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ABSTRACT	OF	THE	DISSERTATION	

Fisheries	management	in	the	face	of	capacity,	data,	and	climate	challenges	

By	CHRISTOPHER	M.	FREE	

Dissertation	Director:	

Olaf	Jensen	

	

The	sustainable	management	of	global	fisheries	is	essential	to	addressing	

food	and	income	security	in	the	coming	century.	Although	fisheries	management	has	

advanced	significantly	over	the	past	few	decades,	a	number	of	challenges	still	make	

the	determination	of	sustainable	catch	limits	difficult	to	impossible.	Many	fisheries	

remain	unassessed	due	to	a	lack	of	capacity	or	lack	of	data	to	conduct	stock	

assessments.	Furthermore,	even	when	catch	limits	can	be	determined,	illegal,	

unreported,	and	unregulated	fishing	undermine	their	effectiveness.	Finally,	modern	

fisheries	management	is	complicated	by	climate	change,	which	is	altering	

population	dynamics	through	large-scale	redistributions,	changes	in	phenology,	

altered	food	availability,	and	habitat	degradation.	In	my	dissertation,	I	examine	the	

manifestation	of	these	three	challenges	–	limited	capacity,	limited	data,	and	climate	

change	–	in	fisheries	of	small-,	medium-,	and	large-scales,	respectively.		

In	Chapter	1	(small-scale,	limited	capacity),	I	used	a	mixed-method	approach	

to	describe	the	extent,	character,	and	motivations	of	illegal	fishing	in	Lake	Hovsgol	

National	Park,	Mongolia	and	its	impact	on	the	lake’s	fish	populations,	especially	that	

of	the	endangered	endemic	Hovsgol	grayling	(Thymallus	nigrescens).	I	show	that	

illegal	fishing	threatens	the	Hovsgol	grayling	but	also	provides	food	and	income	for	
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park	residents.	An	effective	management	system	must	therefore	incorporate	the	

needs	of	local	people	while	also	addressing	the	synergistic	pressures	of	climate	

change,	water	pollution,	increasing	tourism,	and	invasive	species.		

In	Chapter	2	(medium-scale,	limited	data),	I	evaluated	the	performance	of	the	

ORCS	Working	Group	Approach	to	estimating	stock	status	and	overfishing	limits	for	

‘catch-only’	fisheries.	I	show	that	the	approach	is	a	poor	predictor	of	status	and	

should	not	be	used	by	managers.	I	subsequently	refined	the	approach	using	a	

machine	learning	algorithm	trained	on	data-rich	stocks	and	show	that	the	refined	

ORCS	approach	performs	better	than	other	widely	used	catch-only	methods	and	can	

be	used	when	data-moderate	methods	are	not	possible	or	appropriate.		

In	Chapter	3	(large-scale,	climate	change),	I	used	surplus	production	models	

with	monotonic	temperature-dependence	to	measure	the	influence	of	sea	surface	

temperature	(SST)	on	the	productivity	of	190	global	fish	stocks.	I	show	that	ocean	

warming	has	significantly	positively	and	negatively	influenced	the	productivity	of	

20	and	14	stocks,	respectively	(34	total;	18%	total).	The	influence	of	warming	on	a	

stock’s	productivity	is	determined	by	ecoregion,	taxonomic	family,	life	history,	and	

exploitation	history.	Hindcasts	of	SST-dependent	maximum	sustainable	yield	

indicate	that	MSY	of	assessed	stocks	decreased	12.4%	from	1930	to	2010.	These	

results	show	that	we	must	adjust	expectations	for	future	food	production	from	the	

ocean	even	as	the	global	human	population	and	demand	for	seafood	grows.	

Together,	these	chapters	work	to	help	fisheries	management	overcome	

challenges	from	capacity	shortfalls,	data	limitations,	and	climate	change.	

	 	



 

 iv 

Acknowledgements	

This	dissertation	has	been	a	collaborative	effort	and	has	been	made	possible	

through	the	work	and	support	of	many	mentors,	colleagues,	and	friends.	

I	am	deeply	grateful	to	have	done	my	PhD	with	Olaf	Jensen.	Olaf	is	a	

wonderfully	smart,	funny,	generous,	and	thoughtful	person.	He	demonstrates	

through	example	what	it	means	to	be	a	thorough,	curious,	and	conscientious	

researcher,	teacher,	and	collaborator.	Olaf	has	a	great	talent	for	attracting	and	

extending	opportunities	and	for	making	every	moment,	no	matter	how	small,	a	

teaching	moment.	I	cannot	imagine	having	had	as	diverse,	exciting,	and	fulfilling	of	a	

graduate	school	experience	working	with	anyone	else	and	am	truly	grateful.	

I	have	also	been	graced	with	an	exceptional	committee.	John	Wiedenmann	

has	encouraged	me	to	leave	my	comfort	zone	and	to	be	thorough	and	precise	while	

also	pragmatic.	Malin	Pinsky	has	inspired	me	to	be	a	true	scholar,	to	read	broadly,	

and	to	think	about	the	big	picture.	Jon	Deroba	has	challenged	me	to	be	a	critical	and	

skeptical	scientist	and	has	honed	my	scientific	writing.	I	am	grateful	to	have	faced	

graduate	school	with	such	a	smart,	responsive,	and	thoughtful	team	of	mentors.	

I	have	been	informally	mentored	by	a	number	of	wonderful	postdocs.	Kiva	

Oken	has	made	difficult	mathematics	accessible.	Doug	Zemeckis	has	provided	a	

fountain	of	excellent	professional	advice	and	helped	ground	my	work	in	the	real	

world.	Becca	Selden	and	Mike	McCann	have	been	amazing	sounding	boards.		

My	labmates	have	also	been	central	to	my	graduate	school	experience.	Talia	

Young	is	my	model	for	becoming	a	conscientious,	inclusive,	community-driven	

scientist.	I	am	thankful	to	Michael	Roswell	for	too	many	things	to	count,	the	most	



 

 v 

important	of	which	is	our	friendship.	Nothing	in	our	lab	would	get	done	without	

Anthony	Vastano	and	Abigail	Golden,	Mattea	Berglund,	Jim	Vasslides,	and	Joe	

Caracappa	have	been	wonderfully	fun	and	insightful	labmates.		

My	ability	to	conduct	my	dissertation	research	has	been	enhanced	by	

collaborations	on	a	number	of	side	projects.	The	following	collaborators	have	

strengthened	my	scientific	capability:	David	Gill,	Gabby	Ahmadia,	Megan	Barnes,	

Mark	Schulze,	Andrea	Johnson,	Gustavo	Pinelo	Morales,	and	Susie	Crate.	

I	have	been	lucky	to	conduct	fieldwork	in	Mongolia	and	even	luckier	to	make	

great	Mongolian	friends	and	colleagues.	I	am	particularly	grateful	for	the	hard	work,	

humor,	and	insight	of	B.	Mendsaikhan	(Mendee),	Ganzorig	Baitsaikhan	(Ganzo),	P.	

Tsogtsaikhan	(Tsogo),	M.	Amaraa,	and	G.	Jargalmaa.	The	Taimen	Conservation	Fund,	

Hovsgol	Travel,	and	Mongol	Ecology	Center	have	also	been	vital	to	these	projects.	

My	interest	in	quantitative	ecology	was	cultivated	by	Matt	Landis	and	Jimmy	

Grogan	and	I	am	deeply	grateful	for	their	friendship	and	mentorship,	which	is	now	

over	a	decade	old.	Marcus	Drymon	mentored	me	through	graduate	school	

applications	and	opened	opportunities	for	me	to	build	a	resume	in	fisheries	science.	

My	parents,	brother,	and	friends	have	been	a	source	of	unwavering	support.	

Finally,	I	am	grateful	to	have	been	funded	by	a	NOAA	Sea	Grant	Population	

Dynamics	Fellowship,	a	Rutgers	University	Bevier	Fellowship,	and	DMCS	Graduate	

Assistantships	throughout	my	dissertation.	My	research	in	Mongolia	was	funded	by	

the	Grayling	Research	Trust	and	American	Center	for	Mongolian	Studies	and	other	

research,	travel,	and	scholarship	expenditures	were	supported	by	funding	from	the	

Manasquan	River	Marlin	&	Tuna	Club,	NJ	Sea	Grant,	and	Rutgers	University.	 	



 

 vi 

Table	of	Contents	

Abstract………………………………………………………………………………………………………….	ii	

Acknowledgements	..............................................................................................................	iv	

List	of	tables	...........................................................................................................................	ix	

List	of	illustrations	...............................................................................................................	xii	

Introduction	..........................................................................................................................	1	

Chapter	1:	A	mixed-method	approach	for	quantifying	illegal	fishing	and	its	

impact	on	an	endangered	fish	species	...........................................................................	4	

Abstract	.........................................................................................................................................................4	

Introduction	................................................................................................................................................5	

Methods	.........................................................................................................................................................7	

Results	.........................................................................................................................................................	13	

Discussion	..................................................................................................................................................	18	

Acknowledgements...............................................................................................................................	23	

References	.................................................................................................................................................	25	

Tables	&	Figures	.....................................................................................................................................	29	

Supplemental	Tables	&	Figures	......................................................................................................	35	

Appendix	A:	Herder	interview	questionnaire	..........................................................................	50	

Appendix	B:	Park	ranger	interview	questionnaire	................................................................	51	

Appendix	C:	Total	and	natural	mortality	estimation	............................................................	52	

Appendix	D:	Supplemental	references	........................................................................................	55	

Chapter	2:	The	refined	ORCS	approach:	a	catch-based	method	for	estimating	

stock	status	and	catch	limits	for	data-poor	fish	stocks	...........................................	58	



 

 vii 

Abstract	......................................................................................................................................................	58	

Introduction	.............................................................................................................................................	59	

Methods	......................................................................................................................................................	62	

Results	.........................................................................................................................................................	69	

Discussion	..................................................................................................................................................	73	

Acknowledgements...............................................................................................................................	79	

References	.................................................................................................................................................	81	

Tables	&	Figures	.....................................................................................................................................	85	

Supplemental	Tables	&	Figures	......................................................................................................	95	

Appendix	A:	Modifications	to	the	ORCS	Table	of	Attributes	..........................................	100	

Appendix	B:	ORCS	Table	of	Attributes	scoring	guide	........................................................	102	

Appendix	C:	Example	application	of	the	original	and	refined	ORCS	approaches	110	

Appendix	D:	Development	of	the	boosted	classification	tree	model	.........................	112	

Appendix	E:	Application	and	performance	of	other	catch-only	methods	...............	116	

Appendix	F:	Refinement	of	the	historical	catch	statistics	and	scalars	......................	121	

Appendix	G:	Supplemental	references	.....................................................................................	123	

Chapter	3:	Influence	of	ocean	warming	on	global	marine	fisheries	productivity

	.............................................................................................................................................	127	

Abstract	...................................................................................................................................................	127	

Introduction	..........................................................................................................................................	128	

Methods	...................................................................................................................................................	130	

Results	......................................................................................................................................................	136	

Discussion	...............................................................................................................................................	138	



 

 viii 

Acknowledgements............................................................................................................................	144	

References	..............................................................................................................................................	145	

Tables	&	Figures	..................................................................................................................................	148	

Supplemental	Tables	&	Figures	...................................................................................................	155	

Conclusions	......................................................................................................................	184	

	 	



 

 ix 

List	of	tables	

Chapter	1	

Table	1.	……………………………………………………………………………………………………...	29	

Natural	mortality	rates	estimated	by	life	history	invariant	methods	and	

estimates	of	the	effort	required	to	exceed	the	sustainable	harvest	associated	

with	each	mortality	rate.	

Supp.	Table	1.	……………………………………………………………………………………………	35	

Large-bodied	fish	species	in	Lake	Hovsgol,	Mongolia	and	their	historic	catch,	

market	price,	and	fine	per	illegally	caught	fish	

Supp.	Table	2.	……………………………………………………………………………………………	36	

Life	history	invariant	methods	selected	for	estimating	Hovsgol	grayling	natural	

mortality	rate.		

Supp.	Table	3.	……………………………………………………………………………………………	38	

Arctic	grayling	(Thymallus	arcticus)	natural	mortality	rates	reported	in	the	

literature.	

Supp.	Table	4.	……………………………………………………………………………………………	39	

Responses	of	ten	herding	families	interviewed	about	their	personal	fishing	

habits,	fishing	activity	they	observe,	and	status	and	conservation	of	fish	in	the	

lake.	

Supp.	Table	5.	……………………………………………………………………………………………	41	

Responses	of	five	park	rangers	interviewed	about	the	frequency	and	character	of	

illegal	fishing,	actions	taken	against	illegal	fishers,	and	status	and	conservation	of	

fish	in	the	lake.	



 

 x 

Chapter	2	

Table	1.	……………………………………………………………………………………………………...	85	

ORCS	Table	of	Attributes.		

Table	2.	……………………………………………………………………………………………………...	87	

Status	classification	performance	of	catch-only	assessment	methods	applied	to	

the	37	data-rich	stocks	with	catch	time	series	in	the	test	dataset.	

Table	3.	……………………………………………………………………………………………………...	88	

Best	status-specific	historical	catch	statistics	and	potential	status-specific	catch	

scalars	for	relating	the	best	catch	statistic	to	the	overfishing	limit.	

Table	4.	……………………………………………………………………………………………………...	89	

The	percentage	of	stocks	whose	predicted	OFLs	exceeded	the	data-rich	OFL	

estimates	under	potential	catch	scalars	with	unweighted	status	predictions.	

Supp.	Table	1.	……………………………………………………………………………………………	95	

Stock	status	predictions	for	the	37	data-rich	stocks	with	catch	time	series	in	the	

test	dataset.	

Supp.	Table	2.	……………………………………………………………………………………………	96	

Stock	status	predictions	for	the	33	data-rich	stocks	with	catch	time	series	in	the	

test	dataset	converging	for	both	COM-SIR	and	SSCOM.	

Supp.	Table	3.	……………………………………………………………………………………………	97	

Akaike’s	Information	Criteria	ranking	of	24	potential	historical	catch	statistics.	

Chapter	3	

Table	1.	…………………………………………………………………………………………………..	148	

AIC	of	candidate	surplus	production	models.	



 

 xi 

Supp.	Table	1.	…………………………………………………………………………………………	155	

RAM	Legacy	Database	stocks	used	in	analysis.	

Supp.	Table	2.	…………………………………………………………………………………………	156	

Model	symbols	and	their	definitions.	

Supp.	Table	3.	…………………………………………………………………………………………	157	

Stock	assessment	methods.	

Supp.	Table	4.	…………………………………………………………………………………………	159	

Potential	predictors	of	SST	influence	and	their	sources.	

Supp.	Table	5.	…………………………………………………………………………………………	160	

Stocks	whose	productivity	is	significantly	influenced	by	SST	warming.	

Supp.	Table	6.	…………………………………………………………………………………………	162	

Hindcasted	changes	in	SST-dependent	maximum	sustainable	yield	(MSY)	from	

1930-2010	among	ecoregions.	

	

	 	



 

 xii 

List	of	illustrations

Chapter	1	

Figure	1.	…………………………………………………………………………………………………….	30	

Location	of	shoreline	surveys	for	derelict	fishing	gear,	fish	population	

monitoring	sites,	and	interviews	with	park	rangers	and	resident	herders	in	Lake	

Hovsgol	National	Park,	Mongolia.	

Figure	2.	…………………………………………………………………………………………………….	31	

Average	density	of	derelict	fishing	gear	by	category	and	derelict	gillnet	

fragments	by	mesh	size	in	count	and	weight	among	the	2013	and	2014	shoreline	

transects	weighted	by	transect	length.	

Figure	3.	…………………………………………………………………………………………………….	32	

Catch-per-unit-of-effort	by	mesh	size	for	the	five	most	abundant	species	in	

gillnet	catches	and	the	sum	of	their	weight	from	the	two	5-panel	sequential	mesh	

gillnets	used	at	seven	sites	in	2009	and	2011-2013.	

Figure	4.	…………………………………………………………………………………………………….	33	

Trends	in	the	abundance	of	the	five	most	abundant	fish	species	in	gillnet	catches	

from	2009-2013.		

Figure	5.	…………………………………………………………………………………………………….	34	

Trends	in	the	body	size	of	the	five	most	abundant	fish	species	in	gillnet	catches	

from	2009-2013.		

Supp.	Figure	1.	…………………………………………………………………………………………..	43	

Diagram	of	a	typical	Mongolian	horizontal	gillnet	and	its	components.	

Supp.	Figure	2.	…………………………………………………………………………………………..	44	



 

 xiii 

Length-weight	relationships	for	the	five	most	abundant	fish	species	in	gillnet	

catches	in	Lake	Hovsgol.		

Supp.	Figure	3.	…………………………………………………………………………………………..	45	

Catch-per-unit-of-effort	by	mesh	size	for	the	five	most	abundant	species	in	

gillnet	catches	and	the	sum	of	their	catch	from	the	two	5-panel	sequential	mesh	

gillnets	used	at	seven	sites	in	2009	and	2011-2013.	

Supp.	Figure	4.	…………………………………………………………………………………………..	46	

Trends	in	the	abundance	of	the	five	most	abundant	fish	species	in	gillnet	catches	

from	2009-2013.	

Supp.	Figure	5.	…………………………………………………………………………………………..	47	

Trends	in	the	body	size	of	the	five	most	abundant	fish	species	in	gillnet	catches	

from	2009-2013.	

Supp.	Figure	6.	…………………………………………………………………………………………..	48	

Estimates	of	the	life	history	characteristics	used	to	calculate	natural	mortality	for	

Hovsgol	grayling.	

Supp.	Figure	7.	…………………………………………………………………………………………..	49	

The	length	and	length-converted	age	structure	of	the	Hovsgol	grayling	

population. 

Chapter	2	

Figure	1.	…………………………………………………………………………………………………….	90	

Demographics	of	the	193	data-rich	stocks	scored	using	the	ORCS	approach.	

Figure	2.	…………………………………………………………………………………………………….	91	



 

 xiv 

The	distribution	of	(A)	attribute	scores	and	(B)	overall	scores	for	the	193	data-

rich	stocks	scored	using	the	original	ORCS	approach	and	(C)	comparison	of	

statuses	and	(D)	risks	predicted	by	the	ORCS	approach	and	estimated	by	data-

rich	assessment	models.	

Figure	3.	…………………………………………………………………………………………………….	92	

The	performance	of	the	boosted	classification	tree	model	on	the	(A)	training	

(n=155	stocks,	80%	of	data)	and	(B)	test	datasets	(n=38	stocks,	20%	of	data).	

Figure	4.	…………………………………………………………………………………………………….	93	

The	relative	influence	and	marginal	effects	of	the	five	most	important	TOA	

attributes	in	the	boosted	classification	tree	model.	

Figure	5.	…………………………………………………………………………………………………….	94	

The	correlation	between	and	ratio	of	the	overfishing	limits	predicted	by	the	

ORCS	approach	and	estimated	by	data-rich	assessment	models	for	97	stocks	in	

four	potential	refined	ORCS	approaches.	

Supp.	Figure	1.	…………………………………………………………………………………………..	98	

The	correlation	between	the	mean	ORCS	Table	of	Attributes	score	and	six	

metrics	of	overexploitation	risk	calculated	from	F/FMSY	values	estimated	in	the	

data-rich	assessment	models.	

Supp.	Figure	2.	…………………………………………………………………………………………..	99	

The	marginal	effects	of	the	twelve	TOA	attributes	in	the	boosted	classification	

tree	model.	

Chapter	3	

Figure	1.	…………………………………………………………………………………………………	149	



 

 xv 

Distribution	of	SST	influences	estimated	by	the	base,	final,	and	primary	null	

models.	

Figure	2.	…………………………………………………………………………………………………	150	

Mean	of	the	SST	influence	distributions	for	geographic	or	taxonomic	groups	in	

models	with	hierarchy	on	SST	influence	by	large	marine	ecoregion,	FAO	major	

fishing	area,	taxonomic	family,	and	taxonomic	order.	

Figure	3.	…………………………………………………………………………………………………	151	

SST	influence	as	a	function	of	maximum	age	(Tmax),	depth,	F/FMSY	mean,	and	

scaled	biomass	trend.	

Figure	4.	…………………………………………………………………………………………………	152	

SST	influence	as	a	function	of	the	mean	temperature	experienced	by	stocks	of	

the	same	species	for	the	seven	species	with	≥5	stocks	in	the	analysis.	

Figure	5.	…………………………………………………………………………………………………	153	

Hindcast	of	SST-dependent	maximum	sustainable	yield	(MSY)	for	all	stocks	and	

for	stock	with	significant	positive,	significant	negative,	and	non-significant	

influences	of	SST	on	productivity.	

Figure	6.	…………………………………………………………………………………………………	154	

Maps	showing	the	global	distribution	of	SST	influences	and	percent	change	in	

mean	maximum	sustainable	yield	(MSY)	from	1930-39	to	2001-10	by	ecoregion.	

Supp.	Figure	1.	…………………………………………………………………………………………	164	

Comparison	of	SST	influence	estimates	from	the	SST-linked	Schaefer	surplus	

production	model	using	each	of	three	SST	datasets:	COBE	v2,	ERSST	v4,	and	

HadISST	v1.1.	



 

 xvi 

Supp.	Figure	2.	…………………………………………………………………………………………	165	

Comparison	of	SST	influence	estimates	from	the	SST-linked	Pella-Tomlinson	

surplus	production	model	using	four	shape	parameters:	p=1.00	(MSY	@	50%	K,	

Schaefer	model),	p=0.55	(MSY	@	45%	K),	p=0.20	(MSY	@	40%	K),	and	p=0.01	

(MSY	@	37%	K).	

Supp.	Figure	3.	…………………………………………………………………………………………	166	

Example	observed	and	simulated	SST	time	series.	

Supp.	Figure	4.	…………………………………………………………………………………………	167	

The	frequency	of	SST	extrapolation	by	the	hindcast	model	and	correlation	

between	MSY	estimates	from	the	final	model	and	data-rich	stock	assessments.	

Supp.	Figure	5.	…………………………………………………………………………………………	169	

Sensitivity	of	hindcasted	changes	in	MSY	to	the	determination	of	the	hindcast	

window.	

Supp.	Figure	6.	…………………………………………………………………………………………	171	

Distribution	of	SST	influences	estimated	by	the	SST-linked	Pella-Tomlinson	

surplus	production	models	with	hierarchy	on	SST	influence	by	taxonomic	order	

and	taxonomic	family,	FAO	major	fishing	area	and	large	marine	ecoregion	(LME),	

and	generic	and	specific	stock	assessment	methods.	

Supp.	Figure	7.	…………………………………………………………………………………………	172	

Correlation	between	SST	influences	estimated	by	the	base	model	and	six	group	

models.		

Supp.	Figure	8.	…………………………………………………………………………………………	173	



 

 xvii 

Mean	of	the	SST	influence	distributions	for	assessment	method	groups	in	models	

with	hierarchy	on	SST	influence	by	generic	stock	assessment	method	and	

specific	stock	assessment	method.	

Supp.	Figure	9.	…………………………………………………………………………………………	174	

Distribution	of	SST	influences	estimated	by	the	final	model	and	three	null	

models.	

Supp.	Figure	10.	……………………………………………………………………………………….	175	

Comparison	of	SST	influences	estimated	in	a	fixed	effects	framework	with	the	

random	effects	framework	of	the	final	model.	

Supp.	Figure	11.	……………………………………………………………………………………….	176	

Distribution	of	intrinsic	rate	of	growth	(ri),	carrying	capacity	(Ki),	SST	influence	

(θi),	and	process	uncertainty	(σP,i)	estimates	from	the	final	model.	

Supp.	Figure	12.	……………………………………………………………………………………….	177	

Correlation	between	the	SST	influence	estimates	and	standard	errors	and	the	

process	uncertainty	estimates	and	standard	errors.	

Supp.	Figure	13.	……………………………………………………………………………………….	178	

SST	influence	as	a	function	of	nine	stock	characteristics.	SST	influences	are	

colored	by	significance.	

Supp.	Figure	14.	……………………………………………………………………………………….	179	

SST	influence	as	a	function	of	nine	life	history	traits:	

Supp.	Figure	15.	……………………………………………………………………………………….	181	

Distribution	of	SST	influence	among	specific	and	generic	habitat	types.	

Supp.	Figure	16.	……………………………………………………………………………………….	182	



 

 xviii 

SST	influence	as	a	function	of	the	latitude	of	stocks	of	the	same	species	for	the	

seven	species	with	≥5	stocks	in	the	analysis.	

Supp.	Figure	17.	……………………………………………………………………………………….	183	

Comparison	of	LME-scale	changes	in	fisheries	productivity	estimated	by	Britten	

et	al.	(2016)	and	the	present	study.



 

 

1 

 

Introduction	

Fisheries	management	has	advanced	significantly	since	Thomas	Huxley,	an	

English	biologist,	famously	declared	in	1883	that	the	“cod	fishery…	and	probably	all	

the	great	sea	fisheries,	are	inexhaustible”	(Huxley	1883).	Indeed,	in	the	mid-1990s,	

it	became	widely	apparent	that	many	fisheries	were	overexploiting	stocks	and	that	

fisheries	management	systems	in	almost	all	countries	required	reform.	Since	then,	

many	countries	have	implemented	reforms	ranging	from	the	adoption	of	

scientifically	informed	harvest	policies	to	the	restructuring	of	incentives	to	align	

profits	and	conservation	(Hilborn	&	Ovando	2014).	In	many	cases,	these	reforms	

have	successfully	reduced	fishing	effort	to	sustainable	levels	and	prompted	the	

rebuilding	of	overfished	stocks	(Worm	et	al.	2009;	Ricard	et	al.	2012;	Neubauer	et	

al.	2013).	These	global	meta-analyses	demonstrate	that	modern	fisheries	

management	is	capable	of	sustainably	managing	global	fisheries.		

Although	the	methods	for	developing	scientifically	informed	catch	limits	for	

fisheries	are	well-established	(Walters	&	Martell	2004),	a	number	of	challenges	

often	make	their	implementation	difficult	to	impossible.	Many	fisheries	remain	

unassessed	due	to	a	lack	of	assessment	capacity	or	a	lack	of	data	to	conduct	an	

assessment.	In	developing	countries,	only	5-20%	of	fish	stocks	are	assessed	and	this	

fraction	increases	to	only	10-50%	in	developed	countries	(Costello	et	al.	2012).	

Furthermore,	even	when	catch	limits	can	be	calculated,	illegal,	unreported,	and	

unregulated	(IUU)	fishing	undermine	their	effectiveness	(Agnew	et	al.	2009).	

Finally,	modern	fisheries	management	is	complicated	by	climate	change,	which	is	

altering	population	dynamics	through	large-scale	redistributions	(Cheung	et.	al	



 

 

2 

 

2010,	2013;	Pinsky	et	al.	2013),	changing	phenology	(Edwards	&	Richardson	2004),	

altered	food	availability	(Boyce	et	al.	2014),	and	degraded	habitat	(Mora	et	al.	2013).	

In	this	dissertation,	I	examine	the	manifestation	of	these	challenges	–	limited	

capacity,	limited	data,	and	climate	change	–	in	fisheries	of	small-,	medium-,	and	

large-scales,	respectively.	In	Chapter	1	(small-scale,	limited	capacity),	I	use	a	mixed-

method	approach	to	describe	the	extent,	character,	and	motivations	of	illegal	gillnet	

fishing	in	Lake	Hovsgol	National	Park,	Mongolia	and	its	impact	on	the	lake’s	fish	

populations,	especially	that	of	the	endangered	endemic	Hovsgol	grayling	(Thymallus	

nigrescens).	In	Chapter	2	(medium-scale,	limited	data),	I	evaluate	the	ORCS	Working	

Group	approach	to	estimating	stock	status	and	overfishing	limits	for	data-limited	

fisheries	and	develop	a	refined	version	of	the	approach	to	be	used	when	other	data-

poor	methods	are	not	possible	or	appropriate.	In	Chapter	3	(large-scale,	climate	

change),	I	use	surplus	production	models	with	monotonic	temperature-dependence	

to	measure	the	influence	of	ocean	warming	on	the	productivity	of	190	global	fish	

stocks	and	hindcast	their	climate-driven	maximum	sustainable	yield.	

Together,	these	chapters	work	to	help	fisheries	management	overcome	

challenges	from	capacity	shortfalls,	data	limitations,	and	climate	change.	 	
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Chapter	1:	A	mixed-method	approach	for	quantifying	illegal	fishing	and	

its	impact	on	an	endangered	fish	species*	

	

Abstract	

Illegal	harvest	is	recognized	as	a	widespread	problem	in	natural	resource	

management.	The	use	of	multiple	methods	for	quantifying	illegal	harvest	has	been	

widely	recommended	yet	infrequently	applied.	We	used	a	mixed-method	approach	

to	evaluate	the	extent,	character,	and	motivations	of	illegal	gillnet	fishing	in	Lake	

Hovsgol	National	Park,	Mongolia	and	its	impact	on	the	lake’s	fish	populations,	

especially	that	of	the	endangered	endemic	Hovsgol	grayling	(Thymallus	nigrescens).	

