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ABSTRACT OF THE DISSERTATION
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High- & Multi-Dimensional Data

by Yi Chen

Dissertation Director: Rong Chen

The growing capabilities in generating and collecting data has risen unique opportu-

nities and challenges in Statistics and the emerging field of Data Science. The availabil-

ity of data with complex structure, such as temporal dependence and multi-dimensional,

provides scientists with more accurate ways to characterize intricate natural or social

phenomenon. This thesis deals with statistical models, methods, theory, and algo-

rithms for learning low-rank structures from temporal-dependent multi-dimensional

data, including time series with matrix observations, dynamic networks, and multivari-

ate spatial-temporal data. We established a unified framework of modeling such data

as matrix-variate time series that faithfully preserves the structural properties and the

temporal dependencies that are intrinsic to the data. The focus is to achieve dimension

reduction and learn the underlying latent low-rank structure of the data. The models

presented in this thesis extend the matrix factor model proposed by Wang et al. (2017)

in three directions to fully exploit the structures and properties of the observed data.

Specifically, the constrained matrix factor models provide a general framework for

incorporating domain or prior knowledge in the matrix factor model through linear

constraints. The proposed framework is shown to be useful in achieving parsimonious

parameterization, gaining efficiency in statistical inference, facilitating interpretation of
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the latent matrix factor, and identifying specific factors of interest. The factor models

for dynamic networks target at a special kind of matrix time series where, at each time

point, the observation is a square adjacency matrix whose rows and columns represent

the same set of actors in the network. Most available probability and statistical models

for dynamic network data are deduced from random graph theory where the networks

are characterized on the level of node and edge. Our high-level modeling of the dynamic

networks as a time series of relational matrices is less restrictive and more scaleable to

high-dimensional dynamic network data which is very common nowadays.

The factor models for multivariate spatial-temporal data are designed to accommo-

date the smooth functional behavior of the underlying spatial process. The functional

matrix factor model aims to explicitly express discrete observations from spatial con-

tinuum in the form of a function. It has the advantage of generating models that can

describe continuous smooth spatial changes, which then allows for accurate estimates

of parameters, effective data noise reduction through curve/surface smoothing, and

applicability to data with irregular spatial sampling.

The estimating methods are generally based on moment matching and spectral de-

composition of matrices constructed from the empirical auto-cross-covariance of the

time series, thus capturing the temporal dynamics presented in the data. The latent

low-rank structures are learned directly from the data with little subjective input or any

restricted distributional assumptions. For the functional matrix factor model, the func-

tional loadings are approximated non-parametrically. The estimated latent states or

factors are of smaller dimensions and can be used as data in second-stage inference and

prediction. Theoretical properties of the estimators are established. Simulation studies

are carried out to demonstrate the finite-sample performance of the proposed meth-

ods and their associated asymptotic properties. The proposed methods are applied to a

wide range of real datasets, such as multinational macroeconomic indices data, dynamic

global trading networks, and the Comprehensive Climate Dataset among others.
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Chapter 1

Introduction

Scientific studies of various natural and social phenomenons crucially depends on the

analysis of data collected to characterize the phenomenons in the fields. Nowadays com-

plex data that can better depict the real world are becoming widely available thanks

to the development of information technology and the migration of human activities

towards electronic devices and Internet. Temporal dependent and multi-dimensional

data are of special interests because of their ability to capture the temporal feature and

congregate multiple aspects of real-world phenomenons. For example, macroeconomic

indicators reported by different countries can be viewed as a time series of two dimen-

sional matrices whose rows and columns correspond to countries and macro indicators

respectively. Economic data are inherently serially and cross-sectionally correlated.

Thus it is essential to pertain the temporal dependence and analyze multiple times se-

ries collectively. Since the country and the macro indicator are two distinctive aspects

of the data, it is also important to model these two dimensions differently. Other exam-

ples include dynamic network data and multivariate spatial temporal data. The first

have their network features recored in the bilateral relationships between the actors

and their dynamic features captured in the temporal dependence, while the latter are

intrinsically composed of three different dimensions, namely variable, space, and time.

As a introduction, Section 1.1 will discuss matrix-variate time series, dynamic networks,

and multivariate spatial temporal data in detail. It will also provide a general review

of current research on analyzing such data.

While a wide range of statistical tools and techniques for data analysis already

exist, the increasing availability of complex data structures calls for new approaches

that can faithfully preserve the inherent structures. This thesis presents a unified
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framework of modeling such data as matrix-variate time series that faithfully preserve

the intrinsic multi-dimensional feature and the temporal dependences. The focus is to

achieve dimension reduction and to learn the underlying low-rank latent structure. The

methods are derived from factor models in unsupervised statistical learning. In Section

1.2, we will give a preliminary introduction to the factor models.

1.1 Temporal Dependent Multi-Dimensional Data

1.1.1 Matrix-Variate Time Series

In many fields, such as economics, finance and social science, high-dimensional matrix-

variate data are becoming readily available. Matrix-variate time series is defined as

a sequence of observations in matrix form observed over time. For example, every

quarter, countries report a set of economic indicators such as GDP, consumer prices and

interest rate et al. At each time point, the obervation is a matrix whose rows represent

the countries and whose columns represents the macroeconomic indices. Also, multi-

corporate financial data are usually arranged as time series of matrices whose rows

represent the companies and columns represents the financial indices. See Figure 1.1

for an illustration of matrix time series.
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Figure 1.1: Illustration of Matrix Time Series.
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Each cell of the matrix time series represents a univariate time series. For example,

the first cell represents the univariate time series of the GDP of the United States.

Every row or every column corresponds to a multivariate time series. For example,

the first rows is the time series of multiple macroeconomic indices of the United States

and the first column is the multivariate time series of the GDP of multiple countries.

However, it is preferred to analyze multiple time series simultaneously and also preserve

the matrix structure because the correlations between variables are valuable information

and the row variables and the column variables are correlated in different ways.

Development of statistical methods for analyzing such data is still in its infancy,

and as a result, scientists frequently analyze matrix time series by separately modeling

each element series or by ‘flattening’ them to vector time series Box et al. (2015);

Brockwell and Davis (2013); Tsay (2013); Fan and Yao (2005); Lam et al. (2012); Bai

and Ng (2002a); Bai (2003a). This destroys the intrinsic matrix structure and misses

important patterns in the data. This thesis aims to analyze high-dimensional tensor

time series, while preserving the genuine tensor structure, accounting for the temporal

dependence, and enabling scalability to high-dimensions.

1.1.2 Dynamic Networks

Nowadays in a variety of fields, such as economics and social studies, researchers observe

high-dimensional matrix-variate time series where observation at each time point is in a

matrix structure. One special kind of such data is a time series of square matrices that

describe pairwise relationships among a set of entities. For example, international trade

commodity flow data between n countries over a period of time can be represented as

matrix time series {Xt}t=1:T , where Xt is a n×n matrix, and each element xij,t is the

directed level of trade from nation i to nation j at time t. The i-th row represents data

for which nation i is the exporter and the column j represents data for which j is the

importer. Since the data are based on pairs of nations, the diagonal representing the

relationships of nations with themselves is generally absent.

Such network/relational data that consist of measurements made on pairs of entities

have been researched from various aspects over the last decades. Developed statistical
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models for static network analysis include the class of exponential random graph models

(ERGMs) that are analogous to standard regression models (Wasserman and Pattison

(1996); Robins et al. (2007); Lusher et al. (2012)), the class of stochastic block models

that are, in their most basic form, essentially a mixture of classical random graph models

(Holland et al. (1983); Nowicki and Snijders (2001); Daudin et al. (2008); Airoldi et al.

(2008); Karrer and Newman (2011)) and the class of latent network models that use

both observed and unobserved variables in modeling the presence or absence of network

edges (Hoff et al. (2002); Hoff (2008, 2005, 2009, 2015b,a); Cranmer et al. (2016)). All

models mentioned thus far only consider a ‘snapshot’ Xt of a dynamic process in a

given ‘slice’ of time t, and thus not able to discover the dynamic pattern of the network

nor to answer scientific questions concerned with the evolution of networks over time.

Statistical research on dynamic network analysis is less developed compared to the

existing literature on modeling of static network graphs. While there has been a sub-

stantial amount of work done in the past decades on the mathematical and probabilistic

modeling of dynamic processes on network graphs (see Barrat et al. (2008)), there has

been comparatively much less work on the statistical side. Snijders and colleagues (Sni-

jders (2001); Huisman and Snijders (2003); Snijders (2005, 2006); Snijders et al. (2007,

2010)) developed an actor-based model for network evolution that incorporated indi-

vidual level attributes. The approach is based on an economic model of rational choice,

whereby actors make decisions to maximize individual utility functions. Hanneke et al.

(2010) and Krivitsky and Handcock (2014) introduced a class of temporal exponential

random graph models for logitudinal network data (i.e. the networks are observed in

panels). They model the formation and dissolution of edges in a separable fashion,

assuming an exponential family model for the transition probability from a network at

time t to a network at time t+ 1. Westveld and Hoff (2011) represent the network and

temporal dependencies with a random effects model, resulting in a stochastic process

defined by a set of stationary covariance matrices. Xing et al. (2010) extends an ealier

work on a mixed membership stochastic block model for static network (Airoldi et al.
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(2008)) to the dynamic senario by using a state-space model where the mixed memem-

bership is characterized through the observation function and the dynamics of the la-

tent ‘tomographic’ states are defined by the state function. Estimation is based on the

maximum likelihood principal using a variational EM algorithm. They deduced from

random graph theory Crane et al. (2016); Krivitsky and Handcock (2014). These meth-

ods are deduced from random graph theory and model the relational data at relation

(edge) or entity (node) level, and thus often confronted with computational challenges,

overparametrization, and overfitting issues when dealing with high-dimensional matrix

time series, which are very common in economics and social networks nowadays.

In contrast to the pre-existing research in dynamic network analysis, the approach

we propose in Chapter 3 is more time series oriented, in that a dynamic network is

treated as a time series of matrix observations – the relational matrices– instead of the

traditional nodes and edges characterization. We adopt a matrix factor model where

the observed surface dynamic network is assume to be driven by a latent dynamic

network with lower dimensions. The linear relationship between the surface network

and the latent network is characterized by unknown but deterministic loading matrices.

The latent network and the corresponding loadings are estimated via an eigenanalysis

of a positive definite matrix constructed from the auto-cross-covariances of the network

times series, thus capturing the dynamics presenting in the network. Since the dimen-

sion of the latent network is typically small or at least much smaller than the surface

network, the proposed model often result in a concise description of the whole network

series, achieving the objective of dimension reduction. The resulting latent network of

much smaller dimensions can also be used for downstream microscope analysis of the

dynamic network.

Different from Xing et al. (2010) that summarize the relational data by the re-

lationships between a small number of groups, we impose neither any distributional

assumptions on the underlying network nor any parametric forms on its covariance

function. The latent network is learned directly from the data with little subjective

input. The meaning of the nodes of the latent network in our model is automatically

learned from the data and is not confined to the ‘groups’ to which the actors belong,
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which provide a more flexible interpretation of the data. Additionally, our modeling

framework is very flexible and extendable: Using a matrix factor model framework, it

can accommodate continuous and ordinal relational data. It can be extended to incor-

porate prior information on the network structure or include exogenous and endogenous

covariate as explanatory variables of the relationships.

1.1.3 Multivariate Spatial-Temporal Process

The increasing availability of multivariate data referenced over geographic regions and

time in various applications has created unique opportunities and challenges for those

practitioners seeking to capitalize on their full utility. For example, United States

Environmental Protection Agency publishes daily from more than 20,000 monitoring

stations a collection of environmental and meteorological measurements such as temper-

ature, pressure, wind speed and direction and various pollutants. Such data naturally

constitute a tensor (multi-dimensional array) with three modes (dimensions) represent-

ing space, time and variates, respectively. Simultaneously modeling the dependencies

between different variates, regions, and times is of great potential to reduce dimen-

sions, produce more accurate estimation and prediction and further provide a deeper

understanding of the real world phenomenon. At the same time, methodological issues

arise because these data exhibit complex multivariate spatio-temporal covariances that

may involve non-stationarity and potential dependencies between spatial locations, time

points and different processes. Traditionally, researchers mainly restrict their analysis

to only two dimensions while fixing the third: time series analysis applied to a slice

of such data at one location focus on temporal modeling and prediction (Box et al.

(2015); Brockwell and Davis (2013); Tsay (2013); Fan and Yao (2005)); spatial statis-

tical models for a slice of such data at one time point address spatial dependence and

prediction over unobserved locations (Cressie (2015)); and univariate spatio-temporal

statistics concentrate on only one variable observed over space and time (Cressie and

Wikle (2015)).

Since physical processes rarely occur in isolation but rather influence and interact
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with one another, multivariate spatio-temporal models are increasingly in demand be-

cause the dependencies between multiple variables, locations and times can provide

valuable information for understanding real world phenomenons. Various multivariate

spatio-temporal conditional autoregressive models have been proposed by Carlin et al.

(2003); Congdon (2004); Pettitt et al. (2002); Zhu et al. (2005); Daniels et al. (2006);

Tzala and Best (2008), among others. However, these methodologies cannot efficiently

model high-dimensional data sets. Additionally, these approaches impose separability

and various independence assumptions, which are not appropriate for many settings, as

these models fails to capture important interactions and dependencies between different

variables, regions, and times (Stein (2005b)). Bradley et al. (2015) introduced a mul-

tivariate spatio-temporal mixed effects model to analyze high-dimensional multivariate

data sets that vary over different geographic regions and time points. They adopt a

reduced rank spatial structure (Wikle (2010)) and model temporal behavior via vec-

tor autoregressive components. However, their method only applies to low-dimensional

multivariate observations because they model each variable separately. In addition,

they assume the random effect term is common across all processes which is unrealistic

especially in the case with a large number of variables.

In Chapter 4, we present a new class of multivariate spatio-temporal models that

model spatial, temporal and variate dependence simultaneously. The model builds upon

the matrix factor models proposed in Wang et al. (2017), while further incorporating the

functional structure of the spatial process and dynamics of the latent matrix factor. The

spatial dependence is model by the spatial loading functions, the variable dependence

is modeled by the variable loading matrix, while the temporal dependence is modeled

by the latent factors of first-order autoregressive matrix time series.

Some spatial-factor-analysis models that capture spatial dependence through factor

processes have been developed in the literature. Lopes et al. (2008) considers univari-

ate observations but uses factor analysis to reduce (identify) clusters/groups of loca-

tions/regions whose temporal behavior is primarily described by a potentially small set

of common dynamic latent factors. Also working with the univariate case, Cressie and

Johannesson (2008) successfully reduces the computational cost of kriging by using a
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flexible family of non-stationary covariance functions constructed from low rank basis

functions. See also Wikle (2010). For multivariate spatial data, Cook et al. (1994) intro-

duced the concept of a spatially shifted factor and a single-factor shifted-lag model and

Majure and Cressie (1997) discussed graphical methods for identifying shifts. Follow-

ing the ideas of multiple-lag dynamic factor models that generalize static factor models

in the time series setting, Christensen and Amemiya (2001, 2002, 2003) extended the

shifted-lag model to a generalized shifted-factor model by adding multiple shifted-lags

and developed a systematic statistical estimation, inference, and prediction procedure.

The assumption that spatial processes are second-order stationary is required for the

moment-based estimation procedure and the theoretical development. Our modeling of

the spatial dependence though latent factor processes is different from the aforemen-

tioned methods in that we impose no assumptions about the stationarity over space,

nor the distribution of data, nor the form of spatial covariance functions. The idea

is similar to that of Huang et al. (2016), however we aim at estimating the spatial

loading functions instead of the loading matrix and kriging at unsampled location is

based on the loading function. In addition, future forecasting in our model reserves

the matrix formation of the observation and temporal dependence through the matrix

auto-regression of order one.

1.2 Unsupervised Statistical Learning of Latent Structure

1.2.1 Unsupervised Statistical Learning with Factor Models

Unsupervised statistical learning (Hastie et al. (2009)) focuses on methods that search

for patterns in the data and extract useful information without training samples of

previously solved samples. Factor models are one powerful approach of unsupervised

statistical learning to reduce the dimensionality and extract the latent structure of

the data. They provide a flexible way of describing correlations among the observed

variables by assuming that the co-movements of a high-dimensional observed data was

driven by a few unobserved (latent) common variables (factors). The latent factors

present a low-dimensional summary of the observed data and can be considered as
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concise and de-noised descriptions of the underlying processes that have generated the

data. The representations can then be used to understand the data generation processes

or predict the unobserved data entities.

In the context of temporal dependent or time series data, let p be the number of

cross-section units and T be the number of time series observations. For i = 1, . . . , p,

t = 1, . . . , T , a factor model is defined as

xti = λ′if t + eit, (1.1)

where f t = (ft1, . . . , ftr)
′ is a r-dimensional latent factor and λ′i = (λi1, . . . , λir) is the

factor loadings of variable i on r factors.

Let xt = (xt1, . . . , xtp)
′ and Λ = (λ1, . . . ,λN ). We have model (1.1) in vector form

xt = Λf t + et. (1.2)

Let X = (x1, . . . ,xT )′ be the T ×p data matrix and F = (f1, . . . ,fT )′ be the T ×r

factor matrix, the factor model (1.1) is written in matrix form

X = FΛ′ +E. (1.3)

The classic factor model, later referred to as the strict factor model (Chamberlain

and Rothschild (1983)), assumes that (i) f t and et in (1.2) are generally assumed to

be serially (across t) and cross-sectionally (across i) uncorrelated; (ii) p is fixed while

T increases to infinity, or vice versa; (iii) both f t and et are normally distributed. See

Anderson (2003). In the past decades, a large community of researchers have extended

the classical factor models in various ways by relaxing the three mentioned assumptions:

dynamic factor models for time series explicitly recognize the factor that data being

analyzed are being serially correlated; large dimension factor models allow the sample

size in both dimensions increases to infinity in the asymptotic theory; and approximate

factor models allow the noise term et to be ”weakly” correlated serially (across t) and

cross-sectionally (across i).

Our focus is on the high-dimensional approximate dynamic factor models, where

p, T →∞ at the same time, et are allowed to be cross-sectionally, and the observations
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are temporal dependent, that is xt are serially correlated. Dynamic factor models

defined in econometrics and finance literatures attempt to separate the common factors

that affect the dynamics of most original component series from the idiosyncratic series

that at most affect the dynamics of a few original time series. (See Chamberlain (1983),

Chamberlain and Rothschild (1983), Bai (2003b), Bai and Ng (2002b), Bai and Ng

(2007), Forni et al. (2000), Forni et al. (2004).) Such definition is appealing in analyzing

economic and financial phenomena. But the fact that idiosyncratic part may exhibit

serial correlations poses technical difficulties in both identification and inference. These

factor models are only asymptotically identifiable because the rigorous definition of the

common factors can only be established when the dimension of time series goes to

infinity. On the other hand, Pan and Yao (2008), Lam et al. (2011a), and Lam and Yao

(2012) adopt a different approach from a dimension-reduction point of view. Different

from the aforementioned econometric factor model, they decompose a high-dimensional

time series into two parts: a dynamic part driven by, hopefully, a lower-dimensional

factor time series, and a static part which is a vector white noise. Since the white noise

exhibits no serial correlations, the decomposition is unique in the sense that both the

dimension of the factor process and the factor loading space are identifiable for any

finite sample size. This decomposition is conceptually simple and makes the tasks of

model identification and statistical inference much easier. We will follow this approach

by Lam et al. (2011a) and Lam and Yao (2012) in defining the noise term.

1.2.2 Factor Models for Matrix-variate Time Series

High-dimensional matrix-variate time series have been widely observed nowadays in a

variety of scientific fields including economics, meteorology, and ecology. For example,

the World Bank and the International Monetary Fund collect and publish macroeco-

nomic data of more than thirty variables spanning over one hundred years and over two

hundred countries covering a variety of demographic, social, political, and economic

topics. These data neatly form a matrix-variate time series with rows representing

the countries and columns representing various macroeconomic indexes. Typical factor
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analysis of such data either converts the matrix into a vector or modeling the row or col-

umn vectors separately (See Chamberlain (1983), Chamberlain and Rothschild (1983),

Bai (2003b), Bai and Ng (2002b), Bai and Ng (2007), Forni et al. (2000), Forni et al.

(2004), Pan and Yao (2008), Lam et al. (2011a), and Lam and Yao (2012)). However,

the components of matrix-variates are often dependent among rows and columns with

certain well-defined structure. Vectorizing a matrix-valued response, or modeling the

row or column vectors separately may overlook some intrinsic dependency and fail to

capture the matrix structure. Wang et al. (2017) propose a matrix factor model that

maintains and utilizes the matrix structure of the data to achieve significant dimension

reduction.

Let {Y t}t=1,...,T be a matrix-variate time series, where Y t is a p1 × p2 matrix, that

is

Y t = (Y·1,t, · · · , Y·p2,t) =


Y ′1·,t

...

Y ′p1·,t

 =


y11,t · · · y1p2,t

...
. . .

...

yp11,t · · · yp1p2,t

 .

Wang et al. (2017) propose the following factor model for Y t,

Y t = ΛF tΓ
′ +U t, t = 1, 2, . . . , T, (1.4)

where F t is a k1 × k2 unobserved matrix-variate time series of common fundamental

factors, Λ is a p1 × k1 row loading matrix, Γ is a p2 × k2 column loading matrix, and

U t is a p1 × p2 matrix of random errors. In Equation (1.4), (Λ,Γ) and (cΛ,Γ/c) are

equivalent if c 6= 0.

In Model (1.4), it is assumed that vec(U t) ∼WN(0,Σe) and is independent of the

factor process vec(F t). That is, {U t}Tt=1 is a white noise matrix-variate time series and

the common fundamental factors F t drive all dynamics and co-movement of Y t. Λ and

Γ reflect the importance of common factors and their interactions. Wang et al. (2017)

provide several interpretations of the loading matrices Λ and Γ. Essentially, Λ (Γ) can

be viewed as the row (column) loading matrix that reflects how each row (column) in

Y t depends on the factor matrix F t. The interaction between the row and column is

introduced through the multiplication of these terms.



12

However, in factor analysis of matrix time series and many other types of high-

dimensional data, the problem of factor interpretations is of paramount importance.

Furthermore, it is important in many practical applications to obtain specific latent

factors related to certain domain theories, and with the aid of these specific factors

to predict future values of interest more accurately. For example, financial researchers

may be interested in extracting the latent factors of level, slope, and curvatures of the

interest-rate yield curve and in predicting future equity prices based on those factors

(Diebold et al. (2005), Diebold et al. (2006), Rudebusch and Wu (2008), and Bansal

et al. (2014)).

In many applications, relevant prior or domain knowledge is available or data them-

selves exhibit certain specific structure. Additional covariates may also have been mea-

sured. For example, in business and economic forecasting, sector or group information

of variables under study is often available. Such a priori information can be incor-

porated to improve the accuracy and inference of the analysis and to produce more

parsimonious and interpretable factors. In other cases, the existing domain knowledge

may intrigue researchers’ interest in some specific factors. The theories and prior ex-

perience may provide guidance for specifying the measurable variables related to the

specific factors of interest. It is then desirable to build proper constraints based on

those measurable variables in order to effectively obtain the factors of interest.

To address these important issues and practical needs, we extend the matrix factor

model of Wang et al. (2017) to impose natural constraints among the column and row

variables to incorporate prior knowledge or to induce specific factors. Incorporating a

priori information in parameter estimation has been widely used in statistical analy-

sis, such as the constrained maximum likelihood estimation, constrained least squares,

and penalized least squares. Constrained maximum likelihood estimation with the pa-

rameter space defined by linear or smooth nonlinear constraints have been explored in

the literature. Hathaway (1985) applies the constrained maximum likelihood estima-

tion to the problem of mixture normal distributions and shows that the constrained

estimation avoids the problems of singularities and spurious maximizers facing an un-

constrained estimation. Geyer (1991) proposes a general approach applicable to many
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models specified by constraints on the parameter space and illustrates his approach

with a constrained logistic regression of the incidence of Down’s syndrome on maternal

age. Penalty methods have also been customarily used to enforce constraints in sta-

tistical models including generalized linear models, generalized estimating equations,

proportional hazards models, and M-estimators. See, for example, Frank and Friedman

(1993), Tibshirani (1996), Liu et al. (2007), Fan and Li (2001), Zou (2006), and Zhang

and Lu (2007). The results of these articles show that including the soft constraints as

penalizing term enhances the prediction accuracy and improves the interpretation of

the resulting statistical model.

For factor models of time series, Tsai and Tsay (2010a) and Tsai et al. (2016)

impose constraints, constructed by some empirical procedures, that incorporate the

inherent data structure, to both the classical and approximate factor models. Their

results show that the constraints are useful tools to obtain parsimonious econometric

models for forecasting, to simplify the interpretations of common factors, and to reduce

the dimension. Motivated by similar concerns, we consider constrained, multi-term,

and partially constrained factor models for high-dimensional matrix-variate time series.

Our methods differs from Tsai and Tsay (2010a) in several aspects. First, we deal with

matrix factor model and thus have the flexibility to impose row and column constraints.

The interaction between the row and column constraints are explored. Second, we adopt

a different set of assumptions for factor model defined in Lam et al. (2011a) and Lam and

Yao (2012). The matrix-variate time series is decomposed into two parts: a dynamic

part driven by a lower-dimensional factor time series and a static part consisting of

matrix white noises. Since the white-noise series exhibits no dynamic correlations, the

decomposition is unique in the sense that both the dimension of the factor process and

the factor loading space are identifiable for a given finite sample size.
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Chapter 2

Constrained Factor Models for High-Dimensional Matrix

Time Series

High-dimensional matrix-variate time series data are becoming widely available in many

scientific fields, such as economics, biology and meteorology. To achieve significant di-

mension reduction while preserving the intrinsic matrix structure and temporal dynam-

ics in such data, Wang et al. (2017) proposed a matrix factor model that is shown to

provide effective analysis. In this paper, we establish a general framework for incorpo-

rating domain or prior knowledge in the matrix factor model through linear constraints.

The proposed framework is shown to be useful in achieving parsimonious parameter-

ization, facilitating interpretation of the latent matrix factor, and identifying specific

factors of interest. Fully utilizing the prior-knowledge-induced constraints results in

more efficient and accurate modeling, inference, dimension reduction as well as a clear

and better interpretation of the results. In this paper, constrained, multi-term, and

partially constrained factor models for matrix-variate time series are developed, with

efficient estimation procedures and their asymptotic properties. We show that the con-

vergence rates of the constrained factor loading matrices are much faster than those

of the conventional matrix factor analysis under many situations. Simulation studies

are carried out to demonstrate finite-sample performance of the proposed method and

its associated asymptotic properties. We illustrate the proposed model with three ap-

plications, where the constrained matrix-factor models outperform their unconstrained

counterparts in the power of variance explanation under the out-of-sample 10-fold cross-

validation setting.

The rest of this chapter is organized as follows. Section 2.1 introduces the con-

strained, multi-term, and partially constrained matrix-variate factor models. Section
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2.2 presents estimation procedures for constrained and partially constrained factor mod-

els with different constraints. Section 2.3 investigates theoretical properties of the esti-

mators. Section 2.4 presents some simulation results whereas Section 2.5 contains three

applications. Technique details are in Section 2.6. Extra information of the data can

be found in the Appendix.

2.1 The Constrained Matrix Factor Model

2.1.1 The Model

For consistency in notation, we adopt the following conventions. A bold capital letter

A represents a matrix, a bold lower letter a represents a column vector, and a lower

letter a represents a scalar. The j-th column vector and the k-th row vector of the

matrix A are denoted by A·j and Ak·, respectively.

Let {Y t}t=1,...,T be a matrix-variate time series, where Y t is a p1 × p2 matrix, that

is

Y t = (Y·1,t, · · · , Y·p2,t) =


Y ′1·,t

...

Y ′p1·,t

 =


y11,t · · · y1p2,t

...
. . .

...

yp11,t · · · yp1p2,t

 .

Wang et al. (2017) propose the following factor model for Y t,

Y t = ΛF tΓ
′ +U t, t = 1, 2, . . . , T, (2.1)

where F t is a k1 × k2 unobserved matrix-variate time series of common fundamental

factors, Λ is a p1 × k1 row loading matrix, Γ is a p2 × k2 column loading matrix, and

U t is a p1 × p2 matrix of random errors. In Equation (2.1), (Λ,Γ) and (cΛ,Γ/c) are

equivalent if c 6= 0.

In Model (2.1), we assume that vec(U t) ∼ WN(0,Σe) and is independent of the

factor process vec(F t). That is, {U t}Tt=1 is a white noise matrix-variate time series and

the common fundamental factors F t drive all dynamics and co-movement of Y t. Λ and

Γ reflect the importance of common factors and their interactions. Wang et al. (2017)

provide several interpretations of the loading matrices Λ and Γ. Essentially, Λ (Γ) can

be viewed as the row (column) loading matrix that reflects how each row (column) in
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Y t depends on the factor matrix F t. The interaction between the row and column is

introduced through the multiplication of these terms.

The definition of common factors in Model (2.1) is similar to that of Lam et al.

(2011a). This decomposition facilitates model identification in finite samples and sim-

plifies the procedure of model identification and statistical inference. However, under

the definition, both the “common factors” defined in the traditional factor models and

the serially correlated idiosyncratic components will be identified as factors. This poses

challenges to the interpretation of the estimated factors, which are usually of special

interest in many applications. Moreover, when the dimensions p1 and p2 are sufficiently

large, interpretation of the estimated common factors F̂ t becomes difficult because of

the uncertainty and dependence involved in the estimates of the loading matrices Λ

and Γ.

To mitigate the aforementioned difficulties and, more importantly, to incorporate

natural and known constraints among the column and row variables, we consider the

following constrained and partially constrained matrix factor models.

A constrained matrix factor model can be written as

Y t = HRRF tC
′H ′C +U t, (2.2)

where HR and HC are pre-specified full column-rank p1 ×m1 and p2 ×m2 constraint

matrices, respectively, andR and C are m1×k1 row loading matrix and m2×k2 column

loading matrix, respectively. For meaningful constraints, we assume k1 ≤ m1 << p1

and k2 ≤ m2 << p2. Compared with the matrix factor model in (2.1), we set Λ = HRR

and Γ = HCC with HR and HC given. The number of parameters in the left loading

matrix R is m1k1, smaller than p1k1 of the unconstrained model. The number of

parameters in the column loading matrix C also decreases from p2k2 to m2k2. The

constraint matrices HR and HC are constructed based on prior or domain knowledge

of the variables. For example, if HR consists of orthogonal binary vectors, it represents

a classification or grouping of the rows of the observed matrix.
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Consider a simplified model with only row constraints Y t = HRRF tC
′ +U t. If

HR =

1 · · · 1 0 · · · 0

0 . . . 0 1 . . . 1

′ , (2.3)

we are effectively imposing the constraint that there are two groups of row variables

(say countries) in which the ’row’ behavior of each variable in a group is the same.

Specifically, the model becomes

Y
(1)
t = R1F tC

′ +U
(1)
t and Y

(2)
t = R2F tC

′ +U
(2)
t

where Y
(1)
t consists of the first p

(1)
1 rows of Y t – all the countries in the first group,

and Y
(2)
t consists of the rest of the rows in the second group. In this case, R1 is a

1× k1 row vector that is common to all rows in the first group Y
(1)
t . Comparing to the

general matrix factor model (2.2), the constrained model imposes the constraint that

the loading matrix Λ have the form Λ = [R′1 · · · R′1 R′2 · · · R′2]′. The countries within

the same group have the same row loadings. Note that the two groups still share the

same factor matrix F t and the same column loading matrix C. The two groups related

to the global common factor F t differently. The smaller loading matrix R of dimension

2×m1, instead of the unconstrained p1 ×m1 loading matrix, provides a much simpler

interpretation. More complicated constraints can be used. See Appendix 2.1.2 for an

illustration of some constraint matrices.

