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ABSTRACT OF THE DISSERTATION
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Dissertation Director:

Xiaojun Huang

In this dessertaion, rigidity of local holomorphic maps between Hermitian symmet-
ric spaces has been studied. For local holomorphic maps from an irreducible Hermi-
tian symmetric spaces of compact type to itself, which is equipped with a canonical
Kahler-Eisntein metric, we show that every map extends to an isometry of the mani-
fold, provided that the maps satisfy a measure-preserving equation and are generically
non-degenerate. To establish the rigidity result, a notion of Serge variety and Segre
family in the algebraic setting is introduced. Before obtaining the main theorem, we
first prove a basic property for partially degenerate holomorphic maps in a general set-
ting. Then we establish the Nash-algebraicity for one of these maps by applying this
basic property. Here the explicit expression of the mimimal embedding of the manifold
into a certain projective space is essentially used. Standard monodormy argument is
then applied to show the rationality for this Nash-algebraic map. Lastly by a covering
trick we show that the map is a birational map and further an isometry. Hence by
induction, we conclude the main theorem. This thesis is based on a joint work with

Xiaojun Huang and Ming Xiao ( [FHX]).
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Chapter 1

Introduction

Rigidity properties are among the fundamental phenomena in Complex Analysis and
Geometry of several variables, that study the global extension and uniqueness for var-
ious holomorphic objects up to certain group actions. The rigidity problem that we
consider here was initiated by a celebrated paper of Calabi [Cal. In [Cal, Calabi studied
the global holomorphic extension and uniqueness (up to the action of the holomorphic
isometric group of the target space) for a local holomorphic isometric embedding from
a Kéahler manifold into a complex space form. He established the global extension and
the Bonnet type rigidity theorem for a local holomorphic isometric embedding from a
complex manifold with a real analytic Kdhler metric into a standard complex space
form. The phenomenon discovered by Calabi [Ca] has been further explored in the
past several decades due to its extensive connection with problems in Analysis and
Geometry. (See [U] [DL] [DL1], for instance).

In 2004, motivated by the modularity problem of the algebraic correspondences in
algebraic number theory, Clozel and Ullmo |[CU| were led to study the rigidity problems
for local holomorphic isometric maps and even much more general volume-preserving
maps between bounded symmetric domains equipped with their Bergman metrics. By
reducing the modularity problem to the rigidity problem for local holomorphic isome-
tries, Clozel-Ullmo proved that an algebraic correspondence in the quotient of a bounded
symmetric domain preserving the Bergman metric has to be a modular correspondence
in the case of the unit disc in the complex plane and in the case of bounded symmetric
domains of rank > 2. Notice that in the one dimensional setting, volume preserving
maps are identical to the metric preserving maps. Thus the Clozel-Ullmo result also

applies to the volume preserving algebraic correspondences in the lowest dimensional



case.

Motivated by the work in [CU|, Mok carried out a systematic study of the rigidity
problem for local isometric embeddings in a very general setting. Mok in [Mo2] [Mo3]
[Mo4] proved the total geodesy for a local holomorphic isometric embedding between
bounded symmetric domains D and Q when either (i) the rank of each irreducible
component of D is at least two or (ii) D = B™ and Q@ = (B")? for n > 2. In a
paper of Yuan-Zhang [YZ], the total geodesy is obtained in the case of D = B"™ and
Q =BM x ... x B™ with n > 2 and N; arbitrary for 1 <[ < p. Earlier, Ng in |[Ng2]
had established a similar result when p = 2 and 2 <n < Ny, N» < 2n — 1. Notice that
when D = A is the unit disc in the complex plane, the total geodesy fails due to the
existence of the following p—th root embedding constructed by Mok in [Mo4]. Let H

be the upper half plane and HP = H X --- x H be the Cartesian product of H. Define

0p(7) = (17,475, AP~ D),

V=1rn 1 1 V=16 . \/T@ .
where y = e » and 77 =rre » if 7 =rev—" for 6 € (0,7). Then 6, is a non-

totally geodesic holomorphic isometry. Later certain classification results have been
obtained for the holomorphic isometries from A to AP by [Ng| and [Ch|. Around
2016, [CM], [UWZ] and [XY] studied the holomorphic isometries from unit ball B™ to
type IV classical domains.

In a paper of X. Huang and Y. Yuan |[HY1], the rigidity result has been established
for local holomorphic isometric embeddings from a Hermitian symmetric space of com-
pact type into the product of Hermitian symmetric spaces of compact type with even
negative conformal factors where certain non-cancellation property for the conformal
factors holds. (This cancellation condition turns out be the necessary and sufficient
condition for the rigidity to hold due to the presence of negative conformal factors.)
In a recent paper of Ebenfelt [E], a certain classification, as well as its connection
with problems in CR geometry, has been studied for local isometric maps when the
cancellation property fails to hold. The recent paper of Yuan [Y] studied the rigidi-
ty problem for local holomorphic maps preserving the (p,p)-forms between Hermitian

symmetric spaces of non-compact type. We also mention other related studies for the



rigidity of holomorphic mappings, such as the ones by Huang [Hul| [Hu2|, Ji [Ji], Kim-
Zaitsev |KZ], Mok [Mol| [Mo5], Mok-Ng [MN1], Ng [Ngl| [Ng2|, and many references
therein, to name a few.

The work of Clozel and Ullmo has left open an important question of understand-
ing the modularity problem for volume-preserving correspondences in the quotient of
Hermitian symmetric spaces of higher dimension equipped with their Bergman metrics.
In 2012, Mok and Ng answered, in the affirmative, the question of Clozel and Ullmo
in [MN] by establishing the rigidity property for local holomorphic volume preserving
maps from an irreducible Hermitian manifold of non-compact type into its Cartesian
products.

In a joint work with X. Huang and M. Xiao |[FHX], we continued the above men-
tioned investigations, especially those in |CU|, [MN] and [HY1], and established the
following result.

Let M be an irreducible n—dimensional Hermitian symmetric space of compact
type, equipped with a canonical Kahler-Einstein metric w. Write w” for the associated
volume form (up to a positive constant depending only on n). We showed that the
following Clozel-Ullmo and Mok-Ng type theorem holds for local measure preserving

maps between Hermitian symmetric spaces of compact type:

Theorem 1.1. ( [FHX|) Let (M,w) be an irreducible n—dimensional Hermitian sym-
metric space of compact type as above. Let F' = (F1, ..., Fy,) be a holomorphic mapping
from a connected open subset U C M into the m-Cartesian product M X ... x M of M.
Assume that each F} is generically non-degenerate in the sense that F;‘(w”) % 0 over
U. Assume that F satisfies the following volume-preserving (or measure-preserving)

equation:
m
w" = Z N FF (W), (1.1)
i=1

or certain constants A; > 0. Then for each j with 1 < j < m, F; extends to a holo-
J J J

morphic isometry of (M,w). In particular, the conformal factors satisfy the identity:

Z;‘n:1 Aj =1



Notice that in the Riemann sphere setting, Theorem [I.1] also follows from the i-
sometric rigidity result obtained in [HY1|. However, the basic approach in [FHX]
fundamentally differs from that in [HY1]. The method used in [HY1] is to first obtain
the result in the simplest projective space setting and then use the minimal rational
curves to reduce the general case to the much simpler projective space case. On the
other hand, restrictions of volume preserving maps are no longer volume preserving
and thus the reduction method in [HY1] can not be applied here. The approach we
will present here is first to establish general results under certain geometric and analyt-
ic assumptions (i.e., Proposition (I)-(III)) and then verify that these assumptions are
automatically satisfied based on a case by case argument in terms of the type of the

Hermitian space.



Chapter 2

Irreducible Hermitian symmetric spaces and their Segre

varieties in the minimal embeddings

2.1 Segre varieties of projective subvarieties

Write 2 = (21, , 2n, Znt1) for the coordinates of C*"*! and [2] = [z1, -, 2Zn, Zni1]
for the homogeneous coordinates of CP". For a polynomial p(z), we define p(z) :=
@. For a connected projective variety V' C CP", write Zy for the ideal consisting
of homogeneous polynomials in z that vanish on V. We define the conjugate variety
V* of V to be the projective variety defined by Zy, := {f: f € Iy}. Apparently the
map z — z defines a diffeomorphism from V to V*. When Zy has a basis consisting
of polynomials with real coefficients, V* = V. Also if V is irreducible and has a
smooth piece parametrized by a neighborhood of the origin of a complex Euclidean
space through polynomials with real coefficients, then V* = V.

Next for [£] € V*, we define the Segre variety Q¢ of V associated with £ by Q¢ =
{[z] eV : Z;Lill zj&€; = 0} which is a subvariety of codimension one in V. Similarly, for
[2] € V, we define the Segre variety Q% of V* associated with z by Q% = {[¢{] € V* :
Z?;l z;&; = 0}. It is clear that [2] € Q¢ if and only if [¢] € Q}. The Segre family of V'
is defined to be the projective variety M := {([z], [{]) € V x V¥, [z] € Q¢}.

Now, we let (M,w) be an irreducible Hermitian symmetric space of compact type
canonically embedded in a certain minimal projective space CPY, that we will describe
in detail later in this chapter. Then under this embedding, its conjugate space M* is
just M itself. Taking w to be the natural restriction of the Fubini-Study metric to M,
the holomorphic isometric group of M is then the restriction of a certain subgroup of

the unitary actions of the ambient space. Now, for two points p1,p2 € M, let U be an

(N +1) x (N + 1) unitary matrix such that o([z]) = [z] - U is an isometry sending p;



to p2. Then o*([£]) = [€]U is an isometry of M*. By a straightforward verification,
we see that ¢* biholomorphically sends (), to Qp,. Similarly, for any q1,q2 € M™,
Qg4 is unitary equivalent to 4,. In the canonical embeddings which we will describe
later, the hyperplane section at infinity of the manifold is a Segre variety. Since the one
at infinity is built up from Schubert cells and all Segre varieties are holomorphically
equivalent to each other, one deduces that each Segre variety of M is irreducible. This

fact will play a role in the proof of our main theorem.

2.2 Canonical embeddings and explicit coordinate functions

We now describe a special type of canonical embedding of the Hermitian symmetric
space M of compact type into CPY. This embedding will play a crucial role in our
computation leading to the proof of Theorem See [He] for the classification of the
irreducible Hermitian symmetric spaces of compact type. See also |[Lol], |[Lo2] on the
typical canonical embeddings of the Heritian symmetric spaces of compact type and
the related theory of Hermitian positive Jordan triple system.

&1. Grassmannians (spaces of type I): Write G(p,q) for the Grassmannian space
consisting of p planes in CP*9. (Since G(p, q) is biholomorphically equivalent to G(q, p),
we will assume p < ¢ in what follows).

There is a matrix representation of G(p, q) as the equivalence classes of p X (p + q)
non-degenerate matrices under the matrix multiplication from the left by elements
of GL(p,C). A Zariski open affine chart A for G(p,q) is identified with CP? with

coordinates Z for elements of the form:

1 00 --- 0 211 212t Zlg
01 0 0 Z91 k99 qu

(Ipxp Z) = , where Z is a p X ¢ matrix.
0 0 0 -+ 1 2p1 2zp2 -+ 2Zpg

The Pliicker embedding G(p, ¢) — CP(APCP*9) is given by mapping the p—plane A
spanned by vectors v1, ..., v, € CPT? into the wedge product v; A vg A ... Av, € APCPTY,

The action induced by the multiplication through elements of SU(p+ ¢) from the right



induces a unitary action in the embedded ambient projective space. In homogenous
coordinates, the embedding is given by the p X p minors of the p X (p 4 ¢) matrices (up
to a sign). More specifically, in the above local affine chart, we have the following (up

to a sign in front of the components):

zomzt M (2.1)

JU o Jk
which is denoted for simplicity of notation, in what follows, by [1,7,] = [1, 11, ¥, ..., ¥N] .

ik
) is the determinant of the submatrix of Z
JU e Jk
formed by its itlh, ey i}ch rows and jﬁh, e j,tgh columns, where the indices run through

{
Here and in what follows, Z( '

Ek=1,2...p,1<i1 <io< .. <ip <p,1<j1 <joa<...<Jjr <q.

A1
Notice that when k =1, Z( ) = z;,,-
J1

Notice that under such an embedding into the projective space, (G(p,q))* = G(p, q).

We thus have the same affine coordinates for (G(p, q))*:

1 00 -+ 0 &1 &2 - &y
~ 001 0 -+ 0 & & - o - .
(Ipxp :) = , = 1is a p X q matrix.
000 - 1 &1 &o - &g

By the definition in § it follows that the restriction of the Segre family to

the product of these Zariski open affine subsets has the following canonical defining

function:
(S T VA S R 73
=1+ Szt et (2.2)
1<ip<io<..<ig<p, J1 - Jk Ju - Jk
1Sj12j21<~~<jkﬁq
=1,-.5P

Here z = (211, 212, .., 2pg), § = (&11,&12, ..., &pg). For simplicity of notation and termi-
nology, we call this quasi-projective algebraic variety embedded in CP4 x CP9; which is

defined by (2.2)), the Segre family of G(p,q). Our defining function p(z,§) of the Segre



family is closely related to the generic norm of the corresponding Hermitian positive

Jordan triple system(cf. [Lol|, [Lo2]).

&2. Orthogonal Grassmannians (type II): Write Grr(n,n) for the submanifold of
the Grassmannian G/(n, n) consisting of isotropic n-dimensional subspaces of C2". Then

S € Grr(n,n) if and only if

{0 L) -
S 8T =o. (2.3)
Inxn 0

In the aforementioned open affine piece of the Grassmannian G(n,n) with S = (1,9),

S € Grr(n,n) if and only if S is an n X n antisymmetric matrix. We identify this open

n(n—1)

affine chart A of Gy7(n,n) with C through the holomorphic coordinate map:

100 --- 0 O Z12 cc ZIn
010 --- 0 —Z12 0 ot Z29n
(Inxn Z) = - (2127"'2(7171)71)'
000 --+ 1 —z1p —29p --- 0
(2.4)
Later in the paper we will sometimes use the notation z;; :== —z;; if j > 7 for this type

IT case. The Pliicker embedding of G(n,n) gives a 2-canonical embedding of Grr(n,n).
Unfortunately this embedding is not good enough for our purposes later. Therefore, we
will use a different embedding in this paper, which is given by the spin representation
of Og,. This embedding is what is called a one-canonical embedding of Grr(n,n). We
briefly describe this embedding as following. More details can be found in [Chapter 12;
PS].

Let V be a real vector space of dimension 2n with a given inner product, and let
K(V') be the space consisting of all orthogonal complex structures on V preserving this
inner product. An element of (V) is a linear orthogonal transformation J : V —
V such that J?> = —1. Any two choices of J are conjugate in the orthogonal group
O(V) = Ogy, and thus (V) can be identified with the homogeneous space Oz, /U,.
On the other hand, there is a one-to-one correspondence assigning the complex J to a

complex n-dimensional isotropic subspace W of V(= V @ C). K£(V') has two connected



components K4 (V) : Noticing that any complex structure defines an orientation on V/,
these two components correspond to the two possible orientations on V. Write one for
K4 (V), which is actually our Grr(n,n).

Now fix an isotropic n-dimensional subspace W C V¢ with the associated complex
structure J of V¢ and pick a basis for V: {1, ..., Zn, Y1, ..., yn } With J(z;) = vi, J(v;) =
—x;. Then W is spanned by {x; — \/jlyi}?zl. Define W to be the space spanned
by {z; + v—1y;}?_,. As shown in [PS], there is a holomorphic embedding (V) <
CP(A(W)), where A(W) is the exterior algebra of W. This embedding is equivariant
under the action of O(V'). Thus K, (V) — CP(A(W)) is equivariant under SO(V).
Choose the open affine cell of K4 (V) such that {Y € K. (V)|[Y "W = &}. Then it can
be identified with (2.4).

We next describe the 1-canonical embedding by Pfaffians as following:

Let II be the set of all partitions of {1,2,...,2n} into pairs without regard to order.

An element « € II can be written as

o = {('hujl)v (7;27j2)a ey (Zm]n)}

with i, < jp and 11 < ig < ... < iy. Let

1 2 3 4 ... 2n
i1 J1 2 J2 - Jn
be the corresponding permutation. Given a partition o as above and a (2n) x (2n)

matrix A = (a;i) , define
Ao = sgn(m) iy jy Qigjy ** * Qi

The Pfaffian of A is then given by

pf(A) = ) A

acll

The Pfaffian of an m x m skew-symmetric matrix for m odd is defined to be zero.

Therefore in the coordinate system ([2.4)), the embedding of A is given by

[, pE(Zy), . (2.5)
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Write Sy, for the collection of all subsets of {1, ..., n} with k elements. The o in (2.5)) runs

through all elements of Sy with 2 < k < mn and k even. For 0 = {i; < -+ < iy}, Z, is

11 ... Ik
defined as the submatrix Z(

). For instance, (pf(Zs)),es, = (2125 Z(n—1)n)-
1 ... ’Lk
We also write (2.5) as [1,7.] = [1,%1,2, ..., ¥n] for simplicity of notation. We choose

*

the local coordinates for (Grr(n,n))* in a similar way

100 ---0 O 12 - &in
010 -0 =&2 0 - &y
(Inxn 5) = (2.6)

The defining function for the Segre family (in the product of such affine pieces) is given
by
p(z,§) =1+ > Pi(Z,)Pf(E,). (2.7)
o€ESy,
2<k<n,2|k
&3. Symplectic Grassmannians (type III): Write Grrr(n,n) for the submanifold of
the Grassmannian space G(n,n) defined as follows: Take the matrix representation of

each element of the Grassmannian G(n,n) as an n x 2n non-degenerate matrix. Then

Ac Grrr(n,n), if and only if,

~ 0 I -
A AT <o, (2.8)
_Inxn 0
In the Zariski open affine piece of the Grassmannian G(n,n) defined before, we can take
a representative matrix of the form: A = (I, Z). Then we conclude that A € Gy77(n,n)

if and only if Z is an n x n symmetric matrix. We identify this Zariski open affine chart

n(n+1)
A of Grrr(n,n) with C 5 through the holomorphic coordinate map:

100 --- 0 211 R12 ' Zln

~ o010 ---0 Z12 2922t Z9n

A - (Ian Z) = — (2117 e 7znn)-
00 0 --- 1 z1p 22n - Znnm

Later in the paper we will sometimes use the notation zj; := z; if j > 7 for this type

III case. Through the Pliicker embedding of the Grassmannian G(n,n), Grrr(n,n) is
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embedded into CP(A™C?")(=2 CPY"). In the above local coordinates, we write down

the embedding as (up to a sign)

i i
Z =1, Z( )y ] =1, ] (2.9)
Juoee Jk

Choose the local affine open piece of (Grrr(n,n))* consisting of elements in the following

form:
1 00 --- 0 &1 &2 -+ &in
_ 010 -+ 0 &2 &2 -+ &
(Inxn :*) =

The defining function of Segre family in the product of such affine open pieces is given

by
(5 WU TA S T 78
p(z,6) =1+ > A )E( ) (2.10)
1<i1<in<..<ix<n, J1 - Jk J1 - Jk
1§j1ij21<~-<jk§n
=1,...,n

However the Pliicker embedding is not a useful canonical embedding to us for Grrr(n,n),
due to the fact that {¢;} is not a linearly independent system. For instance, we have

the following relation:
Z +Z =7

This embedding can not serve our purposes here. We therefore derive from this
embedding a minimal embedding into a certain projective subspace in CP(A"C?")(=
cpV *). We denote this minimal projective subspace by H = CP¥, which is discussed
in detail below. We notice that the embedding Grrr(n,n) — CPV is equivariant under
the transitive action of Sp(n).

Following the notations we set up in the Grassmannian case, we write [1, 91, - - - ¥ n+]
for the map of the Pliicker embedding into CPY". Write (¢;,, ..., wimk) for those com-
ponents of degree k in z among {lbj};'vz*l- Here 1 < k <mn, and {i1, ..., im, } depends on

k. For instance, if £k = 1, then

(wila "'7’(7Z}im1) — (lea ceey Znn)a
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where z;; is repeated twice if ¢ # j.
Let {wyc), e v¢r(:;)} be a maximally linearly independent subset of {¢;,, ...,wimk}

over R (and thus also over C). For instance,
1 1
i, ol = {abis-

Let Aj be the mj x mj matrix such that (wil,---iﬁimk) = (wyc),---w(k)) - Ag.

M
my

Apparently Ay has real entries and is of full rank. Hence Ay, - AZ is positive definite.

Then {¢7, -+, YN} = {¢§k)’ e »7/17(:%}131991 forms a basis of {1, -1¥n+}, where
N =mj + ... +m},. Moreover, if we write A as the (m} + ... + m}) x (m1 + ... + my,)

matrix:

Ay

An

Then A has full rank and we have a real orthogonal matrix U such that
Ui 1
U= , UYA-AHYU = with each p; > 0.
Un UN

Here Up,1 < k < n, is an mj x mj, orthogonal matrix. Now we define

VH1
_ _ v K2
(V1 ooy Py Ty ooy Wy oo WP O 00™) = (0, 08U

VHUN
Here N1 + ...+ Np_1 + N,, = N*, where we set N, = 1. We will also sometimes write

n —_ n 3
YN, = ¢¥". As a direct consequence,

1 1 2 2 —1 —1 1 2 —1 -1 n
(djla"'771Z)N1717Z}17"'a¢N27"'7 ;L AR ]T\L[n717¢n).(w%"“717&]1\[1’1]&%,”.711}]2\[2’.”’ ? PERES) Kfnilad)n)

= (Y1, Ne) - (1, Pn-) = det(I + ZZ) = p(z,%).
(2.11)

Moreover {1}, ...,1/)]1\,1,1/1%, ...,1#]2\,2, - ’f_l, - ]’"\‘,:1,1/1”} forms a linearly indepen-

dent system; and {¢¥, ...,wjli,k} are polynomials in z of degree k for k = 1,...,n. Now



13

our canonical embedding of the aforementioned affine piece A of Grrr(n,n) is taken as

n(n+1)

ZE(C 2 _> [17¢%7""¢}V1’¢%7“‘?¢]2V27"‘7 ?717"‘7 ]ﬂ\};}l’wn]
For simplicity, we will still denote (¢1, ..., 1k, ¥, ..., 3, o 071 R 00") by

rz:(¢1,¢2,...,¢N):(z/;%,...,¢}Vl,¢%,...,¢§v2,,,,7 el "Zflﬂﬁ”)' (2.12)

Here, for instance, (Y1, ..., Ynm+1)) = (Y1, ,¢}Vl) = (aijzij)1<i<j<n, Where a;; equals
2

to 1if i = j, equals to v/2 if i < j. Hence the defining function of the Segre family,
which is the same as ([2.10), is given by p(z,&) = 1 4+ SN | ¢hi(2)1hi(€).

&4. Hyperquadrics (type IV): Let Q™ be the hypersurface in CP"*! defined by
n
{[xg, vy 1] € CPPTL Zx? — 200Tpt1 = 0} )

i=1
where [z1, ..., T, 1 2] are the homogeneous coordinates for CP" !, It is invariant under the
action of the group SO(n+2). We mention that under the present embedding, the action
is not the standard SO(n + 2) in GL(n + 2). However it is conjugate to the standard
SO(n+2) action by a certain element g € U(n+2). An Zariski open affine piece A C Q"
identified with C™ is given by (21, ..., 2n) — [1, U1, ..., Upi1] = [1,217--~7Zn,%2?:1 22],
which will be denoted by [1,7.] = [1,%1, %2, ..., ¥nt1]. Choose the same local chart for
QM)+ (&1, &n) = [1,&1, ., &n, 5 D011 €2]. Then the defining function of the Segre

family restricted to C" x C" < Q™ x (Q™)* is given by

o8 =1+ a6+ (D) (213)
=1 =1 =1

&5. The exceptional manifold Mg := Eg/SO(10) x SO(2) : As shown in [IM1],
[IM2], this exceptional Hermitian symmetric space can be realize as the Cayley plane.

Take the exceptional 3 x 3 complex Jordan algebra

c1 T3 X2
J3(0) = Tg ¢ 11| :6€Cuae0)= Cc?, (2.14)
To T1 C3

Here O is the complexified algebra of octonions, which is a complex vector space of

dimension 8. Denote a standard basis of O by {ey, €1, ..., er}. The multiplication rule
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in terms of this basis is given in the next section. The conjugation operator appeared
in (2.14) is for octonions, which is defined as follows: T = xpe; — r1€1 — ... — x7ey, if
T = xoeg +x1e1 + xoes + ... + xrer, x; € C. Moreover under this basis, the isomorphism

J3(0) =2 C?7 is realized by identifying each matrix

& on K
X=|n & 7| €T30
k T &
with the point (&1,&2,£3,70, 71, ..., 07, K0y K2, + -, K7,T0, T1, - -, T7) € C?7, where n =
22-7:0 Ni€i, k = Ei?:(] Kkie; and T = ZZ:O Tie;.

