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ABSTRACT OF THE DISSERTATION

Quench Dynamics of One Dimensional Multi-component

Quantum Gases

by Huijie Guan

Dissertation Director: Natan Andrei

This thesis studies the quench dynamics of strongly correlated quantum systems described by

one dimensional integrable Hamiltonians. We develop the Yudson approach for such systems

in terms of contour integrals allowing the expansion of arbitrary states in terms of the Bethe

Ansatz eigenstates which in turn provides the means to calculate the time evolution of such

observables as densities or noise correlations from any initial states.

As a motivation to the present work, I present the state of art ultracold atom techniques and

fundamental questions related to the quench dynamics. Then various Bethe ansatz solutions

are discussed. This is followed by an introduction to the Yudson approach where advantages

and difficulties are listed. As applications of the Yudson approach, I studied the nonequilibrium

dynamics of the Lieb-Liniger model,(bosonic) Gaudin-Yang model, quenched from a Mott state

with a superfluid Hamiltonian. Integration contours are specified for various models and differ-

ent interactions. It is shown that the Yudson approach incorporates all free states and bound

states into the contour, separating them apart sheds light on the validity of the String hypoth-

esis. The result is affirmative for Lieb-Linger model, but not for the Gaudin-Yang model. Our

calculations for the density and correlation shows that for interacting system, if the pre-quench

state has negligible overlap among the particles, the system retains this feature after the quench.

Particularly, normalized noise function c(z,−z) at the origin shows different stages. Shortly af-

ter the quench, the sign are different for attractive and repulsive interaction. Then they both

quickly approaches the value where possibility to find both particles equals zero. Then the value

increases gradually for attractive models, while c(0, 0) remains small for repulsive systems.
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Chapter 1

Introduction

1.1 Ultracold Atom Experiment

Ultracold atom systems consist of atoms that are cold, dilute and usually neutral. The tem-

perature can be as low as nanokelovin, even picokelvin [? ]. At such low temperature, thermal

fluctuation is suppressed and quantum effects dominates. Thus, coherent, macroscopic matter

waves exist in the system and Bose-Einstein condensation and Fermi degeneracy are achieved.

The typical size of the system ranges from a few to 107 atoms. And the density is from 1012 to

1015 particles per cm3 to avoid the formation of molecules. This spare us any not well under-

stood interaction. Since the atoms are usually electrically neutral, the whole interaction is well

controlled by the Feshbach resonance. Thus both Bose-Einstein condensate and strongly inter-

acting systems can be realized. With large sets of methods to isolate, manipulate and probe the

state, the ultracold atom system can be used to simulate quantum states in solid state physics.

Moreover, since the constitutes are heavier and colder than the electrons, the time scale of the

dynamics are longer compared to that in a solid state system. Therefore, no ultrafast equip-

ment is needed in the experiment. At the same time, as the systems are well isolated from

the environment and defect free, the coherent time is very long, this enables one to observe

long-lived coherent quantum dynamics. The ultracold atom systems benefit greatly from the

ability to control the configuration of the system, to tune the interaction and to measure with

great precision, which will be discussed here.

1.1.1 Optical Lattice

Optical lattice, which consists of hundreds of thousands of microtraps, is formed by the in-

terference of counter-propagating laser beams. This artificial crystal of light traps neutral

atoms by optical dipole force, an effect called the AC Stark Shift. When light illuminates the

atoms, it induces a dipole moment in the atom, which in turn interacts with the light. This

modifies the internal energy of the atoms. As the electric field from the laser varies periodi-

cally in space, the optical dipole interaction appears as a spatially dependent potential, with
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V = −E · d ∝ α|E(r)|2, where α is the polarizability of the atom, and |E(r)| is the spatially

averaged electric field. When two counter-propagating laser beam are superimposed, one gets

a standing wave of the form V = V0| sin(kx)|2 with k = 2π
λ , whose period is a = λ

2 .

One important advantage of the optical lattice is its tunability of many parameters. First,

the dimensionality of the lattice can be varied from 3D to 1D, depending on the configuration of

the standing wave imposed. As shown in ??, two sets of perpendicular laser beams create a 2D

optical lattice that confines the atoms in an 1D tube. Or three such sets of beams create a cubic

array of potential. If the confinement in one direction is much weaker than the other two, one

get back to a 2D array of optical tubes. To make even more complex systems, one can change

the relative angle of the standing wave to get triangular lattices [? ], honeycomb lattices [? ] or

kagome lattices [? ]. Second, one can change the separation between adjacent sites by varying

the wavelength of the light. The depth of the potential can also be controlled by the intensity

of the beam. This will affect the hopping among different sites as well as on site interaction.

Lastly, by tuning the laser frequency ωL around the atomic resonance ωo = (εe − εg)/~(εe

being excited energy level and εg being ground state energy), the potential can be attractive

or repulsive. When ωL < ωo, the potential is attractive, the atoms stay at the high intensity

spots. When ωL > ωo, the potential is repulsive and the atoms are low field seeking .

Thanks to these features, together with the Fashbach resonance, cold atoms in optical lattice

become a valuable model system to study physical situations described by simple Hamiltonians,

say Lieb-liniger model [? ], Gaudin-Yang model [? ? ? ], Hubbard model [? ], Bose-Hubbard

model [? ] or Ising model [? ]. For the continuum models, i.e. the Lieb-liniger model

and Gaudin-Yang model, the Hamiltonian is characterized by the contact interaction strength,

determined by the Fashbach resonance. For lattice models such as the Hubbard model and

Bose-Hubbard model, the Hamiltonian is characterized by the hopping parameter (J) and the

on site interaction (U). The connection between these parameters and the lattice potential is

discussed in [? ]. As shown in [? ], J and U can be expressed in terms of the Wannier function,

which can be readily calculated numerically from the bandstructure calculation. As to the spin

model, the corresponding Hamiltonian can be derived by the Jordan-Wigner transformation

from the Hubbard model. To summarize, the optical lattice makes it possible to simulate

simple Hamiltonian which used to be a simplification of real complex systems.
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Figure 1.1: Illustration of 2D (a) and 3D (b) optical lattice created by sets of contour-
propagating waves. Figure from [? ]

1.1.2 Feshbach Resonance

For cold atom experiment, the Feshbach resonance is a unique tool that provides easy control

over the effective interaction among particles. The effective interaction is characterized by the

scattering phase shift δl and scattering length al, with l relates to the angular momentum. In

the context of cold atoms, where the kinetic energy is small, the centrifugal cost for l 6= 0 is

too much. Thus one only needs to consider the s-wave scattering, i.e. a0 and δ0. By tuning

the system through the Feshbach resonance with magnetic field, a0 can vary over an enormous

range, including positive infinity and negative infinity, see Figure ?? .

Feshbach resonance can be elastic or inelastic. Elastic Feshbach resonance may happen

in systems like Cesium |F = 4,MF = 3〉 (F being the quantum number for the total spin).

To understand this resonance, consider the example of two-particle scatterings . The relative

motion can be studied as a single-particle scattering problem from a quantum well. To make

our life easier consider a square quantum well V0 < 0 from 0 to R. Then the wavefunction in
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the radial direction equals

u(r) =


A sin(k′r) r < R

B sin(kr + δ) r > R

(1.1)

with k =
√

2mE
~ and k′ =

√
2m(E+V )

~ . The boundary condition leads to

k′ cot(k′R) = k cot(kr + δ0)

whose solution equals

tan(δ0) =
k tan(k′R)− k tan(kR)

k′ + k tan(kR) tan(k′R)

kR�1−−−−→ −kR(
tan(k′R)

k′R
− 1)

a0 is fixed by the condition that u(a0) = 0 as seen from outside the well.1. From equation ??,

one get

a0
kR�1−−−−→ tan(δ0)

k

kR�1−−−−→ −R(
tan(k′R)

k′R
− 1)

Thus, we can see that for k′R < π/2, a0 is negative. As one increases V , the scattering length

oscillates between positive and negative values, sweeping through positive infinity and negative

infinity. This corresponds to the Feshbach resonance. At these values (k′R = (2n−1)π
2 ), the well

is just enough to hold n bound states, and one of them has zero bounding energy. As the cross

section for l = 0 equals σ = 4πa2
0, it also diverges in the Feshbach resonance.

For inelastic Feshbach resonance, multiple atomic states are involved. For example, in

sodium gas, atoms in the state |ms = −1/2,mI = 3/2〉 which correlate into |F = 1,mF = 1〉

(S, I, F are quantum number for electronic, nuclear, and total spin) may collide and result in

the Feshbach resonance [? ]. This results from the coupling with a quasibound state |S =

1,ms = 1, I = 3,mI = 1〉. The former is called an open channel and the latter is called a closed

channel. When the energy of one of the bound states in the closed channel approaches the

energy of two free particles, the scattering gets enhanced and the Feshbach resonance occurs.

What happens is that the two free particles transform into the quasibound state, stay together

and return to the free state [? ].

As the two states have different spin configuration, the relative energy between them can

be varied by external magnetic field. Thus, the bound state can be tuned into resonance with

1This explains why some scattering length is negative, which is a result of tracing the wavefunction backwards
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the continuum state. Near the Feshbach resonance, the scattering length a0 varies with the

magnetic field as

a = abg(1−
∆

B −B0
)

with abg being the background scattering length of the open channel, which is as short ranged

as the van der Waals force. B0 and ∆ define the location and width of the resonance. In

the vicinity of the Feshbach resonance, the scattering length blows up to positive or negative

infinity.

When a0 is positive which corresponds to repulsive interaction, the energy of the contributing

bound state is lower than the free state energy. This leads to a real bound state and bosonic

molecules are formed. The BEC state is obtained. When a is negative which leads to an effective

attraction, the relevant bound state energy is higher than the initial state. This makes the

molecule unstable. Atoms bind loosely and BCS state emerges. Thus, the Feshbach resonance

leads to the crossover between the BEC and BCS states.

Besides the aforementioned crossover, cold atom systems have also realize other strongly-

correlated quantum phases, say Tonk-Girardeau Gas [? ? ] and phase transition from superfluid

side to Mott insulator side [? ? ]. Experiments with these systems not only improve our previous

understanding of them, but also provide a platform to study systems that are beyond what can

be calculated. Such approach is also referred to as quantum simulation.

To sum up, the Feshbach resonance provides the flexibility to tune the effective interaction by

external magnetic field. This happens when a quasibound state couples to a free state and their

energy are the same. Sweeping the magnetic field across the resonance, the scattering length

varies from positive infinity to negative infinity. Different phase of the system are probed. For

more information, see Ref. [? ? ? ? ],

1.1.3 Measurement

Measurements on the atomic gases are made from optical observation of a probe laser shone on

the cloud. The detection exploits three kinds of processes in the atom-light interaction: emission,

absorption and phase shift. This corresponds to three imaging techniques, fluorescence imaging,

absorption imaging and phase contrast imaging [? ].

Fluorescence imaging is most convenient. A laser beam near the atomic resonance is shone

on the atoms, gets absorbed and re-emitted. The scattered light is then collected to form an

image. Absorption imaging is the most common method. It collects the unscattered light and

images the shadow created by the atomic absorption. This method yields stronger signal than
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(a)
(b)

Figure 1.2: (??) Mechanism of a Fashbach resonance in a two-channel model. (??) Scattering
length a and bound state energy E near Feshbach resonance. Figure from [? ]

the previous one, since light is scattered into all directions in the fluorescence imaging. Both

methods are destructive and one need repeated preparation of the same initial state to obtain

information about time evolution. Phase contrast imaging is less invasive. An off-resonance

light propagates through the atomic gas and gets a phase shift when scattered. Meanwhile, a

phase shifter is placed at the focal point that adds a phase of π/2 (−π/2) only to the unscattered

light. This configuration enhances the signal and enables one to take a measure on the clouds

without affecting it.

An primary measurement that experimentalists made with these techniques is the time-of-

flight measurement[? ]. In order to probe a certain state |Ψ(T )〉, one removes the trapping

potential and lets the atoms expand ballistically for another period of time t and then detects

the density distribution of the state |Ψ(T + t)〉. Neglecting the initial size in the cloud, this

reveals information about the momentum distribution in the state |Ψ(T )〉[? ? ]. That is to say

〈n(x, t+ T )〉TOF = 〈n(k, T )〉trap. However, each experimental image record a single realization

of the density with a lot of spikes. To obtain the density distribution, one need to average over

an ensemble of images. In the meanwhile, these fluctuations contain information about higher

order correlation, which is important to characterize strongly correlated systems [? ? ]. As

discussed in [? ], there are periodic peaks or dips in the density-density correlation functions

measured in a time-of-flight experiments. The origin of these peaks and dips is from quantum

statistics of the bosonic and fermionic gas. The behaviour away from these locations depends

on the many-body state.

Note, in a typical image, each pixel record a substantial number N of particles, which greatly
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suppress the fluctuation by the order 1√
N

[? ]. In order to better measure the correlation func-

tion and obtain real space density distribution, experimentalists need more local detection. In [?

], single site resolved imaging is realized, but they have not reached the single-atom sensitivity.

The difficulty lies in the low signal-to-noise ratio. This obstacle is overcome recently [? ] via

high-resolution fluorescence imaging. Such in-situ imaging with single-atom sensibility provides

direct information about the density and correlation and enables one to visualize transition

from the Bose-Einstein condensate to the Mott insulator state [? ? ].

Aside from the aforementioned momentum distribution, correlation and density distribution

function, there are other observables that experimentalists measure to characterize the states

of the system [? ]. For example, momentum resolved exciation spectrum are studied in [? ? ]

using two-photon Bragg scattering. In [? ? ], transport coefficient relating to the atomic mass

flow are studied and Bloch observables are observed. Moreover, quasi-momentum distribution

are obtained by band mapping techniques [? ? ] and fraction of doubly occupied sites are

measured [? ].

To sum up, the ultracold atom systems provide unique and valuable opportunities for the

study of a diverse range of quantum phenomena with easily accessible time scale, long coher-

ent length and high tunability. Its development re-ignited other fields which would be quite

challenging to study in the context of condensed matter, one of the fields is the nonequilibrium

dynamics.

1.2 Nonequilibrium Dynamics

In the previous part, we have talked about systems of ultracold atoms in an optical lattice,

which are well isolated from the environment, with convenient timescale and rich toolbox for

manipulation and measurement. With these features, the ultracold gases make a unique contri-

bution to the area of nonequilibrium dynamics, spurring questions about whether steady states

emerge, how do observables equilibrate and validity of thermodynamic ensembles in describing

the equilibrium states in large isolated systems.

A simple setup to study the nonequilibrium process is by quantum quench, i.e. changing one

of the system parameters, which can be carried out fast or slow, globally or locally, and see how

the state evolves. After the quench, the initial state which is usually the ground state of the

initial Hamiltonian become superposition of a vast span of eigenstates of the new Hamiltonian
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H and will evolve unitarily as

|Ψ(t)〉 = e−iHt|Ψ(0)〉 =
∑
n

Cne
−iεnt|φn〉 (1.2)

with |Ψ(t)〉 describes the state of the system at time t, |φn〉 relates to the eigenstate of H with

eigenenergy εn.

This expression contradicts with ergodicity, which plays a fundamental role in statistical

mechanics. The ergodicity says that all states within some energy window are equally impor-

tant and the system will visit all the corresponding points in phase space. It justifies the notion

of ensemble. And calculation of any observable for a time evolved state at large time is equiv-

alent to that averaged over states in the ensemble with some proper weight factor. Thus, the

observable only depends on macroscopic quantities which are universal to the ensemble, not

on the microscopic state that the system initially is. Thus, we say the state reaches thermal

equilibrium.

Classically, the equilibration is made possible by chaos. However, this mechanism does not

work in quantum system. As shown in equation ??, the system evolves unitarily under the

influence of the Hamiltonian after quench and remembers everything about the initial state.

Thus, a pure state will not evolve into a thermal state, though the latter works very well for

most observables (which are local) in most systems (which are not integrable or many-body

localized).

In an attempt to explain the apparent thermalization, Deutsch and Scrednicki proposed the

Eigenstate Thermalization Hypothesis (ETH) [? ? ]. Instead of focusing on the asymptotic

state, the ETH examines the properties of matrix elements of local observables 〈Ψ(t)|A|Ψ(t)〉.

Based on equation ??, one has

〈Ψ(t)|A|Ψ(t)〉 =
∑
m,n

c∗mcne
−i(εn−εm)t〈φm|A|φn〉

t>tth≈
∑
n

|cn|2〈φn|A|φn〉

In the second line, off-diagonal terms are dropped after some thermalization time tth when these

terms lose coherence [? ]. What ETH states is that for those operators that thermalize, their

matrix elements are thermal in a sense that 〈φn|A|φn〉 = A(εn), i.e. the observable is a smooth

function of the energy. Then, one has

〈Ψ(t)|A|Ψ(t)〉
t>tth≈ A(εn)

Since the choice of state |Ψ(0)〉 is arbitrary, the above expression indicates that any state, either

be eigenstate or a superposition of them, thermalize. With this relation, it is straightforward
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to see that expectation value of A of any state will evolve into the prediction of microcanonical

ensemble[? ]

〈Ψ(t)|A|Ψ(t)〉
t>tth≈ 1

Nεn,∆εn

∑
|εα−εn|<∆εn

〈α|A|α〉

As pointed out in [? ], it is also possible to rewrite the above relation with canonical ensemble,

as the latter is equivalent to the microcanonical ensemble in the thermodynamics limit

〈Ψ(t)|A|Ψ(t)〉
t>tth≈ 1

Z

∑
α

e−βεα〈α|A|α〉

where the inverse temperature is fixed by the initial state 〈Ψ(0)|H|Ψ(0)〉 = 1/Z
∑
α e
−βεαεα.

In short, we have seen how the ETH results in thermal behavior in some observables. A

necessary condition on the observable to thermalize is locality. That is the observable should

have support on a relative small number of particles compare to the whole system. Physically,

that means though the whole system evolves unitarily, the subsystem thermalizes, with the rest

of the system serves as a heat bath [? ].

There are also situations where ETH does not hold, thus the system does not relax to

thermalization for a long time. One of them happens in integrable models, which are the main

topic of this thesis. In [? ] the authors calculated two local observables via diagonal ensemble,

microcanonical ensemble and for two specific eigenstates. The results are very different for

integrable system, while for non-integrable model, results by various approaches agree with each

other. Experimentally, systems that are close to integrable also shows non-thermal behaviours.

In the quantum Newton’s cradle experiment, two pulses of opposite momentum are sent into

a 1-D boson system in a harmonic trap, it is observed that the system retains oscillation after

thousands of period [? ].

Due to the presence of large number of conserved quantities in integrable systems, the

dynamics is much constrained, thus does not thermalize easily. However, these systems do

approach a quasi-stationary state called pre-thermalized state. Such state cannot be described

by the usual thermodynamic ensemble with fixed number of total energy and particle number.

Effect of all integral of motion needs to be properly incorporated. Thus it is natural to consider

a generalized Gibbs ensemble (GGE), which says that the density matrix equals

ρGGE =
1

ZGGE
exp(−

∑
m

λmIm)

with Im being the conserved quantities. For the Lieb linger model characterized by quasi-

momentum ks , these conserved charges take the simple form Im|k〉 =
∑
i k
m
i |k〉. λm is the

Langrange multipliers fixed by the initial condition. ZGGE is the partition function. Just as
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how maximum-entropy principle leads to the Gibbs ensemble, the same principle also results in

GGE with all constraint considered. Similarly, the eigenstate thermalization hypothesis should

also be modified to include all conserved quantities [? ]. Such generalization is confirmed ex-

perimentally. The authors in [? ] show that it is impossible to use a single temperature, as

in Gibbs ensemble, to explain the interference pattern they obtained after coherently splitting

one boson gas into two. Instead, they need 10 temperature-like parameters to properly fit the

results. This reflects the complex behaviour of an integrable system which can be described

by GGE with some appropriate Langrange multipliers. Thus, when valid, the GGE description

save one from following the evolution of the integrable system to a stationary state, i.e.

〈Θ(t→∞)〉 = Tr[ρGGEΘ]

However, in strongly correlated systems, it is still very hard, if possible, to explicitly carry

out the trace. Recently, it was shown that generalized Gibbs ensemble is equivalent to an

appropriately chosen eigenstate in the infinite system [? ? ]. i.e.

Tr[ρGGEΘ] = 〈k0|Θ|k0〉

In [? ], the authors obtained the quasimomentum distribution for the state, thus fix |k0〉

explicitly. This enables them to calculate the two-body and three-body correlation functions.

Although the idea of GGE has been widely accepted and proved to be correct in systems

that are equivalent to free fermions [? ? ], there are still doubts on its validity in general

systems. As shown in [? ], the GGE prediction for late-time correlation in XXZ model deviates

from first principle calculation. The authors in [? ] argue that the failure of GGE is due

to the presence of bound states, where the conserved charges cannot uniquely determines the

quasimomentum distribution. This is further confirmed by [? ] where it is found that the local

charges only depend on the distribution of real quasimomentum, while the correlation function

depends on distribution of all complex parameters. Thus, a complete understanding of the

asymptotic behavior of a non-equilibrium system is still eluded.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows

In chapter 2, I provide a detailed review on various Bethe Ansatz methods, which are the

building blocks for solving quench dynamics. In chapter 2.1, I discuss the coordinate Bethe

Ansatz and its application to the Lieb-Liniger model. This solution will be used in chapter

4 to study quench dynamics of a one-dimensional boson gas. In chapter 2.2, algebraic Bethe
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Ansatz is used to solve the XXZ model. Based on these two methods, we talked about nested

Bethe Ansatz and how it solves the Gaudin-Yang model. Its solution will be the cornerstone

for studying the non-equilibrium dynamics in a 1-D fermion system with two species.

In chapter 3, I introduce the main approach used in this thesis, called Yudson Approach.

The Yudson presentation provides an efficient way to expand any state in terms of Bethe Ansatz

solutions in an infinite system. In chapter 3.1, I discussed the obstacle encountered if one directly

uses the Bethe Ansatz solution for the expansion. In chapter 3.2, the Yudson representation is

obtained as a simple modification of the usual resolution of the identity 1 = |k〉〈k|. Then in

chapter 3.3, I discussed its advantages and disadvantages.

In chapter 4, I apply the Yudson formalism to the study of quench dynamics of Lieb-

liniger model. Chapter 4.1 is devoted to the Central theorem. The integral contours of the

representation are specified for attractive and repulsive cases. Proof of the Yudson expansion

as an identity resolution is provided. In chapter 4.2, the exact solution for the two-particle

scenario is obtained. Density and correlation as a function of time or in the asymptotic limit

are plotted and analyzed. In chapter 4.3, I discussed the multiparticle dynamics in the large

time limit. Local observables are calculated from the time evolved wavefunction via the Yudson

approach. I also talked about the possibility of incorporating the well-studied form factor results

into the Yudson approach.

In chapter 5, I studied the time evolution of a two component fermion system described by

the Gaudin-Yang model. In chapter 5.1, central theorem is proved for the single impurity case

first, where only one fermion is different from the rest of the gases. Then the proof is generalized

to systems with multiple impurities. In chapter 5.2, I discuss the physical interpretation of the

Yudson representation in terms of bound states. There I will show how bound states emerge

dynamically. In chapter 5.3, quench dynamics of two distinguishable particles are studied.

Compared with the result in chapter 4.2, the role of quantum statistic becomes clear. In

chapter 5.4 and 5.5, I discuss the non-equilibrium dynamics in a system consisting of single

impurity and a multi-particle bath, with the impurity being static or kinetic in the initial state.

Chapter 6 is devoted to the time evolution of a two component boson system described by the

bosonic Gaudin-Yang model. Bethe ansazt is derived in section 6.1. Yudson representation with

interaction specific contour is given in section 6.2. In section 6.3, I discussed the proof of central

theorem focusing on the unique aspects of this model compared to the fermionic counterpart. In

section 6.4, different types of bound states that exists in the system is listed. The time evolution

of local observables are calculated and compared with the fermionic equivalent in section 6.5.

In chapter 7, I make the conclusion and discuss possible future directions that are promising
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with the current technique.
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Chapter 2

Bethe Ansatz

The Bethe Ansatz was first proposed by H.Bethe in 1931 [? ] while studying the Heisenberg

ferromagnetic problem. It was later used to solve various models like Kondo problem [? ],

Hubbard model [? ], Lieb-Liniger model [? ? ], Gaudin-Yang model [? ? ], Anderson model [?

], etc. These Bethe Ansatz solvable models are not free in a sense that the many-body problem

cannot be reduced into a single particle one. However, the Bethe Ansatz generalizes this idea so

that the many-body dynamics can be factorized into a series of two particle scattering processes.

These two particle scattering processes are characterized by scattering matrices. Let’s say that

S12 describes the process that particle 1 which is initially to the left of particle 2 jumps to

the right. Since the problem can be factorized, the sequence of these two particle scattering

processes does not matter. This imposes three constraints on the scattering matrices. They are

SijSji = 1, SjkSikSij = SijSikSjk and SijSmn = SmnSij . They are known as the Yang-Baxter

Equations. As the scattering matrices usually consist of permutation operators which act on

the spin space, they do not commute in general. These relations defines a class of systems

which are Bethe Ansatz solvable. These are also called integrable models. The relation reveals

the fact that these systems have more conservation laws, as is the case for classical systems.

Actually, the number of integrals of motion for quantum integrable models is infinite. This is

the reason why factorization is valid in these systems. One cannot tell if a model is integrable or

not from the Hamiltonian. One needs to solve the two particle problem and get the scattering

matrix. Only if the scattering matrix satisfies the Yang-Baxter equation can we say the model

is integrable. Sometimes, a model can be non-integrable except for a special set of parameters.

One example is the two-impurity Anderson model.

The Bethe Ansatz can be further categorized into several forms. The one initially proposed

for the Heisenberg model is called Coordinate Bethe Anatz, as the solution of the problem

is expressed in terms of wavefunction in the coordinate space. Algebraic Bethe Ansatz is

another form which describes states by raising and lowering operators acting on a reference state.

Different models have different commutation relations among these operators, which is why the

method gets the adjective algebraic. Nested Bethe Ansatz is a generalization of the Coordinate
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Bethe Anatz applied to systems with internal degrees of freedom. Like the Coordinate Bethe

Ansatz, Nested Bethe Ansatz also focuses on the wavefunction. One difference is that besides the

momentum which is related to the charge motion, there is also spin rapidity that characterizes

spin wave. One can combine the previous two methods to obtain the wavefunctions of the Nested

Bethe Ansatz. To do that, one writes down the spacial part of the wavefunction in terms of

Coordinate Bethe Ansatz and expresses the spin part using Algebraic Bethe Ansatz. As an

illustration, we are going to solve Lieb-Liniger model via Coordinate Bethe Ansatz, XXZ model

using Algebraic Bethe Ansatz, then discuss the Nested Bethe Ansatz solution for Gaudin-Yang

model. The solution of Lieb-Liniger Model and Gaudin-Yang model will also play an important

role for later chapters when we talk about Yudson’s Approach for time evolution of a quenched

system.

2.1 Coordinate Bethe Ansatz

2.1.1 Lieb-Liniger Model

As an example of the Coordinate Bethe Ansatz, we will study spinless bosons in a continuous

one-dimensional system where particles interact via contact interactions. The model is called

the Lieb-Liniger model, defined by the following Hamiltonian

H =

∫
x

∂xΨ†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

where Ψ†(x) (Ψ(x)) is the creation (annihilation) operator of spinless boson at the point x. The

operator satisifies the canonical commutation relation [Ψ†(x),Ψ(x′)] = δ(x−x′). c parametrizes

the strength of the interaction. An eigenstate is defined as follows, with |0〉 being the Fock

vacuum state.

|Ψ〉 =

∫
x

f(x1, x2, . . . , xN )Ψ†(x1)Ψ†(x2) . . .Ψ†(xN )|0〉

Here f(x1, x2, . . . , xN ) = f(~x) is the wavefunction which is symmetric in terms of its argument.

The integration is defined on an infinite line, i.e.
∫
x

=
∫∞
−∞ dx1

∫∞
−∞ dx2 . . .

∫∞
−∞ dxN . Then

from the relation H|Ψ〉 = E|Ψ〉, we obtain the first-quantized Hamiltonian which acts on the

wavefunction directly

h = −
N∑
i

∂2
xi + 2c

N∑
i<j

δ(xi − xj)

An important feature of this Hamiltonian is that particles do not see each other unless they

collide. Therefore, for each ordered region where none of the x’s are the same, the particles

can be treated as free and we can write down the wavefunction as product over plane waves
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characterized by quasi-momentum k1, k2, . . . , kN . The final solution should be a superposition of

plane waves with the same total energy (
∑
k2
i ) and total momentum (

∑
ki). For a two particle

system, this would simply mean a combination of eik1x1+ik2x2 and eik2x1+ik1x2 . However , for

a generic many-body problem, there are much more {k}’s that satisfy this constraint. And

we should include all of them, which makes the solution intractable. However, for integrable

models, where all interactions can be factorized into a series of two particle scattering processes

which preserve the quasi-momentum set {k}, the Hamiltonian is diagonal is the basis of {k} and

we need to include only ki that belongs to the same set with all possible permutations among

themselves. Mathematically, it means, for each sector Q with the ordering θ(xQ1 < xQ2 < . . . <

xQN ), the wavefunction can be written as

fQ(x) =
∑
P

ei
∑
i kpixiAQ(P )θ(xQ1 < xQ2 < . . . < xQN )

Moreover, as the wavefunction is symmetric in x’s, AQ(P ) is related to AQ′(P ) as we are going

to show in detail in the following. Therefore, wavefunction of different sectors are dependent

on each other, and we only need one sector to characterize the state, which is usually chosen to

be the sector θ(x1 < x2 < . . . < xN ).

Before the discussion of the relation among A’s for different Q’s, we want to deviate a little

bit and talk about the designations of permutations that we are going to use a lot, which can

be confusing sometimes.

Permutations

The permutation group of N objects are denoted as SN . There are N ! elements in this group.

To specify an element, we introduce the following notation

P123 =

 1 2 3

2 3 1


with the meaning that 1 is replaced by 2, 2 is replaced by 3, 3 is replaced by 1. However,

it becomes less clear if the starting state is not ordered increasingly. In general, there are

two conventions which we will call ’by element’ and ’by position’. Permutation by element

designates a permutation by the elements that get switched, e.g. P123 =

 2 1 3

3 2 1

. Per-

mutation by position defines a permutation by the positions of element that get changed. e.g.

P123 =

 2 1 3

1 3 2

. Both conventions have been widely used, but the mixture of these con-

ventions can lead to problems. To illustrate their differences, we use letter P for permutation by
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element and letter Q for permutation by position. It’s easy to check that P23P12 = Q12Q23 = 1 2 3

3 1 2

. Also, given P1 = Q1 =

 1 2 3

1 3 2

, P2 = Q2 =

 1 2 3

3 2 1

, we have

(k1, k3, k2) · (y1, y2, y3)T =
∑
kP1iyi =

∑
kP1P2iyP2i =

∑
kQ1iyi =

∑
kQ2Q1iyQ2i, i.e. consec-

utive permutations act to the right of previous operator for P and act to the left for Q. This

difference becomes clear with the matrix representation of the permutation. Define

k = (k1, k2, . . . , kN )T

(Pij)mn = (Qij)mn =

1, {i, j} = {m,n}, or i = j 6∈ {m,n}

0, otherwise

Then

(kP1, kP2, . . . , kPN ) = (k1, k2, . . . , kN )P

(kQ1, kQ2, . . . , kQN ) = (k1, k2, . . . , kN )Q−1

Therefore, it’s not hard to understand the aforementioned difference as∑
i

kP1iyi = kᵀ · P1 · y = kᵀ · P1 · P2 · P−1
2 y =

∑
i

kP1P2iyP2i

∑
i

kQiyi = kᵀ ·Q−1
1 · y = kᵀ ·Q−1

1 ·Q
−1
2 ·Q2 · y =

∑
i

kQ2Q1iyQ2i

And the relation between them is now clear that is P = Q−1. One advantage of the permutation

by element, however, is that we can simply treat the transform
∑
kP1iyi =

∑
kP1P2iyP2i as

replacing i by P2i without going through the matrix manipulation. Therefore, from now on, we

will use this convention, i.e. kPi = (P−1k)i.

With the clarification of our permutation notation, we will discuss the relation between A’s

of different order Q. From the bosonic property of the wavefunction, we have

fQ(x) =
∑
P

eikPixiAQ(P )θ(xQ1 < xQ2 < . . . < xQN )

fQ′(y) =
∑
P ′

eikP ′iyiAQ′(P
′)θ(yQ′1 < yQ′2 < . . . < yQ′N )

fQ(x) = fQ′(y)

From the Heaviside function, we have xQi = yQ′i, therefore

fQ′(y) =
∑
P ′

eikP ′ixQQ′−1iAQ′(P
′)θ(xQ1 < xQ2 < . . . < xQN )

=
∑
P ′

eikP ′Q′Q−1ixiAQ′(P
′)θ(xQ1 < xQ2 < . . . < xQN )

= fQ(x)
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AQ′(P
′) = AQ(P ) if P = P ′Q′Q−1

i.e.

