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ABSTRACT OF THE DISSERTATION 

 

PROCESS MONITORING AND CONTROL WITH HIGH-DIMENSIONAL DATA  

By SANGAHN KIM 

Dissertation Directors: 

Myong K. Jeong and Elsayed A. Elsayed 

The increased accessibility of a large number of data streams makes it possible to use 

multivariate statistical process control (SPC) in various modern industries. However, as the 

number of quality characteristics and process parameters to be monitored increases such 

simultaneous monitoring becomes less sensitive to the out-of-control signals especially 

when only a few variables are responsible for abnormal situations or changes in the 

processes output. This dissertation proposes several efficient statistical process control 

methodologies for monitoring high-dimensional processes such as chemical production 

processes, semiconductor manufacturing processes and liquefied natural gas (LNG) 

processes. More specifically, we investigate and develop methodologies for monitoring the 

shifts in the means of the quality characteristics under sparsity. It is intended to detect these 

shifts as soon as they occur regardless of their magnitudes. 

We first investigate approaches for monitoring high-dimensional processes with an 

application of the multistage process. Due to the properties of multistage processes such as 

variance propagation and the specific structure of correlation, monitoring such multistage 
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processes becomes much more challenging. We introduce a fault diagnosis procedure-

integrated SPC chart for monitoring a multistage process, especially with beta-distributed 

output variables by adopting a model-based approach. For fault diagnosis, we propose a 

partial regression-based variable selection (VS) approach to choose several “suspicious” 

variables that might be regarded as the ones causing out-of-control signals. This approach 

is effective and its performance is compared with other VS-based charts such as forward 

variable selection approach.  

Second, we consider that some high-dimensional processes have grouped patterns of the 

data structure. In other words, the quality characteristics’ pattern can be grouped by the 

relevance or the correlation structure of these characteristics. Moreover, these processes 

would possibly shift by changes only in a few relevant quality characteristics. The 

multistage process is another example where the stages can be considered as groups and a 

few variables in a group may shift together. In this case, exploiting the grouped patterns 

would provide more advantages in the VS than choosing the variables individually. 

Therefore, we develop a sparse group variable selection approach to reflect the grouped 

behavior of the process shift. We modify the selection procedure appropriately to 

implement sparsity within a group and between groups. Extensive simulation studies are 

conducted to demonstrate the numerical performance of the proposed method.  

Third, we consider the cases where quality characteristics (or process parameters) are 

strongly correlated and introduce small size of shifts. In complex modern industries, the 

highly correlated data structure is present in numerous applications such as monitoring 
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spatially correlated data streams, surveillance of wafer surface and monitoring connected 

job-shop manufacturing processes in chemical plants. In such processes, the existing VS-

based charts including the proposed partial regression based chart suffer from the detection 

of small process changes since the strong correlation often confuses the correct selection 

of the faulty variables. Therefore, we introduce a ridge penalized likelihood in order to 

improve the efficiency in monitoring processes when small process shifts occur in highly 

correlated data structures. Accurate probability distributions of the monitoring statistics 

under null and alternative hypotheses corresponding to in-control and out-of-control 

situations, respectively, are obtained. In addition, we investigate several theoretical 

properties of the proposed scheme and present further extensions of the proposed methods 

to other existing methods. We demonstrate the performance of the proposed chart 

theoretically and empirically.  

Fourth, we investigate a new approach for change detection by utilizing the correlation 

information among variables. While a traditional multivariate exponentially weighted 

moving average (MEWMA) chart is an extension of univariate EWMA, we develop a 

generalized model for the MEWMA that uses appropriate non-diagonal elements in the 

smoothing matrix based on the correlation among variables. We offer the interpretation of 

the relationship between the correlation and the non-diagonal elements of the smoothing 

matrix. We also suggest an optimal design for a proposed method and compare the 

proposed chart fairly with existing EWMA-based charts.  
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Finally, we develop a new method for monitoring high-dimensional processes based on the 

Bayesian approach. The approach sequentially updates a posterior distribution of the 

process parameter of interest through the Bayesian rule. In particular, a sparsity promoting 

prior distribution of the parameter is applied properly under sparsity, and is sequentially 

updated in online processing. A data-driven Bayesian hierarchical model enables the 

monitoring scheme to be effective to the detection of process shifts and improves the 

efficiency of the computational complexity in the high-dimensional processes. 

Comparisons with recently proposed methods for monitoring high-dimensional processes 

demonstrate the superiority of the proposed method in detecting small shifts. In addition, 

graphical presentations in tracking the process parameter provide information about 

decisions regarding whether a process needs to be adjusted before it triggers the alarm. 
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CHAPTER 1  

INTRODUCTION 

1.1. Motivation of the Work 

In modern era, various fields of industries have demanded a great deal of quality 

improvements. Controlling and monitoring quality characteristics have become significant 

in business strategy for manufacturers, communication companies, services organizations 

and health care providers. Statistical process control (SPC) techniques have been widely 

adopted to monitor the quality characteristics that are crucial for the final products or 

services. In modern industries, the environment of the manufacturing processes becomes 

more complex and costly. Accordingly, a number of process monitoring methodologies 

have been developed for practical purposes to ensure the quality of the products and 

services.  

The control chart is one of the most commonly used techniques for process monitoring. 

When sources of variability occur, a statistical criterion is calculated based on the 

observations and is plotted to determine if it falls outside the control limits of the chart. 

This is a signal that should be investigated and corrective actions may be required to 

remedy the abnormality. The main purpose of the control chart is to detect assignable 

causes which are distinguished from common causes inherently embedded in the process 

as quickly as possible, and to take actions to remove the root cause of process disturbances.  
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A number of control charts such as Shewhart, exponentially weighted moving average 

(EWMA), cumulative sum (CUSUM) and their various extensions have been developed 

(Shewhart, 1931, Page, 1954, Page, 1961, Crowder, 1987, Crowder, 1989, Lucas and 

Saccucci, 1990, Gan, 1991, Hawkins, 1991, Hawkins, 1993, Woodall and Adams, 1993, 

Hawkins and Olwell, 1998). Shewhart introduces a statistical method to monitor the 

process mean change when dealing with single quality characteristic, for say, univariate 

process. While Shewhart chart is a sequential hypothesis testing with an individual 

observation independently at each sampling epoch, EWMA and CUSUM integrate the 

information of previous samples.  

The conventional univariate SPC charts are further extended to multivariate processes 

where the process involves multiple quality characteristics to be monitored. A standard 

approach for multivariate process monitoring and surveillance is to monitor all of quality 

characteristics simultaneously by taking correlation into consideration (Bersimis et al., 

2007) such as Hotelling’s chi-square, multivariate exponentially weighted moving average 

(MEWMA) and multivariate CUSUM charts (Crosier, 1988, Pignatiello and Runger, 1990, 

Lowry et al., 1992, Ngai and Zhang, 2001) which are analogous to Shewhart, EWMA and 

CUSUM in the univariate process monitoring case.  

However, as the number of quality characteristics (e.g. process variables, parameters) 

increases, their simultaneous monitoring becomes less sensitive to the out-of-control 

signals, which makes the monitoring processes much more challenging. It is called ‘curse 

of dimensionality’ (Jiang and Tsui, 2008, Wang and Tsung, 2008, Zhu and Jiang, 2009). A 
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number of high-dimensional processes that motivate this dissertation is found in the data-

rich modern industry such as industrial surveillance via image processing and monitoring 

of multistage manufacturing processes (Wilcox et al., 2014). Image processing, for 

example, receives a great attention in various areas such as banks, military and civilian 

applications. Close-circuit television (CCTV) systems generate thousands image frames to 

be monitored for various purposes. Machine vision systems (MVS) are used in industrial 

applications to provide information of product geometry, surface detects. Other examples 

include multistage processes which commonly exist in process industries with wide 

applications in the chemical engineering processes such as refineries, liquefied natural gas 

(LNG) processing and batch production. It can be readily speculated that the number of 

quality characteristics that should be monitored would geometrically increase as the 

number of stages or the number of variables in each stage increases. Monitoring such high-

dimensional data has become a crucial issue in quality improvements because it is often 

inhibited from adopting conventional SPC techniques in practice. It has been shown in the 

literature that the run length to detect abnormal signals increases as the dimensionality 

increases. In this dissertation, we intend to investigate the monitoring of high-dimensional 

processes and introduce several methodologies for such processes.  

1.2. Problem Description and Assumptions 

It is crucial and challenging to monitor such high-dimensional processes especially when 

only a few variables are responsible for abnormal situations or changes in the processes 

output because the leading sources are readily concealed by the noises, which results in 
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monitoring much more challenging (Fan and Li, 2006, Wang and Jiang, 2009, Jeong et al., 

2006). As the number of quality characteristics increases, the probability that process mean 

shifts occur in a large number of variables simultaneously would be rather small, which is 

called ‘sparsity’ (Friedman et al., 2001, Wang and Jiang, 2009, Zou et al., 2011). 

Throughout this dissertation, it is practically assumed that only a few variables cause the 

process out of control simultaneously.  

Moreover, we assume that the original data or at least the transformed dataset follows 

multivariate normal distribution with given parameters. Even though the SPC charts can 

be applied to historical dataset (Phase I) or to online monitoring (Phase II), we intend to 

concentrate only on monitoring in Phase II rather than Phase I.  

In monitoring and control strategies for quality improvement, several quality 

characteristics can be monitored such as quantifiable process parameters (e.g., mean, 

variance and moments) and classifiable attributes (e.g. conforming and nonconforming). 

In this dissertation, the scope of monitoring is limited to process mean and the 

terminologies ‘quality characteristic’, ‘quality feature’, ‘process parameter’ and ‘(output) 

variable’ are used interchangeably as a ‘process mean’. Moreover, only a single 

observation is sampled and monitored at each sampling epoch.  
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1.3. Approaches for Monitoring High-Dimensional Processes 

1.3.1. A Fault Diagnosis Incorporated Process Monitoring and Control 

With the sparsity assumption, it is more efficient and convenient to reduce the dimension 

because most of the variables are not practically responsible for the process change. Several 

schemes for monitoring high-dimensional processes considering dimension reduction have 

been developed as shown in the literature (Runger, 1996, Wang and Jiang, 2009, Zou and 

Qiu, 2009, Capizzi and Masarotto, 2011, Jiang et al., 2012). Hence, several conventional 

fault identification procedures as a way of dimension reduction such as decomposition of 

2T  and various step-down procedures would be possibly considered prior to applying 

control charts (Kim et al., 2016). We review several monitoring schemes adopting 

dimension reduction methods in Chapter 2.  

We first investigate approaches for monitoring high-dimensional processes with an 

application of the multistage process. The variable selection based on partial regression to 

choose several “suspicious” variables that might be regarded as the ones causing out-of-

control signals is applied as a dimension reduction technique. Due to the properties of 

multistage processes such as variance propagation, monitoring such multistage processes 

becomes much more challenging. In spite of the wide applications around beta distributed 

process output, no charting scheme has been developed due to the complexity of the 

problem. In Chapter 3, we propose a model-based approach to obtain output variables to 

be monitored by adopting beta regression, and its performance is compared with other 

variable selection-based charts such as forward variable selection approach.  
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Although the variable selection based procedure performs generally well, the performance 

may deteriorate when the data exhibit group patterns and when the shifts tend to occur in 

a grouped pattern fashion as observed in many industries. In Chapter 4, we propose a sparse 

group variable selection-based approach to implement ‘between groups’ and ‘within-a-

group’ sparsity. The performance of the method is compared with individual variable 

selection-based charts under the certain conditions of group patterns of data and group 

behavior of the process change.  

1.3.2. A Ridge Penalized Likelihood-Based Process Control Chart 

The variable selection based charts studied in Chapters 3 and 4 have their limitations upon 

adopting diagnosis procedures. Even if those charts perform well in many cases, they have 

still challenges. For example, when small shifts occur in process parameters, the capability 

of variable selection would possibly decrease resulting in poor performance of detection. 

Accordingly, in Chapter 5 we investigate a new way of monitoring high-dimensional 

processes by introducing 2L  regularization in calculating likelihood ratio test statistic, 

called ‘ridge regularization’. The ridge penalized likelihood based chart does not select 

variable, rather ‘shrinks’ the variables toward zero.  

Based on literature about ridge regression, we provide an effective approach for shrinkage 

of the process variables in SPC, even though the ridge penalty does not reduce 

dimensionality. Since the shrinkage is coherently related to the correlation among variables, 
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the proposed scheme offers several theoretical properties of the charting statistic with 

respect to the association between correlation and shrinkage.  

The closed form of the solution of ridge-based monitoring statistic allows computation time 

in online monitoring to be substantially effective, and it enables the user to have 

approximate probability distributions of the monitoring statistics under null and alternative 

hypotheses corresponding to in and out-of-control situations, respectively. In addition, we 

obtain several theoretical properties of the proposed ridge regression approach, and present 

further extensions to other existing methods. Based on the properties of ridge, we show 

that the proposed chart improves the efficiency of monitoring small process shifts 

compared to existing dimension reduction-based charts, especially in the cases where 

quality characteristics are strongly correlated. Finally, we demonstrate the performance of 

the proposed chart through both theoretical and empirical approaches.  

1.3.3. Generalized Smoothing Parameters of a Multivariate EWMA Control Chart  

The ridge penalty shrinks the coefficient of variables proportional to their correlations and 

the performance of the chart can be explained in terms of the ‘utilization’ of the correlation. 

While a traditional MEWMA chart is a simple extension of univariate EWMA, we develop 

a generalized model for the MEWMA that uses appropriate non-diagonal elements in the 

smoothing matrix based on the correlation among variables in Chapter 6.  
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We offer the interpretation of the relationship between the utilization of correlation and the 

non-diagonal elements of the smoothing matrix. We also suggest an optimal design for the 

proposed method by constructing the optimization problem based on the correlation of the 

data. Finally, we compare the performance of the proposed chart through extensive 

simulation studies with other recent variants of an MEWMA control charts and illustrate 

the chart via a real-life case study of an on-line monitoring of dimensions of bolts using an 

image processing system.  

1.3.4. Bayesian Sequential Update-Based Control Chart  

The penalized likelihood based approaches including VS-based methods introduced in 

Chapters 3 and 4 and ridge penalty-based method introduced in Chapter 5 employ a fixed 

constant for the penalty parameter. The penalty parameter with 0L  or 1L  norm type penalty 

function is associated with the sparsity in VS-based methods, and that with 2L  norm type 

penalty function is related with the level of shrinkage. Since the information of the process 

shift is generally unknown before operating the process, fixing the penalty as a constant 

would probably not guarantee the good performance of the detection. In addition, in 

existing VS-based methods, the result of the VS does not affect the selection to the next 

VS, since VS procedures are carried out at every sampling point independently of the 

previous result of the selection. Thus, these methods may not function well especially when 

small shifts occur because VS may select different variables from one sampling point to 

another in the out-of-control situations.  
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In Chapter 7, we develop a new method based on the Bayesian sequential update in which 

the prior probability for the current process parameter is updated over the sampling period. 

Specifically, a Bayesian theorem is applied to update the prior distribution of the mean at 

every sampling point sequentially, which considers the result of previous VS. Moreover, a 

data-driven Bayesian hierarchical model is utilized for determining the distribution of the 

scale parameter of the prior results in a dynamic change of the penalty over time. This also 

enables the penalty values to be different for all variables while existing methods have 

equal and constant penalties. Compared with the penalized likelihood based methods 

including VS-based methods, we demonstrate that the proposed monitoring scheme is 

effective in detecting process shifts and efficient in the computational complexity in the 

high-dimensional processes. The proposed method is applied to the well-known Tennessee 

Eastman Industrial Challenge Problem (TE problem) which is formulated as a realistic 

simulation model of a chemical plant. 

1.4. Dissertation Outline 

This dissertation is organized as follows. Chapter 2 reviews the literature related to 

conventional multivariate SPC charts focusing on high-dimensional processes. We also 

review typical methodologies for monitoring multistage processes. Chapter 3 proposes an 

individual VS-based chart via partial regression and applies it to monitoring multistage 

processes where the output variables are distributed between 0 and 1. Chapter 4 extends 

the work in Chapter 3 based on a sparse group variable selection in that the behavior of the 

multistage process would possibly occur in a grouped pattern. In Chapter 5, we present a 
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penalized likelihood based multivariate statistical process control chart via ridge 

regularization. Chapter 6 studies a generalized MEWMA approach by assigning the 

appropriate non-diagonal elements in the smoothing matrix based on the correlation among 

variables. Chapter 7 develops a Bayesian sequential update based high-dimensional 

process monitoring method. Finally, in Chapter 8 we discuss the conclusions and the future 

research topics.  
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CHAPTER 2   

LITERATURE REVIEW 

In this chapter, we provide a comprehensive review of work related to the research being 

investigated in this dissertation. We begin by presenting relevant research for monitoring 

and controlling quality in multistage processes. We then review the research related to 

monitoring of high-dimensional processes, followed by work related to monitoring of the 

process with small process changes. We describe the methodologies, their advantages and 

limitations.  

2.1. Methodologies for Monitoring Multistage Processes 

Multistage processes commonly exist in process industries such as oil refineries, LNG 

processing and batch manufacturing processes as shown in Figure 2.1. Monitoring and 

controlling such processes are based on the engineering process control (EPC) methods 

which require a process model that relates process output to process input, drift, and 

random noise.  
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Figure 2.1. An example of multistage processes 

Variation propagation from one stage to the next is a major concern in such processes. 

Sources of output variability can be attributed to technological advances such as the choice 

of process technology and process automation systems or operational factors such as 

operator’s reaction to output variability at each stage and operational procedures (Rajaram 

and Robotis, 2004). Thus, monitoring and diagnosis of multistage processes are important 

and challenging due to both their complexity and the cascade property (outputs from 

operations at upstream stages may affect the quality of downstream stages), and product 

variability may propagate throughout the production stages (Kim et al., 2017a). Moreover, 

it can be readily seen that the number of quality characteristics (parameters of the processes) 

geometrically increases as the number of stages or the number of characteristics in each 

stage increases.  
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Suppose a process has a total of q stages as shown in Figure 2.1. A vector ny  is the quality 

characteristic measurements to be monitored at the n th stage, and nx  is an input 

information characterizing these quality characteristics. In a linear state space model, one 

of the popular methods to model multistage processes, the n th quality characteristic in the 

normal process is formulated as (Shi, 1999)  

1 1n n n n

n n n n

  

 

x A x w

y C x v
 

where nv  is a measurement error for the product quality and nw  is a common-cause 

variation which is a process noise. The matrix nC  relates the quality information nx  and 

the measurement ,ny  and 1nA  associates the quality information from stage 1n  to stage 

.n  Both nC  and nA  are determined by the information from the engineering knowledge 

and experience. Based on physics and chemical properties as well as the engineering 

knowledge of quality information, a variety of literature adopts a linear state space model 

for modeling multistage processes (Agrawal et al., 1999, Shi, 1999, Lawless et al., 1999, 

Djurdjanovic and Ni, 2001, Ding et al., 2002, Huang et al., 2002, Zhou et al., 2003). 

