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ABSTRACT OF THE DISSERTATION
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By MINGMIAN CHENG

Dissertation Director:

Norman Rasmus Swanson

This dissertation studies methodologies for hypothesis testing and forecasting in finan-

cial econometrics, and comprises two essays on these topics, respectively. The first

essay mainly aims to shed light on the importance of the proper application of jump

testing methods, while the second essay provides alternative methodological approaches

to volatility forecasting.

In Chapter 2, we examine and compare a variety of jump tests in the financial

econometrics literature. Numerous tests designed to detect realized jumps over a fixed

time span have been proposed and extensively studied in recent years. These tests

differ from “long time span” jump tests that detect jumps by examining the magnitude

of the intensity parameter in the data generating process of an asset. In this chapter,

a long time span jump test thereof called the CSS test, which is a variant of Corradi

et al. (2018), is compared with a variety of fixed time span jump tests, in a series of

Monte Carlo experiments. The CSS test is consistent against the null hypothesis of

zero jump intensity, while the fixed time span tests are not designed to detect jumps in

the data generating process, and instead detect realized jumps over a fixed time span.

An empirical investigation of individual, sector specific and market level stock prices is
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also carried out in order to contrast findings based on these different varieties of tests.

The fixed time span tests examined include the higher order power variation ASJ test

of Aı̈t-Sahalia and Jacod (2009), the classic bipower variation BNS test of Barndorff-

Nielsen and Shephard (2006), and the truncated power variation PZ test of Podolskij

and Ziggel (2010). It is found that both the ASJ test and the CSS test exhibit good

finite sample properties for time spans both short and long. The other tests suffer

from finite sample distortions under long time spans. When applied to stock price and

stock index data, the two aforementioned tests indicate that the prevalence of jumps is

not as universal as might be expected. Various sector ETFs and individual stocks, for

example, appear to exhibit no jumping behavior during a number of annual periods.

In Chapter 3, we use factor-augmented heterogeneous autoregressive (HAR)-type

models to predict the daily integrated volatility of asset returns. Our approach is based

on a proposed two-step dimension reduction procedure designed to extract latent com-

mon volatility factors from a large dimensional and high-frequency returns dataset with

267 constituents of the S&P 500 index. In the first step, we apply either least absolute

shrinkage and selection operator (LASSO) or elastic net shrinkage on estimates of in-

tegrated volatility of all constituents in the dataset, in order to select a subset of asset

return series for further processing. In the second step, we utilize (sparse) principal

component analysis to estimate latent common asset return factors, from which latent

integrated volatility factors are extracted. Although we find limited in-sample fit im-

provement, relative to a benchmark HAR model, all of our proposed factor-augmented

models result in substantial out-of-sample predictive accuracy improvement. In par-

ticular, forecasting gains are observed at market, sector, and individual-stock levels,

with the exception of the financial sector. Further investigation of the factor structures

for non-financial assets shows that industrial and technology stocks are characterized

by minimal exposure to financial assets, inasmuch as forecasting gains associated with

factor-augmented models for these types of assets are largely attributable to the inclu-

sion of non-financial stock price return volatility in our latent factors.
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Chapter 1

Introduction

Continuous-time financial econometrics and its application have received broad atten-

tion of both economists and practitioners in recent years. Asset prices (or returns)

and exchange rates are frequently modeled as continuous-time processes, such as (Itô-)

semimartingales (see e.g. Andersen et al. (2001), Chernov et al. (2003) and Aı̈t-Sahalia

and Jacod (2014)). A large variety of “in-fill” asymptotic theorems as the data sampling

interval ∆ → 0 have been developed and studied as well (see e.g. Jacod and Protter

(2011)). In this dissertation, hypothesis tests of continuous-time modeling and methods

for volatility forecasting are considered. They are of particular interests for the follow-

ing reasons. On one hand, a clear understanding and a correct specification of the data

generating process that governs asset price movements are crucial for consistent model

estimation and statistical inference. On the other hand, accurate prediction of asset

price volatility is a key ingredient for successful risk management and asset allocation.

In the second chapter entitled “A Comparison of Fixed and Long Time Span Jump

Tests”, we compare a variety of “fixed time span” jump tests, including the higher

order power variation ASJ test of Aı̈t-Sahalia and Jacod (2009), the classic bipower

variation BNS test of Barndorff-Nielsen and Shephard (2006), and the truncated power

variation PZ test of Podolskij and Ziggel (2010), with a “long time span” jump test

called the CSS test, which is a variant of Corradi et al. (2018), in a series of Monte Carlo

experiments as well as empirical studies. Fixed time span jump tests are designed to

detect realized jumps over a fixed time span, such as a day or a week, while the long time

span jump tests detect jumps by examining the magnitude of the intensity parameter

in the data generating process of an asset. As a result, the long time span CSS test

is consistent against non-zero jump intensity, while the fixed time span jump tests are

inconsistent. Heuristically, if researchers detect jumps in a particular sample path, they

might conclude that the jump intensity is non-zero. However, if no jumps are found

in a sample path, this does not mean there are no jumps in other sample paths, and
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thus they cannot conclude that the jump intensity parameter in the data generating

process is identically zero. Furthermore, fixed time span jump tests are sensitive to

sequential testing bias since the probability of rejecting the null of zero jump intensity

approaches unity when sequentially applying a growing numbers of fixed-T tests, even

if the true data generating process is purely continuous. In addition, we also examine

the performance of fixed-T tests on a long-span dataset, which is rarely studied in the

literature.

Our findings from Monte Carlo experiments can be summarized as follows. First, we

show that the finite sample power of daily jump tests against non-zero jump intensity

is low. For instance, when the jump intensity is 0.4 and the jump size parameter is our

largest, rejection rates of the ASJ, BNS and PZ tests at a 0.05 significance level are

only around 0.26, 0.38, and 0.36, respectively. Second, sequential testing bias grows

rapidly when we apply a growing sequence of fixed-T jump tests. Even for the most

conservative test (i.e., the ASJ test), empirical size is over 0.95 after 50 days. Third,

we show that the empirical sizes of fixed-T jump tests over samples with growing time

spans also increase. But the size distortion accumulates much more slowly when using

the ASJ test than when using the BNS and PZ tests. Moreover, the power of ASJ

test is very good in general. When the sample is over 50 days, the ASJ test is powerful

even for infrequent and weak jumps. Fourth, our CSS type test which is not robust to

leverage has good size properties if there is no leverage in the DGP, while empirical size

increases in T when the DGP is characterized by the presence of leverage, as expected.

On the other hand, our “leverage-robust” CSS type test is conservatively sized as it

has zero asymptotic size. Also, the power of the “leverage robust test”is found to be

good when a simple rule-of-thumb is used to specify coarser ∆, say ∆̃, as T is grows,

when constructing bootstrap critical values.

In our empirical analysis, we examine 5-minute intraday observations between 2006

and 2013 on twelve individual stocks, nine sector ETFs, and the market ETF. Our main

empirical findings are summarized as follows. First, using daily ASJ, BNS and PZ tests,

jumps are widely detected in asset prices over almost all time periods considered. For

instance, all three tests detect jumps on around 35%-40% of the days in 2006 for two
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of the ETFs that we examine. Second, these jump percentages have diminished over

time. Third, long-span jump tests tell a different story. Namely, the ASJ test, as well

as our leverage robust CSS type test indicate far fewer jumps than are found when

using daily tests.

In the third chapter entitled “Latent Common Volatility Factors: Capturing Elusive

Predictive Accuracy Gains When Forecasting Volatility”, we use factor-augmented het-

erogeneous autoregressive (HAR)-type models to predict the daily integrated volatility

of asset returns. Our approach is based on a proposed two-step dimension reduction

procedure designed to extract latent common volatility factors from a large dimensional

and high-frequency returns dataset in extensive forecasting experiments. In the first

step, we apply either least absolute shrinkage and selection operator (LASSO) or elastic

net shrinkage on estimates of integrated volatility of all constituents in the dataset, in

order to select a subset of asset return series for further processing. In the second step,

we utilize (sparse) principal component analysis to estimate latent common asset return

factors, from which latent integrated volatility factors are extracted.

Our dataset consists of intra-day observations on 267 constituents of the S&P 500

index, 9 sector ETFs, and one market EFT (SPY). Data were analyzed for the sample

period from January 3, 2006 to December 31, 2010. We report the results based on

prediction of SPY, 9 sector ETFs, and 11 individual stocks, for the period of July 1, 2009

to December 31, 2010. Our key findings are summarized below. First, in-sample fit is

surprisingly stable across different models, with most R2 values ranging rather tightly

between 0.35 and 0.55. Second, for ex ante prediction, data frequency is crucial. Our

factor augmented HAR models generally yield the “best” predictions using 5-minute

frequency data. So we recommend using the 5-minute frequency, as a general rule-of-

thumb. Third, and perhaps most importantly, predictive accuracy improves appreciably

when latent common volatility factors are included in benchmark HAR-type models.

For example, for Johnson & Johnson, the benchmark model using 5-minute frequency

data achieves an out-of-sample R2 value of only 0.14. This is approximately one-third

of the out-of-sample R2 value associated with our “best” factor-augmented model. This

pattern occurs for many firms and sectors, as well as for the market ETF. Fourth, there
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is an important wrinkle to the above story. Namely, for financial assets, out-of sample

R2 values are approximately 0 in some cases. Finally, financial stocks are frequently

selected in our first variable selection step. However, they are often assigned small

weights in the second step. For instance, when we forecast the volatility of our energy

sector ETF using 1-minute frequency data, over 33% of the most frequently selected

stocks in the first step are in financial sector. However, the average weight assigned by

PCA to Goldman Sachs is only around 0.09, while the corresponding weight assigned to

Texas Instruments is around double that. As a result, it is very likely that the marginal

predictive content of common volatility factors is largely accounted for by information

in sectors other than the financial sector.
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Chapter 2

A Comparison of Fixed and Long Time Span Jump Tests

2.1 Introduction

In risk management and financial engineering, investors and researchers often require

knowledge of the data generating process (DGP) that governs asset price movements.

For example, asset prices are frequently modeled as continuous-time processes, such

as (Itô-) semimartingales (see, e.g. Aı̈t-Sahalia (2002a,b), Chernov et al. (2003), and

Andersen et al. (2007b)). At the same time, investors and researchers are also inter-

ested in nonparameterically estimable quantities such as spot/integrated volatility (see,

e.g. Barndorff-Nielsen (2002), Barndorff-Neilsen and Shephard (2003), Todorov and

Tauchen (2011), and Patton and Sheppard (2015)), jump variation (see, e.g. Barndorff-

Nielsen and Shephard (2004), Andersen et al. (2007a), and Corsi et al. (2009)), leverage

effects (see, e.g. Kalnina and Xiu (2017) and Aı̈t-Sahalia et al. (2016)), and jump ac-

tivity (see e.g. Aı̈t-Sahalia and Jacod (2011) and Todorov (2015)). In this paper, we

add to the jump testing literature by carrying out an extensive Monte Carlo and em-

pirical analysis of jump detection using so-called “fixed time span” jump tests (see, e.g.

Barndorff-Nielsen and Shephard (2006), Lee and Mykland (2008), Aı̈t-Sahalia and Ja-

cod (2009), Corsi et al. (2010), and Podolskij and Ziggel (2010)) and “long time span”

jump tests (see e.g. Corradi et al. (2014, 2018) (CSS )). The reason why a “horse-race”

between alternative jump tests of these varieties is of interest is because it is well known

that tests constructed using observed sample paths of asset returns on a “fixed time

span”, such as a day or a week, are not consistent, and are sensitive to sequential testing

bias. On the other hand, the CSS type test that we examine, which is based on direct

evaluation of the data generating process, is consistent and asymptotically correctly

sized when the time span, T →∞, and the sampling interval, ∆→ 0.

One reason why detecting jumps using long time span tests is of potential interest is

that empirical researchers often estimate DGPs after testing for jumps using fixed time
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span tests. However, when estimating jump diffusions, drift, volatility, jump intensity

and jump size parameters are usually jointly estimated. This is problematic if the jump

intensity is identically zero, since parameters characterizing jump size are unidentified,

and consistent estimation of the rest of the parameters is thus no longer feasible (see

Andrews and Cheng (2012)). As a result, testing for jumps via pretesting for zero

jump intensity is a natural alternative to the use of nonparametric fixed time span

jump tests. In addition to the issue of identification, if researchers detect jumps in

a particular sample path, they might conclude that the jump intensity is non-zero.

However, if no jumps are found in a sample path, this does not mean there are no

jumps in other sample paths, and hence that a DGP should be estimated with no jump

component.

We consider two CSS type jump tests. Both of these build on earlier work of

Aı̈t-Sahalia (2002a,b), and are special cases of the leverage robust test introduced in

Corradi et al. (2018).1 One test assumes no leverage. The other test is robust to

leverage, and is a rescaled version of the no leverage test. Both tests are derived under

the assumption that E
((
Yk∆ − Y(k−1)∆

)3)
= 0, whenever there are no jumps, where

Yk∆ = lnXk∆ − ∆
T

∑n
k=2 lnXk∆ and Y(k−1)∆ = lnX(k−1)∆ − ∆

T

∑n
k=2 lnX(k−1)∆, and

where the X are asset prices.

In the Monte Carlo and empirical analyses discussed in the sequel, the finite sample

properties of three representative fixed time span tests as well as the CSS type tests are

investigated. The three “fixed-T” tests include the higher order power variation test

of Aı̈t-Sahalia and Jacod (2009) (ASJ ), the classic bipower variation test of Barndorff-

Nielsen and Shephard (2006) (BNS ), and the truncated power variation test of Podolskij

and Ziggel (2010) (PZ ). These tests are chosen to be representative of three broader

classes of fixed-T tests that utilize multipower variation, higher order power variation,

and truncation. For a detailed comparison of more fixed-T tests, refer to Theodosiou

and Zikes (2009) and Dumitru and Urga (2012). These authors concisely summarize and

compare a large group of existing jump tests via extensive Monte Carlo experiments.

1The tests are variants of the test discussed in Corradi et al. (2018) that originally appeared in
Corradi et al. (2014).
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However, it is worth noting that very few researchers examine the performance of fixed-

T tests on a long-span dataset. A key exception is Huang and Tauchen (2005), who

examine a “long time span” BNS type test. In this interesting paper, the authors find

that the empirical size of the BNS test deviates from the nominal size more significantly

as the time span increases; and that size distortion becomes even more substantial if the

sample path is more volatile but still continuous. As a consequence, a null of zero jump

intensity is more likely to be overrejected and it is possible to falsely identify a jump

diffusion process when it is purely continuous. They suggest that an appropriate way

to solve both inconsistency and size distortion problems involves using test statistics

that are asymptotically valid under a double asymptotic scheme where both T → ∞

and ∆→ 0.

Our findings can be summarized as follows. First, we show that the finite sample

power of daily jump tests against non-zero jump intensity is low, particularly when

jumps are infrequent or jump magnitudes are “weak”. For instance, when the jump

intensity is 0.4 and the jump size parameter is our largest, rejection rates of the ASJ,

BNS and PZ tests at a 0.05 significance level are only around 0.26, 0.38, and 0.36,

respectively. Second, sequential testing bias grows rapidly as the time span increases.

The size of a joint test based on the strategy of sequentially performing many fixed-T

daily tests approaches unity very quickly. Even for the most conservative test (i.e., the

ASJ test), empirical size is over 0.95 after 50 days. Importantly, we also show that the

empirical sizes of fixed-T jump tests over samples with growing time spans also increase

in T . Specifically, the size of the PZ test over a sample of 300 days is close to one. The

empirical size of the BNS test is twice as large as the nominal size, when the sample is

over 300 days. For the ASJ test, empirical size also increases as the time span increases.

However, as long as the sample is not too long, say more than 150 days, the ASJ test is

surprisingly well sized. More generally, size distortion accumulates much more slowly

when using the ASJ test than when using the BNS and PZ tests. Moreover, the power

of ASJ test is very good for all long time spans, as long as jumps are not too rare and

too weak. When the sample is over 50 days, the ASJ test is powerful even for infrequent

and weak jumps. Fourth, our CSS type test which is not robust to leverage has good
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size properties, even when the sample is very long, such as 500 days, if there is no

leverage in the DGP, while empirical size increases in T when the DGP is characterized

by the presence of leverage, as expected. On the other hand, our “leverage-robust”

CSS type test is conservatively sized. This is not surprising, since the test has zero

asymptotic size.2 Also, the power of the “leverage robust test”, while not as good as

that of the “non leverage-robust” test, is found to be good when a simple rule-of-thumb

is used to specify coarser ∆, say ∆̃, as T is grows, when constructing bootstrap critical

values, in order to mitigate the effect on finite sample power of the use of adjustment

term accounting for leverage.

In our empirical analysis, we examine 5-minute intraday observations between 2006

and 2013 on twelve individual stocks, nine sector ETFs, and the market (SPDR S&P500)

ETF. Our main empirical findings are summarized as follows. First, using daily ASJ,

BNS and PZ tests, jumps are widely detected in asset prices over almost all time pe-

riods considered. Moreover, in some cases, the annual percentage of jump days seems

inconceivably large. For instance, all three tests detect jumps on around 35%-40% of

the days in 2006 for two of the ETFs that we examine. Second, these jump percentages

have diminished over time. Third, long-span jump tests tell a different story. Namely,

the ASJ test, as well as our leverage robust CSS type test indicate far fewer jumps

than are found when using daily tests. This finding has important implications for both

specification and estimation of asset price models.

The rest of the paper is organized as follows. Section 2.2 outlines the theoretical

framework and introduces notation. Section 2.3 discusses statistical issues associated

with testing for jumps. Section 2.4 discusses the long time span jump tests that we

examine, and Section 2.5 briefly discusses the extant fixed time span tests examined

in the sequel. Section 2.6 reports results from our Monte Carlo experiments. Section

2.7 presents the results of our empirical analysis of various stock price and price index

data. Finally, Section 2.8 contains concluding remarks.

2The long span test in Corradi et al. (2018) is robust to leverage and is correctly asymptotically
sized. They achieve this by introducing a threshold variance estimator with which to scale their test,
rather than relying on the bootstrap, as is done in the variant of their test examined in this paper.
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2.2 Setup

We use the setup of Corradi et al. (2018). Namely, assume that (log-)asset prices

are recorded at an equally spaced discrete interval, ∆ = 1
m , where m is the total

number of observations on each trading day. In our model, we assume that ∆→ 0; or

equivalently that m → ∞. Log-prices follow a jump diffusion model defined on some

filtered probability space (Ω,F, (Ft)t≥0,P), with

d lnXt = µdt+
√
VtdW1,t + ZtdNt, (2.1)

where µ is the drift term,
√
Vt is the spot volatility, and W1,t is an adapted standard

Brownian motion (i.e., it is Ft-measurable for each t ≥ 0). Here, Vt is defined according

to either (i), (ii), (iii), or (iv), as follows:

(i) a constant:

Vt = v for all t; (2.2)

(ii) a measurable function of the state variable:

Vt is Xt-measurable; (2.3)

(iii) a stochastic volatility process without leverage:

dVt = µV,t(θ)dt+ g (Vt, θ) dW2,t, E (W1,tW2,t) = 0; (2.4)

(iv) a stochastic volatility process with leverage:

dVt = µV,t(θ)dt+ g (Vt, θ) dW2,t, E (W1,tW2,t) = ρ 6= 0. (2.5)

Evidently, the volatility process is quite general, although we do not consider jumps in

volatility.

Now, define,

Pr (Nt+∆ −Nt = 1|Ft) = λt∆ + o (∆) , (2.6)

Pr (Nt+∆ −Nt = 0|Ft) = 1− λt∆ + o (∆) , (2.7)

and

Pr (Nt+∆ −Nt > 1|Ft) = o (∆) , (2.8)



10

where λt characterizes the jump intensity. The jump size, Zt, is identically and in-

dependently distributed with density f(z; γ). Equation (2.8) implies that we rule out

infinite-activity jumps.

When constructing the fixed time span realized jump tests discussed in the sequel,

we remain agnostic about the jump generating process. However, for the case of our

long time span jump intensity tests, we must provide a moderate amount of additional

structure. This is one of the key trade-offs associated with using either variant of test.

In particular, following Corradi et al. (2018), we consider two cases. First, Nt, which is

the number of jump arrivals up to t, follows a counting process, such as the widely used

Poisson process. In this case, λt = λ, for all t. Second, jumps may be “self-exciting”,

in the sense that the jump intensity follows Hawkes diffusion (see Bowsher (2007) and

Aı̈t-Sahalia et al. (2015)), with

dλt = a (λ∞ − λt) dt+ βdNs, (2.9)

where λ∞ ≥ 0, β ≥ 0, a > 0, and a > β, so that the process is mean reverting with

E(λt) = aλ∞
a−β . As noted in Corradi et al. (2018), if λ∞ = 0, then E(λt) = 0, which

implies that λt = 0, a.s. for all t. This implies that Nt = 0, a.s., for all t. As a result,

β, a and γ in this case are all unidentified. On the other hand, if λ∞ > 0, then β

and γ are identified. But if β = 0, a is not identified. These observations highlight

the importance of pretesting for λ∞ = 0 against λ∞ > 0, in order to obtain consistent

estimation of parameters in the case of Hawkes diffusions.

In light of the above discussion, we are interested in testing

H0 : λ = 0

versus

HA : λ > 0,

where λ is the constant jump intensity, in the case of Poisson-type jumps; and is the

expectation of the stochastic jump intensity (i.e. λ = E(λt)), in the case of self-exciting

jumps.3 This is a nonstandard inference problem because, under H0, some parameters

3Note that λ∞ = (>) 0 if and only if E(λt) = (>) 0.
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are not identified, and a parameter lies on the boundary of the null parameter space.

Before discussing the tests that are compared in our Monte Carlo experiments, we

first provide some heuristic motivation for long time span jump testing. This discussion

follows Corradi et al. (2014), who also provide complete details on the CSS type tests

that we consider in the sequel.

2.3 Heuristic Discussion

In recent years, a large variety of tests for realized jumps have been proposed and

studied. One common feature of the preponderance of these tests is that they are all

carried out using high-frequency observations over a fixed time span and justified by

in-fill asymptotic theorems. Therefore, they have power against realized jumps over

fixed time spans; and none are consistent against the alternative of λ > 0. Many of the

tests can be considered as Hausman-type tests in which a comparison of two realized

measures of the integrated volatility is made, where one is robust to jumps, and one is

not. Under the null of no jumps, both consistently estimate the integrated volatility.

Under the alternative of jumps, however, the consistency of the non-robust realized

measure fails. Instead, it estimates the total quadratic variation that contains the

contribution from jump components. As a result, these two realized measures differ in

the presence of jumps. In general, Hausman-type tests are designed to detect whether∑Nt+1

j=Nt
c2
j = 0 or

∑Nt+1

j=Nt
c2
j > 0, where Nt denotes the number of jumps up to time t, and

cj is the (random) size of the jumps. However, λ > 0 does not imply that
∑Nt+1

j=Nt
c2
j > 0,

given that Pr (Nt+1 −Nt > 0) < 1. Therefore, such tests have power against realized

jumps, but not necessarily against positive jump intensity.

Two techniques are often employed in practice to construct the jump-robust realized

measures. The first uses multipower variations, such as bipower variation or tripower

variation. Under these measures, the effect of jumps is asymptotically “removed” by

using the product of consecutive high-frequency observations. The second uses jump

thresholding that allows for the separation of jump and continuous components, based

on the difference between their orders of magnitude. (see, e.g. Mancini (2009) and Corsi
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et al. (2010)). Recent higher order power variation tests are motivated by the fact that

for p > 2,
∑n−1

i=1

∣∣lnX(t+(i+1)∆ − lnXt+i∆

∣∣p converges to
∑

t≤s≤t+1 |lnXs − lnXs−|p ,

where
∑

t≤s≤t+1 |lnXs − lnXs−|p is strictly positive if there are jumps, and zero oth-

erwise (see, e.g. Aı̈t-Sahalia and Jacod (2009) and Aı̈t-Sahalia et al. (2012)). In this

case, however, test power obtains still because of realized jumps, and not because of

positive jump probability.

Additionally, other recent tests related to those discussed above have been proposed

that are based on comparisons using pre-averaged volatility measures, in order to obtain

tests that are robust to microstructure noise (see, e.g. Podolskij and Vetter (2009a,b)

and Aı̈t-Sahalia et al. (2012)).

In the Monte Carlo and empirical experiments reported in this paper, we consider

three fixed time span tests based on multipower variation, jump thresholding and higher

order power variation, respectively.

Generally, jump tests performed over a fixed time span are designed to distinguish

between:4

ΩC
t,l = {ω : s→ lnXs(ω) | ∆ lnXs = lnXs(ω)− lnXs−(ω) = 0, ∀s ∈ [t, t+ l)}

and

ΩJ
t,l = {ω : s→ lnXs(ω) | ∆ lnXs = lnXs(ω)− lnXs−(ω) 6= 0, ∀s ∈ [t, t+ l)} ,

where l indicates a fixed time span. Hence, all of the tests discussed above are dependent

upon pathwise behavior. Clearly, one might decide in favor of ΩC
t,l, even if λ > 0, simply

because jumps are by coincidence absent over the interval [t, t + l). Now, in order to

carry out a consistent test against positive jump intensity, two approaches may be used.

First, one may consider the following joint hypothesis:

ΩC
T = ∩T−1

t=0 ΩC
t,l, as T →∞,

versus its negation. Here, the objective is to test the joint null hypothesis that none

of the fixed-span sample paths contain jumps. In fact, under mild conditions on the

degree of heterogeneity of the process, failure to reject ΩC
∞ = limT→∞ ∩T−1

t=1 ΩC
t,l implies

4Jump test inconsistency has been pointed out by Huang and Tauchen (2005) and Aı̈t-Sahalia and
Jacod (2009), among others.
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failure to reject λ = 0. The difficulty lies in how to implement a test for ΩC
T , when T

gets large. Needless to say, sequential application of fixed time span jump tests leads to

sequential test bias, and for T large, ΩC
T is rejected with probability approaching unity.

This is because the empirical size of the joint hypothesis test based on the sequential

strategy is α̂T = 1 −
∏T
i=1(1 − α̂i), where α̂i is the empirical size of the ith individual

fixed time span test. As a result,

lim
T→∞

α̂T = lim
T→∞

1−
T∏
i=1

(1− α̂i)

= 1− lim
T→∞

T∏
i=1

(1− α̂i)

= 1.

In our Monte Carlo simulations, we illustrate this issue under a set of experiments

conducted with an increasing time span. One common approach to this problem is

based on controlling the overall Family-Wise Error-Rate (FWER), which ensures that

no single hypothesis is rejected at a level larger than a fixed value, say α. This is

typically accomplished by sorting individual p-values, and using a rejection rule which

depends on the overall number of hypotheses. For further discussion, see Holm (1979),

who develops modified Bonferroni bounds, White (2000), who develops the so-called

“reality check”, and Romano and Wolf (2005), who provide a refinement of the reality

check. However, when the number of hypotheses in the composite grows with the

sample size, the null will (almost) never be rejected. In other words, approaches based

on the FWER are quite conservative.

