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ABSTRACT OF THE DISSERTATION 

Role of light-feeding phase relations on glucose metabolism 

By SEUL A. BAE 

Dissertation Director: 

Ioannis P. Androulakis 

Along with light/dark cycle, food intake is a strong zeitgeber, a cue given by the 

environment on host to reset the internal body clock. In mammals, metabolic activities 

are under the regulation of daily feeding rhythms as well as the peripheral clock 

machinery. In turn, the feeding rhythms influence the circadian rhythms of key clock 

components via enzymatic reactions and transcriptional regulations. Understanding the 

mechanism of interplay between the circadian clocks and metabolic activities are 

important as disruption of one seems to affect the other. Several studies showed evidence 

that disruption of circadian rhythms can facilitate metabolic syndrome. For example, 

shift-work and sleep deprivation result in dampened rhythms and obesity. Other studies 

suggested that obesity, diabetes, and cardiovascular diseases are linked with disruption of 

daily rhythms in food intake. At a molecular level, clock mutant mice show a decrease in 

metabolic rate, while liver-specific Bmal1 knockout mice and pancreas-specific Clock or 

Bmal1 knockout mice exhibit a disruption in glucose homeostasis. On the other hand, 

time-restricted feeding studies in mice show that metabolic cues influence circadian 

rhythmicityAlthough proper clock gene functions are linked to a wide variety of energy 
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metabolism functions including lipogenesis and appetite control, glucose homeostasis is 

of a particular interest since clock gene deficiencies directly lead to diabetes mellitus. 

Furthermore, possible molecular mechanisms that lead to a breach in glucose homeostasis 

have been suggested from a number of animal studies. I used semi-mechanistic 

mathematical models to evaluate the effect of circadian disruption on hepatic 

gluconeogenesis. The models allow examination of the entrainment dynamics of 

peripheral clock genes by two convoluted environmental signals, feeding rhythm 

transmitted through SIRT1 and the light/dark cycle transmitted through the hypothalamic 

pituitary adrenal axis (HPA) and cortisol. The mechanism behind metabolic implications 

under circadian disruption is achieved via linking the dynamics of clock genes and 

cortisol to transcription of gluconeogenic genes and insulin secretion. The model predicts 

that a few hours of restricted feeding in the early active phase of the host is beneficial for 

robust oscillation of clock genes, appropriate level of gluconeogenesis, and maximum 

secretion of insulin. Additionally, an asymmetry between the entrainment strengths of 

light/dark cycle and feeding/fasting cycle contributes to the convolusion of environmental 

signals in downstream metabolic activities. 
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CHAPTER 1: Background and motivation 

1.1 Feeding rhythms and peripheral clock genes 

The circadian rhythms orchestrate the mental and physical changes that follow a 

24-hour cycle, primarily responding to light/dark schedule. In mammals, the central pace 

maker resides in the superchiasmatic nuclei (SCN) and takes in light as the entraining 

signal while synchronizing the clock genes in the periphery, influencing various rhythms 

in cells and tissues throughout the body. Aside from the light/dark cycle, food intake is 

also a strong zeitgeber, a cue given by the environment on host to reset the internal body 

clock. In mammals, metabolic activities are under the regulation of daily feeding rhythms 

as well as the peripheral clock machinery. In turn, the feeding rhythms influence the 

circadian rhythms of key clock components via enzymatic reactions and transcriptional 

regulations.1-3 Understanding the mechanism of interplay between the circadian clocks 

and metabolic activities are important because disruption of one affects the other. Several 

studies show evidence that disruption of circadian rhythms can facilitate metabolic 

syndrome. For example, shift-work and sleep deprivation result in dampened rhythms 

and obesity.4 Other studies suggested that obesity, diabetes, and cardiovascular diseases 

are linked with disruption of daily rhythms in food intake due to lifestyle choices and 

shift work.5-7  On the other hand, time-restricted feeding studies in mice show that 

metabolic cues influence circadian rhythmicity. For example, restricted feeding schedule 

restored oscillations of some peripheral clock components in clock-deficient mouse 

livers.8 
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The evidence for the bi-directional influence between circadian clock and 

metabolism has been found in relation to the well-established core circadian clock 

machinery. Although some tissue-specific rhythms are observed throughout the body, the 

main driver for the core circadian clock in most tissues including liver and kidney is the 

positive and negative feedback loops between two protein complexes, CLOCK/BMAL1 

heterodimer and PER/CRY complex 9-12. The PER/CRY complex inhibits the 

CLOCK/BMAL1-mediated transcription of PER and CRY proteins, while stimulating the 

expression of BMAL1. Among the many ways that light/dark cycle and food availability 

impact each other, nutrient sensors such as AMP-activated protein kinase (AMPK), 

sirtuin 1 (SIRT1), and poly ADP-ribose polymerase 1 (PARP1) exhibit circadian 

behavior and interact with the key molecules of the core circadian clocks, while also 

playing key roles in metabolic activities.13,14 

Recent literature suggest that SIRT1 is a key candidate for bridging the circadian 

clocks and metabolism. SIRT1 is a class III histone deacetylase (HDAC), a homolog of 

Sir2 (silence information regulator 2) in yeast.2 Its activity takes place in the nucleus, 

modulating metabolism of lipids, proteins, and carbohydrates, while also enhancing 

mitochondrial activity,15 in addition to modulating a variety of biological activities such 

as oncogenesis and aging.16 SIRT1 acts as a nutrient sensor as its enzymatic activity 

requires binding of nicotinamide adenine dinucleotide (NAD+) into its catalytic site along 

with the substrate. Modeling the activity of SIRT1 would require an accurate portrayal of 

the NAD+ level in the cell, since it directly activates SIRT1. In addition to synthesizing 

NAD+ from amino acids, cells can also recover NAD+ from the NAD+ salvage pathway,17 
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where nicotinamide (NAM) is released from NAD+, NAM is converted to nicotinamide 

mononucleotide (NMN), and NMN is converted back to NAD+, completing the cycle.  

SIRT1 activity has complex relationships with the NAD+ salvage pathway and the 

peripheral clocks. First, SIRT1 activity requires binding of NAD+, thus NAD+ has an 

activating effect on SIRT1. Second, SIRT1 activity is inhibited by NAM, the precursor of 

the rate-limiting step. Third, expression of nicotinamide mononucleotide 

adenylyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage cycle, is 

under the control of SIRT1, which is a co-transcription factor for the Nampt gene along 

with peripheral clock genes (PCGs). In summary, SIRT1 functions as a nutrient sensor, 

being under the influence of the energy state of the cells, represented by NAD+. It is also 

under the effect of the circadian rhythmicity presented by NAD+, NAM, and NAMPT, 

which are under the control of PCGs. 

The above observations motivate construction of a mathematical model that 

describes the interactions among SIRT1, NAD+ salvage cycle, and peripheral clock genes 

in human hepatocyte, to study the effects of light and feeding schedules on circadian 

dynamics in the periphery. The model builds upon earlier works18 of a semi-mechanical 

model for light entrainment on the peripheral clock genes through the HPA axis.  The 

oscillations in the HPA axis are generated due to the negative feedback between 

glucocorticoid and corticotropin-releasing hormone (CRH)/adrenocorticotropic hormone 

(ACTH) using a modified Goodwin oscillator, entrained by light. The oscillating 

glucocorticoid is secreted into the periphery, scheduling the peripheral clock genes 
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(Per/Cry, Bmal1, and Clock). The two-way relationship between SIRT1 and PCGs will 

be incorporated to reflect the changes in the dynamics of PCGs due to food intake. 

1.2 Circadian control of gluconeogenesis and insulin 

Gluconeogenesis is the metabolic process that synthesizes glucose from non-

carbohydrate sources such as pyruvate, lactate, glycerol, alanine, and glutamine. It is a 

ubiquitous process that has been preserved through evolution from microorganisms to 

mammals.19 In mammals, gluconeogenesis mostly occurs in the liver during the fasting 

phase to keep the blood glucose level at a biologically safe level.20 Glucose homeostasis 

is linked to the circadian genes through core clock gene knock-out experiments. In mice 

with liver-specific Bmal1 knock-out, altered rhythms for gluconeogenic genes were 

observed.21 As a result, glucose levels during the late fasting phase were decreased for the 

knock-out animals compared to the control animals. In contrast, increased expression 

level of CRY1 and CRY2 proteins in the liver had a decreasing effect on the glucose 

level.22 Per, Rev-erbα, and Clock gene knock-outs also affect the glucose metabolism.23 

Per knock-out results in decreased glucose levels while Rev-erbα knock-out leads to 

increased glucose levels. Clock knock-out animals exhibit conflicting results, showing 

increased glucose levels in some studies, while the opposite trend was seen in other 

studies, possibly because the Clock gene effect on carbohydrate metabolism is subject to 

genetic make-up of the animals and experimental/environmental factors.  

Cortisol, the hormone that entrains the PCGs to the light/dark cycle, also plays an 

important role in maintaining glucose homeostasis in mammals. It is well established that 
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serum cortisol level increases gluconeogenesis in humans.24 Under 12h of fasting 

conditions, gluconeogenesis is accounted for about 35% of the glucose production. When 

a high dose of cortisol is administered and the serum cortisol level is increased, 

gluconeogenesis is accounted for 65% of glucose production. In conscious, overnight-

fasted dogs, acute physiological increases in plasma cortisol levels resulted in increased 

gluconeogenic conversion of alanine to glucose, by increasing both net hepatic alanine 

uptake (NHAU) and hepatic fractional extraction of alanine.25 Cortisol stimulation of 

hepatic gluconeogenesis is probably due to activation of participating liver enzymes such 

as pyruvate carboxylase.26 By contrast, in vitro experiments using mice fibroblasts 

showed that Cry1 and Cry2 inhibit the activating effect of glucocorticoid receptor by 

binding to the glucocorticoid response element (GRE) on the promoter of gluconeogenic 

genes.27 

SIRT1, the enzyme that entrains the PCGs to the feeding state, has a direct 

influence on hepatic metabolism involved in glucose homeostasis. During long-term 

fasting (>6 hours), SIRT1 activity results in increased transcription of gluconeogenic 

genes, such as Pck1 and G6pc. During this phase, SIRT1-mediated deacetylation 

activates PPARγ-coactivator α (PGC-1α) and Forkhead box O1 (FOXO1).28 In a feeding 

state where blood glucose level is increased, FOXO1 is phosphorylated via insulin 

mediated mechanism and is expelled to the cytoplasm, where it is ubiquitinated and 

degraded.29 The translocation of FOXO1 from nucleus to cytoplasm involves multiple 

phosphorylation steps starting with insulin, released from the pancreas. Insulin first 

phosphorylates Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), then PI3K 
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phosphorylates protein kinase B (Akt). Finally, Akt phosphorylates FOXO1 and FOXO 1 

is moved out of the nucleus.29 Experimental evidence indicates that SIRT1-mediated 

deacetylation of FOXO1, in a fasting state, causes translocation of FOXO1 back to the 

nucleus, where it binds to the promoter for glucose-6-phosphatase (G6Pase), activating 

transcription of G6pc and thus increasing hepatic gluconeogenesis.30 PGC-1α induces 

transcription of Pck1 and G6pc, along with its co-activators glucocorticoid receptor and 

hepatic nuclear factor-4α (HNF-4α).31 In summary, SIRT1 deacetylates and activates 

PGC-1α and FOXO1, leading to gluconeogenesis; both are required for robust activation 

of gluconeogenic gene expression in hepatic cells.  

The above observations motivate a need for a mechanistic model that incorporates 

the effect of SIRT1, cortisol, and insulin on hepatic gluconeogenesis, to establish the link 

between proper clock gene function and glucose metabolism. This model would also 

integrate the light-feeding phase relations to gluconeogenesis, possibly revealing how 

circadian disruption leads to metabolic syndrome.  

1.3 Outline of the dissertation 

The investigation on the effect of circadian disruption on metabolism involves a 

step-wise development and analysis of semi-mechanistic models. In Chapter 2 discusses 

the baseline model that incorporates the feeding/fasting cycle as an entraining factor for 

the peripheral clock genes. In Chapter 3, the model was further developed to link hepatic 

gluconeogenesis to phase relations between the light/dark cycle and feeding rhythms. A 

framework for sensitivity analysis was developed and implemented to analyze this model 
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in detail. In Chapter 4, a model describing the circadian secretion of insulin from the 

pancreatic β-cells were developed based on insulin granule dynamics. In Chapter 5 

summarizes and addresses future directions and the major findings from the project.  
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CHAPTER 2: The synergistic role of light-feeding 
phase relations on entraining robust circadian 
rhythms in the periphery 

2.1 Background 

Time-restricted feeding studies in mammals show that circadian rhythmicity is 

dependent on metabolic cues along with the light/dark cycle. As an example, restricted 

feeding restored rhythms of some peripheral clock components in clock-deficient mouse 

livers.8 Recent studies suggest that SIRT1 may play an important role in feeding 

entrainment of peripheral clocks through deacetylating core clock components. One such 

activity of SIRT1 is to facilitate the degradation of PER/CRY proteins in the nucleus. The 

CLOCK/BMAL1 complex also interacts with SIRT1 by binding to it and activating the 

transcription of NAMPT (the rate-limiting enzyme for the NAD+ salvage cycle). NAD+, 

in turn, acts as a direct activator of SIRT1. The above observations motivates 

construction of a mathematical model that describes the interactions among SIRT1, 

NAD+ salvage cycle, and peripheral clock genes in human hepatocyte, to study the 

effects of light and feeding cycles on circadian dynamics in the periphery. It is 

anticipated that phase relationship between the light and feeding cues may play an 

important role in the entrainment dynamics of the PCGs. 

2.2 Methods 

We developed a mathematical model to study the dynamics of circadian and 

metabolic components under the entrainment of two environmental cues, light/dark cycle 

and feeding rhythm. The model was built upon our previous work18,32 by introducing 
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significant modifications to capture the changes to cellular energy state and metabolic 

activity due to the feeding state. The model is essentially composed of two 

compartments: 1) a central compartment that encompasses the feeding and light/dark 

cycle, entraining the cellular energy state and cortisol dynamics, and 2) a peripheral 

compartment representing a human hepatocyte that captures the convoluted downstream 

effects of released cortisol and cellular energy state on peripheral clock genes (PCGs) and 

metabolic components. The overall schematic of the model is shown in Figure 1. 

2.2.1 Central Compartment 

In the central compartment, the light/dark cycle, food availability during the day, 

and their signal transductions to the periphery are modeled. The environmental cues are 

represented as step functions in  Equation ( 1 ) and Equations ( 4 ). In the baseline case 

when feeding pattern is synchronized to the light/dark cycle, a constant food supply is 

available between the hours of 6 am and 6 pm, and a constant supply of light source is 

present also between the hours of 6 am and 6 pm. Since the model aims to describe the 

dynamics of PCGs in human hepatocyte, the timespan where constant light signal is 

present is considered the active period when food intake normally occurs. Equation ( 1 ) 

was later modified for testing various feeding duration and delay relative to the light 

schedule. The feeding signal goes through two transit compartments each with a delay of 

3 hours (τf), in Equations ( 2 )-( 3 ). Afterwards, feeding eventually entrains the dynamics 

of cellular energy state, NAD+, by reducing it to NADH. The transit compartments for 

feeding signal were added to the model based on the experimental observations that 

NAD+ level peaks 5-6 hours after the beginning of the active period in rat liver,33 
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suggesting a delay in feeding signal modifying the redox reactions between NAD+ and 

NADH. 
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Figure 1: Schematic representation of the light and feeding entrained model. The HPA is entrained to the light/dark 
cycle, and NAD+ availability is entrained to food availability. Cortisol and SIRT1 in the periphery entrains the peripheral 
clock genes (PCGs). 

The light signal is transmitted to the periphery through cortisol dynamics, driven 

by the self-sustained oscillations of CRH and ACTH in the HPA axis. The entrainment of 

these components by the light/dark cycle are described by Equations ( 4 )-( 7 ). These 

equations represent a Goodwin oscillator, modified to include Michaelis-Menten kinetics 

in the terms that represent synthesis and degradation of each component to avoid the use 

of unrealistically high Hill coefficients.34 The production of CRH in the hypothalamus in 

Equation ( 5 ) leads to the secretion of ACTH in the anterior lobe of the pituitary gland in 

Equation ( 6 ). Equation ( 7 ) describes ACTH acting on the adrenal cortex, which 

produces the glucocorticoid hormones (mainly cortisol in humans). Then, cortisol 

negatively regulates CRH and ACTH via receptor mediated activities, creating a negative 

feedback loop and maintaining sustained oscillations in the absence of environmental 

cues. Equations ( 8 )-( 11 ) describe the signal transduction pathway that forms the 

cortisol-receptor complex. These equations were derived from a corticosteroid 

pharmacodynamic model.35 Receptor mRNA dynamics is described by a zero order 

production and first order degradation terms in Equation ( 8 ). The indirect response 

model accounts for the experimentally observed downregulation of receptor mRNA upon 

methylprednisolone (MPL) treatment. The receptor protein dynamics is modeled in 

Equation ( 9 ), mediated by the receptor mRNA, degradation, binding rate to the ligand 

cortisol, and transfer in and out of the nucleus. Equations ( 10 ) and ( 11 ) describe the 

receptor binding to cortisol, and the resulting cortisol-receptor complex translocating to 

the nucleus to inhibit CRH and ACTH secretion. Finally, Equation ( 12 ) describes the 
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translocation of pro-inflammatory cytokines to the central compartment, which has an 

HPA-activating effect represented as stimulation of ACTH and cortisol using indirect 

response.36 

The external light/dark cycle is transmitted to the hypothalamus as a photic signal 

via communication with retinal ganglion cells (RGCs) in the eye.37 The hypothalamic 

suprachiasmatic nucleus (SCN) integrates the photic input and regulate the physiological 

circadian rhythms of the cortisol and the periphery.38,39 The SCN mediates secretion of 

light-induced arginine vasopressin (AVP).40  Given that decreased secretion of AVP leads 

to increased cortisol levels41 and stimulating both CRH and ACTH release,42 we 

ultimately regulate the production of cortisol by light-induced degradation of CRH 

(Equation ( 5 )). We introduced a significant modification to the HPA axis to reflect the 

signals received by the SCN from feeding. Ventromedial arcuate nucleus (vmARC) is 

often associated with satiety because metabolically active hormones such as ghrelin, 

leptin, glucocorticoid, insulin, and their receptors are expressed at high levels in it.43-46 

These hormones, along with glucose, modulate the electrical activity of vmARC.47-49 

Studies confirmed that vmARC forms a complex with the subepidermal layer of the 

median eminence (seME), and have reciprocal connections with the SCN.50 Therefore, 

we hypothesized that cellular energy state change caused by feeding in the periphery is 

transmitted to the SCN via electric signaling through the vmARC. Furthermore, studies 

showed that corticosterone rhythms change to show a food-anticipatory peak upon a 

change of feeding schedule.51 From the above observations, we created a transit 

compartment, EntF, that represents the signaling activity from the periphery to the SCN 
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via vmARC, and added a response to this signal to cortisol production in the HPA axis 

using Michaelis-Menten kinetics. Parameter kn in Equation ( 7 ) represents the coupling 

strength of the feeding signal to the SCN. The coupling strength was estimated to capture 

the qualitative behaviour of cortisol under conditions where feeding is synchronized to 

the active (light) period and feeding is anti-synchronized to the active period. When food 

is available during the active period, there is ample evidence that cortisol level peaks in 

the morning time.52 However, when food availability is not synchronized to the light 

period, the cortisol level peaks slightly before food availability in the anticipation of 

incoming nutrients,51 and the oscillation amplitude is expected to decrease.53 The 

finalized value of the estimated parameter as well as all other parameters and their 

descriptions are shown in Table A1 in the appendix. 

feed = {
1, 6𝐴𝑀 ≤ 𝑡 < 6𝑃𝑀 
0, 6𝑃𝑀 ≤ 𝑡 < 6𝐴𝑀 

 

( 1 ) 
dfeed2

dt
=
1

𝜏𝑓
(𝑓𝑒𝑒𝑑 − 𝑓𝑒𝑒𝑑2) 

( 2 ) 
dfeed3

dt
=
1

𝜏𝑓
(𝑓𝑒𝑒𝑑2 − 𝑓𝑒𝑒𝑑3) 

( 3 ) 

light = {
1, 6𝐴𝑀 ≤ 𝑡 < 6𝑃𝑀 
0, 6𝑃𝑀 ≤ 𝑡 < 6𝐴𝑀 

 

( 4 ) 

𝑑𝐶𝑅𝐻

𝑑𝑡
=

𝑘𝑝1

𝐾𝑝1 + 𝐹𝑅(𝑁)𝐻𝑃𝐴
− 𝑉𝑑1 ⋅

𝐶𝑅𝐻 ⋅ (1 +
𝑙𝑖𝑔ℎ𝑡

1 + 𝑙𝑖𝑔ℎ𝑡
)

𝐾𝑑1 + 𝐶𝑅𝐻
 

( 5 ) 
𝑑𝐴𝐶𝑇𝐻

𝑑𝑡
=

𝑘𝑝2 ⋅ 𝐶𝑅𝐻

𝐾𝑝2 + 𝐹𝑅(𝑁)𝐻𝑃𝐴
(1 + 𝑘𝑓𝑝 ⋅ 𝑃𝐻𝑃𝐴) − 𝑉𝑑2 ⋅

𝐴𝐶𝑇𝐻

𝐾𝑑2 + 𝐴𝐶𝑇𝐻
 

( 6 ) 
𝑑𝐹𝐻𝑃𝐴
𝑑𝑡

= 𝑘𝑝3 ⋅ 𝐴𝐶𝑇𝐻 ⋅ (1 + 𝑘𝑓𝑝 ⋅ 𝑃𝐻𝑃𝐴) ⋅ 𝑘𝑛 ⋅ (1 +
𝐸𝑛𝑡𝐹

1 + 𝐸𝑛𝑡𝐹
) − 𝑉𝑑3 ⋅

𝐹𝐻𝑃𝐴
𝐾𝑑3 + 𝐹𝐻𝑃𝐴

 

( 7 ) 
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𝑑𝑚𝑅𝑁𝐴𝑅,𝐻𝑃𝐴 

𝑑𝑡
= 𝑘𝑠𝑦𝑛_𝑅𝑚 ⋅ (1 −

𝐹𝑅(𝑁)𝐻𝑃𝐴
𝐼𝐶50𝑅𝑚 + 𝐹𝑅(𝑁)𝐻𝑃𝐴

) − 𝑘𝑑𝑔𝑟𝑅𝑚 ⋅ 𝑚𝑅𝑁𝐴𝑅_𝐻𝑃𝐴 

( 8 ) 
𝑑𝑅𝐻𝑃𝐴
𝑑𝑡

= 𝑘𝑠𝑦𝑛_𝑅 ⋅ 𝑚𝑅𝑁𝐴𝑅𝐻𝑃𝐴 + 𝑟𝑓 ⋅ 𝑘𝑟𝑒 ⋅ 𝐹𝑅(𝑁)𝐻𝑃𝐴 − 𝑘𝑜𝑛 ⋅ (𝐹𝐻𝑃𝐴 − 1) ⋅ 𝑅𝐻𝑃𝐴 − 𝑘𝑑𝑔𝑟𝑅 ⋅ 𝑅𝐻𝑃𝐴 

( 9 ) 
𝑑𝐹𝑅𝐻𝑃𝐴
𝑑𝑡

= 𝑘𝑜𝑛 . 𝐹𝐻𝑃𝐴. 𝑅𝐻𝑃𝐴 − 𝑘𝑡 ⋅ 𝐹𝑅𝐻𝑃𝐴 

( 10 ) 
𝑑𝐹𝑅(𝑁)𝐻𝑃𝐴

𝑑𝑡
= 𝑘𝑡 ⋅ 𝐹𝑅𝐻𝑃𝐴 − 𝑘𝑟𝑒 ⋅ 𝐹𝑅(𝑁)𝐻𝑃𝐴 

( 11 ) 
𝑑𝑃𝐻𝑃𝐴
𝑑𝑡

=
1

𝜏
(𝑃 − 𝑃𝐻𝑃𝐴) 

( 12 ) 

2.2.2 Peripheral Compartment 

The peripheral compartment represents a human hepatocyte and captures the 

downstream effects of released cortisol, entrained by the light/dark cycle, and cellular 

energy state, entrained by the feeding schedule, on peripheral clock genes (PCGs) and 

metabolic components.  

The cortisol dynamics from the central compartment dominates the dynamics of 

cortisol in the peripheral compartment. The diffusion of cortisol to the cytoplasm in the 

periphery is modeled as a transit compartment in Equation ( 13 ). Once in the cytoplasm, 

cortisol can bind the mineralocorticoid (MR) and the glucocorticoid (GR) receptors and 

activate them. The dynamics of the cortisol-receptor interactions have been previously 

modeled by our group,32 and parameters used were estimated based on human cortisol 

and cytokine experimental data.54 In Equations ( 14 ) and ( 17 ), we assume that cortisol 

activates either the MR or GR by phosphorylation. The phosphorylation and 

dephosphorylation of the receptors are described with Michaelis-Menten kinetics. In 
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these equations, MRT and GRT represent the total receptor concentrations, where MR 

and GR represent the activated form of the receptors that are already phosphorylated. 

