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Interest in continuous pharmaceuticalmanufacturing €PM) technology is rapidly
growing with all major pharmaceutical companies developing products in their pipelines using this
technology As it has been extensively report&€PM can deliver enormous advantages including
faster product developmeness materialise reduced capital cost due to smedjuipment size
superior process control, optimized performance, and more reliable quadityfacturing
Nevertheless, given the nowaatd complex naturef thetechnology CPM systems require further
studycompared tdraditional batch processgSPM stuliesmust becarefuly desigred optimized,
validated and contrded as holistic systein order to operate robustlgfficiently, and provide the
aforementioned advantagd® achieveC P M @advantages in fullit is necessaryo developand
implementa frameworkwherein the processean be evaluated and studaslintegrated systems
In this work, toolsestablishedin the process systems engineering (PSE) methodology were
implemented todevelop models that can ai@CPM process designevaluatiorn control, and

optimization

The focus of thisvork includedthe development and implementation of computationally

efficient phenomenological and residence time distribution models for systen@&Piklaystem.



In the first two chapters of this work, a thorough rewig the current implementation of models

in the pharmaceutical industry is presented. Within the review, the different types of models
currently implemented in the industry are enumerated followed by the challenges of their
implementation. Among some dig most difficult challenges for modelifigPM powderbased
systemds the ability todetermine relationships between critical process inputs and oudyiots,

the abilitycapture the impact of material propert@sthe process o overcome these challenges

a framework for developing predictive phenomenological (i.e., engineering) models that include

the effect of material properties on the process was developed.

The third and fourth chapters of this work are devotetbseribinghemodel development
frameworkand provide an example case study of the methodology when it was successfully applied
to a tablet compaction procesghe successful integration of material property effects into the
modeling of the pharmaceutical unit operation led to the develdpyharmaterial property library
that collected a wide array of property measurements for a number of pharmaceutically relevant
materials. The material property libragescribed in the fifth chapter of this workas used as a
tool to determine the impaof material properties on: (1) residence time distribution experiments
and (2) the operation of continuous powder feeding units.

Residence time distribution (RTEethodsand modelsverestudiedin this work, as their
application to characterize CPM sgsts has become standard. The effect of material properties on
RTD method wereevaluated in the sixth chapter provide recommendatioiier usingthe RTD
methodologyto characterize CPM unitdJltimately, the unit operation characterization and
modeling famework presentedhithis work along with the recommendations offered for RTD
experimentation and modeling were applied to the developmentiypfamic phenomenological
and RTD modkfor a continuous powder feeding unit. The modekscribed in the sevdnthapter
of this work, was used to predict the behavior of the GBdécific unit over a wide range of

material property and process inputs.
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1.1BACKGROUND & MOTIVATION

Pharmaceuticals is a global business sector focused on the development of performance
based products designed to address the worl dobs
along with medicineand disease eradicatiaie average world life expectancy has risen from 68
to 74 years in the past 25 yefitk Global pharmaceutical market sales were at an estimaéd $
billion in 2016, with a steady growth rate of 7% pery@ver the past decaf. The sum base

revenue for the top ten pharmaceutical industries, who spearhead most of the research and



development efforts, was valued at $300 billion in 2[B)&ndglobal sales exceed$1.1 trillion

in 2014[4].

Although the pharmaceutical industry is fundamental in health management and their
profits are higher than many other chemical industries, average technological advances across the
industry have lagged. Delays, espdlgiin manufacturing technologies, are attributed to the current
regulatory framework, high profit margins, time constraints during the drug approval process, and
varying physical and chemical properties of drug molecules that affect formulation anssproce
design[5]. However, recent changesthe economic and regulatory environment surrounding the

pharmaceutical industry have left the sector facing enormous obstacles.

A decade long flat line in new drug molecule innovation, extended development time due
to disease and treatment complexitglatively inefficient and poorly understood manufacturing
practices, increased global competition from manufacturers of generic products (i.e., generic
erosion), rising regulatory scrutiny during development, and growing expectations for medical
compounds(e.g., fewer side effects, effectiveness, and accessibility) result in decreasing
competitionfree lifespan of products, increased product risks, and reduced profit margins for major
pharmaceutical compani§s-9]. Additionally, companies needs to develop new products whose
average cost in 2015 per approved molecule range from $2.3 billion to $4.9 billion. This paradigm
has cut the pharmaceutical sum revenues faofhéen pharma industries in 2014 to $250 billion;

a 16% decrease from 2008. These technological and regulatory challeregsociated with the
current pharmaceutical manufacturing standards have pushed industry to invest in more efficient
and reliable product manufacturing technologies that help reduce development time, save cost, and

improve drug product quality.

In order toaid the modernization of pharmaceutical manufacturing and implementation of

new technologies, the Food and Drug Administration (FDA) launée&D04 an initiative for



enhancing process understanding using the Quality by Design (QbD) methodology and Proces
Analytical Technology (PAT) toolgl0-15]. The major goals of the QbD and PAT initiatiwvesre

to push industry to expand and improve their scientific undetstg of drug development
processe$16-18]. These methodologies, applied for many years in a variety of manufacturing
industries including the automotive asplecialty chemical, aim at improving product quality and
process development. Scientific understanding can be achieved through the development of
technologies to perform online measurements of critical material properties, the coordination of
processes anegquipment, the development and use of process models based on fundamental and
experimental knowledge, implementation of process control, and exploration of process design
space (i.e., flexibilityand feasibility [19, 20]. With these aims in mind, the pharmaceutical industry

has focused on finding new technologies to achieve these goals.

1.1ADVANCES IN PHARMACEUTICAL MANUFACTURING

Pharmaceutical manufacturing can be divided into two major processes based on their
resulting drugcommodity substance or produddrug substance manufacturing, also known as
upstream manufacturinvolves the production of the activegrimaceutical ingredient (API) via
chemicalsynthesigmethods. This process is primarily done in liquid systems and the resulting API
can be in either liquid or granular (i.e., solid) forby, 21, 22]. Drug product manufacturing, also
known as downstrearmanufacturingfor being performed after the upstream prscéskes the
APl and combines it with other pharmacologically inactislid materials, known as excipients, to
create a dosage ford.r ug pr oduct manufacturing depends
tablet, injectable, spray, ointment), but oftemdlves the use of solids (i.e., powders, granular

material) handling equipmetd create the final product.



Batch processing remains the predominant development route in most of the
pharmaceutical industry for both drug substance and product manufactrimarily due to
tradition, batch manufacturing has ruled pharmaceutical manufacturing for the past f23jtury
Unfortunately, batch manufacturing ffinarmaceuticals does not often result in the most efficient
manufacturing process given the number of steps and the need to scale up in order to meet demand
[24]. Typical pharmaceutical processes are composed of ten or more interacting processing steps,
eaxh one affected by several process parameters. This level of interaction makes process
development a difficult and daunting task whose solutions are addressed using heuristic methods.
Moreover, the constant demand of products for clinical trials, in nassiscoccurring in parallel
with process development, force scientist to study the manufacturing process in an expedited
mannerf25]. Scale up requires the purchase of larger equipment in order to increase productivity,
leading to extended research efforts to maintain performance across equipment and scale. Thus,
batch manufacturing processes are ofteorly understood, rarely optimized, lack robustness, and
are prone to unexpected fail&6-28]. Lastly, risk assessment and failure mode analysis of batch

processes is a substantial challenge.

