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Survival of bacteria on surfaces is an important part in understanding cross-

contamination of food. The effects of temperature and relative humidity appear to play 

important roles in understanding how bacteria survive on surfaces. Surface type and 

inoculum matrix also appear to influence bacterial survival. This study examines how 

relative humidity, temperature, and inoculum matrix effected the survival of non-

pathogenic Enterobacter aerogenes on common surfaces stainless steel, PVC, and 

ceramic tile. While surface type seemed to have little effect on survival, temperature 

showed a clear effect. E. aerogenes survived better at 7°C at 15 and 50% relative 

humidity on all surfaces. Inoculum matrix composition influenced survival and even 

allowed growth under some high RH conditions. Cells suspended in distilled water 

experienced a larger decrease in concentration immediately after inoculation on the 

surface vs. 0.1% peptone or 1% PBS. Cells suspended in 1% PBS showed a sharper 

decline in survival after 120 hours compared to 0.1% peptone both 15 and 50% relative 

humidity but cells in both matrices had similar tailing up to 3 weeks. Cells suspended in 
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0.1% peptone showed greatest growth and had the highest population density (~8 log 

CFU/ml) when the organism was inoculated into 10 mL of peptone. Cells suspended in 

PBS or distilled water showed ~2 log CFU/ml increase in concentration. When cells in 

0.1% peptone were inoculated onto a stainless steel coupon and placed at 100% RH, 

concentration increased to ~7 log CFU/coupon after a lag time of ~24 hours while cells in 

1% PBS increased to ~5 log CFU/coupon followed by a decline over 3 weeks. DMFit and 

GinaFit software could model inactivation on surfaces at all conditions other than 100% 

RH at 21°C. 
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Literature Review 

Food Contact Surfaces 

Stainless steel is one of the most widely used surfaces in commercial kitchens and food 

processing facilities because it is easy to clean and will not corrode [1], and for this 

reason it is also commonly used in food microbiology research. Understanding bacteria 

adhesion to and survival on stainless steel surfaces is also an important factor in 

understanding and preventing foodborne outbreaks [2, 3]. Stainless steel has been shown 

to promote biofilm formation and allow microorganisms to survive longer vs. other 

metals, which can in turn promote cross-contamination in food processing facilities [1, 4, 

5]. 

Ceramic tile is widely used as flooring in homes and food processing facilities. Ceramic 

tiles are typically hydrophilic which allow water to spread and which can create an 

antimicrobial environment [6]. The long term survival of pathogenic organisms on 

ceramic tile has been shown to be a potential cause of foodborne disease outbreaks [7]. 

Polyvinyl Chloride (PVC) is a thermoplastic that can be used in many ways in food 

facilities and produce packinghouses, including as a food contact surface [8]. Bottles, 

thermoformed foil, cling film, and lids or caps are some of the common uses in food 

packaging [8]. PVC-lined surfaces are also often used for drainage and piping systems as 

they will not corrode and are flexible, lightweight, and chemically resistant [9]. PVC is 

hydrophobic and may contain microscopic holes and crevices which can promote 

cracking over time and larger macroscopic holes and crevices to form [10]. 
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Relative Humidity 

The control of relative humidity (RH) has been increasingly viewed as an important 

factor in understanding the behavior of microorganisms and as a potential control for the 

spread of microorganisms [11-15]. Relative humidity is defined as the partial pressure of 

the water vapor in the air compared to the equilibrium vapor pressure of the air at a given 

temperature. Various salts can be dissolved into water and placed into a sealed 

environment (e.g. a glass desiccator) to control the relative humidity of that sealed 

environment [16]. Microorganisms on surfaces will experience desiccation at lower 

relative humidities, which inhibits their growth and reduces their metabolic activity [17-

20].  This effect is similar to how bacteria may behave when present in a low moisture or 

low water activity food, although the chemical species in foods may make those 

interactions more complex [11, 21-23]. Microorganisms are unable to grow without the 

presence of water regardless of other environmental conditions [17], and a higher relative 

humidity has been shown to better support the growth and survivability of 

microorganisms in closed environments [15, 20, 24].  

Temperature and Bacteria 

Temperature has a clear effect on the survival of bacteria on surfaces and food where 

other conditions do not permit growth, and an increase in temperature will lead to an 

increase rate of inactivation and decrease in survival [25-27]. The same is true for the 

opposite effect and a decrease in temperature will cause a decrease in inactivation rate 

and promote survival [28-32]. 
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The effect of temperature on the growth of bacteria is one of the most widely studied 

factors influencing bacterial behavior. The effect of temperature has been shown in many 

matrices, and generally speaking increased temperature allows for greater metabolic 

activity, which increases microbial growth rate [33, 34]. Bacteria grow more rapidly as 

temperature increases, and a decrease in temperature stops growth [33, 35]. Temperature 

has been repeatedly shown to have a significant effect pathogen growth rate in different 

foods [36-40].  

Survival of Bacteria on Surfaces 

Bacterial survival on surfaces can play an important role in cross contamination. 

Research has shown that inoculation size affects risk of cross contamination [41, 42]. 

Conditions that allow for greater survival potentially lead to a greater bacterial transfer. 

Surface physiochemistry research shows that bacterial survival and/or recovery from 

surfaces is influenced by surface pore size and hydrophobicity, as large pores absorb the 

inoculated bacteria which may decrease apparent survival and/or reduce recovery, while 

hydrophobic surfaces promote slower drying due to larger droplet sizes [10, 43-45]. 

Temperature has a clear effect on the survival of microorganisms on surfaces, as 

microbes survive worse at higher temperature [10, 27, 31, 44]. The composition of the 

substrate containing bacteria inoculated onto surfaces also affects survival [43, 44, 46-

52]. The amount of moisture in the air, measured as relative humidity plays a role in 

survival on non-biologic surfaces, as does food water activity when measuring bacterial 

survival in food products [10-12, 24, 27, 53, 54]. The initial level of bacteria clearly 

effects survival time, as higher concentrations allow for longer survival (or time above 

detection limit) [47, 55]. Degree of attachment and biofilm formation have also been 



4 

 

shown to effect bacterial survival on surfaces [20, 61]. Some metal surfaces, (e.g copper) 

have overt antimicrobial effects, likely due to enzyme inhibition, production of free 

hydroxyl groups and blockage of protein binding sites [1, 5, 56-60]. 

Bacteria and Buffers 

Peptone buffer is made from a solution of digested peptides and saline to create a pH of 

~7.4 environment, at an appropriate osmotic pressure to promote bacterial survival with 

minimal nutrients. Peptone buffers have been used since at least the early 1900’s [62]. 

The concentration of peptone in a buffer has shown to affect microbial survival on 

surfaces  [46, 63].  Studies have evaluated the ability different peptone buffers to recover 

an subsequently culture pathogens like Escherichia coli and Salmonella from foods [63-

65]. Peptone water has been shown to increase the recovery of damaged and desiccated 

cells [65]. 

