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ABSTRACT OF THE DISSERTATION

Rigidity of local holomorphic maps between Hermitian

Symmetric Spaces

By HANLONG FANG

Dissertation Director:

Xiaojun Huang

In this dessertaion, rigidity of local holomorphic maps between Hermitian symmet-

ric spaces has been studied. For local holomorphic maps from an irreducible Hermi-

tian symmetric spaces of compact type to itself, which is equipped with a canonical

Kähler-Eisntein metric, we show that every map extends to an isometry of the mani-

fold, provided that the maps satisfy a measure-preserving equation and are generically

non-degenerate. To establish the rigidity result, a notion of Serge variety and Segre

family in the algebraic setting is introduced. Before obtaining the main theorem, we

first prove a basic property for partially degenerate holomorphic maps in a general set-

ting. Then we establish the Nash-algebraicity for one of these maps by applying this

basic property. Here the explicit expression of the mimimal embedding of the manifold

into a certain projective space is essentially used. Standard monodormy argument is

then applied to show the rationality for this Nash-algebraic map. Lastly by a covering

trick we show that the map is a birational map and further an isometry. Hence by

induction, we conclude the main theorem. This thesis is based on a joint work with

Xiaojun Huang and Ming Xiao ( [FHX]).
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Chapter 1

Introduction

Rigidity properties are among the fundamental phenomena in Complex Analysis and

Geometry of several variables, that study the global extension and uniqueness for var-

ious holomorphic objects up to certain group actions. The rigidity problem that we

consider here was initiated by a celebrated paper of Calabi [Ca]. In [Ca], Calabi studied

the global holomorphic extension and uniqueness (up to the action of the holomorphic

isometric group of the target space) for a local holomorphic isometric embedding from

a Kähler manifold into a complex space form. He established the global extension and

the Bonnet type rigidity theorem for a local holomorphic isometric embedding from a

complex manifold with a real analytic Kähler metric into a standard complex space

form. The phenomenon discovered by Calabi [Ca] has been further explored in the

past several decades due to its extensive connection with problems in Analysis and

Geometry. (See [U] [DL] [DL1], for instance).

In 2004, motivated by the modularity problem of the algebraic correspondences in

algebraic number theory, Clozel and Ullmo [CU] were led to study the rigidity problems

for local holomorphic isometric maps and even much more general volume-preserving

maps between bounded symmetric domains equipped with their Bergman metrics. By

reducing the modularity problem to the rigidity problem for local holomorphic isome-

tries, Clozel-Ullmo proved that an algebraic correspondence in the quotient of a bounded

symmetric domain preserving the Bergman metric has to be a modular correspondence

in the case of the unit disc in the complex plane and in the case of bounded symmetric

domains of rank ≥ 2. Notice that in the one dimensional setting, volume preserving

maps are identical to the metric preserving maps. Thus the Clozel-Ullmo result also

applies to the volume preserving algebraic correspondences in the lowest dimensional
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case.

Motivated by the work in [CU], Mok carried out a systematic study of the rigidity

problem for local isometric embeddings in a very general setting. Mok in [Mo2] [Mo3]

[Mo4] proved the total geodesy for a local holomorphic isometric embedding between

bounded symmetric domains D and Ω when either (i) the rank of each irreducible

component of D is at least two or (ii) D = Bn and Ω = (Bn)p for n ≥ 2. In a

paper of Yuan-Zhang [YZ], the total geodesy is obtained in the case of D = Bn and

Ω = BN1 × · · · × BNp with n ≥ 2 and Nl arbitrary for 1 ≤ l ≤ p. Earlier, Ng in [Ng2]

had established a similar result when p = 2 and 2 ≤ n ≤ N1, N2 ≤ 2n− 1. Notice that

when D = ∆ is the unit disc in the complex plane, the total geodesy fails due to the

existence of the following p−th root embedding constructed by Mok in [Mo4]. Let H

be the upper half plane and Hp = H× · · · × H be the Cartesian product of H. Define

θp(τ) = (τ
1
p , γτ

1
p , · · · , γp−1τ

1
p ),

where γ = e

√
−1π
p and τ

1
p = r

1
p e

√
−1θ
p if τ = re

√
−1θ for θ ∈ (0, π). Then θp is a non-

totally geodesic holomorphic isometry. Later certain classification results have been

obtained for the holomorphic isometries from ∆ to ∆p by [Ng] and [Ch]. Around

2016, [CM], [UWZ] and [XY] studied the holomorphic isometries from unit ball Bn to

type IV classical domains.

In a paper of X. Huang and Y. Yuan [HY1], the rigidity result has been established

for local holomorphic isometric embeddings from a Hermitian symmetric space of com-

pact type into the product of Hermitian symmetric spaces of compact type with even

negative conformal factors where certain non-cancellation property for the conformal

factors holds. (This cancellation condition turns out be the necessary and sufficient

condition for the rigidity to hold due to the presence of negative conformal factors.)

In a recent paper of Ebenfelt [E], a certain classification, as well as its connection

with problems in CR geometry, has been studied for local isometric maps when the

cancellation property fails to hold. The recent paper of Yuan [Y] studied the rigidi-

ty problem for local holomorphic maps preserving the (p, p)-forms between Hermitian

symmetric spaces of non-compact type. We also mention other related studies for the
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rigidity of holomorphic mappings, such as the ones by Huang [Hu1] [Hu2], Ji [Ji], Kim-

Zaitsev [KZ], Mok [Mo1] [Mo5], Mok-Ng [MN1], Ng [Ng1] [Ng2], and many references

therein, to name a few.

The work of Clozel and Ullmo has left open an important question of understand-

ing the modularity problem for volume-preserving correspondences in the quotient of

Hermitian symmetric spaces of higher dimension equipped with their Bergman metrics.

In 2012, Mok and Ng answered, in the affirmative, the question of Clozel and Ullmo

in [MN] by establishing the rigidity property for local holomorphic volume preserving

maps from an irreducible Hermitian manifold of non-compact type into its Cartesian

products.

In a joint work with X. Huang and M. Xiao [FHX], we continued the above men-

tioned investigations, especially those in [CU], [MN] and [HY1], and established the

following result.

Let M be an irreducible n−dimensional Hermitian symmetric space of compact

type, equipped with a canonical Kähler-Einstein metric ω. Write ωn for the associated

volume form (up to a positive constant depending only on n). We showed that the

following Clozel-Ullmo and Mok-Ng type theorem holds for local measure preserving

maps between Hermitian symmetric spaces of compact type:

Theorem 1.1. ( [FHX]) Let (M,ω) be an irreducible n−dimensional Hermitian sym-

metric space of compact type as above. Let F = (F1, ..., Fm) be a holomorphic mapping

from a connected open subset U ⊂M into the m-Cartesian product M × ...×M of M .

Assume that each Fj is generically non-degenerate in the sense that F ∗j (ωn) 6≡ 0 over

U . Assume that F satisfies the following volume-preserving (or measure-preserving)

equation:

ωn =
m∑
i=1

λiF
∗
i (ωn), (1.1)

for certain constants λj > 0. Then for each j with 1 ≤ j ≤ m, Fj extends to a holo-

morphic isometry of (M,ω). In particular, the conformal factors satisfy the identity:∑m
j=1 λj = 1.
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Notice that in the Riemann sphere setting, Theorem 1.1 also follows from the i-

sometric rigidity result obtained in [HY1]. However, the basic approach in [FHX]

fundamentally differs from that in [HY1]. The method used in [HY1] is to first obtain

the result in the simplest projective space setting and then use the minimal rational

curves to reduce the general case to the much simpler projective space case. On the

other hand, restrictions of volume preserving maps are no longer volume preserving

and thus the reduction method in [HY1] can not be applied here. The approach we

will present here is first to establish general results under certain geometric and analyt-

ic assumptions (i.e., Proposition (I)-(III)) and then verify that these assumptions are

automatically satisfied based on a case by case argument in terms of the type of the

Hermitian space.
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Chapter 2

Irreducible Hermitian symmetric spaces and their Segre

varieties in the minimal embeddings

2.1 Segre varieties of projective subvarieties

Write z = (z1, · · · , zn, zn+1) for the coordinates of Cn+1 and [z] = [z1, · · · , zn, zn+1]

for the homogeneous coordinates of CPn. For a polynomial p(z), we define p(z) :=

p(z). For a connected projective variety V ⊂ CPn, write IV for the ideal consisting

of homogeneous polynomials in z that vanish on V . We define the conjugate variety

V ∗ of V to be the projective variety defined by I∗V := {f̄ : f ∈ IV }. Apparently the

map z 7→ z defines a diffeomorphism from V to V ∗. When IV has a basis consisting

of polynomials with real coefficients, V ∗ = V . Also if V is irreducible and has a

smooth piece parametrized by a neighborhood of the origin of a complex Euclidean

space through polynomials with real coefficients, then V ∗ = V .

Next for [ξ] ∈ V ∗, we define the Segre variety Qξ of V associated with ξ by Qξ =

{[z] ∈ V :
∑n+1

j=1 zjξj = 0} which is a subvariety of codimension one in V . Similarly, for

[z] ∈ V , we define the Segre variety Q∗z of V ∗ associated with z by Q∗z = {[ξ] ∈ V ∗ :∑n+1
j=1 zjξj = 0}. It is clear that [z] ∈ Qξ if and only if [ξ] ∈ Q∗z. The Segre family of V

is defined to be the projective variety M := {([z], [ξ]) ∈ V × V ∗, [z] ∈ Qξ}.

Now, we let (M,ω) be an irreducible Hermitian symmetric space of compact type

canonically embedded in a certain minimal projective space CPN , that we will describe

in detail later in this chapter. Then under this embedding, its conjugate space M∗ is

just M itself. Taking ω to be the natural restriction of the Fubini-Study metric to M ,

the holomorphic isometric group of M is then the restriction of a certain subgroup of

the unitary actions of the ambient space. Now, for two points p1, p2 ∈ M , let U be an

(N + 1) × (N + 1) unitary matrix such that σ([z]) = [z] · U is an isometry sending p1
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to p2. Then σ∗([ξ]) = [ξ]U is an isometry of M∗. By a straightforward verification,

we see that σ∗ biholomorphically sends Q∗p1 to Q∗p2 . Similarly, for any q1, q2 ∈ M∗,

Qq1 is unitary equivalent to Qq2 . In the canonical embeddings which we will describe

later, the hyperplane section at infinity of the manifold is a Segre variety. Since the one

at infinity is built up from Schubert cells and all Segre varieties are holomorphically

equivalent to each other, one deduces that each Segre variety of M is irreducible. This

fact will play a role in the proof of our main theorem.

2.2 Canonical embeddings and explicit coordinate functions

We now describe a special type of canonical embedding of the Hermitian symmetric

space M of compact type into CPN . This embedding will play a crucial role in our

computation leading to the proof of Theorem 1.1. See [He] for the classification of the

irreducible Hermitian symmetric spaces of compact type. See also [Lo1], [Lo2] on the

typical canonical embeddings of the Heritian symmetric spaces of compact type and

the related theory of Hermitian positive Jordan triple system.

♣1. Grassmannians (spaces of type I): Write G(p, q) for the Grassmannian space

consisting of p planes in Cp+q. (Since G(p, q) is biholomorphically equivalent to G(q, p),

we will assume p ≤ q in what follows).

There is a matrix representation of G(p, q) as the equivalence classes of p× (p+ q)

non-degenerate matrices under the matrix multiplication from the left by elements

of GL(p,C). A Zariski open affine chart A for G(p, q) is identified with Cpq with

coordinates Z for elements of the form:

(
Ip×p Z

)
=



1 0 0 · · · 0 z11 z12 · · · z1q

0 1 0 · · · 0 z21 z22 · · · z2q

· · · · · ·

0 0 0 · · · 1 zp1 zp2 · · · zpq


, where Z is a p× q matrix.

The Plücker embedding G(p, q)→ CP(ΛpCp+q) is given by mapping the p−plane Λ

spanned by vectors v1, ..., vp ∈ Cp+q into the wedge product v1 ∧ v2 ∧ ...∧ vp ∈ ∧pCp+q.

The action induced by the multiplication through elements of SU(p+ q) from the right
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induces a unitary action in the embedded ambient projective space. In homogenous

coordinates, the embedding is given by the p× p minors of the p× (p+ q) matrices (up

to a sign). More specifically, in the above local affine chart, we have the following (up

to a sign in front of the components):

Z → [1, Z(
i1 ... ik

j1 ... jk

), ...] (2.1)

which is denoted for simplicity of notation, in what follows, by [1, rz] = [1, ψ1, ψ2, ..., ψN ] .

Here and in what follows, Z(
i1 ... ik

j1 ... jk

) is the determinant of the submatrix of Z

formed by its ith1 , ..., i
th
k rows and jth

1 , ..., j
th
k columns, where the indices run through

k = 1, 2, ..., p, 1 ≤ i1 < i2 < ... < ik ≤ p, 1 ≤ j1 < j2 < ... < jk ≤ q.

Notice that when k = 1, Z(
i1

j1

) = zi1j1 .

Notice that under such an embedding into the projective space, (G(p, q))∗ = G(p, q).

We thus have the same affine coordinates for (G(p, q))∗:

(
Ip×p Ξ

)
=



1 0 0 · · · 0 ξ11 ξ12 · · · ξ1q

0 1 0 · · · 0 ξ21 ξ22 · · · ξ2q

· · · · · ·

0 0 0 · · · 1 ξp1 ξp2 · · · ξpq


, Ξ is a p× q matrix.

By the definition in § 2.1, it follows that the restriction of the Segre family to

the product of these Zariski open affine subsets has the following canonical defining

function:

ρ(z, ξ) = 1 +
∑

1≤i1<i2<...<ik≤p,
1≤j1<j2<...<jk≤q

k=1,...,p

Z(
i1 ... ik

j1 ... jk

)Ξ(
i1 ... ik

j1 ... jk

) (2.2)

Here z = (z11, z12, ..., zpq), ξ = (ξ11, ξ12, ..., ξpq). For simplicity of notation and termi-

nology, we call this quasi-projective algebraic variety embedded in Cpq × Cpq, which is

defined by (2.2), the Segre family of G(p, q). Our defining function ρ(z, ξ) of the Segre
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family is closely related to the generic norm of the corresponding Hermitian positive

Jordan triple system(cf. [Lo1], [Lo2]).

♣2. Orthogonal Grassmannians (type II): Write GII(n, n) for the submanifold of

the Grassmannian G(n, n) consisting of isotropic n-dimensional subspaces of C2n. Then

S̃ ∈ GII(n, n) if and only if

S̃

 0 In×n

In×n 0

 S̃T = 0. (2.3)

In the aforementioned open affine piece of the Grassmannian G(n, n) with S̃ = (I, S),

S̃ ∈ GII(n, n) if and only if S is an n× n antisymmetric matrix. We identify this open

affine chart A of GII(n, n) with C
n(n−1)

2 through the holomorphic coordinate map:

(
In×n Z

)
:=



1 0 0 · · · 0 0 z12 · · · z1n

0 1 0 · · · 0 −z12 0 · · · z2n

· · · · · ·

0 0 0 · · · 1 −z1n −z2n · · · 0


→ (z12, · · · z(n−1)n).

(2.4)

Later in the paper we will sometimes use the notation zji := −zij if j > i for this type

II case. The Plücker embedding of G(n, n) gives a 2-canonical embedding of GII(n, n).

Unfortunately this embedding is not good enough for our purposes later. Therefore, we

will use a different embedding in this paper, which is given by the spin representation

of O2n. This embedding is what is called a one-canonical embedding of GII(n, n). We

briefly describe this embedding as following. More details can be found in [Chapter 12;

PS].

Let V be a real vector space of dimension 2n with a given inner product, and let

K(V ) be the space consisting of all orthogonal complex structures on V preserving this

inner product. An element of K(V ) is a linear orthogonal transformation J : V →

V such that J2 = −1. Any two choices of J are conjugate in the orthogonal group

O(V ) = O2n, and thus K(V ) can be identified with the homogeneous space O2n/Un.

On the other hand, there is a one-to-one correspondence assigning the complex J to a

complex n-dimensional isotropic subspace W of VC(= V
⊗

C). K(V ) has two connected
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components K±(V ) : Noticing that any complex structure defines an orientation on V ,

these two components correspond to the two possible orientations on V . Write one for

K+(V ), which is actually our GII(n, n).

Now fix an isotropic n-dimensional subspace W ⊂ VC with the associated complex

structure J of VC and pick a basis for V: {x1, ..., xn, y1, ..., yn} with J(xi) = yi, J(yi) =

−xi. Then W is spanned by {xi −
√
−1yi}ni=1. Define W to be the space spanned

by {xi +
√
−1yi}ni=1. As shown in [PS], there is a holomorphic embedding K(V ) ↪→

CP(Λ(W )), where Λ(W ) is the exterior algebra of W . This embedding is equivariant

under the action of O(V ). Thus K+(V ) ↪→ CP(Λ(W )) is equivariant under SO(V ).

Choose the open affine cell of K+(V ) such that {Y ∈ K+(V )|Y ∩W = ∅}. Then it can

be identified with (2.4).

We next describe the 1-canonical embedding by Pfaffians as following:

Let Π be the set of all partitions of {1, 2, ..., 2n} into pairs without regard to order.

An element α ∈ Π can be written as

α = {(i1, j1), (i2, j2), ..., (in, jn)}

with ik < jk and i1 < i2 < ... < in. Let

π =

 1 2 3 4 ... 2n

i1 j1 i2 j2 ... jn


be the corresponding permutation. Given a partition α as above and a (2n) × (2n)

matrix A = (ajk) , define

Aα = sgn(π)ai1j1ai2j2 · · · ainjn .

The Pfaffian of A is then given by

pf(A) =
∑
α∈Π

Aα.

The Pfaffian of an m×m skew-symmetric matrix for m odd is defined to be zero.

Therefore in the coordinate system (2.4), the embedding of A is given by

[1, , ..., pf(Zσ), ...]. (2.5)
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Write Sk for the collection of all subsets of {1, ..., n} with k elements. The σ in (2.5) runs

through all elements of Sk with 2 ≤ k ≤ n and k even. For σ = {i1 < · · · < ik}, Zσ is

defined as the submatrix Z(
i1 ... ik

i1 ... ik

). For instance, (pf(Zσ))σ∈S2
= (z12, ..., z(n−1)n).

We also write (2.5) as [1, rz] = [1, ψ1, ψ2, ..., ψN ] for simplicity of notation. We choose

the local coordinates for (GII(n, n))∗ in a similar way

(
In×n Ξ

)
=



1 0 0 · · · 0 0 ξ12 · · · ξ1n

0 1 0 · · · 0 −ξ12 0 · · · ξ2n

· · · · · ·

0 0 0 · · · 1 −ξ1n −ξ2n · · · 0


. (2.6)

The defining function for the Segre family (in the product of such affine pieces) is given

by

ρ(z, ξ) = 1 +
∑
σ∈Sk,

2≤k≤n,2|k

Pf(Zσ)Pf(Ξσ). (2.7)

♣3. Symplectic Grassmannians (type III): Write GIII(n, n) for the submanifold of

the Grassmannian space G(n, n) defined as follows: Take the matrix representation of

each element of the Grassmannian G(n, n) as an n× 2n non-degenerate matrix. Then

Ã ∈ GIII(n, n), if and only if,

Ã

 0 In×n

−In×n 0

 ÃT = 0. (2.8)

In the Zariski open affine piece of the Grassmannian G(n, n) defined before, we can take

a representative matrix of the form: Ã = (I, Z). Then we conclude that Ã ∈ GIII(n, n)

if and only if Z is an n×n symmetric matrix. We identify this Zariski open affine chart

A of GIII(n, n) with C
n(n+1)

2 through the holomorphic coordinate map:

Ã =
(
In×n Z

)
:=



1 0 0 · · · 0 z11 z12 · · · z1n

0 1 0 · · · 0 z12 z22 · · · z2n

· · · · · ·

0 0 0 · · · 1 z1n z2n · · · znn


→ (z11, · · · , znn).

Later in the paper we will sometimes use the notation zji := zij if j > i for this type

III case. Through the Plücker embedding of the Grassmannian G(n, n), GIII(n, n) is
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embedded into CP(ΛnC2n)(∼= CPN∗). In the above local coordinates, we write down

the embedding as (up to a sign)

Z → [1, · · · , Z(
i1 ... ik

j1 ... jk

), ...] := [1, ψ1, · · · , ψN∗ ]. (2.9)

Choose the local affine open piece of (GIII(n, n))∗ consisting of elements in the following

form:

(
In×n Ξ

)
=



1 0 0 · · · 0 ξ11 ξ12 · · · ξ1n

0 1 0 · · · 0 ξ12 ξ22 · · · ξ2n

· · · · · ·

0 0 0 · · · 1 ξ1n ξ2n · · · ξnn.


.

The defining function of Segre family in the product of such affine open pieces is given

by

ρ(z, ξ) = 1 +
∑

1≤i1<i2<...<ik≤n,
1≤j1<j2<...<jk≤n

k=1,...,n

Z(
i1 ... ik

j1 ... jk

)Ξ(
i1 ... ik

j1 ... jk

) (2.10)

However the Plücker embedding is not a useful canonical embedding to us forGIII(n, n),

due to the fact that {ψj} is not a linearly independent system. For instance, we have

the following relation:

Z

 1 2

3 4

+ Z

 1 4

2 3

 = Z

 1 3

2 4

 .

This embedding can not serve our purposes here. We therefore derive from this

embedding a minimal embedding into a certain projective subspace in CP(ΛnC2n)(∼=

CPN∗). We denote this minimal projective subspace by H ∼= CPN , which is discussed

in detail below. We notice that the embedding GIII(n, n) ↪→ CPN is equivariant under

the transitive action of Sp(n).

Following the notations we set up in the Grassmannian case, we write [1, ψ1, · · ·ψN∗ ]

for the map of the Plücker embedding into CPN∗ . Write (ψi1 , ..., ψimk ) for those com-

ponents of degree k in z among {ψj}N
∗

j=1. Here 1 ≤ k ≤ n, and {i1, ..., imk} depends on

k. For instance, if k = 1, then

(ψi1 , ..., ψim1
) = (z11, ..., znn),
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where zij is repeated twice if i 6= j.

Let {ψ(k)
1 , · · · , ψ(k)

m∗k
} be a maximally linearly independent subset of {ψi1 , ..., ψimk}

over R (and thus also over C). For instance,

{ψ(1)
1 , · · · , ψ(1)

m∗1
} = {zij}i≤j .

Let Ak be the m∗k × mk matrix such that (ψi1 , · · ·ψimk ) = (ψ
(k)
1 , · · ·ψ(k)

m∗k
) · Ak.

Apparently Ak has real entries and is of full rank. Hence Ak ·Atk is positive definite.

Then {ψ∗1, · · · , ψ∗N} := {ψ(k)
1 , · · · , ψ(k)

m∗k
}1≤k≤n forms a basis of {ψ1, · · ·ψN∗}, where

N = m∗1 + ... + m∗n. Moreover, if we write A as the (m∗1 + ... + m∗n) × (m1 + ... + mn)

matrix:

A =


A1

· · ·

An

 ,

Then A has full rank and we have a real orthogonal matrix U such that

U =


U1

· · ·

Un

 , U t(A ·At)U =


µ1

· · ·

µN

 with each µj > 0.

Here Uk, 1 ≤ k ≤ n, is an m∗k ×m∗k orthogonal matrix. Now we define

(ψ1
1, ..., ψ

1
N1
, ψ2

1, ..., ψ
2
N2
, ..., ψn−1

1 , ..., ψn−1
Nn−1

, ψn) := (ψ∗1, · · ·ψ∗N )·U ·



√
µ1

√
µ2

· · ·
√
µN


.

Here N1 + ... + Nn−1 + Nn = N∗, where we set Nn = 1. We will also sometimes write

ψnNn = ψn. As a direct consequence,

(ψ1
1, ..., ψ

1
N1
,ψ2

1, ..., ψ
2
N2
, ..., ψn−1

1 , ..., ψn−1
Nn−1

, ψn) · (ψ1
1, ..., ψ

1
N1
, ψ2

1, ..., ψ
2
N2
, ..., ψn−1

1 , ..., ψn−1
Nn−1

, ψn)

= (ψ1, · · · , ψN∗) · (ψ1, · · · , ψN∗) = det(I + ZZ̄t) = ρ(z, z).

(2.11)

Moreover {ψ1
1, ..., ψ

1
N1
, ψ2

1, ..., ψ
2
N2
, ..., ψn−1

1 , ..., ψn−1
Nn−1

, ψn} forms a linearly indepen-

dent system; and {ψk1 , ..., ψkNk} are polynomials in z of degree k for k = 1, ..., n. Now
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our canonical embedding of the aforementioned affine piece A of GIII(n, n) is taken as

z ∈ C
n(n+1)

2 → [1, ψ1
1, ..., ψ

1
N1
, ψ2

1, ..., ψ
2
N2
, ..., ψn−1

1 , ..., ψn−1
Nn−1

, ψn].

For simplicity, we will still denote (ψ1
1, ..., ψ

1
N1
, ψ2

1, ..., ψ
2
N2
, ..., ψn−1

1 , ..., ψn−1
Nn−1

, ψn) by

rz = (ψ1, ψ2, ..., ψN ) =
(
ψ1

1, ..., ψ
1
N1
, ψ2

1, ..., ψ
2
N2
, ..., ψn−1

1 , ..., ψn−1
Nn−1

, ψn
)
. (2.12)

Here, for instance, (ψ1, ..., ψn(n+1)
2

) = (ψ1
1, ..., ψ

1
N1

) = (aijzij)1≤i≤j≤n, where aij equals

to 1 if i = j, equals to
√

2 if i < j. Hence the defining function of the Segre family,

which is the same as (2.10), is given by ρ(z, ξ) = 1 +
∑N

i=1 ψi(z)ψi(ξ).

♣4. Hyperquadrics (type IV): Let Qn be the hypersurface in CPn+1 defined by{
[x0, ..., xn+1] ∈ CPn+1 :

n∑
i=1

x2
i − 2x0xn+1 = 0

}
,

where [x1, ..., xn+2] are the homogeneous coordinates for CPn+1. It is invariant under the

action of the group SO(n+2). We mention that under the present embedding, the action

is not the standard SO(n + 2) in GL(n + 2). However it is conjugate to the standard

SO(n+2) action by a certain element g ∈ U(n+2). An Zariski open affine piece A ⊂ Qn

identified with Cn is given by (z1, ..., zn) 7→ [1, ψ1, ..., ψn+1] = [1, z1, ..., zn,
1
2

∑n
i=1 z

2
i ],

which will be denoted by [1, rz] = [1, ψ1, ψ2, ..., ψn+1]. Choose the same local chart for

(Qn)∗ : (ξ1, ..., ξn) → [1, ξ1, ..., ξn,
1
2

∑n
i=1 ξ

2
i ]. Then the defining function of the Segre

family restricted to Cn × Cn ↪→ Qn × (Qn)∗ is given by

ρ(z, ξ) = 1 +
n∑
i=1

ziξi +
1

4
(
n∑
i=1

z2
i )(

n∑
i=1

ξ2
i ) (2.13)

♣5. The exceptional manifold M16 := E6/SO(10) × SO(2) : As shown in [IM1],

[IM2], this exceptional Hermitian symmetric space can be realize as the Cayley plane.

Take the exceptional 3× 3 complex Jordan algebra

J3(O) =




c1 x3 x̄2

x̄3 c2 x1

x2 x̄1 c3

 : ci ∈ C, xi ∈ O


∼= C27. (2.14)

Here O is the complexified algebra of octonions, which is a complex vector space of

dimension 8. Denote a standard basis of O by {e0, e1, ..., e7}. The multiplication rule
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in terms of this basis is given in the next section. The conjugation operator appeared

in (2.14) is for octonions, which is defined as follows: x̄ = x0e1 − x1e1 − ... − x7e7, if

x = x0e0 + x1e1 + x2e2 + ...+ x7e7, xi ∈ C. Moreover under this basis, the isomorphism

J3(O) ∼= C27 is realized by identifying each matrix

X =


ξ1 η κ̄

η̄3 ξ2 τ

κ τ̄ ξ3

 ∈ J3(O)

with the point (ξ1, ξ2, ξ3, η0, η1, . . . , η7, κ0, κ2, . . . , κ7, τ0, τ1, . . . , τ7) ∈ C27, where η =∑7
i=0 ηiei, κ =

∑7
i=0 κiei and τ =

∑7
i=0 τiei.

The Jordan multiplication is defined as A◦B = 1
2(AB+BA) for A,B ∈ J3(O) . The

subgroup SL(O) of GL(J3(O)) consisting of automorphisms preserving the determinant

is the adjoint group of type E6. The action of E6 on the projectivization CPJ3(O) has

exactly three orbits: the complement of the determinantal hypersurface, the regular

part of this hypersurface, and its singular part which is the closed E6−orbit. The

closed orbit is the Cayley plane or the hermitian symmetric space of compact type

corresponding to E6. It can be defined by the quadratic equation

X2 = trace(X)X, X ∈ J3(O),

or as the closure of the affine cell A

OP2
1 =




1 x y

x̄ xx̄ yx̄

ȳ xȳ yȳ

 : x, y ∈ O


∼= C16

in the local coordinates (x0, x1, ..., x7, y0, ..., y7). The precise formula for the canonical

embedding map is given in§ 2.4. We denote this embedding by [1, rz] = [1, ψ1, ψ2, ..., ψN ] .