An alternative approach, which allows for the number of hypotheses in the composite

to grow to infinity, is based on the Expected False Discovery Rate (E-FDR). When using

this approach, one controls the expected number of false discoveries (rejections). For

further discussion, see Benjamini and Hochberg (1995) and Storey (2003). Although

the E-FDR approach applies to the case of a growing number of hypotheses, it is very

hard to implement in the presence of generic dependence across p-values, as in our

context.

The above discussion, when coupled with issues of identification and test consistency,
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provides ample impetus for using long time span jump tests of the variety discussed

in the sequel. Still, it should be noted that researchers have shown good performance

of fixed time span tests over a day or a week, and we provide further evidence on this

front in our Monte Carlo experiments. However, almost no one considers performing

the tests over a year or even a decade. The only exception that we are aware of is Huang

and Tauchen (2005). They propose using “full-sample statistics” based on BNS test

statistics. They show that when the time span is long, the BNS test over-rejects the

null of no realized jumps, since the approximation error on a short interval accumulates

as the time span increases. Consequently, the empirical size is biased upwards.

2.4 Long Time Span Jump Intensity Test

Assume the existence of a sample of n observations over an increasing time span, T,

and a shrinking discrete interval ∆, so that n = T
∆ , with T → ∞ and ∆ → 0. Our

interest lies in the following hypotheses:

H0 : λ = 0

versus

HA = H
(1)
A ∪H

(2)
A :

(
λ > 0 and E

(
(Zt − E (Zt))

3
)
6= 0
)

∪
(
λ > 0 and E

(
(Zt − E (Zt))

3
)

= 0
)
.

Notice that the alternative hypothesis is the union of two different alternatives, designed

to allow for both symmetric and asymmetric jump size density. This property also

characterizes the closely related jump test discussed in Corradi et al. (2018), although

their test differs in a key respect. Namely, their test is dependent on jump thresholding.

Let Yk∆ = lnXk∆−∆
T

∑n
k=2 lnXk∆, and Y(k−1)∆ = lnX(k−1)∆−∆

T

∑n
k=2 lnX(k−1)∆.

Also, let

λ̂T,∆ =
1

T

n∑
k=2

(
Yk∆ − Y(k−1)∆

)3
.

Here, λ̂T,∆ is the demeaned sample third moment. Consider the statistic

LTST,∆ =

√
T

∆
λ̂T,∆. (2.10)
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The asymptotic behavior of LTST,∆ can be analyzed under the following assumption.

Assumption A: (i) lnXt is generated by equation (2.1) and Vt is defined in equations

(2.2), (2.3), or (2.4). (ii) lnXt is generated by equation (2.1) and Vt is defined in

equation (2.5). For C a generic constant, (iii) E
(
|Vt|k

)
≤ C, k ≥ 3, (iv)Nt satis-

fies equations (2.6)-(2.8), and λt is either constant, or satisfies equation (2.9). (v)

The jump size, Zt, is independently and identically distributed, and E
(
|Zt|k

)
≤ C, for

k ≥ 6.

Corradi et al. (2014) show that under assumptions A(i) and A(iii)-(v), assuming

that as n → ∞, T → ∞ and ∆ → 0, then under H0 : LTST,∆
d→ N (0, ω0) ,with

ω0 = 15E
(
V 3
k∆

)
+ 4 (E (Vk,∆))3 − 12E (Vk,∆)E

(
V 2
k,∆

)
. Also, they prove that under

H
(1)
A , there exists an ε > 0, such that: limT→∞,∆→0 Pr

(
∆√
T
|LTST,∆| > ε

)
= 1; and

under H
(2)
A , there exists an ε > 0, such that: limT→∞,∆→0 Pr (∆ |LTST,∆| > ε) = 1.

It follows immediately that LTST,∆ converges to a normal random variable under

the null hypothesis, diverges at rate
√
T

∆ under the alternative of asymmetric jumps,

and diverges at the slower rate of 1
∆ under the alternative of symmetric jumps.

Given that the variance is of a different order of magnitude under the null and

under each alternative, the “standard” nonparametric bootstrap is not asymptotically

valid. This issue arises because the variance of the bootstrap statistic mimics the sample

variance. This implies that the bootstrap statistic is of order ∆−1 under the alternative.

This is not be a problem under H
(1)
A , since the statistic is of order

√
T∆−1, but is a

problem under H
(2)
A , since the actual and bootstrap statistics would be of the same

order. To ensure power against H
(2)
A , it suffices to ensure that the bootstrap statistic

is of a smaller order than the actual statistic. This can be accomplished by resampling

observations over a rougher grid, ∆̃, using the same time span, T.

Set the new discrete interval to be ∆̃, such that ∆/∆̃ → 0, and resample, with

replacement,(
Y ∗
k∆̃
− Y ∗

(k−1)∆̃
, ..., Y ∗

ñ∆̃
− Y ∗

(ñ−1)∆̃

)
from

(
Y
k∆̃
− Y

(k−1)∆̃
, ..., Y

ñ∆̃
− Y

(ñ−1)∆̃

)
, where ñ =
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T

∆̃
. Now, let

λ̃
T,∆̃

=
1

T

ñ∑
k=2

(
Y
k∆̃
− Y

(k−1)∆̃

)3
,

and

λ̃∗
T,∆̃

=
1

T

ñ∑
k=2

(
Y ∗
k∆̃
− Y ∗

(k−1)∆̃

)3
.

Further, define the bootstrap statistic as

LTS∗
T,∆̃

=

√
T

∆̃

(
λ̃∗
T,∆̃
− λ̃

T,∆̃

)
.

Finally, let c∗
α,B,∆,∆̃

and c∗
(1−α),B,∆,∆̃

be the (α/2)th and (1−α/2)th critical values of the

empirical distribution of LTS∗
T,∆̃

, constructed using B bootstrap replications. Corradi

et al. (2014) show that under assumptions A(i) and A(iii)-(v), and assuming that as

n→∞, B →∞, T →∞, ∆→ 0, ∆̃→ 0 and ∆/∆̃→ 0,then under H0 :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ LTST,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 1− α;

and under H
(1)
A ∪H

(2)
A :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ LTST,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 0.

It is immediate to see that rejecting the null whenever
√
T

∆ λ̂T,∆ < c∗
α/2,B,∆,∆̃

or
√
T

∆ λ̂T,∆ > c∗
(1−α/2),B,∆,∆̃

, and otherwise failing to reject, delivers a test with asymptotic

size equal to α and asymptotic power equal to unity. Note that the bootstrap statistic

is of P ∗−probability order 1

∆̃
under both H

(1)
A and H

(2)
A , while the actual statistic is

of P−probability order
√
T

∆ under H
(1)
A and 1

∆ under H
(2)
A . Hence, the condition that

∆/∆̃→ 0 ensures unit asymptotic power under H
(2)
A .

The LTST,∆ test is not robust to leverage. In particular, the results presented above

rely on the fact that under the null of no jumps, returns are symmetrically distributed.

More precisely, all results are derived under the assumption that E
((
Yk∆ − Y(k−1)∆

)3)
=

0, whenever there are no jumps. However, in the presence of leverage, (i.e. Vt is gener-

ated as in (2.5)), E

((∫ k∆
(k−1)∆ V

1/2
s dW1,s

)3
)
6= 0, and is instead of order ∆2. For exam-

ple, if Vt is generated by a square root process (i.e., dVt = κ (θ − Vt) dt+ ηV
1/2
t dW2,t),

then
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E
((
Yk∆ − Y(k−1)∆

)3)
= λE (Zt − E (Zt))

3 ∆ + ηθρ
2κ ∆2 (see Aı̈t-Sahalia et al. (2015)).

Although, the contribution to the third moment of the asymmetric jump component is

of a larger order than that of the leverage component, inference based on the compari-

son of LTST,∆ with the bootstrap critical values c∗
α,B,∆,∆̃

and c∗
(1−α),B,∆,∆̃

will lead to

the rejection of the null of no jumps, even if the null is true. To avoid spurious rejection

due to the presence of leverage, use the following modified statistic:

L̃TST,∆ =
1

T 1/2+ε
LTST,∆, (2.11)

with ε > 0, arbitrarily small. For this test statistic, Corradi et al. (2014) show that

under assumptions A(ii)-(v) hold, and assuming that as n → ∞, T → ∞, ∆ → 0,

∆̃→ 0, and (T 1/2+ε∆)/∆̃→ 0, then under H0 :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ L̃TST,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 1;

and under H
(1)
A ∪H

(2)
A :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ L̃TST,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 0.

It follows that inference based on the comparison of L̃TST,∆ with the bootstrap

critical values c∗
α,B,∆,∆̃

and c∗
(1−α),B,∆,∆̃

delivers a test with zero asymptotic size and

unit asymptotic power.

2.5 Fixed Time Span Realized Jump Tests

In this section, we briefly review three fixed time span realized jump tests that are

evaluated in our Monte Carlo and empirical experiments. These tests are the ASJ,

BNS and PZ tests discussed above.

2.5.1 Aı̈t-Sahalia and Jacod (ASJ : 2009) Test

Aı̈t-Sahalia and Jacod (2009) propose a jump test based on calculating the ratio between

two realized higher order power variations with different sampling intervals ∆ and k∆,
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respectively, where k is an integer chosen prior to test construction. The pth order

realized higher order power variation is defined as follows,

B̂(p,∆) =

[1/∆]∑
k=2

| lnXk∆ − lnX(k−1)∆|p (2.12)

The ratio between two realized power variations with different sampling intervals is

then,

Ŝ(p, k,∆) =
B̂(p, k∆)

B̂(p,∆)
. (2.13)

The test statistic is defined as,

ASJ =
k
p
2
−1 − Ŝ(p, k,∆)√

V c
n

, (2.14)

where in the denominator, V c
n , can be estimated either using a truncated estimator,

V̂ c
n = ∆

Â(2p,∆)M(p, k)

Â(p,∆)2
, (2.15)

where Â(p,∆) is defined as follows,

Â(p,∆) =
∆1−p/2

µp

[1/∆]∑
k=2

| lnXk∆ − lnX(k−1)∆|p1{| lnXk∆−lnX(k−1)∆|≤α∆$}, (2.16)

or using a multipower variation estimator,

Ṽ c
n = ∆

M(p, k)Ã(p/([p] + 1), 2[p] + 2,∆)

Ã(p/([p] + 1), [p] + 1,∆)2
, (2.17)

where

Ã(r, q,∆) =
∆1−qr/2

µqr

[1/∆]−q+1∑
k=q

q−1∏
j=0

| lnX(k+j)∆ − lnX(k+j−1)∆|r, (2.18)

M(p, k) =
1

µ2
p

(kp−2(1 + k)µ2p + kp−2(k − 1)µ2
p − 2kp/2−1µk,p),

and

µr = E(|U |r) and µk,p = E(|U |p|U +
√
k − 1V |p),

for U, V
i.i.d∼ N(0, 1).

In practice, for any significance level α, if ASJ > Zα, where Zα is the (1 − α)th

quantile of the standard normal distribution, one rejects the null of no jumps on the

fixed interval [0, 1].
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2.5.2 Barndorff-Nielsen and Shephard (BNS : 2006) Test

The Barndorff-Nielsen and Shephard (2006) test compares the difference between two

estimators of integrated volatility; one which is robust to jumps and the other which

is not, to test for jumps in a particular sample path. Barndorff-Nielsen and Shephard

(2004) introduce the realized bipower variation (BPV ) which is a robust estimator of

the integrated volatility. Namely, they consider

BPV =
π

2
(

m

m− 1
)

[1/∆]∑
k=2

| lnX(k+1)∆ − lnXk∆|| lnXk∆ − lnX(k−1)∆|, (2.19)

where m = [1/∆]. Realized BPV is a special case of the following realized multipower

variation with p = 2,

MPV (p) = µ−p2
p

(
m

m− p+ 1
)

[1/∆]−p+1∑
k=p

p−1∏
j=0

| lnX(k+j)∆ − lnX(k+j−1)∆|
2
p . (2.20)

In this paper, we analyze the following version of their test statistic:

BNS = ∆−
1
2

1− BPV
RV√

((π2 )2 + π − 5)max(1, TPV
(BPV )2 )

, (2.21)

where RV is the realized volatility (i.e., the sum of squared high-frequency returns),

and TPV is tripower variation (i.e., MPV (3)).

The authors prove that under the null, BNS
d−→ N(0, 1). As a result, one rejects

the null of no jumps on some fixed interval [0, 1], if the test statistic BNS > Zα.

2.5.3 Podolskij and Ziggel (PZ : 2010) Test

Podolskij and Ziggel (2010) modify the original truncated power variation statistic

proposed in Mancini (2009) by introducing a sequence of positive i.i.d. random variables

{ηi}i∈[1,[1/∆]], with expectation one and finite variance. Namely, they consider

T (lnX, p) = ∆
1−p

2

[1/∆n]∑
k=2

| lnXk∆ − lnX(k−1)∆|p(1− ηi1{| lnXk∆−lnX(k−1)∆|≤α∆$
n }).

(2.22)

The test statistic that they propose has the following form,

PZ =
T (lnX, p)

V ar∗(η)Â(2p,∆)
, (2.23)
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where Â(2p,∆) is the original truncated power variation in equation (2.16). The au-

thors prove that under the null of no jumps, PZ
d−→ N(0, 1), and explodes under the

alternative. As a result, one rejects the null if PZ > Zα.

2.6 Monte Carlo Simulations

In this section, we report the results of Monte Carlo experiments used to analyze the

finite sample properties of the tests introduced above. The simulations are designed to

show: (i) the relevance of inconsistency of the fixed time span tests, when tested against

non-zero jump intensity in the underlying DGP; (ii) the relevance (or lack thereof) of

sequential testing bias when performing daily jump tests, sequentially, along sample

paths with a long time span; (iii) the empirical size and power of fixed time span jump

tests when applied directly to samples with long time spans; and (iv) the finite sample

properties of the LTST,∆ and L̃TST,∆ tests.

The DGP under the null hypothesis in all simulations is the following stochastic

volatility model,

lnXt = lnX0 +

∫ t

0
µ̄ds+

∫ t

0
σsdWs,

σ2
t = σ2

0 + κσ

∫ t

0
(σ̄2 − σ2

s)ds+ ζ

∫ t

0

√
σ2
sdBs,

(2.24)

where the stochastic volatility follows a square root process. Leverage effects are char-

acterized by corr(dWs, dBs) = ρ, where ρ={0, -0.5}. Under the alternative, we simu-

late jumps as a compound Poisson process. Namely, we add
∑Nt

i=1 Ji to the log-price

equation, where Nt is a Poisson process characterized by intensity parameter λ, which

determines the frequency of jump arrivals, and the Ji are independently and identically

drawn from either a normal distribution or an exponential distribution, jump magni-

tude parameter. All parameter values for the various DGP permutations considered are

given in Table 2.1. Of note is that the parameter values used in our experiments are

chosen to regions of the parameter space where the tests shift from having strong finite

sample properties to having weaker finite sample properties. Thus, for example, while

we broadly mimic the parameterizations used in the extant literature (see e.g., Huang

and Tauchen (2005) and Aı̈t-Sahalia and Jacod (2009), in some cases, our parameters
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are slightly smaller. For example, Huang and Tauchen (2005) have jump magnitude

standard deviation parameters ranging from 0.5 to 2.0, while ours range from 0.25 to

1.25. The sampling frequency in our simulations is 5-minute (i.e., 78 observations per

day). Using the Milstein discretization scheme, we simulate log-price sample paths over

T = 500 days, so that there are 39000 observations in total, for each sample path.

Simulation results are calculated based on 1000 replications, and tests are implemented

using 0.05 and 0.10 significance levels.

Table 2.2 reports empirical size of daily fixed time span jump tests. In this table,

however, the test is applied in two different ways. For entries under the “Jump Days”

header, the empirical size of the daily tests are reported. One can think of these

experiments as reporting rejection frequencies of 500,000 tests (since T = 500 and there

are 1000 Monte Carlo replications). For entries under the “Sequential Testing Bias”

header, sequences of T tests (corresponding the the length of our daily samples) are run,

and overall rejection frequencies across all T tests are reported, where T ranges from

1 to 500 days. Thus, these entries indicate the accumulation of sequential testing bias

associated with repeated application of the tests across multiple days. Turning first to

the “Jump Days” empirical size results, it is evident that the BNS test is least favorably

sized, as expected, while the ASJ test is very accurately sized, across all DGP s; and is

not consistently undersized at 0.05 significance level, like the PZ test. Now, consider

the “Sequential Testing Bias” results in the table. As expected, sequential testing bias

leads to a 1.000 rejection rate as T increases beyond 50 days, and these rejections rates

are achieved surprisingly quickly, as T increases, although it is interesting to note that

the PZ test suffers from slightly less bias, for smaller values of T .

Table 2.3 reports empirical power of daily fixed time span jump tests, defined as the

rejection rate of daily jump tests across each individual day in each sample path, aver-

aged across all 1000 replications. As in Table 2.2, one can think of these experiments

as reporting rejection frequencies of 500,000 tests. Interestingly, power is often small,

even when λ = 0.4, which is a relatively large value, for finite-activity jumps. Among

the three jump tests, the ASJ test has the lowest power, while BNS and PZ test are
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somewhat better. In interpreting these results, note that, intuitively speaking, the em-

pirical power of daily jump tests against non-zero jump intensity is largely determined

by the magnitude of the jump intensity, since this parameter determines the frequency

or probability of jump arrivals. Even if these tests have good power against jumps

when they occur, for daily intervals without any jumps, it is not surprising to observe

that these tests do not reject the null in favor of non-zero jump intensity. Therefore,

as long as the intensity is finite, the probability of jumps not occurring on a particular

fixed interval is positive, which in turn affects the empirical power of all fixed time span

jump tests. However, the tests are also clearly impacted by jump size magnitude. For

example, when σ increase from 0.25 to 1.25 (compare DGPs 3 and 4 with DGPs 5

and 6 - symmetric jumps, or compare DGPs 7 and 8 with DGPs 9 and 10 - asymmet-

ric jumps), in which cases, empirical power increases by around 30% under symmetric

jumps. The exception is the BNS and PZ tests, which show little power improvement,

under the asymmetric jump case. However, there is still a trade-off between the three

tests, as the ASJ test has overall less power for the case of symmetric jumps.

Tables 2.4-2.7 report findings from experiments where the “entire” sample of T days

was used in a single application of the fixed time span tests. This testing strategy is

of interest, because there is no reason that fixed time span tests need be implemented

using only one day worth of data; and when they are implemented in this manner, they

constitute a direct alternative to the use of our long time span tests. First, turn to

Table 2.4, where empirical size is reported. Among the three tests, ASJ is the clear

winner, with size remaining stable even when T = 500. This is an interesting and

surprising result, suggesting the broad usefulness of the ASJ test. The BNS and PZ

tests perform as expected, on the other hand. For example, the empirical size of the PZ

test approached unity very quickly, and is already approximately 0.5, even for T = 50,

the empirical size is other tests indicating the ability of this test to control size. As

expected, and as can be seen upon inspection of Table 2.5-2.7, the empirical power of all

three tests approaches unity quickly as T increases. For example, the empirical power

of the ASJ test are over 0.9 for almost all DGPs, when T = 50. In summary, the ASJ

test is well sized and has great power under long time span testing. This test, thus, is
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a clear alternative to the long time span tests discussed in the sequel.

Tables 2.8-2.10 contain the results of our experiments run using the LTST,∆ and

L̃TST,∆ tests. As discussed above, the leverage-robust test (i.e., L̃TST,∆) sacrifices

power in order to ensure robustness against leverage effects. Specifically, in equation

(2.11), due to the extra term, 1
T 1/2+ε , the leverage-robust test statistic diverges at rate

1
T ε∆ and 1

T 1/2+ε∆
, under the alternatives of asymmetric and symmetric jumps, respec-

tively. In practice, the sampling interval, ∆, is usually small and fixed, and the test

statistic under the alternatives shrinks with an increasing time span, particularly when

jumps are symmetric, while the bootstrapped critical values are of order 1/∆̃. As a

result, when constructing the leverage-robust test, we propose a rule-of-thumb called

our “T -varying” strategy, in order to choose the subsampling interval, ∆̃, used in boot-

strapping (see notes to Table 2.8 for details). This rule-of-thumb results in improved

power in our experiments. However, it is an ad-hoc data driven method, and further

research into its properties remains to be done. Summarizing, we utilize coarser ∆̃,

as T is grows. Since a coarser ∆̃ (i.e., a larger subsampling interval), diminishes the

magnitude bootstrap critical values, this strategy (partially) offsets decreases in power

that are due to the adjustment term being inversely proportional to T . Size trade-

offs associated with using this method are found to be small, and hence the method

is utilized in all of our leverage-robust testing experiments, and later in our empirical

analysis.

Turning to the results of these tables, first consider empirical size (see Table 2.8).

It is immediately apparent that the LTST,∆ test has good empirical size for DGP1

(i.e., the “no leverage” case). However, and as expected, size diverges when there is

leverage. Again as expected, L̃TST,∆ has zero empirical size, regardless of the presence

of leverage, for values of T greater than 5. Interestingly, though when T = 5, the

test is approximately correctly sized; thus indicating that our long time span test is

an alternative to the short time span tests discussed earlier for small values of T . Of

course, T should clearly not be equal to one for the application of the long time span

tests. Finally, notice in Table 2.9 that the empirical power of the LTST,∆ is good

across all cases, including the case where jumps are symmetric with small magnitudes
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of σ = 0.25 (i.e., DGPs 3 and 4). Finally, turn to Table 2.10, where empirical power of

the L̃TST,∆ is reported. As expected, empirical power is sacrificed, particularly when

jumps are symmetric and σ = 0.25 (i.e., DGPs 3 and 4). However, when σ = 1.25 (i.e.,

DGPs 5 and 6), this sacrifice is substantially reduced, and power is quite good in all

cases, even when λ is small. Coupled with our earlier findings concerning size, we thus

have strong evidence that the L̃TST,∆ is an adequate test for evaluating the presence

of jumps in long time spans.

2.7 Empirical Examination of Stock Market Data

2.7.1 Data

We analyze intraday TAQ stock price data sampled at a 5-minute frequency, for the

period including observations from the beginning of 2006 through 2013. In particular,

we examine: (i) twelve individual stocks including American Express Company (AXP),

Bank of America Corporation (BAC), Cisco Systems, Inc. (CSCO), Citigroup Inc.

(C), The Coca-Cola Company (KO), Intel Corporation (INTC), JPMorgan Chase &

Co. (JPM), Merck & Co., Inc. (MRK), Microsoft Corporation (MSFT), The Procter &

Gamble Company (PG), Pfizer Inc. (PFE) and Wal-Mart Stores, Inc. (WMT)); nine

sector ETFs including Materials Select Sector SPDR ETF (XLB), Energy Select Sector

SPDR ETF (XLE), Financial Select Sector SPDR ETF (XLF), Industrial Select Sector

SPDR ETF (XLI), Technology Select Sector SPDR ETF (XLK), Consumer Staples

Select Sector SPDR ETF (XLP), Utilities Select Sector SPDR ETF (XLU), Health

Care Select Sector SPDR ETF (XLV) and Consumer Discretionary Select Sector SPDR

ETF (XLY); and (iii) the SPDR S&P 500 ETF (SPY). Overnight returns are excluded

from our dataset.

2.7.2 Empirical Findings

Turning our discussion first to Figures 2.1–2.2, note that the bar charts in these figures

depict annual ratios of jump days for all of our stocks and ETFs, based on application

of the ASJ, BNS, and PZ tests (see legend to Figure 2.1). For example, 0.2 indicates



25

that there were jumps founds on 20% of the trading days in a given year. As expected,

jumps are widely detected in asset prices and indexes over almost any year. Sometimes,

the annual percentage of jump days even appears to be inconceivably large, at near 50%.

Additionally, while the alternative tests often perform similarly (e.g. all three testing

methods find jumps during around 40% of the days in 2006 for XLU and XLP), there

are substantial differences for some stocks (e.g. in 2013 the PZ tests detects jumps

twice as frequently as the other fixed time span tests).

As expected, the ASJ test is the most conservative among the three tests. In almost

all cases, the ASJ test detects the fewest number of “jump days”. For instance, in 2008,

ASJ test only finds 7.5% jump-days for XLK, while the PZ and BNS tests find jumps

on 17.4% and 22.5% of days, respectively. For SPY, the ASJ test finds around 1/3

as many jumps as the other tests, in 2009. This finding is consistent with evidence

from our Monte Carlo experiments (see Table 2.3). However, even with the most

conservative test, we regularly detect over 15% jump days for many assets, including

XLV for 2006 through 2010, XLB and XLY in 2006, and XLF and XLI for 2006 and

2007. Additionally, jump-day percentages are generally larger for our ETFs than for

individual stocks, as should be expected. Still, it is also apparent, upon inspection of

the figures, that the percentage of jumps detected in our ETFs is declining over time,

on an annual basis. This pattern does not characterize individual stocks, however.

We conjecture that a possible reason for this is that ETFs where not as frequently

traded in the early years of our sample. For instance, typical daily trading volume

for XLP or XLY was around 1 million, including pre-market trading and after-hours

trading volumes, between 2006 and 2008. This volume is around 1% to 10% of the

trading volume of BAC, and 0.15% to 2.5% of the trading volume of SPY, over the

same period.

We now turn to a discussion of the results tabulated in Tables 2.11–2.16. In these

tables, jump tests results based on the examination of long time spans are reported

for the ASJ, LTST,∆ and L̃TST,∆ tests. In these tables, tabulated entries are test

statistics, and those entries with *, **, and *** indicate rejections of the “no-jump”

null at 0.10, 0.05, and 0.01 significance levels, respectively. In these tables, the “long
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span” considered is one year, corresponding to the period of time for which annual

jump-day rations were reported in Figures 2.1–2.2. Consider first the results of the

ASJ test reported in Table 2.11 for our ETFs. Interestingly, there are various ETFs

for which no jumps are found. For example, for XLE, no jumps are found in 2006,

2008, 2010, and 2011. In 2011, no jumps are found for 7 of 10 ETFs. Still, in 2007,

jumps are found for all 9 ETFs, and in 2008, jumps are found for 7 ETFs. Thus, the

evidence concerning jumps appears much more nuanced when the ASJ tests is utilized

using long time spans. Of course, of discussion above concerning trading volume effects

during the early years of our sample still applies, however. Thus, it is difficult to be sure

whether the increase in the frequency of jumps found in earlier years for our ETFs is

an indicator of the ensuing financial collapse of 2008, or whether this finding is simply

an artifact of the data. We leave further investigation of this issue to future research.