One may consider to monitoring the quality of the final product in multistage processes by 

using traditional SPC charts such as Hotelling 2 ,T  MEWMA and MCUSUM. However, in 

modern complex multistage processes, it might lose its monitoring and diagnosis ability 
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because it ignores the stage-dynamic nature of the data due to the cascading property of the 

stages. In order to overcome this issue, Xiang and Tsung (2008) and Zou and Tsung (2008) 

monitor the one-step ahead forecast error (OSFE) for each stage based on the recursive 

formulations by adopting time series analysis; see Durbin and Koopman (2012). Note that 

the OSFEs are independently and identically distributed (i.i.d.) among stages. Thus, 

conventional SPC techniques can be applied to monitor the OSFEs. Zantek et al. (2006) 

apply the 2N individual multivariate control charts by adopting one-sided CUSUM charts 

for each OSFE. Xiang and Tsung (2008) develop a group EWMA scheme by computing 

maximum of N EWMA statistics for each OSFE. A maximum likelihood estimation 

procedure is used for phase I analysis. Based on the estimators from phase I, they derive 

OSFE and make use of them to obtain the monitoring statistic in EWMA scheme. They 

applied EWMA scheme for individual OSFE and used a Bonferroni-type control limit for 

the out-of-control signals. 

Different from the state space modeling, a model-based approaches known as regression 

adjustments, is suggested by Hawkins (1991, 1993). These approaches mainly consider 

cases where output variables are regressed on multiple input variables and preceding output 

variables as another input (Zhang, 1984, Shu et al., 2004a). Rao et al. (1996) investigate 

regression adjustments in multistage processes under a Bayesian framework. Shu et al. 

(2004b) study the run length distribution of regression control charts with the assumption 

of the parameters’ uncertainty. Considering the collinearity between stages, cause-

selecting charts are applied in Zhang (1984, 1985, 1990, 1992) and Wade and Woodall 

(1993). Zantek et al. (2006) propose a method to monitor the residuals of stages through 
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simultaneous CUSUM charts, and Asadzadeh et al. (2008) propose the regression-adjusted 

CUSUM chart for multistage SPC with censored data. In general, the multiple cause-

selecting charts for a multistage process monitor normally distributed residuals based on 

the ordinary least square approach. However, some data may not follow normal 

distributions and may violate the equal variance assumption. 

Jearkpaporn et al. (2003) extend the multiple cause-selecting charts to non-normally 

distributed data by replacing the multiple linear models with the generalized linear model. 

In particular, they first derive the deviance residual monitoring schemes for gamma 

distributed data. Then the derived deviance residuals approximately follow normal 

distribution. Jearkpaporn et al. (2005) also focus on the contaminated data with outliers. 

Robust GLM with Huber’s score function (to identify outliers) is utilized for estimating 

the parameters of gamma distribution. The deviance residuals from the robust fittings are 

then used to monitor the two-stage processes. Furthermore, Jearkpaporn et al. (2007) 

consider the three stage processes where the input variables follow uniform distribution 

and the output variables follow gamma, Poisson, and normal distributions. They show that 

the deviance residual charts provide out-of-control average run length (ARL) smaller than 

Shewhart charts and Hotelling’s charts. 

Although multistage processes with beta distributed data are widely available in industry 

(Cribari-Neto and Zeileis, 2009), there are no available multistage SPC procedures that 

monitor and control multistage processes when the output variables follow beta distribution, 

which motivates our research in Chapter 3.  
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2.2. Methodologies for Monitoring High-Dimensional Processes 

The increased accessibility of large amounts of data stream encourages the use of 

multivariate statistical process control in various modern industries. Due to the complicated 

data structure, simultaneous monitoring of several process’ parameters or product’s 

characteristics has become considerably crucial. However, as the number of quality 

characteristics, i.e. process means, to be monitored increases in complex processes and 

simultaneous monitoring of process means becomes less sensitive to the out-of-control 

signals, which makes the monitoring processes much more challenging. In particular, when 

only a few variables are responsible for abnormal situations, the assignable causes are 

easily concealed by the noises (Fan and Li, 2006, Zantek et al., 2006). Since the probability 

that process mean shift occurs in a large number of variables simultaneously would be 

rather small as the number of quality characteristics increases, called ‘sparsity’; it is natural 

to assume that only a few mean shifts occur simultaneously (Friedman et al., 2001, Wang 

and Jiang, 2009, Zou et al., 2011). Based on the sparsity assumption, several SPC charts 

have been developed for monitoring both means and variances of the quality characteristics. 

It is intuitive to reduce the dimension and forage a parsimonious model for sensitive 

screening. Hawkins (1991, 1993) and Runger (1996) demonstrate focusing on the specific 

assignable causes is more sensitive than monitoring the entire set of variables in a full 

dimension case. Hence, it is natural that many of studies for monitoring high-dimensional 

processes reasonably consider dimension reduction as their first choice. Several 

conventional fault identification procedures such as decomposition of 2T  and various step 
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down procedures would be possibly considered prior to applying control charts (see details 

about fault identification methodologies in (Hawkins, 1991, Mason et al., 1995, Mason et 

al., 1997, Sullivan et al., 2007, Li et al., 2008, Zhu and Jiang, 2009, Kim et al., 2016)). 

Recently, several variable selection (VS) based control charts have been developed and 

demonstrated that those charts function well in monitoring high-dimensional processes 

with a quick detection of the process shift. Wang and Jiang (2009) apply the forward 

variable selection (FVS) algorithm for dimension reduction and Zou and Qiu (2009) 

propose another VS-based control chart by adopting least absolute shrinkage and selection 

operator (LASSO) (Tibshirani, 1996, Zou, 2006, Wang and Leng, 2007). Jiang et al. (2012) 

extend the work of Wang and Jiang (2009) by adopting EWMA with the same underlying 

procedure of FVS. Capizzi and Masarotto (2011) develop a combination of the least angle 

regression (LAR) (Efron et al., 2004) with MEWMA for monitoring not only the mean but 

also the variability. More variants of VS-based methodologies and relevant discussions can 

be found in Peres and Fogliatto (2018), Abdella et al. (2017), Weese et al. (2016), Capizzi 

(2015), Woodall and Montgomery (2014), Mehmood et al. (2012). Taking advantages of 

VS-based monitoring scheme, we investigate another VS method based on partial linear 

regression and apply it to beta distributed multistage process monitoring in Chapter 3. In a 

special case where a grouped pattern of the process is observed, traditional VS-based chart 

may not perform well, which motivates another research introduced in Chapter 4. 

These methods are effective in monitoring high-dimensional processes under the sparsity 

assumption. However, they have several challenging issues. For example, when the shift 

size is relatively small, diagnosis procedures may be misleading and may result in poor 
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performance in detecting process changes. Consequently, if the diagnosis procedure 

malfunctions, the performance of detection might deteriorate.  Therefore, we intend to 

investigate a different monitoring scheme via ridge penalized likelihood for detecting small 

shifts as discussed in Chapter 5.  

2.3. Methodologies for Monitoring Processes in Detecting Small Process Changes 

The EWMA control chart provides better performance in detecting small shifts by 

adjusting the smoothing parameter according to the shift size (Roberts, 1959). For 

multivariate extension, Hotelling’s  2T  is analogous to Shewhart control charts and shows 

similar properties in detecting changes in the mean shift. The MEWMA control chart by 

Lowry et al. (1992) is also analogous of the univariate EWMA control chart. Lucas and 

Saccucci (1990) provide discussion of the properties and extension of EWMA. Prabhu and 

Runger (1997) provide a table of the average run lengths for various smoothing parameters 

and the number of variables for an MEWMA chart by using a Markov chain approach as 

developed by Brook and Evans (1972). Jensen et al. (2006) state the necessity of an 

accurate parameter estimation for MEWMA, and Mahmoud and Maravelakis (2010) 

implement an MEWMA chart and suggest an optimal strategy for its design.  

Variations and analyses of the MEWMA chart have been conducted to improve its 

performance. Lee (2010) attempts to apply the variation of the sample size, and to show 

that the adaptive-sample-size MEWMA chart is more efficient than the fixed-sample-size 

chart and provides the optimal sample size through the Markov chain approach. 
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Laungrungrong et al. (2011, 2014) develop EWMA for multivariate Poisson-distributed 

data and compare its performance with the traditional MEWMA based on normal-theory 

control limits. They demonstrate that MEWMA with Poisson variables tends to increase 

the false alarm rate when the mean of Poisson variables exceeds a certain value. Shamma 

et al. (1991) and Shamma and Shamma (1992) propose a double EWMA (DEWMA) 

control chart by performing exponential smoothing twice. Zhang et al. (2003) apply 

DEWMA for Poisson data, and Zhang and Chen (2005) and Mahmoud and Woodall (2010) 

evaluate the performance of the DEWMA chart. Alkahtani and Schaffer (2012) develop a 

double MEWMA (dMEWMA) control chart analogous to the univariate DEWMA chart. 

They present several numerical examples according to the various sizes of a smoothing 

parameter and the number of variables, and show that its out-of-control average run lengths 

(ARL1) outperform the conventional MEWMA chart.  

Yumin (1996) suggests adopting different values of diagonal elements for the chart 

smoothing matrix and also develops a methodology for obtaining the optimal smoothing 

parameters for each variable according to the mean shift scales. Huh et al. (2013) 

demonstrate the benefit of using different smoothing parameters in bivariate EWMA 

through various simulations and compare its performance to several MEWMA schemes 

using ARL1 as a performance measure; they show that the model performs well in 

particular situations when several variables have a direct effect on the process mean shift. 

Hawkins et al. (2007) propose a full smoothing matrix EWMA (FEWMA) which has non-

zero off-diagonals. They set up off-diagonals with equal values having a certain ratio with 

the diagonal elements and demonstrate the benefit of FEWMA through a practical example. 
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However, this model is limited due to the assumption of equal values for the off-diagonal 

elements in the smoothing matrix. Moreover, they do not provide a methodology for 

determining the off-diagonal elements. Therefore, we intend to investigate a different 

monitoring scheme by utilizing the off-diagonal elements in smoothing matrix in Chapter 

6. 

2.4. Methodologies for Monitoring Processes with Sequential Information 

It is very common in transactional, manufacturing, and service processes that individual 

measurements are the only available information. Since the process parameters of interest 

to be monitored may not be well estimated and may have much variability, the individual 

measurements may lead to the poor capability of detection of the small shifts in the process. 

A number of variants of MEWMA (see Section 3.2) and multivariate cumulative sum 

(MCUSUM) charts have been studied to accommodate the past measurements to reduce 

the variability and to demonstrate the capability in detecting small shifts of the process 

(Crosier, 1988, Kim et al., 2017b, Pignatiello and Runger, 1990). From the prediction point 

of view, these procedures can be interpreted that the process parameter at a certain 

sampling point is estimated based on the sequential measurements (Montgomery, 2007).  

Bayesian methods is a theoretical approach that utilizes probabilistic derivations of the 

posterior distribution of the process parameter in a sequence of the samples. In the 

univariate case, Crowder and Eshleman (2001), Tsiamyrtzis and Hawkins (2005), 

Triantafyllopoulos (2007), and Apley (2012) develop Bayesian methods for updating the 
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posterior distribution | ,t tx  where tx  is a set of all measurements, 1,..., .tx x  Crowder and 

Eshleman (2001) assume random walk model such that 1t t t     where 2~ (0, ).t N   

Tsiamyrtzis and Hawkins (2005) consider the random walk with a nonzero mean occurs 

with a certain probability. Triantafyllopoulos (2007) further assumes the uncertainty of 

variance of ;t  and Apley (2012) provides graphical displays of the mean to monitor the 

process in Phase II. Consequently, they explore the consecutive estimates of the process 

parameter,   and its density in the high speed monitoring of the process. The Bayesian 

framework of these methods can be similarly extended to the multivariate parameter 

estimation. For example, Kalman filtering is a widely used technique to estimate the 

process parameter in a state space model, which has the Bayesian interpretations in that the 

posterior distribution of the multivariate parameter, μ  is sequentially updated (Apley, 2012, 

Durbin and Koopman, 2012). Further, Bayesian framework developed for economically 

optimal decision policies is also found in Nikolaidis and Tagaras (2017),  Veeravalli and 

Banerjee (2014), and Makis (2008).  

Although these approaches provide good sequential estimators of the process parameters 

of interest, they are insufficient to be applied in the high-dimensional process monitoring 

under sparsity and when the quick detection of the small process change is primarily of 

importance. Therefore, we intend to develop a monitoring scheme based on the Bayesian 

approach to sequentially update the process parameter considering the sparsity in high-

dimensional processes as shown in Chapter 7.   
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CHAPTER 3   

VARIABLE SELECTION-BASED MULTIVARIATE SPC IN MULTISTAGE 

PROCESSES 

3.1. Introduction 

Typical manufacturing processes involve multiple stages of production such as those found 

in pharmaceutical manufacturing, chemical industry and semiconductor manufacturing. 

Conventional SPC techniques have been widely applied in process monitoring to detect 

process mean shift or variance changes (Nomikos and MacGregor, 1994, Nomikos and 

MacGregor, 1995, MacGregor and Kourti, 1995, Doan and Srinivasan, 2008). However, 

they are not effective in monitoring multistage processes since such processes display a 

great degree of output variability due to the propagation and amplification of the variability 

through the stages. When a number of stages are concatenated sequentially in the process, 

the variance propagation effect becomes significant when variability is initiated in the 

upstream stages. Moreover, as the number of stages and the number of quality features 

(process variables) to be monitored increases, the dimensionality of the monitoring 

parameters increases geometrically. Thus, conventional SPC techniques are not effective 

in monitoring such high-dimensional multistage processes.  

Statistical process monitoring techniques for multistage processes have received 

significant interest from different investigators (Asadzadeh et al., 2008, Shi and Zhou, 

2009, Fenner et al., 2005) with some limited studies that deal with high-dimensional 

multistage processes. A cause-selecting chart based on regression adjustment method is 
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proposed to model two-stage processes using simple linear regression, and monitors the 

residuals between two consecutive stages (Hawkins, 1991, Hawkins, 1993). The multiple 

cause-selecting charts for a multistage process generally monitor normally distributed 

residuals based on the ordinary least square approach. However, the assumption of 

normality may be violated in many processes, and may also violate the assumption of equal 

variance for production stages. In this case, the multiple linear models are replaced with 

the generalized linear model proposed by Jearkpaporn et al. (2003, 2005, 2007).  

When practitioners consider multiple linear regression models, they commonly face 

response variables restricted to the interval (0, 1) such as proportions which can be 

described by a beta distribution. In Prater’s gasoline-proportion data, for example, the 

restricted response variable is the proportion of crude oil converted to gasoline after 

distillation and fractionation, whereas the explanatory variables are: the crude oil gravity 

(degrees API); the vapor pressure of the crude oil (lbf/in2); the crude oil 10% point ASTIM 

(i.e. the temperature at which 10% of the crude oil becomes vapor); and the temperature 

(oF) at which all the gasoline is vaporized (Prater, 1956, Ferrari and Cribari-Neto, 2004). 

In this case, beta regression can be considered for the restricted response variable. 

Furthermore, it is common to use beta distribution to describe the output variable in 

multistage processes such as the proportion of pentane in the multistage oil-refinery 

process as shown in Figure 3.1 (Kim et al., 2017c).   
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Figure 3.1. A multistage oil refinery process 

Although multistage processes with beta distributed data are widely available in industry 

(Cribari-Neto and Zeileis, 2009), there are limited studies in monitoring multistage SPC 

procedures when the output variables follow beta distribution because the generalized 

linear models are not applicable for the estimation of beta parameters (Schmidt, 2002, 

Ferrari and Cribari-Neto, 2004). Recently, Hwang et al. (2014) and Kim et al. (2017c) 

developed monitoring the multistage processes with beta-distributed output variables. As 

stated, however, the investigation of effective process monitoring and control in high-

dimensional multistage processes is still limited. In this chapter, we develop an efficient 

SPC chart for monitoring high-dimensional multistage processes with beta-distributed 

output variables via a variable selection approach. To address the challenges in monitoring 

beta distributed output variables, a beta regression model is adopted (Ferrari and Cribari-

Neto, 2004, Hwang et al., 2014, Kim et al., 2017c). Moreover, we propose a simple but 

more efficient model selection method based on partial multiple linear regression to 

investigate the challenging issue of high dimensionality.  
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The remainder of this chapter is organized as follows. Section 3.2 provides a review of the 

model-based MSPC charts with beta distributed output variables. In Section 3.3, we 

propose a chart integrating a faulty variable diagnosis based on partial multiple linear 

regression, followed by simulation studies in Section 3.4. Section 3.5 summarizes the 

chapter and discusses future work.  

3.2. Model-Based Multistage SPC Charts with Beta Distributed Output Variables 

Production stages are sequentially concatenated to form multistage processes.  A typical 

multistage process is illustrated in Figure 2.1 (Jearkpaporn et al., 2005). A regression 

adjustment, named model-based SPC chart, suggested by Hawkins (1991, 1993) is 

developed to monitor output variables associated with input variables in a multistage 

process. Non-normality assumption of the output variables is studied by Jearkpaporn et al. 

(2007, 2003, 2005). They apply generalized linear models (GLM) for the estimation of the 

parameters of Poisson and gamma distributed data. However, the GLM is not applicable 

for data with beta distribution. Ferrari and Cribari-Neto (2004) investigate a beta regression 

model instead of GLM and derive a closed form expression for the deviance residual. 

Hwang et al. (2014) develop a deviance residual chart for monitoring multistage processes 

with beta distributed data.   