To find the defining function for its Segre family over the product of such stan-

dard affine sets, we choose local coordinates for the conjugate Cayley plane to be

(κ0, κ1, ..., κ7, η0, η1, ..., η7). Then

ρ(z, ξ) = 1+

7∑
i=0

xiκi+
7∑
i=0

yiηi+
7∑
i=0

Ai(x, y)Ai(κ, η)+B0(x, y)B0(κ, η)+B1(x, y)B1(κ, η),

(2.15)



15

whereAj , Bj are defined as in § 2.4, z = (x0, ..., x7, y0, ..., y7) and ξ = (κ0, ..., κ7, η0, ..., η7).

♣6. The other exceptional manifold M27 = E7/E6×SO(2) : As shown in [CMP], it

can be realized as the Freudenthal variety. Consider the Zorn algebra

Z2(O) = C
⊕
J3(O)

⊕
J3(O)

⊕
C

One can prove that there exists an action of E7 on that 56−dimensional vector space (see

[Fr]). The closed E7−orbit inside CPZ2(O) is the Freudenthal variety E7/E6 × SO(2).

An affine cell A of Freudenthal variety is [1, X,Com(X), det(X)] ∈ CPZ2(O). Here X

belongs to J3(O); Com(X) is the comatrix of X such that XCom(X) = det(X)I under

the usual matrix multiplication rule. Notice that Com(X) = X ×X, where X ×X is

the Freudenthal multiplication defined as follows (see [O]):

X ×X := X2 − tr(X)X +
1

2
(tr(X)2 − tr(X2))I.

For explicit expressions for X ×X and det(X) in terms of the entries of X, see § 2.4.

The embedding of E7/E6 × SO(2) ↪→ CPN in local coordinates z is given in § 2.4.

Choose the local affine open piece for (E7/E6 × SO(2))∗ with coordinates

ξ = (ξ1, ξ2, ξ3, η0, ..., η7, κ0, ..., κ7, τ0, ..., τ7).

We denote this embedding by [1, rz] = [1, ψ1, ψ2, ..., ψN ] . The defining function for the

Segre family is then ρ(z, ξ) = 1 + rz · rξ, where

rz = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7, A(z), B(z), C(z), D0(z), ...D7(z),

E0(z), ..., E7(z), F0(z), ..., F7(z), G(z))

rξ = (ψ1(ξ), ψ2(ξ), ..., ψN (ξ)) = (ξ1, ξ2, ξ3, η0, ..., η7, κ0, ..., κ7, τ0, ..., τ7,

A(ξ), B(ξ), C(ξ), D0(ξ), ..., D7(ξ), E0(ξ), ..., E7(ξ), F0(ξ), ..., F7(ξ), G(ξ))

(2.16)

See § 2.4 for the definition of the functions appeared in the formula.

Summarizing the above, for each irreducible Hermitian symmetric space of compact

type M of dimension n, we now have described a canonical embedding from M into

a projective space PN , which restricted to a certain Zariski open affine piece A holomor-

phically equivalent to Cn takes the form: z(∈ Cn) 7→ [1, κ1z1, · · · , κizi, · · · , κnzn, O(z2)].
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Here κi = 1 for all i except in the case of type III where κi can be 1 or
√

2. This is

the embedding we will use in later discussions. Notice in our embedding, the conjugate

space M∗ is the same as M . For simplicity of notation, we will also write M for the

restriction of the Segre family of M restricted to A×A∗ = Cn × Cn.

From this embedding and the invariant property of Segre varieties, we immediately

conclude the following:

Lemma 2.1. Assume A and B are two distinct points of M . Then their associated

Segre varieties are different, namely, QA 6= QB.

Proof of Lemma 2.1: Since the holomorphic isometric group acts transitively on M ,

we can assume A = (0, 0, ..., 0) ∈ Cn ∼= A ⊂M. Therefore QA is the hyperplane section

of M ↪→ PN at infinity, namely, QA = M\A. Now if B ∈ A, because B 6= (0, 0, ..., 0),

there are non-trivial linear terms in the defining function of QB. This leads to the fact

that the defining function of QB has to be a non-constant polynomial in C[ξ1, ..., ξn].

Therefore QB ∩ Cn 6= ∅ and thus does not coincide with QA. If B ∈ M\A, by the

symmetric property of Segre varieties, we have (0, ..., 0) ∈ QB. Therefore QB 6= QA.

We then arrive at the conclusion.

Finally, since in our setting, M∗ = M and the Segre family on M and M∗ are the

same. For simplicity of notation, we do not distinguish, in what follows, Q∗ and M∗

from Q and M, respectively.

2.3 Explicit expression of the volume forms

From now on, we assume that M is an irreducible Hermitian symmetric space of com-

pact type and we choose the canonical embedding M ↪→ CPN as described in § 2.2

according to its type. We denote the metric on M induced from Fubini-Study of CPN

by ω, and the volume form by dµ = ωn (up to a positive constant). Notice that the

metric we obtained is always invariant under the action of a certain transitive subgroup

G ⊂ Aut(M) (which comes from the restriction of a subgroup of the unitary group of

the ambient projective space). Hence by a theorem of Wolf [W], ω is the unique G in-

variant metric on M up to a scale. We claim ω must be Kähler-Einstein. Indeed, since
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the Ricci form Ric(ω) of ω is invariant under G, for a small ε, ω+ εRic(ω) is thus also a

G invariant metric on M . By [W], it is a multiple of ω, and thus Ric(ω) = λω. Write dµ

as the product of V and the standard Euclidean volume form over the affine subspace

A, where V is a positive function in z. Since Ric(ω) = −i∂∂̄ log V , −i∂∂̄ log V = λω.

Notice that λ > 0. In the local affine open piece A defined before, ω = i∂∂̄ log ρ(z, z̄),

where ρ(z, ξ) is the defining function for the associated Segre family. As we will see

later (§7), ρ(z, ξ) is an irreducible polynomial in (z, ξ). Then we have

∂∂̄ log(V ρ(z, z̄)λ) = 0.

Hence, log(V ρ(z, z̄)λ) = φ(z) + ψ(z), where both φ and ψ are holomorphic functions.

Therefore V = eφ(z)+ψ(z)

ρ(z,z̄)λ
. Because ρ(z, ξ) is an irreducible polynomial, from the way V

is defined, V must be a rational function of the form p(z,z)
ρ(z,z̄)m with p, ρ relatively prime to

each other. Since φ, ψ are globally defined, by a monodromy argument, it is clear that

λ has to be an integer. Also both eφ(z) and eψ(ξ) must be rational functions. Again,

since φ, ψ are also globally defined, this forces φ, ψ to be constant functions. Therefore,

we conclude that

V = cρ(z, z̄)−λ. (2.17)

Here λ is a certain positive integer and c is a positive constant. Next by a well-known

result (see [BaMa]), two Kähler-Einstein metrics of M are different by an automorphism

ofM (up to a positive scalar multiple). Therefore, to prove Theorem 1.1, we can assume,

without loss of generality, that the Kähler-Einstein metric in Theorem 1.1 is the metric

obtained by restricting the Fubini-Study metric to M through the embedding described

in this section.

2.4 Appendix: Affine cell coordinate functions for two exceptional

classes of the Hermitian symmetric spaces of compact type

Define the multiplication law of octonions with the standard basis {e0 = 1, e1, · · · , e7}

by the following table:
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♣1. Case M16: Define

x = (x0, x1, x2, x3, x4, x5, x6, x7),

y = (y0, y1, y2, y3, y4, y5, y6, y7).

Define Aj(x, y), j = 0, . . . , 7, such that

xȳ =
7∑
j=0

Aj(x, y)ej , where x =
7∑
j=0

xjej and y =
7∑
j=0

yjej .

Define Bj(x, y), j = 0, 1 such that

xx̄ = B0(x, y)e0 and yȳ = B1(x, y)e0.

Exploiting the multiplication law of octonions, we have the following formulas:

A0 = A0(x, y) = y0x0 + y1x1 + y2x2 + y3x3 + y4x4 + y5x5 + y6x6 + y7x7,

A1 = A1(x, y) = − y0x1 + y1x0 − y2x4 + y4x2 − y3x7 + y7x3 − y5x6 + y6x5,

A2 = A2(x, y) = − y0x2 + y2x0 − y4x1 + y1x4 − y3x5 + y5x3 − y6x7 + y7x6,

A3 = A3(x, y) = − y0x3 + y3x0 + y1x7 − y7x1 + y2x5 − y5x2 − y4x6 + y6x4,

A4 = A4(x, y) = − y0x4 + y4x0 − y1x2 + y2x1 + y3x6 − y6x3 − y5x7 + y7x5,

A5 = A5(x, y) = − y0x5 + y5x0 + y1x6 − y6x1 − y2x3 + y3x2 + y4x7 − y7x4,

A6 = A6(x, y) = − y0x6 + y6x0 − y1x5 + y5x1 + y2x7 − y7x2 − y3x4 + y4x3,

A7 = A7(x, y) = − y0x7 + y7x0 − y1x3 + y3x1 − y2x6 + y6x2 − y4x5 + y5x4,

B0 = B0(x, y) = x2
0 + x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 + x2

7,

B1 = B1(x, y) = y2
0 + y2

1 + y2
2 + y2

3 + y2
4 + y2

5 + y2
6 + y2

7.

Then the embedding functions of a Zariski open subset A, which is identified with

C16 with coordinates z := (x0, · · · , x7, y0, · · · , y7), of M16 := E6
SO(10)×SO(2) into CP26

are given by:

z 7→ [1, x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, y6, y7, A0, A1, A2, A3, A4, A5, A6, A7, B0, B1].

e1 e2 e4 e7 e3 e6 e5

e1 −1 e4 −e2 −e3 e7 −e5 e6

e2 −e4 −1 e1 −e6 e5 e7 −e3

e4 e2 −e1 −1 −e5 −e6 e3 e7

e7 e3 e6 e5 −1 −e1 −e2 −e4

e3 −e7 −e5 e6 e1 −1 −e4 e2

e6 e5 −e7 −e3 e2 e4 −1 −e1

e5 −e6 e3 −e7 e4 −e2 e1 −1
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♣2. Case M27: Similarly we define

x = (x1, x2, x3),

y = (y0, y1, y2, y3, y4, y5, y6, y7),

t = (t0, t1, t2, t3, t4, t5, t6, t7),

ω = (ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7).

Define functions A,B,C,D0, . . . , D7, E0 . . . , E7, F0 . . . , F7 and G such that,

Com(X) = X ×X =


A D E

D B F

E F C

 , G = det(X),

where D =
∑7

j=0Djej , E =
∑7

j=0Ejej , F =
∑7

j=0 Fjej and the matrix X correspond-

ing to the point (x, y, t, w) ∈ C27 is given by

X =


x1 y t

y x2 w

t w x3

 ∈ J3(O).

Recall the formulas in [O], we have

X ×X =


x2x3 − ww wt− x3y yw − x2t

wt− x3y x3x1 − tt ty − x1w

yw − x2t ty − x1w x1x2 − yy

 ∈ J3(O),

det(X) = x1x2x3 − x1ww − x2tt̄− x3yy + 2<c(wty),

where <c(x) = x0 for any x =
∑7

i=0 xiei ∈ O.
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By further computation, we have the explicit expressions as follows:

A = A(x, y, t, ω) = x2x3 − (ω2
0 + ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6 + ω2

7),

B = B(x, y, t, ω) = x1x3 − (t20 + t21 + t22 + t23 + t24 + t25 + t26 + t27),

C = C(x, y, t, ω) = x1x2 − (y2
0 + y2

1 + y2
2 + y2

3 + y2
4 + y2

5 + y2
6 + y2

7),

D0 = D0(x, y, t, ω) = t0ω0 + t1ω1 + t2ω2 + t3ω3 + t4ω4 + t5ω5 + t6ω6 + t7ω7 − x3y0,

D1 = D1(x, y, t, ω) = − t0ω1 + t1ω0 − t2ω4 + t4ω2 − t3ω7 + t7ω3 − t5ω6 + t6ω5 − x3y1,

D2 = D2(x, y, t, ω) = − t0ω2 + t2ω0 − t4ω1 + t1ω4 − t3ω5 + t5ω3 − t6ω7 + t7ω6 − x3y2,

D3 = D3(x, y, t, ω) = − t0ω3 + t3ω0 + t1ω7 − t7ω1 + t2ω5 − t5ω2 − t4ω6 + t6ω4 − x3y3,

D4 = D4(x, y, t, ω) = − t0ω4 + t4ω0 − t1ω2 + t2ω1 + t3ω6 − t6ω3 − t5ω7 + t7ω5 − x3y4,

D5 = D5(x, y, t, ω) = − t0ω5 + t5ω0 + t1ω6 − t6ω1 − t2ω3 + t3ω2 + t4ω7 − t7ω4 − x3y5,

D6 = D6(x, y, t, ω) = − t0ω6 + t6ω0 − t1ω5 + t5ω1 + t2ω7 − t7ω2 − t3ω4 + t4ω3 − x3y6,

D7 = D7(x, y, t, ω) = − t0ω7 + t7ω0 − t1ω3 + t3ω1 − t2ω6 + t6ω2 − t4ω5 + t5ω4 − x3y7,

E0 = E0(x, y, t, ω) = y0ω0 − y1ω1 − y2ω2 − y3ω3 − y4ω4 − y5ω5 − y6ω6 − y7ω7 − x2t0,

E1 = E1(x, y, t, ω) = y0ω1 + y1ω0 + y2ω4 − y4ω2 + y3ω7 − y7ω3 + y5ω6 − y6ω5 − x2t1,

E2 = E2(x, y, t, ω) = y0ω2 + y2ω0 + y4ω1 − y1ω4 + y3ω5 − y5ω3 + y6ω7 − y7ω6 − x2t2,

E3 = E3(x, y, t, ω) = y0ω3 + y3ω0 − y1ω7 + y7ω1 − y2ω5 + y5ω2 + y4ω6 − y6ω4 − x2t3,

E4 = E4(x, y, t, ω) = y0ω4 + y4ω0 + y1ω2 − y2ω1 − y3ω6 + y6ω3 + y5ω7 − y7ω5 − x2t4,

E5 = E5(x, y, t, ω) = y0ω5 + y5ω0 − y1ω6 + y6ω1 + y2ω3 − y3ω2 − y4ω7 + y7ω4 − x2t5,

E6 = E6(x, y, t, ω) = y0ω6 + y6ω0 + y1ω5 − y5ω1 − y2ω7 + y7ω2 + y3ω4 − y4ω3 − x2t6,

E7 = E7(x, y, t, ω) = y0ω7 + y7ω0 + y1ω3 − y3ω1 + y2ω6 − y6ω2 + y4ω5 − y5ω4 − x2t7,

F0 = F0(x, y, t, ω) = y0t0 + y1t1 + y2t2 + y3t3 + y4t4 + y5t5 + y6t6 + y7t7 − x1ω0,

F1 = F1(x, y, t, ω) = y0t1 − y1t0 − y2t4 + y4t2 − y3t7 + y7t3 − y5t6 + y6t5 − x1ω1,

F2 = F2(x, y, t, ω) = y0t2 − y2t0 − y4t1 + y1t4 − y3t5 + y5t3 − y6t7 + y7t6 − x1ω2,

F3 = F3(x, y, t, ω) = y0t3 − y3t0 + y1t7 − y7t1 + y2t5 − y5t2 − y4t6 + y6t4 − x1ω3,

F4 = F4(x, y, t, ω) = y0t4 − y4t0 − y1t2 + y2t1 + y3t6 − y6t3 − y5t7 + y7t5 − x1ω4,

F5 = F5(x, y, t, ω) = y0t5 − y5t0 + y1t6 − y6t1 − y2t3 + y3t2 + y4t7 − y7t4 − x1ω5,

F6 = F6(x, y, t, ω) = y0t6 − y6t0 − y1t5 + y5t1 + y2t7 − y7t2 − y3t4 + y4t3 − x1ω6,

F7 = F7(x, y, t, ω) = y0t7 − y7t0 − y1t3 + y3t1 − y2t6 + y6t2 − y4t5 + y5t4 − x1ω7.
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G = G(x, y, t, ω) = x1x2x3 − x1(ω2
0 + ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6 + ω2

7)

− x2(t20 + t21 + t22 + t23 + t24 + t25 + t26 + t27)

− x3(y2
0 + y2

1 + y2
2 + y2

3 + y2
4 + y2

5 + y2
6 + y2

7)

+ 2{(y0ω0 − y1ω1 − y2ω2 − y3ω3 − y4ω4 − y5ω5 − y6ω6 − y7ω7)t0

+ (y0ω1 + y1ω0 + y2ω4 − y4ω2 + y3ω7 − y7ω3 + y5ω6 − y6ω5)t1

+ (y0ω2 + y2ω0 + y4ω1 − y1ω4 + y3ω5 − y5ω3 + y6ω7 − y7ω6)t2

+ (y0ω3 + y3ω0 − y1ω7 + y7ω1 − y2ω5 + y5ω2 + y4ω6 − y6ω4)t3

+ (y0ω4 + y4ω0 + y1ω2 − y2ω1 − y3ω6 + y6ω3 + y5ω7 − y7ω5)t4

+ (y0ω5 + y5ω0 − y1ω6 + y6ω1 + y2ω3 − y3ω2 − y4ω7 + y7ω4)t5

+ (y0ω6 + y6ω0 + y1ω5 − y5ω1 − y2ω7 + y7ω2 + y3ω4 − y4ω3)t6

+ (y0ω7 + y7ω0 + y1ω3 − y3ω1 + y2ω6 − y6ω2 + y4ω5 − y5ω4)t7}.

Hence the embedding functions of a Zariski open subset A, which is identified with

C27 with coordinates z := (x, y, t, ω) = (x1, x2, x3, y0 · · · , y7, t0, · · · , t7, ω0, · · · , ω7), of

M27 := E7
E6×SO(2) into CP55 are given by: z 7→ [1, x, y, t, ω,A,B,C,D0, D1, D2, D3, D4, D5,

D6, D7, E0, E1, E2, E3, E4, E5, E6, E7, F0, F1, F2, F3, F4, F5, F6, F7, G]. The detailed dis-

cussions related to this Appendix can be found in [CMP], [Fr] and [O].
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Chapter 3

A basic property for partially degenerate holomorphic

maps

In this chapter, we introduce a notion of degeneracy for holomorphic maps and derive

an important consequence, which will be fundamentally applied in the proof of our

main theorem.

Let ψ(z) := (ψ1(z), ..., ψN (z)) be a vector-valued holomorphic function from a

neighborhood U of 0 in Cm,m ≥ 2, into CN , N > m, with ψ(0) = 0. Here we

write z = (z1, ..., zm) for the coordinates of Cm. In the following, we will write z̃ =

(z1, ..., zm−1), i.e., the vector z with the last component zm being dropped out. Write

∂|α|

∂z̃α = ∂|α|

∂z
α1
1 ...∂z

αm−1
m−1

for an (m− 1)−multiindex α, where

α = (α1, ..., αm−1).

Write

∂|α|

∂z̃α
ψ(z) =

(
∂|α|

∂z̃α
ψ1(z), ...,

∂|α|

∂z̃α
ψN (z)

)
.

We introduce the following definition.

Definition 3.1. Let k ≥ 0. For a point p ∈ U, write Ek(p) = SpanC{∂
|α|

∂z̃αψ(z)|z=p : 0 ≤

|α| ≤ k}. We write r for the greatest number such that for any neighborhood O of 0,

there exists p ∈ O with dimCEk(p) = r. r is called the k−th z̃−rank of ψ at 0, which

is written as rankk(ψ, z̃). F is called z̃−nondegenerate if rankk0(ψ, z̃) = N for some

k0 ≥ 1.
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Remark 1. It is easy to see that rankk(ψ, z̃) = r if and only if the following matrix

∂|α
0|

∂z̃α0
ψ(z)

...

...

∂|α
s|

∂z̃αs
ψ(z)


has an r × r submatrix with determinant not identically zero for z ∈ U for some mul-

tiindices {α0, ..., αs} with all 0 ≤ |αj | ≤ k. Moreover, any l× l (l > r) submatrix of the

matrix has identically zero determinant for any choice of {α0, ..., αs} with 0 ≤ |αj | ≤ k.

In particular, ψ is z̃−nondegenerate if and only if there exist multiindices β1, ..., βN

such that ∣∣∣∣∣∣∣∣∣∣
∂|β

1|

∂z̃β1
ψ1(z) ... ∂|β

1|

∂z̃β1
ψN (z)

... ... ...

∂|β
N |

∂z̃βN
ψ1(z) ... ∂|β

N |

∂z̃βN
ψN (z)

∣∣∣∣∣∣∣∣∣∣
is not identically zero.

Moreover, ranki+1(ψ, z̃) ≥ ranki(ψ, z̃) for any i ≥ 0.

For the rest of this chapter, we further assume that the first m components of ψ,

i.e.,

(ψ1, ..., ψm) : Cm → Cm

is a biholomorphic map in a neighborhood of 0 ∈ Cm. Then we have,

Lemma 3.2. It holds that rank0(ψ, z̃) = 1, rank1(ψ, z̃) = m, and for k ≥ 1, rankk(ψ, z̃) ≥

m.

Proof of Lemma 3.2: We first notice that it holds trivially that rank0(ψ, z̃) = 1, for F

is not identically zero. We now prove rank1(ψ, z̃) = m. First notice that rank1(ψ, z̃) ≤ m

as there are only m distinct multiindices β such that |β| ≤ 1. On the other hand, since

ψ has full rank at 0, we have, ∣∣∣∣∣∣∣∣∣∣
∂ψ1

∂z1
... ∂ψm

∂z1

... ... ...

∂ψ1

∂zm
... ∂ψm

∂zm

∣∣∣∣∣∣∣∣∣∣
(0) 6= 0.
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This together with the fact ψ(0) = 0 implies that the zm derivative of∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ... ψm

∂ψ1

∂z1
... ∂ψm

∂z1

... ... ...

∂ψ1

∂zm−1
... ∂ψm

∂zm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.1)

is nonzero at p = 0. Consequently, the quantity in (3.1) is not identically zero in U. By

the definition of the z̃-rank, we then arrive at the conclusion.

We now prove the following degeneracy theorem in terms of its z̃-rank, which will

be used to derive Theorem 3.10.

Theorem 3.3. Let ψ = (ψ1, ..., ψm, ψm+1, ..., ψN ) be a holomorphic map from a neigh-

borhood of 0 ∈ Cm into CN with ψ(0) = 0. Recall that z̃ = (z1, ..., zm−1), i.e., the

vector z with the last component zm being dropped out. Assume that (ψ1, ..., ψm) is a

biholomorphic map from a neighborhood of 0 ∈ Cm into a neighborhood of 0 ∈ Cm.

Suppose

rankN−m+1(ψ, z̃) < N. (3.2)

Then there exist N holomorphic functions g1(zm), ..., gN (zm) near 0 in the zm−Gauss

plane with {g1(0), ..., gN (0)} not all zero such that the following holds for any (z1, ..., zm)

near 0.
N∑
i=1

gi(zm)ψi(z1, ..., zm) ≡ 0. (3.3)

In particular, one can make one of the {gi}Ni=1 to be identically one.

The geometric intuition for the theorem is as follows: The space of 1-jets has dimen-

sion m by Lemma 3.2. We expect that at least one more dimension is increased when

we go from the space of k-jets to the space of (k+ 1)-jets until we reach the maximum

possible value N . The theorem says that if this process fails, namely, the assumption

in (3.2) holds, we then end up with a function relationship as in (3.3).

Proof of Theorem 3.3: We consider the following set,

S = {l ≥ 1 : rankl(ψ, z̃) ≤ l +m− 2}.
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Note that 1 /∈ S, for rank1(F ) = m. We claim that S is not empty. Indeed, we

have 1 + N − m ∈ S by (3.2). Now write t′ for the minimum number in S. Then

2 ≤ t′ ≤ 1 +N −m. Moreover, by the choice of t′,

rankt′(ψ, z̃) ≤ t′ +m− 2, rankt′−1(ψ, z̃) ≥ t′ +m− 2. (3.4)

This yields that

rankt′(ψ, z̃) = rankt′−1(ψ, z̃) = t′ +m− 2. (3.5)

We write t := t′ − 1, n := t′ +m− 2. Here we note t ≥ 1,m ≤ n ≤ N − 1. Then there

exist multiindices {γ1, ..., γn} with each |γi| ≤ t and j1, ..., jn such that

∆(γ1, ..., γn|j1, ..., jn) :=

∣∣∣∣∣∣∣∣∣∣
∂|γ

1|ψj1
∂z̃γ1

...
∂|γ

1|ψjn
∂z̃γ1

... ... ...

∂|γ
n|ψj1
∂z̃γn

...
∂|γ

n|ψjn
∂z̃γn

∣∣∣∣∣∣∣∣∣∣
is not identically zero in U. (3.6)

Since rank1(ψ, z̃) = m, we can choose (γ1, ..., γn|j1, ..., jn) such that

γ1 = (0, .., 0), γ2 = (1, 0, ..., 0), ..., γm = (0, ..., 0, 1).

For any α1, ..., αn+1 with |αi| ≤ t+ 1, and l1, ..., ln+1, we have

∆(α1, ..., αn+1|l1, ..., ln+1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂|α
1|ψl1

∂z̃α1
...

∂|α
1|ψln
∂z̃α1

∂|α
1|ψln+1

∂z̃α1

... ... ... ...

... ... ... ...

∂|α
n+1|ψl1

∂z̃αn+1 ...
∂|α

n+1|ψln
∂z̃αn+1

∂|α
n+1|ψln+1

∂z̃αn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ 0 in U. (3.7)

We write Γ for the collection of (γ1, ..., γn|j1, ..., jn), j1 < ... < jn, with γ1 = (0, .., 0)

and with (3.6) being held. We associate each (γ1, ..., γn|j1, ..., jn) with an integer

s(γ1, ..., γn|j1, ..., jn) := s0 where s0 is the least number s ≥ 0 such that

∂s1+...+sm−1+s∆(γ1, ..., γn|j1, ..., jn)

∂zs11 ∂z
s2
2 ...∂z

sm−1

m−1 ∂z
s
m

(0) 6= 0.

for some integers s1, ..., sm−1. Then s(γ1, ..., γn|j1, ..., jn) ≥ 0 for any (γ1, ..., γn|j1, ..., jn) ∈

Γ.

Let (β1, ..., βn|i1, ..., in) ∈ Γ, i1 < ... < in be indices with the least s(γ1, ..., γn|j1, ..., jn)

among all (γ1, ..., γn|j1, ..., jn) ∈ Γ.

We will need the following lemma proved in [BX]:
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Lemma 3.4. ( [BX], Lemma 4.4) For a general n× n matrix

B =



b11 b12 . . . b1n

b21 b22 . . . b2n

. . . . . .

. . . . . .

. . . . . .

bn1 bn2 . . . bnn


,

where bij ∈ C for 1 ≤ i, j ≤ n, n ≥ 3, we have the following identity:∣∣∣∣∣∣∣∣∣∣∣∣∣

B(
1 2 . . . n− 2 n− 1

1 2 . . . n− 2 n− 1
) B(

1 2 . . . n− 2 n− 1

j1 j2 . . . jn−2 n
)

B(
i1 i2 . . . in−2 n

1 2 . . . n− 2 n− 1
) B(

i1 i2 . . . in−2 n

j1 j2 . . . jn−2 n
)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(∗)

= B(
i1 i2 . . . in−2

j1 j2 . . . jn−2

)|B|, for any 1 ≤ i1 < i2 < · · · < in−2 ≤ n − 1, 1 ≤ j1 <

j2 < · · · < jn−2 ≤ n− 1. In particular, if |B| = 0, then (∗) equals 0. Here we have used

the notation

B(
i1 i2 . . . ip

j1 j2 . . . jp

) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi1j1 bi1j2 . . . bi1jp

bi2j1 bi2j2 . . . bi2jp

. . . . . .

. . . . . .

. . . . . .

bipj1 bipj2 . . . bipjp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for 1 ≤ p ≤ n.

We write {in+1, ..., iN} = {1, ..., N} \ {i1, .., in}, where in+1 < ... < iN . Write Ũ =

{z ∈ U : ∆(β1, ..., βn|i1, ..., in) 6= 0}. We then have the following:

Lemma 3.5. Fix j ∈ {in+1, ..., iN}. Let i ∈ {i1, .., in}. Write {i′1, ..., i′n−1} = {i1, ..., in}\

{i}. There exists a holomorphic function gji (zm) in Ũ which only depends on zm such
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that the following holds for z ∈ Ũ :∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1
∂z̃β1

...
∂|β

1|ψi′n−1

∂z̃β1
∂|β

1|ψj

∂z̃β1

... ... ... ...

... ... ... ...

∂|β
n|ψi′1
∂z̃βn

...
∂|β

n|ψi′n−1

∂z̃βn
∂|β

n|ψj
∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(z) = gji (zm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1
∂z̃β1

...
∂|β

1|ψi′n−1

∂z̃β1
∂|β

1|ψi
∂z̃β1

... ... ... ...

... ... ... ...

∂|β
n|ψi′1
∂z̃βn

...
∂|β

n|ψi′n−1

∂z̃βn
∂|β

n|ψi
∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(z),

(3.8)

or equivalently, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1
∂z̃β1

...
∂|β

1|ψi′n−1

∂z̃β1
∂|β

1|(ψj−gji (zm)ψi)

∂z̃β1

... ... ... ...

