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Interest in continuous pharmaceutical manufacturing (CPM) technology is rapidly 

growing, with all major pharmaceutical companies developing products in their pipelines using this 

technology. As it has been extensively reported, CPM can deliver enormous advantages including 

faster product development, less material use, reduced capital cost due to small equipment size, 

superior process control, optimized performance, and more reliable quality manufacturing. 

Nevertheless, given the novel and complex nature of the technology, CPM systems require further 

study compared to traditional batch processes. CPM studies must be carefully designed, optimized, 

validated, and controlled as holistic system in order to operate robustly, efficiently, and provide the 

aforementioned advantages. To achieve CPMôs advantages in full, it is necessary to develop and 

implement a framework wherein the processes can be evaluated and studied as integrated systems. 

In this work, tools established in the process systems engineering (PSE) methodology were 

implemented to develop models that can aid CPM process design, evaluation, control, and 

optimization. 

The focus of this work included the development and implementation of computationally 

efficient phenomenological and residence time distribution models for systems in a CPM system. 
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In the first two chapters of this work, a thorough review of the current implementation of models 

in the pharmaceutical industry is presented. Within the review, the different types of models 

currently implemented in the industry are enumerated followed by the challenges of their 

implementation. Among some of the most difficult challenges for modeling CPM powder-based 

systems is the ability to determine relationships between critical process inputs and outputs, and 

the ability capture the impact of material properties on the process. To overcome these challenges 

a framework for developing predictive phenomenological (i.e., engineering) models that include 

the effect of material properties on the process was developed.  

The third and fourth chapters of this work are devoted to describing the model development 

framework and provide an example case study of the methodology when it was successfully applied 

to a tablet compaction process. The successful integration of material property effects into the 

modeling of the pharmaceutical unit operation led to the development of a material property library 

that collected a wide array of property measurements for a number of pharmaceutically relevant 

materials. The material property library, described in the fifth chapter of this work, was used as a 

tool to determine the impact of material properties on: (1) residence time distribution experiments 

and (2) the operation of continuous powder feeding units. 

Residence time distribution (RTD) methods and models were studied in this work, as their 

application to characterize CPM systems has become standard. The effect of material properties on 

RTD methods were evaluated in the sixth chapter to provide recommendations for using the RTD 

methodology to characterize CPM units. Ultimately, the unit operation characterization and 

modeling framework presented in this work along with the recommendations offered for RTD 

experimentation and modeling were applied to the development of a dynamic phenomenological 

and RTD model for a continuous powder feeding unit. The model, described in the seventh chapter 

of this work, was used to predict the behavior of the CPM-specific unit over a wide range of 

material property and process inputs.   
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1.1.BACKGROUND & MOTIVATION  

Pharmaceuticals is a global business sector focused on the development of performance-

based products designed to address the worldôs healthcare needs. Thanks to advances in this sector, 

along with medicine and disease eradication, the average world life expectancy has risen from 68 

to 74 years in the past 25 years [1]. Global pharmaceutical market sales were at an estimated $967 

billion in 2016, with a steady growth rate of 7% per year over the past decade [2]. The sum base 

revenue for the top ten pharmaceutical industries, who spearhead most of the research and 
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development efforts, was valued at $300 billion in 2008 [3] and global sales exceeded $1.1 trillion 

in 2014 [4].  

Although the pharmaceutical industry is fundamental in health management and their 

profits are higher than many other chemical industries, average technological advances across the 

industry have lagged. Delays, especially in manufacturing technologies, are attributed to the current 

regulatory framework, high profit margins, time constraints during the drug approval process, and 

varying physical and chemical properties of drug molecules that affect formulation and process 

design [5]. However, recent changes in the economic and regulatory environment surrounding the 

pharmaceutical industry have left the sector facing enormous obstacles.  

A decade long flat line in new drug molecule innovation, extended development time due 

to disease and treatment complexity, relatively inefficient and poorly understood manufacturing 

practices, increased global competition from manufacturers of generic products (i.e., generic 

erosion), rising regulatory scrutiny during development, and growing expectations for medical 

compounds (e.g., fewer side effects, effectiveness, and accessibility) result in decreasing 

competition-free lifespan of products, increased product risks, and reduced profit margins for major 

pharmaceutical companies [6-9]. Additionally, companies needs to develop new products whose 

average cost in 2015 per approved molecule range from $2.3 billion to $4.9 billion. This paradigm 

has cut the pharmaceutical sum revenues for the top ten pharma industries in 2014 to $250 billion; 

a 16% decrease from 2008 [3]. These technological and regulatory challenges associated with the 

current pharmaceutical manufacturing standards have pushed industry to invest in more efficient 

and reliable product manufacturing technologies that help reduce development time, save cost, and 

improve drug product quality. 

In order to aid the modernization of pharmaceutical manufacturing and implementation of 

new technologies, the Food and Drug Administration (FDA) launched in 2004 an initiative for 
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enhancing process understanding using the Quality by Design (QbD) methodology and Process 

Analytical Technology (PAT) tools [10-15]. The major goals of the QbD and PAT initiatives were 

to push industry to expand and improve their scientific understanding of drug development 

processes [16-18]. These methodologies, applied for many years in a variety of manufacturing 

industries including the automotive and specialty chemical, aim at improving product quality and 

process development. Scientific understanding can be achieved through the development of 

technologies to perform online measurements of critical material properties, the coordination of 

processes and equipment, the development and use of process models based on fundamental and 

experimental knowledge, implementation of process control, and exploration of process design 

space (i.e., flexibility and feasibility) [19, 20]. With these aims in mind, the pharmaceutical industry 

has focused on finding new technologies to achieve these goals. 

1.1.ADVANCES IN PHARMACEUTICAL MANUFACTURING 

Pharmaceutical manufacturing can be divided into two major processes based on their 

resulting drug commodity: substance or product. Drug substance manufacturing, also known as 

upstream manufacturing, involves the production of the active pharmaceutical ingredient (API) via 

chemical synthesis methods. This process is primarily done in liquid systems and the resulting API 

can be in either liquid or granular (i.e., solid) form [15, 21, 22]. Drug product manufacturing, also 

known as downstream manufacturing for being performed after the upstream process, takes the 

API and combines it with other pharmacologically inactive solid materials, known as excipients, to 

create a dosage form. Drug product manufacturing depends on the drugôs delivery method (e.g., 

tablet, injectable, spray, ointment), but often involves the use of solids (i.e., powders, granular 

material) handling equipment to create the final product. 
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Batch processing remains the predominant development route in most of the 

pharmaceutical industry for both drug substance and product manufacturing. Primarily due to 

tradition, batch manufacturing has ruled pharmaceutical manufacturing for the past century [23]. 

Unfortunately, batch manufacturing in pharmaceuticals does not often result in the most efficient 

manufacturing process given the number of steps and the need to scale up in order to meet demand 

[24]. Typical pharmaceutical processes are composed of ten or more interacting processing steps, 

each one affected by several process parameters. This level of interaction makes process 

development a difficult and daunting task whose solutions are addressed using heuristic methods. 