AQ(P ) = AQ′(PQQ
′−1)

Again, as we have shown here, the amplitude for sectors of different ordering are dependent

on each other. We may focus on one sector and obtain the wavefunction for all sectors by the

above relation.

Now, the Bethe Ansatz solution can be written as the following in the sector x1 < x2 <

. . . < xN

f(x) =
∑
P

eikPixiA(P )θ(x1 < x2 < . . . < xN )

Within this sector, all of the coordinates are different, then Schrodinger Equation yields,

hf(x) =
∑
i

k2
i

∑
P

eikPixiA(P )θ(x1 < x2 < . . . < xN ) = Ef(x)

i.e.

E =
∑
i

k2
i

On the boundary of the sector, say xi = xj with i < j, hf(x) − Ef(x) has some terms with

δ(xi − xj) which need to vanish as well, i.e.

i(kPi − kPj)eikPixiA(P ) + i(kP ′i − kP ′j)eikP ′ixiA(P ′) + ceikPixiA(P ) + ceikP ′ixiA(P ′) = 0

Here we have picked out P ′ = PPij so that the plane wave part are identical. From this

equation, we obtain the following relation

A(PPij)θ(j − i) =
kPi − kPj − ic
kPi − kPj + ic

A(P )θ(j − i)

=AkPi(Pij)A(P )θ(j − i)

Or alternatively

A(P ′ = PPij)θ(i < j) =
kP ′j − kP ′i − ic
kP ′j − kP ′i + ic

A(P )θ(i < j)

For our convenience, we can choose A(1) = 1, this corresponds to k1 pairs with the smallest

coordinate, k2 pairs with the next-smallest coordinate, etc. Then, in general, we can write

A(P ) =
∏
i<j

Pi>Pj

kPj − kPi − ic
kPj − kPi + ic

=
∏
i<j

P−1i>P−1j

ki − kj − ic
ki − kj + ic

So far, we have derived the Bethe Ansatz eigenstate of the Lieb-Linger model and showed that

wavefunctions with different ordering of the x’s are dependent on each other. Now, we will show
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that permutation on the k’s will also leave the wavefunction unchanged up to a phase factor that

depends on k and the permutation. As an example, we will show that fPijk(x) = fk(x)S∗(Pij)

with S(P ) being the scattering matrix related to permutation P , i.e. S(Pij) =
ki−kj−ic
ki−kj+ic for

i < j.

fk′(x) =
∑
P ′

eik
′
P ′mxmAk′(P

′)θ(x1 < . . . < xN )

=
∑
P ′

e
ikPijP ′mxmAPijk(P ′)θ(x1 < . . . < xN )

=
∑
P

eikPmxmAPijk(PijP )θ(x1 < . . . < xN )

APijk(PijP ) =
∏
m<n

P−1Pijm>P
−1Pijn

kPijm − kPijn − ic
kPijm − kPijn + ic

=
∏

Pijα<Pijβ

P−1α>P−1β

kα − kβ − ic
kα − kβ + ic

=
∏
α<β

P−1α>P−1β

kα − kβ − ic
kα − kβ + ic

S∗(Pij)

=Ak(P )S∗(Pij)

The third line can be understood by comparing the following ration∏
Pijα<Pijβ

P−1α>P−1β

kα − kβ − ic
kα − kβ + ic

/ ∏
α<β

P−1α>P−1β

kα − kβ − ic
kα − kβ + ic

=
∏

Pijα<Pijβ
α>β

P−1α>P−1β

kα − kβ − ic
kα − kβ + ic

/ ∏
Pijα>Pijβ

α<β
P−1α>P−1β

kα − kβ − ic
kα − kβ + ic

=
∏

Pijα<Pijβ
α>β

P−1α>P−1β

kα − kβ − ic
kα − kβ + ic

∏
Pijα<Pijβ

α>β
P−1α<P−1β

kα − kβ − ic
kα − kβ + ic

=
∏

Pijα<Pijβ
α>β

kα − kβ − ic
kα − kβ + ic

=
ki − kj + ic

ki − kj − ic

=S∗(Pij)

Replacing APijk(PijP ) with Ak(P )S(Pij), we obtain the relation fPijk(x) = fk(x)S∗(Pij) for

i < j. Thus |k〉 and |Pk〉 are the same state and

|Pk〉 = S∗k(P )|k〉 (2.2)
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One property of the Bethe Ansatz wavefunction that we can get from this relation is that

limki→kj fk(x) = − limki→kj fPijk(x), i.e. fk(x) vanishes as ki → kj for any i and j. This

means that none of the particle could have the same quasi-momentum even if they are bosons.

This is a general property of the Bethe Ansatz solutions.

Bethe Equation

Typically, the next step after we get the wavefunction is to impose periodic boundary condition,

i.e. f(x1, x2, . . . , xN ) = f(x1 + L, x2, . . . , xN ), with L being the size of the system. Write out

the right hand side explicitly

f(x1 + L, x2, . . . , xN ) =
∑
P ′

e
ikP ′1

x2+ikP ′2
x3...ikP ′N (x1+L)

A(P ′)θ(x2 < x3 < . . . < (xN + L))

and compare with f(x1, x2, . . . , xN ), one can see that when P ′ = P

 1 2 . . . N

2 3 . . . 1

, both

sides have exponential eikPixi which can be cancelled, and we arrive at the equation

e−ikP1L = A(P ′)/A(P ) =
∏
i6=1

kP1 − kPi − ic
kP1 − kPi + ic

i.e.

e−ikiL =
∏
j 6=i

ki − kj − ic
ki − kj + ic

, i = 1, . . . , N

These equations are the Bethe equations, a set of N coupled equations which are usually hard

to solve. To get around this problem, people set the system size to infinity while keeping the

density of the particle constant, i.e. go to thermodynamic limit. Thus, instead of solving each

k set that satisfies the Bethe equation, they now look for the distribution of these k’s. This

method is called thermodynamic Bethe Ansatz, which has successfully solved both ground state

and excited state properties of many systems. We will not go in that direction, but only talk

about the patterns of these k solutions that satisfy Bethe equation in this limit. We want to

show that for repulsive case, i.e. c > 0, only real k’s are allowed, while for attractive case with

c < 0, there are complex k solutions which correspond to bound states.

Assuming that there are complex k solutions, and ki is the one with greatest positive imag-

inary part. Then the left hand side of the Bethe equation goes to infinity in the limit L→∞.

This means that one of the denominator on the right hand side must vanish, i.e. kj = ki+ ic for

some j. However, this would violate the assumption that the imaginary part of ki is greatest, if

c is positive. Similar argument can be made for ki with the most negative imaginary part, and

we arrive at the conclusion that for repulsive interaction, all k solutions have to be real. On
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the other hand, this would not be a problem for system with attractive interaction. It simply

implies that if there is a solution ki with positive imaginary part, there must be another kj

with the same real part but lies below ki by distance |c| in the complex plane. Similarly, a kj

in the lower-half plane is always accompanied by another one at ki = kj + i|c|1 . The pattern

that satisfies this is a string in the complex plane, i.e.

ki = k − in+ 1− 2j

2
c, , j = 1, . . . , n

Here n is the length of the string, and the solution of an attractive system may include several

strings of different lengths. A string of length n is also called an n-string, it corresponds to a

bound state among n particles. As an example, if k1, k2 and k3 form a 3-string, then

f(x) ∼
∑
P

eik(x
P

-1
1
+x

P
-1

2
+x

P
-1

3
)ec(xP -1

1
−x

P
-1

3
)θ(P

−1
1 > P

−1
2)θ(P

−1
2 > P

−1
3)θ(x1 < x2 < x3)

=
∑
P

eik(x
P

-1
1
+x

P
-1

2
+x

P
-1

3
)e−c|xP -1

1
−x

P
-1

2
|/2−c|x

P
-1

2
−x

P
-1

3
|/2−c|x

P
-1

1
−x

P
-1

3
|/2θ(P

−1
1 > P

−1
2)

θ(P
−1

2 > P
−1

3)

Here, due to the divergence of S12 and S23, only the permutations that satisfy the relation

P−11 > P−12 and P−12 > P−13 contribute. This would be more easily understood if we

multiply the wavefunction by the phase A(P13)∗ = k1−k2+ic
k1−k2−ic

k2−k3+ic
k2−k3−ic

k1−k3+ic
k1−k3−ic . Then only the

terms that satisfy the two Heaviside functions do not vanish. We have used the symmetry

property among x’s to get the second line. From here, it is clear why a 3-string corresponds

to a bound state state among three particles, as the amplitude of the wavefunction decreases

exponentially as the distance between any of them gets greater. This string pattern of the

solution is called String hypothesis. This has not been proved but it is widely believed that

this is true for infinite system. In the later chapter, we are going to confirm the validity of

this hypothesis indirectly by showing that the complete basis of Bethe Ansatz solution indeed

involves these string solutions.

2.2 Algebraic Bethe Ansatz

As a second form of the Bethe solution, Algebraic Bethe Ansatz will be the next subject to talk

about here. Two very good references on this topic among many others are the one by L.D

Faddeev ([? ]) and F. Franchini ([? ]). The Algebraic Bethe Ansatz is also called Quantum

1Note that the existance of kj = ki + ic is only necessary for the right hand size of Bethe equation to vanish.

We will not talk about its sufficiency which would involve the ambiguity of 0
0

. This pattern is only a hypothesis,

we will not rely on it for any calculation in this thesis
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Inverse Scattering method. It is a quantum version of the Inverse Scattering method which

has been used to study classical integrable system long before the development of Algebraic

Bethe Ansatz. For quantum systems with classical counterpart, the construction of the two

methods also shows similarity. Both methods map a non-trivial interacting problem to a simpler

one by the introduction of an auxiliary field. This auxiliary degree of freedom decouples the

interaction among the physical degrees of freedom such that the latter only interact with the

auxiliary field. This interaction is represented by a L-operator, e.g. Lia(λ) describes the

scattering matrix between physical site i and auxiliary field. The monodromy matrix defined

as Ta(λ) = Lna(λ) . . . L1a(λ) =

 A(λ) B(λ)

C(λ) D(λ)


a

, expressed in the auxiliary space Ha, then

encodes the interaction of the auxiliary field with the whole physical system. Here each entry

is an operator that acts on the physical space H = ⊕Ni=1Hi. To retrieve the Transfer Matrix 2

which characterizes the interaction among physical degrees of freedom, one traces over auxiliary

field and gets T (λ) = Tra Ta(λ) = A(λ) + D(λ). Here λ is a continuous parameter belong to

the auxiliary field. This extra parameter gives us more degrees of freedom, as we are going to

see that [T (λ), T (µ)] = 0. Therefore transfer matrix with different parameter share the same

eigenvectors. Thus one may solve an easier eigen problem for some T (λ) claiming that they are

also the solution of the physical problem.

The construction starts with the following relations, which are examples of Yang-Baxter

relation

Lia(λ)Lib(µ)Rab(λ− µ) = Rab(λ− µ)Lib(µ)Lia(λ) (2.3)

Ta(λ)Tb(µ)Rab(λ− µ) = Rab(λ− µ)Tb(µ)Ta(λ) (2.4)

with subscript a and b denote two different auxiliary space Ha and Hb. Note the second relation

(??) can be derived from the first one easily as [Lia, Ljb] = 0 for i 6= j, a 6= b and

Ta(λ)Tb(µ)Rab(λ− µ) =Lna(λ) . . . L1a(λ)Lnb(µ) . . . L1b(µ)Rab(λ− µ)

=Lna(λ)Lnb(µ) . . . L1a(λ)L1b(µ)Rab(λ− µ)

=Lna(λ)Lnb(µ) . . . Rab(λ− µ)L1b(µ)L1a(λ)

=Rab(λ− µ)Lnb(µ)Lna(λ) . . . L1b(µ)L1a(µ)

=Rab(λ− µ)Tb(µ)Ta(λ)

2Its name originates from solving classical two dimensional models, like six-vertex model. This name has no
particular meaning in the context here



22

Here relation (??) can also be written as

(T (λ)⊗ T (µ))R(λ− µ) = R(λ− µ)Π (T (µ)⊗ T (λ)) Π (2.5)

with Π being the permutation operator that exchanges the two auxiliary degrees of freedom.

Π =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


ab

This relation reveals an important property of the system. Multiply R
−1

(λ, µ) from the left on

both sides and take the trace over both auxiliary fields. Due to cyclic property of the trace,

we get T (λ)T (µ) = T (µ)T (λ), i.e [T (λ), T (µ)] = 0. Expand the transfer matrix in power of its

entry, we get an infinite set of charges that commute with each other. One of them, as show

later, is the Hamiltonian. This guarantees the integrability of the system.

The construction relies on the relation (??) and (??) which also impose a constraint on the

R-matrix as

Lia(λ)Lib(µ)Lic(ν)Rbc(µ− ν)Rac(λ− ν)Rab(λ, ν)

=Rbc(µ− ν)Lia(λ)Lic(ν)Lib(µ)Rac(λ− ν)Rab(λ− µ)

=Rbc(µ, ν)Rac(λ− ν)Lic(ν)Lia(λ)Lib(µ)Rab(λ, ν)

=Rbc(µ− ν)Rac(λ− ν)Rab(λ− µ)Lic(ν)Lib(µ)Lia(λ)

i.e.

Lia(λ)Lib(µ)Lic(ν)

=Rbc(µ− ν)Rac(λ− ν)Rab(λ− µ)Lic(ν)Lib(µ)Lia(λ)R
−1
ab(λ, µ)R

−1
ac(λ, ν)R

−1
bc(µ, ν)

Here one has passed Rbc first though the product of L operator and then pass Rac and Rab

successively. One can also reverse this process and calculate Lia(λ)Lib(µ)Lic(ν)Rab(λ, ν)Rac(λ−

ν)Rbc(µ− ν), then one can obtain the relations

Lia(λ)Lib(µ)Lic(ν

=Rab(λ− µ)Rac(λ− ν)Rbc(µ− ν)Lic(ν)Lib(µ)Lia(λ)R
−1
bc(µ, ν)R

−1
ac(λ, ν)R

−1
ab(λ, µ)

Combining these two relations, one obtains the following relation

Uabc(λ, µ, ν)Lic(ν)Lib(µ)Lia(λ)U
−1
abc(λ, µ, ν) = Lic(ν)Lib(µ)Lia(λ)
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Uabc(λ, µ, ν) = R
−1
ab(λ, µ)R

−1
ac(λ, ν)R

−1
bc(µ, ν)Rab(λ− µ)Rac(λ− ν)Rbc(µ− ν) = 1

i.e.

Rab(λ− µ)Rac(λ− ν)Rbc(µ− ν) = Rbc(µ− ν)Rac(λ− ν)Rab(λ− µ) (2.6)

This is another example of the Yang-Baxter relation whose role is similar to the adjoint repre-

sentation of the Lie algebra. A key step of the quantum Inverse Scattering method is to find

a R-matrix that satisfies the Yang-Baxter relation. This R-matrix plays a very important role

through relation (??) and (??) as it defines the algebraic structure of the L-operator, transfer

matrix and its matrix elements which are operators that act in the full quantum space H. There

are systems with the same R-matrix but different L-operators. They are closely related and can

be compared to different representation of the Lie algebra. Examples of this are XXX model

and Lieb-Liniger model, XXZ model and sine-Gordon model.

Although the R-matrix plays an important role in the construction of quantum Inverse

Scattering method, in general, it is not possible to write down the R-matrix for a specific

system3. In practice, one looks for solutions of R-matrix that satisfy the Yang-Baxter relation

and use Inverse Scattering machinery to identify the problem.

As an example of the Algebraic Bethe Ansatz, we will solve XXZ model with the assumption

that we have already known the R-matrix and will show how one relates this R-matrix with the

XXZ Hamiltonian.

2.2.1 XXZ Model

The R-matrix of XXZ model is

R(λ− µ) =


f(µ, λ) 0 0 0

0 1 g(µ, λ) 0

0 g(µ, λ) 1 0

0 0 0 f(µ, λ)


ab

with f(λ, µ) = sinh(λ−µ+φ)
sinh(λ−µ) , g(λ, µ) = sinh(φ)

sinh(λ−µ) . One can plug it into equation (??) and test

that it satisfies the Yang-Baxter equation. Sometimes, people also call R̃(λ− µ) = R(λ− µ)Π

the R-matrix. Here Π is the permuation operator such that in R̃(λ−µ), matrix element g(λ, µ)

and 1 switch position. With this matrix, one may simplify equation (??) as

(T (λ)⊗ T (µ))R̃(λ− µ) = R̃(λ− µ)(T (µ)⊗ T (λ))

3In some cases, one can make use of the result from Coordinate Bethe Ansatz to write down R-matrix and
we are going to talk about that in the context of Nested Bethe Ansatz
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To avoid confusion, we will call this matrix R̃(λ−µ) and without explicit specification, we mean

R(λ− µ) by the name R-matrix.

After one write down the R-matrix, one needs to find a L-operator that also satisfies the

Yang-Baxter equation. The solution is not unique. The simplest construction would simply be

using the form of the R-matrix up to an arbitrary constant, i.e. Lia(λ) = C(λ)Ria(−λ) with

C being a complex function of λ. Models defined by these L-operators are called fundamental,

and are usually spin models. Other L-operator satisfying the Yang-Baxter equation can also

be found, say, for sine-Gordon model which has the same R-matrix, the L-operator is a 2 × 2

matrix that is closely related to its classical counterpart. For XXZ model, we can easily write

down the L-operator as

Lia(λ) =
1

sinh(λ+ φ)


sinh(λ+ φ) 0 0 0

0 sinh(λ) sinh(φ) 0

0 sinh(φ) sinh(λ) 0

0 0 0 sinh(λ+ φ)


ia

=
1

sinh(λ+ φ)

 sinh(λ+
1+σzi

2 φ) sinh(φ)σ−i

sinh(φ)σ+
i sinh(λ+

1−σzi
2 φ)


a

In the second line, the L-operator is written in the basis of the auxiliary field in V a. The mon-

odromy matrix T (λ) can be written in terms of these L-operators as T (λ) = Lna(λ) . . . L1a(λ)

also expressed in V a. It’s easy to see that Lna(0) = Πna and T (0) = Πna . . .Π1a. The transfer

matrix can then be written as T (λ) = Tra Ta(λ). As we have seen already [T (λ), T (µ)] = 0, T (λ)

is the generating function of commuting conserved charges, which in general can be written as

J{c} =
∑
n

∑
j

cnj
dn ln(T (λ))

dλn
|λ=λj

[J{c}, J{c′}] = 0

Here, we want to show that the Hamiltonian is among these integrals of motion, to be specific,

we want to show that H = d lnT (λ)
dλ |λ=0 = dT (λ)

dλ |λ=0T
−1

(0). 4

Using the property that ΠmnOinΠmn = Oim, i.e. ΠmnOin = OimΠmn, we have

T (0) = Πna . . .Π1a

= Π1aΠn1 . . .Π21

= Π1aΠ12Πn2 . . .Π23

= Π1aΠ12Π23 . . .Π(n−1)n

4This expression comes as a definition for the Hamiltonian, as it turns out to be local in real space. People
then related this to the XXZ model
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As

Πia =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


ia

=

 1+σzi
2 σ−i

σ+
i

1−σzi
2


a

=
1 + ~σi~σa

2

Tra Πia = 1 and T (0) = Π12Π23 . . .Π(n−1)n which is related to the process of transferring

particle n from one end to the other, i.e. T (0) = eiP̂ , with P̂ the momentum operator. Simi-

larly, as T ′(0) =
∑
i Πna . . . L

′
ia(0) . . .Π1a =

∑
i Π1aΠn1 . . . L

′
i1(0) . . .Π12, T ′(0) = Tra T ′(0) =

Πn1 . . . L
′
i1(0) . . .Π21. Thus

T ′(0)T
−1

(0) =
∑
i

Πn1 . . . L
′
i1(0)Πi1 . . .Πn1

=
∑
i

Π(n−1),n . . . L
′
inΠin . . .Π(n−1)n

=
∑
i

L′i(i+1)(0)Πi(i+1)

With

L′i(i+1)(0) =


0 0 0 0

0 1
sinhφ − coshφ

sinhφ 0

0 − coshφ
sinhφ

1
sinhφ 0

0 0 0 0


i(i+1)

Therefore

d lnT (λ)

λ
|λ=0 =

∑
i


0 0 0 0

0 − coshφ
sinhφ

1
sinhφ 0

0 1
sinhφ − coshφ

sinhφ 0

0 0 0 0


i(i+1)

=
1

sinhφ

∑
i

(
coshφ

σzi σ
z
i+1

2
+ σ+

i σ
−
i+1 + σ−i σ

−
i+1

)
One can identify this as the Hamiltonian of XXZ model with anisotropy ∆ = coshφ > 1

up to a constant. Thus we showed that [T (λ), H] = 0. Therefore, we can transform the

problem of solving for eigenstates of the Hamiltonian into an eigen-problem of the transfer

matrix T (λ) = A(λ) +D(λ).

To start with, we need to define a reference state such that it vanishes when acted by some

’annihilation operator’. The operators that we have on hand are the four matrix elements of

the transfer matrix. A(λ) and D(λ) measures the σz at each site without flipping the spins.
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B(λ)(C(λ)) flips one spin down (up) along the chain. This can be seen from the conservation

of total spin in the z-direction in Ha ⊕ H. As B(λ) = a〈↑ |T (λ)| ↓〉a, B(λ) must flip down

one spin in the physical system. Similar argument applies to C(λ). Therefore, we may choose

|0〉 = ⊕Ni=1| ↑〉i as the reference state which can be annihilated by a destruction operator C(λ).

It’s easy to check that indeed, this reference state is an eigenstate of T (λ) as A(λ) +D(λ)|0〉 =

[1 + (sinhλ/ sinh(λ+φ)N ]|0〉. The other states will be accessed by successive application of the

B-operator on |0〉 with the requirement that [A(λ) + D(λ)]
∏
iB(µi)|0〉 = Λ(λ, ~µ)

∏
iB(µi)|0〉.

Here Λ(λ, ~µ) denotes the eigenvalue of the transfer matrix.

Relation (??) defines 16 commutation relations among the four operators, i.e.
A(λ)A(µ) A(λ)B(µ) B(λ)A(µ) B(λ)B(µ)

A(λ)C(µ) A(λ)D(µ) B(λ)C(µ) B(λ)D(µ)

C(λ)A(µ) C(λ)B(µ) D(λ)A(µ) D(λ)B(µ)

C(λ)C(µ) C(λ)D(µ) D(λ)C(µ) D(λ)D(µ)




f(µ, λ) 0 0 0

0 1 g(µ, λ) 0

0 g(µ, λ) 1 0

0 0 0 f(µ, λ)



=


f(µ, λ) 0 0 0

0 1 g(µ, λ) 0

0 g(µ, λ1 0

0 0 0 f(µ, λ)




A(µ)A(λ) B(µ)A(λ) A(µ)B(λ) B(µ)B(λ)

C(µ)A(λ) D(µ)A(λ) C(µ)B(λ) D(µ)B(λ)

A(µ)C(λ) B(µ)C(λ) A(µ)D(λ) B(µ)D(λ)

C(µ)D(λ) D(µ)C(λ) C(µ)D(λ) D(µ)D(λ)


Here we list some of the relations that will be used later

B(λ)B(µ) = B(µ)B(λ)

A(λ)B(µ) = f(µ, λ)B(µ)A(λ)− g(µ, λ)B(λ)A(µ) (2.7)

D(λ)B(µ) = f(λ, µ)B(µ)D(λ)− g(λ, µ)B(λ)D(µ) (2.8)

With these relations, we can calculate A(λ)
∏N
i B(µi)|0〉 and D(λ)

∏N
i B(µi)|0〉 and derive the

condition for
∏N
i B(µi)|0〉 to be an eigenstate.

A(λ)

N∏
i

B(µi)|0〉

=f(µ1, λ)B(µ1)A(λ)

N∏
i=1

B(µi)|0〉 − g(µ1, λ)B(λ)A(µ1)

N∏
i=2

B(µi)|0〉

=f(µ1, λ)f(µ2, λ)B(µ1)B(µ2)A(λ)

N∏
i=3

B(µi)|0〉 − f(µ1, λ)g(µ2, λ)B(µ1)B(λ)A(µ2)

N∏
i=3

B(µi)|0〉

−g(µ1, λ)f(µ2, µ1)B(λ)B(µ2)A(µ1)

N∏
i=3

B(µi)|0〉+ g(µ1, λ)g(µ2, µ1)B(λ)B(µ1)A(µ2)

N∏
i=3

B(µi)|0〉
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Collect the terms with A(µ2),

g(µ1, λ)g(µ2, µ1)− f(µ1, λ)g(µ2, λ) =
sinhφ

sinh(µ1 − λ)
(

sinhφ

sinh(µ2 − µ1)
− sinh(µ1 − λ+ φ)

sinh(µ2 − λ)
)

=
sinhφ sinh(µ1 − µ2 + φ)

sinh(µ2 − λ) sinh(µ1 − µ2)

=g(µ2, λ)f(µ1, µ2)

Therefore

A(λ)

N∏
i

B(µi)|0〉 =f(λ, µ1)f(µ2, λ)B(µ1)B(µ2)A(λ)

N∏
i=3

B(µi)|0〉

−g(µ1, λ)f(µ2, µ1)B(λ)B(µ2)A(µ1)

N∏
i=3

B(µi)|0〉

−g(µ2, λ)f(µ1, µ2)B(λ)B(µ1)A(µ2)

N∏
i=3

B(µi)|0〉

Here, we can see that µ1 and µ2 are symmetric, which is what one should expect as B(µ1)

commutes with B(µ2). Therefore, we can write down the final result using the symmetry

among the µ’s and

A(λ)

N∏
i

B(µi)|0〉 = a(λ)
∏
i

f(µi, λ)
∏
i

B(µi)|0〉 −
∑
j

a(µj)g(µj , λ)
∏
i 6=j

f(µi, µj)B(λ)
∏
i 6=j

B(µi)|0〉

Similarly, one can obtain

D(λ)

N∏
i

B(µi)|0〉 = d(λ)
∏
i

f(λ, µi)
∏
i

B(µi)|0〉 −
∑
j

d(µj)g(λ, µj)
∏
i 6=j

f(µj , µi)B(λ)
∏
i 6=j

B(µi)|0〉

Here A(λ)|0〉 = a(λ)|0〉, D(λ)|0〉 = d(λ)|0〉. Summing these two expressions, we get

Λ(λ, ~µ) = a(λ)
∏
i

f(µi, λ) + d(λ)
∏
i

f(λ, µi)

a(µj)

d(µj)
=
∏
i6=j

f(µj , µi)

f(µi, µj)

Here, we have used the fact that g(λ, µj) = −g(µj , λ). This second equation is the condition

for the state
∏N
i B(µi)|0〉 to be an eigenstate of T (λ) and the Hamiltonian. It is the famous

Bethe equaiton, that can also be derived from coordinate Bethe Ansatz by imposing periodic

boundary condition. Plug in the expression of a, d and f , it can be written explicitly as

(
sinh(µj + φ)

sinhµ
)N =

∏
i6=j

sinh(µi − µj − φ)

sinh(µi − µj + φ)

The more traditional form can be obtained by replacing µj with µj − φ/2. The Bethe equation

then becomes

(
sinh(µj + φ/2)

sinh(µj − φ/2)
)N =

∏
i 6=j

sinh(µj − µi + φ)

sinh(µj − µi − φ)
(2.9)
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Like in the case of coordinate Bethe Ansatz, one may then use the thermodynamic Bethe Ansatz

machinery to study the distribution of µ and then calculate the spectrum and other properties

of the system. But we are going to skip that part as we are more interested in the dynamics of a

system rather than its thermal properties. Before we close the introduction about the algebraic

Bethe Ansatz, let’s talk about its relation with the coordinate one. Just as we can recover the

first quantized wavefunction from the second quantized operator method, we can also obtain

the coordinate Bethe Ansatz from the algebraic expression.

Obtain Wavefunction from Algebraic Bethe Ansatz

In this part, we want to derive the wavefunction related to excited states created by the B-

operator, i.e.
∑
α φ(α|µ)

∏M
i=1 σ

−
αi |0〉 ≡

∏M
i=1B(µi)|0〉. As the wavefunction is symmetric in

its argument α, we may focus on the region where α1 < . . . αM and all other regions can be

obtained easily from it. We will show that

φ(α|µ)θ(α1 < . . . < αM ) =
∑
R∈SM

∏
i<j

f(µRj , µRi)θ(αi < αj)

M∏
i=1

I(µRi, αi) (2.10)

I(µ, α) =
∏
m>α

am(µ)bα(µ)
∏
n<α

dn(µ)

Here ai(µ), bi(µ) and di(µ) come from the L-operator acting on the vacuum

Lia(µ)| ↑〉i =

 ai(µ) bi(µ)σ−i

0 di(µ)


a

| ↑〉

We will start with wavefunction with one spin flip. Then talk about that of two excitations. In

the end, generalize it to states with more down spins.

The derivation for the state B(µ)|0〉 is quit simple. As B(µ) = T (µ)12 = (Lna(µ) . . . L1a(µ)12

and Lia(µ)21| ↑〉i = 0, we have

B(µ)|0〉 =
∑
i

Lna(µ)11 . . .  L(i+1)a(µ)11Lia(µ)12L(i−1)a(µ)22 . . . L1a(µ)22

=
∑
i

∏
m>i

ai(µ)bi(µ)
∏
n<i

dn(µ)σ−i |0〉

i.e.

φ(i|µ) =
∏
m>i

am(µ)bi(µ)
∏
n<i

dn(µ) = I(i, µ)

Going from one excitation to two is not trivial, because Lia(µ)21 no longer vanished when

acting on a state with down spins. Here we describe the method used in ( [? ]) to obtain the

wavefunction.
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First, divide the N sites in physical space into two part. T1 contains site 1 to site m, T2

contains the sites from m+ 1 to N. Here m can be any integer between 1 and N. Then

T (µ) = T2(µ)T1(µ)

B(µ) = A2(µ)B1(µ) +B2(µ)D1(µ)

where B1 and D1 act on T1 = ⊕Mi=1Hi and A2 and B2 act on T2 = ⊕Ni=m+1Hi. The product of

two creation operators in the full space can be written as

B(µ)B(λ) =A2(µ)B1(µ)A2(λ)B2(λ) +B2(µ)D1(µ)A2(λ)B2(λ)

A2(µ)B1(µ)B2(λ)D1(λ) +B2(µ)D1(µ)B2(λ)D1(λ)

We label the four terms with the following partition of λ and µ. P1 = ({λ, µ}, {}), P2 =

({λ}, {µ}), P3 = ({µ}, {λ}), P4 = ({}, {λ, µ}). The first set S1 contains parameters such that

the corresponding B-operator contributes A2B1, the second set S2 is the set in which B-operator

gives B2D1. This notation will be useful when one wants to refer to a term in a product of M

B-opertors.

Now work our these four terms using the commutation relations between A and B (??), B

and D (??).