... ... ... ...

∂|β
n|ψi′1
∂z̃βn

...
∂|β

n|ψi′n−1

∂z̃βn
∂|β

n|(ψj−gji (zm)ψi)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ 0. (3.9)

Proof of Lemma 3.5: For simplicity of notation, we write ∂

∂z̃βi
for ∂|β

i|

∂z̃βi
, and for µ = i

or j, write the matrix

Vµ :=



∂ψi′1
∂z̃β1

...
∂ψi′n−1

∂z̃β1
∂ψµ

∂z̃β1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn

...
∂ψi′n−1

∂z̃βn
∂ψµ
∂z̃βn


=


v1
µ

...

vnµ

 ,

where v1
µ, · · · ,vnµ are the row vectors of Vµ. To prove (3.8), one just needs to show that,

for each 1 ≤ ν ≤ m− 1,

∂

∂zν

det(Vj)

det(Vi)
≡ 0 in Ũ . (3.10)

Indeed, by the quotient rule, the numerator of the left-hand side of (3.10) equals to

det

 det(Vi) det(Vj)

∂
∂zν

det(Vi)
∂
∂zν

det(Vj)



= det



det(Vi) det(Vj)

det



∂
∂zν

v1
i

v2
i

...

vni


det



∂
∂zν

v1
j

v2
j

...

vnj




+ · · ·+ det



det(Vi) det(Vj)

det



v1
i

...

vn−1
i

∂
∂zν

vni


det



v1
j

...

vn−1
j

∂
∂zν

vnj




.
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By (3.7) and Lemma 3.4, each term on the right-hand side of the equation above equals

0. For instance, the last term above equals to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β

1 ...
∂ψi′n−1

∂z̃β
1

∂ψi
∂z̃β

1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn

...
∂ψi′n−1

∂z̃βn
∂ψi
∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β

1 ...
∂ψi′n−1

∂z̃β
1

∂ψj

∂z̃β
1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn

...
∂ψi′n−1

∂z̃βn
∂ψj
∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1

...
∂ψi′n−1

∂z̃β1
∂ψi
∂z̃β1

... ... ... ...
∂ψi′1
∂z̃βn−1 ...

∂ψi′n−1

∂z̃βn−1
∂ψi

∂z̃βn−1

∂
∂zν

(
∂ψi′1
∂z̃βn

) ... ∂
∂zν

(
∂ψi′n−1

∂z̃βn
) ∂

∂zν
( ∂ψi
∂z̃βn

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1

...
∂ψi′n−1

∂z̃β1
∂ψj

∂z̃β1

... ... ... ...
∂ψi′1
∂z̃βn−1 ...

∂ψi′n−1

∂z̃βn−1

∂ψj

∂z̃βn−1

∂
∂zν

(
∂ψi′1
∂z̃βn

) ... ∂
∂zν

(
∂ψi′n−1

∂z̃βn
) ∂

∂zν
(
∂ψj
∂z̃βn

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.11)

It is a multiple of the following determinant (by Lemma 3.4):∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1

...
∂ψi′n−1

∂z̃β1
∂ψi
∂z̃β1

∂ψj

∂z̃β1

... ... ... ... ...
∂ψi′1
∂z̃βn

...
∂ψi′n−1

∂z̃βn
∂ψi
∂Z̃βn

∂ψj
∂z̃βn

∂ψi′1
∂z̃βn+1 ...

∂ψi′n−1

∂z̃βn+1
∂ψi

∂z̃βn+1

∂ψj

∂z̃βn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.12)

where ∂

∂z̃βn+1 = ∂
∂zν

( ∂
∂z̃βn

), which is identically zero by (3.7). This establishes Lemma

3.5.

The extendability of gji (zm) will be needed for our later argument, which is proved

in the following:

Lemma 3.6. For any i, j as above, the holomorphic function gji (zm) can be extended

holomorphically to a neighborhood of 0 in the zm−plane.

Proof of Lemma 3.6: First, gji is defined on the projection πm(Ũ) of Ũ , where πm is

the natural projection of (z1, ..., zm) to its last component zm. If 0 ∈ πm(Ũ), the claim

follows trivially. Now assume that 0 /∈ πm(Ũ). If we write s = s(β1, ..., βn|i1, ..., in), by
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its definition, then there exists (a1, ..., am−1) ∈ Cm−1 close to 0, such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1
∂z̃β1

...
∂|β

1|ψi′n−1

∂z̃β1
∂|β

1|ψi
∂z̃β1

... ... ... ...

... ... ... ...

∂|β
n|ψi′1
∂z̃βn

...
∂|β

n|ψi′n−1

∂z̃βn
∂|β

n|ψi
∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(a1, ..., am−1, zm) = czsm + o(|zm|s), c 6= 0. (3.13)

Then there exists r > 0 small enough such that for any 0 < |zm| < r, (a1, ..., am−1, zm) ∈

Ũ . That is, at any of such points, equation (3.13) is not zero.

We now substitute (a1, ..., am−1, zm), 0 < |zm| < r, into the equation (3.8), and

compare the vanishing order as zm → 0:

c1z
s′
m + o(|zm|s

′
) = gji (zm)(czsm + o(|zm|s)), c 6= 0. (3.14)

for some s′ ≥ 0. Note that 0 ≤ s ≤ s′ by the definition of s and the choice of

(β1, ..., βn|i1, ..., in). The holomorphic extendability across 0 of gji (zm) then follows eas-

ily.

We next make the following observation:

Claim 3.7. For each fixed j ∈ {in+1, ..., iN} and any i′1 < ... < i′n−1 with {i′1, ..., i′n−1} ⊂

{i1, ..., in}, we have:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1
∂z̃β1

...
∂|β

1|ψi′n−1

∂z̃β1
∂|β

1|(ψj−
∑n
k=1 g

j
ik
ψik )

∂z̃β1

... ... ... ...

... ... ... ...

∂|β
n|ψi′1
∂z̃βn

...
∂|β

n|ψi′n−1

∂z̃βn
∂|β

n|(ψj−
∑n
k=1 g

j
ik
ψik )

∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(z) ≡ 0,∀z ∈ Ũ . (3.15)

Proof of Claim 3.7: Note that for each i′l, 1 ≤ l ≤ n−1, the following trivially holds:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1
∂z̃β1

...
∂|β

1|ψi′n−1

∂z̃β1

∂|β
1|(gj

i′
l
ψi′
l
)

∂z̃β1

... ... ... ...

... ... ... ...

∂|β
n|ψi′1
∂z̃βn

...
∂|β

n|ψi′n−1

∂z̃βn

∂|β
n|(gj

i′
l
ψi′
l
)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(z) ≡ 0, (3.16)

for the last column in the matrix is a multiple of one of the first (n− 1) columns. Then

(3.15) is an immediate consequence of (3.9) and (3.16).
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Lemma 3.8. For each fixed j ∈ {in+1, ..., iN}, we have ψj(z)−
∑n

k=1 g
j
ik

(zm)ψik(z) ≡ 0

for any z ∈ Ũ , and thus it holds also for all z ∈ U.

Proof of Lemma 3.8: This can be concluded easily from the following Lemma 3.9

and Claim 3.7. Here one needs to use the fact that β1 = (0, ..., 0).

Lemma 3.9. ( [BX], Lemma 4.7) Let b1, · · · ,bn and a be n-dimensional column vec-

tors with elements in C, and let B = (b1, · · · ,bn) denote the n × n matrix. Assume

that detB 6= 0 and det(bi1 ,bi2 , · · · ,bin−1 ,a) = 0 for any 1 ≤ i1 < i2 < · · · < in−1 ≤ n.

Then a = 0.

Theorem 3.3 now follows easily from Lemma 3.8.

If we further assume that ψi(z),m + 1 ≤ i ≤ N, vanishes at least to the second

order, then we have the following, which plays a crucial role in our proof of Theorem

1.1.

Theorem 3.10. Let ψ = (ψ1, ..., ψm, ψm+1, ..., ψN ) be a holomorphic map from a neigh-

borhood of 0 ∈ Cm into CN with ψ(0) = 0. Assume that (ψ1, ..., ψm) is a biholomorphic

map from a neighborhood of 0 ∈ Cm into a neighborhood of 0 ∈ CN . Assume that

ψj(z) = O(|z|2) for m+ 1 ≤ j ≤ N. Suppose that rankN−m+1(ψ) < N. Then there exist

am+1, ..., aN ∈ C that are not all zero such that

N∑
i=m+1

ajψj(z1, ..., zm−1, 0) ≡ 0, (3.17)

for all (z1, ..., zm−1) near 0.

Proof of Theorem 3.10: We first have the following:

Claim 3.11. For each 1 ≤ i ≤ m, gi(0) = 0.

Proof of Claim 3.11: Suppose not. Write c := (g1(0), ..., gm(0)) 6= 0. Then (g1(zm), ..., gm(zm))

= c +O(|zm|). The fact that ψi(z) = O(|z|2), i ≥ m+ 1, implies

m∑
i=1

gi(zm)ψi(z) = O(|z|2). (3.18)
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Notice that (ψ1, ..., ψm) is of full rank at 0. That is∣∣∣∣∣∣∣∣∣∣
∂ψ1

∂z1
... ∂ψm

∂z1

... ... ...

∂ψ1

∂zm
... ∂ψm

∂zm

∣∣∣∣∣∣∣∣∣∣
(0) 6= 0.

Hence 
∂ψ1

∂z1
(0) ... ∂ψm

∂z1
(0)

... ... ...

∂ψ1

∂zm
(0) ... ∂ψm

∂zm
(0)

 ct 6= 0. (3.19)

This is a contradiction to (3.18).

Finally, letting zm = 0 in equation (3.3), we obtain (3.17). Since

(g1(0), ..., gm(0)) = 0, (gm+1(0), ..., gN (0)) 6= 0.

This establishes Theorem 3.10.
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Chapter 4

Proof of the main theorem assuming three extra

propositions

Let M ⊂ CPN be an irreducible Hermitian symmetric space of compact type, which has

been canonically (and isometrically) embedded in the complex projective space through

the way described in § 2. In this section, we write n as the complex dimension of M.

We also have on M an affine open piece A that is biholomorphically equivalent to the

complex Euclidean space of the same dimension, such that M \A is a codimension one

complex subvariety of M . We identify the coordinates of A by the parametrization

map with z = (z1, ..., zn) ∈ Cn through what is described in § 2, which we wrote as

[1, ψ1, ..., ψN ], where ψ1, ..., ψN are polynomial maps in (z1, ..., zn) with ψj = κjzj , where

κj = 1 or
√

2, for j = 1, · · · , n. We also write F (ξ) for F (ξ) for ξ = (ξ1, ..., ξn) ∈ Cn. We

still use ρ(z, ξ) for the defining function of the Segre family of M restricted to A×A∗,

which will be canonically identified with Cn × Cn. Since the coefficients of ψ1, ..., ψN

are all real, ψ = ψ and A∗ = A. Hence, we have

ρ(z, ξ) = 1 +

N∑
i=1

ψi(z)ψi(ξ). (4.1)

Recall the standard metric ω of M on A is given by

ω = i∂∂log(ρ(z, z̄)). (4.2)

The volume form dµ = cnω
n associated to ω, by § 2, is now given in A by the multipli-

cation of V with the standard Euclidean volume form, where

V =
c

(ρ(z, z̄))λ
(4.3)

with c > 0 and λ a certain positive integer depending on M . For instance, λ = p + q

when X = G(p, q) [G]. Here cn is a certain positive constant depending only on n.

Recall the main theorem of this thesis:
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Theorem 4.1. Let A ⊂ M be as above equipped with the standard metric ω. Let

Fj , j = 1, ...,m, be a holomorphic map from U ⊂ A into M , where U is a connected

open neighborhood of A. Assume that F ∗j (dµ) 6≡ 0 for each j and assume that

dµ =
m∑
j=1

λjF
∗
j (dµ), (4.4)

for certain positive constants λj > 0 with j = 1, · · · ,m. Then for any j ∈ {1, 2, ...,m},

Fj extends to a holomorphic isometry of (M,ω).

For convenience of our discussions, we first fix some notations: In what follows, we

identify A with Cn having z = (z1, · · · , zn) as its coordinates. On U ⊂ A ⊂ M and

after shrinking U if needed, we write the holomorphic map Fj , for j = 1, ...,m, from

U → A = Cn, as follows:

Fj = (Fj,1, Fj,2, ..., Fj,n), j = 1, ...,m. (4.5)

Still write the holomorphic embedding from A into CPN as [1, ψ1, · · · , ψN ]. We define

Fj(z) = (Fj,1, ...,Fj,N ) = (ψ1(Fj), ψ2(Fj), ..., ψN (Fj)) for j = 1, ...,m. Finally, all Segre

varieties and Segre families are restricted to A = Cn.

The main purpose of this chapter is to give a proof of Theorem 4.1, assuming the

following three propositions hold. These propositions will be separately established in

terms of the type of M in § 5, § 6 and § 7. This then completes the proof of our main

theorem.

Proposition (I): Write Li = ∂
∂zi
−

∂ρ
∂zi

(z,ξ)

∂ρ
∂zn

(z,ξ)

∂
∂zn

, 1 ≤ i ≤ n−1, which are holomorphic

vector fields (whenever defined) tangent to the Segre familyM of M ↪→ CPN restricted

to A × A∗ = Cn × Cn defined by ρ(z, ξ) = 0. Under the notations we set up above,

for any local biholomorphic map F = (f1, · · · , fn) : U → Cn with F (0) = 0, there are

z0 ∈ U, ξ0 ∈ Qz0 , β1, ..., βN , such that

∂ρ

∂zn
(z0, ξ0) 6= 0, Λ(β1, ..., βN )(z0, ξ0) :=

∣∣∣∣∣∣∣∣∣∣
Lβ1F1 ... Lβ1FN

... ... ...

LβNF1 ... LβNFN

∣∣∣∣∣∣∣∣∣∣
(z0, ξ0) 6= 0. (4.6)

Here βl = (kl1, ..., k
l
n−1), kl1, ..., k

l
n−1 are non-negative integers, for l = 1, 2, ..., N ; β1 =

(0, 0, ..., 0); Lβl = Lk
l
1

1 L
kl2
2 L

kl3
3 ...L

kln−1

n−1 ; F(z) = (F1, ...,FN ) = (ψ1(F ), ψ2(F ), ..., ψN (F )).
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Moreover, sl :=
∑n−1

i=1 k
l
i (l = 1, ..., N) is a non-negative integer bounded from above

by a universal constant depending only on (M,ω). Also, in what follows, when we like

to emphasize the dependence of Λ(β1, ..., βN ) on F , we also write it as ΛF (β1, ..., βN ).

Proposition (II): Suppose that ξ0 ∈ Cn with ξ0 6= (0, 0, ..., 0). Then for a generic

smooth point z0 on the Segre variety Qξ0 and a small neighborhood U 3 z0, there is a

z1 ∈ U ∩ Qξ0 such that Qz0 and Qz1 both are smooth at ξ0 and intersect transver-

sally at ξ0, too. Moreover, we can find a biholomorphic parametrization near ξ0:

(ξ1, ξ2, ..., ξn) = G(ξ̃1, ξ̃2, ..., ξ̃n) with (ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ...× Un ⊂ Cn, where U1

and U2 are small neighborhoods of 1 ∈ C, and Uj for j ≥ 3 are small neighborhoods of

0 ∈ C such that (i). G(1, 1, 0, · · · , 0) = ξ0, (ii). G({ξ̃1 = 1}×U2×...×Un) ⊂ Qz0 ,G(U1×

{ξ̃2 = 1} ×U3 × ...×Un) ⊂ Qz1 , and (iii). G({ξ̃1 = t} ×U2 × ...×Un) or G(U1 × {ξ̃2 =

s} × U3 × ... × Un), s ∈ U1, t ∈ U2 is an open piece of a certain Segre variety for each

fixed t and s. Moreover G consists of algebraic functions with total degree bounded by

a constant depending only on the manifold M .

Proposition (III): For any ξ 6= 0(z 6= 0, respectively) ∈ Cn, ρ(z, ξ) is an irreducible

polynomial in z (and in ξ, respectively). (In particular, Q∗ξ and Qz are irreducible.)

Moreover, if U is a connected open set in Cn, then the Segre family M restricted to

U×Cn is an irreducible complex subvariety and thus its regular points form a connected

complex submanifold. In particular,M is an irreducible complex subvariety of Cn×Cn.

The rest of this chapter is divided into several sections. In § 4.2, we provide a proof

of the well-known fact of the modified version of the classical Hurwitz Theorem, which

is important for our use in the later sections. In § 4.3, we show the algebraicity and

rationality of Fj0 . § 4.4 is devoted to proving that Fj0 extends to a birational map

from M to itself and extends to a holomorphic isometry, which can be used, through

an induction argument, to give a proof of Theorem 4.1 assuming Propositions (I)-(III).

4.1 Modified Hurwitz Theorem

Before stating the modified version of a classical result of Hurwitz. We first give the

following definition:
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Definition 4.2. Suppose F is an algebraic function in ξ ∈ Cn. The total degree of F

is defined to be the total degree of its minimum polynomial. Namely, let P (ξ;X) be an

irreducible minimum polynomial of F , the total degree of F is defined as the degree of

P (ξ;X) as a polynomial in (ξ,X).

We next state some simple facts about algebraic functions and give a short proof

for the readers’ convenience.

Lemma 4.3. Suppose φ1, φ2 are algebraic functions defined in variables ξ ∈ U ⊂ Cn

with total degree bounded by N . Then φ1 ± φ2, φ1φ2, 1/φ1 (if φ1 6≡ 0) are algebraic

functions and their degrees are bounded above by a constant depending only on N and

n.

Proof : Suppose f1(ξ,X) =
∑n1

i=0 ai(ξ)X
n1−i and f1(ξ, φ1) ≡ 0 where deg f1 < N

and a0(ξ) 6≡ 0. View f1 as a polynomial of X and denote n1 solutions of f1 by φ1
1 =

φ1, φ
2
1, φ

3
1, · · · , φ

n1
1 . Also assume f2(ξ,X) =

∑n2
j=0 bi(ξ)X

n2−j and f2(ξ, φ2) ≡ 0 where

deg f2 < N and b0(ξ) 6≡ 0. Denote n2 solutions of f2 by φ1
2 = φ2, φ

2
2, φ

3
2, ..., φ

n2
2 . Notice

that n1 < N and n2 < N.

Now define functions in variables ξ and X as follows:

f±(ξ,X) = a0(ξ)n2b0(ξ)n1

n1∏
i=1

n2∏
j=1

(X − φi1 ± φ
j
2)

= a0(ξ)n2b0(ξ)n1

n1n2∑
k=0

Xn1n2−kθk(a0, b0, φ
1
1, φ

2
1, ..., φ

n1
1 , φ1

2, φ
2
2, ..., φ

n2
2 ).

Notice that θk is a symmetric polynomial with respect to φi1 and φj2 separately and

hence a polynomial in terms of a1(ξ)
a0(ξ) ,

a2(ξ)
a0(ξ) , · · · ,

an1 (ξ)

a0(ξ) ,
b1(ξ)
b0(ξ) , · · · ,

bn2 (ξ)

b0(ξ) . After multiplying

a0(ξ)n2b0(ξ)n1 , f±(ξ,X) is a polynomials in a0(ξ), a1(ξ), · · · , an1(ξ), b0(ξ), b1(ξ), · · · , bn2(ξ)

and X. Since φ1 ± φ2 are annihilated by f±(ξ,X), they are algebraic functions with

algebraic total degrees bounded by the degrees of f±(ξ,X). By the explicit construction

above it is clear that the degrees of f± depend only on N and n.

For φ1φ2 we construct the following function:

f(ξ,X) = a0(ξ)n2b0(ξ)n1

n1∏
i=1

n2∏
j=1

(X − φi1φ
j
2) = a0(ξ)n2b0(ξ)n1

n1n2∑
k=0

θk(ξ)X
n1n2−k,
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which is an annihilator of φ1φ2. By the same argument we know that f(ξ,X) is a

polynomial in terms of a0(ξ), a1(ξ), · · · , an1(ξ), b0(ξ), b1(ξ), · · · , bn2(ξ) and X. Hence

the total degree of φ1φ2 is bounded by the degree of f(ξ,X), which depends only on N

and n.

Finally denote an annihilator for φ1 6≡ 0 by f(ξ,X) =
∑n1

i=0 ai(ξ)X
n1−i, where

1 ≤ n1 ≤ N and an1(ξ) 6≡ 0. Then the polynomial F (ξ,X) =
∑n1

i=0 ai(ξ)X
i annihilates

1
φ1

and hence 1
φ1

is an algebraic function with degree bounded by N and n.

Lemma 4.4. Suppose φ1(z1, ..., zn) is an algebraic function of total degree bounded by

N , and suppose that ψ1(ξ1, ..., ξm), ..., ψn(ξ1, ..., ξm) are algebraic functions with total

degree bounded by N as well. Let

A0 = (ξ0
1 , ξ

0
2 , ..., ξ

0
m) ∈ Cm,

where ψ1, ..., ψn are holomorphic functions in a neighborhood of A0 and let φ1 be a holo-

morphic function in a neighborhood U ⊂ Cn of (ψ1(A0), ψ2(A0), ..., ψm(A0)). Then the

composition Φ(ξ1, ..., ξm) = φ1(ψ1(ξ1, ..., ξm), ψ2(ξ1, ..., ξm), ψ3(ξ1, ..., ξm), ..., ψn(ξ1, ..., ξm))

is an algebraic function with total degree bounded by a constant C(N,n,m) depending

only on (N, n, m).

Proof : Since φ1 is an algebraic function with total degree bounded by N , the

minimal polynomial of it has the following form:

f(z1, ..., zn, X) =
∑

I,K,|I|+|K|≤N

aIz
i1
1 · · · z

in
n X

K ,

which annihilates φ1. For the algebraic function ψ1 there is a minimal polynomial:

F1(ξ1, ..., ξm, X) =
∑

J,K,|J |+|K|≤N

b1JKξ
j1
1 · · · ξ

jm
m XK ,

which annihilates ψ1. Denote all the solutions of F1 by ψ1
1 = ψ1, ψ

2
1, ..., ψ

l1
1 , where

l1 ≤ N. In a similar way, we denote the minimal polynomials for ψ2, ..., ψm respectively

by:

F2(ξ1, ..., ξm, X) =
∑

J,K,|J |+|K|≤N

b2JKξ
j1
1 · · · ξ

jm
m XK with solutions ψ1

2 = ψ2, ψ
2
2, ..., ψ

l2
2 ,
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F3(ξ1, ..., ξm, X) =
∑

J,K,|J |+|K|≤N

b3JKξ
j1
1 · · · ξ

jm
m XK with solutions ψ1

3 = ψ3, ψ
2
3, ..., ψ

l3
3 ,

...

and Fn(ξ1, ..., ξm, X) =
∑

J,K,|J |+|K|≤N

bnJKξ
j1
1 ···ξ

jm
m XK with solutions ψ1

n = ψn, ψ
2
n, ..., ψ

ln
n .

Plugging z1 = ψ1(ξ1, ..., ξm), ..., zn = ψn(ξ1, ..., ξm) into φ1(z1, ..., zn), we have

0 ≡ f(ψ1(ξ1, ..., ξm), ..., ψn(ξ1, ..., ξn), φ1(ψ1(ξ1, ..., ξm), ψ2(ξ1, ..., ξm), ..., ψn(ξ1, ..., ξm)))

=
∑

I,K,|I|+|K|≤N

aIψ
i1
1 · · · ψ

in
n φ

K
1 .

Construct a function as follows:

F =

m∏
v=1

(bv00)l1l2···lnN
l1∏

v1=1

l2∏
v2=1

· · ·
ln∏

vn=1

∑
I,K,|I|+|K|≤N

aI(ψ
v1
1 )i1(ψv22 )i2 · · · (ψvnn )inXK ,

which annihilates φ1 and is a symmetric polynomial with respect to {ψv1}
l1
v=1, ..., {ψvn}

ln
v=1

separately. It is easy to see that F is actually a polynomial in terms of {bvJK(ξ)}v,J,K

and X. Since the degrees of bvJK
′s are bounded by N and l1, ..., ln are bounded above

by N , the degree of F is bounded by a constant C(N,n,m) depending only on N,n

and m.

Let us recall the classical Hurwitz Theorem:

Theorem 4.5. Suppose G is a holomorphic function defined on a neighborhood U ×

V ×W ⊂ C×C×Cm in variables (s, t, ξ1, ..., ξm). (We denote it by (s, t, ξ) for short.)

Suppose G is a rational function of t, ξ1, ..., ξm for arbitray s ∈ U with the degree less

then N; and G is a rational function of s, ξ1, .., ξm for arbitray t ∈ V with the degree

less then N. Then G is a rational function on C× C× Cm of (s, t, ξ).

We would like to present a short proof of Hurwitz Theorem in the following, since

it also motivates our proof of the modified Hurwitz Theorem.

Proof : (following Bochner-Martin [BM])

If G is identically zero, we are done. Otherwise G is not identically zero and we can

choose (s0, t0, ξ0) ∈ U × V ×W such that G(s0, t0, ξ0) 6= 0. Shrinking the domain if

necessary, we assume that G(s0, t0, ξ0) 6= 0 holds everywhere in the domain. Without

loss of generality, we assume G 6= 0 on U × V ×W.
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Since G is a rational function of t, ξ1, ..., ξm for arbitrary s ∈ U with the degree less

then N , we write G as G(s, t, ξ) =
∑
|I|+J<N CIJ (s)ξI tJ∑
|I|+J<N BIJ (s)ξI tJ

for arbitray s ∈ U. Here ξI is

a compact notation for ξi11 ξ
i2
2 ...ξ

im
m ; I is a notation for (i1, ..., in); |I| is a notation for

i1 + ...+ im; and J is a natural number.

Moreover we view G(s, t, ξ) as a rational function of t,

G(s, t, ξ) =

∑
J<N{

∑
|I|<N−|J |CIJ(s)ξI}tJ∑

J<N{
∑
|I|<N−|J |BIJ(s)ξI}tJ

, (A1)

for arbitrary s ∈ U, ξ ∈W.

Since G 6= 0 we have
∑

J{|
∑
|I|<N−J BI,J(s)ξI |+ |

∑
|I|<N−J CI,J(s)ξI |} > 0 for all

s ∈ U and ξ ∈W. Rewriting (A1), we get

∑
|J |<N

{
∑

|I|<N−|J |

BIJ(s)ξI}(tJG(s, t, ξ))−
∑
|J |<N

{
∑

|I|<N−|J |

CIJ(s)ξI}tJ = 0. (A2)

For convenience, we put {tJG(s, t, ξ)}J and {tJ}J together and denote them by

{φ1, ..., φM}. In a similar way, we put {
∑
|I|<N−|J |BIJ(s)ξI}J and {

∑
|I|<N−|J |CIJ(s)ξI}J

together and denote them by {ψ1, ..., ψM}.

Choosing any (M−1) points t = t1, ..., tM−1 in V , together with t = t, and plugging

them into A2, we have equations in the the following matrix form:

φ1(s, t1, ξ) φ2(s, t1, ξ) φ3(s, t1, ξ) ... φM (s, t1, ξ)

... ... ... ... ...

φ1(s, tM−1, ξ) φ2(s, tM−1, ξ) φ3(s, tM−1, ξ) ... φM (s, tM−1, ξ)

φ1(s, t, ξ) φ2(s, t, ξ) φ3(s, t, ξ) ... φM (s, t, ξ)





ψ1(s, ξ)

ψ2(s, ξ)

...

ψM (s, ξ)


=0.

Since (ψ1(s, ξ), ...ψM (s, ξ)) is a non zero vector for arbitrary s ∈ U, ξ ∈W , we have

det



φ1(s, t1, ξ) ... φM (s, t1, ξ)

... ... ...

φ1(s, tM−1, ξ) ... φM (s, tM−1, ξ)

φ1(s, t, ξ) ... φM (s, t, ξ)


≡ 0 .

By Laplacian expansion of the determinant along the last row, we have

M∑
i=1

Φi(t1, ..., tM−1, ξ, s)φi(s, t, ξ) ≡ 0, (B1)
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where {Φi} are the corresponding (M − 1)× (M − 1) minors of the M ×M matrix.

If for certain t1, t2, ..., tM−1 ∈ V at least one of {Φi} is not identically zero, when

it is viewed as a function of variables ξ and s, we claim that there exists an index

i such that Φi is not identically zero and the corresponding φi(s, t, ξ) takes the form

φi(s, t, ξ) = tJG(s, t, ξ) for certain J .

Proof of the claim: If it is not the case, we can reduce Equality B1 to the following

equality:

0 ≡
M∑
j=1

Φj(t1, ..., tM−1, ξ, s)φj(s, t, ξ) =
M ′∑
j=1

Φj(t1, ..., tM−1, ξ, s)t
J . (B2)

Notice that at least one of {Φj} appeared on the right side of B2 is not identically

zero as a function of ξ and s. One the other hand, we should have all Φj ≡ 0, if we

view the right side of B2 as a polynomial of t. This is a contradiction.