Turning to Tables 2.12 and 2.13, which again report on ETFs, note that these tables

include results for the LTST,∆ (Table 2.12) and L̃TST,∆ (Table 2.13) tests. As expected,

given our Monte Carlo findings, and assuming the presence of leverage, rejections based

on the LTST,∆ test are not only frequent, but are actually more frequent than rejections

based on the ASJ test. Indeed, given the presence of leverage, these results carry little

weight. However, we know that the L̃TST,∆ performs adequately, given the presence of

leverage. It is perhaps not surprising, then, that the number of years for which jumps

are found decreases substantially when L̃TST,∆ is used, relative to when testing using

LTST,∆. Indeed, in Table 2.13, note that there are many ETFs for which no jumps are

found across multiple different years. Still, it should be stressed that while L̃TST,∆ is

robust to the presence of leverage, the cost of making it thus is a reduction in power, as

discussed in the previous sections of this paper. Thus, our conjecture is that the “truth”

likely lies somewhere between the results reported based on application of the ASJ and

the L̃TST,∆ tests. Still, either way, it is clear that application of long time span tests

results in fewer findings of jumps. It is this feature of the tests that is most intriguing,

given its implications on the specification and estimation of diffusion models.

Finally, Tables 2.14-2.16 contain results that are analogous to those reported in

Tables 2.11-2.13, except that individual stocks are analyzed. Interestingly, the test
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rejection patterns that appear upon inspection of the entire in these tables confirms

our above discussion based on ETF analysis. Namely, there are various years for which

no jumps are found based on application of the ASJ test, and this incidence of “non-

rejections” increases when one utilizes the L̃TST,∆ test.

In summary, we conclude that the usual “toolbox” used by financial econometricians

might be usefully augmented by including in it long time span ASJ and L̃TST,∆ tests.

If application of the L̃TST,∆ results in rejection of the no-jumps null hypothesis, then

we have very strong evidence of jumps in the DGP. If application of the L̃TST,∆ does

not result in rejection, then it is advisable to check results based on application of the

long time span ASJ test. If the ASJ test “rejects”, then one must consider whether the

failure to reject based on the L̃TST,∆ test is a “power” issue. However, if both tests

“reject” then evidence of jumps is very strong.

2.8 Concluding Remarks

In this paper we carry out a Monte Carlo and empirical investigation of long time span

jump tests designed to indicate whether the jump intensity in the underlying DGPs

is identically zero. This approach differs from the fixed time span variety of jump

test broadly used in empirical finance, in the sense that fixed time span tests are not

consistent, and can result in identification failure if problems associated with sequential

testing bias are not carefully addressed, for example. Our Monte Carlo findings indicate

that some fixed time span tests are actually quite adequate for detecting jumps using

long time spans of data. In particular, the Aı̈t-Sahalia and Jacod (2009) (ASJ ) test

performs favorably when compared with Corradi et al. (2018) type long time span jump

tests. In an empirical illustration, we show that both of these tests find less prevalence

of jumps that when a variety of fixed time span jump tests are applied on a daily basis.
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Table 2.1: Data Generating Processes in Monte Carlo Experiments

Panel A: Parameter Values

κσ, σ̄, ζ = {5, 0.12, 0.5}
µ = 0.05

∆n = 1/78
ρ = {0, -0.5}

λ = {0.1, 0.4, 0.8}
Ji

i.i.d∼ N (µJ , σ
2
J), {µJ , σJ} = {0, 0.25}, {µJ , σJ} = {0, 5× 0.25}

{µJ , σJ} = {
√

0.5, 0.25}, {µJ , σJ} = {2.5×
√

0.5, 5× 0.25}

Panel B: Data Generating Processes (DGPs)

DGP 1: Eq. (2.24) with µ = 0.05, ρ = 0, κσ = 5, σ̄ = 0.12, ζ = 0.5
DGP 2: Eq. (2.24) with µ = 0.05, ρ = -0.5, κσ = 5, σ̄ = 0.12, ζ = 0.5

DGP 3: DGP 1 + Ji
i.i.d∼ N (0, 0.252)

DGP 4: DGP 2 + Ji
i.i.d∼ N (0, 0.252)

DGP 5: DGP 1 + Ji
i.i.d∼ N (0, (5× 0.25)2)

DGP 6: DGP 2 + Ji
i.i.d∼ N (0, (5× 0.25)2)

DGP 7: DGP 1 + Ji
i.i.d∼ N (

√
0.5, 0.252)

DGP 8: DGP 2 + Ji
i.i.d∼ N (

√
0.5, 0.252)

DGP 9: DGP 1 + Ji
i.i.d∼ N (2.5×

√
0.5, (5× 0.25)2)

DGP 10: DGP 2 + Ji
i.i.d∼ N (2.5×

√
0.5, (5× 0.25)2)

*Notes: DGP 1 is continuous process without leverage effect and DGP 2 is continuous process with
leverage effect. DGPs 3-10 are continuous processes with or without leverage effect plus jumps charac-
terized by various jump size densities. See Section 2.6 for complete details.
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Table 2.2: Empirical Size of Daily Fixed Time Span Jump Tests and Sequential
Testing

Test Subject T = 1 T = 5 T = 50 T = 150 T = 300 T = 500

DGP 1

Jump Days
0.112
0.058

0.115
0.058

0.118
0.059

0.120
0.059

0.119
0.059

0.120
0.060

ASJ
Sequential

Testing Bias
0.112
0.058

0.458
0.256

0.999
0.953

1.000
1.000

1.000
1.000

1.000
1.000

DGP 2

Jump Days
0.100
0.052

0.116
0.057

0.121
0.059

0.120
0.059

0.120
0.059

0.120
0.059

Sequential
Testing Bias

0.100
0.052

0.458
0.256

0.998
0.950

1.000
1.000

1.000
1.000

1.000
1.000

DGP 1

Jump Days
0.122
0.071

0.150
0.094

0.155
0.095

0.152
0.093

0.153
0.094

0.153
0.095

BNS

Sequential
Testing Bias

0.122
0.071

0.557
0.380

1.000
0.992

1.000
1.000

1.000
1.000

1.000
1.000

DGP 2

Jump Days
0.141
0.098

0.153
0.094

0.156
0.096

0.154
0.095

0.154
0.095

0.154
0.095

Sequential
Testing Bias

0.141
0.098

0.571
0.398

1.000
0.993

1.000
1.000

1.000
1.000

1.000
1.000

DGP 1

Jump Days
0.120
0.043

0.081
0.031

0.123
0.050

0.113
0.049

0.110
0.046

0.108
0.045

PZ

Sequential
Testing Bias

0.120
0.043

0.347
0.146

0.999
0.921

1.000
0.999

1.000
1.000

1.000
1.000

DGP 2

Jump Days
0.105
0.046

0.075
0.029

0.122
0.048

0.113
0.049

0.110
0.046

0.108
0.045

Sequential
Testing Bias

0.105
0.046

0.331
0.140

0.998
0.916

1.000
0.999

1.000
1.000

1.000
1.000

*Notes: Entries in this table denote rejection frequencies based on applications of ASJ, BNS and PZ
daily fixed time span jump tests. Results for 0.1 (row 1) and 0.05 (row 2) significance levels are reported.
T denotes the number of days for which daily fixed time span jump tests are applied. “Jump Days”
shows the average percentage of detected jump days at 0.1 and 0.05 significance levels, respectively.
“Sequential Testing Bias” shows probability of finding at least one jump at 0.1 and 0.05 significance
levels, respectively. See Sections 2.5 and 2.6 for complete details.
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Table 2.3: Empirical Power of Daily Fixed Time Span Jump Tests

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

ASJ

λ = 0.1
0.127
0.068

0.124
0.067

0.143
0.077

0.135
0.077

0.160
0.093

0.160
0.093

0.186
0.118

0.185
0.125

λ = 0.4
0.183
0.104

0.170
0.103

0.244
0.150

0.232
0.143

0.285
0.167

0.284
0.172

0.353
0.262

0.353
0.262

λ = 0.8
0.232
0.137

0.242
0.138

0.345
0.210

0.356
0.219

0.415
0.240

0.431
0.252

0.548
0.411

0.533
0.425

BNS

λ = 0.1
0.201
0.154

0.185
0.124

0.222
0.179

0.208
0.150

0.247
0.208

0.230
0.177

0.250
0.211

0.232
0.179

λ = 0.4
0.315
0.264

0.274
0.225

0.379
0.339

0.359
0.313

0.432
0.403

0.404
0.371

0.441
0.413

0.411
0.378

λ = 0.8
0.427
0.377

0.392
0.336

0.560
0.526

0.534
0.499

0.625
0.600

0.611
0.583

0.633
0.612

0.615
0.588

PZ

λ = 0.1
0.191
0.107

0.182
0.101

0.218
0.136

0.211
0.131

0.239
0.159

0.234
0.157

0.241
0.163

0.235
0.158

λ = 0.4
0.295
0.217

0.287
0.210

0.377
0.311

0.369
0.298

0.425
0.366

0.416
0.352

0.431
0.372

0.424
0.360

λ = 0.8
0.424
0.357

0.397
0.339

0.560
0.510

0.548
0.498

0.634
0.589

0.624
0.587

0.640
0.595

0.628
0.591

*Notes: See notes to Table 2.2. Rejection frequencies are given based on repeated daily applications
of jump tests across T = 500 days, for each Monte Carlo replication. Thus, one can think of these
experiments as reporting rejection frequencies of 500,000 tests (since T = 500 and there are 1000 Monte
Carlo replications).
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Table 2.4: Empirical Size of Fixed Time Span Jump Tests When Utilized Using
Long-span Samples

Test T = 5 T = 25 T = 50 T = 150 T = 300 T = 500

DGP 1

ASJ
0.113
0.051

0.109
0.057

0.119
0.067

0.114
0.066

0.135
0.072

0.147
0.072

DGP 2
0.106
0.045

0.131
0.075

0.148
0.069

0.136
0.065

0.132
0.072

0.145
0.080

DGP 1

BNS
0.132
0.070

0.136
0.071

0.142
0.075

0.150
0.081

0.194
0.109

0.215
0.127

DGP 2
0.127
0.081

0.122
0.065

0.142
0.080

0.162
0.095

0.192
0.104

0.227
0.132

DGP 1

PZ
0.116
0.069

0.288
0.279

0.504
0.484

0.849
0.846

0.962
0.950

0.994
0.993

DGP 2
0.119
0.071

0.290
0.265

0.504
0.482

0.869
0.856

0.974
0.964

0.995
0.995

*Notes: See notes to Table 2.2. Entries are rejection frequencies based on a single application of the
ASJ, BNS and PZ tests using long time span samples with T days, for each Monte Carlo replication.
For all values of T, 1000 replications are run.
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Table 2.5: Empirical Power of the ASJ Jump Test When Utilized Using Long-span
Samples

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.214
0.151

0.227
0.169

0.341
0.285

0.352
0.286

0.409
0.345

0.408
0.351

0.436
0.395

0.447
0.405

λ = 0.4
0.498
0.401

0.482
0.400

0.750
0.678

0.731
0.668

0.838
0.769

0.846
0.784

0.876
0.856

0.872
0.854

λ = 0.8
0.670
0.565

0.653
0.563

0.901
0.839

0.899
0.833

0.941
0.897

0.936
0.895

0.947
0.934

0.939
0.923

T = 25

λ = 0.1
0.544
0.480

0.510
0.454

0.835
0.812

0.803
0.779

0.913
0.907

0.913
0.900

0.924
0.921

0.924
0.918

λ = 0.4
0.908
0.872

0.898
0.870

0.993
0.993

0.996
0.994

0.992
0.991

0.991
0.991

0.986
0.986

0.984
0.984

λ = 0.8
0.988
0.985

0.988
0.977

0.995
0.995

0.995
0.994

0.979
0.978

0.984
0.980

0.989
0.986

0.985
0.978

T = 50

λ = 0.1
0.711
0.663

0.714
0.655

0.960
0.954

0.956
0.949

0.989
0.985

0.986
0.985

0.991
0.990

0.990
0.990

λ = 0.4
0.987
0.979

0.989
0.983

0.997
0.997

0.998
0.997

0.992
0.992

0.996
0.994

0.993
0.993

0.994
0.992

λ = 0.8
0.995
0.995

0.997
0.994

0.996
0.995

0.996
0.995

0.990
0.989

0.990
0.988

0.997
0.995

0.996
0.994

T = 150

λ = 0.1
0.965
0.954

0.961
0.947

0.999
0.999

0.999
0.999

0.998
0.997

0.997
0.997

0.996
0.996

0.996
0.996

λ = 0.4
0.998
0.998

1.000
0.999

1.000
1.000

1.000
1.000

0.998
0.998

0.999
0.998

1.000
1.000

1.000
1.000

λ = 0.8
0.999
0.999

0.999
0.999

0.999
0.999

0.999
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.996
0.995

0.996
0.995

0.999
0.999

0.999
0.999

0.998
0.998

0.998
0.998

0.999
0.999

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
0.998
0.998

0.999
0.999

0.999
0.999

0.999
0.999

0.999
0.999

0.999
0.999

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

*Notes: See notes to Tables 2.3 and 2.4.



33

Table 2.6: Empirical Power of the BNS Jump Test When Utilized Using Long-span
Samples

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.264
0.197

0.270
0.207

0.396
0.340

0.390
0.344

0.452
0.408

0.446
0.410

0.464
0.423

0.458
0.423

λ = 0.4
0.588
0.533

0.599
0.540

0.802
0.771

0.798
0.768

0.885
0.871

0.883
0.872

0.889
0.880

0.887
0.878

λ = 0.8
0.817
0.768

0.815
0.776

0.948
0.942

0.961
0.953

0.983
0.979

0.981
0.978

0.986
0.984

0.984
0.981

T = 25

λ = 0.1
0.537
0.471

0.550
0.476

0.824
0.796

0.833
0.804

0.915
0.906

0.917
0.907

0.928
0.923

0.930
0.923

λ = 0.4
0.945
0.923

0.943
0.928

0.998
0.998

0.997
0.997

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

0.999
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.707
0.625

0.720
0.650

0.950
0.946

0.958
0.944

0.987
0.983

0.988
0.985

0.993
0.993

0.995
0.994

λ = 0.4
0.997
0.994

0.996
0.995

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 150

λ = 0.1
0.947
0.917

0.958
0.934

1.000
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.994
0.993

0.996
0.994

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

*Notes: See notes to Tables 2.3 and 2.4.
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Table 2.7: Empirical Power of the PZ Jump Test When Utilized Using Long-span
Samples

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.316
0.277

0.317
0.284

0.418
0.385

0.413
0.387

0.465
0.433

0.456
0.433

0.471
0.439

0.464
0.441

λ = 0.4
0.682
0.656

0.661
0.645

0.829
0.818

0.810
0.801

0.888
0.881

0.879
0.874

0.890
0.883

0.880
0.875

λ = 0.8
0.874
0.864

0.865
0.851

0.962
0.960

0.965
0.960

0.981
0.979

0.984
0.980

0.982
0.980

0.985
0.981

T = 25

λ = 0.1
0.788
0.780

0.777
0.766

0.911
0.907

0.900
0.896

0.936
0.934

0.935
0.933

0.939
0.937

0.939
0.937

λ = 0.4
0.993
0.993

0.992
0.992

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.960
0.956

0.954
0.950

0.991
0.991

0.987
0.987

0.997
0.997

0.993
0.993

0.998
0.998

0.994
0.994

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 150

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

*Notes: See notes to Tables 2.3 and 2.4.
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Table 2.8: Empirical Size of LTST,∆ and L̃TST,∆ Jump Tests

Test Statistic Leverage T = 5 T = 25 T =50 T = 150 T = 300 T = 500

LTST,∆
∅ 0.202

0.145
0.151
0.094

0.129
0.072

0.123
0.076

0.106
0.055

0.112
0.057

√ 0.264
0.185

0.316
0.221

0.461
0.341

0.858
0.775

0.987
0.968

0.999
0.997

L̃TST,∆
∅ 0.075

0.048
0.007
0.003

0.001
0.000

0.000
0.000

0.000
0.000

0.000
0.000

√ 0.089
0.053

0.002
0.001

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

*Notes: As in Tables 2.2-2.7, jump test rejection frequencies are reported. As discussed in Section 2.6,
the subsampling interval, ∆̃, used in constructing critical values for the tests has been selected using a
simple rule. Namely, {T=25 and 50, ∆̃1

n=1/3, ∆̃2
n=1/26}; {T=150, ∆̃1

n=1, ∆̃2
n=1/13}; {T=300, ∆̃1

n=2,

∆̃2
n=1/13}; {T=500, ∆̃1

n=3.2, ∆̃2
n=1/10}, where ∆̃1

n is the subsampling interval used in bootstrapping

critical values for L̃TST,∆ and ∆̃2
n is the subsampling interval used in bootstrapping critical values for

LTST,∆.
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Table 2.9: Empirical Power of LTST,∆ Jump Test

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10
T = 5

λ = 0.1
0.346
0.274

0.361
0.291

0.435
0.374

0.463
0.396

0.487
0.436

0.517
0.463

0.507
0.461

0.540
49.1

λ = 0.4
0.572
0.498

0.585
0.514

0.717
0.665

0.712
0.650

0.895
0.879

0.883
0.865

0.901
0.890

0.895
0.887

λ = 0.8
0.664
0.600

0.677
0.615

0.790
0.752

0.784
0.737

0.968
0.962

0.973
0.964

0.969
0.964

0.976
0.970

T = 25

λ = 0.1
0.472
0.400

0.535
0.447

0.713
0.656

0.733
0.670

0.913
0.895

0.921
0.896

0.926
0.917

0.941
0.928

λ = 0.4
0.630
0.560

0.634
0.537

0.690
0.604

0.676
0.598

0.997
0.996

0.998
0.997

1.000
0.998

1.000
1.000

λ = 0.8
0.650
0.583

0.645
0.569

0.647
0.580

0.650
0.572

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.559
0.459

0.587
0.492

0.719
0.644

0.736
0.657

0.982
0.977

0.981
0.975

0.990
0.989

0.990
0.988

λ = 0.4
0.641
0.557

0.656
0.561

0.642
0.548

0.628
0.559

1.000
1.000

1.000
1.000

0.999
0.999

0.999
0.999

λ = 0.8
0.623
0.534

0.604
0.527

0.628
0.531

0.627
0.539

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 150

λ = 0.1
0.763
0.722

0.786
0.732

0.847
0.804

0.828
0.788

1.000
1.000

1.000
0.999

1.000
1.000

1.000
1.000

λ = 0.4
0.762
0.716

0.768
0.717

0.807
0.759

0.802
0.764

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.761
0.715

0.750
0.704

0.805
0.756

0.795
0.751

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.766
0.709

0.784
0.738

0.819
0.784

0.825
0.786

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.789
0.742

0.768
0.713

0.780
0.733

0.791
0.755

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.759
0.711

0.756
0.702

0.808
0.764

0.802
0.757

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
0.791
0.755

0.819
0.790

0.865
0.833

0.855
0.825

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.819
0.771

0.808
0.774

0.838
0.804

0.827
0.795

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.786
0.753

0.776
0.739

0.823
0.784

0.836
0.795

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

*Notes: See notes to Tables 2.3, 2.4 and 2.8.
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Table 2.10: Empirical Power of L̃TST,∆ Jump Test

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.181
0.145

0.221
0.162

0.300
0.272

0.337
0.287

0.374
0.348

0.401
0.355

0.406
0.390

0.438
0.407

λ = 0.4
0.428
0.371

0.443
0.388

0.651
0.597

0.642
0.585

0.856
0.835

0.837
0.819

0.871
0.865

0.866
0.863

λ = 0.8
0.596
0.515

0.586
0.513

0.761
0.717

0.738
0.710

0.950
0.943

0.951
0.944

0.951
0.948

0.952
0.948

T = 25

λ = 0.1
0.262
0.228

0.278
0.233

0.670
0.644

0.680
0.656

0.887
0.875

0.879
0.863

0.915
0.915

0.918
0.915

λ = 0.4
0.567
0.505

0.565
0.492

0.824
0.798

0.811
0.783

0.998
0.996

0.999
0.998

0.998
0.998

0.998
0.998

λ = 0.8
0.646
0.602

0.643
0.579

0.793
0.766

0.801
0.766

0.997
0.997

0.998
0.996

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.169
0.129

0.192
0.149

0.694
0.630

0.687
0.624

0.946
0.933

0.959
0.947

0.983
0.978

0.983
0.978

λ = 0.4
0.436
0.349

0.416
0.342

0.708
0.632

0.696
0.634

0.998
0.998

0.999
0.997

0.998
0.995

0.997
0.996

λ = 0.8
0.489
0.411

0.469
0.386

0.654
0.584

0.635
0.586

0.996
0.995

0.993
0.990

0.999
0.997

0.999
0.997

T = 150

λ = 0.1
0.163
0.120

0.149
0.099

0.766
0.726

0.740
0.695

0.997
0.996

1.000
0.998

1.000
1.000

1.000
1.000

λ = 0.4
0.320
0.245

0.307
0.215

0.743
0.701

0.742
0.709

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.390
0.311

0.353
0.286

0.709
0.659

0.712
0.657

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.090
0.058

0.093
0.064

0.769
0.728

0.753
0.719

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.223
0.158

0.216
0.154

0.733
0.696

0.744
0.708

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.274
0.199

0.248
0.188

0.702
0.659

0.708
0.646

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
0.054
0.026

0.063
0.038

0.757
0.710

0.751
0.700

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.153
0.091

0.158
0.106

0.717
0.650

0.700
0.651

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.188
0.126

0.171
0.129

0.667
0.607

0.649
0.585

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

*Notes: See notes to Tables 2.3, 2.4 and 2.8.
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Table 2.11: ASJ Jump Test Results for ETFs

2006 2007 2008 2009 2010 2011 2012 2013

SPY 3.264 (***) 1.694 (**) 0.002 2.579 (***) 5.213 (***) 0.745 0.874 1.745 (**)
XLB 5.011 (***) 2.528 (***) 1.941 (**) 3.207 (***) 4.161 (***) 0.870 2.682 (***) 0.986
XLE 0.952 4.862 (***) 0.019 7.023 (***) 1.061 0.058 5.665 (***) 1.772 (**)
XLF 3.207 (***) 4.128 (***) 1.825 (**) 1.774 (**) 0.843 0.822 1.286 (*) 1.663 (**)
XLI 4.233 (***) 5.903 (***) 1.625 (*) 1.827 (**) 7.367 (***) 1.486 (*) 0.951 1.813 (**)
XLK 7.909 (***) 4.214 (***) 0.991 1.766 (**) 1.384 (*) 0.759 0.922 2.492 (***)
XLP 3.180 (***) 8.996 (***) 7.979 (***) 4.212 (***) 0.373 1.493 (*) 6.078 (***) 1.565 (*)
XLU 7.066 (***) 2.730 (***) 1.481 (*) 10.000 (***) 0.528 0.642 2.769 (***) 3.324 (***)
XLV 7.030 (***) 6.084 (***) 1.828 (**) 2.386 (***) 2.352 (***) 1.729 (**) 0.866 2.530 (***)
XLY 3.368 (***) 1.845 (**) 3.279 (***) 4.399 (***) 0.457 0.735 0.022 2.721 (***)

*Notes: See notes to Tables 2.4 and 2.5. Entries are jump test statistics, and (***), (**), and (*)
indicate rejections of the “no jump” null hypothesis at 0.01, 0.05 and 0.1 significance levels, respectively.

Table 2.12: LTST,∆ Jump Test Results for ETFs

2006 2007 2008 2009 2010 2011 2012 2013

SPY 2.04E-07 -3.88E-06 4.87E-04 (***) 2.65E-05 1.65E-06 -1.19E-05 -3.15E-07 -2.90E-06 (**)
XLB -1.40E-05 -8.45E-05 (***) 1.35E-03 (***) -1.90E-04 (***) -9.21E-05 (***) 9.39E-06 -1.33E-06 1.87E-06
XLE 2.38E-05 (***) -2.43E-05 (**) 1.07E-03 (**) -9.77E-05 (**) 4.74E-05 (***) -4.76E-05 -6.35E-06 (**) -4.45E-06
XLF -1.11E-05 (***) -2.58E-04 (***) 2.00E-03 (***) -2.26E-05 -5.04E-05 (**) -3.69E-05 3.76E-06 -6.79E-06 (**)
XLI -2.03E-05 (***) 9.96E-05 (***) 7.23E-04 (***) -9.39E-05 (**) 3.24E-04 (***) 9.48E-06 1.98E-06 -2.93E-06 (**)
XLK -1.99E-04 (***) -6.68E-05 (***) 1.86E-03 (***) -2.68E-05 -1.45E-04 (***) -9.44E-06 -2.63E-06 -3.39E-06 (***)
XLP 5.92E-06 (***) 1.83E-05 (***) -2.02E-03 (***) -5.91E-05 (***) -2.19E-05 (**) -4.69E-06 -4.30E-05 (***) 8.25E-07
XLU -9.42E-05 (***) 1.67E-04 (***) -8.17E-05 -1.04E-01 (***) 1.75E-04 (***) -1.91E-05 7.89E-06 (***) -7.47E-06
XLV -1.17E-04 (***) 9.52E-05 (***) 4.08E-04 (***) -4.11E-05 (***) -1.71E-04 (***) 1.24E-05 -8.03E-07 -2.53E-06
XLY -8.05E-05 (***) -1.06E-04 (***) -2.97E-03 (***) -2.72E-04 (***) 1.62E-05 -1.56E-05 -5.33E-06 (**) 2.57E-07
*Notes: See notes to Tables 2.8 and 2.11.
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Table 2.13: L̃TST,∆ Jump Test Results for ETFs

2006 2007 2008 2009 2010 2011 2012 2013

SPY 1.28E-08 -2.43E-07 (*) 3.05E-05 1.66E-06 1.03E-07 -7.46E-07 -1.98E-08 (*) -1.82E-07
XLB -8.78E-07 (*) -5.31E-06 (**) 8.41E-05 -1.19E-05 -5.77E-06 5.88E-07 -8.38E-08 (*) 1.17E-07
XLE 1.49E-06 -1.53E-06 6.71E-05 -6.12E-06 2.97E-06 -2.98E-06 -3.99E-07 -2.79E-07
XLF -6.97E-07 -1.62E-05 (**) 1.25E-04 -1.42E-06 -3.16E-06 -2.31E-06 2.36E-07 (*) -4.26E-07
XLI -1.27E-06 6.25E-06 4.52E-05 -5.88E-06 2.03E-05 (***) 5.94E-07 1.24E-07 (*) -1.83E-07
XLK -1.25E-05 (***) -4.19E-06 (**) 1.16E-04 -1.68E-06 -9.06E-06 (**) -5.91E-07 -1.66E-07 -2.12E-07
XLP 3.71E-07 (*) 1.15E-06 -1.26E-04 (***) -3.70E-06 (**) -1.37E-06 (*) -2.94E-07 -2.70E-06 (***) 5.17E-08
XLU -5.92E-06 1.05E-05 (***) -5.11E-06 (*) -6.49E-03 (***) 1.10E-05 (***) -1.19E-06 4.96E-07 -4.68E-07
XLV -7.37E-06 (***) 5.98E-06 2.55E-05 -2.57E-06 -1.07E-05 (***) 7.76E-07 -5.05E-08 (*) -1.58E-07
XLY -5.05E-06 -6.68E-06 (**) -1.86E-04 (**) -1.71E-05 1.01E-06 -9.79E-07 -3.35E-07 (*) 1.61E-08
*Notes: See notes to Tables 2.8 and 2.11.