P1 = A2(µ)B1(µ)A2(λ)B1(λ) = ā2(µ)ā2(λ)B1(µ)B1(λ)

P2 = B2(µ)D1(µ)A2(λ)B1(λ) =f(µ, λ)ā2(λ)d̄1(µ)B2(µ)B1(λ)

−g(µ, λ)ā2(λ)d̄1(λ)B2(µ)B1(µ)

P3 = A2(µ)B1(µ)B2(λ)D1(µ) =f(λ, µ)ā2(µ)d̄1(λ)B1(µ)B2(λ)

−g(λ, µ)ā2(λ)d̄1(µ)B1(µ)B2(µ)

P4 = B2(µ)D1(µ)B2(λ)D1(λ) = d̄1(µ)d̄1(λ)B2(µ)B2(λ)

Here ā2(λ) =
∏N
i=M+1 ai(λ), d̄1(λ) =

∏M
i=1 di(λ). In P2 and P3, the commutation relation

generates two terms, the second of which is unwanted. However, due to the fact that g(λ, µ) =

−g(µ, λ), these unwanted terms cancel each other in the sum, thus we do not need to worry

about them. In P2 and P3, the two creation operators act on different regions, therefore, we
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can further simply the result using the result of one spin flip

P2 =
∑
α,β

f(µ, λ)
∏
m>α

am(λ)bα(λ)
∏
n<α

dn(λ)
∏
m′>β

am′(µ)bβ(µ)
∏
n′

dn′<β(µ)σ−α σ
−
β

θ(1 ≤ α ≤M)θ(M < β ≤ N) + C1

=
∑
α,β

f(µ, λ)I(α, λ)I(β, µ)σ−α σ
−
β θ(1 ≤ α ≤M)θ(M < β ≤ N) + C1

P3 =
∑
α,β

f(λ, µ)I(α, λ)I(β, µ)σ−α σ
−
β θ(M < α ≤ N)θ(1 ≤ β ≤M)− C1

Here C1 represents the unwanted terms which does not matter for the sum. However, in P1

and P4, both creation operators act on the same subregion, which is essentially the same as the

original problem. Thus we further divide the M sites into two part. Then P1 will become a sum

of four terms. Two of them have one creation operator in each region and can be simplified as

P12 =
∑
α,β

f(µ, λ)I(α, λ)I(β, µ)σ−α σ
−
β θ(1 ≤ α ≤< S)θ(S < β ≤M) + C2

P13 =
∑
α,β

f(λ, µ)I(α, λ)I(β, µ)σ−α σ
−
β θ(S < α ≤M)θ(1 ≤ β ≤< S)− C2

Here C2 are unwanted terms that will vanish in the sum. The other two terms of P1 can be

further simplified by further division of the space. This division stops when there is only one

site in each subregion. The B-operator becomes bm(λ)σ−m. Then no two creation operators can

act on the same site as σ−mσ
−
m = 0. The P4 term will be manipulated in the same way. In the

end, summing up all the term we get

B(λ)B(µ) =
∑
α,β

f(µ, λ)I(α, λ)I(β, µ)σ−α σ
−
β

(
θ(1 ≤ α ≤M)θ(M < β ≤ N)

+ θ(1 ≤ α ≤ S)θ(S < β ≤ m) + θ(M < α ≤ T )θ(T < β ≤ N) + . . .
)

+
∑
α,β

f(λ, µ)I(α, λ)I(β, µ)σ−α σ
−
β

(
θ(M < α ≤ N)θ(1 ≤ β ≤M)

+ θ(S < α ≤ m)θ(1 ≤ β ≤ S) + θ(T < α ≤ N)θ(M < β ≤ T ) + . . .
)

=
∑
α,β

(f(µ, λ)θ(1 ≤ α < β ≤ N) + f(λ, µ)θ(1 ≤ β < α ≤ N))I(α, λ)I(β, µ)σ−α σ
−
β

=
∑

R=I,Pµ,λ

∑
α,β

θ(1 ≤ α < β ≤ N)f(Rµ,Rλ)I(α,Rλ)I(β,Rµ)σ−α σ
−
β

Therefore, we have derived the expression (??) for system with two excitations.

Now, we want to generalize the result to systems with many spin flips. The procedure is the

same, i.e. to successively divide the system into two parts. The division should stop when the

number of sites in any subsystem is no more than the number of creation operators acting on
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it. This is due to the fact that the product of two σ− operator acting on the same site vanishes.

First, we will divide the N sites in to m sites and N-m sites, like in the case of two excitations.

We want to prove that

M∏
i=1

B(µi) =
∑

S1
⋃
S2={µi}

∏
µiα∈S1

∏
µjβ∈S2

f(µjβ , µ
i
α)

∏
µαi ∈S1

ā2(µiα)
∏

µβj ∈S2

d̄1(µjβ)
∏

µαi ∈S1

B(µiα)
∏

µβj ∈S2

B(µjβ)

As can be seen in the two down spin case, this is true for M = 2, i.e. all unwanted terms vanish

in the sum. We will now prove this for general M. Assume for M − 1 spin flips, only wanted

terms are left. Then for B(λ)
∏M−1
i=1 B(µi), when we pass A2(λ) or D1(λ) in B(λ) through the

product of B(µi), it may exchange parameter with the B-operator and turn into A2(γ) or D1(γ)

(γ ∈ {µi}) multiplied by B1(λ)B2(λ). We will show here that unwanted terms characterized by

ā2(γ)d̄1(γ)B1(λ)B2(λ) cancel with each other.

There are two kinds of partitions resulting in such unwanted terms. ({γ, µiα}, {λ, µ
j
β}) and

({λ, µiα}, {γ, µ
j
β}). In the first one, λ ∈ S2, B(λ) constributes B2(λ)D1(λ), in the second B(λ)

contributes A2(λ)B1(λ). The above unwanted terms from these two scenarios are

B2(λ)D1(λ)f(µjβ , γ)a2(γ)
∏

µiα∈S1

B1(µiα)
∏

µjβ∈S2

B2(µjβ)B1(γ)

→f(µjβ , γ)ā2(γ)d̄1(γ)g(γ, λ)f(γ, µiα)
∏

µiα∈S1

B1(µiα)
∏

µjβ∈S2

B2(µjβ)B2(λ)B1(λ)

A2(λ)B2(λ)f(γ, µiα)d1(γ)
∏

µiα∈S1

B1(µiα)
∏

µjβ∈S2

B2(µjβ)B2(γ)

→f(γ, µiα)ā2(γ)d1(γ)g(λ, γ)f(µjβ , γ)
∏

µiα∈S1

B1(µiα)
∏

µjβ∈S2

B2(µjβ)B1(λ)B2(λ)

Here we have dropped the common factor of
∏
µjβ

∏
µiα
f(µjβ , µ

i
α)
∏
µiα∈S1

ā2(µiα)
∏
µjβ∈S1

d1(µjβ).

From the above, it is clear that these two terms cancel and no unwanted term characterized

by ā2(γ)d̄1(γ)B1(λ)B2(λ) exists. Since this γ is chosen arbitrarily, we can conclude that all

unwanted terms vanish. Therefore, when we pass all A and D operator to the right of the

product of B-operator, they become c-numbers without changing its parameter, with a prefactor

created by the commutation relation which is the product of f(µjβ , µ
i
α) for all µiα ∈ S1 and

µjβ ∈ S2.

In order to obtain (??), iterate the above division procedure until every B(µ) acts on a

separate region. Like in the two spin flips case, each time B(µ) and B(λ) are separated, a

factor of f(µ, λ) or f(λ, µ) is created, which depends on αµ < αλ or αµ > αλ. Besides this

factor, the B-operator acts in the same way as in a single excitation case, i.e. B(µ) turns into
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I(µ, λ)σ−α . Therefore, we can write down the final answer as

M∏
i=1

B(µi) =
∏
i<j

(f(µj , µi)θ(αj − αi) + f(µi, µj)θ(αi − αj))
∏
i

I(µi, αi)σ
−
αi

=
∏

R∈SM

∏
i<j

f(µRj , µRi)θ(α1 < . . . < αM )
∏
i

I(µRi , αi)σ
−
αi

This agrees with equation (??). For XXZ model, the wavefunction becomes

φ(α|µ)θ(α1 < . . . < αM ) =
∑
R

∏
i<j

sinh(µi − µj + φ sgn(αR-1i − αR-1j))

sinh(µi − µj)∏
j

(
sinh(µj − φ/2)

sinh(µj + φ/2)

)α
R

-1
j
−1

sinhφ

sinh(µj + φ/2)

Multiply the wavefunction by a constant∏
j

sinh(µj + φ/2)

sinhφ

sinh(µj + φ/2)

sinh(µj − φ/2)

∏
i<j

sinh(µj − µj)
sinh(µi − µj − φ)

we obtain the more commonly seen wavefunction

φ(α|µ)θ(α1 < . . . < αM )

=
∑
R

∏
i<j

sinh(µi − µj + φ sgn(αR-1i − αR-1j))

sinh(µi − µj − φ)

∏
j

(
sinh(µj − φ/2)

sinh(µj + φ/2)

)α
R

-1
j

or

φ(β|µ) =
∏
i<j

sinh(µi − µj + φ sgn(βi − βj))
sinh(µi − µj − φ)

∏
j

(
sinh(µj − φ/2)

sinh(µj + φ/2)

)βj
The Bethe Equation can be obtained from periodic boundary condition, φ(α|µ) = φ(α′|µ),

with α = {α1, α2, . . . , αM} and α′ = {α2, . . . , αM , α1 +N},i.e.∏
i<j

sinh(µi − µj + φ sgn(αR-1i − αR-1j)

sinh(µi − µj − φ)

∏
j

(
sinh(µj − φ/2)

sinh(µj + φ/2)

)α
R

-1
j

=
∏
i<j

sinh(µi − µj + φ sgn(α′
R′-1i
− α′

R′-1j
)

sinh(µi − µj − φ)

∏
j

(
sinh(µj − φ/2)

sinh(µj + φ/2)

)α′
R′-1j

For R and R′ that satisfie the following relation, many of the terms cancel and we are left with

αR-1i =


α′
R′-1i

i = R2, . . . , RM

α′
R′-1i

+N i = R1

∏
i<j=R1

sinh(µi − µR1 − φ)

sinh(µi − µR1 + φ)

∏
i=R1<j

sinh(µR1 − µj + φ)

sinh(µR1 − µj − φ)

∏
j

(
sinh(µR1 − φ/2)

sinh(µR1 + φ/2)

)N
= 1

i.e. ∏
j 6=R1

sinh(µR1 − µj + φ)

sinh(µR1 − µj − φ)

∏
j

(
sinh(µR1 − φ/2)

sinh(µR1 + φ/2)

)N
= 1

This leads to equation (??)
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2.3 Nested Bethe Ansatz

Nested Bethe Ansatz solves systems with both spacial and spin degrees of freedom, like Gaudin-

Yang model and Hubbard model. It combines the previous two methods, in such a way that

the spacial part is derived by the coordinate Bethe Ansatz, while the spin part is solved by

the Algebraic Bethe Ansatz. The solution of such problems with only coordinate Bethe Ansatz

involves huge matrices whose size increases exponentially with the number of particles. And

using Algrebraic Bethe Ansatz only can make such problem much more complicated than we

have seen before as there are both charge and spinon excitations ([? ]). Therefore, the nested

Bethe Ansatz which combines the two methods appears to be very useful for such systems. To

illustrate this method, we will solve the Gaudin-Yang model in this section.

2.3.1 Gaudin-Yang Model

The Gaudin-Yang model describes a one-dimensional continuous system of Fermi Gas with

contact interaction. It is described by the following Hamiltonian

H =
∑
σ=↑,↓

∫
dxΨ†σ(x)(− ∂2

∂x2
)Ψσ(x) + c

∫
x

Ψ†↑(x)Ψ†↓(x)Ψ↓(x)Ψ↑(x)

where Ψ†σ(x)(Ψσ(x)) is the creation(annihilation) operator of a fermion with spin σ. They obey

the canonical anticommutation relation {Ψ†σ(x),Ψσ′(x
′)} = δσ,σ′δ(x − x′). c is related to the

interaction strength. When c is positive, the particles repel each other when at the same site.

Otherwise, the interaction is attraction. Following the same procedure as for the Lieb-Liniger

gas, we define an eigenstate with wavefunction fσ(x) as follows, with |0〉 being a fock vacuum.

Then apply the Hamiltonian to this state, we get the first quantized Hamiltonian

|Ψ〉 =
∑
σ

∫
x

f(x, σ)

N∏
i=1

Ψ†σi(xi)|0〉

h = −
∑
i

∂2

∂xi2
+ 2c

∑
ij

δ(xi − xj)

The Bethe Ansatz wavefunction of the Gaudin-Yang model can be written as

f(x, σ) =
∑
P,Q

ei(Pk)·(Qx)A(Q,P )θ((Qx)1 < . . . < (Qx)N ) (2.11)

Here Pk = (kP -11, . . . , kP -1N ) and Qx = (xQ-11, . . . , xQ-1N ). Like the Lieb-Liniger solution, the

ansatz assumes that the wavefunction is a superposition of plain waves in each ordered regime

weighted by prefactor A(Q,P ). Each plain wave is characterized by the permutations P and Q.
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Q is related to the ordering of the coordinates and P determines the sequence of ks. Note, the

wavefunction is not explicitly dependant on the spin configuration. But any permutation of x

may affect the spin as f(Qx, σ) = (−1)Qf(x,Q
−1
σ) as we are going to use here.

Apply the Schrodinger equation hf(x, σ) = Ef(x, σ), we get two results. First, well within

the ordered region, i.e. none of the x’s are the same, then E =
∑
i k

2
i . Second, at the boundary

of some ordered region, say (Qx)i = (Qx)j (Q-1j = Q-1i+ 1), we have

(i(Pk)i − i(Pk)j)(A(Q,P )−A(Q,PijP ) +A(PijQ,P ))−A(PijP, PijQ) + c(A(Q,P ) +A(Q,PijP )

+A(PijQ,P ) +A(PijP, PijQ)) = 0

i.e.

i
(
(Pk)i − (Pk)j

)
(A(Q,P )−A(Q,PPij))(1−Πij) + c(A(Q,P ) +A(Q,PPij))(1−Πij) = 0

(2.12)

Here we have replaced A(PijQ,P ) with −ΠijA(Q,P ), where Πij acts on the spin state and

changes spin i and spin j. From the above relation, we obtained the following relation for spin

singlet state, projected by (1−Πij)/2.

A(Q,PPij) =
(Pk)i − (Pk)j − ic
(Pk)i − (Pk)j + ic

A(Q,P )

For spin triplet state, due to the fermion nature of the problem, the wavefunction vanishes

when two coordinate coincides. Therefore, the contact interaction should not play a role and

the wavefunction should be simply an antisymmetric function of plain waves, i.e.

f(x, σ) =
∑
P

(−1)P ei(Pk)·x

This means A(PijQ,PijP ) = A(Q,P ), i.e. A(Q,PijP ) = −ΠijA(Q,P ) = −A(Q,P ). Here, we

replaced Πij with 1 for spin triplet state. To summarize, for Q
−1
j = Q

−1
i+ 1 we have

A(Q,PijP ) =
(Pk)i − (Pk)j − ic
(Pk)i − (Pk)j + ic

1−Πij

2
A(Q,P )− 1−Πij

2
A(Q,P )

=− ((Pk)i − (Pk)j)Πij + ic

(Pk)i − (Pk)j + ic
A(Q,P )

=Yij((Pk)i − (Pk)j)A(Q,P )

A(PijQ,PijP ) =
(Pk)i − (Pk)j + icΠij

(Pk)i − (Pk)j + ic
A(Q,P ) = Sij((Pk)i − (Pk)j)A(Q,P )

Here Yij
(
(Pk)i − (Pk)j

)
= −ΠijSij

(
(Pk)i − (Pk)j

)
is called the Yang matrix, Sij(kPi − kPj)

is the well-studied Scattering matrix (S-matrix). Here the sub-index i, j are related to the
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spin permutation, as we have emphasized before, this permutation is moving by element in our

convention.

From now on, we will focus on the region with Q = 1, i.e. θ(x1 < . . . < xN ). All other

regions can be obtained via antisymmetric property of the wavefunciton. The S-matrix has an

important property, that is it satisfies the Yang-Baxter relation, e.g

S23(k2 − k3)S13(k1 − k3)S12(k1 − k2) = S12(k1 − k2)S13(k1 − k3)S23(k2 − k3)

Written in the language of the Yang matrix, this relation becomes

Y12(k2 − k3)Y23(k1 − k3)Y12(k1 − k2) = Y23(k1 − k2)Y12(k1 − k3)Y23(k2 − k3)

If a permutation P can be written as a product of n transpositions (Pn . . . P 2P 1), and each

transposition Pm exchanges one pair of adjacent objects mi and mj (mj = mi + 1) then we

have

A(Q,P ) = Yninj (k
n) . . . Y1i1j (k)A(Q, I)

Here kn = Pn−1 . . . P 1k is the set of k’s after the previous permutations. This completes the

coordinate Bethe Ansatz solution of the Gaudin-Yang model. As we have mentioned before,

this solution has a problem. As both the Yang matrix and the S-matrix involve permutations

on the spin configuration, the solution acts on a N ! dimensional spin space, which is huge for a

moderate number of particles. One could wish to find an irreducible representation such that

the dimension of Y (P ) could be reduced. Actually, there is such a complete spin basis so that

when Y (P ) acts on it, it becomes a c-number. This is the next subject we will talk about.

The construction of this spin basis is closely related to the Algebraic Bethe Ansatz, which

constructs spin states using creation operators come from a monodromy matrix. The mon-

odromy matrix is defined as a product of some L-operators expressed in the auxiliary space

T (µ, k) = Lan(µ− kn) . . . La1(µ− k1)

Both of them need to satisfy the Yang-Baxter relation defined by some R -matrix

Rab(λ− µ)Ta(λ, k)Tb(µ, k) = Tb(µ, k)Ta(λ, k)Rab(λ− µ)

Rab(λ− µ)Lai(λ− ki)Lbi(µ− ki) = Lbi(µ, ki)Lai(λ− ki)Rab(λ− µ)

Here, we have shifted the entry of Lia by ki, but as is clear, the Yang-Baxter relation which

defines the algebra is unaffected, i.e. if the Lia(λ) and Lib(µ) satisfy the relation, so are

Lia(λ− ki) and Lib(λ− ki). This shift of the entry also makes the T operator k dependant.
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We have said that, in general, there is no way one can determine the R-matrix based on the

Hamiltonian. But with the coordinate Bethe Ansatz solution, we are equipped with an object

which satisfies the Yang-Baxter relation, that is the S-matrix. Therefore, we may simply define

the R-matrix and L-operator to be in the form of the S-matrix we obtained, i.e.

Lai(µ− ki) =− Sai(µ− ki) =
µ− ki + icΠai

µ− ki + ic

=

 µ−ki+ic/2(1+σzi )
µ−ki+ic

icσ−i
µ−ki+ic

icσ+
i

µ−ki+ic
µ−ki+ic/2(1−σzi )

µ−ki+ic


a

.

Rab(λ− µ) =



µ−λ+ic
µ−λ 0 0 0

0 1 ic
µ−λ 0

0 ic
µ−λ 1 0

0 0 0 µ−λ+ic
µ−λ


ab

Then the monodromy matrix can be written as follows

T (µ, k) = San(µ− kn) . . . Sa1(µ− k1)

And the creation operator B(µ, k) is just the upright element of the 2× 2 matrix.

B(µ, k) =

N∑
α=1

∏
j>α

µ− ki + ic/2(1 + σzi )

µ− ki + ic

icσ−α
µ− kα + ic

∏
j<α

µ− kj + ic/2(1− σzj )

µ− kj + ic

One interesting property of this B-operator is that when the rapidity is sent to infinity it becomes

spin lowering operator [? ? ], i.e.

lim
µ→∞

B(µ, k) = lim
µ→∞

ic

µ

N∑
α=1

σ−α =
ic

µ
S− (2.13)

The advantage of this choice of R-matrix and L-operator is that the Y-operator can pass

through T (µ, k) in a simple way as illustrated below. Again, km = Pm−1km−1, i.e {km} is the

k set after all previous permuations acting on {k}.

Yjj+1(km)T (µ, km)

=Pjj+1Sjj+1(kmi − kmj )San(µ− kmn ) . . . Sa(j+1)(µ− kmj+1)Saj(µ− kmj ) . . . Sa1(µ− km1 )

=San(µ− kmn ) . . . Pjj+1Sjj+1(kmj − kmj+1)Sa(j+1)(µ− kmj+1)Saj(µ− kmj ) . . . Sa1(µ− km1 )

=San(µ− kmn ) . . . Pjj+1Saj(µ− kmj )Sa(j+1)(µ− kmj+1)Sjj+1(kmj − kmj+1) . . . Sa1(µ− km1 )

=San(µ− kmn ) . . . Sa(j+1)(µ− kmj )Saj(µ− kmj+1)Pjj+1Sjj+1(kmj − kmj+1) . . . Sa1(µ− km1 )

=T (µ, Pijk
m)Yjj+1(kmj − kmj+1)

=T (µ, km+1)Yjj+1(km)
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From the above, we can see that

A(P )T (µ, k) = T (µ, Pk)A(P )

A(P )B(µ, k) = B(µ, Pk)A(P )

The second relation is obtained by sandwiching the operator between a〈| ↑ | and | ↓〉a. Since

A(P ) acts on physical space, this projection turns T into the B-operator. This relation turns

out to be very useful if we choose the spin basis as the products of B-operators acting on vacuum

state, i.e. ω(µ, k) =
∏M
i B(µi, k)| ⇑〉, then

A(P )ω(µ, k) =A(P )

M∏
i

B(µi, k)| ⇑〉 =

M∏
i

B(µi, Pk)A(P )| ⇑〉 = (−1)Pω(µ, Pk)

In the last line, we have used the fact that A(P )| ⇑〉 = (−1)P | ⇑〉. With this basis ω(µ, k), we

can describe a state with a new wavefunction with parameter k and µ.

|Ψ〉 =f(k, µ|x)|x〉 ⊗ |ω(µ, k)〉

=
∑
P

eikPixiA(P )θ(x1 < . . . < xN )|x〉 ⊗ |ω(µ, k)〉

=
∑
P

(−1)P eikPixiθ(x1 < . . . < xN )|x〉 ⊗ |ω(µ, Pk)〉

Using the machinery of Algebraic Bethe Ansatz, we can write down the explicit form of ω(µ, k),

i.e.

ω(µ, k) =
∑
R∈SM

∏
i<j

f(µRj − µRi)θ(α1 < . . . αM )

M∏
i=1

I(µRi, k, αi)σ
−
αi | ⇑〉

with

f(µi − µj) =
µi − µj + ic

µi − µj

I(µ, k, α) =
ic

µ− kα + ic

∏
n<α

µ− kn
µ− kn + ic

In summary, we have

|µ, k〉 =
∑
P

(−1)P ei(Pk)·x
∑
R

∏
i<j

f(µRj − µRi)
∏
i

I(µRi, Pk, αi)θ(xi)θ(αi)|x〉 ⊗ |α〉

θ(x1 < . . . < xN )θ(α1 < . . . < αM )
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Here, θ(xi) = θ(x1 < . . . < xN ), θ(αi) = θ(α1 < . . . < αM ), |α〉 =
∏M
i σ−αi | ⇑〉. The more

traditional form is obtained by replacing µ by µ−ic/2 and multiply the state by a normalization

constant
∏
i<j

µi−µj
µi−µj−ic This will leads to the following change

|µ, k〉 =
∑
P

ei(Pk)·x
∏
i<j

µi − µj
µi − µj − ic

∏
i

B(µi, Pk)|x〉 ⊗ | ⇑〉

= f(x, α|µ, k)θ(x1 < . . . < xN )θ(α1 < . . . < αM )σ−αi |x〉 ⊗ | ⇑〉 (2.14)

f(x, α|µ, k) =
∑
P

(−1)P ei(Pk)·x
∑
R

∏
i<j

µi − µj + icSgn(αR-1i − αR-1j)

µi − µj − ic

M∏
i=1

I(µi, Pk, αR-1i)

I(µ, k, α) =
ic

µ− kα + ic/2

∏
n<α

µ− kn − ic/2
µ− kn + ic/2

Like in the case of Lieb-Liniger model, permutation on momentums and rapidities does not

create new state. This can be easily seen from the first line of (??) since

|µ, Pk〉 =
∑
P ′

(−1)P
′
ei(P

′Pk)·x
∏
i<j

µi − µj
µi − µj − ic

∏
i

B(µi, P
′Pk)|x〉 ⊗ | ⇑〉

=(−1)P
∑
P ′

ei(P
′k)·x

∏
i<j

µi − µj
µi − µj − ic

∏
i

B(µi, P
′k)|x〉 ⊗ | ⇑〉

=(−1)P |µ, k〉

|Rµ, k〉 =
∑
P

(−1)P ei(Pk)·x
∏
i<j

µRi − µRj
µRi − µRj − ic

∏
i

B(µRi, Pk)|x〉 ⊗ | ⇑〉

=
∑
P

(−1)P ei(Pk)·x
∏
i<j

µRi − µRj
µRi − µRj − ic

∏
i

B(µi, Pk)|x〉 ⊗ | ⇑〉

=S∗(R)|µ, k〉

Here, we have used the fact that B(µ, k) commute with each other, thus the permutation

on the ordering of the B-operator does not affect the result. The new phase factor comes from

the following relation

∏
i<j

µRi − µRj
µRi − µRj − ic

/∏
i<j

µi − µj
µi − µj − ic

=
∏
i<j

R-1i>R-1j

µi − µj − ic
µi − µj + ic

= S∗(R)

Combining the effect of the two kinds of permutation, we obtain the phase factor that relates

|k, µ〉 and |Pk,Rµ〉.

|Pk,Rµ〉 = S∗k,µ(P,R)|k, µ〉

Sk,µ(P,R) = S(P )S(R) = (−)P
∏
i<j

R-1i>R-1j

µi − µj + ic

µi − µj − ic
(2.15)
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Bethe Equation

The Bethe Equations which deal with the structure of the solutions, real or string solutions,

can be obtained by placing the system under periodic boundary condition. This leads to the

following two conditions depending on α1 = 1 or not.

f(x1, . . . , xN , α1, . . . , αM |µ, k) = f(x2, . . . , xN , x1 + L,α1, . . . , αM |µ, k)

f(x1, . . . , xN , α1, α2, . . . , αM |µ, k) = f(x2, . . . , xN , x1 + L,α2, . . . , αM , α1 +M |µ, k)

This leads to

eikP -1
1
L =

M∏
j=1

µj − kP -11 − ic/2
µj − kP -11 + ic/2

eikP -1
1
L
∏

i=R1<j

µR1 − µj + ic

µR1 − µj − ic
∏

i<j=R1

µi − µR1 − ic
µi − µR1 + ic

∏
i 6=R1

µi − kP -11 + ic/2

µi − kP -11 − ic/2
∏
n 6=i

µR1 − kP -1n − ic/2
µR1 − kP -1n + ic/2

= 1

i.e.

eiknL =

M∏
j=1

kn − µj + ic/2

kn − µj − ic/2
(2.16)

∏
j 6=i

µi − µj + ic

µi − µj − ic
=
∏
n

µi − kn + ic/2

µi − kn − ic/2
(2.17)

Two patterns can emerge in the k and µ solutions. For the first one, µi = kn + ic/2 and µj =

kn−ic/2, with kn lying on the real axis. This is for both c > 0 and c < 0. In the thermodynamic

limit with N → ∞ and M/N < ∞, this relaxes to the µ strings (µi = µ̄ + ic/2(m + 1 − 2i),

i = 1, . . . ,m) with all k’s real. This is due to the fact that for µi with i < m/2, |µi−kn+ic/2
µi−kn−ic/2 | > 1

if kn is real. The product of n such terms blow up in the limit n goes to infinity. This requires

another µ lying below it by a distance of c. Like in the case of attractive Lieb-Liniger gas, if we

do not worry about the ambiguity of 0/0, this leads to a string root in the µ complex plane. For

c < 0, there is another pattern formed with µj lying on the real axis, and two k’s lying above

and below µj by distance |c|/2, i.e. km = µj − ic/2 and kn = µj + ic/2. For km, the right hand

side of equation (??) vanishes, therefore, it must stay above the real axis to make the left hand

side go to zero. This requires that c being negative, i.e. the interaction being attractive. In

the thermodynamic limit, this root pattern can also be relaxed to longer k-strings with all real

µ’s. However, this would require a stronger condition that M →∞ also. We use the following

graphs to describe the patterns.

Both root patterns correspond to bound states. The first kind with complex µ and real k

indicates bound state between down spins. As an example, if µ1 = µ̄+ ic/2 and µ2 = µ̄− ic/2
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String Pattern in Roots of Bethe Equations

(a) µ−k string of length 2 for both c > 0 and c < 0 (b) k − µ string of length 2 for c < 0

  
  

|C
|

(c) µ string of length 4 in the limit the total
number of particles goes to infinity with c >
0 or c < 0

  
  

|C
|

(d) k string of length 4 in the limit the
number of impurities goes to infinity with
c < 0
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which forms a 2-string, then the scattering matrix among the spin rapidities enforces αR-11 >

αR-12. Carry out the product of J(µ, k, α), we get

J(µ1, k, αR-11)J(µ2, k, αR-12)

=
ic

µ− kα
R

-1
1

+ ic/2

ic

µ− kα
R

-1
2

+ ic/2

∏
α
R

-1
2<m<R

-1
1

µ̄− km
µ̄− km + ic

∏
α
R

-1
1
<n

µ̄− kn − ic
µ̄− kn + ic

Here | µ̄−km
µ̄−km+ic | < 1. As αR-11 − αR-12 gets greater, the product of m makes the wavefunction

decrease exponentially with this separation. This is why the µ string leads to bound states

between two down spins. The physical meaning of a k string is related to a bound state

between two electrons. As we have seen how k-strings leads to bound state in section 1.2, we

will not elaborate it here. In the later section on Yudson representation, we will revisit these

solution patterns.
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Chapter 3

Yudson Approach

3.1 Bethe Ansatz as Complete Basis

In the previous section, we have seen how the Bethe Ansatz solves models that are integrable.

These solutions are characterized by a set of parameters (momentum, rapidity) which also

determine the energy of the states. On one hand, these energies affect the Boltzman weight of

each state, thus determine the thermodynamic properties of the system, like the free energy,

pressure, specific heat, etc. On the other hand, the energy also influences the dynamics of a

state, as any state, under Hamiltonian H, evolves with the factor e−iHt. The Bethe Ansatz has

been shown to be quite successful in the first aspect, however, it has not been much exploited

in the second due to the following difficulties.

To calculate the time evolution of a given state, |Ψ(t)〉 = e−iHt|Ψ0〉, it is convenient to use

the basis of eigenstates of the Hamiltonian so as to turn the Hamiltonian operator into a real

number, i.e.

|Ψ(t)〉 =
∑
m

e−iEmt|m〉〈m|Ψ0〉 (3.1)

For interacting systems that are integrable, these eigenstates are Bethe Ansatz solution which

are handy already. However, as we have seen in the previous section, not all states are allowed

in a system with a periodic boundary condition. One needs to solve O(N) coupled equations,

only the root of which will be considered as a basis. The number of such solutions increases

exponentially with the system size. This makes the summation over a complete basis very hard

to implement. The problem becomes even harder for systems with bound states, as one needs

to consider complex parameters as well. Another complication comes from the calculation of

the overlap. Due to the admittedly unwieldy form of the Bethe solution, each state is composed

of a factorially large sum of plain waves with intricate amplitudes corresponding to different

orderings of the coordinates. Therefore, each summand evolves (N !)2 terms. Lastly, even the

calculation of simple correlation functions of local physical observables turns out to be quite

intimidating.
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Recent years have, however, seen much progress in this direction and such process has

been implemented numerically in a C++ library called ABACUS(Algebraic Bethe Ansatz-based

Computation of Universal Structure factors) [? ]. This algorithm has successfully calculated

dynamical correlation function of some important observables [? ? ] as well as nonequilibrium

properties [? ? ] in one dimensional spin and atomic system. Following the same principle as

discussed above, the implementation consists of three steps. First, Bethe equations are solved

to obtain all states satisfying periodic boundary conditions. Then overlap between the initial

state and intermediate states as well as further expectation values of observables are calculated

from form factors of local operators already exist. Last, the Hilbert space is scanned to include

numerically important intermediated states in terms of the form factor. One prominent feature

of this algorithm is its extreme accuracy for large number N=100− 1000 of degrees of freedom.

And this precision is well controlled by the sum rule of a complete basis which is energy and

momentum independent. However, as pointed out by Caux in [? ], this method has some

restrictions. First, it can only treat finite systems as one needs to label the states and have a

finite Hilbert space to scan all relevant states. Moreover, the initial state should be close to

some bethe states1 as scanning over multiple eigenstates in the initial state will multiply the

numerical cost and is not considered in the implementation. In the end, the numerical nature

of the algorithm makes it impossible to obtain closed-form analytical expressions.

3.2 Yudson Contour Integral Representation

In this thesis, we are going to talk about an analytical treatment of the aforementioned expan-

sion, which we call Yudson representation or Yudson Approach. This method is proposed by V.

Yudson to study the superradiance effect in an infinite system described by the Dicke model in

1988 [? ? ]. The formalism has not gain much attention until recent years when the interest in

nonequilibrium process has received a boost from the field of cold atom experiments which allow

unprecedentedly finely controlled experiments. So far, the approach has successfully solved the

quench dynamics of the Lieb-Liniger model [? ? ] and the XXZ model [? ] on an infinite

line, the Lieb-Liniger model with strong interaction on a finite line with periodic boundary

condition [? ] as well as hard wall boundary conditions [? ] and Dicke model [? ]. The time

evolution of two component fermion gas and boson gas will also be discussed in this thesis.

1In the original paper [? ], Caux claims that the initial state should be ground state only, which is later
loosed to any Bethe states in [? ] as well as the state created by one creation operator from the ground state
[? ]
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The core of the Yudson approach is a resolution of the identity which takes the form

1 =

∫
k

|k〉(k|

for a non-nested system like single component boson or fermion gas and spin system. And

1 =

∫
k,µ

|k, µ〉(k, µ|

for a nested system like two component boson or fermion systems.

