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Interest in continuous pharmaceutical manufacturing (CPM) technology is rapidly 

growing, with all major pharmaceutical companies developing products in their pipelines using this 

technology. As it has been extensively reported, CPM can deliver enormous advantages including 

faster product development, less material use, reduced capital cost due to small equipment size, 

superior process control, optimized performance, and more reliable quality manufacturing. 

Nevertheless, given the novel and complex nature of the technology, CPM systems require further 

study compared to traditional batch processes. CPM studies must be carefully designed, optimized, 

validated, and controlled as holistic system in order to operate robustly, efficiently, and provide the 

aforementioned advantages. To achieve CPM’s advantages in full, it is necessary to develop and 

implement a framework wherein the processes can be evaluated and studied as integrated systems. 

In this work, tools established in the process systems engineering (PSE) methodology were 

implemented to develop models that can aid CPM process design, evaluation, control, and 

optimization. 

The focus of this work included the development and implementation of computationally 

efficient phenomenological and residence time distribution models for systems in a CPM system. 
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In the first two chapters of this work, a thorough review of the current implementation of models 

in the pharmaceutical industry is presented. Within the review, the different types of models 

currently implemented in the industry are enumerated followed by the challenges of their 

implementation. Among some of the most difficult challenges for modeling CPM powder-based 

systems is the ability to determine relationships between critical process inputs and outputs, and 

the ability capture the impact of material properties on the process. To overcome these challenges 

a framework for developing predictive phenomenological (i.e., engineering) models that include 

the effect of material properties on the process was developed.  

The third and fourth chapters of this work are devoted to describing the model development 

framework and provide an example case study of the methodology when it was successfully applied 

to a tablet compaction process. The successful integration of material property effects into the 

modeling of the pharmaceutical unit operation led to the development of a material property library 

that collected a wide array of property measurements for a number of pharmaceutically relevant 

materials. The material property library, described in the fifth chapter of this work, was used as a 

tool to determine the impact of material properties on: (1) residence time distribution experiments 

and (2) the operation of continuous powder feeding units. 

Residence time distribution (RTD) methods and models were studied in this work, as their 

application to characterize CPM systems has become standard. The effect of material properties on 

RTD methods were evaluated in the sixth chapter to provide recommendations for using the RTD 

methodology to characterize CPM units. Ultimately, the unit operation characterization and 

modeling framework presented in this work along with the recommendations offered for RTD 

experimentation and modeling were applied to the development of a dynamic phenomenological 

and RTD model for a continuous powder feeding unit. The model, described in the seventh chapter 

of this work, was used to predict the behavior of the CPM-specific unit over a wide range of 

material property and process inputs.   



iv 

 

ACKNOWLEDGEMENTS 

Realizing that the accomplishment of this effort was something I would have never done 

alone, I would like to gratefully acknowledge the help and support of many people over this 

amazing journey. First and foremost, I would like to thank my parents Manuel Jose Escotet 

Rodriguez and Mariajulia Espinoza de Escotet and my two wonderful sisters Celeste del Valle 

Escotet Espinoza and Valentina de la Guadalupe Escotet Espinoza for their support and 

encouragement over these past five years of academic development. Without their help and support, 

this daunting challenge would have never been achieved. Thank you for always setting my bar 

higher, even when I thought I was not able to reach it. For helping me overcome my thoughts and 

for pointing me to help when I needed it the most. I would also like to thank and acknowledge the 

embracing and caring support of my fiancé, Rana Novini, who was there to support my journey 

and surrounded me with the love and support I needed in my hardest days. Thank you, my dear 

joon, for giving me the strength to get through this and taking care of me emotionally. You were 

there in the hardest of times, always with a smile and showing me how to look at the silver linings. 

Following my family, I would like to acknowledge the support and teachings from my 

advisers Dr. Marianthi G. Ierapetritou and Dr. Fernando J. Muzzio. Your guidance and 

encouragement helped me get through the challenges of research and taught me how to become a 

better scientist. Even through difficult times, you were always there to lend a hand and help me 

achieve my academic goals. I would also like to acknowledge and thank my committee members 

Dr. Dana Barrasso, Dr. Rohit Ramachandran, and Dr. Ravendra Singh. You have been part of my 

journey and I want to thank you for your continued guidance, suggestions, and feedback. I feel that 

after having you five as part of my committee I am ready to take on the challenges of the future. I 

want to also give a special thanks to great mentor and supporter of my work: Dr. Eric Jayjock. 

Thank you Eric for giving me critical feedback during a pivotal time of my work. 



v 

 

Throughout my time at Rutgers, the comradery and friendship of my colleagues gave me 

the strength to endure the obstacles of time as a student. Thanks to you: Dr. Sara Moghtadernejad, 

Dr. Sarang Oka, Dr. Krizia Karry, Dr. Andres Roman Ospino, Dr. Sonia Razavi, Dr. Parham 

Farzan, Dr. Zilong Wang, Dr. Amanda Rogers, Dr. Heather Emady, Dr. Pallavi Pawar, Dr. Sara 

Koynov, Dr. Aditya Vanarase,  Dr. Pallavi Pawar, Dr. Yifan Wang, Dr. Nihar Sahay, Dr. William 

Engisch, Dr. Juan Osorio, Dr. Maitraye Sen, Dr. Jin Maeda, Dr. James Scicolone, Dr. Gerardo 

Callegari, Dr. Sejal Shah, Tianyi Li, Nirupa Metta, Lisa Dias, Abhay Athaley, Thamer Omar, 

Abhishek Sahay, Wei Meng, Shishir Vadodaria, Charles Foster for being there at conferences, 

events, and (to some of you) for being great roommates while traveling to conferences. You made 

the time at Rutgers a memorable time. I hope to not offend anyone I may have missed in this list, 

but I hope you know that you will always find me as a friend. 

I would like to thank Janssen Pharmaceutica for their financial support and their scientific 

feedback over the course of my PhD work. The work done on this thesis was made better thanks to 

you and the values your company has for encouraging innovation. Within Janssen, I want to 

personally thank: Dr. Elisabeth Schaffer, Phillip Cappuyns, Ivo van Assche, and Dr. Bernd van 

Snick. The challenging presentations gave me the endurance and practice I needed to become a 

well-rounded scientist. 

Finally and most importantly, I would like to thank my grandfather Antonio Espinoza 

Prieto, the only person with a PhD in my family, for showing me how to be a man of logic and 

reason. I cherished every second we spent together talking about science, philosophy, and the 

purpose of education for future generations. To you, my beloved Bibo, I dedicate this work. 

Although you are not here to read these words, your energy helped me get these words on paper. I 

know this thesis is not as good as yours, but I think you would have liked glancing it and perhaps 

even having me translated it for you. Now that I am becoming a doctor, I am going to start telling 

people as you did: “don’t call me doctor, because I am one.”   



vi 

 

TABLE OF CONTENT 

 Abstracts of the Dissertation……………………………………………………….ii 

       Acknowledgement…………………………………………………………………..iv 

       Table of Contents…………………………………………………………………...vi 

       Table of Figures……………………………………………………………………..x 

       Tables of Tables…………………………………………………………………….xv 

1. Introduction ............................................................................................................ 1 
1.1. Background & Motivation ........................................................................................... 1 
1.1. Advances in Pharmaceutical Manufacturing ................................................................. 3 
1.2. Continuous Manufacturing of Pharmaceuticals ............................................................ 4 
1.3. Continuous Manufacturing of Pharmaceutical Solid Oral Dosages ............................... 6 
1.4. Innovation: Process Systems Engineering (PSE) .......................................................... 9 
1.5. Background on Models .............................................................................................. 13 
1.6. Types of Models ........................................................................................................ 17 

1.6.1. First principle mechanistic ..................................................................................... 17 
1.6.2. Multi-dimensional mechanistic .............................................................................. 18 
1.6.3. Phenomenological or semi-empirical...................................................................... 18 
1.6.4. Empirical or data-driven ........................................................................................ 19 
1.6.5. Flowsheet models .................................................................................................. 20 

1.7. Modeling Challenges ................................................................................................. 21 
1.7.1. Computationally Expensive Unit Operations Models.............................................. 21 
1.7.2. Modeling Material Property Effects ....................................................................... 22 
1.7.3. Evaluation of Models & Their Inputs ..................................................................... 23 
1.7.4. Verification & Application of Models .................................................................... 23 

2. Research Objectives ............................................................................................. 25 
2.1. Overall Research Aim ................................................................................................ 25 
2.2. Specific Research Aims ............................................................................................. 25 

2.2.1. Aim 1 .................................................................................................................... 25 
2.2.2. Aim 2 .................................................................................................................... 26 
2.2.3. Aim 3 .................................................................................................................... 27 
2.2.4. Aim 4 .................................................................................................................... 27 

3. Aim 1: Approach for Developing Models Accounting for Material Properties . 28 
3.1. Introduction ............................................................................................................... 28 
3.2. General model development framework ..................................................................... 29 
3.3. Equipment evaluation strategies ................................................................................. 30 

3.3.1. Equipment characterization .................................................................................... 31 
3.3.2. Performance evaluation .......................................................................................... 32 

3.4. Modeling approach .................................................................................................... 32 
3.5. Model levels .............................................................................................................. 34 
3.6. Model Development Algorithm ................................................................................. 36 

4. Aim 1: Application of the Methodology for Tablet Press Studies....................... 41 
4.1. Introduction ............................................................................................................... 42 

4.1.1. Effect of material properties on compaction ........................................................... 42 
4.2. Materials and Methods............................................................................................... 44 

4.2.1. Materials................................................................................................................ 44 
4.2.2. Blend preparation .................................................................................................. 45 



vii 

 

4.2.3. Material characterization ........................................................................................ 45 
4.2.4. Tablet compaction ................................................................................................. 46 
4.2.5. Tablet testing methods ........................................................................................... 46 
4.2.6. Modeling methodology .......................................................................................... 48 
4.2.7. Software ................................................................................................................ 49 

4.3. Results and Discussion .............................................................................................. 49 
4.3.1. Blend Characterization and material properties ...................................................... 50 
4.3.2. Tablet tensile strength results ................................................................................. 52 
4.3.3. Level 2 model: regression of model coefficients ..................................................... 54 
4.3.4. Modeling tensile strength using blend material properties....................................... 57 
4.3.5. Level 3 model: Application to process development ............................................... 61 

4.4. Conclusions ............................................................................................................... 67 
4.5. Large Tables and Figures ........................................................................................... 69 

5. Aim 2: Material Property Libraries and their Application in Modeling ........... 72 
5.1. Introduction ............................................................................................................... 73 

5.1.1. Rationale for material property libraries ................................................................. 76 
5.1.2. Surrogate materials ................................................................................................ 78 
5.1.3. Multivariate analysis tools for databases ................................................................ 79 

5.2. Materials and Methods............................................................................................... 80 
5.2.1. Materials................................................................................................................ 80 
5.2.2. Characterization methods ....................................................................................... 81 
5.2.3. Equipment ............................................................................................................. 81 
5.2.4. Software ................................................................................................................ 82 

5.3. Results and Discussion .............................................................................................. 82 
5.3.1. Material properties ................................................................................................. 82 
5.3.2. PCA results ............................................................................................................ 83 
5.3.3. Material similarity index using PCA (SIMIN) ........................................................ 85 
5.3.4. Cluster analysis ...................................................................................................... 89 
5.3.5. Measurement correlations ...................................................................................... 91 
5.3.6. Minimizing number of measurements and tests ...................................................... 93 

5.4. Conclusions ............................................................................................................... 96 
5.5. Large Tables and Figures ........................................................................................... 99 

6. Aim 3: Performing Residence Time Distribution Experiments and Modeling 107 
6.1. Introduction ............................................................................................................. 107 

6.1.1. RTD application for equipment characterization................................................... 109 
6.1.2. Important RTD experimental and modeling assumptions ...................................... 110 

6.2. Materials and Methods............................................................................................. 112 
6.2.1. Materials.............................................................................................................. 112 
6.2.2. Equipment ........................................................................................................... 113 
6.2.3. RTD experimental procedure ............................................................................... 116 

6.3. Results and Discussion ............................................................................................ 117 
6.3.1. Feeder-blender characterization at steady state ..................................................... 117 
6.3.2. RTD experiments and concentration profiles ........................................................ 118 
6.3.3. Residence time distribution and metrics ............................................................... 121 
6.3.4. RTD comparison using models ............................................................................ 126 
6.3.5. Relationship between models and numerical MRT ............................................... 129 
6.3.6. Effect of material properties on MRT ................................................................... 130 
6.3.7. Recommendations for selecting a tracer and performing RTD experiments .......... 132 
6.3.8. Application of RTD model results to process evaluation....................................... 134 

6.4. Conclusions ............................................................................................................. 142 



viii 

 

6.5. Large Tables and Figures ......................................................................................... 144 
7. Aim 4: Feeder Characterization and Modeling ................................................. 148 

7.1. Powder feeding ........................................................................................................ 148 
7.1.1. Screw feeders ...................................................................................................... 149 
7.1.2. Feeder controls .................................................................................................... 151 
7.1.3. Feeder refill unit .................................................................................................. 152 

7.2. Materials and Methods............................................................................................. 152 
7.2.1. Materials.............................................................................................................. 152 
7.2.2. Equipment ........................................................................................................... 152 
7.2.3. Experimental procedure ....................................................................................... 154 
7.2.4. Software .............................................................................................................. 161 

7.3. Flow Rate Characterization and Modeling................................................................ 162 
7.3.1. Experimental results and visual observations ........................................................ 162 
7.3.2. Flow rate characterization .................................................................................... 166 
7.3.3. Feed factor profiles .............................................................................................. 171 
7.3.4. Effect of material properties on feed factor profile................................................ 182 
7.3.5. Model mean absolute percentage error ................................................................. 192 
7.3.6. Refill case studies ................................................................................................ 195 
7.3.7. Refill unit characterization ................................................................................... 199 

7.4. RTD Characterization .............................................................................................. 202 
7.4.1. Concentration profiles .......................................................................................... 202 
7.4.2. RTD evaluation and metrics ................................................................................. 208 

7.5. Feeder Modeling ...................................................................................................... 210 
7.5.1. Mixing and RTD model ....................................................................................... 210 
7.5.2. Mixing and RTD model calibration ...................................................................... 215 

7.6. Integrated Model Implementation ............................................................................ 216 
7.6.1. Integrated feeder model in gPROMS Model Builder™ ......................................... 216 
7.6.2. Case studies evaluating the model ........................................................................ 218 

7.7. Conclusions ............................................................................................................. 221 
7.8. Large Tables and Figures ......................................................................................... 223 

8. Concluding Remarks .......................................................................................... 234 
8.1. Conclusions ............................................................................................................. 234 
8.2. Suggestions for Future Work ................................................................................... 238 

8.2.1. Application of the methodology to other unit operations....................................... 238 
8.2.2. Generalization of the feeder model ....................................................................... 239 

9. Appendices .......................................................................................................... 240 
9.1. Appendix A: Material Property Measurements ......................................................... 240 

9.1.1. Bulk and tapped density ....................................................................................... 240 
9.1.2. Particle size analysis ............................................................................................ 241 
9.1.3. Powder flow measurements.................................................................................. 241 
9.1.4. Shear cell test....................................................................................................... 241 
9.1.5. Compressibility test ............................................................................................. 243 
9.1.6. Permeability test .................................................................................................. 244 
9.1.7. Dynamic flow test ................................................................................................ 245 

9.2. Appendix B: Statistical Analysis Methods................................................................ 247 
9.2.1. Principal Component Analysis (PCA) .................................................................. 247 
9.2.2. Clustering Analysis .............................................................................................. 249 

9.3. Appendix C: Methodology to Perform RTD Experiments in Solids Unit Operations. 250 
9.3.1. Tracer Properties.................................................................................................. 250 



ix 

 

9.3.2. Tracer Addition ................................................................................................... 253 
9.4. Appendix D: RTD Modeling.................................................................................... 257 

9.4.1. Calculation of RTD .............................................................................................. 257 
9.4.2. Phenomenological models.................................................................................... 260 

9.5. Appendix E: NIR method development for real time measurements ......................... 273 
10. References ........................................................................................................... 278 

 

  



x 

 

TABLE OF FIGURES 

Figure 1. The four major continuous solid dosage form manufacturing routes. (1) Direct 

compression, (2) dry granulation, (3) wet granulation, and (4) spray drying. ................................ 8 

Figure 2. Pharmaceutical manufacturing workflow integrating the use of process models. Processes 
in green are those that can be developed with the use of models. Adapted from [58] .................. 12 

Figure 3. Simplified schematic of process system engineering’s (PSE’s) model centric approach to 

evaluate complex systems. ........................................................................................................ 14 

Figure 4. Different types of models used within the process modeling structure. Adapted from [50]

 ................................................................................................................................................. 16 

Figure 5. Description of the relationship between process and material inputs on outputs and the 

implementation of models ......................................................................................................... 33 

Figure 6. Model level categories based on the inputs described by the model ............................. 35 

Figure 7. Model level categories based on the inputs described by the model ............................. 39 

Figure 8. Principal Component Analysis (PCA) results for the material properties listed on Table 4 
and Table 5. (A) Score plot of blend’s characterized material properties. (B) Loadings plots for the 

material properties. ................................................................................................................... 52 

Figure 9. Experimental data for tablet tensile strength at varying levels of lubricant concentration 
(A) Lactose, (B) Avicel PH101, (C) Avicel PH301, and (D) All blends tablet tensile strength with 

a concentration of 1% magnesium stearate. ............................................................................... 53 

Figure 10. Experimental data for tablet tensile strength against relative density plotted along the 

Kuentz and Leuenberger model regressed for (A) Lactose with 0.75% magnesium stearate, (B) 
Avicel 101 with 0.75% magnesium stearate, (C) Avicel 301 with 0.75% magnesium stearate, and 

(D) ComPap L (15%) + Avicel 101 with 1% magnesium stearate. ............................................. 54 

Figure 11. Relationship between the regressed values of the Kuentz and Leuenberger equation for 
all formulations. Standard deviation bars were excluded to minimize clutter in the graph........... 57 

Figure 12. Relationship between major material properties and their respective empirical models. 

(A) Relationship between bulk density and critical relative density. (B) Relationship between 
maximum tensile strength and permeability. .............................................................................. 58 

Figure 13. Prediction of the external validation ternary blender compaction curve using the 

empirical model to calculate the Kuentz and Leuenberger equation parameters.......................... 61 

Figure 14. Region plots indicating the feasibility region for making tablets based on operational 
conditions and blend properties. Regions that are not shaded are operationally infeasible, meaning 

compacts are predicted to not be formed. Tablet thickness is varied at three levels. The breaking 

force constraint was also varied between 0 and 60 N. For tablets with breaking force higher than 0 
N graph (A) varies fill cam depth (mm) and blend permeability (cm2) at a constant bulk density. 

(B) Varies fill cam depth (mm) and blend density (g/cm3) at a constant blend permeability. For 

tablets with a breaking force higher than 60 N graph (C) varies fill cam depth (mm) and blend 

permeability (cm2) at a constant bulk density. (D) Varies fill cam depth (mm) and blend density 
(g/cm3) at a constant blend permeability. ................................................................................... 65 



xi 

 

Figure 15. Contour plots showing the application of Equation 11 to determine the effect of 
operational parameters and material properties on tablet tensile strength. Tablet thickness was 

varied to three levels. (A) Varying fill cam depth (mm) and blend permeability (cm2) at a constant 

bulk density. (B) Varying fill cam depth (mm) and blend density (g/mL) at a constant blend 

permeability. ............................................................................................................................. 67 

Figure 16. Regression results from tablet tensile strength models with respect to the concentration 

of magnesium stearate. (A) Critical relative density regression results (B) Maximum tensile 

strength regression results. All error bars represent one standard deviation. ............................... 71 

Figure 17. Some potential uses for material property databases or libraries. ............................... 76 

Figure 18. Percent of variability explained per PC and cumulative using the eigenvalues of the PCA 

results ....................................................................................................................................... 83 

Figure 19. Comparison of results from the SIMIN matrix (Table 16) to the clustering results (Table 

10). (A) Materials in group 1, (B) materials in group 2, (C) materials in group 3, (D) materials in 

group 1 compared to those in groups 2 and 3, (F) materials in group 2 compared to those in groups 

1 and 3, (G) materials in group 3 compared to those in groups 1 and 2....................................... 91 

Figure 20. Correlation coefficient (R) map for material property measurements. ........................ 92 

Figure 21. Two-dimensional plots for (A) scores and (B) loadings of the first two principal 

components of the material property database. Three-dimensional plots for (C) scores and (D) 
loadings of the first three principal components of the material property database. The numbers in 

square brackets next to the axis labels express the amount of variability in each PC. ................ 106 

Figure 22. Schematic of the equipment experimental set up. .................................................... 114 

Figure 23. Near Infrared (NIR) sampling interface for RTD experiments ................................. 116 

Figure 24. Concentration v. time for each of the material tracers. Vertical lines represent tracer 

addition time points................................................................................................................. 119 

Figure 25. Residence time distribution probability distribution function graphs for each material
 ............................................................................................................................................... 121 

Figure 26. Multivariate linear correlation analysis between material properties reported on Table 

14 and Table 15 and the tracer mean residence time (MRT). R is the correlation value and p is the 
statistical significance value .................................................................................................... 131 

Figure 27. Determining the duration of out of specification (OOS) material, using an arbitrary 115% 

maximum potency contour. ..................................................................................................... 139 

Figure 28. Determining the duration of out of specification (OOS) material, using an arbitrary 115% 
maximum potency contour. ..................................................................................................... 141 

Figure 29. Residence time distribution profile metrics comparison. (A) Peclét number and number 

of tanks. (B) 𝜏𝑑𝑒𝑙𝑎𝑦, 𝐴𝐷 and 𝜏𝑑𝑒𝑙𝑎𝑦, 𝑡𝑎𝑛𝑘𝑠. (C) 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  and 𝜏𝑡𝑎𝑛𝑘𝑠 − 𝑖𝑛 − 𝑆𝑒𝑟𝑖𝑒𝑠 . (D) 
Numerically calculated mean residence time against both the axial dispersion and tanks-in-series 

model mean residence time values. ......................................................................................... 146 

Figure 30. Case studies varying the 𝑃𝑚𝑎𝑥 and 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 for 20. (A) −100% < 𝑃𝑚𝑎𝑥 <
100% and 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 = 10 seconds. (B) −100% < 𝑃𝑚𝑎𝑥 < 100% and 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 =
30 seconds. (C) 0 < 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 < 60 seconds and 𝑃𝑚𝑎𝑥 = +20%. (D) 0 < 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 <
60 seconds and 𝑃𝑚𝑎𝑥 = +40%. ............................................................................................ 147 

Figure 31. Schematic of a screw feeder unit and a refill system. .............................................. 149 



xii 

 

Figure 32. Three different feeder types with their major components symbolized. The feeder hopper 
(1) is represented inside the red box, the flow aid (2) system is inside the blue box, and the 

conveying system (3) is shown inside the green box. ............................................................... 150 

Figure 33. Equipment experimental set up. (A) Schematic (B) Configuration in the laboratory 155 

Figure 34. RTD experiment equipment configuration. (A) Schematic of the unit (B) set up in the 
laboratory ............................................................................................................................... 158 

Figure 35. Experimental setup for acquisition of calibration spectra ........................................ 160 

Figure 36. High speed images of powder flow rate for different materials listed in Table 8 ...... 164 

Figure 37. Feed factor model applied to the profiles for Case C. Regression of feed factor model 

parameters for profiles from (A) volumetric experiment, (B) gravimetric experiment. Model 

residuals for the model for (C) volumetric experiment, and (D) gravimetric experiment........... 177 

Figure 38. Correlation color map indicating level of linear correlation (R) between material 

properties and regressed feed factor parameters. ...................................................................... 183 

Figure 39. Parity plots between the RSM Predicted model parameters and the values expected from 

the regression using experimental data. (A) Feed factor maximum (𝑓𝑓𝑚𝑎𝑥), (B) feed factor 

minimum (𝑓𝑓𝑚𝑖𝑛), (C) transformed feed factor decay (𝐿𝑛𝛽𝑋2), and (D) transformed feed factor 

variability (𝐿𝑛𝐴1𝑋2)............................................................................................................... 191 

Figure 40. Comparison of mean absolute percentage error (MAPE) values for the experimental feed 
factor profile predictions between the level 2 (regressed parameters averaged) and level 3 (i.e., 

calculated from RSM models) models. MAPE values divided by screw pitch (A) 10mm  and (B) 

20mm. .................................................................................................................................... 194 

Figure 41. Results for the feed factor refill experiment at constant fill level intervals. (A) Time 
series of both feed factor profiles and the feed factor model predictions based on weight (left) and 

the corresponding feeder weight profile (right). (B) Feed factor profile for weight intervals between 

each refill. Black line represents the predictions from the feed factor model. ........................... 197 

Figure 42. Results for the feed factor experiment using cascading refills. (A) Time series of both 

feed factor profiles and the feed factor model predictions based on weight (left) and the 

corresponding feeder weight profile (right). (B) Feed factor profile for weight intervals between 

each refill. Black line represents the predictions from the feed factor model. ........................... 198 

Figure 43. Results refill unit characterization using a 0.8 L cup volume. (A) Anhydrous calcium di-

phosphate, (B) silicified MCC, (C) MCC 2, and (D) magnesium stearate. ................................ 200 

Figure 44. Top view of the refill unit, looking downwards from the hopper. (A) Arching observed 
for cellulose, (B) arching observed for acetaminophen (C) view of the hopper unit when empty.

 ............................................................................................................................................... 201 

Figure 45. RTD experimental results using anhydrous calcium di-phosphate as a base and 
acetaminophen as the tracer material. Concentration and feeder weight profiles for the experiments 

with flow rate set point of (A) 2.78 g/s and (B) 5.5 g/s. Mass flow rate and screw speed profiles for 

the experiments with flow rate set points of (C) 2.78 g/s and (D) 5.5 g/s. ................................. 203 

Figure 46. RTD experimental results using silicified MCC as the base and acetaminophen as the 
tracer material. Concentration and feeder weight profiles for the experiments with flow rate set 

point of (A) 2.78 g/s and (B) 5.5 g/s. Mass flow rate and screw speed profiles for the experiments 

with flow rate set points of (C) 2.78 g/s and (D) 5.5 g/s. .......................................................... 205 



xiii 

 

Figure 47. RTD experimental results using acetaminophen as the base and caffeine as the tracer 
material. Concentration and feeder weight profiles for the experiments with flow rate set point of 

(A) 2.78 g/s and (B) 5.5 g/s. Mass flow rate and screw speed profiles for the experiments with flow 

rate set points of (C) 2.78 g/s and (D) 5.5 g/s. .......................................................................... 207 

Figure 48. Schematic of proposed mixing model in the feeder unit to simulate the RTD .......... 211 

Figure 49. Component models for the feeder model available in gPROMS Model Builder™ v4.2.

 ............................................................................................................................................... 217 

Figure 50. Examples of the available graphic user interfaces (GUIs) for the feeder model available 
in gPROMS. ........................................................................................................................... 217 

Figure 51. Results from the integrated feeder model programmed into gPROMS Model Builder™. 

(A) Flowsheet of the screw feeder, refill, PID control models. (B) Output results from the screw 
feeder model. (C) Output results for the refill unit model. ........................................................ 218 

Figure 52. Comparison between experimental and simulated results for material properties change 

experiment. (A) feed factor profile, (B) screw speed profile, (C) flow rate profile, and (D) feeder 

weight profile. Arrows indicate the instances when MCC 1 was introduced in the system. ....... 220 

Figure 53. Visually observed challenges during experimentation: (A) material sticking to sides 

feeder hopper walls, (B) material sticking to barrel, (C) lumping of material, and (D) bearding at 

the barrel’s outlet .................................................................................................................... 223 

Figure 54. Results for volumetric and gravimetric feeding of MCC 4 using a 20mm pitch screw and 

a 63:1 gearbox ratio. (A) volumetric flow rate profiles, (B) screw speed and feeder weight for 

volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder weight for 
gravimetric feeding. ................................................................................................................ 224 

Figure 55. Results for volumetric and gravimetric feeding of MCC 4 using a 10mm pitch screw and 

a 63:1 gearbox ratio. (A) volumetric flow rate profiles, (B) screw speed and feeder weight for 

volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder weight for 
gravimetric feeding. ................................................................................................................ 225 

Figure 56. Results for volumetric and gravimetric feeding of Acetaminophen using a 20mm pitch 

screw and a 63:1 gearbox ratio. (A) volumetric flow rate profiles, (B) screw speed and feeder weight 
for volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder weight 

for gravimetric feeding. ........................................................................................................... 226 

Figure 57. Results for volumetric and gravimetric feeding of Acetaminophen using a 20mm pitch 

screw and a 445:1 gearbox ratio. (A) volumetric flow rate profiles, (B) screw speed and feeder 
weight for volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder 

weight for gravimetric feeding. ............................................................................................... 227 

Figure 58. Feed factor profiles for Cases A and B for volumetric and gravimetric feeding. Feed 
factors calculated from (A) GEA feeder for Case A, (B) GEA feeder for Case B, (C) catch scale for 

Case A, and (D) catch scale for Case B. .................................................................................. 228 

Figure 59. Feed factor profiles for Cases C and D for volumetric and gravimetric feeding. Feed 
factors calculated from (A) GEA feeder for Case C, (B) GEA feeder for Case D, (C) catch scale for 

Case C, and (D) catch scale for Case D. .................................................................................. 229 

Figure 60. Feed factor coefficient results from......................................................................... 231 

Figure 61. RTD PDF curve results for the RTD experiments comparing mixing based on mass flow 
rate: (A) anhydrous calcium di-phosphate, (B) silicified MCC, and (C) acetaminophen. 



xiv 

 

Standardized RTD PDF curves comparing mixing based on mass flow rate: (D) anhydrous calcium 
di-phosphate, (E) silicified MCC, and (F) acetaminophen. ....................................................... 232 

Figure 62. Standardized RTD PDF curve results comparing in hopper mixing between base 

materials. Flow rate set points of (A) 2.78 g/s and (B) 5.5 g/s. ................................................. 232 

Figure 63. Results of the calibration of the RTD model using the experimental data collected in 
part 1 of this study. The concentration profiles are separated in based on mass flow rate. For the 10 

kg/h: (A) anhydrous calcium di-phosphate, (B) acetaminophen, and (C) silicified MCC. For the 20 

kg/h: (D) anhydrous calcium di-phosphate, (E) acetaminophen, and (F) silicified MCC. .......... 233 

Figure 64. Development sequence of models from basic to general or “mechanistic” models ... 239 

Figure 65. Schematic comparing input and outputs for several methods of introducing tracers for 

RTD experiments. ................................................................................................................... 254 

Figure 66. Schematic representations of the boundary conditions for the axial dispersion model. 

(A) Open-open boundary condition. (B) Close-close boundary condition. ................................ 262 

Figure 67. Schematic representation of a tank-in-series system ................................................ 265 

Figure 68. Comparison between tanks-in-series model and Axial Dispersion model over a broad 
range of mixing (1<n<25) ....................................................................................................... 268 

Figure 69. Comparison between tanks-in-series model and axial dispersion model for systems with 

vast mixing (1<n<3.5) ............................................................................................................. 269 

Figure 70. Comparison between the Axial Dispersion and CSTR in series for the maximum value 

of the Probability Distribution Function. ................................................................................. 270 

Figure 71. Effect of varying the regression parameters for the Axial Dispersion equation while 

keeping some constant. (A) Varying 𝑃𝑒 while keeping 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 at 10 seconds. (B) Varying 

𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 while keeping 𝑃𝑒 at 6. ........................................................................................ 271 

Figure 72. Effect of varying the regression parameters for the tank-in-series equation while keeping 

some constant. (A) Varying 𝑛𝑟 while keeping 𝜏𝑡𝑎𝑛𝑘 at 5 seconds. (B) Varying 𝜏𝑡𝑎𝑛𝑘 while 

keeping 𝑛𝑟 at 3........................................................................................................................ 272 

Figure 73. Spectral variation between the components of each tracer and the bulk MCC 2 ....... 274 

Figure 74. Parity plots for the concentration prediction of tracer in the bulk MCC 2 for all tracers

 ............................................................................................................................................... 275 

 

  



xv 

 

TABLE OF TABLES 

Table 1. Process Systems Engineering (PSE) tools for process development and evaluation in 

continuous manufacturing of drug substance and products. Adapted from [78] .......................... 13 

Table 2. Regressed Kuentz and Leuenberger hardness model parameters ................................... 55 

Table 3. Empirical models for Kuentz and Leuenberger hardness model constants .................... 60 

Table 4. List of materials used for the tablet compaction and material properties study .............. 69 

Table 5. Blends used for the experimental evaluation of compaction and material properties ..... 69 

Table 6. Material characterization results. Developed during characterization of this work and 

adapted from [154].................................................................................................................... 70 

Table 7. Blend Principal Component Analysis (PCA) result values. ........................................... 71 

Table 8. List of materials used in experiments and their manufacturers ...................................... 81 

Table 9. Material cluster analysis using only 6 measurements from the material property database 

and from removing all the measurements from the flow energy test ........................................... 96 

Table 10. Results of clustering materials into groups based on properties .................................. 99 

Table 11. Results for the first five principal components of the PCA analysis .......................... 100 

Table 12. Clustering results for material property measurements. Each set of measurements is 

divided by their respective test ................................................................................................ 101 

Table 13. Determination coefficients explaining the variability present in the clusters presented in 

Table 12.................................................................................................................................. 102 

Table 14. Material property measurements for the materials used in this material library analysis.

 ............................................................................................................................................... 103 

Table 15. Continued material property measurement data table. .............................................. 104 

Table 16. Similarity index results with labeling legend. Pairs with SIMI = 0 have similar material 

properties based on their scores of the PCA, whereas those with SIMI = 100 have different material 
properties. ............................................................................................................................... 105 

Table 17. SIMIN metric values for the materials selected for the RTD experimentation ........... 113 

Table 18. Results for mean comparison of pairs using Student T-test for the MRT. Materials that 
share the same letter have similar statistically noticeable means (p-value < 0.05) ..................... 124 

Table 19. Residence time distribution metrics for all tracer experiments. ................................. 144 

Table 20. Regression results for 14 for each of the RTD PDFs. ............................................... 144 

Table 21. Regression results for 15 for each of the RTD PDFs. ............................................... 145 

Table 22. GEA feeder specifications and capacity metrics. Maximum Servo Motor Speed = 9,000 

RPM. Sweeping volume of screws: 10 mm = 2.4 mL/rev; 20 mm = 4.8 mL/rev ....................... 153 

Table 23. GEA feeder experimental conditions evaluated. Feeder flow rates were computed from 
the drive command set point. ................................................................................................... 156 

Table 24. Results of NIR calibration model used for RTD experiments ................................... 161 



xvi 

 

Table 25. Number of experiments performed per material and feeder conditions ..................... 162 

Table 26. Summary of results for regression coefficients of the feed factor model for all materials

 ............................................................................................................................................... 180 

Table 27. Response surface model (RSM) variables and the reference variables ...................... 186 

Table 28. Coefficient table for the feed factor maximum (𝑓𝑓𝑚𝑎𝑥) RSM ................................. 187 

Table 29. Coefficient table for the feed factor minimum (𝑓𝑓𝑚𝑖𝑛) RSM................................... 188 

Table 30. Coefficient table for the transformed feed factor decay constant (𝐿𝑛𝛽𝑋2) RSM ....... 189 

Table 31. Coefficient table for the transformed first coefficient of the feed factor profile cosine 

Fourier amplitude (𝐿𝑛𝐴1𝑋2) RSM .......................................................................................... 190 

Table 32. RSM model statistics for Equations 29-33 ............................................................... 190 

Table 33. Summary of MAPE results comparing the level 2 model with the level 3 model ...... 193 

Table 34. Summary of eight sequential refill experiments using a 0.8 L cup and controlled refill 
time of 3 seconds. Observed refill volume is calculated using the refill mass amount and the 

conditioned bulk density measurements .................................................................................. 200 

Table 35. Summary of RTD experimental results .................................................................... 208 

Table 36. Results of regressing Equation 26 to feed factor shown in Case C ............................ 230 

Table 37. ANOVA table for the RSM models shown in Equations 29-33................................. 230 

Table 38. Results for the RTD model regression ...................................................................... 233 

Table 39. Mathematical descriptors for different tracer addition methods................................. 255 

Table 40. Summary of tracer addition methods along with the advantages and challenges of each 

method. ................................................................................................................................... 256 

Table 41. Descriptions of distribution functions used to calculate RTD metrics. 𝐶𝑜𝑢𝑡𝑡 represents 
the instantaneous concentration of tracer at the system’s outlet as a function of time................ 257 

Table 42. Boundary conditions for two axial dispersion systems. ............................................. 262 

Table 43. Summary of RTD metrics derived from probability distribution function values ...... 271 

Table 44. Advantages and challenges of RTD models ............................................................. 272 

Table 45. Spectral correlation coefficient between bulk MCC and tracers ................................ 276 

Table 46. Calibration models of in-line measurements of tracer concentration in RTD experiments.

 ............................................................................................................................................... 277 



1 

 

 

 

 

 

CHAPTER I 

1. INTRODUCTION 

Acknowledgement of publication status: 

Parts of Chapters have been published within a book chapter titled: Process simulation and 

control for continuous pharmaceutical manufacturing of solid drug products. The chapter was 

published in September, 2017 in a book titled: Continuous Manufacturing of Pharmaceuticals. 

This work was written by the author of this thesis and done in collaboration with:  

Ravendra Singh1 and Marianthi Ierapetritou1 

1 Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), 
Department of Chemical and Biochemical Engineering, Rutgers, The State University of New 

Jersey, Piscataway, NJ 08854, USA. 

The writings from the book are properly referenced. 

1.1.BACKGROUND & MOTIVATION 

Pharmaceuticals is a global business sector focused on the development of performance-

based products designed to address the world’s healthcare needs. Thanks to advances in this sector, 

along with medicine and disease eradication, the average world life expectancy has risen from 68 

to 74 years in the past 25 years [1]. Global pharmaceutical market sales were at an estimated $967 

billion in 2016, with a steady growth rate of 7% per year over the past decade [2]. The sum base 

revenue for the top ten pharmaceutical industries, who spearhead most of the research and 
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development efforts, was valued at $300 billion in 2008 [3] and global sales exceeded $1.1 trillion 

in 2014 [4].  

Although the pharmaceutical industry is fundamental in health management and their 

profits are higher than many other chemical industries, average technological advances across the 

industry have lagged. Delays, especially in manufacturing technologies, are attributed to the current 

regulatory framework, high profit margins, time constraints during the drug approval process, and 

varying physical and chemical properties of drug molecules that affect formulation and process 

design [5]. However, recent changes in the economic and regulatory environment surrounding the 

pharmaceutical industry have left the sector facing enormous obstacles.  

A decade long flat line in new drug molecule innovation, extended development time due 

to disease and treatment complexity, relatively inefficient and poorly understood manufacturing 

practices, increased global competition from manufacturers of generic products (i.e., generic 

erosion), rising regulatory scrutiny during development, and growing expectations for medical 

compounds (e.g., fewer side effects, effectiveness, and accessibility) result in decreasing 

competition-free lifespan of products, increased product risks, and reduced profit margins for major 

pharmaceutical companies [6-9]. Additionally, companies needs to develop new products whose 

average cost in 2015 per approved molecule range from $2.3 billion to $4.9 billion. This paradigm 

has cut the pharmaceutical sum revenues for the top ten pharma industries in 2014 to $250 billion; 

a 16% decrease from 2008 [3]. These technological and regulatory challenges associated with the 

current pharmaceutical manufacturing standards have pushed industry to invest in more efficient 

and reliable product manufacturing technologies that help reduce development time, save cost, and 

improve drug product quality. 

In order to aid the modernization of pharmaceutical manufacturing and implementation of 

new technologies, the Food and Drug Administration (FDA) launched in 2004 an initiative for 
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enhancing process understanding using the Quality by Design (QbD) methodology and Process 

Analytical Technology (PAT) tools [10-15]. The major goals of the QbD and PAT initiatives were 

to push industry to expand and improve their scientific understanding of drug development 

processes [16-18]. These methodologies, applied for many years in a variety of manufacturing 

industries including the automotive and specialty chemical, aim at improving product quality and 

process development. Scientific understanding can be achieved through the development of 

technologies to perform online measurements of critical material properties, the coordination of 

processes and equipment, the development and use of process models based on fundamental and 

experimental knowledge, implementation of process control, and exploration of process design 

space (i.e., flexibility and feasibility) [19, 20]. With these aims in mind, the pharmaceutical industry 

has focused on finding new technologies to achieve these goals. 

1.1.ADVANCES IN PHARMACEUTICAL MANUFACTURING 

Pharmaceutical manufacturing can be divided into two major processes based on their 

resulting drug commodity: substance or product. Drug substance manufacturing, also known as 

upstream manufacturing, involves the production of the active pharmaceutical ingredient (API) via 

chemical synthesis methods. This process is primarily done in liquid systems and the resulting API 

can be in either liquid or granular (i.e., solid) form [15, 21, 22]. Drug product manufacturing, also 

known as downstream manufacturing for being performed after the upstream process, takes the 

API and combines it with other pharmacologically inactive solid materials, known as excipients, to 

create a dosage form. Drug product manufacturing depends on the drug’s delivery method (e.g., 

tablet, injectable, spray, ointment), but often involves the use of solids (i.e., powders, granular 

material) handling equipment to create the final product. 
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Batch processing remains the predominant development route in most of the 

pharmaceutical industry for both drug substance and product manufacturing. Primarily due to 

tradition, batch manufacturing has ruled pharmaceutical manufacturing for the past century [23]. 

Unfortunately, batch manufacturing in pharmaceuticals does not often result in the most efficient 

manufacturing process given the number of steps and the need to scale up in order to meet demand 

[24]. Typical pharmaceutical processes are composed of ten or more interacting processing steps, 

each one affected by several process parameters. This level of interaction makes process 

development a difficult and daunting task whose solutions are addressed using heuristic methods. 

Moreover, the constant demand of products for clinical trials, in most cases occurring in parallel 

with process development, force scientist to study the manufacturing process in an expedited 

manner [25]. Scale up requires the purchase of larger equipment in order to increase productivity, 

leading to extended research efforts to maintain performance across equipment and scale. Thus, 

batch manufacturing processes are often poorly understood, rarely optimized, lack robustness, and 

are prone to unexpected failure [26-28]. Lastly, risk assessment and failure mode analysis of batch 

processes is a substantial challenge. 

Based on the aforementioned issues with the batch manufacturing paradigm and taking 

advantage of the QbD and PAT initiatives, the pharmaceutical industry began expanding on a series 

of technologies. One of the most pronounced technology upgrades is continuous manufacturing of 

drug products [16, 24, 29-31]. Many of the previously described issues with batch process can be 

addressed through the implementation of continuous manufacturing processes.  

1.2.CONTINUOUS MANUFACTURING OF PHARMACEUTICALS 

Continuous drug product manufacturing (CPM) technologies have the potential of 

addressing issues of process knowledge and robustness by closing the gap between process 
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development and manufacturing. Since continuous process scale up is done through increases in 

operation time, throughput, and parallelization of the same continuous train of equipment; process 

knowledge acquired during development can be directly applied to manufacturing processes [23, 

32]. This development strategy minimizes technology transfer to commercial sites, improves risk 

assessment and failure mode analysis (i.e., equipment is highly studied during development), and 

reduces the capital cost. Furthermore, continuous manufacturing processes function under “steady 

state” meaning that product targets are set constant over time by manipulating process variables, 

raw materials are fed constantly to the process, and products are made and examined as they are 

produced. In cases when products are detected out of specification by examination methods, they 

can be diverted from the product stream at any point in the operation and a corrective (i.e., 

controller) action can be taken to bring product properties to the desired specifications [16, 33]. 

Therefore, continuous systems with automation and process control result in high quality products.  

The advantages are not only limited to the controllability and better process design 

strategies, they also include the ability to implement processes that were too difficult to be done 

using batch methods. For example, particle segregation (i.e., a process event that leads to poor 

quality tables being manufactured) has been shown to be prominent on batch systems, yet 

continuous systems have demonstrated the ability to process segregating mixtures without the 

issues observed in batch [34, 35]. Thus, continuous manufacturing has the potential to decrease the 

amount of wasted material, improve process performance and robustness, and ensure product 

quality [36].  

The advantages of continuous manufacturing have pushed major pharmaceutical and 

equipment manufacturing companies to embrace the technology for both legacy and new drug 

products [37, 38]. As of the writing of this thesis, three major pharmaceutical products have been 

approved by the FDA to be manufactured using continuous manufacturing [39]. Nonetheless, there 
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are many challenges with this technology: higher initial cost, extended initial development time, 

lack of PAT tools available for monitoring continuous processes, and difficulty of implementation 

for low volume and dosage products [40]. Another notable challenge for continuous manufacturing 

is dealing with the current state of guidance provided by the regulatory bodies. One example of this 

issue is the definition of a “batch” of product and raw material traceability, both required by 

regulatory agencies and pharmaceutical companies alike [31]. 

1.3.CONTINUOUS MANUFACTURING OF PHARMACEUTICAL SOLID ORAL 

DOSAGES 

Primarily composed of tablets and capsule formulations, solid oral dosages are the most 

commonly used drug product forms in the market [41, 42]. Multiple routes for drug product 

manufacturing have been established with the goal of ensuring the production of a quality tablet 

(or capsule) product. The manufacturing method varies depending on the API compounds and its 

inherent material properties, yet formulators commonly apply similar routes of manufacturing for 

solid oral dosages. The four major routes for the production of solid oral dosage forms are: direct 

compression, dry granulation, wet granulation, and spray drying [43, 44]. The two granulation 

routes are used in cases where the flow of a particular material in the formulation does not make 

its processability possible without adjusting some material properties, particularly size. Spray 

drying is often applied to improve the dissolution properties of the API and control the its material 

properties along with those of the excipients. All manufacturing routes are currently implemented 

in batch mode across the pharmaceutical industry, with continuous forms being developed over the 

last decade [16, 36, 45, 46].  

A schematic process flow diagram showing the four major routes of CPM is shown in 

Figure 1 [40, 47]. The four continuous manufacturing routes begin with the constant feeding of raw 
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materials into the process by powder feeders. The feeders are typically operated under some form 

of flow rate control in order to maintain a constant a constant mass ratio of ingredients entering 

subsequent units. This ratio of ingredients is particularly important for pharmaceutical operations 

as it dictates the final product’s concentration of components. Fed materials may be passed through 

a delumping unit such as a high shear screen co-mill in order to eliminate large, electrostatic, soft 

lumps of material that may not lead to good blend uniformity. Co-milled materials are mixed using 

a continuous blending system wherein materials are mixed in both the axial and radial directions to 

achieve a uniform composition of ingredients as a function of time. It is important to mention that 

radial and axial mixing aims at obtaining a homogenous blend of materials and reduce the natural 

feeder fluctuations by backmixing material over a short period of time; however, the overall 

concentration of the product is primarily set by the initial feeding ratio. A lubricant, which intends 

to reduce powder sticking during compression and improve bulk density, may be added at the 

blending unit operation.  

After blending, four different routes of manufacturing can be pursued, all having a diverse 

set of different unit operations. The simplest of all manufacturing routes is direct compression, 

wherein the material exiting the blender is directly sent to a tablet press or capsule filling machine 

to create the final solid product. If the blend flow and/or solubility properties do not allow for good 

compaction or product properties two granulation routes and a spray drying route may be pursued 

to improve the powder flow properties by increasing the particle size or the blends porosity. The 

two granulation methods commonly used include: dry and wet granulation. In dry granulation, 

blender powder materials are sent to a roller compaction unit, were they are pressed into a higher 

density ribbon, which is then milled into granules of a desired particle size. Wet granulation is 

performed in a variety of units, such as twin screw, fluid bed, and high shear granulators. In wet 

granulation a wetting liquid (i.e., binding agent) composed of typically water and high density 
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polymer is used to create larger particles via agglomeration. The granulation liquid is then removed 

at a drying step, which may reduce the granule size to a desired distribution. Optionally, a screen 

mill can be used to ensure a desired particle size distribution. Lastly, if solubility of the blended 

material needs to be improved, the ingredients may be homogenized and spray dried using a heated 

air drying system. The porous and now amorphous form of the API can have improved solubility 

when compared to the previous form of the material. 

The resulting granules obtained from either granulation step or from spray drying are then 

sent to a tablet press or capsule filling machine to produce tablets or capsules. Tablets made from 

any of the four processes can be then sent to coater to yield a final coated product.  

 

Figure 1. The four major continuous solid dosage form manufacturing routes. (1) Direct 

compression, (2) dry granulation, (3) wet granulation, and (4) spray drying. 
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Depending on the implementation of the process, CPM processes for oral solids are 

assessed based on the quality of the blends and/or tablets produced. Blends are characterized by 

their uniformity; monitored via spectroscopic and wet chemistry methods. Important tablet quality 

properties include tablet strength (e.g., hardness, friability), API composition, assay, tablet weight, 

and composition uniformity (i.e., variability measured as relative standard deviation) and 

dissolution time. 

1.4. INNOVATION: PROCESS SYSTEMS ENGINEERING (PSE) 

Given the pharmaceutical industry’s continuing modernization and its shifts towards new 

continuous manufacturing practices, process elements that affect drug substance quality and the 

techniques used to understand these processes need to be reevaluated. To enable better and seamless 

process understanding while moving from traditional batch to continuous manufacturing 

technologies, we must look at previous chemical industries and work towards building the 

necessary expertise and skills to design and effectively operate continuous manufacturing 

technology [31, 32, 48]. In designing continuous flow systems, while the analysis and optimization 

of individual process equipment remain important, the primary objective is to identify and evaluate 

design elements that pose a potential risk to product quality for the fully integrated system. It is 

also important to consider the multivariate nature of such systems in process design [49]. Within 

this context, process systems engineering (PSE) tools have been implemented with the goal of 

facilitating effective and efficient process design.  

PSE is a knowledge-based approach which uses mathematical equations to accurately 

represent the system’s chemistry and physics in order to evaluate complex systems using simulation 

tools [50]. PSE’s special focus involves the application of models along with computer-algorithms 

to predict, design, analyze, control, optimize, and operate these complex processes. Within this 
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rigorous (i.e., mathematical) framework, PSE’s goal is to provide insight to process development 

by evaluating integrated manufacturing systems in silico.  

Rigorous process design and evaluation can greatly improve manufacturing development 

and optimization of both drug substances and products given the vast amounts of research available 

from the PSE perspective. Approximate (i.e., heuristic) methods can be supported by having this 

information at hand, and furthermore can be used to inform future process design strategies for 

other products. For instance, information developed during the early stages of preclinical and 

clinical trials (e.g., molecular weight of compounds involved in the process, solubility data, 

degradation profiles, synthetic routes, boiling and melting points, reaction enthalpies, by-product 

formation, mixing behavior, powder compressibility) can be used to inform and develop new 

models, some of which could be used to improve future process development.  

Several research teams in both industrial and academic institutions have used PSE methods 

to evaluate [47, 51-56], design [50, 57, 58], analyze [59-62], control [32, 63-68], and optimize [69-

73] pharmaceutical processes. Predictive process models were used to develop and assess control 

strategies for continuous processes, as well as set the stage for the implementation of control 

systems in pharmaceutical processes [57, 68, 74-77]. These advanced control strategies can help to 

ensure consistent product quality. Furthermore, process integration (i.e., the union of multiple 

processes into a single process flow) and scale up can be performed once several unit operations 

have been characterized mathematically using models. For integration, the work would simply 

require carrying over information from one unit to the next, to inform subsequent models about 

process stream properties. Several units can be adjoined or scheduled one after the next and the 

process can be simulated and evaluated. Once all the unit interactions are understood, then few 

experiments with the integrated system can be performed to validate the modeling results. The goal 

of PSE and the integrated process flow models is not to completely remove experimentation, but 
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to provide researchers with a smaller set of critical variables that must be evaluated in the process, 

thus removing the need of running large numbers of experiments. The integrated process simulation 

can also be very beneficial to evaluate mitigation strategies, process sensor needs, and control 

algorithms. 

 Models fit well into the pharmaceutical manufacturing process paradigm by providing a 

mean to evaluate a process before many process experiments are performed. For example, process 

companies can start using preliminary and drug discovery data (e.g., solubility, flowability, 

dissolution) to start building processes, even before their investigative new drug (IND) applications 

are submitted. This provides a large economic risk reduction for companies, who can test potential 

process manufacturing routes before incurring in costly process experiments. First pass process 

design studies can be performed using simulations, small amounts of characterized materials, and 

libraries of general process models that predict the behavior of the material in the unit. Selecting 

the equipment and processing conditions from in silico experiments based on scientific models can 

expedite and improve the design of process even before any capital investment is performed. These 

first pass studies can be used to then speed up the development of a preliminary process, which can 

then satisfy clinical demand.  

Using data acquired from the preliminary process the general model libraries can be further 

tuned for the process/drug being developed and more rigorous design can be performed. Using the 

more fine-tuned model, process developers can perform a set of in silico experiments that allow 

them to test scale up scenarios, find process optimums, evaluate process monitoring strategies and 

develop control architectures for the design. The process model results can then be implemented in 

a real world plant, which can then be evaluated with respect to the predicted values by the process 

model. Model information can be used to supplement and help explain the reasoning behind the 
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current process design and provide great insight behind the process design strategy during the 

application process. 

Figure 2 shows how models fit in the development of a process. Ind the figure, the light 

green steps represent locations where the model is informing process development. Step 3, for 

example, involves the application of a the general process models to determine a first pass process 

that can be used to satisfy the demand of clinical trials. Steps 5 shows an instance when the models 

are used to further improve the preliminary process by testing different types of processes, assist 

with scale up, and help find process optimums. Step 6 shows where models can help select the 

monitoring strategy for the process and allow for the design of control methods for the process. 

Ultimately, the model can then be used to provide the supporting information to drug manufacturing 

applications and can further be used to control manufacturing processes. 

 

Figure 2. Pharmaceutical manufacturing workflow integrating the use of process models. Processes 

in green are those that can be developed with the use of models. Adapted from [58] 
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Repeating this process and developing better models would improve the time of simulation 

based process design and improves the whole simulation-based development cycle. Regulatory 

agencies can also greatly benefit from these models as they provide exceptional insight on process 

development strategies being performed in the industry. Models can serve as tools to compare how 

different companies are developing processes and what assumptions they are taking (seen from the 

model assumptions). The process model can also benefit the review process, as it provides a clear 

algorithmic procedure for process design. From the process models provided by a company, 

regulatory agencies can further improve the evaluation methods by performing more in silico 

experiments to test some of the questions that may arise from information request. Process safety 

evaluation could also be performed to ensure process safety and robustness using the models, which 

can be evaluated at the regulatory agency or at the company. 

Overall, PSE tools and predictive models can facilitate the design of processes where 

consistent product quality is achieved at every step of manufacturing within the framework of QbD 

and PAT [58]. Table 1 summarizes the relationship between PSE tools and process development 

objectives. 

Table 1. Process Systems Engineering (PSE) tools for process development and evaluation in 

continuous manufacturing of drug substance and products. Adapted from [78] 

Process Systems Engineering (PSE) Tools Process Development Objectives 

Predictive Models (Mathematical Equations) Process Understanding and Input-Output Relations (IOR) Building 
Flexibility & Feasibility Analysis Determine Process Parameter Ranges and Control Ranges 
Steady State Optimization Process and Product Design 
Dynamic Optimization Process Improvement and Disturbance Evaluation 
Sensitivity Analysis Risk Assessment and IOR Evaluation 
Controller Design Attainment and Maintenance of Critical Quality Attributes (CQAs) 
Flowsheet Modeling Process Integration and Simulation 

1.5. BACKGROUND ON MODELS 

One of the major advantages of process modeling includes the ability to store and make 

available large amounts of process knowledge – accumulated over time and experimentation – in 
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mathematical equations. The information stored in these equations can be used to by process 

designers and operations solve several process design and optimization questions. Furthermore, 

these models can greatly improve future experimental designs, since they can provide insight on 

which process input-output relationships are important to evaluate. For this reason, PSE and 

modeling tools are extensively used in the fine chemistry and petrochemical industry to design new 

process, evaluate current designs, and improve (i.e., optimize) the performance of existing 

processes. Figure 3 shows a flow diagram of the model-centric approach of PSE. Data acquired 

from experiments can be analyzed and used to develop or calibrate a model for a specific system. 

Once a set of models are available, they can be used in an integrated manner to represent the 

complex system being studied. Insight on the models accuracy can be obtained by performing a 

verification and validation of the model results. Positive model verification and validation results 

lead to its use in process evaluation and assessment. Negative verification and validation results 

lead to revisiting the models original development or need to acquire additional experimental 

results. 

 

Figure 3. Simplified schematic of process system engineering’s (PSE’s) model centric approach to 

evaluate complex systems. 

As shown in Figure 3, modeling efforts consist of a set of steps or activities that are not 

linear in nature. Moving beyond the simplified schematic in Figure 3, modeling efforts are divided 

into six major activities: (1) determine system characteristics, (2) collect data, (3) analyze data, (4) 

construct or identify a model, (5) solve or analyze the model, and (6) verify and validate the model. 
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System characteristic determination is based primarily on empirical knowledge of the system, 

wherein the relevant input-output relations are considered as important for system performance. 

Noteworthy is the idea that during this assessment, important system characteristics may not be 

captured, leading researchers to revisit this instance even after the model has been validated. Data 

collection and analysis, often performed under the Design of Experiment (DoE) structure, aims at 

quantitatively measuring the relationships existing between those input-output relationships. 

Several methods are proposed for performing DoEs and have been extensively reviewed since its 

inception in the early 20th century [79, 80].  

