Staff View
Dynamic resource allocation for high spectral and energy efficiency in cloud radio access networks

Descriptive

TitleInfo
Title
Dynamic resource allocation for high spectral and energy efficiency in cloud radio access networks
Name (type = personal)
NamePart (type = family)
Hajisami
NamePart (type = given)
Abolfazl
NamePart (type = date)
1985-
DisplayForm
Abolfazl Hajisami
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Pompili
NamePart (type = given)
Dario
DisplayForm
Dario Pompili
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Gajic
NamePart (type = given)
Zoran
DisplayForm
Zoran Gajic
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Orfanidis
NamePart (type = given)
Sophocles
DisplayForm
Sophocles Orfanidis
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Masoomzadeh
NamePart (type = given)
Ali
DisplayForm
Ali Masoomzadeh
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2018
DateOther (qualifier = exact); (type = degree)
2018-05
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2018
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Over the last few years, the proliferation of personal mobile computing devices like tablets and smartphones along with a plethora of data-intensive mobile applications has resulted in a tremendous increase in demand for ubiquitous and high data rate wireless communications. However, the system capacity is limited by the radio interference, which makes it difficult to improve the spectral efficiency and consequently the data rate. Current practice to enhance spectral efficiency and data rate is to increase the number of Base Stations (BSs) and go for smaller cells so as to increase the band reuse factor. However, performing additional deployment and maintenance of a large number of cellular BSs is highly inefficient due to excessive capital and operational expenditures. Moreover, with smaller cells the interference problem becomes even more challenging. It is also studied that increasing the BS density or the number of transmit antennas will decrease the energy efficiency due to the dynamic traffic variation. This is because the current cellular architecture is over 40 years old and was not originally designed for high spectral and energy efficiency performance but for coverage and mobility considerations. Cloud Radio Access Network (C-RAN) is a new paradigmatic architecture for wireless cellular networks that allows for dynamic reconfiguration of computing and spectrum resources while keeping the cost of delivering services to the users low. C-RAN consists of three main parts: 1) Remote Radio Heads (RRHs) plus antennae, which are located at the remote site and are controlled by Virtual Base Stations (VBSs) housed in a centralized processing pool, 2) the Base Band Unit (BBU) (known as VBS pool) composed of high-speed programmable processors and real-time virtualization technology to carry out the digital processing tasks, and 3) low-latency high-bandwidth optical fibers, which connect the RRHs to the VBS pool. In a centralized VBS pool, since all the information from the BSs resides in a common place, the VBSs can exchange control data at Gbps. This centralized characteristic along with virtualization technology and low-cost relay-like RRHs provides a higher degree of freedom in order to make optimized decisions; all these features combined have made C-RAN a promising technology candidate to be incorporated into the 5G wireless network standard. The overarching goal of the research presented in this thesis is to design new techniques for increasing the spectral and energy efficiency of the next generation wireless cellular networks. In order to increase the spectral efficiency and energy efficiency, we leverage the C-RAN architecture and propose four solutions, namely 1) Cloud-BSS, 2) DJP, 3) Cloud-CFFR, and 4) Elastic-Net. In Cloud-BSS, we study the performance of Blind Source Separation (BSS) in order to separate the interference from the desired signal and explore how the performance changes in different topologies. Since Cloud-BSS does not take any action to mitigate the inter-cluster interference, we propose DJP to decrease both the intra- and inter-cluster interference. Moreover, in order to improve the performance of Fractional Frequency Reuse (FFR), we propose Cloud-CFFR, which is able to reject the intra-cluster interference and decrease the inter-cluster interference. Finally, in order to increase the energy efficiency, we propose Elastic-Net, where the network parameters are optimized and adapted based on the traffic fluctuation so that the power consumption is minimized while the resource utilization is maximized.
Subject (authority = RUETD)
Topic
Electrical and Computer Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_8790
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xiii, 114 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Multiple access protocols (Computer network protocols)
Subject (authority = ETD-LCSH)
Topic
Cloud computing
Note (type = statement of responsibility)
by Abolfazl Hajisami
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T30G3PKZ
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Hajisami
GivenName
Abolfazl
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-04-09 16:26:50
AssociatedEntity
Name
Abolfazl Hajisami
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.4
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-04-04T12:56:44
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-04-04T12:59:52
ApplicationName
3-Heights(TM) PDF Merge Split API 4.9.17.0 (http://www.pdf-tools.com)
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024