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Over the last few years, the proliferation of personal mobile computing devices like tablets and

smartphones along with a plethora of data-intensive mobile applications has resulted in a tremen-

dous increase in demand for ubiquitous and high data rate wireless communications. However, the

system capacity is limited by the radio interference, which makes it difficult to improve the spectral

efficiency and consequently the data rate. Current practice to enhance spectral efficiency and data

rate is to increase the number of Base Stations (BSs) and go for smaller cells so as to increase the

band reuse factor. However, performing additional deployment and maintenance of a large number

of cellular BSs is highly inefficient due to excessive capital and operational expenditures. Moreover,

with smaller cells the interference problem becomes even more challenging. It is also studied that

increasing the BS density or the number of transmit antennas will decrease the energy efficiency

due to the dynamic traffic variation. This is because the current cellular architecture is over 40 years

old and was not originally designed for high spectral and energy efficiency performance but for

coverage and mobility considerations.

Cloud Radio Access Network (C-RAN) is a new paradigmatic architecture for wireless cellular

networks that allows for dynamic reconfiguration of computing and spectrum resources while keep-

ing the cost of delivering services to the users low. C-RAN consists of three main parts: 1) Remote

Radio Heads (RRHs) plus antennae, which are located at the remote site and are controlled by Vir-

tual Base Stations (VBSs) housed in a centralized processing pool, 2) the Base Band Unit (BBU)
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(known as VBS pool) composed of high-speed programmable processors and real-time virtualiza-

tion technology to carry out the digital processing tasks, and 3) low-latency high-bandwidth optical

fibers, which connect the RRHs to the VBS pool. In a centralized VBS pool, since all the infor-

mation from the BSs resides in a common place, the VBSs can exchange control data at Gbps.

This centralized characteristic along with virtualization technology and low-cost relay-like RRHs

provides a higher degree of freedom in order to make optimized decisions; all these features com-

bined have made C-RAN a promising technology candidate to be incorporated into the 5G wireless

network standard.

The overarching goal of the research presented in this thesis is to design new techniques for

increasing the spectral and energy efficiency of the next generation wireless cellular networks. In

order to increase the spectral efficiency and energy efficiency, we leverage the C-RAN architecture

and propose four solutions, namely 1) Cloud-BSS, 2) DJP, 3) Cloud-CFFR, and 4) Elastic-Net. In

Cloud-BSS, we study the performance of Blind Source Separation (BSS) in order to separate the in-

terference from the desired signal and explore how the performance changes in different topologies.

Since Cloud-BSS does not take any action to mitigate the inter-cluster interference, we propose

DJP to decrease both the intra- and inter-cluster interference. Moreover, in order to improve the

performance of Fractional Frequency Reuse (FFR), we propose Cloud-CFFR, which is able to re-

ject the intra-cluster interference and decrease the inter-cluster interference. Finally, in order to

increase the energy efficiency, we propose Elastic-Net, where the network parameters are optimized

and adapted based on the traffic fluctuation so that the power consumption is minimized while the

resource utilization is maximized.
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Chapter 1

Introduction

1.1 Distributed Radio Access Network (D-RAN)

The most important part of a cellular wireless network is the Radio Access Network (RAN) that

provides wide-area wireless connectivity for Mobile Stations (MSs). In general, up to 80% of

the Capital Expenditure (CAPEX) of a mobile operator is spent on the RAN [1]. In conventional

Distributed Radio Access Network (D-RAN) architectures, each Base Station (BS) only connects to

a fixed number of sector antennae that cover a small area and only send/receive signals to/from the

MSs in its coverage area. The hardware and processing equipment of each BS is located close to its

antenna tower and there are no communication links connecting the BSs. Physical links only exist

between BSs and their corresponding access network gateway. Hence, control messages between

the BSs have to travel through costly backhaul links, and often even over a one-level higher layer in

the aggregation hierarchy. The latency and scarce interconnect capacity among BSs have resulted in

limited BS cooperation in practice. However, emerging wireless technologies such as cooperative

Multiple-Input Multiple-Output (MIMO) or coordinated scheduling and beamforming require close

cooperation among BSs.

1.1.1 Shortcomings of D-RAN

This section briefly presents the shortcomings that today’s cellular networks are facing. In the next

one we will introduce a new centralized architecture and emphasize its potentials to solve many – if

not all – of these shortcomings.

High Power Consumption: To offer broadband wireless network and increase the coverage,

operators continually increase the number of BSs. This leads to a dramatic rise in power consump-

tion and consequently translates into higher Operational Expenditure (OPEX). Figures 1.1(a) and
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(a) (b)

Figure 1.1: Power consumption of (a) the Radio Access Network (RAN) and (b) the Base Stations

(BSs).

(b) show the components of power consumption reported by China Mobile [1]; here, the majority

of power is consumed at BSs of the RAN. In each BS, the RAN equipments only consume half of

the power, while the other half is used by air conditioning and by other equipment.

Rapidly Increasing CAPEX and OPEX: The proliferation of personal mobile computing de-

vices along with a plethora of data-intensive mobile applications has resulted in a tremendous in-

crease in demand for ubiquitous and high-data-rate wireless communications over the last few years.

To satisfy such shift in consumer data-rate usage, mobile operators need to increase their network

capacity. However, additional deployment and maintenance of a large number of stand-alone cel-

lular BSs to meet the growing capacity demand are highly inefficient due to excessive capital and

operating expenditures. Practically, up to 80% CAPEX of a mobile operator is spent on the RAN,

which means that most of the CAPEX is spent on building up BSs. On the other hand, OPEX in-

cludes the costs for site and transmission network rentals, operation/maintenance, and bills from the

power suppliers.

Multi-standard Environment: Today, BSs in wireless access networks make use of proprietary

hardware designs and support specific standards. When the wireless network is upgraded, almost all

of the network equipment must be replaced. Furthermore, during the transition, in order to satisfy

the coexistence of new standards (such as WCDMA in 3G) and old standards (such as GSM in 2G),

mobile operators must keep the old network and create another one for the new standard. Therefore,

wireless network upgrades require huge financial investments and have often limited adoption of the

emerging wireless technologies and algorithms.



3

Limited Inter-BS Cooperation: Traditional cellular wireless systems are suffering from lim-

ited inter-BS data exchange and do not allow to fully exploit the potential of cooperative commu-

nication schemes like macro-diversity and collaborative spatial multiplexing. In general, message

between the BSs need to be exchanged through the expensive backhaul links, and perhaps even over

one-level higher in the aggregation hierarchy. Currently, to perform cooperative communication

schemes, it is proposed to divide a set of neighboring cells into clusters and connect the BSs via

the Backhaul Processing Unit (BPU). However, even in this case, exchanging data between BSs

in different clusters requires traveling over backhaul links. Hence, the cost, latency, and scarce

interconnect capacity among BSs have limited BS cooperation schemes in practice.

Explosive Network Capacity Need: Global mobile traffic has been increased 66-fold with a

Compound Annual Growth Rate (CAGR) of 131% between 2008 and 2013 [2]. On the other hand,

the peak data rate has been only increased with a CAGR of 55% from UMTS to LTE-A, leading

to a large gap between the CAGR of new air interface and the CAGR of customers’ need. To fill

this gap, new network architecture and infrastructure technologies need to be developed to further

improve cellular-system performance.

Dynamic Network Load and Low BS Utilization: The number of active users at different

locations varies depending on the time of the day. For example, during the day, the BSs in downtown

office areas are the busiest, while at night, or in general during non-working hours, the BSs in

residential or entertainment areas are the busiest. This movement of mobile network load based on

the time of the day and the week is referred to as the “tidal effect”. Today, each BS’s processing

capability is only used by the active users in its cell range, causing idle BSs in some areas/times and

oversubscribed BSs in other areas. Static resource provisioning for the peak (worst case) at each

cell site leads to grossly underutilized BSs in some areas/times while provisioning for the average

leads to oversubscribed BSs in some areas/times.

1.2 Cloud Radio Access Network (C-RAN)

Cloud Radio Access Network (C-RAN) [1, 3] is introduced recently as a new architecture for the

wireless cellular network to address the shortcomings of traditional D-RANs. In C-RAN, all the
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(a) (b) (c)

Figure 1.2: Distributed Cloud Radio Access Network (D-RAN) vs. two Cloud Radio Access Net-

work (C-RAN). (a) D-RAN architecture; (b) Partially-centralized architecture: only MAC process-

ing is centralized in Virtual Base Station (VBS) pool; (c) Fully-centralized architecture: VBS pool

takes care of PHY and MAC processing.

BSs’ computational resources are pooled in a central location, e.g., a set of physical servers in a dat-

acenter, enabling communication among BSs with low latencies and exchange data at Gbps speeds.

The main characteristics of C-RAN are: i) centralized management of computing resources, ii) re-

configurability of spectrum resources, iii) collaborative communications, and iv) real-time cloud

computing on generic platforms. C-RAN consists of three main parts: 1) Remote Radio Heads

(RRHs) plus antennae, which are located at the remote site and are controlled by remote Virtual

Base Stations (VBSs) housed in centralized BS pools, 2) the Base Band Unit (BBU) (VBS pool)

composed of high-speed programmable processors and real-time virtualization technology to carry

out the digital processing tasks, 3) low-latency high bandwidth optical fibers, which connect the

RRHs to the VBS pool. As a precautionary measure and to be on the safe side, the optical fiber

transmission latency is limited to less than 1% of the PHY processing latency [4]. Hence, the range

of VBS pool is limited by latency constraints of wireless system and services.

Based on the functionality of the RRH and VBS pool, two architecture have been suggested for

C-RAN: partially- and fully-centralized architectures (see Fig. 1.2). In the “partially-centralized”

(Fig. 1.2 (b)) architecture, the PHY processing is integrated into the RRH, while a VBS only takes

care of MAC processing. This leads to the advantage of a lower volume of data to be exchanged

between RRH and BBU (1/20∼1/50 of the original baseband I/Q sample data [1]) and also the

wireless resources can be scheduled on a global level. However, the capability of PHY coopera-

tive techniques becomes lower and we still require remote equipment rooms in cell sites. In the
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“fully-centralized” (Fig. 1.2 (c)), a RRH only takes care of Radio Frequency (RF) functionalities,

while a BBU (VBS pool) takes care of both PHY and MAC processing. With a fully-centralized

architecture, we are more capable to do cooperative techniques; however, such architecture requires

a higher bandwidth to exchange data between RRH and BBU.

1.2.1 Advantages of C-RAN

Lower Power Consumption: Since in C-RAN a group of BSs are centralized in a common place,

the number of cell sites can be reduced several folds. Hence, the air conditioning and power con-

sumption of other site support equipments can be dramatically reduced. In addition, since the coop-

erative interference reduction techniques can be applied among the RRHs, a higher density of RRHs

is allowed. Hence, smaller cells with lower transmission power can be deployed, thus aiming for

higher frequency reuse and capacity, while the network coverage is not affected.

Lower CAPEX and OPEX: Since in C-RAN all the BBUs and site support equipments of a

large region are co-located in a common datacenter, it is much easier and cost efficient for cen-

tralized management, operation, and maintenance compared to traditional RAN. In addition, the

functionalities of the RRHs in the C-RAN architecture are much simpler, leading both their size and

power consumption to be reduced so that they can be installed on top of buildings with minimum

site support and management. Thus, operators can get large cost savings on site rental, operation,

and maintenance, leading to lower OPEX and CAPEX.

Flexibility to Add New Standards: In C-RAN, the large scale BBU pool with high-speed low-

latency interconnection, the common platform of Digital Signal Processor (DSP)/General Purpose

Processors (GPP), and open Software Defined Radio (SDR) solution enable a cost-effective real-

ization of VBSs. Therefore, in order to add/support new standards, there is no need to replace the

equipment; conversely, it would suffice assigning new VBSs in the platform. As a result, CAPEX

and OPEX costs associated with the wireless network upgrading can be eliminated altogether.

High Speed Inter-BS Coordination: With the consolidation of BSs in a centralized VBS pool,

such consolidated/co-located BSs can talk to each other at Gbps speeds and can communicate at low

latencies, quasi real time. High-speed communication between the BSs can bring an extra degree

of freedom to make optimal decisions and fully exploit the potentials of cooperative techniques. As

an example, a few approaches where cooperation among BSs can be beneficial are: i) joint flow
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scheduling and load balancing, ii) interference management, iii) cooperative spatial multiplexing

and macro-diversity, and iv) mobility management.

Capacity Improvement: In C-RAN, VBSs are able to exchange the signaling, traffic data,

and Channel State Information (CSI) of active MSs in the system with low latency. This way, it

becomes much easier to implement joint processing & scheduling algorithms so to mitigate Inter-

Cell Interference (ICI) and improve spectral efficiency. For example, CoMP schemes can efficiently

be implemented under the C-RAN architecture.

High BS Utilization Rate: C-RAN is also suitable to handle non-uniformly distributed traffic

due to its intrinsic load-balancing capability in the centralized BBU pool. Although the serving

RRH changes dynamically according to the movement of the MSs, the serving BBU is still in the

same BBU pool. As the coverage of a BBU pool is larger than in traditional BS, non-uniformly

distributed traffic generated from MSs can be distributed in a VBS as this sits in the same BBU

pool.

1.3 Contribution

In order to address the research challenges associated with increasing the spectral and energy effi-

ciency in the next generation of wireless cellular network, we make the following contributions in

this dissertation.

1.3.1 Blind Source Separation for Cooperative Cellular Communication in C-RAN

We proposed an uplink cooperative joint PHY and MAC solution for next-generation cellular com-

munications that exploits synergistically the advantages of C-RAN and Blind Source Separation

(BSS) [5]. BSS is a well-known technique in signal processing to recover the underlying source

signals from a set of mixtures, where the mixing system is unknown. C-RAN’s characteristics are

well suited for BSS-based cooperative cellular communications as the source separation problem

relies on inter-BS cooperation. In our solution, named Cloud-BSS, we divide a set of neighbor-

ing cells into clusters and allow them to use all of the frequency channels in the system band. In

each cluster, the RRHs receive a mixture of the MS signals. Then, the MS signals are separated

from the mixtures through BSS. Cloud-BSS provides the following benefits: i) enhancement of the
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cluster spectral efficiency, ii) decrease in the number of handovers, iii) elimination of the need for

bandwidth-consuming channel estimation, and iv) interference mitigation. We study our solution

under different network topologies and introduce a strategy, named Channel-Select, to increase the

Signal-to-Noise Ratio (SNR) of the estimated signals. In other words, Cloud-BSS separates the

intra-cluster mixtures and Channel-Select mitigates the defective impact of background noise (in-

cluding inter-cluster interference) during the separation process.

1.3.2 Dynamic Joint Processing for Interference Cancellation in C-RAN

We leveraged the C-RAN architecture to exploit fully the potential of CoMP so to suppress the ICI

and increase system spectral efficiency. Specifically, we proposed a novel uplink clustering scheme,

called Dynamic Joint Processing (DJP), which decreases both the intra- and inter-cluster interfer-

ence without increasing the size of clusters [6, 7]. Firstly, we introduce the idea of “VBS-Cluster”,

in which we merge VBSs serving a cluster into a unit VBS-Cluster while the RRHs’ antennae in

each cluster act as a single coherent antenna array distributed over the cluster region. Then, in

the proposed solution, we divide the MSs into two categories based on their average velocity: 1)

low-mobility and 2) high-mobility MSs. Based on the mobility level of the MSs, we present two

different coexisting clustering approaches and propose to exploit their complementary advantages

simultaneously.

1.3.3 Coordinated Fractional Frequency Reuse in C-RAN

we leveraged the advantages of FFR, CoMP and C-RAN, and proposed a joint clustering and spec-

trum sharing scheme for uplink interference-cancellation so as to increase the system spectral ef-

ficiency and also decrease both the intra- and inter-cluster interference [8–10]. In the proposed

solution, called Cloud-CFFR, for each cell we defined an Interference Region (IR); based on the IR

of its neighboring cells, we then determined the Cell-Center Region (CCR). Since the cell-center

MSs experience a high SINR, we proposed to apply CoMP processing only to cell-edge MSs, lead-

ing to a decrease in the total complexity and latency. This way, unlike in traditional OFDMA

systems, the performance of the system in all the cell-edge regions relies on the cooperation of dif-

ferent VBSs. Moreover, in order to deal with inter-cluster interference, which is not addressed in

traditional CoMP, we proposed a joint region-based clustering and spectrum allocation. We defined
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the clusters of size 2 and 3 depending on the IR intersection of neighboring cells; we partitioned the

frequency band into 13 non-overlapping bands, and allocated the frequency subbands to the MSs

based on the their position. In our solution, we also dynamically changed the boundaries of sub-

bands and optimized their widths in order to address the unanticipated fluctuations in the number of

active users and per-user capacity demands.

1.3.4 Demand-Aware Resource Allocation for High Energy Efciency and Resource

Utilization in C-RAN

We focused on optimizing the power consumption and resource utilization by leveraging the full

potential of C-RAN architecture. We proposed a novel elastic resource provisioning framework,

called Elastic-Net, to minimize the power consumption while addressing the fluctuations in per-user

capacity demand [11–14]. In our solution, we divide the covered region into clusters based on the

traffic model and, within each cluster, we dynamically adapt the active RRH density, transmission

power, and size of the VM based on the traffic fluctuations. We also provide a comprehensive model

for the power consumption of the C-RAN system including: (i) RRH and transport network power

consumption and (ii) VBS pool power consumption. Then, we optimize the power consumption and

resource utilization through a demand-aware resource provisioning approach. In order to minimize

the power consumption in the cell sites while ensuring a certain minimum coverage and data rate, we

propose to dynamically optimize and adapt the RRH density and transmission power based on the

traffic demand and user density. Likewise, in order to minimize the power consumption in the cloud

we dynamically optimize and adapt the size of the VMs while ensuring that the frame-processing

time is less than the frame deadline.

1.4 Dissertation Organization

This rest of this dissertation is organized as follows.

Chapter 2 reviews related and prior work in the fields of C-RAN. The proposed approaches are

discussed along with their pros and cons.

Chapter 3 details our interference separation algorithm proposed for uplink C-RAN. We ex-

plore the performance of the BSS under different network topologies and introduce a strategy,
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named Channel-Select, to increase the SNR of the estimated signals. We introduce a metric to

measure how much a M × N mixing matrix is diagonal dominant and use it in the simulation

analysis to show the performance associated with different topologies.

Chapter 4 explains our dynamic joint processing framework for interference cancellation in C-

RAN. Two coexisting clustering approaches are presented based on the level of mobility of MSs. We

also explain how the proposed solution increase the spectral and energy efficiency and Monte Carlo

simulations show the potential of our solution towards next-generation green communications.

Chapter 5 explains our joint clustering and spectrum sharing scheme for uplink interference

cancellation in C-RAN. For each cell an interference region is defined based on the interference

region of its neighboring cells. Then, cell-center and cell-edge regions are determined based on

the intersections of interference regions. Moreover, a dynamic spectrum allocation scheme is pro-

posed to address the unanticipated fluctuations in the number of active users and per-user capacity

demands.

Chapter 6 studies the elastic resource provisioning solution. We explain how to dynamically

adapt the active RRH density, transmission power, and size of the VM based on the traffic fluctua-

tions so that the power consumption is minimized while the resource utilization is maximized. We

also provide an extensive range of simulations and emulations results to validate our statements and

show the benefits of the proposed solution compared to static provisioning.

Chapter 7 summarizes our contributions as well as our observations and provides suggestions

for future research directions that will push the state of the art in spectral and energy efficiency of

C-RANs.
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Chapter 2

Background and Related Works

In this chapter we explain the technical challenges of C-RAN architecture, research challenges of

existing RAN, and the works that have been done so far to address those challenges.

2.1 Software Defined Virtual Base Station Pool

Today’s BSs are equipped with a set of heterogenous processing devices, each of which executes a

specific task as defined at the design time. At the time of upgrading the network, almost all of the

network equipment must be replaced. With DSP, GPP, and emerging SDR frameworks, we are now

able to reconfigure the radio equipment. Large-scale BBUs endowed with high-speed, low-latency

interconnection, plus the programmable DSP/GPP and open SDR solutions set the base for a VBS.

In the C-RAN architecture a bunch of VBSs are pooled in a common BBU where a large amount of

computing resources is available. Hence, VBS pool contains all the required processing resources

of traditional BSs including entire digital signal processing at the PHY layer and packet processing

at the MAC layer.

With virtualization technology we can dynamically allocate processing resources within a BBU

to different VBSs. Whenever a user requests a service, computing resources need to be allocated

for the corresponding service. This leads to a greater utilization of the processing resources and

the ability to adjust in response to the tidal effects in different areas so to accommodate fluctuating

demands. However, in general we are not able to pool all the VBSs together as there are some

constraints to take into account. The range of VBS pool is limited and depends on the latency

constraints of the wireless networks. In C-RAN, the optical fiber transmission latency is suggested

to be less than 1% of the PHY processing latency [4]. Assuming a PHY processing latency of 10 ms,

the fiber transmission latency should be less than 0.1 ms. Since the signal speed through the fiber

is ≈ 2 × 108 m/s, a signal path of 20 km has a latency of ≈ 0.1 ms. Consequently, a region with
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radius of 10 km is able to cover 314 km2 of a metropolitan area, which may serve millions of users.

2.2 Technical Challenges of C-RAN Deployment

BSs have strict real-time, low-latency, and high-performance requirements, to meet which the tradi-

tional virtualization technique is challenged. Specifically, to deploy real-time VBS pool the follow-

ing requirements need to be met [1]:

• Advanced processing algorithms for real-time signals.

• High-performance, low-power processing for wireless signals.

• High-bandwidth, low-latency, low-cost BBU interconnection topology among physical pro-

cessing resources in the baseband pool. These include the interconnection among the chips

in a BBU, among the BBUs in a physical rack, and across multiple racks in datacenter.

• Efficient and flexible real-time operating systems to achieve virtualization of hardware pro-

cessing resources management and dynamic allocation of physical processing resources to

each VBS so to ensure processing latency and jitter control hardware-level support on virtu-

alization.