The Jordan multiplication is defined as Ao B = $(AB+BA) for A, B € J5(0) . The
subgroup SL(0) of GL(J3(0)) consisting of automorphisms preserving the determinant
is the adjoint group of type Eg. The action of Eg on the projectivization CPJ3(0) has
exactly three orbits: the complement of the determinantal hypersurface, the regular
part of this hypersurface, and its singular part which is the closed Eg—orbit. The
closed orbit is the Cayley plane or the hermitian symmetric space of compact type

corresponding to Fg. It can be defined by the quadratic equation
X% =trace(X)X, X € J53(0),

or as the closure of the affine cell A

1 = y
@]P’%: T T yT cx,y €0 ~ 16
Yy Ty yy

in the local coordinates (zg, x1, ..., 7, Yo, ..., y7). The precise formula for the canonical
embedding map is given in§ We denote this embedding by [1,r.] = [1, 1, Y2, ..., UN] .

To find the defining function for its Segre family over the product of such stan-
dard affine sets, we choose local coordinates for the conjugate Cayley plane to be

(KO, K1y +eey K7,105 M5 -, 7). Then

7 7 7
p(Z, 6) = 1+Z xz’%—l_z yl772+2 AZ($7 y)Al(’% 77)+B[)(I‘, y)BO(K7 77)+Bl ($7 y)Bl(H7 77)7
=0 =0 =0

(2.15)
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where A;, B; are defined as in § 2= (20 ey 7, Y0y -y Y7) ANA & = (KO, wvey K7, 10y -y N7)-

&6. The other exceptional manifold Moy = E7/Eg x SO(2) : As shown in |[CMP], it

can be realized as the Freudenthal variety. Consider the Zorn algebra

2,(0) = @@j3(@) @53(@) @(C

One can prove that there exists an action of E7 on that 56—dimensional vector space (see
[Fr]). The closed Ey—orbit inside CPZ5(0) is the Freudenthal variety E7/Eg x SO(2).
An affine cell A of Freudenthal variety is [1, X, Com(X), det(X)] € CPZ5(0). Here X
belongs to J3(0); Com(X) is the comatrix of X such that X Com(X) = det(X)I under
the usual matrix multiplication rule. Notice that Com(X) = X x X, where X x X is

the Freudenthal multiplication defined as follows (see |O]):
1
XxX:=X?—tr(X)X + §(tr(X)2 —tr(X%)I.

For explicit expressions for X x X and det(X) in terms of the entries of X, see §
The embedding of E7/Eg x SO(2) — CPY in local coordinates z is given in §

Choose the local affine open piece for (E7/Eg x SO(2))* with coordinates

6 = (6135276377703 -y N7y KOs -+ K7, 70, "'77_7)‘

We denote this embedding by [1,r.] = [1,%1, %2, ...,¥n] . The defining function for the

Segre family is then p(z,£) =1+ 17, - r¢, where

Ty = (331737275537?107 ---73/77t0; ...,t7,’LU(), -y W1, A(Z)7 B(Z)v C(Z)7D0(Z)7 "'D7(Z)7

E()(Z), veey E7(2), F()(Z), ceny F7(Z), G(Z))
(2.16)

re = (V1(£),¥2(8), s UN (&) = (§1,€2,€3,105 -+ M75 K0y -0y K75 T05 0, T,
A(ﬁ)vB(é)’C(é-%DO(f)aaD7(€)aE0(§)vaE7(£)7FU(€)7)F7(£)7G(€))

See § for the definition of the functions appeared in the formula.

Summarizing the above, for each irreducible Hermitian symmetric space of compact
type M of dimension n, we now have described a canonical embedding from M into
a projective space PV, which restricted to a certain Zariski open affine piece A holomor-

phically equivalent to C" takes the form: z(€ C") > [1, k121, , KiZi, -, KnZn, O(22)].
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Here k; = 1 for all i except in the case of type III where k; can be 1 or v/2. This is
the embedding we will use in later discussions. Notice in our embedding, the conjugate
space M™ is the same as M. For simplicity of notation, we will also write M for the
restriction of the Segre family of M restricted to A x A* = C™ x C™.

From this embedding and the invariant property of Segre varieties, we immediately

conclude the following:

Lemma 2.1. Assume A and B are two distinct points of M. Then their associated

Segre varieties are different, namely, Q4 # QB.

Proof of Lemma Since the holomorphic isometric group acts transitively on M,
we can assume A = (0,0, ...,0) € C" =2 A C M. Therefore Q) 4 is the hyperplane section
of M — PV at infinity, namely, Q4 = M\ A. Now if B € A, because B # (0,0, ...,0),
there are non-trivial linear terms in the defining function of Q5. This leads to the fact
that the defining function of @ p has to be a non-constant polynomial in C[¢1, ..., &,].
Therefore Qg N C™ # () and thus does not coincide with Q4. If B € M\ A, by the
symmetric property of Segre varieties, we have (0,...,0) € Qp. Therefore Qp # Q4.
We then arrive at the conclusion. W

Finally, since in our setting, M* = M and the Segre family on M and M* are the
same. For simplicity of notation, we do not distinguish, in what follows, @* and M*

from @ and M, respectively.

2.3 Explicit expression of the volume forms

From now on, we assume that M is an irreducible Hermitian symmetric space of com-
pact type and we choose the canonical embedding M < CPY as described in §
according to its type. We denote the metric on M induced from Fubini-Study of CP¥
by w, and the volume form by du = w™ (up to a positive constant). Notice that the
metric we obtained is always invariant under the action of a certain transitive subgroup
G C Aut(M) (which comes from the restriction of a subgroup of the unitary group of
the ambient projective space). Hence by a theorem of Wolf [W], w is the unique G in-

variant metric on M up to a scale. We claim w must be Kahler-Einstein. Indeed, since
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the Ricci form Ric(w) of w is invariant under G, for a small €, w+ €Ric(w) is thus also a
G invariant metric on M. By |[W], it is a multiple of w, and thus Ric(w) = Aw. Write du
as the product of V' and the standard Euclidean volume form over the affine subspace
A, where V is a positive function in z. Since Ric(w) = —iddlogV, —iddlogV = Iw.
Notice that A > 0. In the local affine open piece A defined before, w = iddlog p(z, 2),
where p(z,€) is the defining function for the associated Segre family. As we will see

later (§7), p(z,€) is an irreducible polynomial in (z,£). Then we have

d2dlog(Vp(z,2)*) = 0.

Hence, log(Vp(z,2)*) = ¢(2) + 9(z), where both ¢ and v are holomorphic functions.

Therefore V = %. Because p(z, &) is an irreducible polynomial, from the way V'
is defined, V must be a rational function of the form % with p, p relatively prime to

each other. Since ¢, 1) are globally defined, by a monodromy argument, it is clear that
X has to be an integer. Also both e?(®*) and e¥© must be rational functions. Again,
since ¢, v are also globally defined, this forces ¢, ¥ to be constant functions. Therefore,
we conclude that

V =cp(z,2)" (2.17)

Here X is a certain positive integer and c is a positive constant. Next by a well-known
result (see [BaMa)), two K&hler-Einstein metrics of M are different by an automorphism
of M (up to a positive scalar multiple). Therefore, to prove Theorem |L.1} we can assume,
without loss of generality, that the Kéhler-Einstein metric in Theorem is the metric
obtained by restricting the Fubini-Study metric to M through the embedding described

in this section.

2.4 Appendix: Affine cell coordinate functions for two exceptional

classes of the Hermitian symmetric spaces of compact type

Define the multiplication law of octonions with the standard basis {eg = 1,e1,--- ,e7}

by the following table:
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&1. Case Mig: Define
:L‘ - (xoﬂxlﬁx27$37x47$57l‘6’x7)’

y = (Y0, Y1, Y2, Y35 Y4, Y5, Y6, Y7)-

Define A;(z,y),j =0,...,7, such that

7

7
(x,y)ej, where x = E xje; and y = E yje;j.
7=0 7=0

Define Bj(x,y),j = 0,1 such that

M\]

xZ = Bo(z,y)eo and yy = Bi(z,y)eo

Exploiting the multiplication law of octonions, we have the following formulas:

Ag= Ao(z,y) = YoTo + Y121 + Y22 + Y3T3 + YaTs + YsT5 + YeTe + Y77,
Ay = Ai(z,y) = — Yor1+y1T0 — YaTa + YaT2 — Y3T7 + Y773 — Y576 + Y6Ts5,
Ag = Ag(z,y) = — yoT2 + Y270 — YaT1 + Y174 — Y3T5 + YsT3 — YeT7 + Y76,
Az = Az(z,y) = — wyor3+y3To + Y177 — Y771 + Y2T5 — YsT2 — YaTe + Y6T4,
Ay = Au(z,y) = — YoTa+yaTo — Y172 + Y271 + Y3T6 — Y6T3 — Y577 + Y7T5,
As = As(z,y) = — o5 + Y570 + Y176 — Y6T1 — Y273 + Y3T2 + YaT7 — Y774,
Ag = As(z,y) = — yoTe + Y6To — Y175 + Y571 + Y27 — Y7T2 — Y3T4 + YaT3,
A7 = A7(z,y) = — Yorr +yrTo — Y173 + Y3T1 — YaTe + YeT2 — YaT5 + YsTa,
By = By(z.y) = TG + @t + @) + @3+ xf + af + ag + af,

By = Bi(z,y) = Yo+ UL+ Y5 3+ Yl T uE + Y+ v

Then the embedding functions of a Zariski open subset A, which is identified with
with coordinates z := (zg, -, 27,90, " ,Yy7), of Mg := W into CP?¢

given by:

= (1,20, 21, T2, T3, T4, T5, T6, L7, Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Ao, A1, Az, As, Ay, As, Ag, A7, By, B1).

€1 €2 €4 €7 €3 €6 €5
er | —1 eq | —eo | —e3 | er | —es | €5
es | —eq | —1 el —eg | es e7 | —es
e4 | es —e1 | —1 | —e5 | —eg | e3 er7
er | e3 eg es —1 | —e1 | —es | —eq
€3 —e7 | —€5 €g €1 -1 —€4 €2
€6 €5 —e7 —€3 €9 €4 -1 —€1
€5 —€g €3 —e7 €4 —€9 €1 -1
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&2. Case Ma7: Similarly we define

x = (1,22, 23),

y = (Y0,Y1,Y2,Y3,Y4, Y5, Y6, Y1),
t = (to,t1,ta,t3,tq,ts5,t6, t7),
w = (wo, w1, wa, w3, Wy, Ws, We, WT).

Define functions A, B,C, Dy, ...,D7, Ey...,E7, Fy. .., Fr and G such that,
A D
B

Com(X)=XxX=|D , G =det(X),

Bl
Q = o

E

where D = 2]7-:0 Djej, E = 237.:0 Ejej, F = 237.:0 Fje; and the matrix X correspond-

ing to the point (z,y,t,w) € C*7 is given by

T, oy t
X=|7 x2 w € J3(0).
t W x3

Recall the formulas in |O], we have

Torz —wWW Wt—x3y Yw — Tl
XxX=| wt—ax3y ax301—tt §—zw | €T3(0),

yw — w2t ty — W 2172 — YY
det(X) = r1w0w3 — 21WW — wott — 23yY + 2R (wity),

where R¢(z) = x¢ for any z = ZZ:O zie; € O.
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By further computation, we have the explicit expressions as follows:

A=

B

C =

Dy
D,
Do

>

Az, y,t,w)
= B(z,y,t,w)
C(x,y,t,w)
Do(z,y,t,w)
Dy(z,y,t,w)
Ds(z,y,t,w)
Ds(z,y,t,w)
Dy(z,y,t,w)
Ds(z,y,t,w)
Dg(z,y,t,w)
D7 (z,y,t,w)
Eo(z,y,t,w)
Ey(z,y,t,w)
Es(x,y,t,w)
E3(z,y,t,w)
Ey(z,y,t,w)
Es(x,y,t,w)
Eg(2,y,t,w)
Er(z,y,t,w)
Fo(z,y,t,w)
Fi(z,y,t,w)
Fy(2,y,t,w)
Fs(z,y,t,w)
Fy(z,y,t,w)
Fs5(z,y,t,w)
Fo(z,y,t,w)
Fr(z,y,t,w)

Tor3 — (Wi + Wi + Wi + w? + wi + w? + wE + w?),
miws — (B + 8+ 83+ 83+ + 12+t +t2),
w1y — (Y + yT + 93 + Y5 +yi +y3 + ug +vi),
towp + t1wr + tows + t3ws + tywy + tsws + tewe + trwr — x3Yo,
towr + tiwo — tows + tywr — tawr + trws — tswe + Lews — T3Y1,
tows + towp — tawr + t1wa — t3ws + tsws — tewr + trwe — X3Y2,
tows + t3wo + tiwy — trwy + taws — tswa — tawe + tewa — T3Y3,
tows + tawo — tiwz + tawr + taws — lews — lswr + Lrws — T3y4,
tows + tswo + tiwg — tew1 — taws + t3wa + tywy — trws — X3Ys5,
towe + tewo — t1ws + tswi + tawr — trwa — taws + taws — x3Ye,
towr + trwo — tiws + tawr — taws + lewe — laws + Lswa — x3Yy7,
Yowo — Y1W1 — YaWw2 — Y3w3 — Yawq — Ysws — Yewe — Yrwr — T2lo,
Yow1 + y1wo + Yowa — Yawr + Yswr — Y7ws + Yswe — Yews — Lati,
Yowz + Yawo + Yaw1 — Y1wa + Y3ws — Ysws + Yewr — Yrwe — Tat,
Yows + Y3wo — Y1wr + Yrwi — Yaws + Yswa + Yawe — Yewa — T2l3,
Yowa + yYawo + Y1w2 — Yaw1 — Y3we + Yews + Yswr — Yrws — Taty,
Yows + Yswo — Y1We + Yew1 + Yaw3 — Yswz — Yawr + yYrwa — Tats,
Yowe + Yewo + Y1ws — Yswi — Yawr + Yrwa + Yzws — Yawsz — Tale,
Yow7 + Yrwo + Y1ws — Y3w1 + Yawe — Yew2 + Yaws — Yswa — Tal7,
Yolo + y1t1 + yata + Y3tz + yatsa + ysts + yete + yrlz — T1wo,
Yol1 — yito — yata + yata — Y3ty + yrts — yste + Yels — T1w1,
Yol2 — Yyato — yat1 + yita — ysls + ysts — yetr + yrle — T1w2,
Yotz — ysto + yitr — yrt1 + Yols — ysta — yate + Yela — T1W3,
Yola — Yato — yita + yat1 + ysle — Yets — yst7 + yrls — T1wy,
Yols — ysto + yite — Yel1 — Yola + ysta + yatr — yrla — T1ws,
Yole — Ysto — yits + yst1 + Yol — yrta — ysts + yalz — z1we,

Yol7 — yrto — yits + yst1 — yats + Yeto — Yals + yYsta — T1W7.
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G =G(z,y,t,w) = r1x973 — xl(wg + w? 4 wi —i—cug, + w? —{—w?) —|—w§ —l—w%)
— (3 + 165 +15 + 15+ 1] + 12+ 2+ 1)
—a3(yg +yi + Y3+ s Yl R )
+ 2{(yowo — Yy1w1 — Yawa — Y3w3 — Yaws — YswWs — YewWe — Y7wr)to
+ (yow1 + y1wo + Yows — yawe + Yswr — Yrws + Yswe — Yews)t1
+ (Yowa + Yowo + Yaw1 — Y1wa + Ysws — Ysws + Yewr — Yrwe )tz
+ (Yows + Yswo — Y1wr + Yrw1 — Yows + Yswa + Yaws — Yewa )t3
+ (Yows + Yawo + Y1w2 — Yow1 — Y3we + Yews + Yswr — Yrws )ta
+ (Yows + Yswo — Y1we + Yew1 + Yows — Ysw2 — Yawr + yrwa)ts
+ (Yows + Yewo + Y1wWs — Ysw1 — Yawr + Yrwa + Yswa — Yaws )te

+ (yowr + yrwo + Y1ws — Yswi + Yawe — Yew2 + Yaws — Yswa )t7}.

Hence the embedding functions of a Zariski open subset A, which is identified with
C?" with coordinates z := (z,y,t,w) = (v1,T2,23,%0 " ,¥y7,t0, -+ ,l7,W0, -+ ,wr), of
Moy = &%70(2) into CP* are given by: z — [1,2,v,t,w, A, B,C, Dy, D1, Dy, D3, Dy, Ds,
Dg, D7, Ey, Ev, Eo, E3, Ey, Es, Eg, Bz, Fy, Fi, Fa, F, Fy, F5, Fg, F7, G]. The detailed dis-

cussions related to this Appendix can be found in [CMP], [Fr] and [O].
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Chapter 3

A basic property for partially degenerate holomorphic

maps

In this chapter, we introduce a notion of degeneracy for holomorphic maps and derive
an important consequence, which will be fundamentally applied in the proof of our
main theorem.

Let ¢¥(z) = (¥1(2),...,¥n(2)) be a vector-valued holomorphic function from a
neighborhood U of 0 in C™,m > 2, into CV,N > m, with ¥(0) = 0. Here we
write z = (21, ..., 2mm) for the coordinates of C™. In the following, we will write z =
(21 .oy Zm—1), i.e., the vector z with the last component z,, being dropped out. Write

olel ol s
T = G gt for an (m — 1)—multiindex «, where

Write

We introduce the following definition.

Definition 3.1. Let k > 0. For a point p € U, write Ey(p) = Spanc{%w(z)lzzp 10 <
la] < k}. We write r for the greatest number such that for any neighborhood O of 0,
there exists p € O with dimcEg(p) = r. 1 is called the k—th Z—rank of ¥ at 0, which

is written as rankg (), z). F is called Z—nondegenerate if ranky, (¢, 2) = N for some

ko > 1.
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Remark 1. It is easy to see that ranky (v, 2) = r if and only if the following matriz

laY|
oz ()

gt (2)
has an r X r submatriz with determinant not identically zero for z € U for some mul-
tiindices {aP, ..., a®} with all 0 < || < k. Moreover, any I x 1 (I > r) submatriz of the
matriz has identically zero determinant for any choice of {a?; ..., a*} with 0 < |o/| < k.

In particular, 1 is Z—nondegenerate if and only if there exist multiindices B, ..., BV

such that
518t al8t
ﬁlﬁl(?}) 8,5?'1/}]\[(2)
18N 18V
gEBN ¢1(Z) ggﬁN wN(Z)

s not identically zero.

Moreover, rank; 11 (v, z) > rank; (¢, 2) for any i > 0.

For the rest of this chapter, we further assume that the first m components of 1,
ie.,

(V1 ey ) : C™ — C™

is a biholomorphic map in a neighborhood of 0 € C™. Then we have,

Lemma 3.2. It holds that ranky (v, z) = 1,ranky (¢, 2) = m, and for k > 1,rankg (¢, 2) >

m.

Proof of Lemma We first notice that it holds trivially that ranky (¢, z) = 1, for F’
is not identically zero. We now prove rank; (1, ) = m. First notice that rank; (¢, 2) < m
as there are only m distinct multiindices 5 such that || < 1. On the other hand, since

1 has full rank at 0, we have,

o Ym
0z1 o 0z1

(0) # 0.
37111 8¢m

0zm " Ozm
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This together with the fact ¢)(0) = 0 implies that the z,, derivative of

v U,
o OVm
0z1 o 021 (3 1)
8'(111 6¢m
Ozm-1 7 Ozm-—1

is nonzero at p = 0. Consequently, the quantity in (3.1)) is not identically zero in U. By

the definition of the z-rank, we then arrive at the conclusion. W

We now prove the following degeneracy theorem in terms of its z-rank, which will

be used to derive Theorem [B.101

Theorem 3.3. Let ) = (Y1, .oy Y, Ymt1, -, WN) be a holomorphic map from a neigh-
borhood of 0 € C™ into CN with ¥(0) = 0. Recall that Z = (21,..., Zm_1), i.e., the
vector z with the last component zy, being dropped out. Assume that (1, ...,%m) is a
biholomorphic map from a neighborhood of 0 € C™ into a neighborhood of 0 € C™.

Suppose

ranky_p41(¢,2) < N. (3.2)

Then there exist N holomorphic functions gi(zm), ..., gn(2m) near 0 in the z,— Gauss
plane with {g1(0), ..., gy (0)} not all zero such that the following holds for any (z1, ..., Zm)

near 0.

N
> gilzm) i1, s 2m) = 0. (3.3)
i=1

In particular, one can make one of the {gi}ﬁil to be identically one.

The geometric intuition for the theorem is as follows: The space of 1-jets has dimen-
sion m by Lemma We expect that at least one more dimension is increased when
we go from the space of k-jets to the space of (k + 1)-jets until we reach the maximum

possible value N. The theorem says that if this process fails, namely, the assumption

in (3.2) holds, we then end up with a function relationship as in (3.3).

Proof of Theorem[3.3 We consider the following set,

S={l>1:rank(¢,2) <l+m—2}.
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Note that 1 ¢ S, for rank;(F) = m. We claim that S is not empty. Indeed, we
have 1+ N —m € S by (3.2). Now write ¢’ for the minimum number in S. Then

2 <t <1+ N — m. Moreover, by the choice of #/,
ranky (¢, 2) <t +m — 2, ranky_1(¢,2) >t +m—2. (3.4)

This yields that
ranky (¢, 2) = ranky_1(¢,2) =t + m — 2. (3.5)

We write t :=t' — 1, n:=t +m — 2. Here we note t > 1,m < n < N — 1. Then there

exist multiindices {v!,...,74"} with each |y| <t and jy, ..., j, such that

a\vl\wh ahllqun
o571 o371
AN, Y 1y s ) = is not identically zero in U.  (3.6)
a\w”wh a\w"len
oz o0z7"

Since rank; (¢, Z) = m, we can choose (Y',...,¥"|j1, ..., jn) such that

For any o!,...,a" " with |af| <t +1, and [y, ..., [, 41, we have

1 1
alo Iy olotlyy, Ol
dzet ozot dzet
Aot .. o™ Yy, o l1) = =0in U. (3.7)
n+1 O['rH»l
alo" My, 91y, O Ny
dzantl T pzantd dzant!