Moreover, the constant demand of products for clinical trials, in most cases occurring in parallel 

with process development, force scientist to study the manufacturing process in an expedited 

manner [25]. Scale up requires the purchase of larger equipment in order to increase productivity, 

leading to extended research efforts to maintain performance across equipment and scale. Thus, 

batch manufacturing processes are often poorly understood, rarely optimized, lack robustness, and 

are prone to unexpected failure [26-28]. Lastly, risk assessment and failure mode analysis of batch 

processes is a substantial challenge. 

Based on the aforementioned issues with the batch manufacturing paradigm and taking 

advantage of the QbD and PAT initiatives, the pharmaceutical industry began expanding on a series 

of technologies. One of the most pronounced technology upgrades is continuous manufacturing of 

drug products [16, 24, 29-31]. Many of the previously described issues with batch process can be 

addressed through the implementation of continuous manufacturing processes.  

1.2.CONTINUOUS MANUFACTURING OF PHARMACEUTICALS 

Continuous drug product manufacturing (CPM) technologies have the potential of 

addressing issues of process knowledge and robustness by closing the gap between process 
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development and manufacturing. Since continuous process scale up is done through increases in 

operation time, throughput, and parallelization of the same continuous train of equipment; process 

knowledge acquired during development can be directly applied to manufacturing processes [23, 

32]. This development strategy minimizes technology transfer to commercial sites, improves risk 

assessment and failure mode analysis (i.e., equipment is highly studied during development), and 

reduces the capital cost. Furthermore, continuous manufacturing processes function under ñsteady 

stateò meaning that product targets are set constant over time by manipulating process variables, 

raw materials are fed constantly to the process, and products are made and examined as they are 

produced. In cases when products are detected out of specification by examination methods, they 

can be diverted from the product stream at any point in the operation and a corrective (i.e., 

controller) action can be taken to bring product properties to the desired specifications [16, 33]. 

Therefore, continuous systems with automation and process control result in high quality products.  

The advantages are not only limited to the controllability and better process design 

strategies, they also include the ability to implement processes that were too difficult to be done 

using batch methods. For example, particle segregation (i.e., a process event that leads to poor 

quality tables being manufactured) has been shown to be prominent on batch systems, yet 

continuous systems have demonstrated the ability to process segregating mixtures without the 

issues observed in batch [34, 35]. Thus, continuous manufacturing has the potential to decrease the 

amount of wasted material, improve process performance and robustness, and ensure product 

quality [36].  

The advantages of continuous manufacturing have pushed major pharmaceutical and 

equipment manufacturing companies to embrace the technology for both legacy and new drug 

products [37, 38]. As of the writing of this thesis, three major pharmaceutical products have been 

approved by the FDA to be manufactured using continuous manufacturing [39]. Nonetheless, there 
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are many challenges with this technology: higher initial cost, extended initial development time, 

lack of PAT tools available for monitoring continuous processes, and difficulty of implementation 

for low volume and dosage products [40]. Another notable challenge for continuous manufacturing 

is dealing with the current state of guidance provided by the regulatory bodies. One example of this 

issue is the definition of a ñbatchò of product and raw material traceability, both required by 

regulatory agencies and pharmaceutical companies alike [31]. 

1.3.CONTINUOUS MANUFACTURING OF PHARMACEUTICAL SOLID ORAL 

DOSAGES 

Primarily composed of tablets and capsule formulations, solid oral dosages are the most 

commonly used drug product forms in the market [41, 42]. Multiple routes for drug product 

manufacturing have been established with the goal of ensuring the production of a quality tablet 

(or capsule) product. The manufacturing method varies depending on the API compounds and its 

inherent material properties, yet formulators commonly apply similar routes of manufacturing for 

solid oral dosages. The four major routes for the production of solid oral dosage forms are: direct 

compression, dry granulation, wet granulation, and spray drying [43, 44]. The two granulation 

routes are used in cases where the flow of a particular material in the formulation does not make 

its processability possible without adjusting some material properties, particularly size. Spray 

drying is often applied to improve the dissolution properties of the API and control the its material 

properties along with those of the excipients. All manufacturing routes are currently implemented 

in batch mode across the pharmaceutical industry, with continuous forms being developed over the 

last decade [16, 36, 45, 46].  

A schematic process flow diagram showing the four major routes of CPM is shown in 

Figure 1 [40, 47]. The four continuous manufacturing routes begin with the constant feeding of raw 
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materials into the process by powder feeders. The feeders are typically operated under some form 

of flow rate control in order to maintain a constant a constant mass ratio of ingredients entering 

subsequent units. This ratio of ingredients is particularly important for pharmaceutical operations 

as it dictates the final productôs concentration of components. Fed materials may be passed through 

a delumping unit such as a high shear screen co-mill in order to eliminate large, electrostatic, soft 

lumps of material that may not lead to good blend uniformity. Co-milled materials are mixed using 

a continuous blending system wherein materials are mixed in both the axial and radial directions to 

achieve a uniform composition of ingredients as a function of time. It is important to mention that 

radial and axial mixing aims at obtaining a homogenous blend of materials and reduce the natural 

feeder fluctuations by backmixing material over a short period of time; however, the overall 

concentration of the product is primarily set by the initial feeding ratio. A lubricant, which intends 

to reduce powder sticking during compression and improve bulk density, may be added at the 

blending unit operation.  

After blending, four different routes of manufacturing can be pursued, all having a diverse 

set of different unit operations. The simplest of all manufacturing routes is direct compression, 

wherein the material exiting the blender is directly sent to a tablet press or capsule filling machine 

to create the final solid product. If the blend flow and/or solubility properties do not allow for good 

compaction or product properties two granulation routes and a spray drying route may be pursued 

to improve the powder flow properties by increasing the particle size or the blends porosity. The 

two granulation methods commonly used include: dry and wet granulation. In dry granulation, 

blender powder materials are sent to a roller compaction unit, were they are pressed into a higher 

density ribbon, which is then milled into granules of a desired particle size. Wet granulation is 

performed in a variety of units, such as twin screw, fluid bed, and high shear granulators. In wet 

granulation a wetting liquid (i.e., binding agent) composed of typically water and high density 
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polymer is used to create larger particles via agglomeration. The granulation liquid is then removed 

at a drying step, which may reduce the granule size to a desired distribution. Optionally, a screen 

mill can be used to ensure a desired particle size distribution. Lastly, if solubility of the blended 

material needs to be improved, the ingredients may be homogenized and spray dried using a heated 

air drying system. The porous and now amorphous form of the API can have improved solubility 

when compared to the previous form of the material. 

The resulting granules obtained from either granulation step or from spray drying are then 

sent to a tablet press or capsule filling machine to produce tablets or capsules. Tablets made from 

any of the four processes can be then sent to coater to yield a final coated product.  

 

Figure 1. The four major continuous solid dosage form manufacturing routes. (1) Direct 

compression, (2) dry granulation, (3) wet granulation, and (4) spray drying. 
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Depending on the implementation of the process, CPM processes for oral solids are 

assessed based on the quality of the blends and/or tablets produced. Blends are characterized by 

their uniformity; monitored via spectroscopic and wet chemistry methods. Important tablet quality 

properties include tablet strength (e.g., hardness, friability), API composition, assay, tablet weight, 

and composition uniformity (i.e., variability measured as relative standard deviation) and 

dissolution time. 

