
COUNTING AND DISCOUNTING SLOWLY
OSCILLATING PERIODIC SOLUTIONS TO

WRIGHT’S EQUATION

by

JONATHAN CALEB JAQUETTE

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Konstantin Mischaikow

and approved by

New Brunswick, New Jersey

May, 2018

ABSTRACT OF THE DISSERTATION

Counting and Discounting Slowly Oscillating Periodic

Solutions to Wright’s Equation

By JONATHAN CALEB JAQUETTE

Dissertation Director: Konstantin Mischaikow

A classical example of a nonlinear delay differential equations is Wright’s equation:

y′(t) = −αy(t − 1)[1 + y(t)], considering α > 0 and y(t) > −1. This thesis proves two

conjectures associated with this equation: Wright’s conjecture, which states that the

origin is the global attractor for all α ∈ (0, π2]; and Jones’ conjecture, which states that

there is a unique slowly oscillating periodic solution for α > π
2 . Moreover, we prove

there are no isolas of periodic solutions to Wright’s equation; all periodic orbits arise

from Hopf bifurcations.

To prove Wright’s conjecture our approach relies on a careful investigation of the

neighborhood of the Hopf bifurcation occurring at α = π
2 . Using a rigorous numerical

integrator we characterize slowly oscillating periodic solutions and calculate their sta-

bility, proving Jones’ conjecture for α ∈ [1.9, 6.0] and thereby all α ≥ 1.9. We complete

the proof of Jones conjecture using global optimization methods, extended to treat

infinite dimensional problems.

ii

Acknowledgements

I am deeply grateful for all the advice Konstantin Mischaikow has provided me these

past eight years. Thank you for guiding me through the wilds of mathematics, and for

reading paper drafts that never should have seen the light of day.

I greatly appreciate the mathematical community at the VU Amsterdam for hosting

me in 2015. Thank you in particular to Jan Bouwe van den Berg, who acted as my

secondary advisor; to Jean-Philippe Lessard, for introducing me to Wright’s equation;

to J.D. Mireles James, who helped lure me towards dynamical systems and rigorous

numerics; and to Roger Nussbaum, for his sage advice on delay differential equations.

Chapter 1, and this thesis as a whole, is drawn from the papers [JLM17,vdBJ18,Jaq18].

More specifically: Chapters 2 and 3 are drawn from [vdBJ18], coauthored with Jan

Bouwe van den Berg; Chapter 4 is drawn from [JLM17], coauthored with Jean-Philippe

Lessard and Konstantin Mischaikow; Chapters 5 and 6 are drawn from [Jaq18].

Lastly, I acknowledge the Office of Advanced Research Computing (OARC) at Rutgers,

The State University of New Jersey for providing access to the Amarel cluster and

associated research computing resources that have contributed to the results reported

here.

iii

Dedication

For my family.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

List of Tables . vii

List of Figures . viii

1. Introduction . 1

1.1. Background . 1

1.2. Thesis Outline . 4

2. Hopf Bifurcation Analysis . 8

2.1. Preliminaries . 8

2.2. Local results . 17

2.3. Global results . 27

3. Technical Estimates . 38

3.1. Operator Norms . 38

3.2. Endomorphism on a Compact Domain 41

3.3. The upper bound for Y (ε) . 46

3.4. The upper bound for Z(ε, r, ρ) . 50

3.5. A priori bounds on periodic orbits . 57

3.6. Implicit Differentiation . 61

4. Computationally Characterizing SOPS and their Stability 67

4.1. Background . 67

v

4.2. A computational approach . 70

4.3. Initial Bounds on SOPS to Wright’s Equation 77

4.4. Bounding the Floquet Multipliers. 84

4.5. A Comprehensive Algorithm . 89

4.6. Discussion . 92

4.7. Computational Considerations . 94

5. Ruling out Isolas . 98

5.1. Outline of Proof . 98

5.2. Bounding the Krawczyk Operator . 116

5.3. Pruning Operator . 121

5.4. Global Bounds on the Fourier Coefficients 124

5.5. Global Algorithm . 137

6. Future Directions . 145

6.1. Dynamical Questions . 145

6.2. Computational Questions . 147

References . 149

vi

List of Tables

4.1. For descriptions of how these parameters affect Algorithm 4.5.3, refer

to Algorithms 4.3.5 and 4.3.8 for i0, j0 and NPrune; refer to Algorithm

4.4.2 for NFloquet and MFloquet; and refer to Algorithm 4.5.1 for ε1, ε2

and NPrune. 92

5.1. Computational benchmarks from the computer-assisted proof of Theo-

rem 1.2.3. Nbf – the number of bounding functions output by Algorithm

4.5.1. N ′grid – the number of cubes in S ′′′ after Step 7 in Algorithm 5.4.7.

Ngrid – the number of cubes output by Algorithm 5.4.7. Tbf – the run

time (min.) of Algorithm 4.5.1. Tgrid – the run time (min.) of Algorithm

5.4.7. T ∗bb – the run time (min.) of Algorithm 5.5.1 parallelized using 20

workers. Tverify – the run time (min.) of Algorithm 5.5.3. 144

vii

List of Figures

1.1. A bifurcation diagram for periodic solutions to Wright’s equation. There

are no folds in the principal branch of slowly oscillating periodic solu-

tions (solid curve). While there may be folds in the branches of rapidly

oscillating periodic solutions (dotted curves), it is conjectured that this

does not occur. There are no other connected components of periodic

solutions (not displayed). 3

1.2. Ways the Wright’s conjecture or the Jones’ conjecture could have failed,

and the papers which show these failures do not occur. 4

4.1. An upper bound on the modulus of the Floquet multipliers for SOPS to

(1.1) for α ∈ [1.9, 6.0]. 93

4.2. An example of how we store an interval valued function [`(t), u(t)] in our

algorithm. 96

4.3. An example of how the various steps in Algorithm 4.2.2 tighten the

bounding functions associated with a region K. 97

5.1. The main result of this chapter is a collection of “cubes” in Fourier

space which cover the Fourier coefficients of SOPS to (1.2). The first

Fourier coefficient of this cover is plotted here with respect to α. Inside

each green cube there exists a unique SOPS corresponding to each α,

essentially by Theorem 5.1.2. Inside each blue cube the only SOPS that

can exist are on the principal branch, by Theorem 2.3.11. 100

5.2. Depicted in the figures are functions `s, us : R → R which bound a

periodic function y and its derivatives y(s). Depicted in the tables are

the values for Ak,s and Bk,s produced by Algorithm 5.4.1 which bound

the Fourier coefficients ck = ak + ibk of y. 126

viii

5.3. Depicted above is the output of Algorithm 5.4.7 projected onto the (ω, a1)

plane. From left to right, the input Iα was taken to be [π2 , 1.6], [1.6, 1.7],

[1.7, 1.8], and [1.8, 1.9]. Note that C0 increases with α, a1, and period

length 2π/ω. 134

5.4. An example output of Algorithm 5.5.1. The cubes in A are in green, the

cubes in B are in dark blue, and the cubes in R are in pink. 141

ix

1

Chapter 1

Introduction

1.1 Background

In many biological and physical systems the dependency of future states relies not only

on the present situation, but on a broader history of the system. For simplicity, math-

ematical models often ignore the causal influence of all but the present state. However,

in a wide variety of applications delayed feedback loops play an inextricable role in

the qualitative dynamics of a system [KM13]. These phenomena can be modeled using

delay and integro-differential equations, the theory of which has developed significantly

over the past 60 years [Hal06]. An often studied class of delay differential equations are

negative feedback systems of the form:

x′(t) = −αf(x(t− 1)) (1.1)

where xf(x) > 0 for x 6= 0 and f ′(0) > 0. One particularly well studied example of

(1.1) is when f(x) = ex − 1, better known as Wright’s equation, which after making

the change of variables y = ex − 1 can be written in the following form:

y′(t) = −α y(t− 1) [1 + y(t)] . (1.2)

Here α is considered to be both real and positive. This equation has been a central

example considered in the development of much of the theory of functional differential

equations. We cite some basic properties of its global dynamics [Wri55]:

• Corresponding to every y ∈ C0([−1, 0]), there is a unique solution of (1.2) for all

t > 0.

• Wright’s equation has two equilibria y ≡ −1 and y ≡ 0. Moreover, solutions

2

cannot cross −1. Any solution with y(t0) = −1 (for some t0 ≥ 0) is identically

equal to −1 for t ≥ 0.

• When y(0) < −1 then the solution decreases monotonically (for t > 1) without

bound.

• When y(0) > −1 then y(t) is globally bounded as t→ +∞.

Henceforth we restrict our attention to y(t) > −1. In Wright’s seminal 1955 paper

[Wri55], he showed that if α ≤ 3
2 , then any solution having y(t) > −1 is attracted to

0 as t → +∞. Wright suggested that y ≡ 0 could be the global attractor for a larger

range of α. The natural upper limit for this range is α = π
2 , where the equilibrium

y ≡ 0 changes from asymptotically stable to unstable, a claim which has come to be

known as Wright’s conjecture:

Conjecture 1.1.1 (Wright’s Conjecture). For every 0 < α ≤ π
2 , the zero solution

to (1.2) is globally attractive.

For α > π
2 , Wright proved the existence of oscillatory solutions to (1.2) which do

not tend towards 0, and whose zeros are spaced at distances greater than the delay.

Such a periodic solution is said to be slowly oscillating, and formally defined as follows:

Definition 1.1.2. A slowly oscillating periodic solution (SOPS) is a periodic solution

y(t) which up to a time translation satisfies the following property: there exists some

q, q̄ > 1 and L = q + q̄ such that y(t) > 0 for t ∈ (0, q), y(t) < 0 for t ∈ (−q̄, 0), and

y(t+ L) = y(t) for all t, so that L is the minimal period of y(t).

In Jones’ 1962 paper [Jon62a] he proved that for α > π
2 there exists a slowly oscil-

lating periodic solution to (1.2). Based on numerical calculations [Jon62b] Jones made

the following conjecture:

Conjecture 1.1.3 (Jones’ Conjecture). For every α > π
2 there exists a unique (up to

time translation) slowly oscillating periodic solution to (1.2).

In this thesis we complete the proofs of both of these conjectures, contributing a

capstone to many decades of mathematical work studying Wright’s equation. For fur-

ther details, we refer the reader to [Hal71,Wal14] and the references contained therein.

3

Amplitude of

periodic orbits

π/2
α

5π/2 9π/2

Figure 1.1: A bifurcation diagram for periodic solutions to Wright’s equation. There
are no folds in the principal branch of slowly oscillating periodic solutions (solid curve).
While there may be folds in the branches of rapidly oscillating periodic solutions (dotted
curves), it is conjectured that this does not occur. There are no other connected
components of periodic solutions (not displayed).

To briefly review, a principal branch of slowly oscillating periodic orbits is born at

α = π
2 and continues on for all α > π

2 [Nus75]. Moreover, Wright’s equation has su-

percritical Hopf bifurcations at α = π
2 + 2nπ for integers n ≥ 0, with slowly oscillating

periodic orbits arising when n = 0, and rapidly oscillating periodic orbits arising when

n ≥ 1 (see Figure 1.1) [CMP77]. Since a Poincaré-Bendixson type theorem applies to

Wright’s equation, any initial condition will limit to the zero-equilibrium or a periodic

orbit [MPS96]. The rest of the global attractor is built from connecting orbits. To-

gether with the parameter α, the collection of periodic orbits forms a 2-dimensional

manifold [Reg89]. A two-part geometric version of Jones’ conjecture was proposed

in [Les10]:

(i) the principal branch of SOPS does not fold back on itself, and

(ii) there are no other connected components (isolas) of SOPS.

If Conjectures 1.1.1 and 1.1.3 were false, then the solid black curve representing SOPS

in Figure 1.1 instead could have exhibited all sorts of wild behavior as depicted in Figure

1.2. The papers [Wri55, BCKN14, Les10, Xie91] rule out these types of bad behavior

4

depicted in the blue short-dashed lines in Figure 1.2.

Computer-assisted proofs using interval arithmetic [MKC09] have proved to provide

powerful tools for studying Wright’s equation [Les10,BCKN14], and nonlinear dynamics

more generally (e.g. see [Rum10,Tuc11,KSW96]). By applying and building upon these

tools this thesis fills in the missing pieces, depicted in the red long-dashed lines in Figure

1.2, needed to prove Conjecture 1.1.1 and Conjecture 1.1.3.

Amplitude

of SOPS

 =1.57...

-10-41.5 +10-4 2.3 5.7

[BCKN14] [vdBJ18] [Les10]

[JLM17] [Xie91]

[Wri55]

[Jaq18]

2

2

2

Figure 1.2: Ways the Wright’s conjecture or the Jones’ conjecture could have failed,
and the papers which show these failures do not occur.

1.2 Thesis Outline

1.2.1 Hopf Bifurcation Analysis

To prove Conjecture 1.1.1, it sufficies to rule out existence of SOPS, as shown in

[BCKN14] by the following theorem:

Theorem 1.2.1 (Theorem 3.1 in [BCKN14]). The zero solution of (1.2) is globally

attracting if and only if (1.2) has no slowly oscillating periodic solution.

5

By using a branch and bound method and rigorous numerical integration, [BCKN14]

shows that no SOPS exist for α ∈ [1.5, π2 − δ1] where δ1 = 1.9633× 10−4, and that any

SOPS for which α ∈ [π2 −δ1,
π
2] would have a small amplitude. However, for every order

of magnitude they approached the Hopf bifurcation at α = π
2 their computation time

increased by three orders of magnitude. “In other words,” to quote from [BCKN14],

“substantial improvement of the theoretical part of the present proof is needed to prove

Wright’s conjecture fully.”

Hopf bifurcations are canonically analyzed with the method of normal forms, which

transforms a given equation into a simpler expression having the same qualitative be-

havior as the original equation [Far06]. By an implicit-function-theorem type argument,

this transformation is valid in some neighborhood of the bifurcation. However, the proof

does not offer any insight into the size of this neighborhood.

In Chapter 2 we develop an explicit description of a neighborhood wherein the only

periodic solutions are those originating from the Hopf bifurcation, basing our analysis

around the normal forms derived in [CMP77,HKW81]. The main result of this analysis

is the resolution of Wright’s conjecture (see Theorem 2.3.7). Furthermore, we show in

Theorem 2.3.8 that the branch of slowly oscillating periodic orbits originating from this

Hopf bifurcation does not have any subsequent bifurcations (and in particular no folds)

for α ∈ (π2 ,
π
2 + δ2] where δ2 = 6.830 × 10−3. The proofs of many technical estimates

used in Chapter 2 are postponed until Chapter 3.

1.2.2 Computationally Characterizing SOPS and their Stability

In [Xie91, Xie93], Xie showed that there is a unique SOPS to Wright’s equation for

α ≥ 5.67. He accomplished this by first showing that there is a unique SOPS to (1.2)

if and only if every SOPS is asymptotically stable. By using asymptotic estimates of

SOPS for large α (see [Nus82]) Xie was able to estimate their Floquet multipliers, and

prove that all SOPS had to be stable. However, at α = 5.67 these asymptotic estimates

break down.

In Chapter 4, we essentially replace the asymptotic estimates in this argument with

rigorous numerics, proving the following theorem:

6

Theorem 1.2.2. There exists a unique SOPS to Wright’s equation for α ∈ [1.9, 6.0].

As in [BCKN14], we use bounding functions X(t) = [`(t), u(t)] to characterize all SOPS

to (1.2). Using a priori estimates, we construct for a given parameter range [αmin, αmax]

an initial “fat” bounding function. This bounding function is constructed so that if x

is a SOPS at parameter α ∈ [αmin, αmax] then x(t) ∈ X(t). We use a branch and

bound algorithm to develop tight bounds on all the SOPS to Wright’s equation. When

the branch and bound algorithm has finished, the end result is a finite collection of

relatively “thin” bounding functions.

On this collection of “thin” bounding functions, we bound the Floquet multipliers

of all possible SOPS by solving an eigenvalue problem, again using a formulation intro-

duced in [Xie91]. Using these two main steps, we prove for α ∈ [1.9, 6.0] that all SOPS

to Wright’s equation are asymptotically stable, and thereby unique. At this point we

are able to show that for all α > π
2 there are no folds in the principal branch of SOPS

(see Corollary 4.6.1).

1.2.3 Ruling out Isolas

In [Les10] it is shown that there are no folds in the principal branch of periodic orbits

for α ∈ [π2 + δ3, 2.3] where δ3 = 7.3165 × 10−4. However this does not rule out the

possibility of SOPS far away from the principal branch. We address this in Chapter 5,

where we prove the following theorem:

Theorem 1.2.3. There exists a unique SOPS to Wright’s equation for α ∈ (π2 , 1.9].

As in Chapter 2, we recast the problem of studying periodic solutions to (1.2) as

the problem of finding zeros of a functional defined on a space of Fourier coefficients.

To obtain a priori bounds, we translate the bounding functions produced by Chapter 4

into estimates on the Fourier coefficients of a SOPS to (1.2). We then use a branch and

bound method to find all of the SOPS in this space of Fourier coefficients. The primary

technique we use to determine whether a region contains a SOPS is the Krawczyk

method. This numerical method is commonly used to rigorously find all of the zeros

in finite dimensional systems of nonlinear equations [Neu90], and more recently infinite

7

dimensional systems [GZ07]. Our branch and bound algorithm produces a collection of

“cubes” in Fourier space which contains all SOPS to Wright’s equation for α ∈ (π2 , 1.9],

and moreover these SOPS are unique with respect to α (see Figure 5.1). Together with

Theorem 1.2.2 and [Xie91], this proves the Jones’ conjecture:

Theorem 1.2.4. For every α > π
2 there exists a unique (up to time translation) slowly

oscillating periodic solution to (1.2).

1.2.4 A look forward

Beyond just the slowly oscillating periodic solutions, Theorem 1.2.4 allows us to deduce

that there are no isolas of rapidly oscillating periodic solutions. Since the nonlinearity

in (1.1) depends only on x(t−1), in fact any periodic orbit is either a SOPS or rescaling

thereof. This rescaling between slowly and rapidly oscillating periodic solutions is given

in terms of a solution’s lap number [MP88] and its period, as detailed in the following

theorem:

Theorem 1.2.5. Let x0 be a periodic solution to (1.1) at parameter α0 with period L0

and lap number N . Then there exists a SOPS x1(t) = x0(rt) to (1.1) at parameter

α1 = rα0 where r := 1− N−1
2 L0.

Thus, every periodic orbit is on a branch originating from one of the Hopf bifurca-

tions at α = π
2 + 2nπ. That is to say, there are no isolas of rapidly oscillating periodic

solutions. However, this is not sufficient to show there are no folds in the branches

of rapidly oscillating periodic solutions. The proof for Theorem 1.2.5 is presented in

Chapter 6, and future directions are discussed.

8

Chapter 2

Hopf Bifurcation Analysis

2.1 Preliminaries

Many normal form techniques for functional differential equations have been developed

to transform a given equation into a simpler expression having the same qualitative

behavior as the original equation (see [Far06] and references contained therein). While

this transformation is valid in some neighborhood about the bifurcation point, such

results usually do not describe the size of this neighborhood explicitly. In this chapter

we develop an explicit description of a neighborhood wherein the only periodic solutions

are those originating from the Hopf bifurcation. The main result of this analysis is the

resolution of Wright’s conjecture.

Theorem 2.1.1. For every 0 < α ≤ π
2 , the zero solution to (1.2) is globally attractive.

By the work in [BCKN14], to prove Wright’s conjecture it is sufficient to show that

there do not exist any slowly oscillating periodic solutions for α ∈ [π2 − δ2,
π
2], where

δ2 = 1.9633 × 10−4. Indeed, we construct an explicit neighborhood about α = π
2 for

which the bifurcation branch of periodic orbits are the only periodic orbits. Then we

show that throughout this entire neighborhood the solution branch behaves as expected

from a supercritical bifurcation branch, i.e., it does not bend back into the parameter

region α ≤ π
2 .

Rather than trying to resolve all small bounded solutions near the bifurcation point

through a center manifold analysis, we focus on periodic orbits only. In particular, we

ignore orbits that connect the trivial state to the periodic states, since those are not

relevant for our analysis. The advantage is that, by restricting our attention to periodic

solution, we can perform our analysis in Fourier space. We first note that all periodic

9

solutions are smooth, as was established in [Wri55] and more generally in [Nus73].

Lemma 2.1.2 ([Nus73]). All periodic solutions of (1.2) are real analytic.

For a periodic function y : R→ R with frequency ω > 0 we write

y(t) =
∑
k∈Z

ake
iωkt, (2.1)

where ak ∈ C. This transforms the delay equation (1.2) into

(iωk + αe−iωk)ak + α
∑

k1+k2=k

e−iωk1ak1ak2 = 0 for all k ∈ Z. (2.2)

In effect, the problem of finding periodic solutions to Wright’s equation can be refor-

mulated as finding a parameter α, a frequency ω, and a sequence {ak} for which (2.2)

is satisfied. In Section 2.1 we define an appropriate sequence space to work in, and

define a zero finding problem Fε(α, ω, c) = 0 equivalent to (2.2). The auxiliary variable

ε, which represents the dominant Fourier mode, corresponds to the rescaling y 7→ εy

canonical to the study of Hopf bifurcations.

In Section 2.2 we construct a Newton-like operator Tε whose fixed points correspond

to the zeros of Fε(α, ω, c). By applying a Newton-Kantorovich like theorem, we identify

explicit neighborhoods Bε wherein Tε : Bε → Bε is a uniform contraction mapping. By

the nature of our argument, we have the freedom to construct both large and small

balls Bε on which we may apply the Banach fixed point theorem. Using smaller balls

will produce tighter approximations of the periodic solutions, while using larger balls

will produce a larger region within which the periodic solution is unique.

These results are leveraged in Section 2.3 to derive global results such as the resolu-

tion of Conjecture 1.1.1, as well as Theorem 2.3.8 which shows that there do not exist

any subsequent bifurcations in the principal branch for π
2 < α ≤ π

2 +6.830×10−3. While

we prove in Proposition 2.2.15 that for 0 < ε ≤ 0.1 there is a locally unique (α̂ε, ω̂ε, ĉε)

which solves Fε(α̂ε, ω̂ε, ĉε) = 0, this is not sufficient. To show that the branch of periodic

solutions does not have any subsequent bifurcations, we prove that α̂ε is monotonically

increasing in ε. Since d
dε α̂ε ≈

2ε
5 (3π

2 −1), in order to have any hope of proving d
dε α̂ε > 0,

it is imperative that we derive an O(ε2) approximation of d
dε α̂ε, an approach we take

from the beginning of our analysis.

10

For the remainder of this section we systematically recast the Hopf bifurcation

problem in Fourier space. We introduce appropriate scalings, sequence spaces of Fourier

coefficients and convenient operators on these spaces. To study Equation (2.2) we

consider Fourier sequences {ak} and fix a Banach space in which these sequences reside.

It is indispensable for our analysis that this space have an algebraic structure. The

Wiener algebra of absolutely summable Fourier series is a natural candidate, which

we use with minor modifications. In numerical applications, weighted sequence spaces

with algebraic and geometric decay have been used to great effect to study periodic

solutions which are Ck and analytic, respectively [Les10,HLMJ16]. Although it follows

from Lemma 2.1.2 that the Fourier coefficients of any solution decay exponentially, we

choose to work in a space of less regularity. The reason is that by working in a space

with less regularity, we are better able to connect our results with the global estimates

in [BCKN14], see Theorem 2.3.11.

Remark 2.1.3. There is considerable redundancy in Equation (2.2). First, since we

are considering real-valued solutions y, we assume a−k is the complex conjugate of ak.

This symmetry implies it suffices to consider Equation (2.2) for k ≥ 0. Second, we may

effectively ignore the zeroth Fourier coefficient of any periodic solution [Jon62a], since

it is necessarily equal to 0. The self contained argument is as follows. As mentioned in

the introduction, any periodic solution to Wright’s equation must satisfy y(t) > −1 for

all t. By dividing Equation (1.2) by (1 + y(t)), which never vanishes, we obtain

d

dt
log(1 + y(t)) = −αy(t− 1).

Integrating over one period L we derive the condition 0 =
∫ L

0 y(t)dt. Hence a0 = 0 for

any periodic solution. It will be shown in Theorem 2.1.4 that a related argument implies

that we do not need to consider Equation (2.2) for k = 0.

We define the spaces of absolutely summable Fourier series

`1 :=

{ak}k≥1 :
∑
k≥1

|ak| <∞

 ,

`1bi :=

{
{ak}k∈Z :

∑
k∈Z
|ak| <∞

}
.

11

We identify any semi-infinite sequence {ak}k≥1 ∈ `1 with the bi-infinite sequence

{ak}k∈Z ∈ `1bi via the conventions (see Remark 2.1.3)

a0 = 0 and a−k = a∗k, (2.3)

where a∗k denotes the complex conjugate of ak. In other words, we identify `1 with the

set

`1sym :=
{
a ∈ `1bi : a0 = 0, a−k = a∗k

}
.

On `1 we introduce the norm

‖a‖ = ‖a‖`1 := 2

∞∑
k=1

|ak|. (2.4)

The factor 2 in this norm is chosen to have a Banach algebra estimate. Indeed, for

a, ã ∈ `1 ∼= `1sym we define the discrete convolution

[a ∗ ã]k =
∑

k1,k2∈Z
k1+k2=k

ak1 ãk2 .

Although [a ∗ ã]0 does not necessarily vanish, we have {a ∗ ã}k≥1 ∈ `1 and

‖a ∗ ã‖ ≤ ‖a‖ · ‖ã‖ for all a, ã ∈ `1,

hence `1 with norm (2.4) is a Banach algebra.

By Lemma 2.1.2 it is clear that any periodic solution of (1.2) has a well-defined

Fourier series a ∈ `1bi. The next theorem shows that in order to study periodic orbits

to Wright’s equation we only need to study Equation (2.2) for k ≥ 1. For convenience

we introduce the notation

G(α, ω, a)k = (iωk + αe−iωk)ak + α
∑

k1,k2∈Z
k1+k2=k

e−iωk1ak1ak2 for k ∈ N.

We note that we may interpret the trivial solution y(t) ≡ 0 as a periodic solution of

arbitrary period.

Theorem 2.1.4. Let α > 0 and ω > 0. If a ∈ `1 ∼= `1sym solves G(α, ω, a)k = 0 for all

k ≥ 1, then y(t) given by (2.1) is a periodic solution of (1.2) with period 2π/ω. Vice

versa, if y(t) is a periodic solution of (1.2) with period 2π/ω then its Fourier coefficients

a ∈ `1bi lie in `1sym
∼= `1 and solve G(α, ω, a)k = 0 for all k ≥ 1.

12

Proof. If y(t) is a periodic solution of (1.2) then it is real analytic by Lemma 2.1.2,

hence its Fourier series a is well-defined and a ∈ `1sym by Remark 2.1.3. Plugging the

Fourier series (2.1) into (1.2) one easily derives that a solves (2.2) for all k ≥ 1.

To prove the reverse implication, assume that a ∈ `1sym solves Equation (2.2) for all

k ≥ 1. Since a−k = a∗k, Equation (2.2) is also satisfied for all k ≤ −1. It follows from

the Banach algebra property and (2.2) that {kak}k∈Z ∈ `1bi. Hence y, given by (2.1), is

continuously differentiable and 2π/ω-periodic. Since (2.2) is satisfied for all k ∈ Z \ {0}

(but not necessarily for k = 0) one may perform the inverse Fourier transform on (2.2)

to conclude that y satisfies the delay equation

y′(t) = −αy(t− 1)[1 + y(t)] + C (2.5)

for some constant C ∈ R. Finally, to prove that C = 0 we argue by contradiction.

Suppose C 6= 0. Then y(t) 6= −1 for all t. Namely, at any point where y(t0) = −1 one

would have y′(t0) = C which has fixed sign, hence it would follow that y is not periodic

(y would not be able to cross −1 in the opposite direction, preventing y from being

periodic). We may thus divide (2.5) through by 1 + y(t) and obtain

d

dt
log |1 + y(t)| = −αy(t− 1) +

C

1 + y(t)
.

By integrating both sides of the equation over one period L and by using that a0 = 0,

we obtain

C

∫ L

0

1

1 + y(t)
dt = 0.

Since the integrand is either strictly negative or strictly positive, this implies that C = 0.

Hence (2.5) reduces to (1.2), and y satisfies Wright’s equation.

To efficiently study Equation (2.2), we introduce the following linear operators on

`1:

[Ka]k := k−1ak,

[Uωa]k := e−ikωak. (2.6)

The map K is a compact operator, and it has a densely defined inverse K−1. The

domain of K−1 is denoted by

`K := {a ∈ `1 : K−1a ∈ `1}.

13

The map Uω is a unitary operator, but it is discontinuous in ω. Furthermore, we note

that (2.6) also defines Uω as a linear operator on `1bi, and since [Uωa]∗k = [Uωa]−k if

a∗k = a−k this is compatible with the earlier identification of `1 as a subspace of `1bi

through (2.3). With this notation, Theorem 2.1.4 implies that our problem of finding

a SOPS to (1.2) is equivalent to finding an a ∈ `1 such that

G(α, ω, a) :=
(
iωK−1 + αUω

)
a+ α [Uω a] ∗ a = 0. (2.7)

In the convolution product both a and Uωa are interpreted as elements of `1bi.

Periodic solutions are invariant under time translation: if y(t) solves Wright’s equa-

tion, then so does y(t + τ) for any τ ∈ R. We remove this degeneracy by adding a

phase condition. For a periodic function y(t) as given in (2.1), the Fourier coefficients

of y(t + τ) are given as {akeiωkτ}k∈Z. Hence, without loss of generality, if a ∈ `1

solves Equation (2.7) for nonvanishing ω, we may assume that a1 = ε for some real

non-negative ε:

`1ε := {a ∈ `1 : a1 = ε} where ε ∈ R, ε ≥ 0.

In the rest of our analysis, we will split elements a ∈ `1 into two parts: a1 and {ak}k≥2.

We define the basis elements ej ∈ `1 for j = 1, 2, . . . as

[ej]k =


1 if k = j,

0 if k 6= j.

We note that ‖ej‖ = 2. Then we can decompose any a ∈ `1ε uniquely as

a = εe1 + c̃ with c̃ ∈ `10 := {c̃ ∈ `1 : c̃1 = 0}. (2.8)

We follow the classical approach in studying Hopf bifurcations and consider a1 = ε to

be a parameter, and then find periodic solutions with Fourier modes in `1ε . We thus

substitute (2.8) into (2.7) and replace the function G : R2 × `K → `1 by a function

F̃ε : R2 × `K0 → `1, where we denote

`K0 := `10 ∩ `K .

14

Definition 2.1.5. We define the ε-parameterized family of functions F̃ε : R2× `K0 → `1

by

F̃ε(α, ω, c̃) := ε[iω+αe−iω]e1 +(iωK−1 +αUω)c̃+ε2αe−iωe2 +αεLω c̃+α[Uω c̃]∗ c̃, (2.9)

where Lω : `10 → `1 is given by

Lω := σ+(e−iωI + Uω) + σ−(eiωI + Uω),

with I the identity and σ± the shift operators on `1:

[
σ−a

]
k

:= ak+1,[
σ+a

]
k

:= ak−1 with the convention a0 = 0.

The operator Lω is discontinuous in ω and ‖Lω‖ ≤ 4.

We reformulate Theorem 2.1.4 in terms of the map F̃ . We note that it follows from

Lemma 2.1.2 and Equation (2.2) that the Fourier coefficients of any periodic solution

of (1.2) lie in `K . These observations are summarized in the following theorem.

Theorem 2.1.6. Let ε ≥ 0, c̃ ∈ `K0 , α > 0 and ω > 0. Define y : R→ R as

y(t) = ε
(
eiωt + e−iωt

)
+

∞∑
k=2

c̃ke
iωkt + c̃∗ke

−iωkt. (2.10)

Then y(t) solves (1.2) if and only if F̃ε(α, ω, c̃) = 0. Furthermore, up to time translation,

any periodic solution of (1.2) with period 2π/ω is described by a Fourier series of the

form (2.10) with ε ≥ 0 and c̃ ∈ `K0 .

Since we want to analyze a Hopf bifurcation, we will want to solve F̃ε = 0 for small

values of ε. However, at the bifurcation point, DF̃0(π2 ,
π
2 , 0) is not invertible. In order

for our asymptotic analysis to be non-degenerate, we work with a rescaled version of

the problem. To this end, for any ε > 0, we rescale both c̃ and F̃ as follows. Let c̃ = εc

and

F̃ε(α, ω, εc) = εFε(α, ω, c). (2.11)

For ε > 0 the problem then reduces to finding zeros of

Fε(α, ω, c) := [iω+αe−iω]e1 +(iωK−1 +αUω)c+εαe−iωe2 +αεLωc+αε[Uωc]∗c. (2.12)

15

We denote the triple (α, ω, c) ∈ R2 × `10 by x. To pinpoint the components of x we use

the projection operators

παx = α, πωx = ω, πcx = c for any x = (α, ω, c).

After the change of variables (2.11) we now have an invertible Jacobian DF0(π2 ,
π
2 , 0)

at the bifurcation point. On the other hand, for ε = 0 the zero finding problems for

F̃ε and Fε are not equivalent. However, it follows from the following lemma that any

nontrivial periodic solution having ε = 0 must have a relatively large size when α and

ω are close to the bifurcation point.

Lemma 2.1.7. Fix ε ≥ 0 and α, ω > 0. Let

b∗ :=
ω

α
− 1

2
− ε
(

2

3
+

1

2

√
2 + 2|ω − π

2 |
)
.

Assume that b∗ >
√

2ε. Define

z±∗ := b∗ ±
√

(b∗)2 − 2ε2. (2.13)

If there exists a c̃ ∈ `10 such that F̃ε(α, ω, c̃) = 0, then both:

(a) either ‖c̃‖ ≤ z−∗ or ‖c̃‖ ≥ z+
∗ .

(b) ‖K−1c̃‖ ≤ (2ε2 + ‖c̃‖2)/b∗.

Proof. The proof follows from Lemmas 3.5.3 and 3.5.4 in Section 3.5, combined with

the observation that ω
α − γ ≥ b∗, with γ as defined in Lemma 3.5.3.

Remark 2.1.8. We note that for α < 2ω and for small ε, then:

z+
∗ ≥

2ω − α
α

− ε
(

4/3 +
√

2 + 2|ω − π
2 |
)

+O(ε2),

z−∗ ≤ O(ε2).

Hence Lemma 2.1.7 implies that for values of (α, ω) near (π2 ,
π
2) any solution has either

‖c̃‖ of order 1 or ‖c̃‖ = O(ε2). The asymptotically small term bounding z−∗ is explic-

itly calculated in Lemma 3.5.5. A related consequence is that for ε = 0 there are no

nontrivial solutions of F̃0(α, ω, c̃) = 0 with ‖c̃‖ < 2ω−α
α .

16

Remark 2.1.9. In Section 2.2.2 we will work on subsets of `K0 of the form

`ρ := {c ∈ `K0 : ‖K−1c‖ ≤ ρ}.

Part (b) of Lemma 2.1.7 will be used in Section 2.3 to guarantee that we are not missing

any solutions by considering `ρ (for some specific choice of ρ) rather than the full space

`K0 . In particular, we infer from Remark 2.1.8 that small solutions (meaning roughly

that ‖c̃‖ → 0 as ε→ 0) satisfy ‖K−1c̃‖ = O(ε2).

The following theorem guarantees that near the bifurcation point the problem of

finding all periodic solutions is equivalent to considering the rescaled problem Fε(α, ω, c) =

0.

Theorem 2.1.10. (a) Let ε > 0, c ∈ `K0 , α > 0 and ω > 0. Define y : R→ R as

y(t) = ε
(
eiωt + e−iωt

)
+ ε

∞∑
k=2

cke
iωkt + c∗ke

−iωkt. (2.14)

Then y(t) solves (1.2) if and only if Fε(α, ω, c) = 0.

(b) Let y(t) 6≡ 0 be a periodic solution of (1.2) of period 2π/ω with Fourier coefficients

a. Suppose α < 2ω and ‖a‖ < 2ω−α
α . Then, up to time translation, y(t) is described by

a Fourier series of the form (2.14) with ε > 0 and c ∈ `K0 .

Proof. Part (a) follows directly from Theorem 2.1.6 and the change of variables (2.11).

To prove part (b) we need to exclude the possibility that there is a nontrivial solution

with ε = 0. The asserted bound on the ratio of α and ω guarantees, by Lemma 2.1.7

(see also Remark 2.1.8), that indeed ε > 0 for any nontrivial solution.

We note that in practice (see Section 2.3) a bound on ‖a‖ is derived from a bound

on y or y′ using Parseval’s identity.

Remark 2.1.11. It follows from Theorem 2.1.10 and Remark 2.1.8 that for values

of (α, ω) near (π2 ,
π
2) any reasonably bounded solution satisfies ‖c‖ = O(ε) as well as

‖K−1c‖ = O(ε) asymptotically (as ε → 0). These bounds will be made explicit (and

non-asymptotic) for specific choices of the parameters in Section 2.3.

17

We finish this section by defining a curve of approximate zeros x̄ε of Fε (see [CMP77,

HKW81]).

Definition 2.1.12. Let

ᾱε := π
2 + ε2

5 (3π
2 − 1)

ω̄ε := π
2 −

ε2

5

c̄ε :=
(

2−i
5

)
ε e2 .

We define the approximate solution x̄ε := (ᾱε, ω̄ε, c̄ε) for all ε ≥ 0.

We leave it to the reader to verify that both Fε(
π
2 ,

π
2 , c̄ε) = O(ε2) and Fε(x̄ε) = O(ε2).

We choose to use the more accurate approximation for the α and ω components to

improve our final quantitative results.

2.2 Local results

2.2.1 Constructing a Newton-like operator

In this section and in the appendices we often suppress the subscript in F = Fε. We will

find solutions to the equation F (α, ω, c) = 0 by constructing a Newton-like operator T

such that fixed points of T corresponds precisely to zeros of F . In order to construct

the map T we need an operator A† which is an approximate inverse of DF (x̄ε). We will

use an approximation A of DF (x̄ε) that is linear in ε and correct up to O(ε2). Likewise,

we define A† to be linear in ε (and again correct up to O(ε2)).

It will be convenient to use the usual identification iC : R2 → C given by iC(x, y) =

x+ iy. We also use ω0 := π/2.

Definition 2.2.1. We introduce the linear maps A : R2×`K0 → `1 and A† : `1 → R2×`K0

by

A := A0 + εA1 ,

A† := A−1
0 − εA

−1
0 A1A

−1
0 ,

18

where the linear maps A0, A1 : R2 × `K0 → `1 are defined below. Writing x = (α, ω, c),

we set

A0x = A0(α, ω, c) := iCA0,1

α
ω

 e1 +A0,∗c,

A1x = A1(α, ω, c) := iCA1,2

α
ω

 e2 +A1,∗c.

Here the matrices A0,1 and A1,2 are given by

A0,1 :=

 0 −π
2

−1 1

 and A1,2 :=
1

5

−2 2− 3π
2

−4 2(2 + π)

 , (2.15)

and the linear maps A0,∗ : `K0 → `10 and A1,∗ : `K0 → `1 are given by

A0,∗ := π
2 (iK−1 + Uω0) and A1,∗ := π

2Lω0 .

Since K and Uω0 both act as diagonal operators, the inverse A−1
0,∗ : `10 → `K0 of A0,∗

is given by

(A−1
0,∗a)k =

2

π

ak
ik + e−ikω0

for all k ≥ 2.

An explicit computation, which we leave to the reader, shows that these approximations

are indeed correct up toO(ε2). In particular, A† = [DF (x̄ε)]
−1+O(ε2). In Appendix 3.1

several additional properties of these operators are derived. The most important one

is the following.

Proposition 2.2.2. For 0 ≤ ε <
√

10
4 ≈ 0.790 the operator A† is injective.

Proof. In order to show that A† is injective we show that it has a left inverse. Note

that AA† = I − ε2(A1A
−1
0)2. By Proposition 3.1.2 it follows that ‖A1A

−1
0 ‖ ≤

2
√

10
5 . By

choosing ε <
√

10
4 we obtain ‖ε2(A1A

−1
0)2‖ < 1, whereby AA† is invertible, and so A† is

injective.

Definition 2.2.3. We define the operator T : R2 × `K0 → R2 × `K0 by

T (x) := x−A†F (x),

where F is defined in Equation (2.12) and A† in Definition 2.2.1. We note that F , A†

and T depend on the parameter ε ≥ 0, although we suppress this in the notation.

19

2.2.2 Explicit contraction bounds

The map T is not continuous on all of R2 × `K0 , since Uωc is not continuous in ω.

While continuity is “recovered” for terms of the form A†Uωc, this is not the case for

the nonlinear part −αεA†[Uωc] ∗ c. We overcome this difficulty by fixing some ρ > 0

and restricting the domain of T to sets of the form

R2 × {c ∈ `K0 : ‖K−1c‖ ≤ ρ} = R2 × `ρ.

Since we wish to center the domain of T about the approximate solution x̄ε, we intro-

duce the following definition, which uses a triple of radii r ∈ R3
+, for which it will be

convenient to use two different notations:

r = (rα, rω, rc) = (r1, r2, r3).

Definition 2.2.4. Fix r ∈ R3
+ and ρ > 0 and let x̄ε = (ᾱε, ω̄ε, c̄ε) be as defined in

Definition 2.1.12. We define the ρ-ball Bε(r, ρ) ⊂ R2 × `10 of radius r centered at x̄ε to

be the set of points satisfying

|α− ᾱε| ≤ rα

|ω − ω̄ε| ≤ rω

‖c− c̄ε‖ ≤ rc

‖K−1c‖ ≤ ρ.