Constructing or identifying the mathematical equations is a fundamental step for process 

modeling since these models inform the results between process inputs and their output later used 

for in other PSE tools. These predictive equations (i.e., models) have different forms, which vary 

on the level of complexity and their incorporation of input and output (i.e., state) variables. For any 

given process, models can be proposed as set of linear or non-linear equations, written in 

dimensionless or multidimensional forms encompassing steady state (i.e., time independent) or 

dynamic (i.e., time dependent) scenarios. Five different models, shown with their relationship in 

Figure 4, are commonly associated with PSE tools: (1) balance equations, (2) constraint equations, 

(3) constitutive equations, (4) product models, and (5) product application models. Balance 

equations ensure that both the physical principles of conservation of mass and energy and 

conservation of momentum are obeyed throughout the process. Constraint equations, just as their 

name implies, ensure certain parameters are maintained within certain logical bounds, especially 

those in balance equations. A frequent example of a constraint equation is the fractional 

composition of materials in a process stream, which ensures the fractional sum of all the 

components in the stream is equal one. Constitutive equations involve those sets of equations that 

describe the chemical and reactive state of the system. Particularly focused on material properties, 
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constitutive equations need to be evaluated constantly to ensure accurate calculation of both the 

balance and constrain equations.  Product models incorporate the information of product attributes 

to inform about the product’s material properties (e.g., salt solubility, flowability, cohesion). Lastly, 

product application models are those which aim at predicting product behavior under certain 

circumstances, like the product dissolution in a specific medium and degradation at given 

temperature and pressure conditions. Solving these sets of equations requires understanding of 

several mathematical structures, which depend on the type and number of equations presented in 

the model. Further review of mathematical methods used to solve various model structures are 

provided in reviews by Gernaey’s [50, 57] and Ierapetritou’s [40, 47] groups.  

Model verification and validation refer to the modeling steps where model solving methods 

and accuracy are evaluated, respectively. Within this context, it is important to mention model 

validation involves the practice of ensuring system models accurately represent previously 

collected data as well as some new or isolated data sets, not used during model construction and 

analysis [81-84]. 

 

Figure 4. Different types of models used within the process modeling structure. Adapted from [50] 

All of these previously described modeling activities must be performed iteratively and 

constantly, since models require constant revision to ensure their performance still meets the 
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standards set by users and developers. In some instances, some of these efforts must also be 

performed in conjunction with experimental efforts to ensure that model development accurately 

evaluates and accounts for critical process inputs and outputs. Furthermore, model developers need 

to perform several back and forth instances between model design, validation, and data collection, 

to properly develop and validate a model. Based on this extensive number of steps and constant 

need for revision and monitoring, it is clear that modeling as a whole is a labor and time intensive 

process, yet its benefits in terms of data storing and development outweigh this initial labor cost. 

Several industries have applied this methodology and encourage it as a mean to improve the value 

of their labor (i.e., experimental) efforts. 

1.6.TYPES OF MODELS 

In this section, the major models used in pharmaceutical process modeling are briefly 

described. Readers interested in learning the different model types in more detail are encouraged 

to read the reviews by Rogers et al. [40], Escotet-Espinoza et al. [47], and Gernaey et al. [50, 58]. 

There are four types of models commonly used in the pharmaceutical industry: first principle 

“mechanistic”, multi-dimensional mechanistic, phenomenological, and empirical or data-driven 

models. 

1.6.1. First principle mechanistic 

These models are derived from fundamental equations of motion. Using fundamental 

physics, these models provide a great detail of the system phenomena by describing material 

properties in space such as location, momentum, and velocity. Divided into discrete and continuum 

models, first principles models can be used with solids, liquids, and gas system [16]. First principle 

models used in the pharmaceutical modeling literature include discrete element models (DEM) [85] 

and finite element models (FEM) [86]. DEM has been extensively used given its capability for 
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describing the translation and rotational effects of discrete particles in space. Particles are 

discretized and equations of motion are written for each individual particle in the system [87]. This 

degree of discretization generates a large number of equations, which limits and in some cases 

prohibits the use of DEM to model large number of particle systems with current computing power 

[88]. Nonetheless, particle and particle-fluid flow has been characterized and studied in great level 

of detail using DEM for a variety of industries. Confined particle flow is amongst some of the 

phenomena studied using DEM, which applies to the pharmaceutical industry through operations 

such as hopper emptying, continuous mixing, powder feeding, conveying, and fluidization [85]. 

1.6.2. Multi-dimensional mechanistic 

Population balance models (PBMs) describe the generation or development of properties 

in groups (i.e., populations) of entities (i.e., variables) over a set period of time. In the 

pharmaceutical industry, PBMs are multidimensional models used for the characterization of 

particle states with respect to internal (e.g., porosity, moisture content) and external (e.g., position) 

coordinates [89, 90]. Often used in processes where particle size changes occur (e.g., granulation, 

milling and drying), these models have also been used in a variety of other solid-based processes 

such as mixing and dissolution [91, 92]. PBMs offer a lower dimensionality model compared to 

mechanistic models by lumping discrete systems into groups and tracking their average state. 

Population balance models can also be discretized with respect to the external coordinates in order 

to resemble the level of discretization achieved with DEM modeling [93]. In these cases the 

differential terms with respect to the external coordinates are replaced by finite differences. 

Discretized population balance models can be parameterized and their parameters estimated using 

experimental or simulated data. PBMs can become computationally expensive if the number 

internal coordinates increases and the discretization grid of external coordinates is too fine [94] 

1.6.3. Phenomenological or semi-empirical 
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Also known as engineering models because of their frequent application in the field, they 

are derived from first principle models within which an underlying set of assumptions reduces their 

complexity. Experimentally obtained parameters are introduced as a means to calibrate the model 

for a specific combination of material and equipment conditions [95]. These lower dimensionality 

models involve macroscopic mass, force, and energy balances that provide information about the 

system’s average behavior while maintaining a relationship between model variables and process 

conditions. They have been used in a variety of pharmaceutical manufacturing problems in order 

to simplify model complexity [96-102]. Lower dimensionality PBMs also lie within this model 

category and have been used to characterize the probability density function of a single particle 

property inside of a unit. One example of low dimensional PBMs is the residence time distribution 

(RTD). Briefly described, RTD is a diagnostic tool that characterizes the time particles spend inside 

of a unit operation using a tracer material [103, 104]. This type of model has been extensively used 

in the chemical engineering literature to determine the mixing behavior inside units, and given its 

important use to characterize continuous equipment will be further investigated in Chapter VI in 

this work. 

1.6.4. Empirical or data-driven 

Empirical models, commonly referred to as statistical models, are among the lowest 

dimensional models and are derived purely by the relationship between inputs and outputs, without 

much physical explanation behind the correlation. The aim of empirical models is to provide a  

representation of data collected experimentally or from mechanistic models in a lower dimensional 

space using input-output correlations [105]. These models include statistical techniques such as 

black-box modeling approaches, latent variable methods, multilinear regression, response surface 

modeling, principal component regression, among many others [106-108].  

As opposed to any other model type previously described, empirical models are highly 
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dependent on the data provided for their development. Unlike the aforementioned models, 

extrapolation using empirical models often leads to erroneous results, since the relationship 

between the input parameters and the output responses is not defined outside of the data bounds. 

Nevertheless, since these types of models provide an inexpensive computational relationship they 

are often preferred for control system design and development [49]. 

1.6.5. Flowsheet models 

In an integrated process, individual pieces of equipment (i.e., unit operations) are 

connected in series. In such a process, a train of multiple units, one after the next, is connected via 

piping to sequentially perform powder-to-tablet manufacturing without isolation of intermediates. 

The output of a preceding unit becomes the input of a subsequent one with material continuously 

flowing between them. Mathematically, process integration follows the same logic. Individual 

equipment models, presented previously, are combined by taking the results from a preceding 

model and using it as the inputs of a subsequent one. The integrated process models are labeled 

flowsheet models as the flow of information between the unit models, resembles the flow of 

material(s) between unit operations. Therefore, flowsheet models defined as equation-based 

representations of the series of interconnected unit operations that describe a complete 

manufacturing process. These types of models have long been used in fluid-based chemical 

processes for process simulation, design, control and optimization applications [109-111].  

Several flowsheet modeling software packages (e.g., ASPEN Plus®, ChemCAD®, 

gPROMS™) have been effectively demonstrated for predictive modeling and design of fluid-based 

processes and are already widely used across the chemical and petrochemical industries [112]. 

However, the development of comparable tools for solids handling processes is challenging due to 

a lack of available first principles and constitutive models to describe many solids-based processes 

[30, 113, 114]. Current flowsheet simulation software packages are not capable of modeling first 
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principle models effectively and require long times to evaluate multidimensional models. If 

flowsheet models are to be used for optimization, control, and case-scenario evaluation; less 

complex models need to be developed and implemented for unit operations. 

Flowsheet models have long been used in fluid-based chemical processes for process 

simulation, design, control and optimization applications [109-111]. The recent development of the 

modeling tools previously presented for solids handling units coupled with the commercial 

availability of platforms for modeling and simulation of solids-based processes have facilitated the 

development of flowsheet models in the pharmaceutical industry [113-115]. These models can be 

implemented in commercially available development environments including gPROMSTM 

ModelBuilder and Aspen Custom Modeler. 

1.7.MODELING CHALLENGES 

This work focuses on some of the challenges that continuous pharmaceutical 

manufacturing modeling faces. More specifically, the development of computationally efficient 

unit operation models that account for the effect of material properties. These challenges are 

explained briefly in this section in order to illustrate clearly the research objectives of this work. 

1.7.1.  Computationally Expensive Unit Operations Models 

In spite of the potential benefits of PSE tools in the development of pharmaceutical 

manufacturing processes, they are severely underutilized [58, 116]. Only recently there have been 

major efforts to apply methodologies of such as feasibility & flexibility analysis, flowsheet 

modeling, steady state & dynamic optimization, and sensitivity analysis. These major efforts have 

been championed after the development and application of models that are computationally feasible 

and have the ability to model particle systems accurately. First principle models, such as DEM and 

multidimensional PBM, have been the major focus for development and were extensively used for 
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design and study of individual unit operations [94, 117-121]. Although they provide a great deal of 

physical insight into the process and accurately capture dynamical interactions among individual 

particles, these methods may not be practical or efficient when incorporated with PSE tools.  

The most significant drawback of DEM and higher order PBM models involves their high 

computational cost, which make them difficult to use for applications where multiple or rapid 

model evaluations are needed. DEM’s solution times range from hours to days depending on the 

number of particles, with computational cost increasing significantly as the number of particles 

increases. For this reason, DEM simulations often model systems much lower number of particles 

than in reality, which leads to large approximation of particle flow patterns and interaction. 

Similarly, PBMs can be difficult and lengthy to solve as the dimensionality of the problem 

increases. Efforts to reduce the computational expense of PBMs have focused in the 

implementation of order-reduction techniques [122] and hierarchal solution methods [123, 124]. 

However, PBM models often require information about distributed parameters like particle 

velocities within the process geometry, which brings back the need to run DEM simulations to 

obtain these results [125, 126].  

1.7.2. Modeling Material Property Effects 

DEM also lacks a clear framework to account for material properties in simulations. 

Material property parameters that cannot be directly measured for many pharmaceutical 

compounds, such as friction coefficients and coefficients of restitution for interparticle and particle-

geometry interactions, are required as part of the simulation. The parameters need to therefore be 

estimated using indirect methods [88]. DEM models were characterized using reduced order 

models (ROMs) to mimic the results from the first principle model. When the ROM is provided 

with sufficient results, this approach reduces the need to perform DEM simulations for scenarios 

within the evaluated space. Yet if equipment geometries change and/or there are deviations in the 
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material properties these ROM are no longer valid and new DEM simulations need to be performed. 

Insufficient understanding of the interactions between raw material properties, process design 

factors and operating conditions and their effect on performance presents a challenge in process 

development and design space determination [116]. These effects are often interactive in nature, so 

simply visualizing process input and output data may not elucidate the most important process 

parameters. In order to identify critical process parameters, which may limit the feasible region of 

operation for the process, it is necessary to quantify the extent to which the various process inputs 

affect unit operation performance and product quality attributes [13].  

1.7.3.  Evaluation of Models & Their Inputs  

Technical limitations regarding the evaluation and modeling of pharmaceutical systems 

revolve around the idea that many unidentified variables are affecting output results. Often viewed 

as inherent process variability these sources of error, mostly associated with material properties 

and human error, make models less accurate and inefficient. Physical and chemical properties of 

materials have the potential to influence product quality attributes such as blend and content 

uniformity, dissolution performance (affecting in vivo results), stability, and weight variability 

[127]. Specifications on physical properties are typically limited to bulk powder properties, which 

are more straightforward to test, and include bulk and packed density (i.e., compression behavior), 

particle size distribution, cohesion, and flowability factors [128]. The relationship between bulk 

properties and product quality is not often well understood, but their ranges corresponding to 

acceptable product quality can be determined experimentally [30, 116, 127].  

1.7.4.  Verification & Application of Models 

Obstacles in implementation of continuous manufacturing involve the understanding of 

how unit operations behave holistically. The interconnected effects of units are critical to 

characterize in order to develop processes that are controllable, effective, and robust. Lower 
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dimensional models developed to address the challenges of high computational expense can be 

used to capture these interactions in silico through the use of mathematical tools developed in PSE. 

Sensitivity analysis can be used to quantitatively evaluate the importance of process variables with 

respect to process performance. Sensitivity metrics can be used to direct experimental efforts 

towards studies that will improve the estimation of the most important model parameters or will 

enhance process understanding with respect to key input variables [129, 130]. Lack of sensitivity 

to certain factors can also be informative. It may either justify reducing the uncertain input space 

(e.g. by holding these parameters constant in subsequent studies) or suggest additional parameter 

variations to capture the influence of these factors [130-132]. 
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CHAPTER II 

2. RESEARCH OBJECTIVES 

2.1. OVERALL RESEARCH AIM 

The overall objective of this work is motivated by the challenges provided in the previous 

chapter, namely the need to develop models that are computationally efficient, incorporate raw 

material properties, and are applicable to a wide of process conditions. Thus, the main objective of 

this thesis is to develop, analyze, and verify predictive phenomenological and residence time 

distribution (RTD) models that take into account granular material properties for unit operations 

in a pharmaceutical continuous direct compression (CDC) system. This objective is attained by 

completing a set of specific research aims presented in the following subsections.  

2.2. SPECIFIC RESEARCH AIMS 

2.2.1. Aim 1 

Establish a systematic approach to evaluate and integrate material property measurements 

in a newly or previously developed process model. 

Models are an essential component of the new methodology for process design in the 

pharmaceutical industry. Several efforts target developing higher dimensional, dynamic, complex 

models for process understanding. Yet, these models are inefficient for process simulation given 
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their complexity. Other efforts focus on developing steady state data driven models. These models 

often have little to no relationship to dynamic process inputs (i.e., unit conditions) and require very 

large datasets to be accurate. The efficient use of dynamic process models for continuous systems 

requires the development of low dimensional models that are able to dynamically capture process 

inputs (i.e., critical process parameters and material properties) and relate them to process variables 

and outputs (i.e., unit conditions and product quality attributes). However, a systematic 

methodology is often not well provided or summarized in the literature. Further, the use of material 

properties as predictors is scarce in the literature, given the amount of variability provided in some 

of the powder measurements 

 In this aim, the goal was to provide a framework that can be used to develop able to capture 

both process input conditions and material properties. This approach, was then evaluated and 

verified with a case study using a powder unit operation. This aim is evaluated over the course of 

Chapters III and IV in this work. 

2.2.2. Aim 2 

Evaluate the use of material property libraries for modeling and use them to identify 

surrogate materials using statistical techniques. 

 Material properties are known to affect process performance in pharmaceutical operations, 

yet approaches to establishing the relationship between material properties and process 

performance are lacking. In this aim, the goal is to establish a relatively small material property 

library spanning a wide range of material properties and use the information developed in the 

library for modeling purposes. This aim is provided after the first aim to guide the conversation 

about the implementation of material properties in phenomenological models. The intent was to 

first attain the goal of aim 1 before proceeding to developing the material property library in this 

aim. This aim is covered in Chapter V in this work. 
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2.2.3. Aim 3 

Provide a systematic approach for developing residence time distribution (RTD) models in 

powder units and determine the impact material properties have on the measurement of the RTD. 

Similarly to the development of phenomenological models explaining the relationship 

between inputs and outputs as a function of material properties, an interest has emerged with 

regards to the development of residence time distribution (RTD) models in pharmaceutical unit 

operations. This aim focuses on providing a set of standards for performing RTD experiments as 

well as evaluate the impact material properties have on the measurement of the RTD. The overall 

goal of this aim was to provide a framework that future process developers could use to ensure the 

RTD methods, developed for liquid and gas systems, were upheld for solid systems. This aim is 

covered in Chapter VI in this work. 

2.2.4. Aim 4 

Develop a phenomenological and residence time distribution models for twin screw 

powder feeders accounting for material properties. 

Lastly, the goals of aims 1, 2, and 3 are combined into the last aim of this work, wherein a 

phenomenological and a RTD model are proposed for a unit operation in the continuous direct 

compression system: a twin screw powder feeder. The experimental characterization, model 

development, model implementation, and model evaluation are performed in the last aim as an 

overall application of the methods and techniques proposed in the previous aims. This aim is 

covered in Chapter VII in this work. 
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CHAPTER III 

3. AIM 1: APPROACH FOR DEVELOPING MODELS 

ACCOUNTING FOR MATERIAL PROPERTIES 

Acknowledgement of publication status: 
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Department of Chemical and Biochemical Engineering, Rutgers, The State University of New 

Jersey, Piscataway, NJ 08854, USA. 

Further, sections of this chapter are intended for publication for a journal in conjunction with 

several sections from Chapter VII of this work. 

3.1. INTRODUCTION 

The aim of this chapter is to establish a methodology for equipment characterization whose 

objective is using experimental results to develop models that can be used to predict the unit 

operation’s behavior. This objective can be accomplished by designing experimental evaluations 

aimed at determining the effect of process and material inputs on the process outputs (i.e., 
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responses). These experimental evaluations must be performed as a series of experiments where 

the effect of process inputs (e.g., screw speed, turret rotational speed, compression force) on process 

responses is evaluated for single material. After determining the impact of process inputs on the 

system, then a second level of experimentation varying material inputs must be performed to 

understand their effect on the output.  For example, the initial goal for feeding experiments is to 

establish the effect of screw speed (i.e., a process input) on flow rate (i.e., a process output). This 

process input-output experiment can be performed for a set of materials to evaluate the effect of 

material inputs on the process. If different materials have different process outputs (i.e., responses) 

at constant process inputs, then the process is found to be dependent of material inputs. In this 

chapter, a methodology to perform these experiments is presented. 

3.2. GENERAL MODEL DEVELOPMENT FRAMEWORK 

The general strategy to analyze complex systems from a model development standpoint 

consists of a series of steps that require both observation and mathematical analysis [84, 103, 133]. 

First, a problem formulation needs to take place to understand the model objectives and evaluation 

criteria. Delineating the performance requirements, both computationally and practically, 

represents a major component in model development. Second, inspection and classification of the 

system being studied is necessary in order to decompose it into several subsystems, whose 

interactions and fundamental relationships to process outputs can be determined. Third, interactions 

between the subsystems need to be formulated as inputs or variables to a set of mathematical 

equations (i.e., models). In this step it is critical to understand the need of experimental observation 

in order to find the relationships between variables. Finding relationships between variables in most 

cases require the incorporation of coefficients, primarily if the model is data driven. Fourth, 

evaluation and verification of the model as it represents the real process is then needed in order to 

assert the model fulfill the requirements set out in the first step. Lastly, once the model is developed 
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it can be applied in accordance with the modeling goals. Continuous evaluation and verification 

with experimental data throughout its application ensures that the model will remain valid and 

relevant. This last step in some ways closes the loop for the process, as it requires the model 

development process to review the objectives and evaluation criteria set out in the first objective 

[134]. 

Given the importance of defining the problem, this work focused on defining the different 

methods for developing knowledge for a unit operation. The equipment evaluation methodology 

approach used greatly impacts the abovementioned modeling framework by providing more (or 

less) information than that needed for the process. 

3.3. EQUIPMENT EVALUATION STRATEGIES 

In previous years, pharmaceutical unit operations research has focused on performing 

equipment characterization using a formulation based approach. This approach consisted of 

studying unit operation performance for a specific ingredient (e.g., excipient, lubricant, or API), 

formulation, or around a desired process condition (e.g., throughput, scale). Although efficient for 

the early stages of continuous manufacturing, this approach does not provide sufficient information 

to process developers on instances where the process condition is changed and/or material 

properties change during the process from the original material used for characterization. These 

two situations, although uncommon in batch processes (e.g., throughput is set by scale or material 

properties are not varied during the process) is very frequently occurrent in continuous processes. 

Therefore, to address these issues a more structured and rigorous approach for equipment 

characterization based on the input or control variables that accounts for ingredient material 

properties must be implemented.  
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For the purpose of this work it is important to make a clear distinction between 

characterization and performance evaluation. Equipment characterization is, as defined here, the 

process by which we aim at understanding the unit’s fundamental behavior, or in other words how 

a unit operation behaves for a wide range of conditions. This process is tedious and aims at 

developing a clear understanding of the unit. Performance evaluation is, as defined here, a mean of 

understanding how the unit performs under a specific set of conditions or inputs. This process is 

shorter but provides a much narrower amount of information. Below we aim at explaining in further 

detail the differences between these evaluation methods. 

3.3.1. Equipment characterization 

The process of equipment characterization begins by decomposing the unit based on the 

individual inputs and outputs affecting process responses. This process requires for the unit inputs 

to be associated with a particular output and may include not only the equipment process variables, 

but also the dimensions and sensing equipment used to operate the system. For the case of a screw 

feeding unit, this process involves the deep understanding of how granular materials move in the 

hopper with the help of a bridge breaking system as well as the affect such movement has on screw 

filling and the feed factor. To achieve significant understanding it is critical to evaluate: (1) the 

hopper dimensions and shape, (2) the flow aid configuration, (3) the sensitivity and accuracy of the 

load cell where the hopper is placed over, (4) the location of the screws at the bottom of the hopper, 

and (5) the volumetric displacement and capacity of such screws (i.e., the size and shape of the 

screws and the motor used to turn such screws). All of these variables help understand how well 

the material flows out of the system, its feeding capacity, and the accuracy at which this material 

flow can be measured. In certain instances, equipment dimensions may be relegated to subsequent 

studies, given that a single unit is studied during initial characterization instances. It is important to 
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note that the characterization process is not linear in nature, and may require several iterations for 

different unit operations and equipment vendors. 

3.3.2. Performance evaluation 

Performance evaluation involves the determination of how unit operations behave under a 

particular set of experimental conditions. This type of evaluation, focuses on understanding the 

performance of the equipment given a target range of output variables (e.g., flow rate, tablet weight, 

tablet hardness). For cases relevant to the pharmaceutical industry, performance evaluation needs 

to be done at conditions that are similar to the process. For the case of feeder performance, for 

example, this means that performance evaluations need to be performed on feeders working under 

gravimetric control with some type of refill. The goal of such experimentation would be to 

determine flow rate deviations from the desired set point as well as understand its variability over 

time. If the feeding rate variability for each material is evaluated well, then a blending system can 

be tailored specifically to add the sufficient back-mixing to the incoming blend to filter out the 

variability to an almost constant mean value. However, as noted previously, the result would not 

be to establish a wide range of operation, but rather a narrow observation about the unit’s behavior 

for a particular scenario. 

3.4. MODELING APPROACH 

Information collected during equipment characterization may be used to develop models 

relating the inputs and outputs so that predictions can be made from the developed data. Several 

model types have been described in the literature to develop these input-output correlations. The 

goal of the correlations is to develop a model that predicts how different process inputs have on 

process outputs by means of a model. These input-output correlations are hereunto known as the 

unit operation process model. The effect of materials inputs may be introduced to the process model 
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as a set of categorical inputs or by means of a material model capable of relating the effect of 

material properties to the unit behavior. In conjunction with process models, material models can 

be used to predict the process outputs (i.e., responses) from the process and material inputs. 

Material property models can be further used to determine the material property effects and 

establish a range of control for the materials that can be used for this unit. 

Figure 5 shows a schematic of the relationship between the equipment, process inputs, 

process outputs, material inputs, and process and material models. 

 

Figure 5. Description of the relationship between process and material inputs on outputs and the 

implementation of models 

 As shown in Figure 5, the goal of models is to be able to predict the behavior of the unit 

and bypass (to an extend) the amount of experimentation needed. Notably, modeling provides a 

mean to evaluate the operational space for both materials and process inputs. These models may be 

used to design processes with a desired set of process outputs, effectively accomplishing the goals 

set out by QbD, wherein the process is designed with the quality of the product in mind. 
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3.5. MODEL LEVELS 

From the distinction between process and material models provided in Figure 5, three 

different levels of models emerge, each related to the amount of information needed to predict 

process outputs. In the following points, the different models and their interpretation are described 

in detail. The nomenclature introduced here is then used on this work to show how the methodology 

is implemented for the characterization and modeling of tableting and powder feeding equipment. 

1. Level 1 models: predict process outputs for set of process inputs (e.g., screw speed, 

sweeping volume, die fill depth, compression height). These types of models are often 

developed during the first stages of equipment characterization and focus solely on relating 

the effect of a single material in a unit operation. Thus, these models assume that all 

materials behave similarly to one another for a given set of process inputs. Given that this 

is rarely the case, these types of models are considered to have the least understanding of 

the unit operation and process. 

2. Level 2 models: account for the effect of different materials on the process model. 

Materials effects to the process model are typically introduced through model parameter 

calibration, wherein process outputs collected for a particular set of material inputs are used 

to regress a set of coefficients that would represent the effect of the material in the system. 

This type of parameter calibration in level 2 models remains categorical, meaning that each 

material is attributed a set of regressed parameters that would be introduced into the process 

model. The categorical nature of these models implies the material inputs are consistent 

from the property perspective, meaning these types of models assume that a material will 

not change its behavior in the system when the process inputs remain constant. This level 

of modeling is the most frequently observed for pharmaceutical unit operations given the 

challenges in establishing material property metrics to characterize materials. 
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3. Level 3 models: combine the process model with a material model to predict process 

outputs using quantitative materials descriptors. The material property model is developed 

to remove the categorical nature of the material inputs in from level 2 by providing a set of 

quantitative material property measurements (i.e., bulk density, compressibility, particle 

size) that can be associated to a particular material. The quantitative measurements can be 

used to develop a correlation between them and the regressed process model parameters 

from the Level 2. Ultimately, the material model would predict the process model 

coefficients based on the material property measurements, allowing the model to describe 

the behavior of not only those materials studied, but of other materials whose properties 

are known. Given the two model structure of this model level, this type of model is prone 

to compounding the errors between the first and second models. However, the main 

advantage is the ability to predict the behavior of a unit based on material properties, rather 

than assuming the behavior of the unit will be the same when the same name material is 

used.  

Figure 6 shows a graphical representation of the models abovementioned. Notably, the 

amount of process understanding increases as the model level increases. The prediction of process 

outputs may also greatly improve with increase model level.  

 

Figure 6. Model level categories based on the inputs described by the model 
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 The model level categories provide a mean to identify the amount of behavior capture in 

by the current version of the model. For example, if only a level 1 model is provided, it is clear that 

the effect of material properties on the system is not well understood and that this model only 

captures the effect of process inputs on the outputs. Thus, when developing complex system  

models (i.e., flowsheet models) the unit operations represented with level 1 models will be 

unaffected by changes in material properties, a scenario that must be understood beforehand by the 

model users. Following on the example, if a unit operation is modeled using a level 2 model, then 

it is understood that material properties have an observable effect in the system, yet a certain degree 

of experimentation is needed to capture the effect of these material properties. Model calibration 

must be performed in order to have these unit operation models represent the system accurately. 

Lastly, if a unit operation is represented using a level 3 model, then this can be considered to be a 

model capable of considering changes in material properties and process inputs. Using level 3 

models provides the most insight when PSE tools such as flexibility, feasibility, sensitivity analysis, 

and optimization are used. Nevertheless, these models require the most amount of work to be 

developed and are highly dependent on the range of material properties used to develop the material 

models. 

3.6. MODEL DEVELOPMENT ALGORITHM  

Based on the model classification and level designation, an algorithm to develop level 3 

models was established and presented. Based on the general model framework, predictive 

input/output relationships need to be developed to effectively model the behavior observed from a 

unit operation. Since several level 1 models have been developed over the years for pharmaceutical 

equipment, this work focuses on describing the methodology starting from the availability of a level 

1 model. Level 2 models are also frequently observed in the pharmaceutical engineering literature, 

yet they are described here to provide the readers with sufficient background for development 
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purposes. Most importantly, the means to develop level 3 models is described. To determine these 

level 3 model relationships, the following approach is proposed:  

1. Develop an experimental plan to characterize the effect that changes in the unit operating 

variables (e.g., fill cam depth, turret speed, screw speed, screw size) have on the unit’s 

responses and on the process outputs (e.g., outgoing tablets, flow rate). This experimental 

design involves the use of several materials (i.e., raw or material blends) so that the impact 

their properties (e.g., density, cohesion, flowability, compactability) on the unit’s output is 

captured. The experimental design (i.e., changes in unit operating variables) is essentially 

repeated multiple times for the different materials. 

2. A process model (i.e., level 1), can be developed from first principle mechanics, population 

balance methods, or from a simple phenomenological observation based on the results from 

the experimental data. Given the focus on maintaining simplicity for future modeling 

purposes, it is recommended that a semi-empirical phenomenological model capable of 

accounting for process variables changes in the experimental protocol is selected. 

However, regardless of how the model is developed it is important that the model is able 

to capture: (1) the process inputs evaluated in the experimental plan, (2) the process 

responses of interest, and (3) the effect of material properties.  

3. The level 1 model from step 2 should be written in a way that allows for material property 

effects to be captured through a set of parameters that can be regressed from experimental 

data. The regressed parameters, which are obtained from minimizing the sum square error 

of the model prediction and experimental data at the provided experimental conditions, can 

be made dependent of any variable except for the variables accounted in the model. Thus, 

the constant regressed for the unit operation model can be made material-dependent. For 

each experimental design, for each material, one constant parameter will be assigned, 
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creating an array between materials and their model constant values. At this stage, the 

model reaches the second level of model types described in Section 3.5. 

4. In conjunction with the experimental plan evaluations, every material tested in the must 

have its relevant material properties characterized before entering the system. This 

approach, which must be performed using standard material characterization methods, 

yields an array of materials and their properties that contextualizes the experimental plan’s 

results to the materials used. Well-maintained material property libraries containing a wide 

range of properties can be used for this purpose, as they would allow for a record of the 

material properties and their variability over time. 

5. The array of regressed constants and materials from step 3 along with the material property 

list established in step 4 can be merged into a single matrix, wherein model constants are 

treated as “material properties” numbers for each of the components. These new “material 

properties” are clearly associated with the level 1 model, and thus require users to 

understand the relationship between inputs and outputs expressed in the model. 

Nevertheless, this expanded matrix, which contains the contextualized results of the model 

along with the material properties, serves as a useful tool to determine the impact of 

material properties on the model.  

6. From the array developed in step 5, the regressed unit operation model constants and 

material properties can be used to establish a correlation between the regressed coefficients 

and the property values. Essentially, the researcher would like to obviate non-numerical 

(i.e., categorical) information, as they are already accounting for the effect of the material 

by characterizing the physical behavior. Empirical models (i.e., data driven) would then be 

used to correlate the model constants to material properties; creating an equation that yields 

a given model constant value for a set of material properties. Obviously, since numerical 
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values of physical measurements depend on the units used, the correlations need to be 

contextualized in terms of units of measurement.  

7. Combining the material model developed in step 6 with the unit operations level 1 model 

developed (or selected) in step 2 would then yields a level 3 model, one that predicts unit 

behavior accounting for material property and unit operating variable inputs.  

The approached described above is summarized in Figure 7, along with the respective 

association to the aforementioned model levels. 

 

Figure 7. Model level categories based on the inputs described by the model 

This methodology, can be performed effectively to any unit operation in the system as it is 

a derivation of previously established methodologies for model development [16, 135, 136]. The 

novelty of this algorithm rests on the contextualizing of experiments by collecting the material 

properties of any component in conjunction with the experiment itself. Since granular material 
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properties typically change irreversibly after a process, the history of the material ought to be 

captured by characterizing the material as close to the experimentation as possible. This latest 

snapshot of the physical properties of the material can then be used to developed the models capable 

of predicting the behavior most accurately. In the future, more detailed material property databases 

can be used in conjunction with the correlations determined using the proposed methodology to 

predict unit performance. This two-step model approach can be used to estimate how the 

performance of a unit varies with respect to material properties. 

Following the proposal of this methodology, three unit operations present in the continuous 

direct compression line were used to apply the methodology. A tablet compression experiment was 

performed as a case study to prove the methodologies potential. The tablet compression system 

was selected given the known relationship between process inputs and outputs as well as the effect 

of material properties on process outputs. This proof-of-concept experiment is described in detail 

in Chapter IV. Following the proof-of-concept, a material property library was developed using 

materials used in subsequent equipment characterization experiments. The development and uses 

of the material property library are described in Chapter V. The unit operations evaluated using the 

materials characterized in Chapter V included a continuous blending system, covered in Chapter 

VI, and a powder feeding unit, covered in Chapter VII. 
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CHAPTER IV 

4. AIM 1: APPLICATION OF THE METHODOLOGY FOR 

TABLET PRESS STUDIES 
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4.1. INTRODUCTION 

This work is provided as proof-of-concept for the methodology presented in Chapter III. 

The goal was to aid the development and implementation of phenomenological models in the 

pharmaceutical process development space by establishing case studies that can be followed by 

those in the industry. The methodology is applied within the context of tablet compression because 

of the known effect material properties have on the process as well as the vast literature relating 

process inputs to outputs. 

4.1.1. Effect of material properties on compaction 

From previous studies, it was concluded that material properties (e.g. flowability, bulk 

density) strongly affect process performance (e.g. blending, feeding) [137, 138]. Hence, a thorough 

understanding of ingredient material property effects in a pharmaceutical formulation is extremely 

important to aid in process design, scale-up, and optimization [138]. Compaction is the processing 

step where the tablet structure is created, thus it primarily governs critical quality attributes 

(CQA’s) of a tablet. However, it is well established that the variation in processes previous to the 

compaction step can drastically affect the tablet’s physicochemical properties, such as 

disintegration [139, 140], dissolution [141, 142], tensile strength [143, 144], and friability [138, 

145]. Since some of these properties are often measured using common in-process quality control 

tests, detailed studies on the connection between blend characteristics and compaction are not often 

captured. Nevertheless, understanding the relationship between the blend and compaction 

outcomes could accelerate product and process development, help reduce manufacture of out-of-

specification (OOS) batches, and help formulators anticipate process vulnerabilities.  

Material properties ranging from the molecular level, due to variation in chemical species 

or molecular arrangement, to the macroscopic level (e.g., bulk powder cohesion) can influence the 
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compaction process and final drug product characteristics [138]. For instance, variation in 

properties of tablets, due to differences in the binding properties of multiple grades of lactose was 

described by Vromans et al. [146]. On the other hand, the effect of lubricants, which are usually 

present in relatively small quantities, on tablet properties such as API release and tablets mechanical 

strength have been extensively documented for over five decades [145, 147]. Effect of the amount 

and type of magnesium stearate, a commonly used pharmaceutical lubricant, on tablet tensile 

strength is a well-known occurrence that can be attributed to inefficient inter-particle bonding of 

the excipients caused due to interference by the lubricant particles [148-151]. Variations in mixture 

flow properties are known to affect compression parameters such as in-die density, tablet thickness, 

and compression forces [152, 153]. 

As the pharmaceutical industry modernizes and shifts towards new continuous 

manufacturing practices for both legacy and new drug products, process elements that affect 

product quality and the methods to understand these systems need to be reevaluated. To enable 

changes from traditional batch to continuous manufacturing technologies the pharmaceutical 

industry should build the necessary expertise and skills to design and effectively operate the 

technology [31, 32, 48]. The expertise and skills are obtained through process understanding in 

terms of the evolution of all critical material properties as a function of its operating parameters 

and environmental conditions.  

While the task of developing predictive models for compaction is quite large due to the 

number of variables and phenomena involved, this work attempts to make progress by providing a 

methodology that can be applied in future experimental plans. This work focuses on a narrow 

number of materials and conditions to implement and demonstrate a methodology for correlating 

material properties to existing empirical models. This chapter is organized as follows: Section 2 

presents modeling and experimental methods used in this research, as well as a description of 
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materials and characterization methods. Section 3 presents the tablet results from experiments, the 

regression of empirical model coefficients from data, the empirical models establishing correlations 

between blend material properties and the regressed coefficients, and the application of such model 

in product design purposes. Lastly, in section 4 the conclusions and potential avenues of future 

research are presented. 

4.2. MATERIALS AND METHODS 

Note: a detailed description of the materials and experimental methods for this work is provided 
more extensively in Vadodaria’s work [154]. The level covered here is provided to establish a 

framework for the modeling, as it was provided in the journal article written by the author. 

Property measurements were collected by Vadodaria, along with the experimental performance 
of the blending, tablet compression, and breaking. The author of this thesis was focused on the 

analysis, interpretation, regression, and discussion of the data provided by Vadodaria. 

Application of the resulting model and any subsequent analysis was performed by the author of 

this thesis. 

 

4.2.1. Materials 

Two grades of microcrystalline cellulose (Avicel® PH 101 and Avicel® PH 301, FMC 

BioPolymer, Cork, Ireland), Lactose Monohydrate (Foremost Farms, Wisconsin, USA), and a 

preprocessed direct compression grade of acetaminophen (ComPap L, Mallinckrodt Inc., Missouri, 

USA) were used for this work given their availability, deformability during compression, and 

frequent use in the pharmaceutical industry. These materials were sieved using a 2000 µm mesh to 

break any large agglomerates that might have formed during storage. Magnesium stearate (MgSt, 

Mallinckrodt Inc., Missouri, USA) was used as the lubricant. Table 4 provides the names and 

intrinsic true density information for all materials used in this study. It is important to note that 

batch-to-batch variability may be observed in future studies if these same materials are used, based 

on the manufacturers specifications. 
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INSERT Error! Reference source not found. HERE 

4.2.2. Blend preparation 

Table 5 describes the details of blended materials involved in this work. Binary blends of 

the three excipients and lubricant listed in the materials section were prepared to vary the blends’ 

material properties. Magnesium Stearate (MgSt) was varied in concentrations of 0.25, 0.75, 1 and 

1.5% to span the range of lubricant concentrations used in industry. There were a total of 12 binary 

mixtures.  A ternary mixture of ComPap L (15%), Avicel® PH 101 (84%), and MgSt (1%) was also 

prepared. 

INSERT Table 5 HERE 

Blending was performed in a 7.6-L capacity V-blender (Patterson-Kelley, Pennsylvania, 

USA) filled to less than 60% of its volume. For binary mixtures, the excipient was loaded first, 

followed by the lubricant on the top.  The blender speed was set at 20 revolutions per minute (RPM) 

for a period of 2.5 minutes. For the ternary mixture, the API (APAP ComPap L) and excipient 

(Avicel PH101) were initially blended for a period of 12.5 minutes at 20 RPM, followed by another 

2.5 minutes with the lubricant. Note the blending time of lubricant was kept constant to maintain 

the same level of total strain and lubrication; as strain and lubrication are known to affect tablet 

tensile strength [155]. Blending was performed in controlled temperatures of 25 – 29°C and at a 

steady 10 ± 3% relative humidity.   

4.2.3. Material characterization 

Material characterization was performed for all thirteen blends to have the appropriate 

material properties for subsequent modeling efforts. Characterization techniques included both 

manually measured properties and equipment based measurements. The material characterization 

techniques used are described in detail in Appendix A (page 240). Material properties collected for 
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this work included: bulk and tapped density, compressibility, permeability, and particle size 

distribution. 

4.2.4. Tablet compaction 

All tablets were manufactured using a PressterTM Compaction Simulator (Measurement 

Control Corporation, New Jersey, USA) using a standard IPT B tooling. Eight (8) mm flat-face 

cylindrical tooling was selected for this work. The rate of compaction and pre-compression length 

were kept constant to simulate a manufacturing rate of 45,000 tablets per hours and 5 mm, 

respectively. Dwell time was set at 21.6 ms based on the tablet production rate. The compaction 

profiles and peak compression forces were recorded for each formulation as well as the maximum 

compression pressure. Four tablets were prepared for each combination of fill depth and tablet 

thickness, which ranged from 6-10.75 mm and 2.5-3.5 mm, respectively. The detailed distances 

used for each experiment are provided in the dissertation by Vadodaria [154]. 

4.2.5. Tablet testing methods 

Four tablets (n = 4) for each combination of compression parameters (i.e., fill cam depth 

and tablet thickness) and formulation were selected for weight, thickness, and tensile strength 

measurements. Weight was controlled during the experiment by measuring the mass of powder 

placed on the die. The total number of tablets created for modeling purposes for the 13 formulations 

was 312 (i.e., 24 tablets per formulation). It was known that a larger number of tablets is used for 

tablet hardness experiments where weight variability was not controlled, given the positive 

relationship between tablet weight variability and tensile strength variability. However, since 

weight (and its variability) were controlled, the number of tablets was greatly reduced in this 

experiment. 
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All tablets were tested one day after their compaction to allow for complete relaxation. All 

measurements were performed using a CheckMaster Tablet Tester (Burns Automation LLC, New 

Hampshire, USA).  

4.2.5.1. Relative density calculation 

Tablet weight and thickness were measured to calculate the tablet’s relative density (𝜌𝑟), 

using Equation 1 [155]. 

 𝜌𝑟 =
𝜌𝑡𝑎𝑏𝑙𝑒𝑡

𝜌𝑡𝑟𝑢𝑒
=

4𝑀𝑡𝑎𝑏𝑙𝑒𝑡

𝜋ℎ𝑇𝐷
2𝜌𝑡𝑟𝑢𝑒

 1 

where 𝜌𝑡𝑎𝑏𝑙𝑒𝑡 is the tablet’s bulk density and 𝜌𝑡𝑟𝑢𝑒 is the weighted average of the components’s 

true densities. The tablet’s bulk density can be computed from their mass (𝑀𝑡𝑎𝑏𝑙𝑒𝑡), height ( ℎ𝑇), 

and diameter (𝐷) as shown in the far-right form of Equation 1. Notably, the tablet diameter after 

compression and relaxation did not increase significantly (< 0.05mm) from the in-die diameter. 

Relaxation appeared to only occur in the vertical direction. 

4.2.5.2. Tensile strength measurement 

Tablets tensile strength was determined using a diametrical compression test, wherein two 

opposing metal plates compress the tablets until they break. The force required to break the tablets 

in brittle failure mode is measured and used along with the tablet diameter measurement to compute 

their tensile strength. The equation to compute tablet tensile strength (𝐻𝑡𝑎𝑏𝑙𝑒𝑡) of a flat-surface 

cylindrical tablet given by [156] is shown below, 

 𝐻𝑡𝑎𝑏𝑙𝑒𝑡 =
2𝐹

𝜋ℎ𝑇𝐷
 2 
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where 𝐹 is the breaking force measured in Newtons or Kiloponds. In these calculations, the 

diameter of tablets was approximated to the nominal die diameter value of 8 mm, given that radial 

relaxation was minimal. 

4.2.6. Modeling methodology 

The tablet tensile strength model used in this investigation was proposed by Kuentz and 

Leuenberger [55, 67, 155, 157, 158]. The Kuentz and Leuenberger equation, rearranged below, 

describes the tensile strength of a compact (𝐻𝑡𝑎𝑏𝑙𝑒𝑡) as a function of the relative density (𝜌𝑟) and 

two regressed parameters based on data collected from the tablet strength test: maximum tensile 

strength (𝐻𝑚𝑎𝑥) and critical relative density (𝜌𝑐)  [100]. This equation, thus, becomes the level 1 

model relating the process conditions to an expected process response in the system. 

 

𝐻𝑡𝑎𝑏𝑙𝑒𝑡 = 𝐻𝑚𝑎𝑥[1 − 𝐸𝑥𝑝(𝜌𝑟 − 𝜌𝑐 + 𝜆ℎ)] 

Subject to: 

𝜌𝑐 < 𝜌𝑟 < 1  

3 

The value of maximum tensile strength represents the strength of tablets at a theoretical 

zero porosity. The critical relative density constant refers to the relative density required to hold 

the powder with enough shear strength to form a compact [100]. Therefore, it is important to 

understand that the relative density cannot be lower than the critical relative density. The (𝜆ℎ) 

parameter constrains the relative density values to be greater than the critical relative density by, 

 𝜆ℎ = 𝐿𝑛 (
1 − 𝜌𝑟

1 − 𝜌𝑐
) 4 

 Both the maximum tensile strength and critical relative density are constant with respect to 

relative density, yet they are formulation dependent and have to be regressed every time the 

composition or material is varied. Associating these parameters to measurable material properties 
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would help predict these coefficients for new formulations and minimize the number of 

experiments needed to collect data to help regress the constant. 

4.2.7. Software 

Model parameters were obtained through regression of experimental data. The regression 

was performed by minimizing the sum-squared error between the experimentally obtained values 

of tensile strength and the predicted values of from the Kuentz and Luenberger equation. The non-

linear regression algorithm provided by Mathematica® Version 11.0 2016 (Wolfram Alpha LLC, 

Illinois, USA) was used. Similarly, empirical model regression between material properties and 

regressed model constants was performed using the Mathematica® software and the non-linear 

regression algorithm provided. Principal Component Analysis on blend material properties was 

performed using the statistical software Minitab 17® (Mintab Inc., Pennsylvania, USA). 

4.3. RESULTS AND DISCUSSION 

The main objective of this article is to apply and describe the methodology for correlating 

material properties to existing empirical models, presented in Figure 7. As an example, this work 

focused on a case study that consists on predicting the tensile strength of tablets based on their 

blend material properties. Three filler excipients, one active pharmaceutical ingredient, and one 

lubricant are used in this work. Twelve binary mixtures of excipients and lubricants are prepared, 

with the lubricant level varying in four (4) levels. These blends allow for the development of a 

model that considers material properties and predicted tablet properties. A ternary blend is used to 

evaluate if the material property methodology can be applied, for a small variation in composition. 

The thirteen blends are compressed at different levels and their tensile strength was measured. The 

resulting tensile strength measurements were used to regress the values of phenomenological model 

constants, which then are correlated with material properties. Once the empirical models are 
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verified to predict the values for the phenomenological model constants, a case study evaluating 

the prediction of tensile strength using the material properties is presented. 

4.3.1. Blend Characterization and material properties 

Table 6 presents the material properties for each of the blends. The results indicate that 

bulk density, tapped density, and permeability varied significantly between major excipients. 

However, most of these material properties varied only slightly with the addition of magnesium 

stearate. Permeability was the only variable significantly affected by the addition of the lubricant. 

Increasing the lubricant concentration reduced the permeability of the blend, identified by the 

increased in pressure drop across the powder bed when air was flown through. This result can be 

explained by the closer packing, resulting in increased contact forces between particles, given the 

glidant effect of the lubricant material. The addition of the magnesium stearate, a hydrophobic 

material capable of (1) being squeezed out of the spaces between the two solid excipient surfaces 

and (2) deform easily when exposed to shear forces,  decreases the cohesion and allows the material 

to pack more densely. As more lubricant was added and sheared during the blending step, the 

particles formed denser, less permeable matrices that would resist air flow. 

INSERT Table 6 HERE 

 Using the rather highly dimensional material property table (i.e., nine material properties), 

the data was plotted using principal component analysis (PCA) [159-161] to determine the 

similarity between blends based on the nine material properties and the number of effective degrees 

of freedom for the material properties. Blends which are highly similar based on the nine material 

properties will have close proximity in a PCA score plot, whereas those which more dissimilar will 

be further apart. Similarly, PCA provides information regarding the material property 

measurements by means of their proximity in the loadings plot. Collinearity (i.e., relationship) 

between material property measurements are also assessed using the location of the measurements 
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in the loadings plot. Properties that are highly collinear are in the same direction in the PCA’s 

loading plot, whereas those that not correlated or collinear are be perpendicular to the measurement.  

Table 7 presents the results from the PCA analysis performed. Note Hausner Ratio is not 

added to the PCA, as the variable represents two of the measurements already accounted in the 

analysis: bulk and tapped density. From the results, two principal components were selected to plot 

the results in a 2-Dimensional (2-D) space. The fraction of the variability accounted by these two 

principal components (i.e., principal components 1 and 2) was 87% of the total variability captured 

by the materials. The remaining seven principal components accounted for only 13% of the 

remaining variability, which indicate they contain less variability than the second principal 

component. Ergo, for the purposes of this work, these remaining seven principal do not contain 

critical information. 

INSERT Table 7 HERE 

Principal components 1 and 2 express 69 and 18 percent (%) of the variability in the 

material property dataset, respectively. The coefficients of principal component 1 (PC1) reflect the 

majority of contribution in variability is due to bulk density, tapped density, porosity, permeability, 

and particle size distribution. These properties can be used to express the differences between the 

components; however, they are largely collinear to one another as they are opposite to one another 

in PC1. Collinearity in the PC space between the material property variables indicates they should 

not be used together in the empirical modeling efforts, as the variables would explain the same 

variability. Principal component 2 (PC2) reflects primarily the effects of the blends’ 

compressibility, and mean particle size. These properties may be used to relate results with 

properties that are not significantly correlated with those properties accounted in PC1.  
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The score and loading plots are shown in Figure 8A and B, respectively. Data groups (i.e., 

cluster) were observed based on each of the blend’s major excipient composition. Each excipient 

binary blend is affected by the concentration of lubricant added as seen by the spread of score 

values in Figure 8A within each excipient material group, which indicates that lubricant 

concentration has an effect on one of the measurements in PC1. The lubricant concentration does 

not appear to have a clear relationship with respect to PC2, as no trend is observed when increasing 

the concentration mass fraction. The effect of adding the API to the Avicel® PH101 and lubricant 

mixture has a significant effect in the blend properties, seen by the blend’s location away from the 

Avicel® PH101 group. Addition of API to Avicel® PH101 appears to bring the blend closer 

towards the behavior of the denser Avicel® PH301, as seen by the shift of the blend towards the 

Avicel® PH301 group. 

 

Figure 8. Principal Component Analysis (PCA) results for the material properties listed on Table 4 
and Table 5. (A) Score plot of blend’s characterized material properties. (B) Loadings plots for the 

material properties. 

As with any modeling strategy, it is critical to determine the range of material properties 

that lie within the acceptable range. These results establish the material property space where the 

modeling efforts shown in subsequent sections will perform accurately. 

4.3.2. Tablet tensile strength results 
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Figure 9 shows the results of plotting tablet tensile strength with respect to the tablet 

relative density for each formulation. Tablet relative density was computed using Equation 1. 

Figure 9A presents the results for the lactose formulation. As observed, the lubricant addition does 

not affect substantially the tablet strength between formulations. Nevertheless, there is a small 

weakening of the tablets at high values of relative density. Figure 9B shows the strength curve 

values for the Avicel® PH101 formulation. These tablets were found to be the strongest of all three 

formulations with the strength clearly being affected by the addition of lubricant. As expected, the 

lowest concentration of magnesium stearate corresponded to the strongest tablets, whereas the 

highest concentration of lubricant resulted in the weakest ones.  

 

Figure 9. Experimental data for tablet tensile strength at varying levels of lubricant concentration 

(A) Lactose, (B) Avicel PH101, (C) Avicel PH301, and (D) All blends tablet tensile strength with 

a concentration of 1% magnesium stearate. 

Figure 9C presents the strength curves for the higher density Avicel® PH301 tablets. 

Again, the negatively correlated effect of magnesium stearate on tablet strength was observed. As 

the mass fraction of the lubricant increases, the strength of tablets at the same porosity decreases. 
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The decrease in maximum tensile strength for both Avicel® formulations can be attributed to the 

reduction of surface area for inter-particle bonding due to coating of excipient particles with 

lubricant. Figure 9D shows the results for the strength curves of all formulations at a constant 1% 

magnesium stearate concentration. Adding the API (ComPap L) to Avicel® PH101 decreased the 

strength of tablets by means of changing the blend’s particle structure and potential bonding 

surfaces. Further, the compaction capacity of the API is lower than that of Avicel® PH101, which 

in turn lead to a lower bond capacity for the blend. A difference of approximately 5 MPa existed 

between the strongest and weakest tablets. 

4.3.3. Level 2 model: regression of model coefficients 

Figure 10 shows the regression results for Equation 3’s model parameters and the tablet 

tensile strength curves from Figure 3. For each formulation, the maximum tensile strength (𝐻𝑚𝑎𝑥) 

and the critical relative density (𝜌𝑐) were regressed. All plots appear to accurately represent the 

relationship between tensile strength and relative density with R2 values greater than 93% for all 

blends.  

 

Figure 10. Experimental data for tablet tensile strength against relative density plotted along the 

Kuentz and Leuenberger model regressed for (A) Lactose with 0.75% magnesium stearate, (B) 
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Avicel 101 with 0.75% magnesium stearate, (C) Avicel 301 with 0.75% magnesium stearate, and 

(D) ComPap L (15%) + Avicel 101 with 1% magnesium stearate. 

The regressed values of critical relative density and maximum tensile strength along with 

their regression standard errors are tabulated in Table 2. Regression p-values for each of the 

variables were less than 0.01, indicating that the values were found to be statistically significant 

with a high level of confidence. As expected, the values for maximum tensile strength differed 

between formulations and decreased with the mass fraction of lubricant. Critical relative density 

differed significantly (p < 0.05) between formulations, however, it did not vary significantly (p > 

0.05) within formulations. 

Table 2. Regressed Kuentz and Leuenberger hardness model parameters 

Blend 

Regressed Parameters* 

R2 Critical Relative 

Density 

Maximum Hardness 

(MPa) 

1 0.79 ± 0.01 4.31 ± 0.19 0.951 

2 0.80 ± 0.01 3.84 ± 0.17 0.947 

3 0.84 ± 0.00 4.37 ± 0.10 0.932 

4 0.84 ± 0.01 4.10 ± 0.15 0.964 

5 0.58 ± 0.02 11.91 ± 0.20 0.991 

6 0.65 ± 0.03 11.02 ± 0.32 0.989 

7 0.64 ± 0.03 10.58 ± 0.25 0.982 

8 0.62 ± 0.03 9.43 ± 0.22 0.978 

9 0.71 ± 0.01 8.99 ± 0.13 0.997 

10 0.72 ± 0.02 7.62 ± 0.14 0.942 

11 0.69 ± 0.03 7.07 ± 0.16 0.983 

12 0.68 ± 0.03 6.61 ± 0.13 0.975 

13 0.62 ± 0.02 6.55 ± 0.12 0.970 

* The ± values represent the standard error of regression 

The effect of magnesium stearate concentration on maximum tensile strength and critical 

relative density can be observed in Figure 16. Notably, at this stage, once the material parameters 

have been established for a particular material, the modeling has reached level 2, based on the 

aforementioned framework. At this point, it is known that most relationships stop within the 

pharmaceutical modeling literature, particularly for manufacturing processes. 



56 

 

 

 

Figure 16A shows the regressed maximum tensile strength with respect to the lubricant 

mass fraction along with their respective regression errors. For Avicel® PH101 and Avicel® 

PH301 a decrease in maximum tensile strength with increasing lubricant concentration clearly was 

observed. A relatively constant maximum tensile strength was observed for the lactose formulation 

with changing magnesium stearate concentration. The ternary blend had a similar maximum tensile 

strength to that of the Avicel® PH301 formulation with the same lubricant concentration. Within 

each group, the Avicel® PH101 tablets were the strongest, followed by Avicel® PH301, the ternary 

mixture, and lactose tablets. All maximum tensile strength tablets were found to be significantly 

different (p < 0.05), except for the Avicel® PH301 with 1% magnesium stearate and the ternary 

mixture, which were only near-significant (p = 0.12). 

INSERT Figure 16 HERE 

Figure 16B shows the regressed critical relative density with respect to the lubricant mass 

fraction along with their respective regression errors. From the graph, there were no significant 

trends observed between critical relative density and lubricant concentration within each group. 

Within each formulation, regressed values for critical relative density were found to be statistically 

similar (p < 0.05). These results were expected given that at the strain levels used in this study (just 

50 revolutions in a small V-blender) lubricant concentration does not have much of an effect on the 

material’s compactability, which is represented by the critical relative density. Statistical 

comparison of the critical relative density between formulations are relatively difficult to interpret 

due to the larger model errors presented by the Avicel® formulations. These large errors can be 

attributed to the larger extrapolation needed to regress the critical relative density coefficient for 

the Avicel® formulations. The Avicel® blends stronger tablets at higher relative densities required 

a much greater extrapolation to the zero tensile strength point, thus the resulting error was much 

larger than the lactose tablets.  
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A negative relationship between the maximum tensile strength and the critical relative 

density was observed. Figure 11 shows this relationship. The result suggests that blends with low 

critical relative density values (i.e., lower relative density is needed to form a compact) make 

stronger tablets. An explanation of such phenomena can be attributed to the reduced range of 

relative densities available to blends with higher critical relative densities. This behavior may not 

apply to certain materials whose deformation behavior is non-linear; however, tablets with a wider 

range of relative densities can be compacted further and yield stronger tablets. 

  

Figure 11. Relationship between the regressed values of the Kuentz and Leuenberger equation for 

all formulations. Standard deviation bars were excluded to minimize clutter in the graph. 

4.3.4. Modeling tensile strength using blend material properties 

Regression results were used to establish a matrix of material properties and model 

regression parameters. Effectively, this matrix combined Table 6 and Table 2. The analysis 

indicated that a simple linear regression model satisfied the relationship between the two model 

parameters and two material properties with sufficient accuracy. Figure 12A shows the positive 

linear relationship between the critical relative density and blend bulk density. The positive 

relationship between the blend’s bulk and critical relative densities can be explained through the 

positive relationship between powder packing densities in unconfined (i.e., bulk) and confined (i.e., 
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consolidated) states. Increases in packing density at an unconfined state indicate the material has a 

higher packing density in a consolidated state. Thus, since the critical relative density is defined as 

the density in which the material transitions from a bulk powder to a compact, it is reasonable to 

see that the density of this confined state is higher than the bulk density. 

