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Severe weather events such as hurricanes, ice storms, surge, and flooding have 

been occurring across the U.S and around the world, threatening places where economic 

and industrial activities are heavily concentrated. These extreme events are now 

increasing observed and monitored with a loosely coupled network of geospatial sensors. 

Analysis of these datasets offers tremendous opportunities in improving the resilience 

and adaptability of coastal communities in the face of future natural disasters. Despite the 

high values in these data sets, the vast size and complex processing requirements of these 

new data sets make it challenging to effectively use them in coastal community 

management applications, in particular emergencies. Yet, unprocessed data are intangible 

and non-consumable, which is often resulting in ‘data-rich-but-information-poor” 

situation. 
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The overarching goal of this research is to research, develop, and evaluate a data 

processing framework that is capable of efficiently processing the emerging large 

geospatial data sets and extract crucial information to enhance disaster management 

during large-scale extreme events. This research systematically studied the fundamental 

aspects of big spatial disaster data including the anatomy of big spatial disaster data, data 

processing patterns, data quality issues, uncertainty propagation along the analytics 

pipeline, and adaptive processing in time-sensitive environments. More specifically, this 

dissertation addresses the following research questions. 

1. What is the basic anatomy of big spatial disaster data?  

2. What are the core operation categories and processing patterns with big spatial 

disaster data? 

3. How does the uncertainty associated with spatial disaster data sets propagate 

through a given processing pipeline? 

4. How to adequately represent users’ dynamic and complex information needs 

and processing requirement during coastal resilience investigations in a 

unified framework? 

5. How to dynamically adapt 3D disaster data analytics given user information 

needs and processing requirements and algorithm and dataset descriptions? 

In Chapter 2, I characterized the basic anatomy of big spatial disaster data to 

highlight the challenges and opportunities in using these emerging data sets in coastal 

community management applications during extreme events. I also characterized data 

processing patterns associated with the emerging big spatial disaster data sets and 
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abstracted these patterns into core operation categories. These work laid the foundation 

for realizing cloud-based computing of these data sets for disaster response applications.  

In Chapter 3, I used a case study based approach to demonstrate approaches for 

quantifying uncertainty propagation in processing geospatial data sets. More specifically, 

I proposed a method to identify the optimal strategy for approximation parameter 

selection in interpolating Light Detection and Ranging (LiDAR) data into Digital 

Elevation Models (DEMs). The method is developed to address the need to model 

accuracy loss in rapid generation of DEMs, which are essential pieces of information 

used in disaster response and flooding simulation. 

In Chapter 3, I proposed a DEA based information salience model to prioritize the 

sequence of the information processing tasks. The model provides a unified way of 

representing user information needs and balancing these needs to realize optimized data 

processing sequences. More specifically, this model integrates the DEA efficiency score 

with linguistic group decision process. The proposed model is tested against a hurricane 

sandy based case study in the Barnegat Peninsula, New Jersey. The results indicate that 

the proposed model prototyped a framework for information articulation between 

decision-makers and the data processing team. The proposed model will help 

to accelerate the data-information transliteration and reduce the possible ‘data-rich-but-

information-poor” situation  

Based on Chapter 3, I proposed in Chapter 4 a stream data processing approach 

that realized accelerated information extraction from large quantities of geospatial data 

given various user information needs. The approach is capable of representing complex 

spatial data analytics into a workflow centric data analysis representation and levering the 
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flexible computing resources in the cloud and at the edge to improve information 

extraction from these large data sets.  

Throughout this dissertation research, I used extensively Hurricane Sandy related 

data sets as use cases to evaluate the proposed approaches. The results demonstrated the 

proposed approaches provide a scalable approach for information extraction from spatial 

disaster data within a realistic time bound. It is important to recognize that this research 

does not focus on developing algorithms for data processing tasks such as segmentation 

and object recognition. Instead, it focuses on formulating mechanisms to integrate 

existing spatial data analytics into the emerging big data processing frameworks and to 

address the particular challenges in using the big spatial disaster data for coastal 

resilience decision support. In terms of future research, it is beneficial to investigate the 

development of dedicated disaster data processing algorithms and integrate them into the 

framework developed in this research.  
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Chapter 1 Introduction 

1.1 Problem Statement 

In the past decades, the coastal communities in the United States have sustained 

tremendous damages as the results of several severe coastal storm events such as 

Hurricane Katrina and Hurricane Sandy. These extreme events have led to substantial 

loss of livelihoods, costing billions of dollars in the form of destroyed private and public 

property and mobilization of emergency response personnel and resource. For instance, it 

is estimated that the Federal Emergency Management Agency (FEMA) has spent over $4 

billion on response missions and $14 billion more on recovery activities during Hurricane 

Sandy. Volumes of scientific evidence and data suggest extreme weather events will 

continue to multiply and intensify. Nevertheless, it seems that the resilience of natural 

systems in coastal communities are prone to worsen in the face of threats from climate 

change and sea level rise and evolving societal pressures from the growing coastal 

population and needs for construction development (Wright et al. 2015). Without actions 

and investment to strengthen the resilience of communities, these extreme events will 

continue to drain federal, state and local budgets, hurt businesses’ bottom lines, and 

threaten the prosperity of future generations. 

Community resilience has two key elements: “capability” and “adaptability” 

Table 1-1. The first term refers to the inherent characteristic (such as strength, diversity, 

etc.) of a community. Bruneau et al. (2003) interpreted this term as “Robustness” and 

“Redundancy”. The second term “adaptability” refers to the quality of being able to 

adjust to new conditions. Bruneau et al. (2003) define this term as “Resourcefulness” and 

“Rapidity”. The research focus of the “capability” analysis is on the pre-event conditions 
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and inherent characterizes of a system. It has significant overlaps with the term 

“vulnerability”, which defined by Adger (2006) as “the state of susceptibility to harm 

from exposure to stress associated with environmental and social change and from the 

absence of capacity to adapt”. The study of “adaptability” emphasis on ability of a system 

to respond and adapt to changes. 

Table 1-1 Key Elements of community resilience (Bruneau et al. 2003) 

Elements Definition Properties Content 

capability 

The inherent 

power or 

ability (such 

as strength, 

diversity, 

etc.) of a 

community 

Robustness 

Strength, or the ability of elements, systems, 

and other units of analysis to withstand a 

given level of stress or demand without 

suffering degradation or loss of function; 

Redundancy 

The extent to which elements, systems, or 

other units of analysis exist that are 

substitutable. 

adaptability 

The quality 

of being able 

to adjust to 

new 

conditions 

Resourcefulness 

The capacity to identify problems, establish 

priorities, and mobilize resources when 

conditions exist that threaten to disrupt some 

element, system, or other unit of analysis 

Rapidity 

The capacity to meet priorities and achieve 

goals in a timely manner in order to contain 

losses and avoid future disruption. 

 

Extensive research efforts have been devoted to the “capability” aspect in 

community resilience research. Pioneering studies attempted to promote the 

understanding of community resilience by proposing conceptual frameworks and 

defining resilience indicators. For instance, Cutter et al. (2008) proposed a disaster 

resilience of place (DROP) model based framework.  They proposed a six-dimensional 

community resilience system including ecological, social, economic, institutional, 

infrastructure, and community competence. In another study, Longstaff et al. (2010) 

designed a similar five-dimensional assessment framework. Additionally, Renschler et al. 

(2010) established a holistic PEOPLES (“PEOPLES” is the acronym of the seven-

dimension community resilience indicators) framework to define and measure disaster 



3 

 

 

resilience. While these studies have a major emphasis on the definitional debate of long-

term “capability” of community resilience, few of them focused on the need for 

“adaptability” as a critical component in community resilience.  

It is important to recognize that although improving “capability” is a fundamental 

step to improve community resilience, a community also needs “adaptability” to cope 

with disasters especially during the disaster response phase. For instance, Bruneau et al. 

(2003) suggested that to cope with earthquake impacts, a community also need 

“adaptability” to absorb a shock if it occurs. To this end, adaptability is a key enabler to 

maintain essential community functionalities and reduce unnecessary damage. In contrast 

to the good “adaptability”, lack of adaptability during disaster response can result in 

substantial losses of livelihoods and properties. For instance, lack of adaptive 

mechanisms in identifying problems during Tianjin explosion (2015) has, to certain 

degree, led to the shocking death toll of 173, being a majority of them firefighters at the 

disaster scene. In another example, it is reported that FEMA has wasted over $3 million 

on poor adaptability in setting up New Jersey field office alone. If FEMA were able to 

make arrangements in advanced rather than waiting until hurricane sandy hit, they could 

save $1.5 million in renovation and leasing, while on the other hand, another $1.5 million 

would be save if they were able to reduce the work space as the disaster response staff 

shrunk. Therefore, improving the “adaptability” during disaster response will be one of 

the best investments in improving the overall community resilience. The detailed 

requirements of building “adaptability” can be described as follows: 

 Enumerating all possible scenarios in a disaster is under normal circumstance 

an impossible undertaking (Han et al. 1998) as the disaster situation may 
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change dramatically as time goes by. Frequently updated situation awareness 

is the key information required to reduce the number of scenarios to be 

evaluated. 

 Since the updated information can provide new insights, a system needs the 

capability to modify its strategy immediately according to the real-time 

disaster situation. 

As stated above, the first requirement for building “adaptability” is the need for 

understanding the situation; and the second one can be concluded as mechanisms to adapt 

according to situations. Situation awareness is the starting point of the adaptive behaviour 

of a community in the face of extreme weather events. When a disaster strikes, it is 

critical that stakeholders such as emergency response organizations and residents have 

the access to real-time information in order to assess the situation and respond 

appropriately. The need for information is amplified during extreme events as precise 

predictions of these events are challenging to achieve based on expert opinions or 

historical event data. Take Hurricane Sandy as an example, the observed surge was 

estimated to occur every 400-800 years (Lin et al. 2012) or even over 1000 years 

(Brandon et al. 2014).  

Advanced geospatial sensing technologies are playing an increasingly important 

role for decision support in disaster preparation, response, and recovery operations as 

they greatly expand our ability of collecting disaster data during large-scale extreme 

events. For instance, in recent years, because state and federal agencies have made 

airborne LiDAR (Light Detection and Ranging) data collection a priority, post-storm 

LiDAR collection is now routine after large surge event and vast amounts of disaster data 
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are now freely available online (e.g. NOAA’s Digital Coast). In another example, 

emerging high resolution sensing systems such as terrestrial/mobile LiDAR have also 

been deployed for damage data collection during recent events such as Superstorm 

Sandy, generating an unprecedented amount of 3D geospatial data. Lastly, volunteered 

geographic information (VGI), such as geo-tagged disaster photos, is a new breed of 

disaster data which further enriches but also complicates disaster data analysis. Analysis 

of these data sets offer tremendous opportunities in improving community resilience by 

enhancing community capabilities and adaptability during extreme events.  

Geospatial data have been frequently used in vulnerability assessment, which is 

closely related to identifying gaps in a community’s capabilities to cope with extreme 

events. Although the use of emerging large geospatial data sets in these types of analysis 

is difficult, the analysis can be eventually accomplished given sufficient time. What most 

challenging is to use these data sets to obtain better situation awareness in time-sensitive 

applications. Current geospatial data analysis frameworks are inadequate in handling 

these large data sets especially during large-scale extreme events. Figure 1-1 depicts a 

simplified map of current data analytics for disaster response practice that essentially 

involves three key processes including data acquisition, data processing, and decision-

making. In the first step, data are collected from multiple resources such as mobile 

platforms, airborne systems, and social media outlets. The next step is data processing, 

which analyses the data according to the particular goals such as detecting the 

morphology changes of the dune using LiDAR digital elevation map (DEM) data or 

identifying the disaster-prone area using twitter data, etc.  The final step is decision-

making, in which experts identify and choose alternative response operations including 



6 

 

 

mobilizing resources or planning search and rescue operations, etc. Notably, in practice, 

the connections between these three processes are one-directional: the data acquisition 

step collects data and pushes them to the data processing step, and the data processing 

step delivers processing results to the decision making step. In other words, there is no 

formal feedback loop in the system. The lack of feedback mechanisms causes the 

decision makers to have little control over the specific tasks to be processed and the 

corresponding time requirement. In normal situations, the lack of feedback mechanism 

between these steps can be compensated by performing data collection, data processing, 

and decision making in an iterative fashion until all information are obtained. This is 

highly infeasible in disastrous situations because of the necessity of making quick 

decisions in a dynamically changing environment. In contrast to normal situations, 

collection and processing of large geospatial data sets during extreme events require 

careful coordination and integration with decision making processes. 

 
Figure 1-1 A simplified map of current data analytics for disaster response practice 

 

It is reasonable to expect that without efficient data analysis frameworks, the 

growing quantities of geospatial data sets collected during extreme events actually create 



7 

 

 

significant challenges instead of benefits to disaster management. All data or information 

at some point has to be assessed and interpreted. One simple point is that the greater the 

volume of such data, the more difficulty any efficient and effective assessment will be. 

Therefore, a fundamental consideration in deploying advanced data collection systems in 

extreme events is the balance of data quantity and data quality. Today’s geospatial data 

sets collected during extreme events tend to be heterogeneous, in large quantity, and with 

less qualitative certainty.  The lack of an efficient data analysis framework could cause 

information overload and workload skewness (Bruinsma 2010). Information overload 

refers to the flooding in data exceeds the inherent processing capability of the 

computational infrastructure, resulting in the information loss. On the other hand, 

workload skewness refers to the depreciation of information because of poorly leveraging 

of computation resource: too many computation efforts are investing to the process with 

less value. The reality is that while we are capable of deploying a growing number of 

spatial sensing technologies for data collection during natural disasters, the vast quantities 

of collected data still have to go through painstakingly manual analyses and crucial 

information can often no way be extracted from these data sets in time to support critical 

decision makings.  

1.2 Research Objectives and Research Questions 

The overarching goal of this research is to research, develop, and evaluate a data 

processing framework that is capable of efficiently processing the emerging large 

geospatial data sets and extract crucial information to enhance disaster management 

during large-scale extreme events. This research will systematically study the 

fundamental aspects of big spatial disaster data including the anatomy of big spatial 

disaster data, data processing patterns, data quality issues, uncertainty propagation along 
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the analytics pipeline, and adaptive processing in time-sensitive environments. More 

specifically, the goals of this project include: 

 Explain the feasibility and challenges of using big data for situation awareness 

 Design an uncertainty quantification framework that enables the computers to 

balance between processing time and quality of results to meet stakeholders’ 

information requirement in time-sensitive applications. 

 Formally represent information needs in disaster response to assist workflow 

composition 

 Design fast computing techniques to promote “adaptability” performance 

To realize such research objectives, this research must address the following 

questions (Figure 1-2): 

(1) What is the basic anatomy of big spatial disaster data?  

(2) What are the core operation categories and processing patterns with big spatial 

disaster data? 

(3) How does the uncertainty associated with spatial disaster data sets propagate 

through a given processing pipeline? 

(4) How to adequately represent users’ dynamic and complex information needs 

and processing requirement during coastal resilience investigations in a 

unified framework? 

(5) How to dynamically adapt 3D disaster data analytics given user information 

needs and processing requirements and algorithm and dataset descriptions? 
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Figure 1-3 A process Map of resilient data analytics methodology in disaster response
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1.3 Challenges and Research Contributions 

The proposed framework addresses four challenges related to efficient use of 

large geospatial data sets during extreme events.  

Challenge 1: Lack of clear understanding on the basic structure of big visual disaster 

data and their role in disaster management 

Analysis of big visual disaster data offers tremendous opportunities in improving 

our understanding, modelling, and prediction of the impacts of coastal hazards on 

communities and ecosystems. While the big visual disaster data has widely adopted in 

routine coastal resilience applications, the role of this data in disaster management is 

controversial. It is widely agreed that big visual disaster data contains indispensable 

disaster information that can be integrated into ongoing decision processes, however, it is 

arguable whether such data is central or peripheral because the unclear structure of big 

visual disaster data cast doubt in the effective and efficient interpretation. To fully exploit 

the merit of big visual disaster data, it is necessary to revisit and characterize and the 

structure of the big spatial data in disaster situation awareness to make information 

available on time and at relevant level of decision-making in disaster management. 

Challenge 2: Lack of understanding on the quality of big visual disaster data 

The quality of  big visual disaster data is rife with uncertainty (Fisher 1999). This 

uncertainty in data quality not merely refers to data accuracy (or error), but also includes 

other characteristics such as lineage, goodness of fit for designated applications, etc. Data 

quality is always an issue in big visual disaster data related disaster response applications. 

Therefore, handling big visual disaster data  requires the proper accommodation of 

uncertainty in data quality. Poorly handling of uncertainty, at best, result in inaccuracy of 

the information, and at worse, result in fatal errors. Awareness of data quality is principal 
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for both data processing and decision-making. In data processing, it requires data quality 

analysis to provide prior knowledge of whether the processing results are good to use or 

just a waste of time. On the other hand, in decision-making, the data quality determines 

how much trust decision-makers or experts are able to place in the information, and 

consequently determine the merits of the information. To this end, performing a 

comprehensive data quality analysis is equally important as processing big visual disaster 

data. 

Challenge 3: Lack of formal modelling of processing goals, computational workflows in 

a distributed computing environment, and the coordination of decision making and 

computational workflow 

One of the significant challenge for using big visual disaster data in coastal 

resilience application is coordination of decision making and computational workflow. 

This coordination requires a closing loop between decision-making and data processing. 

From the experts or decision-making perspective, it needs insights: key signals and 

tightly packaged summaries of relevant, intriguing disaster information. On the other 

hand, from the data processing perspective, it urges a clarified, well-defined goal, which 

they can convert to a series of feasible computation tasks. Currently, there is a huge 

shaded area between this decision-making and data processing: there is lacking of formal 

modeling of processing goals, computational workflows in a distributed computing 

environment, and the coordination of decision making and computational workflow. 

Understanding of both technology and vernacular of decision-making is difficult. 

Mapping technology capabilities to vernacular of decision-making goals is even more 

complicated.  
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Challenge 4: Adaptive processing in time-sensitive applications 

Disaster response involves making difficult decisions within a short time window. 

This determines that information extraction from big visual disaster is time sensitive in 

the same manner (Lippitt et al. 2014). The importance of getting timely information 

during natural disasters has recently motivated a nationwide survey of many U.S. 

emergency response organizations to understand the relationship between value and lag-

time of the information in disaster response (Hodgson et al. 2014). In disaster, the merit 

of big visual disaster data diminishes rapidly as time goes on. Different from the routine 

processing that emphasis on maximizing performance (e.g. accuracy), disaster response 

applications allows a sacrifice of performance in trading for speed to meet the strict time 

budget. To this end, anticipating adaptive mechanism that could adjust the processing to 

the time budget remains has profound meaning. 

In summary, the abovementioned challenges can be concluded as two primary 

limitations in current data analytics methodology (1) there is lacking of clear 

understanding in the inherent characteristics (data structure and data quality) of big visual 

disaster data; (2) there is lacking of adaptive mechanism that can adjust the processing 

workflow to time-sensitive decision makings. Therefore, to address these limitations, the 

central motivation of this study is to develop a resilient data analytics methodology that 

could fully exploit two major needs of “adaptability”: (1) adapt big visual disaster data to 

time-sensitive application; (2) adapt data processing workflow to decision-making needs. 

In doing so, such research will have far-reaching implications on operationalizing the 

community resilience concept and eventually promoting the community resilience in the 

real world. 
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1.4 Dissertation Organization 

Two key elements of the “adaptability” during disaster response including (1) 

situation awareness; and (2) adapt to the situation. For the first element, the using of big 

visual disaster data is proposed to improve situation awareness. To clearly explore the 

potential of big visual disaster data, chapter 2 investigates the feasibility of using big data 

for situation awareness. For the second element, chapter 3, 4, 5 will look deep into what 

mechanism can enable the “adaptability” to disaster situation. Chapter 3 address the 

question of How does the uncertainty associated with spatial disaster data sets propagate 

through a given processing pipeline? The objective of chapter 3 is to design an 

uncertainty quantification framework that enables the computers to balance between 

processing time and quality of results to meet stakeholders’ information requirement in 

time-sensitive applications. Chapter 4 seeks to formally model stakeholder information 

needs during disaster response such that data processing workflow can be autonomously 

composed for spatial big disaster data. Chapter 5 designs and implements fast computing 

techniques to promote “adaptability” performance. In each chapter, the proposed 

methodology will be validated using the empirical data sets collected during Hurricane 

Sandy in selected disaster analytics applications.  
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Chapter 2 Big Spatial Data in Coastal Resilience Applications: 

Anatomy, Scientific Workflow, and Processing Requirement  

2.1 Introduction 

Nearly 500 natural disasters occur each year in the world. While the causes of 

them vary from event to event, what they share in common is that each time they strike, 

these unexpected events cause loss of lives, profound economic loss, social disruption, 

and so. Coastal communities possess one of the most dynamic interfaces between human 

civilization and the natural environment. In the worldwide, over 38% of the human 

population lives in the coastal zone, with over half of the human population live in 

coastal counties in the United States. The coastal communities in the United States have 

been recently severely impacted by several major hurricane events including Hurricane 

Katrina (2005), Hurricane Sandy (2012), Hurricane Arthur (2014) and the recent 

Hurricane Mathews (2016). For example, Hurricane Sandy (2012) wreaked havoc and 

destruction across the Atlantic coastal area spanning 24 states, flooding and destroying 

residential houses, knocking down power lines systems, paralyzing transportation system 

– not to mention the shattered lives of hundreds of thousands of people.  

With the climate system becoming increasingly aggressive, future storm events 

are likely to raise the cost in coastal areas in a variety of ways. First, the impacts of 

climate change are likely to worsen the problems that coastal areas already face. Sea level 

rise, increase in precipitation and changes in frequency and intensity of storm events are 

increasingly exposing the vulnerability of coastal areas. Second, future coastal 

development may reduce the resilience of natural systems to respond to storm events. 

Increase in population, construction of physical infrastructures as well as growing human 

activities are prone to disrupt natural coastal and marine ecosystems. Eventually, the 
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fundamental weakness of humankind comes to the fore every time a storm comes, and 

the formidable force of nature topples the strongest of a person.  

To cope with the continuing storm events and the inherent vulnerabilities in 

coastal communities, enhancing community resilience is essential. Building resilience 

requires improvement in “adaptability.” Improving the “adaptability” of community 

resilience needs real-time situation awareness to deal with dynamic threats. It is critical 

for experts, decision makers, and emergency personnel to have access to real-time 

information in order to assess the situation and respond appropriately (NSF 2015). The 

need for information is intensified in these small probability events because predicting 

the impact of these events is under normal circumstance impossible using either human 

experience or historical data. Han et al. (1998) highlight the importance of real-time 

information. They stated that to cope with disasters, a system needs to modify its strategy 

immediately according to real-time disaster situations. Nevertheless, disaster scenarios 

are under normal circumstance impossible to be fully enumerated by domain experts 

without rapidly updated information.  

While there is a global consensus on the need for timely information, the merit of 

spatial data is not fully recognized until recently as more spatial data are being collected 

and analyzed during extreme events. Though the phrase “80% of data is geographic” is 

arguable (Garson and Biggs 1992), most disaster-related data have some kind of 

geospatial features. Due to the lack of efficient methods to extract information from these 

data sets, traditional ways of using these data sets often give up the spatial components 

and attempt to tailor the data to transactional database structure despite the fact that these 

spatial components may contain essential information for decision making.    
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There are fundamental challenges in managing, analyzing, and interpreting the 

growing size and complexity of spatial disaster datasets. The vast size and complex 

processing requirements of these new data sets make it challenging to be utilized 

effectively in real-life scenarios. For example, during large-scale coastal storm events, 

crucial information is often hidden in these data sets and is in no way integrated into 

ongoing decision processes. To fully exploit their potential, we need to revisit existing 

spatial data analytics and develop new capabilities to rapidly synthesize information from 

data at rest (i.e., data already stored in the system) and data-in-transit from sensors and 

make information available on time and at the relevant level of decision-making. This 

study uses immense quantities of spatial disaster data collected during Hurricane Sandy 

as the empirical datasets to characterize the anatomy of big spatial disaster data and to 

analyze the processing patterns in using these data sets in disaster management 

applications. This chapter addresses the following critical research questions: (1) What is 

the basic anatomy of spatial disaster data? ; and (2) What are the core operation 

categories and processing patterns with spatial disaster data? The answers to these 

questions advance our understanding on the basic principles and processes involved in 

big spatial disaster data-driven disaster response and recovery as well as the critical 

research needs for improving data support for disaster recovery decision-making.  

2.2 The Role of Spatial Data in Coastal Resilience Applications 

2.2.1 Disaster management cycle 

In general, disaster management, structured as disaster management cycle in 

Figure 2-1, consists of four phases including mitigation, preparation, response, and 

recovery. Although, the cycle can be considered as a continuum (Joyce et al. 2009). 

Usually, the mitigation phase is considered as the first phase. Mitigation incorporates all 
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possible activities to enhance the inherent “capability” of a community through reducing 

the chance of a hazard from happening, preventing a hazard from forming a disaster, and 

minimizing the damaging effects of the inevitable disaster. This is achieved through the 

process of risk identification, assets structure modification, etc. Preparedness is another 

phase that emphasizes on development of community “capability” to deal with the 

potential hazard. This phase includes readiness planning and activities to handle a 

disaster in the realization of residual risks. Objectives in the preparedness phase include 

identification and development of necessary systems, skills, and resource before hazards 

occur. The next phase is response phase, which is closely relevant to the “adaptability” 

behavior of a community. This phase focuses primarily on enforcing operations to protect 

life and property during disasters. Typical activities during the response phase include 

evacuation, search and rescue, establishing immediate emergency shelters, etc. Finally, 

recovery is the phase that deals with the aftermath of a disaster. Recovery phase includes 

both short-term tasks such as restoration of lifeline essentials and the longer-term tasks 

such as rebuilding of communities. Moreover, the recovery phase can be considered as 

the summary of a previous disaster that will have far-reaching implication in building the 

long-term “capability” of the next coming hazard (Becker et al. 2008).  
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Figure 2-1 Disaster Management Cycle 

 

Table 2-1 Key categories of information need in disaster management 

 

What these four disaster management phases share in common is that they all 

need some kind of information and knowledge to reinforce corresponding actives and 

operations. In today’s increasingly networked, digitized, sensor-laden, information-driven 

world, big data provide new insights into disaster management. The objective of using 

big data in a disaster is to provide the appropriate information in a temporally, and 

spatially relevant context (Joyce et al. 2009). In the light of this, big data need to be 

adapted to meet the requirements of all four phases. In general, the need for information 

Category 
Applicable 

Phases 
Key features Objective 

Long-term 

“capability” 

building 

information 

Mitigation, 

Preparation, 

Recovery & 

response 

Resolution sensitive 

and spatially relevant 

Provide baseline information 

for risk identification, damage 

impact prediction, community 

system monitoring, community 

recovery planning, and disaster 

response 

Short-term 

“adaptability” 

enabling 

information 

Response 

Time sensitive, 

spectrally-relevance, 

acceptable spatial 

relevance 

Provide immediate damage 

assessment information for 

disaster operations 
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in disaster management cycle can be divided into two aspects (Table 2-1): long-term 

“capability” building information and short-term “adaptability” enabling information.  

2.2.2 Data acquisition 

To cope with the information need for the disaster management cycle, different 

data acquisition and processing technologies are often deployed to gather information. 

Baseline ancillary geospatial data are historical geospatial data that previously collected 

and stored in transactional databases. These data provide essential baseline information 

including but are not limited to, demography information, terrain elevation, land use, 

building footprints (Figure 2-2), critical infrastructure information (Figure 2-3), and so 

on. The value of ancillary geospatial data in resilience analysis is widely recognized such 

as in flood inundation modeling (Sanders 2007) and behavior models for disasters 

evacuation (Chen et al. 2011). However, these data are static and carefully prepared for 

general purposes: they sacrifice processing efficiency for details, and they do not convey 

real-time situation information about the impacted areas. Therefore, under normal 

circumstances, these ancillary spatial data are potent in predictive analysis, but not 

equally effective in validation or interactive analyses. Validation models and interactive 

decision-making often urges the acquisition of data with high frequency and rapidness 

(Miyazaki et al. 2015). To this end, many remote sensing techniques are now capable of 

facilitating the capturing of real-time spatial data. 
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Figure 2-2 Ancillary geospatial data showing building outline polygons 

 

 
 

Figure 2-3 Ancillary geospatial data showing main and distributed pipeline network 

Imagery data is one of the most common types of data collected during natural 

disasters. Real-time or near real-time observations from satellite, aerial, and ground 

platforms serve as essential means for imagery data collection for enhancing resilience 

(Gillespie et al. 2007), vulnerability analysis (Walker 1996), and decision support (Voigt 

et al. 2007). Satellite imagery data (Figure 2-5) is most efficient in terms of capturing the 

terrain condition of a spacious area  (Miyazaki et al. 2015). Since the repeat interval of 

most satellites is often daily to monthly (Gillespie et al. 2007), it is most suitable for 

monitoring and modeling relationship between human activity and long-term 

environmental or climate impact (Miyazaki et al. 2015).  Compared to the lengthy revisit 
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time of satellite imagery methods, aircrafts or drones are often ready to be deployed to 

capture either vertical or oblique imagery (Figure 2-4) in a timely manner. Such rapidness 

contributes to the prompt situation awareness in early impact analysis (Hirokawa et al. 