We want to show that T is a contraction map on some ρ-ball Bε(r, ρ) ⊂ R2 × `10

using a Newton-Kantorovich argument. This will require us to develop a bound on DT

using some norm on R2 × `10. Unfortunately there is no natural choice of norm on the

product space X := R2 × `10. Furthermore, it will not become apparent if one norm is

better than another until after significant calculation. For this reason, we use a notion

of an “upper bound” which allows us to delay our choice of norm. We first introduce

the operator ζ : X → R3
+ which consists of the norms of the three components:

ζ(x) := (|παx|, |πωx|, ‖πcx‖)T ∈ R3
+ for any x ∈ X.

20

Definition 2.2.5 (upper bound). We call x ∈ R3
+ an upper bound on x if ζ(x) ≤ x,

where the inequality is interpreted componentwise in R3. Let X ′ be a subspace of X and

let X ′′ be a subset of X ′. An upper bound on a linear operator A′ : X ′ → X over X ′′ is

a 3× 3 matrix A′ ∈ Mat(R3,R3) such that

ζ(A′x) ≤ A′ · ζ(x) for any x ∈ X ′′,

where the inequality is again interpreted componentwise in R3. The notion of upper

bound conveniently encapsulates bounds on the different components of the operator A′

on the product space X. Clearly the components of the matrix A′ are nonnegative.

For example, in Proposition 3.1.3 we calculate an upper bound on the map A−1
0 A1.

As for the domain of definition of T , in practice we use X ′ = R2 × `K0 and X ′′ =

R2 × `ρ. The subset X ′′ does not always affect the upper bound calculation (such as

in Proposition 3.1.3). However, operators such as Uω − Uω0 have upper bounds which

contain ρ-terms (see for example Proposition 3.2.3).

Using this terminology, we state a “radii polynomial” theorem, which allows us to

check whether T is a contraction map. This technique has been used frequently in

a computer-assisted setting in the past decade. Early application include [DLM07,

vdBL08], while a previous implementation in the context of Wright’s delay equation

can be found in [Les10]. Although we use radii polynomials as well, our approach

differs significantly from the computer-assisted setting mentioned above. While we do

engage a computer (namely the Mathematica file [vdBJ]) to optimize our quantitative

results, the analysis is performed essentially in terms of pencil-and-paper mathematics

(in particular, our operators do not involve any floating point numbers). In our current

setup we employ three radii as a priori unknown variables, which builds on an idea

introduced in [vdB16]. We note that in most of the papers mentioned above the notation

of A and A† is reversed compared to the current paper.

As preparation, the following lemma (of which the proof can be found in Ap-

pendix 3.2) provides an explicit choice for ρ, as a function of ε and r, for which we

have proper control on the image of Bε(r, ρ) under T .

21

Lemma 2.2.6. For any ε ≥ 0 and r ∈ R3
+, let C = C(ε, r) be given by Equation (3.11).

If C(ε, r) > 0 then

‖K−1πcT (x)‖ ≤ ρ whenever x ∈ Bε(r, ρ) and ρ ≥ C(ε, r). (2.16)

Moreover, C(ε, r) is nondecreasing in ε and r.

Proof. See Proposition 3.2.4.

Theorem 2.2.7. Let 0 ≤ ε <
√

10
4 and fix r = (rα, rω, rc) ∈ R3

+. Fix ρ > 0 such

that ρ ≥ C(ε, r), as given by Lemma 2.2.6. Suppose that Y (ε) is an upper bound on

T (x̄ε)− x̄ε and Z(ε, r, ρ) a (uniform) upper bound on DT (x) for all x ∈ Bε(r, ρ). Define

the radii polynomials P : R5
+ → R3 by

P (ε, r, ρ) := Y (ε)− [I − Z(ε, r, ρ)] · r . (2.17)

If each component of P (ε, r, ρ) is negative, then there is a unique x̂ε ∈ Bε(r, ρ) such that

F (x̂ε) = 0.

Proof. Let r ∈ R3
+ be a triple such that P (ε, r, ρ) < 0. By Proposition 2.2.2, if ε <

√
10
4

then A† is injective. Hence x̂ε is a fixed point of T if and only if F (x̂ε) = 0. In order

to show there is a unique fixed point x̂ε, we show that T maps Bε(r, ρ) into itself and

that T is a contraction mapping.

We first show that T : Bε(r, ρ)→ Bε(r, ρ). Since ρ ≥ C(ε, r) then by Equation (2.16)

it follows that ‖K−1πcT (x)‖ ≤ ρ for all x ∈ Bε(r, ρ). In order to show that T (x) ∈

Bε(r, ρ), it suffices to show that r = (rα, rω, rc) is an upper bound on T (x)− x̄ε for all

x ∈ Bε(r, ρ). We decompose

T (x)− x̄ε = [T (x̄ε)− x̄ε] + [T (x)− T (x̄ε)], (2.18)

and estimate each part separately. Concerning the first term, by assumption, Y (ε) is

an upper bound on T (x̄ε)− x̄ε. Concerning the second term, we claim that Z(ε, r, ρ) · r

is an upper bound on T (x)− T (x̄ε). Indeed, we have the following somewhat stronger

bound:

ζ(T (y)− T (x)) ≤ Z(ε, r, ρ) · ζ(y − x) for all x, y ∈ Bε(r, ρ). (2.19)

22

The latter follows from the mean value theorem, since T is continuously Fréchet dif-

ferentiable on Bε(r, ρ). Since r is an upper bound on x − x̄ε for all x ∈ Bε(r, ρ), we

find, by using (2.18), that Y (ε) + Z(ε, r, ρ) · r ≤ r (with the inequality, interpreted

componentwise, following from P (ε, r, ρ) < 0) is an upper bound on T (x) − x̄ε for all

x ∈ Bε(r, ρ). That is to say, if all of the radii polynomials are negative, then T maps

Bε(r, ρ) into itself.

To finish the proof, we show that T is a contraction mapping. We abbreviate

Z = Z(ε, r, ρ) and recall that r = (rα, rω, rc) = (r1, r2, r3) ∈ R3
+ is such that Z · r < r,

hence for some κ < 1 we have

(Z · r)i
ri

≤ κ for i = 1, 2, 3. (2.20)

We now need to choose a norm on X. We define a norm ‖ · ‖r on elements x =

(α, ω, c) ∈ X by

‖(α, ω, c)‖r := max

{
|α|
rα
,
|ω|
rω
,
‖c‖
rc

}
,

or

‖x‖r = max
i=1,2,3

ζ(x)i
ri

for all x ∈ X.

By using the upper bound Z, we bound the Lipschitz constant of T on Bε(r, ρ) as

follows:

‖T (y)− T (x)‖r = max
i=1,2,3

ζ(T (y)− T (x))i
ri

≤ max
i=1,2,3

(Z · ζ(y − x))i
ri

≤ max
i=1,2,3

max
j=1,2,3

ζ(y − x)j
rj

(Z · r)i
ri

= ‖y − x‖r max
i=1,2,3

(Z · r)i
ri

≤ κ‖y − x‖r,

where we have used (2.19) and (2.20) with κ < 1. Hence T : Bε(r, ρ) → Bε(r, ρ) is a

contraction with respect to the ‖ · ‖r norm.

Since Bε(r, ρ) with this norm is a complete metric space, by the Banach fixed point

theorem T has a unique fixed point x̂ε ∈ Bε(r, ρ). Since A† is injective, it follows that

x̂ε is the unique point in Bε(r, ρ) for which F (x̂ε) = 0.

23

Remark 2.2.8. Under the assumptions in Theorem 2.2.7, essentially the same calcu-

lation as in the proof above leads to the estimate

‖DT (x)y‖r ≤ κ‖y‖r for all y ∈ R2 × `K0 , x ∈ Bε(r, ρ),

where κ := maxi=1,2,3(Z · r)i/ri.

In Appendix 3.3 and Appendix 3.4 we construct explicit upper bounds Y (ε) and

Z(ε, r, ρ), respectively. These functions are constructed such that their components are

(multivariate) polynomials in ε, r and ρ with nonnegative coefficients, hence they are

increasing in these variables. This construction enables us to make use of the uniform

contraction principle.

Corollary 2.2.9. Let 0 < ε0 <
√

10
4 and fix some r = (rα, rω, rc) ∈ R3

+. Fix ρ > 0

such that ρ ≥ C(ε0, r), as given by Lemma 2.2.6. Let Y (ε) and Z(ε, r, ρ) be the upper

bounds as given in Propositions 3.3.2 and 3.4.1. Let the radii polynomials P be defined

by Equation (2.17).

If each component of P (ε0, r, ρ) is negative, then for all 0 ≤ ε ≤ ε0 there exists a

unique x̂ε ∈ Bε(r, ρ) such that F (x̂ε) = 0. The solution x̂ε depends smoothly on ε.

Proof. Let 0 ≤ ε ≤ ε0 be arbitrary. Because ρ ≥ C(ε0, r) ≥ C(ε, r) by Lemma 2.2.6,

Theorem 2.2.7 implies that it suffices to show that P (ε, r, ρ) < 0. Since the bounds

Y (ε) and Z(ε, r, ρ) are monotonically increasing in their arguments, it follows that

P (ε, r, ρ) ≤ P (ε0, r, ρ) < 0. Continuous and smooth dependence on ε of the fixed point

follows from the uniform contraction principle (see for example [CH82]).

Given the upper bounds Y (ε) and Z(ε, r, ρ), trying to apply Corollary 2.2.9 amounts

to finding values of ε, rα, rω, rc, ρ for which the radii polynomials are negative. Selecting

a value for ρ is straightforward: all estimates improve with smaller values of ρ, and

Proposition 3.2.4 (see also Lemma 2.2.6) explicitly describes the smallest allowable

choice of ρ in terms of ε, rα, rω, rc.

Beyond selecting a value for ρ, it is difficult to pinpoint what constitutes an “opti-

mal” choice of these variables. In general it is interesting to find such viable radii (i.e.

24

radii such that P (r) < 0) which are both large and small. The smaller radius tells us

how close the true solution is to our approximate solution. The larger radius tells us in

how large a neighborhood our solution is unique. With regard to ε, larger values allow

us to describe functions whose first Fourier mode is large. However this will “grow” the

smallest viable radius and “shrink” the largest viable radius.

Proposition 2.2.10 presents two selections of variables which satisfy the hypothesis of

Corollary 2.2.9. We check the hypothesis is indeed satisfied by using interval arithmetic.

All details are provided in the Mathematica file [vdBJ]. While the specific numbers used

may appear to be somewhat arbitrary (see also the discussion in Remark 2.2.11) they

have been chosen to be used later in Theorem 2.3.7 and Theorem 2.3.10.

Proposition 2.2.10. Fix the constants ε0, (rα, rω, rc) and ρ according to one of the

following choices:

(a) ε0 = 0.029 and (rα, rω, rc) = (0.13, 0.17, 0.17) and ρ = 1.78;

(b) ε0 = 0.09 and (rα, rω, rc) = (0.1753, 0.0941, 0.3829) and ρ = 1.5940.

For either of the choices (a) and (b) we have the following: for all 0 ≤ ε ≤ ε0 there

exists a unique point (α̂ε, ω̂ε, ĉε) ∈ Bε(r, ρ) satisfying Fε(α̂ε, ω̂ε, ĉε) = 0 and

|α̂ε − ᾱε| ≤ rα, |ω̂ε − ω̄ε| ≤ rω, ‖ĉε − c̄ε‖ ≤ rc, ‖K−1ĉε‖ ≤ ρ.

Proof. In the Mathematica file [vdBJ] we check, using interval arithmetic, that ρ ≥

C(ε0, r) and the radii polynomials P (ε0, r, ρ) are negative for the choices (a) and (b).

The result then follows from Corollary 2.2.9.

Remark 2.2.11. In Proposition 2.2.10 we aimed for large balls on which the solution is

unique. Even for a fixed value of ε, it is not immediately obvious how to find a “largest”

viable radius r, since r has three components. In particular, there is a trade-off between

the different components of r. On the other hand, as explained in Remark 2.2.14, no

such difficulty arises when looking for a “smallest” viable radius.

We will also need a rescaled version of the radii polynomials, which takes into

account the asymptotic behavior of the bound Y on the residue T (x̄ε)− x̄ε = −A†F (x̄ε)

25

as ε → 0, namely it is of the form Y (ε) = ε2Ỹ (ε), see Proposition 3.3.2. The proofs of

the following monotonicity properties can be found in Appendices 3.3 and 3.4.

Lemma 2.2.12. Let ε ≥ 0, ρ > 0 and r ∈ R3
+. Then there are upper bounds Y (ε) =

ε2Ỹ (ε) on T (x̄ε) − x̄ε and a (uniform) upper bound Z(ε, r, ρ) on DT (x) for all x ∈

Bε(r, ρ). These bounds are given explicitly by Propositions 3.3.2 and 3.4.1, respectively.

Moreover, Ỹ (ε) is nondecreasing in ε, while Z(ε, r, ρ) is nondecreasing in ε, r and ρ.

This implies, roughly speaking, that if we are able to show that T is a contraction

map on Bε0(ε20ř, ρ) for a particular choice of ε0, then it will be a contraction map on

Bε(ε
2ř, ρ) for all 0 ≤ ε ≤ ε0. Here, and in what follows, we use the notation r = ε2ř for

the ε-scaled version of the radii.

Corollary 2.2.13. Let 0 < ε0 <
√

10
4 and fix some ř = (řα, řω, řc) ∈ R3

+. Fix ρ > 0

such that ρ ≥ C(ε0, ε
2
0ř), as given by Lemma 2.2.6. Let Y (ε) and Z(ε, r, ρ) be the upper

bounds as given by Lemma 2.2.12. Let the radii polynomials P be defined by (2.17).

If each component of P (ε0, ε
2
0ř, ρ) is negative, then for all 0 ≤ ε ≤ ε0 there exists a

unique x̂ε ∈ Bε(ε2ř, ρ) such that F (x̂ε) = 0. Furthermore, x̂ε depends smoothly on ε.

Proof. Let 0 ≤ ε < ε0 be arbitrary. Because ρ ≥ C(ε0, ε
2
0ř) ≥ C(ε, ε2ř) by Lemma 2.2.6,

Theorem 2.2.7 implies that it suffices to show that P (ε, ε2ř, ρ) < 0. By using the

monotonicity provided by Lemma 2.2.12, we obtain

P (ε, ε2ř, ρ) = Y (ε)−
[
I − Z(ε, ε2ř, ρ)

]
· ε2ř

= (ε/ε0)2
[
ε20Ỹ (ε)− ε20ř + Z(ε, ε2ř, ρ) · ε20ř

]
≤ (ε/ε0)2

[
ε20Ỹ (ε0)− ε20ř + Z(ε0, ε

2
0ř, ρ) · ε20ř

]
= (ε/ε0)2P (ε0, ε

2
0ř, ρ)

< 0,

where inequalities are interpreted componentwise in R3, as usual.

These ε-rescaled variables are used in Proposition 2.2.15 below to derive tight bounds

on the solution (in particular, tight enough to conclude that the bifurcation is super-

critical). The following remark explains that the monotonicity properties of the bounds

26

Y and Z imply that looking for small(est) radii which satisfy P (r) < 0, is a well-defined

problem.

Remark 2.2.14. The set R of radii for which the radii polynomials are negative is

given by

R := {r ∈ R3
+ : rj > 0, Pi(r) < 0 for i, j = 1, 2, 3}.

This set has the property that if r, r′ ∈ R, then r′′ ∈ R, where r′′j = min{rj , r′j}. Namely,

the main observation is that we can write Pi(r) = P̃i(r) − ri, where ∂rj P̃i ≥ 0 for all

i, j = 1, 2, 3. Now fix any i; we want to show that Pi(r
′′) < 0. We have either r′′i = ri

or r′′i = r′i, hence assume r′′i = ri (otherwise just exchange the roles of r and r′). We

infer that Pi(r
′′) ≤ Pi(r) < 0, since ∂rjPi ≥ 0 for j 6= i. We conclude that there are no

trade-offs in looking for minimal/tight radii, as opposed to looking for large radii, see

Remark 2.2.11.

Proposition 2.2.15. Fix ε0 = 0.10 and (řα, řω, řc) = (0.0594, 0.0260, 0.4929) and

ρ = 0.3191. For all 0 < ε ≤ ε0 there exists a unique point x̂ε = (α̂ε, ω̂ε, ĉε) satisfying

F (x̂ε) = 0 and

|α̂ε − ᾱε| <řαε2, |ω̂ε − ω̄ε| <řωε2, ‖ĉε − c̄ε‖ <řcε2, ‖K−1ĉε‖ <ρ. (2.21)

Furthermore, α̂ε >
π
2 for 0 < ε < ε0.

Proof. In the Mathematica file [vdBJ] we check, using interval arithmetic, that ρ ≥

C(ε0, ε
2
0ř) and the radii polynomials P (ε0, ε

2
0ř, ρ) are negative. The inequalities in Equa-

tion (2.21) follow from Corollary 2.2.13. Since α̂ε ≥ ᾱε− řαε2 = π
2 + 1

5(3π
2 − 1)ε2− řαε2

and řα <
1
5(3π

2 − 1), it follows that α̂ε >
π
2 for all 0 < ε ≤ ε0.

Remark 2.2.16. Since ε20ř < r for the choices (a) and (b) in Proposition 2.2.10, and

the choices of ρ and ε0 are compatible as well, the solutions found in Proposition 2.2.10

are the same as those described by Proposition 2.2.15. While the former proposition

provides large isolation/uniqueness neighborhoods for the solutions, the latter provides

tight bounds and confirms the supercriticality of the bifurcation suggested in Definition

2.1.12.

27

2.3 Global results

When deriving global results from the local results in Section 2.2, we need to take

into account that there are some obvious reasons why the branch of periodic solutions,

described by Fε(α, ω, c) = 0, bifurcating from the Hopf bifurcation point at (α, ω) =

(π2 ,
π
2) does not describe the entire set of periodic solutions for α near π

2 . First, there

is the trivial solution. In particular, one needs to quantify in what sense the trivial

solution is an isolated invariant set. This is taken care of by Remarks 2.1.8 and 2.1.11,

which show there are no “spurious” small solutions in the parameter regime of interest

to us (roughly as long as we stay away from the next Hopf bifurcation at α = 5π
2).

Second, one can interpret any periodic solution with frequency ω as a periodic solution

with frequency ω/N as well, for any N ∈ N. Since we are working in Fourier space,

showing that there are no “spurious” solutions with lower frequency would require us to

perform an analysis near (α, ω) = (π2 ,
π

2N) for all N ≥ 2. This obstacle can be avoided

by bounding (from below) ω away from π/4. This is done in Lemma 2.3.4.

For later use, we recall an elementary Fourier analysis bound.

Lemma 2.3.1. Let y ∈ C1 be a periodic function of period 2π/ω with Fourier coeffi-

cients a ∈ `1sym (in particular this means a0 = 0), as described by (2.1). Then

‖a‖ ≤
√

π

6ω
‖y′‖L2([0,2π/ω]) and ‖a‖ ≤ π

ω
√

3
‖y′‖∞.

Proof. From the Cauchy-Schwarz inequality and Parseval’s identity it follows that

‖a‖ = 2
∞∑
k=1

|ak| ≤ 2

(∞∑
k=1

k−2

)1/2(∞∑
k=1

|k ak|2
)1/2

=

√
2

ω

(
π2

6

)1/2
(

2

∞∑
k=1

|iωk ak|2
)1/2

=
π

ω
√

3

(∑
k∈Z
|iωk ak|2

)1/2

=
π

ω
√

3

(
ω

2π

∫ 2π/ω

0
|y′(t)|2dt

)1/2

≤ π

ω
√

3
‖y′‖∞.

28

2.3.1 A proof of Wright’s conjecture

Based on the work in [BCKN14] and [Wri55], in order to prove Wright’s conjecture

it suffices to prove that there are no slowly oscillating periodic solutions (SOPS) to

Wright’s equation for α ∈ [1.5706, π2]. Moreover, in [BCKN14] it was shown that no

SOPS with ‖y‖∞ ≥ e0.04 − 1 exists for α ∈ [1.5706, π2]. These results are summarized

in the following proposition.

Proposition 2.3.2 ([BCKN14,Wri55]). Assume y is a SOPS to Wright’s equation for

some α ≤ π
2 . Then α ∈ [1.5706, π2] and ‖y‖∞ ≤ e0.04 − 1.

For convenience we introduce

µ := e0.04 − 1 ≈ 0.0408.

We now derive a lower bound on the frequency ω of the SOPS, part of which is later

used in Lemma 4.3.4.

Lemma 2.3.3. Assume α > 1 and y is a SOPS to (1.2). Then q, as given in Definition

1.1.2, satisfies q < 2 + 1
α .

Proof. Without loss of generality, assume that y(0) = 0 and y(t) > 0 for t ∈ (0, q). To

obtain an upper bound on q, assume that q ≥ 2. Set q′ = min{q, 3}. Then it follows

from (1.2) that y′(t) < 0 for t ∈ (1, q′], hence y(t − 1) > y(2) for t ∈ [2, q′]. We infer

that for t ∈ [2, q′] we have y′(t) = −αy(t − 1)[1 + y(t)] < −αy(2). Solving the IVP

y′(t) < −αy(2) with the initial condition y(2) = y(2), we see that y(t) hits 0 before

t = 2 + 1
α . Since α > 1 (hence 2 + 1

α < 3), this implies that q′ = q and q < 2 + 1
α .

Lemma 2.3.4. Let α ∈ [1.5706, π2]. Assume y is a SOPS to Wright’s equation with

minimal period 2π/ω, and assume that ‖y‖∞ ≤ µ. Then ω ∈ [1.11, 1.93].

Proof. Without loss of generality, we assume in this proof that y(0) = 0, that y(t) < 0

for t ∈ (−q̄, 0) and that y(t) > 0 for t ∈ (0, q). We will show that q̄ and q are bounded

29

by

1 +
1

α

log(1 + µ)

µ
< q < 2 +

1

α
,

1 +
1

α
< q̄ < 3.

The upper bound on q follows from Lemma 2.3.3. The lower bounds for both q̄ and

q follow directly from [Jon62b, Theorem 3.5]. While [Jon62b, Theorem 3.5] assumes

α ≥ π
2 , this part of the theorem simply relies on [Jon62b, Lemma 2.1], which only

requires α > e−1.

To obtain the upper bound on q̄, assume for the sake of contradiction that q̄ ≥ 3.

Then it follows from (1.2) that y′(t) ≥ 0 for t ∈ [−2, 0]. Hence y(t) ≤ y(−1) for

t ∈ [−2,−1], and y′(t) ≥ −αy(−1)[1 + y(t)] for t ∈ [−1, 0]. Solving this IVP with the

initial condition y(−1) = −ν, we obtain y(t) ≥ (1 − ν)eαν(t+1) − 1 for t ∈ [−1, 0], and

in particular y(0) ≥ (1− ν)e−αν −1. By assumption y(0) = 0 and ν = |y(−1)| ≤ µ, but

(1− ν)e−αν − 1 > 0 for ν ∈ (0, µ] and α ∈ [1.5706, π2], a contradiction. Thereby q̄ < 3.

The bound on α implies that the minimal period L = q+ q̄ of the SOPS must lie in

[3.26, 5.64]. It then follows that ω ∈ [1.11, 1.93]

It turns out that this bound on ω can (and needs to be) sharpened. This is the

purpose of the following lemma, which considers solutions in unscaled variables.

Lemma 2.3.5. Suppose F̃ε(α, ω, c̃) = 0. If ω ∈ [1.1, 2] and α ∈ [1.5, 2.0] then√
(ω − α)2 + 2αω(1− sinω)

2α
≤ 2ε+ ‖c̃‖. (2.22)

Proof. This follows from Proposition 3.5.1 in Section 3.5, combined with Proposition

3.5.2, which shows that for ω ∈ [1.1, 2.0] and α ∈ [1.5, 2.0], the minimum in Equa-

tion (3.35) is attained for k = 1.

Next we derive bounds on ε and c̃, which also lead to improved bounds on ω.

Lemma 2.3.6. Let α ∈ [1.5706, π2]. Assume y is a SOPS with ‖y‖∞ ≤ µ. Then

y corresponds, through the Fourier representation (2.14), to a zero of Fε(α, ω, c) with

|ω − π
2 | ≤ 0.1489 and

0 < ε ≤ ε∗ := µ/
√

2 ≤ 0.02886,

30

and ‖c‖ ≤ 0.0796 and ‖K−1c‖ ≤ 0.16.

Proof. First consider the Fourier representation (2.10) of y in unscaled variables. Recall

that a0 vanishes (see Remark 2.1.3). Since |y′(t)| ≤ α|y(t− 1)|(1 + |y(t)|) ≤ αµ(1 + µ)

we see from Lemma 2.3.1 that

2ε+ ‖c̃‖ ≤ π

ω
√

3
αµ(1 + µ). (2.23)

Combining this with Lemma 2.3.5 leads to the inequality

ω
√

(ω − α)2 + 2αω(1− sinω) ≤ 2π√
3
α2µ(1 + µ). (2.24)

In the Mathematica file [vdBJ] we show that when α ∈ [1.5706, π2], then inequality

(2.24) is violated for any ω ∈ [1.1, 2.0] \ [1.4219, 1.6887]. From Lemma 2.3.4 we obtain

the a priori bound ω ∈ [1.11, 1.93], whereby it follows that ω ∈ [1.4219, 1.6887], and in

particular |ω − π
2 | ≤ 0.1489.

Using this sharper bound on ω as well as α ∈ [1.5706, π2] we conclude from (2.23)

that

2ε+ ‖c̃‖ ≤ π

ω
√

3
αµ(1 + µ) ≤ 2ω − α

α
. (2.25)

Since we also infer that α < 2ω, Theorem 2.1.10(b) shows that the solution corresponds

to a zero of Fε(α, ω, c), with c̃ = εc. We can improve the bound on ε from (2.23) by

observing that

(ε2 + ε2)1/2 ≤

(∑
k∈Z
|ak|2

)1/2

=

(
ω

2π

∫ 2π/ω

0
|y|2dt

)1/2

≤ µ.

Hence ε ≤ ε∗ := µ/
√

2.

Finally, we derive the bounds on c. Namely, for α ∈ [1.5706, π2], ω ∈ [1.4219, 1.6887]

and ε ≤ ε∗, we find that b∗ and z+
∗ , as defined in (2.13), are bounded below by b∗ ≥ 0.364

and z+
∗ ≥ 0.72. Since it follows from (2.23) that ‖c̃‖ ≤ 0.09 in the same parameter range

of α and ω, we infer from Lemma 2.1.7(a) that ‖c̃‖ ≤ z−∗ . Via an interval arithmetic

computation, the latter can be bounded above using Lemma 3.5.5, for α ∈ [1.5706, π2],

ω ∈ [1.4219, 1.6887] and ε ≤ ε∗, by z−∗ ≤ 0.0796ε. Hence ‖c‖ ≤ z−∗ /ε ≤ 0.0796.

Furthermore, Lemma 2.1.7(b) implies the bound ‖K−1c‖ ≤ (2ε2 +(z−∗)2)/(εb∗) ≤ 5.52ε.

Since ε ≤ ε∗, it then follows that ‖K−1c‖ ≤ 0.16.

31

With these tight bounds on the solutions, we are in a position to apply the local

bifurcation result formulated in Proposition 2.2.15 to prove the ultimate step of Wright’s

conjecture.

Theorem 2.3.7. For α ∈ [0, π2] there is no SOPS to Wright’s equation.

Proof. By Theorem 1.2.1 and Proposition 2.3.2 it suffices to exclude a slowly oscillating

periodic solution y for α ∈ [1.5706, π2] with ‖y‖∞ ≤ µ. By Lemma 2.3.6, if such a

solution would exist, it corresponds to a solution of Fε(α, ω, c) = 0 with |ω− π
2 | ≤ 0.1489,

0 < ε ≤ ε∗ = µ/
√

2, ‖c‖ ≤ 0.0796 and ‖K−1c‖ ≤ 0.16. We claim that no such solution

exists. Indeed, we define the set

S := {(α, ω, c) ∈ X : |α− π
2 | ≤ 0.0002; |ω − π

2 | ≤ 0.15; ‖c‖ ≤ 0.08; ‖K−1c‖ ≤ 0.16}.

To show that there is no SOPS for α ∈ [1.5706, π2], it now suffices to show that all zeros

of Fε(α, ω, c) in S for any 0 < ε ≤ ε∗ satisfy α > π
2 .

Let us consider Bε(r, ρ), which is centered at x̄ε (see Definition 2.1.12) with r and

ρ taken as in Proposition 2.2.10(a). In the Mathematica file [vdBJ] we check that the

following inequalities are satisfied:

rα = 0.13 ≥ 0.0002 + |ᾱε∗ − π
2 |,

rω = 0.17 ≥ 0.15 + |ω̄ε∗ − π
2 |,

rc = 0.17 ≥ 0.08 + ‖c̄ε∗‖,

ρ = 1.78 ≥ 0.16.

By the triangle inequality we obtain that S ⊂ Bε(r, ρ) for all 0 < ε ≤ ε∗. Proposi-

tion 2.2.10(a) shows that for each 0 < ε ≤ ε∗ there is a unique zero x̂ε = (α̂ε, ω̂ε, ĉε) ∈

Bε(r, ρ) of Fε. By Proposition 2.2.15 and Remark 2.2.16 this zero satisfies α̂ε >
π
2 .

Hence, for any 0 < ε ≤ ε∗ the only zero of Fε in S (if there is one) satisfies α > π
2 . This

completes the proof.

32

2.3.2 Towards Jones’ conjecture

Jones’ conjecture states that for α > π
2 there exists a (globally) unique SOPS to Wright’s

equation. Theorem 2.2.7 shows that for a fixed small ε there is a (locally) unique α at

which Wright’s equation has a SOPS, represented by (α̂ε, ω̂ε, ĉε). This is not sufficient

to prove the local case of Jones conjecture. To accomplish the latter, we show in

Theorem 2.3.10 that near the bifurcation point there is, for each fixed α > π
2 , a (locally)

unique SOPS to Wright’s equation. We begin by showing that on the solution branch

emanating from the Hopf bifurcation α̂ε is monotonically increasing in ε, i.e. d
dε α̂ε > 0.

Since ᾱε = π
2 + 1

5(3π
2 −1)ε2, we expect that d

dε α̂(ε) = 2
5(3π

2 −1)ε+O(ε2). For this reason

it is essential that we calculate an approximation of d
dε α̂ε which is accurate up to order

O(ε2).

Theorem 2.3.8. For 0 < ε ≤ 0.1 we have d
dε α̂ε > 0. For π

2 < α ≤ π
2 +6.830×10−3 there

are no bifurcations in the branch of SOPS that originates from the Hopf bifurcation.

Proof. We show that the branch of solutions x̂ε = (α̂ε, ω̂ε, ĉε) obtained in Proposition

2.2.15 satisfies d
dε α̂ε > 0 for 0 < ε ≤ 0.1. This implies that the solution branch

is (smoothly) parametrized by α, i.e., there are no secondary nor any saddle-node

bifurcations in this branch. We then show that these ε-values cover the range π
2 < α ≤

π
2 + 6.830× 10−3.

We begin by differentiating the equation F (x̂ε) = 0 with respect to ε:

∂F

∂ε
(x̂ε) +DF (x̂ε)

d

dε
x̂ε = 0. (2.26)

In terms of the map T we obtain the relation

[I −DT (x̂ε)]
d

dε
x̂ε = −A†∂F

∂ε
(x̂ε).

To isolate d
dε x̂ε, we wish to left-multiply each side of the above equation by [I −

DT (x̂ε)]
−1. To that end, we define an upper bound on DT (x̂ε) by the matrix

Zε := Z(ε, ε2ř, ρ), (2.27)

33

with ř and ρ as in Proposition 2.2.15. We know from Remark 2.2.8 that with respect

to the norm ‖ · ‖ř on R2 × `K0

‖DT (x̂ε)‖ř ≤ max
i=1,2,3

(Zε · ř)i
ři

< 1, for all 0 ≤ ε ≤ ε0,

with ε0 given in Proposition 2.2.15. Hence I −DT (x̂ε) is invertible. In particular,

d

dε
x̂ε = − [I −DT (x̂ε)]

−1A†
∂F

∂ε
(x̂ε)

= −

[
I +

∞∑
n=1

DT (x̂ε)
n

]
A†
∂F

∂ε
(x̂ε).

We have an upper bound Qε ∈ R3
+ on A† ∂F∂ε (x̂ε), as defined in Definition 2.2.5, given

by Lemma 3.6.4. We define I3 to be the 3 × 3 identity matrix. For the α-component

we then obtain the estimate

d

dε
α̂ε ≥ −παA†

∂F

∂ε
(x̂ε)−

(∞∑
n=1

Znε Qε

)
1

= −παA†
∂F

∂ε
(x̂ε)−

(
Zε(I3 −Zε)−1Qε

)
1
. (2.28)

We approximate ∂F
∂ε (x̂ε) by

Γε := π
2

3i−1
5 ε e1 − iπ2 e2 − π

2
3+i

5 ε e3,

which is accurate up to quadratic terms in ε. In Lemma 3.6.1 it is shown that

− παA†Γε = 2
5(3π

2 − 1)ε. (2.29)

It remains to incorporate two explicit bounds for the remaining terms in (2.28). In

Lemma 3.6.5 we define Mε and M ′ε that satisfy the following inequalities:∣∣∣παA† (∂F∂ε (x̂ε)− Γε
)∣∣∣ ≤ ε2Mε, (2.30)(

Zε(I3 −Zε)−1Qε
)

1
≤ ε2M ′ε. (2.31)

Moreover, we infer from Lemma 3.6.5 that Mε and M ′ε are positive, increasing in ε, and

can be obtained explicitly by performing an interval arithmetic computation, using the

explicit expressions for the matrix Zε and the vector Qε given by Equation (2.27) and

Lemma 3.6.4, respectively (the expression for Z(ε, r, ρ) is provided in Section 3.4).

34

Finally, we combine (2.28), (2.29), (2.30) and (2.31) to obtain

d

dε
α̂ε ≥ 2

5(3π
2 − 1)ε− ε2(Mε +M ′ε).

From the monotonicity of the bounds Mε and M ′ε in terms of ε, we infer that in order

to conclude that d
dε α̂ε > 0 for 0 < ε ≤ ε0 it suffices to check, using interval arithmetic,

that

2
5(3π

2 − 1)ε0 − ε20(Mε0 +M ′ε0) > 0. (2.32)

In the Mathematica file [vdBJ] we check that (2.32) is satisfied for ε0 = 0.1. Since ᾱε0 ≥
π
2 + 7.4247× 10−3, and taking into account the control provided by Proposition 2.2.15

on the distance between α̂ε and ᾱε in terms of řα, we find that α̂ε0 ≥ ᾱε0 − ε20řα ≥
π
2 + 6.830 × 10−3. Hence there can be no bifurcation on the solution branch for π

2 <

α ≤ π
2 + 6.830× 10−3.

The analysis performed in Theorem 2.3.8 can similarly be applied to show that the

frequency (period length) of SOPS along the principal branch monotonically decreases

(increases) with respect to α when α ∈ (π2 ,
π
2 + 6.830× 10−3].

Corollary 2.3.9. For 0 < ε ≤ 0.1 we have d
dε ω̂ε < 0. For π

2 < α ≤ π
2 + 6.830 × 10−3

the frequency (period length) of SOPS along the principal branch decreases (increases)

monotonically in α.

Proof. Analogous to (2.28), we have the following inequality:

d

dε
ω̂ε ≤ −πωA†

∂F

∂ε
(x̂ε) +

(
Zε(I3 −Zε)−1Qε

)
2
. (2.33)

By Lemma 3.6.1 we have −πωA†Γε = −2
5ε, so by Corollary 3.6.6 it follows that:

d

dε
ω̂ε ≤ −2

5ε+ ε2(M̃ε + M̃ ′ε). (2.34)

From our monotonicity bounds, to show d
dε ω̂ε < 0 for all 0 < ε ≤ ε0, it suffices to check

that the RHS of (2.34) is bounded above by zero at ε0 = 0.1, which we verify using

interval arithmetic. Slowly oscillating periodic solutions along the principal branch

satisfy ε ≤ 0.1 for π
2 < α ≤ π

2 + 6.830 × 10−3. Hence, for π
2 < α ≤ π

2 + 6.830 × 10−3

35

the frequency (period length) of SOPS along the principal branch decreases (increases)

monotonically in α.

To prove Jones’ conjecture, it is insufficient to prove only locally that Wright’s

equation has a unique SOPS. We must be able to connect our local results with global

estimates. When we make the change of variables c̃ = εc in defining the function Fε,

we restrict ourselves to proving local results. Theorems 2.3.10 and 2.3.11 connect these

local results with a global argument, and construct neighborhoods, independent of any

ε-scaling, within which the only SOPS to Wright’s equation are those originating from

the Hopf bifurcation. These results are later used in Chapter 5.

The next theorem uses the large radius calculation from Proposition 2.2.10(b) to

show that for α ∈ (π2 ,
π
2 + 5.53× 10−3] all periodic solutions in a neighborhood of 0 lie

on the Hopf bifurcation curve, which has neither folds nor secondary bifurcations.

Theorem 2.3.10. For each α ∈ (π2 ,
π
2 + 5.53× 10−3] there is a unique triple (ε, ω, c) in

the range 0 < ε ≤ 0.09 and |ω− π
2 | < 0.0924 and ‖c‖ ≤ 0.30232 such that Fε(α, ω, c) = 0.

Proof. Fix α ∈ (π2 ,
π
2 + 5.53×10−3] and let Fε(α, ω, c) = 0 for some ε, ω, c satisfying the

assumed bounds. From Lemma 2.1.7(b) it follows that ‖K−1c‖ ≤ ε2(2 + ‖c‖2)/(εb∗) ≤

0.61 for ε ≤ ε0, since b∗ ≥ 0.31. Hence the zeros under consideration all lie in the set

S̃ := {(α, ω, c) ∈ X : |α−π
2 | ≤ 0.00553, |ω−π

2 | ≤ 0.0924, ‖c‖ ≤ 0.30232, ‖K−1c‖ ≤ 0.61}.

Proposition 2.2.10(b) shows that for each 0 ≤ ε ≤ 0.09 there is a unique zero x̂ε =

(α̂ε, ω̂ε, ĉε) ∈ Bε(r, ρ) of Fε, with r = (rα, rω, rc) = (0.1753, 0.0941, 0.3829) and ρ =

1.5940. For each 0 ≤ ε ≤ 0.09 it follows from the triangle inequality that S̃ ⊂ Bε(r, ρ).

This shows that Fε has at most one zero in S̃ for each 0 ≤ ε ≤ ε0. By Remark 2.2.16

this solution lies on the branch x̂ε originating from the Hopf bifurcation, in particular

x̂0 = (π2 ,
π
2 , 0) ∈ S̃. Proposition 2.2.15 gives us tight bounds

|ω̂ε − π
2 | ≤ |ω̄ε −

π
2 |+ řωε

2 ≤ 0.0924 and ‖ĉε‖ ≤ ‖c̄ε‖+ řcε
2 ≤ 0.30232

for all 0 ≤ ε ≤ ε0. Moreover, from similar considerations it follows that α̂ε0 ≥ ᾱε0 −

rαε
2
0 > 0.00553. Hence x̂ε0 /∈ S̃ and the solution curve leaves S̃ through |α−π

2 | = 0.00553

36

for some 0 < ε < ε0. Since 0.00553 < 6.830 × 10−3 the assertion now follows directly

from Theorem 2.3.8.

We translate this result to a neighborhood about the Hopf bifurcation without any

ε-scaling.

Theorem 2.3.11. For each α ∈ (π2 ,
π
2 + 5.53× 10−3] there is at most one (up to time

translation) periodic solution to Wright’s equation with Fourier coefficients satisfying

‖a‖ ≤ 0.18 and having frequency |ω − π
2 | ≤ 0.0924.

Proof. We show that any such periodic solution y to Wright’s equation has Fourier

coefficients satisfying the bounds in Theorem 2.3.10. For the parameter range of α

and ω under consideration we conclude that α < 2ω and ‖a‖ < 2ω−α
α . Hence we see

from Theorem 2.1.10 that y corresponds to a zero of Fε. The a priori bound on ‖a‖

translates via (2.8) into the bounds

ε ≤ 0.09 and ‖c̃‖ ≤ 0.18.

We derive bounds on c = c̃/ε as in the proof of Lemma 2.3.6. Namely, for |α− π
2 | ≤

0.00553, |ω− π
2 | ≤ 0.0924 and ε ≤ 0.09, we find that z+

∗ , as defined in (2.13), is bounded

below by z+
∗ ≥ 0.595. It follows that ‖c̃‖ ≤ 0.18 ≤ z+

∗ , so we infer from Lemma 2.1.7(a)

that ‖c̃‖ ≤ z−∗ . Via Lemma 3.5.5 and an interval arithmetic computation, the latter

can be bounded above, for |α − π
2 | ≤ 0.00553, |ω − π

2 | ≤ 0.0924 and ε ≤ 0.09, by

z−∗ ≤ 0.30226ε. Hence ‖c‖ ≤ z−∗ /ε ≤ 0.30232. We conclude that y corresponds to

a zero of Fε(α, ω, c) in the parameter set described by Theorem 2.3.10, which implies

uniqueness.

Corollary 2.3.12. For each α ∈ (π2 ,
π
2 + 5.53× 10−3] there is at most one (up to time

translation) periodic solution to Wright’s equation satisfying ‖y′‖L2([0,2π/ω]) ≤ 0.302 and

having frequency |ω − π
2 | ≤ 0.0924.

