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ABSTRACT OF THE DISSERTATION

Fisheries management in the face of capacity, data, and climate challenges

By CHRISTOPHER M. FREE

Dissertation Director:
Olaf Jensen

The sustainable management of global fisheries is essential to addressing
food and income security in the coming century. Although fisheries management has
advanced significantly over the past few decades, a number of challenges still make
the determination of sustainable catch limits difficult to impossible. Many fisheries
remain unassessed due to a lack of capacity or lack of data to conduct stock
assessments. Furthermore, even when catch limits can be determined, illegal,
unreported, and unregulated fishing undermine their effectiveness. Finally, modern
fisheries management is complicated by climate change, which is altering
population dynamics through large-scale redistributions, changes in phenology,
altered food availability, and habitat degradation. In my dissertation, | examine the
manifestation of these three challenges - limited capacity, limited data, and climate
change - in fisheries of small-, medium-, and large-scales, respectively.

In Chapter 1 (small-scale, limited capacity), [ used a mixed-method approach
to describe the extent, character, and motivations of illegal fishing in Lake Hovsgol
National Park, Mongolia and its impact on the lake’s fish populations, especially that
of the endangered endemic Hovsgol grayling (Thymallus nigrescens). 1 show that

illegal fishing threatens the Hovsgol grayling but also provides food and income for

il



park residents. An effective management system must therefore incorporate the
needs of local people while also addressing the synergistic pressures of climate
change, water pollution, increasing tourism, and invasive species.

In Chapter 2 (medium-scale, limited data), | evaluated the performance of the
ORCS Working Group Approach to estimating stock status and overfishing limits for
‘catch-only’ fisheries. I show that the approach is a poor predictor of status and
should not be used by managers. | subsequently refined the approach using a
machine learning algorithm trained on data-rich stocks and show that the refined
ORCS approach performs better than other widely used catch-only methods and can
be used when data-moderate methods are not possible or appropriate.

In Chapter 3 (large-scale, climate change), I used surplus production models
with monotonic temperature-dependence to measure the influence of sea surface
temperature (SST) on the productivity of 190 global fish stocks. I show that ocean
warming has significantly positively and negatively influenced the productivity of
20 and 14 stocks, respectively (34 total; 18% total). The influence of warming on a
stock’s productivity is determined by ecoregion, taxonomic family, life history, and
exploitation history. Hindcasts of SST-dependent maximum sustainable yield
indicate that MSY of assessed stocks decreased 12.4% from 1930 to 2010. These
results show that we must adjust expectations for future food production from the
ocean even as the global human population and demand for seafood grows.

Together, these chapters work to help fisheries management overcome

challenges from capacity shortfalls, data limitations, and climate change.
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Introduction

Fisheries management has advanced significantly since Thomas Huxley, an
English biologist, famously declared in 1883 that the “cod fishery... and probably all
the great sea fisheries, are inexhaustible” (Huxley 1883). Indeed, in the mid-1990s,
it became widely apparent that many fisheries were overexploiting stocks and that
fisheries management systems in almost all countries required reform. Since then,
many countries have implemented reforms ranging from the adoption of
scientifically informed harvest policies to the restructuring of incentives to align
profits and conservation (Hilborn & Ovando 2014). In many cases, these reforms
have successfully reduced fishing effort to sustainable levels and prompted the
rebuilding of overfished stocks (Worm et al. 2009; Ricard et al. 2012; Neubauer et
al. 2013). These global meta-analyses demonstrate that modern fisheries
management is capable of sustainably managing global fisheries.

Although the methods for developing scientifically informed catch limits for
fisheries are well-established (Walters & Martell 2004), a number of challenges
often make their implementation difficult to impossible. Many fisheries remain
unassessed due to a lack of assessment capacity or a lack of data to conduct an
assessment. In developing countries, only 5-20% of fish stocks are assessed and this
fraction increases to only 10-50% in developed countries (Costello et al. 2012).
Furthermore, even when catch limits can be calculated, illegal, unreported, and
unregulated (IUU) fishing undermine their effectiveness (Agnew et al. 2009).
Finally, modern fisheries management is complicated by climate change, which is

altering population dynamics through large-scale redistributions (Cheung et. al



2010, 2013; Pinsky et al. 2013), changing phenology (Edwards & Richardson 2004),
altered food availability (Boyce et al. 2014 ), and degraded habitat (Mora et al. 2013).

In this dissertation, [ examine the manifestation of these challenges - limited
capacity, limited data, and climate change - in fisheries of small-, medium-, and
large-scales, respectively. In Chapter 1 (small-scale, limited capacity), | use a mixed-
method approach to describe the extent, character, and motivations of illegal gillnet
fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake’s fish
populations, especially that of the endangered endemic Hovsgol grayling (Thymallus
nigrescens). In Chapter 2 (medium-scale, limited data), [ evaluate the ORCS Working
Group approach to estimating stock status and overfishing limits for data-limited
fisheries and develop a refined version of the approach to be used when other data-
poor methods are not possible or appropriate. In Chapter 3 (large-scale, climate
change), [ use surplus production models with monotonic temperature-dependence
to measure the influence of ocean warming on the productivity of 190 global fish
stocks and hindcast their climate-driven maximum sustainable yield.

Together, these chapters work to help fisheries management overcome

challenges from capacity shortfalls, data limitations, and climate change.
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Chapter 1: A mixed-method approach for quantifying illegal fishing and

its impact on an endangered fish species”

Abstract

[llegal harvest is recognized as a widespread problem in natural resource
management. The use of multiple methods for quantifying illegal harvest has been
widely recommended yet infrequently applied. We used a mixed-method approach
to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake
Hovsgol National Park, Mongolia and its impact on the lake’s fish populations,
especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens).
Surveys for derelict fishing gear indicate that gillnet fishing is widespread and
increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with
resident herders and park rangers suggest that many residents fish for subsistence
during the spring grayling spawning migration and that some residents fish
commercially year-round. Interviewed herders and rangers generally agree that fish
population sizes are decreasing but are divided on the causes and solutions.
Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently
target Hovsgol grayling. Of the five species sampled in the monitoring program, only
burbot (Lota lota) showed a significant decrease in population abundance from

2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed

* Published as: Free CM, Jensen OP, Mendsaikhan B (2015) A mixed-method approach for quantifying
illegal fishing and its impact on an endangered fish species. PLoS One 10(12): e0143960.



significant declines in average body size, suggesting a negative fishing impact. Data-
poor stock assessment methods suggest that the fishing effort equivalent to each
resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to
overexploit the grayling population. Results from the derelict fishing gear survey
and interviews suggest that this level of effort is not implausible. Overall, we
demonstrate the ability for a mixed-method approach to effectively describe an
illegal fishery and suggest that these methods be used to assess illegal fishing and its

impacts in other protected areas.

Introduction

[llegal, unreported, and unregulated (IUU) fishing undermine efforts to
sustainably manage fish stocks and threaten fish populations worldwide (Agnew et
al. 2009). Managers must know as much as possible about the extent, character (e.g.,
gear types, target/bycatch species, timing, location), and motivations of illegal
fishing to effectively develop and implement regulations. However, quantifying
illegal fishing is inherently difficult: it is generally covert and significant incentives
exist for informants to withhold information (Renzetti & Lee 1993). Furthermore,
budget and human resource constraints often restrict efforts to monitor illegal
resource use, especially in developing countries (James et al. 1999). There is a need
to develop inexpensive yet informative methods for quantifying illegal fishing and
its impacts.

Indirect observation, the use of signs of illegal activity as an indicator of non-

compliance, has been commonly used to characterize illegal resource use in



terrestrial systems (Gavin et al. 2010), but has been infrequently used in marine
systems (Bergseth et al. 2013), and to our knowledge, has never been used in
freshwater systems. In marine systems, dynamite blast craters (Guard &
Masaiganah 1997; Crawford et al. 2004) and derelict fishing gear (Chiappone et al.
2004) have been used as indicators of illegal fishing, but have generally failed to
quantitatively measure non-compliance (Bergseth et al. 2013). Most successful
quantifications of illegal fishing compare the amount of derelict fishing gear inside
and outside reserve boundaries (Cinner et al. 2005, 2006; McClanahan et al. 2006,
2009), but such comparisons are of little use in places without reserves or where
the areas outside reserves are undesirable to fishers. The full capacity for indirect
observation to reveal rich and quantitative information about illegal fishing remains
unexplored.

Indirect observation offers several advantages over other approaches for
assessing illegal fishing. It does not require large amounts of labor, specialized
equipment, or training and can be recorded during routine enforcement patrols or
biological surveys (Bleher et al. 2006). Repeated surveys can reveal spatial and
temporal patterns of non-compliance (Chiappone et al. 2004; Cinner et al. 2005,
2006; Williamson et al. 2014) that can be compared to changes in fish communities
to examine the effects of illegal fishing (Jachmann 2008). Although indirect
observation generally cannot identify specific violators or motivations for non-
compliance, they can contribute to a comprehensive understanding of non-
compliance when combined with other methods, such as direct questioning (Cinner

etal. 2005, 2006).



In this study, we used a mixed-method approach to evaluate the extent,
character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park
(LHNP), Mongolia and its impact on the lake’s fish populations, especially that of the
endangered endemic Hovsgol grayling (Thymallus nigrescens). Despite the closure of
the park to gillnet fishing in 1992, illegal fishing is known to persist (Ocock et al.
2006a,b). We used four complimentary methods to describe this fishery and
evaluate its impacts: (1) surveys for derelict fishing gear, an indirect indicator of
fishing activity, to evaluate how much illegal fishing is occurring, where illegal
fishing is occurring, and what gear is being used; (2) interviews with herders living
within the park and park rangers to validate and contextualize the results of the
surveys for derelict fishing gear; (3) biological monitoring to identify fish species
vulnerable to gillnet fishing and evaluate changes in population abundance
potentially caused by fishing; and (4) data-poor stock assessment methods to
estimate the effort required to overexploit the Hovsgol grayling population.

Overall, we demonstrate the ability for a mixed-method approach to describe
an illegal gillnet fishery and suggest that these methods could be used to effectively

and inexpensively assess illegal fishing and its impacts in other protected areas.

Methods
Study site

Lake Hovsgol (51°05’50”N, 100°30’E) is located in the mountains of northern
Mongolia at the southern edge of the Siberian taiga forest. It is the 19t largest lake

in the world by volume (480 km3) and has a maximum depth of 262 m and surface



area of 2,760 km? (Goulden et al. 2006). The lake was established as a National Park
in 1992 and is mostly undeveloped. The majority of the resident population lives in
two towns on the lakeshore: Hatgal (pop. 2,980) and Hankh (pop. 2,460; NSOM
2012). Tourist camps line the southwestern shore and herding families live
intermittently along the lakeshore (Figure 1). Most of the park’s ~35,000 annual
visitors enter and remain in the southern portion of the park (MEGD 2013).

Lake Hovsgol has ten fish species, the most abundant of which, the Hovsgol
grayling (Thymallus nigrescens), is endemic to the lake and is listed as endangered
on the Mongolian Red List due to climate change and illegal fishing (Ocock et al.
2006a). Hovsgol grayling are more common in littoral areas than pelagic areas and
are most abundant along the western shore (Ahrenstorff et al. 2012). A portion of
the grayling population spawns in tributary streams in late spring while another
portion spawns in the littoral in late summer (Sideleva 2006). The prevalence,
fidelity, and success of these spawning strategies are unknown.

The sparse literature on Mongolian fisheries suggests that commercial
fishing for Hovsgol grayling, lenok (Brachymystax lenok), roach (Rutilus rutilus),
perch (Perca fluviatilis), and burbot (Lota lota) removed as much as 200-400 tons
annually before the park was established (Dulmaa 1999; Supp. Table 1). Despite the
ban on gillnet fishing, active gillnets are often observed and grayling and lenok are
frequently sold in Hatgal and along the southwestern shore road. Recreational hook-
and-line fishing is legal within the park and is regulated through permits and season
and bag limits. Subsistence fishing during the spring spawning migration, though

officially illegal, is generally tolerated.



Surveys for derelict fishing gear

We surveyed and collected derelict fishing gear at ten sites on the Lake
Hovsgol shoreline in July 2013 and resurveyed six of these sites in July 2014 (Figure
1). Although fishing gear found in the 2013 surveys could represent several years of
accumulation and even pre-date the ban on gillnet fishing, gear found in the 2014
resurveys must represent accumulation over the preceding year, since all gear was
removed from these sites during the 2013 surveys. Sites were selected as part of a
long-term fish monitoring study (Ahrenstorff et al. 2012); though non-random, they
provide excellent spatial coverage and access to points and bays on all sides of the
lake. In 2013, we censused 54.9 km of shoreline (10 sites, 13 transects, 0.4-8.5 km
each, ~13% of total shoreline) for all anthropogenic debris, including derelict
fishing gear, between the water and wrack lines (Free et al. 2014).In 2014, we
recensused 31.9 km of the original transects (7 sites/transects, 1.3-8.3 km each) for
derelict fishing gear only. Because transect widths were variable, we report linear
(km1) rather than areal (km-2) debris density. Derelict fishing gear was classified
into the following gillnet categories: whole net, net fragment, float line, lead line,
foam float, or bottle float (Supp. Figure 1); and hook-and-line categories: rod,
monofilament, lure, or bobber. Bottles, string/rope, and stakes without mesh, floats,
weights, or lines were not considered fishing gear. We weighed each item and
measured the mesh size (knot to knot distance) of every whole gillnet or gillnet

fragment.
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Interviews with herders and rangers

The Rutgers University Internal Review Board (IRB) approved our interview
protocol (Protocol E14-675) and all respondents gave informed verbal consent
(written consent is problematic in former Soviet regions) as approved by the IRB.

We used a semi-structured questionnaire to interview ten herding families
from three sites (Figure 1) about their fishing habits, fishing activity they observe,
and status and conservation of fish in the lake (Appendix A). The first household at
each site was selected opportunistically and additional households were
recommended by this family. This “snowball sampling” method is commonly used to
find respondents in isolated or hard-to-access groups (Atkinson & Flint 2001). We
interviewed seven male and three female heads of household. Family and herd sizes
ranged from 3-7 people and 4-630 animals, respectively.

We used a different semi-structured questionnaire to interview five park
rangers, including the head ranger, from 5 of 17 ranger districts (Figure 1) about the
frequency and character of illegal fishing, actions taken against illegal fishers, and
status and conservation of fish in the lake (Appendix B). The interviewed rangers
were male and had worked as rangers for 3-15 years. They were responsible for

districts that varied in area (22-398 ha) and number of families (32-1,264 families).

Biological sampling, gillnet catch efficiency, and population trends
We used fish monitoring data to estimate catch rates for gillnet mesh sizes

used by fishers and to evaluate changes in fish population abundance and body size.
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The Rutgers University Animal Care and Facilities Committee approved our
fish sampling protocol (Protocol 11-005). Permission to conduct field research
(Permit 6/445) was granted by the Mongolian Ministry of Environment and Green
Development (MEGD). In July 2009 and 2011-13, we set two monofilament
horizontal gillnets at seven of the ten surveyed sites (Figure 1). Both gillnets were 2
m deep and 20 m long with 4 m panels of 2.54, 3.81, 5.08, 6.35, and 7.62 cm bar
mesh. They were set at least 100 m apart, perpendicular to shore, using a stationary
bottom set in water < 10 m deep, and were fished overnight (8.5-10.5 hr) at each
location. Captured fish were identified and measured to the nearest millimeter in
total length. Weights for fish without weight measurements were estimated using
length-weight parameters derived from our data (Supp. Figure 2).

Vulnerability of fish to gillnets can vary depending on species, body size, and
mesh size. We calculated catch-per-unit-of-effort (CPUE) for each gillnet panel in
terms of count and biomass (#/kg 10 m1 night1) to determine species-specific and
overall catch rates for each mesh size. We also calculated the species-specific CPUE
of each gillnet set in terms of count and biomass (#/kg night1) and used linear
mixed effects models to examine changes in species-specific abundance from 2009-
13 while accounting for sampling site as a random effect on the model intercepts.
Decreases in body size can be a useful indicator of fishing impacts when changes in
abundance cannot be accurately assessed (McClenachan 2009). Therefore, we also
used linear mixed effects models to examine changes in species-specific body size
(length/weight) from 2009-13. P-values were generated through likelihood ratio

tests of the full models and null ‘intercept only’ models. All analyses were performed
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in R version 3.2.0 (R Core Team 2015) and mixed effects models were fit using the

Ime4 package (Bates et al. 2015).

Potential population level impacts on Hovsgol grayling

We used methods commonly used in data-poor fisheries management to
estimate the maximum sustainable yield (MSY) for Hovsgol grayling and evaluate
the likelihood that illegal gillnet fishing could approach or exceed this threshold.
Fishing at a rate greater than that which results in MSY is a common definition of
overfishing (Hilborn & Walters 1992).

Meta-analyses have shown that fish life history traits can be used to estimate
natural mortality rates (Kenchington 2014), which can in turn be used to estimate
Fumsy (Zhou et al. 2012), the fishing mortality rate resulting in MSY. We estimated the
Hovsgol grayling natural mortality rate (M) using three separate life history
invariant approaches (Table 1) and applied the Zhou et al. (2012) method to
estimate Fusyas 0.87*M. We used a length-converted catch curve analysis (Pauly &
Morgan 1987) to calculate total mortality (total mortality = fishing mortality +
natural mortality) to place an upper limit on possible natural mortality rates and
estimate current fishing mortality rates. More details on the mortality estimation
methods are provided in Appendix C.

We then calculated MSY for each Fusy estimate using the Ahrenstorff et al.
(2012) hydroacoustic biomass estimate for Hovsgol grayling (4.4 + 0.9 kg ha'1) and
estimated the number of nights of gillnet fishing required to reach each MSY

assuming fishers use 50-m gillnets with 2.54-cm mesh, the optimal mesh size for
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targeting grayling (~15 kg grayling night'1; see Section 3.4). Finally, we estimated
the number of fishers required to achieve each MSY assuming fishers use 50-m of
gillnet 100 nights year-l. These assumptions seem reasonable given the number of
nets used by observed and self-reported fishers and reports that fishing continues

throughout the winter (see Sections 3.2 and 3.3).