1.4. INNOVATION: PROCESS SYSTEMS ENGINEERING (PSE) 

Given the pharmaceutical industryôs continuing modernization and its shifts towards new 

continuous manufacturing practices, process elements that affect drug substance quality and the 

techniques used to understand these processes need to be reevaluated. To enable better and seamless 

process understanding while moving from traditional batch to continuous manufacturing 

technologies, we must look at previous chemical industries and work towards building the 

necessary expertise and skills to design and effectively operate continuous manufacturing 

technology [31, 32, 48]. In designing continuous flow systems, while the analysis and optimization 

of individual process equipment remain important, the primary objective is to identify and evaluate 

design elements that pose a potential risk to product quality for the fully integrated system. It is 

also important to consider the multivariate nature of such systems in process design [49]. Within 

this context, process systems engineering (PSE) tools have been implemented with the goal of 

facilitating effective and efficient process design.  

PSE is a knowledge-based approach which uses mathematical equations to accurately 

represent the systemôs chemistry and physics in order to evaluate complex systems using simulation 

tools [50]. PSEôs special focus involves the application of models along with computer-algorithms 

to predict, design, analyze, control, optimize, and operate these complex processes. Within this 
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rigorous (i.e., mathematical) framework, PSEôs goal is to provide insight to process development 

by evaluating integrated manufacturing systems in silico.  

Rigorous process design and evaluation can greatly improve manufacturing development 

and optimization of both drug substances and products given the vast amounts of research available 

from the PSE perspective. Approximate (i.e., heuristic) methods can be supported by having this 

information at hand, and furthermore can be used to inform future process design strategies for 

other products. For instance, information developed during the early stages of preclinical and 

clinical trials (e.g., molecular weight of compounds involved in the process, solubility data, 

degradation profiles, synthetic routes, boiling and melting points, reaction enthalpies, by-product 

formation, mixing behavior, powder compressibility) can be used to inform and develop new 

models, some of which could be used to improve future process development.  

Several research teams in both industrial and academic institutions have used PSE methods 

to evaluate [47, 51-56], design [50, 57, 58], analyze [59-62], control [32, 63-68], and optimize [69-

73] pharmaceutical processes. Predictive process models were used to develop and assess control 

strategies for continuous processes, as well as set the stage for the implementation of control 

systems in pharmaceutical processes [57, 68, 74-77]. These advanced control strategies can help to 

ensure consistent product quality. Furthermore, process integration (i.e., the union of multiple 

processes into a single process flow) and scale up can be performed once several unit operations 

have been characterized mathematically using models. For integration, the work would simply 

require carrying over information from one unit to the next, to inform subsequent models about 

process stream properties. Several units can be adjoined or scheduled one after the next and the 

process can be simulated and evaluated. Once all the unit interactions are understood, then few 

experiments with the integrated system can be performed to validate the modeling results. The goal 

of PSE and the integrated process flow models is not to completely remove experimentation, but 
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to provide researchers with a smaller set of critical variables that must be evaluated in the process, 

thus removing the need of running large numbers of experiments. The integrated process simulation 

can also be very beneficial to evaluate mitigation strategies, process sensor needs, and control 

algorithms. 

 Models fit well into the pharmaceutical manufacturing process paradigm by providing a 

mean to evaluate a process before many process experiments are performed. For example, process 

companies can start using preliminary and drug discovery data (e.g., solubility, flowability, 

dissolution) to start building processes, even before their investigative new drug (IND) applications 

are submitted. This provides a large economic risk reduction for companies, who can test potential 

process manufacturing routes before incurring in costly process experiments. First pass process 

design studies can be performed using simulations, small amounts of characterized materials, and 

libraries of general process models that predict the behavior of the material in the unit. Selecting 

the equipment and processing conditions from in silico experiments based on scientific models can 

expedite and improve the design of process even before any capital investment is performed. These 

first pass studies can be used to then speed up the development of a preliminary process, which can 

then satisfy clinical demand.  

Using data acquired from the preliminary process the general model libraries can be further 

tuned for the process/drug being developed and more rigorous design can be performed. Using the 

more fine-tuned model, process developers can perform a set of in silico experiments that allow 

them to test scale up scenarios, find process optimums, evaluate process monitoring strategies and 

develop control architectures for the design. The process model results can then be implemented in 

a real world plant, which can then be evaluated with respect to the predicted values by the process 

model. Model information can be used to supplement and help explain the reasoning behind the 
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current process design and provide great insight behind the process design strategy during the 

application process. 

Figure 2 shows how models fit in the development of a process. Ind the figure, the light 

green steps represent locations where the model is informing process development. Step 3, for 

example, involves the application of a the general process models to determine a first pass process 

that can be used to satisfy the demand of clinical trials. Steps 5 shows an instance when the models 

are used to further improve the preliminary process by testing different types of processes, assist 

with scale up, and help find process optimums. Step 6 shows where models can help select the 

monitoring strategy for the process and allow for the design of control methods for the process. 

Ultimately, the model can then be used to provide the supporting information to drug manufacturing 

applications and can further be used to control manufacturing processes. 

 

Figure 2. Pharmaceutical manufacturing workflow integrating the use of process models. Processes 

in green are those that can be developed with the use of models. Adapted from [58] 
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Repeating this process and developing better models would improve the time of simulation 

based process design and improves the whole simulation-based development cycle. Regulatory 

agencies can also greatly benefit from these models as they provide exceptional insight on process 

development strategies being performed in the industry. Models can serve as tools to compare how 

different companies are developing processes and what assumptions they are taking (seen from the 

model assumptions). The process model can also benefit the review process, as it provides a clear 

algorithmic procedure for process design. From the process models provided by a company, 

regulatory agencies can further improve the evaluation methods by performing more in silico 

experiments to test some of the questions that may arise from information request. Process safety 

evaluation could also be performed to ensure process safety and robustness using the models, which 

can be evaluated at the regulatory agency or at the company. 

Overall, PSE tools and predictive models can facilitate the design of processes where 

consistent product quality is achieved at every step of manufacturing within the framework of QbD 

and PAT [58]. Table 1 summarizes the relationship between PSE tools and process development 

objectives. 