Surveys	for	derelict	fishing	gear	indicate	that	gillnet	fishing	is	widespread	and	

increasing	and	that	fishers	generally	use	3-4	cm	mesh	gillnet.		Interviews	with	

resident	herders	and	park	rangers	suggest	that	many	residents	fish	for	subsistence	

during	the	spring	grayling	spawning	migration	and	that	some	residents	fish	

commercially	year-round.	Interviewed	herders	and	rangers	generally	agree	that	fish	

population	sizes	are	decreasing	but	are	divided	on	the	causes	and	solutions.	

Biological	monitoring	indicates	that	the	gillnet	mesh	sizes	used	by	fishers	efficiently	

target	Hovsgol	grayling.	Of	the	five	species	sampled	in	the	monitoring	program,	only	

burbot	(Lota	lota)	showed	a	significant	decrease	in	population	abundance	from	

2009-2013.	However,	grayling,	burbot,	and	roach	(Rutilus	rutilus)	all	showed	

                                                
*	Published	as:	Free	CM,	Jensen	OP,	Mendsaikhan	B	(2015)	A	mixed-method	approach	for	quantifying	

illegal	fishing	and	its	impact	on	an	endangered	fish	species.	PLoS	One	10(12):	e0143960. 
	



 

 

5 

 

significant	declines	in	average	body	size,	suggesting	a	negative	fishing	impact.	Data-

poor	stock	assessment	methods	suggest	that	the	fishing	effort	equivalent	to	each	

resident	family	fishing	50-m	of	gillnet	11-15	nights	per	year	would	be	sufficient	to	

overexploit	the	grayling	population.	Results	from	the	derelict	fishing	gear	survey	

and	interviews	suggest	that	this	level	of	effort	is	not	implausible.	Overall,	we	

demonstrate	the	ability	for	a	mixed-method	approach	to	effectively	describe	an	

illegal	fishery	and	suggest	that	these	methods	be	used	to	assess	illegal	fishing	and	its	

impacts	in	other	protected	areas.	

	

Introduction	

Illegal,	unreported,	and	unregulated	(IUU)	fishing	undermine	efforts	to	

sustainably	manage	fish	stocks	and	threaten	fish	populations	worldwide	(Agnew	et	

al.	2009).	Managers	must	know	as	much	as	possible	about	the	extent,	character	(e.g.,	

gear	types,	target/bycatch	species,	timing,	location),	and	motivations	of	illegal	

fishing	to	effectively	develop	and	implement	regulations.	However,	quantifying	

illegal	fishing	is	inherently	difficult:	it	is	generally	covert	and	significant	incentives	

exist	for	informants	to	withhold	information	(Renzetti	&	Lee	1993).	Furthermore,	

budget	and	human	resource	constraints	often	restrict	efforts	to	monitor	illegal	

resource	use,	especially	in	developing	countries	(James	et	al.	1999).	There	is	a	need	

to	develop	inexpensive	yet	informative	methods	for	quantifying	illegal	fishing	and	

its	impacts.	

Indirect	observation,	the	use	of	signs	of	illegal	activity	as	an	indicator	of	non-

compliance,	has	been	commonly	used	to	characterize	illegal	resource	use	in	
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terrestrial	systems	(Gavin	et	al.	2010),	but	has	been	infrequently	used	in	marine	

systems	(Bergseth	et	al.	2013),	and	to	our	knowledge,	has	never	been	used	in	

freshwater	systems.	In	marine	systems,	dynamite	blast	craters	(Guard	&	

Masaiganah	1997;	Crawford	et	al.	2004)	and	derelict	fishing	gear	(Chiappone	et	al.	

2004)	have	been	used	as	indicators	of	illegal	fishing,	but	have	generally	failed	to	

quantitatively	measure	non-compliance	(Bergseth	et	al.	2013).	Most	successful	

quantifications	of	illegal	fishing	compare	the	amount	of	derelict	fishing	gear	inside	

and	outside	reserve	boundaries	(Cinner	et	al.	2005,	2006;	McClanahan	et	al.	2006,	

2009),	but	such	comparisons	are	of	little	use	in	places	without	reserves	or	where	

the	areas	outside	reserves	are	undesirable	to	fishers.	The	full	capacity	for	indirect	

observation	to	reveal	rich	and	quantitative	information	about	illegal	fishing	remains	

unexplored.	

Indirect	observation	offers	several	advantages	over	other	approaches	for	

assessing	illegal	fishing.	It	does	not	require	large	amounts	of	labor,	specialized	

equipment,	or	training	and	can	be	recorded	during	routine	enforcement	patrols	or	

biological	surveys	(Bleher	et	al.	2006).	Repeated	surveys	can	reveal	spatial	and	

temporal	patterns	of	non-compliance	(Chiappone	et	al.	2004;	Cinner	et	al.	2005,	

2006;	Williamson	et	al.	2014)	that	can	be	compared	to	changes	in	fish	communities	

to	examine	the	effects	of	illegal	fishing	(Jachmann	2008).	Although	indirect	

observation	generally	cannot	identify	specific	violators	or	motivations	for	non-

compliance,	they	can	contribute	to	a	comprehensive	understanding	of	non-

compliance	when	combined	with	other	methods,	such	as	direct	questioning	(Cinner	

et	al.	2005,	2006).	
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In	this	study,	we	used	a	mixed-method	approach	to	evaluate	the	extent,	

character,	and	motivations	of	illegal	gillnet	fishing	in	Lake	Hovsgol	National	Park	

(LHNP),	Mongolia	and	its	impact	on	the	lake’s	fish	populations,	especially	that	of	the	

endangered	endemic	Hovsgol	grayling	(Thymallus	nigrescens).	Despite	the	closure	of	

the	park	to	gillnet	fishing	in	1992,	illegal	fishing	is	known	to	persist	(Ocock	et	al.	

2006a,b).	We	used	four	complimentary	methods	to	describe	this	fishery	and	

evaluate	its	impacts:	(1)	surveys	for	derelict	fishing	gear,	an	indirect	indicator	of	

fishing	activity,	to	evaluate	how	much	illegal	fishing	is	occurring,	where	illegal	

fishing	is	occurring,	and	what	gear	is	being	used;	(2)	interviews	with	herders	living	

within	the	park	and	park	rangers	to	validate	and	contextualize	the	results	of	the	

surveys	for	derelict	fishing	gear;	(3)	biological	monitoring	to	identify	fish	species	

vulnerable	to	gillnet	fishing	and	evaluate	changes	in	population	abundance	

potentially	caused	by	fishing;	and	(4)	data-poor	stock	assessment	methods	to	

estimate	the	effort	required	to	overexploit	the	Hovsgol	grayling	population.	

Overall,	we	demonstrate	the	ability	for	a	mixed-method	approach	to	describe	

an	illegal	gillnet	fishery	and	suggest	that	these	methods	could	be	used	to	effectively	

and	inexpensively	assess	illegal	fishing	and	its	impacts	in	other	protected	areas.	

	

Methods	

Study	site	

Lake	Hovsgol	(51°05’50”N,	100°30’E)	is	located	in	the	mountains	of	northern	

Mongolia	at	the	southern	edge	of	the	Siberian	taiga	forest.	It	is	the	19th	largest	lake	

in	the	world	by	volume	(480	km3)	and	has	a	maximum	depth	of	262	m	and	surface	
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area	of	2,760	km2	(Goulden	et	al.	2006).	The	lake	was	established	as	a	National	Park	

in	1992	and	is	mostly	undeveloped.	The	majority	of	the	resident	population	lives	in	

two	towns	on	the	lakeshore:	Hatgal	(pop.	2,980)	and	Hankh	(pop.	2,460;	NSOM	

2012).	Tourist	camps	line	the	southwestern	shore	and	herding	families	live	

intermittently	along	the	lakeshore	(Figure	1).	Most	of	the	park’s	~35,000	annual	

visitors	enter	and	remain	in	the	southern	portion	of	the	park	(MEGD	2013).	

Lake	Hovsgol	has	ten	fish	species,	the	most	abundant	of	which,	the	Hovsgol	

grayling	(Thymallus	nigrescens),	is	endemic	to	the	lake	and	is	listed	as	endangered	

on	the	Mongolian	Red	List	due	to	climate	change	and	illegal	fishing	(Ocock	et	al.	

2006a).	Hovsgol	grayling	are	more	common	in	littoral	areas	than	pelagic	areas	and	

are	most	abundant	along	the	western	shore	(Ahrenstorff	et	al.	2012).	A	portion	of	

the	grayling	population	spawns	in	tributary	streams	in	late	spring	while	another	

portion	spawns	in	the	littoral	in	late	summer	(Sideleva	2006).	The	prevalence,	

fidelity,	and	success	of	these	spawning	strategies	are	unknown.	

The	sparse	literature	on	Mongolian	fisheries	suggests	that	commercial	

fishing	for	Hovsgol	grayling,	lenok	(Brachymystax	lenok),	roach	(Rutilus	rutilus),	

perch	(Perca	fluviatilis),	and	burbot	(Lota	lota)	removed	as	much	as	200–400	tons	

annually	before	the	park	was	established	(Dulmaa	1999;	Supp.	Table	1).	Despite	the	

ban	on	gillnet	fishing,	active	gillnets	are	often	observed	and	grayling	and	lenok	are	

frequently	sold	in	Hatgal	and	along	the	southwestern	shore	road.	Recreational	hook-

and-line	fishing	is	legal	within	the	park	and	is	regulated	through	permits	and	season	

and	bag	limits.	Subsistence	fishing	during	the	spring	spawning	migration,	though	

officially	illegal,	is	generally	tolerated.	
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Surveys	for	derelict	fishing	gear	

We	surveyed	and	collected	derelict	fishing	gear	at	ten	sites	on	the	Lake	

Hovsgol	shoreline	in	July	2013	and	resurveyed	six	of	these	sites	in	July	2014	(Figure	

1).	Although	fishing	gear	found	in	the	2013	surveys	could	represent	several	years	of	

accumulation	and	even	pre-date	the	ban	on	gillnet	fishing,	gear	found	in	the	2014	

resurveys	must	represent	accumulation	over	the	preceding	year,	since	all	gear	was	

removed	from	these	sites	during	the	2013	surveys.	Sites	were	selected	as	part	of	a	

long-term	fish	monitoring	study	(Ahrenstorff	et	al.	2012);	though	non-random,	they	

provide	excellent	spatial	coverage	and	access	to	points	and	bays	on	all	sides	of	the	

lake.	In	2013,	we	censused	54.9	km	of	shoreline	(10	sites,	13	transects,	0.4–8.5	km	

each,	~13%	of	total	shoreline)	for	all	anthropogenic	debris,	including	derelict	

fishing	gear,	between	the	water	and	wrack	lines	(Free	et	al.	2014).	In	2014,	we	

recensused	31.9	km	of	the	original	transects	(7	sites/transects,	1.3–8.3	km	each)	for	

derelict	fishing	gear	only.	Because	transect	widths	were	variable,	we	report	linear	

(km-1)	rather	than	areal	(km-2)	debris	density.	Derelict	fishing	gear	was	classified	

into	the	following	gillnet	categories:	whole	net,	net	fragment,	float	line,	lead	line,	

foam	float,	or	bottle	float	(Supp.	Figure	1);	and	hook-and-line	categories:	rod,	

monofilament,	lure,	or	bobber.	Bottles,	string/rope,	and	stakes	without	mesh,	floats,	

weights,	or	lines	were	not	considered	fishing	gear.	We	weighed	each	item	and	

measured	the	mesh	size	(knot	to	knot	distance)	of	every	whole	gillnet	or	gillnet	

fragment.	
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Interviews	with	herders	and	rangers	

The	Rutgers	University	Internal	Review	Board	(IRB)	approved	our	interview	

protocol	(Protocol	E14-675)	and	all	respondents	gave	informed	verbal	consent	

(written	consent	is	problematic	in	former	Soviet	regions)	as	approved	by	the	IRB.	

We	used	a	semi-structured	questionnaire	to	interview	ten	herding	families	

from	three	sites	(Figure	1)	about	their	fishing	habits,	fishing	activity	they	observe,	

and	status	and	conservation	of	fish	in	the	lake	(Appendix	A).	The	first	household	at	

each	site	was	selected	opportunistically	and	additional	households	were	

recommended	by	this	family.	This	“snowball	sampling”	method	is	commonly	used	to	

find	respondents	in	isolated	or	hard-to-access	groups	(Atkinson	&	Flint	2001).	We	

interviewed	seven	male	and	three	female	heads	of	household.	Family	and	herd	sizes	

ranged	from	3-7	people	and	4-630	animals,	respectively.	

We	used	a	different	semi-structured	questionnaire	to	interview	five	park	

rangers,	including	the	head	ranger,	from	5	of	17	ranger	districts	(Figure	1)	about	the	

frequency	and	character	of	illegal	fishing,	actions	taken	against	illegal	fishers,	and	

status	and	conservation	of	fish	in	the	lake	(Appendix	B).	The	interviewed	rangers	

were	male	and	had	worked	as	rangers	for	3-15	years.	They	were	responsible	for	

districts	that	varied	in	area	(22-398	ha)	and	number	of	families	(32-1,264	families).	

	

Biological	sampling,	gillnet	catch	efficiency,	and	population	trends	

We	used	fish	monitoring	data	to	estimate	catch	rates	for	gillnet	mesh	sizes	

used	by	fishers	and	to	evaluate	changes	in	fish	population	abundance	and	body	size.		
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The	Rutgers	University	Animal	Care	and	Facilities	Committee	approved	our	

fish	sampling	protocol	(Protocol	11-005).	Permission	to	conduct	field	research	

(Permit	6/445)	was	granted	by	the	Mongolian	Ministry	of	Environment	and	Green	

Development	(MEGD).	In	July	2009	and	2011-13,	we	set	two	monofilament	

horizontal	gillnets	at	seven	of	the	ten	surveyed	sites	(Figure	1).	Both	gillnets	were	2	

m	deep	and	20	m	long	with	4	m	panels	of	2.54,	3.81,	5.08,	6.35,	and	7.62	cm	bar	

mesh.	They	were	set	at	least	100	m	apart,	perpendicular	to	shore,	using	a	stationary	

bottom	set	in	water	<	10	m	deep,	and	were	fished	overnight	(8.5–10.5	hr)	at	each	

location.	Captured	fish	were	identified	and	measured	to	the	nearest	millimeter	in	

total	length.	Weights	for	fish	without	weight	measurements	were	estimated	using	

length-weight	parameters	derived	from	our	data	(Supp.	Figure	2).	

Vulnerability	of	fish	to	gillnets	can	vary	depending	on	species,	body	size,	and	

mesh	size.	We	calculated	catch-per-unit-of-effort	(CPUE)	for	each	gillnet	panel	in	

terms	of	count	and	biomass	(#/kg	10	m-1	night-1)	to	determine	species-specific	and	

overall	catch	rates	for	each	mesh	size.	We	also	calculated	the	species-specific	CPUE	

of	each	gillnet	set	in	terms	of	count	and	biomass	(#/kg	night-1)	and	used	linear	

mixed	effects	models	to	examine	changes	in	species-specific	abundance	from	2009-

13	while	accounting	for	sampling	site	as	a	random	effect	on	the	model	intercepts.	

Decreases	in	body	size	can	be	a	useful	indicator	of	fishing	impacts	when	changes	in	

abundance	cannot	be	accurately	assessed	(McClenachan	2009).	Therefore,	we	also	

used	linear	mixed	effects	models	to	examine	changes	in	species-specific	body	size	

(length/weight)	from	2009-13.	P-values	were	generated	through	likelihood	ratio	

tests	of	the	full	models	and	null	‘intercept	only’	models.	All	analyses	were	performed	



 

 

12 

 

in	R	version	3.2.0	(R	Core	Team	2015)	and	mixed	effects	models	were	fit	using	the	

lme4	package	(Bates	et	al.	2015).	

	

Potential	population	level	impacts	on	Hovsgol	grayling	

We	used	methods	commonly	used	in	data-poor	fisheries	management	to	

estimate	the	maximum	sustainable	yield	(MSY)	for	Hovsgol	grayling	and	evaluate	

the	likelihood	that	illegal	gillnet	fishing	could	approach	or	exceed	this	threshold.	

Fishing	at	a	rate	greater	than	that	which	results	in	MSY	is	a	common	definition	of	

overfishing	(Hilborn	&	Walters	1992).	

Meta-analyses	have	shown	that	fish	life	history	traits	can	be	used	to	estimate	

natural	mortality	rates	(Kenchington	2014),	which	can	in	turn	be	used	to	estimate	

FMSY	(Zhou	et	al.	2012),	the	fishing	mortality	rate	resulting	in	MSY.	We	estimated	the	

Hovsgol	grayling	natural	mortality	rate	(M)	using	three	separate	life	history	

invariant	approaches	(Table	1)	and	applied	the	Zhou	et	al.	(2012)	method	to	

estimate	FMSY	as	0.87*M.	We	used	a	length-converted	catch	curve	analysis	(Pauly	&	

Morgan	1987)	to	calculate	total	mortality	(total	mortality	=	fishing	mortality	+	

natural	mortality)	to	place	an	upper	limit	on	possible	natural	mortality	rates	and	

estimate	current	fishing	mortality	rates.	More	details	on	the	mortality	estimation	

methods	are	provided	in	Appendix	C.	

We	then	calculated	MSY	for	each	FMSY	estimate	using	the	Ahrenstorff	et	al.	

(2012)	hydroacoustic	biomass	estimate	for	Hovsgol	grayling	(4.4	±	0.9	kg	ha-1)	and	

estimated	the	number	of	nights	of	gillnet	fishing	required	to	reach	each	MSY	

assuming	fishers	use	50-m	gillnets	with	2.54-cm	mesh,	the	optimal	mesh	size	for	
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targeting	grayling	(~15	kg	grayling	night-1;	see	Section	3.4).	Finally,	we	estimated	

the	number	of	fishers	required	to	achieve	each	MSY	assuming	fishers	use	50-m	of	

gillnet	100	nights	year-1.	These	assumptions	seem	reasonable	given	the	number	of	

nets	used	by	observed	and	self-reported	fishers	and	reports	that	fishing	continues	

throughout	the	winter	(see	Sections	3.2	and	3.3).	

	

Results	

Surveys	for	derelict	fishing	gear	

A	total	of	220	(5.78	kg)	and	281	(3.82	kg)	pieces	of	derelict	fishing	gear	were	

collected	in	the	2013	and	2014	surveys,	respectively.	Fishing	gear	comprised	25%	

of	the	total	weight	of	plastic	debris	observed	during	the	2013	surveys	(Free	et	al.	

2014).	Derelict	gillnet	material,	the	majority	of	fishing	gear	found	in	both	years	

(Figure	2),	was	found	in	all	but	two	2013	transects	and	all	2014	transects	(Figure	1).	

Foam	floats	were	the	most	abundant	gillnet	debris	items	by	count,	likely	due	to	their	

ability	to	separate	from	nets	and	disperse	widely;	gillnet	fragments	were	the	most	

abundant	gillnet	debris	items	by	weight,	likely	due	to	their	large	size	and	heavy	lead	

lines.	Gillnet	fragments	ranged	from	2-8	cm	in	mesh	size	with	3-4	cm	mesh	being	the	

most	common	by	both	count	and	weight	(Figure	2).	All	six	active	gillnets	observed	

had	3.0	cm	mesh.	The	density	of	derelict	gillnet	material	varied	among	transects,	but	

in	both	years,	Site	7,	the	most	remote	and	difficult	to	access	site,	had	the	lowest	

density	of	gillnet	material	and	Site	10	(Har	Us),	the	primary	location	of	the	spring	

spawning	migration	fishery,	had	the	highest	density	of	gillnet	material.	The	density	
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of	derelict	gillnet	material	in	resurveyed	sites	was	higher	in	2014	than	2013	at	all	

but	Site	7	suggesting	that	illegal	fishing	may	be	increasing	(Figure	1).	

	

Interviews	with	herders	

	 All	of	the	interviewed	herding	families	(n=10)	reported	fishing	and	observing	

others	fishing	(Supp.	Table	4).	Families	on	the	eastern	shore	reported	fishing	with	

gillnets	repeatedly	throughout	the	year	and	during	the	spring	grayling	spawning	

migration.	They	also	reported	observing	commercial	gillnet	fishers	from	Hatgal	

during	the	winter	and	during	the	spring	spawning	migration,	and	they	reported	

finding	enforcement	ineffective.	In	contrast,	families	on	the	northwestern	shore	

reported	fishing	with	rods	or	by	hand	only	once	per	spring	spawning	migration.	

They	reported	no	commercial	fishing	activity	and	found	enforcement	effective.	All	of	

the	families	reported	that	Russian	visitors	fish	recreationally	year-round	but	

especially	in	winter	with	ice	fishing	rods	and	gillnets	(Supp.	Table	4).	

All	of	the	families	reported	fishing	primarily	for	Hovsgol	grayling	and	

primarily	for	household	consumption;	only	one	family	from	the	eastern	shore	

reported	selling	fish	(Supp.	Table	4).	Families	reported	fishing	primarily	during	the	

spawning	migration	because	(1)	grayling	soup	is	healthy	after	the	long	winter;	(2)	

fish	are	more	abundant	and	easier	to	catch	than	any	other	time;	(3)	herders	are	too	

busy	to	fish,	or	they	live	away	from	the	lake,	the	rest	of	the	year;	(4)	cooking	

grayling	soup	interferes	with	milk	production,	their	principal	food	source;	and	(5)	

eating	grayling	allows	them	to	delay	the	slaughtering	of	herd	animals	until	they	have	

had	time	to	fatten.		
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	 Nearly	all	of	the	interviewed	herders	stated	that	fish	population	sizes	have	

decreased	dramatically	(Supp.	Table	4).	Many	recalled	that	migrating	fish	were	once	

so	numerous	that	the	rivers	appeared	to	“be	only	fish	and	no	water.”	Most	of	the	

herders	also	asserted	that	fish	body	sizes	have	decreased	and	that	large	lenok	and	

burbot	have	become	especially	rare	(Supp.	Table	4).	The	herders	stated	that	“local	

people	should	protect	the	lake	and	fish”	but	offered	few	concrete	ideas	for	achieving	

this	objective	(Supp.	Table	4).	

	

Interviews	with	rangers	

	 The	rangers	reported	that	recreational,	commercial,	and	subsistence	fishing	

all	occur	in	LHNP	(Supp.	Table	5).	The	rangers	agreed	that	the	majority	of	

recreational	fishers	are	non-local	Mongolians	or	foreigners	who	fish	with	rods	

primarily	in	summer	but	also	through	the	ice	in	winter.	The	rangers	reported	that	

recreational	fishers	are	generally	permitted	and	compliant	with	the	law.	All	but	one	

ranger	reported	that	local	Mongolians	use	gillnets	to	target	Hovsgol	grayling	and	

lenok	for	subsistence	or	commercial	purposes	(Supp.	Table	5).	The	rangers	reported	

that	subsistence	fishers	fish	almost	exclusively	at	river	mouths	during	the	spring	

spawning	migration	and	that	commercial	fishers	come	predominantly	from	Hatgal	

due	to	that	town’s	proximity	to	the	developed	southwestern	shore	and	the	city	of	

Mörön.	The	rangers	asserted	that	the	town	of	Hankh	is	too	remote	and	undeveloped	

for	commercial	fishing	to	be	viable.	The	rangers	reported	that	commercial	gillnet	

fishing	occurs	year-round	and	that	fishing	when	the	lake	is	freezing,	thawing,	or	

entirely	frozen	may	even	be	preferred	(Supp.	Table	5).		
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	 The	rangers	were	divided	on	the	status	of	fish	in	the	lake:	three	rangers	

reported	that	fish	population	sizes	are	decreasing	and	two	rangers	reported	that	

they	are	increasing	(Supp.	Table	5).	The	rangers	who	reported	fish	population	sizes	

to	be	decreasing	reported	that	lenok	have	become	especially	rare.	The	majority	of	

rangers	reported	that	fish	body	sizes	have	not	changed	(Supp.	Table	5).	The	rangers	

were	also	divided	on	the	best	approach	to	conservation.	The	head	ranger	asserted	

that	the	native	Great	Cormorant	(Phalacrocorax	carbo)	population	is	the	primary	

threat	to	fish	and	that	their	population	must	be	controlled.	Another	ranger	

suggested	that	grayling	die	naturally	after	the	spring	spawning	migration	(an	

assertion	that	is	not	supported	by	the	scientific	literature)	and	that	these	migrations	

must	therefore	be	prevented.	The	remaining	rangers	emphasized	the	importance	of	

improved	enforcement	during	the	spawning	migration	(Supp.	Table	5).		

	 The	rangers	offered	a	detailed	description	of	fishing	at	Har	Us	mineral	spring	

(Site	10),	the	primary	location	of	the	spring	grayling	spawning	migration	fishery.	

Mineral	springs	are	culturally	important	to	Mongolians	and	visiting	this	spring	in	

May-June	is	a	longstanding	social	tradition.	Rangers	are	instructed	not	to	enforce	

the	gillnet	ban	on	fishers	at	Har	Us	during	this	time.	The	rangers	reported	that	over	

570	people	visited	the	spring	in	2013	and	set	a	total	of	60-100	nets	per	day	with	an	

average	catch	of	50-70	grayling	per	net.	They	estimated	that	3,600	grayling	were	

caught	per	day	during	peak	migration	(Jun	7-12)	and	1,000-1,500	grayling	per	day	

from	May	30-Jun	6	and	Jun	13-24.	Based	on	this	report,	we	estimate	that	the	Har	Us	

fishery	removes	~33,000	fish	annually.	
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Gillnet	catch	efficiency	and	population	trends	

	 The	2.54-cm	mesh	in	our	survey	gillnets	maximized	total	nightly	catch	by	

numbers	because	it	maximized	the	catch	of	the	abundant	Hovsgol	grayling	(Supp.	

Figure	3).	The	3.81-	and	5.08-cm	mesh	sizes	showed	similar	catch	rates	and	

maximized	total	nightly	catch	by	biomass	because	they	maximized	the	catch	of	

larger-bodied	lenok	and	burbot	(Figure	3);	however,	the	median	nightly	catch	

biomass	of	the	2.54-cm	mesh	was	comparable	to	those	of	the	3.08-	and	5.81-cm	

mesh	and	the	2.54-cm	mesh	captured	fish	during	every	gillnet	set,	while	the	larger	

mesh	sizes	were	often	observed	empty.		

	 Analysis	of	the	biological	monitoring	data	identified	significant	reductions	in	

body	size	for	three	species	over	the	sampling	period	(2009-13),	but	a	significant	

change	in	CPUE	for	only	one	species.	Linear	mixed	effects	regression	on	species-

specific	CPUE	indicates	that	only	burbot	population	abundance	decreased	

significantly	from	2009-13	(Figure	4;	Supp.	Figure	4).	Linear	mixed	effects	

regression	on	body	size	indicates	that	grayling,	roach,	and	burbot	body	size	

decreased	significantly	from	2009-13	(Figure	5;	Supp.	Figure	5).	The	abundance	and	

body	size	of	other	species	remained	constant.	

	

Potential	population	level	impacts	on	Hovsgol	grayling	

	 Estimates	of	Hovsgol	grayling	natural	mortality	(M)	ranged	0.25-0.37	(Table	

1).	A	total	mortality	estimate	of	0.42	(Supp.	Figure	7)	implies	fishing	moralities	of	

0.06-0.15,	all	of	which	are	less	than	their	associated	FMSY	estimates	(Table	1).	The	

FMSY	estimates	imply	MSY	values	of	~255-331	metric	tons	yr
-1,	which	could	be	
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achieved	in	~17,000-22,000	nights	of	fishing	with	50-m	optimal	mesh	gillnets	

(Table	1).	Although	these	estimates	seem	large	for	a	low-density	resident	

population,	they	could	be	achieved	by	170-220	fishers	using	50-m	of	optimal	mesh	

gillnet	100	nights	year-1	(roughly	twice	per	week).	With	an	estimated	permanent	

population	of	5,440	in	LHNP	and	average	family	size	of	3.6	people	(NSOM	2012),	

this	effort	could	be	attained	if	11.3-14.6%	of	families	participated	in	the	fishery	

(Table	1).	Alternatively,	this	effort	could	be	attained	if	every	family	living	in	the	park	

fished	with	50-m	of	optimal	mesh	gillnet	11.3-14.6	nights	per	year.	

	

Discussion	

	 Knowledge	of	illegal	fishing	in	Lake	Hovsgol	National	Park	(LHNP)	has	been	

anecdotal	and	limited	in	its	usefulness	to	managers,	but	with	a	mixed-method	

approach,	we	have	empirically	described	the	extent,	character,	and	motivations	of	

illegal	fishing	and	its	potential	impact	on	the	lake’s	fish	populations.	