2.3 Research Challenges of Future Wireless Cellular Network

Over the last few years, proliferation of personal mobile computing devices like tablets and smart-

phones along with a plethora of data-intensive mobile applications has resulted in a tremendous

increase in demand for ubiquitous and high data rate wireless communications. However, the sys-

tem capacity is limited by the interference, which makes it difficult to improve the spectral efficiency

and consequently data rate. To solve this problem, the Fourth Generation (4G) cellular communi-

cation system with peak downlink data rate of 1 Gbps has been envisioned. Long Term Evolution

(LTE) systems based on Orthogonal Frequency Division Multiple Access (OFDMA) represent a

major breakthrough in terms of achieving downlink peak data rates of 300 Mbps [15]. However,

cooperative schemes used in LTE to increase the spectral efficiency cannot be fully deployed due

to the scarce inter-BS connectivity. Hence, LTE systems do not match yet the International Mobile



12

Telecommunications Advanced (IMT-Advanced) “True 4G” requirements. Hence, a significant ef-

fort is being made towards the development of Fifth Generation (5G) of wireless cellular network.

An estimated area capacity of 25 Gbps/km2 is forecast for 5G wireless cellular networks, which

corresponds to a 100× boost over what the current 4G wireless standard is able to provide in terms

of spectral efficiency. Additionally, to reduce energy consumption, a 1000× improvement in energy

efficiency is expected by 2020.

The current practice to enhance spectral efficiency and data rate is to increase the number of BSs

and go for smaller cells so to increase the band reuse factor. However, additional deployment and

maintenance of a large number of cellular BSs are highly inefficient due to excessive capital and op-

erational expenditures. Morover, with small cells the MSs experience a higher number of handovers

and the ICI problem becomes more challenging. The economic impact of power consumption is

particularly dire in emerging markets and the 5G network must be not only spectral efficient but

also energy efficient. Currently, RANs consume more than 70% of total power consumption (each

BS consumes an average of 25 MWh per year) [16]. It is also studied that increasing the BS density

or the number of transmit antennas will decrease the energy efficiency due to the dynamic traffic

variation [17].

Although several recent efforts have been made to reduce the power consumption of existing

small cell networks [18, 19], limited attention has been given to optimize the overall network de-

ployment. Therefore, a novel design and architecture is necessary to increase the spectral and energy

efficiency of the next generation of wireless cellular network.

2.4 State of the Art in C-RAN

There are only a few works that have started to address some of the aforementioned challenges.

In [3] and [20], the authors introduce the centralized-BS idea and study its advantages, challenges,

and requirements. The authors in [4] refer to C-RAN as SDR cloud and suggest hierarchical re-

source management where computing clusters are defined and assigned to different radio operators,

cells, or services. The authors of [21] introduce a reconfigurable backhaul scheme to allow for a

flexible mapping between the BBUs and Radio Access Units (RAUs); by real-world experiments,

they show that their proposed solution improves the RAN performance and decreases the energy



13

consumption. In [22], the authors propose a cross-layer resource allocation model in which they

optimize the set of selected RRHs and the beamforming strategies at the active RRHs in order to

minimize the overall system power consumption.

In [3], the authors recommend that timing and synchronization system should have two parts:

the first, namely, master time server, provides the accurate timing reference, while the second dis-

tributes the precise timing signal throughout the VBS pool and RRHs. The authors also suggest

to use standardized interface technologies widely used in IT infrastructure (GbE, 10-GbE, Infini-

Band, and PCIe) to interconnect BBUs. For hardware efficiency and flexible collaboration, the

same authors also propose to separate the PHY and MAC layers into different platforms. In [4], a

hierarchical management is suggested, where computing resources are assigned on demand and in

real time to different radio operators, cells, or services. The authors of [4] also discuss the com-

plexity of some resource-management algorithms and introduce different management schemes in

simulated VBS pool. In [23], the constraints of PHY and MAC layers are analyzed and the VBS

performance is optimized to meet the stringent real-time requirements of jitter and latency. The

authors of [23] also present the first working prototype of a VBS pool on a multi-core IT platform;

specifically, they show that their VBS pool prototype for WiMax can meet system requirements

including synchronization, latency, and jitter. The authors of [24] propose some low-complexity al-

gorithms to minimize the network power consumption of C-RAN, including the transport network

and radio access network power consumption. They formulate the network power consumption and

propose an algorithm to switch off one RRH at each step. Then, to reduce the complexity, they

propose a three-stage group sparse beamforming framework. In [25], the impact of end-user behav-

ior on user/network association in a HetNet with multiple service providers (SPs) has been studied.

Specifically, the uncertainty in the service guarantees offered by SPs in a HetNet has been modeled

using Prospect Theory (PT), a noble prize-winning theory, which explain real life decision making

problem to investigate the end-user decision making behavior.

In [26], a partitioning and scheduling framework is proposed which is able to reduce the com-

pute resources by 19%. In [27], the authors present a flexible framework for small cells, called

Fluidnet, which dynamically reconfigures the front-haul based on network feedback to maximize

the amount of traffic demand and optimize the compute resource usage in the BBU pool. The au-

thors of [28] consider the coordinated transmission problem to minimize the downlink power in
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C-RAN. In order to serve each MS, they determine a set of RRHs and the precoding vectors for

the RRHs to minimize the total transmission power subject to the constraints on fronthaul capacity.

In [29], the authors consider the C-RAN with finite-capacity backhaul links and propose a hy-

brid compression and message sharing strategy for downlink transmission to optimize the backhaul

capacity utilization. In [24], the authors propose low-complexity, three-stage group-sparse beam-

forming algorithms to minimize the network power consumption in C-RAN. In [26], a partitioning

and scheduling framework is proposed that is able to reduce the computing resources by 19%. The

authors of [30], propose a user scheduling, user-centric BS clustering and beamforming design for

the downlink C-RAN. They numerically show that with explicit per-BS backhual constraints, their

proposed algorithm is able to utilize the backhaul resources more efficiently, as well as to offer more

flexibility in choosing the cluster size. In [31, 32], the authors have proposed a competitive spec-

trum allocation scheme to serve the maximum number of users by strategically allocating limited

spectrum resources.

The authors in [33] introduce Heterogeneous Cloud Radio Access Networks (H-CRAN) ar-

chitecture and propose a framework to decrease the circuit power consumption of fronthaul links.

In [34], the authors present a joint spectral and energy efficient framework with user-centric design

in C-RAN for greener 5G networks. In [35], the authors propose a joint downlink and uplink beam-

forming design to coordinate interference in the C-RAN for energy minimization. In [10, 36, 37],

the authors envisage a real-time, context-aware collaboration framework that lies at the edge of the

RAN, comprising Mobile Edge Computing (MEC) servers and mobile devices, and that amalga-

mates the heterogeneous resources at the edge. The authors introduce and study three representa-

tive use-cases ranging from mobile-edge orchestration, collaborative caching and processing, and

multi-layer interference cancellation. The authors in [38, 39] propose a collaborative joint caching

and processing strategy for on-demand video streaming in MEC networks. Their design aims at

enhancing the widely used Adaptive BitRate (ABR) streaming technology, where multiple bitrate

versions of a video can be delivered so as to adapt to the heterogeneity of user capabilities and the

varying of network condition. In [40, 41], the authors introduce a new layer of caching in the C-

RAN network, named cloud cache which bridges the latency/capacity gap between the traditional

edge-based and core-based caching schemes. A coded caching strategy taking into account the user

mobility pattern in a C-RAN was studied in [42].
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In [43], the authors have studied the feasibility of using interference alignment in underwater

acoustic communication to increase the data rate and spectral efficiency for ocean explorations.

In [44], using the features available in the 5G design such as Mobile Edge Computing (MEC),

caching and CRAN, a dynamic processing location management platform is proposed to minimize

latency and avoid bottlenecks. The authors also proposed a centralized algorithm for dynamic or-

chestration of processing functionalities locations. In [45], authors investigate the capacity using

uncoded caching and categorization based on coded caching scheme. In their cache placement strat-

egy, file groups are created with similar popularity levels and then the files are randomly coded in

each file group to reduce the average traffic of backend. An experimental study in a C-RAN testbed

was carried out in [46] to characterize the computational requirement of the BBU pool running on

virtualized environment. In [47, 48], the authors proposed a dynamic joint user-centric clustering

and beamforming to maximize the weighted-sum rate performance in a downlink C-RAN.

In [49,50], a new incentive model for Information-Centric Networks, which is a promised solu-

tion for next generation networks, has been proposed. To determine caching and pricing strategies, a

theoretical game model is presented in a hierarchical architecture of one content provider, one transit

ICN and K access ICN with different type of content which are requested with Zipf-like distribu-

tion. The authors have shown that this game has a unique Nash equilibrium. They have provided

a monetary incentive model to collaborate in caching and distributing content where the caching

costs vary with respect to content popularity, while the content provider cost per unit data is fixed

for all content types. The authors in [51] formulate the computation resource allocation problem in

C-RANs as a bin packing problem and propose a heuristic simulated annealing algorithm to reduce

power consumption of the VBS pool. In [52], an energy efficient optimization problem with the

resource assignment and power allocation is solved to reduce the energy cost of RRHs. In [29], the

authors consider the C-RAN with finite-capacity backhaul links and propose a hybrid compression

strategy for downlink transmission to optimize the backhaul capacity utilization. In [53], a queue-

aware robust (QuaRo) coordinated transmission strategy is proposed for C-RANs whihc is adaptive

to both user-traffic urgency via Queue State Information (QSI) and wireless channel opportunity via

the observed (yet imperfect) Channel State Information (CSI).

In summary, prior works on C-RAN focused on the overall system architecture, on the feasibil-

ity of virtual software BS stacks, on energy optimization as well as on the performance gains. In
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contrast to existing works, we propose novel dynamic solutions to increase the spectral and energy

efficiency. We leverage the centralized characteristics of C-RAN and propose different algorithms

to exploit fully the potential of coordinated interference cancellation techniques so that to decrease

the ICI. We also plan to study a demand-aware resource provisioning solution in which the net-

work parameters will be optimized and adapted based on the traffic fluctuation so that the power

consumption is minimized.
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Chapter 3

Blind Source Separation for Cooperative Cellular Communication in

C-RAN

3.1 Overview

Generally, in cellular networks, neighboring cells avoid to reuse the same set of frequencies (or

channels) so to keep the interference below a certain threshold and to ensure user Quality of Service

(QoS). As a drawback, however, the whole cellular band cannot be used by the cells, which leads

to low data rates. In this chapter, we present Cloud-BSS, our BSS-based solution, which increases

the user capacity – thus achieving high data rates – by exploiting the characteristics of the C-RAN

architecture; specifically, Cloud-BSS is able 1) to grant multiple users access to the same OFDMA

channels simultaneously and 2) to assign multiple channels to the same user [5]. These features,

together, lead to a higher per-user capacity and hence, data rate, given a fixed cellular band. We also

explain how the proposed solution mitigates the interference problem and decreases the number of

handovers, regardless of the handover procedure used by the system. In fact, a handover will only

be needed when a MS moves from one cluster to another (as opposed to from one cell to another).

In other words, as long as a MS remains in a certain cluster, no handover is needed, which provides

the following advantages: an increase in user QoS and a decrease in overall system computation

and communication overhead.

In Cloud-BSS, we divide a set of contiguous cells into a cluster and allow them to use all of

the frequency channels in the system band, thus achieving a frequency-reuse factor of 1. Hence,

in each cluster, the RRHs receive a mixture of the MS signals. Figure 3.1(a) shows our clustering

idea: here the cluster size is 3 and aij is the channel coefficient between MS #j and RRH #i. The

relationship between the received RRH and the transmitted MS signals at different time instants can
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(a) Topology 1 (worst) (b) Topology 2 (c) Topology 3 (d) Topology 4 (best)

Figure 3.1: Four network topologies in which the RRHs receive different combinations (‘mixtures’)

of the MS signals. From Topology 1 to 4 (worst to best), the distance between a MS in a cell and

the RRHs in the other cells becomes higher.

be expressed through the following linear noisy model (for clarity time is omitted),

x =
N∑
i=1

siai + n = As+ n. (3.1)

Here, s = [s1, . . . , sN ]T is the N × 1 vector of complex-valued MS signals (sources), x =

[x1, . . . , xM ]T is the M × 1 vector of signals (mixtures) received by the RRHs, A is the M × N

complex-valued channel coefficient (mixing) matrix with linearly independent columns (ai being

its ith column), and n = [n1, . . . , nM ]T is the M × 1 Gaussian noise vector with independent and

identically-distributed (i.i.d.) components. Note that, in (3.1), the inter-cluster interference is part

of the background noise, and that the MS signals are assumed to be statistically independent; such

assumption is almost always met in practice for physically-separated transmitters. Now, to extract

the MS data in the VBS pool we need to separate the MS signals (sources) from the received RRH

signals (mixtures); in a cluster, this is in fact a BSS problem.

First, we provide some preliminary background on BSS and Independent Component Analysis

(ICA). Then, we argue that the topology configuration of the MSs affects the system performance

and show that diagonal dominant topologies lead to better performance, i.e., to a lower Bit Error

Rate (BER). We introduce a metric to measure how much a M × N mixing matrix is diagonal

dominant and use it in the simulation analysis to show the performance associated with different

topologies. Finally, we introduce a strategy, named Channel-Select, to ‘group’ the best set of active

MSs (i.e., assign them to the same OFDMA channel) based on their locations so to induce diagonal

dominance in the mixing matrices.
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3.2 Blind Source Separation (BSS)

In BSS, a set of mixtures of different source signals is available and the goal is to separate the source

signals when we have no information about the mixing system or the source signals (hence the name

blind) [54]. The mixing and separating systems can be represented mathematically as,

x(t) = As(t), y(t) = Bx(t), (3.2)

where s(t) = [s1(t), . . . , sN (t)]T is the vector of sources that are mixed by the mixing matrix A

and x(t) = [x1(t), . . . , xM (t)]T is the vector of available observations. Let A be a M ×N matrix

of full-column rank, which means that the observations are linearly independent; the goal is to

design a separating matrix B such that y(t) = [y1(t), . . . , yN (t)]T is an estimate of the sources. A

method to solve BSS is ICA, which exploits the assumption of source independence and estimates

B such that the outputs yi(t)s are statistically independent. For this assumption to hold, however,

the number of observations must be equal or greater than the number of sources (i.e., M ≥ N ).

The essence of ICA can be understood better by considering the “cocktail party problem,” in which

many people are talking simultaneously: if several microphones at different positions are available,

then different mixtures of the voices can be recorded. Given such mixtures and the assumption that

the original voice signals are independent from each other, ICA can recover the original voices from

the mixtures. However, most of the ICA algorithms are only applicable to real signals, whereas in

digital communication systems we deal with complex-valued signals. To solve this problem, some

ICA algorithms have been proposed (such as the ones in [55–57]) to deal with complex-valued

signals.

3.3 Blind Source Separation for Cooperative Communication in Cloud (Cloud-BSS)

In cellular networks the interfering signals from other cells decrease the performance of the system.

To overcome this problem, BSs avoid reuse of the same set of frequencies. However, in the case

of C-RAN, as we have access to all of the BSs’ received signals in a cluster, the MS signals can

be separated by the use of ICA algorithms. Hence, with reference to the model in (3.1), since we

have access to all the xis (1 ≤ i ≤ M ), we can separate the MS signals (sources) from the RRH
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signals (mixtures) through ICA. Note that it was studied in [55] that the case of multiple paths,

where several coherent wireless signals from a single transmitter are mixed in the received signal,

does not affect the ICA problem.

Without considering the noise – and as long as the sources are independent and the mixing

channel coefficient matrix is full rank – ICA methods can extract the source signals simply by

estimating the inverse of the mixing matrix. However, in the presence of noise, when the ICA

algorithms estimate B as Â−1 and multiply it by the observation so to extract the source signals,

from (3.1) we obtain,

Bx(t) = ŝ(t) +Bn(t), (3.3)

where each estimated source signal is associated with a combination of the additive noises at all

the receivers. If we assume that the noises at all the receivers have the same variance σ2n, then the

noise in the ith estimated source has a variance of
(
b2i1 + · · ·+ b2iM

)
· σ2n, where bij is the (i, j)th

component of the separation matrix B. As the bijs are dependent on the determinant of the mixing

matrix A, the noise level of the estimated sources is highly dependent on the mixing matrix. The

determinant of a matrix is the volume of the parallelepiped composed of its rows/columns. It is

straightforward to prove that if a diagonal dominant1 and a non-diagonal dominant matrix have the

same row/column norm, then the former has the greater determinant and, hence, lower component

values in its inverse matrix [58].

Theorem 1. Let us assume that a N ×N matrix C is diagonally dominant by rows, and let us set

β = min
i

(
|cii| −

∑
j 6=i

|cij |
)
. It follows that

∥∥C−1
∥∥
∞ < 1/β.

Proof. Since ‖C−1‖−1∞ = inf
x

‖Cx‖∞
‖x‖∞

, we only need to show that α‖x‖∞ ≤ ‖Cx‖∞ for all x. Take

some vector x and let ‖x‖∞ = |xi|; then, it follows that 0 < α ≤ |cii| −
∑
j 6=i

|cij |. With some

manipulation, we have,

0 < α |xi| ≤ |ciixi| −
∑
j 6=i

|cijxj | ≤ |ciixi| − |
∑
j 6=i

cijxj | ≤ |
∑
j
cijxj | ≤ max

i
|∑
j
cijxj | = ‖Cx‖∞.

From Theorem 1, we infer that when β is low the upper bound of
∥∥C−1

∥∥
∞, which is the

1A matrix is said to be diagonally dominant if, for every row/column, the magnitude of the diagonal entry in a

row/column is larger than the sum of the magnitudes of all the other entries in that row/column.
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maximum absolute row sum of the matrix C−1, becomes high. Hence, considering A to be a

N ×N , when the non-diagonal components of the mixing channel coefficient matrix A in each row

are close to the diagonal component, β becomes lower and, as a drawback, the maximum absolute

row sum of the separation matrix B becomes higher, leading to low SNR in the estimated sources

in (3.3). Hence, in order to have a high SNR in the estimated source signals, the absolute value

of the diagonal dominant component of A should be as high as possible, and the absolute value

of non-diagonal components of A should be as low as possible. This translates into the following

observation: in a certain frequency channel, the ith MS needs to be as close as possible and the jth

MS needs to be as far as possible to the ith RRH (with j 6= i).

3.3.1 System Performance for Different Topologies

In our solution, where the mixing channel coefficient matrix depends on the topology of the network,

we expect that for different network topologies the performance would vary. Depending on the

topology, the mixing channel coefficient matrix A and thus the variance of the noise in the estimated

sources are different. As we discussed earlier, we expect that for topologies with a diagonally

dominant mixing (channel coefficient) matrix the performance would be better than for topologies

with a non-diagonally dominant mixing matrix; in the diagonally dominant case, in fact, the variance

of the noise associated with each estimated transmitted signal is lower than in the non-diagonally

dominant case. Hence, the more diagonal dominant the mixing matrix, the better the performance.

Based on the formulation we described for Fig. 3.1(a), we introduce metric D(A) to define how

much a M ×N mixing matrix A is row diagonally dominant as,

D(A) = 1
N(N−1)

N∑
j=1

( N
∑

k=1

|aik|

maxi|aij | − 1

)
, (3.4)

where aij is the (i, j)th component of matrix A and maxi|aij | is the maximum absolute value in

the jth column of the matrix. In (3.4), we find the maximum components in each column of matrix

A, then perform a normalized sum only over those rows where the maximum components exist. In

fact, in the mixing matrix A, the components of each column/row correspond to a certain MS/RRH,

respectively. In the case whereN < M , (3.4) eliminates (M−N) rows corresponding to the RRHs

for which there is no MS in their cells. With this definition, D(A) always ranges in [0, 1], being
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equal to 0 when A is diagonal. For the topologies in which D(A) is high, the maximum absolute

row sum of the separation matrix B becomes higher than for the topologies with lower D(A). An

increase in D(A) causes a decrease in SNR and consequently an increase in the BER. Figure 3.2

shows the increase of the BER as D(A) approaches 1, for the cases of N = M = 3, 4, 5 and

SNR= 15 dB.
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Figure 3.2: Increase in Bit Error Rate (BER) with increase in non-diagonal dominance of mixing

matrix A (the closer D(A) to 1, the more A is non-diagonal dominant); note that in this simulation

we considered N =M .

To verify that the system performance depends on the topology – as inferred from the above

mathematical analysis – we analyzed four topologies, as shown in Fig. 3.1, and considered a clus-

ter of three cells. We implemented the JADE algorithm [55] for separating the MS signals from

their mixtures. JADE uses the whole fourth-order statistics of the received data, from which very

good separation results can be achieved. In Topology 1 (worst), the channel coefficient matrix A is

not diagonally dominant at all, whereas in Topology 4 (best) all of the columns of the matrix are

diagonally dominant. In between, we have Topology 2 and 3, in which only one and two columns,

respectively, are diagonally dominant. If we consider Dl(A) as the diagonal dominance metric of

the lth topology, then we have D4(A) < D3(A) < D2(A) < D1(A). Consequently, moving

orderly from Topology 1 to 4, we expect progressively better performance due to the decrease in

noise level of the estimated MS signals. The decreasing BER curves with the SNR (not surprising)

and with topology order (corroborating our analysis) are depicted in Fig. 3.3.
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Figure 3.3: Decrease in BER with Signal-to-Noise Ratio (SNR) and topology order for each of the

four different topologies considered in Fig. 3.1.

3.3.2 Proposed Strategy for Operation under Non Idealities

We propose the Channel-Select strategy, which changes the transmitting frequency (channel) of

each user so to make the mixing matrices “as diagonally dominant as possible”. Depending on

the ‘instantaneous’ topology, we optimize the frequency allocation for each MS so that the chan-

nel coefficient matrix in each channel is as diagonal dominant as possible. To achieve this goal,

Channel-Select uses the following objective function,

F(A1, . . . ,AL) = minmax[D(A1), . . . , D(AL)], (3.5)

where Al is the mixing matrix in the lth frequency channel fl and L is the total number of channels

available in the OFDMA system. The complexity of this combinatorial optimization problem de-

pends on the number of MSs and cluster size, and grows exponentially as these parameters increase.