We consider a multistage process with q stages where each stage has k  input variables and 

p  output variables as shown Figure 2.1. We define mix  and jiy  as the mth input and the jth 

output variables at ith stage, respectively, for 1,..., ,m k  1,...,j p  and 1,..., .i q  The 
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output from one stage is regarded as an input to the following stage. For example, 1,...,i ikx x  

and 
( 1)1 ( 1),...,i i ky y 

 become the input variables for stage i. Thus, outputs from operations 

at upstream stages may affect the quality of downstream stages, and product variability 

may propagate throughout the production stages. Therefore, we intend to obtain the 

deviance residual for the beta distribution process.  

The multistage process model with beta distributed output variables is obtained through 

the beta regression model (Ferrari and Cribari-Neto, 2004). The cumulative beta 

distribution function with two shape parameters 
1  and 

2  is expressed as follows: 

1 21 11 2
1 2

0
1 2

( ) ( )
( ; , ) (1 )

( )

y

F y t t dt
  

 
 

  
 
    

By defining 
1 1 2/ ( )      and 

1 2 ,     the corresponding probability distribution 

function is written as follows:  

1 (1 ) 1( )
( ; , ) (1 )

( ) ((1 ) )
f y y y  

 
  

  
 
  

  

where 0 1,y   0 1  , 0,   and   is called as a precision parameter. ( )   

represents a gamma function which is defined as 
1

0
( ) .a xa x e dx


     Then the modified 
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beta distribution can be used to estimate beta parameters based on beta regression 

considering a logit link as follows:  

log
1





 
 

 
Xβ                                                          (3.1) 

where β  is a coefficient vector, and X  is a design matrix whose columns are the input 

variables and the proceeding output variables. From Eq. (3.1), the mean can be found as a 

function of estimated coefficients as follows: 

exp( )

1 exp( )
 



Xβ

Xβ
                                                          (3.2) 

The deviance residual for the beta distribution can be derived as follows (Ferrari and 

Cribari-Neto, 2004): 

       0 1 0

1/2

ˆ 2 | log ; , log ; ,
ji ji jiji ji y ji y ji ydr sign y f y f y       

  
                (3.3) 

where 1,..., ,i q  1,..., .j p  
1jiy  is the mean of the current process for the jth output 

variable at stage i, 
0jiy  is in-control process mean, and jiy  is the current observation. The 

sign function assumes the value of +1 if 
0

ˆ
jiji yy   and -1 otherwise.  The maximum 
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likelihood estimator of 
1jiy  is denoted by 

1
,

jiy  and   can be obtained through beta 

regression. When   is reasonably large, 
1jiy jiy   (Ferrari and Cribari-Neto, 2004). The 

deviance residual calculated in Eq. (3.3) is used to construct the control limits 

 2LCL ,
ji

jiji dr jidr C S dr    2UCL
ji

jiji dr jidr C S dr    

where 1,..., ,i q  1,..., .j p  jidr  and  2

jiS dr  are the sample mean and the sample 

variance of the deviance residual from the jth output variable at stage i, respectively, and 

jidrC  is the desired critical value for determining upper and lower control limits for the jth 

output variable at stage i. Since 
jidr  for the unimodal beta distributions approximately 

follow multivariate normal distribution, Hotelling’s chi-square control chart can be applied 

appropriately. On the other hand, the extremely skewed beta distribution approximately 

follows a multivariate normal distribution but contaminated with some outliers; this may 

distort the chi-square control boundary. In this dissertation, we assume the unimodal beta 

distribution for output variables. Therefore, conventional multivariate process monitoring 

techniques can be applied to multistage processes by approximating the deviance residuals 

to a normal distribution.  

3.3. Proposed Method via Diagnosis of Faulty Variables  

Commonly used diagnostic procedures include stepwise variable selection, LASSO, 

decomposition of 2T  and various stepdown procedures (Mason et al., 1995, Mason et al., 
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1997, Tibshirani, 1996, Li et al., 2008, Sullivan et al., 2007, Kim et al., 2013). Those 

diagnostic procedures have advantages and disadvantages. For example, the decomposition 

of 2T  is significantly intense for computation since it considers !p  number of different 

decompositions. It may be good in a one-time diagnosis, but not practical in online process 

monitoring. To overcome the computational issue, several control charts have been 

developed by adopting FVS and an adaptive LASSO (Wang and Jiang, 2009, Jiang et al., 

2012, Zou and Qiu, 2009). In the literature of variable selection-based control charts, one 

parameter representing the number of the selected variables is considered. Thus, when the 

diagnosis procedure selects the predetermined number of variables in the selection process, 

the algorithm terminates the selection procedure rather than computing all possible 

combinations of the selection sets. In the FVS, for example, once the initial variable is 

selected, the next variable is chosen based on given information of the previously selected 

variable. Thus, it might have a chance of losing the diagnostic power by choosing the 

wrong variable in the first step. Since the variables are strongly correlated with each other, 

the probability of misidentification of the first variable increases. In another example, when 

the mean shift occurs in variable sx  of a true model, and there is a strong correlation 

between sx  and ,tx  LASSO would probably offer the solution as either 0s   or 0t   

because the procedure tends to seek a sparse solution. As a result, the LASSO-based 

procedure may lead to misidentification.  
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In this chapter, we propose a diagnostic procedure considering the effect of correlation. In 

partial multiple linear regression model, the vector of regression coefficients is partitioned 

as: 

,i



 
  
 

β
β

 

where i  is ith regression coefficient, and β  is a vector of the rest of the coefficients, so 

  is a set of all the coefficients excluding ith coefficients. We test the hypotheses 

0 : 0,iH    1 : 0.iH    The model can be written as: 

.i i    y X X β ε  

The design matrix is partitioned with corresponding columns to i  and .β  From the 

solution of the least square estimator, ,i  in a reduced model, the regression sum of square 

is  'ˆ( ) ,R i i iSS   X y  and regression sum of squares of i  given β  is  

( | ) ( ) ( ).R i R RSS SS SS   β β β                                           (3.4) 

Hence, Eq. (3.4) can be interpreted as an effect of the ith variable in the model. Let 
2

|iS   be 

a conditional sum of square using the above equation. Then,  
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2 2 2

|iS S S    

where 2S  and 2S
 represent the associated sum of squares in right part of Eq. (3.4), 

respectively. This is the same result as the conditional 2T  given ,  which is proposed by 

Runger (1996). The conditional sum of squares, 
2

|iS   follows a chi-square distribution with 

one degree of freedom. We now determine the potentially shifted variables when 

2 2

| ,1,iS     

where   is a threshold parameter (Kim et al., 2014). Once the variables are identified, we 

estimate nonzero mean values using the least square solution. As expected, above threshold 

policy allows more sparse selection with larger   and vice versa. Thus the proposed 

methodology does not limit the number of variables, whereas the existing charts apply a 

fixed number of selected variables. As a result, the proposed methodology is expected to 

perform better than the existing variable selection-based charts even if the sparsity 

assumption is violated. Although there are more chances of choosing many of variables, 

the chart may perform properly by controlling the parameter .   

One of the crucial issues of variable selection-based SPC charts is the capability of the 

variable selection procedure in selecting the “true’ variables. If the identification ability is 

insufficient, the chart may perform poorly resulting in longer detection times than using 
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the original multivariate SPC charts. In order to increase the capability of the variable 

selection, we apply the EWMA methodology so that we estimate *

tμ  based on ,tw  instead 

of ,tx  as denoted by  

1(1 )t t tr r  w w x  

where r  is a smoothing parameter of EWMA. When t  approaches infinity, tx  can be 

asymptotically replaced with tw  without loss of generality throughout the methodology. 

We refer to the proposed chart as CVS-MEWMA, which represents an MEWMA chart 

using conditional sum of square-based variable selection.  

3.4. Performance of CVS-MEWMA 

3.4.1. Description of Statistical Process Monitoring 

Consider a multistage process having k input variables and that each stage has one output 

variable. The unimodal beta distribution of the output variable for stage 1 is  

 

 
11 11 1 1

1

11 11 1 1

exp 1
Beta , ,

1 exp 1

k k

k k

x x

x x

 


 

   
      

                                   (3.5) 

and  
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 

 
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  


  

 

 

    
       

                             (3.6) 

for stage ( 1)i   through the logit link. The preceding output variable 1iy   in Eq. (3.6) is the 

input variable for ith stage. For illustration, we consider a five stage production process 

where each stage has two input variables and two output variables. We use bivariate normal 

variables since the input variables can be easily normalized. The output variables are fitted 

to the unimodal-beta distributions via beta regression and the association between output 

and input variables is expressed as Eqs. (3.5) and (3.6). We assume that the precision 

parameter   is large enough so that it satisfies .
jiy jiy   At every sampling point, we 

obtain an 1pq  dimensional observation vector, where p is the number of output variables, 

and q is the number of stages. Thus, the multistage process readily becomes high-

dimensional problem when either p or q increases. Since the variance propagation effect 

can be effectively removed by using deviance residual, the stacked observation vector 

holds the properties of multivariate distributions in probability.  

Since the beta distribution does not belong to the over-dispersed exponential family, it is 

difficult to develop the deviance-based control charts and to determine the mean shift in 

the out-of-control scenario. In our multistage process model, we consider the shift in the 

coefficient vector β  in Eq. (3.1). Since the mean is a function of β  in Eq. (3.2), shift in 

the coefficient vector eventually result in mean shifts. The out-of-control mean can be 

represented as: 
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exp( )

1 exp( )









 

Xβ d

Xβ d
                                                 (3.7) 

where   is a disturbance magnitude, and d  is a unit vector representing the shift direction. 

Thus, the multistage statistical process monitoring problem becomes sequential testing of 

the hypothesis 
0 ,0: i iH β β  from the deviance residual at each stage i.  

The linear coefficients in Eq. (3.1) can be estimated by beta regression from the 

retrospective data analysis. Generally, in multistage processes, the output variables are 

likely to be correlated with each other within a stage and between stages since the model 

assumes the mean of the one-step ahead variables is affected by the preceding output 

variables. However, we only consider the inter-correlation within a stage which can be 

estimated from the preliminary data by adopting the deviance residual. In the experiments, 

we consider the correlation within the stages and denote it as W. We also assume that the 

magnitude of the correlation within a stage, which is the same for all the stages. Let B 

represent the correlation between stages, then the correlation matrix can be expressed as 

(~ )q q q q   Σ I W I B  

where qI  is an identity matrix with dimension q, ~ qI  is a matrix with zero diagonals and 

all 1’s for non-diagonal elements with dimension q, and   is a Kronecker product operator. 

Therefore, the diagonal elements in matrix B is the lag-1 autocorrelation of the one output 
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variable in consecutive stages, and the non-diagonal elements are cross correlations. Both 

W and B are p-dimensional matrices, so the dimension of the covariance matrix is .pq pq   

3.4.3. Performance Analysis of the CVS-MEWMA Chart 

In the experiments, we consider the smoothing parameter 0.2r   and apply an initial 

simulation period of 100 observations to stabilize the process with EWMA statistic. Thus, 

we obtain an asymptotic covariance matrix as / (2 )r r Σ  for computing the monitoring 

statistic. Depending on the magnitude   and the direction d  in Eq. (3.7), the size of out-

of-control signal can be determined. Without loss of generality, we calibrate   and d  

appropriately for the size of the shift. In the experiments, we assume that the shift occurs 

in the first variable in the first stage, and the second variable in the second stage. The 

additive value of the shift to each direction in the mean of deviance residual is considered. 

We evaluate the performance of each chart using ARL1 (the in-control ARL is 200).   

In Table 3.1, we compare the CVS-MEWMA chart with conventional multivariate SPC 

charts such as an individual Shewhart chart, Hotelling 2 ,T  and MEWMA charts. The 

control limits for the individual Shewhart chart are represented as: 

 2CL
ji

jiji dr jidr C S dr   
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where jidr  and  2

jiS dr  are the mean and the sample variance of the deviance residual 

from jth variable at stage i, and 
jidrC  is the desired critical value for in-control ARL. The 

threshold parameter 0.3   is used for the proposed chart. 

Table 3.1. ARL1 Performance comparison 

Shift Shewhart Hotelling 
2T  MEWMA CVS-MEWMA 

0.2 189.68 171.07 84.48 73.04 

0.4 161.98 111.86 24.41 20.24 

0.6 121.98 63.34 11.14 9.38 

0.8 86.52 31.86 6.99 5.95 

1.0 57.48 16.61 5.11 4.34 

1.5 18.66 4.16 3.18 2.70 

2.0 7.03 1.70 2.37 2.03 

2.5 3.23 1.13 2.02 1.68 

3.0 1.82 1.02 1.88 1.43 

 

In Table 3.1, the proposed chart outperforms the other charts. The EWMA type charts 

perform well in small shifts. The CVS-MEWMA chart outperforms MEWMA for all shifts 

since it removes noises inherently contained in all variables.  

In order to assess the capability of the conditional sum of square-based variable selection 

methodology, we compare a few variable selection-based control charts such as VSMSPC 

and VSMEWMA (Jiang et al., 2012, Wang and Jiang, 2009). In their charts, they 
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demonstrate that they perform well when the number of shifted variables in known in 

advance. In Table 3.2, we reflect this information and fix the number of selected variables 

as two (same number as shifted variables). We compare the MEWMA chart with forward 

variable selection and our proposed variable selection-based chart. 

Table 3.2. ARL1 performance of the variable selection-based control charts 

Shift VSMEWMA CVS-MEWMA 

0.2 77.09 76.65 

0.4 22.11 21.16 

0.6 10.15 9.71 

0.8 6.50 6.15 

1.0 4.76 4.51 

1.5 2.97 2.79 

2.0 2.23 2.10 

2.5 1.82 1.74 

3.0 1.56 1.48 

 

The Table 3.2 shows that CVS-MEWMA slightly outperforms VSMEWMA. It may be 

attributed to the stepwise-variable selection of the first-selected variable.  

From the results of the CVS-MEWMA in Tables 3.1 and 3.2, the ARL1 performance 

depends on the number of selected variables. In Table 3.1, the chart selects about four 

variables on the average out of ten variables with the given parameter .   As   increases, 
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the chart results in selecting a small number of potentially shifted variables. Table 3.3 

illustrates the effect of the parameter   on the ARL1 performance. 

Table 3.3. Effect of   on ARL1 performance 

    

Shift 0.01 0.1 0.2 0.3 

0.2 84.36 80.14 76.20 73.04 

0.4 23.05 22.32 20.89 20.24 

0.6 10.36 10.11 9.71 9.38 

0.8 6.44 6.32 6.08 5.95 

1.0 4.66 4.57 4.45 4.34 

1.5 2.86 2.81 2.74 2.70 

2.0 2.15 2.10 2.06 2.03 

2.5 1.75 1.73 1.71 1.68 

3.0 1.52 1.49 1.46  1.43 

 

Since we assume a sparsity of the high-dimensional process, the chart performs better when 

it selects fewer variables. For example, the chart selects approximately 9, 8, 5 and 4 

variables, respectively, on average at each sampling point. As shown in Table 3.2, when 

selecting only two variables, it performs worse than the last case in Table 3.3 where we 

select four variables on average. We may not identify the shifted variables correctly due to 

the strong correlation. In the experiments, the shifts occur in different stages, and each 

shifted variable has a strong correlation within the stage. Hence, there is a chance of 
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identifying the wrong variables as shifted ones when we only consider a fixed number of 

shifted variables.  

We can readily conjecture that the performance may be a convex function of   with regard 

to the correlation structure. Obviously, it could be explained by the capability of the 

variable selection.  As   decreases, the chart tends to select more variables at each 

sampling point and vice versa. Therefore, when   approaches zero, the ARL1 becomes 

closer to that of MEWMA’s. 

We also utilize other performance measures: the correctness ratio (CR) and the expected 

error ratio (EER) which are defined as: 

   
Number of correctly indentified variables

CR
Number of indentification

    

   
Total number of misidentified variables

EER .
Total number of variables

E
 

  
 

   

The CR is the ratio of the correctly identified numbers to the total number of identifications, 

and EER is the ratio of the number of misidentification for each variable and the total 

number of variables. When the chart selects several variables including the shifted 

variables, we regard it as a correctly identified case. Both Tables 3.4 and 3.5 show the 

effect of    on CR and EER respectively. 
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Table 3.4. Effect of   on CR  

 
   

Shift 0.01 0.1 0.2 0.3 
*  

0.2 0.9581 0.6299 0.3497 0.1646 0.0365 

0.4 0.9750 0.7778 0.5651 0.3598 0.0867 

0.6 0.9812 0.8306 0.6614 0.4827 0.1283 

0.8 0.9843 0.8572 0.7072 0.5444 0.1541 

1.0 0.9874 0.8735 0.7390 0.5949 0.1807 

1.5 0.9904 0.9132 0.8139 0.6944 0.2284 

2.0 0.9949 0.9499 0.8796 0.7798 0.2777 

2.5 0.9973 0.9767 0.9322 0.8680 0.3355 

3.0 0.9993 0.9901 0.9732 0.9305 0.3881 

* The last column represents the case of selecting fixed two variables. 

Table 3.5. Effect of   on EER 

    

shift 0.01 0.1 0.2 0.3 
*  

0.2 0.7820 0.6208 0.4642 0.3436 0.1414 

0.4 0.7816 0.6159 0.4529 0.3292 0.1188 

0.6 0.7812 0.6146 0.4512 0.3235 0.1082 

0.8 0.7819 0.6170 0.4504 0.3237 0.1021 

1.0 0.7814 0.6156 0.4541 0.3251 0.0979 

1.5 0.7818 0.6172 0.4539 0.3240 0.0877 

2.0 0.7806 0.6181 0.4564 0.3292 0.0788 

2.5 0.7825 0.6208 0.4592 0.3312 0.0701 

3.0 0.7818 0.6222 0.4614 0.3359 0.0628 
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The CR of the fixed selected variable (last column in Tables 3.4 and 3.5) shows an inability 

to accurately select the changed variables, resulting in an increased ARL1. For example, in 

the large shift case (shift 3.0), its CR is 0.3881, which is significantly lower than 0.9305 

when 0.3.   In this case, even though we remove a large amount of the noise by selecting 

a few variables, we may also remove the assignable causes. Table 3.6 illustrates the 

capability of the different variable selection methods adopted by the VSMEWMA chart 

and the CVS-MEWMA chart. 