Our	mixed-method	approach	reveals	a	fuller	understanding	of	illegal	fishing	

in	LHNP	than	using	a	single	method	alone.	Each	method	validates,	contextualizes,	

and	builds	upon	the	others	to	construct	a	consistent	story	for	a	complex	fishery:	(1)	

surveys	for	derelict	fishing	gear	quantitatively	describe	the	extent,	location,	and	

methods	of	fishing:	gillnet	fishing	is	widespread	and	increasing	and	fishers	generally	

use	3-4	cm	mesh	gillnet;	(2)	interviews	with	herders	and	park	rangers	

contextualize	these	results	by	qualitatively	describing	the	motivations	of	fishers,	

character	of	fishing,	and	status	of	fish	in	the	lake:	many	residents	gillnet	fish	for	

subsistence	during	the	spring	grayling	spawning	migration,	some	residents	gillnet	
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fish	commercially	year-round,	and	fish	population	sizes	are	decreasing;	(3)	

biological	monitoring	documents	the	vulnerability	of	fish	to	gillnets	as	well	as	

population-level	trends	in	fish	abundance	and	body	size:	the	gillnet	mesh	sizes	used	

by	fishers	efficiently	target	Hovsgol	grayling	and	grayling,	burbot,	and	roach	exhibit	

negative	population-level	trends;	and	(4)	data-poor	stock	assessment	analyses	

demonstrate	that	plausible	levels	of	fishing	effort	by	Lake	Hovsgol	residents	using	

gillnets	have	the	capacity	to	result	in	overexploitation	of	the	Hovsgol	grayling	

population.	Though	seemingly	intuitive,	the	use	of	multiple	methods	to	quantify	and	

characterize	illegal	resource	use	has	been	rare	and	should	be	more	widely	used	by	

conservation	scientists	and	resource	managers	(Gavin	et	al.	2010;	Bergseth	et	al.	

2013).		

	 Our	surveys	for	derelict	fishing	gear	are	an	improvement	to	previous	studies	

because	we	use	repeated	surveys	to	measure	re-accumulation	rates	and	biological	

monitoring	data	to	evaluate	the	vulnerability	of	fish	to	the	gear	observed	in	surveys.	

The	majority	of	studies	have	focused	on	comparing	the	density	of	derelict	gear	

inside	and	outside	marine	reserves	for	quantifying	non-compliance	and	fail	to	

measure	or	report	accumulation	rates	(e.g.,	Cinner	et	al.	2005,	2006;	McClanahan	et	

al.	2006).	A	few	studies	have	measured	the	accumulation	rates	of	derelict	gear	

among	habitat	types	to	inform	cleanup	efforts	but	have	not	used	the	results	to	

understand	non-compliance	(e.g.,	Donahue	et	al.	2001;	Chiappone	et	al.	2004;	Bauer	

et	al.	2008).	Only	Williamson	et	al.	(2014)	and	the	present	study	have	linked	these	

objectives	and	used	both	the	density	and	re-accumulation	rate	of	derelict	fishing	

gear	to	evaluate	temporal	and	spatial	trends	in	non-compliance.	By	measuring	re-
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accumulation,	we	show	not	only	that	the	observed	gillnet	was	used	recently	and	

does	not	pre-date	the	ban	on	gillnet	fishing,	but	also	that	gillnet	fishing	is	becoming	

increasingly	common.	Neither	Williamson	et	al.	(2014)	or	our	study	properly	

control	for	the	influence	of	habitat	characteristics	(e.g.,	shore/bottom	cover	or	

wind/wave	exposure)	on	accumulation	and	future	studies	must	consider	these	

covariates	when	identifying	hotspots	of	illegal	fishing.			

Although	our	interview	method	likely	underestimates	the	rate	of	non-

compliance	(Soloman	et	al.	2007;	Thomas	et	al.	2014),	it	provides	a	relative	

description	of	the	frequency	of	illegal	fishing	and	important	information	about	the	

motivations	for	non-compliance,	which	cannot	be	gained	using	other	respondent-

based	approaches	(Gavin	et	al.	2010).	The	biases	and	limitations	of	direct	

questioning	(DQ)	can	be	reduced	when	researchers	have	long-standing	

relationships	with	the	community	(Mann	1995;	Wolter	&	Preisendorfer	2013)	or	by	

interviewing	multiple	stakeholders	(Mann	1995;	Jupiter	&	Egli	2011).	In	our	study,	

this	likely	contributes	to	the	discrepancy	in	personal	fishing	habits	reported	by	

herders	on	the	eastern	and	western	shores.	Whereas	eastern	shore	herders,	with	

whom	we	have	long	partnerships,	reported	frequent	gillnet	use,	western	shore	

herders	reported	fishing	by	hook	and	line	or	by	hand	only.	Although	this	may	reflect	

real	geographic	differences,	it	may	also	reflect	social	desirability	bias	(Fisher	1993),	

as	western	shore	herders	might	be	less	comfortable	revealing	sensitive	information	

to	us.	In	our	study,	this	bias	is	partially	corrected	by	interviewing	multiple	

stakeholders	and	by	inquiring	about	observed	illegal	behavior	(Mann	1995;	Jupiter	

&	Egli	2011).	For	example,	herders	were	more	likely	than	park	rangers	to	
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characterize	enforcement	as	ineffective	and	park	rangers	were	more	likely	than	

herders	to	describe	illegal	fishing.	Similarly,	although	some	respondents	were	likely	

to	underreport	personal	fishing,	they	may	not	be	as	likely	to	underreport	observed	

fishing	by	others.	

Because	of	these	biases,	recent	papers	promote	the	randomized	response	

(RRT;	Warner	1965)	and	item	count	techniques	(ICT;	Miller	1984)	over	DQ	for	

quantifying	non-compliance	(Blank	&	Gavin	2009;	St.	John	et	al.	2010;	Nuno	&	St.	

John	2014;	Thomas	et	al.	2014),	but	we	argue	that	DQ	more	easily	and	fully	reveals	

the	motivations	for	non-compliance	(Gavin	et	al.	2010),	which	is	essential	

information	for	successful	management	(Keane	et	al.	2008).	RRT	and	ICT	incentivize	

honest	responses	about	illegal	behavior	by	protecting	anonymity	and	generally	

generate	more	accurate	estimates	of	the	proportion	of	the	sample	population	

engaging	in	illegal	behavior	(Soloman	et	al.	2007;	Thomas	et	al.	2014);	however,	

these	approaches	require	large	sample	sizes	and	prevent	researchers	from	

implicitly	discerning	motivations	for	non-compliance	by	linking	behaviors	with	

covariates	or	from	explicitly	inquiring	about	the	motivations	for	non-compliance	

(Nuno	&	St.	John	2014).	DQ,	on	the	other	hand,	allows	researchers	to	inquire	about	

the	motivations	for	non-compliance,	importance	of	natural	resources	to	culture	or	

livelihood,	and	desire	for	changes	to	management	rules.	Managers	must	consider	

the	socioeconomic	functions	of	resource	use	and	DQ	should	remain	in	the	

conservation	science	toolbox.	

Although	the	population-level	impacts	observed	in	our	biological	monitoring	

data	cannot	necessarily	be	attributed	to	illegal	fishing,	they	indicate	the	importance	
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of	improving	fisheries	management	in	LHNP,	especially	given	the	feasibility	for	

gillnet	fishers	to	overexploit	the	Hovsgol	grayling	population,	as	indicated	by	the	

data-poor	stock	assessment	analysis.	These	calculations	represent	a	simplification	

of	population	dynamics	made	necessary	by	the	lack	of	time	series	of	fishery	

removals	or	estimates	of	biological	parameters	needed	for	more	complex	data-poor	

assessment	methods	(Jensen	et	al.	2009).	However,	our	indirect	estimates	of	M	for	

Hovsgol	grayling	are	similar	to	direct	estimates	of	M	for	Arctic	grayling	(T.	arcticus),	

a	close	relative	(0.29	average;	Supp.	Table	3).	Furthermore,	all	of	our	MSY	estimates	

indicate	that	overexploitation	is	possible	even	with	only	a	small	percentage	of	the	

population	participating	in	the	fishery	using	gillnets,	an	inexpensive	and	widely	

available	fishing	gear.	The	threat	of	overexploitation	is	not	unrealistic	given	that	

grayling,	as	a	taxonomic	group,	can	be	susceptible	to	anthropogenic	influences	as	

has	been	seen	with	the	extirpation	of	many	North	American	Arctic	grayling	

populations	in	Montana	and	Wyoming	(Northcote	1995).	Salmonids	are	vulnerable	

to	exploitation	and	other	disruptions	during	their	spring	spawning	migrations	

(Roberts	&	White	1992)	and	managers	must	carefully	consider	the	value	and	impact	

of	the	spring	spawning	migration	fishery.	

The	results	of	our	mixed-method	approach	indicate	that	illegal	fishing	is	a	

problem	in	Lake	Hovsgol	but	that	fish	also	serve	an	important	socioeconomic	

function.		An	effective	management	system	will	need	to	incorporate	the	needs	of	

local	people	as	well	as	address	the	synergistic	pressures	of	climate	change,	water	

pollution,	increasing	tourism,	and	invasive	species	on	LHNP’s	fish	populations.	In	

the	last	40	years,	regional	air	temperatures	have	increased	2.1°C	(Dagvadorj	et	al.	
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2009),	a	rate	of	warming	more	than	three	times	faster	than	the	global	average	(IPCC	

2013),	which	has	prompted	the	drying	of	many	of	Lake	Hovsgol’s	previously	reliable	

streams	and	loss	of	grayling	spawning	habitat	(Ocock	et	al.	2006a,b).	Increasing	

tourism	may	result	in	increased	fishing	pressure,	habitat	destruction,	water	

pollution,	and	invasive	species	introductions	without	proper	management.	Lake	

Hovsgol	is	already	heavily	polluted	with	household	trash	and	will	only	become	more	

polluted	with	additional	strains	on	its	inadequate	waste	management	system	(Free	

et	al.	2014).	Although	no	invasive	species	have	established	to	date,	the	successful	

introduction	of	a	new	fish	or	aquatic	plant	species	could	alter	this	otherwise	intact	

ecosystem	(Young	et	al.	2014).	

Fishing,	historically	uncommon	in	Mongolia’s	pastoralist	culture,	may	be	

gaining	prevalence	as	a	new	source	of	food,	income,	or	recreation,	especially	as	

climate	change	makes	herding	more	difficult	(Batima	2013)	and	urban	Mongolians	

acquire	more	globalized	tastes	in	food	and	leisure	(Bruun	&	Odgaard	2013).	At	the	

same	time,	Mongolia	aims	to	protect	30%	of	the	country	by	2030,	more	than	

doubling	the	area	currently	under	protection	(Myagmarsuren	2008).	These	trends	

forecast	continued	conflicts	between	economic	and	conservation	objectives	and	the	

way	in	which	these	conflicts	are	resolved	or	ignored	in	the	iconic	LHNP	could	shape	

future	protected	area	management	in	the	country.	
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Figure	1.	Location	of	shoreline	surveys	for	derelict	fishing	gear,	fish	population	

monitoring	sites,	and	interviews	with	park	rangers	and	resident	herders	in	Lake	

Hovsgol	National	Park	(LHNP),	Mongolia.	Grey	and	black	bars	indicate	the	density	

(#	km-1)	of	derelict	gillnet	items	observed	in	the	2013	(n=10)	and	2014	(n=7)	

surveys,	respectively	(note	different	y-axis	scale	for	Site	10).	Black	site	numbers	

indicate	the	seven	sites	where	fish	population	monitoring	surveys	were	conducted	

in	2009	and	2011-13.	Solid	black	lines	indicate	the	park	boundary	and	17	ranger	

districts.	Five	rangers	from	five	districts	(dark	grey;	Hankh	town	limits	represent	

one	district)	were	interviewed.	Herders	were	interviewed	at	Sites	3	(n=3),	4	(n=3),	

and	6	(n=4).	Small	white	triangles	indicate	tourist	camps,	large	black	circles	indicate	

town	centers,	dotted	black	lines	indicate	primitive	roads,	and	solid	gray	lines	

indicate	rivers	and	seasonal	steams.	 	
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Figure	2.	Average	density	of	derelict	fishing	gear	by	category	(GN=gillnet	material)	

and	derelict	gillnet	fragments	by	mesh	size	in	count	and	weight	among	the	2013	

(dark	grey,	nsites=10,	ntransects=14)	and	2014	shoreline	transects	(light	grey,	

nsites/ntransects=7)	weighted	by	transect	length.	Panels	A	and	B	indicate	density	in	

count	(#	km-1)	and	Panels	C	and	D	indicate	density	in	weight	(g	km-1).	Note	variable	

y-axis	scales.	 	
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Figure	3.	Catch-per-unit-of-effort	(CPUE;	kg	10	m-1	night-1)	by	mesh	size	for	the	five	

most	abundant	species	in	gillnet	catches	and	the	sum	of	their	weight	from	the	two	5-

panel	sequential	mesh	gillnets	used	at	seven	sites	in	2009	and	2011-2013	(14	sets	

yr-1,	56	sets	total).	Boxplots	indicate	median	(heavy	black	line),	interquartile	range	

(IQR;	box),	1.5	times	the	IQR	(whiskers),	and	extreme	values	(open	circles).	Note	

variable	y-axis	scales.	 	
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Figure	4.	Trends	in	the	abundance	of	the	five	most	abundant	fish	species	in	gillnet	

catches	from	2009-2013.	Points	indicate	the	CPUE	(kg	net-1	night-1)	of	each	5-panel	

sequential	mesh	gillnet	set	(2	nets	site-1	x	7	sites	yr-1	=	14	sets	yr-1).	Dark	lines	

indicate	linear	mixed	effects	regressions	fit	to	the	catch	data,	gray	shading	indicates	

the	confidence	interval	for	each	regression,	and	dashed	lines	indicate	the	prediction	

interval	for	the	data.	P-values	are	indicated	in	the	upper	right	corner	of	each	panel.	

Points	are	jittered	around	year	for	display.	Note	variable	y-axis	scales.	 	
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Figure	5.	Trends	in	the	body	size	of	the	five	most	abundant	fish	species	in	gillnet	

catches	from	2009-2013.	Points	indicate	the	weight	(kg)	of	every	fish	caught	in	

gillnet	sets	that	year	(2	nets	site-1	x	7	sites	yr-1	=	14	sets	yr-1).	Dark	lines	indicate	

linear	mixed	effects	regressions	fit	to	the	catch	data,	gray	shading	indicates	the	

confidence	interval	for	each	regression,	and	dashed	lines	indicate	the	prediction	

interval	for	the	data.	P-values	are	indicated	in	the	upper	right	corner	of	each	panel.	

Points	are	jittered	around	year	for	display.	Note	variable	y-axis	scales.	
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Supp.	Figure	1.	Diagram	of	a	typical	Mongolian	horizontal	gillnet	and	its	

components.	 	
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Supp.	Figure	2.	Length-weight	relationships	for	the	five	most	abundant	fish	species	

in	gillnet	catches	in	Lake	Hovsgol.	Note	variable	y-axis	scales.	 	
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Supp.	Figure	3.	Catch-per-unit-of-effort	(CPUE;	#	10	m-1	night-1)	by	mesh	size	for	

the	five	most	abundant	species	in	gillnet	catches	and	the	sum	of	their	catch	from	the	

two	5-panel	sequential	mesh	gillnets	used	at	seven	sites	in	2009	and	2011-2013	(14	

sets	yr-1	x	4	yr	=	56	sets	total).	Boxplots	indicate	median	(heavy	black	line),	

interquartile	range	(IQR;	box),	1.5	times	the	IQR	(whiskers),	and	extreme	values	

(open	circles).	Note	variable	y-axis	scales.		 	
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Supp.	Figure	4.	Trends	in	the	abundance	of	the	five	most	abundant	fish	species	in	

gillnet	catches	from	2009-2013.	Points	indicate	the	CPUE	(#	net-1	night-1)	of	each	5-

panel	sequential	mesh	gillnet	set	(2	nets	site-1	x	7	sites	yr-1	=	14	sets	yr-1).	Dark	lines	

indicate	linear	mixed	effects	regressions	fit	to	the	catch	data,	gray	shading	indicates	

the	confidence	interval	for	each	regression,	and	dashed	lines	indicate	the	prediction	

interval	for	the	data.	Points	are	jittered	around	year	for	display.	P-values	are	

indicated	in	the	upper	right	corner	of	each	panel.	Note	variable	y-axis	scales.	 	
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Supp.	Figure	5.	Trends	in	the	body	size	of	the	five	most	abundant	fish	species	in	

gillnet	catches	from	2009-2013.	Points	indicate	the	total	length	(mm)	of	every	fish	

caught	in	gillnet	sets	that	year	(2	nets	site-1	x	7	sites	yr-1	=	14	sets	yr-1).	Dark	lines	

indicate	linear	mixed	effects	regressions	fit	to	the	catch	data,	gray	shading	indicates	

the	confidence	interval	for	each	regression,	and	dashed	lines	indicate	the	prediction	

interval	for	the	data.	P-values	are	indicated	in	the	upper	right	corner	of	each	panel.	

Points	are	jittered	around	year	for	display.	Note	variable	y-axis	scales.	 	
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Supp.	Figure	6.	Estimates	of	the	life	history	characteristics	used	to	calculate	natural	

mortality	(M)	for	Hovsgol	grayling	(see	Table	1	for	M	estimation	methods	and	

results):	(A)	Linf,	K,	and	tmax	were	estimated	from	aged	otoliths	and	a	von	Bertalanffy	

growth	model	(black	line)	fit	through	the	observed	age-size	relationship	and	origin	

(Tsogotsaikhan	et	al.	in	review)	and	(B)	GSI	was	estimated	as	the	mean	

gonadosomatic	index	(GSI)	for	all	observed	grayling	(Jensen,	unpublished	data).	In	

(B)	the	black	line	indicates	a	linear	regression	fit	and	the	grey	shading	indicates	the	

confidence	interval	for	the	regression.	Life	history	characteristics	are	marked	and	

labeled	in	both	panels.	 	
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Supp.	Figure	7.	The	(A)	length	and	(B)	length-converted	age	structure	of	the	

Hovsgol	grayling	population.	The	length	strucutre	was	observed	in	the	Ahrenstorff	

et	al.	(2012)	hydroacoustic	surveys.	In	(B),	the	solid	black	line	indicates	a	linear	

regression	fit	to	the	log-transformed	trailing	arm	of	the	age	structure.	The	dashed	

black	lines	indicate	the	confidence	interval	for	the	regression.	Z	is	equal	to	the	

negative	slope	of	the	regression.	
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Appendix	A:	Herder	interview	questionnaire	

Opening	questions	
1. Does	your	family	eat	fish?	
2. How	many	times	has	your	family	eaten	fish	in	the	last	month?	
3. What	types	of	fish	does	your	family	prefer	to	eat?	
4. Does	your	family	eat	fish	in	all	seasons?	
5. How	many	people	are	in	your	family?	
6. How	many	sheep,	cows/yaks,	goats,	and	horses	does	your	family	own?	

	
Personal	fishing	habits	

7. Does	your	family	fish	in	Lake	Hovsgol?	
8. Does	your	family	fish	for	recreation,	food,	or	money?	

a. Do	you	keep	all	of	the	fish	you	catch?	If	not,	which	do	you	release?	
9. How	many	times	in	the	last	month	has	your	family	fished?	
10. For	how	many	years	has	your	family	been	fishing?	
11. Who	in	your	family	fishes?	
12. Where	does	your	family	go	to	fish?	
13. How	do	you	catch	your	fish?	

b. What	type	and	how	much	net	do	you	own?	
c. What	type	and	how	many	rods	do	you	own?	

14. Where	do	you	get	your	fishing	equipment?	
15. How	many	fish	do	you	usually	catch	in	a	day	of	fishing?	
16. What	types	of	fish	do	you	usually	catch?	

	
Observed	fishing	habits	

17. Do	you	see	other	people	fishing?	
18. Are	they	mostly	locals	or	foreigners?	
19. Where	do	you	see	people	fishing?	
20. What	type	of	gear	do	they	use?	
21. Do	you	know	where	you	can	buy	this	gear?	
22. Do	they	fish	for	recreation,	food,	or	money?	

	
Fish	market	questions	

23. Can	you	buy	fish	locally?	
24. When	and	where	can	you	buy	fish?	
25. What	types	and	how	much	fish	are	usually	available?	
26. Does	your	family	ever	buy	fish?	

a. What	type	of	fish	do	you	buy?	
b. How	much	fish	and	how	frequently?	

27. Are	there	any	rules	about	fishing	on	Lake	Hovsgol?	
	
Fish	population	questions	

28. Are	fish	more	or	less	abundant	than	they	used	to	be?	
29. Are	fish	larger	or	smaller	than	they	used	to	be?	
30. What	do	you	think	should	be	done	to	protect	the	fish	population?	 	
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Appendix	B:	Park	ranger	interview	questionnaire	

Opening	Questions	
1. How	long	have	you	been	a	ranger?	
2. What	is	your	district?	
3. How	long	have	you	worked	in	this	district?	
4. How	many	families	live	in	your	district?	
5. How	many	families	in	your	district	fish?	

	
Observed	Fishing	Habits	

6. When	do	you	see	people	fishing?	
7. Which	season	is	the	most	active	for	fishing?	
8. How	many	people	do	you	see	fishing	in	a	month?	
9. Are	they	mostly	local,	visiting	Mongolians,	or	foreigners?	
10. Where	do	you	see	people	fishing?	
11. What	type	of	fishing	equipment	do	they	use?	
12. What	type	of	fish	do	they	catch?	
13. What	type	of	fish	do	they	keep?	
14. What	type	of	fish	do	they	release?	
15. Do	they	fish	for	recreation,	food,	or	money?	
16. How	many	fish	do	they	catch	in	a	day	of	fishing?	

	
Law	Enforcement	Questions	

17. Are	fishermen	complying	with	the	law?	
18. What	do	you	do	when	you	see	people	fishing	illegally?	
19. Why	do	you	give	a	fine	sometimes	and	not	other	times?	

	
Fish	Population	Questions	

20. Are	fish	more	or	less	abundant	than	they	used	to	be?	
21. Are	fish	larger	or	smaller	than	they	used	to	be?	
22. What	do	you	think	should	be	done	to	protect	the	fish	population?	 	
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Appendix	C:	Total	and	natural	mortality	estimation	

Total	mortality:	length-converted	catch	curve	analysis	

We	used	a	length-converted	catch	curve	analysis	(Pauly	&	Morgan	1987)	to	

calculate	the	instantaneous	total	mortality	(Z)	rate	where	Z	is	the	sum	of	the	

instantaneous	natural	(M)	and	fishing	(F)	mortality	rates.	First,	we	converted	the	

length	structure	of	Hovsgol	grayling	observed	in	the	Ahrenstorff	et	al.	(2012)	

hydroacoustic	surveys	into	an	age	structure	by	(1)	assigning	observed	fish	to	5	cm	

length	classes	and	(2)	calculating	the	relative	age	of	each	fish	based	on	the	midpoint	

of	its	length	class	using	the	rearranged	von	Bertalanffy	growth	equation:	

!" = −log	(1 − +"
+",-

)/0	

where	ti	is	the	mean	age	for	the	length	class	with	midpoint	Li	and	Linf	is	307.0	mm	

and	K	is	0.3206	yr-1	from	Tsogotsaikhan	et	al.	(in	review).	A	linear	regression	was	fit	

to	the	log-transformed	trailing	arm	of	the	resulting	age	structure	where	the	negative	

slope	of	the	regression	is	equal	to	the	instantaneous	total	mortality	rate	(Z).	

	

Natural	mortality:	life	history	invariant	analysis	

	 Natural	mortality	rate	(M)	is	one	of	the	most	important	parameters	in	

fisheries	population	dynamics	and	management	but	can	be	difficult	and	expensive	

to	estimate	directly.	As	a	result,	many	authors	have	developed	simpler,	though	

necessarily	less	reliable,	methods	for	indirectly	estimating	M	from	life	history	traits	

such	as	maximum	age,	Von	Bertalanffy	growth	parameters,	and	

maturity/reproductive	characteristics.	Kenchington	(2014)	provides	the	best	
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review	of	such	life	history	invariant	methods	to	date.	We	evaluated	the	

appropriateness	of	31	life	history	invariant	methods	for	estimating	the	natural	

mortality	rate	of	Hovsgol	grayling	based	on	(1)	the	availability	of	required	life	

history	traits	and	(2)	the	performance	and	biases	of	each	method	(Supp.	Table	2).	

Ultimately,	we	decided	to	use	three	roughly	independent	estimators	of	natural	

mortality:	Hoenig’s	(Hoenig	1983),	Pauly’s	(Pauly	1980),	and	Gunderson’s	

estimators	(Gunderson	1997).	A	recent	paper	by	Then	et	al.	(2014)	suggests	that	

Hoenig’s	(tmax-based)	and	Pauly’s	estimators	(growth-based)	are	the	best	in	their	

respective	classes	and	are	independent	of	one	another.	Gunderson’s	estimator	is	

GSI-based	(GSI=gonadosomatic	index)	and	is	therefore	expected	to	be	independent	

of	the	other	estimators.	Although	Then	et	al.	(2014)	suggest	that	the	Hoenig	

estimator	performs	best	of	the	tmax-and	growth-based	estimators	and	should	be	

used	alone,	we	consider	three	independent	estimators	to	account	for	uncertainty	in	

our	life	history	trait	estimates	and	uncertainty	in	the	natural	mortality	estimates.	

See	Supp.	Table	2	for	estimation	methods	considered,	Table	1	for	estimation	

methods	used,	and	Supp.	Figure	6	for	the	life	history	traits	required	by	the	selected	

methods.	See	the	section	below	for	a	description	of	the	data	sources	and	methods	

used	to	calculate	these	required	life	history	traits.	

	

Natural	mortality:	life	history	trait	data	sources	

The	Von	Bertalanffy	growth	parameters	(Linf	and	K	with	t0	fixed	at	0)	and	

maximum	age	(tmax)	were	determined	from	93	aged	otoliths	in	Tsogotsaikhan	et	al.	

(in	review)	(Supp.	Figure	6A).	Thin	sections	through	the	core	of	the	otoliths	in	the	
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transverse	plane	were	prepared	and	examined	under	a	compound	microscope	(50x)	

using	transmitted	light.	Alternating	light	and	dark	circuli,	interpreted	as	annuli,	

were	counted	by	two	otolith	readers.	A	von	Bertalanffy	growth	model	of	length-at-

age	(Lt):	

+1 = +",- × 31 − 456(1517)8	

was	fit	to	the	resulting	age	and	length	data	with	t0	fixed	at	0.	Linf	(read	“L-infinity”)	

represents	the	average	maximum	size	or	asymptotic	length	and	K	represents	the	

rate	at	which	Linf	is	approached.		See	Tsogotsaikhan	et	al.	(in	review)	for	more	

details.	

The	gonadosomatic	index	(GSI)	was	calculated	for	106	grayling	by	dividing	

the	wet	ovary	weight	by	the	wet	body	weight	(Jensen,	unpublished	data;	Supp.	

Figure	6B).	Linear	regression	suggests	that	GSI	does	not	vary	with	body	length	

(r2=0.004,	p=0.529)	indicating	that	an	average	GSI	value	is	representative	of	the	

entire	grayling	population.	

We	compared	the	indirect	estimates	of	Hovsgol	grayling	natural	mortality	

rate	calculated	here	to	direct	estimates	of	natural	mortality	rate	for	Arctic	grayling	

(Thymallus	arcticus)	from	the	literature	to	confirm	realism	(Supp.	Table	3).	 	
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Chapter	2:	The	refined	ORCS	approach:	a	catch-based	method	for	

estimating	stock	status	and	catch	limits	for	data-poor	fish	stocks*	

	

Abstract	

The	‘Only	Reliable	Catch	Stocks’	(ORCS)	Working	Group	approach	to	data-poor	

fisheries	stock	status	and	catch	limit	estimation	has	been	used	by	U.S.	fisheries	

managers	but	has	yet	to	be	fully	evaluated.	The	ORCS	approach	estimates	stock	

status	using	a	fourteen	question	‘Table	of	Attributes’	and	the	overfishing	limit	by	

multiplying	a	historical	catch	statistic	by	a	scalar	based	on	the	estimated	status.	We	

evaluated	the	performance	of	the	approach	by	applying	it	to	193	stocks	with	data-

rich	stock	assessments	and	comparing	its	predictions	of	stock	status	with	the	

assessment	model	estimates.	The	approach	classified	all	but	three	stocks	as	fully	

exploited	indicating	that	it	is	a	poor	predictor	of	status	and	should	not	be	used	by	

managers.	We	refined	the	original	ORCS	approach	by:	(1)	developing	a	more	

predictive	model	of	stock	status	using	boosted	classification	trees	and	(2)	

identifying	the	historical	catch	statistics	and	scalars	that	best	estimate	overfishing	

limits	using	assessment	model	data.	The	refined	ORCS	approach	correctly	classified	

74%	of	all	stocks	and	62%	of	overexploited	stocks	in	a	training	dataset	and	74%	of	

all	stocks	and	50%	of	overexploited	stocks	in	an	independent	test	dataset.	The	

refined	approach	performed	better	than	other	widely	used	catch-only	methods.	