AssumingK MSs are uniformly distributed in the cluster, the problem complexity isO((K/M)M ) :

consequently, as we are dealing with a large number of MSs in a cluster, a solution under real-world

timing constraints is infeasible. Therefore, we introduce a simple heuristic algorithm that makes the

diagonal and non-diagonal component of matrix A higher and lower, respectively, causing D(Al)’s

in (3.5) to be low.
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Without any loss in generality, we assume that: (i) We have L frequency channels (f1, · · · , fL)

and K MSs; (ii) We have enough frequency channels to admit all the users in each cell; (iii) All

cells have the same size and in each cluster all the RRHs can receive all the MSs’ signals; (iv) All

MSs use the same output power (i.e., no power control is performed); (v) We approximately know

where the MSs are, but we do not know their trajectory (i.e., no horizon).

Figure 3.4: Example for allocating frequency channels to the MS’s.

With these realistic working assumptions, we propose Channel-Select, an algorithm to allocate

the frequency channels to the MSs in such a way thatD(Al)’s become as low as possible. Figure 3.4

clarifies our explanations for the case when the cluster size M is 3 and the number of channels L is

4. Firstly, based on the location of the MSs, we calculate the distances between the MSs and RRHs.

Then, we define how many MSs should be allocated to each frequency channel as N = dK/Le

(as in Fig. 3.4, where K = 11, L = 4, and N = 3). Furthermore, we find the nearest MS in

cell #1 (MS11) and N − 1 farthest MSs in the other cells (MS23 and MS33) to the RRH #1 and

allocate channel f1 to this group of MSs. We repeat this procedure for the remaining cells and

MSs until when all the MSs have been allocated a channel. Algorithm 1 presents the pseudo-code

of our Channel-Select allocation strategy: here, lines 6 and 8 make the diagonal and non-diagonal

component of matrix A, respectively, higher and lower, which forces the maximum D(Al) to be as

small as possible, as required by the objective function in (3.5). Figure 3.5 compares our Channel-

Select strategy with random select and optimal solution for different number of MS’s. As we expect,



25

for a large number of MSs the possible combination of MSs increases and, as a result, the average

D(A) of our Channel-Select strategy and optimal solution decreases. So, unlike in random select,

Channel-Select is able to increase the SNR (by decreasing the negative effect of background noise)

of estimated source signals by exploiting diagonal dominant mixing channel coefficient matrices.

From Fig. 3.2, we see that the difference between Channel-Select and optimal is not significant as

the increase in BER is in order of 10−4.
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Figure 3.5: Channel-Select vs. optimal solution (by exhaustive search) for small problem sizes

(cluster size M = 3).

It should be mentioned that our solution, Cloud-BSS, is transparent to the MSs. The only over-

the-air signaling that it requires is the one for conveying the channel allocation decision (made by

Channel-Select) to the MSs; and this uplink-channel-allocation signaling is already part of current

as well as next-generation OFDMA-based cellular systems.

3.3.3 Cluster Size and Computational Complexity

One of the main requisites for LTE is the requirement of very low level of latency. So, it is necessary

to explore the computational complexity and run time of our Cloud-BSS solution for different cluster

sizes. The cluster size dictates the computational complexity and the accuracy of the ICA methods,

where the former depends on the no. of sources (N), no. of mixtures (M), no. of data samples (T ),
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Algorithm 1 Channel-Select Strategy

Input: L= Total number of frequency channels available, M = Number of cells in a cluster

Output: MSl = Set of MSs associated with the lth channel

Description:

1: for l = 1; l ≤ L; l ++ do

2: t = 1; K = l mod M ;

3: if K = 0 then

4: K =M ;

5: end if

6: MSl(t)=Find in cell #K the nearest MS to RRH #K;

7: for j = 1 :M && j! = K do

8: MSl(+ + t)=Find in cell #j the farthest MS to RRH #K;

9: end for

10: Among MSl(2 : L) keep the N − 1 farthest MSs and remove the others, reducing the size of

MSl from M to N ;

11: Allocate fl to the remaining MSls;

12: if All MSs have been allocated with a channel then

13: return;

14: end if

15: end for

no. of iterations (Q), and no. of sweeps2(I). As the cluster size, i.e., the no. of RRHs (mixtures)

and MS signals (sources), increase the computational complexity increases. The computational

complexity of an algorithm is measured by the required floating point operations (flops) to execute

it, where a flop corresponds to a multiplication followed by an addition.

Here, we briefly compare the complexity and accuracy of three well-known complex-valued

ICA algorithms: JADE [55], Complex ICA-EBM [56], and Complex FastICA [57]. Complex

ICA-EBM adopts a line-search optimization procedure using a projected conjugate gradient, while

Complex FastICA finds independent components by separately maximizing the negentropy of each

mixture. To compare the separation quality of these algorithms, we use the Performance Index (PI),

which measures the difference between the mixing and estimated separating matrix, defined as,

PI =
N∑
i=1

[(
N∑
k=1

|pik|2
maxj |pij |2

− 1

)
+

(
N∑
k=1

|pki|2
maxj |pji|2

− 1

)]
, (3.6)

where pij is the (i, j)th element of the matrix P = BA, and maxj |pij | and maxj |pji| are the

maximum absolute value in the ith row and column of matrix P, respectively. As the PI increases,

2A sweep is an iteration process over all principal 2× 2 submatrices.
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the difference between B and A−1 increases, so the separation quality is correspondingly poorer.

If the separation is perfect, then the separating matrix is the inverse of the mixing matrix and the

PI is zero. Table 3.1 lists the computational complexity, separation quality, and run time3 of the

aforementioned ICA algorithmic methods for different numbers of data samples T . As we can see,

the PI decreases as T increases from 2000 to 8000, although at the price of the Run Time (RT): this

is because with more data samples more information about the statistics of the mixtures is available,

which enables the ICA algorithms to estimate the separating matrix more accurately. From Table 3.1

it is clear that the execution time of our Cloud-BSS solution using JADE algorithm is in order of

millisecond, which is feasible in LTE systems.

Table 3.1: Computational Complexity, Run Time (RT), and Performance Index (PI) of three com-

peting ICA methods for five parameters: N = no. of sources, M = no. of mixtures, T = no. of data

samples, Q = no. of iterations, and I = no. of executed sweep; in the simulations, we considered

N =M = 5.

Method Computational Complexity (flops)
T=2000 T=4000 T=8000

RT [s] PI RT [s] PI RT [s] PI

JADE [55]

min{TM2/2+4M3/3+NMT, 2KM2}+
3TN(N + 1)(N2 + N + 2)/8 + TN2 +
min(4N6/3, 8N3(N2 + 3)) + IN(N −
1)(75 + 21N + 4N2)/2

0.03445 7.08145 0.04657 2.10674 0.07535 0.43901

Complex ICA-EBM [56]

min{TM2/2+4M3/3+NMT, 2TM2}+
4M3/3 + (Q − 1)M3/2 + IN(N −
1)(17(M2−1)+75+4N+4N(M2−1))/2

1.05756 8.07938 1.50168 2.13367 1.69157 0.35794

Complex FastICA [57]
min{TM2/2+4M3/3+NMT, 2TM2}+
(2(N − 1)(N + T ) + 5TN(N + 1)/2)K

0.45037 9.33160 0.75995 5.77939 1.38608 1.78655

Moreover, Fig. 3.6 shows the increase in RT (left y-axis) and PI (right y-axis) with the increase

in the number of sources and mixtures (here N = M ). To sum up, increasing the cluster size leads

to higher computational complexity and lower accuracy; however, it also brings a few advantages,

which we study in the following section, calling for finding the right trade-off.

3.4 Other Benefits of our Proposed Cloud-BSS

Besides improving the system spectral efficiency, using BSS within C-RAN brings several other

advantages, some of which are briefly discussed below.

3The experiments were performed on an Intel Core2 Quad CPU 2.4-GHz PC with 8 GB of RAM.
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Figure 3.6: Increase in Run Time (RT) and Performance Index (PI) of the three ICA algorithms

with increase in the no. of sources and mixtures (here T=8000). The left y-axis reports the RT in

seconds, while the right y-axis reports the PI as in (3.6).

Table 3.2: Reduction of handovers by clustering the cells using our BSS-based solution; cell radius

= 1 km, simulation area = 30× 30 km2, smin = 0, smax = 30 m/s, simulation time = 1 hr, no. of

MSs = 1000, d̄ = π, s̄ = 15 m/s, dxn−1 ∼ N (π, 1), sxn−1 ∼ N (15, 3), no. of simulations = 100.

Mobility Model

Number of Handovers

Without Cells/Cluster Cells/Cluster Cells/Cluster

Clustering = 3 = 4 = 5

Random Waypoint 5716± 5% 2318± 4% 1268± 5% 843± 6%

Gauss-Markov 3673± 0.6% 1682± 1.1% 711± 2.3% 457± 2.9%

3.4.1 Fewer Handovers

As long as the active users stay in the same cluster, there is no need to perform costly handovers

because when a MS moves from one cell to another all the RRHs within the cluster are still able

to receive the mixtures of the transmitted signals. The number of handovers can be further reduced

by increasing the size of the clusters. However, with an increase in both N and M , the complexity

of the ICA methods and of the frequency-allocation algorithm, as well as the noise level in the

estimated sources, will also increase.

To show the performance of our proposed solution in terms of number of handover sessions, we

consider two mobility models: 1) Random Waypoint and 2) Gauss-Markov [59]. In the first model,

a MS moves from its current location to a new one by choosing randomly a direction d [rd] and a

speed s [m/s] from pre-defined ranges, e.g., [0, 2π] and [smin, smax], respectively. After choosing
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these parameters, a MS moves to its new location by traveling for a certain time or distance. The

model also includes pause time between changes in direction and speed. The second mobility model

is designed to adapt to different levels of randomness by means of a tuning parameter: the direction

and speed at the nth step are calculated based on those at the (n−1)th step and on a random variable,

as,

dn = αdn−1 + (1− α)d̄+
√

(1− α2)dxn−1

sn = αsn−1 + (1− α)s̄+
√

(1− α2)sxn−1 ,
(3.7)

where dn and sn are the new direction and speed for the nth step, α (0 ≤ α ≤ 1) is the tuning

parameter to vary the randomness, d̄ and s̄ are constants representing the mean value of direction

and speed as n→∞, and dxn−1 and sxn−1 are random variables from a Gaussian distribution.

Table 3.2 represents the reduction in the number of handover sessions using Cloud-BSS. In

the simulations, we performed an handover to the neighboring cell/cluster if both of the following

conditions are met [60]: (1) If the signal strength from the neighboring cell/cluster exceeds that of

the serving cell/cluster by an hysteresis (i.e., margin) level of at least 1 dB; (2) If the distance from

the serving cell/cluster exceeds that of the neighboring cell/cluster by more than 1.1 km. It is clear

that the number of handover sessions decreases with the increase of the cluster size. However, as we

show in Figs. 3.2 and 3.6, the complexity of the ICA algorithms and the noise level of the estimated

MS signals also increase.

Furthermore, we show how robust our solution is in terms of mobility and handover. As we

observed previously, the achievable BER is highly dependent on the topology; so, in order to im-

prove the BER performance, we introduced Channel-Select, a frequency-channel allocation heuris-

tic. Now, we study how robust our solution is under user mobility without considering Channel-

Select. To do this, we consider clusters of four cells (cell radius = 3 km), as shown in Fig. 3.7,

and study four cases: in the first, all the MSs are in different cells while in the forth all the MS’s

have moved into cell #2. As we can see, in the first case, the topology is diagonal dominant and

we expect an acceptable BER. However, from case #1 to case #4, D(A) increases and we expect

a decrease in the BER performance. Figure 3.8 shows the BER performance for these four cases,

which corroborates our analysis.
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(a) Case 1 (each MS in a different cell) (b) Case 2 (c) Case 3 (d) Case 4 (all MS’s in one cell)

Figure 3.7: Four cases of mobile network in which all the MS’s are using the same frequency

channel.

3.4.2 Increased Reliability

We can trade capacity for improved BER performance. As mentioned earlier, we can assign each

frequency channel to a maximum of as many as the total number of RRHs (recall that ICA algo-

rithms require the no. of mixtures to be equal or greater than the no. of sources, i.e., M ≥ N ). The

relationship between the Net Channel Capacity Cn of our proposed Cloud-BSS solution and the no.

of admitted MSs N per frequency channel is,

Cn = N · Cch · [1−BER(N)], (3.8)

where Cch is the capacity of the frequency channel and BER(N) indicates that the BER depends

on N , as studied in Fig. 3.2. Figure 3.9 shows the increase of the net channel capacity with respect

to the number of admitted MS’s for the SNR ranging in [5, 20] dB and D(A) = 0.3.

When the capacity is not the key issue, we can improve the BER by not using all the potential

capacity of the network, i.e., by allocating each channel to fewer MSs so to induce diagonally

dominant mixing matrices. This would lead to the reduction of the columns of matrix A and to

a higher degree of freedom in making the mixing matrix diagonally dominant. To illustrate this

intuition, we consider Topology 2 in Fig. 3.1(b), which is not diagonally dominant. However, we

can make it so by allocating the channel to only two users instead of three, e.g., we can either

remove MS #2 or MS #3. Figure 3.10 shows the BER performance in such scenario: interestingly,

by removing MS #3 the performance is better than removing MS #2 as we obtain a lower D(A),

leading to a lower BER.
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Figure 3.8: Increase of BER by moving the MS’s towards a common cell.
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Figure 3.9: Increase in the Net Channel Capacity with increase in N , with M = 7, for different

SNR = 5, 10, 15, 20 dB and D(A) = 0.3.

3.4.3 Interference Cancelation

Due to the orthogonality of subcarriers in LTE systems, the MSs have immunity to intra-cell inter-

ference. However, cell-edge users are known to face large ICI, especially, in a highly-loaded cellular

environment. In Cloud-BSS, as BSS deals with mixed signals, intra-cluster interference is not a con-

cern as it is a part of the received mixed signals and, as such, the ICA algorithms take care of it when

separating the sources. Hence, there is no need for the BSs to go through costly inter-BS message
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Figure 3.10: Trading off capacity for improved BER: decrease of BER with SNR when removing

MS # 2 or MS # 3 from Fig. 3.1(b).

exchange to execute coordinated interference cancelation. In fact, by applying the ICA algorithm

to the received signals in a cluster, harmful interference can be turned into useful signal, which

boosts performance by transforming a ‘foe’ into a ‘friend’. Moreover, the Channel-Select strategy

decreases the defective impact of inter-cluster interference (background noise) on the estimated sig-

nals by exploiting the diagonal dominant mixing channel coefficient matrices. With the increase in

the cluster size, the average Signal to Interference plus Noise Ratio (SINR) also increases, which

allows the cellular network to enjoy great spectral efficiency enhancement. Table 3.3 represents the

improvement of spectral efficiency and throughput using Cloud-BSS. With a cluster size equal to 5,

Cloud-BSS enhances the uplink average cell user and cell-edge user throughput by 49% and 93%,

respectively.

Table 3.3: Comparison of uplink Spectral Efficiency (SE) and Throughput (R) between non-

cooperative traditional systems and Cloud-BSS (cell radius = 1 km).

Method
Average Cell User Cell Edge User

SE [bps/Hz] R [Mbps] SE [bps/Hz] R [Mbps]

Traditional System
2.17± 7.3% 10.85 0.73± 6.8% 3.65

(Non-Cooperative)

Cloud-BSS
2.76± 6.8% 13.79 1.12± 6.2% 5.60

(M = 3)

Cloud-BSS
3.07± 7.1% 15.35 1.27± 6.3% 6.35

(M = 4)

Cloud-BSS
3.23± 7.1% 16.14 1.41± 7.8% 7.05

(M = 5)
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3.4.4 No Additional Overhead Compared to CoMP

CoMP is another approach to mitigate the average interference, in which the BSs within a cluster

exchange CSI [61]. However, this approach requires a pilot-symbol overhead in order to estimate

the channel coefficients [62]. Releasing this huge amount of capacity can increase the net bit rate,

which may be used for other purposes like coding to increase reliability. Our BSS-based solution

implicitly estimates the channel coefficients and therefore does not require pilot-data exchange as

in CoMP.

3.5 Discussion

There are quite a few blind techniques which is applied in wireless communication [63]. In this

chapter, we also presented a novel BSS-based solution, Cloud-BSS, that leverages the centralized

characteristic of C-RAN so to improve performance of highly mobile cellular networks. Cloud-

BSS divides a set of neighboring cells into clusters that can use all of the frequency channels in the

system band, thus increasing the system spectral efficiency, decreasing handovers, and eliminating

the need for bandwidth-consuming channel estimation while mitigating interference. We discussed

the effect of irregular topologies on Cloud-BSS performance in terms of BER and introduced a

strategy, named Channel-Select, to improve the SNR.
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Chapter 4

Dynamic Joint Processing for Interference Cancellation in C-RAN

4.1 Overview

The Coordinated Multi-Point (CoMP) transmission and reception technique, which is based on

cooperative MIMO, is one of the major methods to mitigate the average interference and increase

the spectral efficiency at the cost, however, of increased receiver complexity [61]. In CoMP, a set of

neighboring cells are divided into clusters; within each cluster, a fixed set of BSs are connected to

each other via the BPU and exchange CSI as well as MS signals (see Fig. 4.1). Coordination of the

BSs within a cluster can improve the overall SINR. In the uplink, each BS receives a combination

of MS signals from its own and from the other neighboring cells (see Fig. 4.2). By combining the

CSI from different cells and sharing the received signals at the BPU, CoMP is thus able to cancel

the intra-cluster interference.

Although CoMP is able to reject the intra-cluster interference, it cannot mitigate the inter-cluster

interference [64, 65]; hence, cluster-edge MSs can produce an intensive inter-cluster interference at

the neighbouring external BSs (see Fig. 4.2). Consequently, in cellular networks with a frequency

reuse factor equal to 1, the achieved system capacity is still significantly far from the interference-

free capacity upper bound. Furthermore, one of the main requisites of 5G systems is the very low

level of latency: the additional processing required for multiple-site reception/transmission and CSI

acquisition as well as the communication incurring among different BSs add delay significantly and

limit the cluster size (especially for massive MIMO). Moreover, BSs’ clocks need to be in phase

in order to enable proper operation of CoMP. This requires a highly accurate phase or time-of-day

synchronization. To overcome these challenges, the BSs should be connected together in a form of

centralized RAN. Therefore, novel architecture and algorithms is necessary for the next generation

of wireless cellular network to overcome the aforementioned challenges and achieve the ambitious

data rate.
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Figure 4.1: Data exchange within a cluster in Coordinated Multi-Point (CoMP) transmission and

reception.

Figure 4.2: Intra- and inter-cluster uplink interference (we name the MS (BS) inside the cluster as

internal and outside the cluster as external MS (BS)).

In this chapter, we leverage the C-RAN architecture to exploit fully the potential of CoMP so to

suppress the ICI and increase spectral efficiency. Specifically, we propose a novel uplink clustering

scheme, called Dynamic Joint Processing (DJP), which decreases both the intra- and inter-cluster
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interference without increasing the size of clusters [7]. Firstly, we introduce the idea of “VBS-

Cluster”, in which we merge VBSs serving a cluster into a unit VBS-Cluster while the RRHs’

antennae in each cluster act as a single coherent antenna array distributed over the cluster region,

and briefly talk about its advantages. Then, in the proposed solution, we divide the MSs into two

categories based on their average velocity: 1) low-mobility and 2) high-mobility MSs. Based on the

mobility level of the MSs, we present two different coexisting clustering approaches and propose to

exploit their complementary advantages simultaneously.

4.2 System Model and Challenges

To understand better our solution, we formulate the problem and detail the issues with CoMP. More-

over, with a simple case study, we clarify why the omni-subband clustering is unable to address the

current cellular network challenges and explain why the clustering of the RRHs must be studied

jointly with spectrum allocation.

4.2.1 System Description

Consider a CoMP uplink system with frequency reuse factor equal to 1. In CoMP, a set of neigh-

boring cells is divided into clusters, and in each cluster the BSs coordinate with each other in order

to reject the intra-cluster interference. Let L = {1, . . . , L} be the set of all BSs, U = {1, . . . , U} be

the set of all MSs, and J = {1, . . . , J} be the set of all clusters. We assume that the frequency band

is divided into a set of subbands F = {f1, . . . , fK} (K is the total number of subnabds) and each

active MS is allocated with one subband. Each cluster consists of a set of BSsMj = {1, . . . ,Mj},

where
J∑

j=1
Mj = L. Also, depending on the spectrum resource allocation, in each cluster there is

a set of active MSs N (k)
j =

{
1, . . . , N

(k)
j

}
allocated with the kth subband, where N

(k)
j ≤ Mj

and
K∑
k=1

J∑
j=1

N
(k)
j = U . In this chapter, N (k)

j (i) refers to the ith MS in the set N (k)
j . Let also

P
(k)
j =

[
P 1
j , . . . , P

Nk
j

j

]
be the N

(k)
j × 1 vector of transmission power of the set N (k)

j . For the kth

subband, the relationship between the received signals by internal BSs1 of the set Mj (BSs of the

jth cluster) and the transmitted MS signals at different time instants can be expressed through the

1We name the MS (BS) inside the cluster as internal and outside the cluster as external MS (BS).
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following linear noisy model,

y
(k)
j =

∑

l∈N (k)
j

s
(k)
j (l)h

(k)
jj (l) +

∑
q∈J ,q 6=j

∑

r∈N (k)
q

s
(k)
q (r)h

(k)
qj (r) + n

(k)
j

= H
(k)
jj sj

(k) +
∑

q∈J,q 6=j

H
(k)
qj sq

(k) + n
(k)
j ,

(4.1)

where, for clarity, the time variable t is omitted. Here, s
(k)
j = [s

(k)
j (1), . . . , s

(k)
j (N

(k)
j )]T is the

N
(k)
j × 1 vector of MS signals of the jth cluster operating over the kth subband, h

(k)
qj (r) is Mj ×

1 vector of channel coefficients between the MS N (k)
q (r) and BSs of the set Mj , H

(k)
qj is the

Mj × N
(k)
q channel coefficients between the MSs of the set N (k)

q and BSs of the set Mj , y
(k)
j =

[y
(k)
j (1), . . . , y

(k)
j (Mj)]

T is the Mj × 1 vector of received signals by the internal BSs, and n
(k)
j =

[n
(k)
j (1), . . . , n

(k)
j (Mj)]

T is the Mj × 1 vector of Additive White Gaussian Noise (AWGN).