If there are two “distinct” sets of constraints and the factors corresponding to these

two sets do not interact, Model (2.2) can be extended to a multiple-term matrix factor

model as

Y t = HR1R1F 1tC
′
1H
′
C1

+HR2R2F 2tC
′
2H
′
C2

+U t. (2.4)

For example, countries can be grouped according to their geographic locations, such

as European and Asian countries, and also grouped according to their economic char-

acteristics, such as natural resource based and manufacture based economies, and the

corresponding factors may not interact with each other.

Note that (2.4) can be rewritten as (2.2), with HR =
[
HR1 HR2

]
, HC =
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[
HC1 HC2

]
,

R =

R1 0

0 R2

 ,C =

C1 0

0 C2

 , and F t =

F 1t 0

0 F 2t

 .
Hence (2.4) is a special case of (2.2) with the strong assumption that the factor matrix

is block diagonal. Such a simplification can greatly enhance the interpretation of the

model.

Remark 1. The pre-specified constraint matrices HR1 and HR2 do not have to be

orthogonal. Neither does the pair HC1 and HC2 . An estimation procedure is presented

in Remark 2 in Section 2.2.3. The rates of convergence will change as a result of

information loss from the estimation procedure to deal with the nonorthogonality of

HR1 and HR2 . Since we can always transform non-orthogonal constraint matrices to

some orthogonal constraint matrices, we shall focus on the case when HR1 and HR2

(or HC1 and HC2) are orthogonal.

In many applications, prior or domain knowledge may not be sufficiently compre-

hensive or may only provide a partial specification of the constraint matrices. In the

above example, it is possible that the countries within a group react to one set of factors

the same way, but differently to another set of factors. In such cases, a partially con-

strained factor model would be more appropriate. Specifically, a partially constrained

matrix factor model can be written as

Y t =
[
HR1R1 Λ2

]F 11,t F 12,t

F 21,t F 22,t

C ′1H ′C1

Γ′2

+U t,

where HR1 , R1, HC1 and C1 are defined similarly as those in (2.4). F ij,t’s are common

matrix factors corresponding to the interactions of the row and column loading space

spanned by the columns ofHR andHC and their complements, Λ2 is p1×q1 row loading

matrix and Γ2 is a p2× q2 column loading matrix. Again, we have q1 < p1 and q2 < p2.

We further assume that vec(F ij,t)’s are independent with vec(U t). H
′
R1

Λ2 = 0 and

H ′C1
Γ2 = 0, because all the row loadings that are in the space of HR1 and all the

column loadings that are in the space of HC1 could be absorbed into the first parts of
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loading matrices. Thus, we could explicitly rewrite the model as

Y t =
[
HR1R1 HR2R2

]F 11,t F 12,t

F 21,t F 22,t

C ′1H ′C1

C ′2H
′
C2

+U t, (2.5)

where HR2 is a p1 × (p1 −m1) constraint matrix satisfying H ′R1
HR2 = 0, HC2 is a

p2 × (p2 − m2) constraint matrix satisfying H ′C1
HC2 = 0, R2 is (p1 − m1) × q1 row

loading matrix, and C2 is a (p2 −m2)× q2 column loading matrix.

In the special case when F 21,t = 0 and F 12,t = 0, model (2.5) can be further

simplified as

Y t = HR1R1F 11,tC
′
1H
′
C1

+HR2R2F 22,tC
′
2H
′
C2

+U t. (2.6)

Model (2.6) is different from the multi-term model of (2.4) in that the matrix HR2

in (2.5) is induced from HR1 while HR2 in (2.4) is an informative constraint, with a

lower dimension.

In the special case when HC1 = Ip1 (there is no column constraint), model (2.5)

becomes

Y t =
[
HR1R1 HR2R2

]F 1,t

F 2,t

C ′ +U t,

where F 1,t = [F 11,t,F 12,t] and F 2,t = [F 21,t,F 22,t]. The left loading matrix still spans

the entire p1 dimensional space, but the first part of loading matrix R1 has a clearer

interpretation.

The partially constrained matrix factor model (2.5) incorporates partial informa-

tion HR1 and HC1 in the unconstrained model (2.1) without ignoring the possible

remainders. If we include all four matrix factors in the four subspaces divided by the

interactions of HR1 and HC1 and their complements, the number of parameters in

(2.5) is the same as that in the unconstrained model (2.1). However, as shown by the

theorems in Section 2.3, the rates of convergence are much faster than those of the

unconstrained matrix factor model. Furthermore, in most applications, inclusion of

only two matrix-factor terms is adequate in explaining high percentage of variability,

as exemplified by the three applications in Section 2.5.
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The benefits of partially constrained matrix factor models are two-folds. Firstly, it

is capable of picking up, from the complement space of HR and HC , the factors that

are unknown to researchers. In this case, the dimensions of F 22,t are typically much

smaller than those of F 11,t even though the loading matrices R2 and C2 still have

large numbers of rows (p1 −m1) and (p2 −m2), respectively, since the constraint part

should have accommodated the main and key common factors. The spirit is similar to

the two-step estimation of Lam and Yao (2012) in which one fits a second-stage factor

model to the residuals obtained by subtracting the common part of the first-stage factor

model.

The second benefit is that the partially constrained matrix factor model is able to

identify matrix factors whose dimensions are completely explained by the pre-specified

constraint matrices. Specifically, F 11,t represents the factor matrix with row and column

factors affecting the observed matrix-variate in the way as specified by the constraints

HR and HC completely. Consider the multinational macroeconomic index example. If

HR is built from the country classification information, how the rows in F 11,t affect the

observations can be completely explained by the country groups instead of individual

countries and the row factors in F 11,t have a clearer interpretation related to the classi-

fication. In many practical applications, researchers are interested in obtaining specific

latent factors related to some domain theories and use these specific factors to predict

future values of interest as guided by domain theories. For example, in the yield curve

example in Section 2.1.2, economic theory implies that the level, slope, and curvature

factors affect the observations in the way specified by, for example, HR = [h1,h2,h3],

where h1 = (1, 1, 1, 1, 1)′, h2 = (1, 1, 0,−1,−1)′, and h3 = (−1, 0, 2, 0,−1). Then the

estimation method in Section 2.2 is capable of isolating HR1R1F 11,tC
′
1H
′
C1

and cor-

rectly estimating the loadings and the specified level, slope, and curvature factors in

the constrained spaces. Thus, the constrained factor model can serve as a method to

identify and isolate specific factors suggested by domain theories or prior knowledge.
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2.1.2 Constraint Matrix

We first consider discrete covariate-induced constraint matrices, using dummy

variables. Continuous covariate may be segmented into regimes. As an illustration

we consider the following toy example of corporate financial matrix-valued time series.

Suppose we have 8 companies, which can be grouped according to their industrial clas-

sification (Tech and Retail) and also their market capitalization (Large and Medium).

The two groups form 2× 2 combinations as shown in Table 2.1,

Market Cap
1. Large 2. Medium

Industry
1. Tech Apple, Microsoft Brocade, FireEye
2. Retail Walmart, Target JC Penny, Kohl’s

Industry Market Cap
Apple 1 1

Microsoft 1 1
Brocade 1 2
FireEye 1 2
Walmart 2 1
Target 2 1

JC Penny 2 2
Kohl’s 2 2

Table 2.1: Groups of companies by industry and market cap.

Table 2.2 shows some possible constraint matrices utilizing only industrial classifi-

cation. To combine both industrial classification and market cap information, we first

consider an additive model constraint on the 8×k1 (k1 ≤ 3) loading matrix Λ in model

(2.1). The additive model constraint means that the i-th row of Λ, that is, the loadings

of k1 row factors on the i-th variable, must have the form λi · = uj · + vl ·, where the

i-th variable falls in group (Industryj ,MarketCapl), k1-dimensional vectors uj · and

vl · are the loadings of k1 row factors on the j-th market cap group and l-th industrial

group, respectively. The most obvious way to express the additive model constraint is

to use row constraints H
(2)
R in Table 2.2. Then, in the constrained matrix factor model

(2.2), HR = H
(2)
R and R = (u1 ·,u2 ·,v1 ·,v2 ·)

′.

Further, we consider the constraint incorporating an interaction term between in-

dustry and market cap grouping information. Now the i-th row of Λ has the form
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1
1
1

H
(1)
R =

1
1
1
1
1

1 1
1 1
1 1

H
(2)
R =

1 1
1 1
1 1
1 1
1 1

1 1 1
1 1 1
1 1 -1

H
(3)
R =

1 1 -1
1 1 -1
1 1 -1
1 1 1
1 1 1

Table 2.2: Illustration of constraint matrices constructed from grouping information by
additive model.

λi · = uj · + vl · + αj,lw, where w is the k1-dimensional interaction vector containing

loadings of k1 row factors and αij is the interaction term determined by uj · and vl ·

jointly. For example,

αj,l =


1 if j = l = 1 or 2,

−1 if j = 1, l = 2 or vice versa.

In this case, for the constrained matrix factor model (2.2), HR = H
(3)
R and

R = (u1 ·,u2 ·,v1 ·,v2 ·,w)′. Note that H
(2)
R and H

(3)
R here are not full column rank

and can be reduced to a full column rank matrix satisfying the requirement in Section

2.2. But the presentations of H
(2)
R and H

(3)
R are sufficient to illustrate the ideas of

constructing complex constraint matrices.

To illustrate a theory-induced constraint matrix, we consider the yield curve

latent factors model. Nelson and Siegel (1987) propose the Nelson-Siegel representation

of the yield curve using a variation of the three-component exponential approximation

to the cross-section of yields at any moment in time,

y(τ) = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
,

where y(τ) denotes the set of zero-coupon yields and τ denotes time to maturity.

Diebold and Li (2006) and Diebold et al. (2006) interpret the Nelson-Siegel repre-

sentation as a dynamic latent factor model where β1, β2, and β3 are time-varying latent

factors that capture the level (L), slope (S), and curvature (C) of the yield curve at

each period t, while the terms that multiply the factors are respective factor loadings,
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that is

y(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
.

The factor Lt may be interpreted as the overall level of the yield curve since its loading

is equal for all maturities. The factor St, representing the slope of the yield curve,

has a maximum loading (equal to 1) at the shortest maturity and then monotonically

decays through zero as maturities increase. And the factor Ct has a loading that is 0

at the shortest maturity, increases to an intermediate maturity and then falls back to

0 as maturities increase. Hence, St and Ct capture the short-end and medium-term

latent components of the yield curve. The coefficient λ controls the rate of decay of the

loading of Ct and the maturity where St has maximum loading.

Multinational yield curve can be represented as a matrix time series {Y t}t=1,...,T ,

where rows of Y t represent time to maturity and columns of Y t denotes countries. To

capture the characteristics of loading matrix specific to the level, slope, and curvature

factors, we could set row loading constraint matrix to, for example, HR = [h1,h2,h3],

where h1 = (1, 1, 1, 1, 1)′, bh2 = (1, 1, 0,−1,−1)′ and h3 = (−1, 0, 2, 0,−1). In Section

2.4, we try to mimic multinational yield curve and generate our samples from this type

of constraints.

2.2 Estimation Procedure

Similar to all factor models, identification issue exits in the constrained matrix-variate

factor model (2.2). Let O1 and O2 be two invertible matrices of size k1×k1 and k2×k2.

Then the triples (R,F t,C) and (RO1,O
−1
1 F tO

−1
2 ,O2C) are equivalent under Model

(2.2). Here, we may assume that the columns of R and C are orthonormal, that is,

R′R = Ik1 and C ′C = Ik2 , where Id denotes the d × d identity matrix. Even with

these constraints, R, F t and C are not uniquely determined in (2.2), as aforementioned

replacement is still valid for any orthonormal O. However, the column spaces of the

loading matrices R and C are uniquely determined. Hence, in the following sections,

we focus on the estimation of the column spaces of R and C. We denote the row and

column factor loading spaces by M(R) and M(C), respectively. For simplicity, we
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suppress the matrix column space notation and use the matrix notation directly.

2.2.1 Orthogonal Constraints

We start with the estimation of the constrained matrix-variate factor model (2.2).

The approach follows the ideas of Tsai and Tsay (2010a) and Wang et al. (2017). In

what follows, we illustrate the estimation procedure for the column space of R. The

column space of C can be obtained similarly from the transpose of Y t’s. For ease of

representation, we assume that the process F t has mean 0, and the observation Y t’s

are centered and standardized through out this paper.

Suppose we have orthogonal constraints H ′RHR = Im1 and H ′CHC = Im2 . Define

the transformation Xt = H ′RY tHC . It follows from (2.2) that

Xt = RF tC
′ +Et, t = 1, 2, . . . , T, (2.7)

where Et = H ′RU tHC .

This transformation projects the observed matrix time series into the constrained

space. For example, if HR is the orthonormal matrix corresponding to the group

constraint in (2.3), thenH
′
RY t is a 2×p2 matrix, with the first row being the normalized

average of the rows of Y t in the first group and the second row being that in the second

group. Such an operation conveniently incorporates the constraints while reduces the

dimension of data matrix from p1 × p2 to m1 ×m2, making the analysis more efficient.

Since Et remains to be a white noise process, the estimation method in Wang et al.

(2017) directly applies to the transformed m1 × m2 matrix time series Xt in model

(2.7). For completeness, we outline briefly the procedure. See Wang et al. (2017) for

details.

To facilitate the estimation, we use the QR decomposition R = Q1W 1 and C =

Q2W 2. The estimation of column spaces of R and C is equivalent to the estimation

of column spaces of Q1 and Q2. Thus model (2.7) can be re-expressed as

Xt = RF tC
′ +Et = Q1ZtQ

′
2 +Et, t = 1, 2, . . . , T, (2.8)

where Zt = W 1F tW
′
2, Q

′
1Q1 = Im1 , and Q′2Q2 = Im2 .
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Let h be a positive integer. For i, j = 1, 2, . . . ,m2, define

Ωzq,ij(h) =
1

T − h

T−h∑
t=1

Cov(ZtQ2,i·,Zt+hQ2,j·), and (2.9)

Ωx,ij(h) =
1

T − h

T−h∑
t=1

Cov(Xt,·i, Xt+h,·j), (2.10)

which can be interpreted as the auto-cross-covariance matrices at lag h between column

i and column j of {ZtQ
′
2}t=1,··· ,T and {Xt}t=1,··· ,T , respectively. For h > 0, both terms

do not involve Et due to the whiteness condition.

For a fixed h0 ≥ 1 satisfying Condition 2 in Appendix 2.6, define

M =

h0∑
h=1

m2∑
i=1

m2∑
j=1

Ωx,ij(h)Ωx,ij(h)′ = Q1


h0∑
h=1

m2∑
i=1

m2∑
j=1

Ωzq,ij(h)Ωzq,ij(h)′

Q′1. (2.11)

Under Condition 2 in Appendix 2.6, the rank of M is k1. Since M and the matrix

sandwiched by Q1 and Q′1 are positive definite matrices, Equation (2.11) implies that

the eigen-space of M is the same as the column space of Q1. Hence, M(Q1) can

be estimated by the space spanned by the eigenvectors of the sample version of M .

The normalized eigenvectors q1, . . . , qk1 corresponding to the k1 nonzero eigenvalues

of M are uniquely defined up to a sign change. Thus Q1 is unique defined by Q1 =

(q1, . . . , qk1) up to a sign change. We estimate Q̂1 = (q̂1, . . . , q̂k1) as a representative

of M(Q1) or M(R)

The estimation procedure is based on the sample version of these quantities. For

h ≥ 1 and a prescribed positive integer h0, define the sample version of M in (2.11) as

the following

M̂ =

h0∑
h=1

m2∑
i=1

m2∑
j=1

Ω̂x,ij(h)Ω̂x,ij(h)′, where Ω̂x,ij(h) =
1

T − h

T−h∑
t=1

Xt,·iX
′
t+h,·j . (2.12)

Then, M(Q1) can be estimated by M(Q̂1), where Q̂1 = (q̂1, . . . , q̂k1) and q̂i is

an eigenvector of M̂ , corresponding to its i-th largest eigenvalue. The Q2 is defined

similarly for the column loading matrixC andM(Q̂2) and Q̂2 can be estimated with the

same procedure to to the transpose of Xt. Consequently, we estimate the normalized

factors and residuals, respectively, by Ẑt = Q̂
′
1XtQ̂2 and Û t = Y t −HRQ̂1ẐtQ̂

′
2H
′
C .
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The above estimation procedure assumes that the number of row factors k1 is known.

To determine k1, Wang et al. (2017) used the eigenvalue ratio-based estimator of Lam

and Yao (2012). Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m1 ≥ 0 be the ordered eigenvalues of M̂ . The

ratio-based estimator for k1 is defined as

k̂1 = arg min
1≤j≤K

λ̂j+1

λ̂j
,

where k1 ≤ K ≤ p1 is an integer. In practice we may take K = p1/2.

Although the estimation procedure on the transformed series Xt is exactly the same

as that of Wang et al. (2017), the asymptotic properties of the estimator are different

due to the transformation, as shown in Section 2.3, and Xt is of lower dimension.

2.2.2 Nonorthogonal Constraints

If the constraint matrix HR (or HC) is not orthogonal, we can perform column orthog-

onalization and standardization, similar to that in Tsai and Tsay (2010a). Specifically,

we obtain

HR = ΘRKR,

where ΘR is an orthonormal matrix and KR is a m1 × m1 upper triangular matrix

with nonzero diagonal elements. HC = ΘCKC can be obtained in the same way.

Letting Xt = Θ′RY tΘC , R∗ = KRR, and C∗ = KCC, we have

Xt = R∗F tC
∗′ +Et, t = 1, 2, . . . , T, (2.13)

where Et = Θ′RU tΘC . Since Et remains to be a white noise process, we apply the

same estimation method in Section 2.2.1 to obtain Q̂
∗
1 and Q̂

∗
2 as the representatives

of M(R̂
∗
) and M(Ĉ

∗
). Then the estimators of R and C are R̂ = K−1R Q̂

∗
1 and Ĉ =

K−1C Q̂
∗
2. Note that KR and KC are invertible lower triangular matrices.

2.2.3 Multi-term Constrained Matrix Factor Model

Without loss of generality, we assume that both row and column constraint matrices are

orthogonal matrices. If HR1 and HR2 (or HC1 and HC2) are orthogonal, we obtain,
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for t = 1, 2, . . . , T ,

H ′R1
Y tHC1 = R1F 1,tC

′
1 +H ′R1

U tHC1 ,

H ′R2
Y tHC2 = R2F 2,tC

′
2 +H ′R2

U tHC2 ,

where H ′R1
U tHC1 and H ′R2

U tHC2 are white noises. The estimators of R̂1, Ĉ1, F̂ 1,t,

R̂2, Ĉ2 and F̂ 2,t can be obtained by applying the estimation procedure described in

Section 2.2.1 to H ′R1
Y tHC1 and H ′R2

Y tHC2 , respectively.

Remark 2. For multi-term constrained model (2.4), HR1 and HR2 (or HC1 and HC2)

may not necessarily be orthogonal. In this case, we illustrate the estimation procedure

for the column loadings, while the row loading estimators for R̂1 and R̂2 can be obtained

from the same procedure applied to the transpose of Y t. Define projection matrices

PH⊥
R1

= I −HR1H
′
R1

and PH⊥
R2

= I −HR2H
′
R2

, which represent the projections

onto the spaces perpendicular to the column spaces of HR1 and HR2 , respectively. Left

multiplying equations (2.4) by PH⊥
R2

and PH⊥
R1

, respectively, and taking transpose of

the resulting matrices, we have Y ′tPH⊥
R2

= HC1C1F
′
1,tR

′
1H
′
R1
PH⊥

R2

+U ′tPH⊥
R2

and

Y ′tPH⊥
R1

= HC2C2F
′
2,tR

′
2H
′
R2
PH⊥

R1

+U ′tPH⊥
R1

, where PH⊥
R2

U t and PH⊥
R1

U t are

white noises. The column loading estimators Ĉ1 and Ĉ2 can be obtained by applying

the procedure described in Section 2.2.1 to H ′C1
Y ′tPH⊥

R2

and H ′C2
Y ′tPH⊥

R1

, respec-

tively. Note that the p1×m1 matrix PH⊥
R2

HR1 is no longer full rank or orthonormal.

However, the row and column loading spaces and latent factors can be fully recovered if

the dimension of the reduced constrained loading spaces still larger than the dimensions

of the latent factor spaces. However, the rates of convergence will change. For example,

the rate of convergence of Ĉ1 will depend on ‖PH⊥
R2

HR1R1‖22 instead of ‖HR1R1‖22.

2.2.4 Partially Constrained Matrix Factor Model

For the partially constrained matrix factor model (2.5), we assume that H ′R1
HR2 = 0

and H ′C1
HC2 = 0. Define the transformation X

(lk)
t = H ′RlY tHCk for l, k = 1, 2. Then

the transformed data follow the structure,

X
(lk)
t = RlF lk,tC

′
k +E

(lk)
t , l, k = 1, 2,
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where E
(lk)
t = H ′RlU tHCk remains white noise processes.

Let M (lk) represent the M matrix defined in (2.11) for each X
(lk)
t , l, k = 1, 2.

Define M (l·) =
∑2

k=1M
(lk) for l = 1, 2, then

M (l·) = Q
(l)
1


2∑

k=1

h0∑
h=1

m2∑
i=1

m2∑
j=1

Ω
(lk)
zq,ij(h)Ω

(lk)
zq,ij(h)′

Q(l)′

1 , l = 1, 2, (2.14)

has the same column space as that of Rl, for l = 1, 2, respectively.

The estimators of R̂l, l = 1, 2, can be obtained by applying eigen-decomposition on

the sample version of M (l·) defined similarly to (2.12). Ck, k = 1, 2, can be obtained

by using the same procedure on the transposes of X
(lk)
t for l, k = 1, 2. In the special

case of model (2.6) if F 21,t = 0 and F 12,t = 0, the above estimation is essentially the

same procedure as those described in Section 2.2.1 applying to X
(ll)
t for l = 1, 2.

This procedure effectively projects the observed matrix time series Y t into four

orthogonal subspaces, based on the constraints obtained from the domain knowledge

or some empirical procedure. Because X
(lk)
t , l, k = 1, 2 are orthogonal, they can be

analyzed separately. In our setting, we divide a p1 × p1 row loading matrix space

into two orthogonal p1 ×m1 and p1 × (p1 −m1) subspaces. The estimation procedure

for the partially constrained model ensures the structural requirement that X
(l1)
t and

X
(l2)
t share the same row loading matrix for the same l without sacrificing the dimension

reduction benefit from column space division. More generally, we could divide the space

of loading matrix into more than two parts to accommodate each application. Under

this partially constrained model, the orthogonality assumption between F lk,t, l, k = 1, 2

is not important as all are latent variables.

Remark 3. In situations when the prior or domain knowledge captures most major fac-

tors, it is reasonable to assume that mi grows slower than pi and the row (column) factor

strength of the main factor F 11,t is no weaker than that of the remainder factor F 22,t.

Improved estimators of R̂l, l = 1, 2, can be obtained by applying eigen-decomposition

on the sample version of M (l1) defined similarly to (2.12). Improved estimators of Ĉk,

k = 1, 2, can be obtained by using the same procedure on the transposes of X
(1k)
t for

k = 1, 2. Here, the estimation procedure discards the noisy part in (2.14) and results

in improved estimators.
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2.3 Theoretical Properties

In this section, we present the convergence rates for the estimators under the setting

that p1, p2, m1, m2 and T all go to infinity while the dimensions k1, k2 and the structure

of the latent factor are fixed over time. In what follows, let ‖A‖2, ‖A‖F and ‖A‖min

denote the spectral, Frobenius norm, and the smallest nonzero singular value of A,

respectively. When A is a square matrix, we denote by tr(A), λmax(A) and λmin(A)

the trace, maximum and minimum eigenvalues of the matrix A, respectively. For two

sequences aN and bN , we write aN � bN if aN = O(bN ) and bN = O(aN ).

The asymptotic convergence rates are significantly different from those in Wang

et al. (2017) due to the constraints. The results reveal more clearly the impact of

the constraints on signals and noises and the interaction between them. We only con-

sider the case of the orthogonal constrained model (2.2). Asymptotic properties of

nonorthogonal, multi-term, and partially constrained matrix factor model are trivial

extensions.

Several regularity conditions (Conditions 1 to 5) are listed in the Appendix. They

are similar to those in Wang et al. (2017) and are used to derive the limiting behavior of

(2.12) towards its population version. The following condition requires some discussion.

Condition 6.

Factor Strength. There exist constants δ1 and δ2 in [0, 1] such that ‖HRR‖22 �

p1−δ11 � ‖HRR‖2min and ‖HCC‖22 � p
1−δ2
2 � ‖HCC‖2min.

Since only Y t is observed in model (2.2), how well we can recover the factor F t from

Y t depends on the ‘factor strength’ reflected by the coefficients in the row and column

factor loading matrices HRR and HCC. For example, in the case of HRR = 0 or

HCC = 0, Y t carries no information on F t. In the following, we assume ‖F t‖ does

not change as p1, p2, m1, and m2 change.

The rates δ1 and δ2 in Condition 6 are called the strength for the row factors and the

column factors, respectively. If δ1 = 0, the corresponding row factors are called strong
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factors because Condition 6 implies that the factors have impacts on the majority of

p1 vector time series. The amount of information that observed process Y t carries

about the strong factors increases at the same rate as the number of observations or

the amount of noise increases. If δ1 > 0, the row factors are weak, which means

the information contained in Y t about the factors grows more slowly than the noises

introduced as p1 increases. The smaller the δ′s, the stronger the factors. In the strong

factor case, the loading matrix is dense. See Lam et al. (2011a) for further discussions.

If we restrict HR to be orthonormal, ||HRR||22 = ||R||22 � p1−δ11 and there is an

interplay between HR and R as p1 increases. In order for HR to remain orthonor-

mal, when p1 increases, each element of HR decreases at the rate of p
−1/2
1 . At the

same time, each element of R on average increases
√
p1−δ11 /m1. The column factor

loading ||HCC||22 behaves in the same way. As p1 and p2 increase, each element of

the transformed error Et remains a growth rate of 1 under Condition 3 ( see Lemma

1 in Appendix 2.6), but the dimension of Et is m1 ×m2 which grows at a slower rate

than p1 × p2. The factor strength is defined in terms of the observed dimension p1

and p2 and the overall loading matrices HRR and HCC, but clearly how m1 and m2

increase with p1, p2 is also important because it controls the signal-noise ratio in the

constrained model. For example, if mi/pi = ci < 1, i = 1, 2, that is, the number of mem-

bers in each group is fixed, then ||R||22||C||22 � m1−δ1
1 m1−δ2

2 /c1−δ11 c1−δ22 , compared to

||Et||22 � m1m2. If mi = pαii , αi < 1, i = 1, 2, then ||R||22||C||22 � m
(1−δ1)/α1

1 m
(1−δ2)/α2

2

compared to ||Et||22 � m1m2. Since ci < 1 and αi < 1, the signal-noise ratio is larger

than m−δ11 m−δ22 , which is the signal-noise ratio of a unconstrained matrix factor model

when p1 = m1 and p2 = m2.

We have the following theorems for the constrained matrix factor model. Asymptotic

properties for the multi-term and the partially constrained models are similar and can

be derived easily.

Theorem 1. Under Conditions 1-6 and m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), as m1, p1,
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m2, p2, and T go to ∞, it holds that

‖Q̂1 −Q1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))
,

‖Q̂2 −Q2‖2 = Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))
.

Remark 4. The convergence rate for the unconstrained model is ∆Q
pT ≡ pδ11 p

δ2
2 T
−1/2

in Wang et al. (2017). The rates for the constrained model under different relations

between m1m2 and p1p2 are shown in Table 2.3.

m1m2 � p1p2 p1−δ11 p1−δ22 ∼ Op(m1m2) m1m2 ∼ Op(p1−δ11 p1−δ22 )

Op(·) ∆Q
pT m1m2p

−1
1 p−12 ∆Q

pT T−1/2

Table 2.3: Convergence rate of the loading space estimators.

The rate of convergence in Theorem 1 depends on the growth rate of the ratio be-

tween m1m2 and p1−δ11 p1−δ22 , which can be interpreted as the noise-signal ratio. The

smaller the noise-signal ratio, the faster the convergence rate. When p1−δ11 p1−δ22 ∼

Op(m1m2), the ratio of the convergence rates between the constrained and uncon-

strained models is of the order of m1m2p
−1
1 p−12 . For example, when m1 = pα1

1 and

m2 = pα2
2 , the rate is pδ1+α1−1

1 pδ2+α2−1
2 T−1/2, and we achieve a better rate than that of

the unconstrained case if α1 < 1 or α2 < 1.

When m1m2 ∼ Op(p
1−δ1
1 p1−δ22 ), we achieve the optimal rate Op

(
T−1/2

)
. Note

the unconstrained model can only achieve this rate in the case of strong factor. The

constrained model can achieve the optimal rate even in the weak factor case. A special

case is when the dimensions of the constrained row and column loading spaces m1

and m2 are fixed, the convergence rate is T−1/2 regardless of the strength condition.

Increases of p1 or p2 while keeping m1 and m2 fixed amount to increases of the sample

points in the constrained spaces. When the constrained spaces are properly specified,

the additional information introduced from more sample points will accrue and translate

into the transformed signal part in (2.7), but the transformed noise gets canceled out

by averaging. The noise-signal ratio m1m1

p
1−δ1
1 p

1−δ2
2

goes to zero. However, the convergence

rate is still bounded below by the convergence rate of the estimated covariance matrix.

When m1m2 � p1p2, the convergence rates of the constrained and unconstrained models
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are the same. A special case is when m1 = c1p1 and m2 = c2p2, that is, the dimensions

of the constrained loading spaces increase with p’s linearly.

Remark 5. Under some conditions the convergence rates in Theorem 1 may improve

significantly. For example, if Σu ≡ V ar(vec(U t)) is diagonal (i.e. Ut,ij and Ut,lk are

uncorrelated for (i, j) 6= (l, k)) and if we have the grouping constraints, then each

elements in Et is a group average. V ar(Et,ij) is smaller by a factor of m1m2
p1p2

and goes

to zero when m1m2
p1p2

= op(1).

Remark 6. The strengths of row factors and column factors δ1 and δ2 determine the

convergence rate jointly. An increase in the strength of row factors is able to improve

the estimation of the column factors loading space and vice versa.

Theorem 2. Under Conditions 1-6, and if m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1) and the

M matrix has k1 distinct positive eigenvalues, then the eigenvalues {λ̂1, . . . , λ̂m1} of

M̂ , sorted in the descending order, satisfy

|λ̂j − λj | = Op

(
max

(
p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2

)
· T−1/2

)
, for j = 1, 2, . . . , k1,

|λ̂j | = Op

(
max

(
p2−2δ11 p2−2δ22 , m2

1m
2
2

)
· T−1

)
, for j = k1 + 1, . . . ,m1,

where λ1 > λ2 > · · · > λm1 are the eigenvalues of M .

Theorem 2 shows that the estimators of the nonzero eigenvalues ofM converge more

slowly than those of the zero eigenvalues. This provides the theoretical support for the

ratio-based estimator of the number of factors described in Section 2.2.1. The assump-

tion that M has k1 distinct positive eigenvalues is not essential, yet it substantially

simplifies the presentation and the proof of the convergence properties.

The convergence rates for the unconstrained model are ∆λ
pT ≡ p2−δ11 p2−δ22 T−1/2 for

the non-zero eigenvalues and pδ11 p
δ2
2 T
−1/2 · ∆λ

pT for the zero eigenvalues, respectively.

See Wang et al. (2017). The rates for the constrained model under different relations

between m1m2 and p1p2 are shown in Table 2.4.