However,	the	overfishing	limits	estimated	by	the	refined	approach	would	further	

                                                
*	Published	as:	Free	CM,	Jensen	OP,	Wiedenmann	J,	Deroba	JJ	(2017)	The	refined	ORCS	approach:	a	
catch-based	method	for	estimating	stock	status	and	catch	limits	for	data-poor	fish	stocks.	Fisheries	
Research	193:	60-70.	
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deplete	overexploited	stocks	without	the	use	of	conservative	catch	scalars	to	buffer	

against	classification	uncertainty.	Conservative	catch	scalars	can	reduce	the	

probability	of	overfishing	below	50%,	the	U.S.	legal	maximum,	but	with	concomitant	

increases	in	the	probability	and	magnitude	of	underfishing.	The	refined	ORCS	

approach	may	therefore	be	useful	when	other	methods	are	not	possible	or	

appropriate	and	some	risk	of	underfishing	is	acceptable.	

	

Introduction	

	 The	majority	of	global	fish	stocks	lack	adequate	data	for	estimating	

sustainable	fishing	levels	using	conventional	stock	assessment	methods.	In	

developing	countries,	only	5-20%	of	fish	stocks	are	assessed	and	this	fraction	

increases	to	only	10-50%	in	developed	countries	(Costello	et	al.,	2012).	In	the	

United	States,	30%	of	stocks	are	managed	using	conventional	‘data-rich’	assessment	

methods,	while	the	remaining	11%	and	59%	of	stocks	are	managed	using	‘data-

moderate’	and	‘data-poor’	methods,	respectively	(Newman	et	al.,	2015).	Data-rich	

stock	assessment	methods	combine	(1)	total	catch;	(2)	an	index	of	relative	

abundance;	and	(3)	other	biological	information	to	assess	stock	status	and	estimate	

sustainable	fishing	levels	(Walters	and	Martell,	2004).	Data-poor	and	data-moderate	

methods	generally	utilize	only	one	and	two	of	these	data	types,	respectively,	with	

total	catch	information	often	being	the	only	data	type	available.	Thus,	data-poor	

methods	are	often	synonymous	with	catch-only	methods.	

In	2006,	the	U.S.	Magnuson-Stevens	Fishery	Conservation	and	Management	

Act	was	amended	to	require	scientifically-derived	annual	catch	limits	(ACLs)	that	
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prevent	overfishing	for	all	federally	managed	fish	stocks,	including	data-limited	

stocks	(DOC,	2007).	This	mandate	stimulated	the	revival	of	old	data-limited	

methods	(Gulland,	1971;	Restrepo	et	al.,	1998),	development	of	new	data-limited	

methods	(MacCall,	2009;	Dick	and	MacCall,	2011;	Cope,	2013;	Cope	et	al.,	2013),	and	

evaluation	of	the	relative	performance	of	these	methods	(Wetzel	and	Punt,	2011;	

Wiedenmann	et	al.,	2013;	Carruthers	et	al.,	2014).	In	2011,	the	‘Only	Reliable	Catch	

Stocks’	(ORCS)	Working	Group	(Berkson	et	al.,	2011)	convened	to	evaluate	catch-

only	methods	for	ACL	estimation	and	recommended	the	following	hierarchy	for	

determining	ACLs	for	ORCS:	(1)	depletion-based	stock	reduction	analysis	(DB-SRA;	

Dick	and	MacCall,	2011)	when	a	complete	time	series	of	annual	catches	is	available	

(i.e.,	from	the	start	of	fishing	to	the	present);	(2)	depletion-corrected	average	catch	

(DCAC;	MacCall,	2009)	when	the	stock	exhibits	low	natural	mortality	rates	(≤0.20	

yr-1);	and	(3)	the	new	ORCS	Working	Group	approach	(hereafter	called	the	‘ORCS	

approach’)	when	neither	DB-SRA	or	DCAC	are	possible	or	appropriate	(Berkson	et	

al.,	2011;	later	modified	by	SAFMC,	2012,	2013).	

The	ORCS	approach	was	designed	to	provide	an	ecological	basis	for	the	

Restrepo	et	al.	(1998)	scalar	approach.	In	both	methods,	the	overfishing	limit	(OFL;	

the	catch	at	FMSY)	is	calculated	by	multiplying	an	expert-defined	historical	catch	

statistic	(e.g.,	mean	catch	over	the	previous	10	years	or	median	catch	over	the	whole	

time	series)	by	a	scalar	also	based	on	expert	judgment.	In	the	ORCS	approach,	the	

choice	of	scalar	is	determined	by	stock	status	(i.e.,	under,	fully,	or	overexploited),	

which	is	estimated	as	the	mean	score	of	fourteen	stock-	and	fishery-related	

attributes	(the	‘Table	of	Attributes’	or	TOA;	Table	1).	The	ORCS	approach	allows	for	
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considerable	flexibility	in	its	implementation,	as	scientists	and	managers	can	

exercise	expert	judgement	to:	(1)	estimate	status	using	an	arithmetic,	geometric,	or	

weighted	mean	of	the	Table	of	Attributes	scores;	(2)	modify	the	Table	of	Attributes’	

estimate	of	status	or	the	thresholds	used	to	delineate	status;	and/or	(3)	choose	

appropriate	catch	statistics	and	scalars.	While	this	flexibility	and	reliance	on	expert	

judgement	could	improve	performance,	it	is	necessary	to	adopt	a	more	specific,	

albeit	less	inclusive,	definition	of	the	ORCS	approach	to	validate	the	method	and	

demonstrate	its	transferability.	

The	ORCS	approach	is	widely	applicable,	but	the	ability	of	the	Table	of	

Attributes	to	correctly	predict	stock	status	has	not	been	evaluated	and	the	

performance	of	only	a	limited	range	of	potential	catch	statistics	and	scalars	has	been	

tested.	In	the	only	explicit	evaluation	of	the	ORCS	approach	to	date,	Wiedenmann	et	

al.	(2013)	used	management	strategy	evaluation	to	show	that	the	default	scalars	

used	to	estimate	the	OFL	are	too	conservative	for	under	(scalar=0.5)	and	fully	

(scalar=1.0)	exploited	stocks	and	too	generous	for	overexploited	(scalar=2.0)	stocks	

when	stock	status	is	correctly	classified.	They	also	show	that	catch	limits	are	

unsustainable	when	stocks	are	incorrectly	classified	into	less-depleted	categories	

(e.g.,	an	overexploited	stock	incorrectly	classified	as	fully	exploited).	Evaluations	of	

scalar-based	methods	similar	to	the	ORCS	approach	have	also	been	shown	to	result	

in	overfishing,	especially	for	already	depleted	stocks	and	stocks	whose	statuses	have	

been	incorrectly	classified	(Carruthers	et	al.	2014;	ICES	2014,	2015,	2017).	The	

sensitivity	of	management	outcomes	to	status	classification	decisions	makes	the	
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validation	and	refinement	of	the	ORCS	Table	of	Attributes’	ability	to	estimate	status	

necessary	before	the	ORCS	approach	can	be	used	to	set	catch-limits	more	widely.		

The	goals	of	the	present	study	are	to	evaluate	and	refine	the	ORCS	approach	

to	data-poor	catch	limit	estimation	using	stocks	with	data-rich	stock	assessments.	

We	evaluate	the	original	approach	by	applying	it	to	data-rich	stocks	and	comparing	

its	predictions	of	status	with	the	assessment	model	estimates.	We	refine	the	ORCS	

approach	by:	(1)	developing	a	more	predictive	model	of	stock	status	that	uses	

boosted	classification	trees	to	weight	attributes	by	their	relative	importance,	

incorporate	interactions	between	attributes,	and	account	for	non-linearity	in	

attribute	behavior;	and	(2)	empirically	identifying	the	best	status-specific	historical	

catch	statistics	and	scalars	for	estimating	overfishing	limits	using	assessment	model	

data.	Finally,	we	evaluate	the	ability	of	the	refined	ORCS	approach	to	estimate	

overfishing	limits	and	compare	the	ability	of	the	refined	approach	to	estimate	stock	

status	to	six	other	catch-only	assessment	methods.		

	

Methods	

Stock	selection	

We	evaluated	the	ORCS	approach	to	data-poor	catch	limit	estimation	by	

applying	it	to	data-rich	stocks	with	stock	assessments	based	on	underlying	

population	dynamics	models	(generally	statistical	catch-at-age	models,	virtual	

population	analyses,	and	production	models)	in	the	RAM	Legacy	Stock	Assessment	

Database	(RAMLDB	v.2.95;	Ricard	et	al.,	2012).	We	used	only	stocks	with	

assessments	that	estimate	BMSY	internal	to	the	model	or	estimate	standard	proxies	
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used	by	the	management	agency	(e.g.,	spawning	potential	ratio	proxies	common	in	

the	U.S.	or	B0	proxies	common	in	Australia).	We	excluded	stocks	whose	assessments	

are	considered	particularly	unreliable	(n=2;	2002	Atlantic	croaker	and	2005	

Atlantic	herring).	The	resulting	193	stocks	include	underexploited	(n=68),	fully	

exploited	(n=95),	and	overexploited	(n=30)	stocks	representing	a	variety	of	taxa,	

geographic	locations,	and	management	agencies	(Figure	1).	The	RAMLDB	does	not	

include	the	most	up-to-date	assessment	for	every	stock.	Therefore,	data-rich	

statuses	and	answers	to	the	Table	of	Attributes	questions	reflect	the	terminal	year	

of	the	assessment	in	the	RAMLDB.	

	

Evaluation	of	the	ORCS	Table	of	Attributes	

We	estimated	stock	status	using	the	expanded	Table	of	Attributes	developed	

by	SAFMC	(2012)	with	a	few	modifications	to	increase	clarity	and	objectivity	in	the	

scoring	process	(Table	1;	Supplementary	Appendix	A.1).	We	scored:	TOA	#1	Status	

of	assessed	stocks	in	fishery	using	U.S.	Fisheries	Management	Plans	and	their	foreign	

analogs	to	identify	groups	of	stocks	managed	together	and	references	from	

management	agencies	to	determine	the	status	of	these	stocks;	TOA	#2	Refuge	

availability,	#3	Behavior	affecting	capture,	#4	Morphology	affecting	capture,	and	#11	

Habitat	loss	using	information	on	the	distribution,	biology,	and	habitat	of	the	taxa	in	

FishBase	(Froese	and	Pauly,	2016);	TOA	#5	Discard	rate,	#6	Targeting	intensity,	#7	

M	compared	to	dominant	species,	#8	Occurrence	in	catch,	and	#14	Proportion	of	

population	protected	using	information	in	the	stock	assessment	documents;	TOA	#9	

Value	using	ex-vessel	price	data	from	the	Sea	Around	Us	Project	(Pauly	and	Zeller,	
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2015);	and	TOA	#10	Recent	trend	in	catch,	#12	effort,	and	#13	abundance	index	using	

time	series	in	the	RAMLDB.	Other	technical	sources	(i.e.,	government	reports	or	

websites,	peer-reviewed	scientific	papers,	technical	reports)	were	used	when	an	

attribute	could	not	be	scored	using	the	principal	reference.	In	some	cases,	attributes	

could	not	be	scored	due	to	a	lack	of	data	or	applicability	and	were	given	an	‘NA’	

value.	Detailed	information	on	the	scoring	process	is	available	in	Supplementary	

Appendices	A.2	and	A.3	and	the	scores	and	their	justifications	are	available	in	

Supplementary	Appendix	B.	Estimated	stock	status	was	determined	from	the	mean	

of	the	Table	of	Attributes	scores	with	the	following	classifications	provided	by	the	

original	method:	underexploited	(<1.5),	fully	exploited	(1.5–2.5),	and	overexploited	

(>2.5).	This	simplification	of	the	broadly	flexible	ORCS	approach	is	necessary	for	

testing	and	validating	the	performance	of	the	method	on	such	a	diverse	and	global	

array	of	stocks.	

The	ORCS	approach	has	been	thought	to	estimate	both	stock	status	(i.e.,	

lightly,	moderately,	and	heavily	exploited;	Berkson	et	al.	2011)	and	the	risk	of	

overexploitation	(i.e.,	low,	moderate,	and	high	risk	of	overexploitation;	SAFMC,	

2012,	2013).	Consequently,	we	evaluated	the	performance	of	the	original	approach	

using	linear	regression	to	assess	the	correlation	between	predicted	status	(mean	

Table	of	Attributes	score)	and	the	assessment’s	most	recent	estimates	of	(1)	B/BMSY	

as	a	proxy	for	stock	status	and	(2)	F/FMSY	as	a	proxy	for	overexploitation	risk.	We	

also	assessed	the	ability	of	the	original	approach	to	correctly	classify	stock	status	

using	both	percentage	agreement	(accuracy)	and	Cohen’s	kappa.	Cohen’s	kappa	

measures	inter-rate	agreement	between	categorical	items	and	is	more	robust	than	
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simple	percentage	agreement	because	it	takes	into	account	the	probability	of	

agreement	occurring	by	chance	(Cohen,	1968).	This	metric	was	preferred	given	the	

volume	and	ease	of	identifying	fully	exploited	stocks	compared	to	the	paucity	and	

difficulty	of	identifying	overexploited	stocks.	If	the	method	misclassifies	most	

overexploited	stocks	but	correctly	classifies	most	fully	exploited	stocks,	then	it	

would	still	earn	a	high	accuracy	percentage,	but	it’s	kappa	value	would	be	

appropriately	penalized.	Although	there	are	no	definitive	rules	for	interpreting	

Cohen’s	kappa,	general	guidelines	suggest	that	values	>0.70	are	‘excellent’,	0.4-0.7	

are	‘good’,	0.2-0.4	are	‘fair’,	and	<0.2	are	‘poor’	(Landis	and	Koch,	1977;	Fleiss,	

1981).	

	

Refinement	of	the	ORCS	Table	of	Attributes	

We	refined	the	ORCS	Table	of	Attributes	using	boosted	classification	trees	

(BCT)	to	weight	attributes	by	their	relative	importance,	incorporate	interactions	

between	attributes,	and	account	for	non-linearity	in	attribute	behavior.	Boosted	

classification	trees	combine	classification	and	machine	learning	and	offer	predictive	

power	superior	to	other	modeling	methods	(Elith	et	al.,	2008).	Boosted	

classification	trees	can	also	accommodate	missing	values	(i.e.,	NA	scores)	by	

imputing	values	from	surrogate	variables,	which	allowed	the	use	of	all	scored	

stocks.	The	BCT	analysis	was	performed	using	the	caret	(Kuhn,	2016)	and	gbm	

(Ridgeway,	2016)	packages	in	R	v.3.3.2	(R	Core	Team,	2016).	

We	trained	the	BCT	model	to	estimate	categorical	status	(i.e.,	under,	fully,	or	

overexploited)	rather	than	continuous	status	(i.e.,	B/BMSY)	because	(1)	the	ORCS	
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approach	was	designed	to	use	status	categories	and	(2)	stock	assessment	models	

exhibit	more	uncertainty	in	estimates	of	B/BMSY	than	in	more	general	status	

classifications.	We	trained	the	BCT	model	to	estimate	stock	status	rather	than	risk	of	

overexploitation	because	(1)	stock	status	is	a	more	widely	used	metric	and	can	be	

easily	compared	to	other	assessment	methods	and	(2)	F/FMSY	is	an	unsatisfying	

proxy	for	overexploitation	risk	because	it	can	change	rapidly	and	even	sustained	

F/FMSY	values	greater	than	1.0	may	not	be	“risky”	over	the	short-term	if	B/BMSY	is	

high	(≫1.0).	The	BCT	model	attempts	to	determine	stock	status	–	whether	a	stock	is	

under	(B/BMSY>1.5),	fully	(B/BMSY=0.5–1.5),	or	overexploited	(B/BMSY<0.5)	–	from	

the	TOA	scores	with	a	few	modifications	(Table	1):	(1)	we	removed	TOA	#2	Refuge	

availability	and	#4	Morphology	affecting	capture	because	they	lacked	contrast	(i.e.,	

97.9%	and	100%	of	stocks	were	assigned	scores	of	3–>75%	of	habitat	accessible	

and	2–Average	susceptibility,	respectively);	(2)	we	used	continuous	rather	than	

categorical	price	values	for	TOA	#9	Value	because	these	values	are	readily	available	

to	managers	and	continuous	variables	can	increase	predictive	performance;	and	(3)	

we	used	all	three	categories	for	TOA	#10	Recent	trend	in	catch	(i.e.,	1=increasing,	

2=stable,	and	3=decreasing	rather	than	the	originally	proposed	options	of	

1.5=increasing/stable	and	3=decreasing)	because	boosted	classification	trees	can	

account	for	interactions	between	catch,	effort,	and	abundance	index	trends.	

We	randomly	divided	the	TOA	scores	into	training	(80%	of	data,	n=155	

stocks)	and	test	(20%	of	data,	n=38	stocks)	datasets	with	stratification	by	stock	

status	to	ensure	that	both	the	test	and	training	datasets	included	the	same	

proportion	of	under,	over,	and	fully	exploited	stocks.	The	training	dataset	was	used	
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to	fit	the	BCT	model,	while	the	test	dataset	was	used	to	provide	an	independent	

evaluation	of	the	BCT	model’s	predictive	capacity.	A	grid	search	for	the	BCT	model	

parameters	that	maximize	Cohen’s	kappa	using	repeated	10-fold	cross	validation	on	

the	training	dataset	found	the	following	optimal	parameters:	learning	rate=0.001,	

interaction	depth=2,	number	of	trees=3000,	and	bag	fraction=0.8		with	multinomial	

error.	Detailed	information	on	model	fitting	is	available	in	Supplementary	Appendix	

A.4.	

We	evaluated	the	predictive	performance	of	the	BCT	model	by	calculating	the	

percentage	agreement	and	Cohen’s	kappa	for	both	the	training	and	test	datasets.	For	

comparison,	we	evaluated	the	performance	of	six	other	catch-only	methods	for	

estimating	status	on	stocks	in	the	test	dataset:	SSP-2002	(Froese	and	Kesner-Reyes,	

2002)	and	SSP-2013	(Kleisner	et	al.,	2013),	which	estimate	development	status	(e.g.,	

undeveloped,	developing,	fully	exploited),	and	CMSY	(Martell	and	Froese,	2013),	

COM-SIR	(Vasconcellos	and	Cochrane,	2005),	SSCOM	(Thorson	et	al.,	2013),	and	

mPRM	(Costello	et	al.,	2012),	which	estimate	B/BMSY	(Table	2).	The	latter	four	

methods	were	applied	using	the	datalimited	package	in	R	(Anderson,	2016)	based	

on	the	methods	described	in	Rosenberg	et	al.	(2014)	and	Anderson	et	al.	(2017).	

Detailed	information	on	implementing	the	alternative	catch-only	methods	is	

available	in	Supplementary	Appendix	A.5.	

	

Refinement	of	the	historical	catch	statistics	and	scalars	

The	second	step	of	the	ORCS	approach	is	to	estimate	the	OFL	as	a	factor	of	

some	historical	catch	statistic	based	on	stock	status;	however,	the	original	approach	
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offers	no	formal	recommendations	on	the	choice	of	catch	statistic	and	recommends	

simple	catch	scalars	(i.e.,	2.0,	1.0,	0.5	for	under,	fully,	and	overexploited	stocks,	

respectively).	

We	identified	the	best	status-specific	historical	catch	statistics	and	scalars	by	

comparing	the	most	recent	OFL	(UMSY	x	total	biomass)	to	24	historical	catch	

statistics	for	the	105	stocks	in	the	RAMLDB	with	the	necessary	information	(i.e.,	

UMSY,	total	biomass	time	series,	and	catch/landings	time	series).	The	24	historical	

catch	statistics	represent	eight	metrics	(IQR,	Winsorized,	and	arithmetic	mean;	10th,	

25th,	50th,	75th,	and	90th	percentiles)	proposed	in	the	original	ORCS	approach	over	

three	time	periods	(10	yr,	20	yr,	whole	time	series).	We	used	linear	regression	to	

assess	the	correlation	between	the	OFL	and	each	catch	statistic	and	Akaike’s	

Information	Criterion	(AIC)	to	rank	the	catch	statistics	within	each	status	category.	

The	best	status-specific	catch	statistics	were	selected	based	on	AIC	ranking.	

We	calculated	the	ratio	of	the	best	status-specific	catch	statistic	to	the	OFL	

for	each	stock	based	on	its	data-rich	status	estimate.	We	then	calculated	the	10th	to	

50th	percentile	of	the	observed	ratios	in	each	status	category	to	evaluate	as	potential	

status-specific	scalars	for	estimating	the	OFL.	If	stock	status	is	correctly	identified,	

the	50th	percentile	scalars	should	promote	a	50%	probability	of	overfishing	(i.e.,	

catch	>	OFL)	in	a	given	year,	the	U.S.	legal	maximum	(DOC,	2016).	Scalars	more	

conservative	than	the	median	may	be	useful	for	buffering	against	classification	

uncertainty.	Detailed	information	on	calculating	the	OFL	and	the	best	status-specific	

historical	catch	statistics	and	scalars	is	available	in	Supplementary	Appendices	A.3	

and	A.6.	
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Evaluation	of	the	refined	ORCS	approach	

	 We	evaluated	ten	potential	refinements	of	the	original	ORCS	approach.	The	

first	approach	(the	‘weighted	50th	percentile	scalar’	approach)	uses	the	BCT	model	

to	estimate	the	probability	a	stock	is	in	each	status	category.	It	then	estimates	the	

OFL	as	the	probability	weighted	average	of	the	OFLs	for	each	status	category	using	

the	best	status-specific	catch	statistics	and	50th	percentile	scalars.	The	second	

approach	(the	‘unweighted	50th	percentile	scalar’	approach)	uses	the	BCT	model	to	

identify	the	most	likely	status	category,	then	estimates	the	OFL	using	the	best	catch	

statistic	and	50th	percentile	scalar	for	the	category.	The	remaining	eight	approaches	

use	the	45th-10th	percentile	scalars	in	the	unweighted	framework	to	examine	the	

tradeoffs	associated	with	using	scalars	more	conservative	than	the	median.	We	used	

the	unweighted	framework	because	preliminary	analysis	showed	that	the	

unweighted	framework	was	superior	to	the	weighted	framework	(Table	4;	Figure	

6).	We	evaluated	the	performance	of	these	approaches	by	applying	them	to	the	97	

stocks	(ntraining=79,	ntest=18)	in	the	RAMLDB	with	the	necessary	information	(i.e.,	

B/BMSY,	UMSY,	total	biomass	time	series,	catch/landings	time	series)	and	calculated	

the	percentage	of	stocks	for	which	the	predicted	OFL	exceeded	the	data-rich	OFL	

estimate	to	use	as	a	measure	of	the	probability	of	overfishing.	We	also	assessed	the	

correlation	between	the	OFLs	predicted	by	the	ORCS	approach	and	those	estimated	

by	the	data-rich	assessments	using	linear	regression.	

	

Results	



 

70 

 

 

Evaluation	of	the	ORCS	Table	of	Attributes	

Although	most	attributes	exhibited	good	variation	in	scores,	a	few	were	

dominated	by	a	single	score	category	(TOA	#2,	#4),	omitted	an	entire	score	category	

(TOA	#3),	or	underutilized	a	score	category	(TOA	#11,	#14)	(Figure	2A).	The	original	

approach	classified	all	but	three	stocks	as	fully	exploited	(Figure	2B).	Although	the	

approach	correctly	classified	the	U.S.	Mid-Atlantic	weakfish	stock	as	overexploited	

(B/BMSY=0.131	in	2008),	it	incorrectly	classified	the	fully	exploited	U.S.	Gulf	of	Maine	

haddock	(B/BMSY=0.585	in	2011)	and	New	Zealand	bluenose	(B/BMSY=0.658	in	

2011)	stocks	as	overexploited.	In	fact,	there	was	no	correlation	between	the	

statuses	predicted	by	the	ORCS	approach	and	those	estimated	by	the	data-rich	

assessment	models	(Figure	2C),	and	a	Cohen’s	kappa	value	of	0.0001	indicates	‘poor’	

classification	accuracy.	There	was	a	weak	correlation	between	the	overexploitation	

risks	predicted	by	the	ORCS	approach	and	those	estimated	by	the	data-rich	

assessment	models	(Figure	2D;	Supp.	Figure	1)	

	

Refinement	of	the	ORCS	Table	of	Attributes		

	 The	BCT	model	correctly	classified	74%	of	stocks	in	the	training	dataset	and	

yielded	a	Cohen’s	kappa	of	0.56	indicating	‘good’	classification	accuracy	(Figure	3A).	

The	model	performed	better	on	fully	exploited	stocks	(89%	correct)	than	either	

underexploited	(58%	correct)	or	overexploited	(62%	correct)	stocks.	The	BCT	

model	also	correctly	classified	74%	of	stocks	in	the	independent	test	dataset	and	

yielded	a	Cohen’s	kappa	of	0.56	indicating	‘good’	classification	accuracy	(Figure	3B).	

The	model	still	performed	better	for	fully	exploited	stocks	(79%	correct)	than	
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underexploited	(77%	correct)	or	overexploited	(50%	correct)	stocks	in	the	test	

dataset.	The	nearly	equivalent	performance	of	the	BCT	model	on	the	training	and	

test	datasets	suggests	that	the	model	is	not	overfit,	which	is	consistent	with	the	flat	

model	tuning	curves	(Supplementary	Appendix	A.4).	In	60%	of	misclassifications,	

the	correct	classification	was	the	second	most	probable	status	identified	by	the	

model	and	only	one	misclassification	(U.S.	S.	Pacific	Coast	gopher	rockfish	–	no	

remarkable	scores	to	explain	this	outcome)	was	so	egregious	as	to	classify	an	

underexploited	stock	as	overexploited	or	vice	versa	(Figure	3B).	The	BCT	model	was	

a	better	predictor	of	stock	status,	in	terms	of	both	accuracy	and	Cohen’s	kappa,	than	

the	other	six	catch-only	methods	that	we	evaluated	(Table	2;	Supp.	Tables	1	&	2).	

The	BCT	model	identified	seven	attributes	that	each	contribute	more	than	

5%	of	the	total	predictive	power	(percents	indicate	relative	influence	of	an	attribute	

on	the	classification	of	a	stock):	TOA	#9	Value	(33.5%),	#1	Status	of	assess	stocks	in	

fishery	(13.1%),	#6	Targeting	intensity	(12.3%),	#5	Discard	rate	(8.8%),	#8	

Occurrence	in	catch	(8.5%),	#7	M	compared	to	dominant	species	(8.0%),	and	#3	

Behavior	affecting	capture	(7.3%;	Figure	4A).	The	attribute	marginal	effects,	the	

effect	of	each	attribute	when	the	other	attributes	are	held	constant,	suggest	that	

stocks	are	more	likely	to	be:	(1)	underexploited	if	there	is	a	low	rate	of	

overexploitation	of	other	stocks	in	the	fishery,	the	taxon	is	worth	less	than	US$1.00	

per	pound,	and	the	taxon	does	not	exhibit	any	aggregation	behavior;	(2)	fully	

exploited	if	the	stock	is	occasionally	or	actively	targeted,	the	taxon	exhibits	

aggregation	behavior,	and	the	taxon	is	worth	more	than	US$2.00	per	pound;	and	(3)	

overexploited	if	there	is	a	high	rate	of	overexploitation	of	other	stocks	in	the	fishery,	
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the	taxon	is	worth	more	than	US$1.00	per	pound,	and	the	taxon	occurs	sporadically	

in	the	catch	(Figure	4B;	Supp.	Figure	2).		

	

Refinement	of	the	historical	catch	statistics	and	scalars	

	 The	90th	percentile	catch	over	the	whole	time	series	was	most	highly	

correlated	with	the	OFL	for	underexploited	stocks	and	longer	timeframe	metrics	

generally	performed	better	than	shorter	timeframe	metrics	(Table	3;	Supp.	Table	3).	