Table 3.6. Capability of the variable selection techniques 

 
VSMEWMA CVS-MEWMA 

Shift CR EER CR EER 

0.2 0.0198 0.1525 0.0365 0.1414 

0.4 0.0414 0.1408 0.0867 0.1188 

0.6 0.0062 0.1334 0.1283 0.1082 

0.8 0.0757 0.1290 0.1541 0.1021 

1.0 0.0928 0.1236 0.1807 0.0979 

1.5 0.1269 0.1149 0.2284 0.0877 

2.0 0.1629 0.1062 0.2777 0.0788 

2.5 0.2085 0.0970 0.3355 0.0701 

3.0 0.2418 0.0896 0.3881 0.0628 

 

In Table 3.6, the CR and EER of the proposed chart present better performance, resulting 

in the smaller out-of-control ARL shown in Table 3.2.  
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3.5. Conclusion 

In this chapter, we propose a high-dimensional multistage SPC chart for monitoring output 

variables that follow a beta distribution. Deviance residuals through the model-based 

multistage SPC are used for removing the cascade property in multistage processes. The 

vectorized deviance residuals are used as observations, and an appropriate covariance 

matrix representing correlations and cross correlations is determined. The conditional sum 

of square-based variable selection technique is used to improve the capability of the 

detection of the changes in high-dimensional processes.  

Extensive simulation studies demonstrate that the proposed chart outperforms existing 

multivariate SPC charts and recent variable selection-based control charts in terms of out-

of-control ARL.  The smoothing parameter r affects the capability of diagnosis of shifted 

variables. Using a small value of r may lead to poor estimation of *

tμ  in case of large shifts. 

Determining the optimal values of r and   simultaneously according to the shift size is 

challenging and represents a subject of future research.  Furthermore, the assumption of 

unimodal beta distribution can be relaxed for the generalization of the approach. 
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CHAPTER 4   

MONITORING OF HIGH-DIMENSIONAL PROCESSES VIA SPARSE GROUP 

LASSO 

4.1. Introduction 

The design of statistical process control and monitoring for multistage processes is 

challenging due to the ‘curse of dimensionality’ and ‘stage-dependency’ of the datasets. In 

Chapter 3, we develop approaches to monitor quality characteristics and process 

parameters in multistage processes by incorporating the individual variable selection 

technique to resolve the issue of high-dimensionality, and the model based approach is 

used to analyze the stage-dependency when the process parameters are beta distributed. In 

particular, this individual variable selection incorporated chart may not perform well under 

specific structural conditions such as complicated correlation structure and behavior of the 

process shift. In various manufacturing processes, the clustered data structure and the 

clustered behavior of process change can be readily observed. Therefore, the need of 

analyzing groups that exhibit the same pattern in practical applications may prove effective 

in process monitoring.  

Moreover, the individual VS-based charts may function effectively when the number of 

stages or variables to be monitored is relatively small. However, the complexity of those 

charts increases exponentially as the dimensionality increases since the computation of VS 

with respect to each variable would significantly increase. In this chapter, we develop a 

new method to monitor the high-dimensional process when the clustered structure in both 
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dataset and behavior of the process are observed. For the high-dimensional feature of the 

process, a penalized likelihood with mixed regularization parameters is introduced. Finally, 

we show that the proposed chart outperforms other existing charts in process diagnostics 

and shift detection throughout various simulation studies under the settings of multistage 

processes. This chapter is organized as follows. Section 4.2 introduces the variants of 

LASSO regression for variable selection and proposes a sparse group LASSO based 

control chart. Section 4.3 presents the performance of the proposed model through 

extensive simulations, and is followed by conclusion in Section 4.4. 

4.2. Methodology 

In this section, we describe the proposed methodology for monitoring the high-dimensional 

processes via the extension of the LASSO criterion. Section 4.2.1 provides a brief 

introduction of the LASSO regression and its connection with variable selection. Section 

4.2.2 demonstrates the utilization of LASSO penalized likelihood in the monitoring of 

high-dimensional processes, and followed by proposing a new charting methodology based 

on the EWMA scheme. 

4.2.1. Variants of LASSO Regression for Variable Selection 

Consider the conventional p -dimensional multiple linear regression model , y Xβ ε  

where ,y  ,X  β  and ε  are the vector of response variables, predictors, regression 

coefficients, and the errors that are i.i.d. random variables with distribution ( , ),pN 0 Σ  

respectively. In practice, some of the predictors may not contribute to the response variable 
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and be forced to be deleted from this regression model. Traditional variable selection 

techniques can be used to delete (or select, on the contrary) several variables via model 

selection criteria such as AIC and BIC. The penalized least square, or equivalently, the 

penalized likelihood function with Gaussian error distribution developed as 

2

2
( ) min ( ),L P  

β
β y Xβ β  

where   is a regularization parameter and ( )P   is a penalty function. When the penalty 

function becomes 1( ) || || ,P β β  which is 1L  norm, the corresponding penalized least 

square equation is called LASSO. When the penalty function is chosen with a positive 

value of ,  some regression coefficients of insignificant regressors are shrunk towards 

zero. Especially with the penalty function, 1|| || ,β  ( )L β  is not differentiable at 0i   for 

some ,i  so that those coefficients become exactly zero. Therefore, the remaining regressors 

with nonzero coefficients can be viewed as selected variables as significant ones to explain 

the response based on the LASSO criterion.  

As introduced previously, the clustered data structure is found in wide applications of the 

high-dimensional dataset. Now we consider the multiple linear regression model with N  

groups as  

1

,
N

n n

n

 y X β ε  
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where y  is a 1p  vector with 
1

,
N

nn
p p


  

nX  is a 
np p  matrix corresponding to the 

group ,n  and nβ  is a coefficient vector of size ,np  for 1,..., .n N  ε  is a white noise 

vector that follows multivariate normal distribution with mean zero and covariance ,Σ  

where the diagonal block is .nΣ  Denoting 1[ ,..., ]NX X X  and β  as a stacked vector of 

nβ  for all ,N  this becomes a multiple regression model as discussed above.  

For the problems with grouped covariates, Yuan and Lin (2006) develop a group LASSO 

(GLASSO) criterion as 

2

2
1 12

1ˆ arg min .
2

N N
GLASSO

n n n n

n n

p
 

   
β

β y X β β                           (4.1) 

Since it is not differentiable at ,n β 0  the solution would possibly have exactly zeros for 

a few groups of coefficients with a positive tuning parameter .  With specific conditions 

that all groups are not overlapped and the size of each group is 1, it reduces to the regular 

LASSO criterion.  

4.2.2. Sparse Group LASSO-Based Testing and Monitoring 

The hypotheses of interest in our MSPC testing problem are 0 : 0H μ  and 1 : .H μ 0  

Particularly from the generalized likelihood ratio test statistic with normality, the following 

penalized likelihood function can be formulated:  
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2

2( ) min || || ( ),L P  
μ

μ z Rμ μ                                               (4.2) 

where ,z Rx  and the matrix, R  is a Cholesky decomposition such that 1 .T Σ R R  

Based on the review in the preceding section, Eq. (4.2) can be reformulated as  

2

1 2

( ) min ( ),
N

n n

n

L P


  
μ

μ z R μ μ  

where nR  is a submatrix of 1[ ,..., ],NR R R  and nμ  is corresponding coefficient vector 

in .μ  As outlined in this dissertation, it is often reasonable to assume that only a few 

coefficients in μ  are nonzero when the shift occurs in high-dimensional processes, referred 

to as sparsity. With the grouped covariates, the sparsity can be viewed in two aspects: 

‘between groups’ and ‘within a group’ level, i.e., group-wise sparsity and within-a-group 

sparsity.  

Considering two-way sparsity, the combination of two penalties can be applicable (Simon 

et al., 2013) as 

2

1 2
1 12

( ) min (1 ) .
N N

n n n n

n n

L p  
 

     
μ

μ z R μ μ μ                     (4.3) 
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where 0 1   is a weight parameter to form a convex combination of the LASSO and 

GLASSO penalties. In this model,   controls overall sparsity, and the weight,   controls 

within-a-group or group-wise sparsity. However, under MSPC setting with unknown shift 

patterns, within-a-group sparsity is not necessarily dependent on a group-wise sparsity. 

Thus,   is not an appropriate parameter for process control. Moreover, as discussed in 

literature, determination of the complexity parameter   is one of the major challenging 

issues of VS-based control charts (Jiang et al., 2012, Wang and Jiang, 2009). Existing VS-

based charts attempt to overcome this issue by introducing another parameter that 

represents the number of selected variables so that the parameter   is determined based 

on this predetermined selection parameter. However, in our model, the number of selected 

variables cannot be easily determined due to the grouped fashion of sparsity. Moreover, 

Eq. (4.3) is often infeasible with a constraint of the pre-specified number of selected 

variables.  

To overcome those issues, we propose a following penalized likelihood. 

2

1 1 2 21 2
1 12

( ) min ,
N N

n n n n

n n

L c c p 
 

    
μ

μ z R μ μ μ                   (4.4) 

where 1,c  2c  are the ratio parameters determined in [0,1],  and 1,  2  are the complexity 

parameters that control within-a-group sparsity and group-wise sparsity, respectively. One 

may wonder if 1  or 2  can be intuitively determined based on the number of variables or 
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the number of groups to be selected. However, this optimization problem to obtain two 

parameters simultaneously for the nonzero components in μ  to be pre-specified numbers 

would result in infinitely many solutions. Thus, we determine 
1  and 

2  as follows by 

adopting the idea of Liu et al. (2009b). 

 *
1 1 2 2 2 2

*

1 1 | 1,
arginf : 0

c c c  
 

 
    and  

2 2 1 1

*

2 2 | 1, 0arginf : 0 ,c c        

where 
2 2 1 1| 1, 0c c    is a set of indices of nonzero elements in *

μ  given 2 1c   and 1 1 0,c   

*
1 1 2 2 2 2| 1,c c c   

  is a set of indices of nonzero elements in *
μ  given 1 1c   and 

*

2 2 2 2 ,c c   

and | |A   represents a cardinality of the set .A   Thus, *

2   is the least value of penalty in 

group-wise, and *

1   is the least value of penalty given 1c   and *

2 ,   i.e., given selected 

groups,  to obtain a sparse solution in the those groups. Consequently, both 1  and 2  are 

not the parameters because they are obtained when the response, z  and the design matrix, 

R  are given. Rather 1c  and 2c  control the sparsity as ratios with respect to the constant, 

*

1  and *

2 .  Even if it does not exactly imply the number of selected groups or variables, it 

provides a sense of sparsity levels as a ratio; i.e., 2c  implies the ratio of the number of 

nonzero groups to ;N  and 1c  implies the ratio of the number of nonzero variables in a 

group. Thus, by controlling the parameters, 1c  and 2 ,c  the sparsity within and between 

groups can be achieved practically and intuitively.  
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Determination of the proper parameter set 
1 2( , )c c   is substantially dependent on the 

location and the size of the process shifts. Thus, conventional criteria such as cross 

validation, AIC and BIC are ineffective in determining these parameters without proper 

information of the shift. We discuss this issue in later section and present sensitivity of the 

proposed method to various shift scenarios. 

Constructing a chart based on a proper monitoring statistic is also of interest in the SPC 

problem. Zou and Qiu (2009) adopt maximal ( )q p  standardized statistics in the 

nonparametric testing setup for their LASSO-based chart, where q  represents the tolerance 

for the number of nonzero in the estimator. This chart signals when  

1,...,

( )
max ,

( )

j j

j

j q

T E T
Q c

Var T

 





   

where 1 2 1ˆ ˆ ˆ( ) /
j j j j

T TT n   

  μ Σ X μ Σ μ  for 1,..., ,j q  and ˆ
jμ  is the adaptive LASSO 

estimator of μ  in the 1L  norm penalized likelihood with the penalty .j  Since the 

parameter   is determined in a continuous range, the 
j  is chosen for the estimator to 

have j  nonzero components. Differently, Jiang et al. (2012) apply the GLR-based 

approach and obtain a single monitoring statistic. Both monitoring statistics have their own 

advantages and disadvantages; see Jiang et al. (2012) for the comparison of these two 

monitoring statistics. In our framework of the likelihood, the specific number of selection 
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– either in groups or in variables – and corresponding penalty parameters cannot be 

uniquely obtained. Thus, we use a single monitoring statistic based on GLR as 

1 1ˆ ˆ2 ,T TQ   x Σ μ μ Σ μ  where μ̂  is the sparse estimation of .μ   

For monitoring the process in Phase II, we construct the control chart based on EWMA 

statistic using sparse group LASSO (SGL) based likelihood function. Let 
tx  be the 

measurement vector sampled at time t  distributed as ( , ).pN 0 Σ  The sequential vector of 

EWMA is defined as 

1( ) ,t t t  w I Γ w Γx  0,1,...t                                            (4.5) 

where Γ  is a smoothing matrix. w  follows asymptotically multivariate normal 

distribution with mean zero and covariance, ( ) ( ) .T T   w wΣ I Γ Σ I Γ ΓΣΓ  The 

covariance of EWMA vector, w  is an applied form of the discrete time Lyapunov equation 

(Gajic and Qureshi, 2008). By using its solution, wΣ  can be obtained as 

1( ) ( ) ( )vec vec      wΣ I Γ Γ I Γ Γ Γ Γ Σ  

where ( )vec
w

Σ  vectorizes wΣ  column-wise and   is a Kronecker product operator. 

Then, our proposed control chart signals if 
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1 1ˆ ˆ ˆ2 ,T T

t t t t tQ H   w ww Σ μ μ Σ μ  

where  

2

* *

1 1 2 21 2
1 12

ˆ arg min ,
N N

t t n n n n

n n

c c p 
 

    
μ

μ Rw R μ μ μ                          (4.6) 

such that 
1 ,T 

w
Σ R R  and ( 0)H   is a control limit chosen to obtain a given in-control 

ARL through simulations. Hereinafter, we call the proposed chart as an SGL-EWMA chart.  

4.3. Performance Analysis 

We present the numerical performance of the proposed SGL-EWMA chart through 

extensive Monte Carlo simulations. In SGL-EWMA, the smoothing matrix, Γ  should be 

chosen prior to monitoring. We assume that the diagonal elements of Γ  are assigned to be 

,r  and non-diagonal elements to be zero. Then, the asymptotic covariance, 

1(2 )r r  wΣ Σ  can be used as having typically used in EWMA literature. In practice, 

the selection of the smoothing parameter, r  mainly depends on a potential shift level. It 

should be determined small when the size of potential shift is expected to be large and vice 

versa. In this simulation, we set 0.2,r   and its in-control ARL is fixed at 200. In order to 

observe the grouping behavior of the chart and compare the proposed chart to other existing 
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charts, the identity covariance matrix is considered. The number of groups is set as 5,N   

and each group consists of 2np   variables as equal sizes for all groups.  

The out-of-control observation 
tx  can be seen as 

0 ,t   x μ d ε  

where   is the shift size, d  is the shift direction. For simplicity, we set 0 .μ 0  By 

splitting d  into N  groups, we represent 
ijd  as a j th variable in i th group, for 1,...,i N  

and 1,..., .j p  For the shift scenarios, we consider two representative shifts; 1) 

11 21 1d d   and 0ijd   for other all i  and ;j  2) 11 12 1d d   and 0ijd   for other all i  

and .j  Case 1) represents that two shifts occur in different groups; and Case 2) represents 

that two shifts occur in the same group.  

We compare the SGL-EWMA chart with the conventional MEWMA chart and 

VSMEWMA in Table 4.1. The parameter of VSMEWMA for the number of selection is 

set to 2.s   For comparison, the parameters of our proposed chart are chosen for the 

number of total selection to be close to 2. Shift size is calculated as a noncentrality 

parameter, and the covariance matrix for each group is set as ( ) , 0.75n i j   such that 

( ) ,[ ].n n i jΣ    
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Table 4.1. ARL1 comparison of SGL-EWMA with MEWMA and VSMEWMA (

5, 2nN p  ) 

Charts MEWMA   VSMEWMA   SGL-EWMA 

Parameters None  2s    
 

1 2( , ) (0.5,0.5)c c 
 (0.7,0.3)   (0.3,0.8)   

Shift\Cases Dir.inv   1) 2)   1) 2) 1) 2) 1) 2) 

0.50 67.25 
 

70.04 70.66 
 

71.90 67.70 70.06 70.02 72.51 65.66 

1.00 17.92 
 

17.81 17.61 
 

18.60 16.96 18.18 17.59 18.93 15.94 

1.50 8.58 
 

8.24 8.19 
 

8.70 8.09 8.68 8.27 8.81 7.53 

2.00 5.60 
 

5.29 5.30 
 

5.64 5.19 5.55 5.36 5.69 4.91 

2.50 4.20 
 

3.93 3.92 
 

4.20 3.89 4.16 4.01 4.28 3.68 

3.00 3.43   3.15 3.14   3.36 3.12 3.34 3.22 3.45 2.96 

 

Table 4.1 presents out-of-control ARL performances for two cases. From the result, we can 

observe several findings. First, both charts outperform MEWMA as shift size increases and 

vice versa. This is expected since the accuracy of VS becomes better as shift size increases. 

Second, when the shifts occur in the same group (case 2)), the SGL-EWMA charts with all 

parameter settings illustrate better performances than VSMEWMA. Third, on the contrary, 

when the shift occurs in different groups, the ARL1’s become smaller as 1c  increases. It is 

expected that the performance of SGL-EWMA approaches that of the VSMEWMA when 

2 0c   and 1c  are determined for the number of selection to be close to 2. The latter two 

findings imply that the performance of the proposed chart would perform better the shifts 

occur in a grouped pattern.  
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We now implement the higher dimensional case where 5N   and 5np   with focus on 

the grouped pattern of the shift. Under sparsity in both between groups and within a group, 

we consider 0| | 1,2d  and 3,  where 0| |d  is an 
0L  norm representing the number of truly 

shifted variable in .d  In addition, we set 2 0.8c   such that the proposed method selects 

one or two groups on average and vary 1c  to obtain the ARL performance. The bold 

character in the table represents the smallest ARL over the charts with the different 

parameter settings in each scenario. From Table 4.2, when 0| | 1,d  the proposed method 

with a large 1c  outperforms VSMEWMA since a large value of the penalty for the term 

1
μ  in Eq. (4.6) enforces the estimation more sparse. Similarly, the proposed method 

presents better performance than VSMEWMA with a moderate value of 1c  to allow more 

selection in the selected group. Consequently, it is conjectured that the large value of 1c  

would perform well in the scenarios of within-a-group sparsity, and vice versa. Thus, if the 

engineering knowledge is available for the potential shift of the process, the parameters 1c  

and 2c  are suggested according to the group-wise sparsity and the within-a-group sparsity.  