Based on the aforementioned issues with the batch manufacturing paradigm and taking
advantage of the QbD and PAT initiatives, the pharmaceutical industry began expanding on a series
of technologies. One of the most poomced technology upgrades is continuous manufacturing of
drug productg16, 24, 29-31]. Many of the previously described issues with batch process can be

addressed through the implementation of continuous manufacturing processes.

1.2CONTINUOUS MANUFACTWRING OF PHARMACEUTICALS

Continuous drug product manufacturif@PM) technologies have the potential of

addressing issues of process knowledge and robustness by closing the gap between process



development and manufacturing. Since continuous process scale up is done through increases in
operation time, throughput, andnallelization of the same continuous train of equipment; process
knowledge acquired during development can be directly applied to manufacturing pr¢28sses

32]. This development strategy minimizes technology transfer to commercial sites, improves risk
assessment and failure mode analysis (i.e., equipbighly studiedduring developmeit and

reduce the capital cost . Further more, continuous
stated meaning that product targets are set coc
raw materials are fed constantly to the process, and productsadecand examined as they are
produced. In cases when products are detected out of specification by examination methods, they
can be diverted from the product stream at any point in the operation and a corrective (i.e.,
controller) action can be taken tary product properties to the desired specificatid® 33].

Therefore, continuous systems with automation and process control result in high quality products.

The advantages are not only limited to thentoallability and better process design
strategies, they also include the ability to implement processes that were too difficult to be done
using batch methods. For example, partiggregation(i.e., a process event that leads to poor
quality tables beip manufacturedhas been shown to be prominent on batch systgmis
continuous systems have demonstrated the ability to process segregating mixturestigthout
issues observed in batdl34, 35]. Thus, continuous manufacturing has the potential to decrease the
amount of wasted maiel, improve process performance and robustness, and ensure product

quality [36].

The advantages of continuous manufacturing hawshedmajor pharmaceutical and
equipment manufacturingpmpaniesto embracehe technology for both legacy and new drug
products[37, 38]. As of the writing of this thsis, three major pharmaceutical products have been

approved by the FDA to be manufactured using continuous manufadtg@]nfjlonetheless, there



are many challenges with this technolobigher nitial cost, extended initial development time,

lack of PAT tools available for monitoring continuous processes, and difficulty of implementation

for low volume and dosage produfd€)]. Another notable challenge for continuous manufacturing

is dealing with the current state of guidance provided by the regulatory bodies. One example of this
issue is the definition of a fAbatcho of produ

regulatory agencies and pharmaceutical companies[8llkke

1.3CONTINUOUS MANUFACTURING OF PHARMACEUTIQ\L SOLID ORAL

DOSAGES

Primarily composed of tablets and capsule formulations, solid oral dosages are the most
commonly used drug product forms inet market[41, 42]. Multiple routes for drug product
manufacturing have been established with the goal of ensuring the production of atghislity
(or capsuleproduct. The manufacturing method ieardepending on thAPI compoundsand its
inherentmaterial propertiesyet formulators commonly apply similar routes of manufacturing for
solid oral dosagedshefour majorroutes for the production of solid oral dosage forms are: direct
compression, dry granulation, wet granulatiand spray drying43, 44]. The twogranulation
routes are used in cases whttreflow of a particular matéal in the formulation does not make
its processability possible without adjusting some material properties, particularly size. Spray
drying is often applied to improve thissolution properties of the ARhd control the its material
properties along wlit those of the excipient#ll manufacturing routes are currently implemented
in batch mode across the pharmaceutical industry, with continuous forms being developed over the

last decad§l6, 36, 45, 46].

A schematic process flow diagram shogthe four major routes of CPM is shown in

Figurel[40, 47]. The four continuous manufacturing routes begin with the constant feeding of raw



materials into the process by powder feeders. The feeders are typically operated under some form
of flow rate ontrol in order to maintain a constant a constant mass ratio of ingredients entering
subsequent units. This ratio of ingredients is particularly important for pharmaceutical operations
as it dictates the final pr oedialcnmadlepassedtwaght r at i
a delumping unit such as a high shear screemitton order to eliminate large, electrostatic, soft
lumps of material that may not lead to good blend uniformity-riidbed materials are mixed using

a continuous blending systewherein materials are mixed in both the axial and radial directions to
achieve a uniform composition of ingredients as a function of time. It is important to mention that
radial and axial mixing aims at obtaining a homogenous blend of materials and tieeluatural

feeder fluctuations by backmixing material over a short period of; thoevever, the overall
concentration of the product is primarily set by the initial feeding ratio. A lubricant, which intends

to reduce powder sticking during compressiol amprove bulk density, may be added at the

blending unit operation.

After blending, four different routes of manufacturing can be pursued, all having a diverse
set of different unit operations. The simplest of all manufacturing routes is direct caopress
wherein the material exiting the blender is directly sent to a tablet press or capsule filling machine
to create the final solid product. If the blend flow and/or solubility properties do not allow for good
compaction or product properties two gratiola routes and a spray drying route may be pursued
to improve the powder flow properties by increasing the particle size or the blends porosity. The
two granulation methods commonly used include: dry and wet granulation. In dry granulation,
blender powdematerials are sent to a roller compaction unit, were they are pressed into a higher
density ribbon, which is then milled into granutefsa desired particle siz&Vet granulation is
performed in a variety of units, such as twin screw, fluid bed, andstigar granulators. In wet

granulation a wetting liquid (i.e., binding agent) composed of typically water and high density



polymer is used to create larger particles via agglomeration. The granulation liquid is then removed
at a drying step, which may reduthe granule size to a desired distribution. Optionally, a screen
mill can be used to ensure a desired particle size distribution. Lastly, if solubility of the blended
material needs to be improved, the ingredients may be homogenized and spray driztiestied

air drying systemThe porous and now amorphous form of the API can have improved solubility

when compared to the previous form of the material.

The resulting granules obtained from either granulation@stémm spray dryingre then
sent to dablet press or capsule filling machine to produce tablets or capsules. Tadodietfsom

any of thefour processes can be then sent to coater to yield a final coated product.

Feeders
API and Excipients
Feeders
(Optional) + |API EX
5 P Y -
M =N :’ = M

Lubricant Mill
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— - - = Direct Compaction
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” D @E@ Compactor l
Spray o el (2) |

R AEE S
“) Mill
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Tablet Press

Figure 1. The four major continuous solid dosage nMfiomanufacturing routes. (1) Direct
compression, (2) dry granulation, (3) wet granulation, and (4) spray drying.



Depending on the implementation of the process, CPM processes for oral solids are
assessed based on the quality of the blends and/or tabldtsgdo Blends are characterized by
their uniformity; monitored via spectroscopic and wet chemistry methods. Important tablet quality
properties include tablet strength (e.g., hardness, friability), APl composition, assay, tablet weight,
and composition ufdrmity (i.e., variability measured as relative standard deviation) and

dissolution time.

1.4.INNOVATION: PROCESS $STEMS ENGINEERING PSE)

Giventhep har ma c e ut i cordihuing modernigatian wndl &s shifts towards new
continuous manufacturing pramtls, process elements that affect drug substance quality and the
technigues used to understand these processes need to be reevaluated. Detemadrid seamless
process understanding while movirfgpom traditional batch to continuous manufacturing
techrologies we must look at previous chemical industries and work towards building the
necessary expertise and skills to design and effectively opeoatiinuous manufacturing
technology[31, 32, 48]. In designing continuous flow systems, while the analysis and optimization
of individual process equipment remairpiontant, the primary objective is to identify and evaluate
design elements that pose a potential risk to product quality for the fully integrated system. It is
also important to consider the multivariate nature of such systems in process[4€sigvithin
this context, process systems engineering (PSE) tools have been implementdue wgval of

facilitating effective and efficient process design.