Results
Surveys for derelict fishing gear

A total of 220 (5.78 kg) and 281 (3.82 kg) pieces of derelict fishing gear were
collected in the 2013 and 2014 surveys, respectively. Fishing gear comprised 25%
of the total weight of plastic debris observed during the 2013 surveys (Free et al.
2014). Derelict gillnet material, the majority of fishing gear found in both years
(Figure 2), was found in all but two 2013 transects and all 2014 transects (Figure 1).
Foam floats were the most abundant gillnet debris items by count, likely due to their
ability to separate from nets and disperse widely; gillnet fragments were the most
abundant gillnet debris items by weight, likely due to their large size and heavy lead
lines. Gillnet fragments ranged from 2-8 cm in mesh size with 3-4 cm mesh being the
most common by both count and weight (Figure 2). All six active gillnets observed
had 3.0 cm mesh. The density of derelict gillnet material varied among transects, but
in both years, Site 7, the most remote and difficult to access site, had the lowest
density of gillnet material and Site 10 (Har Us), the primary location of the spring

spawning migration fishery, had the highest density of gillnet material. The density
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of derelict gillnet material in resurveyed sites was higher in 2014 than 2013 at all

but Site 7 suggesting that illegal fishing may be increasing (Figure 1).

Interviews with herders

All of the interviewed herding families (n=10) reported fishing and observing
others fishing (Supp. Table 4). Families on the eastern shore reported fishing with
gillnets repeatedly throughout the year and during the spring grayling spawning
migration. They also reported observing commercial gillnet fishers from Hatgal
during the winter and during the spring spawning migration, and they reported
finding enforcement ineffective. In contrast, families on the northwestern shore
reported fishing with rods or by hand only once per spring spawning migration.
They reported no commercial fishing activity and found enforcement effective. All of
the families reported that Russian visitors fish recreationally year-round but
especially in winter with ice fishing rods and gillnets (Supp. Table 4).

All of the families reported fishing primarily for Hovsgol grayling and
primarily for household consumption; only one family from the eastern shore
reported selling fish (Supp. Table 4). Families reported fishing primarily during the
spawning migration because (1) grayling soup is healthy after the long winter; (2)
fish are more abundant and easier to catch than any other time; (3) herders are too
busy to fish, or they live away from the lake, the rest of the year; (4) cooking
grayling soup interferes with milk production, their principal food source; and (5)
eating grayling allows them to delay the slaughtering of herd animals until they have

had time to fatten.
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Nearly all of the interviewed herders stated that fish population sizes have
decreased dramatically (Supp. Table 4). Many recalled that migrating fish were once
so numerous that the rivers appeared to “be only fish and no water.” Most of the
herders also asserted that fish body sizes have decreased and that large lenok and
burbot have become especially rare (Supp. Table 4). The herders stated that “local
people should protect the lake and fish” but offered few concrete ideas for achieving

this objective (Supp. Table 4).

Interviews with rangers

The rangers reported that recreational, commercial, and subsistence fishing
all occur in LHNP (Supp. Table 5). The rangers agreed that the majority of
recreational fishers are non-local Mongolians or foreigners who fish with rods
primarily in summer but also through the ice in winter. The rangers reported that
recreational fishers are generally permitted and compliant with the law. All but one
ranger reported that local Mongolians use gillnets to target Hovsgol grayling and
lenok for subsistence or commercial purposes (Supp. Table 5). The rangers reported
that subsistence fishers fish almost exclusively at river mouths during the spring
spawning migration and that commercial fishers come predominantly from Hatgal
due to that town’s proximity to the developed southwestern shore and the city of
Moron. The rangers asserted that the town of Hankh is too remote and undeveloped
for commercial fishing to be viable. The rangers reported that commercial gillnet
fishing occurs year-round and that fishing when the lake is freezing, thawing, or

entirely frozen may even be preferred (Supp. Table 5).



16

The rangers were divided on the status of fish in the lake: three rangers
reported that fish population sizes are decreasing and two rangers reported that
they are increasing (Supp. Table 5). The rangers who reported fish population sizes
to be decreasing reported that lenok have become especially rare. The majority of
rangers reported that fish body sizes have not changed (Supp. Table 5). The rangers
were also divided on the best approach to conservation. The head ranger asserted
that the native Great Cormorant (Phalacrocorax carbo) population is the primary
threat to fish and that their population must be controlled. Another ranger
suggested that grayling die naturally after the spring spawning migration (an
assertion that is not supported by the scientific literature) and that these migrations
must therefore be prevented. The remaining rangers emphasized the importance of
improved enforcement during the spawning migration (Supp. Table 5).

The rangers offered a detailed description of fishing at Har Us mineral spring
(Site 10), the primary location of the spring grayling spawning migration fishery.
Mineral springs are culturally important to Mongolians and visiting this spring in
May-June is a longstanding social tradition. Rangers are instructed not to enforce
the gillnet ban on fishers at Har Us during this time. The rangers reported that over
570 people visited the spring in 2013 and set a total of 60-100 nets per day with an
average catch of 50-70 grayling per net. They estimated that 3,600 grayling were
caught per day during peak migration (Jun 7-12) and 1,000-1,500 grayling per day
from May 30-Jun 6 and Jun 13-24. Based on this report, we estimate that the Har Us

fishery removes ~33,000 fish annually.
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Gillnet catch efficiency and population trends

The 2.54-cm mesh in our survey gillnets maximized total nightly catch by
numbers because it maximized the catch of the abundant Hovsgol grayling (Supp.
Figure 3). The 3.81- and 5.08-cm mesh sizes showed similar catch rates and
maximized total nightly catch by biomass because they maximized the catch of
larger-bodied lenok and burbot (Figure 3); however, the median nightly catch
biomass of the 2.54-cm mesh was comparable to those of the 3.08- and 5.81-cm
mesh and the 2.54-cm mesh captured fish during every gillnet set, while the larger
mesh sizes were often observed empty.

Analysis of the biological monitoring data identified significant reductions in
body size for three species over the sampling period (2009-13), but a significant
change in CPUE for only one species. Linear mixed effects regression on species-
specific CPUE indicates that only burbot population abundance decreased
significantly from 2009-13 (Figure 4; Supp. Figure 4). Linear mixed effects
regression on body size indicates that grayling, roach, and burbot body size
decreased significantly from 2009-13 (Figure 5; Supp. Figure 5). The abundance and

body size of other species remained constant.

Potential population level impacts on Hovsgol grayling

Estimates of Hovsgol grayling natural mortality (M) ranged 0.25-0.37 (Table
1). A total mortality estimate of 0.42 (Supp. Figure 7) implies fishing moralities of
0.06-0.15, all of which are less than their associated Fusy estimates (Table 1). The

Fumsy estimates imply MSY values of ~255-331 metric tons yr-1, which could be
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achieved in ~17,000-22,000 nights of fishing with 50-m optimal mesh gillnets
(Table 1). Although these estimates seem large for a low-density resident
population, they could be achieved by 170-220 fishers using 50-m of optimal mesh
gillnet 100 nights year! (roughly twice per week). With an estimated permanent
population of 5,440 in LHNP and average family size of 3.6 people (NSOM 2012),
this effort could be attained if 11.3-14.6% of families participated in the fishery
(Table 1). Alternatively, this effort could be attained if every family living in the park

fished with 50-m of optimal mesh gillnet 11.3-14.6 nights per year.

Discussion

Knowledge of illegal fishing in Lake Hovsgol National Park (LHNP) has been
anecdotal and limited in its usefulness to managers, but with a mixed-method
approach, we have empirically described the extent, character, and motivations of
illegal fishing and its potential impact on the lake’s fish populations.

Our mixed-method approach reveals a fuller understanding of illegal fishing
in LHNP than using a single method alone. Each method validates, contextualizes,
and builds upon the others to construct a consistent story for a complex fishery: (1)
surveys for derelict fishing gear quantitatively describe the extent, location, and
methods of fishing: gillnet fishing is widespread and increasing and fishers generally
use 3-4 cm mesh gillnet; (2) interviews with herders and park rangers
contextualize these results by qualitatively describing the motivations of fishers,
character of fishing, and status of fish in the lake: many residents gillnet fish for

subsistence during the spring grayling spawning migration, some residents gillnet
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fish commercially year-round, and fish population sizes are decreasing; (3)
biological monitoring documents the vulnerability of fish to gillnets as well as
population-level trends in fish abundance and body size: the gillnet mesh sizes used
by fishers efficiently target Hovsgol grayling and grayling, burbot, and roach exhibit
negative population-level trends; and (4) data-poor stock assessment analyses
demonstrate that plausible levels of fishing effort by Lake Hovsgol residents using
gillnets have the capacity to result in overexploitation of the Hovsgol grayling
population. Though seemingly intuitive, the use of multiple methods to quantify and
characterize illegal resource use has been rare and should be more widely used by
conservation scientists and resource managers (Gavin et al. 2010; Bergseth et al.
2013).

Our surveys for derelict fishing gear are an improvement to previous studies
because we use repeated surveys to measure re-accumulation rates and biological
monitoring data to evaluate the vulnerability of fish to the gear observed in surveys.
The majority of studies have focused on comparing the density of derelict gear
inside and outside marine reserves for quantifying non-compliance and fail to
measure or report accumulation rates (e.g., Cinner et al. 2005, 2006; McClanahan et
al. 2006). A few studies have measured the accumulation rates of derelict gear
among habitat types to inform cleanup efforts but have not used the results to
understand non-compliance (e.g., Donahue et al. 2001; Chiappone et al. 2004; Bauer
et al. 2008). Only Williamson et al. (2014) and the present study have linked these
objectives and used both the density and re-accumulation rate of derelict fishing

gear to evaluate temporal and spatial trends in non-compliance. By measuring re-
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accumulation, we show not only that the observed gillnet was used recently and
does not pre-date the ban on gillnet fishing, but also that gillnet fishing is becoming
increasingly common. Neither Williamson et al. (2014) or our study properly
control for the influence of habitat characteristics (e.g., shore/bottom cover or
wind/wave exposure) on accumulation and future studies must consider these
covariates when identifying hotspots of illegal fishing.

Although our interview method likely underestimates the rate of non-
compliance (Soloman et al. 2007; Thomas et al. 2014), it provides a relative
description of the frequency of illegal fishing and important information about the
motivations for non-compliance, which cannot be gained using other respondent-
based approaches (Gavin et al. 2010). The biases and limitations of direct
questioning (DQ) can be reduced when researchers have long-standing
relationships with the community (Mann 1995; Wolter & Preisendorfer 2013) or by
interviewing multiple stakeholders (Mann 1995; Jupiter & Egli 2011). In our study,
this likely contributes to the discrepancy in personal fishing habits reported by
herders on the eastern and western shores. Whereas eastern shore herders, with
whom we have long partnerships, reported frequent gillnet use, western shore
herders reported fishing by hook and line or by hand only. Although this may reflect
real geographic differences, it may also reflect social desirability bias (Fisher 1993),
as western shore herders might be less comfortable revealing sensitive information
to us. In our study, this bias is partially corrected by interviewing multiple
stakeholders and by inquiring about observed illegal behavior (Mann 1995; Jupiter

& Egli 2011). For example, herders were more likely than park rangers to
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characterize enforcement as ineffective and park rangers were more likely than
herders to describe illegal fishing. Similarly, although some respondents were likely
to underreport personal fishing, they may not be as likely to underreport observed
fishing by others.

Because of these biases, recent papers promote the randomized response
(RRT; Warner 1965) and item count techniques (ICT; Miller 1984) over DQ for
quantifying non-compliance (Blank & Gavin 2009; St. John et al. 2010; Nuno & St.
John 2014; Thomas et al. 2014), but we argue that DQ more easily and fully reveals
the motivations for non-compliance (Gavin et al. 2010), which is essential
information for successful management (Keane et al. 2008). RRT and ICT incentivize
honest responses about illegal behavior by protecting anonymity and generally
generate more accurate estimates of the proportion of the sample population
engaging in illegal behavior (Soloman et al. 2007; Thomas et al. 2014); however,
these approaches require large sample sizes and prevent researchers from
implicitly discerning motivations for non-compliance by linking behaviors with
covariates or from explicitly inquiring about the motivations for non-compliance
(Nuno & St. John 2014). DQ, on the other hand, allows researchers to inquire about
the motivations for non-compliance, importance of natural resources to culture or
livelihood, and desire for changes to management rules. Managers must consider
the socioeconomic functions of resource use and DQ should remain in the
conservation science toolbox.

Although the population-level impacts observed in our biological monitoring

data cannot necessarily be attributed to illegal fishing, they indicate the importance
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of improving fisheries management in LHNP, especially given the feasibility for
gillnet fishers to overexploit the Hovsgol grayling population, as indicated by the
data-poor stock assessment analysis. These calculations represent a simplification
of population dynamics made necessary by the lack of time series of fishery
removals or estimates of biological parameters needed for more complex data-poor
assessment methods (Jensen et al. 2009). However, our indirect estimates of M for
Hovsgol grayling are similar to direct estimates of M for Arctic grayling (T. arcticus),
a close relative (0.29 average; Supp. Table 3). Furthermore, all of our MSY estimates
indicate that overexploitation is possible even with only a small percentage of the
population participating in the fishery using gillnets, an inexpensive and widely
available fishing gear. The threat of overexploitation is not unrealistic given that
grayling, as a taxonomic group, can be susceptible to anthropogenic influences as
has been seen with the extirpation of many North American Arctic grayling
populations in Montana and Wyoming (Northcote 1995). Salmonids are vulnerable
to exploitation and other disruptions during their spring spawning migrations
(Roberts & White 1992) and managers must carefully consider the value and impact
of the spring spawning migration fishery.

The results of our mixed-method approach indicate that illegal fishing is a
problem in Lake Hovsgol but that fish also serve an important socioeconomic
function. An effective management system will need to incorporate the needs of
local people as well as address the synergistic pressures of climate change, water
pollution, increasing tourism, and invasive species on LHNP’s fish populations. In

the last 40 years, regional air temperatures have increased 2.1°C (Dagvadorj et al.
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2009), a rate of warming more than three times faster than the global average (IPCC
2013), which has prompted the drying of many of Lake Hovsgol’s previously reliable
streams and loss of grayling spawning habitat (Ocock et al. 2006a,b). Increasing
tourism may result in increased fishing pressure, habitat destruction, water
pollution, and invasive species introductions without proper management. Lake
Hovsgol is already heavily polluted with household trash and will only become more
polluted with additional strains on its inadequate waste management system (Free
et al. 2014). Although no invasive species have established to date, the successful
introduction of a new fish or aquatic plant species could alter this otherwise intact
ecosystem (Young et al. 2014).

Fishing, historically uncommon in Mongolia’s pastoralist culture, may be
gaining prevalence as a new source of food, income, or recreation, especially as
climate change makes herding more difficult (Batima 2013) and urban Mongolians
acquire more globalized tastes in food and leisure (Bruun & Odgaard 2013). At the
same time, Mongolia aims to protect 30% of the country by 2030, more than
doubling the area currently under protection (Myagmarsuren 2008). These trends
forecast continued conflicts between economic and conservation objectives and the
way in which these conflicts are resolved or ignored in the iconic LHNP could shape

future protected area management in the country.
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Figure 1. Location of shoreline surveys for derelict fishing gear, fish population

monitoring sites, and interviews with park rangers and resident herders in Lake

Hovsgol National Park (LHNP), Mongolia. Grey and black bars indicate the density
(# km1) of derelict gillnet items observed in the 2013 (n=10) and 2014 (n=7)

surveys, respectively (note different y-axis scale for Site 10). Black site numbers

indicate the seven sites where fish population monitoring surveys were conducted

in 2009 and 2011-13. Solid black lines indicate the park boundary and 17 ranger

districts. Five rangers from five districts (dark grey; Hankh town limits represent

one district) were interviewed. Herders were interviewed at Sites 3 (n=3), 4 (n=3),

and 6 (n=4). Small white triangles indicate tourist camps, large black circles indicate

town centers, dotted black lines indicate primitive roads, and solid gray lines

indicate rivers and seasonal steams.
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y-axis scales.
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Figure 3. Catch-per-unit-of-effort (CPUE; kg 10 m-! night1) by mesh size for the five

most abundant species in gillnet catches and the sum of their weight from the two 5-

panel sequential mesh gillnets used at seven sites in 2009 and 2011-2013 (14 sets

yr-1, 56 sets total). Boxplots indicate median (heavy black line), interquartile range

(IQR; box), 1.5 times the IQR (whiskers), and extreme values (open circles). Note

variable y-axis scales.
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Figure 4. Trends in the abundance of the five most abundant fish species in gillnet
catches from 2009-2013. Points indicate the CPUE (kg net! night1) of each 5-panel
sequential mesh gillnet set (2 nets site'l x 7 sites yr-1 = 14 sets yr-1). Dark lines
indicate linear mixed effects regressions fit to the catch data, gray shading indicates
the confidence interval for each regression, and dashed lines indicate the prediction
interval for the data. P-values are indicated in the upper right corner of each panel.

Points are jittered around year for display. Note variable y-axis scales.
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Figure 5. Trends in the body size of the five most abundant fish species in gillnet

catches from 2009-2013. Points indicate the weight (kg) of every fish caught in

gillnet sets that year (2 nets site'l x 7 sites yr-! = 14 sets yr-1). Dark lines indicate

linear mixed effects regressions fit to the catch data, gray shading indicates the

confidence interval for each regression, and dashed lines indicate the prediction

interval for the data. P-values are indicated in the upper right corner of each panel.

Points are jittered around year for display. Note variable y-axis scales.
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Supp. Figure 2. Length-weight relationships for the five most abundant fish species

in gillnet catches in Lake Hovsgol. Note variable y-axis scales.
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sets yr'1 x 4 yr = 56 sets total). Boxplots indicate median (heavy black line),
interquartile range (IQR; box), 1.5 times the IQR (whiskers), and extreme values

(open circles). Note variable y-axis scales.
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Supp. Figure 4. Trends in the abundance of the five most abundant fish species in
gillnet catches from 2009-2013. Points indicate the CPUE (# net! night1) of each 5-
panel sequential mesh gillnet set (2 nets site'! x 7 sites yr-1 = 14 sets yr-1). Dark lines
indicate linear mixed effects regressions fit to the catch data, gray shading indicates
the confidence interval for each regression, and dashed lines indicate the prediction
interval for the data. Points are jittered around year for display. P-values are

indicated in the upper right corner of each panel. Note variable y-axis scales.
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Supp. Figure 5. Trends in the body size of the five most abundant fish species in

gillnet catches from 2009-2013. Points indicate the total length (mm) of every fish

caught in gillnet sets that year (2 nets sitel x 7 sites yr-1 = 14 sets yr-1). Dark lines

indicate linear mixed effects regressions fit to the catch data, gray shading indicates

the confidence interval for each regression, and dashed lines indicate the prediction

interval for the data. P-values are indicated in the upper right corner of each panel.

