⊗ v−1 − uvu⊗ u−1v−1 = (1⊗ u)r − r(u⊗ 1),

{{v ⊗ c}}K= = (1⊗ v)r − r(v ⊗ 1),

where r = uv ⊗ u−1v−1.

Now we use the induction by Leibnitz identity (4.30b) to prove that

∀a ∈ A {{a⊗ c}}K= (1⊗ a)r − r(a⊗ 1) (4.43)

Assume that this holds for a, b and prove this for ab:

{{ab⊗ c}}K={{a⊗ c}}K(b⊗ 1) + (1⊗ a){{b⊗ c}}K=

= ((1⊗ a)r − r(a⊗ 1)) (b⊗ 1) + (1⊗ a) ((1⊗ b)r − r(b⊗ 1)) =

=(1⊗ ab)r − r(ab⊗ 1).

This implies that (4.43) is valid. Note finally that by applying multiplication map µ to

both sides of (4.43) we always get zero. This finalizes the proof.

In other words, it is a right Casimir function for bracket (4.28) { , }K . But it is not

a left Casimir function, which means that π(c) doesn’t generate the trivial flow, like it

was in the commutative case. Say

{c, u}K = uvu−1v−1u− u2vu−1v−1 6= 0. (4.44)

However, it satisfies an important property.

Proposition 4.45. For all H ∈ A/[A,A] {H, c}K ≡ 0 mod [A,A]

Proof. Combine Proposition 4.42 and property (3) from Proposition 4.33.

Proposition 4.33 means that Casimir operator belongs to the center of the Lie Al-

gebra on a cyclic space (the natural space for Hamiltonians).

Discussion on generating set for all ”trace” integrals.

Summarizing we can conclude
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Corollary 4.46. If x ∈ π(C〈h〉 + C〈c, c−1〉) for some x ∈ A/[A,A], then d
dtx =

{h, x}K ≡ 0 mod [A,A].

In paper [EW12] Efimovskaya and Wolf considered possible “trace”-integrals of

equation (4.15) up to degree 12 and conjectured that they are all generated by the

usual traces of powers of Lax matrix (4.18).

Another experimental comparison shows that π(TrLk), k ≤ 3, the images of the

traces of powers of the Lax matrix in the cyclic space A/[A,A] generate the linear

subspace of the image π(C〈h〉+C〈c, c−1〉). However the π(TrL4) is no longer contained

in the above space. It provides us an additional h2 ∈ A/[A,A] of the form

h2 = uvu−1v−1u+ uvvu−1v−1 + uvu−1u−1v−1 + uvu−1v−1v−1 + uvu−1v−1u−1v−1.

(4.47)

4.3.6 Specialization to Quantum and Classical Integrable System

The invariance of the Casimir element c = uvu−1v−1 under dynamics (4.22) allows

one to construct certain specializations of algebra A = C〈u±1, v±1〉 consistent with

equations of motion. One can impose relation of the form c = ei~ ∈ C. This redu-

ces the algebra to the so-called ”quantum group” (the word group is misleading here,

although widely accepted). This is the exponential form of the usual Heisenberg al-

gebra u = ep, v = eq, [p, q] = −i~. The latter makes the quantum version naturally

embedded in the associative case. However the relation between the natural space for

noncommutative Hamiltonians, namely the cyclic space, and quantum Hamiltonians is

still vague.

Finally, the particular case c = 1 corresponds to commutative algebra, here the

cyclic space coincides with algebra itself and the bracket turns into anticommutative.

On the other hand the fact that associative algebra coincides with its cyclic space

endows the latter with multiplication, which makes all Hamiltonians hk algebraically

dependent.
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Chapter 5

Modified Double Poisson brackets

5.1 Modified double Poisson bracket

Let A = C〈x(1), . . . , x(k)〉/R be an associative algebra over C, which is finitely generated

by {x(1), . . . x(k)}, possibly with some finite number of relations R.