2007). Meanwhile, oblique imagery often has a higher resolution than the satellite 

imagery data, making it more accurate for supporting post-disaster assessment (Ezequiel 

et al. 2014).  

 
a. Oblique Imagery in Ortley Beach Before Hurricane Sandy 

 

b. Oblique Imagery in Ortley Beach After Hurricane Sandy 

Figure 2-4 Oblique Imagery in Ortley before and after hurricane sandy 

 (Data from USGS) 
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Figure 2-5 Satellite Imagery in Ortlety Beach after Hurricane Sandy  

 

Besides 2D image processing applications such as segmentation (Shi and Malik 

2000), another process called photogrammetry (Figure 2-6) attempt to extract the third 

dimension or depth information from the 2D images (Zhu and Brilakis 2007). It has been 

adopted to recovery the 3D spatial information of buildings (Suveg and Vosselman 

2004), infrastructures (Brilakis et al. 2011), underwater structures (Beall et al. 2010), and 

indoor scenes (Izadi et al. 2011). Furthermore, a method derived from photogrammetry 

method is videogrammetry in which cameras continuously record video frames in a given 

time span and the sequential characteristic such a recording mechanism allows feature 

points in consecutive frames to match automatically. Notwithstanding the advantages of 

using imagery-based data, they have their limitations. In particular, the quality of 

imagery-based information analysis is sensitive to environmental conditions such as light, 

weather or relative positions as well as the functionality of processing software programs 

(Dai and Lu 2010). Suitability of such techniques in terms of spatial accuracy is still a 

major concern (Bhatla et al. 2012). 
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Figure 2-6a. High-resolution 2D imagery data by ground survey team 

 
 

Figure 2-6b. 3D model (SURE) 

reconstructed based on the High-

resolution 2D imagery 

Figure 2-6c. 3D model (123D CATCH) 

reconstructed based on the High-

resolution 2D imagery 

Figure 2-6 3D Reconstruction using 2D imagery data  

(Adopted from Zhou et al. (2015)) 

 

Light Detection and Ranging (LiDAR) is another emerging technology that 

facilitates the collection of spatial data in a disaster environment. This technology is built 

on the principle of the time of flight: a laser scanner automatically records the scanning 

angels and the travel time (from the emission of a pulse to its return) of each probed 

objects. Hundreds of thousands of point measurements in the form of x, y, z coordinates 

and intensity values can be saved each second, and accumulatively forming 3D shapes as 

point clouds. LiDAR data have multiple benefits. First, LiDAR uses active sensing 

mechanisms, eliminating the need for ambient light to operate. As a result, it can be 

functional at night time or in other not so ideal light conditions. Second, it provides data 

in better spatial accuracy compared to imagery approaches (Csanyi and Toth 2007). 

Third, the LiDAR instruments can be mounted onto different platforms such as mobile 
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and aerial platforms, and their data coverage rate can reach hundreds of miles per hour. 

On account of these three advantages, LiDAR technologies accommodate the needs of 

mapping both large-scale objects such as terrain (Lefsky et al. 2002) (Figure 2-7) and 

small-scale objects such as buildings and vegetation (Gong et al. 2012).  This technology 

has been widely deployed in an earthquake (Olsen et al. 2012), flooding (Poulter and 

Halpin 2008) and forest fire (Morsdorf et al. 2004), and hurricane (Gong et al. 2012). 

Apart from these benefits, one significant concern with LiDAR data is their complex and 

intensive computation needs in data indexing and storage (Schön et al. 2009), 

visualizations, and feature extraction (Rottensteiner and Briese 2002). The complexity of 

these algorithms often results in lengthy computation time, which will eventually hamper 

the effective utilization of LiDAR data. 

 
Figure 2-7 Airborne LiDAR data 

 (color by classification, USGS) 

 

More recently, mobile devices, as well as advancement in social media, have 

provided new paths for citizens or individuals to generate non-expert spatial data. 

Average citizens even without domain knowledge are able to record geotagged disaster 

situation (Goodchild and Glennon 2010) and contribute to the collection of a new type of 

spatial disaster data called Volunteered Geographic Information (VGI). This has 

increasingly become a primary communication channel between citizens and public 

authorities (Miyazaki et al. 2015). It empowers authorities or experts to hear from 
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“people’s voice” though “crowd voting.” “People’s voice” provides a unique gateway for 

decision makers and specialists to aware the disaster situation through feeling sentiments 

of victims. For example, by analyzing the tweets, researchers are able to promptly 

identify the disaster-prone area (Earle et al. 2012) and conduct early impact analysis 

(Sakaki et al. 2010). Despite the merit of using crowdsourcing data, the challenge 

remains significant. Because, these spatial data are from non-authority sources, the 

quality of such data remains questionable (Allahbakhsh et al. 2013). For example, 

researchers have studied the impacts of fake and incorrect information during hurricane 

sandy (Gupta et al. 2013). They concluded that the artificial error could pose significant 

threats to the credibility of the “crowd voting.”  

2.2.3 Challenges and opportunities 

Geospatial data have frequently been used in vulnerability assessment, which is 

closely related to identifying gaps in a community’s capabilities to cope with extreme 

events. Although the use of emerging large geospatial data sets in these types of analysis 

is difficult, the analysis can be eventually accomplished given sufficient time. What most 

challenging is to use these data sets to obtain better situation awareness in time-sensitive 

applications. Current geospatial data analysis frameworks are inadequate in handling 

these large datasets, especially during large-scale extreme events.  

Figure 2-8 depicts a simplified map of current data analytics for disaster response 

practice that essentially involves three key processes including data acquisition, data 

processing, and decision-making. In the first step, data are collected from multiple 

resources such as mobile platforms, airborne systems, and social media outlets. The next 

step is data processing, which analyzes the data according to the particular goals such as 
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detecting the morphology changes of the dune using LiDAR digital elevation map (DEM) 

data or identifying the disaster-prone area using twitter data, etc.  The final step is 

decision-making, in which experts identify and choose alternative response operations 

including mobilizing resources or planning search and rescue operations, etc. Notably, in 

practice, the connections between these three processes are one-directional: the data 

acquisition step collects data and pushes them to the data processing step, and the data 

processing step delivers processing results to the decision making step. In other words, 

there is no formal feedback loop in the system. The lack of feedback mechanisms causes 

the decision makers to have little control over the specific tasks to be processed and the 

corresponding time requirement. In normal situations, the lack of feedback mechanism 

between these steps can be compensated by performing data collection, data processing, 

and decision-making in an iterative fashion until all information is obtained. Waiting for 

all information to be ready is highly infeasible in disastrous situations because of the 

necessity of making quick decisions in a dynamically changing environment. In contrast 

to normal situations, collection and processing of large geospatial datasets during extreme 

events require careful coordination and integration with decision-making processes. The 

overall challenges related to efficient use of large geospatial datasets during extreme 

events are summarized as below:   

 
Figure 2-8 A simplified map of current data analytics for disaster response practice 
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Challenge 1: Lack of clear understanding on the basic structure of big visual disaster 

data and their role in disaster management 

Analysis of big visual disaster data offers tremendous opportunities in improving 

our understanding, modeling, and prediction of the impacts of coastal hazards on 

communities and ecosystems. While the big visual disaster data has widely adopted in 

routine coastal resilience applications, the role of this data in disaster management is 

controversial. It is widely agreed that big visual disaster data contains indispensable 

disaster information that can be integrated into ongoing decision processes, however, it is 

arguable whether such data is central or peripheral because the unclear structure of big 

visual disaster data cast doubt in the effective and efficient interpretation. To fully exploit 

the merit of big visual disaster data, it is necessary to revisit and characterize and the 

structure of the big spatial data in disaster situation awareness to make information 

available on time and at relevant level of decision-making in disaster management. 

Challenge 2: Lack of understanding on the quality of big visual disaster data 

The quality of big visual disaster data is rife with uncertainty (Fisher 1999). This 

uncertainty in data quality not merely refers to data accuracy (or error), but also includes 

other characteristics such as lineage, the goodness of fit for designated applications, etc. 

Data quality is always an issue in big visual disaster data related disaster response 

applications. Therefore, handling big visual disaster data requires the proper 

accommodation of uncertainty in data quality. Poorly handling of uncertainty, at best, 

result in inaccuracy of the information, and at worse, result in fatal errors. Awareness of 

data quality is principal for both data processing and decision-making. In data processing, 

it requires data quality analysis to provide prior knowledge of whether the processing 
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results are right-fit to use or just a waste of time. On the other hand, in decision-making, 

the data quality determines how much trust decision-makers or experts can place in the 

information, and consequently determine the merits of the information. To this end, 

performing a comprehensive data quality analysis is equally important as processing big 

visual disaster data. 

Challenge 3: Lack of formal modeling of processing goals, computational workflows in 

a distributed computing environment, and the coordination of decision making and 

computational workflow 

One of the significant challenges for using big visual disaster data in coastal 

resilience application is coordination of decision-making and computational workflow. 

This coordination requires a closing loop between decision-making and data processing. 

From the experts or decision-making perspective, it needs insights: key signals and 

tightly packaged summaries of relevant, intriguing disaster information. On the other 

hand, from the data processing perspective, it urges a clarified, well-defined goal, which 

they can convert to a series of feasible computation tasks. Currently, there is a huge 

shaded area between this decision-making and data processing: there is lacking of formal 

modeling of processing goals, computational workflows in a distributed computing 

environment, and the coordination of decision making and computational workflow. 

Understanding of both technology and vernacular of decision-making is difficult. 

Mapping technology capabilities to vernacular of decision-making goals are even more 

complicated.  

Challenge 4: Adaptive processing in time-sensitive applications 
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Disaster response involves making difficult decisions within a short time window. 

This determines that information extraction from big visual disaster is time sensitive in 

the same manner (Lippitt et al. 2014). The importance of getting timely information 

during natural disasters has recently motivated a nationwide survey of many U.S. 

emergency response organizations to understand the relationship between value and lag-

time of the information in disaster response (Hodgson et al. 2014). In disasters, the merit 

of big visual disaster data diminishes rapidly as time goes on. Different from the routine 

processing that emphasis on maximizing performance (e.g., accuracy), disaster response 

applications allow a sacrifice of performance in trading for speed to meet the strict time 

budget. To this end, anticipating adaptive mechanism that could adjust the processing to 

the time budget remains has profound meaning. 

2.3 A Hurricane Sandy Inspired Big Data Framework for Coastal Resilience 

Investigations with Heterogeneous Spatial Data 

2.3.1 Geospatial Response to Hurricane Sandy 

Driven by the abovementioned three primary needs, this study presents a 

Hurricane Sandy Inspired Big Data Framework for Coastal Resilience Investigations with 

heterogeneous spatial Data. Like during many other extreme events, geospatial products 

and tools are an essential part of every stage of disaster management during Hurricane 

Sandy, from planning through response, and recovery to mitigation of future events. 

However, unlike many other extreme events where the available spatial data are often 

limited in size and type, Hurricane Sandy has seen a surge of massive spatial data sets 

(Figure 2-9). Table 2-5 shows the type of spatial disaster data, either collected or 

identified during hurricane Sandy. These datasets are imagery and point cloud data and 
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can be more broadly defined as low-dimensional, spatiotemporal datasets, in which data 

elements are defined at points in a 2D/3D spatial coordinate system and over time.  

 
Figure 2-9 Hurricane Sandy related 3D disaster 

 

The specific data sets considered in this study include various airborne LiDAR 

data sets collected at different points of time before and after the landing of Hurricane 

Sandy (Table 2-5). First, airborne LiDAR data dated back to 2010 exist for the most of 

the New York-New Jersey metropolitan area and are archived in data repositories 

including Digital Coast and USGS Click. Second, on October 29, 2016, the day before 

Hurricane Sandy landed in New Jersey, the USGS Coastal and Marine Geology Program 

collected airborne LiDAR data along the New Jersey Coast using its Experimental 

Advanced Airborne Research LiDAR-B (EAARL-B) system. Immediately after the 

landing of Hurricane Sandy, NOAA collected airborne imagery followed by USGS 

EARL-B airborne LiDAR data collection. During the period of November 11-24, 2012, 

USACE conducted another wave of airborne LiDAR data collection along the New 

Jersey and New York coastal line. During the period of December 5-9, 2012, Rutgers 
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conducted mobile LiDAR scanning of severely impacted coastal communities in the state 

of New Jersey and New York City. Throughout the disaster response period, street-level 

images of storm damage have also been collected by various damage assessment teams 

and citizens. Some of them were distributed through social media channels such as 

Facebook and Twitter. During the disaster recovery stage, more geospatial data sets have 

also been collected to assess recovery progress and future vulnerability. These data sets 

include 2014 USGS airborne LiDAR data collection along the coastal lines in the 

northeast region and mobile LiDAR data collection in Ocean County, New Jersey in 

2016. Collectively, these data sets are too massive to be efficiently managed and 

processed to derive scientific insights into ways of improving coastal resilience. In the 

following, this study characterizes the basic anatomy of big spatial disaster data to 

highlight the big data challenge in using these data sets in coastal resilience applications.  

2.3.2 Data analytic framework 

Existing analytical frameworks for interpreting 3D disaster datasets are 

insufficient for time-sensitive applications. For example, immediately after the landing of 

hurricane events, there is a great urgency to process the extensive and heterogeneous 

point cloud data, dynamically evolving in time as more data come in, and make sound 

decisions given limited and sparse resources. In this kind of scenarios, emergency 

response organizations would seek near real-time information about the extent of 

damages to homes and critical infrastructure systems such as transportation network, 

healthcare facilities, energy infrastructures, and wastewater treatment facilities. Data 

analysts in support of these organizations would construct a workflow of analytics steps 

consisting of selecting available point cloud data sources, querying point cloud data in 
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geographic regions of interest by defining customized boundaries or overlaying vector 

data describing the locations of existing facilities, fusing point cloud data from different 

sources, selecting damage assessment analysis methods such as change detection with 

pre- and post-event data or classification of facility damages based on mono-event data, 

and aggregating extracted damage information into inputs to various decision planning 

models and tools that support search and rescue operations and restoration planning for 

critical infrastructures. They would also monitor information from social media outlets 

and potentially use them to prioritize data processing in specific regions. These types of 

analyses require efficiently querying of giant point cloud datasets, co-registration of 

heterogeneous point cloud data from different sensors on the fly, and near real-time 

detection and classification of damages to infrastructure systems and buildings.  

Current ways of point cloud data management and analysis also pay little 

attention to the coordinated use of many interrelated analysis pipelines. For various point 

cloud data consumers, choices of analytic workflows have to factor in time, stakeholder 

information needs, and tolerance of errors. In large urban communities, people and 

infrastructure systems are often highly concentrated to achieve productive proximity. In 

many post-disaster scenarios, infrastructure stakeholders may have overlapping or 

interdependent information needs due to the geographic interdependency of infrastructure 

systems. For example, to reduce the risk of secondary catastrophic events, natural gas 

pipeline operators would seek information on where is the debris and overwash deposited 

as this will impact their accessibility to critical gas shutoff valves (Zhou et al. 2016). At 

the same time, this information is also critically sought by other organizations like FEMA 

and local emergency response organizations. Therefore, it is clear that analytics 
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applications should not be designed in a silo. Instead, there is a great need for 

mechanisms to design flexible and concerted geo-data workflows to maximize their 

utilities. Unfortunately, there appears to be no framework existing for tailoring and 

optimizing spatial analytics to needed capabilities in various phases in disaster 

management. 
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Figure 2-10 Data analytic framework 

 

In addressing to the abovementioned research gap, we proposed a data analytic 

framework (Figure 2-10) for the timely applications. In addition to the tradition data 

analytic framework described in Figure 2-8, we added time-sensitive features to the 

existing data analytic framework. In the following sections, we will describe the five 

essential elements in the data analytics framework. 

2.3.3 Anatomy of Big Spatial Disaster Data  

Volume  

Although big data do not purely mean the large volume of data, data volume 

remains a major concern in disaster response and recovery missions, where how large the 

amount of data generated often determines what kind of protocols to be used for storage 
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and transferring and how much computation resources are required to process it. 

Advanced sensors such as mobile LiDAR systems can generate a large amount of data 

(Table 2-2) each day. For example, the Rutgers Mobile LiDAR survey system, each day 

(considering 8 hours of data collection), can generate around 43 gigabytes of LiDAR data 

in the format of pcap file and approximately 1 gigabyte of position file. Another 300 

gigabytes of 360-degree imagery data would be captured along with LiDAR scanner. 

Thus, the sheer volume of the data generated each day from the mobile system alone is 

around 350 gigabytes. This study systematically analyzed the volume of the Hurricane 

Sandy related spatial data sets. Table 2-2 provides a quick summary of the volume of 

these data sets used in disaster response and recovery phases during Hurricane Sandy. 

Table 2-2 Volume of Hurricane Sandy related spatial disaster data sets 

Survey Type Data collection date Data Volume 

Archived airborne LiDAR Archived 29.6GB 

USGS EARL-B LiDAR 10/29/12 2.1GB 

USGS EARL-B LiDAR 10/31/12 2.1GB 

USACE LiDAR 11/19/14 21.2 GB 

Rutgers mobile LiDAR 12/01/12 575GB 

USGS CMGP LiDAR 2014 105GB 

Photos for SFM reconstruction Streaming 20GB 

Rutgers mobile LiDAR 2015-2016 15TB 

 

Data Structure  

Data structure type refers to the structure or organization that data come with. In 

general, there are three primary data structure types including structured data, semi-

structured data, and unstructured data. Structured data refers to the data that stored in pre-

defined data models such as relational databases or spreadsheets. Most ancillary data are 

structured data, e.g., Excel spreadsheets, ArcGIS shapefile, etc. Unstructured data refer to 

data that do not have a pre-defined data model for information extraction. Most of the on-
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site remote sensing data are fallen into this category such as LiDAR data. Semi-structured 

data lies in between structured data and unstructured data. More specifically, it can be 

considered as a type of structured data, but lack a strict structure imposed by an 

underlying data model. One example is social media data. The text itself is structured 

data, but the time tag and location, as well as other information, add to the complexity. 

Given the uncertainty of disaster environment, situation awareness for disaster response 

requires the integration of data with different structured types.  

Table 2-3 Resolution and vertical accuracy of Sandy related 3D disaster data sets 

Data Type Resolution (pts/m2) Vertical Accuracy (cm) 

Archived airborne LiDAR 1-4 36.6 

USGS EARL-B LiDAR 1-2 20 

USGS EARL-B LiDAR 1-2 20 

USACE LiDAR 1-4 8.2 

Rutgers mobile LiDAR 1000 - 8000 5 

USGS CMGP LiDAR 1-4 6 

SFM reconstruction (Zixiang 

et al. 2015) 
500-2000 20 

Rutgers mobile LiDAR 2000 - 4000 5 

 

   
Figure 2-11a. Static 

Terrestrial LiDAR 

Figure 2-11b. Mobile 

LiDAR System 

Figure 2-11c. Airborne 

LiDAR System 

Figure 2-11 Comparison of scanning pattern from different scanning platforms  

 

Spatial Completeness 
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Beyond volume, variety, and variability, the challenge also arose from dealing 

with incompletion/inaccurate information. For example, one primary issue in using 

airborne LiDAR for building damage assessment is their vertical perspectives, which 

strictly limits their sensor readings to building roofs (Olsen 2013). In contrast, ground-

based spatial sensing methods such as mobile LiDAR mostly capture data from the 

horizontal perspective and inevitably miss part of objects that are not visible from the 

driving paths. Figure 2-12 depicts a coverage analysis of roof and wall respectively using 

the Rutgers mobile LiDAR system (MLS). 

 
Figure 2-12a. Roof coverage analysis results 
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Figure 2-12b. Wall coverage analysis results 

Figure 2-12 Roof and wall coverage analysis results 

Veracity 

The difference in data accuracy is also a common problem in conducting 

comparative analysis among various spatial data sets. For example, Table 2-4 lists the 

accuracy of various spatial disaster datasets expressed in terms of Residual Mean Square 

Error (RMSE).  The issue of accuracy also exists in single data sets. For example, this 

study analyzed to determine the consistency of vertical accuracy in mobile LiDAR 

datasets. The author compared the accuracy of two datasets: (1) USGS airborne LiDAR 

dataset; (2) Rutgers Mobile LiDAR dataset. The accuracy of USGS airborne LiDAR data 

is controlled via a network of ground control points. On the other hand, no control points 

were used in mobile LiDAR data collection. The accuracy of the mobile LiDAR data is 

calculated as the difference between the ground surface elevation detected using the 

airborne LiDAR and the ground surface elevation detected by mobile LiDAR. The 

comparison is conducted in various environmental conditions including urban 
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environment (New Brunswick downtown), shoreline residential communities (Normandy 

Beach and Ortley Beach) and important infrastructures (Rockaway Bridge), which are 

representative for the dense population area. The analysis results show that mobile 

LiDAR performs better in open shoreline area (Table 2-4). The urban high-rise buildings, 

vegetation, traffic signals are potential obstructions that shade the GPS signals. Use of 

these data with different vertical accuracies in disaster response and recovery is a 

challenging endeavor as many analyses involve change detection between these data sets 

to detect damaged structures. 

Velocity 

Velocity is another challenge associated with big spatial disaster data. It does not 

only refer to how fast data are generated, but also refer to the need of speed in data 

analysis. Nowadays, spatial data can be collected at an almost unimaginable speed. For 

example, many mobile LiDAR systems can collect point measurement at 1 million points 

per second. More tremendous amount of data can be generated in the social media: every 

minute, more than 100 hours of video are uploaded to YouTube, 5 thousand tweets are 

sent, and the number appears on the growing. For major disasters, real-time or near real-

time spatial data acquisition is critical and feasible. For example, USGS was able to 

collect the pre- and post-event data for the entire New Jersey and New York shoreline 

area within a day or two. During Hurricane Sandy, there is also a constant stream of 

social media based image data capturing the ever dynamic disaster impact. While the 

importance of real-time data collection is well recognized during disastrous events, 

extracting meaningful information in a timely manner remains one of the most significant 

challenges. 
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2.3.4 Decomposition of processing tasks 

While there appear to be a variety of ways to process the large volume of spatial 

data, the most common ones include generation of digital surface models, feature 

extraction, and change detection.  

Digital Elevation Models 

Table 2-4 Accuracy of mobile LiDAR data in different environments 

Environment Locations Airborne Data 
Mean Standard 

Deviation (m) (m) 

Urban& 

Residential 

New 

Brunswick 

Downtown 

USGS NJ -0.073 0.051 

Urban& 

Schools 

Rutgers Busch 

Campus 
USGS NJ -0.123 0.021 

Shoreline & 

Residential 

Normandy 

Beach 
USGS NJ -0.069 0.037 

Shoreline & 

Residential 
Ortley Beach USGS NJ -0.103 0.02 

Urban & 

Infrastructure 

Rockaway 

Bridge 
USGS NY 0.023 0.044 

 

Disaster response can be impeded by the lack of precise terrain information. 

LiDAR and photogrammetry approaches have the capability to capture elevation data in 

large areas immediately, and the collected point cloud data can be used to create highly 

accurate 3D representations of the impacted terrain. This cartographic information plays a 

vital role in assessing damage, analyzing potential risks. The DEMs can be generated by 

eliminating the non-ground objects  (Meng et al. 2009). A detailed review of different 

ground filtering algorithms can be found in Meng et al. (2010). Numerous studies have 

attempted to improve the performance of ground filtering algorithms by deploying 

approaches such as interpolation-based (Briese and Pfeifer 2001) or morphology-based 

methods (Kobler et al. 2007). However, these algorithms often require searching for 
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neighbors, which are computationally expensive (Meng et al. 2010). The time sensitivity 

issue of the algorithms is only considered by few studies (Liu et al. 2007). 

Table 2-5 Different features extracted from LiDAR 

Feature Category Feature type Reference 

Building 

3D Models 
Rottensteiner and Briese (2002); 

Verma et al. (2006) 

planar (Building 

footprint/ Roof Polygons) 

Rottensteiner et al. (2005); Awrangjeb et 

al. (2013) 

Henn et al. (2013) 

Planimetrics Roadways Peterson et al. (2008); Olsen (2013) 

Infrastructure 

Transmission Lines McLaughlin (2006); Jwa et al. (2009) 

Pipelines Son et al. (2014) 

Storage Tanks Fernández-Lozano et al. (2015) 

Street ‘Furniture’ 

Street Light Yu et al. (2015) 

Power/Telco Pole Jwa et al. (2009) 

Fire Hydrant Korah et al. (2011) 

Debris Labiak et al. (2011) 

Hydrologic Features Channel Network Passalacqua et al. (2010) 

 

Feature Extraction 

Object or feature extraction is much more complicated than generating DTMs 

(Mayer 2008). Prior to feature extraction, segmentation is the fundamental step for 

exploitation of 3D point clouds (Yang et al. 2015).  One of the earliest studies in 

segmentation of point cloud data is conducted by Henderson and Bhanu (1982), who 

developed a region growing algorithm using a spatial proximity graph. Rabbani et al. 

(2006) introduced a widely used k-nearest neighbors method for point cloud applications. 

However, it is not until random sample consensus (RANSAC) (Schnabel et al. 2007) that 

the time efficiency is taken into serious consideration. In another attempt to reduce the 

computation cost, voxels based segmentation algorithm is developed by Lim and Suter 

(2008). Distinctive features are further extracted by tilling with different parameters using 

fitting based on algorithms such as local fitting surfaces (LoFS) (Mongus et al. 2014) or 
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support vector machines (SVM) (Mountrakis et al. 2011). A list of different features 

extracted from LiDAR datasets is shown in Table 2-5. 

Change Detection 

Change detection refers to the process of identifying meaningful difference over 

different observations (Singh 1989). As a result, change detection often requires at least 

two datasets with overlaps. Among the ten common change detection techniques 

described in Singh (1989), image differencing method is the most widely used one for 

LiDAR applications (Trinder and Salah 2012). In this method, two datasets are spatially 

registered, subtracted, and then pass through a user-specified threshold so that the 

significance can be identified. This procedure has frequently been employed in disaster 

situations such as landslide (Hsiao et al. 2004), earthquake (Zhang et al. 2006), and 

hurricane (Hatzikyriakou et al. 2015).  

In this research, major processing tasks are decomposed into different operations. 

We will target core operation categories employed in applications that synthesize 

information from spatiotemporal sensor data in our research. The core operations produce 

different levels of data products that can be consumed by client applications. For 

example, a client application may request only a subset of satellite imagery data covering 

the east coast of the US. The operations can also be chained to form analysis workflows 

to create other types of data products. An example workflow could be a pipeline of: [data 

cleaning  subsampling mapping  object segmentation  object classification  

change detection] operations. Each operation’s data access and processing patterns, as 

well as the composition of the analytics application, are important factors in I/O, 

communication, memory, and processing overheads. The data access and processing 
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patterns range from local and regular, to indexed data access, to irregular and global 

access to data -- please see the third column in Table 2-6. Local data access patterns 

correspond to accesses to a single data element or data elements within a small 

neighborhood in a spatial and temporal region (e.g., data cleaning and low-level 

transformations). Regular access patterns involve sweeps over data elements, while 

irregular accesses may involve accesses to data elements in a random manner (e.g., 

certain types of object classification algorithms, morphological reconstruction operations 

in object segmentation). Some data access patterns may involve generalized reductions 

and comparisons (e.g., aggregation) and indexed access (e.g., queries for data subsetting 

and change quantification).  