Phosphate buffered saline (PBS) is made from sodium phosphate and sodium chloride to 

create an environment where the osmatic pressure is approximately equal to that of the 

osmotic pressure inside the cell and a pH of ~7.4. Salmonella survival on surfaces has 

been shown to be greater when suspended in tryptic soy broth (TSB) rather than when 

suspended in PBS, due to the greater nutrient concentration in TSB [43]. Studies have 

shown that Pseudomonas spp., Listeria monocytogenes, and Salmonella can survive for 

over 30 weeks while suspended in PBS [66].  PBS containing added minimal nutrients 

(sodium citrate, lactic and malic acids) has been shown to allow for the growth of 

Pseudomonas and E. coli [67].  

Distilled water is not commonly used to create bacterial suspensions for laboratory 

experiments as it can cause cell lysis due a change in osmotic pressure [68, 69], leading 



5 

 

to the use of peptone buffer or PBS as mentioned above. While bacteria placed in water 

can lyse, the ability of bacterial pathogens to survive in drinking water for extended 

periods demonstrates that reports of bacterial death in water may be greatly exaggerated. 

Studies have been conducted to understand the ability for microorganisms to survive in 

distilled and drinking water [68, 70, 71], with widely varying results ranging from less 

than a 1 log decrease over 5 days for bacteria isolated from lake water, a 2 log decline in 

24 hr for bacteria subcultured on blood agar plates, and a 1 log decline in 1 hr when 

bacterial cells were transferred from foods to distilled water. 

Characteristics of Bacteria Influencing Survival 

Biofilms are groupings of bacteria cells held together by extracellular polymeric 

substances [75, 76] and the ability for form a biofilm is known to potentially influence 

bacterial survival. Biofilms are thought to be a survival mechanism when bacteria are 

attached to surfaces, as bacteria show better survival in biofilms vs. in suspension [61, 

77-79].  Bacteria in biofilms show reduced growth and changes in gene expression [76, 

79, 81]. Biofilm formation has been shown to contribute to long-term survival of 

pathogens in low-moisture environments that can eventually lead to cross-contamination 

of foods [78, 82-85]. Biofilms can also lead to increased surface corrosion [80], reduced 

cleaning effectiveness and poor removal of bacteria from surfaces [76, 86-88]. 

Bacterial attachment or adhesion can be an important factor in bacterial survival on 

surfaces and subsequent risk of cross-contamination. Adhesion is a necessary first step in 

biofilm formation, which is important for reasons discussed above [84, 86, 88]. Bacterial 

adhesion to surfaces can be affected by contact time, temperature, moisture, and surface 

free energy [35, 89-91]. Attachment is also affected by the cells ability to form fimbrae 
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and flagella, as well as cell surface hydrophobicity [75, 76, 92, 93].  Microorganisms 

have been shown to attach more readily to hydrophobic, non-polar surfaces like Teflon or 

plastic vs. metals [93-97]. Pathogens can readily attach to common kitchen surfaces then 

transfer to foods leading to illness [2]. 

Predictive Modeling of Bacterial Survival and Growth 

Predictive models can be a useful way of saving the time and expense of laboratory 

experiments. Microbial models are normally created from laboratory data measuring 

change in bacterial concentration over time. Conventional wisdom holds that bacterial 

inactivation follows a log linear pattern [100]. More recently models have used other 

shapes to describe bacterial survival curves. These include the Weibull and Biphasic 

models which can describe survival curves with “tails” where the rate of decline slows 

over time [101, 102]. GinaFit and DMFit are two freely available tools which a variety of 

log-linear and non-log-linear models [103, 104] Tri-phasic models which describe 

microbial populations that experience a shoulder, decline and tailing, can also be fit 

[104]. Survival models can be used for microbes on surfaces, to improve the 

understanding of the risk of cross contamination [11, 48, 49] as well as for pathogens in 

foods [23, 26, 105-108]. All such models can be used to create secondary models or in 

microbial risk assessment as an aid to risk management [23, 108, 109].  

Predictive growth models are similarly created from bacterial concentration data, where 

those data show an increase in concentration over time. Models for the growth of 

pathogens in foods can be important tools for risk managers [110]. Many growth models 

have historically been created from experiments conducted in laboratory media [34, 111, 

112], while more recently developed models have been created from experiments in 
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foods [113-115]. Factors that are considered in many of these models include, pH, water 

activity, acidulant [112], temperature [38, 116], starting bacterial concentration or food 

type [111]. The Gompertz, Baranyi and Roberts, linear, and tri-phasic models have all 

been used extensively to predict bacterial growth [104, 111, 116-118]. As mentioned in 

the section above, DMFit can be used to model bacterial behavior [104]. The DMfit 

growth modeling tools can fit the Baranyi and Roberts and log linear models to growth 

data. Secondary models can be created which describe the effect of factors like 

temperature, pH and water activity on bacterial growth curves [112, 114, 116]. Combase 

predictor is an online tool containing many such secondary tools [119]. As noted above, 

growth models can be used in quantitative risk assessment to improve prediction and 

guide risk management decisions [109, 110, 120].  

Summary 

Cross-contamination from food contact surfaces to foods can spread pathogenic 

organisms in homes, restaurants and food processing facilities. The survival of 

microorganisms on foods, and contact surfaces can lead to foodborne disease. Our 

understanding of the relationships between the inoculation method and matrix, time, 

temperature, relative humidity, and surfaces characteristics is poorly understood.  An 

improved understanding of these inter-relationships will benefit future experimental 

design, mathematical model development, and future risk-based decision making. 
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Measuring and Modeling the Influence of Relative Humidity, Temperature, and 

Buffer Type on the Survival and Growth of Enterobacter aerogenes 

 

Abstract 

Survival of bacteria on surfaces is an important part in understanding cross-

contamination of food. The effects of temperature and relative humidity appear to play 

important roles in understanding how bacteria survive on surfaces. Surface type and 

inoculum matrix also appear to influence bacterial survival. This study examines how 

relative humidity, temperature, and inoculum matrix effected the survival of non-

pathogenic Enterobacter aerogenes on common surfaces stainless steel, PVC, and 

ceramic tile. While surface type seemed to have little effect on survival, temperature 

showed a clear effect. E. aerogenes survived better at 7°C at 15 and 50% relative 

humidity on all surfaces. Inoculum matrix composition influenced survival and even 

allowed growth under some high RH conditions. Cells suspended in distilled water 

experienced a larger decrease in concentration immediately after inoculation on the 

surface vs. 0.1% peptone or 1% PBS. Cells suspended in 1% PBS showed a sharper 

decline in survival after 120 hours compared to 0.1% peptone both 15 and 50% relative 

humidity but cells in both matrices had similar tailing up to 3 weeks. Cells suspended in 

0.1% peptone showed greatest growth and had the highest population density (~8 log 

CFU/ml) when the organism was inoculated into 10 mL of peptone. Cells suspended in 

PBS or distilled water showed ~2 log CFU/ml increase in concentration. When cells in 
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0.1% peptone were inoculated onto a stainless steel coupon and placed at 100% RH, 

concentration increased to ~7 log CFU/coupon after a lag time of ~24 hours while cells in 