Therefore if for certain t1, t2, ..., tM−1 ∈ V at least one of {Φi} is not identically

zero, we can rewrite Equality B1 as follows:

(
M ′∑
i=1

Φi(t1, ..., tM−1, ξ, s)t
J)G(s, t, ξ) +

M∑
i=M ′+1

Φj(t1, ..., tM−1, ξ, s)t
J ≡ 0,

where the coefficient of G is not identically zero. Notice that for fixed t = t1, ..., tM−1,

G(s, t, ξ) is a rational function of s and ξ. Then Φi(t1, ..., tM−1, ξ, s) are all rational

functions of s and ξ, and G is a rational function of s, t and ξ. Hence we proved

Theorem 4.5 in this case.

Now if all Φi(t1, ..., tM−1, s, ξ) are identically zero for any t1, ..., tM−1 ∈ V , we have

the consequence that each (M − 1) × (M − 1) minor of the determinant is identically

zero for any t1, ..., tM−1, s and ξ. On the other hand, we know that the 1 × 1 minors

are not identically zero. By induction we can reduce it to the previous case by finding

the l× l minor which is identically zero but the (l− 1)× (l− 1) minors of it are not.

We now state the following modified version of the classical Hurwitz theorem with

a controlled total degree [BM].

Theorem 4.6. Let F̃ (s, t, ξ1, ξ2, ..., ξm) be holomorphic over U × V × W ⊂ Cm+2.

Suppose that for any fixed s ∈ U ⊂ C, F̃ is an algebraic function in (t, ξ1, ..., ξm) with
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its total degree uniformly bounded by N; and for any fixed t ∈ V ⊂ C, F̃ is an algebraic

function of (s, ξ1, ..., ξm) with its total degree uniformly bounded by N . Then F̃ is an

algebraic function with total degree bounded by a constant depending only on (m,N).

Proof : We can assume that F̃ 6≡ 0 and shrink the domain such that F̃ 6= 0

everywhere in the domain. Without loss of generality we assume F̃ 6= 0 in U × V ×W .

Notice that for each fixed t ∈ V we have functions {CIJK(t)} such that

∑
I+|J |+K≤N

CIJK(t)sIξJ(F̃ (s, t, ξ))K = 0. (C1)

Since F̃ 6= 0, it is easy to see that
∑
|CIJK(t)ξJ | > 0.

As in the proof of Theorem 4.5, we denote {sI F̃ (s, t, ξ)K}I,K by {ψi(s, t, ξ)}Mi=1

and {CIJK(t)ξJ} by {φ1(t, ξ), ..., φM (t, ξ)}. Notice that M is an integer bounded by a

constant depending on N and m. By taking any s1, ..., sM−1 ∈ U and plugging them

into Equality C1, we have

ψ1(s1, t, ξ) ψ2(s1, t, ξ) ... ψM (s1, t, ξ)

ψ1(s2, t, ξ) ψ2(s2, t, ξ) ... ψM (s2, t, ξ)

... ... ... ...

ψ1(sM−1, t, ξ) ψ2(sM−1, t, ξ) ... ψM (sM−1, t, ξ)

ψ1(s, t, ξ) ψ2(s, t, ξ) ... ψM (s, t, ξ)





φ1(t, ξ)

φ2(t, ξ)

...

φM−1(t, ξ)

φM (t, ξ)


= 0.

Noticing that (φ1(t, ξ), ..., φM (t, ξ))t is a non zero vector, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(s1, t, ξ) ψ2(s1, t, ξ) ... ψM (s1, t, ξ)

ψ1(s2, t, ξ) ψ2(s2, t, ξ) ... ψM (s2, t, ξ)

... ... ... ...

ψ1(s(M−1), t, ξ) ψ2(s(M−1), t, ξ) ... ψM (s(M−1), t, ξ)

ψ1(s, t, ξ) ψ2(s, t, ξ) ... ψM (s, t, ξ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ 0,

where s1, ..., sM−1 are arbitrary numbers in U . By the Laplacian expansion of the

determinant along the last row, we have

M∑
i=1

Ψi(s1, s2, ..., sM−1, t, ξ)ψi(s, t, ξ) ≡ 0,
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where Ψi(s1, s2, ..., sM−1, t, ξ) are the (M − 1) × (M − 1) minors. Since for any fixed

s1, ..., sM−1 ∈ U , ψi(sj , t, ξ) is an algebraic function of t and ξ with the degree bounded

by N . By Lemma 4.3 and Lemma 4.4, we conclude that Ψi is an algebraic function of

t and ξ with degree bounded by a constant depending only on N and m.

Suppose that for certain s1, s2, ..., sM−1 ∈ U at least one of Ψi is not identically zero

as a function of t, ξ. Then by a similar argument as in the proof of the classical Hurwitz

Theorem, we will conclude that at least one of Ψi(s1, s2, ..., sM−1, t, ξ) is not identical-

ly zero and the corresponding ψi(s, t, ξ) takes the form ψi(s, t, ξ) = sI F̃ (s, t, ξ)K|K|≥1.

Because otherwise we get a nontrivial relation

M ′∑
i=1

Ψi(s1, s2, ..., sM−1, t, ξ)s
I = 0,

which is impossible. Hence we have

M∑
i=1

Ψi(s1, s2, ..., sM−1, t, ξ)ψi(s, t, ξ) =
∑

|I|+|K|≤N

fIK(s1, s2, ..., sM−1, t, ξ)s
I F̃ (s, t, ξ)K = 0.

Here fIK(s1, s2, ..., sM−1, t, ξ) is another notation for the quantity Ψi(s1, s2, ...sM−1, t, ξ).

Moreover notice that fIK(s1, s2, ..., sM−1, t, ξ) is an algebraic function with the degree

bounded above by a constant depending only on N and m and at least one of fIK with

|K| ≥ 1 is not identically zero as a function of t and ξ.

Since fIK is an algebraic function with bounded total degree, we can find a minimal

polynomials with degree bounded by a constant L depending only on N and m as

follows:

GIK(t, ξ, Y ) =
∑
Q≤L

AIK,Q(t, ξ)Y Q , GIK(t, ξ, fIK(t, ξ)) ≡ 0 and degreeG < L.

Moreover we denote all the solutions of GIK = 0 by f1
IK = fIK , f

2
IK , ..., f

nIK
IK and define

F(s, t, ξ,X) =

nIK∏
iIK=1
|I|+K≤N

· · ·
nI′K′∏
iI′K′=1
|I′|+K′≤N

∑
|I|+K≤N

f iIKIK (t, ξ)sIXK .

Notice that F(s, t, F̃ (s, t, ξ)) ≡ 0. Since coefficients of X in F are symmetric polyno-

mials of {f iIK}
nIK
i=1 for each pair IK, F is a polynomial of s, X and

AIK,Q
AIK,0

for all IK

and Q. Multiplying F by certain power P of AIK,0, we conclude that F × APIK,0 is a
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polynomial of s, t, ξ and X. Moreover noticing that P is bounded above by a constant

depending on N and m, we complete the proof of the theorem.

Next we prove the algebraic inverse function theorem with a controlled total degree,

which will be use in Chapter 6.

Lemma 4.7. Suppose P1(z1, z2, ..., zm, ξ1, ξ2, ..., ξn), ..., Pn(z1, z2, ..., zm, ξ1, ξ2, ..., ξn) are

algebraic functions with total degrees bounded from above by N which are holomorphic

in a neighborhood U × V ⊂ Cm × Cn of A0 = (z0
1 , ..., z

0
m, ξ

0
1 , ..., ξ

0
n). Suppose that

P1(z1, z2, ..., zm, ξ1, ..., ξn) = 0

P2(z1, z2, ..., zm, ξ1, ..., ξn) = 0

...

Pn(z1, z2, ..., zm, ξ1, ..., ξn) = 0

has a solution at A0 = (z0, ξ0) = (z0
1 , ..., z

0
m, ξ

0
1 , ..., ξ

0
n) and ∂(P1,P2,...,Pn)

∂(ξ1,ξ2,...,ξn) (z0
1 , z

0
2 , ..., z

0
m, ξ

0
1 , ..., ξ

0
n) 6=

0. Then we can solve ξ1 = φ1(z1, z2, ..., zm),ξ2 = φ2(z1, z2, ..., zm),...,ξn = φn(z1, z2, ..., zm)

with φj(z
0) = ξ0 in a neighborhood of z0 ∈ Ũ ⊂ U ⊂ Cm, where φ1, ..., φn are algebraic

functions with total degree bounded by a constant only depending on N,n and m.

Proof : We will prove it by induction on n. If n = 1, we have P1(z1, ..., zm, ξ1) = 0,

∂P1
∂ξ1
6= 0 and P1(z0

1 , ..., z
0
m, ξ

0
1) = 0. By holomorphic implicit function theorem, we get a

holomorphic function ξ1 = φ1(z1, ..., zm) such that P1(z1, ..., zm, φ1(z1, ..., zm)) ≡ 0 in a

certain open neighborhood of (z0, ξ0). Notice that P1 is an algebraic function defined

on z1, ..., zm ∈ U ⊂ Cm and ξ1 ∈ V ⊂ C with total degree bounded by N . Take a

minimal polynomial of P1 as follows:

F1(z1, ..., zm, ξ1, X) =
∑

I,j,k,|I|+j+k≤N

AIjkz
Iξj1X

k.

Since F1 is minimal, its coefficient of the zero-th order term with respect toX is nonzero.

Write this coefficient as f1(z, ξ1) =
∑

I,j,|I|+j≤N AIj0z
Iξj . Plugging ξ1 = φ1(z) into

F1(z, ξ1, P1(z, ξ1)) ≡ 0, we get

0 ≡ F1(z, φ1(z), P1(z, φ1(z))) =
∑

I,j,k,|I|+j+k≤N

AIjkz
Iφ1(z)jP (z, φ1(z))k = f1(z, φ1(z)).
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Hence f1 is an annihilator of φ1(z). Moreover it is easy to see that the total degree of

φ1 is bounded by N .

Suppose the theorem is true for n = 1, ..., k − 1, k ≥ 2, we proceed to prove

that it is true for n = k. Since ∂(P1,P2,...,Pk)
∂(ξ1,ξ2,...,ξk) (z0

1 , ..., z
0
m, ξ

0
1 , ..., ξ

0
k) 6= 0, we can choose

i, j ∈ {1, 2, ..., k} such that ∂Pi
∂ξj

(z0
1 , ..., z

0
m, ξ

0
1 , ..., ξ

0
k) 6= 0. Without loss of generality we

can assume ∂Pk
∂ξk

(z0
1 , ..., z

0
m, ξ

0
1 , ..., ξ

0
k) 6= 0. By implicit function theorem for holomorphic

functions, we get a holomorphic function ξk = φk(z1, z2, ..., zm, ξ1, ..., ξk−1) such that

Pk(z1, z2, ..., zm, ξ1, ..., ξk−1, φk(z1, z2, ..., zm, ξ1, ..., ξk−1)) ≡ 0 in a certain open neigh-

borhood.

We now proceed to prove that φk is an algebraic function of (z1, z2, ..., zm, ξ1, ..., ξk−1)

with total degree bounded by N by a similar argument used above.

Noticing that Pk(z1, ..., zm, ξ1, ..., ξk) is an algebraic function with total degree bound-

ed by N , we take a minimal polynomial of Pk as follows:

Fk(z1, ..., zm, ξ1, ..., ξk, X) =
∑

I,J,K,|I|+|J |+K≤N

AIJKz
IξJXK .

Since F is minimal, its coefficient of the zero-th order term is nonzero. Write the

zero-th order term as fn(z1, ..., zm, ξ1, ..., ξk) =
∑

I,J,|I|+|J |≤N AIJ0z
IξJ . Plugging ξk =

φk(z1, ..., zm, ξ1, ..., ξk−1) into F , we get

0 ≡ F(z1, ..., zm, ξ1, ..., ξk−1, φk(z1, ..., zm, ξ1, ..., ξk−1), P (z1, ..., zm, ξ1, ..., ξk−1, φk(z1, ..., zm, ξ1, ..., ξk−1)))

=
∑

|I|+|J |+K≤N

AIJKz
Iξj11 · · · ξ

jk−1

k−1 φk(z1, ..., zm, ξ1, ..., ξk−1)jkPn(z1, z2, ..., zm, ξ1, ..., ξk−1, φk)
K

=
∑

I,J,|I|+|J |≤N

AIJ0z
Iξj11 · · · ξ

jk−1

k−1 φ
jk
k = fk(z1, ..., zk, ξ1, ...ξk−1, φk).

Therefore fk(z1, ..., zm, ξ1, ..., ξk−1, X) annihilates φk and its degree is bounded above

by N . As a direct consequence ξk is an algebraic function with total degree bounded

by N .
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Now substitute ξk = φn(z1, ..., zm, ξ1, ..., ξk−1) into the remaining equations

P̃1 = P1(z1, ..., zm, ξ1, ..., ξk−1, φk(z1, ..., zm, ξ1, ..., ξk−1)) = 0

P̃2 = P2(z1, ..., zm, ξ1, ..., ξk−1, φn(z1, ..., zm, ξ1, ..., ξk−1)) = 0

P̃3 = P3(z1, ..., zm, ξ1, ..., ξk−1, φn(z1, ..., zm, ξ1, ..., ξk−1)) = 0

...

P̃k−1 = Pk−1(z1, ..., zm, ξ1, ..., ξk−1, φk(z1, ..., zm, ξ1, ..., ξk−1)) = 0

.

By Lemma 4.3 and Lemma 4.4, it is easy to see that P̃1, ..., P̃n−1 have degrees bounded

by a constant C(N,n,m) depending only onN,n andm. Moreover Ã0 = (z0
1 , ..., z

0
m, ξ

0
1 , ..., ξ

0
k−1)

is a solution for the new system of equations. Computing the Jacobian
∂(P̃1,...,P̃k−1)
∂(ξ1,...,ξk−1) at

the point Ã0 = (z0
1 , ..., z

0
m, ξ

0
1 , ..., ξ

0
k−1), we have∣∣∣∣∣∣∣∣∣∣∣∣∣

∂P̃1
∂ξ1

∂P̃1
∂ξ2

... ∂P̃1
∂ξk−1

∂P̃2
∂ξ1

∂P̃2
∂ξ2

... ∂P̃2
∂ξk−1

... ... ... ...

∂P̃k−1

∂ξ1

∂P̃k−1

∂ξ2
...

∂P̃k−1

∂ξk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂P1
∂ξ1

+ ∂P1
∂ξk

∂φk
∂ξ1

∂P1
∂ξ2

+ ∂P1
∂ξk

∂φk
∂ξ2

... ∂P1
∂ξk−1

+ ∂P1
ξk

∂φk
∂ξk−1

∂P2
∂ξ1

+ ∂P2
∂ξk

∂φk
∂ξ1

∂P2
∂ξ2

+ ∂P2
∂ξk

∂φk
∂ξ2

... ∂P2
∂ξk−1

+ ∂P2
∂ξk−1

∂φk
∂ξk−1

... ... ... ...

∂Pk−1

∂ξ1
+

∂Pk−1

∂ξk

∂φk
∂ξ1

∂Pk−1

∂ξ2
+

∂Pk−1

∂ξk

∂φk
∂ξ2

...
∂Pk−1

∂ξk−1
+

∂Pk−1

∂ξk−1

∂φk
∂ξk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂P1
∂ξ1
− ∂P1

∂ξk

∂Pk
∂ξ1
∂Pk
∂ξk

∂P1
∂ξ2
− ∂P1

∂ξk

∂Pk
∂ξ2
∂Pk
∂ξk

... ∂P1
∂ξk−1

− ∂P1
ξk

∂Pk
∂ξk−1
∂Pk
∂ξk

∂P2
∂ξ1
− ∂P2

∂ξk

∂Pk
∂ξ1
∂Pk
∂ξk

∂P2
∂ξ2
− ∂P2

∂ξk

∂Pk
∂ξ2
∂Pk
∂ξk

... ∂P2
∂ξk−1

− ∂P2
∂ξk−1

∂Pk
∂ξk−1
∂Pk
∂ξk

... ... ... ...

∂Pk−1

∂ξ1
− ∂Pk−1

∂ξk

∂Pk
∂ξ1
∂Pk
∂ξk

∂Pk−1

∂ξ2
− ∂Pk−1

∂ξk

∂Pk
∂ξ2
∂Pk
∂ξk

...
∂Pk−1

∂ξk−1
− ∂Pk−1

∂ξk−1

∂Pk
∂ξk−1
∂Pk
∂ξk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1
∂Pk
∂ξk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂P1
∂ξ1

∂P1
∂ξ2

... ∂P1
∂ξk−1

∂P2
∂ξ1

∂P2
∂ξ2

... ∂P2
∂ξk−1

... ... ... ...

∂Pk−1

∂ξ1

∂Pk−1

∂ξ2
...

∂Pk−1

∂ξk−1

∂Pk
∂ξ1

∂Pk
∂ξ2

... ∂Pk
∂ξk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which is nonzero at Ã0. By induction, we complete the proof.

4.2 An algebraicity lemma

We use the notations we have set up so far. We now proceed to the proof Theorem 4.1

under the hypothesis that Propositions (I)-(III) hold.

Denote by Jf (z) the determinant of the complex Jacobian matrix of a holomorphic

map f : B → Cn, where B ⊂ Cn is an open subset and z = (z1, · · · , zn) ∈ B. For
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any holomorphic map g(ξ) from an open subset of Cn to Cm, where ξ ∈ Cn, we define

g(ξ) := g(ξ).

Now from (4.1)(4.2)(4.3)(4.4), we obtain

m∑
j=1

λj
|JFj (z)|2

(1 +
∑N

i=1 ψi(Fj(z))ψi(F j(z̄)))
λ

=
1

(1 +
∑N

i=1 ψi(z)ψi(z̄))
λ
, z = (z1, ..., zn) ∈ U.

(4.7)

Recall that Fj = (Fj,1, Fj,2, ..., Fj,n), j = 1, ..., n. Complexifying (4.7), we have

m∑
j=1

λj
JFj (z)JFj (ξ)

(1 +
∑N

i=1 ψi(Fj(z))ψi(F j(ξ)))
λ

=
1

(1 +
∑N

i=1 ψi(z)ψi(ξ))
λ
, (z, ξ) ∈ U×conj(U).

(4.8)

Here conj(U) =: {z : z ∈ U}. Using the transitive action of the holomorphic isometric

group of (M,ω) on M , we assume that 0 ∈ U , Fj(0) = 0 ∈ A and JFj (0) 6= 0 for each

j. Also, letting U = Br(0) for a sufficiently small r > 0, we have conj(U) = U . Hence,

we will assume that (4.8) holds for (z, ξ) ∈ U × U .

We will need the following algebraicity lemma.

Lemma 4.8. Let F ′js be as in Theorem 4.1. Then there exist Nash algebraic maps

F̂1(z,X1, ..., Xm), ..., F̂m(z,X1, ..., Xm)

holomorphic in (z,X1, ..., Xm) near (0, JF1(0), ..., JFm(0)) ∈ Cn × Cm such that

F j(z) = F̂j(z, JF1(z), ..., JFm(z)), j = 1, ...,m (4.9)

for z = (z1, ..., zn) near 0.

Proof of Lemma 4.8: Recall that ψi = κizi, where κi = 1 or
√

2, for i = 1, · · · , n

and ψi = O(|z|2) is a polynomial of z for each n + 1 ≤ i ≤ N . We obtain from (4.8)

the following:

m∑
j=1

λj
(
JFj (z)JFj (ξ)− λ(

n∑
i=1

(JFj (z)κiFj,i(z))(JFj (ξ)κiF j,i(ξ))) + Pj(z, Fj(ξ), JFj (ξ))
)

=
1

(1 +
∑N

i=1 ψi(z)ψi(ξ))
λ
. (4.10)
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Here each

Pj(z, Fj(ξ), JFj (ξ))

is a rational function in z, Fj(ξ) and JFj (ξ).

We now set Xj = JFj , 1 ≤ j ≤ m. Set Yj , 1 ≤ j ≤ m, to be the vectors:

Yj = (Yj1, ..., Yjn) := (κ1JFjFj,1, ..., κnJFjFj,n).

Then equation (4.10) can be rewritten as

m∑
j=1

λj
(
Xj(z)Xj(ξ)− λYj(z) · Y j(ξ) +Qj(z,Xj(ξ), Y j(ξ))

)
=

1

(1 +
∑N

i=1 ψi(z)ψi(ξ))
λ

(4.11)

over U × U. Here each Qj with 1 ≤ j ≤ m is rational in Xj , Y j . Moreover, each

Qj , 1 ≤ j ≤ m, has no terms of the form X
k
jY

l
js with l ≤ 1 for any s ≥ 1 in its Taylor

expansion at (Xj(0), Yj(0)).

We write Dα = ∂|α|

∂z
α1
1 ...∂zαnn

for an n−multiindex α = (α1, ..., αn). Taking differentia-

tion in (4.11), we obtain, for each multiindex α, the following:

m∑
j=1

(
(DαXj(z))Xj(ξ)− λ(DαYj(z)) · Y j(ξ) +DαQj(z,Xj(ξ), Y j(ξ))

)
= Dα

( 1

(1 +
∑N

i=1 ψi(z)ψi(ξ))
λ

)
.

Again each DαQj , 1 ≤ j ≤ m, is rational in (Xj , Y j) and has no terms of the form

X
k
jY

l
js with l ≤ 1 and s ≥ 1 in its Taylor expansion at (Xj(0), Yj(0)). Applying a

similar argument as in [Proposition 3.1, [HY1]], we can algebraically solve for Fj to

complete the proof of the lemma.

LetR be the field of rational functions in z = (z1, ..., zn). Consider the field extension

E = R(JF1(z), ..., JFm(z)).

Let K be the transcendental degree of the field extension E/R. If K = 0, then each

of {JF1 , ..., JFm} is Nash algebraic. As a consequence of Lemma 4.8, each Fj with

1 ≤ j ≤ m is Nash algebraic. Otherwise, by re-ordering the indices if necessary, we let

G = {JF1 , ..., JFK} be the maximal algebraic independent subset of {JF1 , ..., JFm}. It
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follows that the transcendental degree of E/R(G) is zero. For any l > K, there exists a

minimal polynomial Pl(z,X1, ..., XK , X) such that Pl(z, JF1(z), ..., JFK (z), JFl(z)) ≡ 0.

Moreover,

∂Pl(z,X1, ..., XK , X)

∂X
(z, JF1(z), ..., JFK (z), JFl(z)) 6≡ 0

in a small neighborhood V of 0, for otherwise, Pl cannot be a minimal polynomial of

JFl(z). Now the union of the vanishing set of the partial derivative with respect to X

in the above equation for each l forms a proper local complex analytic variety near 0.

Applying the algebraic version of the implicit function theorem, there exists a small

connected open subset U0 ⊂ U, with 0 ∈ U0 and a holomorphic algebraic function

ĥl, l > K, in a certain neighborhood Û0 of {(z, JF1(z), ..., JFK (z)) : z ∈ U0} in Cn×CK ,

such that

JFl(z) = ĥl(z, JF1(z), ..., JFK (z)),

for any z ∈ U0. (We can assume here U0 is the projection of Û0). Substitute this into

F̂i(z, JF1(z), ..., JFm(z)),

and still denote it, for simplicity of notation, by F̂j(z, JF1(z), ..., JFK (z)) with

F̂j(z, JF1(z), ..., JFK (z)) = F̂j(z, JF1(z), ..., JFm(z)) for z ∈ U0.

In the following, for simplicity of notation, we also write for j ≤ K,

ĥj(z, JF1(z), ..., JFK (z)) = JFj (z) or ĥj(z,X1, ..., XK) = Xj .

Now we replace Fj(ξ) by F̂j(ξ, JF1(ξ), ..., JFK (ξ)), and replace JFj (ξ) by ĥj(ξ, JF1(ξ), ..., JFK (ξ)),

for 1 ≤ j ≤ m, in (4.8). Furthermore, we write X = (X1, ..., XK), and replace JFj (ξ)

by Xj for 1 ≤ j ≤ K in

F̂j(ξ, JF1(ξ), ..., JFK (ξ)), ĥj(ξ, JF1(ξ), ..., JFK (ξ)), 1 ≤ j ≤ m.

We define a new function Φ as follows:

Φ(z, ξ,X) :=
m∑
j=1

λj
JFj (z)ĥj(ξ,X)

(1 +
∑N

i=1 ψi(Fj(z))ψi(F̂j(ξ,X)))λ
− 1

(1 +
∑N

i=1 ψi(z)ψi(ξ))
λ
.

(4.12)
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Lemma 4.9. Shrinking U if necessary, we have Φ(z, ξ,X) ≡ 0, i.e.,

m∑
j=1

λj
JFj (z)ĥj(ξ,X)

(1 +
∑N

i=1 ψi(Fj(z))ψi(F̂j(ξ,X)))λ
=

1

(1 +
∑N

i=1 ψi(z)ψi(ξ))
λ
. (4.13)

or,

(1 +

N∑
i=1

ψi(z)ψi(ξ))
λ

m∑
j=1

λjJFj (z)ĥj(ξ,X)
∏

1≤k≤m,k 6=j
(1 +

N∑
i=1

ψi(Fk(z))ψi(F̂k(ξ,X)))λ


=

∏
1≤j≤m

(1 +

N∑
i=1

ψi(Fj(z))ψi(F̂j(ξ,X)))λ

(4.14)

for z ∈ U and (ξ,X) ∈ Û0.

Proof of Lemma 4.9: Suppose not. Notice Φ is Nash algebraic in (ξ,X) for each

fixed z ∈ U , by Lemma 4.8. For a generic fixed z = z0 near 0, since Φ(z, ξ,X) 6≡ 0,

there exist polynomials Al(ξ,X) for 0 ≤ l ≤ N with A0(ξ,X) 6≡ 0 such that∑
0≤l≤N

Al(ξ,X)Φl(z, ξ,X) ≡ 0.

As Φ(z0, ξ, JF1(ξ), ..., JFK (ξ)) ≡ 0 for ξ ∈ U0, then it follows thatA0(ξ, JF1(ξ), ..., JFK (ξ)) ≡

0 for ξ ∈ U0. This is a contradiction to the assumption that {JF1(ξ), ..., JFK (ξ)} is an

algebraic independent set.

Now that F̂j(ξ,X), 1 ≤ j ≤ m, is algebraic in its variables, if F̂j , 1 ≤ j ≤ m,

is independent of X, then Fj is algebraic by Lemma 4.8. This fact motivates the

remaining work in this chapter.

4.3 Algebraicity and rationality with uniformly bounded degree

In this section, we prove the algebraicity and rationality for at least one of the F ′js. We

start with the following:

Lemma 4.10. Let Fj(z), j ∈ {1, ...,m}, be a local holomorphic map defined on a neigh-

borhood of 0 ∈ U as in (4.8). Suppose that there exist z0 ∈ U and ξ0 ∈ Qz0 such that

Λ(β1, ..., βN )(z0, ξ0) is well defined and non-zero with β1 = (0, 0, ..., 0). Then there is

an analytic variety W ( U such that when z ∈ U\W , Λ(β1, ..., βN )(z, ξ) is a rational

function in ξ over Qz and Λ(β1, ..., βN )(z, ξ) 6≡ 0 on Qz.
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Proof of Lemma 4.10: By the assumption, ∂ρ
∂zn

(z0, ξ0) 6= 0 and

Λ(β1, ..., βN )(z0, ξ0) =

∣∣∣∣∣∣∣∣∣∣
Lβ1Fj,1 ... Lβ1Fj,N

... ... ...

LβNFj,1 ... LβNFj,N

∣∣∣∣∣∣∣∣∣∣
(z0, ξ0) (4.15)

is non-zero with β1 = (0, 0, ..., 0).

By the definition, Li = ∂
∂zi
−

∂ρ
∂zi

(z,ξ)

∂ρ
∂zn

(z,ξ)

∂
∂zn

and Lβl = Lk
l
1

1 L
kl2
2 L

kl3
3 ...L

kln−1

n−1 for βl =

(kl1, ..., k
l
n−1), kl1, ..., k

l
n−1. Hence Λ(β1, ..., βN )(z, ξ) can be written in the form Λ(β1, ..., βN )(z, ξ) =

G1(z,ξ)
G2(z,ξ) . Here G1(z, ξ) =

∑M1

|I|=0 ΦI(z)ξ
I ,G2(z, ξ) =

∑M2

|J |=0 ΨJ(z)ξJ , with ΦI and ΨJ be-

ing holomorphic functions defined over U ⊂ Cn. In fact, G2(z, ξ) is simply taken as a

certain sufficiently large power of ρzn := ∂ρ
∂zn

.

By our assumption, we have G1,G2 not equal to zero at (z0, ξ0). Hence, G1,G2 are

not zero elements in O(U)[ξ1, ..., ξn], the polynomial ring of ξ with coefficients from the

holomorphic function space over U .

By Proposition (III), the defining function of the Segre family ρ can be written in

the form ρ(z, ξ) =
∑M3

|α|=0 Θk(z)ξ
α, which is an irreducible polynomial in (z, ξ). And for

each fixed z, by Proposition (III), we also have ρ(z, ξ) irreducible as a polynomial of ξ

only.

Then the set of z ∈ U where Λ(β1, ..., βN )(z, ξ) is undefined over Qz is a subset of

z ∈ U where G2(z, ξ), as a polynomial of ξ, contains the factor ρ(z, ξ) as a polynomial in

ξ. We denote the latter set by W2. Similarly, the set of z ∈ U with Λ(β1, ..., βN )(z, ξ) ≡

0 over Qz is a subset of z ∈ U where G1(z, ξ), as a polynomial of ξ, contains a factor

ρ(z, ξ), which we denote by W1.