The positive relationship between the bulk and critical relative densities can also be 

explained in terms of the material’s porosity. Material porosity is a measure that describes the 

amount of void space in the powder bed. This metric, thus is negatively correlated with critical 

relative density, meaning that as the material is less porous, its critical relative density is higher. A 

powder’s initial porosity (𝜉), calculated as 𝜉 = 1 − (
𝜌𝑏𝑢𝑙𝑘

𝜌𝑡𝑟𝑢𝑒
⁄ ), indicates that materials with 

high bulk densities have low initial porosity (i.e., less space void space is available). The decrease 

in initial porosity suggests that a material (present as a flowing powder at a low porosity) needs to 

be compressed to an even lower porosity (i.e., a higher critical relative density) in order to form a 

compact. Thus, for the materials tested here, lactose had the highest critical relative porosity 

because its bulk density was the highest and it shared similar true densities with respect to the other 

excipients. 

 

Figure 12. Relationship between major material properties and their respective empirical models. 

(A) Relationship between bulk density and critical relative density. (B) Relationship between 

maximum tensile strength and permeability. 
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Figure 12B shows the positive linear relationship between the permeability and the natural 

logarithm of the maximum tensile strength coefficient. The relationship between these two 

properties can be explained given permeability’s correlation with particle size and the relationship 

between particle size and tablet tensile strength. Previous findings have shown that systems with 

smaller particle sizes (i.e., low permeability) yield lower strength tablets due to the reduced porosity 

and compactibility of smaller particles [162-164]. Since particle size was shown to be highly 

correlated with permeability given the loadings plot in Figure 8B, the correlation between these 

two measurements is in accordance to literature findings. Additionally, more permeable materials 

are able to evacuate air more quickly from their matrix, which allowed for more bonding surfaces 

to build between particles. This improved contact between particles increased the compact’s tensile 

strength at a given relative density, which in turn increased the tablet’s extrapolated maximum 

tensile strength.  

It is important to note that other correlated measurements with particle size, such as bulk 

and tapped density as shown in Figure 8B, could alternatively be correlated with the maximum 

tensile strength measurement. The relationship between the maximum tensile strength and bulk 

density, based on the correlations described on Figure 8B, shows a negative correlation (i.e., as the 

first increases, the second decreases). This can also be observed by comparing the results between 

Figure 12A and Figure 12B, which show that the order of excipient materials reverses based on the 

property by which the model parameter is plotted against. However, for the purposes of this work 

since the bulk density was correlated with the critical relative density, the permeability was 

correlated with the natural logarithm of the maximum tensile strength. 

Linear models were regressed for each of the observed relationships, yielding Equations 5 

and 6. The coefficients for 𝑎0, 𝑎1, 𝑏0, and 𝑏1 are presented in Table 3. These models provide the 

material property model needed to reach level 3 modeling. It is important to note these linear 

models are empirical in nature and may vary for future formulations, particularly for materials with 
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complex deformation mechanics. Nevertheless, it is important to mention these models are a first 

step to establishing the correlation between established models and material properties. 

 𝐿𝑛(𝐻𝑚𝑎𝑥) = 𝑎0 + 𝑎1𝜅 5 

 𝜌𝑐 = 𝑏0 + 𝑏1𝜌𝑏𝑢𝑙𝑘  

 

6 

The results show that there is good agreement between the material property model and 

regressed coefficients with an R2 value above 90%. A p-value less than 0.01 for both linear 

regressions also indicated the model parameters yielded statistically significant relationships 

between the regressed model coefficients and the material properties. 

Table 3. Empirical models for Kuentz and Leuenberger hardness model constants 

Material Property 
Constant 

Value 

 Model Constants* 

Units Log Max Hardness 

[𝐿𝑛(𝐻𝑚𝑎𝑥)] 
Critical Relative Density 

[𝜌𝑐] 

Model Constant 𝑎0 or 𝑏0  1.109 ± 0.03 0.381 ± 0.01 

Permeability (𝜅) 𝑎1 (
𝐿𝑛(𝑀𝑃𝑎)

𝑐𝑚2
) (3.907 ± 0.05) x 10-2 --- 

Bulk Density (𝜌𝑏𝑢𝑙𝑘) 𝑏1 (
𝑔

𝑐𝑚3
) --- 0.671 ± 0.02 

± Value represent the model regression standard error 

* Regression p-values for all coefficients were less than 0.01 

Using Equations 5 and 6 the values for maximum tensile strength and critical relative 

density were calculated for the ternary blend (i.e., the external validation sample set). The results 

for both variables yielded 7.22 MPa and 0.647 for the 𝐻𝑚𝑎𝑥  and 𝜌𝑐 respectively. These results led 

to a prediction errors 10% and 4.7% between the regressed model parameters, listed in Table 5, and 

the calculated model parameters using the empirical equation.  

Using the predicted model coefficients the tensile strength profiles as a function of relative 

density was calculated. Figure 13 shows the prediction of the ternary blend’s tensile strength as a 

function of relative density for the ternary blend along with the regressed model and the model 

whose coefficients were computed using Equations 5 and 6. 
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Figure 13. Prediction of the external validation ternary blender compaction curve using the 

empirical model to calculate the Kuentz and Leuenberger equation parameters. 

The calculated mean absolute prediction error over the entire compaction profile was 8%, 

indicating the model captured the external validation point accurately. It was noted that the curve 

over-predicted the tensile strength over the whole range of relative densities; such result can be 

attributed to the slight over-prediction of the maximum tensile strength. Further evaluations of 

regression models and more materials properties should be incorporated in future empirical models 

to reduce the model error.  

4.3.5. Level 3 model: Application to process development 

Combining Equations 3, 4, 5 and 6, the Kuentz and Leunberger equation can be rewritten 

with respect to material properties, as shown in Equation 7, below. 

 𝐻𝑡𝑎𝑏𝑙𝑒𝑡 = 𝐸𝑥𝑝(𝑎0 + 𝑎1𝜅) {1 − 𝐸𝑥𝑝 [𝜌𝑟 − (𝑏0 + 𝑏1𝜌𝑏𝑢𝑙𝑘) + 𝐿𝑛 (
1 − 𝜌𝑟

1 − 𝑏0 + 𝑏1𝜌𝑏𝑢𝑙𝑘
)]} 7 

With this modification, the Kuentz and Leuenberger equation integrates the effect of 

material properties, within the characterized range. Application of this equation, however, needs to 

be within the range of material properties characterized. Extrapolation to values of material 

properties outside the range may lead to erroneous results. Furthermore, it is important to note that 
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the range of material properties characterized here is very limited. Future studies need to account 

for a broader range of material properties and for other materials, which may affect the empirical 

relationships presented in Equations 5 and 6.  

Equation 7 provides an initial relationship, which can be used to predict the tensile strength 

of a tablet with respect to its material properties and tablet relative density. To further add value to 

this equation, the relative density value can be substituted by their relationship with critical process 

parameters. The relative density, as show in Equation 1, is directly related to the mass of tablets, 

which in turn is related to the volume fixed at the tablet press’s fill cam. Equation   8 relates the 

mass of tablets to the tablet press’s fill cam volume using blend bulk density. 

 𝑀𝑡𝑎𝑏𝑙𝑒𝑡 = 𝑉𝐹𝐶𝜌𝑏𝑢𝑙𝑘(1 − 𝜀) =
ℎ𝐹𝐶𝜋𝐷2𝜌𝑏𝑢𝑙𝑘(1 − 𝜀)

4
   8 

where 
 
V

FC
 is the fill cam volume, and e  is the fractional void space remaining in the fill cam due 

to incomplete filling. Furthermore, the equation can be related to the height of the fill cam by 

expanding the volume term, as shown on the far right of Equation   8. Here, 
 
h

FC
 is the fill cam 

depth. Combining Equations 1 and   8, leads to Equation 9, where the relative density of tablets is 

presented as a function of fill cam depth, tablet height, blend bulk density, blend true density, and 

efficiency of cam fill. 

 𝜌𝑟 =
ℎ𝐹𝐶𝜌𝑏𝑢𝑙𝑘

ℎ𝑇𝜌𝑡𝑟𝑢𝑒

(1 − 𝜀)
 

9 

The combination of Equations 7 and 9 leads to Equation 10. In this last equation there are 

no process or material property dependent constants, meaning that direct measurements of material 

properties and process parameters can be used to predict tablet tensile strength for a given material 

property range. The five inputs to this model equation are the blend’s permeability, bulk density, 

and true density, as well as the height of the fill cam and tablet thickness (i.e., height). 
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𝐻𝑡𝑎𝑏𝑙𝑒𝑡 = 𝐸𝑥𝑝(𝑎0 + 𝑎1𝜅){1 − 𝐸𝑥𝑝 [

ℎ𝐹𝐶𝜌𝑏𝑢𝑙𝑘

ℎ𝑇𝜌𝑡𝑟𝑢𝑒

(1 − 𝜀) − (𝑏0 + 𝑏1𝜌𝑏𝑢𝑙𝑘) + 𝐿𝑛(
1 −

ℎ𝐹𝐶𝜌𝑏𝑢𝑙𝑘

ℎ𝑇𝜌𝑡𝑟𝑢𝑒
(1 − 𝜀)

1 − 𝑏0 + 𝑏1𝜌𝑏𝑢𝑙𝑘
)]}

 

10 

 Equation 10 can be used to establish a parametric space with respect to blend properties 

and process conditions for tablets. The equation can predict negative values of tensile strength, 

which would be obviously erroneous and would represent regions were tablets are manufactured 

outside the given blend properties and blend conditions. Nevertheless, if a constraint is imposed to 

only use greater than zero values, the results will be valuable. 

4.3.5.1. Case 1: Tableting feasible space 

Using a constraint that tablet breaking forces needs to be greater than zero, a region were 

tablet manufacturing would occur under a specific set of parameter conditions was established. 

Furthermore, a process feasible space of material properties and process parameters was 

established; one where tablets with a breaking force of 60 Newtons can be manufactured. Breaking 

force was used given that tablet tensile strength is dependent of the tablet height, a parameter this 

work wanted to evaluate in the feasibility problem. The feasibility problem is mathematically stated 

in Problem 11.  

 

 

𝐻𝑡𝑎𝑏𝑙𝑒𝑡{𝜌𝑏𝑢𝑙𝑘 , 𝜌𝑡𝑟𝑢𝑒 , 𝜅, 𝜀, ℎ𝐹𝐶 , ℎ𝑇} >
2𝐹

𝜋𝐷ℎ𝑇
 

Subject to: 

0.3 ≤ 𝜌𝑏𝑢𝑙𝑘 ≤ 0.7 [=]
𝑔

𝑐𝑚3
 

5 ≤ 𝜅 ≤ 35 [=] 𝑥109  𝑐𝑚2 

6 ≤ ℎ𝐹𝐶 ≤ 10 [=] 𝑐𝑚 

ℎ𝑇 = {2.8, 3.0, 3.2} [=] 𝑚𝑚 

𝜌𝑡𝑟𝑢𝑒 = 1.5
𝑔

𝑐𝑚3
 

𝜀 = 0 

𝐷 = 8 𝑚𝑚 

𝐹 = {0,60} [=] 𝑁 

11 

Figure 14 shows four region plots where tablet production is feasible in accordance to the 

problem stated in Equation 11. Regions colored indicate tablets are feasible within the space, 
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whereas those not colored represent conditions where the feasibility constraint are not met. The 

blend’s true density (𝜌𝑡𝑟𝑢𝑒) was held constant at 1.5 g/cm3, tablet diameter was set to 8 mm, and 

the fractional void value (𝜀) was equal to zero. Figure 14A and Figure 14C show the effect of 

varying blend permeability, fill cam depth, and tablet height on the predicted tabletability at a 

constant blend bulk density for the two breaking forces. Figure 14A shows changes in blend 

permeability have no major effect in the tablet’s feasible region for breaking forces greater than 

zero. This result can be explained mathematically by the exponential relationship between 

permeability and tablet breaking force. Any increase in the permeability would cause an increase 

in the breaking force, which in turn would fulfill this feasibility problem’s constraint of any 

breaking force being larger than zero. Low values of fill cam depth led to unfeasible regions, and 

as the tablet height increased, the fill cam depth played a larger role in reducing the size of the 

region. Increases in tablet height, from 2.8 to 3.2 mm, led to a linear decrease in the feasible region. 

This reduction in the feasible region is expected since the ability to form a compact is reduced when 

there is little material to be compacted or when the tablet height is increased at constant total tablet 

weight. Figure 14C shows permeability influences the tablet feasible region when the breaking 

force is set to be higher than 60 Newton. This result is in accordance with this work’s previous 

finding, given that it was established that permeability was not related with tabletability (i.e., the 

ability to form a compact) but to tablet strength. 
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Figure 14. Region plots indicating the feasibility region for making tablets based on operational 
conditions and blend properties. Regions that are not shaded are operationally infeasible, meaning 

compacts are predicted to not be formed. Tablet thickness is varied at three levels. The breaking 

force constraint was also varied between 0 and 60 N. For tablets with breaking force higher than 0 

N graph (A) varies fill cam depth (mm) and blend permeability (cm2) at a constant bulk density. 
(B) Varies fill cam depth (mm) and blend density (g/cm3) at a constant blend permeability. For 

tablets with a breaking force higher than 60 N graph (C) varies fill cam depth (mm) and blend 

permeability (cm2) at a constant bulk density. (D) Varies fill cam depth (mm) and blend density 

(g/cm3) at a constant blend permeability. 

Figure 14B and Figure 14D similarly shows the regime plot for tablet manufacturing, 

varying the blend density, fill cam depth, and tablet height while maintaining the permeability 

constant. The results indicate that fill cam depth and blend density have a non-linear effect on the 

feasible region, which presents infeasibilities at low values of bulk density and low fill cam depth. 

Once again, increases in tablet height as well as constraints in requiring higher breaking forces 

reduce the tablet feasible space. 
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4.3.5.2. Case 2: Tableting design space 

Once the feasible space was characterized, this work proceeded to determine the design 

space of the system by not constraining the breaking force as done in Equation 11. Tablet tensile 

strength was predicted using Equation 10 and the process and material property ranges presented 

in the feasibility problem proposed in Equation 11. Figure 15 shows the results in six different 

contour plots. Figure 15A shows the predicted tensile strength of tablets at constant bulk density 

(𝜌𝑏𝑢𝑙𝑘 = 0.45 𝑔/𝑐𝑚3) and varying levels of tablet thickness and fill cam depth. Blend permeability 

was held constant in each of the contour plots and varied in intervals of 10 cm2. Predicted tablet 

tensile strength increased with increasing permeability and fill cam depth. This result relates to the 

previously observed results, as decreases in permeability correlate with the increasing amount of 

lubricant. As the value for tablet thickness increased, the feasible boundary also decreased and the 

tablets were weaker. Decreasing the tablet thickness increased the tablet hardness more 

significantly for the most permeable system, yet it had little impact for the lowers permeability 

system. These results agree with the previously discussed Figure 14. Figure 15B shows the 

predicted tensile strength of the tablet at a constant permeability (𝜅 = 10 𝑐𝑚2) and varying tablet 

thickness and fill cam depth. Bulk density was kept constant at each contour plot and varied in 

intervals of 0.1 g/cm3. Similarly to Figure 15A, the strongest tablets were predicted at the lower 

right corner of the contour plot, where the tablets fill cam depth was highest and the tablet thickness 

was lowest. As the tablet thickness increased, there was once again a predicted reduction in the 

tabletability space. 
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Figure 15. Contour plots showing the application of Equation 11 to determine the effect of 
operational parameters and material properties on tablet tensile strength. Tablet thickness was 

varied to three levels. (A) Varying fill cam depth (mm) and blend permeability (cm2) at a constant 

bulk density. (B) Varying fill cam depth (mm) and blend density (g/mL) at a constant blend 

permeability.   

It is important to note that all the material property ranges used for these design cases are 

based on the properties from the original blends. The material property ranges for this experimental 

design were narrow to provide this as a test of the methodology introduced. Future studies should 

aim at adding more materials and property measurements to the study and further improving the 

empirical correlations between material properties and model constants. 

4.4. CONCLUSIONS 

In this work, a methodology to integrate material properties into existing 

phenomenological models was presented using a pharmaceutical manufacturing relevant case. 

Several blends using three commonly used pharmaceutical powders were prepared and 
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characterized using standard methods. These blends were compressed at various relative densities 

and the resulting tablets were broken using an axial compression test. Results indicated that, as 

expected, tablet tensile strength for the case study examined here depends both on material 

properties and process parameters.  

The effect of material properties on tablet tensile strength was studied using a 

phenomenological model and used to determine model constants. Regressions of 

phenomenological model coefficient corroborated the empirical relationship between tensile 

strength and material properties. Results demonstrated that a direct relationship between material 

properties and phenomenological model coefficients can indeed be determined, greatly accelerating 

the development of effective models. An empirical model was built subsequently to relate the 

material properties to the model parameters, effectively preserving the data obtained into a simple 

model. This empirical model was used to evaluate a compression design space and an operational 

space, accounting for material properties, and used to determine a “feasible space” for tablet tensile 

strength.  

These results provide a proof-of-concept for the modeling approach described in Chapter 

III. This approach can aid the process development, especially in design space characterization and 

robustness analysis. Overall, this work can be used as a template for correlating material properties 

to phenomenological models of other unit operations involved in continuous pharmaceutical 

processing. 
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4.5. LARGE TABLES AND FIGURES 

Table 4. List of materials used for the tablet compaction and material properties study 

Material  Description Bulk Density (g/cm3) True Density (g/cm3) Reference 

Lactose Foremost® NF Lactose Monohydrate 0.64 – 0.68 1.54 [143, 165] 

Avicel® PH 101 Microcrystalline Cellulose NF 0.26 – 0.31 1.55 [165, 166] 

Avicel® PH 301 Microcrystalline Cellulose NF 0.34 – 0.45 1.55 [165, 166] 
Acetaminophen APAP ComPap L 0.60 – 0.70 1.29 [165] 

Magnesium Stearate Magnesium Stearate, NF 0.15 – 0.18 1.09 [167] 

 

Table 5. Blends used for the experimental evaluation of compaction and material properties 

Blend Main Ingredient Added Ingredient Magnesium Stearate 

1 Lactose - 0.25% 

2 Lactose - 0.75% 

3 Lactose - 1% 

4 Lactose - 1.50% 

5 Avicel® PH101 - 0.25% 

6 Avicel® PH101 - 0.75% 

7  Avicel® PH101 - 1% 

8  Avicel® PH101 - 1.50% 

9 Avicel® PH301 - 0.25% 
10 Avicel® PH301 - 0.75% 

11 Avicel® PH301 - 1% 

12 Avicel® PH301 - 1.50% 

13 Avicel® PH101 APAP ComPap L (15%) 1% 
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Table 6. Material characterization results. Developed during characterization of this work and adapted from [154] 

Blend 
Bulk Density 

(g/cm3) 

Tapped Density 

(g/cm3) 

Hausner 

Ratio 

Permeability at 

15kPa (x109 cm2) 

Compressibility 

(% Volume) 

Mean 

(µm) 

d10 

(µm) 

d50 

(µm) 

d90 

(µm) 

PS SD* 

(µm) 

1 0.647 ± 0.007 0.883 ± 0.019 1.366 12.62 ± 0.90 14.95 ± 0.54 55.05 11.48 55.69 96.94 31.31 

2 0.667 ± 0.000 0.913 ± 0.007 1.370 8.17 ± 0.35 14.91 ± 0.15 53.31 9.57 53.65 96.29 31.90 

3 0.646 ± 0.006 0.902 ± 0.000 1.396 7.53 ± 0.51 16.02 ± 0.79 49.31 8.47 49.84 89.33 29.91 

4 0.668 ± 0.012 0.915 ± 0.006 1.370 6.76 ± 0.11 16.17 ± 1.21 49.18 7.81 48.90 91.34 31.03 

5 0.349 ± 0.003 0.456 ± 0.009 1.307 36.85 ± 1.24 15.19 ± 0.05 71.06 16.29 55.87 106.87 32.78 

6 0.366 ± 0.002 0.477 ± 0.002 1.304 31.66 ± 2.28 14.46 ± 0.54 66.24 13.95 51.92 95.72 30.27 
7 0.368 ± 0.007 0.479 ± 0.009 1.303 29.62 ± 0.52 14.35 ± 0.36 69.27 12.53 49.04 88.26 28.00 

8 0.362 ± 0.001 0.484 ± 0.005 1.339 28.35 ± 2.57 14.14 ± 0.37 56.60 12.13 49.88 94.33 30.38 

9 0.446 ± 0.000 0.587 ± 0.007 1.314 24.83 ± 0.60 13.26 ± 0.19 59.01 18.10 66.23 129.63 39.46 

10 0.458 ± 0.013 0.592 ± 0.001 1.292 23.81 ± 0.18 13.91 ± 0.16 53.72 17.41 62.61 119.87 37.30 

11 0.454 ± 0.007 0.588 ± 0.000 1.297 20.47 ± 0.54 13.93 ± 0.71 49.82 17.47 66.13 123.85 39.21 

12 0.465 ± 0.001 0.595 ± 0.004 1.279 18.73 ± 1.18 13.34 ± 0.33 51.94 13.18 55.99 99.34 31.50 

13 0.396 ± 0.001 0.514 ± 0.009 1.299 21.88 ± 0.29 12.85 ± 0.31 65.71 16.42 63.22 116.93 36.94 

± Value represent one standard deviation 

* SD – Standard Deviation 
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Table 7. Blend Principal Component Analysis (PCA) result values. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

PCA 

Metrics 

Eigenvalue 6.229 1.608 0.6320 0.3315 0.1707 0.0197 0.0065 0.0020 0.0005 

Proportion 69.2% 17.9% 7.0% 3.7% 1.9% 0.2% 0.0% 0.0% 0.0% 
100.0% Cumulative 69.2% 87.1% 94.1% 97.8% 99.7% 100.0% 100.0% 100.0% 

          

Material 

Properties 

Bulk Density -0.380 -0.005 -0.386 -0.059 -0.164 -0.088 -0.313 -0.603 -0.455 

Tapped Density -0.380 -0.041 -0.389 -0.042 -0.132 -0.055 -0.083 -0.039 0.820 

Permeability 0.327 0.076 -0.475 0.679 0.398 0.107 -0.171 -0.016 0.017 

Compressibility -0.263 -0.530 0.037 -0.246 0.755 0.124 0.020 -0.053 -0.014 

Mean Particle Size 0.183 0.612 -0.347 -0.527 0.351 -0.132 0.228 -0.035 -0.008 

Particle Size d10 0.386 -0.075 -0.061 -0.390 -0.119 0.574 -0.581 0.019 0.088 

Particle Size d50 0.315 -0.418 -0.362 -0.084 -0.266 0.240 0.637 -0.230 -0.024 

Particle Size d90 0.332 -0.397 -0.239 -0.187 -0.073 -0.703 -0.257 0.266 -0.061 

Porosity 0.379 -0.002 0.400 0.027 0.119 -0.253 -0.056 -0.712 0.329 

 

 

Figure 16. Regression results from tablet tensile strength models with respect to the concentration of magnesium stearate. (A) Critical relative density 

regression results (B) Maximum tensile strength regression results. All error bars represent one standard deviation.  
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Description of the material property measurement techniques are thus provided in the appendix 
section of this thesis, in order to focus on the primary aim of this work, which was the application 

of the measured properties to explore the material space. 

5.1. INTRODUCTION 

Material properties are critical to the performance, success, and failure of powder-based 

manufacturing processes, including pharmaceutical solid-dose products. Research in the areas of 

ceramics [168-171], metallurgy [172-175], catalysts [176-178], food [179-184], and 

pharmaceuticals [13, 185, 186] have demonstrated that both raw materials properties and material 

history (i.e., the conditions at which a powder has been exposed) affect the performance and 

outcomes of subsequent unit operations and the attributes of intermediate materials and final 

products.  

Although the manufacturing process for solid-dose products has been studied for many 

decades, the link between in-process material properties and product development is still largely 

empirical. This is partly because powders are intrinsically complex and their behavior is linked not 

only to chemical composition, but also to particle size distribution, particle morphology, moisture 

content, and both micro and mesostructure. Another reason why this relationship has not properly 

established is that it is intrinsically difficult to observe and measure the powder properties when it 

is flowing or processed. Moreover, while powder behavior and its impact on processing outcomes 

is a multivariate phenomenon, the use of multivariate methods in pharmaceutical process 

development has only recently been considered after the PAT and Quality-by-Design (QbD) 

initiatives of the FDA circa 2003 [13, 14, 65, 187-191].  

The effects of critical material attributes on the quality of final products is often examined 

as part of the QbD-compliant methods to explore a design space. Nevertheless, material property 

understanding can help addressing the manufacturability of drug products, as discussed in ICH Q8 
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[192], since manufacturability often involves the interactions between the materials and the 

manufacturing processes. Some partial empirical examples of interaction between ingredient 

material properties and their intended applications have emerged over time. For example, viscosity 

specifications are common in the commercialization of sustained release polymers (e.g., poly-

ethylene oxide, substituted celluloses) and are used by formulators to select grades of such materials 

for intended release profiles [193-195]. Powder cohesion, a granular material property similar to 

that of viscosity in fluids, was found to be important at describing process performance for unit 

operations such as mixing, where the affinity for particles to assemble into agglomerates, impacts 

the degree of micro-mixing that occurs in a blender, and therefore the resulting blend homogeneity 

[196-201]. Furthermore, flow properties of cohesive powders are strongly dependent on the state 

of consolidation, and are dramatically affected by delumping, conveying, and storage. 

Permeability, or the ability of air to pass through a powder bed, was found to be critical in 

explaining how powders fill dies in a tablet press [202], related to effects in tablet weight variability 

[203]. Wettability of blends containing friable hydrophobic ingredients (e.g., magnesium stearate) 

is strongly sensitive to strain [191, 204-211]. Electric charge storage can be strongly affected by 

moisture content, which in turn is very strongly affected by blend temperature [212-214]. Other 

properties such as the propensity of a material to pack under its own weight, the amount of energy 

required to move a blade through the material, and the segregation tendency of materials can all be 

important at describing the powder behavior and process performance at different places 

throughout a continuous manufacturing process [137, 215, 216]. 

Three of the major hurdles in understanding the effect of material properties on process 

condition are: (1) variability of raw materials, which is hard to characterize, (2) reduced 

product/process development timelines, and (3) number of processing steps required to create a 

drug product. Solid dosage products manufacturing typically involves multiple sequential unit 



75 

 

 

 

operations (e.g., delumping, premixing, granulation, drying, milling, lubrication, compaction, 

coating), wherein each exposes the material to various levels of shear, normal stress, moisture, and 

temperature. Each of these unit operation steps aims at changing the material’s properties (e.g., 

particle size, acquisition of electrical charge, moisture transfer between ingredients, agglomeration 

and electrostatic sticking, and other shear dependent phenomena) in order to obtain a desirable 

outcome that permits the material to be processed into a final product. As a result, the properties of 

the intermediate materials (e.g., blends, granules, and compacts) throughout a manufacturing 

process are often dependent on the composition, the raw material properties, and the material’s 

processing history.  

Systematic characterization of raw material properties can help anticipate and avoid 

potential process failures caused by multiple modes such as sticking, agglomeration, poor mixing, 

and segregation. Moreover, raw material property evaluation and control often is a key element of 

a robust control strategy. Appropriate specification of material properties can be used to control 

raw material lot-to-lot variations so that a state of control can be assured.  

The work in this chapter seeks to provide a blueprint for building a material property 

database in an efficient and reliable manner. The goal is to provide a meaningful case study, 

wherein a representative material property library is developed using a series of measurements, and 

then use those material property measurements to establish relationships between those materials 

and process performance. Further, the measured properties are evaluated to group materials based 

on such measurements. The results are further used to determine which material properties are 

highly correlated with one another, in an effort to provide a case study for characterizing the level 

of similarity between measurement in future material property libraries. To achieve these goals, the 

article is organized as follows. The rest of section 5.1 covers the general rationale and uses of 

material property databases, the definition of a surrogate material, and the multivariate analysis 
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methods used in this study. Section 5.2 introduces the materials and property measurement methods 

used in this work. Section 5.3 is devoted to presentation and discussion of results, whereas section 

5.4 presents conclusions of this chapter’s work. 

5.1.1. Rationale for material property libraries 

The compilation of raw and intermediate material properties of granular components to 

create comprehensive property databases is a critical step in deepening our understanding of how 

material properties affect process performance. A material property library, asides from complying 

with documentation, input examination, and operation monitoring guidelines set forth within the 

Current Good Manufacturing Practices (CGMP) paradigm, may be used for a wide range of uses 

and applications. Uses of such a material property library include: (1) serving as a repository of 

information describing effects of material properties on process performance, (2) facilitating the 

standardization of testing methods and the specification of property value ranges for commercially 

available ingredients, (3) supporting the identification of equivalent (i.e., interchangeable) 

materials based on their properties, (4) enabling the identification of surrogate materials for process 

development based on their properties, and (5) creating mathematical models relating material 

properties to unit operation performance. Figure 17 graphically summarizes some of the uses and 

knowledge that can be derived from material property libraries. 

 

Figure 17. Some potential uses for material property databases or libraries. 
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 Material property libraries used as repositories of information facilitate compliance with 

cGMP guidelines, which requires the use of material property measurements to evaluate process 

performance. Gathering and preserving knowledge throughout development and manufacturing 

stages, as required by FDA guidance documents, enables the scientist to detect trends, and helps 

evaluate process performance for current and future processes. Given a list of testing methods, 

process developers can establish a standard framework for characterizing new materials, which 

serves as a starting point for their development efforts. Further, the measurements collected in the 

libraries can be used to discern which measurements provide relevant information about a material, 

as well as determine the concise number of material properties that need to be measured.  

A number of commercially available powder characterization methods such as powder 

rheometers, particle size analyzers, and segregation testers have gained wide acceptance in recent 

decades. Other examples of current methods and measurements for powder systems include, for 

example: powder cohesion, bulk and tap density, dilation, permeability, compressibility, shear 

sensitivity, hydrophobicity, and electrostatics [138]. However, an important missing step is that 

such methods have not been standardized across equipment or experimental facilities, preventing 

the creation of reproducible characterization metrics. For example, results obtained using different 

shear cells cannot be translated [217, 218] and different particle size methods famously give 

different results [219]. 

Although results obtained by different powder flow characterization methods may be 

different, they are often highly collinear, making it possible to collapse the relevant information to 

a smaller number of degrees of freedom that can be sampled equivalently by different methods 

[220]. However, since it is not clear a priori which testing methods are more accurate or 

meaningful, at the early stages of library development, all available material property tests should 

be considered to develop a broad data foundation. After an initial library is developed, the 
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information gathered can be used to assess which material properties are most relevant to a given 

process, the relative accuracy of the measurements, and the degree of co-linearity among 

measurements. This analysis can be performed using several multivariate analysis techniques, some 

of which will be discussed in this work.  

5.1.2. Surrogate materials 

Replacement of a material by another with “similar properties” is often desirable in 

pharmaceutical development. This is the case, for example, when an ingredient must be substituted 

because it is commercially unavailable (due, for example, to import limitations), undesirable (for 

example, when magnesium stearate or materials from animal sources needed to be replaced by non-

animal material), or when one desires to develop a generic version of a branded formulation. The 

need to find materials with similar behavior also arises at early stages of pharmaceutical process 

development, where active pharmaceutical ingredients are scarce, expensive, or unavailable, or 

when the material to be replaced has high, or unknown, toxicity. Finally, in recent years the rapidly 

growing interest in continuous manufacturing has highlighted the need to measure the residence 

time distribution of powders in manufacturing equipment, which requires the use of tracer materials 

with properties similar to an ingredient or a blend of interest [34, 221]. In all of these situations, 

one needs to replace the target material with one whose relevant properties exhibit a similar 

behavior. Such a replacement material is hereon referred as a “surrogate” material. The emphasis 

on “relevant” is critical here as researchers might need different surrogate materials to capture flow, 

compaction, or dissolution behaviors. However, in any case, the question is the same: given a 

material of interest and a finite list of replacement candidates, how do researchers identify a 

material that will mimic its behavior most closely? Clearly, the first necessary step is to build a 

material property database consisting of properties describing or predicting the behavior for which 
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the researchers want to identify the surrogate. In the following section, this work clarifies how the 

material database can be explored using multivariate tools to identify a surrogate material. 

5.1.3. Multivariate analysis tools for databases 

Given the plethora and correlated nature of measurements available to characterize 

powders it is important evaluate data collection efforts (i.e., population of information onto the 

database) by means of multivariate methods. Intuitively, one would expect that a larger number of 

measurements would yield a “better” representation of the system (i.e., powder or blend); however, 

material, cost, and time constraints often do not allow researchers to measure all the material 

properties. Moreover, noisy or unreliable measurements may not increase or improve knowledge 

of the system and perhaps even affect the interpretation of other, more reliable measurements. Thus, 

the list of material properties to be included in the database must be scrutinized to minimize the 

number of measurements, measurement noise, and associated expense (e.g., cost of material, time), 

while maximizing data quality.   

The foregoing notwithstanding, the material property database also needs to be broad 

enough to encompass all the behaviors of interests. Since different measurements are relevant to 

different process behavior, there is risk in selecting the final list of material properties too early in 

the process, only to be forced to reverse course at a later date and expand the list again when new 

process or product challenges emerge. Clearly, such a trade-off will require multiple iterations and 

accumulation of experience before a final inventory of desirable and appropriate measurements can 

emerge. Until then, as information is collected, researchers must evaluate the material property 

library, add data to the library by characterizing new materials and properties, and re-evaluate the 

library again. This iterative process is important to adapt the library to new material and 

measurements.   
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A useful conceptual approach is to maximize the information content of every 

measurement. Several simple and easily accessible multivariate analysis tools can be used to 

evaluate material property libraries that are constantly growing in both dimensions and variability 

[222]. In this work, two widely accepted multivariate methods were applied to the material property 

library: principal component analysis (PCA) and cluster analysis. Both of these methods are 

described in further detail in Appendix B (page 247) given that their application in modeling are 

quite extensive. 

5.2. MATERIALS AND METHODS 

5.2.1. Materials 

This work used a material property library developed at ERC-SOPS that included a set of 

twenty pharmaceutically-relevant materials. A total of five active ingredients and fifteen excipients 

composed the material dataset. The names and manufacturers of the materials are provided in Table 

8, below. All materials were provided by Janssen Pharmaceutica (i.e., the industrial collaborator of 

the ERC-SOPS) for a project funded by the company. Note most names of active compounds have 

been masked for proprietary reasons. Materials were stored under controlled environmental 

conditions in sealed bags until testing was performed. The temperature and relative humidity of the 

storage room were kept between the ranges of 20 to 25 °C and 20 to 40%, respectively. Every 

material was tested within three (3) months of receipt from the industrial collaborator. 
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Table 8. List of materials used in experiments and their manufacturers 

Material Manufacturer 

Acetaminophen Mallinckrodt, St. Louis, MO 

Anhydrous Calcium Di-Phosphate JRS Pharma JMBH & Co. KG, Rosenberg, Germany 

API 1 Janssen Pharmaceutica, Beerse, Belgium 

API 2 Janssen Pharmaceutica, Beerse, Belgium 

API 3 Janssen Pharmaceutica, Beerse, Belgium 

API 4 Janssen Pharmaceutica, Beerse, Belgium 

Cellulose International Fiber Corporation, North Tonawanda, NY 

Croscarmellose Sodium FMC Biopolymer, Philadelphia, PA 

Crospovidone Ashland, Bridgewater, NJ 

Lactose 1 & MCC 1 MegglePharma, Wasserburg, Germany 

Lactose 2 DFE Pharama, Goch, Germany 

Magnesium Stearate Seidler Chemical, Newark, NJ 
MCC 1 FMC Biopolymer, Philadelphia, PA 

MCC 2 FMC Biopolymer, Philadelphia, PA 

MCC 3 FMC Biopolymer, Philadelphia, PA 

MCC 4 FMC Biopolymer, Philadelphia, PA 

Silicified MCC JRS Pharma, Rosenberg, Germany 

Starch 1 Everest Starch, Gujarat, India 

Starch 2 Venus Starch Suppliers, Tamil Nadu, India 

Starch 3 Maruti Chemicals, Ahmedabad, India 

API = Active Pharmaceutical Ingredient; MCC = Microcrystalline cellulose. 

5.2.2. Characterization methods 

To build the material property database, each material used in this study (listed in Table 8) 

was subject to a standard set of characterization techniques to determine their properties. The 

characterization techniques are described in Appendix A (page 240) given that measurements they 

were not performed by the author of this thesis and they have been previously described in detail 

[217, 218, 223]. 

5.2.3. Equipment 

A single GEA Compact Feeder (GEA Process Engineering, Belgium) feeder fitted with a 

20 mm concave screw and a 63:1 servo motor gearbox ratio was used to test the behavior of the 

material when being fed. The feeding operation was performed under volumetric control at a 

nominal screw speed of 415 RPM (90% drive command). A high speed DSLR camera (Nikon, 

New York, USA) was placed at the barrel’s exit to photograph the material exiting the unit.  
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5.2.4. Software 

Principal component analysis (PCA) was performed using the algorithm provided in 

Wolfram Mathematica V11.1 (Wolfram Alpha LLC, Illinois, USA). Within the Mathematica’s 

PCA algorithm mean centering was performed to the variables in order to balance the effect of 

dimensions on the measurements. A comparative PCA was performed using JMP Pro 13 (SAS, 

North Carolina, USA). Wolfram Mathematica V11.1 was used to generate graphs and compute the 

Euclidean distances of materials in the score plot, as well as perform the clustering of materials 

based on their material properties. A hierarchical categorical clustering method was used, wherein 

the distances between data points were calculated using the Squared Euclidean Distance method, 

provided within Mathematica. JMP Pro 13 was used for the development of measurement 

correlation charts, diagrams, and clustering.  

5.3. RESULTS AND DISCUSSION 

5.3.1. Material properties 

 A total of 32 measurements were performed on each of the twenty materials listed in Table 

8, as described on the Material and Methods section. This library, developed as part of the ERC-

SOPS material library development efforts, solely consisted of the materials listed in Table 8. The 

characterization work, performed by Dr. Sejal Shah, Dr. Sara Moghtadernejad, and Dr. James 

Scicolone, is greatly appreciated and acknowledged as part of this work. Table 14 and Table 15 

present the averaged results (n = 3) of the material property measurements. All material properties 

measurements had a relative standard deviation below 10%, indicating the measurements were 

reproducible.  

INSERT Table 14 and Table 15 HERE 
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 After the characterization tests were performed and the material properties acquired, the 

measurements were compiled and transferred to the both Mathematica and JMP software, where 

the multivariate analysis (the main focus of this work) was performed. 

5.3.2. PCA results 

The material property results were used to perform a multivariate principal component 

analysis (PCA), wherein the results were divided into two different matrices: scores and loadings. 

The scores matrix (20 x 32) contained the linear combination of each of the material properties 

listed, while the loadings matrix (32 x 20) contained the linear combination of those properties with 

respect to their original measurements. An eigenvalue matrix containing the vector lengths for each 

of the 32 principal components (PC) was also reported to determine the variance explained by each 

PC. The results of the PCA matrices are provided in the supplementary document. 

The eigenvalue matrix was used to determine the amount of variability from the original 

material property list explained by each PC. Eigenvalues were normalized with respect to the sum 

of all eigenvalues to establish a percent of variability explained. The individual and cumulative 

amounts of variability explained by the PCs are plotted in Figure 18. The first five principal 

components explained 55.2, 19.4, 7.3, 7, and 4.7% of the original dataset. 

 

Figure 18. Percent of variability explained per PC and cumulative using the eigenvalues of the PCA 

results 
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 From the results in Figure 18, this work identified the first three and first five principal 

components explained 81.9% and 93.6% of the cumulative material property variability in the 

database, respectively. Using a 90% variability cutoff for explaining sufficient variability of the 

original dataset, this work identified that the first five (5) PCs could be used to express the 32 

measurements (i.e., dimensions) of the 20 different materials, effectively reducing the 

multidimensional space to a more manageable number of dimensions. These five PCs were used 

for future analysis of the material property database in subsequent sections. The results for the 

scores, loadings, and eigenvalues for the first five PCs are listed in Table 11. 

INSERT Table 11 HERE 

Figure 21A and B shows the two-dimensional (2-D) projections of the scores and loadings 

plots of the first two principal components of the PCA results, respectively. Figure 21C and D show 

the three dimensional (3-D) plots of the scores and loadings for the first three principal components, 

respectively. The numbers in brackets next to the axis labels express the amount of variability in 

each PC.  

INSERT Figure 21 HERE 

Figure 21A shows the location of each of the materials from our dataset and their position 

with respect to the first two principal components, which combined explained 74.6% of the dataset 

variability. Within the score plot, APIs and other poorly flowing materials such as cellulose and 

magnesium stearate (i.e., materials G and L, respectively) were observed to group towards the 

positive end of the first principal component, whereas material with improved flow properties (e.g., 

MCCs and anhydrous calcium di-phosphate) grouped towards the negative end of the first 

component. This is an indicator that principal component 1 (PC1) relates to material flowability in 

a quantitative manner. Figure 21B plots the values for each of the material properties with respect 

to their first two principal components. The location of these measurements on the loadings plot 
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indicates the contributions of each original measurements in that PC. For example, from Figure 

21B, the results indicate PC1 is composed of the linear combination of all measurements with the 

highest contributions being from cohesion and d10 (i.e., measurements 19 and 29), since they are 

located at both ends of the PC1 axis.  Furthermore, Figure 21B shows that there are two major 

groups of material properties at opposite ends of the first principal component: permeability and 

compressibility; both of which were performed at varying degrees of normal compression pressures 

in the FT4 Powder Rheometer.  

The grouping of both measurements at different compression pressures indicates that the 

results are highly collinear, meaning the measurements are strongly related. However, it is not 

sufficient to observe PCA results in only 2-D, since 25.4% of the dataset’s variability would be left 

out of the analysis and, as a result, points that appear close to each other in a 2D projection can in 

fact be quite far apart. Therefore, the third PC was included to verify whether some of the trends 

observed in the 2-D plots were maintained in 3-D. Notably, in Figure 21C materials were scattered 

around the eight different quadrants with minimal overlap, indicating that each material was 

different based on their properties. The third dimension helps to separate the group of crospovidone, 

starch 1, and starch 3, which fall into the fourth quadrant of Figure 21A. Figure 21D shows that the 

measurements are not represented in all quadrants, and exhibit a high degree of overlap, especially 

the aforementioned permeability and compressibility. These measurement similarities will be 

discussed in the subsequent sections of the article. Such data structure also suggests that additional 

materials, populating the “empty regions”, might be needed in the future to obtain suitably 

“complete’ models.  

5.3.3. Material similarity index using PCA (SIMIN) 

Determining the differences between materials requires comparing the different material 

properties and determining if variations in one property are sufficiently large to make them 
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different. This method is cumbersome when considering more than a few properties, and becomes 

complicated and potentially misleading as the number measurements increase. Given the results of 

the PCA analysis, the problem’s dimensionality was greatly reduced from 32 measurements to 5 

linear combinations of those measurements. The values were normalized to a scale that allows for 

analysis of several measurements by using one PC value. 

From the PCA results a “single number” quantitative metric was developed to determine 

the degree of similarity of any two materials. The PC score values were transformed to distance 

values in PC-space using the multidimensional Euclidian distance equation. The Euclidean distance 

equation was weighted based on the amount of variability explained by each component to properly 

adjust the distances on each component. The weighted results, given the orthogonal and 

orthonormal behavior of PCA, would allocate properly the percent variability explained by each 

PC.  The multidimensional weighted Euclidian distance (𝑑) equation between two points p and q 

is shown in Equation 12, below, 

 

𝑑𝑝−𝑞 = √∑𝑤𝑖

𝑚

𝑖=1

(𝑝𝑖 − 𝑞𝑖)2 
12 

where 𝑤𝑖 is the percentage variability explained by the PC in dimension 𝑖, 𝑝𝑖 and 𝑞𝑖  are the location 

of each point in dimension 𝑖, and 𝑚 is the number of dimensions used from the PC. In our case, the 

number of dimensions is five (m = 5). Equation 12 can thus be used to quantitatively measure 

similarity between two materials by means of their distances. Materials that are close in PC-space 

(i.e., have small Euclidian distances) are considered to behave similarly based on their material 

properties, whereas materials that are further apart (i.e., have large Euclidian distances) behave 

differently based on their properties. Importantly, we re-emphasize that the method should be used 

for different sets of measurements as they pertain to the specific behavior of interest in order to 
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identify materials that behave similarly for the specific behavior of interest (i.e., flow, mixing, 

compression, dissolution, etc.).  

 Using the results presented in  Table 11 and the five PC dimensions, the weighted 

Euclidean distance between all of the materials was calculated, creating a matrix of distances 

between components. Each material had different minimum (𝑑𝑝−𝑚𝑖𝑛) and maximum (𝑑𝑝−𝑚𝑎𝑥) 

distances in PC-space. To compare the distances between a material p and any other material (X), 

a metric that would base the analysis with respect to pairs of distances was developed. To maintain 

a 0 – 100% scale comparison metric, each distance was normalized with respect to the individual 

minimum and maximum distances. The resulting value was defined as the similarity index 

(SIMIN), shown in Equation 13. 

 
𝑆𝐼𝑀𝐼𝑁 = 100 (

𝑑𝑝−𝑋−𝑑𝑝−𝑚𝑖𝑛

𝑑𝑝−𝑚𝑎𝑥 −𝑑𝑝−𝑚𝑖𝑛
) 

13 

Table 16 presents the results for the similarity index (SIMIN) between all materials used 

in this study. As shown in Table 16 the SIMIN metric matrix is not symmetrical given that distances 

between materials vary depending on the minimum and maximum distances of the materials. The 

denominator for each material varies depending on how far or close that material is to its nearest 

or furthest neighbor. A symmetrical SIMIN matrix can be developed if the minimum and maximum 

values are used to re-scale the values for each material. Thus, rows U and V in Table 16 show the 

minimum and maximum distances for the material listed on the column, as calculated using 

Equation 12. 

INSERT Table 16 HERE 

 The results from the SIMIN metric readily show that each material is associated with 

materials possessing similar and dissimilar properties. For example, material A (i.e., 

acetaminophen) is in close proximity to materials E and C (i.e., APIs 3 and 1) and far away from 
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materials B and J (i.e., Anhydrous calcium di-phosphate and Lactose 1 & MCC 1). This relationship 

appears to be in agreement with expected findings: both of the APIs that are in close proximity 

were selected qualitatively because they had flow properties “similar” to acetaminophen. Likewise, 

the results of materials that are far apart were in agreement with the expected values as these 

materials were qualitatively selected to have very different flow properties.  

From a development standpoint, this result indicates that an experimenter could use 

acetaminophen as a surrogate material for performing equipment and process characterization in 

processes where APIs 1 and/or 3 are used. This also means that API’s 1 and 3 could be used 

interchangeably to characterize a process dominated by flow properties (i.e., flow in a hopper, 

gravimetric feeder, blending, and tracers in a RTD study). On the other hand, this results shows 

that materials such as anhydrous calcium di-phosphate and lactose 1 & MCC 1 may not be used to 

replace acetaminophen during process development and/or equipment characterization. 

Importantly, if the “similar” material is required to study a different behavior, one that is potentially 

independent of flow properties (e.g., for example, wettability) a different set of materials properties 

is likely to be needed in the original database. 

From the SIMIN values, it is also possible to observe how materials of the same group fall 

close to each other based on their chemical composition. The starches (i.e., materials R, S and T on 

Table 16) have all SIMIN values less than 40%, which indicate their materials properties are 

relatively similar to each other. Furthermore, both well-flowing excipients with lactose as a main 

ingredient (i.e., materials J and K) also appear to have similar flow properties, with SIMIN values 

less than 5%. Importantly, although the material property database used here is quite small, it 

suggests that the methodology could be very useful; from the knowledge obtained by the SIMIN 

metric, manufacturers may be able to determine whether an excipient can be used as a surrogate 
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for another while maintaining the chemical composition of the formulation, for example when 

replacing one grade or commercial supplier of microcrystalline cellulose.  

It is important to note that the SIMIN metric depends on the measurements (i.e., test) 

available on the material property database. However, given the normalization of the distance based 

on the materials minimum and maximum distances, the results of the SIMIN are robust with respect 

of the order that materials have on the matrix. On page 93, the robustness of material order is tested 

using clustered groups of materials. 

5.3.4. Cluster analysis 

Following the calculation of the SIMIN metric, JMP’s hierarchical cluster analysis was 

used to analyze the material property database and establish groups of materials with similar 

properties. The clustering method evaluated distance using the Squared Euclidean Distance metric 

to utilize all available material properties (i.e., 32 measurements). The distance grouping algorithm 

to cluster materials was based on their proximity in Euclidian space. It is important to emphasize 

that the clustering method did not use the aforementioned PCA scores and values, but rather the 

full set of material properties and their standardized distances.  

The number of cluster groups to allocate materials for the analysis was set to three (3) 

groups. The results for the cluster analysis are listed in Table 10, where the materials in Table 8 are 

listed as a function of the three groups based on their material properties. 

INSERT Table 10 HERE 

 Acetaminophen, API 1, API 3, cellulose, and magnesium stearate belong to group 1. Based 

on this result and previous experience with these ingredients, this group lists materials with poorly 

flowing materials with high tendency to stick to surfaces. Group 2 is composed by API 2, API 4, 

croscarmellose sodium, crospovidone, MCC 1, MCC 4, MCC 3, and the 3 starches. From this 
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cluster result, this group represents materials with slightly better flow properties than group 1 (i.e., 

more granular flow) and do not tend to stick to surfaces. Lastly, group 3 is composed by the better 

flowing materials: anhydrous calcium di-phosphate, lactose 1 & MCC 1, lactose 2, MCC 2, and 

silicified MCC. These materials resemble each other on their ability to flow well and have no 

tendency for sticking to surfaces. 

 Figure 19 compares the clustering results of Table 10 with those of the SIMIN. Notably, 

the SIMIN values for the materials within each of the designated groups in Table 10 were between 

0 and 50, particularly for the materials in groups 1 and 3. This result indicates that these materials 

had a similar flow behavior based on both the SIMIN and clustering methods. Group 2’s results 

ranged between 0 and 72, indicating that some materials had relatively more dissimilar materials 

than those grouped in groups 1 and 3. This last result is reasonable given that this group 

encompassed the largest set of materials and, therefore, should include the largest set of material 

properties. Further, the materials clustered in each group appear to be largely similar to one another, 

which is the main objective of the clustering method. For these reasons, it is believed that both the 

results from the SIMIN metric and the clustering method agree with each other. 
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Figure 19. Comparison of results from the SIMIN matrix (Table 16) to the clustering results (Table 
10). (A) Materials in group 1, (B) materials in group 2, (C) materials in group 3, (D) materials in 

group 1 compared to those in groups 2 and 3, (F) materials in group 2 compared to those in groups 

1 and 3, (G) materials in group 3 compared to those in groups 1 and 2. 

 Figure 19 also shows the results of comparing the SIMIN values of grouped materials 

against those materials not belonging to that group (i.e., comparing groups of materials from those 

in Table 10). As expected, the results from comparing groups 1 and 3 against their two other groups 

(i.e., groups 2 and 3 and groups 1 and 2, respectively) indicate that the materials in these groups 

are highly dissimilar. SIMIN values regularly reached 100 in these two comparisons, which 

indicated that materials where the furthest with respect to each material. Markedly, within the 

results of Figure 19D, the results show that material C (i.e. MCC 3) had similar behavior to 

materials O and D (i.e., API 2 and MCC 3). This result indicates that the clustering method had to 

balance out the similarities between material C and these two materials, over the dissimilarities 

with the remaining materials. The SIMIN matrix, thus provides a method to remove this grouping 

and establish quantitative similarities between the materials based on their properties. 

5.3.5. Measurement correlations 

After observing the overlap in material properties measurements on the loading plot 

(Figure 21B), we examined the level of correlation between measurements using the linear 

correlation coefficient (R) metric. Each of the 32 material property measurement were plotted 

against each other and a linear fit was performed. The resulting linear correlation coefficient (R) 

metric was computed for each of the bivariate plots and the results are shown as a correlation map 

in Figure 20. The colors in the correlation map indicate the level of linear correlation, measured 

using the correlation coefficient (R), between the different measurements. Measurements that share 

red or blue colors are highly correlated (i.e., R> 80% or R< –80%), while measurements sharing 

green, yellow, or teal colors show little to no correlation (–30% <R< 30%). Notably, the results of 
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the correlation map are symmetrical given that the map projects the same measurement list in both 

axes. 

 

Figure 20. Correlation coefficient (R) map for material property measurements. 

 As observed in the correlation map, the permeability measurements at varying normal 

compression stresses were highly correlated (R>80%) among one another. Similarly, the 

compressibility measurements showed a high degree of correlation at different normal stresses (R  

>80%). Furthermore, the anti-correlation between the permeability and compressibility 

measurements was observed by the negative correlation coefficient.  Different values of particle 

size showed a high degree of correlation, which was expected from previously reported findings 

[219, 224, 225].  
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Several measurements exhibited no relationship between each other, indicated by a linear 

correlation coefficient close to zero (R ~ 0). Examples of measurements that were not related 

include bulk density (BD) and permeability, stability index (SI) and particle size, and the angle of 

internal friction and cohesion. This last finding was consistent with previously reported results, 

wherein cohesion was not correlated with the angle of internal friction [218, 226, 227]. These non-

related measurements could be used in future modeling efforts as a mean to explain the variability 

observed in the data and correlate it to material properties. Furthermore, once additional materials 

are included to the database, the correlation map can help identify which measurements may be 

eliminated based on their relationship with other measurements and which help capture the most 

material property variability. 

5.3.6. Minimizing number of measurements and tests 

Once the groups of materials were determined based on their properties, similar metrics 

and techniques were used to establish groups of measurements. The aim was to evaluate if certain 

material properties remained similar enough to others so they may be removed totally or partially 

from future material characterization methods. It is important to note that this work is not proposing 

to remove any material property measurement at this point, particularly since the material 

characterization community is still in the early stages of building detailed material property 

databases. However, in the future, the techniques presented here can be used to quantitatively 

provide a rationale, and eventually a rigorous method, for selecting a specific set of standardized 

material property measurements.  

 Using the clustering method available in JMP, the clustering of material property 

measurements shown in Table 14 and Table 15 was performed. The results of the clustering indicate 

that a total of six clusters can be formed from the measurements correlations. This result is in line 

with the results observed in Figure 20, where several groups of highly correlated material properties 
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were observed along the diagonal of the correlation plot. These clusters were identified from a 

cluster coefficient calculated using the correlation matrices for all calculations. The results for the 

cluster coefficient and their association with both the test and measurement are shown in Table 12, 

below. 

INSERT Table 12 HERE 

 Several material property tests were allocated to their own clusters, namely: permeability, 

compressibility, particle size, and bulk density measurements. This outcome indicates that these 

measurements are highly correlated with each other. Therefore, these test are shown to produce 

results that can be estimated with only one of the measurements. The shear cell and flow energy 

tests populated non-intersectional clusters, indicating that the measurements in these tests contain 

independent information from each other.  

The results from clustering material property measurements were compared with the 

correlation coefficient values presented in the map in Figure 20. A comparison of the 

measurement’s squared linear correlation coefficient (R2) was performed for materials in each 

cluster listed in Table 12. Subsequently, the nearest closest material property measurement’s R2 

was obtained to determine the level of linear correlation shared by the cluster with respect to the 

closest measurement. The results of the clustering and correlation coefficient comparison are listed 

in Table 13. As expected, measurements within each of the six different clusters had a high 

correlation (R2 > 70%) with each other, except for basic flow energy and the flow rate index 

measurement in cluster 4 and the bulk density measurement in cluster 5. The reason for these 

measurements having slightly lower correlations within each cluster may have been due to the high 

variability of these measurements, which ranged from 8 to 10% in relative standard deviation. The 

correlation coefficient between measurements from neighboring clusters was at least 15% lower 
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than those of the materials within their cluster, indicating the allocation into that cluster was 

representative. 

INSERT Table 13 HERE 

Based on the results provided in Tables 3 and 4, the number of measurements were reduced 

by selecting one measurement ad hoc from each cluster groupings in Table 13. The material 

clustering based on their properties was then repeated in order to obtain a table similar to that shown 

in Table 10. The goal of this exercise was to determine the effect of having fewer material property 

measurements on the clustering. The six material property measurements selected were: 

permeability at 15kPa, compressibility at 15kPa, angle of internal friction (AIF), d50, cohesion, 

and specific energy (SE).  

The results from the cluster analysis of materials using the reduced number of 

measurements is shown in Table 9. Three materials changed their locations from the groups listed 

in Table 10: API 1, magnesium stearate, and MCC 3. Although the number of materials that shifted 

columns was not large, the shift of both API 1 and magnesium stearate to the group 2 column did 

not satisfy the flowability associations made during the characterization procedure. 

Since in some cases multiple measurements are associated with a single test, reducing the 

number of measurements would not always be an effective way of using the information available 

in the library to reduce the number of tests. For instance, the particle size analysis test yields the 

results for the d10, d50 and d90 from a single evaluation, meaning that selecting one of the 

measurements (e.g., d50) implies that the researcher possesses the measurements for the other 

particle size distribution values. Thus, it is not always reasonable to discard tests if clustering 

analysis wants to be performed, since in some cases the measurements are already available from 

the testing. In other words, from the point of view of using all of the information provided from the 

database, we find it better to exclude a full test rather than particular measurement from a test.  For 
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this reason, the basic flow energy test was excluded from the database and the material clustering 

analysis was repeated.  

Table 9. Material cluster analysis using only 6 measurements from the material property database 

and from removing all the measurements from the flow energy test 

Material 

6 Measurements Minus Flow Energy Test 

Groups Groups 

1 2 3 1 2 3 

Acetaminophen X   X   

Anhydrous Calcium Di-Phosphate   X   X 

API 1  C  X   

API 2  X   X  

API 3 X   X   

API 4  X   X  

Cellulose X   X   

Croscarmellose Sodium  X   X  

Crospovidone  X   X  

Lactose 1 & MCC 1   X   X 

Lactose 2   X   X 

Magnesium Stearate  C  X   

MCC 1  X    C 

MCC 2   X   X 

MCC 3 C    X  

MCC 4  X   X  

Silicified MCC   X   X 

Starch 1  X   X  

Starch 2  X   X  

Starch 3  X   X  

* C = represents the materials that changed groups in comparison with Table 10 

 From these results, it was shown that removing a single measurement may not be the 

correct approach to reduce the number of variables, but rather reducing the number of tests being 

performed. Future analysis of material property library should include all material properties and 

periodically remove measurement that are highly collinear in order to avoid overpopulating 

libraries with less-than-significant measurements. 