Table 1. Process Systems Engineering (PSE) tools for process development and evaluation in 

continuous manufacturing of drug substance and products. Adapted from [78] 

Process Systems Engineering (PSE) Tools Process Development Objectives 

Predictive Models (Mathematical Equations) Process Understanding and Input-Output Relations (IOR) Building 
Flexibility & Feasibility Analysis Determine Process Parameter Ranges and Control Ranges 
Steady State Optimization Process and Product Design 
Dynamic Optimization Process Improvement and Disturbance Evaluation 
Sensitivity Analysis Risk Assessment and IOR Evaluation 
Controller Design Attainment and Maintenance of Critical Quality Attributes (CQAs) 
Flowsheet Modeling Process Integration and Simulation 

1.5. BACKGROUND ON MODELS 

One of the major advantages of process modeling includes the ability to store and make 

available large amounts of process knowledge ï accumulated over time and experimentation ï in 
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mathematical equations. The information stored in these equations can be used to by process 

designers and operations solve several process design and optimization questions. Furthermore, 

these models can greatly improve future experimental designs, since they can provide insight on 

which process input-output relationships are important to evaluate. For this reason, PSE and 

modeling tools are extensively used in the fine chemistry and petrochemical industry to design new 

process, evaluate current designs, and improve (i.e., optimize) the performance of existing 

processes. Figure 3 shows a flow diagram of the model-centric approach of PSE. Data acquired 

from experiments can be analyzed and used to develop or calibrate a model for a specific system. 

Once a set of models are available, they can be used in an integrated manner to represent the 

complex system being studied. Insight on the models accuracy can be obtained by performing a 

verification and validation of the model results. Positive model verification and validation results 

lead to its use in process evaluation and assessment. Negative verification and validation results 

lead to revisiting the models original development or need to acquire additional experimental 

results. 

 

Figure 3. Simplified schematic of process system engineeringôs (PSEôs) model centric approach to 

evaluate complex systems. 

As shown in Figure 3, modeling efforts consist of a set of steps or activities that are not 

linear in nature. Moving beyond the simplified schematic in Figure 3, modeling efforts are divided 

into six major activities: (1) determine system characteristics, (2) collect data, (3) analyze data, (4) 

construct or identify a model, (5) solve or analyze the model, and (6) verify and validate the model. 
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System characteristic determination is based primarily on empirical knowledge of the system, 

wherein the relevant input-output relations are considered as important for system performance. 

Noteworthy is the idea that during this assessment, important system characteristics may not be 

captured, leading researchers to revisit this instance even after the model has been validated. Data 

collection and analysis, often performed under the Design of Experiment (DoE) structure, aims at 

quantitatively measuring the relationships existing between those input-output relationships. 

Several methods are proposed for performing DoEs and have been extensively reviewed since its 

inception in the early 20th century [79, 80].  

Constructing or identifying the mathematical equations is a fundamental step for process 

modeling since these models inform the results between process inputs and their output later used 

for in other PSE tools. These predictive equations (i.e., models) have different forms, which vary 

on the level of complexity and their incorporation of input and output (i.e., state) variables. For any 

given process, models can be proposed as set of linear or non-linear equations, written in 

dimensionless or multidimensional forms encompassing steady state (i.e., time independent) or 

dynamic (i.e., time dependent) scenarios. Five different models, shown with their relationship in 

Figure 4, are commonly associated with PSE tools: (1) balance equations, (2) constraint equations, 

(3) constitutive equations, (4) product models, and (5) product application models. Balance 

equations ensure that both the physical principles of conservation of mass and energy and 

conservation of momentum are obeyed throughout the process. Constraint equations, just as their 

name implies, ensure certain parameters are maintained within certain logical bounds, especially 

those in balance equations. A frequent example of a constraint equation is the fractional 

composition of materials in a process stream, which ensures the fractional sum of all the 

components in the stream is equal one. Constitutive equations involve those sets of equations that 

describe the chemical and reactive state of the system. Particularly focused on material properties, 
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constitutive equations need to be evaluated constantly to ensure accurate calculation of both the 

balance and constrain equations.  Product models incorporate the information of product attributes 

to inform about the productôs material properties (e.g., salt solubility, flowability, cohesion). Lastly, 

product application models are those which aim at predicting product behavior under certain 

circumstances, like the product dissolution in a specific medium and degradation at given 

temperature and pressure conditions. Solving these sets of equations requires understanding of 

several mathematical structures, which depend on the type and number of equations presented in 

the model. Further review of mathematical methods used to solve various model structures are 

provided in reviews by Gernaeyôs [50, 57] and Ierapetritouôs [40, 47] groups.  

Model verification and validation refer to the modeling steps where model solving methods 

and accuracy are evaluated, respectively. Within this context, it is important to mention model 

validation involves the practice of ensuring system models accurately represent previously 

collected data as well as some new or isolated data sets, not used during model construction and 

analysis [81-84]. 

 

Figure 4. Different types of models used within the process modeling structure. Adapted from [50] 

All of these previously described modeling activities must be performed iteratively and 

constantly, since models require constant revision to ensure their performance still meets the 
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standards set by users and developers. In some instances, some of these efforts must also be 

performed in conjunction with experimental efforts to ensure that model development accurately 

evaluates and accounts for critical process inputs and outputs. Furthermore, model developers need 

to perform several back and forth instances between model design, validation, and data collection, 

to properly develop and validate a model. Based on this extensive number of steps and constant 

need for revision and monitoring, it is clear that modeling as a whole is a labor and time intensive 

process, yet its benefits in terms of data storing and development outweigh this initial labor cost. 

Several industries have applied this methodology and encourage it as a mean to improve the value 

of their labor (i.e., experimental) efforts. 

1.6.TYPES OF MODELS 

In this section, the major models used in pharmaceutical process modeling are briefly 

described. Readers interested in learning the different model types in more detail are encouraged 

to read the reviews by Rogers et al. [40], Escotet-Espinoza et al. [47], and Gernaey et al. [50, 58]. 

There are four types of models commonly used in the pharmaceutical industry: first principle 

ñmechanisticò, multi-dimensional mechanistic, phenomenological, and empirical or data-driven 

models. 

1.6.1. First principle mechanistic 

These models are derived from fundamental equations of motion. Using fundamental 

physics, these models provide a great detail of the system phenomena by describing material 

properties in space such as location, momentum, and velocity. Divided into discrete and continuum 

models, first principles models can be used with solids, liquids, and gas system [16]. First principle 

models used in the pharmaceutical modeling literature include discrete element models (DEM) [85] 

and finite element models (FEM) [86]. DEM has been extensively used given its capability for 



18 

 

 

 

describing the translation and rotational effects of discrete particles in space. Particles are 

discretized and equations of motion are written for each individual particle in the system [87]. This 

degree of discretization generates a large number of equations, which limits and in some cases 

prohibits the use of DEM to model large number of particle systems with current computing power 

[88]. Nonetheless, particle and particle-fluid flow has been characterized and studied in great level 

of detail using DEM for a variety of industries. Confined particle flow is amongst some of the 

phenomena studied using DEM, which applies to the pharmaceutical industry through operations 

such as hopper emptying, continuous mixing, powder feeding, conveying, and fluidization [85]. 

1.6.2. Multi -dimensional mechanistic 

Population balance models (PBMs) describe the generation or development of properties 

in groups (i.e., populations) of entities (i.e., variables) over a set period of time. In the 

pharmaceutical industry, PBMs are multidimensional models used for the characterization of 

particle states with respect to internal (e.g., porosity, moisture content) and external (e.g., position) 

coordinates [89, 90]. Often used in processes where particle size changes occur (e.g., granulation, 

milling and drying), these models have also been used in a variety of other solid-based processes 

such as mixing and dissolution [91, 92]. PBMs offer a lower dimensionality model compared to 

mechanistic models by lumping discrete systems into groups and tracking their average state. 