Here |k〉 and |k, µ〉 represent a general Bethe Ansatz eigenstate and |k) and |k, µ) are called

Yudson states. These states refer to the single term in a Bethe Ansatz wavefunction with only

identity permutation. For example, in the previous chapter, we have derived the eigenstate of

the Lieb-liniger gas as

|k〉 =

∫
x

∑
P

eikPixi
∏
i<j

P -1i>P -1j

ki − kj − ic
ki − kj + ic

θ(x)|x〉

with θ(x) ≡ θ(x1 < x2 < . . . < xN ). Then the Yudson state is the simpliest term among the

N ! terms which is

|k) =

∫
x

eikixiθ(x)|x〉

Therefore, the Bethe Ansatz state can be expressed in terms of the Yudson state as

|k〉 =
∑
P

∏
i<j

P -1i>P -1j

ki − kj − ic
ki − kj + ic

|Pk〉 =
∑
P

Sk(P )|Pk〉

Take the Gaudin Yang model as another example. The Bethe Ansatz solution of the Gaudin

Yang model is the following

|µ, k〉 =
∑
P,R

∫
x

∑
α

eikPixi(−1)P
∏
i<j

µi − µj + icSgn(αR-1i − αR-1j)

µi − µj − ic

M∏
i=1

I(µi, Pk, αR-1i)θ(α)θ(x)

M∏
i=1

σ−αi |x〉 ⊗ | ⇑〉

The Yudson state can be extracted from it as

|µ, k) =

∫
x

∑
α

eikixi
M∏
i=1

I(µi, k, αi)θ(α)θ(x)

M∏
i=1

σ−αi |x〉 ⊗ | ⇑〉

Again the Bethe Ansatz state are connected with the Yudson state as

|µ, k〉 =
∑
P,R

(−1)P
∏
i<j

R-1i>R-1j

µi − µj + ic

µi − µj − ic
|Rµ,Pk) =

∑
P,R

Sk,µ(P,R)|Rµ,Pk)
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Compared with the one we have used in equation ??, i.e. 1 =
∑
m |m〉〈m|, Yudson rep-

resentation seems different due to the new state. However, as we are going to show, the two

resolutions are closely related by the following relation∑
m

|m〉(m| =
∑
m

|m〉〈m|θ(m)

Here, we have abused the notation θ(m) which becomes ill defined for complex parameters. Its

appearance only indicates that the summation is over all distinct states where the ordering of

the m’s is irrelevant and each set of m’s should be included once.

Recall that Bethe Ansatz states with permuted momentum (and rapidity) are related by

the scattering matrix, see page ??,??

|Pk〉 = S∗k(P )|k〉

|Rµ,Pk〉 = S∗k,µ(P,R)|µ, k〉

therefore ∑
k

|k〉〈k|θ(k) =
∑
k

∑
P

|k〉(Pk|S∗k(P )θ(k)

=
∑
k

∑
P

|Pk〉(Pk|θ(k)

=
∑
k

|k〉(k|
∑
P

θ(P -1k)

=
∑
k

|k〉(k|

Similarly, one can show ∑
k,µ

|µ, k〉〈µ, k|θ(k)θ(µ) =
∑
k,µ

|µ, k〉(µ, k|

The relation between the Yudson representation and the more traditional resolution of identity

is to shed some light on the approach. However, that is not the whole story. Instead of taking

a summation over sets of discrete momentum (and rapidity), Yudson approach uses contour

integrals in the complex plane. The choice of the contour is the essence of the representation

and one major step is to look for such a contour and prove that the expansion of any state is a

faithful one. We are going to illustrate this point by the Lieb-Liniger model and the Gaudin-

Yang model. Before we get down to the specifics, let’s list the advantages of the approach.

3.3 Advantages and Disadvantages

Advantages

1. Simplify the calculation of the overlap with the initial state.
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2. Obviate the need to solve Bethe Equations

3. Previous results on form factors can be used directly

4. Complex contour includes the contribution from both free states and bound states.

5. Infinite rapidity guarantees that the expansions scans the whole Hilbert space, not only

the highest weight states.

6. Complicated norm factor disappear.

Advantage 1 stems from the simple form of a Yudson state. Instead of being a summation over

factorially many terms, in Yudson representation, the overlap is one simple term. Advantage

2 is related to the fact that the system is infinite while the Bethe equations originate from the

constraint of periodic boundary conditions. Usually, people place the system on a circle so as

to make the momentum discrete. This is helpful to label the states and to include a few low

energy states. Such boundary condition becomes unnecessary for the dynamics as all states

overlapping with the initial state should be included. After all, most system is on a open line.

Moreover, the absence of the Bethe equation is important to keep the calculation analytic as the

solution to such transcendental equations is hard if not impossible to obtain when the number of

particle is large. Advantage 3 does not ascribe to the Yudson representation. But this is a rather

helpful property. Since in a strongly correlated system, all degrees of freedom intertwine with

each other. The expectation values of simple observables like density and two point correlation

involve integration over all irrelevant variables which is a rather daunting task. Luckily, the

action of local operators on Bethe Ansatz states has been studied by itself and many results on

the form factors have been obtained already [? ]. This simplifies our calculation. Advantage 4

is the most prominent. From the previous chapter we see that in systems with bound states like

attractive Lieb-Liniger gas and Gaudin-Yang model, the Hilbert space is spanned by states with

complex parameters. Even though the roots are not scattered on the complex plane randomly,

the number of string patterns they fall into is still huge. If we define a given state by the

number of strings(Mj) of length j, then the total number of string configuration is related to

the different sequence (M1,M2, . . .) such that
∑
jMj ·j = N for N charges. In addition to that,

the center of each string can move along the real axis which multiplies the complication of a

complete scan. As a miracle, this difficulty can be circumvented by a proper choice of integration

contour in the complex plane. Such a contour integration incorporates contributions from both

free states and bound states. To separate them apart, one simply shift all contours to the

real axis. Using Cauchy’s residue theorem, the original integral decomposes into a real integral
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and contribution from residues at singularities. The former can be interpreted as free states

while the latter corresponds to bound states. Remarkably, all and only bound states whose

parameters follow the string pattern will be generated, that is to say that only wanted terms

are created. Advantage 5 is an interesting one. As shown in the book [? ] (Appendices

3D), every nested Bethe Ansatz state is a highest weight state with respect to the total spin.

This means that it will be annihilated by spin raising operator S+. Therefore, a complete

basis includes not only Bethe Ansatz states |µ, k〉, but also states with lower expectation value

of Sz, i.e. (S−)n|µ, k〉 with n = 1, . . . , N − 2M for systems with N particles and M down

spins. Luckily, as we have shown in equation (??), this spin lowering operator is nothing but

limµ→∞B(µ, k). Therefore, by integrating from −∞ to +∞ for each rapidity, we are assured

to probe every eigenstates in the Hilbert space. Advantage 6 is also associated with the infinite

size of the system. In finite volume, the norm of an eigenstate is always complicated that

consists of determinant whose dimension equals the number of degree of freedom [? ? ].

Simply sending the system size L to infinity does not simplify the situation as the expression

does not have a good limit in thermodynamic limit. Nevertheless, this is not a real problem

for Yudson Approach. The condition that the intermediate states be normalized, complete

and orthogonal is a sufficient condition, instead of being necessary for the following reason.

Normally, in a Bethe Ansatz state, the ratio of amplitudes between different sectors is fixed by

the scattering matrix, leaving the overall factor indefinite. In Yudson representation, one first

set the amplitude A(P ) to be the s-matrix s(p) together with other factors if necessary (like the

J-function in nested Bethe Ansatz). Then the identity resolution is sandwiched between two

coordinate eigenstate, |x〉 = θ(x1 < . . . < xN )
∏
i Ψ†(x)|0〉, or |x, α〉 = θ(x1 < . . . < xN )θ(α1 <

. . . < αN )
∏
i σ
−
αi

∏
j Ψ†↑(xj)|0〉 . Then we will always obtain 〈y|k〉(k|x〉 = C

∏
i δ(xi − yi) or

〈y, β|k〉(k|x, α〉 = C
∏
i δ(xi − yi)δαi,βi . In the end, we divide the expansion by C to make it

properly normalised. This, in turn, proves the completeness and orthogonality of the Bethe

Ansatz state

Disadvantages

This method, however, suffers from one disadvantage, which relates to multidimensional in-

tegrals. For a system with N degrees of freedom, the expectation value of local observables

involves integration over 2N variables. This obstacle prevents us from getting closed form re-

sults. To get around this difficulty, one may focus on the long time limit of the results and adopt

saddle points approximation for system with nonlinear spectrum. This will bring us another

complication. As the propagating rate of different bound states varies, the contribution from
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each state separates apart asymptotically. Technically, this means the following. To impose

saddle point approximation, one needs to shift the contour to the saddle points which usually

lie on the real axis. For systems with bound states, the integral contours spread out in the

imaginary direction and there are many singularities in the complex plane. Shifting the contour

reduces the original integral into contributions from the stationary phase as well as residues

around the poles. The representation, then, loses the compact expression. Unfortunately, this

is what we have so far.

In the next part, we are going to illustrate these points by applying the Yudson Approach to

the quench dynamics of the Lieb-Linger model and the Gaudin-Yang model with either repulsive

or attractive interaction. To be specific, we are going to talk about the choice of integral contour

for each model, prove that the representation is a faithful one (central theorem), calculate local

observables mostly with saddle point approximation, and show some interesting results obtained.
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Chapter 4

Quench Dynamics of Lieb-Liniger Gas

In this chapter, we will apply the Yudson Approach to the quench dynamics of Boson Gas in

an one dimensional infinitely system. This system is described by the Lieb-Liniger Hamiltonian

H =

∫
x

∂xΨ†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

First, let’s list some of the important results we have obtained already.

The Bethe Ansatz eigenstate

|k〉 =
∑
P

∫
x

eikPixi
∏
i<j

P -1i>P -1j

ki − kj − ic
ki − kj + ic

θ(x)|x〉

The Yudson state

|k) =

∫
x

eikixiθ(x)|x〉

The Yudson representation of the identity operator∫
C

dk|k〉(k| =
∫
C

dk

∫
dx

∫
dy eiki(xP -1

i
−yi)

∏
i<j

P -1i>P -1j

ki − kj − ic
ki − kj + ic

θ(x)θ(y)|x〉〈y|

We claim that for repulsive interaction, the integration contours lie on the real axis while

for the attractive case, the contours spread out in the imaginary direction with the separation

between adjacent lines greater than |c|. For any i < j, the contour of ki is above that of kj . See

fig ??.

In the next section, we will show why such contours are chosen. Due to the crucial role of

such proof, we call it the central theorem.
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(a) (b)

Figure 4.1: Integration contour for the Lieb-Liniger model with attractive or repulsive interac-
tion.

4.1 Central Theorem

One of the most import ingredients of the Yudson approach is a properly chosen contour such

that the representation resolves the identity faithfully. In the position space, this means∫
C

〈x|k〉(k|y〉 =
∏
i

δ(yi − xi)

for any ordered set of x and y. Without loss of generality, we will always assume x1 < x2 . . . < xN

and y1 < y2 . . . < yN . We will provide the proof for the case with repulsive and attractive

interaction respectively.
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4.1.1 Repulsive Case

We will begin with the repulsive case as the integral contour is simpler. First, separate the

integration into two parts as described in the following

I =θ(x)θ(y)

∫
dk〈x|k〉(k|y〉

=θ(x)θ(y)

∫
dk
∑
P

eiki(xP -1
i
−yi)

∏
i<j

P -1i>P -1j

ki − kj − ic
ki − kj + ic

=θ(x)θ(y)

∫
dk
∑
P

eiki(xP -1
i
−yi)

+θ(x)θ(y)

∫
dk
∑
P

eiki(xP -1
i
−yi)

∑
(m,n)⊆

{(i,j)|i<j,P -1i>P -1j}

∏
m<n

−2ic

km − kn + ic

=I1 + I2

In the forth line, we transform the fraction
ki−kj−ic
ki−kj+ic into 1− 2ic

ki−kj+ic and extract the contribution

of 1 in each factor as I1 and name the rest as I2. In I2, the set (m,n) is a nonempty subset of

the original set (i, j) in the product. Denote m1 < m2 . . . < mn as the elements in the subset

and ni as the elements not in the subset. We will show that I2 = 0, i.e.

I = I1 =θ(x)θ(y)
∑
P

(2π)nδ(xP -1i − yi)

=θ(x)(2π)nδ(xi − yi)

and

1 =
1

(2π)n

∫
dk|k〉(k|

In I2, the integration of kni can be carried out trivially, which gives us (2π)nδ(xP -1i− yi). Thus

the core of the central theorem is to prove that the integrations over kmi ’s vanish. This consists

of two steps. First, we will show that xP -1m < ym for any m in the subset. Then it follows that

xP -1m = ym and this leads to a contradiction with the exist condition of the poles as explained

below.

(1) Let’s start with the integration over km1
. If xP -1m1

> ym1
, then one can add an additional

arc at infinity on the upper half plane because that section gives an exponentially damped

contribution. This is due to the Jordan’s Lemma which says that∣∣∣∣∫
CR

g(z)eiaz
∣∣∣∣ ≤ π

|a|
MR

provided that CR lies in the upper half plane for a > 0 and in the lower half plane for a < 0.

Here M(R) is the maximum value of g on the arc. For our case, MR = O( 1
R ) or o( 1

R ) determined
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by whether there is one or more terms depends on km1 . Therefore MR → 0 as R → ∞, so is

the integration over the arc.

As m1 is the smallest in the subset, all of the poles lie below the integration line, see fig.??(a).

Therefore, the integration over the closed contour vanishes as it does not encircle any pole. As

the integration over the semicircle at infinity is zero, the original integral also vanishes. This

means xP -1m1
≤ ym1

.

If xP -1m2
> ym2 , then one can close the contour in the upper half plane. There is only

one pole at km1
+ ic which requires P

−1
m1 > P

−1
m2. However, as x’s and y’s are ordered

and m1 < m2, together with the fact that xP -1m2
> ym2

, xP -1m1
< ym1

, this implies that

P -1m1 < P -1m2. Therefore, the pole does not exist. This leads to xP -1m2
< ym2 .

Such argument can be carried our for any kmi . If xP -1mi
> ymi , then the integration equals

the residues in the upper half plane. However, the condition of the poles contradicts with the

statement xP -1i > ymi and xP -1mj
< ymj for any i > j. Thus, it is proved that xP -1mi

≤ ymi .

If xP -1mn
< ymn , then the contour of kmn can be closed in the lower half plane where the

integrand is analytic. Thus, the integration vanishes unless xP -1mn
= ymn .

If xP -1mn−1
< ymn−1 , then one can close the contour below, encircling the only pole at

kmn − ic. Combined with the other relations we have, i.e. xP -1mn
= ymn , ymn > ymn−1

,

we get xP -1mn−1
< xP -1mn

, which indicates that P
−1
mn−1 < P

−1
mn. This contradicts with

the exist condition of this pole which says P
−1
mn−1 > P

−1
mn. Thus one gets the relation

xP -1mn−1
= ymn−1

.

Similarly, one can show that xP -1mi
= ymi for any i. On the other hand, xP -1ni

= yni . Thus,

we arrive at the conclusion that P
−1

= i, i.e. P = 1. This is inconsistent with the prerequisite

for I2, which says that there is at least one pair of m < n such that P
−1
m > P

−1
n. Thus we

have shown that I2 = 0. This completes the proof of the central theorem for c > 0.

4.1.2 Attractive Case

The integration contours for the attractive case spread out in the imaginary direction. However,

the pole position relative to the integration line is the same as the repulsive case. For example,

the pole of k1 due to the S-matrix S(P12) is at k2 + i|c|. However, as the integration contour of

k2 is below that of k1 and the distance is more than |c|, thus this pole is below the integration

line of k1. For a general pole structure, see fig ??. As a result, all arguments there can be carried

over. We will not repeat it. Note that this provides us with a guideline for guessing the contour.

Usually, the contours simply lie on the real axis if the system does not have bound states. If
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(a) (b)

(c) (d)

Figure 4.2: Pole positions for various k integrations in the repulsive case. Integrated variables
are marked on the upper-left corner of the graph
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one can prove the central theorem with such contours, one may manipulate the contour for

the counterpart with attractive interaction such that the relative position between poles and

contours remains the same. However, for some model like Gaudin-Yang model, there are bound

states for both repulsive and attractive interaction, then one needs to work harder to guess the

contour for the repulsive case first, then for the attractive case.
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(a)
(b)

(c) (d)

Figure 4.3: Pole positions for various k integrations in the attractive case. Integrated variables
are marked on the upper-left corner of the graph
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Time Evolution

With the Yudson representation, we can expand any state in terms of eigenstates of the Hamil-

tonian. This makes the time evolution very easy to calculate. In this section, we will study the

time evolved state at a later time. We will begin with the two-particle case. This is the sim-

plest situation and the only one where a closed form of the wavefunction can be obtained. For

systems with any number of particles, the integration over the momentums can not be carried

out explicitly. As a compromise, we will study the behaviour in the long time limit using the

saddle point approximation.

4.2 Two particle Dynamics

In this part, we will study the system with only two particles. First, we will investigate the

evolution of the following initial state

|φ0〉 =
1√
πσ2

∫
x1,x2

e−
(x1−x10)2

2σ2 − (x2−x20)2

2σ2 Ψ†(x1)Ψ†(x2)|0〉

which describes two wavepackets centered at x10 < x20 respectively. Here we assume the packet

width σ is much smaller than the distance in between x20 − x10, i.e. the two particles are well

separated. Then the overlap between this state with the Yudson state can be calculated as the

following

(k1, k2|φ0〉 =
1√
πσ2

∫
x1,x2

e−(
(x1−x10)2

2σ2 − (x2−x20)2

2σ2 −ik1x1−ik2x2θ(x2 − x1)

e−(
(x1−x10)2

2σ2 − (x2−x20)2

2σ2 −ik1x2−ik2x1θ(x1 − x2)

=
1√
πσ2

∫
x1,x2

e−(
(x1−x10)2

2σ2 − (x2−x20)2

2σ2 −ik1x1−ik2x2

+
1√
πσ2

∫
x1,x2

e−(
(x1−x10)2

2σ2 − (x2−x20)2

2σ2
(
e−ik2x1−ik1x2 − e−ik1x1−ik2x2

)
θ(x1 − x2)

= I1 + I2

We will show that I2 is of the order of e−
(x20−x10)2

4σ2 and we will drop this term.

First we replace the terms in the parenthesis by it upper bound which is 2 and then carry

out the integration over x1. And we get

I2 <
√

2

∫
x2

erfc(
x2 − x10√

2σ
)e−

(x2−x20)2

2σ2

Then split the integration into two parts. The first part I1
2 integrate from −∞ to x10, and

replace the complimentary error function by its upper bound which is 2.Therefore,

I1
2 < 2

√
2

∫ x10

−∞
dx1e

− (x2−x20)2

2σ2 = 2σ
√
π erfc(

x20 − x10

2σ
)
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As

erfc(x) =
e−x

2

√
π

(
1

x
+O(

1

x3
)

for real and large x, we have

I1
2 = O(

σ

(x20 − x10)
e−

(x20−x10)2

2σ2 )

The second part I2
2 includes the integration from x10 to infinity. Make use of the fact that

erfc(x) <

√
π

2
e−x

2 1

x+ 1

and as x > 0, we further simplify the relation as

erfc(x) <

√
π

2
e−x

2

Therefore,

I2
2 <

√
π

2

∫ ∞
x1

e−
(x2−x10)2

2σ2 − (x2−x20)2

2σ2

<

√
π

2

∫ ∞
−∞

e−
(x2−x10)2

2σ2 − (x2−x20)2

2σ2

<
πσ√

2
e−

(x10−x20)2

4σ2

i.e.

I2
2 = O(e−

(x10−x20)2

4σ2 )

Thus, we can say

I2 = O(e−
(x10−x20)2

4σ2 )

Through the estimation,above, one can get a glimpse of the complication a simple θ-function

brings. Therefore, we will always assume that particles are well separated apart and the tail of

the wave packet is negligible so as to ignore the θ-function. We will not touch the problem of

a condensate in the position basis in this thesis.

To sum up, the overlap between our initial state |φ0〉 and Yudson state is

(k1, k2|φ0〉 =
1√
πσ2

∫
x1,x2

e−(
(x1−x10)2

2σ2 − (x2−x20)2

2σ2 −ik1x1−ik2x2

=
√

4πσ2e−ik1x10−ik2x20−k2
1σ

2/2−k2
2σ

2/2
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Exact Wavefunction

Plug it into the Yusdon Representation we get

|φ(t)〉

=

∫
C

dke−iEkt|k1, k2〉(k1, k2|φ0〉

=

√
4πσ2

(2π)2

∫
dx

∫
dy

∫
C

dk
(
e−ik

2
1(t+σ2/2i)−ik2

2(t+σ2/2i)+ik1(y1−x10)+ik2(y2−x20) + e−ik
2
1(t+σ2/2i)

e−ik
2
2(t+σ2/2i)+ik1(y2−x10)+ik2(y1−x20) k1 − k2 − ic

k1 − k2 + ic

)
θ(y2 − y1)|y1, y2〉

=

√
4πσ2

(2π)2

∫
dx

∫
dy

∫
C

dk
(
e−ik

2
1(t+σ2/2i)−ik2

2(t+σ2/2i)+ik1(y1−x10)+ik2(y2−x20)
(
θ(y2 − y1)

+
k1 − k2 − ic
k1 − k2 + ic

θ(y1 − y2)
)
|y1, y2〉

=

√
4πσ2

(2π)2

∫
dx

∫
dy

∫
C

dk
(
e−ik

2
1(t+σ2/2i)−ik2

2(t+σ2/2i)+ik1(y1−x10)+ik2(y2−x20)
(
1− 2ic

k1 − k2 + ic

θ(y1 − y2)
)
|y1, y2〉

=

∫
dx

∫
dy (I1 + I2)|y1, y2〉

The calculation of the first term is trivial

I1 =

√
4πσ2

(2π)2

π

i(t+ σ2/2i)
e
i

(y1−x10)2+(y2−x20)2

4(t+σ2/2i)

To calculate the second term, we transform the fraction into the following integral

1

k1 − k2 + ic
=

1

i

∫ ∞
0

e(ik1−k2+ic)λ

Note, this tranformation is valid for both repulsive anc attractive cases as =(k1 − k2 + ic) > 0

for both situations. (Recall that for attractive case, the contour of k1 is above that of k2 by a

distance greater than |c|, this makes =(k1)−=(k2)− |c| > 0.) Therefore, the expression of the

attractive case is the same as that of the repulsive one. With this trick, the second term can be

calculated as

I2 =− 2cθ(y1 − y2)

√
4πσ2

(2π)2

∫ ∞
0

dλ

∫
dke−ik

2
1(t+σ2/2i)−ik2

2(t+σ2/2i)+ik1(y1−x10+λ)+ik2(y2−x20−λ)

e−cλ

=− 2cθ(y1 − y2)

√
4πσ2

(2π)2

π

i(t+ σ2/2i)

∫ ∞
0

dλe
iλ2

2(t+σ2/2i)
+
i(y1−x10−y2+x20+2ic(t+σ2/2i))λ

2(t+σ2/2i)
+
i(y1−x10)2

4(t+σ2/2i)

e
i(y2−x20)2

4(t+σ2/2i)

=− c
√

2πi(t+ σ2/2i)θ(y1 − y2)

√
4πσ2

(2π)2

π

i(t+ σ2/2i)
erfc(α)eα

2
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where

α =
y1 − x10 − y2 + x20 + 2ic(t+ σ2/2i)

2
√

2i(t+ σ2)

=
(1− i)(y1 − x10 − y2 + x20 + 2ic(t+ σ2/2i)

4
√

(t+ σ2/2i)

In the first line, we shift the contour of k1 and k2 to the real axis for attractive case. This is

accredited to the trick we have used which removes the pole at k1 = k2 − ic. In the second line

of the α equation, we take the i out of the square root. We claim that this will bring us a factor

of 1− i rather than i− 1. This is a nontrivial assertion as

erfc(−α) = 2− erfc(α) (4.1)

The extra minus sign will leads to an extra term of the form eα
2

as well as a minus sign in

the rest of the contribution. We are going to check the solution by studying its long time limit

and show its relevance to the bound states in the attractive case. Before, we go into details,

let’s summarize the results. Combining the two contributions, the wavefunction at time t equals

the following

f(y1, y2, t) =
σ

2
√
πi(t+ σ2/2i

e
i(y1−x10)2+i(y2−x20)2

4(t+σ2/2i) (1− (1 + i)cθ(y1 − y2)
√

(t+ σ2/2i)π

erfc(α)eα
2

)

with α = (1−i)(y1−x10−y2+x20+2ic(t+σ2/2i)

4
√
t+σ2/2i

.

Asymptotic Limit of the Wavefunction

When t is large, the expression can be simplified using the following asymptotic expansion of

the complimentary error function. [? , Eq. 7.12.1].

erfc(z)ez
2

≈ 1√
π

∞∑
m=0

(−1)m
(

1
2

)
m

z2m+1
|ph(z)| < 3

4
π

Here ( 1
2 )m is the Pochhammer symbol, defined as (x)n = Γ(x+n)

Γ(x) = x(x − 1) · · · (x + n − 1).

Define

ζ =
y1 − x10 − y2 + x20 + 2ic(t+ σ2/2i)

4
√
t+ σ2/2i

For c > 0, ζ falls in the first quadrant, being close to the imaginary axis. Then we have

|ph((1− i)ζ)| ∈ (0,
π

4
)
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Therefore,

lim
t�1

f(y1, y2, t)

=

√
4πσ2

(2π)2

π

i(t+ σ2/2i)
e
i(y1−x10)2+i(y2−x20)2

(t+σ2/2i)

(
1− 4ic(t+ σ2/2i)θ(y1 − y2)

y1 − x10 − y2 + x20 + 2ic(t+ σ2/2i)

)
(4.2)

For c < 0, <[ζ] can be positive or negative (with extreme large interaction strength like in the

super Tonks-Girardeau case), ζ lies on either side of the imaginary axis in the negative direction.

Thus

|ph((1− i)ζ)| ∈ (
π

2
, π)

Together with the relation eq(??), we have

lim
t�1

f(y1, y2, t)

=

√
4πσ2

(2π)2

π

i(t+ σ2/2i)
e
i(y1−x10)2+i(y2−x20)2

(t+σ2/2i)

(
1− (1 + i)cθ(y1 − y2)

√
(t+ σ2/2i)π

(2e
− i(y1−x10−y2+x20+2ic(t+σ2/2i)2

8(t+σ2/2i) −
4
√
t+ σ2/2i

(1− i)
√
π(y1 − x10 − y2 + x20 + 2ic(t+ σ2/2i)

)

)
(4.3)

On the other hand, we can calculate the asymptotic limit of the wavefunction from the very

beginning using saddle point approximation.

Saddle Point Approximation

Saddle point refers to a point in the analytic landscape of the absolute value of the integrand,

such that it is a relative minimum along one direction and a relative maximum along another.

See Figure ??. According to the Jensen’s theorem, there are no peaks but only saddle points

for any function. Therefore, besides the singularities, these points are the most important. To

make the saddle point approximation, one first deforms the original path C to C ′ which runs

through the saddle points in the direction such that the saddle point is a maximum. Therefore,

most of the contribution comes from the vicinity of this point as long as the slope around it is

steep enough. For an integral of the form

I(s) =

∫
C

g(z)esf(z)dz

where s is big, the integral can be approximated by the following expression [? ]

I(s) ≈ g(z0)esf(z0)

√
2π

sf ′′(z0)
eiα

Here α = π/2− ph(f ′′(z0))/2. Hence, the original integration becomes the sum of the residues

at the pole between the two paths C and C ′ and the saddle point approximated value.
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Figure 4.4: Example of a saddle point. Figure from Wikimedia

First, let’s apply the method to the wavefunction integration with repulsive interaction.

Here the contours of momentum integrations are along the real axis and they run through the

saddle points at k1 = (y1 − x10)/2(t+ σ2/2i) and k2 = (y2 − x20)/2(t+ σ2/2i). Thus, we have

f(y1, y2, t) =

√
4πσ2

(2π)2

∫
dk
(
e−ik

2
1(t+σ2/2i)−ik2

2(t+σ2/2i)+ik1(y1−x10)+ik2(y2−x20)
(
1− 2ic

k1 − k2 + ic

θ(y1 − y2)
)

≈
√

4πσ2

(2π)2

π

i(t+ σ2/2i)
e
i(y1−x10)2+i(y2−x20)2

4(t+σ2/2i) (1− 4icθ(y1 − y2)t

y1 − x10 − y2 + x20 + 2ic(t+ σ2/2i)
)

(4.4)

However, for the situation with negative interaction, the contours of k1 lies above the real

axis, that of k2 lies below the axis. In order to perform the saddle point approximation, one

needs to deform the contour so that they both lie on the real axis where the singularity exists.

This transforms the integral into a sum of two terms. The first is the same as that of the

repulsive one. The second term corresponds to the residue at k1 = k2 − ic, and we are free to

shift the contour of k2 such that k1 = k − ic/2 and k2 = k + ic/2 for a real k. Then we carry

out the saddle point approximation at k = y1−x10+y2−x20

4(t+σ2/2i) and we obtain
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f(y1, y2, t)

=

√
4πσ2

(2π)2

(∫
dk
(
e−ik

2
1(t+σ2/2i)−ik2

2(t+σ2/2i)+ik1(y1−x10)+ik2(y2−x20)
(
1− 2ic

k1 − k2 + ic

θ(y1 − y2)
)
− 2icθ(y1 − y2)(−2πi)

∫
dke−i(k−ic/2)2t−i(k+ic/2)2t+i(k−ic/2)(y1−x10)

ei(k+ic/2)(y2−x20)

)
≈
√

4πσ2

(2π)2

π

i(t+ σ2/2i)
e
i(y1−x10)2+i(y2−x20)2

4(t+σ2/2i) (1− 4icθ(y1 − y2)t

y1 − x10 − y2 + x20 − 2ic(t+ σ2/2i)
)

+ 2(i− 1)

√
π3

t+ σ2/2i
ce

i(y1−x10)2+i(y2−x20)2

4(t+σ2/2i) e
− i(y1−x10−y2+x20+2ic(t+σ2/2i)2

4(t+σ2/2i) (4.5)

Compare the expressions with the one we get from the asymptotic expansion of the complimen-

tary error function, we see that Equation (??),(??) agrees with Equation (??),(??). Thus the

choice of the square root of i is comfirmed.

Observables

Given the wavefunction, density and correlation function can be calculated numerically. Fig-

ure ?? shows the density evolution for the initial state with two particles at ±1. Here, we see

wave packets diffuse independently, then merge and diffuse coherently. Figure ?? is for sys-

tem with repulsive interaction c = 5 and Figure ?? is for attraction interaction with c = −5.

However, we do not see much difference between them. Similar result is found when we cal-

culate the density at the origin after the quench. Figure ?? compares the density evolution at

z = 0, we see that the two lines overlap with each other. Figure ?? shows the relative density

difference defined as
ρrepulsive(0,t)−ρattractive(0,t)

ρattractive(0,t) , and we see that the relative difference is around

one percent. Our explanation is that the two wave packets have negligible overlap in the initial

state. This remains true at the moment the interaction is turned on. As time goes on, the

system probes the states with the same energy. Placing the two particles on top of each other

will lower or raising the total energy of the system in attractive or repulsive systems, thus it is

suppressed. That is to say that although bound states are preferred energetically in attractive

models, their overlaps with the initial state is small. Thus the system will remain in such state

for both situations where the two particle’s wavefunction are almost orthogonal to each other

such that the contact interaction does not affect the density greatly. Therefore, the density for

attractive or repulsive particle at any time at any location is well approximated by that of the
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free particle, which can be easily calculated from the wavefunction

ffree(y1, y2, t) =

√
4πσ2

(2π)2

π

i(t+ σ2/2i)
e
i(y1−x10)2+i(y2−x20)2

4(t+σ2/2i)

and

ρfree(y, t) =
4πσ2

(2π)4

π2

t2 + σ4/4

√
4π(t2 + σ4/4)

σ2
(e
−σ

2(y−x10)2

4(t2+σ4/4) + e
−σ

2(y−x20)2

4(t2+σ4/4) + 2

√
2π(t2 + σ4/4)

σ2

<

e−σ2

(
y− x1+x2+2i(x10−x20)t/σ2

2

)2

8(t2+σ4/4)

 e−
(x10−x20)2

2σ2 )

Since we have made the assumption that (x20−x10)� σ, we can drop the last term and obtain

the simple gaussian dispersion for the density.