Table 2.14: ASJ Jump Test Results for Individual Stocks

2006 2007 2008 2009 2010 2011 2012 2013

American Express 3.115 (***) 4.248 (***) 2.044 (**) 2.672 (***) 0.996 2.343 (***) 3.555 (***) 2.464 (***)
Bank of America 2.914 (***) 3.014 (***) 1.529 (*) 3.576 (***) 0.819 3.171 (***) 1.784 (**) 0.803

Cisco 3.811 (***) 5.997 (***) 0.180 1.818 (**) 2.865 (***) 1.665 (**) 2.581 (***) 0.922
Citigroup 3.215 (***) 0.802 0.520 3.302 (***) 6.023 (***) 0.752 0.197 0.895
Coca-Cola 8.039 (***) 10.005 (***) 6.134 (***) 4.563 (***) 0.826 1.774 (**) 2.551 (***) 3.476 (***)

Intel 2.632 (***) 4.142 (***) 3.332 (***) 0.914 5.627 (***) 6.425 (***) 1.821 (**) 1.772 (**)
JPMorgan 3.446 (***) 2.532 (***) 3.232 (***) 0.962 1.733 (**) 3.461 (***) 0.987 0.983

Merck & Co. 5.700 (***) 8.016 (***) 1.909 (**) 3.184 (***) 0.051 1.559 (*) 2.648 (***) 0.246
Microsoft 2.982 (***) 6.997 (***) 0.909 0.811 0.652 3.434 (***) 4.579 (***) 0.370

Procter & Gamble 3.285 (***) 4.933 (***) 1.814 (**) 9.998 (***) 2.387 (***) 3.218 (***) 9.003 (***) 1.745 (**)
Pfizer 2.356 (***) 4.024 (***) 0.845 0.890 7.436 (***) 1.960 (**) 1.740 (**) 2.516 (***)

Wal-Mart 0.823 4.011 (***) 1.187 1.730 (**) 0.799 2.439 (***) 0.131 3.461 (***)

*Notes: See notes to Tables 2.8 and 2.11.
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Table 2.15: LTST,∆ Jump Test Results for Individual Stocks

2006 2007 2008 2009 2010 2011 2012 2013

American Express 1.45E-04 (***) -8.03E-05 (***) 4.57E-03 (***) 1.30E-03 (**) -7.80E-05 -1.34E-04 (**) -6.61E-05 (***) 6.24E-05 (***)
Bank of America -8.20E-04 (***) -1.58E-04 (***) 4.16E-03 (***) -2.26E-02 (**) -1.29E-04 -1.39E-03 (***) 4.47E-05 -3.16E-05

Cisco 6.94E-05 (***) -7.64E+02 (***) 9.32E-04 (***) 9.61E-05 -2.02E-04 (***) 1.31E-04 (***) -1.85E-05 8.56E-06
Citigroup -3.93E-05 (***) -7.93E-05 -1.13E-02 -1.60E-02 -1.64E-03 (***) -2.61E-04 6.52E-05 (**) -2.26E-05
Coca-Cola 8.49E-05 (***) 5.56E-05 (***) -2.05E-03 (***) 1.06E-04 (***) -3.79E-05 -5.11E-06 -2.31E-05 (***) -1.46E-05 (***)

Intel 5.55E-05 (***) -1.49E-04 (***) 1.57E-03 (***) 2.10E-04 (**) 1.72E-04 (***) -3.69E-05 -1.74E-05 4.64E-05 (***)
JPMorgan 4.15E-05 -1.83E-04 (***) 1.98E-03 -2.43E-04 3.88E-05 3.54E-04 (***) 7.16E-05 1.96E-05

Merck & Co. 1.39E-04 (***) 2.12E-04 (***) -6.85E-03 (***) -5.17E-04 (***) 3.81E-04 (***) 4.54E-06 2.80E-05 (***) 6.49E-06
Microsoft 9.93E-06 (**) -7.46E+02 (***) 1.76E-04 6.35E-05 -4.09E-05 -1.23E-05 -6.93E-05 (***) 1.34E-05

Procter & Gamble 2.76E-05 (***) 8.05E-05 (***) 1.37E-04 -1.29E-03 (***) 2.33E-03 (***) -2.88E-05 (***) 2.47E-05 (***) 5.72E-06
Pfizer 2.08E-04 (***) -2.74E-03 (***) 1.11E-04 6.97E-05 3.96E-06 8.69E-05 (**) 9.01E-06 1.78E-05 (***)

Wal-Mart 6.75E-05 8.67E-05 (***) 8.60E-04 (***) 5.27E-05 (***) -9.57E-06 3.19E-05 (**) 6.87E-06 -9.51E-06

*Notes: See notes to Tables 2.8 and 2.11.

Table 2.16: L̃TST,∆ Jump Test Results for Individual Stocks

2006 2007 2008 2009 2010 2011 2012 2013

American Express 9.09E-06 (***) -5.04E-06 (*) 2.86E-04 8.13E-05 -4.88E-06 -8.42E-06 -4.16E-06 3.91E-06 (**)
Bank of America -5.15E-05 (***) -9.94E-06 (**) 2.60E-04 (*) -1.42E-03 -8.10E-06 -8.69E-05 2.81E-06 (**) -1.98E-06

Cisco 4.36E-06 (*) -4.79E+01 (***) 5.82E-05 6.02E-06 -1.27E-05 (*) 8.23E-06 -1.17E-06 5.36E-07
Citigroup -2.47E-06 -4.98E-06 (*) -7.08E-04 (**) -1.00E-03 -1.03E-04 (***) -1.64E-05 4.10E-06 (*) -1.42E-06
Coca-Cola 5.33E-06 (***) 3.49E-06 (**) -1.28E-04 (**) 6.64E-06 -2.37E-06 (**) -3.20E-07 -1.45E-06 (**) -9.15E-07

Intel 3.48E-06 (*) -9.33E-06 9.83E-05 (**) 1.32E-05 1.08E-05 (*) -2.31E-06 -1.10E-06 2.91E-06
JPMorgan 2.61E-06 (*) -1.15E-05 (**) 1.24E-04 -1.52E-05 2.43E-06 2.22E-05 (*) 4.50E-06 (*) 1.23E-06

Merck & Co. 8.72E-06 (*) 1.33E-05 (***) -4.28E-04 (***) -3.24E-05 2.39E-05 (***) 2.84E-07 1.76E-06 (**) 4.07E-07
Microsoft 6.23E-07 (*) -4.68E+01 (***) 1.10E-05 (*) 3.98E-06 -2.56E-06 -7.71E-07 -4.36E-06 (**) 8.42E-07

Procter & Gamble 1.73E-06 (*) 5.05E-06 (*) 8.58E-06 -8.06E-05 (***) 1.46E-04 (***) -1.81E-06 1.55E-06 (**) 3.58E-07
Pfizer 1.30E-05 (**) -1.72E-04 (***) 6.94E-06 (*) 4.37E-06 2.48E-07 5.44E-06 5.67E-07 (*) 1.11E-06

Wal-Mart 4.24E-06 (**) 5.44E-06 5.38E-05 (***) 3.30E-06 -6.00E-07 2.00E-06 4.32E-07 (*) -5.96E-07

*Notes: See notes to Tables 2.8 and 2.11.
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Figure 2.1: Annual Ratios of Jump Days for ETFs

*Notes: Entries in the above charts denote annual ratios of detected jump days, based on daily ap-
plications of ASJ, BNS and PZ fixed time span jump tests. See Sections 2.5 and 2.7 for complete
details.



42

Figure 2.2: Annual Ratios of Jump Days for Individual Stocks

*Notes: See notes to Figure 2.1.
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Chapter 3

Latent Common Volatility Factors: Capturing Elusive

Predictive Accuracy Gains When Forecasting Volatility

3.1 Introduction

Accurate price volatility estimation and prediction is crucial to successful risk man-

agement and asset allocation. In light of this fact, many new estimators relevant for

volatility analysis have recently been introduced, including but not limited to, realized

variance (RV) (Andersen et al. (2001)), jump robust RV based on multi-power vari-

ation and truncation (Barndorff-Nielsen and Shephard (2004), Mancini (2009), Corsi

et al. (2010), Podolskij and Ziggel (2010)), and multi-scale (Aı̈t-Sahalia et al. (2011))

and pre-averaging (Jacod et al. (2009)) estimators, which are designed to eliminate

microstructure effects. Making use of these sorts of integrated volatility estimators,

heterogeneous autoregressive (HAR) type forecasting models have been studied exten-

sively in the financial econometrics literature. For example, Corsi (2009) introduces

a basic HAR-RV model, and Andersen et al. (2007a) and Corsi et al. (2010) analyze

jump variation augmented HAR-RV models. Additionally, Duong and Swanson (2015)

examine HAR model performance when so-called upside and downside jump variations

are included. The authors also utilize q-th order variations of jump components, with

0.1 ≤ q ≤ 6, and consider the usefulness of large jumps (i.e., jump size exceeds a given

threshold) in HAR-RV type regressions. Patton and Sheppard (2015) study how the

positive and negative price jumps affect the future volatility, respectively. Audrino and

Hu (2016) exploit the prevalence of the leverage effect and investigate the characteris-

tics of different components of continuous risks and jump risks on volatility persistence.

Bollerslev et al. (2016) further improve volatility forecasting by allowing for the change

of model coefficients according to the degree of measurement error. Other types of

volatility forecasting model are also widely used, such as stochastic volatility (SV) mod-

els (Meddahi (2001), Andersen et al. (2004), Andersen et al. (2011)), (G)ARCH-type
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models (Andersen et al. (2003), Hansen and Lunde (2005), Brandt and Jones (2006)),

and Mixed Data Sampling (MIDAS) models (Ghysels et al. (2006), Ghysels and Sinko

(2011)).

Although very parsimonious, the HAR-type models discussed in the above papers

only utilize information on the target asset that is being predicted. A little explored

question is whether there are sources of information other than the target asset itself

can help improve the predictive accuracy in HAR regressions. In this paper, we at-

tempt to answer this question by augmenting benchmark HAR models with estimates

of latent integrated volatility (IV) factors extracted from latent common asset return

factors, which are themselves extracted from a large dimensional and high-frequency as-

set returns dataset, and investigating whether these latent IV estimates are informative

about the future volatility of selected target assets. As shall be discussed below, in-

clusion of latent IV factors substantially improve volatility forecasting performance for

various assets at market, sector and individual-stock levels, with the notable exception

of the financial sector.

The dimension reduction approach that we use in order to estimate factors combines

several cutting-edge methods widely used in the literature. In particular, the motiva-

tion for our two-step dimension reduction procedure is based on new results on the use

of principal component analysis (PCA) in the construction of latent factors using large

dimensional and high-frequency asset return datasets that are developed in Aı̈t-Sahalia

and Xiu (2017a) and Aı̈t-Sahalia and Xiu (2017b). However, in addition to focusing on

PCA, our procedure attempts to take account of the fact that we are interested in tar-

geted or individual market, sector or stock return prediction. Such targeted prediction

is potentially inconsistent with the direct use of principal component analysis (PCA) for

the extraction of common factors, since the common factors estimated using PCA that

are used in prediction models are usually those associated with the largest eigenvalues

in an eigenvalue-eigenvector decomposition of the correlation matrix of the dataset be-

ing examined (e.g., see Stock and Watson (2002a,b, 2006), Bai and Ng (2006a,b, 2008),

and the references cited therein). Namely, the factors that account for the largest share

of the variability of the covariance (correlation) matrix are assumed to be the best
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candidate predictors for a given target variable. Clearly, this may not always be the

case, as discussed in Bai and Ng (2008), Carrasco and Rossi (2016), and Swanson and

Xiong (2017). To address this problem, we begin, in a first step, by selecting a subset of

assets from the total asset pool. This is done by carrying out shrinkage of the set of all

integrated volatility estimates for the asset return variables in our dataset. Shrinkage is

done using the least absolute shrinkage operator (LASSO) or the elastic net. Then, in

a second step, we estimate latent asset return factors by applying either PCA or sparse

PCA (SPCA) to the selected subset of asset return variables corresponding to the in-

tegrated volatility variables selected in our first step. Finally, these latent asset return

factors are used to construct latent integrated volatility factors, which are in turn used

as explanatory variables in our HAR-type regression model prediction experiments.

One important aspect of our investigation is our novel use of SPCA. While PCA is

well known, sparse principal component analysis (SPCA) is relatively new to the field,

as discussed in Kim and Swanson (2017). Intuitively, SPCA can be viewed as a form of

“double” shrinkage (see Zou et al. (2006) and Qi et al. (2013)). More specifically, while

PCA can be interpreted as penalized regression with an L-2 penalty (akin to the penalty

used in ridge regression), SPCA can be interpreted as penalized regression with either

an L-1 norm penalty (i.e., a LASSO variant of PCA), or a combined L-1 and L-2 norm

penalty (i.e., an elastic net variant of PCA). In both cases, sparseness is imposed on the

factor loadings, with a regularization parameter controlling the degree of sparseness. In

our setup, thus, sparseness is first imposed in our variable selection step (i.e., in our first

step, where the lasso and elastic net are used to analyze integrated volatility variables),

and then again imposed in our latent factor construction step (i.e., in our second step,

where PCA and SPCA are used to analyze high frequency asset returns). Broadly

speaking, the first step of our approach follows, and builds on, methods developed in

in Bai and Ng (2008) in which “targeted predictors” are selected before the estimation

of common factors. Again broadly speaking, our second step follows, and builds on,

methods developed in Aı̈t-Sahalia and Xiu (2017a) and Aı̈t-Sahalia and Xiu (2017b),

in which latent integrated volatility variables are constructed using PCA.

Our dataset consists of intra-day observations on 267 constituents of the S&P 500
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index, 9 sector ETFs, and one market EFT (i.e., SPY, which is the SPDR S&P 500

ETF). Data were analyzed for the sample period from January 3, 2006 to December

31, 2010, and were collected from the TAQ database. We report the results based on

prediction of SPY, 9 sector ETFs, and 11 individual stocks, for the period of July 1, 2009

to December 31, 2010. We also report the in-sample fit of various forecasting models,

common factor estimators, and data aggregation permutations. Our key findings are

summarized below, and explained in detail in a later section of the paper.

First, in-sample fit is surprisingly stable across different models, including our

benchmark HAR model and our volatility-factor augmented models, across three differ-

ent data frequencies, including 1-minute, 5-minute, and 10-minute frequencies. Thus,

there is little to choose between data frequencies when comparing in-sample model fit.

Moreover, in-sample model fit is surprisingly similar across different asset classes (i.e.,

market index, sector ETFs, and individual stocks), with most R2 values ranging rather

tightly between 0.35 and 0.55.

Second, our in-sample findings are highly mis-leading, when the objective of interest

is out-of-sample volatility prediction. Namely, all of the above findings become irrele-

vant when ex ante prediction experiments are carried out. In particular, for forecasting,

data frequency is crucial, and the “best” frequency varies across different assets and

asset classes. However, we still recommend using the 5-minute frequency, as a general

rule-of-thumb. This is because our factor augmented HAR models generally yield the

“best” predictions (see below for further discussion) using 5-minute frequency data,

when comparing results factor augmented model predictive accuracy across different

frequencies. Intuitively, note that on one hand, using higher frequency data may result

in a substantial amount of microstructure noise being absorbed by extracted factors,

hence potentially deteriorating predictive performance. On the other hand, if the sam-

pling frequency is relatively low, it is more difficult to eliminate individual jumps when

estimating latent factors, leading to forecast deterioration.

The above argument is buttressed by our finding that models utilizing SPCA in

factor construction generally forecast “better” than those utilizing PCA. Moreover, the
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performance of SPCA, relative to PCA, is greatest when one moves from using 10-

minute to 5-minute frequency data, as well as when one moves from using 1-minute to

5-minute frequency data.

Third, and perhaps most importantly, predictive accuracy improves appreciably

when latent common volatility factors are included in benchmark HAR-type models.

For example, for Johnson & Johnson (see Table 3.15), the benchmark model using

5-minute frequency data achieves an out-of-sample R2 value of only 0.14. This is ap-

proximately one-third of the out-of-sample R2 value associated with our “best” factor-

augmented model. This pattern occurs for many firms and sectors; as well as for the

market ETF. Interestingly, if only in-sample R2 values were examined in order to assess

the usefulness of common factors, then the story would change markedly. For example,

again using Johnson & Johnson to illustrate our findings, the benchmark model using

5-minute frequency data (without a common factor) achieves an in-sample R2 value

of 0.39, while in-sample R2 values for our factor-augmented models are all between

0.43 and 0.48. This small increase associated with utilizing common factors in an in-

sample context characterizes all of our experiments. Indeed, substantial increases in

performance only arise when using latent factors for ex ante prediction. This finding

constitutes strong evidence of an important difference between findings based on in-

and out-of-sample experiments.

A different way to interpret the above key finding is as follows. In-sample R2 values

are widely known to be substantively greater than out of sample R2 values in financial

forecasting applications. This feature has been extensively discussed in the literature,

and reasons for it range from the presence of (smooth) structural breaks and state

transitions, to the general inability of linear models to capture inherently nonlinear

interactions among financial variables and markets (e.g., see Paye and Timmermann

(2006), Aiolfi et al. (2009), and Ang and Timmermann (2012)). In our experiments,

when comparing benchmark HAR models, in-sample R2 values are indeed much greater

than their out-of-sample benchmark HAR counterparts, as might be expected. For

example, using IBM (see the 5-minute panel in Table 3.14) to illustrate our findings,

the benchmark model (without a common factor) achieves an in-sample R2 value of
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0.61, as opposed to an out-of-sample R2 value of 0.24. However, when the “best” factor

augmented in-sample and out-of sample performances are compared in this example,

the R2 values are 0.65 and 0.38, respectively. Thus, the relative out-of-sample gains

associated with utilizing latent volatility factors are greater than the in-sample gains.

This feature characterizes our results at all market, sector, and individual-stock levels,

although it is more starkly apparent at the individual stock level.

Fourth, there is an important wrinkle to the above story. Namely, for financial

assets, out-of sample R2 values are approximately 0 in some cases. A particularly

interesting example of this is the financial sector ETF. For this ETF, in-sample R2

values range from around 0.53 to 0.64, while out-of-sample R2 range from around 0.08

to 0.30. At the individual stock level, the picture is even more stark. Consider Goldman

Sachs (see Table 3.13). In-sample R2 values are always around 0.40, while out-of-sample

R2 values are always less than 0. However, all is not lost. As discussed above, for many

of our target variables, there is substantial predictable content. For example, out-of-

sample R2 values for Coca-Cola (see Table 3.17), Exxon Mobil (see Table 3.22) and

IBM (see Table 3.14) range from 0.35 to 0.41, from 0.30 to 0.37, and from 0.23 to 0.38,

respectively, when using common factors constructed via our two-step procedure, and

based on IV estimators constructed using 5-minute frequency data.

Fifth, financial stocks are frequently selected in our first variable selection (or shrink-

age) step. However, they are often assigned small weights in the second step (i.e., the

latent factor estimation step), particularly when SPCA is used in this step. For instance,

when we forecast the volatility of our energy sector ETF using 1-minute frequency data,

over 33% of the most frequently selected stocks in the first step are in financial sector.

However, the average weight assigned by PCA to, for instance, Goldman Sachs is only

around 0.09, while the corresponding weight assigned to Texas Instruments is around

double that (see Table 3.24). Even more starkly, the average weight assigned by SPCA

to Goldman Sachs drops is only around 0.02. This is in part due to the fact that over

50% of weights assigned by SPCA are identically zero. On the contrary, the average

weight on Texas Instruments Incorporated rises to 0.19. Therefore, we conjecture that

the contribution of financial stocks to common volatility factors may be less than that
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of stocks in other sectors, based on these rather surprising findings. Moreover, and as

a result of the above findings, it is very likely that the marginal predictive content of

common volatility factors is largely accounted for by information in sectors other than

the financial sector, such as the industrial and technology sectors.

The rest of the paper is organized as follows. Section 3.2 outlines our setup and

modeling assumptions, and includes a brief discussion of some of the realized measures

that we construct. Section 3.3 discusses the forecasting framework used, and briefly

introduces PCA, SPCA, LASSO and elastic net methods. Section 3.4 includes a discus-

sion of the data used in our forecasting experiments, and summarizes our key empirical

findings. Finally, Section 3.5 contains concluding remarks.

3.2 Setup

Denote by X the d-dimensional log-price process of d assets. Following the high-

frequency literature, we assume that X follows an Itô-semimartingale defined on some

filtered probability space (Ω,F, (Ft)t≥0,P), and has the following representation:

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs

+

∫ t

0

∫
{|x|≤ε}

x(µ− ν)(ds, dx) +

∫ t

0

∫
{|x|≥ε}

xµ(ds, dx),

(3.1)

where bt is the instantaneous drift term, σt is the spot volatility, and both are adapted

and càdlàg. Additionally, Wt is a multidimensional standard Brownian motion, µ is

a Poisson random measure with compensator ν, and ε > 0 is an arbitrary number.

For more details on Itô-semimartingale and continuous-time asset price modeling, see

Aı̈t-Sahalia and Jacod (2014) and the references therein.

Since volatility is unobservable, realized measures are often employed to consistently

estimate it on a fixed interval [0, T ], using high-frequency intraday data. For instance,

one of the most widely known measures, realized volatility, is defined as follows:

RVt =

bt/∆nc∑
i=1

(∆n
i X)2, ∀t ∈ [0, T ], (3.2)

where bmc is the integer part of m and ∆n
i X = Xi∆n − X(i−1)∆n

, where ∆n is the
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equally-spaced sampling interval that shrinks to zero. It is well-known that when asset

prices are continuous on a fixed interval [0, T ], we have that:

bt/∆nc∑
i=1

(∆n
i X)2 P−→

∫ t

0
σ2
sds, , ∀t ∈ [0, T ]. (3.3)

However, when asset prices are discontinuous on [0, T ]:

bt/∆nc∑
i=1

(∆n
i X)2 P−→

∫ t

0
σ2
sds+

∑
0≤s≤t

(∆Xs)
2, ∀t ∈ [0, T ]. (3.4)

where ∆Xs := Xs −Xs− 6= 0, if and only if X jumps at time s.

To separate the integrated volatility from jump variation, one can use the threshold

technique developed in Mancini (2001, 2009):

bt/∆nc∑
i=1

(∆n
i X)21{|∆n

i X|≤α∆$
n }

P−→
∫ t

0
σ2
sds, (3.5)

or use the multipower variation (MPV) estimator developed in Barndorff-Nielsen and

Shephard (2004) and Barndorff-Nielsen et al. (2006):

∆1−p+/2
n

bt/∆nc−k+1∑
i=1

|∆n
i X|p1 ...|∆n

i+k−1X|pk
P−→ mp1 ...mpk

∫ t

0
|σs|p

+
ds (3.6)

where pj ≥ 0, p+ = p1 + · · · + pk and mp = E[|N (0, 1)|p]. One can also combine

these two methods and use a truncated multipower variation estimator. Apparently,

different components of the quadratic variation can be analyzed or used separately in

econometric analysis.

We also assume that the continuous part of asset log-prices follows an underlying

continuous-time factor model on [0, T ]. Namely, define:

Yt = ΛtFt + Zt (3.7)

where Yt := X0 +
∫ t

0 bsds+
∫ t

0 σsdWs is the continuous part of X, Ft is an r-dimensional

continuous factor (r < d), Zt is an idiosyncratic component, and Λt is a d-by-r factor

loading matrix, each element of which is adapted and has càdlàg paths almost surely.

Here, we specifically call Ft the common price factor in order to distinguish it from

the common volatility factor defined later. The common price factor F ’s and the
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idiosyncratic component Z’s are continuous Itô-semimartingales as well, with:

Ft = F0 +

∫ t

0
hsds+

∫ t

0
ηsdBs (3.8)

and

Zt = Z0 +

∫ t

0
gsds+

∫ t

0
γsdB̃s, (3.9)

where Bs and B̃s are independent Brownian motions. All of the coefficient processes,

h, η, g and γ are adapted to (Ft)t≥0 and have càdlàg paths, almost surely. The above

factor models and general settings follow Aı̈t-Sahalia and Xiu (2017b).

3.3 Dimension Reduction and Forecasting Methods

The original HAR model is given below.

RMt+h = β0 + β1RMt + β2RM[t,t−4] + β3RM[t,t−21] + εt, (3.10)

where RM’s are realized measures of integrated volatility, and RM[t,t−p] is the average

of RM’s over the most recent p + 1 days. For instance, if realized volatility is used in

the model, then:

RV[t,t−p] =
1

p+ 1

p∑
i=0

RVt−i. (3.11)

To eliminate the jump variation from the total quadratic variation, we employ the

truncated realized volatility in (3.5) to consistently estimate the integrated volatility1.

Therefore, the benchmark model that we consider in this paper is as follows:

TRVt+h = β0 + β1TRVt + β2TRV[t,t−4] + β3TRV[t,t−21] + εt, (3.12)

where TRV stands for truncated realized volatility.

We propose using the following factor-augmented model in our forecasting experi-

ments,

yt+h = β0 + βᵀΨΨt + βᵀwwt + εt, (3.13)

1We actually combine the two methods, i.e. (3.5) and (3.6), in the following way: we first use
bipower variation to get an initial consistent estimate of the integrated volatility, and then use this
to determine an initial choice for α. Then, we obtain a second estimate of the integrated volatility
using the truncation method, and a second choice of α. We iterate this procedure until the estimated
integrated volatility converges.
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where yt+h is the h-step-ahead forecast of daily integrated volatility. We focus on one-

day-ahead forecasts (i.e., h = 1). Here, wt is a vector consisting of truncated realized

volatility on day t, the weekly average of truncated realized volatility from days t − 4

to t, and the monthly average of truncated realized volatility from days t − 21 to t

(i.e., wt contains all predictors in the benchmark model). Furthermore, Ψt consists of

r-dimensional unobservable predictors. Based on the structure of factors assumed in

(3.7), we define

Ψt :=

∫ t

0
diag(Λsηsη

ᵀ
sΛᵀ

s)ds

and name it the common volatility factor. Note that we can not disentangle Λ from

η unless imposing certain identification condition such as ηηᵀ = Ir. So we don’t dis-

tinguish them and treat Ψt as the integrated volatility matrix of the r uncorrelated

common factors.

Here, common price factors are extracted using PCA or SPCA applied to a high-

frequency dataset, the constituent members of which are specified using LASSO or

elastic net shrinkage on our 274 variable original dataset. Intuitively, common price

factors in (3.7) can be interpreted as “composite stocks” (the name comes from the

fact that they are linear combinations of all individual stocks in the dataset) that in

general affect a majority of stocks in the market. Therefore, we first construct those

“composite stocks”, next estimate the integrated volatility for each, and finally use

the estimated integrated volatilities as predictors in (3.13) to forecast the integrated

volatility of the target asset. Of note is that unlike many other applications of factor-

augmented regressions, we do not directly use common factors ΛtFt extracted from a

large number of assets. Instead, what we actually use as predictors in forecasting models

are the estimated integrated volatilities of these common factors, i.e. Ψt. As discussed

above, we use PCA and SPCA when constructing “composite stocks” in this paper.