Population balance models can also be discretized with respect to the external coordinates in order 

to resemble the level of discretization achieved with DEM modeling [93]. In these cases the 

differential terms with respect to the external coordinates are replaced by finite differences. 

Discretized population balance models can be parameterized and their parameters estimated using 

experimental or simulated data. PBMs can become computationally expensive if the number 

internal coordinates increases and the discretization grid of external coordinates is too fine [94] 

1.6.3. Phenomenological or semi-empirical 
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Also known as engineering models because of their frequent application in the field, they 

are derived from first principle models within which an underlying set of assumptions reduces their 

complexity. Experimentally obtained parameters are introduced as a means to calibrate the model 

for a specific combination of material and equipment conditions [95]. These lower dimensionality 

models involve macroscopic mass, force, and energy balances that provide information about the 

systemôs average behavior while maintaining a relationship between model variables and process 

conditions. They have been used in a variety of pharmaceutical manufacturing problems in order 

to simplify model complexity [96-102]. Lower dimensionality PBMs also lie within this model 

category and have been used to characterize the probability density function of a single particle 

property inside of a unit. One example of low dimensional PBMs is the residence time distribution 

(RTD). Briefly described, RTD is a diagnostic tool that characterizes the time particles spend inside 

of a unit operation using a tracer material [103, 104]. This type of model has been extensively used 

in the chemical engineering literature to determine the mixing behavior inside units, and given its 

important use to characterize continuous equipment will be further investigated in Chapter VI in 

this work. 

1.6.4. Empirical or data-driven 

Empirical models, commonly referred to as statistical models, are among the lowest 

dimensional models and are derived purely by the relationship between inputs and outputs, without 

much physical explanation behind the correlation. The aim of empirical models is to provide a  

representation of data collected experimentally or from mechanistic models in a lower dimensional 

space using input-output correlations [105]. These models include statistical techniques such as 

black-box modeling approaches, latent variable methods, multilinear regression, response surface 

modeling, principal component regression, among many others [106-108].  

As opposed to any other model type previously described, empirical models are highly 
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dependent on the data provided for their development. Unlike the aforementioned models, 

extrapolation using empirical models often leads to erroneous results, since the relationship 

between the input parameters and the output responses is not defined outside of the data bounds. 

Nevertheless, since these types of models provide an inexpensive computational relationship they 

are often preferred for control system design and development [49]. 

1.6.5. Flowsheet models 

In an integrated process, individual pieces of equipment (i.e., unit operations) are 

connected in series. In such a process, a train of multiple units, one after the next, is connected via 

piping to sequentially perform powder-to-tablet manufacturing without isolation of intermediates. 

The output of a preceding unit becomes the input of a subsequent one with material continuously 

flowing between them. Mathematically, process integration follows the same logic. Individual 

equipment models, presented previously, are combined by taking the results from a preceding 

model and using it as the inputs of a subsequent one. The integrated process models are labeled 

flowsheet models as the flow of information between the unit models, resembles the flow of 

material(s) between unit operations. Therefore, flowsheet models defined as equation-based 

representations of the series of interconnected unit operations that describe a complete 

manufacturing process. These types of models have long been used in fluid-based chemical 

processes for process simulation, design, control and optimization applications [109-111].  

Several flowsheet modeling software packages (e.g., ASPEN Plus®, ChemCAD®, 

gPROMSÊ) have been effectively demonstrated for predictive modeling and design of fluid-based 

processes and are already widely used across the chemical and petrochemical industries [112]. 

However, the development of comparable tools for solids handling processes is challenging due to 

a lack of available first principles and constitutive models to describe many solids-based processes 

[30, 113, 114]. Current flowsheet simulation software packages are not capable of modeling first 
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principle models effectively and require long times to evaluate multidimensional models. If 

flowsheet models are to be used for optimization, control, and case-scenario evaluation; less 

complex models need to be developed and implemented for unit operations. 

Flowsheet models have long been used in fluid-based chemical processes for process 

simulation, design, control and optimization applications [109-111]. The recent development of the 

modeling tools previously presented for solids handling units coupled with the commercial 

availability of platforms for modeling and simulation of solids-based processes have facilitated the 

development of flowsheet models in the pharmaceutical industry [113-115]. These models can be 

implemented in commercially available development environments including gPROMSTM 

ModelBuilder and Aspen Custom Modeler. 

1.7.MODELING CHALLENGES 

This work focuses on some of the challenges that continuous pharmaceutical 

manufacturing modeling faces. More specifically, the development of computationally efficient 

unit operation models that account for the effect of material properties. These challenges are 

explained briefly in this section in order to illustrate clearly the research objectives of this work. 

1.7.1.  Computationally Expensive Unit Operations Models 

In spite of the potential benefits of PSE tools in the development of pharmaceutical 

manufacturing processes, they are severely underutilized [58, 116]. Only recently there have been 

major efforts to apply methodologies of such as feasibility & flexibility analysis, flowsheet 

modeling, steady state & dynamic optimization, and sensitivity analysis. These major efforts have 

been championed after the development and application of models that are computationally feasible 

and have the ability to model particle systems accurately. First principle models, such as DEM and 

multidimensional PBM, have been the major focus for development and were extensively used for 
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design and study of individual unit operations [94, 117-121]. Although they provide a great deal of 

physical insight into the process and accurately capture dynamical interactions among individual 

particles, these methods may not be practical or efficient when incorporated with PSE tools.  

The most significant drawback of DEM and higher order PBM models involves their high 

computational cost, which make them difficult to use for applications where multiple or rapid 

model evaluations are needed. DEMôs solution times range from hours to days depending on the 

number of particles, with computational cost increasing significantly as the number of particles 

increases. For this reason, DEM simulations often model systems much lower number of particles 

than in reality, which leads to large approximation of particle flow patterns and interaction. 

Similarly, PBMs can be difficult and lengthy to solve as the dimensionality of the problem 

increases. Efforts to reduce the computational expense of PBMs have focused in the 

implementation of order-reduction techniques [122] and hierarchal solution methods [123, 124]. 

However, PBM models often require information about distributed parameters like particle 

velocities within the process geometry, which brings back the need to run DEM simulations to 

obtain these results [125, 126].  

1.7.2. Modeling Material Property Effects 

DEM also lacks a clear framework to account for material properties in simulations. 

Material property parameters that cannot be directly measured for many pharmaceutical 

compounds, such as friction coefficients and coefficients of restitution for interparticle and particle-

geometry interactions, are required as part of the simulation. The parameters need to therefore be 

estimated using indirect methods [88]. DEM models were characterized using reduced order 

models (ROMs) to mimic the results from the first principle model. When the ROM is provided 

with sufficient results, this approach reduces the need to perform DEM simulations for scenarios 

within the evaluated space. Yet if equipment geometries change and/or there are deviations in the 
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material properties these ROM are no longer valid and new DEM simulations need to be performed. 