Definition 5.1. A modified double Poisson bracket on A is a map A ⊗ A → A ⊗ A

s.t. for all a, b, c ∈ A

{{a⊗ bc}}= (b⊗ 1){{a⊗ c}}+{{a⊗ b}}(1⊗ c) (5.2a)

{{ab⊗ c}}= (1⊗ a){{b⊗ c}}+{{a⊗ c}}(b⊗ 1) (5.2b)

{a⊗ {b⊗ c}} − {b⊗ {a⊗ c}} = {{a⊗ b} ⊗ c} where { } := µ ◦ {{ }} (5.2c)

{a, b}+ {b, a} = 0 mod [A,A] (5.2d)

The fact that we do not require skew-symmetry in a sense of Van den Bergh

{{a, b}}= −{{b, a}}op is the major difference with the case studied in [VdB08, ORS12]. To

distinguish with definitions introduced in [VdB08] we call this object modified double

Poisson Bracket. In Section 5.3 we show that there are examples of the modified double

Poisson brackets which are non-skew-symmetric in the sense of M. Van den Bergh.

Corollary 5.3. Composition with the multiplication map { } : A⊗A → A defines an

H0-Poisson structure, namely for all a, b, c ∈ A

{a, bc} = b{a, c}+ {a, b}c, (5.4a)

{ab, c} = {ba, c}, (5.4b)

{a, {b, c}} − {b, {a, c}} = {{a, b}, c}, (5.4c)

{a, b}+ {b, a} ≡ 0 mod [A,A]. (5.4d)
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In particular, the latter implies that { } : A ⊗ A → A factors through { } :

A/[A,A]⊗A → A which we denote by the same brackets.

Corollary 5.5. An H0-Poisson structure { } in turn induces a Lie Algebra structure

{ }Lie : A/[A,A]⊗A/[A,A]→ A/[A,A] on abelianization A\ = A/[A,A] of A.

5.2 Poisson brackets on the moduli space of representations

Double derivation property introduced to Definition 5.1 at the same time provides

a constructive definition for a certain subclass of H0-Poisson structures and allows

one to establish a precise correspondence between H0-Poisson structures and geometry.

Throughout this section we will review main ideas of pioneering papers [CB99, CBEG07,

VdB08] and apply them to the context of the Modified Double Poisson Bracket.

5.2.1 Representation scheme

As before, let A = 〈x(1), . . . , x(k)〉/R be a finitely generated associative algebra with a

finite set of relations R. Each representation of A in MatN (C) can be defined by the

image of the generators, let

ϕ(x(i)) =


x

(i)
11 . . . x

(i)
1N

...
...

x
(i)
N1 . . . x

(i)
NN

 . (5.6)

Representations of A then form an affine scheme V with a coordinate ring C[V] :=

C
[
x

(i)
j,k

]
/ϕ(R). Denote as CV — the corresponding sheaf of rational functions. Then

ϕ : V × A → MatN (C). For a general point m ∈ V map ϕ(m, ) provides an N -

dimensional matrix representation of A. Hereinafter, we often omit the first argument

of ϕ where it is assumed to be a function on V.

5.2.2 Moduli space of representations

There is a natural action of GLN (C) on MatN (C) which corresponds to the change of

basis in the underlying finite dimensional module. It induces the GLN (C) action on the
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sheaf of rational functions CV . We denote as C[V]inv ⊂ C[V] (respectively CinvV ⊂ CV)

the subalgebra of GLN (C) invariant elements. We refer to the orbit of the GLN (C)

action as an isomorphism class of representations and thus C[V]inv is the coordinate

ring of the corresponding moduli space.

One can construct elements of C[V]inv by taking traces ϕii(x) for different x ∈ A,

clearly the image would be invariant under the cyclic permutations of generators in each

monomial and thus would depend only on the element of the cyclic space A\ = A/[A,A].

This induces a map ϕ0 : A/[A,A]→ C[V]inv from A/[A,A] to the invariant subalgebra

C[V]inv. Denote the image of this map by H := ϕ0(A/[A,A]).

Lemma 5.7. [Pro76] C[V]inv is generated by H as a commutative algebra.

Example 5.8. If A happens to be commutative, the representation functor Rep1 for

N = 1 will map it to itself. Moreover CinvV will coincide with CV for this case.