Notice that ρ(z, ξ) ∈ O(U)[ξ1, ..., ξn] depends on each ξj for 1 ≤ j ≤ n. Also notice

that G2(z, ξ), as a certain power of ρzn(z, ξ), depends on ξn.

We next characterize W2 by the resultant R2 of G2(z, ξ) and ρ(z, ξ) as polynomials

in ξn. We rewrite G2 and ρ as polynomials of ξn as follows:

G2 =
k∑
i=0

ai(z, ξ1, ..., ξn−1)ξin, ρ =
l∑

j=0

bj(z, ξ1, ..., ξn−1)ξjn.

Here the leading terms ak, bl 6≡ 0 with k, l ≥ 1.We write the resultant asR2(z, ξ1, ...ξn−1) =∑
I cI(z)ξ

′I , where c′Is are holomorphic functions of z ∈ U .



50

For those points z ∈ W2, R2(z, ·) ≡ 0 as a polynomial of ξ1, ..., ξn−1. Then W2 is

contained in the complex analytic set W̃2 := {cI = 0, ∀I}. If W̃2 = U , then we can find

non-zero polynomials f, g ∈ O(U)[ξ1, ..., ξn−1][ξn] such that fρ + gG2 ≡ 0, where the

degree of g in ξn is less than the degree of ρ in ξn. Hence {G2 = 0} ∪ {g = 0} ⊃ {ρ =

0} ∩ (U × Cn). Again by the irreducibility of {ρ = 0} ∩ (U × Cn), since {g = 0} is a

thin set in {ρ = 0} ∩ (U × Cn),G2 vanishes on {ρ = 0} ∩ (U × Cn). This contradicts

G2(z0, ξ0) 6= 0. Hence W2 ⊂ W̃2 and W̃2 is a proper complex analytic subset of U.

By a similar argument, we can prove that W1 is contained in W̃1 that is also a

proper analytic set of U . Let W = W̃1 ∪ W̃2. Then when z ∈ U\W , Λ(β1, ..., βN )(z, ξ)

is well-defined over Qz as a rational function in ξ and Λ(β1, ..., βN )(z, ξ) 6≡ 0 on Qz.

Lemma 4.11. Let ψ(ξ,X) be a non-zero Nash-algebraic function in (ξ,X) = (ξ1, ..., ξn,

X1, ..., Xm) ∈ Cn×Cm. Write E for a proper complex analytic variety of Cn×Cm that

contains the branch locus of ψ and the zeros of the leading coefficient in the minimal

polynomial of ψ. Then there exists a proper analytic set W1 in Cn such that

{ξ| ∃X0, (ξ,X0) 6∈ E} ⊃ Cn\W1.

Proof of Lemma 4.11: Since ψ is algebraic, there is an irreducible polynomial

Φ(ξ,X;Y ) =
∑k

i=0 φi(ξ,X)Y i such that Φ(ξ,X, ψ(ξ,X)) ≡ 0. If k = 1 then ψ is a

rational function and thus E is just the poles and points of indeterminancy. The proof

is then obvious and we hence assume k ≥ 2.

Define Ψ(ξ,X, Y ) = ∂Φ
∂Y . Since k ≥ 2, the degree of Ψ in Y is at least one. Consider

Φ,Ψ as polynomials in Y, and write R(ξ,X) for their resultant. Then the branch locus

is contained in {(ξ,X)|R(ξ,X) = 0}. Notice that R 6≡ 0, for Φ is irreducible. Write

R =
∑

I rI(ξ)X
I with some rI 6= 0. Write φk(ξ,X) =

∑
φk,i(ξ)X

i and W1 = {rI(ξ) =

0 ,∀I} ∪ {φk,i(ξ) = 0 ,∀ i}, which is a proper complex analytic set in Cn. Then

{ξ| ∃X0, (ξ,X0) 6∈ E} ⊃ Cn\W1.

Let E be a proper complex analytic variety containing the union of the branch loci

of ĥj , F̂j for j = 1, · · · ,m and the zeros of the leading coefficients in their minimal

polynomials. For any point (z0, ξ0, X0) ∈ U × ((Cn × CK)\E), we can find a smooth
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Jordan curve γ in U × ((Cn × CK)\E) connecting (z0, ξ0, X0) with a certain point in

U × (Û0 \ E). We can holomorphically continue the following equation along γ:

(ρ(z, ξ))λ
m∑
j=1

λjJFj (z)ĥj(ξ,X)
∏

1≤k≤m,k 6=j
(1 +

N∑
i=1

ψi(Fk(z))ψi(F̂k(ξ,X)))λ


=

∏
1≤j≤m

(1 +

N∑
i=1

ψi(Fj(z))ψi(F̂j(ξ,X)))λ, z ∈ U, (ξ,X) ∈ Û0,

(4.16)

to a neighborhood of (z0, ξ0, X0).

For our later discussions, we further define

Msing,z = {(z, ξ) :
∂ρ

∂zj
= 0,∀j},Mreg,z =M\Msing,z;

MSING = {(z, ξ) :
∂ρ

∂ξj
= 0,∀j} ∪ {(z, ξ) :

∂ρ

∂zj
= 0,∀j}, MREG =M\MSING;

Prz : C2n → Cn (z, ξ) 7→ (z) and Prξ : C2n → Cn (z, ξ) 7→ (ξ).

Notice that MREG is a Zariski open subset of M and the restrictions of Prz,Prξ to

MREG are open mappings. Also, for (z0, ξ0) ∈MREG, Qz0 is smooth at ξ0, and Qξ0 is

smooth at z0. By Proposition (III), Mreg,z ∩ (Qξ0 , ξ
0) is Zariski open in (Qξ0 , ξ

0).

Lemma 4.12. With the notations we have set up so far, there exists a point (z0, ξ0, X0) ∈

(U ×Cn×CK) with (z0, ξ0) ∈MREG ∩ (U ×Cn) and (ξ0, X0) 6∈ E. Moreover, for each

j = 1, ...,m, we can find β1
j , ..., β

N
j with β1

j = (0, ..., 0) such that ΛFj (β
1
j , ..., β

N
j )(z0, ξ0) 6=

0.

Proof of Lemma 4.12: This is an easy consequence of Propositions (I) (III), Lemma

4.10 and the Zariski openness of MREG in M.

Let (z0, ξ0, X0) be chosen as in Lemma 4.12. We then analytically continue the

equation (4.16) to a neighborhood of the point (z0, ξ0, X0) through a Jordan curve γ

described above. We denote one of such neighborhoods by V1 × V2 × V3, where V1, V2

and V3 are chosen to be a small neighborhood of z0, ξ0, and X0, respectively. It is clear,

after shrinking V1, V2, V3 if needed, that there exists a j0 ∈ {1, ...,m} such that

1 +

N∑
i=1

ψi(Fj0(z))ψi(F̂j0(ξ,X)) = 0, for (z, ξ) ∈M∩ (V1 × V2), X ∈ V3,

We next proceed to prove the algbraicity for Fj0(z).



52

Theorem 4.13. F̂j0(ξ,X), for ξ ∈ V2, X ∈ V3, is independent of X and is thus a Nash

algebraic function of ξ. Hence Fj0 is an algebraic function of z. Moreover, the algebraic

total degree of F̂j0(ξ,X) = Fj0(ξ), and thus of Fj0(z), is uniformly bounded by a constant

depending only on the manifold (X,ω) and the described canonical embedding.

Proof of Theorem 4.13: By the choice of (z0, ξ0, X0), there exist β1
j0
, ..., βNj0 such

that

ΛFj0 (β1
j0 , ..., β

N
j0 )(z0, ξ0) =

∣∣∣∣∣∣∣∣∣∣
Lβ

1
j0Fj0,1 ... Lβ

N
j0Fj0,N

... ... ...

Lβ
N
j0Fj0,1 ... Lβ

N
j0Fj0,N

∣∣∣∣∣∣∣∣∣∣
(z0, ξ0) 6= 0. (4.17)

We can also assume that (z0, ξ0) satisfies the assumption in Proposition (II) after

a slight perturbation of z0 inside Qξ0 if needed. By Proposition (II), we can find

z1 ∈ V1 ∩ Qξ0 such that Qz0 intersects Qz1 transversally at ξ0. Moreover there exists

a neighborhood B of ξ0 and a biholomorphic parametrization of B : (ξ1, ξ2, ..., ξn) =

G(ξ̃1, ξ̃2, ..., ξ̃n) with (ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ... × Un ⊂ Cn. Here U1, U2 are as in

Proposition (II). Moreover, G({ξ̃1 = 1} × U2 × ... × Un) ⊂ Qz0 ,G(U1 × {ξ̃2 = 1} ×

U3 × ... × Un) ⊂ Qz1 . Also, for s ∈ U1, t ∈ U2, G({ξ̃0 = t} × U2 × ... × Un),G(U1 ×

{ξ̃1 = s} × U3 × ... × Un) are open pieces of certain Segre varieties. Here G consists

of algebraic functions with total algebraic degree uniformly bounded by M and the

canonical embedding.

Consider the equation:

1 + Fj0(z) · F̂j0(ξ,X) = 0, (z, ξ,X) ∈ V1 × V2 × V3, (z, ξ) ∈M. (4.18)

Since the holomorphic vector fields {Li}n−1
i=1 are tangent to the Segre family, we have

Lβ
1
j0Fj0,1(z, ξ) ... Lβ

1
j0Fj0,N (z, ξ)

... ... ...

Lβ
N
j0Fj0,1(z, ξ) ... Lβ

N
j0Fj0,N (z, ξ)



F̂j0,1(ξ,X)

...

F̂j0,N (ξ,X)

 =


−1

· · ·

0

 , (4.19)

where (z, ξ)(≈ (z0, ξ0)) ∈M, X ≈ X0.

By the Cramer’s rule, we conclude that {F̂j0,l(ξ,X)}Nl=1 are rational functions of ξ

with a uniformly bounded degree on an open piece of each Segre variety Qz for z ≈ z0.
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By the previous modified Hurwitz Theorem (Theorem 4.6), we conclude the algebraicity

of F̂j0,l(ξ,X) for l = 1, ..., N. Since in (4.19) the matrix
(
Lβ

µ
j0Fj0,ν(z, ξ)

)
1≤µ,ν≤N

and

the right hand side are independent of X, these functions must also be independent

of the X-variables. Moreover, by Lemma 4.3 and Theorem 4.6, the total algebraic

degree of F j0,l(ξ) = F̂j0,l(ξ,X), for l = 1, ..., n, is uniformly bounded. Since F is

obtained by holomorphically continuing the conjugation function F of F , we conclude

the algebraicity of Fj0,l for each 1 ≤ l ≤ n. Also the total algebraic degree of each Fj0,l

is bounded by a constant depending only on (M,ω).

Theorem 4.14. Under the notations we have just set up, Fj0 is a rational map, whose

degree depends only on the canonical embedding M ↪→ CPN .

For the proof Theorem 4.14, we first recall the following Lemma of [HZ]:

Lemma 4.15. (Lemma 3.7 in [HZ]) Let U ⊂ Cn be a simply connected open subset and

S ⊂ U be a closed complex analytic subset of codimension one. Then for p ∈ U \ S,

the fundamental group π1(U \ S, p) is generated by loops obtained by concatenating

(Jordan) paths γ1, γ2, γ3, where γ1 connects p with a point arbitrarily close to a smooth

point q0 ∈ S, γ2 is a loop around S near q0 and γ3 is γ1 reversed.

Proof of Theorem 4.14: We give a proof for the rationality of Fj0 . Once this is done,

we then conclude that the degree of Fj0 is uniformly bounded, for we know the total

algebraic degree of F is uniformly bounded by Theorem 4.13.

Suppose that Fj0 and thus Fj0 is not rational. Write E ⊂ Cn for a proper complex

analytic variety containing the branch locus of Fj0 , Fj0 and the zeros of the leading

coefficients of the minimal polynomials of their components. We first notice that for

A 6= B ∈ Cn, Q∗A 6= Q∗B, by Lemma 2.1. Hence, for any proper complex analytic

variety V 1, V 2 ⊂ Cn and any point (a, b) ∈ M, we can find (a1, b1) ≈ (a, b) such that

a1 ∈ Qb1 \ V 1 and b1 6∈ V 2.

We choose (z0, ξ0) as above and assume further that z0, ξ0 6∈ E (after a small

perturbation if needed). We choose a sufficiently small neighborhood W of (z0, ξ0) in

MREG such that for each (z1, ξ1) ∈W , we can find, by Lemma 4.15, a loop of the form

γ = γ−1
1 ◦ γ2 ◦ γ1 in Cn \E with γ(0) = γ(1) = ξ1, γ1(1) = q. Here γ1 is a simple curve



54

connecting ξ1 to q with q in a small ball Bp centered at a certain smooth point p of E

such that the fundamental group of Bp \ E is generated by γ2; and γ−1
1 is the reverse

curve of γ1. Moreover, when Fj0 is holomorphically continued along γ, we end up with

a different branch Fj0
∗

of Fj0 near ξ1. We pick p such that there is an Xp 6∈ E with

(Xp, p) ∈ Mreg,z. (This follows from Proposition (III) and Lemma 2.1 as mentioned

above.) Take a certain small neighborhoodW of (Xp, p) inMreg,z. We assume, without

loss of generality, that the piece W of Mreg,z is defined by a holomorphic function of

the form z1 = φ(z2, · · · , zn, ξ). In particular, writing Xp = (zp1 , · · · , z
p
n), we have zp1 =

φ(zp2 , · · · , z
p
n, p). Make Bp sufficiently small such that it is compactly contained in the

image of the projection ofW into the ξ-space. Write Xq = (φ(zp2 , · · · , z
p
n, q), z

p
2 , · · · , z

p
n)

and define the loop γ∗2(t) = (φ(zp2 , · · · , z
p
n, γ2(t)), zp2 , · · · , z

p
n). Then γ∗2 is a loop whose

base point is at Xq. Also, we have (γ∗2(t), γ2(t)) ∈M.

Notice that Xp 6∈ E. After shrinking Bp if needed, we assume that γ∗2 stays suffi-

ciently close to Xp and is homopotically trivial in Cn \ E.

Now we slightly thicken γ1 to get a simply connected domain U1 of Cn \ E. Since

M is irreducible over Cn × U1, we can find a smooth simple curve γ̃1 = (γ1
∗, γ̂1) in

M\ ((E × Cn) ∪ (Cn × E)) connecting (z1, ξ1) to (Xq, q). Then γ̂1 is homotopic to γ1

relatively to {ξ1, q} and γ1
∗(1) = Xq. Now replace γ by its homopotically equivalent

loop γ̂−1
1 ◦ γ2 ◦ γ̂1 and define γ∗ = γ∗−1

1 ◦ γ∗2 ◦ γ∗1. Define Γ = (γ∗, γ). Then the image

of Γ lies inside M\ ((E × Cn) ∪ (Cn × E)). Continuing Equation (4.18) along Γ and

noticing that it is independent of X now, we get both

1 + Fj0(z) · F j0(ξ) = 0 and 1 + Fj0(z) · F∗j0(ξ) = 0 ∀(z, ξ) ∈M∩ ((V1 \ E)× (V2 \ E)).

Now arguing as before and applying the uniqueness for the solution of the linear system

(4.19) (with an invertible coefficient matrix), we then conclude that Fj0
∗ ≡ Fj0 . This

is a contradiction.

4.4 Isometric extension of F

For simplicity of notation, in the rest of this section, we denote the map Fj0 just by

F . Now that all components of F are rational functions, it is easy to verify that F
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gives rise to a rational map M 99K M . By the Hironaka theorem (see [H] and [K]),

we have a (connected) complex manifold Y of the same dimension, holomorphic maps

τ : Y → M , σ : Y → M , and a proper complex analytic variety E1 of M such that

σ : Y \ σ−1(E1)→M \ E1 is biholomorphic; F : M \ E1 →M is well-defined; and for

any p ∈ Y \ σ−1(E1), F (σ(p)) = τ(p).

Let E2 be a proper complex analytic subvariety of M containing E1, M \ A and

let E3 ⊂ Y be the proper subvariety where τ fails to be biholomorphic. Write E∗ =

τ(σ−1(E2) ∪ E3) ∪ (M \ A) and E = σ(τ−1(E∗)). Then F : A \ E → A \ E∗ is a

holomorphic covering map. We first prove

Lemma 4.16. : Under the above notation, F : A \ E → A \ E∗ is a biholomorphic

map.

Proof of Lemma 4.16: We first notice that since F is biholomorphic near 0 with

F (0) = 0. We can assume that 0 6∈ E. Consider F 2 = F ◦ F . Then F 2 = F
2
. Since

(F, F ) maps M into M whenever it is defined, it is easy to see that (F, F ) ◦ (F, F ) =

(F 2, F
2
) also maps M into M at the points where it is well-defined. Hence, we can

repeat a similar argument for F to conclude that F 2, as a rational map, also has its

degree bounded by a constant independent of F 2. Similarly, we can conclude that

for any positive integer m, Fm is a rational map with degree bounded by a constant

independent of m and F . Now, as for F , we can find complex anaytic subvarieties

E(m), E∗(m) of Cn such that Fm is a holomorphic covering map from A \ E(m) →

A\E∗(m). Suppose F : A\E → A\E∗ is a k to 1 covering map. It is easy to see that

Fm : A \E(m) → A \E∗(m) is a km to 1 covering map. However, since the degree Fm

is independent of m, we conclude that k = 1 by the following Bezout theorem:

Theorem 4.17. ( [S]) The number of isolated solutions to a system of polynomial

equations

f1(x1, ..., xn) = f2(x1, ..., xn) = ... = fn(x1, ..., xn) = 0

is bounded by d1d2 · · · dn, where di = deg fi.

This proves the lemma.
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Now we prove that F extends to a global holomorphic isometry of (M,ω).

Theorem 4.18. F : (U, ω|U ) → (M,ω) extends to a global holomorphic isometry of

(M,ω).

Proof of Theorem 4.18: By what we just achieved, we then have two proper complex

analytic varieties W1, W2 of Cn such that F : Cn\W1 → Cn\W2 is biholomorphic.

Similarly we have two proper complex analytic subvarieties W ∗1 , W
∗
2 of Cn such that

F : Cn \W ∗1 → Cn \W ∗2 is a biholomorphic map. Hence

F = (F, F ) : Cn \W1 × Cn \W ∗1 → Cn \W2 × Cn \W ∗2

is biholomorphic.

Let ρ be the defining function of the Segre family as described before. Since ρ is

irreducible as a polynomial in (z, ξ),M is an irreducible complex analytic variety of A.

Since F maps a certain open piece of M into an open piece of M, by the uniqueness

of holomorphic functions, we see that F = (F, F ) also gives a biholomorphic map from

(Cn\W1×Cn\W ∗1 )∩M to (Cn\W2×Cn\W ∗2 )∩M. Hence ρF = ρ(F (z), F (ξ)) defines

the same subvariety as ρ does over Cn \W1 ×Cn \W ∗1 . Since ρF is a rational function

in (z, ξ) with denominator coming from the factors of the denominators of F (z) and

F (ξ), we can write

ρF (z, ξ) = (ρ(z, ξ))l
P i11 (z, ξ)P i22 (z, ξ) · · · P iττ (z, ξ)

Qj11 (z) · · ·Qjµµ (z)Rk11 (ξ) · · ·Rkνν (ξ)
(4.20)

Here the zeros of Qj(z) and Rj(ξ) stay in W1 and W ∗1 , respectively. All polynomials

are irreducible and prime to each other. By what we just mentioned Pj(z, ξ) can not

have any zeros in Cn \W1 ×Cn \W ∗1 , for otherwise it must have ρ as its factor by the

irreducibility of ρ. Hence the zeros of Pj(z, ξ) must stay in (W1 × Cn) ∪ (Cn ×W ∗1 ).

From this, it follows easily that Pj(z, ξ) = Pj,1(z) or Pj(z, ξ) = Pj,2(ξ). Namely, Pj(z, ξ)

depends either on z or on ξ. Since F is biholomorphic, we see that l = 1. Thus replacing

ξ by z̄ and taking i∂∂̄ log to (4.20), we have i∂∂̄ log ρF (z, z̄) = i∂∂̄ log ρ(z, z̄). This shows

that F ∗(ω) = ω, or F is a local isometry. Now, by the Calabi Theorem (see [Ca]), F

extends to a global holomorphic isometry of (M,ω). This proves Theorem 4.18.
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We now are ready to give a proof of Theorem 4.1. By what we have obtained, there

is a component Fj for F in Theorem 4.1 that extends to a holomorphic isometry to

(M,ω). Hence F ∗j (dµ) = dµ. Notice λj < 1 due to the positivity of all terms in the

right hand side of the equation (4.4). After a cancellation, we reduce the theorem to

the case with only (m − 1)- maps. Then by an induction argument, we complete the

proof of Theorem 4.1.



58

Chapter 5

Partial non-degeneracy: Proof of Proposition (I)

In this chapter, we prove Proposition (I) for irreducible compact Hermitian spaces of

compact type. Since the argument differs as its type varies, we do it on a case by case

base.

5.1 Spaces of type I

With the same notations that we have set up in §2, Z is a p × q matrix (p ≤ q);

Z(
i1 ... ik

j1 ... jk

) is the determinant of the submatrix of Z formed by its ith1 , ..., i
th
k rows

and jth
1 , ..., j

th
k columns; z = (z11, ..., z1q, z21, ..., z2q, ..., zp1, ..., zpq) is the coordinates of

Cpq∼=A ⊂ G(p, q).

Let 0 ∈ U be a small neighborhood of 0 in Cpq and F be a biholomorphic map

defined over U with F (0) = 0. For convenience of our discussions, we represent the

map F : U → A as a holomorphic matrix-valued map:

F =


f11 ... f1q

... ... ...

fp1 ... fpq

 .

Similar to Z(
i1 ... ik

j1 ... jk

), F (
i1 ... ik

j1 ... jk

) denotes the determinant of the submatrix formed

by the ith1 , ..., i
th
k rows and jth

1 , ..., j
th
k columns of the matrix F .

Recall the definition in (2.1):

rz = (ψ1, ψ2, ..., ψN ) = (· · · , Z(
i1 ... ik

j1 ... jk

), · · · ), 1 ≤ i1 < ... < ik ≤ p,
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1 ≤ j1 < ... < jk ≤ q, 1 ≤ k ≤ p.

Similarly, we define:

rF := (· · · , F (
i1 ... ik

j1 ... jk

), · · · ), 1 ≤ i1 < ... < ik ≤ p, 1 ≤ j1 < ... < jk ≤ q, 1 ≤ k ≤ p.

Notice that rF = (ψ1(F (z)), ..., ψN (F (z))). We define

z̃ := (z11, ..., z1q, z21, ..., z2q, ..., zp1, ..., zp(q−1)),

i.e., z̃ is obtained from z by dropping the last component zpq.Write ∂|α|

∂z̃α = ∂|α|

∂z
α11
11 ...∂z

αp(q−1)
p(q−1)

for any (pq − 1)−multiindex α, where

α = (α11, ..., α1p, α21, ..., α2q, ..., αp1, ..., αp(q−1)).

We apply the notion of the partial degeneracy defined in Definition 3.1 of §3 by

letting ψ = rF and letting z̃ be as just defined with m = pq. We prove in this subsection

the following proposition:

Proposition 5.1. rF are z̃−nondegenerate near 0. More precisely, rank1+N−pq(rF , z̃) =

N.

Proof of Proposition 5.1: If p = 1, q = n ≥ 1 i.e., the Hermitian symmetric space

M = Pn, then it follows from Lemma 3.2 that rank1(rF , z̃) = N = n. In the following

we assume p ≥ 2.

Suppose the conclusion is not true. Namely, assume that rank1+N−pq(rF , z̃) < N.

Since the hypothesis of Theorem 3.10 is satisfied, we see that there exist cpq+1, ..., cN ∈ C

which are not all zero such that

N∑
i=pq+1

ciψi(F )(z11, ..., zpq−1, 0) ≡ 0. (5.1)

The next step is to show that (5.1) cannot hold in the setting of Proposition 5.1.

This is obvious if we can prove the following:

Lemma 5.2. Let
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H =


h11 ... h1p

... ... ...

hp1 ... hpq

 ,

be a vector-valued holomorphic function in a neighborhood U of 0 in z̃ = (z11, ..., zp(q−1)) ∈

Cpq−1 with H(0) = 0. Assume that H is of full rank at 0. Set

(φ1, ..., φm) := rH =


 H

i1 ... ik

j1 ... jk

 
1≤i1<...<ik≤p,1≤j1<...<jk≤q


2≤k≤p

. (5.2)

Here

m =

 p

2

 q

2

+ ...+

 p

p

 q

p

 .

Let a1, ..., am be complex numbers such that

m∑
i=1

aiφi(z̃) ≡ 0 for all z̃ ∈ U. (5.3)

Then

ai = 0

for each 1 ≤ i ≤ m.

Proof of Lemma 5.2: We start with the simple case p = q = 2, in which m = 1.

Then by the assumption (5.3), a1φ1 = 0. Here

φ1 =

∣∣∣∣∣∣h11 h12

h21 h22

∣∣∣∣∣∣ .
Note that H = (h11, h12, h21, h22) is of full rank at 0. We assume, without loss of

generality, that H̃ := (h11, h12, h21) is a local biholomorphic map from C3 to C3. After

an appropriate biholomorphic change of coordinates preserving 0, we can assume h11 =

z11, h12 = z12, h21 = z21, and still write the last component as h22. Then we have

a1φ1 = a1(z11h22 − z12z21) ≡ 0,

which easily yields that a1 = 0.
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We then prove the lemma for the case of p = 2, q = 3, in which m = 3. As before,

without loss of generality, we assume that H̃ := (h11, h12, h13, h21, h22) is a local bi-

holomorphic map near 0 from C5 to C5. After an appropriate biholomorphic change of

coordinates, we assume that H̃ = (z11, ..., z22). By (5.3), we have

a1φ1 + ...+ a3φ3 = a1

∣∣∣∣∣∣z11 z12

z21 z22

∣∣∣∣∣∣+ a2

∣∣∣∣∣∣z11 z13

z21 h23

∣∣∣∣∣∣+ a3

∣∣∣∣∣∣z12 z13

z22 h23

∣∣∣∣∣∣ . (5.4)

The conclusion can be easily proved by checking the coefficients in the Taylor ex-

pansion at 0. Indeed, the quadratic terms z13z21, z13z22 only appear once in the last

two determinants. This implies a2 = a3 = 0. Then trivially a1 = 0.

We also prove the case p = q = 3. In this case m = 10. As before, without loss

of generality, we assume that H̃ = (h11, ..., h32) is a biholomorphic map from C8 to

C8. After an appropariate biholomorphic change of coordinates, we can assume that

H̃ = (z11, ..., z32). Then by assumption, we have

a1φ1 + ...+ a10φ10 =

a1

∣∣∣∣∣∣z11 z12

z21 z22

∣∣∣∣∣∣+ a2

∣∣∣∣∣∣z11 z13

z21 z23

∣∣∣∣∣∣+ a3

∣∣∣∣∣∣z12 z13

z22 z23

∣∣∣∣∣∣+ a4

∣∣∣∣∣∣z11 z12

z31 z32

∣∣∣∣∣∣+ a5

∣∣∣∣∣∣z11 z13

z31 h33

∣∣∣∣∣∣+ a6

∣∣∣∣∣∣z12 z13

z32 h33

∣∣∣∣∣∣
+ a7

∣∣∣∣∣∣z21 z22

z31 z32

∣∣∣∣∣∣+ a8

∣∣∣∣∣∣z21 z23

z31 h33

∣∣∣∣∣∣+ a9

∣∣∣∣∣∣z22 z23

z32 h33

∣∣∣∣∣∣+ a10

∣∣∣∣∣∣∣∣∣∣
z11 z12 z13

z21 z22 z23

z31 z32 h33

∣∣∣∣∣∣∣∣∣∣
= 0.

(5.5)

We then check the coefficients for each term in its Taylor expansion at 0. First it is

easy to note that a5 = a6 = a8 = a9 = 0 by checking the coefficients of quadratic terms

z13z31, z13z32, z23z31, z23z32,

respectively. Then by checking the coefficients of other quadratic terms, we see that

a1 = a2 = a3 = a4 = a7 = 0. Finally we check the coefficient of the cubic term z13z22z31

to obtain that a10 = 0.

We now prove the general case: q ≥ p ≥ 2. As before, we assume without loss

of generality that H̃ = (h11, ..., hp(q−1)) is a biholomorphic map from Cpq−1 to Cpq−1.
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Furthermore, we have H̃ = (z11, ..., zp(q−1)) after an appropriate biholomorphic change

of coordinates. We again first consider the coefficients of the quadratic terms in (5.3).

For that, we consider the 2× 2 submatrix involving hpq, i.e., H

 l p

k q

 , 1 ≤ l < p, 1 ≤

k < q. Note that zlqzpk only appears in this 2 × 2 determinant, which yields that the

coefficient ai associated to this 2 × 2 determinant is 0, for any 1 ≤ i < p, 1 ≤ j < q.

Then by checking the coefficients of other quadratic terms, we see that all coefficients

a′is that are associated to 2×2 determinants H

 l1 l2

k1 k2

 , 1 ≤ l1, l2 ≤ p, 1 ≤ k1, k2 ≤ q,

are 0.