In order to determine the performance of the charts when the shift occurs in different 

groups, we consider the two out-of-control scenarios; 3) 1 variable shifts in group 1 and 2; 

4) 2 variables shift in group 1 and 2. Thus, the cases 3) and 4) represent 2 and 4 numbers 

of shifts in two different groups, respectively. Expecting that VSMEWMA would perform 

overall best among shift sizes when the number of selection is equal to the number of truly 

shifted variables, we consider 2s   and 4s   for the cases 3) and 4). We also consider 
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1 2( , )c c  for ARL1 to be the best among the cases considered in Table 4.2. It is expected in 

general that SGL-EWMA may perform poorly if shifts occur over the groups due to the 

fashion of selecting in which the selection procedure would probably exclude several 

shifted variables. Table 4.3 presents that the proposed method shows slightly better than, 

but almost similar to VSMEWMA in ARL1 performance.  

Table 4.2. ARL1 comparison of SGL-EWMA with MEWMA and VSMEWMA (

5, 5nN p  ) 

Charts MEWMA   VSMEWMA   SGL-EWMA 

Parameters None 
 

2s   
 

1 2( , ) (0.0,0.8)c c   (0.2,0.8)  

Shift\Cases Dir.inv   0| | 1d  2 3   1 2 3 1 2 3 

0.50 93.72 
 

82.61 95.82 100.63 
 

95.43 97.92 99.53 94.20 95.07 98.22 

1.00 26.63 
 

17.72 23.42 26.99 
 

27.17 28.11 28.97 24.63 24.21 27.23 

1.50 11.90 
 

7.82 9.56 11.09 
 

10.83 11.25 11.69 9.97 9.96 11.20 

2.00 7.36 
 

4.96 5.89 6.64 
 

6.52 6.58 6.83 6.14 6.11 6.65 

2.50 5.44 
 

3.71 4.28 4.77 
 

4.65 4.70 4.84 4.43 4.41 4.69 

3.00 4.38   3.00 3.39 3.80   3.64 3.72 3.81 3.49 3.49 3.71 

             

Charts SGL-EWMA 

Parameters (0.4,0.8)  (0.6,0.8)  (0.8,0.8)  

Shift\Cases 0| | 1d  2 3 1 2 3 1 2 3 

0.50 88.36 89.97 93.63 84.12 92.83 95.98 79.26 98.22 101.00 

1.00 21.58 22.41 25.00 19.14 22.69 25.14 17.51 24.70 27.12 

1.50 9.07 9.49 10.46 8.39 9.58 10.34 7.76 10.18 11.31 

2.00 5.65 5.84 6.33 5.28 5.89 6.40 4.93 6.32 6.86 

2.50 4.15 4.26 4.58 3.88 4.32 4.63 3.68 4.56 4.93 

3.00 3.30 3.38 3.59 3.13 3.44 3.65 2.96 3.65 3.88 
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Table 4.3. ARL1 performances when shifts occur in different groups 

Charts MEWMA   VSMEWMA   SGL-EWMA 

Parameters None 
 

2s   4s   
 

(0.8,0.8)  (0.2,0.8)  

Shift\Cases Dir.inv   3) 4)   3) 4) 

0.50 93.72 
 

91.48 97.46 
 

90.38 95.67 

1.00 26.63 
 

22.03 28.15 
 

21.95 26.42 

1.50 11.90 
 

10.16 11.79 
 

9.16 11.39 

2.00 7.36 
 

6.19 7.01 
 

5.71 6.92 

2.50 5.44 
 

4.50 5.16 
 

4.17 5.01 

3.00 4.38   3.60 3.95   3.32 3.92 

 

Although the performances of both charts are generally better than MEWMA as shown in 

Tables 4.2 and 4.3, there is an increasing pattern of ARL1 as the number of actual shifted 

variables increases. It is due to the fact that the variable selection procedure would possibly 

exclude the shifted variables. Thus, when the sparsity of the process shift is difficult to 

estimate based on the engineering knowledge, the parameters that control sparsity are 

suggested to be smaller to select more variables to avoid excluding the shifted variables. 

Moreover, the chart may underperform MEWMA in detecting small shift, e.g., when 

0.5.   This is a typical phenomenon of the VS-based methodologies where VS may 

misidentify the truly shifted variables when the shift size is small. Consequently, when the 

information of sparsity is not given or when the shift size is small, a moderate or more 

number of selection is suggested. Figure 4.1 illustrates the mean number of selection 

(vertical axis) in terms of the parameters 1 2( , )c c  when 0| | 1,2d  and 3  (horizontal axis) 
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with given shift size as 2.0.   Moreover Figure 4.2 presents the mean number of 

selection (vertical axis) in terms of the shift size as a noncentrality with given parameters 

(0.4, 0.8). Figures 4.1 and 4.2 show that the proposed method selects the variables 

according to the shift patterns. In Figure 4.1, the proposed method selects more variables 

as the number of shifted variables increases. In addition, in Figure 4.2, it selects less 

variables on average as the shift size increases. This is one of the attractive feature of the 

proposed method in selecting the variables flexibly while the existing VS-based methods 

such as VSMSPC and VSMEWMA select a fixed number of variables.  

 

Figure 4.1 Mean number of selection according to the different parameter settings 
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Figure 4.2 Mean number of selection according to the shift size 

4.4. Conclusion 

In this chapter, we propose a group variable selection based SPC chart for monitoring high 

dimensional processes especially when the process data have grouped structure and when 

the behavior of the process shift follows a groued pattern. In multistage processes, for 

example, we can readily observe the grouped structure of the process data. Under sparsity 

of both between groups and within-a-group patterns, we apply the concept of sparse group 

LASSO and modify it appropriately. Specifically, we adjust the parameter settings as a 

ratio between 0 and 1, rather than allowing large values. Compared to the existing VS-
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studies and show that the proposed method outperforms when the shift tends to occur in 

sparse groups where there is a certain structure of correlation between groups and within a 

group.  

Although the extensive simulation studies demonstrate that the proposed chart generally 

outperforms existing multivariate SPC charts and recent variable selection-based control 

charts in terms of out-of-control ARL, there is still the challenging issue of determination 

of two parameters to control sparsity. Adaptive changing 1 2( , )c c  in consecutive hypothesis 

tests will be an interesting potential work.   
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CHAPTER 5   

RIDGE PENALIZED LIKELIHOOD-BASED SPC CHART 

5.1. Introduction 

In Chapters 3 and 4, we investigate the monitoring scheme by adopting the diagnosis 

procedure before monitoring the process referred to VS-based chart. Although the existing 

VS-based approaches including the proposed method investigated in Chapters 3 and 4 

intuitively have advantages in monitoring high-dimensional processes under sparsity, they 

have several challenges in the diagnosis procedures. The detection power of the VS-based 

charts may deteriorate when the performance of a diagnosis procedure is poor since VS 

procedure may exclude suspicious variables out of the selected set (Jiang et al., 2012). For 

example, as the shift size becomes smaller in highly correlated data structure, the accuracy 

of a diagnostic procedure decreases resulting in the poor performance of VS-based charts. 

Further, the VS-based charts using forward VS or LASSO demand extensive 

computational effort due to the complex form of the optimization problem incorporating 

0L  or 1L  norm types of penalties. Specially, when the dimension p  is substantially large, 

the computation becomes much more challenging, which is not practical for online process 

monitoring. 

In this chapter, we present a penalized likelihood-based approach for monitoring high-

dimensional processes. Different from the existing VS-based charts, the proposed approach 

does not select variables, rather “shrinks” all process mean estimates towards zero. Using 

2L  regularization, the performance of the chart can be interpreted in terms of the potential 



62 

 

shift direction. For example, it is expected that the chart becomes more sensitive to the out-

of-control signals when the shift occurs along with the direction of small shrinkage and 

vice versa. In addition to the interpretability of the performance of the chart based on the 

potential shift information, the closed form solution of the proposed approach makes the 

practical implementation of online monitoring significantly convenient.  

In spite of the advantages of the proposed chart, the following challenging issues remain; 

(a) how to explore a probability distribution of the chart statistic, which enables a practical 

use of the chart, e.g. to obtain control limits without extensive simulations and to predict 

the power of the chart with respect to the potential out-of-control scenarios; and (b) how to 

analyze the run length performances according to the process shift scenarios, i.e., locations 

and sizes of the shifts, when the chart is not directionally invariant as it occurs in many 

charts for monitoring high-dimensional processes. We address these issues and explore 

theoretical properties in the remainder of the chapter.  

We compare the performance of the chart with to the existing VS-based charts specially in 

a highly correlated data structure in detecting small process changes. Moreover, according 

to the theoretical boundary of the ‘performance region’, we discuss the improvement of the 

proposed chart by adjusting the penalty parameter with potential shift direction. 

Furthermore, we illustrate that the proposed chart can be incorporated into other existing 

charts including EWMA and VS-based charts and improve its performance.  
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This chapter is organized as follows. Section 5.2 investigates the framework of our 

methodology based on the 
2L  penalized likelihood and explores the theoretical properties 

of the proposed chart. Section 5.3 demonstrates the performance, followed by the 

investigation of several extensions of the proposed chart in Section 5.4. In Section 5.5, we 

introduce an illustrative example to demonstrate the practical implementation of the 

proposed chart. The chapter concludes with a further discussion and suggestions of future 

work in Section 5.6.   

5.2. Proposed Approach 

5.2.1. Framework of L2 Regularization-Based Control Chart 

With the assumption of normality, a generalized likelihood ratio test (GLRT) statistic is 

generally used for testing the mean and variance changes. The hypotheses for GLRT are 

0 0:H θ  and 1 1: ,H θ  where θ  is a parameter of multivariate normal distribution, 

and 0 ,  1  are the parameter spaces for in-control and out-of-control states, respectively. 

In this chapter, the main interest is detecting change in the process mean, and we 

particularly assume that the covariance matrix is known and fixed over time. Without loss 

of generality, we assume .μ 0  We consider a p -dimensional observation vector 

~ ( , )t p tNx μ Σ  with t μ 0  for 1,2,...,t   and t μ 0  for 1,...,t    where   is a 

unknown change point. Then the GLRT statistic denoted by ( )t x  is given as  



64 

 

1

( , )
( )

max ( , )

t
t

t

L

L






μ

x 0
x

x μ
 

where the likelihood of tx  is given by  

 
1

1/2/2

1 1
( , ) exp ( ) ( ) .

22

T

t t tp
L



 
    

 
x μ x μ Σ x μ

Σ
 

The logarithm of the GLRT statistic can be simplified as  

 
1

1 1log ( ) min 2 ( ) ( ) .T T

t t t t t  


    

μ
x x Σ x x μ Σ x μ                               (5.1) 

Eq. (5.1) is reduced in terms of μ  ignoring the constant term using Cholesky 

decomposition for the inverse of covariance matrix  1 T Σ R R as follows.  

1

2

0 2
( ) min tL


 

μ
μ z Rμ                                                      (5.2) 

where .t tz Rx   

Under 1,H  the current observation can be viewed as 0t t  x μ d ε  where 0μ  is an in-

control mean,   and d  are the shift size and its direction, respectively. With an 
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assumption of sparsity of an out-of-control scenario, the direction vector d  consists of 

mostly zero values and a few non-zeros which are the true mean shifts. Then, the following 

penalized likelihood is obtained by introducing the regularization term in Eq. (5.2)  

 
1

2

2
( ) min ( )tL p


  

μ
μ z Rμ μ                                                 (5.3) 

where ( )p  is a penalty function and ( 0)   is a complexity parameter that controls the 

amount of penalty. By introducing an 2L  penalty function in Eq. (5.3), we obtain the 

following penalized likelihood function.  

 
1

2 2

2 2
( ) min ,tL 


  

μ
μ z Rμ μ  

which has an exact solution as  

 
1

* arg min ( ) .T T

t tL 


  
μ

μ μ R R I R z                                          (5.4) 

Then, based on the above penalized mean estimate, we can monitor the process mean with 

the statistic 1 *TQ  x Σ μ  (Jiang et al., 2012, Wang and Jiang, 2009) and use a correlation 

matrix as covariance matrix for convenience. By replacing 1T R R Σ  and ,z Rx  the 

chart statistic becomes 
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 
1

1 * 2( ) ,T TQ  


  x Σ μ x Σ Σ x                                              (5.5) 

and the chart signals when ( ) ( ),Q H   where   is a predetermined significance level. 

Hereinafter, we refer to the chart as a ridge-based multivariate SPC (RMSPC) chart. Since 

the monitoring statistic of the RMSCP chart does have an explicit form in terms of x  and 

the matrix 2 A Σ Σ  is positive semi-definite, we obtain the approximate distributions 

of ( )Q   under 0H  and 1H  through the following proposition.   

Proposition 5.1. For testing the null hypothesis 0 0:H μ μ  against the alternative 

hypothesis 1 0: ,H  μ μ d  

a. the probability distribution of the RMSPC chart statistic under 0H  follows 

approximately a gamma distribution with a shape parameter k  and a scale 

parameter   such that  

 
2

1

2

1
2

p

ii

p

ii

w
k

w









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2

1

1

2
p

ii

p

ii

w

w
 







 

where 1(1 )i iw     and i  is defined as the eigenvalues of ,Σ   
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b. the probability distribution of the chart statistic under 
1H  with respect to the shift 

direction 
1μ  follows approximately a noncentral chi-square distribution with a 

noncentrality   and a degree of freedom ,l  which holds the following:  

   2

1Pr ( ) | Pr ( )lQ L v         μ  

where ( ) / ,Q Qv L     ,Q  ,  
Q  and   are the means and the standard 

deviations of ( )Q   and 
2 ( ),l    respectively.  

The proof of this proposition is shown in Appendix A. When 0,   the distributions under 

0H  and 1H  reduce to exactly the central and the noncentral chi-square distributions, 

respectively. Proposition 5.1 enables the practical use of the chart for the determination of 

the control limits and the evaluation of the chart performance under various shift scenarios 

with a specific nonzero value, .   

5.2.2. Directionally Variant Property of the RMSPC  

Hotelling 2T  chart has a directional invariance property, so its performance depends only 

on a noncentrality parameter regardless of the shift direction. However, the performance 

of the proposed chart depends on the shift direction due to the nature of shrinkage through 

the ridge regularization. The direction of shrinkage of the proposed chart occurs 

proportionally in accordance with the correlation structure. The amount of the shrinkage 
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of the proposed approach is obtained as follows, through a singular value decomposition 

of ,TR UDV   

   
2

1 1
2

2
1

ˆ
p

jridge T T T T

j j

j j

d

d
 



 



    


Rμ R R R I R z UD D I DU z u u z              (5.6) 

where 
jd  is the jth diagonal entry in the matrix .D  The diagonal elements are referred to 

as singular values which satisfy 
1 2 0,pd d d     and U  and V  are complex unitary 

matrices. We observe that the matrix V  diagonalizes 1
Σ  since 1 2 .T T  Σ R R VD V  

Thus, when the eigenvalues of the correlation matrix Σ  are 
1 2 0p       and their 

corresponding eigenvectors are the columns of P  in order, the identity that 1j jd   

holds for all 1,..., .j p  From the Eq. (5.6), the maximum shrinkage is directly associated 

with the largest eigenvalue of the covariance matrix .Σ  Therefore, this can be interpreted 

that the maximum shrinkage takes place along the direction of the eigenvector 

corresponding to the largest eigenvalue, which is also the direction of maximum variance. 

It directly implies that the chart performance would be different based on the direction of 

the mean shift, which means that the RMPC chart is directionally variant.  

We also notice that when all variables are independent, the shrinkage occurs equally 

proportional to the all possible directions of the shifts with the amount of 1(1 ) ,   since 

the eigenvalues 1j   for all .j  Then, the monitoring statistic becomes 1(1 ) ,T  x x  
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which is a simple product of chi-square statistic. Consequently, the performance of 

RMSPC becomes identical to that of 2T  when all variables are independent.  

5.2.3. Theoretical Performance Analysis  

While the theoretical performance analysis of existing VS-based charts according to the 

directions of out-of-control signals is intractable, we perform theoretical analysis of 

performance of the proposed procedure. Suppose that the mean shift lies on the direction 

of the maximum variance, which corresponds to the largest eigenvalue. Then, the out-of-

control ARL of the proposed chart would deteriorate because the chart shrinks the 

coefficients of the shifted variables as it considers them as noises. Conversely, when the 

shift occurs along the direction of a small variance, the chart keeps the shift information 

but shrinks other coefficients that are mostly random noises. Figure 5.1 shows an example 

with a bivariate normal distributed data. The performance of the proposed procedure would 

be better than Hotelling 2T  if the shift direction lies in the shaded area, and vice versa.  
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Figure 5.1. An example of performance region in bivariate normal distribution 

It is challenging to obtain a theoretical ‘boundary’ – e.g., two hyperplanes in Figure 5.1 – 

that exactly distinguishes two performance regions even in a low dimension case. However, 

we readily speculate that the performance of the chart would become better as the mean is 

drifted closer to the direction of the last eigenvector corresponding to the smallest 

eigenvalue, and vice versa. In geometry, the eigenvalues of a correlation matrix imply an 

Euclidian distance from the center of the hyper-ellipsoid. When a vector x satisfies 

1 2T c x Σ x  where c is an arbitrary constant, for example, the lengths of the principle axes 

are computed as .ic   Proposition 5.2 shows that when the shift occurs along the direction 

of the eigenvector with an eigenvalue in a certain range (i.e., a ‘good’ performance region 
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in Figure 5.1), the power of the proposed procedure is higher than that of Hotelling 2T  

chart. 

Proposition 5.2. The power of RMSPC with a positive value of   is higher than Hotelling 

2T  chart when the mean shift occurs along the direction of the eigenvector corresponding 

to 
i  that satisfies 

2 ,

,

1
1 ,

( )

T

i

RMSPC

H

H






 

 
  

  

 for all 1,2,..., ,i p                                    (5.7) 

where 2 ,T
H


 and 

, ( )RMSPCH    are boundaries with a significance level   for a 2T  chart 

and an  RMSPC, respectively.  