Insufficient understanding of the interactions between raw material properties, process design 

factors and operating conditions and their effect on performance presents a challenge in process 

development and design space determination [116]. These effects are often interactive in nature, so 

simply visualizing process input and output data may not elucidate the most important process 

parameters. In order to identify critical process parameters, which may limit the feasible region of 

operation for the process, it is necessary to quantify the extent to which the various process inputs 

affect unit operation performance and product quality attributes [13].  

1.7.3.  Evaluation of Models & Their Inputs  

Technical limitations regarding the evaluation and modeling of pharmaceutical systems 

revolve around the idea that many unidentified variables are affecting output results. Often viewed 

as inherent process variability these sources of error, mostly associated with material properties 

and human error, make models less accurate and inefficient. Physical and chemical properties of 

materials have the potential to influence product quality attributes such as blend and content 

uniformity, dissolution performance (affecting in vivo results), stability, and weight variability 

[127]. Specifications on physical properties are typically limited to bulk powder properties, which 

are more straightforward to test, and include bulk and packed density (i.e., compression behavior), 

particle size distribution, cohesion, and flowability factors [128]. The relationship between bulk 

properties and product quality is not often well understood, but their ranges corresponding to 

acceptable product quality can be determined experimentally [30, 116, 127].  

1.7.4.  Verification & Application of Models 

Obstacles in implementation of continuous manufacturing involve the understanding of 

how unit operations behave holistically. The interconnected effects of units are critical to 

characterize in order to develop processes that are controllable, effective, and robust. Lower 
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dimensional models developed to address the challenges of high computational expense can be 

used to capture these interactions in silico through the use of mathematical tools developed in PSE. 

Sensitivity analysis can be used to quantitatively evaluate the importance of process variables with 

respect to process performance. Sensitivity metrics can be used to direct experimental efforts 

towards studies that will improve the estimation of the most important model parameters or will 

enhance process understanding with respect to key input variables [129, 130]. Lack of sensitivity 

to certain factors can also be informative. It may either justify reducing the uncertain input space 

(e.g. by holding these parameters constant in subsequent studies) or suggest additional parameter 

variations to capture the influence of these factors [130-132]. 
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CHAPTER II 

2. RESEARCH OBJECTIVES 

2.1. OVERALL RESEARCH AIM 

The overall objective of this work is motivated by the challenges provided in the previous 

chapter, namely the need to develop models that are computationally efficient, incorporate raw 

material properties, and are applicable to a wide of process conditions. Thus, the main objective of 

this thesis is to develop, analyze, and verify predictive phenomenological and residence time 

distribution (RTD) models that take into account granular material properties for unit operations 

in a pharmaceutical continuous direct compression (CDC) system. This objective is attained by 

completing a set of specific research aims presented in the following subsections.  

2.2. SPECIFIC RESEARCH AIMS 

2.2.1. Aim 1 

Establish a systematic approach to evaluate and integrate material property measurements 

in a newly or previously developed process model. 

Models are an essential component of the new methodology for process design in the 

pharmaceutical industry. Several efforts target developing higher dimensional, dynamic, complex 

models for process understanding. Yet, these models are inefficient for process simulation given 
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their complexity. Other efforts focus on developing steady state data driven models. These models 

often have little to no relationship to dynamic process inputs (i.e., unit conditions) and require very 

large datasets to be accurate. The efficient use of dynamic process models for continuous systems 

requires the development of low dimensional models that are able to dynamically capture process 

inputs (i.e., critical process parameters and material properties) and relate them to process variables 

and outputs (i.e., unit conditions and product quality attributes). However, a systematic 

methodology is often not well provided or summarized in the literature. Further, the use of material 

properties as predictors is scarce in the literature, given the amount of variability provided in some 

of the powder measurements 

 In this aim, the goal was to provide a framework that can be used to develop able to capture 

both process input conditions and material properties. This approach, was then evaluated and 

verified with a case study using a powder unit operation. This aim is evaluated over the course of 

Chapters III  and IV in this work. 

2.2.2. Aim 2 

Evaluate the use of material property libraries for modeling and use them to identify 

surrogate materials using statistical techniques. 

 Material properties are known to affect process performance in pharmaceutical operations, 

yet approaches to establishing the relationship between material properties and process 

performance are lacking. In this aim, the goal is to establish a relatively small material property 

library spanning a wide range of material properties and use the information developed in the 

library for modeling purposes. This aim is provided after the first aim to guide the conversation 

about the implementation of material properties in phenomenological models. The intent was to 

first attain the goal of aim 1 before proceeding to developing the material property library in this 

aim. This aim is covered in Chapter V in this work. 
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2.2.3. Aim 3 

Provide a systematic approach for developing residence time distribution (RTD) models in 

powder units and determine the impact material properties have on the measurement of the RTD. 

Similarly to the development of phenomenological models explaining the relationship 

between inputs and outputs as a function of material properties, an interest has emerged with 

regards to the development of residence time distribution (RTD) models in pharmaceutical unit 

operations. This aim focuses on providing a set of standards for performing RTD experiments as 

well as evaluate the impact material properties have on the measurement of the RTD. The overall 

goal of this aim was to provide a framework that future process developers could use to ensure the 

RTD methods, developed for liquid and gas systems, were upheld for solid systems. This aim is 

covered in Chapter VI in this work. 

2.2.4. Aim 4 

Develop a phenomenological and residence time distribution models for twin screw 

powder feeders accounting for material properties. 

Lastly, the goals of aims 1, 2, and 3 are combined into the last aim of this work, wherein a 

phenomenological and a RTD model are proposed for a unit operation in the continuous direct 

compression system: a twin screw powder feeder. The experimental characterization, model 

development, model implementation, and model evaluation are performed in the last aim as an 

overall application of the methods and techniques proposed in the previous aims. This aim is 

covered in Chapter VII in this work. 
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CHAPTER III  

3. AIM 1: APPROACH FOR DEVELOPING MODELS 

ACCOUNTING FOR MATERIAL PROPERTIES 

Acknowledgement of publication status: 
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1 Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), 
Department of Chemical and Biochemical Engineering, Rutgers, The State University of New 

Jersey, Piscataway, NJ 08854, USA. 

Further, sections of this chapter are intended for publication for a journal in conjunction with 

several sections from Chapter VII of this work. 

3.1. INTRODUCTION 

The aim of this chapter is to establish a methodology for equipment characterization whose 

objective is using experimental results to develop models that can be used to predict the unit 

operationôs behavior. This objective can be accomplished by designing experimental evaluations 

aimed at determining the effect of process and material inputs on the process outputs (i.e., 
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responses). These experimental evaluations must be performed as a series of experiments where 

the effect of process inputs (e.g., screw speed, turret rotational speed, compression force) on process 

responses is evaluated for single material. After determining the impact of process inputs on the 

system, then a second level of experimentation varying material inputs must be performed to 

understand their effect on the output.  For example, the initial goal for feeding experiments is to 

establish the effect of screw speed (i.e., a process input) on flow rate (i.e., a process output). This 

process input-output experiment can be performed for a set of materials to evaluate the effect of 

material inputs on the process. If different materials have different process outputs (i.e., responses) 

at constant process inputs, then the process is found to be dependent of material inputs. In this 

chapter, a methodology to perform these experiments is presented. 