(a) (b)

(c) (d)

Figure 4.5: Density evolution for systems with two particles. Figure ?? describes repulsive case
and Figure ?? describes attractive case. Figure ?? compares the density at the origin between
c = 5 and c = −5 cases. Figure ?? shows the relative density difference.

In Figure (??), we compare the evolution of the normalized noise correlation for c = 5, c = −5

and c = 0. Here, the normalized noise correlation is defined as C(y1, y2, t) = 〈ρ(y1)ρ(y2)〉
〈ρ(y1)〉〈ρ(y2)〉 −

1. This quantity describes how the density fluctuations at different sites are related to each

other, i.e. C(y1, y2, t) = 〈(ρ(y1)−〈ρ(y1)〉)(ρ(y2)−〈ρ(y2)〉)〉
〈ρ(y1)〉〈ρ(y2)〉 . Note this quantity varies for different

normalization of the wavefunction. Here we should impose the constraint that the integration
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over the density should be normalized to N − 1, instead of N with N being the total number

of particles. Thus, the plots in the figure were obtained by rescaling the density operator by a

factor of 1
2 . From these plots, we see oscillations in the vicinity of the origin. That’s where the

correlation begins to develop. Away from zero, we see the correlation stabilizes at 1, which does

not mean they are maximally correlated due to interactions. As the correlation is between site

y and −y, this phenomenon is simply a symmetry effect, since both the initial state and the

Hamiltonian has reflection symmetry with respect to the origin. Comparing the four plots, we

notice that the correlation first spreads out fast(from t = 0.02 to t = 0.1), then slow down(from

t = 0.1 to t = 0.5), in the end, the speed stabilizes at fermi velocity. Compare the three

cases in each plots, we see the oscillation spreads out in a roughly same manner irrespective

of the sign of the interaction, though in the repulsive case, the correlation spreads our faster

and in the attractive case, it expands slower. In Figure (b),(c),(d), the correlation at zero is

clearly suppressed in interacting models than that of the free one. This suppression takes on

its strength gradually with time which can be seen from the inset plots which show the detail

of the correlation near the origin. In Figure (d), the correlation in the interacting systems

is almost −1 at the origin, which indicates that it is almost impossible to have two particles

overlap. However, this is not a effect of the repulsive interaction. As the correlation C(0, 0, t)

of a Bethe Ansatz eigenstate of a repulsive Hamiltonian is +1 as we will show later. Instead,

this indicates a wide span in the k-space while it has less fluctuation in the position basis due

to the uncertainty principle. For the non-interacting case, the correlation function saturates to

the famous Hanbury-Brown Twiss result, i.e C(y1, y2, t) = cos(a(y1, y2)/t) [? ].

In the following part, we will show that, for a Bethe Ansatz eigenstate with no bound state,

the magnitude of the correlation at the origin is not related to the sign or magnitude of the

interaction. Instead, the slope of it is proportional to c. While for a state with bound states,

the correlation when the two particles overlap goes to infinity with the system size and its

magnitude drops exponentially fast with the separation in between.

Let’s start with the correlation of a free state |k1, k2〉 in a finite system of length L. Here

the momentums k1 and k2 are real and they satisfy the Bethe equation

eik1L =
k1 − k2 + ic

k1 − k2 − ic

eik2L =
k2 − k1 + ic

k2 − k1 − ic
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Thus the two-point correlation equals

〈ρ(x1)ρ(x2)〉x1<x2 = |eik1x1+ik2x2 +
k1 − k2 − ic
k1 − k2 + ic

eik1x2+ik2x1 |2

= 2 + ei(k1−k2)(x1−x2) k1 − k2 + ic

k1 − k2 − ic
+ e−i(k1−k2)(x1−x2) k1 − k2 − ic

k1 − k2 + ic

In the vicinity of the origin, we have

lim
x2−x1→0

〈ρ(x1)ρ(x2)〉 ≈ 4 + i(k1 − k2)(x1 − x2)(
k1 − k2 + ic

k1 − k2 − ic
− k1 − k2 − ic
k1 − k2 + ic

)

≈ 4− c(k1 − k2)2(x1 − x2)

(k1 − k2)2 + c2

The density can be calcuated by integrating out one dummy coordinate, we get

〈ρ(x)〉 =2L+
1− ei(k1−k2)(−L2 −x2)

i(k1 − k2)

k1 − k2 + ic

k1 − k2 − ic
+
ei(k1−k2)(x−L2 ) − 1

−i(k1 − k2)

k1 − k2 + ic

k1 − k2 − ic

+
1− e−i(k1−k2)(−L2 −x)

−i(k1 − k2)

k1 − k2 − ic
k1 − k2 + ic

+
e−i(k1−k2)(x−L2 ) − 1

i(k1 − k2)

k1 − k2 − ic
k1 − k2 + ic

=2L+
1− ei(k1−k2)(−L2 −x)

i(k1 − k2)
eik1L + +

ei(k1−k2)(x−L2 ) − 1

−i(k1 − k2)
eik1L

+
1− e−i(k1−k2)(−L2 −x)

−i(k1 − k2)
eik2L +

e−i(k1−k2)(x−L2 ) − 1

i(k1 − k2)
eik2L

=2L+
8c

(k1 − k2)2 + c2

In the second and third line, we made use of the Bethe equation to simplify the expression

and we get the density to be uniform as expected. The integration over the density re-

turns L(2L + 8c
(k1−k2)2+c2 ). Therefore, we need to renormalize the wavefunction by a factor

of 1/
√
L(2L+ 8c

(k1−k2)2+c2 ). Then we have

〈ρ(x1)ρ(x2)〉 =
4− c(k1−k2)2(x1−x2)

(k1−k2)2+c2

2L(L+ 4c
(k1−k2)2+c2)

and

C(x1, x2, t) =
〈ρ(x1)ρ(x2)〉
ρ(x1)ρ(x1)

− 1

=
1

2(L+ 4c
(k1−k2)2+c2 )

(2L− 8c

(k1 − k2)2 + c2
− cL(k1 − k2)2(x1 − x2)

(k1 − k2)2 + c2
)

From this expression, we can understand the behaviour of the normalized noise correlaion

function of a Bethe Ansatz eigenstate without bound states at the origin. For repulsive case,

this quantity is less than one. For attractive case, it is greater than one. Moreover, we see that

when the interaction is positive, limx1→x−2
C(x1, x2, t) > 1, thus we see a dip at the origin, while

attractive interaction will bring out a peak.
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We can repeat the calculation for a bound state |k + ic/2, k− ic/2〉. This state satisfies the

Bethe equation in the limit L → ∞. However, the two-point correlation function and density

suffer from divergence problems with k1 − k2 + ic = 0.

〈ρ(x1)ρ(x2)〉 = 2 + lim
k1→k2−ic

ec|x2−x1| k1 − k2 + ic

k1 − k2 − ic

〈ρ(x)〉 = lim
k1→k2−ic

lim
L→∞

2L+
8c

(k1 − k2)2 + c2

Rescale the wavefunction by a factor of 1√
2L(L+ 8c

(k1−k2)2+c2

, then the normalized noise correlation

function becomes

C(x1, x2) = lim
L→∞

|c|L
2
e−|c||x1−x2| − 1

which diverges with the system size. However, if we ignore the normalization we can tell that,

for a bound state, the normalized noise correlation function blows up exponentially when the

two particles approach each other.

To sum up, the normalized correlation function when the two particles overlap is greater than

one for attractive particles and less than one for repulsive ones in a free state. The correlation

decreases exponentially with the separation between the two particles in a bound state. In the

vicinity of the origin, the correlation function shows a dip in a repulsive model and displays

a peak in an attractive model. In Figure ??, we can see the peak and dip for the orange line

and blue line clearly. However, the correlation at the origin is approaching −1 as the system

evolves. This indicates that the system spans a lot of eigenstates to avoid overlap between the

two particles.

Colliding Particles

We can also study the case where the two particles are moving towards each other, with speed

k0 and −k0 respectively. Then the initial state becomes

|φ0(k0)〉 =
1√
πσ2

∫
x1,x2

e−
(x1−x10)2

2σ2 − (x2−x20)2

2σ2 +ik0x10−ik0x20Ψ†(x1)Ψ†(x2)|0〉

This is interesting because the kinetic energy may be transformed into the potential energy.

This enables the system to probe states with higher internal energy. (Think of a system with

two balls connected with a spring in a classical picture). We suspect that this extra energy will

lead to a ’bound’ state in the repulsive model. This serves as our motivation of the following

study. The procedure is the same as the case with static initial condition. The dropped term

in (k1, k2|φ0(k0)〉 is still of the order of O(e−
(x20−x10)2

2σ2 ), therefore is negligible. And we get

(k1, k2|φ0(k0)〉 =
√

4πσ2e−i(k1−k0)x10−i(k2+k0)x20− (k1−k10)2σ2

2 − (k2−k0)2σ2

2
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(a)

(b)
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(c)

(d)

Figure 4.6: Normalized noise correlation for a two-particle system at t = 0.02(a), 0.1(b), 0.5(c)
and 2(d) respectively. Blue line is for repulsive case. Orange line is for attractive case. Green
line depicts the free model.
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and the time evolved state becomes

|φt〉k0 =

√
4πσ2

(2π)2

π

i(t+ σ2/2i)
e
i(y1−x10)2+i(y2−x20)2

4(t+σ2/2i)
+
k0σ

2(y1−y2)

2(t+σ2/2i)
+
ik0(x10−x20)t

t+σ2/2i
− k2

0σ
2t2

t+σ2/2i(
1− (1 + i)cθ(y1 − y2)

√
π(t+ σ2/2i) erfcα′eα

′
)

with

α′ =
(1− i)(y1 − x10 − y2 + x20 − 2ik0σ

2 + 2ic(t+ σ2/2i))

4
√
t+ σ2

As is clear from the above expression, the initial momentum modifies α such that the effec-

tive interaction becomes c − k0σ
2

t+σ2/2i . When t is small, this reverses the sign of the repulsive

interaction, making it more attractive. However, its effect fades away as the time goes on. In

terms of the observable, we see that the two particles moves towards each other and merges

more quickly, see Figure ??. However, as both attractive and repulsive models have negligible

overlaps between the two wavepackets, (correlation function approaches −1 quickly, indicating

zero possibility for overlap between the two particles), the wavepackets still evolve as if isolated.

However, compare to the static case, the correlation function spreads out slower even though

the particle moves towards each other. Since, this is true for the free particles also, we consider

this a trivial effect of the initial momentum. The two particles pass each other at t = 0.1 and

moves away faster, making the correlation between them built up slower.

This completes our discussion of the two particle situation. In the following, we will study

the case with more particles. No exact solution is available, we will focus on the long time limit

only.
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(a) (b)

(c) (d)

Figure 4.7: Density evolution for two particles moving towards each other. Figure?? is for
repulsive case. Figure ?? is for attractive case. Figure ?? compares the density at the origin
between c = 5 and c = −5 cases. Figure ?? shows the relative density difference at the origin.
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(a) (b)

(c) (d)

Figure 4.8: Normalized noise correlation for a system with two particles moving towards each
other with k0 = ±10. Various figures show results for different times, t = 0.02(a), 0.1(b), 0.5(c)
and 2(d) respectively. Blue line is for repulsive case. Orange line is for attractive case. Green
line works for free model.

4.3 Multiparticle Dynamics in Asymptotic Limit

In this section, we will study systems with more than two particles. We will study the time

evolution of a static initial state defined by

|φ0〉N =
1

(πσ2)
N
4

∫
x

e−
∑N
i=1

(xi−x̄i)
2

2σ2

N∏
i=1

Ψ†(xi)|0〉

which describes N wave packets localized at x1, x2, . . . , xN respectively. To simplify the calcu-

lation, we will further assume that the particles are evenly spaced, with the separation a� σ.

The time evolved state can be written down directly using the Yudson representation

|Ψt〉N =
1

(πσ)
N
4 (2π)N

∫
x

e−
∑
i

(xi−x̄i)
2

2σ2 e−i
∑
i k

2
i t+i

∑
i ki(yP -1

i
−xi)Ak(P )θ(y)|y〉 (4.6)

with

Ak(P ) =
∏
i<j

P -1i>P -1j

Sij(ki − kj)

Like in the two-particle case, we have dropped terms of the order O(e−
a2

2σ2 ) to avoid compli-

cations from the tail of the wave packets. The integration over the k’s involves integrations over

some rational function of the error function, when the number of variables exceeds two. This
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integral which is very hard, if possible, to carry out. Thus, we will not try to obtain the explicit

expression of the wavefunction. Instead, we will focus on the long time limit directly. This

can be done in two ways. In method 1, we will obtain saddle point approximated wavefunction

and then calculate observables. As another method, we will use explicit expressions of local

observables found in literature and take the long time limit from there. We will talk about

difficulties encountered in this method.

4.3.1 Wavefunction Approach

Now, we will study the asymptotic behaviour of the wavefunction (??). The saddle point of

the integrand are located as ki =
y
P

-1
i
−xi

2t . For a repulsive systems, these points lie on the

integration contour. While for attractive case, whose contour is separated in the imaginary

direction, one needs to shift the contour to the real axis and include the contributions from the

the poles encountered.

Repulsive Case

Thus the wavefunction for c > 0 can be approximated as

|Ψt〉N =
1

(πσ2)N/4
1

(2π)N

(π
it

)N/2 ∫
x,y

e−
∑
i

(xi−x̄i)
2

2σ2 +i
(y
P

-1
i
−xi)

2

4t A
ki=

yP -1i−xi
2t

(P )θ(y)|y〉

≈ 1

(πσ2)N/4
1

(2π)N

(π
it

)N/2
(2t)N

∫
x,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 −itξ2
i−iξP -1

i
xiAki=ξ

P
-1
i
(P )θ(ξ)|2tξ〉

=
tN/2

π3N/4σN/2iN/2

∫
x,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 −iξ2
i t−iξP -1

i
x̄iAki=ξ

P
-1
i
(P )θ(ξ)|2tξ〉 (4.7)

In the second line, we have dropped terms of the order O(xit ) for large t. Based on this

expression, we can calculate local observables, i.e. density and two-point correlation func-

tion. One needs to be careful when carry out the overlap between a bra and ket state. As

〈2tξ′|2tξ〉θ(ξ′)θ(ξ) =
∏
i δ(2tξ

′
i−2tξi)θ(ξ) = 1

(2t)N

∏
i δ(ξ

′
i− ξi)θ(ξ). With this in mind, it’s easy

to derive the density as

ρ(z) =
1

2N+1tπ3N/2σN

∑
P,P ′

∫
x,x′,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 − (x′i−x̄i)
2

2σ2 −iξi(xPi−x′P ′i)A∗ki=ξ
P

-1′
i

(P ′)Aki=ξPi(P )

∑
i

δ(ξi − z/2t)θ(ξi)



73

Here

A∗ki=ξ
P

-1′
i
(P ′)Aki=ξPi)(P ) =

∏
i<j

P -1i>P -1j

Sij(ξP -1i − ξP -1j)∏
i<j

P ′-1i>P -1′j

Sij(ξP ′-1i − ξP -1′j)

=

∏
i<j

P -1′i>P -1′j

Sij(ξi − ξj)∏
i<j

P -1i>P -1j

Sij(ξi − ξj)

=

∏
i<j

P -1′i>P -1′j
P -1i<P -1j

Sij(ξi − ξj)

∏
i<j

P -1i>P -1j

P -1′i<P -1′j

Sij(ξi − ξj)

=
∏
i<j

P -1′i>P -1′j
P -1i<P -1j

Sij(ξi − ξj)
∏
i>j

P -1i<P -1j

P -1′i>P -1′j

Sij(ξi − ξj)

=
∏

P ′i>P ′j
P i<Pj

Sij(ξi − ξj)

=
∏
i<j

P ′P -1i>P ′P -1j

Sij(ξP -1i − ξP -1j)

Thus

ρ(z) =
1

2N+1tπ3N/2σN

∑
P,P ′

∫
x,x′,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 − (x′i−x̄i)
2

2σ2 −iξ
P

-1
i
(xi−x′

P ′P -1
i
)

∏
i<j

P ′P -1i>P ′P -1j

Sij(ξP -1i − ξP -1j)

∑
i

δ(ξi − z/2t)θ(ξi)

=
1

2N+1tπ3N/2σN

∑
Q=P ′P -1

∫
x,x′,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 − (x′i−x̄i)
2

2σ2 −iξi(xi−x′Qi)
∏
i<j

Qi>Qj

Sij(ξi − ξ)

∑
i

δ(ξi − z/2t)
∑
P

θ(ξPi)

=
1

2N+1tπ3N/2σN

∑
Q

∫
x,x′,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 − (x′i−x̄i)
2

2σ2 −iξi(xi−x′Qi)
∏
i<j

Qi>Qj

ξi − ξj − ic
ξi − ξj + ic

∑
i

δ(ξi − z/2t)

Similarly, one can write down the two point correlation function as

ρ2(z, z′) =
1

2N+2t2π3N/2σN

∑
Q

∫
x,x′,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 − (x′i−x̄i)
2

2σ2 −iξi(xi−x′Qi)
∏
i<j

Qi>Qj

ξi − ξj − ic
ξi − ξj + ic

∑
i,j

δ(ξi − z/2t)δ(ξi − z′/2t)
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Among the N ! terms corresponding to different permutations, most of the terms are small by

the order of O(e−ca) for moderate interaction strength and inter-particle spacing, as we are

going to show here.

Let’s look at the integration of ξi,∫
dx

∫
dx′e−

(xi−x̄i)
2

2σ2 − (x′i−x̄i)
2

2σ2

∫
dξi e

iξi(x
′
Qi−xi)

∏
i<m

Qi>Qm

ξi − ξm − ic
ξi − ξm + ic

∏
i>n

Qi<Qn

ξi − ξn + ic

ξi − ξn − ic

Assume that i(j) is the smallest(largest) index that get changed by Q. For ξi, all the poles lie

in the lower half plane. Therefore, the integral will vanish if x′Qi > xi. Thus, the integration

over ξi contributes a factor of θ(xi − x′Qi). At the same time, we have Qi > i. As we have

shown on page ??, this will leads to a term of the order of O(e−
(xQi−xi)

2

4σ2 ). Thus is negligible.

Similarly, the integration over ξj will also yields a small term. For the density, the only term

that is not small corresponds to Q = 1. Therefore, the density becomes

ρ(z) =
1

2N+1tπ3N/2σN

∫
x,x′,ξ

e
∑
i−

(xi−x̄i)
2

2σ2 − (x′i−x̄i)
2

2σ2

∑
i

δ(ξi − z/2t)

=
σN

2tπN/2

∫
ξ

e−
∑
i σ

2ξ2
i

∑
i

δ(ξi − z/2t)

=
σN

2t
√
π
e−

σ2z2

4t2

For the two-point correlation function, when Q 6= 1, the dominant terms corresponds to the

situation when both i and j are not integrated over. Then we have

ρ2(z, z′) =
1

2N+2t2π3N/2σN

′∑
Q

∫
x,x′,ξ

e
∑
m−

(xm−x̄m)2

2σ2 − (x′m−x̄m)2

2σ2 −i
∑
ξm(xm−x′Qm)

∏
i≤m<n≤j

ξm − ξn − ic
ξm − ξn + ic

δ(ξi − z/2t)δ(ξj − z′/2t) + (z ↔ z′)

For any m between i and j, if m 6= Qm, the integration contour of ξm can be closed in the

upper half plane or lower half plane depending on the sign of xm−x′Qm. When xm > x′Qm, the

integral will pick up some pole in the lower half plane at z/2t− inC or z′/2t− inC with n being

some integer. However, this will leads to a factor of e−nc(xm−x
′
Qm) which is of the order O(e−ac).

Same for the case xm < x′Qm. Therefore, when the product of the interparticle spacing and

interaction is moderate, we can neglect this term and only keep the case when Q swap i and j
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only. Therefore, we have

ρ2(z, z′)

=
1

2N+2t2π3N/2σN

∫
x,x′,ξ

e
∑
m−

(xm−x̄m)2

2σ2 − (x′m−x̄m)2

2σ2 −
∑
m6=i,j iξm(xm−x′m)

(
1 +

∑
i<j

e−iξi(xi−x
′
j)

e−iξj(xj−x
′
i)
∏

i≤m≤j

ξi − ξm − ic
ξi − ξm + ic

ξm − ξj − ic
ξm − ξj + ic

)
δ(ξi − z/2t)δ(ξj − z′/2t) + (z ↔ z′)

=
σN

4t2πN/2

∑
i<j

∫
ξ

e−
∑
m ξ2

mσ
2

(
1 + ei(ξi−ξj)(x̄i−x̄j)

∏
i≤m≤j

ξi − ξm − ic
ξi − ξm + ic

ξm − ξj − ic
ξm − ξj + ic

)
δ(ξi − z/2t)

δ(ξj − z′/2t) + (z ↔ z′)

Now the integration over ξm is disentangled and is easy to carry out.

Iξm =

∫
dξme

−σ2ξ2
m
ξi − ξm − ic
ξi − ξm + ic

ξm − ξj − ic
ξm − ξj + ic

=

∫
dξme

−σ2ξ2
m

(
1 +

ξi − ξj
ξi − ξj + 2ic

(
2ic

ξm − ξi − ic
− 2ic

ξm − ξj + ic
)

)
Using the same trick as the one we have used on page ??, one can bring the fraction into a

exponent by introducing an integral over new variable λ. By integrating over ξm first and then

λ, one obtain the following result

Iξm =

√
π

σ

(
1− 2

√
πσc

ξi − ξj
ξi − ξj + 2ic

(erfc((iξj + c)σ)e−(ξj−ic)2σ2

+ erfc((−iξi + c)σ)e−(ξi+ic)
2σ2

)
Define gzz′ as the terms in the parenthesis, i.e.

gzz′ = 1− 2
√
πσc

zi − zj
zi − zj + 2itc

(erfc((izj/2t+ c)σ)e−(zj/2t−ic)2σ2

+ erfc((−izi/2t+ c)σ)e−(zi/2t+ic)
2σ2

Then the two point correlation function can be calculated as

ρ2(z, z′) =
σ2

4t2π
e−

σ2z2

4t2
−σ2z′2

4t2
(N(N − 1)

2
+
∑
i<j

e
i(z−z′)(x̄i−x̄j)

2t
z − z′ − 2itc

z − z′ + 2itc
gj−izz′

)
+ (z ↔ z′)

+O(e−ca)

=
σ2

4t2π
e−

σ2z2

4t2
−σ2z′2

4t2
(N(N − 1)

2
+

N−2∑
n=0

(N − n− 1)e
−i(n+1)a(z−z′)

2t
z − z′ − 2itc

z − z′ + 2itc
gnzz′

)
+ (z ↔ z′) +O(e−ca)

=
σ2

4t2π
e−

σ2z2

4t2
−σ2z′2

4t2
(
N(N − 1) + 2<(e

−ia(z−z′)
2t

N(1− e
−ia(z−z′)

2t gzz′)− 1 + e
−ia(z−z′)N

2t gNzz′

(1− e
−ia(z−z′)

2t gzz′)2

z − z′ − 2itc

z − z′ + 2itc
)
)

+O(e−ca) (4.8)

In the second line, we have used the assumption that the particles are evenly spaced with

separation a. In the last line, we simplify the expression by the following relation

N−2∑
n=0

(N − 1− n)qn =
N(1− q)− 1 + qN

(1− q)2
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Expand the term e
−ia(z−z′)

2t gzz′ around the point z = z′, we have

e
ia(z−z′)

2t gzz′ = 1 + f1(z − z′) + f2(z − z′)2

Here f1 and 2f2 are the first and second derivatives at the z = z′ respectively. Plug it into

ρ2(z, z′), we obtain the leading order of the correlation function as

lim
z→z′

ρ2(z, z′) =
σ2

4t2π
e−

σ2z2

4t2
−σ2z′2

4t2
(
N(N − 1) + 2<

(
N(−f1(z − z′)− f2(z − z′)2)− 1

f2
1 (z − z′)2

+
(1 + f1(z − z′) + f2(z − z′)2)N

f2
1 (z − z′)2

)
=0

Here, we have obtain the same result as the two-particle case, i.e. it is impossible to have two

particles on top of each other. We can also calculate the normalized noise correlation function

C2(z, z′) = ρ(z,z′)
ρ(z)ρ(z′) − 1 introduced on page ??. Again, there is some ambiguity about the

normalization. Here, we set the normalization such that density be normalized to N − 1. This

is a weird choice and we will explain it now.

If we set the interaction to be zero, then the noise correlation function will only have the

first term in the parenthesis of equation ?? and the density will be simply ρ(z) = Nσ
2t
√
π
e−

σ2z2

4t2 .

If we do not change the normalization, then the noise correlation will becomes C2(z, z′) =

N(N−1)
N2 − 1 = − 1

N . Since this quantity describes how fluctuation of density at different sites

are correlated with each, it should vanish when the particles do not interaction with each other.

Therefore, we need to rescale the density and two point correlation function by a factor of N−1
N

so that C2(z, z′) vanishes with c = 0. In this case, the integral over density will yield N − 1,

instead of N . With this normalization, it’s easy to write down the normalized noise correlation

function for an interacting system.

C2(z, z′) =
2

N(N − 1)
<(e

ia(z−z′)
2t

N(1− e
ia(z−z′)

2t gzz′)− 1 + e
ia(z−z′)N

2t gNzz′

(1− e
ia(z−z′)

2t gzz′)2

z − z′ − 2itc

z − z′ + 2itc
)
)

gzz′ =1− 2
√
πσc

zi − zj
zi − zj + 2itc

(erfc((izj/2t+ c)σ)e−(zj/2t−ic)2σ2

+ erfc((−izi/2t+ c)σ)

e−(zi/2t+ic)
2σ2

Plot ?? shows the result for N = 3 and N = 5 at large time. Note, the noise function is only

a function of z/t and z′/t. It has no explicit dependence on the time. In the plot, we see

periodic behaviour between −1 and 1. And the overall trend is the same between N = 3 and

N = 5. However, we see ”interference fringes” that depends on the number of particles. To be
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specific, the number of the fringes equals N − 1. This feature, however, is not an effect of the

interaction. As shown in [? ], for a cloud of freely expanding bosonic particle, the normalised

noise correlation equals1

Cfree
2 (t) = 1 +

1

N2

N∑
k,l=1

e
i(z−z′)(k−l)a

t +O(
1

N
)

=
N(cos((z − z′)a/t)− 1) + 1− cos(N(z − z′)a/t)

N(N − 1)(1− cos((z − z′)a/t))
+O(

1

N
)

which agrees with our result of C2(z, z′) after setting c to be zero. From the above result, we see

oscillation in the normalized noise function with frequency 2πt
aN and the envelop of its maximum

and minimum has a beat frequency of 2πt
a as we have seen in the Figure ??.

1The second line of the expression differs from the result in [? ] by a term of the order 1
N
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Figure 4.9: Normalised noise correlation function in the large time limit. Figure ?? describes a
system with 3 particles. Figure ?? describes a 5-particle system.
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Attractive Case

For an attractive Lieb-Liniger model, the integration contours spread out in the imaginary

direction. To make the saddle point approximation, whose stationary phase is located at

ki =
y
P

-1
i
−xi

2t , one needs to shift all contours to the real axis, and pick up pole contributions

encountered. As an illustration, we will discuss how to shift an integration contour from the

positive imaginary direction to the real axis with a pole in between. Figure ?? shows the origi-

nal integral we want to carry out. Figure ?? displays a region enclosed by the chosen contour

which is analytic everywhere. Therefore, the integration over the closed contour vanishes, i.e.∫
C1

+
∫
C2

+
∫
C′2

+
∫
Creal

= 0. In the time evolution of the Lieb-Liniger model, integrations over

C2 and C ′2 also vanish due to the factor e−ik
2
i (t+σ2/2i) = e−ik

2
i t−σ

2k2
i /2 in the wavefunction for

|<(ki)| → ∞. Therefore, the original integration transforms into an integration over the real

line and a closed contours encircling the pole. The latter are proportional to the residue at the

pole (See Figure ??). As the pole in the Lieb-Liniger model takes the form ki = kj − ic, this

corresponds to a 2-string as discussed in page ??. For a 3-particle system, we again shift all con-

tours to the real axis. Besides the 2-string’s, we can also get contributions related to a 3-string.

This happens if the integration over k1 catches the pole at k2 − ic while that of k3 catches the

pole at k2 + ic. Therefore, after shifting the contours, we will get terms corresponding to all

possible string contributions, see Figure ??. Note, in this figure, we have shifted the integration

contour such that the k’s are symmetric with respect to the real axis. This is essentially the

same as shifting all contours to the real axis.

(a)
(b)

(c)

Figure 4.10: Illustration of shifting contours across a pole

Mathematically, the shift of contours described in Figure ?? can be translated into the
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Illustration of shifting integration contours in a 3-particle system . Figure ??
represents the original integral. Contours in Figure ?? go through the saddle points. The rest
corresponds to pole contributions related to different string configurations.

following relation.∫
C1

dk1

∫
C2

dk2

∫
C3

dk3f(k1, k2, k3)

=

∫
dk1

∫
dk2

∫
dk3f(k1, k2, k3)− 2πi

∫
dk2

∫
dk3Res(f(k1, k2, k3), k1 = k2 − ic)

−2πi

∫
dk2

∫
dk3Res(f(k1, k2, k3), k1 = k3 − ic)− 2πi

∫
dk1

∫
dk3Res(f(k1, k2, k3), k2 = k3 − ic)

+(2πi)2

∫
dk2Res(Res(f(k1, k2, k3), k1 = k2 − ic), k3 = k2 + ic) (4.9)

Now, as all independent variables are integrated along the real axis, we can carry out the saddle

point approximation directly. This is easier if we write the wavefunction as

f(k1, k2, k3)

=e−i
∑
i k

2
i t+iki(yi−xi) k1 − k2 − icSgn(y1 − y2)

k1 − k2 + ic

k1 − k3 − icSgn(y1 − y3)

k1 − k3 + ic

k2 − k3 − icSgn(y2 − y3)

k2 − k3 + ic

Then, we have

Res(f(k1, k2, k3), k1 = k2 − ic)

=e−2ik2
2(t+σ2/2i)+ik2(y1−x1+y2−x2+2ic(t+σ2/2i))+ic2(t+σ2/2i)−c(y1−x1)−ik2

3(t+σ2/2i)+ik3(y3−x3)(−2ic)

θ(y1 − y2)
k2 − k3 − 2icθ(y1 − y3)

k2 − k3

k1 − k3 − icSgn(y2 − y3)

k2 − k3 + ic
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The saddle points are

k2 =
y1 − x1 + y2 − x2 + 2ic(t+ σ2/2i)

4i(t+ σ2/2i)

k3 =
y3 − x3

2i(t+ σ2/2i)

Thus, the second term in equation (??) can be approximated as√
π

i(t+ σ2/2i)

√
π

2π(t+ σ2/2i)
(Res(f(k1, k2, k3), k1 = k2 − ic))k2=

y1−x1+y2−x2
4(t+σ2/2i)

+ic/2,k3=
y3−x3

2(t+σ2/2i)

And the original integration becomes∫
C1

dk1

∫
C2

dk2

∫
C3

dk3f(k1, k2, k3)

=(

√
π

i(t+ σ2)
)3f(k1, k2, k3)

k1=
y1−x1

2i(t+σ2/2i)
,k2=

y2−x2
2i(t+σ2/2i)

,k3=
y3−x3

2i(t+σ2)

−(2πi)

√
π

i(t+ σ2/2i)

√
π

2i(t+ σ2/2i)
Res(f(k1, k2, k3), k1 = k2 − ic)k2=

y1−x1+y2−x2
4i(t+σ2/2i)

+ic/2,k3=
y3−x3

2i(t+σ2/2i)

−(2πi)

√
π

i(t+ σ2/2i)

√
π

2i(t+ σ2/2i)
Res(f(k1, k2, k3), k1 = k3 − ic)k2=

y2−x2
2i(t+σ2/2i)

,k3=
y1−x1+y3−x3

4i(t+σ2/2i)
+ic/2

−(2πi)

√
π

i(t+ σ2/2i)

√
π

2i(t+ σ2/2i)
Res(f(k1, k2, k3), k2 = k3 − ic)k1=

y1−x1
2i(t+σ2/2i)

,k3=
y2−x2+y3−x3

4i(t+σ2/2i)
+ic/2

+(2πi)2

√
π

3i(t+ σ2/2i)
Res(Res(f(k1, k2, k3), k1 = k2 − ic), k2 = k3 − ic)k3=

y1−x1+y2−x2+y3−x3
6i(t+σ2/2i)

+ic

This can be easily implemented in Mathematica, and the results are shown in Figure ??