Although in each cluster the BSs receive a combination of internal and external MS signals (see

Fig. 4.2), CoMP is only able to cancel the intra-cluster interference (caused by internal MSs from

neighbouring cells). A simple form of coordination is achieved by employing a Zero-Forcing (ZF)

receiver. In the ZF receiver (for the uplink), since the CSI from all the internal BSs in a cluster is

available through the BPU, we can form the equalizer as,

G
(k)
j =

((
H

(k)
jj

)†
H

(k)
jj

)−1(
H

(k)
jj

)†
. (4.2)

By multiplying the equalizer to the vector of received signal, the output of the ZF receiver is given

by,

ŝ
(k)
j = G

(k)
j yj

(k) = sj
(k) +w

(k)
j , (4.3)

where

wj
(k) =

∑

q∈J,q 6=j

G
(k)
j H

(k)
qj sq

(k)

︸ ︷︷ ︸
Inter−Cluster Interference

+G
(k)
j n

(k)
j︸ ︷︷ ︸

AWGN

.
(4.4)

From (4.3) and (4.4), the SINR and data rate of N (k)
j (i) is,

γ
(k)
ij =

P
(k)
j (i)

∣∣∣g(k)
j (i)h

(k)
jj (i)

∣∣∣
2

N0∆B(k) +
∑

q∈J,q 6=j

∑

r∈N (k)
q

P
(k)
q (r)

∣∣∣g(k)
j (i)h

(k)
qj (r)

∣∣∣
2 , (4.5)
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Rij
(k) = ∆B(k)log2

(
1 + γ

(k)
ij

)
, (4.6)

where g
(k)
j (i) is the ith row of the equalizer matrix G

(k)
j , h

(k)
qj (r) is the rth column of H

(k)
qj , N0

is the white noise power spectral density, and ∆B(k) is the bandwidth of kth subband. It is clear

from (4.13) that the interference generated by the external cluster-edge MSs dramatically decreases

the SINR and data rate.

4.2.2 Problem Statement

The objective is to find the optimal clustering decision and transmission power so as to maximize

the sum rate while meeting a set of predefined constraints, as follows.

p : argmax
{

Mj ,P
(k)
j

}

j∈J

∑

k∈F

∑

j∈J

∑

i∈N(k)
j

Rij
(k) (4.7a)

subject to P
(k)
j (i) ≤ Pmax, (4.7b)

R0 ≤ Rij
(k), (4.7c)

Mj ≤M0. (4.7d)

Constraint (6.12b) indicates that the MS transmission power cannot exceed the maximum al-

lowed transmission power. Constraint (6.12c) guarantees a minimum per-user data rate and con-

straint (4.7d) specifies the maximum cluster size. Here, with a simple case study we explain why

this optimization problem is NP-hard and cannot be solved under rrealistc constraints. More specif-

ically, we show that for different spectrum allocation scenarios the clustering problem changes.

4.2.3 Case Study

Here, we explain the motivation of the proposed solution and the necessity of studying clustering

and spectrum allocation jointly. For this purpose, with a simple example we explain that i) how

spectrum allocation can affect the clustering problem, ii) why fixed clustering in any condition

cannot solve the inter-cluster interference problem, iii) why even dynamic clustering does not work,

and iv) why the clustering problem is NP-hard. As shown in the Fig. 4.3(a), consider a network of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Case study to show the issues with traditional CoMP: (a) Network of 4 cells where

each cell has 2 MSs to serve; (b) and (c) Horizontal and vertical omni-subband clustering for the

first scenario of spectrum allocation; (d) and (e) Horizontal and vertical omni-subband clustering

for the second scenario of spectrum allocation; (f) Uni-subband clustering for the second scenario

of spectrum allocation; (g) Virtual uni-subband clusters for subband #1; (h) Virtual uni-subband

clusters for subband #2.

4 cells and 8 MSs working under the traditional CoMP where each cell has 2 MSs to serve. Also,

assume that there are 2 frequency subbands (f1 and f2) to allocate to the MSs and cluster size cannot

be greater than 2 (due to the delay and complexity constraints). Depending on which subband is

allocated to which MS there are 16 different scenarios for spectrum allocation. In this case study,

we will focus on 2 of these scenarios.

Figures 4.3(b) and 4.3(c) show our first scenario of spectrum allocation where MSs #1, #3, #5,

#7 (circled MSs) are allocated with f1 and MSs #2, #4, #6, #8 (stared MSs) are allocated with f2.

Note that in the figures we have used circle and star to distinguish between the MSs allocated with

f1 and the MSs allocated with f2, respectively. In this case, in traditional CoMP if we form clusters

horizontally, as shown in Fig. 4.3(b) where different clusters are associated with different colors, the

MSs #2 and #7 become cluster-edge MSs in the green colored cluster and have a destructive inter-

cluster interference on the yellow colored cluster. Likewise, MSs #3 and #6 become the cluster-

edge MSs in the yellow colored cluster and have a destructive inter-cluster interference on the green

colored cluster. Now, if we form the clusters vertically, as shown in Fig. 4.3(c), MSs #1, #4, #5,

#8 become cluster-edge MSs and have destructive inter-cluster interference on their neighboring
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clusters.

Now, let us consider a second scenario of spectrum allocation, as shown in Figs. 4.3(d) and

4.3(e), where MSs #1, #4, #5, #8 are allocated with f1 and MSs #2, #3, #6, #7 are allocated with

f2. Note that in the second scenario, we only have changed the order of spectrum allocation in cells

#2 and #4 compare to the first scenario. In this case, if we form the clusters horizontally, as shown

in Fig. 4.3(d), the performance of subband f1 becomes very good. This is because for subband

f1 there is no cluster-edge MS and due to the path loss the inter-cluster interference is very low.

However, all the MSs performing on subband f2 become cluster-edge MSs and have a destructive

inter-cluster interference on the neighboring external cells. For instance, RRHs #2 and #3 receive a

strong inter-cluster interference from MSs #2 and #7, respectively. Likewise, if we form the clusters

vertically, as shown in Fig. 4.3(e), all the MSs performing on sub-band f1 become cluster-edge MSs

while there is no cluster-edge MS operating over subband f2.

As we discussed above, based on the spectrum allocation the clustering problem changes. In

other words, the performance of the clustering highly depends on the spectrum allocation and this is

why we should study the clustering and spectrum allocation jointly. Moreover, with static clustering

we always have cluster-edge MSs. In traditional CoMP, since all the spectrum is used in each

cluster, even with dynamic clustering we cannot solve the inter-cluster interference problem and

there will be always some MSs located on the edge of clusters. This is because traditional CoMP

only changes the boundaries of interference from cell to cluster. So, to really find the optimal

clustering decision, we need to consider all the spectrum allocation scenarios and find the optimal

clustering decision for each subband separately. For instance, in a network with M cells and K

subbands, where we have (K!)M scenarios for spectrum allocation, we need to solve K(K!)M

optimization problems to find the optimal clustering decision. This makes the clustering problem

NP-hard, which is why finding the optimal solution under real-world timing constraints is infeasible.

In the following section, we discuss Figs. 4.3(f-h) and explain how uni-subband clustering can solve

the aforementioned problem.
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4.3 Proposed Solution

In C-RAN, all the VBSs of a large region are centralized in a common datacenter. This centralized

characteristic along with real-time virtualization technology provides an extra degree of freedom

that is useful to mitigate both the intra-cluster as well as inter-cluster interference. In addition, all

the VBSs can communicate and exchange data with each other at Gbps speeds. Unlike in traditional

CoMP where each cell is only associated statically with a certain cluster, in C-RAN we are able

to associate each cell with different clusters and dynamically add/remove cells to/from a certain

cluster. Here, we focus on clustering problem and leverage these properties to form virtual clusters

and hybrid cells so to mitigate the intra- and inter-cluster interference and boost the system spectral

efficiency and data rate.

It is expected that 5G will be able to handle about 1000 times more mobile data than today’s

cellular systems and that it will become the backbone of the Internet of Things (IoT) linking up

fixed and mobile devices. Since the speed of the MSs leads to different conditions to the system,

we need to differentiate the high-mobility from the low-mobility MSs in order to provide better

QoS. So, in our solution, named Dynamic Joint Processing (DJP), we introduce two coexisting

clustering approaches (for different mobility levels). In both approaches the frequency reuse factor

is equal to 1 and we use all the frequency band in the cells. In the first approach (for low-mobility

MSs with average velocity less than Vth), we propose to form virtual uni-subband clusters and

dynamically change the cluster size based on the position of the MSs. In the second approach (for

high-mobility MSs with average velocity greater than Vth), we divide each cell into 3 sectors and

merge 3 neighboring sectors from different cells to form a hybrid cell. Moreover, in order to avoid

the inter-cluster interference, we assign a different set of subbands to different hybrid cells.

Since one of the main applications of 5G is autonomous cars and intelligent transportation, we

consider high-mobility scenario for MSs with a speed greater than the maximum walking speed.

Hence, in our simulations we use Vth = 5 m/s (maximum walking/running speed) as the threshold

between high-mobility (driving) and low-mobility (walking or stationary) speed. In the following

sections, we detail these two approaches, study their pros and cons, and explain how we exploit

their complementary advantages simultaneously.
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4.3.1 Virtual Base Station Cluster

Clustering the neighboring cells in the C-RAN architecture—together with enabling the coordina-

tion of the VBSs in the cluster—can improve the system performance by exploiting the extra degrees

of freedom so to make optimal decisions. Here, we introduce the idea of VBS-Cluster, wherein the

VBSs associated with a certain cluster are merged together, and the RRHs’ antennae in each cluster

act as a single coherent antenna array distributed over the cluster region. Figure 4.4 shows two

VBS-Clusters, #1 (on the left) and #2 (on the right), where the sizes of the clusters are 2 and 3,

respectively. Since in the C-RAN architecture all the VBSs are collocated in a common place and

implemented on VMs, we can dynamically change the size of VBS-Clusters based on the network

requirements.

Figure 4.4: Virtual Base Station Cluster (VBS-Cluster): VBSs associated with a cluster are merged

together in the VBS-Cluster and RRHs antennae in each cluster act as a single coherent antenna

array distributed over the cluster region.
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4.3.2 Low-mobility Approach (DJP-LM)

In the first approach, named DJP-LM, in order to avoid cluster-edge MSs, for each subband we

divide the neighboring cells into virtual clusters based on the position of the associated MSs and

their distances from the neighboring RRHs. This means that the virtual clusters are defined per

subband such that the detrimental impact of inter-cluster interference is minimum. Unlike in the

traditional CoMP in which the clusters are “omni-subband” (i.e., in each cluster all subbands are

used), in the first approach the virtual clusters are “uni-subband” (i.e, each cluster only deals with

one subband). Consequently, each cell may be involved in different virtual clusters for different

subbands.

To clarify the motivation, we use the network of 4 cells described in Sect. 4.2.3. As we dis-

cussed in Sect. 4.2.3, with omni-subband clustering there are always cluster-edge MSs that have a

destructive inter-cluster interference on the neighboring external RRHs. To address this problem,

we propose to form virtual uni-subband clusters based on the position of MSs and RRHs. Virtual

clustering must be done in such a way that the internal MSs have minimum inter-cluster interference

on the neighboring virtual clusters. To do this, we need to measure the received power from each

MS to the internal and external RRHs, and decide to change the serving cluster if the interference

on external RRH is greater than the interference on internal RRHs.

In Fig. 4.3(f), dot-dash and dotted lines show uni-subband clustering of cell sites associated

with subband #1 and #2, respectively. Figures 4.3(f) and (g) also show the uni-subband clusters for

subbands #1 and #2, respectively. Form Figs. 4.3(g) and 4.3(g)(h), it is clear that for each subband

we have different set of clusters. For example, cells #1 and #4 form a virtual uni-subband cluster for

subband #1 (see Fig. 4.3(g)) and cells #1 and #2 form a virtual uni-subband cluster for subband #2

(Fig. 4.3(h)). Note that each cell is associated with 2 uni-subband clusters, while in the traditional

CoMP each cell is only associated with one omni-subband cluster. As shown in Figs. 4.3(g) and

4.3(h), with uni-subband clustering there is no cluster-edge MSs and the received power from MSs

to external RRHs is very low. This is because with uni-subband clustering, all the internal MSs are

as far as possible from the external RRHs and located in the center of the virtual cluster.

Moreover, in DJP-LM, the size of virtual clusters is not fixed. In the C-RAN architecture, as

the VBS-Clusters are implemented on VMs, we can change the size of clusters based on the MSs’
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positions. More accurately, if a MS in the cluster moves such that it becomes a cluster-edge MS we

remove the serving cell from the serving virtual cluster and add it to a neighboring virtual cluster

in such a way that the MS causes less inter-cluster interference. In DJP-LM, we assume that the

frequency band is divided into a set of subbands F = {f1, . . . , fK} and for each subband the

network has a set of virtual uni-subband clusters J (k)
LM =

{
1, . . . , J (k)

}
(1 ≤ k ≤ K), each virtual

cluster consists of a set of RRHs M(k)
j =

{
1, . . . ,M

(k)
j

} (
1 ≤ j ≤ J (k)

)
, and in each virtual

cluster there are a set of active MSs N (k)
j =

{
1, . . . , N

(k)
j

} (
1 ≤ j ≤ J (k)

)
. We measure the

received power (in dB) from the MS nki ∈ N
(k)
i by the RRH mk

l ∈M
(k)
l at time t as,

Prx

(
nki ,m

k
l , t

)
= Ptx

(
nki , t

)
− PL(nki ,mk

l , t)− Pfad(n
k
i ,m

k
l , t),

(4.8)

where PL(nki ,m
k
l , t) is the large-scale path loss between the MS nki and the RRH mk

l at time t,

Ptx

(
nki

)
is the transmitted power of the MS nki , and Pfad(n

k
i ,m

k
l , t) is the time-varying shadow

fading loss. Since CoMP cancels the intra-cluster interference, our goal is to minimize the inter-

cluster interference. To do this, we measure the summation of received inter- and intra-cluster

interference power from the MS nki to the neighboring and serving clusters,

Pex

(
nki , j, t

)
=

∑

∀mk
j∈M

(k)
j

Prx

(
nki ,m

k
j , t

)
,

Pin

(
nki , i, t

)
=

∑

∀mk
i ∈M

(k)
i ,mk

i 6=nk
i

Prx

(
nki ,m

k
i , t

)
,

(4.9)

where Pex

(
nki , j, t

)
is the received inter-cluster interference from MS nki by the jth virtual cluster

and Pin

(
nki , i, t

)
is the received intra-cluster interference from MS nki by its serving virtual cluster

(ith cluster). Then, we find the cluster which receives maximum inter-cluster interference from MS

nki and select it as the nominated cluster,

Pjmax

(
nki , t

)
= max

1≤j≤J(k)

j 6=i

Pex

(
nki , j, t

)
,

(4.10)

where Pjmax

(
nki , t

)
is the maximum inter-cluster interference from MS nki and jmax is the index of

the nominated cluster to be added to the serving cell in the kth subband at time t. In each iteration,

we remove the serving cell from serving cluster and add it to the nominated cluster if Pjmax

(
nki , t

)
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exceeds Pin

(
nki , i, t

)
by a hysteresis threshold thr [dB] (see Algorithm 2).

Algorithm 2 DJP-LM

Input: Fr = Set of associated subbands to the MS, Kr = |Fr| = Number of associated subband to

the MS, thr = Hysteresis threshold, T = Time between two iterations

Description:

1: for k = 1; k ≤ Kr; k ++ do

2: i = index of serving virtual uni-subband cluster

3: Calculate Pin

(
nki , i, t

)

4: for j = 1; j ≤ J (k); j ++ do

5: Calculate Pex

(
nki , j, t

)

6: end for

7: Calculate Pjmax

(
nki , t

)

8: if Pjmax

(
nki , t

)
− Pin

(
nki , i, t

)
> thr then

9: Remove the serving cell from ith cluster and add it to the jthmax cluster

10: end if

11: end for

12: After T seconds repeat DJP-LM Algorithm (go to step 1)

Although the first approach has its own advantages to decrease the inter-cluster interference,

it is not well suited for high-mobility scenarios. In such environments because of the mobility of

the MSs we have to add/remove cells to/from the clusters more frequently. To do a re-clustering

session the following messages needs to be exchanged (see Fig. 4.5). The serving VBS acquires

information about the network topology by computing the total internal and external interference;

then, it needs to advertise this information by TOP-NBR-ADV message to the serving and the

neighboring clusters. When the serving and candidate cluster receive this message, they know

that a MS from the serving cluster is approaching the candidate cluster. Once the serving cluster

receives the TOP-NBR-ADV message, it will send a CLS-REQ message to the candidate cluster

to check whether to change the cluster size. The candidate cluster sends CLS-RSP message to

serving cluster as a response to the CLS-REQ to know whether it approves or rejects the CLS-REQ.

CLS-REP is transmitted by the serving cluster to inform the serving VBS about the decision. If the

decision is to change the cluster size, the serving VBS sends VBS-REQ message to the candidate

cluster as a request to join. VBS-REQ contains the initial parameters that candidate cluster may

need to know. The candidate cluster acknowledges the VBS-REQ by sending VBS-ACK to the

serving VBS. VBS-REP is transmitted by serving VBS to the MS to inform about the change of

serving cluster. At this time the serving VBS is added to the candidate cluster. Now, it is needed

to synchronize and estimate the channel coefficient between the MS and new set of RRHs. This
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procedure is time consuming and needs many iterations to adjust its local parameters. When the

synchronization and channel estimation are done, MS can continue its normal operation. As it is

discussed in Sect. 4.4, for high-mobility scenarios DJP-LM is associated with a high number of

re-clustering procedure, which decreases the system performance. To overcome this problem we

propose the other approach for high-mobility MSs.

Figure 4.5: Message exchanges among a MS, serving VBS, and virtual clusters during re-clustering.

4.3.3 High-mobility Approach (DJP-HM)

In this part, we propose a new approach based on the C-RAN architecture that is appropriate for the

high-mobility MSs. In this approach, named DJP-HM, we divide each cell into 3 sectors (so called

S1, S2, and S3) and merge 3 neighboring sectors from different cells so to form a “hybrid cell” (see

Fig. 4.6(a)). Consequently, as it is shown in Fig. 4.6(b), each VBS-Cluster serves a hybrid cell and

consists of 3 Sector-VBSs, each of which serves different sector in the hybrid cell. Hence, hybrid

cells are under the cooperation of 3 Sector-VBSs and, as a consequence, cooperative interference

cancellation methods can be applied in hybrid cells.

Moreover, different sectors of a certain cell use different set of subbands such that the sectors of a

hybrid cell use the same set of subbands (Fig. 4.6(c)). Hence, neighboring hybrid cells use different

portions of the frequency band. In this case, all the subbands are used by each cell and the frequency

reuse factor is equal to 1. Each Sector-VBS assigns each subband to a MS so that the subband is



47

used at most by three MSs in the hybrid cell. As a result, in each sector the intra-cluster interference

is from the neighboring sectors of the serving hybrid cell. Since Sector-VBSs are able to cooperate

with each other through VBS-Cluster, CoMP is able to cancel intra-cluster interference. On the

other hand, since the neighboring hybrid cells in the first tier do not use the same set of subbands

as the serving hybrid cell, we do not have any inter-cluster interference from them. Besides, as the

hybrid cells operating on the same set of subbands are at the second tier of each other, they do not

experience inter-cluster interference as high as that experienced by conventional CoMP.

In DJP-HM, we are also able to change dynamically the dedicated frequency band (subbands)

to each hybrid cell. This leads to have more capacity and accept extra users without deploying any

extra antenna at RRHs. In traditional cellular system, due to the static spectrum resources, we are

not able to handle unanticipated fluctuations in the number of users and per-user capacity demands.

However, in some scenarios like man-made disasters or when many users change their locations

(e.g., from residential areas to downtown areas in the morning, and viceversa in the evening, the

so-called “tidal effect”) the network may have more service demanding users in some hybrid cells

rather than in their neighboring cells. To address this problem, we propose to change dynamically

the dedicated frequency band to each hybrid cell based on the number of active MSs in the hybrid

cells.

Whenever in a certain hybrid cell we have an overload and we need to serve more MSs, VBS-

Cluster serving the hybrid cell can ask from all three associated VBSs to dynamically change the

spectrum boundaries. If the associated VBSs have extra room in the other hybrid cells (i.e., hy-

brid cells in the first tier of overloaded hybrid cell), they handshake with each other and decrease

dedicated frequency band of hybrid cells in the first tier and increase the frequency band of the

overloaded hybrid cell (see Fig. 4.6(c)). Note that since we only decrease the frequency band of

the first tier and do not change the frequency band of second tier, only the frequency bands of the

overloaded hybrid cell and its first tier will be changed, and the symmetry of the rest of the network

does not change. Consequently, there is no excessive ICI caused by allocating subbands from first

tier of the overloaded hybrid cell.

In DJP-HM, we consider that the frequency spectrum is partitioned into 3 bands as,

F l =
{
f l1, f

l
2, . . . , f

l
Kl

}
, l = 1, 2, 3, (4.11)
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where f li is the ith subband of the lth band and Ktot = K1 + K2 + K3 is the total number of

subband. Let JHM be the number of hybrid cells, BHM
j =

{
b1j , . . . , b

6
j

} (
1 ≤ j ≤ JHM

)
the set

of neighboring hybrid cells located in the first tier of jth hybrid cell, DHM
j =

{
d1j , d

2
j , d

3
j

}
the set

of associated VBSs in the jth hybrid cell, F l
j the lth band used by jth hybrid cell, and F̄ l

j =
∑
q 6=l

Fq

the sum of bands used by BHM
j . As described in Algorithm 4, in the case of overloaded situation in

jth hybrid cell, the associated VBSs in DHM
j check for available subbands in F̄ l

j and allocate them

to F l
j . In Sect. 4.4 we will explain how this dynamic spectrum allocation can improve the system

performance.