Core Operation Categories 

The composition of the analytics applications encapsulates several application-

level data processing structures as well. First, original datasets can often be partitioned 

into tiles or chunks, and several categories of operations in Table 2-6 can be executed on 

each chunk independently. Spilting large datasets into chunks leads to a bag-of-tasks 

processing pattern. Second, processing of a single chunk or a group of chunks can be 

expressed as a hierarchical coarse-grain data flow pattern (Beynon et al. 2001; Plale and 

Schwan 2000; Tan et al. 2010). For example, transformation, filtering, mapping, and 

segmentation operations can be composed as a workflow. The segmentation operation 

itself may consist of a pipeline of lower level operations as well. Third, several types of 

operations such as aggregation and classification can be represented as MapReduce style 

(Dean and Ghemawat 2008; Dean and Ghemawat 2010) computations. The detail 

descriptions of each core operation categories are summarized as in Table 2-6.  
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Table 2-6 Core operation categories in spatial disaster data processing 

Core Operation 

Categories 
Example Operations 

Data Assess 

pattern 
Computation Complexity 

Data Cleaning & 

Quality Control 

Transformations to reduce effects of sensor/measurement 

artifacts. Transform sensor acquired measurements to domain 

specific variables. 

Mixture of local 

and global pattern 

Moderate computational 

complexity. 

Low-Level 

Transformations 

Transformations of a dataset to another format.  E.g., 

coordinate transformation (such as UTM to GCS), value 

conversion (such as. RGB to grayscale conversion), or as 

geometry transformation (3D to 2D projection). 

Mainly local 

pattern 

Low to moderate, mainly 

data-intensive computations 

Data Subsetting, 

Filtering, 

Subsampling 

Select portions of a dataset corresponding to regions in the 

atlas and/or time intervals. Select portions of a dataset based 

on value ranges. Subsample data to reduce resolution and 

data size. 

Local as well as 

indexed pattern 

Low to moderate, mainly 

data-intensive computations 

Spatio-temporal 

Mapping & 

Registration 

Create composite dataset from multiple spatially co-incident 

datasets. Create derived dataset from spatially co-incident 

datasets obtained at different times. 

Irregular local  and 

global  data pattern 

Moderate to high 

computational complexity. 

Object 

Segmentation 

Segment “base level” objects such as ground, road, dune, 

vegetation, and buildings. Extract features from “base level” 

objects. 

Irregular, but 

primarily local data 

pattern 

High computational 

complexity. 

Object 

Classification 

Classify “base level” individual objects at finer details such 

as utility poles, building types, and transportation assets 

through a possibly iterative combination of clustering, 

machine learning and human input (active learning). 

Irregular local and 

global data patterns 

High computational 

complexity. 

Change Detection, 

Comparison, and 

Quantification 

Quantify changes over time in domain-specific low-level 

variables, base level objects, and high-level objects. 

Construct “change objects” to describe changes in low-level 

domain specific variables, base level, and high-level objects. 

Spatial queries for selecting and comparing segmented 

regions and objects. 

Mixture of local 

and global data 

patterns as well as 

indexed 

High Complexity and data-

intensive computations. 
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 Table 2-7 Example application scenarios mapped to the core operation categories 

Operation 

Category 
Weather Prediction Monitoring and Change Analysis Pathology Image Analysis 

Data Cleaning 

& Quality 

Control 

Remove anomalous measurements 

from MODIS and convert spectral 

intensities to the value of interest. 

Remove unusual readings. Convert 

signal intensities to color and other 

values of interest. 

Color normalization. Thresholding 

of pixel and regional grayscale 

values. 

Low-Level 

Transformations 

Spatial selection/crossmatch to find 

the portion of a dataset that is 

corresponding to a given geographic 

region. 

Spatial selection/crossmatch to find 

portion of a dataset corresponding to 

a given geographic region 

Selection of regions within an 

image. Thresholding of pixel 

values. 

Data Subsetting, 

Filtering, 

Subsampling 

Mapping tiles to map projection. 

Generation of a mosaic of tiles to get 

complete coverage. 

Registering low and high-resolution 

images corresponding to same 

regions. 

Deformable registration of images 

to an anatomical atlas. 

Object 

Segmentation 

Segmentation of regions with similar 

land surface temperature. 

Segmentation of buildings, trees, 

plants, etc. 

Segmentation of nuclei and cells. 

Compute texture and shape 

features 

Object 

Classification 
Classification of segmented regions. 

Classification of buildings, trees, 

plants. 

K-means clustering of nuclei into 

categories. 

Spatio-temporal 

Aggregation 

Time-series calculations on changing 

land and air conditions. 

Aggregation of labeled buildings, 

trees, plants into residential, 

industrial, vegetation areas. 

Aggregation of object features for 

per image features. 

Change 

Detection, 

Comparison, 

and 

Quantification 

Spatial and temporal queries on 

classified regions and aggregation to 

look for changing weather patterns. 

Characterize vegetation changes over 

time and are 

Spatial queries to compare 

segmented nuclei and features. 
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Table 2-8 Corresponding tools for the seven core operation categories 

Core Operation 

Categories 
Tools in Lastool Tools in Cloud Compare Tools in Terrasolid 

Data Cleaning & 

Quality Control 

LasControl, LasDuplicate, 

LasInfo, LasNoise,  

LasPrecisiom, LasReturn, 

LasThin, LasValidate, 

LasView, 

Noise Filter, SOR (Statistical 

Outlier Removal) filter, 

Remove Duplicate Points, 

Hidden Points Removal 

TerraMatch: Calibration and Strip 

Adjustment, Tie Lines tools, Match tools 

(e.g., apply correction, find intensity 

correction,), etc.; 

Low-Level 

Transformations 

Blast2Dem, Blast2Iso, 

Las2Dem, Las2Iso, Las2Las, 

Las2Shp, Las2tin, las2Txt, 

Las2Zip,  Shp2Las, 

LasPublish, 

Fit Tool (plane, sphere, 2D 

polygon, 2.5D quadric), 

Unroll, Rasterize and Contour 

Plot, Contour Plot to Mesh 

Projection tool (Coordinate Transformations, 

Geoid adjustment), Convert Storage Format 

(to kmz, dgn, etc.) 

Data Subsetting, 

Filtering, 

Subsampling 

Las2Las, LasCanopy, 

LasClip, LasGrid, LasIndex, 

LasCoverage, LaSsort, 

LasSpilt, 

Subsampling Tool (by random, 

space, octree) 

Point Filtering Tools (by classification, 

intensity) 

Spatio-temporal 

Mapping & 

Registration 

LasColor, LasTrack, 

LasPlane 

Align (point pairs picking), 

Match Boundary Box Centers, 

Match Scales, Fine 

Registration 

TerraPhoto: Camera Calibration Tool, Color 

Correction Tool, Improving Image 

Positioning Tool, Color Points, and Selection 

Shapes Tools, Manage Trajectories Tool. 

Object 

Segmentation 

Las2Boundry, LasClassify, 

LasHeight, LasGround, 

Label Connect Component, 

Cross Section/ Unfold, 

Section, Facet Detection, 

RANSAC shape detection 

TerraScan: Macro Classification tool 

(Classify / By intensity; Classify / Surface 

Points, Classify Using Brush, etc.), Power 

Lines using Least Squares Fitting, 

TerraModel (Surface Modeling) 

Object 

Classification 

lasclassify, lasheight, 

lasground, 

CANUPO Classification, 

Cloth Simulation Filter (CSF) 

TerraScan: Macro Classification tool 

(Classify / By intensity; Classify / Surface 

points, Classify Using Brush and etc.), 

Change Detection, 

Comparison, and 

Quantification 

- Compute 2.5D Volume TerraScan Change Detection Tool 
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Table 2-7 lists examples of application-specific operations as mapped to the core 

operation categories defined in Table 2-6. All three applications have similar operations, 

although they use spatiotemporal datasets for different purposes or may handle different 

data types. Thus, we argue that an efficient framework that can support the core operation 

categories can benefit a wide range of applications. Table 2-8 depicts Corresponding 

tools for the seven core operation categories in three major cloud computing software: 

Lastool, Cloud Compare, and Terrasolid respectively. 

2.3.5 Identify the uncertainty associated with big data acquisition and processing 

While spatial information (e.g. LiDAR, high-resolution imagery, etc.) facilities 

the rapid collecting of spatial disaster data for situation awareness, the uncertainty 

associated with the spatial data could be a defect that devalue the merit of the spatial data. 

Poor handling of the uncertainty can, at best, lead to errors in the knowledge that the data 

represent and at worst can bring fatal consequences  (Fisher 1999). Therefore, without 

clear understanding of the uncertainty in spatial data, the value of the big spatial data will 

be discounted as experts and decision makers may question about the accuracy of spatial 

data and especially their derived products using fast computing techniques and even 

reluctant to use it for their judgments (Gahegan and Ehlers 2000). In general, there are 

two types of uncertainties (Table 2-9).  

Raw data uncertainty refers to the inherent uncertainty of the raw datasets. The 

objective of studying raw data uncertainty is to identify the uncertainty in data acquisition 

and derive methods for data quality control. Hasselman et al. (2005) defined the studying 

of raw data uncertainty as the research question of “How accurate is the data perfect 

representation of the real world?” There are numerous researches on raw data uncertainty 
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often in the form of uncertainty (Beard et al. 1991; Fisher 1999), error (Goodchild 1994), 

accuracy (Goodchild 1994), data quality (ISO 2002), etc. Known factors contributing 

error in LiDAR data include, but are not limited to, errors in LiDAR systems, navigation 

systems, and system calibration. Mezian et al. (2016) studied the impact factors for 

system accuracy on two aspects: laser scanner accuracy and navigation system accuracy. 

The accuracy of the laser scanning accuracy is determined by properties of targeted 

objects (roughness, reflectivity), scanner mechanism precision (mirror center offset) as 

well as weather conditions (temperature, humidity) (Mezian et al. 2016; Soudarissanane 

et al. 2008).  

Table 2-9 Summary of different uncertainty analysis needs in different phases 

Type Data Acquisition Phase Application Phase 

Uncertainty Type Raw Data uncertainty Uncertainty Trade-off 

Objective 

Identify the uncertainty in data 

acquisition and derive method for 

data quality control 

Leverage between data 

characteristic and algorithm 

performance (time, accuracy) 

Research question 

How accurate is the data prefect 

representation of the real world? 

(Hasselman et al. 2005) 

Is the data accurate enough for the 

specific application? (Hasselman 

et al. 2005) 

Methods Data Accuracy/ error analysis 
Sensitivity analysis / Uncertainty 

(error) modelling 

Uncertainty 

Representation 

Value (Root Mean Square Error, 

Standard deviation) 
Trade-off  

 

The other type of uncertainty is uncertainty trade-off, which is focused on 

leveraging between data characteristic and algorithm performance (time, accuracy). 

Hasselman et al. (2005) defined the study of uncertainty trade-off as “Is the data accurate 

enough for the specific application?” In real-world applications, it is essential to have a 

comprehensive understanding on uncertainty trade-off. Understanding the uncertainty 
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trade-off is crucial in disaster environments where time is limited and computational 

resources are often constrained. Disaster applications desire not only computational speed 

but also acceptable uncertainty level. Without properly addressing either the timely or the 

uncertainty issues, the value of the LiDAR data-derived products will be demerit as 

experts and decision makers may cast doubt and even reluctant to use them for their 

judgments (Gahegan and Ehlers 2000). In the context of LiDAR data-derived DEMs, 

larger interpolation cell size results in DEMs with smaller file sizes and less computation 

time. Meanwhile, the larger interpolation cell size also potentially increases the 

information loss while generating these DEMs. Achieving an ideal trade-off between 

computation time and uncertainty level requires a “frugal” interpolation cell size. In 

literature, most of the studies focus on the uncertainties of different interpolation 

methods. A comprehensive study comparing errors caused by different interpolation 

methods can be found in Bater and Coops (2009). However, very little work can be found 

on how interpolation cell size is related to the information loss in generating DEMs with 

LiDAR data. To this end, this study presented the studying of uncertainty-trade off as an 

essential element in the data analytics framework. 

2.3.6 Computing with big data infrastructure 

With the time requirement in disaster response, computing infrastructure systems 

are undergoing fundamental transformations. The first transformation is the shift from 

CPU computing to GPU computing (Liu 2013). CPU and GPU have rudimentary 

different design architectures. A CPU is designed for sequential serial processing with 

sophisticated control logic. Architecturally, a CPU has only a few cores that can handle a 

limited amount of tasks simultaneously with lots of cache memory. In contrast, a GPU is 
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designed for massively parallel processing with simple control logic. The ability of a 

GPU with 100+ cores to process thousands of threads can scale of the processing ability 

by 100 times over a CPU alone. Therefore, GPUs are especially well-suited for arithmetic 

parallel tasks. GPU-accelerated computing has now grown into a mainstream movement 

(Owens et al. 2008). One the one hand, hardware manufacturers such as NVIDIA and 

AMD, have been transforming GPUs into a computational powerhouse. On the other 

hand, GPU computing is supported by prevailing operation systems such as Apple (with 

OpenCL) and Microsoft (using DirectCompute). Concurrently, the exploding GPU 

capability has attracted more and more researchers to use it to cope with big spatial data. 

For instance, Yuan (2012) examined the performance of CUDA-enabled Graphics 

Processing Unit (GPU) for LiDAR processing. The author concluded that the proposed 

GPU method could scale up a thirty fold speed increase over a similar sequential 

algorithm. Similar scalability can be found in (Lukač and Žalik 2013) who developed a 

GPU-based roofs’ solar potential estimation algorithm. More systematically, Plaza and 

Chang (2007) investigated insights as well as the challenge of GPU-based time-Critical 

Remote Sensing Applications. 

The second transformation is the shift from processing batch data to streaming 

data (or synonym for real-time and near real-time data) and interactive analysis.  Batch 

processing is designed for “data at rest” as a result, might have “medium to high latency” 

(or a response time from seconds to a few hours). MapReduce is a typical framework for 

batch processing. The Apache Hadoop framework enables the execution of applications 

on large computer cluster systems through the implementation of the Map/Reduce 

computational paradigm. Because of the “medium to high latency,” stream processing 
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comes into being to satisfy fast data needs. Wähner (2014) stated that stream processing 

is most suitable for processing streaming sensor data. Typical computing framework for 

stream processing includes Apache Spark and Apache Storm. Another trend for big data 

analytics is interactive analysis. Interactive analysis or sometimes refers to “human in the 

loop,” is a set of techniques that combining computation power of machines and with the 

perceptive and cognitive capabilities of humans, in order to extract knowledge from large 

and complex datasets. The anticipation of human interaction can be more effective in 

dealing with unscheduled tasks and unpredictable disturbance. Moreover, it will go 

beyond the bottleneck of fully automation algorithms. Typical interactive analysis tools 

include Google’s Dremel, Apache Drill, etc. A summary of the big data analytic tools is 

shown in Table 2-10. 
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Table 2-10 A Catalog of Big Data Analytic Tools 

Category Tools Application Area 

Batch 

processing 

Tools 

Apache Hadoop & 

MapReduce 
Data-intensive distributed applications 

Dryad 
Parallel and distributed processing of large data sets using 

a very small cluster or a large cluster 

Apache Mahout 
Large-scale data analysis applications with scalable and 

commercial machine learning techniques 

Apache Spark Batch and stream processing of large data sets 

Jaspersoft BI Suite Report generation from columnar databases 

Pentaho Business 

Analytics 

Report generation from both structured and unstructured 

large volume of data 

Talend Open 

Studio 
Visual analysis of big data sets 

Real-time 

stream 

processing 

tools 

Storm 
A distributed and fault-tolerant real-time computation 

system for processing limitless streaming data 

S4 

A general-purpose, distributed, scalable, fault-tolerant, 

pluggable computing platform for processing 

continuously unbounded streams of data 

SQLstream s-

Server 
Processing of large-scale streaming data in real-time 

Splunk 
A real-time and intelligent big data platform for exploiting 

information from machine-generated big data 

Apache Kafka 

A high-throughput messaging system for managing 

streaming and operational data via in-memory analytical 

techniques for obtaining real-time decision making. 

SAP Hana 

An in-memory analytics platform aimed for real-time 

analysis on business processes, predictive analysis, and 

sentiment data. 

Interactive 

analysis tool 

Google’s Dremel 

A system for processing nested data and capable of 

running aggregation queries over trillion-row tables in 

seconds 

Apache drill 

A distributed interactive big data analysis tool capable of 

supporting different query languages, data formats, and 

data sources. 

 

The third transformation is anticipating cloud computing to cope with big disaster 

data. As the development of sophisticated sensors tends to generate more data, the 

capability to process this vast and complex data could easily go beyond the power of 

regular desktop computers (Dorband et al. 2003). As mentioned in previous paragraphs, 

GPU computing facilities the fast computing. However, there are some limitations for 

GPU computing in local computers such as small onboard texture memory. To boost the 
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capability of GPU computing, one solution is to deploy high-performance clusters. 

Supercomputers, hosted by either universities or research institutes (e.g., Rutgers 

Caliburn) or commercial cloud computing companies (e.g., Amazon EC2, Microsoft 

Azure) can assist in reaping the benefits of GPU computing while avoiding its limitations 

(Fan et al. 2004). In traditional, high-performance computing (HPC) was the exclusive 

domain of government agencies. Yet, because cluster computing is proven to have the 

robust computational capability, relatively low-cost budget (Yang and Chen 2010), more 

and more agencies begin to implement HPC for their applications especially in dealing 

with massive data in the time-sensitive environment (Yang et al. 2011). Another method 

to handle the overwhelming spatial data is edge computing. Different from 

supercomputers, edge computing, is an optimising cloud computing system aiming at 

distributing the computation workloads from centralized points to the logical extremes of 

a network. The edge computing paradigm makes it feasible for the enormous amount of 

data that collected at the edge devices to be seamlessly processed at the edge as well in an 

efficient and timely manner. Moreover, state of the art data-driven edge processing 

framework such as the one proposed by Renart et al. (2017), allows users to define data-

driven reactive behaviors that can efficiently exploit data content and location to 

dynamically and autonomously decide the way data are processed. In all, emerging needs 

for fast processing big spatial data fostered the development of cloud computing, which is 

evolutional in accelerating the computations related with information extraction in remote 

sensing (Lee et al. 2011). 
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2.3.7 Connecting data processing with decision making models 

Disaster response involves humanitarian tasks that require a comprehensive 

understanding of disaster situation. These humanitarian tasks cannot be accomplished by 

either decision makers or data processing teams alone. Ideally, decision-makers need to 

be fully aware of what information can be processed and what kind of information cannot 

be processed within specific time constraints so that they could determine the optimal job 

sequence. However, decision-makers or experts might not necessarily have the domain 

knowledge in data processing; and there exists no cognition model in connecting the data 

processing tasks and decision-making processes. Notably, for large image datasets, it is 

difficult to provide an insight of what the information details and uncertainty would be 

like prior to the data processing. On the other hand, without specification of processing 

tasks form decision-makers, data processing teams may generate abundant or even 

worthless information, resulting in wasting of time and computational resource. In sum, 

an efficient response requires actions of decision-makers, data processing teams as well 

as collaboration between them. Without losing generify, primary complexes of the 

collaboration workflow is shown in Figure 2-13.  

 
Figure 2-13 Connecting data processing with decision-making models 
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First, experts or decision-makers from different agencies need to settle down a list 

of core processing goals and hand it to the data processing teams. Disaster decision-

making is a complex system that involves different level information. Estimating the 

cascading effect of a disaster does not only need information on the destruction of critical 

infrastructures (e.g., pipeline, power line, dunes, etc) and communications lines, but also 

intelligence on social, organizational and, economic structures that support the normal 

functioning of a community (Comfort et al. 2004). There could be conflicting roles 

structures in the experts and decision-makers (Bharosa et al. 2010). Therefore, it is 

critical to identify what kind of information are essential for response operations. 

Second, data processing teams need to present the uncertainty and complexity of 

each processing goals to the decision-makers in a way that decision-makers even without 

domain knowledge can easily understand. One of the significant barriers for experts for 

job scheduling during a response is lacking sufficient knowledge in the uncertainty and 

processing complexity. In addressing this issue, the abstract processing goals are broken 

down into the core operation categories described in Table 2-6.  In each operation 

categories, the uncertainty and complexity are provided as an index system, which 

enables experts to have a taste of what are the uncertainty and complexity associated with 

each processing tasks. 

Finally, decision-makers need to send feedback to the data processing teams on 

the data processing sequence. The vast volume of available during a disaster often 

overwhelms the processing capability of computation infrastructure resulting in 

information overload. On the other hand, information for disaster response is time-critical 

(Horan and Schooley 2007). The merit of information in humanitarian relief is not only 
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determined by the content of the information, but also by the time value of the 

information.  To achieve an effective and efficient response, the data processing need to 

fulfill the data processing tasks according to the information demand orders. (Starcke and 

Brand 2012). Under such circumstance,  it is indispensable for decision-makers to 

establish a chronological sequence of data processing jobs (Bharosa et al. 2010). 

2.3.8 Discussion 

This chapter discussed the four basic challenges related to efficient use of large 

geospatial datasets during extreme events. The more advanced question is how the 

decision-making and data processing in extreme events shape the big 3D spatial data 

processing. 

The first issue that needs to explore further is how to extend the crowdsourcing 

data for extreme events. The power of crowdsourced data may be an asset that could lead 

to substantial discoveries during such events. However, the use of crowdsourcing during 

remains regarded with skepticism. Many challenging research questions remain to be 

addressed. The spread of noise or fake data can have a negative impact on the individual 

and the decision-making during extreme events (Gupta et al. 2013; Shu et al. 2017). 

Therefore, fake data detection and information filtering on crowdsourced data become an 

emerging research topic. Second, handling crowdsourcing information requires unifying 

different data in a various format (e.g., text, images, 3D spatial data, .etc.) into a standard 

“readable” format. Most of the crowdsourcing-related studies are focused on Natural 

Language Processing (Callison-Burch and Dredze 2010; Sabou et al. 2012). It is desired 

that the crowdsourced data be made more accessible and enrich information as an 

integrated platform such as web-based (Barbier et al. 2012). Third, the computing and 



48 

 

 

delivery cost of crowdsourced data remains relatively high. Edge computing could be 

potentially a solution to lower the computation cost. Data collected at the emulated edge 

devices can be seamlessly processed at the edge as well in an efficient and timely 

manner. More importantly, Renart et al. (2017) proposed a content-driven edge 

computing framework that crowdsourced data quality control is performed in the edge 

level in a way that only critical information (the information rules that satisfied the rules 

by users) are submitted to the core.  

The second issue is how to deploy advanced machine learning algorithms for 

extreme events. The recent Alpha go and Alpha go zero have proven the power of the 

emerging machine learning algorithms, either supervised or unsupervised, in solving the 

complicated, realistic problems. There are numerous attempts in deploying such machine 

learning algorithms to handle the spatial data such as LiDAR (Gleason and Im 2012), 

imagery (Marjanović et al. 2011), and text (Gupta et al. 2013). The remaining problem is 

how to transplant these advanced algorithms to deal with extreme events. Unsupervised 

algorithms, such as parametric Classification (Charaniya et al. 2004), clustering (Gupta et 

al. 2010), are extensively studied in dealing with geospatial data. However, it is arguable 

that the supervised algorithms are outperformed the unsupervised algorithms (Thomson 

1998),. For supervised algorithms, one apparent defect is lacking properly annotated 

databases to train the data. Geospatial database such as ImageNet (Deng et al. 2009), 

Semantic 3D (Hackel et al. 2017) does not offer the feasibility of analyzing the disaster-

related information. Other extreme events related datasets, either LiDAR or Image, are 

not annotated. Therefore, establishing a well-annotated extreme events-related database is 

essential. Last but not least, the existing machine learning algorithms either supervised or 
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unsupervised are only focused on a small piece of information extraction. Formally 

formulate information needs during extreme events and identify the decision-making 

objectives requires further exploration.  

2.4 Conclusion 

Severe weather events such as hurricanes, ice storms, surge, and flooding have 

been occurring across the U.S and around the world, threatening places where economic 

and industrial activities are heavily concentrated. In the face of these natural disasters, 

building community resilience is essential to reduce the loss of livelihoods, economic 

cost, and social disruption. These extreme events are now increasing observed and 

monitored with a loosely coupled network of geospatial sensors. For instance, in recent 

years, because state and federal agencies have made airborne LiDAR data collection a 

priority, post-storm LIDAR collection is now routine after large surge event, and the vast 

amount of disaster data are now freely available online. In another example, emerging 

high resolution sensing systems such as terrestrial/mobile LiDAR have also been 

deployed for damage data collection during recent events such as Superstorm Sandy, 

generating an unprecedented amount of visual disaster data. Lastly, volunteered 

geographic information, such as geo-tagged disaster photos, is a new breed of disaster 

data which methods have produced large and heterogeneous spatial disaster datasets 

spanning multiple spatial and temporal scale and with varying levels of confidence. 

Analysis of these datasets offers tremendous opportunities in improving the resilience 

and adaptability of coastal communities in the face of future natural disasters. Despite the 

high values in these data sets, the vast size and complex processing requirements of these 

new data sets make it challenging to efficiently use them in coastal community 

management applications, in particular,emergency situations.  
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In the second section, we identified two significant purposes for big spatial 

disaster data: Long-term “capability” building information and Short-term “adaptability” 

enabling information. To cope with these two different purposes, we revisited the 

applications of four major types of spatial disaster data: (1)ancillary geospatial, (2) 

imagery data, (3) LiDAR data and last Lastly, (4)volunteered geographic information. 

We then summarized the four challenges of using big spatial data for disaster response 

including. First, there is lacking clear understanding on the basic structure of big visual 

disaster data and their role in disaster management. Second, the knowledge on the quality 

and uncertainty associated with the big spatial disaster data remains insufficient. Third, 

there are few studies on formal modeling of processing goals, computational workflows 

in a distributed computing environment, and the coordination of decision-making and 

computational workflow. Finally, specifically for short-term “adaptability” enabling, it 

urges an adaptive process to adjust data processing to the time bounds requirement. 

Driven by the growing needs of deploying spatial disaster data for more efficient 

response, in section three, we presented our research progresses in designing data 

analytics frameworks during extreme events to integrate, share, and process these large 

data sets for an array of critical disaster management tasks. We first characterized the 

basic anatomy of big spatial data from six aspects: Volume, variability, velocity, data 

structure, Spatial Completeness, and Veracity. Moreover, to standardize the data 

processing, we targeted core operation categories employed in applications that 

synthesize information from spatiotemporal sensor data in our research. The core 

operations produce different levels of data products that can be consumed by client 

applications. Then we highlighted the uncertainty issues associated with both big data 
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acquisition and application phase. A central component of our study is on how to use big 

data infrastructure to accelerate the processing of the massive amount of geospatial data, 

in particular streaming data, such that crucial insights can be extracted from the data 

within a realistic time-bound and time-sensitive decisions can be made to optimize 

coastal community operations during extreme events. We revisited three undergoing 

fundamental transformations in computing. Another missing puzzle in the current using 

of big spatial disaster data is the collaboration between decision-makers and data 

processing team. We proposed a collaboration workflow to connect the data processing 

with the decision-making process.  

Last but not least, the discussion section pointed two advanced issues in 

deploying big 3D data during extreme events. The first issue is to promote the using of 

crowdsourced data for extreme events. The second issues are transplanting the advanced 

machine learning algorithms for extreme events. We identified two critical needs for this 

issue including (1) establish well-annotated database; and (2) formulate the information 

needs.  
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Chapter 3 Modelling Accuracy Loss in LiDAR-derived Digital 

Elevation Models 

3.1. INTRODUCTION 

Digital Elevation Models (DEMs) are 3D representations of the natural and built 

features on the Earth’s surface. DEMs and their derived products provide vital 

information for terrain analysis based assessments or modeling (Wolock and Price 1994) 

and applications such as flood simulation and management (Qi and Altinakar 2011) and 

route modeling (Romanowicz et al. 2008). DEMs are also a critical piece of information 

sought in disaster response.  For instance, major hurricane events often cause massive 

storm surges, beach erosion, levee breaches, scour, and damage to buildings and 

infrastructure. Many of these impacts are manifested in dramatic topographical changes, 

which can be readily identified and quantified from DEMs or DEM-derived products. 

The data used to generate DEM can be captured using a wide variety of techniques such 

as Global Positioning System (GPS), topographic survey (Wilson and Gallant 2000), 

interferometry (Kervyn 2001), and Airborne LIDAR point cloud (Liu 2008). Among 

these methods, airborne LiDAR is capable of scanning large geographic areas in a short 

amount of time. Because of this, airborne LiDAR systems are routinely deployed after 

large storm surge events. 