A major complication in the above calculation of correlation functions of local operators

originates from the complicated structure of the Bethe Ansatz wavefunction. One needs to

integrate out unmeasured coordinates which are highly entangled. At the same time, evaluating

matric elements of the local operators between Bethe Ansatz eigenstates is a well studied topic

itself. People name such quantities as form factor. In the next part, we will try to use the

results of form factor for Lieb-Liniger model to avoid the fore-mentioned integration. However,

this imposes another complication as we will show.
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Figure 4.12: Normalised noise correlation function in the large time limit for a system with 3
particles.

4.3.2 Form Factor Approach

As we have shown, the time evolved state can be expanded in the basis of Bethe Ansatz states

with the amplitude determined by the overlap between the initial state and Yudson states.

|Ψx(t)〉 =
1

(2π)N

∫
k

e−i
∑
i k

2
i t|k〉(k|x〉

and local variables are expressed as

〈O(t)〉 =
1

(2π)2N

∫
k,p

e−i
∑
i(k

2
i−p

2
i )t〈x|p)〈p|O|k〉(k|x〉

Due to the simple form of the Yudson state, the coefficients 〈x|p) and (k|x〉 are easier to

manipulate than that in a traditional spectral representation. Then the main complication

comes from the calculation of the matrix elements between two standard Bethe Ansatz states,

i.e. the form factor. This object has been studied a lot in the literature. And the density

form factor of the Lieb-Liniger gas is readily available from [? ] as the following determinant

formulas.

〈p|ρ(y)|k〉 =
−i
c

(−1)N(N+1)/2ei
∑
i(ki−pi)y

∏N
o=1

∏N
l=1(ko − pl + ic)∏

o<l(ko − kl + ic)(po − pl − ic)
detV (4.10)
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with V being an (N + 1)× (N + 1) matrix with entries

Vjl = t(kj − pl) + t(pl − kj)
N∏
o=1

(pl − ko + ic)(pl − po − ic)
(pl − ko − ic)(pl − po + ic)

j, l = 1, . . . , N

VN+1,j =

N∏
o=1

po − pl + ic

ko − pj + ic
and Vj,N+1 = 1 j = 1, . . . , N

VN+1,N+1 = 0

and

t(u) =
−i

u(u+ ic)

Here, the formulas have been modified according to our choice of normalization. However, this

formula suffers from some problems as we will see here.

When N = 1, 〈p|ρ(y)|k〉 = 1, then the evolution of a wave packet centered at x̄ of width σ

becomes

ρ(y, t) =

√
4πσ2

(2π)2

∫
k,p

e−ik
2(t+σ2/2i)+ip2(t−σ2/2i)+i(k−p)(y−x)

=
σ

2
√
π
√
t2 + σ4/4

e
− σ2(y−x)2

4(t2+σ4/4)

which is what we expect for a free Gaussian wavepacket.

When N = 2,

〈p1, p2|ρ(0)|k1, k2〉 =
−2c(k1 + k2 − p1 − p2)2(k1 − k2)(p1 − p2)

(k1 − p1)(k2 − p1)(k1 − p2)(k2 − p2)(k1 − k2 + ic)(p1 − p2 − ic)
(4.11)

And the time evolution of two wavepackets initially centered at x1, x2 becomes

ρ(y, t) =
4πσ2

(2π)4

∫
k1,k2
p1,p2

e−i(k
2
1+k2

2)(t+σ2/2i)+i(p2
1+p2

2)(t−σ2/2i)+ik1(y−x1)+ik2(y−x2)−ip1(y−x1)

e−ip2(y−x2) −2c(k1 + k2 − p1 − p2)2(k1 − k2)(p1 − p2)

(k1 − p1)(k2 − p1)(k1 − p2)(k2 − p2)(k1 − k2 + ic)(p1 − p2 − ic)
(4.12)

We can also calculate the form factor from the two particle wavefunction directly by intro-

ducing regulator in x space as in [? ].

|k1, k2〉 =

∫
x1,x2

fε(|x|)eik1x1+ik2x2
(
θ(x2 − x1) +

k1 − k2 − ic
k1 − k2 + ic

θ(x1 − x2)
)
|x1, x2〉
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〈p1, p2|ρ(y)|k1, k2〉 =

∫
x

((
e−ip1y−ip2x

(
θ(x− y) +

p1 − p2 + ic

p1 − p2 − ic
θ(y − x)

)
+ e−ip1x−ip2y

(
θ(y − x)

+
p1 − p2 + ic

p1 − p2 − ic
θ(x− y)

))
×
(
eik1y+ik2x

(
θ(x− y) +

k1 − k2 − ic
k1 − k2 + ic

θ(y − x)
)

+ eik1x+ik2y
(
θ(y − x) +

k1 − k2 − ic
k1 − k2 + ic

θ(x− y)
))
fε(|x|)

=(ei(k1−p1)y i

k2 − p2
− ei(k2−p2)y i

k1 − p1
)(1− k1 − k2 − ic

k1 − k2 + ic

p1 − p2 + ic

p1 − p2 − ic
)

+ (ei(k1−p2)y i

k2 − p1
− ei(k2−p1)y i

k1 − p2
)(
p1 − p2 + ic

p1 − p2 − ic
− k1 − k2 − ic
k1 − k2 + ic

)

(4.13)

When y = 0, the expression simplifies into ??. At first, it seems that one cannot generalize

the result of ρ(0) to the density at arbitrary location by multiplying it with a phase factor

eik1y+ik2y−ip1y−ip2y. Instead, we see a mixture of ei(k1−p1)y, ei(k1−p2)y, ei(k2−p1)y and ei(k2−p2)y

in the expression of density form factor. However, this is an effect due to the regulator. As the

physical space is translationally invariant, measuring the density at position y is equivalent to

shifting all particles by −y, this leads to the phase factor in ??. The same trick has been used

in the paper [? ] when using the density form factor ??.

The drawback of the expression (??) is related to the singularity when momentums from

the two states approach each other. This pole is called a kinetic pole or annihilation pole.

And it exists for systems with any number of particles. This makes the integration intractable.

To remove such singularity, one may shift the integration contour slightly. This, however,

invalidates the Eq. (??) due to divergence problems in its derivation. For example, when

=(k1 − p2) < 0 or =(k1 − p2) > 0, the following integration from 〈p1, p2|ρ(y)|k1, k2〉 becomes

ill-defined ∫
x

ei(k1−p2)x+i(k2−p1)y(
k1 − k2 − ic
k1 − k2 + ic

θ(x− y) +
p1 − p2 + ic

p1 − p2 − ic
θ(y − x)

Therefore, there is no consistent way to shift the contour without bringing in more divergent

problems to the density form factor. Thus the result of the density form factor can not be applied

to the Yudson approach readily due to the kinetic poles in the form factor. This completes our

discussion of this method.
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Chapter 5

Quench Dynamics of Gaudin-Yang Gas

In this chapter, we will use the Yudson Approach to study the real time dynamics of a system

with two species of fermions interacting with contact interaction. The system is described by

the Gaudin-Yang Hamiltonian defined as

H =
∑
σ=↑,↓

∫
dxΨ†σ(x)(− ∂2

∂x2
)Ψσ(x) + c

∫
x

Ψ†↑(x)Ψ†↓(x)Ψ↓(x)Ψ↑(x)

We have talked about the Bethe Ansatz solution of this model in chapter 1. Here is a quick recap

of some of the important results which will serve as a basis of the discussion in this chapter.

The Bethe Ansatz eigenstate

|µ, k〉 =
∑
P,R

∫
x

∑
α

(−1)P eikPixi
∏
i<j

S(µi − µj)
M∏
i=1

I(µi, Pk, αR-1i)θ(α)θ(x)|x, α〉

with S(µi − µj) defined as

S(µi − µj) =
µi − µj + icSgn(αR-1i − αR-1j)

µi − µj − ic

and I(µ, k, α) defined as

I(µ, k, α) =
−ic

µ− kα + ic/2

∏
n<α

µ− kn − ic/2
µ− kn + ic/2

and |x, α〉 defined as

|x, α〉 =

M∏
i=1

σ−αi

N∏
j=1

Ψ†↑(xi)|0〉

The Yudson state can be extracted from it as

|k, µ) =

∫
x

∑
α

eikixi
M∏
i=1

I(µi, k, αi)θ(α)θ(x)|x, α〉

The Yudson representation of the identity operator∫
C

dk

∫
C

dµ|k, µ〉(k, µ| =
∑
α,β

∫
dx

∫
dy
∑
P,R

(−1)P ei
∑
i ki(yP -1

i
−xi)

M∏
m<n

S(µm − µn)

M∏
m=1

J(µi, k, P, αi, βi)|y, α〉〈x, β|
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with J(µ, k, P, α, β) defined as

J(µ, k, P, α, β) =I(µ, Pk, α)I∗(µ, k, β)

=
−ic

µ− kPα + ic/2

∏
m<α
Pm≥β

µ− kPm − ic/2
µ− kPm + ic/2

ic

µ− kβ − ic/2
∏
n<β

P -1n≥α

µ− kn + ic/2

µ− kn − ic/2

(5.1)

Here, we have taken into account the cancellation between I(µ, Pk, α) and I(µ, k, β), i.e. when

m < β and P
−1
m < α, the factor µ−km−ic/2

µ−km+ic/2 in I(µ, Pk, α) cancels the term µ−km+ic/2
µ−km−ic/2 in

I∗(µ, k, β). However, we have left the possible cancellation related to kPα and kβ unattended

in the above expression. To carry it out, one needs to consider the relation between Pα and β,

P
−1
β and α separately.

If Pα ≥ β, and P
−1
β ≥ α, then

J(µ, k, P, α, β) =
−ic

µ− kPα + ic/2

∏
m<α
Pm>β

µ− kPm − ic/2
µ− kPm + ic/2

ic

µ− kβ − ic/2
∏
n<β

P -1n>α

µ− kn + ic/2

µ− kn − ic/2

If Pα < β, and P
−1
β ≥ α, then

J(µ, k, P, α, β) =
∏
m<α
Pm>β

µ− kPm − ic/2
µ− kPm + ic/2

−ic
µ− kPα − ic/2

ic

µ− kβ − ic/2
∏
n<β

P -1n>α

µ− kn + ic/2

µ− kn − ic/2

If Pα ≥ β, and P
−1
β < α, then

J(µ, k, P, α, β) =
−ic

µ− kPα + ic/2

ic

µ− kβ + ic/2

∏
m<α
Pm>β

µ− kPm − ic/2
µ− kPm + ic/2

∏
n<β

P -1n>α

µ− kn + ic/2

µ− kn − ic/2

If Pα < β, and P
−1
β < α, then

J(µ, k, P, α, β) =
ic

µ− kβ + ic/2

∏
m<α
Pm>β

µ− kPm − ic/2
µ− kPm + ic/2

−ic
µ− kPα − ic/2

∏
n<β

P -1n>α

µ− kn + ic/2

µ− kn − ic/2

However, to simplify our expression, we will keep the form of J as in Equation ??. We will

also use abbreviated notation J(µ) and keep its dependence on all other elements implicit.

In order for the Yudson Represenation to hold true, the contours are chosen as follows. For

systems with repulsive interaction, the contours of k’s are separated in the imaginary direction

by a distance greater than |c|. The contours of µ’s overlap with that of some k’s determined

by the initial condition. If, for example, the N particles initially reside at x1 < . . . < xN , while

the mth and nth (m < n) particles are impurities (spin flips), then µ1 are integrated along

the path of km and the contour of µ2 overlaps with that of kn. See Figure ??. If the particles
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interact with attractive interaction, the contours of the k’s remain the same. However, each µ is

integrated along three lines, two forward and one backward. The backward path runs over that

of the k related to the corresponding down spins. The two forward paths lie above and below

the backward contour with a separation greater than |c|/2. Take the same example as above, µ1

is integrated backward along the same line as km, and forward above and below the km contour

by a distance greater than |c|/2. Similarly, the µ2 contour consists of three lines centered at the

contour of kn, the first and last goes forward and the middle one runs backwards. See Plot (??).

In the next section, we will explain such choice of contour and prove the Yudson Central

theorem for the Gaudin-Yang model.
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(a)

(b)

Figure 5.1: Example integration contours in the Yudson representation for a system with N −2
majority fermions and two impurities. In this example, the mth and nth particles are the
impurities counting from the left to right. Figure ?? is for repulsive case and Figure ?? is for
attractive case.
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5.1 Central Theorem

In this section, we will prove that the Yudson representation resolves the identity properly with

the aforementioned integration contour, i.e.∫
C

dk

∫
C

dµ〈y, α|k, µ〉(k, µ|x, β〉θ(x)θ(y)θ(α)θ(β) =
∏
i

δ(yi − xi)
∏
j

δαjβj

with the abbreviated notation θ(x) = θ(x1 < . . . < xN ). We will start with the proof for the

one impurity case then generalize to that for multiple spin flips.

5.1.1 One Impurity Case

The central theorem of the Yudson representation for Gaudin-Yang model with a single impurity

states that

Const

∫
C

dk

∫
C′
dµ
∑
P

(−1)P ei
∑
i ki(yP -1

i
−xi) −ic

µ− kPα + ic/2

∏
i<α
Pi≥β

µ− kPi − ic/2
µ− kPi + ic/2

ic

µ− kβ − ic/2

∏
j<β

P -1j≥α

µ− kj + ic/2

µ− kj − ic/2
θ(x)θ(y)θ(α)θ(β) =

∏
i

δ(yi − xi)
∏
j

δαjβj

As the integrand is O( 1
µ2 ) as |µ| → ∞, the integration contour can be closed from below or

above, either should yield the same result. We choose to close the contour from above. Then,

the integral transforms into a sum of contributions from poles enclosed by the contour. For

c > 0, this corresponds to the poles above the integration contour, see Figure ??. For c < 0,

however, the pole at µ = kβ + ic/2 lies below the line of kβ . To capture this pole, a 3-line

contour is chosen, see Figure ??. In this way, the µ integration transforms into residues at

the same set of poles for both c > and c < 0. Define R(ko + ic/2) as the residue of J(µ) at

µ = ko + ic/2. Then ∫
dµJ(µ) = 2πi

∑
o≤β

P -1o≥α

R(ko + ic/2)

Depending on the relation among the indexes o, α and β, the expression of R(ko + ic/2)

takes different forms.
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(a)

(b)

Figure 5.2: Pole structure of the integrand of the µ integration. Both plots apply to systems
with N − 1 majority fermions and one impurity fermion which is the mth particle counting
from the left. Figure ?? is for systems with repulsive interaction. Figure ?? is for systems with
attractive interaction.
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If o = Pα = β, then

R(ko + ic/2) =− ic
∏
m∈S1

ko − kPm
ko − kPm + ic

∏
n∈S2

ko − kn + ic

ko − kn

=− ic
∏
m∈S1

(1− ic

ko − kPm + ic

∏
n∈S2

(1 +
ic

ko − kn
)

=− ic
∑

t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ko − kPu + ic

∏
v∈t2

ic

ko − kv

If o = β 6= Pα and P
−1
β > α, then

R(ko + ic/2) =ic
−ic

ko − kPα + icθ(Pα− β)

∏
m∈S1

ko − kPm
ko − kPm + ic

∏
n∈S2

ko − kn + ic

ko − kn

=ic
−ic

ko − kPα + icθ(Pα− β)

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ko − kPu + ic

∏
v∈t2)

ic

ko − kv

If o = Pα < β, then

R(ko + ic/2) =− ic
∑

t1∈P (S1)
t2∈P (S2)

ic

ko − kβ + icθ(α− P−1β)

∏
m∈S1

ko − kPm
ko − kPm + ic

∏
n∈S2

ko − kn + ic

ko − kn

=ic
−ic

ko − kβ + icθ(α− P−1β)

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ko − kPu + ic

∏
v∈t2

ic

ko − kv

If o 6= Pα 6= β, then

R(ko + ic/2) =− ic −ic
ko − kPα + icθ(Pα− β)

ic

ko − kβ + icθ(α− P−1β)

∏
m∈S1

ko − kPm
ko − kPm + ic∏

n∈S2

ko − kn + ic

ko − kn

=− ic −ic
ko − kPα + icθ(Pα− β)

ic

ko − kβ + icθ(α− P−1β)

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ko − kPu + ic

∏
v∈t2

ic

ko − kv

If o 6= Pα = β, then

R(ko + ic/2) =− ic −ic
ko − kPα + ic

ic

ko − kβ

∏
m∈S1

ko − kPm
ko − kPm + ic

∏
n∈S2

ko − kn + ic

ko − kn

=− ic −ic
ko − kPα + ic

ic

ko − kβ

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ko − kPu + ic

∏
v∈t2

ic

ko − kv

Here S1 = {m|m < α and Pm > β} and S2 = {n|n < β and P
−1
n > α}. P (s) is the power

set of S which includes all subset of S including the empty set. The power set appears after
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multiplying each addend respectively. The θ-function is the Heaviside step function. It is easier

to understand its emergence by looking at the detailed discussion of J(µ) on page ??. When

Pα > β, J(µ) has a factor 1
µ−kPα+ic/2 . When Pα < β, this factor is cancelled by another term

in I∗(µ, k, β), making the factor 1
µ−kPα−ic/2 . Thus, in R(ko + ic/2), we see 1

ko−kPα+ic when

Pα > β and 1
ko−kPα with β > Pα.

With |ko| → ∞, the asymptotic behavior of R(ko+ ic/2) can be categorized into three cases.

R(ko + ic/2) =


−ic+O( 1

ko
) if ko = kPα = kβ

O( 1
ko

) if ko = kPα 6= kβ or ko = kβ 6= kPα

O( 1
k2
o
) In other cases

where the leading term corresponds to the case with both t1 and t2 being empty sets. Except

for the first term in the first case, all terms vanish as fast or faster than 1/ko asymptotically.

Moreover, if these terms depend on any other kj , they also die away as fast as 1/ki. Therefore,

the integral over these explicit variables∫
dko

∏
j

dkjR(ko + ic/2)ei
∑
i ki(yP -1

i
−xi)

can be transformed into sum of pole residues above or below the integration contour, depending

on the relation between elements of P~y and ~x. As we will show in the following, none of these

poles contribute to the integral. Denote E(ko) as one of the summand of these O( 1
ko

) or o( 1
ko

)

terms, which takes the form

E(ko) =
∏
m

−ic
ko − km + ic

∏
n

ic

ko − kn

with m satisfies the condition m ≤ α and Pm ≥ β, n satisfies the condition n ≤ β andP
−1
n ≥ α.

There are two types of poles in E(ko). One is of the form ko = kn, the other is of the from

ko = km+ ic. The former pole is only apparent, but not real. As there is another term in E(kn)

which cancels its contribution. To be explicit, we have

Res
(
ei
∑
i kPi(yi−xPi)Res(J(µ), µ = ko),ko = kn

)
=− Res

(
ei
∑
i kPi(yi−xPi)Res(J(µ, µ = kn), kn = ko

)
This is what we anticipated. As the nested Bethe Ansatz solution is obtained from the ordinary

Bethe Ansatz with matrix operator, see Eq. (??) and (??), it should have the same pole

structure as the ordinary one. Thus, we do not need to worry about the first type of pole at

ko = kn. The second type of poles(ko = km − ic) also exist in the Lieb-Liniger model. These

poles form a subset of those in the Lieb-Liniger model, as the requirement for their existence is
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stronger (n ≤ β ≤ Pm and P
−1
n ≤ α ≤ n rather than n ≤ Pm and P

−1
n ≤ m). As in the Lieb-

Liniger model, these poles do not contribute to the integral due to conflicting conditions. The

argument is essentially the same as that of the Lieb-Liniger Gas. Neither does the disappearance

of some poles nor the emergence of factors like 1
ko−kn affects proof. Thus, we will not repeat

that here.

Since none of these poles in R(ko + ic/2) contributes to the integral, the integration is

essentially the same as an integration of the first term in the first case with Pα = β. This will

leads to the final result we want, with a properly chosen constant Const = 1
(2π)N+1c

, i.e.

1

(2π)N+1c
θ(x)θ(y)θ(α)θ(β)

∫
C

dk

∫
C

dµ
∑
P

ei
∑
i ki(yP -1

i
−xi)J(µ)

=
1

(2π)N
θ(x)θ(y)θ(α)θ(β)

∑
P

δPα,β

∫
dkei

∑
i ki(yP -1

i
−xi)

=θ(x)θ(y)θ(α)θ(β)
∑
P

δPα,βδ(yP -1i − xi)

= θ(x)θ(y)θ(α)θ(β) δα,βδ(yi − xi))

In sum, we have proved the Central theorem of Yudson representation for systems with one

impurity which says

1

(2π)N+1c

∫
C

dk

∫
C′
dµ|k, µ〉(k, µ| = 1

We will move on to the proof for systems with arbitrary number of impurities.

5.1.2 Multi-impurity Case

The Central theorem of the Yudson represenation for the Gaudin-Yang model with multiple

impurities states that

Const

∫
C

dk

∫
C′
dµ
∑
P

(−1)P ei
∑
i ki(yP -1

i
−xi)

M∏
m<n

µm − µn + icSgn(αm − αn)

µm − µn − ic

M∏
m

J(µm)

θ(x)θ(y)θ(α)θ(β) =

N∏
i

δ(xi − yi)
M∏
m

δαmβm (5.2)

with abbreviated notations.

J(µm) =J(µ,, k, P, αm, βm)

=
∏
m

−ic
µm − kPαm + ic/2

∏
i<αm
Pi≥βm

µm − kPi − ic/2
µm − kPi + ic/2

ic

µm − kβm − ic/2
∏
j<βm

P -1j≥αm

µm − kj + ic/2

µm − kj − ic/2

and

θ(x) = θ(x1 < . . . < xN )
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θ(α) = θ(α1 < . . . < αM )

In the following section, we will see that the µ integrations, as in the previous case, leads to an

expression whose poles form a subset of that in the Lieb-Liniger gas. Using similar argument

as before, these poles do not contribute to the k integral. We are left with a constant terms

which yields the δ-function we are looking for.

First, carry out the integration over µ1 by closing the contour from above. As the integrand

is O(1/µ2
1), the integral over the arc vanishes. Since the pole of S(µ1, µm) (m > 1) is at

µ1 = µm + ic, which is below the µ1 contour, see Figure ??, this pole is not included. Thus,

the integral becomes sum of residues at the same set of poles as that with J(µ1) alone. In the

meanwhile, the factor S(µ1, µm) becomes µm−ko−ic/2−ic Sgn(α1−αm)
µm−ko+ic/2 . Therefore, we have∫

dµ1J(µ1)
∏
m>1

S(µ1 − µm) =
∑
o

R(ko + ic/2)
∏
m

µm − k1 − ic/2− icSgn(α1 − αm)

µm − k1 + ic/2

with o summed over all poles lying above the µ1 integral contour. R(ko + ic/2) represents the

residue of J(µ1) at ko + ic/2, and its explicit expression are discussed on page ??.

Then, we can carry out the integration over µ2 by closing the contour from above. Among

the S-matrices among the µ’s, only the pole from S(µ1 − µ2) is enclosed, which is located

at µm = ko + ic/2 if α1 > α2. Combined with the condition on o, α’s and β’s, we have

P
−1
o ≥ α1 > α2 and o ≤ β1 < β2. Thus µ2−ko+ic/2

µ2−ko−ic/2 must be a factor of J(µ2). It cancels the

denominator of S(ko + ic/2 − µ2). Therefore, the poles above the µ2 contour in J(µ2)S(ko −

µ2 + ic/2)
∏
m>2 S(µ2 − µm) is the same as that in J(µ2). Thus, we have∫

dµ2J(µ2)S(ko − µ2 + ic/2)
∏
m>2

S(µ2 − µm)

=
∑
u

R(ku + ic/2)
ko − ku + icSgn(α1 − αm)

ko − ku − ic
∏
m>2

S(ku − µm + ic/2)

with u ∈ {v ≤ β2 and P
−1
u ≥ α2}, which form a subset of that of the Lieb-Liniger gas. Note,

the apparent pole at ko = ku + ic is not real, as the denominator of S(ko − ku) is canceled by

R(ku + ic/2). We have keep the result as here in order to pack the complicated long expression

into R(ku + ic/2). One special scenario of the term is when u = o. Then some poles in

R(ko + ic/2) overlaps with those in R(ku + ic/2). However, this leads to µ1 = µ2 which is

inhibited by the nested bethe ansatz such that the wavefunction vanishes at overlapping µ’s

One can continue the argument for the µ integration easily. The integrand always has the

same pole structure as J(µ) alone in the plane above the contour. What the S-matrix does

when it’s not identity is changing the numerator from µ− k + ic/2 to µ− k + i3c/2. After the
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(a)

(b)

Figure 5.3: Pole structure of the integrand of the µ1 integration. Crosses represent poles from
k’s and dots represent pole form µ2. Among the N fermions, the mth and nth are the impurities.
Figure ?? is for systems with repulsive interaction. Figure ?? is for systems with attractive
interaction.
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µ integration, this changes one of the numerator from ki − kj + ic to ki − kj + 2ic. Thus the

poles of the k integration is unaffected either.

As a result, after all µ integrations, the left hand side of equation ?? becomes

L = Const

∫
C

dkei
∑
i ki(yP -1

i
−xi)

∑
{Om}

M∏
m=1

R(kom + ic/2)
∏
m<n

S(kom − kon)θ(x)θ(y)θ(α)θ(β)

with each Om satisfies the condition Om ≤ βm and P
−1
Om ≥ αm. Again, all poles from

S(kOm − kOn) is artificial. Thus, the pole in this expression is a union of the poles of each

R(kom + ic/2). As the poles of each of them form a subset of that of the Lieb-Liniger gas, so

does the whole term. As we have shown for the Lieb-Liniger gas in chapter 3, the existence

condition for these Lieb-Liniger type poles always contradicts with the requirement to include

them into the contour. Thus, the integration vanishes if the integrand is O(1/ki) or o(1/ki)

for any ki. The only exception that contributes to the integral corresponds to the term that is

O(1) for any ki. This relates to each R(kom + ic/2) equaling −ic. This indicates Pαm = βm

for any m. Then, the integration on the left hand side of Equation ?? becomes

L =Const (2πc)M
∫
dk
∑
P

ei
∑
i ki(yP -1

i
−xi)

M∏
m=1

δPαmβmθ(x)θ(y)θ(α)θ(β)

=Const (2π)N+McM
∑
P

δ(yP -1i − xi)δPαmβmθ(x)θ(y)θ(α)θ(β)

=Const (2π)N+McMδ(yi − xi)δαmβmθ(x)θ(y)θ(α)θ(β)

This is the expression that we are looking for if the constant is chosen as 1/(2π)N+McM . Note,

in the above discussion, we did not specify the sign of the interaction. As in the case of the single

impurity case, the pole structure of the µ integration and k integration is the same thanks to

our choice of contour. See Figure ?? for an example with two impurities. Since only the relative

position of the poles matters in the argument, the argument applies to either interaction.

This completes our discussion of the central theorem for multiple impurities. We have shown

that the identity can be resolved by the following expression, with C and C ′ defined on page ??.

1 =
1

(2π)N+McM

∫
C

dk

∫
C′
dµ|k, µ〉(k, µ|

This serves as a basis to apply the Yudson representation to study the time evolution of systems

with two species of fermions. However, before we dive into detailed calculations of states and

observables, let’s discuss its physical interpretation.
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5.2 Physical Interpretation in terms of Bound states

In this section, we will recover the string solutions obtained in chapter one. By separating out

every string solutions, we will see how the Yudson representation includes them in the contours.

Moreover, we will understand why some strings are formed while others will not emerge. We

will also observe some larger cluster of roots that are not predicted by the String hypothesis.

Then we will discuss the physical nature of these string solutions in terms of bound states.

Combined with previous results, we will see how these bound states are formed dynamically in

real space.

First of all, let us review the string solutions of the Gaudin-Yang model. As we have shown

on page ??, besides being all real, the roots of the Bethe equations may form two types of

patterns. They are µ− k strings and k−µ strings. The µ− k string of length m is composed of

m µs and m− 1 ks. And it may exist in systems with either attractive or repulsive interaction.

In the second class, n ks combine with n − 1 µs to form a k − µ string of length n. When

the total number of fermions and the number of impurities is moderate, the roots only arrange

themselves into strings whose length is no longer than two. Otherwise, we will encounter factors

of 0
0 while solving the Bethe equations.

eikiL =
∏
m

ki − µm + ic/2

ki − µm − ic/2
(5.3)

∏
n 6=m

µm − µn + ic

µm − µn − ic
=
∏
i

µm − ki + ic/2

µm − ki − ic/2
(5.4)

To see this, consider a µ− k string and a k− µ string whose length is at least three, see Figure

??. In µ− k string, the imaginary part of k equals (Z + 1/2)c with Z being integers. Then the

topmost k, which we call ki must have a positive imaginary part. Thus, the left hand side of

equation ?? vanishes with L → ∞. In the meanwhile, we have both ki − µm ± ic/2 = 0 and

ki − µn ∓ ic/2 = 0 for c = ±|c|. This makes both the numerator and denominator vanish. In

the second example, the highest µ which we call µm is accompanied by another µn = µm + ic

for c < 0, this makes the left hand side of equation ?? tend to zero. However, on the other side

of the equation, we have both µm − ki − ic/2 = 0 and µm − kj + ic/2 = 0. Thus we are faced

with 0 = 0
0 again. Due to such ambiguity, we have not included any solutions relate to strings

longer than two. However, as we will see later, such long string of roots do emerge in systems

with attracting interactions.

To separate out the string solutions from the Yudson representation, one first integrates
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Figure 5.4: Examples of k − µ string and µ− k string whose length is longer than two.

out the µ variables by closing the integration contour from above (or below). Then one shifts

the contour of k’s to the real axis. In this process, if a pole is passed by, the original integral

is divided into an integral along the new path and a pole contribution where the integrated

variable is fixed by the pole. The latter is related to how the string solutions are formed. In

the following, we will elaborate this idea with an example of three majority fermions and two

minority fermions with attractive or repulsive interaction respectively. In this example, the

initial state is |x1 ↑, x2 ↓, x3 ↑, x4 ↓, x5 ↑〉, with x1 < x2 < x3 < x4 < x5.

First, integrate out µ1 and µ2 successively by closing their contours from above. As we have

shown on page ??, the denominator of the result
∫ ∏

m dµmJ(µm)
∏
m<n S(µm−µn) is the same

as that of
∏
m

∫
dµmJ(µm). And each

∫
dµmJ(µm) is a summation over 2πiRes(J(µ), µ =

ki + ic/2) for i ≤ βm and P
−1
i ≥ αm. The poles of each summand is located at ki − kj +

ic = 0 for any j satisfying the condition j ≥ βm and P
−1
j ≤ αm. As a result, the poles of∫ ∏

m dµmJ(µm)
∏
m<n S(µm − µn) are of the form ki − kj + ic = 0 with i ≤ β1 ≤ j and

P
−1
i ≥ α1 ≥ P

−1
j, or i ≤ β2 ≤ j and P

−1
i ≥ α2 ≥ P

−1
j.

For c > 0, the pole of ki at kj − ic is located below the kj contour. Thus this pole is not

encountered if we shift the contours of ki and kj to the same line. In fact, no pole is caught

when one shift all contours to the real axis. For this reason, the only type of string exists, after

separating different states apart, is the one with a real ki(i ≤ β and P
−1
i ≥ α) and a complex

µ at ki + ic/2. However, such string depends on how we close the µ contours. If we close
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both contours from below, we are left with a different string configuration with µ = kj − ic/2

for j ≥ β and P
−1
j ≤ α. Physically, it should not matter as how one closes the contour as

mathematically it leads to the same result. As we have seen on page ??, the bonds among ks

or among µs are related to bound state. However, the bonds between k and µ do not have any

physical effect in real space.

What seems a bit confusing is that the pole of µ1 = µ2 + ic does contribute if one close

the contour of µ1 from below. To understand this, consider the case with α1 = 3, α2 = 2 and

P = P15. With these conditions, we have

S(µ1 − µ2)

2∏
i=1

J(µi, Pk, αi)J
∗(µi, k, βi)

=
µ1 − µ2 + ic

µ1 − µ2 − ic
µ1 − k1 + ic/2

µ1 − k1 − ic/2
ic

µ1 − k2 + ic/2

−ic
µ1 − k3 + ic/2

µ1 − k5 − ic/2
µ1 − k5 + ic/2

µ2 − k1 + ic/2

µ2 − k1 − ic/2
−ic

µ2 − k2 − ic/2
µ2 − k3 + ic/2

µ2 − k3 − ic/2
ic

µ2 − k4 − ic/2
µ2 − k5 − ic/2
µ2 − k5 + ic/2

≡I(µ1, µ2)

The poles of µ1 below its integration contour are located at k2 − ic/2, k3 − ic/2, k5 − ic/2 and

µ2 + ic. Thus, the result of the µ1 integration consists of the contribution from each of the

following terms.