Subsequent terms represent the binding of the receptor with cortisol and the recycled 

receptors. The dynamics of the receptor-ligand complex are described by Equations ( 15 ) 

and ( 18 ), controlled by the binding rate and importation rate into the nucleus. Once the 

cortisol-receptor complex is translocated into the nucleus, the dynamics follow Equations 

( 16 ) and ( 19 ), controlled by the importation rate and recycle rate back to the 

cytoplasm.  

Once the cortisol-MR complex and cortisol-GR complex translocate to the 

nucleus, they exert influence on the dynamics of pro-inflammatory cytokines and the 

PCGs. Equations describing the circadian rhythmicity of pro-inflammatory cytokine and 

its receptor were adapted from previous works by our group.32,36 Although the role of 

pro-inflammatory cytokines was modeled for an immune subsystem previously, the 

influence of cytokines on cortisol dynamics was still implemented for modeling the 

periphery representing a hepatocyte, as shown in Equation ( 7 ). The cytokines were 

adapted based on the justification that liver serves as an immunological organ.55 In 

particular, human hepatocytes express pro-inflammatory cytokines such as interleukin-8 

(IL-8), tumor necrosis factor- α (TNF-α), and growth related (GRO)- α, GRO-β, and 

GRO-γ56 upon bacterial infection, showing that hepatocytes both initiate and amplify 

inflammatory responses. Furthermore, lipopolysaccharide (LPS) induced endotoxic shock 

has been shown to exaggerate the abolition or alteration of circadian rhythms in the liver 
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of animals subjected to chronic jet lag,57 suggesting that mediation of PCGs and cortisol 

by pro-inflammatory cytokines should be included in the model for a liver subsystem.  

It has been well established that cortisol functions as a critical driver for secretion 

of circadian cytokines, such as interferon γ (IFN-γ), interleukin 1 (IL-1), and TNF-α.58 

Furthermore, studies suggest a GR mediated cytokine inhibition, since experimental 

evidence shows that treatment with GR antagonist reduces expression of cytokines.59-62 

The inhibitory activity of the GR and cortisol complex is expressed in Equation ( 20 ). In 

the same equation, the indirect inhibition of BMAL1 is modeled to reflect the diurnal 

rhythms of PCG-mediated pro-inflammatory cytokines. Participation of BMAL1 in the 

cytokine rhythms is supported by Bmal1 mRNA experiments which found that BMAL1 

deficient mice myeloid cells showed exacerbated immune responses and increased 

secretion of cytokines under challenges with endotoxin or bacteria.63-65 After translation, 

cytokines bind to cytokine receptor and form a complex PR, which feeds back to the 

cytokine mRNA due to autocrine effects.66 We simulated the effect of cytokine/cytokine 

receptor complex with an indirect response in Equation ( 20 ). The translation of cytokine 

mRNA is described by Equation ( 21 ). The translated cytokine protein stimulates the 

HPA-axis as previously mentioned, and also indirectly induces the translation of PER-

CRY mRNA, which will be described later. The cortisol-mediated upregulation of 

cytokine receptors was modeled in Equation ( 22 ) as indirect stimulation of the receptor 

mRNA. Equation ( 23 ) describes the translation of cytokine receptor, and Equation ( 24 ) 

represents the dynamics of the cytokine/cytokine receptor complex. 
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While light/dark cycle entrains the PCGs via the cortisol-receptor complex, the 

feeding cycle entrains the PCGs via the NAD+ and SIRT1. The mathematical 

representation of feeding entrainment on the PCGs involves the rhythmic response of 

NAD+ and SIRT1 to feeding and fasting states, which react with multiple components in 

the circadian machinery. The dynamics of NAD+ in the periphery is mainly driven by two 

reactions: 1) reduction to NADH; and 2) the NAD+ salvage pathway. It is suggested that 

while feeding, continuous glycolytic throughput would result in the accumulation of 

NADH, and therefore limit the NAD+ concentration. In contrast, fasting would decrease 

the glycolytic NAD+ demand, resulting in higher NADH oxidation and higher NAD+ 

concentration.67 Therefore, in Equation ( 25 ) which describes the changing concentration 

of NAD+ in the periphery due to food availability and the NAD+ salvage cycle, feeding 

signal (through the transit compartments in Equations ( 2 )-( 3 )) drives the inhibition 

term. The transit compartments for feeding were added to the model based on the 

experimental observations that NAD+ level peaks 5-6 hours after the beginning of the 

active period in rat liver,33 suggesting a delay in feeding signal modifying the redox 

reactions between NAD+ and NADH. The regeneration of NAD+ from NADH by 

oxidation reaction is modeled using Michaelis-Menten kinetics. In Equation ( 25 ), nad 

represents the combined concentration of NAD+ and NADH together; therefore the 

quantity (nad-NAD) represents the concentration of NADH available to be oxidized, and 

the rate of NAD+ regeneration is dependent on it. Aside from NADH oxidation, the 

NAD+ salvage pathway is another way cells generate NAD+, and the reactions are 

modeled using Michaelis-Menten kinetics in Equations ( 25 )-( 27 ). In the salvage 
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pathway, nicotinamide (NAM) is released from NAD+ in ADP-ribose transfer reactions, 

represented as a degradation term in Equation ( 25 ) describing the change in NAD+ 

concentration, and represented as a synthesis term in Equation ( 26 ) describing the 

change in NAM concentration. NAM is converted to nicotinamide mononucleotide 

(NMN) by rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) 

catalyzation. Since the conversion of NAM to NMN is dependent on the availability of 

NAMPT, the synthesis term for NMN is multiplied by the NAMPT concentration in 

Equation ( 27 ). Finally, NMN is converted back to NAD+ by an enzyme called 

nicotinamide mononucleotide adenylyltransferase (NMNAT), completing the cycle of the 

NAD+ salvage pathway. Parameters describing reactions involving NAD+ reduction and 

salvage cycle are estimated to capture the qualitative behaviour of NAD+ and NAMPT 

based on food availability. One of the key features is that NAD+ levels are high during 

fasting and become lower during feeding, but there is a delay of 5-6 hours between 

feeding start time and NAD+ level decline.68 NAMPT tends to peak shortly before the 

time when NAD+ level peaks.69 The estimated parameters ensures that these qualities are 

captured regardless of the presence of conflict between the light/dark cycle and feeding 

cycle. 

NAD+ acts the representative agent that communicates the energy state of the 

periphery to the SCN in our model. As mentioned previously, the electric signaling 

activity of vmARC is regulated by metabolically active hormones such as ghrelin, leptin, 

glucocorticoid, insulin, and their receptors, along with glucose.43-49 Furthermore, tracer 

experiments using fluorophore-conjugated cholera toxin B (CTB) shows that the SCN is 
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one of the sites that are involved in reciprocal communication with the vmARC.50 

Therefore, we hypothesize that information about food availability in the periphery is 

transmitted to the SCN via electric signaling through the vmARC, and lump the hormonal 

and electric signaling activity into one transit compartment in Equation ( 28 ). This transit 

compartment, termed EntF, stimulates cortisol secretion in the HPA axis in the central 

compartment, in Equation ( 7 ). The parameters in Equation ( 7 ) were estimated to 

produce the food-anticipatory rise of cortisol upon food availability dis-synchronized to 

light. 51 

NAD+ is also the activating agent of SIRT1. It is well established that NAD+ 

activates SIRT1 by directly binding and altering the conformation of the catalytic site to 

allow binding of substrates, as the crystal structure of SIRT1 are in the active 

conformation.70,71 Furthermore, SIRT1 is an attractive candidate to study in the context of 

metabolic diseases, both experimentally and in silico because multiple inhibitors and 

activators, such as indoles/indole derivatives72 and resveratrol73 were studied as possible 

therapeutics for cancer, obesity, and aging-related heart diseases.74 The stimulating effect 

of NAD+ on SIRT1 is modeled in Equation ( 29 ), using Mechaelis-Menten kinetics. The 

constant sirtT represents the total concentration of SIRT1 protein, both in the inactive 

conformation and the NAD+ bound active conformation, and SIRT1 represents the 

activated SIRT1 enzyme. The production rate of active SIRT1 is dependent on the 

concentration of inactive SIRT1 protein availability as well as the activator (NAD+) 

concentration. We model the dynamics of active SIRT1 in this manner because 

experimental evidence suggests that the total SIRT1 protein concentration stays relatively 
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constant while the enzymatic activity level oscillates with a circadian rhythm.2 Estimation 

of parameters for Equation ( 29 ) captures that SIRT1 level peaks ~3 hours post the first 

food availability based on mouse liver data.2  

So far, the environmental cues entrain the periphery through two different 

channels. The light/dark cycle entrains the cortisol rhythms in the central compartment 

through the HPA axis, which drives the dynamic of cortisol-receptor complex in the 

periphery. The feeding cycle entrains the dynamics of NAD+ which communicates the 

cellular energy state to the SCN, and also the SIRT1 protein. The cortisol-receptor 

complex and SIRT1 are the two main entrainers of PCGs that will produce convoluted 

downstream effects, and their entrainment dynamics will be described.  

The entrainment dynamics of the PCGs by cortisol are based on our previous 

work.18 A network of transcriptional and translational feedback loops are incorporated 

into Equations ( 30 )-( 36 ) with important modifications to model the circadian 

rhythmicity of the PCGs, ultimately resulting in autonomous oscillations of the PCGs. 

Although these equations were originally developed for an immune subsystem such as 

macrophages or neutrophils, the rhythmic patterns and mechanism behind the core clock 

machinery involving the PER/CRY complex and CLOCK/BMAL1 complexes are similar 

across different tissues in the body,9-12 and these equations are successful in describing 

the PCG behavior in the liver. The negative and positive feedback loops consisting of the 

two protein complexes have been implemented in mathematical modeling of a hepatocyte 

in another work,75 further confirming that utilization of this mechanism in modeling 

hepatocyte is justified. In Equation ( 30 ), the entrainment of Per and Cry mRNAs by 
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cortisol is taken into account based on the consideration that cortisol and GR complex 

binds to the promotor region of the Per1 and Per2 genes.76 The transcription of the Per 

and Cry genes is stimulated when CLOCK/BMAL1 complex binds to an Ebox enhancer. 

Additionally, translated PER/CRY protein translocates to the nucleus and inhibits its own 

translatioinal activity, forming a negative feedback loop. The exponent p to the 

PER/CRY protein in the nucleus in Equation ( 30 ) is a Hill-function coefficient, and is 

utilized to describe the switch-like behavior of the translational activities. The role of pro-

inflammatory cytokines is also incorporated into this equation via indirect response, 

based on studies that show that Per1, Cry1, and Cry2 expressions are induced upon 

treatment with pro-inflammatory cytokines such as IL-6 or TNF-α.77-79 The dynamics of 

PER/CRY protein is represented by Equation ( 31 ) and composes of the complex 

formation rate, degradation rate, and nuclear import and export rates. The PER/CRY 

protein dynamics inside the nucleus is governed by Equation ( 32 ), which is also 

described by the nuclear import/export rate as well as the degradation rate. When inside 

the nucleus, PER/CRY protein can also indirectly induce Bmal1 transcription,80 and this 

relationship was modeled as a Hill equation with a coefficient r in Equation ( 33 ). The 

dynamics of the BMAL1 protein is dependent on translation, degradation, and nuclear 

import/export rates, as shown in Equation ( 34 ). Inside the nucleus, BMAL1(N) binds to 

the CLOCK protein, which is assumed to be in an access of BMAL1(N) in this model. 

The dynamics of BMAL1(N) and the CLOCK/BMAL1 complex are shown in Equations 

( 35 )-( 36 ). 
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The feeding rhythms entrain the PCGs via NAD+ and SIRT1 but the interaction 

between PCGs and NAD+-activated SIRT1 is bidirectional. SIRT1 both exerts influence 

on the rhythms of some clock components while also being under the regulation of them 

at the same time. The activated SIRT1 protein binds to the CLOCK/BMAL1 complex, 

one of the key components that drive the core circadian machinery in the periphery. Once 

it forms the CLOCK/BMAL1/SIRT1 complex, it promotes the expression of NAMPT.81 

As previously mentioned, NAMPT controls the rate of regeneration of NAD+ from the 

NAD+ salvage cycle, the activator of SIRT1. Therefore, SIRT1 self-regulates its 

activation through interacting with core peripheral clock components. The dynamics of 

CLOCK/BMAL1/SIRT1 complex is modeled in Equation ( 37 ). In this equation km8a 

represents the association rate of CLOCK/BMAL1 complex and SIRT1, km8d represents 

the dissociation rate of CLOCK/BMAL1/SIRT1 complex back to CLOCK/BMAL1 and 

SIRT1, and km9d represents the degradation rate of this complex. The regeneration of 

CLOCK/BMAL1 from CLOCK/BMAL1/SIRT1 complex is presents in Equation ( 36 ). 

The dynamics of NAMPT are modeled in Equation ( 38 ), using first order production 

(km10a), and degradation (km10d) terms. Another influence of SIRT1 on the dynamics of 

the PCGs is taking away the availability of CLOCK/BMAL1 complex that promotes the 

expression of PER/CRY. Therefore, accumulation of activated SIRT1 enzyme will inhibit 

the translation of Per/Cry mRNA. SIRT1 affects the rhythm of PER/CRY with its 

deacetylating activity as well. In Equation ( 32 ), SIRT1 indirectly stimulates the 

nucPER/CRY degradation. This modification is introduced because SIRT1 is known to 

facilitate degradation of PER2 protein by deacetylation of PER2.2,82 Supporting 
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experimental evidence also shows abnormally high PER2 accumulation in SIRT1-

deficient mouse embryonic fibroblasts (MEFs).83 Two steps were taken to estimate 

parameters describing interaction between core clock genes and metabolic components. 

First, parameters were optimized for correct phase relations of components relative to 

light under synchronized schedule. For example, it is well established that PER and CRY 

proteins peak in the morning time, or early active phase.52,84,85 Once these conditions 

were met, the parameters were estimated once again at a state in which feeding was anti-

synchronized to light. The new estimation would yield complete inversion of the 

metabolic components and PCGs,51 and decrease in amplitude for PCGs.53 For all 

estimation, PER/CRY protein complex was used as the representative sample for PCGs 

since PER/CRY rhythms are under close influence of both SIRT1 and nuclear cortisol-

receptor complex. 

In summary, our model utilizes SIRT1 as the key molecule that connects the 

cellular energy state resulting from feeding availability to the PCGs, whose rhythms are 

now entrained by signals from both light/dark and feeding/fasting cycles. The dynamics 

of NAD+ (a SIRT1 activator) are modeled to reflect the change in redox reaction from 

feeding as well as the NAD+ salvage cycle that takes input from the circadian dynamics 

from CLOCK/BMAL1 heterodimer. The interaction between SIRT1 and cortisol are also 

captured to reflect adjustments to the cortisol dynamics upon change in feeding schedule, 

introducing a modification to the HPA-axis.  

𝑑𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦

𝑑𝑡
=
1

𝜏
⋅ (𝐹𝐻𝑃𝐴 − 𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦) 

( 13 ) 
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𝑑𝑀𝑅

𝑑𝑡
= 𝑘𝑀𝑅

(

  

(1 +
𝑘𝐹,𝑀𝑅 . 𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦
𝐾𝐹,𝑀𝑅 + 𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦

) (𝑀𝑅𝑇 −𝑀𝑅)

𝐾𝑀𝑅 +𝑀𝑅𝑇 −𝑀𝑅

)

 −             
𝑘𝑀𝑅,𝑑𝑒𝑔. 𝑀𝑅

𝐾𝑀𝑅,𝑑𝑒𝑔 +𝑀𝑅
− 𝑘𝑏,𝑀𝑅. 𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦 . 𝑀𝑅

+              𝑘𝑟𝑒,𝑀𝑅 . 𝐹𝑀𝑅(𝑁) 

( 14 ) 
𝑑𝐹𝑀𝑅

𝑑𝑡
= 𝑘𝑜𝑛,𝑀𝑅𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦 . 𝑀𝑅 − 𝑘𝑡,𝑀𝑅𝐹𝑀𝑅 

( 15 ) 
𝑑𝐹𝑀𝑅(𝑁)

𝑑𝑡
= 𝑘𝑡,𝑀𝑅𝐹𝑀𝑅 − 𝑘𝑟𝑒,𝑀𝑅𝐹𝑀𝑅(𝑁) 

( 16 ) 

𝑑𝐺𝑅

𝑑𝑡
= 𝑘𝐺𝑅

(

 
(1 +

𝑘𝐹,𝐺𝑅 . 𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦
𝐾𝐹,𝐺𝑅 + 𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦

) (𝐺𝑅𝑇 − 𝐺𝑅)

𝐾𝐺𝑅 + 𝐺𝑅𝑇 − 𝐺𝑅

)

 −           
𝑘𝐺𝑅,𝑑𝑒𝑔 . 𝐺𝑅

𝐾𝐺𝑅,𝑑𝑒𝑔 + 𝐺𝑅
− 𝑘𝑏,𝐺𝑅 . 𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦 . 𝐺𝑅

+            𝑘𝑟𝑒,𝐺𝑅 . 𝐹𝐺𝑅(𝑁) 

( 17 ) 
𝑑𝐹𝐺𝑅

𝑑𝑡
= 𝑘𝑜𝑛,𝐺𝑅𝐹𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦 . 𝐺𝑅 − 𝑘𝑇,𝐺𝑅𝐹𝐺𝑅 

( 18 ) 
𝑑𝐹𝐺𝑅(𝑁)

𝑑𝑡
= 𝑘𝑇,𝐺𝑅𝐹𝐺𝑅 − 𝑘𝑟𝑒,𝐺𝑅𝐹𝐺𝑅(𝑁) 

( 19 ) 
𝑑𝑚𝑅𝑁𝐴𝑃

𝑑𝑡
= 𝑘𝑚𝑅𝑁𝐴𝑃𝑖𝑛

(1 −
𝑘𝑓𝑟 . 𝐹𝐺𝑅(𝑁)

𝐾𝑓𝑟 + 𝐹𝐺𝑅(𝑁)
) . (1 −

𝑘𝑝𝑐 . 𝐵𝑀𝐴𝐿1(𝑁)

𝐾𝑝𝑐 + 𝐵𝑀𝐴𝐿1(𝑁)
) . (1 + 𝑃𝑅)

− 𝑘𝑚𝑅𝑁𝐴𝑃𝑜𝑢𝑡  
. (𝑚𝑅𝑁𝐴𝑃) 

( 20 ) 
𝑑𝑃

𝑑𝑡
= 𝑘𝑖𝑛𝑃 . 𝑚𝑅𝑁𝐴𝑃 − 𝑘𝑜𝑢𝑡𝑃 . 𝑃 

( 21 ) 
𝑑𝑚𝑅𝑁𝐴𝑅𝑃

𝑑𝑡
= 𝑘𝑚𝑅𝑁𝐴𝑅𝑃𝑖𝑛

(1 +
𝑘𝑓𝑟2. 𝐹𝑀𝑅(𝑁)

𝐾𝑓𝑟2 + 𝐹𝑀𝑅(𝑁)
) − 𝑘𝑚𝑅𝑁𝐴𝑅𝑝𝑜𝑢𝑡  

. (𝑚𝑅𝑁𝐴𝑅𝑝) 

( 22 ) 
𝑑𝑅𝑝

𝑑𝑡
= 𝑘𝑖𝑛𝑅𝑝 . 𝑚𝑅𝑁𝐴𝑅𝑝 − 𝑘𝑜𝑢𝑡𝑅𝑃

. 𝑅𝑃 − 𝑘𝑑. 𝑃𝑅𝑝 

( 23 ) 
𝑑𝑃𝑅

𝑑𝑡
= 𝑘𝑑. 𝑃𝑅𝑝 − 𝑘𝑜𝑢𝑡𝑃𝑅𝑃 . 𝑃𝑅𝑝 

( 24 ) 
𝑑𝑁𝐴𝐷

𝑑𝑡
=
𝑘𝑚1(𝑛𝑎𝑑 − 𝑁𝐴𝐷)

𝐾𝑚1 + 𝑛𝑎𝑑 − 𝑁𝐴𝐷
+

𝑘𝑚2 ⋅ 𝑁𝑀𝑁

𝐾𝑚2 ⋅ +𝑁𝑀𝑁
−
𝑘𝑚3 ⋅ 𝑓𝑒𝑒𝑑3 ⋅ 𝑁𝐴𝐷

𝐾𝑚3 + 𝑁𝐴𝐷
−
𝑘𝑚4 ⋅ 𝑁𝐴𝐷

𝐾𝑚4 + 𝑁𝐴𝐷
 

( 25 ) 
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𝑑𝑁𝐴𝑀

𝑑𝑡
=
𝑘𝑚4 ⋅ 𝑁𝐴𝐷

𝐾𝑚4 + 𝑁𝐴𝐷
−
𝑘𝑚5 ⋅ 𝑁𝐴𝑀𝑃𝑇 ⋅ 𝑁𝐴𝑀

𝐾𝑚5 + 𝑁𝐴𝑀
 

( 26 ) 
𝑑𝑁𝑀𝑁

𝑑𝑡
=
𝑘𝑚5 ⋅ 𝑁𝐴𝑀𝑃𝑇 ⋅ 𝑁𝐴𝑀

𝐾𝑚5 + 𝑁𝐴𝑀
−

𝑘𝑚2 ⋅ 𝑁𝑀𝑁

𝐾𝑚2 ⋅ +𝑁𝑀𝑁
 

( 27 ) 
dEntF

dt
=
𝑘𝑚11 ⋅ 𝑁𝐴𝐷

𝐾𝑚11 + 𝑁𝐴𝐷
− 𝑘𝑚12 ⋅ 𝐸𝑛𝑡𝐹 

( 28 ) 
𝑑𝑆𝐼𝑅𝑇1

𝑑𝑡
=
𝑘𝑚6 ⋅ 𝑁𝐴𝐷 ⋅ (𝑠𝑖𝑟𝑡𝑇 − 𝑆𝐼𝑅𝑇1)

𝐾𝑚6 + 𝑠𝑖𝑟𝑡𝑇 − 𝑆𝐼𝑅𝑇1
−
𝑘𝑚7 ⋅ 𝑆𝐼𝑅𝑇1

𝐾𝑚7 + 𝑆𝐼𝑅𝑇1
− 𝑘𝑚8𝑎 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1 ⋅ 𝑆𝐼𝑅𝑇1+𝑘𝑚8𝑑

⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1/𝑆𝐼𝑅𝑇1 

( 29 ) 
 

 

𝑑𝑃𝑒𝑟/𝐶𝑟𝑦𝑚𝑅𝑁𝐴
𝑑𝑡

=
𝑣1𝑏(𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1 + 𝑐)

𝑘1𝑏 (1 + (
𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌

𝑘1𝑖
)
𝑝

)

(1 + 𝑘𝑓 . 𝑃) − 𝑘1𝑑 . 𝑃𝑒𝑟/𝐶𝑟𝑦𝑚𝑅𝑁𝐴

+ 𝑘𝑐
𝐹𝐺𝑅(𝑁)

𝐶𝐿𝑂𝐶𝐾 − 𝐵𝑀𝐴𝐿1
 

( 30 ) 
𝑑𝑃𝐸𝑅/𝐶𝑅𝑌

𝑑𝑡
= 𝑘2𝑏 ⋅ 𝑃𝑒𝑟/𝐶𝑟𝑦𝑚𝑅𝑁𝐴

𝑞
− 𝑘2𝑑 ⋅ 𝑃𝐸𝑅/𝐶𝑅𝑌 − 𝑘2𝑡 ⋅ 𝑃𝐸𝑅/𝐶𝑅𝑌 + 𝑘3𝑡 ⋅ 𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌 

( 31 ) 
𝑑𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌

𝑑𝑡
= 𝑘2𝑡 ⋅ 𝑃𝐸𝑅/𝐶𝑅𝑌 − 𝑘3𝑡 ⋅ 𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌 − 𝑘3𝑑 ⋅ 𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌 ⋅ (1 + 𝑆𝐼𝑅𝑇1) 

( 32 ) 
𝑑𝐵𝑚𝑎𝑙1𝑚𝑅𝑁𝐴

𝑑𝑡
=
𝜈4𝑏 ⋅ 𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌

𝑟

𝑘4𝑏
𝑟 + 𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌𝑟

− 𝑘4𝑑 ⋅ 𝐵𝑚𝑎𝑙1𝑚𝑅𝑁𝐴 

( 33 ) 
𝑑𝐵𝑀𝐴𝐿1

𝑑𝑡
= 𝑘5𝑏 ⋅ 𝐵𝑚𝑎𝑙1𝑚𝑅𝑁𝐴 − 𝑘5𝑑 ⋅ 𝐵𝑀𝐴𝐿1 − 𝑘5𝑡 ⋅ 𝐵𝑀𝐴𝐿1 + 𝑘6𝑡 ⋅ 𝑛𝑢𝑐𝐵𝑀𝐴𝐿1 

( 34 ) 
𝑑𝑛𝑢𝑐𝐵𝑀𝐴𝐿1

𝑑𝑡
= 𝑘5𝑡 ⋅ 𝐵𝑀𝐴𝐿1 − 𝑘6𝑡 ⋅ 𝑛𝑢𝑐𝐵𝑀𝐴𝐿1 − 𝑘6𝑑 ⋅ 𝑛𝑢𝑐𝐵𝑀𝐴𝐿1 + 𝑘7𝑎 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1 − 𝑘6𝑎

⋅ 𝑛𝑢𝑐𝐵𝑀𝐴𝐿1 

( 35 ) 
𝑑𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1

𝑑𝑡
= 𝑘6𝑎 ⋅ 𝑛𝑢𝑐𝐵𝑀𝐴𝐿1 − 𝑘7𝑎 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1 − 𝑘7𝑑 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1 − 𝑘𝑚8𝑎
⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1 ⋅ 𝑆𝐼𝑅𝑇1+𝑘𝑚8𝑑 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1/𝑆𝐼𝑅𝑇1 

( 36 ) 
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𝑑𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1/𝑆𝐼𝑅𝑇1

𝑑𝑡
= 𝑘𝑚8𝑎𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1 ⋅ 𝑆𝐼𝑅𝑇1 − 𝑘𝑚8𝑑 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1/𝑆𝐼𝑅𝑇1 − 𝑘𝑚9𝑑
⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1/𝑆𝐼𝑅𝑇1 

( 37 ) 
𝑑𝑁𝐴𝑀𝑃𝑇

𝑑𝑡
= 𝑘𝑚10𝑎𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1/𝑆𝐼𝑅𝑇1 − 𝑘𝑚10𝑑𝑁𝐴𝑀𝑃𝑇 

( 38 ) 

2.2.3 Sensitivity analysis 

A sensitivity analysis was performed on the model to gain insight into the PCG 

dynamics predicted by our model. The analysis was performed under two different 

entrainer conditions, first with light and feeding signals aligned, and next with light and 

feeding signals anti-synchronized. We computed a relative sensitivity coefficient for 

every parameter, using Equation ( 39 ) below. 