Points are jittered around year for display. Note variable y-axis scales.
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Supp. Figure 6. Estimates of the life history characteristics used to calculate natural
mortality (M) for Hovsgol grayling (see Table 1 for M estimation methods and
results): (A) Lins K, and tmax were estimated from aged otoliths and a von Bertalanffy
growth model (black line) fit through the observed age-size relationship and origin
(Tsogotsaikhan et al. in review) and (B) GSI was estimated as the mean
gonadosomatic index (GSI) for all observed grayling (Jensen, unpublished data). In
(B) the black line indicates a linear regression fit and the grey shading indicates the
confidence interval for the regression. Life history characteristics are marked and

labeled in both panels.
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Supp. Figure 7. The (A) length and (B) length-converted age structure of the

Hovsgol grayling population. The length strucutre was observed in the Ahrenstorff

et al. (2012) hydroacoustic surveys. In (B), the solid black line indicates a linear

regression fit to the log-transformed trailing arm of the age structure. The dashed

black lines indicate the confidence interval for the regression. Z is equal to the

negative slope of the regression.



Appendix A: Herder interview questionnaire

Opening questions

1. Does your family eat fish?

How many times has your family eaten fish in the last month?
What types of fish does your family prefer to eat?

Does your family eat fish in all seasons?

How many people are in your family?

oW

Personal fishing habits

7. Does your family fish in Lake Hovsgol?
8. Does your family fish for recreation, food, or money?

a. Do you keep all of the fish you catch? If not, which do you release?

9. How many times in the last month has your family fished?
10. For how many years has your family been fishing?
11.Who in your family fishes?
12. Where does your family go to fish?
13.How do you catch your fish?

b. What type and how much net do you own?

c. What type and how many rods do you own?
14. Where do you get your fishing equipment?
15. How many fish do you usually catch in a day of fishing?
16. What types of fish do you usually catch?

Observed fishing habits

17.Do you see other people fishing?

18. Are they mostly locals or foreigners?

19. Where do you see people fishing?

20. What type of gear do they use?

21.Do you know where you can buy this gear?
22.Do they fish for recreation, food, or money?

Fish market questions

23.Can you buy fish locally?
24. When and where can you buy fish?
25. What types and how much fish are usually available?
26.Does your family ever buy fish?
a. What type of fish do you buy?
b. How much fish and how frequently?
27. Are there any rules about fishing on Lake Hovsgol?

Fish population questions

28. Are fish more or less abundant than they used to be?
29. Are fish larger or smaller than they used to be?
30. What do you think should be done to protect the fish population?

How many sheep, cows/yaks, goats, and horses does your family own?
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Appendix B: Park ranger interview questionnaire

Opening Questions

1. How long have you been a ranger?
What is your district?
How long have you worked in this district?
How many families live in your district?
How many families in your district fish?

bW

Observed Fishing Habits
6. When do you see people fishing?
7. Which season is the most active for fishing?
8. How many people do you see fishing in a month?
9. Are they mostly local, visiting Mongolians, or foreigners?
10. Where do you see people fishing?
11. What type of fishing equipment do they use?
12. What type of fish do they catch?
13. What type of fish do they keep?
14. What type of fish do they release?
15. Do they fish for recreation, food, or money?
16. How many fish do they catch in a day of fishing?

Law Enforcement Questions
17. Are fishermen complying with the law?
18. What do you do when you see people fishing illegally?
19. Why do you give a fine sometimes and not other times?

Fish Population Questions
20. Are fish more or less abundant than they used to be?
21. Are fish larger or smaller than they used to be?
22.What do you think should be done to protect the fish population?
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Appendix C: Total and natural mortality estimation
Total mortality: length-converted catch curve analysis

We used a length-converted catch curve analysis (Pauly & Morgan 1987) to
calculate the instantaneous total mortality (Z) rate where Z is the sum of the
instantaneous natural (M) and fishing (F) mortality rates. First, we converted the
length structure of Hovsgol grayling observed in the Ahrenstorff et al. (2012)
hydroacoustic surveys into an age structure by (1) assigning observed fish to 5 cm
length classes and (2) calculating the relative age of each fish based on the midpoint

of its length class using the rearranged von Bertalanffy growth equation:

L;

t; = —log (1 —
l g( me

)/ K

where ¢; is the mean age for the length class with midpoint L; and Linris 307.0 mm
and K is 0.3206 yr-1 from Tsogotsaikhan et al. (in review). A linear regression was fit
to the log-transformed trailing arm of the resulting age structure where the negative

slope of the regression is equal to the instantaneous total mortality rate (Z).

Natural mortality: life history invariant analysis

Natural mortality rate (M) is one of the most important parameters in
fisheries population dynamics and management but can be difficult and expensive
to estimate directly. As a result, many authors have developed simpler, though
necessarily less reliable, methods for indirectly estimating M from life history traits
such as maximum age, Von Bertalanffy growth parameters, and

maturity/reproductive characteristics. Kenchington (2014) provides the best
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review of such life history invariant methods to date. We evaluated the
appropriateness of 31 life history invariant methods for estimating the natural
mortality rate of Hovsgol grayling based on (1) the availability of required life
history traits and (2) the performance and biases of each method (Supp. Table 2).
Ultimately, we decided to use three roughly independent estimators of natural
mortality: Hoenig’s (Hoenig 1983), Pauly’s (Pauly 1980), and Gunderson’s
estimators (Gunderson 1997). A recent paper by Then et al. (2014) suggests that
Hoenig’s (tmax-based) and Pauly’s estimators (growth-based) are the best in their
respective classes and are independent of one another. Gunderson’s estimator is
GSI-based (GSI=gonadosomatic index) and is therefore expected to be independent
of the other estimators. Although Then et al. (2014) suggest that the Hoenig
estimator performs best of the tmax-and growth-based estimators and should be
used alone, we consider three independent estimators to account for uncertainty in
our life history trait estimates and uncertainty in the natural mortality estimates.
See Supp. Table 2 for estimation methods considered, Table 1 for estimation
methods used, and Supp. Figure 6 for the life history traits required by the selected
methods. See the section below for a description of the data sources and methods

used to calculate these required life history traits.

Natural mortality: life history trait data sources
The Von Bertalanffy growth parameters (Linrand K with ¢, fixed at 0) and
maximum age (tmax) Were determined from 93 aged otoliths in Tsogotsaikhan et al.

(in review) (Supp. Figure 6A). Thin sections through the core of the otoliths in the
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transverse plane were prepared and examined under a compound microscope (50x)
using transmitted light. Alternating light and dark circuli, interpreted as annuli,
were counted by two otolith readers. A von Bertalanffy growth model of length-at-
age (L¢):

Ly = Lipg % (1 — e7K(t-t0)
was fit to the resulting age and length data with tyfixed at 0. Lins (read “L-infinity”)
represents the average maximum size or asymptotic length and K represents the
rate at which Li,ris approached. See Tsogotsaikhan et al. (in review) for more
details.

The gonadosomatic index (GSI) was calculated for 106 grayling by dividing
the wet ovary weight by the wet body weight (Jensen, unpublished data; Supp.
Figure 6B). Linear regression suggests that GSI does not vary with body length
(r?=0.004, p=0.529) indicating that an average GSI value is representative of the
entire grayling population.

We compared the indirect estimates of Hovsgol grayling natural mortality
rate calculated here to direct estimates of natural mortality rate for Arctic grayling

(Thymallus arcticus) from the literature to confirm realism (Supp. Table 3).
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Chapter 2: The refined ORCS approach: a catch-based method for

estimating stock status and catch limits for data-poor fish stocks”

Abstract

The ‘Only Reliable Catch Stocks’ (ORCS) Working Group approach to data-poor
fisheries stock status and catch limit estimation has been used by U.S. fisheries
managers but has yet to be fully evaluated. The ORCS approach estimates stock
status using a fourteen question ‘Table of Attributes’ and the overfishing limit by
multiplying a historical catch statistic by a scalar based on the estimated status. We
evaluated the performance of the approach by applying it to 193 stocks with data-
rich stock assessments and comparing its predictions of stock status with the
assessment model estimates. The approach classified all but three stocks as fully
exploited indicating that it is a poor predictor of status and should not be used by
managers. We refined the original ORCS approach by: (1) developing a more
predictive model of stock status using boosted classification trees and (2)
identifying the historical catch statistics and scalars that best estimate overfishing
limits using assessment model data. The refined ORCS approach correctly classified
74% of all stocks and 62% of overexploited stocks in a training dataset and 74% of
all stocks and 50% of overexploited stocks in an independent test dataset. The
refined approach performed better than other widely used catch-only methods.

However, the overfishing limits estimated by the refined approach would further

* Published as: Free CM, Jensen OP, Wiedenmann ], Deroba J] (2017) The refined ORCS approach: a
catch-based method for estimating stock status and catch limits for data-poor fish stocks. Fisheries
Research 193: 60-70.
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deplete overexploited stocks without the use of conservative catch scalars to buffer
against classification uncertainty. Conservative catch scalars can reduce the
probability of overfishing below 50%, the U.S. legal maximum, but with concomitant
increases in the probability and magnitude of underfishing. The refined ORCS
approach may therefore be useful when other methods are not possible or

appropriate and some risk of underfishing is acceptable.

Introduction

The majority of global fish stocks lack adequate data for estimating
sustainable fishing levels using conventional stock assessment methods. In
developing countries, only 5-20% of fish stocks are assessed and this fraction
increases to only 10-50% in developed countries (Costello et al,, 2012). In the
United States, 30% of stocks are managed using conventional ‘data-rich’ assessment
methods, while the remaining 11% and 59% of stocks are managed using ‘data-
moderate’ and ‘data-poor’ methods, respectively (Newman et al., 2015). Data-rich
stock assessment methods combine (1) total catch; (2) an index of relative
abundance; and (3) other biological information to assess stock status and estimate
sustainable fishing levels (Walters and Martell, 2004). Data-poor and data-moderate
methods generally utilize only one and two of these data types, respectively, with
total catch information often being the only data type available. Thus, data-poor
methods are often synonymous with catch-only methods.

In 2006, the U.S. Magnuson-Stevens Fishery Conservation and Management

Act was amended to require scientifically-derived annual catch limits (ACLs) that
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prevent overfishing for all federally managed fish stocks, including data-limited
stocks (DOC, 2007). This mandate stimulated the revival of old data-limited
methods (Gulland, 1971; Restrepo et al., 1998), development of new data-limited
methods (MacCall, 2009; Dick and MacCall, 2011; Cope, 2013; Cope et al.,, 2013), and
evaluation of the relative performance of these methods (Wetzel and Punt, 2011;
Wiedenmann et al.,, 2013; Carruthers et al,, 2014). In 2011, the ‘Only Reliable Catch
Stocks’ (ORCS) Working Group (Berkson et al,, 2011) convened to evaluate catch-
only methods for ACL estimation and recommended the following hierarchy for
determining ACLs for ORCS: (1) depletion-based stock reduction analysis (DB-SRA;
Dick and MacCall, 2011) when a complete time series of annual catches is available
(i.e., from the start of fishing to the present); (2) depletion-corrected average catch
(DCAC; MacCall, 2009) when the stock exhibits low natural mortality rates (<0.20
yr-1); and (3) the new ORCS Working Group approach (hereafter called the ‘ORCS
approach’) when neither DB-SRA or DCAC are possible or appropriate (Berkson et
al,, 2011; later modified by SAFMC, 2012, 2013).

The ORCS approach was designed to provide an ecological basis for the
Restrepo et al. (1998) scalar approach. In both methods, the overfishing limit (OFL;
the catch at Fusy) is calculated by multiplying an expert-defined historical catch
statistic (e.g., mean catch over the previous 10 years or median catch over the whole
time series) by a scalar also based on expert judgment. In the ORCS approach, the
choice of scalar is determined by stock status (i.e., under, fully, or overexploited),
which is estimated as the mean score of fourteen stock- and fishery-related

attributes (the ‘Table of Attributes’ or TOA; Table 1). The ORCS approach allows for
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considerable flexibility in its implementation, as scientists and managers can
exercise expert judgement to: (1) estimate status using an arithmetic, geometric, or
weighted mean of the Table of Attributes scores; (2) modify the Table of Attributes’
estimate of status or the thresholds used to delineate status; and/or (3) choose
appropriate catch statistics and scalars. While this flexibility and reliance on expert
judgement could improve performance, it is necessary to adopt a more specific,
albeit less inclusive, definition of the ORCS approach to validate the method and
demonstrate its transferability.

The ORCS approach is widely applicable, but the ability of the Table of
Attributes to correctly predict stock status has not been evaluated and the
performance of only a limited range of potential catch statistics and scalars has been
tested. In the only explicit evaluation of the ORCS approach to date, Wiedenmann et
al. (2013) used management strategy evaluation to show that the default scalars
used to estimate the OFL are too conservative for under (scalar=0.5) and fully
(scalar=1.0) exploited stocks and too generous for overexploited (scalar=2.0) stocks
when stock status is correctly classified. They also show that catch limits are
unsustainable when stocks are incorrectly classified into less-depleted categories
(e.g., an overexploited stock incorrectly classified as fully exploited). Evaluations of
scalar-based methods similar to the ORCS approach have also been shown to result
in overfishing, especially for already depleted stocks and stocks whose statuses have
been incorrectly classified (Carruthers et al. 2014; ICES 2014, 2015, 2017). The

sensitivity of management outcomes to status classification decisions makes the
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validation and refinement of the ORCS Table of Attributes’ ability to estimate status
necessary before the ORCS approach can be used to set catch-limits more widely.
The goals of the present study are to evaluate and refine the ORCS approach
to data-poor catch limit estimation using stocks with data-rich stock assessments.
We evaluate the original approach by applying it to data-rich stocks and comparing
its predictions of status with the assessment model estimates. We refine the ORCS
approach by: (1) developing a more predictive model of stock status that uses
boosted classification trees to weight attributes by their relative importance,
incorporate interactions between attributes, and account for non-linearity in
attribute behavior; and (2) empirically identifying the best status-specific historical
catch statistics and scalars for estimating overfishing limits using assessment model
data. Finally, we evaluate the ability of the refined ORCS approach to estimate
overfishing limits and compare the ability of the refined approach to estimate stock

status to six other catch-only assessment methods.

Methods
Stock selection

We evaluated the ORCS approach to data-poor catch limit estimation by
applying it to data-rich stocks with stock assessments based on underlying
population dynamics models (generally statistical catch-at-age models, virtual
population analyses, and production models) in the RAM Legacy Stock Assessment
Database (RAMLDB v.2.95; Ricard et al., 2012). We used only stocks with

assessments that estimate Busy internal to the model or estimate standard proxies
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used by the management agency (e.g., spawning potential ratio proxies common in
the U.S. or Bg proxies common in Australia). We excluded stocks whose assessments
are considered particularly unreliable (n=2; 2002 Atlantic croaker and 2005
Atlantic herring). The resulting 193 stocks include underexploited (n=68), fully
exploited (n=95), and overexploited (n=30) stocks representing a variety of taxa,
geographic locations, and management agencies (Figure 1). The RAMLDB does not
include the most up-to-date assessment for every stock. Therefore, data-rich
statuses and answers to the Table of Attributes questions reflect the terminal year

of the assessment in the RAMLDB.

Evaluation of the ORCS Table of Attributes

We estimated stock status using the expanded Table of Attributes developed
by SAFMC (2012) with a few modifications to increase clarity and objectivity in the
scoring process (Table 1; Supplementary Appendix A.1). We scored: TOA #1 Status
of assessed stocks in fishery using U.S. Fisheries Management Plans and their foreign
analogs to identify groups of stocks managed together and references from
management agencies to determine the status of these stocks; TOA #2 Refuge
availability, #3 Behavior affecting capture, #4 Morphology affecting capture, and #11
Habitat loss using information on the distribution, biology, and habitat of the taxa in
FishBase (Froese and Pauly, 2016); TOA #5 Discard rate, #6 Targeting intensity, #7
M compared to dominant species, #8 Occurrence in catch, and #14 Proportion of
population protected using information in the stock assessment documents; TOA #9

Value using ex-vessel price data from the Sea Around Us Project (Pauly and Zeller,
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2015); and TOA #10 Recent trend in catch, #12 effort, and #13 abundance index using
time series in the RAMLDB. Other technical sources (i.e., government reports or
websites, peer-reviewed scientific papers, technical reports) were used when an
attribute could not be scored using the principal reference. In some cases, attributes
could not be scored due to a lack of data or applicability and were given an ‘NA’
value. Detailed information on the scoring process is available in Supplementary
Appendices A.2 and A.3 and the scores and their justifications are available in
Supplementary Appendix B. Estimated stock status was determined from the mean
of the Table of Attributes scores with the following classifications provided by the
original method: underexploited (<1.5), fully exploited (1.5-2.5), and overexploited
(>2.5). This simplification of the broadly flexible ORCS approach is necessary for
testing and validating the performance of the method on such a diverse and global
array of stocks.

The ORCS approach has been thought to estimate both stock status (i.e.,
lightly, moderately, and heavily exploited; Berkson et al. 2011) and the risk of
overexploitation (i.e., low, moderate, and high risk of overexploitation; SAFMC,
2012, 2013). Consequently, we evaluated the performance of the original approach
using linear regression to assess the correlation between predicted status (mean
Table of Attributes score) and the assessment’s most recent estimates of (1) B/Bwmsy
as a proxy for stock status and (2) F/Fumsy as a proxy for overexploitation risk. We
also assessed the ability of the original approach to correctly classify stock status
using both percentage agreement (accuracy) and Cohen’s kappa. Cohen’s kappa

measures inter-rate agreement between categorical items and is more robust than
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simple percentage agreement because it takes into account the probability of
agreement occurring by chance (Cohen, 1968). This metric was preferred given the
volume and ease of identifying fully exploited stocks compared to the paucity and
difficulty of identifying overexploited stocks. If the method misclassifies most
overexploited stocks but correctly classifies most fully exploited stocks, then it
would still earn a high accuracy percentage, but it’s kappa value would be
appropriately penalized. Although there are no definitive rules for interpreting
Cohen’s kappa, general guidelines suggest that values >0.70 are ‘excellent’, 0.4-0.7
are ‘good’, 0.2-0.4 are ‘fair’, and <0.2 are ‘poor’ (Landis and Koch, 1977; Fleiss,

1981).