I1 =− 2πiRes(I(µ1, µ2), µ1 = k2 − ic/2)

=2πc
µ2 − k1 + ic/2

µ2 − k1 − ic/2
−ic

µ2 − k2 + 3ic/2

µ2 − k3 + ic/2

µ2 − k3 − ic/2
ic

µ2 − k4 − ic/2
µ2 − k5 − ic/2
µ2 − k5 + ic/2

k2 − k1

k2 − k1 − ic
−ic

k2 − k3

k2 − k5 − ic
k2 − k5

I2 =− 2πiRes(I(µ1, µ2), µ1 = k3 − ic/2)

=− 2πc
µ2 − k1 + ic/2

µ2 − k1 − ic/2
−ic

µ2 − k2 − ic/2
µ2 − k3 + ic/2

µ2 − k3 + 3ic/2

ic

µ2 − k4 − ic/2
µ2 − k5 − ic/2
µ2 − k5 + ic/2

k3 − k1

k3 − k1 − ic
ic

k3 − k2

k3 − k5 − ic
k3 − k5

I3 =− 2πiRes(I(µ1, µ2), µ1 = k5 − ic/2)

=− 2πc
µ2 − k1 + ic/2

µ2 − k1 − ic/2
−ic

µ2 − k2 − ic/2
µ2 − k3 + ic/2

µ2 − k3 − ic/2
ic

µ2 − k4 − ic/2
µ2 − k5 − ic/2
µ2 − k5 + ic/2

µ2 − k5 − ic/2
µ2 − k5 + 3ic/2

k5 − k1

k5 − k1 − ic
ic

k5 − k2

−ic
k5 − k3

I4 =− 2πiRes(I(µ1, µ2), µ1 = µ2 + ic)

=4πc
µ2 − k1 + 3ic/2

µ2 − k1 − ic/2
−ic

µ2 − k2 − ic/2
ic

µ2 − k2 + 3ic/2

µ2 − k3 + ic/2

µ2 − k3 − ic/2
−ic

µ2 − k3 + 3ic/2

ic

µ2 − k4 − ic/2
µ2 − k5 − ic/2
µ2 − k5 + 3ic/2
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If one closes the contour of µ2 from below, then both I2 and I4 consists of a term related to

strings of µ1 − ic = µ2 = k3 − 3ic/2. But the sum of the two terms equals zero. Similarly, the

k − µ− µ string involving k5 in I3 is cancalled by I4. There is no other pole contribution that

leads to binds between µ1 and µ2. Thus, like closing both contours from above, we do not have

µ− µ− k strings. However, if we close the contour from above, then the sum of the four terms

consists of four µ− µ− k strings of the form µ1 = µ2 + ic = ki + 3ic/2 with i = 1, 2, 3, 4 term.

Here the k lies below the µ pairs instead of in the middle of it. These strings are not predicted

from the Bethe equation and they do not even exist if we close the µ contours differently. What

is strange about these solutions is that they lead to a result whose denominator has poles at

ki − kj − 2ic. This is a new type of pole compared to the matrix form of the Gaudin-Yang

solution. But the fact is, if we sum up the contribution from these three strings, these new

poles are canceled by the numerator of the sum. This means, the sum of the µ− µ− k strings

is equivalent to a collection of states without strings. This does not sounds right at first sight,

as we know the µ− µ− k strings relate to bound states between the two down spins, while the

states with no bonds among k’s or µ’s are free states. How could a bound state be decomposed

into components of free states. In fact, this is quite common. We know an integration over

plane wave yields delta function. The situation is similar here. As the energy does not depend

on µ’s, the bound states keep a coherence phase with all other states. Thus, it is impossible to

tell whether the decrease of the wavefunction as the two impurities separate is due to bound

states or simply destructive interference among free states. That is to say, the µ−µ string does

not play an important role in real space. As there is no k − k strings when c > 0, there is no

bound states in such system.

When c < 0, the relative position of the poles for the µ integration is the same as before.

We still get poles of the form ki − kj + ic = 0 for i ≤ βm ≤ j and P
−1
i ≥ αm > P

−1
j with

m running through all µ indices. Note, if we close the µ’s from different directions, we may

have other apparent poles that will disappear after summing over all residue contributions.

To avoid such complication, we choose to close all µ contours from above. What is different

with attractive interaction is the pole distribution for the k integral. Like in the case of the

Lieb-Liniger model, the pole of ki at kj − ic is between the contours of ki and kj . Thus the

original integral separates out a pole contribution after shifting the contours of ki and kj to

the same line. As the appearance of this pole originates from the residue of the µ integrand at

µm = ki+ ic/2, this pole contribution yields bonds among ki, µm and kj . Moreover, all roots of

the denominator after taking residue at µm = ki + ic/2 take the form kn = ki + ic. Here n runs

over all indices such that n ≥ βm and P
−1
n ≤ αm. Since no two ks can take the same value,
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each µ connect at most two k’s. However when different µ’s relate to a same k, it will snap

two k − µ strings together to form a longer string. As shown on page ??, such strings involve

ambiguity of 0/0 in the Bethe equation and are not included as a string solution. However,

they do exist in the time evolution of the system.

As an illustration of the above argument, consider the previous example with α1 = 3, α2 = 2

and P = P15 for c < 0. Integrating out the µ variables from I(µ1, µ2), we obtain∫
dµ1

∫
dµ2I(µ1, µ2)

=
c4(k1 − k5 + 2ic)(k1 − k5)(k3 − k5)

(k1 − k2 + ic)(k1 − k3 + ic)(k1 − k5 + ic)2(k2 − k5 + ic)(k3 − k5 + ic)(k4 − k5 + ic)

After shifting all contours of ks to the real line, we get extra terms related to pole contributions

which are depicted in the graph below. Here the multiple subindex of the k means a k with one

of the subscripts as long as it does not coincide with any other k subscripts in the plot. The

plot intends to show the relative position among parameters in each strings or pairs. The real

part of them is to be integrated over. Any k’s that are not shown explicitly are assumed to be

integrated along the real line.

(a) (b)

(c) (d) (e)

Figure 5.5: String states separated out as a result of closing µ contours from above and shifting
all k’s to the real axis. See text for detailed explanation of notations
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Figure ??-?? consist of a k − µ string and a k − µ pair. As discussed on page (??-??), the

latter depends on how one closes the integration contour of µ’s and has no physical significance.

The k−µ string describes a bound state among two particles mediated by a spin wave. Figure ??

involve two k−µ strings, thus is related to two independent bound states, each intervened by a

spin wave. The last plot describes a bound state among three particles which is omitted in the

solution of Bethe equations. The necessary condition to form a longer string is the existence

of a ki such that β1 < i < β2 and α1 > P
−1
i > αj , which is k2 and k3 in this example. This

implies that α1 > α2.

In order to interpret these string solutions and the corresponding conditions, we label the

particles by their quasimomentum ks. In the above example, we have P = P15, thus k1 couples

to y1 which is the leftmost particle while k5 couples to y5 which is the rightmost particle. This

happens as a result of the process that particle k5 swaps with particle k4 to k1 successively,

then particle k1 exchangess with k2 to k4. In a nutshell, the permutation in the wavefunction

is related to the spacial motion of the particle. kPi is the quasimomentum of the ith particle in

the final state. P
−1
i is the location of the ki particle in that state.

When Pα = β, then the spin state of each particle is not changed by the interaction, though

the spacial position is different. In this case, the denominator of the µ integration consists of

both µ−kβ − ic/2 and µ−kβ + ic/2. Therefore, the function is not analytic no matter how the

coutour is closed. Thus the integral does not vanish under any circumstances. This is to say

that if the down spin does not transfer to other particles, there is no constraint on the spacial

distribution of the particles.

The situation is different if the down spins does move. When Pα < β, the down spin

transfers to prior particles kPα. In this case, the denominator consists of factor µ− kPα − ic/2

and µ − kβ − ic/2. Both poles are enclosed if the µ contour is closed in the upper half plane.

Thus the integral will vanish if there is no pole after closing the contour in the other direction.

That is to say there must exist a kPi such that i < α and Pi ≥ β. This indicates that a particle

which is initially the down spin or to the right of it has to move to the left of it in the final

state. This makes sense because the particle prior to the impurity can only acquire the spin

by passing by a down spin and exchange with it. This may happen in two cases. Either the

impurity itself crosses the target particle or the particle after β first passes the impurity and

then passes the target particle. Similarly, the particle after the impurity can only obtain the

down spin via crossing with the impurity or particles prior to it.

Besides transferring down spins, the interaction can also lead to bound states as we have see

above. In order to form a bound state between particle i and j, the following condition must be
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satisfied i ≤ β ≤ j and P
−1
i ≥ α ≥ P−1j. Physically, this means one of the following situations.

First, one of the up spins may reverse ordering with the down spin to form a bound state with

it. Second, the up spin and down spin in the previous case exchange spins while crossing each

other. Third, with the up spin particle and the down spin particle crossing each other and

binding together, the down spin may be transferred to a particle that lies between them in the

final state. Fourth, particle i and j that are initially on different side of the down spin each

may pass by the impurity to become bound together. Lastly, either particle i or particle j in

the previous situation may acquire the down spin in the final bound state. See Table 1.

A bound state among more particles can be formed via more spin wave modes. In the

example in Figure ??, k1, k2 and k5 form a bound state with the help of µ1 and µ2. Recall that

particle 2 and particle 4 are the down spins and particle arrange themselves in ascending order.

In order to form a bound state among particle 1,2 and 5, one needs to reverse the order of

particle 1,2,4 and 5. Though particle 4 does not show up in the bound state, the spacial motion

of it relative to the particles in the bound state is crucial to the formation of it. Moreover, as

particle 4 is sandwiched between particle 2 and particle 5, the wavefunction will also decrease

exponentially with the separation between particle 4 and 2 as well as particle 4 and 5. However,
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such binds are different to that among k1, k2 and k5. The wavefunction of this bound state

consists of the factor exp(ik(yP -11 − x1 + yP -12 − x2 + yP -15 − x5) + c/2(yP -11 − x1 − yP -15 + x5))

exp(ik4(yP -14 − x4)). Therefore, although particle 4 is bounded with particle 1,2 and 5, it does

not move coherently with them and its quasimomentum is different from that of the center of

mass of the bound state. Note, such bound state cannot be decomposed into two bound states

related to shorter strings, which should take the form exp((ik(yP -11−x1 +2yP -12−2x2 + iyP -15−

x5) + c/2(yP -11 − x1 − yP -15 − x5))

To sum up, starting from an integral in the complex plane, we have separated out an integral

along the real line, i.e. a free state and all string solutions. Some of them are predicted by

solving the Bethe equations, which are k− λ strings of length 2. We have also seen k− λ pairs

which depend on how one closes the integration contours and do not lead to bound states in real

space. Besides, we have noticed that formation of the λ−k strings also depends on the direction

to close the λ contour. We have argued that the states related to such string solutions have the

same energy as a free states and can be decomposed into the latter. Lastly, we obtain k − λ

strings which are longer than 2 which lead to bound states among more particles. Moreover,

we have discussed how bound states are formed and the important role of the down spin in

such process. In the next section, we will apply the Yudson representation to the calculations

of observables.

Time Evolution

As shown in the previous sections, the Yudson representation provides us with an expansion of a

state into components that are eigenstates of the Hamiltonian. Each component evolves with the

factor e−iEt with E being the eigenenergy of the basis state. Theoretically, this representation

solves the time evolution of any initial state. However, due to the complication discussed on

page (??-??), we will consider only the case where particles are well separated. If we describe

each particle as a Gaussian wavepacket with width σ, the initial state |φ0〉 can be described as

|φ0〉 = |x, β〉 =
1

(πσ2)N/4
e−
∑N
i

(xi−xi0)2

2σ2

M∏
n=1

σ−βm

N∏
i=1

Ψ†↑(xi)|0〉

with x(i+1)0 − xi0 > 3σ. In the following calculation, we will exploit such relation and drop

terms of order equal or higher than O(e−
(xi0−xj0)2

4σ2 ). If we neglect those small terms, then the
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time evolution of |φ0〉 can be obtained via the Yudson Representation as

|φ(t)〉 =
(4πσ2)

N
4

(2π)M+NcM

∑
α

∫
dy

∫
C

dk

∫
C′
dµ
∑
P

e−i
∑
i k

2
i (t+σ2/2i)+iki(y

P
-1
i
−xi)

M∏
m=1

I(µm, kP, αm)

I∗(µm, k, βm)θ(y)θ(α)|y, α〉

with

I(µ, k, α) =
−ic

µ− kα + ic/2

∏
n<α

µ− kn − ic/2
µ− kn + ic/2

Like in the case of Lieb-Liniger model, only the wavefunction of two particle systems has closed

form. We have to take asymptotic approximation to study systems with more particles. In the

following, we will study systems with two particles and more particles successively.

5.3 Two Distinguishable Particle Case

In this section, we will consider the time evolution of a two particle system. In the initial state,

the down spin sits to the left of the up spin, i.e. β = 1. Then at t > 0, the state becomes

|φ(t)〉 =

∫
dy1dy2f↑,↓(y1, y2)Ψ†↑(y1)Ψ†↓(y2)|0〉

f↑,↓(y1, y2)

=

√
4πσ2

(2π)2

∫
dk1dk2e

−ik2
1(t+σ2/2i)−ik2

2(t+σ2/2i)
(
eik1(y2−x1)+ik2(y1−x2)(

k1 − k2

k1 − k2 + ic

θ(y2 − y1) + θ(y1 − y2))− eik1(y1−x1)+ik2(y2−x2) ic

k1 − k2 + ic
θ(y1 − y2)

)
=

σ

2
√
πi(t+ σ2/2i)

(
e
i(y2−x1)2

4(t+σ2/2i)
+
i(y1−x2)2

4(t+σ2/2i) (1∓ θ(y2 − y1)c(1 + i)/2
√
π(t+ σ2/2i) erfc(±α1)eα

2
1
)

∓ e
i(y1−x1)2

4(t+σ2/2i)
+
i(y2−x2)2

4(t+σ2/2i θ(y1− y2)c(1 + i)/2
√
π(t+ σ2/2i) erfc(±α2)eα

2
2

With

α1 =
(1− i)(y2 − x1 − y1 + x2 + 2ic(t+ σ2/2i)

4
√
t+ σ2/2i

α2 =
(1− i)(y1 − x1 − y2 + x2 + 2ic(t+ σ2/2i)

4
√
t+ σ2/2i

The ± sign results from the ambiguity of pulling out the i from the square root. Depending on

the phase of α1,2, the signs are chosen as follows

1. When c > 0, |ph(α1,2)| ∈ (0, π/4). The upper sign is chosen.

2. When c < 0 and |c| > 2a/σ2, |ph(α1,2)| ∈ ( 1
4π, π). The lower sign is chosen
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3. When c < 0 and |c| < 2a/σ2, ph(α1,2)| ∈ ( 1
4π,

3
4π), the upper sign is chosen

The choice is made based on the following properties of the complementary error function,

as listed in [? , Eq. 7.12.1]

(a) erfc(z)ez
2

diverges in region |ph(z)| ≥ 3
4π.

(b) erfc(z)ez
2 ≈ 1√

π

∑∞
m=0(−1)m

( 1
2 )
m

z2m+1 for |ph(z)| < 3
4π

(c) When |ph(z)| < π
2 , the remainder terms are bounded by the first dropped terms times

csc(2ph(z)).

(d) erfc(z) = 2− erfc(−z)

The first property is enough to fix the sign of the first situations, as the opposite sign makes the

function divergent. Property (a) and (d) determines the sign of the second case. To see this, the

real part of α1,2/(1−i) is negative when |y2−y1| < |c|σ2/2−a. This means |ph(α1,2)| ∈ (3π/4, π).

To avoid divergence, the lower sign is chosen. At the same time erfc(z) 6= erfc(−z) when

<(z) = 0. To make the wavefunction smooth, one need to impose the lower sign for all region of

the arguments. For the last scenario,the function behaves well with either sign, and one needs

to take into account the rest of the properties. As we have shown, the attractive systems has

bound states. These bound states should separate apart with the free state for large time. With

our choice, when t is large, |ph(α1,2)| → 3π/4−. Thus, erfc(α)eα
2 ≈ 2eα

2 − 1/(
√
πα), where the

first term corresponds to a bound state with factor exp(−|c|(|y2 − y1|+ a)) and the second one

is related to a free state which is identical to the repulsive solution. Note, when the attraction

is too strong which corresponds to the second category, |ph(α1,2)| → π/4 when t � 1, thus

there is no bound state in the systems.

When c = 0, the wavefunction simplifies into

f↑,↓(y1, y2) =
σ

2
√
πi(t+ σ2/2i)

e
i(y2−x1)2

4(t+σ2/2i)
+
i(y1−x2)2

4(t+σ2/2i)

In this case, the density and correlation can be calcuated easily.

〈ρ↑(y)〉 =
σ

2
√
π(t2 + σ4/4)

e
− σ2(y−x1)2

4(t2+σ4/4) (5.5)

〈ρ↓(y)〉 =
σ

2
√
π(t2 + σ4/4)

e
− σ2(y−x2)2

4(t2+σ4/4) (5.6)

〈ρ↑(y1)ρ↓(y2)〉 =
σ2

4π(t2 + σ4/4)
e
−σ

2(y2−x1)2

4(t2+σ4/4)
−σ

2(y1−x2)2

4(t2+σ4/4)
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Figure 5.6: Time evolution of density distribution. Figure ?? and ?? shows Time evolution of
down spin (yellow) and up spin (blue) at t = 0, 0.02, 0.05, 0.1 for c = 5 and c = −5 respectively.
Figure ?? and ?? compare the density of the up spin for different interaction. Figure ??
compares the density of the up spin at the origin between c = 5 and c = −5 cases. Figure ??
shows the relative density difference of the up spin between c = 5 and c = −5 at the origin.
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For interacting systems, it is hard to derive the closed form for density and correlation. We

will instead resort to numeric method to study these properties. Figure ?? and ?? show the

time evolution of the down spin in yellow and the up spin in blue. Figure ?? is for systems

with attractive interaction and Figure ?? is for repulsive case. Both particles in these two plots

behave as free particles described by equation (??) and (??). This is ascribed to the same

reason as in the Lieb-Liniger model, i.e. the particles avoid overlap that leads to energy change.

Thus the contact interaction does not affect the behavior of the particles significantly. In Figure

?? and ??, we further compare the density of the up spin at the origin as a function of time

for c = 5 and c = −5. We see that the interaction does not affect this quantity significantly

with maximum relative difference being less than 1%. This difference is even less than in the

Lieb-Liniger model where the two particles are indistinguishable.

Figure ?? shows the normalized correlation function between the up spin and down spin.C(z/t,

−z/t, t) =
〈ρ↑(z/t)ρ↓(−z/t),t)
〈ρ↑(z/t)〉〈↓(−z/t)〉 − 1=〈 δρ↑(z/t)δρ↓(−z/t)〉〈ρ↑(z/t)〉〈ρ↓(−z/t)〉 On the positive side, the function oscillates

as in the Lieb-Liniger model. This corresponds to the case where the up spin remains to the left

of the down spins. The oscillation results from the superposition of two terms in the wavefunc-

tion, one without particle crossing or spin exchange, one with both of them. The lower envelop

is the same as the correlation function on the negative side. It saturates to a curve originating

from −1 at z = 0. The curve depends on the width σ in the initial state. The upper envelop

increases with time, meaning a stronger correlation as time goes on. The phase of the function

is different for various type of interaction. The changing rates of the phase are also different.

Phase of the attractive case evolves faster than that of the repulsive case. On the negative side,

the function does not oscillate. This is corresponds to a down spin exchanges position with the

up spin. There is only one term in the wavefunction in this scenario, i.e. the particle crosses

with each other without spin exchange. This explains the behavior of the function on this side.

The correlation at z = 0 shows interesting behavior for different time. When t = 0.02, the corre-

lation is positive with attractive interaction and is negative with repulsive interaction. However,

correlations for both cases approach −1 with greater time. Its explanation is as follows. When

t is close to 0, the wavefunction is close to the initial state we have prepared, a state with some

overlap between the particles. Therefore, the interaction determines the correlation between

density fluctuation. Then the wavefunction evolves into a state with less overlap between the

two particles, which means the correlation function approaches −1. When time is large enough,

the correlation at z = 0 saturated at −1, where the interaction no longer affects the correlation

as there is no contact between the particles.

The behavior in the vicinity of the origin can be understood by studying the correlation of
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Figure 5.7: Normalized noise correlation for a two-particle system with one up spin and one
down spin. The down spin is initially to the left to the up spin. The figure shows the correlation
at t = 0.02(a), 0.1(b),0.5(c) and 2(d) respectively.
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a general Bethe Ansatz eigenstate, |k1, k2, µ〉. For such state, the correlation equals

〈ρ↑(x1)ρ↓(x2)〉

=θ(x1 − x2)|eik1x1+ik2x2
ic

µ− k1 + ic/2
+ eik1x2+ik2x1

−ic
µ− k2 + ic/2

|2 + θ(x2 − x1)

|eik1x1+ik2x2
−ic

µ− k2 + ic/2

µ− k1 − ic/2
µ− k1 + ic/2

+ eik2x1+ik1x2
ic

µ− k1 + ic/2

µ− k2 − ic/2
µ− k2 + ic/2

|2

=
c2

(µ− k1)2 + c2
+

c2

(µ− k2)2 + c2
− c2

(µ− k1 + ic/2)(µ− k2 − ic/2)
ei(k1−k2)|x1−x2|

− c2

(µ− k1 − ic/2)(µ− k2 + ic/2)
e−i(k1−k2)|x2−x1|

(5.7)

Thus, close to the origin, the correlation has the following limit

lim
x1→x2

〈ρ↑(x1)ρ↓(x2)〉 =
c2

(µ− k1)2 + c2
+

c2

(µ− k2)2 + c2
+

c3(k1 − k2)2|x1 − x2|
((µ− k1)2 + c2)((µ− k2)2 + c2)

+O((x1 − x2)2)

From the above expressions, we can see that the correlation goes up on the left side of the origin

for c > 0 and goes down for c < 0. The situation is opposite on the other side. This is true for

any state which is not bound state. Thus, the time evolved state, which is a superposition of

those states should follow the same trend. This is indeed what we see in plot ??.

The result ?? does not work for bound state |k1 = µ − ic/2, k2 = µ + ic/2, µ〉. Using the

fact that k∗1 = k2, 〈ρ↑(x1)ρ↓(x2)〉 can be obtained as

〈ρ↑(x1)ρ↓(x2)〉

=− c2

(µ− k1)2 + c2/4)
− c2

(µ− k2)2 − c2/4
+

c2

(µ− k1 − ic/2)(µ− k2 + ic/2)

ei(k1−k2)|x1−x2| +
c2

(µ− k1 + ic/2)(µ− k2 − ic/2)
e−i(k1−k2)|x1−x2|

Taking the limit k1 = µ− ic/2 and k2 = µ+ ic/2, this simplifies into

lim
k1=µ−ic/2
k2=µ+ic/2

〈ρ↑(x1)ρ↓(x2)〉 = lim
k1=µ−ic/2
k2=µ+ic/2

c2

(µ− k1 − ic/2)(µ− k2 + ic/2)
ec|x1−x2|

The density, at the same time, becomes

lim
k1=µ−ic/2
k2=µ+ic/2

〈ρ↑(x1)〉 = lim
k1=µ−ic/2
k2=µ+ic/2

〈ρ↓(x1)〉 = lim
k1=µ−ic/2
k2=µ+ic/2

−2c

(µ− k1 − ic/2)(µ− k2 + ic/2)

Renormalise the density and noise correlation function such that each density integration over

the whole space yields one. Then the normalised noise correlation function becomes

lim
L→∞

lim
k1=µ−ic/2
k2=µ+ic/2

〈ρ↑(x1)ρ↓(x2)〉
〈ρ↑(x1)〉〈ρ↓(x2)〉

= lim
L→∞

L|c|
2
e−|c||x1−x2|
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Like in the Lieb-Liniger model, the normalized noise correlation function fades away exponen-

tially with the separation between the two particles. However, the correlation suffer divergence

problems. We have not seen character of these bound states in Figure ??, indicating that these

states are suppressed and overlap between particles are avoided. This completes our discussion

of the two particle case.

We will move on to systems with more particles.

5.4 One Impurity in Multi-particle Bath

In this section, we will discuss the time evolution of systems with more particles and one

impurity. The wavefunction in this case equals

f(y, α, t)

=
(4πσ2)N/4

(2π)N+1c

∫
C

dk

∫
C′
dµ
∑
P

(−1)P e−i
∑
i k

2
i (t+σ2/2i)+i

∑
i ki(yP -1

i
−xi)I(µ, Pk, α)I∗(µ, k, β)

I(µ, k, α) =
−ic

µ− kα + ic/2

∏
n<α

µ− kn − ic/2
µ− kn + ic/2

The k integrals do not have closed form solution and we will apply the saddle point approxi-

mation happened at ki =
y
P

-1
i
−xi

2t which is further simplied into ki = yP -1i/2t = ξP -1i for large

time. Thus, the wavefunction can be written as

f(ξ, α, t)

=
σ
N
2

2
N
2 +1π

N
4 +1c(it)

N
2

∫
µ

e
∑
i itξ

2
i−ξ

2
i σ

2/2−iξixPi(−1)P θ(ξ1 < . . . ξN )I(µ, α, ξ)I∗(µ, β, P−1ξ)

As we what did for the one impurity cases, the µ integration equals the sum over pole con-

tributions, i.e.
∫
µ
I(µ, α, ξ)I∗(µ, β, P−1ξ) = 2πi

∑
oR(ξo + ic/2). Here the R(ξo + ic/2) is the

residue term whose expression depends on the relation among α and P−1β.

If o = α = P−1β, then

R(ξo + ic/2) = −ic
∑

t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ξo − ξu + ic

∏
v∈t2

ic

ξo − ξP -1v

If o = P−1β 6= α and P−1β > α then

R(ξo + ic/2) =ic
−ic

ξo − ξα + icθ(Pα− β)

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ξo − ξu + ic

∏
v∈t2)

ic

ξo − ξP -1v
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If o = α and Pα < β, then

R(ξo + ic/2) =ic
−ic

ξo − ξP -1β + icθ(α− P−1β)

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ξo − ξu + ic

∏
v∈t2

ic

ξo − ξP -1v

If o 6= α and Pα = β, then

R(ξo + ic/2) =ic
−ic

ξo − ξα + ic

ic

ξo − ξα

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ξo − ku + ic

∏
v∈t2

ic

ξo − ξP -1v

If o 6= α and o 6= P−1β and Pα 6= β, then

R(ξo + ic/2) =− ic −ic
ξo − ξα + icθ(Pα− β)

ic

ξo − ξP -1β + icθ(α− P−1β)

∑
t1∈P (S1)
t2∈P (S2)

∏
u∈t1

−ic
ξo − ξu + ic

∏
v∈t2

ic

ξo − ξP -1v

with P (S) being all subsets of S and S1 = {m|m < α and Pm > β}, S2 = {n|n < β and P
−1
n >

α}. In the following, we will talk about the calculation of density and correlation function. The

basis of it is |f(ξ, α, t)|2 which we will write down explicitly as

|f(ξ, α, t)|2 =
σN

2Nπ
N
2 tNc2

∑
P,P ′

e
∑
i−σ

2ξ2
i−iξi(xPi−xP ′i)(−1)P+P ′θ(ξ1 < . . . < ξN )

∑
o,e

R(ξo + ic/2)R∗(ξe − ic/2)

In order to obtain observables, one needs to integrate out dummy variables in the above ex-

pression. First, we impose the condition that xPi = xP ′i if ξi is integrated over without δ

function. The oscillation related to these terms makes the contribution small by a factor of

e−|c|a. Moreover, the number of terms from R(ξo + ic/2)R∗(ξe − ic/2) is as many as N2(N !)2.

It becomes difficult to keep track of all of them when the number of particles is large. To make

the calculation tractable, we only keep the terms in which R(ξo + ic/2)R∗(ξo − ic/2) does not

depend on any dummy variables. This leads to approximations in the leading order of cσ. We

have checked the contribution of these small terms in a small system (N = 3). These dropped

terms turn out to be small up to (cσ)4. In the following calculation, we will exploit these two

simplifications.

Density

The density can be obtained as ρ↓(z) =
∫
ξ

∑
α |f(ξ, α, t)|2δ(ξα − z/2t). The leading order term

comes from e = o = α = P
−1
β when R(ξo + ic/2) = −ic. All other terms depend on at least
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two variables, one of which is a dummy variable. Moreover, Pi = P ′i for any i 6= α indicates

that P = P ′. Thus we have

ρ↓(x) =
σN

2π
N
2 t

∫
ξ

∑
α,P

e−
∑
i σ

2ξ2
i θ(ξ1 < . . . < ξN )δ(ξα − z/2t)δPα,β

=
σN

2π
N
2 t

∫
ζ

e−
∑
i σ

2ζ2
i δ(ζβ − z/2t)

∑
P

θ(ζP1 . . . ζPN )

=
σ

2
√
πt
e−

z2σ2

4t2

In the second line, we replaced ξi by ζPi. Then we made use of the fact that
∑
P θ(ζP1 . . . ζPN ) =

1 to remove summation over P and θ-function. The result we got is a simple gaussian wavepacket

as in the case of the Lieb-Liniger model. That is to say, the down spin diffuses as if isolated.

Similarly, we have ρ↑(z) = (N−1)σ
2
√
πt

e−
σ2z2

4t2 .

Noise Function

To calculate noise function, we first derive the correlation function defined as ρ↓(z)ρ↑(z
′) =∫

ξ

∑
α,i |f(ξ, α, t)|2δ(ξα − z/2t)δ(ξi − z′/2t). Again, xPj = xP ′j is assumed for j 6= α or i.

Moreover, only terms in R(ξo + ic/2)R∗(ξe − ic/2) that do not depend these ξj are included to

account for the leading order term when σ is small. These terms are

R(ξo + ic/2)→

− icδα,P -1β

(
1 +

−ic
ξα − ξi + ic

θ(α− i)θ(Pi− β) +
ic

ξα − ξi
θ(β − Pi)θ(i− α)− −ic

ξi − ξα + ic

ic

ξi − ξα
θ(β − Pi)θ(i− α)

)
+ icδβ,P i

( −ic
ξP -1β − ξα

θ(P
−1
β − α)θ(β − Pα) +

−ic
ξP -1β − ξα + ic

θ(P
−1
β − α)θ(Pα− β) +

−ic
ξα − ξP -1β

θ(P
−1
β > α)θ(Pα < β) +

−ic
ξα − ξP -1β + ic

θ(α− P−1β)

θ(β − Pα)
)

= −icδPα,β
(
1 +

−ic
ξα − ξi + ic

θ(α− i)θ(Pi− β) +
−ic

ξi − ξα + ic
θ(β − Pi)θ(i− α)

)
+ icδβ,P i

( −ic
ξP -1β − ξα + ic

θ(P
−1
β − α)θ(Pα− β) +

−ic
ξα − ξP -1β + ic

θ(α− P−1β)θ(β − Pα)
)
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Thus, the leading order term in the correlation function equals

ρ↓(z)ρ↑(z
′)

=
σN

4πN/2t2

∫
ξ

∑
P,P ′

e−
∑
i σ

2ξ2
i−i

∑
i ξi(xPi−xP ′i)(−1)P+P ′θ(ξ1 < . . . < ξN )δ(ξα − z/2t)

∑
i

δ(ξi − z′/2t)∣∣∣∣θ(z − z′)(θ(β − Pi)δPα,β +
z − z′

z − z′ + 2ict
θ(Pi− β)δPα,β +

−2ict

z − z′ + 2ict
θ(β − Pα)δPi,β

)
(
θ(β − P ′i)δP ′α,β +

z − z′

z − z′ − 2ict
θ(P ′i− β)δP ′α,β +

2ict

z − z′ − 2ict
θ(β − P ′α)δP ′i,β

)
+ θ(z′ − z)

(
θ(Pi− β)δPα,β +

z − z′

z′ − z + 2ict
θ(β − Pi)δPα,β +

−2ict

z′ − z + 2ict
θ(Pα− β)δβ,P i

)
(
θ(Pi− β)δPα,β +

z − z′

z′ − z + 2ict
θ(β − Pi)δPα,β +

2ict

z′ − z + 2ict
θ(Pα− β)δβ,P i

)∣∣∣∣2
=

σ2

4πt2
e−

σ2(z2+z′2)

4t2 ×(
θ(z − z′)

(
(1 +

4t2c2

(z − z′)2 + 4t2c2
)(β − 1) + (N − β)

(z − z′)2

(z − z′)2 + 4t2c2
− 2Im(

2tc

z − z′ − 2itc

e−
i(z−z′)a

2t − e−
i(z−z′)βa

2t

1− e−
i(z−z′)a

2t

)

+ θ(z′ − z)
(
(1 +

4t2c2

(z − z′)2 + 4t2c2
)(N − β) + (β − 1)

(z − z′)2

(z − z′)2 + 4t2c2
− 2Im(

2tc

z − z′ − 2itc

e−
i(z−z′)a

2t − e−
i(z−z′)(N−β+1)a

2t

1− e
−i(z−z′)a

2t

)

)
The final expression is obtained by imposing the condition that xPj = xP ′j for any j 6= α or i.