Example 5.9. The simplest scheme here corresponds to the representations of A =

C〈x(1), . . . , x(k)〉 — free algebra with k generators. In the absence of relations, the

corresponding scheme is birational to CkN2
, a kN2-dimensional vector space. And the

corresponding sheaf of rational functions is nothing but the field of rational functions

in kN2 variables.

Example 5.10. Another interesting special case corresponds to the so-called smooth

algebras. Finitely generated algebra A is called smooth if Ω1 := kerµ = {a1⊗a2 |a1a2 =

0, a1, a2 ∈ A} is projective as an inner bimodule. This guarantees that the represen-

tation scheme is actually a smooth affine variety. This case was in details studied in

[CBEG07].

The major advantage of the Poisson formalism as compared to the Symplectic for-

malism is that it can be easily generalized beyond the smooth case.

5.2.3 Bracket

Define induced bracket {, }V : CV ⊗ CV → CV on generators x
(m)
ij of C[V] by{

x
(m)
ij , x

(n)
kl

}V
= ϕ

(
{{x(m) ⊗ x(n)}}

)
(kj),(il)

(5.11a)
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And then extend it to the entire CV by Leibnitz identities w.r.t. both arguments.

Namely, for all a, b, c ∈ CV .

{ab, c}V =a{b, c}V + b{a, c}V , (5.11b)

{a, bc}V =c{a, b}V + b{a, c}V . (5.11c)

As opposed to [VdB08], the bracket (5.11) in the context of Definition 5.1 is not

necessarily skew-symmetric and thus is not yet a Poisson bracket on CV . It is a famous

result of W. Crawley-Boevey [CB11] that any H0-Poisson structure induces a conven-

tional Poisson bracket on the moduli space of representations. In addition to that, we

show in Proposition 5.18 that it comes with a Lie module action on the coordinate

space of representations. In the case of bracket induced by the modified double Pois-

son bracket both are nothing but restrictions of (5.11) to CinvV ⊗ CinvV and CinvV ⊗ CV

respectively.

It is easy to check that the above extension (5.11b) – (5.11c) is consistent with the

double Leibnitz identity and relations ϕ(R) in the coordinate ring C[V], namely

Lemma 5.12. Equations (5.11) define a unique linear map {, }V : C[V]⊗C[V]→ C[V]

given by

∀x, y ∈ A : {ϕ(x)ij , ϕ(y)kl}V = ϕ({{x, y}}′)kjϕ({{x, y}}′′)il (5.13)

Proof. Define X = ϕ(x) and Y = ϕ(y). In what follows assume the summation over

repeating indexes

{Xij , YklZlm}V = ϕ({{x, yz}}′)kjϕ({{x, yz}}′′)im.

On the other hand

{{x, yz}}=(y ⊗ 1){{x, z}}+{{x, y}}(1⊗ z)

=y{{x, z}}′⊗{{x, z}}′′+{{x, y}}′⊗{{x, y}}′′z
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Which leads us to

{Xij , YklZlm}V =Yklϕ({{x, z}}′)ljϕ({{x, z}}′′)im + ϕ({{x, y}}′)kjϕ({{x, y}}′′)ilZlm

=Ykl{Xij , Zlm}V + {Xij , Ykl}VZlm

By the same derivation

{XilYlj , Zkm}V = Xil{Ylj , Zkm}V + Ylj{Xil, Zkm}V .

Now, using the fact that A is finitely generated by x(m) we conclude that (5.11b)

and (5.11c) uniquely extend { , }V on pairs of monomials. Moreover, defining ideal

ϕ(R) ⊂ C[V] for the coordinate ring C[V] is thus within the left and right kernel of

{ , }V . So { , }V extends uniquely to C[V].

Equation (5.13) immediately implies

Corollary 5.14. For all a, b ∈ A, {ϕ0(a), ϕ(b)}V = ϕ({a, b}).

Proof.

∀x, y ∈ A : {ϕ(x)ii, ϕ(y)kl}V =ϕ({{x, y}}′)kiϕ({{x, y}}′′)il = ϕ({{x, y}}′{{x, y}}′′)kl

=ϕ(µ({{x, y}}))kl = ϕ({x, y}V)kl. (5.15)

Lemma 5.16. Equations (5.11) define a unique linear map {, }V : CV ⊗ CV → CV .