Proof. For the Fourier coefficients a of y we infer from Lemma 2.3.1 that ‖a‖ ≤
√

π
6ω ·

0.302 ≤ 0.18. Hence any periodic solution y to Wright’s equation of period 2π/ω that

satisfies ‖y′‖L2 ≤ 0.302 has Fourier coefficients satisfying the bounds in Theorem 2.3.11.

37

38

Chapter 3

Technical Estimates

In this chapter we derive many of the technical estimates used in Chapter 2.

3.1 Operator Norms

We set ω0 = π
2 and recall that

[Uωa]k = e−ikωak

[Uω0a]k = (−i)kak

Lω = σ+(e−iωI + Uω) + σ−(eiωI + Uω)

Lω0 = σ+(−iI + Uω0) + σ−(iI + Uω0).

To more efficiently express the inverse of A0,∗ we define an operator Û : `10 → `10 by

[Ûc]k≥2 := (1− ik−1e−ikπ/2)−1ck, (3.1)

so that A−1
0,∗ = 2

iπ ÛK.

The operator norm of Q ∈ B(`10, `
1) can be expressed using the basis elements ek

(which have norm ‖ek‖ = 2):

‖Q‖ =
1

2
sup
k≥2
‖Qek‖. (3.2)

Some of the operators in B(`10, `
1) considered in these appendices restrict naturally

to B(`10), with the same expression for the norm. For operators in B(`1) a similar

expression for the norm holds (the supremum being over k ≥ 1). We will abuse the

notation ‖Q‖ by not indicating explicitly which of these operator norms is considered;

this will always be clear from the context.

39

Proposition 3.1.1. The operators Û , ÛK, Lω, A
−1
0,∗ and A1,∗ in B(`10, `

1) satisfy the

bounds

‖Û‖ =5
4 ‖A−1

0,∗‖ = 2
π
√

5

‖ÛK‖ = 1√
5

‖A1,∗‖ ≤2π

‖Lω‖ ≤4

Proof. The value ‖Ûek‖ is maximized when k = 5, whence ‖Û‖ = 5/4. The value

‖ÛKek‖ is maximized when k = 2, whence ‖ÛK‖ = 1√
5

and ‖A−1
0,∗‖ = 2

π
√

5
. It follows

from the definition of Lω and the fact that Uω is unitary that ‖Lω‖ ≤ 4, whereby it

follows that ‖A1,∗‖ = ‖π2Lω0‖ ≤ 2π.

We recall, for any a ∈ `1, the splitting a = a1e1 + ã with a1 ∈ C and ã ∈ `10, and as

a tool in the estimates below we introduce the projections

π1a = a1 ∈ C (3.3)

π≥2a = ã. (3.4)

Proposition 3.1.2. We have for the map A1A
−1
0 : `1 → `1 that

‖A1A
−1
0 ‖ =

2
√

10

5
. (3.5)

Proof. Expanding A1A
−1
0 we see that it splits into two parts: A1,2A

−1
0,1 and A1,∗A

−1
0,∗,

which we estimate separately. To be precise

A1A
−1
0 a = (iCA1,2A0,1i

−1
C π1a)e2 +A1,∗A

−1
0,∗π≥2a.

First, we calculate the matrix

A1,2A
−1
0,1 =

1

5

 3 2

−4 4

 .
Using the identification of R2 and C, which is an isometry if one uses the 2-norm

on R2, this matrix contributes to A1A
−1
0 as an operator mapping the (complex) one-

dimensional subspace spanned by e1 to the (complex) one-dimensional subspace spanned

40

by e2. To determine its contribution to the estimate of the norm of A1A
−1
0 , we thus

need to determine the 2-norm of the matrix (as a linear map from R2 → R2):

‖A1,2A
−1
0,1‖ =

1

5

√
45 + 5

√
17

2
.

Next, we calculate a bound on the map A1,∗A
−1
0,∗ : `10 → `1:

‖A1,∗A
−1
0,∗‖ = ‖Lω0ÛK‖. (3.6)

To bound (3.6) we first compute how Lω0KÛ operates on basis elements ek for k ≥ 2:

Lω0KÛek =
−i+ (−i)k

k − i(−i)k
ek+1 +

i+ (−i)k

k − i(−i)k
ek−1.

Since the norm of this expression is maximized when k = 2 and ‖Lω0KÛe2‖ = 4
√

10
5 ,

we have calculated the B(`10, `
1) operator norm ‖Lω0KÛ‖ = 2

√
10

5 . As ‖A1A
−1
0 ‖

is equal to the maximum of ‖A1,2A
−1
0,1‖ and ‖A1,∗A

−1
0,∗‖, it follows that ‖A1A

−1
0 ‖ =

max{1
5

√
45+5

√
17

2 , 2
√

10
5 } = 2

√
10

5 .

Proposition 3.1.3. Define A−1
0 A1 ∈ Mat((R3,R3) by

A−1
0 A1 :=


0 0 1

2

√
2 + π2

2

0 0 1√
2

8
5π

2
√

16+8π+5π2

5π
2√
5


Then A−1

0 A1 is an upper bound (as defined in Definition 2.2.5) for A−1
0 A1.

Proof. We write x = (α, ω, c). Let πα,ω be the projection onto R2, whereas πc is the

projection onto `10. Then we can expand A−1
0 A1 as follows:

πα,ωA
−1
0 A1x = A−1

0,1i
−1
C π1A1,∗πcx (3.7)

πcA
−1
0 A1x = A−1

0,∗((iCA1,2πα,ωx)e2) +A−1
0,∗π≥2A1,∗πcx. (3.8)

We estimate the three operators that appear separately.

First, we note that the term A−1
0,∗((iCA1,2πα,ωx)e2) in (3.8) essentially represents an

operator from R2 to the (complex) one-dimensional subspace spanned by e2. Using the

identification of C with R2, this map is represented by the matrix

−2

25π

1 −2

2 1

 ·
−2 2− 3π

2

−4 2(2 + π)

 =
2

25π

−6 6 + 11π2

8 π − 8

 .

41

It then follows that

‖A−1
0,∗((iCA1,2πα,ωx)e2)‖ ≤ 4

25π

(
|α|
√

(−6)2 + 82 + |ω|
√

(6 + 11π2)2 + (π − 8)2
)

=
4

5π

(
2|α|+

√
16 + 8π + 5π2

2
|ω|

)
.

Next, we note that the term A−1
0,1i
−1
C π1A1,∗πcx in (3.7) essentially represents an

operator from the (complex) one-dimensional subspace spanned by e2 to R2. Using the

identification of C with R2, this map is represented by the matrix

π
2

 0 −π
2

−1 1

−1

·

−1 −1

1 −1

 =

1− π
2 1 + π

2

1 1

 ,
because π1A1,∗e2 = π

2 (i− 1). Hence

|παA−1
0 A1x| ≤ 1

2

√
2 + π2

2 ‖c‖

|πωA−1
0 A1x| ≤ 1

2

√
2‖c‖.

Finally, note that the term A−1
0,∗π≥2A1,∗ appearing in (3.8) maps `10 to itself. It can

be expressed as

A−1
0,∗π≥2A1,∗ = −iKÛπ≥2Lω0 .

The operator KÛπ≥2Lω0 acts on basis elements {ek}k≥2 as follows:

KÛπ≥2Lω0e2 = −1 + i

4
e3

KÛπ≥2Lω0ek =
−i+ (−i)k

(k + 1)− i(−i)k+1
ek+1 +

i+ (−i)k

(k − 1)− i(−i)k−1
ek−1 for k ≥ 3.

Since maxk≥2 ‖KÛπ≥2Lω0ek‖ = ‖KÛLω0e3‖ = 4√
5
, the operator norm of A−1

0,∗π≥2A1,∗

is 2√
5
.

These three bounds on the three operators appearing in (3.7) and (3.8) lead to the

asserted upper bound.

3.2 Endomorphism on a Compact Domain

In order to construct the Newton-like map T we defined operators A = DF (x̄ε)+O(ε2)

and A† = A−1 + O(ε2). However, as (ᾱε, ω̄ε, c̄ε) = (π2 ,
π
2 , c̄ε) + O(ε2), the map A can

42

be better thought of as an O(ε2) approximation of DF (π2 ,
π
2 , c̄ε). Thus, when working

with the map T and considering points x ∈ Bε(r, ρ) in its domain, we will often have to

measure the distances of α and ω from π
2 . To that end, we define the following variables

which will be used throughout the rest of the appendices.

Definition 3.2.1. For ε ≥ 0, and rα, rω, rc > 0 we define

∆0
α := ε2

5 (3π2 − 1) ∆α := ∆0
α + rα

∆0
ω := ε2

5 ∆ω := ∆0
ω + rω

δ0
c := 2ε√

5
δc := δ0

c + rc.

When considering an element (α, ω, c) for our O(ε2) analysis, we are often concerned

with the distances |α− π
2 |, |ω−

π
2 | and ‖c− c̄ε‖, each of which is of order ε2. To create

some notational consistency in these definitions, ∆0
α and ∆0

ω are of order ε2, whereas

δ0
c is not capitalized as it is of order ε. Using these definitions, it follows that for any

ρ > 0 and all (α, ω, c) ∈ Bε(r, ρ) we have:

|α− π
2 | ≤ ∆α, |ω − π

2 | ≤ ∆ω, ‖c‖ ≤ δc.

In this interpretation the superscript 0 simply refers to r = 0, i.e., the center of the ball

(α, ω, c) = x̄ε.

The following elementary lemma will be used frequently in the estimates.

Lemma 3.2.2. For all x ∈ R we have |eix−1| ≤ |x|. Furthermore, for all |ω− ω̄ε| ≤ rω

we have |e−iω + i| ≤ ∆ω and |e−2iω + 1| ≤ 2∆ω .

Proof. We start with

|eix − 1|2 = (cosx− 1)2 + (sinx)2 = 2(1− cosx) ≤ 2 · 1
2x

2 = x2.

Let θ = ω − π
2 . Then |θ| ≤ ∆ω and, using the previous inequality,

|e−iω + i|2 = |e−i(
π
2 +θ) + i|2 = |e−iθ − 1|2 ≤ θ2 ≤ ∆2

ω.

The final asserted inequality follows from an analogous argument.

43

While the operators Uω and Lω are not continuous in ω on all of `10, they are within

the compact set Bε(r, ρ). To denote the derivative of these operators, we define

U ′ω := −iK−1Uω

L′ω := −iσ+(e−iωI +K−1Uω) + iσ−(eiωI −K−1Uω), (3.9)

and we derive Lipschitz bounds on Uω and Lω in the following proposition.

Proposition 3.2.3. For the definitions above, ∂
∂ωUω = U ′ω and ∂

∂ωLω = L′ω. Further-

more, for any (α, ω, c) ∈ Bε(r, ρ), we have the norm estimates

‖(Uω − Uω0)c‖ ≤ ∆ωρ

‖(Lω − Lω0)c‖ ≤ 2∆ω(δc + ρ). (3.10)

Proof. One easily calculates that ∂Uω
∂ω = U ′ω, whereby ‖(Uω − Uω0)c‖ ≤

∫ ω
ω0
‖ ∂∂ωUωc‖ ≤

∆ωρ. Calculating ∂
∂ωLω, we obtain the following:

∂

∂ω
Lω =

∂

∂ω

[
σ+(e−iωI + Uω) + σ−(eiωI + Uω)

]
= −iσ+(e−iωI +K−1Uω) + iσ−(eiωI −K−1Uω),

thus proving ∂Lω
∂ω = L′ω, and ‖(Lω − Lω0)c‖ ≤

∫ ω
ω0
‖ ∂∂ωLωc‖ ≤ ∆ω(2δc + 2ρ).

Proposition 3.2.4. Let ε ≥ 0 and r = (rα, rω, rc) ∈ R3
+. For any ρ > 0 the map

T : Bε(r, ρ)→ R2 × `K0 is well defined. We define functions

C0 :=
2ε2

π

[
8

5
,
2

5

√
16 + 8π + 5π2,

5π

2

]
·A−1

0 A1 · [0, 0, δc]T ,

C1 :=
5

2π
+
ε
√

10

π
,

C2 := ∆ω

[
(1 + π

2) + επ
]
,

C3 := ∆α(2 + δc) + 2∆ω(1 + π
2) + ε

[
π + 2∆α + 4δc∆α + π∆ωδc + (π2 + ∆α)δ2

c

]
,

where the expression for C0 should be read as a product of a row vector, a (3×3) matrix

and a column vector. Furthermore we define, for any ε, rω such that C1C2 < 1,

C(ε, rα, rω, rc) :=
C0 + C1C3

1− C1C2
. (3.11)

44

All of the functions C0, C1, C2, C3 and C are nonnegative and monotonically increasing

in their arguments ε and r. Furthermore, if C1C2 < 1 and C(ε, rα, rω, rc) ≤ ρ then

‖K−1πcT (x)‖ ≤ ρ for x ∈ Bε(r, ρ).

Proof. Given their definitions, it is straightforward to check that the functions Ci and

C are monotonically increasing in their arguments. To prove the second half of the

proposition, we split K−1πcT (x) into several pieces. We define the projection π0
cx =

(0, 0, πcx). We then obtain

K−1πcT (x) = K−1πc[x−A†F (x)]

= K−1πc[Iπ
0
cx−A†(Aπ0

cx+ F (x)−Aπ0
cx)]

= ε2K−1πc(A
−1
0 A1)2π0

cx+K−1πcA
†(F (x)−Aπ0

cx)

=
2ε2

iπ
Ûπ≥2A1A

−1
0 A1π

0
cx+

2

iπ
Ûπ≥2(I − εA1A

−1
0)(F (x)−Aπ0

cx),

where we have used that K−1πcA
−1
0 = 2

iπ Ûπ≥2, with the projection π≥2 defined in (3.4).

By using ‖Û‖ ≤ 5
4 (see Proposition 3.1.1) we obtain the estimate

‖K−1πcT (x)‖ ≤ 2ε2

π
Ûπ≥2A1 ·A−1

0 A1 · [0, 0, δc]T +
5

2π

(
1 + ε‖A1A

−1
0 ‖
)
‖F (x)−Aπ0

cx‖.

(3.12)

Here the (1 × 3) row vector Ûπ≥2A1 is an upper bound on Ûπ≥2A1 interpreted as a

linear operator from R2 × `10 to `10, thus extending in a straightforward manner the

definition of upper bounds given in Definition 2.2.5.

We have already calculated an expression for A−1
0 A1 in Proposition 3.1.3, and

‖A1A
−1
0 ‖ = 2

√
10

5 by Proposition 3.1.2. In order to finish the calculation of the right

hand side of equation (3.12), we need to estimate ‖F (x)−Aπ0
cx‖ and Ûπ≥2A1. We first

calculate a bound on Ûπ≥2A1. We note that Ûπ≥2A1 = Ûe2(iCA1,2πα,ω)+ Ûπ≥2A1,∗πc.

As ‖Ûe2‖ = ‖4−2i
5 e2‖, it follows from the definition of A1,2 that∣∣∣∣∣∣iCA1,2

α
ω

∣∣∣∣∣∣ · ‖Ûe2‖ ≤

(√
20

5
|α|+

√
(2− 3π/2)2 + 4(2 + π)2

5
|ω|

)
· 4√

5
.

To calculate ‖Ûπ≥2A1,∗‖ we note that ‖Û‖ ≤ 5
4 and ‖A1,∗‖ = π

2 ‖Lω0‖ ≤ 2π. Hence

‖Ûπ≥2A1,∗‖ ≤ 5π
2 . Combining these results, we obtain that

Ûπ≥2A1 =

[
8

5
,
2

5

√
16 + 8π + 5π2,

5π

2

]
.

45

Thereby, it follows from (3.12) that

‖K−1πcT (x)‖ ≤ C0 + C1‖F (x)−Aπ0
cx‖. (3.13)

We now calculate

F (x)−Aπ0
cx = (iω + αe−iω)e1 + (iωK−1 + αUω)c+ εαe−iωe2 + αεLωc+ αε[Uωc] ∗ c

− π
2 (iK−1 + Uω0 + εLω0)c

= i(ω − π
2)K−1c+ (α− π

2)Uωc+ π
2 (Uω − Uω0)c

+
[
i(ω − π

2) + (α− π
2)e−iω + π

2 (e−iω + i)
]

e1

+ εαe−iωe2 + (α− π
2)εLωc+ π

2 ε(Lω − Lω0)c+ αε[Uωc] ∗ c.

Taking norms and using (3.10) and Lemma 3.2.2, we obtain

‖F (x)−Aπ0
cx‖ ≤ ∆ωρ+ ∆αδc + π

2 ∆ωρ+ 2(∆ω + ∆α + π
2 ∆ω)

+ ε
[
2(π2 + ∆α) + 4δc∆α + π∆ω(δc + ρ) + (π2 + ∆α)δ2

c

]
= ∆ω[(1 + π

2) + επ]ρ

+ ∆α(2 + δc) + 2∆ω(1 + π
2)

+ ε
[
π + 2∆α + 4δc∆α + π∆ωδc + (π2 + ∆α)δ2

c

]
.

We have now computed all of the necessary constants. Thus ‖F (x) − Aπ0
cx‖ ≤

C2ρ+ C3, and from (3.13) we obtain

‖K−1πcT (c)‖ ≤ C0 + C1(C2ρ+ C3),

with the constants defined in the statement of the proposition. We would like to select

values of ρ for which

‖K−1πcT (c)‖ ≤ ρ

This is true if C0 + C1(C2ρ+ C3) ≤ ρ, or equivalently

C0 + C1C3

1− C1C2
≤ ρ.

This proves the theorem.

46

3.3 The upper bound for Y (ε)

We need to define Y (ε) so that it bounds T (x̄ε)− x̄ε = A†F (x̄ε). We introduce c2(ε) :=

2−i
5 ε. We can explicitly calculate F (x̄ε) as follows:

F1(x̄ε) = (iω̄ε + ᾱεe
−iω̄ε) + ᾱεε(e

iω̄ε + e−2iω̄ε)c2(ε)

F2(x̄ε) = (2iω̄ε + ᾱεe
−2iω̄ε)c2(ε) + ᾱεεe

−iω̄ε

F3(x̄ε) = ᾱεε(e
−iω̄ε + e−2iω̄ε)c2(ε)

F4(x̄ε) = ᾱεεe
−2iω̄εc2(ε)2

Fk(x̄ε) = 0 for all k ≥ 5.

By using the definition of A† = A−1
0 − εA

−1
0 A1A

−1
0 we can calculate A†F (x̄ε) explicitly

using a finite number of operations. However, proving ε−2Y (ε) is well defined and

increasing requires more work. To estimate A†F (x̄ε) in Theorem 3.3.2 below, we will

take entry-wise absolute values in the constituents of A†, as clarified in the next remark.

Remark 3.3.1. Since F (x̄ε) is a finite linear combination of the basis elements ek, and

the operators A0 and A1 are diagonal and tridiagonal, respectively, we can represent

A−1
0 · F (x̄ε) and A−1

0 A1A
−1
0 · F (x̄ε) by finite dimensional matrix-vector products. By

|A−1
0 | and |A−1

0 A1A
−1
0 | we denote the entry-wise absolute values of these matrices.

Theorem 3.3.2. Let fi : R → R for i = 1, 2, 3, 4 be defined as in Propositions 3.3.3,

3.3.4, 3.3.5, and 3.3.6 below. Define f(ε) =
∑4

i=1 fiei ∈ `1 and define the function

Ŷ : R→ R2 × `10 to be

Ŷ (ε) :=
∣∣A−1

0

∣∣ · f(ε) + ε
∣∣A−1

0 A1A
−1
0

∣∣ · f(ε). (3.14)

Then the only nonzero components of Ŷ = (Ŷα, Ŷω, Ŷc) are Ŷα, Ŷω and (Ŷc)k for k =

2, 3, 4, 5. Furthermore, define

Yα(ε) :=Ŷα(ε) Yω(ε) :=Ŷω(ε) Yc(ε) :=2
5∑

k=2

(Ŷc)k(ε) (3.15)

Then [Yα(ε), Yω(ε), Yc(ε)]
T is an upper bound on T (x̄ε)− x̄ε, and ε−2[Yα(ε), Yω(ε), Yc(ε)]

is non-decreasing in ε.

47

Proof. By Propositions 3.3.3, 3.3.4, 3.3.5 and 3.3.6 it follows that |Fi(x̄ε)| ≤ fi(ε) for

i = 1, 2, 3, 4. By taking the entry-wise absolute values
∣∣A−1

0

∣∣ and
∣∣A−1

0 A1A
−1
0

∣∣, it follows

that |T (x̄ε)−x̄ε| ≤ Ŷ , where the absolute values and inequalities are taken element-wise.

We note that in defining Yc the factor 2 arises from our choice of norm in (2.4). To see

that (Ŷc)k is non-zero for k = 2, 3, 4, 5 only, we note that while A−1
0 is a block diagonal

operator, A1 has off-diagonal terms. In particular, A1,∗ek = π
2 (−i+ (−i)k)ek+1 + π

2 (i+

(−i)k)ek−1 for k ≥ 2, whereby (Ŷ)k = 0 for k ≥ 6.

Next we show that ε−2[Yα(ε), Yω(ε), Yc(ε)]
T is nondecreasing in ε. We note that it

follows from Definition 3.2.1 that each function fi(ε) is a polynomial in ε with nonneg-

ative coefficients, and the lowest degree term is at least ε2. Additionally,
∣∣A−1

0

∣∣ · f(ε) is

a positive linear combination of the functions {fi(ε)}4i=1, whereas
∣∣A−1

0 A1A
−1
0

∣∣ · f(ε) is

ε times a positive linear combination of {fi(ε)}4i=1. It follows that each component of

Ŷ is a polynomial in ε with nonnegative coefficients, and the lowest degree term is at

least ε2. Thereby ε−2[Yα(ε), Yω(ε), Yc(ε)]
T is nondecreasing in ε.

Before presenting Propositions 3.3.3, 3.3.4, 3.3.5 and 3.3.6, we recall that the defi-

nitions of ∆0
α, ∆0

ω and δ0
c are given in Definition 3.2.1.

Proposition 3.3.3. Define

f1(ε) := π
2 (1

2(∆0
ω)2 + 1

6(∆0
ω)3) + ∆0

α∆0
ω + ∆0

αεδ
0
c + 3π

4 ∆0
ωεδ

0
c . (3.16)

Then |F1(x̄ε)| ≤ f1(ε).

Proof. Note that

F1(x̄ε) = iω̄ε + ᾱεe
−iω̄ε + ᾱεεc2(ε)(eiω̄ε + e−2iω̄ε). (3.17)

We will show that all the O(ε3) terms in F1(x̄ε) cancel. We first expand the first

summand (3.17):

iω̄ε = iπ2 − i∆
0
ω.

48

Next, we expand the second summand in (3.17):

ᾱεe
−iω̄ε = −iᾱεei∆

0
ω = −i

(
π
2 e
i∆0

ω + ∆0
αe
i∆0

ω

)
= −i

(
π
2 (1 + i∆0

ω) + ∆0
α

)
− i
(
π
2 (ei∆

0
ω − 1− i∆0

ω) + ∆0
α(ei∆

0
ω − 1)

)
. (3.18)

Finally, we expand the third summand (3.17) as

ᾱεε
2 2−i

5 (eiω̄ε + e−2iω̄ε) = π
2 ε

2 2−i
5 (i− 1) + π

2 ε
2 2−i

5

(
i(e−i∆

0
ω − 1)− (e2i∆0

ω − 1)
)

+ ∆0
αε

2 2−i
5

(
ie−i∆

0
ω − e2i∆0

ω

)
. (3.19)

If we now collect the final term from (3.18) and the final two terms from (3.19) in

g(ε) := −i
(
π
2 (ei∆

0
ω − 1− i∆0

ω) + ∆0
α(ei∆

0
ω − 1)

)
+ ∆0

αε
2 2−i

5

(
ie−i∆

0
ω − e2i∆0

ω

)
+ π

2 ε
2 2−i

5

(
i(e−i∆

0
ω − 1)− (e2i∆0

ω − 1)
)
,

then we can write F1(x̄ε) as

F1(x̄ε) = g(ε) + iπ2 − i∆
0
ω − i

(
π
2 (1 + i∆0

ω) + ∆0
α

)
+ π

2 ε
2 2−i

5 (i− 1)

= g(ε).

Using Lemma 3.2.2 it is not difficult to see that |g(ε)| can be bounded by f1(ε), as

defined in (3.16).

Proposition 3.3.4. Define

f2(ε) := (π2 + ∆0
α)∆0

ω(δ0
c + ε) + 1

2δ
0
c (2∆0

ω + ∆0
α) + ε∆0

α. (3.20)

Then |F2(x̄ε)| ≤ f2(ε).

Proof. First note that

F2(x̄ε) = (2iω̄ε + ᾱεe
−2iω̄ε)c2(ε) + ᾱεεe

−iω̄ε =
(

2iω̄ε − ᾱεe2i∆0
ω

)
2−i

5 ε− iᾱεεei∆
0
ω

= (2iω̄ε − ᾱε) 2−i
5 ε− iᾱεε− ᾱε(e2i∆0

ω − 1)2−i
5 ε− iᾱεε(ei∆

0
ω − 1). (3.21)

49

We expand the first part of the right hand side in (3.21) as

(2iω̄ε − ᾱε) 2−i
5 ε− iᾱεε =

(
2iπ2 −

π
2

)
2−i

5 ε− iπ2 ε+
(
−2i∆0

ω −∆0
α

)
2−i

5 ε− i∆0
αε

= −
(
2i∆0

ω + ∆0
α

)
2−i

5 ε− i∆0
αε.

Hence, we can rewrite F2(ε) as

F2(x̄ε) = −ᾱε(e2i∆0
ω − 1)2−i

5 ε− iᾱεε(ei∆
0
ω − 1)−

(
2i∆0

ω + ∆0
α

)
2−i

5 ε− i∆0
αε.

Using Lemma 3.2.2 it is then not difficult to see that |F2(x̄ε)| can be bounded by f2(ε),

as defined in (3.20).

Proposition 3.3.5. Define

f3(ε) := 1
2(π2 + ∆0

α)(
√

2 + 3∆0
ω)εδ0

c . (3.22)

Then |F3(x̄ε)| ≤ f3(ε).

Proof. Note that

F3(x̄ε) = ᾱεε(e
−iω̄ε + e−2iω̄ε)c2(ε).

We expand this as

F3(x̄ε) = −ᾱεε2 2−i
5 (iei∆

0
ω + e2i∆0

ω)

= −ᾱεε2 2−i
5 (i+ 1)− ᾱεε2 2−i

5

(
i(ei∆

0
ω − 1) + (e2i∆0

ω − 1)
)
.

Using Lemma 3.2.2 it is then not difficult to see that |F3(x̄ε)| can be bounded by f3(ε),

as defined in (3.22).

Proposition 3.3.6. Define

f4(ε) := 1
5(π2 + ∆0

α)ε3 (3.23)

Then |F4(x̄ε)| ≤ f4(ε).

Proof. Note that

F4(x̄ε) = ᾱεεe
−2iω̄ε

(
2−i

5 ε
)2
,

from which it follows that |F4(x̄ε)| can be bounded by f4(ε), as defined in (3.23).

50

3.4 The upper bound for Z(ε, r, ρ)

In this section we calculate an upper bound on DT . To do so we first calculate DF =[
∂F
∂α ,

∂F
∂ω ,

∂F
∂c

]
:

∂F

∂α
= e−iωe1 + Uωc+ εe−iωe2 + εLωc+ ε[Uωc] ∗ c, (3.24)

∂F

∂ω
= i(1− αe−iω)e1 + iK−1(I − αUω)c− iαεe−iωe2 + αεL′ωc− iαε[K−1Uωc] ∗ c,

(3.25)

∂F

∂c
· b = (iωK−1 + αUω)b+ αε (Lωb+ [Uωb] ∗ c+ [Uωc] ∗ b) , for all b ∈ `K0 ,

(3.26)

where L′ω is given in (3.9), and ∂F
∂c is expressed in terms of the directional derivative.

Recall that I3 is used to denote the 3× 3 identity matrix.

Theorem 3.4.1. Define A−1
0 A1 as in Proposition 3.1.3 and define the matrix

M :=


√

4
π2 + 1 0

2
π 0

0 1


 f1,α f1,ω f1,c

f∗,α f∗,ω f∗,c

 , (3.27)

where the functions f1,·(ε, r, ρ) and f∗,·(ε, r, ρ) are defined as in Propositions 3.4.2–3.4.7.

If we define Z(ε, r, ρ) as

Z(ε, r, ρ) := ε2
(
A−1

0 A1

)2
+
(
I3 + εA−1

0 A1

)
·M, (3.28)

then Z(ε, r) is an upper bound (in the sense of Definition 2.2.5) on DT (x) for all

x ∈ Bε(r, ρ). Furthermore, the components of Z(ε, r, ρ) are increasing in ε, r and ρ.

Proof. If we fix some x ∈ Bε(r, ρ), then we obtain

DT (x) = I −A†DF (x)

= (I −A†A)−A† [DF (x)−A]

= ε2(A−1
0 A1)2 − [I − ε(A−1

0 A1)] ·A−1
0 · [DF (x)−A] ,

hence an upper bound on DT (x) is given by

ε2
(
A−1

0 A1

)2
+
(
I3 + εA−1

0 A1

)
·A−1

0 [DF (x)−A],

51

where A−1
0 [DF (x)−A] is a yet to be determined upper bound on A−1

0 [DF (x)−A].

To calculate this upper bound, we break it up into two parts:

πα,ωA
−1
0 (DF (x)−A) = A−1

0,1i
−1
C π1 (DF (x)−A) (3.29)

πcA
−1
0 (DF (x)−A) = A−1

0,∗π≥2 (DF (x)−A) . (3.30)

To calculate an upper bound on (3.29), we use the explicit expression for A−1
0,1 to

estimate ∣∣∣παA−1
0,1π1 (DF (x)−A)

∣∣∣ ≤√ 4
π2 + 1π1(DF (x)−A)∣∣∣πωA−1

0,1π1 (DF (x)−A)
∣∣∣ ≤ 2

π π1(DF (x)−A),

where π1(DF (x)−A) is an upper bound on π1(DF (x) − A), viewed as an operator

from R2 × `K0 to C (a straightforward generalization of Definition 2.2.5). Indeed, in

Propositions 3.4.2, 3.4.3 and 3.4.4 we determine functions f1,· such that, for all x ∈

Bε(r, ρ),

f1,α(ε, r, ρ) ≥
∣∣∣∣∂F1

∂α
(x) + i

∣∣∣∣ ,
f1,ω(ε, r, ρ) ≥

∣∣∣∣∂F1

∂ω
(x)− (i− π

2)

∣∣∣∣ ,
f1,c(ε, r, ρ) ≥

∣∣∣∣∂F1

∂c
(x) · b− π

2 ε(i− 1)π2b

∣∣∣∣ , for all b ∈ `K0 with ‖b‖ ≤ 1.

Here the projection π2 is defined as π2b := b2 ∈ C for b = {bk}∞k=1 ∈ `1. Hence

[f1,α, f1,ω, f1,c] is an upper bound on π1(DF (x)−A).

For calculating an upper bound on Equation (3.30), in Propositions 3.4.5, 3.4.6 and

3.4.7 we determine functions f∗,· such that, for all x ∈ Bε(r, ρ),

f∗,α(ε, r, ρ) ≥
∥∥∥∥A−1

0,∗π≥2

(
∂F

∂α
(x) + ε2+4i

5 e2

)∥∥∥∥ ,
f∗,ω(ε, r, ρ) ≥

∥∥∥∥A−1
0,∗π≥2

(
∂F

∂ω
(x)− ε

[
4−3π

10 + 2(2+π)
5 i

]
e2

)∥∥∥∥ ,
f∗,c(ε, r, ρ) ≥

∥∥∥∥A−1
0,∗π≥2

(
∂F

∂c
(x) · b− (A0,∗ + εA1,∗)b

)∥∥∥∥ , for all b ∈ `K0 with ‖b‖ ≤ 1.

Hence [f∗,α, f∗,ω, f∗,c] is an upper bound on A−1
0,∗π≥2 (DF (x)−A), viewed as an operator

from R2 × `K0 to `10. We have thereby shown that M , as defined in (3.27), is an upper

bound on A−1
0 [DF (x)−A], which concludes the proof.

52

Proposition 3.4.2. Define

f1,α := ∆ω + ε
δc(2 + δc)

2
.

Then for all x = (α, ω, c) ∈ Bε(r, ρ)

f1,α ≥
∣∣∣∣∂F1

∂α
(x) + i

∣∣∣∣ .
Proof. We calculate

∂F1

∂α
(x) + i = e−iω + i+ ε

(
eiω + e−2iω

)
π2c+ επ1([Uωc] ∗ c).

Hence, using Lemma 3.2.2,∣∣∣∣∂F1

∂α
(x) + i

∣∣∣∣ ≤ |e−iω + i|+ 2ε
δc
2

+ ε
1

2
δ2
c ≤ ∆ω + ε

δc(2 + δc)

2
.

Here we have used that |πka| ≤ 1
2‖a‖ for k = 1, 2 and all a ∈ `1.

Proposition 3.4.3. Define

f1,ω := ∆α + π
2 ∆ω + (π2 + ∆α)

εδc
2

(3 + ρ).

Then for all x = (α, ω, c) ∈ Bε(r, ρ)

f1,ω ≥
∣∣∣∣∂F1

∂ω
(x)− (i− π

2)

∣∣∣∣ .
Proof. We calculate

∂F1

∂ω
(x)− (i− π

2) = (i− iαe−iω)− (i− π
2) + αε(ieiω − 2e−2iω)π2c

− iαεπ1([K−1Uωc] ∗ c)

= −i(α− π
2)e−iω − iπ2 (i+ e−iω) + αε(ieiω − 2e−2iω)π2c

− iαεπ1([K−1Uωc] ∗ c).

Hence, using Lemma 3.2.2 again,∣∣∣∣∂F1

∂ω
(x)− (i− π

2)

∣∣∣∣ ≤ ∆α + π
2 ∆ω +

3

2
αεδc +

1

2
αερδc.

53

Proposition 3.4.4. Define

f1,c := ε
(
∆α + 3π

4 ∆ω + (π2 + ∆α)δc
)
.

Then for all x = (α, ω, c) ∈ Bε(r, ρ)

f1,c ≥
∣∣∣∣∂F1

∂c
(x) · b− π

2 ε(i− 1)π2b

∣∣∣∣ , for all b ∈ `K0 with ‖b‖ ≤ 1.

Proof. We calculate

∂F1

∂c
(x) · b− π

2 ε(i− 1)π2b = ε[α(eiω + e−2iω)− π
2 (i− 1)]π2b

+ αεπ1

(
[Uωb] ∗ c+ [Uωc] ∗ b

)
= ε[(α− π

2)(eiω + e−2iω)]π2b+ επ2 [(eiω + e−2iω)− (i− 1)]π2b

+ αεπ1

(
[Uωb] ∗ c+ [Uωc] ∗ b

)
.

Hence, for ‖b‖ ≤ 1,∣∣∣∣∂F1

∂c
(x) · b− π

2 ε(i− 1)π2b

∣∣∣∣ ≤ ε (∆α + π
4 (∆ω + 2∆ω) + (π2 + ∆α)δc

)
.

Proposition 3.4.5. Define

f∗,α :=
2

π
√

5

(
rc + 2∆ω(δ0

c + ε) + εδc(4 + δc)
)
.

Then for all x = (α, ω, c) ∈ Bε(r, ρ)

f∗,α ≥
∥∥∥∥A−1

0,∗π≥2

(
∂F

∂α
(x) + ε2+4i

5 e2

)∥∥∥∥ .
Proof. We note that ε2+4i

5 e2 = c̄ε + εie2 and calculate

π≥2
∂F

∂α
(x)+ε2+4i

5 e2 = Uω(c−c̄ε)+(1+e−2iω)c̄ε+ε(e
−iω+i)e2+επ≥2Lωc+επ≥2([Uωc]∗c).

By using Proposition 3.1.1 and Lemma 3.2.2, we obtain the estimate∥∥∥∥A−1
0,∗π≥2

(
∂F

∂α
(x) + ε2+4i

5 e2

)∥∥∥∥ ≤ ‖A−1
0,∗‖

(
rc + δ0

c |1 + e−2iω|+ 2ε|e−iω + i|+ 4εδc + εδ2
c

)
≤ 2

π
√

5

(
rc + 2∆ω(δ0

c + ε) + εδc(4 + δc)
)
.

54

Proposition 3.4.6. Define

f∗,ω := 5
2π (1 + π

2)rc + 2√
5
ε
(

(1 + 4√
5
)∆ω + 2

π∆α

)
+ 5

2π∆α(rc + δc)

+ 2
π ε(

π
2 + ∆α)

(
1√
5

(δc + rc) +
5

4

(
δc + 3

2rc
)

+
ρδc√

5

)
. (3.31)

Then for all x = (α, ω, c) ∈ Bε(r, ρ)

f∗,ω ≥
∥∥∥∥A−1

0,∗π≥2

(
∂F

∂ω
(x)− ε

[
4−3π

10 + 2(2+π)
5 i

]
e2

)∥∥∥∥ .
Proof. We note that ε

[
4−3π

10 + 2(2+π)
5 i

]
e2 = i(2 + π)c̄ε − π

2 εe2 and calculate

π≥2
∂F

∂ω
(x)− ε

[
4−3π

10 + 2(2+π)
5 i

]
e2 = iK−1(I − αUω)c− iαεe−iωe2 + αεπ≥2L

′
ωc

− iαεπ≥2([K−1Uωc] ∗ c)

− iK−1(I − π
2Uω0)c̄ε + π

2 εe2

= iK−1(c− c̄ε)− ε(iαe−iω − π
2)e2

− iK−1
[
Uω
(
π
2 (c− c̄ε) + (α− π

2)c
)]

− iK−1
[
(Uω − Uω0) π2 c̄ε

]
+ αεπ≥2L

′
ωc− iαεπ≥2([K−1Uωc] ∗ c).

Applying the operator A−1
0,∗ to this expression, we obtain (with Û defined in (3.1))

A−1
0,∗π≥2

(
∂F

∂ω
(x)− ε

[
4−3π

10 + 2(2+π)
5 i

]
e2

)
=

2

π
Û(c− c̄ε)−

2ε

iπ
ÛK(iαe−iω − π

2)e2

− 2

π
Û
[
Uω
(
α(c− c̄ε) + (α− π

2)c
)]

− 2

π
Û (Uω − Uω0) π2 c̄ε

+ 2αε
iπ ÛKπ≥2

(
L′ωc− i[K−1Uωc] ∗ c

)
.

55

We use the triangle inequality to estimate its norm, splitting it into the five pieces:∥∥∥∥ 2

π
Û(c− c̄ε)

∥∥∥∥ ≤ 2

π

5

4
rc

=
5

2π
rc∥∥∥∥−2ε

iπ
ÛK(iαe−iω − π

2)e2

∥∥∥∥ ≤ 4ε

π

1√
5

(
π
2 ∆ω + ∆α

)
= 2ε√

5

(
∆ω + 2

π∆α

)
∥∥∥− 2

π Û
[
Uω
(
α(c− c̄ε) + (α− π

2)c
)]∥∥∥ ≤ 2

π
5
4

(
(π2 + ∆α)rc + ∆αδc

)
= 5

2π

(
π
2 rc + ∆α(rc + δc)

)
∥∥∥− 2

π Û (Uω − Uω0) π2 c̄ε

∥∥∥ ≤ 2
π

2√
5
(2∆ω)π2

2ε√
5

= 8ε
5 ∆ω∥∥∥2αε

iπ ÛKπ≥2

(
L′ωc− i[K−1Uωc] ∗ c

)∥∥∥ ≤ 2αε

π

(
‖ÛKπ≥2L

′
ωc‖+

ρδc√
5

)
,

where we have used Proposition 3.1.1 and Lemma 3.2.2. Finally, we estimate∥∥∥ÛKπ≥2L
′
ωc
∥∥∥ =

∥∥∥ÛKπ≥2

(
−iσ+(e−iωI +K−1Uω) + iσ−(eiωI −K−1Uω)

)
c
∥∥∥

≤
∥∥∥ÛKπ≥2(σ+ + σ−)c

∥∥∥+
∥∥∥Ûπ≥2K(σ+ + σ−)K−1Uωc

∥∥∥
≤ 1√

5
(‖σ+c‖+ ‖π≥2σ

−c‖) +
5

4

(
‖Kσ+K−1‖δc + ‖π≥2Kσ

−K−1‖rc
)

≤ 1√
5

(δc + rc) +
5

4

(
δc +

3

2
rc

)
. (3.32)

Hence, with f∗,ω as defined in (3.31), it follows that∥∥∥∥A−1
0,∗π≥2

(
∂F

∂ω
(x)− ε

[
4−3π

10 + 2(2+π)
5 i

]
e2

)∥∥∥∥ ≤ f∗,ω.

Proposition 3.4.7. Define

f∗,c :=

[
5

2

(
1

2
+

1

π

)
∆ω +

∆α√
5

]
+ ε

[
8

π
√

5
∆α +

(
2√
5

+
25

8

)
∆ω +

4(π2 + ∆α)δc

π
√

5

]
.

Then for all x = (α, ω, c) ∈ Bε(r, ρ)

f∗,c ≥
∥∥∥∥A−1

0,∗π≥2

(
∂F

∂c
(x) · b− (A0,∗ + εA1,∗)b

)∥∥∥∥ , for all b ∈ `K0 with ‖b‖ ≤ 1.