While airborne LiDAR systems have been playing an increasingly important role 

in disaster events, there are fundamental challenges in deploying LiDAR for DEMs 

generation in disasters. One frequently asked question is how accurate are the LiDAR-

derived DEMs. Like any kind of geospatial data, the value of the LiDAR-derived DEMs 

and their derived products are heavily dependent on their accuracy (Bater and Coops 

2009; Mukherjee et al. 2013). LiDAR-to-DEM conversion often requires a unique 
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process called interpolation to infill the gaps and handle the duplicate points. Such 

process introduces non-negligible errors to the original LiDAR data. Without good 

understanding of the accuracy loss can, at best, lead to errors in the knowledge that the 

data represent and at worst can bring fatal consequences  (Fisher 1999). The importance 

of studying the accuracy of LiDAR-derived DEMs is amplified when approximation 

techniques are adopted. Approximation mechanisms, either explicitly or implicitly, are 

often used to accelerate data processing speed (Pandey and Pompili 2016). Unfortunately, 

a common side effect of approximation is that it can bring significant accuracy loss to the 

original dataset. A crucial question in using approximating techniques is that after using 

approximate computing, will the LiDAR-derived DEMs maintain an acceptable level of 

accuracy. Without quantification of the accuracy loss, the value will be discounted as 

experts and decision makers may question about the merit of the LiDAR-derived DEMs 

and even reluctant to use it for their judgments (Gahegan and Ehlers 2000). As a result, 

deriving the accuracy loss associated with LiDAR-to-DEM interpolation is equally 

important as identifying the error source of the LiDAR data. 

The goal of this study is to model the accuracy loss in the LiDAR-to-DEM 

conversion and consequently provide a methodology for choosing the optimal 

approximation strategy. The focus is on establishing a relationship between the LiDAR 

interpolation grid size and the accuracy loss so that end-users can select the proper 

interpolation parameter. The remainder of the article is organized as follows: Section 2 

introduces the related work. Description of the model development is described in section 

3. In section 4, results and discussion are presented. Section 5 provides conclusions. 
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3.2 related Work 

Errors in LiDAR-derived DEMs can be introduced in two primary phases 

including the data acquisition phase and the LiDAR-to-DEM conversion phase. In the 

data acquisition phase, the study of LiDAR accuracy is motivated by the research 

question: “How accurately does the captured data represent the real world?” (Hasselman 

et al. 2005). Factors affecting the accuracy of the LiDAR data include (1) the 

performance of the LiDAR acquisition system and (2) the environmental factors. An 

airborne LiDAR system consists of two principal parts: a scanner and a navigation 

system. The scanner determines the precision of the LiDAR point clouds, and the 

navigation system (e.g., Differential Global Positioning System, Inertial Measurement 

Unit, and Distance measurement) determines the accuracy of the forward motion 

trajectory. The accuracies of both parts are often provided by the manufacturers.  

Prevailing airborne laser scanners such as Rigal (VQ-1560i) can achieve an accuracy of 

20 mm. The position accuracy of the commercially available navigation system such as 

APPLANIX system ranges from 20 to 50 mm after post-processing. In addition to 

inaccuracy caused by the system hardware design, LiDAR data accuracy is also subject to 

changes from the environment such as the properties of targeted objects (roughness and 

reflectivity) and weather conditions (temperature and humidity) (Mezian et al. 2016).  

Leslar et al. (2014) concluded that environmental conditions could severely affect the 

accuracy of the LiDAR data. For instance, in cloudy conditions, shading of GPS signal 

can increase the trajectory error from centimeters to meters. Moreover, to minimize 

environmental impacts, many methods such as forward-backward processing (Kalal et al. 

2010) and strip adjustment (Csanyi and Toth 2007) are proposed. There are extensive 

research efforts on quantifying the accuracy of airborne LiDAR in different environments 
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during the data acquisition phase. Many studies agreed that the vertical accuracy of 

airborne LiDAR could reach 20mm (Hodgson and Bresnahan 2004; May¹ and Toth 

2007), though the exact performance varies with the studies. In current airborne LiDAR 

data acquisition projects, a specification regarding the accuracy of Airborne LiDAR data 

is often a required component in delivered data sets.  

In contrast to the numerous studies devoted to investigating the accuracy in 

LiDAR data acquisition phase, Cooper et al. (2013) argued that a significant barrier for 

extending LiDAR in disaster applications is the lack of well-established error standards in 

LiDAR-derived products. In particular for generating LiDAR-derived DEMs, it often 

requires a process called interpolation to infill gaps and handle duplicate points during 

LiDAR-to-DEM conversion (Aguilar et al. 2010). This interpolation process often 

introduces non-negligible error into the final DEM products. Without a clear 

understanding of the loss in accuracy during the LiDAR-to-DEM conversion process, 

end-users may be reluctant to use LiDAR-derived products because they do not have the 

confidence in whether the DEM is accurate enough for specific applications (Hasselman 

et al. 2005). The importance of studying the accuracy of LiDAR-derived DEMs is 

amplified when approximation techniques are adopted. In disaster response or other time-

sensitive applications, it is often necessary to deploy approximate computing techniques 

(Pandey and Pompili 2016) to sacrifice accuracy for computation efficiency. In another 

word, it is more desired to use a minimum amount of time to generate DEMs with an 

acceptable level of accuracy rather than to generate highly accurate DEMs using 

computationally expensive methods (Aguilar et al. 2010).  This leads to the great need to 
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understand to what extent is approximating techniques affect the accuracy during 

LiDAR-to-DEM conversion.   

For LiDAR-to-DEM conversion, two important choices in choosing 

approximation strategies are related to interpolation methods and interpolation 

parameters. Many studies conducted comparative analyses on how different interpolation 

methods affect the accuracy of resulted data products (Arun 2013; Bater and Coops 2009; 

Polat et al. 2015). However, based on these studies, interpolation methods are not an 

appropriate indicator for developing approximation strategies. First, all the studies 

pointed out that nearest-neighbor (NN) method performs better than others in terms of 

accuracy, but the computational complexity of NN methods has not been studied in 

detail. Second, the errors caused by different interpolation methods are less pronounced 

than the errors caused by interpolation parameters (point density, Bater and Coops 

(2009)). Furthermore, the difference in interpolation methods would not alter the 

resolution of the DEM, and therefore would not result in changes in data intensity. 

Therefore, it makes more sense to investigate the approximation strategy based on 

interpolation parameters. 

In literature, among all interpolation parameters, grid size is heavily investigated 

because it not only affects the DEM accuracy (Bater and Coops 2009; Gao 1997) but also 

influences the data intensity. For instance, in the study by Bater and Coops (2009), the 

authors pointed out that there is an apparent increase in the amount of error at coarse 

resolution (large grid size) than at a finer resolution (small grid size). Nevertheless, 

prevailing studies provided limited guidance on how to appropriately select the grid size. 

Hengl (2006) suggested that grid size selection should be based on a number of factors 
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such as point density, distribution, horizontal accuracy, etc. Similarly, Liu et al. (2007)  

suggested that DEM resolution (interpolation grid size) must match with point density. 

Both studies, however, do not provide a connection between the grid size and the 

accuracy loss. Other studies statistically summarized the possible achievable accuracy 

given certain interpolation grid size (Aguilar et al. 2010; Erskine et al. 2007). However, 

such relationship might not necessarily hold for other grid size values. Very little work 

has been conducted on establishing the relationship between accuracy loss and 

interpolation grid size. Two exceptions are the works by Aguilar et al. (2010) and Huang 

(2000). Aguilar et al. (2010) modeled the propagation of error (information loss) due to 

different point densities. However, it is arguable that the error propagation is only the 

indicator for precision rather than accuracy. Huang (2000) provided a useful guideline for 

relating the grid interval with information loss. Nevertheless, it remains unclear on how 

to link these models to approximation strategies. To this end, this study proposed a model 

for evaluating the accuracy loss during LiDAR-to-DEMs conversion. 

3.3. Research Methodology 

This study aims to model the accuracy loss associated with the LiDAR-to-DEM 

conversion. The detailed methodology of the proposed model is presented in this section. 

First, built on top of the existing accuracy loss model, this study incorporates the 

accuracy loss model with two independent variables i  and X .  Table 3-1 summarizes the 

detail descriptions of these two variables as well as a list of notations used in this study. 

Then, the 2010 pre-Hurricane Sandy airborne LiDAR data was adopted to generate both 

the ground truth data and the test data. The Monte Carlo Simulation (MCS) is adopted for 

random checkpoints generation in ArcGIS. Then, based on the previous result, a multiple 

regression analysis is then performed in Matlab to derive the accuracy loss model. Last 
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but not least, the model built on 2010 dataset is validated utilizing the other three 

datasets.  

Table 3-1 List of the notations 

Notation Meaning 

i  
Approximation strategy artifact, describes the parameter for 

approximation 

X  Minimum averaging spacing 

k  Interpolation method 

c  Interpolation Cell Size 

  point density 

a
 

Area of the dataset 

s
 

Data size of the LiDAR-derived DEM 

LiDARz
 

Vertical elevation extracted directly form LiDAR data 

iXDEM
z

,  
Vertical elevation extracted from LiDAR-derived DEM with strategy 

artifact 𝑖 and Minimum averaging spacing 𝑋 

einterpolatRMSE
 

Interpolation Root Mean Square (RMSE) 

NNe,interpolatRMSE
 

Interpolation Root Mean Square (RMSE) using nearest neighbor (NN) 

method 

iXRMSE
 

Root Mean Square (RMSE) of the model based on strategy artifact 𝑖 
and Minimum averaging spacing 𝑋 

 

3.3.1 Accuracy loss model 

The accuracy of a DEM is defined as the root mean square errors (RMSE) 

between the all-possible interpolated heights and the ground truth (ASPRS 2004). In 

literature, the interpolation accuracy is reported to relate to factors such as interpolation 

method (Bater and Coops 2009), interpolation grid size (Aguilar et al. 2010; Erskine et al. 

2007), point density (Bater and Coops 2009; Gao 1997), terrain slope (Gao 1997), and 

etc. In this study, in order to cope with the approximation need during time-sensitive 

applications, the authors introduced an approximation strategy indicator, denoted as 𝑖 

This indicator. In general, 𝑖 can be calculated as the ratio between the absolute grid size 𝑐 

and the average point spacing 𝜌.  
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For analysis, assumed that the interpolation error is a function of three inputs: 

interpolation method 𝑘, point density 𝜌 and interpolation cell size 𝑐. Then the relationship 

is expressed as below: 

𝑅𝑀𝑆𝐸𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 = 𝑓(𝑘, 𝜌, 𝑐)                                                          (1) 

However, Bater and Coops (2009), suggested that the accuracy is less sensitive to 

interpolation methods than the interpolation cell size and proposed that nearest neighbor 

(NN) is preferred to other methods. Similar studies can be found in Arun (2013) and 

Polat et al. (2015). Both studies concluded that the NN method is favorite for 

interpolation of geo-morphologically smooth areas. It should be pointed out that the error 

caused by the interpolation method 𝑘 is non-negligible. In this study, it is of particular 

interest to investigate how the approximation parameter (coarse interpolation cell size) 

can affect the accuracy performance of LiDAR-derived DEMs. To address this issue, the 

model is isolated by using the same NN. Then, the new model is represented as: 

     𝑅𝑀𝑆𝐸𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒,𝑁𝑁 = 𝜑(𝜌, 𝑐)                                            (2) 

3.3.2 The explanatory variable 

In literature, most researchers estimated the accuracy or RMSE of the DEMs 

based on the equation (2). They derived the accuracy loss function based on point density 

(Bater and Coops 2009; Gao 1997) and interpolation grid size (Erskine et al. 2007; Ziadat 

2007). However, there could be considerable drawbacks when incorporating point density 

𝜌 and grid cell c into the RMSE estimation. 

First, 𝜌 describes the average level of the data resolution rather than the worst 

scenario. Nonetheless, it is the worst scenario rather than the average level that limits the 

overall interpolation accuracy. The average level and the worst scenario can be 
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equivalent only in datasets that with homogeneously distributed points. For example, 

there exist two areas 𝑎1 and 𝑎2. Let us assume that 𝑎1 is with extremely low resolution 𝜌1 

while 𝑎2 has a much higher resolution 𝜌2 (𝜌1 < 𝜌2). Then the point density 𝜌 can be 

computed as the weighted average density 𝜌  of 𝑎1 and 𝑎2, as (𝜌1𝑎1 + 𝜌2𝑎2)/(𝑎1 + 𝑎2). 

It should be noted that 𝜌 can be significantly larger than 𝜌1. Significant errors could be 

introduced when the accuracy loss is estimated based on the average case 𝜌 instead of the 

worst case 𝜌1. Therefore, there could be an apparent deviation when using point density 𝜌 

as a variable to describe the interpolation accuracy loss. 

Second, most of the existing studies (Erskine et al. 2007; Ziadat 2007) evaluated 

the interpolation accuracy loss based on the absolute value of the grid size 𝑐. 

Nevertheless, selecting the absolute grid cell size 𝑐 might not reflect the discrepancy 

among different datasets. For instance, if there exist two datasets with different density 𝜌1 

and 𝜌2 (𝜌1 < 𝜌2) respectively. It is often the case that when interpolating with the same 

absolute grid size 𝑐, the accuracy loss of these two datasets are prone to be different 

because the resolution of the dataset 2 is higher than that of dataset 1. It is arguable that 

all datasets with different resolutions would have the same performance when 

interpolating at the constant absolute grid size.  

Third, the two variables 𝜌 and 𝑐 might not necessarily be independent. Hengl 

(2006) emphasized that grid cell selection should be based on the point density. In that 

sense, the absolute cell size 𝑐 is a function of the 𝜌. In the light of this, it makes more 

sense that the approximation strategy is separated from the absolute cell size c in a way 

such that this approximation strategy is independent of the point density 𝜌. 



61 

 

 

In addressing the abovementioned limitations, this study proposed to incorporate 

two independent variables 𝑖 and 𝑋 into the model. Then the interpolation accuracy 

function based on the NN methods can be expressed as: 

𝑅𝑀𝑆𝐸𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒,𝑁𝑁 = 𝜑′(𝑖, 𝑋)                                                           (3) 

Here, 𝑋 describes the worst case of the point density. 𝑖  describes the relative 

interpolation ratio. Then the interpolation cell size c can be computed as 𝑖𝑋. The scope of 

this study is to identify optimal approximation strategy for interpolation. 

3.3.3 Study area and datasets 

This study selected the Lavallette borough in Ocean County, New Jersey as the 

study site. Lavallette is located in the Barnegat Peninsula, a long, narrow barrier 

peninsula that separates Barnegat Bay from the Atlantic Ocean. Hurricane Sandy took a 

major toll on the Lavallette borough. The sand dune was swept away during Hurricane 

Sandy. The entire community sustained significant damage. During Hurricane Sandy, the 

water level rose to more than three feet above the ground. Most of the oceanfront 

structures and buildings were severely damaged. Debris formed as a result of the eroded 

sand dunes and damaged structures move through the inland area of the community and 

cause additional damage to the properties that are farther away from the ocean. At least 

four LiDAR surveys (Table 3-2) were carried out in the study area, and these datasets 

were used for the performance validation purpose in this study. It is worth mentioning 

that these four datasets were collected using three different LiDAR systems. All four 

datasets are publicly available from the Digital Coast. Table 3-2 gives a detail description 

of the four datasets and its data specifications including vertical RMSE accuracy (95% 

confident interval), data collection time, LiDAR acquisition system, and the estimated 
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average point spacing. In this the following section, the 2010 airborne dataset is utilized 

to develop the model. In order to verify the versatility, the other three datasets are used to 

validate the proposed model in the later result in discussion section. 

Table 3-2 List of datasets 

Datasets 

Vertical 

Accuracy RMSE 

(95% 

confidence) (m) 

Data collection 

date 

LiDAR 

acquisition 

system 

Estimated 

minimum 

average point 

spacing (m) 

2010 USACE NCMP 

LiDAR: Atlantic Coast (NJ) 
0.2 

20100828 to 

20100911 
CHARTS 0.85 

2012 USACE NCMP 

LiDAR: Post-Sandy (NJ & 

NY) Point Cloud 

0.125 20121116 CZMIL 0.75 

2013 USACE NCMP 

Topobathy LiDAR: Barnegat 

Bay and Seaside (NJ) 

0.196 
20130903 to 

20101002 
CZMIL 0.5 

2014 NOAA NGS Topobathy 

LiDAR: Post Sandy (SC to 

NY) 

0.214 (0.057 – 

0.221 depending 

on land cover 

type) 

20140108 and 

20140109 

Riegl VQ-

820G 
0.25 

 

3.3.4 The prediction model 

This study utilized 𝑍𝐿𝑖𝐷𝐴𝑅 as the ground truth, which is extracted directly from the 

LiDAR data. The test data is elevation value after the LiDAR-to-DEM conversion, 

denoted as 𝑍𝐷𝐸𝑀,𝑖𝑋 . Then accuracy loss of LiDAR-derived interpolating at cell size 𝑖𝑋 

can be computed as: 

                    𝑅𝑀𝑆𝐸𝑖𝑋
2 =

∑(𝑍𝐿𝑖𝐷𝐴𝑅−𝑍𝐷𝐸𝑀,𝑖𝑋)2

𝑛
                           (4) 

A multiple regression model is designed to incorporate two independent variables 

(𝑖, 𝑋) in estimating the accuracy loss in LiDAR-derived DEMs. In practice, it is difficult 

to compute the difference between observation value and the ground truth of the entire 

dataset. Instead,  Huang (2000) suggested that using checks points to derive RMSE is 

most objective as long as two conditions are satisfied: (1) well distributed; (2) sufficient 



63 

 

 

checkpoints. To this end, this study devised a Monte Carlo Simulation (MCS) based 

method to generate random points that meet the abovementioned two conditions. 

The MCS is conducted in ArcGIS. Each time, 100 random checkpoints in the 

study area were generated. Figure 3-1 depicts the distribution of 100 random checkpoints 

on a single MCS. At each checkpoint, the ground truth value is defined as the average 

elevation of all points extracted directly from the LiDAR data. Then the original LiDAR 

dataset is interpolated with different cell size iX using the nearest neighbour interpolation 

to generate a raster data. This study only considers the nearest neighbour interpolation 

because this method is favorited for its overall parsimonious nature such as ease of use, 

consistent accuracy, and high computation efficiency (Bater and Coops 2009). Then at 

each checkpoint, the observed elevation is extracted as the average elevation value in the 

same place from the raster data. It should be pointed that each checkpoint is buffered with 

a radius of  5𝑋 to ensure that a minimum of 20 points were within a single checkpoint.  

 

Figure 3-1 Random checkpoints (100) generated using Monte Carlo Simulation.  

(The terrain map was generated by Xuan HU in ArcGIS using post-Sandy USGS EAARL-B 

data.) 

 

The model is calibrated using the 2010 LiDAR data with different 𝑖. For each 𝑖, 

five replicated random MCS was replicated as illustrated in Figure 3-2. In each of the 

MCS, the minimum average spacing is summarized, with a range between 0.542m to 

1.324m.  The residuals between the raw data and the LiDAR-derived DEMs are 
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calculated over a sample of 100 checkpoints for each simulation. The results of the 

multiple-regression model are expressed in equation 5. 

𝑅𝑀𝑆𝐸𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒,𝑁𝑁
2 = 0.126826𝑖 + 0.108581𝑋 − 0.09063   (1 ≤ 𝑖 ≤ 5)     (5) 

 

Figure 3-2 Model Calibration Result from five MCS based on 2010 dataset 

 

Figure 3-2 depicts the model calibration result. The regression indicates an R-

squared value of 0.8106 and a standard error of 0.08986. The p-value for the prediction 

variable 𝑖 is lower than 0.001 and the p-value for the prediction variable 𝑋 is less than 

0.05 (0.0463), which indicate that both prediction variables are significantly correlated to 

the RMSE-squared. Then, the information loss function due to interpolation based on NN 

method is described in equation 6.  

𝑅𝑀𝑆𝐸𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒,𝑁𝑁 = √0.126826𝑖 + 0.108581𝑋 − 0.09063   (1 ≤ 𝑖 ≤ 5)    (6) 

3.3.5 Model Validation 

Figure 3-4 displays the performance results of the aforementioned model based on 

four different types of LiDAR survey datasets. The blue lines are the prediction value of 

the proposed accuracy loss model as described in Equation (9). The orange lines are the 
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observed value based on the previous experiment design section. The observed accuracy 

loss is calculated as the RMSE between the LiDAR data and the LiDAR-derived DEMs.  

It is noteworthy that these four datasets were collected from three different LiDAR 

systems at completely different times. As a result, the reporting vertical errors of the 

datasets are significantly distinct, ranging from 0.125 meters to 0.20 meters and the 

minimum average spacing varies from 0.259 meters to 0.935 meters. In sum, the 

validation from four separate datasets suggests that the presented model (equation 6) can 

adequately predict the accuracy loss at the linear stage (1𝑋 to 5𝑋).   

 

Figure 3-3 Goodness of fit of the RMSE Model 
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Figure 3-4 Model prediction performance on four LiDAR survey datasets. 

(a) Model prediction performance on 2010 data. (b) Model prediction 

performance on 2012 data. (c) Model prediction performance on 2013 data. (d) Model 

prediction performance on 2014 data.  

 

Table 3-3 illustrates the mean error, standard error and R-squared for all four 

datasets, respectively. Compared to the minimum of 0.10 m system RMSE as shown in 

the third column, the mean prediction errors of four datasets (0.05 m) are acceptable. The 

R-squared values for the validation datasets are higher than 0.786, which means that the 

prediction model covers at least 78.6% of the variance. Figure 3-3 depicts a plot of the 

observed value and the proposed RMSE prediction model. The R-squared value is 
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0.8348, indicating a statistically significant correlation between the purposed model and 

the observed RMSE. 

Table 3-3. Model Validation results using different datasets 

Data  𝑋 (m) RMSE @ 1𝑋 

(m) 
Mean 

Prediction 

Error (m) 

Standard 

Prediction 

Error (m) 
R-Squared 

2010 Data 0.935 0.371 0.054 0.209 0.852 
2012 Data 0.751 0.343 -0.010 0.079 0.786 
2013 Data 0.364 0.275 0.015 0.075 0.830 
2014 Data 0.259 0.254 -0.019 0.092 0.859 

 

3.4 Results and discussion 

3.4.1 Accuracy of LiDAR-derived DEM 

Many studies have reported that the accuracy has a positive correlation with the 

increased of interpolation grid size (Aguilar et al. 2010; Erskine et al. 2007; Ziadat 2007). 

Results from abovementioned MCS indicated similar but slightly different results. In 

general, the RMSE increases when the strategy artifact 𝑖 increases. Figure 3-5 depicts the 

estimated accuracy loss from five MCS. It should be pointed out that in practise, more 

than 50 MCS were conducted using the 2010 dataset and the results are similar. Based on 

the results, the authors suggested that the proper range of the strategy artifact 𝑖 is 1 to 5. 

This suggestion is based on the following reasons.  

First, when interpolating at a grid size less than one times the minimum averaging 

spacing 1𝑋 (e.g., 0.7 meters in this case), there is a fluctuation in the RMSE-squared. In 

practice, there is no need to interpolate at grid size less than 1𝑋, because the investment 

in computing resource at interpolating at smaller grid size does not necessarily guarantee 

a decrease in accuracy loss. Second, when interpolation grid size is greater than 5 times 

the minimum averaging spacing, there is an exponential growth in the accuracy loss 
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(RMSE-squared). It should be noted that terrain attributes that derived from DEMs are 

sensitive to the accuracy (Erskine et al. 2007). Moreover, Kienzle (2004) emphasized that 

the use of low accuracy DEMs may have a significant limitation in deriving terrain 

attributes. If the time is sensitive and the user has no option but to interpolate at larger 

grid size, caution must be practiced to use such DEMs products for quantitative analysis. 

Finally, when interpolating grid size is from 1𝑋 to 5𝑋, the relationship between 

approximation strategy 𝑖  and RMSE-squared is almost linear, which makes it ideal to 

model the estimation loss (in terms of  RMSE-squared) as a function of 𝑖. Granted that 

there could exist more complicated relationship than linear, such non-linear relationship 

is often sensitive to outliers. This study assumes a simple linear relationship between 

approximation strategy 𝑖 and RMSE-squared at range 1𝑋 to 5𝑋. This range also 

represents the common choices in selecting the approximation strategy.  

 

Figure 3-5 Estimated Accuracy Loss from 5 MCS (2010 data) 

 

The benefits of the above accuracy loss model can be summarised as two-fold. 

First, the model could be deemed as a reference on how the approximation strategy 𝑖 

would affect the accuracy loss in the DEM data. In time-sensitive applications, 
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knowledge of accuracy loss associated with data processing is of remarkable interests in 

LiDAR-derived DEMs, especially if approximation techniques (e.g., interpolation at 

larger cell size) are adopted. The outcomes of terrain-derived attributes are strongly 

dependent on how much accuracy maintained after interpolation process (Kienzle 2004). 

Figure 3-6 depicts a visualization of the different accuracy loss because of different 

approximation strategy 𝑖. It can be easily obtained that when the approximation strategy 

value 𝑖 increases, the DEM data becomes less clear. The above model demonstrates a 

mathematical relationship between accuracy loss in terms of RMSE and two independent 

variables (𝑖, 𝑋), which allows users to access the prior knowledge on what is the possible 

RMSE when deploying particular approximation strategy 𝑖. Moreover, the visualization 

of the accuracy loss can also facilitate end-users to have a tangible understanding of the 

outcomes of DEM corresponding to different RMSE values.  

Second, the model also enables a tool for end-users to determine the 

approximation strategy. In disasters, end-users often desire an optimal strategy that 

requires less computational effort while maintaining at least minimum user requirement. 

The present model facilitates a tool for end-users to balance the accuracy loss and 

computational intensity trade-off. In general, the data size can be easily computed using 

based on the approximation strategy 𝑖. For instance, let’s supposed that the data size 

interpolating at grid size at 1𝑋 is 𝑠1, then the data size interpolating at grid size 𝑖𝑋 is 

calculated as 𝑠1/𝑖2. The relationship between interpolation grid size and data sizes, 𝑠1/𝑖2, 

indicates that by deploying more aggressive approximation strategy (larger 𝑖 value), the 

data size is considerably reduced. Moreover, data size is closely linked to computation 

intensity. A smaller data size often indicates less computation intensity and likely fewer 
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computation resources. The present model (equation 6) establishes a relationship between 

accuracy loss and data size, which facilitates end-users to evaluate the accuracy and 

computational intensity trade-off. In Figure 3-6, the four images depict DEM data 

generated based on different approximation strategy 𝑖 using the 2010 dataset. For each 

DEM, the data size is summarized. To this end, end-users can reduce the computation 

intensity by selecting a coarse interpolation grid size (larger 𝑖 value) while the accuracy 

maintains the minimum requirement of the application. 

 

Figure 3-6 Comparison of LiDAR interpolation accuracy loss. 

 (The figure was generated by Xuan HU in ArcGIS using pre-sandy data collected by USACE) 

 (a) Interpolating at 1𝑋 (RMSE=0.37m, Data Size=20.70Mb);  

(b) Interpolating at 2𝑋 (RMSE=0.56m, Data Size=6.24Mb);  

(c) Interpolating at 4𝑋 (RMSE=0.72m, Data Size=852Kb);  

(d) Interpolating at 5𝑋 (RMSE=0.80m, Data Size=531Kb 
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3.4.2 Comparison of dual input model and previous model 

The introduction of minimum averaging spacing 𝑋 and approximation strategy 

indicator i  will have two major impacts on understanding the accuracy loss associated 

with interpolation. From the statistical point of view, the approximation strategy indicator 

𝑖 is independent with the data characteristic (point density 𝜌 or minimum averaging 

spacing 𝑋). By separating the approximation strategy indicator 𝑖 from the absolute cell 

size 𝑐, it facilitates the investigation on how artefact variable 𝑖 and inherent data 

characteristic 𝑋 affect the interpolation accuracy. From the application point of view, 

both variables have their meanings in time-sensitive applications. The scope of this study 

is to identify optimal approximation strategy for interpolation. The minimum average 

spacing 𝑋, reflects the characteristic of the LiDAR dataset. The approximation strategy 

indicator 𝑖 directly represents what kind of strategy for the grid size approximation.  

To verify that the combination of approximation strategy 𝑖  and minimum average 

spacing 𝑋 performs better than variables used in previous studies (e.g., point density 𝜌., 

or absolute interpolation grid size 𝑖𝑋), four linear regression analyses are performed. 