1% PBS increased to ~5 log CFU/coupon followed by a decline over 3 weeks. DMFit and 

GinaFit software could model inactivation on surfaces at all conditions other than 100% 

RH at 21°C. 
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Introduction 

Cross contamination of foods by pathogens present on contaminated surfaces can lead to 

foodborne illness, thus the survival of microorganisms on food contact surfaces is an 

important part of understanding cross-contamination risk. Many pathogenic organisms 

including Escherichia coli and Salmonella can survive for long periods of time on non-

biological surfaces [5, 10, 48, 53, 55]. Temperature [10, 11, 27, 31, 44], relative humidity 

(RH) [11, 14, 20], surface type [10, 43, 44] and microbial matrix [46, 48-50] all appear to 

play a role in bacterial survival on surfaces. While some studies have documented the 

effect of temperature on bacterial survival, little research has addressed the impact of 

relative humidity on survival, especially in interaction with temperature. Stainless steel, 

ceramic tile, and polyvinyl chloride are common surfaces found in homes, restaurants and 

food processing facilities. Surface free energy, hydrophobicity and porosity have all been 

seen to effect bacteria attachment ability and biofilm formation, which can be important 

factors in bacterial survival on surfaces [2, 75, 76, 89, 91, 97, 121, 122]. Understanding 

survival of bacteria on these surfaces can help to create a better understanding of when 

cross-contamination can occur to help manage the risk foodborne disease [123]. 

Predictive primary and secondary models for growth and survival have been incorporated 

into risk assessments to better understand likelihood of exposure [108-110, 120]. 

Advancement in the use of predictive survival models may assist in incorporating models 

for cross-contamination into quantitative microbial risk assessment.  

Materials and Methods 

Preparation of Surfaces 
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Stainless steel (0.018” thickness, 16 gauge; onlinemetals.com, Seattle, WA), polyvinyl 

chloride (1/8” thickness; McMaster-Carr, Robinsville, NJ), and ceramic tile (Brancacci 

Windrift Beige, Daltile, Dallas, TX) were purchased online or locally and cut to 5cm x 

5cm tiles. Tiles were sprayed with 70% ethanol, allowed to air dry, wrapped in aluminum 

foil, autoclaved, sprayed again with 70% ethanol and allowed to dry prior to inoculation.  

Preparation of Bacterial Strains 

Enterobacter aerogenes strain B199A, a non-pathogenic microorganism that has 

previously shown similar attachment characteristics as Salmonella to chicken skin was 

used for all experiments (Vivolac Cultures, Indianapolis, Ind) [98]. This strain is resistant 

to nalidixic acid and control experiments showed that no nalidixic acid resistant E. 

aerogenes were found above the detection limit on any surfaces after disinfection. 

Cultures were prepared in a similar method that has been done previously [98, 99]. A 

frozen stock of E. aerogenes in 80% glycerol solution was streaked onto tryptic soy agar 

(Difco, BD, Sparks, MD) containing 50 µg/ml of nalidixic acid (Sigma Chemical Co., St. 

Louis, Mo.), referred to as TSA-na). One colony was grown overnight in 10 ml tryptic 

soy broth (Difco, BD, Sparks, MD) containing 50 µg /ml of nalidixic acid and incubated 

at 37°C for 24 hours. Inoculum matrices were of three different types as described below.  

Cells were harvested from the overnight culture in TSA-na by centrifuging at 5,000 x g 

for 10 min, and washed twice in either 0.1% peptone solution (Difco, BD), 1% phosphate 

buffered saline solution (Difco, BD), or sterile distilled water. A final concentration of 

108 CFU/ml was verified on TSA-na plates for each matrix. 

Preparation of Controlled Environment 



13 

 

Lithium chloride or potassium carbonate (each 230 g) were slowly mixed into 100 ml of 

water while being heated slightly to create saturated salt solutions for 15 and 50% RH 

respectively. Potassium sulfate salt (250 g) was mixed into 100ml of water to create the 

100% RH environment. Salt solutions were placed in the bottom of desiccators and given 

24 hours for the relative humidity to stabilize. Vaseline was used around the rim of the 

desiccator to promote a water tight seal. Data loggers (LASCAR Electronics, Erie, PA) 

for RH and temperature were used to monitor the environment. Loggers were sensitive to 

0.5 (+/- 1) °C and 1(+/-2) % RH. 

Survival Based on Surface and Temperatures 

Three surfaces types (stainless steel, PVC, and ceramic tile) were inoculated with 100 µl 

containing 10^8 CFU/ml 0.1% peptone and allowed to dry for approximately 2 hours for 

an initial concentration of ~10^7 CFU per coupon. Coupons were then placed in 

desiccators containing saturated salt solutions at 15, 50 or 100% relative humidity. 

Desiccators were placed either on the bench top (21 °C) or in a walk-in cooler (7 °C). 

Tiles were removed the desiccator at 10 time points (0s, 8h, 1d, 2d, 3d, 5d, 7d, 10d, 14d, 

21d). Each coupon was placed in a sterile 207 ml Whirl-Pak sampling bag (Nasco, Fort 

Atkinson, WI) with 10 ml of 0.1% peptone solution. The rub-shake method was used for 

1 minute to fully detach the microorganisms from the surfaces [10]. Dilutions were plated 

on TSA-na plates and incubated at 37°C for 24 hours and colonies were counted. 

Populations were expressed in CFU per surface.   

Survival Based on Matrix Type 

Survival of E. aerogenes was then tested on only stainless steel surfaces with different 

matrix types. As described above, cultures were washed with either 0.1% peptone, 1% 
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PBS or sterile distilled water and inoculated onto stainless steel surfaces and placed in a 

desiccator containing saturated salt solutions at either 15, 50, 100% relative humidity. 

Desiccators were placed on the lab benchtop (21°C), and tiles were sampled at 10 time 

points (0s, 8h, 1d, 2d, 3d, 5d, 7d, 10d, 14d, 21d) for peptone and PBS samples and over 

10 more frequent time points (0h, 4h, 8h, 12h, 24h, 36h, 48h, 72h, 120h, 168h) for sterile 

distilled water samples. Surfaces were placed in sterile Whirl-Pak bags containing 10ml 

of the same matrix that was used for inoculation, and the rub-shake method as previously 

described was used to detach microorganisms from surface then diluted and plated on the 

TSA-na plates. Colonies were counted and expressed as log CFU per surface. 

Growth in Different Buffers 

Sterile centrifuge tubes (2 ml, Thermo Fisher Scientific, Waltham, MA) were used to 

hold different matrices for growth of bacteria. E. aerogenes was inoculated into the 

centrifuge tubes at concentrations of ~2, 4, 6 and 8 CFU/ml in each diluent (0.1% 

peptone, 1% PBS, and sterile distilled water). Centrifuge tubes were capped and held at 

21 °C and samples at 6 time points (0h, 4h, 8h, 1d, 2d, 3d) for peptone and PBS or 6 

more frequent time points (0h, 8h, 1d, 2d , 3d, and 5d) for distilled water. Tubes were 

vortexed for 30 seconds to distribute bacteria in the matrix prior to sampling. Samples 

were plated on TSA-na and colonies were counted and transformed to CFU/ml. 