PSE is a knowledgkased approach which uses mathematical equatioasciarately
representthe y st e mé s ¢ h e mn@dertogvaleate dompldx gystémsisg simulation
tools[5(Q]. PSEG6s s peci adpplidation afrodeis alongwith corsput&ioathms

to predict design, analyze, control, amize, and operatthesecomplexprocesss Within this



10

rigorous (i.e., mathematical) framework P S E 6 0 pmpwde insight $0 process development

by evaluatingntegratedmanufacturing systema silico.

Rigorous process design and evaluation caatly improve manufacturing development
and optimization of both drug substances and products given the vast amounts of research available
from the PSE perspective. Approximate (i.e., heuristic) methods can be supported by having this
information at handand furthermore can be used to inform future process design strategies for
other products. For instance, information developed during the early stages of preclinical and
clinical trials (e.g., molecular weight of compounds involved in the process, #gluldlta,
degradation profiles, synthetic routes, boiling and melting points, reaction enthalppsdogt
formation, mixing behavior, powder compressibility) can be used to inform and develop new

models, some of which could be used to improve futuoeqss development.

Several research teams in both industrial and academic institutions have used PSE methods
to evaluatg47, 51-56], design[50, 57, 58], analyzg59-62], control[32, 63-68], andoptimize[69-
73] pharmaceutical processé&xedictive process modelgere usedo develop and assess control
straegies forcontinuous processes, as well set the stage for the implementation of control
systems in pharmaceutical proced&3s 68, 74-77]. These advanced control strategies can help to
ensure consistent product qualifgurthermore, process integration (i.e., the union of multiple
processes into a single process flow)l acale up can be performed once several unit operations
have been characterized mathematically using models. For integration, the work would simply
require carrying over information from one unit to the next, to inform subsequent models about
process stam properties. Several units can be adjoined or scheduled one after the next and the
process can be simulated and evaluated. Once all the unit interactions are understood, then few
experiments with the integrated system can be performed to validatedebngaesultsThe goal

of PSE andhe integrated process flomodelsis not to completely remove experimentation, but
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to provide researchers with a smaller set of critical variables that must be evaluated in the process,
thus removing the need rfnninglarge numbesof experiments. The integrated process simulation
can also be very beneficial to evaluate mitigation strategies, process sensor needs, and control

algorithms

Models fit well into the pharmaceutical manufacturing process parauolgpmoviding a
mean to evaluate a process before many process experiments are performed. For example, process
companies can start using preliminary and drug discovery data felghility, flowability,
dissolutior) to start building processes, even before tinggstigative new drugiD) applications
are submitted. This provides a large economic risk reduction for companies, who can test potential
processmanufacturingroutes before incurring in costly process experiments. First pass process
design studies can Iperformed using simulationsmall amounts of characterized materials, and
libraries of generalprocess modelthat predict the behavior of the material in the .uBilecting
theequipment and processing conditions friomsilico experimentbased on sentific models can
expedite and improve the design of process even before any capital investment is performed. These
first pass studies can be used to then speed up the development of a preliminary process, which can

then satisfy clinical demand.

Using dda acquired from the preliminary procésegeneral model libraries can be further
tuned for the process/drug being developed and more rigorous design can be performed. Using the
more finetuned model, process developers can perform a setsilico experiments that allow
them to test scale up scenarios, find process optimums, evaluate process monitoring strategies and
develop control architectures for the design. The process model results can then be implemented in
a real world plant, which can then bealuated with respect to the predicted values by the process

model. Model information can be used to supplement and help explain the reasoning behind the
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current process design and provide great insight behind the process design strategy during the

appliation process.

Figure2 shows how models fit in the development of a procesktha figure, the light
green steps represent locations where the model is informing process development. Step 3, for
example, involves the applicati@f a the general process models to determine a first pass process
that can be used to satisfy the demand of clinical trials. Stelpeviss an instance when the models
are used to further improve the preliminary process by testing different types adga®mcassist
with scale up, and help find process optimums. Step 6 shows where models can help select the
monitoring strategy for the process and allow for the design of control methods for the process.
Ultimately, the model can then be used to providatipgporting information to drug manufacturing

applications and can further be used to control manufacturing processes.

[~
Data originally developed . More knowledge ’
Step 1 during discovery improves steps 2 —4
Drug Discovery 3 Using model
& Development Step 2 —‘L / libraries and data
Data 5 3 Basic design to meet
. tep / clinical demands
Collection . . . 1
First Pass Simulation Step 4
Process Design Preliminary ];
J Process S 0B
Clinical <""F'>:;;i;'e """""" I Simulated Process
) Designing Design, Scale Up, &
Materials

Adjusted model
based on —/
Preliminary Process Step 6

Optimization

Excipients
Unit Ops
Conditions

Monitoring Strategy
& Control Design

g

No

Step 8 Step 7
Process [€— Scaled Process [€
Assessment Implementation

Step 9
Manufacturing

Figure2. Pharmaceutical manufacturing workflow integrating the use of process nferelssses
in green ar¢hose that can be developed with the use of moddispted fron{58]
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Repeating this process and developing better models would improve the time of simulation
based process design and improves the whole simulaased development cycle. Regulatory
agencies can also greatly benefit from these models as they provide exceptional insight on process
development strategies being performed in the industry. Modelspanas tools to compare how
differentcompaniesre developing processes and what assumptions they are taking (seen from the
model assumptions). The process model can also benefit the review process, as it provides a clear
algorithmic procedure for proceglesign. From the process models provided by a company,
regulatory agencies can further improve the evaluation methods by performing more in silico
experiments to test some of the questions that may arise from information request. Process safety
evaluatia could also be performed to ensure process safety and robustness using the models, which

can be evaluated at the regulatory agency or at the company.

Overall, PSE tools and predictive models can facilitate the design of processes where
consistent produajuality is achieved at every step of manufacturing within the framework of QbD
and PAT[58]. Tablel summarizes the rafionship between PSE tools amebcess development

objectives.

Table 1. Process Systems Engineering (PSE)isdor process development and evaluation in
continuous manufacturing of drug substance and products. AdaptefifSbm

Process Systems Engineering (PSE) Tools Process Developmefitbjectives
Predictive Models (Mathematical Equations Process Understanding and Inf@utput Relations (IOR) Building

Flexibility & Feasibility Analysis Determine Process Parameter Ranges and Control Ranges
Steady State Optimization Process and Produbdesign

Dynamic Optimization Process Improvement and Disturbance Evaluation

Sensitivity Analysis Risk Assessment and IOR Evaluation

Controller Design Attainment and Maintenance of Critical Quality Attributes (CQ/#
Flowsheet Modeling Process Integratipand Simulation

1.5.BACKGROUND ON MODELS

One of the major advantages of process modeling includes the ability to store and make

available large amounts of process knowledgecumulated over time and experimentaiidan
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mathematical equations. The infortioa stored in these equations can be used to by process
designers and operations solve several process design and optimization questions. Furthermore,
these models can greatly improve future experimental designs, since they can provide insight on
which process inpubutput relationships are important to evaluate. For this reason, PSE and
modeling tools are extensively used in the fine chemistry and petrochemical industry to design new
process, evaluate current designs, and improve (i.e., optimize) tharnpente of existing
processeskigure 3 shows a flow diagram of the modstntric approach of PSE. Data acquired
from experiments can be analyzed and used to develcglibratea modeffor a specific system

Once a set of modelre available, thecan be used in an integrated manner to represent the
complex system being studiddsight on the models accuracy can be obtained by performing a
verificationand validatiorof the model result. Positive model verificatioand validaion results

lead to its use in process evaluation and assessment. Negative verificativalidatiorresults

lead to revisiting the models original development or need to acquire additional experimental

results.