The	25th	percentile	catch	over	the	previous	10	years	performed	best	for	fully	

exploited	stocks	with	more	central	and	shorter	timeframe	metrics	generally	

performing	better	than	higher	percentile	and	longer	timeframe	metrics	(Table	3;	

Supp.	Table	3).	The	mean	catch	of	the	previous	20	years	performed	best	for	

overexploited	stocks	but	this	correlation	was	driven	by	a	single	strong	leverage	

point	(S.	Labrador/E.	Newfoundland	Atlantic	cod,	whose	20-year	mean	exceeded	

the	current	OFL	by	more	than	5	times,	considerably	more	than	the	other	

overexploited	stocks)	and	may	be	spurious.	The	10th	percentile	catch	over	the	whole	

time	series	provided	the	second	best	correlation	and	is	more	appropriate	for	

overexploited	stocks	whose	catch	limits	must	be	significantly	reduced	to	allow	

rebuilding	under	U.S.	law	(Table	3;	Supp.	Table	3).	The	median	scalars	for	relating	

the	best	catch	statistic	to	the	OFL	were	1.90,	2.16,	and	1.56	for	under,	fully,	and	

overexploited	stocks,	respectively	(Table	3).	Scalars	more	conservative	than	the	

median	are	provided	in	Table	3.	

	

Evaluation	of	the	refined	ORCS	approaches	



 

73 

 

 

	 The	OFLs	predicted	by	the	ORCS	approach	and	estimated	by	the	data-rich	

assessment	models	were	significantly	correlated	in	all	ten	potential	refined	ORCS	

approaches	(Table	4;	Figure	5A-D).	The	‘weighted	50th	percentile	scalar’	approach	

resulted	in	the	underutilization	(i.e.,	predicted	OFL	less	than	data-rich	OFL)	of	63%	

of	underexploited	stocks	and	overfishing	(i.e.,	predicted	OFL	exceeds	data-rich	OFL)	

of	73%	and	91%	of	fully	and	overexploited	stocks,	respectively	(Figure	5E).	The	

‘unweighted	50th	percentile	scalar’	approach	performed	better,	resulting	in	the	

underutilization	of	54%	of	underexploited	stocks	and	overfishing	of	56%	and	45%	

of	fully	and	overexploited	stocks,	respectively	(Figure	5F).	The	more	conservative	

‘unweighted	45th–10th	percentile	scalar’	approaches	reduced	the	overfishing	of	

overexploited	stocks	but	increased	the	underexploitation	of	under	and	fully	

exploited	stocks	(Table	4;	Figure	5G-H).	The	‘unweighted	40th	percentile	scalars’	are	

the	largest	scalars	to	reduce	the	probability	of	overfishing	below	50%,	the	U.S.	legal	

maximum	(DOC,	2016),	in	all	three	status	categories	(Table	4).	

	

Discussion	

	 Before	being	implemented,	new	stock	assessment	methods	should	be	

evaluated	to	validate	their	usefulness	and	transferability.	Although	the	fully-flexible	

version	of	the	original	ORCS	approach	may	produce	useful	status	and	catch	limit	

estimates,	it	is	challenging	to	validate	because	of	its	subjectivity.	Therefore,	we	

adopted	a	more	specific,	albeit	less	inclusive,	definition	of	the	ORCS	approach	for	

evaluation	and	refinement.	Our	results	show	that	this	interpretation	of	the	ORCS	

approach	is	a	poor	predictor	of	stock	status	and	should	not	be	used	for	management	
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decisions.	The	approach	is	heavily	biased	towards	moderate	classifications	and	

classified	all	but	three	data-rich	stocks	as	fully	exploited.	This	result	is	not	

surprising	given	that	all	20	stocks	in	the	U.S.	Southeast	scored	using	the	

interpretation	of	the	ORCS	approach	evaluated	here	were	also	classified	as	fully	

exploited,	despite	expert	opinion	that	the	stocks	ranged	from	under	to	

overexploited	(SAFMC,	2012,	2013).	The	bias	of	the	approach	towards	moderate	

classifications	likely	arises	from:	(1)	an	overrepresentation	of	moderate	scores	(in	

TOA	#4	notably	and	#10,	#12,	#14	additionally)	and	(2)	inappropriately	wide	

threshold	values	for	delineating	status	categories	(1.75	and	2.25	might	perform	

better).	Furthermore,	the	non-linearity	in	the	relative	influence	and	marginal	effects	

of	the	TOA	attributes	highlights	the	necessity	of	a	weighting	scheme.	Although	the	

original	ORCS	approach	suggests	that	these	adjustments	can	be	made	through	

expert	judgement	(Berkson	et	al.	2011),	the	refined	ORCS	approach	presents	an	

objective,	transferable,	and	effective	alternative.	

The	refined	ORCS	approach,	which	accounts	for	attribute	importance,	

interactions,	and	non-linearity,	is	a	better	predictor	of	stock	status	than	both	the	

original	ORCS	approach	and	alternative	catch-only	methods.	The	refined	approach	

correctly	classified	73%	(kappa=0.55,	good)	of	the	37	stocks	in	the	test	dataset	with	

a	catch	time	series.	In	comparison,	CMSY,	which	performed	second	best	and	also	

performed	better	than	COM-SIR,	SSCOM,	and	mPRM	in	Rosenberg	et	al.’s	(2014)	

evaluation	of	these	four	methods,	classified	only	41%	(kappa=0.15,	poor)	of	these	

37	data-rich	test	stocks	correctly.	The	refined	ORCS	approach	also	outperformed	

SSP-2002	and	SSP-2013,	which	have	been	shown	to	be	poor	and	inherently	
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pessimistic	predictors	of	stock	status	(Branch	et	al.,	2011;	Carruthers	et	al.,	2012),	

as	well	as	mPRM,	whose	developers	state	that	it	should	not	be	used	to	assess	the	

status	of	individual	stocks	(Costello	et	al.,	2012).	Catch-based	methods	represent	a	

class	of	widely	used,	but	still	controversial	(Pauly	et	al.,	2013),	approaches	to	

estimate	status	and	the	refined	ORCS	approach	may	be	a	useful	alternative	for	

estimating	the	status	of	data-poor	stocks.	

	 The	refined	ORCS	approach	also	identifies	catch	statistics	and	scalars	that	

estimate	catch	limits	that	prevent	overfishing	in	accordance	with	U.S.	legal	

mandates,	suggesting	that	it	can	be	used	when	data-moderate	methods	such	as	DB-

SRA	and	DCAC	are	not	possible	or	appropriate.	Although	the	refined	approach	

misclassifies	many	overexploited	stocks,	conservative	catch	scalars	successfully	

buffer	against	classification	uncertainty.	The	40th	percentile	scalars	produce	the	

highest	catches	while	reducing	the	probability	of	overfishing	in	all	three	status	

categories	below	50%,	the	U.S.	legal	maximum	(DOC,	2016);	however,	they	also	

estimate	OFLs	more	than	five	times	the	data-rich	OFL	for	some	stocks.	More	

conservative	catch	scalars	will	further	reduce	the	probability	and	magnitude	of	

overfishing	but	will	result	in	concomitant	increases	in	the	probability	and	

magnitude	of	underfishing.	Managers	must	therefore	determine	which	catch	scalars	

are	most	consistent	with	their	risk	policies.	We	provide	a	web	tool	for	managers	to	

implement	the	approach	here:	https://cfree.shinyapps.io/refined_orcs_approach/	

	 The	evaluation	of	the	ORCS	approach	using	data-rich	stock	assessments,	

while	necessary	because	the	ability	of	the	approach	to	predict	stock	status	cannot	be	

evaluated	through	traditional	simulation	testing	(Wiedenmann	et	al.	2013;	
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Carruthers	et	al.	2014),	is	somewhat	problematic	given	the	uncertainty	in	even	the	

most	sophisticated	assessment	models	(Brooks	and	Deroba,	2015).	For	example,	

assessment	model	reference	points	(i.e.,	B/BMSY,	OFL)	used	to	evaluate	the	

performance	of	the	ORCS	approach	and	assessment	model	output	(i.e.,	biomass	and	

effort	time	series)	used	to	score	the	ORCS	Table	of	Attributes	could	both	be	

incorrect.	However,	we	took	measures	to	eliminate	the	more	uncertain	assessments	

and	we	only	used	stock	assessment	output	in	the	scoring	of	TOA	#12	Recent	trend	in	

effort	and	#13	Recent	trend	in	abundance	index,	which	were	both	unimportant	

predictors	of	stock	status.	Furthermore,	we	trained	the	BCT	model	used	in	the	

refined	approach	to	estimate	categorical	status	(i.e.,	under,	fully,	or	overexploited)	

rather	than	continuous	status	(i.e.,	B/BMSY)	because	stock	assessment	models	are	

generally	more	certain	in	status	classifications	than	in	precise	B/BMSY	values.	Finally,	

the	ability	of	the	refined	ORCS	approach	to	reproduce	the	conclusions	of	possibly	

incorrect	but	presumably	better	data-rich	status	determinations	is	still	useful,	

especially	given	the	recent	success	of	data-rich	assessment	and	management	in	

rebuilding	fisheries	(Worm	et	al.,	2009;	Hilborn	and	Ovando,	2014).					

The	refinement	of	the	ORCS	approach	through	testing	against	data-rich	

stocks	could	also	be	problematic	given	the	differences	in	the	dynamics	of	data-poor	

and	data-rich	fisheries.	Assessed	(data-rich)	fisheries	generally	target	larger,	slower	

growing,	and	higher	trophic	level	species	(Pinsky	et	al.,	2011)	and	are	higher	

volume,	more	valuable,	and	in	better	condition	(Costello	et	al.,	2012)	than	their	

unassessed	(data-poor)	counterparts.	Consequently,	it	is	possible	that	informative	

predictors	of	data-poor	fisheries	status	could	be	uninformative	or	even	trend	
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opposite	for	data-rich	fisheries.	For	example,	in	well-managed	fisheries,	decreasing	

catch	could	be	the	result	of	responsive	management	(Murawski	et	al.,	2007)	and	

increasing	effort	could	indicate	the	sustainable	development	of	a	new	or	rebuilt	

fishery.	Furthermore,	the	generally	healthy	status	of	data-rich	stocks	results	in	only	

a	small	sample	of	overexploited	stocks	(30	of	193	stocks,	15.5%)	available	for	model	

training	and	testing.	Thus,	the	model	may	have	performed	poorly	at	classifying	

overexploited	stocks	because	of	the	limited	number	of	overexploited	stocks	in	the	

dataset.	

The	dynamics	of	the	most	important	predictors	of	stock	status	in	the	BCT	

model	are	consistent	with	other	studies	and	are	likely	conserved	across	data-poor	

and	-rich	fisheries.	For	example,	the	importance	of	ex-vessel	price	is	not	surprising	

given	that	fishery	development	is	frequently	driven	by	profits	(Sethi	et	al.,	2010).	

The	importance	of	assessed	stock	status	also	makes	intuitive	sense	(i.e.,	a	stock	in	a	

generally	well-	or	poorly-managed	fishery	is	also	likely	to	be	well-	or	poorly-

managed,	respectively)	and	is	similar	to	the	region	effect,	which	has	been	shown	to	

be	useful	in	discriminating	stock	status	(Ricard	et	al.,	2012;	Thorson	et	al.,	2012).	

The	significant	increase	in	overexploitation	risk	resulting	from	aggregation	behavior	

is	supported	by	emerging	evidence	that	schooling,	fast-lived	fish	may	actually	be	

more	vulnerable	to	collapse	than	solitary,	long-lived	taxa	due	to	high	harvest	rates	

lagging	behind	rapid	changes	in	environment	and	productivity	(Pinsky	et	al.,	2011).	

The	decrease	in	overexploitation	risk	with	increasing	occurrence	in	the	catch	

opposes	the	predictions	of	the	original	Table	of	Attributes	and	suggests	that	rarity	in	

the	catch	is	indicative	of	a	depleted	stock	rather	than	a	lightly	exploited	one.	Finally,	
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recent	trends	in	catch	and	effort,	the	attributes	most	likely	to	be	confounding	

between	data-poor	and	-rich	fisheries,	exert	little	predictive	influence,	increasing	

the	likelihood	that	the	refined	ORCS	approach	is	as	predictive	for	data-poor	stocks	

as	it	is	for	data-rich	ones.	

	 The	refined	ORCS	approach	also	provides	important	guidance	on	the	choice	

of	historical	catch	statistics	and	scalars.	Longer	timeframe,	higher	percentile	catch	

statistics	perform	best	for	underexploited	stocks	with	light	exploitation	histories.	

Moderate	timeframe,	more	central	catch	statistics	perform	best	for	fully	exploited	

stocks	where	recent	management	has	been	effective	in	sustaining	abundance	and	

yield.	Longer	timeframe,	lower	percentile	catch	statistics	perform	best	for	

overexploited	stocks	where	recent	catches	have	resulted	in	depletion.	To	

consistently	achieve	a	relatively	low	risk	of	overfishing,	the	catch	scalars	used	to	

scale	the	historical	catch	statistic	to	the	overfishing	limit	will	have	to	be	

conservative	to	buffer	against	substantial	classification	uncertainty.	This	conclusion	

is	especially	true	for	data-poor	stocks	with	uncertainty	in	their	catch	time	series,	

such	as	the	rarely	caught	snapper-grouper	species	in	the	U.S.	Southeast	which	suffer	

from	misidentification	problems	(SAFMC,	2013;	Berkson	et	al.,	2011).	Although	

conservative	scalars	will	effectively	protect	overexploited	stocks,	they	will	also	

result	in	forgone	yield	from	under	and	fully	exploited	stocks.	

	 The	refined	ORCS	approach	represents	one	step	towards	Berkson	et	al.’s	

(2011)	recommendations	for	testing	and	improving	the	original	ORCS	approach	but	

could	under	additional	refinement	and	evaluation.	The	predictive	performance	of	

the	approach	could	be	improved	by	identifying	new	predictive	attributes.	For	
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example,	life	history	characteristics	such	as	age	at	maturity,	maximum	age,	

maximum	length,	and	trophic	level	and	fishery	characteristics	such	as	time	since	

development	and	exploitation	history	have	all	been	shown	to	be	useful	in	

discriminating	stock	status	(Sethi	et	al.,	2010;	Pinsky	et	al.,	2011;	Costello	et	al.,	

2012;	Thorson	et	al.,	2012;	Neubauer	et	al.,	2013)	and	could	be	incorporated	into	

the	refined	TOA	and	BCT	model.	Furthermore,	the	performance	of	the	status-specific	

historical	catch	statistics	and	scalars	used	in	the	refined	approach	should	be	tested	

through	management	strategy	evaluation,	such	as	in	Wiedenmann	et.	al	(2013),	to	

determine	whether	they	actually	promote	sustainable	fishing	levels.	The	

development	of	simple	data-limited	decision	support	tools	has	been	a	central	focus	

of	recent	fisheries	management	(Berkson	and	Thorson,	2015)	and	the	refined	ORCS	

approach	provides	an	additional	tool	for	managers	faced	with	the	legal	mandates	

and	data	limitations	of	contemporary	fisheries	management.	
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Figure	1.	Demographics	of	the	193	data-rich	stocks	scored	using	the	ORCS	approach	

by:	(A)	taxonomic	group;	(B)	managing	country	or	multinational	body;	(C)	U.S.	

assessment	agency	(U.S.	stocks	only;	n=99,	51.3%	of	scored	stocks);	(D)	assessment	

year;	(E)	stock	status	(B/BMSY);	and	(F)	fishery	size	(average	annual	catch	over	the	

most	recent	5	years).	
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Figure	2.	The	distribution	of	(A)	attribute	scores	and	(B)	overall	scores	for	the	193	

data-rich	stocks	scored	using	the	original	ORCS	approach	and	(C)	comparison	of	

statuses	and	(D)	risks	predicted	by	the	ORCS	approach	and	estimated	by	data-rich	

assessment	models.	In	(A),	bars	show	the	proportion	of	scores	represented	in	each	

TOA	attribute.	For	TOA	#10,	scores	of	1	and	2	(hatched)	are	reassigned	scores	of	1.5	

and	only	count	towards	the	overall	score	if	effort	is	stable	(TOA	#12,	score=2).	In	

some	cases,	attributes	could	not	be	scored	due	to	a	lack	of	data	or	applicability	and	

were	given	an	‘NA’	value	(grey	shading).	In	(B),	vertical	lines	indicate	the	threshold	

values	(1.5	&	2.5)	that	separate	under,	fully,	and	overexploited	stocks.	In	(C)	and	

(D),	the	black	lines	indicate	linear	regressions	fit	to	the	data	and	the	gray	shading	

indicates	the	confidence	intervals	for	the	regressions.	
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Figure	3.	The	performance	of	the	boosted	classification	tree	(BCT)	model	on	the	(A)	

training	(n=155	stocks,	80%	of	data)	and	(B)	test	datasets	(n=38	stocks,	20%	of	

data).	In	(A),	bars	show	the	proportion	of	status	predictions	for	each	status	

category.	Percentages	indicate	the	proportion	of	correct	classifications	in	each	

category	(overall	accuracy=74%	and	Cohen’s	kappa=0.56).	In	(B),	bars	show	the	

probability	that	a	stock	is	in	each	status	category,	where	the	highest	probability	

category	is	the	BCT	model’s	prediction	of	stock	status;	stocks	are	grouped	and	

sorted	by	B/BMSY	from	the	data-rich	assessment	model.	Percentages	indicate	the	

proportion	of	correct	classifications	in	each	category;	stars	mark	incorrectly	

classified	stocks	with	colors	indicating	the	direction	of	the	misclassification	(overall	

accuracy=74%	and	Cohen’s	kappa=0.56).	
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Figure	4.	The	(A)	relative	influence	and	(B)	marginal	effects	of	the	five	most	

important	TOA	attributes	in	the	boosted	classification	tree	model.	In	(B),	lines	

represent	the	effect	of	each	attribute	on	the	probability	that	a	stock	is	in	each	status	

category	when	the	other	attributes	are	held	constant.	TOA	#2	Refuge	availability	and	

#4	Morphology	affecting	capture	were	omitted	from	the	model	due	to	lack	of	

predictive	power.	 	
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Figure	5.	The	(A-D)	correlation	between	and	(E-H)	ratio	of	the	overfishing	limits	

(OFLs)	predicted	by	the	ORCS	approach	and	estimated	by	data-rich	assessment	

models	for	97	stocks	in	four	potential	refined	ORCS	approaches.	In	(A-D),	black	lines	

indicate	linear	regressions	fit	to	the	untransformed	data	and	the	gray	shading	

indicates	the	confidence	interval	for	the	regression.	In	(E-H),	ratios	were	also	

calculated	using	the	untransformed	data.	The	dotted	horizontal	lines	indicate	

perfect	agreement	between	the	ORCS	predictions	and	the	data-rich	model	estimates	

and	boxplots	indicate	the	median	(heavy	black	line),	interquartile	range	(IQR;	box),	

1.5	times	the	IQR	(whiskers),	and	outliers.
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Supp.	Figure	1.	The	correlation	between	the	mean	ORCS	Table	of	Attributes	score	

and	six	metrics	of	overexploitation	risk	calculated	from	F/FMSY	values	estimated	in	

the	data-rich	assessment	models.	Black	lines	indicate	linear	regressions	fit	to	the	

data	and	the	gray	shading	indicates	the	confidence	intervals	for	the	regressions.	
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Supp.	Figure	2.	The	marginal	effects	of	the	twelve	TOA	attributes	in	the	boosted	

classification	tree	model.	Lines	represent	the	effect	of	each	attribute	on	the	

probability	that	a	stock	is	in	each	status	category	when	the	other	attributes	are	held	

constant	(green=underexploited,	orange=fully	exploited,	red=overexploited).	TOA	

#2	Refuge	availability	and	#4	Morphology	affecting	capture	were	omitted	from	the	

model	due	to	lack	of	predictive	power.	The	relative	influence	of	each	attribute	is	

shown	in	the	upper	right	corner	of	each	panel.	
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Appendix	A:	Modifications	to	the	ORCS	Table	of	Attributes	

We	estimated	stock	status	using	the	expanded	TOA	developed	by	the	SAFMC	(2012,	

2013)	with	a	few	modifications	to	increase	clarity	and	objectivity	in	the	scoring	

process:	

TOA#1	Status	of	assessed	stocks	in	fishery:	We	replaced	the	long	and	

complex	score	descriptions	with	straightforward	percentage	thresholds.	

TOA#5	Discard	rate:	We	replaced	the	vague	score	descriptions	with	

straightforward	percentage	thresholds	and	simplified	the	attribute	to	

consider	only	the	proportion	of	the	catch	discarded	rather	than	the	

proportion	discarded	multiplied	by	the	proportion	of	discards	that	die.	The	

proportion	discarded	is	generally	more	available	than	the	proportion	that	

die.	

TOA#7	M	compared	to	dominant	species:	We	removed	ambiguity	in	the	

difference	between	the	score	1	and	2	descriptions	(previously,	both	

descriptions	read	“M	higher	than	or	equal	to	M	of	dominant	species”;	now,	1	

reads	“M	higher	than	M	of	dominant	species”	and	2	reads	“M	equal	to	M	of	

dominant	species”).	We	specify	that	natural	mortality	rates	must	differ	by	

20%	to	be	considered	different.	

TOA#8	Occurrence	in	catch:	We	simplified	the	language	and	replaced	the	

vague	score	descriptions	with	straightforward	percentage	thresholds.	

TOA#11	Habitat	loss:	We	simplified	the	attribute	to	be	conceptually	simpler	

and	more	quantifiable.	Rather	than	considering	the	rate	of	habitat	loss	(no	

loss,	stable/declining,	increasing),	we	consider	the	proportion	of	the	taxa’s	
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life	spent	in	threatened	habitat	(none	of	life,	part	of	life,	all	of	life).	Data	on	

the	rate	of	regional	and	taxa	specific	habitat	loss	are	difficult	to	find.	

	

We	made	all	scoring	decisions	within	the	context	of	the	most	recent	5	years.	This	is	

particularly	relevant	for	TOA	#10,	#12,	and	#13,	which	examine	recent	trends	in	

catch,	fishing	effort,	and	abundance	index,	respectively,	but	is	also	relevant	for	the	

TOA	#5	Discard	rate,	#8	Occurrence	in	catch,	#14	Proportion	of	population	protected,	

etc.	

We	also	renamed	many	of	the	original	attributes	for	the	sake	of	brevity	and	clarity.	

	
Table	1.	Renaming	of	the	original	TOA	attributes.	
	

# New name Original name 
1 Status of assessed stocks in fishery Overall fishery exploitation based on assessed stocks 
2 Refuge availability Presence of natural or managed refugia 
3 Behavior affecting capture Schooling, aggregation, or other behavior responses affecting capture 
4 Morphology affecting capture Morphological characteristics affecting capture 
5 Discard rate Discard mortality rate 
6 Targeting intensity Bycatch or actively targeted by the fishery 
7 M compared to dominant species Natural mortality compared to dominant species in the fishery 
8 Occurrence in catch Rarity 
9 Value Value or desirability 

10 Recent trend in catch Trend in catches (use only when effort is stable) 
11 Habitat loss Loss or alteration of habitat 
12 Recent trend in effort Fleet stability 
13 Recent trend in abundance index Fishery Independent CPUE 
14 Proportion of population protected Effectiveness of regulations (other than ACLs) to limit exploitation 
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Appendix	B:	ORCS	Table	of	Attributes	scoring	guide	

	
TOA	#1	–	Status	of	assessed	stocks	in	fishery	

We	identified	the	proportion	of	assessed	stocks	in	the	fishery	that	are	overfished	by	

determining	the	status	of	all	stocks	within	the	relevant	fisheries	management	unit.	

For	United	States	fisheries,	we	identified	stocks	managed	together	by	Fisheries	

Management	Plans	(FMPs)	and	used	analogous	management	units	for	foreign	

fisheries	(see	Table	2	below).	The	proportion	of	overfished	stocks	was	calculated	

using	only	assessed	stocks	in	the	fishery.	We	used	the	definition	of	“overfished”	used	

by	the	management	agency.	We	identified	the	following	thresholds	for	scoring:	

1	–	<10%	of	assessed	stocks	are	overfished	
2	–	10-25%	of	assessed	stocks	are	overfished	
3	–	>25%	of	assessed	stocks	are	overfished	
NA	–	Target	stock	is	the	only	stock	in	the	fishery	or	stock	statuses	are	unknown	
	
Table	2.	Management	units	used	to	identify	groups	of	co-managed	stocks.	
 

Country Assessments grouped by Reference 

United States Fisheries Management Plan US-FMC, 2016 

New Zealand Fisheries Group NZ-MPI, 2016 

Australia Fishery AFMA, 2016 

South Africa Fishery DAFF, 2012 

Tuna-RFMO RFMO Pons et al., 2016 

Other-RFMO Fishery Many references 

Canada Integrated Fisheries Management Plan DFO, 2016 

Argentina Fishery INIDEP, 2016 

Russia Fishery Sobolevskaya and Divovich, 2015 
 
	
TOA	#2	–	Refuge	availability	

We	scored	this	attribute	by	comparing	maps	of	a	taxa’s	range	with	maps	of	

protected	areas	within	its	range	(such	maps	are	often	available	in	the	stock	
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assessment).	In	nearly	all	cases,	the	range	of	the	taxa	was	enormous	relative	to	the	

protected	areas.	It	was	difficult	to	consider	natural	refugia	because	rocky	outcrops	

and	depth	aren’t	true	barriers	to	fishing	when	the	resource	is	valuable	or	desired.	

We	used	the	following	percentage	thresholds	(though	they	are	generally	impossible	

to	empirically	quantify):		

1	–	<50%	of	habitat	is	accessible	to	fishing	
2	–	50-75%	of	habitat	is	accessible	to	fishing	
3	–	>75%	of	habitat	is	accessible	to	fishing	
	
 
TOA	#3	–	Behavior	affecting	capture	

We	reviewed	the	“biology	of	the	species”	portion	of	the	relevant	stock	assessment,	

the	FishBase	profile	of	the	species,	and	other	resources	to	identify	behavior	that	

might	affect	the	susceptibility	of	the	taxa	to	capture.	Only	taxa	exhibiting	schooling,	

shoaling,	or	spawning	aggregation	behaviors	targeted	by	fishermen	were	scored	as	

being	highly	susceptible	to	capture.	All	other	taxa	(those	not	exhibiting	these	

behaviors	or	those	whose	spawning	aggregations	are	not	targeted	by	fishermen)	

were	scored	as	being	moderately	susceptible	to	capture.	No	stocks	were	scored	as	

exhibiting	low	susceptibility	to	capture	(what	traits	would	even	make	a	taxon	

unsusceptible	to	capture?)	

1	–	No	examples	–	slimy	eels,	fast	tuna,	reclusive	tilefish	are	all	susceptible	
2	–	Don’t	exhibit	schooling/shoaling/aggregation	behavior	
3	–	Exhibit	schooling/shoaling/aggregation	behavior	
NA	–	Schooling/shoaling/aggregation	behavior	unknown	
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TOA	#4	–	Morphology	affecting	capture	

We	reviewed	the	“biology	of	the	species”	portion	of	the	relevant	stock	assessment,	

the	FishBase	profile	of	the	species,	and	other	resources	to	identify	morphology	that	

affect	the	susceptibility	of	the	taxa	to	capture.	We	were	unable	to	identify	any	taxa	

that	exhibited	morphology	that	would	make	them	either	unsusceptible	or	highly	

susceptible	to	capture.	If	the	taxa	are	desired,	the	fishing	gear/method	is	adapted	to	

target	the	taxa	despite	its	challenges.	Everything	was	identified	as	being	of	average	

susceptibility	to	capture.	

1	–	No	examples	
2	–	Everything	
3	–	No	examples	
	
	
TOA	#5	–	Discard	rate	

We	determined	the	proportion	of	the	catch	discarded	from	the	relevant	stock	

assessment	or	other	relevant	resource	and	used	the	following	percentage	

thresholds	to	assign	scores:	

1	–	<10%	of	catch	discarded	
2	–	10-25%	of	catch	discarded	
3	–	>25%	of	catch	discarded	
NA	–	Discard	rates	are	unknown	
	
 
TOA	#6	–	Targeting	intensity	

We	reviewed	the	“history	of	the	fishery”	portion	of	the	relevant	stock	assessment	

and	other	relevant	resources	to	determine	the	targeting	intensity	of	the	fishery	and	

used	the	following	classifications	to	assign	scores:	

1	–	Not	targeted	(bycatch	/	incidental	catch	only)	
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2	–	Occasionally	targeted	(often	part	of	multi-species	catch)	
3	–	Actively	targeted	(directed	fishery)	
NA	–	Targeting	intensity	unknown	
	
TOA	#7	–	M	compared	to	dominant	species	

We	reviewed	the	“history	of	the	fishery”	portion	of	the	relevant	stock	assessment	

and	other	relevant	resources	to	determine	the	proportion	of	the	catch	coming	from	

different	sectors	in	order	to	infer	the	other	taxa	represented	in	the	fishery.	If	

multiple	taxa	are	represented	in	the	fishery,	we	used	a	variety	of	sources	to	

determine	the	dominant	species	by	weight	(not	value).	The	natural	mortality	rates	

of	the	target	and	dominant	species	were	determined	from	the	relevant	stock	

assessments.	If	the	target	species	was	dominant	or	if	there	were	no	other	taxa	in	the	

fishery,	the	attribute	could	not	be	scored.	The	following	classifications	were	used	to	

assign	scores	when	the	attribute	could	be	scored	(note:	natural	mortality	rates	must	

differ	by	>10%	to	be	considered	different):	

1	–	M	higher	than	M	of	dominant	species	
2	–	M	approximately	equal	to	M	of	dominant	species	
3	–	M	lower	than	M	of	dominant	species	
NA	(common	for	this	attribute)	–	only	taxa	in	fishery	or	is	the	dominant	taxa	in	
fishery	or	natural	mortality	rates	are	unknown	
*	Our	scores	were	reviewed	by	experts	familiar	with	regional	fisheries	for	accuracy.	
	