Survival at Different Starting Concentrations at a High Humidity  

E. aerogenes was inoculated onto stainless steel coupons at starting concentrations of ~2, 

4, 6 log CFU/surface with 0.1% peptone and 1% PBS and placed in desiccators 

containing saturated potassium sulfate salt solutions to insure 100% RH. Coupons were 

removed from the desiccators at 10 time points (0s, 8h, 1d, 2d, 3d, 5d, 7d, 10d, 14d, 21d). 
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Each coupon was placed in a sterile Whirl-Pak bag with 10 ml of 0.1% peptone or PBS 

solution. The rub-shake method as previously described was again applied for 1 min to 

fully detach the bacteria from the surfaces as described in the previous section. Dilutions 

were plated on TSA-na plates and incubated at 37°C for 24 hours and colonies were 

counted. Populations were expressed in CFU per surface.   

Data Analysis 

Predictive models were created using the Microsoft Excel add-in tool GinaFit [103] 

(Katholieke Universiteit Leuven, Leuven, Belgium) and DMfit [104](Institute of Food 

Research, Norwich, UK). GinaFit was used for inactivation models while DMfit was 

used for growth and inactivation models. Statistical analysis for standard deviation and 

variance was done using Excel (Microsoft, Redmond, WA). 

Results 

Survival Based on Surface and Temperatures 

E. aerogenes survival generally showed a decline followed by a plateau, and could be 

modeled using log linear, Biphasic, Weibull, or Baranyi and Roberts models. R2 values 

for the primary models for experiments conducted at 15 and 50% relative humidity 

ranged from 0.73 to 0.96 indicating relatively good fit (Table 1 and 2). Goodness of fit 

values for survival at 100% RH were significantly lower, indicating the inability to use 

this data fitting model for these conditions (Table 1 and 2). Final concentration of E. 

aerogenes at 7°C were 4.5, 4.9 and 5.0 log CFU/surface after 21 days at 15, 50 and 100% 

RH for stainless steel, 5.1, 5.4 and 5.5 log CFU/surface after 21 days at 15, 50, and 100% 

RH for PVC tiles and 4.7, 5.2and 5.9 log CFU/surface at 15, 50 and 100% RH for 

ceramic tiles respectively (Figure 1). E. aerogenes generally did not survive as well at 
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21°C with final concentrations of 1.3 and 2.7 CFU/tile at 15 and 50% RH respectively, 

but showed either growth or injury recovery at 100% RH, with a final concentration of 

6.5 log CFU/surface for stainless steel tiles, with final concentrations after 21 days of 3.4, 

3.2 and 7.0 log CFU/surface for PVC tiles at 15, 50, and 100% RH and 2.8, 3.2, and 6.7 

log CFU/surface at 15, 50, and 100% RH after 21 days for ceramic tiles (Figure 1). 

Survival Based on Matrix Type 

As shown in the previous sections E. aerogenes in 0.1% peptone declined to final 

concentrations of 1.3 and 2.7 CFU/tile at 15 and 50% RH respectively, but showed either 

growth or injury recovery at 100% RH, with a final concentration of 6.5 log CFU/surface 

for stainless steel tiles (Figure 2). Final concentrations of E. aerogenes at 21°C were 1.2 

and 1.5 log CFU per surface at 15 and 50% RH while there was very little reduction at 

100% RH as there was a final concentration of 6.7 log CFU per surface when using 1% 

PBS (Figure 2). E. aerogenes showed a more rapid decline after 120 hours when using 

1% PBS to 2.7 and 2.5 log CFU/coupon at 15 and 50% RH as compared to 3.5 and 4.3 

log CFU/coupon at 15 and 50% RH for 0.1% peptone. When using the sterile distilled 

water as the matrix there was a greater reduction after the initial 2 hours drying on 

stainless steel from an initial concentration of ~5 log CFU at each RH and there was a 

more rapid reduction in the bacteria on the surfaces. This resulted in final concentrations 

of 1.6, 1.6, and 2.9 log CFU per surface after only 7 days (Figure 2). Model fit values can 

be found on Table 3 for DMFit and Table 4 for GinaFit. DMFit was able to model 

survival adequately for all conditions other than at a RH of 100% based on R2 values of 

greater than 0.76 (Table 3). Survival using distilled water had an R2 value of 0.68 while 

peptone and PBS showed negative R2 values (Table 3). Models using GinaFit showed a 
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similar trend as survival at 100% RH was not adequately modeled based on R2 and 

RSME values (Table 4). 

Growth in Different Buffers 

 E. aerogenes grew best from the lowest starting concentrations in 0.1% peptone 

increasing from ~2, 4, and 6 log CFU to the maximum population density of ~8 log 

CFU/ml in about 2 days (Figure 3). The starting concentration of ~8 log CFU showed no 

change over 3 days. E. aerogenes showed either no change or a modest increase in 

concentration in PBS. Starting concentrations of ~2 and 4 log CFU grew to a maximum 

of 5.5 log CFU each after 3 days in PBS, while starting concentrations of ~6 and 8 CFU 

showed no change over 3 days (Figure 3). E. aerogenes in distilled water showed the 

least increase with the lowest starting concentration of ~2 log increasing to 4.5 log CFU 

after 5 days (Figure 3). The ~4 log starting concentration showed a slight increase to a 

maximum of 5.5 log CFU (Figure 3). E. aerogenes in distilled water at the ~6 and 8 

starting concentrations showed no change over 3 days (Figure 3). The Baranyi and 

Roberts model did a good job of fitting the data for bacterial growth in 0.1% peptone at 

the starting concentrations of 2, 4, and 6, and these models all had R2 values greater than 

0.96 and SE of fit of less than 0.18 (Table 5). DMFit models for the highest starting 

concentration for peptone had an R2 value of only 0.37 (Table 5). DMfit was able to 

model the growth in PBS at low starting concentrations of ~2 and 4 log CFU and these 

models had R2 values of 0.95 or greater with SE of fit values below 0.11 (Table 5). The 

higher starting concentrations of ~6 and 8 log CFU were not well fitted using DMfit and 

these models had R2 values of only 0.69 (Table 5). A similar pattern was seen when 

DMfit was used to model the data for the growth in distilled water. The lower two 
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starting concentrations were well fit with R2 values of greater than 0.97 while models for 

the higher two starting concentrations had R2 values of less than 0.47 (Table 5).  