First, three single regression analyses with a single variable are carried out to compare 

the significant level of three variables 𝑖, X, and 𝑖𝑋 respectively. Then a multiple 

regression analysis with two independent variables and 𝑋 is performed to compare 

whether the RMSE is more sensitive to one single variable or a combination of two 

independent variables. The results are summarized in Table 3-4. 
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Table 3-4 Summary of the different regression model for variables selection 

Test Method Variable p-VALUE R-Squared Standard error 

1 Single Regression with 

One Variable 𝑋 0.421224 0.015466 0.272091 

2 Linear Regression with a 

single Variable 𝑖 1.35E-14 0.759957 0.100831 

3 Linear Regression with a 

single Variable 𝑖𝑋 2.18E-10 0.620963 0.126703 

4 
Multiple regression with 

Two Independent 

Variable 

𝑖 5.86E-15 
0.794789 0.094358  

𝑋 0.054617 
 

First, the results of test 1 show that 𝑋 is a poor indicator of the accuracy loss in 

the interpolation stage. The p-value (0.42) indicates that there is no significant correlation 

between the prediction variable 𝑋 and the outcome RMSE-squared. Second, test 2 and 

test 3 compare the performance of the absolute value 𝑖𝑋 and the relative value i  in 

predicting the interpolation accuracy. Both analyses have p-values less than 0.001, which 

means that both of variables are statistically significantly correlated with the RMSE-

squared. However, the relative value 𝑖 outperforms the absolute value 𝑖𝑋 when 

considering both the R-squared and the standard error. The R-squared value suggests that 

when predicting with the variable 𝑖, 75.9% of the variance can be explained compared to 

only 62% of the variance being explained when only using the absolute value 𝑖𝑋. The 

above results suggest that when predicting the interpolation accuracy with a single 

variable, the variable 𝑖 is a better prediction variable. Also, test 4 was performed to 

compare whether the relationship can be better predicted using two independent variables 

rather than a single variable. By comparing with test 2 or test 3, the results in test 4 

indicate that the model with two-independent variables performs better than the models 

with a single variable. Therefore, it is logical to consider both the approximating strategy 

choice i  and the minimum averaging spacing 𝑋 for estimating accuracy loss. These 
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results align with what was found in previous studies: point density (Bater and Coops 

2009; Gao 1997) and interpolation grid size (Erskine et al. 2007; Ziadat 2007) could 

affect the interpolation accuracy. 

3.4.3 Impact of 𝑖 and 𝑋 on predicting the interpolation information loss 

The proposed regression model indicates that the accuracy loss in terms of RMSE 

can be predicted by two independent variables 𝑖 and 𝑋. In general, RMSE will increase 

when both 𝑖 and 𝑋 increases. However, these two variables will have different impacts on 

the accuracy loss. To better interpret the impact of 𝑖 and 𝑋 on predicting interpolation 

accuracy loss, accuracy loss at different locations are summarised in Table 3-5.  

Table 3-5 Accuracy loss result of different datasets 

Data X(m) 
RMSE (m) Average Accuracy Loss 

Gradient  

(From 1X to 5X)  @1X @2X @3X @4X @5X 

2010 Data 0.935 0.37 0.51 0.63 0.72 0.80 0.11 

2012 Data 0.751 0.34 0.49 0.61 0.71 0.79 0.11 

2013 Data 0.364 0.28 0.45 0.57 0.68 0.76 0.12 

2014 Data 0.259 0.25 0.44 0.56 0.67 0.76 0.13 

 

First, comparing the second and third column in Table 3-5, it can be obtained that 

when the minimum spacing 𝑋 decreases, the initial interpolation accuracy loss (@ 1𝑋) 

decreases as well, regardless of the selection of strategy 𝑖. It stems from the fact that 𝑋 is 

the inherent feature of the LiDAR data. The larger the 𝑋 value is, the more coarse in the 

original LiDAR dataset. This characteristic will determine the maximum quality (initial 

accuracy) that the DEMs can be obtained from the given LiDAR dataset. Therefore, for 

applications that require high accuracy DEMs, special caution must be pay on this initial 
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accuracy loss. Otherwise, no matter what the approximation strategy value 𝑖 is chosen, 

the accuracy loss will be beyond the limit of the application. 

Second, the approximation strategy 𝑖𝑋 directly reflects the approximation 

strategy. A larger value of 𝑖 means more aggressive approximation strategies and often 

result in less computation resource or time. For less accuracy sensitive applications, the 

data processing teams can opt for more computation efficiency strategies by deploying 

larger 𝑖 value. Considering that for each individual dataset, the minimum averaging 

spacing is a fixed value, accuracy loss would be mostly dependent on the option of 𝑖. It 

indicates the gradient of accuracy loss when more aggressive approximation strategies 

are adopted.  

Table 3-6 Comparison of the impact on accuracy loss of 𝒊 and 𝑿. 

Variable Meaning  Description Impact on RMSE 

𝑖 Relative ratio 

User-defined 

artifact 

Indicates the tendency of accuracy loss when 

the grid cell size is increased 

𝑋 

Minimum 

average spacing 

Inherent feature of 

the LiDAR data 

Majorly affect the initial Accuracy loss 

(system) of the LiDAR-derived DEMs 

 

In sum, the impact of two independent variables i  and X on the accuracy loss are 

summarized in Table 3-6. The approximation strategy 𝑖, describes the relative ratio 

between the interpolation grid size and the point spacing of the LiDAR data. It indicates 

the gradient of accuracy loss when the grid size increases. On the other hand, the 

minimum average spacing, 𝑋, represents the inherent characteristic of the original 

LiDAR data. It majorly determines the upper bound performance that a DEM can be 

achieved from the given LiDAR data (with a minimum average spacing 𝑋).  
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3.5 Conclusions 

The purpose of this study is to develop a method to determine the optimal strategy 

for selecting approximation parameter for the LiDAR-derived DEMs. In addressing to 

this need, the author introduces two independent variables (1) minimum average spacing; 

(2) approximation strategy artifact. Minimum average spacing, denoted as 𝑋, describes 

the characteristic of the LiDAR data. Approximation strategy artifact, denoted as 𝑖, 

indicates the approximation strategy. Typically, a larger value of 𝑖 indicates more 

aggressive approximation strategy and less computation resource and time.  

Then a multiple-regression model is proposed to incorporate two independent 

variables (𝑖, 𝑋) for estimating the accuracy loss at the second linear increasing stage. 

MCSs are carried out to compare the RMSE-squared between observation value 

(elevation extracted from LiDAR-derived DEMs) and ground truth value (elevation 

extracted from LiDAR). Finding from the simulations indicate that the proposed model 

can act as a good approximation for the accuracy loss with a p-value less than 0.06 and an 

R-squared value larger than 0.78. 

Compared to the previously accuracy loss model that based on absolute grid size, 

the regression analysis result suggests that the two-independent-variables (𝑖, 𝑋) model are 

better performed regarding significance level (p-value), coverage (R-squared) and 

prediction error (standard error). The performance purposed model is then validated using 

four completely separate datasets. Results show that prediction values form all four 

datasets align with the observed values.  

Finally, the impacts of variables 𝑖, 𝑋 on the accuracy loss are summarized. The 

minimum average spacing 𝑋 reflects the characteristic of LiDAR data. It determines the 

initial accuracy performance in the LiDAR-to-DEM conversion. The approximation 
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strategy artifact, 𝑖, indicates the options for approximation. It majorly determines the 

accuracy loss gradient at the linear interpolation stage.  

It should be noted that the development model is based on the assumption that the 

relationship between approximation strategy i  and accuracy loss at range 1𝑋 to 5𝑋 is 

linear. There could be a more complicated non-linear relationship. Moreover, this study 

was intended to determine the optimal approximation strategy. This study majorly 

considered the impact of two independent variables (𝑖, 𝑋). In realistic, the interpolation 

method could pose significant on the accuracy loss. Future study would be likely to 

include the distinct interpolation methods into the estimation model. Another limitation 

of this study is the availability of high-resolution datasets. Due to the low resolution (𝑋 

ranges from 0.25 to 0.9m), this study suggests the range of the approximation strategy 

artifact, 𝑖 is from 1 to 5. However, it is believed that future datasets are prone to have 

higher quality (resolution) because of advancement in Laser scanner and navigation 

system. Therefore, the approximation strategy 𝑖 is expected to have more potential 

options (values larger than 5).  
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Chapter 4 A Framework for Prioritizing Geospatial Data 

Processing Tasks to Maximize Information Efficiency during Time-

Sensitive Disastrous Events 

4.1. Introduction 

Decisions during disaster response cannot be made without reliable information 

because decision-makers seek information as a process of sense-making to form their 

point of view (Devin 1983). The information is served as evidence to assimilate into what 

is already known (e.g., experience) (Kuhlthau 1991). Meanwhile, disasters are small 

probability events that occur so infrequently. For such small probability events, it is 

difficult to have the particular experience to draw on. For instance, FEMA issued 

National Flood Insurance Program (NFIP) to protect flooding damage.  The primary 

focuses are placed on 1-percent-annual-chance floodplains (e.g., Zone A, Zone V, Zone 

VE) or at most 0.2-percent-annual-chance floodplains (Zone B, Zone X). Anything 

outside those zones is considered as a minimal risk of flooding. However, during 

Hurricane Harvey, most of the inundation area in Houston is actually located outside 1-

in-500 chance of flooding area. In the light of this, the impact of a disaster could easily 

go beyond one’s experience based judgment. While handling disasters, the incorrect or 

biased experience can cause considerable damage.  In 2015 Tianjin explosion, relied on 

previous experience, a wrong call was made to allow fighters to enter the explosion site 

after the first explosion. 95 firefighters were killed by the second more powerful 

explosion. Such a tragedy could have been avoided if that decision was made based on 

more accurate disaster information. Moreover, decision-making consists of finding the 

best option from all feasible solutions (Herrera et al. 1996). The best option cannot be 
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derived without trustworthy information. Decision-making during disasters, therefore, 

calls for Information-based judgments. 

Information-based judgments are often dependent on the availability of data and 

the processing algorithms to deal with these data. Modern technology provides 

unprecedented new opportunities for fulfilling the information needs during a disaster. 

Among these techniques, light detection and ranging (LiDAR), especially carried by 

airborne platforms, receives a growing concern and even becomes a routine survey in 

dealing with major disasters. For instance, there are at least five Airborne LiDAR survey 

regarding Hurricane Sandy. Among them, USGS conducted two airborne LiDAR survey 

before and immediately after Hurricane Sandy strikes Atlantic shoreline. While disaster 

data are more abundant than required, the remaining question is how to relate data 

processing to information required by decision-making. Unprocessed data are intangible 

and non-consumable, yet a plentiful resource that can be refined. To explore the potential 

of Airborne LiDAR, there are numerous studies investigating in processing algorithms in 

terrain mapping (Moore et al. 1993; Reutebuch et al. 2003), building damage assessment 

(Dong and Shan 2013; Li et al. 2008), flood simulation (Haile and Rientjes 2005; 

Webster et al. 2004), debris flow analysis (Scheidl et al. 2008), etc. Yet, none of these 

research is emphasized on disaster response or the time-sensitive environment. More 

often than not, the information processing effort is motivated by the argument that “what-

is-going-on” (Vos et al. 2000). Such a vague argument cannot derive a clear objective 

and is prone to result in “data-rich-but-information-poor” situations (Timmerman et al. 

2010). Such situations, to a great extent, depreciate the value of data. The value of data or 

information is best determined by value-in-use (Repo 1986). The salience of information 
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is directly related to the level of satisfaction directly by decision-makers rather than data 

processing teams (Vugteveen et al. 2014). Unfortunately, decision-makers often lack in-

depth knowledge of data processing. The central motivation for information processing 

remained driven by data processing team. In the light of this, the real value of data is not 

fully exploited. There are significant gaps in satisfying decision-makers’ information 

need. 

The first gap is to formulate the value of information in disaster environment 

formally. Decision-making during disaster environment is multiple objectives 

(Barbarosoğlu et al. 2002; Hwang et al. 1993). It involves varying data processing tasks 

and integrates multiple algorithms. For instance, during disaster response, humanitarian 

relief often consists of a series of tasks such as minimizing human suffering and death 

(Beamon and Balcik 2008; Lwin and Murayama 2011), designing routes for search and 

rescue (SAR) operations (Kwan and Lee 2005; McCarthy et al. 2007), allocating disaster 

relief resources, assessing the risk of critical infrastructures to prevent secondary hazards 

(Ouyang 2014; Pederson et al. 2006; Tolone et al. 2004), and etc. In disaster response, the 

usefulness of information is not determined by how the collected data fulfill any single 

processing task, but by how the processed information from these tasks supports decision 

making. Thus, information for decision support is a selection process based on 

information salience. Salience deal with how relevant and usable information is to 

decision making bodies (Vugteveen et al. 2014). Nevertheless, there is limited research in 

identifying the salience of information studies (Cash et al. 2002; McNie 2007; 

Timmerman et al. 2001). 
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The second research gap is to model the information articulation process. 

Considering this process as a function, then the domain space (information offered by 

data processing teams) should match with the range (decision support information needs). 

Decision-making consists of finding the best option from all the feasible solutions 

(Herrera et al. 1996). Compared to data processing that targets at a clearly-defined 

objective, the information need for decision support is vague. Such a vague criteria 

cannot be used to derive precise numerical values (Delgado et al. 1998). In the real world, 

many decision processes take place in which goals, constraints, and consequence of 

possible action are not precisely known. Then a more realistic approach may be to use 

linguistic assessments instead of numerical value. Second, decision making is a group 

decision process. The complicated disaster situation often requires integrating 

experiences and judgments from different stakeholders, experts for decision-making. 

Based on different backgrounds, these decision-makers will often have disagreeing 

opinions and judgment (Herrera et al. 1996). Decision-making process, therefore, calls 

for a consensus reaching process that ensures all the preferences of different individuals 

have the maximum possible consistency. 

The third research gap is to dynamically balance the conflicts in information 

processing needs. Dimensions of data processing need could vary significantly and even 

in a contradicting way. One emphasis for data processing is accuracy (Hodgson and 

Bresnahan 2004; Reutebuch et al. 2003), which is often motivated by the argument that 

“how perfect is the algorithm outcome represents the real world scenarios” (Hasselman et 

al. 2005). Nevertheless, temporal-resolution is another critical concern. The value of 

information will drop significantly as time goes by (Hodgson et al. 2014; Horan and 
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Schooley 2007). Unfortunately, accuracy and temporal resolution are two disagreeing 

criteria. Pursuing high accuracy information often requires high complexity processing 

algorithms, high-resolution datasets, and as a result more computation time. Moreover, 

the multiple objectives during disaster response could be transferred into opposing data 

needs. For example, building assessment can be performed by “change detection” using 

Digital Elevation Maps (DEMs). On the other hand, to prevent secondary hazard, detail 

visualization data are required for critical infrastructure damage assessment. DEMs and 

visualization data are distinctive that require particular data processing tasks. Therefore, 

it demands a mechanism to leverage the computation resource dynamically in a way that 

those disagreeing processing needs can maintain balanced.  

In sum, a structure process between decision makers on the one hand, and data 

processing teams on the other hand, is essential to ensure that information supplied by the 

data processing is tailored to the needs of users (Sutherland et al. 2011; Timmerman et al. 

2000; Vaughan et al. 2007). Therefore, this study proposes a data envelopment analysis 

(DEA) based model integrating with linguistic term to identify the information salience 

during a disaster. The proposed method will have three major contributions. First, this 

study presents an innovative perspective based on the “information efficiency” for tasks 

prioritization during disaster response. Second, the information needs preferences are 

modeled as cone constraints using the linguistic term, which can more objectively reflect 

opinions from the decision makers. Finally, The group decision process is embedded in 

the traditional DEA model, which distinguishes the specific features of disasters. The 

remaining part of this research will be organized as follows. Section 4.2 will introduce 

the related study on identifying the salience of information. Section 4.3 will describe the 
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proposed methodology for information articulation. A hurricane Sandy based case study 

and discussion will be presented in section 4.4, and section 4.5 will denote the final 

conclusions of this research. 

4.2. Related Work 

Salient information has repeatedly been identified as essential in evidence-based 

decision-making (Cash et al. 2002; Honig and Coburn 2008; Todd and Benbasat 1992). It 

is typical because there exist overwhelming data that may not be relevant or useful. 

Without clearly specifying the salience of different information, data suppliers could 

generate an excessive amount of data that might fail to provide timely and relevant 

information. Ward et al. (1986) described such situation as “data rich but information-

poor syndrome”. Even after three decades, this syndrome still exists. Identifying the 

salience of information remains challenging (Sutherland et al. 2011). Information 

providers, on the one hand, may wish to inform decision-makers through processing 

salience information, but they often lack knowledge in understanding the objective and 

priority of the information need. Decision-makers, on the other hand, may reluctant to 

incorporate information because they might doubt the effectiveness, relevance, and 

salience of the information. To support evidence-based decision making, it is essential to 

ensure that information supplied by the data processing team is tailored to the needs of 

users (Sutherland et al. 2011; Timmerman et al. 2000; Vaughan et al. 2007). In literature, 

to improve the usefulness of information, there are numerous studies (Cash et al. 2002; 

Dervin and Nilan 1986; Kuhlthau 1991; Sutherland et al. 2011; Timmerman et al. 2001; 

Timmerman et al. 2000) on designing theoretic framework to identify information needs. 

Most of these studies focused on two aspects to improve the information salience: (1) 

collaboration; (2) users’ perspective paradigm. For instance, Timmerman et al. (2001) 
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clarified the process and participant for the process of identifying information need. In 

another example, Kuhlthau (1991) proposed that information seeking should be based on 

users’ perspective. The author augured that information system should center on the 

users’ problem rather than on the capability of p. In general, the research mentioned 

above all have profound influences in providing theoretical backgrounds for the need of 

identifying information salience, yet application-wise, it is still difficult to achieve 

(Timmerman et al. 2001). 

Most of the emphases of computing focus on resource allocation. For instance, 

one classic model for computing architecture to evaluate Quality of Service (QoS) is 

based on queuing theory (Khazaei et al. 2012; Ma and Mark 1995; Vilaplana et al. 2014; 

Xiong and Perros 2009). The performance of the queue is evaluated based on the overall 

wait time and service time (Vilaplana et al. 2014). However, the emphasis of queuing 

theory is to predict the overall response time (wait time and service time) for computation 

resource management. Other researchers investigated the leverage of resource based on 

game theory (Wei et al. 2010), Virtual Machine (Xiao et al. 2013), etc. For the 

abovementioned studies, the primary focus is placed on the resource allocation, and each 

task is assumed to be identical with the same arrival and service distribution. The salience 

of each task, therefore, is often ignored. Another formulation is optimization problem. 

Most of the optimization problems that dedicated to computing are based on a cost 

function. The objective is to either maximize or minimize the cost function (outcome) 

while preserving specific constraints (e.g., time, resource) (Chapin et al. 1999). The 

salience of each task is implemented as the weight function of each input.  Yet, this 

weight function is often assumed as known or derived based on other means. 
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Nevertheless, these studies emphasize from the data processing perspective. Kuhlthau 

(1991) stressed the importance of formulating the problem from user’s problem. Data 

envelopment analysis (DEA) is a nonparametric method in operations research proposed 

by Charnes et al. (1978). DEA has been credited for deriving relationship between 

multiple outputs and inputs in decision making. It has been proven success in 

productivity analysis (Banker and Natarajan 2008; Eilat et al. 2008; Green et al. 1996; 

Sherman and Zhu 2006; Vitner et al. 2006). The model present in this study to determine 

the salience of each processing task was constructed based on the DEA model. 

4.3. Methodology 

4.3.1 Problem setting 

It is assumed that this process to determine the information processing salience 

occurs during initial disaster response. Supposed that there is a group of 𝑑 decision 

makers, 𝐷𝑀 = {𝐷𝑀1, 𝐷𝑀2, … 𝐷𝑀𝑑} going to determine the prioritization of information 

processing tasks. The entire task ranking process is based on information salience or 

information efficiency, denoted as 𝜃𝑖,𝑗 , defined by a DEA model. This study considered 

decision making unit (DMU) as a tuple(𝑂𝑖, 𝑃𝑗). 𝑂 denotes a set of site candidates for 

information processing. 𝑃 denotes a set of processing tasks that has already been 

implemented for information generation. Then each DMU (𝑂𝑖, 𝑃𝑗) is considered as 

triggering task 𝑃𝑗 on site𝑂𝑖. Le 𝑋 , 𝑌 represent the set of input and output variables 

respectively. Then the information salience can be regarded as a function of the weighted 

sum of the output variables Y and the weighted sum of the input variables X. The group of 

decision makers pairwise comparison of importance of output variables Y and input 

variables X, respectively using linguistic value. Based on their preferences, two fuzzy 
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preference matrix A and B are constructed for input and output variables, respectively. 

For the output variables, this study selected four disaster response functions proposed by 

Lindell and Perry (1992). For the input variables, two cost indicators, computational 

intensity and computational complexity, are selected. The entire information articulation 

process is considered as dynamic by changing two fuzzy preference matrix 𝐴 and 𝐵. For 

illustration, considering two output variables { 𝑌1 =Emergency assessment, 

𝑌2=Population protection}. At the very early stage of disaster response, the emphasis on 

humanitarian tasks can be expressed as a less preference value  b12 of  𝑌1 over 𝑌2 such as 

0.1, which means the population protection is much important than emergency 

assessment. In the later stage, when humanitarian tasks are less a concern, the preference 

value 𝑏12  of  𝑌1 over  𝑌2 can be adapted to a larger one such as 0.7. By assigning 

different value to the preference matrix, information salience of each DMU will alter 

accordingly. 

4.3.2 Preliminaries 

Definition 1 Group Decision (Herrera et al. 1996): A decision situation in which :  

1) there are two or individuals, each of them characterized by her or his own 

presentations, attitudes, motivations, and personalities; 

2) who recognized the existence of a common problem; 

3) attempt to reach a collective decision. 

Definition 2 Linguistic scale: Considering a finite and totally ordered label set 𝑆 =

{𝑠𝑖|𝑖 = 0,1, … 𝑇}, with an odd cardinality. 𝑠𝑖 represents a possible value for a linguistic 

real variable. The set S is a linguistic scale as long as the followings are met: 

1) Ordinarily: 𝑠𝑖 > 𝑠𝑗, if 𝑖 > 𝑗 and 𝑖, 𝑗 ∈ 𝑆. 

2) Negation Operator: 𝑛𝑒𝑔(𝑠𝑖) = 𝑠𝑗 such that 𝑖 + 𝑗 = 𝑇. 
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3) Let 𝐼 be the intensity function of the linguistic set 𝑆, such that 𝐼: 𝑆 → [0, 𝑇], then 

the subscript of the elements 𝑠𝑖 ∈ 𝑆 can be obtained as 𝐼(𝑠𝑖) = 𝑖). 

Definition 3 Linguistic judgment preference matrix (Herrera et al. 1996): Assuming a 

linguistic framework and a finite set }...{ ,2,1 nxxxX  , the experts preference attitude 

over X can be defined a nn   linguistic preference matrix R , such that 
nnijrR  )( , 

ijr  

represents the preference degree of alternative 
,ix  over  

,jx , and },...2,1{, nji  , Srij   

Definition 4 Fuzzy preference judgment matrix (Orlovsky 1978): For a Linguistic 

judgment preference matrix )( ijaA  , 
ija  is represented by a fuzzy value such that 

1 jiij aa  and 5.0iia , then A  is a fuzzy preference judgment matrix, 

Definition 5 Consistency preference matrix (Alonso et al. 2004): For a Linguistic 

judgment preference matrix 
nnijaA  )( , },...2,1{,, nkji  , if 5.0 jkikij aaa , then 

matrix a consistent fuzzy preference judgment matrix, The relationship 

5.0 jkikij aaa  is called additive consistency. 

Theorem 1 Linguistic judgment preference matrix R  to Fuzzy preference judgment 

matrix A  conversion. R  can be converted to A  based on the following equation: 
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Definition 4 is satisfied. 
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Theorem 2 Aggregation of fuzzy judgment preference matrix into composite group 

fuzzy judgment preference matrix (or composite matrix). A composite matrix is the 

combination of all individuals’ judgement matrix based on the weight of each individual. 

Assuming a group of d  decision-makers },...,{ 21 dDMDMDMD  , and for each 

individual decision maker DMDM k  , the fuzzy judgment preference matrix is 

nn

k

ij

k aA  )( . Then the composite group fuzzy judgment preference matrix (or composite 

matrix) of d decision-makers nnijaA  )( can be computed as  



d

k

kAkwA
1

, and 

 



d

k

kw
1

1 ,  kw  is the weight function of each individual decision maker k. 

Theorem 3 Consistency of the composite fuzzy preference judgment matrix. Given that 

the composite matrix is the combination of the opinions from each individual, 

inconsistency could arise. Particular for the preference matrix, if 𝑎𝑖𝑗 + 𝑎𝑗𝑖 ≠ 1, then the 

composite preference matrix is inconsistent, and therefore there exists no solution for the 

system. To ensure that the system of equations has at least on solution (or consistent), the 

consistent matrix nnijaA  )(  is obtained based on the following relationships.” 
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According to Definition 5, A  is a consistent matrix. 

4.3.3 Decision Variables 

The decision variables are further divided into the input and output variables.  

Input variables are regarded as the cost associated with each decision-making unit 

(DMU). In this study, two cost indicators are considered: Computation Complexity, 𝑋1 

and Computation Intensity, 𝑋2. On the other hand, output variables are regarded as the 

performance indicators of each DMU. This study evaluate the outcome of each DMU by 

examining how these DMU satisfied the four emergency response functions proposed by  

Lindell and Perry (1992). These four functions include (1) emergency assessment, (2) 

hazard operation, (3) population protection and (4) incident management. Table 4-2 

depicts detail description of these four functions. 

4.3.3.1 Input Variables 

The first variable, computation complexity, describes the inherent difficulty 

associated with a computation task. This study majorly considers three core processing 

tasks (visualization, spatial analysis, advanced analysis) as illustrated in Table 4-1. It 

should be noted that computation complexity can be directly measured if the algorithm 

runtime complexity is explicitly given or the computation time for each processing tasks 

is benchmarked. In other situations, this study develops a complexity index scoring 
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system to estimate the computation complexity. In general, the complexity estimation 

system consists of three steps.  

Step 1, split the processing task into sub-operations as summarized in the second column 

in Table 4-1.  

Table 4-1 Typologies of core processing tasks  

Core Processing Tasks  Sub-operations 

Visualizing 
Data Cleaning & Quality Control 

Low-Level Transformations 

Spatio-temporal Mapping & Registration 

Spatial analysis 

Data Cleaning & Quality Control 

Low-Level Transformations 

Spatio-temporal Mapping & Registration 

Data Subsetting, Filtering, Subsampling 

Advanced Analysis 

Data Cleaning & Quality Control 

Low-Level Transformations 

Spatio-temporal Mapping & Registration 

Data Subsetting, Filtering, Subsampling 

Object Segmentation  

Object Classification 

 

Step 2, identify the complexity score for each sub-operations based on a scale from 1 to 

9, where 1 indicates the low complexity and 9 indicates the high complexity.  

Step 3, the overall complexity of the processing task is computed as the summation of all 

the complexity scores in the sub-operations. 

Step 4, A scaling process 
max(x)

x
x   is deployed to scale the range of all inputs to [0, 

1]. 

Beside computational complexity, the other input variable is computational 

intensity. Compared to the computational complexity that reflects the difficulty 

associated with a processing algorithm, computational intensity measures the magnitude 

of a dataset. This study major considers LiDAR-derived applications. The total LiDAR 
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point count, denoted as 𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑢𝑛𝑡, is selected as an indicator for the computational 

intensity. After the 𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑢𝑛𝑡 of each DMUs are summarized, a similar scaling 

process as described in computational complexity step 4 is deployed to scale the range of 

all inputs to [0, 1]. It should be noted that under certain circumstances, the total point 

count is interchangeable with other indicators such as 𝐹𝑖𝑙𝑒_𝑆𝑧𝑖𝑒 or 𝐴𝑟𝑒𝑎. 

𝑭𝒊𝒍𝒆_𝑺𝒛𝒊𝒆:  The 𝐹𝑖𝑙𝑒_𝑆𝑧𝑖𝑒 of a LiDAR data can be computed as 𝑘 times the 

𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑢𝑛𝑡. 𝑘 is the scaling coefficient indicating how many bytes each point occupied. 

According to ASPRS (2013), the value of k ranges from 27 to 35 𝑏𝑦𝑡𝑒𝑠/𝑝𝑡𝑠 depending 

on the las format and the information it contains. Hence, for datasets that follow the same 

las format (same 𝑘), 𝐹𝑖𝑙𝑒_𝑆𝑧𝑖𝑒 of the data is equivalent to 𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑢𝑛𝑡, or computational 

intensity.  