Model missing
information

1. Data Acquisition 4. Integrated Process Simulation
(Experimental Design) Development & Verification

3. Model/Simulation :

2. Experimental Data |:> Development & 5. Process Evaluation
Analysis & Evaluation Calibration Model not & Assessment

validated

Figure3. Simpifieds chemat i ¢ of process system engineerin
evaluate complex systems.

As shown inFigure3, modeling effortsconsist of a set of steps or activities that are not
linear in natue. Moving beyond the simplified schematidhigure3, modeling efforts ardivided
into six major activities: (1) determine system characteristics, (2) collect data, (3) analyze data, (4)

construct or identify anodel, (5) solve or analyze the model, and (6) verify and validate the model.
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System characteristic determination is based primarily on empirical knowledge of the system,
wherein the relevant inpuutput relations are considered as important for systeforpgnce.
Noteworthy is the idea that during this assessment, important system characteristics may not be
captured, leading researchers to revisit this instance even after the model has been validated. Data
collectionand analysisoften performed undeh¢ Design of Experiment (DoE) structure, aims at
guantitatively measuring the relationships existing between those-dofuuit relationships.

Several methods are proposed for performing £attl have been extensively revievgidce its

inception in the edy 20" century[79, 80].

Constructing or identifying the mathematical equations is a fundamental step for process
modeling since these modehform the results between process inputs and their output later used
for in other PSE tools. These predictive equations (i.e., models) have different forms, which vary
on the level of complexity and their incorporation of input and output (i.e., staieples. For any
given process, models can be proposed as set of linear dinean equations, written in
dimensionless or multidimensional forms encompassing steady state (i.e., time independent) or
dynamic (i.e., time dependent) scenarios. Five wiffe models, shown with their relationship in
Figured, are commonly associated with PSE tools: (1) balance equations, (2) constraint equations,
(3) constitutive equations, (4) product models, and (5) productcatipi models. Balance
eguations ensure that both the physical principles of conservation of mass and energy and
conservation of momentum are obeyed throughout the process. Constraint equations, just as their
name implies, ensure certain parameters arataiaed within certain logical bounds, especially
those in balance equations. A frequent example of a constraint equation is the fractional
composition of materials in a process stream, which ensures the fractional sum of all the
components in the streaméqual one. Constitutive equations involve those sets of equations that

describe the chemical and reactive state of the system. Particularly focused on material properties,
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constitutive equations need to be evaluated constantly to ensure accuratei@alotilavth the

balance and constrain equations. Product models incorporate the information of product attributes

to inform about the pr oduct Ofewabilayfcehesionllastpr oper t
product application models are tleosvhich aim at predicting product behavior under certain
circumstances, like the product dissolution in a specific medium and degradation at given
temperature and pressure conditions. Solving these sets of equations requires understanding of
several matheatical structures, which depend on the type and number of equations presented in

the model. Further review of mathematical methods used to solve various model structures are

provided in re®d%wndby eGec40md grgufiso u 6 s

Model verification and validation refer to the modeling steps where model solving methods
and accuracy are evaluated, respectively. Within this corniteigt,important to mention model
validation involves the practice of ensuring system models accurately represent previously
collected data as well as some new or isolated data sets, not used duringansttattion and
analysig81-84].

Process variable types |—>[ Process Analysis Tools ]—;

d}: Intensi iabl 1
{x, y, d}: Intensive variables (measurable) Preeeee sl

t: Time (not accounted in steady state) T p—
alance Equatio . .
8: Conceptual variables (not measurable) dx q Constraint Equations
= fxy0.d 0| 0=g(xy6.d)
Equation examples t
Balance: conservation of mass & energy \ ( Constitutive Equations
Constraint: mass fractions & equilibrium L 0 = h(x,y)

Constitutive: reaction rates & thermodynamics
Product: API solubility model
Product Application: dissolution model

Product Model

Product
Application Model

Figure4. Different types of models used within the process modeling structure. Adaptefbfiiom
All of these previously described modeling activities must be performed iteratively and

constantly, since models require constant revision to ensure their performance still meets the
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stendards set by users and developers. In some instances, some of these efforts must also be
performed in conjunction with experimental efforts to ensure that model development accurately
evaluates and accouwtior critical process inputs and outputs. Furthere, model developers need

to perform several back and forth instances between model design, validation, and data collection,
to properly develop and validate a model. Based on this extensive number of steps and constant
need for revision and monitoriniy,is clear that modeling as a whole is a labor and time intensive
process, yet its benefits in terms of data storing and development outweigh this initial labor cost.
Several industries have applied this methodology and encourage it as a mean to ingpvalest

of their labor (i.e., experimental) efforts.

1.6 TYPES OFRMODELS

In this sectionthe major models used in pharmaceutical process modeling are briefly
described. Readers interested in learning the different model types in more detail are encouraged
to read the reviewby Rogers et al[40], EscotetEspinoza et a[47], and Gernaey et 150, 58].

There are four types of models commonly used in the pharmaceutical industry: first principle
fi me ¢ h a muls-dimersi@nalmechanistic phenomenologicaland empirical or datadriven

models.

1.6.1. Firstprinciple mechanistic

These models areedved from fundamentatquations of motionUsing fundamental
physics, these modefsrovide a great detail of the system phenomepadescriling material
propertiesn space such as location, momentum, and velddijded into discrete and continuum
mockls, first principles models can be used with solids, liquids, and gas §¢€lefirst principle
models used in the pharmaceutical modeling literature include discrete element med&i$§E)

and finite element models (FEN®6]. DEM has been extensively used given its capability for
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describingthe tranfation and rotational effects of discrete particles in space. Particles are
discretized and equations of motion are written for each individual particle in the $83tefrhis
degree of discreti@ion generates a large number of equations, which limits and in some cases
prohibits the use of DEM to model large number of particle systems with current computing power
[88]. Nonetheless, qrticle and particldluid flow has been characterized and studied in great level
of detail using DEM for a variety of industrieSonfined particle flow is amongst some of the
phenomena studied using DEM, which applieshte pharmaceutical industry through operations

such as hopper emptying, continuous mixing, powder feeding, conveying, and fluidjg&tion
1.6.2. Multi-dimensionaimechanistic

Population balance models (PBMs) describe the generation or development of properties
in groups (i.e., populations)of entities (i.e., variablespver a set period of time. In the
pharmaceutical industry, PBMs are multidimensional models used for the characterization of
particle states with respect to internal (e.g., porosity, moisture content) and external (e.g., position)
coordinateg89, 90]. Often used in processes where particle size changes occur (e.g., granulation,
milling and drying), these adels have also been used in a variety of atbid-basedprocesses
such as mixing and dissoluti¢@l, 92]. PBMs offer a lower dimensionalitynodelcompared to
mechanistic models by lumping discrete systems into groups and tracking their average state.
Population balance models calsobe discretized with respect to the external coordinates in order
to resemble thdevel of discretization achieved with DEM modelif@3]. In these cases the
differential terms with respedb the external coordinates are replaced by finite differences.
Discretized population balance models can be parameterized anpatsmeters estimated using
experimental or simulated datBBMs can becomecomputationally expensive if the number

internal coordinates increases and the discretization grid of externainaiesds too fing¢94]