56

Proof. We write A∗ := A0,∗ + εA1,∗ and calculate

∂F

∂c
(x) · b−A∗b =

[
(iωK−1 + αUω)− (iπ2K

−1 + π
2Uω0)

]
b+ αεLωb− π

2 εLω0b

+ αε [[Uωb] ∗ c+ [Uωc] ∗ b]

=
[
i(ω − π

2)K−1 + (α− π
2)Uω + π

2 (Uω − Uω0)
]
b

+ ε
[
(α− π

2)Lω + π
2 (Lω − Lω0)

]
b+ αε ([Uωb] ∗ c+ [Uωc] ∗ b) .

Hence, for ‖b‖ ≤ 1,∥∥∥∥A−1
0,∗π≥2

(
∂F

∂c
(x) · b−A∗b

)∥∥∥∥ ≤ ∆ω‖A−1
0,∗K

−1‖+ π
2 ∆α‖A−1

0,∗‖+ π
2 ‖A

−1
0,∗(Uω − Uω0)‖

+ ε
[
4∆α‖A−1

0,∗‖+ π
2 ‖A

−1
0,∗π≥2(Lω − Lω0)‖

]
+ ε
[
2αδc‖A−1

0,∗‖
]
, (3.33)

where all norms should be interpreted as operators on `10. Since ∂Uω
∂ω = −iK−1Uω and

A−1
0,∗ = 2

iπ ÛK, it follows from Proposition 3.1.1 that

‖A−1
0,∗(Uω − Uω0)‖ ≤ 2

π
∆ω‖Û‖ =

5

2π
∆ω. (3.34)

Next, we compute

Lω − Lω0 = σ+
[
(e−iω + i)I + (Uω − Uω0)

]
+ σ−

[
(eiω − i)I + (Uω − Uω0)

]
= (e−iω + i)σ+ − ieiω(i+ e−iω)σ− + (σ+ + σ−)(Uω − Uω0).

Analogous to (3.32) and (3.34) we infer that

‖A−1
0,∗π≥2(Lω − Lω0)‖ ≤ 4

π
√

5
|i+ e−iω|+ 5

π
‖Û‖∆ω ≤

4

π
√

5
∆ω +

25

4π
∆ω.

Finally, by putting all estimates together and once again using Proposition 3.1.1, it

follows from (3.33) that∥∥∥∥A−1
0,∗π≥2

(
∂F

∂c
(x) · b−A∗b

)∥∥∥∥ ≤ [5

2

(
1

2
+

1

π

)
∆ω +

∆α√
5

]
+ ε

[
8

π
√

5
∆α +

(
2√
5

+
25

8

)
∆ω +

4(π2 + ∆α)δc

π
√

5

]
.

57

3.5 A priori bounds on periodic orbits

In order to isolate periodic orbits, we need to separate them from the trivial solution.

In this section we prove some lower bounds on the size of periodic orbits. First we

work in the original Fourier coordinates. Then we derive refined bounds in rescaled

coordinates.

Recall that periodic orbits of Wright’s equation correspond to zeros ofG(α, ω, a) = 0,

as defined in (2.7). Clearly G(α, ω, 0) = 0 for all frequencies ω > 0 and parameter values

α > 0. There are bifurcations from this trivial solution for α = αn := π
2 (4n+ 1) for all

n ≥ 0. The corresponding natural frequency is ω = αn, but there are bifurcations for

any ω = αn/ñ with ñ ∈ N as well, which are essentially copies of the primary bifurcation.

The following proposition quantifies that away from these bifurcation points the trivial

solution is isolated.

Proposition 3.5.1. Suppose G(α, ω, a) = 0 for some α, ω > 0. Then either a ≡ 0 or

‖a‖ ≥ min
k∈N

√(
1− k ω

α

)2
+ 2k

ω

α

(
1− sin kω

)
. (3.35)

Proof. We fix α, ω > 0 and define

β1 := min
k∈N

(α− kω)2 + 2αkω(1− sin kω).

If β1 = 0 then there is nothing to prove. From now on we assume that β1 > 0. We

recall that

G(α, ω, a) = (iωK−1 + αUω)a+ α [Uω a] ∗ a.

We note that iωK−1 + αUω is invertible, since for any k ∈ N

|ikω + αe−ikω|2 = (α cos kω)2 + (ω − α sin kω)2

= (kω)2 + α2 − 2αkω sin kω

= (α− kω)2 + 2αkω(1− sin kω)

≥ β1 > 0.

We may thus rewrite G(α, ω, a) = 0 as

a = −α(iωK−1 + αUω)−1([Uω a] ∗ a). (3.36)

58

Since ‖(ωK−1 + αUω)−1‖ = β
−1/2
1 and ‖ [Uω a] ∗ a‖ ≤ ‖a‖2, we infer from (3.36) that

‖a‖ ≤ αβ−1/2
1 ‖a‖2.

We conclude that either a ≡ 0 or ‖a‖ ≥ β1/2
1 /α.

Proposition 3.5.2. Suppose that ω ≥ 1.1 and α ∈ (0, 2]. Define

gk(ω, α) =
(
1− k ω

α

)2
+ 2k ω

α

(
1− sin kω

)
. (3.37)

Then g1 < gk for all k ≥ 2.

Proof. This is equivalent to showing that

(1− ω
α)2 + 2ωα(1− sinω) < (1− kωα)2 + 2kωα(1− sin kω) for k ≥ 2.

Making the substitution x = ω
α , we can simplify this to the equivalent inequality

(k2 − 1)x+ 2 sinω − 2k sin kω > 0.

Since α ≤ 2, we have x ≥ ω/2. Hence it suffices to prove that

hk(ω) :=
k2 − 1

2
ω + 2 sinω − 2k sin kω > 0 for all k ≥ 2. (3.38)

We first consider k = 2. It is clear that h2(ω) > 0 for ω > 4. We note that h2 has a

simple zero at ω ≈ 1.07146 and it is easy to check using interval arithmetic that h2(ω)

is positive for ω ∈ [1.1, 4]. Hence h2(ω) > 0 for all ω ≥ 1.1.

For k = 3 and k = 4 we can repeat a similar argument. For k ≥ 5 it is immediate

that hk(ω) > k2−1
2 − 2− 2k ≥ 0 for ω > 1.

As discussed in Section 2.1, the function G(α, ω, a) gets replaced by F̃ε(α, ω, c̃)

in rescaled coordinates. In these coordinates we derive a result analogous to Proposi-

tion 3.5.1 below, see Lemma 3.5.4. First we bound the inverse of the operator B̂ ∈ B(`10)

defined by

B̂ := i
ω

α
I + UωK + εLωK,

where K, Uω and Lω have been introduced in Section 2.1.

59

Lemma 3.5.3. Let ε ≥ 0 and α, ω > 0. Let

γ :=
1

2
+ ε

(
2

3
+ max

{√
2− 2 sin(ω − π

2)

2
,
2

3

})
.

If γ < ω/α then the operator B̂ is invertible and the inverse is bounded by

‖B̂−1‖ ≤ 1
ω
α − γ

.

Proof. Writing

B̂ = i
ω

α

(
I +

α

iω
(Uω + εLω)K

)
and using a (formal) Neumann series argument, we obtain

‖B̂−1‖ ≤ α

ω

∞∑
n=0

(α
ω

)n
‖(Uω+εLω)K‖n ≤

α
ω

1− α
ω‖(Uω + εLω)K‖

=
1

ω
α − ‖(Uω + εLω)K‖

.

It remains to prove the estimate ‖(Uω + εLω)K‖ ≤ γ. Then, in particular, for γ < ω/α

the formal argument is rigorous.

Recalling that Lω = σ+(e−iωI+Uω) +σ−(eiωI+Uω), we use the triangle inequality

‖(Uω + εLω)K‖ ≤ ‖UωK‖+ ε‖σ+(e−iωI + Uω)K‖+ ε‖σ−(eiωI + Uω)K‖,

and estimate each term separately as an operator on `10. We recall the formula (3.2)

for the operator norm. Using that ‖Kc̃‖ ≤ 1
2‖c̃‖ for all c̃ ∈ `10, the first term is

bounded by ‖UωK‖ ≤ 1
2 . Since σ− shifts the sequence to the left and we consider

the operators acting on `10, we obtain ‖σ−(eiωI + Uω)K‖ ≤ 2
3 . For the final term,

‖σ+(e−iωI + Uω)K‖, to obtain a slightly more refined estimate, we first consider the

action of σ+(e−iωI + Uω)K on e2. We observe that

|e−iω + e−2iω| =
√

2− 2 sin(ω − π
2).

Hence ‖σ+(e−iωI + Uω)Ke2‖ ≤
√

2− 2 sin(ω − π
2), leading to

‖σ+(e−iωI + Uω)K‖ ≤ max

{√
2− 2 sin(ω − π

2)

2
,
2

3

}
.

We conclude that

‖(Uω + εLω)K‖ ≤ 1

2
+ ε

(
2

3
+ max

{√
2− 2 sin(ω − π

2)

2
,
2

3

})
.

60

Lemma 3.5.4. Fix ε ≥ 0, α, ω > 0. Assume that B̂ is invertible. Let b0 be a bound on

‖B̂−1‖. Define

z± = b−1
0 ±

√
b−2
0 − 2ε2.

Let c̃ ∈ `10 be such that F̃ε(α, ω, c̃) = 0. Then either ‖c̃‖ ≤ z− or ‖c̃‖ ≥ z+. Additionally,

‖K−1c̃‖ ≤ b0(2ε2 + ‖c̃‖2).

Proof. If F̃ε(α, ω, c̃) = 0, then it follows that the equations πcF̃ε = 0 can be rearranged

as

c̃ = −KB̂−1(ε2e−iωe2 + [Uω c̃] ∗ c̃). (3.39)

Taking norms, and using that ‖Kc̃‖ ≤ 1
2‖c̃‖ for all c̃ ∈ `10, we obtain

‖c̃‖ ≤ 1

2
‖B−1‖

(
ε2‖e2‖+ ‖[Uω c̃] ∗ c̃‖

)
≤ 1

2
b0
(
2ε2 + ‖c̃‖2

)
. (3.40)

The quadratic x2 − 2b−1
0 x+ 2ε2 has two zeros z+ and z− given by

z± = b−1
0 ±

√
b−2
0 − 2ε2.

The inequality (3.40) thus implies that either ‖c̃‖ ≤ z− or ‖c̃‖ ≥ z+.

Furthermore, it follows from (3.39) that ‖K−1c̃‖ ≤ ‖B̂−1‖ (2ε2 + ‖c̃‖2) ≤ b0(2ε2 +

‖c̃‖2).

In practice we use the bound ‖B̂−1‖ ≤ b−1
∗ , where

b∗(ε) :=
ω

α
− 1

2
− ε
(

2

3
+

1

2

√
2 + 2|ω − π

2 |
)
.

When doing so, we will refer to z± as z±∗ . Additionally, we will need the following

monotonicity property.

Lemma 3.5.5. Fix α, ω, ε0 > 0 and assume that ε0 ≤ b∗(ε0)/
√

2. Define

z−∗ (ε) := b∗(ε)−
√

(b∗(ε))2 − 2ε2.

Let C0 := z−∗ (ε0)
ε0

. Then

z−∗ (ε) ≤ C0ε for all 0 ≤ ε ≤ ε0. (3.41)

Proof. Let x :=
√

2ε/b∗(ε) ≥ 0. Clearly d
dεx > 0. It thus suffices to observe that

z−∗ (ε)

ε
=
√

2
1−
√

1− x2

x

is increasing for x ∈ [0, 1].

61

3.6 Implicit Differentiation

We will approximate

∂F

∂ε
(x) = αe−iωe2 + αLωc+ α[Uωc] ∗ c

by

Γ := π
2

3i−1
5 εe1 − π

2 ie2 − π
2

3+i
5 εe3 (3.42)

= −π
2 ie2 + π

2Lω0 c̄ε, (3.43)

which has been chosen so that ∂F
∂ε (π2 ,

π
2 , c̄ε)− Γ = O(ε2).

Lemma 3.6.1. When we write A†Γ = (α′, ω′, c′) ∈ R2 × `K0 , then

α′ = −2
5(3π

2 − 1)ε,

ω′ = 2
5ε,

c′ =
[
(1+2i

5)− ε2 9
250(7− i)

]
e2 + ε3i−1

10 e3.

Proof. First we calculate the α and ω components of the image of A†:

πα,ωA
† = A−1

0,1i
−1
C π1[I − εA1A

−1
0]]

= A−1
0,1i
−1
C π1[I − επ2Lω0A

−1
0,∗]

= A−1
0,1i
−1
C π1[I − εσ−(iI + Uω0)(iK−1 + Uω0)−1]

= A−1
0,1i
−1
C [π1 − ε(3+i

5)π2]. (3.44)

Here we have used projections πka = ak for a = {ak}k≥1 ∈ `1. We now calculate the α

and ω components of A†Γ. It follows from (3.42) and (3.44) that

πα,ωA
†Γ = A−1

0,1i
−1
C
[
π
2

3i−1
5 ε+ π

2
3+i

5 iε
]

= πε
5 A
−1
0,1i
−1
C (3i− 1)

= −2ε

5

 3π
2 − 1

−1

 .

We now calculate

πcA
†Γ = A−1

0,∗π≥2[I − εA1A
−1
0]Γ, (3.45)

62

where A1A
−1
0 decomposes as

A1A
−1
0 = e2[iCA1,2A

−1
0,1i
−1
C π1] +A1,∗A

−1
0,∗π≥2. (3.46)

We first calculate

A−1
0,∗π≥2Γ = 2

π (iK−1 + Uω0)−1[−π
2 ie2 − π

2
3+i

5 εe3]

= −(2i− 1)−1e2 − (3i+ i)−1 3+i
5 εe3

= 1+2i
5 e2 + ε3i−1

20 e3. (3.47)

Since Γ has three nonzero components only, we next compute the action of

A−1
0,∗π≥2A1A

−1
0 on each of these. Taking into account the decomposition (3.46), we first

compute its action on λe1 for λ ∈ C. After a straightforward but tedious calculation

we obtain

A−1
0,∗π≥2A1A

−1
0 λe1 = [iCA1,2A

−1
0,1i
−1
C λ]A−1

0,∗e2

= − 2
25π

[
(11 + 2i)Reλ+ (−6 + 8i)Imλ

]
e2.

Next, we compute the action of A−1
0,∗π≥2A1A

−1
0 on ek for k = 2, 3:

A−1
0,∗π≥2A1A

−1
0 e2 = A−1

0,∗[
π
2σ

+(e−iω0I + Uω0)]A−1
0,∗e2

= 2
π

3+i
20 e3,

A−1
0,∗π≥2A1A

−1
0 e3 = A−1

0,∗[
π
2σ
−(eiω0I + Uω0)]A−1

0,∗e3

= − 2
π

1+2i
10 e2,

where we have used that (e−iω0I + Uω0)e3 vanishes. Hence, by using the explicit ex-

pression (3.42) for Γ we obtain

− εA−1
0,∗π≥2A1A

−1
0 Γ = −ε2 29− 22i

125
e2 + ε

3i− 1

20
e3 − ε2

1 + 7i

50
e2. (3.48)

Finally, combining (3.45), (3.47) and (3.48) completes the proof.

Lemma 3.6.2. Let

f̂ε,1 := 1
2δ

0
c

(√
2∆α + 3∆ω(π2 + ∆α)

)
+ rc(

π
2 + ∆α)

(
1 + δ0

c + 1
2rc
)
, (3.49)

f̂ε,c := 2
π
√

5

[
2
(
∆α + π

2 ∆ω

)
+ δ0

c [
√

2∆α + 3∆ω(π2 + ∆α)] + (π2 + ∆α)(4rc + δ2
c)
]
.

(3.50)

63

Then the vector [(1 + 4
π2)1/2f̂ε,1,

2
π f̂ε,1, f̂ε,c]

T is an upper bound on A−1
0 (∂F∂ε (x)− Γ) for

any x ∈ Bε(r, ρ).

Proof. The α- and ω-component of A−1
0 (∂F∂ε (x)−Γ) are given by A−1

0,1i
−1
C π1[∂F∂ε (x)−Γ].

If we can show that |π1[∂F∂ε (x)− Γ]| ≤ f̂ε,1, then it follows from the explicit expression

for A−1
0,1 that [(1 + 4

π2)1/2f̂ε,1,
2
π f̂ε,1]T is an upper bound on πα,ωA

−1
0 (∂F∂ε (x)−Γ). Let us

write c = c̄ε + hc for some hc ∈ `10 with ‖hc‖ ≤ rc. Recalling (3.43), we obtain

π1[∂F∂ε (x)− Γ] = π1

[
αLωc+ α[Uωc] ∗ c− π

2Lω0 c̄ε
]

= π1

[
ασ−(eiω + e−2iω)c̄ε − π

2σ
−(i− 1)c̄ε

]
+ π1

[
ασ−(eiω + e−2iω)hc + α[Uωc] ∗ c

]
= π1

[
(α− π

2)(i− 1)c̄ε + α(eiω − i+ e−2iω + 1)c̄ε
]

+ π1

[
ασ−(eiω + e−2iω)hc + α[Uωc] ∗ c

]
.

We note that

π1([Uωc] ∗ c) = π1([Uω(c̄ε + hc)] ∗ (c̄ε + hc)) = π1([Uω c̄ε] ∗ hc + [Uωhc] ∗ c̄ε + [Uωhc] ∗ hc).

Hence, using Lemma 3.2.2 we obtain the estimate∣∣π1[∂F∂ε (x)− Γ]
∣∣ ≤ 1

2δ
0
c

(√
2∆α + 3∆ω(π2 + ∆α)

)
+ rc(

π
2 + ∆α)

(
1 + δ0

c + 1
2rc
)
.

We thus find that |π1[∂F∂ε (x)− Γ]| ≤ f̂ε,1, with f̂ε,1 defined in (3.49).

The c-component of A−1
0 (∂F∂ε (x)−Γ) is given by A−1

0,∗π≥2[∂F∂ε (x)−Γ]. We will use the

estimate ‖A−1
0,∗‖ ≤ 2

π
√

5
, so that it remains to determine a bound on ‖π≥2[∂F∂ε (x)− Γ]‖.

Using (3.43) we compute

π≥2[∂F∂ε (x)− Γ] = αe−iωe2 + π
2 ie2 + π≥2

(
αLω c̄ε − π

2Lω0 c̄ε + αLωhc + α[Uωc] ∗ c
)
.

We split the right hand side into three parts, which we estimate separately. First∥∥π2

[
αLωhc + α[Uωc] ∗ c

]∥∥ ≤ (π2 + ∆α)(4rc + δ2
c).

Next, we calculate

π≥2

[
αLω c̄ε − π

2Lω0 c̄ε
]

= ασ+(e−iω + e−2iω)c̄ε − π
2σ

+(−i− 1)c̄ε

=
[
(α− π

2)(−i− 1)2−i
5 ε+ α(e−iω + e−2iω − (i+ 1))2−i

5 ε
]

e3.

64

Hence ∥∥π≥2

[
αLω c̄ε − π

2Lω0 c̄ε
]∥∥ ≤ δ0

c [
√

2∆α + 3∆ω(π2 + ∆α)].

Finally, we estimate

∥∥(αe−iω + π
2 i)e2

∥∥ = 2
∣∣(α− π

2)e−iω + π
2 (e−iω + i)

∣∣ ≤ 2
(
∆α + π

2 ∆ω

)
.

Collecting all estimates, we thus find that ‖πcA−1
0 [∂F∂ε (x)− Γ]‖ ≤ f̂ε,c, with f̂ε,c defined

in (3.50).

Recall that I3 is used to denote the 3× 3 identity matrix.

Corollary 3.6.3. Let A−1
0 A1 be defined in Proposition 3.1.3. The vector

(I3 + εA−1
0 A1) · [(1 + 4

π2)1/2f̂ε,1,
2
π f̂ε,1, f̂ε,c]

T

is an upper bound on A†(∂F∂ε (x)− Γ) for any x ∈ Bε(r, ρ).

Proof. From Lemma 3.6.2 it follows that [(1 + 4
π2)1/2f̂ε,1,

2
π f̂ε,1, f̂ε,c]

T is an upper bound

on A−1
0 (∂F∂ε (x)− Γ). Since A† = (I − εA−1

0 A1)A−1
0 and I3 + εA−1

0 A1 is an upper bound

on I − εA−1
0 A1, the result follows from Lemma 3.6.2.

We combine Lemmas 3.6.1 and 3.6.2 into an upper bound on A† ∂F∂ε (x̂ε).

Lemma 3.6.4. Define Q0
ε ,Qε ∈ R3

+ as follows:

Q0
ε :=

[
2

5

(
3π

2
− 1

)
ε,

2

5
ε,

2√
5

+
2√
10
ε+

18

5
√

50
ε2
]T
,

Qε := Q0
ε + (I3 + εA−1

0 A1) ·
[
(1 + 4

π2)1/2f̂ε,1,
2
π f̂ε,1, f̂ε,c

]T
. (3.51)

Then the vector Qε ∈ R3
+ is an upper bound on A† ∂F∂ε (x) for any x ∈ Bε(r, ρ).

Proof. It follows from Lemma 3.6.1 that the vector Q0
ε is an upper bound on A†Γ (for

example, the third component of Q0
ε is a bound on ‖c′‖). It follows from Corollary 3.6.3

that

(I3 + εA−1
0 A1) · [(1 + 4

π2)1/2f̂ε,1,
2
π f̂ε,1, f̂ε,c]

T

is an upper bound on A†(∂F∂ε (x)−Γ). We conclude from the triangle inequality that Qε

is an upper bound on A† ∂F∂ε (x).

65

Finally, we prove the bounds needed to control the derivative d
dε α̂ε in Section 2.3.2

(in particular the implicit differentiation argument in Theorem 2.3.8).

Lemma 3.6.5. Fix ε0 > 0, ř ∈ R3
+ and ρ > 0 as in the hypothesis of Proposition 2.2.15.

Let 0 < ε ≤ ε0 and let x̂ε ∈ Bε(ε2ř, ρ) denote the unique solution to F (x) = 0. Recall

the definitions of Zε ∈ Mat(R3
+,R3

+) and Qε ∈ R3
+ in Equations (2.27) and (3.51).

Define

Mε :=
1

ε2

(
(I3 + εA−1

0 A1) ·
[
(1 + 4

π2)1/2f̂ε,1,
2
π f̂ε,1, f̂ε,c

]T)
1
,

M ′ε :=
1

ε2
(
Zε(I3 −Zε)−1Qε

)
1
,

where the subscript denotes the first component of the vector. Then Mε and M ′ε are

positive, increasing in ε, and satisfy the inequalities∣∣∣παA† (∂F∂ε (x̂ε)− Γε
)∣∣∣ ≤ ε2Mε, (3.52)(

Zε(I3 −Zε)−1Qε
)

1
≤ ε2M ′ε. (3.53)

Proof. To first show that (I3−Zε)−1 is well defined, we note that by Proposition 2.2.15

the radii polynomials P (ε, ε2ř, ρ) are all negative. As was shown in the proof of Theo-

rem 2.2.7, the operator norm of Zε on R3 equipped with the norm ‖ · ‖ε2ř is given by

some κ < 1, whereby the Neumann series of (I3 −Zε)−1 converges.

From the definition of Mε and Corollary 3.6.3, inequality (3.52) follows. Inequality

(3.53) is a direct consequence of the definition of M ′ε. Since the functions f̂ε,1 and f̂ε,c

are positive, then Mε and Qε are positive. Since the matrix Zε has positive entries only,

the Neumann series for (I3 − Zε)−1 has summands with exclusively positive entries,

whereby M ′ε is positive.

Next we show that the components of Zε and Qε − Q0
ε are polynomials in ε with

positive coefficients and their lowest degree terms are at least quadratic. To do so,

it suffices to prove as much for the functions f̂ε,1, f̂ε,c, f1,α, f1,ω, f1,c, f∗,α, f∗,ω, f∗,c. We

note that all of these functions are given as polynomials with positive coefficients in

the variables ε,∆α,∆ω, δc, rc, δ
0
c (recall that ρ is fixed and does not vary with ε). Since

(rα, rω, rc) = ε2(řα, řω, řc), then by Definition 3.2.1 the terms ∆α,∆ω, rc are all O(ε2).

Furthermore, whenever any of the terms ε, δc, δ
0
c appears, it is multiplied by another

66

term of order at least O(ε). It follows that every component of Zε and Qε − Q0
ε is a

polynomial in ε with positive coefficients for which the lowest degree term is at least

quadratic.

From these considerations it follows that the components of both Mε = ε−2(Qε −

Q0
ε)1 and ε−2Zε are polynomials in ε with positive coefficients. It also follows that both

Qε and (I3 −Zε)−1 are increasing in ε, whereby M ′ε is increasing in ε.

As a trivial extension, we have the following corollary:

Corollary 3.6.6. Fix ε0 > 0, ř ∈ R3
+ and ρ > 0 as in the hypothesis of Proposi-

tion 2.2.15. Let 0 < ε ≤ ε0 and let x̂ε ∈ Bε(ε
2ř, ρ) denote the unique solution to

F (x) = 0. Recall the definitions of Zε ∈ Mat(R3
+,R3

+) and Qε ∈ R3
+ in Equations (2.27)

and (3.51). Define

M̃ε :=
1

ε2

(
(I3 + εA−1

0 A1) ·
[
(1 + 4

π2)1/2f̂ε,1,
2
π f̂ε,1, f̂ε,c

]T)
2
,

M̃ ′ε :=
1

ε2
(
Zε(I3 −Zε)−1Qε

)
2
,

where the subscript denotes the second component of the vector. Then M̃ε and M̃ ′ε are

positive, increasing in ε, and satisfy the inequalities∣∣∣πωA† (∂F∂ε (x̂ε)− Γε
)∣∣∣ ≤ ε2M̃ε, (3.54)(

Zε(I3 −Zε)−1Qε
)

2
≤ ε2M̃ ′ε. (3.55)

67

Chapter 4

Computationally Characterizing SOPS and their Stability

In Chapters 4 and 5 we use the global optimization technique of branch and bound to

prove global results in Wright’s equation. This technique is analogous to the mathemat-

ical method of proof whereby one divides a problem into different cases, and analyzes

each case individually. While the branch and bound method is prototypically used for

finding the global maximum of a function, it can be applied in a multitude of situations

where local analysis needs to be stitched together into a global picture.

4.1 Background

In this chapter, we combine the branch and bound approach with a rigorous numerical

integrator to derive pointwise bounds on all SOPS to (1.1) at a given parameter range.

We then calculate bounds on the Floquet multipliers of SOPS, hoping to prove that any

SOPS that could exist is asymptotically stable. If successful, we can use the following

theorem to prove uniqueness:

Theorem 4.1.1 (See [Xie91,Xie93]). If α > π
2 and every SOPS to (1.1) is asymptoti-

cally stable, then (1.1) has a unique SOPS up to a time translation.

Following Xie’s approach, we define the function space

X :=
{
x ∈ C1(R,R) | x(0) = 0, x′(0) > 0 and x(t) < 0 for t ∈ (−1, 0)

}
.

Up to a time translation, the space X contains all SOPS to Wright’s equation. Xie

showed that if x ∈ X is a SOPS to Wright’s equation with period L, then its nontrivial

Floquet multipliers λ ∈ C are given by solutions to the nonautonomous linear DDE:

y′(t) = −αf ′(x(t− 1))y(t− 1) (4.1)

68

subject to the boundary condition

λy(s) = −y(L)
x′(s+ L)

x′(L)
+ y(s+ L), s ∈ [−1, 0]. (4.2)

For a SOPS x ∈ X , showing that |λ| < 1 for all possible solutions y to (4.1) and (4.2)

it suffices to show that x is asymptotically stable. By doing so for all possible SOPS to

Wright’s equation when α ≥ 5.67, Xie achieved his proof for uniqueness. Xie’s method

has two parts: (1) obtain estimates on SOPS to Wright’s equation and (2) use these

estimates to develop an upper bound on the magnitude of their Floquet multipliers.

Xie was only able to obtain a proof for α ≥ 5.67 because of the difficulty of the first

part. In this chapter we continue Xie’s method by means of a computer-assisted proof.

Our approach to obtaining bounds on SOPS is based on an algorithmic case-by-case

analysis of the locations of the zeros of a function x ∈ X and the size of its extrema.

In [Wri55, Lemmas 4 and 5] it is shown that if x ∈ X and α > 1 then the zeros

{zi(x)}∞i=0 of x are countably infinite and zi+1(x)− zi(x) > 1. This result implies that

we can define the maps q : X → (1,∞) and q̄ : X → (1,∞) as follows given x ∈ X :

q(x) := z1(x)− z0(x),

q̄(x) := z2(x)− z1(x).

By construction, if x ∈ X , then its first zero is z0(x) = 0. Moreover, if x is a SOPS

then q(x) + q̄(x) is its period and furthermore if it solves (1.1), then its extrema are

given as

max
t∈R

x(t) = x(1),

min
t∈R

x(t) = x (q(x) + 1) .

In [BCKN14] a branch and bound algorithm is applied to the 2-dimensional domain

{maxx,minx} to show that there do not exist any SOPS to Wright’s equation for

α ≤ 1.5706, making substantial progress on Wright’s conjecture that the origin is the

global attractor to (1.2) for α < π
2 ≈ 1.57079. Without an exact value for q(x), one

cannot pinpoint the location of the minimum of x. To account for this ambiguity,

the authors in [BCKN14] use a collection of six different functions to bound x, each

69

defined relative to one of the zeros {z0(x), z1(x), z2(x)}. We use an alternative approach

that allows us to work with just two functions. In particular, we classify the space X

according to the finite dimensional reduction map κ : X → R3 defined as follows:

κ(x) := {q(x), q̄(x), x(1)}. (4.3)

Relative to a SOPS’s image under κ, we formally define bounding functions as follows.

Definition 4.1.2. Fix an interval Iα = [αmin, αmax] and a region K ⊂ R3. The

functions `K , uK : R→ R are bounding functions (associated with K) if

`K(t) ≤ x(t) ≤ uK(t), for all t ∈ R,

whenever x ∈ X is a SOPS to Wright’s equation at a parameter α ∈ Iα satisfying

κ(x) ∈ K.

In practice, we define the functions uK , `K as piecewise constant functions, which

are easy to represent and rigorously integrate on a computer. To ensure proper math-

ematical rigor and computational reliability, we have used interval arithmetic for the

execution of our computer-assisted proofs [Rum99, MKC09]. Notably, our algorithms

use a rigorous numerical integrator for delay differential equations, about which there

is a growing literature [BCKN14,MN10,Szc14,SZ16]. These computational details are

discussed further in Section 4.7.

To summarize Theorem 4.1.1, in order to prove that there is a unique SOPS, it is

sufficient to show that every SOPS is asymptotically stable. This breaks into two major

parts: (i) characterizing SOPS to Wright’s equation, and (ii) bounding their Floquet

multipliers. To accomplish the first part, we begin by constructing compact regions

K1,K2 ⊂ R3, described in Algorithm 4.3.5 and Algorithm 4.3.8 respectively, for which

K1 ∪K2 contains the κ-image of all SOPS to Wright’s equation. We then use a branch

and prune method, defined in Algorithm 4.5.1, to refine these initial global bounds.

This algorithm branches by subdividing K1 ∪ K2 into smaller pieces, and prunes by

using Algorithm 4.2.2 to develop tighter bounding functions. The end result of this

process is a collection A of subsets of K ⊂ R3, and in Theorem 4.5.2 we prove for a

given parameter range [αmin, αmax] that if x ∈ X is a SOPS then κ(x) ∈
⋃
K∈AK.

70

The task then becomes to show that every SOPS is asymptotically stable. For

a given region K ⊂ R3, we use Algorithm 4.4.2 to derive a bound on the Floquet

multipliers of any SOPS with κ-image contained in K. This is then combined with the

branch and prune method in Algorithm 4.5.3. Finally, the proof to Theorem 1.2.2 is

given in Section 6, where, in addition, we discuss the computational limitations of our

approach.

4.2 A computational approach

Theorem 4.1.1 effectively transforms Jones’ Conjecture (Conjecture 1.1.3) into the prob-

lem of studying the asymptotic dynamics of SOPS, and in turn, their Floquet multi-

pliers. In a neighborhood about a periodic function, one can develop estimates on

these Floquet multipliers [CL13, Xie91]. However these bounds rely significantly on

this neighborhood about the periodic function being relatively small. In effect, Xie

shows that any SOPS to Wright’s equation is stable for each α ≥ 5.67 by first showing

that all such solutions reside within a narrow region, and subsequently shows that all

periodic orbits in that region are asymptotically stable. This first step is the more

difficult part, and the reason Xie restricts his proof to α ≥ 5.67.

In Xie’s thesis [Xie91] a case-by-case analysis is used to obtain a region within

which all SOPS must lie. Specifically, if q̄(x) ≥ 3 then asymptotic analysis [Nus82]

precisely describes the approximate form of the SOPS with tight error estimates. For

the alternative case, Xie divided the possibility of q̄(x) < 3 into several sub-cases and

showed that each of these led to a contradiction when α ≥ 5.67. In our analysis

we make similar assumptions by considering a SOPS’s image under the map κ(x) =

{q(x), q̄(x), x(1)} and the bounding functions associated with various regions K ⊂ R3.

For any region K ⊂ R3 there is not a unique choice of bounding functions. In fact, we

develop techniques which iteratively tighten the bounding functions for a fixed region

K. If in our process of tightening bounding functions we derive a contradiction, such as

`K(t) > uK(t), then we may conclude that there does not exist any SOPS x for which

κ(x) ∈ K.

71

In performing a case-by-case analysis of SOPS to Wright’s equation, we are prin-

cipally concerned with bounding all possible SOPS, and we find it useful to introduce

the notion of an Iα-exhaustive set.

Definition 4.2.1. Fix an interval Iα = [αmin, αmax] and consider a set K ⊂ R3. The

set K is Iα-exhaustive if κ(x) ∈ K for any SOPS x ∈ X to Wright’s equation at

parameter α ∈ Iα.

To derive a sufficiently small Iα-exhaustive set we employ techniques from global

optimization theory. Specifically, we use a branch and prune algorithm which is derived

from the classical global optimization technique of branch and bound [Sch11, RR88,

HT13]. Our branch and prune is designed so that it will output an Iα-exhaustive set,

a result proved in Theorem 4.5.2.

The branch and prune algorithm begins with an initial finite set S = {Ki : Ki ⊂ R3}

for which
⋃
K∈S K is Iα-exhaustive. The construction of this initial set is described

in Section 4.3, specifically in Algorithms 4.3.5 and 4.3.8. We then alternate between

branching and pruning the elements of S. The branching subroutine divides an element

K ∈ S into two pieces KA and KB for which K = KA∪KB, and then replaces K in the

set S by the two smaller regions. The pruning algorithm uses a variety of techniques

to derive sharper bounding functions on the region K. Furthermore, if we can prove

that the preimage κ−1(K) ⊆ X cannot contain any SOPS, then we remove the region

K from the set S. The branch and prune algorithm terminates when the diameter of

every region K is less than some preset constant.

In contrast to the prototypical optimization problem of bounding the minimum of an

objective function, we are concerned with characterizing SOPS to Wright’s equation.

In particular, our pruning algorithm is designed to tighten the bounding functions

associated with a region K, reduce the size of K, and to discard the region if we

can prove that κ−1(K) does not contain any SOPS. The algorithm takes as input

an interval Iα, a region K, and a pair of bounding functions uK , `K . As output the

algorithm produces a region K ′ ⊂ K and a pair of bounding functions uK′ , `K′ . The

set K is taken to be rectangular, that is K = Iq × Iq̄ × IM where Iq = [qmin, qmax] and

72

Iq̄ = [q̄min, q̄max] and IM = [Mmin,Mmax]. Additionally, this algorithm takes as input

a computational parameter nT ime ∈ N relating to how we store the bounding functions

uK , `K on the computer (see Section 4.7).

The six steps in the pruning algorithm (Algorithm 4.2.2) are independent of one

another and can be implemented in any order. In Steps 1-4 we describe how to tighten

the bounds on K, uK and `K (see Figure 4.3). Each step is constructed so that the

output does not worsen the existing bounds. That is each step of the algorithm produces

an output for which K ′ ⊆ K and the inequalities uK′ ≤ uK and `K′ ≥ `K hold. At the

end of each step we update our input so that we use the improved bounds in the next

step. That is, we define:

K := K ′ uK := uK′ `K := `K′ (4.4)

and subsequently modify K ′, uK′ and `K′ as described in each individual step. In

Steps 5-6, we check conditions which would imply that the region K cannot contain

the κ-image of SOPS to Wright’s equation. If this is the case, the algorithm returns

K = ∅.

Algorithm 4.2.2 (Pruning Algorithm). This algorithm takes as input Iα = [αmin, αmax],

K = [qmin, qmax]× [q̄min, q̄max]× [Mmin,Mmax] ⊆ R3 and associated bounding functions

`K and uK , as well as the computational parameter nT ime ∈ N. The outputs consist of

a region K ′ ⊆ R3 and associated bounding functions `K′ and uK′.

Define Iq := [qmin, qmax], Iq̄ := [q̄min, q̄max] and IM := [Mmin,Mmax] as well as Lmin :=

qmin + q̄min, Lmax := qmax + q̄max and IL := [Lmin, Lmax].

73

1. We tighten the bounding functions associated with the region K using

uK′(t) :=


min{Mmax, uK(1)} if t = 1

min{0, uK(t)} if t ∈ [−q̄min, 0] ∪ [qmax, Lmin]

uK(t) otherwise

(4.5)

`K′(t) :=



max{Mmin, `K(1)} if t = 1

max{0, `K(t)} if t ∈ [−Lmin, q̄max] ∪ [0, qmin]

∪[Lmax, Lmin + qmin]

`K(t) otherwise.

(4.6)

Lastly we update our bounds using Line (4.4).

2. If x satisfies Wright’s equation we can use variation of parameters to refine the

bounding functions. For our computational parameter nT ime ∈ N, we base our

calculation about a collection of points separated by a uniform distance of 1/nT ime.

That is, define ∆ = 1/nT ime and I∆ := [0,∆], and fix t0 ∈ {k ·∆}k∈Z and s ∈ I∆.

We may refine the values of uK(t0 + s), uK(t0 − s), `K(t0 + s), `K(t0 − s),

temporarily defining functions uK′′ , `K′′ as follows:

uK′′(t0 + s) := uK(t0) + s · sup
α∈Iα,r∈I∆

sup
`K≤x≤uK

−α
(
ex(t0−1+r) − 1

)
(4.7)

uK′′(t0 − s) := uK(t0)− s · inf
α∈Iα,r∈I∆

inf
`K≤x≤uK

−α
(
ex(t0−1−r) − 1

)
`K′′(t0 + s) := `K(t0) + s · inf

α∈Iα,r∈I∆
inf

`K≤x≤uK
−α

(
ex(t0−1+r) − 1

)
`K′′(t0 − s) := `K(t0)− s · sup

α∈Iα,r∈I∆
sup

`K≤x≤uK
−α

(
ex(t0−1−r) − 1

)
,

and then defining:

uK′(t0 + s) := min {uK(t0 + s), uK′′(t0 + s)}

uK′(t0 − s) := min {uK(t0 − s), uK′′(t0 − s)}

`K′(t0 + s) := max {`K(t0 + s), `K′′(t0 + s)}

`K′(t0 − s) := max {`K(t0 − s), `K′′(t0 − s)} .

74

Section 4.7 explains in further detail the computational aspects of this step. Lastly

we update our bounds using Line (4.4).

3. In this step we refine our bounds on Iq and IM using uK and `K . At t = q(x) the

function x(t) changes sign from positive to negative. We sharpen the bounds on

Iq by defining:

q′min := inf{t ∈ Iq : `K(t) ≤ 0}

q′max := sup{t ∈ Iq : uK(t) ≥ 0}

Iq′ := [q′min, q
′
max]. (4.8)

Additionally we make the following refinement:

IM ′ := [Mmin,Mmax] ∩ [`K(1), uK(1)].

Lastly we define K ′ := Iq′ × Iq̄ × IM ′ and update our bounds using Line (4.4).

4. If x ∈ X is a SOPS with period L ∈ IL, then x(t) = x(t+L). Using this relation,

we make the following refinement:

`K′(t) := max

{
`K(t), min

L′∈IL
`K(t+ L′)

}
(4.9)

uK′(t) := min

{
uK(t), max

L′∈IL
uK(t+ L′)

}
. (4.10)

Lastly we update our bounds using Line (4.4) as appropriate.

5. If there is some point t ∈ R for which `K(t) > uK(t) then RETURN K ′ := ∅.

6. If mint∈Iq `K(t+ 1) > − log αmin
π/2 , then RETURN K ′ := ∅.

Proposition 4.2.3. Let Iα = [αmin, αmax], αmin ≥ π
2 ,

K = [qmin, qmax]× [q̄min, q̄max]× [Mmin,Mmax] ⊆ R3

and uK , `K be input for Algorithm 4.2.2 with any computational parameter nT ime ∈ N.

Suppose that x ∈ X is a SOPS at parameter α ∈ Iα, and let {K ′, uK′ , `K′} be the result

of Algorithm 4.2.2. If κ(x) ∈ K, then κ(x) ∈ K ′ and `K′ ≤ x ≤ uK′.

75

Proof. We prove that Proposition 4.2.3 holds for each step of the algorithm individually.

Given an interval Iα ⊂ R, let x ∈ X be a SOPS at parameter α ∈ Iα.