Proof. Taking into account Lemma 5.12 it would be enough to prove that the bracket

{, }V can be extended to a properly localized ring. Let R be a C-algebra s.t. {, }V :

R ⊗ R → R is well defined and satisfies (5.11b) – (5.11c). For any multiplicative

subset S ⊂ R and a ∈ S, b ∈ R we immediately get {a−1, b}V = −a−2{a, b}V and

{b, a−1}V = −a−2{b, a}V . This provides a unique extension of {, }V to S−1R.

Thus for each distinguished open subset Vf ⊂ V we have a unique extension of {, }V

to Γ(Vf ,OV). Now denote by S(Vf ) ⊂ Γ(Xf ,OV) the set of functions which are not a

zero divisor on any stalk, we have a unique extension of {, }V to S(Vf )−1Γ(Vf ,OV) =

Γ(Vf ,CV).
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Lemma 5.17. Following restriction of {, }V

{, }inv : CinvV ⊗ CinvV → CinvV

is skew-symmetric, namely for all f, g ∈ CinvV we have {f, g}V ∈ CinvV and {f, g}V =

−{g, f}V .

Proof. In light of Leibnitz identities (5.11b) and (5.11c) it would be enough for us to

show the statement for generators of C[V]inv. So w.l.o.g we can assume that f, g ∈ H

(see Lemma 5.7). Under this assumption there exist x, y ∈ A s.t. f = ϕ0(x) and

g = ϕ0(y). Denote X := ϕ(x), Y := ϕ(y). Using (5.15) we get

{f, g}V = {Xii, Ykk}V = ϕ({x, y})kk = ϕ0({x, y}) ∈ C[V]inv

as a result

{f, g}V + {g, f}V = ϕ0({x, y}+ {y, x}) = 0.

Proposition 5.18. The following restriction

{ , }V : CinvV ⊗ CV → CV (5.19)

satisfies the Jacobi identity for the left Loday bracket, for all f, g ∈ CinvV and h ∈ CV :

{f, {g, h}V}V − {g, {f, h}V}V = {{f, g}V , h}V .

Proof. For f, g ∈ H and h ∈ C[V] the statement is a straightforward consequence of

Corollary 5.14 and the fact that {, } : A\ ⊗A → A is a Loday bracket. Denote

φ(f, g, h) := {f, {g, h}V}V − {g, {f, h}V}V − {{f, g}V , h}V .

Since φ is a derivation in its’ last argument, left Jacobi identity extends for h ∈ CV .

Next, we have

φ(f1f2, g, h)− f1φ(f2, g, h)− f2φ(f1, g, h) =

= −{g, f1}V{f2, h}V − {g, f2}V{f1, h}V − {f2, g}V{f1, h}V − {f2, h}V{f1, g}V .
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Note, that {, }V is not skew-symmetric in general, however by Lemma 5.17 we have for

f1, f2, g ∈ CinvV

{g, f1}V + {f1, g}V = 0, {f2, g}V + {g, f2}V = 0

which is enough to conclude that for all f1, f2, g ∈ CinvV and h ∈ CV

φ(f1f2, g, h) = f1φ(f2, g, h) + f2φ(f1, g, h).

We also get for all f, g ∈ CinvV and g ∈ CV s.t. f−1 ∈ CinvV

φ(f−1, g, h) = −f−2φ(f, g, h).

Similar reasoning applies for the second argument which finalizes the proof.

Remark 5.20. Proposition 5.18 defines a representation analogue of an H0-Poisson

structure. Note the dual properties, once H0-Poisson structure factors through {, } :

A/[A,A]⊗A → A, the induced bracket defined above has to be restricted on invariant

subalgebra {, }V : CinvV ⊗ CV → CV in order to satisfy Jacobi identity. Following ideas

of [Tur14] we formulate this duality fundamentally in Section ?? when we show that

one can generalize Proposition 5.18 beyond matrix representations.

Corollary 5.21. The following restriction

{ , }inv : CinvV ⊗ CinvV → CinvV (5.22)

is a Poisson bracket.

Proof. This statement follows from Corollary 5.3 and results of [CB11], however below

we will present a direct proof using Proposition 5.18.