𝑨𝒓𝒆𝒂: For the same dataset, the total point count can be estimated as the ratio between 

𝑎𝑟𝑒𝑎 and 𝑝𝑜𝑖𝑛𝑡_𝑑𝑒𝑛𝑠𝑖𝑡𝑦. Supposed that for the same dataset, the point cloud follows a 

uniform distribution (with the similar 𝑝𝑜𝑖𝑛𝑡_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 )in different religions, then the 

computation intensity or 𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑢𝑛𝑡 can be approximated based on the 𝐴𝑟𝑒𝑎. 

4.3.3.2 Output Variables 

Sub-function and description of the output variables selected in this study are 

illustrated in Table 4-2. For the output variables; there are four main steps to determine 

the value of an output variable. 
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Table 4-2 Typologies of Emergency Response Functions.  

 Sub-functions Description 

Emergency 

assessment 

Threat detection, Damage 

assessment, Hazard/ 

environmental monitoring 

consists of those diagnoses of past and present 

conditions and prognoses of future conditions 

that guide the emergency response 

Hazard 

Operation 

Hazard source control, 

Protection works, Contents 

protection 

Refers to expedient hazard mitigation actions 

that emergency personnel take to limit the 

magnitude or duration of disaster impact (e.g., 

sandbagging a flooding river or patching a 

leaking railroad tank car). 

Population 

protection 

Search & rescue, 

Emergency medical care, 

Protective action section 

and implementation, 

Impact zone access 

control/security 

Population protection refers to actions—such as 

sheltering-in-place, evacuation, and mass 

immunization—that protect people from hazard 

agents. 

Incident 

Management 

Logistics, Mobilization of 

emergency 

facilities/equipment, 

External coordination 

Consists of the activities by which the human 

and physical resources used to respond to the 

emergency are mobilized and directed to 

accomplish the goals of the emergency response 

organization. 

Note: the table is adopted from Lindell and Perry (1992) 

 

Step 1 Determine Information Demand level   

The information demand level is determined by the vulnerability of a community. 

There are multiple ways to identify the vulnerability of a community, either from 

historical data or based on stakeholders’ opinions. 

One way to determine the information demand level is retrieving community 

vulnerability indicators from the historical database. In addressing to the four disaster 

functions proposed by Lindell and Perry (1992), different data can be retrieved from the 

historical database. For instance, the demand for population protection task can be 

derived from demographic geospatial data. For flooding hazard, the need for hazard 

operation can be estimated based on flood zone maps. 

Under circumstances that the historical data are not available, the information 

demand level can be obtained directly from stakeholders’ options. Assumed a group of 𝑞 
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stakeholders. For a given instance 𝜉, each of them has a linguistic judgment on the 

demand for information, denoted as 𝐿 = {𝑙1, 𝑙2, … 𝑙𝑛}. Let 𝑆 be a linguistic set and 𝐼 be 

the intensity function. Then it can be easily obtained that𝐿 ⊆ 𝑆. Let 𝜔 be the conversion 

function from linguistic value to numerical value. 

Then the total demand of a given instance 𝜉 can be computed as 


n

i
ild

1

)( . In 

this case, we assumed that the linguistic value is uniformly distributed, and conversion 

function is given as 
11

)(
)(
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sI
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i . Then the total demand for a given instance 𝜉 is 
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Let the instance be evaluating the demand for disaster function jF   at location kO

. Then the total demand for a given instance ),( kj OF , denoted as 
1

)(
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lI

d
q

j

q
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k . 

Step 2 Identify Significance level of the information 

Assumed that there is m processing task P  that can satisfy n  disaster functions 

F. Let },..2,1;,..2,1,{ njmiE j

i    denoted a set of significance level of information 

processing task iP  in supporting disaster function jF . Let S  be a linguistic set and I  be 

the intensity function. Then it can be easily obtained that SA  . Assumed the same 

uniform distribution for 
j

i , then the significance level 
j

i  is computed as 
1

)(

T

I j

i
 

Step 3: Determine the value of output variables 

Based on step 1 and step 2, then the outcomes of output variable at DMU ), ki P(O  

respect to disaster function, jF  can be computed as the product of the information level 
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at location kO  respect to function jF  and the significance level of the iTask  respect to 

disaster function jF , denoted as
j

i

j

kik dP(O  ), . 

For illustration, we considered a 7-tuple linguistic set given as follows: 

𝑆 = {𝑠0 = 𝑁𝑜𝑛𝑒, 𝑠1 = 𝑉𝑒𝑟𝑦𝐿𝑜𝑤, 𝑠2 = 𝐿𝑜𝑤, 𝑠3 = 𝑀𝑒𝑑𝑖𝑢𝑚, 𝑠4 = 𝐻𝑖𝑔ℎ,  

𝑠5 = 𝑉𝑒𝑟𝑦𝐻𝑖𝑔ℎ, 𝑠6 = 𝑃𝑒𝑟𝑓𝑒𝑐𝑡} 

Then the linguistic conversion function 
66

)(
)(

isI
s i

i   

Considering the situation that historical data are not available and the information 

demand is retrieved from stakeholders’ judgment. Supposed there is a group of 7 decision 

makers, who evaluate the need for emergency assessment ( 3F )  respect to location 1O . 

Their linguistic judgments are given as: };;;;;;{ 1332420 sssssssL  , then the total 

demand for emergency assessment ( 3F )  respect to location 1O , is: 

6

15

6

13324203

1 


d . 

Let }{ 1s  be the linguistic judgment on the significance level of information 

processing task 4P  in supporting disaster function 3F . Then 
6

13

4  . 

Then the outcomes of output variable 
36

15
),, 34  j

i

j

k1 dFP(O   

Step 4: Data normalization 

Because the DEA is a nonparametric method, the range of raw output data varies 

widely, after the outcomes of each output variable are determined, a data normalization 
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process is deployed to rescale the data to values between 0 and 1. The normalized value 

is computed as
min(y)max(y)

min(y)y
y




 . 

4.3.4 Construction of preference cone constraint 

The preference cone constraints for input and output variables are constructed 

based on experts’ pairwise comparison of input and output variables based on the 

linguistic term, respectively. The relationship between inputs and outputs respectively 

forms a quadratic convex, and therefore refer to as cone constraint. The main purpose of 

the cone constraints is to prevent any input or output from being dominant in the DEA 

model. The sensitivity of cone constraints used in this study are depicted in the later 

section. The steps for constructing an input variables cone constraints is described as 

below: 

Step 1, for each expert, he or she pairwise compares the input variables based on 

linguistic term, and the linguistic judgment preference matrix is described as kR . 

Step 2, the linguistic preference matrix 
kR is converted to fuzzy preference judgment 

matrix, denoted as 
kA , according to theorem 1. 

Step 3, Based on thereon 2, the fuzzy preference judgment matrix of each individual 

decision-maker kA  is aggregated as a composite fuzzy preference judgment matrix

 



d

k

kAkwA
1

. In this study, same weight is considered. Thus the composite matrix is 

simplified as 
d

A
A

k

 . 
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Step 4, the composite fuzzy preference judgment is converted to consistent matrix A  

based on thereon 3. 

Step 5, Assuming nnijaA  )(  is final consistent group preference matrix with n decision 

variables. Let nAIAA *
, where A  is the maximum eigenvalue of the matrix A ; nI  

be the n-dimensional identity matrix.  Then, group preference cone constraint is, and this 

cone is a closed convex cone. 

For illustration step 5, assumed that we have a group preference matrix 











5.08.0

2.05.0
A , and maximum eigenvalue of the matrix A  is 9.0A . Given that the 2-

dimensional identify matrix 
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4.3.5 Construction of linguistic group decision DEA model 

A 2-tuple decision making unit (DMU), denoted as (𝑂𝑖, 𝑃𝑗), is deployed in this 

study. It refers to execute the task 𝑃𝑗 at location 𝑂𝑖. So the salience of each processing 

task is computed as the input-output relationship of each DMU (𝑂𝑖, 𝑃𝑗). The classic CCR 

DEA model (Charnes et al. 1979) is integrated with a linguistic group decision preference 

cone constraint. The detail description of the proposed approach is illustrated in Figure 

4-1. The model is designed to compute the information efficiency according the linguistic 

preference matrix by a group of decision-makers. The cone constraints for input and 

output decision variables, denoted as 𝑊 and 𝑉 respectively are constructed based on a 

group of decision-makers’ pairwise comparison of the input and output variables based 

on the linguistic value. The detail model is described as below: 
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Figure 4-1 Description of proposed approach 

 

Here, 𝑋𝑖 and 𝑌𝑖 represent the input and output variables of 𝐷𝑀𝑈𝑖. The proposed 

DEA model is restrained by two weight relations, denoted as ),...,( 21 nwwww   and 

),...,( 21 nvvvv  . These two weights represent the preference relation of the input and 

output decision variables respectively by a group of decision-makers. Then the dual 

model of the proposed model is described as follows: 
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Here 𝑊∗ and 𝑉∗ represent the negative pole cone of the cone constraint 𝑊 and 𝑉, 

respectively. 

4.4. Case Study 

4.4.1 Background 

Hurricane Sandy (2012) was one of most deadliest and destructive hurricane in 

the Atlantic shoreline. It made landfall on southern New Jersey and took a major toll on 

the Ocean county of New Jersey. The shoreline area in Ocean County suffered the most 

server wind and surf from Hurricane Sandy. During the Hurricane, most of the public 

transformation was canceled. Many of the electric poles were subject to failure as a result 

of the strong wind.  At the meantime, the water damage to critical electric equipment 

dramatically slowed the electric restoration. Besides, many of the gas stations were 

closed and the majority of the shoreline area were subject to fuel shortage. It is reported 

that over 5000 residential houses in the Ocean County were suffered from significant 

structural damaged during Hurricane Sandy (Sagara 2012). The Barnegat Peninsula, also 

known as Barnegat Bay Island and colloquially as "the barrier island", is a 20-mile long, 

narrow barrier peninsula located on the Jersey Shore in Ocean County, New Jersey. 

During Hurricane Sandy, the Barnegat Peninsula took a major hit and the entire island 

were sustained to significant damaged. On the ocean side, on the one hand, high velocity 

storm wave were striking the oceanfront dunes and house. On the bay side, on the other, 
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the house with relative low front door elevation were inundated by the flooding water. 

Moreover, the Barnegat Peninsula is isolated from the mainland only very limited 

accessibility: route 37 (Thomas A. Mathis and J. Stanley Tunney Bridges), route 528 

(Mantoloking Bridge) and route 35. Therefore, the Barnegat Peninsula in Ocean County 

was selected as the study scope. Communities on the peninsula (as shown in Figure 4-2) 

include Point Pleasant Beach, Bay Head, Dover Beach, Mantoloking, Lavallette, Ortley 

Beach, Normandy Beach, Seaside Heights, and Seaside Park. In this section, 9 

communities located Barnegat Peninsula in Ocean County with three different tasks are 

evaluated based on the proposed method.  

 
Figure 4-2 Map of Barnegat Peninsula in Ocean County 

 

4.4.2 Data 

Table 4-7 summarized the input-output used in this case study. The steps to derive 

input and output values are depicted in the previous section. Particular in this study, the 
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computation complexity is estimated based on the proposed scoring system. For 

simplification, this study selects the community area as the indicator for computation 

intensity. The area of each community is computed based on the 2010 census data 

shapefile in ArcMap. On the other hand, for the output variables, this case study adopted 

community vulnerability indicators directly from historical data based. For emergency 

assessment, this study address one major concern is safety evaluation of buildings after 

windstorms and floods by the ATC-45 manual (ATC 2004). Thus the building data is 

selected as indicators, which were retrieved from 2010 census data. For hazard operation, 

this hurricane Sandy based case study focuses on flood hazard.  FEMA Flood Insurance 

Rate Map (FIRM), therefore, is chosen as the data resource. The value of this output 

variable is defined as percentage area of less than 100-return period flood zone. For the 

third output variable, population protection, the 2000 demographic data selected. It 

should be noted that the demographic information contained population breakdowns from 

different age groups, which could be of significant benefit in development evaluation or 

search and rescue operation strategies. However, for illustration purpose, only the total 

population was selected for this case study. The demographic data is also retrieved from 

2000 Census Data. Finally, the value of incident management demand is estimated as the 

weighted sum of all critical infrastructures. The critical infrastructures considered in the 

case study includes of critical access (bridges, route), hospital, schools, gas stations. It is 

worthwhile mentioning that this study emphasizes the importance of critical access by 

assigning a weight of 10. All datasets used in this study are available in New Jersey 

Geographic Information Network (NJGIN). After the demand information were identified 

based on historical geospatial data based, experts from data processing team were invited 
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to determine the significance level of the data processing tasks in addressing to the four 

disaster functions Figure 4-3. In this study, three basic processing tasks were considered 

such as Visualizing (P1), spatial analysis (P2), and advanced analysis (P3). The 

significance level of each processing tasks was summarized in Table 4-4 using a 7-tuple 

linguistic set described as below:  

𝑆 = {𝑠0 = 𝑁𝑜𝑛𝑒, 𝑠1 = 𝑉𝑒𝑟𝑦𝐿𝑜𝑤, 𝑠2 = 𝐿𝑜𝑤, 𝑠3 = 𝑀𝑒𝑑𝑖𝑢𝑚, 𝑠4 = 𝐻𝑖𝑔ℎ,  

𝑠5 = 𝑉𝑒𝑟𝑦𝐻𝑖𝑔ℎ, 𝑠6 = 𝑃𝑒𝑟𝑓𝑒𝑐𝑡} 

Based on the information demand (Table 4-5), significance level of information 

(Table 4-4) and estimated complexity of each processing task (Table 4-6), the value of 

output variables was computed as shown in Table 4-7. 

 
Figure 4-3 Indicators for disaster functions 
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Table 4-3 Area of each community 

Community Area 

(sq. mi) 

O1: POINT PLEASANT BEACH 1.87 

O2: BAY HEAD 0.75 

O3: MANTOLOKING 0.64 

O4: NORMANDY BEACH 0.68 

O5: DOVER BEACH 0.75 

O6: LAVALLETTE 1.05 

O7: ORTLEY BEACH 0.67 

O8: SEASIDE HEIGHTS 0.74 

O9: SEASIDE PARK 1.08 

Table 4-4 Significance level of the information 

 F1: Emergency 

Assessment 

F2: Hazard 

Operation 

F3: Population 

protection 

F4: Incident 

Management 

P1: Visualizing s2 s3 s3 s5 

P2: Spatial Analysis s4 s5 s5 s1 

P3: Advanced Analysis s5 s4 s3 s3 

Table 4-5 Information demand 

 
F1: 

Emergency 

Assessment 

 
F2: 

Hazard 

Operation 

 
F3: Population 

protection 
 

F4: Incident 

Management 

 
# of 

Buildings 
 

1% Flood 

zone  
 Pop 2000  

# Critical 

Infrastructure 

O1: POINT PLEASANT 

BEACH 
2339  0.76  5388  10 

O2: BAY HEAD 856  0.93  1805  13 

O3: MANTOLOKING 215  0.97  400  13 

O4: NORMANDY BEACH 409  0.94  794  0 

O5: DOVER BEACH 676  0.88  1155  2 

O6: LAVALLETTE 1018  0.94  1937  3 

O7: ORTLEY BEACH 640  0.98  1136  2 

O8: SEASIDE HEIGHTS 1434  0.88  3040  11 

O9: SEASIDE PARK 930  0.78  1746  1 

Table 4-6 Estimated Complexity of each processing task 

Processing Task Estimated Complexity 

P1: Visualizing 15 

P2: Spatial Analysis 27 

P3: Advanced Analysis 50 
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Table 4-7 Summary of Input-output data 

  Inputs  Outputs 

DMU  X1 X2  F1  F2 F3  F4 

(O1, P1)  0.30 1.00  0.09 0.05 0.15 0.18 

(O1, P2)  0.54 1.00  0.18 0.08 0.26 0.04 

(O1, P3)  1.00 1.00  0.23 0.06 0.21 0.11 

(O2, P1)  0.30 0.40  0.03 0.06 0.05 0.06 

(O2, P2)  0.54 0.40  0.07 0.10 0.09 0.01 

(O2, P3)  1.00 0.40  0.08 0.08 0.07 0.03 

(O3, P1)  0.30 0.34  0.01 0.06 0.01 0.24 

(O3, P2)  0.54 0.34  0.02 0.10 0.02 0.05 

(O3, P3)  1.00 0.34  0.02 0.08 0.02 0.14 

(O4, P1)  0.30 0.36  0.02 0.06 0.02 0.00 

(O4, P2)  0.54 0.36  0.03 0.10 0.04 0.00 

(O4, P3)  1.00 0.36  0.04 0.08 0.03 0.00 

(O5, P1)  0.30 0.40  0.03 0.05 0.03 0.04 

(O5, P2)  0.54 0.40  0.05 0.09 0.06 0.01 

(O5, P3)  1.00 0.40  0.07 0.07 0.04 0.02 

(O6, P1)  0.30 0.56  0.04 0.06 0.06 0.06 

(O6, P2)  0.54 0.56  0.08 0.10 0.09 0.01 

(O6, P3)  1.00 0.56  0.10 0.08 0.07 0.03 

(O7, P1)  0.30 0.36  0.02 0.06 0.03 0.04 

(O7, P2)  0.54 0.36  0.05 0.10 0.05 0.01 

(O7, P3)  1.00 0.36  0.06 0.08 0.04 0.02 

(O8, P1)  0.30 0.40  0.06 0.05 0.09 0.20 

(O8, P2)  0.54 0.40  0.11 0.09 0.15 0.04 

(O8, P3)  1.00 0.40  0.14 0.07 0.12 0.12 

(O9, P1)  0.30 0.58  0.04 0.05 0.05 0.02 

(O9, P2)  0.54 0.58  0.07 0.08 0.08 0.00 

(O9, P3)  1.00 0.58  0.09 0.06 0.07 0.01 

 

4.4.3 DEA results 

Scenario 0 takes into account the practical situation for disaster response, where 

the emphases were placed on both time and humanitarian relief. Cone constraints of both 

input variables and output variables were constructed to put emphases on the weight of 

computation complexity X1 and population protectionF3.The cone constraints used in 

scenario 0 are depicted as follows: 



103 

 

 

Scenario 0: Prioritization of the processing tasks, cone constraint in both input and 

output 

Population protection (F3), Less computation Complexity (X2). 
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Based on the inputs and output and also the preference cone constraints 

determined by the group of decision-makers, the efficiency score, and rank of each 

individual DMU illustrated in Table 4-8. The first finding is that there is an apparent 

agreement between DEA efficiency scores and the information demand. The DEA result 

of scenario indicates that Seaside Heights (𝑂8) Point Pleasant Beach (𝑂1) and Bay Head 

(𝑂2) have the highest efficiency score. These three communities occupy nearly 60% of 

the population,  and more than 50% of the houses in Barnegat Peninsula. Moreover, 

considering the critical infrastructure, route NJ37 in 𝑂8 and route NJ35 in 𝑂1 and 𝑂2 are 

critical exits to the mainland area. Second, the priority of the processing task is constraint 

by the preference cone constraints. For instance, DMUs with 𝑃3 are less preferred than 
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those without. This is because an input cone constraint that emphasis on less computation 

complexity task is added to the DEA model. Third, the selection of processing task is 

based on the information demand. For instance (𝑂3,𝑃1) ranks second among all DMUs. 

This is typically because there is a critical access (CR528) in Mantoloking 𝑂3 that 

connecting the Barnegat Peninsula to the mainland. Stressing on the importance of 

critical infrastructure assessment, Visualization task 𝑃1 is favourite. 

Table 4-8 Scenario 0 result 

Efficien

cy Rank 

Efficien

cy score 

DMU  Efficien

cy Rank 

Efficien

cy score 

DMU  Efficien

cy Rank 

Efficien

cy score 

DMU 

1 1 (O8, P1)  10 0.42 (O6, P2)  19 0.35 (O9, P2) 
2 0.89 (O3, P1)  11 0.42 (O7, P2)  20 0.33 (O6, P3) 

3 0.76 (O8, P2)  12 0.41 (O3, P3)  21 0.32 (O4, P2) 
4 0.65 (O8, P3)  13 0.39 (O7, P1)  22 0.3 (O7, P3) 

5 0.58 (O1, P2)  14 0.38 (O3, P2)  23 0.28 (O5, P3) 
6 0.57 (O1, P1)  15 0.38 (O5, P2)  24 0.27 (O9, P1) 

7 0.52 (O2, P1)  16 0.38 (O6, P1)  25 0.26 (O9, P3) 
8 0.49 (O2, P2)  17 0.36 (O2, P3)  26 0.23 (O4, P1) 
9 0.47 (O2, P1)  18 0.35 (O5, P1)  27 0.20 (O4, P3) 

 

4.4.4 Significance of the cone constraints 

To verify the significance of the cone constraints in the DEA model, scenario 1 to 

4 is performed. The detail settings of these four scenarios are described as below: 

Scenario 1: No constraints 

Scenario 2: Time-sensitive applications, Cone constraint in inputs 
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Scenario 3: Prioritization of location, Cone constraint in outputs 
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Scenario 4: Prioritization of the processing tasks, cone constraint in both input and 

output: Population protection (F3), Less computation Complexity (X2). 
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For scenario 1, a normal CCR DEA model is applied to our case study. The 

estimation efficiency θ1 is illustrated in the second column of Table 4-9. DEA is a 

nonparametric method, the calculation takes into consideration all four output variables 

and 2 inputs. Because there were no additional constraints on inputs and output variables, 

12 DMUs were located in the efficiency frontier as depicted in Table 4-10. Each of the 

DMUs located on the efficiency frontier was evaluated based on different output 

variables. For instance, though, O3 (Mantoloking) has only a few population and 

residential building, it has the maximum value in  F4 (incitement management.) 

Therefore, when considering the incident management F4 tasks,  O3 should be top 

priorities. For scenario 2, the time-sensitive environment was simulated by applying a 

cone constraint to the input variables. The cone constraint A∗ emphasized on the weight 

of computational complexity, which means that to achieve rapid computing, the 

preference was placed on the processing that requires less computation complexity 

(time). The efficiency result, denoted as θ2 , is illustrated in Table 4-9. By comparing the 

result with scenario 1 and scenario 2, it can be obtained that high complexity task 𝑃3 
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significantly reduced as a result of the input cone constraint. For example, take (O3,P3) as 

an example, the efficiency score decreased from 1.0 to 0.68 when the cone constraint in 

input variables is applied. Scenario 3 considered the situation of humanitarian relief. A 

cone constraint in output variables was applied to the DEA model. The cone constraint 

emphasize the importance of F3 (Population protection) over other alternative functions. 

Therefore, it is expected that the efficiency will shift to locations that have larger 

populations. By comparing the scenario 1 and scenario 3, there witnesses an apparent 

reduced in the efficiency in locations with few populations. For example, 𝑂3 

(Mantoloking) has the fewest population among 9 communities. Therefore, when the 

preference for data processing was placed on population protection, the efficiency of 

processing information in  𝑂3 dropped tremendously. On the other hand, in communities 

with largest population such as O1 (Point Pleasant Beach), O8 (Seaside Heights), the 

majority of the DMUs associated with these locations 

((𝑂1, 𝑃1), (𝑂1, 𝑃2), (𝑂8, 𝑃2), (𝑂8, 𝑃3)) remained on the new efficiency frontier.  
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Table 4-9 Efficiency results 

DMU θ1 θ2 θ3 θ4 

 No Constraint 
Constraint in 

input only 

Constraint 

in output 

only 

Constraints in 

both input and 

output 

(O1, P1) 1.00 0.72 1.00 0.57 

(O1, P2) 1.00 0.94 0.71 0.58 

(O1, P3) 0.97 0.92 0.56 0.52 

(O2, P1) 0.98 0.74 0.48 0.47 

(O2, P2) 0.98 0.94 0.58 0.49 

(O2, P3) 0.81 0.62 0.56 0.36 

(O3, P1) 1.00 1.00 0.92 0.89 

(O3, P2) 1.00 1.00 0.47 0.38 

(O3, P3) 1.00 0.68 0.69 0.41 

(O4, P1) 0.96 0.71 0.23 0.23 

(O4, P2) 0.96 0.95 0.39 0.32 

(O4, P3) 0.77 0.57 0.33 0.20 

(O5, P1) 0.91 0.66 0.35 0.35 

(O5, P2) 0.90 0.86 0.45 0.38 

(O5, P3) 0.73 0.56 0.42 0.28 

(O6, P1) 1.00 0.59 0.47 0.38 

(O6, P2) 0.97 0.79 0.45 0.42 

(O6, P3) 0.61 0.55 0.43 0.33 

(O7, P1) 1.00 0.78 0.40 0.39 

(O7, P2) 1.00 1.00 0.51 0.42 

(O7, P3) 0.88 0.64 0.48 0.30 

(O8, P1) 1.00 1.00 1.00 1.00 

(O8, P2) 1.00 1.00 0.91 0.76 

(O8, P3) 1.00 1.00 1.00 0.65 

(O9, P1) 0.84 0.46 0.34 0.27 

(O9, P2) 0.81 0.65 0.37 0.35 

(O9, P3) 0.52 0.50 0.34 0.26 

 

Table 4-10 Efficiency frontier 

 θ1 θ2 θ3 θ4 

Efficiency 

frontier 

(O1, P1)(O1, P2)(O3, P1) 

(O3, P2) (O3, P3) (O6, P1) 

(O7, P1)(O7, P2)(O8, P1) 

(O8, P2)(O8, P3) 

(O3, P1)(O3, P2) 

(O8, P1)(O8, P2) 

(O8, P3) 

(O1, P1)(O8, P1) 

(O8, P3) 
(O8, P1) 
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Figure 4-4 Efficiency Map 

 

In sum, the integration of experts’ preference into cone constraints can promote 

the understanding of information salience. For traditional DEA model (scenario 1) 

without cone constraints, it is likely to result in too much DMUs on the efficiency 

frontier. The balance between each input variables or output variables is not properly 

established. By applying the cone constraints, the efficiency scores of each DMUs can 

adjust according to the experts’ preference such as less computation complexity jobs or 

population-preferred jobs.  



109 

 

 

 
Figure 4-5 Comparison of information efficiency. 

 

4.4.5 Sensitivity of the cone constraints 

It is expected that the information efficiency scores or ranks will not be 

dominated by the experts’ preference. In addressing this argument, a comparison study is 

performed based on scenario 5 and 6. The settings are illustrated as follows: 

Scenario 5: Population protection (F3) preferred, Less computation Complexity (X2) 

Preferred. 
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Scenario 6: Hazard Operation (F2) preferred, Less computation Complexity (X2) 

Preferred. 
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In practical applications, the objective for data processing is often poorly defined 

and involves multiple criteria. It means that there exist no apparent discrepancies in each 

input or output variables. Under such circumstance, because of different backgrounds and 

different interests, experts might have a bias on the preference of data processing 

sequence. Therefore, it should be avoided that the information efficiency remains 

dominated by the preference of the experts, or in this case preference cone constraints. To 

verify whether the preference cone constraints are principal in determining the 

information efficiency, scenario 5 and 6 were simulated. Scenario 5 emphasis on the 

population protection tasks F3 while scenario 6 emphasis on the importance of hazard 

operation F2. The findings are described as below. From Figure 4-5, it can be obtained 

that, even the output cone constraint alters, the efficiency ranks maintains following 

similar patterns (Figure 4-6). It is typical because the information scores are majorly 

dominated by the input-output relationships rather than the cone constraints. For instance, 

considering the (O3, P1) in scenario 5, though there are only very few population in 

(O3, P1), it is still among the top efficiency tasks, because O3 had the maximum number 

of critical infrastructure, which the visualization analysis (P1) is in large demand.  
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Figure 4-6 Efficiency Ranks of Scenario 5 and Scenario 6 

 

Moreover, from the methodologic perspective, the output cone constraint in 

scenario 6 can be simplified as follows: 

−1.37𝑣1 + 0.17𝑣2 + 0.50𝑣3 + 0.50𝑣4 ≤ 0 

 0.83𝑣1 − 1.37𝑣2 + 0.83𝑣3 + 0.83𝑣4 ≤ 0 

 0.50𝑣1 + 0.17𝑣2 − 1.37𝑣3 + 0.50𝑣4 ≤ 0 

 0.50𝑣1 + 0.17𝑣2 + 0.50𝑣3 − 1.37𝑣4 ≤ 0 

Given that the weights for each output vj is a non-negative upper bound and lower 

bound of the weight of hazard operation F2 can be computed as below: 

Upper bound: 𝑣2 ≤
0.37

0.51
(𝑣1 + 𝑣3 + 𝑣4) ≤

0.37×3

0.51
𝑚𝑎𝑥(𝑣1, 𝑣3, 𝑣4) =

2.17𝑚𝑎𝑥(𝑣1, 𝑣3, 𝑣4) 

Lower bound 𝑣2 ≥
0.83

1.37
(𝑣1 + 𝑣3 + 𝑣4) ≥

0.83×3

1.37
𝑚𝑖𝑛(𝑣1, 𝑣3, 𝑣4) =

1.81 𝑚𝑖𝑛(𝑣1, 𝑣3, 𝑣4) 

Therefore, the weight range of 𝐹2 is [1.81 𝑚𝑖𝑛(𝑣1, 𝑣3, 𝑣4) , 2.17𝑚𝑎𝑥(𝑣1, 𝑣3, 𝑣4)]. 