1. Recall κ(x) = {q(x), q̄(x),max(x)}. Since maxt∈R x = x(1) then the refinements

in (4.5) and (4.6) for the case in which t = 1 are appropriate. For the other two

refinements in each equation note that by definition a function x ∈ X is non-

negative on the interval [0, q(x)] and non-positive on the interval [q(x), q(x) +

q̄(x)]. Hence, x is non-negative on [0, qmin] and non-positive on [qmax, Lmin]. If

x is a SOPS then it has period L = q(x) + q̄(x) and we may further conclude

that it is non-negative on the intervals [−L,−q̄(x)] and [L,L + q(x)], and non-

positive on the interval [−q̄(x), 0]. Hence, x is non-negative on [−Lmin,−q̄max]

and [Lmax, Lmin + qmin], and non-positive on [−q̄min, 0]. The refinements in (4.5)

and (4.6) reflect these restrictions.

2. To estimate an upper bound on x(t0 + s), we apply variation of parameters to

Wright’s equation, obtaining

x(t0 + s) = x(t0) +

∫ t0+s

t0

−α
(
ex(r−1) − 1

)
dr. (4.11)

Taking the Riemann upper sum of this integral with step size s, we deduce that

x(t0+s) is bounded above by the RHS of (4.7). As x(t0+s) ≤ uK(t0+s) it follows

that x(t0 + s) ≤ min{uK(t0 + s), uK′′(t0 + s)}. The proofs for the refinements of

uK(t0 − s), `K(t0 + s), `K(t0 − s) follow with parity.

3. Let x ∈ X be such that κ(x) ∈ K. From our definitions of q′min and q′max it

follows that

x(t) ≥ `K(t) > 0, for all t ∈
(
qmin, q

′
min

)
,

x(t) ≤ uK(t) < 0, for all t ∈
(
q′max, qmax

)
.

Hence it follows that x(t) 6= 0 for t ∈ (qmin, q
′
min) ∪ (q′max, qmax). Since q(x) ∈ Iq,

it must follow that q(x) ∈ [q′min, q
′
max], thus justifying the refinement in (4.8).

Regarding the refinement of IM , as `K(1) ≤ x(1) ≤ uK(1) it clearly follows that

[κ(x)]3 = x(1) ∈ IM ′ .

76

4. If x is periodic with period L, then x(t) = x(t + L). Since L ∈ IL then we may

derive upper/lower bounds on x(t+ L) as follows:

min
L′∈IL

`K(t+ L′) ≤ min
L′∈IL

x(t+ L′) ≤ x(t+ L) ≤ max
L′∈IL

x(t+ L′) ≤ max
L′∈IL

uK(t+ L′).

Hence it follows that minL′∈IL `K(t+L′) ≤ `K(t) and uK(t) ≤ maxL′∈IL uK(t+L′),

thus justifying our refinements in (4.9) and (4.10).

5. If `K(t) > uK(t), then it is impossible for any x ∈ X to satisfy `K(t) ≤ x(t) ≤

uK(t). Since uK , and `K are bounding functions associated with K, this contra-

diction leads us to conclude that there cannot exist any SOPS x ∈ X for which

κ(x) ∈ K.

6. By [Wal78, Corollary 1], if x is a SOPS to Wright’s equation and α ≥ π
2 , then

minx ≤ − log α
π/2 . (4.12)

If x ∈ X is a SOPS then mint∈R x(t) = x(q+1), whereby mint∈R x(t) > mint∈Iq `k(t+

1). Hence, if mint∈Iq `k(t + 1) > − log αmin
π/2 then (4.12) is violated, and so there

cannot exist any SOPS x ∈ X for which κ(x) ∈ K.

In Chapter 5 we apply Algorithm 4.2.2 to study SOPS for α ∈ (π2 , 1.9]. However,

the algorithm has great difficulty discarding low amplitude solutions near the Hopf

bifurcation at α = π
2 . To remedy this, we use our estimates from Chapter 3 to modify

Algorithm 4.2.2 with the addition of a seventh step given in Algorithm 4.2.4. This

allows for a new way to potentially conclude that a given bounding function cannot

contain any SOPS. When Iα = [π2 , 1.6] in the proof of Theorem 1.2.3, given in Section

5.5, this additional step reduces the output size of Algorithm 4.5.1 by 50% and reduces

the runtime of Algorithm 4.5.1 by 40%. However, when Iα = [1.8, 1.9] it provides no

discernible advantage.

Algorithm 4.2.4. Append the following step to Algorithm 4.2.2.

7. Define the following:

M := sup
t∈[0,Lmax],`≤x≤u

∣∣∣ex(t) − 1
∣∣∣

g(α, ω) :=

√(
1− ω

α

)2
+ 2 ω

α (1− sinω).

77

If M < −1
2 + 1

2

√
1 + 4

√
3ω

πα g(α, ω), then RETURN K ′ = ∅.

Proposition 4.2.5. If y is a nontrivial periodic solution to (1.2) at parameter α ∈ (0, 2]

and frequency ω ≥ 1.1, then:

sup |y(t)| > −1
2 + 1

2

√
1 + 4

√
3ω

πα g(α, ω).

Proof. Define M := sup |y(t)|. From Lemma 2.3.1, with G defined as in (2.7), we know

that if G(α, ω, c) = 0, then:

‖c‖`1 ≤
π

ω
√

3
‖y′‖∞ ≤

π

ω
√

3
αM(1 +M).

From Propositions 3.5.1 and 3.5.2 (see also Lemma 5.1.7), the only solutions satisfying

‖c‖`1 < g(α, ω) are trivial. Hence (α, ω, c) would only be a trivial solution at best if

the following inequality is satisfied:

‖c‖`1 ≤
π

ω
√

3
αM(1 +M) < g(α, ω).

Solving the quadratic equation M2 +M− ω
√

3
πα g(α, ω) < 0 produces the desired inequal-

ity.

4.3 Initial Bounds on SOPS to Wright’s Equation

In order to apply the branch and prune algorithm, we must first construct an ini-

tial Iα-exhaustive set. Due to the sustained interest in Wright’s equation, there are

considerable a priori estimates we can employ to describe slowly oscillating solu-

tions [Jon62b,Wri55,Nus82]. Since considerably sharper estimates are obtained under

the assumption q̄ ≥ 3, we will construct two regions K1 and K2 corresponding to SOPS

x ∈ X for which q̄(x) ≤ 3 and q̄(x) ≥ 3 respectively. Taken together K1 ∪K2 will form

an Iα-exhaustive set, which we prove in Corollary 4.3.12.

While sharper estimates are available for additional sub-cases [Nus82], we present a

collection of these estimates we have found sufficient for our purposes. Note that these

lemmas are not a verbatim reproduction. We have translated results applicable to the

quadratic form of Wright’s equation given in (1.2) so that they apply to the exponential

form of Wright’s equation given in (1.1).

78

Lemma 4.3.1 (See [Wri55]). Let x ∈ X be a solution to (1.1) at parameter α > 0.

Then

−α(eα − 1) ≤ x(t) ≤ α

for all t > 0.

Lemma 4.3.2 (See [Jon62b, Theorem 3.1]). Let α > e−1 and suppose that x ∈ X is a

solution to (1.1). We construct a sequence of functions pi : (−∞, 1]→ R for i = 1, 2, · · ·

by setting p1(t) = αt and recursively defining:

pi+1(t) := −α
∫ t

0

(
epi(s−1) − 1

)
ds.

For example p2(t) = αt + e−α − eα(t−1). Then x(t) > pi(t) for t < 0, and x(t) < pi(t)

for t ∈ (0, 1]. Furthermore x(t) < pi(1) for all t ≥ 0. Additionally |pi(t)| is increasing

in α.

Lemma 4.3.3 (See [Jon62b, Theorem 3.4]). Suppose x ∈ X is a solution to (1.1),

suppose that q̄ ≥ 3 and that α ≥ π
2 . Define a1(α) = −(α− 1) and the recursive relation

ai+1(α) = α(eai(α) − 1). Then x(t) < −t · ai(α) for t ∈ [−1, 0) and i ∈ N.

Lemma 4.3.4. Suppose that x ∈ X is a SOPS to (1.1). If α ≥ π
2 then

1 + 1
α

(
α+e−α−1

exp{α+e−α−1}−1

)
< q < 2 + 1

α

1 + 1
α < q̄ < max{3, 2 + | eα−1

eai(α)−1
|}

where ai(α) is taken as in Lemma 4.3.3. Additionally, if α ≥ 2 then q < 2.

Proof. The upper bound on q follows from Lemma 2.3.3, and everything else follows

from [Jon62b, Theorem 3.5].

Below in Algorithm 4.3.5 we construct the initial bounds for a region K ⊆ R3

containing the κ-image of SOPS x ∈ X for which q̄(x) ≤ 3.

Algorithm 4.3.5. The input we take is an interval Iα = [αmin, αmax] and computa-

tional parameters i0, nT ime ∈ N. The output is a rectangle K = Iq × Iq̄ × IM ⊆ R3 and

bounding functions uK , `K .

79

1. Make the following definitions:

qmin := 1 + inf
α∈Iα

1
α

(
α+e−α−1

exp{α+e−α−1}−1

)
Mmin := inf

α∈Iα
log
(

1 + α−1 log α
π/2

)

Iq :=


[qmin, 2] if αmin ≥ 2[
qmin, 2 + 1

αmin

]
otherwise

Iq̄ :=
[
1 + 1

αmax
, 3
]

IM := [Mmin, pi0(1)] .

2. For pi given as in Propositions 4.3.2, define bounding functions

`K(t) :=


0 if t = 0

−αmax(eαmax − 1) otherwise

uK(t) :=


0 if t = 0

pi0(1) otherwise.

These bounding functions are stored on the computer with time resolution nT ime

as described in Section 4.7.

Proposition 4.3.6. Fix an interval Iα = [αmin, αmax] such that αmin ≥ π
2 . Let K,uK ,

`K denote the output of Algorithm 4.3.5. If x ∈ X is a SOPS to (1.1) at parameter

α ∈ Iα and q̄(x) ≤ 3 then κ(x) ∈ K and `K ≤ x ≤ uK .

Proof. We treat the two steps in order.

1. If x ∈ X is a SOPS to (1.1) and q̄(x) ≤ 3, then by Lemma 4.3.4 it follows that

q(x) ∈ Iq and q̄(x) ∈ Iq̄. By Proposition 4.3.2 it follows that x(1) ≤ pi0(1). If

x is a SOPS to Wright’s equation with α ≥ π/2 then minx ≤ − log 2α
π [Wal78].

If maxx < log
(

1 + α−1 log α
π/2

)
then by integrating Wright’s equation forward

from t = q to t = q+1 it follows that x(q+1) = minx ≤ − log α
π/2 , a contradiction.

Hence we may assume that x(1) ≥ log
(

1 + α−1 log α
π/2

)
≥Mmin.

2. Since x ∈ X then x(0) = 0, and by Lemma 4.3.1 and Proposition 4.3.2 it follows

that −α(eα − 1) ≤ x ≤ pi0(1) for any SOPS x ∈ X . Hence `K and uK are

bounding functions for K = Iq × Iq̄ × IM .

80

To construct the initial bounds for the case q̄(x) ≥ 3, we make greater use of a

priori bounds. Unfortunately the bounds on Iq̄ given in Lemma 4.3.4 are not sharp,

i.e., the width of this estimate of Iq̄ is greater than eα − 2. Using this estimate would

be computational difficult. In [Nus82] Nussbaum estimates the value of q̄ up to O(1
α)

in the case of q̄(x) ≥ 3 and α ≥ 3.8. We derive a similar estimate which only assumes

q̄(x) ≥ 2 and α > 0. This estimate is better suited for numerical applications, and only

needs bounds `(t) ≤ x(t) ≤ u(t) that are defined over the time domain t ∈ [−1, 4].

Lemma 4.3.7. Fix some α > 0 and suppose that x ∈ X is a SOPS to (1.1), and let

`, u : R → R be functions for which `(t) ≤ x(t) ≤ u(t). Let Iq ⊂ R be an interval for

which q(x) ∈ Iq and suppose that q̄(x) ≥ 2. Define the following integral bounds:

U+ := sup
q∈Iq

∫ q

q−1
max

{
eu(t) − 1, 0

}
dt U−1 := sup

q∈Iq

∫ q+1

q
−min

{
e`(t) − 1, 0

}
dt (4.13)

L+ := inf
q∈Iq

∫ q

q−1
max

{
e`(t) − 1, 0

}
dt L−1 := inf

q∈Iq

∫ q+1

q
−min

{
eu(t) − 1, 0

}
dt (4.14)

and define m := mint∈Iq `(t+ 1). Then q̄ is bounded by the inequalities

2 +
L+ − U−1
|em − 1|

≤ q̄ ≤ 2 +
U+ − L−1
|eu(−1) − 1|

. (4.15)

The proof is delayed until the end of this section. The computational details of how

we evaluate the integrals in (4.13) and (4.14) are discussed in Section 4.7. Below in

Algorithm 4.3.8 we construct the initial bounds for a region K ⊆ R3 containing the

κ-image of SOPS x ∈ X for which q̄(x) ≥ 3.

Algorithm 4.3.8. The input is an interval Iα = [αmin, αmax] and computational pa-

rameters i0, j0, nT ime, Nperiod ∈ N. The output is a rectangle K = Iq × Iq̄ × IM and

bounding functions uK , `K .

81

1. Make the following definitions for K = Iq × Iq̄ × IM :

qmin := 1 + inf
α∈Iα

1
α

(
α+e−α−1

exp{α+e−α−1}−1

)
Iq :=

[
qmin, 2 + 1

αmin

]
Iq̄ :=

[
3, sup
α∈Iα

2 +

∣∣∣∣ eα − 1

eaj0 (α) − 1

∣∣∣∣]
IM := [0, pi0(1)]

where ai(α) is taken as in Lemma 4.3.3.

2. For pi and aj given as in Propositions 4.3.2 and 4.3.3 respectively, define bounding

functions `K and uK

`K(t) :=


0 if t = 0

pi0(t) if t < 0

infα∈Iα −α(eα − 1) otherwise

uK(t) :=


0 if t = 0

supα∈Iα −t · aj0(α) if t ∈ [−1, 0)

pi0(1) otherwise.

These bounding functions are stored on the computer with time resolution nT ime

as described in Appendix 4.7.

3. Refine uK and `K according to Step 1 of Algorithm 4.2.2. For Nperiod iterations,

refine uK and `K according to Step 2 of Algorithm 4.2.2 for values t0 ∈ [−4, 4].

Then define Iq and IM according to Step 3 of Algorithm 4.2.2.

4. For values of m,L+, L−1 , U
+, U−1 given as in Proposition 4.3.7, define:

q̄min :=2 +
L+ − U−1
|em − 1|

, q̄max :=2 +
U+ − L−1
|euK(−1) − 1|

.

If q̄max < 3 then define K = ∅. Otherwise define Iq̄ = [q̄min, q̄max] and K =

Iq × Iq̄ × IM .

82

Remark 4.3.9. In practice we select i0 = 2 and j0 = 20 in Step 2, which have proved

sufficient for our purposes. In [Jon62b] the expressions for pi are given in closed form

for i = 1, 2, 3, 4, each function being increasingly complex. The sequence aj(α) is con-

vergent, and we use j0 = 20 because we have found negligible improvements when using

a larger index.

Proposition 4.3.10. Fix an interval Iα = [αmin, αmax] such that αmin ≥ π
2 , and fix

computational parameters i0, j0, nT ime, Nperiod ∈ N. Let {K,uK , `K} denote the output

of Algorithm 4.3.8. If x ∈ X is a SOPS to (1.1) and q̄(x) ≥ 3 then κ(x) ∈ K and

`K ≤ x ≤ uK .

Proof. Let x be as described above. We describe the effect of each step of the algorithm

in turn.

1. For Iq, Iq̄ and IM defined in Step 1, it follows from Lemma 4.3.4 that q(x) ∈ Iq

and q̄(x) ∈ Iq̄, and it follows from Lemma 4.3.1 and Lemma 4.3.2 that x(1) ∈ IM .

2. Since x ∈ X then x(0) = 0. By Lemma 4.3.1 then any SOPS x ∈ X satisfies the

inequality −α(eα − 1) ≤ x(t) ≤ pi0(1). The definition of the `K bound for t < 0

follows from Lemma 4.3.2, and the definition of the uK bound for t ∈ [−1, 0)

follows from Lemma 4.3.3.

3. The results of Steps 1 and 2 produce a region K with bounding functions uK , `K

for which κ(x) ∈ K whenever there is a SOPS x ∈ X satisfying q̄(x) ≥ 3. By

Proposition 4.2.3, implementing Steps 2 and 3 of Algorithm 4.2.2 preserves this

property.

4. Since q̄(x) ≥ 3 > 2 then by Lemma 4.3.7 it follows that q̄min ≤ q̄(x) ≤ q̄max.

If q̄max < 3, this contradicts our initial assumption that q̄(x) ≥ 3, whereby

there are no SOPS x ∈ X to (1.1) at any parameter α ∈ Iα for which q̄(x) ≥ 3.

Otherwise for our definition of K = Iq×Iq̄×IM it follows that κ(x) ∈ K whenever

q̄(x) ≥ 3.

We present an application of this theorem.

83

Proposition 4.3.11. If x ∈ X is a SOPS to (1.2) and α ∈ [π2 , 2.07] then q̄(x) < 3.

Proof. First we constructed subintervals Iα of [1.57, 2.07] of width 0.01, and for each

subinterval Iα we ran Algorithm 4.3.8 with computational parameters i0 = 2, j0 = 20,

ntime = 128, and Nperiod = 10 (see [JLM] for associated MATLAB code). In each case

the algorithm returned K = ∅.

Corollary 4.3.12. Fix an interval Iα = [αmin, αmax] such that αmin > π
2 , and fix

computational parameters i0, j0, Nperiod ∈ N. Let {K1, uK1, `K1} denote the output of

Algorithm 4.3.5 and let {K2, uK2, `K2} the output of Algorithm 4.3.8. Then K1 ∪K2

is Iα-exhaustive.

Proof. Suppose that x ∈ X is SOPS to (1.1). If q̄(x) ≤ 3, then by Proposition 4.3.6

it follows that κ(x) ∈ K1. If q̄(x) ≥ 3, then by Proposition 4.3.10 it follows that

κ(x) ∈ K2. Hence the set K1 ∪K2 is Iα-exhaustive.

Proof of Lemma 4.3.7. Let p denote the period of a SOPS x ∈ X . By assumption

x(p) = x(q) = 0, so by the fundamental theorem of calculus we have that for any SOPS

x,

0 = x(p)− x(q) =

∫ p

q
x′(t)dt =

∫ p

q
−α(ex(t−1) − 1)dt =

∫ p−1

q−1
(ex(t) − 1)dt.

Recall that any SOPS x(t) is positive for t ∈ (0, q) and negative for t ∈ (q, p). Hence

the integrand above is positive on (q − 1, q) and negative on (q, p− 1), thus producing

the following estimate: ∫ q

q−1
|ex(t) − 1|dt =

∫ p−1

q
|ex(t) − 1|dt. (4.16)

For t ∈ (q − 1, q) the function x(t) is positive, whereby |ex(t) − 1| = max{ex(t) − 1, 0}.

For the definitions of L+ and U+ given in (4.13) and (4.14), it follows that L+ and U+

bound the LHS of (4.16) as described below:

L+ ≤
∫ q

q−1
max{e`(t) − 1, 0}dt ≤

∫ q

q−1
|ex(t) − 1|dt ≤

∫ q

q−1
max{eu(t) − 1, 0}dt ≤ U+.

We estimate the RHS of (4.16) using the two sums below:

L−1 + L−2 ≤
∫ p−1

q
|ex(t) − 1|dt ≤ U−1 + U−2

84

where the constants L−1 , L
−
2 , U

−
1 , U

−
2 are appropriately defined so that

L−1 ≤
∫ q+1

q
|ex(t) − 1|dt ≤ U−1 (4.17)

L−2 ≤
∫ p−1

q+1
|ex(t) − 1|dt ≤ U−2 . (4.18)

For t ∈ (q, q+ 1) the function x(t) is negative, whereby |ex(t)− 1| = −min{ex(t)− 1, 0}.

It follows from the definitions of L−1 and U−1 given in (4.13) and (4.14) that (4.17) is

satisfied. To define L−2 and U−2 note that for the time period t ∈ [q + 1, p− 1] we have

that x′(t) > 0, whereby

x(t) ≥ x(q + 1)

x(t) ≤ x(p− 1) = x(−1) ≤ u(−1).

By definition m ≤ x(q + 1), and as p− q = q̄ we can then define

U−2 :=

∫ p−1

q+1
|em − 1|dt L−2 :=

∫ p−1

q+1
|eu(−1) − 1|dt

= (q̄ − 2)|em − 1| = (q̄ − 2)|eu(−1) − 1|.

Using these definitions, (4.18) is satisfied. From (4.16), we get the following upper and

lower bounds on q̄, from which (4.15) follows.

L−1 + L−2 ≤ U+ U−1 + U−2 ≥ L+

(q̄ − 2)|eu(−1) − 1| ≤ U+ − L−1 (q̄ − 2)|em − 1| ≥ L+ − U−1

q̄ ≤ 2 +
U+ − L−1
|eu(−1) − 1|

q̄ ≥ 2 +
L+ − U−1
|em − 1|

.

4.4 Bounding the Floquet Multipliers.

In this section we describe how to estimate the Floquet multipliers of SOPS contained

within the bounds derived in Sections 4.2 and 4.3. This method follows the approach

of [Xie91] with modifications to take advantage of numerical computations. To review

this method, we first define a hyperplane in C[−1, 0] as

H := {ϕ ∈ C[−1, 0] : ϕ(0) = 0}.

85

For a function y we define y0 ∈ C[−1, 0] to be the cut-off function of y on [−1, 0], and

for a constant L ∈ R we define yL := [y(t+ L)]0. Locally, one can construct a smooth

Poincaré map Φ : H → H via the solution operator. If x ∈ X is a SOPS, then x0 is a

fixed point of Φ, and the Floquet multipliers of x are the eigenvalues of DϕΦ(x0). Of

course x0 is a trivial eigenfunction with associated eigenvalue λ = 1. The nontrivial

and nonzero Floquet multipliers of the SOPS can be calculated by solving the following

boundary value problem:

Theorem 4.4.1 (See [Xie91, Theorem 2.2.3]). Suppose that x ∈ X is a SOPS to (1.1)

with period L. Define the linearized DDE below:

y′(t) = −αex(t−1)y(t− 1). (4.19)

Then λ 6= 0 is a nontrivial eigenvalue of DϕΦ(x0) if and only if (4.20) has a nonzero

solution h ∈ H for which

− y(L)
x′L(t)

x′(L)
+ yL(t) = λh(t) (4.20)

where the function h is then an eigenfunction of DϕΦ(x0) associated with λ, and y(t)

solves (4.19) with initial condition y0 = h.

We are able to bound the Floquet multipliers by studying this boundary value

problem defined in (4.19) and (4.20), a calculation which is systematized through Algo-

rithm 4.4.2. If this algorithm outputs a value Λmax < 1 then all SOPS x ∈ κ−1(K) are

asymptotically stable. We are able to improve upon Xie’s method in [Xie91,Xie93] by

repeating certain steps, somewhat analogous to the recursive bounds defined in Lemma

4.3.2. The great advantage for doing this numerically as opposed to analytically is

that these repetitions while tedious and time consuming for the mathematician are

“effortless” for the computer.

Algorithm 4.4.2. Fix Iα = [αmin, αmax] and K = Iq × Iq̄ × IM ⊂ R3 (where Iq =

[qmin, qmax], Iq̄ = [q̄min, q̄max] and IM = [Mmin,Mmax]) and fix associated bounding

functions uK , `K . Furthermore, fix computational parameters nT ime, NFloquet, MFloquet ∈

N. The output of the algorithm is Λmax ∈ R+.

86

1. Define Lmin := qmin + q̄min, Lmax := qmax + q̄max and IL := [Lmin, Lmax], and

define the function Y : [−1, 0]→ R by

Y (t) :=


1 if t ∈ [−1, 0)

0 if t = 0.

2. Extend the function Y : [−1, Lmax]→ R by

Y (t) := αmax

∫ t

0

(
Y (s− 1) sup

`K≤x≤uK
ex(s−1)

)
ds if t ≥ 0, (4.21)

evaluating the integral using an upper Riemann sum with a uniform step size of

1/nT ime. Section 4.7 discusses in further detail how we compute this integral.

3. Define Z as below:

Z(t) :=

(
max

L∈[Lmin,Lmax]
Y (L)

)
max

`K≤x≤uK

∣∣∣∣∣ex(t−1) − 1

ex(−1) − 1

∣∣∣∣∣+ Y (t).

4. For t ∈ [−Lmin, 0] define ZL as below:

ZL(t) := max
Lmin≤L≤Lmax

Z(t+ L).

5. For t ∈ [−(Lmin − 1), 0] refine the function ZL by

Z ′L(−t) := αmax

∫ 0

−t

(
ZL(s− 1) sup

`K≤x≤uK
ex(s−1)

)
ds (4.22)

ZL(−t) := min
{
ZL(−t), Z ′L(−t)

}
,

evaluating the integral using an upper Riemann sum with a uniform step size of

1/nT ime. Section 4.7 discusses in further detail how we compute this integral.

Repeat this step MFloquet number of times.

6. Define

Λmax := sup
t∈[−1,0]

ZL(t).

7. If Λmax < 1 then STOP.

8. Otherwise define

Y (t) := min {1, ZL(t)} , for t ∈ [−1, 0] (4.23)

and GOTO Step 2. After reaching this step NFloquet times, exit the program.

87

Theorem 4.4.3. Fix K = [qmin, qmax] × [q̄min, q̄max] × [Mmin,Mmax] ⊆ R3 and Iα =

[αmin, αmax]. If Algorithm 4.4.2 terminates with Λmax < 1, then all SOPS x ∈ X

satisfying κ(x) ∈ K must be asymptotically stable. If the algorithm terminates having

never reached Step 8, then the norm of all nontrivial Floquet multiplier are bounded

above by Λmax.

Proof. Fix some x ∈ X for which κ(x) ∈ K. By the definition made in Step 1, the

period of x is some L ∈ IL. We use Theorem 4.4.1 to estimate the range of Floquet

multipliers of x. That is, fix λ ∈ C and h ∈ H and suppose that (λ, h) is a solution to

(4.20). Define y(t) to be the solution of (4.19) through h, define z as

z(t) := −y(L)
x′(t)

x′(L)
+ y(t) (4.24)

and define zL(t) := z(t+ L). Hence (λ, h) is a solution to (4.20) if and only if zL(t) =

λh(t) for t ∈ [−1, 0]. As (4.19) is a linear DDE, we may assume without loss of generality

that supt∈[−1,0] |h(t)| = 1. Thereby, it follows that

|λ| = sup
t∈[−1,0]

|zL(t)|. (4.25)

If we can show that the RHS of (4.25) is less than 1 uniformly for x ∈ κ−1(K), then

we will have proven that all such SOPS are asymptotically stable. We prove that Steps

1-7 of Algorithm 4.4.2 produce functions Y , Z and ZL and a bound Λmax which satisfy

the following inequalities uniformly for x ∈ κ−1(K)

|y(t)| ≤ Y (t), |z(t)| ≤ Z(t), |zL(t)| ≤ ZL(t), |λ| ≤ Λmax.

We describe the results of each step of Algorithm 4.4.2 in order, and then discuss how

Step 8 affects what we may deduce about the output Λmax.

1. By definition, if h ∈ H then h(0) = 0, and by assumption |h(t)| ≤ 1 for t ∈ [−1, 0].

Thereby our definition of Y (t) in Step 1 satisfies |y(t)| ≤ Y (t) for t ∈ [−1, 0].

2. By definition y solves the linear DDE in (4.19). By variation of parameters it

follows that

y(t) =

∫ t

0
−αex(s−1)y(s− 1)ds

88

for all t ≥ 0. Equation (4.21) follows from this by taking a supremum over α ∈ Iα

and `K ≤ x ≤ uK . Thereby, Step 2 produces a function Y satisfying |y(t)| ≤ Y (t)

for t ≥ 0.

3. Step 3 defines a function Z to bound the norm of z defined in (4.24). As x′(t) =

−α(ex(t−1) − 1) it follows that

|z(t)| ≤

∣∣∣∣∣y(L)
ex(t−1) − 1

ex(L−1) − 1

∣∣∣∣∣+ |y(t)|.

By periodicity, we may replace x′(L−1) with x′(−1). By taking a supremum over

L ∈ IL and `K ≤ x ≤ uK , it follows that the function defined in Step 3 satisfies

|z(t)| ≤ Z(t).

4. Since L ∈ IL and |z(t)| ≤ Z(t), we obtain the estimate for t ∈ [−Lmin, 0] below:

|z(t+ L)| ≤ Z(t+ L) ≤ max
Lmin≤L≤Lmax

Z(t+ L) = ZL(t).

Since by definition zL(t) = [z(t+L)]0, then for the definition of ZL in Step 4, we

have |zL(t)| ≤ ZL(t) for t ∈ [−1, 0].

5. Note that both y and x′ satisfy (4.19), so by linearity z solves (4.19). Since

zL(0) = 0, we obtain the following estimate using variation of parameters:

zL(−t) = −
∫ 0

−t
−αex(s−1)zL(s− 1)ds.

By taking the suprema over α ∈ Iα and `K ≤ x ≤ uK as in Step 5, we obtain

a refinement for which |zL(t)| ≤ ZL(t). This refinement can be repeated any

number of times.

6. If (λ, h) solves (4.19), then by (4.25) we obtain the following:

|λ| = sup
t∈[−1,0]

|zL(t)| ≤ sup
t∈[−1,0]

ZL(t) = Λmax.

Hence |λ| < Λmax uniformly for x ∈ κ−1(K).

7. We have shown that |λ| ≤ Λmax for any Floquet multiplier λ. If Λmax < 1, then

it follows that x is asymptotically stable.

89

8. If Λmax ≥ 1, then we make the assumption that x is not asymptotically stable for

the sake of contradiction. Then the largest Floquet multiplier λmax of x satisfies

|λmax| ∈ [1,Λmax]. If h is an eigenfunction associated with λmax, then zL(t) =

λmax · h(t) for t ∈ [−1, 0] and furthermore |h(t)| = |λmax|−1|zL(t)| ≤ |zL(t)|.

Hence for all t ∈ [−1, 0] we may assume that the eigenfunction h(t) satisfies the

inequality:

|h(t)| ≤ min{1, |zL(t)|}.

By definition y(t) = h(t) for t ∈ [−1, 0]. Hence for our refinement of Y in (4.23)

it follows that |y(t)| ≤ Y (t) for t ∈ [−1, 0].

If the algorithm terminates having never passed through Step 8, then |λ| ≤ Λmax < 1

for all solutions (λ, h) to (4.20) uniformly for all SOPS x ∈ κ−1(K). If the program

terminates having passed through Step 8 at least once, then it has shown that every

solution (λ, h) to (4.20) satisfies |λ| < 1 under the assumption that there exists a

solution for which |λ| ≥ 1, a contradiction. In this case we have shown that x is

asymptotically stable without calculating an explicit bound on its Floquet multipliers.

4.5 A Comprehensive Algorithm

We state our branch and prune algorithm in Algorithm 4.5.1, and describe how we use

it to prove the uniqueness of SOPS to Wright’s equation in Algorithm 4.5.3. Algorithm

4.5.1 takes as input an interval Iα ⊆ R and constructs an Iα-exhaustive set. Further-

more, this algorithm uses several computational parameters: ε1, ε2 ∈ R which defines

the algorithm’s stopping criterion, nT ime ∈ N which defines the time resolution used in

representing bounding functions on the computer, and Nprune ∈ N which defines the

number of times the pruning algorithm is performed before branching. Additionally

it requires the computational parameters i0, j0, NPeriod ∈ N needed for running Algo-

rithms 4.3.5 and 4.3.8. As we have stated before, this is a canonical algorithm which

terminates in finite time (see [Sch11,RR88,HT13]).

90

Algorithm 4.5.1. The input is an interval Iα = [αmin, αmax] and computational

parameters ε1, ε2 > 0 and i0, j0, nT ime, NPeriod, NPrune ∈ N. The output is a set

A = {Ki : Ki ⊆ R3} and an associated collection of bounding functions {uK , `K}K∈A.

1. Construct regions K1 and K2 according to Algorithms 4.3.5 and 4.3.8 respectively.

Define the sets S = {K1,K2} and A = ∅.

2. If S = ∅ then return A and STOP.

3. Define K to be an element of S and remove K from S.

4. Define {K ′, uK′ , `K′} to be the output of Algorithm 4.2.2 using input K,uK , `K

and computational parameter nT ime. Then redefine {K,uK , `K} := {K ′, uK′ , `K′}.

Repeat this step NPrune times.

5. If the diameter of K is less than ε1 and q̄ < 3, or the diameter of K is less than

ε2 and q̄ ≥ 3, then add K to A and GOTO Step 2.

6. Subdivide K along its fattest dimension into two regions KA and KB. That is,

write K = I1 × I2 × I3 where each Ii is given by the interval Ii = [ai, bi] and fix

some j ∈ {1, 2, 3} which maximizes |bj − aj |. The regions KA := I ′1 × I ′2 × I ′3 and

KB := I ′′1 × I ′′2 × I ′′3 are defined according to the following formulas

I ′i :=


[ai, bi] if i 6= j

[ai, (ai + bi)/2] if i = j

I ′′i :=


[ai, bi] if i 6= j

[(ai + bi)/2, bi] if i = j.

(4.26)

7. Add to S the regions KA and KB, each with associated bounding functions uK

and `K . Then GOTO Step 2.

As a notational convention for the next two theorems we define
⋃
S :=

⋃
K∈S K.

Theorem 4.5.2. Fix an interval Iα = [αmin, αmax] such that αmin ≥ π
2 , and fix any

selection of computational parameters ε > 0 and i0, j0, nT ime, NPeriod, NPrune ∈ N. If

A is the output of Algorithm 4.5.1 with these inputs, then
⋃
A is Iα-exhaustive.

91

Proof. We prove by induction that every time the algorithm arrives at Step 2, then⋃
S ∪

⋃
A is Iα-exhaustive. This suffices to prove the theorem, as the only way for the

algorithm to exit is on Step 2 when S = ∅.

For the initial case, the set
⋃
S = K1 ∪K2 produced in Step 1 is Iα-exhaustive by

Proposition 4.3.12. The result of Step 3 simply rearranges the collection of regions, after

which
⋃
S ∪

⋃
A ∪ K is Iα-exhaustive. In Step 4, this Iα-exhaustivity is maintained

when replacing K with the output of Algorithm 4.2.2 as a direct result of Proposition

4.2.3. If Step 5 adds K to A, then when the algorithm arrives at Step 2 the set
⋃
S∪
⋃
A

will be Iα-exhaustive. Otherwise Step 6 will divide K into two regions KA and KB for

which K = KA ∪ KB. Then in Step 7 both KA and KB are then added to S, after

which
⋃
S ∪

⋃
A is still Iα-exhaustive.

We are finally able to state our algorithm which can prove that Wright’s equation

has a unique SOPS over a given range of parameters.

Algorithm 4.5.3. The input is an interval Iα = [αmin, αmax] and computational pa-

rameters ε1, ε2 > 0 and i0, j0, nT ime, NPeriod, NPrune, NFloquet,MFloquet ∈ N. The out-

put is a True or False statement.

1. Run Algorithm 4.5.1 with input Iα and computational parameters ε1, ε2, i0, j0,

nT ime, NPeriod and NPrune. Define A and {uK , `K}K∈A to be its output.

2. For each K ∈ A calculate Λmax(K) to be the output of Algorithm 4.4.2, run with

input Iα, K, uK , `K , and computational parameters nT ime, NFloquet and MFloquet.

3. If Λmax(K) < 1 for all K ∈ A, then return TRUE. Otherwise return FALSE.

Theorem 4.5.4. Fix an interval Iα = [αmin, αmax] with αmin > π/2. If Algorithm

4.5.3 returns the output TRUE for any selection of computational parameters ε > 0,

and i0, j0, nT ime, NPrune, NFloquet,MFloquet ∈ N, then there exists a unique SOPS to

Wright’s equation for all α ∈ Iα.

Proof. By Theorem 4.5.2 it follows that
⋃
A =

⋃
K∈AK is an Iα exhaustive set. That

is, by Definition 4.2.1, up to a time translation any SOPS to Wright’s equation for

92

parameter α ∈ Iα can be expressed as a function x ∈ X for which κ(x) ∈
⋃
A. If

Algorithm 4.4.2 terminates with Λmax(K) < 1 for all K ∈ A, then by Theorem 4.4.3

it follows that any SOPS x ∈ X satisfying κ(x) ∈
⋃
A must be asymptotically stable.

Hence, by Theorem 4.1.1 it follows that there must be a unique SOPS to Wright’s

equation for each α ∈ Iα.

4.6 Discussion

In Algorithm 4.5.3 we defined an algorithm which, if successful, proves the uniqueness

of SOPS to Wright’s equation for a finite range of parameters Iα. Below we describe

how we applied this algorithm to prove Theorem 1.2.2.

Proof of Theorem 1.2.2. To prove Theorem 1.2.2 we divide the interval [1.9, 6.0] into

various subintervals Iα, and then divide each of these intervals into further subintervals

of width ∆α. For example, the interval Iα = [2.1, 6.0] with ∆α = 0.1 was divided into

subintervals [2.1, 2.2], [2.2, 2.3], . . . , [5.9, 6.0]. The various computational parameters

we used are given in the table below (see [JLM] for associated MATLAB code).

Iα ∆α nT ime ε1 ε2 i0 j0 NPeriod NPrune NFloquet MFloquet

[1.90, 1.96] 0.01 128 0.02 0.25 2 20 10 4 20 5

[1.96, 2.10] 0.01 64 0.05 0.25 2 20 10 4 20 5

[2.10, 6.00] 0.10 32 0.05 0.25 2 20 10 4 20 5

Table 4.1: For descriptions of how these parameters affect Algorithm 4.5.3, refer to

Algorithms 4.3.5 and 4.3.8 for i0, j0 and NPrune; refer to Algorithm 4.4.2 for NFloquet

and MFloquet; and refer to Algorithm 4.5.1 for ε1, ε2 and NPrune.

For each of these parameter values, we ran Algorithm 4.5.3 which returned TRUE as

its output. By Theorem 4.5.4 it follows that there must be a unique SOPS to Wright’s

equation for each α ∈ [1.9, 6.0].

As described in Theorem 4.4.3, if Algorithm 4.4.2 terminates without having reached

Step 8, then it produces explicit bounds on the Floquet multipliers of the SOPS to

93

Wright’s equation. These bounds are summarized in Figure 4.1. In the range [2.2, 6.0]

Algorithm 4.4.2 exits on Step 7, so by Theorem 4.4.3 we obtain upper bounds on the

Floquet multipliers. In the regime α ∈ [1.90, 2.20] Algorithm 4.4.2 only terminated

after reaching Step 8 at least once, so we are only able to deduce that any non-trivial

Floquet multiplier has modulus strictly bounded above by 1. In total, the computation

took 115 hours to run using a i7-5500U processor, and Algorithm 4.5.1 accounted for

94% of the computation time.

Running Algorithm 4.5.3 at high values of α is computationally expensive. This is

because the period length of SOPS to Wright’s equation grows exponentially [Nus82],

whereby our algorithm’s run time and memory requirements also increase exponentially

in α. Nevertheless, proving Theorem 1.2.2 with an upper limit of α = 6 is sufficient for

our purposes considering the results in [Xie91] proved uniqueness for α ≥ 5.67.

π/2
1 2 3 4 5 6

α

10-10

10-8

10-6

10-4

0.01

1

Figure 4.1: An upper bound on the modulus of the Floquet multipliers for SOPS to
(1.1) for α ∈ [1.9, 6.0].

A different challenge presents itself for decreasing the lower limit of α = 1.9 in Theo-

rem 1.2.2. Namely, Xie’s method for bounding the largest Floquet multiplier is not well

suited to weakly attracting SOPS. Even when using precise numerical approximations

(from [Les10]) of SOPS to Wright’s equation at single values of α, Algorithm 4.4.2 was

only able to show that the SOPS was asymptotically stable for values of α no lower than

1.85. By decreasing the parameters ∆α and ε1, and increasing the other computational

parameters, we could expect the uniqueness result for α ≥ 1.9 could be pushed closer to

94

α = 1.85. However we will need a different approach to finish the proof of Conjecture

1.1.3. Nevertheless, we can now prove that there are no folds in the principal branch

of SOPS.

Corollary 4.6.1 (See [vdBJ18]). The branch of SOPS originating from the Hopf bi-

furcation at α = π
2 has no folds or secondary bifurcations for any α > π

2 .

Proof. We prove the corollary by combining results on four overlapping subintervals of

(π2 ,∞). In Theorem 2.3.8 we show that the (continuous) branch of SOPS originating

from the Hopf bifurcation does not have any folds or secondary bifurcations for α ∈

(π2 ,
π
2 + δ2] where δ2 = 6.830 × 10−3. In Theorem 1.2.2 the same result is proved for

α ∈ [π2 + δ3, 2.3], where δ3 = 7.3165 × 10−4. In [JLM17] it is shown that there is a

unique SOPS for α in the interval [1.9, 6.0]. Since 1.9 ≤ 2.3, then the SOPS in this

interval belong to the branch originating from the Hopf bifurcation, and since they are

unique for each α, the branch is continuous and cannot have any folds or secondary

bifurcations. In [Xie91] it is shown that there is a unique SOPS for α in the interval

[5.67,+∞), and by a similar argument the branch of SOPS cannot have any folds or

secondary bifurcations in this interval either. Since

(π2 ,∞) = (π2 ,
π
2 + δ2] ∪ [π2 + δ3, 2.3] ∪ [1.9, 6.0] ∪ [5.67,∞),

it follows that the branch of SOPS originating from the Hopf bifurcation at α = π
2 has

no folds or secondary bifurcations for any α > π
2 .