Survival at Different Starting Concentrations at a High Humidity 

When E. aerogenes was inoculated onto the stainless steel surface and incubated at 21°C 

and 100% RH at a starting concentration of  ~6 log CFU it displayed an interesting 

pattern of decreasing to 4.9 log CFU per surface after 24 hours to then increasing back to 

6 log CFU per surface after 21 days (Figure 4).  The two lower starting concentrations of 

~2 and 4 showed similar characteristics with a lag or decline for 24 hours followed by an 

increase to a maximum of ~7 log CFU after 72 hours followed by a tailing effect through 

21 days (Figure 4). When E. aerogenes was inoculated onto surfaces in PBS and 

incubated at 21°C at 100% RH there was no real dramatic change in population as  E. 

aerogenes maintained a concentration of 6-7 log CFU over the 21 days (Figure 4). When 

a lower starting concentration was used, an increase was seen after 8 hours. With a 

starting concentration of ~3 log CFU the population increased over 120 hours to a 

maximum population of ~5 log CFU followed by a decline to 2.8 log CFU after 21 days 

(Figure 4). A similar pattern was seen with a starting concentration of ~1 log CFU where 

there was an increase to ~5 log CFU over 14 days followed by a decline to a final 

concentration of 4 log CFU after 21 days (Figure 4).  

Discussion 

Survival Based on Surface and Temperatures 

Our results show that the surface types studied had no substantial influence on the 

survival of microorganisms despite differences in pore sizes and hydrophobicity [10, 75, 

124]. Our results do clearly show the potentially complex interactions between 
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temperature and RH on survival of microorganisms. Our results are in agreement with 

other published research that shows that temperature clearly impacts bacterial survival on 

surfaces and lower temperatures result in longer survival times [10, 11, 27, 31, 44]. Our 

results support the observation that RH has little effect on survival at lower temperatures 

[11]. E. aerogenes survived better at 21 °C in higher humidities environments, most 

likely because increased atmospheric moisture gives a less stressful environment [20]. 

There was little difference between E. aerogenes survival at 15 and 50% at 21°C most 

likely because both these RH conditions are extreme enough to effect cell function [3, 11, 

19, 20]. More research is clearly needed to understand the physiology of bacteria on the 

surfaces at high (~100%) RH and warm (21°C) conditions.  

Predictive models were able to accurately describe the survival curves of this organism at 

all conditions other than 100% RH at 21°C on all surfaces, based on model adequacy 

values (Table 1 and 2). The Weibull and Biphasic model both showed the best fits based 

on R2 and RMSE statistics. The Weibull model has greater parsimony since it has one 

fewer parameter than the Biphasic model and has the additional advantage of being used 

in several other survival studies allowing for stronger comparison [22, 23, 48, 49, 124]. 

Survival Based on Matrix Type 

Survival curves of E. aerogenes at 15 and 50% followed a similar shape, with an initial 

sharp linear decline, followed by a tailing effect for all three buffer types (Figure 3). 

These effects are likely similar as discussed above because both RH values are similarly 

extreme and stressful to cell functions. Other research has also shown that matrix type 

and solute concentration does affect how organisms survive in desiccated states on 

surfaces [48-50]. While solute concentration has been shown previously to affect 
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inactivation rate of microorganisms during survival studies [43, 46], our results found 

little difference between 1% PBS and 0.1% peptone (Figure 3). This could be because the 

difference in available nutrients or osmotic pressure is so minimal between the two that 

once the organism has become desiccated the differences do not matter. Our models 

clearly show that experiments in peptone and PBS show a similar kmax values for rate of 

decline, while distilled water has a greater kmax value, indicating faster decline (Table 

4). E. aerogenes survival patterns changed once RH increased to 100% and there was 

either no reduction (1% PBS) or decline followed by recovery (0.1% peptone). We 

believe that in the 100% RH experiments that condensation of moisture onto the surfaces 

created a rehydrating effect for both the dried PBS and peptone solutions creating an 

environment promoting long term bacterial survival [66]. Distilled water was clearly a 

more stressful environment leading to lower initial concentrations and subsequently 

shorter survival time but with similarly shaped survival curve albeit with a greater 

reduction rate (Table 3 and 4). Distilled water has been shown to potentially lyse cells 

because of changes in osmotic pressure, which is why buffers, salts or proteins are 

traditionally added to promote survival [67, 68]. Our experiments which show that E. 

aerogenes can survive on surfaces suspended in just distilled water is notable for two 

reasons: first it shows that bacteria can survive on surfaces for some time even in the 

absence of any nutrients and do constitute a potential for cross-contamination; and second 

that distilled water may be a preferred matrix for inoculation of bacteria onto surfaces in 

high RH conditions since other matrices seem to promote growth. More RH should be 

tested to fully understand the effect that RH has on bacteria survival, but experiments 

using distilled water may give a more accurate picture of how RH effects bacterial 
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survival, as the lack of salts or proteins seem to limit experimental artifacts with other 

systems at high RH conditions.  

DMFit software modeled the PBS and peptone survival at 100% RH as growth as 

indicated by the positive maximum rate values (Table 3), while the GinaFit software 

showed a positive rate for the log linear model and was unable to model using the 

Biphasic and Weibull (Table 4). The Weibull and Biphasic model both showed the best 

fits based on various model adequacy statistics. As noted above, the Weibull model is 

more parsimonious that the Biphasic model and allows for easily compared to other 

survival studies which also used this model [22, 23, 48, 49, 124]. 

Growth in Different Matrices 

Matrix type has shown a strong effect on the growth of bacteria, and a greater 

concentration of nutrients (up to a point) will lead to more rapid growth and higher final 

concentrations [125]. The 0.1% peptone buffer matrix showed the greatest ability to 

support bacterial growth in our experiments (up to ~8 log CFU/ml). All starting 

concentrations below this level were able to grow to the ~8 log CFU population limit in 

~24 hours. The ability for bacteria to grow in 1% PBS was initially surprising but has 

also shown in some studies [66, 67]. Our results agreed with these studies that show that 

buffer containing a minimal concentration of minerals at an appropriate pH can support 

bacterial growth [70, 126]. The E. aerogenes cells in 1% PBS did require a longer time to 

reach and overall lower maximum population density (~5 log CFU/ml) compared to 0.1% 

peptone. This is not unexpected since 1% PBS represent a harsher, less nutrient dense 

environment compared to 0.1% peptone.  The most surprising results were the population 

increases seen when E. aerogenes were inoculated into sterile distilled water. Distilled 
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water was able to support the lowest concentration of E. aerogenes (~4 log CFU/ml) 

achieved with the slowest overall growth rate, with cells at the lowest starting 

concentration requiring 5 days to reach this population density. We hypothesize two 

possible explanations for this startling result. The first is that there are enough nutrients 

left in the water to support growth even after the distilling process [127]. Studies have 

shown that tap, lake, and drinking water contain enough available carbon and other 

required nutrients to support bacterial growth [72, 129-135]. The second is that we are 

observing a cannibalization effect, where cells that survive the initial die-off are able to 

“cannibalize” nutrients from cells that died [67, 128]. Further research into 

concentrations of potential nutrient in the water after the distilling process, and 

experiments to explore this cannibalization effect should be conducted.  

Survival at Different Starting Concentrations at High Humidity 

There is a clear effect on bacterial survival when surfaces are stored at 100% RH [20]. 

There was some effect when the highest concentration of E. aerogenes were inoculated 

onto the stainless-steel surfaces in 0.1% peptone, as there was a decrease and then an 

increase after a few days.  E. aerogenes increased to a concentration that was equivalent 

to the maximum population density, which, in this case, is ~7 log CFU/surface [136-139]. 