Refinement of the ORCS Table of Attributes

We refined the ORCS Table of Attributes using boosted classification trees
(BCT) to weight attributes by their relative importance, incorporate interactions
between attributes, and account for non-linearity in attribute behavior. Boosted
classification trees combine classification and machine learning and offer predictive
power superior to other modeling methods (Elith et al., 2008). Boosted
classification trees can also accommodate missing values (i.e., NA scores) by
imputing values from surrogate variables, which allowed the use of all scored
stocks. The BCT analysis was performed using the caret (Kuhn, 2016) and ghm
(Ridgeway, 2016) packages in Rv.3.3.2 (R Core Team, 2016).

We trained the BCT model to estimate categorical status (i.e., under, fully, or

overexploited) rather than continuous status (i.e., B/Bwmsy) because (1) the ORCS
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approach was designed to use status categories and (2) stock assessment models
exhibit more uncertainty in estimates of B/Busy than in more general status
classifications. We trained the BCT model to estimate stock status rather than risk of
overexploitation because (1) stock status is a more widely used metric and can be
easily compared to other assessment methods and (2) F/Fusy is an unsatisfying
proxy for overexploitation risk because it can change rapidly and even sustained
F/Fusy values greater than 1.0 may not be “risky” over the short-term if B/Bwmsy is
high (>>1.0). The BCT model attempts to determine stock status - whether a stock is
under (B/Bwmsy>1.5), fully (B/Bumsy=0.5-1.5), or overexploited (B/Bwmsy<0.5) - from
the TOA scores with a few modifications (Table 1): (1) we removed TOA #2 Refuge
availability and #4 Morphology affecting capture because they lacked contrast (i.e.,
97.9% and 100% of stocks were assigned scores of 3->75% of habitat accessible
and 2-Average susceptibility, respectively); (2) we used continuous rather than
categorical price values for TOA #9 Value because these values are readily available
to managers and continuous variables can increase predictive performance; and (3)
we used all three categories for TOA #10 Recent trend in catch (i.e., 1=increasing,
2=stable, and 3=decreasing rather than the originally proposed options of
1.5=increasing/stable and 3=decreasing) because boosted classification trees can
account for interactions between catch, effort, and abundance index trends.

We randomly divided the TOA scores into training (80% of data, n=155
stocks) and test (20% of data, n=38 stocks) datasets with stratification by stock
status to ensure that both the test and training datasets included the same

proportion of under, over, and fully exploited stocks. The training dataset was used
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to fit the BCT model, while the test dataset was used to provide an independent
evaluation of the BCT model’s predictive capacity. A grid search for the BCT model
parameters that maximize Cohen’s kappa using repeated 10-fold cross validation on
the training dataset found the following optimal parameters: learning rate=0.001,
interaction depth=2, number of trees=3000, and bag fraction=0.8 with multinomial
error. Detailed information on model fitting is available in Supplementary Appendix
A4.

We evaluated the predictive performance of the BCT model by calculating the
percentage agreement and Cohen’s kappa for both the training and test datasets. For
comparison, we evaluated the performance of six other catch-only methods for
estimating status on stocks in the test dataset: SSP-2002 (Froese and Kesner-Reyes,
2002) and SSP-2013 (Kleisner et al., 2013), which estimate development status (e.g.,
undeveloped, developing, fully exploited), and CMSY (Martell and Froese, 2013),
COM-SIR (Vasconcellos and Cochrane, 2005), SSCOM (Thorson et al.,, 2013), and
mPRM (Costello et al., 2012), which estimate B/Bwsy (Table 2). The latter four
methods were applied using the datalimited package in R (Anderson, 2016) based
on the methods described in Rosenberg et al. (2014) and Anderson etal. (2017).
Detailed information on implementing the alternative catch-only methods is

available in Supplementary Appendix A.5.

Refinement of the historical catch statistics and scalars
The second step of the ORCS approach is to estimate the OFL as a factor of

some historical catch statistic based on stock status; however, the original approach
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offers no formal recommendations on the choice of catch statistic and recommends
simple catch scalars (i.e., 2.0, 1.0, 0.5 for under, fully, and overexploited stocks,
respectively).

We identified the best status-specific historical catch statistics and scalars by
comparing the most recent OFL (Uwmsy x total biomass) to 24 historical catch
statistics for the 105 stocks in the RAMLDB with the necessary information (i.e.,
Uwmsy, total biomass time series, and catch/landings time series). The 24 historical
catch statistics represent eight metrics (IQR, Winsorized, and arithmetic mean; 10,
25t 50th, 75th and 90th percentiles) proposed in the original ORCS approach over
three time periods (10 yr, 20 yr, whole time series). We used linear regression to
assess the correlation between the OFL and each catch statistic and Akaike’s
Information Criterion (AIC) to rank the catch statistics within each status category.
The best status-specific catch statistics were selected based on AIC ranking.

We calculated the ratio of the best status-specific catch statistic to the OFL
for each stock based on its data-rich status estimate. We then calculated the 10t to
50th percentile of the observed ratios in each status category to evaluate as potential
status-specific scalars for estimating the OFL. If stock status is correctly identified,
the 50t percentile scalars should promote a 50% probability of overfishing (i.e.,
catch > OFL) in a given year, the U.S. legal maximum (DOC, 2016). Scalars more
conservative than the median may be useful for buffering against classification
uncertainty. Detailed information on calculating the OFL and the best status-specific
historical catch statistics and scalars is available in Supplementary Appendices A.3

and A.6.
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Evaluation of the refined ORCS approach

We evaluated ten potential refinements of the original ORCS approach. The
first approach (the ‘weighted 50t percentile scalar’ approach) uses the BCT model
to estimate the probability a stock is in each status category. It then estimates the
OFL as the probability weighted average of the OFLs for each status category using
the best status-specific catch statistics and 50t percentile scalars. The second
approach (the ‘unweighted 50t percentile scalar’ approach) uses the BCT model to
identify the most likely status category, then estimates the OFL using the best catch
statistic and 50t percentile scalar for the category. The remaining eight approaches
use the 45th-10th percentile scalars in the unweighted framework to examine the
tradeoffs associated with using scalars more conservative than the median. We used
the unweighted framework because preliminary analysis showed that the
unweighted framework was superior to the weighted framework (Table 4; Figure
6). We evaluated the performance of these approaches by applying them to the 97
stocks (Ntraining=79, Ntest=18) in the RAMLDB with the necessary information (i.e.,
B/Bwsy, Uwmsy, total biomass time series, catch/landings time series) and calculated
the percentage of stocks for which the predicted OFL exceeded the data-rich OFL
estimate to use as a measure of the probability of overfishing. We also assessed the
correlation between the OFLs predicted by the ORCS approach and those estimated

by the data-rich assessments using linear regression.

Results
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Evaluation of the ORCS Table of Attributes

Although most attributes exhibited good variation in scores, a few were
dominated by a single score category (TOA #2, #4), omitted an entire score category
(TOA #3), or underutilized a score category (TOA #11, #14) (Figure 2A). The original
approach classified all but three stocks as fully exploited (Figure 2B). Although the
approach correctly classified the U.S. Mid-Atlantic weakfish stock as overexploited
(B/Bwmsy=0.131 in 2008), it incorrectly classified the fully exploited U.S. Gulf of Maine
haddock (B/Bwmsy=0.585 in 2011) and New Zealand bluenose (B/Busy=0.658 in
2011) stocks as overexploited. In fact, there was no correlation between the
statuses predicted by the ORCS approach and those estimated by the data-rich
assessment models (Figure 2C), and a Cohen’s kappa value of 0.0001 indicates ‘poor’
classification accuracy. There was a weak correlation between the overexploitation
risks predicted by the ORCS approach and those estimated by the data-rich

assessment models (Figure 2D; Supp. Figure 1)

Refinement of the ORCS Table of Attributes

The BCT model correctly classified 74% of stocks in the training dataset and
yielded a Cohen’s kappa of 0.56 indicating ‘good’ classification accuracy (Figure 3A).
The model performed better on fully exploited stocks (89% correct) than either
underexploited (58% correct) or overexploited (62% correct) stocks. The BCT
model also correctly classified 74% of stocks in the independent test dataset and
yielded a Cohen’s kappa of 0.56 indicating ‘good’ classification accuracy (Figure 3B).

The model still performed better for fully exploited stocks (79% correct) than



71

underexploited (77% correct) or overexploited (50% correct) stocks in the test
dataset. The nearly equivalent performance of the BCT model on the training and
test datasets suggests that the model is not overfit, which is consistent with the flat
model tuning curves (Supplementary Appendix A.4). In 60% of misclassifications,
the correct classification was the second most probable status identified by the
model and only one misclassification (U.S. S. Pacific Coast gopher rockfish - no
remarkable scores to explain this outcome) was so egregious as to classify an
underexploited stock as overexploited or vice versa (Figure 3B). The BCT model was
a better predictor of stock status, in terms of both accuracy and Cohen’s kappa, than
the other six catch-only methods that we evaluated (Table 2; Supp. Tables 1 & 2).
The BCT model identified seven attributes that each contribute more than
5% of the total predictive power (percents indicate relative influence of an attribute
on the classification of a stock): TOA #9 Value (33.5%), #1 Status of assess stocks in
fishery (13.1%), #6 Targeting intensity (12.3%), #5 Discard rate (8.8%), #8
Occurrence in catch (8.5%), #7 M compared to dominant species (8.0%), and #3
Behavior affecting capture (7.3%; Figure 4A). The attribute marginal effects, the
effect of each attribute when the other attributes are held constant, suggest that

stocks are more likely to be: (1) underexploited if there is a low rate of

overexploitation of other stocks in the fishery, the taxon is worth less than US$1.00
per pound, and the taxon does not exhibit any aggregation behavior; (2) fully
exploited if the stock is occasionally or actively targeted, the taxon exhibits
aggregation behavior, and the taxon is worth more than US$2.00 per pound; and (3)

overexploited if there is a high rate of overexploitation of other stocks in the fishery,
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the taxon is worth more than US$1.00 per pound, and the taxon occurs sporadically

in the catch (Figure 4B; Supp. Figure 2).

Refinement of the historical catch statistics and scalars

The 90t percentile catch over the whole time series was most highly
correlated with the OFL for underexploited stocks and longer timeframe metrics
generally performed better than shorter timeframe metrics (Table 3; Supp. Table 3).
The 25t percentile catch over the previous 10 years performed best for fully
exploited stocks with more central and shorter timeframe metrics generally
performing better than higher percentile and longer timeframe metrics (Table 3;
Supp. Table 3). The mean catch of the previous 20 years performed best for
overexploited stocks but this correlation was driven by a single strong leverage
point (S. Labrador/E. Newfoundland Atlantic cod, whose 20-year mean exceeded
the current OFL by more than 5 times, considerably more than the other
overexploited stocks) and may be spurious. The 10t percentile catch over the whole
time series provided the second best correlation and is more appropriate for
overexploited stocks whose catch limits must be significantly reduced to allow
rebuilding under U.S. law (Table 3; Supp. Table 3). The median scalars for relating
the best catch statistic to the OFL were 1.90, 2.16, and 1.56 for under, fully, and
overexploited stocks, respectively (Table 3). Scalars more conservative than the

median are provided in Table 3.

Evaluation of the refined ORCS approaches
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The OFLs predicted by the ORCS approach and estimated by the data-rich
assessment models were significantly correlated in all ten potential refined ORCS
approaches (Table 4; Figure 5A-D). The ‘weighted 50t percentile scalar’ approach
resulted in the underutilization (i.e., predicted OFL less than data-rich OFL) of 63%
of underexploited stocks and overfishing (i.e., predicted OFL exceeds data-rich OFL)
of 73% and 91% of fully and overexploited stocks, respectively (Figure 5E). The
‘unweighted 50t percentile scalar’ approach performed better, resulting in the
underutilization of 54% of underexploited stocks and overfishing of 56% and 45%
of fully and overexploited stocks, respectively (Figure 5F). The more conservative
‘unweighted 45th-10th percentile scalar’ approaches reduced the overfishing of
overexploited stocks but increased the underexploitation of under and fully
exploited stocks (Table 4; Figure 5G-H). The ‘unweighted 40t percentile scalars’ are
the largest scalars to reduce the probability of overfishing below 50%, the U.S. legal

maximum (DOC, 2016), in all three status categories (Table 4).

Discussion

Before being implemented, new stock assessment methods should be
evaluated to validate their usefulness and transferability. Although the fully-flexible
version of the original ORCS approach may produce useful status and catch limit
estimates, it is challenging to validate because of its subjectivity. Therefore, we
adopted a more specific, albeit less inclusive, definition of the ORCS approach for
evaluation and refinement. Our results show that this interpretation of the ORCS

approach is a poor predictor of stock status and should not be used for management
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decisions. The approach is heavily biased towards moderate classifications and
classified all but three data-rich stocks as fully exploited. This result is not
surprising given that all 20 stocks in the U.S. Southeast scored using the
interpretation of the ORCS approach evaluated here were also classified as fully
exploited, despite expert opinion that the stocks ranged from under to
overexploited (SAFMC, 2012, 2013). The bias of the approach towards moderate
classifications likely arises from: (1) an overrepresentation of moderate scores (in
TOA #4 notably and #10, #12, #14 additionally) and (2) inappropriately wide
threshold values for delineating status categories (1.75 and 2.25 might perform
better). Furthermore, the non-linearity in the relative influence and marginal effects
of the TOA attributes highlights the necessity of a weighting scheme. Although the
original ORCS approach suggests that these adjustments can be made through
expert judgement (Berkson et al. 2011), the refined ORCS approach presents an
objective, transferable, and effective alternative.

The refined ORCS approach, which accounts for attribute importance,
interactions, and non-linearity, is a better predictor of stock status than both the
original ORCS approach and alternative catch-only methods. The refined approach
correctly classified 73% (kappa=0.55, good) of the 37 stocks in the test dataset with
a catch time series. In comparison, CMSY, which performed second best and also
performed better than COM-SIR, SSCOM, and mPRM in Rosenberg et al.’s (2014)
evaluation of these four methods, classified only 41% (kappa=0.15, poor) of these
37 data-rich test stocks correctly. The refined ORCS approach also outperformed

SSP-2002 and SSP-2013, which have been shown to be poor and inherently
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pessimistic predictors of stock status (Branch et al,, 2011; Carruthers et al., 2012),
as well as mPRM, whose developers state that it should not be used to assess the
status of individual stocks (Costello et al., 2012). Catch-based methods represent a
class of widely used, but still controversial (Pauly et al., 2013), approaches to
estimate status and the refined ORCS approach may be a useful alternative for
estimating the status of data-poor stocks.

The refined ORCS approach also identifies catch statistics and scalars that
estimate catch limits that prevent overfishing in accordance with U.S. legal
mandates, suggesting that it can be used when data-moderate methods such as DB-
SRA and DCAC are not possible or appropriate. Although the refined approach
misclassifies many overexploited stocks, conservative catch scalars successfully
buffer against classification uncertainty. The 40t percentile scalars produce the
highest catches while reducing the probability of overfishing in all three status
categories below 50%, the U.S. legal maximum (DOC, 2016); however, they also
estimate OFLs more than five times the data-rich OFL for some stocks. More
conservative catch scalars will further reduce the probability and magnitude of
overfishing but will result in concomitant increases in the probability and
magnitude of underfishing. Managers must therefore determine which catch scalars

are most consistent with their risk policies. We provide a web tool for managers to

implement the approach here: https://cfree.shinyapps.io/refined orcs approach/
The evaluation of the ORCS approach using data-rich stock assessments,
while necessary because the ability of the approach to predict stock status cannot be

evaluated through traditional simulation testing (Wiedenmann et al. 2013;
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Carruthers et al. 2014), is somewhat problematic given the uncertainty in even the
most sophisticated assessment models (Brooks and Deroba, 2015). For example,
assessment model reference points (i.e., B/Busy, OFL) used to evaluate the
performance of the ORCS approach and assessment model output (i.e., biomass and
effort time series) used to score the ORCS Table of Attributes could both be
incorrect. However, we took measures to eliminate the more uncertain assessments
and we only used stock assessment output in the scoring of TOA #12 Recent trend in
effort and #13 Recent trend in abundance index, which were both unimportant
predictors of stock status. Furthermore, we trained the BCT model used in the
refined approach to estimate categorical status (i.e., under, fully, or overexploited)
rather than continuous status (i.e., B/Bumsy) because stock assessment models are
generally more certain in status classifications than in precise B/Bwmsy values. Finally,
the ability of the refined ORCS approach to reproduce the conclusions of possibly
incorrect but presumably better data-rich status determinations is still useful,
especially given the recent success of data-rich assessment and management in
rebuilding fisheries (Worm et al., 2009; Hilborn and Ovando, 2014).

The refinement of the ORCS approach through testing against data-rich
stocks could also be problematic given the differences in the dynamics of data-poor
and data-rich fisheries. Assessed (data-rich) fisheries generally target larger, slower
growing, and higher trophic level species (Pinsky et al.,, 2011) and are higher
volume, more valuable, and in better condition (Costello et al., 2012) than their
unassessed (data-poor) counterparts. Consequently, it is possible that informative

predictors of data-poor fisheries status could be uninformative or even trend
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opposite for data-rich fisheries. For example, in well-managed fisheries, decreasing
catch could be the result of responsive management (Murawski et al., 2007) and
increasing effort could indicate the sustainable development of a new or rebuilt
fishery. Furthermore, the generally healthy status of data-rich stocks results in only
a small sample of overexploited stocks (30 of 193 stocks, 15.5%) available for model
training and testing. Thus, the model may have performed poorly at classifying
overexploited stocks because of the limited number of overexploited stocks in the
dataset.