 

1

𝑁𝑀
∑

𝑝𝑘
𝑦𝑖𝑗
(
𝜕𝑦

𝜕𝑝𝑘
)
𝑦=𝑦(𝑡𝑖𝑗,𝑝)

𝑁𝑀

𝑗=1

 

( 39 ) 
In the above equation, 

NM = number of measures 

y = state variable whose response is being measured 

pk= parameter to be tested 

Since we are most interested in studying the dynamics of PCGs where both light 

and feeding zeitgebers exert their influence, we used the profile of PER/CRY to calculate 

the sensitivity coefficients. Each parameter was varied by 1% and relative sensitivity 



28 

 

 

 

coefficients for each parameter based on the response variable’s amplitude and phase 

angles were computed.  

2.3 Results 

Our in silico experiments aim to explore the change in dynamics of the peripheral 

clock machinery due to interactions of two independent entrainers, light and feeding. The 

schematics of the model including the HPA axis entrained by light, and the periphery 

representing a hepatocyte entrained by cortisol and feeding are shown in Figure 1. The 

redox reaction between NAD+ and NADH receives the signal from feeding/fasting cycle, 

and the resulting NAD+ dynamics stimulate the activation of SIRT1, which serves as a 

bridge between light and feeding entrainment. SIRT1 then interacts with the PCGs in a 

bidirectional manner, directly and indirectly regulating the rhythms of PER/CRY via 

binding and deacetylation reactions, while being under the influence of CLOCK/BMAL1 

heterocomplex.  

In Figure 2, the time profiles of cortisol (2B), PER/CRY protein (2C), and SIRT1 

(2D) are shown over a period of 24 hours, under synchronized and anti-synchronized 

light and feeding schedules. Figure 2A shows the light and feeding signals under both 

conditions. Light signal was on from 6am to 6pm for both conditions. The feeding signal 

was also on from 6am to 6pm for the synchronized schedule, while the signal was on 

from 6pm to 6am, opposite from the light signal, for the anti-synchronized schedule. 

When feeding is synchronized to light, cortisol, PER/CRY protein, and SIRT1 all peak in 

the morning time, or during the early active period. In contrast, when feeding is anti-
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synchronized to light, PER/CRY and SIRT1 phases are completely inverted, while 

cortisol peak shifts to the beginning of the inactive phase. Additionally, the amplitudes 

for cortisol and PER/CRY oscillations are smaller for the anti-synchronized schedule, 

compared to the synchronized schedule. These features are in qualitative agreement with 

restricted feeding studies performed on mice.86,87 However, the amplitude of active 

SIRT1 does not undergo a change between the synchronized and anti-synchronized 

schedules, responding only in peak time. 

We then explored how constant light signals at varying intensities will affect the 

PCGs under identical feeding signal. Feeding signal was on from 6am to 6pm whereas 

light signal was on for the entire time (Figure 3A). The resulting time profiles for 

cortisol, PER/CRY, and SIRT1 were compared against the light and feeding 

synchronized schedule in Figure 3. The results show that under constant light, cortisol 

(3B) and PER/CRY (3C) oscillate with reduced amplitudes compared to light/dark cycle 

synchronized to feeding. Applying constant light at brighter intensities caused a greater 

reduction of amplitude for cortisol and PER/CRY. This observation is in qualitative 

agreement with experimental observations in mice.88 The phase angles for cortisol and 

PER/CRY were not affected by changing intensities of light. However, SIRT1 

oscillations remained identical when applying different light schedules and intensities and 

exhibited no difference in amplitude or phase.  
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Figure 2: The time profiles of key components throughout the day upon synchronized (black dotted line) and anti-
synchronized (blue line) light and feeding schedules.  Light signal was at 1 from 6am to 6pm, and at 0 for the rest of 
the day. Feeding signals synchronized and anti-synchronized to light are shown in (A). The corresponding cortisol (B), 
PER/CRY protein (C), and SIRT1 (D) profiles are also shown. 

 

Figure 3: Time profiles of key components under constant light schedule at different intensities are compared. Feeding 
signal was at 1 from 6am-6pm, and at 0 for the rest of the day (A). Constant light signals at different intensities are 
also shown in (A), along with a control, in which feeding and light are synchronized. The cortisol (B), PER/CRY protein 
(C), and SIRT1 (D) profiles under the different light intensities are shown. 
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Figure 4: Number of days taken to first reach the steady state phase angle upon feeding inversion at different light 
schedules. L/D is 12-hour light, 12-hour dark cycle. D/D is a 24-hour dim light schedule with an intensity of 0.1. L/L is a 
24-hour light schedule with an intensity of 1.  

Imposing a constant light signal to the system not only results in a diverged PCG 

dynamics from the synchronized light/dark cycle, but also changes the system response 

when feeding signals are inverted. The transition time for feeding inversion under 

constant light conditions were calculated and are shown in Figure 4 along with the 

transition time under light/dark cycle. The transition time is defined as the number of 

days to first reach the steady-state phase relations after feeding inversion. Initially, the 

feeding signal was on from 6am to 6pm, and then switched to be on from 6pm to 6am at 

midnight. The phase angle, or the ew steady-state was first computed, and then each 

day’s phase angle following feeding inversion was compared to the computed steady-

state phase angle to determine when the PER/CRY rhythm first reached the steady-state 

phase angle. As Figure 4 shows, the phase inversion was achieved more quickly with 

constant light conditions at both bright (L/L) and dark (D/D) light intensities, compared 

to the light/dark cycle (L/D).   



32 

 

 

 

 

Figure 5: Amplitude and phase of cortisol (A), PERCRY protein (B), and SIRT1 (C) at various light-feeding phase relations 
(LFPs). Thick lines represent data with 12-hour feeding duration with an amplitude of 1, and thin dashed lines 
represent data with 6-hour feeding duration with an amplitude of 2. 

In Figure 5, we tested the effects of phase relations between light and feeding 

signals under two different feeding durations. Either a 12h-duration feeding signal at an 

amplitude of 1 (represented by thick lines), or a 6h-duration feeding signal at an 

amplitude of 2 (represented by thin dashed lines) were applied with varying start time 

delays relative to light. The amplitudes for feeding signals with different durations were 

set such that the AUC of feeding for a given 24 hour period is identical between the two 

feeding durations tested. From the resulting dynamics, the amplitudes and phase angles 

for cortisol (5A), PER/CRY (5B), and SIRT1 (5C) profiles were shown in compass plots. 

The amplitudes are represented as the lengths of the arrowheads, and phase angles are 

represented as the directions of the arrowheads in the plot. The amplitude change for 

cortisol was observed with changes in phase relations between light and feeding, 

characterized by smaller amplitudes in the first and fourth quadrants compared to second 

and third quadrants. However, feeding duration did not affect the amplitude of cortisol as 

much as the effects caused by feeding delays. The largest percent difference between 

amplitudes caused by feeding duration was 14%, observed at the light-feeding phase 

difference of 20 hours. Compared to this case, the largest percent difference in amplitude 
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due to light-feeding phase difference was 62%, observed between 4 hours and 16 hours 

for the 12h-duration feeding. However, PER/CRY amplitudes were influenced both by 

feeding duration and feeding delays, characterized by the difference in lengths between 

thick solid and thin dashed arrowheads as well as the changing amplitude around the plot. 

For both feeding durations, amplitudes were higher when light-feeding phase difference 

was small (0-4 hours). Amplitudes decreased as phase difference increased, with a 

minimum at 16 hours of phase difference. For all light-feeding phase differences, 

amplitudes were greater for the 6h-duration feeding compared to 12h-duration feeding. 

Furthermore, feeding delays in 6h-duration schedule resulted in phase-jump behavior, 

characterized by irregular angles between each thick arrows. For example, in the 12h-

duration feeding case, the difference in phase angle between 8h and 12h light-feeding 

phase difference is about 100 degrees, whereas that between 16h and 20h difference is 

less than 10 degrees. In contrast, SIRT1 phase angles strictly followed the feeding 

schedules, while amplitudes were identical for each feeding duration. SIRT1 amplitude 

for 6-hour duration was greater than that of the 12h-duration, due to difference in feeding 

signal strength. 



34 

 

 

 

 

Figure 6: Amplitudes of cortisol (A) and PER/CRY (B) proteins are shown at different feeding delay times relative to 
light are shown. 

To explore the effects of feeding duration and phase relative to light in more 

detail, the amplitudes of cortisol and PER/CRY were plotted along an axis of light-

feeding phase difference at 30 minute intervals in Figure 6. A positive value of the light-

feeding phase difference means that feeding signal was started after the start of light 

signal. Therefore, feeding was started at ZT0, ZT0.5, ZT1, ZT1.5, etc.  Feeding duration 

of 12 hours at an amplitude of 1, 6 hours at an amplitude of 2, and 2 hours at an 

amplitude of 6 were tested, keeping the AUC of feeding identical over a 24h period. In 

Figure 6A, we observe that the cortisol amplitude is high when feeding starts shortly after 

light phase, and drops as feeding delay increases. The amplitude is at the maximum value 

when feeding is started at ZT3 for 12h-duration feeding, ZT4 for 6h-duration feeding, 

and ZT6 for 2h-duration feeding. The amplitudes reach the minimum values at feeding 

start time of ZT16 for the 12h-duration feeding, ZT19 for the 6h-duration feeding, and 

ZT23 for the 2h-duration feeding. The feeding delay time at the minimum amplitude is 

offset from the time of complete anti-synchrony between light and feeding, which is at 

ZT12. In Figure 6B, the amplitudes for PER/CRY protein are plotted in the identical 
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manner. The influence of feeding duration is apparent from this plot, as the amplitudes 

for shorter feeding duration is higher than those for longer feeding duration for most of 

the delay times, from ZT1 to ZT19. The PER/CRY protein oscillates with larger 

amplitude when feeding starts early morning, or a few hours before the light period starts. 

The PER/CRY amplitude is at maximum when feeding starts 2 hours before light under 

12h-duration feeding schedule. For 6h-duration feeding, starting feeding at ZT1 gives the 

maximum amplitude, and starting feeding at ZT3 will give maximum amplitude for 2h-

duration feeding. From then, amplitudes decline as feeding delay is increased. Unlike the 

cortisol, there is a range of delay times in which the PER/CRY oscillates at minimum 

amplitude. For example, a feeding start time between ZT7 and ZT17 will cause 

PER/CRY to oscillate at the minimum amplitude. Similar ranges exist for 6h- and 2h-

duration feedings, and the ranges are centered around the delays exhibiting minimum 

correlation coefficients between light and feeding. The slopes leading to and exiting from 

the minimum ranges are asymmetric and can be characterized by a slow decline of 

amplitude and quick recovery of amplitude with increasing feeding delays. 
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Figure 7: Sensitivity coefficients for PER/CRY protein under synchronized and anti-synchronized light and feeding 
signals. Sensitivity coefficients were calculated based on PER/CRY amplitude and phase angles. 

Sensitivity coefficients for PER/CRY protein amplitude and phase were computed 

using Equation ( 39 ), once with synchronized light and feeding signals and another time 

with anti-synchronized light and feeding signals. In Figure 7, the parameters with 5 

largest sensitivity coefficient for each condition based on PER/CRY amplitude were 

selected, and their sensitivity coefficients under both conditions are shown. When light 

and feeding signals were synchronized, the most sensitive parameters were kp1, Kp1, Kp2, 

Vd3, and k4b. Among these parameters, the first four are associated with the Goodwin 

oscillator in the HPA axis. Last parameter k4b is the Michaelis constant for Bmal1 

transcription. When light and feeding signals are anti-synchronized, km1, km3, km6, km7, 

and nad appear to be most sensitive to perturbations. Among these parameters, km1, km3, 

and nad are associated with the dynamics of NAD+ concentration in the periphery. The 

other two parameters, km6 and km7, describe the dynamics of activated SIRT1. Finally, the 

amplitude of PER/CRY protein was more sensitive than phase angle when the parameters 
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were perturbed, under both synchronized and anti-synchronized light and feeding 

conditions.  

2.4 Discussion 

The role of circadian rhythms on metabolic activity has been well established in 

mammals. Maintaining homeostasis of plasma glucose level throughout the day is 

extremely important for mammals since insufficient or excessive glucose levels can have 

detrimental effects on key biological functions such as neuronal activity and balancing of 

body fluid and electrolytes.89 Important metabolic pathways that contribute to steady 

glucose level, such as gluconeogenesis and glycogen metabolism, are linked to proper 

functioning of the peripheral clock machinery.21,22 Lipid metabolism has also shown to 

exhibit circadian activities90 while also being regulated by BMAL1,91 a core component 

of the feedback loop that creates circadian rhythms. Therefore, it is not surprising that 

circadian disruption can result in metabolic syndrome6 or that animals with metabolic 

syndromes exhibit attenuated circadian rhythms in the periphery.92 Although the 

metabolic implications from circadian disruption may manifest through multiple 

unknown mechanisms, there are some distinguishing effects on the clock genes upon 

changes in meal timing. One of the common and well-established observations is that 

restricting food access to the animals’ rest period can re-entrain the circadian rhythms in 

the periphery to be synchronized to the feeding schedule, uncoupling the rhythms of the 

periphery from the central clock in the SCN. More specifically, when mice with 

pancreatic adenocarcinoma had 4 hours of access to food during the light period, PER2 

and BMAL1 peaks were advanced by 8 hours.93 In another study, diurnal fed mice 
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showed completely inverted expression of D-site binding mRNA and protein responsible 

for some clock output genes.94 Furthermore, the phase inversion in the periphery is 

achieved whether the animals are subject to a 12-hour light, 12-hour dark (LD) cycle, or a 

constant dark (DD) schedule. When feeding time was advanced by 7 hours in mice, the 

peaks for Per1 and Per2 mRNA, D-site-binding protein, and Cyp7A mRNA in the liver 

were advanced by 6-12 hours.53 

As Figure 2 shows, our model predicts that cortisol peak will be pushed to the 

beginning of the feeding time. At the same time, PER/CRY protein rhythms will 

completely invert upon feeding inversion, re-entraining to the new feeding schedule.  The 

peak was shifted from early active phase to early rest phase, consistent with the literature 

data. A loss of amplitude is also observed for the PER/CRY rhythms, also consistent with 

findings that feeding exclusively during rest phase results in reduced oscillations for 

PER2.53 The complete re-entrainment of PER/CRY rhythms to feeding is achieved 

through two major channels in our model. First, feeding-entrained NAD+ affects the 

synthesis of cortisol through a transit compartment, EntF. As a result, cortisol exhibits an 

altered rhythmic pattern (Figure 2B), peaking near the feeding start time. The peak-delay 

behavior is reflective of the food-anticipatory rise in glucocorticoid levels in mice 

subjected to altered feeding schedules.95 Unlike PER/CRY, cortisol rhythm is not 

completely shifted by 12 hours because it is strongly entrained by the light signal in the 

HPA axis. Light negatively regulates the CRH, which promotes ACTH, which in turn 

stimulates the release of cortisol. The cortisol-receptor complex promotes the expression 

of PER/CRY with the delayed rhythm, pushing the peak location of PER/CRY back. 
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However, altered cortisol profile alone cannot explain the complete 12h phase shift of 

PER/CRY, since the cortisol peak was not shifted by 12 hours. The complete phase 

inversion is achieved by the re-entrainment of CLOCK/BMAL1 heterocomplex by 

SIRT1. In our model, SIRT1 binds to CLOCK/BMAL1 to form CLOCK/BMAL1/SIRT1 

complex, which serves as a transcription factor for NAMPT. Therefore, SIRT1 depletes 

the pool of CLOCK/BMAL1 complex and delays the peak time. Since CLOCK/BMAL1 

promotes the transcription of Per/Cry genes, the peak time of PER/CRY protein is further 

delayed and achieves a complete 12h inversion.  

We hypothesized that imposing a constant light condition will result in attenuated 

amplitudes for cortisol and PER/CRY rhythms, while improving the transition time 

between feeding rhythm changes. As Figure 3 shows, we confirmed that constant light 

signals result in reduced amplitudes for cortisol and PER/CRY rhythms. However, SIRT1 

amplitude or phase was unaffected by the light intensity, because it is tightly controlled 

by the feeding-entrained NAD+. While all constant light at all intensities result in lower 

amplitude oscillations for cortisol and PCGs, the intensity of the constant light signal 

affects their dynamics. Higher light intensity, or bright light, attenuates the oscillation 

amplitude more than dim light. This prediction agrees with experimental findings in 

mice.88 Light signal entrains the cortisol by facilitating the degradation of CRH in 

Equation ( 5 ). Brighter light will result in greater degradation of CRH, which yields 

lower production of ACTH and therefore less cortisol (Figure 3B). Since the PCGs are 

entrained by cortisol in the periphery, the PER/CRY amplitude is reduced more under 

bright light in return. Imposing constant light signal also alters the transition time of the 
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PCGs upon feeding inversion. As Figure 4 shows, the PCGs adjust to the new feeding 

pattern more quickly under constant light condition than a 12h light, 12h dark cycle. This 

model behavior is consistent with the experiment that in mice carrying glucocorticoid 

receptor null alleles exclusively in the hepatocytes, the PCGs in the liver entrain much 

faster to the feeding regimen compared to the wild-type mice.95 Since cortisol and 

cortisol receptor interaction is essential in entraining the PCGs by light, we rationalize 

that removing the light schedule creates a similar environment in silico, and observe that 

faster entrainment to feeding is achieved under constant light conditions. In our model, 

transition time is faster under constant light because the light/dark cycle acts as a 

conflicting entrainer and inhibits the transition to the feeding regimen. 

In Figure 5, our model predicts that restricting feeding to a few hours during the 

active period results in higher amplitude oscillations for the peripheral clock machinery. 

In this figure, two different feeding durations (12h and 6h) with identical AUC over a 

given 24h period were tested at varying start times relative to light. The PER/CRY 

amplitudes are the highest when a 6h-duration feeding is started at ZT0 and ZT4 (Figure 

5B). The prediction is in qualitative agreement with animal studies. When a mouse model 

of diet-induced obesity was subjected to 8h restricted feeding during the active phase, 

Per2 and Bmal1 mRNA oscillations were enhanced with increased amplitudes, for both 

high-fat-content and normal diets.96 The increase in amplitude with shorter feeding 

duration is most likely due to the increased amplitude in the oscillation of SIRT1. If the 

feeding duration is shortened, the intensity of feeding signal has to be higher to 

compensate for the short duration and provide identical AUC of feeding to the system. 
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Since SIRT1 is directly activated by NAD+ which is closely tied to feeding signals, 

SIRT1 amplitude also increases under shorter feeding duration, as shown in Figure 5C. 

Then, the SIRT1 dynamics will affect PER/CRY rhythms by facilitating the degradation 

rate inside the nucleus, eventually decreasing the protein’s self-inhibitory effect on its 

own transcription rate (Equation ( 30 )). In addition to the feeding duration, feeding start 

time relative to light also affects the amplitude of PER/CRY oscillation. For 12h feeding 

duration, starting feeding between ZT8 and ZT16 resulted in low amplitude oscillations, 

while feeding start time of ZT12 to ZT20 resulted in low amplitude oscillations for 6h-

duration feeding. The light-feeding phase differences that yields low amplitude 

PER/CRY oscillations also result in lower amplitude oscillations for cortisol (Figure 5A). 

This phenomenon is due to that light and feeding both exert influence on cortisol, much 

like PER/CRY, although the light entrainment is much stronger in cortisol secreted from 

the HPA axis. We also observe from Figure 5 that phase angles progress through the 

feeding start time in different ways for cortisol, PER/CRY, and SIRT1. The irregularities 

in phase angles is expected since amplitude death in coupled limit-cycle oscillators are 

associated with phase-flip behavior,97 where the phase angle between the two oscillators, 

or the difference in acrophases, suddenly increases at a threshold difference between the 

external entrainers. SIRT1’s phase angles over the varying feeding start times are evenly 

spaced, because it is mainly entrained by the feeding signal alone. However, PER/CRY 

and cortisol phase angles progress through the feeding start times at varying angles, since 

they are coupled to both light and phase signals entering externally.  
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In Figure 6, the amplitudes for cortisol and PER/CRY through the varying feeding 

start times are shown in more detail, to identify which light-phase phase relations would 

yield the highest and lowest amplitude oscillations. Simulation of the model was 

performed at 30 minute intervals at three different feeding durations (12 hours, 6 hours, 

and 2 hours). The amplitudes of the feeding signals were adjusted to match the AUC of 

feeding signal over a 24h period. From Figure 6A, cortisol oscillation amplitudes exhibit 

identical trends among the three feeding durations where they are initially high when 

feeding starts soon after the light starting time, decline slowly to reach a minimum, and 

then recover to the maximum amplitude quickly. However, the specific feeding start time 

that gives the maximum and minimum amplitudes are different for every feeding 

duration. For example, under 12h feeding duration condition, the maximum amplitude is 

reached at feeding start time of ZT3 and the minimum is reached at ZT16. But these are 

not the times that give maximum and minimum amplitudes for 6h or 2h feeding 

durations. Interestingly, 12h delay, or complete inversion between light and feeding, does 

not result in the most reduced oscillation of cortisol. Such asymmetry is observed for 

PER/CRY amplitude profiles (Figure 6B), but manifested in a different way. Our model 

predicts that there is a range of feeding start times where PER/CRY amplitudes are also 

at a minimum value for each feeding duration. For the 12h duration, this minimum range 

is centered around feeding start time at ZT12. However, the slope of the amplitude 

profiles before and after the minimum values are asymmetric. The amplitude slowly 

declines to the minimum, and then recovers fast to reach the maximum either at the end 

of the dark period or the beginning of the light period. Considering the characteristics of 
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PER/CRY and cortisol together, these results suggest that starting to eat earlier in the day 

will give more robust circadian rhythms in the periphery than starting to eat later in the 

day. The model prediction is consistent not only with the common belief that late-night 

snacks are disadvantageous for the health, but also with studies where distributing more 

calories to breakfast resulted in more weight loss under the same caloric intake.98 

Furthermore, amplitude death in coupled limit-cycle oscillators are associated with 

phase-flip behaviour,97 where the phase angle between the two oscillators suddenly 

increases at a threshold difference between the external entrainers. In a symmetric 

system, where the entrainer strength and the coupling strength between the two 

oscillators are identical, the phase-flip is centered around 12h delay between the 

entrainers, provided that the oscillations have a 24h period.99 However, the timing of 

phase-flip moves when either the relative strengths of entrainers or the coupling strengths 

are asymmetric. Integrating these observations, the offset of the minimum cortisol 

amplitude and asymmetric PER/CRY profile may suggest that our model is an 

asymmetric system whose entraining strengths of light and feeding are transmitted to the 

PCGs with different efficiencies. Since the PCGs eventually entrain to the feeding cycle 

and cortisol peak is phase delayed by 7-8 hours upon a 12h feeding inversion, feeding 

signals have a greater impact on the downstream events than the light entrainment on the 

PCGs. 