We write I" for the collection of (Y, ..., Y1, ..., n), j1 < -.. < jn, with ¥* = (0, .., 0)
and with being held. We associate each (v!,...,9"|j1,...,jn) With an integer
s(YY, oy Y1, s Jin) := So Where s is the least number s > 0 such that

gt Fsmaa ks A(y LA )

S1 S92 Sm—1 s
0211 025°...0z," " 025,

(0) # 0.

for some integers s1, ..., $;—1. Then s(7, ...,y |j1, ..., 4n) > O forany (¥4, ..., 7|41, .., Jn) €
I.
Let (8L, ..., B™i1, ...,in) € Ii1 < ... < i, be indices with the least s(7!, ..., 7|51, .-, jin)

among all (v, ..., v"[j1, ..., Jn) € I

We will need the following lemma proved in |[BX]:
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Lemma 3.4. ( (BX], Lemma 4.4) For a general n x n matriz

bii b2 . . . by
bor bos . . . by,

B = ,
bnl bn2 <. bnn

where b;j € C for 1 <i,5 <n,n > 3, we have the following identity:

1 2 .. . n—-2 n-—1 1 2 . . . n=-2 n—-1
) B( )
1 2 .. . n—-2 n-—1 jl jQ [ jn,Q n
o | o | (+)
1 2 . . . In—2 n 11 12 . . . lp—2 N
B( ) B( )
1 2 .. . n—-2 n-1 Ji Jj2 - . . Jn—2 M
11 %2 . . . ip—2
= B( )IB|, forany 1 < i3 <ig < -+ <ip2<n-—11<j <
1 J2 - - . Jn-2

Jo < vt < jn—2 <n—1. In particular, if |B| = 0, then (%) equals 0. Here we have used

the notation

bi1j1 biljz B biljp
bi2j1 bi2j2 R bisz
11 12 . . . 1 . . L. .
B( p): for1 <p<n.
J1 J2 - - - Jp
bipj1 bipjg I bipjp

We write {ins1,...sin} = {1,..., N}\ {i1, ..,in}, where in1 < ... < iy. Write U =

{2z €U :ABY, ..., B"i1, .. in) # 0}. We then have the following:

Lemma 3.5. Fizj € {ini1,....in}. Leti € {i1,...in}. Write {i}, ...,i’,_;} = {i1, ..y in}\

{i}. There exists a holomorphic function gf(zm) in U which only depends on z, such
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that the following holds for z € U :

gl 181 ! 181
o 1, O by ety Oy, OF Wy pistly,
ozpt T oz8t oz8" ozpt T 978t 978
_J
(Z) - gz (Zm) (Z)a
n g n n g n
ol Iq/,i,1 ol \%%71 ML Wj ol Iwi,l ] \w%il 918"y,
9zP" 0z8" 0z8" 0zP" 0z8™ 9zP"
(3.8)
or equivalently,
18] 181y, 1 ;
o Wy O Wiy 0N —g (2m)w)
azst T az8! az6!
=0. (3.9)
B™ 18" 4. ;
97wy O Wy 01" (=g (zm) )
62ﬁn ce 826” 825”
% . - . . 18] .
Proof of Lemma|3.5 For simplicity of notation, we write 8?[31. for g~ 57> and for p =1
z z

or j, write the matrix

8111111 8wi,n—l awu
ozt T 9zt 9zt vl
"
VN = . — )
dwi'l My M Vi
536" v ToEpm 5Ee”
where V/%u -+, v, are the row vectors of V. To prove li one just needs to show that,
foreach 1 <v<m—1,
0 det(V; .o~
(j)EOIIlU. (3.10)

0z, det(V;)
Indeed, by the quotient rule, the numerator of the left-hand side of (3.10|) equals to

det(V))  det(V))

det
oz det(Vi)  pdet(V;)
det(V})  det(V}) det(V))  det(V))
o5 Vi 22 V) G v)
:det V? V2 +-~-+det :
det det J det det
: -1 -1
v v}‘
Vi Vi a(zy Vi aiu 7
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By (3.7) and Lemma each term on the right-hand side of the equation above equals

0. For instance, the last term above equals to

M1 Wi,y i Oy 0, s 05
ozt gzl 5zt ozt a9zl 938!
ovy Wiy ow Oy Wiy ouy
938"t T Hzpm 538" 9zB™ v 0zP™ ozh"
awzll aq/}’{ﬂ —1 (9’[/11 811)1/1 awz{n —1 31/1]
9781 9381 o381 938! oz81 9781
My Wi, i Oy 0, 0;
azp"—t ozt P azp"—t ozpn azA" !
d (8%’1) 0 ( w%fl) o_( i ) i(awiﬁ) 0 ( %%71) 0 ( O )
0z \ 9z6" Tt 0z N 9zP8" 0z, \ 928" 0z \ 928" Tt Oz N 928" 0z, \ 928"
(3.11)
It is a multiple of the following determinant (by Lemma [3.4]):
61/)141 6%%71 oY 0
9z8L " T gzpl 93681 9381
419
Oy Wa_o _ows ov; | (3.12)
826n cese 826n 82577, 82Bn
Oy i oy o
ozpnTL o gpntl gzantl gzpntl

where 82[;% = 8%(%), which is identically zero by 1) This establishes Lemma,
|

The extendability of gf (zm) will be needed for our later argument, which is proved

in the following:

Lemma 3.6. For any i,j as above, the holomorphic function gf(zm) can be extended

holomorphically to a neighborhood of 0 in the z,—plane.

Proof of Lemma First, g{ is defined on the projection 7,,(U) of U, where m,, is

the natural projection of (21, ..., zp,) to its last component z,,. If 0 € m,,(U), the claim

follows trivially. Now assume that 0 ¢ 7, (U). If we write s = s(B1, ..., Bn|i1, -, in), DY
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its definition, then there exists (a1, ..., am_1) € C™ ! close to 0, such that

1 1
o8 Iwi,l a8 ‘wi'ln.—l 3lﬂ1‘¢i
azpt T az8! 928"
(@1, .oy Gm—1,2m) = ¢z, + 0(|2m|®), ¢ # 0. (3.13)
Wy O N iy,
az8" az0" oz

Then there exists r > 0 small enough such that for any 0 < |z,,| < 7, (a1, ..., @m—1, 2m) €
U. That is, at any of such points, equation 1' is not zero.
We now substitute (ai,...,am—1,2m),0 < |z2m| < 7, into the equation (3.8)), and

compare the vanishing order as z,, — 0:
c1z, + o(|zml*) = gl (zm) (c25, + 0(|2m[*)), ¢ # 0. (3.14)

for some s’ > 0. Note that 0 < s < s’ by the definition of s and the choice of
(B1y -y Bnlits -y in). The holomorphic extendability across 0 of gzj (zm) then follows eas-

ily. &

We next make the following observation:

Claim 3.7. For each fized j € {in41,....iN} and any 1) < ... <), with {i},...,i,_;} C

{i1,..eyin}, we have:

1 1 1 )
I Iy oVl 0P (=500, g i)
azst T azp! azp!
(2)=0,Vz €U (3.15)
8\5"\1/,1_,1 9!8 ‘%;_1 AB™ (=37, gzjkwik)
U el 955"

Proof of Claim Note that for each 4,1 <1 < n—1, the following trivially holds:

a8y, alB Iy, 8‘51'(97}%;)
i 1 i
9281 9387 981
(2) =0, (3.16)
n n 1B™ (47
918 \¢1,1 al8 ‘wi%—l 0 (912@/’1;)
62ﬁn e 826” 825774

for the last column in the matrix is a multiple of one of the first (n — 1) columns. Then

(3.15) is an immediate consequence of (3.9)) and (3.16). B
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Lemma 3.8. For each fized j € {int1,...,in}, we have j(z)—=> p_, gfk(zm)lbzk (2)=0

for any z € U, and thus it holds also for all z € U.

Proof of Lemma This can be concluded easily from the following Lemma [3.9
and Claim Here one needs to use the fact that 8! = (0,...,0). N

Lemma 3.9. ( (BX], Lemma 4.7) Let by,--- ,b, and a be n-dimensional column vec-
tors with elements in C, and let B = (by,---,by,) denote the n x n matriz. Assume
that detB # 0 and det(bj,, bj,, -+ , b, ,,a) =0 for any 1 <i; <izg <--- <ip_1 < n.

Then a=0.

Theorem [3.3] now follows easily from Lemma [3.8] B

If we further assume that 1;(z),m + 1 < i < N, vanishes at least to the second

order, then we have the following, which plays a crucial role in our proof of Theorem

LT

Theorem 3.10. Let ) = (¢1, ..., Yim, Umt1, ..., YN) be a holomorphic map from a neigh-
borhood of 0 € C™ into CN with ¥(0) = 0. Assume that (11, ...,0m) is a biholomorphic
map from a neighborhood of 0 € C™ into a neighborhood of 0 € CN. Assume that
¥i(2) = O(|z|*) form+1 < j < N. Suppose that rankn_,,+1(1)) < N. Then there exist
m+1, - aN € C that are not all zero such that

N
Z ajT/)j(Zla-'-,melaO) = 07 (317)
i=m+1

for all (z1, ..., zm—1) near 0.

Proof of Theorem We first have the following:

Claim 3.11. For each 1 <i<m, ¢;(0) =0.

Proof of Claim|3.11; Suppose not. Write ¢ := (g1(0), ..., gm(0)) # 0. Then (g1(2m), ---s Gm(zm))
= ¢ + O(|zm|). The fact that ¥;(z) = O(|z|?),i > m + 1, implies

> gilzm)vi(z) = O(|z). (3.18)
1=1
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Notice that (¢1, ..., %) is of full rank at 0. That is

% %wm
z1 Z1
(0) # 0.
Oy hm
Ozm " Ozm
Hence
o) Y
8211 0) .. 7 (0)
t
c' #0. (3.19)
0 OYm
SLL(0) ... §Em(0)

This is a contradiction to (3.18]). B

Finally, letting z,, = 0 in equation ({3.3]), we obtain (3.17)). Since

(91(0), ..., gm(0)) =0, (gm+1(0),...,gn(0)) # 0.

This establishes Theorem [3.10 N
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Chapter 4

Proof of the main theorem assuming three extra

propositions

Let M c CPN be an irreducible Hermitian symmetric space of compact type, which has
been canonically (and isometrically) embedded in the complex projective space through
the way described in § [2 In this section, we write n as the complex dimension of M.
We also have on M an affine open piece A that is biholomorphically equivalent to the
complex Euclidean space of the same dimension, such that M \ A is a codimension one
complex subvariety of M. We identify the coordinates of A by the parametrization
map with z = (z1,...,2,) € C" through what is described in § [2, which we wrote as
(1,41, ..., N], where 1, ..., ¥y are polynomial maps in (z1, ..., 2,) with ¢; = k;z;, where
kj = 1or V2, for j =1,---,n. We also write F(¢) for ?) for € = (&,...,&) € C™. We
still use p(z,§) for the defining function of the Segre family of M restricted to A x A*,
which will be canonically identified with C™ x C". Since the coefficients of 1, ..., YN
are all real, 1) = ¢ and A* = A. Hence, we have
N
p(z,€) = 1+Z¢i(z)¢i(f)' (4.1)

=1

Recall the standard metric w of M on A is given by
w = i00log(p(z, 2)). (4.2)

The volume form du = ¢,w" associated to w, by §[2| is now given in A4 by the multipli-

cation of V with the standard Euclidean volume form, where

Sl e (43)

with ¢ > 0 and X\ a certain positive integer depending on M. For instance, A = p + ¢
when X = G(p,q) |G]. Here ¢, is a certain positive constant depending only on n.

Recall the main theorem of this thesis:
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Theorem 4.1. Let A C M be as above equipped with the standard metric w. Let
Fj,j =1,...m, be a holomorphic map from U C A into M, where U is a connected

open neighborhood of A. Assume that F;‘(d,u,) Z 0 for each j and assume that

m
di ="\ F (dp), (1.4)
j=1
for certain positive constants \j > 0 with j =1,--- ,m. Then for any j € {1,2,...,m},

F; extends to a holomorphic isometry of (M,w).

For convenience of our discussions, we first fix some notations: In what follows, we
identify A with C™ having z = (z1,--- , zp) as its coordinates. On U C A C M and
after shrinking U if needed, we write the holomorphic map Fj, for j = 1,...,m, from

U— A=C", as follows:
F’j = (Fj}l,F’LQ, ---aFj,n); ] = 1, ey T (45)

Still write the holomorphic embedding from A into CPV as [1,91, - ,¥n]. We define
Fi(2) = (Fjps - Fin) = (V1(Fj), ¥2(Fj), ..., n(Fj)) for j =1,...,m. Finally, all Segre
varieties and Segre families are restricted to A = C™.

The main purpose of this chapter is to give a proof of Theorem [{.1], assuming the
following three propositions hold. These propositions will be separately established in
terms of the type of M in §[5] §[6]and §[7] This then completes the proof of our main

theorem.

9p
FEAGES . . .
Proposition (I): Write £; = 8% — %‘i} ((i E)) 8%’ 1 < i <n-—1, which are holomorphic
i B (%0 n

vector fields (whenever defined) tangent to the Segre family M of M < CPY restricted

to A x A* = C" x C" defined by p(z,£) = 0. Under the notations we set up above,
for any local biholomorphic map F' = (f1, -, fn) : U — C™ with F(0) = 0, there are
2eU, € €Q,o,p, ..., Y, such that

o rF . P FN

B

a{(zo,ﬁo)#a ABY . BNE ) = (%) #0. (4.6)
A rE o BV FEN

Here 8! = (K4, ..., kL ), K, ..., k!

c p—1 n—1

(0,0,..,0); £8' = £ LB LS £ Fl2) = (F1, oo Fi) = (1 (F), 2(F), oo o (F)).

n—1"

are non-negative integers, for | = 1,2, ..., N; gl =
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Moreover, s == S." 'kl (I = 1,..., N) is a non-negative integer bounded from above
by a universal constant depending only on (M,w). Also, in what follows, when we like

to emphasize the dependence of A(B', ..., V) on F, we also write it as Ap(3', ..., V).

Proposition (II): Suppose that £ € C™ with ¢° # (0,0, ...,0). Then for a generic
smooth point 2° on the Segre variety (Q¢o and a small neighborhood U > 20, there is a
2L eUn Q¢o such that Q.0 and Q.1 both are smooth at €% and intersect transver-
sally at €0, too. Moreover, we can find a biholomorphic parametrization near &V:
(€1, 2, ..,6n) = G(E1, &, ..., &) with (€1, Ea, ..., &n) € Ul x Ua X ... x Up, € C", where U;
and Uy are small neighborhoods of 1 € C, and U; for j > 3 are small neighborhoods of
0 € Csuch that (i). G(1,1,0,---,0) = &, (ii). G({& = 1} xUs x...xUp) C Q,0,G(U; X
{€& =1} x Uz x ... xUy,) C Q,1, and (iii). G({&; =t} x Uy x ... x Uy,) or G(U; x {&; =
s} x Ug x ... x Uy),s € Uy, t € Us is an open piece of a certain Segre variety for each
fixed t and s. Moreover G consists of algebraic functions with total degree bounded by

a constant depending only on the manifold M.

Proposition (III): For any £ # 0(z # 0, respectively) € C", p(z, &) is an irreducible
polynomial in z (and in &, respectively). (In particular, Q¢ and Q. are irreducible.)
Moreover, if U is a connected open set in C", then the Segre family M restricted to
U xC™ is an irreducible complex subvariety and thus its regular points form a connected

complex submanifold. In particular, M is an irreducible complex subvariety of C" x C™.

The rest of this chapter is divided into several sections. In §[4.2] we provide a proof
of the well-known fact of the modified version of the classical Hurwitz Theorem, which
is important for our use in the later sections. In § [4.3] we show the algebraicity and
rationality of Fj,. § @ is devoted to proving that F), extends to a birational map
from M to itself and extends to a holomorphic isometry, which can be used, through

an induction argument, to give a proof of Theorem assuming Propositions (I)-(I1I).

4.1 Modified Hurwitz Theorem

Before stating the modified version of a classical result of Hurwitz. We first give the

following definition:
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Definition 4.2. Suppose F is an algebraic function in & € C™. The total degree of F
is defined to be the total degree of its minimum polynomial. Namely, let P(£; X) be an
irreducible minimum polynomial of F', the total degree of F' is defined as the degree of

P(&;X) as a polynomial in (£, X).

We next state some simple facts about algebraic functions and give a short proof

for the readers’ convenience.

Lemma 4.3. Suppose ¢1, ¢ are algebraic functions defined in variables £ € U C C"
with total degree bounded by N. Then ¢1 £ ¢2, d102,1/01 (if ¢p1 Z 0) are algebraic
functions and their degrees are bounded above by a constant depending only on N and

n.

Proof : Suppose fi(€, X) = 2125 ai(§)X™ " and  f1(€, ¢1) = 0 where deg f1 < N
and ag(¢) # 0. View fi as a polynomial of X and denote n; solutions of f; by ¢1 =
b1, 97,03, , . Also assume fo(€, X) = Z?io bi(£)X™2 77 and  fa(€, ¢2) = 0 where
deg fo < N and by(§) # 0. Denote ny solutions of fo by ¢ = ¢2,#3, ¢3, ..., ¢5*. Notice
that n; < N and ny < N.

Now define functions in variables £ and X as follows:

F2(&X) = ap(©)"bo(O)™ T[] (X — &} + 62)
i=1j=1
= ag(§)"bo(&)™ Y X" 0 (a0, bo, @1, 67, s 1, 03, B3, .y D32).
k=0

Notice that 6y is a symmetric polynomial with respect to ¢¢ and (]5% separately and

hence a polynomial in terms of Z;Eg, Zigg, e a;(’)l(g), Zégg, e b;()?((g). After multiplying

ao(§)"bo(§)"™, f+(§, X) is a polynomials in ag(£), a1(£), - -+, an, (), 00(£), 01(£), -, by (€)
and X. Since ¢ *+ ¢ are annihilated by fi(&, X), they are algebraic functions with

algebraic total degrees bounded by the degrees of fi (&, X). By the explicit construction
above it is clear that the degrees of f+ depend only on N and n.

For ¢1¢2 we construct the following function:

ny n2 nin2

7€) = ao(€)"bo(&)" [T TT(X = 6163) = an©)™bo(€)™ Y ox(©)X™ ™7,

i=1j=1 k=0
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which is an annihilator of ¢1¢9. By the same argument we know that f(§,X) is a
polynomial in terms of ag(§),a1(&), -+ ,an, (&),b0(§),01(&), -+ ,bn,(§) and X. Hence
the total degree of ¢1¢2 is bounded by the degree of f(£, X), which depends only on N
and n.

Finally denote an annihilator for ¢; # 0 by f(&,X) = Yty ai(€)X™ ™", where
1 <ny <N and ay, (§) £ 0. Then the polynomial F(¢,X) = > a;(€)X* annihilates

1
¢1

and hence % is an algebraic function with degree bounded by N and n. R

Lemma 4.4. Suppose ¢1(z1, ..., 2,) is an algebraic function of total degree bounded by
N, and suppose that 1(&1, - &m)s - Un(&1, .-, Em) are algebraic functions with total

degree bounded by N as well. Let

Ay = (€0,¢3,...,€%) e C™,

where Y1, ..., Y, are holomorphic functions in a neighborhood of Ag and let ¢1 be a holo-
morphic function in a neighborhood U C C™ of (¢1(Ao), ¥2(Ap), ..., ¥m(Ao)). Then the
composition ®(1, ..., &m) = d1(V1(E1y ooy &m)s W2 (E1y s Em), U3 (E1y ooy Em) s ooy U (E1y oy Em))
is an algebraic function with total degree bounded by a constant C(N,n,m) depending

only on (N, n, m).

Proof : Since ¢ is an algebraic function with total degree bounded by N, the
minimal polynomial of it has the following form:
f(z1y 20, X) = Z a[zil -o-zf{”XK,
LK |T|+|K|<N
which annihilates ¢,. For the algebraic function 1 there is a minimal polynomial:
Fi,nbm X) = Y bl g xR,
J K| J |+ K|<N

which annihilates /1. Denote all the solutions of Fj by i = 91,93, ..., 111, where
[1 < N. In a similar way, we denote the minimal polynomials for s, ..., ¥, respectively

by:

Follrso&m, X) = > il g XK with solutions 1) = 9,93, ..., ¥,
JE ||+ K|ISN
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Fa(6tynbm, X) = > W' gr XX with solutions 1} = v3, 43, .., ¥¥,

JK,|J|+|K|I<N

and Fn(élv 7§m7X) = Z b’,}Ké.{lggﬁnXK Wlth SOlutiOHS 1/’r11 = ’(/}Ihw?lv
J K|+ K[SN

Plugglng 1 = ¢1(51, "'7£m)7 ey R = ¢n(£17 7£m) into ¢1(zl7 "'7Zn)7 we have

0= f(¢1(§1, "'7£m)7 "'7wn(£1a "'7571)) ¢1(¢1(fla -~-7£m)7 ¢2(517 '--agm)? ) @Z}n(fl, 7£m)))

. _—
= ) ani-Yper

1K |I|+|K|<N
Construct a function as follows:
Lol
F= H e LTI S arle s o o™,
vi=lva=1  vp=11K |I|+|K|<N

which annihilates ¢; and is a symmetric polynomial with respect to {1} }U - {¢;;}ﬁ;;1
separately. It is easy to see that F is actually a polynomial in terms of {05, (£)}v, 7K
and X. Since the degrees of bY,'s are bounded by N and [i, ...,1, are bounded above
by N, the degree of F is bounded by a constant C'(N,n,m) depending only on N,n
and m. i

Let us recall the classical Hurwitz Theorem:

Theorem 4.5. Suppose G is a holomorphic function defined on a neighborhood U X
VxW CCxCxC™ in variables (s,t,&1,...,&m). (We denote it by (s,t,§) for short.)
Suppose G is a rational function of t,&1,...,&mn for arbitray s € U with the degree less
then N; and G is a rational function of s,&1,..,&n for arbitray t € V with the degree
less then N. Then G is a rational function on C x C x C™ of (s,t,£).

We would like to present a short proof of Hurwitz Theorem in the following, since
it also motivates our proof of the modified Hurwitz Theorem.

Proof : (following Bochner-Martin [BM])

If G is identically zero, we are done. Otherwise G is not identically zero and we can
choose (sg,t0,&0) € U x V x W such that G(so,t0,&) # 0. Shrinking the domain if
necessary, we assume that G(sg,%o,&p) # 0 holds everywhere in the domain. Without

loss of generality, we assume G # 0 on U x V x W.
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Since G is a rational function of t,&y, ..., &, for arbitrary s € U with the degree less

Yirr<n Cra(s)et?
Sir+a<n Br(s)Elt!

a compact notation for £'¢52...€m: [ is a notation for (iy,...,4,); |I| is a notation for
152 m [ERED] )

then N, we write G as G(s,t,&) = for arbitray s € U. Here & is

i1+ ... + im; and J is a natural number.

Moreover we view G(s,t,£) as a rational function of ¢,

) e en—1g Cra(s)€T 1t
G( ,t,é) - ZJ<N{Z\I|<N—\J| B]J(S)gl}t"’ (Al)

for arbitrary s € U, & € W.

Since G # 0 we have 3~ {| X2 <n_y Br.y(s)&t| + | Doll<N—J Cr.y(s)é|} > 0 for all
s € U and £ € W. Rewriting (A1), we get

DU Y. Bueht'Gs o) - Y { Y Culs)Ei’ =0 (A2)

|JI<N |I|<N—|J]| |J|<N |I|<N—|J|

For convenience, we put {t/G(s,t,&)}; and {t/}; together and denote them by
{¢1,..., 60} Inasimilar way, we put {3/ - n_ Bry(s)¢'} s and {2 i<n—1 Crs(s)¢'},
together and denote them by {1, ..., ¥}

Choosing any (M — 1) points t = t1,...,tp/—1 in V, together with ¢ = ¢, and plugging

them into we have equations in the the following matrix form:

P1(s,t1,&) ®2(s,11,€) ¢3(s,t1,€) . om(s,t1,§) P1(s,§)
w2(sa§) -0
P1(s,ta-1,8)  P2(s,tm—1,8)  @3(s,tm-1,€) . dum(s,ty-1,8)

¢1(57ta£) ¢2(57t7£) ¢3(Sat7§) ¢M(57ta€) ¢M(Sa§)

Since (¢1(s,€),...¢m(s,€)) is a non zero vector for arbitrary s € U, £ € W, we have

$1(s,t1,8) . dum(s,11,8)

Il
o

det
¢1(SatM—17£) QSM(SatM—lag)

¢1(37t7€) ¢M(37t7§)

By Laplacian expansion of the determinant along the last row, we have

M
Z(I)i(tl,...,thl,f,S)Qbi(S,t,f) an (B]')
i=1
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where {®;} are the corresponding (M — 1) x (M — 1) minors of the M x M matrix.
If for certain t1,t,...,ta—1 € V at least one of {®;} is not identically zero, when
it is viewed as a function of variables £ and s, we claim that there exists an index
i such that ®; is not identically zero and the corresponding ¢;(s,t,&) takes the form
bi(s,t,8) = t'G(s,t,&) for certain J.
Proof of the claim: If it is not the case, we can reduce Equality [BI] to the following
equality:
M
0= ®j(tr, ... tar—1,€,8)b5(s,,€) = Z@ (t1y . tar—1, &, 8)t7. (B2)
j=1
Notice that at least one of {®;} appeared on the right side of is not identically
zero as a function of £ and s. One the other hand, we should have all ®; = 0, if we
view the right side of as a polynomial of ¢t. This is a contradiction.
Therefore if for certain tq,to,...,tpr—1 € V at least one of {®;} is not identically

zero, we can rewrite Equality [B1] as follows:

M’ M
(Z (pi(tly"-7tM717§75)tJ)G(S7ta€)+ Z @j(tl,...,tM,l,f,S)tJ EO)
i=1 i=M'+1

where the coefficient of G is not identically zero. Notice that for fixed t = t1,...,t57_1,
G(s,t,€) is a rational function of s and £. Then ®;(ty,...,tp—1,&, s) are all rational
functions of s and &, and G is a rational function of s,t and & Hence we proved
Theorem [4.5 in this case.

Now if all ®;(t1,...,tpm—1,8,&) are identically zero for any t1,...,tp7—1 € V, we have
the consequence that each (M — 1) x (M — 1) minor of the determinant is identically
zero for any tq,...,tap—1,s and €. On the other hand, we know that the 1 x 1 minors
are not identically zero. By induction we can reduce it to the previous case by finding

the [ x [ minor which is identically zero but the (I —1) x (I — 1) minors of it are not. B

We now state the following modified version of the classical Hurwitz theorem with

a controlled total degree [BM].

Theorem 4.6. Let ﬁ’(s,t,ﬁl,fg,...,fm) be holomorphic over U x V. x W C C™+2,

Suppose that for any fized s € U C C, F is an algebraic function in (t,&1,...,&m) with
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its total degree uniformly bounded by N; and for any firedt € V C C, F is an algebraic
function of (s,&1,...,&m) with its total degree uniformly bounded by N. Then F is an

algebraic function with total degree bounded by a constant depending only on (m, N).