5.2.4. Determination of    

The parameter  controls the shrinkage and sparsity and is determined via cross-validation, 

Akaike information criterion (AIC), Bayesian information criterion (BIC), or other model 

selection criteria (Park et al., 2012). Determination of the optimal   for estimating μ  is 

related to location and the size of process shifts, correlation structure and the sparsity of 

potential shifts. Without precise prior information of the off target process, it may be 

challenging to obtain the optimal   analytically. Other penalized likelihood based VS 

charts attempt to overcome this issue by introducing an additional parameter s which is the 

number of selections (or maximal number of selections) instead of determining the precise 
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value of penalty parameter. Moreover, the parameter, s  is predetermined by practitioner’s 

know-how and experience and is fixed over time. Therefore, this approach may not be 

appropriate in detecting shifts when s  is not well-determined. Although the setting, s p  

is always an option, it can increase the computational time and may not be practical for 

online monitoring (Zou and Qiu, 2009).  

Instead of introducing another parameter, the parameter   is determined by adopting the 

approach of minimizing mean squared error as follows (Alkhamisi and Shukur, 2007) 

2 min

1

1

ˆ
p

i

i

p







 


   

where μ̂  is an ordinary least square (OLS) estimator, i.e.,  
1

ˆ ,T T


μ R R R z  and min  is 

the smallest eigenvalue of .Σ  As the covariance matrix becomes more ill-conditioned as 

in the case of high correlation among variables, min  decreases further resulting in a large 

penalty, and vice versa.  

Since μ̂  equals the current observation, i.e., ˆ
t tμ x  for 1,2,...,t   then   is determined as 

 2 1

min2
,pE 

  x  where || ||p  represents a p -norm. Since 
2

2


x  follows 

approximately an inverse gamma distribution under 0H  from Proposition 5.1, 
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 2

2 12
/ ( 1),E  


 x where a shape parameter,  2 2

1 1 2
/ 2  λ λ  and a scale parameter, 

 2

2 1 2
/ 2  λ λ  when 1.   The expected value of the inverse gamma distribution does 

not exist when the shape parameter is less than 1, which may occur when 
min  is close to 

zero with a small .p  However, in this case, the first term  2

2
pE


x  can be ignored since 

min  mostly dominates the value of .  Thus, depending on the estimated value of the scale 

parameter,   can be determined explicitly as 

2 21

2 2 1 2
min

1 2

2 2

1 2
min

1
, 2

2

1
, 2

p







 


 






λ
λ λ

λ λ

λ λ

 

where λ  is a vector whose entries are the eigenvalues of .Σ  

5.3. Performance Comparisons  

In this section, we illustrate the general performance of RMSPC by comparing the out-of-

control average run length (ARL1) performance of the RMSPC chart with VSMSPC and 

Hotelling 2T  according to various shift scenarios. A spatial relationship of the variables is 

considered, i.e., 
2 2( ) ( )

( , )
i k j l

ij klx x c   
  for , 1,2,..., Xi k p  and , 1,2,..., ,Yj l p  where 

Xp  and Yp  are the horizontal and vertical indices for one frame of spatial data information, 

respectively, so that ,X Yp p p   and 0 1c   (Bao et al., 2014, Liu et al., 2015, Wang 
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et al., 2016). The vectorized data matrix is regarded as an observation vector whose 

distribution is multivariate normal. To compare with the VSMSPC chart, the cardinality of 

the set of potentially changed variables to be estimated as nonzero, ( ),s p  should be priori 

determined. We choose a moderate size of selection as / 0.2.s p   The penalty parameter 

of the RMSPC is determined as described in Section 5.2, and the in-control ARL (ARL0) 

is set to 200 for all charts. Along with the ARL1, we also assess the performance of the 

charts through relative mean index (RMI) suggested by Han and Tsung (2006) which is 

defined as  

*

*
1

ARL ( ) ARL1
RMI

ARL

i i

i

N

i

X

N 


 

μ μ

μ

                                             

where N  is the number of out-of-control scenarios considered, ARL ( )
i

X
μ

 is the ARL1 of 

the given chart ,X  and 
*ARL

iμ
 denotes the smallest ARL1 among the charts under the shift, 

.iμ  Thus, the RMI provides a relative efficiency with respect to the out-of-control scenarios 

considered. Table 5.1 shows the ARL1 performance and RMI for 25 shift scenarios based 

on 20,000 replications. The dimensions of the data matrix are assumed 2Xp   and 5,Yp   

so that 10,p   and the correlation parameter is set as 0.9.c   The values in the 

parentheses represent the 
* *(ARL ( ) ARL )/ARL .

i i i
T μ μ μ  In addition, the shift scenario, 

{1, 3} 0.25,  for example, denotes that the 1st and 3rd variables are shifted with a magnitude 

of mean shift of 0.25.  
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From Table 5.1, we observe several findings. In most of the shift cases, the proposed 

RMSPC shows the smallest ARL1 performance. In a few cases with sparse shifts, the 

RMSPC underperforms VSMSPC since VSMSPC may construct more sensitive 

monitoring statistic based on correct identification of potentially changed variables. 

However, in many cases with sparse shifts and most of the non-spare shifting cases, the 

proposed chart outperforms VSMSPC. Specially, as the number of shifted variables 

increases, the VSMSPC performs poorly because the chart is limited by the parameter ,s  

while the RMSPC still shows a good detection power. For example, in the last case, the 

shift occurs in all variables, but ARL1 of RMSPC is almost half of that of 2.T  In addition 

to the case-by-case performance, the RMSPC has the smallest RMI, which indicates that 

the proposed chart performs well in general among three charts. Lastly, we can also observe 

that the performance of RMSPC is not uniformly better or worse than the 2.T  This implies 

that the performance of RMSPC is not directionally invariant. Thus, two cases where 

RMSPC underperforms 2T  can be interpreted that the directions of the shifts lie on a ‘bad’ 

performance region as in Figure 5.1.  

Table 5.1. Performance comparison of RMSPC with 2T  and VSMSPC under various 

shift cases ( 10,p   ARL0=200) 

Shifts 2T   VSMSPC RMSPC 

{1} 0.25   133.54(0.05) 127.49(0.00) 127.54(0.00) 

{2} 0.5  36.47(0.40) 26.22(0.01) 26.04(0.00) 

{3} 0.75  10.67(0.49) 7.17(0.00) 7.49(0.05) 

{5} 0.5   17.84(0.51) 11.81(0.00) 16.2(0.37) 
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{7} 0.25  117.03(0.20) 108.85(0.11) 97.81(0.00) 

{9} 0.75   10.72(0.54) 6.96(0.00) 7.58(0.09) 

{1,3} 0.25   84.05(0.33) 78.13(0.23) 63.28(0.00) 

{1,5} 0.5   21.88(0.15) 19.01(0.00) 19.91(0.05) 

{1,7} 0.75   3.97(0.47) 3.19(0.18) 2.69(0.00) 

{1,9} 0.5   16.04(0.25) 13.36(0.04) 12.78(0.00) 

{2,4} 0.25  75.09(0.44) 67.44(0.30) 51.98(0.00) 

{3,8} 0.5   20.68(0.21) 20.52(0.21) 17.02(0.00) 

{3,9} 0.75   3.27(0.41) 2.75(0.19) 2.32(0.00) 

{1,3,7} 0.25   56.6(0.71) 47.09(0.42) 33.16(0.00) 

{2,4,8} 0.5   6.76(0.72) 6.33(0.61) 3.94(0.00) 

{4,5,10} 0.75   11.28(0.00) 14.79(0.31) 11.71(0.04) 

{1,2,4,5} 0.25   79.82(0.00) 90.13(0.13) 80.99(0.01) 

{3,4,6,7} 0.5   10.02(0.10) 14.65(0.61) 9.08(0.00) 

{3,5,7,9} 0.75   1.37(0.20) 1.49(0.31) 1.14(0.00) 

{1,2,3,5,7} 0.25   65.05(0.24) 62.94(0.20) 52.34(0.00) 

{2,3,4,8,10} 0.5   7.76(0.47) 8.19(0.55) 5.29(0.00) 

{3,5,6,9,10} 0.75   1.88(0.22) 2.05(0.33) 1.54(0.00) 

{1,3,5,7,9} 0.25   31.62(0.97) 26.21(0.63) 16.03(0.00) 

{2,4,6,8,10} 0.5   3.23(0.62) 3.41(0.71) 1.99(0.00) 

{1,3,5,7,9} 0.5 ; {2,4,6,8,10} 0.25  29.5(0.84) 26.28(0.64) 16.01(0.00) 

RMI 0.382 0.269 0.024 

 

Next, we present the performance of the chart in detecting small mean shifts. When the 

shift size is small, the VSMSPC chart may perform poorly since the VS would possibly 
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misidentify the potentially changed variables. To assess the performance in such cases, we 

compute the relative efficiency (RE) of the RMSPC and VSMSPC compared to 2 ,T  under 

various shift sizes illustrated in Figure 5.2, which is calculated as a ratio of 

, 1Pr ( ( ) | )RMSPC RMSPCQ H   μ  over 2 2 1,
Pr ( | ).

T T
Q H


 μ  Thus, RE greater than 1 

indicates better power than 2.T  Note that the RE shows the relative power for a specific 

shift direction as the shift size varies, while RMI compares overall performance 

considering multiple shift directions. The shift size is determined as a noncentrality 

parameter, i.e., 1 ,T  d Σ d  where d  is a shift vector. In this experiment, we consider 

nine different shift cases in terms of the number of shifted variables and dimensions. 

Denoting 0s  as an index set of shifted variables, the columns of Figure 5.2 represent three 

shift scenarios with different shifted variables; 0 {2},{6,8}s   and {1,3,5,7,9}.  The rows 

in Figure 5.2 represent different dimensions; 10(2 5),p     25(5 5),p   and 

50(5 10).p    The dotted horizontal line represents the RE of 2 ,T  the solid and dash lines 

show the RE of RMSPC and VSMSPC compared to 2 ,T  respectively. The results 

illustrated in Figure 5.2 confirm that the proposed RMSPC performs relatively better than 

2T  over all shift sizes, while the VSMSPC underperforms 2T  when shift size is relatively 

small due to the misidentification issue of VS. Moreover, as the dimension increases, the 

probability of selecting ‘true’ shifted variables would decrease resulting in a poor 

performance of VS-based chart. On the other hand, the RMSPC shows a good performance 

of detection when the dimension is high.  
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Figure 5.2. Relative efficiency of RMSPC and VSMSPC to 2T   

5.4. Extensions of RMSPC 

In this section, we provide some extensions of the proposed approach. First, we develop an 

adaptive RMSPC that changes the parameter   adaptively based on the estimated shift 
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direction. We also develop an EWMA version of RMSPC, namely, RMEWMA.  

Furthermore, we develop VS-based RMSPC/RMEWMA by incorporation the VS 

algorithm into RMSPC/RMEWMA. We compare the performance of these charts with 

their corresponding existing charts. 

5.4.1. Adaptive RMSPC 

The performance of RMSPC depends on the direction of the shift. Thus, depending on the 

potential shift direction at time ,t  we select   value adaptively. The chart statistic of an 

adaptive RMSPC, namely ARMSPC, at time t  can be written as  

 
1

2( ) ,T

ARMSPC t t t tQ  


 x Σ Σ x                                               

The chart signals when 
,( ) ( ),ARMSPC t ARMSPC tQ H    and the control limits,

, ( )ARMSPC tH    

can be determined by simulation for the desired ARL0. The value of t  at time t can be 

determined adaptively depending on the estimated shift direction as follows. 

0 , RPI

0, RPI

t

t

t

 





 


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where 
0  is predetermined penalty described in Section 2.4, and   is a threshold value, 

and the RPI introduced in Appendix B represents the relative performance index of 

RMSPC with 0   to 2.T   

Based on the analysis of the performance according to the shift direction, we consider two 

extreme shifting cases that represent directions of the maximum shrinkage and the 

minimum shrinkage. Considering the same simulation condition as in Table 5.1, the two 

extreme directions of the shift are 1e  and 10 ,e  i.e., the first and the last eigenvectors 

corresponding to the first and last eigenvalues. Figure 5.3 illustrates the RE of the 

ARMSPC chart to 2T  as   varies when 1 1μ e  (dotted line) and 1 10μ e  (dashed line). 

The solid horizontal line represents the reference line referring to the relative efficiency of 

2T  itself. When 0,   it shows the best performance with the shift along 10e  and the worst 

performance with the shift along 1.e  As   increases, the performance with the shift 1e  

increases but that with the shift 10e  decreases slightly. When   is reasonably large, as 

expected, the chart behavior approaches that of 2 ,T  and when 0,   ARMSPC is identical 

to RMSPC.   
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Figure 5.3. Relative efficiency of RMSPC as   varies when 1 1μ e  and 1 10μ e   

5.4.2. Extension to EWMA 

We now consider the detection of a small mean shift and develop the EWMA version of 

the proposed chart, namely, RMEWMA. With a constant weight parameter ,r  the EWMA 

vector at time t  is determined using all past observations as 

1(1 ) , 1,2,...t t tr r t   w w x  

where 0 0 0. w x μ  Letting wΣ  as the covariance matrix of MEWMA, the monitoring 

statistic of RMEWMA can be obtained as 

 
1

2( ) .T
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 
w w
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Since the covariance of MEWMA in a steady state is asymptotically / (2 ) ,r r 
w

Σ Σ  the 

identical procedure of inducing the directionally variant property to RMSPC holds for 

RMEWMA. Moreover, the adaptive RMEWMA (ARMEWMA) can be also derived by 

modifying RPI with respect to .w  Since the vector, ,tw  approaches a true shift vector as 

more past observations are accumulated, the RPI provides more appropriate information of 

the shift, specially when the process shift is relatively small.  

In comparing the proposed approach, we consider the case with 5,p   which is initiated 

by Hawkins (1991) and is used by Jiang et al. (2012) and Zou and Qiu (2009) to assess the 

performance of VSMEWMA and LEWMA. Different from the proposed chart and 

VSMEWMA, the monitoring statistic of LEWMA is calculated as a maximal statistic 

among q  possible selections. See Jiang et al. (2012) for detailed discussion of the 

difference between single monitoring statistic and maximal monitoring statistic. In this 

comparison, we illustrate the cases with 3q   and 5q   for LEWMA, and the cases with 

1,2,3s   and 4 for VSMEWMA. Twenty different types of out-of-control scenarios are 

taken into account shown in Table 5.2 in which the mean shift 1μ  is added to the process 

at time 25.   The column of   represents the noncentrality such that 
1

1 1 .T  μ Σ μ  For 

a fair comparison, we consider the same simulation settings as in Jiang et al. (2012) and 

Zou and Qiu (2009); the ARL0 is set to 500; the smoothing parameter 0.2;r   the 

covariance is set as same as in Hawkins (1991); and the results are based on 20,000 
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replications. The performance of the charts is assessed by ARL1 as well as RMI, and the 

smallest ARL1 is represented in bold characters.  

Several findings can be deduced from Table 5.2. First, we observe that the ARMEWMA 

outperforms all other charts in most of the cases. It shows the smallest ARL1 for 13 cases 

out of 20 shift cases. Considering that the shift sizes of the most cases are greater than 1 as 

a noncentrality parameter, the proposed chart would possibly show better performance than 

VS-based charts when the shift size decreases as shown in Figure 5.2. Second, although 

the proposed chart with 0   outperforms VS-based charts in many cases, it also shows 

the poor ARL1 performance for a few cases; e.g., cases 1) and 19), which leads to the poor 

overall performance (large RMI). Thus, without any information on the potential shifts 

such as magnitude and direction, one can achieve more ‘balanced’ performance by 

increasing the parameter .  The proposed chart with 0.7   shows the best overall 

performance with the best RMI, even though it does not present the smallest ARL1 for any 

cases. With reasonably large ,  the performance of the chart would become identical to 

that of MEWMA.  
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5.4.3. Extension to VS-Based Control Charts  

In this subsection, we consider integrating the 
2L  penalized likelihood estimator with other 

VS-based control charts. Although the VS-based charts may not perform well specially in 

detecting a small mean shift, this integration would provide the potential capability of the 

chart for overall performance with unknown shift information.  

In the preceding extension, we utilize the current observation, tx  (or tw  in RMEMWA) 

in computing RPI, where the vector tx  or tw  is considered as a potential mean shift at 

time ,t  and provides the directional information for RPI. Under the sparsity assumption, 

therefore, more appropriate shift information can be obtained by selecting potentially 

changed variables via VS algorithms. Then, we propose the procedure of VS-integrated 

approach as follows. First, the small subset of potentially changed variables are selected 

through the diagnosis procedures. In this chapter, for simplicity, we use a conditional 2T  

statistic as 
2 2 2

|iT T T    where   is a set of all process variables except the i th one, 

introduced by Runger (1996). The large value of the conditional statistic under 1H  

indicates that the corresponding variable is responsible for the process change. Suppose 

that the ( )s p  number of nonzero components in *
μ  is selected accordingly. We then 

apply 2L  penalizing approach to estimate nonzero values for the selected variables. We 

denote the nonzero vector, *
μ  with size 1s  by dividing the column space p  into two sets 

of variables, say suspicious ( s ) and unsuspicious set of variables ( p s ). Letting R  be a 
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matrix with corresponding s  columns taken from R  and introducing the penalty 

parameter, the nonzero values are estimated as 

* 1

1 ( ) .T T

s s 

  μ R R I R z                                                (5.8) 

where .z Rx   

Now, the sparse vector, *

tμ  can be utilized to determine the penalty; i.e., it is possible to 

compute whether this potential shift lies on a ‘good’ or ‘bad’ performance regions based 

on the potential shift direction *.tμ  Then RPI  given *
μ  is proportional to the value, 

1 *

,

T

t t RMSPC


x Σ μ  over 2

1 *

,
,T

t t T


x Σ μ  where 

*

,t RMSPCμ  is the potential shift vector from Eq. (5.8) 

with 0 ,   and 2

*

,t T
μ  is the one with 0.   According to the RPI and the parameter ,  

the nonzero component of *
μ  for computing the monitoring statistic can be determined 

alternatively with 0   or 0.    