4.7 Computational Considerations

To implement our algorithm we used Intlab: an interval arithmetic package for Matlab

[Rum99]. Some of the calculations we performed are a simple application of interval

arithmetic, such as defining Iq, Iq̄, IM in Algorithm 4.3.5. However there is a nontrivial

degree of complexity in how we store and represent the functions used in the algorithms,

such as uK , `K in Algorithm 4.2.2 or Y, Z, ZL in Algorithm 4.4.2. In short, we defined

these functions to be piecewise constant.

95

To explain our methodology, first fix a constant nT ime ∈ N. To define an interval

extension of a function y : R → R, we define a collection of intervals IPi , I
I
i ⊆ R for

i ∈ Z and define Y as follows:

Y (t) =


IPi if t = i

nTime

IIi if t ∈
(

i
nTime

, i+1
nTime

)
.

Of course any computer has finite memory, and so we would only store the function

Y over a finite domain. Furthermore, as the bounding functions u, ` are intended to

provide upper and lower bounds on a function x, we simply define an interval valued

function X(t) = [`(t), u(t)]. In Figure 4.2 we present a graphical representation of how

we store such a function, wherein we have defined the function X(t) for t ∈ [−1, 0] as

follows:

IP−4 :=[−2.0,−1.2] II−4 :=[−2.0,−0.9]

IP−3 :=[−1.6,−0.9] II−3 :=[−1.6,−0.6]

IP−2 :=[−1.2,−0.6] II−2 :=[−1.2,−0.3]

IP−1 :=[−0.8,−0.3] II−1 :=[−0.8,−0.0]

IP0 :=[0.0, 0.0]

For such a function, it is a straightforward procedure to calculate its supremum.

To calculate supt∈[a,b] x(t) one simply needs to compare the intervals IPi for which

a ≤ i
nTime

≤ b, and the intervals IIi for which a − n−1
T ime <

i
nTime

< b. Both these

collections of intervals are finite. For bounds which are defined to be the integrals of

various functions, as in (4.13) and (4.14) of Lemma 4.3.7, we use a Riemann sum of

step size 1/nT ime.

Unfortunately there is a loss in fidelity when we numerically integrate these func-

tions, as we do in Step 2 of Algorithm 4.2.2. Therein we refine the values of uK′(t0 +s),

`K′(t0 +s), uK′(t0−s) and `K′(t0−s), where t0 = i0
nTime

and s ∈ [0, 1
nTime

]. To just dis-

cuss the refinements of uK′(t0+s) and `K′(t0+s), if we choose s = 1
nTime

, then this proce-

dure refines the bound of [`K′(
i0+1
nTime

), uK′(
i0+1
nTime

)], a value which is stored in the interval

IPi0+1. However in order to refine IIi0 this interval must include [`K′(t0 +s′), uK′(t0 +s′)]

96

for all s′ ∈ (t0, t0+ 1
nTime

). This is represented in Figure 4.2, where the darker red region

represents the sharpest possible bounds able to be derived from in Step 2 of Algorithm

4.2.2 when integrating the initial data given above, and the pink region represents the

values we store in the computer. When we define functions as integrals as in Steps 2

and 5 of Algorithm 4.4.2 we use the same procedure.

-1.0 -0.5 0.5 1.0 1.5 2.0

-3

-2

-1

1

2

Figure 4.2: An example of how we store an interval valued function [`(t), u(t)] in our
algorithm.

97

-4 -2 0 2 4 6
-20

-15

-10

-5

0

5

(a) Initial bounding functions for parameters Iα = [2.2, 2.25] associated with a region K =
Iq × Iq̄ × IM where Iq = [1.20, 2.00], Iq̄ = ×[1.44, 3.00] and IM = [0.14, 1.36].

-4 -2 0 2 4 6
-20

-15

-10

-5

0

5

(b) The bounding functions after Step 1.

-4 -2 0 2 4 6
-20

-15

-10

-5

0

5

(c) The bounding functions midway
through Step 2 (solving the DDE forward).

-4 -2 0 2 4 6
-20

-15

-10

-5

0

5

(d) The bounding functions after Step 2
(solving the DDE backwards).

-4 -2 0 2 4 6
-20

-15

-10

-5

0

5

(e) The bounding functions after Step 4
(imposing periodicity conditions).

Figure 4.3: An example of how the various steps in Algorithm 4.2.2 tighten the bounding
functions associated with a region K.

98

Chapter 5

Ruling out Isolas

5.1 Outline of Proof

In this chapter we show that there is a unique slowly oscillating periodic orbit to (1.2)

for all α ∈ (π2 , 1.9]. As in Chapter 2, we recast the problem of studying the periodic

orbits of (1.2) as the problem of finding the zeros of a functional F defined in a space

of Fourier coefficients. Since periodic solutions to (1.2) must have a high degree of

smoothness, in particular real analyticity [Wri55,Nus73], their Fourier coefficients will

decay very rapidly. That is to say, the functional we are interested in can be well

approximated by a Galerkin projection onto a finite number of Fourier modes.

In finite dimensions, there are efficacious techniques for rigorously locating and

enumerating the solutions to a system of nonlinear equations by way of interval arith-

metic [Neu90,HW03,MKC09]. We apply these techniques in infinite dimensions, specif-

ically the branch and bound method, also referred to as a branch and prune method.

That is, we first construct a bounded set X of Fourier coefficients which contains all the

zeros of F (see Section 5.4). Then we partition X into a finite number of pieces {Xn}

which we refer to as cubes (see Definition 5.1.6). For each cube Xn we are interested

to know whether:

(a) there exists a unique point x̂ ∈ Xn for which F (x̂) = 0, or

(b) there does not exist any points x̂ ∈ Xn for which F (x̂) = 0.

If we can show that (a) holds for one cube, and (b) holds for all the other cubes, then

we will have shown that F = 0 has a unique solution.

This approach requires some additional preparation. Since periodic orbits to (1.2)

form a 2-manifold in phase space [Reg89], the functional F we construct in Section 5.1.2

99

will not have isolated zeros. The numerical techniques we employ are suited to finding

isolated zeros, so it is necessary to reduce the dimension of the kernel by two. Along

the principal branch α can be taken as one of the coordinate dimensions. We reduce

this dimension by treating α as a parameter and performing our estimates uniformly

in α. The other dimension can be attributed to time translation; if y(t) is a periodic

orbit, then so is y(t+ τ) for any τ ∈ R. We reduce this dimension by imposing a phase

condition; we may assume without loss of generality that the first Fourier coefficient is

a positive real number (see Proposition 5.4.4).

The central technique we use to determine whether (a) or (b) holds for a given cube

is the Krawczyk method [Neu90,MKC09,HW03,Moo77]. For a function f ∈ C1(Rn,Rn)

the Krawczyk operator takes as input a rectangular set X ⊆ Rn and produces as output

a rectangular set K(X) ⊆ Rn. This set K(X) has the properties that, (i) if K(X) ⊆ X,

then there exists a unique point x̂ ∈ X for which f(x̂) = 0, and (ii) if x̂ ∈ X and

f(x̂) = 0, then x̂ ∈ K(X). Clearly (i) implies (a), and if X ∩K(X) = ∅ then (b) follows.

Additionally, even if we can prove neither (a) nor (b) our situation could still improve;

we can replace X 7→ X ∩ K(X) without losing any solutions.

Adjustments are needed to generalize the Krawczyk operator to infinite dimensional

systems. In [GZ07] a Krawczyk operator is defined in Hilbert space to study fixed

points and period-2 orbits in an infinite dimensional map. In Section 5.1.1 we present

a generalization of the Krawczyk operator to Banach spaces.

To determine whether (a) or (b) holds the Krawczyk operator by itself is not always

sufficient, and we combine several additional tests to create a single pruning operator

(see Section 5.3). One problem is that y ≡ 0 is always a trivial periodic solution to

(1.2). To avoid this pitfall we use Lemma 5.1.7, a corollary to Propositions 3.5.1 and

3.5.2, which rules out small periodic solutions. A further difficulty is that at the Hopf

bifurcation, the principal branch of periodic solutions is pinched to a point as their

amplitudes approach zero. To handle this case, we use Theorem 2.3.11 which explicitly

gives a neighborhood about the Hopf bifurcation within which the only solutions that

could exist are on the principal branch. Lastly, and most simply, if we can directly

show that ‖F‖ is bounded away from zero on a cube Xn, then (b) holds.

100

1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
0

0.1

0.2

0.3

0.4

0.5

0.6

a
1

Figure 5.1: The main result of this chapter is a collection of “cubes” in Fourier space
which cover the Fourier coefficients of SOPS to (1.2). The first Fourier coefficient of
this cover is plotted here with respect to α. Inside each green cube there exists a unique
SOPS corresponding to each α, essentially by Theorem 5.1.2. Inside each blue cube the
only SOPS that can exist are on the principal branch, by Theorem 2.3.11.

Algorithm 5.5.1 follows the standard format of a global branch and bound method.

In short, for a collection of cubes we successively prune each of its cubes. If (a) holds

for a given cube, then it is set aside and added to a list of solutions. If (b) holds for a

given cube, then that cube is discarded. If the pruning operator significantly reduces

the size of a cube, then the pruning operator is applied again. If none of these are the

case, then the cube is split in half, and both pieces are added back to the collection

of cubes to inspect. This process repeats until all of the cubes have been removed or

reduced to a sufficiently small size.

The output of Algorithm 5.5.1 is three collections of cubes: A, B, and R (see Figure

5.1). In Theorem 5.5.2 we show that these sets have the properties that, (i) each cube

in A has a unique solution with respect to α, (ii) the cubes in B are near the Hopf

bifurcation, with any solutions contained therein residing on the principal branch, and

(iii) all solutions to F = 0 are contained in
⋃
A ∪ B ∪R.

Ideally R = ∅, and this will often be the case if the zeros of F are simple and the

algorithm is allowed to run a sufficiently long time. However we are trying to verify

101

not just simple, isolated solutions, but a 1-parameter family of solutions. As such,

sometimes when a cube is split in two this division will bisect the curve of solutions

(see Figure 5.4). When this occurs the algorithm will be forced to subdivide many

cubes near where the solution curve was bisected, resulting in the variably sized cubes

noticeable in Figure 5.1. To address this we recombine the cubes in R which have the

same α values, then subsequently use the Krawczyk operator to show that (a) holds on

the recombined cubes (see Algorithm 5.5.3). In this fashion, we prove Theorem 1.2.3.

5.1.1 Krawczyk Operator

In numerical analysis there are many variations on the theme of Newton’s method:

xn+1 7→ xn − Df(xn)−1f(xn). As inverting a matrix is computationally expensive,

one alternative method is to replace DF (xn)−1 with a fixed matrix A† ≈ Df(x0)−1.

If f(x0) ≈ 0, then the Newton-Kantorovich theorem gives conditions for when the

map T (x) = x − A†f(x) defines a contraction map in a neighborhood about x0. The

Krawczyk operator may be thought of as a way of bounding the image of T , itself

being defined on rectangular sets X ⊆ Rn and having the property that T (X) ⊆

K(X,x0). Rectangular, in the sense that X can be given as the product of intervals

in the coordinate directions of Rn. Here we generalize the Krawczyk operator to non-

rectangular subsets of Banach spaces.

Definition 5.1.1. Let Y, Z denote Banach spaces and let A† : Z → Y be an injective,

bounded linear operator. Fix a convex, closed and bounded set X ⊆ Y , a neighborhood

U ⊇ X, and a Frechet differentiable function f : U → Z. Let

(I −A†Df(X))(X − x̄) = conv

 ⋃
x1,x2∈X

(I −A†Df(x1))(x2 − x̄)

 ,

where conv denotes the closure of the convex hull. For a point x̄ ∈ X we define the

Krawczyk operator K(X, x̄) as:

K(X, x̄) := x̄−A†f(x̄) + (I −A†Df(X))(X − x̄) ⊆ Y. (5.1)

Typically x̄ is taken to be the center of X, and A† is taken to be an approximate inverse

of DF (x̄). If K(X, x̄) ⊆ X for a rectangular set X ⊆ Rn, then there exists a unique x̂

102

such that f(x̂) = 0. In Theorem 5.1.2 we prove an analogous result. The existence of a

fixed point is achieved by the Schauder fixed point theorem. However to prove unique-

ness, dropping the rectangular condition causes problems even in finite dimensions; in

Theorem 5.1.2 (iv) we prescribe a hypothesis sufficient for proving uniquessness in our

level of generality.

Theorem 5.1.2. Suppose K is a Krawczyk operator as given in Definition 5.1.1 and

T := x−A†f(x).

(i) If x ∈ X, then T (x) ∈ K(X, x̄).

(ii) If x̂ ∈ X and f(x̂) = 0, then x̂ ∈ K(X, x̄).

(iii) If K(X, x̄) ⊆ X and X is compact, then there exists a point x̂ ∈ X such that

f(x̂) = 0.

(iv) If K(X, x̄) ⊆ X and there exists 0 ≤ λ < 1 such that (I − A†Df(X))(X − x̄) ⊆

λ · (X − x̄), then there exists a unique point x̂ ∈ X such that f(x̂) = 0.

Proof.

(i) Fix a point x ∈ X and write h = x − x̄. By the mean-value theorem for Frechet

differentiable functions [AP95], we have:

T (x) = x̄−A†f(x̄) +

∫ 1

0
DT (x̄+ th) · h dt

= x̄−A†f(x̄) + lim
N→∞

N∑
i=1

1
N

(
I −A†Df(x̄+ i

N h)
)
· h

∈ x̄−A†f(x̄) + conv
((
I −A†Df(X)

)
· (x− x̄)

)
⊆ K(X, x̄).

(ii) If there is some x̂ ∈ X such that f(x̂) = 0, then x̂ = T (x̂) ∈ K(X, x̄).

(iii) Since T (X) ⊆ K(X, x̄) by (i) and K(X, x̄) ⊆ X by assumption, therefore T (X) ⊆

X. As T is continuous and X is convex and compact, then by the Schauder fixed

point theorem there exists some x̂ ∈ X such that x̂ = T (x̂). Since A is injective,

103

the zeros of f are in bijective correspondence with the fixed points of T , thereby

f(x̂) = 0.

(iv) Inductively define: X0 = X, x0 = x̄, and Xn+1 = T (Xn), xn+1 = T (xn). Note

that as T (X) ⊆ X then Xn+1 ⊆ Xn for all n. We show that Xn ⊆ xn+λn(X0−x0).

This is clearly true for n = 0. For n ≥ 1 then:

Xn+1 ⊆ K(Xn, xn)

= xn −A†f(xn) + (I −A†Df(Xn)) · (Xn − xn)

⊆ xn+1 + (I −A†Df(X0)) · λn(X0 − x0)

⊆ xn+1 + λn+1(X0 − x0).

Since λn‖X0 − x0‖ can be made arbitrarily small and {xn}∞n=N ⊆ XN , it follows

that {xn} is a Cauchy sequence. As X is complete, then limxn = x̂ and addition-

ally
⋂∞
n=0Xn = x̂. Thereby x̂ is the unique fixed point of T in X0 = X and the

unique zero of f in X.

5.1.2 Functions and Domains

As in Chapter 2, we convert Wright’s equation into a functional equation on the space

of Fourier coefficients. For a continuous periodic function y : R → R with frequency

ω > 0, we may write it as:

y(t) =
∑
k∈Z

cke
iωkt (5.2)

where ck ∈ C and
∑

k∈Z |ck|2 <∞. By Theorem 2.1.4 it suffices to work with sequences

{ck}∞k=1 to study periodic solutions to (1.2). Hence we define the following Banach

spaces:

`1 := {{ck}∞k=1 : ck ∈ C and ‖c‖`1 <∞} ‖c‖`1 =2

∞∑
k=1

|ck| (5.3)

Ωs := {{ck}∞k=1 : ck ∈ C and ‖c‖s <∞} ‖c‖s = sup
k∈N

ks|ck|. (5.4)

104

The smoother a function is the faster its Fourier coefficients will decay; if a function

is s–times continuously differentiable, then its Fourier coefficients will be in Ωs. Since

periodic solutions to (1.2) are real analytic [Wri55,Nus73], it follows that their Fourier

coefficients will be in Ωs for all s ≥ 0.

If y is a solution to Wright’s equation, then by substituting (5.2) into (1.2) we

obtain: ∑
k∈Z

iωkcke
iωkt = −α

(∑
k∈Z

cke
−iωkeiωkt

)(
1 +

∑
k∈Z

cke
iωkt

)
. (5.5)

By matching the eiωkt terms, subtracting the RHS, and dividing through by α, we

obtain the following sequence of equations for k ∈ Z below:

[F (α, ω, c)]k =
(
iωαk + e−iωk

)
ck +

∑
k1,k2∈Z
k1+k2=k

e−iωk1ck1ck2 (5.6)

=
(
iωαk + e−iωk

)
ck +

k−1∑
j=1

e−iωjcjck−j +
∞∑
j=1

(
e−iω(j+k) + eiωj

)
c∗jcj+k.

(5.7)

Dividing through by α ensures that the parameter dependence in F is solely concen-

trated in the linear part. Note that F (α, ω, c) = 1
αG(α, ω, c) for G as defined in (2.7).

By Theorem 2.1.4, y is a periodic solution with frequency ω to Wright’s equation at

parameter α if and only if [F (α, ω, c)]k = 0 for all k ∈ Z.

To more succinctly express the functional F we introduce additional notation. For

a sequence c = {ck}∞k=1 we denote the projection onto the k-coefficient by [c]k := ck.

We define unnormalized basis elements ej ∈ `1,Ωs for j ∈ N by:

[ej]k =


1 if k = j,

0 if k 6= j.

We define the discrete convolution a ∗ b for a, b ∈ `1 component-wise by:

[a ∗ b]k :=
∑

|k1|+|k2|=k

ak1bk2 =
k−1∑
j=1

ajbk−j +
∞∑
j=1

a∗jbk+j + ak+jb
∗
j ,

where a−k = a∗k and b−k = b∗k, and the sum is taken over k1, k2 ∈ Z. The space `1 is a

Banach algebra, which is to say that ‖a ∗ b‖`1 ≤ ‖a‖`1‖b‖`1 for all a, b ∈ `1. While Ωs

105

is not a Banach algebra per se, if s ≥ 2 then there exists a constant B ≥ 0 such that

‖a ∗ b‖s ≤ B‖a‖s‖b‖s for all a, b ∈ Ωs (see [Les10, vdBL08]). Lastly, we define a linear

operator K : Ωs → Ωs+1 and a continuous family of linear operators Uω : Ωs → Ωs−1

as below:

[Kc]k := ck/k, [Uωc]k := e−ikωck.

The loss of regularity in the range of Uω is necessary for its continuity, as ∂
∂ωUω =

−iK−1Uω. We may extend Uω to act on bi-infinite sequences {ck}k∈Z using the same

component-wise definition. Additionally, this extension is compatible with our defini-

tion of the discrete convolution, as [Uωc]
∗
k = [Uωc]−k whenever c∗k = c−k. In Definition

5.1.3 we rewrite (5.6) in operator notation and list several propositions, the proofs of

which are left to the reader.

Definition 5.1.3. Define the function F : R2 × Ωs → Ωs−1 as:

F (α, ω, c) := (iωαK
−1 + Uω)c+ (Uωc) ∗ c. (5.8)

Proposition 5.1.4. For each α > 0 and s ≥ 2 the function F : R2 × Ωs → Ωs−1 is

Frechet differentiable, with partial derivatives given as:

∂

∂ω
F (α, ω, c) = iK−1(α−1I − Uω)c− i(K−1Uωc) ∗ c (5.9)

∂

∂c
F (α, ω, c) · h = (iωαK

−1 + Uω)h+ (Uωc) ∗ h+ (Uωh) ∗ c, (5.10)

where h ∈ Ωs.

Proposition 5.1.5. Define γ1(k, n) := e−iω(n+k)+eiωn and γ2(k, n) := e−iωn+eiω(n−k).

106

Writing ck = ak + ibk, the component-wise derivatives of F are given as:

∂

∂ω
[F (α, ω, c)]k = ik(α−1 − e−iωk)ck − i

k−1∑
j=1

je−iωjcjck−j

− i
∞∑
j=1

(
(j + k)e−iω(j+k) − jeiωj

)
c∗jcj+k.

∂

∂an
[F (α, ω, c)]k = (iωαk + e−iωk) +


γ1cn+k + γ2ck−n if 1 ≤ n < k

γ1cn+k + γ2c
∗
n−k if k ≤ n.

1

i

∂

∂bn
[F (α, ω, c)]k = (iωαk + e−iωk) +


−γ1cn+k + γ2ck−n if 1 ≤ n < k

−γ1cn+k + γ2c
∗
n−k if k ≤ n.

5.1.3 Decomposition of Phase Space

By working in a space of rapidly decaying Fourier coefficients, we are able to closely

approximate the value of F using a Galerkin projection. Since F : R2 × Ωs → Ωs−1

has distinct domain and range, we need to define two sets of projection maps. We

define projection maps πα, πω : R2 × Ωs → R and πc : R2 × Ωs → Ωs on points

x = (α̃, ω̃, c̃) ∈ R2 × Ωs as:

πα(x) := α̃ πω(x) := ω̃ πc(x) := c̃. (5.11)

For a fixed integer M ∈ N, define the projection maps πM , π∞ : Ωs → Ωs by:

πM (c) :=
M∑
k=1

[c]kek π∞(c) := c− πM (c). (5.12)

Define the projection maps π′M , π
′
∞ : R2 × Ωs → R2 × Ωs by:

π′M (c) := (πα(x), πω(x), πM ◦ πc(x)) π′∞(c) := (0, 0, π∞ ◦ πc(x)). (5.13)

For any bounded set X ⊆ R2 × Ωs, define:

|X|k := sup
x∈X
|[πc(x)]k| .

We define for F its Galerkin projection and remainder FM , F∞ : R2 × Ωs → Ωs−1 as

follows:

FM (x) := πM ◦ F (π′M (x)), F∞(x) := F (x)− FM (x). (5.14)

107

By construction F = FM + F∞.

To show that there is a unique SOPS to (1.2) we need to evaluate F not just on

single points but on voluminous subsets of its domain. The central subset of R2 × Ωs

we consider in this chapter are cubes which we define as follows:

Definition 5.1.6. For M ∈ N, s ≥ 0, C0 > 0 define a cube X := XM ×X∞ ⊆ R2×Ωs

to be of the following form:

XM := [α, α]× [ω, ω]×
M∏
k=1

[Ak, Ak]× [Bk, Bk] (5.15)

X∞ := {ck ∈ C : |ck| ≤ C0/k
s}∞k=M+1 . (5.16)

To denote the union of a collection of cubes S := {Xi ⊆ R2 × Ωs} we define⋃
S :=

⋃
X∈S X ⊆ R2 × Ω̃s.

There are primarily two reasons we have chosen to consider cubical subsets of R2×

Ωs. Firstly, cubes are particularly easy to refine into smaller pieces. This is useful

because to begin using a branch and bound method, we need to obtain global bounds on

the solution space, and then partition these bounds into smaller pieces. In practice, we

reduce the size of a cube by either subdividing it along a lower dimension into two cubes,

or replacing the cube by its intersection with the Krawczyk operator: X 7→ X∩K(X, x̄).

In both these cases the resulting object is again a cube. In this manner, we can use

cubes to cover the solutions to F = 0, and then refine the cover using successively

smaller cubes.

Secondly, cubes facilitate explicit computations of FM and analytical estimates of

F∞. While formally FM is an infinite dimensional map, computationally, we may

consider FM to be a map R2 × CM → CM . To calculate FM , we simply truncate the

second sum in (5.7) at j = M − k. As the π′M projection of a cube is given as a finite

product of intervals, it is well suited for using interval arithmetic [MKC09] to bound

the image of FM (X). On the other hand, bounding F∞ requires significantly more

analysis. Below is a simple, yet ever recurring estimate in our calculations:

∞∑
k=M+1

1

ks
≤
∫ ∞
M

1

xs
dx =

1

(s− 1)M s−1
, (5.17)

108

where we take s > 1. For example, if a cube X ⊆ R2 × Ωs satisfies s > 1, then

‖πcx‖`1 ≤ 2
∑M

k=1 |X|k+ 2C0
(s−1)Ms−1 for all x ∈ X. This specific bound on the `1 norm is

later used in Algorithm 5.3.1 to check whether Theorem 2.3.11 or Lemma 5.1.7 apply.

Lemma 5.1.7. Let ω ≥ 1.1, α ∈ (0, 2], and define

g(α, ω) :=

√(
1− ω

α

)2
+ 2 ω

α (1− sinω). (5.18)

If F (α, ω, c) = 0, then either c ≡ 0 or g(α, ω) ≤ ‖c‖`1.

Proof. See Propositions 3.5.1 and 3.5.2.

The remainder of this section is dedicated to proving Lemma 5.1.10, which estimates

F∞, its derivatives, and convolution products resulting from points inside of a cube.

These estimates are used in Definition 5.2.2 to construct an outer approximation to the

Krawczyk operator. The reader is encouraged to skip the proof of Lemma 5.1.10 on a

first reading, which is best summarized as bounding various infinite sums by various

finite sums and the estimate in (5.17). These bounds are presented in Definition 5.1.9,

all of which are given as a finite number of operations, explicitly computable in terms

of C0 and the π′M -projection of a given cube. In Lemma 5.1.8 we define the constant

γM which is needed for the definition of (5.24).

Lemma 5.1.8 (Lemma 24 [vdBL08]). Let s ≥ 2 and let s∗ be the largest integer such

that s∗ ≤ s and define:

γk := 2

[
k

k − 1

]s
+

[
4 ln(k − 2)

k
+
π2 − 6

3

] [
2

k
+

1

2

]s∗−2

.

For k ≥ 4, we have that
∑k−1

k1=1
ks

ks1(k−k1)s ≤ γk. If 6 ≤M ≤ k, then γk ≤ γM .

Definition 5.1.9. Fix a cube X with s > 2, define C1 := supx∈X ‖πcx‖s, and select a

point x̄ = (ᾱ, ω̄, c̄) ∈ X such that x̄ = π′M (x̄). Define H = X − x̄, and define ∆ω ∈ R

such that ∆ω ≥ supx∈H |πω(x)− ω̄|.

Define h, giM , g
ii
M to be functions of the form gM : X 7→ gM (X) ∈ RM and define

gi∞, g
ii,a
∞ , gii,b∞ to be functions of the form g∞ : X 7→ g∞(X) ∈ R as follows:

109

[h(X)]k :=
2C2

0

(s− 1)M s−1(M + k + 1)s
+ 2C0

M∑
j=M−k+1

|X|j
(j + k)s

(5.19)

[giM (X)]k := 2C0∆ω

M∑
j=M−k+1

|X|j
(j + k)(s−1)

+
C2

0∆ω

(s− 2)(M + k + 1)sM (s−2)
+

C2
0∆ω

(s− 1)(M + k + 1)(s−1)M (s−1)
(5.20)

[giiM (X)]k :=
4C2

0

(s− 1)(M + k + 1)sM s−1
+ 2C0

M∑
j=M−k+1

|H|j
(j + k)s

(5.21)

gi∞(X) := max
M+1≤k≤2M

ks
M∑

j=k−M
|c̄j c̄k−j | (5.22)

gii,a∞ (X) := max
M+1≤k≤2M

ks
M∑

j=k−m
|H|j |X|k−j

+
2C2

0 (2s + 1)

(s− 1)M s−1
+ C0

M∑
j=1

(|X|j + |H|j)
((

M + j + 1

M + 1

)s
+ 1

)
(5.23)

gii,b∞ (X) :=
C2

1γM+1

2
+ C0C1

(
s− 1

(M + 2)(s− 2)
+

s

s− 1

)
. (5.24)

Lemma 5.1.10. Fix a cube X with M ≥ 5, s > 2, a point x̄ ∈ X such that x̄ = π′M (x̄),

and define H = X − x̄. Then the following inequalities hold:

sup
x∈X
|F∞(x)|k < [h(X)]k 1 ≤ k ≤M (5.25)

sup
x∈X,h∈H

∣∣ ∂
∂ωF∞(x) · πω(h)

∣∣
k
≤ [giM (X)]k 1 ≤ k ≤M (5.26)

sup
x∈X,h∈H

∣∣ ∂
∂cF∞(x) · πc(h)

∣∣
k
≤ [giiM (X)]k 1 ≤ k ≤M (5.27)

|F∞(x̄)|k ≤
1

ks
gi∞(X) M + 1 ≤ k (5.28)

sup
x∈X,h∈H

|πc(h) ∗ πc(x)|k ≤
1

ks
gii,a∞ (X) M + 1 ≤ k (5.29)

sup
x1,x2∈X

∣∣(K−1πc(x1)) ∗ πc(x2)
∣∣
k
≤ 1

ks−1
gii,b∞ (X) M + 1 ≤ k. (5.30)

Throughout, let us write XM = π′M (X), HM = π′M (H), and H∞ = π′∞(H), noting

also that H∞ = π′∞(X).

Proof of (5.25). We show that |F∞(x)|k < [h(X)]k for 1 ≤ k ≤ M and all x ∈ X. Fix

110

x = (α, ω, c) ∈ X, and write cM = πM (c) and c∞ = π∞(c). We compute:

πM ◦ F∞(x) = πM ◦
(
F (x)− F (π′Mx)

)
= πM ◦ ((Uωc) ∗ c− (UωcM) ∗ cM)

= πM ◦ ((UωcM) ∗ c∞ + (Uωc∞) ∗ cM + (Uωc∞) ∗ c∞)

Since |Uωc|k = |c|k, it follows that for 1 ≤ k ≤M we compute the estimate below:

|(UωcM) ∗ c∞|k + |(Uωc∞) ∗ cM |k ≤2
∞∑
j=1

|c∗M |j |c∞|k+j + |cM |k+j |c∗∞|j

=2

M∑
j=M−k+1

|c∗M |j |c∞|j+k

≤2

M∑
j=M−k+1

|X|j
C0

(j + k)s
.

The last estimate uses the property that |cj | ≤ C0/j
s for j ≥M + 1.

We calculate (Uωc∞) ∗ c∞ as below, again using |cj | ≤ C0/j
s for j ≥M + 1.

|(Uωc∞) ∗ c∞|k ≤
∞∑

j=M+1

|c∗∞|j |c∞|k+j + |c∞|j+k|c∗∞|j

≤
∞∑

j=M+1

2C2
0

js(j + k)s
≤ 2C2

0

(s− 1)M s−1(M + k + 1)s
.

Hence for 1 ≤ k ≤M , it follows that:

|F∞(x)|k ≤
2C2

0

(s− 1)M s−1(M + k + 1)s
+ 2C0

M∑
j=M−k+1

|X|j
(j + k)s

= [h(X)]k.

Proof of (5.26). We show that
∣∣ ∂
∂ωF∞(x) · πω(h)

∣∣
k
≤ [giM (X)]k for 1 ≤ k ≤ M and

all x ∈ X and h ∈ H. Select some x = (α, ω, c) ∈ X and write cM = πM (c) and

c∞ = π∞(c). From (5.9) we can calculate ∂
∂ωF∞(x) as follows:

∂
∂ωF∞(x) = −i(K−1Uωc) ∗ c+ iπM (K−1UωcM) ∗ cM

= −iπ∞
(
K−1UωcM

)
∗ cM − i

(
K−1UωcM

)
∗ c∞ − i

(
K−1Uωc∞

)
(cM + c∞).

111

Hence, for 1 ≤ k ≤M we may calculate the following:

∣∣ ∂
∂ωF∞(x)

∣∣
k
≤ sup

cM∈XM ; c∞,c′∞∈H∞

∣∣(K−1cM) ∗ c∞ + (K−1c∞) ∗ cM + (K−1c∞) ∗ c′∞
∣∣
k
.

(5.31)

For 1 ≤ k ≤M and any cM ∈ XM , c∞ ∈ H∞ we can simplify the first two summands

in (5.31) as follows:

(K−1cM) ∗k c∞ =
∞∑
j=1

[K−1c∗M]j [c∞]k+j + [K−1cM]k+j [c
∗
∞]j

=

∞∑
j=M+1−k

j[c∗M]j [c∞]k+j

(K−1c∞) ∗k cM =
∞∑
j=1

[K−1c∗∞]j [cM]k+j + [K−1c∞]k+j [c
∗
M]j

=
∞∑

j=M+1−k
(k + j)[c∞]k+j [c

∗
M]j .

Hence, we have the following estimate:

(K−1cM) ∗k c∞ + (K−1c∞) ∗k cM =

M∑
j=M−k+1

(2j + k)[c∞]j+k[c
∗
M]j

∣∣(K−1cM) ∗ c∞
∣∣
k

+
∣∣(K−1c∞) ∗ cM

∣∣
k
≤

M∑
j=M−k+1

(2j + k)C0

(j + k)s
|X|j

≤ 2C0

M∑
j=M−k+1

|X|j
(j + k)s−1

. (5.32)

Again, we used the estimate |cj | ≤ C0/j
s for j ≥ M + 1. We estimate the third

summand in (5.31) for c∞, c
′
∞ ∈ H∞ as follows:

(K−1c∞) ∗k c′∞ =

∞∑
j=M+1

j[c∗∞]j [c
′
∞]k+j + (j + k)[c∞]j+k[c

′
∞
∗]j

∣∣(K−1c∞) ∗ c′∞
∣∣
k
≤

∞∑
j=M+1

C2
0

j(s−1)(j + k)s
+

C2
0

js(j + k)(s−1)

≤ C2
0

(s− 2)(M + k + 1)sM (s−2)
+

C2
0

(s− 1)(M + k + 1)(s−1)M (s−1)
.

(5.33)

By combining the estimates from (5.32) and (5.33) into (5.31), and recalling our choice

112

of ∆ω in Definition 5.1.9, then for 1 ≤ k ≤M we obtain the following:

sup
x∈X,h∈H

∣∣ ∂
∂ωF∞(x)πω(h)

∣∣
k
≤ 2C0∆ω

M∑
j=M−k+1

|X|j
(j + k)(s−1)

+
C2

0∆ω

(s− 2)(M + k + 1)sM (s−2)

+
C2

0∆ω

(s− 1)(M + k + 1)(s−1)M (s−1)

= [giM (X)]k.

Proof of (5.27). We show that
∣∣ ∂
∂cF∞(x) · πc(h)

∣∣
k
≤ [giiM (X)]k for 1 ≤ k ≤ M and

all x ∈ X and h ∈ H. Let (α, ω, c) ∈ X and h ∈ πc(H). From (5.10) we calculate

∂
∂c(F (X)− FM (X)) · h below:

∂
∂c(F (x)− F (π′Mx)) · h = ((Uωh) ∗ c+ (Uωc) ∗ h)− ((Uωh) ∗ cM + (UωcM) ∗ h)

=(Uωh) ∗ (c− cM) + (Uω(c− cM)) ∗ h.

Since c− cM ∈ H∞, it follows that:

| ∂∂c [F (x)− F (π′Mx)] · h|k ≤ sup
h∈H,h′∈H∞

2 · |h ∗ h′∞|k.

For h ∈ H and h′ ∈ H∞ and for 1 ≤ k ≤ M , we calculate h ∗k h′ below, using the

property that [h′]j = 0 for j ≤M .

h ∗k h′ =
∞∑
j=1

[h∗]j [h
′]k+j + [h]k+j [h

′∗]j

=

M∑
j=M−k+1

[h∗]j [h
′]k+j +

∞∑
j=M+1

[h∗]j [h
′]k+j + [h]k+j [h

′∗]j .

By applying the estimates |hj | ≤ |H|j for j ≤M , and |h|j , |h′|j ≤ C0/j
s for j ≥M + 1,

we obtain the following:

∣∣ ∂
∂cF∞(x) · h

∣∣
k
≤ 2

 M∑
j=M−k+1

|H|j
C0

(j + k)s
+

∞∑
j=M+1

2C2
0

js(j + k)s


≤ 2C0

M∑
j=M−k+1

|H|j
(j + k)s

+
4C2

0

(s− 1)(M + k + 1)sM s−1

= [giiM (X)]k.

113

Proof of (5.28). We show that |F∞(ᾱ, ω̄, c̄)|k ≤
1
ks g

i
∞(X) for M+1 ≤ k. Since π′M (x̄) =

x̄ and [c̄]k = 0 for k ≥M + 1, it follows that:

[F∞(ᾱ, ω̄, c̄)]k =


0 if k ≤M∑k−1

j=1 e
−iωj c̄j c̄k−j otherwise.

(5.34)

As c̄j c̄k−j = 0 when either j > M or k − j > M , then it follows that:

|F∞(ᾱ, ω̄, c̄)|k ≤
M∑

j=k−M
|c̄j c̄k−j |.

Noting that |F∞(ᾱ, ω̄, c̄)|k = 0 for k > 2M , we calculate:

|F∞(ᾱ, ω̄, c̄)|k ≤ k−s max
M+1≤k0≤2M

ks0

M∑
j=k0−M

|c̄j c̄k0−j |

= k−sgi∞(X).

Proof of (5.29). We show that |h ∗ c|k ≤
1
ks g

ii,a
∞ (X) for M + 1 ≤ k and all c ∈ πc(X)

and h ∈ πc(H). Fix x = (α, ω, c) ∈ X and h ∈ πc(H), and write cM = πM (c), c∞ =

π∞(c), hM = πM (h), and h∞ = π∞(h). We may expand h ∗ c as follows:

h ∗ c = hM ∗ cM + hM ∗ c∞ + cM ∗ h∞ + h∞ ∗ c∞. (5.35)

The composition hM ∗ cM only has non-zero components for M + 1 ≤ k ≤ 2M , thereby

it is bounded by the computable value below:

hM ∗k cM ≤ 1
ks max{ks0 · hM ∗k0 cM : M + 1 ≤ k0 ≤ 2M}

≤ 1

ks
max

M+1≤k0≤2M
ks0

M∑
j=k0−m

|H|j |X|k0−j . (5.36)

We calculate cM ∗ h∞ for k ≥M + 1, noting that [h∞]k−j = 0 if k − j ≤M , as below:

cM ∗k h∞ =
k−1∑
j=1

[cM]j [h∞]k−j +

∞∑
j=1

[c∗M]j [h∞]k+j + [cM]k+j [h
∗
∞]j

=
M∑

j=k−M−1

[cM]j [h∞]k−j +
M∑
j=1

[c∗M]j [h∞]k+j .

114

Using the estimates |cj | ≤ |X|j for j ≤M and |hj | ≤ C0/j
s for j ≥M + 1, we calculate

the following:

|cM ∗ h∞|k ≤
M∑

j=k−M−1

|X|j
C0

(k − j)s
+

M∑
j=1

|X|j
C0

(k + j)s

≤C0

ks

 M∑
j=k−M−1

|X|j
(

k

k − j

)s
+

M∑
j=1

|X|j

 . (5.37)

Note that k
k−j is decreasing with k. To maximize the coefficient of |X|j in the first sum

of (5.37), we choose the smallest k such that j ≤ k−M −1. Hence, for each coefficient,

we choose k = M + j + 1 as an upper bound. We obtain the following:

|cM ∗ h∞|k ≤
C0

ks

M∑
j=1

|X|j
((

M + j + 1

M + 1

)s
+ 1

)
. (5.38)

An analogous calculation produces a bound for |hM ∗ c∞| as given below:

|hM ∗ c∞|k ≤
C0

ks

M∑
j=1

|H|j
((

M + j + 1

M + 1

)s
+ 1

)
. (5.39)

Lastly we estimate |h∞ ∗ c∞|k. For h∞, c∞ ∈ H∞ and k ≥M + 1 we calculate:

h∞ ∗ c∞ =

k−1∑
j=1

[h∞]j [c∞]k−j +

∞∑
j=1

[h∗∞]j [c∞]k+j + [h∞]k+j [c
∗
∞]j

=

k−M−1∑
j=M+1

[h∞]j [c∞]k−j +

∞∑
j=M+1

[h∗∞]j [c∞]k+j + [h∞]k+j [c
∗
∞]j .

Taking norms and using the estimate |hj | ≤ C0/j
s for M + 1 ≤ j we obtain:

|h∞ ∗ c∞|k ≤
k−M−1∑
j=M+1

C2
0

js(k − j)s
+ 2

∞∑
j=M+1

C2
0

js(k + j)s

≤ C2
0

k−M−1∑
j=M+1

1

js(k − j)s

+
2

ks
C2

0

(s− 1)M s−1
.

The remaining sum is only nonzero for k ≥ 2(M + 1), and we bound it as follows:

k−M−1∑
j=M+1

1

js(k − j)s
=

1

ks

k−M−1∑
j=M+1

(
1

j
+

1

k − j

)s

≤ 2

ks

k/2∑
j=M+1

(
2

j

)s
≤ 2s+1

ks(s− 1)

(
1

M s−1
− 1

(k/2)s−1

)
.

115

This estimate is maximized in the ‖ · ‖s norm by taking k → ∞. Thereby, we obtain

the following estimate:

|h∞ ∗ c∞|k ≤
1

ks
2C2

0 (2s + 1)

(s− 1)M s−1
. (5.40)

By combining the results from (5.36 - 5.40) into (5.35), it follows that if M + 1 ≤ k,

then |h ∗ c|k ≤
1
ks g

ii,a
∞ (X).