(a) (b) (c)

Figure 4.6: (a) Each cell consists of three sectors (S1, S2, and S3) and neighboring sectors from

different cells form hybrid cells; (b) Each VBS consists of 3 Sector-VBSs each of which serves

the corresponding sector in the cell (each VBS-Cluster is formed of 3 Sector-VBSs from different

neighboring cells); (c) To avoid inter-cluster interference we use different portion of frequency

band in different hybrid cells; we also change the boundaries of frequency sub-bands to address the

unanticipated fluctuations in the number of users and per-user capacity demands.

Although in DJP-HM we do not need to change the cluster size and we do not have to re-

provision the VBS-Clusters, there is an interference leakage from some corners of the hybrid cell

to the neighboring hybrid cells. So, MS signals may interfere with neighboring external RRHs that

use the same set of subbands. Figure 4.6(c) shows some circled areas in which the MS signals

may be interfered with RRHs of non-neighboring hybrid cells. In Sect. 5.4, we will show that this

phenomena decreases the performance of DJP-HM compared to DJP-LM.

4.3.4 Dynamic Joint Processing (Joint DJP-LM and DJP-HM)

Here, we explain how we are able to support both high- and low-mobility MSs. Since functionalities

of both high- and low-mobility approaches are implemented on VMs, we are able to exploit them
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Algorithm 3 DJP-HM

Input: Kr = Number of required subbands to serve the MS, j = index of serving hybrid cell, BHM
j =

Set of neighboring hybrid cells , F l
j = Frequency band used by serving hybrid cell, F̄ l

j = Frequency

band used by BHM
j

Description:

1: if the Kr required subbands is available in F l
j then

2: Set the Kr required subbands to the MS;

3: else

4: Check if there is unused subbands in F̄ l
j ;

5: if yes then

6: Ask BHM
j to allocate subbands from F̄ l

j to F l
j until there is Kr required subband in F l

j

7: Set the Kr required subbands to the MS;

8: end if

9: end if

jointly so as to solve the inter-cluster interference problem. As we explained earlier, we propose

to divide the MSs into two categories: (i) low-mobility and (ii) high-mobility MSs, based on the

their velocity. Then, for low-mobility MSs, we propose to deploy DJP-LM, where we have more

freedom to adjust the clusters size and decrease the inter-cluster interference. For high-mobility

MSs, since DJP-LM leads to frequent variations in cluster size, we propose to deploy DJP-HM.

Hence, our solution is to use both approaches jointly in order to leverage the combined advantages

of both DJP-LM and DJP-HM.

Moreover, it should be mentioned that the number of subbands assigned to each approach can

also be changed based on the number of high- and low-mobility MSs as well as on the traffic

fluctuation in the network. If over the time the number of high- and low-mobility MSs changes in a

region, we can also change the number of associated subbands to each approach so as to match the

mobility fluctuation. It should be mentioned that in both approaches, since each MS is served by a

set of VBSs there is no handover as it is defined in traditional cellular network. This means that each

MS is actively connected to multiple VBSs and even in the re-clustering procedure at least one of

the VBSs remains the same. This is different from the hard handover scheme in traditional cellular

system where the connection between the serving BS and MS is terminated before the connection

between the new BS and the MS is started. So, there is no traditional handover definition and due to

the movement of MS only the set of cooperative VBSs should be changed in a smart way to provide

better performance.
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4.4 Performance Evaluation

We provide here a range of Monte Carlo simulations to evaluate the performance of our solution.

Table 6.3 lists the stimulation parameters used during our experiments. In the simulations, we use

an equally-sized hexagonal cell structure with two tiers of interfering cells, the inter-site distance

D, and cell radius R (as depicted in Fig. 4.8) where 50 MSs are uniformly distributed over each cell

site. To implement the conventional CoMP scheme, we consider the omni-subcarrier clusters of size

3. We compare the metrics between the traditional cellular network (without Inter-Cell Interference

Coordination (ICIC)), Soft FFR [66], Regular CoMP, DJP-LM, and DJP-HM. For DJP-LM, we

consider virtual uni-subcarrier clusters of size ranging in 2 − 4, where the average size is equal to

the cluster size chosen for CoMP, Soft FFR, and DJP-HM (i.e., 3).

Table 4.1: Simulation Parameters.
Parameters Mode/Value

Cellular Layout Hexagonal grid

Channel Model Path Loss and Shadowing

Frequency Reuse Factor 1

Transmission Power Ratio (ρ) 0.8

Cell Radius 500 m

Cluster Size in DJP 2− 4

Channel Bandwidth 10 MHz

FFT size 1024

Number of Occupied Subcarrier 600

Subcarrier Spacing 15 kHz

Interior Radius in Soft FFR 0.6R

Distance Dependent Path Loss 38.88 + 32log(d) dB

Log-normal Shadowing Standard Deviation (σ) 7.5 dB

Threshold Velocity (Vth) 5 m/s

Path Loss Exponent 3.2

Carrier Frequency 2.1 GHz

Number of Antennas (NTX , NRX) (1, 1)

MS Transmit Power 21 dBm

Hysteresis Threshold (thr) 6.2 dB

White Noise Power Density −174 dBm/Hz

MS Antenna Omni-directional

Receiver Processing Zero Forcing

Modulation Scheme OFDMA

For Soft FFR, we consider the structure showed in Fig. 4.7 with clusters of size 3, cell-edge

reuse factor of 1/3, and cell-center radius of 0.6R (which is the optimum cell-center radius for a

cluster of size 3 [67]). In Soft FFR, neighboring cells are divided into clusters of M cells and

the overall system frequency band is partitioned into M sub-bands, where the cell-edge MSs are

allocated based on a frequency reuse factor of 1/M and the cell-center MSs are allowed to share the

sub-bands of cell-edge MSs in the other cells. The spectral efficiency of cell-edge MSs is controlled

by the transmission power ratio (ρ), which is the ratio of the transmission power level of cell-center
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region to the transmission power level of cell-edge region (ρ = Pin/Pout). It should be mentioned

that decreasing the transmission power ratio will lead to an increase in the SINR of cell-edge region

and a decrease in SINR of cell-center region. In our simulations we consider ρ = 0.8 and the

proportional fair scheduling is used to allocate subcarriers to the MSs.

Figure 4.7: Soft-FFR deployment with a cell-edge reuse factor of 1/3.

Figure 4.8: Equally-sized hexagonal cell structure with two tiers of interfering cells, where R is the

Cell Radius, D =
√
3R the Inter-site Distance, and A = 3

√
3

2 R2 the Cell Area.
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4.4.1 Propagation Model

Deterioration of signal quality is commonly assumed to depend upon the distance between the two

antennae, the path(s) taken by the signal, and the environment around the path. We concentrate on

the effects of path loss and shadowing, and employ this propagation model,

Prx = K0 ·
(

d
d0

)−λ
· ψ · Ptx. (4.12)

In (6.1), Prx, Ptx, d, and λ denote received power, transmitted power, propagation distance, and

path-loss exponent, respectively. The parameter d0 indicates a reference distance where the signal

strength is known. The random variable ψ is used to model the slow fading caused by shadowing

and follows a log-normal distribution such that the variable 10 log10 ψ has a zero-mean Gaussian

distribution with standard deviation σ. Parameter K0 is a constant corresponding to the path loss

at distance d0 and depends on carrier frequency, antenna characteristics, propagation environment,

and reference distance. Note that the full advantage of CoMP is achievable when the instantaneous

CSI is available at the receiver. However, the CSI acquisition is practically limited by how fast the

channel conditions are changing. In fast-fading systems only statistic CSI is reasonable to assume,

whereas, in slow-fading systems, instantaneous CSI can be estimated.

4.4.2 Simulation Results

In the first simulation, we compare SINR and SE in terms of the Normalized Distance. The SINR

and Spectral Efficiency (SE) of the ith user operating over the kth subcarrier are defined as,

SINRi (k) =
Pi

∣

∣

∣
g
zf
i (k)hin

i (k)
∣

∣

∣

2

N0∆B+
L
∑

j=1
Pj

∣

∣

∣
g
zf
i (k)hex

j (k)
∣

∣

∣

2
,

SEi = log2(1 + SINRi(k)),

(4.13)

where g
zf
i (k) is the ith row of the equalizer matrix GZF (k), hin

i (k) is the ith column of Hin (k),

hex
j (k) is the jth column of Hex (k), N0 is the white noise power spectral density, and ∆B is

subcarrier spacing. Let d be the distance between a MS and the center of its serving cell as shown

in Fig. 4.8. In Figs. 4.9 and 4.10, the SINR and SE of different schemes are compared for different

Normalized Distances (d/R). Compared with the traditional network, Soft FFR, and regular CoMP,
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our proposed solutions provide a significant gain. For instance, for cell-edge MSs (d/R = 0.9)

compared to regular CoMP, we have 176% and 107% improvement for DJP-LM and DJP-HM,

respectively. This is because we dynamically change the cluster size, which leads the distance

between the external MSs and internal RRHs to be larger and the corresponding channel to have a

smaller norm (
∥∥HDJP

ex

∥∥ <
∥∥HCoMP

ex

∥∥).
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Figure 4.9: Signal-to-Interference-plus-Noise Ratio (SINR) for different Normalized Distances.
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Figure 4.10: Spectral Efficiency (SE) in terms of Normalized Distance.
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In the second simulation, we examine the performance of our solution in terms of outage proba-

bility, which is defined as the probability that a MS’s instantaneous SINR falls below a threshold θ,

i.e., P (outage) = P (SINR < θ) = 1−P (SINR > θ). Figure 6.11 shows the variations of outage

probability in terms of different SINR thresholds. Note that for θ = 3 dB the outage probability for

DJP-LM and DJP-HM are 0.11 and 0.23, respectively, while regular CoMP has the outage prob-

ability of 40%. In the next simulation, we compare the Cumulative Distribution Function (CDF)

concerning the SINR for different schemes. From Fig. 6.12, it is clear that for Soft FFR, 20% of

the MSs have the SINR less than 0 dB. This means that the power of received interference for 20%

of MSs is greater than the power of the received desired signal; whereas in our solution all the MSs

have a SINR greater than 2 dB.
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θ
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Figure 4.11: Outage probability for different thresholds.

Since the interference highly depends on the path loss exponent, in the other experiment we

explored the variation of the average throughput of the system versus path loss exponent for different

schemes. The throughput of the ith MS is also obtained based on SINR of the MS as,

Ti =Wi log2(1 + SINRi), (4.14)

where Wi is the bandwidth of subcarriers assigned to the MS. Then, the cell throughput is the total
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Figure 4.12: Cumulative Distribution Function (CDF) as a function of SINR.

throughput of all the MSs in the cell,

Tcell =
N∑
i=1

Ti, (4.15)

where N is the total number of MSs. Moreover, to show the performance of our joint solution

(DJP) integrating DJP-LM and DJP-HM, we consider 2 scenarios. In the first scenario 30% of the

MSs in each cell are high mobility and 70% of them are low mobility, while in the second scenario

70% of the MSs in each cell are high mobility and 30% of them are low mobility. As shown in

Fig. 6.13, for an urban area where the average pass loss exponent is 3.1, DJP-LM and DJP-HM

have an average throughput of 24.81 and 21.77 Mbps respectively, whereas for regular CoMP the

average throughput is equal to 15.09 Mbps. As expected, the performance of our joint solution is

bounded between the performance of DJP-HM and DJP-LM. Note that the first scenario with higher

number of low-mobility MSs has a better performance than the second scenario.

In the other experiment we explore the variation of Average System Spectral Efficiency (ASSE)

for different SNR. ASSE is measured in bps/Hz/cell and is a measure of information rate that can

be transmitted over a given bandwidth in a defined geographic area. As it is shown in Fig. 6.14,

for low SNR values, ASSE for all schemes are very close to each other, but when SNR increases

our proposed solution outperform the other schemes. For instance, for SNR= 20 dB, DJP-LM and
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Figure 4.13: Average Throughput for different path loss exponents.

DJP-HM have the ASSE of 2.55 and 2.11, respectively, while for regular CoMP ASSE is equal to

1.58.
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Figure 4.14: Average System Spectral Efficiency (ASSE) as a function of SNR.

In Fig. 6.15, BER performance of different schemes is investigated for different Normalized

Distances. Due to the lower interference, our solution provides better performance than the other

schemes. For instance, for cell-edge MSs (d/R = 0.9), the BER for DJP-LM and DJP-HM are

0.034 and 0.049, respectively, while for CoMP is 0.061.
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Figure 4.15: BER for different Normalized Distances.

In order to show the performance of imperfect CSI due to the fast-fading loss, we model the

noisy channel estimation as in [68],

Ĥ = H+ eΩ, (4.16)

where eΩ is the estimation error that is uncorrelated with H; the entries of Ω are normally dis-

tributed (with zero mean and unit variance), and e is the measure of channel estimation accuracy.

Figure 6.16 shows the average BER of different schemes in terms of different channel uncertainties.

As expected, by increasing the channel uncertainty the BER of CoMP, DJP-LM, and DJP-HM will

increase and converge to each other.

Re-clustering (add/drop sessions) highly depends on the MS velocity and cell radius. Decreasing

the cell radius or increasing the MS velocity will increase the number of re-clustering procedures.

We have provided a table on this phenomenon and showed the number of re-clustering procedures

for different cell radii and MS velocities. To show the performance of DJP-LM in terms of number of

add/drop sessions, we consider Random Waypoint and Gauss-Markov [59] mobility models which

are studied in Chapter 3.4. Table 4.2 shows the number of add/drop sessions for different cell radii,

velocities, and methods where the simulation time is one hour. For high-mobility MSs and small

cells, DJP-LM is associated with a large number of add/drop sessions, which may decrease the

system performance, while DJP-HM is associated with lower number of add/drop sessions.
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Figure 4.16: Comparison of Average BER in terms of channel uncertainty.

Table 4.2: Re-clustering procedures per subcarrier per cell for different cell radii, velocities, and

methods.

Method and Velocity
Cell Radius = 100 m Cell Radius = 300 m Cell Radius = 600 m

DJP-LM DJP-HM DJP-LM DJP-HM DJP-LM DJP-HM

Random Waypoint
371 107 136 28 72 15

smin = 5m/s , smax = 10m/s

654 187 239 51 125 29
smin = 10m/s , smax = 20m/s

1044 293 371 82 198 46
smin = 20m/s , smax = 40m/s

Gauss-Markov
245 59 74 14 37 8

s̄ = 7.5m/s

501 76 167 21 53 11
s̄ = 15m/s

629 230 197 43 151 24
s̄ = 30m/s

In the next experiment, we examine the performance of our solution in terms of Energy Ef-

ficiency (EE); we consider a metric and a power consumption model as described below. EE is

defined as the ratio of cell throughput to the cell power consumption and is measured in bit-per-

Joule. Since in C-RAN the power consumption of the system is lower than in distributed cellular

networks [20] and DJP improves the spectral efficiency (and consequently throughput), we expect

to have better EE. In order to assess the potential of DJP in terms of EE, we use the CoMP power

model in the uplink as specified in [69], such that,

PT = NmsPms + Pbh, (4.17)
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where Nms is the number of MSs in the cluster, Pms is the transmit power of each MS, and Pbh is

the power required for backhauling. We also use the backhaul link power model as given in [70],

Pbh = Polt +
Mrrh∑
j=1

P j
tl, (4.18)

where Polt is Optical Line Terminal (OLT) power consumption, Ptl is the transport link power

consumption, and Mrrh is the number of RRHs in the cluster. The typical values are Polt = 20W

and Ptl = 3.85W. Then, the cell’s EE is defined as,

ηEE = MrrhTcell
PT

. (4.19)

Figure 4.17 compares the ηEE of different schemes for different environments (different path

loss exponents). As expected, DJP shows better EE than the other schemes. For instance, in urban

areas with λ = 3.1, ηEE for DJP-LM and DJP-HM are 249 and 202 kbits/J, respectively, while for

CoMP is 153 Kbits/J.
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Figure 4.17: Performance of Energy Efficiency (EE) of different methods in different environments

vs. varying path loss exponents.

As we discussed in Sect. 4.3.3, to address the fluctuation in capacity demand we proposed to

dynamically change the frequency band boundaries. To examine this characteristic of DJP-HM, we

simulated the following simple scenario. We assume a set of cells have equal number of MSs (in
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Figure 4.18: Comparison of Blocking Probability between traditional cellular system and DJP-HM

for different number of MSs.

our simulation the number of MSs per cell varies from 40 to 200), each cell have 600 subcarrier

to serve the MSs, and in each cell an active MSs needs 1 Resource Block (12 subcarriers) to be

served. We also assume that we have 2 kind of cells: 1) the cells in which the probability of MSs to

be active is 1/4 and 2) the cells in which the probability of MSs to be active is 3/4. This indicates

that, because of some emergency reasons, we have more active MSs in some region by 3 times.

Figure 4.18 compares the blocking probability when the number of users per cell increases. As it is

shown, the blocking probability for DJP-HM is less than the traditional network and we are able to

serve more users.

4.5 Discussion

We presented a solution that leverages the centralized nature of C-RAN to decrease the inter-cluster

interference in CoMP. We discussed two different approaches, DJP-LM and DJP-HM, for low- and

high-mobility MSs, respectively: in the former we define uni-subcarrier clusters whose sizes are

changed based on the position of the MSs. In the latter each cell is divided into three fixed-size

sectors and different neighboring sectors of various cells form the hybrid cells; to avoid inter-cluster

interference, neighboring hybrid cells use different sets of subcarriers. Both approaches can coexist

so to leverage their complementary advantages. Monte Carlo simulations show that DJP-LM and
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DJP-HM have an average SINR of 7.24 and 6.15 dB, respectively, both higher than in conventional

CoMP (4.72 dB).
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Chapter 5

Coordinated Fractional Frequency Reuse in C-RAN

5.1 Overview

Fractional Frequency Reuse (FFR) and Coordinated MultiPoint (CoMP) processing are two major

interference management techniques and are expected to play a fundamental role in achieving the

high data-rate requirement of 5G systems. However, both FFR and CoMP have their own drawbacks

over the current D-RAN. This is because the current D-RAN architecture is over 40 years old and

was not originally designed for high spectral efficiency performance, but for coverage and mobility

consideration. On the other hand, the interference cancellation in the uplink is more challenging

than the downlink for two reasons. First, in the uplink the transmission antennas are omnidirectional

and we can not direct the signal to the desired point. Second, in the uplink there is no inter-MS

connection between the MSs and they cannot exchange data to precode the signals and form the

beams before transmission.

There are two main types of FFR deployments presented in the literature, namely Strict FFR

and Soft FFR [71]. Strict FFR, as shown in Fig. 5.1(a), is a modification of the traditional frequency

reuse used extensively in multi-cell networks where a low frequency reuse factor is chosen for the

cell-edge MSs while a larger frequency reuse factor is used for the cell-center MSs. Although Strict

FFR decreases the ICI, it results in poor overall frequency reuse. To alleviate this problem, Soft

FFR uses the same cell-edge bandwidth partitioning strategy, but the cell-center MSs are allowed

to use the sub-band frequencies allocated to the cell-edge MSs of the other cells (see Fig. 5.1(b)).

This strategy leads to a higher availability of spectrum resources; nevertheless, it generates more

interference to both cell-center and cell-edge MSs than Strict FFR [71]. Last, but not least, partition

sizes in FFR schemes are not adaptive to dynamic changes in capacity demand, which makes FFR

not able to handle the unanticipated fluctuations in the number of users. On the other hand, as we

discussed in Chapter 6, CoMP has the problem of high inter-cluster interference, delay, complexity,
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and scarce inter-BS connectivity.

(a) (b)

Figure 5.1: (a) Strict-FFR and (b) Soft-FFR deployments with cell-edge reuse factor of 1/3.

In this chapter, we leverage the advantages of FFR, CoMP, and C-RAN and propose a novel

clustering and spectrum sharing scheme for uplink interference-cancellation to increase the system

spectral efficiency and also decrease both the intra- and inter-cluster interference. In the proposed

solution, for each cell we define an Interference Region (IR); based on the IR of its neighboring

cells, we then determine the Cell-Center Region (CCR). Since the cell-center MSs experience high

level of SINR, we propose to apply CoMP processing only to cell-edge MSs, which leads to a

decrease in the total complexity and latency. This way, unlike the traditional OFDMA systems, the

performance of the system in all the cell-edge regions relies on the cooperation of different VBSs,

which avoids handover interruptions. Moreover, in order to deal with inter-cluster interference,

which is not addressed in traditional CoMP, we propose to exploit the cooperation of different

VBSs for different cell-edge regions. We define the clusters of size 2 and 3 depending on the IR

intersection of neighboring cells; we partition the frequency band into 13 non-overlapping sub-

bands, and allocate the frequency bands to the MSs based on the their position. In our solution, we

also dynamically change the boundaries of sub-bands and optimize their widths in order to address

the unanticipated fluctuations in the number of users and per-user capacity demands.

5.2 Challenges of Fractional Frequency Reuse

FFR has been proposed as a solution to find a tradeoff between interference reduction and system

spectral efficiency. In Strict FFR, the overall system frequency band is partitioned in such a way



64

that, in a cluster of M cells, the MSs in the CCR are allocated a common sub-band of frequencies

while the rest of the frequencies are equally partitioned intoM sub-bands and assigned separately to

Cell-Edge Regions (CERs) of the cluster. Figure 5.1(a) shows a cellular network using a Strict-FFR

deployment where the cell-edge reuse factor is equal to 1/3. Since the cell-edge MSs use different

frequency sub-bands than the cell-center MSs, the interference is reduced in both CCR and CER.

With Ktot defining the total number of available subcarriers, the number of subcarriers allocated to

the cell-center MSs Kcenter and cell-edge MSs Kedge is given in [71] as,

Kcenter =
⌈
Ktot

(
rcenter

r

)2⌉
,

Kedge = b(Ktot −Kcenter) /Mc ,
(5.1)

where rcenter and r are the CCR and cell radii, respectively.