5.4. CONCLUSIONS 

Material properties libraries are a critical component to begin establishing relationships 

between materials from a process development standpoint. Libraries can aid researchers and 
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scientist broadly during development: from selecting surrogate materials to reducing the amount of 

material needed during for characterization. In this work, a relatively small material property library 

was built as part of the collaboration with researchers at the ERC-SOPS using six different tests 

and twenty materials. A total of thirty-two different measurements were taken for each material, 

amounting to a library of 640 data points. Principal component analysis (PCA) was performed to 

reduce the number of dimensions and standardize the measurements into principal components. 

After establishing a material properties library and performing PCA, this work used the 

information to establish quantitative metrics to analyze the data and establish a methodology to 

relate materials based on their properties. A material similarity index (SIMIN) was established 

using the score results from the PCA. This quantitative metric provided a mean to compare 

materials using a level of “similarity” between materials based on their weighted Euclidian 

distances in PC-space. The work proceeded to implement clustering algorithms available in 

statistical software to determine, using the quantitative metric of Squared Euclidian Distances, 

groups of materials based on their material properties. The results from the grouping analysis were 

evaluated by comparing the groups of materials with the behavior the materials exhibited while 

being fed using a continuous twin screw powder feeder. Lastly, using the results from the 

correlation coefficient map and similar clustering methods to those used in the previous section, 

groups of material property measurement methods were identified. Using the grouping of 

measurements, this work demonstrated methods to reduce the number of measurements for future 

material property testing. 

PCA and clustering were found to be powerful methods for extracting information, 

identifying which materials are similar to each other, and which measurements contain co-linear or 

orthogonal information. More importantly, these methods provide a rigorous basis for selecting 

materials with similar properties, which is essential to our ability to select surrogates materials, 
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replace ingredients, and select appropriate tracers for residence time distribution studies. Much 

more importantly, the authors believe that all necessary building blocks are in place for the 

pharmaceutical development community to launch a sustained effort seeking to create a 

comprehensive material property database of excipients and commercially available APIs. Such 

database, supported by standardized testing methods and enabling the creation of predictive process 

models, would pave the way for true science-based product and process development and 

regulation.  
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5.5. LARGE TABLES AND FIGURES 

Table 10. Results of clustering materials into groups based on properties 

Material 
Groups 

1 2 3 

Acetaminophen X   

Anhydrous Calcium Di-Phosphate   X 

API 1 X   

API 2  X  

API 3 X   

API 4  X  

Cellulose X   

Croscarmellose Sodium  X  

Crospovidone  X  

Lactose 1 & MCC 1   X 

Lactose 2   X 

Magnesium Stearate X   

MCC 1  X  

MCC 2   X 

MCC 3  X  

MCC 4  X  

Silicified MCC   X 

Starch 1  X  

Starch 2  X  

Starch 3  X  
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Table 11. Results for the first five principal components of the PCA analysis 

Principal Component Analysis 
Principal Component 

1 2 3 4 5 

Eigenvalues 17.65 6.22 2.36 2.23 1.51 

Scores Acetaminophen 6.28 2.89 1.16 2.36 0.24 

Anhydrous Calcium Di-Phosphate -7.24 1.30 -1.82 1.60 1.31 

API 1 3.51 0.38 -0.21 1.15 -0.22 

API 2 1.20 -0.07 -0.89 3.04 -0.76 

API 3 5.97 0.86 0.17 0.43 1.21 

API 4 0.31 -2.54 -0.03 -1.21 0.20 

Cellulose 4.81 6.11 -1.50 -0.97 -1.79 

Croscarmellose Na -0.33 -1.16 -2.98 -0.92 1.24 

Crospovidone 0.90 -3.37 0.05 -1.45 0.25 

Lactose 1 & MCC 1 -7.14 2.13 1.44 -0.11 -0.18 

Lactose 2 -5.98 1.29 0.19 1.31 0.97 

Magnesium Stearate 4.76 -1.29 3.27 -0.24 2.83 

MCC 1 -1.45 1.74 -0.48 -1.87 0.39 

MCC 2 -4.27 2.08 3.26 -1.29 -1.45 

MCC 3 3.75 -0.37 -1.57 -1.99 0.08 

MCC 4 -1.17 0.78 -0.65 -1.90 0.31 

Silicified MCC -4.06 -0.62 0.52 -0.28 -0.16 

Starch 1 1.20 -3.57 -0.05 0.57 -1.63 

Starch 2 -2.30 -3.31 -0.76 1.78 -0.44 

Starch 3 1.25 -3.26 0.88 -0.02 -2.41 

Loadings BD, g/ml -0.39 -0.37 -0.24 0.75 -0.03 

CBD, g/ml -0.67 -0.37 -0.30 0.51 0.06 

Compressibility (%) 1 kPa 0.77 0.51 0.17 0.28 0.07 

2 kPa 0.81 0.47 0.19 0.26 0.09 

4 kPa 0.84 0.44 0.19 0.24 0.09 

6 kPa 0.85 0.42 0.19 0.22 0.09 

8 kPa 0.86 0.41 0.19 0.21 0.08 

10 kPa 0.86 0.41 0.19 0.21 0.08 

12 kPa 0.86 0.41 0.19 0.20 0.09 

15 kPa 0.87 0.40 0.19 0.19 0.08 

Permeability (x 109 cm2) 1 kPa -0.75 0.57 0.25 -0.21 -0.03 

2 kPa -0.77 0.55 0.23 -0.19 -0.02 

4 kPa -0.82 0.50 0.21 -0.14 0.00 

6 kPa -0.84 0.47 0.20 -0.12 0.00 

8 kPa -0.86 0.46 0.18 -0.10 0.00 

10 kPa -0.86 0.45 0.18 -0.10 0.01 

12 kPa -0.87 0.44 0.18 -0.09 0.01 

15 kPa -0.87 0.44 0.18 -0.10 0.01 

Cohesion, kPa 0.82 0.32 0.00 0.03 -0.30 

UYS, kPa 0.79 0.46 -0.13 -0.02 -0.23 

MPS, kPa 0.51 0.62 -0.49 -0.27 0.00 

FF -0.78 -0.07 -0.17 0.24 0.29 

AIF, º 0.18 0.60 -0.63 -0.21 0.36 

MCS, kPa -0.39 -0.55 0.47 -0.02 -0.29 

BFE, mJ -0.58 0.38 -0.57 0.07 0.23 

SI -0.21 -0.34 0.31 -0.05 0.80 

FRI 0.56 -0.28 0.16 -0.37 0.54 

SE, mJ/g 0.51 0.40 -0.48 -0.40 -0.16 

d10 -0.84 0.35 -0.15 0.30 0.06 

d50 -0.81 0.40 -0.02 0.31 0.00 

d90 -0.74 0.49 -0.05 0.31 -0.04 

D(3,2) -0.82 0.41 -0.03 0.27 -0.04 
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Table 12. Clustering results for material property measurements. Each set of measurements is 

divided by their respective test  

Test Measurement 

Cluster Coefficients 

1 2 3 4 5 6 

Permeability, cm² at 1 kPa 35% - - - - - 

  at 2 kPa 35% - - - - - 

  at 4 kPa 36% - - - - - 

  at 6 kPa 36% - - - - - 

  at 8 kPa 35% - - - - - 

  at 10 kPa 35% - - - - - 

  at 12 kPa 35% - - - - - 

  at 15 kPa 35% - - - - - 

Compressibility, % at 1 kPa - 35% - - - - 
  at 2 kPa - 35% - - - - 

  at 4 kPa - 35% - - - - 

  at 6 kPa - 35% - - - - 

  at 8 kPa - 35% - - - - 

  at 10 kPa - 35% - - - - 

  at 12 kPa - 35% - - - - 

  at 15 kPa - 35% - - - - 

Shear Cell AIF, º - - 60% - - - 

  MCS, kPa - - -57% - - - 

 MPS, kPa - - 57% - - - 

 Cohesion, kPa - - - - -46% - 

 UYS, kPa - - - - -46% - 
  FF - - - - 46% - 

Particle Size, microns d10 - - - -44% - - 

  d50 - - - -44% - - 

  d90 - - - -44% - - 

  D(3,2) - - - -44% - - 

Density, g/mL Bulk - - - - 38% - 

  Conditioned bulk - - - - 46% - 

Flow Energy FRI - - - 33% - - 

 BFE, mJ - - - -34% - - 

 SI - - - - - 71% 

  SE, mJ/g - - - - - -71% 
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Table 13. Determination coefficients explaining the variability present in the clusters presented in 

Table 12 

Cluster Members R2 with Own Cluster R2 with Next Closest 

1 Permeability, cm² @ 1 kPa 97% 55% 

Permeability, cm² @ 2 kPa 98% 58% 

Permeability, cm² @ 4 kPa 100% 63% 

Permeability, cm² @ 6 kPa 100% 65% 

Permeability, cm² @ 8 kPa 99% 66% 

Permeability, cm² @ 10 kPa 100% 66% 

Permeability, cm² @ 12 kPa 99% 67% 

Permeability, cm² @ 15 kPa 99% 67% 

2 Compressibility, % @ 1 kPa 97% 49% 

Compressibility, % @ 2 kPa 99% 53% 

Compressibility, % @ 4 kPa 100% 56% 

Compressibility, % @ 6 kPa 100% 58% 

Compressibility, % @ 8 kPa 100% 59% 

Compressibility, % @ 10 kPa 100% 59% 

Compressibility, % @ 12 kPa 100% 60% 

Compressibility, % @ 15 kPa 99% 60% 

3 MPS, kPa 82% 60% 

AIF, º 92% 20% 

MCS, kPa 82% 23% 

4 d10 95% 62% 

d50 94% 65% 

d90 94% 60% 

D(3,2) 93% 68% 

BFE, mJ 56% 29% 

FRI 53% 28% 

5 BD, g/ml 54% 16% 

CBD, g/ml 80% 42% 

Cohesion, kPa 80% 62% 

UYS, kPa 79% 64% 

FF 81% 44% 

6 SI 74% 12% 

SE, mJ/g 74% 47% 
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 Table 14. Material property measurements for the materials used in this material library analysis.  

Material 
BD, 
g/ml 

CBD, 
g/ml 

Compressibility (%) Permeability (x 109 cm2) 

1 kPa 2 kPa 4 kPa 6 kPa 8 kPa 10 kPa 12 kPa 15 kPa 1 kPa 2 kPa 4 kPa 6 kPa 8 kPa 10 kPa 12 kPa 15 kPa 

Acetaminophen 0.48 0.31 28.8 35.5 41.7 44.7 47.0 48.4 49.7 51.2 24.3 20.1 14.5 12.1 10.4 9.1 8.4 7.4 
Anhydrous Calcium Di-Phosphate 0.76 0.74 2.3 2.7 3.2 3.7 4.0 4.2 4.4 4.7 142.2 140.7 137.7 134.3 134.7 133.6 133.1 130.3 
API 1 0.61 0.39 15.4 20.5 25.4 28.4 30.4 31.9 33.0 34.4 29.8 23.0 16.8 13.8 12.0 10.8 9.8 8.7 
API 2 0.69 0.54 13.7 16.8 19.5 21.0 22.0 22.7 23.2 23.9 5.7 5.4 5.0 4.8 4.7 4.6 4.6 4.5 

API 3 0.47 0.37 18.0 25.0 31.2 35.2 37.6 39.6 41.1 42.8 2.1 1.9 1.6 1.4 1.3 1.2 1.1 1.0 

API 4 0.45 0.34 3.4 5.1 7.4 9.3 10.5 11.5 12.3 13.4 29.8 27.2 23.6 21.4 19.8 18.7 17.8 16.7 
Cellulose 0.23 0.15 23.7 28.6 33.5 36.5 38.6 40.3 41.7 43.3 88.7 77.4 66.8 60.2 56.6 52.7 49.7 46.5 
Croscarmellose Sodium 0.55 0.52 5.2 6.7 8.3 9.5 10.1 10.6 11.0 11.5 31.7 30.5 29.1 28.3 27.8 27.4 27.1 26.6 
Crospovidone 0.42 0.39 5.2 7.0 8.8 10.3 11.1 11.7 12.2 12.8 11.2 10.6 9.7 9.3 8.9 8.7 8.5 8.3 
Lactose 1 & MCC 1 0.55 0.53 3.0 3.7 4.4 5.1 5.5 5.8 6.1 6.4 199.2 194.1 184.7 178.6 174.3 171.2 170.9 165.8 

Lactose 2 0.69 0.64 5.0 6.6 7.9 8.8 9.3 9.8 10.1 10.5 154.8 151.2 144.3 141.5 138.3 136.5 135.3 132.9 

Magnesium Stearate 0.33 0.26 18.7 24.9 30.2 33.1 35.1 36.7 37.9 39.4 14.8 9.3 9.5 7.7 4.5 3.7 4.2 3.6 
MCC 1 0.38 0.33 8.1 10.3 12.6 13.9 14.8 15.5 16.1 16.8 128.2 116.8 106.4 100.9 97.4 95.7 93.2 89.7 
MCC 2 0.38 0.34 7.1 8.9 10.7 11.8 12.5 13.1 13.6 14.2 213.9 196.4 175.7 167.0 159.5 156.7 153.5 150.0 
MCC 3 0.41 0.33 8.1 11.7 15.6 18.0 19.5 20.7 21.6 22.7 12.8 11.3 9.3 8.4 7.8 7.4 7.1 6.8 

MCC 4 0.56 0.44 6.1 8.0 10.1 11.6 12.5 13.2 13.7 14.4 100.5 92.9 85.6 82.1 78.5 77.1 75.2 73.4 
Silicified MCC 0.48 0.48 3.4 4.3 5.3 6.1 6.6 7.0 7.4 7.9 111.4 106.7 101.8 98.6 96.4 94.9 93.9 91.6 
Starch 1 0.65 0.58 3.5 6.5 10.5 12.7 14.1 14.9 15.6 16.5 6.8 6.0 4.7 4.1 3.7 3.5 3.3 3.2 

Starch 2 0.83 0.74 5.5 6.2 6.9 7.7 8.0 8.3 8.6 8.9 0.0 0.0 35.8 50.1 54.4 50.4 52.8 46.5 
Starch 3 0.54 0.43 6.6 9.1 11.7 13.5 14.6 15.4 16.0 16.8 8.8 8.2 7.5 7.0 6.7 6.5 6.3 6.1 
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Table 15. Continued material property measurement data table. 

Material Cohesion, kPa UYS, kPa MPS, kPa FF AIF, º MCS, kPa BFE, mJ SI FRI SE, mJ/g d10 d50 d90 D(p,q) 

Acetaminophen 1.12 4.18 11.96 2.87 33.4 2.26 98.4 0.97 1.54 6.20 10.4 40.2 88.7 22.5 
Anhydrous Calcium Di-Phosphate 0.00 0.38 9.60 27.45 34.5 2.68 483.5 1.14 1.34 5.32 62.7 167.0 229.5 75.5 
API 1 0.71 2.71 11.31 4.18 34.7 2.36 87.9 0.89 1.80 5.83 8.8 37.7 92.3 20.7 
API 2 1.01 3.30 9.65 2.93 27.1 2.37 164.3 1.04 1.12 5.19 34.0 111.5 184.0 67.3 
API 3 1.17 4.54 12.24 2.70 35.7 2.03 53.5 1.18 2.39 7.63 3.9 13.9 28.3 8.5 

API 4 0.43 1.45 9.19 6.39 28.7 2.71 54.1 1.13 2.40 5.58 16.9 44.7 80.7 30.1 
Cellulose 1.29 5.95 17.84 3.01 43.1 2.24 205.9 0.62 1.41 14.00 22.3 55.8 116.0 42.3 
Croscarmellose Sodium 0.24 1.08 13.64 12.64 42.0 2.49 327.2 1.16 1.62 7.60 19.0 35.1 71.5 29.3 
Crospovidone 0.27 0.89 9.15 10.42 27.2 3.07 56.1 1.09 2.70 6.58 8.5 22.4 49.1 17.1 
Lactose 1 & MCC 1 0.18 0.60 8.92 15.49 28.7 2.93 171.1 1.13 1.11 3.93 50.1 146.5 208.0 91.4 

Lactose 2 0.09 0.32 8.83 28.03 31.8 2.64 233.3 1.16 1.11 3.87 48.8 118.0 180.5 85.0 
Magnesium Stearate 0.56 1.76 9.45 5.65 24.8 3.14 12.9 1.45 3.73 4.71 4.1 12.2 31.7 8.6 

MCC 1 0.38 1.53 12.09 7.96 37.9 2.53 276.6 1.06 1.64 8.04 20.9 57.9 112.0 40.4 
MCC 2 0.58 1.69 8.63 5.11 21.4 3.24 110.7 1.04 1.16 3.92 28.1 97.0 145.0 56.0 
MCC 3 1.22 4.75 12.68 2.67 35.7 2.09 82.6 1.05 3.07 10.79 7.9 21.8 45.7 15.3 

MCC 4 0.50 1.97 11.49 5.89 36.4 2.43 254.5 1.12 1.46 6.86 19.3 56.7 104.0 37.6 
Silicified MCC 0.13 0.43 9.03 22.75 28.2 3.08 154.5 1.08 1.14 3.85 26.8 95.7 144.0 54.3 
Starch 1 0.71 2.12 8.73 4.13 22.6 2.94 48.2 0.92 1.38 3.07 8.6 15.1 21.8 13.5 
Starch 2 0.13 0.39 8.38 22.58 23.9 3.38 169.9 1.03 1.25 5.07 25.5 49.3 78.9 41.3 
Starch 3 0.74 1.95 8.58 4.41 15.6 3.81 44.1 0.97 1.38 7.72 9.3 31.3 69.8 19.0 
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Table 16. Similarity index results with labeling legend. Pairs with SIMI = 0 have similar material properties based on their scores of the PCA, 

whereas those with SIMI = 100 have different material properties. 

  A B C D E F G H I J K L M N O P Q R S T   Material Legend 

A   100 15 50 1 87 0 99 85 100 100 20 100 100 37 100 98 80 83 78   A Acetaminophen 

B 100   100 92 100 90 100 73 95 13 0 100 74 43 100 77 20 98 38 100   B Calcium Di-Phosphate 

C 10 74   0 0 43 9 35 44 76 72 10 62 69 0 58 55 38 36 39   C API 1 

D 30 57 2   28 46 31 30 49 62 53 34 62 60 27 58 38 33 12 39   D API 2 

E 0 95 0 44   65 8 66 62 97 95 0 86 96 7 82 85 62 68 63   E API 3 

F 53 58 24 32 37   54 1 0 58 54 22 46 48 11 34 19 16 2 20   F API 4 

G 25 96 44 81 34 100   100 100 94 100 61 88 94 41 92 100 100 100 95   G Cellulose 

H 58 47 32 33 43 27 47   32 57 48 43 40 61 14 30 25 42 11 49   H Croscarmellose Sodium 

I 55 66 28 41 38 0 61 11   66 63 20 58 59 12 46 31 15 9 19   I Crospovidone 

J 97 14 100 100 99 88 93 90 93   2 93 66 0 100 71 11 98 47 94   J Lactose 1 & MCC 1 

K 86 0 82 73 86 75 85 63 81 0   81 57 16 86 61 0 84 26 84   K Lactose 2 

L 28 96 28 67 13 59 53 79 53 93 93   92 88 30 87 79 62 64 60   L Magnesium Stearate 

M 54 39 37 45 47 40 28 13 48 33 32 44   16 27 0 8 58 29 57   M MCC 1 

N 77 41 76 83 79 71 67 83 77 11 26 68 50   77 56 10 80 45 72   N MCC 2 

O 32 81 7 41 10 37 13 20 36 82 81 18 59 78   51 61 43 46 44   O MCC 3 

P 54 41 33 40 44 30 32 0 38 37 35 40 0 22 20   6 49 21 49   P MCC 4 

Q 75 22 60 52 70 43 72 32 50 15 9 59 37 5 58 35   54 1 53   Q Silicified MCC 

R 51 69 23 21 39 20 60 29 18 70 66 30 71 64 22 61 36   0 0   R Starch 1 

S 70 40 49 28 63 34 82 23 38 47 37 53 66 51 52 58 8 28   36   S Starch 2 

T 51 72 26 30 41 24 58 42 22 69 69 29 71 57 25 62 37 0 9     T Starch 3 

U 3.14 2.41 3.00 3.14 3.00 1.06 5.90 3.42 1.06 2.64 2.41 4.33 1.02 3.81 3.52 1.02 3.35 1.39 3.96 1.39  U Minimum Distance 

V 14.0 14.0 11.0 9.5 13.4 10.1 13.6 9.5 10.6 13.7 12.5 13.5 9.0 11.5 11.7 9.0 11.5 10.5 12.2 10.8  V Maximum Distance 
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Figure 21. Two-dimensional plots for (A) scores and (B) loadings of the first two principal components of the material property database. Three-

dimensional plots for (C) scores and (D) loadings of the first three principal components of the material property database. The numbers in square 

brackets next to the axis labels express the amount of variability in each PC. 
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6.1. INTRODUCTION 

The residence time distribution (RTD) methodology was introduced in 1953 by 

Danckwerts as a mean to describe non-ideal liquid mixing in chemical reactors [104]. This seminal 

concept, for which Danckwerts has been directly cited over 2,500 times, brought upon an extensive 

discussion regarding reactor behavior and paved the way to a subfield of chemical engineering 

science: reactor mixing. Within the reactor mixing literature RTD methods have been discussed in 
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more than 5,000 research articles and in excess of 50,000 articles RTD techniques are used to 

evaluate flow systems [228, 229].  

Briefly described, RTD is a diagnostic tool that characterizes the distribution of time a 

material spends (i.e., resides) inside of a unit operation. This technique, which in the case of 

blending systems aims at describing temporal mixing (i.e., mixing occurring as a function of time 

inside of the unit), is performed by introducing a traceable material (hereon referred to as the tracer) 

at a known position of a unit operation and then tracking the location of the tracer material until it 

exits the system. The goal is not to provide information regarding the spatial mixing (i.e., the 

blend’s homogeneity), but to describe the tracers residence time in the system. Differences in the 

mean and distribution of that residence time for various conditions can be used to determine the 

completeness of mixing inside of a system. Based on the data collected from RTD analysis, mixing 

patterns can also be characterized as ideal or non-ideal and mixing models having similar dynamics 

to the system can be developed, as described extensively in the chemical reaction engineering 

literature [230, 231]. 

In recent years, a growing number of industrial and academic research groups have 

examined the dynamics of continuous pharmaceutical equipment using established chemical 

engineering methods. Among the most used methods for characterizing equipment, the residence 

time distribution (RTD) has emerged as a major tool used as part of the development and control 

strategies [65]. Although RTD is not a novel concept in the engineering toolbox [103, 104, 228], 

its use to examine powder-based pharmaceutical processes is less common than for other similar 

solids or liquid processes. Yet, as the pharmaceutical industry begins to use this methodology more 

frequently, it is important to remember that it must be implemented carefully, in particular 

regarding the choice of tracers, to ensure compliance with the method’s underlying assumptions.  

In this chapter, specific focus is placed on investigating the effect of tracer material 

properties on RTD measurements for a continuous blending system using a single base material. 
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RTD measurements obtained for various tracers with different material properties were compared 

to determine how those properties affect the resulting RTD curves. This work further evaluates the 

differences between the measured RTDs as a function of their distribution metrics. The results were 

used to provide guidelines for selecting tracers that best describe the bulk powder transport inside 

of the blender and its blending behavior. 

6.1.1. RTD application for equipment characterization 

The RTD methodology has been extensively used in liquid systems to determine the 

hydrodynamics and mixing behavior in many chemical processes units. Examples of units include 

fixed and fluidized bed reactors, two-phase stirred tanks, heat exchangers, distillation and 

absorption columns, chromatography columns, and trickle bed reactors [228, 231, 232]. Asides 

from being used in reactor and heat exchanger systems, RTD studies have been implemented to an 

extensive number of systems and fields including those in microfluidics [233, 234], hydrology 

[235], and pharmacokinetics and pharmacodynamics [236]. Noticeably, all these aforementioned 

fields relate to both liquid and/or gas systems, wherein the continuum assumption is reasonably 

well kept, and the mathematics for residence time distribution are straightforwardly applied.  

Until recently, RTDs were rarely used to characterize the mixing behavior of solid 

processes [102, 237-239]. Several publications have recently emerged regarding the application of 

residence time distribution concepts in solids systems such as, batch and continuous mixing 

systems [240], rotary calciners [241-243], fluidized beds [216, 244-246], entrained flow gasifiers 

[247, 248], and biomass pretreatment reactors [249]. In pharmaceutical research, with the 

implementation and growing interest in continuous solid oral dose manufacturing, RTDs have been 

extensively used to characterize powder-based continuous processes in the manufacture solid oral 

dose products. In a series of publications, Gao et al. used RTD methods to characterize the blender 

performance [101], describe the dampening of feeder disturbances [250], and establish a parametric 
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space for blending based on a particular formulation [251]. Portillo et al. used RTD methods to 

characterize horizontal and inclined blenders and propose a mathematical model for the mixing 

occurring inside of the unit [196, 197, 252, 253]. Similarly, Berthiaux et al. used RTD methods to 

develop mathematical models explaining the mixing and powder movement inside of the blender, 

which included the mass accumulation in the system [254-258]. Most recently, Galbraith et al. 

proposed a mixing model for a inclined blender based on the results from an RTD experiment and 

implemented the model to evaluate the dissipation of upstream feeder disturbances on the material 

properties [259].  

Mixing dynamics in feed frames have also been characterized using RTDs [260-265]. Most 

recently, work by Van Snick et al. focused on characterizing the RTD of continuous manufacturing 

lines for direct compression to establish performance metrics [198, 266]. Most notably, RTDs have 

been used to develop traceability algorithms to trace lots of raw materials in continuous processes 

[34, 47], develop feed-forward control strategies [267], and establish out of specification (OOS) 

ranges based on disturbance levels [34, 268, 269]. The use of RTD models for process controls has 

additional importance in situations where sensing-based PAT models cannot be used, for example, 

in situations where the API concentration is below spectroscopic detection limits. Despite the 

challenge of studying multiphase particle system, powder behavior in continuous dry granulators 

[268, 269] and wet granulators [270-272] have also been characterized using RTDs. 

6.1.2. Important RTD experimental and modeling assumptions 

When considering the application of RTD methods for equipment characterization, it is important 

to revisit the primary assumptions from which both experimental and mathematical understanding 

can be derived. The major assumptions and requirements provided by Danckwerts [104] and 

Nauman [228, 229] for the application of RTD as a characterization tool are listed below. They 

include that: 
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1. The system being studied is continuous (or semi-continuous) based on the addition and 

removal of components through streams with constant or intermittent flow. 

2. The continuous (or semi-continuous) incoming and outgoing system flows have 

reached steady and equal values, indicating the system is now invariant throughout 

time or repeatable periods of time; these two conditions are known as steady (or 

pseudo-steady) state.  

3. The inlet and outlet streams have unidirectional flows, so that once material and tracer 

enter the system it stays within the unit until it exits, never to return. 

4. The addition of tracer materials does not affect the system’s overall flow and the tracer 

is evenly distributed along the entire system’s cross-section. Although observer effects 

are expected when studying any system, this last assumption aims at reminding 

experimenters to minimize this error. 

These assumptions were critical in the development of RTD as a concept alongside with the 

mathematics that made it an important diagnostic tool for characterizing process equipment. In 

recent years, with the advent of numerical methods and other simulations tools (e.g., computational 

fluid dynamics, discrete element methods), several researchers were able to perform RTD 

experiments and/or simulations without closely following assumptions 1 and 2; effectively 

developing a field of unsteady state (i.e., dynamic) RTDs [229]. However, for experimental 

purposes, it is critical to follow the aforementioned assumptions to establish a clear and consistent 

methodology for evaluating and performing RTD experiments. 

Note: given the general knowledge of RTD methods, the general introduction of the RTD 
material in this chapter is provided in Appendix C (page 250, section 9.3) and Appendix D (page 

257, section 9.4). Within Appendix C, tracer properties and addition methods are covered. In 

Appendix D, RTD calculation methods, different phenomenological models, and assumptions 

are covered. Both of these appendices contain information needed to understand the results of 
this chapter, but in order to minimize the amount of background, the content was placed as 

background. 
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6.2. MATERIALS AND METHODS 

6.2.1. Materials 

Based on the clustering results shown in Table 10 and with the objective of minimizing the 

number of tests and materials needed for this experiment, a subset of materials from Table 8 was 

selected to reduce the number of on-line measurement calibration methods needed for the RTD 

experiments. A material from group 3 was selected as the base because it would represent more 

reliably the well-flowing behavior often observed in formulations being sent through mixing 

systems.  

Lactose 1 and MCC 1 and silicified MCC were not selected given that these materials are 

mixtures of two commonly used ingredients, a fact that could make the detectability with other 

tracer materials difficult to calibrate and assess. Based on this exclusion, anhydrous-calcium 

diphosphate, lactose 2, and MCC 2 remained as the potential base materials. Taking into account 

material feedability (i.e., ability to feed material), previous experience, and material availability, 

MCC 2 was selected as the base material.   

Following the selection of the base, materials that would serve as tracers were selected. 

The aim of this work is to test whether tracer material properties affected the system’s RTD. With 

this in mind, a total of seven tracers, ranging widely in both flow and bulk properties, were 

investigated. From Table 10 two materials from group 1, four materials from group 2, and one 

material from group 3 were chosen as tracers.  

From group 1, acetaminophen and API 3 were selected as tracers. API 1, cellulose, and 

magnesium stearate were not selected as tracers because of the materials’ toxicity risk, NIR 

similarity with the base material, and stickiness to equipment surfaces. Selected group 2 materials 
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included starch 1, API 4, crospovidone, and croscarmellose sodium. The remaining MCCs and 

starches in group 2 were not used because of their chemical similarity with respect to the base 

material. Lastly, from group 3 anhydrous calcium di-phosphate was chosen given its distinct 

chemical differences with the bulk, which eased the development of an online sampling method.  

Table 17 lists the values of the SIMIN matrix for the materials selected for this study. 

Notably, only anhydrous calcium di-diphosphate had a value of less than 50% for the SIMIN value 

for the base MCC 2. After MCC 2, the material with the most similarity based on the metric was 

starch 1. Interestingly, starch 1 was the only material that did not have a SIMIN value with another 

material over 70%. This indicates that starch 1 was the material with the most similar from all of 

those selected for this study. 

Table 17. SIMIN metric values for the materials selected for the RTD experimentation 

  A B E F H I N R   Material Legend 

A   100 0 53 58 55 77 51   A Acetaminophen 

B     95 58 47 66 41 69   B Calcium Di-Phosphate 

E       37 43 38 79 39   E API 3 

F         27 0 71 20   F API 4 

H           11 83 29   H Croscarmellose Sodium 

I             77 18   I Crospovidone 

N               64   N MCC 2 

R                   R Starch 1 

The relatively wide range of SIMIN values being used here to characterize the RTD as a 

function of material properties provides a reasonable mean of evaluating the effect of the material 

properties on the method. 

6.2.2. Equipment 

Four processing and online testing units were used for the experiment: a continuous powder 

feeder, a horizontal paddle blender, a near infrared (NIR) acquisition instrument, and a vibratory 

feeder. The equipment configuration is shown schematically in Figure 22. Additional information 

on the equipment and their configuration for the experimental procedure is provided below. 
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Figure 22. Schematic of the equipment experimental set up. 

6.2.2.1. Feeder 

A single K-Tron K-CL-SFS KT20 (Coperion K-Tron Pitman Inc., Sewell, NJ) feeder fitted 

with a coarse concave screw configuration and a C type motor was used to maintain a steady flow 

of base powder into the continuous mixing system. Based on the vendor specifications this feeder 

had a maximum nominal screw speed of 154 revolutions per minute (RPM) and a volumetric 

displacement capacity ranging between 0.3 and 200 L/hour. The feeding operation was performed 

under gravimetric control using the built-in controllers systems under the “normal” control settings. 

A transition hopper with a wide aperture was placed at the feeder’s screw outlet (i.e., blender’s 

inlet) to channel the flow of powder to the subsequent mixer. The transition hopper was the point 

at which tracer was added into the system. 

6.2.2.2. Blender 

A modified Gericke GCM 250 mixer (Gericke USA, Somerset NJ) was used as the 

blending system. The modification to the original unit includes a specially fitted glass top casing 

that allows for visualization of powder movement along the blender’s length. The unit was fitted 

with a forwards-alternating-forwards blade configuration, wherein the first and last one-third (1/3) 
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blade sections were placed in a transport position (i.e., forward pushing) and the middle one-third 

section had an alternating sequence of forward-backward pushing blades. This blade configuration 

was selected based on previous experience [221, 273] and remained fixed throughout the 

experimental design. 

6.2.2.1. Near infrared interface 

Acknowledgement of collaborative work and contributions: 

The chemometric section of this work was developed as part of a collaborative effort within the 

Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS). 

Development, calibration, and implementation of NIR chemometric methods were performed by 
Dr. Andres Roman-Ospino. Dr. Roman-Ospino worked in collaboration with the author of this 

thesis, who provided Dr. Roman-Ospino with the list of materials, target concentrations, and 

conditions needed to develop the chemometric models. The author of this thesis is very grateful 

to the work done by Dr. Roman-Ospino developing the chemometric methods. 

The vibratory feeder from a sample divider PT 100 (Retsch, Haan Germany) was used at 

the blender exit as the interface between the NIR instrument and powder samples.  A FT-NIR 

Matrix (Bruker Optics Billerica, MA, USA) was used for spectral acquisition. The fiber optics 

probe with NIR source and collection fiber was adapted to the vibratory feeder for diffuse 

reflectance measurements. OPUS 7.0 from Bruker was used to control the NIR instrument and to 

construct the calibration models. The interface between the sample and the NIR instrument is a 

critical part for any in-line method development. The NIR interface is responsible of delivering the 

sample to the instrument in a way that allows representativeness, minimizing the modification of 

physical properties in the sample and giving all the points in the sample the same probability to be 

analyzed [274]. 

Figure 23 shows the NIR interface used here, which was included a vibratory feeder that 

conveys the powder at the blender’s exit in front of the probe for diffuse reflectance spectral 

acquisition. The proposed interface allows representativeness via 1-dimensional sampling [275]. 
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As a consequence, the powder blend moves continuously without interruption or confinement that 

affects the flowability. The NIR interface was used both for calibration and for the actual RTD 

experiments to avoid method transfer issues such as off-line models vs. in-line acquisition. 

Calibration blends were prepared using a Laboratory Resodyn Accustic mixer (LabRAM) by using 

60g’s for two minutes for a mass of 100g of base-tracer. This configuration ensures the 

minimization of agglomerates in cohesive materials and is a suitable system to create standards for 

PLS methods [199, 276]  

 

Figure 23. Near Infrared (NIR) sampling interface for RTD experiments 

Each calibration blend was transferred to the vibratory feeder interface for NIR spectral 

acquisition. The vibration frequency was adjusted to obtain a constant flow of blend in front of the 

NIR probe. Sixty (60) spectra for each concentration (0 – 9% w/w) were acquired to construct the 

seven calibration models. Forty (40) additional spectra were acquired using the same in-line 

approach and stored for further testing of the models.  

6.2.3. RTD experimental procedure 

The procedure to perform the RTD experiments was developed giving special 

consideration to the assumptions and requirements. First, the blender was allowed to reach steady 

state by running the system until no changes were observed in the outlet flow rate. Second, a mass 

of tracer sufficiently large to be within the detectable ranges of the online chemometric models was 

measured. Since the online chemometric models were built using a 0 – 9% w/w tracer concentration 

calibration set, it was decided to introduce a tracer mass equivalent to 4.5% of the blender’s steady 
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state mass hold up. With this relatively small percentage of tracer mass, it would be reasonable to 

assume that the tracer would be detectable by the chemometric methods but would not drastically 

change the properties of our bulk material inside the blender. Third, a series of three pulses for each 

tracer were introduced in a sequential manner, allowing for the system to completely wash out the 

tracer of each pulse before introducing a subsequent one. The focus during pulse addition was on 

delivering the entire tracer amount in a single instance (i.e., less than 1 second). Addition of the 

tracer to the system was confirmed visually by noting the tracer entered the process stream. 

Complete washout of the pulse was ensured before adding a new pulse by observing a zero value 

on the on-line concentration predictions for at least forty-five (45) seconds. Lastly, after the three 

pulses were performed for each ingredient, the feeder-blender system was stopped and the blender 

was vacuumed to prevent any effects of residual tracer on subsequent tests. This four step process 

was repeated for all tracers. 

6.3. RESULTS AND DISCUSSION 

Acknowledgement of collaborative work and contributions: 

As disclosed previously, the NIR method development and calibration efforts were performed 

by Dr. Roman-Ospino, a collaborator of this work. As an acknowledgement of the outside 

contribution and because the results are critical for the discussion of this work, Dr. Roman-

Ospino’s work was placed in Appendix E of this thesis (page 273, section 9.5).  

6.3.1. Feeder-blender characterization at steady state 

To ensure that all relevant information for the feeder-blender system was collected, the 

system’s feeding and blender mass hold up were characterized before performing the tracer 

experiments. A detailed description of this procedure is presented in a recent publication from the 

Muzzio group [46]. Fifteen (15) kilograms of base MCC 2 were added to the K-Tron feeder, after 

which the recommended startup sequence was performed. The startup sequence included screw 

filling and feed factor calibration, during which no major feeding issues were observed. The 
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feeder’s feed factor at maximum fill was estimated as 32.5 kg/h, which indicated – based on 

controllable feeding ranges – that the maximum recommended flow rate was 26 kg/h, or 80% of 

the feed factor value. The mass of MCC 2 remaining in the feeder was recorded for subsequent 

blender mass hold up calculations.  

After the feed factor calibration, the blender was powered on and set to a blade speed of 

100 revolutions per minute (RPM). Once the blender reached the desired blade speed, the feeder 

flow was initiated and set to 10 kg/h. Throughout the entire experiment, the mass flow rate was 

closely monitored to ensure there were no major flow rate deviations. The resulting flow rate 

oscillated around the set point with a relative standard deviation (RSD) of 2.6%.  

Powder exiting the blender was collected in a receptacle as shown in Figure 22. The system 

was allowed to continue for four minutes, which provided sufficient time for the system to reach a 

steady state (i.e., no changes in the system as a function of time). After four minutes, both the feeder 

and blender were simultaneously stopped. The mass remaining in the feeder and collected in the 

receptacle at the blender’s outlet was noted. Using the measurements for starting feeder mass 

(𝑀𝑓𝑒𝑒𝑑𝑒𝑟,𝑠𝑡𝑎𝑟𝑡), end feeder mass after four minutes (𝑀𝑓𝑒𝑒𝑑𝑒𝑟,𝑒𝑛𝑑 ), and mass collected in the 

receptacle (𝑀𝑟𝑒𝑐𝑒𝑝𝑡𝑎𝑐𝑙𝑒) the mass hold up inside of the blender was calculated by subtracting the 

latter two values from the starting feeder mass (i.e., 𝑀𝑏𝑙𝑒𝑛𝑑𝑒𝑟 = 𝑀𝑓𝑒𝑒𝑑𝑒𝑟,𝑠𝑡𝑎𝑟𝑡 − 𝑀𝑓𝑒𝑒𝑑𝑒𝑟,𝑒𝑛𝑑 −

𝑀𝑟𝑒𝑐𝑒𝑝𝑡𝑎𝑐𝑙𝑒). This process was repeated three times (n = 3), yielding an average mass hold up of 

140.1 ± 2.0 g.  

The system’s space-time (𝜏𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒) was then computed using the results from the mass 

hold up characterization and average feeder flow rate. The result yielded a 𝜏𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 of 50.5 ± 0.7 

seconds. This result was used as the mean residence time of our bulk MCC 2, since no major dead 

spaces inside of the system were observed. 

6.3.2. RTD experiments and concentration profiles 
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 The RTD experiments were performed using the procedure described in section (2.4). 

Figure 24 shows the concentration versus time plots for the 21 tracer experiments performed. The 

instance of tracer addition is denoted in Figure 24 by dashed vertical lines. Each tracer was added 

after the previous tracer had completely cleared the blender. The concentration of each tracer was 

measured in weight percent (i.e., % w/w) using the NIR methods. Tracer concentrations ranged 

from 0 to 6.88% w/w, depending on the tracer. The introduction of each pulse was carefully 

monitored throughout the experiment. The entire pulse was introduced quickly and evenly into the 

blender. As shown in Figure 24, the tracer curves were highly reproducible, indicating that our 

procedure was sufficiently accurate. 

 

Figure 24. Concentration v. time for each of the material tracers. Vertical lines represent tracer 

addition time points. 

 Figure 24 shows that several tracer materials had more noise in their measurement based 

on the fluctuation of points on the distribution. Acetaminophen, anhydrous calcium di-phosphate, 
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crospovidone, API 3, and API 4 showed relatively smooth distribution curves. On the other hand, 

starch 1 and croscarmellose sodium showed more variation between the distribution points. These 

differences in noise may be attributed to: (1) poor mixing of material along the length of the unit 

or (2) the chemometric model used to determine the tracer’s concentration. Both of these hurdles 

relate to the tracer selection standards based on their properties: (1) represents the system well by 

not segregating and (2) it is easily detectable in the process stream. 

Poor micro-mixing of the tracer in the bulk leads to pockets of well mixed tracer and bulk, 

which may cause oscillations of the concentration measurement as a function of time. The 

amplitude of these variations are important since they may affect the overall interpretation of the 

system’s RTD. Noisy chemometric calibrations can also lead to a similarly noisy output of the 

RTD, which is why it is especially important to develop chemometric models minimizing such 

variability. Minimizing  the chemometric model’s variability is also critical when using RTD 

models for control purposes as they may be used to establish confidence intervals for both NIR and 

the RTD measurements. For the two tracers with the highest variation, the chemometric models 

had the highest RMSE variation due to similarities in the spectral bands. This increased noise on 

the measurement results in a higher amplitude of variation, which in turn may negatively affect the 

RTD calculations. To minimize these fluctuations, several new methods have been implemented in 

recent work regarding the optimization of chemometric methods [277, 278]. 

After reviewing the profiles provided in Figure 24 and ensuring there were no overlap 

between pulse experiments, the curves were spliced at the tracer introduction time points for further 

analysis. The resulting data were treated by shifting the time axis to the re-zeroed position for each 

of the three curves, making all data curves initiate at time equal to zero. These curves were then 

used compute the residence time distribution’s probability distribution function, discussed in the 

following section. 
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6.3.3. Residence time distribution and metrics 

The RTD’s probability distribution function (PDF) was computed using the tracer results 

from Figure 24 and the equation in Table 41. The concentration plots provided in Figure 24 were 

thus transformed to a standard scale (i.e., the E(t) distribution) for which a more clear comparison 

between the tracers can be made. Figure 25 shows the PDF for the three pulse experiments for each 

material selected. The variability between each pulse addition for a given tracer was relatively 

small, which confirmed the tracer pulsing procedure was reproducible.  

 

Figure 25. Residence time distribution probability distribution function graphs for each material 

Given the standardization of the tracer concentration measurement, Figure 25 shows there 

are clear differences between the maximum values for the distributions for each of the tracers. 
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Anhydrous calcium di-phosphate had the highest maximum (i.e., peak) tracer PDF value (between 

0.029 and 0.038 sec-1), while croscarmellose sodium had the lowest maximum PDF value (between 

0.017 and 0.020 sec-1) 

 All tracer curves shown in Figure 25 presented two major features:  (1) a delay time 

between time zero (i.e., tracer insertion time) and the first major increase in the PDF value and (2) 

a degree of right skewness, characterized by a front ended distribution and a long tail towards the 

higher time points. The first feature was associated with the minimum time needed for powders to 

traverse the blender’s length of before reaching the outlet. This time is characteristic of powder 

systems and was in accordance with previously studied blending systems [65, 196, 259, 279].  

Using the PDF values, the RTD metric values were calculated using the equations listed in 

Table 43. The resulting mean residence time (MRT), mean centered variance (MCV), and skewness 

for each of the experiments’ RTDs are presented in Table 19. The MRT, MCV, and skewness for 

all tracers averaged 54.3 ± 8.3 seconds, 21%, and 11%, respectively. Between all tracers, the MRT 

ranged from 41.6 to 64.7 seconds, which yields a time window where the space-time calculated for 

the bulk MCC 2 can be found. These results were in agreement with previous work performed on 

this system, wherein a similar material to our MCC 2 was used as a the bulk [279]. The MCV and 

skewness ranged from 18 to 24% and 3 to 29%, respectively. All curves had  positive values for 

skewness, as seen from the results of Table 19, which indicates that all distributions shared right 

skewness. 

INSERT Table 19 HERE 

The relative standard deviation (RSD) for the MRT measurements within each material did 

not exceed 15%, confirming that the triplicate tracer experiments offered a reproducible result with 

respect to the MRT. API 3 and crospovidone had the largest RSD in their RTD, equal to 14% and 

12%, respectively. 
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MCV values were relatively similar between all materials, as seen by their average results. 

Nevertheless, it is important to note that these variance measurements provide a larger error than 

the MRT values, as they require to repeat the numerical integration of the original concentration 

data twice. Moreover, the MCV metric is based on the estimation of the RTD as a normal 

distribution, making the measure less reliable for other distributions. Thus, these values must be 

compared with each other using variance testing techniques, which are discussed in the subsequent 

section. Similarly, the results for skewness yield an even larger potential for error, and thus are 

solely used to provide a quantitative confirmation that the distributions share some right skewness. 

The positive skewness indicates that these distributions are not normal, making measures of 

moments about the mean difficult to interpret without a more rigorous statistical approach. 3.6 

Comparison of RTD metrics 

 The effect of different materials on the MRT were evaluated using a One-Way ANOVA 

test. MCV and skewness were not included as part of this analysis given that these metrics do not 

follow a normally distributed set of errors, and thus make the application of ANOVA not a correct 

approach.. The ANOVA tested the null hypothesis (H0) that all of the means for the MRTs were 

statistically different based on the material used as tracer. The ANOVA estimated, based on the 

results provided in Table 19, there were statistically noticeable differences between the means of 

the MRT (p = 0.002) for the samples studied. The results indicate that the observed within-group 

variability in MRT values is small enough that statistical significance can be demonstrated even 

when just three experiments per group are performed. 

The differences in MRT indicate that tracer materials take different times to traverse the 

blender, which reveals that materials with different properties travel at different speeds inside of 

the unit.  This result hints at the possibility of differential mobility in convective systems, 

particularly those whose length may provide sufficiently different residence times between 

materials. In batch systems, differential mobility can cause extensive segregation.  
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To further evaluate the relationship between the statistically dissimilar means of the MRT, 

a pairwise means comparison was performed using Student’s T-test for pairs of MRTs using an 

alpha of 5%. The results of this analysis, which indicate the statistical similarity between two pairs 

and automatically clusters them into groups based on those similarities, are shown in Table 18. The 

space-time of MCC 2 was included in this comparison to determine if the tracer MRT’s were similar 

to those of the bulk and thus provide a picture of the base material using RTD. The results of the 

pairs comparison indicate there are four groups of statistically noticeable MRTs, where within each 

group the MRT means are found to be statistically similar  (i.e., not significantly different) from 

each other.  

Table 18. Results for mean comparison of pairs using Student T-test for the MRT. Materials that 

share the same letter have similar statistically noticeable means (p-value < 0.05) 

Material 
Material 

Property Group 

MRT Group 
Mean 

A B C D 

Acetaminophen 1 * *     49.2 

API 3 1   *   * 54.5 

API 4 2   *   * 54.1 

Croscarmellose Sodium 2     *   64.7 

Crospovidone 2     * * 59.5 

Starch 1 2   * * * 57.1 

Anhydrous Calcium Di-Phosphate 3 *       41.2 

MCC 2ª 3   *     50.5 

 ª MCC 2 value represents the bulk material’s space-time, not the MRT 

The results in Table 18 indicate that six out of the seven tracers had statistically similar 

MRTs with two or more tracers. The bulk MCC 2 had statistically observable similarities with four 

tracer MRTs. The only tracer to have only one statistically similar MRT with another tracer was 

anhydrous calcium di-phosphate, whose MRT was similar to acetaminophen’s as shown in group 

A.  

With the exception the materials in group A, the remaining tracer materials are grouped 

with materials that have relatively similar properties, as shown in the grouping from Table 10. Both 

of the tracers belonging to group 1 were found to have statistically similar MRTs, as shown by 
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group B. Interestingly, the two group 1 materials were also found to have statistically similar MRTs 

to starch 1 and API 4. Table 14 and Table 15 showed that the four materials in group B exhibited 

similar flow function coefficients, ranging from 2 to 6.5.  Tracers from Table 10’s group 2 were all 

similar with one another, with the exception of croscarmellose sodium, which is only shown to 

have statistical similarity with crospovidone and starch 1 in group C. Thus, the results indicate 

tracer materials with similar flow properties (e.g., permeability, flow function coefficient) provide 

statistically similar MRTs. 

The similarity between tracer MRTs and the base material was compared using the space-

time result from the feeder-blender characterization. The goal was to determine which tracer 

material would yield similar time values to those calculated using the space-time measurement. 

Remarkably, MCC 2’s space-time did not share statistical similarity with the MRT of anhydrous 

calcium di-phosphate, which in accordance to the clustering results had the closest flow behavior 

to the base (i.e., both materials were in group 3). This result may be attributed to the fact that, 

although both materials are grouped in Table 10, their properties are widely different. For instance, 

the flow function coefficient difference between anhydrous calcium di-phosphate and MCC 2 is 

almost a five-fold (5x) difference. This vast difference may lead to significant variations in MRT 

and therefore show that not all materials that fall within the same property groups may be used. To 

further examine this hypothesis it was observed that MCC 2’s space-time shared statistical 

similarity with the MRT of tracer materials listed in group B on Table 18. All of these materials 

share the same range of flow function coefficient and cohesion values, which led to the conclusion 

that this property was important to match the residence time of a material in the system.  

Starch 1 had the most statistical similarities with other tracers’ MRTs as well as the bulk 

MCC 2, as shown by belonging to three of the four groups shown in Table 18 (i.e., groups B, C, 

and D). This result indicates the starch 1 may be used as a tracer to obtain similar MRTs to the 

other five tracers as it shares statistical significance with the other tracer materials and describes 
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the space-time behavior of the base most similarly. Starch 1 had a range of SIMIN values ranging 

between 15 and 70%, which indicated that the material was relatively similar to all of the other 

tracers. Starch 1 shared property commonalities between all the five tracers it had similar MRTs, 

particularly with regards to permeability, flow function coefficient, and particle size. On the other 

hand, bulk density, a common property between starch 1 and anhydrous calcium di-phosphate, did 

not appear to be a good predictor of similarity between the MRTs. Given that previous findings had 

established a correlation between the properties, this result was investigated more thoroughly using 

a multivariate test in the following section. 

6.3.4. RTD comparison using models 

6.3.4.1. Axial dispersion (AD) 

To accurately represent the blending system, Equation 61 was transformed to consider: (1) 

time in units of seconds and (2) the delay time exhibited by all PDFs. Since the data is provided in 

units of seconds,  the normalized time variable 𝜃 was transformed to the original time variable. To 

account for the time delay, a time-shift convolution integral of a plug flow system’s equation was 

performed on Equation 61. The plug flow system’s equation is represented by a unit step, as 

discussed in the introduction. Equation 14 shows the result of these transformations to 61, wherein 

the time delay (𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷) is considered. 

 

𝐸(𝑡) =
𝑢(𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷)

𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
√

𝑃𝑒 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  

4𝜋 (𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷)
𝐸𝑥𝑝

[
 
 
 
 

−

𝑃𝑒 (1 −
(𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷)

𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
)

2

4(𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷)

𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 ]
 
 
 
 

 

14 

 Using Equation 14 and the PDF values for each of the tracer experiment, the regression of 

𝑃𝑒, 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 , and 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷 was performed. The obtained RTD curves had a coefficient of 

determination (R2) value above 95%, a MAPE value under 15%, and all variables showed statistical 

significance using an alpha value of 5% (i.e., p–value < 0.05). 
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Table 20 shows the regressed coefficient results of 14. The results show an average 𝑃𝑒 for 

tracers’ systems of 5.61 ± 1.58, an average 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷 of 12.8 ± 5.9 seconds, and a 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  of 

32.6 ± 8.4 seconds. Within each of the tracer materials the relative standard deviation of 𝑃𝑒 ranged 

between 11 and 44%, wherein acetaminophen had the lower and croscarmellose sodium the larger 

value. The larger variance in 𝑃𝑒 for croscarmellose can be attributed to slight differences in the 

distributions width. This slight variability in the distributions’ width may appear to be insignificant, 

yet it is one of the critical aspects to be capture while using the model dependent method of 

comparing RTD curves. Notably, the values of 𝑃𝑒 were between the pre-established ranges, which 

confirmed that the open vessel boundary condition was a suitable model.  

INSERT Table 20 HERE 

 The delay time (𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷) RSDs within each tracer ranged between 16 and 71%, indicating 

this parameter was the one with the higher variability compared to the other three regressed 

constants. The reasoning behind this high variability can be attributed to the relatively high noise 

in the concentration profiles at the beginning of each pulse experiment. Starch and API B had the 

largest RSD values for the delay time, calculated at 70.6 and 64.6%, respectively. We can see from 

Figure 25, that starch 1 had two off trend points due to noise at the beginning of experiment 3 that 

forced the curve to regress a shorter delay time. The potential for off trend values to significantly 

affect the regressed coefficients is one of the major drawbacks of this methodology. To mitigate 

the effect of off-trend values, it is important to closely monitor the statistical significance of all the 

regression terms while performing the regression. The residence time due to axial dispersion 

(𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛) resulted in the lowest within-tracer RSD values, ranging between 5 and 30%. This 

indicates that 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  was the most reproducible value for all experiments. Anhydrous calcium 

di-phosphate had the lowest 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛, followed by acetaminophen. 

6.3.4.2. Tank-in-series 
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Similarly to the axial dispersion equation system, in order to accurately represent the delay 

time observed in the data, the tank-in-series equation shown in Equation 66 was transformed to 

include the convective transport time (𝜏𝑑𝑒𝑙𝑎𝑦,𝐶𝑆𝑇𝑅). Equation 15 shows the transformed tank-in-

series in real time units. 

 

𝐸(𝑡) =
𝑢(𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠)

𝜏𝑡𝑎𝑛𝑘 

 𝐸𝑥𝑝 [−
𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠

𝜏𝑡𝑎𝑛𝑘 
] (

𝑡 − 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠

𝜏𝑡𝑎𝑛𝑘 
)
𝑛−1

 (𝑛𝑟 − 1)!
 

15 

Using Equation 15, 𝑛𝑟 , 𝜏𝑡𝑎𝑛𝑘 , and 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠  were regressed from the experimental data. 

The 𝜏𝑡𝑎𝑛𝑘  variable was presented as the average residence time in all tanks (𝜏𝑡𝑎𝑛𝑘𝑠−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 ) to 

more easily compare with previously calculated results. Similar to the axial dispersion model, all 

regression curves had a coefficient of determination (R2) value above 95%, a MAPE value under 

13%, and the all variables showed statistical significance using an alpha value of 5% (i.e., p–value 

< 0.05). 

Table 21 shows the regression results for the tank-in-series equation. The level of 

dispersion in the system was shown to be relatively high for this system, given that the average 

number of tanks (𝑛𝑟) for all blends was 2.17 ± 0.36. This relative low number of tanks also indicates 

that the material travels as a bulk along the unit’s length and progressively is back mixed with the 

incoming material. The average residence time in all tanks (𝜏𝑡𝑎𝑛𝑘𝑠−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 ) for all materials was 

35.57 ± 8.6 seconds, which resulted in an average residence time per tank (𝜏𝑡𝑎𝑛𝑘 ) of 16.52 ± 4.06 

seconds. The 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠  resulted in an average value of 20.91 ± 3.78 seconds. Notably, the RSD 

for the number of tanks and the residence time in all tanks were relatively small, ranging between 

4 and 17%. This low RSD from the regression indicates this model has robust regression values 

that account for the system’s variability. The RSD for the delay time within materials was also 

relatively small, ranging from 2 to 26%. Croscarmellose sodium was the material with the highest 
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RSD, which can be attributed once again to the distribution’s width and high variability in the 

starting pulse times. 

INSERT Table 21 HERE 

6.3.5. Relationship between models and numerical MRT 

The regressed results between the RTD models and the numerically calculated mean 

residence times were compared. Figure 29A shows the relationship between the Peclét number (𝑃𝑒) 

and the number of tanks (𝑛𝑟) for each of the regressed values. There was a positive relationship 

between the two values, as expected given the model formulations. Most 𝑃𝑒 values are between 

the 𝑦 = 2𝑥 and 𝑦 = 2𝑥 + 1, which indicate the values of 𝑃𝑒 were twice those of the number of 

tanks. This result is in agreement with the findings from [103] who proposed the relationship 

between the 𝑃𝑒 and 𝑛𝑟  by equating the variance between the two models shown in 69. This 

relationship was used by Wang et al. [62] to correlate the results from number of tanks to the Peclét 

number. Figure 29B shows the relationship between 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷 and 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠.  

Remarkably, the 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷 was consistently lower than 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠 . This result, can be 

explained by the open vessel boundary conditions of the axial dispersion model, wherein a pulse 

system introduced instantaneously at the systems z = 0 position is allowed to disperse in both the 

negative and positive axial position. The  effect of having dispersion in both directions, allows for 

the distribution to have smoother tails at both ends, and thus in order to allow for a minimal value 

of the sum of squared errors during regression, it must move the starting delay time to an earlier 

point. An example of this case can be observed by the starch 1 value at the lower right corner of 

Figure 29B. As noted previously, the starting values for the concentration plot for starch are noisy, 

therefore it leads to a solution for the regression that is relatively infeasible for this system. 

Nevertheless, a linear correlation between most of the points was observed, wherein values were 

just shifted towards the right of the graph. A potential solution to the differences between the two 
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values includes using the closed boundary system solution, to avoid dispersion to occur at the 

systems inlet.  