1.6.3. Phenomenologicalr semi-empirical
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Also known as engineering models because of thejuentapplication n the field, they
are derived from first principle modeksthin which anunderlyingset ofassumptions reduces their
complexity. Experimentally obtained parameters are introduced as a means to calibrate the model
for a specific combination of material aadquipmentonditions[95]. These lower dimensionality
models involve macroscopic mass, force, and energy balances that provide information about the
systemds average behavi @pbetwednimbdel varigblesnandaprocessn g a
conditions. They have been used in a variety of pharmaceutical manufacturing problems in order
to simplify model complexityf96-1027]. Lower dimensionalityPBMs also lie within this model
category and have been used to characterize the probability density function of a single patrticle
property inside of a unit. One example of low dimensional PBMs isetiidence time distribution
(RTD). Briefly described, RTD is a diagnostic tool that characterizes the time particles spend inside
of a unit operation using a tracer matefidl3 104. This type of model has been extensively used
in the chemical engineering literature to determine the mixing behavior inside units, and given its
importantuse to characterize continuous equipment will be further investigated in Chapter VI in

this work.
1.6.4. Empirical ordatadriven

Empirical models, commonly referred to as statistical modais, among the lowest
dimensional models and are derived purely by d¢tegionship between inputs and outputs, without
much physical explanation behind the correlation. The aim of empirical models is to provide a
representation alata collected experimentally or from mechanistadels in a lower dimensional
space ging input-output correlationg109. These modelinclude statistical techniques such as
blackbox modeling approaches, latent variable methoustilinear regression, response surface

modeling principal component regression, among many otHg6-10§].

As opposed to any other model type previously describegbirical models arenighly
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dependent on the data provided for their development. Unlike the aforementioned models,
extrapolation using empirical models often leads to erroneous results, since the relationship
between the input parameters and the output responses is not defined outside of the data bounds.
Neverthelesssince these types of models provider@xpensive copputationalrelationship they

are often preferred for control system design and develogd@nt
1.6.5. Flowsheetmodels

In an integrated process, individual pieces of equipment (i.e., unit operations) are
connected in series. In such a process, a train of multiple units, one after the next, is connected via
piping to sequentially perform paler-to-tablet manufacturing without isolation of intermediates.

The output of a preceding unit becomes the input of a subsequent one with material continuously
flowing between them. Mathematically, process integration follows the same logic. Individual
egupment modelspresented previouslyare combined by taking the results from a preceding
model and using it as the inputs of a subsequent one. The integrated process models are labeled
flowsheet modelas the flow of information between the unit modelsembles the flow of
material(s) between unit operations. Therefore, flowsheet models defined as eljaaéidn
representations of the series of interconnected unit operations that describe a complete
manufacturing process. These types of models have lerg hsed in fluidased chemical

processes for process simulation, design, control and optimization appli¢a®erisl]].

Several flowsheet modeling softwareckages (e.g., ASPEN Plus®, ChemCAD®,
gPROMSE) have been effectively demons-basaldt ed f o
processes and are already widely used across the chemical and petrochemical intiLigtries
However, the developemt of comparable tools for solids handling processes is challenging due to
a lack of available first principles and constitutive models to describe many-katidd processes

[30, 113 114). Current flowsheet simulation software packages are not capable of modeling first
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principle models effectivelyand require long times to evaluate multidimensional models. If
flowsheet models are to be used for optimization, control, andscasario evaluation; less

complex models need to be developed and implemented for unit operations.

Flowsheet modelfave longbeen used in fluidbased chemical processes for process
simulation, design, control and optimization applicatid®9-111]. The recent development of the
modeling tools previously presented for solids handling units coupled with the commercial
availability of platforms for modeling and simulation of solllssed processes have facilitated the
development of flowsheet models in the pharmaceutical ind[&i/115. These models can be
implemented in commercially available development environments including gPROMS

ModelBuilder and Aspen Custom Modeler.

1.7MODELING CHALLENGES

This work focuses on some of the challenges that continuous pharmaceutical
manufacturing modeling faces. More specifically, the development of computationally efficient
unit operation models that account for the effect of material propeftfese ballenges are

explained briefly in this section in order to illustrate clearly the research objectives of this work.
1.7.1. Computationally Expensivenit Operations Modsl

In spite of the potential benefits HfSEtools in the development of pharmaceutical
manudacturing processes, they are severely underutiliz8dlL16. Only recently there have been
major effortsto apply methodologies of such as feasibility & flexibility analysis, flowsheet
modeling, steady state & dynamic optimization, and sensitivity analysis. These major efforts have
been championed after the development and application of models that antat@mally feasible
and have the ability to model particle systems accurately. First principle models, such as DEM and

multidimensional PBM, have been the major focus for development and were extensively used for
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design and study of individual unit opecsis[94, 117-121]. Although they provide a great deal of
physical insight into the process and aetely capture dynamical interactions among individual

particles, these methodsay not bepractical or efficient when incorporated with PSE tools.

The most significant drawback BEEM and higher order PBvhodels involves their high
computational cost, wbh makethem difficult to usefor applications where multiple or rapid
mo d e | evaluations are needed. DEM6s solution
number of particles, with computational cost increasing significantly as the numbericiepart
increases. For this reason, DEM simulations often model systems much lower number of particles
than in reality, which leads to large approximation of particle flow patterns and interaction.
Similarly, PBMs can be difficult and lengthy to solve as tlimensionality of the problem
increases. Efforts to reduce the computational expense of PBMs have focused in the
implementation of ordereduction techniquegl22 and hierarchal solution methofi23 124.
However, PBM modelsften require information about distributed parameters like particle
velocities within the process geometry, which brings back the need to run DEM simulations to

obtain these resulfd 25 126.
1.7.2. ModelingMaterial Property Effects

DEM also lacks a clear framework to account for material properties in simulations.
Material property parameters that cannot be directly measured for many pharmaceutical
compoutdls, such as friction coefficients and coefficients of restitution for interparticle and particle
geometry interactions, are required as part of the simulation. The parameters need to therefore be
estimated using indirect methofl88]. DEM models were characterized using reduced order
models (ROMs) to mimic the results from the first principle model. When the ROM is provided
with sufficient results, this approa reduces the need to perform DEM simulations for scenarios

within the evaluated space. Yet if equipment geometries change and/or there are deviations in the
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material properties these ROM are no longer valid and new DEM simulations need to be performed.
Insufficient understanding of the interactions between raw material properties, process design
factors and operating conditions and their effect on performance presents a challenge in process
development and design space determindfi@f]. These effects are often interactive in nature, so
simply visualizing process input and output data may not elucidate the most important process
parameters. In order to identify critical process parameters, which may limit the feasible region of
operatiorfor the process, it is necessary to quantify the extent to which the various process inputs

affect unit operation performance and product quality attritjitgs
1.7.3. Evaluation of Models & Their Inputs