The sensitivity analysis reveals that different sets of parameters have highest 

sensitivity coefficients under synchronized and anti-synchronized light and feeding 

signals. When the two external signals are synchronized, parameters associated with the 
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Goodwin oscillator describing the production of cortisol in the HPA axis have the highest 

sensitivity coefficients, as shown in Figure 7. These parameters include kp1 and Kp1, each 

describing the CRH production and dissociation rates, Kp2 which estimates dissociation 

rate of ACTH, and Vd3, which describe the rate of cortisol degradation. Together these 

parameters affect the dynamics of the light-entrained negative feedback loop in the HPA 

axis (Equations ( 5 )-( 7 )), and it is expected that these parameters are among the most 

sensitive parameters, since the secreted cortisol entrains the downstream peripheral clock 

genes. Parameter k4b, the Michaelis constant of Bmal1 transcription, also has a high 

sensitivity coefficient, likely due to SIRT1 - BMAL1 binding interaction as well as its 

involvement in controlling the dynamics of the pro-inflammatory cytokines. The pro-

inflammatory cytokine dynamics and BMAL1 dynamics both directly affect the 

transcription of Per/CRY, leading to higher sensitivity. When light and feeding are anti-

synchronized, parameters related to feeding entrainment exhibit higher sensitivity 

coefficients. This is likely due to that in the anti-synchronized state, feeding entrainment 

decouples the peripheral clock genes and cortisol from the Goodwin oscillator from the 

HAP axis, exerting more influence on the downstream events. Parameters km1, km3, km6, 

km7, and nad appear to be most sensitive to perturbations. Among these parameters, km1, 

km3, and nad are associated with the dynamics of NAD+ concentration in the periphery. 

Parameter km1 is the maximum extend of NADH converting to NAD+, and km3 describes 

the same for NAD+ converting to NADH upon feeding. The combined concentration of 

NAD+ and NADH is parameter nad. The other two parameters, km6 and km7, describe the 

dynamics of activated SIRT1. They each describe the maximum extent of SIRT1 
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activation mediated by NAD+, and maximum extent of SIRT1 degradation. SIRT1 is one 

of the key components in our model, since it delivers the feeding signal to the peripheral 

clock machinery. Therefore, the sensitivity caused by SIRT1 is due to multiple 

interactions SIRT1 has with the PCGs. One of the ways in which SIRT1 interacts with 

the PCGs is by binding to the CLOCK/BMAL1 complex to form the 

CLOCK/BMAL1/SIRT1 complex, which drives the expression of NAMPT. Meanwhile, 

the CLOCK/BMAL1 complex is involved in the promotion of PER and CRY expression. 

Additionally, the amplitude of the PCGs appears to be more sensitive than the phase 

angle of the PCGs, indicating that the phase relations achieved by the two entrainers, 

light and feeding, are robust, while the oscillatory strength can change due to 

perturbations to the parameters. 

In summary, our model qualitatively captures the key features of feeding-entrained 

peripheral clock machinery. Through the simulations, we could relate the robust circadian 

rhythms under short duration feeding in active phase to the higher amplitude oscillation 

of SIRT1, due to strong but short feeding signal. Our prediction suggests that controlling 

the dynamics of SIRT1 may be helpful in restoring or strengthening the oscillations of the 

peripheral clock machinery, also supported by a study on methylselenocystein (MSC), 

where restored NAD+ oscillations and enhanced SIRT1 activity resulted in restoration of 

circadian rhythms of rat mammary tumor model.100 Our model also predicts that the 

phase relation between light and feeding plays an important role in determining the 

oscillation amplitude for the PCGs, highlighting the need to study the metabolic 

implications caused by the interplay between these two environmental cues. Furthermore, 
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analysis of the model suggests that the reason best feeding time lies earlier in the active 

phase may be due to the asymmetry between the efficiencies of light and feeding 

entrainment of the PCGs. Future work could involve studying further downstream 

metabolic activities such as hepatic gluconeogenesis and lipogenesis to explore the 

changing dynamics of energy homeostasis in relation to other metabolic genes such as 

mTOR and AMPK under circadian disruption. Clearly a number of issues remain to be 

further examined, including but not limited to, assessing the impact of nutritional 

composition as well as multiple patterns of metabolic rhythms, such as simulating 

multiple meals etc. A limitation of the model is that the role of melatonin is not 

incorporated, although this important SCN-entrained hormone appears to have an 

influence over glucose metabolism by regulating insulin secretion and protecting against 

reactive oxygen species.101 

CHAPTER 3: Dynamics of hepatic gluconeogenesis 

under conflicting zeitgebers 

3.1 Introduction 

Gluconeogenesis takes place in the liver for mammals to synthesize glucose from 

non-carbohydrate sources such as pyruvate, lactate, glycerol, alanine, and glutamine.20 

Although a chain of many reactions are required for the full process, observing key 

enzymes such as PEPCK and G6Pase can provide an insight into the link between 

circadian rhythms and gluconeogenesis. Glucose homeostasis and gluconeogenesis has 

been linked to dynamics of circadian genes through core clock gene knock-out 
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experiments. In a mouse study in which liver-specific Bmal1 knock-out was introduced, 

the animals showed altered rhythms for gluconeogenic genes.21 The altered rhythms 

resulted in lower level of glucose during the late fasting phase for the knock-out animals 

compared to the control animals. The expression level of Cry1 and Cry2 proteins in the 

liver had an effect on the glucose level in another study.22 Clock knock-out studies were 

performed by various groups as well, although the effects on glucose levels are 

conflicting depending on the enironmental and experimental factors.23 SIRT1 and cortisol 

both promote the transcription of gluconeogenic genes. SIRT1 deacetylates PGC-1α, 

which then activates FOXO1. FOXO1 physically binds to the promotor region of the 

gluconeogenic gene and is required for transcription. Cortisol and the cortisol receptor 

complex binds to the GRE on the promotor of the gluconeogenic gene to promote 

transcription as well. In summary, the transcription of gluconeogenic genes are dependent 

on the levels of peripheral clock components and molecules that entrain the PCGs such as 

cortisol and SIRT1. Therefore, it is anticipated that environmental cues that influence the 

dynamics of the PCGs can also alter the gluconeogenic patterns. 

To that end, we developed a semi-mechanistic, mathematical model to study the 

intertwined network of circadian clocks and metabolism, focusing on hepatic 

gluconeogenesis as the circadian modulated metabolic activity. Although we recognize 

that alteration or Pck1 and G6pc expression may not be enough to describe changes in 

gluconeogenesis, we use the transcription of these two genes to represent hepatic 

gluconeogenesis as alterations in expression leads to changes in enzymatic activity 102. 

During long-term fasting (>6 hours), SIRT1 activity results in increased transcription of 
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these two genes. SIRT1-mediated deacetylation activates PPARγ-coactivator α (PGC-1α) 

and Forkhead box O1 (FOXO1) 28. These two proteins, along with hepatic nuclear factor-

4α (HNF-4α), are required for transcription of gluconeogenic genes 31. Furthermore, it is 

well established that serum cortisol level increases gluconeogenesis in humans 24. When a 

high dose of cortisol is administered to overnight fasted dogs and increase the serum 

cortisol level, both the blood glucose level and glucose production elevate, where more 

than 65% of the increase in glucose production is due to gluconeogenesis 25. This 

phenomenon is consistent in ex vivo studies, where cortisol doubled the net 

gluconeogenesis in fetal rat liver explants 103. 

Based on the aforementioned observations, we propose a mathematical model that 

describes the interactions among various signaling molecules such as cortisol, SIRT1, 

PGC-1α, and their influence on hepatic gluconeogenesis, to study the effects of light and 

feeding cycles on circadian dynamics of the peripheral metabolism. We validate the 

model by generating predictions under various combinations of feeding and light patterns 

and comparing them to known behaviors under ad libitum feeding and time-restricted 

feeding conditions.  Then, we utilized the model to test the effects of circadian disruption 

on transcription of gluconeogenic genes and to investigate various non-pharmacological 

methods to overcome the effects of circadian disruption. We first perturb the model by 

simulating a knockout (KO) condition for the peripheral clocks, then tested if a change in 

the feeding pattern can alter the effect of knockout Recognizing that the model is 

composed of a complex network of regulations involving transcription and translation, 

we analyze the model using three different approaches: local sensitivity analysis, global 
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sensitivity analysis using the Morris method, and uncertainty analysis using the random-

sampling high dimensional model representations (RS-HDMR). From the sensitivity 

analysis results, we identify local targets that can overcome the effects of genetic clock 

knockout. Our model predicts that abnormally high level of fasting gluconeogenesis 

caused by Clock gene can be brought down to the wild type level by changing the feeding 

time relative to the light/dark cycle. Furthermore, the three different methods of 

sensitivity analysis consistently show that the dynamics of peripheral clocks (PER/CRY 

complex), cortisol-receptor complex, and PGC-1α are the most influential in rhythmic 

expression of gluconeogenic genes. 
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3.2 Methods 

 

Figure 8: Schematic of the model depicting gluconeogenesis entrained to light and feeding. 
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We developed a mathematical model that represents a sequence of events 

describing the circadian dynamics of clock genes and metabolic activities in a human 

hepatocyte to study the manifestation of two external stimuli, the light/dark cycle and 

feeding/fasting cycle. The model was built upon our previous works 18,32,104 and is 

composed of a central compartment that receives and processes the environmental cues, 

and a peripheral compartment that encompasses the core clock machinery and metabolic 

gene expression. Only the essential parts of the model directly relevant to gluconeogenic 

gene expression is described in this section. A complete schematic showing the major 

driving forces for gluconeogenic gene expression is shown in Figure 8. A working 

version of the model is deposited in a Git Hub repository: 

https://github.com/AndroulakisGrp/SB_Gluconeogenesis. 

3.3 Incorporation of environmental signals 

The photic input from the light/dark cycle is received and processed by the HPA-

axis, and entrains the daily rhythms of cortisol release to the periphery 18,32. The 

light/dark cycle is modeled as a step function in our model as shown in Equation ( 40 ), 

much like earlier studies incorporating a similar zeitgeber 18,36,104,105. In the HPA-axis, 

CRH, ACTH, and cortisol are modeled with a Goodwin oscillator modified with 

Michaelis-Menten kinetics with self-sustained oscillations, entrained by the light/dark 

cycle. Equations ( 41 )-( 43 ) represent the HPA-axis activity where light-regulated CRH 

induces secretion of ACTH in the anterior lobe of the pituitary gland, and ACTH acts on 

the adrenal cortex to produce cortisol. Cortisol then exerts negative regulatory effect on 

CRH and ACTH, completing the negative feedback loop. The rationale for including the 

https://github.com/AndroulakisGrp/SB_Gluconeogenesis
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pro-inflammatory cytokines (PHPA) as well as the secretion of cortisol to the periphery, 

cortisol’s entraining actions on PCGs, and the cortisol receptor (FR(N)HPA) dynamics are 

described in detail in our previous work 104. Estimated parameter values are reported in 

Table A2 in the appendix. 

The feed/fasting cycle is represented as a step function in Equation ( 44 ), similarly 

to the light/dark cycle. Feeding signal is processed through two transit compartments 

shown in Equations ( 45 )and ( 46 ), each with a delay (τf) of 3 hours, eventually 

controlling the NAD+ oscillations in the periphery by modifying the redox relations and 

changing the cellular NAD+/NADH ratio. The purpose of the transit compartment in the 

model is to reflect the experimental observation that peak of NAD+ level occurs 5-6 hours 

after the beginning of the active phase in rat liver 33. The dynamics of NAD+ level is 

governed by Equation ( 47 ). In the first term of this equation, nad represents the sum of 

NAD+ and NADH amount; therefore the quantity (nad-NAD) represents the NADH 

available for conversion to NAD+. The second term of  Equation ( 47 ) represents the 

NAD+ amount recovered from the NAD+ salvage cycle. In this term, NMN represents the 

nicotinamide mononucleotide, the precursor to NAD+ in the salvage cycle. The third term 

incorporates the effect of nutrient availability to the NAD+ dynamics, and the fourth term 

represents NAD+ lost due to entering the salvage pathway. Equation ( 48 ) describes the 

activation of SIRT1 by coenzyme NAD+ 106. In this equation, sirtT represents the total 

(active and inactive) amount of SIRT1 available in the cell; therefore the quantity (sirtT-

SIRT1) indicates the availability of inactive SIRT1 to be activated by NAD+. This term 

was constructed because the protein concentration stays constant throughout the day 
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while its activity level fluctuates 2. The second term of this equation represents the 

degradation, and the third and fourth terms describe the binding of SIRT1 to the 

CLOCK/BMAL1 complex, which is a critical component in the peripheral clock 

machinery. The details for bi-directional interaction between SIRT1 and clock genes, as 

well as the description of peripheral clock network of the model, are available in our 

previous work 104 and the repository.  

𝑙𝑖𝑔ℎ𝑡 = {
1, 6𝐴𝑀 ≤ 𝑡 < 6𝑃 
0, 6𝑃𝑀 ≤ 𝑡 < 6𝐴𝑀 

 

( 40 ) 

𝑑𝐶𝑅𝐻

𝑑𝑡
=

𝑘𝑝1

𝐾𝑝1 + 𝐹𝑅(𝑁)𝐻𝑃𝐴
− 𝑉𝑑1 ⋅

𝐶𝑅𝐻 ⋅ (1 +
𝑙𝑖𝑔ℎ𝑡

1 + 𝑙𝑖𝑔ℎ𝑡
)

𝐾𝑑1 + 𝐶𝑅𝐻
 

( 41 ) 

𝑑𝐴𝐶𝑇𝐻

𝑑𝑡
=

𝑘𝑝2 ⋅ 𝐶𝑅𝐻

𝐾𝑝2 + 𝐹𝑅(𝑁)𝐻𝑃𝐴
(1 + 𝑘𝑓𝑝 ⋅ 𝑃𝐻𝑃𝐴) − 𝑉𝑑2 ⋅

𝐴𝐶𝑇𝐻

𝐾𝑑2 + 𝐴𝐶𝑇𝐻
 

( 42 ) 

𝑑𝐹𝐻𝑃𝐴
𝑑𝑡

= 𝑘𝑝3 ⋅ 𝐴𝐶𝑇𝐻 ⋅ (1 + 𝑘𝑓𝑝 ⋅ 𝑃𝐻𝑃𝐴) ⋅ 𝑘𝑛 ⋅ (1 +
𝐸𝑛𝑡𝐹

1 + 𝐸𝑛𝑡𝐹
) − 𝑉𝑑3 ⋅

𝐹𝐻𝑃𝐴
𝐾𝑑3 + 𝐹𝐻𝑃𝐴

 

( 43 ) 

𝑓𝑒𝑒𝑑 = {
1, 6𝐴𝑀 ≤ 𝑡 < 6𝑃𝑀 
0, 6𝑃𝑀 ≤ 𝑡 < 6𝐴𝑀 

 

( 44 ) 

𝑑𝑓𝑒𝑒𝑑2

𝑑𝑡
=
1

𝜏𝑓
(𝑓𝑒𝑒𝑑 − 𝑓𝑒𝑒𝑑2) 

( 45 ) 
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𝑑𝑓𝑒𝑒𝑑3

𝑑𝑡
=
1

𝜏𝑓
(𝑓𝑒𝑒𝑑2 − 𝑓𝑒𝑒𝑑3) 

( 46 ) 

𝑑𝑁𝐴𝐷

𝑑𝑡
=
𝑘𝑚1(𝑛𝑎𝑑 − 𝑁𝐴𝐷)

𝐾𝑚1 + 𝑛𝑎𝑑 − 𝑁𝐴𝐷
+

𝑘𝑚2 ⋅ 𝑁𝑀𝑁

𝐾𝑚2 ⋅ +𝑁𝑀𝑁
−
𝑘𝑚3 ⋅ 𝑓𝑒𝑒𝑑3 ⋅ 𝑁𝐴𝐷

𝐾𝑚3 + 𝑁𝐴𝐷
−
𝑘𝑚4 ⋅ 𝑁𝐴𝐷

𝐾𝑚4 + 𝑁𝐴𝐷
 

( 47 ) 

𝑑𝑆𝐼𝑅𝑇1

𝑑𝑡
=
𝑘𝑚6 ⋅ 𝑁𝐴𝐷 ⋅ (𝑠𝑖𝑟𝑡𝑇 − 𝑆𝐼𝑅𝑇1)

𝐾𝑚6 + 𝑠𝑖𝑟𝑡𝑇 − 𝑆𝐼𝑅𝑇1
−
𝑘𝑚7 ⋅ 𝑆𝐼𝑅𝑇1

𝐾𝑚7 + 𝑆𝐼𝑅𝑇1
− 𝑘𝑚8𝑎 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1

⋅ 𝑆𝐼𝑅𝑇1+𝑘𝑚8𝑑 ⋅ 𝐶𝐿𝑂𝐶𝐾/𝐵𝑀𝐴𝐿1/𝑆𝐼𝑅𝑇1 

( 48 ) 

3.4 Expression of gluconeogenic genes 

In our model PGC-1α is a key molecule that incorporates the effects of feeding to 

the transcription of gluconeogenic genes such as Pck1 and G6pc. PGC-1α is involved in 

regulation of multiple aspects of biological programs, and its function differs in the 

cellular context. In mitochondria, it stimulates oxidative metabolism in brown fat and 

skeletal muscles 107. It is also involved in cytokine or LPS induced increase in respiration 

and expression of genes associated with mitochondrial uncoupling and energy 

expenditure 108. Since glucose uptake is influenced by the rates of mitochondrial 

oxidation 109, PGC-1α is expected to play a significant role in glucose homeostasis. 

Indeed, diabetic mice show an enhanced activity of PGC-1α, contributing to the increased 

hepatic glucose output associated with diabetes 28. Studies show that PGC-1α expression 

in liver is increased under fasting condition 31,110. Moreover, primary hepatocytes infected 

with adenoviruses encoding for PGC-1α stimulated key genes of gluconeogenesis, 

including PEPCK and G6PC (51) 31. Studying the PEPCK promoter structure elucidated 
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to the mechanism of PGC-1α mediated stimulation of gluconeogenic enzyme expression. 

Co-activation of HNF-4α, FOXO1, and glucocorticoid response element (GRE) appear to 

be important in initiating transcription of the Pck1 gene 111. Under long-term fasting (>6 

hours) condition, SIRT1 deacetylates PGC-1α, a coactivator for HNF-4α and FOXO1, to 

drive the expression of gluconeogenic genes 28. PGC-1α binds and co-activates FOXO1 

in a manner inhibited by Akt-mediated phosphorylation. 

We describe the dynamics of PGC-1α in Equations ( 49 )-( 52 ). Equation ( 49 ) 

describes the dynamics of PGC-1α mRNA. Reporter assays show that FOXO1 stimulates 

PEPCK promoter activity by interacting with the insulin response sequences (IRSs) on 

the promoter region, which is reflected as a linear term in Equation ( 49 ). Equation ( 50 ) 

represents the translated PGC-1α protein. The dynamics of PGC-1α protein is dependent 

on the transcription rate (kg3b) of PGC-1α mRNA, degradation rate (kg3d) of the protein, 

and import (kg3t) and export (kg4t) rates to the nucleus. Equation ( 51 ) governs the 

dynamics of PGC-1α once the protein is translocated to the nucleus. Finally, Equation ( 

52 ) represents the SIRT1-activated PGC-1α protein. The binding (kg5) and dissociation 

(kg8d) of SIRT1 as well as the degradation (kg8) of active PGC-1α is modeled in a linear 

manner. Then, the co-activation of FOXO1 and HNF-4α is lumped into a single variable, 

FOXO1, for the purpose of simplicity in Equation ( 53 ). The level of FOXO1 is 

dependent on the activation by PGC-1α (kg9) and deactivation (kg10) of activated FOXO1. 
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The activated FOXO1 binds to a DNA motif upstream of the gluconeogencic genes and 

activates the transcription of these genes 111,112 (Equation ( 54 )).  

Glucocorticoid receptor (GR) is also required along with HNF-4α and PGC-1α for full 

activation of PEPCK promoter, reflected in the first term of Equation ( 54 ). The cortisol-

receptor complex binds to the GRE region in the promoter of the gluconeogenic genes to 

stimulate transcription 111. This binding reaction appears to be under the influence of 

CRY proteins in the nucleus. In a study with mice fibroblasts, Cry 1 and 2 deficiency 

doubled the number of dexamethasone-induced genes, along with glucose intolerance and 

constitutively high levels of circulating corticosterone 27. In the same study, CRY 

antibody experiments revealed that CRY proteins interact with glucocorticoid receptors 

in the liver after ligand stimulation in vivo at night, when glucocorticoids are less 

effective at inducing the expression of Pck1. Together, these observations lead to the 

conclusion that CRY interacts with GR directly on the promoter of Pck1, inhibiting the 

GR and GRE binding interaction. The effect of CRY was incorporated into Equation ( 54 

) in a Hill-type function. 

𝑑𝑃𝐺𝐶1𝛼𝑚𝑅𝑁𝐴
𝑑𝑡

= 𝑘𝑔1 ⋅ (1 + 𝐹𝑂𝑋𝑂1) − 𝑘𝑔2 ⋅ 𝑃𝐺𝐶1𝑎𝑚𝑅𝑁𝐴 

( 49 ) 

𝑑𝑃𝐺𝐶1𝛼

𝑑𝑡
= 𝑘𝑔3𝑏 ⋅ 𝑃𝐺𝐶1𝛼𝑚𝑅𝑁𝐴 − 𝑘𝑔3𝑑 ⋅ 𝑃𝐺𝐶1𝛼 − 𝑘𝑔3𝑡 ⋅ 𝑃𝐺𝐶1𝛼 + 𝑘𝑔4𝑡 ⋅ 𝑃𝐺𝐶1𝛼(𝑁)  

( 50 ) 
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𝑑𝑃𝐺𝐶1𝛼(𝑁)

𝑑𝑡
= 𝑘𝑔3𝑡 ⋅ 𝑃𝐺𝐶1𝛼 − 𝑘𝑔4𝑡𝑃𝐺𝐶1𝛼(𝑁) + 𝑘𝑔8𝑑 ⋅ 𝑃𝐺𝐶1𝛼(𝑁)𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑘𝑔5

⋅ 𝑃𝐺𝐶𝛼(𝑁)𝑎𝑐𝑡𝑖𝑣𝑒 ⋅ 𝑆𝐼𝑅𝑇1 

( 51 ) 

𝑑𝑃𝐺𝐶1𝛼(𝑁)𝑎𝑐𝑡𝑖𝑣𝑒
𝑑𝑡

= 𝑘𝑔5 ⋅ 𝑃𝐺𝐶1𝛼(𝑁) ⋅ (1 + 𝑆𝐼𝑅𝑇1) − 𝑘𝑔8 ⋅ 𝑃𝐺𝐶1𝛼(𝑁)𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑘𝑔8𝑑

⋅ 𝑃𝐺𝐶1𝛼(𝑁)𝑎𝑐𝑡𝑖𝑣𝑒 

( 52 ) 

𝑑𝐹𝑂𝑋𝑂1

𝑑𝑡
= 𝑘𝑔9 ⋅ PGC1𝛼(N)𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑘𝑔10 ⋅ 𝐹𝑂𝑋𝑂1  

( 53 ) 

𝑑𝑃𝑐𝑘1/𝐺6𝑝𝑐𝑚𝑅𝑁𝐴
𝑑𝑡

= kg11 ⋅ 𝐹𝑂𝑋𝑂1 ⋅ 𝐹𝐺𝑅(𝑁)(
1

1 + (
𝑛𝑢𝑐𝑃𝐸𝑅/𝐶𝑅𝑌

𝑘𝑔7
)^𝑠 

) − 𝑘𝑔12

⋅ 𝑃𝑐𝑘1/𝐺6𝑝𝑐𝑚𝑅𝑁𝐴 

( 54 ) 

3.5 Uncertainty and sensitivity analyses 

In a model building process, uncertainty and sensitivity analyses play a very 

important role in quantifying the output variability and describing the relative importance 

of each input in determining the output variability 113. Recognizing that our model 
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involves a complex network of transcription, translation, and cellular reactions, we 

analyzed our model using a series of uncertainty and sensitivity analysis methods: 1) 

local sensitivity analysis, 2) Morris method, and 3) RS-HDMR. Each of the three 

methods has its own strength and weakness and offered different insights into our model. 

Local sensitivity analysis is a one-at-a-time (OAT) method that assess how uncertainty in 

one factor influences the model output while keeping other factors fixed. Although this 

method is quick and straightforward, it fails to capture any interactions among the 

parameters. Morris method is an OAT method and is still computationally efficient, but it 

explores the input design space in such a way that the existence of interaction effects can 

be identified. However, this method does not identify which specific parameter pair 

interact with each other. Finally, HDMR provides the interaction effects of specific pair 

of factors while also giving information about the primary effects. For all three methods, 

analysis was performed under light and feeding synchronized (both signals on 6am-6pm 

at 1) condition for consistency. The amplitude of Pck1/G6pc mRNA was measured as the 

response to gain insight into the influence of various parameters on the dynamics of 

hepatic gluconeogenesis. 