3.2. GENERAL MODEL DEVELOPMENT FRAMEWORK 

The general strategy to analyze complex systems from a model development standpoint 

consists of a series of steps that require both observation and mathematical analysis [84, 103, 133]. 

First, a problem formulation needs to take place to understand the model objectives and evaluation 

criteria. Delineating the performance requirements, both computationally and practically, 

represents a major component in model development. Second, inspection and classification of the 

system being studied is necessary in order to decompose it into several subsystems, whose 

interactions and fundamental relationships to process outputs can be determined. Third, interactions 

between the subsystems need to be formulated as inputs or variables to a set of mathematical 

equations (i.e., models). In this step it is critical to understand the need of experimental observation 

in order to find the relationships between variables. Finding relationships between variables in most 

cases require the incorporation of coefficients, primarily if the model is data driven. Fourth, 

evaluation and verification of the model as it represents the real process is then needed in order to 

assert the model fulfill the requirements set out in the first step. Lastly, once the model is developed 
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it can be applied in accordance with the modeling goals. Continuous evaluation and verification 

with experimental data throughout its application ensures that the model will remain valid and 

relevant. This last step in some ways closes the loop for the process, as it requires the model 

development process to review the objectives and evaluation criteria set out in the first objective 

[134]. 

Given the importance of defining the problem, this work focused on defining the different 

methods for developing knowledge for a unit operation. The equipment evaluation methodology 

approach used greatly impacts the abovementioned modeling framework by providing more (or 

less) information than that needed for the process. 

3.3. EQUIPMENT EVALUATION STRATEGIES 

In previous years, pharmaceutical unit operations research has focused on performing 

equipment characterization using a formulation based approach. This approach consisted of 

studying unit operation performance for a specific ingredient (e.g., excipient, lubricant, or API), 

formulation, or around a desired process condition (e.g., throughput, scale). Although efficient for 

the early stages of continuous manufacturing, this approach does not provide sufficient information 

to process developers on instances where the process condition is changed and/or material 

properties change during the process from the original material used for characterization. These 

two situations, although uncommon in batch processes (e.g., throughput is set by scale or material 

properties are not varied during the process) is very frequently occurrent in continuous processes. 

Therefore, to address these issues a more structured and rigorous approach for equipment 

characterization based on the input or control variables that accounts for ingredient material 

properties must be implemented.  
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For the purpose of this work it is important to make a clear distinction between 

characterization and performance evaluation. Equipment characterization is, as defined here, the 

process by which we aim at understanding the unitôs fundamental behavior, or in other words how 

a unit operation behaves for a wide range of conditions. This process is tedious and aims at 

developing a clear understanding of the unit. Performance evaluation is, as defined here, a mean of 

understanding how the unit performs under a specific set of conditions or inputs. This process is 

shorter but provides a much narrower amount of information. Below we aim at explaining in further 

detail the differences between these evaluation methods. 

3.3.1. Equipment characterization 

The process of equipment characterization begins by decomposing the unit based on the 

individual inputs and outputs affecting process responses. This process requires for the unit inputs 

to be associated with a particular output and may include not only the equipment process variables, 

but also the dimensions and sensing equipment used to operate the system. For the case of a screw 

feeding unit, this process involves the deep understanding of how granular materials move in the 

hopper with the help of a bridge breaking system as well as the affect such movement has on screw 

filling and the feed factor. To achieve significant understanding it is critical to evaluate: (1) the 

hopper dimensions and shape, (2) the flow aid configuration, (3) the sensitivity and accuracy of the 

load cell where the hopper is placed over, (4) the location of the screws at the bottom of the hopper, 

and (5) the volumetric displacement and capacity of such screws (i.e., the size and shape of the 

screws and the motor used to turn such screws). All of these variables help understand how well 

the material flows out of the system, its feeding capacity, and the accuracy at which this material 

flow can be measured. In certain instances, equipment dimensions may be relegated to subsequent 

studies, given that a single unit is studied during initial characterization instances. It is important to 
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note that the characterization process is not linear in nature, and may require several iterations for 

different unit operations and equipment vendors. 

3.3.2. Performance evaluation 

Performance evaluation involves the determination of how unit operations behave under a 

particular set of experimental conditions. This type of evaluation, focuses on understanding the 

performance of the equipment given a target range of output variables (e.g., flow rate, tablet weight, 

tablet hardness). For cases relevant to the pharmaceutical industry, performance evaluation needs 

to be done at conditions that are similar to the process. For the case of feeder performance, for 

example, this means that performance evaluations need to be performed on feeders working under 

gravimetric control with some type of refill. The goal of such experimentation would be to 

determine flow rate deviations from the desired set point as well as understand its variability over 

time. If the feeding rate variability for each material is evaluated well, then a blending system can 

be tailored specifically to add the sufficient back-mixing to the incoming blend to filter out the 

variability to an almost constant mean value. However, as noted previously, the result would not 

be to establish a wide range of operation, but rather a narrow observation about the unitôs behavior 

for a particular scenario. 

3.4. MODELING APPROACH 

Information collected during equipment characterization may be used to develop models 

relating the inputs and outputs so that predictions can be made from the developed data. Several 

model types have been described in the literature to develop these input-output correlations. The 

goal of the correlations is to develop a model that predicts how different process inputs have on 

process outputs by means of a model. These input-output correlations are hereunto known as the 

unit operation process model. The effect of materials inputs may be introduced to the process model 
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as a set of categorical inputs or by means of a material model capable of relating the effect of 

material properties to the unit behavior. In conjunction with process models, material models can 

be used to predict the process outputs (i.e., responses) from the process and material inputs. 

Material property models can be further used to determine the material property effects and 

establish a range of control for the materials that can be used for this unit. 

Figure 5 shows a schematic of the relationship between the equipment, process inputs, 

process outputs, material inputs, and process and material models. 

 

Figure 5. Description of the relationship between process and material inputs on outputs and the 

implementation of models 

 As shown in Figure 5, the goal of models is to be able to predict the behavior of the unit 

and bypass (to an extend) the amount of experimentation needed. Notably, modeling provides a 

mean to evaluate the operational space for both materials and process inputs. These models may be 

used to design processes with a desired set of process outputs, effectively accomplishing the goals 

set out by QbD, wherein the process is designed with the quality of the product in mind. 
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3.5. MODEL LEVELS 

From the distinction between process and material models provided in Figure 5, three 

different levels of models emerge, each related to the amount of information needed to predict 

process outputs. In the following points, the different models and their interpretation are described 

in detail. The nomenclature introduced here is then used on this work to show how the methodology 

is implemented for the characterization and modeling of tableting and powder feeding equipment. 

1. Level 1 models: predict process outputs for set of process inputs (e.g., screw speed, 

sweeping volume, die fill depth, compression height). These types of models are often 

developed during the first stages of equipment characterization and focus solely on relating 

the effect of a single material in a unit operation. Thus, these models assume that all 

materials behave similarly to one another for a given set of process inputs. Given that this 

is rarely the case, these types of models are considered to have the least understanding of 

the unit operation and process. 