In addition to the VS-based ARMSPC, we can also derive the EWMA version of VS-based 

ARMSPC, namely, VS-ARMEWMA. The vector, *
μ  is obtained based on an EWMA 

statistic, and thus it is expected to provide more appropriate directional information when 

small shift occurs.  
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Table 5.3 presents the ARL1 performance of VS-ARMEWMA compared with 

VSMEWMA when 2s   and 3.s   The simulation conditions and shift cases are the 

same as in Table 5.2. For the VS procedure in VSMEWMA, we use conditional 2T  statistic 

instead of FVS. Note that the capability of conditional 2T  statistic method in selecting 

variables is similar to that of FVS under normality. In VS-ARMEWMA, we consider 

0,   0.4 and 0.6. From the results in Table 5.3, we find that the VS-ARMEWMA 

outperforms VSMEWMA in 14 cases. In the cases where the performance of VS-

ARMEWMA is worse than VSMEWMA, VS-ARMEWMA with the large   shows 

similar performance as that of VSMEWMA. Figure 5.4 illustrates the 3-dimensional 

contour plot of the RMI of VS-ARMEWMA in terms of s  and .  The darker region 

represents the better performance in RMI. The contour surface shapes a hyperboloid with 

its smallest RMI when 4s   and 0.6.   Thus, similar conclusions to Figure 5.4 are 

obtained from the Table 5.3; that is, the VS-ARMEWMA performs mostly better than 

VSMEWMA, but in some cases where the shift lies on a ‘bad’ performance region, the 

large   results in the similar performance as that of VSMEWMA. However, we also notice 

that the chart may perform relatively worse than MEWMA when VS does not function 

well, and the shift is not sparse or lies on a ‘bad’ performance region; e.g., in cases 11 and 

17-20.  
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Table 5.3. ARL1 comparison of VS-ARMEWMA with VSMEWMA ( 5,p   0.2,r   

ARL0 = 500) 

Cases 

VSMEWMA   VS-ARMEWMA 

2s    3s   

 2s    3s   

  0    0.4   0.6     0   0.4   0.6   

1 14.3 15.0 
 

37.1 16.5 14.4 
 

34.6 18.2 15.5 

2 14.6 15.1 
 

12.1 12.5 13.2 
 

12.4 12.6 13.3 

3 15.1 15.7 
 

14.2 14.8 15.5 
 

14.4 15.1 15.5 

4 14.7 15.5 
 

12.2 12.6 13.0 
 

12.4 12.7 13.3 

5 15.4 16.0 
 

14.2 14.9 15.4 
 

14.4 14.9 15.8 

6 13.2 13.7 
 

12.7 12.5 12.7 
 

12.4 12.4 13.0 

7 12.8 12.7 
 

12.8 12.6 12.5 
 

12.7 12.5 12.4 

8 13.3 13.7 
 

12.0 12.4 12.5 
 

11.9 12.3 12.7 

9 12.6 12.3 
 

12.5 12.7 12.3 
 

12.4 12.5 12.3 

10 10.4 8.53 
 

10.4 10.2 10.2 
 

9.15 8.55 8.85 

11 6.26 4.46 
 

6.43 6.41 6.39 
 

4.87 4.81 4.60 

12 11.3 11.5 
 

9.23 9.55 10.0 
 

9.44 9.61 9.99 

13 11.3 11.7 
 

9.47 9.68 10.1 
 

9.46 9.74 10.0 

14 5.88 4.75 
 

6.54 6.40 6.13 
 

5.31 5.24 4.97 

15 10.8 8.57 
 

9.72 10.1 10.4 
 

8.29 8.38 8.65 

16 12.7 13.2 
 

10.3 10.6 11.1 
 

10.3 10.6 11.1 

17 11.3 9.72 
 

11.6 11.8 12.1 
 

10.0 10.1 10.3 

18 6.49 5.35 
 

7.68 7.67 6.92 
 

6.12 6.06 5.64 

19 12.6 12.0 
 

35.7 13.5 12.5 
 

30.7 13.1 12.0 

20 4.11 2.86   11.0 4.45 4.18   5.61 3.13 2.82 

 



89 

 

 

Figure 5.4. Contour plot of RMI of VS-ARMEWMA in terms of s  and    

5.5. Case Study 

In this section, we present a case study of a milling process that produces a complex part 

to be used in the assembly of several devices. The part has multiple characteristics that 

include several depths, circular and rectangular pockets with high dimensional tolerances. 

The milling tools are replaced on regular basis to maintain the required high tolerance. 

However, any changes in the process (cooling rate, speed or variability in the feed rate and 

tool wear) result in changes in the dimensions. Figure 5.5 shows the final product produced 

by the milling process and its isometric view. Parts were produced and their dimensions 

were measured using a highly accurate coordinate measuring machine (CMM). The 

references for the dimensions to be monitored and its computer-aided design (CAD) 

drawings for part production are shown in Figure 5.6. Process parameters for production 
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are denoted as ‘d’ and the parameters to be monitored are denoted as ‘x’. In this case study, 

we monitor ten process parameters, denoted as 
ix  for 1,...,10.i    

          

                     a) Produced part    b) Isometric view of the part 

Figure 5.5. Part features produced using high-speed milling process 

Fifty parts are produced; the first twenty parts are produced under the normal conditions of 

the cutting process parameters. The sample covariance matrix of the in-control process is 

computed based on these twenty samples as shown in Table 5.4. These samples are then 

used in Phase II monitoring. The remaining thirty parts are produced under different setting 

of the machine that assumes the milling process parameters have changed due to one or 

more of the causes stated earlier leading to the change in some dimensions of the parts. 

Figure 5.7 shows the measurements for the fifty parts in which moderate positive shifts can 

be observed in 7 8,x x  and 9.x  
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Figure 5.6. Part dimensions, e.g., diameters (left) and heights (right) of the cylinders  
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Table 5.4. A sample covariance matrix of the dimensions 

  
1x
  2x

  3x
  4x

  5x
  6x

  7x
  8x

  9x
  10x

  

1x
 

1.000 -0.093 0.069 -0.421 -0.186 0.431 -0.282 0.064 0.479 -0.011 

2x
 

-0.093 1.000 -0.058 -0.276 0.270 0.223 -0.237 -0.102 -0.098 -0.260 

3x
 

0.069 -0.058 1.000 -0.130 -0.252 0.272 -0.146 0.101 0.093 -0.362 

4x
 

-0.421 -0.276 -0.130 1.000 -0.123 -0.316 0.245 -0.415 -0.057 0.014 

5x
 

-0.186 0.270 -0.252 -0.123 1.000 -0.225 0.101 0.022 -0.328 0.160 

6x
 

0.431 0.223 0.272 -0.316 -0.225 1.000 -0.422 0.129 0.059 -0.068 

7x
 

-0.282 -0.237 -0.146 0.245 0.101 -0.422 1.000 -0.073 -0.008 0.235 

8x
 

0.064 -0.102 0.101 -0.415 0.022 0.129 -0.073 1.000 -0.085 -0.175 

9x
 

0.479 -0.098 0.093 -0.057 -0.328 0.059 -0.008 -0.085 1.000 -0.156 

10x

 

-0.011 -0.260 -0.362 0.014 0.160 -0.068 0.235 -0.175 -0.156 1.000 

 

 

Figure 5.7. Raw data of the samples  

We illustrate the implementation of the RMSPC and VSMSPC control charts using this 

dataset. The assumption of the normality is validated using Mardia’s multivariate normality 

test (Mardia, 1970) with the significance level to 0.05. The parameter,   for RMSPC is 
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determined as guided previously, 1.81;   the parameter, s  (the number of selection) for 

VSMSPC chart is set as 3s   assuming that the number of truly shifted variables is known 

so that VSMPSC results in the best performance in this case study. The control limits of 

RMSPC and VSMSPC are obtained as 8.02 and 11.73, respectively based on the in-control 

parameters. Figure 5.8 shows the monitoring paths of the charts over the thirty out-of-

control samples; the solid line and dash line represent RMSPC and VSMSPC, respectively; 

and the control limits are represented by the horizontal lines. RMSPC chart refers to the 

left-hand-side vertical axis of Figure 5.8 and VMSPC chart refers to the right-hand-side 

axis.  

From Figure 5.8, we observe that the proposed RMSPC successfully alarms for 25 samples 

out of 30, while VSMSPC does so only for 14 samples. It indicates that RMSPC chart is 

more sensitive to the out-of-control signals than VSMSPC. Since both charts may fail to 

detect the out-of-control signal when the shift size is small, the standardized distances of 

the measurements are shown in Figure 5.9. As shown, the Mahalanobis distances 

(Friedman et al., 2001) of the samples, 5, 8, 12, 17 and 23 are relatively small, i.e., close 

to the in-control process mean, so that they are not captured by both charts.  
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Figure 5.8. RMSPC and VSMSPC charts for the multi-attribute part 

 

Figure 5.9. Mahalanobis distances of the sample measurements to the in-control mean 
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There are several samples that are detected by RMSPC but not detected by VSMSPC. 

Figure 5.10 shows the absolute values of the measurements of the 1st and the 17th samples 

as examples to explain the difference between shrinkage and variable selection. The 1st 

sample represents the case where RMSPC alarms while VSMSPC does not; and the 17th 

sample shows the case where both charts fail to detect. In (a), RMSPC shrinks most of 

unchanged variables towards zero but does not shrink much the changed variables resulting 

in a detection of the 1st sample; but in (b), it keeps relatively large portion of the information 

of unchanged variables such as 2 ,x  5x  and 6x  leading to the failure of detection. On the 

other hand, VSMSPC misidentifies the faulty variables for both cases since these samples 

are close to the in-control mean as shown in Figure 5.9. It identifies 2 ,x  4 ,x  5x  and 2 ,x  

4 ,x  10 ,x  respectively, in each case as faulty variables, while true shifts occur in 7 ,x  8x  and 

9 ,x  resulting in the failure to detect the shifts.   

    

Figure 5.10. Absolute measurement values of 1st and 17th samples 

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

A
b

so
lu

te
 v

al
u
e

(a) 1st Sample

Original value Shrinkage VS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10

A
b

so
lu

te
 v

al
u
e

(2) 17th Sample

Original value Shrinkage VS



96 

 

5.6. Concluding Remarks  

Phase II monitoring for high-dimensional processes is a challenging task. In this chapter, 

we focuse on the problem of detecting small mean shifts in high-dimensional processes 

when the quality features are strongly correlated. We propose an efficient quality control 

method for such processes based on 
2L  norm penalized likelihood approach. This 

approach incorporates the directional shrinkage property of 
2L  regularization based on 

correlation structure of the data for monitoring various out-of-control scenarios under 

sparsity. We provide the theoretical boundary for the performance based on a geometrical 

interpretation and obtained the approximate probability distributions of the monitoring 

statistic under 0H  and under 1H  with respect to the potential shift directions. We also 

investigate the improvement of the chart by introducing the relative performance index and 

controlling the threshold value. Lastly, we have explored the extensions of the proposed 

chart incorporating EWMA and diagnosis procedure. The results of simulation studies 

show that the proposed chart and its extended charts perform well in detecting small mean 

changes in high-dimensional processes and is effective in online monitoring compared to 

conventional multivariate SPC and recent VS-based charts.  

The current study mainly focuses on shrinkage aspect rather than selection of potentially 

shifted variables. It would be interesting to investigate the integration of our proposed chart 

with another type of penalty such as the combination of 1L  and 2L  in the likelihood 

function. It selects suspicious variables like LASSO, and shrinks the correlated covariates 

together like ridge. It is expected to overcome the drawbacks of the VS-based chart in 
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highly correlated data structure, and is expected to perform well when the shift tends to 

occur in a grouped fashion due to the nature of shrinkage of 
2L  regularization. In addition, 

the proposed chart can be extended to the problem of monitoring non-normally distributed 

high dimensional processes (Chen et al., 2016). Further, the lack of historical dataset is 

also common in industry. It motivates more research to extend to Phase I analysis, in which 

the estimation accuracy of covariance would significantly affect the chart performance 

since our method mainly depends on the correlation structure.  
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CHAPTER 6   

GENERALIZED SMOOTHING PARAMETERS OF A MULTIVARIATE EWMA 

CONTROL CHART 

6.1. Introduction 

In preceding chapters, we investigate the monitoring schemes for high-dimensional 

processes. In particular, for detecting small mean shift, VS-based charts perform poorly 

due to the misidentification of potentially faulty variables as shown in Chapters 3 and 4. 

Therefore, we investigated a new methodology using ridge regularization based penalized 

likelihood rather than adopting the diagnosis procedure. The ridge penalty shrinks the 

coefficient of variables proportional to the correlation in a regression point of view, it can 

be explained as the ‘utilization of the correlation information’ for SPC setting in some 

sense. In this chapter, we focus on seeking a model to improve the detection ability of the 

chart by utilizing the correlation information among variables. The traditional multivariate 

EWMA is extended from univariate EWMA by considering the correlation among 

variables. Its simplicity and generality stem from the assumption that the smoothing 

parameters of the variables are given constants and are equally distributed on the diagonal 

of the smoothing matrix. Recently, the MEWMA model with the full non-diagonal 

smoothing matrix (FEWMA) is studied by Hawkins et al. (2007). However, the model has 

limited use due to the assumption that the off-diagonal elements are the same which makes 

it sensitive to the correlation structure of observations. We propose a generalized model of 

MEWMA and refer to the proposed model as generalized multivariate EWMA 

(GMEWMA) by assigning the appropriate non-diagonal components in the smoothing 
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matrix based on the correlations among variables. We offer an interpretation of off-

diagonal elements of the smoothing matrix and suggest an optimal design for a proposed 

MEWMA chart regarding the utilization of the correlation information.  

This chapter is organized as follows: In Section 6.2, we briefly review the traditional 

MEWMA and FEWMA control charts. In Section 6.3, we interpret the meaning of non-

diagonal elements in a smoothing matrix and introduce the GMEWMA chart. In Section 

6.4, we compare the performance of the GMEWMA chart with MEWMA, FEWMA, and 

other recent variants of an MEWMA control chart. A real life case study on automatic 

monitoring of dimensions of bolts is illustrated in Section 6.5. Conclusions and future 

research are discussed in Section 6.6. 

6.2. Review of the MEWMA and FEWMA Control Charts 

The MEWMA statistic tw  is defined for an observation vector tx  as 

 1( )tt t  R I wRw x                                               (6.1) 

for 1,2,...,t   where R  is a smoothing matrix, and I  is an identity matrix. Note that the 

smoothing matrix R  is different from the Cholesky decomposition matrix R  in preceding 

chapters. tw  is recursively obtained as  
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1

0

0

( .( ) )
t

i t

t t i

i







    Rx I Rw wI R  

Suppose that 
0 0 0 , xw μ  

ix  are i.i.d. random vectors with p  variables, and x  follows 

a multivariate normal distribution with mean μ  and covariance .Σ  Since 
tw  is also a 

multivariate normally distributed, its mean vector and covariance matrix are given by  

0( )tE w μ  

and 

 
1

( ) ( ) ( )
t ttCov



     w wΣ RΣR I R Σ I Rw ,                   (6.2) 

respectively. Assuming that a multivariate process has been operating for a sufficient 

length of time, it can be analyzed with an asymptotic covariance matrix: 

( ) ( ) .    w wΣ RΣR I R Σ I R  

The monitoring statistic of an MEWMA chart is 

1

0 0( ) ( ).
tt t tQ   w wμ Σ μw  
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In an MEWMA chart, the smoothing parameters have equal diagonal elements ,r  i.e., 

( .) p pdiag r R  Then, Eq. (6.1) can be written as  

1(1 ) ,t t tr r   w wx  

and the covariance matrix of tw  is 

2[1 (1 ) ]
2

.
t

tr
r

r
  


wΣ Σ  

An asymptotic covariance matrix of tw  is expressed as a simple form of the covariance of 

the observation ,x  [ / (2 ) .]r r wΣ Σ  It is straightforward that an MEWMA chart is 

equivalent to the Hotelling 2T  chart when .R I  If the target mean 0 μ 0  and the mean 

shift is ,μ  the noncentrality parameter is 

2 1 .   μ Σ μ  

Since the inverse of wΣ  is a constant multiplication of 1,
Σ  the performance of the 

MEWMA chart is explained only through the noncentrality parameter. 
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Hawkins et al. (2007) attempt to use non-zero off-diagonal elements into the smoothing 

matrix to develop the FEWMA control chart. Using notations onr  and 
offr  as diagonal and 

non-diagonal elements, respectively, they suggest that all off-diagonal elements are equal 

such that 
off onr c r   with | | 1.c   The FEWMA chart can be characterized by a smoothing 

parameter ,r  which is defined by 

1

( 1) ,   1,..., .
p

ij on off

i

r r r p r j p


      

This implies that the 1p   off-diagonal elements in a row (or column) are equally weighted, 

and sum of each row (column) is .r  Even though Hawkins et al. (2007) provide the idea 

of using non-diagonal smoothing parameters, their approach may have limited 

performance due to the assumption of equal off-diagonal elements.  

6.3. Generalized Smoothing in Multivariate EWMA Control Chart 

In order to develop a generalized non-diagonal smoothing scheme, we need to interpret the 

effect of smoothing parameters on the model performance. In this section, we interpret the 

meaning of a non-diagonal smoothing scheme and present the GMEWMA control chart 

along with the guidelines for the determination of the smoothing parameters. 
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6.3.1. Non-Diagonal Smoothing Parameters  

We interpret the MEWMA model using a forecast model point of view. The MEWMA 

statistic can be expanded as follows: 

 

, , 1 ,1 1, 1, 1 , , 1 , , , 1

, 1 , , 1 , 1 ,

1 1

( ) ( ( )

( )

)i t i t i t t ii i t i t i p p t p t

p p

i t ij j t j t i t ij j t

j j

w w r x w r x w r x w

w r x w w r e

   

  

 

       

    



 
 (6.3) 

,i tw  can be interpreted as a prediction value of an thi  variable's process mean at time 1.t   

By considering 
, , 1j t j tx w   as the forecast error 

, ,j te  we can interpret that the forecast 

process mean at time 1t   consists of the current estimated mean at time t  and sum of the 

weighted forecast errors from all variables. Montgomery (2007) provides an interpretation 

of forecast viewpoint in a univariate case, and this is mostly analogous in a multivariate 

EWMA chart.  In fact, since te  includes all the other variables in multivariate EWMA, the 

weights 
ijr  should be carefully assigned. This implies that 

,i tw  contains not only its own 

information of the thi  variable, but also the other variables’ information. In other words, 

the meaning of ‘using non-zero off-diagonal elements’ is ‘using the other variables’ 

information’ as a contribution to EWMA transformed data in an SPC viewpoint. For the 

MEWMA chart, Eq. (6.3) can be written as follows: 

, , 1 , , 1 , 1 ,( ) .i t i t ii i t i t i t ii i tw w r x w w r e        



104 

 

Therefore, in case of the MEWMA chart, the prediction of the thi  variable, 
,i tw  contains 

the limited information of only the thi  variable and does not consider the information from 

the other variables. Consequently, assigning proper weights 
ijr  considering the correlation 

structure of the variables can result in an improved performance of the chart. 