In the cases of strong factors or wake factors with m1m2 � p1p2, our result is the

same as that of Wang et al. (2017). In all other cases, the gap between the convergence

rates of nonzero and zero eigenvalues of M is larger in the constrained case.
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Op(·) m1m2 � p1p2 p1−δ11 p1−δ22 ∼ Op(m1m2) m1m2 ∼ Op(p1−δ11 p1−δ22 )

Zero pδ11 p
δ2
2 T
−1/2 ·∆λ

pT (m1m2
p1p2

)2pδ11 p
δ2
2 T
−1/2 ·∆λ

pT p−δ11 p−δ22 T−1/2 ·∆λ
pT

Non-zero ∆λ
pT m1m2p

−1
1 p−12 ·∆λ

pT p−δ11 p−δ22 ·∆λ
pT

Ratio pδ11 p
δ2
2 T
−1/2 m1m2p

−1+δ1
1 p−1+δ22 T−1/2 T−1/2

Table 2.4: Convergence rate of estimators for non-zero and zero eigenvalues of M .

Let St be the dynamic signal part of Y t, i.e. St = HRRF tC
′H ′

C = HRQ1ZtQ
′
2H

′
C .

From the discussion in Section 2.2.1, St can be estimated by

Ŝt = HRQ̂1ẐtQ̂
′
2H
′
C .

Some theoretical properties of Ŝt are given below:

Theorem 3. Under Conditions 1-6 and m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), we have

1
√
p1p2
‖Ŝt − St‖2 = Op

(
max

(
p
−δ1/2
1 p

−δ2/2
2 , m1p

−1+δ1/2
1 m2p

−1+δ2/2
2

)
· 1√

T
+

1
√
p1p2

)
,

=

 Op

(
p
−δ1/2
1 p

−δ2/2
2 T−1/2 + p

−1/2
1 p

−1/2
2

)
, if m1m2 ∼ Op(p1−δ11 p1−δ22 ),

Op

(
m1p

−1+δ1/2
1 m2p

−1+δ2/2
2 T−1/2 + p

−1/2
1 p

−1/2
2

)
, otherwise.

Theorem 3 shows that as long as m1m2 increases slower than p1p2 does, we get a

faster convergence rate than Op

(
p
δ1/2
1 p

δ2/2
2 T−1/2 + p

−1/2
1 p

−1/2
2

)
– the convergence rate

of the unconstrained model in Wang et al. (2017). Note that the estimation of the

loading spaces are consistent with fixed p1 and p2 in Theorem 1. But the consistency

of the signal estimate requires p1, p2 →∞.

As noted in Section 2.2, the row and column factor loading matrices Λ = HRR and

Γ = HCC are only identifiable up to a linear space spanned by its columns. Following

Lam et al. (2011a) and Wang et al. (2017), we adopt the discrepancy measure used by

Chang et al. (2015): for two orthogonal matrices O1 and O2 of size p× q1 and p× q2,

then the difference between the two linear spaces M(O1) and M(O2) is measured by

D(M(O1),M(O2)) =

(
1− 1

max(q1, q2)
tr
(
O1O

′
1O2O

′
2

))1/2

. (2.15)

Clearly, D(M(O1),M(O2)) assumes values in [0,1]. It equals to 0 if and only if

M(O1) =M(O2) and equals to 1 if and only if M(O1) ⊥ M(O2). If O1 and O2 are

vectors, (2.15) is the cosine similarity measure. The following Theorem 4 shows that

the error in estimating loading spaces goes to zero as p1, p2 and T go to infinity and

the convergence rate is of the same order as that for estimated Λ and Γ.
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Theorem 4. Under Conditions 1-6 and if m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), then

D(M(Λ̂),M(Λ)) = D(M(Γ̂),M(Γ))

= Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))
.

Asymptotic theories for estimators of nonorthogonal, multi-term constrained factors

model are trivial extensions of the above properties for the orthogonal constrained

model.

2.4 Simulations

In this section, we use simulation to study the performance of the estimation methods

of Section 2.2 in finite samples. We also compare the results with those of uncon-

strained models. We employ data generating models under orthogonal full and partial

constraints, respectively. In the simulation, we use the Student-t distribution with 5

degrees of freedom to generate the entries in the disturbances U t. Using Gaussian noise

shows similar results.

2.4.1 Case 1. Orthogonal Constraints

In this case, the observed data Y t’s are generated according to Model (2.2),

Y t = HRRF tC
′H ′C +U t, t = 1, . . . , T,

under the following simulation design.

The latent factor process F t is of dimension k1 × k2 = 3× 2. The entries of F t fol-

low k1k2 independent AR(1) processes with Gaussian white noise N (0, 1) innovations.

Specifically, vec(F t) = ΦF vec(F t−1) + εt with ΦF = diag(−0.5, 0.6, 0.8,−0.4, 0.7, 0.3).

The dimensions of the constrained row and column loading spaces are m1 = 12 and

m2 = 3, respectively. Hence, R is 12×3 and C is 3×2. The entries of R and C are in-

dependently sampled from the uniform distribution U(−p−δi/2i

√
mi/pi, p

−δi/2
i

√
mi/pi)

for i = 1, 2, respectively, so that the condition on the factor strength is satisfied. The

disturbance U t = Ψ1/2Ξt is a white noise process, where the elements of Ξt are in-

dependent random variables of Student-t distribution with five degrees of freedom and
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the matrix Ψ1/2 is chosen so that U t has a Kronecker product covariance structure

cov(vec(U t)) = Γ2 ⊗ Γ1, where Γ1 and Γ2 are of size p1 × p1 and p2 × p2 respectively.

For Γ1 and Γ2, the diagonal elements are 1 and the off-diagonal elements are 0.2.

The effects of factor strength are investigated by varying factor strength parameter

(δ1, δ2) among (0, 0), (0.5, 0), (0.5, 0.5). For each pair of δi’s, the dimensions (p1, p2) are

chosen to be (20, 20), (20, 40), (40, 20) and (40, 40). The sample sizes T are 0.5p1p2,

p1p2, 1.5p1p2 and 2p1p2. For each combination of the parameters, we use 500 realiza-

tions. And we use h0 = 1 for all simulations. Estimation error of M(Q̂i) is defined as

D(Q̂i,Qi), where the distance D is defined in (2.15).

The row constraint matrix HR is a p1 × 12 orthogonal matrix. For p1 = 20, HR

is assumed to be a block diagonal matrix I4 ⊗ D, where Ik is the identify matrix

of dimension k and D = [d1,d2,d3] is a 5 × 3 matrix with d′1 = (1, 1, 1, 1, 1)/
√

5,

d′2 = (−1,−1, 0, 1, 1)/2, d′3 = (−1, 0, 2, 0,−1)/
√

6. These three dj vectors can be

viewed as the level, slope and curvature, respectively, of a group of five variables.

Therefore, the 20 rows are divided into 4 groups of size 5. When we increase p1 to

40 while keeping m1 = 12 fixed, we double the length of each vector in the columns

of D, using d′1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)/
√

10, d′2 = (−1,−1,−1,−1, 0, 0, 1, 1, 1, 1)/
√

8

and d′3 = (−1,−1, 0, 0, 2, 2, 0, 0,−1,−1)/
√

12.

The column constraint matrix HC is a p2 × 3 orthogonal matrix. For p2 = 20, the

three columns of HC are generated as hc,1 = [17/
√

7,07,06]
′, hc,2 = [07,17/

√
7,06]

′,

hc,3 = [07,07,16/
√

6]′, where 0k denotes a k-dimensional zero row vector. The con-

straints represent a 3-group classification. The 20 columns are divided into 3 groups

of size 7, 7 and 6 respectively. In increasing p2 to 40 while keeping m2 = 3 fixed, we

double the length of each vector in the columns defined above.

Table 2.5 shows the performance of estimating the true number of factors. We

compare the total number of estimated factors k̂ = k̂1k̂2 with the true value k =

k1k2 = 6. The subscripts c and u denote results from the constrained model (2.2)

and unconstrained model (2.1), respectively. fc and fu denote the relative frequency of

correctly estimating the true number of factors k. From the table, we make the following

observations. First, when the row and column factors are strong, i.e. (δ1, δ2) = (0, 0),
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both constrained and unconstrained models can estimate accurately the number of

factors, but the constrained models fare better when the sample size is small. Second,

if the strength of the row factors is weak, but the strength of the column factors is

strong, i.e. (δ1, δ2) = (0.5, 0), the unconstrained models fail to estimate the number of

factors, but the constrained models continue to perform well. Furthermore, as expected,

the performance of the constrained models improves with the sample size. Finally, if

the strength of the row and columns factors is weak, i.e. (δ1, δ2) = (0.5, 0.5), both

models encounter difficulties in estimating the correct number of factors for the sample

sizes used. This is not surprising as weak signals are hard to detect in general.

T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2
δ1 δ2 p1 p2 fu fc fu fc fu fc fu fc

0 0

20 20 0.29 0.95 0.77 1 0.95 1 0.99 1
20 40 0.77 1 0.99 1 1 1 1 1
40 20 0.81 1 1 1 1 1 1 1
40 40 1 1 1 1 1 1 1 1

0.5 0

20 20 0 0.2 0 0.49 0 0.78 0 0.92
20 40 0 0.68 0 0.96 0 0.99 0 1
40 20 0 0.37 0 0.78 0 0.92 0 0.97
40 40 0 0.86 0 0.98 0 0.99 0 1

0.5 0.5

20 20 0 0.05 0 0.02 0 0.02 0 0.01
20 40 0 0.03 0 0.02 0 0.01 0 0
40 20 0 0.05 0 0.01 0 0 0 0.01
40 40 0 0.05 0 0 0 0.01 0 0.04

Table 2.5: Relative frequencies of correctly estimating the number of factors k in the
case of orthogonal constraints, where pi are the dimension, T is the sample size, and fu
and fc denote the results of unconstrained and constrained factor model, respectively.

Figure 2.1 shows the box-plots of the estimation errors in estimating the loading

spaces of Q = Q2 ⊗ Q1 using the correct number of factors. The gray boxes are for

the constrained models. From the plots, it is seen that when both row and column

factors are strong, i.e. (δ1, δ2) = (0, 0), and the number of factors is properly estimated,

the mean and standard deviation of the estimation errors D(Q̂,Q) are small for both

models, but the constrained model has a smaller mean estimation error. When row

factors are weak, i.e. (δ1, δ2) = (0.5, 0), and the true number of factors is used, the

estimation error of constrained models remains small whereas that of the unconstrained

models is substantially larger.

Table 2.6 shows the mean and standard deviations of the estimation errors D(Q̂i,Qi)
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for row (i = 1) and column (i = 2) loading spaces separately for the constrained model

(2.2). Column loading spaces are estimated with higher accuracy because the number

of column constraints (p1−m1) is larger than the number of row constraints (p2−m2).

From the table, we see that (a) the mean of estimation errors decreases, as expected, as

the sample size increases and (b) the mean of estimation errors is inversely proportional

to the strength of row factors.

T = 0.5p1p2 T = 1.5p1p2 T = 1p1p2 T = 2p1p2

(20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40) (20,20) (40,20) (20,40) (40,40)
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Figure 2.1: Box-plots of the estimation accuracy measured by D(Q̂,Q) for the case of
orthogonal constraints. Gray boxes represent the constrained model. The results are
based on 500 iterations. See Table 2.17 in Appendix 2.7.2 for plotted values.

T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2

δ1 δ2 p1 p2 D(Q̂1, Q1) D(Q̂2, Q2) D(Q̂1, Q1) D(Q̂2, Q2) D(Q̂1, Q1) D(Q̂2, Q2) D(Q̂1, Q1) D(Q̂2, Q2)

0 0

20 20 0.71(0.18) 0.13(0.07) 0.51(0.13) 0.09(0.05) 0.41(0.09) 0.07(0.04) 0.35(0.07) 0.06(0.03)
20 40 0.46(0.11) 0.08(0.04) 0.32(0.07) 0.05(0.03) 0.27(0.06) 0.04(0.02) 0.23(0.05) 0.04(0.02)
40 20 0.40(0.12) 0.07(0.04) 0.28(0.07) 0.05(0.03) 0.23(0.06) 0.04(0.02) 0.19(0.05) 0.04(0.02)
40 40 0.26(0.07) 0.04(0.02) 0.18(0.04) 0.03(0.02) 0.14(0.04) 0.03(0.01) 0.13(0.03) 0.02(0.01)

0.5 0

20 20 1.84(0.75) 0.5(0.23) 1.23(0.35) 0.30(0.15) 0.95(0.23) 0.22(0.11) 0.81(0.18) 0.17(0.09)
20 40 1.08(0.30) 0.26(0.13) 0.74(0.18) 0.15(0.08) 0.61(0.14) 0.12(0.06) 0.52(0.12) 0.10(0.05)
40 20 1.18(0.45) 0.28(0.15) 0.78(0.23) 0.17(0.09) 0.64(0.18) 0.13(0.07) 0.54(0.14) 0.11(0.06)
40 40 0.71(0.21) 0.14(0.08) 0.48(0.13) 0.09(0.05) 0.39(0.1) 0.07(0.04) 0.35(0.09) 0.06(0.03)

0.5 0.5

20 20 5.84(0.62) 2.04(0.53) 5.35(0.75) 1.63(0.42) 4.68(1.17) 1.33(0.34) 4.20(1.31) 1.13(0.32)
20 40 5.62(0.68) 1.98(0.40) 4.75(1.13) 1.47(0.30) 3.96(1.33) 1.18(0.27) 3.32(1.35) 0.97(0.24)
40 20 5.53(0.61) 1.52(0.50) 4.68(1.25) 1.00(0.37) 3.64(1.46) 0.76(0.30) 2.87(1.42) 0.61(0.25)
40 40 5.01(1.01) 1.32(0.38) 3.64(1.47) 0.84(0.29) 2.62(1.46) 0.61(0.20) 1.98(1.14) 0.49(0.19)

Table 2.6: Means and standard deviations (in parentheses) of the estimation accuracy
measured by D(Q̂,Q) for constrained factor models. The case of orthogonal constraints
is used. The subscripts 1 and 2 denote row and column, respectively. All numbers in
the table are 10 times of the true numbers for clear presentation. The results are based
on 500 simulations.
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To investigate the performance of estimation under different choices of h0, which

is the number of lags used in (2.11), we change the underlying generating model of

vec(F t) to a VAR(2) process without the lag-1 term, vec(F t) = ΦF vec(F t−2) + εt.

Here we only consider the strong factor setting with δ1 = δ2 = 0 and use the sample

size T = 2p1p2 for each combination of p1 and p2. All the other parameters are the

same as those in Section 2.4.1. Table 2.7 presents the simulation results. Since vec(F t),

and hence vec(Y t), has zero auto-covariance matrix at lag 1, M̂ under h0 = 1 contains

no information on the signal, and, as expected, both the constrained and unconstrained

models fail to correctly estimate the number of factors and the loading space. On the

other hand, both models are able to correctly estimate the number of factors when

h0 > 1 with the constrained model faring better. The fact that h0 = 2, 3, 4 give very

similar results shows that the choice of h0 does not affect the performance much so

long as at least one non-zero auto-covariance matrix is included in the calculation. In

practice, one can select h0 by examining the sample cross-correlation matrices of Y t.

p1 p2 h0 = 1 h0 = 2 h0 = 3 h0 = 4

fc

20 20 0.12 1.00 1.00 1.00
20 40 0.16 1.00 1.00 1.00
40 20 0.12 1.00 1.00 1.00
40 40 0.22 1.00 1.00 1.00

fu

20 20 0.00 0.89 0.58 0.43
20 40 0.00 1.00 1.00 0.95
40 20 0.00 1.00 1.00 0.97
40 40 0.00 1.00 1.00 1.00

Dc(Q̂,Q)

20 20 2.83(1.13) 0.36(0.07) 0.37(0.07) 0.38(0.08)
20 40 2.69(1.15) 0.23(0.05) 0.23(0.05) 0.24(0.05)
40 20 2.54(1.21) 0.20(0.05) 0.20(0.05) 0.21(0.06)
40 40 2.31(1.17) 0.13(0.03) 0.13(0.03) 0.14(0.04)

Du(Q̂,Q)

20 20 4.37(1.29) 0.51(0.07) 0.53(0.07) 0.53(0.08)
20 40 4.30(1.30) 0.34(0.04) 0.35(0.04) 0.35(0.04)
40 20 4.36(1.31) 0.36(0.04) 0.37(0.04) 0.37(0.05)
40 40 4.34(1.34) 0.24(0.02) 0.24(0.03) 0.25(0.03)

Table 2.7: Performance of estimation under different choices of h0 when vec(F t) =
ΦF vec(F t−2) + εt. Metrics reported are relative frequencies of correctly estimating k,
means and standard deviations (in parentheses) of the estimation accuracy measured by
D(Q̂,Q). Means and standard deviations are multiplied by 10 for ease in presentation.
fu and fc denote unconstrained and constrained models.
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2.4.2 Case 2. Partial Orthogonal Constraints

In this case, the observed data Y t’s are generated using Model (2.5),

Y t = HRR1F tC
′
1H
′
C +LRR2GtC

′
2L
′
C +U t, t = 1, . . . , T.

Parameter settings of the first part HRR1F tC
′
1H
′
C are the same as those in Case

1. The latent factor process Gt is of dimension q1 × q2 = 5 × 4. The entries of Gt

follow q1q2 independent AR(1) processes with Gaussian white noise N (0, 1) innova-

tions, vec(Gt) = ΦG vec(Gt−1) + εt with ΦG being a diagonal matrix with entries

(−0.7, 0.5,−0.2, 0.9, 0.1, 0.4,

0.6,−0.5, 0.7, 0.7,−0.4, 0.4, 0.4,−0.6,−0.6, 0.6,−0.5,−0.3, 0.2,−0.4). The row loading

matrix LRR2 is a 20×5 orthogonal matrix, satisfying H ′RLR = 0. The column loading

matrix LCC2 is a 20× 4 orthogonal matrix, satisfying H ′CLC = 0. The entries of R2

andC2 are random draws from the uniform distribution between −p−ηi/2i

√
pi/(pi −mi)

and p
−ηi/2
i

√
pi/(pi −mi) for i = 1, 2, respectively, so that the conditions on factor

strength are satisfied. Factor strength is controlled by the δi’s.

Model (2.5) could be written in the following form:

Y t = (HRR1 LRR2)

F t 0

0 Gt

C ′1H ′C
C ′2L

′
C

+U t, t = 1, . . . , T.

In this form, the true number of factors is k0 = (k1 + r1)(k2 + r2) and the true loading

matrix is (HCC1 LCC2)⊗ (HRR1 LRR2). Table 2.8 shows the frequency of correctly

estimating k0 based on 500 iterations. In the table, fu denotes the frequency of correctly

estimating k0 for unconstrained model. fcon1 and fcon2 denote the same frequency

metric for the first matrix factor F t and second matrix factor Gt of the constrained

model. The number of factors in F t is estimated with a higher accuracy because the

dimension of constrained loading space for F t is m1m2 = 36, which is smaller than that

for Gt, (p1 −m1)(p2 −m2) = 136. The result again confirms the theoretical results in

Section 2.3. Note that Table 2.8 only contains selected combinations of factor strength

parameters δi’s (i = 1, . . . 4). The results of all combinations of factor strength are

given in Table 2.18 in Appendix 2.7.2.



40

Figure 2.2 and Figure 2.3 present box-plots of estimation errors under weak and

strong factors from 500 simulations, respectively. Again, the results show that the

constrained approach efficiently improves the estimation accuracy. The performance of

constrained model is good even in the case of weak factors. Moreover, with stronger

signals and larger sample sizes, both approaches increase their estimation accuracy.

T = 0.5 ∗ p1 ∗ p2 T = p1 ∗ p2 T = 1.5 ∗ p1 ∗ p2 T = 2 ∗ p1 ∗ p2
δ1 δ2 δ3 δ4 p1 p2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2

0 0 0 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0.01 1.00 0
20 40 0 1.00 0 0 1.00 0 0.03 1.00 0 0.19 1.00 0
40 20 0.15 0.99 1.00 0.81 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
40 40 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 0 0.5 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0 1.00 0
20 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0
40 20 0 0.99 0.54 0 1.00 0.84 0 1.00 0.97 0 1.00 1.00
40 40 0 1.00 0.98 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00

0.5 0.5 0.5 0.5

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0
20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0
40 20 0 0.06 0 0 0.01 0 0 0 0 0 0 0
40 40 0 0.06 0 0 0 0 0 0 0 0 0.03 0

Table 2.8: Relative frequencies of correctly estimating the number of factors for partially
constrained factor models. Full tables including all combinations are presented in Table
2.18 in Appendix 2.7.2.
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Figure 2.2: The strong factors case. Box-plots of the estimation accuracy measured by
D(Q̂,Q) for partially constrained factor models. The gray boxes are for the constrained
approach. The results are based on 500 realizations. See Table 2.19 in Appendix 2.7.2
for the plotted values.
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Figure 2.3: The weak factors case. Box-plots of the estimation accuracy measured by
D(Q̂,Q) for partially constrained factor models. The gray boxes are for the constrained
approach. The results are based on 500 realizations. See Table 2.19 in Appendix 2.7.2
for the plotted values.

2.5 Applications

In this section, we demonstrate the advantages of using constrained matrix-variate

factor models with three applications. In practice, the number of common factors (k1,

k2) and the dimensions of constrained row and column loading spaces (m1, m2) must

be pre-specified in order to determine an appropriate constrained factor model. The

numbers of factors (k1, k2) can be determined by any existing methods, such as those

in Lam and Yao (2012) and Wang et al. (2017). For any given (k1, k2), the dimensions

of constrained row and column loading spaces (m1,m2) can be determined by either (a)

prior or substantive knowledge or (b) an empirical procedure. The results show that

even simple grouping information can substantially increase the accuracy in estimation.

2.5.1 Example 1: Multinational Macroeconomic Indices

We apply the constrained and partially constrained factor models to the macroeconomic

indices dataset collected from OECD. The dataset contains 10 quarterly macroeco-

nomic indices of 14 countries from 1990.Q2 to 2016.Q4 for107 quarters. Thus, we have
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T = 107 and p1 × p2 = 14× 10 matrix-valued time series. The countries include devel-

oped economies from North American, European, and Oceania. The indices cover four

major groups, namely production, consumer price, money market, and international

trade. Each original univariate time series is transformed by taking the first or second

difference or logarithm to satisfy the mixing condition in Condition 4. Countries, de-

tailed descriptions of the dataset, and transformation procedures are given in Tables

2.15 and 2.16 of Appendix 2.7.1.

We first fit an unconstrained matrix factor model which generates estimators of the

row loading matrix and the column loading matrix. In the row loading matrix, each

row represents a country by its factor loadings for all common row factors, whereas, in

the column loading matrix, each row represents a macroeconomic index by its factor

loadings for all common column factors. A hierarchical clustering algorithm is employed

to cluster countries and macroeconomic indices based on their representations in the

common row and column factor spaces, respectively. Figure 2.4 shows the hierarchical

clustering results. Based on the clustering result, we construct the row and column

constraint matrices. It seems that the row constraint matrix divides countries into 6

groups: (i) United States and Canada; (ii) New Zealand and Australia; (iii) Norway;

(iv) Ireland, Denmark, and United Kingdom; (v) Finland and Sweden; (vi) France,

Netherlands, Austria, and Germany. The grouping more or less follows geographical

partitions with Norway different from all others due to its rich oil production and other

distinct economic characteristics. The column constraint matrix divide macroeconomic

indices into 5 categories: (i) GDP, production of total industry excluding construction,

and production of total manufacturing ; (ii) long-term government bond yields and 3-

month interbank rates and yields; (iii) total CPI and CPI of Food; (iv) CPI of Energy;

(v) total exports value and total imports value in goods. Again, the grouping agrees

with common economic knowledge.

Table 2.9 shows estimates of the row and column loading matrices for constrained

and unconstrained 4×4 factor models. The loading matrices are normalized so that the

norm of each column is one. They are also varimax-rotated to reveal a clear structure.

The values shown are rounded values of the estimates multiplied by 10 for ease in display.



43

S
W

E

N
LD

F
IN

A
U

T

F
R

A

D
E

U

U
S

A

C
A

N

N
O

R

N
Z

L

A
U

S

IR
L

D
N

K

G
B

R

0.
0

0.
5

1.
0

1.
5

2.
0

Country  Clustering

(a) Country Loading Clustering

G
D

P

P
:T

IE
C

P
:T

M

IR
:L

on
g

IR
:3

−
M

on

C
P

I:F
oo

d

C
P

I:T
ot C
P

I:E
ne

r

IT
:E

x

IT
:Im

0.
0

0.
5

1.
0

1.
5

2.
0

Macro Index  Clustering

(b) Macroeconomic Index Loading Clustering

Figure 2.4: Macroeconomic series: Clustering loading matrices

From the table, both the row and column loading matrices exhibit similar patterns

between unconstrained and constrained models, partially validating the constraints

while simplifying the analysis.

Table 2.10 provides the estimates under the same setting as that of Table 2.9 but

without any rotation. From the table, it is seen that except for the first common factors

of the row loading matrices there exist some differences in the estimated loading matri-

ces between unconstrained and constrained factor models. The results of constrained

models convey more clearly the following observations. Consider the row factors. The

first row common factor represents the status of global economy as it is a weighted av-

erage of all the countries under study. The remaining three row common factors mark

certain differences between country groups. For the column factors, the first column

common factor is dominated by the price index and interest rates; The second col-

umn common factor is mainly the production and international trade; The remaining

two column common factors represent interaction between price indices, interest rates,

productions, and international trade.

Table 2.11 compares the out-of-sample performance of unconstrained, constrained,

and partially constrained factor models using a 10-fold cross validation (CV) for models
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Model Loading Row USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU

Runc,rot R̂′rot

1 7 7 1 1 -1 -2 -1 0 1 0 0 0 0 -1
2 0 1 -2 -1 1 1 1 2 4 3 4 4 4 4
3 2 -1 5 5 1 5 3 2 -1 1 1 0 0 0
4 -1 1 1 2 9 -3 0 0 0 1 -1 1 0 0

Rcon,rot R̂′rotH
′
R

1 6 6 0 0 0 2 2 2 -1 -1 0 0 0 0
2 -1 -1 0 0 0 3 3 3 4 4 3 3 3 3
3 0 0 7 7 0 1 1 1 1 1 -1 -1 -1 -1
4 0 0 0 0 10 0 0 0 1 1 0 0 0 0

Model Loading Row CPI:Food CPI:Tot CPI:Ener IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im

Cunc,rot Ĉ ′rot

1 6 7 3 -1 1 0 0 -1 -1 0
2 -2 1 4 1 -1 0 0 0 6 6
3 0 0 1 8 6 -1 0 1 0 0
4 1 -1 0 0 0 6 6 5 0 0

Ccon,rot Ĉ ′rotH
′
C

1 7 7 0 0 0 0 0 0 0 0
2 0 0 6 0 0 0 0 0 6 6
3 0 0 0 7 7 0 0 0 0 0
4 0 0 -2 0 0 6 6 6 1 1

Table 2.9: Estimations of row and column loading matrices (varimax rotated) of con-
strained and unconstrained matrix factor models for multinational macroeconomic in-
dices. The loadings matrix are multiplied by 10 and rounded to integers for ease in
display.

Model Loading Row USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU

Runc R̂′

1 3 2 2 2 2 2 3 3 3 3 3 3 3 3
2 4 2 5 5 1 0 1 0 -3 -1 -2 -2 -2 -3
3 3 6 -2 -2 4 -5 -3 -1 1 0 -1 1 0 0
4 -4 -3 0 2 8 -1 1 0 -1 1 0 1 0 0

Rcon R̂′H ′R

1 1 1 2 2 2 3 3 3 4 4 3 3 3 3
2 5 5 3 3 4 0 0 0 -2 -2 -2 -2 -2 -2
3 -1 -1 5 5 -6 0 0 0 0 0 -1 -1 -1 -1
4 -4 -4 3 3 6 -2 -2 -2 1 1 -1 -1 -1 -1

Model Loading Row CPI:Food CPI:Ener CPI:Tot IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im

Cunc Ĉ ′

1 1 4 2 4 3 3 3 3 4 4
2 5 3 6 -1 1 -3 -4 -4 0 0
3 5 -1 2 -1 1 4 4 3 -4 -4
4 0 -1 -2 7 5 -2 -2 0 -3 -3

Ccon Ĉ ′H ′C

1 6 -2 6 4 4 0 0 0 -2 -2
2 0 0 0 3 3 5 5 5 3 3
3 -3 3 -3 5 5 -3 -3 -3 1 1
4 3 5 3 -1 -1 -2 -2 -2 5 5

Table 2.10: Estimations of row and column loading matrices of constrained and uncon-
strained matrix factor models for multinational macroeconomic indices. No rotation
is used. The loadings matrix are multiplied by 10 and rounded to integers for ease in
display.

with different number of factors. Residual sum of squares (RSS), their ratios to the

total sum of squares (RSS/TSS), and the number of parameters are means of the 10-

fold CV. Clearly, the constrained factor model uses far fewer parameters in the loading

matrices yet achieves slightly better results than the unconstrained model. Using the

same number of parameters, the partially constrained model is able to reduce markedly

the RSS over the unconstrained model.
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In this particular application, the constrained matrix factor model with the specified

constraint matrices seems appropriate and plausible. If incorrect structures (constraint

matrices) are imposed on the model, then the constrained model may become inappro-

priate. As we can see from the next example, a single orthogonal constraint actually

hurts the performance. In cases like this, we need a second or a third constraint to

achieve satisfactory performance. Nevertheless, the results from the constrained model

are better than those from the unconstrained model.

Model # Factor 1 # Factor 2 RSS RSS/TSS # Parameters

Full (6,5) 570.50 0.449 134
Constrained (6,5) 560.31 0.442 61

Partial (6,5) (6,5) 454.41 0.358 134

Full (5,5) 613.26 0.482 120
Constrained (5,5) 604.63 0.477 55

Partial (5,5) (5,5) 516.27 0.407 120

Full (4,5) 658.15 0.517 106
Constrained (4,5) 649.85 0.512 49

Partial (4,5) (4,5) 576.94 0.454 106

Full (4,4) 729.46 0.573 96
Constrained (4,4) 721.96 0.568 44

Partial (4,4) (4,4) 657.13 0.517 96

Full (3,4) 787.80 0.620 82
Constrained (3,4) 768.64 0.605 38

Partial (3,4) (3,4) 719.46 0.567 82

Full (3,3) 868.43 0.684 72
Constrained (3,3) 852.76 0.671 33

Partial (3,3) (3,3) 813.16 0.640 72

Table 2.11: Results of 10-fold CV of out-of-sample performance for the multinational
macroeconomic indices. The numbers shown are average over the cross validation,
where RSS and TSS stand for residual and total sum of squares, respectively.

2.5.2 Example 2: Company Financials

In this application, we investigate the constrained matrix-variate factor models for the

time series of 16 quarterly financial measurements of 200 companies from 2006.Q1 to

2015.Q4 for 40 observations. Appendix 2.7.3 contains the descriptions of variables used

along with their definitions, the 200 companies and their corresponding industry group
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and sector information. Data are arranged in matrix-variate time series format. At each

t, we observe a 16× 200 matrix, whose rows represent financial variables and columns

represent companies. Thus we have T = 40, p1 = 16 and p2 = 200. The total number

of time series is 3, 200. Following the convention in eigenanalysis, we standardize the

individual series before applying factor analysis. This data set was used in Wang et al.

(2017) for an unconstrained matrix factor model.

The column constraint matrix HC is constructed based on the industrial classifi-

cation of Bloomberg. The 200 companies are classified into 51 industrial groups, such

as biotechnology, oil & gas, computer, among others. Thus the dimension of HC is

200× 51. Since we do not have adequate prior knowledge on corporate financial, we do

no impose any constraint on the row loading matrix. Thus, in this application, we use

HR = I16.