We then consider the coefficients of cubic terms in (5.3). We first look at those 3×3

submatrix involving hpq. i.e., H

 l1 l2 p

k1 k2 q

 , 1 ≤ l1 < l2 < p, 1 ≤ k1 < k2 < q. Note

that zl1qzl2k2zpk1 only appears in this 3× 3 matrix, which yields that the ai associated

to this 3 × 3 determinant is 0. Furthermore, we see that all coefficients ai’s that are

associated to 3× 3 determinants are 0.

Now the conclusion can be proved inductively. Indeed, assume that we have proved

that all coefficients ai’s that are associated with the determinants of order up to µ ×

µ, 3 ≤ µ < p are zero. Then we will prove that the coefficients associated with (µ+1)×

(µ+1) determinants are also 0. For this we consider all such determinants which involve

hpq, i.e., H

 l1 ... lµ p

k1 ... kµ q

where 1 ≤ l1 < ... < lµ < p, 1 ≤ k1 < ... < kµ < q. We

conclude the ai associated to it is 0 by noting that zl1qzl2kµ ...zlµk2zpk1 only appears in

this (µ+1)× (µ+1) determinant. Then we can show all coefficients that are associated

with other (µ+ 1)× (µ+ 1) determinants, i.e.,

H

 l1 ... lµ lµ+1

k1 ... kµ kµ+1

 , 1 ≤ l1 < ... < lµ+1 ≤ p, 1 ≤ k1 < ... < kµ+1 ≤ q, (lµ+1, kµ+1) 6= (p, q).

are 0 by checking a term of the form zl1k1 ...zlµ+1kµ+1 that only appears once in the

Taylor expansion of the left hand side of (5.1). This proves the lemma.

We thus get a contradiction to the equation (5.1). This establishes Proposition 5.1.
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Remark 2. Let F be as in Proposition 5.1. There exist multiindices β1, ..., βN with

|βj | ≤ 1 +N − pq and

z0 =


z0

11 ... z0
1q

... ... ...

z0
p1 ... z0

pq

 6= 0

such that z0 is near 0 and

∆(β1, ..., βN ) :=

∣∣∣∣∣∣∣∣∣∣
∂|β

1|(ψ1(F ))

∂z̃β1
... ∂|β

1|(ψN (F ))

∂z̃β1

... ... ...

∂|β
N |(ψ1(F ))

∂z̃βN
... ∂|β

N |(ψN (F ))

∂z̃βN

∣∣∣∣∣∣∣∣∣∣
(z0) 6= 0. (5.6)

Perturbing z0 if necessary, we can thus assume that z0
pq 6= 0. Moreover, we can replace

one of the β1, ..., βN by β = (0, ..., 0), because (ψ1(F ), ..., ψN (F )) are not identically

zero (See also the proof of Theorem 3.3). Without lost of generality, we can assume

that β1 = (0, ..., 0).

The defining function of the Segre family now is

ρ(z, ξ) = 1 +

p∑
k=1

 ∑
1≤i1<i2<...<ik≤p,1≤j1<j2<...<jk≤q

Z(
i1 ... ik

j1 ... jk

)Ξ(
i1 ... ik

j1 ... jk

)

 (5.7)

It is a complex manifold for any fixed ξ close enough to the point

ξ0 =


0 ... 0 0

0 ... 0 0

0 ... 0 ξ0
pq

 ∈ Cpq,

where ξ0
pq = − 1

z0pq
.

Write for each 1 ≤ i ≤ p, 1 ≤ j ≤ q, (i, j) 6= (p, q),

Lij =
∂

∂zij
−

∂ρ
∂zij

(z, ξ)

∂ρ
∂zpq

(z, ξ)

∂

∂zpq
, (5.8)

which is a well-defined holomorphic tangent vector field along M near (z0, ξ0). Here

we note that ∂ρ
∂zpq

(z, ξ) is nonzero near (z0, ξ0). For any (pq − 1)-multiindex β =

(β11, ..., βp(q−1)), we write

Lβ = Lβ1111 ...L
βp(q−1)

p(q−1) .
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Now we define for any N collection of (pq − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN )(z, ξ) :=

∣∣∣∣∣∣∣∣∣∣
Lβ1

(ψ1(F )) ... Lβ1
(ψN (F ))

... ... ...

LβN (ψ1(F )) ... LβN (ψN (F ))

∣∣∣∣∣∣∣∣∣∣
(z, ξ). (5.9)

We have the following,

Theorem 5.3. There exists multiindices {β1, ..., βN}, such that

Λ(β1, ..., βN )(z, ξ) 6= 0, (5.10)

for (z, ξ) in a small neighborhood of (z0, ξ0). Moreover, we can require β1 = (0, ..., 0).

Proof of Theorem 5.3: First we observe that Lij evaluating at (z0, ξ0) is just ∂
∂zij

.

More generally, for any (pq− 1)−multiindex β, by an easy computation, Lβ evaluating

at (z0, ξ0) coincides with ∂
∂z̃β

. Therefore, we can just choose the same β1, ..., βN as in

Remark 2.

5.2 Spaces of type II

In this section, we establish Proposition (I) for the orthogonal Grassmannians GII(n, n).

As shown in §2, we have a Zariski open affine chart A ⊂ GII(n, n) of elements of the

form:

(
In×n Z

)
=



1 0 0 · · · 0 0 z12 · · · z1n

0 1 0 · · · 0 −z12 0 · · · z2n

· · · · · ·

0 0 0 · · · 1 −z1n −z2n · · · 0


Here z = (z12, z13, ..., z(n−1)n) is the local coordinates for A ∼= C

n(n−1)
2 . Its conjugate

A∗ ⊂ (GII(n, n))∗ is also a copy of C
n(n−1)

2 . We write the local coordinates for A∗ as

ξ = (ξ12, ..., ξ(n−1)n).

The canonical embedding is given by

(1, , ..., pf(Zσ), ...).
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The defining function for the Segre family (in the product of such affine pieces) is given

by

ρ(z, ξ) = 1 +
∑
σ∈Sk,

2≤k≤n,2|k

Pf(Zσ)Pf(Ξσ)

Write

rZ =
(

Pf(Zσ)σ∈Sk

)
2≤k≤n,2|k

. (5.11)

The local biholomorphic map F defined near 0 ∈ U with F (0) = 0 can be represented

as a matrix:

F =



0 f12 ... f1n

−f12 0 ... f2n

... ... ... ...

−f1n ... ... 0


.

Let rF be

rF =
(

pf((F )σ)σ∈Sk

)
2≤k≤n,2|k

. (5.12)

Under the notation of §2, it is easy to see rZ = (ψ1, ..., ψN ), rF = (ψ1(F ), ..., ψN (F )).

We write z̃ for the z with the last component z(n−1)n dropped. More precisely,

z̃ = (z12, ..., z1n, z23, ..., z2n, ..., z(n−2)(n−1), z(n−2)n), (5.13)

Recall z has n′ = n(n − 1)/2 independent variables. Thus z̃ has (n′ − 1) components.

We define the z̃−rank and z̃− nondegeneracy as in Definition 3.1 using ψ = rF in (5.12)

and z̃ as in (5.13) with m = n′, respectively. We now prove the following:

Proposition 5.4. rF is z̃−nondegenerate near 0. More precisely, rank1+N−n′(rF , z̃) =

N.

Proof of Proposition 5.4: Suppose not. Without loss of generality, we assume that

rank1+N−n′(rF , z̃) < N.

As a consequence of Theorem 3.10, there exist cσ,k ∈ C, 4 ≤ k ≤ n, 2|k, σ ∈ Sk, which

are not all zero, such that∑
4≤k≤n,2|n

∑
σ∈Sk

cσ,k pf((F )σ)(z12, ..., z(n−2)n, 0)) ≡ 0. (5.14)
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However, (5.14) cannot hold by the following lemma, which gives a contradiction:

Lemma 5.5. Let

H =



0 h12 ... h1n

−h12 0 ... ...

... ... ... ...

−h1n ... ... 0


be an anti-symmetric matrix-valued holomorphic function in a neighborhood U of 0 in

z̃ = (z12, ..., z(n−2)n)) ∈ Cn′−1 with H(0) = 0. Assume that H is of full rank at 0. Set

rH similar to the definition of rF ,

rH =
(

pf(Hσ)σ∈Sk

)
2≤k≤n,2|k

. (5.15)

Assume that aσ,k, σ ∈ Sk, 4 ≤ k ≤ n, are complex numbers such that

∑
4≤k≤n,2|k

∑
σ∈Sk

aσ,k pf(Hσ)(z12, ..., z(n−2)n)) ≡ 0 for all z̃ ∈ U. (5.16)

Then

aσ,k = 0

for all σ ∈ Sk, 4 ≤ k ≤ n, 2|k.

Proof of Lemma 5.5: Suppose not. We will prove the lemma by seeking a con-

tradiction. Note that H has full rank at 0. Hence there exist (n′ − 1) components

Ĥ of H that forms a local biholomorphism from Cn′−1 to Cn′−1. We assume that

these (n′ − 1) components Ĥ are H with hi0j0 being dropped, where i0 < j0. Without

loss of generality, we assume i0 = n − 1, j0 = n. By a local biholomorphic change of

coordinates, we assume Ĥ = z̃ = (z12, ..., z(n−2)n). We still write the missing compo-

nent as h(n−1)n. Now we assume 2(m + 1),m ≥ 1, is the least number k such that

{aσ,k}σ∈Sk are not all zero. We then consider {aσ,2(m+1)}σ∈S2(m+1)
. We first claim that

aσ,2(m+1) = 0 for those σ ∈ S2(m+1) such that pf(Hσ) involves h(n−1)n. More precise-

ly, if pf(Hσ), σ ∈ S2(m+1) involves h(n−1)n, then σ = {i1, ..., i2m, (n − 1), n} for some

1 ≤ i1 < ... < i2m ≤ n−2. Suppose its coefficient is not zero. Then pf(Hσ) will produce

the monomial zi1i2zi3i4 ...zi2m−3i2m−2zi2m−1(n−1)zi2mn. This term can only be canceled by
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the terms of form: zi2m−1(n−1)h(n−1)nQ or zi2mnh(n−1)nQ. But neither of them can ap-

pear in any other Pfaffians. This is a contradiction. Once we know there are no h(n−1)n

involved, then the remaining Pfaffians have only terms consisting of the product of

some of z12, ..., z(n−2)n. Their sum cannot be zero unless their coefficients are all zero.

This is a contradiction. We thus establishes Lemma 5.5.

We thus also get a contradiction to equation (5.14). This establishes Proposition

5.4.

Remark 3. By Proposition 5.4, there exist multiindices β̃1, ..., β̃N with all |β̃j | ≤ 1 +

N − n′, and there is a point

z0 =



0 z0
12 ... z0

1(n−1) z0
1n

−z0
12 0 ... z0

2(n−1) z0
2n

... ... ... ... ...

−z0
1(n−1) −z

0
2(n−1) ... 0 z0

(n−1)n

−z0
1n −z0

2n ... −z0
(n−1)n 0


, z0

(n−1)n 6= 0;

near 0 such that ∣∣∣∣∣∣∣∣∣∣
∂|β

1|(ψ1(F ))

∂z̃β̃1
... ∂|β

1|(ψN (F ))

∂z̃β̃1

... ... ...

∂|β
N |(ψ1(F ))

∂z̃β̃N
... ∂|β

N |(ψN (F ))

∂z̃β̃N

∣∣∣∣∣∣∣∣∣∣
(z0) 6= 0. (5.17)

We set

ξ0 =



0 0 ... 0 0

0 0 ... 0 0

... ... ... ... ...

0 0 ... 0 ξ0
(n−1)n

0 0 ... −ξ0
(n−1)n 0


∈ Cn

2
, ξ0

(n−1)n = − 1

z0
(n−1)n

.

Then it is easy to see that (z0, ξ0) ∈M = {ρ(z, ξ) = 0}.

Write for each 1 ≤ i < j ≤ n, (i, j) 6= (n− 1, n),

Lij =
∂

∂zij
−

∂ρ
∂zij

(z, ξ)

∂ρ
∂z(n−1)n

(z, ξ)

∂

∂z(n−1)n
(5.18)
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which are holomorphic tangent vector fields along M near (z0, ξ0). Here we note that

∂ρ
∂z(n−1)n

(z, ξ) is nonzero near (z0, ξ0). For any (n′− 1)-multiindex β = (β12, ..., β(n−2)n),

we write

Lβ = Lβ1212 ...L
β(n−2)n

(n−2)n .

Now we define for any N collection of (n′ − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN )(z, ξ) :=

∣∣∣∣∣∣∣∣∣∣
Lβ1

(ψ1(F )) ... Lβ1
(ψN (F ))

... ... ...

LβN (ψ1(F )) ... LβN (ψN (F ))

∣∣∣∣∣∣∣∣∣∣
(z, ξ). (5.19)

Note that for any multiindex β,Lβ evaluating at (z0, ξ0) coincides with ∂
∂z̃β

. We

thus again have

Theorem 5.6. There exists multiindices {β1, ..., βN}, such that

Λ(β1, ..., βN )(z, ξ) 6= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, ..., 0).

5.3 Spaces of type III

Let F be a local biholomorphic map at 0. In this case, both Z and F are n × n

symmetric matrices. We write

Z =



z11 z12 ... z1n

z12 z22 ... z2n

... ... ... ...

z1n z2n ... znn


, z = (z11, z12, z13, ..., znn).

Similar notations are used for F.

Recall from (2.12) of ♣3 in § 2:

rz =
(
ψ1

1(z), ..., ψ1
N1

(z), ψ2
1(z), ..., ψ2

N2
(z), ..., ψn−1

1 (z), ..., ψn−1
Nn−1

(z), ψn(z)
)
, (5.20)

where ψkj is a homogeneous polynomial of degree k, 1 ≤ j ≤ Nk. ψ
n is a homogeneous

polynomial of degree n. Moreover, the components of rz are linearly independent.
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We write the number of components in rz to be N = N1 + ... + Nn, where we set

Nn = 1. We will also sometimes write ψnNn = ψn.

We emphasize that for each fixed k, ψk1 , ..., ψ
k
Nk

are linearly independent. Moreover,

each ψkj is a certain linear combination of the determinants of k × k submatrices of Z.

This will be crucial for our argument later.

We define rF as the composition of rz with the map F :

rF =
(
ψ1

1(F ), ..., ψ1
N1

(F ), ψ2
1(F ), ..., ψ2

N2
(F ), ..., ψn−1

1 (F ), ..., ψn−1
Nn−1

(F ), ψn(F )
)
.

(5.21)

In what follows, we write also zij = zji. We write det(A) as the determinant of A when

A is a square matrix.

Let P, P̃ be monomials in z′ijs, and h a polynomial in z′ijs. Let a, b be two complex

numbers. In the following lemmas, when we say h always has the terms aP, bP̃ , we

mean h has the term aP if and only if it has the term bP̃ .

Lemma 5.7. Fixing 1 ≤ i, j < n, let P = zinznjQ and P̃ = zijznnQ with Q a monomial

in z′ijs. The following statements are true.

• Let A be a square submatrix of Z. If zij - Q, then det(A) always has monomials

of the form cP,−cP̃ for some c ∈ C depending on the submatrix A. (If det(A)

does not have any multiple of P , it does not have any multiple of P̃ , either; vice

versa). If zij |Q, then det(A) always has monomials cP,−(c/2)P̃ for some c ∈ C

depending on A.

• Let k ≥ 1. Let ψkl (z) be as defined in (5.20), 1 ≤ l ≤ Nk. If zij - Q, then ψkl (z)

always has monomials λP,−λP̃ for some λ ∈ C, If zij |Q, then ψkl (z) always has

monomials λP,−(λ/2)P̃ for some λ ∈ C.

Proof of Lemma 5.7: The first part is a consequence of the Laplace expansion of a

determinant by complementary minors. The second part is due to the fact that ψkj is a

linear combination of the determinants of submatrices of Z of order k.

Similarly, one can prove in a similar way Lemmas 5.8-5.10.
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Lemma 5.8. Fixing 1 ≤ j < n− 1, let P = zjnz(n−1)(n−1)Q and P̃ = zj(n−1)z(n−1)nQ

with Q a monomial in z′ijs.

• Let A be a square submatrix of Z. If zjn - Q, then det(A) always has monomials

cP,−cP̃ for some c ∈ C. If zjn|Q, then det(A) always has monomials cP,−2cP̃

for some c ∈ C.

• Let k ≥ 1. Let ψkl (z) be as defined in (5.20), 1 ≤ l ≤ Nk. If zjn - Q, then ψkl (z)

always has monomials λP,−λP̃ for some λ ∈ C. If zjn|Q, then ψkl (z) always has

monomials λP,−2λP̃ for some λ ∈ C.

Lemma 5.9. Fixing 1 ≤ i < n− 1, let P = zi(n−1)zniQ and P̃ = ziiz(n−1)nQ with Q a

monomial in z′ijs.

• Let A be a square submatrix of Z. If z(n−1)n - Q, then det(A) always has mono-

mials cP,−cP̃ for some c ∈ C. If z(n−1)n|Q, then det(A) always has monomials

cP,−(c/2)P̃ for some c ∈ C.

• Let k ≥ 1. Let ψkl (z) be as defined in (5.20), 1 ≤ l ≤ Nk. If z(n−1)n - Q, then

ψkl (z) always has monomials λP,−λP̃ for some λ ∈ C. If z(n−1)n|Q, then ψkl (z)

always has monomials λP,−(λ/2)P̃ for some λ ∈ C.

Lemma 5.10. Fixing 1 ≤ i < n − 1, 1 ≤ j < n − 1, i 6= j, let P1 = zi(n−1)znjQ,P2 =

zinzj(n−1)Q, and P̃ = zijz(n−1)nQ with Q a monomial in z′ijs.

• Let A be a square submatrix of Z. If zij - Q, z(n−1)n - Q, then det(A) always

has terms c1P1 + c2P2,−(c1 + c2)P̃ for some c1, c2 ∈ C. If zij - Q, z(n−1)n|Q, or

zij |Q, z(n−1)n - Q, then det(A) always has terms c1P1 + c2P2,− c1+c2
2 P̃ for some

c1, c2 ∈ C. If zij |Q, z(n−1)n|Q, then det(A) always has terms c1P1+c2P2,− c1+c2
4 P̃ .

• Let k ≥ 1. Let ψkl (z) be as defined in (5.20), 1 ≤ l ≤ Nk. If zij - Q and z(n−1)n - Q,

then ψkl (z) always has terms λ1P1 + λ2P2,−(λ1 + λ2)P̃ for some λ1, λ2 ∈ C. If

zij - Q, z(n−1)n|Q, or zij |Q, z(n−1)n - Q, then ψkl (z) always has terms λ1P1 +

λ2P2,−λ1+λ2
2 P̃ for some λ1, λ2 ∈ C. If zij |Q, z(n−1)n|Q, then ψkl (z) always has

terms λ1P1 + λ2P2,−λ1+λ2
4 P̃ for some λ1, λ2 ∈ C.
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We write z̃ for z with the last components znn being dropped. More precisely,

z̃ = (z11, ..., z1n, z22, ..., z2n, ..., z(n−1)(n−1), z(n−1)n). (5.22)

Recall z has n′ = n(n + 1)/2 independent variables. Thus z̃ has (n′ − 1) components.

We define z̃−rank and z̃−nondegeneracy in the same way as before, using rF in (5.21)

and z̃ in (5.22) with m = n′. We now need to prove the following:

Proposition 5.11. rF is z̃−nondegenerate at 0. More precisely, rank1+N−n′(rF , z̃) =

N.

Proof of Proposition 5.11: Suppose not. Then one easily verifies that the hypothesis

of Theorem 3.10 is satisfied. As a consequence of Theorem 3.10, there exist ckj ∈ C, 2 ≤

k ≤ n, 1 ≤ j ≤ Nk, which are not all zero such that

n∑
k=2

Nk∑
j=1

ckjψ
k
j (F (z11, ..., z(n−1)n, 0)) ≡ 0. (5.23)

Here as before, we write Nn = 1, ψnNn = ψn.

Then we just need to show it can not happen by the following lemma:

Lemma 5.12. Let

H =



h11 h12 ... h1n

h12 h22 ... h2n

... ... ... ...

h1n ... ... hnn


be a symmetric matrix-valued holomorphic function near 0 in z̃ = (z11, ..., z1n, z22, ..., z2n, ..., z(n−1)n) ∈

Cn′−1 with H(0) = 0. Assume that H is of full rank at 0. Set rH in a similar way as in

(36) :

rH =
(
ψ1

1(H), ..., ψ1
N1

(H), ψ2
1(H), ..., ψ2

N2
(H), ..., ψn−1

1 (H), ..., ψn−1
Nn−1

(H), ψn(H)
)

Again we write Nn = 1, ψn = ψnNn . Assume that akj , 2 ≤ k ≤ n, 1 ≤ j ≤ n are complex

numbers such that
n∑
k=2

Nk∑
j=1

akjψ
k
j (H(z̃)) ≡ 0 for z̃ ∈ U. (5.24)
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Then

akj = 0

for each 2 ≤ k ≤ n, 1 ≤ j ≤ Nk.

Proof of Lemma 5.12: Suppose not. We will prove the lemma by seeking a contra-

diction. Notice that H has full rank at 0. Hence there exist (n′−1) components Ĥ of H

that gives a local biholomorphism from Cn′−1 to Cn′−1. We assume these (n′− 1) com-

ponents Ĥ are H with hi0j0 being dropped, where i0 ≤ j0. Then we split our argument

into two parts in terms of i0 = j0 or i0 < j0.

Case I: Assume that i0 = j0. Without loss of generality, we assume i0 = j0 = n. By

a local biholomorphic change of coordinates, we assume Ĥ = z̃ = (z11, ..., zn(n−1)). We

still write the last component as hnn. Now we assume m ≥ 2 is the least number k such

that {ak1, ..., akNk} are not all zero. For any holomorphic g, we define Tl(g) to be the

homogeneous part of degree l in the Taylor expansion of g at 0. Now the assumption

in (5.24) yields:

Tm

Nm∑
j=1

amj ψ
m
j (H(z̃))

 ≡ 0. (5.25)

We first compute

Nm∑
j=1

amj ψ
m
j (H) =

Nm∑
j=1

amj ψ
m
j (z11, ..., z(n−1)n, hnn)

formally. Namely, we regard hnn as a formal variable and only conduct formal cancel-

lations. We write formally

Nm∑
j=1

amj ψ
m
j (z11, ..., z(n−1)n, hnn) = P1 + hnnP2. (5.26)

Here P1 = P1(z11, ..., z(n−1)n) is a homogeneous polynomial of degree m, and P2 =

P2(z11, ..., z(n−1)n) is a homogeneous polynomial of degree m − 1. We claim P2 6= 0.

Otherwise,

Nm∑
j=1

amj ψ
m
j (z11, ..., z(n−1)n, hnn) = P1.
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This implies that
∑Nm

j=1 a
m
j ψ

m
j (z11, ..., z(n−1)n, hnn) does not depend on hnn formally.

Then we can replace hnn by znn. That is,

Nm∑
j=1

amj ψ
m
j (z11, ..., z(n−1)n, znn) =

Nm∑
j=1

amj ψ
m
j (z11, ..., z(n−1)n, hnn(z̃)) = P1. (5.27)

By (5.25), we see that (5.27) is identically zero. This is a contradiction to the fact

that {ψm1 , ..., ψmNm} is linearly independent.

Now since P2 6= 0, thus by (5.26),
∑Nm

j=1 a
m
j ψ

m
j (z11, ..., z(n−1)n, hnn) has a monomial

of the form µP̃ = µzijhnnQ of degree m for some 1 ≤ i, j < n, µ 6= 0 and some monomial

Q. By Lemma 5.7, we get that
∑Nm

j=1 a
m
j ψ

m
j (z11, ..., z(n−1)n, hnn) has also the term −µP

or −2µP, where P = zinznjQ. This is a contradiction to (5.25). Indeed, P can be only

canceled by the terms of the forms: zinhnnQ̃ or znjhnnQ̃, where Q̃ is of degree m− 2.

But they cannot appear in determinant of any submatrix of H as zin(or znj) can not

appear with hnn.

Case II: Assume that i0 6= j0. Without loss of generality, we assume i0 = (n −

1), j0 = n. Then Ĥ = (h11, ..., h(n−1)(n−1), hnn) is a local biholomorphism. By a local

biholomorphic change of coordinates, we assume Ĥ = z̃ = (z11, ..., z(n−1)n). We will still

write the remaining component as h(n−1)n = hn(n−1). Note that the fact we are using

only is that {z11, ..., z(n−1)n} are independent variables. Hence, to make our notation

easier, we will write

Ĥ = (z11, ..., z(n−1)n) = (w11, ..., w1n, w22, ..., w2n, ..., w(n−1)(n−1), wnn)

such that they have the same indices as h’s in Ĥ. Now we assume m is the least number

k such that {ak1, ..., akNk} are not all zero. Then again assumption (5.24) yields that

Tm

Nm∑
j=1

amj ψ
m
j (H(Z̃))

 ≡ 0. (5.28)

Again we formally compute that

Nm∑
j=1

amj ψ
m
j (w11, ..., h(n−1)n, wnn) = Q1 + h(n−1)nQ2. (5.29)

Here Q1 = Q1(w11, ..., w(n−1)(n−1), wnn) is a homogeneous polynomial of degree m.

Similarly, we can show that Q2 6= 0. We claim that (5.29) does not have a monomial
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of the form h(n−1)nh(n−1)nQ. Otherwise, by Lemma 5.7, we get that (5.29) has also a

monomial of degree m of the form: w(n−1)(n−1)wnnQ. But note that in (5.29) it can

be canceled only by h(n−1)nh(n−1)nQ. Then h(n−1)n will have a linear term w(n−1)(n−1).

But then h(n−1)nh(n−1)nQ will produce the term w(n−1)(n−1)w(n−1)(n−1)Q. This cannot

be canceled out by any other terms.

Now since Q2 6= 0, (5.29) has a monomial of the form wijh(n−1)nQ, where Q is anoth-

er monomial in w’s. Here 1 ≤ i, j ≤ n.Moreover, (i, j) 6= (n−1, n−1), (n−1, n), (n, n−1)

or (n, n). We first assume 1 ≤ i, j < n − 1, i 6= j. Then by Lemma 5.10 , (5.29) has

either P1 or P2, where P1 = wi(n−1)wnjQ,P2 = winwj(n−1)Q. Note P1, P2 can only

be canceled by the terms wi(n−1)h(n−1)nQ,wnjh(n−1)nQ,winh(n−1)nQ,wj(n−1)h(n−1)nQ.

So one of them will appear in (5.29). Whichever case it is, by Lemma 5.7, 5.8, (5.29)

will have either P = wlnw(n−1)(n−1)Q, or P̂ = wl(n−1)wnnQ for some 1 ≤ l < n.

We assume, for instance, (5.29) has the monomial P. Then it also has the monomial

P̃ = wl(n−1)h(n−1)nQ by Lemma 5.8. Note that the only term that can cancel P and

appear in some determinant is wlnhn(n−1)Q. Hence hn(n−1) has a linear w(n−1)(n−1)

term. Then P̃ will have the monomial wl(n−1)w(n−1)(n−1)Q, which can not be canceled

by any other terms. This is a contradiction. The other cases can be proved similarly.

This establishes Proposition 5.11.

Remark 4. By Proposition 5.11, there exist multiindices β̃1, ..., β̃N with |β̃j | ≤ 1+N−

pq, and there exist

z0 =


z0

11 ... z0
1n

... ... ...

z0
1n ... z0

nn

 , z0
nn 6= 0,

near 0 such that ∣∣∣∣∣∣∣∣∣∣
∂|β

1|(ψ1(F ))

∂Z̃β̃1
... ∂|β

1|(ψN (F ))

∂Z̃β̃1

... ... ...

∂|β
N |(ψ1(F ))

∂Z̃β̃N
... ∂|β

N |(ψN (F ))

∂Z̃β̃N

∣∣∣∣∣∣∣∣∣∣
(z0) 6= 0. (5.30)

Here we simply write rF = (ψ1(F ), ..., ψN (F )).
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We then set

ξ0 =


0 ... 0 0

0 ... 0 0

0 ... 0 ξ0
nn

 ∈ Cn
2
, ξ0
nn = − 1

z0
nn

.

It is easy to verify that (z0, ξ0) ∈M = {ρ(z, ξ) = 0}.

Write for each 1 ≤ i ≤ j ≤ n, (i, j) 6= (n, n),

Lij =
∂

∂zij
−

∂ρ
∂zij

(z, ξ)

∂ρ
∂znn

(z, ξ)

∂

∂znn
, (5.31)

which are holomorphic tangent vector fields along M near (z0, ξ0). Here we note that

∂ρ
∂znn

(z, ξ) is nonzero near (z0, ξ0). For any (n′−1)-multiindex β = (β11, ..., β(n−1)n), we

write

Lβ = Lβ1111 ...L
β(n−1)n

(n−1)n .

Now we define for any N collection of (n′ − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN )(z, ξ) :=

∣∣∣∣∣∣∣∣∣∣
Lβ1

(ψ1(F )) ... Lβ1
(ψN (F ))

... ... ...