3.5.1 Local Sensitivity Analysis 

The local sensitivity analysis was performed on all 130 parameters of the model. 

The relative sensitivity coefficient for every parameter was calculated using the following 

equation 105: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑝𝑘
𝑦
(
𝜕𝑦

𝜕𝑝𝑘
) 

( 55 ) 

In Equation ( 55 ), 

pk = tested parameter 

y = measured response 

Each parameter was varied by 1% in the positive direction, and the relative local 

sensitivity coefficients for each parameter based on the amplitude of Pck1/G6pc mRNA 

were computed. 

3.5.2 Morris Method 

The Morris method is a computationally effective screening method that identifies 

a few important parameters in models involving many parameters. The method first 

computes elementary effects, or the changes in an output due solely to changes in a 

particular input 114. In the input space, r trajectories are constructed by first generating a 

random starting point, then moving one factor at a time in a random order 115. Once the 

elementary effects are calculated, they are averaged to assess the overall importance of 

the input 115. The elementary effects were calculated for k=112 peripheral parameters 

using the Morris method. The Morris method calculates the elementary effects for each 

factor using the following equation 113: 
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EEi =
𝑌(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 + Δ𝑖, 𝑥𝑖+1 , 𝑥𝑘) − 𝑌(𝑥1, … , 𝑥𝑘)

Δi
 

( 56 ) 

In the above equation, Y is a deterministic function of k input factors 

(parameters). Because each input parameter xi is scaled in the interval [0, 1], the right 

side of the equation is divided by Δi, which is a value in {1/(p - 1),…,1 - 1/(p – 1)}. Here, 

p is the number of levels. The mean (Equation ( 57 )) and variance (Equation ( 58 )) of 

the elementary effects are considered together to determine the ranking of factors in the 

order of importance.  

μi =
1

𝑟
∑𝐸𝐸𝑖

𝑗

𝑟

𝑗=1

 

( 57 ) 

σi
2 =

1

𝑟 − 1
∑(𝐸𝐸𝑖

𝑗
− 𝜇)

2
𝑟

𝑗=1

 

( 58 ) 

Since radial sampling strategy has proved effective for efficiently covering the 

input space, Sobol’s quasi-random numbers 116,117 were used to generate radial sampling 

points between ±20% of the nominal values, adopting from the implementation methods 

presented in 113. The repetition r = 100 was used for analyzing our model. To create the 

samples, Sobol’s quasi-random sequence was generated to populate a matrix of size (r+1, 

2k). Then, the first row of this matrix was removed. The resulting matrix was divided into 
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matrix A (left half), and matrix B (right half), each with a dimension of r x k. Each row in 

matrix A is used as a “base point” for the method, defining the set of inputs for the 

second term of the numerator in Equation ( 56 ). Each row in matrix B is used as an 

“auxiliary point” to constitute the radial design. From matrix A and B, matrix AB
(i) is 

created to achieve the radial design such that for each factor i, ith element of ith row of 

matrix A is replaced with the counterpart of matrix B, as shown in Figure 9. Then each 

row in matrix AB
(i) is the set of input for the first term in the numerator of equation ( 56 ). 

This design yields a computational cost of r(k+1).  

𝐀 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑘
𝑎21 ⋱ ⋮

⋮ ⋱ ⋮
𝑎𝑟1 𝑎𝑟2 ⋯ 𝑎𝑟𝑘

]  𝐁 = [

𝑏11 𝑏12 ⋯ 𝑏1𝑘
𝑏21 ⋱ ⋮

⋮ ⋱ ⋮
𝑏𝑟1 𝑏𝑟2 ⋯ 𝑏𝑟𝑘

]  𝐀𝐁
(𝐢)
= [

𝑎11 𝑏1𝑖 ⋯ 𝑎1𝑘
𝑎21 ⋱ ⋮

⋮ ⋱ ⋮
𝑎𝑟1 𝑏𝑟𝑖 ⋯ 𝑎𝑟𝑘

] 

Figure 9:  Radial design of input factors for Morris method. For each parameter, the ith element of ith row of matrix A 
is replaced with the counterpart of matrix B to constitute the matrix AB(i). 

Using this method, the mean and variance of the elementary effects for the 

peripheral parameters were considered together to sort the factors in the order of 

importance. This resulted in 20 factors exhibiting the mean of elementary effects greater 

than 1.5. These factors were further analyzed using RS-HDMR for both primary and 

interaction effects of input variables in output variance. 

3.5.3 RS-HDMR Uncertainty Analysis 

HDMR is a variance-based method developed by Rabitz and coworkers 118 aimed 

to reduce the computational cost for representing input-output relationships in high-

dimensional systems. We followed the RSHDMR uncertainty analysis method presented 
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in 119 to analyze the 20 selected parameters from sensitivity analysis using the Morris 

Method. The basis for uncertainty analysis using RS-HDMR method is that output f(x) 

can be expressed as a combination of the input x using statistical ANOVA 

decomposition, as Equation ( 59 ) shows. 

f(𝐱) = f0 +∑𝑓𝑖(𝑥𝑖)

𝑛

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

1≤𝑖<𝑗≤𝑛

+⋯+ ∑ 𝑓𝑖1𝑖2…𝑖𝑙(𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑙)

1≤𝑖1<⋯<𝑖𝑙≤𝑛

+⋯

+ 𝑓1…𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) 

( 59 ) 

In Equation ( 59 ),  f0 is a constant representing the mean response to f(x). First order 

component function fi(xi) gives the independent contributions to f(x) by the ith input 

variable acting alone. Second order component function fij(xi,xj) gives the pair correlated 

contribution to f(x) by the input variables xi and xj. The last term contains any residual nth 

order correlated contribution of all input variables. For most real-world applications, 

HDMR expansion to the second order is sufficient, and Equation ( 59 ) reduces to 

Equation ( 60 ). 

f(𝐱) ≈ f0 +∑𝑓𝑖(𝑥𝑖)

𝑛

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗)

1≤𝑖<𝑗≤𝑛

 

( 60 ) 

The variables xi were sampled between ±20% of the nominal values using Sobol’s quasi-

random sequence, and then were rescaled such that 0 ≤ xi ≤ 1 for all I by performing 

transformation of the input variables. Then, the output function f(x) is defined in the unit 

hypercube Kn = {(x1,x2,…,xn)|0 ≤ xi ≤1, i=1,2,…,n}, and the component functions of RS-

HDMR possess the following forms: 
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f0 = ∫ 𝑓(𝒙)𝑑𝒙
𝐾𝑛

 

( 61 ) 

fi(𝑥𝑖) = ∫ 𝑓(𝑥𝑖 , 𝒙
𝑖)𝑑𝒙𝑖

𝐾𝑛−1
− 𝑓0 

( 62 ) 

fij(𝑥𝑖, 𝑥𝑗) = ∫ 𝑓(𝑥𝑖 , 𝑥𝑗 , 𝒙
𝑖𝑗)𝑑𝒙𝑖𝑗

𝐾𝑛−2
− 𝑓𝑖(𝑥𝑖) − 𝑓𝑗(𝑥𝑗) − 𝑓0…  

( 63 ) 

Here, dxi and dxij are the product of dx1dx2…dxn without dxi and dxidxj, 

respectively. The first order component f0 is simply the mean value of f(x) over the whole 

domain. The individual component functions presented in Equations ( 61 )-( 63 ) have a 

direct statistical correlation interpretation which leads to the decomposition of model 

output variance σ�̅�
2 into its individual input variable contributions. Because of the 

orthogonality of the component functions, the variance can be expressed as Equation ( 64 

). 

σ�̅�
2 =∑𝜎𝑖

2

𝑛

𝑖=1

+ ∑ 𝜎𝑖𝑗
2

𝑛

1≤𝑖<𝑗≤𝑛

+⋯ 

( 64 ) 

To reduce the sampling effort, the component functions are usually approximated 

by basis functions of three types: orthonormal polynomials, cubic spline, and 

polynomials. Among these basis functions, orthonormal polynomials provide the most 

saving in computational cost 120. Therefore we employed a set of orthonormal 
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polynomials in Equations ( 65 )-( 67 ) as a basis to approximate the component functions 

in Equations ( 68 ) and ( 69 ) 119. 

 

ϕ1(𝑥) = √3(2𝑥 − 1) 

( 65 ) 

ϕ2(𝑥) = 6√5 (𝑥2 − 𝑥 +
1

6
) 

( 66 ) 

ϕ2(𝑥) = 20√7(𝑥3 −
3

2
𝑥2 +

3

5
𝑥 −

1

20
) 

( 67 ) 

fi(𝑥𝑖) = ∑𝛼𝑘
𝑖𝜙𝑘(𝑥𝑖)

∞

𝑘=1

 

( 68 ) 

fij(𝑥𝑖 , 𝑥𝑗) = ∑ 𝛽𝑘𝑙
𝑖𝑗
𝜙𝑘(𝑥𝑖)𝜙𝑙(𝑥𝑗)

∞

𝑘,𝑙=1

 

( 69 ) 

The coefficients for the component functions in Equations ( 68 ) and ( 69 ) were 

estimated using Equations ( 70 ) and ( 71 ). Finally, these coefficients were used to 

calculate the first order (primary effect) and second order variance (interaction effect) 

using the Equations ( 72 ) and ( 73 ). 

(

𝛼1
𝑖

𝛼2
𝑖

𝛼3
𝑖

) ≈
1

n
∑(

𝑓(𝒙(𝑠))𝜙1(𝑥𝑖
(𝑠)
)

𝑓(𝒙(𝑠))𝜙2(𝑥𝑖
(𝑠)
)

𝑓(𝒙(𝑠))𝜙3(𝑥𝑖
(𝑠)
)

)

𝑁

𝑠=1

 

( 70 ) 
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(

 
 
 

𝛽11
𝑖𝑗

𝛽12
𝑖𝑗

⋮

𝛽32
𝑖𝑗

𝛽33
𝑖𝑗
)

 
 
 

≈
1

n
∑

(

 
 
 
 
 

𝑓(𝒙(𝑠))𝜙1(𝑥𝑖
(𝑠))𝜙1(𝑥𝑗

(𝑠))

𝑓(𝒙(𝑠))𝜙1(𝑥𝑖
(𝑠))𝜙2(𝑥𝑗

(𝑠))

⋮

𝑓(𝒙(𝑠))𝜙3(𝑥𝑖
(𝑠))𝜙2(𝑥𝑗

(𝑠))

𝑓(𝒙(𝑠))𝜙3(𝑥𝑖
(𝑠))𝜙3(𝑥𝑗

(𝑠)))

 
 
 
 
 

𝑁

𝑠=1

 

( 71 ) 

σ𝑖
2 =∑(𝛼𝑘

𝑖 )
2

𝑠𝑖

𝑘=1

 

( 72 ) 

σ𝑖𝑗
2 =∑∑(𝛽𝑘𝑙

𝑖𝑗
)
2

𝑠𝑗

𝑙=1

𝑠𝑖′

𝑘=1

 

( 73 ) 

3.6 Results 

Our in silico studies aim to explore the effects of circadian disruption and 

metabolic re-entrainment on the rhythms of hepatic gluconeogenesis. The expression of 

gluconeogenic genes (Pck1/G6pc in our model) is under the modulation of two 

independent zeitgebers, light/dark cycle and feeding/fasting cycle. The simplified 

schematic of the model encompassing the HPA-axis and the periphery representing 

human hepatocyte is shown in Figure 10. The schematic depicts the signal transduction 

from the environment (light and feeding) to the transcription of Pck1/G6pc. Cortisol level 

in the periphery is mediated by the light and the feeding signals, and induces the 

transcription of Pck1/G6pc when bound to its receptor. Induction by cortisol is inhibited 

by the PER/CRY, one of the key components of the circadian clock machinery. The 
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changing concentration of NAD+ following the feeding/fasting cycle regulates FOXO1 

through SIRT1 and PGC-1α.  

 

Figure 10: Simplified schematic of the model 
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Figure 11: The time profiles of key components throughout the day upon synchronized (dotted line) and time-restricted 
(solid line) feeding schedules. Light signal was at 1 from 6am to 6pm, and at 0 for the rest of the day. Feeding signals 
for both conditions are shown in (A). The corresponding cortisol (B), PER/CRY protein (C), SIRT1 (D), FOXO1 (E), and 
Pck1/G6pc mRNA (F) are shown. 

In Figure 11, The behavior of the model throughout the 24-h day upon 

synchronized (light and feeding schedules are identical) and time-restricted feeding 

(TRF) schedules are shown. Light signal was at 1 from 6am to 6pm, and at 0 for the rest 

of the day. Feeding signals for both conditions are shown in Figure 11A. For the light-

feeding synchronized condition, feeding signal was at 1 from 6 am to 6 pm, and at 0 for 

the other 12 hours. To make sure that the system is provided with identical amount of 

feeding signal, which represents the amount of food available to the system at a given 

time, the area under the curve (AUC) for feeding were identical between the light-feeding 

synchronized condition and TRF condition. As such, feeding signal was at 2 from 9 pm 
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to 3 am and at 0 for the rest of the time for TRF condition. The cortisol (11B) and 

PER/CRY protein (11C), both regulators of Pck1/G6pc transcription, peak in the morning 

time for the synchronized schedule and evening time for the TRF schedule. For both 

cases, cortisol and PER/CRY peak in the early active phase, consistent with restricted 

feeding studies on mice which show ~12h phase shift in cortisol and clock gene levels in 

the anticipation of meal time 86,87,121. NAD+(11D) peaks 4-5 hours after the beginning of 

feeding time, agreeing with previous experimental work 122. The circadian rhythm of 

FOXO1 (11E) closely follows that of SIRT1. Although no experimental data confirms 

this, the results are expected within the structure of our model because FOXO1 is 

activated by SIRT1-activated PGC-1α. The expression of Pck1/G6pc mRNA (11F) also 

peak in the early active phase according to our model. In ad libitum fed rats, both G6Pase 

and PEPCK activity peak slightly before the dark (active) phase in rats subjected to 12:12 

h light/dark cycle 102,123. When rats are moved to TRF schedule, G6Pase activity peaks 

slightly before the feeding start time. G6Pase protein amount still oscillates rhythmically 

but becomes bimodal, with the major peak slightly before the feeding time and a minor 

peak in the middle of the dark phase 102. For PEPCK, the enzymatic activity becomes 

bimodal with the major peak at the transition from dark to light phase and a minor peak 

in the middle of the dark phase. The PEPCK protein amount peaks ~2 hours after the 

feeding start time 102. Although the phase changes that occur for the PEPCK and G6Pase 

enzymatic activities and protein amounts slightly differ in details, the common theme for 

all of them is that the gluconeogenic gene expression is the highest around the transition 

time from inactive to active phase, consistent with our model. In terms of amplitude 
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change upon adjustment to feeding schedule, our model was constructed to most closely 

follow the experimental finding that amplitude of PEPCK protein amount increases when 

rats are switched from ad libitum feeding to TRF 102. 

 

Figure 12: Time profiles of key components under constant light schedule at different intensities are compared. 
Feeding signals was at 1 from 6am to 6pm, and at 0 for the rest of the day (A). Constant bright light (dotted-dashed 
line) and constant dim light (solid line) are shown in (A), along with a control (dotted line), in which feeding and light 
are synchronized. The cortisol (B), PER/CRY protein (C), SIRT1 (D), FOXO1 (E), and Pck1/G6pc mRNA (F) under the 
different light intensities are also presented. 

Figure 12 shows the modifications to gluconeogenic gene expression when the 

model experiences different type of light signals. In this figure, the response of the model 

to constant dim light and constant bright light is compared to 12:12 h light/dark cycle, 

while the feeding schedule is fixed to 12:12 h feeding/fasting cycle for all three 

conditions (12A). Imposing constant bright light results in reduced amplitude of cortisol 
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(12B) and Pck1/G6pc (12F), while constant bright light increases the amplitude. An 

animal study conducted in voles confirm the model prediction 123. In this experiment, 

female voles were placed in constant light environment while male voles were placed in 

constant dark environment. When G6Pase activity was measured over a 24h period, 

animals in constant dark environment showed statistically significant oscillation while the 

animals in constant light environment did not. Although gender difference may have 

contributed to the enzyme behavior, the results are aligned with our model prediction. 

The PER/CRY (12C) oscillation amplitude is slightly decreased when constant bright 

light is imposed, qualitatively in agreement with experimental observations in mice 88. 

SIRT1 (12D) and FOXO1 (12E) dynamics are not influenced by the light schedule 

change. 
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Figure 13: Time profiles of peripheral cortisol (A), PER/CRY protein (B), CLOCK/BMAL1 complex (C) and Pck1/G6pc 
mRNA (D) are shown under nominal condition (dotted black lines) and high peripheral cortisol (solid blue lines). The 
light and feeding schedule are synchronized. 

 

Figure 14: Time profiles of PER/CRY protein (A), and Pck1/G6pc mRNA (B) are shown under nominal condition (black 
lines) and CRY over-expression condition (blue lines). Dotted lines represent light-feeding synchronized condition, and 
solid lines represent time-restricted feeding condition. 
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Next, we examined the effect of cortisol shock and CRY overexpression against 

experimental findings. Sharp increase in serum cortisol level increases glucose 

production due to gluconeogenesis in humans 24. When peripheral cortisol level is 

elevated in our model while the central compartment is conserved, PER/CRY, 

CLOCK/BMAL1, and Pck1/G6pc levels are all increased (Figure 13). The peripheral 

cortisol level was increased by doubling the secretion from the central compartment. 

Since our model does not consider PER and CRY separately, CRY overexpression was 

simulated by doubling the transcription rate of Per/Cry mRNA (V1b). The resulting 

profiles under ad libitum feeding and TRF are shown in Figure 14. Under both feeding 

schedules, modulating the transcription rate did result in increased expression of 

PER/CRY protein, and resulted in decreased expression of Pck1/G6pc. The results are 

consistent with recent findings that CRY1 and CRY 2 inhibit gluconeogenesis by 

cortisol-receptor complex in the nucleus from binding to the GRE region of the 

gluconeogenic genes 27.  
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Figure 15: Time profiles of cortisol (A), PER/CRY protein (B), Bmal1 mRNA (C), BMAL1 protein (D), CLOCK/BMAL1 
complex (E) and Pck1/G6pc mRNA (F) are shown under nominal condition (black lines), Clock knockout condition (blue 
lines), and Bmal1 knockout condition (red lines).  

To simulate genetic circadian disruption, we tested the model under very low 

CLOCK and BMAL1 expression and showed the results in Figure 15. Clock and Bmal1 

knockouts were simulated by 80% reduction in expression level. As Figure 15C shows, 

the concentration of CLOCK/BMAL1 heterocomplex is lower in both knockout 

conditions compared to the nominal condition. Circadian cortisol profile (15A) is 

unaffected by the knockout in our model. BMAL1 protein and Bmal1 mRNA levels are 

suppressed for the BMAL1 knockout model, but the same components are expressed with 

increased amplitude for CLOCK knockout model. PER/CRY protein (15B) oscillation 
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amplitude becomes greater under the knockout conditions, and Pck1/G6pc (15D) also 

oscillate with a higher amplitude. Experimental studies on whole-body CLOCK 

knockouts give conflicting results depending on the experimental/environmental 

conditions as well as the genetic background of the animals 23. Some studies show that 

knockout of CLOCK results in decreased or normal blood glucose level 124,125 while 

others report increased blood glucose level 126,127 and impaired glucose tolerance. Our 

model supports the latter case where fasting glucose level is elevated upon CLOCK 

knockout due to higher amplitude of gluconeogenesis. 

 

Figure 16: Amplitude of Pck1/G6pc for Clock KO model normalize by the wile type amplitude under light-feeding 
synchronized schedule. Normalized amplitudes are plotted against the feeding start time. For all cases, feeding lasted 
for 12 hours, and light schedule was fixed to be on from 6am to 6pm. 

Next, we investigated whether the increased amplitude of Pck1/G6pc in Clock KO 

condition can be adjusted back to the nominal amplitude by changing the feeding rhythm 

relative to the light/dark cycle. To examine the effect of phase relations between light and 
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feeding, we simulated 12h feeding period starting at different times of the day while 

fixing the light period from 6 am to 6 pm. In Figure 16, the amplitude of Pck1/G6pc for 

different feeding schedule normalized by the wild type amplitude under synchronized 

condition are plotted. The x-axis represents the start time of the feeding period. The 

figure shows that amplitude of Pck1/G6pc under Clock KO condition changes with the 

feeding start time. Amplitudes are greater when feeding is started in the dark phase. If 

feeding starts in the afternoon (3pm-6pm), the amplitude for KO model reaches below the 

wild type amplitude under synchronized condition. Next, we present the analysis of the 

model using the uncertainty and sensitivity analyses on the amplitude of Pck1/G6pc.  
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Figure 17: Sensitivity coefficients for 30 most sensitive parameters using local sensitivity analysis 

In Figure 17, the sensitivity coefficients computed from local sensitivity analysis 

using Equation ( 56 ) are shown for the 30 most sensitive parameters. The sensitivity 

coefficients for all parameters are available the repository. Among the parameters with 

high sensitivity coefficients, Kp1, Kp2, kp1, Vd1, and Vd3 mediate the dynamics of the 

HPA-axis. A group of parameters that control the dynamics of PGC-1α and FOXO1, such 

as kg7, kg9, kg1, kg10, kg2, kg3t, kg4t, and kg3d also had high sensitivity coefficients. Other 

than these two groups, parameters associated with Per/Cry transcription (k1i and p) 

cortisol-receptor dynamics (kre, kdgrRm, and ksynR) also exhibited high sensitivity 

coefficients. 

 

Figure 18: Sample results from sensitivity analysis using Morris method performed on the amplitude of Pck1/G6pc 
mRNA amplitude. 100 repetitions of sampling was used to generate this figure. The variance (σ2) is plotted against μ*. 
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In Figure 18, the results from sensitivity analysis using Morris method performed 

on peripheral parameters is visualized on a variance (σ2) versus absolute mean (μ*) plot. 

Morris method was used as a screening method for identifying the most important 

parameters, because this method will compute both elementary and interaction effects 

without high computational cost. In general, the parameters that has greater mean 

elementary effects also had greater variance. We selected 20 samples that had μ* values 

greater than 1.5 as important parameters, and listed them in Table 1 along with the μ* 

values. Examining the table, the parameters pertaining to the dynamics of PGC-1α, 

FOXO1, Per/Cry transcription, Bmal1 transcription, and cortisol receptor had the greatest 

elementary effects.  

Table 1: Absolute value of mean of elementary effects for 20 most sensitive parameters 

identified using Morris Methods on amplitude of Pck1/G6pc. 

Rank Parameter μ* σ2 Rank Parameter μ* σ2 

1 kg10 2.9330 5.4027 11 kg8 2.2431 6.1479 

2 kg9 2.8870 4.9604 12 kg11 2.2097 2.1702 

3 kg1 2.8673 4.8427 13 kg12 2.1902 2.3458 

4 kg2 2.8631 5.0442 14 sirtT 2.0553 3.3711 

5 kg3b 2.8250 4.2164 15 k4b 2.0430 12.5589 

6 kg3d 2.7314 4.9744 16 GRT 2.0307 2.9139 

7 kg3t 2.6627 3.7803 17 kon,GR 2.0089 2.4504 

8 k1i 2.6072 10.242 18 kre,GR 1.9427 3.1098 

9 kg4t 2.4582 3.9920 19 kg7 1.7077 3.1010 

10 kg5 2.4166 3.4337 20 km1 1.5650 2.8073 

The parameters in Table 1 were further analyzed with RS-HDMR uncertainty 

analysis, which is a variance based method that is capable of identifying pair-wise 

interaction effects in addition to the main effects. Since our model is expected to be 

highly nonlinear, we first tried to identify the appropriate sample size for analyzing our 
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model. Table 2 reports the main results from RS-HDMR uncertainty analysis for different 

sample sizes: output (mean amplitude of Pck1/G6pc); the total variance in output (σ2); 

the sum of all first order variances (Σσ2
i); and the sum of all second order variances 

(Σσ2
ij) from the RS-HDMR uncertainty analysis. For Equation ( 64 ) to hold true, the 

condition σ2 ≥ ∑𝜎𝑖
2 + ∑𝜎𝑖𝑗

2  has to be met. Therefore, only the sample size of 20,000 and 

100,000 yield valid uncertainty analysis. Since greater sample size should provide the 

most accurate results, only the analysis resulting from the sample size of 100,000 is 

presented in Table 3 and Figure 19. In Table 3, the first order variance for the 20 tested 

parameters are presented in the order of importance. Parameters related to the dynamics 

of PGC-1α and FOXO1 are the most important parameters in determining the variance in 

amplitude of Pck1/G6pc according to the RS-HDMR method. In Figure 19, the second 

order interaction effects to output variance are shown in a color scheme, with bigger 

interaction effects in darker color and smaller interaction effects lighter color. The pair k1i 

and k4b show the largest second order interaction, while the parameters pertaining to the 

PGC-1α and FOXO1 level show the next largest second order interaction. 

Table 2: Summary of results from HDMR uncertainty analysis on amplitude of 

Pck1/G6pc. 