We apply the unconstrained model (2.1), the orthogonal constrained model (2.7),

and the partial constrained model (2.5) to the data set. Table 2.12 shows the average

residual sum of squares (RSS) and their ratios to the total sum of squares (TSS) from

a 10-fold CV for models with different number of factors. Again, it is clear, from the

table, that the constrained matrix factor models use fewer number of parameters in

loading matrices and achieve similar results. If we use the same number of parameters

in the loading matrices, variances explained by the constrained matrix factor models

are much larger than those of the unconstrained ones, indicating the impact of over-

parameterization. This application with 3, 200 time series is typical in high-dimensional

time series. The number of parameters involved is usually huge in a unconstrained

model. Via the example, we showed that constrained matrix factor models can largely

reduce the number of parameters while keeping the same explanation power.

2.5.3 Example 3: Fama-French 10 by 10 Series

Finally, we investigate constrained matrix-variate factor models for the monthly market-

adjusted return series of Fama-French 10×10 portfolios from January 1964 to December

2015 for total 624 months and overall 62, 400 observations. The portfolios are the

intersections of 10 portfolios formed by size (market equity, ME) and 10 portfolios
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Model # Factor 1 # Factor 2 RSS RSS/SST # parameters

(4,10) 8140.32 0.869 2064
(4,12) 7990.04 0.853 2464Full
(4,19) 7587.11 0.810 3864

Constrained (4,10) 8062.63 0.861 574
(4,10) (4,2) 7969.83 0.851 936

Partial
(4,10) (4,9) 7623.25 0.814 1979

(4, 20) 7539.68 0.805 4064
(4, 27) 7261.49 0.775 5464Full
(4, 39) 6872.18 0.734 7864

Constrained (4, 20) 7646.70 0.816 1084
(4, 20) (4,7) 7292.06 0.779 2191

Partial
(4, 20) (4,19) 6815.96 0.728 3979

(5,10) 8012.10 0.855 2080
(5,12) 7849.34 0.838 2480Full
(5,19) 7420.04 0.792 3880

Constrained (5,10) 7942.95 0.848 590
(5,10) (5,2) 7849.40 0.838 968

Partial
(5,10) (5,9) 7472.10 0.798 2011

(5,20) 7368.63 0.787 7960
(5,23) 7250.73 0.774 4680Full
(5,39) 6641.13 0.709 7880

Constrained (5,20) 7489.20 0.800 1100
(5,20) (5,3) 7357.80 0.786 1627

Partial
(5,20) (5,19) 6595.03 0.704 4011

(5,30) 6960.70 0.743 6080
(5,34) 6813.93 0.727 6880Full
(5,59) 5988.15 0.639 11880

Constrained (5,30) 7184.53 0.767 1610
(5,30) (5,4) 6997.21 0.747 2286

Partial
(5,30) (5,29) 5936.64 0.634 6011

Table 2.12: Summary of 10-fold CV of out-of-sample analysis for the corporate financial
of 16 series for each of 200 companies. The numbers shown are average over the cross
validation and RSS and TSS denote, respectively, the residual and total sum of squares.

formed by the ratio of book equity to market equity (BE/ME). Thus, we have T = 624

and p1 × p2 = 10 × 10 matrix time series. The series are constructed by subtracting

the monthly excess market returns from each of the original portfolio returns obtained

from French (2017), so they are free of the market impact.

Using an unconstrained matrix factor model, Wang et al. (2017) carried out a clus-

tering analysis on the ME and BE/ME loading matrices after rotation. Their results
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suggest HR = [hR1 ,hR2 ,hR3 ], where hR1 = [1(5)/
√

5,0(5)], hR2 = [0(5),1(4)/2, 0],

and hR3 = [0(9), 1]. Therefore, ME factors are classified into three groups of small-

est 5 ME’s, middle 4 ME’s, and the largest ME, respectively. For cases when we

need 4 row constraints, we redefine hR2 = [0(5),1(3)/
√

3,0(2)] and add a fourth

column hR4 = [0(8), 1, 0]. For column constraints, HC = [hC1 ,hC2 ,hC3 ], where

hC1 = [1,0(9)], hC2 = [0,1(3)/
√

3,0(6)], hC3 = [0(4),1(6)]. Therefore, BE/ME factors

are divided into three groups of the smallest BE/ME’s, middle 3 BE/ME’s, and the 6

largest BE/ME, respectively. For cases when we need 4 column constraints, we redefine

hC3 = [0(4),1(4)/2,0(2)] and add a fourth column hC4 = [0(8),1(2)].

Table 2.13 shows the estimates of the loading matrices for the constrained and

unconstrained 2 × 2 factor models. The loading matrices are VARIMAX roated for

ease in interpretation and normalized so that the norm of each column is one. From

the table, the loading matrices exhibit similar patterns, but those of the constrained

model convey the following observations more clearly. Consider the row factors, the first

factor represents the difference between the average of the 5 smallest ME group and

the weighted average of the remaining portfolio whereas the second factor is mainly the

average of the medium 4 ME portfolios. For the column loading matrix, the first factor

is a weighted average of the smallest BE/ME portfolio and the middle three portfolios.

The second factor marks the difference between the smallest BE/ME portfolio from a

weighted average of the two remaining groups. Finally, it is interesting to see that the

constrained model uses only 16 parameters, yet it can reveal information similar to the

unconstrained model that employs 40 parameters. This latter result demonstrates the

power of using constrained factor models.

Table 2.14 compares the out-of-sample performance of unconstrained and constrained

matrix factor models using a 10-fold CV for models with different number of factors

constructed similarly to Table 2.11. In this case, the prediction RSS of the constrained

model is slightly larger than that of the unconstrained one with the same number of

factors, which may results from the misspecification of the constrained matrices. Test-

ing the adequacy of the constrained matrix is an important research topic that will be

addressed in future research. On the other hand, the constrained model uses a much
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Model Loading Column Rotated Estimated Loadings

Ru

R̂′
1 0.43 0.46 0.44 0.43 0.33 0.16 0.05 -0.02 -0.20 -0.23
2 -0.01 -0.01 -0.05 0.09 0.18 0.39 0.39 0.62 0.51 0.16

R̂′H ′R
1 0.44 0.44 0.44 0.44 0.44 -0.04 -0.04 -0.04 -0.04 -0.15
2 0.04 0.04 0.04 0.04 0.04 0.50 0.50 0.50 0.50 0.06

Cu

Ĉ ′
1 0.70 0.48 0.37 0.30 0.14 0.07 0.05 -0.05 -0.09 0.15
2 0.29 -0.07 -0.10 -0.23 -0.30 -0.32 -0.34 -0.44 -0.48 -0.34

Ĉ ′H ′C
1 0.78 0.36 0.36 0.36 0 0 0 0 0 0
2 0.24 -0.18 -0.18 -0.18 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37

Table 2.13: Estimates of the loading matrices of constrained and unconstrained matrix
factor modes for Fama-French 10 × 10 portfolio returns. The loading matrices are
varimax rotated and normalized for ease in comparison.

smaller number of parameters than the unconstrained model.

Model # Factor 1 # Factor 2 RSS RSS/SST # Parameters

(3,3) 3064.40 0.500 60
(3,4) 2905.79 0.474 70Full
(3,6) 2644.59 0.431 90

Constrained (3,3) 3115.16 0.508 24
(3,3) (3,3) 2819.06 0.460 60

Partial
(3,3) (1,1) 3079.79 0.502 36

(3,2) 3316.55 0.541 50
Full

(3,4) 2905.79 0.474 70
Constrained (3,2) 3361.03 0.548 18

(3,2) (3,2) 3169.79 0.517 50
Partial

(3,2) (1,1) 3323.25 0.542 31

(2,3) 3269.50 0.533 50
(2,4) 3152.63 0.514 60Full
(2,6) 2976.18 0.431 90

Constrained (2,3) 3372.79 0.550 18
(2,3) (2,3) 3154.36 0.514 50

Partial
(2,3) (1,2) 3296.73 0.538 37

(2,2) 3473.32 0.567 40
(2,3) 3269.50 0.533 50Full
(2,4) 3152.63 0.514 60

Constrained (2,2) 3535.56 0.577 16
(2,2) (2,2) 3415.25 0.557 40

Partial
(2,2) (2,1) 3486.15 0.569 33

Table 2.14: Performance of out-of-sample 10-fold CV of constrained and unconstrained
factor models using Fama-French 10 × 10 portfolio return series, where RSS and
RSS/TSS denote, respectively, the residual and total sum of squares.
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2.6 Proofs

We use the following notations. For h ≥ 0, let Σf,u(h) = Cov(vec(F t), vec(U t+h)),

Σ̃f,u(h) =
1

T − h

T−h∑
t=1

vec(F t)vec(U t+h)′, and Σ̃y(h) =
1

T − h

T−h∑
t=1

vec(Y t)vec(Y t+h)′.

The auto-covariance matrices of Σu,f (h), Σf (h), Σu(h) and their sample versions are

defined in a similar manner. The following regularity and factor strength conditions

are needed.

Condition 1.

No linear combination of the components of F t is white noise.

Condition 2.

There exists at least one h in {1, . . . , h0}, where h0 ≥ 1 is a positive integer, such that∑m2
i=1

∑m2
j=1 Ωzq,ij(h)Ωzq,ij(h)′ in equation (2.9) is of full rank.

Condition 1 is natural, as all the white noise linear combinations of F t should be

absorbed into U t, which ensures that there exists at least one h ≥ 1 for which Ωzq,ij(h)

is full-ranked. Condition 2 further ensures that M has k1 positive eigenvalues.

Condition 3.

For h ≥ 0, the maximum eigenvalue of Σf,u(h) and Σu remains bounded as T , p1 and

p2 increase to infinity.

In model (2.2), HRRF tC
′H ′C can be viewed as the signal part of the observation

Y t, and U t as the noise. Condition 3 requires two things. First, each element of Σu

remains bounded as p1 and p2 increase to infinity. Thus each noise component does not

goes to infinity so that the signals are not obscured by the noises. Second, as dimensions

increase, the covariance matrix of noises does not have information concentrated in a

few directions. Thus the noise part does not contain any useful information. This is

reasonable since all the common components should be absorbed in the signal.
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Condition 4.

The vector-valued process vec(F t) is α-mixing. For some γ > 2, the mixing coefficients

satisfy the condition that
∞∑
h=1

α(h)1−2/γ <∞,

where α(h) = sup
τ

sup
A∈Fτ−∞,B∈F∞τ+h

|P (A ∩B)− P (A)P (B)| and Fsτ is the σ-field gener-

ated by {vec(F t) : τ ≤ t ≤ s}.

Condition 5.

Let Ft,ij be the ij-th entry of F t. Then, E(|Ft,ij |2γ) ≤ C for any i = 1, . . . , k1,

j = 1, . . . , k2 and t = 1, . . . , T , where C is a positive constant and γ is given in Condition

4. In addition, there exists an integer h satisfying 1 ≤ h ≤ h0 such that Σf (h) is of

rank k = max(k1, k2) and ‖Σf (h)‖2 � O(1) � σk(Σf (h)). For i = 1, . . . , k1 and

j = 1, . . . , k2,
1

T−h
∑T−h

t=1 Cov(Ft,i·, Ft+h,i·) 6= 0 and 1
T−h

∑T−h
t=1 Cov(Ft,·j , Ft+h,·j) 6= 0.

Condition 4 and Condition 5 specify that the latent process {F t}t=1,...,T only needs

to satisfy the mixing condition specified in Condition 4 instead of the stationary condi-

tion. And we make use of the auto-covariance structure of the latent process {F t}t=1,...,T

without assuming any specific model. These two features make our estimation proce-

dure more attractive and general than the standard principal component analysis.

We focus on the case of orthogonal constraints. Results for the non-orthogonal case

and the partially-constrained case are similar.

The constrained factor model is Y t = HRRF tC
′H ′C + U t. Suppose we have

orthogonal constraints, that isH ′RHR = Im1 andH ′CHC = Im2 , then the transformed

m1 ×m2 data Xt = H ′RXtHC = RF tC
′ +Et, where Et = H ′RU tHC and Et is still

white noise process.

Lemma 1. Under Condition 3, each element of Σe = Cov(vec(E)) is uniformly

bounded as p1 and p2 increase to infinity.
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Proof.

Σe = Cov(vec(H ′RU tHC))

= Cov((H ′R ⊗H ′C) · vec(U t))

= (HR ⊗HC)′ ·Σu · (HR ⊗HC).

Let A = HR⊗HC . Since HR and HC are p1×m1 and p2×m2 orthogonal matrices

respectively, A is a p1p2 ×m1m2 orthogonal matrix.

Let ei be the i-th element of vec(Et), A·i be the i-th column vector of A for i =

1, . . . ,m1m2, then the diagonal elements of Σe are

V ar(ei) = A′·iΣuA·i ≤ λmax(Σu) for i = 1, . . . ,m1m2.

Condition 3 assumes λmax(Σu) ∼ O(1), hence V ar(e) ∼ O(1) for i = 1, . . . ,m1m2.

And off-diagonal elements of Σe are

Cov(ei, ej) ≤ V ar(ei)
1
2V ar(ej)

1
2 ∼ O(1) for i 6= j, i, j = 1, . . . ,m1m2.

Thus, each element of Σe remains bounded if the maximum eigenvalue of Σu =

Cov(vec(U)) is bounded as p1 and p2 increase to infinity.

Lemma 2. Under the assumption that HR and HC are orthogonal. Condition 6 also

ensures that ‖R‖22 � p
1−δ1
1 � ‖R‖2min and ‖C‖22 � p

1−δ1
2 � ‖C‖2min.

Proof. For any orthogonal matrix H, we have ‖HR‖22 = ‖R‖22 and ‖HR‖2min =

‖R‖2min. And the results follow.

In the following proofs, we work with the transformed model (2.7), as in Xt =

RF tC
′ + Et where Xt and Et are m1 × m2 matrices, F t is k1 × k2 matrix, R is

the m1 × k1 row loading matrix, and C is the m2 × k2 column loading matrix for the

transformed model.
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We start by defining some quantities used in the proofs. Write

Ωs,ij(h) =
1

T − h

T−h∑
t=1

Cov(RF tCi·,RF t+hCj·),

Ωfc,ij(h) =
1

T − h

T−h∑
t=1

Cov(F tCi·,F t+hCj·),

Ω̂s,ij(h) =
1

T − h

T−h∑
t=1

RF tCi·C
′
j·F
′
t+hR

′,

Ω̂se,ij(h) =
1

T − h

T−h∑
t=1

RF tCi·E
′
t+h,·j ,

Ω̂es,ij(h) =
1

T − h

T−h∑
t=1

Et,·jC
′
i·F
′
t+hR

′,

Ω̂e,ij(h) =
1

T − h

T−h∑
t=1

Et,·jE
′
t+h,·j ,

Ω̂fc,ij(h) =
1

T − h

T−h∑
t=1

F tCi·C
′
j·F
′
t+h.

The following Lemma 3 from Wang et al. (2017) establishes the entry-wise conver-

gence rate of the covariance matrix estimation of the vectorized latent factor process

vec(F t).

Lemma 3. Let Ft,ij denote the ij-th entry of F t. Under Condition 4 and Condition

5, for any i, k = 1, . . . , k1 and j, l = 1, · · · , k2, we have∣∣∣∣∣ 1

T − h

T−h∑
t=1

(Ft,ijFt+h,kl − Cov(Ft,ijFt+h,kl))

∣∣∣∣∣ = Op(T
−1/2). (2.16)

Under the matrix-variate factor Model (2.7), the RF tC
′ is the signal and Et is the

noise.

Lemma 4. Under Conditions 1-6, it holds that
m2∑
i=1

m2∑
j=1

‖Ω̂s,ij(h)−Ωs,ij(h)‖22 = Op(p
2−2δ1
1 p2−2δ22 T−1), (2.17)

m2∑
i=1

m2∑
j=1

‖Ω̂se,ij(h)−Ωse,ij(h)‖22 = Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1), (2.18)

m2∑
i=1

m2∑
j=1

‖Ω̂es,ij(h)−Ωes,ij(h)‖22 = Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1), (2.19)

m2∑
i=1

m2∑
j=1

‖Ω̂e,ij(h)−Ωe,ij(h)‖22 = Op(m
2
1m

2
2T
−1). (2.20)
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Proof. To prove the convergence rate of Ω̂s,ij(h) in (4.32), we first establish the con-

vergence rate of estimating Ωfc,ij(h) = 1
T−h

∑T−h
t=1 Cov(F tCi·,F t+hCj·).

‖Ω̂fc,ij(h)−Ωfc,ij(h)‖22 ≤ ‖Ω̂fc,ij(h)−Ωfc,ij(h)‖2F

=

∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t)) · vec(Ci·C ′j·)
∥∥∥∥2
2

≤
∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2
F

· ‖Ci·‖22 · ‖Cj·‖22. (2.21)

Hence, we have

m2∑
i=1

m2∑
j=1

‖Ω̂s,ij(h)−Ωs,ij(h)‖22

=

m2∑
i=1

m2∑
j=1

‖R · (Ω̂fc,ij(h)−Ωfc,ij(h)) ·R′‖22

≤ ‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2
F

·

(
m2∑
i=1

‖Ci·‖22

)2

= ‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2
F

· ‖C‖4F

≤ k22 ‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2
F

· ‖C‖42

= Op(p
2−2δ1
1 p2−2δ22 T−1).

The first inequality comes from (2.21) and the last inequality follows from Condition 6

and Lemma 1.

To prove the convergence rate of covariance between signal at t and noise at t+h in

(4.33), we first establish the convergence rate of covariance between F tCi· and Et+h,·j .
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∥∥∥∥ 1

T − h

T−h∑
t=1

F tCi·E
′
t+h,·j −

1

T − h

T−h∑
t=1

E
(
F tCi·E

′
t+h,·j

)∥∥∥∥2
2

≤
∥∥∥∥ 1

T − h

T−h∑
t=1

vec(F tCi·E
′
t+h,·j)−

1

T − h

T−h∑
t=1

E
(
vec(F tCi·E

′
t+h,·j)

)∥∥∥∥2
2

≤ ‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t)) · vec(Ci·)‖22

≤ ‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t))‖22 · ‖Ci·‖
2
2.

Hence, we have

m2∑
i=1

m2∑
j=1

‖Ω̂se,ij(h)−Ωse,ij(h)‖22

=

m2∑
i=1

m2∑
j=1

∥∥∥∥ 1

T − h

T−h∑
t=1

RF tCi·E
′
t+h,·j −

1

T − h

T−h∑
t=1

E
(
RF tCi·E

′
t+h,·j

)∥∥∥∥2
2

≤
m2∑
i=1

m2∑
j=1

‖R‖22 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

F tCi·E
′
t+h,·j −

1

T − h

T−h∑
t=1

E
(
F tCi·E

′
t+h,·j

)∥∥∥∥2
2

≤ ‖R‖22 ·
m2∑
j=1

‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t))‖22 ·
m2∑
i=1

‖Ci·‖22

≤ ‖R‖22 ·
m2∑
i=1

‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t))‖22 · k2‖C‖
2
2

= Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1).

To prove the convergence rate of covariance between noise at t and signal at t + h

in (4.34), we use similar arguments and get

m2∑
i=1

m2∑
j=1

‖Ω̂es,ij(h)−Ωes,ij(h)‖22 = Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1/2).

.

And the convergence rate of Ω̂e,ij(h) in (4.35) is given by

m2∑
i=1

m2∑
j=1

‖Ω̂e,ij(h)−Ωe,ij(h)‖22

=

m2∑
i=1

m2∑
j=1

∥∥∥∥ 1

T − h

T−h∑
t=1

Et,·iE
′
t+h,·j

∥∥∥∥
= Op(m

2
1m

2
2T
−1).
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With the four rates established in Lemma 9, we can study the rate of convergence

for the transformed observed covariance matrix Ω̂x,ij(h).

Lemma 5. Under Conditions 1-6, it holds that

m2∑
i=1

m2∑
j=1

‖Ω̂x,ij(h)−Ωx,ij(h)‖22 = Op

(
max(p2−2δ11 p2−2δ22 , m2

1m
2
2) · T−1

)
. (2.22)

Proof. By definition of Ω̂x,ij(h) in Section 2.2, we can decompose Ω̂x,ij(h) into the

following four parts,

Ω̂x,ij(h) =
1

T − h

T−h∑
t=1

Xt,·iX
′
t+h,·j

=
1

T − h

T−h∑
t=1

(RF tCi· + Et,i·)(RF tCi· + Et+h,j·)
′

= Ω̂s,ij(h) + Ω̂se,ij(h) + Ω̂es,ij(h) + Ω̂e,ij(h).

Thus from Lemma 4, we have

m2∑
i=1

m2∑
j=1

‖Ω̂x,ij(h)−Ωx,ij(h)‖22

≤ 4

m2∑
i=1

m2∑
j=1

(‖Ω̂s,ij(h)−Ωs,ij(h)‖22 + ‖Ω̂se,ij(h)−Ωse,ij(h)‖22

+ ‖Ω̂es,ij(h)−Ωes,ij(h)‖22 + ‖Ω̂e,ij(h)−Ωe,ij(h))‖22

= Op

(
max(p2−2δ11 p2−2δ22 , m2

1m
2
2) · T−1

)
.

Lemma 6. Under Conditions 1-6 and m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), it holds that

‖M̂ −M‖2 = Op

(
max(p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
. (2.23)

Proof. By definitions of M in (2.11) and its sample version M̂ , we have

‖M̂ −M‖2 =

∥∥∥∥ h0∑
h=1

m2∑
i=1

m2∑
j=1

(Ω̂x,ij(h)Ω̂
′
x,ij(h)−Ωx,ij(h)Ω′x,ij(h))

∥∥∥∥
2

≤
h0∑
h=1

m2∑
i=1

m2∑
j=1

(∥∥(Ω̂x,ij(h)−Ωx,ij(h))(Ω̂x,ij(h)−Ωx,ij(h))′
∥∥
2

+ 2
∥∥Ωx,ij(h)

∥∥
2

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥
2

)

=

h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥2
2

+ 2

h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥Ωx,ij(h)
∥∥
2

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥
2
.



57

Now we investigate each item in the above formula.

m2∑
i=1

m2∑
j=1

‖Ωx,ij(h)‖22 =

m2∑
i=1

m2∑
j=1

‖RΩfc,ij(h)R′‖22

≤
m2∑
i=1

m2∑
j=1

‖R‖42 · ‖Ωfc,ij(h)‖22

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E(F tCi·C
′
j·F
′
t+h)

∥∥∥∥2
2

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E
(
vec(F tCi·C

′
j·F
′
t+h)

)∥∥∥∥2
2

=

m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t) · vec(Ci·C ′j·)
∥∥∥∥2
2

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2
2

· ‖vec(Ci·C ′j·)‖22

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2
2

· ‖Ci·C ′j·‖2F

=

m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2
2

· ‖Ci·‖22‖C ′j·‖22

= ‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2
2

·

(
m2∑
i=1

‖Ci·‖22

)2

= Op(p
2−2δ1
1 p2−2δ22 ).

From Lemma 5, we have

m2∑
i=1

m2∑
j=1

‖Ω̂x,ij(h)−Ωx,ij(h)‖22 = Op

(
max(p2−2δ11 p2−2δ22 , m2

1m
2
2) · T−1

)
,

then m2∑
i=1

m2∑
j=1

∥∥Ωx,ij(h)
∥∥
2

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥
2

2

≤
m2∑
i=1

m2∑
j=1

∥∥Ωx,ij(h)
∥∥2
2
·
m2∑
i=1

m2∑
j=1

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥2
2

= Op(p
2−2δ1
1 p2−2δ22 ) ·Op(max(p2−2δ11 p2−2δ22 , m2

1m
2
2) · T−1

= Op(max(p4−4δ11 p4−4δ22 , m2
1p

2−2δ1
1 m2

2p
2−2δ2
2 ) · T−1.
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Thus, from the above results, Lemma 5 and the condition that

m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1),

we have

‖M̂ −M‖2 = Op

(
max(p2−2δ11 p2−2δ22 , m2

1m
2
2) · T−1

)
+Op

(
max(p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2

)
· T−1/2

= Op

(
max(p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
.

Similar to the proof of Lemma 5 in Wang et al. (2017), we have

Lemma 7. Under Condition 3 and Condition 5, we have

λi(M) � p2−2δ11 p2−2δ22 , i = 1, 2, . . . , k1,

where λi(M) denotes the i-th largest singular value of M .

Proof of Theorem 1

Proof. By Lemma 3-7, and Lemma 3 in Lam et al. (2011a), we have

‖Q̂1 −Q1‖2 ≤
8

λmin(M)
‖M̂ −M‖2 = Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))
.

Proof for ‖Q̂2 −Q2‖2 is similar.

Proof of Theorem 2

Proof. The proof is similar to that of Theorem 1 of Lam and Yao (2012). Let λj and qj

be the j-th largest eigenvalue and eigenvector of M , respectively. The corresponding

sample versions are denoted by λ̂j and q̂j for the matrix M̂ . Let Q1 = (q1, . . . , qk1),

B1 = (qk1+1, . . . , qm1
), Q̂1 = (q̂1, . . . , q̂k1) and B̂1 = (q̂k1+1, . . . , q̂m1

).

Eigenvalues λj, j = 1, . . . , k1

For j = 1, . . . , k1, we have

λ̂j − λj = q̂′jM̂q̂j − q′jMqj = I1 + I2 + I3 + I4 + I5,

where

I1 = (q̂j − qj)′(M̂ −M)q̂j , I2 = (q̂j − qj)′M(q̂j − qj), (2.24)

I3 = (q̂j − qj)′Mqj , I4 = q′j(M̂ −M)qj , I5 = q′j(M̂ −M)(q̂j − qj). (2.25)
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We have, from Theorem 1,

‖q̂′j−qj‖2 ≤ ‖Q̂1−Q1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))
, for j = 1, . . . , k1.

And by Lemma 6, ‖M̂ −M‖2 = Op

(
max(p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2

)
· T−1/2.

Also from Lemma 7, we have ‖M‖2 = Op(p
2−2δ1
1 p2−2δ22 ).

Then,

‖I1‖2 = ‖(q̂j − qj)′(M̂ −M)q̂j‖2 ≤ ‖q̂j − qj‖2 · ‖M̂ −M‖2 · ‖q̂j‖2 = Op

(
max(p2−2δ11 p2−2δ22 ,m2

1m
2
2) · T−1

)
‖I2‖2 = ‖(q̂j − qj)′M(q̂j − qj)‖2 ≤ ‖q̂j − qj‖22 · ‖M‖2 = Op

(
max(p2−2δ11 p2−2δ22 ,m2

1m
2
2) · T−1

)
‖I3‖2 = ‖q̂j − qj)′Mqj‖2 ≤ ‖q̂

′
j − qj‖2 · ‖M‖2 · ‖qj‖2 = Op

(
max(p2−2δ11 p2−2δ22 ,m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
‖I4‖2 = ‖q′j(M̂ −M)qj‖2 ≤ ‖qj‖2‖M̂ −M‖2‖qj‖2 = Op

(
max(p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
‖I5‖2 = ‖q′j(M̂ −M)(q̂j − qj)‖2 ≤ ‖qj‖2‖M̂ −M‖2‖q̂′j − qj‖2

= Op

(
max(p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
.

Thus, under the condition that m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), we have

|λ̂j − λj | = Op

(
max(p2−2δ11 p2−2δ22 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
, for j = 1, . . . , k1.

Eigenvalues λj, j = k1 + 1, . . . , p1

Similar to proof of Theorem 1 with Lemma 3 in Lam et al. (2011a), we have

‖B̂1 −B1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))
.

And hence

‖q̂′j − qj‖2 ≤ ‖Q̂1 −Q1‖2 = Op

(
max

(
T−1/2, m1

p
1−δ1
1

m2

p
1−δ2
2

T−1/2
))

, for j = k1 + 1, . . . , p1.

Define M̃ =
∑h0

h=1

∑m2
i=1

∑m2
j=1 Ω̂i,j(h)Ω′i,j(h), then

‖M̃ −M‖ =

∥∥∥∥ h0∑
h=1

m2∑
i=1

m2∑
j=1

(
Ω̂ij(h)Ω′ij(h)−Ωij(h)Ω′ij(h)

)∥∥∥∥
2

≤
h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥∥∥(Ω̂ij(h)−Ωij(h)
)∥∥∥∥

2

∥∥Ω′ij(h)
∥∥
2

= Op(max(p2−2δ11 p2−2δ22 , m1p
1−δ1
1 m2p

1−δ2
2 ) · T−1/2, from Lemma 6.

For j = k1 + 1, . . . , p1, since λj = 0 we have

λ̂j = q̂′jM̂q̂j = K1 +K2 +K3,
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where K1 = q̂′j(M̂ − M̃ − M̃
′

+ M)q̂j , K2 = 2q̂′j(M̃ −M)(q̂j − qj) and K3 =

(q̂j − qj)′M(q̂j − qj).

Then,

‖K1‖2 =

∥∥∥∥q̂′j h0∑
h=1

m2∑
i=1

m2∑
j=1

(
Ω̂ij(h)Ω̂

′
ij(h)− Ω̂ij(h)Ω′ij(h)−Ωij(h)Ω̂

′
ij(h) + Ωij(h)Ω′ij(h)

)
q̂j

∥∥∥∥
2

=

∥∥∥∥q̂′j h0∑
h=1

m2∑
i=1

m2∑
j=1

(
Ω̂ij(h)−Ωij(h)

)(
Ω̂ij(h)−Ωij(h)

)′
q̂j

∥∥∥∥
2

≤
h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥∥∥(Ω̂ij(h)−Ωij(h)
)∥∥∥∥2

2

= Op(max(p2−2δ11 p2−2δ22 , m2
1m

2
2) · T−1)

‖K2‖2 =

∥∥∥∥2q̂′j ·
(
M̃ −M

)
·
(
q̂j − qj

)∥∥∥∥
2

≤ 2

∥∥∥∥M̃ −M
∥∥∥∥
2

· ‖q̂j − qj‖2 = Op

(
max(p2−2δ11 p2−2δ22 ,m2

1m
2
2) · T−1

)
‖K3‖2 =

∥∥∥∥(q̂j − qj)′M(q̂j − qj)
∥∥∥∥
2

≤
∥∥∥∥(q̂j − qj)

∥∥∥∥2
2

‖M‖2 = Op

(
max(p2−2δ11 p2−2δ22 ,m2

1m
2
2) · T−1

)
.

Thus, we have

|λ̂j | = Op

(
max(p2−2δ11 p2−2δ22 ,m2

1m
2
2) · T−1

)
, for j = 1, . . . , k1.

Proof of Theorem 3

Proof. St is the dynamic signal part of Xt, i.e. St = HRQ1ZtQ
′
2H
′
C . And its

estimator is Ŝt = HRQ̂1Q̂
′
1XtQ̂2Q̂

′
2H
′
C . We have

Ŝt − St = HR

(
Q̂1Q̂

′
1XtQ̂2Q̂

′
2 −Q1ZtQ

′
2

)
H ′C = HR

(
Q̂1Q̂

′
1

(
Q1ZtQ

′
2 +Et

)
Q̂2Q̂

′
2 −Q1ZtQ

′
2

)
H ′C

= HR

(
Q̂1Q̂

′
1Q1ZtQ

′
2(Q̂2Q̂

′
2 −Q2Q

′
2) + (Q̂1Q̂

′
1 −Q1Q

′
1)Q1ZtQ

′
2 + Q̂1Q̂

′
1EtQ̂2Q̂

′
2

)
H ′C

= I1 + I2 + I3.