Although Strict FFR increases the SINR, only two sub-bands are allocated per cell in a cluster,

which still leads to poor system spectral efficiency. In order to alleviate this problem, Soft FFR has

been proposed. As shown in Fig. 5.1(b), in Soft FFR the frequency partitioning is the same as in

its Strict counterpart, but the cell-center MSs are allowed to share sub-bands of CERs in the other

cells. In Soft FFR, the allocation of subcarriers for cell-center MSs is the same as in Strict FFR,

whereas the number of subcarriers allocated to the cell-edge MSs are given respectively as [71],

Kedge = min (dKtot/Me ,Ktot −Kcenter) , (5.2)

And yet, while Soft FFR increases the system spectral efficiency, it results in more interference

to both cell-edge and cell-center MSs, leading to a high service outage probability. Moreover, in

both Strict FFR and Soft FFR, the partition sizes are fixed and cannot adapt dynamically to the

demand changes per region. This means that, as there is no coordination among the neighboring

cells, changing the partition sizes in one cell may cause intensive interference in the other cells.

To solve the aforementioned problems and improve the system performance, we propose to use

both CoMP and FFR under the C-RAN architecture.
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Figure 5.2: The Interference Region (IR) associated with cell #3 (gray region) includes the cell itself

as well as the neighboring Cell-Edge Regions (CERs).

5.3 Coordinated Fractional Frequency Reuse in the Cloud (Cloud-CFFR)

In our Cloud-CFFR solution, we introduce a new clustering approach by exploiting the advantages

of both FFR and CoMP as well as the capabilities of C-RAN to improve the overall system perfor-

mance along different performance dimensions. Although the idea of Cloud-CFFR can be applied

to any cell deployment, for simplicity we use regular hexagonal grid deployment (Fig. 5.2). We

define an Interference Region (IR) for each cell as a region in which if MSs from other cells moved

in, they could produce an “intense” interference at the BS serving the cell. Figure 5.2 shows three

neighboring cells and the IR associated with cell #3 (in gray), which includes the cell itself as well

as its neighboring Cell-Edge Regions (CERs). Here, both MS #1 and #2 are cell-edge MSs; in a

system with a frequency reuse factor equal to 1, they may have destructive effects on the perfor-

mance of their neighboring cells. Hence, their interference on the other cells needs to be canceled

or mitigated to improve the overall SINR. Although MS #2 is a cell-edge MS, its interference at

RRH #3 is low. This is because MS #2 is far from RRH #3 and, due to the path loss, the power of

received signal (from MS #2) in the uplink at RRH #3 is low; hence, there is no need for VBS #2

and #3 to cooperate with each other in order to cancel the interference caused by MS #2 at RRH #3.

Conversely, since MS #1 is in the IR of cell #3, there may be an intense interference from MS #1 to

RRH #3; thus, coordination between VBS #1 and #3 is needed to cancel this interference.

In our solution, like in the traditional FFR, we partition the frequency band into 2 sub-bands,



66

Figure 5.3: Intersections of serving cell’s Interference Region (IR) with its neighboring cells’ IRs.

namely Fc and Fe, for cell-center and cell-edge regions, respectively. Then, as shown in Fig. 5.3,

we further divide the cell-edge spectrum (Fe) into 12 portions, each allocated to a certain cluster of

VBSs to serve a certain region of cell edge. So, in each cell all the frequency band is used by the

MSs and the frequency reuse factor of 1 is achieved.

Unlike in the traditional CoMP – in which the positions of MSs in the cell are not taken into

account and all the BSs within a cluster cooperate with each other by exchanging CSI and MS

signals – in our solution we divide the VBSs into virtual edge clusters based on the MS positions

and minimize the number of coordinated VBSs so to bound the overall complexity and the delay

associated with multiple-site reception/transmission as well as with CSI acquisition. In fact, we

distinguish among the MSs based on their positions. We also leverage the C-RAN architecture and

virtualization technology in such a way as to associate each VBS with different virtual edge clusters;

this means that, for different areas of CER, each VBS coordinates with different VBSs in different

virtual clusters, which increases the overall system performance. This way, only VBSs which have

intensive interference from each other cooperate with each other to cancel the ICI.

Figure 5.3 shows the intersections of IRs of 7 hexagonal neighboring cells. We define CCR

as the area where there is no intersection between the IR of the serving cell and the IRs of its

neighboring cells (central and pink in the figure). If we define the IR of the ith cell as IR(i) then
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its CCR is defined as relative complement of union of the IRs of its neighbouring cells with respect

to IR(i),

CCR(i) = IR(i)\ ⋃
j∈N (i)

IR(j), (5.3)

where N (i) is the set of neighbouring cells in the first tier of the ith cell.

Since the CCR of each cell is out of the IRs of its neighboring cells, the interference from

this region to the neighboring RRHs is not intense; hence, applying CoMP in this region would be

highly inefficient due to the complexity, delay, and bandwidth usage to compute and exchange the

CSI. Consequently, in our solution we do not apply computationally-expensive CoMP in CCR and

the system performance in this region relies on simple single transmitter and receiver. To allocate

the subcarriers to the CCR, we follow the strategy expressed in (5.1), as the number of allocated

subcarriers is proportional to the CCR,

KCCR =
⌈
Ktot

(
ACCR
Acell

)⌉
, (5.4)

where Ktot is the total number of subcarriers, ACCR is the area of CCR, and Acell is the area of the

cell site.

The system operation in cell-edge regions relies on the cooperation of different VBSs for different

regions. Since we operate under the C-RAN architecture and all the VBSs are co-located in a

common place (at the server, enclosure, or rack level in a datacenter), it is possible for each VBS

to cooperate with all its neighboring VBSs and share the CSI as well as MS signals at Gbps. We

define the CER of the ith cell as relative complement of CCR(i) with respect to IR(i),

CER(i) = IR(i)\CCR(i), (5.5)

where, as shown in Fig. 5.3, CER(i) consists of different intersection regions each of which is the

intersection of IR(i) with the IR of different neighbouring cells. We propose to divide the VBSs

into clusters based on the intersections of their corresponding IRs in CER and apply CoMP within

each cluster so to cancel the intra-cluster interference. This means that, in the cell edge and in each

intersection region, the system performs under the cooperation of associated VBSs. For example, in

the IR intersection of cells #1, #2, and #3, distinguished by bold lines on the right side of Fig. 5.3,
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the system performs under the cooperation of VBSs #1, #2, and #3. This is because MSs located

in this (dark blue) region and served by each of these three VBSs #1, #2, and #3 induce an intense

interference on the other two VBSs (non-serving VBSs). For instance, in Fig. 5.3, MS #1 (which is

served by VBS #1) is inside the IR of cells #2 and #3 and may cause poor system performance to

VBSs #2 and #3; however, since MS #1 is outside the IR of the other neighboring cells and is far

from their corresponding RRHs, due to the path loss, it does not induce a large interference on their

VBSs.

To generalize from this example, we can state that in order to improve the SINR of received

signal by each RRH, we need to cancel the interference from those MSs located in its corresponding

IR. This requires cooperation of each VBS with all its neighboring VBSs and in different clusters,

which is only achievable in C-RAN architecture. Similarly, with reference to the aforementioned

example for MS #1, in the IR intersection of cells #1 and #6, the gray area distinguished by bold

line on the left side of Fig. 5.3, only VBSs #1 and #6 need to collaborate with each other. In this

way, each VBS is simultaneously associated with 12 different clusters to serve different regions of

cell edge. Similar to (5.4) where the allocated subcarriers to CCR is proportional to the area of

CCR, the number of allocated subcarriers to each edge-cluster region is given by,

KCER(p) =
⌊
Ktot

(
ACER(p)
M(p)Acell

)⌋
, (5.6)

where KCER(p) is the number of allocated subcarriers to the pth cluster (1 < p < 12), ACER(p) is

the area of the edge-cluster region, and M(p) is the cluster size.

As in our solution we only apply CoMP to CERs and the average cluster size is 2.5, the com-

plexity and delay is reduced compared to traditional CoMP. Moreover, as depicted in Fig. 5.4, in

our solution the MSs using the same frequency sub-bands and served by different clusters are so

far from each other that each cluster induces a very low level of interference on the corresponding

neighboring cluster. The average distance between the MSs using the same subcarrier and located

in the different clusters are 3 times of cell radius, which is almost equal to the reuse distance of a

cellular system with frequency-reuse factor of 1/3. Since in our solution CoMP cancels the intense

intra-cluster interference and VBSs experience a small inter-cluster interference (due to the long

average inter-cluster distance), we achieve a low level of interference on the received uplink signal.
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Figure 5.4: The average distance between the MSs using the same subcarrier and located in the

different clusters are 3 times of cell radius.

The SINR of received signals at ith RRH can be expressed as,

SINRi
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(5.7)

where Pi is the transmitted power of the MS located in the ith cell, C is the set of cells in the serving

cluster, and I is the set of interfering external cells. hini,j and hexi,j are the (i, j)th components of

Hin and Hex, respectively. g
zf
i is the ith row of the equalizer matrix GZF , hin

i and hex
i are the ith

column of Hin and Hex, respectively, and σ2 is the power of the noise. βi is the location indicator

and is equal to 1 when the MS is located in the CCR of ith cell and equal to 0 when the MS is

located in the CER. We will analyse the SINR and compare it with different methods in Sect. 5.4.

Dynamic Frequency Sub-band: In Cloud-CFFR, we are also able to change dynamically the

dedicated sub-band to each region. This leads to higher capacity and multiplexing gains without

deploying additional antennae at the RRHs. In traditional FFR systems, due to the static spectrum

resources, we are not able to handle unanticipated fluctuations in the number of users and per-

user capacity demands. However, in some scenarios like natural or man-made disasters or due to
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the temporal/geographical fluctuations of MSs (the so-called tidal effect), the network may have

more service demanding users in some regions. To address this problem, we propose to optimize

the dedicated frequency sub-band to each cluster based on the number of active MSs in the clusters.

Whenever in a certain cluster we have an overload and need to serve more MSs, the associated VBSs

communicate with each other and dynamically change the sub-band boundaries so to increase the

frequency sub-band for the overloaded region. If the associated VBSs have extra room in the other

clusters and regions, they negotiate with each other and decrease the dedicated frequency sub-band

of the other regions and increase the frequency sub-band of the overloaded region.

In the case of extra demand in the CCR of the jth cell, we allocate the unused subcarriers of

edge clusters to CCR. Let Cpj (k) be the subset of VBSs (including the jth VBS) serving the pth edge

cluster over the kth subcarrier (1 < k < KCER(p)) in CER of the jth cell and Cp
j̄
(k) = Cpj (k)\j.

To avoid the excessive ICI caused by allocating the kth subcarrier of Cpj to CCR, the VBSs in Cp
j̄

are not allowed to use the kth subcarrier in the CER. Conversely, in the case of extra demand in

some edge clusters in the CER of the jth cell, we allocate the unused subcarriers of CCR and the

other edge clusters to the overloaded edge cluster. To avoid the excessive ICI caused by allocating

the kth subcarrier of the qth edge cluster to the overloaded edge cluster (say the lth), the VBSs in

Cqj (k)\Clj are not allowed to use the kth subcarrier in the CER. However, in the case of allocating

unused subcarriers of CCR to overloaded edge clusters, there is no excessive ICI to the performance

of C̄qj and all the associated VBSs with the overloaded edge cluster can use the subcarriers from the

associated CCRs. Algorithm 4 describes the dynamic spectrum feature of Cloud-CFFR.

Handover Scheme: In the Fourth Generation (4G) wireless networks, only Hard Hand-Over

(HHO) (in which the connection between the serving BS and MS is terminated before the connection

between the new BS and the MS is started) is defined to support MSs’ mobility. As studied in [72],

the service disruption time caused by HHO can be 250 ms or more, which is intolerable for some

real-time services like Voice over IP (VoIP). On the other hand, with small cells, MSs perform

handover more frequently leading to a decrease in the perceived Quality of Service (QoS). The

degradation of QoS is a consequence of short interruption in communication during HHO due to

redundant overhead generated for controlling and managing handovers. In our solution, cell-edge

MSs are actively connected to 2 or 3 VBSs simultaneously so they do not have to terminate their

connection with a serving VBS when they are moving from one cell to the neighboring cells. Hence,
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Algorithm 4 Dynamic sub-band allocation in Cloud-CFFR

Input: Kr = number of required subcarriers to serve the MS, C0j = VBS associated to the jth cell,

Cpj = subset of VBSs serving the pth virtual edge cluster, Ka = number of available subcarriers at

the serving cluster, β = location indicator of the MS, F = set of all subcarriers, Fp
j = sub-band

subcarriers used by the pth virtual edge cluster.

Description:

1: F̄p
j = F\Fp

j ;

2: Up
j = set of unused subcarriers in the set F̄p

j ;

3: Cj =
12∪
p=0
Cpj = set of all associated clusters to the jth cell;

4: if Ka > Kr then

5: Set Kr subcarriers to the MS;

6: else if β = 1 and

∣∣∣U0
j

∣∣∣ ≥ (Kr −Ka) then

7: Ask Cj to allocate (Kr −Ka) subcarriers from U0
j to F0

j ;

8: Do not use the donated subcarriers in the CER of donor cells;

9: else if β = 0 and

∣∣∣U l
j

∣∣∣ ≥ (Kr −Ka) then

10: Ask Cj to allocate (Kr −Ka) subcarriers from U l
j to F l

j ;

11: Do not use the donated subcarriers in the CER of the set Cqj \Clj ;
12: end if

even with small cells and in a high-mobility scenario, MSs do not experience any service disruption

as each MS operates under cooperation of multiple VBSs within a cluster.

5.4 Performance Evaluation

In this section, we analyze the behavior of our proposed Cloud-CFFR solution in different regions

and provide a range of simulations to evaluate its performance.

5.4.1 Setting

Table 6.3 lists the simulation parameters used during our experiments. In the simulations, we use

an equally-sized hexagonal-cell structure with two tiers of interfering cells, the inter-site distance

D, and cell radius r (as depicted in Fig. 5.5) where 50 MSs are uniformly distributed over each cell

site and d is the distance between the MS and its serving RRH. To implement conventional CoMP,

we consider a cluster of size 3. To compare Cloud-CFFR with Strict and Soft FFR, we consider

the structures showed in Figs. 5.1(a) and (b) with cell-edge reuse factor of 1/3, cluster size of 3

(M = 3), and CCR radius equal to 0.7r (which is the optimum CCR radius for M = 3 [73]).

In Soft FFR, the spectral efficiency of cell-edge MSs is controlled by the transmission power ratio
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(ρ), which is the ratio of the transmission power level of CCR to the transmission power level of

CER (i.e., ρ = Pc/Pe). It should be mentioned that decreasing the transmission power ratio will

lead to an increase in the SINR of CER and a decrease in SINR of CCR. In our simulations, we

consider ρ = 0.8 and use proportional fair scheduling to allocate subcarrier to the MSs. Also, in

order to have the same CCR for Cloud-CFFR, we consider Ri = 1.3r, as illustrated in Fig. 5.5. In

the simulations, we compare performance metrics among the traditional cellular network (without

ICIC), CoMP, Strict FFR, Soft FFR, and Cloud-CFFR. Although the performance of the Cloud-

CFFR can be improved by applying the power control schemes, to show the full potential of Cloud-

CFFR compared to the other methods we do not use any kind of power control schemes and the MS

transmission power is fixed to 21 dBm.

Table 5.1: Simulation parameters.
Parameters Mode/Value

Cellular Layout Hexagonal grid, 19-cell sites

Channel Model Path Loss and Shadowing

Transmission Power Ratio (ρ) for Soft FFR 0.8

Cell Radius 500 m

FFT size 1024

Channel Bandwidth (∆B) 10 MHz

Number of Occupied Subcarriers 600

Subcarrier Spacing 15 kHz

CCR Radius for Soft FFR and Strict FFR 0.7r

IR Radius 1.3r

Distance-dependent Path Loss 38.88 + 32log(d) dB

MS Transmit Power 25 dBm

Log-normal Shadowing Standard Deviation (σ) 7.5 dB

Path Loss Exponent 3.2

Carrier Frequency 2.1 GHz

Number of Antennae (NTX , NRX) (1, 1)

White Noise Power Density −190 dBm/Hz

MS Antenna Omni-directional

Receiver Processing for CoMP Zero Forcing (ZF)

Modulation Scheme OFDMA

With the propagation model defined in Chapter 6 and based on the system model, the SINR of
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Figure 5.5: Equally sized hexagonal cell structures where r is the cell radius, D =
√
3r is the

inter-site distance, Ri is the IR radius, and A = 3
√
3

2 r2 is the cell area.

received signals at ith RRH for different methods can be expressed as,
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(5.8)

According to (5.8) and (5.7), here, we explain how Cloud-CFFR increases the overall throughput

with respect to the other methods.

Compared to the Soft FFR, since

∣∣∣hini,j
∣∣∣ in Cloud-CFFR is smaller (due to the higher path loss)

than the one in Soft FFR we expect to have a better SINR for cell-center MS (βi = 1). For

cell-edge MS (βi = 0), since there is no intra-cluster interference in Cloud-CFFR, we also ex-

pect to have a better performance than Soft FFR. Compared to the Strict FFR, the performance is

the same for cell-center MSs, but SINR for cell-edge MSs in Cloud-CFFR is less than the one in
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Strict FFR. This is because of the fact that in Strict FFR the cell edge reuse factor is 1/3 and the

number of interfering cells in Strict FFR is less than Cloud-CFFR (|IStrictFFR| < |ICloud−FFR|).

However, the number of available subcarriers per cell in Cloud-CFFR is 1.5 times more than the

one in Strict FFR so that we expect to have more overall throughput with Cloud-CFFR (we will

discuss about it through the simulations). Also, compared to CoMP, since the distance between

the external MSs and internal RRHs is increased, the corresponding channel matrix in Cloud-

CFFR has a smaller norm (
∥∥HCloud−CFFR

ex

∥∥2
2
<

∥∥HCoMP
ex

∥∥2
2
) which results to have a better per-

formance in terms of both SINR and throughput. Moreover, the complexity of Cloud-CFFR is

much lower than CoMP. The complexity of CoMP algorithm depends on the numbers of coop-

erative RRHs (M ), associated MSs (N ), and subcarriers (kc). For instance, ZF receiver has a

computational complexity of O
(
kcM

3N3
)

[74]. Since in CoMP the interference cancelation is

applied to all the subcarriers (kc = Ktot), the system has an overall computational complexity of

O
(
KtotM

3N3
)
. However, in Cloud-CFFR the average cluster size is 2.5 (M = N = 2.5) and ZF

only is applied to the CER so that kc = 0.5Ktot which leads to have less computational complexity

(OCloud−CFFR = 0.22OCoMP).

5.4.2 Simulation Results

To test and validate the aforementioned statements, in the first simulation, we compare the SINR in

terms of Normalized Distance. As it is shown in Fig. 5.6, Cloud-CFFR outperforms both CoMP and

Soft FFR in CER; however, Strict FFR has a greater SINR in CER. This is because Strict FFR uses

a frequency reuse factor of 1/3 in CER and, according to (5.1) (for rcenter = 0.7r), only use 66%

of the frequency band. However, as we show next, the overall throughput of Strict FFR is less than

that of Cloud-CFFR. Since the interference highly depends on path loss exponent, we also explore

the variation of the average throughput of each cell versus path loss exponent for different schemes.

The throughput of each cell is given by,

Rcell =
k0
Ktot

∆B log2 (1 + SINR) , (5.9)
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Figure 5.6: SINR for different Normalized Distances (d/r).

where k0 and Ktot are the numbers of available subcarriers per cell and of total subcarriers, respec-

tively, and ∆B is the channel bandwidth. As shown in Fig. 5.7, for an urban area where the average

path loss exponent is 3.5, Cloud-CFFR has an average throughput of 28.43Mbps, whereas for Strict

FFR, Soft FFR, and CoMP the average throughput is 19.78, 18.92, and 24.26, respectively. As it is

clear from Fig. 5.7, although Strict FFR has a better SINR in CER, its overall throughput is less than

that of Cloud-CFFR. This is because Cloud-CFFR use all of the spectrum (k0 = Ktot), while Strict

FFR can only use a portion of it (k0 = 0.66Ktot). We also examine the performance of our solution

in terms of outage probability, which is the probability that a MS’s instantaneous SINR falls bellow

a certain threshold θ,

P (outage) = P (SINR < θ) = 1− P (SINR > θ) , (5.10)

Figure 5.8 shows the variation of the outage probability in terms of different SINR thresholds.

We also compare the Cumulative Distribution Function (CDF) concerning the SINR for different

schemes; it is clear from Fig. 5.9 that for traditional network, Soft FFR, and CoMP, 20% of the MSs

experience a SINR less than 0 dB. This means that the power of the received interference for 20%

of MSs is greater than the power of received desired signal. However, in our solution all the MSs

experience a SINR greater than 2.33 dB.
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Figure 5.7: Average Throughput for different Pass Loss Exponent λ.
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Figure 5.8: Outage Probability for different thresholds in dB.

In Fig. 5.10, BER performance of different schemes is investigated for CER (0.7 < d/r < 1).

Due to the lower interference and higher SINR value, Cloud-CFFR provides better performance

than CoMP and Soft FFR. For instance, for cell-edge MSs (d/r = 0.9), the BER for Cloud-CFFR

is 0.023, while for CoMP and Soft FFR is 0.054 and 0.071, respectively. It should be mentioned

that due to the frequency reuse factor equal to 1/3 for cell-edge MSs, Strict FFR has better BER than

Cloud-CFFR. However, as we discussed earlier and since the frequency reuse factor in Cloud-CFFR

is equal to 1, the overall throughput of Cloud-CFFR is higher than that of Strict FFR.
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Figure 5.9: CDF as a function of SINR.

x y z x y z { x y | x y | { x y } x y } { ~xx y x �x y x �x y x �x y x |x y ~x y ~ �

� � � � � � � � � � � � � � � � � � � � � � �
��� � � � � � � � � � � �� � � � � � �� �   ¡� � � � � � � � �� � � � � ¢ � � � �

Figure 5.10: BER for different Normalized Distances.

Figure 5.11 shows the average BER of different schemes in terms of different channel uncertain-

ties. As expected, by increasing the channel uncertainties, the performance of CoMP and Cloud-

CFFR for cell-edge MSs decreases. This is because, the performance of Cloud-CFFR (in CER)

and CoMP depends on the accuracy of CSI estimation, and with an imperfect CSI the intra-cluster

interference cancelation cannot be perfect. However, as shown in Fig. 5.11, even with e = 0.2

Cloud-CFFR still shows great improvement over CoMP and Soft FFR.