INSERT Figure 29 HERE 

 Figure 29C shows the correlation between 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  and 𝜏𝑡𝑎𝑛𝑘𝑠−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 . There was a 

relatively high degree of correlation between the two sets of values (R2 = 78%), which indicated 

both models resulted in similar residence time values. The material with the highest differences 

between the two parameters was croscarmellose sodium, which appeared to have distinct 

differences that were attributed to the introduction of the tracer pulse. Lastly, Figure 29D shows 

the parity plot between the numerically integrated mean residence time and the regressed mean 

residence time by the two models. The mean residence time from the regressed models were 

calculated by adding the delay time to the related mixing residence time (i.e., 𝜏𝑀𝑅𝑇−𝐶𝑆𝑇𝑅 =

𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠 + 𝜏𝑡𝑎𝑛𝑘𝑠−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠  and 𝜏𝑀𝑅𝑇−𝐴𝐷 = 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷 + 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 ). The results show a 

strong linear correlation between the regressed mean residence times, wherein the correlation 

coefficient R2 for the tanks-in-series and axial dispersion models were 92% and 90%, respectively. 

Notably, the axial dispersion mean residence time was consistently lower than the integrated value; 

a result that can be attributed to the shorter time delay (𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷). 

6.3.6. Effect of material properties on MRT 

After comparing the MRT results between materials and establishing that different 

materials showed statistically different MRTs, it was noted that developing a level 2 model for 

RTD and a subsequent level 3 model would be difficult because both the material properties of the 

tracer and the bulk appear to affect the measurement. Thus, the analysis primarily focused on 

establishing the effect of material properties on the measurement of the MRT.  

A multivariate linear correlation analysis was performed to relate the material properties 

measurements from Table 14 and Table 15 with the tracer residence time results. The multivariate 
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analysis determined the level of correlation between the material property measurements and the 

MRT, as well as the level of statistical significance of the correlation using the p-value. Figure 26 

shows the results of the correlation analysis between all of the measured material properties and 

the MRT results.  

 

Figure 26. Multivariate linear correlation analysis between material properties reported on Table 
14 and Table 15 and the tracer mean residence time (MRT). R is the correlation value and p is the 

statistical significance value 

 Figure 26 shows the correlation value (R) between each material property and the MRT. 

The results indicate that both permeability and particle size measurements had a strong negative (R 

< – 0.5) correlation with the MRT, while other material properties had weaker correlations ranging 

from – 0.5 to 0.5. Particle size d90 and d50 had the largest correlation values of – 0.66 and – 0.67, 

respectively. More importantly, the correlations between permeability and particle size appear to 

show significance, with p values less than 1% (i.e., p-value < 0.01). 

Two material properties had results that indicated both had a correlation with the MRT: 

bulk density and flow function coefficient (FF). Bulk density had a moderate correlation value (R 



132 

 

 

= – 0.43) with a level of statistical significance p = 0.052, and FF had a relatively low correlation 

value (R = – 0.39) with a p-value = 0.080. Thus, these two material properties appear to have an 

impact on the MRT given that, with the work performed, there is not sufficient proof that the 

properties do not have an impact on the MRT. 

The correlation between the permeability, particle size, bulk density, and flow function 

coefficient properties measurements with respect to MRT indicate that these material properties 

have a negative impact on the RTD metric, meaning they decrease the value of the MRT as the 

material property value increases. This result is in agreement with the hypothesis that materials 

with larger particle sizes travel at faster velocities (i.e., take less time to travel a particular distance) 

than smaller particle counterparts. Further, the result also indicates that materials with higher bulk 

density and better flowing behavior have travel faster through the unit given that they do not provide 

a high resistance to flow. 

Using these findings, some recommendations for selecting powder tracer materials for 

performing accurate RTD experiments are provided in the subsequent section. 

6.3.7. Recommendations for selecting a tracer and performing RTD experiments 

Based on the established tracer criteria and this work’s experimental results, indicate some  

guidelines to perform RTD experiments and select the most appropriate tracers materials to (1) 

capture the mixing behavior of a tracer material inside of the system and (2) represent most 

similarly the space-time behavior of the base material in the system. To achieve these two goals it 

is important to recognize that both tracer-blend and tracer-ingredient material property similarities 

are relevant, especially those regarding  flow properties. Assuming that researchers using these 

recommendations will already have selected a base material (or a blend),, the following 

recommendations focus solely on tracer selection: 
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1. Select a tracer material that has a distinctly observable chemical or physical 

property (e.g., spectral band on NIR, color) in comparison to the base blend but 

whose permeability, flow function coefficient, bulk density, and particle size 

resembles that of the bulk blend. 

2. For pulse experiments, introduce a mass of tracer material that does not exceed 

over 5% of the blender’s mass hold up at steady state. This recommendation is 

paramount to avoid changing the flow properties of the system. 

3. Select the point of tracer introduction (i.e., port) with a clear line of sight to the 

process’ powder stream. This recommendation is given to ensure that the tracer is 

introduced instantaneously and entirely. This is critically important to accurately 

represent the system and prevent tracer material from collecting in the port area. 

4. Develop an online method to characterize the outgoing tracer concentration in real 

time. This method would ensure that tracer does not stay behind in the system 

before introducing subsequent pulses, and allows for experimental monitoring 

while pulses are performed. 

5. Perform the tracer addition experiment in (at least) triplicate to ensure that no 

variability is introduced by means of the tracer insertion. For pulse experiments, 

avoid changing methods (e.g., size of pulse, countdown) during the experiment. 

6. Capture and understand the variability (i.e., noise, error) introduced by the sensing 

system (i.e., measurement). Select materials whose chemical composition, 

although different from the base, do not yield a noisy concentration signal. 

7. Determine the base material’s space-time and compare it statistically with respect 

to the RTD tracer results. This result will provide additional value when 

considering the RTD given by the tracer. 
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8. Have a single feeder unit in operation while performing the RTD characterization. 

Monitor closely the feeder flow rate to ensure that no additional disturbance is 

being provided to the system.  

It is important to mention that if the goal of performing an RTD experiment is to determine 

the dissipation of a particular disturbance caused by a specific ingredient (e.g., an API lump) in a 

specific unit (e.g., a multifeeder, multiblender system), it is highly recommend to prioritize the use 

of the ingredients and units in question rather than the recommendations provided here. 

6.3.8. Application of RTD model results to process evaluation 

RTD data and models can be used to translate input signals into outputs using the 

convolution algorithm. This section is focused on the application of RTD data and models to 

perform discrete and continuous convolution, respectively. 

6.3.8.1. Convolution 

Convolution is a mathematical technique that effectively maps an input signal over a signal 

filter by means of integration to yield an output signal. In mathematical terms, convolution is the 

solution for the multiplication of Laplace transforms. This technique is used for digital signal 

analysis and solving complex sets of ordinary differential equations, therefore it is heavily used 

within the electrical and computer science community to understand electrical current patterns 

[280, 281].  

Convolution can be performed using both continuous functions or discrete data. 

Continuous convolution aims at yielding a new function from the multiplication of two functions. 

To perform this multiplication of the two functions, continuous convolution requires that every 

value on the two functions is defined over the entire finite interval of time (𝑡). Thus, continuous 

convolution cannot be applied to a moving time data (i.e., inputs which acquires new data points 
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over time). Continuous convolution has been applied to a variety of systems, including 

pharmacokinetic systems [282-284]. Mathematically, the continuous convolution of two functions 

time-dependent functions 𝑓(𝑡) and 𝑔(𝑡)  can be represented using the standard notation shown in 

Equation 16 

 
ℎ(𝑡) = (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝛼)𝑔(𝑡 − 𝛼)𝑑𝛼

𝑡

0

 
16 

Discrete convolution is the mapping of an input data sequence over a discrete time system, 

yielding an output sequence. A discrete time system effectively can be described as an impulse 

response of the system. The discrete convolution is rather similar to the continuous form. 

Nonetheless, one of the main advantages of the discrete convolution form is the capability of 

evaluating streams of data that change over time. The discrete convolution of an input sequence 

over a discrete time system yielding an output sequence is shown in Equation 17. 

 
𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) = ∑ 𝑥(𝑚)ℎ(𝑛 − 𝑚)

∞

𝑚=−∞

 
17 

Both of these convolution equations can be used with RTD data and equations. For 

example, the continuous convolution can be used to study the effect of a time function input on the 

system’s output. The time function inputs can be represented using trigonometric functions (e.g., 

sine and cosine), step changes, and series of pulse inputs. This process can be performed during 

development stages to study the effect of different non-random inputs on the system’s output. On 

the other hand, the discrete convolution method can be used for instances where data is being 

transferred into the system as a function of time, such as a concentration stream given by feeding 

data or a random input over time. The system would be able to predict the outlet concentration of 

the material in time using discrete RTD results. In the pharmaceutical field, papers using discrete 

convolutions can be found in the field of physiology and pharmacokinetics [285]. In this work, the 
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results from the RTDs will be applied to determine concentration outputs using both discrete and 

continuous convolution algorithms. 

6.3.8.2. Continuous convolution 

To perform a continuous convolution example and demonstrate its potential uses, the tanks-

in-series models was used because of its mathematical simplicity. Nevertheless, it is important to 

mention that either model could be used to perform the convolution calculation. The goal of the 

convolution method is to take an incoming input signal and apply a fixed signal filter. In this case, 

the incoming signal is an arbitrary input weight fraction (i.e., concentration) of material entering 

the system, which varies as a function of time (𝐶𝑖𝑛(𝑡)). The output signal is the weight fraction of 

materials coming out the blender, also a function of time (𝐶𝑜𝑢𝑡−𝑏𝑙𝑒𝑛𝑑𝑒𝑟(𝑡)). The relationship between 

these two variables, which has been introduced by several authors [240], is shown in Equation 18 

 𝐶𝑜𝑢𝑡−𝑏𝑙𝑒𝑛𝑑𝑒𝑟(𝑡) = (𝐶𝑖𝑛 ∗ 𝐸𝑡𝑎𝑛𝑘−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠)(𝑡) 

𝐶𝑜𝑢𝑡−𝑏𝑙𝑒𝑛𝑑𝑒𝑟(𝑡) = ∫ 𝐶𝑖𝑛(𝛼)𝐸𝑡𝑎𝑛𝑘−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠(𝑡 − 𝛼)𝑑𝛼
𝑡

0

 18 

 Once the relationships between the inlet and outlet concentrations are established using the 

convolution integral, the work proceeded to select a simple input concentration function that would 

be easy to integrate with the tank-in-series PDF. The inlet concentration profile considered was a 

simple step up and step down (i.e., variable step) with a maximum disturbance value of (𝑃𝑚𝑎𝑥), 

which begins at 𝑡 = 0 and ends at 𝑡 = 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 . The equation for this input concentration is shown 

in 19.  

 𝐶𝑖𝑛(𝑡) = 𝑃𝑖𝑛(𝑡) = 100 + 𝑃𝑚𝑎𝑥(𝑢(𝑡) − 𝑢(𝑡 − 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒)) 19 
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 Using Equation 15, 18, and 19, continuous convolution was performed to yield Equation 

20. Notably, this resulting function contained both the complete and incomplete forms of the 

Gamma function, which is described using the capital Greek letter Γ. 

 𝑃𝑜𝑢𝑡−𝑏𝑙𝑒𝑛𝑑𝑒𝑟(𝑡) = 100 +
𝑃𝑚𝑎𝑥

(𝑛 − 1)! 𝜏𝑡𝑎𝑛𝑘 
𝑛𝑟

[𝑅(𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘) − 𝑅(𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘 + 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒)] 

where, 

𝑅(𝑥) = 𝑢(𝑡 − 𝑥)(𝑡 − 𝑥)𝑛𝑟 (
𝑡 − 𝑥

𝜏𝑡𝑎𝑛𝑘 
)

−𝑛𝑟

(Γ(𝑛𝑟) − Γ(𝑛𝑟 ,
𝑡 − 𝑥

𝜏𝑡𝑎𝑛𝑘 
)) 

Γ(𝑛𝑟) = ∫ 𝑡𝑛𝑟−1𝐸𝑥𝑝[−𝑡]𝑑𝑡
∞

0

 

Γ (𝑛𝑟,
𝑡 − 𝑥

𝜏𝑡𝑎𝑛𝑘 
) = ∫ 𝑡𝑛𝑟−1𝐸𝑥𝑝[−𝑡]𝑑𝑡

∞

𝑡−𝑥
𝜏𝑡𝑎𝑛𝑘 

 

20 

 Equation 20 represents the resulting API claimed label potency out of a blender whose 

mixing has been modeled using the tank-in-series model with a variable step input. Using Equation 

20, several case studies were developed, wherein the size of the maximum potency deviation (𝑃𝑚𝑎𝑥) 

and duration of the disturbance (𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒) were varied. Figure 30 shows the results from the case 

studies. The  𝑛𝑟 , 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠, and 𝜏𝑡𝑎𝑛𝑘 used for these case studies were: 𝑛𝑟 = 2.17, 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘 =

20.91 seconds, and 𝜏𝑡𝑎𝑛𝑘 = 16.52 seconds. It should be notices that the values for these RTD 

model parameters vary with material properties, which indicate that different tracers may have an 

impact on the results from the subsequent analysis. 

INSERT Figure 30 HERE 

Figure 30A and B show the cases were the maximum potency disturbance (𝑃𝑚𝑎𝑥) was in 

the positive and negative direction (i.e., –100 to 100%) at two different disturbance durations 

(𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒): 10 and 30 seconds, respectively. The resulting potency would indicate whether the 

outgoing material was over or under potent based on the deviation from 100%. Each contour 
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represents the outgoing concentration of material over the operating time (𝑡). Both Figure 30A and 

B show a gap of time between 0 and 20 seconds, which represents the effect of the delay time on 

the output concentration. Both Figure 30A and B show that after a given period time, the process 

will return to its original 100% potency value. However, this time is not after the end of the 

disturbance, indicating that there is dispersion and delay of the disturbance. The delay and mixing 

time would be critical to capture to track more accurately the disturbance and take a corrective 

measure (e.g., deviate material). Furthermore, as seen from the increase in size for both the 85% <

𝑃(𝑡) and 𝑃(𝑡) > 115% contours between Figure 30A and B, increasing the duration of the 

disturbance increased the time the process was producing either under or over potent material. This 

result is expected, given that increasing the disturbance would lead to burden that the blender may 

not be able to dissipate. Notably, Figure 30A and B show similarity with the funnel plots discussed 

by Garcia-Munoz et al. [51] as well as Tian et al. [286], who developed these plots taking a 

numerical approach with data collected from experiments. However, it is important to note that 

Garcia-Munoz et al. [51] did not add a variable allowing for variations in the disturbance duration, 

which is considered in this work. 

 Figure 30C and D show the effect of varying the 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒  with for two different values 

of 𝑃𝑚𝑎𝑥: +20 and +40%, respectively. The disturbance time was varied between 0 and 60 seconds. 

Varying the 𝑃𝑚𝑎𝑥 as the disturbance duration is increased, increases the area of material whose label 

claim potency is over the arbitrary 115% upper specification contour. This result is in agreement 

with the fact that as the disturbances in the process occur for longer time, more material will be 

affected and in a more extensive manner. The results from Figure 30C and D can be used to 

determine the relationship between disturbance time and amount of time material is out of 

specification (OOS).  

Figure 27 shows an example of how to determine the window of OOS material using the 

results from Figure 30D. In this example, three (3) arbitrary disturbance durations were chosen: 10, 
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30, and 50 seconds. Using the 115% as the upper specification bound, three horizontal lines across 

the entire operation time window were drawn to inspect whether the disturbance would cross the 

upper specification. The disturbance with a duration of 10 sec did not cross at any instance the 

115% upper specification, which indicated that the blender may be able handle the disturbance and 

yield product that is within the established bounds. However, as observed from the 30 and 50 sec 

lines, both cross into the 115% upper specification contour. The amount of time the material is 

OOS can be measured by taking the difference of the intersections between the horizontal and 

115% contour lines. Figure 27 shows the OOS time window for a 30 second disturbance (OOS30s) 

is smaller than the 50 sec long disturbance (OOS50s).  

 

 Figure 27. Determining the duration of out of specification (OOS) material, using an 

arbitrary 115% maximum potency contour.   

These OOS windows can be used to design control methods to divert this material, if so 

desired. One of the main advantages of having the analytical solution to the outlet concentration 

includes the capability of deriving an equation for the OOS window. The potential to find the 

intersecting points between the disturbance duration and the upper specification (whichever the 

product manufacturer wishes it to be) can be determined by solving the non-linear problem wherein 
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the user specifies the potency and obtains the operation times corresponding to that potency value. 

Given the complexity of this highly non-linear solution, the authors leave this problem for future 

research. 

6.3.8.3. Discrete convolution 

Discrete convolution and RTD information (including experimental data) allows for 

mapping an input signal to an arbitrary filter without having an analytical solution for the filter 

[251]. As previously mentioned, this method is extensively used in signal analysis and electrical 

circuit design and may be applicable for cases when blending systems present mixing patterns that 

are not easily describable using the RTD models discussed. In this work an example case is provide 

on how to compute the discrete convolution along with the results using two RTD curves from the 

pulse experiments for different materials and a random input concentration that will serves as the 

base signal. 

 The case study used the resulting RTD curves for experiments 1 and 2 of the croscarmellose 

sodium and anhydrous calcium di-phosphate pulses, respectively. Each pulse experiment had 36 

and 29 data points, respectively. The two RTD PDF curves are shown in Figure 28A along their 

inherent acquisition error. Following the selection of the RTD distribution curve, a random input 

potency signal was generated spanning 650 seconds in 1 second intervals using a normal 

distribution with a mean of 99.6% and a standard deviation of 23.7%. The resulting relative 

standard deviation (RSD) for the system was estimated at 23.8%. This random inlet distribution is 

shown in Figure 28B. The 650 𝑥 2 input signal was multiplied with the 36𝑥2 and 29𝑥2 RTD PDF 

curve arrays, generating two matrices of 650𝑥36 and 650𝑥29 dimensions. The varying sampling 

times of the RTD were accounted by multiplying the 𝐸(𝑡) value by the time difference. 

Subsequently, diagonal sum of the two resulting matrices was performed to yield the outgoing 

potency curves as a function of time in Figure 28B. 
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Figure 28. Determining the duration of out of specification (OOS) material, using an arbitrary 115% 

maximum potency contour.   

 The outlet potency differences between the two RTD curves appear to be significant, which 

agrees with the aforementioned discussion about RTD and material properties. The resulting 

moving concentration relative standard deviations (RSD) for the inlet concentration input using the 

croscarmellose sodium and anhydrous calcium di-phosphate RTD curves were 4.6% and 7.7%, 

respectively. Given this reduction in the RSD, the croscarmellose sodium RTD results would have 

predicted a lower variation in the outlet potency (i.e., better blend homogeneity) compared to when 

anhydrous calcium diphosphate was used as tracer. This result is significant from the point of view 

of comparing collecting the initial RTD data, particularly when performing using the data to inform 

future models. Particularly, it is important to select the right tracer to perform the characterization 

of the blending system and provide ample room for material property effects when developing 

regimes of operation. 

 The major advantage of the discrete convolution method is its capability to compute the 

outlet concentration of a moving set of data, meaning a data whose input is not provided by an 
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explicit equation. One of the major downsides, however, is being unable to develop region plots as 

it has been done with the analytical solution to determine OOS metrics. Iteratively evaluating 

discrete convolution results for varying input systems may be a solution to this downside. 

6.4. CONCLUSIONS 

This work emphasized the assumptions and fundamentals of the residence time distribution 

(RTD) methodology with a particular interest of solid systems. The underlying assumptions for 

tracer addition with respect to their mathematical representation were discussed, along with the two 

most commonly used RTD models for describing continuous powder blending systems – the 

convection-dispersion model and the tank in series model.  

For this experimental evaluation seven materials with a wide range of properties were 

selected as tracers and a single material as our base material. The experimental results led to two 

major conclusions: (1) materials with significantly different material properties have dissimilar 

mean residence times inside the systems and (2) materials do not travel at the same speed inside of 

continuous blending systems. Using the experimental results each of the parameters for the 

presented RTD models were regressed to assess the impact of material properties. The effect of 

material properties on the RTD was discussed using the model parameters. Differences in the 

parameters were shown to be significant for one material in particular: anhydrous calcium-

diphosphate.  

The analysis revealed that the material properties of the tracer had a statistically observable 

impact on the RTD model parameters for the axial dispersion and tanks-in-series models for the 

range of properties examined in this study, further emphasizing the need to select a tracer that 

faithfully tracks the movement of the material of interest. These observations were also used to 

identify a set of recommendations on how to select materials that would help characterize the 

mixing inside of a system taking into account material properties. 



143 

 

 

This work further showed how RTD models and continuous convolution can be used to 

determine the operational regions of the blending system. Furthermore, using this model, process 

developers may be able to determine the impact of disturbance duration and size on the outgoing 

material as well as establish the duration of out of specification material using the convolution 

integral. A case study particularly using discrete convolution showed that results from two RTD 

experiments using different tracers would have led to different predictions of blending 

performance. These results point to a need for further evaluation to take place to determine the full 

impact of material properties on the RTD inside of the blending system. 
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6.5. LARGE TABLES AND FIGURES 

Table 19. Residence time distribution metrics for all tracer experiments. 

Tracer Material 

Mean Residence Time - MRT (seconds) Mean Centered Variance (MCV) Skewness 

Experiment No. 
Avg. SD 

Experiment No. 
Avg. 

Experiment No. 

1 2 3 1 2 3 1 2 3 

Acetaminophen 51 48.9 47.8 49.2 1.6 20% 24% 18% 21% 14% 20% 11% 
Anhydrous Calcium Di-Phosphate 42.5 39.3 41.6 41.2 1.7 26% 16% 12% 18% 29% 4% 4% 

Croscarmellose Sodium 59.6 71 63.4 64.7 5.8 18% 30% 24% 24% 5% 13% 13% 

Crospovidone 54.9 67.8 55.8 59.5 7.2 19% 27% 18% 21% 8% 22% 7% 

Starch 1 53.1 56.6 61.6 57.1 4.3 15% 19% 22% 18% 3% 5% 7% 

API 3 48 52.2 63.2 54.5 7.8 13% 20% 34% 23% 3% 9% 27% 

API 4 58.1 53.1 51.1 54.1 3.6 26% 18% 21% 21% 17% 6% 8% 

Avg. = Average; SD = Standard deviation (n = 3) 

Table 20. Regression results for 14 for each of the RTD PDFs. 

Tracer Material 

 Peclét Number (𝑃𝑒) Delay Time (sec) - 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷  Residence Time AD (sec) - 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  

Experiment No. 
Avg. St. Dev 

Experiment No. 
Avg. St. Dev 

Experiment No. 
Avg. St. Dev 

1 2 3 1 2 3 1 2 3 

Acetaminophen 6.36 7.75 6.47 6.86 0.77 12.5 8.8 12.4 11.3 2.1 29.0 30.4 26.9 28.8 1.7 

Anhydrous Calcium Di-Phosphate 3.38 5.35 5.18 4.64 1.09 18.7 13.8 14.4 15.6 2.7 13.7 20.2 22.2 18.7 4.4 

Croscarmellose Sodium 6.24 2.78 3.53 4.18 1.82 14.2 19.5 19.1 17.6 2.9 40.0 35.8 31.4 35.7 4.3 

Crospovidone 5.70 3.89 4.16 4.58 0.98 16.5 24.5 18.2 19.7 4.2 32.6 30.2 28.0 30.3 2.3 

Starch 1 5.22 4.71 8.20 6.04 1.89 16.4 14.1 2.1 10.9 7.7 29.5 34.4 52.2 38.7 11.9 

API 3 6.87 7.40 4.32 6.20 1.65 7.4 3.4 8.5 6.4 2.7 35.3 39.6 36.3 37.1 2.3 

API 4 8.17 6.03 6.27 6.82 1.17 3.1 13.6 8.0 8.2 5.3 46.0 34.3 35.8 38.7 6.4 
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Table 21. Regression results for 15 for each of the RTD PDFs. 

Tracer Material 

Number of tanks in series (𝑛𝑟) Delay Time (sec) – (𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠)  
Residence Time in Tanks (sec) – 

(𝜏𝑡𝑎𝑛𝑘𝑠−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 ) 

Experiment No. 
Avg. St. Dev. 

Experiment No. 
Avg. St. Dev 

Experiment No. 
Avg. St. Dev 

1 2 3 1 2 3 1 2 3 

Acetaminophen 2.31 2.47 2.30 2.36 0.09 20.4 18.3 20.0 19.6 1.1 29.8 28.7 27.5 28.6 1.1 

Anhydrous Calcium Di-Phosphate 1.40 1.66 1.87 1.65 0.24 22.7 21.5 21.0 21.7 0.9 17.8 21.1 24.1 21.0 3.2 

Croscarmellose Sodium 2.42 1.86 2.57 2.28 0.37 14.2 24.1 22.9 20.4 5.4 42.0 52.3 44.7 46.3 5.4 

Crospovidone 2.37 2.70 1.89 2.32 0.40 23.9 24.6 24.6 24.4 0.4 35.4 40.9 33.9 36.7 3.7 

Starch 1 1.81 2.07 1.90 1.93 0.13 26.0 21.6 26.2 24.6 2.6 31.6 40.1 44.0 38.6 6.4 

API 3 2.50 2.77 2.04 2.44 0.37 16.6 13.1 15.9 15.2 1.8 35.9 39.7 43.9 39.8 4.0 

API 4 2.45 2.06 2.13 2.22 0.20 18.3 24.2 19.0 20.5 3.2 42.4 35.2 36.2 37.9 3.9 
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Figure 29. Residence time distribution profile metrics comparison. (A) Peclét number and number of tanks. (B) 𝜏𝑑𝑒𝑙𝑎𝑦,𝐴𝐷 and 𝜏𝑑𝑒𝑙𝑎𝑦,𝑡𝑎𝑛𝑘𝑠 . (C) 

𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  and 𝜏𝑡𝑎𝑛𝑘𝑠−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 . (D) Numerically calculated mean residence time against both the axial dispersion and tanks-in-series model mean 

residence time values. 
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Figure 30. Case studies varying the 𝑃𝑚𝑎𝑥 and 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒  for 20. (A) −100% < 𝑃𝑚𝑎𝑥 < 100% and 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 = 10 seconds. (B) −100% < 𝑃𝑚𝑎𝑥 <

100% and 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 = 30 seconds. (C) 0 < 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 < 60 seconds and 𝑃𝑚𝑎𝑥 = +20%. (D) 0 < 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 < 60 seconds and 𝑃𝑚𝑎𝑥 = +40%.  
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CHAPTER VII 

7. AIM 4: FEEDER CHARACTERIZATION AND 

MODELING 

7.1. POWDER FEEDING 

As seen in Figure 1, feeders one of the three most commonly observed unit operations 

continuous manufacturing CPM processes. From a process development standpoint, powder 

feeding first and most important step in continuous pharmaceutical processes since it sets up the 

process mass balance, steady state, and has the greatest impact in the concentration of the final 

product. In a steady state scenario, the materials at any location of the process have the same or 

very similar average concentration (i.e., mass fraction) from the ratio at which they were fed. Thus, 

accurate feeding of all ingredients in CPM process ensures that a desired blend and content 

uniformity is attained. Poor feeding performance or large deviations in feeding can seldomly (if at 

all) be corrected by subsequent unit operations and may lead to process failure.  For this reason, 

developing accurate models and controls are paramount for their implementation in CPM 

processes.  

Figure 31 shows a schematic of the units included under the category of powder feeding 

unit operations. Feeding units are composed of a screw feeder, a refill unit, and a weight 
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measurement system, also known as a load cell. In the following subsections, each of the 

components are described in further detail. 

 

Figure 31. Schematic of a screw feeder unit and a refill system. 

7.1.1. Screw feeders 

Screw feeders are among the most frequently used feeding systems for pharmaceutical 

ingredients given their ability to provide the most accuracy for feeding processes, even when low 

flow rates are required as is sometimes the case for APIs and lubricants [287, 288]. Screw feeders 

typically consist of a single feeder hopper, one or multiple bridge breaking systems, and a single 

or twin configuration of conveying screws from which material is dispensed out of the unit [289, 

290]. Materials are placed inside of the feeder hopper, whose dimensions and shapes vary 

depending on the material being dispensed. Bridge breaking systems aimed at ensure a consistent 

and smooth flow of material from the feeder hopper to the screws are available in most 

commercially available screw feeders. Bridge breakers are be located inside or outside of the feeder 

hopper depending on their type and mode of action. Examples of bridge breakers include: vertically 

or horizontally rotating paddles, jack-hammers, and vibratory or ultrasound systems. The screw 

conveying system, composed of a single or a twin set of screws, is located at the bottom of the 

feeding unit, under the feeder hopper and the bridge breaking system. 

 Figure 32 shows a schematic of some commercially available feeders and points to each 

of the components described.  

Symbol Design Parameters Operating Variables Material Properties Unit Responses 

 

· Unit Tooling (e.g., Screws) 

· Hopper Size and Geometry 

· Operating Mode (Gravimetric 

or Volumetric) 

· Screw Rotational Speed 

· Flow Rate Set Point 

· Control Constants 

· Refill Level and Frequency 

· Bulk Density 

· Hausner Ratio 

· Friction Coefficient 
· Compressibility 

· Other … 

· Flow Rate 

· Mixing of Lots 
· Material Property Changes 

!

M 

M 

Volumetric	
Feeder	

Refill	Unit	
Hopper	and	
Agitator	

Screws	 Refill	Cup	
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Figure 32. Three different feeder types with their major components symbolized. The feeder hopper 

(1) is represented inside the red box, the flow aid (2) system is inside the blue box, and the 

conveying system (3) is shown inside the green box. 

To dispense materials out of the feeder, the single or twin screw configuration is rotated to 

a given angular speed (𝜔) to displace volume of material per unit time (𝑉̇𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡). The volume 

displaced per screw revolution is known as the screw sweeping volume (𝑉𝑠𝑐𝑟𝑒𝑤) and is calculated 

from the annular dimensions of the screw. When the volumetric displacement (𝑉̇𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) is 

considered for a material with a given density value (𝜌), the material’s mass flow rate (𝑚̇) can by 

calculated using the conversation equation 𝑚̇ = 𝜌𝑉̇𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡. However, it is important to note 

that powder feeding operations typically do not have a constant value of material density given the 

compressible nature of granular materials. Furthermore, the fill efficiency (𝜀) of material in the 

𝑉𝑠𝑐𝑟𝑒𝑤  is highly dependent on the ability of the material to go from the feeder hopper into the screws 

at the bottom of the unit [289, 291, 292]. Thus, powder feeding operations often refer the material 

density at the screws (𝜌𝑠𝑐𝑟𝑒𝑤𝑠) by defining it as 𝜌𝑠𝑐𝑟𝑒𝑤𝑠 ≈ 𝜌𝜀. However, since the density at the 

screws cannot be measured inside of the unit, a feed factor (𝑓𝑓) value, defined in Equation 21, is 

used to denote the mass of material being dispensed per screw revolution. 

 𝑓𝑓 ≈ 𝜌𝑠𝑐𝑟𝑒𝑤𝑠𝑉𝑠𝑐𝑟𝑒𝑤[=]𝑚𝑎𝑠𝑠
𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛⁄  21 

 The feed factor, unlike the density at the screws, can be measured by using screw speed 

and mass flow rate measurements with the relationship shown in Equation 22. Thus, this metric 
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provides a simple metric that lumps the behaviors of screw filling efficiency, screw sweeping 

volume, and other screw feeding phenomena. 

 𝑚̇ = 𝜔 𝑓𝑓 22 

 Other definitions of the feed factor have been provided by equipment vendors, but for this 

work the feed factor is defined as the amount of material being dispensed per unit revolution [46]. 

7.1.2. Feeder controls 

Based on the current state of screw feeder technologies, feeders can be operated under two 

control modes: volumetric and gravimetric control. Under volumetric control, the volumetric 

displacement of the feeder is varied by means of controlling the angular speed of the screws. 

Volumetric mode is often referred to as open-loop control and it is recommended for operation 

where the density of the material is not significantly changed or when a precise mass flow rate of 

material is not required. Under gravimetric control, screw feeders must be operated while 

monitoring the rate of weight loss from the system. This mode of operation, often referred to as 

Loss-in-Weight (LIW) feeding, is performed in a closed-loop where a controller changes the screw 

speed to achieve a desired rate of weight loss. Flow rate is computed as a moving average of the 

negative time derivative of mass measured by the weight measuring device, commonly referred to 

as a load cell. Gravimetrically controlled operations ensure flow rate accuracy by maintaining a 

tight control over the screw speed of the system and constantly monitoring the flow rate out of the 

system.  

It is important to note that while the feeder is being refilled, gravimetric controls cannot be 

implemented given that the rate of weight loss is being obscured by the mass being delivered by 

the refill system. Thus, during refill operations, gravimetrically control feeders are momentarily 

controlled volumetrically. This unsupervised feeding of material during refill often leads to a 

deviation from the flow rate set point and has been characterized by Engisch et al. [287, 293, 294]. 
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7.1.3. Feeder refill unit 

Feeders need to be refilled in order to maintain a constant flow rate entering the process. 

Since the size of feeder hoppers are often constrained by the maximum weight capacity of the load 

cell, screw feeders are often equipment with refill systems that will dispense a given mass of 

material and prevent the feeder from running empty. Given the importance of refill units in feeding 

operations, these units need to be characterized and modeled in order to have full understanding of 

this system. One of the major differences between feeders and refill units is the controllability of 

material dispensing, particularly on whether or not the material flow rate is controlled. Refill unit 

mass flow rates are often controlled and are constrained by a refill time that aims at minimizing 

disturbances of gravimetrically controlled screw feeders. Thus, most refill units deliver lump sums 

of materials in a fast manner, in order to avoid disturbing the feeder system for extended time 

periods. 

7.2. MATERIALS AND METHODS 

7.2.1. Materials 

A set of the nineteen pharmaceutically-relevant materials shown in Table 8. Lactose 1 & 

MCC 1 was excluded from the experimentation given that no material was available to perform 

sufficient feeder characterizations. 

7.2.2. Equipment 

7.2.2.1. Feeder and catch scale 

A twin screw GEA Compact Feeder (GEA, Belgium) was used as the feeding unit for this 

work. The unit, which comes equipment with a load cell and a servo motor was placed on a 

countertop so that external vibrations or disturbances were minimized. The maximum load and 



153 

 

  

weight measurement error of the load cell was provided by the equipment manufacturer as 5 kg 

and ± 1.5 mg, respectively. The working volume capacity of the feeder was obtained from the 

manufacturer as 2.1 L. Two screw sizes were used in this study: 10mm and 20mm pitch concave 

screws, each having a sweeping volume of 2.4 and 4.8 ml/revolution, respectively. Three gearbox 

ratios were used in this study: 63:1, 235:1, and 445:1. Each gearbox ratio provided a maximum 

screw speed, which in turn varied the maximum volumetric displacement and range of operational 

screw speeds. A list of the maximum screw speeds and the respective volumetric displacements is 

provided in Table 22. The feeder unit was operated in both volumetric and gravimetric settings and 

was controlled using the provided software by GEA. A K-Tron Load Cell (Coperion K-Tron Pitman 

Inc., Sewell, NJ) from a K-Tron K-CL-SFS KT20 was used as part of the external measurement 

unit (i.e., catch scale) to characterize the flow rate dispensed out from the unit. The load cell’s 

weight measurement maximum load range and error were provided by the equipment manufacturer 

as 12 kg and ± 3.6 mg, respectively. The load cells was connected to the computer used to control 

the GEA feeder. 

Table 22. GEA feeder specifications and capacity metrics. Maximum Servo Motor Speed = 9,000 

RPM. Sweeping volume of screws: 10 mm = 2.4 mL/rev; 20 mm = 4.8 mL/rev 

Gearbox 

Ratio 

Screw RPM/Servo Motor RPM  

(x 1000) 

Maximum screw 

speed (RPM) 

Max. Volumetric Displacement (L/h) 

10 mm 20 mm 

445:1 7.1 65.3 9.40 18.81 

235:1 13.7 123.7 17.82 35.63 

63:1 51.3 461.5 66.46 132.92 

The maximum screw speed was used to compute the drive command (DrCmd) as 

𝐷𝑟𝐶𝑚𝑑 = 𝜔
𝜔𝑚𝑎𝑥 ⁄ . Drive command is used to establish the minimum and maximum ranges of 

operation. The recommended DrCmd ranges for feeding operations under gravimetric control is 

between 20 and 80%, given that at this range the controls are capable of providing the best 

performance [46, 294]. 

7.2.2.2. Refill system 
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A GEA Refilling Unit (GEA, Belgium) was fitted with a 0.8 L refilling cup and used to 

automatically refill the unit during the continuous feeding experiments. The unit is controlled from 

the computer from which the GEA feeder is controlled and dispenses a fix volume of powder from 

a hopper unit by rotating a globe around its axis 180 degrees. The speed and duration of a refill can 

be controlled, based on user specifications; for the purpose of this work, the refill time was set 

constant to 3 seconds. 

7.2.2.3. Near infrared interface 

A FT-NIR Matrix (Bruker Optics Billerica, MA, USA) was used for spectral acquisition. 

The fiber optics probe with NIR source and collection fiber was adapted to the vibratory feeder for 

diffuse reflectance measurements. OPUS 7.0 from Bruker was used to control the NIR instrument 

and to construct the calibration models. The interface between the sample and the NIR instrument 

is a critical part for any in-line method development. The NIR interface is responsible of delivering 

the sample to the instrument in a way that allows representativeness, minimizing the modification 

of physical properties in the sample and giving all the points in the sample the same probability to 

be analyzed [274]. An in-house conveyer belt system with controllable speed was used as the 

interface between the NIR instrument and powder samples. 

The proposed interface allows representativeness via 1-dimensional sampling [275]. As a 

consequence, the powder blend moves continuously without interruption or confinement that 

affects the flowability. The NIR interface was used both for calibration and for the actual RTD 

experiments to avoid method transfer issues such as off-line models vs. in-line acquisition. 

7.2.3. Experimental procedure 

Two sets of experiments were performed for this study: flow rate characterization and 

residence time distribution experiments. The flow rate characterization aimed at understanding the 
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flow rate variability from the feeder due to different materials, while the residence time distribution 

aimed at characterizing the amount of back mixing occurring in the feeder hopper. Below, 

information on the experimental design and data collection methods is provided. 

7.2.3.1. Flow rate characterization 

Figure 33 shows the set up for the feeder-catch scale configuration used to characterize the 

flow rate out of the feeder. Figure 33A shows the schematic of the equipment configuration, 

wherein the feeder is shown to dispense material to a receptacle atop the K-Tron catch scale. The 

GEA feeder’s controls are shown to be directed by the computer, which is also connected to the K-

Tron catch scale. In Figure 33A, the refill unit is also depicted on top of the feeder unit. Figure 33B 

shows an image of the unit’s arrangement in the laboratory. 

 

Figure 33. Equipment experimental set up. (A) Schematic (B) Configuration in the laboratory 

Flow rate out of the GEA compact feeder was characterized under two control modes, two 

screw sizes, and two gearbox ratios. Volumetric and gravimetric control feeding was characterized 

using the 10 and 20mm screws and the 63:1 and 445:1 gearbox ratios. Data collected from the 

feeding operation included the feeder’s screw speed, weight, refill condition, and calculated flow 

rate, as well as the K-Tron catch scale’s weight and calculated flow rate. 

Given that the objective of this study was not to characterize the unit under a formulation-

based set of flow rates but rather to explore the unit’s feeding capability over a wide range of screw 

speeds, the flow rates were selected based on drive command ranges for experiments using a 
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particular gearbox. Table 23 presents a list of drive command set points used for experiments. 

Notably, the experiments were divided into high, medium, low, and lowest capacity based on the 

gearbox and screw pitch configuration. Given time constraints, most experiments were performed 

for high capacity conditions. Selected materials were chosen to perform the lowest capacity 

experiments, as the time it required to perform a full drawdown of the feeder was in the order of 8 

to 10 hours. 

Table 23. GEA feeder experimental conditions evaluated. Feeder flow rates were computed from 

the drive command set point. 

Condition Gearbox Ratio Screw Pitch (mm) Control Drive Command Set Point (%)* 

High 63:1 20 Volumetric 20 

      90 

    Gravimetric 10 
      45 
      80 

Medium 63:1 10 Volumetric 20 
      90 

    Gravimetric 35 
      70 

Low 445:1 20 Volumetric 90 

    Gravimetric 50 
      70 

Lowest 445:1 10 Volumetric 90 

    Gravimetric 50 

*Drive command set point for gravimetric cases are based on the feed factor calculated during 

calibration. The calibrated feed factor (g/rev) was used to estimate the flow rate set point needed to 

attain the drive command set point using 𝑚̇𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 = 𝑓𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝜔𝑚𝑎𝑥  𝐷𝑟𝐶𝑚𝑑𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡   

 For the volumetric experiments, the screw speed set point was selected as the percentage 

of the maximum screw speed provided by the servo motor and the gearbox ratio. Table 23 shows 

that for the high and medium capacity experiments (i.e., those with the 63:1 gearbox), 20 and 90% 

DrCmd were selected as the two conditions for feeding at this level. For the low and lowest feeding 

conditions, given time constraints, the volumetric feeding conditions was kept at 90% DrCmd. 

Gravimetric experiments were performed immediately after volumetric experiments for each 

material. Before the gravimetric runs, the feeder’s feed factor calibration sequence was performed 

for a period of one minute to obtain an initial feed factor. The calibration feed factor was used to 
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predict the flow rate set point (𝑚̇𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡) that would yield a desired starting screw speed, in order 

to have all material gravimetric test begin at similar screw speeds. Given that in gravimetric mode 

the flow rate is the target control variable, the screw speed changed over time for these experiments. 

Thus, the gravimetric feeding test for all materials had different flow rates, ranging from 1 to 75 

kg/h for the 63:1 gearbox ratio and 0.01 to 5 kg/h for the 445:1 gearbox ratio. 

 For each of the flow rate experiments, the feeder hopper began filled (i.e., 100% fill) and 

was completely emptied by feeding all of the powder out of the hopper through the screws. This 

was performed to characterize the full feeding range of the feeder from full to empty. Both the 

starting and remaining mass of material at the end of the feeding operation were recorded to ensure 

that these values were available for analysis. 

7.2.3.2. Refill unit characterization 

Tests were performed on the refill unit to determine the variability in amount of material 

being dispensed per refill cycle. Nine materials were selected from those listed in Table 8. The 

materials used to characterize the refill unit were: acetaminophen, API 4, anhydrous calcium di-

phosphate, cellulose, magnesium stearate, MCC 1, MCC 4, and silicified MCC. A total of 6.5 L of 

material were added to the refill unit’s hopper to test a total of eight refill actions. The K-Tron catch 

scale and receptacle were placed at the outlet of the refill unit to capture the weight increase due to 

the refill action in real time. A total amount of material added and a flow rate curve was obtained 

for each refill action. 

7.2.3.3. RTD experimental procedure 

The RTD and mixing of material inside of the feeder hopper was evaluated using the GEA 

feeder, the GEA refill unit, a conveyer belt system, the K-Tron catch scale, and a near infrared 

(NIR) spectral acquisition unit. Figure 34 shows the configuration of the system used to perform 
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the feeder experiments. Figure 34A shows the schematic arrangement of the units, wherein the 

refill unit is shown on top of the feeder, which dispenses the material into a funnel that channels 

the material to a conveyer belt that transports the samples the NIR spectrometer with minimal 

mixing. Figure 34B shows the arrangement of the unit in the laboratory. 

 

Figure 34. RTD experiment equipment configuration. (A) Schematic of the unit (B) set up in the 

laboratory 

Six impulse RTD experiments were performed using three materials at two different flow 

rate set points: 10 and 20 kg/h (i.e., 2.78 and 5.5 g/s – Note: these two units will be interchanged 

regularly). The base materials used for the RTD experiments included: anhydrous calcium di-

phosphate, silicified MCC, and acetaminophen. The tracer material was acetaminophen for the first 

two base materials and milled caffeine was used as the tracer when acetaminophen was the based.  

To ensure that the flow rates would be attained for all three materials, the GEA feeder unit 

was configured with the 63:1 gearbox ratio and the 20mm pitch concave screws. The refill unit cup 

volume remained constant at 0.8 L per refill. Two kilograms (2 kg) of tracer blends were mixed in 

a batch V-blender to a 93:7 base to tracer ratio for 20 minutes at a speed of 12 RPM to ensure blend 

homogeneity. The ratio of base to tracer material was chosen to ensure there would be minimal 

impact to the flow properties of the material inside the feeder hopper.  

The RTD experiment was performed as a refill impulse, meaning the tracer was added as 

part of a full size refill being performed while the feeder was in operation. For each of the four 
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materials tested, the feeder feed factor was calibrated and refilled with base material (i.e., material 

without tracer) to 100% fill level. The refill unit was then connected to the feeder and 0.8 L of 

tracer blend material (i.e., one refill equivalent) was added to the refill unit. A refill set point of 

60% fill level was set for the GEA feeder, meaning that once the feeder reached a level of 1.2 L the 

refill unit would be automatically activated to dispense a mass of 0.8 L of material. The feeder was 

then set to the experimental mass flow rate and started. During the first few seconds of operation, 

the conveyer belt’s speed was adjusted to ensure the material did not accumulate on the belt and 

that the material being dispensed was not intermixing. Accumulation rates on the conveyer belt 

were monitored using the catch scale flow rate measurements. The flow rate coming into the catch 

scale system was matched to that calculated from the GEA feeder to ensure that no mass was being 

accumulated in the belt once the system had reached a steady state. Immediately after the refill of 

tracer material occurred, the refill unit’s hopper was quickly and carefully vacuumed to ensure that 

no tracer residue remained from the previous refill. The refill unit’s hopper was then filled with 1.6 

L of base material as the washout of the tracer in the system. The feeder was then allowed to 

completely dispense all of the material, totaling 4.4 L of material fed. Once an RTD experiment 

was performed, all pieces of equipment were thoroughly vacuumed to avoid cross-contamination. 

This process was repeated for all six RTD experiments. 

7.2.3.4. NIR method development 

Acknowledgement of collaborative work and contributions: 

The chemometric section of this work was developed as part of a collaborative effort within the 
Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS). 

Development, calibration, and implementation of NIR chemometric methods were performed by 

Dr. Andres Roman-Ospino. Dr. Roman-Ospino worked in collaboration with the author of this 
thesis, who provided Dr. Roman-Ospino with the list of materials, target concentrations, and 

conditions needed to develop the chemometric models. The author of this thesis is very grateful 

to the work done by Dr. Roman-Ospino developing the chemometric methods. 
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Figure 35 shows the experimental setup for acquisition of calibration spectra. A K-tron MT 

12 feeder was used to dispense each calibration blend in gravimetric mode on a vibratory feeder. 

The second feeder, makes the powder flowing in front of the NIR probe before it is collected in a 

bucket. The vibratory feeder allows adjusting the flow of powder. Another important feature is that 

the stainless-steel surface does not interfere with the spectral acquisition. This setup corresponds 

to a similar sample speed as the one used for RTD measurements. The NIR instrument is a Matrix 

F FT NIR from Bruker (Billerica, MA USA). For each material to analyze, a projection to latent 

structures (PLS) calibration model was constructed including variation in composition stablished 

from 0-9% w/w of tracer relative to the bulk material to study.  

 

Figure 35. Experimental setup for acquisition of calibration spectra 

The blending of standards constituted by tracer-bulk material was performed using a 

Laboratory Resodyn Acoustic mixer (LabRAM) (60g’s for two minutes for a mass of 100g of base-

tracer) [199, 276]. 

Each calibration blend was transferred to the gravimetric feeder to discharge on the 

vibratory interface for NIR spectral acquisition Figure 35. One hundred spectra were collected for 

each calibration blend (0, 3, 6 and 9 %w/w) for a total of four hundred calibration/test (60 for 

calibration and 40 for test) spectra for each material. OPUS 7.5 from Bruker (Billerica, MA USA) 
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for data acquisition, construction of PLS model and for real time measurements. Three spectral 

range, five data pretreatments and up to four latent variables were evaluated by using test samples. 

Calibration models for each case were selected based on the lowest RMSEP values. Table 24 shows 

the calibration models implemented for RTD measurements. 

Table 24. Results of NIR calibration model used for RTD experiments 

Base material Tracer Spectral Range (cm-1) Pre-treatment LV RMSEP R2 

Silicified MCC Acetaminophen 6102-5448 
1st Der (17) + 

SNV 
2 0.057 97.85 

Anhydrous Calcium 

Di-Phosphate 
Acetaminophen 9401-4248 1st Der (17) 2 0.107 96.07 

Acetaminophen Caffeine 5450-4248 1st Der (17) 2 0.067 97.06 

7.2.4. Software 

All GEA feeding data was acquired using the provided software by the equipment’s 

vendor. K-Tron catch scale data was acquired using the K-Tron Sampler software. Both data 

formats were compatible with Excel® 2016 (Microsoft Corporation, Washington, USA) were the 

data was imported and pretreated. Data pre-treatment included data time-matching and 

standardizing the sensor measurement units to SI. RTD concentration results from the NIR 

acquisition software were imported to Excel in order to be evaluated. Plotting, analysis of raw data, 

and model regressions were performed using Wolfram Alpha Mathematica V11.1 (Wolfram Alpha 

LLC, Illinois, USA). Model regressions were performed using the non-linear model fit algorithm 

provided within Mathematica. Results from model regression were analyzed and compared using 

the statistical software JMP Pro 13 (SAS, North Carolina, USA). The full feeder model 

implementation and evaluation was performed in gPROMS Model Builder™ v4.2 (Process 

Systems Enterprise, London, UK). Model implementation was performed using gPROMS Model 

Builder™ v4.2  given the ease to connect the different models developed using the flowsheeting 

capability. 
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7.3. FLOW RATE CHARACTERIZATION AND MODELING 

7.3.1. Experimental results and visual observations 

A total of 237 feeder experiments were completed for flow rate characterization at varying 

flow conditions using the materials listed in Table 8. Table 25 shows the number of experiments 

performed for each material along with the respective equipment configurations. The data collected 

for each experiment included: feeder weight (i.e., mass of powder remaining in the feeder), feeder 

screw speed, feeder calculated flow rate, catch scale weight, and catch scale calculated flow rate. 

The feeder data was plotted as a function of time for all experiments to observe trends that could 

be used to describe the behavior of the feeder when feeding different materials. 

Table 25. Number of experiments performed per material and feeder conditions 

  No. of Experiments 

From  

 Observations 

during feeding Gearbox Ratio 63:1 445:1 Groups 
Screw Pitch (mm) 10 20 10 20 1 2 3 

Materials Acetaminophen  4 7 1 4 X   (1) (2) (3) 

  Anhydrous Calcium Di-Phosphate 4 2 - 4   X  

  API 1 4 5 - - X   (3) 

  API 2 2 4 - 4  X  (3) 

  API 3 5 5 3 4 X   (1) (2) (3) (4) (5) 

  API 4 4 4 - 2  X  (1) (2) (4) (5) 

  Cellulose 3 7 - 2 X   (2) (4) (5) 

  Croscarmellose Sodium 5 4 3 4  X   

  Crospovidone 5 5 - 4  X  (2) 

  Lactose 2 4 3 - -   X  

  Magnesium Stearate 4 4 3 2 X   (1) (3) 
  MCC 1 5 4 - 4  X   

  MCC 2 5 4 - 4   X  

  MCC 3 4 5 - 4  X  (2) (4) 

  MCC 4 6 6 - 4  X   

  Silicified MCC 4 3 - 4   X  

  Starch 1 2 4 - 4  X  (3) 

  Starch 2 4 4 3 4  X   

  Starch 3 5 3 3 1  X   

Feeding observations: (1) sticking to the walls of the feeder, (2) sticking to the outgoing barrel, (3) 

flow in soft lumps, (4) bearding, and (5) inconsistent flow. 

Several other observations regarding material feeding challenges during the experiments 

were also noted. These challenges included: (1) sticking to the walls of the feeder, (2) sticking to 
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the outgoing barrel, (3) flow in soft lumps, (4) bearding at the barrel’s outlet, and (5) inconsistency 

in flow. Notes of which materials presented these challenges are provided in Table 25. Figure 53 

shows images of the first four challenges observed. 

INSERT Figure 53 HERE 

 Figure 53A shows the tendency for highly sticky materials to adhere to the walls of the 

hopper. Although the GEA feeder unit comes equipment with a bridge breaking impeller (shown 

in the figure) to allow for material to smoothly enter the screws, sticky materials will adhere to the 

walls of the hopper and effectively avoid the shearing effect of the impeller. In some cases, this 

sticking seen to occur in part by the shearing of the impeller, which mechanically carve a bridge 

for the material. Figure 53B shows the effect of material sticking to the outer walls of the barrel 

due to triboelectric charging of the material. As the material is dispensed from the screws it acquires 

an electric charge that makes the material stick to the barrel as it exits. This effect was especially 

seen for smaller particles. Bearding, shown in Figure 53D, is a variant of this triboelectric charging, 

wherein the materials form electrostatic clumps that are released periodically as their weight 

overcomes the electric forces. Bearding is of particular interest for feeding operations as it can 

greatly affect flow rate controls by suddenly losing a relatively large mass of material, which would 

be translated as a deviation in the flow rate [287, 294, 295]. 

High speed images were collected throughout the experiment to capture the behavior of the 

material exiting the feeder. Figure 36 shows the images take for the 19 different materials 

dispensing material at a 200 RPM constant screw speed using a 20mm screw pitch. The result 

indicated that materials such as API 1, API 2, API 3, magnesium stearate, and starch tended to exit 

the unit in large lumps or slices of powder that broke upon contact with the receptacle over the 

catch scale. Although the observed lumps appeared to break upon contact, their size and frequency 

pose a question regarding the need for delumping operations between feeders and subsequent unit 
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operations. Large lumps that are not sufficiently broken may hinder the outcomes of blend and 

content uniformity, particularly for low concentration materials such as APIs and lubricant. On the 

other hand, materials such as anhydrous calcium di-phosphate, lactose, MCC 1, MCC 2, and 

silicified MCC tended to flow more freely and did not tend to form lumps.  

 

Figure 36. High speed images of powder flow rate for different materials listed in Table 8 
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Both the cluster analysis results provided alongside the feeding observations in Table 25 

and Figure 36 show that all materials with properties belonging to group 1 displayed at least one 

challenge during their feeding. For example, API 3 had all of the challenges observed during the 

feeding trials, and the material is listed in group 1. Furthermore, cellulose and acetaminophen also 

displayed several observations and were allocated to group 1 in the clustering based on material 

properties. The results indicate that materials within group 1 (and thus materials that have similar 

material properties to those in the group) will present the most feeding challenges.  

Materials in group 3 were did not appear to have observable issues during the performed 

feeding trials in this study. The result show that materials with properties similar to those belonging 

to group 3 are suitable for feeding operations and will not lead to major challenges during operation. 

Nevertheless, it is important to not discard the potential of other issues arising for these materials 

and/or that the visual observations may eventually occur during operation for these materials.  

Group 2 materials were found to behave like a combination of materials in group 1 and 

group 3, meaning that several materials presented some feeding challenges while others did not 

display major observations. This result can be explained by the intermediate nature of the materials 

properties for materials in this group. For example, API 4, material with relatively similar behavior 

to those in group 1 had several major observations, seen for materials in group 1. However, 

materials like starch 3 and MCC 4 did not display these behaviors, given their tendency to behave 

more closely to materials in group 3 rather than group 1. Given this result, materials in these group 

present themselves in a gray area, wherein they have properties that may affect feeding 

performance. One of the possible ways to establish a more clear set of materials and behaviors 

associated with them, is to increase the number of groups in the hierarchical clustering. For this 

work, since the number of materials studied was relatively small, this approach was not pursued, 

given that subdividing the groups may lead to over classification problems. The approach for 

increasing the number of clusters is suggested when the number of materials in one group exceeds 
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the number of groups used for the hierarchical clustering (i.e., number of materials per group should 

exceed the number of groups).  

Notably, all APIs displayed some challenges during feeding trials. This result is indicative 

that material properties of the studied APIs should try to mimic more closely those of excipients. 

Although this is often a difficult and tedious task, the advantages to the process performance may 

greatly increase. Moreover, APIs whose current properties do not allow for implementation of CPM 

process may require minor modifications to their manufacturing in order to greatly vary their 

flowability. Several techniques such as silication, co-precipitation of APIs with glidant materials, 

and larger particle sizing may aid in the improvement of flow, as shown by Capece et al. [165, 296] 

and Dave et al. [297-299]. 

The results on this section further confirm the intrinsic relationship between material 

properties and the ability to feed the material through a feeding unit. 

7.3.2. Flow rate characterization 

For all volumetric (i.e., open loop) experiments, it was noted that the flow rate decreased 

as a function of time, while for gravimetrically controlled (i.e., close loop) experiments the screw 

speed increased over time. This relationship was found to be correlated with the mass inside of the 

feeder (i.e., feeder weight) given that the mass decreased linearly as a function of time. For the sake 

of brevity, four cases involving eight experiments are discussed to illustrate the behaviors that were 

observed in the flow rate characterization experiments performed. 

7.3.2.1. Case A: high flow rate capacity of MCC 4 

Figure 54 shows the volumetric and gravimetrically controlled time profiles for flow rate, 

mass of material in the feeder, and screw speed for MCC 4 using the 63:1 gearbox ratio and 20mm 

screw pitch size.  
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INSERT Figure 54 HERE 

Figure 54A shows the flow rate profile for the volumetrically controlled experiment from 

both the catch scale and the feeder data. The catch scale flow rate appears to have less noise than 

the feeder flow rate, which can be attributed to the fact that the catch scale load cell is not sensing 

the powder movement inside of the feeder hopper as well as the intrinsic noise provided by the 

screws and impeller movement. Nevertheless, the flow rate means are consistent with one another, 

indicating that a filter for the feeder noise could be applied to remove the effect of the equipment 

parts on the flow rate. From Figure 54A’s time profile, both flow rates are seen to start at around 

12 g/s and remains relatively constant until the time reaches 65 seconds, when both flow rates start 

decreasing steadily until the reach 11 g/s. At around 87 seconds the flow rate sharply decreases as 

the feeder empties. Figure 54B shows the trends of both the screw speed, which was held constant 

at 415 RPM, and the mass inside of the feeder. Markedly, the slight deviation in the flow rate seen 

in Figure 54A is not seen as pronounced in the weight profile, which indicates that it is necessary 

to observe the first derivate of the weight profile to observe the changes in flow rate. 