These results showed the need to test a lower starting concentration of E. aerogenes in an 

effort to determine whether the results represented injury and recovery or true growth. 

When E. aerogenes in 0.1% peptone were inoculated at concentrations of ~2 and 4 log 

CFU per surface there was a clear increase (i.e. >1 log increase) after only 24 hours of lag 

or decline (Figure 4). Experiments in liquid 0.1% peptone (not surfaces) we also 

observed an increase in concentration similar to what was seen on surfaces (Figure 3). 
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These results suggest that 0.1% peptone provides enough nutrients for E. aerogenes 

growth on the surface as long as the high RH conditions prevent dehydration. We 

observed clear moisture condensation on the surface of the stainless steel coupon at the 

inoculation site that would suggest that RH from the atmosphere is being pulled to this 

site creating conditions that allow E. aerogenes to grow [19]. The increase from the lower 

E. aerogenes starting concentrations in the 1% PBS inoculum was similar to that seen in 

0.1% peptone: a lag period of a few days, followed by an increase to the (albeit lower) 

maximum population density. The difference seen in 1% PBS is that after the maximum 

population density is reached, the population in 1% PBS declines (Figure 4), unlike in 

0.1% peptone for reasons that likely related to the more minimal nature of the 1% PBS 

matrix.  

Summary 

It has become increasingly important to understand the survival of microorganisms on 

foods, and food contact surfaces to aid in reducing foodborne disease. Our understanding 

of the relationships between the inoculation method and matrix, time, temperature, 

relative humidity, and surfaces characteristics is poorly understood.  An improved 

understanding of these inter-relationships will benefit future experimental design, 

mathematical model development, and future risk-based decision making. This research 

has examined how relative humidity, temperature, and inoculum matrix effected the 

survival of non-pathogenic Enterobacter aerogenes on surfaces and has revealed some 

interesting findings that need to be replicated with other bacteria and viruses. While 

surface type seemed to have little effect on survival, temperature (as expected) showed a 

clear effect with better survival at 7°C than 21 °C. Survival patterns at 100% RH were 
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dramatically different that survival at 15% and 50% RH. Weibull and Biphasic models 

could successfully describe inactivation on surfaces at all conditions other than 100% RH 

at 21°C. Inoculum matrix composition influenced survival and even allowed growth 

under some 100% RH conditions in 0.1% peptone and 1% PBS when cells were 

inoculated at low levels onto stainless steel.  This finding has important implications for 

microbiologists doing experiments with surface inoculation onto foods or food contact 

surfaces because it shows that depending on the inoculum matrix used, if RH is high or 

uncontrolled, growth may be observed because of the effect of the inoculum matrix itself. 

Subsequent experiments where E. aerogenes was inoculated into 0.1% peptone, 1% PBS 

and distilled water all showed the ability of the organism to increase in concentration to a 

degree that would typically be regarded as growth. Further research is needed to 

determine if the apparent growth in distilled water is due to available nutrients, 

cannibalism by surviving cells, or is not true growth but rather an artifact of the method. 
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Table 1. Regression Parameters and Goodness-of-Fit values for the Baranyi and Roberts 

with no lag model using DMFit software for survival on different surfaces at different 

temperatures.  

 

  

Temperature Surface RH R-square: SE of Fit: Initial value Maximum Rate Final Value 
21°C SS 15% 0.909 0.47 5.959 ± 0.277 -0.0203 ± 0.00399 2.358 ± 0.273 
  50% 0.809 0.505 5.998 ± 0.295 -0.0139 ± 0.00407 3.432 ± 0.298 
  100% -0.109 0.587 5.58 ± 0.325 0.00197 ± 0.00353 6.08 ± 0.421 
 PVC 15% 0.815 0.436 6.194 ± 0.243 -0.0099 ± 0.0028 3.884 ± 0.297 
  50% 0.768 0.502 6.257 ± 0.37 -0.0352 ± 0.0134 3.911 ± 0.218 
  100% 0.218 0.892 5.427 ± 0.482 0.00601 ± 0.00487 7.0186 ± 0.658 
 Tile 15% 0.868 0.414 6.174 ± 0.251 -0.016 ± 0.00405 3.6 ± 0.232 
  50% 0.73 0.498 5.664 ± 0.245 -0.00599 ± 0.0017 3.184 ± 0.582 
  100% 0.412 0.448 5.542 ± 0.27 0.00624 ± 0.00425 6.569 ± 0.253 
7°C SS 15% 0.784 0.277 6.305 ± 0.211 -0.0256 ± 0.00928 4.927 ± 0.114 
  50% 0.962 0.0929 6.195 ± 0.0667 -0.0158 ± 0.00213 5.0321 ± 0.0413 
  100% 0.528 0.346 6.184 ± 0.168 -0.00266 ± 0.00113 4.964 ± 0.541 
 PVC 15% 0.858 0.221 6.519 ± 0.12 -0.00542 ± 0.00125 5.135 ± 0.159 
  50% 0.893 0.146 6.738 ± 0.111 -0.0198 ± 0.0048 5.659 ± 0.0603 
  100% 0.836 0.265 6.753 ± 0.202 -0.0282 ± 0.00867 5.206 ± 0.11 
 Tile 15% 0.923 0.19 6.419 ± 0.11 -0.00842 ± 0.00148 4.826 ± 0.113 
  50% 0.819 0.194 6.561 ± 0.158 -0.0243 ± 0.00958 5.47 ± 0.0776 
  100% 0.614 0.355 6.33 ± 0.25 -0.0148 ± 0.00728 5.159 ± 0.159 
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Table 2. Regression parameters for the linear, biphasic, and Weibull models using 

GinaFit software for survival on different surfaces at different temperatures.  