The dynamics of the most important predictors of stock status in the BCT
model are consistent with other studies and are likely conserved across data-poor
and -rich fisheries. For example, the importance of ex-vessel price is not surprising
given that fishery development is frequently driven by profits (Sethi et al., 2010).
The importance of assessed stock status also makes intuitive sense (i.e., a stock in a
generally well- or poorly-managed fishery is also likely to be well- or poorly-
managed, respectively) and is similar to the region effect, which has been shown to
be useful in discriminating stock status (Ricard et al.,, 2012; Thorson et al., 2012).
The significant increase in overexploitation risk resulting from aggregation behavior
is supported by emerging evidence that schooling, fast-lived fish may actually be
more vulnerable to collapse than solitary, long-lived taxa due to high harvest rates
lagging behind rapid changes in environment and productivity (Pinsky et al., 2011).
The decrease in overexploitation risk with increasing occurrence in the catch
opposes the predictions of the original Table of Attributes and suggests that rarity in

the catch is indicative of a depleted stock rather than a lightly exploited one. Finally,
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recent trends in catch and effort, the attributes most likely to be confounding
between data-poor and -rich fisheries, exert little predictive influence, increasing
the likelihood that the refined ORCS approach is as predictive for data-poor stocks
as it is for data-rich ones.

The refined ORCS approach also provides important guidance on the choice
of historical catch statistics and scalars. Longer timeframe, higher percentile catch
statistics perform best for underexploited stocks with light exploitation histories.
Moderate timeframe, more central catch statistics perform best for fully exploited
stocks where recent management has been effective in sustaining abundance and
yield. Longer timeframe, lower percentile catch statistics perform best for
overexploited stocks where recent catches have resulted in depletion. To
consistently achieve a relatively low risk of overfishing, the catch scalars used to
scale the historical catch statistic to the overfishing limit will have to be
conservative to buffer against substantial classification uncertainty. This conclusion
is especially true for data-poor stocks with uncertainty in their catch time series,
such as the rarely caught snapper-grouper species in the U.S. Southeast which suffer
from misidentification problems (SAFMC, 2013; Berkson et al., 2011). Although
conservative scalars will effectively protect overexploited stocks, they will also
result in forgone yield from under and fully exploited stocks.

The refined ORCS approach represents one step towards Berkson et al.’s
(2011) recommendations for testing and improving the original ORCS approach but
could under additional refinement and evaluation. The predictive performance of

the approach could be improved by identifying new predictive attributes. For
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example, life history characteristics such as age at maturity, maximum age,
maximum length, and trophic level and fishery characteristics such as time since
development and exploitation history have all been shown to be useful in
discriminating stock status (Sethi et al., 2010; Pinsky et al., 2011; Costello et al,,
2012; Thorson et al.,, 2012; Neubauer et al., 2013) and could be incorporated into
the refined TOA and BCT model. Furthermore, the performance of the status-specific
historical catch statistics and scalars used in the refined approach should be tested
through management strategy evaluation, such as in Wiedenmann et. al (2013), to
determine whether they actually promote sustainable fishing levels. The
development of simple data-limited decision support tools has been a central focus
of recent fisheries management (Berkson and Thorson, 2015) and the refined ORCS
approach provides an additional tool for managers faced with the legal mandates

and data limitations of contemporary fisheries management.
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Figure 1. Demographics of the 193 data-rich stocks scored using the ORCS approach
by: (A) taxonomic group; (B) managing country or multinational body; (C) U.S.
assessment agency (U.S. stocks only; n=99, 51.3% of scored stocks); (D) assessment
year; (E) stock status (B/Bwmsy); and (F) fishery size (average annual catch over the

most recent 5 years).
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Figure 2. The distribution of (A) attribute scores and (B) overall scores for the 193
data-rich stocks scored using the original ORCS approach and (C) comparison of
statuses and (D) risks predicted by the ORCS approach and estimated by data-rich
assessment models. In (A), bars show the proportion of scores represented in each
TOA attribute. For TOA #10, scores of 1 and 2 (hatched) are reassigned scores of 1.5
and only count towards the overall score if effort is stable (TOA #12, score=2). In
some cases, attributes could not be scored due to a lack of data or applicability and
were given an ‘NA’ value (grey shading). In (B), vertical lines indicate the threshold
values (1.5 & 2.5) that separate under, fully, and overexploited stocks. In (C) and
(D), the black lines indicate linear regressions fit to the data and the gray shading

indicates the confidence intervals for the regressions.
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Figure 3. The performance of the boosted classification tree (BCT) model on the (A)
training (n=155 stocks, 80% of data) and (B) test datasets (n=38 stocks, 20% of
data). In (A), bars show the proportion of status predictions for each status
category. Percentages indicate the proportion of correct classifications in each
category (overall accuracy=74% and Cohen’s kappa=0.56). In (B), bars show the
probability that a stock is in each status category, where the highest probability
category is the BCT model’s prediction of stock status; stocks are grouped and
sorted by B/Bwmsy from the data-rich assessment model. Percentages indicate the
proportion of correct classifications in each category; stars mark incorrectly
classified stocks with colors indicating the direction of the misclassification (overall

accuracy=74% and Cohen’s kappa=0.56).
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Figure 4. The (A) relative influence and (B) marginal effects of the five most
important TOA attributes in the boosted classification tree model. In (B), lines
represent the effect of each attribute on the probability that a stock is in each status
category when the other attributes are held constant. TOA #2 Refuge availability and
#4 Morphology affecting capture were omitted from the model due to lack of

predictive power.
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Figure 5. The (A-D) correlation between and (E-H) ratio of the overfishing limits
(OFLs) predicted by the ORCS approach and estimated by data-rich assessment
models for 97 stocks in four potential refined ORCS approaches. In (A-D), black lines
indicate linear regressions fit to the untransformed data and the gray shading
indicates the confidence interval for the regression. In (E-H), ratios were also
calculated using the untransformed data. The dotted horizontal lines indicate
perfect agreement between the ORCS predictions and the data-rich model estimates
and boxplots indicate the median (heavy black line), interquartile range (IQR; box),

1.5 times the IQR (whiskers), and outliers.
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Supp. Figure 1. The correlation between the mean ORCS Table of Attributes score

and six metrics of overexploitation risk calculated from F/Fusy values estimated in

the data-rich assessment models. Black lines indicate linear regressions fit to the

data and the gray shading indicates the confidence intervals for the regressions.



1.0
0.5+
0.0+
-0.5
-1.04
-1.5+
-2.0-

1.0
0.5+
0.0
-0.54
-1.0
-1.54

Marginal effects

-2.0-

1.0
0.5+
0.0+
-0.5-
-1.0
-1.5+

-2.0-

33.5%

9-Value
8.5%

S

H

1 2 3
8-Occurrence
in catch

2.6%

I

1 2 3
13-Recent trend
in abundance

1.0
0.5+
0.0

-0.5+
-1.04
-1.54
-2.0-

1.0
0.5+
0.0

-0.5—
-1.0
-1.54
-2.0-

1.0
0.5+
0.0

-0.5
-1.0
-1.54

-2.0-
l

13.1% 1.0 12.3%
_— 0.5+
0.0
-0.5-

I I
1.5+
-2.0-

r T 1 [ T 1
1 2 3 1 2 3
1-Status of 6-Targeting

assessed stocks intensity
8% 1.09 7.3%
0.5+
— 0.0 —
-0.54
-1.0
-1.5-
-2.0-
r T 1 [ T 1
1 2 3 1 2 3
7-M compared to 3-Behavior
dominant species affecting capture
1.4% 1.0 0.4%
0.5
e W 0.0 —
-0.5-
-1.0
e W
-1.5-
-2.0-
T 1 [ T 1
1 2 3 1 2 3

11-Habitat loss

10-Recent trend
in catch

1.0
0.5+
0.0

-0.5
-1.0
-1.5+
-2.0-

1.0
0.5+
0.0

-0.5
-1.0
-1.5+
-2.0-

1.0
0.5+
0.0

-0.5+
-1.0
-1.5+

-2.0-

99

8.8%

1 1
1 2 3

5-Discard rate

3.9%

—

| E—
1 2 3
14-Proportion of
population protected

0%

1 2 3
12-Recent trend
in effort

Supp. Figure 2. The marginal effects of the twelve TOA attributes in the boosted

classification tree model. Lines represent the effect of each attribute on the

probability that a stock is in each status category when the other attributes are held

constant (green=underexploited, orange=fully exploited, red=overexploited). TOA

#2 Refuge availability and #4 Morphology affecting capture were omitted from the

model due to lack of predictive power. The relative influence of each attribute is

shown in the upper right corner of each panel.
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Appendix A: Modifications to the ORCS Table of Attributes

We estimated stock status using the expanded TOA developed by the SAFMC (2012,

2013) with a few modifications to increase clarity and objectivity in the scoring

process:
TOA#1 Status of assessed stocks in fishery: We replaced the long and
complex score descriptions with straightforward percentage thresholds.
TOA#5 Discard rate: We replaced the vague score descriptions with
straightforward percentage thresholds and simplified the attribute to
consider only the proportion of the catch discarded rather than the
proportion discarded multiplied by the proportion of discards that die. The
proportion discarded is generally more available than the proportion that
die.
TOA#7 M compared to dominant species: We removed ambiguity in the
difference between the score 1 and 2 descriptions (previously, both
descriptions read “M higher than or equal to M of dominant species”; now, 1
reads “M higher than M of dominant species” and 2 reads “M equal to M of
dominant species”). We specify that natural mortality rates must differ by
20% to be considered different.
TOA#8 Occurrence in catch: We simplified the language and replaced the
vague score descriptions with straightforward percentage thresholds.
TOA#11 Habitat loss: We simplified the attribute to be conceptually simpler
and more quantifiable. Rather than considering the rate of habitat loss (no

loss, stable/declining, increasing), we consider the proportion of the taxa’s
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life spent in threatened habitat (none of life, part of life, all of life). Data on

the rate of regional and taxa specific habitat loss are difficult to find.

We made all scoring decisions within the context of the most recent 5 years. This is

particularly relevant for TOA #10, #12, and #13, which examine recent trends in

catch, fishing effort, and abundance index, respectively, but is also relevant for the

TOA #5 Discard rate, #8 Occurrence in catch, #14 Proportion of population protected,

etc.

We also renamed many of the original attributes for the sake of brevity and clarity.

Table 1. Renaming of the original TOA attributes.

# New name Original name

1 Status of assessed stocks in fishery  Overall fishery exploitation based on assessed stocks
2 Refuge availability Presence of natural or managed refugia
3 Behavior affecting capture Schooling, aggregation, or other behavior responses affecting capture
4  Morphology affecting capture Morphological characteristics affecting capture
5 Discard rate Discard mortality rate
6 Targeting intensity Bycatch or actively targeted by the fishery
7 M compared to dominant species Natural mortality compared to dominant species in the fishery
8 Occurrence in catch Rarity
9 Value Value or desirability

10 Recent trend in catch Trend in catches (use only when effort is stable)

11 Habitat loss Loss or alteration of habitat

12 Recent trend in effort Fleet stability

13 Recent trend in abundance index Fishery Independent CPUE

14 Proportion of population protected Effectiveness of regulations (other than ACLs) to limit exploitation
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Appendix B: ORCS Table of Attributes scoring guide

TOA #1 - Status of assessed stocks in fishery

We identified the proportion of assessed stocks in the fishery that are overfished by
determining the status of all stocks within the relevant fisheries management unit.
For United States fisheries, we identified stocks managed together by Fisheries
Management Plans (FMPs) and used analogous management units for foreign
fisheries (see Table 2 below). The proportion of overfished stocks was calculated
using only assessed stocks in the fishery. We used the definition of “overfished” used
by the management agency. We identified the following thresholds for scoring:

1 -<10% of assessed stocks are overfished

2 - 10-25% of assessed stocks are overfished

3 - >25% of assessed stocks are overfished
NA - Target stock is the only stock in the fishery or stock statuses are unknown

Table 2. Management units used to identify groups of co-managed stocks.

Country Assessments grouped by Reference

United States | Fisheries Management Plan US-FMC, 2016

New Zealand Fisheries Group NZ-MPI, 2016

Australia Fishery AFMA, 2016

South Africa Fishery DAFF, 2012

Tuna-RFMO RFMO Pons et al., 2016

Other-RFMO Fishery Many references

Canada Integrated Fisheries Management Plan DFO, 2016

Argentina Fishery INIDEP, 2016

Russia Fishery Sobolevskaya and Divovich, 2015

TOA #2 - Refuge availability
We scored this attribute by comparing maps of a taxa’s range with maps of

protected areas within its range (such maps are often available in the stock
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assessment). In nearly all cases, the range of the taxa was enormous relative to the
protected areas. It was difficult to consider natural refugia because rocky outcrops
and depth aren’t true barriers to fishing when the resource is valuable or desired.
We used the following percentage thresholds (though they are generally impossible
to empirically quantify):

1 - <50% of habitat is accessible to fishing

2 - 50-75% of habitat is accessible to fishing
3 - >75% of habitat is accessible to fishing

TOA #3 - Behavior affecting capture

We reviewed the “biology of the species” portion of the relevant stock assessment,
the FishBase profile of the species, and other resources to identify behavior that
might affect the susceptibility of the taxa to capture. Only taxa exhibiting schooling,
shoaling, or spawning aggregation behaviors targeted by fishermen were scored as
being highly susceptible to capture. All other taxa (those not exhibiting these
behaviors or those whose spawning aggregations are not targeted by fishermen)
were scored as being moderately susceptible to capture. No stocks were scored as
exhibiting low susceptibility to capture (what traits would even make a taxon
unsusceptible to capture?)

1 - No examples - slimy eels, fast tuna, reclusive tilefish are all susceptible

2 - Don’t exhibit schooling/shoaling/aggregation behavior

3 - Exhibit schooling/shoaling/aggregation behavior
NA - Schooling/shoaling/aggregation behavior unknown
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TOA #4 - Morphology affecting capture

We reviewed the “biology of the species” portion of the relevant stock assessment,
the FishBase profile of the species, and other resources to identify morphology that
affect the susceptibility of the taxa to capture. We were unable to identify any taxa
that exhibited morphology that would make them either unsusceptible or highly
susceptible to capture. If the taxa are desired, the fishing gear/method is adapted to
target the taxa despite its challenges. Everything was identified as being of average
susceptibility to capture.

1 - No examples

2 - Everything

3 - No examples

TOA #5 - Discard rate

We determined the proportion of the catch discarded from the relevant stock
assessment or other relevant resource and used the following percentage
thresholds to assign scores:

1 -<10% of catch discarded

2 - 10-25% of catch discarded

3 - >259% of catch discarded
NA - Discard rates are unknown

TOA #6 - Targeting intensity

We reviewed the “history of the fishery” portion of the relevant stock assessment
and other relevant resources to determine the targeting intensity of the fishery and
used the following classifications to assign scores:

1 - Not targeted (bycatch / incidental catch only)
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2 - Occasionally targeted (often part of multi-species catch)
3 - Actively targeted (directed fishery)
NA - Targeting intensity unknown

TOA #7 — M compared to dominant species

We reviewed the “history of the fishery” portion of the relevant stock assessment
and other relevant resources to determine the proportion of the catch coming from
different sectors in order to infer the other taxa represented in the fishery. If
multiple taxa are represented in the fishery, we used a variety of sources to
determine the dominant species by weight (not value). The natural mortality rates
of the target and dominant species were determined from the relevant stock
assessments. If the target species was dominant or if there were no other taxa in the
fishery, the attribute could not be scored. The following classifications were used to
assign scores when the attribute could be scored (note: natural mortality rates must
differ by >10% to be considered different):

1 - M higher than M of dominant species

2 - M approximately equal to M of dominant species

3 - M lower than M of dominant species

NA (common for this attribute) - only taxa in fishery or is the dominant taxa in

fishery or natural mortality rates are unknown
* Our scores were reviewed by experts familiar with regional fisheries for accuracy.

TOA #8 - Occurrence in catch

We use the percentage threshold guidelines listed below to assign scores. However,
this data is not often available and decisions could be fairly subjective and non-
quantitative.

1 - 0-10% of trawl tows, gillnet sets, trap pulls, etc.

2 - 10-25% of trawl tows, gillnet sets, trap pulls, etc.
3 - >25% of trawl tows, gillnet sets, trap pulls, etc.
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NA - the relative occurrence of the taxa in the catch is unknown

TOA #9 - Value

We determined value (USD lb-1) by deriving ex-vessel price for taxa by region from
the Sea Around Us Project landings volume and value database (Sumaila et al., 2007;
Pauly and Zeller, 2015). We used the average price from 2006-2010, the most recent
5 years with data, for scoring. For most stocks, appropriate regional prices could be
tied to the stock. For highly migratory species like tuna, marlin, swordfish and
stocks managed by a RFMO (e.g., Mediterranean or West African stocks), average
values from the relevant countries were used. For the few stocks without price data
in the database, we found ex-vessel prices in other references. We used the

following thresholds to assign scores:

1-<$1.00 Ib1
2-%1.00-2.251b?
3 ->$2.251b1

NA - Ex-vessel price is unknown

TOA #10 - Recent trend in catch

We identified the recent trend in catch for each scored stock using (1) annual catch
time series in the RAM Legacy Stock Assessment Database or (2) figures and tables
in the original stock assessment when catch time series were not included in the
database. We used Theil-Sen regression to identify trends in catch in the most
recent 5 years where a (1) significant positive slope indicates increasing catch, (2)
significant negative slope indicates decreasing catch, and (3) non-significant slope
indicates stable catch over the most recent 5 years. Theil-Sen regression fits a line to

a set of points by identifying the median slope among lines through all possible
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point pairs and is insensitive to outliers and endpoints in short time series. Both
trends in total catch (landings + discards) and landings were identified where
possible and trends in total catch were used over trends in landings.