The trend seen in Figure 54A indicates that to maintain a steady flow, the feeder would 

require gravimetrically controlled flow rate. Figure 54C shows the gravimetrically controlled 

results, which show the flow rate setpoint of 10.7 g/s being matched over the entire feeding profile. 

It was noted that towards the end of the operation, the flow rate profile of the feeder began to 

increase in noise, which indicated that the gravimetric controls had to perform screw speed 

adjustments faster than for earlier time points in order to correct the flow rate deviation observed 

in Figure 54A. Figure 54D shows that the screw speed increased around the t = 60 mark, which 

corresponded with the changes in flow rate observed from the volumetric experiments. 

7.3.2.2. Case B: medium flow rate capacity of MCC 4 
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Figure 55 shows the volumetric and gravimetrically controlled time profiles for the flow 

rate, mass of material in the feeder, and screw speed for MCC 4 using the 63:1 gearbox ratio and 

10mm screw pitch size. Similarly to experiment A, the Figure 55A shows the flow rate profile of 

the volumetric experiment as a function of time. The flow rate for this experiment, which 

maintained the screw speed at 415 RPM, as shown in Figure 55B, shows how the flow rate 

remained relatively constant at 6 g/s over the first 125 seconds of operation and thereafter the flow 

rate decreased until it reached a flow rate around 5 g/s. Notably, the flow rate noise observed in the 

feeder profile was heteroscedastic in nature, meaning it did not remain constant over the course of 

the operation. This change in the noise appears to be related to the filling efficiency of the smaller 

pitch screws when the feeder is reaching a lower mass in the hopper. Thus, the behavior indicates 

that screw filling is affected towards lower fill levels more significantly for the smaller screw 

pitches.  

INSERT Figure 55 HERE 

The decrease in flow under volumetric performance, once again, indicated that in order to 

maintain a constant flow rate, the system required to be operated under gravimetric or close loop 

control. The results of the gravimetrically controlled flow rate are shown in Figure 55C. The results 

indicate that the feeder was able to maintain the flow rate relatively constant over the whole feeder 

emptying process around the set point of 5.5 g/s. Screw speed was adjusted over the course of the 

operation as seen in Figure 55D from 390 RPM to over 410 RPM to maintain the flow rate. 

Markedly, flow rate was almost reduced by half during in this experiment when compared 

to experiment A as a result of varying the screw pitch from 20mm to 10mm. The result, thus, 

indicate that the flow rate and volumetric displacement relationship discussed holds for this type 

of powder feeding operation with screw fill efficiency and bulk density playing a significant role. 

7.3.2.3. Case C: high flow rate capacity of Acetaminophen 
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Acetaminophen was chosen as a case material because of its vast use in feeding evaluations 

in the CPM powder feeding literature [67, 74, 76, 300]. Figure 56 shows the flow rate, screw speed, 

and weight time profiles of this API using the 63:1 gearbox ratio fitted with the 20mm pitch screw. 

Figure 56A shows the flow rate profile did not remain as relatively constant as the previous two 

experimental cases, which was attributed to the poorer flow properties of the acetaminophen when 

compared to the better flowing MCC 4 excipient. The flow rate under volumetric controls, shown 

in Figure 56A, is seen to start at around 6 g/s and increase slightly over the next 70 seconds, 

followed a sharp linear decrease from 6 g/s to 2 g/s.  Figure 56B shows the screw pitch remained 

constant over the whole operation at a value of 415 RPM. It is important to note that the weight 

profile showed a relative small curvature past the t = 70 seconds, which agrees with the decrease 

in the flow rate observed in Figure 56A. 

INSERT Figure 56 HERE 

The gravimetric flow rate profile, shown in Figure 56C, shows the flow rate of the API 

remained relatively constant over the first 100 seconds of operation, but then proceeded to decrease 

until the feeder was emptied at the end of the operation. Decrease in the flow rate after the first 100 

seconds was explained by looking at the screw speed changes, shown in Figure 56D. The screw 

speed appears to vary over a range of speeds between 340 and 420 RPM and increase to maintain 

the flow rate setpoint of 6.2 g/s. After the first 90 seconds, the screw speed appears to increase 

rapidly to try and maintain the flow rate setpoint, however, at around 95 seconds the screw speed 

reached the unit’s operation maximum value of 495 RPM. Given that that the screw speed was not 

able to exceed the operational maximum, the flow rate was seen to decrease as the volumetric 

capacity was capped. 

The gravimetric feeding results indicated that certain maximum capacity limits are 

obtained not only from the initial ability of the feeder to reach the desired flow rate, but must be 
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obtained by studying the feeder’s flow rate over the entire range of fill levels. This is was a critically 

important result, as it provides a mean to understand that feeder performance should be evaluated 

solely after characterization is performed to avoid confounding the unit’s limitations with the 

intrinsic powder flow behavior. 

7.3.2.4. Case D: low flow rate capacity of Acetaminophen 

Figure 57 presents the results for two flow rate capacity experiments using acetaminophen 

in the GEA feeder fitted with the 20mm screw and the 445:1 gearbox ratio. Figure 57A shows the 

flow rate as a function of time at a constant speed of 58 RPM, as shown in Figure 57B. The API’s 

flow rate during the first stages of the operation appears to decrease during the first 100 seconds of 

feeding, increase during the following 100 and repeat this cycle over the next 200 seconds. This 

result was attributed to the inability of the powder bed to move downwards on the hopper due to 

surface friction with the sides of the unit. The oscillatory behavior was only reserved to cohesive 

materials, which tended to stick to the vessel’s walls. Sticking to the walls is a inhibiting behavior 

that may avert the unit from operating normally and even prevent flow (as seen with API 3 during 

the visual characterization). Nevertheless, once material reached a lower level inside of the hopper, 

the internal impeller was able to effectively move the powder towards the feeder screws. This 

behavior was observed after the 400 second time mark, where the flow rate steadily decreases, 

similarly as Case C.  

INSERT Figure 57 HERE 

The feeder weight for the volumetric case, shown in Figure 57B, clearly shows the different 

flow rate results over the constant screw speed. Figure 57C shows the gravimetrically controlled 

flow rate, which remained relatively constant around the 1.1 g/s set point over the whole operation 

for both the calculated GEA feeder and catch scale flow rates. This is a good indication that the 

variations in the material were well controlled by the LIW system and deviations such as the ones 
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observed in the gravimetric case can be overcome by appropriately tuned control methods. Figure 

57D shows the increase in screw speed as a function of time, demonstrating the effect of controls 

over the screw speed. Notably, the screw speed almost reached the operation maximum for this 

gearbox configuration, hinting that the feeder was barely capable of maintaining the flow rate over 

the whole operational window. 

7.3.3. Feed factor profiles 

7.3.3.1. Characterization from data 

The observed changes in flow rate as function of time for volumetric experiments and the 

increases in screw speed over time for gravimetric experiments, indicated a decrease in the amount 

of material dispensed per unit revolution (i.e., the feed factor) as a function of time. This behavior 

was previously noted in recent publications by Wang et al. [62], Van Snick et al. [198, 301], and 

work done by Engisch et al. [287, 293, 294]. The feed factor was simply calculated by dividing the 

instantaneously observed flow rate by the respective screw speed. This result, in grams per 

revolution, serves as an indicator of how much material is being dispensed per screw revolution. 

The results from the case studies shown in the previous four sections, could be described 

using the feed factor plotted as a function of the amount of material remaining in the feeder. This 

curve, hereunto described as the feed factor profile, serves as a mean to describe the amount of 

material being dispensed per unit revolution at a given fill level of the unit, making the metric 

independent of time. From a characterization perspective, this result would yield a valuable profile 

that can be used to relate the observed feeder flow rate behavior at given process conditions with 

material properties. Once feed factor curves are developed for varying feeder conditions (e.g., 

screw speed, gearbox ratio) then the curves can be compared between materials in order to evaluate 

the effect of different materials. Thus, it was paramount to evaluate the feed factor curves for this 
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work for the 237 performed feeder experiments and establish some relationships that were useful 

to develop a mathematical model for feeders. 

For instance, using the results from Cases A and B, Figure 58 shows a comparison of the 

feed factor curves for MCC 4. Figure 58A and Figure 58C show the feed factor results for Case A, 

wherein the  system was fitted with a 20mm pitch screw, for the results collected from the GEA 

feeder and the catch scale, respectively. Both figures show the results for the gravimetric and 

volumetric experiments. Although the flow rates did not match exactly for Case A’s results, both 

pairs of feed factor curves for each of the data collection systems appear to overlap very well. The 

feed factor for MCC 4 for this case was seen to range between 1.2 and 1.9 g/rev with the most 

decrease occurring at the lower feeder weights. As expected, given that the flow rate from the GEA 

feeder was seen to be noisier due to the internal powder movement and the rotation of the screw, 

the feed factor profiles appear to vary in a greater amount than those for the catch scale, which was 

not prone to this variation. Nevertheless, both pairs of curves seem to match well even though they 

were performed under two different sets of controls. This result, thus indicates that the feed factor 

profile can be used to characterize and compare feeder experiments even when the flow rates are 

not matched exactly, since the amount of material per screw revolution depends on the equipment 

configuration.  

INSERT Figure 58 HERE 

Figure 58B and Figure 58D show the results of the subsequent Case B, wherein the feeder 

was fitted with a 10mm pitch screw, for both the data collected from the GEA feeder and the catch 

scale. Once again, the pairs of feed factor profiles results appear to match very well, as seen in both 

Figure 58A and Figure 58C. Markedly, the feed factor values for the case ranged between 0.1 and 

1 g/rev. The 20mm and 10mm screw pitches indicate that the reduction in sweeping volume on the 

screw led to a halving of the feed factor for MCC 4 at the same conditions. This result was in 
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accordance with expected results, given that halving the volumetric displacement of the screws per 

revolution would lead to a proportional decrease in the amount of material being displaced by the 

screws. 

Results for Cases C and D are shown in Figure 59. The feed factor curves for Case C are 

shown in Figure 59A and Figure 59C. The feed factor for this case is shown to range between 0 

and 1.2 g/rev for both the volumetric and gravimetric cases. Moreover, the feed factor is shown to 

decrease as a function of the feeder weight, indicating that the maximum capacity of the feeder 

(i.e., the maximum flow rate that can be achieved by the unit) decreases over the fill level of the 

unit. The outcome of the feed factor decrease, thus indicate the unit’s flow rate will vary if the 

screw speed is held constant or the screw speed will increase to maintain a given flow rate.  

INSERT Figure 59 HERE 

 Figure 59B and Figure 59D show the changes in feed factor for Case D. Given the longer 

duration of the feeding experiment and the fact that the sampling frequency remained the same for 

all experiments, the number of observations (i.e., data points) was shown to be much larger that for 

the higher flow rate counterparts. It was observed that for the lower feeding experiments, the 

amount of noise in the measurement was larger than for higher flow rate experiments. 

As it was discussed in the volumetric case, there was a change in feed factor as a function 

of feeder weight the led to a decrease in the amount of material being dispenses per revolution. 

This result can be clearly seen in Figure 59D, where the volumetric feed factor curve calculated 

from the catch scale data deviates from that of the gravimetric control at the higher feeder weights. 

This result, previously attributed to poor powder movement inside of the hopper, still showed that 

between the feeder weights of 600 and 700 grams, the volumetric feed factor profile closely 

matched the gravimetric one. Thus, the feed factor profile for the volumetric case provided a mean 
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to understand that the deviations observed in the flow rate were not part of a larger trend, but rather 

a situational occurrence in the experiment. 

It was noted that for all the feeder experiments the feed factor profiles showed some form 

of an asymptotically rising profile which could be best described by a first order model with respect 

to feeder weight. This behavior for the feed factor profile can be explained by the relationship 

between hopper flow and the filling of the screws as the hopper empties. The screws are filled as a 

function of both the apparent bulk density of the material and the flow rate of material from the 

hopper. Therefore, given the cylindrical nature of the GEA feeder hopper and the relationship 

between hopper flow rates, this result appears to be in agreement with asymptotically increasing 

hopper stresses known to affect the flow rate of material at the outlet of the hopper. Using the first 

order relationship between feeder weight and feed factor, an empirical model was proposed. 

7.3.3.2. Feed factor model 

Given the observed behavior of the feed factor profiles with respect to feeder weight, in 

this work a focus was placed in attempting to capture the behavior using a pseudo-first order 

equation. It is important to mention that several equipment manufacturers, such as K-Tron and 

GEA, currently collect the feed factor data as the feeder is dispensing to have a growing array from 

which a prediction can be made during operation. However, since the interest of this work is to 

establish a model that can be used to predict and model the feed factor profile, the data that was 

collected during feeder experiment must be used to develop the model. Thus, the following section 

aims at providing a semi-empirical model that can be tuned for different materials and can be used 

to predict the feed factor profiles in silico. Other model forms, capturing a more mechanistic 

behavior inside of the hopper and screw configuration, are highly encouraged, but will remain 

outside of the scope for this work.  
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The main objective of a this work’s feeder factor models is to determine the effect of 

changes in the apparent feed factor (𝑓𝑓𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡) inside of the hopper so that an accurate flow rate 

can be computed at a given screw speed (i.e., volumetric displacement). Thus, the feed factor model 

along with the volumetric displacement model provides the level 1 models for the powder feeder 

system. 

Given the results provided by the analysis of the data provided in Figure 58 and Figure 59, 

the apparent flow rate appears to change in a pseudo first order relationship with feeder weight. 

This relationship resembles previous findings for compression and density changes [40]. Heckel 

established an exponential relationship between densification of a materials and increases in 

pressure. 

 𝜌𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡(𝑃) = 𝜌𝑡𝑟𝑢𝑒 − (𝜌𝑡𝑟𝑢𝑒 − 𝜌𝑏𝑢𝑙𝑘)𝐸𝑥𝑝[−𝑘𝑃] 23 

where 𝜌𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡  is the apparent material density after compression, 𝜌𝑡𝑟𝑢𝑒 is the true or skeletal 

density of the material, 𝜌𝑏𝑢𝑙𝑘 the material’s bulk density, 𝑃 is the pressure exerted on the material, 

and 𝑘 is the material specific constant relating compression pressure to changes in apparent density. 

Given the similarities between the model and the behavior observed in the feeder, this model was 

used as a framework to characterize the changes in density (and thus the feed factor) inside of the 

feeder units. The model variables were varied in order to more accurately represent the system. The 

new model would need to evaluate the densification at moderate pressures given that this would be 

driven by changes in weight. Therefore, the vertical pressure shown in Heckel’s equation is 

assumed to be the pressure exerted by the feeder weight (𝑃𝑤𝑒𝑖𝑔ℎ𝑡). This assumption, was also used 

by Johansson for the modeling cylindrical silos [302]. The resulting equation, which includes the 

feeder weight (𝑊), cross-sectional area of the feeder (𝐴𝑓𝑒𝑒𝑑𝑒𝑟) is shown in Equations 24 and 25. 

 
𝑃𝑤𝑒𝑖𝑔ℎ𝑡(𝑊) =

𝑊𝑔

𝐴𝑓𝑒𝑒𝑑𝑒𝑟
 

24 
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𝜌𝑓𝑒𝑒𝑑𝑖𝑛𝑔(𝑊) = 𝜌𝑚𝑎𝑥 − (𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛)𝐸𝑥𝑝 [−𝐾

𝑊𝑔

𝐴𝑓𝑒𝑒𝑑𝑒𝑟
] 

25 

where 𝑔 is the gravitational constant, 𝜌𝑓𝑒𝑒𝑑𝑖𝑛𝑔 is the perceived density at the inlet of the screw, 

𝜌𝑚𝑎𝑥  is the density at which the perceived density does not to change when more material is added 

to the feeder, 𝜌𝑚𝑖𝑛  the minimum density seen when the feeder is near empty (i.e., 𝑊 → 0), and 𝐾 

is the modified pressure decay constant. Given the established relationship in Equation 21 between 

the 𝜌 and 𝑓𝑓, Equation 25 can be re-written by multiplying both sides of the equation by the screw 

flight volume to yield Equation 26. This model, hereunto is referred to as the feed factor model. 

 
𝑓𝑓𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡(𝑊) = 𝑓𝑓𝑚𝑎𝑥 − (𝑓𝑓𝑚𝑎𝑥 − 𝑓𝑓𝑚𝑖𝑛)𝐸𝑥𝑝 [−𝐾

𝑊𝑔

𝐴𝑓𝑒𝑒𝑑𝑒𝑟
] 

26 

In the feed factor model, the values of the 𝑓𝑓𝑚𝑎𝑥  and 𝑓𝑓𝑚𝑖𝑛 represent the extrapolated 

values when the feed factor profiles approach infinity and zero, respectively. Thus, the values of 

𝑓𝑓𝑚𝑎𝑥 , 𝑓𝑓𝑚𝑖𝑛, and 𝐾 must be regressed from experimental data, which allows for a calibration of 

the model based different materials. This ability to adapt (i.e., calibrate) the model to material 

properties allows for implementation of the model using the methodology presented in Chapter III. 

It is important to note that in further references to this model, the constant parameters inside 

of the exponential are lumped into a single variable 𝛽 so that 𝛽 =
𝐾𝑔

𝐴𝑓𝑒𝑒𝑑𝑒𝑟
⁄ . The units of 𝛽 are 

then in the form of mass-1, which represent the changes in feed factor as a function of mass 

remaining in the feeder. 

7.3.3.3. Calibration of feed factor model 

Using Equation 26, regression of the 𝑓𝑓𝑚𝑎𝑥 , 𝑓𝑓𝑚𝑖𝑛, 𝛽 were performed using the feed factor 

profiles from the flow rate characterization experiments. This procedure, when repeated for a 

variety of materials, would then take the level 1 feed factor model to level 2, as the effect of 
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materials would be considered for this model. Figure 37 shows the results for the regression of the 

feed factor model coefficients for the example provided in Case C in this work. 

 

Figure 37. Feed factor model applied to the profiles for Case C. Regression of feed factor model 
parameters for profiles from (A) volumetric experiment, (B) gravimetric experiment. Model 

residuals for the model for (C) volumetric experiment, and (D) gravimetric experiment. 

 Figure 37A and Figure 37B show the regression of the feed factor model coefficients using 

the feed factor profile data from the volumetric and gravimetric feeder experiments, respectively. 

Four sets of three model coefficients are regressed for this data. The results for these coefficients 

are presented in Table 36.  

INSERT Table 36 HERE 

Coefficients of determination (R2) greater than 70% and a statistical significance value (p-

value < 0.05) were obtained for the model and each of the coefficients in these regressions, 

indicating that model and the coefficients accurately represented the data. The results for the 𝑓𝑓𝑚𝑎𝑥  

were very close to one another, which indicated that the result was consisted for this material and 

the experiments studied. However, the results for the 𝑓𝑓𝑚𝑖𝑛 and 𝛽 were shown to have some 

variation for this material in these two experiments. This can be explained through the definition 

of the two model variables from Equation 26. The 𝑓𝑓𝑚𝑖𝑛 represents the extrapolated value of the 
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feed factor when the amount of material in the feeder approaches zero (i.e., 𝑊 → 0). Thus, since 

this value is not an observed parameter, a larger degree of error  is expected for this model 

parameter. Consequently, since the rate of decay of the exponential is dependent on the gradient 

set by ∆𝑓𝑓 = (𝑓𝑓𝑚𝑎𝑥 − 𝑓𝑓𝑚𝑖𝑛), the values of 𝛽  are also subject to higher variability when 

compared those from the 𝑓𝑓𝑚𝑎𝑥 .  

Since the noise provided in the feed factor profile was considered to be an intrinsic property 

of the material, the model errors (i.e., residuals) were calculated and plotted in Figure 37C and 

Figure 37D. The model error for these feed factor profiles appear to have a mean centered at 0 g/rev 

and a standard deviation ranging between 0.048 and 0.178 for all the experiments. It was noted that 

the standard deviation for the residuals for the GEA feeder was larger than that of the catch scale, 

which was attributed to the higher noise observed by the load cell on the GEA feeder. Markedly, 

the average of the residuals was close to zero, which indicated that the model and in combination 

with the regression parameters were able to capture the average behavior of the feed factor profiles. 

 Given that there was interest in capturing the amplitude of the feed factor profile noise for 

future modeling purposes, a truncated cosine Fourier series, shown in Equation 27, was used to 

capture the feed factor variability due to noise (𝑓𝑓𝑣𝑎𝑟). Three terms (𝑗 = 3) were used for the 

truncated Fourier series. To minimize the number of variables regressed for the Fourier series, the 

trigonometric coefficient (i.e., frequency dependent) values (𝐵𝑗) were all set to 1 and the cosine 

phase shift (𝑃𝑗) values were set to 100, 150, and 200 grams for each of the terms, respectively. This 

parameter selection was done based on an approximation of the mean after all the coefficients were 

regressed. 

 

𝑓𝑓𝑣𝑎𝑟 = ∑𝐴𝑗  𝐶𝑜𝑠(𝐵𝑗𝑊 − 𝑃𝑗)

3

𝑗=1

 
27 
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The feed factor variability (𝑓𝑓𝑣𝑎𝑟) was added to the feed factor model as shown in Equation 

28. Alternatively, a random number generator could be added to the deterministic prediction of the 

feed factor from Equation 26, yet for future implementation purposes the Fourier series provided a 

feasible solution. 

 

𝑓𝑓(𝑊) = 𝑓𝑓𝑚𝑎𝑥 − (𝑓𝑓𝑚𝑎𝑥 − 𝑓𝑓𝑚𝑖𝑛)𝐸𝑥𝑝[−𝛽𝑊] + ∑𝐴𝑗  𝐶𝑜𝑠(𝑊 − 𝑃𝑗)

3

𝑗=1

 
28 

Similarly to the procedure followed to acquire the results in Figure 37, the feed factor 

profile analysis and regression of the 𝑓𝑓𝑚𝑎𝑥 , 𝑓𝑓𝑚𝑖𝑛, 𝛽, 𝐴1, 𝐴2, and 𝐴3 were performed for the 237 

experimental results from the flow rate characterization experiments. Given the similarity of the 

regressed model coefficients from the GEA feeder or catch scale profile data, only the coefficients 

obtained from catch scale data were used for further analysis. The reasoning behind only capturing 

the catch scale data rested on the fact that these values offered the least noisy of all the 

measurements, which also provided a better dataset for regression. Furthermore, if future 

researchers were interested in capturing the noise of the feeder, the results from the experiment 

indicated that scaling the catch scale amplitudes by a factor of 3 to 5 would yield similar results to 

those obtained from the GEA feeder. 

Results for the 237 sets of six regressed feed factor model parameters (n = 1,422 

parameters) were separated based on the individual materials and averaged for each material. 

Further, the results from the regressed 𝑓𝑓𝑚𝑎𝑥 , 𝑓𝑓𝑚𝑖𝑛, and cosine Fourier amplitude values (𝐴1, 𝐴2, 

and 𝐴3) coefficients for the feeder were separated based on the screw pitch and averaged within 

each of the materials given the known relationship between the feed factor and screw flight volume 

(i.e., screw pitch). Since the results for the 𝛽 since they are attributed to the behavior of the material 

in the hopper, they were only averaged within the materials. Table 26 shows the results for the 

regressed coefficients, excluding the last two amplitude values 𝐴2, and 𝐴3. These values were 
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highly correlated to the 𝐴1 as shown in the following section relating the material property 

measurements to the regressed variables. Markedly, for all feed factor model regressions the R2 

was above 70% and coefficient results were only used if they showed statistical significance  (i.e., 

p-value < 0.05 ). 

Table 26. Summary of results for regression coefficients of the feed factor model for all materials 

Material 
Screw 
Pitch 
(mm) 

𝑓𝑓𝑚𝑎𝑥 (g/rev) 𝑓𝑓𝑚𝑖𝑛 (g/rev) 𝐴1 (g/rev) 𝛽 (1/kg) 

Mean 
St. 

Dev 
Mean St. Dev Mean 𝐴1/𝑓𝑓𝑚𝑎𝑥 Mean 

St. 
Dev 

Acetaminophen 10 1.03 0.2 0.16 0.08 0.08 8% 
5.78 1.29 

  20 1.22 0.26 0.32 0.28 0.1 8% 
Calcium Di-Phosphate 10 0.87 0.09 0.78 0.13 0.02 2% 

1.72 0.43 
  20 2.5 0.03 2.15 0.24 0.02 1% 
API 1 10 1.24 0.08 0.61 0.04 0.05 4% 

4.85 0.84 
  20 2.08 0.11 1.19 0.08 0.02 1% 

API 2 10 1.54 0.21 1.27 0.08 0.08 5% 
2.49 0.89 

  20 2.93 0.14 2.17 0.28 0.05 2% 
API 3 10 1.0 0.07 0.48 0.09 0.04 4% 

5.31 1.34 
  20 1.42 0.3 0.14 0.19 0.08 6% 
API 4 10 0.34 0.05 0.15 0.06 0.02 5% 

5.7 2.89 
  20 1.34 0.34 0.71 0.25 0.07 5% 
Cellulose 10 0.32 0.04 0.26 0.03 0.01 3% 

15.46 4.25 
  20 0.72 0.12 0.51 0.16 0.1 14% 

Croscarmellose Sodium 10 1.3 0.07 0.95 0.08 0.02 2% 
6.16 0.96 

  20 2.47 0.14 1.99 0.13 0.03 1% 
Crospovidone 10 0.32 0.01 0.35 0.00 0.01 4% 

6.8 1.98 
  20 1.35 0.04 0.96 0.23 0.06 4% 
Lactose 2 10 0.72 0.02 0.52 0.12 0.04 5% 

7.44 0.74 
  20 2.07 0.01 1.82 0.01 0.01 1% 
Magnesium Stearate 10 0.44 0.02 0.22 0.05 0.03 7% 

17.76 8.28 
  20 0.81 0.01 0.51 0.08 0.05 6% 
MCC 1 10 0.69 0.02 0.47 0.03 0.01 2% 

9.01 4.34 
  20 1.35 0.06 1.17 0.13 0.01 1% 
MCC 2 10 0.55 0.05 0.36 0.1 0.02 3% 

10.82 4.27 
  20 1.24 0.04 1.08 0.14 0.02 1% 
MCC 3 10 0.59 0.02 0.01 0.01 0.05 9% 

9.66 4.24 
  20 1.39 0.03 0.77 0.64 0.07 5% 
MCC 4 10 0.82 0.03 0.65 0.05 0.03 4% 

7.51 3.05 
  20 1.68 0.06 1.48 0.08 0.03 2% 
Silicified MCC 10 0.79 0.06 0.63 0.16 0.04 5% 

4.98 2.35 
  20 1.88 0.08 1.68 0.17 0.05 3% 
Starch 1 10 1.07 0.33 0.24 0.01 0.12 11% 

6.53 0.46 
  20 2.69 0.19 1.33 0.29 0.09 3% 

Starch 2 10 1.1 0.28 0.92 0.11 0.04 4% 
10.88 6.87 

  20 2.09 0.04 1.57 0.41 0.02 1% 

Starch 3 10 1.71 0.23 1.27 0.11 0.03 2% 
2.61 1.23 

  20 3.27 0.18 2.85 0.3 0.03 1% 

St. Dev = standard deviation. The number of samples in the standard deviation was the number of 

experiments performed for that particular material 
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Table 26’s results are also shown graphically in Figure 60. The results indicate there are 

significant differences in the coefficients for different materials. Feed factor maximum values 

ranged for the materials ranged between 0.32 and 1.71 g/rev and 0.72 and 3.27 g/rev for the 10 and 

20mm pitch screws, respectively. Notably, these two ranges show that the feed factor increased 

almost two-fold when the size of the screw was doubled. The minimum feed factor ranges were 

consistently lower than the maximum feed factor, ranging between 0 and 1.27 g/rev for the 10 mm 

and 0.14 and 2.85 g/rev for the 20mm screw pitches.  

INSERT Figure 60 HERE 

 Figure 60A and Figure 60B show the relative differences between material maximum and 

minimum feed factors at different screw pitch sizes. The material with the largest maximum feed 

factor was recorded as starch 3, with a value of 3.27 ± 0.18 g/rev. The second and third largest feed 

factor was noted for API 2 and starch 1, respectively. Using starch 3’s feed factor and the maximum 

screw speed of the GEA feeder (𝜔 = 461.5 𝑅𝑃𝑀), the maximum flow rate capacity for the unit 

using our material dataset was estimated at 90.5 kg/hr. 

 The first Fourier series amplitude coefficient (𝐴1) results for the materials, as shown in 

Figure 60C, ranged between 0.01 and 0.12 g/rev for the 10mm and 0.01 and 0.14 g/rev for the 

20mm screw pitch. At first look, indicated that a larger degree of noise was observed for the 20mm 

screw pitch system; however, proportionally, the amount of noise observed on the feed factor curve 

profiles for the 10mm screw pitch experiments was higher given that the feed factor ranges were 

smaller for the smaller screw size. To compare the amplitudes over a similar scale, the 𝐴1 values 

in Table 26 were divided by the averaged 𝑓𝑓𝑚𝑎𝑥 , resulting in value that would indicate at the 

amount of variability observed in the feed factor as a function of the maximum feed factor. The 

results showed that more variability in the feed factor curves was observed for the smaller screw 

pitch for 17 of the 19 materials studied. This observation was in agreement with previous findings 
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regarding the difficulty for materials to fill smaller pitch screws. Cellulose and API 3 appeared to 

deviate from the variability trend; a result that was explained by the intrinsic difficulties in powder 

feeding visually observed for these two materials. Cellulose had a tendency to flow so poorly, that 

in several occasions when the screw speed was above the maximum for the 445:1 gearbox ratio 

(i.e., 𝜔 > 100 𝑅𝑃𝑀) the screws would jam and even become dislodged from the bayonet fitting. 

The resistance to flow provided by the cellulose provided an excellent case study for materials that 

ought to be dispensed using a small screw size at lower feed rates in order to avoid jamming. API 

3 had a high tendency to stick to the walls of the hopper, particularly when the material was sheared 

at high rotational speeds by the impeller inside of the hopper. 

 Lastly, the results from the feed factor decay constant (𝛽), shown in Figure 60D, showed 

that the studied materials had a wide range of values for this coefficient. The values for 𝛽 ranged 

between 1.72 and 17.7 kg-1. Notably, magnesium stearate and cellulose had the highest 𝛽 values, 

which indicated that materials with relatively poorer flow properties had a faster decrease in the 

rate of feed factor values. Materials with better flow, such as anhydrous calcium di-phosphate and 

API 2 had the smallest values of 𝛽. This result can be explained by resistance of the material to 

flow inside of the hopper, a property that would then diminish the feed factor significantly by not 

delivering material to the screws. 

7.3.4. Effect of material properties on feed factor profile 

7.3.4.1. Correlations between regressed parameters and material properties 

Correlations between the material properties and the regressed feed factor model 

parameters was first evaluated using a multivariate plot representing the level of linear correlation 

(i.e., the correlation coefficient) between the properties and the parameters. Figure 38 shows the 

multivariate chart for set of selected material properties and the feed factor model parameters. 

Notably, several material property measurements, such as compressibility and permeability at 
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different compression pressures were shown to have a high degree of correlation, as described in 

Chapter V; therefore, only the 15kPa results for these material property measurements were 

selected for the correlation analysis. 

 

Figure 38. Correlation color map indicating level of linear correlation (R) between material 

properties and regressed feed factor parameters. 

 The results from Figure 38 show that both 𝑓𝑓𝑚𝑎𝑥  and 𝑓𝑓𝑚𝑖𝑛 had the highest correlation 

with conditioned bulk density (CBD). This result was expected given the correlation between the 

volumetric displacement from the screws sweeping volume and material density. Nevertheless, the 

level of correlation (R) between the bulk density and the 𝑓𝑓𝑚𝑎𝑥  and 𝑓𝑓𝑚𝑖𝑛 was 0.63 and 0.56, 

respectively; indicating that other properties were needed to explain the behavior of the material in 

the system. Notably, for both the 𝑓𝑓𝑚𝑎𝑥  and 𝑓𝑓𝑚𝑖𝑛 the second largest linear correlation coefficient 

was with compressibility at 15 kPa. The linear correlation coefficients between compressibility and 

𝑓𝑓𝑚𝑎𝑥  and 𝑓𝑓𝑚𝑖𝑛 were -0.34 and -0.56, respectively. The negative correlation between the 

compressibility and the feed factor indicated that as the material was more compressible, the feed 
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factor coefficients would be reduced. This result can be explained by the inability of compressible 

materials flow as well as less compressible materials. This result is further corroborated by the 

work from Van Snick et al. [198, 301] who found that compressible materials also have a tendency 

to coat the screws of the feeder, leading to a lower sweeping volume ultimately affecting the feed 

factor. Both feed factor metrics were found to be highly correlated with each other with a level of 

linear correlation of R = 0.84. This result indicates that both measurements share some level of 

proportionality, which is in line with the expected behavior. 

 Figure 38 shows 𝛽 has negative linear correlations with respect to conditioned bulk density 

(R = -0.47) and flow function coefficient (R = -0.31). This result indicates that materials with higher 

bulk densities and better flow properties have lower values of the decay rate, meaning their feed 

factor decreases more slowly than less dense and more poorly flowing counterparts. This behavior 

agrees with the previously made observation, wherein materials with poorly flowing properties 

such as magnesium stearate and cellulose had a faster and larger rate of change in the feed factor 

compared to better flowing materials such as anhydrous calcium di-phosphate and silicified MCC. 

 The three cosine Fourier series amplitudes were found to have a moderate level of 

correlation with shear cell test measurements such as cohesion, MPS and UYS. This result is in 

agreement with the notion that increased materials cohesion leads to highly variable filling 

efficiency in the screws, which in turn affects the feed factor variability [303]. Relationships 

between cohesion and fill efficiency have been noted for tablet weight variability in the tablet press 

[203], allowing for this relationship to hold similarity with the filling efficiency in the screws. 

Lastly, the results from Figure 38 further indicated that 𝐴1, 𝐴2, and 𝐴3values were highly correlated 

with each other, with correlation coefficient between 𝐴1 and 𝐴2 of R = 0.88 and between 𝐴1 and 

𝐴3 of R = 0.84. These results led to the use of 𝐴1 as the only variable being modeled as a function 

of material properties. Linear regression models between the first coefficient and the remaining two 
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coefficients indicated that 𝐴2 = 0.41𝐴1 and 𝐴3 = 0.38𝐴1, regressions that were obtained with 

coefficients of determination (R2) greater than 60%. 

7.3.4.2. Material property models predicting regressed parameters 

After investigating the correlations between material properties and feed factor model 

parameters (i.e., development of the level 2 model),  a set of response surface models (RSMs) were 

proposed to correlate material properties to the regressed feed factor model parameters. These RSM 

would serve as the connection between the material property measurements and the categorical 

material property variables that results from the level 2 model. 

The RSMs were developed using the highest correlated material properties, shown in 

Figure 38, for each of the regressed parameters and performing a regression using the material 

properties as inputs. RSM variables were removed from the model sequentially until all of the 

variables displayed a level of significance of less than 5% (i.e., p-value < 0.05). This sequential 

removal of variables was performed in order to avoid having parameters which impact in the model 

would be minimal. 

 RSMs relating material properties were developed for 𝑓𝑓𝑚𝑎𝑥 , 𝑓𝑓𝑚𝑖𝑛, 𝛽 and the cosine 

Fourier amplitude values (𝐴1, 𝐴2, and 𝐴3). From the analysis, several variables were found to be 

repeated in all models. These material properties, listed in Table 27, were therefore found to have 

an impact on the feeder  performance based on the analysis performed. Notably, all of the materials 

appeared to have some correlation in the multivariate color map, indicating the approach of 

previewing the variables provided successful insight for the subsequent data-driven modeling. 

Furthermore, screw pitch was found to be a critically important variable, particularly for the feed 

factor parameters. This was in agreement with expected results, given the relationship between feed 

factor and sweeping volume. 
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Table 27. Response surface model (RSM) variables and the reference variables 

Variable Re-coded Variable Refence Value Units 

Screw Pitch 𝑋1 15.79 mm 

Conditioned Bulk Density (CBD) 𝑋2 0.45 g ml-1 

Compressibility (CPS) 𝑋3 21.63 % 

Permeability 𝑋4 44.55 x109 cm2 

Cohesion (kPa) 𝑋5 0.606 kPa 

Flow Function Coefficient (FF) 𝑋6 8.48 - 

Angle of Internal Friction (AIF) 𝑋7 31.13 Degrees (°) 

 Each of the material properties was recoded using the letter variable 𝑋, which would be 

used to describe the RSM models. Reference values representing the average of the property for 

the full material property sample set are also reported in Table 27. The reference values are used in 

conjunction with Equation 29 to represent the standardized effect of the material property on the 

RSM model prediction. 

 ∆𝑋𝑦 = 𝑋𝑦 − 𝑋𝑦 29 

where 𝑋𝑦 is the reference value for variable 𝑦, 𝑋𝑦 is the material property value for variable 𝑦 and 

∆𝑋𝑦 is the standardized material property effect value observed in all of the subsequent RSM 

models. The reference values provide a reference for the ranges of material properties that were 

used in this study.  

 Equation 30 provides the relationship between 𝑓𝑓𝑚𝑎𝑥  , screw pitch size, and four material 

properties listed in Table 27. The model included single and interaction terms of screw pitch size, 

conditioned bulk density, compressibility, permeability, and cohesion. These four material 

properties are known to correlated with the flowability of material and further describe the amount 

of material able to occupy a particular volume. Interaction effects were found to occur between all 

material properties for this model, indicating that more complex physics related the behavior of 

these properties to the maximum feed factor.  

 
𝑓𝑓𝑚𝑎𝑥 = 𝑎0 + ∑𝑎𝑖𝑋𝑖

5

𝑖=1

+ ∑𝑎𝑗+5∆𝑋1 ∆𝑋𝑗

4

𝑗=1

+ ∑𝑎𝑙+8∆𝑋2 ∆𝑋𝑙

5

𝑙=2

+ ∑𝑎𝑘+11(∆𝑋𝑘)
2
 

5

𝑘=3

+ 𝑎17∆𝑋4 ∆𝑋5 
30 

 The values of the 18 regression coefficients 𝑎𝑥 for this model are provided in Table 28 
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Table 28. Coefficient table for the feed factor maximum (𝑓𝑓𝑚𝑎𝑥) RSM 

Coefficient (ax) Estimate (x 1000) Standard Error (x 1000) Units 

0 -3071.7 219.8 g rev-1 

1 89.7 2.6 g (rev mm)-1 

2 5699.0 280.2 ml rev-1 

3 19.0 3.9 g (rev %)-1 

4 7.0 1.2 g (rev cm2)-1 

5 385.0 139.9 g (rev kPa)-1 

6 0.0 0.0 ml (rev mm2)-1 

7 137.1 19.8 ml (rev mm)-1 

8 -1.7 0.3 g (rev % mm)-1 

9 -0.2 0.1 g (rev cm2 mm)-1 

10 -8938.9 939.2 ml2 (rev g)-1 

11 -51.1 26.8 ml (rev %)-1 

12 13.9 5.5 ml (rev cm2)
-1

 

13 2451.8 865.8 ml (rev kPa)-1 

14 -0.7 0.1 g (rev %2)-1 

15 0.0 0.0 g (rev cm4)-1 

16 1669.3 255.4 g (rev kPa2)-1 

17 25.6 3.3 g (rev kPa cm2)-1 

All coefficients have a p-value < 0.05 and the overall model has a p-value < 0.0 

Similarly to Equation 30, Equation 31 shows the RSM correlation between material 

properties and the 𝑓𝑓𝑚𝑖𝑛. In this relationship, only three material properties and the screw pitch 

were found to have statistically significant values (i.e.,  p-value > 0.05). During the regression, the 

coefficients (𝑏) for the cohesion variable displayed a high error, which indicated that the material 

property did not provide much additional information to the model. This increase in error may be 

due to the intrinsic error of the 𝑓𝑓𝑚𝑖𝑛 values, which as previously discussed tend to have a higher 

regression error since the parameter is extrapolated from data. Given this increase in error for the 

cohesion variable parameters, the 𝑓𝑓𝑚𝑖𝑛 model was reduced to a total of 11 terms, including the 

intercept. Like the 𝑓𝑓𝑚𝑎𝑥  the remaining material properties (i.e., bulk density, compressibility, and 

permeability) were found to have some physical correlation with the defined feed factor parameter. 

 
𝑓𝑓𝑚𝑖𝑛 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋4 + ∑𝑏𝑗+3∆𝑋2 ∆𝑋𝑗

2

𝑗=1

+ ∑ 𝑏𝑘+5∆𝑋3 ∆𝑋𝑘

4

𝑘=1

+ 𝑏10(∆𝑋4)
2
 

31 

 The values of the 11 regression coefficients 𝑏𝑥 for this model are provided in Table 29 



188 

 

  

Table 29. Coefficient table for the feed factor minimum (𝑓𝑓𝑚𝑖𝑛) RSM 

Coefficient (bx) Estimate (x 1000) Standard Error (x 1000) Units 

0 -1285.08 118.75 g rev-1 

1 68.38 4.26 g (rev mm)-1 

2 2948.93 189.10 ml rev-1 

3 5.56 0.75 g (rev cm2)-1 

4 90.43 32.38 ml (rev mm)-1 

5 -10258.10 1456.85 ml2 (rev g)-1 

6 -2.08 0.36 g (rev % mm)-1 

7 -145.88 26.90 ml (rev %)-1 

8 -0.49 0.21 g (rev %2)-1 

9 0.42 0.10 g (rev % cm2)-1 

10 -0.04 0.01 g (rev cm4)-1 

All coefficients have a p-value < 0.05 and the overall model has a p-value < 0.01 

The feed factor decay (𝛽) was found to correlations with several material properties, 

including conditioned bulk density, permeability, flow function coefficient (FF), and angle of 

internal friction (AIF). The RSM for 𝛽, shown in Equation 32, shows that a variable transformation 

had to be performed to yield the highest determination coefficient for this model. The 𝛽 values for 

each of the materials was divided by the conditioned bulk density and the natural logarithm was 

taken in order to shift the distribution of values to a more normal distribution. The results for the 

transformed values of 𝛽 – now 𝐿𝑛 [
𝛽

𝑋2
⁄ ] – were then used as the RSM response variables. Notably, 

AIF was found to have an exponential correlation with the feed factor decay variable, a result that 

resembles the relationship observed by Johansson for stresses and pressures observed in cylindrical 

silos [217, 304]. This result, indicates that  is correlated with the amount of pressure the material is 

exerting at the screw entrance and further confirms the original assumption made by the model 

relating feeder weight to pressure at the screw inlet.  

 
𝐿𝑛 [

𝛽

𝑋2

] = 𝑐0 + ∑𝑐𝑖𝑋𝑖+3

4

𝑖=1

+ ∑𝑐𝑗+1∆𝑋4 ∆𝑋𝑗

7

𝑗=4

+ ∑ 𝑐𝑘+3∆𝑋5 ∆𝑋𝑗

7

𝑘=6

+ 𝑐11∆𝑋6 ∆𝑋7 
32 

 The values of the 11 regression coefficients 𝑐𝑥 for this model are provided in Table 30 
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Table 30. Coefficient table for the transformed feed factor decay constant (𝐿𝑛 [
𝛽

𝑋2
]) RSM 

Coefficient (cx) Estimate (x 1000) Standard Error (x 1000) Ln(Units) 

0 -7159.20 1037.66 mL g-2 

1 -12.63 3.11 mL (g2 cm2)-1 

2 6535.67 831.08 mL (g2 kPa)-1 

3 633.11 75.84 mL g-2 

4 85.25 9.37 mL (g2 °)-1 

5 0.30 0.08 mL (g2  cm4)-1 

6 -30.93 13.23 mL (g2 cm2 kPa)-1 

7 -1.10 0.39 mL (g2 cm2)-1 

8 1.43 0.32 mL (g2 ° cm2)-1 

9 1134.50 119.97 mL (g2 kPa)-1 

10 437.47 64.73 mL (g2 ° kPa)-1 

11 17.70 3.99 mL (g2 °)-1 

All coefficients have a p-value < 0.05 and the overall model has a p-value < 0.01 

Lastly, the effect of material properties on the observed amplitude of the feed factor profile 

noise was established in Equation 33. Untransformed amplitude values had some of the least 

significant relationships with material properties. Given the relationship between the strong 

relationship between feed factor and density, the 𝐴1 were transformed similarly to the 𝛽. 𝐴1 values 

were divided by conditioned bulk density and the natural logarithm of that ratio was calculated. 

After the transformation, a third order factorial correlation with respect cohesion and single order 

with respect to screw pitch were to accurate represent the system. Markedly, the statistical 

significance of the first order cohesion term was above the statistical significance limit, yet based 

on the relationship with the other higher order terms, the authors found the current model suitable 

and retained the model variable. 

 

𝐿𝑛 [
𝐴1

𝑋2
] = ℎ0 + ℎ1𝑋1 + ℎ2𝑋5 + ∑ℎ𝑖+1

3

𝑖=2

(∆𝑋5)
𝑖
 

33 

The values of the 4 regression coefficients ℎ𝑥 for this model are provided in Table 31 
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Table 31. Coefficient table for the transformed first coefficient of the feed factor profile cosine 

Fourier amplitude (𝐿𝑛 [
𝐴1

𝑋2
]) RSM 

Coefficient (hx) Estimate (x 1000) Standard Error (x 1000) Ln (Units) 

0* -1815.82 233.06 ml rev-1 

1* 24.29 8.77 ml (rev mm)-1 

2** -803.37 323.51 ml (rev kPa)-1 

3** -291.78 334.35 ml (rev kPa)-1 

4* 5769.16 1095.26 ml (rev kPa)-1 

* Coefficients have a p-value < 0.05. **Coefficients with p-value > 0.05, but associate with another 

effect. 

Table 32 provides a summary of the statistics for the abovementioned RSM models with 

respect to their coefficient of determination, root mean square error, and mean response. The mean 

responses between 𝑓𝑓𝑚𝑎𝑥  and 𝑓𝑓𝑚𝑖𝑛 show that the models are in line with the expected results of 

the maximum value being larger than the minimum. The results also show the coefficient of 

determination (R2) for the first three feed factor model parameters anticipate an accurate prediction 

of the regressed parameters based on material properties. The model for 𝐴1 showed the model may 

not provide as accurate a prediction to the amplitude values, yet for the purpose of this work the 

authors found the model sufficient. 

Table 32. RSM model statistics for Equations 29-33 

Variable 𝑓𝑓𝑚𝑎𝑥 𝑓𝑓𝑚𝑖𝑛  𝐿𝑛 [
𝛽

𝑋2
] Model 𝐿𝑛 [

𝐴1

𝑋2
] Model 

R2 94% 88% 81% 54% 

Root Mean Square Error 0.19 0.32 0.53 0.66 

Mean of Response 1.39 g/rev 0.95 g/rev 2.66 ml/g2 -1.86 Ln(mL/rev) 

The ANOVA results for each of the models is provided in Table 37. Most importantly, all 

models showed a level of statistical significance of p <0.001, which indicated that all of the RSM 

models established a correlation between the selected properties and the regressed feed factor 

model parameters. 

INSERT Table 37 HERE 

Figure 39 shows the parity plots comparing the expected values of the feed factor model 

parameters (i.e., those regressed from the data) and those calculated from the RSM models. Figure 
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39A shows the results between the RSM calculated (i.e., predicted from model) and regressed 

𝑓𝑓𝑚𝑎𝑥  values. The black line in the figure represents the 𝑥 = 𝑦 line, meaning the point where there 

are no differences between the predicted and regressed values. The red dashed lines represent the 

individual 95% confidence interval (CI) for the predictions. As seen in Figure 39A, the results show 

the RSM accurately predicting the values of  𝑓𝑓𝑚𝑎𝑥  for the whole range of materials. Figure 39B 

presents the results for the 𝑓𝑓𝑚𝑖𝑛 parity plot. As seen by the lower correlation coefficient, the 

predictions of the 𝑓𝑓𝑚𝑖𝑛 appear to be slightly worse than the 𝑓𝑓𝑚𝑎𝑥 . This difference, as previously 

discussed, is attributed to the larger error observed in the regressed parameter. Nevertheless, it is 

important to note that a large number of data are closely grouped along the 𝑥 = 𝑦 line, indicating 

that the model predicts the value accurately for a vast number of trails. 

 

Figure 39. Parity plots between the RSM Predicted model parameters and the values expected from 

the regression using experimental data. (A) Feed factor maximum (𝑓𝑓𝑚𝑎𝑥), (B) feed factor 

minimum (𝑓𝑓𝑚𝑖𝑛), (C) transformed feed factor decay (𝐿𝑛 [
𝛽

𝑋2
]), and (D) transformed feed factor 

variability (𝐿𝑛 [
𝐴1

𝑋2
]) 



192 

 

  

 The parity plot for the transformed feed factor decay variable (Figure 39C) show a 

relatively good agreement between the predicted values from the RSM and the regressed 

coefficients. This result indicates the variable transformation successfully aided in obtaining a good 

regression fit for the 𝛽 values. Notably, several results appeared to have variability in the horizontal 

direction, which indicated the RSM model was not representing some intrinsic variability seen by 

the expected results. Based on this finding, it is encouraged that further material property 

measurements and variables are included in subsequent material property model  to account for this 

observed variability. Similarly to Figure 39C the results from Figure 39D show that certain 

variability in the observed 𝐴1 was not captured by the current model, indicating that future variables 

and material properties ought to be considered. 

7.3.5. Model mean absolute percentage error 

Using the RSM models presented in Equations 29 through 33, the relationship established 

between 𝐴1 and the remaining two amplitude coefficients, and the feed factor model (Equation 28), 

a level 3 model was compiled for the feeder. The feed factor model had as inputs the parameters 

estimated from the RSM models, which in turn had as input the property measurements of the 

materials. Using this level 3 model, a comparison of the feed factor profiles obtained 

experimentally was performed using the MAPE metric shown in Equation 34. 

 
𝑀𝐴𝑃𝐸 =

100

𝑟
∑|

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑟

𝑖=1

 
34 

where 𝑟 is the number of observations in the feed factor profile, 𝑦𝑖 is the experimental value of feed 

factor at a given feeder weight value 𝑖, and 𝑦̂𝑖 is the predicted value of the feed factor at that given 

weight. The MAPE results for the feed factor profiles predicted using the level 3 model were 

compared with those from the averaged feed factor model coefficient in  
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 (effectively, the level 2 model). For the level 3 model, the material property measurements for the 

variables listed in Table 27. Response surface model (RSM) variables and the reference variables 

and the screw pitch were the only inputs to the model. For the level 2 model, the feeder’s 

experimental screw pitch configuration and material being tested were the only input parameters. 

The average results for each of the feed factor model coefficient in  

 were used to calculate the feed factor profiles of the 237 feeder experiments.  The results of the 

MAPE model are shown in Table 33. 

Table 33. Summary of MAPE results comparing the level 2 model with the level 3 model 

Material 

Screw 

Pitch 

(mm) 

MAPE Values (%) 

Regressed Parameters Averaged 

(Level 2) 

Calculated from RSM Models 

(Level 3) 

Mean St. Dev Mean St. Dev 

Acetaminophen 10 19.7 13.1 18.7 11.6 

  20 23.2 7.6 20.2 9.0 

Calcium Di-Phosphate 10 11.3 6.4 21.8 3.0 

  20 3.4 1.2 11.6 0.7 

API 1 10 4.7 2.4 7.4 1.7 

  20 4.3 2.1 8.8 4.0 

API 2 10 3.9 1.3 8.8 1.5 

  20 3.4 1.9 13.4 3.8 

API 3 10 6.8 2.7 8.1 3.7 

  20 23.6 11.7 22.9 18.8 

API 4 10 11.4 4.1 42.2 6.8 

  20 18.8 12.0 18.9 16.8 

Cellulose 10 13.1 7.1 36.2 7.8 

  20 19.5 7.0 25.1 13.6 

Croscarmellose Sodium 10 3.5 2.0 7.7 0.2 

  20 5.1 1.8 7.4 2.1 

Crospovidone 10 11.2 2.0 41.3 7.3 

  20 5.0 3.0 10.2 2.7 

Lactose 2 10 5.1 0.8 32.1 2.0 

  20 1.6 1.8 9.8 0.9 

Magnesium Stearate 10 6.8 2.0 16.5 3.8 

  20 6.6 6.0 11.1 3.7 

MCC 1 10 3.8 2.3 33.9 6.0 

  20 3.8 2.0 8.7 2.4 

MCC 2 10 9.4 3.4 14.0 2.3 

  20 3.1 1.4 6.1 0.6 

MCC 3 10 6.7 3.8 7.7 3.0 

  20 4.6 1.1 5.6 1.0 

MCC 4 10 3.0 0.7 8.0 0.4 

  20 3.2 1.3 5.4 0.3 

Silicified MCC 10 9.1 6.8 15.4 4.7 

  20 6.6 6.6 8.7 4.7 

Starch 1 10 28.6 12.8 37.5 19.0 

  20 6.9 2.6 10.3 4.7 

Starch 2  10 14.7 6.9 9.7 2.1 

  20 2.5 1.7 5.0 1.5 

Starch 3 10 12.2 4.7 18.1 9.2 

  20 7.0 4.5 12.3 6.1 
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Table 33 results indicate the average MAPE coefficients ranged between 1.6 and 28.6% 

for the level 2 modeling strategy and between 5.0 and 42.2% for the level 3 model. The increase in 

the MAPE values between the level 2 and 3 modes was expected, given that the error and variability 

from the RSM models would compile and appear as part of the overall result. Nevertheless, it is 

important to note that the MAPE results for the level 3 model varied with respect to those from 

level 2 by more than 10% only in 5 instances. The five instances where the level 3 model 

significantly exceeded that of the level 2 involved the 10mm screw pitch for materials whose 

particular flow properties were difficult to capture in several instances. Figure 40 shows the MAPE 

results for each material to compare the results between models and with respect to screw pitch 

length. 

 

Figure 40. Comparison of mean absolute percentage error (MAPE) values for the experimental feed 

factor profile predictions between the level 2 (regressed parameters averaged) and level 3 (i.e., 

calculated from RSM models) models. MAPE values divided by screw pitch (A) 10mm  and (B) 

20mm. 

 Using a heuristic standard to evaluate the level of prediction, wherein MAPE values less 

than 5% are considered very good predictions, between 5 and 15% good, 15 and 30% moderate, 30 
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and 45% poor, and above 45% very poor, Figure 40 shows that 9 of the 19 cases for the 10mm 

pitch were between very good and good for both the level 2 and level 3 models. In several instances, 

such as for anhydrous calcium di-phosphate, lactose, and starch 3, the RSM model errors appear to 

increase the MAPE enough to reach the moderate range for the level 3 model. Most notably, the 

MAPE predictions appear to increase dramatically when the level 3 model is used to predict the 

feed factor profiles for API 4, cellulose, crospovidone, lactose, and MCC 1. This large increase in 

MAPE is attributed to relatively amount of data for the materials tested, particularly at low flow 

rates and with the 10mm screw. The reduced number of data for these materials lead to a 

underrepresentation during the RSM predictions, which led to a higher level of error for these 

materials. Starch 1 appeared to have a high MAPE for both the level 2 and level 3 models, indicating 

that the material presented issues for feeding. This was attributed to the high compressibility and 

cohesion of starch 1, which made the flow into the smaller screws much more difficult and erratic 

than with the larger screw length. 

 MAPE results for the 20mm screw pitch, for which many more experiments were 

performed, resulted in very similar values between the level 2 and level 3 models. A total of 15 out 

of the 19 materials were seen to have MAPE values within the very good and good range both 

models. Notably, materials that were seen to present feeding challenges had MAPE values within 

the moderate range for this screw pitch length. This result hints at the possibility that the model 

behavior applies to well flowing materials in the feeder hopper. 

7.3.6. Refill case studies 

To evaluate the reproducibility of the feed factor curve as a function of feeder weight, 

sequential refill experiments were performed for selected materials. The experiments were divided 

into two sets: constant feeder fill level refilling and cascade refilling. The former consisted in 
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refilling the feeder between two constant levels of filling (e.g., between 50 and 100% fill level), 

while the latter performed refills at various levels of fill.  

In the following subsections, the results for the refilling experiments using MCC 4 with a 

63:1 gearbox and a 20mm pitch screw are shown. For these experiments, a total of three refills are 

performed under gravimetric control for a flow rate set point of 2.78 g/s. A time based feed factor 

profile is shown for both the GEA feeder and catch scale feed factor profile. The predictions of the 

feed factor model for the material are provided using the results from  

. Furthermore, the feed factor data is spliced as a function of the refill intervals to evaluate 

the prediction of the feed factor model with respect to the predictions of the feed factor curve as a 

function of feeder weight. 

7.3.6.1. Case 1: Constant refill level 

Figure 41 shows the results of the multiple refill experiment at a constant fill level interval. 

The interval for fill level was set between 40 and 90%, meaning the refill unit would refill when 

the hopper was filled to 40% up to the higher fill value. The average flow rate throughout operation 

remained relatively constant, with an average and standard deviation of 2.80 ± 0.15 g/s (i.e., RSD 

of 5.35%). Feed factor was monitored for both the GEA feeder and the catch scale results. Figure 

41A shows the time series of both feed factors along with the recorded feeder weight. The feed 

factors remained relatively constant until the time reached 500 seconds, when the profile began to 

decay. 
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Figure 41. Results for the feed factor refill experiment at constant fill level intervals. (A) Time 
series of both feed factor profiles and the feed factor model predictions based on weight (left) and 

the corresponding feeder weight profile (right). (B) Feed factor profile for weight intervals between 

each refill. Black line represents the predictions from the feed factor model. 

 Figure 41B shows the catch scale feed factor profile separated based on the refill intervals. 

The starting feed factor profile was that achieved before the feeder was refilled, and ranged between 

870 and 480 grams. Two sections for the subsequent two refills between 40 and 90% are shown in 

Figure 41B. It was seen that both of these feed factor profiles, ranging between 480 and 700 grams 

had very similar feed factor values, which corroborated the reproducibility of the feed factor curve. 