	
TOA	#8	–	Occurrence	in	catch	

We	use	the	percentage	threshold	guidelines	listed	below	to	assign	scores.	However,	

this	data	is	not	often	available	and	decisions	could	be	fairly	subjective	and	non-

quantitative.	

1	–	0-10%	of	trawl	tows,	gillnet	sets,	trap	pulls,	etc.	
2	–	10-25%	of	trawl	tows,	gillnet	sets,	trap	pulls,	etc.	
3	–	>25%	of	trawl	tows,	gillnet	sets,	trap	pulls,	etc.	
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NA	–	the	relative	occurrence	of	the	taxa	in	the	catch	is	unknown	
	
TOA	#9	–	Value	

We	determined	value	(USD	lb-1)	by	deriving	ex-vessel	price	for	taxa	by	region	from	

the	Sea	Around	Us	Project	landings	volume	and	value	database	(Sumaila	et	al.,	2007;	

Pauly	and	Zeller,	2015).	We	used	the	average	price	from	2006-2010,	the	most	recent	

5	years	with	data,	for	scoring.	For	most	stocks,	appropriate	regional	prices	could	be	

tied	to	the	stock.	For	highly	migratory	species	like	tuna,	marlin,	swordfish	and	

stocks	managed	by	a	RFMO	(e.g.,	Mediterranean	or	West	African	stocks),	average	

values	from	the	relevant	countries	were	used.	For	the	few	stocks	without	price	data	

in	the	database,	we	found	ex-vessel	prices	in	other	references.	We	used	the	

following	thresholds	to	assign	scores:	

1	–	<$1.00	lb-1	
2	–	$1.00-2.25	lb-1	
3	–	>$2.25	lb-1	
NA	–	Ex-vessel	price	is	unknown	
	
 
TOA	#10	–	Recent	trend	in	catch	

We	identified	the	recent	trend	in	catch	for	each	scored	stock	using	(1)	annual	catch	

time	series	in	the	RAM	Legacy	Stock	Assessment	Database	or	(2)	figures	and	tables	

in	the	original	stock	assessment	when	catch	time	series	were	not	included	in	the	

database.	We	used	Theil-Sen	regression	to	identify	trends	in	catch	in	the	most	

recent	5	years	where	a	(1)	significant	positive	slope	indicates	increasing	catch,	(2)	

significant	negative	slope	indicates	decreasing	catch,	and	(3)	non-significant	slope	

indicates	stable	catch	over	the	most	recent	5	years.	Theil-Sen	regression	fits	a	line	to	

a	set	of	points	by	identifying	the	median	slope	among	lines	through	all	possible	
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point	pairs	and	is	insensitive	to	outliers	and	endpoints	in	short	time	series.	Both	

trends	in	total	catch	(landings	+	discards)	and	landings	were	identified	where	

possible	and	trends	in	total	catch	were	used	over	trends	in	landings.			

1	–	Significant	increase	in	catch	in	recent	5	years	
2	–	No	significant	change	in	catch	in	recent	5	years	
3	–	Significant	decrease	in	catch	in	recent	5	years	
NA	–	Catch	data	are	not	available	
	
	
TOA	#11	–	Habitat	loss	

We	classified	taxa	that	reside	in	threatened	estuary	(Lotze	et	al.,	2006),	seagrass	

(Orth	et	al.,	2006;	Waycott	et	al.,	2009),	mangrove	(Giri	et	al.,	2010),	or	coral	reef	

(Pandolfi	et	al.,	2003,	2011)	habitats	for	their	whole	lives	or	a	portion	of	their	lives	

as	being	at	high	and	moderate	risk	of	overexploitation.	We	classified	taxa	that	spend	

their	entire	lives	outside	these	threatened	habitats	as	being	at	low	risk	of	

overexploitation.	We	classified	taxa	that	spend	the	entirety	of	their	lives	in	partially	

threatened	inshore	areas	such	as	the	intertidal	zone	or	rocky	reefs	(Lotze	et	al.,	

2006;	Rabalais	et	al.,	2009)	as	being	at	moderate	risk	of	overexploitation.	

1	–	No	time	in	threatened	habitats	
2	–	Part	time	in	threatened	habitats	(or	full	time	in	partially	threatened	habitats)	
3	–	Full	time	in	threatened	habitats	
NA	–	Habitat	preferences	are	unknown	
	
 
TOA	#12	–	Recent	trend	in	effort	

We	identified	the	recent	trend	in	fishing	effort	for	each	scored	stock	using	fishing	

mortality	rate	estimates	as	a	proxy	for	fishing	effort.	We	analyzed	(1)	annual	fishing	

mortality	time	series	in	the	RAM	Legacy	Stock	Assessment	Database	or	(2)	figures	

and	tables	in	the	original	stock	assessment	when	fishing	mortality	time	series	were	
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not	included	in	the	database.	We	used	Theil-Sen	regression	to	identify	trends	in	

fishing	mortality	in	the	most	recent	5	years	where	a	(1)	significant	positive	slope	

indicates	increasing	effort,	(2)	significant	negative	slope	indicates	decreasing	effort,	

and	(3)	non-significant	slope	indicates	stable	effort	over	the	most	recent	5	years.	

Theil-Sen	regression	fits	a	line	to	a	set	of	points	by	identifying	the	median	slope	

among	lines	through	all	possible	point	pairs	and	is	insensitive	to	outliers	and	

endpoints	in	short	time	series.	Both	trends	in	fishing	mortality	rate	(F)	and	

exploitation	rate	(ER)	were	identified	where	possible	and	trends	in	fishing	mortality	

rate	were	used	over	trends	in	exploitation	rate.	

1	–	Significant	decrease	in	fishing	effort	in	recent	5	years	
2	–	No	significant	change	in	fishing	effort	in	recent	5	years	
3	–	Significant	increase	in	fishing	effort	in	recent	5	years	
NA	–	Effort	data	are	not	available	
	
 
TOA	#13	–	Recent	trend	in	abundance	index	

We	identified	the	recent	trend	in	fisheries	independent	CPUE	for	each	scored	stock	

using	stock	assessment	model	abundance	estimates	as	a	proxy	for	CPUE.	We	

analyzed	(1)	annual	abundance	time	series	in	the	RAM	Legacy	Stock	Assessment	

Database	or	(2)	figures	and	tables	in	the	original	stock	assessment	when	abundance	

time	series	were	not	included	in	the	database.	We	used	Theil-Sen	regression	to	

identify	trends	in	the	abundance	index	in	the	most	recent	5	years	where	a	(1)	

significant	positive	slope	indicates	increasing	abundance	index,	(2)	significant	

negative	slope	indicates	decreasing	abundance	index,	and	(3)	non-significant	slope	

indicates	stable	abundance	index	over	the	most	recent	5	years.	Theil-Sen	regression	

fits	a	line	to	a	set	of	points	by	identifying	the	median	slope	among	lines	through	all	
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possible	point	pairs	and	is	insensitive	to	outliers	and	endpoints	in	short	time	series.	

Trends	in	spawning	stock	biomass	(SSB),	total	biomass	(TB),	number	of	individuals	

(TN),	and	number	of	recruits	(R)	were	identified	where	possible	and	were	

preferentially	used	in	the	same	order.	

1	–	Significant	increase	in	abundance	index	in	recent	5	years	
2	–	No	significant	change	in	abundance	index	in	recent	5	years	
3	–	Significant	decrease	in	abundance	index	in	recent	5	years	
NA	–	Survey	data	are	not	available	
	
	
TOA	#14	–	Proportion	of	population	protected		

We	determined	whether	the	fishery	was	managed	using	(1)	size	limits,	(2)	protected	

areas,	(3)	seasonal	closures,	or	(4)	significant	effort	controls	/	gear	restrictions.	

Fisheries	employing	no	measures	received	a	high	risk	score,	one	measure	a	

moderate	risk	score,	and	size	limits	and	one	other	measure	a	low	risk	score.	

1	–	Size	limits	AND	(protected	areas	OR	seasonal	closures)	
2	–	Size	limits	OR	protected	areas	OR	seasonal	closures	
3	–	No	size	limits,	no	protected	areas,	no	seasonal	closures	
NA	–	Management	regulations	are	unknown	
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The	original	ORCS	approach	incorrectly	classified	the	US	Southeast/Gulf	of	Mexico	

red	porgy	stock	as	fully	exploited	while	the	refined	ORCS	approach	correctly	

classified	the	stock	as	overexploited.	In	the	refined	ORCS	approach,	the	OFL	(UMSY	x	

total	biomass)	is	estimated	for	overexploited	stocks	by	multiplying	the	10th	

percentile	of	the	whole	catch	time	series	by	a	scalar,	where	the	choice	of	scalar	is	

determined	by	the	managing	agency	(see	Table	3	in	the	manuscript	for	potential	

catch	scalars).	For	example,	using	the	median	catch	scalar	for	overexploited	stocks,	

the	OFL	for	red	porgy	would	be	calculated	as:	

OFL	=	10th	percentile	whole	time	series	*	1.56	

OFL	=	74.3	mt	*	1.56	=	115.9	mt	

The	OFL	estimated	by	the	refined	ORCS	approach	(115.9	mt)	is	less	than	that	

estimated	from	the	data-rich	assessment	(282.7	mt)	indicating	that	the	refined	

approach	would	underutilize	available	biomass	for	the	red	porgy	stock	(Figure	1).		

 

 
Figure	1.	The	US	Southeast/Gulf	of	Mexico	red	porgy	catch	history	showing	the	OFLs	estimated	for	
the	terminal	year	by	the	refined	ORCS	approach	(red;	115.9	mt)	and	from	the	data-rich	assessment	

(black;	282.7).	Because	the	refined	ORCS	approach	classified	the	stock	as	overexploited,	it	estimates	

the	OFL	as	the	10th	percentile	of	the	catch	time	series	(dashed	line)	multiplied	by	a	scalar,	where	the	

choice	of	scalar	is	determined	by	the	managing	agency.	The	OFL	shown	here	was	calculated	using	the	

median	catch	scalar	for	overexploited	stocks.		
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Appendix	D:	Development	of	the	boosted	classification	tree	model	

We	refined	the	ORCS	Table	of	Attributes	using	boosted	classification	trees	

(BCT)	to	weight	attributes	by	their	relative	importance,	incorporate	interactions	

between	attributes,	and	account	for	non-linearity	in	attribute	behavior.	The	BCT	

analysis	was	performed	using	the	caret	(Kuhn,	2016)	and	gbm	(Ridgeway,	2016)	

packages	in	R	v.3.3.2	(R	Core	Team,	2016).	

We	used	the	train	function	in	the	caret	package	(Kuhn,	2016)	to	conduct	a	

grid	search	for	the	BCT	model	parameters	that	maximize	Cohen’s	kappa	using	

repeated	10-fold	cross	validation	on	the	training	dataset.	We	optimized	the	standard	

BCT	parameters	–	interaction	depth,	learning	rate,	and	number	of	trees	–	but	also	

optimized	the	bag	fraction,	which	controls	the	proportion	of	the	data	used	in	each	

iteration	(Table	4).	Lower	values	promote	stochasticity	and	increase	predictive	

performance	on	large	datasets	where	omitting	data	is	not	a	problem.	Higher	values	

reduce	stochasticity	but	give	the	model	more	data	to	learn	from	when	working	with	

small	datasets	(Natekin	and	Knoll,	2013).	Because	of	the	small	size	of	our	dataset,	

we	evaluated	bag	fractions	from	50%	to	90%.	

Table	4.	Boosted	classification	tree	(BCT)	model	parameters	and	tuning	values.	
 

BCT model parameter Values evaluated 
Interaction depth (a.k.a., tree complexity) c(1, 2, 3) 
Learning rate (a.k.a., shrinkage, step-size reduction) c(0.001, 0.005, 0.0001) 
Number of trees seq(from=100, to=3500, by=100) 
Bag fraction seq(from=0.5, to=0.9, by=0.1) 
Minimum number of observations in terminal nodes 10 

 
We	trained	the	model	using	this	grid	with	both	numeric	(1s,	2s,	and	3s	are	

numbers)	and	categorical	(1s,	2s,	and	3s	are	factors)	scores	and	with	both	

unweighted	observations	and	observations	weighted	by	stock	status.	The	weighted	
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observation	approach	was	designed	to	give	more	weight	to	the	rare	but	important	

overexploited	stocks	in	an	attempt	to	improve	predictions	in	this	category	(Table	

5).	This	yielded	the	following	four	modeling	approaches:		

	

1. Numeric	scores	(unweighted)	

2. Categorical	scores	(unweighted)	

3. Numeric	scores	–	observations	weighted	by	stock	status	

4. Categorical	scores	–	observations	weighted	by	stock	status	

	

The	unweighted	numeric	score	approach	generally	performed	better	than	

the	alternatives	(Figure	1),	presumably	because	numeric	values	provide	valuable	

information	on	score	order	(factors	are	unordered)	and	because	fitting	the	model	by	

maximizing	Cohen’s	kappa	already	does	the	work	expected	from	weighting	the	

stocks	by	the	rarity	of	their	status.	

Table	5.	Weights	assigned	to	the	data	of	stocks	of	each	status	in	weighted	model	training.	

Status # of observations Weight 
Low 55 1.00 (55/55) 
Moderate 76 0.72 (55/76) 
High 24 2.29 (55/24) 
	

Figure	2	shows	the	kappa	and	accuracy	statistics	for	the	best	model	tune	in	each	

modeling	approach–bag	fraction	scenario.	The	numeric	modeling	approach	with	a	

0.8	bag	fraction	was	selected	because	it	exhibited	the	highest	mean	and	median	

values	for	both	Cohen’s	kappa	and	accuracy	on	the	training	dataset.	
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Figure	2.	Cohen’s	kappa	and	accuracy	statistics	for	the	best	model	tune	in	each	modeling	approach–
bag	fraction	scenario.	Boxplots	indicate	the	median	(heavy	black	line),	interquartile	range	(IQR;	box),	

1.5	times	the	IQR	(whiskers),	and	outliers.	Solid	points	indicate	the	mean.	The	red	line	indicates	the	

mean	value	across	all	scenarios.	

	

The	mean	kappa	statistic	for	every	parameter	combination	in	the	unweighted	

numeric	modeling	framework	is	shown	in	Figure	3	and	neatly	illustrates	the	

process	for	identifying	the	best	model	parameters.	Ultimately,	we	used	the	model	

with	learning	rate=0.001,	interaction	depth=2,	number	of	trees=3000,	and	bag	

fraction=0.8.	
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Figure	3.	Mean	Cohen’s	kappa	for	each	combination	of	BCT	model	parameters.	Lines	indicate	
learning	rate:	purple	(0.001),	orange	(0.0005),	green	(0.0001).	The	best	combination	of	model	

parameters	is	the	one	that	maximizes	the	kappa	value.	The	best	combination	of	parameters	is	labeled	

for	each	bag	fraction	scenario.	
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Appendix	E:	Application	and	performance	of	other	catch-only	methods	

We	compared	the	performance	of	the	BCT	model	to	six	other	catch-only	

methods	for	estimating	status	on	the	37	stocks	with	catch	time	series	in	the	test	

dataset:	SSP-2002	(Froese	and	Kesner-Reyes,	2002)	and	SSP-2013	(Kleisner	et	al.,	

2013),	which	estimate	development	status	(e.g.,	undeveloped,	developing,	fully	

exploited),	and	CMSY	(Martell	and	Froese,	2013),	COM-SIR	(Vasconcellos	and	

Cochrane,	2005),	SSCOM	(Thorson	et	al.,	2013),	and	mPRM	(Costello	et	al.,	2012),	

which	estimate	B/BMSY.	

The	two	‘stock	status	plot’	(SSP)	methods	evolved	from	the	FAO’s	efforts	to	

assess	the	status	of	global	fisheries	(Grainger	and	Garcia,	1996)	and	use	simple	rules	

to	identify	fisheries	development	status	(Csirke	and	Sharp,	1984)	from	patterns	in	

catch	time	series.	The	Froese	and	Kesner-Reyes	(2002)	method,	SSP-2002,	identifies	

a	stock	as	‘undeveloped’,	‘developing’,	‘fully	exploited’,	‘overfished’,	or	‘collapsed’	

based	on	comparison	of	the	target	year’s	catch	relative	to	the	maximum	year’s	catch	

(Table	6).	The	Kleisner	et	al.	(2013)	method,	SSP-2013	(actually	published	first	in	

Kleisner	and	Pauly,	2011),	adds	an	additional	‘rebuilding’	category	by	considering	

the	minimum	catch	occurring	after	the	maximum	catch	(‘post-maximum	minimum’)	

(Table	7).	The	tables	illustrate	how	we	mapped	the	SSP-2002	and	SSP-2013	status	

categories	into	under,	fully,	and	overexploited	statuses.	
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Table	6.	Criteria	used	to	classify	stock	status	in	SSP-2002	(Froese	and	Kesner-Reyes,	2002).*	
 

Stock status SSP-2002 status Criteria 

Underexploited Undeveloped  Ccurr before Cmax AND Ccurr < 0.1*Cmax 
Underexploited Developing  Ccurr before Cmax AND 0.1*Cmax £ Ccurr £ 0.5*Cmax 
Fully exploited  Fully exploited  Ccurr > 0.5*Cmax 
Overexploited Overfished  Ccurr after Cmax AND 0.1*Cmax £ Ccurr £ 0.5*Cmax 
Overexploited Collapsed/closed  Ccurr after Cmax AND Ccurr < 0.1*Cmax 
	

*	Ccurr	=	current	catch;	Cmax	=	maximum	catch	

 
Table	7.	Criteria	used	to	classify	stock	status	in	SSP-2013	(Kleisner	et	al.,	2013).*	
 

Stock status SSP-2013 status Criteria 

Underexploited Developing 
Ccurr before Cmax AND Ccurr £ 0.5*Cmax OR Cmax in final year of 
time series 

Fully exploited Exploited Ccurr > 0.5*Cmax 
Overexploited Overexploited Ccurr after Cmax AND 0.1*Cmax £ Ccurr £ 0.5*Cmax 
Overexploited Collapsed Ccurr after Cmax AND Ccurr < 0.1*Cmax 

Overexploited Rebuilding 
Ccurr after Cpost-max min AND Cpost-max min 0.1*Cmax AND 0.1*Cmax £ 
Ccurr £ 0.5*Cmax 

 
*	Ccurr	=	current	catch;	Cmax	=	maximum	catch;	Cpost-max	min	=	minimum	catch	after	the	maximum	catch	

	

	

The	other	four	methods,	CMSY	(Martell	and	Froese,	2013),	COM-SIR	(Vasconcellos	

and	Cochrane,	2005),	SSCOM	(Thorson	et	al.,	2013),	and	mPRM	(Costello	et	al.,	

2012),	use	catch	data	and	basic	life-history	parameters	to	estimate	B/BMSY.	We	

selected	these	methods	because	they	can	be	applied	to	the	vast	majority	of	global	

fisheries,	are	established	in	the	literature,	have	been	extensively	simulation	tested	

(Rosenberg	et	al.,	2014),	and	can	be	easily	implemented	using	the	datalimited	

package	in	R	(Anderson	et	al.,	2016,	2017).	

1. CMSY	(catch-MSY)	implements	a	stock-reduction	analysis	with	Schaefer	

biomass	dynamics	(Martell	and	Froese,	2013).	It	requires	prior	distributions	

on	r	and	K	as	well	as	priors	on	the	relative	proportion	of	biomass	at	the	
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beginning	and	end	of	the	time	series	compared	to	unfished	biomass	

(depletion).	The	version	of	the	model	used	in	Rosenberg	et	al.	(2014)	and	

implemented	in	the	datalimited	package	(Anderson	et	al.,	2016)	was	

modified	from	Martell	and	Froese	(2013)	to	generate	biomass	trends	from	all	

viable	r-K	pairs	and	produce	an	estimate	of	B/BMSY	from	the	median	trend.		

2. COM-SIR	(catch-only-model	with	sampling-importance-resampling)	is	a	

coupled	harvest-dynamics	model	(Vasconcellos	and	Cochrane,	2005)	in	

which	biomass	and	harvest	dynamics	are	assumed	to	follow	Schaefer	and	

logistic	models,	respectively.	The	model	is	fit	using	a	sampling-importance-

resampling	algorithm	(Rosenberg	et	al.	2014).		

3. SSCOM	(state-space	catch-only	model)	is	a	hierarchical	model	also	based	

on	a	coupled	harvest-dynamics	model	(Thorson	et	al.,	2013).	SSCOM	

estimates	unobserved	dynamics	in	both	population	biomass	and	fishing	

effort	based	on	a	catch	time	series	and	priors	on	r,	the	maximum	rate	of	

increase	of	fishing	effort,	and	the	magnitude	of	three	forms	of	stochasticity.	

The	model	is	fit	in	a	Bayesian	state-space	framework	to	integrate	across	

three	forms	of	stochasticity:	variation	in	effort,	population	dynamics,	and	

fishing	efficiency	(Thorson	et	al.,	2013).	

4. mPRM	(modified	panel	regression	model)	is	a	modified	version	of	the	

panel-regression	model	from	Costello	et	al.	(2012),	which	used	the	RAM	

Legacy	Stock	Assessment	Database	to	predict	B/BMSY	from	characteristics	of	

the	catch	time	series	and	stock.	The	implementation	of	the	model	in	the	

datalimited	package	(Anderson	et	al.,	2016)	is	modified	from	the	original	in	
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that	it	uses	a	different	suite	of	life-history	categories	and	removes	the	

maximum	catch	predictor.				

We	applied	CMSY	using	resilience	categories	from	FishBase	and	2	million	iterations.	

We	applied	COM-SIR	using	resilience	categories	from	FishBase	and	4	million	

iterations.	We	applied	mPRM	using	species	categories	from	Anderson	et	al.	(2016).	
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Figure	4.	Catch	time	series	for	the	37	data-rich	stocks	with	catch	time	series	in	the	test	dataset	
(TC=total	catch,	n=31;	TL=total	landings,	n=6).	These	stocks	were	used	to	evaluate	the	status	

classification	performance	of	the	refined	ORCS	approach	and	four	alternative	catch-only	methods.	

Stocks	are	arranged	and	colored	by	status	(B/BMSY).  
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Appendix	F:	Refinement	of	the	historical	catch	statistics	and	scalars	

We	identified	the	best	status-specific	historical	catch	statistics	and	scalars	by	

comparing	the	OFL	in	the	terminal	year	to	24	potential	historical	catch	statistics	(8	

statistics	x	3	time	periods)	for	the	105	stocks	in	the	RAMLDB	with	the	following	

information:	(1)	an	estimate	of	UMSY	or	an	estimate	of	FMSY	and	M	if	UMSY	is	

unavailable;	(2)	a	time	series	of	total	biomass;	(3)	a	time	series	of	total	catch	or	

landings	if	total	catch	is	unavailable;	and	B/BMSY	(stock	status).	We	estimated	UMSY	

for	stocks	where	UMSY	is	unavailable	using	the	following	equation:	

!"#$ = & '"#$
( + '"#$

* ∗ ,1 − /0("23456)8	

and	calculated	the	OFL	as	the	product	of	UMSY	and	the	terminal	year	total	biomass:	

9': = !"#$ ∗ ;<=>?	AB<C>DD	

	

Table	8.	Selection	of	stocks	with	usable	UMSY	values.	
 

RAM Legacy Database subset # of stocks 
All assessments 512 
Assessments with UMSY 114 
Assessments without UMSY but with FMSY and M 64 
Assessments with UMSY provided and calculated 178 

- minus 1 stock with an unrealistic UMSY (1.47) 177 
 
Table	9.	Selection	of	stocks	with	usable	UMSY	values	and	time	series	of	total	biomass	and	total	catch	
(or	total	landings).	
 

RAM Legacy Database subset # of 
stocks 

Assessments with usable UMSY values (from above) 177 
Assessments with UMSY and TB and TC or TL time series in same units 128 
Assessments with UMSY and TB and TC or TL time series ≥ 10 yr 128 
Assessments with UMSY and TB and TC or TL time series ≥ 15 yr 125 
Assessments with UMSY and TB and TC or TL time series ≥ 20 yr 121 

- minus 1 stock without an OFL in the terminal year of the catch time series 120 
- minus 15 stocks without B/BMSY values (stock statuses) 105 
- minus 8 stocks not scored using the ORCS approach (b/c SSBMSY in eggs, 
larvae, or gonads) 

97 
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We	calculated	the	following	catch	statistics	over	the	whole	time	series,	the	most	

recent	10	years,	and	the	most	recent	20	years	(8	statistics	x	3	time	periods):	

• Arithmetic	mean	

• Interquartile	mean	–	the	mean	of	values	in	the	interquartile	range	(25-75th	

percentile);	less	sensitive	to	outliers	than	the	arithmetic	mean	

• Winsorized	mean	–	the	mean	of	the	data	with	the	upper	and	lower	25th	

percentile	values	replaced	by	the	next	largest	value	

• 10th,	25th,	50th,	75th,	and	90th	percentiles	 	
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Chapter	3:	Influence	of	ocean	warming	on	global	marine	fisheries	

productivity	

	

Abstract	

Marine	fish	and	invertebrates	are	experiencing	shifting	distributions,	changing	

phenology,	and	altered	food	availability	and	habitat	quality	as	a	result	of	climate	

change,	but	the	net	effect	of	these	changes	on	global	fisheries	productivity	remains	

unclear.	In	this	study,	we	use	surplus	production	models	with	monotonic	

temperature-dependence	to	measure	the	influence	of	sea	surface	temperature	(SST)	

on	the	productivity	of	235	fish	stocks	of	124	species	in	38	large	marine	ecoregions.	

We	found	that	ocean	warming	has	significantly	positively	and	negatively	influenced	

the	productivity	of	18	and	19	stocks,	respectively	(37	total;	16%	total).	The	

influence	of	warming	on	a	stock’s	productivity	is	determined	by	ecoregion,	

taxonomic	family,	life	history,	and	exploitation	history.	Hindcasts	of	SST-dependent	

maximum	sustainable	yield	indicate	that	MSY	of	assessed	stocks	decreased	5.6%	

from	1930	to	2010.	The	greatest	SST-driven	reductions	in	MSY	occurred	in	the	Sea	

of	Japan,	Kuroshio	Current,	East	China	Sea,	North	Sea,	Iberian	Coastal	ecoregions	

while	the	greatest	SST-driven	gains	in	MSY	occurred	in	the	South	Pacific	Ocean,	

Canary	Current,	Indian	Ocean,	and	North	Pacific	Ocean	ecoregions.	The	model’s	

assumption	of	monotonic	rather	than	dome-shaped	temperature	dependence	is	

optimistic	and	suggests	that	future	climate-driven	losses	in	MSY	may	be	even	larger.	
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Introduction	

The	growth	of	the	world's	human	population	and	current	levels	of	hunger	in	

many	parts	of	the	world	have	raised	concerns	over	food	security	in	the	future	

(Godfray	et	al.	2010).	Currently,	fisheries	and	aquaculture	supply	about	17%	of	

global	animal	protein	intake	and	support	the	livelihoods	of	approximately	12%	of	

the	world’s	population	(FAO	2016).	Human	population	growth	is	expected	to	be	

most	profound	in	regions	where	fish	provide	most	of	the	non-grain	dietary	protein	

(UN-DESA	2015).	The	extent	to	which	marine	fisheries	will	be	able	to	keep	pace	

with	an	increasing	human	population	will	depend	on	climate-driven	changes	to	

fisheries	productivity	and	the	adaptation	of	fisheries	management	systems	to	these	

changes.			

Anticipating	the	net	effect	of	climate	change	on	marine	fisheries	is	

complicated	because	climate	change	affects	a	multitude	of	environmental	variables	

that	act	across	different	levels	of	biological	organization	(Hollowed	et	al.	2013).	Of	

these	variables,	temperature	is	arguably	the	most	important	because	of	its	direct	

effect	on	marine	organisms	(Pörtner	&	Knust	2007;	Pörtner	&	Farrell	2008)	and	its	

role	in	driving	changes	in	stratification	(Manabe	&	Stouffer	1993),	primary	

production	(Behrenfeld	et	al.	2006),	and	dissolved	oxygen	(Keeling	et	al.	2010).	As	a	

result	of	ocean	warming,	marine	fish	and	invertebrates	are	experiencing	large-scale	

redistributions	(Perry	et	al.	2005;	Pinsky	et	al.	2013),	changing	phenology	and	

mismatches	(Cushing	1990;	Edwards	&	Richardson	2004),	altered	food	availability	

(Boyce	et	al.	2010,	2014),	and	increased	exposure	to	oxygen-depleted	and	acidic	
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waters	(Mora	et	al.	2013).	However,	the	net	effect	of	these	changes	on	marine	

fisheries	productivity	remains	poorly	understood.		