Technical limitations regarding the evaluation and modeling of pharmaceutical systems
revolve around the idea that many unidentified variables are affecting output results. Often viewed
as inherent procesvariability these sources of error, mostly associated with material properties
and human error, make models less accurate and inefficient. Physical and chemical properties of
materials have the potential to influence product quality attributes sucterd d@hd content
uniformity, dissolution performance (affectinig vivo results), stability, and weight variability
[127]. Specifications on physical properties are typically limited to bulk powder properties, which
are more straightforward to test, and include bulk and packed densitgqimgtression behavior),
particle size distribution, cohesion, and flowability factf2§. The relationship between bulk
properties and product quality is not often well understood, but their ranges corragptndi

acceptable product quality can be determined experimefiBal\t 16, 127].
1.7.4. Verification & Application of Models

Obstacles in implementation of continuous manufacturing involve the understanding of
how unit operations behave holistically. Theaemtonnected effects of units aoeitical to

characteze in order to develop processes that are controllable, effective, and robust. Lower
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dimensional models developed to address the challenges of high computational expense can be
used to capture these interactiamsilico through the use of mathematitabls developed in PSE.
Sensitivity analysis can be used to quantitatively evaluate the importance of process variables with
respect to process performance. Sensitivity metrics can be used to direct experimental efforts
towards studies that will improvedhestimation of the most important model parameters or will
enhance process understanding with respect to key input vaiiap84 30. Lack of sensitivity

to certain factors can also be informative. It may either justify reducing the uncertain input space
(e.g. by holdng these parameters constant in subsequent studies) or suggest additional parameter

variations to capture the influence of these fadibg§-137.
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CHAPTER I

2. RESEARCH OBJECTIVES

2.1.OVERALL RESEARCH AIM

The overall objective of this work is motivated by the challenges provided in the previous
chapter namely the need to develop models that are computationally efficient, incorporate raw
material propertiesand are applicable to a widé process conditiond hus, the main objective of
this thesis is tadevelop analyze, and verify predictive phenomenological aesidencetime
distribution (RTD) models that take into account granular material propertiearfibioperations
in a pharmaceuticalcontinuousdirect compression (CDC) systenfihis objective is attained by

completing a set of specific research aims presented in the folloubsgcsions.

2.2.SPECIFIC RESEARCH AWS

2.2.1. Aim1

Establisha systematic approadh evaluate anéhtegratematerial property measurements

in a newly or previously developed process model.

Models are an essential component of the new methodology for process design in the
pharmaceutical industry. Several efforts target developing hdjhemsional, dynamic, complex

models for process understanding. Yet, these models are inefficient for process simulation given
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their complexity. Other efforts focus on developing steady state data driven models. These models
often have little to no relainship to dynamic process inputs (i.e., unit conditions) and require very
large datasets to be accurate. The efficient use of dynamic process models for continuous systems
requires the development of low dimensional models that are able to dynamicaliyeqaptess

inputs (i.e., critical process parameters and material properties) and relate them to process variables
and outputs (i.e., unit conditions and product quality attributes). However, a systematic
methodologyis often not well provided or summaeiz in the literature~urther, the use of material
properties as predictors is scarce in the literature, given the amount of variability provided in some

of the powder measurements

In this aim, the goakasto provide a framework that can be used to dgvable to capture
both process input conditions and material properifi¢ss approach, was then evaluated and
verified with a case study using a powder unit operation. This aim is evaluated over the course of

Chapterdll andlV in this work.
2.2.2. Aim2

Evaluate the use of material property libraries for modeling ars# thento identify

surrogate materialsising statistical technigues.

Material properties are known to affect process performance in pharmaceutical operations,
yet approaches to establishing thelationship between material properties and process
performance are lacking. In this aim, the goal is to establish a relatively small material property
library spanning a wide range of material properties and use the information developed in the
library for modeling purposes. This aim is provided after the first aim to guide the conversation
about the implementation of material properties in phenomenological mdtelsntent was to
first attain the goal of aim 1 before proceeding to developing the ialgteoperty library in this

aim. This aim is covered in Chapter V in this work.
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2.2.3. Aim3

Provide a systematic approach for developing residence time distril{&idp) modelsn

powder units and determine the impewterial propertiehave on the measurentesf the RTD

Similarly to the development of phenomenological models explaining the relationship
between inputs and outputs as a function of material properties, an interest has emerged with
regards to the development of residence time distribution (Ri@jels in pharmaceutical unit
operations. This aim focuses on providing a set of standards for performing RTD experiments as
well as evaluate the impact material properties have on the measurement of the RTD. The overall
goal of this aim was to provide eafmework that future process developers could use to ensure the
RTD methods, developed for liquid and gas systems, were upheld for solid syBbésraim is

covered in Chapter VI in this work.
2.2.4. Aim4

Develop a phenomenological and residence time distribmitimodels fortwin screw

powder feeders accounting for material properties

Lastly, the goals of aims 1, 2, and 3 are combined into the last aim of this work, wherein a
phenomenological and a RTD model are proposed for a unit operation in the contimeotis di
compression system: a twin screw powder feeder. The experimental characterization, model
development, model implementation, and model evaluation are performed in the last aim as an
overall application of the methods and techniques proposed in thByseims.This aim is

covered in Chapter VII in this work.
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CHAPTERIII

3. AIM 1: APPROACH FOR DEVELOPING MODELS

ACCOUNTING FOR MATERIAL PROPERTIES

Acknowledgementof publication status

Full sections of this chapter were publishied scientificartide written by the authoof this

thesisunder the title: Modeling the effects of material properties on tablet compaction: a b
block for controlling both batch and continuous pharmaceutical manufacturing prodess
article was accepted darch17", 2018in the Journal of Pharmaceutical Innovatidhis work
was done in collaboration with:

Shishir Vadodarig Ravendra SinghFernando J. Muzzfp Marianthi lerapetritot

! Engineering Research Center for Structured Organic Particulate Systef®3®RE),
Department of Chemical and Biochemical Engineering, Rutgers, The State University (
Jesey, Piscataway, NJ 08854, USA.

Further, sections of this chapter are intended for publication for a journal in conjunctio
several sections from ChagptVIl of this work.

3.1.INTRODUCTION

Theaim of this chapteis toestablista methodology for equipment characterizatidrose
objectiveis using experimental results to develop models that can be used to phediatit
o p e r ahelhavior.Bhs objectve can be accomplished by designikgerimental evaluations

aimed at determining the effect of process and material inputs on the process @gputs
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responses)These experimental evaluations must be performed as a series of experiments where
the effet of process inputs (e.g., screw speed, turret rotational speed, compression force) on process
responses is evaluated for single material. After determining the impact of process inputs on the
system, then a second level of experimentation varying mabepats must be performed to
understand their effect on the outpuifor examplethe initial goalfor feeding experiments to

establish theffect of screw speed (i.e., a process input) on flow rate (i.e., a process output). This
process inpubutput eperiment can be performed for a set of materials to evaluate the effect of
material inputs on the process. If different materials have different process outputs (i.e., responses)
at constant process inputs, then the process is found to be dependergria inguts.In this

chapter, a methodology to perform these experiments is presented.