Temp Surface RH  kmax f kmax1 kmax2 delta p LOG10(N0) 
21°C SS 15% Linear 0.020 - - - - - 5.309 
   Biphasic - 0.994 0.072 0.011 - - 6.191 
   Weibull - - - - 35.157 0.561 5.853 
  50% Linear 0.015 - - - - - 5.587 
   Biphasic - 0.969 0.086 0.009 - - 6.379 
   Weibull - - - - 12.536 0.357 6.648 
  100% Linear -0.003 - - - - - 5.632 
   Biphasic -0.003 - - - - - 5.632 
   Weibull -0.003 - - - - - 5.632 
 PVC 15% Linear 0.013 - - - - - 5.921 
   Biphasic - 0.948 0.087 0.009 - - 6.624 
   Weibull - - - - 18.962 0.360 6.836 
  50% Linear 0.012 - - - - - 5.350 
   Biphasic - 0.989 0.406 0.008 - - 6.812 
   Weibull - - - - 10.383 0.303 6.456 
  100% Linear -0.008 - - - - - 5.601 
   Biphasic -0.008 - - - - - 5.601 
   Weibull -0.008 - - - - - 5.601 
 Tile 15% Linear 0.010 - - - - - 5.682 
   Biphasic - 0.969 0.063 0.009 - - 6.350 
   Weibull - - - - 20.899 0.406 6.580 
  50% Linear 0.012 - - - - - 5.595 
   Biphasic - 0.944 0.571 0.010 - - 6.587 
   Weibull - - - - 19.754 0.340 6.472 
  100% Linear -0.005 - - - - - 5.754 
   Biphasic -0.005 - - - - - 5.754 
   Weibull -0.005 - - - - - 5.754 
7°C SS 15% Linear 0.010 - - - - - 5.702 
   Biphasic - 0.936 0.142 0.003 - - 6.484 
   Weibull - - - - 54.212 0.260 6.346 
  50% Linear 0.005 - - - - - 5.703 
   Biphasic - 0.921 0.054 0.001 - - 6.238 
   Weibull - - - - 75.500 0.237 6.367 
  100% Linear 0.006 - - - - - 6.165 
   Biphasic - 0.757 0.034 0.003 - - 6.423 
   Weibull - - - - 306.339 0.542 6.374 
 PVC 15% Linear 0.007 - - - - - 6.360 
   Biphasic - 0.850 0.058 0.004 - - 6.788 
   Weibull - - - - 92.329 0.371 6.878 
  50% Linear 0.005 - - - - - 6.237 
   Biphasic - 0.890 0.070 0.002 - - 6.770 
   Weibull - - - - 122.904 0.243 6.815 
  100% Linear 0.004 - - - - - 5.865 
   Biphasic - 0.974 0.081 0.000 - - 6.793 
e   Weibull - - - - 8.216 0.155 6.940 
 Tile 15% Linear 0.008 - - - - - 6.129 
   Biphasic - 0.917 0.047 0.004 - - 6.602 
   Weibull - - - - 56.669 0.362 6.762 
  50% Linear 0.004 - - - - - 6.020 
   Biphasic - 0.897 0.228 0.003 - - 6.739 
   Weibull - - - - 57.331 0.182 6.733 
  100% Linear 0.002 - - - - - 5.664 
   Biphasic - 0.939 0.047 0.000 - - 6.371 
   Weibull - - - - 195.730 0.199 6.325 
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Table 3. Goodness-of-fit values for the linear, biphasic, and Weibull models using 

GinaFit software for survival on different surfaces at different temperatures.  

Temp Surface RH  R-square R-square ADJ MSE RMSE 
21°C SS 15% Linear 0.824 0.802 0.480 0.693 
   Biphasic 0.983 0.975 0.060 0.246 
   Weibull 0.954 0.941 0.144 0.379 
  50% Linear 0.811 0.787 0.284 0.533 
   Biphasic 0.968 0.952 0.064 0.254 
   Weibull 0.972 0.964 0.048 0.219 
  100% Linear 0.126 0.017 0.306 0.553 
   Biphasic - - - - 
   Weibull - - - - 
 PVC 15% Linear 0.808 0.784 0.222 0.471 
   Biphasic 0.955 0.932 0.069 0.264 
   Weibull 0.963 0.953 0.048 0.219 
  50% Linear 0.644 0.599 0.435 0.660 
   Biphasic 0.954 0.931 0.075 0.274 
   Weibull 0.947 0.931 0.074 0.273 
  100% Linear 0.343 0.261 0.752 0.867 
   Biphasic - - - - 
   Weibull - - - - 
 Tile 15% Linear 0.829 0.808 0.249 0.499 
   Biphasic 0.976 0.963 0.048 0.218 
   Weibull 0.971 0.963 0.049 0.220 
  50% Linear 0.780 0.752 0.228 0.477 
   Biphasic 0.928 0.892 0.099 0.315 
   Weibull 0.901 0.872 0.117 0.343 
  100% Linear 0.450 0.381 0.212 0.460 
   Biphasic - - - - 
   Weibull - - - - 
7°C SS 15% Linear 0.596 0.546 0.161 0.401 
   Biphasic 0.958 0.937 0.022 0.149 
   Weibull 0.893 0.862 0.049 0.221 
  50% Linear 0.533 0.475 0.120 0.347 
   Biphasic 0.981 0.972 0.006 0.080 
   Weibull 0.918 0.894 0.024 0.156 
  100% Linear 0.629 0.583 0.106 0.325 
   Biphasic 0.730 0.595 0.103 0.320 
   Weibull 0.686 0.597 0.102 0.320 
 PVC 15% Linear 0.785 0.758 0.083 0.289 
   Biphasic 0.953 0.930 0.024 0.155 
   Weibull 0.957 0.945 0.019 0.138 
  50% Linear 0.538 0.480 0.103 0.321 
   Biphasic 0.943 0.914 0.017 0.131 
   Weibull 0.859 0.819 0.036 0.189 
  100% Linear 0.187 0.086 0.392 0.626 
   Biphasic 0.879 0.819 0.078 0.279 
   Weibull 0.688 0.599 0.172 0.414 
 Tile 15% Linear 0.770 0.741 0.121 0.347 
   Biphasic 0.971 0.956 0.020 0.143 
   Weibull 0.971 0.963 0.017 0.131 
  50% Linear 0.496 0.433 0.118 0.343 
   Biphasic 0.908 0.861 0.029 0.170 
   Weibull 0.924 0.902 0.020 0.143 
  100% Linear 0.070 -0.046 0.341 0.584 
   Biphasic 0.683 0.525 0.155 0.393 
   Weibull 0.374 0.195 0.262 0.512 
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Table 4. Regression parameters and goodness-of-fit data for the Baranyi and Roberts 

with no lag model using DMFit software for survival on stainless steel using different 

buffers.  

Buffer RH R-Square SE of Fit Intial Value Lag/Shoulder Maximum Rate Final Value 
PEP 15% 0.909 0.47 5.959 ± 0.277 - -0.0203 ± 0.00399 2.358 ± 0.273 
 50% 0.809 0.505 5.998 ± 0.295 - -0.0139 ± 0.00407 3.432 ± 0.298 
 100% -0.109 0.587 5.58 ± 0.325 - 0.00197 ± 0.00353 6.08 ± 0.421 
PBS 15% 0.816 0.682 5.949 ± 0.467 - -0.0358 ± 0.0119 2.402 ± 0.314 
 50% 0.889 0.5 6.0849 ± 0.355 - -0.0459 ± 0.0107 2.552 ± 0.223 
 100% -0.112 0.234 6.489 ± 0.0834 407.377 ± 721.368 0.00265 ± 0.0195 - 
DW 15% 0.901 0.357 4.495 ± 0.19 - -0.0312 ± 0.00582 1.672 ± 0.26 
 50% 0.764 0.519 4.271 ± 0.318 - -0.0497 ± 0.0166 1.944 ± 0.292 
 100% 0.68 0.364 4.697 ± 0.32 - -0.126 ± 0.0529 3.132 ± 0.148 
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Table 5. Regression parameters for the linear, biphasic, and Weibull models using 

GinaFit software for survival on stainless steel using different buffers.  