In order to assess the potential of Cloud-CFFR in terms of energy efficiency, we use the CoMP
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Figure 5.11: Comparison of Average BER in terms of channel uncertainty.
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Figure 5.12: Performance of Energy Efficiency (EE) of different methods in different environments

(different path loss exponents).

power model in the uplink, as specified in Chapter 6. Figure 5.12 compares the ηEE of different

schemes for different environments (different path loss exponents). As expected Cloud-CFFR has

better EE than the other schemes. For instance, in urban areas with λ = 3.5, ηEE for Cloud-CFFR

is 192.8 Kbits/J, while for CoMP and Strict FFR is 160.4 and 131.9, respectively.

As discussed in Sect. 5.3, to address the fluctuation in capacity demand, we propose to change

dynamically the frequency sub-band boundaries. To examine this characteristic of Cloud-CFFR, we
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Figure 5.13: Comparison of Blocking Probability for different number of MSs.

simulated the following simple scenario; let us assume that a set of cells have an equal number of

MSs (in our simulation the number of MSs per cell varies from 50 to 200), each cell has 50 resource

blocks to serve the MSs, and in each cell an active MSs needs 1 resource block to be served. We also

assume that we have three types of cells: 1) cells where the probability of cell-center and cell-edge

MSs to be active is 1/2 (i.e., density of active MSs in CER and CCR is equal), 2) cells where the

the probability of cell-center MSs to be active is 1/4 while the probability of cell-edge MSs to be

active is 3/4 (i.e., the density of active MSs in CER is greater than CCR), and 3) cells where the the

probability of cell-center MSs to be active is 3/4 while the probability of cell-edge MSs to be active

is 1/4 (i.e., the density of active MSs in CCR is greater than CER). Each cell can be any one of the

three aforementioned types with equal probability. Figure 5.13 compares the blocking probability

when the number of MSs per cell increases; as it is shown, the blocking probability for Cloud-CFFR

is less than the traditional schemes and we are able to serve more active MSs.

5.5 Discussion

In the context of C-RAN, we proposed and validated a novel solution, named Coordinated Fractional

Frequency Reuse in the Cloud (Cloud-CFFR). Our innovative cellular-uplink solution mitigates the

inter-cluster interference and decreases complexity and delay while increasing the overall system

spectral efficiency. We proposed to apply CoMP only to cell-edge MSs and exploit the cooperation
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of different VBSs for different cell-edge regions. Moreover, to address the unanticipated change in

capacity demand, Cloud-CFFR dynamically changes the sub-band boundaries based on the number

of active users in the clusters. Simulation results confirmed the validity of our analysis and showed

the benefits of this novel uplink solution. For instance, in the urban area Cloud-CFFR outperforms

competing schemes such as Strict FFR, Soft FFR, and CoMP in the average throughput by 45%,

52%, and 20%, respectively.
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Chapter 6

Demand-Aware Resource Allocation for High Energy Efficiency and

Resource Utilization in C-RAN

6.1 Overview

At the stage of network planning, cell size and capacity are usually determined based on the estima-

tion of peak traffic load. However, due to the tidal effect, there is no fixed cell size and transmission

power that optimize the overall power consumption of the network. This means that the use of

small cells is quite efficient in terms of power consumption as well as utilization of spectrum and

computing resources when the capacity demand is high and evenly distributed in space; however, it

becomes less so when the data traffic is low and/or uneven due to the static resource provisioning

and fixed BS power consumptions. This is because the current cellular architecture is over 40 years

old and was not originally designed for a high energy and spectral efficiency performance, but for

coverage and mobility considerations.

The economic impact of power consumption is particularly dire in emerging markets and the

Fifth Generation (5G) of wireless cellular network must be not only spectral efficient but also energy

efficient (e.g., a 1000× improvement in energy efficiency is expected by 2020). Although several

recent efforts have been made to reduce the power consumption of existing small cell networks [18,

19], limited attention has been given to optimize the overall network deployment. Therefore, a

novel design and architecture is necessary for the next generation of wireless cellular network to

overcome the aforementioned challenges.

In this chapter, we focus on optimizing the power consumption and resource utilization by lever-

aging the full potential of C-RAN architecture. We propose a novel elastic resource provisioning

framework, called “Elastic-Net”, to minimize the power consumption while addressing the fluc-

tuations in per-user capacity demand. In our solution, we divide the covered region into clusters

based on the traffic model and, within each cluster, we dynamically adapt the active RRH density,
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transmission power, and size of the VM1 based on the traffic fluctuations. We introduce the idea

of “VBS-Cluster” in which we merge the VBSs serving a cluster into a unit VBS-Cluster while

the RRHs’ antennae in the cluster act as a single coherent antenna array distributed over the cluster

region. We also provide a comprehensive model for the power consumption of the C-RAN system

including: (i) RRH and transport network power consumption and (ii) VBS pool power consump-

tion. Then, we optimize the power consumption and resource utilization through a demand-aware

resource provisioning approach. In order to minimize the power consumption in the cell sites while

ensuring a certain minimum coverage and data rate, we propose to dynamically optimize and adapt

the RRH density and transmission power based on the traffic demand and user density. Likewise, in

order to minimize the power consumption in the cloud we dynamically optimize and adapt the size

of the VMs while ensuring that the frame-processing time is less than the frame deadline.

6.2 System Model

We consider a C-RAN downlink system and assume that each user is served by the nearest ac-

tive RRH. The RRHs and users are distributed according to two independent Poisson Point Pro-

cesses (PPPs) in R
2, denoted as Φr and Φu(t), respectively. Note that the distribution of users

is a function of time due to their temporal variation. Let λr and λu(t) denote RRH density and

time-dependent user density, respectively. The set of all RRHs is denoted by L = {1, . . . , L}

and A ⊆ L is the set of active RRHs and Z = L\A is the set of inactive RRHs. Let also

µa(t) ∈ [0, 1] denote the RRH activity factor which indicates the ratio of active RRHs to all RRHs,

where λar(t) = µa(t)λr is the time-dependent density of active RRHs and λsr(t) = (1 − µa(t))λr

is the time-dependent density of inactive RRHs. The total bandwidth is denoted by B and the

bandwidth per user is given by Bu(t) = B λa
r (t)

λu(t)
. Although the similar analysis can be applied for

multi-antenna systems, for the sake of simplicity we assume that all RRHs and users are equipped

with single antenna. We also concentrate on the effect of path-loss and shadowing, and employ a

commonly used signal-propagation model as follows,

Pr = Gr−αhP, (6.1)

1The size of a VM is represented in terms of its processing power, memory and storage capacity, and network interface

speed.
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where Pr, P , r, and α denote received power, transmitted power, propagation distance, and path-

loss exponent, respectively. Additionally, G is the path-loss coefficient and the random variable h is

used to model the slow fading caused by shadowing and it follows a log-normal distribution. Under

these assumptions the received signal for a typical user, denoted as uth user, is given by,

yu = r
−α

2
u

√
GhuPsu +

∑

j 6=u,j∈A
r
−α

2
j

√
GhjPsj + n0, (6.2)

where ru is the distance between the user and its serving RRH, rj is the distance between the

user and the jth interfering RRH, and n0 ∈ C is the Additive White Gaussian Noise (AWGN)

at the receiver denoted as n0 ∼ CN
(
0, σ2n

)
. From (6.2), the Signal-to-Interference-plus-Noise-

Ratio (SINR) is calculated as,

SINRu =
hug(ru)P∑

j 6=u,j∈A
hjg(rj)P + σ2n

, (6.3)

where σ2n is the power of the noise and g(r) = Gr−α. Outage happens if the received SINR falls

below a given threshold γ and the user is covered if SINRu > γ. The relationship between the

outage probability (Pout) and the coverage probability (Pcov) is given by,

Pcov = 1− Pout = Pr(SINRu > γ). (6.4)

The average throughput of each active RRH, denoted as R, is given by,

R = BE [log2(1 + SINRu)] , (6.5)

where E [·] denotes the expectation value. We also define the user throughput as the average through-

put per user, given by,

Ru(t) = Bu(t)E [log2(1 + SINRu)] . (6.6)

6.2.1 RRH and Transport Network Power Consumption Model

Since in C-RAN the BSs are decoupled into RRHs and VBSs, we divide the network power con-

sumption into two parts: (i) RRH and transport network power consumption and (ii) VBS pool
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power consumption. To model the power consumption of a RRH, we consider the linear power

model as in [75],

Prrh =





P a
rrh +

1
ηP if P > 0

P s
rrh if P = 0

, (6.7)

where P a
rrh is the active circuit power consumption, η is the power amplifier efficiency, P is the

transmission power, and P s
rrh is the RRH power consumption in the sleep mode.

Since the data transmitted between the RRHs and VBS pool is oversampled real-time I/Q digital

data streams in the order of Gbps, the transport network power consumption has a significant impact

on the network power consumption. We consider the future Passive Optical Network (PON) to pro-

vide the low-cost, high-bandwidth, low-latency connections between the RRHs and VBS pool [70].

PON comprises an Optical Line Terminal (OLT) that resides in the VBS pool and connects a set

of associated Optical Network Units (ONUs) through a single fiber. Implementing sleep mode at

ONUs is a promising power-saving solution in PON; however, OLT can not go into the sleep mode

and its power consumption is fixed [70]. We consider fast/cyclic sleep mode where the ONU state

alternates between the active state (when the RRH is in the active state) and the sleep state (when

the RRH is in the sleep state). Hence, the power consumption of the transport network is given as

in [70],

Ptn = Polt + Ponu, (6.8)

where Polt is the OLT power consumption in the VBS pool and Ponu is the ONU power consump-

tion, given as,

Ponu = |A|P a
tl + |Z|P s

tl, (6.9)

where P a
tl and P s

tl are the consumed power by each ONU in the active and sleep mode, respectively.

Since Polt is consumed in the VBS pool, we consider it in the power consumption of the VBS pool.

Therefore, the area RRH and transport network power consumption is given by,

Parea = λar(t)(P
a
rrh +

1

η
P + P a

tl) + λsr(t)(P
s
rrh + P s

tl). (6.10)
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6.2.2 VBS Pool Power Consumption Model

In order to model the power consumption of the VBS pool, we introduce the notion of size of a VM,

which is represented in terms of its processing power [CPU cycles per second], memory and storage

capacity [Bytes], and network interface speed [bps]. It primarily depends on the number of users and

type of data traffic (per-user capacity requirements) as well as on the computational complexity and

memory footprint of the signal processing algorithms at the PHY layer, and of the scheduling and

frame processing algorithms at the MAC layer. As it is discussed in [76], compared to other system

resources, the CPU consumes the main part of the power in the VBS pool, and hence in this work we

focus on minimizing its power consumption. There is also a linear power-to-frequency relationship

for a server and recent studies have shown that on average an idle server consumes approximately

70% of the power consumed by the server running at the full CPU speed [76]. Therefore, for each

VM we consider the power model defined as,

Pvm = ∆(t)Pmaxu(t) + β∆(t)Pmax(1− u(t)) + Polt, (6.11)

where ∆(t) is the size of the VM in terms of CPU cycles per second, Pmax is the maximum power

consumed per unit VM size when the server is fully utilized, β is the fraction of power consumed

by the idle VM, and u(t) is VM utilization. Note that in our model ∆(t) and u(t) change over time

due to the workload variation and hence they are functions of time.

6.2.3 Clustering the VBSs and RRHs

We introduce the idea of VBS-Cluster, where i) all the VBSs associated with a certain cluster are

merged into a unit VM and ii) the RRHs’ antennas in each cluster act as a single coherent antenna

array distributed over the cluster region. Since in the C-RAN architecture the VBSs are implemented

on VMs, the size of VBS-Clusters can be changed based on the network requirements and capacity

demand. Moreover, merging the VBSs of the neighboring RRHs into a unit VBS-Cluster allows for

smooth transition and greater optimization in the ensuing VM allocation procedure. Since each VBS

has a minimum power consumption, it also abstracts the minimum power consumption of different

VBSs into one VM. In the following section we explain how we use the concept of VBS-Cluster to

minimize the overall power consumption.
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6.3 Elastic-Net: Demand-Aware Provisioning

The number of active users at different locations varies depending on the time of the day and week.

For instance, in traditional cellular system during a day the BSs in downtown office areas are the

busiest; whereas at night (or non-working hours) the BSs in residential or entertainment areas are

the busiest (see Fig. 6.1). Today, each BS’s spectrum and computing resources are only used by

the active users in that BS’s cell. So, deploying small cells for the peak traffic time (i.e., worst

case) leads to grossly under-utilized BSs in some areas/times and is highly energy inefficient; and

conversely, deploying for the average leads to oversubscribed BSs in some areas/times. On the other

hand, since the traffic fluctuates over time, there is no fixed cell size and transmission power that

optimize the energy consumption.

Due to the aforementioned facts, the use of small cells is quite efficient in terms of power con-

sumption as well as utilization of spectrum and computing resources when the capacity demand is

high and evenly distributed in space; however, it becomes less so when the data traffic is low and/or

uneven due to the static resource provisioning and BSs’ fixed power consumption. This means that

deploying small cells will make the network energy inefficient due to the unavoidable energy costs

when the capacity demand is low. For instance, the circuitry, paging channel, cooling system, back-

haul, and power amplifiers all consume power so that even in a non-operational mode, BSs would

consume a considerable amount of energy [77]. Moreover, in traditional cellular network, the cell

planning and optimization, mobility handling, resource management, signal processing, and cover-

age are all done by each BS uniformly. In this case, even if the BSs have no traffic, they cannot be

turned off [34].

Conversely, by decoupling BSs into VBS and RRH in C-RAN architecture, the latter would only

be responsible to provide spectrum resources and can be dynamically turned on and off based on the

traffic demand and also the size of VBSs can be changed dynamically accordingly. So, to address

the problem of tidal effect, we take advantage of C-RAN characteristic and propose a dynamic

provisioning approach, called “Elastic-Net”, aimed at increasing the energy efficiency and resource

utilization while providing a high level of Quality of Service (QoS).

In the proposed solution, as shown in Fig. 6.1, we cluster the neighboring RRHs and their
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(a) Day (b) Night

Figure 6.1: The use of virtualization in C-RAN allows dynamic re-provisioning of spectrum and

computing resources (visualized here using different sizes) to the VBSs based on demand fluctu-

ation; (a) and (b) illustrate the movement of mobile network load from the downtown office area

to the residential and recreational areas over the course of a day and the corresponding changes in

active RRH density and VBS size (we have used different icons for active RRH and inactive RRH).

corresponding VBSs based on traffic model, and in each cluster we adapt the system parameters ac-

cordingly. We advocate demand-aware resource provisioning where in each cluster the active RRH

density, transmission power, and size of the VM are dynamically changed over time to minimize the

power consumption and meet the fluctuating traffic demand and network constraints. For instance,

as shown in Fig. 6.1, due to the higher capacity demand during day time in cluster #2 (Fig. 6.1(a)),

we provision it with more active RRH and higher size of VBS-Cluster than those in night time

(Fig. 6.1(b)) when the capacity demand is lower. Hence, the objective of this chapter is to obtain the

optimal active RRH density, transmission power, and size of VM for each cluster so that the power

consumption is minimized while meeting a predefined coverage probability, per-user data rate, and

subframe processing time. To this end, we formulate the optimization problem for the ith cluster as,
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p : argmin
µa,P,∆

P i
area(µa(t, i), P (t, i)) + P i

vm(∆(t, i)) (6.12a)

subject to Pcov ≥ εP∞cov, (6.12b)

Ru(t) ≥ R0, (6.12c)

Tdl ≥ Tfr, (6.12d)

where P i
area(µa(t, i), P (t, i)) and P i

vm(∆(t, i)) are the area power consumption and VBS-Cluster

power consumption of the ith cluster, respectively. P∞cov is the coverage probability at no noise

regime, R0 is the per-user minimum data rate, Tfr is the subframe processing time, Tdl is subframe

deadline, and ε is a positive number ranging from 0 to 1 (0 < ε < 1). Additionally, µa(t, i), P (t, i),

and ∆(t, i) are the RRH activity factor, transmission power, and size of the VM for the ith cluster,

respectively. Note that due to the temporal variation of traffic demand in each cluster, µa(t, i),

P (t, i), and ∆(t, i) are time-dependent and the optimal solution [µ∗a(t, i), P
∗(t, i),∆∗(t, i)] varies

over the time.

The density of active and inactive RRHs in the ith cluster can be written as,

λar(t, i) = µa(t, i)λr(i), (6.13a)

λsr(t, i) = (1− µa(t, i))λr(i), (6.13b)

where λr(i) is the density of all RRHs in the ith cluster. By substituting (6.13a) and (6.13b) into

(6.10), we can write,

Pi (P (t, i), µa(t, i)) = λr(i) (µa(t, i)Q1(t, i) +Q2) , (6.14)

where

Q1(t, i) = P a
rrh +

1

η
P (t, i) + P a

tl − P s
rrh − P s

tl, (6.15a)

Q2 = P s
rrh + P s

tl. (6.15b)
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From (6.14) and (6.15a), we can see that our objective function is non-convex because of the

multiplication term of µa(t, i) and P (t, i). However, in this case to minimize the objective function,

as it is explained in [78], we can use the coordinate descent algorithm and minimize µa(t, i), P (t, i),

and ∆(t, i) independently, such that the constraints are met.

6.4 Optimal Active RRH Density and Transmission Power

In this section, we derive the optimal active RRH density and transmission power based on user

density and per-user capacity demand. For this purpose, first we minimize the active RRH density

such that the average throughput per user is greater than R0. Then, given the optimal RRH den-

sity, we minimize the transmission power to assure that the coverage probability is greater than its

threshold.

Lemma 2. The minimum RRH activity factor for which the constraint Ru ≥ R0 is met is given by,

µ∗a(t, i) =
R0λu (t, i)

Bλr (i)
[
log2(1 + γ) + γ

2
αA (α, γ)

] , (6.16)

where

A (α, γ) =

∫ ∞

γ

x−2/α

1 + x
dx. (6.17)

Proof. The spectral efficiency achievable by a randomly chosen user when it is in coverage is given

as in [79],

τ(α, γ) = log2 (1 + γ) + γ
2
αA (α, γ) . (6.18)

Hence, the per-user data rate in the ith cluster and at time instant t can be written as,

Ru (t, i) =
Bµa (t, i)λr (i)

λu (t, i)

[
log2 (1 + γ) + γ

2
αA (α, γ)

]
. (6.19)

So, considering the constraint (6.12c) we can write,

µa (t, i) ≥
R0λu (t, i)

Bλr (i)
[
log2(1 + γ) + γ

2
αA (α, γ)

] , (6.20)

which establishes the minimum RRH activity factor as a function of λu(t, i) to satisfy per-user data
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rate constraint.

Once we obtain the minimum active RRH density, we need to minimize the transmission power

of each cluster based on its active RRH density. Both coverage and outage probability highly de-

pend on the density and transmission power of the active RRHs. This means that, given a fixed

active RRH density, we can minimize the transmit power of the active RRHs so to achieve a certain

coverage and outage probability. Since in our solution the active RRH density of different clusters

changes over time based on the traffic demand, we need to also dynamically optimize the transmit

power accordingly. This can further decrease the power consumption of the system. For instance,

when the density of active RRHs becomes higher, each RRH has only a small coverage area and

users can be in coverage even with a lower transmission power.

Lemma 3. The minimum transmission power for which the constraint Pcov ≥ εP∞cov is met is given

by,

P ∗c (t, i) =
L1

[µa(t, i)λr(i)]
α
2

, (6.21)

where

L1 =
γσ2Γ

(
α
2 + 1

)

π
α
2 [1 + Υ(γ, α)]

α
2 (1− ε)

, (6.22a)

Υ(γ, α) = γ
2
α

∫ ∞

0

1

1 + z
α
2

dz. (6.22b)

Proof. The coverage probability in the ith cluster is given as [80],

Pcov (α, γ, µa) = πµa (t, i)λr (i)×
∫ ∞

0
e−πµa(t,i)λr(i)(1+Υ(α,γ))−γσ2vα/2P−1

dv. (6.23)

Now, by using the substitution γσ2P−1 → s in (6.23) and the approximation e−sv
α/2 ≈

(
1− svα/2

)

(in the case of low noise regimes σ2n → 0), we can write,

Pcov (α, γ, µa) ≈ P∞
(
1− γσ2Γ

(
α
2 + 1

)

P [πµa (t, i)λr (i) (1 + Υ (α, γ))]
α
2

)
, (6.24)

where P∞ is the coverage probability without noise [80],

P∞ = (1 + Υ (α, γ))−1 , (6.25)
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and Γ (x) =
∫∞
0 tx−1e−tdt is the standard gamma function. Then, the minimum transmission

power P ∗c (t, i) that satisfies the coverage constraints can be obtained by combining (6.24) and

(6.12b).

6.5 Computational Characteristics of a Virtual Base Station and Optimal VM Size

In order to minimize the computing resource consumption of a VM hosting the VBS-Cluster, we

need to characterize the computational requirements of the corresponding VBS-Cluster in terms of

traffic load and number of users in order to provide adequate processing capabilities that ensure

the subframe processing time. In other words, resource provisioning of the VBS-Clusters must be

done in such a way that the subframe processing time is less than the subframe deadline. Soft-

ware implementation coupled with real-hardware experiments is essential to understand the runtime

complexity as well as performance limits of VBS-Cluster. The realization of the C-RAN emulation

testbed on virtualized general-purpose computing servers allows for profiling of the computational

complexity of the different communication functionalities implemented in software. In particular,

such profiling results provide a “mapping” between traffic load and required computing resources.

Here, we present our testbed experiments and the empirical models that we have established for

estimation of processing time and CPU utilization.

6.5.1 Emulation Platform and Testbed Architecture

We choose an open-source software implementation of LTE standard called OpenAirInterface (OAI)

developed by EUROCOM to realize the virtualized C-RAN system [81]. OAI can be used to build

and customize mobile network operators consisting of eNBs and Commercial Off-The-Shelf (COTS)

UEs as well as software-defined UEs. The structure of OAI mainly consists of two components: one

part, called Openairintereface5g, is used for building and running eNB units; the other part, called

Openair-cn, is responsible for building and running the Evolved Packet Core (EPC) networks, as

shown in Fig. 6.2. The Openair-cn component provides a programmable environment to imple-

ment and manage the following network elements: Mobility Management Entity (MME), Home

Subscriber Server (HSS), Serving Gateway (S-GW), and PDN Gateway (P-GW).