3.2.GENERAL MODEL DEVELCPMENT FRAMEWORK

The general strategy to analyze complex systems from a model development standpoint
consiss of a series of steps that require bokiservation and mathematical analy§ig 103 133.
First, a problem formulation needs to take place to understand the model objectives and evaluation
criteria. Delineating the performance requirements, both computationally and practically,
represents a major component in model development. Second;tiospnd classification of the
system being studied is necessary in order to decompose it into several subsystems, whose
interactions and fundamental relationships to process outputs can be determined. Third, interactions
between the subsystems need tofdrenulated as inputs or variables to a set of mathematical
eguations (i.e., models). In this step it is critical to understand the need of experimental observation
in order to find the relationships between variables. Finding relationships betweeregariabbst
cases require the incorporation of coefficients, primarily if the model is data driven. Fourth,
evaluation and verification of the model as it represents the real process is then needed in order to

assert the model fulfill the requirements adtia the first step. Lastly, once the model is developed
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it can be applied in accordance with the modeling goals. Continuous evaluation and verification
with experimental data throughout its application ensures that the model will remain valid and
relevan. This last step in some ways closes the loop for the process, as it requires the model

development process to review the objectives and evaluation criteria set out in the first objective
[134].

Given the importance of defining the problem, this work focused on defining the different
methods for developing knowledge for a unit operation. The equipment evaluation methodology
approach used greatly impacts the abovementioned modedimgirork by providing more (or

less) information than that needed for the process.

3.3.EQUIPMENTEVALUATION STRATEGIES

In previous yearspharmaceutical unit operatiomesearchhasfocused onperformning
equipmentcharacterization using a formulation based rapph. This approach consisted of
studyingunit operatiorperformance for a specific ingredient (e.g., excipient, lubricant, or, API)
formulation or arounda desired process condition (e.g., throughpcalé. Although efficient for
the early stages obatinuous manufacturing, this approach does not provide sufficient information
to process developers on instances where the prawesiition is changed and/or material
properties change during the process from the original material used for characterizsse
two situations, although uncommon in batch processes (e.g., throughput is set by scale or material
properties are not varied during the process) is very frequently occurrent in continuous processes.
Therefore, ® address these issuesnmre strutured and rigorousapproachfor equipment
characterizatiorbased on the input or control variables thatouns for ingredient material

propertiesmust be implemented
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For the purpose of this workt is important to make a clear distinction between
charaterization and performance evaluation. Equipment characterization is, as defined here, the
process by which we aim at wunderstanding the
a unit operation behavder a wide rangeof conditions. This procssis tedious and aims at
developing a clear understanding of the unit. Performance evaluation is, as defined here, a mean of
understanding how thenit perforns undera specificset ofconditiors or inputs This process is
shorter but provides a much namey amount of information. Below we aim at explaining in further

detail the differences between these evaluation methods.

3.3.1. Equipment characterization

The process of equipment characterization begins by decomposing the unit based on the
individual inputs anautputs affecting process responses. This process requires for the unit inputs
to be associated with a particular output and may include not only the equipment process variables,
but also the dimensions and sensing equipment used to operate the Bastamcase of a screw
feeding unit, thigorocessnvolves thedeep understanding of how granular materials move in the
hopper with the help of a bridge breaking system as well as the affect such movement has on screw
filling and the feed factor. To achiewignificant understanding it is critical to evaluate: (1) the
hopper dimensions and shape, (2) the flow aid configuration, (3) the sensitivity and accuracy of the
load cell where the hopper is placed over, (4) the location of the screws at the botternagfier,
and (5) the volumetric displacement and capacity of such screws (i.e., the size and shape of the
screws and the motor used to turn such screws). All of these variables help understand how well
the material flows out of the system, its feedingazdty, and the accuracy at which this material
flow can be measureth certain instances, equipment dimensions may be relegated to subsequent

studies, given that a single unit is studied during initial characterization instances. It is important to
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notethat the characterization process is not linear in nature, and may require several iterations for

different unit operations and equipment vendors.
3.3.2. Performance evaluation

Performance evaluation involves the determination of hiolvoperationdbehave undea
particular set of experimental conditions. This type of evaluation, focuses on understanding the
performance of the equipment given a target range of output variables (e.qg., fldakiataveight,
tablet hardnedsFor cases relevant to the pharmaivalitindustry, performance evaluation needs
to be done at conditions that are similar to the prodessthe case of feeder performance, for
example, tis means that performance evaluasiored to beerformed orfeeders working under
gravimetric controlwith some type of refill. The goabf such experimentation would ke
determine flow rate deviations from the desired set point as well as understand its variability over
time. If the feeding rate variability for each material is evaluated well, théandibg system can
be tailored specifically to add the sufficient banking to the incoming blend to filter out the
variability to an almost constant mean valdewever, as noted previously, the result would not
be to establish a wide range of operatonb ut r at her a narrow observat

for a particular scenario.

3.4.MODELING APPROACH

Information collected during equipment characterization may be used to develop models
relating the inputs and outputs so that predictions can be fraddhe developed dat&everal
model typeshave been described in the literature to develop these-anppiit correlationsThe
goal of the correlations to develop a model that predittew different process inputs have on
process outputs by meansafnodel These inpubutput correlations are hereurknown as the

unit operatiorprocess modeT he effect of materials inputsaybe introduced to the process model
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as a set of categorical inputs or by means pfagerial modelcapable ofrelaing the dfect of

material properties tthe unit behavior.In conjunction with process models, materiades can

be used to predict the process outputs (i.e., responses) from the process and material inputs.
Material property models can be further used to deternthe material property effects and

establish a range of control for the materials that can be used for this unit.

Figure5 shows a schematic of the relationship between the equipment, process inputs,

process outputs, materialiuts, and process and material models.

| Experimentation

o B B o o
| « !
! MATERIAL INPUTS Aim at taking physical inputsand |
I Granular Materials or Blends correlate them to process outputs |
1 With many properties . . i
1 J using mathematical models :
1

; PROCESS INPUTS i
1 Critical Process Parameters PROCESS OUTPUTS :
: Variables affecting outputs y Product Properties :
1 Vary based on inputs 1
L ——————————————————————————— l
ryrrrrrtrtrtktktTUTFTZT]LT L —m—™— ™ ™ — ™ — — —/—/}//M/M/MMM H
H PROCESS MODELS

: Semi-Empirical or Mechanistic Models :
1 Relationship - process inputs and outputs 1
] 1
1 1
1 t MATERIAL SPACE |
1 1
1 .~ .. Ranges for Control i
1 'L Empl_ﬂcal Models ] Determine material effects I
1 Correlate material to model parameters |
1 1
i e o o o e 1

| Modeling |

Figure5. Description of the relationship between process and material inputs on outputs and the
implementation of models

As shown inFigure5, the goal of models to be able to predict the behavior of the unit
and bypass (to an extend) the amount of experimentation needed. Notably, modeling provides a
mean to evaluate the operational space for both materials and process inputs. These models may be
used to desigprocesses with a desired set of process outputs, effectively accomplishing the goals

set out by QbD, wherein the process is designed with the quality of the product in mind.
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3.5.MODEL LEVELS

From the distinctiorbetween process and material modwmisvided n Figure 5, three
different levels of modelemerge each related to the amount of information needed to predict
process outputs. In the following points, the different models and their interpretation are described
in detail. Thenomenclature introduced here is then used on this work to show how the methodology

is implemented for the characterizatismd modeling of tableting and powdeerding equipment.

1. Level 1 models predict process outputs for set of process inputs (e.gw sspeed,
sweeping volumedie fill depth, compression heighfThese types of models are often
developed during the first stages of equipment characterization and focus solely on relating
the effect of a single material in a unit operation. Thus, theseslm@dsume that all
materials behave similarly to one another for a given set of process inputs. Given that this
is rarely the case, these types of models are considered to have the least understanding of

the unit operation and process.