Buffer RH  kmax f kmax1 kmax2 delta p LOG10(N0) 
PEP 15% Linear 0.020 - - - - - 5.309 
  Biphasic - 0.994 0.072 0.011 - - 6.191 
  Weibull - - - - 35.157 0.561 5.853 
 50% Linear 0.015 - - - - - 5.587 
  Biphasic - 0.969 0.086 0.009 - - 6.379 
  Weibull - - - - 12.536 0.357 6.648 
 100% Linear -0.003 - - - - - 5.632 
  Biphasic -0.003 - - - - - 5.632 
  Weibull -0.003 - - - - - 5.632 
PBS 15% Linear 0.019 - - - - - 4.889 
  Biphasic - 0.996 0.171 0.012 - - 6.321 
  Weibull - - - - 2.876 0.317 6.553 
 50% Linear 0.016 - - - - - 4.717 
  Biphasic - 0.999 0.110 0.010 - - 6.120 
  Weibull - - - - 28.516 0.490 5.513 
 100% Linear 0.000 - - - - - 6.500 
  Biphasic 0.000 - - - - - 6.500 
  Weibull 0.000 - - - - - 6.500 
DW 15% Linear 0.043 - - - - - 4.223 
  Biphasic - 0.961 0.115 0.025 - - 4.657 
  Weibull - - - - 9.854 0.450 5.009 
 50% Linear 0.036 - - - - - 3.716 
  Biphasic - 0.978 0.365 0.023 - - 4.727 
  Weibull - - - - 2.675 0.299 4.921 
 100% Linear 0.012 - - - - - 3.729 
  Biphasic - 0.975 0.361 0.000 - - 4.740 
  Weibull - - - - 0.912 0.116 4.830 
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Table 6. Goodness-of-fit values for the linear, biphasic, and Weibull models using 

GinaFit software for survival on stainless steel using different buffers.  

Buffer RH  R-square R-square ADJ MSE RMSE 
PEP 15% Linear 0.824 0.802 0.480 0.693 
  Biphasic 0.983 0.975 0.060 0.246 
  Weibull 0.954 0.941 0.144 0.379 
 50% Linear 0.811 0.787 0.284 0.533 
  Biphasic 0.968 0.952 0.064 0.254 
  Weibull 0.972 0.964 0.048 0.219 
 100% Linear 0.126 0.017 0.306 0.553 
  Biphasic - - - - 
  Weibull - - - - 
PBS 15% Linear 0.727 0.693 0.776 0.881 
  Biphasic 0.951 0.927 0.185 0.430 
  Weibull 0.943 0.927 0.184 0.429 
 50% Linear 0.605 0.556 1.003 1.002 
  Biphasic 0.945 0.917 0.187 0.433 
  Weibull 0.799 0.742 0.584 0.764 
 100% Linear 0.006 -0.118 0.055 0.235 
  Biphasic - - - - 
  Weibull - - - - 
DW 15% Linear 0.849 0.831 0.219 0.468 
  Biphasic 0.940 0.910 0.116 0.340 
  Weibull 0.955 0.942 0.074 0.272 
 50% Linear 0.679 0.639 0.413 0.643 
  Biphasic 0.889 0.834 0.190 0.436 
  Weibull 0.908 0.881 0.136 0.369 
 100% Linear 0.217 0.119 0.365 0.604 
  Biphasic 0.751 0.626 0.155 0.393 
  Weibull 0.657 0.559 0.183 0.427 
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Table 7. Growth parameters and goodness-of-fit data for the Baranyi and Roberts model 

using DMFit software for growth using different buffers.  

Buffer R-Squared SE of Fit Initial Value  Lag/Shoulder Maximum Rate Final Value Tmax 
PEP 0.379 0.12 8.452 ± 0.116 - 0.0375 ± 0.0329 8.747 ± 0.0683 - 
 0.962 0.117 6.761 ± 0.0832 - 0.0406 ± 0.00683 8.0886 ± 0.0837 - 
 0.988 0.182 4.681 ± 0.169 4.804 ± 3.102 0.134 ± 0.02 8.195 ± 0.129 - 
 0.984 0.296 2.505 ± 0.285 2.759 ± 2.566 0.217 ± 0.0317 7.497 ± 0.209 - 
PBS 0.685 0.0671 8.478 ± 0.0481 - 0.0083 ± 0.00427 8.716 ± 0.0475 - 
 0.688 0.0219 6.588 ± 0.0155 - -0.0024 ± 0.00127 6.509 ± 0.0156 - 
 0.954 0.101 4.492 ± 0.0743 9.607 ± 9.828 0.0183 ± 0.0031 - - 
 0.994 0.11 2.126 ± 0.0737 15.204 ± 3.609 0.0641 ± 0.0075 5.74 ± 0.379 - 
DW 0.258 0.0867 8.398 ± 0.0474 31.193 ± 36.421 -0.0047 ± 0.0048 - - 
 0.473 0.067 6.293 ± 0.0622 0.0214 ± 0.0146 - - 7.997 ± 4.53 
 0.998 0.0194 4.582 ± 0.0114 20.962 ± 1.0735 0.0332 ± 0.00163 5.579 ± 0.0195 - 
 0.992 0.0731 2.383 ± 0.0376 46.712 ± 4.347 0.0372 ± 0.00659 4.634 ± 0.0955 - 
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Figure 1. Survival of E. aerogenes on common surfaces stainless steel (A), PVC (B), and 

ceramic tile (C) at 21°C in desiccators containing salt solutions at 15 (l), 50 (▽), 100 

(n)% RH. Error bars are expressed as  ±SD. 
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Figure 2. Survival of E. aerogenes on common surfaces stainless steel (A), PVC (B), and 

ceramic tile (C) at 7°C in desiccators containing salt solutions at 15 (l), 50 (▽), 100 

(n)% RH. Error bars are expressed as  ±SD. 
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Figure 3. Survival of E. aerogenes on stainless steel using different buffers 0.1% peptone 

(A), 1% PBS (B), and distilled water (C) at 21°C in desiccators containing salt solutions 

at 15 (l), 50 (▽), 100 (n)% RH. Error bars are expressed as  ±SD. 

Time (Hours)

0 100 200 300 400 500 600

lo
g 

C
FU

/C
ou

po
n

0

2

4

6

8

A

Time (Hours)

0 100 200 300 400 500 600
lo

g 
C

FU
/C

ou
po

n

0

2

4

6

8

B

 

Time (Hours)

0 100 200 300 400 500 600

lo
g 

C
FU

/C
ou

po
n

0

2

4

6

8

C

 

 

 

 

 

 



44 

 

Figure 4. Growth of E. aerogenes using different buffers 0.1% peptone (A), 1% PBS (B), 

and distilled water (C) at 21°C at starting concentrations of ~2(�), 4(n), 6(▽), 8(l) log 

CFU/ml. Error bars are expressed as  ±SD. 
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Figure 5. Growth of E. aerogenes on stainless steel using different buffers 0.1% peptone 

(A), 1% PBS (B) at 21°C in desiccators containing salt solutions at 100% RH at starting 

concentrations of ~2(n), 4(▽), 6(l), log CFU/coupon. Error bars are expressed as  ±SD. 
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