Sample Size f
0
 

σ
2

 Σσ
2

i
 Σσ

2

ij
 

1000 5.8266 15.9072 11.4909 34.9030 

2000 5.8149 14.5537 10.8716 15.0472 

3000 5.7970 13.8447 10.4087 10.4486 

5000 5.8049 14.1645 10.5303 7.3712 

10000 5.7963 13.2363 10.1985 3.9241 

20000 5.7881 12.6472 9.9297 2.5715 
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100000 5.7884 12.6021 9.9391 2.0946 

 

Table 3: First order variance from HDMR uncertainty analysis. Correction factor to get 

nominal Pck1/G6pc amplitude for CLOCK knockout model is also presented. 

Parameter σ2
i (from HDMR) Correction factor Influence on PGC-1α(N) 

kg2 0.836349 1.58 decrease 

kg10 0.833797 1.57 decrease 

kg9 0.793650 0.64 increase 

kg1 0.792885 0.63 increase 

kg3b 0.790013 0.63 increase 

kg3d 0.720930 1.62 decrease 

kg3t 0.686181 0.62 increase 

kg4t 0.575706 1.69 decrease 

kg5 0.556384 0.59 increase 

kg12 0.450824 1.73  

kg11 0.449879 0.58  

kg8 0.409953 1.82 decrease 

sirtT 0.398856 0.59  

GRT 0.359445 0.64  

kon,GR 0.347152 0.64  

kre,GR 0.317100 1.60  

kg7 0.233719 1.71  

k1i 0.191373 1.18  

km1 0.166523 1.65  

k4b 0.028383 0.45  
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Figure 19: Second order interaction contributions to output variance from RS-HDMR uncertainty analysis. Darker color 
indicates higher interaction effect. 

Finally, we attempted changing the amplitude of Pck1/G6pc of the Clock KO 

model by applying a correction factor to different parameters. The correction factor that 

most closely adjusts the Pck1/G6pc amplitude back to the nominal amplitude for each 

parameter was calculated. These factors are listed in Table 3. The parameters that either 

contribute to increasing or decreasing level of nuclear PGC-1α are indicated. The 

correction factors for these parameters show that parameters with larger first order 
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variance require a correction factor with a smaller percentage change of the original value 

of the parameter. Time profiles for the Clock KO model with select correction factors are 

shown in Figure 20. Adjusting kg1 (PGC-1α transcription rate) reduced the amplitude of 

the Clock KO model by decreasing the nuclear PGC-1α level (20D), which is a direct 

activator of FOXO1 that stimulates the expression of gluconeogenic genes (20E). 

Adjusting k1i (inhibition constant for Per/Cry transcription) increased the PER/CRY 

(20B), CLOCK/BMAL1 (20C), and nuclear PGC-1α (20D) level. Finally, adjusting k4b 

returned the PER/CRY profile (20B) to the wild type condition, increased the 

CLOCK/BMAL1 (20C) level and nuclear PGC-1α (20D) level.  

 

Figure 20: Time profiles of cortisol (A), PER/CRY protein (B), CLOCK/BMAL1 complex (C) , nuclear PGC-1α, and 
Pck1/G6pc mRNA (E) are shown under nominal condition and Clock KO condition. The rest of the profiles show Clock 
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KO condition adjusted by correction factor for certain parameters: kg1, k1i, and k4b. The light and feeding schedule are 
synchronized for all profiles. 

3.7 Discussion 

The circadian rhythms modulate important metabolic pathways including 

gluconeogenesis 21,22 and lipid metabolism 90,91. Because of the intimate relationship 

between circadian rhythms and metabolism, disruption in the daily rhythms often result 

in metabolic syndromes such as obesity and high triglycerides 6. In mammals, it is 

important that plasma glucose level stays within a physiologically relevant bound since 

some key biological functions such as neuronal activity and balancing of electrolytes 

depend on homeostatic plasma glucose level 89. Various clock gene knockout studies 

support that plasma glucose homeostasis is under the regulation of circadian components. 

For example, double knockout of liver-specific Bmal1 results in altered expression of 

gluconeogenic genes as well as fasting hypoglycemia 21. Similarly, hepatic Cry 

overexpression lowers the blood glucose level after 6 hours of fasting 22. These studies 

motivate the need to elucidate the mechanisms of how circadian rhythms modulate 

glucose homeostasis throughout the day. Since glucose homeostasis is maintained 

through a complex network of regulations and chemical reactions involving multiple 

organs and numerous hormones, we chose to focus on hepatic gluconeogenesis 

specifically to simplify the problem while drawing meaningful conclusions.  

Figure 11 shows the model behavior when either ad libitum feeding or TRF is 

applied. The model predicts that the fasting level of Pck1/G6pc (11F) will be elevated 

under TRF, compared to that of ad libitum feeding. The dynamics of Pck1/G6pc is driven 



84 

 

 

 

by three different forces in our model: 1) FOXO1 binding to a DNA motif on the 

promoter region and stimulating the transcription; 2) nuclear cortisol-receptor complex 

binding to the GRE region on the promoter and stimulating the transcription; and 3) 

PER/CRY inhibiting the binding of nuclear cortisol-receptor complex from binding to the 

GRE. Figure 11A shows that cortisol peak at the transition from light to dark period is 

decreased when feeding schedule is changed from ad libitum to TRF, and 11B shows that 

PER/CRY level is increased around the same transition time. These two results together 

imply that the Pck1/G6pc level should decrease since cortisol stimulates the expression of 

gluconeogenic genes while PER/CRY inhibits it. However, 11E shows that FOXO1 

amplitude and level increases when the model is exposed to TRF condition. These 

competing effects ultimately result in an increased amplitude and level in the expression 

of Pck1/G6pc, suggesting that the influence of FOXO1 is stronger than the effects of 

cortisol and PER/CRY. The increased amplitude of FOXO1 can be attributed to the 

higher amplitude of feeding signal, which transduces down to FOXO1 via SIRT1 (11D) 

and PGC-1α. The phase of all major components are re-entrained to the feeding rhythm, 

since cortisol, clock genes, and FOXO1 are all phase shifted. When the increase in 

amplitude and phase change of PEPCK protein was observed for the TRF condition 102, 

animals were given a 2 hour window during the rest period for food consumption, which 

would have resulted in high caloric intake during a short period of time, similarly to the 

simulation condition. 

To validate that the other two driving forces, stimulation by cortisol and inhibition 

by PER/CRY, produce expected behavior in Pck1/G6pc expression, we tested 
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overexpression of PER/CRY in Figure 14 and elevated peripheral cortisol in Figure 13. 

Increased level of PER/CRY protein does result in a decreased expression of Pck1/G6pc, 

for both ad libitum feeding and TRF, agreeing with animal studies 22,27. Increase in 

peripheral cortisol also results in an increased expression of Pck1/G6pc. A side effect of 

increase in peripheral cortisol is the increased level CLOCK/BMAL1 complex, which 

activates the expression of PER/CRY protein. Stimulation of Pck1/G6pc expression by 

increased cortisol amount outperforms the increased inhibition by PER/CRY protein, 

resulting in a behavior consistent with experimental findings 24. 

While the feeding pattern can completely re-entrain the Pck1/G6pc expression, 

modifications to the light signal also influence hepatic gluconeogenesis. As shown in 123 

keeping the animals in constant bright light for an extended time period abolishes the 

circadian rhythms for G6Pase activity. From this study, we hypothesized that imposing a 

constant bright light on our model would result in a decreased amplitude for Pck1/G6pc. 

Figure 12F shows that our hypothesis is valid. When the light signal was on at 1 

constitutively to simulate constant bright light condition, the amplitude of Pck1/G6pc was 

reduced, mainly due to the decline in the cortisol level and amplitude (12B). The 

dampening of the rhythm in cortisol for the bright light condition is due to light-mediated 

degradation of CRH 40-42, which results in decreased secretion of cortisol from the HPA-

axis. PER/CRY (12C) amplitude was also decreased by a small percentage, but had 

negligible effect on the amplitude of Pck1/G6pc. Figure 12D and E show that SIRT1, 

PGC-1α, FOXO1 pathway was unaffected by the modified light. 
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Next, we challenged the model by simulating a Clock KO condition. Figure 15 

shows that the amplitude of Pck1/G6pc is higher for the Clock KO model compared to 

the wild type model, under both feeding schedules. CLOCK/BMAL1 complex in the 

nucleus influences the dynamics of PER/CRY protein in two opposing ways as depicted 

inFigure 10. It binds to the Ebox enhancer on the promoter of Per and Cry genes and 

stimulates the expression of PER/CRY. It can also inhibit the expression of PER/CRY by 

preventing the cortisol-receptor complex in the nucleus from binding to the GRE of the 

promoter and preventing the expression of PER/CRY. Figure 15 shows that decreased 

level of CLOCK/BMAL1 (15C) resulted in increased level and amplitude of PER/CRY 

(15B) due to lost inhibition effect. Then, the increased amplitude of PER/CRY caused the 

amplitude of Pck1/G6pc (15D) to increase. For both PER/CRY and Pck1/G6pc, the 

amplitude difference between wild type and KO is greater for ad libitum feeding 

compared to TRF, probably due to stronger signal from the FOXO1 pathway. CLOCK 

knockout studies report conflicting results where some result in decreased or normal 

blood glucose level 124,125 while others report increased blood glucose level124; our model 

supports the latter case. The discrepancy in CLOCK knockout studies point to an 

importance in genetic background of the animals.23 However, one should also note that 

decreased or normal blood glucose level for CLOCK knockout mice were observed under 

high-fat diet, and disruption in circadian rhythms can lead to a problem in fat 

absorption.124 Thus this phenomenon cannot be accurately captured with my model which 

does not distinguish between different fat contents in feeding. 
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Since animal experiments 102 and our model support the idea that feeding pattern 

can re-entrain the expression of gluconeogenic genes, we hypothesized that the increased 

amplitude of Pck1/G6pc under Clock KO condition can be returned to the nominal level 

by adjusting the feeding schedule. Figure 16 shows the amplitude change for Clock KO 

model normalized by the wild type amplitude for different feeding schedules, and 

conveys that our hypothesis is valid. Figure 16 shows that there exists a feeding schedule 

which produces an amplitude for Pck1/G6pc very similar to the nominal amplitude 

although CLOCK/BMAL1 complex level is very low. Delaying the feeding phase by 2 or 

7 hours resulted in amplitude very similar to the wild type amplitude. Although it should 

be noted that the decrease in Pck1/G6pc amplitude was accompanied by a wide phase 

shift, such behavior is expected since the phase relationship between feeding/fasting 

cycle and the Pck1/G6pc remained unchanged, which would leave the fasting level of 

gluconeogenesis similar to the nominal case in physiological situations. Because our 

model consists of a complex network of transcription and translation, often times it is 

difficult to understand and/or predict how a perturbation introduced to one part of the 

model will affect the dynamics of the rest of the model. Uncertainty and sensitivity 

analyses can help understand the behavior of the model when challenged with a 

parameter change as well as to predict what pathways play the most important role in 

producing a certain output. We first analyzed the entire 130 parameters using the method 

of local sensitivity analysis, which tells us the behavior of the output when a specific 

parameter is changed alone. Then we used the computationally efficient Morris method 

to screen for the most important parameters, both in terms of the impact of single 
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parameter as well as interaction with other parameters. Finally, we used the RS-HDMR 

uncertainty analysis on the select parameters from Morris method and ranked them in the 

order of importance, and extracted interaction effects for specific parameter pairs. 

The local sensitivity analysis results in Figure 17 indicate that there are four groups 

of parameters that have the greatest influence on the amplitude of Pck1/G6pc: 1) 

parameters that mediate the dynamics of the HPA-axis; 2) parameters the modulate the 

activation of FOXO1 through SIRT1 and PGC-1α; 3) parameters related to cortisol-

receptor dynamics; and 4) parameter that govern the Per/Cry transcription. In our model, 

the HPA-axis is responsible for processing the photic input from the light/dark cycle and 

entraining the cortisol secretion to the peripheral compartment. Since cortisol is one of 

the main driver for stimulating the expression of Pck1/G6pc, it is not surprising that the 

parameters that mediate the Goodwin oscillator in the HPA-axis plays an important role 

in modulating the dynamics of gluconeogenesis. The activation of FOXO1 is directly 

linked to the feeding/fasting cycle via the concentration of NAD+, the co-activator for 

SIRT1. FOXO1 is also a driving force for activating the transcription for Pck1/G6pc. 

Therefore, the parameters related to the pathways that process the environmental signals 

appear to play an important role in modulating hepatic gluconeogenesis in our model. 

Parameters related to cortisol-receptor dynamics also exhibited high sensitivity 

coefficients, since it binds to the GRE on the promoter of Pck1/G6pc. Finally, parameters 

modulating Per/Cry transcription had high importance because PER/CRY inhibits the 

cortisol-receptor binding to GRE and activating expression of Pck1/G6p. 
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Morris method performed on 112 peripheral parameters identify overlapping 

groups of parameters. The results are shown in Figure 18 and Table 1. In Figure 18 where 

each parameter is plotted on a variance (σ2) versus absolute mean (μ*) grid,  parameters 

with great μ* tend to have a greater σ2 most of the time. The μ* and σ2 values for these 20 

parameters are shown along with their identifications in Table 1. Similarly to the local 

sensitivity analysis, the parameters pertaining to the dynamics of FOXO1, Per/Cry 

transcription, and cortisol receptor has the greatest elementary effects. Morris method 

identified k4b (Michaelis constant for Bmal1 transcription) as an important parameter, 

disagreeing with the local sensitivity analysis. This parameter has the greatest σ2 value 

according to Morris method; however, the limitation of Morris method is that it fails to 

identify parameter pairs are interacting. Furthermore, the method of determining the 

order of importance from the Morris method results is ambiguous as μ* and σ2 must be 

considered simultaneously. 

To address these issues, we used RS-HDMR uncertainty analysis on the 20 

parameters identified by Morris method. , From Table 2, we first determined if the 

sample size of 100,000 would be sufficient for analyzing our model. Since the sum of 

first and second order variances are less than the total variance, Monte-Carlo integration 

error is negligible. Furthermoer, the sum of first and second order variances accounted 

for more than 95% of the total variance; therefore, a sufficient analysis of the model can 

be performed without considering any higher order variances. 

The first order variances for the 20 parameters are listed in the order of importance 

in Table 3. The parameters related to the PGC-1α and FOXO1 concentrations are the 
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most important ones according to the HDMR uncertainty analysis, followed by cortisol-

receptor dynamics, Per/Cry transcription, and Bmal1 transcription in this order. The 

second order variances that help identify the most convoluted pathways are presented in a 

color scheme inFigure 19. Darker cells represent high interaction effects while lighter 

cells represent low interaction effects. The parameter pair k1i & k4b show the highest 

interaction effects according to the HDMR analysis. These parameters are each involved 

in controlling the transcription rate of Per/Cry transcription and Bmal1 transcription. 

Indeed, PER/CRY and BMAL1 dynamics are closely linked with each other as these 

proteins influence the transcription rates of each other and of its own. The transcription of 

Per and Cry genes are promoted by the CLOCK/BMAL1 heterocomplex. The translated 

PER/CRY protein inhibits the activation of its own transcription by CLOCK/BMAL1 

protein complex. On the other hand, Bmal1 transcription is indirectly stimulated by the 

nuclear PER/CRY protein. The interrelated nature of the two clock genes are reflected as 

a high second order variance in the RS-HDMR analysis. Additionally, parameters 

contributing to the PGC-1α and FOXO1 dynamics exhibit the next largest second order 

variance values. While activated PGC-1α in the nucleus activates FOXO1, FOXO1 also 

regulates PGC-1α by influencing the transcription of PGC-1α gene.. 

Considering the local sensitivity analysis, Morris method, and RS-HDMR 

uncertainty analysis together, the local pathways that directly interact with the promoter 

of the Pck1/G6pc (PGC-1α and FOXO1 dynamics, cortisol-receptor dynamics, and 

PER/CRY dynamics) are the most influential in changing the amplitude of Pck1/G6pc. 

Local sensitivity analysis, the simplest and computationally the most efficient method of 
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the three, alone, was sufficient for arriving to this conclusion. However, local sensitivity 

analysis failed to identify parameters that have high interaction effect and low primary 

effect, such as the Michaelis constant for Bmal1 (k4b). RS-HDMR uncertainty analysis 

combined with the Morris method for identifying important parameters was able to 

identify the interaction of this parameter with inhibition constant for Per/Cry 

transcription (k1i). 

Finally, we utilized the results from the sensitivity and uncertainty analyses to alter 

the behavior of Clock KO model. For each of the 20 parameters identified as important 

from the Morris method, a correction factor was determined so that when the parameter is 

multiplied with this factor, the Pck1/G6pc amplitude will return to a value close to the 

nominal under light/feeding synchronized condition. These correction factors are listed in 

Table 3. We took a closer look at the parameters involved in the PGC-1α dynamics. The 

parameters that contribute to increased concentration of nuclear PGC-1α are below 1, and 

those that contribute to decreased concentration of nuclear PGC-1α are above 1. Since 

nuclear PGC-1α activates FOXO1 which promotes the expression of PGC-1α, decreased 

concentration of PGC-1α would help bring down the high amplitude of Pck1/G6pc in the 

Clock KO model back to the nominal amplitude. Moreover, the parameters with larger 

values of first order variance had correction factors with smaller percentage change from 

1, as expected. We then examined if applying these correction factors influenced the 

system in various ways depending on the local pathways that the parameters belong to, 

and showed the results in Figure 20. When a parameter involved in the PGC-1α pathway 

(kg1) was multiplied with the correction factor, the amplitude of Pck1/G6pc (20E) was 
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decreased due to the reduced level of nuclear PGC-1α (20D). When k1i, involved in 

Per/Cry transcription was modified with the correction factor, nuclear PGC-1α level 

increased slightly (20D), but CLOCK/BMAL1 level (20C) and PER/CRY level (20B) 

increased compared to the KO model. Due to the increased inhibition effect from 

PER/CRY, the amplitude of Pck1/G6pc was adjusted back down to nominal. When k4b, 

related to Bmal1 transcription, was multiplied with the correction factor, The 

CLOCK/BMAL1 level (20C) was increased closer to the nominal level, and PER/CRY 

(20B) level was brought back to the nominal level, which resulted in amplitude change 

for Pck1/G6pc (20E). For the three parameters shown inFigure 20, cortisol dynamics 

(20A) were not changed. 

In summary, our model qualitatively captures the dynamics of hepatic 

gluconeogenesis represented by the transcription of Pck1/G6pc entrained to the light/dark 

cycle and feeding/fasting cycle. The dynamics of Pck1/G6pc mRNA are governed by 

three main driving forces in our model, the cortisol-receptor activating transcription, 

PER/CRY inhibiting transcription, and FOXO1 mediated by PGC-1α activating 

transcription. The uncertainty and sensitivity analyses of our model using three different 

approaches tell us that these three forces, in addition to the cortisol secretion rate from the 

HPA-axis, are the most important local pathways in the complex network we built. Our 

model successfully predicts the experimental findings that higher level of cortisol in the 

periphery increases the level of gluconeogenesis while overexpression of CRY protein 

results lower level of gluconeogenesis. Using the semi-mechanistic model, we were able 

to simulate a clock gene knockout condition by forcing very small expression of 
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CLOCK/BMAL1 protein. Subsequently, we demonstrated that the abnormally high level 

and amplitude of Pck1/G6pc in the KO model can be modified to resemble the nominal 

level by either targeting specific local pathways in our model and modifying parameters 

identified through the uncertainty analyses or imposing modifications to the feeding 

patterns relative to the light/dark cycle. Comparing the correction factors revealed that 

within a specific local pathway, the parameters with the highest uncertainty in output 

variance require the smallest correction factor, possibly suggesting that targeting these 

reactions would be the most efficient in causing alternate behavior for hepatic 

gluconeogenesis. Furthermore, our model predicts that exposure to constant bright light is 

detrimental to the robust oscillations of metabolic gene expression. Of course, our model 

is limited since it does not describe the enzymatic activity of PEPCK and G6PC, changes 

in glucose and glycogen levels, and other features of hepatic gluconeogenesis. 

Furthermore, a number of important questions still remain, such as the impact of 

nutritional composition and the duration of light signal, etc. In the future, we plan to 

address these questions and incorporate the role of insulin. 

 

CHAPTER 4: Circadian secretion of insulin and its 

effects on gluconeogenesis  

4.1 Introduction 

Insulin has a suppressing effect on glucose production and secretion into the 

bloodstream, the opposite effect of cortisol and SIRT1 from Chapters 2 and 3. Like many 
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other regulators involved in glucose homeostasis, insulin exhibits circadian rhythmicity. 

Experiment with perifused rat pancreatic islets show evidence for circadian rhythmicity 

of insulin release from pancreas.128 In this study, 30 minute interval measurements over 4 

days showed oscillating insulin levels with a period of ~24 hours. Further relationship 

between insulin level and circadian rithymicity was revealed when adding melatonin 

advanced the phase by 9h and also enhanced the amplitude of oscillating. Insulin 

rhythmicity was also confirmed in healthy human volunteers.129 Glucose clamping 

experiments showed that insulin secretion rate increased from a nadir between midnight 

and 6am and reached a peak between noon and 6pm. The study concluded that increasing 

insulin release during the day and falling insulin release during the night may be one 

explanation for higher glucose tolerance and insulin response in the morning than at 

night. 

At a molecular level, insulin appears to influence hepatic gluconeogenesis by 

interacting with transcriptional coactivators and the clock components, summarized in 

Figure 21. The promoter of PGC-1, an activator of gluconeogenic transcription along 

with FOXO1 and cortisol-receptor complex, includes insulin response sequences 

(IRSs).130 Among the clock genes, hepatic Bmal1 bi-directionally influence each other. 

Bmal1 is post-transcriptionally regulated by signals from insulin.131 Insulin promotes 

postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation 

from DNA, eventually leading to nuclear exclusion. Ultimately insulin activity on Bmal1 

results in the suppression of Bmal1 transcriptional activity. On the other hand, Bmal1 

(and Per1) knock-out mice showed lacking clock function in the pancreas, severe 
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glucose, intolerance, and defective insulin production compared to their littermate 

controls.132 Since the isolated pancreatic islets from the mutant mice showed normal 

insulin content while glucose-stimulated insulin secretion was defective, Bmal1 may 

control the release of insulin from the pancreatic islets as opposed to the production of 

insulin. In addition to Bmal1, Clock seems to have an important role in controlling insulin 

secretion in mice.127 Both Clock and Bmal1 mutants showed impaired glucose tolerance 

and reduced insulin secretion. Defects in size and proliferation of pancreatic islets were 

also observed, which worsened with age. Clock disruption resulted in transcriptome-wide 

alterations in the genes related to growth, survival, and synaptic vesicle assembly. 

Pancreatic clock disruption also resulted in defective β-cell function, which led to 

diabetes mellitus for the animals.  

More direct evidence for the requirement of functional clock genes for human islet 

function was found in 2016.133 In this study, human pancreatic islet cells with knock-out 

of Clock were assessed for insulin secretion. The results indicated that clock knock-out 

cells showed a significant decrease in both acute and chronic glucose-stimulated insulin 

secretion. The synchrony of insulin secretion rhythm was also perturbed upon clock 

disruption. RNA sequencing results further elucidated that clock genes are involved in 

insulin secretion rather than production, as among ~300 altered genes were key regulators 

of insulin secretion (GNAQ, ATP1A1, ATP5G2, and KCNJ11) as well as transcripts 

required for granule maturation and release (VAMP3, STX6, and SLC30A8).  

Since the circadian rhythmicity of insulin secretion appears to be largely driven by 

the oscillations in insulin granule dynamics, we chose to focus on the dynamics of insulin 
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granule formation, translocation to the cell membrane, and release to the extracellular 

space. Briefly, glucose stimulated insulin secretion is tightly related to the cellular 

ATP/ADP ratio and Ca2+ concentration. Increase in glucose concentration causes cellular 

ATP/ADP ratio to increase, causing closures of ATP-dependent K+ channels. When cell 

membrane is depolarized, opening Ca2+ channels and allowing the influx of Ca2+ ions. 

Increased concentration of Ca2+ ions mediates the exocitosis of insulin granules.134,135 

 

Figure 21: Possible schematic of insulin influence on hepatic gluconeogenesis 

To evaluate the role of light of light-feeding phase relations on insulin secretion, 

we modified the insulin granule trafficking model originally developed by Bertuzzi et 

al.136 to describe circadian secretion of insulin from the pancreatic β-cells. In this new 

model, the parameter describing the production of membrane material oscillates in a 

circadian manner, resulting in graded insulin secretion response to glucose stimulation. 