Indeed, by Lemma 5.17 this restriction is skew-symmetric, it satisfies Leibnitz iden-

tity in both arguments by definition (5.11b) – (5.11c). As a particular case of Proposi-

tion 5.18 it also satisfies Jacobi identity.

5.2.4 Casimir elements

Action of the Poisson bracket (5.22) on the full representation scheme (5.19) provides

a convenient way to construct Casimir elements. Recall
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Definition 5.23. Element c ∈ A is a right Casimir of bracket {, } if for all h ∈ A/[A,A]

we have {h, c} = 0.

Remark 5.24. It is worth noting that right Casimir elements are not necessary within

the left kernel of the bracket beyond skew-symmetric case. For a particular example

see (5.27) and (5.30).

Since {, } is a derivation in the second argument, the set of all right Casimir elements

forms a subalgebra C ⊂ A. This subalgebra allows one to construct Casimir elements

of the bracket on representation scheme.

Proposition 5.25. Assume that c ∈ A is a right Casimir of bracket {, } : A/[A,A] ⊗

A → A. Subalgebra C[ϕ(c)kl] generated by components of the matrix ϕ(c) consist of

right Casimirs of the bracket {, }V

Proof. For all h ∈ H we have

{ϕ0(h), ϕ(c)kl}V = {ϕ(h)ii, ϕ(c)kl}V = ϕ({h, c})kl = 0.

Since {, }V satisfies Leibnitz identity w.r.t to both arguments we conclude that for all

f ∈ CinvV and x ∈ C[ϕ(c)kl]

{f, x}V = 0.

Note, that in Proposition 5.25 it is essential to consider a restricted bracket { , }V

on CinvV ⊗ CV as defined in (5.25). If instead of element CinvV as a first argument we

take arbitrary f ∈ CV the bracket with a Casimir elements do not have to be zero.

Corollary 5.26. Let C ⊂ A be a subalgebra of right Casimir elements of bracket {, },

then ϕ0(C) ⊂ CinvV consist of Casimir elements of bracket {, }inv.

This Corollary is especially useful when C is finitely generated. We illustrate this

method in Section 5.3.1.
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5.3 Examples of the Modified Double Poisson brackets

5.3.1 Bracket for Kontsevich system

Here we describe a particular example of modified double bracket on C〈u±, v±〉 intro-

duced in [Art15]. This double bracket is not skew-symmetric and thus provides an

example beyond the case considered in [VdB08].

Let A+ = C〈u, v〉 be a free associative algebra with two generators. Define a

biderivation of A on the generators as

{{u, v}}K= −vu⊗ 1, {{v, u}}K= uv ⊗ 1, {{u, u}}K= {{v, v}}K= 0. (5.27)

Proposition 5.28. [Art15] The biderivation {{ }}K is a modified double Poisson brac-

ket.

Under the representation functor RepN our algebra is mapped to the commutative

algebraAN = C(ui,j , vi,j) of rational functions in 2N2 variables {ui,j , vi,j | 1 ≤ i, j ≤ N}.

The corresponding affine scheme V is just a 2N2-dimensional vector space over C.

The induced bracket is a biderivation {, }V : AN ⊗AN → AN defined on generators

as

{uij , vkl}V =− δil
∑
m

vkmumj

{vkl, uij}V =δkj
∑
m

uimvml.

(5.29)

Proposition 5.21 implies that restriction of {, }V on invariant rational functions

{ , }inv : AinvN ⊗AinvN → AinvN is a Poisson bracket.

Dimensions of the symplectic leaves

Element

c = uvu−1v−1 (5.30)

is a right Casimir of the H0-Poisson bracket induced by (5.27) (see [Art15] for a proof).

One can show that Trϕ(ck) provide Casimirs for the indeuced bracket { , }inv. The

Poisson bracket on CinvV we defined earlier is degenerate due to existence of Casimirs.
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Which means that the Poisson tensor is not invertible at a generic point. In order

to make it invertible (and thus induce a symplectic structure) one has to restrict the

bracket to the subvariety corresponding to the fixed level of all Casimir functions (See

e.g. [Arn78]). The codimension of such variety is, of course, simply the number of

algebraically independent Casimir functions.