1 - Significant increase in catch in recent 5 years

2 - No significant change in catch in recent 5 years

3 - Significant decrease in catch in recent 5 years
NA - Catch data are not available

TOA #11 - Habitat loss

We classified taxa that reside in threatened estuary (Lotze et al., 2006), seagrass
(Orth et al., 2006; Waycott et al.,, 2009), mangrove (Giri et al., 2010), or coral reef
(Pandolfi et al., 2003, 2011) habitats for their whole lives or a portion of their lives
as being at high and moderate risk of overexploitation. We classified taxa that spend
their entire lives outside these threatened habitats as being at low risk of
overexploitation. We classified taxa that spend the entirety of their lives in partially
threatened inshore areas such as the intertidal zone or rocky reefs (Lotze et al.,
2006; Rabalais et al., 2009) as being at moderate risk of overexploitation.

1 - No time in threatened habitats

2 - Part time in threatened habitats (or full time in partially threatened habitats)

3 - Full time in threatened habitats
NA - Habitat preferences are unknown

TOA #12 - Recent trend in effort

We identified the recent trend in fishing effort for each scored stock using fishing
mortality rate estimates as a proxy for fishing effort. We analyzed (1) annual fishing
mortality time series in the RAM Legacy Stock Assessment Database or (2) figures

and tables in the original stock assessment when fishing mortality time series were
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not included in the database. We used Theil-Sen regression to identify trends in
fishing mortality in the most recent 5 years where a (1) significant positive slope
indicates increasing effort, (2) significant negative slope indicates decreasing effort,
and (3) non-significant slope indicates stable effort over the most recent 5 years.
Theil-Sen regression fits a line to a set of points by identifying the median slope
among lines through all possible point pairs and is insensitive to outliers and
endpoints in short time series. Both trends in fishing mortality rate (F) and
exploitation rate (ER) were identified where possible and trends in fishing mortality
rate were used over trends in exploitation rate.

1 - Significant decrease in fishing effort in recent 5 years

2 - No significant change in fishing effort in recent 5 years

3 - Significant increase in fishing effort in recent 5 years
NA - Effort data are not available

TOA #13 - Recent trend in abundance index

We identified the recent trend in fisheries independent CPUE for each scored stock
using stock assessment model abundance estimates as a proxy for CPUE. We
analyzed (1) annual abundance time series in the RAM Legacy Stock Assessment
Database or (2) figures and tables in the original stock assessment when abundance
time series were not included in the database. We used Theil-Sen regression to
identify trends in the abundance index in the most recent 5 years where a (1)
significant positive slope indicates increasing abundance index, (2) significant
negative slope indicates decreasing abundance index, and (3) non-significant slope
indicates stable abundance index over the most recent 5 years. Theil-Sen regression

fits a line to a set of points by identifying the median slope among lines through all
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possible point pairs and is insensitive to outliers and endpoints in short time series.
Trends in spawning stock biomass (SSB), total biomass (TB), number of individuals
(TN), and number of recruits (R) were identified where possible and were
preferentially used in the same order.

1 - Significant increase in abundance index in recent 5 years

2 - No significant change in abundance index in recent 5 years

3 - Significant decrease in abundance index in recent 5 years
NA - Survey data are not available

TOA #14 - Proportion of population protected

We determined whether the fishery was managed using (1) size limits, (2) protected
areas, (3) seasonal closures, or (4) significant effort controls / gear restrictions.
Fisheries employing no measures received a high risk score, one measure a
moderate risk score, and size limits and one other measure a low risk score.

1 - Size limits AND (protected areas OR seasonal closures)

2 - Size limits OR protected areas OR seasonal closures

3 - No size limits, no protected areas, no seasonal closures
NA - Management regulations are unknown
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The original ORCS approach incorrectly classified the US Southeast/Gulf of Mexico
red porgy stock as fully exploited while the refined ORCS approach correctly
classified the stock as overexploited. In the refined ORCS approach, the OFL (Uumsy x
total biomass) is estimated for overexploited stocks by multiplying the 10th
percentile of the whole catch time series by a scalar, where the choice of scalar is
determined by the managing agency (see Table 3 in the manuscript for potential
catch scalars). For example, using the median catch scalar for overexploited stocks,
the OFL for red porgy would be calculated as:

OFL = 10% percentile whole time series * 1.56

OFL =743 mt*1.56 =115.9 mt

The OFL estimated by the refined ORCS approach (115.9 mt) is less than that
estimated from the data-rich assessment (282.7 mt) indicating that the refined

approach would underutilize available biomass for the red porgy stock (Figure 1).

1200 —
1000 —
800 —
600 —
400 —
200 —

Catch (MT)

10th percentile (whole time series)

1970 1980 1990 2000 2010 2020

Figure 1. The US Southeast/Gulf of Mexico red porgy catch history showing the OFLs estimated for
the terminal year by the refined ORCS approach (red; 115.9 mt) and from the data-rich assessment
(black; 282.7). Because the refined ORCS approach classified the stock as overexploited, it estimates
the OFL as the 10th percentile of the catch time series (dashed line) multiplied by a scalar, where the
choice of scalar is determined by the managing agency. The OFL shown here was calculated using the
median catch scalar for overexploited stocks.
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Appendix D: Development of the boosted classification tree model

We refined the ORCS Table of Attributes using boosted classification trees
(BCT) to weight attributes by their relative importance, incorporate interactions
between attributes, and account for non-linearity in attribute behavior. The BCT
analysis was performed using the caret (Kuhn, 2016) and gbm (Ridgeway, 2016)
packages in Rv.3.3.2 (R Core Team, 2016).

We used the train function in the caret package (Kuhn, 2016) to conduct a
grid search for the BCT model parameters that maximize Cohen’s kappa using
repeated 10-fold cross validation on the training dataset. We optimized the standard
BCT parameters - interaction depth, learning rate, and number of trees - but also
optimized the bag fraction, which controls the proportion of the data used in each
iteration (Table 4). Lower values promote stochasticity and increase predictive
performance on large datasets where omitting data is not a problem. Higher values
reduce stochasticity but give the model more data to learn from when working with
small datasets (Natekin and Knoll, 2013). Because of the small size of our dataset,

we evaluated bag fractions from 50% to 90%.

Table 4. Boosted classification tree (BCT) model parameters and tuning values.

BCT model parameter Values evaluated

Interaction depth (a.k.a., tree complexity) c(1,2,3)

Learning rate (a.k.a., shrinkage, step-size reduction) ¢(0.001, 0.005, 0.0001)

Number of trees seq(from=100, to=3500, by=100)
Bag fraction seq(from=0.5, t0=0.9, by=0.1)
Minimum number of observations in terminal nodes 10

We trained the model using this grid with both numeric (1s, 2s, and 3s are
numbers) and categorical (1s, 2s, and 3s are factors) scores and with both

unweighted observations and observations weighted by stock status. The weighted
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observation approach was designed to give more weight to the rare but important
overexploited stocks in an attempt to improve predictions in this category (Table

5). This yielded the following four modeling approaches:

1. Numeric scores (unweighted)
2. Categorical scores (unweighted)
3. Numeric scores - observations weighted by stock status

4. Categorical scores - observations weighted by stock status

The unweighted numeric score approach generally performed better than
the alternatives (Figure 1), presumably because numeric values provide valuable
information on score order (factors are unordered) and because fitting the model by
maximizing Cohen’s kappa already does the work expected from weighting the

stocks by the rarity of their status.

Table 5. Weights assigned to the data of stocks of each status in weighted model training.

Status # of observations | Weight

Low 55 1.00 (55/55)
Moderate | 76 0.72 (55/76)
High 24 2.29 (55/24)

Figure 2 shows the kappa and accuracy statistics for the best model tune in each
modeling approach-bag fraction scenario. The numeric modeling approach with a
0.8 bag fraction was selected because it exhibited the highest mean and median

values for both Cohen’s kappa and accuracy on the training dataset.
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Figure 2. Cohen’s kappa and accuracy statistics for the best model tune in each modeling approach-
bag fraction scenario. Boxplots indicate the median (heavy black line), interquartile range (IQR; box),
1.5 times the IQR (whiskers), and outliers. Solid points indicate the mean. The red line indicates the
mean value across all scenarios.

The mean kappa statistic for every parameter combination in the unweighted
numeric modeling framework is shown in Figure 3 and neatly illustrates the
process for identifying the best model parameters. Ultimately, we used the model
with learning rate=0.001, interaction depth=2, number of trees=3000, and bag

fraction=0.8.
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Figure 3. Mean Cohen’s kappa for each combination of BCT model parameters. Lines indicate
learning rate: purple (0.001), orange (0.0005), green (0.0001). The best combination of model
parameters is the one that maximizes the kappa value. The best combination of parameters is labeled
for each bag fraction scenario.
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Appendix E: Application and performance of other catch-only methods

We compared the performance of the BCT model to six other catch-only
methods for estimating status on the 37 stocks with catch time series in the test
dataset: SSP-2002 (Froese and Kesner-Reyes, 2002) and SSP-2013 (Kleisner et al.,
2013), which estimate development status (e.g., undeveloped, developing, fully
exploited), and CMSY (Martell and Froese, 2013), COM-SIR (Vasconcellos and
Cochrane, 2005), SSCOM (Thorson et al., 2013), and mPRM (Costello et al., 2012),
which estimate B/Bwsy.

The two ‘stock status plot’ (SSP) methods evolved from the FAQ’s efforts to
assess the status of global fisheries (Grainger and Garcia, 1996) and use simple rules
to identify fisheries development status (Csirke and Sharp, 1984) from patterns in
catch time series. The Froese and Kesner-Reyes (2002) method, SSP-2002, identifies
a stock as ‘undeveloped’, ‘developing’, ‘fully exploited’, ‘overfished’, or ‘collapsed’
based on comparison of the target year’s catch relative to the maximum year’s catch
(Table 6). The Kleisner et al. (2013) method, SSP-2013 (actually published first in
Kleisner and Pauly, 2011), adds an additional ‘rebuilding’ category by considering
the minimum catch occurring after the maximum catch (‘post-maximum minimum”)
(Table 7). The tables illustrate how we mapped the SSP-2002 and SSP-2013 status

categories into under, fully, and overexploited statuses.
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Table 6. Criteria used to classify stock status in SSP-2002 (Froese and Kesner-Reyes, 2002).*

Stock status SSP-2002 status  Criteria

Underexploited Undeveloped Ceurr before Cmax AND Ceyrr < 0.1*Crnax
Underexploited Developing Ceurr before Crmax AND 0.1*Crnax < Ceurr < 0.5%Crnax
Fully exploited  Fully exploited Ceurr > 0.5%Cryax

Overexploited Overfished Ceurr after Crax AND 0.1*Cryax < Ceyrr < 0.5%Crnax
Overexploited  Collapsed/closed  Ceyrr after Cmax AND Ceyrr < 0.1%*Crnax

* Ceurr = current catch; Cmax = maximum catch

Table 7. Criteria used to classify stock status in SSP-2013 (Kleisner et al., 2013).*

Stock status SSP-2013 status  Criteria

Ceurr before Crmax AND Ceurr < 0.5*%Crmax OR Crax in final year of
Underexploited  Developing time series
Fully exploited Exploited Ceurr > 0.5*Cryax
Overexploited Overexploited Ceurr after Crax AND 0.1*Cryax < Ceyrr < 0.5%Crnax
Overexploited Collapsed Ceurr after Cmax AND Ceurr < 0.1*Crax

Ccurr after Cpost-max min AND Cpost-max min O-l*cmax AND 0-1*Cmax <
Overexploited Rebuilding Ceurr < 0.5*Crnax

* Ceurr = current catch; Cmax = maximum catch; Cpost-maxmin= minimum catch after the maximum catch

The other four methods, CMSY (Martell and Froese, 2013), COM-SIR (Vasconcellos
and Cochrane, 2005), SSCOM (Thorson et al.,, 2013), and mPRM (Costello et al.,
2012), use catch data and basic life-history parameters to estimate B/Busy. We
selected these methods because they can be applied to the vast majority of global
fisheries, are established in the literature, have been extensively simulation tested
(Rosenberg et al., 2014), and can be easily implemented using the datalimited

package in R (Anderson et al., 2016, 2017).

1. CMSY (catch-MSY) implements a stock-reduction analysis with Schaefer
biomass dynamics (Martell and Froese, 2013). It requires prior distributions

onr and K as well as priors on the relative proportion of biomass at the
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beginning and end of the time series compared to unfished biomass
(depletion). The version of the model used in Rosenberg et al. (2014) and
implemented in the datalimited package (Anderson et al., 2016) was
modified from Martell and Froese (2013) to generate biomass trends from all
viable r-K pairs and produce an estimate of B/Bwusy from the median trend.

. COM-SIR (catch-only-model with sampling-importance-resampling) is a
coupled harvest-dynamics model (Vasconcellos and Cochrane, 2005) in
which biomass and harvest dynamics are assumed to follow Schaefer and
logistic models, respectively. The model is fit using a sampling-importance-
resampling algorithm (Rosenberg et al. 2014).

. SSCOM (state-space catch-only model) is a hierarchical model also based
on a coupled harvest-dynamics model (Thorson et al., 2013). SSCOM
estimates unobserved dynamics in both population biomass and fishing
effort based on a catch time series and priors on r, the maximum rate of
increase of fishing effort, and the magnitude of three forms of stochasticity.
The model is fit in a Bayesian state-space framework to integrate across
three forms of stochasticity: variation in effort, population dynamics, and
fishing efficiency (Thorson et al., 2013).

. mPRM (modified panel regression model) is a modified version of the
panel-regression model from Costello et al. (2012), which used the RAM
Legacy Stock Assessment Database to predict B/BMSY from characteristics of
the catch time series and stock. The implementation of the model in the

datalimited package (Anderson et al., 2016) is modified from the original in
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that it uses a different suite of life-history categories and removes the
maximum catch predictor.
We applied CMSY using resilience categories from FishBase and 2 million iterations.
We applied COM-SIR using resilience categories from FishBase and 4 million

iterations. We applied mPRM using species categories from Anderson et al. (2016).
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Figure 4. Catch time series for the 37 data-rich stocks with catch time series in the test dataset
(TC=total catch, n=31; TL=total landings, n=6). These stocks were used to evaluate the status
classification performance of the refined ORCS approach and four alternative catch-only methods.
Stocks are arranged and colored by status (B/Bwmsy).
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Appendix F: Refinement of the historical catch statistics and scalars

We identified the best status-specific historical catch statistics and scalars by
comparing the OFL in the terminal year to 24 potential historical catch statistics (8
statistics x 3 time periods) for the 105 stocks in the RAMLDB with the following
information: (1) an estimate of Umsy or an estimate of Fusy and M if Umsy is
unavailable; (2) a time series of total biomass; (3) a time series of total catch or
landings if total catch is unavailable; and B/Busy (stock status). We estimated Uwmsy

for stocks where Uwmsy is unavailable using the following equation:
Uysy = [M] * [1 — e—(M+FMSY)]
M + Fyy

and calculated the OFL as the product of Uusy and the terminal year total biomass:

OFL = Uygy * Total biomass

Table 8. Selection of stocks with usable Umsy values.

RAM Legacy Database subset # of stocks
All assessments 512
Assessments with Umsy 114
Assessments without Uwsy but with Fysy and M 64
Assessments with Upsy provided and calculated 178

- minus 1 stock with an unrealistic Unsy (1.47) 177

Table 9. Selection of stocks with usable Umsy values and time series of total biomass and total catch
(or total landings).

RAM Legacy Database subset # of
stocks

Assessments with usable Uwsy values (from above) 177

Assessments with Umwsy and TB and TC or TL time series in same units 128

Assessments with Uysy and TB and TC or TL time series = 10 yr 128

Assessments with Umsy and TB and TC or TL time series 2 15 yr 125

Assessments with Uusy and TB and TC or TL time series > 20 yr 121
- minus | stock without an OFL in the terminal year of the catch time series 120
- minus 15 stocks without B/Bmsy values (stock statuses) 105
- minus 8 stocks not scored using the ORCS approach (b/c SSBwmsy in eggs, 97
larvae, or gonads)




122

We calculated the following catch statistics over the whole time series, the most
recent 10 years, and the most recent 20 years (8 statistics x 3 time periods):

e Arithmetic mean

e Interquartile mean - the mean of values in the interquartile range (25-75%
percentile); less sensitive to outliers than the arithmetic mean

e Winsorized mean - the mean of the data with the upper and lower 25t

percentile values replaced by the next largest value

e 10th 25t 50t 75t gnd 90 percentiles
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Chapter 3: Influence of ocean warming on global marine fisheries

productivity

Abstract

Marine fish and invertebrates are experiencing shifting distributions, changing
phenology, and altered food availability and habitat quality as a result of climate
change, but the net effect of these changes on global fisheries productivity remains
unclear. In this study, we use surplus production models with monotonic
temperature-dependence to measure the influence of sea surface temperature (SST)
on the productivity of 235 fish stocks of 124 species in 38 large marine ecoregions.
We found that ocean warming has significantly positively and negatively influenced
the productivity of 18 and 19 stocks, respectively (37 total; 16% total). The
influence of warming on a stock’s productivity is determined by ecoregion,
taxonomic family, life history, and exploitation history. Hindcasts of SST-dependent
maximum sustainable yield indicate that MSY of assessed stocks decreased 5.6%
from 1930 to 2010. The greatest SST-driven reductions in MSY occurred in the Sea
of Japan, Kuroshio Current, East China Sea, North Sea, Iberian Coastal ecoregions
while the greatest SST-driven gains in MSY occurred in the South Pacific Ocean,
Canary Current, Indian Ocean, and North Pacific Ocean ecoregions. The model’s
assumption of monotonic rather than dome-shaped temperature dependence is

optimistic and suggests that future climate-driven losses in MSY may be even larger.



128

Introduction

The growth of the world's human population and current levels of hunger in
many parts of the world have raised concerns over food security in the future
(Godfray et al. 2010). Currently, fisheries and aquaculture supply about 17% of
global animal protein intake and support the livelihoods of approximately 12% of
the world’s population (FAO 2016). Human population growth is expected to be
most profound in regions where fish provide most of the non-grain dietary protein
(UN-DESA 2015). The extent to which marine fisheries will be able to keep pace
with an increasing human population will depend on climate-driven changes to
fisheries productivity and the adaptation of fisheries management systems to these
changes.