The	first	global-scale	studies	of	climate-driven	fisheries	productivity	linked	

bottom-up	ecological	models	with	climate	models	but	failed	to	report	uncertainty	

and	were	applied	to	broad	species	groups.	For	example,	Cheung	et	al.	(2010)	

coupled	species	distribution,	primary	productivity,	and	trophic	transfer	models	to	

project	shifts	in	catch	potential	for	1,066	species	under	two	climate	scenarios.	They	

predicted	that	the	distribution	of	global	catch	will	shift	dramatically	but	net	

productivity	will	remain	the	same.	Blanchard	et	al.	(2012)	coupled	physical-

biogeochemical	and	food	web	models	to	project	shifts	in	fish	production	for	

“demersal”	and	“pelagic”	fish	groups	under	two	climate	scenarios.	They	also	

predicted	a	dramatic	redistribution	of	production	but	avoided	statements	regarding	

changes	to	net	productivity.	Although	the	agreement	between	these	two	studies	is	

compelling,	they	are	both	limited	in	that	they	impose	rather	than	detect	a	link	

between	climate	and	productivity	and	that	they	propagate	no	uncertainty	in	their	

layered	models	and	assumptions	(Brander	et	al.	2013).	

Recent	studies	have	focused	on	empirical	analyses	of	commercially	

important	fish	stocks	but	have	only	examined	the	influence	of	temperature	in	post-

hoc	analyses	and	have	produced	mixed	results.	For	example,	Britten	et	al.	(2016)	

correlated	time-varying	trends	in	the	recruitment	capacity	of	262	assessed	fish	

stocks	to	trends	in	SST,	chlorophyll,	and	overfishing	history,	and	found	SST	change	

to	be	a	non-significant	driver	of	changing	recruitment	capacity.	They	also	suggest	

that	global	recruitment	capacity	has	declined	at	a	rate	of	3%	per	decade;	however,	
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this	estimate	gives	equal	weight	to	all	stocks,	regardless	of	size,	and	Szuwalski	

(2016)’s	reanalysis	shows	that	weighting	by	biomass	eliminates	the	trend	while	

weighting	by	catch	reverses	the	trend	entirely.	Britten	et	al.	(2017)	conducted	a	

similar	analysis	of	time-varying	surplus	production	for	276	assessed	stocks,	which	

they	conceptually	but	not	statistically	attribute	to	changes	in	environment,	and	

found	no	changes	in	net	global	productivity.	

In	this	study,	we	use	surplus	production	models	with	monotonic	

temperature-dependence	to	measure	the	influence	of	sea	surface	temperature	(SST)	

on	the	productivity	of	235	fish	stocks	and	hindcast	changes	in	their	SST-driven	

maximum	sustainable	yield	(MSY)	from	1930-2010.	This	study	is	the	first	

retrospective	analysis	of	assessed	global	fish	stocks	to	explicitly	include	

temperature	inside	a	population	dynamics	model	and	the	first	analysis	to	attribute	

SST	experience	using	the	actual	stock	boundaries.	Furthermore,	we	measure	the	

influence	of	temperature	on	MSY,	the	best	metric	for	anticipating	impacts	of	climate	

change	on	food	security	and	livelihoods,	while	other	studies	have	focused	on	

recruitment	(Britten	et	al.	2016;	Szuwalski	2016),	which	is	difficult	to	translate	into	

food	or	dollars,	or	on	“catch	potential”	defined	as	the	mean	of	the	five	largest	catches	

(Cheung	et	al.	2010),	which	is	unlikely	to	be	a	sustainable	quantity	in	moderately	to	

heavily	exploited	fisheries.	Thus,	our	study	seeks	to	provide	new	insights	into	the	

past	and	future	impacts	of	climate	change	on	global	marine	fisheries	productivity	

and	implications	for	global	food	security	and	livelihoods.	

 

Methods	
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Stock	selection	

We	analyzed	the	non-salmon	stocks	in	the	RAM	Legacy	Stock	Assessment	

Database	(RAMLDB	v3.8;	Ricard	et	al.	2012)	with	time	series	of	total	biomass	

(metric	tons)	and	catch	or	landings	(metric	tons;	catch	preferred)	longer	than	20	

years	after	trimming	data	based	on	strong	model	assumptions	(Supp.	Table	1;	

Appendix	C).	We	included	30	stocks	assessed	using	biomass	dynamics	models	that	

were	judged	to	exhibit	sufficient	variability	to	be	included	in	the	analysis.	We	

excluded	28	stocks	that	prevented	model	convergence	because	they	(1)	lacked	

periods	of	low	exploitation	and	high	biomass	necessary	to	constraining	carrying	

capacity	or	(2)	exhibited	population	dynamics	wildly	divergent	from	stationary	

logistic	population	growth.	The	resulting	235	stocks	represent	a	variety	of	taxa,	life	

histories,	and	locations	and	approximately	33%	of	reported	global	catch	(FAO	2016;	

28	of	86	million	metric	tons	in	2000).	

	

Stock	boundary	delineation	and	SST	time	series	

We	estimated	the	sea	surface	temperatures	(SST)	experienced	by	each	stock	

by	mapping	the	boundary	of	the	stock	(i.e.,	the	spatial	domain	of	the	stock	

assessment)	and	calculating	the	mean	annual	SST	within	this	boundary	using	the	

COBE	SST	dataset	(COBE	v2;	Ishii	et	al.	2005).		The	COBE	dataset	provides	monthly	

SST	on	a	globally	complete	1°x1°	grid	from	1850-present	based	on	an	interpolation	

of	in-situ	and	satellite-derived	SST	observations.	We	conducted	sensitivity	analyses	

using	the	ERSST	and	HadISST	datasets	to	ensure	that	the	results	were	not	sensitive	

to	the	choice	of	SST	dataset	(Supp.	Figure	1;	Appendices	A	&	D).	Stock	boundaries	
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were	delineated	by	either	(1)	merging	the	statistical/management	areas	used	to	

define	the	assessment	area;	(2)	digitizing	the	assessment	area	directly	from	the	

stock	assessment;	or	(3)	clipping	the	managing	country’s	exclusive	economic	zone	

or	the	managing	agency’s	area	of	competence	to	the	geographical	reference	points	

provided	in	the	stock	assessment.	In	the	USA	and	Australia,	we	used	information	on	

the	geographic	distribution	of	each	species	(i.e.,	essential	fish	habitat	and	modelled	

distribution,	respectively)	to	further	constrain	stock	boundaries	(Appendix	B).	

	

Base	SST-linked	surplus	production	model	

We	modeled	the	influence	of	SST	on	productivity	using	a	Pella-Tomlinson	

surplus	production	model	with	normal	process	uncertainty	and	multiplicative	SST	

influence.	Surplus	production	was	calculated	for	each	stock	as	the	net	change	in	

biomass	in	the	absence	of	harvest:	

EFG,I = JG,I2K − JG,I + LG,I 	

where	SPi,t	is	the	surplus	production	for	stock	i	over	year	t,	Bi,t	and	Bi,t+1	are	the	

biomasses	of	stock	i	in	years	t	and	t+1,	respectively,	and	Ci,t	is	the	catch	for	stock	i	

removed	between	years	t	and	t+1.	We	used	a	Pella-Tomlinson	surplus	production	

model	(Pella	&	Tomlinson	1969)	because	it	contains	a	shape	parameter	(p)	that	

allows	it	to	replicate	either	the	Fox	(p→0)	or	Schaefer	(p=1)	surplus	production	

models	(Schaefer	1954;	Fox	1970).	We	extended	the	Pella-Tomlinson	model	to	

include	SST	influence	and	assumed	normal	process	uncertainty:	

EFG,I =
MG
N JG,I O1 − P

JG,I
QG
R
S
T ∗ expXEE;G,I ∗ YGZ +	[G 	
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where	SPi,t	is	the	surplus	production,	Bi,t	is	the	biomass,	SSTi,t	is	the	mean	sea	surface	

temperature	for	stock	i	in	year	t	and	ri	is	the	intrinsic	rate	of	growth,	Ki	is	the	

carrying	capacity,	YG 	is	the	influence	of	SST	on	productivity,	and	[G 	is	normal	process	

uncertainty,	\(0, ^_,G` ),	for	stock	i.	We	used	Akaike	Information	Criterion	(AIC;	

Akaike	1974)	to	compare	models	using	shape	parameters	(p)	that	maximize	

productivity	at	50%	(p=1),	45%	(p=0.55),	40%	(p=0.2),	and	37%	(p=0.01)	of	

carrying	capacity	and	selected	the	model	with	the	lowest	AIC	score	as	the	“base”	

model	(Table	1).	We	evaluated	these	shape	parameter	values	because	50%	

produces	the	symmetric	Schaefer	model,	40%	is	the	meta-analytic	mean	(Thorson	et	

al.	2012),	and	37%	is	the	asymptotic	limit	of	this	parameterization	of	the	Pella-

Tomlinson	model.		

We	estimated	SST	influences,	YG ,	as	random	effects:	

YG	~	\(b##c, #̂#c
` )	

where	µSST	and	sSST	are	the	mean	and	standard	deviation	of	the	global	distribution	

of	SST	influences	(YG),	respectively.	YG 	<	0	means	increasing	SST	reduces	

productivity	at	a	given	biomass	and	YG 	>	0	means	increasing	SST	magnifies	

productivity	at	a	given	biomass.	See	Supp.	Table	2	for	a	key	to	all	model	symbols.	

To	ease	model	fitting,	we	scaled	biomass	and	production	data	to	each	stock's	

maximum	biomass	and	centered	SST	data	around	each	stock’s	mean	SST.	We	also	

placed	a	likelihood	penalty	on	carrying	capacities	greater	than	five	times	the	

observed	maximum	biomass	to	constrain	unrealistic	carrying	capacities.	We	fit	the	

model	using	maximum	likelihood	estimation	in	the	TMB	package	(Kristensen	et	al.	

2016;	Template	Model	Builder)	in	R	(R	Core	Team	2017).		
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Alternative	SST-linked	surplus	production	models	

To	determine	whether	taxonomy,	geography,	or	stock	assessment	method	

structure	SST	influence,	we	used	SST-linked	surplus	production	models	with	

hierarchical	SST	influence	based	on	each	of	six	“groups”:	(a)	taxonomic	order	and	

family;	(b)	large	marine	ecoregion	(LME;	Spalding	et	al.	2007)	and	FAO	major	

fishing	area;	and	(c)	generic	and	specific	stock	assessment	method	(Table	1;	Supp.	

Table	3).	These	models	were	identical	to	the	base	model	except	that	SST	influence	is	

estimated	as	a	nested	hierarchical	random	effect:	

YG	~	\(bd,e, ^d`)	

where	SST	influences	(YG)	for	stocks	in	group	j	are	drawn	from	a	normal	distribution	

with	a	group-specific	mean	(bd,e)	and	group-wide	standard	deviation	(^d).	Group-

specific	means	are	drawn	from	a	global	normal	distribution	with	mean	(b##c)	and	

standard	deviation	( #̂#c):	

bd,e	~	\(b##c, #̂#c
` )	

We	compared	the	group	models	to	the	base	model	using	AIC	and	judged	a	

group	to	be	a	significant	driver	of	SST	influence	if	its	model	exhibited	an	AIC	score	

more	than	two	points	lower	the	base	model.	The	best	or	“final”	SST-linked	surplus	

production	model	was	identified	as	the	model	producing	the	lowest	AIC	score.		

We	explored	using	SST-linked	surplus	production	models	with	dome-shaped	

temperature	dependence	but	these	models	failed	to	converge	due	to	their	inability	

to	estimate	species-specific	thermal	optima	(see	Appendix	A	for	more	details).	
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Model	validation	and	simulation	testing	

We	tested	whether	the	final	SST-linked	surplus	production	model	described	

population	dynamics	better	than	the	standard	surplus	production	model	by	

competing	the	models	with	AIC.	We	tested	whether	the	results	of	the	final	model	

were	an	artefact	of	model	structure	by	decoupling	the	SST	and	productivity	time	

series	using	three	null	models	with	simulated	SST	time	series	exhibiting:	(1)	the	

same	mean,	variance,	autoregressive	properties,	and	trend	as	the	original	time	

series;	(2)	the	same	mean,	variance,	and	autoregressive	properties	as	the	original	

time	series	but	without	a	trend;	and	(3)	the	same	mean	and	variance	as	the	original	

time	series	but	without	autocorrelation	or	a	trend	(Supp.	Figure	3;	Appendices	A	&	

F).	The	SST	simulations	were	performed	using	the	R	package	forecast	(Hyndman	

2017).		

	

Data	analysis	and	hindcasting	global	MSY	

Because	the	influence	of	SST	on	productivity	was	estimated	as	a	random	

effect,	our	estimates	of	SST	influence	cannot	be	considered	independent	and	cannot	

undergo	post-hoc	analyses	using	formal	statistical	methods	(i.e.,	formal	hypothesis	

testing	requires	including	explanatory	variables	inside	the	model	as	we	did	with	

taxonomy	and	geography).	Therefore,	we	graphically	evaluated	whether	SST	

influence	is	determined	by:	(1)	life	history	traits	such	as	growth	rate,	maximum	age,	

and	depth	preference;	(2)	stock	characteristics	such	as	trend	in	biomass	and	fishing	

pressure;	and	(3)	thermal	experience	such	as	mean	SST,	SST	trend,	or	latitude.	A	list	

of	evaluated	explanatory	variables	and	their	sources	is	provided	in	Supp.	Table	4.	



 

 

136 

 

We	used	the	final	model’s	estimates	of	p,	ri,	Ki,	and	YG 	to	hindcast	SST-

dependent	maximum	sustainable	yield	(MSY)	from	1930-2010.	We	calculated	MSY	

for	stock	i	in	year	t	as:	

(EfG,I =
MG ∗ gG

(N + 1)(S2K) S⁄ ∗ exp(YiG ∗ EE;jjjjjG,I)	

where	EE;jjjjjG,I 	is	SSTi,t	centered	on	the	mean	of	the	SST	data	used	in	model	fitting	and	

YiG	is	randomly	drawn	from	a	normal	distribution	described	by	the	mean	YG 	estimate	

and	its	standard	error.	We	bootstrapped	10,000	MSY	hindcasts	for	each	stock	to	

generate	median	MSY	trends	and	confidence	intervals.	We	assessed	changes	in	MSY	

over	the	hindcast	period	using	(1)	Thiel-Sen	regression	slopes	and	(2)	percent	

change	in	mean	MSY	from	1930-39	to	2001-2010.	Theil-Sen	regression,	a	form	of	

robust	regression,	identifies	the	median	slope	of	lines	through	all	possible	point	

pairs	and	is	insensitive	to	outliers	and	endpoints	in	short	time	series.	We	limited	the	

hindcast	from	1930-2010	to	minimize	the	extrapolation	of	MSY	predictions	to	

temperatures	cooler	or	warmer	than	those	used	in	model	fitting	(Supp.	Figure	4)	

and	explored	the	sensitivity	of	measures	of	MSY	change	to	the	selection	of	hindcast	

window	(Supp.	Figure	5).	

	

Results	

The	SST-linked	Schaefer	surplus	production	model	described	population	

dynamics	better	than	the	standard	Schafer	surplus	production	model	based	on	AIC	

(Table	1).	The	SST-linked	Pella-Tomlinson	production	model	with	productivity	

maximized	at	40%	of	carrying	capacity	described	populated	dynamics	better	than	
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the	SST-Schaefer	model	and	Pella-Tomlinson	models	with	other	shape	parameters	

and	was	selected	as	the	“base”	model	(Table	1;	Supp.	Figure	2).	Estimates	of	SST	

influence	were	not	sensitive	to	choice	of	shape	parameter	(Supp.	Figure	2).	SST-

linked	models	with	hierarchy	by	large	marine	ecoregion,	taxonomic	family,	and	FAO	

major	fishing	area	further	improved	model	fit	(Table	1;	Supp.	Figures	6&7).	The	

SST-linked	model	with	hierarchy	by	ecoregion,	selected	as	the	final	model,	

estimated	a	wider	range	of	SST	influences	and	at	a	higher	rate	of	significance	than	

the	three	null	models	(Figure	1;	Supp.	Figures	9-12).	

Although	the	global	mean	of	the	SST	influence	distribution	was	not	

significantly	different	from	zero,	the	productivity	of	18	and	19	stocks	were	

estimated	to	be	significantly	positively	and	negatively	influenced	by	warming,	

respectively	(Figure	1;	Supp.	Table	5).	In	the	final	model,	these	influences	were	

structured	by	ecoregion,	with	the	Celtic-Biscay	Shelf	and	North	Sea	showing	

significantly	negative	mean	SST	influences	(Figure	2).	The	FAO	area	and	taxonomic	

family	models	showed	significantly	negative	mean	SST	influences	for	the	Northeast	

Atlantic	and	Gadid	family	(codfishes),	respectively	(Figure	2).	Fish	with	fast	life	

histories	(<20	yr	max	age)	were	especially	sensitive,	both	positively	and	negatively,	

to	warming	and	fish	residing	in	deep	water	(>600	m)	were	particularly	insensitive	

(Figure	3).	Stocks	experiencing	intense	overfishing	and	declining	biomass	were	

more	likely	to	be	negatively	influenced	by	warming	(Figure	3).	The	position	of	a	

stock	within	its	species-specific	thermal	niche	may	also	determine	the	influence	of	

warming:	Atlantic	herring,	Atlantic	cod,	and	red	rock	lobster	all	showed	negative	

relationships	between	SST	influence	and	mean	temperature	experience	(Figure	4).	
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Habitat,	trophic	level,	latitude,	and	stock	size	did	not	appear	to	structure	SST	

influence	(Supp.	Figures	8-11).	Stock	assessment	method	did	not	influence	model	

results	(Table	1;	Supp.	Figure	6-8).		

Hindcasts	of	SST-dependent	maximum	sustainable	yield	indicate	that	MSY	of	

assessed	stocks	decreased	5.6%	(2.2	million	metric	tons)	from	an	average	of	41.7	

million	metric	tons	in	1930-39	to	an	average	of	39.5	million	metric	tons	in	2001-10	

(Figure	5).	At	the	LME-scale,	SST-driven	changes	in	MSY	generally	mirrored	the	

mean	SST	influence	of	the	LME,	though	change	in	large	stocks	sometimes	

neutralized	or	overrode	the	changes	of	many	small	stocks	(e.g.,	on	the	SE	US	Cont.	

Shelf;	Figure	6).	The	greatest	SST-driven	reductions	in	MSY	occurred	in	the	Sea	of	

Japan,	Kuroshio	Current,	East	China	Sea,	North	Sea,	Iberian	Coastal	ecoregions	while	

the	greatest	SST-driven	gains	in	MSY	occurred	in	the	South	Pacific	Ocean,	Canary	

Current,	Indian	Ocean,	and	North	Pacific	Ocean	ecoregions	(Figure	6;	Supp.	Table	6).	

The	final	model’s	estimates	of	MSY	at	average	temperature	are	highly	correlated	

with	data-rich	estimates	and	only	12.0%	of	stock-years	between	1930-2010	

required	extrapolating	outside	temperatures	seen	by	the	model	(Supp.	Figure	3;	

3.5%	warmer,	8.5%	cooler).	

	

Discussion	

This	is	the	first	study	to	show	that	climate	change	has	resulted	in	a	net	loss	in	

global	marine	fisheries	productivity.	This	finding	contradicts	analyses	of	time-

varying	recruitment	(Szuwalksi	2016)	and	productivity	(Britten	et	al.	2017)	that	

suggest	that	net	productivity	has	not	changed	despite	large-scale	redistributions.	
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However,	these	studies	were	based	on	analyses	of	shifts	in	productivity	over	time	

series	starting,	on	average,	in	1971.	Although	these	time	series	capture	the	period	of	

ocean	warming	from	1970	to	present	(0.5°C	of	warming),	they	miss	the	period	of	

warming	from	1910-1945	(Karl	et	al.	2015),	which	limits	their	ability	to	describe	

long-term,	climate-driven	shifts	in	productivity.	Our	hindcasts	of	SST-dependent	

MSY	extend	back	to	1930	and	document	a	5.6%	decrease	in	marine	fisheries	

productivity	over	0.6°C	of	ocean	warming.	Limiting	the	hindcasts	to	1970	would	

result	in	a	dampened	3.3%	decrease.	

Even	this	decline	in	productivity	is	likely	to	be	optimistic	given	our	

assumption	of	a	monotonic	influence	of	warming	on	production	(i.e.,	warming	is	

only	good	or	only	bad	for	productivity).	In	fact,	the	aerobic	performance	of	

individual	fish	is	dome-shaped	with	regards	to	temperature	(Pörtner	&	Knust	2007)	

and	is	likely	to	remain	dome-shaped	at	the	population-scale	through	cascading	

impacts	on	growth,	mortality,	and	recruitment	(Drinkwater	et	al.	2010).	Thus,	the	

stocks	identified	by	our	model	as	having	been	positively	influenced	by	warming	are	

unlikely	to	maintain	productivity	gains	as	continued	warming	(IPCC	2013;	Raftery	

et	al.	2017)	drives	these	stocks	past	their	thermal	optima.	Unfortunately,	estimating	

thermal	optima	proved	impossible	given	the	lack	of	SST	contrast	when	averaging	

SST	experience	over	large	spatial	scales.	Although	our	monotonic	model	cannot	

forecast	productivity	under	out-of-sample	warming,	optimistic	hindcasts	imply	that	

future	losses	in	productivity	will	be	greater	than	12%.	
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Our	results	support	suggestions	that	the	impact	of	climate	change	on	marine	

fisheries	productivity	varies	among	ecoregions	(Blanchard	et	al.	2012;	Britten	et	al.	

2016)	but	presents	a	new	map	of	climate	“winners”	and	“losers”.	Britten	et	al.	

(2016)	and	our	estimates	of	ecoregion-scale	SST	influence	are	uncorrelated	and	in	

low	agreement	(Supp.	Figure	17).	On	one	hand,	this	is	not	surprising	given	that	

Britten	et	al.	(2016)	found	no	relationship	between	trend	in	ecoregion	recruitment	

capacity	and	trend	in	ecoregion	SST	while	we	model	this	relationship	explicitly.	On	

the	other	hand,	this	is	surprising	given	that	we	analyze	the	same	data	with	

conceptually	similar	methods.	The	stark	differences	between	the	results	could	

indicate	that	(1)	climate-induced	effects	on	somatic	growth	and	mortality	are	strong	

enough	to	yield	divergent	effects	on	production	and	recruitment	or	(2)	Britten	et	al.	

(2016)’s	recruitment	potential	trends	are	highly	sensitive	to	the	state	of	the	initial	

or	final	recruitment	regime	(Szuwalksi	2016).		

We	also	identify	taxonomic	family	as	an	important	driver	of	the	influence	of	

SST	on	productivity.	However,	taxonomy	is	collinear	with	geography	and	these	

results	should	be	interpreted	carefully.	For	example,	all	of	the	negatively	influenced	

sandeel	(Ammodytidae)	stocks	are	found	in	the	negatively	influenced	North	Sea	and	

most	of	the	negatively	influenced	codfish	(Gadidae)	stocks	are	found	in	the	

negatively	influenced	Northeast	Atlantic.	Do	environmental	regime	shifts	in	these	

regions	drive	the	apparent	response	of	these	taxa	or	does	the	intrinsic	vulnerability	

of	these	taxa	drive	the	apparent	response	of	these	regions?	Our	methods	cannot	

disentangle	this	complexity	but	finer-scale	analyses	suggest	both	are	possible.	The	

Northeast	Atlantic	has	undergone	large	climate-driven	shifts	in	primary	
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productivity	with	cascading	food	web	effects	(Richardson	&	Schoeman	2004).	This	

has	been	especially	true	in	the	North	Sea	where	both	forage	fish	(Clausen	et	al.	

2017)	and	groundfish	(Beaugrand	et	al.	2003)	productivity	have	been	reduced	as	a	

result	of	climate-induced	changes	to	the	zooplankton	community.	Alternatively,	

both	Atlantic	cod	(Planque	&	Frédou	1999)	and	sandeel	(Arnott	&	Ruxton	2002)	

recruitment	are	negatively	correlated	with	warming	temperatures.	

We	also	present	new	evidence	suggesting	that	fish	with	fast	life	histories	

(e.g.,	fast	growth,	early	age	at	maturity,	short	lifespan,	etc.)	are	more	responsive	to	

climate	change	than	fish	with	slow	life	histories	and	that	overfishing	makes	stocks	

more	vulnerable	to	climate	change.	For	example,	Perry	et	al.	(2005)	showed	that	

North	Sea	fish	species	shifting	distributions	in	response	to	warming	temperatures	

were	smaller	and	matured	earlier	than	non-shifting	species.	Similarly,	we	identified	

steep	declines	in	the	magnitude	and	significance	of	the	influence	of	warming	on	

productivity	at	150	cm	max	length	and	7	years	old	at	maturity.	We	also	show	that	

stocks	experiencing	chronic	and	acute	overfishing	(F/FMSY	mean	>	2)	are	

significantly	more	likely	to	be	negatively	influenced	by	ocean	warming.	These	

results	are	consistent	with	the	growing	body	of	evidence	that	overfishing	can	

magnify	fluctuations	due	to	environmental	variability	(Hsieh	et	al.	2006),	reduce	

resilience	to	climate	change	(Planque	et	al.	2010),	and	interact	with	life	history	and	

climate	variability	to	magnify	sensitivity	(Pinsky	&	Byler	2015).	

Our	results	offer	no	support	for	hypotheses	that	demersal	and	pelagic	species	

differ	in	their	vulnerability	to	climate	change	but	offers	support	for	hypotheses	that	

vulnerability	to	climate	change	varies	by	depth	and	position	of	a	stock	within	its	
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thermal	niche.	Rijnsdorp	et	al.	(2009)	hypothesize	that	pelagic	species	are	more	

responsive	to	warming	than	demersal	species	due	to	higher	mobility	and	lower	

fidelity	and	present	evidence	for	this	in	the	Northeast	Atlantic.	We	found	no	

evidence	of	this	pattern	on	the	global	scale	possibly	because	fish	are	rarely	only	

pelagic	or	only	demersal	throughout	their	complex	life	histories	and	their	climate-

driven	productivity	is	shaped	by	many	life	stages	(Petitgas	et	al.	2013).	We	show	

support	for	Rijnsdorp	et	al.	(2009)’s	hypothesis	that	deep-water	species	are	less	

sensitive	to	climate	change	due	to	more	stable	environmental	conditions.	However,	

these	results	could	be	spurious	given	our	use	of	surface	temperatures	to	describe	

the	temperature	experience	of	deep-water	species	despite	evidence	that	trends	in	

temperature	and	their	impacts	on	fish	are	often	depth-mediated	(Thresher	et	al.	

2007).	Our	results	suggest	that	for	species,	like	Atlantic	cod,	Atlantic	herring,	and	

red	rock	lobster,	stocks	at	the	warm	end	of	their	thermal	range	are	more	vulnerable	

to	warming	than	stocks	at	the	cool	end	of	their	thermal	range.	This	pattern	has	been	

demonstrated	for	Atlantic	cod	recruitment	(Drinkwater	et	al.	2005)	but	has	rarely	

been	demonstrated	for	other	species	or	measures	of	productivity.		

This	study	offers	several	advantages	over	other	global-scale	studies	of	

climate-driven	marine	fisheries	productivity:	(1)	it	is	the	first	analysis	to	attribute	

stock	SST	experience	using	the	actual	stock	boundaries;	(2)	it	is	the	first	analysis	to	

measure	the	influence	of	temperature	on	maximum	sustainable	yield,	the	best	

metric	for	anticipating	impacts	of	climate	change	on	food	security	and	livelihoods;	

and	(3)	it	is	the	first	retrospective	analysis	of	assessed	global	fish	stocks	to	explicitly	

include	temperature	inside	a	population	dynamics	model.	Our	analysis	also	has	



 

 

143 

 

several	limitations.	Although	estimating	dome-shaped	SST	dependence	and	allowing	

ocean	warming	to	influence	carrying	capacity	would	both	increase	biologically	

realism,	they	were	statistically	infeasible.	Furthermore,	our	study	only	evaluated	the	

influence	of	changing	SST	on	fisheries	productivity	when	changing	primary	

production	(i.e.,	chlorophyll),	dissolved	oxygen,	and	pH	are	also	influential	(Sumaila	

et	al.	2011).	This	was	necessary	given	the	need	for	long	time	series	describing	

periods	of	low	exploitation	and	high	biomass	when	fitting	surplus	production	

models	and	the	lack	of	globally	complete,	historic	datasets	for	other	environmental	

variables.	Finally,	the	RAM	Legacy	Database	presents	a	limited	(e.g.,	v3.8=48%	of	

reported	catch	in	2000)	and	non-random	selection	of	global	stocks.	Although	this	

analysis	is	representative	of	the	dynamics	of	assessed	stocks,	it	is	not	representative	

of	global	fisheries	production.	