Proof : We can assume that F # 0 and shrink the domain such that F £ 0
everywhere in the domain. Without loss of generality we assume F Z0inUxV xW.
Notice that for each fixed t € V' we have functions {C7x(¢)} such that

Y. Cux®)s'¢!(F(s,1,6))" =o0. (C1)

I+|J+K<N

Since F # 0, it is easy to see that 3 |Cryx (£)€7| > 0.

As in the proof of Theorem we denote {slﬁ(S,t,f)K}I,K by {vi(s,t, &)},
and {Cryx(t)€7} by {#1(t,€), ..., oar(t,€)}. Notice that M is an integer bounded by a
constant depending on N and m. By taking any s1,...,sp—1 € U and plugging them

into Equality we have

Y1(s1,t, ) Ya(s1,8,8) o Ym(s1,t,§) $1(t, )
¢1(52, t, 5) ¢2(321 t, 5) ¢M(S2a t f) d)Q(t) g)

Vi(sm-1,1,8) Ya(sm—1,t,€) . Ym(sm-1,4,8) | [ dm-1(t,€)
¢1($7t7£) w2(87t7£) ¢M(57taf) ¢M(t7§)

Noticing that (¢1(t,€), ..., oa(t,€))! is a non zero vector, we have

wl(slatvf) w2(817ta§) ¢M(317t7§)
P1(s2,t,€) Ya(s2,t,8) o Yum(s2t,€)

Il
o

Y1(s(m-1), &) Ya(sr—1)t,6) - Ym(s-1),t§)
¢1(5,ta§) ¢2(57t,§) ¢M(Sat7£)

where $1,...,s37—1 are arbitrary numbers in U. By the Laplacian expansion of the

determinant along the last row, we have

M
Z \Ili(sla 825 -y SM—17t7§)¢i(87t7£) = 07
=1
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where U;(s1, 2, ..., Spr—1,t,&) are the (M — 1) x (M — 1) minors. Since for any fixed
515, Sm—1 € U, 9i(s5,t,€) is an algebraic function of ¢ and £ with the degree bounded
by N. By Lemma and Lemma we conclude that U; is an algebraic function of
t and £ with degree bounded by a constant depending only on N and m.

Suppose that for certain si, s9, ..., sp7—1 € U at least one of ¥; is not identically zero
as a function of ¢,£. Then by a similar argument as in the proof of the classical Hurwitz
Theorem, we will conclude that at least one of W;(s1, s, ..., Spr—1,t, &) is not identical-
ly zero and the corresponding ;(s,t,§) takes the form ;(s,t,§) = slﬁ(s,t,ﬁ)ﬁqzl.

Because otherwise we get a nontrivial relation

M/
> Wi(s1, 89,00 5001, 8)sT =0,
i=1

which is impossible. Hence we have

M
D Wils1, 52, su 1, EOV(S, ) = Y fik (81,89, 01,1, €)s F (5,1, =

[I|+|K|<N
Here frx(s1,82, ..., Sp—1, t, &) is another notation for the quantity ¥;(sq, s2,...807-1, ¢, ).
Moreover notice that frx(s1,S2,...,Sm—1,t,&) is an algebraic function with the degree
bounded above by a constant depending only on N and m and at least one of frx with
|K| > 1 is not identically zero as a function of ¢ and &.
Since frx is an algebraic function with bounded total degree, we can find a minimal
polynomials with degree bounded by a constant L depending only on N and m as

follows:

GIK(taEaY) = Z AIK,Q(tvé-)YQ’ GIK(tvga fIK(tvg)) =0 and degreeG < L.

Q<L
Moreover we denote all the solutions of Grx = 0 by fir = fi, frxcs o 17 and define
NIK np K’
Fs.t6x) = 1 - I Do mEees'xs.
irg=1 iI/Klzl |I|+K§N

[I[+K<N  |I'|+K'<N

Notice that F(s,t, F(s,t,£)) = 0. Since coefficients of X in F are symmetric polyno-

mials of {f;}MX for each pair K, F is a polynomial of s, X and IK Q for all IK

and Q. Multiplying F by certain power P of Ask o, we conclude that F x AIKO is a
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polynomial of s,¢,£ and X. Moreover noticing that P is bounded above by a constant

depending on N and m, we complete the proof of the theorem. B

Next we prove the algebraic inverse function theorem with a controlled total degree,

which will be use in Chapter [6]

Lemma 4.7. Suppose Pl(zb B2 -e5 By 517 527 EREE) gn)v EES) Pn(zla 225 -0y Bmy 517 527 () fn) are
algebraic functions with total degrees bounded from above by N which are holomorphic

in a neighborhood U x V.C C™ x C" of Ag = (2Y,...,29,,€9,...,€9). Suppose that

Pl(zb 22y aeny Zma£17 afn) =0

PQ(ZL 22y aeny Zm7§17 7571) =0

Pn(zla 22y enny Z’mv‘gla 75”) =0

. O(P1,Ps,...,Pp
has a solution at Ag = (29,£%) = (29, ...,29,,€0,....€%) and W(zg,zg, ey 20, 690..,80) £
0. Then we can solve & = P1(21, 22, «vy 2m),&2 = P2(21, 22, ooy Zm) s+ s&n = On(21, 225 oy Zm)
with ¢;(2°) = €° in a neighborhood of 2° € U cCUcC™, where ¢, ..., ¢ are algebraic

functions with total degree bounded by a constant only depending on N,n and m.

Proof : We will prove it by induction on n. If n =1, we have Py (z1, ..., 2m,&1) = 0,

[il5N

96 #0and Py(2Y,...,2%,€%) = 0. By holomorphic implicit function theorem, we get a

holomorphic function & = ¢1(z1, ..., 2mm) such that Py (21, ..., 2m, ¢1(21, ...s 2m)) =0 in a
certain open neighborhood of (2%, ¢Y). Notice that Py is an algebraic function defined
on 2i,...zm € U C C™ and & € V C C with total degree bounded by N. Take a
minimal polynomial of P; as follows:
Fi(215 ey 2my €1, X) = > A2l e XF.
Lj kI +j+k<N

Since 7 is minimal, its coefficient of the zero-th order term with respect to X is nonzero.
Write this coefficient as f1(z,&1) = ZIJ,II\HSN Arjoz'¢l. Plugging & = ¢1(z) into
Fi(z,&1, Pi(2,&1)) =0, we get

0=Fi(z¢1(2), Pi(z01(2)) = > Al di(2) P(z,61(2))" = fi(z,61(2)).

Lk | I|+j+k<N
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Hence f; is an annihilator of ¢1(z). Moreover it is easy to see that the total degree of

¢1 is bounded by V.

Suppose the theorem is true for n = 1,....,.k — 1,k > 2, we proceed to prove
that it is true for n = k. Since W(z?,...,z&,é?,...,ﬁg) =% 0, we can choose
i,7 € {1,2,...,k} such that gg (29,...,20,€0,...,€)) # 0. Without loss of generality we

can assume %(z’?, ey 29,69 52) # 0. By implicit function theorem for holomorphic

functions, we get a holomorphic function & = ¢(z1, 22, .., Zm, &1, -y Eg—1) such that
Pi(z1, 22, ooy Zms &1y ooy Ek—1, Pk (21, 22, ooy Zm, €15 -, Ek—1)) = 0 in a certain open neigh-
borhood.

We now proceed to prove that ¢y, is an algebraic function of (21, 22, ..., Zm, &1, vy Ek—1)
with total degree bounded by N by a similar argument used above.

Noticing that Py (21, ..., 2m, &1, -, &) is an algebraic function with total degree bound-
ed by N, we take a minimal polynomial of P, as follows:

Fi(21, ooy 2my €1y ooy iy X) = > Apgralel XK.
1JK |I|+|J|+K<N

Since F is minimal, its coeflicient of the zero-th order term is nonzero. Write the
zero-th order term as f,,(21, ..., 2m, &1s -, &) = ZI,JAIIHJISN Arj02'€7. Plugging &, =

Or(21y ooy Zm, &1y ooy Ep—1) Into F, we get

0= .F(Zl, ceey Zm:fh "'75’6717 ¢k(217 ceey Z’maélv "‘7§]€*1)a P(Zl7 ceey Z’maélv "‘7&]6717 d)k(zh sy zm7§17 “'7{]671)))

I¢j — j K
= Z A & G dn(21, ooy 2ms €1y oy Em1) 7 P (21, 22, ooy Zmy €15 oo Epm1, Ok
[I|+]J|+K<N

L o
= Z Arjoz &1 - EF T = frlza, oo 21, &1, ety Or)-
LJ|I|+]|J|<N

Therefore fi(z1, ..., 2m, &1, .., Ek—1, X ) annihilates ¢ and its degree is bounded above

by N. As a direct consequence & is an algebraic function with total degree bounded

by N.
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Now substitute {, = ¢n (21, ..., 2m, &1, ooy §k—1) into the remaining equations

(

Py = Pi(215 ey Zms €1, ooy €15 Ok (21, ooy 2y €1y ey E5—1)) = O
f)Q - P2(Z17 "')Zmaéla -~-a£k—1)¢n(zlv ---azm)fh "'7514:—1)) =0

153 = P3(Zl7 ey Zma{la "'7‘5]6*17 d)n(zla EREE) zm7§17 "'75]671)) =0

ﬁk—l = Pk—l(zla ) Zm7£17 "'7&6—17 ¢k’(217 [RX) Zmagla "'7£k—1)) =0

By Lemma and Lemma it is easy to see that ﬁl, e ﬁn_l have degrees bounded
by a constant C'(N, n, m) depending only on N, n and m. Moreover Ay = (29,...,28,, €9, ..., 52_1)
is a solution for the new system of equations. Computing the Jacobian % at

the point Ay = (29, 29,, 80, ..., &0 _), we have

ob ob 0P op | 0P 94y oby | 0P 0¢y 0Py | 0Py 0%y
061 082 Tt O8k—1 061 08k, 061 0&2 08k, 082 08k —1 &k O0&k—1
ob, 9B 0P op, | 0P 9o oP, | 9P 9dn OP, | 0P, 0oy
23! 062 T Ok—1 | _ &1 08, 061 02 0, 0&2 Tt 0k—1 0 O&k—1 08k_1
OPy_1 0Py dPy_1 0P 1 + OPx_1 8¢y,  OPp—1 + OPy_1 O¢y, 0P, _1 + OPx_1 9y
061 062 Tt O8k—1 061 08, 061 082 06 082 7 0&k_1 0&k—1 O8k—1
Py, by, _oP;
oP _ 9P 9 oP1 _ 9P 9& AP 9Py 9k obL (1}
&1 08, 9Dk 082 0&, 95 0fk—1 & 9b 081 0%2
DE}, D€}, o€
Py P oby oPy Py
OPy 0P, gy OPy 0P, &y Py 0Py 9% & &2
961~ 0& 9Pk 0& ~ 9& 9Bk v Dgp—1  O&-1 Oh 1
9ex OP,_1  0Py_1
Pk Py, 9Py, 23 02
OPy_1  OPy_1 05 O0Py_1  0Py_1 3g OPy—1  OPg_1 9§ oP, P,
061 08, 90y 062 08, 9Bt 08— 0&p—1 9B e DEs
€}, €}, E}, 1 2

which is nonzero at ﬁo. By induction, we complete the proof. B

4.2 An algebraicity lemma

We use the notations we have set up so far. We now proceed to the proof Theorem

under the hypothesis that Propositions (I)-(III) hold.

Denote by J¢(z) the determinant of the complex Jacobian matrix of a holomorphic

map f : B — C", where B C C" is an open subset and z = (21, -+ ,2,) € B. For

oP;
081

oP
08k—1

0Py _1

081
223
Ok
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any holomorphic map ¢(§) from an open subset of C" to C™, where £ € C", we define

9(&) == g(&).
Now from (4.1))(4.2]) (4.3))(4.4), we obtain

- | Tr; (2) P 1
Yy ! — = , 2= (21,...,2n) € U.
g (14 S5 v B () e(F () (4 S, ul2)vi(2)> (1o n) €
(4.7)
Recall that F; = (Fj1, Fj2,....Fjn),j = 1,...,n. Complexifying , we have
& Ir, (2) Tr, (€) 1 .
Aj 2 2 — = , (z, U xconj(U).
LN TS BB Or - S n@nan &8 §Uxen®)
(4.8)

Here conj(U) =: {z : Z € U}. Using the transitive action of the holomorphic isometric
group of (M,w) on M, we assume that 0 € U, F;(0) =0 € A and Jg;(0) # 0 for each
j. Also, letting U = B,(0) for a sufficiently small r > 0, we have conj(U) = U. Hence,
we will assume that holds for (2,£) e U x U.

We will need the following algebraicity lemma.

Lemma 4.8. Let F]{s be as in Theorem . Then there exist Nash algebraic maps

~ ~

Fl(Z,Xl, ...,Xm), ceey Fm(z, Xl, ,Xm)

holomorphic in (z, X1, ..., Xm) near (0, Jg, (0), ..., Jg, (0)) € C* x C™ such that

Fi(2) = Fi(z,Jp (2), .y 7y, (2)),4 = 1,y (4.9)
for z = (z1,..., zn) near 0.

Proof of Lemma@ Recall that 1; = k;z;, where k; = 1 or v/2, fori =1,--- ,n
and ¢; = O(|z|?) is a polynomial of z for each n + 1 < i < N. We obtain from (4.8)

the following:

n

> X (Iry (2)TE(€) = MY (Try (2)miEi(2) (T, ()i (€))) + P (2, F(€), T, (€)))

_]:1 =1

. ! (4.10)

(1420 vi(2)wa( )
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Here each

is a rational function in z, F;(¢) and J, ().

We now set X; = Jpj, 1<j<m. SetY;,1<j<m,tobe the vectors:
Y}' = (Y}l, ;}/}n) = (HIJFij,ly---y"fnJFij,n)-

Then equation (4.10) can be rewritten as

m

— — — — 1
)\j XjZXj —)\sz -Yj jZ,Xj ,Yj =
g (X5 5(6) = A¥5(2) - V36) + Qi K36, V3O) = gew— s
(4.11)

over U x U. Here each ); with 1 < j < m is rational in Yj,?j. Moreover, each
Qj,1 < j < m, has no terms of the form Y??é-s with [ <1 for any s > 1 in its Taylor
expansion at (X;(0),Y;(0)).

We write D = az‘fla.‘.#ﬁ" for an n—multiindex o = (a, ..., oy, ). Taking differentia-

tion in (4.11]), we obtain, for each multiindex «, the following:

Z ((D*X;(2))X (&) — AM(DYY}(2)) - Y;(§) + D*Q;(z, X;(£), Y ;(£)))
j=1
— Do : )
(1+ Zij\; i(2)i ()N

Again each D“Q;,1 < j < m, is rational in (X;,Y;) and has no terms of the form
Yf?;s with [ < 1 and s > 1 in its Taylor expansion at (X;(0),Y;(0)). Applying a
similar argument as in [Proposition 3.1, [HY1]], we can algebraically solve for F} to

complete the proof of the lemma. W

Let R be the field of rational functions in z = (21, ..., 2, ). Consider the field extension

E =R (2),.... Jr, (2)).
Let K be the transcendental degree of the field extension £/R. If K = 0, then each
of {Jp,...,Jr, } is Nash algebraic. As a consequence of Lemma each F; with
1 < 7 < 'm is Nash algebraic. Otherwise, by re-ordering the indices if necessary, we let

G = {Jr,, .., Jr, } be the maximal algebraic independent subset of {Jp,,..., Jp,, }. It
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follows that the transcendental degree of £/R(G) is zero. For any [ > K, there exists a
minimal polynomial Pj(z, X1, ..., X, X) such that P,(z, Jg (2), ..., Jr, (2), Jr (2)) = 0.

Moreover,

8Pl(z,X1, ...,XK,X)

X (2. J7y (2), o0y T (2), TR (2)) £ 0

in a small neighborhood V' of 0, for otherwise, P, cannot be a minimal polynomial of
JF(2). Now the union of the vanishing set of the partial derivative with respect to X
in the above equation for each [ forms a proper local complex analytic variety near 0.
Applying the algebraic version of the implicit function theorem, there exists a small
connected open subset Uy C U, with 0 € Uy and a holomorphic algebraic function
/ﬁl,l > K, in a certain neighborhood [70 of {(2,Jp, (2), ..., Jr (2)) : 2 € Up} in C* x CK|
such that

Tr(2) = Mz, T5y (2), o T (2))
for any z € Uy. (We can assume here Uy is the projection of (70). Substitute this into
Fy(2, 75, (2), o0y T (2)),
and still denote it, for simplicity of notation, by E(Z,Tpl(z), ey I (2)) with

—

Fj(2,T5(2), oo T (2)) = Ej(2, T5y (2), 0y T, (2)) for 2 € U,
In the following, for simplicity of notation, we also write for j < K,

By (2, T5y (2)s oo T (2)) = T (2) o8 B2, X1 o Xi) = X

Now we replace F(€) by F;(&, Tr, (€), --., 5y (€)), and replace Jg, (€) by hyj(€, Tr, (€), ... Ty (€))
for 1 < j < m, in (4.8)). Furthermore, we write X = (X3, ..., Xk ), and replace ij(f)

by X;for1<j <K in

T (& T (€)oo Tr (), g (6, Ti (€)oo T (€)),1 < § < .

We define a new function ® as follows:

= Jr, (2)h; (€, X) 1
B(2,6,X):=> N\ J - — .
e z:: T+ 2N G FE)Gi(F (X)) (L+ XN, wi(2)w:(6))
(4.12)
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Lemma 4.9. Shrinking U if necessary, we have ®(z,&, X) =0, i.e.,
- Tr, (2)h; (&, X) _ 1
T DL i F )G EE X0 (1 T i(2)i(€)

(4.13)

or,

N m
L+ D 2O | Nidr ()6, X) ] +szFk )i(Fi(€, X)))*
=1

j=1 1<k<m k;é] =1

= H 1+Z¢z 1/11 ﬁ(ﬁ X)))
1<j<m

(4.14)
for z € U and (¢, X) € Up.

Proof of Lemma Suppose not. Notice ® is Nash algebraic in (£, X) for each
fixed z € U, by Lemma For a generic fixed z = zy near 0, since ®(z,£, X) # 0,
there exist polynomials A;(§, X) for 0 <1 < N with Ay(&, X) # 0 such that

> A X)D(2,6,X) =0.
0<I<N
As ®(20,&, T (€), ..., Ty (€)) = 0 for € € Uy, then it follows that Ag(€, T, (€), ..., Jr, (£)) =
0 for £ € Up. This is a contradiction to the assumption that {Jpg (€), ..., Jp. ()} is an

algebraic independent set. i

Now that ﬁj(f,X),l < j < m, is algebraic in its variables, if ﬁj,l < j < m,
is independent of X, then Fj is algebraic by Lemma This fact motivates the

remaining work in this chapter.

4.3 Algebraicity and rationality with uniformly bounded degree

In this section, we prove the algebraicity and rationality for at least one of the Fj{s. We

start with the following:

Lemma 4.10. Let Fj(z),j € {1,...,m}, be a local holomorphic map defined on a neigh-
borhood of 0 € U as in . Suppose that there exist 2° € U and £° € Q0 such that
A(BY, ..., BY) (22, €0) is well defined and non-zero with ' = (0,0,...,0). Then there is
an analytic variety W C U such that when z € U\W, A(BY,..., BY)(z,€) is a rational
function in € over Q. and A(BY,...,BN)(2,&) Z0 on Q..
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Proof of Lemma By the assumption, 887’;(20, &) # 0 and
LOFi .. L' FN
AL BNELE = L L (D) (4.15)
£Fin .. LPYFin
is non-zero with g = (0,0, ...,0).
2(=8) 4

By the definition, £; = 3‘2, - azi( §)W and £F = E lﬁ 2E E - L for gl =
i Do 2, n

(KL, kb ), KL kL. Hence A(BL ..., BY)(2, €) can be written in the form A(BY, ..., BY)(2,€) =
GES. Here Gi(2,6) = Syl @1(2)8!, Ga(2,€) = X172, Wy (2)&”, with ®; and ¥ be-

ing holomorphic functions defined over U C C™. In fact, Ga(2,£) is simply taken as a

certain sufficiently large power of p, := 8671.

By our assumption, we have G1, G2 not equal to zero at (2°,£°). Hence, Gy, Go are
not zero elements in O(U)[£1, ..., &), the polynomial ring of £ with coefficients from the
holomorphic function space over U.

By Proposition (III), the defining function of the Segre family p can be written in
the form p(z,€) = Zf\o{f’:o Ok (2)£“, which is an irreducible polynomial in (z,&). And for
each fixed z, by Proposition (III), we also have p(z,&) irreducible as a polynomial of £
only.

Then the set of z € U where A(BL, ..., BY)(z,€) is undefined over @, is a subset of
z € U where Ga(z, &), as a polynomial of £, contains the factor p(z, &) as a polynomial in
¢. We denote the latter set by Wo. Similarly, the set of z € U with A(BY, ..., BV)(2,€) =
0 over @, is a subset of z € U where G;(z,£), as a polynomial of £, contains a factor
p(z,€), which we denote by W;.

Notice that p(z,&) € O(U)[¢1, ..., €] depends on each & for 1 < j < n. Also notice
that Ga(2,£), as a certain power of p,, (z,&), depends on &,.

We next characterize Wa by the resultant R of Ga(2,£) and p(z, &) as polynomials
in &,. We rewrite Go and p as polynomials of &, as follows:

Zaz z 517' 7§Tl 1 577,7 Zb z 517' 7€’ﬂ 1)5‘7
7=0

=0

Here the leading terms ag, b; # 0 with k,1 > 1. We write the resultant as Ra(z, &1, ...6p—1) =

Yorer(z)E I where ¢y s are holomorphic functions of z € U.
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For those points z € Wy, Ra(z,-) = 0 as a polynomial of i, ...,&,—1. Then Wy is
contained in the complex analytic set Wg :={c; =0,VI}. If VIA/; = U, then we can find
non-zero polynomials f,g € O(U)[{1, ..., {n—1][€n] such that fp + gGa = 0, where the
degree of g in &, is less than the degree of p in &,. Hence {Go =0} U{g =0} D {p=
0} N (U x C™). Again by the irreducibility of {p = 0} N (U x C"), since {g = 0} is a
thin set in {p = 0} N (U x C"), Gy vanishes on {p = 0} N (U x C™). This contradicts
Go(29,€%) £ 0. Hence W C Wg and Wg is a proper complex analytic subset of U.

By a similar argument, we can prove that Wj is contained in WNfl that is also a
proper analytic set of U. Let W = Wi UWs,. Then when z € U\W, A(BY, ..., V) (2, €)

is well-defined over @, as a rational function in & and A(BY,..., V) (2,£) Z0on Q.. B

Lemma 4.11. Let (&, X) be a non-zero Nash-algebraic function in (&, X) = (&1, ..., &n,
X1,y Xpn) € C" x C™. Write E for a proper complez analytic variety of C* x C™ that
contains the branch locus of 1 and the zeros of the leading coefficient in the minimal

polynomial of v. Then there exists a proper analytic set Wy in C™ such that
{¢] 3X°, (6, X°) ¢ E} D C"\W1.

Proof of Lemma [4.11} Since 1 is algebraic, there is an irreducible polynomial
(&, X;Y) = S8 6i(€, X)Y such that ®(&, X, (¢, X)) = 0. If k = 1 then ¢ is a
rational function and thus F is just the poles and points of indeterminancy. The proof
is then obvious and we hence assume k > 2.

Define ¥ (¢, X,Y) = g—gﬁ. Since k > 2, the degree of ¥ in Y is at least one. Consider
®, U as polynomials in Y, and write R(&, X) for their resultant. Then the branch locus
is contained in {(&, X)|R(§, X) = 0}. Notice that R # 0, for ® is irreducible. Write
R =Y, r1(€)X" with some 7 # 0. Write ¢x (&, X) = > ¢r.:(§) X and Wy = {r[(¢) =
0 ,VI} U{éri(§) = 0,V i}, which is a proper complex analytic set in C". Then
{€]3X°, (¢, X% ¢ E} D C"\W;. 1

Let E be a proper complex analytic variety containing the union of the branch loci
of /i{j,}?’j for j = 1,--- ,m and the zeros of the leading coefficients in their minimal

polynomials. For any point (2°,£%, X%) € U x ((C* x CK)\E), we can find a smooth
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Jordan curve 7 in U x ((C" x CK)\E) connecting (2°,£%, X9) with a certain point in

U x (Up \ E). We can holomorphically continue the following equation along ~:

m N
Y [ NTe @R X)) T O+ D eilFe(=)ws(Fi(€, X))

j=1 1<k<m,k#j =1 (416)

= I ¢ +sz N (6, X)), zeU, (€ X) e U,

1<j<m

to a neighborhood of (2°,¢%, X©).