Anticipating the net effect of climate change on marine fisheries is
complicated because climate change affects a multitude of environmental variables
that act across different levels of biological organization (Hollowed et al. 2013). Of
these variables, temperature is arguably the most important because of its direct
effect on marine organisms (Portner & Knust 2007; Portner & Farrell 2008) and its
role in driving changes in stratification (Manabe & Stouffer 1993), primary
production (Behrenfeld et al. 2006), and dissolved oxygen (Keeling et al. 2010). As a
result of ocean warming, marine fish and invertebrates are experiencing large-scale
redistributions (Perry et al. 2005; Pinsky et al. 2013), changing phenology and
mismatches (Cushing 1990; Edwards & Richardson 2004), altered food availability

(Boyce et al. 2010, 2014), and increased exposure to oxygen-depleted and acidic
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waters (Mora et al. 2013). However, the net effect of these changes on marine
fisheries productivity remains poorly understood.

The first global-scale studies of climate-driven fisheries productivity linked
bottom-up ecological models with climate models but failed to report uncertainty
and were applied to broad species groups. For example, Cheung et al. (2010)
coupled species distribution, primary productivity, and trophic transfer models to
project shifts in catch potential for 1,066 species under two climate scenarios. They
predicted that the distribution of global catch will shift dramatically but net
productivity will remain the same. Blanchard et al. (2012) coupled physical-
biogeochemical and food web models to project shifts in fish production for
“demersal” and “pelagic” fish groups under two climate scenarios. They also
predicted a dramatic redistribution of production but avoided statements regarding
changes to net productivity. Although the agreement between these two studies is
compelling, they are both limited in that they impose rather than detect a link
between climate and productivity and that they propagate no uncertainty in their
layered models and assumptions (Brander et al. 2013).

Recent studies have focused on empirical analyses of commercially
important fish stocks but have only examined the influence of temperature in post-
hoc analyses and have produced mixed results. For example, Britten et al. (2016)
correlated time-varying trends in the recruitment capacity of 262 assessed fish
stocks to trends in SST, chlorophyll, and overfishing history, and found SST change
to be a non-significant driver of changing recruitment capacity. They also suggest

that global recruitment capacity has declined at a rate of 3% per decade; however,



130

this estimate gives equal weight to all stocks, regardless of size, and Szuwalski
(2016)’s reanalysis shows that weighting by biomass eliminates the trend while
weighting by catch reverses the trend entirely. Britten et al. (2017) conducted a
similar analysis of time-varying surplus production for 276 assessed stocks, which
they conceptually but not statistically attribute to changes in environment, and
found no changes in net global productivity.

In this study, we use surplus production models with monotonic
temperature-dependence to measure the influence of sea surface temperature (SST)
on the productivity of 235 fish stocks and hindcast changes in their SST-driven
maximum sustainable yield (MSY) from 1930-2010. This study is the first
retrospective analysis of assessed global fish stocks to explicitly include
temperature inside a population dynamics model and the first analysis to attribute
SST experience using the actual stock boundaries. Furthermore, we measure the
influence of temperature on MSY, the best metric for anticipating impacts of climate
change on food security and livelihoods, while other studies have focused on
recruitment (Britten et al. 2016; Szuwalski 2016), which is difficult to translate into
food or dollars, or on “catch potential” defined as the mean of the five largest catches
(Cheung et al. 2010), which is unlikely to be a sustainable quantity in moderately to
heavily exploited fisheries. Thus, our study seeks to provide new insights into the
past and future impacts of climate change on global marine fisheries productivity

and implications for global food security and livelihoods.

Methods
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Stock selection

We analyzed the non-salmon stocks in the RAM Legacy Stock Assessment
Database (RAMLDB v3.8; Ricard et al. 2012) with time series of total biomass
(metric tons) and catch or landings (metric tons; catch preferred) longer than 20
years after trimming data based on strong model assumptions (Supp. Table 1;
Appendix C). We included 30 stocks assessed using biomass dynamics models that
were judged to exhibit sufficient variability to be included in the analysis. We
excluded 28 stocks that prevented model convergence because they (1) lacked
periods of low exploitation and high biomass necessary to constraining carrying
capacity or (2) exhibited population dynamics wildly divergent from stationary
logistic population growth. The resulting 235 stocks represent a variety of taxa, life
histories, and locations and approximately 33% of reported global catch (FAO 2016;

28 of 86 million metric tons in 2000).

Stock boundary delineation and SST time series

We estimated the sea surface temperatures (SST) experienced by each stock
by mapping the boundary of the stock (i.e., the spatial domain of the stock
assessment) and calculating the mean annual SST within this boundary using the
COBE SST dataset (COBE v2; Ishii et al. 2005). The COBE dataset provides monthly
SST on a globally complete 1°x1° grid from 1850-present based on an interpolation
of in-situ and satellite-derived SST observations. We conducted sensitivity analyses
using the ERSST and HadISST datasets to ensure that the results were not sensitive

to the choice of SST dataset (Supp. Figure 1; Appendices A & D). Stock boundaries
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were delineated by either (1) merging the statistical/management areas used to
define the assessment area; (2) digitizing the assessment area directly from the
stock assessment; or (3) clipping the managing country’s exclusive economic zone
or the managing agency’s area of competence to the geographical reference points
provided in the stock assessment. In the USA and Australia, we used information on
the geographic distribution of each species (i.e., essential fish habitat and modelled

distribution, respectively) to further constrain stock boundaries (Appendix B).

Base SST-linked surplus production model

We modeled the influence of SST on productivity using a Pella-Tomlinson
surplus production model with normal process uncertainty and multiplicative SST
influence. Surplus production was calculated for each stock as the net change in
biomass in the absence of harvest:

SPi,t = Bi,t+1 - Bi,t + Ci,t

where SP;; is the surplus production for stock i over year ¢, B;: and B;:+; are the
biomasses of stock i in years t and t+1, respectively, and Cj.is the catch for stock i
removed between years t and t+1. We used a Pella-Tomlinson surplus production
model (Pella & Tomlinson 1969) because it contains a shape parameter (p) that
allows it to replicate either the Fox (p—0) or Schaefer (p=1) surplus production
models (Schaefer 1954; Fox 1970). We extended the Pella-Tomlinson model to

include SST influence and assumed normal process uncertainty:

T B\’
SPi,t = EBi’t 1-— <T) * eXp(SSTi,t * 91) + &
i
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where SP;; is the surplus production, Bi: is the biomass, SST;:is the mean sea surface
temperature for stock i in year t and r; is the intrinsic rate of growth, K;is the
carrying capacity, 6; is the influence of SST on productivity, and ¢; is normal process
uncertainty, N (0, aﬁ,i), for stock i. We used Akaike Information Criterion (AIC;
Akaike 1974) to compare models using shape parameters (p) that maximize
productivity at 50% (p=1), 45% (p=0.55), 40% (p=0.2), and 37% (p=0.01) of
carrying capacity and selected the model with the lowest AIC score as the “base”
model (Table 1). We evaluated these shape parameter values because 50%
produces the symmetric Schaefer model, 40% is the meta-analytic mean (Thorson et
al. 2012), and 37% is the asymptotic limit of this parameterization of the Pella-
Tomlinson model.

We estimated SST influences, 6;, as random effects:

0; ~ N(ussr, 05sr)

where usst and csst are the mean and standard deviation of the global distribution
of SST influences (8;), respectively. 8; < 0 means increasing SST reduces
productivity at a given biomass and 8; > 0 means increasing SST magnifies
productivity at a given biomass. See Supp. Table 2 for a key to all model symbols.

To ease model fitting, we scaled biomass and production data to each stock's
maximum biomass and centered SST data around each stock’s mean SST. We also
placed a likelihood penalty on carrying capacities greater than five times the
observed maximum biomass to constrain unrealistic carrying capacities. We fit the
model using maximum likelihood estimation in the TMB package (Kristensen et al.

2016; Template Model Builder) in R (R Core Team 2017).
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Alternative SST-linked surplus production models

To determine whether taxonomy, geography, or stock assessment method
structure SST influence, we used SST-linked surplus production models with
hierarchical SST influence based on each of six “groups”: (a) taxonomic order and
family; (b) large marine ecoregion (LME; Spalding et al. 2007) and FAO major
fishing area; and (c) generic and specific stock assessment method (Table 1; Supp.
Table 3). These models were identical to the base model except that SST influence is
estimated as a nested hierarchical random effect:

6; ~ N(ug j, 08)
where SST influences (6;) for stocks in group j are drawn from a normal distribution
with a group-specific mean (i ;) and group-wide standard deviation (o). Group-
specific means are drawn from a global normal distribution with mean (ug¢r) and
standard deviation (oggr):
Ug,j ~ N (ussr, USZST)

We compared the group models to the base model using AIC and judged a
group to be a significant driver of SST influence if its model exhibited an AIC score
more than two points lower the base model. The best or “final” SST-linked surplus
production model was identified as the model producing the lowest AIC score.

We explored using SST-linked surplus production models with dome-shaped
temperature dependence but these models failed to converge due to their inability

to estimate species-specific thermal optima (see Appendix A for more details).
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Model validation and simulation testing

We tested whether the final SST-linked surplus production model described
population dynamics better than the standard surplus production model by
competing the models with AIC. We tested whether the results of the final model
were an artefact of model structure by decoupling the SST and productivity time
series using three null models with simulated SST time series exhibiting: (1) the
same mean, variance, autoregressive properties, and trend as the original time
series; (2) the same mean, variance, and autoregressive properties as the original
time series but without a trend; and (3) the same mean and variance as the original
time series but without autocorrelation or a trend (Supp. Figure 3; Appendices A &
F). The SST simulations were performed using the R package forecast (Hyndman

2017).

Data analysis and hindcasting global MSY

Because the influence of SST on productivity was estimated as a random
effect, our estimates of SST influence cannot be considered independent and cannot
undergo post-hoc analyses using formal statistical methods (i.e., formal hypothesis
testing requires including explanatory variables inside the model as we did with

taxonomy and geography). Therefore, we graphically evaluated whether SST

influence is determined by: (1) life history traits such as growth rate, maximum age,

and depth preference; (2) stock characteristics such as trend in biomass and fishing

pressure; and (3) thermal experience such as mean SST, SST trend, or latitude. A list

of evaluated explanatory variables and their sources is provided in Supp. Table 4.
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We used the final model’s estimates of p, r;, K;, and 6; to hindcast SST-
dependent maximum sustainable yield (MSY) from 1930-2010. We calculated MSY

for stock i in year t as:

ok ki
(p + DP+D/p

MSY;, = « exp(0; * SST;,)

where Wi,t is SST;: centered on the mean of the SST data used in model fitting and

0, is randomly drawn from a normal distribution described by the mean 6; estimate
and its standard error. We bootstrapped 10,000 MSY hindcasts for each stock to
generate median MSY trends and confidence intervals. We assessed changes in MSY
over the hindcast period using (1) Thiel-Sen regression slopes and (2) percent
change in mean MSY from 1930-39 to 2001-2010. Theil-Sen regression, a form of
robust regression, identifies the median slope of lines through all possible point
pairs and is insensitive to outliers and endpoints in short time series. We limited the
hindcast from 1930-2010 to minimize the extrapolation of MSY predictions to
temperatures cooler or warmer than those used in model fitting (Supp. Figure 4)
and explored the sensitivity of measures of MSY change to the selection of hindcast

window (Supp. Figure 5).

Results

The SST-linked Schaefer surplus production model described population
dynamics better than the standard Schafer surplus production model based on AIC
(Table 1). The SST-linked Pella-Tomlinson production model with productivity

maximized at 40% of carrying capacity described populated dynamics better than
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the SST-Schaefer model and Pella-Tomlinson models with other shape parameters
and was selected as the “base” model (Table 1; Supp. Figure 2). Estimates of SST
influence were not sensitive to choice of shape parameter (Supp. Figure 2). SST-
linked models with hierarchy by large marine ecoregion, taxonomic family, and FAO
major fishing area further improved model fit (Table 1; Supp. Figures 6&7). The
SST-linked model with hierarchy by ecoregion, selected as the final model,
estimated a wider range of SST influences and at a higher rate of significance than
the three null models (Figure 1; Supp. Figures 9-12).

Although the global mean of the SST influence distribution was not
significantly different from zero, the productivity of 18 and 19 stocks were
estimated to be significantly positively and negatively influenced by warming,
respectively (Figure 1; Supp. Table 5). In the final model, these influences were
structured by ecoregion, with the Celtic-Biscay Shelf and North Sea showing
significantly negative mean SST influences (Figure 2). The FAO area and taxonomic
family models showed significantly negative mean SST influences for the Northeast
Atlantic and Gadid family (codfishes), respectively (Figure 2). Fish with fast life
histories (<20 yr max age) were especially sensitive, both positively and negatively,
to warming and fish residing in deep water (>600 m) were particularly insensitive
(Figure 3). Stocks experiencing intense overfishing and declining biomass were
more likely to be negatively influenced by warming (Figure 3). The position of a
stock within its species-specific thermal niche may also determine the influence of
warming: Atlantic herring, Atlantic cod, and red rock lobster all showed negative

relationships between SST influence and mean temperature experience (Figure 4).
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Habitat, trophic level, latitude, and stock size did not appear to structure SST
influence (Supp. Figures 8-11). Stock assessment method did not influence model
results (Table 1; Supp. Figure 6-8).

Hindcasts of SST-dependent maximum sustainable yield indicate that MSY of
assessed stocks decreased 5.6% (2.2 million metric tons) from an average of 41.7
million metric tons in 1930-39 to an average of 39.5 million metric tons in 2001-10
(Figure 5). At the LME-scale, SST-driven changes in MSY generally mirrored the
mean SST influence of the LME, though change in large stocks sometimes
neutralized or overrode the changes of many small stocks (e.g., on the SE US Cont.
Shelf; Figure 6). The greatest SST-driven reductions in MSY occurred in the Sea of
Japan, Kuroshio Current, East China Sea, North Sea, Iberian Coastal ecoregions while
the greatest SST-driven gains in MSY occurred in the South Pacific Ocean, Canary
Current, Indian Ocean, and North Pacific Ocean ecoregions (Figure 6; Supp. Table 6).
The final model’s estimates of MSY at average temperature are highly correlated
with data-rich estimates and only 12.0% of stock-years between 1930-2010
required extrapolating outside temperatures seen by the model (Supp. Figure 3;

3.5% warmer, 8.5% cooler).

Discussion

This is the first study to show that climate change has resulted in a net loss in
global marine fisheries productivity. This finding contradicts analyses of time-
varying recruitment (Szuwalksi 2016) and productivity (Britten et al. 2017) that

suggest that net productivity has not changed despite large-scale redistributions.
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However, these studies were based on analyses of shifts in productivity over time
series starting, on average, in 1971. Although these time series capture the period of
ocean warming from 1970 to present (0.5°C of warming), they miss the period of
warming from 1910-1945 (Karl et al. 2015), which limits their ability to describe
long-term, climate-driven shifts in productivity. Our hindcasts of SST-dependent
MSY extend back to 1930 and document a 5.6% decrease in marine fisheries
productivity over 0.6°C of ocean warming. Limiting the hindcasts to 1970 would
result in a dampened 3.3% decrease.

Even this decline in productivity is likely to be optimistic given our
assumption of a monotonic influence of warming on production (i.e., warming is
only good or only bad for productivity). In fact, the aerobic performance of
individual fish is dome-shaped with regards to temperature (Pértner & Knust 2007)
and is likely to remain dome-shaped at the population-scale through cascading
impacts on growth, mortality, and recruitment (Drinkwater et al. 2010). Thus, the
stocks identified by our model as having been positively influenced by warming are
unlikely to maintain productivity gains as continued warming (IPCC 2013; Raftery
et al. 2017) drives these stocks past their thermal optima. Unfortunately, estimating
thermal optima proved impossible given the lack of SST contrast when averaging
SST experience over large spatial scales. Although our monotonic model cannot
forecast productivity under out-of-sample warming, optimistic hindcasts imply that

future losses in productivity will be greater than 12%.
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Our results support suggestions that the impact of climate change on marine
fisheries productivity varies among ecoregions (Blanchard et al. 2012; Britten et al.
2016) but presents a new map of climate “winners” and “losers”. Britten et al.
(2016) and our estimates of ecoregion-scale SST influence are uncorrelated and in
low agreement (Supp. Figure 17). On one hand, this is not surprising given that
Britten et al. (2016) found no relationship between trend in ecoregion recruitment
capacity and trend in ecoregion SST while we model this relationship explicitly. On
the other hand, this is surprising given that we analyze the same data with
conceptually similar methods. The stark differences between the results could
indicate that (1) climate-induced effects on somatic growth and mortality are strong
enough to yield divergent effects on production and recruitment or (2) Britten et al.
(2016)’s recruitment potential trends are highly sensitive to the state of the initial
or final recruitment regime (Szuwalksi 2016).

We also identify taxonomic family as an important driver of the influence of
SST on productivity. However, taxonomy is collinear with geography and these
results should be interpreted carefully. For example, all of the negatively influenced
sandeel (Ammodytidae) stocks are found in the negatively influenced North Sea and
most of the negatively influenced codfish (Gadidae) stocks are found in the
negatively influenced Northeast Atlantic. Do environmental regime shifts in these
regions drive the apparent response of these taxa or does the intrinsic vulnerability
of these taxa drive the apparent response of these regions? Our methods cannot
disentangle this complexity but finer-scale analyses suggest both are possible. The

Northeast Atlantic has undergone large climate-driven shifts in primary
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productivity with cascading food web effects (Richardson & Schoeman 2004). This
has been especially true in the North Sea where both forage fish (Clausen et al.
2017) and groundfish (Beaugrand et al. 2003) productivity have been reduced as a
result of climate-induced changes to the zooplankton community. Alternatively,
both Atlantic cod (Planque & Frédou 1999) and sandeel (Arnott & Ruxton 2002)
recruitment are negatively correlated with warming temperatures.

We also present new evidence suggesting that fish with fast life histories
(e.g., fast growth, early age at maturity, short lifespan, etc.) are more responsive to
climate change than fish with slow life histories and that overfishing makes stocks
more vulnerable to climate change. For example, Perry et al. (2005) showed that
North Sea fish species shifting distributions in response to warming temperatures
were smaller and matured earlier than non-shifting species. Similarly, we identified
steep declines in the magnitude and significance of the influence of warming on
productivity at 150 cm max length and 7 years old at maturity. We also show that
stocks experiencing chronic and acute overfishing (F/Fusy mean > 2) are
significantly more likely to be negatively influenced by ocean warming. These
results are consistent with the growing body of evidence that overfishing can
magnify fluctuations due to environmental variability (Hsieh et al. 2006), reduce
resilience to climate change (Planque et al. 2010), and interact with life history and
climate variability to magnify sensitivity (Pinsky & Byler 2015).