These dimension reduction methods will be briefly discussed after we summarize the

shrinkage methods utilized in the first step of our two step volatility factor extraction

procedure.
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3.3.1 LASSO and Elastic Net

Prior to construction of latent factors using PCA and SPCA, we first select targeted

predictor assets. For this, we use two shrinkage or variable selection methods, including

the LASSO (see Tibshirani (1996)) and the elastic net (see Zou and Hastie (2005)). Both

techniques can be interpreted as regularized or penalized regression methods. Briefly,

let RSS be the sum of squared residuals from a regression of yt+h on wt and χt, where

χt is a vector of estimates of integrated volatility on day t for all assets in Xt. The

LASSO estimator is the solution to:

min
φ

RSS + λ
∑
j

|φj |, (3.14)

where the φ’s are coefficients in the regression. Only assets with nonzero φ’s are retained

in our final set of selected target predictor assets, say X̃t, and the sparsity (number of

variables) in X̃t only depends on λ. Therefore, instead of Xt, we actually apply PCA

or SPCA to the variance-covariance matrix of X̃t when constructing estimates of latent

asset return factors that are in turn used to construct latent volatility factors.

Similarly, the elastic net estimator is the solution to:

min
φ

RSS + λ
∑
j

((1− α)

2
φ2
j + α|φj |

)
, (3.15)

with α ∈ [0, 1]. Of note is that when α = 1, the elastic net is equivalent to LASSO.

As α shrinks toward 0, the elastic net approaches ridge regression. In our experiments,

we set α = 0.2 and 0.6 for the elastic net. For both the LASSO and the elastic net,

λ is selected using 10-fold cross validation in the training dataset used to calibrate

prediction models.

Note that for any two different target assets, the information pool (X̃t) from which

we construct the F̂t’s and subsequently the Ψ̂t’s can be quite different (though the

probability of them being equivalent is still positive). Additionally, note that after

selecting X̃t via LASSO or elastic net shrinkage targeted to a specific asset, we construct

(sparsely loaded) latent factors that are specifically related to the asset of interest.

Therefore, it is reasonable to assume that their integrated volatilities (i.e., the Ψ̂t’s)
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will potentially have better predictive power for the volatility of the target asset, than

were the entire dataset, Xt used to construct latent factors.

3.3.2 Principal Component Analysis

On any fixed interval [0, T ], define the following covariance matrix estimator:

Σ̂ =
1

t

bt/∆nc∑
i=1

{(∆n
i X)(∆n

i X)ᵀ}1{|∆n
i X|≤α∆$

n }, ∀t ∈ [0, T ]. (3.16)

Applying an eigenvalue-eigenvector decomposition to Σ̂ yields estimates of eigenvalues

in descending order, λ̂1>λ̂2>· · ·>λ̂r, and estimates of corresponding eigenvectors, ξ̂1,

ξ̂2,· · ·, ξ̂r. Therefore, the first r principal components on day t can be estimated as

follows:

∆n
i F̂1,t = (∆n

i Xt)1{|∆n
i Xt|≤α∆$

n } ξ̂1

∆n
i F̂2,t = (∆n

i Xt)1{|∆n
i Xt|≤α∆$

n } ξ̂2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

∆n
i F̂r,t = (∆n

i Xt)1{|∆n
i Xt|≤α∆$

n } ξ̂r

(3.17)

With these estimated principal components, latent common volatility factors on day t

can be subsequently estimated as follows:

Ψ̂1,t =

bt/∆nc∑
i=1

(∆n
i F̂1,t)

2

Ψ̂2,t =

bt/∆nc∑
i=1

(∆n
i F̂2,t)

2

· · · · · · · · · · · · · · · · · · · · ·

Ψ̂r,t =

bt/∆nc∑
i=1

(∆n
i F̂r,t)

2.

(3.18)

Aı̈t-Sahalia and Xiu (2017b) show that the number of common factors can be con-

sistently estimated, and that
∑r̂

j=1 λ̂j ξ̂j ξ̂
ᵀ
j , where r̂ is the estimate of the number of

common factors, converges to Λ[1
t

∫ t
0 (ηsη

ᵀ
s )ds]Λᵀ, with dimension diverging to infinity.

As a result, Ψt can be consistently estimated by the diagonal elements of
∑r̂

j=1 λ̂j ξ̂j ξ̂
ᵀ
j .

Once we have the estimates of Ψt (i.e., Ψ̂t), we can plug them into model (3.13) to
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forecast y. In both the case of PCA and SPCA, the latent integrated volatility vari-

ables used in the HAR regressions discussed below are estimated using high frequency

uncorrelated latent asset return factor data.

We conclude this subsection with two remarks. First, the above PCA procedure

delivers the eigens (eigenvalues and eigenvectors) of the integrated volatility matrix.

According to Aı̈t-Sahalia and Xiu (2017a), these eigens are different from the inte-

grated eigens of the spot volatility matrix, when t does not shrink to zero. However,

in finite samples (e.g., in our empirical application), the time horizon t (one day) is

small relative to ∆n (1-minute, 5-minute, and 10-minute), and this difference is small

compared with other sources of estimation error. Therefore, we do not address eigens

of integrated volatility versus integrated eigens of spot volatility differences in our em-

pirical application, following the approach taken by Aı̈t-Sahalia and Xiu (2017b).

Second, it is well-known that eigens are nonlinear functions of the corresponding

data matrix. Jacod and Rosenbaum (2013) show that various bias terms arise when

estimating integrals of nonlinear functions of the spot volatility matrix, although only

one bias term remains when local window sizes that are used are chosen to be relatively

small. They further demonstrate that this remaining bias can be consistently estimated.

Hence, it is possible to construct bias-corrected estimators. Moreover, according to Aı̈t-

Sahalia and Xiu (2017a), these bias terms are proportional to their associated eigens.

Consequently, they share the same source of predictive power as eigens. In addition,

analogous to our earlier arguments, the ratio t/∆n is small in our empirical application,

making the bias term that can be treated using the methods of Jacod and Rosenbaum

(2013), which is an integral over [0, t], relatively small compared with other estimation

errors. In view of these observations, we don’t remove this bias term in our empirical

application.

3.3.3 Sparse Principal Component Analysis

In general, PCA yields nonzero factor loadings for (almost) all variables, which exac-

erbates difficulty in interpretation. To avoid this drawback of PCA, and to generally

induce parsimony, we also consider estimating factors using SPCA, as developed by Zou
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et al. (2006) and Qi et al. (2013).

Let Σ̂ be the same covariance matrix estimator defined in (3.16). The eigenvector

ξ̂1 of the first sparse principal component is the solution to:

max
||ξ1||2=1

ξᵀ1 Σ̂ξ1

||ξ1||2λ1

, (3.19)

where || · ||λ1 is a mixed norm defined as
√

(1− λ1)|| · ||22 + λ1|| · ||21, with λ1 ∈ [0, 1].

Note that if λ1 = 0, this mixed norm is equivalent to the L-2 norm, while it is equivalent

to the L-1 norm if λ1 = 1. With ξ̂1, one can sequentially obtain subsequent eigenvectors

by solving the following optimization problems for j = 2,3,...,r:

max
||ξj ||2=1,ξj−1⊥ξj

ξᵀj Σ̂ξj

||ξj ||2λj
, (3.20)

where λk is the tuning parameter for ξk (which might be different for each k). In short,

SPCA produces “sparse” factor loadings in the sense that many of them are identically

zero, while factors are still constructed in the spirit of PCA, since explained data

variances are maximized under constraints. Qi et al. (2013) show that their proposed

algorithm for optimizing objective functions yields a stable limit which consistently

estimates the eigenvectors under certain conditions. Our apporach, as discussed above,

is to first estimate high-frequency sparse principal components, and then construct and

utilize realized volatilities from these estimated factors in (3.13) to forecast any given

target of interest.

3.3.4 Forecasting Methods

The proposed one-step forecasting model is:

T̂RVt+1 = β0 + β1T̂RVt + β2T̂RV[t,t−4] + β3T̂RV[t,t−21] + βᵀΨΨ̂t + εt. (3.21)

The estimated factors’ volatilities, Ψ̂t, are constructed by implementing the above men-

tioned two-step procedure. Recall that the first step involves using LASSO or elastic

net shrinkage to select a subset of the asset dataset, as outlined in Section 3.3.1. The

second step involves latent volatility factor construction, as discussed in Sections 3.3.2

and 3.3.3.
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We choose the number of latent factors in our experiments by following an easy-to-

implement, albeit ad-hoc rule. First, we sort all eigenvalues in descending order and

select (additional) principal components based on their corresponding eigenvalues until

their cumulative contribution exceeds (or is equal to) 90% of the total variation of the

dataset. Next, we discard principal components with individual contributions that are

less than 5% of total variation. For instance, if the first 5 principal components con-

tribute 60%, 10%, 10%, 6%, 4%, respectively, we keep the first 4 principal components.

The idea is very simple and natural: there is a trade-off between a more parsimonious

model and a less informative one. Although the choice of cutoffs is somewhat arbitrary,

our experiments suggest that the findings are robust to other cutoffs within a reason-

able range of the above ones. Finally, we estimate daily integrated volatility of selected

latent factors and use them as predictors in (3.21).

In summary, we consider six “permutations” of our two-step procedure in forecasting

experiments, as follows:

I. EN1-PCA: First step - assets selected using elastic net (EN) shrinkage, with

parameter α = 0.2. Second step - latent integrated volatility factors constructed using

PCA.

II. EN2-PCA: First step - assets selected using elastic net (EN) shrinkage, with

parameter α = 0.6. Second step - latent integrated volatility factors constructed using

PCA.

III. LASSO-PCA: First step - assets selected using LASSO shrinkage, with param-

eter α = 0.2. Second step - latent integrated volatility factors constructed using PCA.

IV. EN1-SPCA: First step - assets selected using elastic net (EN) shrinkage, with

parameter α = 0.2. Second step - latent integrated volatility factors constructed using

SPCA.

V. EN2-SPCA: First step - assets selected using elastic net (EN) shrinkage, with

parameter α = 0.6. Second step - latent integrated volatility factors constructed using

SPCA.

VI. LASSO-SPCA: First step - assets selected using LASSO shrinkage, with pa-

rameter α = 0.2. Second step - latent integrated volatility factors constructed using
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SPCA.

Model estimation and volatility prediction are carried out anew, each day, using a

rolling-window estimation scheme. The length of rolling window (i.e. the in-sample

period), is 630 days. For example, we first estimate models using data from December

28, 2006 to June 30, 2009 (630 trading days), and then construct one-day-ahead fore-

casts for July 1, 2009. Then, in order to forecast the volatility on July 2, 2009, we first

estimate our models using data from December 29, 2006 to July 1, 2009 (630 trading

days). We continue this procedure until we reach the end of our dataset. Finally, we

obtain sequences of daily out-of-sample volatility forecasts for the sample period from

July 1, 2009 to December 31, 2010, which constitutes 380 trading days.

Our benchmark HAR model is estimated using ordinary least squares. All factor-

augmented regressions are estimated using constrained least squares, in order to guar-

antee that all parameters are nonnegative. By doing so, we avoid any potential negative

forecasts of volatility.

To evaluate the forecasting performance of our factor-augmented models and com-

pare them with the benchmark model, we consider three different criteria:

(a) In-sample R2.

(b) Out-of-sample R2 (Campbell and Thompson (2008)), defined as:

R2
OOS = 1−

∑T
t=1(yt − ŷt)2∑T
t=1(yt − ȳt)2

, (3.22)

where yt is the ex-post value of volatility, ȳt is the historical average of volatility, and

ŷt is our forecast.

(c) Heteroskedasticity adjusted root mean square error (HARMSE) (Corsi et al.

(2010)), defined as:

HARMSE =

√√√√ 1

T

T∑
t=1

(
yt − ŷt
yt

)2 (3.23)

The experimental setup discussed in this section is summarized in Table 3.1.
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3.4 Empirical Results

3.4.1 Data

We collect intraday observations on 267 constituents of the S&P 500 index2; 9 sector

ETFs, including; Materials (XLB), Energy (XLE), Financial (XLF), Industrial (XLI),

Technology (XLK), Consumer Staples (XLP), Utilities (XLU), Health Care (XLV),

and Consumer Discretionary (XLY); and the SPDR S&P 500 ETF (SPY). Our sample

period is January 3, 2006 to December 31, 2010, and data are collected from the TAQ

database.

In our forecasting experiments, target assets include SPY; the 9 sector ETFs listed

above; and 11 individual stocks, including: Coca-Cola Company (KO), Exxon Mobil

Corporation (XOM), General Electric Company (GE), Goldman Sachs (GS), Interna-

tional Business Machines (IBM), Johnson & Johnson (JNJ), JPMorgan Chase (JPM),

McDonald’s (MCD), Merck (MRK), Microsoft (MSFT) and Wal-Mart (WMT).

It is worth mentioning that the original dataset we collected consists of 274 con-

stituents of S&P 500 index. Of these, seven stocks, including AIG, C, F, GNW, HIG,

LVLT and STT, are deleted, leaving 267 stocks. The reason for this is that these stocks

generate a small number of extreme integrated volatility values, even when data are

filtered with using a judiciously chosen jump threshold. These stocks are thus viewed

as “outliers” that contains strong microstructure noises and/or recording error, which

are not informative about future volatilities, hence may consequently deteriorate fore-

casting performance of our models. As a robustness check, however, we did compare

empirical results based on 267 constituents with those based on 274 constituents, al-

though comparable results are only shown from the SPY case. Complete results based

on the original dataset of 274 constituents are available upon request, although it is

clear, upon comparison of our results in these two cases, that utilizing the 7 additional

stocks result in a deterioration of the predictive performance of out latent volatility

factors.

2Since the constituents of S&P 500 index change over time, we only collect those that are always
present in the index between 2006 to 2010.
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Finally, data cleaning, subsampling, etc., all follow standard procedures described in

Aı̈t-Sahalia and Jacod (2012). Overnight returns are excluded. Less frequently traded

stocks are also excluded from the dataset since they do not generate high-frequency

data.

3.4.2 Empirical Findings: Forecasting Performance

Tables 3.2–3.22 show the one-day ahead forecast performance of the benchmark HAR

model and various factor-augmented HAR models, for the forecasting sample period

from July 1, 2009 to December 31, 2010. All tables report in-sample and out-of-sample

R2 values, as well as HARMSE values. Table 3.2 (SPY) also compares the results

with and without the aforementioned seven “outlier” stocks (first and second columns

under each criterion). Moreover, to compare the performance across different sampling

frequencies, we construct factors using 1-minute, 5-minute, and 10-minute frequency

data, respectively. Finally, as discussed above, forecasting experiments are carried out

using rolling windows to estimate all models, prior to ex ante forecast construction at

each point in time. A number of clear-cut conclusions emerge upon inspection of the

results contained in these tables.

First, in-sample fit is surprisingly stable across different models, including our

benchmark HAR model and our volatility-factor augmented models, across three differ-

ent data frequencies, including 1-minute, 5-minute, and 10-minute frequencies. Thus,

there is little to choose between data frequencies when comparing in-sample model fit.

Moreover, in-sample model fit is surprisingly similar across different asset classes (i.e.,

market index, sector ETFs, and individual stocks), with most R2 values ranging rather

tightly between 0.35 and 0.55. More specifically, most in-sample R2 values for sector

ETFs range rather tightly between approximately 0.50 and 0.65, regardless of whether

our HAR specifications include a latent volatility factor or not. The exception to this

appears to be XLP (Consumer Staples, Table 3.8), for which values range from 0.38

to 0.50. The market ETF (SPY, Table 3.2) delivers in-sample R2 values between ap-

proximately 0.55 and 0.65. Finally, for individual stocks, the range is somewhat wider,

including values from 0.35 to 0.65. Finally, in-sample fit changes little when volatility
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factors are added to benchmark HAR models, regardless of asset class. Thus, based

solely on in-sample diagnostics, there appears to be little gain to deploying volatility

factors in HAR analysis. However, we shall see that this finding changes dramatically

when out-of-sample, or true ex ante forecasting, is carried out.

Second, our in-sample findings are highly mis-leading, when the objective of interest

is out-of-sample volatility prediction. Namely, all of the above findings become irrele-

vant when ex ante prediction experiments are carried out. For example, for forecasting,

data frequency is crucial, and the “best” frequency varies across different assets and

asset classes. However, we still recommend using the 5-minute frequency, as a general

rule-of-thumb. This is because our factor augmented HAR models generally yield the

“best” predictions (see below for further discussion) using 5-minute frequency data,

when comparing results factor augmented model predictive accuracy across different

frequencies. Intuitively, note that on one hand, using higher frequency data may result

in a substantial amount of microstructure noise being absorbed by extracted factors,

hence potentially deteriorating predictive performance. On the other hand, if the sam-

pling frequency is relatively low, it is more difficult to eliminate individual jumps when

estimating latent factors, leading to forecast deterioration.

Third, note that the the above findings are based on a comparison of predictions

made using factor augmented HAR models. This is the correct comparison to make

because predictive accuracy improves appreciably when latent common volatility factors

are included in our benchmark HAR-type model. For example, for Johnson & Johnson

(see Table 3.15), the benchmark model using 5-minute frequency data achieves an out-

of-sample R2 value of only 0.14. This is approximately one-third of the out-of-sample

R2 value associated with our “best” factor-augmented model. This pattern occurs for

many firms and sectors; as well as for the market ETF. Interestingly, if only in-sample

R2 values were examined in order to assess the usefulness of common factors, then

the story would change markedly. For example, again using Johnson & Johnson to

illustrate our findings, the benchmark model using 5-minute frequency data (without

a common factor) achieves an in-sample R2 value of 0.39, while in-sample R2 values

for our factor-augmented models are all between 0.43 and 0.48. This small increase
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associated with utilizing common factors in an in-sample context characterizes all of

our experiments. Indeed, substantial increases in performance only arise when using

latent factors for ex ante prediction. As discussed in the introduction to this paper, this

finding constitutes strong evidence of an important difference between findings based

on in- and out-of-sample experiments.

The above conclusion can perhaps best be understood by noting that in-sample R2

values are widely known to be substantively greater than out-of-sample R2 values in

financial forecasting applications. This feature has been extensively discussed in the

literature, and reasons for it range from the presence of (smooth) structural breaks

and state transitions, to the general inability of linear models to capture inherently

nonlinear interactions among financial variables and markets (e.g., see Ang and Tim-

mermann (2012), Aiolfi et al. (2009), and Paye and Timmermann (2006)). Naturally,

arguments centering around market efficiency may also play a role in explaining this

phenomenon. Not surprisingly, then, when comparing benchmark HAR models, we find

that in-sample R2 values are indeed much greater than their out-of-sample benchmark

HAR counterparts. For example, using IBM (see the 5-minute panel in Table 3.14) to

illustrate our findings, the benchmark model (without a common factor) achieves an

in-sample R2 value of 0.61, as opposed to an out-of-sample R2 value of 0.24. However,

when the “best” factor augmented in-sample and out-of sample performances are com-

pared in this example, the R2 values are 0.65 and 0.38, respectively. Thus, the relative

out-of-sample gains associated with utilizing latent volatility factors are greater than

the in-sample gains, as the out-of-sample R2 value increases from 0.24 to 0.38, which is

more than a 50% gain. Indeed, analogous predictive accuracy gains exceed 50% for GE,

JNJ, JPM, KO, MCD, MRK, WMT, and XOM (see Tables 3.12, 3.15, 3.16, 3.17, 3.18,

3.19, 3.21 and 3.22, respectively), with 5-minute frequency data. Lesser gains arise for

only 2 of 11 stocks that we analyze. Broadly speaking, this feature also characterizes

our results at all market and sector levels, although it is more starkly apparent at the

individual stock level.

Fourth, models utilizing SPCA in factor construction generally forecast “better”

than those utilizing PCA. Moreover, the gains to using SPCA, relative to PCA, are
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greatest when one moves from using 10-minute to 5-minute frequency data, as well as

when one moves from using 1-minute to 5-minute frequency data. This two-pronged

finding is as expected, given that using high frequency data across many stocks, when

constructing latent volatility factors, involves accounting for noisiness due not only

to sampling frequency (i.e., microstructure noise), but also due to the large number of

assets, a increasing number of which are transmitting noisy signals, as the cross sectional

dimension of our dataset increases. This argument, parallels the argument outlined

above, whereby using higher frequency data may result in more microstructure noise

being absorbed by extracted factors, while when the sampling frequency is relatively low

(or when the number of assets is relatively high), it may be more difficult to eliminate

individual jumps when estimating latent factors.

Drilling down a bit further, the results in Table 3.12 indicate that at 1- and 5-minute

frequencies, factor-augmented models with SPCA have a 25%–35% larger out-of-sample

R2 than those with PCA. Similar results can also be found in Tables 3.13, 3.14, 3.18,

3.20, 3.21 and 3.22. This pattern, however, becomes insignificant or even reversed at our

lowest sampling frequency (i.e., the 10-minute frequency). Moreover, when forecasting

individual stocks, as well as some ETFs, such as SPY, XLB, XLE, XLI, XLK and

XLY (see Tables 3.2, 3.3, 3.4, 3.6, 3.7 and 3.11, respectively), factor-augmented models

with SPCA yield much lower HARMSE, especially at when using higher frequency data.

Again, this pattern becomes less significant at lower frequency. As discussed above, this

finding likely due to the presence of microstructure noise in our data, given that SPCA

assigns many identically zero weights on stocks, and consequently alleviates some of

the effect of microstructure noise; particularly from stocks, which are non-informative

about the volatility of the target asset. Therefore, we are not surprised that factor-

augmented models using SPCA are more likely to perform better than those using PCA

at higher frequencies. Of course, it is perhaps worth noting that due to aggregation,

the impact of microstructure noise on our market index ETF and sector ETFs is much

weaker. As a consequence, the difference among models utilizing SPCA and PCA when

forecasting our ETFs is less pronounced, as mentioned above.

Fifth, there is an important wrinkle to the above story. Namely, for financial assets,
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out-of sample R2 values are approximately 0 in some cases. A particularly interesting

example of this is the financial sector ETF. For this ETF, in-sample R2 values range

from around 0.53 to 0.64, while out-of-sample R2 range from around 0.08 to 0.30 (see

Table 3.5). At the individual stock level, the picture is even more stark. Consider

Goldman Sachs (see Table 3.13). In-sample R2 values are always around 0.40, while out-

of-sample R2 values are always less than 0. Evidently, integrated volatility of individual

financial stocks is the most difficult to forecast. Unlike forecasting the financial sector

as a whole, when it comes to individual financial stocks, HAR-type models performs

very poorly. In Tables 3.13 and 3.16, entries in the column of out-of-sample R2 for the

benchmark model are almost all negative, HARMSE are in general much larger than

those for other assets, and even in-sample R2 values are much lower compared to other

assets.

However, all is not lost. Incorporating common volatility factors extracted from a

broad range of stocks into benchmark models sometimes helps in obtaining more precise

forecasts for financial stocks, but only to a very limited extent. As discussed above,

for many of our target variables, there is substantial predictable content. For example,

out-of-sample R2 values for Coca-Cola (see Table 3.17), Exxon Mobil (see Table 3.22),

and IBM (see Table 3.14) range from 0.35 to 0.41, from 0.30 to 0.37, and from 0.23 to

0.38, respectively, when using common volatility factors constructed via our two-step

procedure, and based on IV estimators constructed using 5-minute frequency data.

Sixth, financial stocks are frequently selected in our first variable selection (or shrink-

age) step. However, they are often assigned small weights in the second step (i.e., the

latent factor estimation step), particularly when SPCA is used in this step. For instance,

when we forecast the volatility of our energy sector ETF using 1-minute frequency data,

over 33% of the most frequently selected stocks in the first step are in financial sector.

However, the average weight assigned by PCA to, for instance, Goldman Sachs is only

around 0.09, while the corresponding weight assigned to Texas Instruments is around

double that (see Table 3.24). Even more starkly, the average weight assigned by SPCA

to Goldman Sachs drops is only around 0.02. This is in part due to the fact that over

50% of weights assigned by SPCA are identically zero. On the contrary, the average
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weight on Texas Instruments Incorporated rises to 0.19. Therefore, we conjecture that

the contribution of financial stocks to common volatility factors may be less than that

of stocks in other sectors, based on these rather surprising findings. Moreover, and as

a result of the above findings, it is very likely that the marginal predictive content of

common volatility factors is largely accounted for by information in sectors other than

the financial sector, such as the industrial and technology sectors.

3.4.3 Empirical Findings: Latent Factor Structures

Tables 3.23–3.25 contain factor structure details, for the case where we are interested in

forecasting non-financial sector ETFs and individual stocks. A number of conclusions

emerge when examining these results.

First, note that different shrinkage methods in the first step of our procedure select

almost the same pool of stocks, for each sampling frequency. Thus, there appears to

be little to choose between the LASSO and elastic net shrinkage. However, the pool

of selected stocks changes with data frequency. For instance, consider the SPY ETF.

Table 3.23 shows that at the 1-minute frequency, almost 32% of selected stocks belong

to the financial sector. In contrast, at 5-minute and 10-minute frequencies, only around

15% to 20% of selected stocks are financials. Similar results can be seen upon inspection

of Table 3.24 (sector ETF) and 3.25 (individual stock).

Second, an important feature of our volatility factors is that financial stocks tend

to be selected frequently in the first step of our procedure, particularly when using

higher frequency data. However, relatively little weight is placed on such stocks in

the second step of our procedure, when utilizing PCA and SPCA to estimate asset

return factors. For instance, in columns denoted “PCA” in these three tables, the

average weight on HBAN (Huntington Bancshares) is only between 0.06 and 0.07, when

using 1-minute frequency data. Similarly, BK (Bank of New York Mellon) has average

weight around 0.06–0.09, when using 5-minute frequency data, and MMC (Marsh &

McLennan Companies) in Table 3.23, GS (Goldman Sachs) in Table 3.24 and LM (Legg

Mason) in Table 3.25 have average weights of around 0.1 or less, when using 10-minute

frequency data. Furthermore, under “SPCA”, the average weights on financial stocks
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are even smaller, and many are identically zero. For instance, Table 3.23 shows that at

the 1-minute frequency, the average weight on PRU (Prudential Financial) decreases

dramatically from 0.104 to 0.047 when factor estimation utilizes SPCA instead of PCA

(under SPCA almost 28% of daily weights are zero). This finding is consistent with

our above microstructure noise explanation of the superior performance of models that

utilize SPCA, in conjunction with the use of higher frequency data.

Third, notice that stocks in the industrial and technology sectors usually have larger

factor loadings (weights) under both PCA and SPCA. For instance, in Table 3.25, CSCO

(Cisco), LLTC (Linear Technology) and SWKS (Skyworks Solutions) - in the technology

sector, and MAS (Masco), UPS and UTX (United Technologies) - in the industrial

sector, all have average weights greater than 0.15. Similarly, in Table 3.24, CERN

(Cerner), NFLX (Netflix) and TXN (Texas Instruments) - in technology sector, and

CSX, FAST (Fastenal) and HON (Honeywell) - in the industrial sector - have average

weights larger than 0.15. Putting all of the above evidence together, we conclude that

although financial stocks are frequently chosen in our first step shrinkage procedure,

their contributions to common volatility factors appears to be less than that of industrial

and technology stocks.