Proof of (5.30). We show that
∣∣(K−1πc(x1)) ∗ πc(x2)

∣∣
k
≤ 1

ks−1 g
ii,b
∞ (X) for M + 1 ≤ k

and all x1, x2 ∈ X. For i = 1, 2 let us fix ci ∈ πc(X) and recall that C1 ≥ ‖ci‖s by

Definition 5.1.9. We can write (K−1c1) ∗k c2 as below:

(K−1c1) ∗k c2 =

k−1∑
j=1

j[c1]j [c2]k−j +

∞∑
j=k+1

j[c∗1]j [c2]k+j + (k + j)[c1]k+j [c
∗
2]j . (5.41)

Using |c|j ≤ C1/j
s and |c|k+j ≤ C0/(k + j)s for k ≥ M + 1, we obtain a bound on

|(K−1c1) ∗ c2|k as below:

|(K−1c1) ∗ c2|k ≤
k−1∑
j=1

jC1C1

js(k − j)s
+

∞∑
j=1

C1C0

js−1(k + j)s
+

∞∑
j=1

C0C1

(k + j)s−1js

≤ C2
1

k−1∑
j=1

1

js−1(k − j)s

+
C1C0

(k + 1)s

(
1 +

1

s− 2

)

+
C1C0

(k + 1)s−1

(
1 +

1

s− 1

)
.

Since 5 ≤M , thereby 6 ≤M+1 ≤ k and by Lemma 5.1.8 we can simplify the remaining

sum as follows:

k−1∑
j=1

1

js−1(k − j)s
=
k

2

k−1∑
j=1

1

js(k − j)s
≤ k

2

γk
ks
≤ γM+1

2ks−1
.

Taking k ≥M + 1, it follows that:

|(K−1πc(x1)) ∗ πc(x2)|k ≤
1

ks−1

(
C2

1γM+1

2
+ C1C0

(
s− 1

(M + 2)(s− 2)
+

s

s− 1

))
=

1

ks−1
gii,b∞ (X).

116

5.2 Bounding the Krawczyk Operator

When defining a Krawczyk operator K(X, x̄) for a function f : Y → Z one must choose a

linear operator A† : Z → Y . The map A† is typically chosen to approximate Df(x̄)−1.

Even in finite dimensions it may be impossible to exactly calculate the inverse of a

matrix using floating point arithmetic. To denote a fixed but numerically approximate

definition, we introduce the notation :≈. Since we set up our theorems in an a posteriori

format, the question of whether our numerical approximation is sufficiently accurate is

answered by whether our computer-assisted proof is successful or not.

As with any method relying on a contraction mapping argument, the Krawczyk

operator is only truly effective in locating the zeros of a function if they are isolated.

Since the non-trivial zeros of F are not isolated, and in fact form a 2-manifold [Reg89],

we do not define a Krawczyk operator corresponding directly to F : R2 × Ωs → Ωs−1.

We must first reduce the dimensionality of its domain by two.

We reduce one of the dimensions by imposing a phase condition; we may assume

without loss of generality that the first Fourier coefficient is a positive real number

(see Proposition 5.4.4). To that end, we define a codimension−1 subspace Ω̃s ⊆ Ωs as

follows:

Ω̃s := {c ∈ Ωs : c1 = c∗1}.

To reduce the other dimension, we consider α as a parameter and perform our estimates

uniformly in α.

For a cube X ⊆ R2×Ω̃s we define a Krawczyk operator to find the zeros of functions

Fα : R1 × Ω̃s → Ωs−1 for all α ∈ πα(X). To that end, we would like to define a map A†

to be an approximate inverse of the derivative DFᾱ(ω̄, c̄) ∈ L(R1 × Ω̃s,Ωs−1) for some

(ᾱ, ω̄, c̄) ∈ X. We construct this approximate inverse by combining A†M , a 2M × 2M

real matrix on the lower Fourier modes, with the operator −(i ᾱω̄)Kπ′∞ on the higher

Fourier modes.

As is ever the case, we may only explicitly perform a finite number of operations

on fundamentally finite dimensional objects, and because of this we defined Galerkin

projections in (5.12) and (5.13). To ensure the sum F = FM + F∞ makes sense, the

117

maps πM , π
′
M are defined to be but finite rank maps onto a subspace of an infinite

dimensional Banach space. To emphasize this finite dimensional subspace as a space

in its own right, as well as the new domain R1 × Ω̃s, we define the following projection

and inclusion maps:

π̃M : Ωs � R2M , π̃′M : R1 × Ω̃s � R2M , ĩM : R2M ↪→ Ωs, ĩ′M : R2M ↪→ R1 × Ω̃s.

π̃M ◦ ĩM = idR2M , π̃′M ◦ ĩ′M = idR2M , ĩM ◦ π̃M = idΩs , ĩ′M ◦ π̃′M = idR1×Ω̃s .

We define the linear operator A† below in Definition 5.2.1 as follows: We note that A†

will be injective if the 2M × 2M matrix A†M has rank 2M .

Definition 5.2.1. Fix a cube X ⊆ R2 × Ω̃s. For a point (ᾱ, ω̄, c̄) = x̄ ∈ X such that

x̄ = π′M (x̄), define the following linear operators:

AM :≈ π̃M ◦DFᾱ(ω̄, c̄) ◦ ĩ′M AM ∈ L(R2M ,R2M)

A†M :≈ A−1
M A†M ∈ L(R2M ,R2M)

A(x̄,M) := ĩM ◦AM ◦ π̃′M + i ω̄ᾱK
−1π′∞ A(x̄,M) ∈ L(R1 × Ω̃s,Ωs−1)

A†(x̄,M) := ĩ′M ◦A
†
M ◦ π̃M − i

ᾱ
ω̄Kπ∞ A†(x̄,M) ∈ L(Ωs−1,R1 × Ω̃s).

While a Krawczyk operator K(X, x̄) given as in Definition 5.1.1 is sufficient from

a mathematical perspective, from a computational perspective it leaves something to

be desired. We address this deficiency in Definition 5.2.2 by defining an explicitly

computable operator K′(X, x̄) as an outer approximation to K(X, x̄), which is to say

that K(X, x̄) ⊆ K′(X, x̄). In Theorem 5.2.3 we prove this, and in Theorem 5.2.4 we

give an analogue of Theorem 5.1.2.

In practice, we use interval arithmetic [MKC09] to compute an outer approxima-

tions for the arithmetic combination of sets (e.g. A+B =
⋃
a∈A,b∈B a+ b). This allows

us to bound the image of functions over rectangular domains, which is to say domains

given as the product of intervals. By employing outward rounding, interval arithmetic

can be rigorously implemented on a computer [Rum99]. In every step an outer approx-

imation is constructed as a rectangular domain, and the end result will too be an outer

approximation. While obtaining a tight approximation is desirable, it is not required;

as long as we have an outer approximation, that is sufficient.

118

Definition 5.2.2. Fix a cube X ⊆ R2×Ω̃s as in Definition 5.1.6 with M ≥ 5, s > 2 and

C0 > 0. Fix some x̄ = (ᾱ, ω̄, c̄) ∈ X such that x̄ = π′M (x̄) and ∆ω ≥ supx∈X |πω(x)−ω̄|.

Fix A := A(x̄,M) and A† := A†(x̄,M) as in Definition 5.2.1. Define the following

functions:

gii∞(X) :=
2ᾱ

ω̄(M + 1)
gii,a∞ (X) + sup

α∈πα(X)
∆ω

ᾱ
ω̄

(
(α−1 + 1)C0 + gii,b∞ (X)

)
+ sup
α∈πα(X),ω∈πω(X)

(
|1− ᾱ

α
ω
ω̄ |+

ᾱ

ω̄(M + 1)

)
C0 (5.42)

gM (X) :=giM (X) + giiM (X) (5.43)

g∞(X) := ᾱ/ω̄
M+1g

i
∞(X) + gii∞(X). (5.44)

Define K′(X, x̄) := K′M (X, x̄)×K′∞(X, x̄) by:

K′M (X, x̄) := x̄−A†MFM (x̄) + (IM −A†MAM) · π′M (X − x̄)

+A†M (AM −DFM (X))(X − x̄)±A†MgM (X) (5.45)

K′∞(X, x̄) := {ck ∈ C : |ck| < g∞(X)/ks}∞k=M+1 , (5.46)

where FM (x̄) ⊆ R2M is calculated to include the image of FM (x̄) for all α ∈ πα(X),

where DFM (X) ⊆ L(R2M ,R2M) is calculated to include the image of π̃M ◦DFα(ω, c)◦ĩ′M
for all (α, ω, c) ∈ X, and where ±A†MgM (X) ⊆ R2M is calculated to be a set satisfying:

⋃
|v|k≤|gM (X)|k

A†M · v ⊆ ±A
†
MgM (X).

Theorem 5.2.3. Fix a cube X as in Definition 5.1.6 with M ≥ 5, s > 2 and C0 > 0.

Fix a point x̄ ∈ X such that x̄ = π′M (x̄), and fix A := A(x̄,M), A† := A†(x̄,M) as in

Definition 5.2.1. Fix some α ∈ πα(X), and for f ≡ Fα : R1× Ω̃s → Ωs−1 let K be given

as in Definition 5.1.1. Then K(X, x̄) ⊆ K′(X, x̄).

Proof. Let H := X − x̄. We begin by proving that π′M (K(X, x̄)) ⊆ π′M (K′(X, x̄)), first

showing that:

π′M ◦ (I −A†DF (X)) ·H ⊆K′M (X, x̄)−
(
x̄−A†MFM (x̄)

)
. (5.47)

119

Fix some x ∈ X and h = (hω, hc) ∈ H. We start by adding and subtracting A†A,

rewriting the LHS of (5.47) as follows:

π′M (I −A†DF (x)) · h =(IM −A†MAM) · π′M (h) + π′MA
†(A−DF (x)) · h

=(IM −A†MAM) · π′M (h)

+A†M (AM −DFM (x)) · π′M (h) +A†MπMDF∞(x) · π′M (h).

By (5.26) and (5.27) it follows that |πMDF∞(x) · h|k ≤ [giM (X) + giiM (X)]k. Thereby,

it follows that: A†MπMDF∞(x) · h ⊆ ±|A†M | · gM (X) for all x ∈ X and h ∈ H. Hence

from the definition of K′(X, x̄) given in (5.45), then (5.47) follows. From (5.34) we

have that πMF∞(x̄) = 0, hence π′M (x̄−A†F (x̄)) = x̄−A†MFM (x̄). It then follows that

πM ◦ K(X, x̄) ⊆ K′M (X, x̄).

We now prove that π′∞(K(X, x̄)) ⊆ π′∞(K′(X, x̄)), first showing that:∥∥∥π′∞ ◦ (I −A†DF (X)) · (X − x̄)
∥∥∥
s
≤gii∞(X). (5.48)

Fix some x = (α, ω, c) ∈ X and h = (hω, hc) ∈ H. We start by adding and subtracting

A†A, rewriting the LHS of (5.48) as follows:

π′∞(I −A†DF (x)) · h = π′∞(I −A†A) · h+ π′∞A
†(A−DF (x)) · h

= π′∞ ◦A†(A−DF (x)) · h

= π′∞ ◦A†
(
A− ∂

∂cDF (x)
)
· hc − π′∞ ◦A† ∂∂ωDF (x) · hω.

We calculate −π∞A† ∂∂ωF (x) · hω writing ∂
∂ωF (x) as in (5.9) below:

−π∞ ◦A† ∂∂ωF (X)) · hω =− iπ∞
ᾱ

ω̄
K
(
iK−1(α−1I − Uω)c− i(K−1Uωc) ∗ c

)
· hω

=hω
ᾱ

ω̄
π∞
(
(α−1I − Uω)c−K(K−1Uωc) ∗ c

)
.

Using |c|j ≤ C0/j
s and (5.30) we obtain for k ≥M + 1 that:

∣∣∣π∞ ◦A† ∂∂ωF (x)) ·∆ω

∣∣∣
k
≤∆ω

ᾱ

ω̄

(
(α−1 + 1)

C0

ks
+

1

k

gii,b∞ (X)

ks−1

)
∥∥∥π∞ ◦A† ∂∂ωF (x)) ·∆ω

∥∥∥
s
≤∆ω

ᾱ

ω̄

(
(α−1 + 1)C0 + gii,b∞ (X)

)
. (5.49)

120

For (α, ω, c) ∈ X we calculate π∞A
†(A− ∂

∂cF) · hc below:

π∞A
†(A− ∂

∂cF (x))hc = −i ᾱ
ω̄
K
((
i ω̄ᾱK

−1 − (iωαK
−1 + Uω)

)
hc − (Uωhc) ∗ c− (Uωc) ∗ hc

)
= π∞

(
(1− ᾱ

α
ω
ω̄)I + i ᾱω̄KUω

)
hc

− π∞i ᾱω̄K ((Uωc) ∗ hc + (Uωhc) ∗ c) .

Taking norms and using (5.29) we obtain:∥∥∥π∞ ◦A†(A− ∂
∂cF (x)) · hc

∥∥∥
s
≤
(
|1− ᾱ

α
ω
ω̄ |+

ᾱ

ω̄(M + 1)

)
C0 +

2ᾱ

ω̄(M + 1)
gii,a∞ (X).

(5.50)

By combining (5.49) and (5.50) and taking a supremum over α and ω, we obtain the

definition of gii∞ in (5.42), whereby (5.48) follows.

To show that π∞K(X, x̄) ⊆ K′∞(X, x̄) note that from (5.28) it follows that:

‖π∞(x̄−A†F (x̄))‖s = ‖ − i ᾱω̄Kπ∞F (x̄)‖s ≤
ᾱ/ω̄

M + 1
gi∞(X).

Expanding out π∞K(X, x̄), it follows that:

‖π∞K(X, x̄)‖s ≤‖π∞(x̄−A†F (x̄))‖s + ‖π∞(I −ADF (X)) · (X − x̄)‖s

≤ ᾱ/ω̄

M + 1
gi∞(X) + gii∞(X) = g∞(X).

Thus π∞K(X, x̄) ⊆ K′∞(X, x̄). Thus, we have proved both that π′M (K′(X, x̄)) ⊆

π′M (K(X, x̄)) and π′∞(K′(X, x̄)) ⊆ π′∞(K(X, x̄)). Hence it follows that K(X, x̄) ⊆

K′(X, x̄).

Theorem 5.2.4. Fix a cube X as in Definition 5.1.6 with M ≥ 5, s > 2 and C0 > 0.

Fix a point x̄ ∈ X such that x̄ = π′M (x̄). Let K(X, x̄) and K′(X, x̄) be given as in

Definition 5.1.1 and 5.2.2 respectively. If K′(X, x̄) ⊆ X, and moreover g∞(X) < C0

and:

π̃′M

(
K′M (X, x̄) +A†MFM (x̄)

)
⊆ int(π̃′M (X)),

then for all α ∈ πα(X) there exists a unique point x̂α = (α, ω̂α, ĉα) ∈ X such that

F (x̂α) = 0.

121

Proof. Fix α ∈ πα(X). By Theorem 5.1.2, in order to show that there exists a unique

solution to Fα = 0, it suffices to show that there is some 0 ≤ λ < 1 for which:

(I −A†DF (X))(X − x̄) ⊆ λ(X − x̄).

We find a λM which works for the π′M -projection and a λ∞ which works for the π′∞-

projection. SinceK(X, x̄) ⊆ K′(X, x̄) by Theorem 5.2.3 and π̃′M

(
K′M (X, x̄) +A†MFM (x̄)

)
⊆ int(π̃′M (X)), it follows from the definition of K(X, x̄) in (5.1) that:

π̃′M

(
K(X, x̄) +A†F (x̄)

)
⊆ int(π̃′M (X))

π̃′M

(
(I −A†DF (X))(X − x̄)

)
⊆ int

(
π̃′M (X − x̄)

)
(5.51)

Since π̃′M
(
(I −A†DF (X))(X − x̄)

)
is compactly contained inside of π̃′M (X−x̄) ⊆ R2M ,

there is some positive distance separating the LHS of (5.51) away from the bound-

ary of π̃′M (X − x̄). It follows that there must exist some 0 ≤ λM < 1 such that

π̃′M
(
(I −A†DF (X))(X − x̄)

)
⊆ λM · π̃′M (X − x̄).

Since K′∞(X, x̄) ⊆ π′∞X it follows that g∞(X) ≤ C0, and by our additional assump-

tion this is in fact a strict inequality. If we define λ∞ := gii∞(X)/C0 < 1, then by (5.48)

it follows that:

π∞(I −A†DF (X)) · (X − x̄) ≤ λ∞π∞(X − x̄).

If we define λ := max{λM , λ∞} < 1 then it follows that:

(I −A†DF (X)) · (X − x̄) ≤ λ(X − x̄).

By Theorem 5.1.2 there exists a unique point x̂α = (α, ω̂α, ĉα) ∈ X such that Fα(ω̂α, ĉα) =

0. Moreover, this is true for all α ∈ πα(X).

5.3 Pruning Operator

For a given cube, we want to know if it contains any solutions to F = 0. We try to

determine this by combining several different tests into one pruning operator described

in Algorithm 5.3.1. It is called a pruning operator because even if we cannot determine

whether a cube contains a solution, we may still be able to reduce the size of the cube

without losing any solutions.

122

We describe the tests performed in Algorithm 5.3.1. Most simply, if we can prove

that |F (X)|k > 0 for some 1 ≤ k ≤M , then F has no zeros in X. From Lemma 5.1.7,

we know that if a cube has a small ‖ · ‖`1 norm then it cannot contain any nontrivial

zeros. Furthermore, if a cube is contained in the neighborhood of the Hopf bifurcation

explicitly given by Corollary 2.3.11, then the only solutions that can exist therein are

on the principal branch. If none of those situations apply, then we calculate the outer

approximation of the Krawczyk operator given in Definition 5.2.2. If the hypothesis

of Theorem 5.2.4 is satisfied, then there exists a unique solution. Alternatively, if

X ∩ K(X, x̄) = ∅, then there do not exist any solutions in X. If none of these other

situations apply, then we replace X by X ∩ K(X, x̄). Algorithm 5.3.1 arranges these

steps in order of ease of computation.

Algorithm 5.3.1 (Prune). Take as input a cube X with M ≥ 5 and s > 2. The output

is a pair {flag,X ′} where flag ∈ Z and X ′ ⊆ X is a cube.

1. Compute δ := 2
∑M

k=1 |X|k + 2C0
(s−1)Ms−1 .

2. If for all (α, ω, ·) ∈ X we have α ∈ (0, 2], ω ≥ 1.1, and δ < g(α, ω) for g defined

in (5.18), then return {1, ∅}.

3. If for all (α, ω, ·) ∈ X we have |α− π
2 | ≤ 0.00553, |ω − π

2 | ≤ 0.0924 and δ < 0.18,

then return {2, X}.

4. If infx∈X |FM (x)|k > hk(X) for hk defined in (5.19) and some 1 ≤ k ≤ M , then

return {1, ∅}.

5. Fix some x̄ ∈ X such that x̄ = π′M (x̄) and π′M (x̄) is approximately the center of

π′M (X). Construct K′(X, x̄) as in Definition 5.2.2.

6. If K′(X, x̄) ⊆ X, g∞(X) < C0, and π̃M

(
K′M (X, x̄) +A†MFM (x̄)

)
⊆ int(π̃M (X)),

then return {3, X}.

7. If X ∩ K′(X, x̄) = ∅, then return {1, ∅}.

8. Else return {0, X ∩ K′(X, x̄)}.

123

Theorem 5.3.2. Let {flag,X ′} denote the output of Algorithm 5.3.1 with input a cube

X.

(i) If flag = 1, then F (x) 6= 0 for all nontrivial x ∈ X.

(ii) If flag = 2, then the only solutions to F = 0 in X are on the principal branch.

(iii) If flag = 3, then for all α ∈ πα(X) there is a unique ω̂α ∈ πω(X) and ĉα ∈ πc(X)

such that F (α, ω̂α, ĉα) = 0.

(iv) If there are any points x̂ ∈ X for which F (x̂) = 0, then x̂ ∈ X ′.

Proof. To prove (i) we must check the output from Steps 2, 4, and 7. To prove (ii) we

must check Step 3. To prove (iii) we must check Step 6. The proof of (iv) follows from

(i), (ii), (iii), and Step 8. We organize the proof into the steps of the algorithm.

1. It follows from (5.17) that ‖c‖`1 < δ for all c ∈ πc(X).

2. Since α ∈ (0, 2] and ω ≥ 1.1, Lemma 5.1.7 applies. If ‖c‖`1 < δ < g(α, ω), then

by Lemma 5.1.7 the only solutions to F (α, ω, c) = 0 are trivial, which is to say

c = 0.

3. If Step 3 returns flag = 2, then by Corollary 2.3.11 there is at most one SOPS

c ∈ X with frequency ω, and it lies on the branch of SOPS originating from the

Hopf bifurcation at α = π
2 .

4. Suppose that infx∈X |FM (x)|k > hk(X) for some 1 ≤ k ≤ M . Since we have

supx∈X |F∞(x)|k < hk(X) by (5.25), it follows from the triangle inequality that

for all x ∈ X we have:

|F (x)|k ≥ inf
x∈X
|FM (x)|k − sup

x∈X
|F∞(x)|k > 0.

Hence |F (x)|k > 0, and so X cannot contain any zeros of F .

5. Note that K(X, x̄) ⊆ K′(X, x̄) by Theorem 5.2.4.

6. If Step 6 returns flag = 3, then the hypothesis of Theorem 5.2.4 is satisfied.

Hence for all α ∈ πα(X) there is a unique ω̂α ∈ πω(X) and ĉα ∈ πc(X) such that

F (α, ω̂α, ĉα) = 0.

124

7. By Theorem 5.1.2 all solutions in X are contained in K(X, x̄). Hence, all of the

zeros of F in X are contained in X ∩ K(X, x̄) ⊆ X ∩ K′(X, x̄).

If X ∩K′(X, x̄) = ∅ then X ∩K(X, x̄) = ∅, whereby there cannot be any solutions

in X.

8. As proved in Step 7, all solutions in X are contained in X ∩ K′(X, x̄).

5.4 Global Bounds on the Fourier Coefficients

The goal of this section is to construct a bounded region in R2 ×Ωs which contains all

of the nontrivial zeros of F . This is ultimately achieved in Algorithm 5.4.7, which is

discussed in Section 5.4.2, along with other estimates pertaining specifically to Wright’s

equation.

In Section 5.4.1, we discuss generic algorithms used to construct bounds in Fourier

space. Algorithm 5.4.1 converts pointwise bounds on a periodic function and its deriva-

tives into a cube containing its Fourier coefficients. Algorithm 5.4.3 modifies a cube so

that after a time translation, any periodic function contained therein will satisfy the

phase condition c1 = c∗1.

5.4.1 Converting Pointwise Bounds into Fourier Bounds

To translate pointwise bounds on a periodic function into bounds on its Fourier coeffi-

cients we use the unnormalized L2 inner product, which we define for g, h ∈ L2([0, 2π
ω],C)

as:

〈g, h〉 :=

∫ 2π/ω

0
g(t)h(t)∗ dt. (5.52)

For a function y given as in (5.2), its Fourier coefficients may be calculated as ck =

1
2π/ω

〈
y(t), eiωkt

〉
. By applying (5.52) to a priori estimates on y we are able to derive

bounds on its Fourier coefficients. For example, in [Wri55] it is shown that −1 < y(t) <

eα − 1 for any global solution to (1.2). Hence, when eα ≥ 2 the Fourier coefficients of

any periodic solution to (1.2) must satisfy |ck| ≤ 1
2π/ω (eα − 1) for all k ∈ Z.

125

With more detailed estimates on y we can produce tighter bounds on its Fourier

coefficients. In Chapter 4 such estimates are numerically derived in a rigorous fashion.

One of the results from this analysis is a pair of bounding functions which provide upper

and lower bounds on SOPS to (1.2) at a given parameter value. Formally, a bounding

function is defined to be an interval valued function [`(t), u(t)] where `, u : R→ R.

These functions `, u are constructed in Chapter 4 using rigorous numerics, and

in particular interval arithmetic. As a matter of computational convenience, these

functions are defined as piecewise constant functions which change value only finitely

many times (see Figure 5.2). For functions of this form, calculating a supremum over

a bounded domain is reduced to finding the maximum of a finite set, and calculating

an integral is reduced into a finite sum. For elementary functions such as sin or cos,

interval arithmetic packages have been developed which allow us to rigorously bound

their image over arbitrary domains [Rum99].

126

a: Bounds for y

0 1 2 3 4
-1

0

1

k Ak,0 Bk,0

1 [−0.103, 0.181] [−0.544,−0.317]

2 [−0.238, 0.110] [−0.142, 0.187]

3 [−0.207, 0.228] [−0.205, 0.211]

b: Bounds for y′

0 1 2 3 4

-2

0

2

k Ak,1 Bk,1

1 [−0.154, 0.205] [−0.673,−0.192]

2 [−0.215, 0.031] [−0.100, 0.179]

3 [−0.094, 0.109] [−0.090, 0.125]

c: Bounds for y′′

0 1 2 3 4

-5

0

5

k Ak,2 Bk,2

1 [−0.384, 0.525] [−0.848,−0.103]

2 [−0.205, 0.037] [−0.094, 0.155]

3 [−0.051, 0.077] [−0.054, 0.071]

d: Bounds for y′′′

0 1 2 3 4
-20

0

20

40

k Ak,3 Bk,3

1 [−0.995, 1.160] [−1.713, 0.715]

2 [−0.279, 0.053] [−0.120, 0.194]

3 [−0.039, 0.068] [−0.045, 0.063]

Figure 5.2: Depicted in the figures are functions `s, us : R→ R which bound a periodic

function y and its derivatives y(s). Depicted in the tables are the values for Ak,s and

Bk,s produced by Algorithm 5.4.1 which bound the Fourier coefficients ck = ak + ibk of

y.

Algorithm 5.4.1 describes a method for obtaining rigorous bounds on the Fourier

coefficients of a periodic function y. This algorithm applies the inner product 〈·, ·〉 to

bounds not just on the function y but on its derivatives as well. Examples of these

bounds are given in Figure 5.2, where we note that by the third Fourier coefficient,

the tightest estimate is given by the third derivative. We will use y(s) denotes the sth

127

derivative of a function y, whereas we will use Y s to denote a bounding function of

index s, which bounds the derivative y(s).

We have stated Algorithm 5.4.1 so that it does not estimate the zeroth Fourier

coefficient, as periodic solutions to (1.2) necessarily have a trivial zeroth Fourier coeffi-

cient. The algorithm could be modified in the obvious way to bound the zeroth Fourier

coefficient of a function as well.

Algorithm 5.4.1. Take as input projection dimension M ∈ N, period bounds [L,L],

and a collection of interval-valued functions:

{Y s(t) = [`s(t), us(t)] : `s, us : R→ R}Ss=0 .

The output is an (α-parameterless) cube X ⊆ R1 × ΩS.

1. Define Iω := [2π/L, 2π/L].

2. For 1 ≤ k ≤M and 0 ≤ s ≤ S define δc, δs ∈ R+ so that:

δc ≥ sup
ω∈Iω ,ys∈Y s

∫ L

L
|cos(ωkt)ys(t)| dt, δs ≥ sup

ω∈Iω ,ys∈Y s

∫ L

L
|sin(ωkt)ys(t)| dt,

and define a+
k,s, a

−
k,s, b

+
k,s, b

−
k,s ∈ R+ so that:

a+
k,s ≥ δc + sup

ω∈Iω ,ys∈Y s

∫ L

0
cos(ωkt)ys(t)dt

a−k,s ≤ −δc + inf
ω∈Iω ,ys∈Y s

∫ L

0
cos(ωkt)ys(t)dt

b+k,s ≥ δs + sup
ω∈Iω ,ys∈Y s

∫ L

0
sin(ωkt)ys(t)dt

b−k,s ≤ −δs + inf
ω∈Iω ,ys∈Y s

∫ L

0
sin(ωkt)ys(t)dt.

3. For 1 ≤ k ≤M and 0 ≤ s ≤ S define:

A′k,s :=
1

2πks

[
inf
ω∈Iω

a−k,s
ωs−1

, sup
ω∈Iω

a+
k,s

ωs−1

]
, B′k,s :=

1

2πks

[
inf
ω∈Iω

b−k,s
ωs−1

, sup
ω∈Iω

b+k,s
ωs−1

]
.

(5.53)

128

Define the intervals Ak,s and Bk,s as follows:

Ak,s :=



A′k,s if s ≡ 0 (mod 4)

−B′k,s if s ≡ 1 (mod 4)

−A′k,s if s ≡ 2 (mod 4)

B′k,s if s ≡ 3 (mod 4)

, Bk,s :=



−B′k,s if s ≡ 0 (mod 4)

−A′k,s if s ≡ 1 (mod 4)

B′k,s if s ≡ 2 (mod 4)

A′k,s if s ≡ 3 (mod 4)

.

4. For 1 ≤ k ≤M define:

Ak :=
⋂

0≤s≤S
Ak,s, Bk :=

⋂
0≤s≤S

Bk,s.

5. For each 1 ≤ k ≤M , define āk := mid(Ak,S), b̄k := mid(Bk,S), c̄k = āk+ ib̄k, and

c̄−k = c̄∗k. Define ySM (t, ω) as in (5.54), and define C0 > 0 so that (5.55) holds.

ySM (t, ω) :=
M∑

k=−M
c̄k(iωk)Seiωkt (5.54)

C0 ≥ sup
ω∈Iω ,yS∈Y S

1

2πωS−1

∫ L

0

∣∣yS(t)− ySM (t, ω)
∣∣ dt. (5.55)

6. Define a cube X := XM ×X∞ ⊆ R1 × ΩS by:

XM := Iω ×
M∏
k=1

Ak ×Bk

X∞ :=
{
ck ∈ C : |ck| ≤ C0/k

S
}∞
k=M+1

.

Proposition 5.4.2. Let the cube X be the output of Algorithm 5.4.1 with input M ∈

N, [L,L] ⊆ R and bounding functions {Y s}Ss=0. Fix a function ŷ with period L and

continuous derivatives ŷ(s) for 0 ≤ s ≤ S. If L ∈ [L,L] and ŷ(s)(t) ∈ Y s(t) for all

0 ≤ s ≤ S and t ∈ [0, L], then the frequency and Fourier coefficients of ŷ satisfy

(ω, {ck}∞k=1) ∈ X.

Proof. We organize the proof into the steps of the algorithm.

1. If the period of ŷ is L ∈ [L,L] then it will have frequency ω̂ = 2π/L and ω̂ ∈

[2π/L, 2π/L].

129

2. Let us define

ak,s :=
〈

cos(ω̂kt), ŷ(s)(t)
〉
, bk,s :=

〈
sin(ω̂kt), ŷ(s)(t)

〉
.

We show that ak,s ∈ [a−k,s, a
+
k,s]. Since L ∈ [L,L] it follows that:〈

cos(ω̂kt), ŷ(s)(t)
〉

=

∫ L

0
cos(ω̂kt)ŷ(s)(t)dt

=

∫ L

0
cos(ω̂kt)ŷ(s)(t)dt+

∫ L

L
cos(ω̂kt)ŷ(s)(t)dt. (5.56)

To estimate the rightmost summand in (5.56) we calculate:∣∣∣∣∫ L

L
cos(ω̂kt)ŷ(s)(t)dt

∣∣∣∣ ≤ ∫ L

L

∣∣∣cos(ω̂kt)ŷ(s)(t)
∣∣∣ dt ≤ sup

ω∈Iω ,ys∈Y s

∫ L

L
|cos(ωkt)ys(t)| dt ≤ δc.

We obtain a bound on ak,s by appropriately taking an infimum and a supremum

in (5.56) as follows:

inf
ω∈Iω ,ys∈Y s

∫ L

0
cos(ωkt)ys(t)dt− δc ≤ ak,s ≤ sup

ω∈Iω ,ys∈Y s

∫ L

0
cos(ωkt)ys(t)dt+ δc.

Hence ak,s ∈ [a−k,s, a
+
k,s], and by analogy bk,s ∈ [b−k,s, b

+
k,s].

3. Let ck = ak + ibk denote the Fourier coefficients of ŷ. We show that ak ∈ Ak,s

and bk ∈ Bk,s. Firstly, we calculate the derivative ŷ(s) as follows:

ŷ(s)(t) =
∑
k∈Z

ck(iω̂k)seiω̂kt.

We can express the Fourier coefficients of ŷ in terms of the Fourier coefficients of

its derivatives ŷ(s); below, we calculate ck in terms of ak,s and bk,s as follows:∫ 2π/ω̂

0
ck(iω̂k)seiω̂kt · e−iω̂ktdt =

〈
ŷ(s)(t), eiω̂kt

〉
(5.57)

2π

ω̂
ck(iω̂k)s =

〈
ŷ(s)(t), cos(ω̂kt)

〉
− i
〈
ŷ(s)(t), sin(ω̂kt)

〉
isak + is+1bk =

ak,s − i bk,s
2πω̂s−1ks

.

From the definition of A′k,s and B′k,s in (5.53) it follows that:

ak,s
2πω̂s−1ks

∈ A′k,s,
bk,s

2πω̂s−1ks
∈ B′k,s.

By matching the real and imaginary parts, which only depend on s (mod 4), we

obtain that ak ∈ Ak,s and bk ∈ Bk,s.

130

4. Since ak ∈ Ak,s and bk ∈ Bk,s for all k and 0 ≤ s ≤ S, it follows that:

ak ∈
⋂

0≤s≤S
Ak,s, bk ∈

⋂
0≤s≤S

Bk,s.

5. We calculate ck for k ≥ M + 1 starting from (5.57) and using the fact that the

functions eiω̂kt are L2–orthogonal:

ck(iω̂k)S =
1

2π/ω̂

〈
eiω̂kt, ŷ(S)(t)

〉
=

1

2π/ω̂

〈
eiω̂kt, ŷ(S)(t)−

M∑
j=−M

c̄j(iω̂j)
Seiω̂jt

〉

=
1

2π/ω̂

〈
eiω̂kt, ŷ(S)(t)− ySM (t, ω̂)

〉
.

By taking absolute values, and the suprema over ω ∈ Iω and yS ∈ Y S we obtain

the following.

∣∣ck(iω̂k)S
∣∣ ≤ 1

2π/ω̂

∫ L

0

∣∣∣e−iω̂kt∣∣∣ ∣∣∣ŷ(S)(t)− ySM (t, ω̂)
∣∣∣ dt

|ck|kS ≤ sup
ω∈Iω ,yS∈Y S

1

2πωS−1

∫ L

0

∣∣yS(t)− ySM (t, ω)
∣∣ dt

≤ C0.

Hence |ck| ≤ C0/k
S for all k ≥M + 1.

6. In Step 1 we showed that ω̂ ∈ Iω. In Steps 2-4 we showed that ck ∈ [X]k for

1 ≤ k ≤M , and in Step 5 we showed that |ck| ≤ C0/k
S for k ≥M + 1.

Algorithm 5.4.3. Take as input an (α-parameterless) cube X ⊆ R1×Ωs. The output

is an (α-parameterless) cube X ′ ⊆ R1 × Ω̃s.

1. For [X]1 = A1 × B1, with A1 = [A1, A1] and B1 = [B1, B1], define an interval

131

Θ ⊆ R so that:

Θ ⊇



⋃
a1∈A1,b1∈B1

tan−1(b1/a1) if A1 > 0⋃
a1∈A1,b1∈B1

tan−1(b1/a1) + π if A1 < 0⋃
a1∈A1,b1∈B1

− tan−1(a1/b1) + π
2 if B1 > 0⋃

a1∈A1,b1∈B1
− tan−1(a1/b1)− π

2 if B1 < 0

[−π, π] otherwise.

2. Rotate every Fourier coefficient’s phase by −Θk. That is, define:

A′1 :=

[
inf

a1∈A1,b1∈B1

√
a2

1 + b21, sup
a1∈A1,b1∈B1

√
a2

1 + b21

]
, B′1 := [0, 0],

and for 2 ≤ k ≤M define intervals A′k, B
′
k ⊆ R such that:

A′k ⊇
⋃

θ∈Θ,ak∈Ak,bk∈Bk

cos(θk)ak + sin(θk)bk

B′k ⊇
⋃

θ∈Θ,ak∈Ak,bk∈Bk

− sin(θk)ak + cos(θk)bk.

3. Define a cube X ′ := X ′M ×X ′∞ ⊆ R1 × ΩS by

X ′M := Iω ×
M∏
k=1

A′k ×B′k

X ′∞ :=
{
ck ∈ C : |ck| ≤ C0/k

S
}∞
k=M+1

.

Proposition 5.4.4. For an input cube X, let X ′ denote the output of Algorithm 5.4.3.

Suppose that y : R → R is a periodic function given as in (5.2) with frequency and

Fourier coefficients satisfying (ω, {ck}∞k=1) ∈ X. Then there exists some τ ∈ R such

that the Fourier coefficients c′ of y(t+ τ) satisfy (ω, {c′k}∞k=1) ∈ X ′. Furthermore c′1 is

a real non-negative number.

Proof. We organize the proof into the steps of the algorithm.

1. Write the first Fourier coefficient of y as c1 = a1 + ib1. We may write c1 = reiθ

where r =
√
a2

1 + b21 and if c1 6= 0, then θ is unique up to an integer multiple of

132

2π. By the rules for arctan we can calculate:

θ =



tan−1(b1/a1) if a1 > 0

tan−1(b1/a1) + π if a1 < 0

− tan−1(a1/b1) + π
2 if b1 > 0

− tan−1(a1/b1)− π
2 if b1 < 0.

Since a1 ∈ A1 and b1 ∈ B1, it follows that θ ∈ Θ.

2. For any τ we can calculate the Fourier series of y(t+ τ) as follows:

y(t+ τ) =
∑
k∈Z

cke
iωk(t+τ) =

∑
k∈Z

cke
iωkτeiωkt.

If we choose τ = −θ/ω, then c′1 = c1e
iωτ =

√
a2

1 + b21 is a real, non-negative

number and moreover c′1 ∈ [X ′]1.

3. The Fourier coefficients of y(t+τ) are given by c′k = e−ikθck, hence (ω, {c′k}∞k=1) ∈

X ′.

5.4.2 Bounds for Wright’s Equation

The culmination of this subsection is Algorithm 5.4.7 which, for a given range of pa-

rameters, constructs a collection of cubes covering the solution space to Fα = 0. This

algorithm begins with pointwise bounds on SOPS to (1.2). To obtain these pointwise

bounds we use Algorithm 4.5.1, wherein we augment Algorithm 4.2.2 with Step 7 de-

fined in Algorithm 4.2.4. By Theorem 4.5.2, for a given range of parameters Iα the

output of this algorithm is a collection of bounding functions Ξ, such that if there is

a SOPS to the exponential version of Wright’s equation at parameter α ∈ Iα, then it

will be bounded by one of the bounding functions in Ξ. Recall that solutions to the

exponential version of Wright’s equation solve (1.1) where f(x) = ex − 1, and can be

transformed into the quadratic version of Wright’s equation (1.2) using the change of

variable y = ex − 1. Each bounding function in the output of Algorithm 4.5.1 is as-

sociated with intervals Q and Q̄, bounding the amount of time a SOPS is respectively

133

positive and negative, from which we can bound the period of the SOPS as L = Q+ Q̄.

We state a slightly reformulated version of Theorem 4.5.1 below:

Theorem 5.4.5 (See Theorem 4.5.2). Fix some Iα = [αmin, αmax] such that αmin ≥ π
2 .

Suppose that x : R→ R is periodic with period L, and is a SOPS to (1.1) at parameter

α ∈ Iα with f(x) = ex−1. Furthermore, assume without loss of generality that x(0) = 0

and x′(0) > 0.

If L and Ξ denote the output of Algorithm 4.5.1 run with input Iα, then there exists

some [Li, Li] ∈ L and [`i, ui] ∈ Ξ for which L ∈ [Li, Li] and x(t) ∈ [`i(t), ui(t)] for all t.

Remark 5.4.6. The set Ξ we refer to in Chapter 5, is referred to as X in [Jaq18].

In both cases the variable is used to denote a collection of bounding functions output

by Algorithm 4.5.1. We have made this change because in Chapter 4 the variable X ⊆

C1(R,R) is used to denote a fixed collection of functions.

The higher derivatives of a function can be very useful in constructing bounds on its

Fourier coefficients and their rate of decay. While the bounding functions constructed in

Chapter 4 are not even continuous, we can use them to construct bounding functions for

the derivative of SOPS to Wright’s equation via a bootstrapping argument. Namely,

by taking a derivative on both sides of (1.2) we obtain an equation for the second

derivative of solutions to (1.2). In a similar manner, can obtain an expression for the

third derivative of solutions to (1.2), both of which are presented below:

y′′(t) = −α
[
y′(t− 1) [1 + y(t)] + y(t− 1)y′(t)

]
y′′′(t) = −α

[
y′′(t− 1)[1 + y(t)] + 2y′(t− 1)y′(t) + y(t− 1)y′′(t)

]
.

Note that we can always express the derivative y(s)(t) in terms of y(r)(t) and y(r)(t− 1)

where 0 ≤ r ≤ s − 1. That is, we can inductively define functions fs : R2s → R such

that for all t we have:

y(s)(t) = fs
(
y(t), y(t− 1), y′(t), y′(t− 1), . . . , y(s−1)(t), y(s−1)(t− 1)

)
. (5.58)

If we start with a bounding function for y, then by appropriately adding and multiplying

the bounding functions for y(r), taking wider bounds whenever necessary, we can obtain

bounding functions for any derivative of y (see for example Figure 5.2).