Ultimately, a small refill was performed before the feeder was depleted, showing the feed factor 

decreased as previously observed. The feed factor profiles shown in Figure 41B had a MAPE with 

respect to the modeled feed factor profile of 7.2%, indicating that the model accurately represented 

this system over the whole weight range. 

 The observed offset between the feed factor model predictions and the experimental results, 

although relatively small, is attributed to the slight variability between material properties as the 

material enters the system. Since the material is being dropped into the unit, this added shear and 

flow alters the material properties slightly from those of the powder when characterized (i.e., when 

the material conditions were static). A potential solution to improve the prediction from the model 
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can be to introduce an expected variability in the material property measurements in order to 

develop “feed factor prediction bands” that can account for potential variability in properties. 

7.3.6.2. Case 2: Cascading refill 

Similarly to the constant fill level study, Figure 42 shows the results of the multiple refill 

experiment but at varying fill levels. The objective was to have some overlap in the feed factor 

profiles in between refills and capture the full feed factor curve. The interval for fill level were set 

between 40 and 90%, followed by 25 to 75%, and ultimately 12.5 and 62.5%. The average flow 

rate throughout operation was less accurate than the previous case study, given that the controls 

were not able to quickly adapt to the rapidly changing refill profile. The average flow rate was 2.67 

g/s with a standard deviation of 0.85 g/s (i.e., RSD of 31.8%). The increase variability in the flow 

rate occurred solely during the refill, as the feeder controls were blind during operation and there 

was no collected feed factor values.  

 

Figure 42. Results for the feed factor experiment using cascading refills. (A) Time series of both 
feed factor profiles and the feed factor model predictions based on weight (left) and the 

corresponding feeder weight profile (right). (B) Feed factor profile for weight intervals between 

each refill. Black line represents the predictions from the feed factor model. 

Again, feed factor was monitored for both the GEA feeder and the catch scale results. 

Figure 42A shows the time series of both feed factors along with the recorded feeder weight. 

 Similarly to the constant refill case, the feed factors remained relatively constant until the 
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time reached 500 seconds, when the profile began to decay. Figure 42B shows the spliced feed 

factor profile in between the refill intervals. As expected, the feed factor profiles after each refill 

appear to overlap less than in the previous case, particularly for the feed factors after the first and 

second refills. The feed factor profile once again appears to follow the trends observed during the 

flow rate characterization experiments without refill, supporting the established correlation 

between feed factor and feeder weight. The prediction of the feed factor curve shown in Figure 42B 

showed a MAPE of 5.5%, which is in line with the results presented in Table 33 for MCC 4.  

The results from this section, thus, indicate that the feed factor model is able to be used 

evaluate the differences in feeding performance between materials and establish their maximum 

flow rates. In the subsequent part of this article, the feed factor model is related mathematically 

with the material property measurements for each of the materials used using empirical models. 

The resulting models would then allow researchers to implement these results using materials with 

known property values. 

7.3.7. Refill unit characterization 

Before performing the GEA feeder’s RTD experiments, it was critical to evaluate the 

performance of the refill unit to establish the effectiveness and accuracy of refills being performed. 

The refilling procedure, described in the methods sections, was performed for the materials listed 

within the procedure. Figure 43 shows the flow rate results for the eight refills performed using (A) 

anhydrous calcium di-phosphate, (B) silicified MCC, (C) MCC 2 and (D) magnesium stearate. The 

flow rate of each material appeared to be have a triangular profile, with peaks ranging from 160 to 

50 g/s. Flow rate values from the refills varied between materials, but within each of the materials 

they were very consistent, as shown by the reproducible profile shapes and maximum flow rates 

for the materials in Figure 43. The average refill time (i.e., when mass flow rate was greater than 

zero) noted for these four sets of refill experiments calculated as 10.7 ± 1.3 seconds. 
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Figure 43. Results refill unit characterization using a 0.8 L cup volume. (A) Anhydrous calcium di-

phosphate, (B) silicified MCC, (C) MCC 2, and (D) magnesium stearate. 

 Similar plots were evaluated for the remaining materials, namely MCC 1, MCC 4, API 4, 

cellulose and acetaminophen.  The results indicated that, similarly to the materials shown in Figure 

43, MCC1 and MCC 4 had reproducible refill flow rates, similar refill times, and consistent refill 

masses. However, API 4, cellulose, and acetaminophen had highly variable refills due to arching 

occurring in the hopper as material was dispense by the refills. Table 34 lists the results for the 

average mass dispensed by the 0.8 L refill cup for the 8 sequential refills performed for the nine 

materials. Notably, most material refills were seen to be slightly higher than the cup volume, based 

on their conditioned bulk density. This result can be attributed to the rotating motion of the refill 

unit, which allows for some extra material to enter the unit as the cup is rotation 180 degrees. 

Table 34. Summary of eight sequential refill experiments using a 0.8 L cup and controlled refill 

time of 3 seconds. Observed refill volume is calculated using the refill mass amount and the 

conditioned bulk density measurements 
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Material Refill Mass (grams) Observed Refill Volume (L) RSD 

Acetaminophen * 232.9 ± 42.0 0.75 ± 0.14 18% 

Anhydrous calcium di-phosphate 626.3 ± 31.0 0.85 ± 0.04 5% 

API 4 * 289.0 ± 29.9 0.85 ± 0.09 10% 

Cellulose * 99.4 ± 66.2 0.66 ± 0.44 67% 

Magnesium stearate 213.0 ± 8.0 0.82 ± 0.03 4% 

MCC 1 298.9 ± 23.7 0.91 ± 0.07 8% 

MCC 2 305.1 ± 6.8 0.90 ± 0.02 2% 

MCC 4 382.0 ± 4.8 0.87 ± 0.01 1% 

Silicified MCC 452.5 ± 4.3 0.94 ± 0.01 1% 

* Material was observed to arch inside of the hopper, leading to empty refill actions – cup was not 

filled even though material was present in the refill hopper. Number after the ± represents the 

standard deviation of the measurement. 

 The significantly larger RSDs for acetaminophen and cellulose were of particular interest 

given that these materials in several instances would not dispense any material due to the level of 

arching occurring inside of the refill unit’s hopper. Figure 44A shows the formation of a significant 

arch for cellulose and Figure 44B shows the accumulation of acetaminophen on the angled section 

of the refill hopper. Figure 44C is shown to have a comparison of the refill hopper when empty. 

 

Figure 44. Top view of the refill unit, looking downwards from the hopper. (A) Arching observed 

for cellulose, (B) arching observed for acetaminophen (C) view of the hopper unit when empty. 

For future experiments, this result was considered when choosing the amount of material 

placed in the refill unit’s hopper. To ensure that material would flow, the arches for any subsequent 

experiments were broken by introducing a small rod and stirring the material in the refill hopper. 

Moreover, the amount of material placed in the refill hopper was kept below 2L, which ensured 

that minimal arching would be formed at the higher levels of the hopper. 
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7.4. RTD CHARACTERIZATION 

7.4.1. Concentration profiles 

Six RTD experiments were performed in accordance to the methods described. Three 

materials were used as a base for the experiment and the RTD was performed at two different flow 

rates. In the following subsections, the results for each RTD experiment is discussed for each 

material. Feeder weight, input concentration of tracer, outlet concentration of tracer, feeder flow 

rate, and screw speed were tracked as a function of time for the whole experiment to ensure that 

(1) the flow rate of the system did not significantly vary and (2) to establish a clear time when the 

impulse of tracer blend was added by determining the refill time. It was important to monitor the 

flow rate outgoing from the feeder, given the known relationship between flow rate and residence 

time. The experiments were performed under gravimetric control to ensure that the flow rate was 

not varying as a function of feeder weight. 

The abovementioned, although collected as a function of time, are plotted in the next 

subsection as a function of the amount of material dispensed by the feeder (i.e., material fed or 

totalized mass of material fed) in order to account for the differences in flow rate between the two 

experiments performed for each material. Expressing the results using the mass of material fed 

allows for a 1:1 comparison between the two flow rate experiments, since the volume (and thus 

mass) of material being dispensed remained the same between experiments. 

7.4.1.1. Anhydrous calcium di-phosphate with Acetaminophen tracer 

Anhydrous calcium di-phosphate represented the material with the largest bulk density, which led 

to a total mass of material being dispensed of around 3,000 g. Given this mass amount, the total 

run time for the RTD experiments were 539.6 and 1,079.5 seconds for the higher and lower flow 

rate set points, respectively. Figure 45 shows the results for the monitored variables for the two 
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RTD experiments. Figure 45A and Figure 45C show double y-axis (i.e., bivariate) plots for the 2.78 

g/s experiment, while Figure 45B and Figure 45D shows the same plots for the 5.5 g/s experiments. 

 

Figure 45. RTD experimental results using anhydrous calcium di-phosphate as a base and 

acetaminophen as the tracer material. Concentration and feeder weight profiles for the experiments 
with flow rate set point of (A) 2.78 g/s and (B) 5.5 g/s. Mass flow rate and screw speed profiles for 

the experiments with flow rate set points of (C) 2.78 g/s and (D) 5.5 g/s. 

 Figure 45A and Figure 45B show the expected concentration profiles for the tracer as it 

entered the system (black line) and if it left the system without any mixing occurring in the system 

(red dashed line). The profile shown by the no mixing scenario would indicate the material inside 

of the feeder hopper did not back-mix with the material that was inside of the unit from a previous 

refill. Notably, the results from the measured outlet concentration profiles (yellow circles) showed 

that for both experiments, the lines did not follow the no mixing scenario profile and indicated there 

was some back-mixing occurring inside of the GEA feeder hopper.  

Figure 45C shows the impact of adding the tracer material on the flow rate and screw speed 

of the system. After the tracer blend was added in the first refill (mass of material fed = 714 grams), 

the mass flow rate profile showed notable disturbances, which included a maximum flow rate 

deviation of 0.19 g/s (i.e., the flow rate reached a nominal value of 2.97 g/s). These deviations were 

attributed to the varying feed factor due to the difference in material properties between the tracer 
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blend and the base material. Markedly, immediately after the tracer was added in the first refill, an 

asymptotically decreasing profile in the screw speed was observed, indicating that a different 

material (one with a higher apparent feed factor) was being progressively dispensed out of the 

feeder. After the second refill was performed with just base anhydrous calcium di-phosphate, the 

screw speed began to steadily increase as the tracer concentration was washed out of the system, 

until it reached a similar screw speed range as the starting condition. A large deviation in the flow 

rate was noted after the second refill and was attributed to the fast changes occurring in the feed 

factor of the material inside of the GEA feeder hopper. After the observed deviation in flow rate 

following the second refill, the mass flow rate variability appeared to decrease as the amount of 

tracer was washed out of the system, which pointed to the fact that stabilization of the feed factor 

as the tracer material was washed out of the system.  

Similarly, Figure 45D shows the impact adding the tracer had on the flow rate and screw 

speed of the system. Once the tracer was added after the first refill, a flow rate deviation with a 

maximum value 5.98 g/s was observed. This deviation in the flow rate was attributed once again to 

the changes in feed factor between the tracer blend and the base material, as seen by the changes in 

screw speed in Figure 45D. In the same way as the results shown in Figure 45C, the screw speed 

was seen to decrease after the addition of the tracer and later increase as the tracer was washed with 

the two base material refills. Notably, the size of the flow rate deviation observed after the second 

refill was, once again, larger than the flow rate deviation due to the first refill. This result can be 

attributed to the rapidly changing feed factor inside of the feeder hopper due to back mixing and 

the inability of the controllers to rapidly adjust the flow rate to maintain the set point. 

The results of Figure 45C and Figure 45D give rise to the possibility of using the feeder as 

a soft sensing unit to detect changes in material properties based on changes in the screw speed 

(and thus feed factor) during operation. Furthermore, the results also show that screw speed 

controllers ought to be properly tuned in order to quickly adjust the flow rate in the event of rapid 
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changing feed factors. In this work, the built-in controls provided a sufficiently accurate and rapid 

response, yet in future works it is suggested to revisit and tune these controls as a function of 

expected changes inside of the unit. 

7.4.1.2. Silicified MCC with Acetaminophen tracer 

Figure 46 shows the results for the silicified MCC RTD experiments. A total mass of 1,900 

grams of material were dispensed, which resulted in experiment durations of 341.2 and 683.5 

seconds for the higher and lower flow rate set points, respectively. Similarly to the case with 

anhydrous calcium di-diphosphate, the silicified MCC case showed there was back-mixing in the 

feeder given the results shown in Figure 46A and Figure 46B. The tracer concentration at the outlet 

of the unit began increasing immediately after the introduction of the tracer in the first refill, which 

indicated that the tracer blend profile did not follow the no mixing scenario. The increase in tracer 

concentration was followed by a washing out following the two subsequent base material refills. 

 

Figure 46. RTD experimental results using silicified MCC as the base and acetaminophen as the 

tracer material. Concentration and feeder weight profiles for the experiments with flow rate set 

point of (A) 2.78 g/s and (B) 5.5 g/s. Mass flow rate and screw speed profiles for the experiments 

with flow rate set points of (C) 2.78 g/s and (D) 5.5 g/s. 
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Figure 46C shows the impact of adding the tracer material on the flow rate and screw speed 

of the system. After the tracer blend was added in the first refill (mass of material fed = 539 grams), 

the mass flow rate profile showed notable disturbances, which involved a decrease in the flow rate 

of material with an increase in screw speed. As previously discussed this deviation can be attributed 

to the varying feed factor due to the difference in material properties between the tracer blend and 

the base material. Since the acetaminophen tracer had a lower feed factor than the base silicified 

MCC, a decrease in the feed factor was expected. Thus, an increase in the screw speed was expected 

to maintain the constant flow rate. After the second refill was performed with just base silicified 

MCC, the screw speed began to steadily increase as the tracer concentration was washed out of the 

system. Notably, the flow rate disturbance after the second refill was much lower than that for the 

first refill when compared to the anhydrous calcium di-phosphate case. This result can be attributed 

to the smaller difference between the feed factors of the base and the tracer. 

Figure 45D, in line with the results for the smaller flow rate RTD experiment, shows the 

impact adding the tracer had on the flow rate and screw speed of the system. Once the tracer was 

added after the first refill, a flow rate decrease was observed followed by an adjustment of the screw 

speed to maintain the flow rate near the set point. Nevertheless, it is important to note that after the 

second and third refills, flow rate did decrease which indicated that silicified MCC refills had a 

transitory impact on the flow rate. This last observation was discussed by Engisch et al. [287, 293] 

and attributed to the intrinsic performance of feeders under gravimetric performance during refills. 

7.4.1.3. Acetaminophen with Caffeine tracer 

Lastly, Figure 47 shows the results for the acetaminophen RTD experiments using caffeine 

as a tracer. An averaged total mass of 1377 grams of material were dispensed, which resulted in 

experiment durations of 245.6 and 495.3 seconds for the higher and lower flow rate set points, 

respectively. Thus, this system was noted to have the shortest of all of the RTD experiments, a 
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result associated with the materials relatively low bulk density when compared with the 

aforementioned materials. Like the previous two cases, Figure 47A and Figure 47B show there was 

back-mixing in the feeder provided that the outlet concentration of caffeine tracer exiting the 

system did not follow the no mixing scenario.  The results led to the conclusion that regardless of 

the material being used as a tracer, there was some level of back-mixing occurring in the system 

and that the feeders did not behave as plug flow (i.e., first in, first out) systems. 

 

Figure 47. RTD experimental results using acetaminophen as the base and caffeine as the tracer 

material. Concentration and feeder weight profiles for the experiments with flow rate set point of 
(A) 2.78 g/s and (B) 5.5 g/s. Mass flow rate and screw speed profiles for the experiments with flow 

rate set points of (C) 2.78 g/s and (D) 5.5 g/s. 

 Outstandingly, it was noted from Figure 47 A and Figure 47B there was a slight delay in 

the decrease of the tracer material after the second refill (i.e., first wash out refill) was performed. 

This slight delay, although small, may indicate that the more cohesive acetaminophen did not mix 

as readily as the other two materials, which tended to have better flow properties. Figure 47 C and 

Figure 47D showed that the flow rate was relatively well controlled over the whole experimental, 

which the screw speed being regulated over a larger range of speeds when compared to the previous 

RTD experiments. The larger span of screw speeds was attributed to the high feed factor decay 
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constant of acetaminophen, which meant that the feed factor decreased much more significantly for 

this material as the feeder weight decreased. 

7.4.2. RTD evaluation and metrics 

 Following the characterization of the concentration profiles, the RTD PDFs for each of the 

six experiments were calculated using the equations in Table 41. It is important to mention that 

only the outlet concentration profiles after the first refill (i.e., once the tracer blend was introduced) 

were used to calculate the RTD PDFs. The initial outlet concentration of tracer was then used as 

the starting point of the RTD PDF. Thus, the resulting 𝐸(𝑡) curves, shown in Figure 61A, B and C, 

begin at time equal to zero and proceed over the range of time following the first refill.  

INSERT Figure 61 HERE 

 As expected, the 𝐸(𝑡) curves for the smaller flow rate experiments had a longer duration 

than those for the higher flow rate ones. Using the 𝐸(𝑡) results, the mean residence time (𝜏) was 

calculated using the equation listed in Table 43. The results for the 𝜏 are summarized in Table 35. 

Values of 𝜏 were halved when the flow rate was halved. This result indicates that the mixing inside 

of the feeder is proportionally related to the flow rate, an indication that bypassing and/or dead 

spots were not prominent in this system. 

Table 35. Summary of RTD experimental results 

Material 
Flow Rate Set 

Point (kg/h) 

Tracer Blend Step 

Duration (sec) 

Tracer Blend Mean 

Residence Time (sec) 
Ratio  (

𝜏20
𝜏10

⁄ ) 

Anhydrous calcium di-phosphate 10 182 278.4 –  
20 93 152.3 0.54 

Silicified MCC 10 97 184.1 –  
20 68 84.0 0.46 

Acetaminophen 10 85 124.2 –  
20 48 64.0 0.52 

To visually compare the effect of flow rate on the RTD shape, which correlates with the 

level of mixing occurring in the system, the PDFs were standardized by multiplying the 𝐸(𝑡) by 

the mean residence time and the time axis was normalized over 𝜏. Figure 61D, E, and F shows the 
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results of the standardized PDFs over the normalized time axis. The results indicate that for both 

anhydrous calcium di-phosphate and acetaminophen, the shape of the RTD did not vary 

significantly which in turn signified that the mixing was not affected greatly by the flow rate. 

Differences between the two standardized PDF profiles for silicified MCC were note, particularly 

for the wash out sections of the RTD curves. The sharper decrease in the PDF values for  0.6 <

𝜃 < 1 for the 2.78 g/s case indicates that the tracer did not mix as effectively as in the 5.5 g/s case. 

The unmixed tracer blend for the smaller flow rate case appears to leave as a higher concentration 

pocket of material during 1.1 < 𝜃 < 1.6. Although these differences were noticeable, the authors 

suggest that the differences between the two flow rate RTD curves were relatively small. Thus, 

based on these findings, flow rate was shown to have little to no effect in the shape of the RTD 

curve. 

 Similarly to the comparison of the RTD shapes between flow rates, a comparison of the 

RTD profiles between materials at the given flow rates was performed. Figure 62 shows the 

comparison between the standardized RTD profiles for different materials at the two studied flow 

rates. Both figures show there are relatively small variations between the shapes in the curves. 

Thus, based on this result, the effect of base materials on the RTD inside of the hopper was found 

to be small. 

INSERT Figure 62 HERE 

The level of back mixing appeared to be high given that once the tracer was introduced in 

the feeder after first refill, the tracer concentration at the outlet began increasing immediately at an 

asymptotically rising rate. This result indicated that the tracer was added right above a well-mixing 

region which was preceded by a more plug flow (i.e., no mixing) region. This mixing behavior was 

observed by Escotet-Espinoza et al. [305] for K-Tron feeders, which showed that at higher levels 

of the hopper the material moved as a plug, until it reached the impeller region, characterized as a 

well-mix zone. For the GEA system, the conclusion that the tracer material was introduced right 
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above the well-mixed region was obtained from understanding that if the tracer would have entered 

in the well-mixed region, a sharp step like concentration increase would have been observed for 

the outlet concentration profile. In the following section, a model to predict the mixing and 

residence time distribution in the feeder is proposed. 

7.5. FEEDER MODELING 

7.5.1. Mixing and RTD model 

The results from Figure 61 indicate there is a degree of backmixing occurring in the feeder 

hopper is preceded by a region of no mixing, also known as a plug flow region. The region of no 

mixing appears to occur at the upper levels of the hopper, wherein the material is not sheared (and 

thus mixed) by the bridge breaking impeller at the bottom of the feeder hopper. To predict the 

mixing behavior, herein we introduce an RTD model which is later calibrated for the GEA feeder 

system characterized in this study. 

The proposed model to simulate the mixing behavior of this unit was chosen as a plug flow 

system followed by a perfectly mixed stirred tank (PMST). The plug flow model intends to describe 

the behavior of material in the upper sections of the feeder hopper, while the PMST aims at 

depicting the behavior near the bridge breaking system, where the mixing is most intense. Figure 

48 depicts graphically the application of the model for the feeder hopper based on the RTD 

observations from Figure 61 
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Figure 48. Schematic of proposed mixing model in the feeder unit to simulate the RTD 

 One of the major challenges of this model is that equations typically available in the 

literature or academic textbooks to model the behavior of plug flow-PMST system assume that the 

material holdup in the unit does not change as a function of time. This assumption does not apply 

for the feeding unit, given that the level of material in the hopper is constantly changing due to the 

effect of feeding and refilling. Therefore, a more complex model accounting for the moving 

boundary (i.e., level in the hopper) had to be proposed in order to evaluate the RTD of the unit. 

The model for the moving boundary plug flow reactor was proposed by Garcia-Munoz et 

al. [51], who implemented it to established the delays in transfer pipes between powder blending 

and feed frame units. Garcia-Munoz et al. [51] implemented the model with a dispersion term given 

their system configuration and experimental evaluations. For this work, the feeder system is 

assumed to not have any dispersion in the upper levels of the hopper, which in turn leads to a value 

of dispersion equal to zero for the moving boundary equation proposed by Garcia-Munoz et al. 

[51]. The resulting equation used to predict the movement of tracer along the length of the upper 

hopper section is shown in Equation 35. 
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 𝜕 (𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(𝑍, 𝑡))

𝜕𝑡
+

𝑣(𝑡)

𝐿(𝑡)

𝜕 (𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(𝑍, 𝑡))

𝜕𝑍
= 𝐴𝐹𝑣(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡

𝜕 (𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(𝑍, 𝑡))

𝜕𝑍
 

 z ∀ [0, 𝐿(𝑡)]            𝑍 =
𝑧

𝐿(𝑡)
          𝑍 ∀ [0,1] 

35 

where, 𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟  is a given material property (e.g., bulk density, compressibility, flow function) for 

material 𝑖 in the hopper, 𝐿 is the height of material in the hopper’s plug flow region, 𝑣 the speed of 

the material as it traverses the height of material in the hopper’s plug flow region, 𝐴𝐹 is the cross 

sectional area of the feeder hopper, and 𝑍 is the normalized length of the feeder. The material 

properties being modeled include, but are not limited to, lot number (i.e., concentration), bulk 

density, true density (i.e., skeletal density), compressibility, permeability, cohesion, angle of 

internal friction, flow function coefficient, and particle size. 

 The height of material in the hopper (𝐿) is calculated as a function of time by setting a 

volumetric balance around the feeder hopper’s plug flow region. Equation 36 shows the 

relationship between the volumetric flow rates and the height of material in the unit. 

 
𝐴𝐹

𝑑𝐿(𝑡)

𝑑𝑡
= 𝑉̇𝑖𝑛,ℎ𝑜𝑝𝑝𝑒𝑟(𝑡) − 𝑉̇𝑜𝑢𝑡, ℎ𝑜𝑝𝑝𝑒𝑟 (𝑡) 

36 

where 𝑉̇𝑖𝑛,ℎ𝑜𝑝𝑝𝑒𝑟 is the inlet volumetric flow rate and 𝑉̇𝑜𝑢𝑡, ℎ𝑜𝑝𝑝𝑒𝑟  is the output volumetric flow 

rate around the hoppers plug flow region. The volumetric flow rates are both a function of time and 

depend on whether or not there is material in the hopper or, in the case of 𝑉̇𝑖𝑛,ℎ𝑜𝑝𝑝𝑒𝑟 is a refill is 

being performed. 

As noted in Figure 48, 𝑍 = 0 represents the upper edge of the powder bed, which moves 

downwards during feeding and upwards as the feeder fills.  Only a single boundary conditions is 

needed for the boundary PDE shown in Equation 35. Given that the 𝑃𝑖,ℎ𝑜𝑝𝑝𝑒𝑟 at 𝑍 = 0 depends on 

whether or not there is material entering the unit from a refill, the boundary condition for 

𝑃𝑖,ℎ𝑜𝑝𝑝𝑒𝑟  at the upper edge is given by the conditional statement provided in Equation 37. 
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 𝑊ℎ𝑒𝑛,      𝑉̇𝑖𝑛,ℎ𝑜𝑝𝑝𝑒𝑟(𝑡) > 0 

𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(𝑍 = 0, 𝑡) = 𝑝𝑖,𝑟𝑒𝑓𝑖𝑙𝑙(𝑡) 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(𝑍 = 0, 𝑡) = 𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(𝑍 = 0|+, 𝑡) 

37 

where, 𝑝𝑖,𝑟𝑒𝑓𝑖𝑙𝑙(𝑡) is the incoming property value from the refill unit and 𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(𝑍 = 0|+, 𝑡) is 

the property of the material just below the upper boundary. The second boundary condition 

effectively ensures that the property from the refill is only set as a condition once the refill has 

delivered the material into the feeder hopper. 

 Powder velocity over the hopper’s plug flow region is calculated by the outlet volumetric 

flow rate and the cross-sectional area of the feeder, as shown in Equation 38. 

 𝑣(𝑡)𝐴𝐹 = 𝑉̇𝑜𝑢𝑡, ℎ𝑜𝑝𝑝𝑒𝑟 (𝑡) 38 

 The mass of powder in the feeder hopper’s plug flow region (𝑊ℎ𝑜𝑝𝑝𝑒𝑟) is calculated based 

on the integral of the bulk density of material in the hopper (𝜌𝑖,ℎ𝑜𝑝𝑝𝑒𝑟) multiplied by the volume of 

material in the unit as shown in Equation 39. The volume of material is calculate using the level of 

material in the unit and the cross-sectional area, as 𝑉𝑝𝑜𝑤𝑑𝑒𝑟,ℎ𝑜𝑝𝑝𝑒𝑟 (𝑡) = 𝐴𝐹𝐿(𝑡). 

 
𝑊ℎ𝑜𝑝𝑝𝑒𝑟(𝑡) = 𝐴𝐹𝐿(𝑡)∫ 𝜌𝑖,ℎ𝑜𝑝𝑝𝑒𝑟

1

0

(𝑍, 𝑡)𝑑𝑍 
39 

 The outlet volumetric flow rate from the plug flow region enters the PSMT so that, 

 𝑉̇𝑜𝑢𝑡, ℎ𝑜𝑝𝑝𝑒𝑟 (𝑡) = 𝑉̇𝑖𝑛,𝑡𝑎𝑛𝑘(𝑡) 40 

where 𝑉̇𝑖𝑛,𝑡𝑎𝑛𝑘 is the volumetric flow rate entering the PMST. Properties entering the PMST are 

assumed to mix well with the properties of the material already in the PMST. This “perfectly 

mixed” conditions is assumed for all properties entering the PMST and are described by Equation 

41. 
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 𝑑 (𝑉𝑝𝑜𝑤𝑑𝑒𝑟,𝑡𝑎𝑛𝑘(𝑡) 𝑝𝑖,𝑡𝑎𝑛𝑘(𝑡))

𝑑𝑡
= 𝑉̇𝑖𝑛,𝑡𝑎𝑛𝑘𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(1, 𝑡) − 𝑉̇𝑜𝑢𝑡, 𝑡𝑎𝑛𝑘 𝑝𝑖,𝑡𝑎𝑛𝑘(𝑡) 

41 

where 𝑉𝑝𝑜𝑤𝑑𝑒𝑟,𝑡𝑎𝑛𝑘 is the volume of powder material, 𝑝𝑖,ℎ𝑜𝑝𝑝𝑒𝑟(1, 𝑡) is a material property exiting 

the hopper’s plug flow region, 𝑝𝑖,𝑡𝑎𝑛𝑘 is a material property of component 𝑖 (herein assumed to be 

well mixed), and 𝑉̇𝑜𝑢𝑡, 𝑡𝑎𝑛𝑘 is the volumetric flow rate coming out of the PMST. Note that Equation 

41 does not assume that 𝑉𝑝𝑜𝑤𝑑𝑒𝑟,𝑡𝑎𝑛𝑘 is constant and maintains the variable inside of the time 

derivative. This approach then accounts for the changes in fill level in the PMST as the material is 

depleted. 

 The volume of powder material in the PMST is calculated similarly to the plug flow region. 

Equation 42 shows the volumetric balance around the system. The mass of material in the tank 

(𝑊𝑡𝑎𝑛𝑘) is calculated as 𝑊𝑡𝑎𝑛𝑘(𝑡) = 𝑉𝑝𝑜𝑤𝑑𝑒𝑟,𝑡𝑎𝑛𝑘(𝑡)𝜌𝑡𝑎𝑛𝑘(𝑡). 

 𝑑𝑉𝑝𝑜𝑤𝑑𝑒𝑟,𝑡𝑎𝑛𝑘(𝑡)

𝑑𝑡
= 𝑉̇𝑖𝑛, 𝑡𝑎𝑛𝑘(𝑡) − 𝑉̇𝑜𝑢𝑡, 𝑡𝑎𝑛𝑘 (𝑡) 

42 

 It is important to note there is a constraint in the maximum volume of the PSMT, given 

that the tank volume (𝑉𝑡𝑎𝑛𝑘) is a fraction of the whole feeder volume 𝑉𝑓𝑒𝑒𝑑𝑒𝑟  so that 𝑉𝑓𝑒𝑒𝑑𝑒𝑟 =

𝑉𝑡𝑎𝑛𝑘 + 𝑉ℎ𝑜𝑝𝑝𝑒𝑟 . The volume of 𝑉𝑡𝑎𝑛𝑘 must be regressed from RTD data, which is performed in 

the subsequent section of the work. 

The volumetric flow rate out of the tank is calculated using the mass flow rate out of the 

unit and the density of the material in the tank (𝜌𝑡𝑎𝑛𝑘).  

 𝑚̇𝑜𝑢𝑡,𝑓𝑒𝑒𝑑𝑒𝑟(𝑡) = 𝑉̇𝑜𝑢𝑡, 𝑡𝑎𝑛𝑘 (𝑡)𝜌𝑡𝑎𝑛𝑘(𝑡) 43 

 The mass flow rate out of the PSMT ties in the feed factor model shown in Equation 28 by 

calculating the mass flow rate as a function of the screw speed and feed factor, as shown in Equation 

44.  
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 𝑚̇𝑜𝑢𝑡,𝑓𝑒𝑒𝑑𝑒𝑟(𝑡) = 𝜔𝑠𝑐𝑟𝑒𝑤(𝑡) 𝑓𝑓(𝑡)  44 

Material property values used as inputs to the RSMs are those properties calculated for the 

material in the PSMT. The feeder weight used to calculate the feed factor (𝑊𝑓𝑒𝑒𝑑𝑒𝑟) is provided by 

summing the masses of material in the feeder hopper’s plug and PSMT regions such that 

𝑊𝑓𝑒𝑒𝑑𝑒𝑟(𝑡) = 𝑊ℎ𝑜𝑝𝑝𝑒𝑟(𝑡) + 𝑊𝑡𝑎𝑛𝑘. 

7.5.2. Mixing and RTD model calibration 

Using the results from the experimental RTD collected for the six experiments, the volume 

of the PMST (𝑉𝑡𝑎𝑛𝑘) in the characterized GEA feeder was estimated each experiment.  Since the 

mass flow rate of the system was controlled and experimental data was collected for this process 

response, only Equations 35 through 43 were used to determine the value of 𝑉𝑡𝑎𝑛𝑘. Performing the 

RTD under gravimetric conditions allows for variable such as the flow rate to be assumed as 

constants, easing the evaluation of the proposed mixing model.  

Markedly, for these evaluations, the density inside of the feeder was assumed to remain 

unchanged by the addition of the tracer blend, meaning that the density of the material in the PSMT 

did not change throughout the RTD experiment. This was a reasonable assumption particularly for 

the cases where the screw speed remain relatively unchanged after adding the tracer (e.g., case 

study evaluating the RTD of caffeine in acetaminophen). 

Based on these assumptions, the predictions of the proposed mixing model along with 

experimentally obtained concentration profiles from the RTD studies are shown in Figure 63. The 

results show there is relatively good agreement between the model predictions and the experimental 

concentration profiles.  

INSERT Figure 63 HERE 
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The results from the calibration of the RTD model are shown in Table 38. All RTD model 

regressions had a high coefficient of determination (R2 > 80%) and low MAPE values (MAPE < 

15%) indicating the model was able to predict accurately the tracer mixing. The average volume 

for 𝑉𝑡𝑎𝑛𝑘 was 939.4 ± 61.5 mL.  

INSERT Table 38 HERE 

The results in Table 38 are in agreement with the observation that the material was 

delivered tracer refills were performed right above the mixing region. Since the feeder was being 

refilled at a fill level of 60%, the effective fill volume for the unit would have been around 1,200 

to 1,100 mL. Thus, the results corroborate the physical observations and present a plausible model 

to predict the mixing of material inside of the feeder hopper. 

7.6. INTEGRATED MODEL IMPLEMENTATION 

7.6.1. Integrated feeder model in gPROMS Model Builder™ 

The feeder model equations introduced over the course of this work were all implemented 

in in gPROMS Model Builder™ v4.2. Equations 28 through 44 were implemented along with some 

other equipment-related equations to simulate the behavior of the feeding unit. The integrated 

feeder model was composed of: (1) screw feeder model, (2) refill unit model, and (3) a PID control 

model. This latter model is provided standard within the Process Modeling Library (PML) within 

gPROMS Model Builder and the goal of the model was to control the screw speed as a function of 

flow rate based on a desired set point. This arrangement allows for users of the model to enter their 

chosen PID control parameters and even tune the feeder controls for particular products. Figure 49 

shows the components for each of the models integrated in gPROMS. 
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Figure 49. Component models for the feeder model available in gPROMS Model Builder™ v4.2. 

Each of the units shown in Figure 49 were provided with simple to use graphic user 

interfaces that request the material property and process inputs required to simulate the behavior of 

the unit. Figure 50 shows an example of the graphic user interfaces developed for the feeder model. 

 

Figure 50. Examples of the available graphic user interfaces (GUIs) for the feeder model available 

in gPROMS. 

Figure 51 shows the results of the implemented model running for a simulated period of 

300 seconds. Several parameters can be obtained from the model, including the feed factor, feeder 

screw speed, and flow rate. As seen in Figure 51, the integrated feeder model also includes a 
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controlled refill unit that performs automatic refills when provided a particular refill set point. This 

mode of operation mimic exactly the same operation than the real unit, and it intends to provide the 

user with the ability to test the impact of refill frequency on the feed factor profiles and the flow 

rate performance. 

 

Figure 51. Results from the integrated feeder model programmed into gPROMS Model Builder™. 

(A) Flowsheet of the screw feeder, refill, PID control models. (B) Output results from the screw 

feeder model. (C) Output results for the refill unit model. 

 This model has been implemented by Wang et al. [62] to evaluate the effect of refill level 

on the disturbances provided to a continuous system. The findings showed the model was able to 

predict the effect of refill size on process disturbances.  

7.6.2. Case studies evaluating the model 

An evaluation of the integrated feeder model was performed to determine if the model was 

able to predict the effect of varying material properties while the unit was in operation. The 

evaluation involved studying the effect of abruptly changing the bulk density of a material being 

fed by performing a refill with a material whose bulk density was less than that of the starting 

material. 
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For this validation run, an experiment was performed wherein the GEA feeder unit began 

filled to capacity with  MCC 4 and then was refilled with MCC 1. The change in grade of MCC 

provides a 25% decrease in bulk density, which was expected to cause an effect on the feeder flow 

rate and feed factor. The experiment was performed under gravimetric control using a 63:1 gearbox 

ratio and a screw pitch length of 20mm. The flow rate set point for the experiment was 10 kg/h. A 

total of two MCC 1 refills, each of 0.8 L in volume would be performed in order to observe the 

effects in feeder critical process parameters. 

A feeder simulation using the integrated model was provided with the exact same 

specifications as those used for the feeder experiment. Figure 52 shows the results of the feeder 

experiment and the simulation using the integrated feeder model. Figure 52A shows the feed factor 

profile over time. Both the experimental data and the simulation results show good agreement 

between the feed factor values. As expected, the addition of MCC 1 cause a decrease in the feed 

factor perceived by the feeder unit. Notably, the sudden change in bulk density did not abruptly 

change the feed factor. The feed factor appears to exponentially decrease following the mixing 

behavior previously noted for the RTD experiments. Remarkably, the integrated feeder model 

predictions also updated the feed factor as a function of time and MCC 1 addition. The MAPE 

value between the feeder factor from the experiment and the simulated results was 4.7%. This result 

indicates that the model, as developed and implemented, provides an accurate representation of the 

feeding system, such as accounting for changes in material properties. 
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Figure 52. Comparison between experimental and simulated results for material properties change 

experiment. (A) feed factor profile, (B) screw speed profile, (C) flow rate profile, and (D) feeder 

weight profile. Arrows indicate the instances when MCC 1 was introduced in the system. 

Figure 52B shows the variation in the screw speed as a function of time. The results 

between the feeder experiment and the model appear to agree well, shown by a MAPE value of 

4.3%. During the second MCC 1 refill, shown by the second arrow on the time profile, it was seen 

that the screw speed decreased drastically for a few short seconds. This result was attributed to the 

fact that the feeder system did not update in time the feed factor values stored within the control 

logic and during the second refill the feed factor deviated from the corrected values. 

The flow rate predictions, shown in Figure 52C appear to agree well with the predicted 

results by the integrated model. Notably, during the second and third refills, the feeder controls 

showed signs of adjustment while the integrated model did not show as large of deviation from the 

disturbance. This result was due to the exceedingly fast control parameters that were selected for 

the PID controller. Thus, the model was able to more quickly correct for the error from the changes 
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in bulk density and minimize the effect of the disturbance. Nevertheless a MAPE of 3.7% was 

obtained from comparing the two flow rate profiles. 

7.7. CONCLUSIONS 

In this chapter, the methodology for developing a unit operation model for a powder based 

unit operation was applied to a GEA compact feeder. The experimental design entailed evaluating 

the system using a series of materials relevant to the pharmaceutical industry and characterizing 

the behavior of the unit irrespective of formulation requirements. The experimental plan involved 

flow rate characterization and Residence Time Distribution (RTD) characterization. Feeder flow 

rate characterization was performed by measuring the accuracy and variability of material 

dispensing as a function of volumetric throughput and feeder hopper fill level. The characterization 

procedure, which included testing the feeder using eight feeder configurations based on the screw 

size and gear box configuration, was performed for nineteen different materials spanning a broad 

range of material properties 

The feeder flow rate characterization showed there was a clear impact of material 

properties on the behavior of the unit. Further, the results indicated there was a consistent trend 

between the amount dispensed per screw revolution and the level of fill in the hopper. The 

consistent nature of the observed behavior led to the development of a phenomenological model 

which described the relationship between feed factor and feeder weight. This level 1 model, known 

as the feed factor model, was then implemented to evaluate the effect of material properties on the 

unit. Using the feed factor model, a level 2 and level 3 set of models were developed. The material 

properties collected for the materials in Chapter V were used to develop the material models for 

the feeder model. 

Following the recommendations of Chapter VI, the RTD of the feeder was characterized 

for a variety of materials. Feeder RTD was considered to be an important point for characterization 
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because it can help with : (1) traceability of raw materials and (2) characterization of the dynamic 

response time to changes in incoming material properties. In both cases, the goal is to understand 

how long it takes for a new material (e.g., lot added due to refill or lots with new material properties) 

introduced into the feeder to “wash out” the material that was already in the feeder. The RTD for 

the GEA feeder was characterized using three different materials (i.e., tracer-base combinations) 

and two different flow rates. The results from the RTD profile indicate there was a degree of 

backmixing occurring in the system, which could be modeled using ideal models available in the 

RTD literature. The RTD model in conjunction with the flow rate model previously developed were 

validated with a special case study. The validation case study indicated that model predictions were 

in good agreement with the results, which corroborated both the findings of the experimental 

evaluation of the feeder, the formulated models for the unit, and the methodology proposed here 

for developing models to represent unit behavior. 
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7.8. LARGE TABLES AND FIGURES 

 

Figure 53. Visually observed challenges during experimentation: (A) material sticking to sides feeder hopper walls, (B) material sticking to barrel, 

(C) lumping of material, and (D) bearding at the barrel’s outlet 
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Figure 54. Results for volumetric and gravimetric feeding of MCC 4 using a 20mm pitch screw and a 63:1 gearbox ratio. (A) volumetric flow rate 

profiles, (B) screw speed and feeder weight for volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder weight for 

gravimetric feeding. 
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Figure 55. Results for volumetric and gravimetric feeding of MCC 4 using a 10mm pitch screw and a 63:1 gearbox ratio. (A) volumetric flow rate 

profiles, (B) screw speed and feeder weight for volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder weight for 

gravimetric feeding. 
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Figure 56. Results for volumetric and gravimetric feeding of Acetaminophen using a 20mm pitch screw and a 63:1 gearbox ratio. (A) volumetric 
flow rate profiles, (B) screw speed and feeder weight for volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder 

weight for gravimetric feeding. 
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Figure 57. Results for volumetric and gravimetric feeding of Acetaminophen using a 20mm pitch screw and a 445:1 gearbox ratio. (A) volumetric 
flow rate profiles, (B) screw speed and feeder weight for volumetric feeding, (C) gravimetric flow rate profile, and (D) screw speed and feeder 

weight for gravimetric feeding. 
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Figure 58. Feed factor profiles for Cases A and B for volumetric and gravimetric feeding. Feed factors calculated from (A) GEA feeder for Case A, 

(B) GEA feeder for Case B, (C) catch scale for Case A, and (D) catch scale for Case B. 
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Figure 59. Feed factor profiles for Cases C and D for volumetric and gravimetric feeding. Feed factors calculated from (A) GEA feeder for Case C, 

(B) GEA feeder for Case D, (C) catch scale for Case C, and (D) catch scale for Case D. 
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Table 36. Results of regressing Equation 26 to feed factor shown in Case C 

  Control Volumetric Gravimetric 

  Data Source GEA Feeder Catch Scale GEA Feeder Catch Scale 

Model Parameter 𝑓𝑓𝑚𝑎𝑥 (g/rev) 1.003 1.009 1.061 1.067 

  𝑓𝑓𝑚𝑖𝑛  (g/rev) 0.031 0.039 0.192 0.193 

  𝛽 (1/kg) 8.544 8.545 7.040 7.174 

Regression Statistics R2 73% 97% 84% 97% 
  p-value < 0.01 < 0.01 < 0.01 < 0.01 

Residual Statistics Average (g/rev) 0.00 0.00 0.00 0.00 

  St. Dev (g/rev) 0.178 0.049 0.131 0.048 

St. Dev = Standard Deviation 

Table 37. ANOVA table for the RSM models shown in Equations 29-33 

ANOVA Table 𝑓𝑓𝑚𝑎𝑥 Model 𝑓𝑓𝑚𝑖𝑛  Model 𝐿𝑛 [
𝛽

𝑋2
] Model 𝐿𝑛 [

𝐴1

𝑋2
] Model 

Source Model Error Total Model Error Total Model Error Total Model Error Total 

DoF 16 220 236 10 226 236 11 208 219 4 232 236 

Sum of Squares 116.8 8.0 124.8 82.7 23.3 106.0 138.4 58.5 196.8 42.8 102.1 144.9 

Mean Square 7.3 0.04 – 8.3 0.1 – 12.6 0.3 – 10.7 0.4 – 

F-Ratio 202.7 – – 80.7 – – 44.8 – – 24.4 – – 

p-Value <0.001 – – <0.001 – – <0.001 – – <0.001 – – 
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Figure 60. Feed factor coefficient results from  

. (A) Maximum feed factor (𝑓𝑓𝑚𝑎𝑥), (B) minimum feed factor (𝑓𝑓𝑚𝑖𝑛), (C) ratio of the maximum amplitude obtained for the Fourier coefficients 

and the 𝑓𝑓𝑚𝑎𝑥 , and (D) rate of feed factor decay (𝛽). Error bars represented one standard deviation. 
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Figure 61. RTD PDF curve results for the RTD experiments comparing mixing based on mass flow rate: (A) anhydrous calcium di-phosphate, (B) 

silicified MCC, and (C) acetaminophen. Standardized RTD PDF curves comparing mixing based on mass flow rate: (D) anhydrous calcium di-

phosphate, (E) silicified MCC, and (F) acetaminophen.  

 

Figure 62. Standardized RTD PDF curve results comparing in hopper mixing between base materials. Flow rate set points of (A) 2.78 g/s and (B) 

5.5 g/s. 
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Figure 63. Results of the calibration of the RTD model using the experimental data collected in part 1 of this study. The concentration profiles are 

separated in based on mass flow rate. For the 10 kg/h: (A) anhydrous calcium di-phosphate, (B) acetaminophen, and (C) silicified MCC. For the 20 

kg/h: (D) anhydrous calcium di-phosphate, (E) acetaminophen, and (F) silicified MCC. 

Table 38. Results for the RTD model regression 

Base Material Flow Rate [kg/h] 𝑉𝑡𝑎𝑛𝑘 [mL] 𝑊𝑡𝑎𝑛𝑘 [g] R2 Space Time [sec] Calculated MRT [sec] 

Anhydrous Calcium Di-phosphate 10 902.5 667.8 94% 240.2 278.4 
  20 975.1 721.6 94% 129.8 152.3 

Acetaminophen 10 852.2 264.2 95% 95.0 124.2 
  20 991.9 307.5 94% 55.3 64.0 

Silicified MCC 10 1037.6 498.0 82% 179.2 184.1 
  20 877.1 421.0 80% 75.7 84.0 
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CHAPTER VIII 

8. CONCLUDING REMARKS 

8.1. CONCLUSIONS 

The current pharmaceutical process development and manufacturing paradigm is relatively 

inefficient and poorly understood when compared to other industries. Whereas most chemical 

industries (e.g., petrochemical, food, specialty chemicals) tend to be continuous in nature, 

sequential batch process scale-up remains the prime process development strategy in most of the 

pharmaceutical industry. Batch manufacturing in pharmaceuticals does not necessarily correspond 

to the most efficient manufacturing process given the number of steps and the need to scale up in 

order to meet demand. Typical pharmaceutical processes are composed of ten or more interacting 

processing steps, each one affected by several process parameters. This level of interaction makes 

process development a difficult and daunting task whose solutions are addressed using heuristic 

methods. Moreover, the constant demand of products for clinical trials, in most cases occurring in 

parallel with process development, force scientist to study the manufacturing process in an 

expedited manner. Scale up requires the purchase of larger equipment in order to increase 

productivity, leading to extended research efforts to maintain performance across equipment and 

scale. Thus, batch manufacturing processes are often poorly understood, rarely optimized, lack 

robustness, and are prone to unexpected failure. Lastly, risk assessment and failure mode analysis 

of batch processes is a substantial challenge.  
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Delays in technological advancement have been attributed to the current regulatory 

framework, high profit margins that do not push for innovation, time constraints during the drug 

approval process, and the varying physical and chemical properties of drug molecules that affect 

formulation and process design. However, as both the pharmaceutical industry and the regulatory 

environment change, it is expected that some of these challenges evolve to push for manufacturing 

innovation. In order to overcome some of the technological challenges associated with current 

pharmaceutical manufacturing paradigms, the industry has been investing in continuous drug 

product manufacturing technologies and better understanding of process operations.  

Continuous drug product manufacturing technologies have the potential to address the 

issues associated with batch processing by reducing the gap between development and 

manufacturing. Since continuous process scale up is done through increasing production time and 

parallelization of the same continuous train of equipment, process knowledge acquired during 

development can be directly applied to manufacturing processes. Furthermore, continuous 

manufacturing practices allow for more efficient implementation of available process systems 

engineering (PSE) tools. PSE tools can provide insight to pharmaceutical development as means 

of evaluating and controlling manufacturing processes in silico. The use of PSE tools such as unit 

and process simulation, sensitivity, flexibility and feasibility analysis and optimization, as well as 

design of the optimal control strategy have the potential to improve process understanding and 

reduce product variability. 

The pharmaceutical industry has recognized the value of implementing a systematic 

approach to drug product development where quality is built into the product and process. The US 

Food and Drug Administration (FDA) initiative on Quality-by-Design (QbD) promotes the design 

of the product and manufacturing process using principles of chemistry, engineering, material 

science, and quality assurance to ensure acceptable and reproducible product quality and 

performance throughout a product’s lifecycle. Product quality is achieved through design of robust 
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processes that are control and optimized utilizing product and process knowledge. In the QbD 

paradigm, PSE models fit perfectly and can potentially be utilized at every stage of drug product 

development and manufacturing.  

Efforts by industry, academia, and regulatory agencies over the past decade have made 

continuous manufacturing of solid oral dosages a reality. Major pharmaceutical and equipment 

manufacturing companies around the world are quickly embracing this novel manufacturing 

method by adding it to their technology portfolios for both legacy and new drug products. As the 

pharmaceutical industry modernizes its manufacturing practices and incorporates more efficient 

processing approaches, it needs to reevaluate which process design elements affect product quality 

and the means to study these systems. Several new unit operations (i.e., equipment) have been 

added to the paradigm. The behavior of these unit operations is not well known in pharmaceutical 

manufacturing cases and needs to be characterized before being implemented in the plants. 

The work presented here aimed at studying, understanding, and characterizing the behavior 

of unit operations used in continuous manufacturing of pharmaceutical products. The main focus 

of the work was placed on three critical unit operations: feeders, blenders, and tablet presses. These 

three units are key for the CPM processes, as they are required in every single rout of solids 

pharmaceutical manufacturing. A methodology for developing phenomenological and residence 

time distribution models for these continuous powder-handling unit operations was presented for 

this work. The major challenges to address from the perspective of the methodology included: (1) 

establishing a mean to relate process inputs and outputs using process models, (2) integrate the 

effect of material properties into process models, and (3) provide cases that can serve as examples 

for implementing the methodology. Each of the studied unit operations served as a case study on 

which the methodology was tested and evaluated. The results from this study indicate that 

correlations between material properties and semi-empirical equation regression constants are 

sufficiently accurate. This proof of concept for developing correlations between raw material 
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properties and unit operation models can aid in process development, especially in the area of 

design space characterization and robustness analysis. Overall, this work has shown with this 

approach that it is possible to develop these correlations and have predictive capabilities of process 

performance based on material property values. 

In conclusion, the 21st century pharmaceutical industry is experiencing economic and 

regulatory challenges that are driving efforts to reduce overall cost and improve pharmaceutical 

product quality. Industry challenges include: longer drug development time due to disease and 

treatment complexity, rising regulatory scrutiny during development, drug accessibility to patients, 

and growing expectations for medical compounds (e.g., fewer side effects, effectiveness). One 

critical setback for pharmaceutical companies that hinders the industry from addressing some its 

challenges is the reliance on outdated production facilities, equipment, and methods sharing the 

same technology as those in the beginning of the 20th century. Nevertheless, over the past decade 

pharmaceutical companies and universities have partnered to spearhead technology upgrades for 

the industry. Among these upgrades are continuous manufacturing methods, new equipment, and 

process engineering tools. My research focuses on experimentally understanding and 

characterizing the behavior of new equipment used in pharmaceutical continuous manufacturing 

processes in order to develop computer simulation tools (e.g., equations, software) that ease their 

application into current pharmaceutical manufacturing practices. These computer simulation tools 

can used to along with process engineering tools to design, improve, control, and assess the risk in 

pharmaceutical manufacturing processes. If and when fully implemented in the pharmaceutical 

industry, the continuous manufacturing equipment and process engineering tools will have the 

potential to cut manufacturing research cost, speed drug releases to market, reduce drug costs to 

patients, improve pharmaceutical product quality, and minimize harmful process waste. All this 

work is part of the great effort to make the pharmaceutical industry a safer and more effective 

industry for everyone. 
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8.2. SUGGESTIONS FOR FUTURE WORK 

8.2.1. Application of the methodology to other unit operations 

Within this work, focus was placed on applying the methodology introduced to develop a 

model for a feeding unit operation. The successful application of this modeling methodology leads 

to the suggestion that other unit operations within the CPM process can be evaluated, such as 

blenders and granulation equipment. Suggested in this work, is the application of the methodology 

for blending system. 

Since blending systems have been extensively studied [137, 221, 306], model development 

would primarily focus on the residence time distribution and mass hold up modeling based on 

material properties (i.e., level 2 and level 3 modeling). Suggestions for the modeling include: 

 Dynamically characterize mass hold up and mixing in a blender blending unit as a function of 

process conditions and material properties: this work may be provided as an extension of the 

previously performed experimental characterizations [137, 221], which primarily focused on 

the effects of blade speed and mass flow rate on the modeling of steady state mass hold 

blenders. Dynamic models would allow for better understanding of how the system reacts 

under non-steady state condition, some of which include: start up, shutdown, and changes in 

process conditions (i.e., blade speed). Dynamic hold up models have been developed using 

Markov Chains for non-pharmaceutical powder materials [254, 256, 257]. However, this 

model should include material properties of pharmaceutically relevant powder in order to 

expand the benefits of the models. 

 Develop models correlating the raw ingredient material property to blend material properties: 

current models for mixing raw ingredients predict material properties as a weighted average 

of raw material properties [78, 307]. Efforts have been made to characterize the material 

properties of blends. However, these efforts have not been implemented nor validated for 
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continuous blending. This suggested avenue of research would allow researchers to 

incorporate material characterization models and integrate them to the mixing and 

phenomenological model. 

8.2.2. Generalization of the feeder model 

Throughout this work, the focus for developing the feeder model was placed on a particular 

equipment configuration (i.e., the GEA feeder was the only unit characterized). Although the feed 

factor model has been shown to hold for other units, several modifications may need to be applied 

to the model in order to generalize its use for other types of feeders. Thus, a suggestion for future 

work is to perform further experimentation of other feeder units, following the protocols established 

in this work to characterize the equipment under similar conditions. 

The results of the characterization performed for different feeders may lead to the need to 

introduce equipment specific constants, some of which may be associated with a particular 

equipment configuration/design. These constants can ultimately be correlated to the dimensions or 

physical configurations of the unit, leading to the development of a model that not only takes into 

account process conditions, but also equipment configuration. Figure 64 shows the sequence of 

developing general models from the characterization of different types of units. 

 

Figure 64. Development sequence of models from basic to general or “mechanistic” models 

The resulting general feeder model would need to incorporate not only feeder dimensions, 

but also tooling selection and other major inputs for the unit. 
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CHAPTER IX 

9. APPENDICES 

9.1. APPENDIX A: MATERIAL PROPERTY MEASUREMENTS 

The section contains the material property measurements as performed for the 20 materials 

listed in Table 8. They are described in this appendix as a mean to determine the relationship of the 

measurement to the describe variables. 

9.1.1. Bulk and tapped density 

            Bulk and tapped density of the blends was estimated by following the standard procedure 

outlined in the United States Pharmacopeia Chapter <616> [308]. 50-100 g of powder were poured 

in a 250-mL graduated cylinder. The volume occupied by powder was noted (n = 3). The powder 

mass was divided by the observed volume (V0) to obtain the bulk density. In order to estimate the 

tapped density of the powder formulation, the graduated cylinder was then tapped 1250 times using 

an AutotapTM Tapped Density Analyzer (Quantachrome Instruments, Florida, USA). The volume 

of powder after the 1250 tappings (V1250) was recorded to compute the tapped density. 

The bulk and tapped density calculations were used to further calculate the Hausner’s Ratio 

(HR). This metric can be used to qualitatively designate the blends with their flow character. 

Hausner’s Ratio is widely used to characterize powder flowability and can be defined quantitatively 

as the ratio of tapped (𝜌𝑡𝑎𝑝𝑝𝑒𝑑) and bulk density (𝜌𝑏𝑢𝑙𝑘), shown in Equation 45. 
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 𝐻𝑅 =
𝜌𝑡𝑎𝑝𝑝𝑒𝑑

𝜌𝑏𝑢𝑙𝑘
 45 

9.1.2. Particle size analysis 

Particle size distribution analysis was conducted on a Beckman Coulter LS 13 320 Multi-

Wavelength Laser Diffraction Particle Size Analyzer (Beckman Coulter, Indiana, USA). The 

instrument’s Polarization Intensity Differential Scattering (PIDS) methodology along with a 

Tornado® dry powder dispersing system were used to measure the particle size distribution for a 

range of 0.017 to 2000 µm. The number of counts for each particle size was recorded and the d10, 

d50, and d90 and D(3,2) were reported in units of micrometers (µm). 

9.1.3. Powder flow measurements 

The flow properties of all raw materials were characterized using an FT4 Powder tester 

(Freeman Technology Inc., Worcestershire, UK). Four different tests were performed for the 

materials: shear cell test, compressibility test, permeability test, and dynamic flow test. Each of the 

tests provided information that can be used to describe the flow behavior properties of the materials. 

9.1.4. Shear cell test 

The shear cell, originally developed by Jenike in the 1960s specifically for the design of 

hoppers and silos, has become an industry standard for characterizing powder flow in a broad range 

of applications. The result of a shear cell test is a yield locus, a plot of normal versus shear stress 

experienced in the powder bed during testing. The extrapolation of the best fit line through the yield 

locus to the y-axis (i.e., the shear stress at zero normal stress) gives the cohesion, a measure of the 

stress required to move particles against each other. Other important flow parameters that can be 

extracted from the yield locus diagram include the angle of internal friction, angle of wall friction, 

unconfined yield stress. 
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 In this study, a Freeman Technology FT4 system’s rotational shear cell was used. The 

testing procedure, described in detail in the works by Koynov et al. [217] and Wang et al. [218] 

consisted of four steps, which included: conditioning, consolidation, pre-shearing, and shearing. 