Based on direct computation of dimensions of symplectic leaves for bracket { , }inv

we come to the following

Conjecture 5.31. There are exactly N−1 algebraically independent Casimir elements

given by Trϕ(ck) for the bracket {, }inv.

We summarize a computational evidence in favour of this conjecture in the Table

5.1. Here dimL — dimension of a generic symplectic leaf, codimϕ0(ck) — number of

algebraically independent Casimirs provided by ϕ0(ck).

N dimCinvV dimL codimϕ0(ck)

1 2 2 0

2 5 4 1

3 10 8 2

4 17 14 3

5 26 22 4

6 37 32 5

Table 5.1: Summary on tests of dimensions of symplectic leaf

5.3.2 Other examples Double Poisson Brackets

Below we present a couple of other examples of modified double Poisson brackets on

Free3 = C〈x1, x2, x3〉. Unlike (5.27), examples presented in this subsection are con-

jectural although very well tested. More examples and partial classification are in
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progress.

{{x1, x2}}I = −x2x1 ⊗ 1, {{x2, x1}}I = x1x2 ⊗ 1,

{{x2, x3}}I = −x2 ⊗ x3, {{x3, x2}}I = x2 ⊗ x3,

{{x3, x1}}I = −1⊗ x3x1, {{x1, x3}}I = 1⊗ x1x3.

(5.32)

Here all omitted brackets of generators are assumed to be zero.

{{x1, x2}}II = −x1 ⊗ x2, {{x2, x1}}II = x1 ⊗ x2,

{{x2, x3}}II = x3 ⊗ x2, {{x3, x2}}II = −x3 ⊗ x2,

{{x3, x1}}II = x1 ⊗ x3 − x3 ⊗ x1.

(5.33)

Conjecture 5.34. Brackets (5.32) and (5.33) are modified double Poisson brackets on

Free3. Namely, corresponding biderivations satisfy (5.2c) and (5.2d).

We have tested equations (5.2c) and (5.2d) for all monomials up to length 5.
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Chapter 6

Appendix

6.1 Classification of Graded Brackets on Free2

For this section, let A+ = C〈x1, x2〉 be a free algebra with two generators. There is

C× × C× action on A+, s.t. for each λ1, λ2 ∈ C×

(λ1, λ2) : A+ → A+, s.t.
x1 7→ λ1x1

x2 7→ λ2x2

(6.1)

The most general skew-symmetric bi-derivation {{, }}: A⊗2
+ → A⊗2

+ which is equivari-

ant with respect to (C×)2 action (6.1) is determined by its action on pairs of generators

and has the following form

{{x1, x1}}=b1(x1x1 ⊗ 1− 1⊗ x1x1)

{{x1, x2}}=b2 x1x2 ⊗ 1 + b3 x1 ⊗ x2 + b4 1⊗ x1x2

+ b5 x2x1 ⊗ 1 + b6 x2 ⊗ x1 + b7 1⊗ x2x1

{{x2, x1}}=− b2 1⊗ x1x2 − b3 x2 ⊗ x1 − b4 x1x2 ⊗ 1

− b5 1⊗ x2x1 − b6 x1 ⊗ x2 − b7 x2x1 ⊗ 1

{{x2, x2}}=b8(x2x2 ⊗ 1− 1⊗ x2x2)

(6.2)

where b1, . . . , b8 ∈ C are arbitrary parameters. In other words, these are all graded bi-

derivations of A+ of degree zero w.r.t. to the grading given by weights of (C×)2-action.

Below we classify all such biderivations which give rise to an H0-Poisson structure

on A+. It would be enough for us to classify biderivations modulo the ones which give

trivial contribution to an H0-Poisson structure.
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Proposition 6.3. Each equivalence class has a unique skew-symmetric representative

{{x1, x1}}=− 1⊗ x1x1 + x1x1 ⊗ 1 {{x2, x2}}= −1⊗ x2x2 + x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 + x2x1 ⊗ 1 + x1 ⊗ x2

(6.4a)

{{x1, x1}}=− 1⊗ x1x1 + x1x1 ⊗ 1 {{x2, x2}}= −1⊗ x2x2 + x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 − x2x1 ⊗ 1 + x1 ⊗ x2 + x2 ⊗ x1