Our results offer no support for hypotheses that demersal and pelagic species
differ in their vulnerability to climate change but offers support for hypotheses that

vulnerability to climate change varies by depth and position of a stock within its
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thermal niche. Rijnsdorp et al. (2009) hypothesize that pelagic species are more
responsive to warming than demersal species due to higher mobility and lower
fidelity and present evidence for this in the Northeast Atlantic. We found no
evidence of this pattern on the global scale possibly because fish are rarely only
pelagic or only demersal throughout their complex life histories and their climate-
driven productivity is shaped by many life stages (Petitgas et al. 2013). We show
support for Rijnsdorp et al. (2009)’s hypothesis that deep-water species are less
sensitive to climate change due to more stable environmental conditions. However,
these results could be spurious given our use of surface temperatures to describe
the temperature experience of deep-water species despite evidence that trends in
temperature and their impacts on fish are often depth-mediated (Thresher et al.
2007). Our results suggest that for species, like Atlantic cod, Atlantic herring, and
red rock lobster, stocks at the warm end of their thermal range are more vulnerable
to warming than stocks at the cool end of their thermal range. This pattern has been
demonstrated for Atlantic cod recruitment (Drinkwater et al. 2005) but has rarely
been demonstrated for other species or measures of productivity.

This study offers several advantages over other global-scale studies of
climate-driven marine fisheries productivity: (1) it is the first analysis to attribute
stock SST experience using the actual stock boundaries; (2) it is the first analysis to
measure the influence of temperature on maximum sustainable yield, the best
metric for anticipating impacts of climate change on food security and livelihoods;
and (3) it is the first retrospective analysis of assessed global fish stocks to explicitly

include temperature inside a population dynamics model. Our analysis also has
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several limitations. Although estimating dome-shaped SST dependence and allowing
ocean warming to influence carrying capacity would both increase biologically
realism, they were statistically infeasible. Furthermore, our study only evaluated the
influence of changing SST on fisheries productivity when changing primary
production (i.e., chlorophyll), dissolved oxygen, and pH are also influential (Sumaila
et al. 2011). This was necessary given the need for long time series describing
periods of low exploitation and high biomass when fitting surplus production
models and the lack of globally complete, historic datasets for other environmental
variables. Finally, the RAM Legacy Database presents a limited (e.g., v3.8=48% of
reported catch in 2000) and non-random selection of global stocks. Although this
analysis is representative of the dynamics of assessed stocks, it is not representative
of global fisheries production.

This paper presents a sobering reality. As the world’s human population and
demand for seafood grows (FAO 2016), climate change is a driving a decline in
marine fisheries productivity and sustainable catch potential. This study indicates
that fisheries managers will need to adjust expectations as they begin ecosystem-
based fisheries management seeking to manage fisheries in the face of climate
change. Importantly, this study highlights the emerging fact that overfishing
exacerbates the vulnerability of fish stocks to climate change. Thus, preventing
overfishing is imperative as climate change extends recovery timelines (Britten et al.
2017) and developing stock assessment methods that account for reductions in
productivity is essential as fish, fishermen, and fisheries managers move into a

warmer world.
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Figure 1. Distribution of SST influences estimated by the (A) base, (B) final, and (C)
primary null models. Points show mean estimates and error bars show 95%
confidence intervals. Significant positive and negative SST influences are shown in
blue and red, respectively. The transparent rectangle indicates the 95% confidence

interval for the global mean of the SST influences.
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N Goxay Shelf (15) — —+— Large marine  fomodyidas 3) o Family
Kuroshio Current (6) . ecoregion Ophidriidade (4)9 .
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Figure 2. Mean of the SST influence distributions for geographic or taxonomic
groups in models with hierarchy on SST influence by (A) large marine ecoregion,
(B) FAO major fishing area, (C) taxonomic family, and (D) taxonomic order. Points
show mean estimates and error bars show 95% confidence intervals. Significant

positive and negative SST influences are shown in blue and red, respectively. All but

the taxonomic order model had more support than the base model.
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Figure 3. SST influence as a function of maximum age (Tmax), depth, F/Fusy mean,
and scaled biomass trend. SST influences are colored by significance (blue=positive,
red=negative, grey=non-significant). Solid lines show the 50t percentile quantile
regression fit and dashed lines show the 2.5% and 97.5% quantile regression fits.
Sample size is shown in the bottom-right corner if data were not available for all

235 stocks.
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Figure 4. SST influence as a function of the mean temperature experienced by

stocks of the same species for the seven species with 25 stocks in the analysis. Lines

shows Theil-Sen regression fits with solid lines indicating regressions significant at

the 0.10 level. Theil-Sen regression, a form of robust regression, identifies the

median slope of lines through all possible point pairs and is insensitive to outliers

and endpoints in small datasets.
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Figure 5. Hindcast of SST-dependent maximum sustainable yield (MSY) for (A) all

stocks and for stock with (B) significant positive, (C) significant negative, and (D)

non-significant influences of SST on productivity. Solid lines indicate the median

MSY estimates, shading indicates the 95% confidence

intervals, and horizontal

dashed lines indicate the temperature-independent MSYs. Panel (E) shows the mean

global SST anomaly from 1850-2015 based on the COBE dataset.
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Figure 6. Maps showing the (A) global distribution of SST influences and (B)

percent change in mean maximum sustainable yield (MSY) from 1930-39 to 2001-

10 by ecoregion. In (B), points are scaled to the 1930-39 mean and the number of

stocks in the ecoregion is shown inside each point. In both plots, dashed lines

indicate FAO major fishing areas.
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Supplemental Tables & Figures

Supp. Table 1. RAM Legacy Database stocks used in analysis (TB = total biomass).

Condition # of stocks

All RAMLDB stocks 1058
Not Pacific salmon stocks 685
Only stocks with TB/catch in metric tons 350
Only stocks with TB/catch time series = 20 years 300
Removed 23 stocks with strong SP/SR relationships 277
Removed 9 stocks without 20 years of data after trimming 268
Removed 5 stocks without SST data (e.g., Seto Sea not covered by COBE) 263

Removed 28 stocks preventing model convergence 235
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Supp. Table 2. Model symbols and their definitions.

Type Symbol Definition

Data Cit Catch for stock i in year t

Data SPi Surplus production for stock i in year t

Data Bit Total biomass for stock i in year t

Data SSTi Sea surface temperature (SST) experienced by stockiin year t

Data G; Group (taxonomic or geographic) for stock i

Derived € Productivity process uncertainty for stock i

Parameter r; Intrinsic rate of growth for stock i

Parameter K; Carrying capacity for stock i

Parameter 6; Influence of SST on productivity for stock i

Parameter psst Mean of the distribution of SST influences (6)

Parameter Osst Standard deviation of the distribution of SST influences (8)
Parameter g, Mean of the distribution of SST influences (6;) for group j

Parameter og Standard deviation of the group-specific distributions of SST influences (6)
Parameter op, Standard deviation of the productivity process uncertainty for stock i
Constant p Shape parameter: fixed at 1.00, 0.55, 0.20, or 0.01

Index t Year

Index i Stock

Index j Group (taxonomic or geographic)
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Supp. Table 4. Potential predictors of SST influence and their sources (percentage

of stocks with predictor available shown in parenthesis when coverage is

incomplete).

Variable

Source

SST experience
SST average (°C)
SST trend (°C/yr)
Latitude (absolute value)
Stock characteristics
Biomass average (MT)
Scaled biomass trend (scaled MT/yr)
Stock area (sq. km)
Time series length (year)
B/Bwmsy average
F/Fumsy average
Geography
Large Marine Ecoregion
FAO Major Fishing Area
Life history traits
Taxonomy (family/order)
Natural mortality rate (M, 1/yr)
Brody growth coefficient (K)
Asymptotic maximum length (Lins, cm)
Asymptotic maximum mass (Wins, kg)
Length at maturity (Lmat, cm)
Age at maturity (Tmat, yr)
Maximum age (Tmax, Yr)
Trophic level
Habitat (e.g., demersal, pelagic, etc.)
Depth (m)

HadISST + stock boundary database (1930-2010)
HadISST + stock boundary database (1930-2010)

Centroid of the stock area (stock boundary database)

RAM Legacy Database
RAM Legacy Database
Stock boundary database
RAM Legacy Database

RAM Legacy Database (52%)
RAM Legacy Database (57%)

Containing the centroid of the stock area

Containing the centroid of the stock area

RAM Legacy Database (corrected for errors)
FishLife (finfish, 100%), SealLifeBase (inverts, 19%)
FishLife (finfish, 100%), SealLifeBase (inverts, 100%)

FishLife (finfish, 100%), SealLifeBase (inverts, 38%)
FishLife (finfish, 100%), SealLifeBase (inverts, 24%)
FishLife (finfish, 100%), SealLifeBase (inverts, 0%)
FishLife (finfish, 100%), SealLifeBase (inverts, 0%)

FishLife (finfish, 100%), SealLifeBase (inverts, 19%)
FishBase (finfish, 93%), SealifeBase (inverts, 19%)
FishBase (finfish, 99%), SealifeBase (inverts, 95%)
FishBase (finfish, 95%), SealifeBase (inverts, 0%)
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Supp. Figure 1. Comparison of SST influence estimates from the SST-linked
Schaefer surplus production model using each of three SST datasets: COBE v2,
ERSST v4, and HadISST v1.1. In the top panels, points show mean estimates and
error bars show 95% confidence intervals. Significant positive and negative SST
influences are shown in blue and red, respectively. The transparent rectangle
indicates the 95% confidence interval for the global mean of the SST influences. In
the bottom panels, the diagonal line is the one-to-one line for pairwise comparisons

of SST influence estimates using the different SST datasets.
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Supp. Figure 2. Comparison of SST influence estimates from the SST-linked Pella-

Tomlinson surplus production model using four shape parameters: p=1.00 (MSY @

50% K, Schaefer model), p=0.55 (MSY @ 45% K), p=0.20 (MSY @ 40% K), and

p=0.01 (MSY @ 37% K). In the top panels, points show mean estimates and error

bars show 95% confidence intervals. Significant positive and negative SST

influences are shown in blue and red, respectively. The transparent rectangle

indicates the 95% confidence interval for the global mean of the SST influences. In

the bottom panels, the diagonal line is the one-to-one line for pairwise comparisons

of SST influence between the symmetric Schaefer model (p=1.00) and the

asymmetric Pella-Tomlinson models. The r? value and percent agreement in

significance are shown in the bottom-right.
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A. Observed

p=11.8°C | 0=0.47°C | 0.23°C / decade

T T | | T 1
1960 1970 1980 1990 2000 2010

B. Null 1 - same p/c/AR/trend

p=11.7°C | 6=0.51°C | 0.27°C / decade
| | | | | 1
1960 1970 1980 1990 2000 2010

C. Null 2 - same p/c/AR

p=11.7°C | 0=0.42°C | 0.03°C / decade

T T T T T 1
1960 1970 1980 1990 2000 2010

D. Null 3 - same p/o

u=11.8°C | 0=0.47°C | -0.04°C / decade

T T T T T 1
1960 1970 1980 1990 2000 2010

Supp. Figure 3. Example (A) observed and (B-D) simulated SST time series (US

West Coast, Black rockfish). The simulated SST time series were used in the three

null models.
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Supp. Figure 4. The (A&B) frequency of SST extrapolation by the hindcast model
and (C) correlation between MSY estimates from the final model and data-rich stock
assessments (diagonal line is the one-to-one line). In (A), each row shows the SST
experience of an individual stock where black years were used in model
development, grey years experienced temperatures also experienced during model
years, and blue and red years experienced temperatures cooler and warmer than

those experienced during model years, respectively. In (B), the blue and red shading
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show the percentage of years experiencing temperatures cooler and warmer than
those experience during model years, respectively. The hindcast model generally

extrapolates for fewer than 15% (dashed line) of years between 1930-2010.
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Supp. Figure 5. Sensitivity of hindcasted changes in MSY to the determination of the
hindcast window. Time series showing (A) mean global SST anomaly, (B) hindcast
of SST-dependent maximum sustainable yield (MSY) for all stocks included in the
analysis, (C) Thiel-Sen regression slope when evaluating MSY trends beginning in

each year from 1850-1990 and ending in 2010, and (D) percent difference in MSY



170

when comparing the mean MSY over the 10 years following each year from 1850-
1990 and the mean MSY from 2001-2010. In (A), the grey shading indicates the
hindcast window determined to minimize extrapolation to temperatures outside
those included in the final model. In (B), the dark line shows a Thiel-Sen regression
fit to the MSY time series in the hindcast window. In (C) and (D), the labeled points

mark the measures of MSY change experienced over the hindcast window.
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Supp. Figure 6. Distribution of SST influences estimated by the SST-linked Pella-
Tomlinson surplus production models with hierarchy on SST influence by (A)
taxonomic order and (B) taxonomic family, (C) FAO major fishing area and (D) large
marine ecoregion (LME), and (E) generic and (F) specific stock assessment
methods. Points show mean estimates and error bars show 95% confidence
intervals. Significant positive and negative SST influences are shown in blue and red,
respectively. The transparent rectangle indicates the 95% confidence interval for

the global mean of the SST influences.
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Supp. Figure 7. Correlation between SST influences estimated by the base model

and six group models. Diagonal line is the one-to-one line.
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Supp. Figure 8. Mean of the SST influence distributions for assessment method
groups in models with hierarchy on SST influence by (A) generic stock assessment
method and (B) specific stock assessment method. Points show mean estimates and
error bars show 95% confidence intervals. None of the SST influence means were

significantly different from zero and neither of the models gained more support

than the base model (see Table 1).
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Supp. Figure 9. Distribution of SST influences estimated by the final model and
three null models. Points show mean estimates and error bars show 95%
confidence intervals. Significant positive and negative SST influences are shown in

blue and red, respectively.
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Supp. Figure 11. Distribution of intrinsic rate of growth (ri), carrying capacity (Ki),
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Points show mean estimates and lines show 95% confidence intervals. Carrying
capacity is a multiple of the maximum observed biomass (e.g., a carrying capacity of
1, shown by the vertical dotted line, means that the carrying capacity is equivalent

to the maximum observed biomass).
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Supp. Figure 12. Correlation between the SST influence estimates and standard

errors and the process uncertainty estimates and standard errors. Points are

colored by significance of SST influence (blue=positive, red=negative, grey=non-

significant).
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Supp. Figure 13. SST influence as a function of nine stock characteristics. SST

influences are colored by significance (blue=positive, red=negative, grey=non-

significant). Solid lines show the 50t percentile quantile regression fit and dashed

lines show the 2.5% and 97.5% quantile regression fits. Sample size is shown in the

bottom-right corner if data were not available for all 235 stocks.
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Supp. Figure 14. SST influence as a function of nine life history traits: Brody growth
coefficient (K), asymptotic maximum length (Linf), asymptotic maximum weight
(Winf), natural mortality (M), maximum age (Tmax), age at maturity (Tmat), length at
maturity (Lmat), trophic level, and median depth. SST influences are colored by
significance (blue=positive, red=negative, grey=non-significant). Solid lines show

the 50t percentile quantile regression fit and dashed lines show the 2.5% and
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97.5% quantile regression fits. Sample size is shown in the bottom-right corner if

data were not available for all 235 stocks.
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Supp. Figure 15. Distribution of SST influence among (A) specific and (B) generic
habitat types. Brown and blue boxplot shading corresponds to demersal and pelagic
habitats, respectively. Black numbers indicate total number of stocks for each
habitat type. Blue and red numbers show the number of stocks with a positive and

negative SST influence, respectively.
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Supp. Figure 16. SST influence as a function of the latitude of stocks of the same

species for the seven species with =5 stocks in the analysis. Lines shows Theil-Sen

regression fits with solid lines indicating regressions significant at the 0.10 level.

Theil-Sen regression, a form of robust regression, identifies the median slope of

lines through all possible point pairs and is insensitive to outliers and endpoints in

small datasets.
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Supp. Figure 17. Comparison of LME-scale changes in fisheries productivity
estimated by Britten et al. (2016) and the present study. Britten et al. (2016)
quantify the meta-analytic mean trend in recruitment potential (Rmax). Comparable
values derived from the present study are: (A) change in scaled MSY (MSY divided
by maximum MSY) per decade from 1930-2010; (B) percent difference in mean MSY
from 1930-39 to 2001-2010; and (C) the meta-analytic mean of the SST influences
of stocks in an LME multiplied by the change in temperature from 1930-2010 in the
LME. In both studies, negative and positive values represent a negative and positive
change, respectively. Blue and red points indicate LMEs where both studies agree
that change has positively and negatively impacted productivity, respectively. Grey
points indicate LMEs in which the studies disagree on the direction of productivity
change. The present study describes SST influence for ten LMEs not described in the
Britten study (Bay of Biscay, Canary Current, Greenland Sea, Humboldt Current,
Kuroshio Current, Labrador Sea, Mediterranean Sea, North Brazil Shelf, South
Atlantic Ocean, West Bering Sea) and the Britten study describes SST influence on

one LME not described in the present study (East-Central Australian Shelf).
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Conclusions

Sustainable fisheries management is a global challenge requiring local
solutions. I show that these solutions can be achieved by developing new, innovative
interdisciplinary and quantitative methods. In Chapter 1, I show that a mixed-
method approach can be used to quantify illegal fishing, its impacts on an
endangered fish species, and its importance to the local community. The methods
described here can be used to assess non-compliance and its impacts and
motivations in protected areas around the world. In Chapter 2, [ show that
advanced analytic methods and information borrowed from data-rich stocks can be
used to inform the management of data-poor stocks. I also provide a framework for
comparing the performance of data-limited methods as new methods are developed.
In Chapter 3, [ show for the first time that climate change has resulted in a net
decline in marine fisheries productivity and sustainable catch potential. Adapting
fisheries management to account for shifts in productivity will require global
innovations and local, regional, and national implementations of new policies.
Together, these chapters work to help fisheries management overcome challenges

from capacity shortfalls, data limitations, and climate change.