This	paper	presents	a	sobering	reality.	As	the	world’s	human	population	and	

demand	for	seafood	grows	(FAO	2016),	climate	change	is	a	driving	a	decline	in	

marine	fisheries	productivity	and	sustainable	catch	potential.		This	study	indicates	

that	fisheries	managers	will	need	to	adjust	expectations	as	they	begin	ecosystem-

based	fisheries	management	seeking	to	manage	fisheries	in	the	face	of	climate	

change.	Importantly,	this	study	highlights	the	emerging	fact	that	overfishing	

exacerbates	the	vulnerability	of	fish	stocks	to	climate	change.	Thus,	preventing	

overfishing	is	imperative	as	climate	change	extends	recovery	timelines	(Britten	et	al.	

2017)	and	developing	stock	assessment	methods	that	account	for	reductions	in	

productivity	is	essential	as	fish,	fishermen,	and	fisheries	managers	move	into	a	

warmer	world.	
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Figure	1.	Distribution	of	SST	influences	estimated	by	the	(A)	base,	(B)	final,	and	(C)	

primary	null	models.	Points	show	mean	estimates	and	error	bars	show	95%	

confidence	intervals.	Significant	positive	and	negative	SST	influences	are	shown	in	

blue	and	red,	respectively.	The	transparent	rectangle	indicates	the	95%	confidence	

interval	for	the	global	mean	of	the	SST	influences.	 	
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Figure	2.	Mean	of	the	SST	influence	distributions	for	geographic	or	taxonomic	

groups	in	models	with	hierarchy	on	SST	influence	by	(A)	large	marine	ecoregion,	

(B)	FAO	major	fishing	area,	(C)	taxonomic	family,	and	(D)	taxonomic	order.	Points	

show	mean	estimates	and	error	bars	show	95%	confidence	intervals.	Significant	

positive	and	negative	SST	influences	are	shown	in	blue	and	red,	respectively.	All	but	

the	taxonomic	order	model	had	more	support	than	the	base	model.	 	
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Figure	3.	SST	influence	as	a	function	of	maximum	age	(Tmax),	depth,	F/FMSY	mean,	

and	scaled	biomass	trend.	SST	influences	are	colored	by	significance	(blue=positive,	

red=negative,	grey=non-significant).	Solid	lines	show	the	50th	percentile	quantile	

regression	fit	and	dashed	lines	show	the	2.5%	and	97.5%	quantile	regression	fits.	

Sample	size	is	shown	in	the	bottom-right	corner	if	data	were	not	available	for	all	

235	stocks.	 	
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Figure	4.	SST	influence	as	a	function	of	the	mean	temperature	experienced	by	

stocks	of	the	same	species	for	the	seven	species	with	≥5	stocks	in	the	analysis.	Lines	

shows	Theil-Sen	regression	fits	with	solid	lines	indicating	regressions	significant	at	

the	0.10	level.	Theil-Sen	regression,	a	form	of	robust	regression,	identifies	the	

median	slope	of	lines	through	all	possible	point	pairs	and	is	insensitive	to	outliers	

and	endpoints	in	small	datasets.	 	
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Figure	5.	Hindcast	of	SST-dependent	maximum	sustainable	yield	(MSY)	for	(A)	all	

stocks	and	for	stock	with	(B)	significant	positive,	(C)	significant	negative,	and	(D)	

non-significant	influences	of	SST	on	productivity.	Solid	lines	indicate	the	median	

MSY	estimates,	shading	indicates	the	95%	confidence	intervals,	and	horizontal	

dashed	lines	indicate	the	temperature-independent	MSYs.	Panel	(E)	shows	the	mean	

global	SST	anomaly	from	1850-2015	based	on	the	COBE	dataset.	 	
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Figure	6.	Maps	showing	the	(A)	global	distribution	of	SST	influences	and	(B)	

percent	change	in	mean	maximum	sustainable	yield	(MSY)	from	1930-39	to	2001-

10	by	ecoregion.	In	(B),	points	are	scaled	to	the	1930-39	mean	and	the	number	of	

stocks	in	the	ecoregion	is	shown	inside	each	point.	In	both	plots,	dashed	lines	

indicate	FAO	major	fishing	areas.		
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Supplemental	Tables	&	Figures	

Supp.	Table	1.	RAM	Legacy	Database	stocks	used	in	analysis	(TB	=	total	biomass).	
 

Condition # of stocks 

All RAMLDB stocks 1058 

Not Pacific salmon stocks 685 

Only stocks with TB/catch in metric tons 350 

Only stocks with TB/catch time series ≥ 20 years 300 

Removed 23 stocks with strong SP/SR relationships 277 

Removed 9 stocks without 20 years of data after trimming 268 

Removed 5 stocks without SST data (e.g., Seto Sea not covered by COBE) 263 

Removed 28 stocks preventing model convergence 235 
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Supp.	Table	2.	Model	symbols	and	their	definitions.	
 

Type Symbol Definition 

Data Ci,t Catch for stock i in year t 

Data SPi,t Surplus production for stock i in year t 

Data Bi,t Total biomass for stock i in year t 

Data SSTi,t Sea surface temperature (SST) experienced by stock i in year t 

Data Gi Group (taxonomic or geographic) for stock i 

Derived εi Productivity process uncertainty for stock i 

Parameter ri Intrinsic rate of growth for stock i 

Parameter Ki Carrying capacity for stock i 

Parameter θi Influence of SST on productivity for stock i 

Parameter μSST Mean of the distribution of SST influences (θi) 

Parameter σSST Standard deviation of the distribution of SST influences (θi) 

Parameter μG,j Mean of the distribution of SST influences (θi) for group j 

Parameter σG Standard deviation of the group-specific distributions of SST influences (θi) 

Parameter σP,i Standard deviation of the productivity process uncertainty for stock i 
Constant p Shape parameter: fixed at 1.00, 0.55, 0.20, or 0.01 

Index t Year 

Index i Stock 

Index j Group (taxonomic or geographic) 

  



  

15
7 

 

Su
pp
.	T
ab
le
	3
.	S
to
ck
	as
se
ss
me

nt
	m
eth

od
s.	

 As
se

ss
m

en
t m

od
el

 
Nu

m
be

r 
Co

un
tri

es
 

Bi
om

as
s d

yn
am

ic
s m

od
el

 (n
=3

0)
 

 
 

BS
PM

: B
ay

es
ia

n 
su

rp
lu

s 
pr

od
uc

tio
n 

m
od

el
 

10
 

Ca
na

da
, T

un
a-

RF
M

O
 

AS
PI

C:
 S

ur
pl

us
 p

ro
du

ct
io

n 
m

od
el

 
6 

Tu
na

-R
FM

O
, U

SA
 

D
el

ay
 d

iff
er

en
ce

 m
od

el
 

5 
Ca

na
da

, U
SA

 

AS
PM

: A
ge

-s
tr

uc
tu

re
d 

su
rp

lu
s 

pr
od

uc
tio

n 
m

od
el

 
4 

So
ut

h 
Af

ric
a 

D
PM

: D
yn

am
ic

 p
ro

du
ct

io
n 

m
od

el
 

2 
W

es
t A

fr
ic

a 

qR
: S

ur
pl

us
 p

ro
du

ct
io

n 
m

od
el

 
2 

Au
st

ra
lia

 

LP
M

: L
og

is
tic

 p
ro

du
ct

io
n 

m
od

el
 

1 
Ca

na
da

 

In
te

gr
at

ed
 A

na
ly

sis
 (n

=5
7)

 
 

 
SS

3:
 S

to
ck

 S
yn

th
es

is
 v

3.
0 

m
od

el
 

26
 

Au
st

ra
lia

, E
ur

op
e,

 T
un

a-
RF

M
O

, U
SA

 

SS
2:

 S
to

ck
 S

yn
th

es
is

 v
2.

0 
m

od
el

 
22

 
Au

st
ra

lia
, U

SA
 

SM
S:

 S
to

ch
as

tic
 m

ul
ti-

sp
ec

ie
s 

m
od

el
 

3 
Eu

ro
pe

 

CA
SA

L:
 C

++
 A

lg
or

ith
m

ic
 S

to
ck

 A
ss

es
sm

en
t L

ab
or

at
or

y 
2 

N
ew

 Z
ea

la
nd

 

IA
: I

nt
eg

ra
te

d 
an

al
ys

is
 

1 
U

SA
 

JJ
M

: J
oi

nt
 ja

ck
 m

ac
ke

re
l 

1 
Ch

ile
 

SS
1:

 S
to

ck
 S

yn
th

es
is

 v
1.

0 
m

od
el

 
1 

U
SA

 

SY
M

: S
to

ch
as

tic
 y

ie
ld

 m
od

el
 

1 
U

SA
 

St
at

ist
ica

l c
at

ch
 a

t a
ge

 m
od

el
 (n

=5
5)

 
 

 
AD

-C
AM

: A
D

-M
od

el
 B

ui
ld

er
 s

ta
tis

tic
al

 c
at

ch
-a

t-
ag

e 
m

od
el

 
20

 
Eu

ro
pe

, S
ou

th
 A

fr
ic

a,
 U

SA
 

SC
A:

 S
ta

tis
tic

al
 c

at
ch

-a
t-

ag
e 

m
od

el
 

8 
Ca

na
da

, E
ur

op
e,

 T
un

a-
RF

M
O

, U
SA

 

AS
AP

: A
ge

 S
tr

uc
tu

re
d 

As
se

ss
m

en
t P

ro
gr

am
 

6 
U

SA
 

BA
M

: B
ea

uf
or

t a
ss

es
sm

en
t m

od
el

 
6 

U
SA

 

IC
A:

 In
te

gr
at

ed
 c

at
ch

-a
t-

ag
e 

an
al

ys
is

 
5 

Eu
ro

pe
 

TS
A:

 S
ta

te
-s

pa
ce

 c
at

ch
-a

t-
ag

e 
tim

e 
se

rie
s 

an
al

ys
is

 
4 

Ca
na

da
, E

ur
op

e 

M
U

LT
IF

AN
-C

L:
 L

en
gt

h-
ba

se
d,

 a
ge

/s
pa

tia
lly

-s
tr

uc
tu

re
d 

m
od

el
 

2 
Tu

na
-R

FM
O

 

SA
M

: S
ta

te
-s

pa
ce

 a
ss

es
sm

en
t m

od
el

 
2 

Eu
ro

pe
 



  

15
8 

 

CS
A:

 C
at

ch
-s

ur
ve

y 
an

al
ys

is
 (l

ik
e 

a 
st

at
e 

sp
ac

e 
ap

pr
oa

ch
) 

1 
U

SA
 

SC
AL

E:
 A

 s
ta

tis
tic

al
 c

at
ch

-a
t-

le
ng

th
 m

od
el

 
1 

U
SA

 

St
at

ist
ica

l c
at

ch
 a

t l
en

gt
h 

m
od

el
 (n

=3
) 

 
 

AD
-C

AL
: A

D
-M

od
el

 B
ui

ld
er

 c
at

ch
-a

t-
le

ng
th

 m
od

el
 

2 
U

SA
 

LB
A:

 L
en

gt
h-

ba
se

d 
an

al
ys

is
 

1 
U

SA
 

Su
rv

ey
 in

de
x (

n=
5)

 
 

 
Te

m
po

ra
l i

nd
ic

es
 d

er
iv

ed
 fr

om
 s

ci
en

tif
ic

 s
ur

ve
y 

da
ta

 
3 

U
SA

 

SU
RB

A:
 S

ur
ve

y-
ba

se
d 

st
oc

k 
as

se
ss

m
en

t m
et

ho
d 

2 
Ca

na
da

 

Un
kn

ow
n 

(n
=3

8)
 

 
 

U
nk

no
w

n 
27

 
Ca

na
da

, C
hi

le
, E

ur
op

e,
 P

er
u,

 S
ou

th
 A

fr
ic

a,
 U

SA
 

M
SL

M
: M

ul
ti-

st
oc

k 
le

ng
th

-b
as

ed
 m

od
el

 
7 

N
ew

 Z
ea

la
nd

 

Sn
ap

Es
t:

 S
na

pE
st

 a
ge

- a
nd

 le
ng

th
-b

as
ed

 m
od

el
 

2 
Au

st
ra

lia
 

Ca
pT

oo
l: 

Sp
re

ad
sh

ee
t a

ss
es

sm
en

t m
od

el
 u

se
d 

fo
r c

ap
el

in
 

1 
Eu

ro
pe

 

RY
M

: R
ep

la
ce

m
en

t y
ie

ld
 m

od
el

 
1 

So
ut

h 
Af

ric
a 

Vi
rt

ua
l p

op
ul

at
io

n 
an

al
ys

is 
(n

=4
7)

 
 

 
XS

A:
 E

xt
en

de
d 

su
rv

iv
or

 a
na

ly
si

s 
26

 
Ar

ge
nt

in
a,

 C
an

ad
a,

 E
ur

op
e,

 T
un

a-
RF

M
O

 

VP
A:

 V
ir

tu
al

 p
op

ul
at

io
n 

an
al

ys
is

 
16

 
Ar

ge
nt

in
a,

 C
an

ad
a,

 E
ur

op
e,

 Ja
pa

n,
 R

us
si

a 

AD
AP

T:
 A

da
pt

iv
e 

fr
am

ew
or

k-
vi

rt
ua

l p
op

ul
at

io
n 

an
al

ys
is

 
1 

Eu
ro

pe
 

B-
AD

AP
T:

 A
D

AP
T 

ap
pr

oa
ch

 w
ith

 y
ea

r 
ef

fe
ct

s 
in

 a
 c

at
ch

 m
ul

tip
lie

r 
1 

Eu
ro

pe
 

FL
XS

A:
 F

LR
 v

ar
ia

nt
 o

f e
xt

en
de

d 
su

rv
iv

or
 a

na
ly

si
s 

1 
Eu

ro
pe

 

N
FT

-A
D

AP
T:

 V
PA

/A
D

PA
T 

ve
rs

io
n 

2.
3.

2 
N

O
AA

 F
is

he
rie

s 
1 

Eu
ro

pe
 

SP
A-

AD
AP

T:
 S

eq
ue

nt
ia

l p
op

ul
at

io
n 

an
al

ys
is

 /
 A

D
AP

T 
1 

Ca
na

da
 

 
 



 

 

159 

 

Supp.	Table	4.	Potential	predictors	of	SST	influence	and	their	sources	(percentage	

of	stocks	with	predictor	available	shown	in	parenthesis	when	coverage	is	

incomplete).	

 
Variable Source 
SST experience  

SST average (°C) HadISST + stock boundary database (1930-2010) 
SST trend (°C/yr) HadISST + stock boundary database (1930-2010) 
Latitude (absolute value) Centroid of the stock area (stock boundary database) 

Stock characteristics  
Biomass average (MT) RAM Legacy Database 
Scaled biomass trend (scaled MT/yr) RAM Legacy Database 
Stock area (sq. km) Stock boundary database 
Time series length (year) RAM Legacy Database 
B/BMSY average RAM Legacy Database (52%) 
F/FMSY average RAM Legacy Database (57%) 

Geography  
Large Marine Ecoregion Containing the centroid of the stock area 
FAO Major Fishing Area Containing the centroid of the stock area 

Life history traits  
Taxonomy (family/order) RAM Legacy Database (corrected for errors) 
Natural mortality rate (M, 1/yr) FishLife (finfish, 100%), SeaLifeBase (inverts, 19%) 

Brody growth coefficient (K) FishLife (finfish, 100%), SeaLifeBase (inverts, 100%) 

Asymptotic maximum length (Linf, cm) FishLife (finfish, 100%), SeaLifeBase (inverts, 38%) 

Asymptotic maximum mass (Winf, kg) FishLife (finfish, 100%), SeaLifeBase (inverts, 24%) 

Length at maturity (Lmat, cm) FishLife (finfish, 100%), SeaLifeBase (inverts, 0%) 

Age at maturity (Tmat, yr) FishLife (finfish, 100%), SeaLifeBase (inverts, 0%) 

Maximum age (Tmax, yr) FishLife (finfish, 100%), SeaLifeBase (inverts, 19%) 

Trophic level FishBase (finfish, 93%), SeaLifeBase (inverts, 19%) 
Habitat (e.g., demersal, pelagic, etc.) FishBase (finfish, 99%), SeaLifeBase (inverts, 95%) 

Depth (m) FishBase (finfish, 95%), SeaLifeBase (inverts, 0%) 
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Supp.	Figure	1.	Comparison	of	SST	influence	estimates	from	the	SST-linked	

Schaefer	surplus	production	model	using	each	of	three	SST	datasets:	COBE	v2,	

ERSST	v4,	and	HadISST	v1.1.	In	the	top	panels,	points	show	mean	estimates	and	

error	bars	show	95%	confidence	intervals.	Significant	positive	and	negative	SST	

influences	are	shown	in	blue	and	red,	respectively.	The	transparent	rectangle	

indicates	the	95%	confidence	interval	for	the	global	mean	of	the	SST	influences.	In	

the	bottom	panels,	the	diagonal	line	is	the	one-to-one	line	for	pairwise	comparisons	

of	SST	influence	estimates	using	the	different	SST	datasets.	 	
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Supp.	Figure	2.	Comparison	of	SST	influence	estimates	from	the	SST-linked	Pella-

Tomlinson	surplus	production	model	using	four	shape	parameters:	p=1.00	(MSY	@	

50%	K,	Schaefer	model),	p=0.55	(MSY	@	45%	K),	p=0.20	(MSY	@	40%	K),	and	

p=0.01	(MSY	@	37%	K).	In	the	top	panels,	points	show	mean	estimates	and	error	

bars	show	95%	confidence	intervals.	Significant	positive	and	negative	SST	

influences	are	shown	in	blue	and	red,	respectively.	The	transparent	rectangle	

indicates	the	95%	confidence	interval	for	the	global	mean	of	the	SST	influences.	In	

the	bottom	panels,	the	diagonal	line	is	the	one-to-one	line	for	pairwise	comparisons	

of	SST	influence	between	the	symmetric	Schaefer	model	(p=1.00)	and	the	

asymmetric	Pella-Tomlinson	models.	The	r2	value	and	percent	agreement	in	

significance	are	shown	in	the	bottom-right.	 	
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Supp.	Figure	3.	Example	(A)	observed	and	(B-D)	simulated	SST	time	series	(US	

West	Coast,	Black	rockfish).	The	simulated	SST	time	series	were	used	in	the	three	

null	models.	 	
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Supp.	Figure	4.	The	(A&B)	frequency	of	SST	extrapolation	by	the	hindcast	model	

and	(C)	correlation	between	MSY	estimates	from	the	final	model	and	data-rich	stock	

assessments	(diagonal	line	is	the	one-to-one	line).	In	(A),	each	row	shows	the	SST	

experience	of	an	individual	stock	where	black	years	were	used	in	model	

development,	grey	years	experienced	temperatures	also	experienced	during	model	

years,	and	blue	and	red	years	experienced	temperatures	cooler	and	warmer	than	

those	experienced	during	model	years,	respectively.	In	(B),	the	blue	and	red	shading	
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show	the	percentage	of	years	experiencing	temperatures	cooler	and	warmer	than	

those	experience	during	model	years,	respectively.	The	hindcast	model	generally	

extrapolates	for	fewer	than	15%	(dashed	line)	of	years	between	1930-2010.	 	
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Supp.	Figure	5.	Sensitivity	of	hindcasted	changes	in	MSY	to	the	determination	of	the	

hindcast	window.	Time	series	showing	(A)	mean	global	SST	anomaly,	(B)	hindcast	

of	SST-dependent	maximum	sustainable	yield	(MSY)	for	all	stocks	included	in	the	

analysis,	(C)	Thiel-Sen	regression	slope	when	evaluating	MSY	trends	beginning	in	

each	year	from	1850-1990	and	ending	in	2010,	and	(D)	percent	difference	in	MSY	
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when	comparing	the	mean	MSY	over	the	10	years	following	each	year	from	1850-

1990	and	the	mean	MSY	from	2001-2010.	In	(A),	the	grey	shading	indicates	the	

hindcast	window	determined	to	minimize	extrapolation	to	temperatures	outside	

those	included	in	the	final	model.	In	(B),	the	dark	line	shows	a	Thiel-Sen	regression	

fit	to	the	MSY	time	series	in	the	hindcast	window.	In	(C)	and	(D),	the	labeled	points	

mark	the	measures	of	MSY	change	experienced	over	the	hindcast	window.	 	
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Supp.	Figure	6.	Distribution	of	SST	influences	estimated	by	the	SST-linked	Pella-

Tomlinson	surplus	production	models	with	hierarchy	on	SST	influence	by	(A)	

taxonomic	order	and	(B)	taxonomic	family,	(C)	FAO	major	fishing	area	and	(D)	large	

marine	ecoregion	(LME),	and	(E)	generic	and	(F)	specific	stock	assessment	

methods.	Points	show	mean	estimates	and	error	bars	show	95%	confidence	

intervals.	Significant	positive	and	negative	SST	influences	are	shown	in	blue	and	red,	

respectively.	The	transparent	rectangle	indicates	the	95%	confidence	interval	for	

the	global	mean	of	the	SST	influences.	 	
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Supp.	Figure	7.	Correlation	between	SST	influences	estimated	by	the	base	model	

and	six	group	models.	Diagonal	line	is	the	one-to-one	line.	 	
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Supp.	Figure	8.	Mean	of	the	SST	influence	distributions	for	assessment	method	

groups	in	models	with	hierarchy	on	SST	influence	by	(A)	generic	stock	assessment	

method	and	(B)	specific	stock	assessment	method.	Points	show	mean	estimates	and	

error	bars	show	95%	confidence	intervals.	None	of	the	SST	influence	means	were	

significantly	different	from	zero	and	neither	of	the	models	gained	more	support	

than	the	base	model	(see	Table	1).	 	
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Supp.	Figure	9.	Distribution	of	SST	influences	estimated	by	the	final	model	and	

three	null	models.	Points	show	mean	estimates	and	error	bars	show	95%	

confidence	intervals.	Significant	positive	and	negative	SST	influences	are	shown	in	

blue	and	red,	respectively.	 	
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Supp.	Figure	10.	Comparison	of	SST	influences	estimated	in	a	fixed	effects	

framework	with	the	random	effects	framework	of	the	final	model.	Plots	show	(A)	

mean	fixed	effects	estimates	plotted	over	their	corresponding	random	effects	

estimates	(95%	confidence	interval),	histograms	of	the	(B)	random	and	(C)	fixed	

effects	estimates,	and	(D)	correlation	between	the	random	and	fixed	effects	

estimates.	
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Supp.	Figure	11.	Distribution	of	intrinsic	rate	of	growth	(ri),	carrying	capacity	(Ki),	

SST	influence	(θi),	and	process	uncertainty	(σP,i)	estimates	from	the	final	model.	

Points	show	mean	estimates	and	lines	show	95%	confidence	intervals.	Carrying	

capacity	is	a	multiple	of	the	maximum	observed	biomass	(e.g.,	a	carrying	capacity	of	

1,	shown	by	the	vertical	dotted	line,	means	that	the	carrying	capacity	is	equivalent	

to	the	maximum	observed	biomass).	 	
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Supp.	Figure	12.	Correlation	between	the	SST	influence	estimates	and	standard	

errors	and	the	process	uncertainty	estimates	and	standard	errors.	Points	are	

colored	by	significance	of	SST	influence	(blue=positive,	red=negative,	grey=non-

significant).	
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Supp.	Figure	13.	SST	influence	as	a	function	of	nine	stock	characteristics.	SST	

influences	are	colored	by	significance	(blue=positive,	red=negative,	grey=non-

significant).	Solid	lines	show	the	50th	percentile	quantile	regression	fit	and	dashed	

lines	show	the	2.5%	and	97.5%	quantile	regression	fits.	Sample	size	is	shown	in	the	

bottom-right	corner	if	data	were	not	available	for	all	235	stocks.	 	
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Supp.	Figure	14.	SST	influence	as	a	function	of	nine	life	history	traits:	Brody	growth	

coefficient	(K),	asymptotic	maximum	length	(Linf),	asymptotic	maximum	weight	

(Winf),	natural	mortality	(M),	maximum	age	(Tmax),	age	at	maturity	(Tmat),	length	at	

maturity	(Lmat),	trophic	level,	and	median	depth.	SST	influences	are	colored	by	

significance	(blue=positive,	red=negative,	grey=non-significant).	Solid	lines	show	

the	50th	percentile	quantile	regression	fit	and	dashed	lines	show	the	2.5%	and	
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97.5%	quantile	regression	fits.	Sample	size	is	shown	in	the	bottom-right	corner	if	

data	were	not	available	for	all	235	stocks.	 	
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Supp.	Figure	15.	Distribution	of	SST	influence	among	(A)	specific	and	(B)	generic	

habitat	types.	Brown	and	blue	boxplot	shading	corresponds	to	demersal	and	pelagic	

habitats,	respectively.	Black	numbers	indicate	total	number	of	stocks	for	each	

habitat	type.	Blue	and	red	numbers	show	the	number	of	stocks	with	a	positive	and	

negative	SST	influence,	respectively.	 	
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Supp.	Figure	16.	SST	influence	as	a	function	of	the	latitude	of	stocks	of	the	same	

species	for	the	seven	species	with	≥5	stocks	in	the	analysis.	Lines	shows	Theil-Sen	

regression	fits	with	solid	lines	indicating	regressions	significant	at	the	0.10	level.	

Theil-Sen	regression,	a	form	of	robust	regression,	identifies	the	median	slope	of	

lines	through	all	possible	point	pairs	and	is	insensitive	to	outliers	and	endpoints	in	

small	datasets.	 	
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Supp.	Figure	17.	Comparison	of	LME-scale	changes	in	fisheries	productivity	

estimated	by	Britten	et	al.	(2016)	and	the	present	study.	Britten	et	al.	(2016)	

quantify	the	meta-analytic	mean	trend	in	recruitment	potential	(RMAX).	Comparable	

values	derived	from	the	present	study	are:	(A)	change	in	scaled	MSY	(MSY	divided	

by	maximum	MSY)	per	decade	from	1930-2010;	(B)	percent	difference	in	mean	MSY	

from	1930-39	to	2001-2010;	and	(C)	the	meta-analytic	mean	of	the	SST	influences	

of	stocks	in	an	LME	multiplied	by	the	change	in	temperature	from	1930-2010	in	the	

LME.	In	both	studies,	negative	and	positive	values	represent	a	negative	and	positive	

change,	respectively.	Blue	and	red	points	indicate	LMEs	where	both	studies	agree	

that	change	has	positively	and	negatively	impacted	productivity,	respectively.	Grey	

points	indicate	LMEs	in	which	the	studies	disagree	on	the	direction	of	productivity	

change.	The	present	study	describes	SST	influence	for	ten	LMEs	not	described	in	the	

Britten	study	(Bay	of	Biscay,	Canary	Current,	Greenland	Sea,	Humboldt	Current,	

Kuroshio	Current,	Labrador	Sea,	Mediterranean	Sea,	North	Brazil	Shelf,	South	

Atlantic	Ocean,	West	Bering	Sea)	and	the	Britten	study	describes	SST	influence	on	

one	LME	not	described	in	the	present	study	(East-Central	Australian	Shelf).	



 

 

184 

 

Conclusions	

Sustainable	fisheries	management	is	a	global	challenge	requiring	local	

solutions.	I	show	that	these	solutions	can	be	achieved	by	developing	new,	innovative	

interdisciplinary	and	quantitative	methods.	In	Chapter	1,	I	show	that	a	mixed-

method	approach	can	be	used	to	quantify	illegal	fishing,	its	impacts	on	an	

endangered	fish	species,	and	its	importance	to	the	local	community.	The	methods	

described	here	can	be	used	to	assess	non-compliance	and	its	impacts	and	

motivations	in	protected	areas	around	the	world.			In	Chapter	2,	I	show	that	

advanced	analytic	methods	and	information	borrowed	from	data-rich	stocks	can	be	

used	to	inform	the	management	of	data-poor	stocks.	I	also	provide	a	framework	for	

comparing	the	performance	of	data-limited	methods	as	new	methods	are	developed.	

In	Chapter	3,	I	show	for	the	first	time	that	climate	change	has	resulted	in	a	net	

decline	in	marine	fisheries	productivity	and	sustainable	catch	potential.	Adapting	

fisheries	management	to	account	for	shifts	in	productivity	will	require	global	

innovations	and	local,	regional,	and	national	implementations	of	new	policies.	

Together,	these	chapters	work	to	help	fisheries	management	overcome	challenges	

from	capacity	shortfalls,	data	limitations,	and	climate	change.	

	