Since HR and HC are orthogonal matrices, we have

‖I1‖22 =
∥∥HRQ̂1Q̂

′
1Q1ZtQ

′
2(Q̂2Q̂

′
2 −Q2Q

′
2)H

′
C

∥∥2
2

≤ ‖Zt‖22
∥∥(Q̂2 −Q2)Q̂

′
2 +Q2(Q̂2 −Q2)

′∥∥2
2

≤ 2‖Zt‖22‖Q̂2 −Q2‖22

Thus by Theorem 1, we have

‖I1‖ = Op

(
p
1/2−δ1/2
1 p

1/2−δ2/2
2

)
·Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))
= Op

(
max

(
p
1/2−δ1/2
1 p

1/2−δ2/2
2 , m1p

−1/2+δ1/2
1 m2p

−1/2+δ2/2
2

)
· T−1/2

)
.
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Similarity, we have

‖I2‖2 =
∥∥(Q̂1Q̂

′
1 −Q1Q

′
1)Q1ZtQ

′
2

∥∥
2
≤ 2‖Zt‖2‖Q̂1 −Q1‖2

= Op

(
max

(
p
1/2−δ1/2
1 p

1/2−δ2/2
2 , m1p

−1/2+δ1/2
1 m2p

−1/2+δ2/2
2

)
· T−1/2

)
,

and

‖I3‖2 =
∥∥Q̂1Q̂

′
1EtQ̂2Q̂

′
2

∥∥
2
≤
∥∥Q̂′1EtQ̂2

∥∥
2
≤ ‖(Q̂

′
2 ⊗ Q̂

′
1)vec(Et)‖2 ≤ k1k2‖Σe‖2 = Op(1).

Thus,

‖Ŝt − St‖2 = Op

(
max

(
p
1/2−δ1/2
1 p

1/2−δ2/2
2 , m1p

−1/2+δ1/2
1 m2p

−1/2+δ2/2
2

)
· T−1/2 + 1

)

Proof of Theorem 4

Proof.

D(Q̂i,Qi) =

(
1− 1

ki
Tr
(
Q̂iQ̂

′
iQiQ

′
i

))−1/2
, for i = 1, 2.

From Liu and Chen (2016a),

D(Q̂i,Qi) = Op

(
‖Q̂i,Qi‖2

)
= Op

(
max

(
T−1/2,

m1

p1−δ11

m2

p1−δ22

T−1/2

))

for i = 1, 2. Since D(Λ̂,Λ) = D(Q̂1,Q1) and D(Γ̂,Γ) = D(Q̂2,Q2), the result follows.

2.7 Appendix

2.7.1 Multinational Macroeconomic Indices Dataset

Table 2.15 lists the short name of each series, its mnemonic (the series label used in the

OECD database), the transformation applied to the series, and a brief data description.

All series are from the OECD Database. In the transformation column, ∆ denote the

first difference, ∆ ln denote the first difference of the logarithm. GP denotes the measure

of growth rate last period.

2.7.2 Tables of Simulation Results
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Short name Mnemonic Tran description

CPI: Food CPGDFD ∆2 ln Consumer Price Index: Food, seasonally adjusted

CPI: Ener CPGREN ∆2 ln Consumer Price Index: Energy, seasonally adjusted

CPI: Tot CPALTT01 ∆2 ln Consumer Price Index: Total, seasonally adjusted

IR: Long IRLT ∆ Interest Rates: Long-term gov bond yields

IR: 3-Mon IR3TIB ∆ Interest Rates: 3-month Interbank rates and yields

P: TIEC PRINTO01 ∆ ln Production: Total industry excl construction

P: TM PRMNTO01 ∆ ln Production: Total manufacturing

GDP LQRSGPOR ∆ ln GDP: Original (Index 2010 = 1.00, seasonally adjusted)

IT: Ex XTEXVA01 ∆ ln International Trade: Total Exports Value (goods)

IT: Im XTIMVA01 ∆ ln International Trade: Total Imports Value (goods)

Table 2.15: Data transformations, and variable definitions

Country ISO ALPHA-3 Code Country ISO ALPHA-3 Code

United States of America USA United Kingdom GBR
Canada CAN Finland FIN
New Zealand NZL Sweden SWE
Australia AUS France FRA
Norway NOR Netherlands NLD
Ireland IRL Austria AUT
Denmark DNK Germany DEU

Table 2.16: Countries and ISO Alpha-3 Codes in Macroeconomic Indices Application

T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2

δ1 δ2 p1 p2 Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q)

0 0

20 20 1.02(0.2) 0.73(0.18) 0.73(0.12) 0.52(0.13) 0.58(0.08) 0.42(0.09) 0.5(0.07) 0.36(0.07)
20 40 0.67(0.1) 0.47(0.11) 0.47(0.06) 0.33(0.07) 0.39(0.05) 0.27(0.06) 0.33(0.04) 0.23(0.05)
40 20 0.71(0.1) 0.41(0.12) 0.5(0.06) 0.28(0.07) 0.41(0.05) 0.24(0.06) 0.35(0.04) 0.2(0.05)
40 40 0.47(0.06) 0.26(0.07) 0.33(0.03) 0.18(0.04) 0.27(0.03) 0.15(0.04) 0.24(0.02) 0.13(0.03)

0.5 0

20 20 5.64(0.5) 1.92(0.74) 4.94(1.17) 1.27(0.34) 3.34(1.56) 0.98(0.22) 2.09(1.11) 0.83(0.18)
20 40 4.86(1.19) 1.12(0.3) 1.95(1) 0.76(0.18) 1.12(0.28) 0.62(0.14) 0.89(0.17) 0.53(0.12)
40 20 5.82(0.26) 1.23(0.44) 5.33(0.87) 0.8(0.22) 3.46(1.6) 0.66(0.18) 1.73(0.81) 0.55(0.14)
40 40 5.37(0.81) 0.73(0.21) 1.56(0.67) 0.49(0.13) 0.96(0.2) 0.4(0.1) 0.77(0.12) 0.36(0.09)

0.5 0.5

20 20 6.81(0.34) 6.08(0.6) 6.46(0.17) 5.54(0.73) 6.32(0.13) 4.84(1.11) 6.24(0.1) 4.34(1.26)
20 40 6.67(0.3) 5.86(0.66) 6.39(0.15) 4.93(1.08) 6.26(0.08) 4.12(1.28) 6.2(0.05) 3.47(1.3)
40 20 6.71(0.28) 5.69(0.61) 6.4(0.13) 4.78(1.23) 6.27(0.07) 3.73(1.43) 6.2(0.05) 2.94(1.4)
40 40 6.62(0.28) 5.15(0.98) 6.32(0.08) 3.74(1.44) 6.23(0.05) 2.7(1.43) 6.17(0.03) 2.05(1.12)

Table 2.17: Orthogonal constraints case. Means and standard deviations (in parenthe-
ses) of the estimation accuracy measured by D(Q̂,Q). Du for the unconstrained model
2.1. Dc for the constrained model 2.2. All numbers in the table are 10 times of the
true numbers for clear presentation. The results are based on 500 iterations.
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T = 0.5 ∗ p1 ∗ p2 T = p1 ∗ p2 T = 1.5 ∗ p1 ∗ p2 T = 2 ∗ p1 ∗ p2
δ1 δ2 δ3 δ4 p1 p2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2

0 0 0 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0.01 1.00 0
20 40 0 1.00 0 0 1.00 0 0.03 1.00 0 0.19 1.00 0
40 20 0.15 0.99 1.00 0.81 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
40 40 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 0 0.5 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0 1.00 0
20 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0
40 20 0 0.99 0.54 0 1.00 0.84 0 1.00 0.97 0 1.00 1.00
40 40 0 1.00 0.98 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00

0 0 0.5 0.5

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0 1.00 0
20 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0
40 20 0 0.99 0 0 1.00 0 0 1.00 0 0 1.00 0
40 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0

0.5 0 0 0

20 20 0 0.21 0 0 0.53 0 0 0.79 0 0 0.92 0
20 40 0 0.67 0 0 0.97 0 0 1.00 0 0 1.00 0
40 20 0 0.34 1.00 0 0.79 1.00 0 0.92 1.00 0 0.95 1.00
40 40 0 0.87 1.00 0 0.97 1.00 0 0.99 1.00 0 0.99 1.00

0.5 0 0.5 0

20 20 0 0.21 0 0 0.53 0 0 0.79 0 0 0.92 0
20 40 0 0.67 0 0 0.97 0 0 1.00 0 0 1.00 0
40 20 0 0.34 0.54 0 0.79 0.84 0 0.92 0.97 0 0.95 1.00
40 40 0 0.87 0.98 0 0.97 1.00 0 0.99 1.00 0 0.99 1.00

0.5 0 0.5 0.5

20 20 0 0.21 0 0 0.53 0 0 0.79 0 0 0.92 0
20 40 0 0.67 0 0 0.97 0 0 1.00 0 0 1.00 0
40 20 0 0.34 0 0 0.79 0 0 0.92 0 0 0.95 0
40 40 0 0.87 0 0 0.97 0 0 0.99 0 0 0.99 0

0.5 0.5 0 0

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0
20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0
40 20 0 0.06 1.00 0 0.01 1.00 0 0 1.00 0 0 1.00
40 40 0 0.06 1.00 0 0 1.00 0 0 1.00 0 0.03 1.00

0.5 0.5 0.5 0

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0
20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0
40 20 0 0.06 0.54 0 0.01 0.84 0 0 0.97 0 0 1.00
40 40 0 0.06 0.98 0 0 1.00 0 0 1.00 0 0.03 1.00

0.5 0.5 0.5 0.5

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0
20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0
40 20 0 0.06 0 0 0.01 0 0 0 0 0 0 0
40 40 0 0.06 0 0 0 0 0 0 0 0 0.03 0

Table 2.18: Relative frequency of correctly estimating k1
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T = 0.5 ∗ p1 ∗ p2 T = p1 ∗ p2 T = 1.5 ∗ p1 ∗ p2 T = 2 ∗ p1 ∗ p2
δ1 δ2 δ3 δ4 p1 p2 Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q)

0 0 0 0

20 20 1.56(0.87) 0.57(0.1) 0.71(0.16) 0.41(0.06) 0.54(0.09) 0.33(0.04) 0.45(0.07) 0.28(0.04)
20 40 0.71(0.33) 0.38(0.05) 0.4(0.06) 0.27(0.03) 0.32(0.04) 0.22(0.03) 0.27(0.03) 0.19(0.02)
40 20 0.52(0.07) 0.33(0.05) 0.36(0.04) 0.24(0.03) 0.29(0.03) 0.19(0.03) 0.25(0.02) 0.17(0.02)
40 40 0.32(0.04) 0.2(0.04) 0.22(0.02) 0.14(0.02) 0.18(0.02) 0.12(0.02) 0.15(0.01) 0.1(0.02)

0 0 0.5 0

20 20 3.68(0.04) 0.88(0.13) 3.61(0.02) 0.63(0.08) 3.59(0.02) 0.51(0.07) 3.57(0.02) 0.44(0.06)
20 40 3.61(0.02) 0.61(0.06) 3.57(0.01) 0.43(0.04) 3.56(0.01) 0.35(0.03) 3.55(0.02) 0.3(0.03)
40 20 3.65(0.04) 0.57(0.05) 3.58(0.05) 0.42(0.03) 3.43(0.36) 0.35(0.02) 2.78(0.94) 0.3(0.02)
40 40 3.36(0.51) 0.33(0.03) 0.59(0.36) 0.24(0.02) 0.35(0.06) 0.2(0.02) 0.28(0.03) 0.17(0.01)

0 0 0.5 0.5

20 20 5.99(0.36) 1.88(0.51) 5.73(0.38) 1.32(0.29) 5.49(0.45) 1.06(0.19) 5.24(0.49) 0.92(0.17)
20 40 6.67(0.32) 1.42(0.3) 6.42(0.35) 1.02(0.15) 6.24(0.34) 0.83(0.11) 6.06(0.33) 0.72(0.09)
40 20 6.37(0.29) 1.06(0.09) 6.09(0.28) 0.8(0.06) 5.89(0.31) 0.67(0.04) 5.77(0.29) 0.59(0.04)
40 40 6.37(0.3) 0.67(0.04) 5.95(0.29) 0.5(0.03) 5.62(0.34) 0.42(0.02) 5.26(0.46) 0.37(0.02)

0.5 0 0 0

20 20 3.72(0.19) 1.22(0.38) 3.61(0.21) 0.8(0.17) 3.55(0.21) 0.63(0.13) 3.47(0.32) 0.55(0.11)
20 40 3.61(0.17) 0.73(0.17) 3.45(0.33) 0.49(0.1) 3.2(0.59) 0.4(0.08) 2.66(0.9) 0.35(0.06)
40 20 3.73(0.09) 0.78(0.27) 3.64(0.06) 0.52(0.13) 3.59(0.07) 0.41(0.11) 3.56(0.09) 0.36(0.08)
40 40 3.65(0.05) 0.46(0.13) 3.57(0.07) 0.31(0.07) 3.49(0.21) 0.26(0.06) 3.29(0.48) 0.22(0.05)

0.5 0 0.5 0

20 20 3.81(0.07) 1.4(0.34) 3.69(0.04) 0.94(0.16) 3.63(0.03) 0.75(0.12) 3.6(0.04) 0.64(0.11)
20 40 3.67(0.03) 0.87(0.15) 3.6(0.01) 0.6(0.08) 3.57(0.02) 0.49(0.07) 3.54(0.08) 0.42(0.06)
40 20 3.66(0.09) 0.91(0.24) 3.56(0.13) 0.63(0.11) 3.19(0.58) 0.5(0.09) 2.14(0.92) 0.44(0.07)
40 40 3.53(0.18) 0.54(0.11) 2.3(1.01) 0.37(0.06) 0.82(0.34) 0.31(0.06) 0.57(0.11) 0.26(0.05)

0.5 0 0.5 0.5

20 20 4.91(0.48) 2.19(0.51) 4.5(0.48) 1.5(0.28) 4.22(0.4) 1.2(0.18) 3.99(0.27) 1.04(0.17)
20 40 5.69(0.25) 1.56(0.3) 5.45(0.24) 1.11(0.14) 5.23(0.35) 0.9(0.11) 4.85(0.54) 0.78(0.09)
40 20 5.32(0.29) 1.29(0.2) 5.21(0.28) 0.93(0.09) 4.99(0.44) 0.77(0.07) 4.67(0.56) 0.68(0.06)
40 40 5.3(0.15) 0.79(0.09) 4.8(0.55) 0.58(0.05) 3.81(0.33) 0.49(0.04) 3.63(0.03) 0.43(0.03)

0.5 0.5 0 0

20 20 5.13(0.47) 3.76(0.4) 5.05(0.46) 3.36(0.5) 4.88(0.44) 2.97(0.68) 4.73(0.38) 2.59(0.76)
20 40 5.44(0.46) 3.63(0.39) 5.2(0.48) 3.05(0.65) 5.01(0.45) 2.57(0.78) 4.86(0.44) 2.1(0.8)
40 20 5.17(0.4) 3.49(0.39) 4.91(0.33) 2.93(0.77) 4.75(0.33) 2.26(0.93) 4.64(0.3) 1.82(0.89)
40 40 5.46(0.41) 3.19(0.6) 5.17(0.36) 2.31(0.92) 4.91(0.31) 1.66(0.89) 4.75(0.29) 1.28(0.77)

0.5 0.5 0.5 0

20 20 4.59(0.31) 3.82(0.4) 4.33(0.27) 3.39(0.5) 4.15(0.21) 3(0.67) 4.05(0.16) 2.62(0.75)
20 40 4.54(0.34) 3.66(0.39) 4.24(0.25) 3.06(0.64) 4.07(0.18) 2.59(0.78) 3.99(0.15) 2.11(0.79)
40 20 4.3(0.23) 3.52(0.39) 4.05(0.11) 2.95(0.76) 3.94(0.06) 2.29(0.92) 3.88(0.05) 1.84(0.88)
40 40 4.3(0.21) 3.2(0.59) 4.03(0.1) 2.32(0.92) 3.92(0.05) 1.67(0.88) 3.87(0.04) 1.29(0.77)

0.5 0.5 0.5 0.5

20 20 5.05(0.28) 4.17(0.43) 4.57(0.22) 3.59(0.48) 4.33(0.17) 3.15(0.63) 4.19(0.13) 2.75(0.72)
20 40 4.87(0.29) 3.88(0.39) 4.42(0.18) 3.2(0.61) 4.22(0.13) 2.71(0.74) 4.1(0.1) 2.22(0.75)
40 20 4.61(0.19) 3.63(0.37) 4.23(0.11) 3.03(0.73) 4.07(0.06) 2.37(0.88) 3.98(0.06) 1.93(0.85)
40 40 4.25(0.13) 3.25(0.58) 4.01(0.05) 2.37(0.9) 3.91(0.03) 1.72(0.86) 3.86(0.02) 1.34(0.75)

Table 2.19: Means and standard deviations (in parentheses) of the estimation accuracy
measured by D(Q̂,Q). For ease of presentation, all numbers in this table are the true
numbers multiplied by 10.
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2.7.3 Corporate Financial Data Information

Short Name Variable Name Calculation

Profit.M Profit Margin Net Income / Revenue
Oper.M Operating Margin Operating Income / Revenue
EPS Diluted Earing per share from report
Gross.Margin Gross Margin Gross Proitt / Revenue
ROE Return on equity Net Income / Shareholders Equity
ROA Return on assets Net Income / Total Assets
Revenue.PS Revenue Per Share Revenue / Shares Outstanding
LiabilityE.R Liability/Equity Ratio Total Liabilities / Shareholders Equity
AssetE.R Asset/Equity Ratio Total Assets / Shareholders Equity
Earnings.R Basic Earnings Power Ratio EBIT / Total Assets
Payout.R Payout Ratio Dividend Per Share / EPS Basic
Cash.PS Cash Per Share Cash and other / Shares Outstanding
Revenue.G.Q Revenue Growth over last Quarter Revenue / Revenue Last Quarter - 1
Revenue.G.Y Revenue Growth over same Quarter Last Year Revenue / Revenue Last Year - 1
Profit.G.Q Profit Growth over last Quarter Profit / Profit Last Quarter - 1
Profit.G.Y Profit Growth over same Quarter last Year Profit / Profit Last Quarter - 1

Table 2.20: Variables in coporate financial data
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Chapter 3

Modeling Dynamic Traffic Network with Matrix Factor

Models: with Application to International Trade Volume

Time Series

Dynamic network analysis has found an increasing interest in the literature because

of the importance of different kinds of dynamic social networks, biological networks

and economic networks. Most available probability and statistical models for dynamic

network data are deduced from random graph theory where the networks are charac-

terized on the node and edge level. They are often very restrictive for applications and

unscalable to high-dimensional dynamic network data which is very common nowadays.

In this paper, we take a different perspective: the evolving sequence of networks are

treated as a time series of network matrices. We adopt a matrix factor model where

the observed surface dynamic network is assumed to be driven by a latent dynamic

network with lower dimensions. The linear relationship between the surface network

and the latent network is characterized by unknown but deterministic loading matrices.

The latent network and the corresponding loadings are estimated via an eigenanalysis

of a positive definite matrix constructed from the auto-cross-covariances of the network

times series, thus capturing the dynamics presenting in the network. The proposed

method is able to unveil the latent dynamic structure and achieve the objective of

dimension reduction. Different from other dynamic network analytical methods that

build on latent variables, our approach does impose any distributional assumptions on

the underlying network or any parametric forms of its covariance function. The latent

network is learned directly from the data with little subjective input. The estimated

low-dimensional latent network as well as the loading matrix can be used as inputs of

a second stage analysis. We applied the proposed method to the monthly international
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trade flow data from 1982 to 2015. The results unveil an interesting evolution of the

latent trading network and the relations between the latent entities and the countries.

The remaining part of this chapter is organized as follows. In Section 3.1, we intro-

duce the dataset of international trade flow and present some exploratory data analysis

results. In Section 3.2, we introduce two factor models for network time series data and

discuss their interpretations. In Section 3.3, we present an estimation procedure and

the theoretical properties on the estimators. In Section 3.4, we study and compare the

finite sample properties of the two proposed models on synthetic datasets. In Section

3.5, we apply the proposed factor models to the international trade flow time series

from 1981 to 2015.

3.1 International Trade Data and Exploratory Analysis

3.1.1 International Trade Volume Time Series

In the following dynamic network analysis, we make use of data for multilateral im-

ports and exports of commodity goods among 23 countries over the 1982 – 2015 period.

Our trade data come from the International Monetary Fund (IMF) Direction of Trade

Statistics (DOTS) (IMF (2017)), which provides monthly data on the country and area

distribution of countries’ exports and imports by their partners. The source has been

widely used in international trade analysis such as the Bloomberg Trade Flow. Even

though IMF-DOTS provides data from 1948-01 to present for 236 countries, the quality

of data vary across time and countries. Some countries failed to report their volumes

of trade in some or all years. The problem is that these missing cases are concentrated

in small and underdeveloped countries or come from Communist countries. In this

study, we restrict the sample to 23 countries from three major trading groups, namely

NAFTA, EU and APEC, over a 408-month period from 1982-01 to 2015-12. The coun-

tries in alphabetic order are Australia, Canada, China Mainland, Denmark, Finland,

France, Germany, Hong Kong, Indonesia, Ireland, Italy, Japan, Korea, Malaysia, Mex-

ico, Netherlands, New Zealand, Singapore, Spain, Sweden, Thailand, United Kingdom,

United States.
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We use the import CIF data of all goods denominated in U.S. dollars since it is

generally believed that they are more accurate than export ones (Durand (1953); Lin-

nemann (1966)). This is especially true when we are interested in tracing countries of

production and consumption rather than countries of consignment or of purchase and

sale (Linnemann (1966)). The figures for exports are determined by imputing them

from imports. For example, Canada’s exports to France are given as country France

imports from Canada. This calculation is done to make world total imports and exports

equal. As Linnemann (1966) notes, in order to reduce the effect of incidental trans-

actions of unusual size and of incidental difficulties in trade contract, trade flows were

measured as three-month averages, rather than as direct observations of a particular

month. For example, the trade flows in 2014-03 are the averages of those in 2014-02,

2014-03, and 2014-04.

3.1.2 Exploratory Analysis

The dynamic trading network can be cast into a time series of adjacency matrix that

record the ties (trading volumes) between the nodes (countries) in the network. The

length of our network matrix time series is 408 months. At each time, the observation

is a square matrix whose rows and columns represent the same set of 23 countries.

Each row (column) corresponds to an export (import) country. Each cell in the matrix

contains the dollar trading volume that the exporting country exports to the importing

country.

Figure 3.1 plots the time series of dollar trading volumes among top 13 countries

in GDP in our dataset. These 13 countries are representative of all countries in our

dataset. They falls into three major groups: Canada, Mexican, and United States

compose the NAFTA group; France, Germany, Italy, Spain, and United Kingdom are

in the EU group; Australia, China, Indian, Japan and Korea belong to the APEC

group. Overall, all countries spent most of the years enjoying rapid growth as an

accelerating wave of globalisation. The world saw largest collapse in the value of good

traded at 2009 when the impact of the global financial crisis was at its worst. While

the upward trends are shared among all countries, the pattern of trading are more alike
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among countries within the same group. For example, the exports time series of the

five European countries resembles more to each other than to the exports time series

of the Asian countries.
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Figure 3.1: Time series plots of the value of good traded among 13 countries over 1982
– 2015. The plots only show the patterns of the time series while the amplitudes are
not comparable between plots because the range of the y-axis are not the same.

In order to illustrate the pattern of bilateral relationships, a set of four circular trad-

ing plots are shown in Figure 3.2. The direction of flow is indicated by the arrowhead.

The size of the flow is determined by the width of the arrow at its base. Numbers on

the outer section axis, used to read the size of trading flows, are in billions. Each plot

is based on the monthly flows over 1-year period, aggregated to selected annual levels.
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Note that the four plots are representative of the bilateral relationship patterns in the

1980’s, 1990’s, 2000’s and 2010’s although the plots are based on selected years.
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Figure 3.2: Circular trading plots that are representative of the bilateral relationship
patterns in the 1980’s, 1990’s, 2000’s and 2010’s. The arrowhead indicates the direction
of exports. The width of the arrow at its base represents the size of trade flow. Numbers
on the outer section axis correspond to the size of trading flows in billion dollars.

For the three groups, most of the trade flows occur within the same group. This

phenomenon is most prominent within the EU group where the imports and exports

are all in red shade that denotes EU countries in Figure 3.2. The trade flows of NAFTA

countries are least confined within the group, mainly because the U.S. alone trades a

lot with both EU and APEC countries.
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For individual countries, most noticeable are changes in the share and direction

of trade of U.S., China, Mexico and Japan. Over years, U.S. maintains the most

distinctive one among all countries because of its large size of trading volumes and wide

range of trading counter-parties. The destinations of U.S. exports gradually shift from

Japan and European countries to China and Mexico. In 1980’s Japan accounted for

the largest importing and exporting flow among APEC countries. As shown clearly

in Figure 3.2, China’s slice of pie in global trades grew steadily in size and becomes

the largest in the 2010’s. Mexico experienced a similar steady growth in global trades

although less prominent than that of China. The trading patterns are most stable of

the EU countries. The 20 EU countries almost keep the same portions in the size of

imports and exports over years.

Based on explanatory statistical analysis and visualization tools, the aforementioned

observations are mostly descriptive. Although it is clear that there exist possible lower

dimensional latent networks underlying the large scale dynamic networks on the sur-

face, there is few statistical tools available to quantify this latent structure. The new

methodology that we proposed in the following section is able to quantify the latent

dynamic networks that underpins the observed surface dynamic networks as well as the

relationship that connect the latent networks and the surface networks. The propose

methods are able to effectively reduce the dimension of the dynamic networks and un-

cover its core structure. The estimated latent dynamic networks and its relation with

the surface networks can be used for testing and predicting the networks.

3.2 Matrix Factor Models for Dynamic Traffic Network

In this section, we propose a new methodology for investigating the evolving structure

of dynamic networks. Here we focuses on the traffic flows in the dynamic network

such as international import-export trade network, air-passenger volume between cities,

and the number of directional interactions among people. The networks in our current

considerations are typically dense. We refer to such dynamic network as dynamic traffic

network. In the proposed framework, the bilateral relationships in the network at time

t is recored in a relational matrix Xt whose rows and columns corresponds to the same
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set of actors in the network. The elements of Xt record information of the ties between

each pair of the actors. The dynamic features of the networks are characterized by the

temporal dependences between consequential observations Xt−1 and Xt. The entire

dynamic networks is modeled as a sequences of temporally dependent matrix-variates

{Xt}1:T . An important attribute of this modeling framework is that it capture both the

network structure and the temporal dynamics of the dynamic networks at a high level

without any distributional assumption, comparing to the most common node-and-edge

level modeling.

To formalize the methods, let Xt represent the n by n relational matrix of observed

pairwise asymmetrical relationships at time t, t = 1, . . . , T . A general entry of Xt,

denoted as xij,t, represents the directed relationship of actor i to actor j. For example,

in international trade context xij,t expresses the volume of trade flow from country i to

country j at time t; in the transportation context xij,t represents the fare or length of

a trip from location i to location j starting at time t.

Our model for dynamic traffic network can be written as:

Xt = AF tA
′ +Et, (3.1)

where A is an n× r (vertical) matrix of ”loadings” of the n actors on a relatively few r

(< n) components or types of actors. F t is a small, usually asymmetric, r by r matrix

giving the directional relationships among the basic r types, and Et is simply a matrix

of error terms. Loading matrix A relates the observed actors to the latent types and

F t describes the interrelations among the latent types.

The general method of interpreting model (3.1) can be demonstrated by referring to

the example of international trade. For discussion, let’s consider a 4-dimension solution

(r = 4). The model (3.1) would describe four basic factors underlying the pattern of

international trade behavior for a given set of countries. These latent factors might be

thought of as four idealized “types” of countries, types which each real country resembles

to various degrees. The factors would be named by examining the loading matrix A to

see which individual countries have high loadings on each factor. For example, if the

individuals involved were members of major petroleum production countries, a label of
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“fuel-exporting type” might be assigned to the factor on which petroleum production

countries had high loadings. Other factors such as “agriculture type”, “high-tech type”

and “industrial type” might emerge from the analysis. Countries do not necessarily

belong exclusively to a given “type”. They can have moderate loadings on any given

factor and high loadings on more than one factor. The factor matrix F t does not relate

to specific countries, but instead provides a general statement of the patterns of trading

among the four types of countries. Each element of the F t matrix would describe how

much a given type of country generally tends to trade with another type or the same

type if the diagonal element is considered. For example, Fij,t denotes the amount that

“agriculture type” generally tend to export to “high-tech type”, and Fji,t gives the

reverse relation.

An interesting feature of the above model is that, while F t is allowed to be asym-

metric, the left and right loading matrices A are still required to be identical. This

provides a description of data in terms of asymmetric relations among a single set of

types rather than envisioning a different set of types. For example, in our international

trade example model (3.1) implies that the countries have the same set of types in their

”exporting” role as they have in their ”importing” role. A second possible approach,

where the left loading matrix may be different from the right one, can be written as:

Xt = A1F tA
′
2 +Et, (3.2)

where A1 and A2 are the n × r (vertical) loading matrices of the n row actors and n

column actors on r (< n) types of actors, respectively. Matrices F t and Et are defined

the same as in those in (3.1). This formulation is the matrix factor model considered

in Wang et al. (2017).

Model (3.1) describes asymmetric relationships among actors in terms of asymmetric

relationships among a single set of underlying types of the actors. Model (3.2) is a

more general model where there are two sets of underlying types, and the directional

relationships are hypothesized to hold from types of one kind to types of the other kind.

In the international trade example, model (3.1) would identify a single set of types of

countries given in the loading matrix A, and provide matrices F t that describe how
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much each type of country tend to trade with each of the other types. In contrast, model

(3.2) provides two sets of underlying types: A1 relates to the types of the actors in their

row position and A2 relates to the types of the actors in their column position. The F t

then gives the directed relationships from the row types to the column types. In the

international trade example, A1 describes the amount of export-related types possessed

by countries and A2 describes the amount of the import-related types possessed by

countries. And F t represents the amount that export-related type generally prompts a

country to export to a particular import-related type.

When A1 and A2 are not linear transformation of one another, it can easily be

shown that there generally exists no solution of the form given in (3.1) for data gen-

erated by (3.2) unless one goes to a higher dimensionality. Consequently, model (3.1)

makes a strong claim about a given data set. When the rows and the columns of a

given directional relationship matrix can be demonstrated to span the same space, this

agreement is a fact unlikely to arise by chance and probably demonstrates the validity

of (3.1). With data containing noise, the row and column spaces will probably not

match exactly, but a close agreement might still be interpreted as surprising the inter-

esting. However, we will not discuss statistical tests of the fit of these two models in

this article, but will demonstrate comparisons of the two models applied to a given set

of real data in Section 3.5.

3.3 Estimation Procedure

Similar to all factor models, the latent factors in the proposed model (3.1) for asymmet-

ric directional matrix time series can be linearly transformed into alternative factors

with no loss of fit to the data. In general, if H is any nonsingular r× r transformation

matrix, we can define an alternative A matrix,
∗
A, by letting

∗
A= AH and defining the

associated F t matrix
∗
F t= H−1F tH

′−1. We may assume that the columns of A are

orthonormal, that is, A′A = Ir, where Ir denotes the identity matrix of dimension r.

Even with these constraints, A and F t are not uniquely determined in (3.1), as afore-

mentioned linear transformation is still valid for any orthonormal H. However, the

column space of the loading matrix A is uniquely determined. Hence, in what follows,
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we will focus on the estimation of the column space of A. We denote the factor loading

spaces byM(A). For simplicity, we will depress the matrix column space notation and

use the matrix notation directly.

To facilitate the estimation, we use the QR decomposition A = QW to normalize

the loading matrices, so that model (3.1) can be re-expressed as

Xt = AF tA
′ +Et = QZtQ

′ +Et, t = 1, 2, . . . , T, (3.3)

where Zt = WF tW
′ and Q′Q = Ir.