134

Algorithm 5.4.7 proceeds by first constructing bounding functions for y and its

derivatives, and then applying Algorithm 5.4.1 to obtain a cube containing its Fourier

coefficients. Then it applies Algorithm 5.4.3 to impose the phase condition that c1 =

c∗1. In this manner we obtain a collection of cubes which contains all of the Fourier

1.4 1.5 1.6 1.7
0

0.2

0.4

0.6

a
1

1.4 1.5 1.6 1.7
0

0.2

0.4

0.6

a
1

1.4 1.5 1.6 1.7
0

0.2

0.4

0.6

a
1

1.4 1.5 1.6 1.7
0

0.2

0.4

0.6

a
1

0

1

2

3

4

C
0

Figure 5.3: Depicted above is the output of Algorithm 5.4.7 projected onto the (ω, a1)
plane. From left to right, the input Iα was taken to be [π2 , 1.6], [1.6, 1.7], [1.7, 1.8], and
[1.8, 1.9]. Note that C0 increases with α, a1, and period length 2π/ω.

coefficients to SOPS to (1.2). We then apply Algorithm 5.3.1 to each cube, discarding

it if possible. This allows us to discard between 5% and 20% of cubes (see N ′grid in

Table 5.1).

One problem however, is that the Fourier projection of two distinct bounding func-

tions often overlap considerably. To address this we combine overlapping cubes together.

While we could combine all of our cubes into one big cube, this would not be efficient.

Instead, we divide our cover along a grid in the ω × a1 plane (see Figure 5.3).

Algorithm 5.4.7. Fix an interval of Iα ⊆ [αmin, αmax], integers M,S ∈ N and a

subdivision number N ∈ N, and the computational parameters for Algorithm 4.5.1.

The output is a (finite) collection of cubes S = {Xi ⊆ R2 × Ω̃s}.

1. Let Ξ,L be the output of Algorithm 4.5.1 with input Iα and appropriate compu-

tational parameters.

2. Use the change of variables y = ex − 1 to define a collection of functions:

Y0 :=
{
Yi(t) = [e`i(t) − 1, eui(t) − 1] : [`i(t), ui(t)] ∈ Ξ

}
.

3. Inductively define Ys for 1 ≤ s ≤ S so that corresponding to each Y 0
i ∈ Y0 there

135

exists a Y s
i = [Y s

i , Y
s
i] ∈ Ys such that for f s defined in (5.58) we have:

Y s
i (t) ≤ inf

{yr}s−1
r=0∈{Y ri }

s−1
r=0

fs
(
y0(t), y0(t− 1), . . . , ys−1(t), ys−1(t− 1)

)
Y s
i (t) ≥ sup

{yr}s−1
r=0∈{Y ri }

s−1
r=0

fs
(
y0(t), y0(t− 1), . . . , ys−1(t), ys−1(t− 1)

)
.

4. Define S ′ := {X ′i ⊆ R1 × Ωs} to be the collective output of Algorithm 5.4.1 run

with M ∈ N, and each of the sets Li ∈ L and {Y s
i }Ss=0 ∈ {Ys}Ss=0 as input.

5. Define S ′′ := {X ′′i ⊆ R1 × Ω̃s} to be the collective output of Algorithm 5.4.3 run

with each of the sets X ′i ∈ S ′ as input.

6. Define S ′′′ by taking the product of Iα with the cubes in S ′′. That is, define

S ′′′ := {Iα ×X ′′i ⊆ R2 × Ω̃s : X ′′i ∈ S ′′}.

7. For each X ∈ S ′′′, let {flag,X ′} denote the output of Algorithm 5.3.1 with input

X. If flag = 1, then remove X from S ′′′. Otherwise replace X by X ′.

8. Subdivide the ω× a1 space covered by S ′′′ into an N ×N grid. That is, define an

index set B := {1, 2, . . . , N} × {1, 2, . . . , N} and define intervals Iω, Ia1 ⊆ R so

that:

Iω ⊇
⋃

X∈S′′′
πω(X), Ia1 ⊇

⋃
X∈S′′′

πa1(X).

Subdivide Iω and Ia1 into N subintervals of equal width, {Iωi }Ni=1 and {Ia1
i }Ni=1,

so that Iω =
⋃N
i=1 I

ω
i and Ia1 =

⋃N
i=1 I

a1
i .

9. For each β = (β1, β2) ∈ B, take the union of cubes in S ′′′ whose (ω, a1)–projection

intersects Iωβ1
× Ia1

β2
. That is, define:

X̃β := {(α, ω, c) ∈ R2 × Ω̃s : ω ∈ Iωβ1
, [c]1 ∈ Ia1

β2
},

and define Xβ to be a cube such that:

Xβ ⊇
⋃

X∈S′′′
X ∩ X̃β.

10. Define S := {Xβ : β ∈ B}.

136

Theorem 5.4.8. Fix an interval Iα = [αmin, αmax] such that αmin ≥ π
2 , and let S

denote the output of Algorithm 5.4.7. If a function y as given in (5.2) is a SOPS to

Wright’s equation at α ∈ Iα, then there exists a time translation so that its Fourier

coefficients are in
⋃
S.

Proof. Every SOPS y to the quadratic version of Wright’s equation given in (1.2) corre-

sponds to a SOPS x to the exponential version of Wright’s equation given in (1.1) with

f(x) = ex − 1. Fix a SOPS x : R→ R to the exponential version of Wright’s equation

with period L. We organize the proof into the steps of the algorithm.

1. By Theorem 5.4.5 there exists an interval Li ∈ L and a bounding function [`i, ui] ∈

Ξ and such that L ∈ Li and x(t) ∈ [`i(t), ui(t)] for all t ∈ R.

2. The change of variables between the exponential and quadratic versions of Wright’s

equation is given by y = ex − 1. Hence for the interval Li ∈ L and the bounding

function Yi ∈ Y0, it follows that L ∈ Li and y(t) ∈ Yi(t) for all t ∈ R.

3. Since y ∈ Y 0
i it follows that its derivatives satisfy y(s) ∈ Y s

i for all 0 ≤ s ≤ S.

4. Let ω and c denote the frequency and Fourier coefficients of y respectively. If X ′i

is the output of Algorithm 5.4.1 with input M ∈ N, Li and {Y s
i }Ss=0, then by

Proposition 5.4.2 it follows that (ω, {ck}∞k=1) ∈ X ′i.

5. Let X ′′i denote the output of Algorithm 5.4.3 with input X ′i. By Theorem 5.4.4,

there exists a τ ∈ R such that the Fourier coefficients c′ of y(t + τ) satisfy

(ω, {c′k}∞k=1) ∈ X ′′i .

6. We have shown that if y is a SOPS to (1.2) at parameter α having frequency

ω, then up to a time translation (α, ω, c) ∈
⋃
S ′′′. By Theorem 2.1.4 the SOPS

to (1.2) at parameter α ∈ Iα correspond to the non-trivial zeros of F in
⋃
S ′′′.

(Note that F defined here in Chapter 5 is equal to 1
αG for G defined in Chapter

2.) Hence, if there is a solution F (x̂) = 0 for some x ∈ R2 × Ω̃s with πα(x̂) ∈ Iα,

then x̂ ∈
⋃
S ′′′.

137

7. Let {flag,X(4)
i } denote the output of Algorithm 5.3.1 with input X ′′′i ∈ S ′′′. By

Theorem 5.3.2 we can replace each X ′′′ ∈ S ′′′ with X
(4)
i , and it will still be the

case that
⋃
S ′′′ contains all of the solutions to F = 0. In particular, if flag = 1

then X
(4)
i = ∅ and we may remove X ′′′i in this case.

8. If (α, ω, c) ∈
⋃
S ′′′ and a1 = [c]1, then by construction ω ∈ Iω and a1 ∈ Ia1 .

As Iω × Ia1 =
⋃

(β1,β2)∈B I
ω
β1
× Ia1

β2
, then there is some (β1, β2) ∈ B such that

(ω, a1) ∈ Iωβ1
× Ia1

β2
.

9. As
⋃
X∈S′′′ X ⊆

⋃
β∈B X̃β, then it follows that

⋃
X∈S′′′ X ⊆

⋃
β∈BXβ. That is to

say
⋃
S ′′′ ⊆

⋃
S.

10. Hence,
⋃
S contains the Fourier coefficients of any possible SOPS.

5.5 Global Algorithm

After Algorithm 5.4.7 has constructed a collection of cubes S covering the solution space

to F = 0, we run a branch and prune algorithm. This algorithm iteratively inspects

the elements in X ∈ S and then constructs three new lists of cubes: A, B and R. To

summarize, first we compute the output Prune(X) = {flag,X ′} from Algorithm 5.3.1.

If flag = 1, then there are no solutions in X, and we can remove X from S. If flag = 2,

then the cube is in the neighborhood of the Hopf bifurcation, and we add X ′ to B. If

flag = 3, then for all α ∈ πα(X) there exists a unique solution to Fα = 0 in X ′, and we

add X ′ to A. If X ′ is too small, then we add it to R. If the Krawczyk operator appears

to be effective at reducing the size of the cube, then the pruning operation is performed

again. Otherwise X ′ is subdivided along some lower dimension and the resulting pieces

are added back to S.

The most obvious difference between our algorithm and the classical algorithm is

that we are working in infinite dimensions. While we store 2M + 1 real valued coor-

dinates in a given cube, as in [GZ07, DK13] the subdivision is only performed along a

subset of these dimensions. Choosing which dimension to subdivide along can greatly

138

affect the efficiency of a branch and bound algorithm, and there are heuristic methods

for optimizing this choice [CR97]. However since we are finding all the zeros along a

1-parameter family of solutions, these branching methods are not entirely applicable.

To determine which dimension to subdivide we select the dimension with the largest

weighted diameter. That is, for a collection of weights {λi}di=0 we define:

w(X, i) :=


λi · diam (πα(X)) if i = 0,

λi · diam
(
[π̃′M (X)]i

)
otherwise.

(5.59)

Algorithm 5.5.1 (Branch & Bound). Take as input a collection of cubes S = {Xi ⊆

R2 × Ω̃s} with M ≥ 5 and s > 2, and as computational parameters: a halting criteria

ε > 0, a continue-pruning criteria δ ≥ 0, a maximum subdivision dimension 0 ≤ d ≤

2M and a set of weights {λi}di=0. The output is three lists of cubes: A,B and R.

1. If S is empty, terminate the algorithm.

2. Select an element X ∈ S and remove X from S.

3. Define {flag,X ′} = Prune(X) to be the output of Algorithm 5.3.1 with input X.

4. If flag = 1, then reject X and GOTO Step 1.

5. If flag = 2, then add X ′ to B and GOTO Step 1.

6. If flag = 3, then add X ′ to A and GOTO Step 1.

7. If max0≤i≤dw(X ′, i) < ε, then add X ′ to R and GOTO Step 1.

8. Define m = bd/2c. If (1 + δ) < vol(π̃′m(X))
vol(π̃′m(X′)) , then define X := X ′ and GOTO

Step 3.

9. Subdivide X ′ into two pieces, X ′1 and X ′2, along a dimension which maximizes

w(X ′, i), and so that X ′ = X ′1 ∪ X ′2. Add the two new cubes to S and GOTO

Step 1.

Theorem 5.5.2. Let S = {Xi ⊆ R2 × Ω̃s} with M ≥ 5 and s > 2. Let A,B and R be

the output of Algorithm 5.5.1 run with input S and various computational parameters.

139

(i) If F (x̂) = 0 for some x̂ ∈
⋃
S, then x̂ ∈

⋃
A ∪ B ∪R.

(ii) For each X ∈ A and α ∈ πα(X), there is a unique x̂ = (α, ω̂α, ĉα) ∈ X such that

F (x̂) = 0.

(iii) For each X ∈ B, if there is a solution x̂ ∈ X to F = 0, then x̂ is on the principal

branch.

Proof. We prove the claims of the theorem.

(i) Suppose there is some solution x̂ ∈ X for some X ∈ S. We show that x̂ ∈⋃
S ∪A∪B ∪R at every step of the algorithm. If we replace X by X ′ as in Step

3, then x̂ ∈ X ′ by Theorem 5.3.2. In Step 4, if flag = 1 then in fact X ′ = ∅, so X

could not have contained any solutions in the first place. In Steps 5, 6 and 7, the

cube X ′ is added to one of A, B orR. Hence, as x̂ ∈ X ′ then x̂ ∈
⋃
S∪A∪B∪R. If

in Step 8 we decide to prune the cube X ′ again, then we may repeat the argument

made for Steps 3-7. In Step 9 we divide X ′ into two new cubes X ′1 and X ′2 for

which X ′ = X ′1 ∪X ′2. Hence x̂ will be contained in at least one of X ′1 or X ′2, and

both cubes are added to S, so we cannot lose the solution in Step 9.

Thus we have shown that x̂ ∈
⋃
S ∪A∪B ∪R at every step. Since the algorithm

can only stop when S = ∅, it follows that every solution x̂ initially contained in⋃
S will eventually be contained in

⋃
A ∪ B ∪R.

(ii) The only way a cube X ′ can be added to A is in Step 6. That is, for some cube

X ∈ S the output of Algorithm 5.3.1 returned {3, X ′}. Thus, it follows from

Theorem 5.3.2 that for all α ∈ πα(X) there is a unique x̂ = (α, ω̂α, ĉα) ∈ X such

that F (x̂) = 0.

(iii) The only way a cube X ′ can be added to B is in Step 5. That is, for some cube

X ∈ S the output of Algorithm 5.3.1 returned {2, X ′}. Thus, it follows from

Corollary 2.3.11 that the only solutions to F = 0 in X ′ are those on the principal

branch.

140

If a cube has no zeros inside of it yet there is a solution close to its boundary, then

proving that the cube does not contain any solutions can be very difficult, resulting in

an excessive number of subdivisions. This phenomenon is common to branch and bound

algorithms and is referred to as the cluster effect [SN04]. As we wish to enumerate not

just isolated solutions but a 1-parameter family of solutions, the difficulty of the cluster

effect is multiplied. Furthermore, we cannot expect that the boundary of a cube will

almost never contain a solution. In particular, when we subdivide a cube we may also

bisect the curve of solutions, and further subdivisions will not remedy this problem (see

Figure 5.4). As such, we should not expect that R 6= ∅.

To address this issue we apply Algorithm 5.5.3 to the output of Algorithm 5.5.1.

In Step 1 we recombine cubes in R which overlap in the α dimension. In Step 2 we

split the cubes in R along the α-dimension to make them easier to prune, which we do

in Step 3. Ideally by Step 4 all of the cubes have been removed from R, having been

added to either A or B.

Even if R = ∅ at this point, it is not immediately clear that the only solutions are

on the principal branch. For two distinct cubes X1, X2 ∈ A, if there is some α0 such

that α0 ∈ πα(X1) and α0 ∈ πα(X2), then there could very well be two distinct solutions

at the parameter α0. In fact, since we subdivide along the α–dimension it is to be

expected that a cube will share an α–value with one or two other cubes. In Steps 6-9 of

Algorithm 5.5.3 we check to make sure that when two cubes have α–values in common,

then there is a unique solution associated to each α0 ∈ πα(X1) ∩ πα(X2).

Algorithm 5.5.3. Take as input sets A,B,R produced by Algorithm 5.5.1 and a com-

putational parameter n ∈ N. The output is a pair of intervals IAα , IBα and either success

or failure.

1. Combine the elements in R whose α-components overlap in more than just a

point. That is, for all X,Y ∈ R, if diam(πα(X) ∩ πα(Y)) > 0, then replace X

and Y in the set R with a new cube Z containing X ∪ Y .

2. Subdivide each X ∈ R along the α-dimension.

3. For all X ∈ R calculate {flag,X ′} = Prune(n)(X), the output of Algorithm 5.3.1

141

1.57 1.575 1.58 1.585 1.59 1.595 1.6
0

0.05

0.1

0.15

0.2

a
1

1.5755 1.576 1.5765 1.577 1.5775 1.578

0.08

0.085

0.09

0.095

0.1

a
1

Figure 5.4: An example output of Algorithm 5.5.1. The cubes in A are in green, the
cubes in B are in dark blue, and the cubes in R are in pink.

iterated at most n times with initial input X. If flag = 1, then remove X from

R. If flag = 2, then remove X from R and add X ′ to B. If flag = 3, then

remove X from R and add X ′ to A.

4. If R 6= ∅ then return FAILURE.

5. Define IAα =
⋃
X∈A πα(X) and IBα =

⋃
X∈B πα(X).

6. Construct a cover I ′B of the parts of cubes in A which intersect with
⋃
B. That

is, define IB = {X ∈ A : πα(X) ∩ IBα }. Then define I ′B by, for each X ∈ IB,

taking the α-component of X and setting it equal to πα(X) ∩ IBα and adding the

modified cube to I ′B.

7. For all X ∈ I ′B calculate {flag,X ′} = Prune(n)(X), the output of Algorithm

5.3.1 iterated n–times with initial input X. If flag 6= 2 then return FAILURE.

8. Construct a cover I ′A of the parts of cubes in A which intersect with another cube

in A. That is, define IA = {(X,Y) ∈ A×A : X 6= Y, πα(X)∩πα(Y) 6= ∅}. Then

define I ′A by, for each (X,Y) ∈ IA, defining a new cube Z which contains X ∪Y ,

replacing the α-component of Z by πα(X) ∩ πα(Y), and adding Z to I ′A.

9. For all Z ∈ I ′A calculate {flag, Z ′} = Prune(n)(Z), the output of Algorithm 5.3.1

iterated n–times with initial input Z. If flag 6= 3 then return FAILURE.

10. If the algorithm reaches this point, return SUCCESS.

142

Theorem 5.5.4. Let A,B,R denote the output of Algorithm 5.5.1 run with input

S = {Xi ⊆ R2 × Ω̃s} where M ≥ 5 and s > 2. Suppose having received input A,B,R

and n ∈ N, Algorithm 5.5.3 returns SUCCESS and intervals IAα and IBα .

(i) If α ∈ IAα \IBα , then there is a unique solution x̂α = (α, ω̂α, ĉα) ∈
⋃
S such that

Fα(ω̂α, ĉα) = 0.

(ii) If α ∈ IBα , then the only solutions to Fα = 0 in
⋃
S are on the principal branch.

Proof. We describe the first 4 steps of the algorithm and then prove the theorem.

1. Let R denote the initial input to the algorithm and R′ denote the resulting set

produced by Step 1. By its construction, it follows that
⋃
R ⊆

⋃
R′.

2. If we subdivide the cubes in R′, then it is still true that
⋃
R ⊆

⋃
R′.

3. As described in the proof of Theorem 5.5.2, if flag = 1, 2, 3 then it is appropriate

to respectively, discard X, add X ′ to B and add X ′ to A. Appropriate, that is,

in the sense that the conclusion of Theorem 5.5.1 will hold for these modified sets

A, B and R.

4. If we cannot show that every region of phase-space lies in either A or B then we

are unable to prove the theorem. Otherwise, every solution to F = 0 in
⋃
S is

contained in
⋃
A ∪ B.

We prove claim (i). If α ∈ IAα \IBα there is a solution x̂α to Fα = 0 in
⋃
A. Suppose

there exists a second distinct solution x̂′α to Fα = 0. Since each cube X ∈ A contains a

unique solution for all α ∈ πα(X), there would exist distinct cubes X,Y ∈ A such that

x̂α ∈ X and x̂′α ∈ Y . It follows then that there exists some Z ∈ I ′α such that x̂α, x̂
′
α ∈ Z.

Since it is determined by Step 9 that flag = 3 in the output of Prune(n)(Z), therefore

by Theorem 5.3.2 there exists a unique solution to F = 0 in Z. Thereby x̂α = x̂′α,

and if α ∈ IAα \IBα , then there is a unique solution x̂α = (α, ω̂α, ĉα) ∈
⋃
S such that

Fα(ω̂α, ĉα) = 0.

We prove claim (ii). Suppose there exists some x̂α such that α ∈ IBα and Fα(ω̂, ĉ) =

0. Since the algorithm passed through Step 4, it follows that x̂α ∈
⋃
A∪B. If x̂α ∈

⋃
B,

143

then x̂α is on the principal branch by Theorem 5.5.2. If x̂α ∈
⋃
A, then there exists

a cube X ∈ I ′B such that x̂α ∈ X. If the Algorithm 5.5.3 is successful, then when

Algorithm 5.3.1 is run n–times with initial input X it will produce flag = 2. Hence by

Theorem 5.3.2 this solution x̂α ∈
⋃
A must be on the principal branch.

Proof of Theorem 1.2.3. We implemented the algorithms discussed in this chapter using

MATLAB version R2017b (see [Jaq] for the code). The calculations were performed

on Intel Xeon E5-2670 and Intel Xeon E5-2680 processors, and used INTLAB for the

interval arithmetic [Rum99]. A summary of the algorithms’ runtime is given in Table

5.1.

For the intervals Iα taking the values (containing at least) [π2 , 1.6], [1.6, 1.7], [1.7, 1.8],

and [1.8, 1.9], we ran Algorithm 4.5.1, augmenting Algorithm 4.2.2 with the seventh step

given in Algorithm 4.2.4. In Algorithm 4.5.1 we used computational parameters i0 = 2,

j0 = 20, nT ime = 32, NPeriod = 10, NPrune = 4, ε1 = 0.05 and ε2 = 0.05.

We then ran Algorithm 5.4.7 using computational parameters M = 10 and S = 3,

and N = 15 producing outputs SIα (see Figure 5.3). By Theorem 5.4.8, if y is a SOPS

at parameter α ∈ Iα given as in (5.2), then (α, ω, c) ∈
⋃
SIα . By Theorem 2.1.4 the

SOPS to (1.2) at parameters α ∈ Iα are in bijective correspondence with the nontrivial

zeros of F inside
⋃
SIα .

On each of the collections of cubes SIα we ran Algorithm 5.5.1, using the following

computational parameters: For the stopping criterion we used ε = 0.0001 for α ∈

[π2 , 1.6] and ε = 0.01 otherwise. For the continue-pruning criterion, in every case we

used δ = 0.5. For the maximal subdivision dimension, in each case we used d = 6,

corresponding to the variables α, ω, a1 ∈ R and c2, c3 ∈ C. For the set of weights, in

each case we used λ0 = 8 (corresponding to α) and λi = 1 otherwise.

The output of Algorithm 5.5.1 are sets AIα ,BIα ,RIα . On each of these result-

ing outputs we ran Algorithm 5.5.3 using n = 5, and in each case it was success-

ful, producing sets IAα and IBα . When Iα = [π2 , 1.6] then IBα = [π2 ,
π
2 + 0.00550] and

IAα = [π2 + 0.00550, 1.6], and otherwise IAα = Iα. By Theorem 5.5.2, this shows that

144

for all α ∈ [π2 + 0.00550, 1.9] there exists a unique solution to Fα = 0 in
⋃
S, and if

α ∈ [π2 ,
π
2 + 0.00550] then the only solutions that exist are on the principal branch. By

Theorem 2.3.7 there are no solutions at α = π
2 on or off the principal branch, and by

Theorem 2.3.8 there are no folds in the principal branch for α ∈ (π2 ,
π
2 +0.00683]. Hence

for all α ∈ (π2 , 1.9] there exists a unique solution to (1.2).

Iα Nbf N ′grid Ngrid Tbf Tgrid T ∗bb Tverify

[π2 , 1.6] 774 614 181 361.8 3.8 2.5∗ 1.3

[1.6, 1.7] 953 861 165 422.2 4.9 3.3∗ 1.1

[1.7, 1.8] 603 566 143 290.1 3.2 10.9∗ 0.4

[1.8, 1.9] 292 277 97 179.1 1.6 61.7∗ 0.6

Table 5.1: Computational benchmarks from the computer-assisted proof of Theorem

1.2.3. Nbf – the number of bounding functions output by Algorithm 4.5.1. N ′grid –

the number of cubes in S ′′′ after Step 7 in Algorithm 5.4.7. Ngrid – the number of

cubes output by Algorithm 5.4.7. Tbf – the run time (min.) of Algorithm 4.5.1. Tgrid

– the run time (min.) of Algorithm 5.4.7. T ∗bb – the run time (min.) of Algorithm 5.5.1

parallelized using 20 workers. Tverify – the run time (min.) of Algorithm 5.5.3.

Proof of Theorem 1.2.4. By Theorem 1.2.3 for all α ∈ (π2 , 1.9] there exists a unique

solution to (1.2). By Theorem 1.2.2 and [Xie91] there exists a unique SOPS to (1.2)

for α ∈ [1.9, 6.0] and α ≥ 5.67 respectively. Hence there exists a unique SOPS to (1.2)

for all α > π
2 .

Remark 5.5.5. It is apparent from Table 5.1 that the two principal computational bot-

tlenecks are Algorithm 4.5.1 (see column Tbf) and Algorithm 5.5.1 (see column T ∗bb).

Algorithm 5.5.1 takes more time to finish as α increases, largely driven by a correspond-

ing increase in C0 (see Figure 5.3). On the other hand, Algorithm 4.5.1 takes less time

to finish as α increases. The interval Iα = [π2 , 1.6], however, provides an exception to

this trend. This is due to our augmentation of Algorithm 4.2.2 by the seventh step given

in Algorithm 4.2.4, an improvement which is most effective for α near π
2 .

145

Chapter 6

Future Directions

Proof of Theorem 1.2.5. By [MP88] every global solution to (1.1) has a positive, integer

valued lap number V (x, t). For non-zero x the lap number will be an odd integer, defined

by fixing the smallest possible σ ≥ t such that x(σ) = 0 and defining:

V (x, t) =


the # of zeros (counting multiplicity) of x(s) in (σ − 1, σ]; or

1 if no σ exists.

Let us fix x0 as a periodic solution to (1.1) with period L0. For any t ∈ R the

lap number V (x0, t) remains constant, and we can define N := V (x0, t). If N = 1

then x0 must be a SOPS. If N ≥ 3 then define the integer n := N−1
2 and r := 1− nL0.

By [MP88], it follows that 2/N < L0 < 2/(N−1), hence 0 < r < N−1. Defining x1(t) :=

x0(rt) and α1 = rα0 we calculate the derivative of x1(t) as: x′1(t) = −α1f(x0(rt− 1)).

We may further compute:

x0(rt− 1) = x0(rt− 1 + nL0) = x0(r(t− 1)) = x1(t− 1).

Hence it follows that x′1(t) = −α1f(x1(t− 1)). Thus we have shown that if V (x0) ≥ 3

then x0 is a rescaling of a periodic solution x1 with period length L1 = L0/r > 2. Hence

x0 is a rescaling of a SOPS.

6.1 Dynamical Questions

One pertinent question that remains concerns the period length of SOPS to Wright’s

equation.

Conjecture 6.1.1. The period length of SOPS to (1.2) increases monotonically in α

for all α > π
2 .

146

By Corollary 2.3.9 the period length increases monotonically when α ∈ (π2 ,
π
2 +

6.830×10−3]. The rigorous numerics performed in this thesis strongly suggests this to be

true when α ≤ 6, and when α ≥ 3.8 the period length L satisfies |L−α−1eα| < 7.66α−1

by [Nus82]. However Conjecture 6.1.1 is unresolved for α > π
2 + 6.830× 10−3.

Another question, proposed in [BCKN14], is the generalized Wright’s conjecture.

Conjecture 6.1.2. For every α > 0 the set U(α), the closure of the forward extension

by the semiflow of a local unstable manifold at zero, is the global attractor for (1.2).

This is known to be true for α ≤ π
2 by Theorem 2.3.7 and is unresolved for α > π

2 .

Conjecture 6.1.2 can be reduced to a question about the number of rapidly oscillating

periodic solutions, and moreover Conjecture 6.1.1 implies Conjecture 6.1.2. To wit,

by the Poincaré-Bendixson theorem for monotone feedback systems [MPS96], the ω-

limit set of any initial data to (1.2) is either 0 or a periodic orbit. The lap number

organizes the attractor into Morse sets SN by [MP88], and by [FMP89] there is always a

connecting orbit from the unstable manifold of the origin to the Morse set SN . Hence, to

prove Conjecture 6.1.2, it would suffice to show that each Morse set consists of exactly

one periodic orbit.

By Theorem 1.2.5 there are no isolas of periodic orbits, so multiple rapidly oscillating

periodic solutions can only arise if there is a fold in one of the branches of rapidly

oscillating periodic solutions. If Conjecture 6.1.1 holds, then such a fold can be ruled

out using the rescaling equation in Theorem 1.2.5. In particular, if there are two SOPS

at parameters α1 < α2 with period lengths L1, L2 and the equality α0 = α1(1 +nL1) =

α2(1 + nL2) holds, then there will be two distinct rapidly oscillating periodic solutions

at parameter α0. This equality cannot hold if L1 < L2 whenever α1 < α2. Thereby

Conjecture 6.1.1 implies Conjecture 6.1.2.

There are still further questions about Wright’s equation. In [MM96] the authors

show a semi-conjugacy of Wright’s equation, and negative feedback systems more gen-

erally, onto a family of finite dimensional ODEs. Outside the dynamics described by

this semi-conjugacy, are there any other interesting dynamics in (1.2)? Furthermore, do

the stable and unstable manifolds of the periodic orbits in (1.2) intersect transversely?

147

6.2 Computational Questions

There are many future directions for the rigorous numerics of infinite dimensional dy-

namical systems. Perhaps one of the most striking features of Figure 5.1 and Figure 5.4

is the non-uniform size of cubes. This seems to be a result of applying the branch and

bound method to a 1-parameter family of solutions instead of a collection of isolated

solutions. One approach would be to first validate a neighborhood around the branch

of solutions (á la [Les10]) and then use a branch and bound method to ensure that

there are no solutions outside of this neighborhood. In this paper, we used a collection

of weights {λ}di=0 to mitigate this problem. When using all equal weights (λi = 1 for

all i), the vast majority of cubes output by Algorithm 5.5.1 ended up in R. Having

a better heuristic for deciding along which dimension to branch would be very useful,

particularly so if it does away with the a priori need to select a maximal subdivision

dimension d as a computational parameter.

Integral to the success of the algorithms in Chapter 5 (allowing it to finish in finite

time) are the estimates derived in Chapter 4 which bound all of the slowly oscillating

periodic solutions to Wright’s equation. Since most initial conditions are attracted to

the single SOPS in Wright’s equation, it was sufficient for the methods in Chapter 4

to be relatively simple. Future work could be done toward bounding all periodic orbits

in more general solutions. Examples of this are when there are rapidly oscillating

periodic solutions of interest, or when there are multiple (unstable) solutions, or when

the dimension is higher, or when one considers instead an ODE or a PDE.

Another question, explored in [LMJ17], is “what is the best Banach space to work

in?” In this paper we consider the space ΩS of Fourier coefficients with algebraic decay.

In Algorithm 5.4.7, the estimates for obtaining a priori estimates on the Fourier coeffi-

cients of SOPS always improve in absolute terms by using larger value of S. However,

the value of C0 will increase when using a larger S. It would likely be beneficial to ini-

tially run Algorithm 5.4.7 with a large S, and then convert these bounds into a smaller

148

S so that C0 will shrink as well. However, for other applications and other infinite

dimensional problems, the question of what is the optimal Banach space remains.

149

References

[AP95] Antonio Ambrosetti and Giovanni Prodi. A primer of nonlinear analysis.
Number 34. Cambridge University Press, 1995.

[BCKN14] Balázs Bánhelyi, Tibor Csendes, Tibor Krisztin, and Arnold Neumaier.
Global attractivity of the zero solution for Wright’s equation. SIAM Journal
on Applied Dynamical Systems, 13(1):537–563, 2014.

[CH82] S.-N. Chow and J. K. Hale. Methods of bifurcation theory, volume 251 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New
York-Berlin, 1982.

[CL13] Roberto Castelli and Jean-Philippe Lessard. Rigorous numerics in floquet
theory: computing stable and unstable bundles of periodic orbits. SIAM
Journal on Applied Dynamical Systems, 12(1):204–245, 2013.

[CMP77] Shui-Nee Chow and John Mallet-Paret. Integral averaging and bifurcation.
Journal of Differential Equations, 26(1):112–159, 1977.

[CR97] Tibor Csendes and Dietmar Ratz. Subdivision direction selection in interval
methods for global optimization. SIAM Journal on Numerical Analysis,
34(3):922–938, 1997.

[DK13] Sarah Day and William D Kalies. Rigorous computation of the global dy-
namics of integrodifference equations with smooth nonlinearities. SIAM
Journal on Numerical Analysis, 51(6):2957–2983, 2013.

[DLM07] Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated
continuation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398–
1424, 2007.

[Far06] Teresa Faria. Normal forms and bifurcations for delay differential equations.
In Delay Differential Equations and Applications, pages 227–282. Springer,
2006.

[FMP89] Bernold Fiedler and John Mallet-Paret. Connections between Morse sets
for delay differential equations. J. reine angew. Math, 397:23–41, 1989.

[GZ07] Zbigniew Galias and Piotr Zgliczyński. Infinite dimensional Krawczyk oper-
ator for finding periodic orbits of discrete dynamical systems. International
Journal of Bifurcation and Chaos, 17(12):4261–4272, 2007.

[Hal71] Jack K Hale. Functional differential equations. Springer, 1971.

[Hal06] J. K. Hale. History of Delay Equations, pages 1–28. Springer Netherlands,
Dordrecht, 2006.

150

[HKW81] Brian D Hassard, Nicholas D Kazarinoff, and Y-H Wan. Theory and appli-
cations of Hopf bifurcation, volume 41. CUP Archive, 1981.

[HLMJ16] Allan Hungria, Jean-Philippe Lessard, and Jason D Mireles James. Rigor-
ous numerics for analytic solutions of differential equations: the radii poly-
nomial approach. Mathematics of Computation, 85(299):1427–1459, 2016.

[HT13] Reiner Horst and Hoang Tuy. Global optimization: Deterministic ap-
proaches. Springer Science & Business Media, 2013.

[HW03] Eldon Hansen and G William Walster. Global optimization using interval
analysis: revised and expanded, volume 264. CRC Press, 2003.

[Jaq] Jonathan Jaquette. MATLAB code available at: http://www.math.

rutgers.edu/~jaquette/Jones_Code.zip .

[Jaq18] Jonathan Jaquette. A proof of jones’ conjecture. arXiv preprint
arXiv:1801.09806, 2018. Submitted to the Journal of Differential Equa-
tions.

[JLM] Jonathan Jaquette, Jean-Philippe Lessard, and Konstantin Mischaikow.
MATLAB codes to perform the computer-assisted proofs available at
http://archimede.mat.ulaval.ca/jplessard/Jones/.

[JLM17] Jonathan Jaquette, Jean-Philippe Lessard, and Konstantin Mischaikow.
Uniqueness and stability of periodic orbits in Wright’s equation. Journal of
Differential Equations, 263(11):7263–7286, 2017.

[Jon62a] G Stephen Jones. The existence of periodic solutions of f(x) = −αf(x −
1){1+f(x)}. Journal of Mathematical Analysis and Applications, 5(3):435–
450, 1962.

[Jon62b] G Stephen Jones. On the nonlinear differential-difference equation f(x) =
−αf(x− 1){1 + f(x)}. Journal of Mathematical Analysis and Applications,
4(3):440–469, 1962.

[KM13] V Kolmanovskii and A Myshkis. Introduction to the theory and applications
of functional differential equations, volume 463. Springer Science & Business
Media, 2013.

[KSW96] Hans Koch, Alain Schenkel, and Peter Wittwer. Computer-assisted proofs
in analysis and programming in logic: a case study. SIAM review, 38(4):565–
604, 1996.

[Les10] Jean-Philippe Lessard. Recent advances about the uniqueness of the slowly
oscillating periodic solutions of Wright’s equation. Journal of Differential
Equations, 248(5):992–1016, 2010.

[LMJ17] Jean-Philippe Lessard and Jason D Mireles James. Computer assisted
fourier analysis in sequence spaces of varying regularity. SIAM Journal
on Mathematical Analysis, 49(1):530–561, 2017.

http://www.math.rutgers.edu/~jaquette/Jones_Code.zip
http://www.math.rutgers.edu/~jaquette/Jones_Code.zip

151

[MKC09] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to
interval analysis. SIAM, 2009.

[MM96] Christopher McCord and Konstantin Mischaikow. On the global dynamics
of attractors for scalar delay equations. Journal of the American Mathe-
matical Society, 9(4):1095–1133, 1996.

[MN10] Teruya Minamoto and Mitsuhiro T Nakao. A numerical verification method
for a periodic solution of a delay differential equation. Journal of computa-
tional and applied mathematics, 235(3):870–878, 2010.

[Moo77] Ramon E Moore. A test for existence of solutions to nonlinear systems.
SIAM Journal on Numerical Analysis, 14(4):611–615, 1977.

[MP88] John Mallet-Paret. Morse decompositions for delay-differential equations.
Journal of differential equations, 72(2):270–315, 1988.

[MPS96] John Mallet-Paret and George R Sell. The Poincaré–Bendixson theorem
for monotone cyclic feedback systems with delay. Journal of differential
equations, 125(2):441–489, 1996.

[Neu90] Arnold Neumaier. Interval methods for systems of equations, volume 37.
Cambridge university press, 1990.

[Nus73] Roger D. Nussbaum. Periodic solutions of analytic functional differential
equations are analytic. Michigan Math. J., 20:249–255, 1973.

[Nus75] Roger D Nussbaum. A global bifurcation theorem with applications to
functional differential equations. Journal of Functional Analysis, 19(4):319–
338, 1975.

[Nus82] Roger Nussbaum. Asymptotic analysis of some functional-differential equa-
tions. In A. R. Bednarek and L Cesari, editors, Dynamical systems, II,
pages 277–301, 1982.

[Reg89] Benjamin Tolentino Regala. Periodic solutions and stable manifolds of
generic delay differential equations. PhD thesis, Brown University, 1989.

[RR88] Helmut Ratschek and Jon Rokne. New computer methods for global opti-
mization. Horwood Chichester, 1988.

[Rum99] Siegfried M Rump. INTLAB–INTerval LABoratory. In Developments in
reliable computing, pages 77–104. Springer, 1999.

[Rum10] Siegfried M Rump. Verification methods: Rigorous results using floating-
point arithmetic. Acta Numerica, 19:287–449, 2010.

[Sch11] Daniel Scholz. Deterministic global optimization: geometric branch-and-
bound methods and their applications, volume 63. Springer Science & Busi-
ness Media, 2011.

[SN04] Hermann Schichl and Arnold Neumaier. Exclusion regions for systems of
equations. SIAM journal on numerical analysis, 42(1):383–408, 2004.

152

[SZ16] Robert Szczelina and Piotr Zgliczyński. Algorithm for rigorous integration
of delay differential equations and the computer-assisted proof of periodic
orbits in the mackey-glass equation. arXiv preprint arXiv:1607.01080, 2016.

[Szc14] Robert Szczelina. Rigorous integration of Delay Differential Equations.
PhD thesis, Jagiellonian University, 2014.

[Tuc11] Warwick Tucker. Validated numerics: a short introduction to rigorous com-
putations. Princeton University Press, 2011.

[vdB16] Jan Bouwe van den Berg. Introduction to rigorous numerics in dynam-
ics: general functional analytic setup and an example that forces chaos.
Preprint, 2016.

[vdBJ] Jan Bouwe van den Berg and Jonathan Jaquette. Mathemat-
ica code available at: http://www.math.rutgers.edu/~jaquette/

Hopf-Bifurcation-in-Wrights-Equation.nb .

[vdBJ18] Jan Bouwe van den Berg and Jonathan Jaquette. A proof of Wright’s
conjecture. Journal of Differential Equations, 2018.

[vdBL08] Jan Bouwe van den Berg and Jean-Philippe Lessard. Chaotic braided solu-
tions via rigorous numerics: Chaos in the Swift–Hohenberg equation. SIAM
Journal on Applied Dynamical Systems, 7(3):988–1031, 2008.

[Wal78] Hans-Otto Walther. A theorem on the amplitudes of periodic solutions
of differential delay equations with applications to bifurcation. Journal of
differential equations, 29(3):396–404, 1978.

[Wal14] Hans-Otto Walther. Topics in delay differential equations. Jahresbericht
der Deutschen Mathematiker-Vereinigung, 116(2):87–114, 2014.

[Wri55] Edward M Wright. A non-linear difference-differential equation. J. reine
angew. Math, 194(1-4):66–87, 1955.

[Xie91] Xianwen Xie. Uniqueness and stability of slowly oscillating periodic solu-
tions of differential delay equations. PhD thesis, Rutgers University, 1991.

[Xie93] XW Xie. Uniqueness and stability of slowly oscillating periodic solutions of
delay equations with unbounded nonlinearity. Journal of differential equa-
tions, 103(2):350–374, 1993.

http://www.math.rutgers.edu/~jaquette/Hopf-Bifurcation-in-Wrights-Equation.nb
http://www.math.rutgers.edu/~jaquette/Hopf-Bifurcation-in-Wrights-Equation.nb

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Background
	Thesis Outline

	Hopf Bifurcation Analysis
	Preliminaries
	Local results
	Global results

	Technical Estimates
	Operator Norms
	Endomorphism on a Compact Domain
	The upper bound for Y()
	The upper bound for Z(,r,)
	A priori bounds on periodic orbits
	Implicit Differentiation

	Computationally Characterizing SOPS and their Stability
	Background
	A computational approach
	Initial Bounds on SOPS to Wright's Equation
	Bounding the Floquet Multipliers.
	A Comprehensive Algorithm
	Discussion
	Computational Considerations

	Ruling out Isolas
	Outline of Proof
	Bounding the Krawczyk Operator
	Pruning Operator
	Global Bounds on the Fourier Coefficients
	Global Algorithm

	Future Directions
	Dynamical Questions
	Computational Questions

	References