For our later discussions, we further define

Msing,z = {(Z f) ai = Oavj}yMreg,z = M\Msing,ZS

B op . B '
85] =0 VJ} U {( ) 872] - O,VJ}, MREG — M\MSING7

Pr,:C* = C" (2,&)+— (2) and Pre : C** — C"  (z,£) — (&).

Msive = {(2,§) :

Notice that MRgq is a Zariski open subset of M and the restrictions of Pr,,Pr¢ to
MREq are open mappings. Also, for (2°,¢%) € Mrgg, Q.o is smooth at €7, and Qeo is

smooth at 2°. By Proposition (III), Myeg, N (ng,ﬁo) is Zariski open in (ng,fo).

Lemma 4.12. With the notations we have set up so far, there exists a point (20,0, X0) €
(U x C™ x CKY with (2°,£°) € Mrga N (U x C") and (€°, XY) ¢ E. Moreover, for each
ji=1,..,m, we canﬁndﬁ;, ,BJN with 5]1 =(0,...,0) such that Ap, ( L ,,BJN)(zo,éo) +
0.

Proof of Lemmal[{.1% This is an easy consequence of Propositions (I) (III), Lemma
and the Zariski openness of Mrgg in M. 1

Let (22,6% X°) be chosen as in Lemma We then analytically continue the
equation to a neighborhood of the point (29,£%, X0) through a Jordan curve ~y
described above. We denote one of such neighborhoods by Vi x V4 x V3, where Vq, Vo
and V3 are chosen to be a small neighborhood of 2%, &%, and XY, respectively. It is clear,

after shrinking V;, V5, V3 if needed, that there exists a jo € {1,...,m} such that
1+sz o ()i Ejy (6, X)) =0, for (2,€) € M (Vi x V), X € Vs,

We next proceed to prove the algbraicity for Fj,(z).
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Theorem 4.13. F/’j\o(f, X), for§ € Vo, X € Vs, is independent of X and is thus a Nash
algebraic function of §. Hence Fj, is an algebraic function of z. Moreover, the algebraic

total degree ofF;)(f, X) = Fj, (&), and thus of Fj,(2), is uniformly bounded by a constant

depending only on the manifold (X,w) and the described canonical embedding.

Jo?

Proof of Theorem By the choice of (2°,¢%, X?), there exist 3} ...,ﬂ% such

that

,C/B}U.FJ'OJ ,C’B]]'\OT.FJ‘O’N
Apy (Bjos - B (2% =| . L %80 #0. (4.17)

N N
L0 Fjon o L0 Fj N

We can also assume that (2o,&p) satisfies the assumption in Proposition (II) after
a slight perturbation of zy inside Qg, if needed. By Proposition (II), we can find
2evin Q¢o such that Qo intersects Q),1 transversally at €0, Moreover there exists
a neighborhood B of ¢° and a biholomorphic parametrization of B : (£1,&,...,&,) =
g(él,éz,...,én) with (§~1,£~2,...,§~n) e Uy x Uy x ... x U, C C*. Here Uy,U; are as in
Proposition (II). Moreover, G({& = 1} x Uy X ... X Up) C Q,0,G(U;y x {& = 1} x
Us X ... x Up) C Q1. Also, for s € Up,t € Uz, G({& = t} x Uy x ... x Up), G(U; x
{€&1 = s} x Uz x ... x Uy) are open pieces of certain Segre varieties. Here G consists
of algebraic functions with total algebraic degree uniformly bounded by M and the
canonical embedding.

Consider the equation:
L+ Fjo(2) - Fia(€X) =0, (2,6, X) € Vi x Vo x Vi, (,6) € M. (4.18)

Since the holomorphic vector fields {L£; ?:_11 are tangent to the Segre family, we have

1 1 —
L0 Fiyn(2,6) . LO%Fjn(2,6)) [ Fjoal&. X) -1
... |, (4.19)
o F; Lo F; Fun(E X 0
0 jo,l(zag) 0 jo,N(Z7£) ]o,N(ga )

where (2,€)(~ (2Y,£%) e M, X ~ X°.

By the Cramer’s rule, we conclude that {.7?]-0\ 1(§, X) Y, are rational functions of ¢

with a uniformly bounded degree on an open piece of each Segre variety @, for z ~ 2V.
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By the previous modified Hurwitz Theorem (Theorem, we conclude the algebraicity
of .}{];l(f,X) for I =1,...,N. Since in the matrix <£’6§L0]:j0,,,(z,£)>1<u en and
the right hand side are independent of X, these functions must also be irzd;a[;endent
of the X-variables. Moreover, by Lemma [4.3] and Theorem [£.6] the total algebraic
degree of Fj;, (&) = /];l(g,X), for | = 1,...,n, is uniformly bounded. Since F is
obtained by holomorphically continuing the conjugation function F of F, we conclude

the algebraicity of Fj,; for each 1 <1 < n. Also the total algebraic degree of each Fj;

is bounded by a constant depending only on (M,w). B

Theorem 4.14. Under the notations we have just set up, Fj; is a rational map, whose

degree depends only on the canonical embedding M — CPY .
For the proof Theorem we first recall the following Lemma of [HZ]:

Lemma 4.15. (Lemma 3.7 in [HZ]) Let U C C" be a simply connected open subset and
S C U be a closed complex analytic subset of codimension one. Then for p € U\ S,
the fundamental group m (U \ S,p) is generated by loops obtained by concatenating
(Jordan) paths 1,72, v3, where 1 connects p with a point arbitrarily close to a smooth

point qo € S, Y2 is a loop around S near qy and 73 is y1 Teversed.

Proof of T heorem We give a proof for the rationality of F},. Once this is done,
we then conclude that the degree of Fj; is uniformly bounded, for we know the total
algebraic degree of F' is uniformly bounded by Theorem [4.13

Suppose that Fj, and thus F}, is not rational. Write £ C C" for a proper complex
analytic variety containing the branch locus of FjanT‘o and the zeros of the leading
coefficients of the minimal polynomials of their components. We first notice that for
A # B e C", Q% # Qp, by Lemma Hence, for any proper complex analytic
variety V1, V2 C C" and any point (a,b) € M, we can find (a',b') = (a,b) such that
al € Qp \ V! and b' ¢ V2.

We choose (2°,£%) as above and assume further that 20,£° ¢ E (after a small
perturbation if needed). We choose a sufficiently small neighborhood W of (2°,¢%) in
MReq such that for each (21, ¢!) € W, we can find, by Lemma a loop of the form

¥ =7 o907 in C*\ E with 7(0) = v(1) = €',91(1) = ¢. Here ; is a simple curve
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connecting ¢! to ¢ with ¢ in a small ball B, centered at a certain smooth point p of F
such that the fundamental group of B, \ E is generated by 72; and v, Lis the reverse
curve of 1. Moreover, when F}, is holomorphically continued along v, we end up with
a different branch FTO* of Fj, near &Y. We pick p such that there is an X, € E with
(Xp,p) € Miegz. (This follows from Proposition (III) and Lemma as mentioned
above.) Take a certain small neighborhood W of (X, p) in Mg ,. We assume, without
loss of generality, that the piece W of Mg, is defined by a holomorphic function of
the form 21 = @(22,- - , 2n,&). In particular, writing X, = (27, , 2%), we have 2! =
d(28, -+, 28, p). Make B, sufficiently small such that it is compactly contained in the
image of the projection of W into the &-space. Write X, = (¢(28, -+ ,2h,q), 28, -+ | 2h)
and define the loop 75 (t) = (¢(28, -+, 2h,72(t)), 25, - -+, 2h). Then ~} is a loop whose
base point is at X,. Also, we have (v3(t), 72(t)) € M.

Notice that X, ¢ E. After shrinking B, if needed, we assume that ~5 stays suffi-
ciently close to X, and is homopotically trivial in C" \ E.

Now we slightly thicken 7, to get a simply connected domain U; of C™ \ E. Since
M is irreducible over C" x U, we can find a smooth simple curve 7; = (71*,71) in
M\ ((E x C*)U (C" x E)) connecting (2!, &) to (Xy,¢). Then 43 is homotopic to v
relatively to {¢!, ¢} and v,*(1) = Xg4. Now replace v by its homopotically equivalent
loop A7 ! 042 041 and define v* = y*[ ! 0 44 0 v*. Define I' = (v*,7). Then the image
of T lies inside M \ ((E x C™) U (C™ x FE)). Continuing Equation along I" and

noticing that it is independent of X now, we get both

=%

1+ Fjo(2) - Fjo(§) = 0 and 1 4 Fj (2) - Fy (&) = 0V(2,§) € MN (V1 \ E) x (V2 \ E)).

Jo

Now arguing as before and applying the uniqueness for the solution of the linear system
(@19) (with an invertible coefficient matrix), we then conclude that Fj,~ = Fj,. This

is a contradiction. N

4.4 Isometric extension of I

For simplicity of notation, in the rest of this section, we denote the map Fj, just by

F. Now that all components of F' are rational functions, it is easy to verify that F
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gives rise to a rational map M --» M. By the Hironaka theorem (see [H| and [K]),
we have a (connected) complex manifold Y of the same dimension, holomorphic maps
T:Y > M,o0:Y — M, and a proper complex analytic variety F; of M such that
o: Y \o Y (E;) = M\ Ej is biholomorphic; F : M \ E; — M is well-defined; and for
any p € Y \ o7 (E1), F(o(p)) = 7(p).

Let E be a proper complex analytic subvariety of M containing £y, M \ A and
let £3 C Y be the proper subvariety where 7 fails to be biholomorphic. Write E* =
T(o™(E) UE)U (M \ A) and E = o(t }(E*)). Then F : A\E — A\ E* is a

holomorphic covering map. We first prove

Lemma 4.16. : Under the above notation, F : A\ E — A\ E* is a biholomorphic

map.

Proof of Lemma We first notice that since F' is biholomorphic near 0 with
F(0) = 0. We can assume that 0 ¢ E. Consider F2 = F o F. Then F2 = F. Since
(F, F) maps M into M whenever it is defined, it is easy to see that (F, F)o (F,F) =
(FQ,FQ) also maps M into M at the points where it is well-defined. Hence, we can
repeat a similar argument for F to conclude that F2, as a rational map, also has its
degree bounded by a constant independent of F2. Similarly, we can conclude that
for any positive integer m, F"" is a rational map with degree bounded by a constant
independent of m and F. Now, as for F, we can find complex anaytic subvarieties
EM) - E*m) of C" such that F™ is a holomorphic covering map from A \ EMm
A\ E*™) Suppose F : A\ E — A\ E* is a k to 1 covering map. It is easy to see that
F™ o A\ E™ — A\ E*™) is a k™ to 1 covering map. However, since the degree F™

is independent of m, we conclude that k = 1 by the following Bezout theorem:

Theorem 4.17. ( [S]) The number of isolated solutions to a system of polynomial

equations

fi(xy, ) = fa(x1, ey zn) = oo = fo(x1,yzy) =0

1s bounded by dyds - - - d,,, where d; = deg f;.

This proves the lemma. B
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Now we prove that F' extends to a global holomorphic isometry of (M, w).

Theorem 4.18. F : (U,w|y) — (M,w) extends to a global holomorphic isometry of
(M, w).

Proof of Theorem[{.18 By what we just achieved, we then have two proper complex
analytic varieties W7, Wy of C" such that F' : C"\W; — C™\Wj; is biholomorphic.
Similarly we have two proper complex analytic subvarieties W7, W5 of C" such that

F:C"\ W{ — C™\ Wy is a biholomorphic map. Hence
F=(FF):C"\Wp xC*"\ Wy — C"\ Wy x C*\ Wy

is biholomorphic.

Let p be the defining function of the Segre family as described before. Since p is
irreducible as a polynomial in (z, &), M is an irreducible complex analytic variety of A.
Since § maps a certain open piece of M into an open piece of M, by the uniqueness
of holomorphic functions, we see that § = (F, F) also gives a biholomorphic map from
(C"\ Wy x C*\W;)NM to (C™\ Wa x C*\ W35)NM. Hence pr = p(F(2), F(£)) defines
the same subvariety as p does over C™ \ W; x C" \ W7. Since pp is a rational function
in (z,£) with denominator coming from the factors of the denominators of F(z) and

F(§), we can write

Pfl(zvé-)PgQ(Z?g) U P7Z"T(Z7§)
Q=) QR () - R (§)
Here the zeros of Q;(z) and R;(§) stay in Wi and WY, respectively. All polynomials

pr(z,€) = (p(2,€)) (4.20)

are irreducible and prime to each other. By what we just mentioned Pj(z,&) can not
have any zeros in C" \ W; x C" \ W7, for otherwise it must have p as its factor by the
irreducibility of p. Hence the zeros of Pj(z,§) must stay in (W; x C") U (C™ x WY).
From this, it follows easily that Pj(z,&) = Pj1(2) or Pj(2,£) = Pj2(§). Namely, Pj(z,§)
depends either on z or on £. Since § is biholomorphic, we see that I = 1. Thus replacing
¢ by z and taking i99 log to (4.20]), we have i log pp(z, z) = i00log p(z, Z). This shows
that F*(w) = w, or F is a local isometry. Now, by the Calabi Theorem (see [Cal), F

extends to a global holomorphic isometry of (M,w). This proves Theorem |
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We now are ready to give a proof of Theorem [£.1] By what we have obtained, there
is a component Fj for F' in Theorem that extends to a holomorphic isometry to
(M,w). Hence F;(du) = du. Notice A\;j < 1 due to the positivity of all terms in the
right hand side of the equation . After a cancellation, we reduce the theorem to
the case with only (m — 1)- maps. Then by an induction argument, we complete the

proof of Theorem [ |
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Chapter 5

Partial non-degeneracy: Proof of Proposition (I)

In this chapter, we prove Proposition (I) for irreducible compact Hermitian spaces of
compact type. Since the argument differs as its type varies, we do it on a case by case

base.

5.1 Spaces of type I

With the same notations that we have set up in §2, Z is a p X ¢ matrix (p < q);

1 ... 1

Z( ) is the determinant of the submatrix of Z formed by its i{", ..., ith rows
Jioe Tk
and 738, ..., 71 columns; 2 = (211, ...y 2195 2215 oy 22s -y Zpl, -5 Zpg) 18 the coordinates of

CH=A C G(p,q)-
Let 0 € U be a small neighborhood of 0 in CP¢ and F' be a biholomorphic map
defined over U with F'(0) = 0. For convenience of our discussions, we represent the

map F : U — A as a holomorphic matrix-valued map:

fir o fig
F—
fpl . qu
TR TR T _ .
Similar to Z( ), F'( ) denotes the determinant of the submatrix formed
Jioee Jk Jioee Jk

by the ith, ..., ith rows and jib, ..., j¥ columns of the matrix F.

Recall the definition in (2.1)):

rz:(wwav'“v@ZJN):(”'>Z(. ')7"')a1§21<---<1k§p7
Juo- Jk
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I1<in<.<ip<q¢gl<k<p
Similarly, we define:

TR
rE = (o F( oo ), 1<in < < <p, 1 <1 < <G < g, 1<k <p.

J1oee Jk

Notice that rp = (¢Y1(F(2)), ..., N (F(z))). We define

Z = (211, ceny Blgy R21y wvy B2qy wvoy Zply oons Zp(q—l))7

olel glel
0zZ% = g “p(q—1)
z 821111...8210(1231)

i.e., Zis obtained from z by dropping the last component z,,. Write

for any (pg — 1)—multiindex «, where
a = (a/u, ey OLpy Q215 oeey A2y wvey Qiply vnny Oép(qfl)).

We apply the notion of the partial degeneracy defined in Definition [3.1] of §3 by
letting 1 = rg and letting z be as just defined with m = pqg. We prove in this subsection

the following proposition:

Proposition 5.1. rr are Z—nondegenerate near 0. More precisely, rankiy N—pq(1F, 2) =

N.

Proof of Proposition If p=1,g =n > 1 ie., the Hermitian symmetric space
M = P", then it follows from Lemma that rank; (rp,2) = N = n. In the following
we assume p > 2.

Suppose the conclusion is not true. Namely, assume that rank;n_pq(7r,2) < N.
Since the hypothesis of Theorem@ is satisfied, we see that there exist cpg41,...,cny € C

which are not all zero such that

N

> cti(F) (211, s 2pg-1,0) = 0. (5.1)

1=pq+1
The next step is to show that (5.1) cannot hold in the setting of Proposition

This is obvious if we can prove the following:

Lemma 5.2. Let
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I’LH . hlp
H = )
hpr ... hypg
be a vector-valued holomorphic function in a neighborhood U of 0 in Z = (211, ..., Zp(g—1)) €

CPa=1 with H(0) = 0. Assume that H is of full rank at 0. Set

11 ... 1k

(P1y ey ) :=TH = H ' . . (5.2)
T IR T e <ivspi<ii<<iv<d) a<k<p
Here
p q p q
m = + ...+
2 2 P P

Let aq, ..., am be complex numbers such that
Zm:aiqﬁi(i) =0 forall Z € U. (5.3)
i=1
Then
a; =0
for each 1 <i < m.

Proof of Lemma We start with the simple case p = ¢ = 2, in which m = 1.
Then by the assumption (5.3)), aj¢; = 0. Here

hi1 hio
¢1= :
ha1  hoo

Note that H = (hi1, hi2, ho1, ho2) is of full rank at 0. We assume, without loss of
generality, that H := (h11, h12, ho1) is a local biholomorphic map from C? to C3. After
an appropriate biholomorphic change of coordinates preserving 0, we can assume hy; =

211, h12 = 212, ho1 = 291, and still write the last component as hos. Then we have
a1¢1 = a1(z11hae — z12201) = 0,

which easily yields that a; = 0.



61

We then prove the lemma for the case of p = 2, ¢ = 3, in which m = 3. As before,
without loss of generality, we assume that H = (h11, h12, h1s, ho1, hog) is a local bi-
holomorphic map near 0 from C® to C°. After an appropriate biholomorphic change of

coordinates, we assume that H = (#11, ..., 222). By lb we have

211 212 Z11 213 212 213
CL1(Z)1 4+ ...+ a3¢3 = a1 + as + as . (5.4)

221 222 221 has 222 hos
The conclusion can be easily proved by checking the coefficients in the Taylor ex-
pansion at 0. Indeed, the quadratic terms z13291, 213200 only appear once in the last
two determinants. This implies as = a3 = 0. Then trivially a; = 0.
We also prove the case p = ¢ = 3. In this case m = 10. As before, without loss
of generality, we assume that H = (hyy,..., hsz) is a biholomorphic map from C® to
C8. After an appropariate biholomorphic change of coordinates, we can assume that

H = (211, ..., 232). Then by assumption, we have

a1 + ... + app10 =

211 212 211 213 Z12 213 Z11 212 211 %13 Z12 %13
ai + ag + a3 + ay + a5 + ag

291 222 291 %23 292 223 231 232 231 hs33 232 hs33

211 212 %13
221 222 221 223 222 223
+ ar + as + ag + @10 (291 299 23| = 0.

231 232 231 hss3 232 hs3s
231 232 hs3
(5.5)

We then check the coefficients for each term in its Taylor expansion at 0. First it is

easy to note that as = ag = ag = ag = 0 by checking the coefficients of quadratic terms
213231, 213232, 223231, 223232,

respectively. Then by checking the coefficients of other quadratic terms, we see that
a1 = as = az = a4 = a7 = 0. Finally we check the coeflicient of the cubic term 213292231
to obtain that aig = 0.

We now prove the general case: g > p > 2. As before, we assume without loss

of generality that H = (P11, s p(g—1)) is a biholomorphic map from Ccra—1 to CcPa—1,
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Furthermore, we have H = (211, ..., Zp(g—1)) after an appropriate biholomorphic change

of coordinates. We again first consider the coefficients of the quadratic terms in ([5.3)).

p

For that, we consider the 2 x 2 submatrix involving hy,g, i.e., H ,1<l<p 1<
k q

k < q. Note that 2,2, only appears in this 2 x 2 determinant, which yields that the

coefficient a; associated to this 2 x 2 determinant is 0, for any 1 < i < p,1 < j < gq.

Then by checking the coefficients of other quadratic terms, we see that all coefficients

li o
a;s that are associated to 2 x 2 determinants H 1<l <p,1 <ki,kyg <gq,
k1 ko

are 0.

We then consider the coefficients of cubic terms in ([5.3]). We first look at those 3 x 3
- : : Lol p

submatrix involving hy,. i.e., H 1<l <ls <p,1 <k < ko <q. Note
ki k2 q

that 2y, 421,k, 2pk, Only appears in this 3 X 3 matrix, which yields that the a; associated
to this 3 x 3 determinant is 0. Furthermore, we see that all coefficients a;’s that are
associated to 3 x 3 determinants are 0.

Now the conclusion can be proved inductively. Indeed, assume that we have proved
that all coefficients a;’s that are associated with the determinants of order up to p x
1,3 < p < p are zero. Then we will prove that the coefficients associated with (u+1) x
(1+1) determinants are also 0. For this we consider all such determinants which involve

Lo,

b
hpg, e, H where 1 <y < ... <[, <p, 1<k <..<k, <q We
]{1 k’u q

conclude the a; associated to it is 0 by noting that 2y, ¢2i,k,, 21k, 2pk, Only appears in
this (u+1) x (u+1) determinant. Then we can show all coefficients that are associated
with other (u+ 1) x (u+ 1) determinants, i.e.,

R PR
H ,1 <h<..< Z/H‘l <p, 1<k <..< klﬁ‘l <gq, (lﬂ+17kﬂ+1) 75 (p, q).

ke ky kg

are 0 by checking a term of the form z,...2; that only appears once in the

p1kut1

Taylor expansion of the left hand side of (5.1]). This proves the lemma. R

We thus get a contradiction to the equation (5.1f). This establishes Proposition
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Remark 2. Let F' be as in Proposition . There exist multiindices B, ..., BN with
|37] <1+ N —pq and

2 .. z?q
0= #0
221 qu
such that 2° is near 0 and
917" (1 () 218"\ (g (F))
o381 o381
A(B, ..., BN) = (%) # 0. (5.6)
91 1 (4 (1)) 917" | (g (F))
s8N s8N

Perturbing 2° if necessary, we can thus assume that zgq # 0. Moreover, we can replace
one of the BY,....BY by B = (0,...,0), because (Y1(F),...,yn(F)) are not identically
zero (See also the proof of Theorem . Without lost of generality, we can assume
that B! = (0,...,0).

The defining function of the Segre family now is

p(z,é') 14 Z Z Z(le Zlk)E(ll ’Lk) (57)

k=1 \1<i1<in<..<ip<pl1<ji<jo<..<jr<q¢ J1 - Jk J1 - Jk

It is a complex manifold for any fixed £ close enough to the point

0 .. 0 0
Q=10 .0 o|ecr

0

0 .. 0 &

1

where §2q =

Write for each 1 <i <p,1<j<gq,(i7)# (p,q),

AL
Lij = 3 , (5.8)
622-]- i(zj 5) 8zpq

Ozpq

which is a well-defined holomorphic tangent vector field along M near (z°,£9). Here

Op
we note that RE

(B11, -5 Bp(g—1)), We write

(2,€) is nonzero near (2°,£%). For any (pg — 1)-multiindex 3 =

B _ pbu Bp(a—1)
LP = Ell “‘£p(q—1)‘
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Now we define for any N collection of (pg — 1)—multiindices {3, ..., BV},

L (YL (F)) .. LP'(Yn(F))
A, ., BY)(2,6) = (2,€). (5.9)
L (i (F)) .. LY (Yn(F))

We have the following,

Theorem 5.3. There exists multiindices {3, ..., ™}, such that

A(BY, ..., BY)(z,6) #0, (5.10)

for (z,€) in a small neighborhood of (2°,£°). Moreover, we can require B* = (0, ..., 0).

Proof of Theorem First we observe that £;; evaluating at (z%,&°) is just 0

8Zij :

More generally, for any (pg — 1)—multiindex 3, by an easy computation, £° evaluating

at (29, £%) coincides with Therefore, we can just choose the same 3!, ..., 8V as in

0
oz8
Remark 2l ®

5.2 Spaces of type II

In this section, we establish Proposition (I) for the orthogonal Grassmannians Gr(n,n).