(6.4b)

{{x1, x1}}=1⊗ x1x1 − x1x1 ⊗ 1 {{x2, x2}}= −1⊗ x2x2 + x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 − x2x1 ⊗ 1 + x1 ⊗ x2 + x2 ⊗ x1

(6.4c)

{{x1, x1}}=1⊗ x1x1 − x1x1 ⊗ 1 {{x2, x2}}= −1⊗ x2x2 + x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 + x2x1 ⊗ 1− x1 ⊗ x2 + x2 ⊗ x1

(6.4d)

{{x1, x1}}=− 1⊗ x1x1 + x1x1 ⊗ 1 {{x2, x2}}= −1⊗ x2x2 + x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 + x2x1 ⊗ 1 + x1 ⊗ x2 − x2 ⊗ x1

(6.4e)

{{x1, x1}}=− 1⊗ x1x1 + x1x1 ⊗ 1 {{x2, x2}}= 1⊗ x2x2 − x2x2 ⊗ 1

{{x1, x2}}=1⊗ x1x2 − x2x1 ⊗ 1− x1 ⊗ x2 + x2 ⊗ x1

(6.4f)

{{x1, x1}}=1⊗ x1x1 − x1x1 ⊗ 1 {{x2, x2}}= −1⊗ x2x2 + x2x2 ⊗ 1

{{x1, x2}}=1⊗ x1x2 + x2x1 ⊗ 1 + x1 ⊗ x2 − x2 ⊗ x1

(6.4g)

{{x1, x1}}=− 1⊗ x1x1 + x1x1 ⊗ 1 {{x2, x2}}= 1⊗ x2x2 − x2x2 ⊗ 1

{{x1, x2}}=1⊗ x1x2 + x2x1 ⊗ 1− x1 ⊗ x2 + x2 ⊗ x1

(6.4h)

{{x1, x1}}=− 1⊗ x1x1 + x1x1 ⊗ 1 {{x2, x2}}= 1⊗ x2x2 − x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 + x2x1 ⊗ 1− x1 ⊗ x2 + x2 ⊗ x1

(6.4i)

{{x1, x1}}=− 1⊗ x1x1 + x1x1 ⊗ 1 {{x2, x2}}= 1⊗ x2x2 − x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 − x2x1 ⊗ 1 + x1 ⊗ x2 + x2 ⊗ x1

(6.4j)

{{x1, x1}}=1⊗ x1x1 − x1x1 ⊗ 1 {{x2, x2}}= 1⊗ x2x2 − x2x2 ⊗ 1

{{x1, x2}}=1⊗ x1x2 − x2x1 ⊗ 1 + x1 ⊗ x2 + x2 ⊗ x1

(6.4k)

{{x1, x1}}=1⊗ x1x1 − x1x1 ⊗ 1 {{x2, x2}}= 1⊗ x2x2 − x2x2 ⊗ 1

{{x1, x2}}=− 1⊗ x1x2 − x2x1 ⊗ 1 + x1 ⊗ x2 + x2 ⊗ x1

(6.4l)
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6.2 Equivalence classes of biderivations

Denote by e ∈ DA noncommutative vector field s.t. for all a ∈ A, e(a) = a⊗ 1− 1⊗ a.

Lemma 6.5. For all γ ∈ DA denote X : A⊗2 → A⊗2,

X := trA(e ? γ). (6.6)

Then for all a, b ∈ A

µ(X(a⊗ b)) = 0.

Proof. Indeed,

X(a⊗ b) =γ(b)′e(a)′′ ⊗ e(a)′γ(b)′′ = γ(b)′ ⊗ aγ(a)′′ − γ(b)′a⊗ γ(b)′′ ∈ kerµ.

For each P ∈ (DA)2 define the corresponding double bracket {{, }}P : A⊗2 → A⊗2

as

{{, }}P := trAP.

Corollary 6.7. If P is a modified double Poisson bivector, then so is P + e ? δ for an

arbitrary δ ∈ DA. Moreover, they induce the same H0-Poisson structure

{, }P = {, }P+e?δ.

Proof. Apply Lemma 6.5 to the difference.
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