Consider column vectors in (3.3), we write

Xt,·j = AF tAj· + Et,·j = QZtQj· + Et,·j , j = 1, 2, . . . , n, t = 1, 2, . . . , T. (3.4)

We assume that both F t and Et are zero mean and thus E(Xt,·j) = 0. Let h be a

positive integer. For i, j = 1, 2, . . . , n, define

Ωzq,ij(h) =
1

T − h

T−h∑
t=1

Cov(ZtQi·,Zt+hQj·) (3.5)

Ωx,ij(h) =
1

T − h

T−h∑
t=1

Cov(Xt,·i, Xt+h,·j), (3.6)

which can be interpreted as the auto-cross-covariance matrices at lag h between column

i and column j of {ZtQ
′}t=1,··· ,T and {Xt}t=1,··· ,T , respectively.

For h ≥ 1, it follows from (3.4), (3.5) and (3.6) that

Ωx,ij(h) = QΩzq,ij(h)Q′. (3.7)

For a fixed h0 ≥ 1 satisfying Condition 2 in Wang et al. (2017) define

M col =

h0∑
h=1

n∑
i=1

n∑
j=1

Ωx,ij(h)Ωx,ij(h)′ = Q


h0∑
h=1

n∑
i=1

n∑
j=1

Ωzq,ij(h)Ωzq,ij(h)′

Q′. (3.8)

Similar to the column vector version, we define M matrix for the row vectors of

Xt’s as following

M row =

h0∑
h=1

n∑
i=1

n∑
j=1

Ωx′,ij(h)Ωx′,ij(h)′ = Q


h0∑
h=1

n∑
i=1

n∑
j=1

Ωz′q,ij(h)Ωz′q,ij(h)′

Q′,
(3.9)
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where

Ωz′q,ij(h) = 1
T−h

∑T−h
t=1 Cov(Z ′tQi·,Z

′
t+hQj·) and Ωx′,ij(h) = 1

T−h
∑T−h

t=1 Cov(Xt,i·, Xt,j·).

Finally, we define M = M col +M row, that is

M =

h0∑
h=1

n∑
i=1

n∑
j=1

(
Ωx,ij(h)Ωx,ij(h)′ + Ωx′,ij(h)Ωx′,ij(h)′

)

= Q


h0∑
h=1

n∑
i=1

n∑
j=1

(
Ωzq,ij(h)Ωzq,ij(h)′ + Ωz′q,ij(h)Ωz′q,ij(h)′

)Q′. (3.10)

Obviously M is a n×n non-negative definite matrix. Applying the spectral decom-

position to the positive definite matrix sandwiched by Q and Q′ on the right side of

(3.10), we have

M = Q


h0∑
h=1

n∑
i=1

n∑
j=1

(
Ωzq,ij(h)Ωzq,ij(h)′ + Ωz′q,ij(h)Ωz′q,ij(h)′

)Q′ = QUDU′Q′,

where U is a r×r orthogonal matrix and D is a diagonal matrix with diagonal elements

in descending order. As U′Q′QU = Ir, the columns of QU are the eigenvectors of M

corresponding to its r non-zero eigenvalues. Thus the eigenspace of M is the same as

M(QU) which is the same as M(Q). Under certain regularity conditions, the matrix

M has rank r. Hence, the columns of the factor loading matrix Q can be estimated

by the r orthogonal eigenvectors of the matrix M corresponding to its r non-zero

eigenvalues and the columns are arranged such that the corresponding eigenvalues are

in the descending order.

Now we define the sample versions of these quantities and introduce the estimation

procedure. Suppose we have centered the observations {Xt}t=1,...,T , then for h ≥ 1 and

a prescribed positive integer h0, let

M̂ =

h0∑
h=1

n∑
i=1

n∑
j=1

(
Ω̂x,ij(h)Ω̂x,ij(h)′ + Ω̂x′,ij(h)Ω̂x′,ij(h)′

)
, (3.11)

where Ω̂x,ij(h) = 1
T−h

∑T−h
t=1 Xt,·iX

′
t+h,·j and Ω̂x′,ij(h) = 1

T−h
∑T−h

t=1 Xt,i·X
′
t+h,j·.

A natural estimator for the Q specified above is defined as Q̂ = {q̂, · · · , q̂r}, where

q̂i is the eigenvector of M̂ corresponding to its i-th largest eigenvalue. Consequently,
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we estimate the factors and residuals respectively by

Ẑt = Q̂
′
XtQ̂, and Êt = Xt−Q̂ẐtQ̂

′
= (In−Q̂Q̂

′
)Xt+Q̂Q̂

′
Xt(In−Q̂Q̂

′
). (3.12)

The above estimation procedure assumes the number of row factors r is known.

To determine r we could use: (a) the eigenvalue ratio-based estimator in Lam et al.

(2012); (b) the Scree plot which is standard in principal component analysis. Let

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂r ≥ 0 be the ordered eigenvalues of M̂ . The ratio-based estimator

for r is defined as

r̂ = arg min
1≤j≤rmax

λ̂j+1

λ̂j
, (3.13)

where r ≤ rmax ≤ n is an integer. In practice we may take rmax = n/2 or rmax = n/3.

3.4 Simulation

In this section, we use simulation to study the performance of the estimationn methods

in Section 3.3. In the simulations, the observed data Xtt=1:T are generated according

to model (3.1),

Xt = AF tA
′ +Et, t = 1, 2, . . . , T.

We choose the dimensions of the latent network F t to be r = 3. The entries of F t follow

r2 independent AR(1) processes with Gaussian while noise N (0, 1) innocations. Specifi-

cally, vec(F t) = ΦF vec(F t−1)+εt with ΦF = diag(0.86, 0.93, 0.81, 0.73, 0.62, 0.61, 0.53,

0.75, 0.78). The entries of A are independently sampled from uniform distribution

U(−p−δ/2, p−δ/2) and the factor strength is controlled by parameter δ. The distur-

bance Et is a white noise process with mean zero and a Kronecker product covariance

structure, that is, Cov(vec(Et)) = Γ2 ⊗ Γ1, where Γ1 and Γ2 are both of sized p × p.

Both Γ1 and Γ2 have values 1 on the diagonal and 0.2 on the off-diagonal entries.

We first study the performance of our proposed approach on estimating the loading

spaces. Table 3.1 shows the results for estimating the loading spaces M(A). The

accuracies are measured by the space distance using the correct dimension of the latent

network, that is r = 3. Estimators ÂR, ÂC and ÂRnC are estimated from M row, M col

and M , respectively. The results show that with stronger signals and more data sample



78

points, the estimation accuracy increases. Moreover, estimator from the combination

of row and column information M is the best among three in the sense that it is the

closest to the truth.

T = 0.5n2 T = n2 T = 1.5n2 T = 2n2

δ n D(ÂR, A) D(ÂC , A) D(ÂRnC , A) D(ÂR, A) D(ÂC , A) D(ÂRnC , A) D(ÂR, A) D(ÂC , A) D(ÂRnC , A) D(ÂR, A) D(ÂC , A) D(ÂRnC , A)

0 20 0.27(0.05) 0.46(0.14) 0.21(0.04) 0.17(0.03) 0.21(0.04) 0.12(0.02) 0.08(0.01) 0.12(0.02) 0.06(0.01) 0.11(0.02) 0.14(0.02) 0.08(0.01)
0 40 0.08(0.01) 0.10(0.01) 0.06(0.01) 0.06(0.01) 0.07(0.01) 0.04(0.01) 0.04(0.00) 0.05(0.01) 0.03(0.00) 0.04(0.00) 0.05(0.01) 0.03(0.00)
0 60 0.03(0.00) 0.05(0.01) 0.03(0.00) 0.03(0.00) 0.04(0.00) 0.02(0.00) 0.02(0.00) 0.03(0.00) 0.02(0.00) 0.02(0.00) 0.03(0.00) 0.02(0.00)

0.5 20 5.54(0.08) 5.76(0.05) 5.61(0.07) 5.08(0.27) 5.60(0.07) 4.81(1.03) 1.30(0.51) 4.98(0.21) 1.24(0.55) 2.39(0.38) 3.49(0.22) 2.43(0.29)
0.5 40 5.70(0.07) 5.65(0.07) 5.59(0.04) 5.54(0.11) 5.13(0.08) 5.50(0.15) 4.18(0.93) 5.66(0.09) 4.22(0.6) 5.70(0.16) 5.76(0.03) 5.75(0.02)
0.5 60 5.69(0.06) 5.49(0.03) 5.71(0.02) 2.79(0.61) 5.6(0.02) 2.50(0.91) 5.11(0.17) 5.59(0.02) 5.19(0.1) 4.71(0.66) 5.08(0.05) 4.88(0.22)

Table 3.1: Means and standard deviations (in parentheses) of the estimation accuracy
measured by D(Â, A). For ease of presentation, all numbers in this table are the true
numbers multiplied by 10. The results are average of 200 simulations.

Now we present the performance of our proposed approach on estimating the di-

mension of the latent network r = 3. In table 3.2, fR, fC , and fRnC represents the

frequency of correctly estimating the dimension using M row, M col and M , respec-

tively. Again, the results show that with stronger signals and more data sample points,

the estimation accuracy increases. Moreover, estimator from the combination of row

and column information M is the best among three in the sense that it has the highest

frequency of correctly estimating the number of latent dimensions.

T = 0.5n2 T = n2 T = 1.5n2 T = 2n2

δ n fR fC fRnC fR fC fRnC fR fC fRnC fR fC fRnC
0 20 0.975 0.3 0.965 0.99 0.72 1 1 1 1 1 1 1
0 40 1 1 1 1 1 1 1 1 1 1 1 1
0 60 1 1 1 1 1 1 1 1 1 1 1 1

0.5 20 0.72 0.085 0.805 0.345 0.3 0 0 0 0 0.005 0.005 0.21
0.5 40 0 0 0.06 0 0 0 0 0 0 0 0 0
0.5 60 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.2: Relative frequencies of correctly estimating the dimension of the latent
network. The results are based on 200 simulations.

3.5 Application to International Trade Volume Time Series

By examining the network of international trade, we will show in the following text

that we can analyze how countries compare to each other in terms of trade volumes

and patterns and how these volumes and patterns evolve as economical cycles and

political events unfold. We want to emphasize that our analysis does not draw on
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aggregate country statistics such as GNP, production statistics or any other national

attributes.

3.5.1 Five-Year Rolling Estimation

To allow for structural changes over time, we break the 408-month period into 30 rolling

5-year periods: 1982 through 1986, 1983 through 1987 and so forth. For each 5-year

period, we assume that the loadings are constant and estimate the loading matrix A

under model (3.1) and A1 and A2 under model (3.2). Fixing the number of factors

r, for each of the 30 periods, we estimate 3 loading matrices A, A1 and A2, whose

dimensions are 24×r. We index these matrices by the mid-year of the five-year periods.

For example, A for period 1982–1986 is indexed with year 1984, A for period 1983–1987

is indexed with year 1985 and so forth.

As noted in Section 3.3, we can only identify the column spaces of the loading

matrices because of the rotational indeterminacy. Let A be a matrix whose columns

constitute a set of basis of the loading space, then the totality of matrices that represent

the column spaces of the loading matrices is {AH |H is any nonsingular r×r matrix}.

Which H we select can depend on which perspective we wish to take toward the in-

terpretation of A and F t. Although in general we might like to seek some kind of

approximate simple structure for the columns of A, this can be done in different ways,

corresponding roughly to different orthogonal or oblique rotation criteria in factor anal-

ysis.

In the analyses presented in this article, we will adopt as standard a procedure which

applies Varimax to the columns of A after they have been scaled to have equal sums

of squares; this keeps the columns of A mutually orthogonal. We further standardize

the columns of A so that they sum to one. This is feasible because we are dealing

with data which contain all positive values, and our columns of A will contain mostly

positive entries with only few negative ones. At this moment, we interpret negative

entries in A as that an actor load less on a latent type. We note that non-negative

matrix decomposition can be employed further to make A with all positive entries.

When the columns of A are standardized to have sums equal to one, the factor
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1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Ratio 2 4 1 1 1 1 5 1 2 2 2 2 2 2 2
Scree 2 3 4 4 4 5 5 5 4 3 3 3 3 2 2

r = 4 97 94 91 89 85 83 83 84 88 91 90 91 93 94 94

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Ratio 2 2 2 2 2 2 2 2 6 5 2 2 2 2 2
Scree 3 4 3 4 3 3 3 4 4 4 4 4 3 3 4

r = 4 90 89 91 91 91 91 90 88 86 86 88 90 92 92 88

Table 3.3: Comparison of estimated latent dimension of F t in model (3.1) between
ratio-based and scree plot methods. Scree plot method chooses the minimal dimension
that account for at least 85% variance of the original data. The last line presents the
percentage of total variance explained by the r = 4 factor model.

matrix F t can be thought of as a compressed or miniature version of the original

observation matrix Xt. The sum of all the elements in F t is equal to the sum of

all elements in X̂t, the part of Xt fit by the model. The factor matrix F t can be

interpreted as expressing relationships among the latent factors in the same units as

the original data. That is, the factor matrix F t can be interpreted as one of the same

kind as the original data matrix Xt, but describing the relations among the latent

types of the actors, rather than the actors themselves. The diagonals for the observed

relational matrices Xt are undefined, and will be ignored in the analysis by setting their

values to zero. The diagonals for the latent factor matrices F t can be interpreted as the

relationship within the same type, e.g. the import-export between European countries.

3.5.2 Results

We apply the model (3.1) described in Section 3.3 and 3.5.1 to the level of international

trade volume data. We use the ratio-based method in (3.13) as well as scree plot to

estimate the number of latent dimensions. The comparison between these two methods

of estimating latent dimensions in different time periods is shown in Table 3.3. The

scree plot method selects the minimal number of dimension that explain at least 85

percents of the variance in the original data. The estimator by (3.13) tends to be

smaller than the one given by scree plot. The percentage of total variance explained by

the r = 4 factor model is shown in the last line.

As shown in Table 3.3, most dimension estimators are smaller than 4 and the factor

model with r = 4 explains at least 83% of the total variance. Thus, latent dimension
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r = 4 will be used for illustration. We will focus on the loading matrix A, which

prescribes the interpretations of the latent types by linking them to the observed actors,

and the factor matrix F t, which characterizes the directional relationship between latent

types. For visualization, we employ heat map for loading matrixA and network plot for

the factor matrix F t. We also use the dendrogram to show the clustering of countries

based on their loadings on the latent types. All the plotted values can be found in the

supplemental materials.

The estimated loading matrix Â has been rotated by Varimax approximation to a

simple structure, and its columns are kept orthonormal. We then scale each column

of Â such that its sum is one. There exist negative values in estimated loadings Â.

However, they are very close to zero and occur rarely, thus we set all negative values

to zeros. See supplementary material for plotted values.

Figure 3.3 presents the heat maps of the loadings on top four latent types from 1984

to 2013. Four vertically aligned heat maps correspond to four columns of loading matrix

Â from year 1984 to 2013. For example, the first columns (denoted by 1984) of the plot

(a), (b), (c), and (d) are the four columns of the loading matrix Â1984 calculated using

data from 1982 to 1986; the second columns (denoted by 1985) of the four heat maps

correspond to the four columns of the loading matrix Â1985 calculated using data from

1983 to 1987; and so on.

Most eigen-decomposition algorithms estimate Â with columns ranked according to

their corresponding eigen-values (accounted variances). The structure of international

trade changes over time. The latent factors or types may rank differently in terms

of their accounted variances at different time periods. For example, latent type of

European countries may account for the largest portion of variance in 1985, but it may

rank 3rd in 2001 and even no longer belong to the top four types in 2009. To present

the same latent factors or types over time in one heat map, we align the columns of Â

from different years according to their maximum loading on the United States, United

Kingdom, and China for plots (a), (b) and (c). Plot (d) contains the remaining factor

for all the years. In such representation, plots (a),(b),(c) and (d) are considered together

as top four types without ranking with respect to the accounted variance within them.
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The factors in one heat map may ranked differently in terms of accounted variance at

different times. But they correspond to the same interpretation at certain time periods.

Recall that each column in a heat map sums up to one. Thus, the value at each cell

denotes a country’s participation in a factor or type at a certain year. For example,

the darkest cell corresponds to USA at year 1984 in plot (a) indicates that portion

of trading taken by USA on latent type (a) is larger than those taken by all other

countries. The changes of color intensity of the cells shows the evolution in a country’s

participation in the top four factors over 30 years.

The latent factor corresponding to Figure 3.3 (a) can be interpreted as representing

the United States, as the loadings of the United States on this dimension dominate all

other countries. From the plot, it is clear that the United States dominates the first

dimension from 1984 to 2013. However, its participation in the first dimension gradually

decreases since 2002 and reaches its minimal from year 2009 onwards, signaling the

aftermath of the 2008 financial crisis. The decrease from United States is offset by

increase from United Kingdom, Netherlands, Hong Kong, Japan, and Korea, which is

manifested by the increasingly darker cells since 2002 for those countries.

The latent factor corresponding to Figure 3.3 (b) are aligned according to the maxi-

mum loading on United Kingdom, and not surprisingly, they are also heavily loaded on

European countries such as France, Italy, Netherlands, Spain and Germany. Therefore,

this dimension can be interpreted as representing European countries. From 1985 to

1989, Germany’s trading was so distinctive from other European countries that it took

a separate dimension as shown in Figure 3.3 (d). During this period, France, United

Kingdom, Italy and Netherlands accounted for large portions of European’s trading.

After 1990, Germany, France, United Kingdom, and Italy took approximately equal

portions. With the introduction of Euro in 2002, Netherlands, Spain, and United King-

dom’s participations in trade increase. We should also note that the loading of some

Asian economies, such as Hong Kong, Japan, Malaysia and Singapore, on this dimension

is also significant in certain periods such as from 1992 to 1994, and from 2008 onwards.

This suggests that, in these periods, the factor representing Asian economies explain

more variance in the original data than the European factor and replace European
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factor as one of the top four factor.
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Figure 3.3: Latent factor loadings for trading level on r = 4 dimensions for a series of
30 rolling five-year periods indexed from 1984 to 2013.

The latent factor corresponding to Figure 3.3 (c) are factors that China Mainland

has maximum loadings on. Before 1989, Japan loads more on this dimension than
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China does. China’s loading on this dimension keeps increasing all the time. Its value

becomes larger than Japan’s loading from the year 1989. It shows a clearer transition

of trading centrality of large Asia economies.

The latent factor corresponding to Figure 3.3 (d) features sizable loadings on Canada,

Mexico, Japan and Korea. Thus the fourth dimension of the latent factor matrix rep-

resents the group of large economies in North American and Asia except for the US

and China. The evolution of the dimension (d) is striking. Before 1989, Germany’s

trading is so distinctive from the other European countries that it dominates this single

dimension. After that, this dimension is dominated by NAFTA countries from 1990 to

2000 and from 2007 to 2012 and by APEC countries from 2001 to 2007.

Figure 3.4 plots the trading network among four latent types as well as the relation-

ship between countries and latent types for four selected years. The trading network

among latent types is plotted based on the average of 4 × 4 latent factor matrix F t

in the corresponding 5-year rolling window. The colored circles represent 4 latent di-

mensions. Note that the eigen-decomposition algorithm we used does not guarantee

positive entries in F t. The negative values in F t are interpreted as a change of trading

direction. Non-negative matrix factorization proposed by Lee and Seung (2001) can be

used to eliminate negative entries. The size of each circle conveys the trading volumes

within each latent dimension, i.e., the values of the diagonal elements in the latent fac-

tor matrix. The width of the solid lines connecting circles conveys the trading volume

between different latent dimensions, i.e., the values of the off-diagonal elements in the

latent factor matrix. The direction of the flow is conveyed by the color of the line.

Specifically, the color of the line is the same as its export dimension. For example, a

blue line connecting a blue node and a red node represents the trade flow from the blue

node to the red node. Note that the widths of the solid lines across different network

plots are not comparable because they are scaled to fit each individual plot, otherwise

the lines in the 2015 plot will overwhelm the whole plot because the trading volume is

much larger in 2015 than in 1985.

The relationships between countries and r = 4 latent dimensions, shown as the

dotted lines, are plotted using a simplified version of the estimated loading matrix Â
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to provide an uncluttered view that only captures the prominent relations. Specifically,

we generate a base matrix by rounding 10Â. We set all non-dominating entries to zero

for each row (country) of the base matrix, and then re-weight the non-zero entries such

the sum of row is 1. We alternate between the eliminating and re-weighting steps until

no changes occur. The non-dominating entries for each row are defined as values that

are more than 0.5 smaller than the maximum entry of the row. The countries with zero

loadings in the resulting matrix are not plotted. The size of the dotted line conveys the

strength of connection between a country and a latent dimension.

Clearly shown in the network plot, the United States (node #2) and Germany (node

#4) stands out as two single dimensions in 1985. Latent dimension node #3 is composed

of European countries such as Spain, Netherlands, France, Sweden, United Kingdom

and Italy. Latent dimension node #3 is composed of Japan, Korea, China and Canada.

As shown by the thick orange lines, node #2, representing the U.S., exports mostly to

node #1, which load mostly on large Asian countries and Canada. The thick pink and

purple lines connecting nodes #3 and #4 implies that Germany trades a lot with other

European countries even through itself stands out from the European countries.

In 1995, European countries become closer and they form a single dimension node

#3, which reflects the effects the foundation of European Union in 1993. The within

group trading is largest in European countries. The year of 1995 also celebrates devel-

opments of Asian countries when they dominate two latent types, namely node #1 and

#2. This can be explained by the fast development of these Asian countries to emulate

the developed economies in North American and European economies during the late

80’s and early 90’s. There are large amount of exporting from Asian countries to the

United States and European countries as indicated by the thick pink and green lines to

node #2 and node #3. Also, the trading among Asian countries is also large as shown

by the think lines connection green node #1 and pink node #2.

In 2003, factor #1 is composed of Canada, China and Mexico. It represents the

latent type that exports a lot to factor #2 (Hong Kong and United States). Factor #3

that composed of Netherlands, France, Italy, Spain, United Kingdom stays the same as

the European type in 1995. Factor #4 can be interpreted as APEC type because it is
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composed of Australia, Japan, Korea, Malaysia and Singapore. The United States still

loaded completely on factor #2. However, Hong Kong also load heavily on this factor,

indicating that these two countries share some similar import/export pattern as that

of US. For example, Hong Kong trades a lot with the Canada, China and Mexico (the

thick orange and green lines between nodes #1 and #2) and it also imports a large

volume from the APEC type #4. The exporting volumes from factor #1 (Canada,

China and Mexico) to factor #2 and from APEC type node #4 to factor #2 are among

the largest trading volumes in this period.

In 2013, China dominates a single factor #1, indicating China’s growing importance

in international trade in the 2010’s. The European dimension – factor #4 – does not

change from 2003. However, the within Europe trading volume (the size of pink node

#4) increase a lot compared with that in 2003. The United States still loads completely

on factor #2. But it shares this dimension with Mexico and Hong Kong which also

trade heavily with China.

Figure 3.5 shows the clustering of countries based on their loadings on first four

latent dimensions over years. The rectangles denotes clusters that divide countries into

six groups. It offers a new perspective to inspect the dynamics of countries’ trading

behaviors. The United States accounts for a single factor for all years because of its

large trading volumes with other countries. European countries fall into the same

group for most of the time while Germany stands out differently some time from other

European countries. China’s weight in the global trade over the years has been gradually

increasing: in 1985 China’s trading behavior is more like economies such as Korea.

However, from 1990’s to 2010’s, as China’s trade becomes more active, its trading

behavior becomes more similar to that of the United States and it makes up single

cluster. Again, these patterns echo with some of the observations from Figures 3.3 and

3.4.
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Figure 3.5: Clustering of countries based on their trading level latent dimension repre-
sentations.
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Chapter 4

Factor Models for Multivariate Spatial-Temporal Process

Multivariate spatio-temporal data arise more and more frequently in a wide range of ap-

plications; however, there are relatively few general statistical methods that can readily

use that incorporate spatial, temporal and variable dependencies simultaneously. In this

paper, we propose a new approach to represent non-parametrically the linear depen-

dence structure of a multivariate spatio-temporal process in terms of latent common

factors. The matrix structure of observations from the multivariate spatio-temporal

process is well reserved through the matrix factor model configuration. The spatial

loading functions are estimated non-parametrically by sieve approximation and the

variable loading matrix is estimated via an eigen-analysis of a symmetric non-negative

definite matrix. Though factor decomposition along the space mode is similar to the

low-rank approximation methods in spatial statistics, the fundamental difference is that

the low-dimensional structure is completely unknown in our setting. Additionally, our

method accommodates non-stationarity over space. The estimated loading functions

facilitate spatial prediction. For temporal forecasting, we preserve the matrix struc-

ture of observations at each time point by utilizing the matrix autoregressive model of

order one MAR(1). Asymptotic properties of the proposed methods are established.

Performance of the proposed method is investigated on both synthetic and real datasets.

The remainder of the chapter is outlined as follows. Section 4.1 introduces the

model settings. Section 4.2 discusses estimation procedures for loading matrix and

loading functions. Section 4.3 discuss the procedures for kriging and forecasting over

space and time, respectively. Section 4.4 presents the asymptotic properties of the

estimators. Section 4.5 illustrates the proposed model and estimation scheme on a

synthetic dataset; And finally Section 4.6 applies the proposed method to a real dataset.
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Technique proofs are relegated to the Appendix.

4.1 The Model

Consider a p-dimension multivariate spatio-temporal process yt(s) = (yt,1(s), . . . , yt,p(s))′

yt(s) = C ′(s)zt(s) + ξt(s) + εt(s), t = 0,±1,±2, · · · , s ∈ S ⊂ R2, (4.1)

where zt(s) is an m×1 observable covariate vector, C(s) is a m×p unknown parameter

matrix, the additive error vector εt(s) is unobservable and constitutes the nugget effect

over space in the sense that

E {εt(s)} = 0, Var{εt(s)} = Σε(s), Cov{εt1(u), εt2(v)} = 0 ∀ (t1,u) 6= (t2,v),

(4.2)

ξt(s) is a p-dimension latent spatio-temporal vector process satisfying the condtions

E {ξt(s)} = 0, Cov{ξt1(u), ξt2(v)} = Σ|t1−t2|(u,v). (4.3)

Under the above condtions, yt(s)−C ′(s)zt(s) is seond order stationary in time t,

E {yt(s)−C ′(s)zt(s)} = 0,

Cov{yt1(u)−C ′(u)zt1(u),yt2(v)−C ′(v)zt2(v)}

= Σ|t1−t2|(u,v) + Σε(u) · I{(t1,u) = (t2,v)}.

Finally, we assume that Σt(u,v) is continuous in u and v. Note that model (4.1) does

not impose any stationary conditions over space, though it requires that yt(s) is second

order stationary in time t.

We assume that the latent spatial-temporal vector process are driven by a lower-

dimention latent spatial-temporal factor process, that is

ξt(s) = Bf t(s), (4.4)

where f t(s) is the r-dimensional latent factor process (r � p) and B is the p×r loading

matrix.
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Further, we assume that the latent r × 1 factor process f t(s) admits a finite func-

tional structure,

f t(s) =
d∑
j=1

aj(s)xtj , (4.5)

where a1(·), · · · , ad(·) are deterministic and linear independent functions (i.e. none of

them can be written as a linear combination of the others) in the Hilbert space L2(S),

and xtj = (xtj,1, . . . ,xtj,r) is a r × 1 random vector. Combining (4.4) and (4.5), we

have

ξt(s) = B

d∑
j=1

aj(s)xtj = BX ′ta(s), (4.6)

where Xt = (xt1, · · · ,xtd)′ and a(s) = (a1(s), · · · , ad(s))′.

Stacking ξt(s) from n locations s1, . . . , sn together as rows, we have a n× p matrix

of p signals from n locations Ξt = (ξt(s1), · · · , ξt(sn))′. It follows from (4.6) that

Ξt = AXtB
′, (4.7)

where A = [Aij ] = [aj(si)], i = 1, . . . , n and j = 1, . . . , d.

Obviously a1(·), · · · , ad(·) are not uniquely defined by (4.5) and B is not uniquely

defined by (4.4). We assume that a1(·), · · · , ad(·) are orthonormal in the sense that

〈aj , ak〉 = I{j = k} and B′B = Ir. Thus, the kernel reproducing Hilbert space (KRHS)

spanned by a1(·), · · · , ad(·) and the vector space spanned by columns of B (i.e. M(B))

are uniquely defined. We estimate the KRHS and M(B) in this article.

4.2 Estimation

Let {(yt(si), zt(si)) , i = 1, . . . , n, t = 1, . . . , T} be the available observations over

space and time, where yt(si) is a vector of p variables and zt(si) is a vector of m

covariates observed at location si at time t. In this article, we restrict attention to the

isotopic case where all variables have been measured at the same sample locations si,

i = 1, . . . , n.

To simplify the notation, we first consider a special case where C(s) ≡ 0 in (4.1).

Now the observations are from the process

yt(s) = ξt(s) + εt(s) = BX ′ta(s) + εt(s). (4.8)
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Stacking yt(si), i = 1, . . . , n together as rows, we have

Y t = Ξt +Et = AXtB
′ +Et, (4.9)

where Y t = (yt(s1), · · · ,yt(sn)) and Et = (εt(s1), · · · , εt(sn))′.

4.2.1 Estimation of the Partitioned Spatial Loading Matrices A1 and

A2

To exclude nugget effect in our estimation, we divide n locations s1, . . . , sn into two

sets S1 and S2 with n1 and n2 elements respectively. Let Y lt be a matrix consisting of

yt(s), s ∈ Sl, l = 1, 2 as rows. Then Y 1t and Y 2t are two matrices of dimention n1× p

and n2 × p respectively. It follows from (4.8) that

Y 1t = Ξ1t +E1t = A1XtB
′ +E1t, Y 2t = Ξ2t +E2t = A2XtB

′ +E2t, (4.10)

where Al is a nl × d matrix, its rows are (a1(s), . . . , ad(s)) at diffent locations s ∈ Sl

and Et,l consists of εt(s) as rows with s ∈ Sl, l = 1, 2.

For model identification, we assume A′1A1 = Id and A′2A2 = Id, which however

implies that Xt in the second equation in (4.10) will be different from that in the first

eqaution. Thus, we may rewrite (4.10) as

Y 1t = Ξ1t +E1t = A1XtB
′ +E1t, Y 2t = Ξ2t +E2t = A2X

∗
tB
′ +E2t, (4.11)

where X∗t = QX∗t and Q is an invertible d×d matrix. Under this assumption,M(A1)

and M(A2), which are the column spaces of A1 and A2, are uniquely defined.

Let Ylt,·j be the j-th column of Y lt, Elt,·j be the j-th column of Elt and Bj· be the

j-th row of B, l = 1, 2 and j = 1, . . . , p. Define spatial-cross-covariance matrix between

the i-th and j-th variables as

ΩA,ij = Cov{Y1t,·i, Y2t,·j}

= Cov{A1XtBi· + E1t,i,A2X
∗
tBj· + E2t,j}

= A1Cov{XtBi·,X
∗
tBj·}A2 (4.12)
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When n� d, it is reasonable to assume that

rank (ΩA,ij) = rank (Cov{XtBi·,X
∗
tBj·}) = d.

Define

MA1 =

p∑
i=1

p∑
j=1

ΩA,ijΩ
′
A,ij

= A1


p∑
i=1

p∑
j=1

Cov{XtBi·,X
∗
tBj·}Cov{X∗tBj·,XtBi·}

A′1, (4.13)

MA2 =

p∑
i=1

p∑
j=1

Ω′A,ijΩA,ij

= A2


p∑
i=1

p∑
j=1

Cov{X∗tBj·,XtBi·}Cov{XtBi·,X
∗
tBj·}

A′2, (4.14)

MA1 and MA2 share the same d positive eigenvalues and MAlq = 0 for any vector

q perpendicular to M(Al), l = 1, 2. Therefore, the columns ofM(Al), l = 1, 2, can be

estimated as the d orthonormal eigenvectors of matrix MAl correspond to d positive

eigenvalues and the columns are arranged such that the corresponding eigenvalues are

in the descending order.