As shown in §2, we have a Zariski open affine chart A C Gr(n,n) of elements of the

form:
1 0 0 e 0 0 219 cr Zin
010 ---0 —2Z12 0 cet 29n
(Ixn 2) =
000 -+ 1 —2z1p, —29n --- 0

n(n—1)

Here 2z = (212, 213, ---s Z(n—1)n) is the local coordinates for A = C . Its conjugate

n(n—
2

A* C (Grr(n,n))* is also a copy of C 2 We write the local coordinates for A* as

§= (512) o0y g(n—l)n)'

The canonical embedding is given by

(1, DE(Zs), ...).
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The defining function for the Segre family (in the product of such affine pieces) is given
by
p(,) =1+ > Pi(Z,)P(E,)

o€Sk,
2<k<n,2|k

Write

rg = (Pf(Zg)g€5k> (5.11)

2<k<n2lk’
The local biholomorphic map F' defined near 0 € U with F'(0) = 0 can be represented

as a matrix:

0 fiz . fin
o —fiz 0 .. fou
Y

Let rp be
rp = (pE((F)o)res, )

Under the notation of §2, it is easy to see rz = (¢1, ..., ¥n), rr = (V1(F), ..., ¥n(F)).

. 5.12
2<k<n,2|k ( )

We write z for the z with the last component z(,_),, dropped. More precisely,

Z= (212, ceey Ry R23y cevy B2y ooey Z(n—?)(n—1)> Z(n—?)n)a (513)

Recall z has n’ = n(n — 1)/2 independent variables. Thus z has (n’ — 1) components.
We define the Z—rank and z— nondegeneracy as in Definition using ¥ = rp in ((5.12))

and 2 as in ([5.13]) with m = n/, respectively. We now prove the following:

Proposition 5.4. rp is Z—nondegenerate near 0. More precisely, ranky y_/(rp,z) =

N.
Proof of Proposition Suppose not. Without loss of generality, we assume that
rankHN_n/ (’I“F, 2) < N.

As a consequence of Theorem there exist ¢, € C,4 < k < n,2|k,0 € Sj, which

are not all zero, such that

> ok DE((F)o) (212, -0s Z(n—2)n; 0) = 0. (5.14)

4<k<n,2|n oE€S},
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However, (j5.14]) cannot hold by the following lemma, which gives a contradiction:

Lemma 5.5. Let

—hin . . O
be an anti-symmetric matriz-valued holomorphic function in a neighborhood U of 0 in
Z = (212, s Z(n—2)n)) € C"' =1 with H(0) = 0. Assume that H is of full rank at 0. Set

ri similar to the definition of rp,

= (pf(H,), ) . 5.15
TH (p (Hs)oes, p<hen i (5.15)
Assume that asp,0 € Si,4 < k < n, are complex numbers such that

> Y aok pf(Ho) (212,00 Z(n-2)n)) = 0 for all Z € U. (5.16)

4<k<n,2|k 0€ES)
Then

aak:O

)

for all o € Si,4 < k <n,2|k.

Proof of Lemma Suppose not. We will prove the lemma by seeking a con-
tradiction. Note that H has full rank at 0. Hence there exist (n’ — 1) components
H of H that forms a local biholomorphism from C"~! to C"~!. We assume that
these (n’ — 1) components H are H with hiyj, being dropped, where ig < jo. Without
loss of generality, we assume ig = n — 1, jo = n. By a local biholomorphic change of
coordinates, we assume H=7%= (212, -+ Z(n—2)n)- We still write the missing compo-
nent as hg,_1),- Now we assume 2(m + 1),m > 1, is the least number k such that
{ask}oes, are not all zero. We then consider {aa72(m+1)}0632(m+1). We first claim that
Uy2(m41) = 0 for those o € Sy, 1) such that pf(H,) involves h,_1),. More precise-
ly, if pf(Hy),0 € Sagmy1) involves h(,_1),, then o = {i1,...,;i9m, (n — 1),n} for some
1 <1 < ... <igm < n—2. Suppose its coefficient is not zero. Then pf(H,) will produce

the monomial 2;,iyZigiy-+-Zigy,_siom_o% Zis,m- LThis term can only be canceled by

igmfl(n—l)



67

the terms of form: z;,  (n—1)A(n—1)n® OF Ziy,nh(n-1),Q. But neither of them can ap-
pear in any other Pfaffians. This is a contradiction. Once we know there are no h,_1),
involved, then the remaining Pfaffians have only terms consisting of the product of
some of 212, ..., 2(n—2)p- Their sum cannot be zero unless their coefficients are all zero.
This is a contradiction. We thus establishes Lemma 5.5 B

We thus also get a contradiction to equation . This establishes Proposition
ey |

Remark 3. By Proposition there exist multiindices B, ..., BN with all ]31] <1+

N —n/, and there is a point

0 2?2 Z(l](n 1) Z(l]n
-0, 0 zg(n 1) 2,
ZO - “es 7Z?n71)n # O;

0 0 0
TR(n-1)  T*2n-1) 0 “(n—1)n

—z(l)n —zgn —z?n_l)n 0

near 0 such that
917 (41 (F)) 918 (o (F))
0z8t oz8*
(2°) £ 0.
17" (31 (1) 91" | (g ()
az8N azpN
We set
0 O 0 0
0 0 0 0
2 1
z
0 (n—1)n

0 0 0 f(nfl)n
0 0 —€?n_1>n 0

Then it is easy to see that (2°,£°%) € M = {p(z, &) = 0}.

Write for each 1 <1i < j <n,(i,j) # (n — 1,n),

% (2,€)
£y =2 - 0 (5.18)
zij L—(2,&) Oz(n—1)n

8Z(n—l)n
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which are holomorphic tangent vector fields along M near (22, £0). Here we note that

Op
62(71,1)”

(2,€) is nonzero near (2%, £%). For any (n/ — 1)-multiindex 8 = (B12, ..., Bn—2)n);
we write
B Bn—2)n
L0 = Ly5 L
Now we define for any N collection of (n’ — 1)—multiindices {3, ..., 5V},
LO(W1(F) o L (§n(F))
ABY, ..., BN)(2,6) = (2,6). (5.19)

L (i (F)) .. LY (Y (F))

Note that for any multiindex 3, £? evaluating at (2°,£%) coincides with 8%' We

thus again have

Theorem 5.6. There exists multiindices {3, ..., BN}, such that
A(BY ., BY)(2,€6) # 0,

for (2,€) in a small neighborhood of (2°,£°) and B' = (0, ...,0).

5.3 Spaces of type II1

Let F' be a local biholomorphic map at 0. In this case, both Z and F are n X n

symmetric matrices. We write

Z11 212 .- Zln
Z12 Z299 e Z9n

Z = . 2= (211,212, 213, 7Znn)
Zln  22n -~ Znn

Similar notations are used for F.

Recall from of &3 in §
ro= (BHE), o B (20, 03(2), o 03 (2, U1 T R), s UL, (2),07(2) ) (5.20)

where 1" is a homogeneous polynomial of degree k,1 <7 < Ni. Y™ is a homogeneous
g g poly g J g

polynomial of degree n. Moreover, the components of r, are linearly independent.
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We write the number of components in r, to be N = N; + ... + N,,, where we set
Np = 1. We will also sometimes write ¢, = ¢".

We emphasize that for each fixed k, wlf s ey w]’i,k are linearly independent. Moreover,
each @Z)}“ is a certain linear combination of the determinants of k x k submatrices of Z.

This will be crucial for our argument later.

We define rp as the composition of r, with the map F":

P = (GHF), oy 08, (F), 3 (F), oy 3, (F), oy (), s 0 (), 07(F))
(5.21)
In what follows, we write also z;; = z;;. We write det(A) as the determinant of A when

A is a square matrix.

/

Let P, P be monomials in 2

s, and h a polynomial in zz’-js. Let a, b be two complex
numbers. In the following lemmas, when we say h always has the terms aP, b]g, we

mean h has the term aP if and only if it has the term bP.

Lemma 5.7. Fizing1 <1,j <n, let P = z;p2,;Q and P= 2ij 2@ with Q a monomial

/

in z;;s. The following statements are true.

o Let A be a square submatriz of Z. If zj 1 Q, then det(A) always has monomials
of the form cP, —cP for some ¢ € C depending on the submatriz A. (If det(A)
does not have any multiple of P, it does not have any multiple of ﬁ, either; vice
versa). If z;;|Q, then det(A) always has monomials cP, —(¢/2)P for some ¢ € C

depending on A.

o Let k > 1. Let 1 (2) be as defined in , 1 <1< Ni. If 25 1 Q, then ¢F(2)
always has monomials AP, —\P for some X € C, If 2i;|Q, then ¢lk(z) always has

monomials AP, —(\/2)P for some X € C.

Proof of Lemma The first part is a consequence of the Laplace expansion of a
determinant by complementary minors. The second part is due to the fact that w}“ isa

linear combination of the determinants of submatrices of Z of order k. i

Similarly, one can prove in a similar way Lemmas [5.8{5.10]
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Lemma 5.8. Fizing 1 <j <n-—1, let P = zjnz(n_1)(n—1)& and P= Zj(n-1)%(n-1)n&

. .,
with ) a monomial in 28

o Let A be a square submatriz of Z. If zjn 1 Q, then det(A) always has monomials

cP,—cP for some ¢ € C. If 2jn|Q, then det(A) always has monomials cP, —2¢P

for some c € C.

o Let k > 1. Let ¢ (2) be as defined in , 1 <1< Np. If zjn t Q, then ¢F(2)
always has monomials AP, —A\P for some X € C. If 2j,|Q, then wlk(z) always has

monomials AP, —2\P for some \ € C.

Lemma 5.9. Fizing 1 <i<n—1, let P = zj(,_1)2niQ and P= ZiiZ(n—1)n@ with Q a

monomial in zgj s.

o Let A be a square submatriz of Z. If z(,_1)n 1 Q, then det(A) always has mono-
mials cP, —cP for some ¢ € C. If 2(,_1)n|Q, then det(A) always has monomials
cP,—(c/2)P for some c € C.

o Let k > 1. Let ¢F(z) be as defined in , 1 <1 < Nio If 2(n—1yn 1 Q, then
wf(z) always has monomials AP, —\P for some X\ € C. If 2(,_1),|Q, then wf(z)

always has monomials AP, —(\/2)P for some X € C.

Lemma 5.10. Fizing 1 <i<n—1,1<j<n-—11#j, let P = zj,_1)2n;Q, P> =

ZinZj(n-1)&; and P= 2ijZ(n—1)n®@ with Q@ a monomial in zgjs.

o Let A be a square submatriz of Z. If zij 1 Q, 2(n—1)n 1 @, then det(A) always
has terms c1 Py + coPa, —(c1 + 02)]5 for some c1,co € C. If 25 1 Q, 2(n—1),|@Q, or

2i51Q5 Z(n—1)n 1 @, then det(A) always has terms c1 Py + co Py, —CI;CQ§ for some

c1,c2 € C. If 2i5]Q, 2(n—1)n|Q, then det(A) always has terms c1 P1+ca P, —%JB.

o Letk > 1. Let F(2) be as defined in 1 <U<S N If 251 Q and 2,1y, 1 Q,
then wlk(z) always has terms A\ Py + Ao Pa, —(A1 + /\g)ﬁ for some A\, o € C. If
zij 1 Q, 2(n—1)nl @, 0T 2i5|Q, 2(n—1)n 1 Q, then YF(2) always has terms A\ Py +
APy, MR P for some M\, s € C. If 25|Q, 2(n_1)|Q. then ¥f(2) always has

terms M Py + Ao Ps, —%ﬁ for some A\, A € C.
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We write z for z with the last components z,,, being dropped. More precisely,

zZ= (lea ooy Blny B22y 05 Z2my ooy B(n—1)(n—1)» Z(nfl)n)' (522)

Recall z has n’ = n(n + 1)/2 independent variables. Thus z has (n’ — 1) components.
We define z—rank and zZ—nondegeneracy in the same way as before, using rp in (|5.21)

and Z in (5.22)) with m = n/. We now need to prove the following:

Proposition 5.11. rp is Z—nondegenerate at 0. More precisely, ranky  n_p/(rp,2) =

N.

Proof of Proposition Suppose not. Then one easily verifies that the hypothesis
of Theorem is satisfied. As a consequence of Theorem there exist c? €C,2<
k <n,1<j < Ng, which are not all zero such that

n Ng

chkd}k 211,... (n— 1)n,0)) =0. (523)

k=2 j=1
Here as before, we write N, = 1,9}, = ¢".

Then we just need to show it can not happen by the following lemma:;:

Lemma 5.12. Let

hi1 hi2 ... hip

h12 h22 ces h2n
H—

hin .. . hmm

be a symmetric matriz-valued holomorphic function near 0 inzZ = (211, .., 210, 222 --s 2205 -+

C™' -1 with H(0) = 0. Assume that H is of full rank at 0. Set rg in a similar way as in
(36) :

= (WHCH), oy 0 (), R CH), oy, (), o 00 (), 032 (), 07 (D))

Again we write Np = 1,¢" = ¢}, . Assume that a?,Q <k<n,1<j<n are complex

numbers such that
n N

ZZakw =0 for zcU. (5.24)

k=2 j=1

) Z(n—l)n) €
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Then

foreach 2 <k <n,1<j< Ng.

Proof of Lemma Suppose not. We will prove the lemma by seeking a contra-
diction. Notice that H has full rank at 0. Hence there exist (n’ —1) components Hof H
that gives a local biholomorphism from C*~! to C*'~!. We assume these (n’ — 1) com-
ponents H are H with hiyj, being dropped, where iy < jo. Then we split our argument

into two parts in terms of ig = jg or ig < jo.

Case I: Assume that ig = jo. Without loss of generality, we assume iy = jo = n. By
a local biholomorphic change of coordinates, we assume H=7%= (211 -+ zn(n_l)). We
still write the last component as h,,. Now we assume m > 2 is the least number k such
that {a}, ...,aﬁvk} are not all zero. For any holomorphic g, we define Tj(g) to be the

homogeneous part of degree [ in the Taylor expansion of g at 0. Now the assumption

in (5.24) yields:

Il
e

(5.25)

N
> e (H
Jj=1

We first compute

Zam% Za VI (2115 -5 Z(n—1)n> M)

formally. Namely, we regard h,, as a formal variable and only conduct formal cancel-

lations. We write formally

Zam’(ﬁj 2’11, s Zn—1)n> hn, ) =P+ hpnPs. (5.26)
Here Py = Pi(z11, - 2(n—1)n) is a homogeneous polynomial of degree m, and P, =
Py (211, -+, 2(n—1)n) 15 a homogeneous polynomial of degree m — 1. We claim P, # 0.

Otherwise,

Za 1/) 211,... (n— 1)nahnn):Pl-
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This implies that ZNm a7 YT (2115 s Z(n—1)ns hnn) does not depend on hyy, formally.

Then we can replace h;,;, by z,,. That is,

N"'L

Zam¢m 211y - n 1) n,znn Zamwm 211y e-- n 1)n>hnn(a) = Pl- (5.27)

By , we see that is identically zero. This is a contradiction to the fact
that {¢7",...,¢ } is linearly independent.

Now since P, # 0, thus by , Z " al P (211, o Z(n—1)n, hnn) has a monomial
of the form ,uﬁ = pzijhnn@ of degree m for some 1 < 7,5 < n, u # 0 and some monomial
Q. By Lemma we get that Z;V:’"l a7 YT (2115 s Z(n—1)ns hnn) has also the term —pP
or —2uP, where P = 2;,2,;Q. This is a contradiction to . Indeed, P can be only
canceled by the terms of the forms: zmhnn@ or znjhm@, where @ is of degree m — 2.
But they cannot appear in determinant of any submatrix of H as z;,(or z,;) can not

appear with h,,.

Case II: Assume that iy # jo. Without loss of generality, we assume iy = (n —
1), jo = n. Then H= (P11 s Bn—1)(n—1)> Pnn) is a local biholomorphism. By a local
biholomorphic change of coordinates, we assume H=%= (2115 s Z(n—1yn)- We will still
write the remaining component as i, _1), = hyn—1). Note that the fact we are using
only is that {z11,..., 2(n—1)n} are independent variables. Hence, to make our notation

easier, we will write

H = (211,... (n l)n) (wn,...,wln,wQQ,...,wgn,...,w(n_l)(n_l),wm)

such that they have the same indices as h’s in H. Now we assume m is the least number

k such that {a¥, ..., aka} are not all zero. Then again assumption 1j yields that

Nm
> alwi(H(Z) | =0. (5.28)

j=1

Again we formally compute that
Za % Wi, -y b (n— 1)nawnn) Q1+ h(n—l)nQQ- (529)
Here Q1 = Q1(w11, s Wn—1)(n—1)» Wnn) is a homogeneous polynomial of degree m.

Similarly, we can show that Q2 # 0. We claim that (5.29) does not have a monomial
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of the form h(,_1),N(n—1)n@. Otherwise, by Lemma we get that (5.29) has also a
monomial of degree m of the form: w,_1)pn—1)wn,Q. But note that in (5.29) it can
be canceled only by h(,_1)nfi(n—1)n@. Then h(,_1), will have a linear term w(,—_1)(n—1)-
But then h,_1),h(n—1)n & will produce the term w(,_1)(n—1)Wn—-1)(n-1)Q- This cannot
be canceled out by any other terms.

Now since Q)2 # 0, has a monomial of the form w;;h(,_1),Q, where @ is anoth-
er monomial in w’s. Here 1 < i, < n. Moreover, (i,j) # (n—1,n—1), (n—1,n), (n,n—1)
or (n,n). We first assume 1 < 4,j < n — 1,7 # j. Then by Lemma [5.10] , has
either Py or P2, where P = wj,_wn;Q, P2 = winw;,—1)Q. Note P, P» can only
be canceled by the terms wi(n_l)h(n_l)nQ, wnjh(n_l)nQ, wmh(n_l)nQ, wj(n_l)h(n_l)nQ.
So one of them will appear in . Whichever case it is, by Lemma
will have either P = wpwp_1)(n—1)@, or P = Wi(n—1)Wnn@ for some 1 < I < n.
We assume, for instance, has the monomial P. Then it also has the monomial
P= Win—1)"(n-1)n@ by Lemma Note that the only term that can cancel P and
appear in some determinant is wy,h,,—1)Q. Hence hy,,_1) has a linear w,_1)(,—1)
term. Then P will have the monomial Wi(n—1)W(n—1)(n—1)&, Which can not be canceled
by any other terms. This is a contradiction. The other cases can be proved similarly.

This establishes Proposition [ |

Remark 4. By Proposition there exist multiindices 81, ..., BN with \33\ <1+N-—

pq, and there exist

2 . 2D
2= , z,qm #£0,
near 0 such that

218" (1 (F)) 218" (o (F))

878" 078"

(%) #0. (5.30)

218N 1y () 918N (o (F))

azo8 T gV

Here we simply write rp = (Y1(F), ..., ¥n(F)).
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We then set

0 ... 0 0

1
50: 0O ... 0 0 G(Cn27§2n:_ZT.
0 .. 0 &,
It is easy to verify that (20,50) e M ={p(z,§) =0}.
Write for each 1 <1i < j <mn,(i,j) # (n,n),
0,
Ly=m—— T2 (5.31)
Zij Den (2,€) 9znn

which are holomorphic tangent vector fields along M near (22, £°). Here we note that

Op
0Znn

(2,€) is nonzero near (2°,£%). For any (n’ — 1)-multiindex 3 = (B11, s Bn—1)n), We
write

_ B Bn-1)n
L0 =Lyt L

Now we define for any N collection of (n’ — 1)—multiindices {3, ..., 5V},
LP W (F) o L7 (on(F))
ABY, .., BN)(2,€) = (2,6). (5.32)
L7 (W1(F) o L7 (n(F))

Note £ evaluating at (20, £9) coincides with E)gﬂ' We have

Theorem 5.13. There exists multiindices {3, ..., BN} such that A(B', ..., BN)(z,£) # 0
for (2,€) in a small neighborhood of (2°,£°) and B* = (0,0, ...,0).

5.4 Spaces of type IV

In this section, we consider the hyperquadric case M = @Q". This case is more subtle

because the tangent vector fields of its Segre family are more complicated.

Recall that Q™ is defined by

n
{[zo, vy Zny1] € CPVTL Zz? —2202p+1 = 0} )

=1
where [2g, ..., zn+1] is the homogeneous coordinates of CP"*1. The previously described
minimal embedding C"(A) — Q" is given by

n

z = (21, ...,Zn) — [1,1/11(2), ---71/1n+1(2)] = [17217 ooy Rmy % Z’Z?]

i=1
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The defining function of the Segre family over A x A is p(2,§) = 14 r, - 7¢, where

Py = (21, 20y 5 Zz = (&1, 6o = Zf; (5.33)
Let F be a local biholomorphic map at 0 with F'(0) = 0. We write
1 n
Fz(fh'":f”)? rF:(flv'-'afTLaQZ;fi?)' (534)
Notice that

= (1(2); s Yn41(2) rE = (1(F); oo P ()

We will need the following lemma:

Lemma 5.14. For each fixed py, ..., fin—1 with (E;:ll p?) +1 = 0 and each fized

(21, +vy 2) with (Z?:_ll wizi) + zn # 0, we can find (&1, ...,&n) such that

1+ Zlgl + ...+ ann = 0; 2(51)2 =0, gj = :U’jgnv 1<j<n-1, fn 7& 0. (535)

i=1
Proof of Lemma[5.1f} We just need to set
gn: n—1 5 sz,ujfn,léjgn—l.

iz Mzzz) + 2
Then it is easy to verify that ( is satisfied. W

Recall that in the type I case, the vector fields 8% in CP? are tangent vector fields
of the particular hyperplane {z,, = 0}. We can formulate the result in §3 in a more
abstract way and extend it to a more general setting. For instance, it can be generalized
to the complex hyperplane case. We briefly discuss this in more details as follows:

. . n—1 92 _ .

First fix pq, ..., ptn—1 with (3,7 p7) + 1 = 0. Take the complex hyperplane H :
Zn + Zl 1 Mizi =01n (21, ..., 2,) € C™.

Write

0 0 0 0

WL, 1= — Uy —=——-
021 M 0z, 0T 9., Hn Yoz,

Ly =

Then {Li}?z_ll forms a basis of the tangent vector fields of H. For any multiindex
a=(ag,..,oan_1), we write L% = L{*...L a" 1 . We define L—rank and L—nondegeneracy
as in Definition by using rr in and by using L® instead of z% with m = n.
We write the kth L-rank defined in this setting as ranky(rp, L) We now need to prove

the following
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Proposition 5.15. ranky(rp, L) =n + 1.

Proof of Proposition Suppose not. By applying the same argument as in
Section 3 and a linear change of coordinates, we can first obtain a modified version of

Theorem That is, we have the following:

Lemma 5.16. There exist n+1 holomorphic functions gi1(w), ..., gn+1(w) which are de-
fined near 0 on the w—plane with {g1(0), ..., gn+1(0) } not all zero such that the following
holds for all z € U.

n+1

> 0izn + iz o+ 12 1) ¥ (F(2)) = 0. (5.36)
=1

Then one shows with a similar argument as in Section 3, by the fact that F has full

rank at 0, that g;(0) =0, ..., g,(0) = 0. Hence we obtain,

Lemma 5.17. There exists a non-zero constant ¢ € C such that
n
c
chn1(F(2) = 5 ) fi(2) =0, (5.37)
=1
for all z € U when restricted on z, + Z?;ll wizi = 0.

We then just need to show that (5.37)) cannot hold by applying the following lemma

and a linear change of coordinates.

Lemma 5.18. Let H = (hq, ..., hy) be a vector-valued holomorphic function in a neigh-
borhood U of 0 in 2 = (z1,...,2n_1) € C*! with H(0) = 0. Assume that H has full

rank at 0. Assume that a is a complex number such that,
n
a) h(2) =0, (5.38)
i=1
Then a = 0.