2. Level 2 models acount for the effect of different materials on the process model.
Materials effects to the process model are typically introduced through model parameter
calibration, wherein process outputs collected for a particular stefialinputs are used
to regiess a set of coefficients that would represent the effect of the material in the system.
This type of parameter calibration in level 2 models remains categorical, meaning that each
material is attributed a set of regressed parameters that would be intt@atoche process
model. The categorical nature of these models implies the material inputs are consistent
from the property perspective, meaning these types of models assume that a material will
not change its behavior in the system when the procestsingmain constant. This level
of modeling is the most frequently observed for pharmaceutical unit operations given the

challenges in establishing material property metrics to characterize materials.
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3. Level 3 models combine the process model with a matlernodel to predict process
outputs using quantitative materials descriptors. The material property model is developed
to remove the categorical nature of the material inputs in from level 2 by providing a set of
guantitative material property measuremghts, bulk density, compressibility, particle
size) that can be associated to a particular material. The quantitative measurements can be
used to develop a correlation between them and the regressed process model parameters
from the Level 2. Ultimatelythe material model would predict the process model
coefficients based on the material property measurements, allowing the model to describe
the behavior of not only those materials studied, but of other materials whose properties
are known. Given the two adel structure of this model level, this type of model is prone
to compounding the errors between the first and second models. However, the main
advantage is the ability to predict the behavior of a unit based on material properties, rather
than assuminghte behavior of the unit will be the same when the same name material is

used.

Figure6 shows a graphical representation of the models abovementioned. Notably, the
amount of process understanding increases as the model levataxr&he prediction of process

outputs may also greatly improve with increase model level.

Process
Understanding At each level, more variables are added to explain more of the system behavior

AN

Leveld PROCESS MODE J
Two-Part Model of Material Effect to Process Model + t Effect of Pmc‘ess I.npulsL‘
and Process Effects

£ 1

Level 2 MATERIAL INPUTS + PROCESS MODEL)|
Model of Material Effects Different materials Effect of Process Inputs

PROCESS MODEL
- Effect of Process Inputs

Figure6. Model level categories based on the inputs described by the model
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Critical Process Parameters
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The modelevel categories provide a mean to identlig anount of behavior capture in
by the current version of the model. For example, if only a level 1 model is provided, it is clear that
the effect of material properties on the system is not well understood and that this model only
captures the effect of press inputs on the outputs. Thus, when developing complex system
models (i.e., flowsheet models) the unit operations represented with level 1 models will be
unaffected by changes in material properties, a scenario that must be understood beforehand by the
model users. Following on the example, if a unit operation is modeled using a level 2 model, then
it is understood that material properties have an observable effect in the system, yet a certain degree
of experimentation is needed to capture the effethege material properties. Model calibration
must be performed in order to have these unit operation models represent the system accurately.
Lastly, if a unit operation is represented using a level 3 model, then this can be considered to be a
model capablef considering changes in material properties and process inputs. Using level 3
models provides the most insight when PSE tools such as flexibility, feasibility, sensitivity analysis,
and optimization are used. Nevertheless, these models require thammsit of work to be
developed and are highly dependent on the range of material properties used to develop the material

models.

3.6.MODEL DEVELOPMENT ALGORITHM

Based on the model classification and level designation, an algorithm to develop level 3
models vas established and presented. Based on the general model framesedi&iivie
input/output relationships need to be developed to effectively nioeldlehavior observed from a
unit operationSince several level 1 models have been developed over thdorgatiarmaceutical
eguipment, this work focuses on describing the methodology starting from the availability of a level
1 model. Level 2 models are also frequently observed in the pharmaceutical engineering literature,

yet they are described here to pawithe readers with sufficient background for development
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purposes. Most importantly, the means to develop level 3 models is destoluederminghese

level 3 modelelatiorships the following approach is proposed

1. Developan experimental plato chaacterize the effedhatchanges in the unit operating
variables (e.g.fill cam depth turret speed, screw speed, screw)sizehave on t he
responses and on tpeocess outpute.g., outgoing tabletglow ratg. This experimental
design involvestte use of several materials (i.@wror material blendsjo that he impact
their properties (e.g., density, cohesion, flowahildympactability on t he immnit ds
captured The experimental design (i.e., changes in unit operating variableseistially
repeated multiple times for the different materials.

2. Aprocess model (i.e., level 1), can be developed from first principle mechanics, population
balance methods, or from a simple phenomenological observation based on the results from
the expeninentaldata Given the focus on maintaining simplicity for future modeling
purposes, it is recommended thaseaniempirical phenomenological modehpable of
accouning for process variables changes in the experimental protiscaeleced.
However, egadless of how the model is developeds important that the model is able
to capture: (1) the process inputs evaluated in the experimental plan, (2) the process
responses of interest, and (3) the effect of material properties.

3. Thelevel 1 model from step should be written in a way that allows for material property
effectsto becapturedhrough a set gbarameters that can be regressed feaperimental
data. Thaegressegharametes, which areobtained from minimizing the sum square error
of the modeprediction and experimental data at the provided experimental conditions, can
be made dependent of any variable except for the variables accounted in theTimaslel.
the constant regressed for the unit operation model can be made rueeiatient. For

each experimental design, for each material, one constant parameter will be assigned,
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creating an array between materials and their model constant vatudss stage, the

model reaches the second level of model types described in Section 3.5.

In conjuncton with the experimental plan evaluationse®y materialtestedin the must

have its relevant material propertiecharacterizedbefore entering the system. i$h

approach which must be performed using standard material characterization methods,
yieldsanarray of materials and their properttehh at cont extuali zes the
results to the materials usétiell-maintained material property libraries containing a wide

range of properties can be used for this purpose, as they would allow twrd oé the

material properties and their variability over time.

The array of regressed constants and matdratsstep Jalong withthe material property

list established in step@anbe mergedinto a single matrix, whereimodel constantare

treateda s fAmateri al pfar eaphefrtite coenpooenfBluenbee r ;e w A mat e
propertieso are <clearly associated with ¢t
understand the relationship between inputs and outputs expressed in the model.
Nevertheles, this expanded matrix, which contains the contextualized results of the model
along with the material properties, serves as a useful tool to determine the impact of
material properties on the model.

From the array developed in stépthe regressed uniiperation model constants and

material propeiéscanbe used to establish a correlation between the regressed coefficients

and the property valuegssentiallythe researchawrould like toobviatenon-numerical

(i.e., categoricalinformation, agheyare already accounting fahe effect of the material

by characterizinghe physical behaviofEmpirical models (i.e., data driven) would then be

used to correlate the model constants to material properties; creagqgadiorthat yields

a given model castant value for a set of material propert@bviously, since numerical
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values of physical measurements depend on the units used, the correlations need to be
contextualized in terms of units of measurement.

7. Combining thematerialmodel developed in stepwith the unit operationkevel 1 model
developed (or selected) step 2 would then yietth level 3mode| onethat predicts unit

behavioraccouning for material property andnit operating variable inputs

The approached describathoveis summarizé in Figure 7, along with the respective

association to the aforementioned model levels

Figure7. Model level categories based on the inputs described by the model

This methodology, can be performedeetively to any unit operation in the system as it is
a derivation of previously established methodologies for model developh@rii3s 136. The
novelty of this algorithm rests on the contextualizing of experiments by collecting the material

properties of any component @onjunctionwith the experiment itself. Since granular material





































































































































































































































































































































































































































































































































































































































































































































