3.5 Concluding Remarks

This paper investigates whether latent common volatility factors extracted from a large-

dimensional high-frequency intraday stock returns improve volatility forecasting. We

propose a factor-augmented version of the widely studied HAR model. In our new

model, factors are estimated using a two-step procedure involving variable selection

using least absolute selection operator (LASSO) and elastic net shrinkage, followed by

factor estimation using (sparse) principal components analysis (SPCA).

Our key findings are summarized as follows. First and foremost, we uncover substan-

tial empirical evidence indicating that latent common volatility factors greatly improve

the out-of-sample predictive accuracy of HAR models, as measured by both HARMSE
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and out-of-sample R2. This improvement is seen across markets, sectors, and individ-

ual companies, with the greatest improvements noted at the individual company level.

Second, in-sample performance is often irrelevant to out-of-sample performance. In-

deed, if volatility modeling is viewed solely through the lens of in-sample fit, then little

is gained by generalizing the HAR model using our procedure. Almost all gains are

seen only when true ex ante prediction is carried out. Third, we recommend using high

frequency datasets consisting of data sampled at 5-minute frequency, when construct-

ing predictions of volatility using factor augmented regressions. This recommendation

arises because of microstructure noise considerations, as well as because of the inci-

dence of heterogeneous jumps associated with the large cross sectional dimension of

our dataset. We also find that models utilizing SPCA perform better than those with

PCA, when these methods are used to extract common volatility factors.

This chapter is meant as a starting point, as much remains to be done. For example,

although substantial theoretical advances in the application of principal component

analysis to high dimensional asset return datasets are made in Aı̈t-Sahalia and Xiu

(2017a) and Aı̈t-Sahalia and Xiu (2017b), it remains to ascertain whether the results

carry over to the use of SPCA. It also remains to theoretically analyze higher order

latent (e.g., volatility) factors that are estimated based using first order latent factors

constructed using observed (asset) data. From an empirical perspective, it will be of

interest to further examine the robustness of the findings in this paper to the use of

alternative sample periods for both in-sample estimation and out-of sample prediction.

It will also be of interest to assess whether the findings in this paper can be translated

into profitable investment strategies, in real-time trading contexts.
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Table 3.1: Experimental Setup

Benchmark Model:

T̂RVt+1 = β0 + β1T̂RVt + β2T̂RV[t,t−4] + β3T̂RV[t,t−21] + εt

Two-Step Procedure:

Step 1: Shrinkage Methods (Variable Selection) Step 2: Factor Estimation Methods

1. LASSO (α = 0) 1. PCA

2. EN1 (α = 0.2)

3. EN2 (α = 0.6) 2. SPCA

Sample Periods:

In-sample period: January 3, 2006 – June 30, 2009

Out-of-sample period: July 1, 2009 – December 31, 2010

Regression Estimation Scheme:

Rolling-window estimation.

Window length: 630 days.

Sampling Frequencies:

1, 5, and 10 minutes.

Factor Selection Rules:

Contribution of all selected factors exceeds 90% of total variation.

Contribution of every selected factor exceeds 5% of total variation.

Evaluation Criteria:

1. In-sample R2

2. Out-of-sample R2

3. Heteroskedasticity adjusted root mean square error (HARMSE)
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Table 3.2: SPDR S&P 500 ETF (SPY)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5218 0.5218 0.2737 0.2737 1.2493 1.2493

EN1-PCA 0.5302 0.5279 0.3030 0.3004 0.8443 1.0169

EN2-PCA 0.5304 0.5279 0.3181 0.2823 0.8276 0.9794

1-minute Lasso-PCA 0.5304 0.5280 0.3164 0.2985 0.8347 0.9981

EN1-SPCA 0.5458 0.5408 0.3312 0.1822 0.6245 0.9497

EN2-SPCA 0.5461 0.5408 0.3421 0.1626 0.6313 0.9911

Lasso-SPCA 0.5461 0.5413 0.3197 0.1601 0.6350 0.9959

Benchmark 0.6006 0.6006 0.3605 0.3605 1.2629 1.2629

EN1-PCA 0.6071 0.6029 0.3897 0.3801 0.9828 1.1222

EN2-PCA 0.6047 0.6031 0.3931 0.3780 1.0646 1.0984

5-minute Lasso-PCA 0.6039 0.6030 0.3774 0.3759 1.0240 1.1122

EN1-SPCA 0.6204 0.6088 0.4313 0.3995 0.7066 0.9393

EN2-SPCA 0.6202 0.6088 0.4381 0.4000 0.7141 0.9156

Lasso-SPCA 0.6193 0.6086 0.4233 0.4071 0.7012 0.9497

Benchmark 0.5039 0.5039 0.2609 0.2609 1.6082 1.6082

EN1-PCA 0.5445 0.5461 0.3829 0.3342 1.0496 1.0796

EN2-PCA 0.5440 0.5373 0.3705 0.2729 1.0213 1.1176

10-minute Lasso-PCA 0.5453 0.5363 0.3725 0.2810 1.0323 1.1523

EN1-SPCA 0.5457 0.5428 0.3960 0.3239 1.0672 1.0790

EN2-SPCA 0.5434 0.5362 0.3800 0.2816 1.0670 1.0963

Lasso-SPCA 0.5449 0.5361 0.3833 0.2992 1.1066 1.1081

*Note: See Table 3.1. Entries are statistics that measure in-sample and out-of-sample volatility fore-
casting performance of the HAR model given in equation (3.21) of Section 3.3.4, for the target variable
given in the title of the table (i.e., the SPY ETF). All models other than the benchamrk (HAR) model,
denoted as “Benchmark”, include latent volatility factors. EN1 and EN2 denote models for which
elastic net shrinkage is used in initial variable selection, with α = 0.2 and 0.6, respectively. Lasso
denotes use of the least absolute shrinkage operator in initial variable selection. After initial variable
selection, either PCA or sparse PCA (i.e., SPCA) are utilized to obtain the laten volatility factor used
in all models denoted as such. In-sample R2, Out-of-sample R2 and HARMSE entries in this table
consist of 2 columns each, the first of which corresponds to predictions made using 267 stocks in factor
construction, and the second of which utilizes 274 stocks in the step of our analysis (see Section 3.4.1
for further details). All other tables report results based only on the analysis of 267 stocks. Complete
details are given in Sections 3.3 and 3.4.
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Table 3.3: Materials Sector ETF (XLB)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5598 0.3204 0.8258
EN1-PCA 0.5598 0.3204 0.8258
EN2-PCA 0.5598 0.3204 0.8258

1-minute Lasso-PCA 0.5598 0.3204 0.8258
EN1-SPCA 0.5678 0.3616 0.6902
EN2-SPCA 0.5673 0.3647 0.6904
Lasso-SPCA 0.5673 0.3686 0.6910

Benchmark 0.6234 0.2853 1.0050
EN1-PCA 0.6274 0.3107 0.9057
EN2-PCA 0.6271 0.3047 0.9316

5-minute Lasso-PCA 0.6269 0.3053 0.9303
EN1-SPCA 0.6341 0.3322 0.7841
EN2-SPCA 0.6345 0.3351 0.7887
Lasso-SPCA 0.6348 0.3445 0.7970

Benchmark 0.5497 0.1131 1.2993
EN1-PCA 0.5712 0.1699 1.0226
EN2-PCA 0.5717 0.1684 1.0258

10-minute Lasso-PCA 0.5709 0.1682 1.0329
EN1-SPCA 0.5702 0.1833 1.0078
EN2-SPCA 0.5694 0.1815 1.0187
Lasso-SPCA 0.5690 0.1735 1.0100

*Notes: See notes to Table 3.2.

Table 3.4: Energy Sector ETF (XLE)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5221 0.1932 1.1601
EN1-PCA 0.5239 0.2910 0.9712
EN2-PCA 0.5236 0.2925 0.9773

1-minute Lasso-PCA 0.5236 0.2910 0.9764
EN1-SPCA 0.5445 0.3592 0.6126
EN2-SPCA 0.5451 0.3664 0.6065
Lasso-SPCA 0.5462 0.3637 0.6018

Benchmark 0.6203 0.3153 1.1597
EN1-PCA 0.6240 0.3750 1.0010
EN2-PCA 0.6242 0.3577 0.9668

5-minute Lasso-PCA 0.6231 0.3608 0.9830
EN1-SPCA 0.6286 0.4192 0.7402
EN2-SPCA 0.6308 0.4277 0.7335
Lasso-SPCA 0.6298 0.3993 0.7473

Benchmark 0.5374 0.1878 1.4904
EN1-PCA 0.5667 0.3442 0.9174
EN2-PCA 0.5656 0.3575 0.8816

10-minute Lasso-PCA 0.5652 0.3547 0.9139
EN1-SPCA 0.5601 0.3315 0.8931
EN2-SPCA 0.5595 0.3793 0.8741
Lasso-SPCA 0.5591 0.3820 0.8863

*Notes: See notes to Table 3.2.
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Table 3.5: Financial Sector ETF (XLF)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5423 0.3026 0.7466
EN1-PCA 0.5441 0.2695 0.7847
EN2-PCA 0.5445 0.2433 0.7978

1-minute Lasso-PCA 0.5450 0.2106 0.8075
EN1-SPCA 0.6258 0.3585 0.6668
EN2-SPCA 0.6299 0.3085 0.7173
Lasso-SPCA 0.6335 0.1985 0.7334

Benchmark 0.5823 0.2853 1.3230
EN1-PCA 0.6085 0.2565 1.2094
EN2-PCA 0.6028 0.2896 1.2651

5-minute Lasso-PCA 0.5972 0.2508 1.3114
EN1-SPCA 0.6145 0.2612 1.2482
EN2-SPCA 0.6150 0.2648 1.3372
Lasso-SPCA 0.6149 0.2652 1.3766

Benchmark 0.4950 0.1276 1.7122
EN1-PCA 0.5386 0.0960 1.8255
EN2-PCA 0.5393 0.1032 1.8221

10-minute Lasso-PCA 0.5391 0.1053 1.8167
EN1-SPCA 0.5427 0.0852 1.8423
EN2-SPCA 0.5400 0.0881 1.8621
Lasso-SPCA 0.5402 0.0984 1.8578

*Notes: See notes to Table 3.2.

Table 3.6: Industrial Sector ETF (XLI)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5573 0.3389 0.8208
EN1-PCA 0.5668 0.3589 0.6438
EN2-PCA 0.5659 0.3607 0.6585

1-minute Lasso-PCA 0.5658 0.3491 0.6513
EN1-SPCA 0.5848 0.3724 0.5040
EN2-SPCA 0.5887 0.3681 0.4973
Lasso-SPCA 0.5890 0.3771 0.4896

Benchmark 0.6219 0.3217 1.6667
EN1-PCA 0.6398 0.3211 1.0840
EN2-PCA 0.6389 0.3155 1.3193

5-minute Lasso-PCA 0.6380 0.3094 1.2992
EN1-SPCA 0.6547 0.3363 0.9299
EN2-SPCA 0.6534 0.3324 1.0008
Lasso-SPCA 0.6528 0.3364 0.9307

Benchmark 0.5309 0.0715 1.5196
EN1-PCA 0.5566 0.0982 1.0240
EN2-PCA 0.5571 0.1125 1.0148

10-minute Lasso-PCA 0.5575 0.1172 1.0048
EN1-SPCA 0.5529 0.1136 1.0563
EN2-SPCA 0.5540 0.1211 1.0552
Lasso-SPCA 0.5538 0.1244 1.0401

*Notes: See notes to Table 3.2.
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Table 3.7: Technology Sector ETF (XLK)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5311 0.2340 0.6839
EN1-PCA 0.5370 0.2848 0.5778
EN2-PCA 0.5372 0.2800 0.5765

1-minute Lasso-PCA 0.5372 0.2801 0.5757
EN1-SPCA 0.5458 0.3103 0.4815
EN2-SPCA 0.5458 0.3046 0.4806
Lasso-SPCA 0.5456 0.2981 0.4914

Benchmark 0.6171 0.2849 0.9884
EN1-PCA 0.6207 0.3009 0.9021
EN2-PCA 0.6192 0.2892 0.9350

5-minute Lasso-PCA 0.6198 0.3031 0.9043
EN1-SPCA 0.6302 0.3183 0.7123
EN2-SPCA 0.6309 0.3077 0.7020
Lasso-SPCA 0.6311 0.3093 0.7011

Benchmark 0.5118 0.0451 1.3730
EN1-PCA 0.5363 0.0929 0.9936
EN2-PCA 0.5362 0.1002 0.9901

10-minute Lasso-PCA 0.5364 0.0937 0.9833
EN1-SPCA 0.5342 0.1050 0.9818
EN2-SPCA 0.5341 0.1051 0.9791
Lasso-SPCA 0.5344 0.1028 0.9476

*Notes: See notes to Table 3.2.

Table 3.8: Consumer Staples Sector ETF (XLP)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.3840 0.1047 0.7164
EN1-PCA 0.4066 0.1905 0.4557
EN2-PCA 0.4066 0.1931 0.4510

1-minute Lasso-PCA 0.4067 0.1988 0.4554
EN1-SPCA 0.4405 0.1830 0.3920
EN2-SPCA 0.4353 0.1194 0.4026
Lasso-SPCA 0.4342 0.1703 0.3983

Benchmark 0.4578 0.2790 0.9885
EN1-PCA 0.4929 0.4753 0.5346
EN2-PCA 0.4908 0.4162 0.5487

5-minute Lasso-PCA 0.4910 0.4236 0.5675
EN1-SPCA 0.5165 0.4089 0.5666
EN2-SPCA 0.5188 0.3479 0.5794
Lasso-SPCA 0.5180 0.4234 0.5744

Benchmark 0.4001 0.1796 1.3737
EN1-PCA 0.4870 0.2990 1.0413
EN2-PCA 0.4887 0.2953 1.0044

10-minute Lasso-PCA 0.4893 0.2789 1.0221
EN1-SPCA 0.4840 0.2621 1.0628
EN2-SPCA 0.4930 0.2432 1.0490
Lasso-SPCA 0.4942 0.2278 1.0707

*Notes: See notes to Table 3.2.
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Table 3.9: Utilities Sector ETF (XLU)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5242 0.1309 0.8652
EN1-PCA 0.5331 0.1515 0.5590
EN2-PCA 0.5333 0.1359 0.5620

1-minute Lasso-PCA 0.5332 0.1549 0.5587
EN1-SPCA 0.5380 0.1869 0.5176
EN2-SPCA 0.5374 0.1747 0.5161
Lasso-SPCA 0.5376 0.1806 0.5265

Benchmark 0.5683 0.1887 1.1073
EN1-PCA 0.5906 0.2594 0.6719
EN2-PCA 0.5870 0.2559 0.6629

5-minute Lasso-PCA 0.5845 0.2746 0.6580
EN1-SPCA 0.6160 0.2751 0.8010
EN2-SPCA 0.6118 0.2618 0.7718
Lasso-SPCA 0.6108 0.2655 0.7661

Benchmark 0.4960 0.1882 1.3382
EN1-PCA 0.5320 0.3671 0.8231
EN2-PCA 0.5307 0.3879 0.8198

10-minute Lasso-PCA 0.5304 0.3563 0.8261
EN1-SPCA 0.5307 0.3662 0.8257
EN2-SPCA 0.5292 0.3896 0.8234
Lasso-SPCA 0.5292 0.3577 0.8382

*Notes: See notes to Table 3.2.

Table 3.10: Health Care Sector ETF (XLV)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5053 0.2481 0.6576
EN1-PCA 0.5185 0.2678 0.4433
EN2-PCA 0.5186 0.2706 0.4399

1-minute Lasso-PCA 0.5186 0.2610 0.4389
EN1-SPCA 0.5257 0.2629 0.4309
EN2-SPCA 0.5269 0.2796 0.4163
Lasso-SPCA 0.5276 0.2395 0.4230

Benchmark 0.4735 0.2067 1.0695
EN1-PCA 0.5027 0.3332 0.6355
EN2-PCA 0.5019 0.3218 0.6613

5-minute Lasso-PCA 0.5014 0.3263 0.6656
EN1-SPCA 0.5400 0.3070 0.6025
EN2-SPCA 0.5404 0.3218 0.6022
Lasso-SPCA 0.5423 0.2934 0.6048

Benchmark 0.4566 0.2016 1.2785
EN1-PCA 0.5087 0.3486 0.7555
EN2-PCA 0.5102 0.3498 0.7428

10-minute Lasso-PCA 0.5098 0.3648 0.7550
EN1-SPCA 0.5056 0.3654 0.7431
EN2-SPCA 0.5077 0.3533 0.7678
Lasso-SPCA 0.5071 0.3733 0.7317

*Notes: See notes to Table 3.2.



74

Table 3.11: Consumer Discretionary Sector ETF (XLY)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5255 0.3513 0.8867
EN1-PCA 0.5370 0.4082 0.7845
EN2-PCA 0.5367 0.3972 0.7855

1-minute Lasso-PCA 0.5366 0.4126 0.7861
EN1-SPCA 0.5557 0.4236 0.5854
EN2-SPCA 0.5550 0.4018 0.5686
Lasso-SPCA 0.5544 0.4171 0.5993

Benchmark 0.5724 0.3408 1.3435
EN1-PCA 0.5832 0.3581 1.2122
EN2-PCA 0.5841 0.3691 1.2269

5-minute Lasso-PCA 0.5849 0.3724 1.2084
EN1-SPCA 0.6120 0.4058 0.9128
EN2-SPCA 0.6119 0.4056 0.9064
Lasso-SPCA 0.6117 0.4103 0.9152

Benchmark 0.4784 0.1197 1.5265
EN1-PCA 0.5177 0.1966 1.0291
EN2-PCA 0.5195 0.1848 1.0086

10-minute Lasso-PCA 0.5196 0.1853 1.0053
EN1-SPCA 0.5133 0.1880 1.0273
EN2-SPCA 0.5157 0.1854 0.9921
Lasso-SPCA 0.5161 0.1904 0.9789

*Notes: See notes to Table 3.2.

Table 3.12: General Electric Company (GE)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5211 0.2898 0.8151
EN1-PCA 0.5243 0.3123 0.7342
EN2-PCA 0.5240 0.3132 0.7350

1-minute Lasso-PCA 0.5240 0.3130 0.7367
EN1-SPCA 0.5792 0.3823 0.5655
EN2-SPCA 0.5816 0.4005 0.5602
Lasso-SPCA 0.5800 0.3954 0.5665

Benchmark 0.5189 0.1576 1.2367
EN1-PCA 0.5554 0.1710 0.9424
EN2-PCA 0.5435 0.2130 1.0303

5-minute Lasso-PCA 0.5522 0.1848 0.9533
EN1-SPCA 0.5821 0.2586 0.8025
EN2-SPCA 0.5823 0.2576 0.8256
Lasso-SPCA 0.5830 0.2665 0.8301

Benchmark 0.4825 0.0555 1.5839
EN1-PCA 0.4893 0.0943 1.3869
EN2-PCA 0.4900 0.1012 1.3659

10-minute Lasso-PCA 0.4908 0.1041 1.3368
EN1-SPCA 0.4901 0.0997 1.3638
EN2-SPCA 0.4905 0.0980 1.3590
Lasso-SPCA 0.4912 0.1020 1.3359

*Notes: See notes to Table 3.2.
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Table 3.13: The Goldman Sachs Group, Inc. (GS)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.3939 -0.2130 1.6083
EN1-PCA 0.3920 -0.2120 1.6196
EN2-PCA 0.3920 -0.2120 1.6196

1-minute Lasso-PCA 0.3920 -0.2120 1.6196
EN1-SPCA 0.4078 0.0106 0.9982
EN2-SPCA 0.4180 -0.0706 1.0676
Lasso-SPCA 0.4317 -0.0856 1.0974

Benchmark 0.4206 -0.2341 2.0352
EN1-PCA 0.4187 -0.2100 2.0106
EN2-PCA 0.4187 -0.2228 2.0288

5-minute Lasso-PCA 0.4187 -0.2213 2.0235
EN1-SPCA 0.4258 -0.1169 1.7640
EN2-SPCA 0.4226 -0.1392 1.7918
Lasso-SPCA 0.4402 -0.0366 1.3739

Benchmark 0.3758 -0.2761 2.5707
EN1-PCA 0.3957 -0.0406 1.5839
EN2-PCA 0.4006 -0.0435 1.6176

10-minute Lasso-PCA 0.3990 -0.0497 1.6556
EN1-SPCA 0.3971 -0.0670 1.7213
EN2-SPCA 0.4016 -0.0807 1.7189
Lasso-SPCA 0.4007 -0.0789 1.7528

*Notes: See notes to Table 3.2.

Table 3.14: International Business Machines Corporation (IBM)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5380 0.1149 1.1117
EN1-PCA 0.5423 0.1855 0.9083
EN2-PCA 0.5424 0.1707 0.9089

1-minute Lasso-PCA 0.5424 0.1693 0.9146
EN1-SPCA 0.5623 0.1478 0.6466
EN2-SPCA 0.5621 0.2774 0.6214
Lasso-SPCA 0.5632 0.2785 0.6124

Benchmark 0.6140 0.2374 1.0384
EN1-PCA 0.6194 0.3004 0.9106
EN2-PCA 0.6281 0.3167 0.8908

5-minute Lasso-PCA 0.6319 0.3215 0.8284
EN1-SPCA 0.6463 0.3826 0.7098
EN2-SPCA 0.6518 0.3709 0.7436
Lasso-SPCA 0.6538 0.3578 0.7521

Benchmark 0.5936 0.1696 1.1609
EN1-PCA 0.5993 0.2111 1.0156
EN2-PCA 0.5993 0.2138 1.0000

10-minute Lasso-PCA 0.5995 0.2177 0.9866
EN1-SPCA 0.5989 0.2306 0.9837
EN2-SPCA 0.5987 0.2295 0.9792
Lasso-SPCA 0.5986 0.2283 0.9772

*Notes: See notes to Table 3.2.
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Table 3.15: Johnson & Johnson (JNJ)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.3611 0.1158 0.8426
EN1-PCA 0.4040 0.2748 0.4300
EN2-PCA 0.4039 0.2580 0.4331

1-minute Lasso-PCA 0.4041 0.2588 0.4411
EN1-SPCA 0.4415 0.2210 0.4721
EN2-SPCA 0.4407 0.2319 0.4500
Lasso-SPCA 0.4380 0.2300 0.4568

Benchmark 0.3882 0.1398 1.0297
EN1-PCA 0.4356 0.3251 0.5415
EN2-PCA 0.4316 0.3355 0.5533

5-minute Lasso-PCA 0.4310 0.3738 0.5387
EN1-SPCA 0.4814 0.2968 0.5557
EN2-SPCA 0.4816 0.3496 0.5746
Lasso-SPCA 0.4815 0.3118 0.5709

Benchmark 0.3740 0.1091 1.3244
EN1-PCA 0.4395 0.2914 0.8430
EN2-PCA 0.4432 0.3202 0.8348

10-minute Lasso-PCA 0.4391 0.3136 0.8480
EN1-SPCA 0.4450 0.3015 0.8406
EN2-SPCA 0.4489 0.2860 0.8483
Lasso-SPCA 0.4444 0.3513 0.8371

*Notes: See notes to Table 3.2.

Table 3.16: JPMorgan Chase & Co. (JPM)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5122 -0.0657 1.1058
EN1-PCA 0.5122 -0.0659 1.1060
EN2-PCA 0.5122 -0.0657 1.1058

1-minute Lasso-PCA 0.5122 -0.0657 1.1058
EN1-SPCA 0.5730 -0.0419 0.9726
EN2-SPCA 0.5742 -0.0790 1.0505
Lasso-SPCA 0.5711 -0.0569 1.0658

Benchmark 0.5543 0.0369 1.3160
EN1-PCA 0.5640 0.0699 1.3026
EN2-PCA 0.5592 0.0438 1.2999

5-minute Lasso-PCA 0.5574 0.0552 1.3058
EN1-SPCA 0.5745 0.0542 1.2892
EN2-SPCA 0.5703 0.0713 1.2437
Lasso-SPCA 0.5709 0.0877 1.2393

Benchmark 0.4516 -0.2183 1.8278
EN1-PCA 0.4682 -0.2899 1.8026
EN2-PCA 0.4763 -0.2392 1.7838

10-minute Lasso-PCA 0.4787 -0.2438 1.7681
EN1-SPCA 0.4810 -0.2596 1.7216
EN2-SPCA 0.4899 -0.2128 1.7214
Lasso-SPCA 0.4911 -0.2275 1.7314

*Notes: See notes to Table 3.2.
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Table 3.17: The Coca-Cola Company (KO)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.4082 0.1379 0.9190
EN1-PCA 0.4384 0.2487 0.5931
EN2-PCA 0.4386 0.2568 0.5920

1-minute Lasso-PCA 0.4385 0.2417 0.5880
EN1-SPCA 0.4504 0.2621 0.4465
EN2-SPCA 0.4500 0.2681 0.4571
Lasso-SPCA 0.4501 0.2478 0.4592

Benchmark 0.5598 0.2292 1.1106
EN1-PCA 0.6039 0.3952 0.7784
EN2-PCA 0.5996 0.3626 0.7949

5-minute Lasso-PCA 0.5998 0.3954 0.7813
EN1-SPCA 0.6194 0.3500 0.7107
EN2-SPCA 0.6166 0.4174 0.6635
Lasso-SPCA 0.6170 0.3807 0.6651

Benchmark 0.5006 0.1572 1.4081
EN1-PCA 0.5687 0.2966 1.0139
EN2-PCA 0.5702 0.2943 0.9600

10-minute Lasso-PCA 0.5679 0.2459 1.0471
EN1-SPCA 0.5707 0.2637 0.9683
EN2-SPCA 0.5699 0.2831 0.9421
Lasso-SPCA 0.5671 0.2428 0.9493

*Notes: See notes to Table 3.2.

Table 3.18: McDonald’s Corporation (MCD)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.3738 -0.1118 0.9516
EN1-PCA 0.3921 0.1359 0.6769
EN2-PCA 0.3920 0.1485 0.6735

1-minute Lasso-PCA 0.3920 0.1700 0.6680
EN1-SPCA 0.4606 0.2318 0.5474
EN2-SPCA 0.4576 0.1939 0.5311
Lasso-SPCA 0.4604 0.0285 0.5411

Benchmark 0.3785 -0.1553 1.3427
EN1-PCA 0.4219 0.2491 0.8218
EN2-PCA 0.4129 0.2093 0.8621

5-minute Lasso-PCA 0.4152 0.2078 0.8535
EN1-SPCA 0.4709 0.2464 0.7252
EN2-SPCA 0.4711 0.2126 0.7607
Lasso-SPCA 0.4721 0.1929 0.7566

Benchmark 0.3299 -0.1506 1.9629
EN1-PCA 0.4212 -0.0134 1.5636
EN2-PCA 0.4174 0.0291 1.5366

10-minute Lasso-PCA 0.4192 0.0759 1.5963
EN1-SPCA 0.4241 0.0333 1.2639
EN2-SPCA 0.4226 0.1089 1.3563
Lasso-SPCA 0.4240 0.1185 1.3150

*Notes: See notes to Table 3.2.
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Table 3.19: Merck & Co., Inc. (MRK)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.3563 0.1561 0.7700
EN1-PCA 0.3910 0.2377 0.5873
EN2-PCA 0.3916 0.2401 0.5876

1-minute Lasso-PCA 0.3917 0.2400 0.5863
EN1-SPCA 0.4508 0.2370 0.3857
EN2-SPCA 0.4525 0.2424 0.3835
Lasso-SPCA 0.4523 0.2381 0.3654

Benchmark 0.4129 0.1914 0.9668
EN1-PCA 0.4721 0.2825 0.6938
EN2-PCA 0.4686 0.2804 0.7012

5-minute Lasso-PCA 0.4687 0.2847 0.7420
EN1-SPCA 0.5452 0.2966 0.4908
EN2-SPCA 0.5444 0.2929 0.4956
Lasso-SPCA 0.5454 0.2965 0.4892

Benchmark 0.4723 0.2843 1.1830
EN1-PCA 0.5028 0.3981 1.0175
EN2-PCA 0.5020 0.3873 1.0178

10-minute Lasso-PCA 0.5020 0.4072 1.0136
EN1-SPCA 0.5010 0.4063 0.9486
EN2-SPCA 0.5005 0.4143 0.9526
Lasso-SPCA 0.5006 0.4117 0.9304

*Notes: See notes to Table 3.2.