In cases that there is an apparent discrepancy in the preference of the output or input 
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variables, the model can be modified by subtracting the abundant input or output 

variables.  

4.5 Conclusions 

In a time-sensitive environment such as disaster response decision-making, 

information salience is a noteworthy matter. Notably, with the growing amount of data, it 

is prone to result in “data-rich-but-information-poor” situation if the salience of 

information is not clearly specified (Timmerman et al. 2010). Disaster response often 

involves multiple criteria that the objective of information processing cannot be clearly 

defined. The present DEA model is a vigorous way to handle information salience with 

such a vague objective. In this research, the information salience or “information 

efficiency” is modeled using a DEA based model. The model integrates with two cone 

constraints on input and output variables, respectively. These cone constraints are 

constructed based on the linguistic preference from the decision makers. In general, the 

main contributions of this research are described as follows: 

 An innovative perspective based on “information efficiency” is introduced for tasks 

prioritization during disaster response. 

 Information needs preference was modeled as cone constraints using the linguistic 

term, which can more objectively reflect opinions from the decision makers.  

 The group decision process is embedded in the traditional DEA model, which 

distinguishes the specific features of disasters. 

The model is then validated based on a Hurricane Sandy based humanitarian relief 

response case study in Barnegat Peninsula. The need for time-sensitive humanitarian 

relief tasks are simulated as two emphases: (1) low computational complexity tasks; (2) 

Population protection. Based on these emphases, input and output cone constraints are 

constructed, respectively. Two input variable selected in this study are computational 
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complexity and computational intensity. Besides, the four disaster function proposed by 

(Lindell and Perry 1992) is selected as the output variables. From scenario 0, the result 

indicates that among the nine communities, Pleasant Beach (O1), Bay Head (O2) and 

Seaside Heights (O8) are identified as communities with a top information need. Besides, 

processing task P3 is less preferred because according to the input data, it has a higher 

computation complexity. In order to verify the importance of the cone constraints, four 

scenarios are compared. The comparison analysis illustrates that the integration of 

experts’ preference into cone constraints can promote the understanding of information 

salience. Finally, simulations from scenario 5 and 6 clarify that information scores are 

majorly dominated by the input-output relationships rather than the cone constraints. 

This study has two research tasks to be explored in future. One extension is the 

implementation of the present model for cloud computing purpose. This study considered 

majorly for the local computing situations. Thus the compound computational investment 

is simplified as two input variables: computation complexity and computation intensity. 

However, in cloud computing environment, the data processing have more options such 

as approximation computing, distributed computing. Therefore, the efforts in 

approximation, data transferring can be modeled as additional input variables. Another 

extension is validating the present method through real disaster decision making cases. 

The experts’ preference matrix is simulated in this study. It is of profound meaning to test 

the method based on inputs from real decision-makers.  

In sum, it can be seen that there are many reasons for identifying the information 

salience during disaster situation to avoid “data-rich-but-information-poor” situation. The 

value of the data is not achieved by collecting them or processing them, but by meeting 
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the decision’s need. The comparison of information efficiency scores obtained from the 

present DEA model allows an information salience based evaluation. Given the 

importance of time-critical information during time-sensitive environment such as 

disaster response, it is hoped that this study contributes to promoting the effectiveness 

and efficiency of data processing. 
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Chapter 5 Accelerating Information Extraction from Spatial 

Disaster Data using Big Data Infrastructure  

5.1 Introduction 

During disasters, decision-makers seek information as a process of sense-making 

to form their point of view (Devin 1983). Information serves as evidences to assimilate 

into what is already known (e.g., experience, knowledge) (Kuhlthau 1991). The 

importance of information about disaster impacts can never be underestimated because 

disasters are often extreme events which can deviate significantly from past experiences.  

In reality, the value of data or information gathered during extreme events is often not 

fully exploited. For instance, during Hurricane Katrina, disaster response efforts were 

hindered by poor information flows, and inability to validate and process relevant 

information in a timely fashion (Thompson et al. 2006).  

One reluctance in exploiting big spatial data comes from the doubt of whether 

such data can be processed in time. Disaster response involves making difficult decisions 

within a short time window. The time sensitivity associated with  disaster response 

dictates the time sensitivity nature in data processing during natural disaster events.  

(Lippitt et al. 2014). The value of information in time-sensitive environments diminishes 

rapidly as time goes on (Hodgson et al. 2014). If the information arrives too late, it may 

have little if not any value, for decision makers during disaster response. To avoid this 

situation, data processing teams have to overcome the challenge of processing large data 

sets in a short amount of time.  A typical spatial data application often includes a series of 

processing steps(e.g., data clean-up, data transformation, classification and feature 

extraction) to generate the final data products (e.g., visualization data, digital elevation 

model (DEM)). These processes are computation intensive as a result of the massive 
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amount of data (Li et al. 2018) as well as the spatial-temporal nature of these data sets.  

(Wang and Armstrong 2003).  

The geospatial data processing tasks during disaster scenarios can be further 

complicated by the limited processing capability of the core as well as power outages or 

other types of cyber disruptions (Cao et al. 2015). Under normal circumstances, data 

processing may be performed in core. The computational capability of the core can be 

quickly overwhelmed during disastrous events due to the sudden ingestion of 

continuously updated large data sets collected by both centralized remote sensing systems 

and localized community sensor nodes such as social media. Moreover, it is reported that 

Hurricane Sandy (2012) caused more than 7 million customers without power. The core 

can be at the exceptional risk of being shut down as a result of power outages during 

disasters. To this end, for important processing tasks, it makes more sense not put all the 

eggs in one basket (core). Therefore, seeking alternative computational resources is 

essential during disaster environments. These computational resources can be (1) 

remotely High-Performance Computing (HPC) infrastructures that do not rely on the 

power in the affected area such as part of clusters (consisting of several personal 

computers), clouds (e.g., Amazon EC2, Microsoft AZURE), or (2) any other edge device 

that has backup power system as well as networking and computational capabilities (e.g., 

minivan-based mobile data collection system). On the one hand, High-Performance 

Computing (HPC) infrastructures are are now ubiquitous at a reasonable cost (Yang and 

Chen 2010), but reported to have the most potential in improving the performance and 

scalability of information processing (Han et al. 2009; Hegeman et al. 2014; Qiu et al. 

2014). On the other hand, processing at edge device can couple data processing with data 
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collection, reducing the unnecessary data transferring to core. In addition, big data 

processing platforms, such as Hadoop, Apache Spark, Storm, have been developed to 

facilitate the use of a network of commodity computers for processing large data sets. In 

sum, these data processing infrastructures and platforms have great potentials in 

improving the data processing tasks during natural disasters.  

To address the need of processing large spatial data sets, there are numerous 

attempts in deploying HPC infrastructures for processing big spatial data (Li et al. 2018). 

Much of the current efforts on disaster-related studies have emphasized on the custom 

rewriting of the spatial processing algorithms to enable distributed and parallel 

computing capability (Han et al. 2009; Huang et al. 2011; Wu et al. 2011). Much of the 

above-mentioned customization are designated to a designated application, which cannot 

extend to a more general purpose. Nevertheless, onsite rewriting and verifying all the 

required algorithms are laborious and time prohibited during disaster response time 

sensitive environment. In a more recent study, Li et al. (2018) proposed the concept of 

workflow-style architecture for large-scale LiDAR data processing. Compared to other 

applications (Han et al. 2009; Huang et al. 2011; Wu et al. 2011) that are packaged as a 

whole, the workflow-style processing depicts a computation task as a sequential of 

linking operations, where each operation is independent and executable. Such a workflow 

architecture offers the flexibility to insert and remove operations from the sequence to 

construct new applications. However, Li et al. (2018) only tested the workflow-style 

architecture in a relatively simple specified DEM application, the ability to chain a set of 

tools to support complex workflow-style processing is not fully implemented. 
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The overall goal of this study is to propose a workflow-style framework for 

spatial data processing to generate ready to use intelligence to support decision-making. 

By doing so, it is expected that the generic framework will enable complex spatial 

processing tasks to be constructed by chaining a set of elementary operations. 

Specifically, we first decompose complex LiDAR processing tasks into elementary 

operations. Then, the proposed solution uses LAStools, one of the most popular  LiDAR 

processing tools, to realize these elementary operations. These elementary operations are 

reorganized as a topology-based flow on an Apache Strom based framework (Renart et 

al. (2017) to support stream processing on edge devices and HPC infrastructures. The 

prototype of this framework is validated on a Hurricane Sandy use case to evaluate its 

efficiency and effectiveness. The results suggested that the proposed approach can 

process data up to 69% faster than the typical processing approach using a standalone 

computer and reduced 89% of the unnecessary data transfer. The main contributions of 

this paper are described as follows: 

 An innovative approach that explores the feasibility of deploying high-

performance computing (HPC) to process time-sensitive disaster data 

 A novel data processing paradigm that restructures complex processing tasks 

as workflow-style elementary operations that can support stream processing 

The rest of the paper is structured as follows: Section 2 presents the related work. 

The proposed methodology is presented in section 3. Section 4 validates the approach 

using a Hurricane Sandy based use case. Finally, the last section provides the final 

conclusion and future work. 
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5.2 Related work 

5.2.1 High-performance computing tools and strategies 

In the case of processing an excessive amount of data in a short amount of time, 

High-Performance Computing (HPC) has repeatedly been highlighted as a solution 

(Alonso et al. 2004). There are numerous attempts in investigating the feasibility of 

distributing data processing workloads to more abundant computation nodes, such as 

remotely emulated edges (Han et al. 2009; Renart et al. 2017; Renart et al. 2017) or cloud 

(Hegeman et al. 2014) to speed-up the data processing. To achieve this goal, these studies 

either customize their own algorithms such that they can be ran in distributed manner 

(Awrangjeb et al. 2013; Wu et al. 2011) or extend the functions from existing platforms 

such as Apache Hadoop (Jian et al. 2015; Růžička et al. 2017), Spark (Brédif et al. 2015) 

and Apache Storm (Renart et al. 2017). Due to the exponential growth of computing 

power, data processing are undergoing major transformations. The first transformation is 

the shift from CPU computing to GPU computing (Liu 2013). For instance, Awrangjeb et 

al. (2013) used GPU for faster filtering of LiDAR point cloud in urban areas. Similar 

work in using GPU to accelerate data processing can be found in Lukač and Žalik (2013), 

Guan and Wu (2010), Sugumaran et al. (2011), and Meng et al. (2012). The second 

transformation is the shift from processing batch data to processing streaming data (or 

synonym for real-time and near real-time data) and supporting interactive analysis. 

Renart et al. (2017) proposed a content-driven online stream processing framework for 

handling LiDAR data. Kreylos et al. (2008) developed software for LiDAR data 

immersive visualization and interactive analysis for quality control and extraction of 

survey measurements. The third transformation is utilizing cluster, cloud, and edge 

computing. Han et al. (2009) implemented their LiDAR-to-DEM conversion approach 
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using a cluster of commodity computers and virtual grid. Hegeman et al. (2014) explored 

the use of an advanced and high-memory cloud-computing environment to process large-

scale topographic LiDAR data. Renart et al. (2017) investigated the performance and 

scalability of using edge computing resource for LiDAR processing. Nevertheless, these 

LiDAR data related studies have limited their analytics applications to some specific 

tasks such as DEM generation and change detection. A generic workflow-style 

processing framework that can provide a mechanism to chain a set of tools to represent 

and realize complex processing tasks in time-sensitive environments is still largely 

missing.  (Li et al. 2018).  

5.2.2 Challenge in handling data processing problem in disaster response 

Information for decision support during disasters requires handling an excessive 

amount of heterogeneous data.  Because the increasing number of all types of data as well 

as the expanding strength of HPC and relative lower cost (Yang and Chen 2010), more 

and more agencies, began to implement HPC for their applications, especially in dealing 

with the massive amount of data in a time-sensitive environment (Yang et al. 2011). One 

growing area of applications for HPC is geospatial data processing during natural 

disasters.   Yang et al. (2011) concluded the four challenges in handling geospatial data 

and these challenges are useful metrics to gauge the complexity of geospatial data 

processing tasks in an HPC environment. 

 Data intensity: decision-makers are often overwhelmed by the data sets. The 

advancement of sensing technology (Yang et al. 2011) as well as the emerging of IoT 

(Renart et al. 2017) facilitate the rapid collection of the massive amount of disaster 

data. For example, regarding Hurricane Sandy, Rutgers mobile LiDAR system has 

collected over 575 GB of high-resolution and accurate 3D LiDAR data and images in 
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the aftermath of Hurricane Sandy (Gong 2013). Twitter released that people sent 

more than 20 million Tweets during the peak time (between Oct 27 and Nov 1) of 

Hurricane Sandy (2012). These data events are unprecedented in terms of data 

intensity, posing significant challenges to leverage these datasets for meaningful 

decision making.  (Cui et al. 2010).  

 Computing Intensity: The algorithms and models for deriving information from 

growing volumes of data for decision support are becoming more complicated with 

the increasing demands on more detail, relevant and accurate information. For 

instance, traditionally, the relatively low resolution airborne LiDAR-derived digital 

terrain models (DEMs) have been traditionally used for modeling large-scale terrains 

(Liu 2008). However, more complex algorithms have been recently developed to 

extend LiDAR-derived DEMs for more detail urban feature extraction (Priestnall et 

al. 2000) and pipeline risk assessment (Zhou et al. 2016).  

 Concurrent Intensity: Decision-making during disaster response is a multi-level 

process, which involves different groups of decision-makers, experts as well as 

stakeholders. Moreover, recent development in IoT (Renart et al.) and distribuend 

geospatial information processing (Yang et al. 2008) have encouraged public 

participation in decision-making. Though it remains to debate whether the effort to 

encourage public or voluntary participation in disaster decision making is worthy or 

not (Irvin and Stansbury 2004). The study by Sakaki et al. (2010) has already shown 

that social sensors (information contributed by individuals such as VGI) could deliver 

faster earthquake notification than what have done by Japan Meteorological Agency. 

With the potential of more social sensors in the future, it is expected that the 

information support system in the future needs to be capable of handling intensive 

concurrent access. 

 Spatio-temporal intensity. To better understand the past and predict the future, it is 

necessary to establish a time series of the geospatial data observations. The 

advancement of sensing technology enables revisiting the same area in a more timely 

fashion (Goodchild et al. 2007). For example, the Ocean County in New Jersey has 

been revisited three times by various governmental Airborne LiDAR survey teams to 

track the impacts of Hurricane Sandy (2012). One effective way to evaluate impacts 
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is  change detection between multi-temporal data sets.  Therefore, it is natural that the 

decision information support framework should be capable of not only processing 

newly collected data but also retrieving historical data for reference and comparison. 

5.2.3 Existing studies for deploying HPC in disasters  

While the HPC tools are widely available, the remaining question is how these tools fit 

into the disaster context. In literature, existing studies for deploying HPC in disasters can 

be summarized into three categories: (1) using HPC strategies for disaster forecasting or 

prediction; (2) customizing functions to support HPC; and (3) developing big spatial data 

management systems to support efficient query and retrieval of data sets. For the first 

category,  there were extensive research efforts in  investigating the feasibility of 

adopting HPC strategies in disasters such as earthquakes (Meng et al. 2012; Vugteveen et 

al. 2014), hurricanes (Allen 2007; Westerink et al. 2004) and dust storms (Xie et al. 

2010). For instance, Meng et al. (2012) implemented GPU-based parallel computing to 

detect the earthquake. In another study, Allen (2007) reviewed the ongoing development 

of a Dynamic Data Driven Application System in forecasting hurricane events. However, 

much of these works were emphasizing disaster forecasting or predicting, which tend to 

be less time-sensitive than it is in the disaster response scenarios.  Other works have 

focused on finding customized solutions for specific algorithms such as  LiDAR-to-DEM 

conversion (Guan and Wu 2010; Han et al. 2009; Huang et al. 2011; Jian et al. 2015; Li 

et al. 2018). For example, Han et al. (2009) proposed a parallel approach using a PC 

cluster and virtual grid for LiDAR-to-DEM conversion.  Huang et al. (2011) customized 

the IDW interpolation algorithm to support parallelism. Guan and Wu (2010) exploited 

the thread level parallelism on multi-core platforms. Similar works have been conducted 

on rewriting building feature extraction (Lee 2012), hydrological feature extraction 
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(Tesfa et al. 2011), vertex decimation for data reduction (Sugumaran et al. 2011) 

algorithms to support parallelism. Though all these studies  indicated that the HPC 

strategies would be of remarkable benefits in accelerating the processing speed, these 

studies are geared towards specific analytics applications and are difficult to be  extended 

to more general applications. The third research focus is on developing distributed data 

organization systems. Aji et al. (2013) presented a Hadoop-GIS system to support  spatial 

data management, in particular for  query of massive spatial data. Coddington et al. 

(1999) introduced a Web-based distributed Geographic Information System (GIS) for 

decision support. Qiu et al. (2014) presented a framework to enable cloud computing in 

emergency management systems.  Li et al. (2018) proposed a tile-based system for 

LiDAR management and parallel processing. A common limitation of these studies is 

that the methods proposed in these studies require further development and validation 

before the system or the framework can be applied in real disaster decision-support 

scenarios. There are a wealthy portfolio of existing LiDAR processing tools, such as  

LASTools, Terrasolid, CloudCompare, PointTool, and ArcGIS LiDAR Analyst, etc. Only 

very few studies (Kersting and Kersting 2005; Li et al. 2018) exploited the capability of 

these tools in a HPC environment. To this end, the scoping of this study is to develop a 

general framework for LiDAR stream processing by coupling one of the most popular 

LiDAR processing tool, LAStool, with Apache Storm platform. The focus is on how to 

design and provide a framework that can allow users to model the LiDAR data 

processing workflow in an existing data analytics environment, transform the workflow 

into a computational graph that can be executed by a cluster of computers, and optimize 

the data movement and processing speed.  
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5.3 Methodology 

A streaming processing framework is proposed in this study for information 

extraction from large quantities of LiDAR data (Figure 0-1).  First, a tile-based system is 

used to manage the LiDAR data. The LiDAR data can be data sets  collected from 

disaster scenes using different sensing methods such as airborne LiDAR or mobile 

LiDAR. . These datasets will be uploaded to the cloud.  Second, the complex processing 

tasks are decomposed into elementary operations, which can be parallelized on the 

available computation nodes in the cluster or cloud. Last but not least, the processing 

workflow is converted to a Storm-based topology for stream processing in the cloud.   

 
Figure 5-1 Methodology  

 

5.3.1 Tile-based LiDAR management system 

All the LiDAR data are managed using a tile-based structure. A multi-scale tile 

system is utilized to store and manage the LiDAR data. In the tile-based structure, the 

entire data are segmented into rectangular shapes called tiles.  Figure 5-2 depicts the tiles 
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for airborne LiDAR data and mobile LiDAR data respectively. Figure 5-2a demonstrates 

the tiles for USGS EAARL-B Post-Sandy LiDAR. Figure 5-2b displays the tiles of the 

archived Rutgers mobile LiDAR survey team data in Seaside Park, New Jersey. The size 

of a tile is determined by the resolution of the data as well as the purpose of the 

applications. For instance, the tile size for airborne LIDAR data is often much larger than 

the tile size for the mobile LiDAR due to the relatively low resolution. A typical tile size 

for airborne LiDAR is 1000 meter by 1000 meter, which supports community-wide 

applications. A typical tile size for mobile LiDAR data is 25 meter by 25 meter, which 

supports  much localized assessment such as individual building analysis or debris impact 

analysis.   

In the tile-based system, each of the tiles contains two attributes, 𝑇𝑖𝑙𝑒_𝑁𝑎𝑚𝑒 and 

𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥. The naming rule 𝑇𝑖𝑙𝑒_𝑁𝑎𝑚𝑒 is described as follows. Basic information 

is required to include the 𝑇𝑖𝑙𝑒_𝑁𝑎𝑚𝑒. This information includes but not limited to (1) 

type of the data, (2) data collection system, (3) collection date; (4) data format.  For 

example,  𝑀𝑜𝑏𝑖𝑙𝑒_𝑅𝑢𝑡𝑔𝑒𝑟𝑠_20160912. 𝑙𝑎𝑠 means the a mobile LiDAR data tile 

collected using Rutgers Mobile LiDAR system in Sep 12 2016 as .las format. The second 

important attribute is 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥. A 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 is an object determined by four 

parameters: upper latitude, lower latitude, left longitude and right longitude, denoted as 

𝑈𝑝𝑝𝑒𝑟_𝐿𝑎𝑡, 𝐿𝑜𝑤𝑒𝑟_𝐿𝑎𝑡, 𝐿𝑒𝑓𝑡_𝐿𝑜𝑛𝑔, and Right_Long. Then the rectangular shape of a 

𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 can be represented as the four corner points as depicted in Figure 5-2c. 

This tile-based LiDAR management system enables indexing mechanism that will 

support a key function, namely spatial query. As long as the specific location (𝑥, 𝑦) is 

given, the corresponding LiDAR data set can be identified rapidly by matching (𝑥, 𝑦) 
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with the list of 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 such that 𝑈𝑝𝑝𝑒𝑟_𝐿𝑎𝑡 < 𝑦 <  𝐿𝑜𝑤𝑒𝑟_𝐿𝑎𝑡 and 

𝐿𝑒𝑓𝑡_𝐿𝑜𝑛𝑔 < 𝑥 < 𝑅𝑖𝑔ℎ𝑡_𝐿𝑜𝑛𝑔. 

 

Figure 5-2 Tile-based LiDAR management system 

(a) Tiles for USGS EAARL-B Post-Sandy Airborne LiDAR; 

(b) Tiles of the archived Rutgers mobile LiDAR; 

(c) Details of a bounding box 

 

In the proposed system, all the data are uploaded to the cloud for storage. Cloud 

storage is a service where data is remotely maintained, managed, and backed up. The 

service allows the users to store files online so that they can access them from any 

location via the Internet. Comparing to local storage,  cloud storage has three advantages. 

First, the cloud storage paradigm helps to undertake information gathering. Disaster 

response often requires fusing information from different sensors as well as combining 

data from different physically detached data centers. The cloud storage paradigm enables 

information gathering that would otherwise be extremely hard to accomplish if not 

outrightly impossible without the benefit of cloud storage. Second, cloud storage can, to a 

certain degree, reduce the unnecessary computation or bandwidth overload in the 
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response center. Instead of direct file transferring, remote end-users can retrieve the data 

in the cloud via a web link. Last but not least, cloud storage can also reduce the risk of 

data loss due to power outages in disasters or physical damage to the data storage 

medium. 

5.3.2 Decomposition of a processing task into elementary operations 

LiDAR analytics are inherently time-consuming due to complex geospatial 

algorithms (Wang and Armstrong 2003) as well as diverse selection of processing 

parameters (Guan et al. 2013). However, HPC that performs a single complex processing 

task does not take advantage of its parallel processing capabilities. Therefore, the 

complex processing tasks need to be divided into elementary operations in a way that 

“the same operations” can be computed in several nodes simultaneously. To this end, 

seven core operation categories based on the prevailing LiDAR applications can be 

summarized in Table 5-1. Table 5-2 lists examples of application-specific operations as 

mapped to the core operation categories defined in Table 5-1. All three applications have 

similar operations, although they use spatiotemporal datasets for different purposes or 

may handle different data types. Thus, we argue that an efficient framework that can 

support the parallelization of these core operations can be flexible and scalable to a 

diverse set of analytics applications.  As a matter of fact, many processing algorithms in 

existing LiDAR processing software packages can be mapped to these core operation 

categories. Table 5-3 provides a sample mapping of these tools to the core operation 

categories.  

In this study,  LAStool was selected as the tool to devise analytics for various 

disaster assessment tasks.  LAStools are widely known for their blazing speeds and high 
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productivity (Hug et al. 2004; Li et al. 2018). They provide over 40 functions that cover a 

variety of applications (e.g., rasterizing, triangulating, classification) for handling and 

processing of LiDAR data (Hug et al. 2004). More importantly, compared to other 

software (e.g., CloudCompare, PointTools, Terrasolid), LAStools support command line 

that can be easily extended to big data analytics platforms such as Apache Storm or 

Apache Spark. For instance, in this study, we adopted a third party software WINE to 

execute windows .exe files on a Linux system. Figure 5-3 depicts a workflow for a 

typical building classification task using LAStools.  Description and command line for 

each elementary operation are also listed in the figure.  

The composition of the analytic applications encapsulates several application-

level data processing structures. First, original datasets can often be partitioned into tiles, 

and several categories of operations listed in Table 5-1 can be executed on each tile 

independently. Spilting large datasets into tiles leads to a bag-of-tasks processing pattern. 

Second, processing of a single tile or a group of tiles can be expressed as a hierarchical 

coarse-grain data flow pattern (Beynon et al. 2001; Plale and Schwan 2000; Tan et al. 

2010). For example, transformation, filtering, mapping, and segmentation operations can 

be composed as a workflow. The segmentation operation itself may consist of a pipeline 

of lower level operations as well. Third, several types of operations such as aggregation 

and classification can be represented as MapReduce style (Dean and Ghemawat 2008; 

Dean and Ghemawat 2010) computations.  

 



129 

 

 

 

Figure 5-3 A typical building classification task breakdown 
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Table 5-1 Core operation categories in spatial disaster data processing 

Core Operation 

Categories 
Example Operations 

Data Assess 

pattern 

Computation 

Complexity 

Data Cleaning & 

Quality Control 

Transformations to reduce effects of sensor/measurement artifacts. 

Transform sensor acquired measurements to domain specific 

variables. 

Mixture of local 

and global 

pattern 

Moderate 

computational 

complexity. 

Low-Level 

Transformations 

Transformations of a dataset to another format.  E.g., coordinate 

transformation (such as UTM to GCS), value conversion (such as. 

RGB to grayscale conversion), or as geometry transformation (3D 

to 2D projection). 

Mainly local 

pattern 

Low to moderate, 

mainly data-

intensive 

computations 

Data Subsetting, 

Filtering, 

Subsampling 

Select portions of a dataset corresponding to regions in the atlas 

and/or time intervals. Select portions of a dataset based on value 

ranges. Subsample data to reduce resolution and data size. 

Local as well as 

indexed pattern 

Low to moderate, 

mainly data-

intensive 

computations 

Spatio-temporal 

Mapping & 

Registration 

Create composite dataset from multiple spatially co-incident 

datasets. Create derived dataset from spatially co-incident datasets 

obtained at different times. 

Irregular local  

and global  data 

pattern 

Moderate to high 

computational 

complexity. 

Object Segmentation 

Segment “base level” objects such as ground, road, dune, 

vegetation, and buildings. Extract features from “base level” 

objects. 

Irregular, but 

primarily local 

data pattern 

High computational 

complexity. 

Object Classification 

Classify “base level” individual objects at finer details such as 

utility poles, building types, and transportation assets through a 

possibly iterative combination of clustering, machine learning and 

human input (active learning). 

Irregular local 

and global data 

patterns 

High computational 

complexity. 

Change Detection, 

Comparison, and 

Quantification 

Quantify changes over time in domain-specific low-level variables, 

base level objects, and high-level objects. Construct “change 

objects” to describe changes in low-level domain specific variables, 

base level, and high-level objects. Spatial queries for selecting and 

comparing segmented regions and objects. 

Mixture of local 

and global data 

patterns as well 

as indexed 

High Complexity 

and data-intensive 

computations. 
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Table 5-2 Example application scenarios mapped to the core operation categories 

Operation Category Weather Prediction Monitoring and Change Analysis 
Pathology Image 

Analysis 

Data Cleaning and 

Low-Level 

Transformations 

Remove anomalous measurements 

from MODIS and convert spectral 

intensities to the value of interest. 

Remove unusual readings. Convert 

signal intensities to color and other 

values of interest. 

Color normalization. 

Thresholding of pixel and 

regional grayscale values. 