Due to this condition, some terms do not contribute in the final result. As an example, we will

consider the term which corresponds to the second term in the first parenthesis multiplied by

the last term in the second, i.e.

σN

4πN/2t2

∫
ξ

∑
P,P ′

e−
∑
i σ

2ξ2
i−i

∑
i ξi(xPi−xP ′i)(−1)P+P ′θ(ξ1 < . . . < ξN )δ(ξα − z/2t)

∑
i

δ(ξi − z′/2t)

θ(z − z′) −2ict

z − z′ + 2ict

2ict

z − z′ − 2ict
θ(Pi− β)δPα,βθ(β − P ′α)δP ′i,β

As Pα = P ′i = β and Pj = P ′j for j 6= α and i, we have Pi = P ′α. This contradicts with

the two heaviside functions. Thus, this term is not included in the result. As a simple check,

we can set c = 0, then we have ρ↓(z)ρ↑(z
′) = e−

σ2(z2+z′2)

4t2 (N − 1) which is what we expect of

a non-interacting system. As a last step, we are going to write down the noise function, which

equals C(z, z′, t) =
〈ρ↓(z)ρ↑(z′)〉

(N−1)〈ρ↓(z)〉〈ρ↑(z′)〉 − 1. Here the prefactor 1/(N − 1) is chosen to make the
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noise function zero for non-interaction system. Thus, we have

C(z, z′, t) =
1

N − 1
×(

θ(z − z′)
(
(1 +

4t2c2

(z − z′)2 + 4t2c2
)(β − 1) + (N − β)

(z − z′)2

(z − z′)2 + 4t2c2
− 2Im(

2tc

z − z′ − 2itc

e−i
i(z−z′)a

2t − e−
i(z−z′)βa

2t

1− e−
i(z−z′)a

2t

)

+ θ(z′ − z)
(
(1 +

4t2c2

(z − z′)2 + 4t2c2
)(N − β) + (β − 1)

(z − z′)2

(z − z′)2 + 4t2c2
− 2Im(

2tc

z − z′ − 2itc

e−
i(z−z′)a

2t − e−
i(z−z′)(N−β+1)a

2t

1− e
−i(z−z′)a

2t

)

)
− 1

The results for systems with 3 and 10 particles are plotted in Figure ??. In both plots, the

second particle is the impurity. In these figures, the noise function hits −1 when z = 0. This

indicates that the up spin and the down spin avoids overlap with each other. In Figure ??, we

saw interference fringes on the left side. This is due to the many possible scenarios that the

down spin is to the left of the up spin. The period of the fringes is 2t/(n − β + 1)a. There

is no fringes on the right side. This is because there is only one possibility to have the down

spin reside to the right side of the up spin. This corresponds to the case when the impurity

exchanges position with the first particle without spin exchange. One the left side, the noise

function is mostly positive while on right side, the function is negative. This relates to the fact

density fluctuation of the down spin and up spin are positively correlated when the down spin

is to the left of the up spin while they become negatively correlated in the other ordering. Such

correlation is purely an effect of the interaction. It is easy to check that the normalized noise

function vanishes with c = 0.

This completes our discussion of the time evolution of a system with many fermionic particles

and one static fermion impurity. In the next part, we will study the problem of a moving

impurity. As we will see, the argument here can be carried over easily to the new situation.
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Figure 5.8: The leading order of the noise function with σ << a are plotted here. Both figures
are for large time t = 10 with the impurity located at the second site. Figure ?? describes a
system with 3 particles. Figure ?? is for systems with 10 particles.
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5.5 Moving Impurity in Multi-particle Bath

In this section, we will deal with the process of shooting an impurity which we will call a down-

spin fermion to a bath of host fermions which we will call up-spin fermions. Like in the previous

case, each fermion has a Gaussian distribution with width σ. What is different here is that the

down spin fermion has a non-zero initial momentum k0. Thus, the initial state can be written

as

|φ0〉 = |x, β, k0〉 =
1

(πσ2)N/4
e−
∑N
i

(xi−xi0)2

2σ2 +ik0xβ

M∏
n=1

σ−β

N∏
i=1

Ψ↑(xi)|0〉

with xi+1 − xi > 3σ. The new phase factor eikoxβ does not affect the proof of the central

theorem. As the latter only involves k and µ integration, where the new phase is simply a

constant. For the calculation of local observable, we need to integrate over initial position xs.

Here, the extra phase term is equivalent to adding an imaginary part iσ2k0 to x0, i.e.

e−
(x−x0)2

2σ2 +ik0x = e−
(x−x0−ik0σ

2)2

2σ2 +ix0k0−
k2
0σ

2

2

For the two particle case discussed in section ??, the result is modified as

f↑,↓(y1, y2)

=
σ

2
√
πi(t+ σ2/2i)

(
e
i(y2−x1−ik0σ

2)2

4(t+σ2/2i)
+
i(y1−x2)2

4(t+σ2/2i)
+ik0x1−

k2
0σ

2

2 (1− θ(y2 − y1)c(1 + i)/2
√
π(t+ σ2/2i)

erfc(α1)eα
2
1
)
− e

i(y1−x1−ik0σ
2)2

4(t+σ2/2i)
+
i(y2−x2)2

4(t+σ2/2i)
+ik0x1−

k2
0σ

2

2 θ(y1− y2)c(1 + i)/2
√
π(t+ σ2/2i) erfc(α2)

eα
2
2

With

α1 =
(1− i)(y2 − x1 − y1 + x2 − ik0σ

2 + 2ic(t+ σ2/2i)

4
√
t+ σ2/2i

α2 =
(1− i)(y1 − x1 − y2 + x2 − ik0σ

2 + 2ic(t+ σ2/2i)

4
√
t+ σ2/2i

Figure ?? shows the time evolution of the density. We can see clearly that the down spin

moves to the right at a constant rate. Like in the static impurity case, we do not see much

difference among attractive and repulsive situations. Both of them can be well approximated

by the free particle situation whose density equals

ρ↑(z, t) =
σ

2
√
π(t2 + σ4/4)

e
−σ

2(z−x20)2

4(t2+σ4/4)

ρ↓(z, t) =
σ

2
√
π(t2 + σ4/4)

e
−σ

2(z−x10−2k0t)
2

4(t2+σ4/4)
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Figure 5.9: Time evolution of the down spin(yellow) and the up spin(blue) at t = 0, 0.02, 0.05, 0.1
for a system with one down spin and one up spin. The down spin moves with k0 = 5 in the
initial state. ?? is for repulsive case and ?? is for attractive case.



119

In terms of the noise correlation, we are more interested in the behavior when the two

particles overlaps. When y1 = y2, we have α1 = α2, thus,

f↑,↓(y1, y2) =
σ

2
√
πi(t+ σ2/2i)

e
i

(x1+ik0σ
2)2+x2

2
4(t+σ2/2i)

+ik0x1−
k2
0σ

2

2 (1− c(1 + i)/2
√
π(t+ σ2/2i)

erfc(α1)eα
2
1

with

α1 =
(1− i)(x2 − x1 − ik0σ

2 + 2ic(t+ σ2/2i)

4
√
t+ σ2/2i

Thus when t >> 1, erfc(α1)eα
2
1 = 4√

π(1−i)2ic
√
t+σ2/2i

and f↑,↓(0, 0, t) = O( 1
t ). This means that

the two particle still avoids overlaps in the moving impurity case.

As to the result about one impurity and many fermions discussed in section ??, they are

modified as follows

|f(ξ, α, t)|2 =
σN

2Nπ
N
2 tNc2

∑
P,P ′

e
∑
i−σ

2ξ2
i−iξi(xPi−xP ′i)−k0σ

2(ξ
P

-1
β

+ξ
P ′-1β

)−k2
oσ

2

(−1)P+P ′θ(ξ1 < . . . < ξN )

∑
o,e

R(ξo + ic/2)R∗(ξe − ic/2)

ρ↓(z) =
σN

2NπN/2tNc2
(2πc)2

∑
P

∫
ξ

e−σ
2∑

i ξ
2
i−2k0σ

2ξα−k2
0σ

2

θ(ξ1 < . . . < ξN )δ(ξα − z/2t)

=
σ

2
√
πt
e−σ

2( z2t−k0)2

ρ↓(z) =
σN

2NπN/2tNc2
(2πc)2

∑
P

∫
ξ

e−σ
2∑

i ξ
2
i−2k0σ

2ξα−k2
0σ

2

θ(ξ1 < . . . < ξN )
∑
j 6=α

δ(ξJ − z/2t)

=
σ

2
√
πt
e
−σ2z2

(2t)2

ρ↓(z)ρ↑(z
′)

=
σN

4πN/2t2

∫
ξ

∑
P,P ′

e−
∑
i σ

2ξ2
i−i

∑
i ξi(xPi−xP ′i)(−1)P+P ′θ(ξ1 < . . . < ξN )δ(ξα − z/2t)

∑
i

δ(ξ

− z′/2t)e−k
2
0σ

2(
θ(z − z′)

(
e
zσ2k0

2t θ(β − Pi)δPα,β +
z − z′

z − z′ + 2ict
e
zσ2k0

2t θ(Pi− β)δPα,β +
−2ict

z − z′ + 2ict

e
z′σ2k0

2t θ(β − Pα)δPi,β
)(
e
zσ2k0

2t θ(β − P ′i)δP ′α,β +
z − z′

z − z′ − 2ict
e
zσ2k0

2t θ(P ′i− β)δP ′α,β
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+
2ict

z − z′ − 2ict
e
z′σ2k0

2t θ(β − P ′α)δP ′i,β
)

+θ(z′ − z)
(
e
zσ2k0

2t θ(Pi− β)δPα,β +
z − z′

z′ − z + 2ict
e
zσ2k0

2t θ(β − Pi)δPα,β +
−2ict

z′ − z + 2ict

e
z′σ2k0

2t θ(Pα− β)δβ,P i
)(
e
zσ2k0

2t θ(Pi− β)δPα,β +
z − z′

z′ − z + 2ict
e
zσ2k0

2t θ(β − Pi)δPα,β

+
2ict

z′ − z + 2ict
e
z′σ2k0

2t θ(Pα− β)δβ,P i
)
|2

=θ(z − z′) σ2

4πt2
|(e−

σ2(z−2k0t)
2+σ2z′2)

4t2 +
4t2c2

(z − z′)2 + 4t2c2
e−

σ2z2+σ2(z′−2k0t)
2)

4t2 )(β − 1) + (N − β)

(z − z′)2

(z − z′)2 + 4t2c2
e−

σ2(z−2k0t)
2+σ2z′2

4t2 − 2=(
2tc

z − z′ − 2ict)

e−
i(z−z′)a

2t − e−i
(z−z′)βa

2t

1− e−
i(z−z′)a

2t

)e−
k2
0σ

2

2

e−
σ2(z−k0t)

2+σ2(z′−k0t)
2

4t2

θ(z′ − z) σ2

4πt2
(
e−

σ2(z−2k0t)
2+σ2z′2)

4t2 +
4t2c2

(z − z′)2 + 4t2c2
e−

σ2z2+σ2(z′−2k0t)
2)

4t2 )(N − β) + (β − 1)

(z − z′)2

(z − z′)2 + 4t2c2
e−

σ2(z−2k0t)
2+σ2z′2

4t2 − 2=(
2tc

z − z′ − 2ict)

e−
i(z−z′)a

2t − e−
i(z−z′)(N−β+1)a

2t

1− e−
i(z−z′)a

2t

)

e−
k2
0σ

2

2 −σ
2(z−k0t)

2+σ2(z′−k0t)
2

4t2

C(z, z′, t)

=
θ(z − z′)
N − 1

(
1 +

4t2c2

(z − z′)2 + 4t2c2
e
σ2k0(z′−z)

t )(β − 1) + (N − β)
(z − z′)2

(z − z′)2 + 4t2c2
− 2e−

σ2k0(z−z′)
2t

=(
2tc

z − z′ − 2ict

e−
i(z−z′)a

2t − e−i
(z−z′)βa

2t

1− e−
i(z−z′)a

2t

)

+
θ(z − z′)
N − 1

(
1 +

4t2c2

(z − z′)2 + 4t2c2
e
σ2k0(z′−z)

t )(N − β) + (β − 1)
(z − z′)2

(z − z′)2 + 4t2c2
− 2e−

σ2k0(z−z′)
2t

=(
2tc

z − z′ − 2ict

e−
i(z−z′)a

2t − e−i
(z−z′)(N−β+1)a

2t

1− e−
i(z−z′)a

2t

)− 1

Based on these results, we can see that the initial momentum of the impurity does not affect

the density distribution a lot. The up spin particles and the impurity still evolve as if isolated

in the leading order with cσ << 1. The impurity simply passed the bath particle. The extra

kinetic energy from the impurity does not lead to more interacting energy in the process. The

particle still avoids overlaps that leads to change in the interacting energy. This is confirmed

by the calculation of the noise function. As is clear in Figure ??, the noise function equals −1

at the origin. However, the initial momentum does make the left side enhanced and the right

side damped.
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Figure 5.10: Leading order of the noise function with σ << a. Both figures are for large time
t = 10 with the impurity initially located at the second site and moving with momentum k0 = 5.
Figure ?? describes a system with 3 particles. Figure ?? is for systems with 10 particles.
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Chapter 6

Quench Dynamics of Bosonic Gaudin-Yang model

In this section, we will study the quench dynamics of two-component boson particles with

contact interaction. This topic has received limited attention in condensed matter literature,

as bosonic systems come with an odd number of states relating to different spin components.

However, with the ground-breaking progress in ultracold atom, it is amenable to realize such

two-component boson gases with different hyperfine states, for review see [? ]. In this part, we

will repeat the calculation for the bosonic Gaudin-Yang model and see how the quantum nature

of particles affects the result we obtained so far.

6.1 Bethe Ansatz solution

The bosonic Gaudin-Yang model is described by the same Hamiltonian as the fermionic coun-

terpart, except that Ψ†(x)(Ψ(x)) is a bosonic creation(annihilation) operator satisfying the

commutation relation [Ψ†(x),Ψ(y)] = δ(x− y).

HB
GY =

∑
σ=↑,↓

∫
dxΨ†σ(x)(− ∂2

∂x2
)Ψσ(x) + c

∫
x

Ψ†↑(x)Ψ†↓(x)Ψ↓(x)Ψ↑(x)

The symmetry property is reflected in the wavefunction. Recall that

|Ψ〉 =
∑
σ

f(x, σ)

N∏
i=1

Ψ†σi(xi)|0〉

f(x, σ) =
∑
P,Q

ei
∑
j(Pk)·(Qk)A(Q,P )θ((Qx)1 < . . . (Qx)N )

Then, A(PijQ,P ) = εΠijA(Q,P ) with Πij acting on the spin space. Here ε = 1(−1) for

bosons(fermions). Plug it into the schrodinger equation, as derived on page ??

(i(Pk)i − i(Pk)j)(A(Q,P )−A(Q,PijP ) +A(PijQ,P ))−A(PijP, PijQ) + c(A(Q,P ) +A(Q,PijP )

+A(PijQ,P ) +A(PijP, PijQ)) = 0

one gets

A(Q,PijP )
1− εΠij

2
=

(Pk)i − (Pk)j − icεP iij
(Pk)i − (Pk)j + ic

1− εΠij

2
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At the same time, the wavefunction should be equal to a plain wave in the other spin configu-

ration
1+εΠij

2 , which means

A(PijQ,PijP )
1 + εΠij

2
= A(Q,P )

1 + εΠij

2

Or equivalently,

A(Q,PijP )
1 + εΠij

2
= −A(Q,P )

1 + εΠij

2

Thus, we have

A(Q,PijP ) =
(Pk)i − (Pk)j)εΠij − ic

(Pk)i − (Pk)j + ic
A(Q,P )

Recall this relation defines the Yang matrix Yij((Pk)i−(Pk)j) from which the scattering matrix

Sij((Pk)i, (Pk)j) can be obtained.

Yij((Pk)i, (Pk)j) =
(Pk)i − (Pk)j)εΠij − ic

(Pk)i − (Pk)j + ic

Sij((Pk)i, (Pk)j) = εΠijYij((Pk)i, (Pk)j) =
(Pk)i − (Pk)j)− icεΠij

(Pk)i − (Pk)j + ic

Using the machinery discussed in chapter (??,??), one can obtain the nested Bethe Ansatz

solution. The derivation is quite similar to that of the fermionic counterpart. The only difference

results from the fact that

Yij((Pk)i, (Pk)j)| ⇑〉 = CB((Pk)i, (Pk)j)| ⇑〉

CB((Pk)i, (Pk)j) =
(Pk)i − (Pk)j − ic
(Pk)i − (Pk)j + ic

compared to Yij((Pk)i, (Pk)j)| ⇑〉 = −| ⇑〉 in the fermionic situation. Thus, the solution in the

nested form in the bosonic systems has the new factor, a product of CB((Pk)i, (Pk)j), replacing

the (−1)P in the fermionic wavefunction, i.e.

|µ, k〉 =
∑
P∈SN
R∈SM

∫
x

∑
α

ei
∑
i kPiyi

∏
Pij∈P

CB(ki − kj)
∏
m<n

SBR (µm − µn)
∏
m

IB(µm, αm, Pk)θ(x)θ(α)

|x, α〉

with

CB(ki − kj) =
ki − kj − ic
ki − kj + ic

SB(µm − µn) =
µm − µn − icSgn(αRm − αRn)

µm − µn + ic

IB(µ, α, k) =
ic

µ− kα − ic/2
∏
n<α

µ− kn + ic/2

µ− kn − ic/2
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With periodic boundary condition, one can obtain the Bethe Ansatz equations

eikiL = −
∏
α

µα − ki + ic/2

µα − ki − ic/2
∏
j

ki − kj + ic

ki − kj − ic

∏
α

µβ − µα − ic
µβ − µα + ic

= −
∏
j

µβ − kj − ic/2
µβ − kj + ic/2

These equations determines the root distribution as described by the string hypothesis. So

far, there is no systematic discussion of the string structures in this system. But, it should

be possible to deduce it by generalizing the conjecture for the fermionic Gaudin-Yang model.

On one hand, it should includes the µ-string as the consistency equation is the same as the

fermimonic case. One the other, one should include k-string of arbitrary length, due to the

same argument for attractive Lieb-Liniger gases. The existance of µ-k string of length 2 is now

undefined as the new scattering matrix CB leads to an extra 0 or ∞. We will not try to check

the validity of this last type of string. Instead, we will move on to the Yudson approach as it

will provide a complete list for the string structure.

6.2 Yudson Representation

In the previous section, we have derived the nested Bethe Ansatz solution for the bosonic

Gaudin-Yang model. In this section, we will written down the Yudson representation based on

the solution we had. We will specify the integration contour and discuss the proof of the central

theorem.

Given the Bethe Ansatz state, the Yudson state can be obtained easily as

|k, µ) =
∑
P

ei
∑
i kiyi

∏
m

I(µm, αm, k)θ(y)θ(α)|x, α〉

The Yudson represenation in the coordinate basis becomes∫
C

dk

∫
C′
dµ〈y, α|k, µ〉(k, µ|x, β〉θ(x)θ(y)θ(α)θ(β)

=
∑
P,R

ei
∑
i ki(yP -1

i
−xi)

∏
Pij∈P

CB(ki − kj)
M∏
m<n

SB(µm − µn)

M∏
m=1

IB(µm, αm, Pk)IB∗(µm, βm, k)

θ(x)θ(y)θ(α)θ(β)

The integral contour for attractive cases is the same as that of fermions for repulsive case,

while the coutour for c < 0 duplicates the repulsive situation. To be explicit, k1 to kN are

integrated along a horizontal direction. Their contours are separated by a distance greater than

|c|. The line of k1 stays on the top and that of kN lies in the bottom. How µ’s are integrated
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varies between repulsive and attractive models. For c < 0, µm are integrated forward along the

line of kβm . For c > 0, µm are integrated backward along the contour of kβm and forward along

two lines that lie above and below that of kβm with a separation greater than |c|/2.

To explain the choice of such contour, we now discuss how the central theorem can be proved

by focusing on the aspects that are unique to the bosonic model.

6.3 Central Theorem

As we did for the fermionic case, we start with the single impurity situation. For both c > 0

and c < 0, the µ integral contour can be closed from above. This transforms the integration

into pole contributions at ko − ic/2 for any o that satisfies the condition o ≤ β and P
−1
o ≥ α.

The expressions of the residue here are the same as those in the fermionic case except for the

sign in front of c. Thus, there are two types of poles. The one at ko = kn is only apparent, due

to the same reason as before. The other pole, which takes the form ki = kj − ic with i < β < j

and P
−1
i > α > P

−1
j is a real one. At the same time, it must be true that Pij ∈ P , therefore,

the denominator is canceled by the numerator in CB(ki − kj), leaving only Lieb-Liniger type

of poles defined as ki = kj + ic for i < j and P
−1
i > P

−1
j. Following the argument in [? ], one

can see that these poles do not contribute to the wavefunction integration.

In the presence of multiple µ’s, one should carry our the integration over µ1, . . . , µM repeat-

edly by closing each contour in the upper half plane. Using the same argument as we made

on page ??, one can show that the collection of poles lying above the integral contour of µm is

unaffected by the product of scattering matrices among µ’s, as long as we do the integration

in the aforementioned order. Then each µm integration results in a collection of poles of the

form ki = kj − ic for i < βm < j and i
−1
> αm > j

−1
. At the same time, µm is related to ki as

µm = ki − ic/2. As no two µ’s can be identical in the nested Bethe Ansatz, the µ integration

cannot take the residue at the same point. This guarantees that each pole appears at most

once in the denominator. This pole will then be cancelled by the scattering matrices among

k’s. Thus, we still have only Lieb-Liniger type of poles. Further proof of the central theorem in

section ?? can be applied directly to here, and one also gets the same normalization constant.

6.4 Bound states

In the previous section, we have seen that all poles comes from CB(ki−kj). What this indicates

is twofold. First, the k − µ strings disappear. Secondly, k strings emerge. That means the

formation of bound states no longer depends on the existence of a magnon. This makes sense
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as Lieb-linger gases bind together with attractive interaction too. Now, there are three types

of strings, k − µ pairs, k strings and composites of these two. A composite may be formed if

the k in the k − µ pairs coexists in the k strings which snaps the two string together. Note,

although the k − µ string is not a basic type, it may emerge has a composite. For a complete

set of basis, one do needs to include all composite configuration as well as the k− µ pair and k

strings. This makes the enumeration more complicated. Physically, this is due to the fact that

bosonic wavefunction are symmetric, thus particles have more overlap in the highly polarized

limit. Therefore, there are more interaction among bosons than fermions.

6.5 Time evolution

This section is devoted to the calculation of time evolution in a two-component boson system.

With the Yudson representation, the time evolved state can be written down easily as

|ΨB(t)〉 =
∑
P,R

∫
C

dk

∫
C′
dµe−i

∑
i k

2
i t+i

∑
i ki(yP -1

i
−xi)

∏
Pij∈P

CB(ki − kj)
M∏
m<n

SB(µm − µn)

M∏
m=1

IB(µm, αm, Pk)IB∗(µm, βm, k)θ(x)θ(y)θ(α)θ(β) (6.1)

Both the initial state and the quench process is the same as before. We will discuss the case

with two distinguishable particles by solving the time evolution in terms of the wavefunction

explicitly. We will also work in the large time limit and make the saddle point approximation

to remove the k integrations for N > 2. We want to do a comparison between the quench

dynamics between bosonic and fermionic gases. It turns out that the results we have obtained

in the previous chapter holds for the bosonic problem as well.

For the two distinguishable particles, i.e N = 2, M = 1, this is easy to understand. Since the

statistics only affect the symmetry behaviour among identical particles, thus the time evolved

state is exactly the same as the fermionic counterpart.

For N > 2 and M = 1, however, the bosonic wavefunction developed at a later time

is different from the fermionic case, as one can see from equation (??). But the results of the

density and noise function with only leading order terms in σ show no difference. To understand

it, recall the approximation we have made in the calculation of local observables. To extract the

leading order contribution, we put a constraint on the permutation P such that xPm = xP ′m

for a dummy variable ym which is integrated without a δ-function. This is due to the fact that∫
dye−σ

2y2+iy(xPm−xP ′m)O(
1

y + ic
) = e−

(xPm−xP ′m)2

σ2
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which is of the order O(e−|c|a). which we will drop. With this in mind, the leading order terms

in the density calculation come from

(2πi)δP,P ′
∑
O

R(ξP -1o − ic/2) = (2πc)δP,P ′δPα,β

The density then becomes

ρ↑(z) =
σ

2
√
πt
e−

z2σ2

4t2

ρ↓(z) =
(N − 1)σ

2
√
πt

e−
z2σ2

4t2

The leading order terms in the noise function calculation result from

R(ξP -1o − ic/2)→ icδPα,β
(
1 +

ic

ξα − ξi − ic
θ(α− i)θ(Pi− β) +

ic

ξi − ξα − ic
θ(β − Pi)θ(i− α)

)
− icδβ,P i

( ic

ξP -1β − ξα − ic
θ(P

−1
β − α)θ(Pα− β) +

ic

ξα − ξP -1β − ic
θ(α− P−1β)θ(β − Pα)

)
It is easy to see that the resultant correlation function becomes

ρ↓(z)ρ↑(z
′)

=
σN

4πN/2t2

∫
ξ

∑
P,P ′

e−
∑
i σ

2ξ2
i−i

∑
i ξi(xPi−xP ′i)

∏
Pij∈P S(ki − kj)∏

Pmn∈P ′ S(km − kn)
θ(ξ)δ(ξα − z/2t)

∑
i

δ(ξi − z′/2t)∣∣∣∣θ(z − z′)(θ(β − Pi)δPα,β +
z − z′

z − z′ − 2ict
θ(Pi− β)δPα,β +

2ict

z − z′ − 2ict
θ(β − Pα)δPi,β

)
(
θ(β − P ′i)δP ′α,β +

z − z′

z − z′ + 2ict
θ(P ′i− β)δP ′α,β +

−2ict

z − z′ + 2ict
θ(β − P ′α)δP ′i,β

)
+ θ(z′ − z)

(
θ(Pi− β)δPα,β +

z − z′

z′ − z − 2ict
θ(β − Pi)δPα,β +

2ict

z′ − z − 2ict
θ(Pα− β)δβ,P i

)
(
θ(Pi− β)δPα,β +

z − z′

z′ − z − 2ict
θ(β − Pi)δPα,β +

−2ict

z′ − z + 2ict
θ(Pα− β)δβ,P i

)∣∣∣∣2
=

σ2

4πt2
e−

σ2(z2+z′2)

4t2 ×(
θ(z − z′)

(
(1 +

4t2c2

(z − z′)2 + 4t2c2
)(β − 1) + (N − β)

(z − z′)2

(z − z′)2 + 4t2c2
− 2Im(

2tc

z − z′ − 2itc

e−
i(z−z′)a

2t − e−
i(z−z′)βa

2t

1− e−
i(z−z′)a

2t

)

+ θ(z′ − z)
(
(1 +

4t2c2

(z − z′)2 + 4t2c2
)(N − β) + (β − 1)

(z − z′)2

(z − z′)2 + 4t2c2
− 2Im(

2tc

z − z′ − 2itc

e−
i(z−z′)a

2t − e−
i(z−z′)(N−β+1)a

2t

1− e
−i(z−z′)a

2t

)

)
which is identical to the fermionic equivalent. Like in the fermionic model, c(0, 0, t) → −1 for

large time, indicating that the particles develop a trend to avoid overlap with each other for our

chosen initial state. We relate this phenomenon to energy conservation which plays the same

role in both systems.
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Note, dropping higher order terms in σ decouples the two measured degree of freedom with

the rest of the system. Making the multi-particle problem(N > 2) equivalent to one with

two distinguishable particles. This is not the case for a system with bound states. In these

states, one of the measured particle binds together with a third particle. Thus, two of the

particles become indistinguishable and statistics plays a big role. We believe that the quench

dynamics will be greatly different from the fermionic counterpart if the bound states contribute

significantly, i.e. in an attractive system with a lot of overlap in the initial state.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis, the Yudson approach has been presented as an eigenstate expansion of a general

state that are well separated in the coordinate space. Among the many advantages listed in

chapter 3, the most prominent one relates to compacting all contributing states into a contour

integral. And the contour integration by itself takes cares of the weight of each states. Moreover,

the Yudson representation includes every states, even those that are not accessible by a Bethe

Ansatz solution.1. This is achieved by integrating the spin rapidities from −∞ to ∞.

In general, there is no guideline how to choose a contour, and it varies from model to

model [? ? ]. One needs to take a guess and check if the central theorem holds, like what we

did in chapter 4.1 and 5.1. When the contour is determined, the time evolution of the state is

solved in principle.

Unlike many approaches designed for integrable models, say the quench action and ABACUS,

the Yudson representation does not depend on the String hypothesis. In fact, the Yudson

representation with a properly chosen contour can in turn check the validity of the String

hypothesis. As shown in chapter 5.2, shifting all contours to the real axis separates free states

and various bound states apart. This provides us with a complete basis in the Hilbert space

that is greater than long believed.

In chapter 4, 5 and 6, we demonstrate how the Yusdon approach can be applied to the quench

dynamics of the Lieb-Liniger gas, Gaudin-Yang gas and bosonic Gaudin-Yang gas respectively.

In the three cases, we obtained the exact wavefunction for two-particle scenario and asymptotic

limit of the wavefunction for many bosons and many fermions(bosons) with one impurity. We

observed that, although the noise function near the origin behaves differently for different type

of interaction shortly after the quench, they soon approach −1 which means no overlap between

any two particles. We claim that the reason is related to the initial state and energy conservation.

1Recall that Bethe Ansatz eigenstates are highest weight state
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The three examples considered here would contribute to the understanding the nonequilibrium

dynamics.

7.2 Future Work

In this thesis, we have not studied multi-impurity Gaudin-Yang model. Although the scattering

among spin waves makes the calculation more complicated, it is solvable with the Yudson

approach. It would be interesting to see how the nonequilibrium dynamics be affected by longer

string solutions, which are not predicted by the String hypothesis.

Another interesting direction is changing the initial into one with significant overlap. The

Yudson representation works well with such initial condition, as long as we split the initial

condition into sections with different orderings. Practically, it leads to a series of Heaviside

theta function that brings enormous complications to the integration. However, the problem

worth all the efforts as it results in greater effect from the bound states and leads to richer

physics, as particles are allowed to overlap and the contact interaction plays a more prominent

role.

Aside from these, how Yudson approach can be modified for finite size system is an important

question, as already discussed in [? ] by Garry Goldstein. So far Goldstein-Yudson approach

has been applied to quench dynamics of Lieb-Liniger gas in the thermodynamic limit. The

application of the Goldstein-Yudson approach to other nonequilibrium problems with integrable

Hamiltonian is a intriguing direction.

Moreover, a promising direction would be incorporating form factor into the Yudson ap-

proach. With the Yudson approach, time evolution of the local observable equals

〈O(t)〉 =

∫
C

d~k

∫
C′
d~p 〈~k|O|~p〉〈φ0|k)(p|φ0〉e−i(E(~k)−E(~p))t

As the structure of the Yudson state is very simple, most of the complication comes from

〈~k|O|~p〉, which is called the form factor. This object has been intensely studied [? ? ? ], and

many results are available. However, these results are either too complicated or suffer from

divergence problems when the some parameters in |k〉 and |p〉 are the same. Moreover, how the

form factor results applies to systems with complex parameters are not clear. Such form factors

free one from evaluating high dimensional integrals of spatial coordinates, which we have to

make approximation about.

Last but not least, it is desirable if one could work out the k and µ integrations without

exploiting the saddle point approximation. If one changes the variable to include the imaginary
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part of the contour, the Yusdon representation is nothing but a real integration. And one no

longer needs to include different bound state contribution separately.
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trol of interaction-induced dephasing of bloch oscillations,” Physical review letters, vol. 100,

no. 8, p. 080404, 2008.

[33] M. Fattori, C. DErrico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Modugno, M. In-

guscio, and G. Modugno, “Atom interferometry with a weakly interacting bose-einstein

condensate,” Physical review letters, vol. 100, no. 8, p. 080405, 2008.

[34] A. Kastberg, W. D. Phillips, S. Rolston, R. Spreeuw, and P. Jessen, “Adiabatic cooling of

cesium to 700 nk in an optical lattice,” Physical review letters, vol. 74, no. 9, p. 1542, 1995.



135
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