LβN (ψ1(F )) ... LβN (ψN (F ))

∣∣∣∣∣∣∣∣∣∣
(z, ξ). (5.32)

Note Lβ evaluating at (z0, ξ0) coincides with ∂
∂Z̃β

. We have

Theorem 5.13. There exists multiindices {β1, ..., βN} such that Λ(β1, ..., βN )(z, ξ) 6= 0

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, 0, ..., 0).

5.4 Spaces of type IV

In this section, we consider the hyperquadric case M = Qn. This case is more subtle

because the tangent vector fields of its Segre family are more complicated.

Recall that Qn is defined by{
[z0, ..., zn+1] ∈ CPn+1 :

n∑
i=1

z2
i − 2z0zn+1 = 0

}
,

where [z0, ..., zn+1] is the homogeneous coordinates of CPn+1. The previously described

minimal embedding Cn(A)→ Qn is given by

z := (z1, ..., zn) 7→ [1, ψ1(z), ..., ψn+1(z)] = [1, z1, ..., zn,
1

2

n∑
i=1

z2
i ].
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The defining function of the Segre family over A×A is ρ(z, ξ) = 1 + rz · rξ, where

rz = (z1, ..., zn,
1

2

n∑
i=1

z2
i ), rξ = (ξ1, ..., ξn,

1

2

n∑
i=1

ξ2
i ). (5.33)

Let F be a local biholomorphic map at 0 with F (0) = 0. We write

F = (f1, ..., fn), rF = (f1, ..., fn,
1

2

n∑
i=1

f2
i ). (5.34)

Notice that

rz = (ψ1(z), ..., ψn+1(z)), rF = (ψ1(F ), ..., ψn+1(F )).

We will need the following lemma:

Lemma 5.14. For each fixed µ1, ..., µn−1 with (
∑n−1

i=1 µ
2
i ) + 1 = 0 and each fixed

(z1, ..., zn) with (
∑n−1

i=1 µizi) + zn 6= 0, we can find (ξ1, ..., ξn) such that

1 + z1ξ1 + ...+ znξn = 0;
n∑
i=1

(ξi)
2 = 0, ξj = µjξn, 1 ≤ j ≤ n− 1, ξn 6= 0. (5.35)

Proof of Lemma 5.14: We just need to set

ξn =
−1

(
∑n−1

i=1 µizi) + zn
, ξj = µjξn, 1 ≤ j ≤ n− 1.

Then it is easy to verify that (5.35) is satisfied.

Recall that in the type I case, the vector fields ∂
∂z̃α in Cpq are tangent vector fields

of the particular hyperplane {zpq = 0}. We can formulate the result in §3 in a more

abstract way and extend it to a more general setting. For instance, it can be generalized

to the complex hyperplane case. We briefly discuss this in more details as follows:

First fix µ1, ..., µn−1 with (
∑n−1

i=1 µ
2
i ) + 1 = 0. Take the complex hyperplane H :

zn +
∑n−1

i=1 µizi = 0 in (z1, ..., zn) ∈ Cn.

Write

L1 =
∂

∂z1
− µ1

∂

∂zn
, ..., Ln−1 =

∂

∂zn−1
− µn−1

∂

∂zn
.

Then {Li}n−1
i=1 forms a basis of the tangent vector fields of H. For any multiindex

α = (α1, .., αn−1), we write Lα = Lα1
1 ...L

αn−1

n−1 . We define L−rank and L−nondegeneracy

as in Definition 3.1 by using rF in (5.34) and by using Lα instead of z̃α with m = n.

We write the kth L-rank defined in this setting as rankk(rF , L) We now need to prove

the following
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Proposition 5.15. rank2(rF , L) = n+ 1.

Proof of Proposition 5.15: Suppose not. By applying the same argument as in

Section 3 and a linear change of coordinates, we can first obtain a modified version of

Theorem 3.10. That is, we have the following:

Lemma 5.16. There exist n+1 holomorphic functions g1(w), ..., gn+1(w) which are de-

fined near 0 on the w−plane with {g1(0), ..., gn+1(0)} not all zero such that the following

holds for all z ∈ U.
n+1∑
i=1

gi(zn + µ1z1 + ...+ µn−1zn−1)ψi(F (z)) ≡ 0. (5.36)

Then one shows with a similar argument as in Section 3, by the fact that F has full

rank at 0, that g1(0) = 0, ..., gn(0) = 0. Hence we obtain,

Lemma 5.17. There exists a non-zero constant c ∈ C such that

cψn+1(F (z)) =
c

2

n∑
i=1

f2
i (z) ≡ 0, (5.37)

for all z ∈ U when restricted on zn +
∑n−1

i=1 µizi = 0.

We then just need to show that (5.37) cannot hold by applying the following lemma

and a linear change of coordinates.

Lemma 5.18. Let H = (h1, ..., hn) be a vector-valued holomorphic function in a neigh-

borhood U of 0 in z̃ = (z1, ..., zn−1) ∈ Cn−1 with H(0) = 0. Assume that H has full

rank at 0. Assume that a is a complex number such that,

a
n∑
i=1

h2
i (z̃) ≡ 0, (5.38)

Then a = 0.

Proof of Lemma 5.18: Seeking a contradiction, suppose not. Notice that H has

full rank at 0. We assume, without loss of generality, that (h1, ..., hn−1) gives a local

biholomorphic map near 0 from Cn−1 to Cn−1. By a local biholomorphic change of

coordinates, we assume (h1, ..., hn−1) = (z1, ..., zn−1), and still write the last component

as hn. Then equation (5.38) is reduced to

a(z2
1 + ...+ z2

n−1 + h2
n) = 0.
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To cancel the z2
1 , z

2
2 terms, it yields that hn has linear z1, z2 terms. But then h2

n would

produce a z1z2 term, which cannot be canceled out. This is a contradiction.

This also establishes Proposition 5.15.

Remark 5. By Proposition 5.15, there exist multiindices β̃1, ..., β̃n+1 with |β̃j | ≤ 2 and

z0 = (z0
1 , ..., z

0
n) with

n−1∑
i=1

µiz
0
i + z0

n 6= 0

such that ∣∣∣∣∣∣∣∣∣∣
Lβ̃

1
(ψ1(F )) ... Lβ̃

1
(ψn+1(F ))

... ... ...

Lβ̃
n+1

(ψ1(F )) ... Lβ̃
n+1

(ψn+1(F ))

∣∣∣∣∣∣∣∣∣∣
(z0) 6= 0. (5.39)

We then choose ξ0 = (ξ0
1 , ..., ξ

0
n) as in Lemma 5.14. That is

1 + z0
1ξ

0
1 + ...+ z0

nξ
0
n = 0;

n∑
i=1

(ξ0
i )2 = 0, ξ0

j = µjξ
0
n, 1 ≤ j ≤ n− 1, ξ0

n 6= 0.

It is easy to see that (z0, ξ0) ∈M.

We now define

Li =
∂

∂zi
−

∂ρ
∂zi

(z, ξ)
∂ρ
∂zn

(z, ξ)

∂

∂zn
, 1 ≤ i ≤ n− 1 (5.40)

for (z, ξ) ∈ M near (z0, ξ0). They are well-defined holomorphic tangent vector fields

along M. Moreover, ∂ρ
∂zn

(z, ξ) is nonzero near (z0, ξ0).

We define for any multiindex α = (α1, .., αn−1), Lα = Lα1
1 ...Lαn−1

n−1 . Then we define,

for any (n+ 1) collection of (n− 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βn+1)(z, ξ) :=

∣∣∣∣∣∣∣∣∣∣
Lβ1

(ψ1(F )) ... Lβ1
(ψn+1(F ))

... ... ...

Lβn+1
(ψ1(F )) ... Lβn+1

(ψn+1(F ))

∣∣∣∣∣∣∣∣∣∣
(z, ξ). (5.41)

By the fact that
∑n

i=1(ξ0
i )2 = 0, one can check that, for any multiindex α =

(α1, .., αn), Lα = Lα when evaluated at (z0, ξ0). Then we get the following:

Theorem 5.19. There exist multiindices {β1, ..., βN} such that

Λ(β1, ..., βN )(z, ξ) 6= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0), where β1 = (0, 0, ..., 0).
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5.5 The exceptional class M16

This case is very similar to the hyperquadric setting. In this case, we write the coordi-

nates of C16 as

z := (x0, ..., x7, y0, ..., y7).

The defining function of the Segre family as described in (2.15) is

ρ(z, ξ) = 1 + rz · rξ = 1 +
N∑
i=1

ψi(z)ψi(ξ), where N = 26 and

rz = (x0, ..., x7, y0, ..., y7, A0, ...A7, B0, B1). (5.42)

Here Ai, 0 ≤ i ≤ 7, B0, B1 are homogeneous quadratic polynomials in z. For instance,

B0 =
7∑
i=0

x2
i , B1 =

7∑
i=0

y2
i .

For the expressions for Ai, see Appendix I.

Let F be as before. We write

F = (f0, ..., f7, f̃0, ...f̃7).

And define rF as the composition of rz with F :

rF = rz ◦ F = (f0, ..., f7, f̃0, ...f̃7, A0(F ), ...A7(F ), B0(F ), B1(F )). (5.43)

Notice that rF has 26 components.

We will need the following lemma:

Lemma 5.20. For each fixed µ0, ..., µ6 with (
∑6

i=0 µ
2
i ) + 1 = 0 and fixed (y0, ..., y7)

with (
∑6

i=0 µiyi) + y7 6= 0, we can always find (ξ0, ..., ξ7) such that

1 + y0ξ0 + ...+ y7ξ7 = 0;

7∑
i=0

(ξi)
2 = 0, ξj = µjξ7, 0 ≤ j ≤ 6, ξ7 6= 0.

Proof of Lemma 5.20: The proof is similar to that as in the hyperquadric case.

Take the complex hyperplane H : y7 +
∑6

j=0 µjyj = 0 in (x0, ..., x7, y0, ..., y7) ∈ C16.

Write

L0 =
∂

∂x0
, ..., L7 =

∂

∂x7
.
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L8 =
∂

∂y0
− µ1

∂

∂y7
, ..., L14 =

∂

∂y6
− µ6

∂

∂y7
.

Then {Li}14
i=0 forms a basis of the tangent vector fields of H. For any multiin-

dex α = (α0, .., α14), we write Lα = Lα0
0 ...Lα14

14 . We define the notion of L−rank and

L−nondegeneracy as in Definition 3.1 using rF in (5.43) and Lα instead of z̃α. We

write the kth L-rank defined in this setting as rankk(rF , L). We now need to prove the

following:

Proposition 5.21. F is L−nondegenerate near 0. More precisely, rank11(rF , L) = 26.

Proof of Proposition 5.21: Suppose not. As in the hyperquadric case, by a mod-

ified version of Theorem 3.10, we have that there exist 26 holomorphic functions

g0(w), ..., g25(w) defined near 0 on the w−plane with {g0(0), ..., g25(0)} not all zero

such that the following holds for z ∈ U :

25∑
i=0

gi(y7 + µ0y0 + ...+ µ6y6)ψi(F (z)) ≡ 0. (5.44)

Then since F has full rank at 0, one can similarly prove that g0(0) = 0, ..., g15(0) = 0.

Hence we obtain:

Lemma 5.22. There exist c0, ..., c9 ∈ C that are not all zero such that

c0A0(F (Z)) + ...+ c7A7(F (Z)) + c8B0(F (Z)) + c9B1(F (Z)) ≡ 0, (5.45)

for all Z ∈ U when restricted on y7 +
∑6

i=0 µiyi = 0.

We then just need to show that (5.45) can not hold by the following lemma after

applying a linear change of coordinates.

Lemma 5.23. Let H = (h0, ..., h7, g0, ..., g7) be a vector-valued holomorphic function

in a neighborhood U of 0 in z̃ = (x0, ..., x7, y0, ..., y6) ∈ C15 with H(0) = 0. Assume that

H has full rank at 0. Assume that a0, ..., a9 are complex numbers such that

a0A1(H(z̃)) + ...+ a7A7(H(z̃)) + a8B0(H(z̃)) + a9B1(H(z̃)) = 0 for all z̃ ∈ U. (5.46)

Then ai = 0 for 1 ≤ i ≤ 10.
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Proof of Lemma 5.23: Suppose not. Notice that H has full rank at 0. Hence there ex-

ist 15 components Ĥ ofH that gives a local biholomorphism from C15 to C15.We assume

these 15 components Ĥ are H with η being dropped, where η ∈ {h0, ..., h7, g0, ..., g7}.

By a local biholomorphic change of coordinates, we assume Ĥ = (x0, ..., x7, y0, ..., y6).

We still write the remaining component as η. Without loss of generality, we assume

η = g7.

First we claim the coefficient a9 of B1 is zero. Suppose not. Note that y2
1, y

2
2 can

be only canceled by g2
7. Then g7 will have linear y1, y2 terms. Hence g2

7 will produce

a y1y2 term. It cannot be canceled by any other terms. This is a contradiction. Now

we consider the coefficients of A0, ..., A7. We claim ai = 0, 0 ≤ i ≤ 7. Suppose not. We

write

y7(Z̃) = λ0y0 + ...+ λ6y6 + µ0x0 + ...+ µ7x7 +O(2),

for some λi, µj ∈ C, 0 ≤ i ≤ 6, 0 ≤ j ≤ 7. By collecting the terms of the form x0yi in

the Taylor expansion of (5.46) we get

ai + a7λi = 0, 0 ≤ i ≤ 6. (5.47)

By collecting the terms of the form x1yi, 0 ≤ i ≤ 6, we get,

a1 + a3λ0 = 0,−a0 + a3λ1 = 0,−a4 + a3λ2 = 0,−a7 + a3λ3 = 0,

a2 + a3λ4 = 0,−a6 + a3λ5 = 0, a5 + a3λ6 = 0.

By collecting the terms of the form x2yi, 0 ≤ i ≤ 6, we get,

a2 + a6λ0 = 0, a4 + a6λ1 = 0,−a0 + a6λ2 = 0,−a5 + a6λ3 = 0.

−a1 + a6λ4 = 0, a3 + a6λ5 = 0,−a7 + a6λ6 = 0.

One can further write down all the coefficients for xiyj , 0 ≤ i ≤ 7, 0 ≤ j ≤ 6.

Once this is done, one easily sees that ai 6= 0 for any 0 ≤ i ≤ 7. Otherwise, all

ai = 0, 0 ≤ i ≤ 7.

Then by the above equations, we see that the matrix
a0 a1 a2 a3 a4 a5 a6

a1 −a0 −a4 −a7 a2 −a6 a5

a2 a4 −a0 −a5 −a1 a3 −a7

 (5.48)
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is of rank one. Then one can get a contradiction by, for instance, carefully checking the

determinants of its 2 × 2 submatrices. Hence ai = 0, 0 ≤ i ≤ 7. Finally we easily get

the coefficient a8 of B0 is zero.

This then establishes Proposition 5.21.

Remark 6. First fix µ0, ..., µ6 with (
∑6

i=0 µ
2
i )+1 = 0. By Proposition 5.21, there exists

multiindices β̃1, ..., β̃26 with |β̃j | ≤ 11, and

Z0 = (x0
0, ..., x

0
7, y

0
0, ..., y

0
7) with

6∑
i=0

µiyi + y7 6= 0,

such that ∣∣∣∣∣∣∣∣∣∣
Lβ̃

1
(ψ1(F )) ... Lβ̃

1
(ψ26(F ))

... ... ...

Lβ̃
26

(ψ1(F )) ... Lβ̃
26

(ψ26(F ))

∣∣∣∣∣∣∣∣∣∣
(Z0) 6= 0.

We then let ξ0 = (0, ..., 0, ξ0
0 , ..., ξ

0
7), where (ξ0

0 , ..., ξ
0
7) is choosen as in Lemma 5.20

associated with (y0
0, ..., y

0
7). That is

1 + y0
0ξ

0
0 + ...+ y0

7ξ
0
7 = 0;

7∑
i=0

(ξ0
i )2 = 0, ξ0

j = µjξ
0
7 , 0 ≤ j ≤ 6, ξ0

7 6= 0.

It is easy to see that (z0, ξ0) ∈M.

We now define

Li =
∂

∂xi
−

∂ρ
∂xi

(z, ξ)
∂ρ
∂y7

(Z, ξ)

∂

∂y7
, 0 ≤ i ≤ 7; (5.49)

L8+i =
∂

∂yi
−

∂ρ
∂yi

(z, ξ)

∂ρ
∂y7

(Z, ξ)

∂

∂y7
, 0 ≤ i ≤ 6; (5.50)

for (z, ξ) ∈M near (z0, ξ0). They are tangent vector fields alongM. Moreover, ∂ρ
∂yn

(z, ξ)

is nonzero near (z0, ξ0).

We define for any multiindex α = (α0, .., α14), Lα = Lα0
0 ...Lα14

14 . Define for any 26

collection of 15-multiindices {β1, ..., β26},

Λ(β1, ..., β26)(z, ξ) =

∣∣∣∣∣∣∣∣∣∣
Lβ1

(ψ1(F )) ... Lβ1
(ψ26(F ))

... ... ...

Lβ26
(ψ1(F )) ... Lβ26

(ψ26(F ))

∣∣∣∣∣∣∣∣∣∣
(z, ξ). (5.51)
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By the fact that
∑7

i=0(ξ0
i )2 = 0, one can check that, for any multiindex α =

(α0, .., α14), Lα = Lα when evaluated at (z0, ξ0). Then as before, we get the follow-

ing:

Theorem 5.24. There exists multiindices {β1, ..., β26} such that

Λ(β1, ..., β26)(z, ξ) 6= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, 0, ..., 0).

5.5.1 The exceptional class M27

In this setting, we use the coordinates

z = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7) ∈ C27.

The defining function of the Segre family described in (2.16) is :

ρ(z, ξ) = 1 + rz · rξ = 1 +

N∑
i=1

ψi(z)ψi(ξ), where N = 55 and

rz = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7, A,B,C,D0, ...D7, E0, ..., E7, F0, ..., F7, G).

(5.52)

Here A,B,C,Di, Ei, Fi are homogeneous quadratic polynomials in z and G is a homo-

geneous cubic polynomial in z:

A = x2x3 −
7∑
i=0

w2
i , B = x1x3 −

7∑
i=0

t2i , C = x1x2 −
7∑
i=0

y2
i . (5.53)

For the expressions for Di, Ei, Fi, G, see Appendix I. Let F be a local biholomorphic

map near 0. We write

F = (φ1, φ2, φ3, f10, ..., f17, f20, ..., f27, f30, ..., h37).

Also define rF to be the composition of rz with F :

rF = rz◦F = (φ1, φ2, φ3, f10, ..., f17, f20, ..., f27, f30, ..., f37, A(F ), B(F ), C(F ), ...., G(F )).

(5.54)

Notice that rF has 55 components. We will also write

rF = (ψ1(F ), ..., ψ55(F )).
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We write z̃ for z with x3 being dropped. Namely,

z̃ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7). (5.55)

We define the z̃−rank and ψ−nondegeneracy as in Definition 3.1 using rF in (5.54)

and z̃ in (5.55) with m = 27.

Proposition 5.25. F is z̃−nondegenerate near 0. More precisely, rank29(F, z̃) = 55.

Proof of Proposition 5.25: Suppose not. As a consequence of Theorem 3.10, there

exist c1, ..., c28 ∈ C that are not all zero, such that

c1A(F (x1, x2, 0, y0, ..., w7)) + ...+ c28G(F (x1, x2, 0, y0, ..., w7)) ≡ 0. (5.56)

We will show that (5.56) cannot hold by the following lemma:

Lemma 5.26. Let H = (ψ1, ψ2, ψ3, h10, ..., h17, h20, ..., h27, h30, ..., h37) be a vector-

valued holomorphic function in a neighborhood U of 0 in z̃ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7) ∈

C26 with H(0) = 0. Assume that H has full rank at 0. Assume that a1, ..., a28 are com-

plex numbers such that

a1A(H(z̃)) + ...+ a28G(H(z̃)) = 0 for all z̃ ∈ U. (5.57)

Then ai = 0 for all 1 ≤ i ≤ 28.

Proof of Lemma 5.26: Suppose not. Notice that H has full rank at 0. Hence there ex-

ist 26 components Ĥ of H that give a local biholomorphism from C26 to C26. We assume

these 26 components Ĥ are theH with η dropped, where η ∈ {ψ1, ψ2, ψ3, h10, ..., h17, h20, ..., h27, h30, ..., h37}.

By a local biholomorphic change of coordinates, we assume

Ĥ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7).

We still write the remaining components as η.

Case I: If η ∈ {ψ1, ψ2, ψ3}, without loss of generality, we can assume η = ψ3. We

first claim that the coefficients of A,B, i.e., a1, a2 are zero. This is due to the fact

that t2i , w
2
i , 0 ≤ i ≤ 7 can only be canceled by tiψ3, wiψ3, which do not appear in the

expressions of A(H), ..., G(H). We then claim the coefficients of C are zero, for x1x2



85

can not be canceled. Then the coefficients of all D’s have to be zero, for each tiwj is

unique and can not be canceled. Then it follows trivially that all other coefficients are

zero.

Case II: If η ∈ {h10, ..., h17, h20, ..., h27, h30, ..., h37}, without loss of generality, we

assume η = h37. Notice that the only fact we are using about Ĥ is that its components

are independent variables. For simplicity of notation, we will write

Ĥ = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w6).

We first claim that the coefficient of A is zero. This is due to the fact that x2x3 cannot

be canceled. We also claim that the coefficient of B is zero. Suppose not. Notice

that t2i can only be canceled by tih37. Then the coefficient of each Di is non zero for

0 ≤ i ≤ 7. Moreover, x1x3 can only be canceled by x1h37. This implies h37 has a linear

x3-term. Then, in particular, the t7h37 term in D0 will produce a t7x3 term. It cannot

be canceled by any other terms. This is a contradiction. Similarly, one can show that

the coefficient of C is zero. Then we claim the coefficient of D0 is zero. Otherwise,

to cancel the x3y0 term, h37 needs have a linear x3 term. Then the term t7h37 in D0

will produce a t7x3 term, which cannot be canceled by any other term. By the same

argument, one can show that the coefficients of all Di, 0 ≤ i ≤ 7, are zero. Similarly, we

can obtain the coefficients of all Ei, 0 ≤ i ≤ 7, are zero. Then we claim the coefficients

of all F ’s have to be zero. This is because each yitj is unique. It can not be canceled

out. Finally we get the coefficient of G to be zero.

This also establishes Proposition 5.25.

Remark 7. By Proposition 5.25, there exist multiindices β̃1, ..., β̃55 with |β̃j | ≤ 29, and

there exist

z0 = (x0
1, x

0
2, x

0
3, y

0
0, ..., y

0
7, t

0
0, .., t

0
7, w

0
0, ..., w

0
7), x0

3 6= 0,

such that ∣∣∣∣∣∣∣∣∣∣
∂|β

1|(ψ1(F ))

∂z̃β̃1
... ∂|β

1|(ψ55(F ))

∂z̃β̃1

... ... ...

∂|β
55|(ψ1(F ))

∂z̃β̃55
... ∂|β

55|(ψ55(F ))

∂z̃β̃55

∣∣∣∣∣∣∣∣∣∣
(z0) 6= 0.
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Then we set

ξ0 = (0, 0, ξ0
3 , 0, ...0, 0, ..., 0, 0, ..., 0), ξ0

3 = − 1

x0
3

.

It is easy to see that (z0, ξ0) ∈M = {ρ(z, ξ) = 0}.

Write

Li =
∂

∂xi
−

∂ρ
∂xi

(z, ξ)
∂ρ
∂x3

(z, ξ)

∂

∂x3
, 1 ≤ i ≤ 2;

L3+i =
∂

∂yi
−

∂ρ
∂yi

(z, ξ)

∂ρ
∂x3

(z, ξ)

∂

∂x3
, 0 ≤ i ≤ 7;

L11+i =
∂

∂ti
−

∂ρ
∂ti

(z, ξ)
∂ρ
∂x3

(z, ξ)

∂

∂x3
, 0 ≤ i ≤ 7;

L19+i =
∂

∂wi
−

∂ρ
∂wi

(z, ξ)
∂ρ
∂x3

(z, ξ)

∂

∂x3
, 0 ≤ i ≤ 7.

For any 26-multiindex β = (β1, ..., β26), we write Lβ = Lβ11 ...L
β26
26 . Now we define

for any 55 collection of 26−multiindices {β1, ..., β55},

Λ(β1, ..., β55)(z, ξ) :=

∣∣∣∣∣∣∣∣∣∣
Lβ1

(ψ1(F )) ... Lβ1
(ψ55(F ))

... ... ...

Lβ55
(ψ1(F )) ... Lβ55

(ψ55(F ))

∣∣∣∣∣∣∣∣∣∣
(z, ξ). (5.58)

Note that for any multiindex, Lβ evaluating at (z0, ξ0) coincides with ∂
∂Z̃β

. We have,

Theorem 5.27. There exists multiindices {β1, ..., β55}, such that

Λ(β1, ..., β55)(z, ξ) 6= 0

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, ..., 0).
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Chapter 6

Transversality and flattening of Segre families: Proof of

Proposition (II)

We divide the proof in two parts. In the first section, we illustrate the general method

to derive a proof and carry it out for Hyperquadric case and Grassmannian case. In

the second section, we complete the detailed proof for the remaining cases by the same

method.

6.1 Proof of Proposition (II) for Hyperquadrics and Grassmannians

In this section, we prove Proposition (II) for hyperquadrics and Grassmannians. We

still use the notations we have set up so far. We equip the space M with the canonical

Kähler-Einstein metric ω as described before. We start with the following lemma:

Lemma 6.1. Let σ̂ : (M,ω) → (M,ω) be a holomorphic isometry. In the affine space

A, its components consist of rational functions with its degree bounded only by a constant

depending on (M,ω).

Proof of Lemma 6.1: Notice that M has been isometrically embedded into CPN

through the canonical map defined before. Hence σ̂ is the restriction of a unitary

transformation. Hence σ̂ can be identified with a map of the form:

(ψ̃0, ψ̃1, ψ̃2, ..., ψ̃N ) = (

N∑
j=0

a0jψj , ...,

N∑
j=0

aijψj , ...,

N∑
j=0

aNjψj),

where ψ0 = 1 and (aij) is a unitary matrix. Write

Ψ(z) : z(∈ A) 7→ [1, κ1z1, · · · , κizi, · · · , κnzn, o(z2)] ∈ CPN

for the embedding, where κi = 1 or
√

2. σ̂ induces a birational self-action σ of A such

that Ψ(σ(z)) = σ̂(Ψ(z)). Then, from the special form of Ψ, σ(z) =
(

ψ̃1

κ1ψ̃0
, ψ̃2

κ2ψ̃0
, ..., ψ̃n

κnψ̃0

)
.
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Apparently ψ̃0 6≡ 0.

Theorem 6.2. Suppose ξ0 ∈ Cn \ {0}. Then for a generic smooth point z0 on the

Segre variety Qξ0 and a small neighborhood U ⊂ Cn of z0, there is a point z1 ∈ U ∩

Qξ0, such that Qz0 and Qz1 are both smooth at ξ0 and intersect transversally there.

Moreover, there is a biholomorphic parametrization G(ξ̃1, ξ̃2, ..., ξ̃n) = (ξ1, ξ2, ..., ξn),

with (ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ... × Un ⊂ Cn. Here when 1 ≤ j ≤ 2, Uj is a small

neighborhood of 1 ∈ C. When 3 ≤ j ≤ n, Uj is a small neighborhood of 0 ∈ C

with G(1, 1, 0, · · · , 0) = ξ0, such that G({ξ̃1 = 1} × U2 × ... × Un) ⊂ Qz0 ,G(U1 × {ξ̃2 =

1}×U3×...×Un) ⊂ Qz1 , and G({ξ̃1 = t}×U2×...×Un),G(U1×{ξ̃2 = s}×U3×...×Un), s ∈

U1, t ∈ U2 are open pieces of Segre varieties. Also, G consists of algebraic functions with

total degree bounded by a constant depending only on (M,ω).

We first claim that, due to the invariance of the Segre family, we need only to prove

the theorem for a special point 0 6= ξ0 ∈ Cn ⊂ M . Indeed, by the invariance property

mentioned in § 2, for an isometry σ, (σ, σ) preserves the Segre familyM⊂M×M. Here

for p ∈ CPN , σ(p) := σ(p) as before. Here, we mention that in the statement of the

theorem, we assume that z0 is a generic smooth point because under this transformation,

some smooth points on Qξ0 may be mapped into the hyperplance of M at infinity, which

can not be chosen as our z0.

We now proceed to the proof of Theorem 6.2 by choosing a good point ξ0. We carry

out the proof for the case of hyperquadrics and Grassmannian spaces here. The proof

for the remaining cases is similar and will be included in next section.

Proof of Theorem 6.2: Case 1. Hyperquadrics: Suppose M is the hyperquadric.

Then the defining equation for the Segre family is

ρ(z, ξ) = 1 +

n∑
i=1

ziξi +
1

4
(

n∑
i=1

z2
i )(

n∑
i=1

ξ2
i ) = 0.

We choose ξ0 = (1, 0, 0, ..., 0). Hence Qξ0 = {z : ρ(z, ξ0) = 1 + z1 + 1
4(
∑n

i=1 z
2
i ) = 0}.

We compute the gradient of ρ(z, ξ0) as follows: ∇ρ(z, ξ0) = (1 + 1
2z1,

1
2z2, ...,

1
2zn).