Now we define the sample version of these quantities and introduce the estimation

procedure. Suppose we have centered our observations Y 1t and Y 2t, let Ω̂A,ij be the

sample cross-space covariance of i-th and j-th variables and M̂Al be the sample version

of MAl , l = 1, 2, that is

Ω̂A,ij =
1

T

T∑
t=1

Y1t,·iY
′
2t,·j , M̂A1 =

p∑
i=1

p∑
j=1

Ω̂A,ijΩ̂
′
A,ij , M̂A2 =

p∑
i=1

p∑
j=1

Ω̂
′
A,ijΩ̂A,ij .

(4.15)

A natural estimator for Al is defined as Âl = {âl1, · · · , âld}, l = 1, 2, where âlj is

the eigenvector of M̂Al corresponding to its j-th largest eigenvalue. However such an

estimator ignores the fact that ξt(s) is continuous over the set S.

4.2.2 Estimation of the Variable Loading Matrix B

To estimate the p×r variable loading matrix B, we follow closely the method proposed

by Wang et al. (2017) and work with discrete observations of (4.8) at n sampling sites.
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Let the vector observed at site si at time t be yt(si). The temporal-cross-covariance

between observations from site si and sj for lag h ≥ 1 is

ΩB,ij(h) = Cov{yt(si), yt+h(sj)} = BCov{X ′ta(si), a
′(sj)Xt}B′. (4.16)

The last equation results form the assumption that Xt is uncorrelated with Et at all

leads and lags and Et is white noise. For a pre-determined maximum lag h0, define

MB =

h0∑
h=1

n∑
i=1

n∑
j=1

ΩB,ij(h)Ω′B,ij(h). (4.17)

By (4.16) and (4.17), it follows that

MB = B

 h0∑
h=1

n∑
i=1

n∑
j=1

Cov{X ′ta(si), a
′(sj)Xt}Cov{X ′ta(sj), a

′(si)Xt}

 B′.

(4.18)

MB shares the same r positive eigenvalues and MBq = 0 for any vector q per-

pendicular to M(B). Therefore, the columns of M(B) can be estimated as the r

orthonormal eigenvectors of matrix MB correspond to r positive eigenvalues and the

columns are arranged such that the corresponding eigenvalues are in the descending

order.

Define the sample version of ΩB,ij(h) and MB for centered observation Y t as

Ω̂B,ij =
1

T − h

T−h∑
t=1

Y1t,·iY
′
2 t+h,·j , M̂B =

h0∑
h=1

n∑
i=1

n∑
j=1

Ω̂B,ijΩ̂
′
B,ij . (4.19)

A natural estimator for B can be obtained as B̂ = {b̂1, · · · , b̂r}, where b̂i is the

eigenvector of M̂B corresponding to its i-th largest eigenvalue.

4.2.3 Estimation of the Latent Factor Matrix X t and Signal Matrix

Ξt

By (4.10), the estimators of two representations of the latent matrix factor Xt are

defined as

X̂t = Â
′
1Y 1tB̂, X̂

∗
t = Â

′
2Y 2tB̂. (4.20)

The latent signal process are estimated by

Ξ̂t =

Ξ̂1t

Ξ̂2t

 , (4.21)
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where

Ξ̂1t = Â1X̂tB̂
′
= Â1Â

′
1Y 1tB̂B̂

′
, Ξ̂2t = Â2X̂

∗
t B̂
′
= Â2Â

′
2Y 2tB̂B̂

′
. (4.22)

4.2.4 Estimation of the Spatial Loading Matrix A and Loading Func-

tion A(s)

Note that now we only have estimated spatial loading matrices Â1 and Â2 on two

partitioned set of sampling locations under the constraint that A′1A1 = A′2A2 = Id.

Estimate loading functions from Â1 and Â2 separately will result in inefficient use of

sampling locations. Also, the constraint that A′1A1 = A′2A2 = Id complicates the

estimation of the loading functions aj(s). In addition, (4.20) gives estimators for two

different representations of the latent matrix factor Xt. To get estimators of spatial

loading matrix A for all sampling locations and Xt, we use the estimated Ξ̂t to re-

estimate Â and X̂t.

The population signals process is ξt(s) = B
∑d

j=1 aj(s)xtj = BX ′ta(s). The n× p

matrixΞt = AXtB is the signal matrix at discretized sampling locations at each time t.

To reduce dimension, we consider the n× r variable-factor matrix Ψt = ΞtB
′ = AXt.

Let X =
(
X1 · · · XT

)
and Ψ =

(
Ψ1 · · · ΨT

)
= AX, then

1

nprT
Ψ′Ψ =

1

nprT
X ′A′AX.

Let the rows of 1√
rT
W be the eigenvectors of 1

nprT Ψ′Ψ corresponding to its d non-

zero egienvalues. The column space of X ′ can be estimated as that of W ′. And

A∗ = 1
rT ΨW ′ is the loading function values at discretized sampling site corresponding

to W .

However, true Ξt’s or Ψt’s are not observable and only the estimated values Ξ̂t and

Ψ̂ = Ξ̂tB̂ are available. Thus, we estimate 1√
rT
Ŵ whose columns are the eigenvectors

of 1
nprT Ψ̂

′
Ψ̂ corresponding to its d non-zero egienvalues and Â = 1

rT Ψ̂Ŵ
′
. The reason

that Ψ̂ is choosen over Ξ̂ is that Ψ̂ has the same esimaton error bound but is of lower

dimension.

Once Â is estimated, we estimate loading functions aj(s) from the estimated n
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observations in column Â·j by the sieve approximation. Any set of bivariate basis func-

tions can be chosen. In our procedure, we consider the tensor product linear sieve space

Θn, which is constructed as a tensor product space of some commonly used univari-

ate linear approximating spaces, such as B-spline, orthogonal wavelets and polynomial

series. Then for each j ≤ d,

aj(s) =

Jn∑
i=1

βi,jui(s) + rj(s).

Here βi,j ’s are the sieve coefficients of i basis function ui(s) corresponding to the j-

th factor loading function; rj(s) is the sieve approximation error; Jn represents the

number of sieve terms which grows slowly as n goes to infinity. We estimate β̂i,j ’s and

the loading functions are approximated by âj(s) =
∑Jn

i=1 β̂i,jui(s).

4.3 Prediction

4.3.1 Spatial Prediction

A major focus of spatio-temporal data analysis is the prediction of variable of interest

over new locations. For some new location s0 ∈ S and s0 6= si for i = 1, . . . , n, we

aim to predict the unobserved value yt(s0), t = 1, . . . , T , based on observations Y t.

By (4.8), we have yt(s0) = ξt(s0) + εt(s0) = BX ′ta(s0) + εt(s0). As recommended

by Cressie and Wikle (2015), we predict ξt(s0) = BX ′ta(s0) instead of yt(s0) directly.

Thus, a natural estimator is

ξ̂t(s0) = B̂X̂
′
tâ(s0), (4.23)

where B̂, X̂ and â(s) are estimated following procedures in Section 4.2.

4.3.2 Temporal Prediction

Temporal prediction focuses on predict the future values yt+h(s1), . . . ,yt+h(sn) for

some h ≥ 1. By (4.8), we have yt+h(s) = ξt+h(s) + εt+h(s) = BX ′t+ha(s) + εt+h(s).

Since εt+h(s) is unpredictable white noise, the ideal predictor for yt+h(s) is that for

ξt+h(s). Thus, we focus on predict ξt+h(s) = BX ′t+ha(s). The temporal dynamics of

the ξt+h(s) present in a lower dimensional matrix factor X ′t+h, thus a more effective
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approach is to predict X ′t+h based on X ′t−l, . . . ,X
′
t where l is a prescribed integer.

The rows and columns of Xt represents the spatial factors and the variable factor,

respectively. To preserve the matrix structure intrinsic to Xt, we model {Xt}1:T as

the matrix autoregressive model of order one. Mathematically,

Xt = ΦRXt−1 ΦC +U t, (4.24)

where ΦR and ΦC are row and column coefficient matrices, respectively. The covariance

structure of the matrix white noise U t is not restricted. Thus, vecU t ∼ N (0,ΣU )

where ΣU is an arbitrary covariance matrix. Matrix ΦR captures the auto-correlations

between the spatial latent factors and ΦC captures the auto-correlations between the

variable latent factors.

Following the generalized iterative method proposed in Yang et al. (2017), we have

estimators Φ̂R and Φ̂C . The prediction for yt+h(s) is best approximate by

ξ̂t+h(s) = B̂ X̂
′
t+h â(s) = B̂ Φ̂

h

R X̂t Φ̂
h

C â(s), (4.25)

where B̂, X̂ and â(s) are estimated following procedures in Section 4.2 and Φ̂
h

R and

â(s) is estimated from MAR(1) model.

4.4 Asymptotic properties

In this section, we investigate the rates of convergence for the estimators under the

setting that n, p and T all go to infinity while d and r are fixed and the factor structure

does not change over time. In what follows, let ‖A‖2 =
√
λmax(A′A) and ‖A‖F =√

tr(A′A) denote the spectral and Frobenius norms of the matrix A, respectively.

‖A‖min denotes the positive square root of the minimal eigenvalue of A′A or AA′,

whichever is a smaller matrix. When A is a square matrix, we denote by tr(A),

λmax(A) and λmax(A) the trace, maximum and minimum eigenvalues of the matrix

A, respectively. For two sequences aN and bN , we write aN � bN if aN = O(bN ) and

bN = O(aN ). The following regularity conditions are imposed before we derive the

asymptotics of the estimators.
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Condition 1. Alpha-mixing. {vec (Xt) , t = 0,±1,±2, · · · } is strictly stationary and

α-mixing. Specifically, for some γ > 2, the mixing coefficients satisfy the condition that∑∞
h=1 α(h)1−2/γ < ∞, where α(h) = sup

τ
sup

A∈Fτ−∞,B∈F∞τ+h
|P (A ∩B)− P (A)P (B)| and

Fsτ is the σ-field generated by {vec(Xt) : τ ≤ t ≤ s}.

Condition 2. Let Xt,ij be the ij-th entry of Xt. Then, E(|Xt,ij |2γ) ≤ C for any

i = 1, . . . , d, j = 1, . . . , r and t = 1, . . . , T , where C is a positive constant and γ is given

in Condition 1. In addition, there exists an integer h satisfying 1 ≤ h ≤ h0 such that

Σf (h) is of rank k = max(d, r) and ‖Σf (h)‖2 � O(1) � σk(Σf (h)). For i = 1, . . . , d and

j = 1, . . . , r, 1
T−h

∑T−h
t=1 Cov(Xt,i·, Xt+h,i·) 6= 0 and 1

T−h
∑T−h

t=1 Cov(Xt,·j , Xt+h,·j) 6= 0.

Condition 3. Spacial factor strength. For any partition {S1,S2} of locations S =

{s1, . . . , sn}, there exists a constant δ ∈ [0, 1] such that ‖A1‖2min � n1−δ1 � ‖A1‖22 and

‖A2‖2min � n
1−δ
2 � ‖A2‖22, where n1 and n2 are number of locations in sets S1 and S2,

respectively, and n1 + n2 = n.

Condition 4. Variable factor strength. There exists a constant γ ∈ [0, 1] such that

‖B‖2min � p1−γ � ‖B‖22 as p goes to infinity and r is fixed.

Condition 5. Loading functions belongs to Hölder class. For j = 1, . . . , d, the

loading functions aj(s), s ∈ S ∈ R2 belongs to a Hölder class Aκc (S) (κ-smooth) defined

by

Aκc (S) =

{
a ∈ Cm(S) : sup

[η]≤m
sup
s∈S
|Dη a(s)| ≤ c, and sup

[η]=m
sup
u,v∈S

|Dη a(u)−Dη a(v)|
‖u−v‖α2

≤ c

}
,

for some positive number c. Here, Cm(S) is the space of all m-times continuously

differentiable real-value functions on S. The differential operator Dη is defined as

Dη = ∂[η]

∂s
η1
1 ∂s

η2
2

and [η] = η1 + η2 for nonnegative integers η1 and η2.

Theorem 5 presents the error bound for estimated loading matrix A1 and A2.

Theorem 5. Under Condition 1-4 and nδpγT−1/2 = o(1), we have

D
(
M(Âi),M(Ai)

)
= Op((n1n

δ−1
2 pγ + nδ−11 n2p

γ + nδ1n
δ
2p

2γ)T−1)1/2. (4.26)

If n1 � n2 � n, we have

D
(
M(Âi),M(Ai)

)
= Op(n

δpγT−1/2). (4.27)
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Theorem 6 presents the error bound for estimated signal Ξ̂it and Ξ̂t.

Theorem 6. This proposition considers the error bound of signal estimator as in (4.22)

for each partition. Under nδpγT−1 = op(1), if n1 � n2 � n, then

n−1/2p−1/2‖Ξ̂it −Ξit‖2 = Op(n
δ/2pγ/2T−1/2 + n−1/2p−1/2), (4.28)

for i = 1, 2, and

n−1p−1‖Ξ̂t −Ξt‖22 = Op(n
δpγT−1 + n−1/2+δ/2p−1/2+γ/2T−1/2 + n−1p−1) (4.29)

Let ∆npT = nδpγT−1 +n−1/2+δ/2p−1/2+γ/2T−1/2 +n−1p−1. Theorem 7 presents the

error bound for re-estimated latent factor 1
rTW t whose columns are assume to be the

eigenvectors of 1
rT Ψ′Ψ. And Proposition 1 presents the error bound for re-estimated

whole loading matrix A corresponding to estimated W .

Theorem 7.

1

rT
‖Ŵ

′
−W ′‖2F = Op

(
∆npT + nδpγ∆2

npT

)
Proposition 1 presents the error bond for estimated spatial loading matrix Â.

Proposition 1.

1

np

∥∥Â−A∥∥2
F

= Op (∆npT ) .

Theorem 8 presents the space kriging error bound based on sieve approximated

function Â(s).

Theorem 8.

1

pT
‖ξ̂(s0)− ξ(s0)‖22 = Op(J

−2κ
n n−δp−γ + ∆npT + 1/T ) (4.30)

4.5 Simulation

In this section we study the numerical performance of the proposed method on synthetic

datasets. We let s1, · · · , sn be drawn randomly from the uniform distribution on [−1, 1]2

and the observed data yt(s) be generated according to model (4.8),

yt(s) = ξt(s) + εt(s) = BX ′ta(s) + εt(s).
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The dimensions of Xt are chosen to be d = 3, r = 2, and are fixed in all simulations.

The latent factor Xt is generated from the Gaussian matrix time series (4.24)

Xt = ΦRXt−1 ΦC +U t,

where ΦR = diag(0.7, 0.8, 0.9), ΦC = diag(0.8, 0.6) and the entries of U t are white

noise Gaussian process with mean 0 and covariance structure such that

ΣU = Cov{vec(U t)} :

• Model I: ΣU = Idr. (Used in our simulation.)

• Model II: Kronecker product covariance structure ΣU = ΣC⊗ΣR, where ΣR and

ΣC are of sizes d× d and r × r, respectively. Both ΣR and ΣC have values 1 on

the diagonal entries and 0.2 on the off-diagonal entries.

• Model III: Arbitrary covariance matrix ΣU .

The entries of B is independently sampled from the uniform distribution U(−1, 1) ·

pγ/2. The nugget process εt(s) are independent and normal with mean 0 and the

covariance (1 + s21 + s22)/2
√

3 · Ip. The basis functions aj(s)’s are designed to be

a1(s) = (s1 − s2)/2, a2(s) = cos

(
π
√

2(s21 + s22)

)
, a3(s) = 1.5s1s2.

With the above generating model setting, the signal-noise-ratio of p-dimensional

variable, which is defined as

SNR ≡

∫
s∈[−1,1]2 Trace [Cov (ξt(s))] ds∫
s∈[−1,1]2 Trace [Cov (εt(s))] ds

≈ 2.58.

We run 200 simulations for each combination of n = 50, 100, 200, 400, p = 10, 20, 40,

and T = 60, 120, 240. With each simulation, we calculate d̂, r̂, Â1, Â2, B̂ and Ξ̂t,

reestimate Â and Ξ̃t, then use Â to get approximated âj(s) following the estimation

procedure described in Section 4.2.

Table 4.1 presents the relative frequencies of estimated rank pairs over 200 simula-

tions. The columns corresponding to the true rank pair (3, 2) is highlighted.
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The performance of correctly estimating the loading spaces are measured by the

space distance between the estimated and true loading matrices Â and A, which is

defined as

D(M(Â),M(A)) =

(
1− 1

max(d, d̂)
tr
(
Â(Â

′
Â)−1Â

′
·A(A′A)−1A′

)) 1
2

.

It can be shown that D(M(Â),M(A)) takes its value in [0, 1], it equals to 0 if and only

if M(Â) =M(A), and equals to 1 if and only if M(Â) ⊥M(A).

Table 4.1: Relative frequency of estimated rank pair (d̂, r̂) over 200 simulations. The
columns correspond to the true value pair (3, 2) are highlighted. Blank cell represents
zero value.

(d̂, r̂) γ = 0 γ = 0.5

T p n (3,2) (3,1) (2,2) (1,2) (1,1) (3,2) (3,1) (2,2) (2,1) (1,2) (1,1)

60 10 50 0.74 0.04 0.04 0.18 0.02 0.11 0.01 0.13 0.01 0.61 0.14
120 10 50 0.93 0.07 0.01 0.37 0.05 0.06 0.02 0.42 0.09
240 10 50 0.95 0.06 0.82 0.10 0.01 0.07 0.02

60 20 50 0.86 0.02 0.13 0.02 0.10 0.88 0.01
120 20 50 1.00 0.08 0.04 0.88
240 20 50 1.00 0.49 0.01 0.50

60 40 50 0.96 0.01 0.04 0.03 0.09 0.89
120 40 50 1.00 0.02 0.07 0.91
240 40 50 1.00 0.32 0.01 0.68

60 10 100 0.94 0.04 0.02 0.64 0.11 0.20 0.02 0.03 0.01
120 10 100 0.96 0.05 0.93 0.07 0.01
240 10 100 0.97 0.03 0.94 0.06

60 20 100 1.00 0.73 0.22 0.06
120 20 100 1.00 0.97 0.04
240 20 100 1.00 1.00

60 40 100 1.00 0.72 0.24 0.05
120 40 100 1.00 0.96 0.04
240 40 100 1.00 1.00

60 10 200 0.98 0.03 0.84 0.11 0.03 0.03 0.01
120 10 200 0.97 0.04 0.94 0.07
240 10 200 0.97 0.03 0.95 0.05

60 20 200 1.00 0.94 0.02 0.04
120 20 200 1.00 1.00
240 20 200 1.00 1.00

60 40 200 1.00 0.97 0.01 0.03
120 40 200 1.00 1.00
240 40 200 1.00 1.00

60 10 400 0.98 0.02 0.90 0.09 0.02 0.01
120 10 400 0.97 0.03 0.93 0.08
240 10 400 0.97 0.03 0.96 0.04

60 20 400 1.00 1.00 0.01
120 20 400 1.00 1.00
240 20 400 1.00 1.00

60 40 400 1.00 1.00 0.01
120 40 400 1.00 1.00
240 40 400 1.00 1.00
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Figure 4.1 presents the box plot of the average space distance

1

2

(
D(M(Â1),M(A1)) +D(M(Â2),M(A2))

)
and compare it with the box plot of space distance between re-estimated Â and the

truth A.

Figure 4.2 presents the box plot of the space distance between B̂ and the truth B.
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Figure 4.1: Box-plots of the estimation accuracy measured by D(Â,A) for the case of
orthogonal constraints. Gray boxes represent the average of D(Â1,A1) and D(Â2,A2).
The results are based on 200 iterations. See Table 4.3 in Appendix 4.8 for mean and
standard deviations of the spatial distance.
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Figure 4.2: Box-plots of the estimation accuracy of variable loading matrix measured
by D(B̂,B). The results are based on 200 iterations. See Table 4.3 in Appendix 4.8
for mean and standard deviations of the spatial distance.
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Figure 4.3: Box-plots of the estimation of signals MSE. Gray boxes represent the our
procedure. The results are based on 200 iterations. See Table 4.3 in Appendix 4.8 for
mean and standard deviations of the MSE.
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Figure 4.4: Box-plots of the spatial prediction measured by average MSPE for 50 new
locations. Colored boxes represent the our model. The results are based on 200 itera-
tions. See Table 4.4 in Appendix 4.8 for mean and standard deviations of the MSPE.

Define the mean squared error of estimated signals ξ̂ as

MSE(ξ̂) =
1

npT

T∑
t=1

n∑
i=1

‖ξ̂t(si)− ξt(si)‖22.

We compare the mean square error between first estimated Ξ̂t defined in (4.21) and

re-estimated Ξ̃t defined as

Ξ̃ =
[
Ξ̃1, · · · , Ξ̃T

]
= ÃX̃B̂

′
.

The box plots of MSE(ξ̂) and MSE(ξ̃) are in Figure 4.4. Re-estimated provides much
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Figure 4.5: Box-plots of the one step ahead forecasting accuracy measured by MSPE.
Gray boxes represent the MAR(1) model. The results are based on 200 iterations. See
Table 4.4 in Appendix 4.8 for mean and standard deviations of the MSPE.

more accurate estimate for ξt(sj) than ξ̃t(sj) does.

To demonstrate the performance of spatial prediction, we generate data at a set

S0 of 50 new locations randomly sampled from U [−1, 1]2. For each t = 1, . . . , T , we

calculate the spatial prediction ŷt(·) = ξ̂t(·) defined in (4.23) for each location in S0.

The mean squared spatial prediction error is calculated as

MSPE(ŷ) =
1

50pT

T∑
t=1

∑
s0∈S0

‖ŷt(s0)− ξt(s0)‖22.

To demonstrate the performance of temporal forecasting, we generateXT+h accord-

ing to the matrix time series (4.24) for h = 1, 2 and compute both the one-step-ahead

and two-step-ahead predictions at time T . The mean square temporal prediction error

is computed as +

MSPE(ŷT+h) =
1

np

n∑
j=1

‖ŷT+h(sj)− ξT+h(·)‖22.

Figure 4.4 presents box-plots of the spatial prediction measured by average MSPE

for 50 new locations. The results are based on 200 iterations. Figure 4.5 compares the

MSPEs using matrix time series MAR(1) and vectorized time series VAR(1) estimates.

The means and standard errors of the MSPEs from 200 simulations for each model

setting are reported in Table 4.4 in Appendix 4.8. It also reports the means and
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standard errors of the MSPEs using matrix time series MAR(1) and vectorized time

series VAR(1) estimates.

4.6 Real Data Application

In this section, we apply the proposed method to the Comprehensive Climate Dataset

(CCDS) – a collection of climate records of North America. The dataset was compiled

from five federal agencies sources by Lozano et al. (2009). It contains monthly observa-

tions of 17 climate variables spanning from 1990 to 2001 on a 2.5× 2.5 degree grid for

latitudes in (30.475, 50.475), and longitudes in (−119.75,−79.75). The total number of

observation locations is 125 and the length of the whole time series is 156. Table 4.2

lists the variables used in our analysis. Detailed information about data pre-processing

is given in Lozano et al. (2009).

Table 4.2: Variables and data sources in the Comprehensive Climate Dataset (CCDS)

Variables (Short name) Variable group Type Source

Methane (CH4) CH4

Greenhouse Gases NOAA
Carbon-Dioxide (CO2) CO2

Hydrogen (H2) H2

Carbon-Monoxide (CO) CO

Temperature (TMP) TMP

Climate CRU

Temp Min (TMN) TMP
Temp Max (TMX) TMP
Precipitation (PRE) PRE
Vapor (VAP) VAP
Cloud Cover (CLD) CLD
Wet Days (WET) WET
Frost Days (FRS) FRS

Global Horizontal (GLO) SOL

Solar Radiation NCDC
Direct Normal (DIR) SOL
Global Extraterrestrial (ETR) SOL
Direct Extraterrestrial (ETRN) SOL

Utra Violet (UV) AER Aerosol Index NASA

We first remove the trend and annually seasonal component by taking difference

between observations from the same month in consecutive years. Then we normalized

this data set by removing the trend and dividing it by the standards deviation for each

variable across space. We randomly select 10% of locations and predict the value of all

variables over the whole time span for these locations. We repeat the procedure 100

times and the average spatial MSPE is 0.4812.
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4.7 Proofs

4.7.1 Factor loadings

Lemma 8. Let Xt,ij denote the ij-th entry of Xt. Under Condition 1 and 2, for any

i, k = 1, . . . , d and j, l = 1, · · · , r, we have∣∣∣∣∣ 1

T

T∑
t=1

(Xt,ijXt,kl − Cov(Xt,ijXt,kl))

∣∣∣∣∣ = Op(T
−1/2). (4.31)

Lemma 9. Under Conditions 1-6, it holds that

p∑
i=1

p∑
j=1

‖Ω̂s1s2,ij −Ωs1s2,ij‖22 = Op((n1n2)
1−δp2−2γT−1), , (4.32)

p∑
i=1

p∑
j=1

‖Ω̂s1e2,ij −Ωs1e2,ij‖22 = Op(n
2−δ
1 p2−γT−1), , (4.33)

p∑
i=1

p∑
j=1

‖Ω̂e1s2,ij −Ωe1s2,ij‖22 = Op(n
2−δ
2 p2−γT−1), , (4.34)

p∑
i=1

p∑
j=1

‖Ω̂e1e2,ij −Ωe1e2,ij‖22 = Op(n1n2p
2T−1). (4.35)

Lemma 10. Under Conditions 1-6, it holds that

p∑
i=1

p∑
j=1

‖Ω̂ij −Ωij‖22 == Op

(
n2−δ1 p2−γT−1 + n2−δ2 p2−γT−1 + n1n2p

2T−1
)
. (4.36)

Proof.

Ω̂ij =
1

T

T∑
t=1

Y 1t,·iY
′
2t,·j

=
1

T

T∑
t=1

(A1XtBi· + Et,·i) (A2XtBj· + Et,·j)
′

= Ω̂s,ij + Ω̂se,ij + Ω̂es,ij + Ω̂e,ij .

p∑
i=1

p∑
j=1

‖Ω̂ij −Ωij‖22

≤ 4

p∑
i=1

p∑
j=1

(
‖Ω̂s1s2,ij −Ωs1s2,ij‖22 + ‖Ω̂s1e2,ij −Ωs1e2,ij‖22 + ‖Ω̂e1s2,ij −Ωe1s2,ij‖22 + ‖Ω̂e1e2,ij −Ωe1e2,ij‖22

)
= Op(n

2−δ
1 p2−γT−1 + n2−δ2 p2−γT−1 + n1n2p

2T−1)
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Lemma 11. Under Conditions 1-6 and m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), it holds that

‖M̂1 −M1‖2 = Op

(
n2−δp2−γT−1/2

)
. (4.37)

Proof.

p∑
i=1

p∑
j=1

‖Ωij‖22 =

p∑
i=1

p∑
j=1

‖A1
1

T

T∑
t=1

Cov{XtBi·,XtBj·}A′2‖22

≤
p∑
i=1

p∑
j=1

‖A1‖22‖A2‖22‖
1

T

T∑
t=1

E
{
XtBi·B

′
j·X

′
t

}
‖22

≤ ‖A1‖22‖A2‖22
p∑
i=1

p∑
j=1

‖ 1

T

T∑
t=1

E {Xt ⊗Xt} vec
(
Bi·B

′
j·
)
‖22

≤ ‖A1‖22‖A2‖22
p∑
i=1

p∑
j=1

‖ 1

T

T∑
t=1

E {Xt ⊗Xt}‖22‖vec
(
Bi·B

′
j·
)
‖22

= ‖A1‖22‖A2‖22
p∑
i=1

p∑
j=1

‖ 1

T

T∑
t=1

E {Xt ⊗Xt}‖22‖Bi·B′j·‖2F

≤ ‖A1‖22‖A2‖22‖
1

T

T∑
t=1

E {Xt ⊗Xt}‖22
p∑
i=1

p∑
j=1

‖Bi·‖22‖B′j·‖22

= ‖A1‖22‖A2‖22‖
1

T

T∑
t=1

E {Xt ⊗Xt}‖22‖B‖4F

≤ ‖A1‖22‖A2‖22‖
1

T

T∑
t=1

E {Xt ⊗Xt}‖22 · r2 · ‖B‖42

= Op

(
(n1n2)

1−δp2−2γ
)

Then,

‖M̂1 −M1‖2 =

∥∥∥∥ p∑
i=1

p∑
j=1

(
Ω̂ijΩ̂

′
ij −ΩijΩ

′
ij

)∥∥∥∥
2

≤
p∑
i=1

p∑
j=1

‖Ω̂ij −Ωij‖22 + 2

p∑
i=1

p∑
j=1

‖Ωij‖2‖Ω̂ij −Ωij‖2

≤
p∑
i=1

p∑
j=1

‖Ω̂ij −Ωij‖22 + 2

 p∑
i=1

p∑
j=1

‖Ωij‖22 ·
p∑
i=1

p∑
j=1

‖Ω̂ij −Ωij‖22

1/2

= Op((n
2−δ
1 p2−γ + n2−δ2 p2−γ + n1n2p

2)T−1)

+Op

(
((n3−2δ1 n1−δ2 p4−3γ + n1−δ1 n3−2δ2 p4−3γ + n2−δ1 n2−δ2 p4−2γ)T−1)1/2

)
.
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Lemma 12. Under Condition 2.6 and 2, we have

λi(M1) � (n1n2)
1−δp2−2γ , i = 1, 2, . . . , k1,

where λi(M1) denotes the i-th largest singular value of M1.

Theorem 9. Under Condition 1-4 and nδpγT−1/2 = o(1), we have

D
(
M(Âi),M(Ai)

)
= Op((n1n

δ−1
2 pγ + nδ−11 n2p

γ + nδ1n
δ
2p

2γ)T−1)1/2. (4.38)

If n1 � n2 � n, we have

D
(
M(Âi),M(Ai)

)
= Op(n

δpγT−1/2). (4.39)

Proof. By Perturbation Theorem,

‖Â1 −A1‖2 ≤ 8

λmin(M1)
‖M̂1 −M1‖2

= Op((n1n
δ−1
2 pγ + nδ−11 n2p

γ + nδ1n
δ
2p

2γ)T−1)

+Op((n1n
δ−1
2 pγ + nδ−11 n2p

γ + nδ1n
δ
2p

2γ)T−1)1/2

= Op((n1n
δ−1
2 pγ + nδ−11 n2p

γ + nδ1n
δ
2p

2γ)T−1)1/2.

If n1 � n2 � n/2, we have ‖Â1 −A1‖2 = Op(n
δpγT−1/2).

If set n2 = c fixed and n1 = n−c, we have ‖Â1−A1‖2 = Op((np
−γ+nδ)1/2pγT−1/2).

We have the same result for ‖Â2 −A2‖2.

Theorem 10. This proposition considers the error bound of signal estimator as in

(4.22) for each partition. Under nδpγT−1 = op(1), if n1 � n2 � n, then

n−1/2p−1/2‖Ξ̂it −Ξit‖2 = Op(n
δ/2pγ/2T−1/2 + n−1/2p−1/2), (4.40)

for i = 1, 2, and

n−1p−1‖Ξ̂t −Ξt‖22 = Op(n
δpγT−1 + n−1/2+δ/2p−1/2+γ/2T−1/2 + n−1p−1) (4.41)
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Proof.

‖Ξ̂1t −Ξ1t‖2 =
∥∥∥Â(j)

1 Â
(j)′

1

(
A

(j)
1 XtB

′ +E
(j)
t

)
B̂

(j)
B̂

(j)′

−A(j)
1 XtB

′
∥∥∥
2

≤
∥∥∥Â(j)

1 Â
(j)′

1 A
(j)
1 XtB

′
(
B̂

(j)
B̂

(j)′

−BB′
)∥∥∥

2

+
∥∥∥(Â(j)

1 Â
(j)′

1 −A(j)
1 A

(j)′

1

)
A

(j)
1 XtB

′
∥∥∥
2

+
∥∥∥Â(j)

1 Â
(j)′

1 E
(j)
t B̂

(j)
B̂

(j)′
∥∥∥
2

= I1 + I2 + I3.