Proof of Lemma Seeking a contradiction, suppose not. Notice that H has
full rank at 0. We assume, without loss of generality, that (hq, ..., h,—1) gives a local
biholomorphic map near 0 from C*~! to C*~!. By a local biholomorphic change of

coordinates, we assume (A1, ..., hp—1) = (21, ..., 2n—1), and still write the last component

as hy,. Then equation (5.38)) is reduced to

a2+ ..+ 22 +h2)=0.
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To cancel the z%, zg terms, it yields that h, has linear 21, zo terms. But then h2 would
produce a z1zo term, which cannot be canceled out. This is a contradiction. N

This also establishes Proposition |

Remark 5. By Proposz'tz’on there exist multiindices B, ..., B with |57 < 2 and

n—1
20 = (22, ..., 2%) with Zuiz? + 20 £0
i=1
such that
L' (i (F)) o LP (g (F))

(z°) # 0. (5.39)
LN @u(F)) e L (s (F))

We then choose &0 = (€7, ...,£9) as in Lemma That is
n

L4200+ 42060 =00 D (6)7=0, & =pgd, 1<j<n—1, & #0.
=1

It is easy to see that (2°,£0) € M.
We now define 5
o 52(28 0

. 1<i<n-1 (5.40)

Li= -
Oz G2 (2,6) Ozn

for (z,€) € M near (2°,£%). They are well-defined holomorphic tangent vector fields
along M. Moreover, aa?pn(z,é) is nonzero near (29, £9).
We define for any multiindex o = (v, .., ap—1), L = L§*...Lo"7". Then we define,

for any (n + 1) collection of (n — 1)—multiindices {5, ..., 3V},

LO(PL(F) o L (Pnga(F))
AB, .., BT (2,6) = (2,8). (5.41)

LI () e L7 (W (F))

By the fact that > (£7)? = 0, one can check that, for any multiindex o =
(a1, .., ), LY = L* when evaluated at (2°,¢"). Then we get the following:
Theorem 5.19. There exist multiindices {8, ..., BN} such that
A(ﬁl7 "'7/8N)(z’ g) # 07

for (z,€) in a small neighborhood of (2°,£°), where B = (0,0, ...,0).
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5.5 The exceptional class Mg

This case is very similar to the hyperquadric setting. In this case, we write the coordi-

nates of C16 as

2 1= (L, ey BT, YOy ey Y7)-

The defining function of the Segre family as described in (2.15)) is

N
p(z,6)=14+r, -re =1+ Z%‘(z)%(f), where N = 26 and
i=1

ry, = ([130, s T75Y05 ---5 YT, Ao, ...A7, Bo, Bl) (542)

Here A;,0 < i <7, By, By are homogeneous quadratic polynomials in z. For instance,

7 7
BOZZI%,Bl :Zyzz
=0 =0

For the expressions for A;, see Appendix I.

Let F be as before. We write

F: (f(]?"‘?f?’.%?"'ﬁ)'

And define rr as the composition of r, with F':
e =T, oF = (f07 "'7f77.%7 .ﬁvAO(F>7 A7(F)7B0(F)7BI(F)) (543)

Notice that r has 26 components.

We will need the following lemma:

Lemma 5.20. For each fized g, ..., pg with (Z?:o p2) +1 =0 and fized (yo,...,y7)

with (Z?:o wiyi) +y7r # 0, we can always find (&, ...,&7) such that

7

L+ gobo+ - +yrlr =0; Y (6)>=0, & =p&r,0<5<6, & #0.
=0

Proof of Lemma[5.20 The proof is similar to that as in the hyperquadric case. B

Take the complex hyperplane H : y7 + Z?:o piy; = 01in (o, ..., 27, Yo, ..., y7) € C16,
Write
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Lg = 9 mi, vy Lng = 2 NGi-

Yo Y7 0ys Oyr

Then {L;}}2, forms a basis of the tangent vector fields of H. For any multiin-
dex a = (v, .., 14), we write L* = Lg°...LT}*. We define the notion of L—rank and
L—nondegeneracy as in Definition using rr in and L% instead of z% We
write the kth L-rank defined in this setting as ranky(rp, L). We now need to prove the

following;:
Proposition 5.21. F' is L—nondegenerate near 0. More precisely, ranky; (rp, L) = 26.

Proof of Proposition Suppose not. As in the hyperquadric case, by a mod-
ified version of Theorem [3.10], we have that there exist 26 holomorphic functions
go(w), ..., g25(w) defined near 0 on the w—plane with {go(0), ..., g25(0)} not all zero
such that the following holds for z € U :

25

> 6iyr + poyo + - + Heye) i (F(2)) = 0. (5.44)
i=0

Then since F has full rank at 0, one can similarly prove that go(0) =0, ..., g15(0) = 0.

Hence we obtain:

Lemma 5.22. There exist cg, ...,cg € C that are not all zero such that
CQAO(F(Z)) + ...+ C7A7(F(Z)) + CgBo(F(Z)) + CgBl(F(Z)) =0, (5.45)
for all Z € U when restricted on y7 + Z?:o wiy; = 0.

We then just need to show that (5.45) can not hold by the following lemma after

applying a linear change of coordinates.

Lemma 5.23. Let H = (hy, ..., h7, go, ..., g7) be a vector-valued holomorphic function
in a neighborhood U of 0 in Z = (g, ..., 7, Y0, ---, ¥s) € C' with H(0) = 0. Assume that

H has full rank at 0. Assume that ag,...,ay9 are complex numbers such that
agA1(H(2)) + ... + a7A7(H(2)) + agBo(H(Z)) + agB1(H(z)) = 0 for all z € U. (5.46)

Then a; =0 for 1 <i < 10.
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Proof of Lemma[5.23% Suppose not. Notice that H has full rank at 0. Hence there ex-
ist 15 components H of H that gives a local biholomorphism from C!° to C'®. We assume
these 15 components H are H with n being dropped, where n € {ho, ..., h7, g0, ..., g7}
By a local biholomorphic change of coordinates, we assume H= (T0y weey T7, Y0y ey Y6)-
We still write the remaining component as 1. Without loss of generality, we assume
n=gr.

First we claim the coefficient ag of By is zero. Suppose not. Note that y?,y2 can
be only canceled by g?. Then g7 will have linear y;,y2 terms. Hence g? will produce
a y1y2 term. It cannot be canceled by any other terms. This is a contradiction. Now
we consider the coefficients of Ay, ..., A7. We claim a; = 0,0 < i < 7. Suppose not. We
write

y7(Z) = Xoyo + ... + Ae¥s + poxo + ... + prar + O(2),

for some A;, pu; € C,0 <4 < 6,0 < j < 7. By collecting the terms of the form zgy; in

the Taylor expansion of we get
a; + a7\ = 0,0 <7 <6. (5.47)
By collecting the terms of the form z1y;,0 < i < 6, we get,
a1 +as g =0,—ag +azr1 =0,—aqg + azro =0, —ar + agAz = 0,
as + aghg = 0, —ag + agAs = 0, a5 + agAg = 0.
By collecting the terms of the form zoy;, 0 < i < 6, we get,
as + agAg = 0,a4 + agh1 = 0, —ag + agAs = 0, —as + agAz = 0.
—a1 + aghs = 0,a3 + aghs = 0, —a7 + aghg = 0.

One can further write down all the coefficients for z;y;,0 < ¢ < 7,0 < j < 6.
Once this is done, one easily sees that a; # 0 for any 0 < i < 7. Otherwise, all
a;=0,0<:<T.

Then by the above equations, we see that the matrix

ag a a9 as a4 as ae
ay —ag —a4 —ay ay —ag as (5.48)

a2 a4 —ap —a5 —ai as —ar
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is of rank one. Then one can get a contradiction by, for instance, carefully checking the
determinants of its 2 x 2 submatrices. Hence a; = 0,0 < ¢ < 7. Finally we easily get

the coefficient ag of By is zero. W

This then establishes Proposition |

Remark 6. First fix ug, ..., ug with (Z?:o p2)+1=0. By Propositionm there exists
multiindices 81, ..., 320 with |B~]| <11, and

6
7% = (20, ...,2%, 40, ..., y°) with Zﬂiyi +yr #0,
i=0
such that ] ~
L% (41 (F)) L7 (a6 (F))
(2% #0.
L @u(F) e L (4o (F))

We then let €2 = (0, ...,0,£, ..., £2), where (&), ...,£9) is choosen as in Lemma
associated with (v, ...,42). That is

7
L4408 + -+ 1960 =0, Y (&) =0, & =p&d,0<j <6, & #0.
=0
It is easy to see that (22,£0) € M.

We now define

Jp >
L= %’;Z‘( S0 hcisr

(5.49)

P G
8+i_87_

)
o 0 <P <6 (5.50)
Yi 5 (2,€) Oyt

for (z,€) € M near (2°,£0). They are tangent vector fields along M. Moreover, aa—’;(z, §)
is nonzero near (29, £9).

We define for any multiindex o = (v, .., n4), L = L5°...L]}*. Define for any 26
collection of 15-multiindices {31, ..., 326},

L8 (41 (F))

L5 (a6 (F))
ABY, . B%)(2,6) =

(2,€). (5.51)
LI (Wr(F)) oo L7 (thog(F))
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By the fact that ZZZO(SZQ)Q = 0, one can check that, for any multiindex o =
(ag,..,a14), L& = L when evaluated at (z°,£%). Then as before, we get the follow-

ing:
Theorem 5.24. There exists multiindices {3, ..., 32} such that
A8, B%0)(2:6) # 0,

for (2,€) in a small neighborhood of (2°,£°) and B = (0,0, ...,0).

5.5.1 The exceptional class M,
In this setting, we use the coordinates
= (:L‘la 22, 23,905 ---, Y7, Lo, .-, L7, Wo, .., w7) € (CQ?-

The defining function of the Segre family described in ([2.16]) is :

N
p(z,8) =14+r, -re=1+ Z@DZ(z)Q/)Z(f), where N = 55 and
i=1

Ty = (xla 22, 23,905 ---, Y7, Lo, .-, L7, Wo, ..., Wy, Aa B, Ca Dy, ...D7, Ey, ..., E7, Fo, ..., F7, G)
(5.52)
Here A, B,C, D;, E;, F; are homogeneous quadratic polynomials in z and G is a homo-

geneous cubic polynomial in z:

7 7 7
A:xgxg—Zw?,B:ajlxg—Zt?,C’:xle—ny. (5.53)
=0 =0 =0

For the expressions for D;, E;, F;, G, see Appendix 1. Let F' be a local biholomorphic

map near 0. We write

F = (¢1, 02,93, f10, -, f175 f205 -5 for, f30, - h37).

Also define rg to be the composition of r, with F":

rE =1.0F = (¢1, P2, #3, f105 s f175 205 -5 f21, [30, 05 f37, A(F), B(F'), C(F), ...., G(F)).
(5.54)

Notice that rr has 55 components. We will also write

rr = (P1(F), ... ¥s5(F)).
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We write z for z with x3 being dropped. Namely,
Z= ((L‘l, L2,Y0y -5 Y7, to, ceey t7, WOy -y w7). (555)

We define the zZ—rank and 1)—nondegeneracy as in Definition using rr in (5.54)
and z in (5.55) with m = 27.

Proposition 5.25. F' is z—nondegenerate near 0. More precisely, rankeg(F,z) = 55.

Proof of Proposition Suppose not. As a consequence of Theorem there

exist ¢y, ..., cag € C that are not all zero, such that
A A(F(z1,22,0,90, ..., w7)) + ... + cosG(F(x1,x2,0,90,...,w7)) = 0. (5.56)
We will show that (5.56]) cannot hold by the following lemma:

Lemma 5.26. Let H = (1/}1,¢2,¢3,h10,...,h17,h20,...,h27,h30,...,h37) be a wvector-

valued holomorphic function in a neighborhood U of 0 in Z = (L1, T2, Y0, -, Y7, L0y -+, t7, W0, -y W7) €

C25 with H(0) = 0. Assume that H has full rank at 0. Assume that a1, ..., asg are com-

plex numbers such that
a1 A(H(Z)) + ... + aesG(H(2)) =0 for all z € U. (5.57)
Then a; =0 for all 1 < i < 28.

Proof of Lemmal[5.26 Suppose not. Notice that H has full rank at 0. Hence there ex-
ist 26 components H of H that give a local biholomorphism from C26 to C?. We assume
these 26 components H are the H with 1 dropped, where n € {41, V2, 13, hio, ..., h17, h2o,

By a local biholomorphic change of coordinates, we assume
H = (21,22,Y0y -y Y7, L0y -y b7, W0, -y WT).

We still write the remaining components as 7.

Case I: If n € {11,19,13}, without loss of generality, we can assume 1 = 3. We
first claim that the coefficients of A, B, i.e., aq,as are zero. This is due to the fact
that t?,w?, 0 <4 < 7 can only be canceled by t;13,w;v3, which do not appear in the

expressions of A(H),...,G(H). We then claim the coefficients of C' are zero, for zjz

ceey h27, h30, ey h37}
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can not be canceled. Then the coefficients of all D’s have to be zero, for each t;w; is
unique and can not be canceled. Then it follows trivially that all other coefficients are
ZETO.

Case II: If € {hio, ..., h17, h2o, ..., ha7, h3o, ..., h37 }, without loss of generality, we
assume 1 = hgy. Notice that the only fact we are using about H is that its components

are independent variables. For simplicity of notation, we will write

H = (x17x27w37y07 ceey y77t07 '“7t77 wo, ...,'UJG).

We first claim that the coefficient of A is zero. This is due to the fact that xox3 cannot
be canceled. We also claim that the coefficient of B is zero. Suppose not. Notice
that t? can only be canceled by t;h37. Then the coefficient of each D; is non zero for
0 < < 7. Moreover, x1x3 can only be canceled by x1hs7. This implies hg7 has a linear
xz-term. Then, in particular, the tvhgy term in Dy will produce a tyxg term. It cannot
be canceled by any other terms. This is a contradiction. Similarly, one can show that
the coefficient of C is zero. Then we claim the coefficient of Dy is zero. Otherwise,
to cancel the x3yp term, h3y needs have a linear x3 term. Then the term ¢7hs7 in Dy
will produce a tyxs term, which cannot be canceled by any other term. By the same
argument, one can show that the coefficients of all D;,0 <14 < 7, are zero. Similarly, we
can obtain the coefficients of all E;,0 <17 < 7, are zero. Then we claim the coefficients
of all F’s have to be zero. This is because each y;t; is unique. It can not be canceled
out. Finally we get the coefficient of G to be zero. H
This also establishes Proposition [ |

Remark 7. By Proposition there exist multiindices Bl, - 555 with ]BNJ] < 29, and

there exist

20 = ( ?,xg,xg,yg, ...,yg,tg, ..,tg,wg, ...,w?), :Ug # 0,
such that ) )
A8 | (41 (F)) B (55 (F))
9381 9387
(%) £ 0.
917”41 (F)) 917° (55 (F))

~EF

9zP% §zb%
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Then we set
1
¢ =1(0,0,£9,0,...0,0,...,0,0,...,0),£5 = ——.

It is easy to see that (29,£%) € M = {p(z,¢) = 0}.

Write 5
p
r_ 9 _%x,.(z,ﬁ)i’lgigl
dp e
Es+z‘=i— %yi( ’f)i,oﬁiéﬁ
y; ﬁ(z,ﬁ)am
dp 5
»Cll-i-i:i_ ‘?fi< 7€)i70§i§7,
(3231 (%ttpg,(z’f) 81/'3
Op
0 (%8 0 .
Ligy; = - = —,0<i <7
19+ ow; Bang,(z7€) Oxs

For any 26-multiindex 8 = (84, ..., Bog), we write £ = Efl...ﬁggﬁ. Now we define
for any 55 collection of 26—multiindices {3*, ..., 35°},

LO (YL (F)) . L8 (¢s5(F))
ABY, ., ) (2,€) = (2,6).

L (1(F)) . L (1hss(F))

(5.58)

Note that for any multiindex, £ evaluating at (29,€9) coincides with %. We hayve,

Theorem 5.27. There exists multiindices {3, ..., 3°°}, such that

A(BY, .., B%)(2,€) # 0

for (z,€) in a small neighborhood of (2°,£°) and 8! = (0, ...,0).
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Chapter 6

Transversality and flattening of Segre families: Proof of

Proposition (II)

We divide the proof in two parts. In the first section, we illustrate the general method
to derive a proof and carry it out for Hyperquadric case and Grassmannian case. In
the second section, we complete the detailed proof for the remaining cases by the same

method.

6.1 Proof of Proposition (II) for Hyperquadrics and Grassmannians

In this section, we prove Proposition (II) for hyperquadrics and Grassmannians. We
still use the notations we have set up so far. We equip the space M with the canonical

Kahler-Einstein metric w as described before. We start with the following lemma:

Lemma 6.1. Let 5 : (M,w) — (M,w) be a holomorphic isometry. In the affine space
A, its components consist of rational functions with its degree bounded only by a constant

depending on (M,w).

Proof of Lemma Notice that M has been isometrically embedded into CPY
through the canonical map defined before. Hence & is the restriction of a unitary

transformation. Hence & can be identified with a map of the form:
o . N N N
(G0, Y1, P, o ) = (Y a0jthy, s D iy, ey D angihy),
j=0 j=0 j=0
where 19 = 1 and (a;;) is a unitary matrix. Write
U(z):z2(€ A) = [1, k121, , KiZiy - ,ann,O(ZQ)] e CPY

for the embedding, where k; = 1 or v/2. & induces a birational self-action ¢ of A such

that U(o(2)) = 7(¥(z)). Then, from the special form of ¥, o(z) = ( b by o ) .

k1o’ ket T Kntbo
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Apparently ¥y # 0. B

Theorem 6.2. Suppose £° € C"\ {0}. Then for a generic smooth point 2° on the
Segre variety Qeo and a small neighborhood U C C" of 20, there is a point 28 € U N
Qg¢o, such that Q.o and Q.1 are both smooth at €9 and intersect transversally there.
Moreover, there is a biholomorphic parametrization g(él,ég,...,én) = (&1,&2, .., &n),
with (51,52,...,571) € Uy xUy x..xU, CC" Here when 1 < j <2, Uj is a small
neighborhood of 1 € C. When 3 < j < n, U;j is a small neighborhood of 0 € C
with G(1,1,0,---,0) = €°, such that G({& = 1} x Uy x ... x Up) C Q,0,G(U1 x {& =
1}xUsx...xUp) C Q,1, and G({€1 = t} xUsx...xUy), G(Ur x{€s = s} xUsx...xUy), s €
Ui, t € Us are open pieces of Segre varieties. Also, G consists of algebraic functions with

total degree bounded by a constant depending only on (M,w).

We first claim that, due to the invariance of the Segre family, we need only to prove
the theorem for a special point 0 # ¢ € C* € M. Indeed, by the invariance property
mentioned in § for an isometry o, (0,7) preserves the Segre family M C M x M. Here
for p € CPV, a(p) == @ as before. Here, we mention that in the statement of the
theorem, we assume that 20 is a generic smooth point because under this transformation,
some smooth points on ()¢o may be mapped into the hyperplance of M at infinity, which
can not be chosen as our z°.

We now proceed to the proof of Theorem by choosing a good point £°. We carry

out the proof for the case of hyperquadrics and Grassmannian spaces here. The proof

for the remaining cases is similar and will be included in next section.

Proof of Theorem[6.Z Case 1. Hyperquadrics: Suppose M is the hyperquadric.

Then the defining equation for the Segre family is

(2,6 =143 26 + %(Z 2)(3 ) =o.
=1 =1 =1

We choose €0 = (1,0,0,...,0). Hence Qe = {z: p(2,€%) =14 21 + (31, 22) = 0}.
We compute the gradient of p(z,&0) as follows: Vp(z,&%) = (1 + %zl, %22,..., %zn)
Notice that Q¢o is smooth except at (—2,0, ...,0), namely, we have Vp(z,£0) # 0 away

from (—2,0,---,0). For a smooth point z%(# (—2,0,---,0)) of Qe , we choose a
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neighborhood U of z° in C" such that U N Q¢o is a smooth piece of Q. Pick also
21(# 2%) € UN Qg, and compute the gradient of the defining function of Q.0 and Q.

at €2 = (1,0,...,0), respectively. Recall

n n n
1
Qe ={Elp(=",€) =1+ =6+ (3 _(:)*)(Y_&) =0}, for s =0,1.
i=1 i=1 =1
Vﬂ(zovf)koz(l,o,...p) _ Z%}—’_%Z?:I(Z?)Q 23 Zg 22 B —2—2(1) Zg Zg
V(2 O)leo—10,..0) A+3yia(z)? B G . 4 —2-2 2z 2z

The second equality is simplified by making use of the fact that 20, 2! € Qeo—(1,0,...,0)5

which implies that 0 =1+ 2 + £ Y7 1 (29)? =1+ 2] + 3 | (2})2. Hence,

Vp(2°, 0_ —2 -0 0 0 S
cank p( f)\g (1,0,...,0) — rank 1 *2 L 1 2
V(2" ) leo—(1,0,...0) —2—2 2z . oz —Az Az
242 A .. Vp(2,£%)|.0
= rank = rank ,
Azl Az o Az Azt Azl Az}

where Az} := 2} — 2). Notice that 2° is a smooth point on Q¢,. Hence Vp(z,&°) is
transversal to the tangent space of Qo at 20, If we choose z! € Q¢o close enough to 29,

which ensures (Az},...,Az}) close enough to tangent space of Qeo at 20, we then get

Vp(2°, - Vp(z, €0,
p( 5)\50_(1,0,...,0) — rank p(2,€")]0 _ 9

Vp(zl,é)\go:(l’op__’o) AZ% AZ% AZ%

rank

We assume, without loss of generality, that W £0 at £0.
Now we introduce new variables &1, ..., &, and consider the following system of equa-

tions:

P14+ 30 (G + (T () () (2 &) =0
Py 1+ 300 (G226 + 1 (0 (62)° (DA (L, &) =0

Py £3—& =0
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Then we have %((Pl’i’P’ﬂ # 0 and 6(?’ ’P”)\ # 0 where

A= (517 -"7577,;{17 7571) - (1, 1,0 ,0, ,0, ,0)

By Lemma we get the needed algebraic flattening with total degree bounded only

by (M,w). This completes the proof of Theorem in the hyperquadric case.

Case 2. Grassmannians: Pick ¢° = (£9;,¢0,, ... f ,) = (1,0,...,0). The defining
function for the Segre family associated with this point is as follows:

p(z,6) = 1+ z11&11 + 212&12 + oo + 219619 + 221801 + oo+ 2p1&p1 + X0 25605 +
> i jzo(F11zi — zinz1y) (En&iy — &nuy) + 200 ), 2,1 (Zig2a — zazi) (i &u — adje) +
higher order terms.

Then Qe = {z]p(2,&%) = 1+ 211 = 0}, Vp(2,€%) = (1,0,0,...,0). Hence Qg, is
smooth. For z € Qe, we have z = (—1,212, ..., Z1g; 221, -++s Zpls -+ Zij, -+ Zpg)- Pick
20 2 e Q¢o. Then

Qz = {£10 = p(z°,§) = 1+ 211811 + 21p812 + o + 20,810 + 25182 + o + 25181 +
i g1 ZiGiit 2 oo (21125 =2 215) (€& =€ €05) 22 gy ey 21,0 (B 2l — 20 251) (i €l —
&i&jx) + high order terms},
for s =0, 1.

We then compute their gradients as follows:

0 Ip(z28)  9p(22,8) Ip(z2%6)  9p(22,€) dp(z2,6) Ip(22,¢)
VP(Z ’£)|50 _ 0611 012 0814 0621 0&p1 O0pq |
1 op(z18)  Dp(z1.€) op(=1.6)  9p(z1.6) dp(z1.6) op(=16) | 1€
Vp(z ’§)|§O ST 0812 0814 0821 Op1 Opq
_ o z(l)q 29 .. 221 —z?lz(l)j
-1 z%z z%q z%l zél —zillz%j

Thus, we have

Vp(2°, -1 2 oo 29 —29.29.
rank ol £)|£0 = rank 12 rl 1o
Vp(zl,§)|§0 0 Azly . Az (=2)Az); — 2042 — Az} Az)))

where Azl-lj = zl-lj — z?] Hence, if we choose 2! such that 21, # 20, Then the rank equals

to 2. Hence Q.0 and Q,1 are smooth and intersect transversally at £°.
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Without loss of generality, assume W £ 0 at £€°. Now we introduce new

variables 511, e épq and set up the system:

/

P p(2%&18) =0
Pia: p(z',&12) =0

Pi3: &3—&3=0

Ppq : gpq_qu:o

Then 9P ’qu>| OB Bpa) | ) £ where A = (€11, ..., Epgs €111 s Epg) = (1,1,0,...,0,1,0, ...

A d(flh qu)
By Lemma we get the needed algebraic flattening. W

6.2 Continuation of the proof of Theorem

We first establish the second part of Theorem [6.2] by assuming the first part of Theorem
is true. Namely, suppose £° € C*\ {0} and 2" and z! are smooth points on the Segre
variety Q¢o such that Q.o and @1 are both smooth at €0 and intersect transversally
there. We shall prove that there is a biholomorphic parametrization G (51, 52, v én) =
(£1,€2, ., &) With (€1,89,...,&,) € Uy X U x ... x U, C C". Here for j = 1,2, Uj is
a small neighborhood of 1 € C; for 3 < j < n, U; is a small neighborhood of 0 € C
with G(1,1,0,---,0) = €. Moreover G({&; =1} X Uy x ... x Up) C Q0, G(U1 x {&3 =
1) xUsx...xUy,) C Q1 and G({& = t} x Uz x...xUy,) and G(Uy x{& = s} xUs x...x Up,)
are open pieces of Segre varieties for s € Uy and t € Uy. Also G consists of algebraic
functions with total degree bounded by a constant depending only on (M,w).