Figure 6.3 illustrates the architecture of our testbed. The RRH front-ends of the C-RAN testbed
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Figure 6.2: Evolved Packet Core (EPC) network topology diagram.

are implemented using SDR USRP B210s, each supporting 2 × 2 MIMO with sample rate up to

62 MS/s. In addition, each RRH is equipped with a GPSDO module for precise synchronization.

Each instance of the VBS is implemented using the OAI LTE stack, which is hosted in a VMware

VM. All the RRHs are connected to the VBS pool (the physical servers hosting the VMs) via

USB 3 connections. The Ubuntu 14.04 LTS with kernel 3.19.0-91-lowlatency is used for both host

and guest operating systems. In order to achieve a high performance for our testbed, all power-

management features in the BIOS, C-states, and CPU frequency scaling have been turned off. The

CPU should support the sse3 and sse4.1 features. These flags must be exposed from the host to

the guest, and can be checked by using the command cat/proc/cpuinfo|grep flags|uniq. For the

physical sever hosting the VMs, we use a Dell Precision T5810 workstation with Intel Xeon CPU

E5-1650, 12-core at 3.5 GHz, and 32 GB RAM.

 
Figure 6.3: Logical illustration of C-RAN testbed architecture.



93

6.5.2 Monitoring the OAI eNB and the UE

As illustrated in Fig. 6.4, our C-RAN experimental testbed consists of one unit of UE and one unit

of eNB, both implemented using the USRP B210 boards and running on OAI. The OAI software

instances of the eNB and UE run in separate Linux-based Intel x86-64 machines comprising of 4

cores for UE and 12 cores for eNB, respectively, with Intel i7 processor core at 3.6 GHz. OAI

comes with useful monitoring tools such as network protocol analyzers, loggers, performance pro-

filers, timing analyzers, and command line interfaces for performing the intended measurements

and monitoring of the network. The main configuration parameters are summarized in Table 6.1. In

particular, the eNB is configured in band 7 (FDD) and the transmission bandwidth can be set to 5,

10, and 20 MHz, corresponding to 25, 50, and 100 Physical Resource Blocks (PRBs), respectively.

 
Figure 6.4: C-RAN testbed implementation utilizing OAI.

Table 6.1: Testbed Configuration Parameters

Parameters eNB UE

Duplexing mode FDD FDD

Frequency 2.66 GHz 2.66 GHz

Transmitted power [150÷ 170] dBm [150÷ 170] dBm

MCS [0÷ 27] [0÷ 27]

Mobility Static Static

PRB 25, 50, 100 25, 50, 100

Radiation pattern Isotropic Isotropic



94

6.5.3 Processing Time of LTE Subframes

Here, we study the processing time of a VBS fo each LTE subframe with respect to different CPU

frequency configurations in the VMware environment. The execution time of each signal process-

ing module in the downlink is measured using timestamps at the beginning and at the end of each

subframe. OAI uses the RDTSC instruction implemented on all x86 and x64 processors as of the

Pentium processors to achieve precise timestamps [82]. The cpupower tool in Linux is used to con-

trol the available CPU frequencies. To avoid significant delay and to not miss the synchronization

between eNB and UE hardware, we recommend to run the experiment within a 2.8÷3.5 GHz CPU

frequency range.

In Fig. 6.5, we illustrate the processing time of the eNB given different CPU-frequency steps,

in which the Modulation and Coding Scheme (MCS) index is set to 27 for both UL and DL. It

can be seen that the processing time dramatically decreases when the CPU frequency increases. To

model the subframe processing time against the CPU frequency and radio-resource configuration,

we repeat the experiment in Fig. 6.5 with different MCS indexes. The subframe processing time

Tfr [µs] can be well approximated as,

Tfr [µs] =
αPRB

ωNc
+ βMCS + 2.508, (6.26)

where Nc is the number of CPU cores, ω is the CPU speed per each core measured in GHz, and

αPRB and βMCS are two parameters that depend on the values of PRB and MCS, respectively.

Table 6.2 describes how αPRB and βMCS are related to PRB and MCS.

Table 6.2: Values of parameters αPRB and βMCS.

PRB 25 50 100

αPRB 900 940 970

MCS 0 9 10 16 24 27

βMCS [µs] 0 9.7 11.8 37.5 64.8 75

6.5.4 CPU Utilization

In C-RAN, it is of critical important to understand the CPU utilization of the VBS in order to

design efficient resource provisioning and allocation schemes. In the previous subsections, we
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Figure 6.5: Processing time of LTE subframes against CPU frequency with MCS = 27 and various

PRB allocations.

have seen the relationship between MCS and CPU usage for different values of PRBs. In this

experiment, the CPU utilization percentage is calculated using the top command in Linux, which

is widely used to display processor activities as well as various tasks managed by the kernel in

real time. We repeatedly send UDP traffic from the eNB to the UE with various MCS and PRB

settings. The CPU utilization percentage has been recorded as in Fig. 6.6. By setting the CPU

frequency of the OAI eNB to 3.5 GHz, we have seen that the highest CPU consumption occurred

at MCS 27, corresponding to 72%, 80%, and 88% when PRBs are 25, 50, and 100, respectively.

We can conclude that the total processing time and computing resources were mainly spent on the

modulation, demodulation, coding, and decoding. These tasks played the bigger roles in terms of

complexity and runtime overhead in the BBU protocol stack of the VBS.

To understand better the VBS computational consumption in C-RAN with respect to the users’

traffic demand, we will now establish the relationship between the DL throughput and the percentage

of CPU usage at the VBS. To begin, we learn that OAI supports 28 different MCSs with index

ranging from 0 to 27. In the downlink direction, MCSs with the index 0 to 9 are modulated using

QPSK, index 10 to 16 are modulated using 16-QAM, and the rest are based on 64-QAM. For

instance, in LTE FDD system with PRB 100, corresponding to bandwidth of 20 MHz, we can get

12 × 7 × 2 = 168 symbols per ms, in case of normal Cyclic Prefix (CP), which is equivalent to a
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Figure 6.6: CPU utilization of the VBS at different values of MCS and PRB.

data rate of 16.8 Mbps [83]. Based on the MCS index used in each experiment, we can calculate the

corresponding DL throughput by multiplying the bit rate by the number of bits in the modulation

scheme.

Figure 6.7 shows the CPU utilization percentage at the VBS corresponding to different DL

throughputs. Using the calculated results, we have fitted the CPU utilization as a linear function of

the DL throughput as,

CPU [%] = 0.6237R0 + 21.3544, (6.27)

where R0 is the throughput measured in Mbps.

6.5.5 Optimal Size of VM

Power consumption of a VM is mostly determined by the CPU, memory, and storage capacity. In

comparison to other system resources, the CPU consumes the main part of energy, and hence in this

work we focus on minimizing its power consumption. We can recast the power consumption of the

ith VBS-Cluster as,

P i
vm = ∆(t, i)Pmaxu (t, i) (1− β) + β∆(t, i)Pmax + Polt, (6.28)
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Figure 6.7: Percentage of CPU usage versus the downlink throughput.

where for a given workload, u(t, i) is inversely proportional to ∆(t, i) [84]. So, to minimize the

power consumption of the VM, we need to minimize the size of the VM (CPU cores) such that the

network requirements are met.

The effective data rate is highly controlled by MCS index and number of PRBs. So, the workload

in the VBS-Cluster depends on the MCS index, number of PRBs, and the channel bandwidth [82].

Moreover, according to [85], the Round Trip Time (RTT) between RRH and VBS pool cannot

exceed 400µs. Since the total delay budget in LTE is considered as 3ms, this leaves the VBS-Cluster

only around 2.6ms for signal processing at VBS pool. Hence, once the VBS-Cluster receives a

subframe from the RRH, there is a hard deadline ≤ 3ms for subframe processing depending on the

distance between the RRH and VBS pool. The required CPU speed (VM size) for a given number

of PRBs, MCS index, and subframe processing time can be derived from Eq. (6.26) as,

∆(t, i) = Nc(t, i)ω =
αPRB

Tfr − βMCS − 2.508
, (6.29)

where Tfr is the processing time and is measured in µs, αPRB is a PRB dependent constant, βMCS

is a MSC dependent constant, Nc(t, i) is the number of dedicated CPU cores to the ith VBS-Cluster

at time t, and ω is the CPU speed measured in GHz. Hence, the minimum number of required CPU
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cores to meet the subframe deadline is given by,

N∗c (t, i) =
⌈

αPRB

ω (Tdl − βMCS − 2.508)

⌉
, (6.30)

where Tdl is the subframe deadline.

6.6 Performance Evaluation

In this section, we provide a range of simulations and real-time emulations to evaluate the perfor-

mance of our proposed solution. In the simulations, we consider a cellular network where the RRHs

and the users are distributed according to two independent homogeneous PPPs. Table 6.3 lists the

stimulation parameters used during our experiments.

Table 6.3: Simulation Parameters.
Parameters Mode/Value

Cellular Layout Poisson Point Process

Channel Model Path Loss and Shadowing

Channel Bandwidth 20 MHz

Number of Antennas (NTX , NRX) (1, 1)

OLT power consumption (Polt) 20W

ONU Power Consumption in Active Mode (P a
tl) 4W

ONU Power Consumption in Sleep Mode (P s
tl) 0.5W

RRH Circuit Power Consumption in Active Mode (P a
rrh) 12.4W

RRH power consumption in sleep mode (P s
rrh) 3.5W

Power Amplifier Efficiency (η) 0.32

MSC Dependent Constant (α) 117.4

Fraction of Power Consumed by Idle VBS (β) 0.7

Fraction of Minimum Coverage Probability (ε) 0.75

Minimum Data Rate (R0) 200 Kbps

6.6.1 Simulation Results

In the first simulation, we compare the active RRH density in terms of the minimum transmission

power for different environments. As shown in Fig. 6.8, with increasing the active RRH density

the minimum transmission power decreases. For instance, for α = 4 by increasing the active RRH

density from 10−4/m2 to 10−3/m2, we have almost 10 dBm decrease in minimum transmission

power. This is because with increasing the density of active RRHs, the coverage area of each RRH

becomes smaller and so we can exploit a lower transmission power while guaranteeing the same

coverage probability.
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Figure 6.8: Minimum transmission power as a function of active RRH density (γ = 10 dB and

σ2 = λar × 10−4).

In the second simulation, we examine how different user densities affect the minimum trans-

mission power. We have examined our simulation for different environments (α = 4, 5) and SINR

thresholds (γ = 0, 15 dB). As it is shown in Fig. 6.9, increasing the user density will result in a

decrease in the minimum transmission power. The reason is that by higher user densities we require

higher active RRH density and hence smaller cells. For instance, given α = 4 and γ = 0 dB, we

need a minimum transmission power of 34.96 dBm and 24.96 dBm for λu = 10−3 and λu = 10−2,

respectively. In Fig. 6.10, we also compare the coverage probability as a function of SINR thresh-

old for different environments. The curves all exhibit the basic shape and as one would expect, the

coverage probability is higher for higher path loss exponents.

In the next simulation, we examine the performance of our solution in terms of area power con-

sumption with respect to the active RRH density. In this experiment we only consider the coverage

probability constraint and show how area power consumption changes with different active RRH

densities. As shown in Fig. 6.11, for α = 3, 4, 5, by increasing the active RRH density, the area

power consumption increases. However, for α = 6 the area power consumption first decreases and

then increases. This is because for low active RRH densities the dominant term in area power con-

sumption is transmission power, while for higher active RRH densities the dominant term becomes

the circuit power consumption. In the other experiment, we explore the variation of active RRH
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Figure 6.9: Minimum transmission power as a function of user density.
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Figure 6.10: Coverage probability as a function of SINR threshold.

density for different active user densities. As the active user density increases, we need more active

RRHs to provide service and data rate for the users and consequently the active RRH density needs

to be increased. As shown in Fig. 6.12, active RRH density also depends on the path loss exponent

and SINR threshold. As the threshold and the path loss exponent increases, we need less active

RRHs to serve the users.
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Figure 6.11: Area power consumption as a function of active RRH density.

In Fig. 6.13, the number of required CPU cores is investigated for different number of PRBs.

As we mentioned in Sect. 6.5.5, resource provisioning for VBS-Clusters must be done such that the

frame-processing time is less than the frame deadline. In order to minimize the power consumption

and maximize the resource utilization we need to provision the VBS-Clusters with minimum CPU

cores such that the frame-processing time is less than the frame deadline. With increasing the

density of active RRHs and users more PRBs will be required and, consequently, more computing

resources is needed. As shown in Fig. 6.13, for Tdl = 3ms we need 5 CPU core of speed 1.5 GHz

or 3 CPU cores of speed 3.3 GHz to process 180 PRBs.

6.6.2 Impact of Traffic Variation in Power Consumption

In the other simulation, we simulate the traffic fluctuation on a typical operational day and show how

our solution dynamically adapts the RRH density, transmission power, and size of VBS-Clusters to

meet such fluctuation. As shown in Fig. 6.1, we consider a network with 3 clusters where each

cluster covers an area of 25 km2 and has its own traffic and user density fluctuation. As shown in

Fig. 6.14, clusters #1 and #2 (corresponding to the downtown and entertainment areas) have lower

user density on early morning and late night, while cluster #3 (corresponding to the residential area)

has higher user density at those times. Here, we will explore how “Elastic-Net” adapts the network
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Figure 6.12: RRH activity factor as a function of user density.
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Figure 6.13: Minimum number of CPU cores for different number of PRBs (γ = 10 dB, and

σ2 = λar × 10−4).

parameters so to minimize the power consumption and maximize the resource utilization, while at

the same time meeting the network constraints.

Figure 6.15 illustrates the minimum active RRH density adaptation required to serve the cor-

responding user density fluctuation in different clusters. As expected, the RRH density fluctuation
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Figure 6.14: Traffic fluctuation on a typical operational day for three different clusters.
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Figure 6.15: Fluctuation of active RRH density to meet the user fluctuation for different times of

the day.

corresponds to the user density fluctuation. This means that for the high traffic demand times we

need a higher number of active RRHs and smaller cells.

The time varying transmission power for different clusters is also shown in Fig. 6.16. It is clear

that for the peak traffic times we need a lower transmission power than in low traffic times. This is

because in the peak traffic times we have higher active RRH density and, consequently, the coverage
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Figure 6.16: Fluctuation of minimum transmission power to reduce the power consumption while

guaranteeing a predefined Quality of Service (QoS).
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Figure 6.17: Power consumption of different VBS-Clusters (CPU speed = 3.3 GHz).

area of each RRH becomes smaller. For instance, the network decreases the transmission power of

clusters #1 and #2 by 8.62 and 11.19 dBm, respectively, in the day time when the user density

and traffic load is high. Figure 6.17 also shows the power consumption of VBS-Clusters in the

VBS pool. In this simulation we used the power consumption model presented in Sect. 6.2.2 and
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Figure 6.18: Comparison of power consumption between Elastic-Net (in C-RAN) and Static-Net

(in D-RAN) for (a) Cluster #1, (b) Cluster #2, and (c) Cluster #3.

considered Pmax = 72 W for each CPU core. As expected, since in the peak traffic times we need

more CPU cores to provision the VBS-Clusters, we have a higher power consumption rather than

in lower traffic times.

In Fig. 6.18, we also compare the traditional static provisioning against Elastic-Net. As shown

in Figs. 6.18 (a), (b), and (c), depending on the traffic fluctuation there is a big difference between

power consumption of Elastic-Net and Static-Net. For instance, in cluster # 1 and for low traffic

times (7 PM - 8 AM) we have 48.59% decrease in power consumption by Elastic-Net. However,

for the peak traffic times (8 AM - 7 PM), we have only 7.39% decrease in power consumption. This

confirms our statements in Sect. 6.1 that the small cells is quite efficient when the capacity demand

or user density is high and it becomes less so when the traffic demand is low.

6.6.3 Testbed Experiment Results

To show the benefits of our solution, we also designed an testbed experiment and considered two

scenarios to compare the CPU power consumption of our solution under the C-RAN architecture

against the traditional approach in D-RAN. In the first scenario, two traditional BSs on different

VMs are considered in such a way that one is operated under heavy load while the other under light

load. The heavy-loaded BS handles 6 concurrent calls and 100 text messages, whereas the light-

loaded BS handles only a single call. Each BS is provisioned with 2 threads to process the data. In

the second scenario, 2 VBSs on the same VM is considered under the same loads as described in

the first scenario. In this case, since the processing resources are shared, we are able to adjust the

BS provisioning. We provision the BS under heavy load with 3 threads and the BS under light load
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with 1 thread. For the first scenario, the heavy and light load have an average CPU utilization of

77% and 10%, respectively, while for the second scenario the average CPU utilization is 57% and

19%.

Table 6.4 also shows that dynamic resource provisioning (proposed in Elastic-Net) decreases

CPU power consumption for the same amount of traffic from 134.64 to 72.34 W. This 42.26%

decrease is due to the fact that in the traditional D-RAN each BS needs to have its own dedicated

processor while in C-RAN multiple VBSs can share computing resources and exploit multiplexing

gain.

Table 6.4: Power usage, CPU utilization, and resource utilization for static (D-RAN) and dynamic

provisioning (C-RAN).
Provisioning Load Power Usage CPU Utilization Resource Utilization

Static in D-RAN
Heavy 70.62 W 77.47% 1.23GB, 2 threads

Light 64.02 W 10.13% 1.26GB, 2 threads

Elastic in C-RAN
Heavy

72.34 W
57.04% 1.13GB, 3 threads

Light 18.58% 1.12GB, 1 threads

6.7 Discussion

We proposed and validated a novel demand-aware reconfigurable solution, named Elastic-Net, to

minimize the power consumption of Cloud Radio Access Network (C-RAN). In the proposed solu-

tion, we introduced the idea of VBS-Cluster and partitioned the coverage region of the network into

clusters based on traffic fluctuation. Then, in each cluster we optimized active RRH density, trans-

mission power, and size of the VM based on the traffic demand and user density so that the network

power consumption is minimized and the network constraints are met. We also characterized the

computational requirements of a VBS through our programmable C-RAN testbed. For this purpose,

we carried out different testbed experiments to investigate the computational requirements and uti-

lization of a VBS. Simulation and testbed experiment results confirmed the validity of our analysis

and showed the benefits of this novel solution. For instance, via the real-time testbed we showed

that our idea of dynamic resource provisioning could reduce 42% of the CPU power consumption

at the VBSs.
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Chapter 7

Conclusions and Future Research Directions

Over the last few years, proliferation of personal mobile computing devices like tablets and smart-

phones along with a plethora of data-intensive mobile applications has resulted in a tremendous

increase in demand for ubiquitous and high data rate wireless communications. An estimated area

capacity of 25 Gbps/km2 is forecast for the 5G wireless cellular networks, which corresponds to

a 100× boost over what the current 4G wireless standard is able to provide in terms of spectral

efficiency. Additionally, the economy impact of power consumption is particularly dire in emerg-

ing markets and the next generation of cellular network must be not only spectral efficient but also

energy efficient. Although several recent efforts have been done to reduce the power consumption

of existing small cell networks, limited attention has been given to optimizing the overall network

deployment. This means that the distributed nature of traditional cellular network does not allow for

any further reduction in power consumption. Therefore, a novel design and architecture is necessary

for the next generation of wireless cellular network to overcome the aforementioned challenges.

C-RAN is a new architecture for wireless cellular network where the processing resources of

BSs are centralized in a BBU pool. The centralized characteristic of C-RAN allows for dynamic

reconfiguration of computing and spectrum resources while keeping the cost of delivering services

to the users low. Our goal was to leverage the characteristics of C-RAN architecture and design and

develop techniques to increase the spectral and energy efficiency.

In order to achieve the aforementioned goal, we proposed four solutions, namely 1) Cloud-BSS,

2) DJP, 3) Cloud-CFFR, and 4) Elastic-Net. In Cloud-BSS, the performance of ICA algorithms

is investigate under different topologies to cancel the intra-cluster interference. Since Cloud-BSS

does not take any action to mitigate the inter-cluster interference, we proposed DJP to decrease

both the intra- and inter-cluster interference. Moreover, in order to improve the performance of
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Fractional Frequency Reuse (FFR), we proposed Cloud-CFFR which is able to reject the intra-

cluster interference and decrease the inter-cluster interference. Finally, in order to increase the

energy efficiency, we proposed Elastic-Net where the network parameters (i.e. active RRH density,

transmission power, and VM size) are optimized and adapted based on the traffic fluctuation so that

the power consumption is minimized while the resource utilization is maximized.

We have identified avenues for further research in the following areas:

Joint dynamic RRH selection and power minimization: Even though the Elastic-Net pro-

vides the active RRH density, the set of active RRHs should be found based on the positions of

users. On the other words, we need to decide which RRH should be on/off so that the spectral ef-

ficiency and sum data-rate is maximized while the transmit power consumption of the active RRHs

is minimized through coordinated beamforming.

Predictive models: Recently, there has been significant interest in studying how prediction can

be used for proactive resource allocation and caching. In the proactive methods, the fluctuation in

per-user capacity demand, user interest, and user mobility can be estimated. Then, provisioning

of computational resources and cache placement can be done in advance for a limited horizon.

This estimations are a result of knowledge of known patterns (e.g., day and night, weekdays and

weekends, holidays, game schedules, etc.) or predictions based on advanced time series analysis of

historical traffic traces from immediate as well as distant past.

Cooperative hierarchical caching: Our research group at the Rutgers Cyber-Physical Systems

(CPS) Lab is working towards optimizing the content caching in C-RAN. In traditional content

caching techniques, the storage capacity is only available at the edge of network beside the BSs. In

C-RAN architecture, the cloud infrastructure at the BBU pool with strong computing resources and

storage capacity now provides a central port for traffic offloading and content management to handle

the growing Internet traffic from mobile users. So, the storage capacity in the cloud can improve the

performance of cache placement techniques.
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