Data Cleaning and 

Low-Level 

Transformations 

Spatial selection/crossmatch to find the 

portion of a dataset that is 

corresponding to a given geographic 

region. 

Spatial selection/crossmatch to find 

portion of a dataset corresponding to 

a given geographic region 

Selection of regions within 

an image. Thresholding of 

pixel values. 

Data Cleaning and 

Low-Level 

Transformations 

Mapping tiles to map projection. 

Generation of a mosaic of tiles to get 

complete coverage. 

Registering low and high-resolution 

images corresponding to same 

regions. 

Deformable registration of 

images to an anatomical 

atlas. 

Object Segmentation 
Segmentation of regions with similar 

land surface temperature. 

Segmentation of buildings, trees, 

plants, etc. 

Segmentation of nuclei 

and cells. Compute texture 

and shape features 

Object Classification Classification of segmented regions. 
Classification of buildings, trees, 

plants. 

K-means clustering of 

nuclei into categories. 

Spatio-temporal 

Aggregation 

Time-series calculations on changing 

land and air conditions. 

Aggregation of labeled buildings, 

trees, plants into residential, 

industrial, vegetation areas. 

Aggregation of object 

features for per image 

features. 

Change Detection, 

Comparison, and 

Quantification 

Spatial and temporal queries on 

classified regions and aggregation to 

look for changing weather patterns. 

Characterize vegetation changes over 

time and are 

Spatial queries to compare 

segmented nuclei and 

features. 
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Table 5-3 Corresponding tools for the seven core operation categories 

Core Operation 

Categories 
Tools in Lastool Tools in Cloud Compare Tools in Terrasolid 

Data Cleaning & 

Quality Control 

LasControl, LasDuplicate, 

LasInfo, LasNoise,  

LasPrecisiom, LasReturn, 

LasThin, LasValidate, LasView, 

Noise Filter, SOR (Statistical 

Outlier Removal) filter, 

Remove Duplicate Points, 

Hidden Points Removal 

TerraMatch: Calibration and Strip 

Adjustment, Tie Lines tools, Match tools 

(e.g., apply correction, find intensity 

correction,), etc.; 

Low-Level 

Transformations 

Blast2Dem, Blast2Iso, 

Las2Dem, Las2Iso, Las2Las, 

Las2Shp, Las2tin, las2Txt, 

Las2Zip,  Shp2Las, LasPublish, 

Fit Tool (plane, sphere, 2D 

polygon, 2.5D quadric), 

Unroll, Rasterize and Contour 

Plot, Contour Plot to Mesh 

Projection tool (Coordinate 

Transformations, Geoid adjustment), 

Convert Storage Format (to kmz, dgn, etc.) 

Data Subsetting, 

Filtering, 

Subsampling 

Las2Las, LasCanopy, LasClip, 

LasGrid, LasIndex, 

LasCoverage, LaSsort, LasSpilt, 

Subsampling Tool (by 

random, space, octree) 

Point Filtering Tools (by classification, 

intensity) 

Spatio-temporal 

Mapping & 

Registration 

LasColor, LasTrack, LasPlane 

Align (point pairs picking), 

Match Boundary Box 

Centers, Match Scales, Fine 

Registration 

TerraPhoto: Camera Calibration Tool, 

Color Correction Tool, Improving Image 

Positioning Tool, Color Points, and 

Selection Shapes Tools, Manage 

Trajectories Tool. 

Object 

Segmentation 

Las2Boundry, LasClassify, 

LasHeight, LasGround, 

Label Connect Component, 

Cross Section/ Unfold, 

Section, Facet Detection, 

RANSAC shape detection 

TerraScan: Macro Classification tool 

(Classify / By intensity; Classify / Surface 

Points, Classify Using Brush, etc.), Power 

Lines using Least Squares Fitting, 

TerraModel (Surface Modeling) 

Object 

Classification 
lasclassify, lasheight, lasground, 

CANUPO Classification, 

Cloth Simulation Filter (CSF) 

TerraScan: Macro Classification tool 

(Classify / By intensity; Classify / Surface 

points, Classify Using Brush and etc.), 

Change Detection, 

Comparison, and 

Quantification 

- Compute 2.5D Volume TerraScan Change Detection Tool 
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5.3.3 Constructing Apache Strom Based Topology 

This study is built on the Apache Storm based stream processing platform. In 

Apache Storm, a processing workflow is referred to a topology. A topology is a graph 

stream transformations, consisting of nodes which are either a spout or a bolt. The detail 

steps for are described in the following sections.. 

5.3.3.1 Converting application process to spouts and bolts 

One fundamental difference between a processing workflow and a topology is 

that a processing workflow ends eventually, whereas a topology runs forever until being 

killed. A topology is a network of nodes. In a topology, a stream of data flows from 

spouts to bolts or from one bolt to another bolt. A spout is the entry point, and it is the 

source of streams in the storm topology. The spout is connecting to a queue system that 

will pull messages from the message emitters. If the message is non-empty, the spout will 

check whether the profile specified in the message can match with the existing topology. 

The spout then emits a new message and pass it to all bolts subscribed in the stream. 

Bolts are the actual processing logic. It takes tuples as input and converts them to 

executable command. In the previous section, complex applications are broken up into 

smaller elementary operations. Then, each operation is compiled as an independently 

executable file using LAStools. Apache storm is flexible with the programming language. 

This study adopted a third party software WINE to execute .exe files in LAStools on a 

Linux system. Compared to the application based workflow, the topology based 

workflow can improve the robustness of the computation framework. For instance, there 

are three Bolt1s in the topology as shown in Figure 5-4b. These three bolts are identical 

but located in three independently processors. In another word, if anyone or two bolts 
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fail, the topology can maintain functioning. Also, compared to the application based data 

processing, the topology based computing can reduce the waste of computation resource. 

In application-based data processing (Figure 5-4a), functions 2 are running three times in 

all three applications. On the other hand, in the topology-based streaming processing, 

only the Bolt2 in the middle receive a message from the previous Bolt1, and therefore, 

the function 2 is triggered once. 

 
Figure 5-4 Details steps for application-topology conversion 

 

5.3.3.2: Spouts and bolts communication 

The communication strategy between two nodes of the cluster is called stream 

grouping. A stream grouping defines how the messages are distributed from one set of 

upstream parallel processing task to another set of downstream parallel processing tasks. 

A stream grouping tells a topology how to send tuples between nodes and controls how 

the messages are routed in the topology. Commonly used groupings include shuffle 

grouping, fields grouping, global grouping,  and all grouping. For instance, in Global 
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Grouping, messages are sent from upstream tasks to a single idle downstream task in a 

round-robin fashion, thereby achieving load balancing for distributed tasks. In this 

research, to reduce the computation of duplicate functions, global grouping is selected as 

the primary means of message exchange among bolts. Figure 5-5 depicts the pseudocode 

for grouping corresponding to the topology in Figure 5-4b. Besides grouping, the default 

implementation in Apache Strom also allows tasks within the nodes to communicate 

using TCP, which can be efficient because of the loopback adapter but can be further 

improved using shared memory based communication (Kamburugamuve et al. 2016). 

 
Figure 5-5 Pseudocode for Grouping 

 

5.3.3.3 Stream processing and data movement 

What transport through a topology are messages. A message is defined as the 

quintuplet: (Header, Action, Data, Location, Topology).  The data, location, and topology 

fields may be empty, or they may contain a message payload with the location of the user 

or the topology to be uploaded. The header includes a semantic profile in addition to the 

credentials of the sender. The action field of a message defines its reactive behavior when 

matching occurs. Data will be routed based on the location specified in the profile. 

Besides, the location and topology are specified in the Location and Topology field 

respectively. A tuple is the most basic data structure in Apache Storm, which contains 
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processing logic, and links between nodes indicate how data should be passed around 

between nodes. When a spout or bolt emits a tuple to a stream, it sends the tuple to every 

bolt that subscribed to that stream.  Global grouping sends tuples generated by all 

instances of the source to a single target instance 

The topology-based data processing is implemented to support stream processing. 

In batch processing model, a set of data is ingested before the data analytics. However, in 

the streaming model, data is fed into analytics tools piece-by-piece. Computation 

machines, either core or edge, will process the incoming data as soon as it arrives. Such a 

process will decrease the latency of ingesting all the data to meet the real-time or near 

real-time processing need. These mechanisms are achieved by exploiting the message 

system as depicted in the pseudocode in Figure 5-6. In the proposed work, a topology 

runs continuously over a stream of incoming data unless being terminated. Instead of 

specifying the exact name of the data, the header of quintuplet message includes the 

semantic profile of the analytics data. If and only if there exists 𝐷𝑎𝑡𝑎 that matches with 

the 𝑆𝑒𝑚𝑎𝑡𝑖𝑐𝑃𝑟𝑜𝑓𝑖𝑙𝑒 (ℎ𝑒𝑎𝑑𝑒𝑟) in the designated𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, the data analytics (𝐴𝑐𝑡𝑖𝑜𝑛) 

will be executed.  

 
Figure 5-6 Pseudocode for stream processing mechanism 

 

The framework is designed to minimize unnecessary data movement. The need 

for transferring data to the core can be determined based on the practical decision-making 
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needs. Without losing generality, we propose three data movement rules in the case of 

cloud edge computing in a disaster response scenario. First, data collected by edge 

devices (such as minivan based mobile data collection system) are prioritized to be 

processed locally in the edges. This means only the required portion of the analytics 

products are transferred to the core for further processing. Second, the visualization data 

are preferred to host as a WebGL based renderer (Schütz 2016) at the edge. Third, any 

other data that are less time sensitive are suggested to store at the edge for future usage. 

To do so, a new bolt is implemented following the similar mechanism as the one 

displayed in Figure 5-6. The only difference is that the 𝐴𝑐𝑡𝑖𝑜𝑛 is referred to specifying 

data transferring tasks.  

5.3.4 Major advantages of the stream processing approach 

The proposed Apache Storm based stream processing will have three significant 

advantages over current computation frameworks. Figure 5-7 depicts a detailed 

comparison of the prevailing and proposed data processing framework.  

Task Parallelism. Most of the existing LiDAR processing algorithms are built to 

execute on a standalone machine. They often do not support the flexibility of automated 

parallelism. In cases where timely processing is required, complex manual interactions 

are required to manage the job assigning and resource allocation. The fact that 

computation resources are not always located at the same place (e.g., edges, cloud) 

further complicates such a process. Data transfer and workload balancing among different 

edges will consume an additional amount of time. The proposed topology based 

processing framework is particularly suitable for parallel computing. The task queues are 
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pushed to the master computing node, and the master node would automatically level the 

available computing resource in the network. 

Dynamically resource allocation. In conventional processing algorithms, tasks 

are running on a fixed number of executors. A Storm Cluster can be configured to make 

use of “dynamic resource allocation” which allows altering of the number of executors to 

be allocated to a task over time. For instance, if a process needs more executors, the 

number of resources deployed for data analytics can be increased to match to the actual 

workload. On the other hand, in a multiprocessor system, the proposed framework can 

also realize the task parallelism by executing a different process on the same or different 

data.  

Inter-task Communication. In most current computing frameworks, all tasks are 

running independently. There is no communication between tasks. In the proposed 

framework, inter-task communication can be achieved by merging task operations into 

storm topologies. A topology-based processing framework enables (1) data and 

information sharing; (2) mechanism to inform task that data is available to read or write; 

and (3) mechanism to prevent tasks from interfering with each other. Inter-task 

communication can help to coordinate the data processing tasks better, balance the 

processing workloads, reduce the execution of duplication functions, and as a result 

achieve better utilization of computation resource while decreasing the data processing 

time. 



139 

 

 

 
Figure 5-7 Comparison of prevailing and the proposed processing framework 

 

5.4 Disaster response example 

5.4.1 Background 

A Hurricane Sandy use case is selected in this study for evaluating the proposed 

data processing framework. Hurricane Sandy (2012) is one of the most destructive 

hurricanes in the Atlantic shoreline area. It made landfall in southern New Jersey and 

took a major toll on the Atlantic shoreline area. It toppled many major transportation 

infrastructures in the state of New Jersey and New York city and put millions of people in 

the dark.  The data used in this study are airborne LiDAR data collected using the 

second-generation Experimental Advanced Airborne Research Lidar (EAARL-B) system. 

The purpose of the data acquisition project was to produce highly detailed and accurate 

digital elevation maps of the New Jersey coastline. The proposed framework is designed 
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to be used in the initial state of Hurricane Sandy to meet the four emergency response 

functions proposed by Lindell and Perry (1992). The detail steps for determining the 

prioritization of the data processing applications are introduced in Chapter 4. As shown in 

Chapter 4, terrain analysis, interactive 3D analysis, and change detection are among the 

highly ranked data processing applications. In this chapter, we will demonstrate how to 

accelerate these data processing applications using a distributed data processing 

framework. 

5.4.2 Topology Construction 

Once the priorities of data analytics are identified, these applications are 

decomposed into a series of elementary operations. Figure 5-8 lists all the elementary 

operations and their workflow in three applications. LAStools are used as the exemplary 

LiDAR processing tools in this study. According to the method described in the previous 

section, the three applications are broken down into elementary operations and then 

converted to an apache storm topology as shown in Figure 5-9.  
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Figure 5-8 Detail workflow of the desired applications 

 

 

Figure 5-9 A topology of the desired applications 

 

This use case was implemented in the Amazon EC2 which allows the creation and 

management of the virtual computing environment. A cluster was set up, and its structure 

is shown in Figure 5-10. The cluster consists of five nodes: one Nimbus, one Zookeeper, 
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and three Supervisor nodes. A nimbus node can be considered as the master node located 

in the core, which assigns computation tasks to workers (supervisors) node. A zookeeper 

node is a coordinator that monitors the performance of supervisors, which is also 

considered to implement in core. A supervisor node or work node is the machine that is 

actually doing the data processing. Three supervisor nodes were implemented in the 

Amazon EC2 to emulate three edge devices. Each of the five nodes is simulated using a 

t2.micro instance in Amazon EC2, with 1 GB memory and 8 GB storage. In each of the 

rendezvous point, a streaming engine based on Storm version 1.1.1 was installed 

 
Figure 5-10 Architecture of the cluster 

 

5.4.3 Experiment evaluation 

In this section, the performance and scalability of the data processing approach 

and their realization as an EC2 cluster were evaluated on the 2012 EAARL-B pre and 

2012 EAARL-B post LiDAR datasets. The analysis area includes the entire New Jersey 

Coastline. The analysis area was further divided into 27 locations. At each location, the 

pre- and post-disaster LiDAR datasets were used in the analysis. For each location, the 

size of pre- and post-event datasets ranges from 500 KB to 14.5 MB. 

In the first experiment, the performance of the topology-based stream processing 

is evaluated against a traditional single computer processing approach. Based on the 

Figure 5-10, a virtual environment was set up in the cloud (Amazon EC2). Both scenarios 
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are executed in the same worker (supervisor) node. In the proposed work, the number of 

worker nodes is set to be one using 𝑐𝑜𝑛𝑓. 𝑠𝑒𝑡𝑁𝑢𝑚𝑊𝑜𝑟𝑘𝑒𝑟𝑠(1). In the reference 

analysis, the typical analysis mode was executed in the same t2.micro instance directly. It 

should be pointed out that the LAStools have the multi-core LiDAR processing 

capability. In this experiment, such capability was not enabled in both scenarios. The 

evaluation was repeated using different size of the data sets and the corresponding 

elapsed time is shown in Figure 5-11. The time breakdowns of each individual sub-

operations were also reported. The first column of each group in Figure 5-11 displays the 

total elapsed time using a typical standalone processing mode. The total elapsed time can 

be estimated as the summation of the elapsed time of each application. The second 

column of each group in the figure shows the total elapsed time using our stream 

processing approach. The total elapsed time consisted of two parts: execution time of the 

topology (three applications) and the latency. The latency was calculated as the sum of all 

latency in each Spout or Bolt respectively. The experiment was repeated with data sets of 

varying size ranging from 73 thousand points to 3232 thousand points.  

The first finding that can be noticed in Figure 5-11 is that the total elapsed time 

for both methods increase when the data size increases. Second, compared to the 

conventional approach, the stream processing approach consumed 42% less computation 

time. For the t2.micro instance used in the experiment, there were four processors in each 

node. Processing in the reference analysis did not offer the flexibility of dynamically 

executor allocation. As a result, the potential computational capability of the four 

executors was not fully exploited. On the other hand, the stream processing approach 

supported the scaling of processors. Third, from Figure 5-11, it can be noted that the total 
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latency in the stream processing approach increased as the data size increased. It incurred 

an average of additional 25% of the processing time. In this experiment, it can be 

summarized that our proposed approach outperformed the conventional processing that 

built on a single executor regarding the processing time. The saving in total elapsed time 

is achieved by enabling allocation more available processors to the processing jobs. It 

should be pointed that the t2.micro instance that we used in the experiment have four 

processors. It is expected to have a more significant time saving if we deployed CPUs 

with more processors (e.g., t2.2xlarge. m5.4xlarge) for the data processing. 

 

Figure 5-11 Performance Results of a single pair of datasets 

 

In the second experiment, we emulated a real disaster response scenario by 

deploying our work on a queue of 27 pairs of LiDAR datasets. The data processing was 

deployed in the same virtual environment in the Amazon EC2 with three worker nodes. 

To prove the gain in data processing speed, we set up four analysis scenarios. In the 

scenario 1, a reference group test was performed using the conventional processing in 
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standalone mode. In the scenario 2, one supervisor node was activated in the cluster using 

(𝑐𝑜𝑛𝑓. 𝑠𝑒𝑡𝑁𝑢𝑚𝑊𝑜𝑟𝑘𝑒𝑟𝑠(1)). In the scenario 3 and 4, two (𝑐𝑜𝑛𝑓. 𝑠𝑒𝑡𝑁𝑢𝑚𝑊𝑜𝑟𝑘𝑒𝑟𝑠(2)) 

and three (𝑐𝑜𝑛𝑓. 𝑠𝑒𝑡𝑁𝑢𝑚𝑊𝑜𝑟𝑘𝑒𝑟𝑠(3)) supervisor nodes were deployed in the cluster 

respectively. In the experiment, scenarios 1 and 2 were compared to evaluate the 

performance of the proposed stream processing approach over the conventional approach. 

Scenarios 2, 3 and 4 were formed to assess the scalability of the stream processing 

approach. It can be noted that all four scenarios were simulated in the cloud (Amazon 

EC2). All the processing were executed using the same kind of t2.micro instances with 

1vGPU and with 1 GB memory and 8 GB storage. 

Figure 5-12 displays the elapsed time of all the worker nodes in the tested 

scenarios. The first finding is that, compared to the conventional processing, there were 

significant time savings when our proposed work is deployed to process the same data set 

queue. Notably, when a single worker node was deployed in the processing task, our 

proposed work consumed 28.4% of less time than that of the conventional method. 

Second, our approach can achieve automatic workload balancing. In the two worker node 

scenario, the nimbus node assigned tasks to the two worker nodes based on their 

availability. The occupation time for the two nodes is 7.50 and 8.12 minutes, 

respectively. Besides, the number of tasks finished by these two worker nodes are 16 and 

11 respectively. Moreover, it can be obtained that in the three worker node scenario, the 

workloads were more evenly distributed. Three worker nodes finished ten, ten, and seven 

tasks in 5.66, 5.62, and 5.56 minutes respectively. Last but not least, the scalability of 

deploying more worker nodes in the cluster for processing is non-linear. In the 

experiment, it is expected that the two and three worker nodes cluster would consume 
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50% and 67% less time than the single worker node cluster. In our analysis, however, the 

system elapsed time is only 37.1% and 56.2% less. One main reason behind this 

phenomena is that additional latency was introduced for tasks distribution and workload 

balancing. Nevertheless, the proposed approach enables workload sharing by activating 

more worker nodes in the cluster. Based on these findings, we can argue that our 

approach can exploit the availability of the potential computation resources.  

 

Figure 5-12 Performance of streaming processing on datasets queue 

 

To further investigate the uncertainty in the latency of deploying more worker 

nodes, the four scenarios were repeated ten times. Figure 5-13 summarized the mean and 

standard deviation of the system elapsed time. The system elapsed time was computed as 

the maximum occupation of all the nodes deployed in the system. According to the 

experiment results, the average elapsed time for the standalone conventional processing, 

one worker, two workers, and three worker streaming processing were 19.45, 12.80, 8.07, 

and 5.96 minutes respectively. Compared to the conventional processing in standalone 
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mode, stream processing had 34%, 59% and 69% of time-saving when one worker node, 

two worker nodes, and three worker nodes were deployed in the cluster. Another finding 

that is worthy of mentioning is that the uncertainty (standard deviation in Figure 5-13) of 

the processing time tends to increase when more worker nodes were activated in the 

cluster. This uncertainty is largely due to the overhead in job scheduling in the Nimbus 

node. 

 
Figure 5-13 System Elapsed Time comparison 

 

The last part of this study concerns the analysis of the accessibility and storage. 

As LiDAR data often consume a lot of storage space, movement and storage of LiDAR 

datasets cause significant burdens, in particular in post-disaster scenarios where 

computational resources and data communication capacities are often limited. However, 

not all data sets are necessarily required to transfer to the core immediately. The burden 

of core storage and the pressure on the network can be relieved if the edges only submit 

the required part of the data and transfer them to the core. This work is implemented to 

follow three rules to reduce the transferring of an excessive amount of data to the core. 

First, data collected by edge devices (such as minivan based mobile data collection 

system) are prioritized to be processed locally in the edges, only the required portion of 
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the analytics products are transferred to the core for further processing. Second, the 

visualization data are preferred to host as WebGL based renderer (Schütz 2016) at the 

edge. Third, any other data that are less time sensitive are suggested to store at the edge 

for future usage. Based on these rules, only the result from Application 1 and 3 were 

required to transfer to the core to couple with other information such history data for 

further analysis. Visualization data generated in Application 2 were hosted locally at the 

edge as WebGL based renderer, which supports remote access and interaction. Other data 

are considered as less time sensitive and stored locally at the edge. Figure 5-14 

demonstrates the breakdown of the data that require storage, host at the edge as well as 

transfer to the core in the second experiment. Among a total size of 2092 MB of data 

generated, only a small portion (235 MB) was critical and required immediately transfer 

to the core for advanced processing. Visualization data (372 MB) generated from App2 

can be hosted locally as a web-based platform. This web-based platform can put 

visualization LiDAR data into the browser of a remote client without incurring the 

overhead of transferring the massive amount of data. Besides, the rest 71% data were 

either raw or abundant data that can store in the cloud or locally for future usage.  

 
Figure 5-14 Data accessibility breakdown
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5.5 Conclusion and future work 

The scoping of this study is to propose a stream processing framework that 

exploits the HPC to process LiDAR data sets for time-sensitive applications. The 

feasibility of the work is demonstrated using a Hurricane Sandy based use case. The 

framework consists of three key components: (1) a tile-based data management system in 

the cloud, (2) formalism for decomposition of the complex processing tasks into 

elementary operations; (3) Apache-storm based stream processing. 

Based on the use case, the results indicated a 69% computation time saving when 

a three-supervisor cluster instead of a conventional standalone machine is used to process 

the data. It is also expected that the overall processing time can be shortened if more 

computation resources are available to use. Moreover, our approach also contributes to 

the relieving the burden of data movement and storage in the core, therefore reducing the 

demand on the network. According to our use case, only a minority (11%) of the data 

were critical and required immediate transfer to the core for further processing.   

Furthermore, this work explored the feasibility of restructuring complex 

processing tasks into workflow-style elementary operations that can support stream 

processing in HPC infrastructures. It is expected that the proposed work can contribute to 

the better delivery of on-demand information in disaster response more efficiently and 

effectively. One limitation of this work is that the uncertainty in latency in stream 

processing is not fully explored. According to the case study, the latency and its 

uncertainty increase when more supervisor nodes are deployed. To determine the 

optimized processing strategy, this needs to be further investigated in future research.
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Chapter 6 Conclusions and Future Research 

Severe weather events such as hurricanes, ice storms, surge, and flooding have 

been occurring across the U.S and around the world, threatening places where economic 

and industrial activities are heavily concentrated. These extreme events are now 

increasing observed and monitored with a loosely coupled network of geospatial sensors. 

Analysis of these datasets offers tremendous opportunities in improving the resilience 

and adaptability of coastal communities in the face of future natural disasters. Despite the 

high values in these data sets, the vast size and complex processing requirements of these 

new data sets make it challenging to effectively use them in coastal community 

management applications, in particular emergencies. Yet, unprocessed data are intangible 

and non-consumable, which is often resulting in ‘data-rich-but-information-poor” 

situation. 

The overarching goal of this research is to research, develop, and evaluate a data 

processing framework that is capable of efficiently processing the emerging large 

geospatial data sets and extract crucial information to enhance disaster management 

during large-scale extreme events. This research systematically studied the fundamental 

aspects of big spatial disaster data including the anatomy of big spatial disaster data, data 

processing patterns, data quality issues, uncertainty propagation along the analytics 

pipeline, and adaptive processing in time-sensitive environments. More specifically, this 

dissertation addresses the following research questions. 

1. What is the basic anatomy of big spatial disaster data?  

2. What are the core operation categories and processing patterns with big spatial 

disaster data? 
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3. How does the uncertainty associated with spatial disaster data sets propagate 

through a given processing pipeline? 

4. How to adequately represent users’ dynamic and complex information needs and 

processing requirement during coastal resilience investigations in a unified 

framework? 

5. How to dynamically adapt 3D disaster data analytics given user information needs 

and processing requirements and algorithm and dataset descriptions? 

In Chapter 2, I characterized the basic anatomy of big spatial disaster data to 

highlight the challenges and opportunities in using these emerging data sets in coastal 

community management applications during extreme events. I also characterized data 

processing patterns associated with the emerging big spatial disaster data sets and 

abstracted these patterns into core operation categories. These work laid the foundation 

for realizing cloud-based computing of these data sets for disaster response applications.  

In Chapter 3, I used a case study based approach to demonstrate approaches for 

quantifying uncertainty propagation in processing geospatial data sets. More specifically, 

I proposed a method to identify the optimal strategy for approximation parameter 

selection in interpolating Light Detection and Ranging (LiDAR) data into Digital 

Elevation Models (DEMs). The method is developed to address the need to model 

accuracy loss in rapid generation of DEMs, which are essential pieces of information 

used in disaster response and flooding simulation. 

In Chapter 3, I proposed a DEA based information salience model to prioritize the 

sequence of the information processing tasks. The model provides a unified way of 

representing user information needs and balancing these needs to realize optimized data 
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processing sequences. More specifically, this model integrates the DEA efficiency score 

with linguistic group decision process. The proposed model is tested against a hurricane 

sandy based case study in the Barnegat Peninsula, New Jersey. The results indicate that 

the proposed model prototyped a framework for information articulation between 

decision-makers and the data processing team. The proposed model will help 

to accelerate the data-information transliteration and reduce the possible ‘data-rich-but-

information-poor” situation  

Based on Chapter 3, I proposed in Chapter 4 a stream data processing approach 

that realized accelerated information extraction from large quantities of geospatial data 

given various user information needs. The approach is capable of representing complex 

spatial data analytics into a workflow centric data analysis representation and levering the 

flexible computing resources in the cloud and at the edge to improve information 

extraction from these large data sets.  

Throughout this dissertation research, I used extensively Hurricane Sandy related 

data sets as use cases to evaluate the proposed approaches. The results demonstrated the 

proposed approaches provide a scalable approach for information extraction from spatial 

disaster data within a realistic time bound. It is important to recognize that this research 

does not focus on developing algorithms for data processing tasks such as segmentation 

and object recognition. Instead, it focuses on formulating mechanisms to integrate 

existing spatial data analytics into the emerging big data processing frameworks and to 

address the particular challenges in using the big spatial disaster data for coastal 

resilience decision support. In terms of future research, it is beneficial to investigate the 
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development of dedicated disaster data processing algorithms and integrate them into the 

framework developed in this research.  

The short-time disasters, as well as the long-term environmental changes, are 

prone to pose a pressing challenge to coastal communities. To improve the resilience 

(both capability and adaptability) of the community, precise and thorough information on 

the formation, development and the consequence of the disasters as well as the impacts to 

the communities is essential. The immerging sensing technology, as well as the flooding 

data, will, on the one hand, improve information gathering, and on the other hand, 

compound the difficult in information processing for decision making during disaster 

time sensitive environment. Amongst many research needs, this study proposes a 

prototype study to address the sensitivity issue in disaster response by closing the gap 

between information processing and decision-making. It is hoped that the methods 

presented in this dissertation will motivate innovative research in closing the loop among 

information gathering, data processing and decision-making. 
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