Implied by the first part of Theorem [6.2] we have

Vp(2°, )¢
Vp('zl) g) |§O

rank = 2.

Without loss of generality, we can assume % # 0 at £°. Following the
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same method used in § we introduce new variables 51, e én and set up the system:
P p(%68) =0

P2 : 0(217525) =0

Py: &-&=0

Py én_gnzo-

ThenL| #Oandw\ #0,where A = (&1, ..., &, €1, .., &) = (1,1,0,...,0,1,0, ...

a(£ ( 1,- 76”
By Lemma [4.3] we get the needed algebraic flattening with the bound total degree.

Next, we proceed to prove the first part of Theorem It suffices to find a suffi-

ciently close point z! to z° such that

Vp(2°,€)¢o
vp(zl’ 6) ’éo

rank = 2.

We establish the above rank estimate case by case as follows:

Case 3. Symplectic Grassmannians: Pick & = (1,0,0,...,0). The defining
equation of the Segre family is p =1+ > " | 2;i&i + 2 ZK]. 2ii&ij + 2 22§i<j(zllzij _
zijzi) €&y — ) + Dita(2iizi — 23,)(Endi — &8) + Dk jen iz (Zii2k —
Zi12kj) (&€ — &u€ky) + high order terms, where zj; 1= z;; for j > 1.

Qeo = {2]p(2,€°) =1+ z11 = 0}, Vp(2,£%) = (1,0, ...,0). Hence Qo is smooth, and
for z € Qg0 we have z = (—1, 212, 202, 213, ..., Z(n—1)n)- Pick 202 e Q¢o. Then

Qe = {£]0 = p(2°,§) = 143701 25&ii+2 ZK] 2581512 22<z<](’zllzz] 21;% z3)(§11&ij—
Eny) + Do (25125 — (25)°)(En&i — €3) + Zz’<k,j<l,(i,j)7€(l,1)(zijzkl - zilzkj)(fijgkl -
&i&k;) + high order terms}, for s =0, 1.

0 Ip(z°8)  9p(z2,8) dp(z°,6) Ap(z°,6) p(2°,6)
Vp(z 7£)|£0 _ 8&11 6&12 afln 8&]' 6£nn {
1 op(=1.6)  9p(z'.€) op(z1,6) Op(z1£) op(z"¢) | '€
VP(Z ’Q‘fo 0é11 0812 01n 0&ij O&nn
=1 229, 229 o220 —(29))2 —22020, .. —(2- 5ij)2?j2?i

1 1 1 1\2 1.1 1.1



Hence, we have

Vp(zY,€)|eo0 -1 229, 220, .. 220,
rank = rank
Vp(zh,€)|eo -1 224, 228, .. 221,
-1 229 220 220, —(2
= rank

0 2Az, 2Az,

1

1 _
where Az;; = z;;

- Zzog If we pick 2%2 #* 292, then the above rank is 2.

208z, (2= 6ij){z1;021; + Azjjz1; — Az

—(2'5)2)2 _22’?22?3
—(212)? —22iy713
- 5ij)z?jz?i

13

—(2-
—(2-

h Azh}
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Case 4. Orthogonal Grassmannians: Here we use the Pfaffian embedding

stated in §2. Fixing €0 = (&9,, €05, €95, ...,g?ﬂfl)n) = (1,0,...,0), the defining function of

the Segre family is given by p = 1+Zi<j Zijfij+22<i<j(2122ij — 21§22 +lez2i)(§12§ij —
ui€2) + €1582i) + Doicjanar 1,23 (g} (Zis 2kt — ZikZjt + ZiZin) (§ij€kt — &injt + Gudje) +

high order terms. Note here we use the notation zj; := —z; for j > i.

Note Qeo = {2|0 = p(z,£") = 1 + z12}. Hence it is smooth. Since z € Qgo, we have

z=(=1,213, ., Z(n—1)n). Pick 20, 2l e Q¢o. Then

Q2 = {§]0 = p(2°,§) = 1 + Zi<j z3€i5 + Zz<z’<j(zf2zfj — 21;25; + ijzgi)(fufz‘j -

o

€15 + &1562:)
T Yicjcrar(1,20¢ (i} FiiZa — Zinzq T 2z (G — &kt + &udjk) + h.o.t.s.}, for
s=0,1.
0 p(z28)  9p(2°,) Ip(°,8) Ip(z°,8) Ip(2°,8)
Vp(z ’£)|50 _ 0812 0¢13 O¢1n 0¢ij O (n—1)n
1 Ip(z18)  9p(z'.6) Ip(z',6) Ip(z',) p(z',6)
Vol ’6)‘50 0&12 0&13 O&1n 0¢&ij O (n—1)n
(1 2y 2D 2, (=22 + 20 293)a (_Z?izgj + Z(l)jzgi)a
—1 23 . 2, e 2, (—2i32h + Z4753)e (_leiZ%j + Z%jzéi)a
Hence,
Vp(zov £)|£0 -1 2?3 Z?n Zgn
rank = rank
Vp(zt,€)|eo 0 Az .. Azl Az,

1

1 _
Here Az;; = z;;

— z?j If we choose 215 # 23, then the rank is 2.

dij) 2}

di)

0
215714

1.1
215713
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Case 5. Mg Pick &0 = (s, &Y, ..., 63,00, 79, ...,n%) = (1,0,...,0), 20 € Qg¢o. The
defining equation of the Segre family is

L+ zoko + 21K1 + ... + T7k7 + Yoo + yin1 + ... + ynr + (woyo + 1y1 + ...) (Koo +
K1 + ) + (=yor1 + y1mo + ..)(=nok1 + Miko + o) + oo + (@3 + 23 + o+ 22)(Ko? +
K2+ k) + (B +yi+ o v+ 4+ +n2) =0,

Qe = {2]p(2,€%) = 1+ 20 + (2% + 27 + ... + 22) = 0}, and Vp(z,&%).0 = (1 +
270,271, ..., 229, 0, ..., 0). Hence Q¢o is smooth. Pick 20 21 e Q¢o. Then

Qs = {€]0 = p(2°,€) = L+ agro+aih1+... +x3h7 +ygno +yim +... +ysnr + (agys +
5ys 4 ) (Komo + kamn + ) + (—ydas + yizd + ) (—nok1 + miko + ) + o+ ((25)2 +
(@) + o+ (@) (ko® + 12 + A 57%) + (00)2 + (1) + -+ D)) (06 + 8 + -+ 1)

for s =0, 1.

0 9p(2°.8)  9p(2°.8) 9p(2°.8)
ik Vp(2?,€)|eo > pank | %0 o om |
1 - 9p(z1.0)  Dp(z1€) (1) | '€
Vp(z ,§)|§O Bro k1 67?”
220 20 25 ... 2
= rank o T . (C)
-2 - SU(l) rioxd o :U%
Since (=2 — 29, 29,23, ,29) # (0,...,0), we can pick 2! sufficiently close to 2°,

such that the above rank is 2. That is because Q¢o is irreducible and the subvarieties,

defined by 2 x 2 minors of the last matrix in (C), are thin subsets of Q0.

. 0 _ (0 ¢0 ¢0 ,,0 0 0 ,.0 .0 0 0 0 0y —
Case 6- MQ?- Take€ - (51,627537770,771, ...,7]7,50,/{1’ ...7/43777_077_17...77_7) - (170, e

The defining function of the Segre family is 1 + 7 - ¢ where
TZ = (‘,'Ul) xg’ x37 yO) M) y77 ZO? A ’277 wo) M) w77 A? B7 C? D07 ""D77 E07 A E77 FO7 M F77 G)

T’é = (61752,63, s M7y ooy K75 00y T A(f), B(f), C(f), ceey D7(§), ceuy E7(§), ceuy G(f))

Here A, B,C, D;, E;, F; are homogeneous quadratic polynomials; GG is a homogeneous
cubic polynomial defined in

For our purpose here, we present terms only involving &1, &2, and omit those involving
€3, 105 M1y ooy N7y KOs K1y ooy K75 70, T1, -, T7 a8 follows: p(z, &) = 1+x1&1+2280+...+ (z129—

(v (ke — (Do (1)%) + - -
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Qeo = {2]p(2,£°) = 1421 =0}, Vp(z,£%) = (1,0,0, ...,0). Hence Qo is smooth and

for z € Q¢0, we have z = (—1, 72,73, ...,). Pick 20,2 € Q¢o. Then
Qe = {€l0 = p(z%,6) = 1+ aj& + 236 + ... + (ziws — (D)) (& —

(7 (1)) + ...}, for s =0, 1.

o, Ip(z%8)  9p(z°,8) Ip(2°,€) 9p(2%,¢) 9p(2°,€)
Vp(2°,€)]co Oo(z &) 92
? &1 0&2 0¢3 onr Okt orr
rank —_— mrank| 00 ol o) Dp(z1.€) Dp(zL€) Ap(z.€)
p(z758)leo B3 & o9& v T om v Onr o
9p(2°,8)  9p(z°9) 1 7 0\2
—_ —_ N ETE
> rank ) ?511 o ?5125) ‘50 = rank (Z; (t:)°) |§O > 2,
zr, z°,
p8§1 pa§2 -1 _(Zizo (yg)z)

for those z!’s such that 21'7:0 (y})? # ZZ:O (y?)2. This can be done in any small neigh-

borhood of 2°; for {z]| Zzzo(yi)Q = B} is a thin set in {z|0 = 1+ z1} for each fixed

B eC.
This completes the proof of the flattening theorem. W

e
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Chapter 7

Irreducibility of Segre varieties: Proof of Proposition (III)

In this chapter we will establish Proposition (III). We prove results on the irreducibility
of the potential function p, Segre varieties and the Segre family. We still adapt the
previously used notation and assume that M is an irreducible Hermitian symmetric
space of compact type of complex dimension n, which has been minimally embedded

into a projective space as described before.
Lemma 7.1. FEach Segre variety is an irreducible algebraic subvariety.

Proof of lemma |71} For a minimally embedded Hermitian symmetric space, since
all Segre varieties are unitarily equivalent, it suffices to prove the lemma for a single
Segre variety. Without lost of generality, we take z = (0, ...,0) € A C M. Therefore, the
corresponding Segre variety Q% is the hyperplane section M \ A, which is of pure dimen-
sion. From the classical algebraic geometry |GH], when M is an irreducible Hermitian
symmetric space of compact type, the hyperplane section at infinity in the minimal
canonical embedding case is a union of Schubert cells. Moreover as shown in [CMP],
the top dimensional piece is equivalent to C"~! and the others are of codimension at

least two. Hence, the smooth points of (), are connected and thus @, is irreducible. B

As a corollary of this lemma, we conclude that for each z € C”, the defining function
p(z,) of @, has to be a power of one irreducible factor. However, as in the proof of
Theorem for some a(# 0) € C", d¢p(a,&) is not identically zero along Q4. Next,

we use this property and the symmetric property of M to prove the following:

Proposition 7.2. For any b € A with b # (0,...,0), p(b,&) (p(z,b), respectively) is

irreducible as a polynomial of & (as a polynomial in z, respectively).

Proof of proposition Since p(z,&) = p(&, z), we need just to verify the first
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statement. Let a be as above. For b € A, there is ¢ € Isom(M,w)NSU(N +1,C) such

that o(a) = b. (Notice that 7 is represented by a unitary action.) By Lemma let

o= (ﬁ, - Hln”lo) be the representation of o in A with l;s polynomials in z. Write

U = [1,7,] for the embedding of A in PV. Then from the definition of p(z, %), we have

p(22) = [[B()|P =¥ T = (G0) - GV).

Lemma 7.3. (%) - G9) = [lo(¥)? - [[¥(a ()12 = llo () - p(o(2), 7(2):
Proof. Writing ¥(z) = [1,7;] = [1,¢1(2), - ,¥n(2)]. Then the identity ¥(o(z)) =

o(¥(z)) obtained in the proof of Lemma [6.1] yields that,

(W(0(), - Un(0(2))) ( pisie) ’wom(z)))

Here 1; = I; for 0 < j <n and §(2) = [¢o,- - , ¢n] as in the proof of Lemma Then

we have
[— N ~ N ~
(60)-EU) = [0 (U(2)]> = [ 1+ Y150 | [Lo(T(2)* = [lo(V)*]]¥ (o (2))] 1.
j=0 Jj=1
This establishes the lemma. ]

The Lemma yields p(z,z) = |lo(¥)|? - p(0(2),0(2)). Complexifying the identity

and substituting z by a, we have:

lo(¥)(a) - lo(¥) (&) - p(b,5(£)) = p(a,?), (7.1)

where lo(¥)(a) # 0, lo(¥)(£), p(a,§) are polynomials in & and ¢(&) is a rational map

in & Now supposing p(b,£) = f(€),1 > 2, we have p(b,7(¢)) = (f(7())" = (4,

where f1 and fy are coprime polynomials. Since a,b # (0,...,0), f1 is a non-constant

polynomial. Therefore in (7.1)), even after cancellation, we still have a factor fi(¢).
However as shown in §6, the right hand side of the identity ([7.1) must be an irreducible
polynomial, which is a contradiction. B

As an immediate application, we have

Proposition 7.4. p(z,§) is an irreducible polynomial over C™ x C"™. Thus, the Segre
family M restricted to C* x C" = A x A C M x M is an irreducible subvariety of

dimension 2n — 1.
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We also have the following slightly strong version of the above proposition, which

was used for applying a monodromy argument:

Proposition 7.5. Suppose U is an connected open set in C™ \ {0}. Then the Segre

family M restricted to U x C" or restricted to C* x U is an irreducible analytic variety.

Proof of Proposition We need only to prove the first statement. Recall the

notations we defined before: Mging = {(z,¢) : g—g =0,Yj}U{(z¢): %’Jj =0,Vj}, and

Mpgreg = M\Mging. Since p(z,€) is an irreducible polynomial and 8%-7 g—;,j =1,...n

are polynomials with lower degrees, %, %, 7 =1,...,n are not identically zero on M =
J J

{p(z,&) = 0}. Each of %’ g—z’; defines a proper subvariety inside M. By Proposition
for each Z(# 0) € C", there is a certain point §~ on @ such that a partial derivative of
p(Z,€) in & at (Z, 13 ) does not vanish. Hence Mging does not contain any Segre variety.
Also the standard projection from Mprgq into the z-space is a submersion. Since @, is
irreducible for z € C™\(0, ...,0), @, N MRggg is connected.

To prove the theorem, we just need to show that Mrgg|uxcr is connected. Write
the above projection map to the z-space as ® : Mgrpg|uxcr — U. Since it is a sub-

0

mersion, it is an open mapping. Suppose z” is a point in U. As mentioned above, we

know that each fiber of ® is connected. For any (2°,£°) € Mggg in the fiber above

20

, we can choose a connected neighborhood V' of (zo,ﬁo) on MRgec|uxce such that
® (V) is neighborhood of zp. Hence, for any z € ®(V'), any point in @, N Mggg can be
connected by a smooth curve inside Mrgg|yxcr to (22,€°). Since U is connected, by

a standard open-closeness argument, we see that Mpgrg|yxcr is connected. B



99

References

[BaMa] S. Bando and T. Mabuchi, Uniqueness of Einstein Kéhler metric modulo con-
nected group actions, Alegbraic Geometry, Sendai, 1985, Adv. Stud. Pure Math.,
10, North-Holland, Amsterdam,11-40, 1987.

[B] A. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987.

[BM] S. Bochner and W. Martin, Several Complex Variables, Princeton Mathematical
Series, vol.10, 1948.

[BX] S. Berhanu and M. Xiao, On the C* version of the reflection principle for
mappings between CR maifolds, Amer. J. Math., 137 (2015), no. 5, 1365-1400.

[Ca] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58 (1953),
1-23.

[Ch] S. Chan, On global rigidity of the p-th root embedding, Proc. Amer. Math. Soc.
144 (2016), no.1, 347-358.

[CM] S. Chan and N. Mok, Holomorphic isometric embeddings of complex hyperbolic
space forms into irreducible bounded symmetric domains arise from linear sections
of minimal embeddings of their compact duals, preprint.

[CMP] P. E. Chaput, L. Manivel and N. Perrin, Quantum cohomology of minuscule
homogeneous spaces, Transform. Groups 13 (2008), no.1, 47-89.

[CU] L. Clozel and E. Ullmo, Correspondances modulaires etmesures invariantes, .J.
Reine Angew. Math. 558 (2003), 47-83.

[DL] A. Di Scala and A. Loi, Kéhler maps of Hermitian symmetric spaces into complex
space forms, Geom. Dedicata 125 (2007), 103-113.

[DL1] A. Di Scala and A. Loi, Kéhler manifolds and their relatives, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 9 (2010), no. 3, 495-501.

[E] P. Ebenfelt, Local holomorphic isometries of a modified projective space into a
standard projective space; Rational Conformal Factors, Math. Ann. 363 (2015),
no. 3, 1333-1348.

[FHX] H. Fang, X. Huang and M. Xiao, Volume-preserving maps between Hermitian
symmetric spaces of compact type, arXiv:1602.01900.

[Fr] H. Freudenthal, Lie groups in the foundations of geometry, Advances in Mathe-
matics, 1 (1964), no. 2, 145-190.

[Fu] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1984.



100

[G] J. Grivaux, Tian’s invariant of the grassmann manifold, Jour. of Geom. Analysis
16 (2006), no. 3.

[GH] P. Griffiths and J. Harris, Principles of algebraic geometry , Pure and Applied
Mathematics, Wiley-Interscience, New York, 1978.

[He| S. Helgason, Differential geometry, Lie groups, and symmetric spaces , Pure and
Applied Mathematics 80, Academic Press, Inc.,New York-London, 1978.

[H] H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero. I, Il , Ann. of Math. (2) 79 (1964).

[Hul] X. Huang, On the mapping problem for algebraic real hypersurfaces in the
complex spaces of different dimensions, Ann. Inst. Fourier (Grenoble) 44 (1994),
no. 2, 433-463.

[Hu2] X. Huang, On a linearity problem of proper holomorphic maps between balls in
complex spaces ofdifferent dimensions, J. Differential Geom. 51 (1999), 13-33.

[HY1] X. Huang and Y. Yuan, Holomorphic isometry from a Kéhler manifold into a
product of complex projective manifolds, Geom. Funct. Anal. 24 (2014), no. 3,
854-886.

[HY2] X. Huang and Y. Yuan, Submanifolds of Hermitian symmetric spaces, Springer
Proceedings in Mathematics & Statistics in the memory of Salah Baouendi 127
(2015), 197-206.

[HZ] X. Huang and D. Zaitsev, Non-embeddable real algebraic hypersurface, Math. Z.,
275, No. 3-4, 657-671 (2013).

[Ji] S. Ji, Algebraicity of real analytic hypersurfaces with maximal rank, Amer. J.
Math. 124 (2002), no. 6, 1083-1102.

[IM1] A. Iliev and L. Manivel, The Chow ring of the Cayley plane, Compos. Math.
141 (2005), no. 1, 146-160.

[IM2] A. Iliev and L. Manivel, On cubic hypersurfaces of dimensions 7 and 8, Proc.
Lond. Math. Soc. (3), 108 (2014), no. 2, 517-540.

[K] J. Kollar, Lectures on Resolution of Singularities , Annals of Mathematics Studies
166 (2007).

[KZ] S.-Y. Kim and D. Zaitsev, Rigidity of CR maps between Shilov boundaries of
bounded symmetric domains, Invent. Math. 193 (2013), no. 2, 409-437.

[Lol] O. Loos, Bounded symmetric domains and Jordan pairs, Math. Lectures, Univ.
of California, Irvine, 1977.

[Lo2] O. Loos, Homogeneous algebraic varieties defined by Jordan pairs, Mh. Math. 86
(1978), 107-129.

[Mol] N. Mok, Metric rigidity theorems on Hermitian locally symmetric manifolds,
Series in Pure Mathematics. 6. World Scientific Publishing Co., Inc., Teaneck, NJ,
1989. xiv+278 pp.



101

[Mo2] N. Mok, Local holomorphic isometric embeddings arisingfrom correspondences
in the rank-1 case, Contemporary trends inalgebraic geometry and algebraic topol-
ogy (Tianjin, 2000), 155-165,Nankai Tracts Math., 5, World Sci. Publ., River Edge,
NJ, 2002.

[Mo3] N. Mok, Geometry of holomorphic isometries and related maps between bounded
domains, Geometry and analysis. No. 2, 225-270, Adv. Lect. Math. (ALM), 18, Int.
Press, Somerville, MA, 2011.

[Mo4] N. Mok, Extension of germs of holomorphic isometriesup to normalizing con-
stants with respect to the Bergman metric, J. Eur. Math. Soc. 14 (2012), no. 5,
1617-1656.

[Mo5] N. Mok, Holomorphic isometries of the complex unit ball into irreducible bound-
ed symmetric domains, Proc. Amer. Math. Soc. 144 (2016), no. 10, 4515-4525.

[MN1] N. Mok, and S. Ng, Second fundamental forms of holomorphic isometries of the
Poincaré disk into bounded symmetric domains and their boundary behavior along
the unit circle, Sci. China Ser. A 52 (2009), no. 12, 2628-2646.

[MN] N. Mok, and S. Ng, Germs of measure-preserving holomorphic maps from bound-
ed symmetric domains to their Cartesian products, J. Reine Angew. Math. 669
(2012), 47-73.

[Ng] S. Ng, On holomorphic isometric embeddings from the unit disk into polydisks
and their generalizations, Ph. D. thesis. 2008.

[Ngl] S. Ng, On holomorphic isometric embeddings of the unit disk into polydisks,
Proc. Amer. Math. Soc. 138 (2010), 2907-2922.

[Ng2] S. Ng, On holomorphic isometric embeddings of the unit n-ball into products of
two unit m-balls, Math. Z. 268 (2011) no. 1-2, 347-354.

[O] Y. Ohwashi, Eg Matrix Model, Progress of Theoretical Physics, Volume 108, Issue
4, 755-782.

[PS] A. Pressley and G. Segal, Loop groups, Oxford Mathematical Monographs, 1986.
[R] M. Rios, Jordan C*—Algebras and Supergravity, arXiv:1005.3514.

[U M. Umehara, Einstein K&hler submanifolds of a complex linear or hyperbolic
space, Tohoku Math. J. (2) 39 (1987), no. 3, 385-389.

[S] F. Sottile, From enumerative geometry to solving systems of polynomials equa-
tions , Computations in algebraic geometry with Macaulay 2, Algorithms Comput.
Math. 8, Springer, Berlin, 2002, 101-129.

[U M. Umehara, Einstein K&hler submanifolds of a complex linear or hyperbolic
space, Tohoku Math. J. (2) 39 (1987), no. 3, 385-389.

[UWZ] H. Upmeier, K. Wang and G. Zhang, Holomorphic Isometries from the Unit
Ball into Symmetric Domains, International Mathematics Research Notices. IMRN
(2017), rnx110.



102

[W] J. A. Wolf, The geometry and structure of isotropy irreducible homogeneous
spaces, Acta Math. 120 (1968), 59-148.

[XY] M. Xiao and Y. Yuan, Complexity of holomorphic maps from the complex unit
ball to classical domains , Asian Journal of Mathematics (special issue dedicated
to Professor Ngaiming Mok).

[Y] Y. Yuan, On local holomorphic maps preserving invariant (p,p)—forms between
bounded symmetric domains, Mathematical Research Letters 24 (2017),no. 6, 1875-
1895.

[YZ] Y. Yuan and Y. Zhang, Rigidity for local holomorphic conformal embeddings from
B" into BN x --- x BNm J. Differential Geom. 90 (2012), no. 2 , 329-349.



	Abstract
	Acknowledgements
	Dedication
	Introduction
	Irreducible Hermitian symmetric spaces and their Segre varieties in the minimal embeddings
	Segre varieties of projective subvarieties
	Canonical embeddings and explicit coordinate functions
	Explicit expression of the volume forms
	Appendix: Affine cell coordinate functions for two exceptional classes of the Hermitian symmetric spaces of compact type

	A basic property for partially degenerate holomorphic maps
	Proof of the main theorem assuming three extra propositions
	Modified Hurwitz Theorem
	An algebraicity lemma
	Algebraicity and rationality with uniformly bounded degree
	Isometric extension of F

	Partial non-degeneracy: Proof of Proposition (I)
	Spaces of type I
	Spaces of type II
	Spaces of type III
	Spaces of type IV
	The exceptional class  M16
	The exceptional class  M27


	Transversality and flattening of Segre families: Proof of Proposition (II)
	Proof of Proposition (II) for Hyperquadrics and Grassmannians
	 Continuation of the proof of Theorem 6.2

	Irreducibility of Segre varieties: Proof of Proposition (III)
	References