Table 3.20: Microsoft Corporation (MSFT)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.5622 0.2316 0.7706
EN1-PCA 0.5699 0.2751 0.7567
EN2-PCA 0.5701 0.2639 0.7563

1-minute Lasso-PCA 0.5702 0.2681 0.7555
EN1-SPCA 0.5944 0.3269 0.5756
EN2-SPCA 0.5955 0.3086 0.5804
Lasso-SPCA 0.5952 0.3499 0.5781

Benchmark 0.6116 0.2394 1.0603
EN1-PCA 0.6173 0.2816 1.0187
EN2-PCA 0.6172 0.2784 1.0136

5-minute Lasso-PCA 0.6171 0.2777 1.0110
EN1-SPCA 0.6329 0.3305 0.8306
EN2-SPCA 0.6324 0.3169 0.7993
Lasso-SPCA 0.6327 0.3141 0.8153

Benchmark 0.4991 0.1190 2.2867
EN1-PCA 0.5126 0.1930 2.0942
EN2-PCA 0.5120 0.1798 2.1108

10-minute Lasso-PCA 0.5114 0.1817 2.1030
EN1-SPCA 0.5158 0.2166 2.0068
EN2-SPCA 0.5146 0.1975 1.8044
Lasso-SPCA 0.5136 0.2134 1.9075

*Notes: See notes to Table 3.2.
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Table 3.21: Wal-Mart Stores, Inc. (WMT)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.3552 -0.3547 1.0014
EN1-PCA 0.3693 -0.2423 0.8893
EN2-PCA 0.3694 -0.2523 0.8926

1-minute Lasso-PCA 0.3695 -0.2480 0.8926
EN1-SPCA 0.3991 0.0710 0.6201
EN2-SPCA 0.3977 0.1636 0.6056
Lasso-SPCA 0.3976 0.1615 0.5976

Benchmark 0.4571 -0.2414 1.1750
EN1-PCA 0.4822 0.0186 0.8979
EN2-PCA 0.4822 0.0918 0.9150

5-minute Lasso-PCA 0.4849 0.1143 0.8939
EN1-SPCA 0.5376 0.1146 0.8349
EN2-SPCA 0.5274 0.0704 0.8387
Lasso-SPCA 0.5263 0.0663 0.8486

Benchmark 0.4012 -0.2658 1.5235
EN1-PCA 0.4723 0.0772 1.0864
EN2-PCA 0.4758 0.0955 1.0586

10-minute Lasso-PCA 0.4759 0.0843 1.0716
EN1-SPCA 0.4659 0.0665 1.1765
EN2-SPCA 0.4684 0.0546 1.1446
Lasso-SPCA 0.4690 0.0501 1.1425

*Notes: See notes to Table 3.2.

Table 3.22: Exxon Mobil Corporation (XOM)

Frequency Model In-Sample R2 Out-of-Sample R2 HARMSE

Benchmark 0.3620 -0.0409 1.2201
EN1-PCA 0.3676 0.2644 0.7383
EN2-PCA 0.3668 0.2590 0.7495

1-minute Lasso-PCA 0.3667 0.2555 0.7482
EN1-SPCA 0.3998 0.3272 0.4526
EN2-SPCA 0.3995 0.3065 0.4518
Lasso-SPCA 0.4001 0.3000 0.4684

Benchmark 0.4823 0.0819 1.2181
EN1-PCA 0.5032 0.3501 0.7590
EN2-PCA 0.5011 0.3082 0.7848

5-minute Lasso-PCA 0.4989 0.3053 0.7824
EN1-SPCA 0.5444 0.3630 0.7415
EN2-SPCA 0.5408 0.3450 0.7232
Lasso-SPCA 0.5387 0.3744 0.7138

Benchmark 0.4102 0.0355 1.5327
EN1-PCA 0.4801 0.2805 1.0449
EN2-PCA 0.4791 0.2996 1.0267

10-minute Lasso-PCA 0.4812 0.2546 1.0546
EN1-SPCA 0.4786 0.2386 1.0775
EN2-SPCA 0.4781 0.2673 1.0312
Lasso-SPCA 0.4809 0.1981 1.0852

*Notes: See notes to Table 3.2.
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Table 3.23: Factor Structure (SPY)

Sampling Frequency: 1 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA
AFL F 1.000 0.129 0.105 0.955 AFL F 1.000 0.131 0.106 0.961 AFL F 1.000 0.131 0.105 0.958
MO CS 1.000 0.083 0.024 0.397 MO CS 1.000 0.085 0.025 0.392 MO CS 1.000 0.086 0.025 0.389

AMT T 1.000 0.107 0.057 0.808 AMT T 1.000 0.109 0.057 0.808 AMT T 1.000 0.109 0.057 0.808
ABC H 1.000 0.126 0.112 0.787 ABC H 1.000 0.128 0.114 0.779 ABC H 1.000 0.129 0.112 0.789

AMGN H 1.000 0.126 0.101 0.832 AMGN H 1.000 0.129 0.106 0.829 AMGN H 1.000 0.129 0.105 0.832
BK F 1.000 0.087 0.019 0.463 BK F 1.000 0.088 0.019 0.463 BK F 1.000 0.088 0.019 0.468

BBY CD 1.000 0.137 0.126 0.963 BBY CD 1.000 0.139 0.128 0.963 BBY CD 1.000 0.140 0.128 0.963
CPB CS 1.000 0.103 0.055 0.668 CPB CS 1.000 0.105 0.055 0.661 CPB CS 1.000 0.105 0.056 0.639
CAH H 1.000 0.135 0.126 0.892 CAH H 1.000 0.138 0.130 0.882 CAH H 1.000 0.138 0.128 0.884

CI H 1.000 0.109 0.059 0.805 CI H 1.000 0.111 0.060 0.813 CI H 1.000 0.112 0.060 0.797
CAG CS 1.000 0.110 0.071 0.629 CAG CS 1.000 0.111 0.073 0.645 CAG CS 1.000 0.112 0.073 0.639
HSY CS 1.000 0.105 0.054 0.632 HSY CS 1.000 0.107 0.057 0.653 HSY CS 1.000 0.107 0.057 0.642

HBAN F 1.000 0.064 0.011 0.168 HBAN F 1.000 0.066 0.011 0.184 HBAN F 1.000 0.065 0.011 0.168
ILMN H 1.000 0.105 0.055 0.629 ILMN H 1.000 0.106 0.055 0.642 ILMN H 1.000 0.108 0.056 0.634

KR CS 1.000 0.090 0.034 0.487 KR CS 1.000 0.092 0.033 0.487 KR CS 1.000 0.092 0.033 0.484
LM F 1.000 0.095 0.034 0.624 LM F 1.000 0.096 0.034 0.618 LM F 1.000 0.096 0.033 0.618
LNC F 1.000 0.117 0.074 0.861 LNC F 1.000 0.118 0.074 0.861 LNC F 1.000 0.119 0.074 0.863
MMC F 1.000 0.092 0.033 0.600 MMC F 1.000 0.094 0.034 0.595 MMC F 1.000 0.094 0.035 0.600
PEP CS 1.000 0.114 0.072 0.771 PEP CS 1.000 0.116 0.076 0.768 PEP CS 1.000 0.116 0.074 0.766
PRU F 1.000 0.104 0.047 0.718 PRU F 1.000 0.106 0.048 0.721 PRU F 1.000 0.106 0.047 0.734
SWN E 1.000 0.118 0.082 0.837 SWN E 1.000 0.119 0.083 0.847 SWN E 1.000 0.119 0.081 0.834
SBUX CD 1.000 0.151 0.158 0.987 SBUX CD 1.000 0.154 0.160 0.987 SBUX CD 1.000 0.154 0.158 0.987
SYY CS 1.000 0.108 0.063 0.729 TROW F 1.000 0.115 0.068 0.889 TROW F 1.000 0.116 0.068 0.895

TROW F 1.000 0.114 0.067 0.887 TIF CD 1.000 0.133 0.112 0.968 TIF CD 1.000 0.133 0.110 0.968
TIF CD 1.000 0.130 0.110 0.971 UNP I 1.000 0.142 0.132 0.966 UNP I 1.000 0.142 0.132 0.963
UNP I 1.000 0.139 0.129 0.966 UNM F 1.000 0.125 0.092 0.887 UNM F 1.000 0.125 0.092 0.884
UNM F 1.000 0.123 0.092 0.882 WYNN CD 1.000 0.143 0.133 0.987 WYNN CD 1.000 0.143 0.132 0.982
CNX U 0.997 0.133 0.114 0.955 MET F 1.000 0.114 0.068 0.853 MET F 1.000 0.114 0.068 0.853

WYNN CD 0.997 0.141 0.131 0.984 CNX U 0.992 0.135 0.115 0.960 SYK H 0.992 0.144 0.140 0.947
CERN T 0.992 0.147 0.150 0.960 CERN T 0.992 0.150 0.154 0.960 CNX U 0.987 0.136 0.114 0.960
SYK H 0.989 0.142 0.138 0.939 SYK H 0.982 0.144 0.142 0.944 AXP F 0.979 0.123 0.088 0.949
MRK H 0.971 0.123 0.094 0.894 SYY CS 0.976 0.109 0.062 0.733 CERN T 0.976 0.151 0.154 0.962
GE I 0.968 0.134 0.120 0.927 AXP F 0.961 0.124 0.090 0.945 SYY CS 0.974 0.110 0.064 0.743

Sampling Frequency: 5 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA

BK F 1.000 0.077 0.020 0.418 BK F 1.000 0.075 0.018 0.439 BK F 1.000 0.075 0.018 0.434
BBY CD 1.000 0.125 0.108 0.924 BBY CD 1.000 0.123 0.105 0.913 BBY CD 1.000 0.121 0.103 0.929
BSX H 1.000 0.097 0.063 0.542 BSX H 1.000 0.093 0.058 0.539 BSX H 1.000 0.092 0.056 0.532
CNX U 1.000 0.125 0.103 0.924 CNX U 1.000 0.122 0.098 0.929 CNX U 1.000 0.121 0.098 0.937
CSX I 1.000 0.130 0.115 0.932 CSX I 1.000 0.127 0.111 0.934 CSX I 1.000 0.127 0.112 0.926
CAH H 1.000 0.128 0.117 0.861 CAH H 1.000 0.124 0.112 0.845 CAH H 1.000 0.124 0.114 0.826

CERN T 1.000 0.146 0.149 0.916 CERN T 1.000 0.142 0.146 0.924 CERN T 1.000 0.141 0.145 0.916
CI H 1.000 0.098 0.053 0.689 CI H 1.000 0.095 0.050 0.676 CI H 1.000 0.094 0.050 0.668

CCI T 1.000 0.085 0.040 0.584 CCI T 1.000 0.084 0.039 0.584 CCI T 1.000 0.083 0.039 0.587
DHI CD 1.000 0.099 0.056 0.763 DHI CD 1.000 0.098 0.056 0.750 DHI CD 1.000 0.098 0.057 0.758

FITB F 1.000 0.080 0.028 0.497 FITB F 1.000 0.079 0.026 0.492 FITB F 1.000 0.079 0.026 0.492
HSY CS 1.000 0.094 0.051 0.574 HSY CS 1.000 0.091 0.048 0.558 HSY CS 1.000 0.090 0.048 0.582

ILMN H 1.000 0.096 0.059 0.632 ILMN H 1.000 0.097 0.061 0.629 ILMN H 1.000 0.092 0.056 0.629
LNC F 1.000 0.103 0.063 0.805 LNC F 1.000 0.100 0.059 0.784 LNC F 1.000 0.100 0.060 0.784
MUR E 1.000 0.130 0.114 0.934 MUR E 1.000 0.126 0.109 0.934 MUR E 1.000 0.125 0.108 0.947

NWSA CD 1.000 0.143 0.148 0.947 NWSA CD 1.000 0.141 0.144 0.950 NWSA CD 1.000 0.141 0.147 0.942
PRU F 1.000 0.092 0.041 0.716 PRU F 1.000 0.090 0.040 0.713 PRU F 1.000 0.090 0.039 0.711
DGX H 1.000 0.114 0.084 0.771 DGX H 1.000 0.110 0.083 0.742 DGX H 1.000 0.107 0.076 0.758
HOT CD 1.000 0.133 0.125 0.911 HOT CD 1.000 0.130 0.122 0.913 HOT CD 1.000 0.131 0.125 0.918

TROW F 1.000 0.104 0.061 0.826 TROW F 1.000 0.101 0.057 0.818 TROW F 1.000 0.102 0.059 0.832
THC H 1.000 0.076 0.034 0.487 THC H 1.000 0.076 0.034 0.497 THC H 1.000 0.073 0.030 0.476
TIF CD 1.000 0.122 0.097 0.924 TIF CD 1.000 0.119 0.095 0.926 TIF CD 1.000 0.120 0.098 0.937
UPS I 1.000 0.143 0.148 0.966 UPS I 1.000 0.138 0.141 0.942 UPS I 1.000 0.140 0.145 0.963
UTX I 1.000 0.136 0.132 0.966 UTX I 1.000 0.133 0.128 0.968 UTX I 1.000 0.133 0.130 0.955

WYNN CD 1.000 0.129 0.114 0.934 WYNN CD 1.000 0.127 0.111 0.926 WYNN CD 1.000 0.127 0.113 0.929
PEP CS 0.992 0.100 0.062 0.687 TYC I 1.000 0.103 0.069 0.784 PEP CS 1.000 0.096 0.058 0.689

WMB E 0.989 0.126 0.106 0.904 PEP CS 0.997 0.098 0.061 0.691 MCD CD 0.997 0.091 0.045 0.691
MCD CD 0.987 0.093 0.047 0.699 MCD CD 0.992 0.091 0.046 0.706 TYC I 0.997 0.103 0.070 0.773
TYC I 0.984 0.106 0.072 0.794 WMB E 0.966 0.127 0.107 0.916 TGT CD 0.984 0.101 0.058 0.797
SYK H 0.979 0.129 0.117 0.874 FDO CD 0.955 0.073 0.021 0.408 WMB E 0.958 0.123 0.104 0.915
SWN E 0.971 0.112 0.078 0.818 SYK H 0.939 0.124 0.110 0.866 FDO CD 0.939 0.073 0.021 0.434
FDO CD 0.966 0.075 0.024 0.420 TGT CD 0.937 0.098 0.055 0.795 MRK H 0.924 0.101 0.070 0.758
TGT CD 0.963 0.101 0.059 0.803 SWN E 0.926 0.110 0.074 0.807 LLTC T 0.921 0.161 0.193 0.989

Sampling Frequency: 10 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA
AFL F 1.000 0.115 0.083 0.837 AFL F 1.000 0.115 0.083 0.834 AFL F 1.000 0.117 0.084 0.834

BBBY CD 1.000 0.153 0.145 0.929 BBBY CD 1.000 0.151 0.142 0.924 BBBY CD 1.000 0.153 0.143 0.924
BBY CD 1.000 0.138 0.120 0.876 BBY CD 1.000 0.136 0.119 0.900 BBY CD 1.000 0.139 0.121 0.892

CERN T 1.000 0.157 0.153 0.871 CERN T 1.000 0.153 0.155 0.887 CERN T 1.000 0.160 0.158 0.895
CI H 1.000 0.104 0.065 0.747 CI H 1.000 0.100 0.060 0.750 CI H 1.000 0.105 0.064 0.745

CCI T 1.000 0.091 0.050 0.595 CCI T 1.000 0.089 0.049 0.605 CCI T 1.000 0.091 0.050 0.608
DHI CD 1.000 0.108 0.068 0.747 DHI CD 1.000 0.106 0.066 0.768 DHI CD 1.000 0.109 0.068 0.750
DVN E 1.000 0.130 0.108 0.863 FCX M 1.000 0.139 0.119 0.908 FCX M 1.000 0.142 0.122 0.897
FCX M 1.000 0.141 0.122 0.918 FITB F 1.000 0.086 0.035 0.529 FITB F 1.000 0.087 0.037 0.547
FITB F 1.000 0.087 0.037 0.542 ILMN H 1.000 0.109 0.076 0.658 ILMN H 1.000 0.108 0.075 0.676
ILMN H 1.000 0.110 0.078 0.666 JNJ H 1.000 0.114 0.084 0.771 JNJ H 1.000 0.117 0.087 0.774
JNJ H 1.000 0.117 0.089 0.768 LNC F 1.000 0.110 0.071 0.808 LNC F 1.000 0.111 0.074 0.805
LNC F 1.000 0.111 0.074 0.813 MMC F 1.000 0.098 0.061 0.671 MMC F 1.000 0.100 0.061 0.671
MMC F 1.000 0.099 0.061 0.682 OXY E 1.000 0.125 0.096 0.892 OXY E 1.000 0.128 0.098 0.897
OXY E 1.000 0.127 0.098 0.900 PNC F 1.000 0.105 0.065 0.726 PNC F 1.000 0.106 0.067 0.734
PNC F 1.000 0.105 0.067 0.734 PRU F 1.000 0.098 0.052 0.745 PRU F 1.000 0.100 0.054 0.724
PRU F 1.000 0.099 0.054 0.724 DGX H 1.000 0.113 0.089 0.745 DGX H 1.000 0.116 0.093 0.729
DGX H 1.000 0.117 0.094 0.742 SYK H 1.000 0.131 0.114 0.818 SYK H 1.000 0.136 0.120 0.826
SYK H 1.000 0.134 0.118 0.842 SYMC T 1.000 0.137 0.121 0.876 SYMC T 1.000 0.139 0.123 0.858

SYMC T 1.000 0.139 0.124 0.866 THC H 1.000 0.086 0.048 0.563 THC H 1.000 0.091 0.053 0.571
THC H 1.000 0.089 0.052 0.555 TIF CD 1.000 0.132 0.110 0.905 TIF CD 1.000 0.134 0.113 0.900
TIF CD 1.000 0.134 0.112 0.903 UPS I 1.000 0.149 0.148 0.937 UPS I 1.000 0.152 0.147 0.929
UPS I 1.000 0.151 0.146 0.934 UTX I 1.000 0.141 0.130 0.918 UTX I 1.000 0.144 0.131 0.908
UTX I 1.000 0.143 0.131 0.913 WYNN CD 1.000 0.134 0.114 0.900 WYNN CD 1.000 0.137 0.118 0.908

WYNN CD 1.000 0.136 0.118 0.905 CNX U 1.000 0.131 0.106 0.858 CNX U 1.000 0.133 0.110 0.850
CNX U 0.997 0.133 0.110 0.865 FAST I 1.000 0.147 0.139 0.929 WHR CD 1.000 0.157 0.156 0.929
FAST I 0.997 0.151 0.145 0.934 NDAQ F 1.000 0.094 0.047 0.705 FAST I 0.997 0.152 0.146 0.945
NDAQ F 0.997 0.096 0.049 0.715 WHR CD 1.000 0.153 0.151 0.918 NDAQ F 0.997 0.096 0.049 0.715
SWKS T 0.997 0.156 0.151 0.881 SWKS T 0.997 0.152 0.144 0.873 SWKS T 0.992 0.154 0.147 0.881
WHR CD 0.992 0.156 0.158 0.931 EMR I 0.997 0.145 0.136 0.953 EMR I 0.992 0.149 0.140 0.952
MO CS 0.987 0.084 0.045 0.552 DVN E 0.979 0.131 0.108 0.866 MCK H 0.984 0.121 0.095 0.759

MCK H 0.979 0.118 0.093 0.774 MCK H 0.961 0.117 0.089 0.767 MO CS 0.976 0.084 0.045 0.555
EMR I 0.976 0.147 0.139 0.938 HRB F 0.953 0.116 0.093 0.677 DVN E 0.966 0.132 0.108 0.856

*Notes: Factor loadings (weights) associated with the asset return volatilities contained in our latent
volatility factors are reported in this table. Recalling that factors are estimated anew, prior to the con-
struction of each daily volatility forecast, entries in the column entitled “Freq.” indicate the frequency
with which a particular variable appears in volatility factors for models of the target variable for which
volatility is being predicted (i.e., the SPY ETF in this table). Only stocks that are selected for use in
the construction of almost all latent factors are listed. Stock tickers of selected stocks appearing in the
latent factors are given in the first column of entries in the table. In the second column, these stocks
are roughly categorized as belonging to one of three sectors, including Financials (F), Consumer Dis-
cretionary (CD), and Consumer Staples (CS). Entries in the columns denoted by “PCA” and “SPCA”
indicate the sample averages of the weight assigned to each stock in the construction of the first prin-
cipal component (i.e., volatility factor) in our prediction experiments, based on these two alternative
factor estimation methods. All results are based on experiments carried out using our dataset of 267
stocks. See Section 3.4 for further details.
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Table 3.24: Factor Structure (XLE)

Sampling Frequency: 1 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA
AFL F 1.000 0.133 0.109 0.961 AFL F 1.000 0.130 0.105 0.945 AFL F 1.000 0.130 0.104 0.953
ALL F 1.000 0.105 0.048 0.682 ALL F 1.000 0.102 0.045 0.684 ALL F 1.000 0.102 0.045 0.695
ABC H 1.000 0.130 0.113 0.771 ABC H 1.000 0.127 0.109 0.763 ABC H 1.000 0.129 0.109 0.776
BBY CD 1.000 0.140 0.128 0.950 BBY CD 1.000 0.137 0.127 0.961 BBY CD 1.000 0.139 0.127 0.955
CNX U 1.000 0.139 0.120 0.958 CAH H 1.000 0.136 0.123) 0.876 CAH H 1.000 0.137 0.123 0.863
CAH H 1.000 0.140 0.130 0.879 CI H 1.000 0.110 0.057 0.779 CI H 1.000 0.110 0.057 0.795

CI H 1.000 0.113 0.061 0.797 CAG CS 1.000 0.111 0.071 0.618 CAG CS 1.000 0.108 0.066 0.600
CAG CS 1.000 0.111 0.069 0.611 FITB F 1.000 0.088 0.023 0.471 FITB F 1.000 0.088 0.024 0.471
FITB F 1.000 0.090 0.024 0.474 GS F 1.000 0.090 0.022 0.479 GS F 1.000 0.090 0.022 0.476
GE I 1.000 0.138 0.123 0.926 HSY CS 1.000 0.104 0.051 0.629 HSY CS 1.000 0.103 0.049 0.639
GS F 1.000 0.092 0.022 0.487 ILMN H 1.000 0.104 0.052 0.637 ILMN H 1.000 0.105 0.056 0.642

HSY CS 1.000 0.106 0.052 0.629 KR CS 1.000 0.092 0.034 0.474 KR CS 1.000 0.091 0.036 0.479
HBAN F 1.000 0.067 0.012 0.161 LM I 1.000 0.095 0.032 0.637 LM I 1.000 0.095 0.032 0.621
ILMN H 1.000 0.104 0.053 0.611 LNC F 1.000 0.117 0.073 0.874 LNC F 1.000 0.117 0.073 0.871

KR CS 1.000 0.092 0.032 0.476 LLTC T 1.000 0.178 0.222 0.997 LLTC T 1.000 0.179 0.222 0.995
LM I 1.000 0.097 0.033 0.621 MMC F 1.000 0.092 0.032 0.584 MMC F 1.000 0.092 0.033 0.592
LNC F 1.000 0.121 0.077 0.874 MDT H 1.000 0.140 0.129 0.918 MDT H 1.000 0.139 0.127 0.908
LLTC T 1.000 0.182 0.228 1.000 MET F 1.000 0.113 0.066 0.853 MET F 1.000 0.113 0.065 0.858
MMC F 1.000 0.095 0.034 0.600 PRU F 1.000 0.105 0.047 0.726 PRU F 1.000 0.105 0.047 0.732
MDT H 1.000 0.143 0.133 0.918 SWN E 1.000 0.118 0.080 0.834 SWN E 1.000 0.118 0.079 0.826
MET F 1.000 0.116 0.070 0.837 SYK H 1.000 0.142 0.136 0.947 TROW F 1.000 0.114 0.066 0.897
PEP CS 1.000 0.116 0.071 0.750 TROW F 1.000 0.114 0.066 0.892 TIF CD 1.000 0.130 0.107 0.968
PRU F 1.000 0.108 0.048 0.711 TIF CD 1.000 0.130 0.106 0.961 UNM F 1.000 0.123 0.090 0.889
SWN E 1.000 0.123 0.086 0.847 UNM F 1.000 0.123 0.090 0.889 AMT T 1.000 0.107 0.054 0.792
SYK H 1.000 0.146 0.142 0.947 AMT T 1.000 0.108 0.056 0.803 GRMN CD 1.000 0.114 0.073 0.718
SYY CS 1.000 0.110 0.061 0.711 CNX U 0.989 0.135 0.114 0.963 SYK H 0.995 0.142 0.134 0.939

TROW F 1.000 0.117 0.069 0.903 PEP CS 0.987 0.113 0.068 0.755 CA T 0.995 0.138 0.127 0.944
TIF CD 1.000 0.133 0.109 0.958 GRMN CD 0.982 0.115 0.077 0.724 CNX U 0.992 0.134 0.112 0.958

UNM F 1.000 0.126 0.094 0.897 HBAN F 0.979 0.065 0.010 0.164 PEP CS 0.971 0.113 0.068 0.772
VLO E 1.000 0.120 0.081 0.847 MON M 0.971 0.099 0.041 0.604 MON M 0.963 0.099 0.040 0.590
CSX I 0.997 0.150 0.150 0.976 CA T 0.966 0.138 0.129 0.948 AXP F 0.961 0.124 0.091 0.953
MON M 0.997 0.102 0.042 0.612 AXP F 0.961 0.124 0.090 0.942 HBAN F 0.958 0.066 0.011 0.162
AMT T 0.995 0.110 0.057 0.794 TXN T 0.939 0.166 0.193 0.997 TXN T 0.945 0.167 0.194 0.992
SBUX CD 0.958 0.156 0.159 0.978 GE I 0.929 0.134 0.118 0.912 UNP I 0.929 0.136 0.122 0.963
CERN T 0.950 0.150 0.152 0.972 UTX I 0.916 0.142 0.139 0.994 ENDP H 0.929 0.114 0.082 0.717