‖I1‖2 ≤ 2‖Xt‖2‖B̂
(j)
−B(j)‖2 = Op(n

1/2−δ/2
1 p1/2−γ/2‖B̂

(j)
−B‖2)

= Op(n
1/2−δ/2
1 nδp1/2+γ/2T−1/2)

‖I2‖2 ≤ 2‖Â
(j)

1 −A
(j)
1 ‖2‖Xt‖2 = Op(n

1/2−δ/2
1 p1/2−γ/2‖Â

(j)

1 −A
(j)
1 ‖2)

= Op((n1n
δ−1
2 pγ + nδ−11 n2p

γ + nδ1n
δ
2p

2γ)T−1)1/2n
1/2−δ/2
1 p1/2−γ/2)

= Op((n
2−δ
1 nδ−12 + n2 + n1n

δ
2p
γ)pT−1)1/2

‖I3‖2 ≤ ‖Â
(j)′

1 E
(j)
t B̂

(j)
‖ = ‖(B̂

(j)′

⊗ Â
(j)′

1 )vec
(
E

(j)
t

)
‖2 ≤ dr‖Σe‖2 = Op(1).

Thus,

‖Ξ̂1t −Ξ1t‖2 = Op(n
1/2−δ/2
1 p1/2−γ/2‖Â

(j)

1 −A
(j)
1 ‖2) +Op(n

1/2−δ/2
1 p1/2−γ/2‖B̂

(j)
−B‖2) +Op(1).

n
−1/2
1 p−1/2‖Ξ̂1t −Ξ1t‖2 = Op(n

−δ/2
1 p−γ/2‖Â

(j)

1 −A
(j)
1 ‖2) +Op(n

−δ/2
1 p−γ/2‖B̂

(j)
−B‖2) +Op(n

−1/2
1 p−1/2).

Similarly for Ξ2t, we have

‖Ξ̂2t −Ξ2t‖2 = Op(n
1/2−δ/2
2 p1/2−γ/2‖Â

(j)

2 −A
(j)
2 ‖2) +Op(n

1/2−δ/2
2 p1/2−γ/2‖B̂

(j)
−B‖2) +Op(1).

n
−1/2
2 p−1/2‖Ξ̂2t −Ξ2t‖2 = Op(n

−δ/2
2 p−γ/2‖Â

(j)

1 −A
(j)
1 ‖2) +Op(n

−δ/2
2 p−γ/2‖B̂

(j)
−B‖2) +Op(n

−1/2
2 p−1/2).

If n1 � n2 � n, then

‖Ξ̂it −Ξit‖2 = Op(n
1/2+δ/2p1/2+γ/2T−1/2) +Op(1), i = 1, 2. (4.42)

Now we find the L2-norm bounds for

‖Ξ̂t −Ξt‖22 =

∥∥∥∥
Ξ̂1t −Ξ1t

Ξ̂2t −Ξ2t

∥∥∥∥2
2

.
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LetM = Ξ̂t−Ξt =

M1

M2

, the above problem is equivelent to finding λmax(M ′M)

from λmax(M ′
1M1) and λmax(M ′

2M2).

Since

λmax(M ′M) = λmax(M ′
1M1 +M ′

2M2) ≤ λmax(M ′
1M1) + λmax(M ′

2M2),

We have

‖Ξ̂t −Ξt‖22 ≤ ‖Ξ̂1t −Ξ1t‖22 + ‖Ξ̂2t −Ξ2t‖22

= Op(n
1+δp1+γT−1) +Op(n

1/2+δ/2p1/2+γ/2T−1/2) +Op(1).

n−1p−1‖Ξ̂t −Ξt‖22 = Op(n
δpγT−1 + n−1/2+δ/2p−1/2+γ/2T−1/2 + n−1p−1).

4.7.2 Space factor loading matrix re-estimation

Lemma 13. If n1 � n2 � n, then

n−1/2p−1/2‖Ψ̂it −Ψit‖2 = Op(n
δ/2pγ/2T−1/2) +Op(n

−1/2p−1/2), (4.43)

for i = 1, 2, and

n−1p−1‖Ψ̂t −Ψt‖22 = Op(n
δpγT−1 + n−1/2+δ/2p−1/2+γ/2T−1/2 + n−1p−1) (4.44)

Proof. We have

‖Ψit −Ψit‖2 =
∥∥Q̂AiẐt −QAiZt

∥∥
2

=
∥∥Q̂AiQ̂

′
Ai(QAiZtQ

′
B +Et)Q̂B −QAiZt

∥∥
2

=
∥∥Q̂AiQ̂

′
AiQAiZtQ

′
B(Q̂B −QB) + (Q̂AiQ̂

′
Ai −QAiQ

′
Ai)QAiZt + Q̂AiQ̂

′
AiEtQ̂B

∥∥
2

≤
∥∥Q̂AiQ̂

′
AiQAiZtQ

′
B(Q̂B −QB)

∥∥
2

+
∥∥(Q̂AiQ̂

′
Ai −QAiQ

′
Ai)QAiZt

∥∥
2

+
∥∥Q̂AiQ̂

′
AiEtQ̂B

∥∥
2

Then, similar to the proof of Theorem 10, we have the desired results.

Let U t = Ψ̂t−Ψt and ∆npT = nδpγT−1+n−1/2+δ/2p−1/2+γ/2T−1/2+n−1p−1. Then

∆npT is the convergence rate of n−1p−1‖U t‖22. Since ‖U t‖22 ≤ ‖U t‖2F ≤ r‖U t‖22 where

r is fixed, we have n−1p−1‖U t‖2F = Op(∆npT ).

Define W t = XtR
′
B, W = (W 1 · · ·W T ), Ψ = (Ψ1 · · ·ΨT ) = AW . Assume

1
rTWW ′ = Id. The the columns of W compose of the eigenvectors of 1

nprT Ψ′Ψ =
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1
nprTW

′A′AW corresponding to the d nonzero eigenvalues. However, we only have

the estimate of Ψ̂ = (Ψ̂1 · · · Ψ̂T ). Thus, Ŵ and Â can be estimated from 1
nprT Ψ̂

′
Ψ̂ =

1
nprT (Ψ + U)′(Ψ + U), where U = (U1 · · ·UT ) is the approximation error from the

previous steps.

Let V npT be the d×d diagonal matrix of the first d largest eigenvalues of 1
nprT Ψ̂

′
Ψ̂ in

decreasing order. By definition of eigenvectors and eigenvalues, we have 1
nprT Ψ̂

′
Ψ̂Ŵ

′
=

Ŵ
′
V npT or 1

nprT Ψ̂
′
Ψ̂Ŵ

′
V −1npT = Ŵ

′
.

Define H = 1
nprTA

′AWŴ
′
V −1npT , then

Ŵ
′
−W ′H =

1

nprT
Ψ̂
′
Ψ̂Ŵ

′
V −1npT −

1

nprT
W ′A′AWŴ

′
V −1npT

=

(
1

nprT
W ′A′UŴ

′
+

1

npT
U ′AWŴ

′
+

1

nprT
U ′UŴ

′
)
V −1npT

= (N1 +N2 +N3)V
−1
npT .

Lemma 14. 1
rT ‖N1‖2F = 1

rT ‖N2‖2F = Op(n
−δp−γ∆npT ) and 1

rT ‖N3‖2F = Op(∆
2
npT ).

Proof. Note that ‖U‖2F = ‖Ψ̂ −Ψ‖2F =
∥∥∑T

t=1(Ψ̂t −Ψt)
∥∥2
F
≤ T max

1≤t≤T
‖Ψ̂t −Ψt‖2F =

Op(npT∆npT ) and ‖W ‖2F = ‖Ŵ ‖2F = Op(rT ) and r is fixed. In addition, we have

‖A‖2F � ‖A‖22 = Op(n
1−δp1−γ).

Thus,

1

rT
‖N1‖2F ≤ 1

n2p2r3T 3
‖W ‖2F ‖A‖2F ‖U‖2F ‖Ŵ ‖2F = Op(n

−δp−γ∆npT )

1

rT
‖N2‖2F ≤ 1

n2p2r3T 3
‖U‖2F ‖A‖2F ‖W ‖2F ‖Ŵ ‖2F = Op(n

−δp−γ∆npT )

1

rT
‖N3‖2F ≤ 1

n2p2r3T 3
‖U‖42‖Ŵ ‖2F = Op(∆

2
npT )

Lemma 15. (i) ‖V npT ‖2 = Op(n
−δp−γ), ‖V −1npT ‖2 = Op(n

δpγ).

(ii) ‖H‖2 = Op(1).

Proof. The d eigenvalues of V npT are the same as those of 1
nprT Ψ̂Ψ̂

′
= 1

npAA
′ +

1
nprTAWU ′+ 1

nprTUW
′A′+ 1

nprTUU
′, which follows from Ψ̂ = AW+U andWW ′/rT

= Id. Thus



112

‖ 1

nprT
Ψ̂Ψ̂

′
− 1

np
AA′‖2 ≤

1

nprT
‖AWU ′t‖2+

1

nprT
‖UW ′A′‖2+

1

nprT
‖UU ′t‖ = op(1).

Using the inequality for the kth eigenvalue, |λk(W ) − λk(W 1)| ≤ |W −W 1|, we

have |λk( 1
nprT Ψ̂Ψ̂

′
) − λ( 1

npAA
′)| = op(1). λk(

1
npAA

′) � n−δp−γ , k = 1, . . . , d. Thus,

‖V npT ‖min � n−δp−γ � ‖V npT ‖2, ‖V −1npT ‖min � nδpγ � ‖V
−1
npT ‖2, and ‖H‖2 = Op(1).

Lemma 16.

1

rT
‖Ŵ

′
−W ′H‖2F = Op(∆npT + nδpγ∆2

npT )

Proof. Follow from Lemma 6, 7 and 8.

Lemma 17.

‖H − Id‖F = Op

(
∆npT + nδpγ∆2

npT

)
+Op

(
∆npTT

−1 + nδpγ∆2
npTT

−1
)1/2

.

Proof. H = 1
nprTA

′AWŴ
′
V −1npT∥∥∥∥Id − 1

rT
ŴW ′H

∥∥∥∥
F

=

∥∥∥∥ 1

rT
Ŵ (Ŵ

′
−W ′H)

∥∥∥∥
F

≤ 1

rT
‖Ŵ

′
−W ′H‖2F +

1

rT
‖W (Ŵ

′
−W ′H)‖F

= Op

(
∆npT + nδpγ∆2

npT

)
+Op

(
∆npTT

−1 + nδpγ∆2
npTT

−1
)1/2

∥∥∥∥ 1
rT ŴW ′H −H ′H

∥∥∥∥
F

=

∥∥∥∥ 1
rT (Ŵ

′
−W ′H)′W ′H

∥∥∥∥
F

= Op

(
∆npTT

−1 + nδpγ∆2
npTT

−1
)1/2

Thus,∥∥∥∥Id −H ′H∥∥∥∥
F

= Op

(
∆npT + nδpγ∆2

npT

)
+Op

(
∆npTT

−1 + nδpγ∆2
npTT

−1
)1/2

In addition, by the definition of H = 1
nprTA

′AWŴ
′
V −1npT , we have

‖HV npT −
1

np
A′AH‖F =

1

nprT
A′AW (Ŵ

′
−W ′H) = Op

(
n−δp−γ(∆npT + nδpγ∆2

npT )−1/2
)
.

With the same argument of Proposition C.3 in Fan et al. (2016), we have

‖H − Id‖F = Op

(
∆npT + nδpγ∆2

npT

)
+Op

(
∆npTT

−1 + nδpγ∆2
npTT

−1
)1/2

.
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Theorem 11.

1

rT
‖Ŵ

′
−W ′‖2F = Op

(
∆npT + nδpγ∆2

npT

)
Proof.

1

rT
‖Ŵ

′
−W ′‖2F ≤

2

rT
‖Ŵ

′
−W ′H‖2F + 2‖H − Id‖2F = Op

(
∆npT + nδpγ∆2

npT

)

Proposition 2.

1

np

∥∥Â−A∥∥2
F

= Op (∆npT ) .

Proof.

Â =
1

rT
Ψ̂Ŵ

′

1

rT
‖Ψ‖22 = ‖ΨΨ′‖2 =

∥∥∥∥ 1

rT

T∑
t=1

ΨtΨ
′
t

∥∥∥∥
2

≤ max
1≤t≤T

‖ΨtΨ
′
t‖2/r = Op(n

1−δp1−γ)

1

np

∥∥Â−A∥∥2
F

=
1

np

∥∥∥∥ 1

rT
Ψ̂Ŵ

′
− 1

rT
ΨW ′

∥∥∥∥2
F

=
1

np

∥∥∥∥ 1

rT
(Ψ̂−Ψ)Ŵ

′
+

1

rT
Ψ(Ŵ

′
−W ′)

∥∥∥∥2
F

≤ 2
‖U‖2F
nprT

· 1

rT
‖Ŵ

′
‖2F + 2

‖Ψ‖2F
nprT

· 1

rT
‖Ŵ

′
−W ′‖2F

= Op

(
∆npT + n−δp−γ(∆npT + nδpγ∆2

npT )
)

= Op(∆npT )

4.7.3 Sieve approximation of space loading function

A(s) = (a1(s), · · · , ad(s)), now we want to approximate aj(s) with linear combination

of basis functions, the approximating functions are ĝj(s). We estimate ĝj(s) based

on estimated value Â·j ’s. Â·j = A·j + EA,·j . Since for n × d matrix A with fixed

column dimension d, ‖A‖22 ≤ ‖A‖2F ≤ d‖A‖22. we have ‖Â·j − A·j‖22 = Op(np∆npT ),

j = 1, . . . , d.

A·j = aj(s), then Â·j = âj(s) = aj(s) + ea,j(s).

Lemma 18. If Hölder class, then |aj(s)|2∞ � n−δp1−γ, |ea,j(s)|2∞ = Op(p∆npT ).
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Proof.

λmax(AA′) = λmax(
d∑
j=1

A·jA
′
·j) ≥ λmin(

d∑
j=1

A·jA
′
·j) ≥

d∑
j=1

λmin(A′·jA·j) =
d∑
j=1

n∑
i=1

A2
ij

λmin(AA′) = λmin(
d∑
j=1

A·jA
′
·j) ≤ λmax(

d∑
j=1

A·jA
′
·j) ≤

d∑
j=1

λmax(A′·jA·j) =
d∑
j=1

n∑
i=1

A2
ij

Since ‖A‖2min � ‖A‖2max � n1−δp1−γ , then ‖A·j‖2 � n1−δp1−γ .

If Hölder class, then |aj(s)|2∞ � n−δp1−γ by multivariate Taylor expansion and

Sandwich Theorem.

Lemma 19. ‖ĝj(s)− aj(s)‖∞ = Op(J
−κ
n n−δ/2p1/2−γ/2) +Op(

√
p∆npT ).

Proof. Following Theorem 12.6, 12.7 and 12.8 in Schumaker (2007), we have ‖ĝj(s) −

aj(s)‖∞ = ‖P âj(s) − aj(s)‖ ≤ ‖P a(s) − aj(s)‖ + ‖P ea,j(s) − ea,j(s)‖ + ‖ea,j(s)‖ =

Op(J
−κ
n n−δ/2p1/2−γ/2) +Op(

√
p∆npT ).

Theorem 12.

1

pT
‖ξ̂(s0)− ξ(s0)‖22 = Op(J

−2κ
n n−δp−γ + ∆npT + 1/T ) (4.45)

Proof. Let ξ′t(s0) = a′(s0)XtB = a′(s0)XtR
′
BQ
′
B

ξ′(s0) = (ξ′1(s0) · · · ξ′T (s0)) = (a′(s0)X1R
′
BQ
′
B · · ·a′(s0)XTR

′
BQ
′
B) = a′(s0)W (IT ⊗Q′B)

ξ̂
′
(s0) = ĝ′(s0)Ŵ (IT ⊗ Q̂

′
B).

ξ̂
′
(s0)− ξ′(s0) = ĝ′(s0)Ŵ

′
(IT ⊗ Q̂

′
B)− a′(s0)W ′(IT ⊗Q′B).

ξ̂(s0)− ξ(s0) = (IT ⊗ Q̂B)Ŵ
′
ĝ(s0)− (IT ⊗QB)QWa(s0)

= (IT ⊗ Q̂B)
(
Ŵ
′
ĝ(s0)−QWa(s0)

)
+
(
IT ⊗ (Q̂B −QB)

)
QWa(s0)

= (IT ⊗ Q̂B)Ŵ
′
(ĝ(s0)− a(s0)) + (IT ⊗ Q̂B)

(
Ŵ
′
−W ′

)
a(s0) +

(
IT ⊗ (Q̂B −QB)

)
W ′a(s0)
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1√
T
‖(IT ⊗ Q̂B)Ŵ

′
(ĝ(s0)− a(s0))‖2 ≤ 1√

T
‖IT ⊗ Q̂B‖2‖Ŵ

′
‖2‖ĝ(s0)− a(s0)‖2

= Op(J
−κ
n n−δ/2p1/2−γ/2 +

√
p∆npT )

1

T
‖(IT ⊗ Q̂B)

(
Ŵ
′
−W ′

)
a(s0)‖22 ≤ 1

T
‖IT ⊗ Q̂B‖22‖Ŵ

′
−W ′‖2‖a(s0)‖22

= Op

(
∆npT + nδpγ∆2

npT

)
Op(n

−δp1−γ)

= Op(n
−δp1−γ∆npT + p∆2

npT )

1√
T
‖
(
IT ⊗ (Q̂B −QB)

)
W ′a(s0)‖2 ≤ 1√

T
‖IT ⊗ (Q̂B −QB)‖2‖W ′‖2‖a(s0)‖2

= Op(n
δ/2pγ/2T−1/2)Op(n

−δ/2p1/2−γ/2)

= Op(
√
p/T )

Thus,

1

pT
‖ξ̂(s0)− ξ(s0)‖22 = Op(J

−2κ
n n−δp−γ + ∆npT + 1/T ). (4.46)
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4.8 Appendix

Table 4.3: Mean and standard deviations (in parentheses) of the estimated accuracy
measured by D(̂·, ·) for spatial and variable loading matrices. All numbers in the table
are 10 times the true numbers for clear representation. The results are based on 200
simulations.

γ = 0 γ = 0.5

T p n D(Â1,A1) D(Â2,A2) Average D(Â,A) D(B̂,B) D(Â1,A1) D(Â2,A2) Average D(Â,A) D(B̂,B)

60 10 50 0.68(0.1) 0.67(0.1) 0.68(0.08) 0.67(0.07) 0.53(0.11) 1.27(0.19) 1.25(0.21) 1.26(0.16) 1.25(0.15) 0.69(0.14)
120 10 50 0.45(0.06) 0.46(0.06) 0.45(0.05) 0.45(0.04) 0.5(0.12) 0.83(0.12) 0.84(0.12) 0.84(0.09) 0.84(0.08) 0.63(0.13)
240 10 50 0.31(0.04) 0.31(0.04) 0.31(0.03) 0.31(0.02) 0.49(0.11) 0.57(0.07) 0.57(0.08) 0.57(0.05) 0.57(0.04) 0.6(0.13)

60 20 50 0.5(0.07) 0.5(0.09) 0.5(0.06) 0.5(0.06) 0.52(0.08) 1.18(0.21) 1.18(0.24) 1.18(0.17) 1.17(0.15) 0.69(0.1)
120 20 50 0.34(0.05) 0.34(0.05) 0.34(0.03) 0.34(0.03) 0.5(0.07) 0.79(0.12) 0.79(0.12) 0.79(0.09) 0.78(0.08) 0.6(0.08)
240 20 50 0.23(0.03) 0.23(0.03) 0.23(0.02) 0.23(0.02) 0.47(0.06) 0.52(0.07) 0.52(0.07) 0.52(0.05) 0.52(0.05) 0.54(0.06)

60 40 50 0.32(0.06) 0.32(0.05) 0.32(0.04) 0.32(0.04) 0.49(0.07) 0.98(0.21) 0.95(0.19) 0.96(0.15) 0.95(0.13) 0.67(0.07)
120 40 50 0.21(0.03) 0.21(0.03) 0.21(0.02) 0.21(0.02) 0.48(0.05) 0.63(0.1) 0.62(0.1) 0.63(0.08) 0.62(0.07) 0.58(0.06)
240 40 50 0.15(0.02) 0.14(0.02) 0.14(0.01) 0.14(0.01) 0.46(0.05) 0.42(0.06) 0.41(0.06) 0.41(0.04) 0.41(0.03) 0.53(0.06)

60 10 100 0.63(0.06) 0.63(0.07) 0.63(0.05) 0.63(0.05) 0.36(0.07) 1.13(0.12) 1.13(0.13) 1.13(0.1) 1.13(0.09) 0.48(0.09)
120 10 100 0.43(0.04) 0.43(0.04) 0.43(0.03) 0.43(0.03) 0.35(0.07) 0.77(0.08) 0.77(0.07) 0.77(0.05) 0.77(0.05) 0.44(0.08)
240 10 100 0.3(0.03) 0.3(0.03) 0.3(0.02) 0.3(0.02) 0.34(0.07) 0.54(0.05) 0.53(0.05) 0.54(0.03) 0.54(0.03) 0.41(0.08)

60 20 100 0.47(0.05) 0.47(0.05) 0.47(0.04) 0.47(0.04) 0.35(0.05) 1.01(0.11) 1.02(0.11) 1.01(0.08) 1.01(0.08) 0.47(0.06)
120 20 100 0.32(0.03) 0.32(0.03) 0.32(0.02) 0.32(0.02) 0.34(0.05) 0.68(0.07) 0.68(0.07) 0.68(0.05) 0.68(0.05) 0.41(0.05)
240 20 100 0.22(0.02) 0.22(0.02) 0.22(0.01) 0.22(0.01) 0.32(0.05) 0.47(0.04) 0.47(0.04) 0.47(0.03) 0.47(0.03) 0.37(0.05)

60 40 100 0.29(0.03) 0.29(0.03) 0.29(0.02) 0.29(0.02) 0.34(0.04) 0.77(0.1) 0.77(0.1) 0.77(0.07) 0.77(0.07) 0.47(0.04)
120 40 100 0.2(0.02) 0.2(0.02) 0.2(0.01) 0.2(0.01) 0.32(0.04) 0.52(0.05) 0.51(0.05) 0.52(0.04) 0.52(0.04) 0.4(0.04)
240 40 100 0.14(0.01) 0.14(0.01) 0.14(0.01) 0.14(0.01) 0.32(0.03) 0.35(0.03) 0.36(0.03) 0.35(0.02) 0.35(0.02) 0.35(0.04)

60 10 200 0.63(0.05) 0.62(0.05) 0.63(0.04) 0.63(0.04) 0.26(0.06) 1.11(0.08) 1.1(0.08) 1.1(0.07) 1.1(0.07) 0.33(0.07)
120 10 200 0.43(0.03) 0.43(0.03) 0.43(0.02) 0.43(0.02) 0.25(0.05) 0.77(0.05) 0.76(0.05) 0.77(0.04) 0.77(0.04) 0.31(0.06)
240 10 200 0.3(0.02) 0.3(0.02) 0.3(0.01) 0.3(0.01) 0.24(0.05) 0.54(0.03) 0.54(0.03) 0.54(0.02) 0.54(0.02) 0.29(0.06)

60 20 200 0.47(0.04) 0.47(0.04) 0.47(0.03) 0.47(0.03) 0.25(0.03) 0.99(0.07) 0.98(0.07) 0.98(0.06) 0.98(0.06) 0.34(0.05)
120 20 200 0.32(0.02) 0.32(0.02) 0.32(0.02) 0.32(0.02) 0.24(0.04) 0.68(0.05) 0.67(0.04) 0.67(0.04) 0.67(0.03) 0.29(0.04)
240 20 200 0.22(0.01) 0.22(0.01) 0.22(0.01) 0.22(0.01) 0.23(0.03) 0.47(0.03) 0.47(0.03) 0.47(0.02) 0.47(0.02) 0.26(0.04)

60 40 200 0.29(0.03) 0.29(0.02) 0.29(0.02) 0.29(0.02) 0.24(0.03) 0.73(0.06) 0.73(0.05) 0.73(0.05) 0.73(0.05) 0.33(0.04)
120 40 200 0.2(0.01) 0.2(0.01) 0.2(0.01) 0.2(0.01) 0.23(0.02) 0.5(0.03) 0.5(0.03) 0.5(0.03) 0.5(0.03) 0.28(0.03)
240 40 200 0.14(0.01) 0.14(0.01) 0.14(0.01) 0.14(0.01) 0.22(0.02) 0.35(0.02) 0.35(0.02) 0.35(0.01) 0.35(0.01) 0.25(0.03)

60 10 400 0.61(0.04) 0.61(0.04) 0.61(0.04) 0.61(0.04) 0.18(0.04) 1.08(0.07) 1.08(0.07) 1.08(0.06) 1.08(0.06) 0.24(0.05)
120 10 400 0.42(0.02) 0.42(0.02) 0.42(0.02) 0.42(0.02) 0.17(0.04) 0.75(0.04) 0.75(0.04) 0.75(0.03) 0.75(0.03) 0.22(0.05)
240 10 400 0.3(0.01) 0.3(0.01) 0.3(0.01) 0.3(0.01) 0.17(0.04) 0.52(0.02) 0.53(0.02) 0.53(0.02) 0.53(0.02) 0.2(0.04)

60 20 400 0.46(0.03) 0.46(0.03) 0.46(0.03) 0.46(0.03) 0.18(0.03) 0.95(0.05) 0.95(0.06) 0.95(0.05) 0.95(0.05) 0.24(0.04)
120 20 400 0.31(0.02) 0.31(0.02) 0.31(0.01) 0.31(0.01) 0.17(0.02) 0.65(0.04) 0.65(0.03) 0.65(0.03) 0.65(0.03) 0.2(0.03)
240 20 400 0.22(0.01) 0.22(0.01) 0.22(0.01) 0.22(0.01) 0.16(0.02) 0.46(0.02) 0.46(0.02) 0.46(0.01) 0.46(0.01) 0.18(0.03)

60 40 400 0.29(0.02) 0.29(0.02) 0.29(0.02) 0.29(0.02) 0.17(0.02) 0.7(0.04) 0.7(0.05) 0.7(0.04) 0.7(0.04) 0.24(0.02)
120 40 400 0.19(0.01) 0.19(0.01) 0.19(0.01) 0.19(0.01) 0.16(0.02) 0.49(0.02) 0.48(0.02) 0.48(0.02) 0.48(0.02) 0.2(0.02)
240 40 400 0.13(0.01) 0.13(0.01) 0.13(0) 0.13(0) 0.16(0.02) 0.34(0.02) 0.34(0.01) 0.34(0.01) 0.34(0.01) 0.18(0.02)
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Table 4.4: Mean and standard deviations (in parentheses) of the mean squared predic-
tion errors (MSPE).

Spatial Temporal MAR(1) Temporal VAR(1)

T p n MSPE(ŷt(s0))) MSPE(ŷt+1(s))) MSPE(ŷt+2(s))) MSPE(ŷt+1(s))) MSPE(ŷt+2(s)))

60 10 50 0.486(0.089) 1.716(1.064) 1.823(1.201) 1.825(1.075) 2.019(1.257)
120 10 50 0.471(0.06) 1.658(1.121) 1.634(1.116) 1.705(1.133) 1.732(1.144)
240 10 50 0.47(0.041) 1.78(1.079) 1.588(1.244) 1.802(1.076) 1.624(1.229)

60 20 50 0.424(0.069) 1.592(1.004) 1.657(1.033) 1.69(1.032) 1.819(1.061)
120 20 50 0.424(0.048) 1.535(0.972) 1.547(1.111) 1.575(0.983) 1.634(1.128)
240 20 50 0.419(0.036) 1.619(0.985) 1.426(1.05) 1.64(0.988) 1.463(1.047)

60 40 50 0.537(0.085) 2.001(1.237) 2.101(1.353) 2.13(1.276) 2.308(1.39)
120 40 50 0.534(0.055) 2.006(1.345) 1.94(1.286) 2.065(1.36) 2.051(1.296)
240 40 50 0.53(0.037) 2.141(1.434) 1.834(1.237) 2.162(1.432) 1.877(1.23)

60 10 100 0.067(0.009) 1.597(0.966) 1.647(1.006) 1.685(0.969) 1.82(1.03)
120 10 100 0.066(0.006) 1.564(0.984) 1.502(0.95) 1.608(0.997) 1.593(0.973)
240 10 100 0.065(0.004) 1.631(0.92) 1.476(1.02) 1.65(0.915) 1.514(1.015)

60 20 100 0.058(0.008) 1.466(0.876) 1.508(0.901) 1.557(0.891) 1.663(0.926)
120 20 100 0.058(0.005) 1.45(0.883) 1.403(0.915) 1.489(0.891) 1.478(0.922)
240 20 100 0.058(0.004) 1.491(0.856) 1.317(0.864) 1.51(0.854) 1.353(0.859)

60 40 100 0.072(0.01) 1.845(1.075) 1.893(1.105) 1.975(1.113) 2.085(1.126)
120 40 100 0.072(0.006) 1.889(1.229) 1.765(1.076) 1.939(1.247) 1.859(1.077)
240 40 100 0.072(0.005) 1.961(1.223) 1.707(1.074) 1.984(1.22) 1.754(1.068)

60 10 200 0.015(0.002) 1.542(0.922) 1.597(0.972) 1.629(0.921) 1.766(1)
120 10 200 0.015(0.001) 1.515(0.976) 1.454(0.913) 1.557(0.982) 1.538(0.934)
240 10 200 0.015(0.001) 1.599(0.915) 1.42(0.988) 1.619(0.912) 1.458(0.988)

60 20 200 0.013(0.002) 1.419(0.86) 1.461(0.88) 1.51(0.88) 1.61(0.897)
120 20 200 0.013(0.001) 1.401(0.853) 1.358(0.88) 1.44(0.861) 1.429(0.883)
240 20 200 0.013(0.001) 1.464(0.859) 1.276(0.84) 1.481(0.86) 1.308(0.838)

60 40 200 0.015(0.002) 1.786(1.04) 1.836(1.099) 1.906(1.066) 2.02(1.122)
120 40 200 0.015(0.001) 1.828(1.211) 1.714(1.042) 1.875(1.22) 1.808(1.049)
240 40 200 0.015(0.001) 1.92(1.214) 1.652(1.031) 1.941(1.213) 1.698(1.027)

60 10 400 0.014(0.002) 1.63(0.965) 1.714(1.033) 1.727(0.965) 1.893(1.059)
120 10 400 0.014(0.001) 1.63(1.058) 1.556(0.975) 1.676(1.069) 1.647(1.009)
240 10 400 0.014(0.001) 1.711(0.985) 1.527(1.077) 1.728(0.983) 1.568(1.075)

60 20 400 0.012(0.002) 1.511(0.914) 1.561(0.926) 1.611(0.936) 1.719(0.949)
120 20 400 0.012(0.001) 1.502(0.923) 1.452(0.934) 1.543(0.931) 1.534(0.945)
240 20 400 0.012(0.001) 1.569(0.929) 1.373(0.915) 1.589(0.931) 1.407(0.912)

60 40 400 0.015(0.002) 1.907(1.108) 1.964(1.166) 2.033(1.14) 2.159(1.181)
120 40 400 0.015(0.001) 1.967(1.319) 1.831(1.107) 2.021(1.334) 1.937(1.117)
240 40 400 0.015(0.001) 2.062(1.314) 1.775(1.118) 2.086(1.31) 1.823(1.111)
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