Initially, the powder is poured into a glass cylinder of 10 mm x 25 mm (D x H) dimensions. During 

conditioning, a helical blade was introduced into the powder and allowed to rotate while oscillating 

upwards and downwards. This step was performed to “condition” the sample and remove powder 

voids formed during pouring. Following conditioning, the consolidation test was performed using 

a vented piston, which applied a 3 kPa normal stress to the powder bed. The powder was then 

sheared to achieve a steady-state. Both the shear and normal stresses were recorded and labeled as 

a pre-shear point. After pre-shearing, the normal stress was slightly lowered, and the sample was 

further sheared to obtain a yield point. The consolidation–pre-shear–shear procedure was repeated 

for four equally spaced normal stresses, until a 15 kPa consolidation stress was achieved. The shear 

stress was plotted against the normal stress, yielding a τ-σ diagram. While many models to take 

into account the shape of the yield locus have been developed, a commonly used approach is the 

Mohr-Coulomb model to generate a linearized yield locus [309]. A linear regression is fitted 

through the yield points to obtain a mathematical expression for the linearized yield locus. The 

intercept of the yield locus on the shear stress τ -axis is defined as the cohesion (τ1), which can be 

interpreted as the shear stress required to deform the powder when no normal stress is applied. The 

slope of the linearized yield locus is Tan(φ), where φ is the called the angle of internal friction 

(AIF), which is a measure of ease with which the powder particles will slide past one another in 

degrees [310]. To extract other flow indices, a Mohr circle was then plotted passing through the 

origin and tangent to the yield locus. The intercept of this Mohr circle with the normal stress σ-axis 

is defined as the unconfined yield strength (UYS or σ𝑐). A second Mohr circle was drawn tangent 

to yield locus and passing through the pre-shear point (σ𝑝,τ𝑝), with its intercept on the σ-normal 

stress axis called the major principal stress (MPS or σ1). The flow function coefficient (FF), which 
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is often correlated to the arching phenomenon in hoppers, is defined as the ratio between the major 

principal stress (σ1) and the unconfined yield strength (σ𝑐) [311]: 

 FF =
σ1

σ𝑐

 46 

While these parameters are typically calculated, and reported as independent 

measurements, they can, in fact, be calculated from the mathematical expression in the Mohr circle 

analysis. The Mohr-Coulomb model in the τ-σ diagram can be described as:  

 τ =  σ Tan(φ) + τ1 47 

For a straight line with slope equal to tan(φ) and intercept (cohesion) τ1, the unconfined 

yield strength can be expressed as a function of the cohesion and the angle of internal friction: 

 σc = 2τ1 Tan(45 +
φ

2
) 48 

For a circle tangent to the yield locus and passing through the pre-shear point (σp, τp), with 

its intercept on the σ-axis equal to the major principal stress (σ1), one can show that the major 

principal stress can be related to the cohesion, the angle of internal friction, and the coordinate of 

the pre-shear point (σp, τp) [218]: 

 

σ1 = (1 + Sin(φ))

(

 
A − √A2Sin2(φ) − τp

2Cos2(φ)

Cos2(φ)

)

 −
τ1

Tan(φ)
 

where, A = σp +
τ1

Tan(φ)
 

49 

9.1.5. Compressibility test 

The compressibility of a material provides a way of testing the cohesion of a powder at a 

consolidation state different than that of the shear cell. Here, the powder bed is initially in an 

unconsolidated state. The compressibility test measures how much the volume of the powder bed 

changes with an applied normal stress. Since this test is done at relatively low normal stresses, it is 

a measure of the space between particles. In general, in a cohesive powder, particles are less densely 



244 

 

  

packed than in a free-flowing powder. Therefore, a higher compressibility is correlated with higher 

cohesion and a poorly flowing powder.  

The compressibility test used in this study was also performed using the Freeman 

Technology FT4 system. The raw data was in the form of a compressibility profile, which describes 

the volume change versus applied normal stress. The test began by conditioning the powder, 

passing the aforementioned helical blade through the powder bed. A normal force is then slowly 

applied using a vented piston. The normal force began at 0.5 kPa and was increased to 15 kPa in 

10 intervals while holding each load for 60 seconds. The change in volume due to the compression 

is measured at each load step. The compressibility index was calculated as a ratio of the initial and 

final densities.  

While this test is closely related to the measurement of bulk and tapped density and the 

calculation of a Hausner index, and also to the more recently developed flow index/dilation test 

[312, 313], for cohesive powders the FT4 system provides much more accurate and reproducible 

results while requiring a much smaller amount of material. 

9.1.6. Permeability test 

Permeability is a measure of how easily a material can allow passage of a fluid (in our case 

air) through its bulk. For powders, it is influenced by many physical properties such as particle size 

distribution, cohesion, particle stiffness, particle shape, surface texture, and bulk density. External 

factors such as consolidation stress are also likely to influence permeability by changing the 

porosity and particle contact surface areas, making it more difficult for the air to pass through the 

bulk. Permeability is of interest when trying to understand the effects of many process situations 

such as flow in and out of hoppers, pneumatic transfer, vacuum transfer and specific processes such 

as vial filling, die filling, or dry dosage inhalation. 
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The permeability test used in this study is part of the Freeman Technology FT4 system. 

The raw data was in the form of a pressure drop required to maintain a constant air velocity through 

the powder bed versus applied normal stress. The test begins by conditioning the powder as 

previously described. A normal force was then slowly applied using a vented piston. The normal 

force began at 0.5 kPa and was increased to 15 kPa in 10 intervals while air flows through the 

powder bed. The pressure drop was measured at each load step. Pressure drop (∆𝑃), air flow rate 

(𝑞), air viscosity (𝛾) and height of the powder bed (𝐿) are measured and in conjunction with 50 

were used to calculate the powder bed’s permeability (𝜅). 

 
𝜅 =

𝑞𝛾𝐿

∆𝑃
 

50 

For the work described here, all measurements were performed close to room temperature 

(i.e., within the temperature range of 23.7 – 27.6°C), so the average air viscosity was taken as 

184.82 Pa-second (i.e., viscosity of air at 26.67°C) for the calculations. The depth of the powder 

bed was held constant at 0.5 cm and the air cross-sectional velocity was regulated to 0.2 mm/second 

using the FT4 featured compressor. 

9.1.7. Dynamic flow test 

The shear rate that powders experience as they are handled and moved thorough any given 

process will vary from point to point. All manufacturing systems apply different shear rates at 

different locations or at different points in time. The sensitivity of a powder property to the shear 

rate is usually an important parameter when describing its flow properties. It is common that 

cohesive powders are more sensitive to changes in shear rate than non-cohesive or granular 

materials, mainly due to the high air content in the cohesive materials, and also to their tendency to 

form brittle meso-structures (e.g., agglomerates). Flow energy E is defined as the energy required 

to move a helical blade through a powder bed. The Freeman Technology FT4 dynamic test 

measures this energy as a function of time and shear rate.  
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To this end, the powder sample was loaded into the vessel and then conditioned using a 

helical blade in the same way as described previously. The blade, moving on the downward and 

upward direction, was then used for a testing cycle and the energy consumed to induce the powder 

to flow was measured. The energy can be different during this stage depending on material 

properties. The conditioning step followed by a testing cycle was repeated seven times with 

measured flow energy E1 – E7. The flow energy required on the seventh downward blade pass is 

known as the basic flow energy (BFE). The energy consumed during the seventh upward traverse 

is called the specific energy (SE).  

The stability index, SI, reflects the change in flow energy over time, 

 
SI =

𝐸7

𝐸1
                   51 

where E1 is the flow energy required on the first downward blade pass, and E7 is the flow energy 

required on the seventh downward blade pass. A SI value of 1 suggests that the material is stable 

and non-friable. If SI is larger than 1, it indicates that a material requires more energy to flow over 

time, possibly due to de-aeration, agglomeration, moisture uptake, or electrostatic charges. If SI is 

smaller than 1, it may be caused by material attrition or de-agglomeration.  

Four additional repetitions were performed with different shear rates (i.e., different blade 

tip speeds) after the measuring the BFE and SI. The four repetitions were performed with a tip 

speed ranging from 10 to 100 mm/s. The flow rate index (FRI) is the ratio between the required 

flow energy at 100 mm/s and 10 mm/s, 

 
FRI =

𝐸11

𝐸8
   52 

where E11 is the basic flow energy at a blade tip speed of 100 mm/s, and E8 is the basic flow energy 

at 10 mm/s. If materials are more sensitive to changes in flow rate, for example cohesive materials 

due to higher air content, the FRI values are typically higher. 
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9.2. APPENDIX B: STATISTICAL ANALYSIS METHODS 

9.2.1. Principal Component Analysis (PCA) 

PCA is a simple multivariate analysis technique that models dataset variation in terms of a 

smaller number of independent linear combinations of its data variables [314]. The linearly 

combined new variables, also known as principal components (PC), are orthogonal to each other 

and contain all of the variance (i.e., information) of the original dataset expressed in a new rotated 

axis [20, 21, 44, 222, 315-317]. Mathematically, PCA’s transformation of a data set to PCs is 

equivalent to defining new orthogonal coordinates by linear rotation of a matrix (i.e., a change in 

coordinate system in a linear space). 

One of PCA’s main objectives is to select a subset of variables such that the original 

variables have the highest correlation with a set of PCs that can best reconstruct the original data 

matrix [40, 222]. The PCs, which initially match the number of dimensions, are obtained as the 

correlation matrix’s eigenvectors of the original measurements. However, not all eigenvectors are 

retained, given that they contain decreasing amounts of information, and that the goal is to minimize 

the dataset’s dimensionality. An important question is how to select the optimum number of 

eigenvectors, such that each one captures a statistically significant fraction of the observed 

variability. Several approaches are proposed, including a cumulative variance criteria and a 

statistical significance method. The cumulative variance criterion selects a threshold to determine 

the number PCs that will be retained after analysis. This method is one of the most widely used, as 

it can be adjusted based on the researchers target number of PCs needed. The more rigorous 

statistical method determines which principal components are statistically significant by means of 

the Bartlett test, which examines the fractional variance of each eigenvalue/eigenvector pair and 

calculates the corresponding p-value using the Chi-square distribution and degrees of freedom in 

the matrix [318].  
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By retaining only a small number of eigenvectors, the original set of measurements is 

effectively mapped into a smaller (sometimes much smaller) set of new variables. The reduction of 

data dimensionality by projecting the data onto orthogonal coordinates is an effective approach to 

efficiently generating process models for development, as well as minimizing the number of 

variables (i.e., number of material properties being measured) [44, 319-325]. Some of the major 

disadvantages of PCA include (1) that physical interpretation of the new variables is often 

ambiguous, (2) that model creating requires large amounts of experimental data and (3) that the 

method in some instances lacks robustness (i.e., principal components can be miscalculated and 

yield different results). These disadvantages are often addressed by performing sequential PCA 

analysis, which in turn allow researchers to examine the model limitations.  

The application of PCA is often described by a set of square matrix equations, which is 

illustrated by the formula 

 X = 𝑇𝑃′ + 𝑈               53 

where X is the original data set with 𝑛 observations of 𝑗 variables, 𝑇 is the score vector matrix (i.e., 

the transformed measurements), 𝑃′ is the loading matrix (i.e., the coordinates of the old variables 

onto the new coordinate system) and 𝑈 is a matrix containing residuals (i.e., the leftover value of 

each measurement not captured by the new coordinates). When the number of transformed data 

variables equals the number of original variables (i.e., the number of dimensions has not been 

reduced) the value of the residuals matrix is equal to zero. As the number of components being 

excluded increases, the magnitude of the 𝑈 matrix increases. It is critically important to mention 

that when X is normalized (always a recommended practice), either matrix 𝑇 or 𝑃′ yields a matrix 

possessing orthonormal vectors (i.e., vectors with values from -1 to 1) to ensure that measurement 

units are not altering the results for each PCA. Typically, the presented orthonormal vector matrix 

is the loadings matrix. 
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9.2.2. Clustering Analysis 

Clustering analysis is an unsupervised machine learning method used to classify any set of 

data into groups (i.e, clusters) with similar attributes without requiring a previously developed 

learning set (i.e., training set) [326, 327]. Data elements groups representing proximate collections 

of data elements based on a distance or dissimilarity function measured using different distance 

methods (e.g., Euclidean, Manhattan), wherein identical data pairs have zero distance or zero 

dissimilarity. This methodology proves to be very helpful when studying library sets, as it provides 

a means to establish relationships and partitions between the different data points [328]. Thus, this 

methodology becomes of interest when considering materials in a property library, particularly 

when attempting to classify these materials based on their properties. 

In general, clustering analysis can be divided into hierarchical clustering and non-hierarchical 

clustering techniques. Examples of hierarchical techniques include ward, single linkage, and 

median, etc. Non-hierarchical techniques include K-means, K-medoids, and fuzzy clustering, etc. 

Selection of algorithms depends on data available, and can be validated by the stability of the 

clusters using simulation studies [329]. Among available algorithms, hierarchical categorical 

clustering and non-hierarchical K-means clustering are among the most commonly used methods 

[330, 331]. The reasons for their popularity include ease of implementation, speed of convergence, 

and adaptability to sparse data [332, 333].  Mathematically, categorical clustering determines the 

distance between points and, given a predefined number of groups, allocates the components in 

each group based on the maximum distances between groups. K-means clustering partitions all data 

points into predefined number of sets to minimize the within-cluster variance and, since the total 

variance of the data is constant, it also maximizes the between-cluster variance. Several statistical 

analysis packages (e.g., SAS®, JMP®, R) have programmed clustering methods, making them 

easier to be implemented in every field. Other mathematical modeling software (e.g., MatLab®, 

Mathematica®) have also programmed clustering methods. In the pharmaceutical field, clustering 
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was used to detect and predict adverse pharmaceutical drug effects, develop new marketing 

strategies, and analyze clinical trial data [334, 335]. 

9.3. APPENDIX C: METHODOLOGY TO PERFORM RTD EXPERIMENTS IN 

SOLIDS UNIT OPERATIONS 

9.3.1. Tracer Properties 

Selecting tracer materials to characterize a system is a not a trivial problem, as it pertains 

to a fundamental question: which material’s RTD is the experiment characterizing? This question 

undertakes the objective of pushing process developers to understand what are: (1) the reasons for 

measuring the RTD and (2) the future applications of the RTD. Answering further, why is the RTD 

being measured, has profound implications regarding the selection of materials to be used in the 

study, and requires careful consideration in order to achieve the desired goals. Based on previous 

experience two major scenarios are often observed with regards to acquiring RTD results: (1) 

diagnose phenomenological equipment behavior and characterize mixing and (2) understand the 

dynamic behavior of upstream disturbances as they travel through the process. Although these two 

scenarios are closely tied, the latter is more closely related to a specific process rather than the 

equipment’s intrinsic behavior.  

The selection of tracer materials depends heavily on these two scenarios, especially with 

regards to future applications of results for model development. For example, if the goal is to 

establish the fate of a given amount of ingredients entering the system (e.g., lump of API or tracer 

entering the system) at fixed steady state conditions (e.g., inlet flow rate, blade speed), then it is 

best to use that specific ingredient to establish its RTD at the desired conditions. However, if the 

goal is to examine the general mixing behavior of a piece of equipment for a range of materials and 

conditions and to characterize the mean residence time of the system’s components, then it is 

critical to understand how tracer material properties can affect RTD characterization. 
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From a tracer selection criteria standpoint, it is important to establish fundamental 

characteristics listed by Danckwerts for a good liquid tracer [104]. A tracer must: 

1. Be detectable from other materials in the system, otherwise it will not be possible to 

establish the tracer’s exit times and compute a RTD.  

2. Be non-interactive with the system: a tracer ought not to be consumed, converted or 

transformed inside the equipment being studied nor should it affect the flow patterns 

inside of the system. This latter point is particularly important. If the tracer causes a 

change in the system, such a change would be misconstrued as part of the flow pattern 

being studied. 

3. Have similar physical properties to those of the system: since the intent is to determine 

the RTD of materials in the system, the tracer should possess similar flow properties 

to those in the system.  

4. Not adhere to equipment surfaces or walls: adherence to walls and other surfaces will 

distort RTD results by preventing the material from exiting the system. These 

artificially made dead or stagnant zones may lead to the erroneous conclusion 

regarding flow patterns in the system. 

5. Be able to mix with other system components: similarly to the previous point, the 

material should be able to traverse the equipment interacting in a similar fashion as the 

other components in the system and exit as a homogenous stream to minimize observer 

error and minimize the probability of result misinterpretation. 

Similar assertions have are made by other researchers [103, 229-231, 336] and, currently, 

these guidelines for selecting liquid tracers are standard in chemical engineering curricula.  

Although the abovementioned guidelines were drafted for liquid systems, it is important to 

note they are also applicable to powder-based processes because the mathematics used for 
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describing the system remains the same. In addition to being distinguishable from the bulk material, 

solid tracers must have similar properties to the bulk powder, must not react with the bulk powder, 

must easily mix with the system (i.e., no segregation or agglomeration), and its movement must be 

representative of the flow of powder within the system. However, in the case of powder systems 

and given the cases presented before, accomplishing all of these requirements may prove to be a 

challenging task, particularly for the broader scenario requiring characterization of mixing 

behavior. For instance, attempting to determine the mixing behavior inside a processing unit by 

determining the dissipation of a specific ingredient pulse (or disturbance) may violate requirements 

4 and 5 of Danckwert’s tracer properties. Excess of tracer material in the system may change the 

behavior of the entire blend (e.g., densification, resistance to flow), effectively changing the system 

altogether and potentially misleading the system characterization. 

It appears that proper selection of tracers has not received sufficient attention in recent 

efforts to characterize the RTD of continuous pharmaceutical powder processes. Tracers are often 

selected ad hoc or based on the availability of materials with easy means of detection. Tracer 

materials in several published works include pure active pharmaceutical ingredients (APIs), which 

tend to have poor flowing characteristics, often dissimilar to the bulk powder, and adhere to the 

walls and surfaces of vessels [101, 137, 260, 337, 338]. Although ease of detection is a key 

requirement for tracer materials (i.e., APIs often have distinct spectral peaks), it is equally 

important to also review other requirements of tracer properties to avoid misinterpretations of 

mixing behavior inside of the unit.  

A poor tracer, whose physical properties: (1) are largely different from the properties of 

the bulk material, (2) alter the behavior of the bulk upon its addition, and (3) are not representative 

of materials in the system, may provide an inaccurate measure of the system’s RTD of the system. 

This could have important consequences, particularly if these RTD models are being used to make 

control decisions for conforming/non-conforming intermediate material and final product. They 
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will also lead to the erroneous development of traceability models. An accurate measure of RTDs, 

a large part of which is the proper selection of tracers, is thus of paramount importance.  

9.3.2. Tracer Addition 

Two major methods are used for introducing a tracer into the system: pulse (or impulse) 

and step change [231, 232]. The methodology selection is paramount for both the evaluation and 

characterization of mixing behavior as well as the accurate mathematical representation of the 

system. Pulse experiments represent the even, precise and instantaneous introduction of a tracer in 

the system through an opening in the process. The process opening is often a port or valve, which 

researchers can open or close for sampling purposes. Pulse tracer addition is effective at keeping 

the tracer material requirements low as well as ensuring the system is not overwhelmed by a 

perpetual change in material concentration [336]. The resulting response out of a pulsed system is 

typically a distributed curve that begins and ends at the zero tracer concentration value. These 

curves allow for an interpretation of the system’s mixing behavior; especially in terms of how a 

lump of material is dispersed over the unit’s length by “backmixing” processes.  

Step changes, on the other hand, require the even, consistent, immediate, and continued 

introduction (positive step) or depletion (negative step) of a tracer over the whole time window. 

This second method of tracer addition often requires large amounts of material to effectively 

produce the noticeable change in concentration at the system’s outlet. It is important to note that 

the consistent and continued addition or removal of tracer material may lead to changes in the 

system’s physical properties (e.g., flowability, density). Step changes provide a safer and 

convenient means of performing RTDs since the removal or addition of tracer can be performed on 

the closed system by means of varying the rate of feeding material from the sources (i.e., feeder), 

without having the researcher  open the process to insert the tracer. The resulting response out of a 

system with a step input is a distribution curve that begins at the initial value and ends at the tracer 
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concentration set point. This latter point provides an advantage for detection methods (e.g., PAT 

tools) whose calibration and detectability are dependent on the original calibration method. 

Figure 65 shows schematically both the inputs and outputs of pulsed and step change 

inputs, where t0 represents the time of tracer addition or depletion. The pulse system shows how 

the tracer must be added exactly at time t0 in one large lump, while the other two tracer addition 

methods show how the change in concentration is maintained over time after t0. The responses (i.e., 

output) of the system show how the tracer is dissipated over the unit and how the tracer is affected 

by the system. 

 

Figure 65. Schematic comparing input and outputs for several methods of introducing tracers for 

RTD experiments. 

 Both systems provide their advantages and challenges, which need to be considered when 

selecting a tracer and determining the characterization strategy for the system. Table 40 summarizes 

the tracer definitions as well as provide both the advantages and challenges for each.  

INSERT Table 40 HERE 

Historically, pulse systems have been used given their easy implementation and relatively 

low material requirement. However, pulse experiments are more difficult to perform due because 

of the need to ensure the tracer addition assumptions [339]. To avoid this problem, it is often 

recommended to perform a short step up and step down sequence to capture the system’s behavior 

and more easily control the tracer addition. This latter form of tracer addition is known as a variable 

step change. 
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Based on tracer introduction characteristics, pulse tracer additions are mathematically 

represented using a Dirac Delta function while step inputs, whether continued or variable, are 

expressed using the Heaviside Theta function (i.e., a unit step function). Both mathematical 

representations of the tracer addition methods assume the materials are added at the time instant 

provided, meaning that accounting for the tracer introduction is critical for modeling purposes. 

Variations in the addition or recording of tracer inputs will dramatically affect the experimental 

and modeling results. If the timing is not correctly determined, imperfect pulse RTD methods may 

need to be used to account for the variation in the tracer addition method. Several authors have 

developed the mathematics for imperfect tracer addition [24, 231, 336, 340], yet they are not 

discussed in this work for the sake of brevity. Table 39 describes the different tracer addition 

methods with respect to their mathematical descriptions for a known and controlled introduction 

time (i.e., perfect tracer addition). 

Table 39. Mathematical descriptors for different tracer addition methods. 

Method Function Description Equation 

Pulse  Dirac Delta Instantaneous and precise tracer 

addition over a very short (i.e., 

approaching zero) time period. At 

time  𝑎 value approaches infinity, 

but the integral over the entire time 

period approaches 1. 

𝛿(𝑡 − 𝑎) = {
∞ 𝑖𝑓 𝑡 = 𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

∫ 𝛿(𝑡 − 𝑎)𝑑𝑡
∞

0

= 1 

Step change Heaviside 
Theta 

Sudden and continued tracer 

addition after time 𝑎 has passed. 

The concentration is sustained until 

the end of experiment. 

𝑢(𝑡 − 𝑎) = {
0 𝑖𝑓 𝑡 < 𝑎
1 𝑖𝑓 𝑡 > 𝑎

 

Variable step Heaviside 

Theta 

Sudden addition of tracer after time 

𝑎 sustained for a time period 𝑏, after 

which it is brought down back to the 

initial state. 

𝑢(𝑡 − 𝑎) − 𝑢(𝑡 − 𝑎 + 𝑏) 

Using these mathematical input descriptions, RTD models can be derived and used to 

analyze mixing systems given any tracer input.



 

 

256 

 

 

Table 40. Summary of tracer addition methods along with the advantages and challenges of each method. 

Tracer Addition Method Description Advantages Challenges 

Pulse (or Impulse) Instantaneous, precise, 

and even addition of 

tracer 

Tracer material requirement is relatively low 

System material properties are not largely affected 

Curve shape provides detailed information on the 

systems mixing dynamics 

Determine the appropriate amount of tracer to be 

detectable 

Instantaneous addition of the entire tracer amount 

Large lumps of tracer may not be representative of 

system disturbances 

System needs to be opened to introduce the tracer 
material 

Step Change Continued, immediate, 

consistent, and even 

addition or depletion or 

tracer  

Provide a known end point for pulse 

concentration, aiding detection methods 

System exposure is limited (i.e., system does not 

require operator interference) 

Representative of a change in concentration in the 

system or a long deviation 

Immediate step changes are difficult to obtain from 

source systems (e.g., feeders) 

Tracer material requirements are relatively large 

System material properties may be broadly 

affected 

Higher potential of the tracer interacting with the 

system (e.g., sticking) 
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9.4. APPENDIX D: RTD MODELING 

9.4.1. Calculation of RTD 

After introducing the tracer and collecting the mixed results at the unit’s outlet, researchers 

can derive two critical pieces of information about the system: the tracer’s mean and distributed 

residence time. To determine those values, several calculations must be performed taking into 

account the tracer addition method and the outlet concentration results. These calculations intent to 

standardize the concentration values and transform them into distribution functions that can then 

be used to calculate subsequent residence time metrics. For cases when tracers are added using a 

pulse method, a probability distribution function (PDF) – also known as probability density 

function and differential distribution function – is calculated using the concentration of tracer at the 

system’s outlet and the sum of that concentration over the whole time period. When tracers are 

added using step changes, a cumulative distribution function (CDF) is computed to perform the 

RTD calculations. Table 41 presents a summary of these equations. The integrals are further 

described as discrete sum to provide a mean to treat experimental data and convert it to distribution 

values. The time intervals for the integral are often suggested to be equally spaced, to minimize 

error between the numerical and analytical integral. 

Table 41. Descriptions of distribution functions used to calculate RTD metrics.  𝐶𝑜𝑢𝑡(𝑡) represents 

the instantaneous concentration of tracer at the system’s outlet as a function of time. 

Name Symbol Input Signal Equation 

Probability distribution 

function (PDF) 
𝐸(𝑡) Pulse or impulse of 

tracer 𝐸(𝑡) =
𝐶𝑜𝑢𝑡(𝑡)

∫ 𝐶𝑜𝑢𝑡(𝑡)𝑑𝑡
∞

0

≅
𝐶𝑜𝑢𝑡(𝑡)

∑ 𝐶𝑜𝑢𝑡(𝑡)∆𝑡∞
0

 

Cumulative distribution 

function (CDF) 
𝐹(𝑡) Positive (𝑋 = ∞) or 

negative (𝑋 = 0) 

step change of tracer 

𝐹(𝑡) =
𝐶𝑜𝑢𝑡(𝑡)

𝐶𝑋

 

Both the cumulative and probability distribution functions can be computed from each 

other by taking the time derivate of the first in order to obtain the second distribution.  
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𝐸(𝑡) =

𝑑𝐹(𝑡)

𝑑𝑡
≅

∆𝐹(𝑡)

∆𝑡
 

54 

After normalizing the tracer measurement by computing the distribution functions, the 

results can be used to calculate distribution moments, which then can be interpreted as subsequent 

RTD metrics. Two major moment families can be derived with respect to the distribution’s 

properties: moments relative to the origin (𝜇) and about the mean (𝛾). Using the probability 

distribution function 𝐸(𝑡), Equation 55 can be used to calculate any N-order moment  (𝜇𝑁) about 

the distribution’s origin. 

 
𝜇𝑁 = ∫ 𝑡𝑁

∞

0

E(𝑡)𝑑𝑡 ≅ ∑ 𝑡𝑁E(𝑡)∆𝑡

∞

0

 
55 

The first moment of the distribution about its origin (i.e., 𝑁 = 1 in Equation 55) represents 

the distribution’s mean value, which in RTD terms is known as the mean residence time or MRT. 

This value represents the average time tracer particles spend in the system. The MRT is often 

described using the Greek letter τ (i.e., 𝜏 = 𝜇1).  

The MRT is related with the system’s space-time (𝜏𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒), shown in Equation 56, 

described as the ratio between the mass held up in the system (𝑀(𝑡)) over the incoming flow rate 

into the system (𝑚̇𝑖𝑛(𝑡)); however, these two variables may not be the same depending on the 

system’s flow behavior. For systems were the flow is close to ideal, the MRT will coincide with 

the space-time results since there are no major locations for the material in the system to hide. Yet, 

if the system exhibits a significant amount of non-ideality (e.g., bypassing, dead zones, preferential 

sticking, different transport rates, changes in flux) then the space-time results will not coincide with 

the MRT. Furthermore, the space-time results often refer to the bulk material’s MRT in the system, 

not a specific tracer, making the results often not representative of tracer behavior. 
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𝜏𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 =

𝑀(𝑡)

𝑚̇𝑖𝑛(𝑡)
 

56 

Following the description of the distribution about its origin, researchers can use the τ to 

describe the distribution’s shape using the moments equation about its mean for any moment P (𝛾𝑃) 

using Equation 57. 

 
𝛾𝑃 = ∫(𝑡 − 𝜏)𝑃

∞

0

E(𝑡)𝑑𝑡 ≅ ∑(𝑡 − 𝜏)𝑃E(𝑡)∆𝑡

∞

0

 
57 

Noting that the first moment about the mean yields a zero value (i.e., 𝛾1 = 0), the moments 

about the mean must be computed past the second moment (i.e., 𝑃 ≥ 2). The PDF’s variance (𝜎2) 

can be computed as the second moment of the distribution about its mean (i.e., 𝑃 = 2 in 57). From 

the variance the distribution’s standard deviation (𝜎) can be computed as 𝛾2 = 𝜎2. The 

distribution’s standard deviation divided by the square mean residence time is denoted as the mean 

centered variance of the MRT or simply the MCV (𝜎𝜏
2 = 𝜎2

 𝜏2⁄  ).  

Another important distribution characteristic, skewness, can be described using the third 

distribution moments about the mean. The skewness can help detect bypassing or high degree of 

back-mixing in systems, based on the degree of positive or negative skewness. A negative value of 

skewness, for example, would indicate tracer material is heavily held back in the system (i.e., large 

majority moves slower than the mean), perhaps by segregation or by sticking to boundaries, 

whereas a positive skewness value would indicate that most tracer material is bypassing the mixing 

zones (i.e., traveling faster than the bulk flow).  

Overall, the major metrics needed to describe the most significant RTD metrics are listed 

in Table 43, below. 

INSERT Table 43 HERE 
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 Within the RTD literature, MRT and MCV are presented as the two major metrics of study 

given that both of these metrics can be subsequently used for modeling and other analysis. On the 

other hand, skewness remains less utilized in the literature as it is a quantitative tool aimed at merely 

assessing the distribution’s asymmetry. Nevertheless, in this work the authors find it important to 

include the skewness when trying to delve deeper into understanding mixing inside of systems, 

particularly in novel unit operations. 

9.4.2. Phenomenological models 

Several models have been developed to represent the RTD in equipment and vessels that 

often do not present ideal mixing scenarios such as plug flow or perfectly mixed. The vast majority 

of these models represent a mixing that is somewhere in between those of plug or perfectly mixed 

systems and are often derived on a case-by-case basis. A large number of these mixing models have 

been summarized by Levenspiel and Bischoff as well as other chemical engineering textbooks [103, 

230, 231, 336]. Two of the most commonly used models for RTD in powder systems, particularly 

convective tubular blenders, are: (1) the axial dispersion (AD) equation, also known as the Fokker-

Planck equation [51, 101, 250, 341] and (2) the tank-in-series model [34, 198, 266]. Both models 

are analogous to each other as they represent a signal filter that is characterized by two (2) regressed 

variables: a variance constant and the residence time constant. In this section, both models are 

described in detail for the particular case where a tracer is added at the inlet of the unit. Cases where 

the tracer is added along the unit’s length are not covered in this discussion. 

9.4.2.1. Axial dispersion (AD) model 

The AD equation represents a system wherein components are transported by convective 

and dispersive methods along the length of the unit. For simplicity, the equation is derived assuming 

both a constant speed and transport area (i.e., flux) along the unit’s length. These two assumptions 

are not valid while the unit is undergoing a transient change (e.g., start up, shut down, increases in 
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flow rate or change in blade speed), yet it serves as a satisfactory solution at steady state. The 

equation for the AD equation is shown in Equation 58. 

 ∂C

∂t
= 𝐷𝑧

∂2C

∂𝑧2
− 𝑣𝑧

∂C

∂z
 58 

where C is the concentration of a component along the unit’s length, z the axial position, 𝑣𝑧 velocity 

in the axial direction, 𝐷𝑧 the dispersion coefficient in the axial direction, and t represents time. 58 

can be normalized as shown in Equation 59 using 𝜃 = 𝑡/𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 , ε = 𝑧/𝐿, and  𝑃𝑒 = (𝑣𝑧𝐿)/𝐷𝑧.  

 ∂C

∂𝜃
=

1

𝑃𝑒

∂2C

∂ε2
−

∂C

∂ε
 59 

where 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 is the residence time caused by dispersion of material, 𝐿 is the unit’s length, and 

𝑃𝑒 is the Peclét or Bodenstein dimensionless number. The Peclét dimensionless number represents 

the ratio between convective and dispersive transport and thus represents the level of dispersion in 

the system caused by mixing. This number can only be a positive real number, ranging from zero 

to infinity (i.e., 𝑃𝑒 ∈ {ℝ ≥ 0}). Large 𝑃𝑒 values represent small amounts of dispersion (i.e., poor 

mixing), whereas smaller values represent greater amount of dispersion (i.e., better mixing). When 

𝑃𝑒 = 0 the system is said to be perfectly mixed, and when 𝑃𝑒 → ∞ the system approximates plug 

flow behavior.  

The axial dispersion equation requires one initial condition and two boundary conditions 

to be solved. The initial condition in the system is often chosen as the steady state solution, wherein 

the concentration of tracer along the unit’s length is zero (i.e., C(ε, 𝜃 = 0) = 0). The boundary 

conditions to this partial differential equation vary depending on the system being represented. Four 

boundary condition forms can be considered: open-open, close-close, and mixed boundary 

conditions. The first two are the most commonly analyzed, as they represent the majority of 

dispersed systems. In the open-open boundary system, also known as the open vessel, dispersion 

(i.e., mixing) occurs before, within and after the unit boundaries, meaning mixing occurs 
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uninterrupted before and after the unit. For the close-close boundary system, also known as the 

closed vessel, dispersion only occurs within a set distance within the unit, typically specified as the 

unit’s length. Figure 66 shows a schematic of the two systems based on their boundary conditions. 

 

Figure 66. Schematic representations of the boundary conditions for the axial dispersion model. 

(A) Open-open boundary condition. (B) Close-close boundary condition. 

 The boundary conditions for each of these vessel types are listed in Table 42. The open 

vessel boundary conditions are recommended for systems with small dispersion (𝑃𝑒 > 10). 

Examples of these systems include those that resemble more closely plug flow. The close vessel 

boundary conditions are recommended for cases when dispersion is larger (𝑃𝑒 < 10), particularly 

when 𝑃𝑒 < 1. The lower boundary of 𝑃𝑒 < 1 is important to point since a system with such small 

𝑃𝑒 values is poorly represented by the equations derived for the open-open system. For very small 

𝑃𝑒 values the open vessel conditions effectively would predict that material disperses faster than it 

can convectively travel along the unit’s length; a scenario that is not plausible given that convection 

is the major form of fluid transport in this system. 

Table 42. Boundary conditions for two axial dispersion systems. 

Vessel Boundaries Description Equations Recommended 

for 

Open Open-Open Dispersion occurring before, 

within, and after the boundaries. 

The flow patterns remain 

undisturbed at the boundaries and 

the dispersion coefficient is non-

zero over the entire system. 

1

𝑃𝑒

∂C

∂ε
]
ε=0−

=
1

𝑃𝑒

∂C

∂ε
]
ε=0+

 

1

𝑃𝑒

∂C

∂ε
]
ε=1−

=
1

𝑃𝑒

∂C

∂ε
]
ε=1+

 

Small dispersion: 

𝑃𝑒 > 10 
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Close Close-Close Dispersion occurring only within 

the boundaries. The flow patterns 

change at the boundaries and the 

dispersion coefficient is zero 
before and after the system 

boundaries (i.e., plug flow). 

1

𝑃𝑒

∂C

∂ε
]
ε=0−

= 0 

1

𝑃𝑒

∂C

∂ε
]
ε=1+

= 0 

Large dispersion: 

𝑃𝑒 < 10 

Historically, most researchers have used the open vessel boundary conditions although 

powder blending system do not exactly resemble an open-open system [102]. This may be 

attributed to the fact that the open vessel boundary conditions provide a close form (i.e., analytical) 

solution to the dispersion equation. The close vessel boundary condition would require instead the 

use of numerical methods to solve the partial differential equation. However, even though the open-

open boundary conditions may not exactly represent a powder blending system, it provides a 

sufficiently accurate approximation for our working range of dispersions values within powder 

blending system (10 > 𝑃𝑒 > 1). Thus for this work, since there is interest in having an analytical 

solution for future analysis, open-open boundary conditions are assumed to solve 59. Readers 

interested in furthering the discussion of the differences with other boundary conditions for the 

axial dispersion equation are suggested to read the reviews previously referenced [103, 336]. The 

solution for the open vessel system using a pulse input was first derived by Levenspiel and Smith 

in 1957 and is shown in Equation 60. 

 

C(ε, 𝜃) = C0,𝑝𝑢𝑙𝑠𝑒√
𝑃𝑒

4𝜋𝜃
𝐸𝑥𝑝 [−

𝑃𝑒(ε − 𝜃)2

4𝜃
] 60 

Since for a pulse input 𝐸(𝜃) = C(1, 𝜃)/C0,𝑝𝑢𝑙𝑠𝑒, the PDF for the axial dispersion equation 

can be derived in both its normalized 𝐸𝐴𝐷(𝜃) and time-dependent forms 𝐸(𝑡). 

 

𝐸𝐴𝐷(𝜃) = 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  𝐸(𝑡) = √
𝑃𝑒

4𝜋𝜃
𝐸𝑥𝑝 [−

𝑃𝑒(1 − 𝜃)2

4𝜃
] 61 

 With Equation 61, the PDF of an axially dispersed open-open system can be computed, 

following the assumptions set out by the boundary conditions and equations. Importantly, there are 
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two variables that must be regressed: (1) 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  and (2) 𝑃𝑒. Figure 71 shows the effect of 

varying the 𝑃𝑒 and 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  on the PDF of a pulse input. 

INSERT Figure 71 HERE 

 Increasing the 𝑃𝑒 value increases the sharpness of the peak, meaning that a pulse is less 

dispersed at the unit’s outlet. The lack of dispersion at the outlet is due to a smaller value of axial 

dispersion (𝐷𝑧), which indicates the material travels as a plug throughout the unit’s length. 

Increasing the dispersion’s residence time at a constant 𝑃𝑒 value yields a wider distribution of the 

pulse at the outlet of the unit. Intuitively, if the amount of time provided for the system to disperse 

increases, the outlet distribution would be wider. 

9.4.2.2. Tank-in-series model 

A continuous stirred tank reactor (CSTR), also known as the perfectly mixed continuous 

stirred tank (PMCST), is an ideal type of chemical reactor in which reactants and products are well 

mixed in a fixed volume. Mixed materials are constantly being removed as fresh (i.e., unmixed) 

materials are added at the same flow rate. In this system, since the tank is perfectly mixed, the exit 

composition is the same as the concentration inside the tank as described by Equation 62. 

 
𝑑(𝑀𝑟𝐶)

𝑑𝑡
= 𝑚̇𝑖𝑛𝐶∞,𝑠𝑡𝑒𝑝 − 𝑚̇𝑜𝑢𝑡𝐶 62 

where 𝑀𝑟  is the mass of material in the reactor volume, 𝐶 the outlet concentration, 𝐶∞,𝑠𝑡𝑒𝑝 the inlet 

concentration caused by a positive step change, 𝑚̇𝑖𝑛 the inlet mass flow rate, and 𝑚̇𝑜𝑢𝑡  the outlet 

mass flow rate. It should be noticed that a step input is considered for this system since it allows an 

easier solution in a subsequent step using a finite series approach. Moreover, the step change allows 

for easier integration given that the inlet concentration does not change over time. However, it 
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should be highlighted that the exact same solution may be obtained for a pulse input using Laplace 

transformations, as shown by Himmelblau [103] and the work by Lorences et al. [216]. 

Returning to Equation 62, since the inlet and outlet mass flow rates are equal and the mass 

inside of the reactor space is constant, the tank equation can be written as shown in Equation 63. 

 
𝑑(𝐶)

𝑑𝑡
=

𝑚̇𝑖𝑛

𝑀𝑟
(𝐶0,𝑠𝑡𝑒𝑝 − 𝐶) =

1

𝜏𝑡𝑎𝑛𝑘
(𝐶0,𝑠𝑡𝑒𝑝 − 𝐶) 63 

where 𝜏𝑡𝑎𝑛𝑘 is the residence time in the tank. To solve this system, an initial condition must be 

provided. Once again, the steady state initial condition is selected to solve this system (i.e., 

𝐶(𝑡 = 0) = 0). 

The tank-in-series model, as the name implies, is derived from the application of the ideal 

mixing perfect stirred tank model in series. Multiple continuous stirred tanks are simulated in series 

by placing the outlet of previous units as the inlet of the subsequent one. Several identical tanks 

(𝑛𝑟) intend to simulate the different mixing zones along the length of the unit. Figure 67 describes 

the tank-in-series system for an 𝑛𝑟  number of tanks. 

 

Figure 67. Schematic representation of a tank-in-series system 

The differential equation resulting from the tank-in-series system is shown in Equation 64. 

 
1

𝑛𝑟

𝑑(𝐶𝑗)

𝑑𝑡
=

1

𝜏𝑡𝑎𝑛𝑘
(𝐶𝑗−1 − 𝐶𝑗) 64 

where 𝐶𝑗  is the concentration at the outlet of reactor 𝑗 on the series. The number of tank in the series 

has to be an integer number greater than one (i.e., 𝑛𝑟 ∈ {ℤ ≥ 1}).  

The result of setting up this system with more than one tank (i.e., 𝑛𝑟 > 2) leads to a system 

of ordinary differential equations, which can be solved analytically using finite series or Laplace 
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transforms. For simplicity and similarly to the axial dispersion model, the system can be normalized 

with respect to time by introducing the variable 𝜗 = 𝑡
𝜏𝑡𝑎𝑛𝑘⁄ . Using the method of finite series, the 

resulting concentration equation for the last tank in the series (𝐶𝑛𝑟
) assuming a constant step input 

concentration is given by the result of Equation 65.  

 

𝐶𝑛𝑟
(𝜗) = 𝐶0,𝑠𝑡𝑒𝑝 (1 − 𝐸𝑥𝑝[−𝜗] ∑

𝜗𝑘

𝑘

𝑛𝑟−1

𝑘=0

) 65 

From 65 and the definitions presented in Table 41, the CDF can be obtained for the tank-

in series equation by dividing outlet concentration at reactor 𝑛𝑟  by the incoming concentration (i.e., 

𝐶𝑛𝑟(𝜗)

𝐶0,𝑠𝑡𝑒𝑝
). Given the CDF described in Equation 9, the PDF of a step input system can be derived as 

shown in Equation 66. 

 
𝐸𝑡𝑎𝑛𝑘−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠(𝜗) = 𝜏𝑡𝑎𝑛𝑘−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 𝐸(𝑡) =

𝑛𝑟 𝐸𝑥𝑝[−𝜗] 𝜗𝑛−1

 (𝑛𝑟 − 1)!
 66 

where 𝜏𝑡𝑎𝑛𝑘−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 is the tank-in-series total mean residence time and its defined as the 

residence time in each tank times the number of tanks (i.e., 𝜏𝑡𝑎𝑛𝑘−𝑖𝑛−𝑆𝑒𝑟𝑖𝑒𝑠 = 𝑛𝑟  𝜏𝑡𝑎𝑛𝑘). Similar 

to 61, 66 can be used to compute the probability distribution function of a tank-in-series modeled 

system, following the conditions and assumptions set out by the equations system. Figure 72 shows 

the impact of varying 𝑛𝑟  and 𝜏𝑡𝑎𝑛𝑘 on both the PDF and CDF.  

INSERT Figure 72 HERE 

It should be noticed that in 66 the number of tanks can be any real number larger than 1 

(i.e., 𝑛𝑟 ∈ {ℝ ≥ 1}). A reasonable explanation of a non-integer number of tanks (e.g., 2.1 or 3.8) 

is an integer series of tanks (e.g. 2 or 3 tanks) of equal size followed by a smaller tank equivalent 

to a fractional volume of the integer number of tanks such that 𝑀𝑛 = 𝑥𝑀𝑟 , where 𝑥 is the decimal 

value of the non-integer number (e.g., 0.1 or 0.8).  

The results between the fractional 𝑛𝑟  value and the “smaller tank at the end” scenario are 

not the same, yet they provide a close approximation of the system and an almost exact match when 
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𝑛𝑟 > 3. The difference between the two solutions is due in part to the implementation of the 

Gamma function, which does not have a zero-zero starting point in the distribution when the 

number of tanks is close to unity (i.e., 𝑛𝑟~1). When the 𝑛𝑟  is between 1 and 1.3, the Gamma 

function starts at a non-zero value (i.e.,  𝐸(𝑡 = 0) > 0). This result is contrary to the solution set 

in Equation 65, wherein the initial condition forces the 𝐸(𝑡) to begin at a zero value. 

9.4.2.3. Relationship between the AD and tank-in-series models 

The axial dispersion and tank-in-series models provide analogous results with regards to 

the mixing occurring inside of a system. There is no mathematical (i.e., exact) way to compare or 

relate these models, given that their responses will not be identical. The models have been applied 

on a case-by-case basis, which considers both the system being characterized (i.e., geometry, size) 

and the process conditions. For example, if tracer material is added in the center of a blending 

system with both forwards and backwards mixing, the open vessel axial dispersion model would 

predict that dispersion occurs in both directions while the tank-in-series model would not yield any 

backwards mixing from the center of the system. 

Although the two models do not have identical behavior, several authors have proposed 

correlations between these two models, by equating the second moments of the PDFs around the 

mean (i.e., the MCVs presented in Table 43). Notably, the residence times (i.e., the first moment 

of the PDF) must be equal. The MCV for the axial dispersion (𝑆𝜏,𝐴𝐷) using the close vessel system 

and tank-in-series (𝑆𝜏,𝑡𝑎𝑛𝑘−𝑖𝑛−𝑠𝑒𝑟𝑖𝑒𝑠) equations are shown below in Equations 67 and 68, 

respectively. 

 𝑆𝜏,𝐴𝐷 = 𝜎𝜏,𝐴𝐷
2 =

2

𝑃𝑒
[1 −

(1 − 𝐸𝑥𝑝[−𝑃𝑒])

𝑃𝑒
] 67 

 𝑆𝜏,𝑡𝑎𝑛𝑘−𝑖𝑛−𝑠𝑒𝑟𝑖𝑒𝑠 = 𝜎𝜏,𝑡𝑎𝑛𝑘−𝑖𝑛−𝑠𝑒𝑟𝑖𝑒𝑠
2 =

1

𝑛𝑟

 68 
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Equating these two MCVs leads to the correlation developed by Bischoff and others [103, 

336, 340] of 𝑃𝑒 and 𝑛𝑟, shown in Equation 69. 

 
1

𝑛𝑟

=
2

𝑃𝑒
[1 −

1 − 𝐸𝑥𝑝[−𝑃𝑒]

𝑃𝑒
] 69 

Simpler approximation of the relationship between the two variables leads to the following 

equation: 𝑃𝑒 ≅ 2𝑛𝑟 + 1 for systems with low dispersion. Other authors have approximated the results 

of Equation 69 for medium dispersion systems 𝑃𝑒 ≅ 𝑛𝑟 + √8𝑛𝑟 + 𝑛𝑟
2. Using these last two 

relationships, the two models PDFs were compared, thus capturing the effects of changing one 

variable over time. The number of tanks can be changed in order to determine the impact to the 

PDF (Figure 68).  

 

Figure 68. Comparison between tanks-in-series model and Axial Dispersion model over a broad 

range of mixing (1<n<25) 

As observed, both the axial dispersion and tanks-in-series models are capable of simulating 

the PDFs under these conditions. A clear similarity can be observed when the number of tanks-in-

series is very large, indicating low amounts of dispersions and back mixing.  However, for low 

numbers of tanks (n<5), which indicates a higher degree of mixing, the models have different 
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responses. The axial dispersion model is unable to predict a perfectly mixed scenario (n=1) using 

the relationship with the number of tanks. Thus, the degree of mixing is critical to evaluate in order 

to select the appropriate model for the case scenario. In order to evaluate in more detail the 

differences between the two models over at the large mixing, closer look at the differences between 

these models can be observed by using smaller numbers of tanks. Below, in Figure 69, we can 

observe the differences between the axial dispersion model and the tanks-in-series for low number 

of tanks (i.e., a high degree of mixing).  

 

Figure 69. Comparison between tanks-in-series model and axial dispersion model for systems with 

vast mixing (1<n<3.5) 

PDF curves show there are differences between these models at high levels of mixing. 

From the curves in Figure 69, we can observe that the tanks-in-series model PDF shows less degree 

of backmixing then compared to the axial dispersion model for n values less than 3.5. Further 

evaluation based on the maximum value of this distribution was assessed in order to capture the 

trend of this behavior. One of the major PDF results that can be used to compare is the maximum 

value of the distribution curve. This value can be obtained by maximizing the value of the curve 

and it represents the largest amount of material that leaves the unit during that specific residence 
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time. A set of PDF curves are evaluated for the two models at different numbers of tanks in order 

to obtain several maximum values. The values are plotted versus the number of tanks in Figure 70. 

 

Figure 70. Comparison between the Axial Dispersion and CSTR in series for the maximum value 

of the Probability Distribution Function. 

This difference therefore points to the fact that the axial dispersion model predicts a higher 

degree of mixing for low number of tank scenarios. From a risk management perspective higher 

mixing may not be viewed as a positive given that the model may predict better performance than 

observed. Given these results it is clear that the tank-in-series model is capable of capturing 

perfectly mixed scenarios, whereas the axial dispersion model is not able to do so. The axial 

dispersion shows a higher degree of dispersion (i.e., interaction between plug flow and mixing) 

over low ranges of number of tanks, which may not be ideal for characterizing the mixing of solid 

systems. 

Table 44 summarizes the advantages and challenges associated with the implementation of 

these two models.  

INSERT Table 44 HERE 
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Table 43. Summary of RTD metrics derived from probability distribution function values 

Name Symbol Description Equation 

Mean residence time (MRT) 𝜏 Average time a tracer 

particle spends in the 
system from a distribution 

𝜏 = 𝜇1 = ∫ 𝑡

∞

0

E(𝑡)𝑑𝑡 ≅ ∑𝑡 E(𝑡)∆𝑡

∞

0

 

Mean centered variance of 

MRT (MCV) 
𝜎𝜏

2 Normalized range of time 

from which a particle 
spends inside of the system 

𝜎𝜏
2 =

𝛾2

𝜏2
= ∫

(𝑡 − 𝜏)2E(𝑡)

𝜏2

∞

0

𝑑𝑡 ≅ ∑
(𝑡 − 𝜏)2E(𝑡)∆𝑡

𝜏2

∞

0

 

Mean centered skewness of 
MRT 

𝜓𝜏 Degree of asymmetry in the 
PDF depicting non-ideality 

of mixing in the system 
𝜓𝜏 =

𝛾3

𝜏3
= ∫

(𝑡 − 𝜏)3E(𝑡)

𝜏3

∞

0

𝑑𝑡 ≅ ∑
(𝑡 − 𝜏)3E(𝑡)∆𝑡

𝜏3

∞

0

 

 

 

Figure 71. Effect of varying the regression parameters for the Axial Dispersion equation while keeping some constant. (A) Varying 𝑃𝑒 while keeping 

𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  at 10 seconds. (B) Varying 𝜏𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  while keeping 𝑃𝑒 at 6. 
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Figure 72. Effect of varying the regression parameters for the tank-in-series equation while keeping some constant. (A) Varying 𝑛𝑟  while keeping 

𝜏𝑡𝑎𝑛𝑘 at 5 seconds. (B) Varying 𝜏𝑡𝑎𝑛𝑘  while keeping 𝑛𝑟  at 3. 

Table 44. Advantages and challenges of RTD models 

Model Advantages Challenges 

Axial dispersion – 

Equation  61 
 Axial dispersion coefficient (𝐷𝑧) and fluid 

velocity (𝑣𝑧) have theoretical and physical 

meanings 

 Model can be adapted based on the process 

conditions and equipment geometry 

 Equipment geometry affects the mixing model 

based on the model structure 

 Boundary conditions affect the results of the model 

for a given system 

 High dispersion (i.e, mixing) is poorly modeled in 

this system 

 Model does not have an analytical closed form for 

the closed vessel system 

 Parameters become meaningless if RTD of multiple 

equipment is being modeled 

Tank-in-series – 

Equation 66 
 Mathematical details for the models are 

comparatively simpler 

 Accounts for system changes and variations in 
process conditions given that no boundary 

conditions constraints the system 

 Used to simulate the behavior of equipment 

networks (i.e., multiple units) 

 Number of tanks (𝑛𝑟) is a strictly empirical 

parameter, and thus has no physical meaning 

 Equipment geometry and process dimensions are 

not accounted for in the model 

 Black box approach to modeling the RTD 

 Fractional values of number of tanks do not have a 
theoretical basis 
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9.5. APPENDIX E: NIR METHOD DEVELOPMENT FOR REAL TIME 

MEASUREMENTS 

As provided in Chapter VI, this section aims at providing the results collected by Dr. Roman-

Ospino for the development and calibration of the real time NIR model that were used to collect 

the concentration of material exiting the blender for the RTD experiments. 

After selecting the base and tracer materials, the online real-time measurement system was 

developed to quantify the tracer concentration during the RTD experiments. The use of online real-

time measurements was chosen because it allowed two major advantages: (1) to generate 

information with enough frequency to obtain the fully resolved RTD, and (2) to enable making 

decisions about the start and endpoint of each experiment. The first advantage would prevent the 

loss of critical distribution information, which includes the distribution’s start and maximum points. 

The second advantage ensured that no tracer was added before the previous pulse had completely 

exited the system. Furthermore, using online real time measurements minimizes material and time 

waste because the researchers are able to track the experimental progress using the real-time results 

coming from the sensors [342-346].  

As discussed in section (2), near infrared (NIR) spectroscopy was used in this set of 

experiments due to its inherent versatility (i.e., no sample preparation required) and adaptation of 

different experimental setups. Fiber optic probes allow the sensor to be attached in the specific 

location required for the experiment. Projection of Latent Structures (PLS) is a suitable technique 

to analyze the multidimensional information from near infrared spectroscopy data leading to 

consistent composition measurements of particulate materials.  

A total of seven calibration models were previously prepared for the binary mixture 

composed by MCC 2 and each tracer. Calibration blends were prepared for tracer concentrations 

of 3, 6 and 9% w/w with pure MCC 2 spectra included as 0% w/w. After optimization of each 
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model using independent samples, models were saved and uploaded into the option control process 

from OPUS for real time measurements. Importantly, only binary mixtures (base and tracer) were 

considered in this work, so randomization of multiple ingredients in the base blend was not 

necessary. 

Figure 73 shows the spectral variation between the components of each model (i.e., MCC 

2 and tracer). Standard normal variate (SNV) was applied to each spectrum to highlight the 

variation in vibrational information. Each data set was evaluated in multiple spectral ranges, data 

pretreatments and PLS factors to obtain the lowest root mean squared error of prediction (RMSEP) 

by using the test samples. The shaded area in Figure 73 corresponds to the spectral range that 

produced optimum results and the number of PLS factors was estimated calculating the RMSEP 

by test samples.  

 

Figure 73. Spectral variation between the components of each tracer and the bulk MCC 2 
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Figure 74 shows the parity plot based on test samples for each calibration model. All of the 

tracers showed to have a highly linear (R2 > 95%) response between the predicted and reference 

values, indicating the models have good predictability. 

 

Figure 74. Parity plots for the concentration prediction of tracer in the bulk MCC 2 for all tracers 

Table 46 shows the evaluation of calibration models with the lowest RMSEP values for 

each material. NIR method optimization was implemented by using several spectral ranges, data 

pretreatments and number of latent variables. Calibration models were selected for the RTD 

experiments based on the lowest RMSEP value predicting independent samples with known 

composition.  

INSERT Table 46 HERE 
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In Table 45, the spectral correlation coefficient between MCC 2 and the tracers used for 

the RTD experiments are shown. The lowest correlation coefficient found for acetaminophen 

(0.8782) is also related to the low RMSEP value (0.15), the low numbers of latent variables (LV = 

2) and the use of a single data preprocessing (SNV). The highest correlation coefficient was 

obtained for starch 1, representing and additional challenge in the construction of calibration 

models for chemically similar substances. For this case, optimized calibration model required a 

combination of data preprocessing (1st Derivative + Standard Normal Variate, SNV) and one 

additional latent variable to produce one of the highest RMSEP values in independent samples.  

Table 45. Spectral correlation coefficient between bulk MCC and tracers 

Tracer Material Spectral Correlation Coefficient 

Acetaminophen 87.8% 

Anhydrous Calcium Di-Phosphate 91.8% 

Croscarmellose Sodium 98.0% 
Crospovidone 86.7% 

Starch 1 98.9% 

API 3 84.6% 

API 4 93.4% 
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Table 46. Calibration models of in-line measurements of tracer concentration in RTD experiments.  

Tracer Spectral Range (cm-1) Data pre-treatment LV RMSEP Bias R2 

Acetaminophen 6101-4246 SNV 2 0.15 0.01 99.8% 

Anhydrous Calcium Di-Phosphate 7502-4246 MSC 3 0.61 0.1 96.9% 

Croscarmellose Sodium 7502-5446 & 4601-4246 MSC 2 0.48 -0.1 98.1% 

Crospovidone 9403-4597 MSC 3 0.18 -0.02 99.7% 

Starch 1 7502-4138 1st Der (17 Pts)+SNV 3 0.44 -0.02 98.4% 

API 3 6110-4697 MSC 2 0.28 -0.02 99.3% 

API 4 5400-7000 MSC 3 0.28 0.02 99.3% 
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