Notice that Qξ0 is smooth except at (−2, 0, ..., 0), namely, we have ∇ρ(z, ξ0) 6= 0 away

from (−2, 0, · · · , 0). For a smooth point z0(6= (−2, 0, · · · , 0)) of Qξ0 , we choose a
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neighborhood U of z0 in Cn such that U ∩ Qξ0 is a smooth piece of Qξ0 . Pick also

z1( 6= z0) ∈ U ∩Qξ0 and compute the gradient of the defining function of Qz0 and Qz1

at ξ0 = (1, 0, ..., 0), respectively. Recall

Qzs = {ξ|ρ(zs, ξ) = 1 +
n∑
i=1

zsi ξi +
1

4
(
n∑
i=1

(zsi )
2)(

n∑
i=1

ξ2
i ) = 0}, for s = 0, 1.

∇ρ(z0, ξ)|ξ0=(1,0,...,0)

∇ρ(z1, ξ)|ξ0=(1,0,...,0)

 =

z0
1 + 1

2

∑n
i=1(z0

i )2 z0
2 z0

3 ... z0
n

z1
1 + 1

2

∑n
i=1(z1

i )2 z1
2 z1

3 ... z1
n

 =

−2− z0
1 z0

2 z0
3 ... z0

n

−2− z1
1 z1

2 z1
3 ... z1

n


The second equality is simplified by making use of the fact that z0, z1 ∈ Qξ0=(1,0,...,0),

which implies that 0 = 1 + z0
1 + 1

4

∑n
i=1(z0

i )2 = 1 + z1
1 + 1

4

∑n
i=1(z1

i )2. Hence,

rank

∇ρ(z0, ξ)|ξ0=(1,0,...,0)

∇ρ(z1, ξ)|ξ0=(1,0,...,0)

 = rank

−2− z0
1 z0

2 ... z0
n

−2− z1
1 z1

2 ... z1
n

 = rank

−2− z0
1 z0

2 ... z0
n

−∆z1
1 ∆z1

2 ... ∆z1
n



= rank

2 + z0
1 z0

2 ... z0
n

∆z1
1 ∆z1

2 ... ∆z1
n

 = rank

 ∇ρ(z, ξ0)|z0

∆z1
1 ∆z1

2 ... ∆z1
n

 ,

where ∆z1
i := z1

i − z0
i . Notice that z0 is a smooth point on Qξ0 . Hence ∇ρ(z, ξ0) is

transversal to the tangent space of Qξ0 at z0. If we choose z1 ∈ Qξ0 close enough to z0,

which ensures (∆z1
1 , ...,∆z

1
n) close enough to tangent space of Qξ0 at z0, we then get

rank

∇ρ(z0, ξ)|ξ0=(1,0,...,0)

∇ρ(z1, ξ)|ξ0=(1,0,...,0)

 = rank

 ∇ρ(z, ξ0)|z0

∆z1
1 ∆z1

2 ... ∆z1
n.

 = 2.

We assume, without loss of generality, that ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ1,ξ2) 6= 0 at ξ0.

Now we introduce new variables ξ̃1, ..., ξ̃n and consider the following system of equa-

tions: 

P1 : 1 +
∑n

i=1(ξ̃1z
0
i )ξi + 1

4(
∑n

i=1(ξ̃1)2(z0
i )2)(

∑n
i=1 ξ

2
i ) = 0

P2 : 1 +
∑n

i=1(ξ̃2z
1
i )ξi + 1

4(
∑n

i=1(ξ̃2)2(z1
i )2)(

∑n
i=1 ξ

2
i ) = 0

P3 : ξ̃3 − ξ3 = 0

... ...

Pn : ξ̃n − ξn = 0
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Then we have ∂(P1,...,Pn)
∂(ξ1,...,ξn) |A 6= 0 and ∂(P1,...,Pn)

∂(ξ̃1,...,ξ̃n)
|A 6= 0 where

A = (ξ̃1, ..., ξ̃n; ξ1, ..., ξn) = (1, 1, 0, ..., 0; 1, 0, ..., 0).

By Lemma 4.3, we get the needed algebraic flattening with total degree bounded only

by (M,ω). This completes the proof of Theorem 6.2 in the hyperquadric case.

Case 2. Grassmannians: Pick ξ0 = (ξ0
11, ξ

0
12, ..., ξ

0
pq) = (1, 0, ..., 0). The defining

function for the Segre family associated with this point is as follows:

ρ(z, ξ) = 1 + z11ξ11 + z12ξ12 + ... + z1qξ1q + z21ξ21 + ... + zp1ξp1 +
∑

i,j 6=1 zijξij +∑
i,j≥2(z11zij − zi1z1j)(ξ11ξij − ξi1ξ1j) +

∑
(i,j),(k,l)6=(1,1)(zijzkl− zilzjk)(ξijξkl− ξilξjk) +

higher order terms.

Then Qξ0 = {z|ρ(z, ξ0) = 1 + z11 = 0},∇ρ(z, ξ0) = (1, 0, 0, ..., 0). Hence Qξ0 is

smooth. For z ∈ Qξ0 , we have z = (−1, z12, ..., z1q, z21, ..., zp1, ..., zij , ..., zpq). Pick

z0, z1 ∈ Qξ0 . Then

Qzs = {ξ|0 = ρ(zs, ξ) = 1 + zs11ξ11 + zs12ξ12 + ... + zs1qξ1q + zs21ξ21 + ... + zsp1ξp1 +∑
i,j 6=1 z

s
ijξij+

∑
i,j≥2(zs11z

s
ij−zsi1zs1j)(ξ11ξij−ξi1ξ1j)+

∑
(i,j),(k,l)6=(1,1)(z

s
ijz

s
kl−zsilzsjk)(ξijξkl−

ξilξjk) + high order terms},

for s = 0, 1.

We then compute their gradients as follows:∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 =

∂ρ(z0,ξ)
∂ξ11

∂ρ(z0,ξ)
∂ξ12

... ∂ρ(z0,ξ)
∂ξ1q

∂ρ(z0,ξ)
∂ξ21

... ∂ρ(z0,ξ)
∂ξp1

... ∂ρ(z0,ξ)
∂ξpq

∂ρ(z1,ξ)
∂ξ11

∂ρ(z1,ξ)
∂ξ12

... ∂ρ(z1,ξ)
∂ξ1q

∂ρ(z1,ξ)
∂ξ21

... ∂ρ(z1,ξ)
∂ξp1

... ∂ρ(z1,ξ)
∂ξpq

∣∣
ξ0

=

−1 z0
12 ... z0

1q z0
21 ... z0

p1 −z0
i1z

0
1j ...

−1 z1
12 ... z1

1q z1
21 ... z1

p1 −z1
i1z

1
1j ...

 .

Thus, we have

rank

∇ρ(z0, ξ)
∣∣
ξ0

∇ρ(z1, ξ)
∣∣
ξ0

 = rank

−1 z0
12 ... z0

p1 −z0
i1z

0
1j ...

0 ∆z1
12 ... ∆z1

p1 (−z0
i1∆z1

1j − z0
1j∆z

1
i1 −∆z1

i1∆z1
1j) ...

 ,

where ∆z1
ij = z1

ij−z0
ij . Hence, if we choose z1 such that z1

12 6= z0
12, Then the rank equals

to 2. Hence Qz0 and Qz1 are smooth and intersect transversally at ξ0.
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Without loss of generality, assume ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ11,ξ12) 6= 0 at ξ0. Now we introduce new

variables ξ̃11, ..., ξ̃pq and set up the system:

P11 : ρ(z0, ξ̃11ξ) = 0

P12 : ρ(z1, ξ̃12ξ) = 0

P13 : ξ̃13 − ξ13 = 0

... ...

Ppq : ξ̃pq − ξpq = 0

Then
∂(P11,...,Ppq)
∂(ξ11,...,ξpq)

|A, ∂(P11,...,Ppq)

∂(ξ̃11,...,ξ̃pq)
|A 6= 0, whereA = (ξ̃11, ..., ξ̃pq, ξ11, ..., ξpq) = (1, 1, 0, ..., 0, 1, 0, ..., 0).

By Lemma 4.3, we get the needed algebraic flattening.

6.2 Continuation of the proof of Theorem 6.2

We first establish the second part of Theorem 6.2 by assuming the first part of Theorem

6.2 is true. Namely, suppose ξ0 ∈ Cn\{0} and z0 and z1 are smooth points on the Segre

variety Qξ0 such that Qz0 and Qz1 are both smooth at ξ0 and intersect transversally

there. We shall prove that there is a biholomorphic parametrization G(ξ̃1, ξ̃2, ..., ξ̃n) =

(ξ1, ξ2, ..., ξn) with (ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ... × Un ⊂ Cn. Here for j = 1, 2, Uj is

a small neighborhood of 1 ∈ C; for 3 ≤ j ≤ n, Uj is a small neighborhood of 0 ∈ C

with G(1, 1, 0, · · · , 0) = ξ0. Moreover G({ξ̃1 = 1} × U2 × ...× Un) ⊂ Qz0 , G(U1 × {ξ̃2 =

1}×U3×...×Un) ⊂ Qz1 and G({ξ̃1 = t}×U2×...×Un) and G(U1×{ξ̃2 = s}×U3×...×Un)

are open pieces of Segre varieties for s ∈ U1 and t ∈ U2. Also G consists of algebraic

functions with total degree bounded by a constant depending only on (M,ω).

Implied by the first part of Theorem 6.2, we have

rank

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 = 2.

Without loss of generality, we can assume ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ1,ξ2) 6= 0 at ξ0. Following the
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same method used in § 6.1, we introduce new variables ξ̃1, ..., ξ̃n and set up the system:

P1 : ρ(z0, ξ̃1ξ) = 0

P2 : ρ(z1, ξ̃2ξ) = 0

P3 : ξ̃3 − ξ3 = 0

... ...

Pn : ξ̃n − ξn = 0.

Then ∂(P1,...,Pn)
∂(ξ1,...,ξn) |A 6= 0 and ∂(P1,...,Pn)

∂(ξ̃1,...,ξ̃n)
|A 6= 0, whereA = (ξ̃1, ..., ξ̃n, ξ1, ..., ξn) = (1, 1, 0, ..., 0, 1, 0, ..., 0).

By Lemma 4.3, we get the needed algebraic flattening with the bound total degree.

Next, we proceed to prove the first part of Theorem 6.2. It suffices to find a suffi-

ciently close point z1 to z0 such that

rank

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 = 2.

We establish the above rank estimate case by case as follows:

Case 3. Symplectic Grassmannians: Pick ξ0 = (1, 0, 0, ..., 0). The defining

equation of the Segre family is ρ = 1 +
∑n

i=1 ziiξii + 2
∑

i<j zijξij + 2
∑

2≤i<j(z11zij −

z1jzi1)(ξ11ξij − ξi1ξ1j) +
∑n

i=2(z11zii − z2
1i)(ξ11ξii − ξ2

1i) +
∑

i<k,j<l,(i,j)6=(1,1)(zijzkl −

zilzkj)(ξijξkl − ξilξkj) + high order terms, where zji := zij for j > i.

Qξ0 = {z|ρ(z, ξ0) = 1 + z11 = 0},∇ρ(z, ξ0) = (1, 0, ..., 0). Hence Qξ0 is smooth, and

for z ∈ Qξ0 we have z = (−1, z12, z22, z13, ..., z(n−1)n). Pick z0, z1 ∈ Qξ0 . Then

Qzs = {ξ|0 = ρ(zs, ξ) = 1+
∑n

i=1 z
s
iiξii+2

∑
i<j z

s
ijξij+2

∑
2≤i<j(z

s
11z

s
ij−zs1jzsi1)(ξ11ξij−

ξi1ξ1j) +
∑n

i=2(zs11z
s
ii − (zs1i)

2)(ξ11ξii − ξ2
1i) +

∑
i<k,j<l,(i,j)6=(1,1)(z

s
ijz

s
kl − zsilzskj)(ξijξkl −

ξilξkj) + high order terms}, for s = 0, 1.

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 =

∂ρ(z0,ξ)
∂ξ11

∂ρ(z0,ξ)
∂ξ12

... ∂ρ(z0,ξ)
∂ξ1n

... ∂ρ(z0,ξ)
∂ξij

... ∂ρ(z0,ξ)
∂ξnn

∂ρ(z1,ξ)
∂ξ11

∂ρ(z1,ξ)
∂ξ12

... ∂ρ(z1,ξ)
∂ξ1n

... ∂ρ(z1,ξ)
∂ξij

... ∂ρ(z1,ξ)
∂ξnn

∣∣
ξ0

=

−1 2z0
12 2z0

13 ... 2z0
1n −(z0

12)2 −2z0
12z

0
13 ... −(2− δij)z0

1jz
0
1i ...

−1 2z1
12 2z1

13 ... 2z1
1n −(z1

12)2 −2z1
12z

1
13 ... −(2− δij)z1

1jz
1
1i ...

 .
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Hence, we have

rank

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 = rank

−1 2z0
12 2z0

13 ... 2z0
1n −(z0

12)2 −2z0
12z

0
13 ... −(2− δij)z0

1jz
0
1i ...

−1 2z1
12 2z1

13 ... 2z1
1n −(z1

12)2 −2z1
12z

1
13 ... −(2− δij)z1

1jz
1
1i ...



= rank

−1 2z0
12 2z0

13 ... 2z0
1n −(2− δij)z0

1jz
0
1i ...

0 2∆z1
12 2∆z1

13 ... 2∆z1
1n (2− δij){z1

1j∆z
1
1i + ∆z1

1jz
1
1i −∆z1

1j∆z
1
1i} ...

 ,

where ∆z1
ij = z1

ij − z0
ij . If we pick z1

12 6= z0
12, then the above rank is 2.

Case 4. Orthogonal Grassmannians: Here we use the Pfaffian embedding

stated in §2. Fixing ξ0 = (ξ0
12, ξ

0
13, ξ

0
23, ..., ξ

0
(n−1)n) = (1, 0, ..., 0), the defining function of

the Segre family is given by ρ = 1+
∑

i<j zijξij+
∑

2<i<j(z12zij−z1iz2j+z1jz2i)(ξ12ξij−

ξ1iξ2j + ξ1jξ2i) +
∑

i<j<k<l,{1,2}6⊂{i,j,k,l}(zijzkl − zikzjl + zilzjk)(ξijξkl − ξikξjl + ξilξjk) +

high order terms. Note here we use the notation zji := −zij for j > i.

Note Qξ0 = {z|0 = ρ(z, ξ0) = 1 + z12}. Hence it is smooth. Since z ∈ Qξ0 , we have

z = (−1, z13, ..., z(n−1)n). Pick z0, z1 ∈ Qξ0 . Then

Qzs = {ξ|0 = ρ(zs, ξ) = 1 +
∑

i<j z
s
ijξij +

∑
2<i<j(z

s
12z

s
ij − zs1izs2j + zs1jz

s
2i)(ξ12ξij −

ξ1iξ2j + ξ1jξ2i)

+
∑

i<j<k<l,{1,2}6⊂{i,j,k,l}(z
s
ijz

s
kl − zsikzsjl + zsilz

s
jk)(ξijξkl − ξikξjl + ξilξjk) + h. o. t.s.}, for

s = 0, 1.

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 =

∂ρ(z0,ξ)
∂ξ12

∂ρ(z0,ξ)
∂ξ13

... ∂ρ(z0,ξ)
∂ξ1n

... ∂ρ(z0,ξ)
∂ξij

... ∂ρ(z0,ξ)
∂ξ(n−1)n

∂ρ(z1,ξ)
∂ξ12

∂ρ(z1,ξ)
∂ξ13

... ∂ρ(z1,ξ)
∂ξ1n

... ∂ρ(z1,ξ)
∂ξij

... ∂ρ(z1,ξ)
∂ξ(n−1)n

∣∣ξ0

=

−1 z0
13 ... z0

1n ... z0
2n (−z0

13z
0
24 + z0

14z
0
23)a ... (−z0

1iz
0
2j + z0

1jz
0
2i)a ...

−1 z1
13 ... z1

1n ... z1
2n (−z1

13z
1
24 + z1

14z
1
23)a ... (−z1

1iz
1
2j + z1

1jz
1
2i)a ...

 .

Hence,

rank

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 = rank

−1 z0
13 ... z0

1n ... z0
2n ...

0 ∆z1
13 ... ∆z1

1n ... ∆z1
2n ...

 .

Here ∆z1
ij = z1

ij − z0
ij . If we choose z1

13 6= z0
13, then the rank is 2.
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Case 5. M16: Pick ξ0 = (κ0
0, κ

0
1, ..., κ

0
7, η

0
0, η

0
1, ..., η

0
7) = (1, 0, ..., 0), z0 ∈ Qξ0 . The

defining equation of the Segre family is

1 + x0κ0 + x1κ1 + ... + x7κ7 + y0η0 + y1η1 + ... + y7η7 + (x0y0 + x1y1 + ...)(κ0η0 +

κ1η1 + ...) + (−y0x1 + y1x0 + ...)(−η0κ1 + η1κ0 + ...) + ... + (x2
0 + x2

1 + ... + x2
7)(κ0

2 +

κ1
2...+ κ7

2) + (y2
0 + y2

1 + ...+ y2
7)(η2

0 + η2
1 + ...+ η2

7) = 0.

Qξ0 = {z|ρ(z, ξ0) = 1 + x0 + (x2
0 + x2

1 + ... + x2
7) = 0}, and ∇ρ(z, ξ0)|z0 = (1 +

2x0, 2x1, ..., 2x
0
7, 0, ..., 0). Hence Qξ0 is smooth. Pick z0, z1 ∈ Qξ0 . Then

Qzs = {ξ|0 = ρ(zs, ξ) = 1+xs0κ0 +xs1κ1 + ...+xs7κ7 +ys0η0 +ys1η1 + ...+ys7η7 +(xs0y
s
0 +

xs1y
s
1 + ...)(κ0η0 + κ1η1 + ...) + (−ys0xs1 + ys1x

s
0 + ...)(−η0κ1 + η1κ0 + ...) + ...+ ((xs0)2 +

(xs1)2 + ...+ (xs7)2)(κ0
2 +κ1

2 + ...+κ7
2) + ((ys0)2 + (ys1)2 + ...+ (ys7)2)(η2

0 +η2
1 + ...+η2

7)},

for s = 0, 1.

rank

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 ≥ rank

∂ρ(z0,ξ)
∂κ0

∂ρ(z0,ξ)
∂κ1

... ∂ρ(z0,ξ)
∂κ7

∂ρ(z1,ξ)
∂κ0

∂ρ(z1,ξ)
∂κ1

... ∂ρ(z1,ξ)
∂y7

∣∣
ξ0

= rank

−2− x0
0 x0

1 x0
2 · · · x0

7

−2− x1
0 x1

1 x1
2 · · · x1

7

 . (C)

Since (−2 − x0
0, x

0
1, x

0
2, · · · , x0

7) 6= (0, ..., 0), we can pick z1 sufficiently close to z0,

such that the above rank is 2. That is because Qξ0 is irreducible and the subvarieties,

defined by 2× 2 minors of the last matrix in (C), are thin subsets of Qξ0 .

Case 6. M27: Take ξ0 = (ξ0
1 , ξ

0
2 , ξ

0
3 , η

0
0, η

0
1, ..., η

0
7, κ

0
0, κ

0
1, ..., κ

0
7, τ

0
0 , τ

0
1 , ..., τ

0
7 ) = (1, 0, ..., 0).

The defining function of the Segre family is 1 + rz · rξ where

rz = (x1, x2, x3, y0, ..., y7, z0, ..., z7, w0, ..., w7, A,B,C,D0, ...D7, E0, ..., E7, F0, ..., F7, G)

rξ = (ξ1, ξ2, ξ3, ..., η7, ..., κ7, ..., τ7, A(ξ), B(ξ), C(ξ), ..., D7(ξ), ..., E7(ξ), ..., G(ξ)).

Here A,B,C,Di, Ei, Fi are homogeneous quadratic polynomials; G is a homogeneous

cubic polynomial defined in 2.4.

For our purpose here, we present terms only involving ξ1, ξ2, and omit those involving

ξ3, η0, η1, ..., η7, κ0, κ1, ..., κ7, τ0, τ1, ..., τ7 as follows: ρ(z, ξ) = 1+x1ξ1+x2ξ2+...+(x1x2−

(
∑7

i=0 y
2
i ))(ξ1ξ2 − (

∑7
i=0(τi)

2)) + · · · .



95

Qξ0 = {z|ρ(z, ξ0) = 1 +x1 = 0},∇ρ(z, ξ0) = (1, 0, 0, ..., 0). Hence Qξ0 is smooth and

for z ∈ Qξ0 , we have z = (−1, x2, x3, ..., ). Pick z0, z1 ∈ Qξ0 . Then

Qzs = {ξ|0 = ρ(zs, ξ) = 1 + xs1ξ1 + xs2ξ2 + ... + (xs1x
s
2 − (

∑7
i=0(ysi )

2))(ξ1ξ2 −

(
∑7

i=0(τi)
2)) + ...}, for s = 0, 1.

rank

∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

 = rank

∂ρ(z0,ξ)
∂ξ1

∂ρ(z0,ξ)
∂ξ2

∂ρ(z0,ξ)
∂ξ3

... ∂ρ(z0,ξ)
∂η7

... ∂ρ(z0,ξ)
∂κ7

... ∂ρ(z0,ξ)
∂τ7

∂ρ(z1,ξ)
∂ξ1

∂ρ(z1,ξ)
∂ξ2

∂ρ(z1,ξ)
∂ξ3

... ∂ρ(z1,ξ)
∂η7

... ∂ρ(z1,ξ)
∂κ7

... ∂ρ(z1,ξ)
∂τ7

∣∣
ξ0

≥ rank

∂ρ(z0,ξ)
∂ξ1

∂ρ(z0,ξ)
∂ξ2

∂ρ(z1,ξ)
∂ξ1

∂ρ(z1,ξ)
∂ξ2

∣∣
ξ0

= rank

−1 −(
∑7

i=0(y0
i )

2)

−1 −(
∑7

i=0(y1
i )

2)

∣∣
ξ0
≥ 2,

for those z1’s such that
∑7

i=0(y1
i )

2 6=
∑7

i=0(y0
i )

2. This can be done in any small neigh-

borhood of z0; for {z|
∑7

i=0(yi)
2 = B} is a thin set in {z|0 = 1 + x1} for each fixed

B ∈ C.

This completes the proof of the flattening theorem.
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Chapter 7

Irreducibility of Segre varieties: Proof of Proposition (III)

In this chapter we will establish Proposition (III). We prove results on the irreducibility

of the potential function ρ, Segre varieties and the Segre family. We still adapt the

previously used notation and assume that M is an irreducible Hermitian symmetric

space of compact type of complex dimension n, which has been minimally embedded

into a projective space as described before.

Lemma 7.1. Each Segre variety is an irreducible algebraic subvariety.

Proof of lemma 7.1: For a minimally embedded Hermitian symmetric space, since

all Segre varieties are unitarily equivalent, it suffices to prove the lemma for a single

Segre variety. Without lost of generality, we take z = (0, ..., 0) ∈ A ⊂M . Therefore, the

corresponding Segre variety Q∗z is the hyperplane section M \A, which is of pure dimen-

sion. From the classical algebraic geometry [GH], when M is an irreducible Hermitian

symmetric space of compact type, the hyperplane section at infinity in the minimal

canonical embedding case is a union of Schubert cells. Moreover as shown in [CMP],

the top dimensional piece is equivalent to Cn−1 and the others are of codimension at

least two. Hence, the smooth points of Qz are connected and thus Qz is irreducible.

As a corollary of this lemma, we conclude that for each z ∈ Cn, the defining function

ρ(z, ·) of Qz has to be a power of one irreducible factor. However, as in the proof of

Theorem 6.2, for some a(6= 0) ∈ Cn, dξρ(a, ξ) is not identically zero along Qa. Next,

we use this property and the symmetric property of M to prove the following:

Proposition 7.2. For any b ∈ A with b 6= (0, ..., 0), ρ(b, ξ) (ρ(z, b), respectively) is

irreducible as a polynomial of ξ (as a polynomial in z, respectively).

Proof of proposition 7.2: Since ρ(z, ξ) = ρ(ξ, z), we need just to verify the first
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statement. Let a be as above. For b ∈ A, there is σ̂ ∈ Isom(M,ω)∩SU(N + 1,C) such

that σ̂(a) = b. (Notice that σ̂ is represented by a unitary action.) By Lemma 6.1, let

σ = ( l1
κ1l0

, ..., ln
κnl0

) be the representation of σ̂ in A with l′js polynomials in z. Write

Ψ = [1, rz] for the embedding of A in PN . Then from the definition of ρ(z, z), we have

ρ(z, z) = ||Ψ(z)||2 = Ψ ·Ψt
= (σ̂Ψ) · (σ̂Ψ)

t
.

Lemma 7.3. (σ̂Ψ) · (σ̂Ψ)
t

= |l0(Ψ)|2 · ||Ψ(σ(z))||2 = |l0(Ψ)|2 · ρ(σ(z), σ(z)).

Proof. Writing Ψ(z) = [1, rz] = [1, ψ1(z), · · · , ψN (z)]. Then the identity Ψ(σ(z)) =

σ̂(Ψ(z)) obtained in the proof of Lemma 6.1 yields that,

(ψ1(σ(z)), · · · , ψN (σ(z))) =

(
ψ̃1(Ψ(z))

ψ̃0(Ψ(z))
, · · · , ψ̃N (Ψ(z))

ψ̃0(Ψ(z))

)
.

Here ψ̃j = lj for 0 ≤ j ≤ n and σ̂(z) = [φ̃0, · · · , φ̃N ] as in the proof of Lemma 6.1. Then

we have

(σ̂Ψ)·(σ̂Ψ)
t

=
N∑
j=0

|ψ̃j(Ψ(z))|2 =

1 +
N∑
j=1

|ψj(σ(z))|2
 |ψ̃0(Ψ(z))|2 = |l0(Ψ)|2·||Ψ(σ(z))||2.

This establishes the lemma.

The Lemma 7.3 yields ρ(z, z) = |l0(Ψ)|2 · ρ(σ(z), σ(z)). Complexifying the identity

and substituting z by a, we have:

l0(Ψ)(a) · l0(Ψ)(ξ) · ρ(b, σ(ξ)) = ρ(a, ξ), (7.1)

where l0(Ψ)(a) 6= 0, l0(Ψ)(ξ), ρ(a, ξ) are polynomials in ξ and σ(ξ) is a rational map

in ξ. Now supposing ρ(b, ξ) = f l(ξ), l ≥ 2, we have ρ(b, σ(ξ)) = (f(σ(ξ)))l = (f1(ξ)
f2(ξ))l,

where f1 and f2 are coprime polynomials. Since a, b 6= (0, ..., 0), f1 is a non-constant

polynomial. Therefore in (7.1), even after cancellation, we still have a factor f l1(ξ).

However as shown in §6, the right hand side of the identity (7.1) must be an irreducible

polynomial, which is a contradiction.

As an immediate application, we have

Proposition 7.4. ρ(z, ξ) is an irreducible polynomial over Cn × Cn. Thus, the Segre

family M restricted to Cn × Cn = A × A ⊂ M ×M is an irreducible subvariety of

dimension 2n− 1.
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We also have the following slightly strong version of the above proposition, which

was used for applying a monodromy argument:

Proposition 7.5. Suppose U is an connected open set in Cn \ {0}. Then the Segre

family M restricted to U ×Cn or restricted to Cn×U is an irreducible analytic variety.

Proof of Proposition 7.5: We need only to prove the first statement. Recall the

notations we defined before: MSING = {(z, ξ) : ∂ρ
∂ξj

= 0, ∀j}∪ {(z, ξ) : ∂ρ
∂zj

= 0,∀j}, and

MREG =M\MSING. Since ρ(z, ξ) is an irreducible polynomial and ∂ρ
∂ξj
, ∂ρ∂zj , j = 1, ..., n

are polynomials with lower degrees, ∂ρ
∂ξj
, ∂ρ∂zj , j = 1, ..., n are not identically zero onM =

{ρ(z, ξ) = 0}. Each of ∂ρ
∂ξj
, ∂ρ∂zj defines a proper subvariety insideM. By Proposition 7.2,

for each z̃( 6= 0) ∈ Cn, there is a certain point ξ̃ on Qz̃ such that a partial derivative of

ρ(z̃, ξ) in ξ at (z̃, ξ̃) does not vanish. HenceMSING does not contain any Segre variety.

Also the standard projection fromMREG into the z-space is a submersion. Since Qz is

irreducible for z ∈ Cn\(0, ..., 0), Qz ∩MREG is connected.

To prove the theorem, we just need to show that MREG|U×Cn is connected. Write

the above projection map to the z-space as Φ : MREG|U×Cn → U. Since it is a sub-

mersion, it is an open mapping. Suppose z0 is a point in U. As mentioned above, we

know that each fiber of Φ is connected. For any (z0, ξ0) ∈ MREG in the fiber above

z0, we can choose a connected neighborhood V of (z0, ξ0) on MREG|U×Cn such that

Φ(V ) is neighborhood of z0. Hence, for any z ∈ Φ(V ), any point in Qz ∩MREG can be

connected by a smooth curve inside MREG|V×Cn to (z0, ξ0). Since U is connected, by

a standard open-closeness argument, we see that MREG|U×Cn is connected.
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