The model predicts that there exists an optimal light-feeding phase relation that 

maximizes insulin sensitivity, and that meal size distribution also plays an important role 

in determining the amount of insulin secretion. 
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4.2 Methods 

 

Figure 22: Schematic of the insulin model, adapted from the granule trafficking model136 

The insulin model was adapted and modified from the insulin granule trafficking 

model by Bertuzzi et al.136 and describes the kinetics of four intracellular pools of insulin 

granules: the reserve pool (R), the pool of docked granules (D), the pool of immediately 

releasable granules (DIR), and the pool of granules fused with cell membrane (F). The 

schematic of the model is shown in Figure 22. The dynamics of the above four pools and 

the pool of proinsulin (I) are described by the following equations: 

dI

dt
=  −𝑘 ⋅ 𝐼(𝑡) ⋅ 𝑉(𝑡) − 𝛼𝐼 ⋅ 𝐼(𝑡) + 𝑏𝐼 

( 74 ) 

dV

dt
=  −𝑘 ⋅ 𝐼(𝑡) ⋅ 𝑉(𝑡) − 𝛼𝑉 ⋅ 𝑉(𝑡) + 𝑏𝑉 + 𝜎 ⋅ 𝐹2 

( 75 ) 

bV = {
𝑘𝐼𝑎 ⋅ sin(𝑘𝐼𝑏 ⋅ 𝑡 − 𝑘𝐼𝑐) + 𝑘𝐼𝑑
𝑘𝐼1 ⋅ 𝐵𝑚𝑎𝑙 − 𝑘𝐼2 ⋅ 𝑏𝑉 

 

( 76 ) 
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𝑑𝑏𝐼
𝑑𝑡

= 𝑘𝐼5
𝑘𝐼3 ⋅ 𝐺2

𝑘𝐼𝑛

𝑘𝐼4
𝑘𝐼𝑛 + 𝐺2

𝑘𝐼𝑛
 

( 77 ) 

dR

dt
= 𝑘 ⋅ 𝐼(𝑡) ⋅ 𝑉(𝑡) − 𝛾 ⋅ 𝑅(𝑡) 

( 78 ) 

dD

dt
= 𝛾 ⋅ 𝑅(𝑡) − 𝑘1

+ ⋅ [𝐶𝑇 − 𝐷𝐼𝑅(𝑡)] ⋅ 𝐷(𝑡) + 𝑘1
− ⋅ 𝐷𝐼𝑅(𝑡) 

( 79 ) 

dDIR
𝑑𝑡

= 𝑘1
+ ⋅ [𝐶𝑇 − 𝐷𝐼𝑅(𝑡)] ⋅ 𝐷(𝑡) − 𝑘1

− ⋅ 𝐷𝐼𝑅(𝑡) − 𝜌 ⋅ 𝐷𝐼𝑅(𝑡) 

( 80 ) 

dF

dt
= 𝜌 ⋅ 𝐷𝐼𝑅(𝑡) − 𝜎 ⋅ 𝐹(𝑡) 

( 81 ) 

dF2
𝑑𝑡

=
1

𝜏𝑉
⋅ (𝐹 − 𝐹2) 

( 82 ) 

In Equation ( 74 ), the dynamics of proinsulin I is described. Here, k is the 

segregation rate constant for granule membrane material, αI is the degradation rate of 

proinsulin, and bI is a baseline production rate of proinsulin. Equation ( 75 ) describes the 

granule membrane material, V. In this equation, αV is a degradation rate of granule 

membranes, bV is the rate of production of the granule membranes, σ is the rate constant 
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for the fusion of granule to cellular membrane, and τV is the constant time interval 

required for recycling. In Equation ( 76 ), the circadian oscillation of membrane material 

production is incorporated into the model. The synthesis rate of V, or bV, is either forced 

with a sine function that has a nadir at 6am and peak at 6pm, or is an indirect response of 

Bmal1 mRNA. The equation was constructed based on the observation that dysfunction 

of Bmal1 results in reduced secretion of insulin as well as lost in rhythmicity of insulin 

secretion.132 In Equation ( 78 ) that describes the insulin reserve pool R, γ is a rate 

constant that is dependent on the glucose concentration G and represents a main rate-

limiting step in the response to glucose (described in Equation ( 83 ) later). In Equations ( 

79 ) and ( 80 ), the docked granules D and immediately releasable granules DIR are 

represented. In these equations, CT is the constant pool of total Ca2+ channels, k1
+ and k1

- 

are the association and dissociation rate constants, and ρ is the rate coefficient that 

accounts for the factors that promote the fusion of granules with cell membrane 

(described in Equation ( 86 )). In Equation ( 82 ), a transit compartment was added for F 

to account for the membrane material recycling time τV. 

dγ

dt
= 𝜂 ⋅ {−𝛾(𝑡) + 𝛾𝑏 + ℎ𝛾[𝐺2]} 

( 83 ) 

dG2
𝑑𝑡

=
1

𝜏𝐺
⋅ (𝐺 − 𝐺2) 

( 84 ) 
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hγ(𝐺) =

{
 

 
0, 𝐺 ≤ 𝐺∗

ℎ̂(𝐺 − 𝐺∗)

�̂� − 𝐺∗
, 𝐺∗ < 𝐺 ≤ �̂�

ℎ̂, 𝐺 > �̂�

  

( 85 ) 

ρ

dt
= 𝜁 ⋅ {𝜌(𝑡) + 𝜌𝑏 + ℎ𝜌[𝛾(𝑡)]} 

( 86 ) 

h𝜌(𝛾) = {
0, 𝛾 < 𝛾𝑏

𝑘𝜌 ⋅ (𝛾 − 𝛾𝑏), 𝛾 ≥ 𝛾𝑏
 

( 87 ) 

Equations ( 83 )-( 87 ) describe the triggering of insulin secretion by glucose 

stimulation. In Equation ( 83 ), γ represents the rate coefficient of granule externalization, 

related to the ratio ATP/ADP, previously appeared in Equation ( 79 ) to describe the 

docked pool. In the same equation, η is a rate constant, and γb is the basal value at low 

glucose. Equation ( 84 ) is a transit compartment for smoothing out the glucose 

concentration. Here, τG, the time required for glucose metabolism, was selected to 

replicate the daily glucose concentration profile in healthy subjects137. The The glucose 

activation model hγ is described by Equation ( 85 ), where ĥ is the maximal value of hγ 

and is reached at G=Ĝ. Below the threshold of G*, hγ is 0, and between G* and Ĝ, the 

function increases linearly. Equation ( 86 ) describes the behavior of ρ, the rate 

coefficient of granule fusion with cell membrane, determined by the calcium 

concentration. In Equation ( 86 ), ζ is a rate constant, and ρb is the basal value of [Ca2+]. 
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The function hρ, which embodies the action of ATP on Ca2+, is described in Equation ( 87 

).  

ISR(t) = I0 ⋅ 𝜎 ⋅ 𝐹(𝑡) ⋅ 𝑓(𝑡) ⋅ 𝑁 

( 88 ) 

f(G) =  {

𝑓𝑏 , 𝐺 < 𝐺∗

𝑓𝑏 + (1 − 𝑓𝑏)
𝐺 − 𝐺∗

𝐾𝑓 + 𝐺 − 𝐺∗
, 𝐺 ≥ 𝐺∗

 

( 89 ) 

The insulin secretion rate is defined in Equation ( 88 ), where I0 is the insulin 

amount contained in granule, and N is the total number of β-cells in the pancreas.  The 

fraction of the total cell population which responds to glucose, f, is defined in Equation ( 

89 ). 

4.3 Results 

Our insulin secretion model aims to depict the dependence of glucose-stimulated 

insulin response on circadian time. To achieve this goal, we first tried to investigate how 

imposing an oscillatory behavior on production of granule membrane material V can alter 

the insulin granule dynamics under glucose stimulation. In  

Figure 23: Sample simulation results for pulse glucose stimulation. The time 

profiles for glucose concentration in mmol/L (A), reserve pool R (B), docked pool D (C), 

and ISR in μg/hr (D) are shown., a sample of the simulation results for pulse glucose 

stimulations is available. For this figure, the amplitude of oscillation of bV (kIa) was set to 
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3, and the average level of the vertical shift (kId) was set to 6. The values of the rest of the 

parameters are shown in Table A3. The resulting V profile has a nadir at 4m and a peak 

at 4pm, 2 hours before the starting and ending time of the light (active) period, to 

simulate the effect of Bmal1 mRNA which peaks in the afternoon. The system was first 

stabilized at a glucose concentration of 1 mmol/L for 24 hours. Then a 1 hr pulse at 16.7 

mmol/L was applied at different times of the day in 2 hour increments, returning to 1 

mmol/L immediately after the pulse. Example profiles of glucose is shown in  

Figure 23: Sample simulation results for pulse glucose stimulation. The time 

profiles for glucose concentration in mmol/L (A), reserve pool R (B), docked pool D (C), 

and ISR in μg/hr (D) are shown.A. The resulting ISR profiles are shown in  

Figure 23: Sample simulation results for pulse glucose stimulation. The time 

profiles for glucose concentration in mmol/L (A), reserve pool R (B), docked pool D (C), 

and ISR in μg/hr (D) are shown.D. From this figure, it is evident that identical pulse 

glucose stimulations at different times of the day can cause differences in ISR. ISR peak 

is the highest if the pulse is applied at 4pm, at the peak of bV. Once glucose concentration 

is returned to 1mmol/L, ISR also becomes 0. However, lasting effects of glucose 

stimulation are observed post pulse time in intermediates such as R (23B) and D (23C). 
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Figure 23: Sample simulation results for pulse glucose stimulation. The time profiles for glucose concentration in 
mmol/L (A), reserve pool R (B), docked pool D (C), and ISR in μg/hr (D) are shown. 

In Figure 24, a sample model simulation using glucose infusion as stimulus is 

shown. In this figure, glucose concentration was initially set to 0 mmol/L for the first 24 

hours, then the glucose concentration was raised to 16.7 mmol/L at different times of the 

day in 2 hour increments in the next 24 hours. The glucose concentration profiles are 

shown in Figure 24A, and the resulting ISR profiles are shown in 23D. Among the 

intermediate pools, R (23B) and D (23C) are also shown. The intermediates R and D 

oscillate with very low amplitude prior to glucose stimulation. Once glucose infusion is 

started, the amplitude of R and D increase and insulin secretion begins. After the initial 

24 hours into glucose infusion (by Day 3), system reaches steady state and all profiles 

oscillate with an identical amplitude and phase regardless of when glucose infusion 
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started. However, the transient behavior for the initial 24 hours into glucose infusion 

depends on stimulation start time. For example, the maximum value and AUC of ISR and 

R over the first 24 hours depends on the circadian time of infusion start. 

 

Figure 24: Sample simulation results for glucose infusion. The time profiles for glucose concentration in mmol/L (A), 
reserve pool R (B), docked pool D (C), and ISR in μg/hr (D) are shown. 

 Next, we wished to evaluate the effect of glucose concentration insulin secretion 

under glucose pulse and infusion stimulations. The previously described simulations 

using 1 hr pulse and continuous glucose infusion were performed again at glucose 

concentration of 9 mmol/L and 5 mmol/L. Then, the maximum value and AUC of the R 

and ISR during the first 24 hours after glucose stimulation were found and plotted in 

Figure 25. Examining Figure 25A, we observe that AUC of ISR after glucose pulse is 

greater when glucose stimulation concentration is greater. The peak value of ISR follows 

the same pattern. AUC and maximum value of R has a greater circadian dependence 
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when glucose concentration is greater. For both R and ISR, maximum AUC is achieved if 

pulse occurs at 16 circadian hours, 2 hours prior to the peak of bV. In the case of infusion 

stimulation, maximum insulin secretion during the transient phase is achieved if infusion 

starts at 8 or 10 circadian hours. If infusion starts at the peak of bV, the transient secretion 

rate is at the minimum. 

 

Figure 25: Sample simulation results for 3 meals/day glucose stimulation. Glucose concentration G is in mmol/L (A) 
and ISR is in μg/hr (B). 

 In Figure 26, we attempt to show the effect of oscillation characteristics of bV on 

ISR under 3 meals/day glucose stimulation pattern. In this figure, the AUC of ISR on the 

10th day are plotted against the breakfast start time. In Figure 26A, the data for low 

vertical shift (average level of bV) is plotted. Figure 26B shows the data for medium 

vertical shift, and 26C shows the data for high vertical shift. For each vertical shift, three 

different amplitude of bV was tested. Examining the data together, higher level of bV 

leads to higher AUC of ISR while greater amplitude of bV leads to greater differences in 

AUC of ISR depending on the meal start time. For all cases, the most amount of insulin is 

secreted if breakfast is started at 10am. 
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Figure 26: Effect of breakfast start time on AUC of ISR (μg) with differing rhythms of bV. In this figure, kid is the vertical 
shift and kia is the amplitude of the V rhythm. 

 In Figure 27, the effect of circadian characteristics on glucose stimulated insulin 

secretion is examined in more detail. In this figure, first peaks (resulting from breakfast) 

are shown as squares, second peaks are depicted as circles, and third peaks are denoted as 

triangles. Data for bV oscillating with low amplitude (27A), medium amplitude (27B), 

and high amplitude (27C) are shown on separate plots. For each amplitude, data from bV 

rhythms with low level (green), medium level (yellow), and high level (red) are shown. 

From Figure 27, we observe that the ISR peak level is higher for later meals in general. If 

the glucose stimulation is started during the light period (between 6am and 6pm), 
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breakfast peak is the lowest and dinner peak is the highest. Interestingly, the difference 

between breakfast and lunch peaks is larger than the difference between lunch and dinner 

peaks, a phenomenon observed in human subjects.138 The increased insulin secretion for 

dinner under identical caloric intake was also confirmed by a study that provided 

identical meals in 6 or 12 hour increments.139 The difference between ISR peaks within a 

day is greater if the breakfast is started during the light phase. If the meals are started 

during the eark phase, the peak differences are reduced, especially between lunch and 

dinner. Additionally, peak differences are greater if bV rhythm has a higher amplitude 

(27B and 27C). However, for low amplitude rhythms (27A), the peak differences are 

consistent regardless of meal start time. 
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Figure 27: Relative ISR (μg) peak values for the three meals. First peaks are depicted as squares, second peaks as 
circles, and third peaks as triangles. Data for low amplitude rhythm (A), medium amplitude rhythm (B), and high 
amplitude rhythm (C) are shown separately. Within each figure, data for rhythms with low (green), medium (yellow), 
and high (red) vertical shifts are shown next to one another. 

Figure 26 and Figure 27 show that insulin secretion is greatest with identical 

glucose stimulation if the first meal of the day is started at 10am. In Figure 28, the AUC 

of ISR during the dark period and light period over a 24 hour day are compared. Data for 

bV oscillating with low amplitude (28A), medium amplitude (28B), and high amplitude 

(28C) are shown on separate plots. For each amplitude, data from bV rhythms with low 
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level, medium level, and high level are compared next to each other. For all rhythms of 

V, insulin secretion during the light period is greatest if the meals are started at 6am. If 

the meals are started at 6pm, most of the insulin is secreted during the dark phase. The 

relative insulin secretion between light and dark periods are similar among meal start 

times between 8am and 12pm. 

 

Figure 28: AUC of ISR (μg) during the light and dark period for different rhythms of bV. Data for low amplitude rhythm 
(A), medium amplitude rhythm (B), and high amplitude rhythm (C) are shown separately. Within each figure, data for 
rhythms with low, medium, and high vertical shifts are shown next to one another. 
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 Next, we tested weather having meals of different size throughout the 3-meal day 

can have an effect on the overall insulin secretion, and showed the results in Figure 29. 

For the “small dinner” meal pattern, three glucose pulses occur during the 12 hour active 

phase, starting with a 1 hour pulse at 16.7 mmol/L. The lunch is a 1 hour pulse glucose 

stimulation at 75% of the breakfast concentration, and the diner is 1 hour pulse at 50% of 

the breakfast concentration. For the “small breakfast” meal pattern, the pulses appear in 

the reverse order. For the “3 equal meals” meal pattern, all pulses are at 75% of the 

maximum concentration. Therefore, for all three meal patterns, the AUC of glucose 

concentration over a 24 hour day is identical. The system was allowed to reach steady-

state and the AUC of ISR on the 10th day was calculated and plotted. Figure 29 shows 

that when compared to 3 equal meals, small dinner meal pattern will produce less insulin 

if meals are started during late night morning time. In contrast, big dinner meal pattern 

will produce less insulin than the 3 equal meals in almost all cases, although the 

difference between the two during the late night phase is small. 
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Figure 29: AUC of ISR for different meal size distributions 

 The relative ISR peak values for breakfast, lunch, and dinner are also changed 

depending on the meal size distribution (Figure 30). As described previously, providing 3 

equal meals causes ISR peak level to increase toward the end of the day. If dinner 

concentration is higher than breakfast, the peaks still increase toward the later meals, with 

smaller breakfast peaks and higher dinner peaks. If breakfast concentration is higher than 

dinner, peak values decrease toward the end of the day. 
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Figure 30: ISR peak values for breakfast, lunch, and dinner for different meal size distributions 

 To evaluate the role of light-feeding phase relations on insulin secretion, the 

gluconeogenesis model from Chapter 3 was incorporated into the insulin model. The 

production rate of V was expressed as an indirect response from Bmal1 mRNA, as shown 

in Equation ( 76 ). Three 1 hr meals at 16.7 mmol/L spread out over 12 hours was given 

to the model. When glucose stimulation was on, feeding signal was set to 4, so that the 

AUC of feeding matches the AUC of light, which was on at 1 from 6am to 6pm. This set 

up was tested with the first meal starting at different times of the day in 2 hour 

increments. The resulting AUC of ISR on the 10th day is shown in Figure 31A, along 

with the amplitude of Bmal1 mRNA. Increase in Bmal1 oscillation amplitude results in 
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higher ISR, resulting in highest insulin secretion if the meal is started at 8am, 2 hours 

after the light phase starts. We applied a constant light condition (light is set to 1 

constitutively) to test the effect of circadian disruption on ISR. Figure 31A and B show 

that insulin secretion is reduced if the system experiences constant light, consistent with 

data from rodents exposed to bright light.140,141 

 

Figure 31: The light/dark cycle and feeding/fasting cycle drives the oscillation of bV. The AUC of ISR (μg) is shown with 
amplitude of Bmal1 mRNA (A). The effect of constant light is shown in red. 

 Figure 32 shows the effects of meal size distribution in the circadian insulin 

model. For the small dinner meal pattern, 1 hour breakfast pulse was set at feeding level 

of 4 and glucose concentration of 16.7 mmol/L. Lunch was a 1 hour pulse with 75% of 

the breakfast amplitude, and dinner was a 1 hour pulse with 50% of the breakfast 

amplitude. For the big dinner meal pattern, the pulses appeared in the reverse order. For 3 

equal meals, all pulses were set at 66% of the maximum level to achieve identical AUC 

of feeding and glucose stimulation over a 24 hour period. Light was on at 1 from 6am to 

6pm. For all meal patterns, the system was allowed to reach steady state and the AUC 
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over ISR on the 10th day was calculated and plotted on Figure 32, along with the AUC of 

granule membrane V. For all meal patterns, AUC of ISR is greatest when AUC of V is 

greatest. For 3 equal meals and small dinner, insulin secretion is greatest if meals are 

started at 8am. However, insulin secreation peaks if meals are started at 10 am if dinner is 

the largest meal of the day. Additionally, providing 3 equal meals results in highest 

insulin secretion regardless of the meal start time. Large dinner results in the lowest 

insulin secretion. 

 

Figure 32: The effect of meal distribution and meal time on AUC of ISR (μg) is shown for the insulin model where bV is 
driven by light/dark cycle and feeding/fasting cycle. 
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4.4 Discussion 

 Evidence for circadian secretion of insulin exist at multiple levels, from tissue 

cultures of rat pancreatic islets128 to healthy human volunteers.129 RNA sequencing of 

human pancreatic islet cells with knock-out of clock genes suggest that insulin secretion, 

rather than production, is under circadian control.133 As such, we have developed a model 

to study the circadian rhythmicity in glucose-stimulated insulin secretion, incorporating 

the dynamics of granule maturation and release.136 Using this model, we investigated how 

the oscillatory characteristics of circadian rhythms can influence the time of the day 

dependence on insulin secretion rate. Furthermore, we studied how meal size distribution 

can change the insulin secretion rate throughout a 24-hour day. 

 In Figure 27 and Figure 30, the model predicts that the first ISR peak of the day is 

the lowest peak of the day. The second and third peaks are higher than the first peak in 

most cases, except for the case where the granule membrane synthesis rate (bV) oscillates 

with a high amplitude and low level and meals are started during the middle of the dark 

phase. Since we observe that this peak pattern appears regardless of when the first meal 

of the day is started, we can deduce that the increase in peak level for later meals is not 

due to the oscillations in bV. Instead, the increase is due to the lasting effects of the meal 

on the granule dynamics. Figure 23 shows that although ISR returns to zero immediate 

after glucose pulse is over, the increased level of the reserved pool (R) and docked 

granules (D) remain at higher levels. Additionally, the increase in levels of these 

intermediates is higher when bV is increased. Highest ISR peaks and AUC of ISR are 

achieved when bV has a steep positive slope. 
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 Figure 26 shows that overall ISR over a 24-hour day is dependent on the 

oscillatory characteristics of bV. We observe a vertical shift in the AUC of ISR as the 

average level of bV is increased. If average level of bV is identical but the amplitude of 

oscillation is increased, AUC of ISR also varies in greater magnitude depending on when 

the meals are started. The same trend is observed in Figure 28. Additionally in Figure 28, 

the proportion between AUC of ISR during the light and dark periods vary depending on 

the meal start time, but is not affected by the amplitude or the level of bV. An interesting 

phenomenon is jump in the proportion of ISR during the light and dark periods between 

certain times of the day. Alternatively, the proportion is very similar for some meal start 

times. For example, meals started at 8am, 10am, and 12pm would yield similar 

proportions. We observe this due to the spacing of the meal times. Since the three meals 

are equally distributed between 12 hours, starting the first meal at these times would 

result in two meals given during the light phase and one meal given during the dark 

phase, resulting in similar ISR proportions. 

 Figure 29, Figure 30, and Figure 32 show the effects of unequal meal sizes on 

ISR. Figure 32 shows that when the light/dark cycle is incorporated into the model 

maximum ISR is achieved if three equal meals are presented to the system. Having a big 

dinner and small breakfast will result in the lowest ISR, and the ISR from combination of 

small dinner and big breakfast will be in the middle. Additionally, the meal start time that 

results in the greatest ISR for small dinner is the earliest, followed by 3 equal meals, and 

then big dinner. The same meal start times also result in the greatest AUC of V for each 

meal pattern, as represented in the dotted line in the same graph. This pattern is consistent 
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in Figure 29, before the light/dark cycle was incorporated into the model. Figure 30 can 

provide more insight into the differences in ISR resulting from meal size distributions. 

For three equal meals, ISR peaks increase toward the later meals, but the three peaks are 

close together compared to the other two meal patterns. In the case of big dinner, the 

peaks still increase toward the end of the day but the differences between the peaks are 

greater compared to the equal meals. In the case of small dinner, the peaks decrease 

toward the end of the day. Examining Figure 30 more closely can help elucidate the 

reason for observing lower AUC of ISR for big dinner meal patter in Figure 32.  In 

Figure 30, the second peaks for small dinner are always higher than the second peaks for 

big dinner, although the meal sizes are identical. The above relationship occurs because a 

larger breakfast will cause the reserve pool (R) to be at a higher level when the system 

receives the lunch pulse. Because granule levels are already more elevated at the time of 

lunch, identical stimulation results in greater ISR for small dinner case. 

In summary, our model shows that glucose-stiulated insulin release from the 

pancreatic β-cells can change due to the oscillatory characteristics of circadian rhythms 

in insulin granule formation and fusion. Although ISR is raised for later meals of the day, 

this pattern can be altered depending on the oscilation amplitude and level of granule 

membrane material. Furthermore, our model suggests that distributing the meal sizes 

differently can alter the level of ISR.When the effects of light/dark cycle is incorporated, 

the model predicts that having a small breakfast and large dinner results in lower ISR 

compared to other meal patterns, regardless of what circadian time the meals are first 
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started. In the future, the influence of insulin on clock genes should be represented in for 

more accurate description of the interaction between insulin and circadian clocks. 

CHAPTER 5: Conclusions 

Metabolic diseases caused by circadian disruption has been extensively reported in 

literature, both at the molecular level and the clinical level. Restoration of circadian 

rhythms by time-restricted feeding has been shown to reverse the metabolic abnormalities 

in some cases. Therefore, there is a need to understand how the biological clock affects 

metabolic reactions, and how environmental factors such as light and feeding cycles can 

modulate a downstream biological process at a molecular level. I have developed a semi-

mechanical mathematical model to predict the effect of phase relation between light and 

feeding cycles on hepatic gluconeogenesis. As a first step, the entrainment of peripheral 

clock genes by two conflicting environmental cues, light and food availability, was 

described. Then, the model was further extended to include the downstream hepatic 

gluconeogenesis. Finally, circadian secretion of insulin was modeled based on granule 

trafficking mechanism. The works described in this thesis provide an insight into the 

dynamics of glucose metabolism under various environmental factors, transmitted 

through multiple entrainers such as cortisol SIRT1, and insulin. The models predict that a 

few hours of restricted feeding in the early active phase is beneficial for robust oscillation 

of peripheral clock genes, appropriate level of gluconeogenesis, and maximum secretion 

of insulin. Analyzing the dynamics of the model also contributes to understanding how 

circadian disruption or restoration affects the progression of metabolic diseases. 