2. Level 2 models: account for the effect of different materials on the process model. 

Materials effects to the process model are typically introduced through model parameter 

calibration, wherein process outputs collected for a particular set of material inputs are used 

to regress a set of coefficients that would represent the effect of the material in the system. 

This type of parameter calibration in level 2 models remains categorical, meaning that each 

material is attributed a set of regressed parameters that would be introduced into the process 

model. The categorical nature of these models implies the material inputs are consistent 

from the property perspective, meaning these types of models assume that a material will 

not change its behavior in the system when the process inputs remain constant. This level 

of modeling is the most frequently observed for pharmaceutical unit operations given the 

challenges in establishing material property metrics to characterize materials. 
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3. Level 3 models: combine the process model with a material model to predict process 

outputs using quantitative materials descriptors. The material property model is developed 

to remove the categorical nature of the material inputs in from level 2 by providing a set of 

quantitative material property measurements (i.e., bulk density, compressibility, particle 

size) that can be associated to a particular material. The quantitative measurements can be 

used to develop a correlation between them and the regressed process model parameters 

from the Level 2. Ultimately, the material model would predict the process model 

coefficients based on the material property measurements, allowing the model to describe 

the behavior of not only those materials studied, but of other materials whose properties 

are known. Given the two model structure of this model level, this type of model is prone 

to compounding the errors between the first and second models. However, the main 

advantage is the ability to predict the behavior of a unit based on material properties, rather 

than assuming the behavior of the unit will be the same when the same name material is 

used.  

Figure 6 shows a graphical representation of the models abovementioned. Notably, the 

amount of process understanding increases as the model level increases. The prediction of process 

outputs may also greatly improve with increase model level.  

 

Figure 6. Model level categories based on the inputs described by the model 
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 The model level categories provide a mean to identify the amount of behavior capture in 

by the current version of the model. For example, if only a level 1 model is provided, it is clear that 

the effect of material properties on the system is not well understood and that this model only 

captures the effect of process inputs on the outputs. Thus, when developing complex system  

models (i.e., flowsheet models) the unit operations represented with level 1 models will be 

unaffected by changes in material properties, a scenario that must be understood beforehand by the 

model users. Following on the example, if a unit operation is modeled using a level 2 model, then 

it is understood that material properties have an observable effect in the system, yet a certain degree 

of experimentation is needed to capture the effect of these material properties. Model calibration 

must be performed in order to have these unit operation models represent the system accurately. 

Lastly, if a unit operation is represented using a level 3 model, then this can be considered to be a 

model capable of considering changes in material properties and process inputs. Using level 3 

models provides the most insight when PSE tools such as flexibility, feasibility, sensitivity analysis, 

and optimization are used. Nevertheless, these models require the most amount of work to be 

developed and are highly dependent on the range of material properties used to develop the material 

models. 

3.6. MODEL DEVELOPMENT ALGORITHM  

Based on the model classification and level designation, an algorithm to develop level 3 

models was established and presented. Based on the general model framework, predictive 

input/output relationships need to be developed to effectively model the behavior observed from a 

unit operation. Since several level 1 models have been developed over the years for pharmaceutical 

equipment, this work focuses on describing the methodology starting from the availability of a level 

1 model. Level 2 models are also frequently observed in the pharmaceutical engineering literature, 

yet they are described here to provide the readers with sufficient background for development 
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purposes. Most importantly, the means to develop level 3 models is described. To determine these 

level 3 model relationships, the following approach is proposed:  

1. Develop an experimental plan to characterize the effect that changes in the unit operating 

variables (e.g., fill cam depth, turret speed, screw speed, screw size) have on the unitôs 

responses and on the process outputs (e.g., outgoing tablets, flow rate). This experimental 

design involves the use of several materials (i.e., raw or material blends) so that the impact 

their properties (e.g., density, cohesion, flowability, compactability) on the unitôs output is 

captured. The experimental design (i.e., changes in unit operating variables) is essentially 

repeated multiple times for the different materials. 

2. A process model (i.e., level 1), can be developed from first principle mechanics, population 

balance methods, or from a simple phenomenological observation based on the results from 

the experimental data. Given the focus on maintaining simplicity for future modeling 

purposes, it is recommended that a semi-empirical phenomenological model capable of 

accounting for process variables changes in the experimental protocol is selected. 

However, regardless of how the model is developed it is important that the model is able 

to capture: (1) the process inputs evaluated in the experimental plan, (2) the process 

responses of interest, and (3) the effect of material properties.  

3. The level 1 model from step 2 should be written in a way that allows for material property 

effects to be captured through a set of parameters that can be regressed from experimental 

data. The regressed parameters, which are obtained from minimizing the sum square error 

of the model prediction and experimental data at the provided experimental conditions, can 

be made dependent of any variable except for the variables accounted in the model. Thus, 

the constant regressed for the unit operation model can be made material-dependent. For 

each experimental design, for each material, one constant parameter will be assigned, 
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creating an array between materials and their model constant values. At this stage, the 

model reaches the second level of model types described in Section 3.5. 

4. In conjunction with the experimental plan evaluations, every material tested in the must 

have its relevant material properties characterized before entering the system. This 

approach, which must be performed using standard material characterization methods, 

yields an array of materials and their properties that contextualizes the experimental planôs 

results to the materials used. Well-maintained material property libraries containing a wide 

range of properties can be used for this purpose, as they would allow for a record of the 

material properties and their variability over time. 

5. The array of regressed constants and materials from step 3 along with the material property 

list established in step 4 can be merged into a single matrix, wherein model constants are 

treated as ñmaterial propertiesò numbers for each of the components. These new ñmaterial 

propertiesò are clearly associated with the level 1 model, and thus require users to 

understand the relationship between inputs and outputs expressed in the model. 

Nevertheless, this expanded matrix, which contains the contextualized results of the model 

along with the material properties, serves as a useful tool to determine the impact of 

material properties on the model.  

6. From the array developed in step 5, the regressed unit operation model constants and 

material properties can be used to establish a correlation between the regressed coefficients 

and the property values. Essentially, the researcher would like to obviate non-numerical 

(i.e., categorical) information, as they are already accounting for the effect of the material 

by characterizing the physical behavior. Empirical models (i.e., data driven) would then be 

used to correlate the model constants to material properties; creating an equation that yields 

a given model constant value for a set of material properties. Obviously, since numerical 
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values of physical measurements depend on the units used, the correlations need to be 

contextualized in terms of units of measurement.  

7. Combining the material model developed in step 6 with the unit operations level 1 model 

developed (or selected) in step 2 would then yields a level 3 model, one that predicts unit 

behavior accounting for material property and unit operating variable inputs.  

The approached described above is summarized in Figure 7, along with the respective 

association to the aforementioned model levels. 

 

Figure 7. Model level categories based on the inputs described by the model 

This methodology, can be performed effectively to any unit operation in the system as it is 

a derivation of previously established methodologies for model development [16, 135, 136]. The 

novelty of this algorithm rests on the contextualizing of experiments by collecting the material 

properties of any component in conjunction with the experiment itself. Since granular material 














































































































































































































































































































































































































































































