Sampling Frequency: 5 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA

BK F 1.000 0.069 0.017 0.437 BK F 1.000 0.065 0.015 0.432 BK F 1.000 0.066 0.016 0.429
BSX H 1.000 0.080 0.048 0.511 BSX H 1.000 0.077 0.046 0.521 BSX H 1.000 0.078 0.048 0.518
CNX U 1.000 0.111 0.089 0.908 CNX U 1.000 0.107 0.085 0.911 CNX U 1.000 0.107 0.085 0.918
CSX I 1.000 0.116 0.100 0.929 CSX I 1.000 0.112 0.097 0.926 CSX I 1.000 0.112 0.098 0.918
CAH H 1.000 0.108 0.095 0.829 CAH H 1.000 0.105 0.092 0.829 CAH H 1.000 0.106 0.093 0.826

CERN T 1.000 0.129 0.130 0.908 CERN T 1.000 0.123 0.122 0.921 CERN T 1.000 0.121 0.119 0.921
CHK E 1.000 0.107 0.081 0.868 CHK E 1.000 0.101 0.076 0.874 CI H 1.000 0.081 0.039 0.661

CI H 1.000 0.083 0.040 0.658 CI H 1.000 0.080 0.039 0.661 CCI T 1.000 0.074 0.035 0.550
CCI T 1.000 0.078 0.037 0.579 CCI T 1.000 0.074 0.034 0.571 DHI CD 1.000 0.087 0.049 0.734
DHI CD 1.000 0.090 0.052 0.771 DHI CD 1.000 0.088 0.051 0.766 FDO CD 1.000 0.065 0.020 0.397
FDO CD 1.000 0.068 0.021 0.418 FDO CD 1.000 0.065 0.019 0.424 FITB F 1.000 0.070 0.023 0.461
FITB F 1.000 0.073 0.024 0.474 FITB F 1.000 0.070 0.023 0.471 HD CD 1.000 0.100 0.074 0.868
HD CD 1.000 0.104 0.078 0.897 HD CD 1.000 0.099 0.073 0.879 ILMN H 1.000 0.080 0.046 0.605

ILMN H 1.000 0.086 0.050 0.582 ILMN H 1.000 0.085 0.053 0.603 LLTC T 1.000 0.148 0.176 0.992
LNC F 1.000 0.092 0.055 0.787 LNC F 1.000 0.089 0.053 0.784 MUR E 1.000 0.109 0.090 0.929
LLTC T 1.000 0.152 0.179 0.989 LLTC T 1.000 0.149 0.178 0.992 PRU F 1.000 0.080 0.035 0.679
MUR E 1.000 0.115 0.098 0.921 MUR E 1.000 0.110 0.093 0.926 SWN E 1.000 0.096 0.066 0.826
PRU F 1.000 0.082 0.036 0.703 PRU F 1.000 0.079 0.034 0.700 SWKS T 1.000 0.128 0.133 0.921
SWN E 1.000 0.100 0.070 0.813 SWN E 1.000 0.096 0.065 0.821 SYK H 1.000 0.108 0.094 0.850

SWKS T 1.000 0.131 0.134 0.932 SWKS T 1.000 0.128 0.133 0.942 TROW F 1.000 0.090 0.051 0.816
HOT CD 1.000 0.121 0.113 0.929 SYK H 1.000 0.107 0.092 0.858 TIF CD 1.000 0.106 0.085 0.942
SYK H 1.000 0.110 0.094 0.850 TROW F 1.000 0.090 0.052 0.826 UTX I 1.000 0.115 0.108 0.961

TROW F 1.000 0.093 0.053 0.826 TIF CD 1.000 0.106 0.086 0.937 WYNN CD 1.000 0.113 0.099 0.921
TIF CD 1.000 0.110 0.089 0.932 UTX I 1.000 0.116 0.109 0.950 KEY F 1.000 0.072 0.032 0.458
UTX I 1.000 0.120 0.113 0.958 WYNN CD 1.000 0.113 0.100 0.932 BBY CD 1.000 0.107 0.091 0.911

WYNN CD 1.000 0.118 0.103 0.929 KEY F 1.000 0.072 0.032 0.476 CHK E 0.997 0.101 0.076 0.868
CSCO T 0.992 0.122 0.118 0.944 CSCO T 0.992 0.119 0.116 0.944 LNC F 0.997 0.090 0.053 0.802
HSY CS 0.989 0.080 0.039 0.527 HOT CD 0.989 0.116 0.109 0.928 CSCO T 0.995 0.118 0.115 0.944
MCD CD 0.989 0.083 0.040 0.670 HSY CS 0.989 0.076 0.037 0.513 TXN T 0.992 0.134 0.146 0.976
LMT I 0.987 0.093 0.061 0.744 BBY CD 0.989 0.106 0.091 0.904 HOT CD 0.989 0.117 0.110 0.926
NFLX T 0.979 0.120 0.116 0.820 TXN T 0.976 0.133 0.145 0.976 HSY CS 0.987 0.076 0.036 0.504
KEY F 0.966 0.074 0.033 0.488 NFLX T 0.968 0.115 0.112 0.821 NFLX T 0.976 0.113 0.108 0.814

NWSA CD 0.947 0.126 0.128 0.933 CTSH T 0.963 0.097 0.065 0.866 CTSH T 0.953 0.097 0.066 0.867
MAS I 0.945 0.132 0.132 0.916 LMT I 0.921 0.090 0.060 0.749 TYC I 0.937 0.088 0.057 0.784
BHI E 0.921 0.131 0.131 0.934 MCD CD 0.908 0.077 0.037 0.690 ALL F 0.903 0.075 0.034 0.653

Sampling Frequency: 10 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA
AEP U 1.000 0.105 0.068 0.639 AEP U 1.000 0.108 0.071 0.674 AEP U 1.000 0.110 0.075 0.679

BBBY CD 1.000 0.166 0.160 0.937 BBBY CD 1.000 0.170 0.165 0.937 BBBY CD 1.000 0.167 0.162 0.934
CBS CD 1.000 0.162 0.156 0.916 CBS CD 1.000 0.165 0.158 0.913 CBS CD 1.000 0.164 0.157 0.908
CNX U 1.000 0.140 0.114 0.871 CNX U 1.000 0.142 0.116 0.871 CNX U 1.000 0.142 0.117 0.871

CERN T 1.000 0.166 0.160 0.882 CERN T 1.000 0.167 0.161 0.876 CERN T 1.000 0.165 0.158 0.876
CI H 1.000 0.106 0.062 0.708 CI H 1.000 0.108 0.062 0.716 CI H 1.000 0.108 0.064 0.724

CCI T 1.000 0.095 0.051 0.579 CCI T 1.000 0.096 0.051 0.608 CCI T 1.000 0.094 0.050 0.611
DHI CD 1.000 0.115 0.073 0.753 DHI CD 1.000 0.117 0.075 0.761 DHI CD 1.000 0.116 0.074 0.758
FCX M 1.000 0.148 0.125 0.905 FCX M 1.000 0.151 0.129 0.913 FCX M 1.000 0.150 0.129 0.913
FITB F 1.000 0.091 0.038 0.553 FITB F 1.000 0.094 0.039 0.574 FITB F 1.000 0.092 0.039 0.568
GILD H 1.000 0.116 0.085 0.671 GS F 1.000 0.093 0.039 0.558 GILD H 1.000 0.116 0.084 0.679

GS F 1.000 0.091 0.038 0.561 HRB F 1.000 0.132 0.108 0.718 GS F 1.000 0.092 0.039 0.571
HRB F 1.000 0.130 0.107 0.724 HON I 1.000 0.170 0.167 0.958 HRB F 1.000 0.129 0.105 0.726
HON I 1.000 0.166 0.162 0.950 ILMN H 1.000 0.117 0.080 0.679 HON I 1.000 0.168 0.165 0.955
ILMN H 1.000 0.116 0.080 0.679 JNJ H 1.000 0.124 0.094 0.776 ILMN H 1.000 0.117 0.082 0.676
JNJ H 1.000 0.121 0.090 0.768 MUR E 1.000 0.146 0.123 0.934 JNJ H 1.000 0.122 0.091 0.766

MUR E 1.000 0.144 0.120 0.924 PNC F 1.000 0.115 0.074 0.758 MUR E 1.000 0.146 0.123 0.939
PNC F 1.000 0.113 0.072 0.747 PRU F 1.000 0.106 0.057 0.726 PNC F 1.000 0.114 0.074 0.768
PRU F 1.000 0.103 0.052 0.724 SHW M 1.000 0.136 0.106 0.861 PRU F 1.000 0.105 0.057 0.737
SHW M 1.000 0.134 0.105 0.834 SYMC T 1.000 0.148 0.131 0.855 SHW M 1.000 0.135 0.106 0.855

SWKS T 1.000 0.161 0.152 0.876 TIF CD 1.000 0.149 0.128 0.926 SYMC T 1.000 0.147 0.128 0.858
SYMC T 1.000 0.147 0.128 0.861 UPS I 1.000 0.163 0.157 0.921 TIF CD 1.000 0.147 0.125 0.926
TSO E 1.000 0.121 0.085 0.766 UTX I 1.000 0.155 0.142 0.924 UPS I 1.000 0.162 0.158 0.929
TIF CD 1.000 0.146 0.124 0.921 WYNN CD 1.000 0.147 0.126 0.913 UTX I 1.000 0.154 0.142 0.929
UPS I 1.000 0.160 0.154 0.924 AFL F 1.000 0.125 0.091 0.839 WYNN CD 1.000 0.145 0.123 0.911
UTX I 1.000 0.152 0.138 0.939 GILD H 0.997 0.119 0.088 0.678 MRK H 1.000 0.113 0.082 0.666

WYNN CD 1.000 0.144 0.123 0.908 EBAY T 0.997 0.160 0.148 0.913 AFL F 1.000 0.123 0.090 0.832
EBAY T 0.997 0.156 0.143 0.905 MCK H 0.995 0.126 0.100 0.743 EBAY T 0.997 0.157 0.145 0.910
BBY CD 0.995 0.150 0.134 0.897 MRK H 0.995 0.114 0.083 0.664 BBY CD 0.997 0.152 0.137 0.902
FAST I 0.995 0.162 0.155 0.952 BBY CD 0.992 0.154 0.139 0.891 MCK H 0.984 0.127 0.103 0.754
GOOG T 0.987 0.125 0.091 0.816 FAST I 0.992 0.164 0.157 0.952 FAST I 0.976 0.163 0.157 0.957
MCK H 0.987 0.124 0.097 0.747 GOOG T 0.989 0.127 0.093 0.814 COH CD 0.968 0.137 0.111 0.864
SYK H 0.979 0.141 0.124 0.812 SYK H 0.971 0.144 0.127 0.808 NFLX T 0.955 0.156 0.158 0.818
MRK H 0.866 0.114 0.085 0.699 TSO E 0.968 0.124 0.088 0.780 NDAQ F 0.905 0.100 0.053 0.709

*Notes: See notes to Table 3.23.
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Table 3.25: Factor Structure (IBM)

Sampling Frequency: 1 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA
ADM CS 1.000 0.103 0.040 0.587 AFL F 1.000 0.140 0.112 0.961 AFL F 1.000 0.141 0.113 0.961
AFL F 1.000 0.137 0.110 0.966 ALL F 1.000 0.111 0.051 0.726 ALL F 1.000 0.111 0.051 0.726
ALL F 1.000 0.108 0.049 0.721 AMT T 1.000 0.117 0.062 0.824 AMT T 1.000 0.118 0.063 0.808
AMT T 1.000 0.114 0.062 0.829 ABC H 1.000 0.137 0.118 0.755 ABC H 1.000 0.138 0.117 0.758
ABC H 1.000 0.133 0.115 0.761 AMGN H 1.000 0.137 0.107 0.834 AMGN H 1.000 0.138 0.109 0.826

AMGN H 1.000 0.133 0.107 0.832 BBY H 1.000 0.150 0.137 0.955 BBY H 1.000 0.151 0.139 0.958
BBY H 1.000 0.146 0.137 0.963 CPB CS 1.000 0.111 0.058 0.666 CPB CS 1.000 0.112 0.058 0.653
CPB CS 1.000 0.109 0.058 0.674 CAH H 1.000 0.146 0.131 0.861 CAH H 1.000 0.148 0.132 0.855
CAH H 1.000 0.142 0.129 0.874 CI H 1.000 0.118 0.063 0.803 CI H 1.000 0.118 0.062 0.800

CI H 1.000 0.115 0.061 0.824 CAG CS 1.000 0.120 0.080 0.632 CAG CS 1.000 0.121 0.081 0.634
CAG CS 1.000 0.117 0.077 0.624 GE I 1.000 0.146 0.129 0.937 GE I 1.000 0.146 0.130 0.929
GE I 1.000 0.142 0.125 0.934 GRMN CD 1.000 0.126 0.085 0.750 GRMN CD 1.000 0.125 0.085 0.774

GRMN CD 1.000 0.122 0.082 0.742 HBAN F 1.000 0.070 0.012 0.189 HBAN F 1.000 0.071 0.013 0.189
HBAN F 1.000 0.070 0.013 0.176 ILMN H 1.000 0.115 0.063 0.629 ILMN H 1.000 0.116 0.064 0.642
ILMN H 1.000 0.113 0.063 0.653 KR CS 1.000 0.099 0.040 0.495 KR CS 1.000 0.101 0.042 0.497

KR CS 1.000 0.097 0.039 0.518 LM F 1.000 0.103 0.036 0.639 LM F 1.000 0.104 0.037 0.663
LM F 1.000 0.101 0.037 0.684 LNC F 1.000 0.127 0.081 0.879 LNC F 1.000 0.128 0.081 0.892
LNC F 1.000 0.124 0.078 0.879 MMC F 1.000 0.100 0.037 0.629 MMC F 1.000 0.101 0.038 0.613
MMC F 1.000 0.098 0.036 0.621 MON M 1.000 0.107 0.045 0.616 MON M 1.000 0.108 0.045 0.626
MON M 1.000 0.104 0.045 0.618 PEP CS 1.000 0.122 0.075 0.771 PEP CS 1.000 0.124 0.077 0.779
PEP CS 1.000 0.120 0.076 0.789 PRU F 1.000 0.113 0.052 0.784 PRU F 1.000 0.114 0.052 0.782
PRU F 1.000 0.111 0.051 0.795 SWN E 1.000 0.129 0.091 0.855 SWN E 1.000 0.130 0.091 0.858
SWN E 1.000 0.126 0.089 0.855 SBUX CD 1.000 0.165 0.168 0.989 SBUX CD 1.000 0.167 0.169 0.989
SBUX CD 1.000 0.161 0.165 0.992 TIF CD 1.000 0.142 0.117 0.974 TIF CD 1.000 0.143 0.117 0.976
TIF CD 1.000 0.138 0.116 0.971 UNP I 1.000 0.150 0.135 0.968 UNP I 1.000 0.151 0.137 0.963
UNP I 1.000 0.147 0.135 0.963 UNM F 1.000 0.133 0.098 0.903 UNM F 1.000 0.134 0.099 0.900
UNM F 1.000 0.130 0.096 0.897 LLTC T 1.000 0.196 0.245 0.995 LLTC T 1.000 0.198 0.246 0.995
LLTC T 0.997 0.191 0.239 0.997 EXPE CD 1.000 0.180 0.204 0.989 EXPE CD 1.000 0.181 0.206 0.992
CNX U 0.989 0.143 0.123 0.968 CNX U 0.984 0.147 0.127 0.965 CNX U 0.987 0.147 0.126 0.971

SCHW F 0.987 0.095 0.031 0.496 ADM CS 0.945 0.106 0.042 0.604 TXN T 0.916 0.186 0.220 0.994
GS F 0.966 0.096 0.026 0.529 TXN T 0.926 0.184 0.220 0.994 AXP F 0.871 0.138 0.105 0.964

HOT CD 0.945 0.154 0.149 0.964 AXP F 0.861 0.136 0.103 0.969 GS F 0.853 0.094 0.020 0.485
EXPE CD 0.937 0.175 0.201 0.994 GS F 0.845 0.096 0.023 0.526 ENDP H 0.845 0.129 0.099 0.729
TXN T 0.911 0.178 0.208 0.997 HOT CD 0.834 0.159 0.152 0.962 HOT CD 0.808 0.161 0.154 0.967

Sampling Frequency: 5 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA
ALL F 1.000 0.105 0.050 0.684 ALL F 1.000 0.106 0.050 0.708 ALL F 1.000 0.106 0.051 0.700
BK F 1.000 0.090 0.025 0.508 BK F 1.000 0.091 0.025 0.492 BK F 1.000 0.091 0.024 0.487

BBY CD 1.000 0.147 0.130 0.937 BBY CD 1.000 0.149 0.132 0.939 BBY CD 1.000 0.150 0.132 0.945
CNX U 1.000 0.141 0.114 0.908 CNX U 1.000 0.142 0.113 0.905 CNX U 1.000 0.142 0.113 0.892
CSX I 1.000 0.149 0.132 0.942 CSX I 1.000 0.151 0.133 0.945 CSX I 1.000 0.150 0.131 0.942
CPB CS 1.000 0.110 0.066 0.618 CAH H 1.000 0.147 0.130 0.855 CAH H 1.000 0.147 0.131 0.842
CAH H 1.000 0.148 0.135 0.847 CERN T 1.000 0.169 0.173 0.924 CERN T 1.000 0.169 0.172 0.913

CERN T 1.000 0.165 0.169 0.903 CI H 1.000 0.113 0.063 0.705 CI H 1.000 0.113 0.063 0.718
CI H 1.000 0.111 0.062 0.716 CSCO T 1.000 0.161 0.157 0.942 CSCO T 1.000 0.161 0.156 0.953

CSCO T 1.000 0.159 0.157 0.945 CCI T 1.000 0.100 0.050 0.632 CCI T 1.000 0.100 0.049 0.624
CCI T 1.000 0.098 0.048 0.621 DHI CD 1.000 0.120 0.074 0.797 DHI CD 1.000 0.120 0.074 0.795
DHI CD 1.000 0.117 0.072 0.800 HSY CS 1.000 0.111 0.064 0.600 HSY CS 1.000 0.112 0.065 0.600
HSY CS 1.000 0.110 0.064 0.611 JPM F 1.000 0.113 0.060 0.768 JPM F 1.000 0.113 0.060 0.776
JPM F 1.000 0.112 0.058 0.782 LNC F 1.000 0.121 0.075 0.803 LNC F 1.000 0.121 0.076 0.824
LNC F 1.000 0.119 0.074 0.808 NWSA CD 1.000 0.168 0.174 0.947 NWSA CD 1.000 0.167 0.172 0.945

NWSA CD 1.000 0.164 0.171 0.950 PRU F 1.000 0.108 0.050 0.763 PRU F 1.000 0.108 0.050 0.750
PRU F 1.000 0.106 0.049 0.753 DGX H 1.000 0.130 0.093 0.768 DGX H 1.000 0.129 0.093 0.766
DGX H 1.000 0.128 0.095 0.755 SWN E 1.000 0.126 0.084 0.824 SWN E 1.000 0.126 0.084 0.824
SWN E 1.000 0.126 0.086 0.837 SWKS T 1.000 0.173 0.177 0.913 SWKS T 1.000 0.171 0.175 0.916

SWKS T 1.000 0.170 0.177 0.921 HOT CD 1.000 0.157 0.150 0.929 HOT CD 1.000 0.157 0.149 0.929
HOT CD 1.000 0.154 0.148 0.924 TROW F 1.000 0.122 0.072 0.850 TROW F 1.000 0.121 0.071 0.858

TROW F 1.000 0.120 0.072 0.847 TGT CD 1.000 0.122 0.077 0.832 TGT CD 1.000 0.123 0.077 0.821
TGT CD 1.000 0.119 0.074 0.826 TIF CD 1.000 0.145 0.120 0.942 TIF CD 1.000 0.145 0.120 0.937
TIF CD 1.000 0.142 0.118 0.950 WYNN CD 1.000 0.154 0.137 0.937 WYNN CD 1.000 0.153 0.136 0.939
TYC I 1.000 0.121 0.082 0.811 CPB CS 0.995 0.111 0.066 0.640 LOW CD 0.997 0.145 0.124 0.916

WYNN CD 1.000 0.151 0.135 0.937 TYC I 0.995 0.122 0.082 0.804 TYC I 0.995 0.123 0.082 0.825
XRX T 0.992 0.153 0.154 0.836 LOW CD 0.995 0.145 0.123 0.907 CPB CS 0.992 0.112 0.068 0.629
LMT I 0.987 0.121 0.085 0.787 THC H 0.979 0.093 0.046 0.522 THC H 0.987 0.093 0.045 0.541
ADP T 0.982 0.157 0.151 0.965 ADP T 0.961 0.160 0.152 0.964 ADP T 0.961 0.159 0.151 0.970
THC H 0.976 0.089 0.040 0.488 LMT I 0.947 0.122 0.082 0.789 TXN T 0.958 0.179 0.191 0.970

SCHW F 0.968 0.101 0.046 0.603 TXN T 0.947 0.179 0.192 0.967 MAS I 0.953 0.173 0.177 0.928
MAS I 0.958 0.170 0.177 0.934 MAS I 0.942 0.172 0.177 0.922 BSX H 0.926 0.109 0.066 0.531
LOW CD 0.911 0.140 0.118 0.893 BSX H 0.897 0.106 0.064 0.525 XRX T 0.882 0.152 0.148 0.830

Sampling Frequency: 10 Minute

Stock EN-1 Stock EN-2 Stock Lasso
Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA Ticker Sector Freq. PCA SPCA
AFL F 1.000 0.127 0.095 0.868 AFL F 1.000 0.126 0.094 0.847 AFL F 1.000 0.126 0.095 0.853
BK F 1.000 0.089 0.031 0.532 BK F 1.000 0.087 0.031 0.534 BK F 1.000 0.088 0.031 0.529

BBY CD 1.000 0.153 0.138 0.882 BBY CD 1.000 0.152 0.135 0.882 BBY CD 1.000 0.150 0.136 0.887
CNX U 1.000 0.144 0.121 0.889 CNX U 1.000 0.143 0.120 0.887 CNX U 1.000 0.143 0.120 0.884
CAT I 1.000 0.187 0.198 0.958 CAT I 1.000 0.185 0.197 0.950 CAT I 1.000 0.185 0.197 0.953

CERN T 1.000 0.167 0.162 0.874 CERN T 1.000 0.163 0.159 0.876 CERN T 1.000 0.161 0.158 0.874
CI H 1.000 0.118 0.078 0.745 CL CS 1.000 0.104 0.064 0.597 CL CS 1.000 0.103 0.068 0.592
CL CS 1.000 0.099 0.062 0.597 CCI T 1.000 0.097 0.052 0.629 CCI T 1.000 0.097 0.052 0.629
CCI T 1.000 0.095 0.052 0.618 DHI CD 1.000 0.116 0.076 0.797 DHI CD 1.000 0.116 0.076 0.789
DHI CD 1.000 0.117 0.076 0.795 DVN E 1.000 0.142 0.122 0.887 DVN E 1.000 0.142 0.122 0.884
DVN E 1.000 0.144 0.123 0.876 FCX M 1.000 0.152 0.134 0.932 FCX M 1.000 0.153 0.134 0.921
FCX M 1.000 0.154 0.134 0.934 FAST I 1.000 0.160 0.153 0.932 FAST I 1.000 0.159 0.153 0.929
FAST I 1.000 0.163 0.156 0.924 HUM H 1.000 0.113 0.074 0.658 HUM H 1.000 0.110 0.073 0.663
HUM H 1.000 0.111 0.072 0.645 ILMN H 1.000 0.109 0.078 0.611 ILMN H 1.000 0.113 0.079 0.626
ILMN H 1.000 0.114 0.080 0.605 JNJ H 1.000 0.123 0.093 0.784 JNJ H 1.000 0.123 0.094 0.789
JNJ H 1.000 0.124 0.093 0.774 LM F 1.000 0.105 0.060 0.761 LM F 1.000 0.106 0.061 0.768
LM F 1.000 0.106 0.060 0.774 PGR F 1.000 0.111 0.067 0.758 PGR F 1.000 0.112 0.068 0.758

MON M 1.000 0.107 0.063 0.687 PRU F 1.000 0.106 0.058 0.771 PRU F 1.000 0.106 0.057 0.768
PGR F 1.000 0.110 0.067 0.747 SWKS T 1.000 0.162 0.150 0.871 SWKS T 1.000 0.162 0.151 0.876
PRU F 1.000 0.106 0.057 0.763 TSO E 1.000 0.122 0.087 0.808 TSO E 1.000 0.121 0.088 0.808

ROST CD 1.000 0.135 0.109 0.847 TIF CD 1.000 0.144 0.123 0.897 TIF CD 1.000 0.144 0.123 0.895
SWKS T 1.000 0.161 0.152 0.861 UPS I 1.000 0.164 0.160 0.932 UPS I 1.000 0.163 0.160 0.932
TSO E 1.000 0.124 0.089 0.795 UTX I 1.000 0.153 0.142 0.911 UTX I 1.000 0.153 0.143 0.916
TIF CD 1.000 0.146 0.125 0.905 WHR CD 1.000 0.169 0.175 0.921 WHR CD 1.000 0.168 0.174 0.921
UPS I 1.000 0.165 0.162 0.942 MON M 0.997 0.106 0.062 0.665 MON M 0.997 0.105 0.062 0.675
UTX I 1.000 0.154 0.143 0.916 WYNN CD 0.997 0.146 0.130 0.897 WYNN CD 0.997 0.146 0.129 0.889
WHR CD 1.000 0.171 0.176 0.916 FISV T 0.987 0.139 0.112 0.904 FISV T 0.987 0.139 0.113 0.901

WYNN CD 0.997 0.149 0.131 0.894 OXY E 0.982 0.136 0.107 0.895 OXY E 0.974 0.135 0.106 0.900
OXY E 0.995 0.137 0.108 0.902 AET H 0.976 0.115 0.079 0.674 ROST CD 0.958 0.136 0.109 0.835
HD CD 0.982 0.132 0.102 0.861 ROST CD 0.963 0.136 0.107 0.839 HRB F 0.958 0.129 0.102 0.692

AET H 0.979 0.113 0.079 0.677 HRB F 0.961 0.130 0.104 0.701 AET H 0.942 0.112 0.079 0.679
USB F 0.974 0.116 0.075 0.792 HD CD 0.958 0.132 0.101 0.843 USB F 0.929 0.117 0.076 0.779
HRB F 0.963 0.132 0.105 0.699 CSX I 0.939 0.154 0.135 0.910 FITB F 0.918 0.094 0.044 0.593
FISV T 0.942 0.141 0.116 0.902 USB F 0.937 0.118 0.076 0.784 HD CD 0.911 0.130 0.099 0.847

*Notes: See notes to Table 3.23.
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Äıt-Sahalia, Y. 2002a. Maximum likelihood estimation of discretely sampled diffu-

sions: A closed-form approximation approach. Econometrica 70:223–262.
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