119 

 

 

 

Furthermore, this understanding could ultimately be applied in the development of non-

pharmacological interventions, such as chronotherapy, for metabolic diseases. There are 

limitations to the model including the lack of consideration for the roles of melatonin and 

sexual dimorphism in controlling glucose metabolism, and future studies should address 

these issues. 
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Appendix 

Table A1 
# Parameter Value Units Description/Reference 

1 kp1 0.7965 µM.h-1 Rate constant of CRH 

production18 

2 Kp1 1.0577 µM Dissociation constant for CRH 

production18 

3 Vd1 0.5084 µM.h-1 Rate of CRH enzymatic 

degradation18 

4 Kd1 1.9627 µM Michaelis constant of CRH 

enzymatic degradation18 

5 kfp 0.15 µM -1 Efficiency of P on ACTH and F 

stimulation/ estimated36 

6 kp2 0.6857 µM.h-1 Rate of ACTH production18 

7 Kp2 1.0577 µM Dissociation constant for ACTH 

production18 

8 Vd2 0.5129 µM.h-1 Rate of ACTH enzymatic 

degradation18 

9 Kd2 0.3069 µM Michaelis constant of ACTH 

enzymatic degradation18 

10 kp3 1.0302 µM.h-1 Rate of F central production/ 

estimated36 

11 kn 1.2  Coupling constant of cortisol to 

cellular energy state 

12 Vd3 0.3618 µM.h-1 Rate of F central enzymatic 

degradation18 

13 Kd3 0.4695 µM Michaelis constant of F central 

enzymatic degradation18 

14 ksynRm
 2.9 fmol.g-1.h-1 Synthesis rate or glucocorticoid 

receptor mRNA35 

15 IC50Rm
 26.2 nmol.L-1.mgprotein-

1 

Concentration of FR(N) at which 

mRNA, Rsynthesis drops 

to its half35 

 R0 540.7 nmol.L-1.mgprotein-

1 

Baseline value of free cytosolic 

glucocorticoid receptor35 

 Rm0 25.8 fmol.g-1 Baseline value of glucocorticoid 

receptor mRNA35 
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16 kdgrRm
 ksynRm

/Rm0 
 

Degradation rate of 

glucocorticoid receptor 

mRNA35 

17 ksynR
 (R0/Rm0)*kdgrR

 
 

Synthesis rate of free cytosolic 

receptor35 

18 rf 0.49 
 

Fraction of cortisol recycled35 

19 kre 0.57 h-1 Rate of receptor recycling from 

nucleus to cytoplasm35 

20 kon 0.00329 L.nmol-1.h-1 Second order rate constant of 

glucocorticoid receptor 

binding35 

21 kdgrR
 0.0572 h-1 Degradation rate of cytosolic 

glucocorticoid receptor35 

22 kt 0.63 h-1 Rate of receptor translocation to 

the nucleus35 

23 τ 0.25 h Delay in Cortisol production 

following ACTH 

stimulation 

24 kMR 0.34 nM.h-1 Base transcription rate of MR32 

25 kF,MR 1.1011 1 Maximum extent of Fperiphery 

mediated activation of 

MR32 

26 KF,MR 0.5 nM Michaelis constant for Fperiphery 

mediated activation of 

MR32 

27 MRT 1.45 nM Total MR concentration32 

28 KMR 0.21 nM Michaelis constant for MR 

production32 

29 kMR,deg 0.70 nM.h-1 Degradation rate for MR32 

30 KMR,deg 1.65 nM Michaelis constant for 

degradation of MR32 

31 kb,MR 0.00329 nM-1.h-1 Degradation rate for 

cortisol/mineralocorticoid 

receptor binding35 

32 kon,MR 1 L.nmol-1.h-1 Second order rate constant of 

mineralocorticoid and 

receptor binding32 

33 kt,MR 1 h-1 Rate of mineralocorticoid 

receptor translocation to 

the nucleus/35 
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34 kre,MR 1 h-1 Rate of mineralocorticoid 

receptor recycling from 

nucleus to cytoplasm32 

35 kGR 1.18 nM.h-1 Base transcription rate of GR32 

36 kF,GR 15 1 Maximum extent of Fperiphery 

mediated activation of 

GR32 

37 KF,GR 30 nM Michaelis constant for Fperiphery 

mediated activation of 

GR32 

38 GRT 1.81 nM Total GR concentration32 

39 KGR 0.74 nM Michaelis constant for GR 

production32 

40 kGR,deg 1.52 nM.h-1 Degradation rate for GR32 

41 KGR,deg 1.05 nM Michaelis constant for 

degradation of GR32 

42 kb,GR 0.00329 nM-1.h-1 Degradation rate for 

cortisol/glucocorticoid 

receptor binding35 

43 kon,GR 1 L.nmol-1.h-1 Second order rate constant of 

mineralocorticoid and 

receptor binding35 

44 kt,GR 1 h-1 Rate of mineralocorticoid 

receptor translocation to 

the nucleus35 

45 kre,GR 1 h-1 Rate of mineralocorticoid 

receptor recycling from 

nucleus to cytoplasm35 

46 kmRNARpin
 0.61 µM.h-1 Base transcription rate of 

mRNARP
32 

47 kfr2 0.8 1 Maximum extent of FMR(N) 

mediated transcription of 

mRNARP
32 

48 Kfr2 0.5 µM Michaelis constant for FMR(N) 

mediated transcription of 

mRNARP
32 

49 kpc 0.3 1 Maximum extent of BMAL1 

mediated suppression of 

mRNAP and mRNATLR4 

estimated 
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50 Kpc 25 µM Michaelis constant for BMAL1 

mediated suppression of 

mRNAP and mRNATLR4 

estimated 

51 kmRNARpout
 0.19 h-1 Degradation rate of mRNARP

32 

52 kin
P
 0.29 h-1 Translation rate of P32 

53 kout
P
 1.06 h-1 Degradation rate of P32 

54 kmRNARpin
 0.61 µM.h-1 Base transcription rate of 

mRNARP
32 

55 kfr2 0.8 1 Maximum extent of FMR(N) 

mediated transcription of 

mRNARP
32 

56 kmRNARpout
 0.19 h-1 Degradation rate of mRNARP

32 

57 kinRp
 1.11 h-1 Translation rate of RP

32 

58 kd 0.14 µM-1.h-1 P–Rp binding rate constant32 

59 koutRp
 0.26 h-1 Degradation rate of RP

32 

60 koutPRp
 1.3 h-1 Dissociation rate of PRP

32 

61 v1b 9 nM.h-1 Maximal rate of Per-Cry 

transcription142 

62 k1b 1 nM Michaelis constant of Per-Cry 

transcription142 

63 k1i 0.56 nM Inhibition constant of Per-Cry 

transcription142 

64 c 0.01 nM Concentration of constitutive 

activator142 

65 p 8  Hill coefficient of inhibition of 

Per-Cry transcription142 

66 kf 1.2 nM-1 Efficiency of P on transcription 

of Per-Cry/estimated36 

67 kc 0.009 nM.h-1 Coupling strength/estimated 

68 k1d 0.12 h-1 Degradation rate of Per-Cry 

mRNA142 

69 k2b 0.3 nM-1.h-1 Complex formation rate of Per-

Cry mRNA142 

70 q 2  No. of PER-CRY complex 

forming subunits142 

71 k2d 0.05 h-1 Degradation rate of cytoplasmatic 

PER-CRY142 
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72 k2t 0.24 h-1 Nuclear import rate of the PER-

CRY complex 

73 k3t 0.02 h-1 Nuclear export rate of PER-CRY 

complex 

74 k3d 0.02 h-1 Degradation rate of the nuclear 

PER-CRY complex 

75 v4b 3.6 nM.h-1 Maximal rate of Bmal1 

transcription142 

76 k4b 2.16 nM Michaelis constant of Bmal1 

transcription142 

77 r 3  Hill coefficient of activation of 

Bmal1 transcription142 

78 k4d 0.75 h-1 Degradation rate of Bmal1 

mRNA142 

79 k5b 0.24 h-1 Translation rate of BMAL1142 

80 k5d 0.06 h-1 Degradation rate of cytoplasmatic 

BMAL1142 

81 k5t 0.45 h-1 Nuclear import rate of BMAL1142 

82 k6t 0.06 h-1 Nuclear export rate of BMAL1142 

83 k6d 0.12 h-1 Degradation rate of nuclear 

BMAL1142 

84 k6a 1 h-1 Activation rate of nuclear 

CLOCK-BMAL1 

85 k7a 0.1 h-1 Deactivation rate of CLOCK-

BMAL1 

86 k7d 0.5 h-1 Degradation rate of CLOCK-

BMAL1 

87 km8a 10 h-1 Association rate of CLOCK-

BMAL1-SIRT1 

88 km8d 20 h-1 Dissociation rate of CLOCK-

BMAL1-SIRT1 

89 τf 3 h Delay between feeding and 

NAD+ reduction to 

NADH 

90 km1 5 1 Maximum extent of NADH 

converting to NAD+ 

91 Km1 2 μM Michaelis constant for NADH 

converting to NAD+ 

92 km2 40 1 Maximum extent of NMN 

converting to NAD+ 
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93 Km2 1 μM Michaelis constant for NMN 

converting to NAD+ 

94 km3 5 1 Maximum extent of NAD+ 

converting to NADH upon 

feeding 

95 Km3 1 μM Michaelis constant NAD+ 

converting to NADH upon 

feeding 

96 km4 20 1 Maximum extent of NAD+ 

converting to NAM 

97 Km4 20 μM Michaelis constant for NAD+ 

converting to NAM 

98 km5 40 1 Maximum extent of NAM 

converting to NMN, mediated by 

NAMPT 

99 Km5 5 μM Michaelis constant for of NAM 

converting to NMN, mediated by 

NAMPT 

100 km11 5 1 Maximum extent of entrainment 

of cortisol by feeding 

101 Km11 2 μM Michaelis constant for 

entrainment of cortisol by feeding 

102 km12 1 μMh-1 Rate of cortisol entraining signal 

degradation 

103 km6 5 1 Maximum extent of SIRT1 

activation mediated by NAD 

104 Km6 1 μM Michaelis constant of SIRT1 

activation mediated by NAD 

105 sirtT 5 μM Sum of active and inactive SIRT1 

106 km7 2 1 Maximum extent of SIRT1 

degradation 

107 Km7 1 μM Michaelis constant for SIRT1 

degradation 

108 km8a 10 μM-2h-1 Rate of SIRT1 and 

CLOCK/BMAL1 complex 

association 

109 km8d 20 μM-1h-1 Rate of SIRT1 and 

CLOCK/BMAL1 complex 

dissociation 

110 km9d 0.1 μM-1h-1 Rate of CLOCK/BMAL1/SIRT1 

complex degradation 

111 km10a 2 μMh-1 Rate of NAMPT production 

mediated by 
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CLOCK/BMAL1/SIRT1 

complex 

112 km10d 2 h-1 Rate of NAMPT degradation 

113 nad 1 μM Sum of NAD+ and NADH 

 

Table A2 
# Parameter Value Units Description/Reference 

1 kp1 0.7965 µM.h-1 Rate constant of CRH 

production18 

2 Kp1 1.0577 µM Dissociation constant for CRH 

production18 

3 Vd1 0.5084 µM.h-1 Rate of CRH enzymatic 

degradation18 

4 Kd1 1.9627 µM Michaelis constant of CRH 

enzymatic degradation18 

5 kfp 0.1 µM -1 Efficiency of P on ACTH and F 

stimulation/ estimated 

6 kp2 0.4 µM.h-1 Rate of ACTH production 

7 Kp2 1.0577 µM Dissociation constant for ACTH 

production18 

8 Vd2 0.5129 µM.h-1 Rate of ACTH enzymatic 

degradation18 

9 Kd2 0.3069 µM Michaelis constant of ACTH 

enzymatic degradation18 

10 kp3 0.15 µM.h-1 Rate of F central production/ 

estimated36 

11 kn 1.5  Coupling constant of cortisol to 

cellular energy state 

12 Vd3 3.4 µM.h-1 Rate of F central enzymatic 

degradation 
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13 Kd3 0.4695 µM Michaelis constant of F central 

enzymatic degradation18 

14 ksynRm
 2.9 fmol.g-1.h-1 Synthesis rate or glucocorticoid 

receptor mRNA35 

15 IC50Rm
 26.2 nmol.L-1.mgprotein-

1 

Concentration of FR(N) at which 

mRNA, Rsynthesis drops 

to its half35 

 R0 540.7 nmol.L-1.mgprotein-

1 

Baseline value of free cytosolic 

glucocorticoid receptor35 

 Rm0 25.8 fmol.g-1 Baseline value of glucocorticoid 

receptor mRNA35 

16 kdgrRm
 ksynRm

/Rm0 
 

Degradation rate of 

glucocorticoid receptor 

mRNA35 

17 ksynR
 (R0/Rm0)*kdgrR

 
 

Synthesis rate of free cytosolic 

receptor35 

18 rf 0.49 
 

Fraction of cortisol recycled35 

19 kre 0.57 h-1 Rate of receptor recycling from 

nucleus to cytoplasm35 

20 kon 0.00329 L.nmol-1.h-1 Second order rate constant of 

glucocorticoid receptor 

binding35 

21 kdgrR
 0.0572 h-1 Degradation rate of cytosolic 

glucocorticoid receptor35 

22 kt 0.63 h-1 Rate of receptor translocation to 

the nucleus35 

23 τ 0.25 h Delay in Cortisol production 

following ACTH 

stimulation 

24 kMR 0.34 nM.h-1 Base transcription rate of MR32 
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25 kF,MR 1.1011 1 Maximum extent of Fperiphery 

mediated activation of 

MR32 

26 KF,MR 0.5 nM Michaelis constant for Fperiphery 

mediated activation of 

MR32 

27 MRT 1.45 nM Total MR concentration32 

28 KMR 0.21 nM Michaelis constant for MR 

production32 

29 kMR,deg 0.70 nM.h-1 Degradation rate for MR32 

30 KMR,deg 1.65 nM Michaelis constant for 

degradation of MR32 

31 kb,MR 0.00329 nM-1.h-1 Degradation rate for 

cortisol/mineralocorticoid 

receptor binding35 

32 kr,MR 0.001   

33 kon,MR 1 L.nmol-1.h-1 Second order rate constant of 

mineralocorticoid and 

receptor binding32 

34 kt,MR 1 h-1 Rate of mineralocorticoid 

receptor translocation to 

the nucleus/35 

35 kre,MR 1 h-1 Rate of mineralocorticoid 

receptor recycling from 

nucleus to cytoplasm32 

36 kGR 1.18 nM.h-1 Base transcription rate of GR32 

37 kF,GR 15 1 Maximum extent of Fperiphery 

mediated activation of 

GR32 

38 KF,GR 30 nM Michaelis constant for Fperiphery 

mediated activation of 

GR32 
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39 GRT 1.81 nM Total GR concentration32 

40 KGR 0.74 nM Michaelis constant for GR 

production32 

41 kGR,deg 1.52 nM.h-1 Degradation rate for GR32 

42 KGR,deg 1.05 nM Michaelis constant for 

degradation of GR32 

43 kb,GR 0.00329 nM-1.h-1 Degradation rate for 

cortisol/glucocorticoid 

receptor binding35 

44 kr,GR 0.001   

45 kon,GR 1 L.nmol-1.h-1 Second order rate constant of 

mineralocorticoid and 

receptor binding35 

46 kt,GR 1 h-1 Rate of mineralocorticoid 

receptor translocation to 

the nucleus35 

47 kre,GR 1 h-1 Rate of mineralocorticoid 

receptor recycling from 

nucleus to cytoplasm35 

48 kmRNARpin
 0.61 µM.h-1 Base transcription rate of 

mRNARP
32 

49 kfr 1.07 1 Maximum extent of FMR(N) 

mediated transcription of 

mRNARP
32 

50 Kfr 0.5 µM Michaelis constant for FMR(N) 

mediated transcription of 

mRNARP
32 

51 kpc 0.3 1 Maximum extent of BMAL1 

mediated suppression of 

mRNAP and mRNATLR4 

estimated 

52 Kpc 25 µM Michaelis constant for BMAL1 

mediated suppression of 
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mRNAP and mRNATLR4 

estimated 

53 kmRNARpout
 0.19 h-1 Degradation rate of mRNARP

32 

54 kin
P
 0.29 h-1 Translation rate of P32 

55 kout
P
 1.06 h-1 Degradation rate of P32 

56 kmRNARpin
 0.61 µM.h-1 Base transcription rate of 

mRNARP
32 

57 kfr2 0.8 1 Maximum extent of FMR(N) 

mediated transcription of 

mRNARP
32 

58 Kfr2 0.5 µM Michaelis constant for FMR(N) 

mediated suppression of 

mRNARP
32 

59 kmRNARpout
 0.19 h-1 Degradation rate of mRNARP

32 

60 kinRp
 1.11 h-1 Translation rate of RP

32 

61 kd 0.14 µM-1.h-1 P–Rp binding rate constant32 

62 koutRp
 0.26 h-1 Degradation rate of RP

32 

63 koutPRp
 1.3 h-1 Dissociation rate of PRP

32 

64 v1b 4 nM.h-1 Maximal rate of Per-Cry 

transcription142 

65 k1b 1 nM Michaelis constant of Per-Cry 

transcription142 

66 k1i 0.56 nM Inhibition constant of Per-Cry 

transcription142 

67 c 0.01 nM Concentration of constitutive 

activator142 

68 p 8  Hill coefficient of inhibition of 

Per-Cry transcription142 
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69 kf 0.1 nM-1 Efficiency of P on transcription 

of Per-Cry/estimated36 

70 (ent)kc 0.009 nM.h-1 Coupling strength/estimated 

71 k1d 0.12 h-1 Degradation rate of Per-Cry 

mRNA142 

72 k2b 0.3 nM-1.h-1 Complex formation rate of Per-

Cry mRNA142 

73 q 2  No. of PER-CRY complex 

forming subunits142 

74 k2d 0.05 h-1 Degradation rate of cytoplasmatic 

PER-CRY142 

75 k2t 0.24 h-1 Nuclear import rate of the PER-

CRY complex 

76 k3t 0.02 h-1 Nuclear export rate of PER-CRY 

complex 

77 k3d 0.02 h-1 Degradation rate of the nuclear 

PER-CRY complex 

78 v4b 3.6 nM.h-1 Maximal rate of Bmal1 

transcription142 

79 k4b 2.16 nM Michaelis constant of Bmal1 

transcription142 

80 r 3  Hill coefficient of activation of 

Bmal1 transcription142 

81 k4d 0.75 h-1 Degradation rate of Bmal1 

mRNA142 

82 k5b 0.24 h-1 Translation rate of BMAL1142 

83 k5d 0.06 h-1 Degradation rate of cytoplasmatic 

BMAL1142 

84 k5t 0.45 h-1 Nuclear import rate of BMAL1142 

85 k6t 0.06 h-1 Nuclear export rate of BMAL1142 
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86 k6d 0.12 h-1 Degradation rate of nuclear 

BMAL1142 

87 k6a 1 h-1 Activation rate of nuclear 

CLOCK-BMAL1 

88 k7a 0.1 h-1 Deactivation rate of CLOCK-

BMAL1 

89 k7d 0.5 h-1 Degradation rate of CLOCK-

BMAL1 

90 km8a 10 h-1 Association rate of CLOCK-

BMAL1-SIRT1 

91 km8d 20 h-1 Dissociation rate of CLOCK-

BMAL1-SIRT1 

92 τf 3 h Delay between feeding and 

NAD+ reduction to 

NADH 

93 km1 5 1 Maximum extent of NADH 

converting to NAD+ 

94 Km1 2 μM Michaelis constant for NADH 

converting to NAD+ 

95 km2 40 1 Maximum extent of NMN 

converting to NAD+ 

96 Km2 1 μM Michaelis constant for NMN 

converting to NAD+ 

97 km3 5 1 Maximum extent of NAD+ 

converting to NADH upon 

feeding 

98 Km3 1 μM Michaelis constant NAD+ 

converting to NADH upon 

feeding 

99 km4 20 1 Maximum extent of NAD+ 

converting to NAM 
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100 Km4 20 μM Michaelis constant for NAD+ 

converting to NAM 

101 km5 40 1 Maximum extent of NAM 

converting to NMN, mediated by 

NAMPT 

102 Km5 5 μM Michaelis constant for of NAM 

converting to NMN, mediated by 

NAMPT 

103 km11 5 1 Maximum extent of entrainment 

of cortisol by feeding 

104 Km11 2 μM Michaelis constant for 

entrainment of cortisol by feeding 

105 km12 1 μMh-1 Rate of cortisol entraining signal 

degradation 

106 km6 5 1 Maximum extent of SIRT1 

activation mediated by NAD 

107 Km6 1 μM Michaelis constant of SIRT1 

activation mediated by NAD 

108 sirtT 5 μM Sum of active and inactive SIRT1 

109 km7 2 1 Maximum extent of SIRT1 

degradation 

110 Km7 1 μM Michaelis constant for SIRT1 

degradation 

111 km9d 0.1 μM-1h-1 Rate of CLOCK/BMAL1/SIRT1 

complex degradation 

112 km10a 2 μMh-1 Rate of NAMPT production 

mediated by 

CLOCK/BMAL1/SIRT1 

complex 

113 km10d 2 h-1 Rate of NAMPT degradation 

114 nad 1 μM Sum of NAD+ and NADH 
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115 kg1 2 nM.h-1 Rate of PGC-1α transcription 

116 kg2 2 nM.h-1 Rate of PGC-1α mRNA 

degradation 

117 kg3b 3 h-1 Rate of PGC-1α translation 

118 kg3d 3 h-1 Rate of PGC-1α degradation 

119 kg3t 2 h-1 Rate of PGC-1α nuclear import 

120 kg4t 2 h-1 Rate of PGC-1α nuclear export 

121 kg5 0.1 h-1 Rate of PGC-1α activation 

122 kg7 1 nM Inhibition constant for binding of 

cortisol-receptor complex 

to GRE 

123 kg8 0.8 h-1 Rate of active PGC-1α 

degradation 

124 kg8d 0.5 h-1 Rate of deactivation of PGC-1α 

125 kg9 3 h-1 Rate of FOXO1 activation 

126 kg10 5 h-1 Rate of FOXO1 deactivation 

127 kg11 70 h-1 Transcription rate of 

gluconeogenic genes 

128 kg12 3 h-1 Degradation rate of 

gluconeogenic genes 

mRNA 

129 kg13 0.1 h-1 Rate of Bmal1 transcription 

activation by active PGC-

1α 

130 s 8  Hill coefficient for inhibition of 

cortisol-receptor complex 

and GRE binding 
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Table A3 

# Parameter Value Units Description/Reference 

1 k 0.01 min-1 Rate constant of formation of 

proinsulin-containing granules136 

2 αI 0.3 min-1 Rate constant of degradation of 

proinsulin agreegates136 

3 αV 0.6 min-1 Rate constant of degradation of 

granule membrane material136 

4 σ 30 min-1 Rate constant of insulin release 

from granules fused with cell 

membrane136 

5 kIb 0.262  Constant describing the period of 

bV
136 

6 kIc 10  Constant describing the period 

and horizontal shift of bV
136 

7 kI1 10 nM-1min-1 Activation rate for bV 

8 kI2 9  Deactivation rate for bV 

9 kI3 2.3 (L/mmol)3 Parameter for bI 

10 kI4 4 (L/mmol)3 Parameter for bI 

11 kI5 60 min-1 Parameter for bI 

12 kIn 3  Hill coefficient for bI 

13 γ 1e-4 min-1 Rate constant of granule 

extermalization and priming 

related to ATP/ADP136 

14 k1
+ 5.788e-5 min-1 Rate constant of association for 

the binding between granule and 

Ca2+ channel136 

15 k1
- 0.255 min-1 Rate constant of dissociaton for 

the binding between granule and 

Ca2+ channel136 
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16 CT 300  Constant pool of total Ca2+ 

channels136 

17 τV 5 min Time delay of recycling of 

granule membrane material136 

18 η 4 min-1 Rate constant for γ136 

19 γb 1e-4 min-1 Basal value of γ136 

20 τG 1 hr-1 Time delay for increase in 

glucose136 

21 G* 4.58 mmol/L Glucose concentration threshold 

for the activaton of γ136 

22 Ĝ 10 mmol/L Glucose concentration over 

which hγ remains constant and 

equal to ĥ136 

23 ĥ 3.93e-3 min-1 Maximal value of hγ
136 

24 ζ 4 min-1 Rate constant for ρ136 

25 ρb 0.02 min-1 Basal value of ρ136 

26 kρ 350  Sensitivity of ρ on the activation 

of γ136 

27 I0 1.6 amol Insulin amount contained in a 

granule136 

28 N 2.76e6  Total number of β-cells in the 

pancreas136 

29 fb 0.05  Basal value of the fraction f136 

30 Kf 3.43 mmol/L Parameter for f(G)136 

 