From the above interpretation, determining 
ijr  depends on how to incorporate the other 

variables’ information. We conjecture that it might be sensitive to the correlation structure 

of the original process data because the thi  variable is affected by all the other variables 

according to the weight .ijr  The FEWMA chart, for example, shows significantly large 

variation of ARL performance in accordance with the correlation structure which restricts 

all off-diagonal elements to be equal. It would probably be obvious that ARL performance 

of the FEWMA chart is good when the correlation coefficients are all equal. This is due to 

the fact that when 
,i tw  are referring to the same amount of information from the other 

variables regardless of their correlation structure. In real life, however, the correlation 

among variables can hardly be the same. Therefore, our main interest is to consider the 

correlation effect in the design of the control chart.  

6.3.2. Determination of the Smoothing Parameters  

Non-diagonal smoothing parameters could have either a positive or a negative impact on 

the chart performance depending on the value of .ijr  We assign the smoothing parameters 

as a function of correlation coefficients as follows: 
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| |
( ) ,  ,

| |

, 1,...

ij

ii p

ij

i j

ii

jir r r j i

r r i p









   

  

  

where   is a ratio factor such that 0 1   and 
ij  is the th( , )i j  element in correlation 

matrix of .x  It is reasonable that we assign more weight to the highly correlated variable. 

When the variables are independent we set 1   which results in a chart identical to 

MEWMA. Likewise, when the variables are equally correlated the resulting GMEWMA 

can be formulated as an FEWMA with a particular ratio factor.  

6.3.3. Guidelines for Setting up an GMEWMA Chart 

The effect of smoothing parameters can be interpreted as the accumulation of past data 

information as previously mentioned. Specifically, using a small smoothing factor means 

that tw  uses much more accumulated past data information than current observation 

information. Moreover, smaller w  leads to an assignment of more weight to the off-

diagonal elements of ,R  which results in accumulating more of the other variables’ 

marginal information (recall that smaller   assigns more weight to the forecast error 
, ,i te  

i.e., , , 1i t i tx w  ). Thus, in determining   it is more appropriate to choose a small value so 

that the chart refers to as much information of all the other variables as possible. Then, the 

finding the minimum   value, say *  can be formulated as the following constrained 

optimization problem:  
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Then, *  is found as  
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                                           (6.4) 

where 
ij  is a correlation coefficient between i  and j  (see Appendix C for the detailed 

derivation). When the variables are equally correlated ( ,ij   0 1  ), the infimum of 

the   is 1/ ;p  i.e. the diagonal elements in the smoothing matrix are / .r p  If the diagonal 

elements are less than / ,r p  non-diagonal elements can be greater than diagonal, and 

eventually violate the generality of the chart. Then, *  can be expressed as a sum of 1/ p  

and an additive value led by unbalanced correlation structure. Consequently, *  accounts 

for a limiting condition for the generality of the model and the additional weights to the 

diagonal elements of R  according to the correlation structure.  
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6.4. Performance Comparison 

6.4.1. Description of the Experiments 

In this section, we illustrate the performance of the GMEWMA chart through numerical 

examples. In the calculation of the control statistic 
tQ  to determine the out-of-control 

signal, an MEWMA chart uses an asymptotic covariance matrix which corresponds to the 

steady-state process. In some cases, however, the processes go through a start-up period 

where many out-of-control signals are observed. Once a process is stabilized, the out-of-

control signal pattern becomes significantly different from that of the start-up period. These 

two different states can be expressed in EWMA charts through the covariance matrix. Since 

determination of out-of-control signal for obtaining ARL1 is measured by a distance from 

the target mean, the number of in-control observations before the occurrence of an out-of-

control observation depends on how tQ  is calculated. Briefly, the experiments can be 

summarized in two ways: 

 Process starts up in out-of-control state and the exact covariance matrix is applied; 

and 

 Out-of-control signal occurs after process stabilization and the asymptotic 

covariance matrix is applied. 

In this study, we mainly focus on the early stage of the processes when it is out-of-control 

and apply the exact covariance matrix of EWMA statistic 
twΣ  as given in Eq. (6.2). All 
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the other charts also adopt the exact covariance matrix in the calculation of the control 

statistic for performance comparison. 

In determination of the control limits, the ideal control limits for the EWMA chart would 

be varied instantly at a sampling point time ,t  say ( ).h t  Considering the complexity of 

obtaining the exact control limits for every sampling point, we assume a fixed control limit 

h  for a desired in-control ARL with the assumption that process starts up in out-of-control 

state. 

In the experiments, type I error is chosen as 0.005, i.e. in-control ARL level is 200 and the 

smoothing parameter r  as 0.1 for all comparable charts. As mentioned previously, the 

detection of a small process mean shift is of interest. A small smoothing parameter is used 

for a small shift for the EWMA charts as long as the charts keep the same track of 

accumulation of the past information. The ratio factor, w  is rounded up to two decimal 

digits. For convenience, we use the covariance matrix xΣ Γ  which is a correlation matrix 

and the in-control process mean 0 μ 0  without loss of generality. Moreover, we consider 

an individual observation as a subgroup size for all charts for comparison.  Since we assume 

that we have knowledge of a covariance matrix, individual observation would not be a 

significant issue of the problem. A mean shift size is determined through a noncentrality 

parameter, .  
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6.4.2. ARL Performance Comparison  

We conduct a simulation study for the ARL performance comparison of three different 

charts: standard MEWMA, dMEWMA and FEWMA. The fundamental concept of the 

dMEWMA control chart is to smooth twice as shown by the following two equations 

(Alkahtani and Schaffer, 2012). 

1

1

( )

( )

tt

t t t

t 



  

  

y Rx I R y

w Ry I R w
 

In their model, the smoothing matrix has the same diagonal elements. Thus we classify 

MEWMA and dMEWMA into the diagonal scheme and FEWMA and GMEWMA as the 

non-diagonal scheme. 

The simulation is conducted with 200,000 replications in order to achieve a standard error 

less than 310  for ARL0. In the non-diagonal scheme charts, FEWMA and GMEWMA, the 

diagonal elements in the smoothing matrix are equal for comparison. In Table 6.1 (a), for 

example, the ratio factor 0.36   and 0.8   from Eq. (6.4), and 0.036iir r    for 

all .i  When 0.89c   in the FEWMA, the diagonal element in the smoothing matrix is 

0.036  from the relationship between onr  and offr  ( ( 1)on offr r p r   ( 1)on onr c p r  ). 

Hence, the diagonal elements of the smoothing matrix in both the GMEWMA chart and 

the FEWMA chart are equal with a value of 0.036,  and their smoothing matrices are shown 

below: 
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0.0360 0.0320 0.0284

0.0356 0.0360 0.0356

0.0284 0.0320 0.0360
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 
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
 
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R   and 

0.0360 0.0320 0.0320

0.0320 0.0360 0.0320

0.0320 0.0320 0.0360

FEWMA

 
 


 
  

R . 

Since the main motive of the GMEWMA chart is to use the correlation information, the 

experiments are conducted by the level of the correlation imbalance. For more systematic 

comparison in accordance with the correlation difference, we organize the experiments 

with one popular correlation structure which can simply be expressed by a descending 

order form as follows: 
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where   is an adjusting parameter to increase the correlation difference for the 

experiments. The correlation difference decreases as   decreases. When 1,   the 

correlation structure is even with ,  i.e. 
ij   for all .i j  In Table 1, we illustrate the 

ARL1 performances for different values of .  We set 0.9,   and conduct experiments 

with 1,   0.8, 0.6, 0.4 and 0.2.  The   and c  represent the parameters for GMEWMA 

and FEWMA, respectively. Tables 6.1 (a), (b) and (c) show the ARL1 performance for 
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different number of variables; 3,p   5 and 10,  respectively. The control limits are 

adjusted with 300,000  replications for the desired ARL0. 

In Table 6.1, the ARL1 performance of the GMEWMA control chart is mostly superior to 

the other control charts. As mentioned, an FEWMA chart is a special case of an GMEWMA 

by adjusting ,  and therefore the ARL1 performance of both GMEWMA and the FEWMA 

chart when 1   (when all the correlation coefficients are the same) are identical. As 

shown in Table 6.1 an GMEWMA chart has a better ARL1 performance compared to the 

FEWMA chart as the correlation matrix becomes more unbalanced (i.e. smaller  ) 

regardless of .p  In fact, an GMEWMA chart outperforms FEWMA for all cases. The 

GMEWMA chart assigns the smoothing parameters adaptively considering the correlation 

structure of variables while the FEWMA chart assigns an equal weight for non-diagonal 

elements in the smoothing matrix without considering the correlation structure of variables. 

The ARL1 of the GMEWMA chart increases slightly when p  becomes large in the 

extreme case when the correlation is greatly uneven. When p  is large, such as 10,p   

most of the correlation coefficients become close to zero as   decreases in the correlation 

structure, which means that most of the variables appear to be independent. Since the 

GMEWMA chart refers to the correlation information, the chart performance would 

eventually approach that of MEWMA’s when all correlations become zero.  
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Table 6.1. ARL1 performance for different correlation structures 

(a) 3p   

   N/A 1 0.8 

 MEWMA dMEWMA GMEWMA FEWMA GMEWMA FEWMA 

 N/A N/A *  0.34 c  0.97 *  0.36 c  0.89 

Shift h 10.96 h 8.14 h 8.47 h 8.47 h 8.67 h 8.69 

0.00 200.670 200.078 200.349 200.349 199.478 200.219 

0.10 165.411 153.162 144.376 144.376 145.973 148.341 

0.25 83.035 67.234 58.710 58.710 61.226 62.425 

0.50 28.782 23.433 19.871 19.871 20.605 20.709 

0.75 14.246 12.204 10.204 10.204 10.541 10.567 

1.00 8.716 7.640 6.453 6.453 6.637 6.667 

2.00 2.860 2.452 2.288 2.288 2.337 2.342 

  0.6 0.4 0.2 

 GMEWMA FEWMA GMEWMA FEWMA GMEWMA FEWMA 

 *  0.39 c  0.78 *  0.42 c  0.69 *  0.46 c  0.59 

Shift h 8.89 h 8.97 h 9.06 h 9.16 h 9.25 h 9.41 

0.00 199.412 200.206 200.273 199.068 200.285 199.787 

0.10 148.945 152.287 149.706 153.201 150.907 156.267 

0.25 63.159 65.971 64.777 67.789 66.253 70.761 

0.50 21.311 21.905 22.015 22.668 22.729 23.538 

0.75 10.923 11.057 11.148 11.375 11.473 11.776 

1.00 6.829 6.927 6.995 7.091 7.166 7.314 

2.00 2.385 2.403 2.424 2.448 2.471 2.505 
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(b) 5p   

   N/A 1 0.8 

 MEWMA dMEWMA GMEWMA FEWMA GMEWMA FEWMA 

 N/A N/A *  0.21 c  0.94 *  0.25 c  0.75 

Shift h 10.96 h 11.53 h 10.81 h 10.81 h 11.34 h 11.48 

0.00 200.303 200.047 199.032 199.032 199.550 119.955 

0.10 172.625 163.281 145.855 145.855 150.286 156.727 

0.25 96.266 78.531 59.677 59.677 65.651 70.383 

0.50 34.496 27.626 19.823 19.823 21.887 22.877 

0.75 16.737 14.167 10.316 10.316 11.143 11.443 

1.00 10.158 8.893 6.521 6.521 6.999 7.161 

2.00 3.262 2.831 2.359 2.359 2.478 2.509 

  0.6 0.4 0.2 

 GMEWMA FEWMA GMEWMA FEWMA GMEWMA FEWMA 

 *  0.31 c  0.56 *  0.38 c  0.41 *  0.44 c  0.32 

Shift h 11.90 h 12.12 h 12.42 h 12.66 h 12.72 h 13.04 

0.00 199.401 200.492 200.621 199.512 200.412 200.711 

0.10 154.549 162.493 159.929 164.574 162.157 167.549 

0.25 70.391 78.001 76.760 83.199 78.892 86.051 

0.50 24.011 25.651 26.084 27.892 27.300 29.231 

0.75 12.057 12.609 12.960 13.529 13.476 14.159 

1.00 7.558 7.769 8.029 8.302 8.312 8.647 

2.00 2.594 2.654 2.722 2.777 2.792 2.867 
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(c) 10p    

   N/A 1 0.8 

 MEWMA dMEWMA GMEWMA FEWMA GMEWMA FEWMA 

 N/A N/A *  0.11 c  0.90 *  0.19 c  0.47 

Shift h 22.91 h 18.98 h 16.52 h 16.52 h 18.24 h 18.52 

0.00 199.378 200.194 199.191 199.191 200.377 200.367 

0.10 179.668 171.723 150.822 150.822 164.246 170.338 

0.25 114.090 94.372 64.114 64.114 68.167 92.124 

0.50 44.413 34.476 20.685 20.685 27.414 30.564 

0.75 21.344 17.501 10.509 10.509 13.519 14.311 

1.00 12.673 10.961 6.728 6.728 8.298 8.683 

2.00 3.967 3.481 2.499 2.499 2.875 2.947 

  0.6 0.4 0.2 

 GMEWMA FEWMA GMEWMA FEWMA GMEWMA FEWMA 

 *  0.29 c  0.27 *  0.38 c  0.18 *  0.45 c  0.14 

Shift h 19.42 h 19.81 h 20.20 h 20.57 h 20.60 h 21.02 

0.00 199.289 200.205 200.856 200.842 200.651 200.291 

0.10 169.910 176.353 175.581 177.403 176.459 178.191 

0.25 93.137 102.621 100.966 107.261 104.207 108.613 

0.50 32.536 35.983 35.901 38.671 34.581 40.136 

0.75 15.668 16.748 17.058 18.074 17.764 18.855 

1.00 9.483 9.966 10.238 10.687 10.614 11.136 

2.00 3.148 3.235 3.325 3.415 3.414 3.524 

 

Moreover, as discussed in Section 6.3.3, it is evident that using more information about the 

other variables which results in a small ,  improves the detection power of the chart. 
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Consequently, the GMEWMA chart outperforms other charts for the cases that are close 

to balanced correlation structure because we can use a smaller w  than those of uneven 

correlation structures. On the contrary, in the case of uneven correlation, such as when 

0.2,   the ratio factor   becomes large due to the general condition that non-diagonal 

elements in the smoothing matrix ought to be smaller than the diagonal elements resulting 

in a slightly longer detection time. 

Tables 6.2 (a), (b) and (c) show the effect of   on the performance of GMEMWA chart. 

The parameter 1   so that the correlation structure is even with all correlation 

coefficients .ij   Tables 6.2 (a) through (c) are the results for three cases of 0.1,   

0.5, and 0.9. The correlation structures when 3p   for Table 6.2 (a) are given below: 

( ),0.1

1 0.1 0.1

0.1 1 0.1

0.1 0.1 1
a

 
 


 
  

xΣ    
( ),0.5

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1
a

 
 


 
  

xΣ    
( ),0.9

1 0.9 0.9

0.9 1 0.9

0.9 0.9 1
a

 
 


 
  

xΣ  

Table 6.2 demonstrates that the GMEWMA chart refers to ‘relative correlation information’ 

rather than ‘absolute amount of correlation’. Thus, the size of   does not affect ARL1, and 

the chart performance depends on the relative difference of correlation. 



116 

 

Table 6.2. Effect of   and p  on the performance of a GMEWMA chart 

(a) 3,p   1   and 0.1, 0.5, 0.9   

 Shift 

size 
0.1   0.5   0.9   

0.00 199.534 199.534 200.591 

0.10 146.095 146.094 145.993 

0.25   60.184   60.181   60.239 

0.50   20.239   20.259   20.279 

0.75   10.354   10.384   10.358 

1.00     6.532     6.572     6.537 

2.00     2.314     2.316     2.314 

(b) 5,p   1   and 0.1, 0.5, 0.9   

 Shift 

size 
0.1   0.5   0.9   

0.00 199.831 199.135 199.032 

0.10 145.721 146.092 145.855 

0.25 60.012 59.806 59.677 

0.50 19.901 19.971 19.823 

0.75 10.268 10.235 10.316 

1.00 6.531 6.524 6.521 

2.00 2.359 2.361 2.359 
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(c) 10,p   1   and 0.1, 0.5, 0.9   

 Shift 

size 
0.1   0.5   0.9   

0.00 199.992 199.792 199.191 

0.10 150.847 150.837 150.822 

0.25 63.929 64.201 64.114 

0.50 20.581 20.622 20.685 

0.75 10.553 10.527 10.509 

1.00 6.736 6.741 6.728 

2.00 2.499 2.499 2.499 

 

Table 6.3 and Figure 6.1 show the effect of   on the performance of the chart and confirm 

that minimum   results in the best performance for all shift sizes, as suggested in Section 

6.3. The experiment is conducted by the setting 3p   and randomly choosing correlation 

structure that has * 0.4444.   Due to the constraint ,ji iir r  the ratio   has its lower 

bound as *.  When   is less than 0.4444, it would possibly violate generality of the charts, 

which means that one variable may have more information about the other variables than 

its own. Note that as   approaches 1, GMEWMA approaches MEWMA, accordingly.  
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Table 6.3. Performance of the GMEWMA chart for different values of   

  0.45 0.55 0.65 0.75 0.85 0.95 1.00 

  \ h  h = 9.23 9.80 10.17 10.45 10.68 10.87 10.96 

0.00 199.834 199.666 199.296 200.043 199.836 199.241 200.670 

0.10 142.847 153.091 157.679 160.981 162.219 165.376 165.411 

0.25 61.727 68.489 73.206 77.149 79.835 82.058 83.035 

0.50 22.059 24.125 25.567 26.699 27.567 28.339 28.782 

0.75 11.383 12.334 12.918 13.401 13.744 14.059 14.246 

1.00 7.161 7.703 8.001 8.251 8.457 8.636 8.716 

2.00 2.458 2.595 2.688 2.745 2.798 2.845 2.860 

 

 

Figure 6.1. Effect of   on ARL1 
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6.4.3. Steady State Behavior 

We present the steady state behavior of the charts in Table 6.4. The conditions of the 

experiments are the same as that in Table 6.3. Calculating the EWMA control statistic 
tQ  

with an asymptotic covariance matrix, we observe the chart behavior when the processes 

are monitored for a long time.  

Table 6.4. Steady state ARL1 comparison 

Shift 

size 

Diagonal Scheme Non-diagonal Scheme 

MEWMA dMEWMA 
FEWMA 

( c  0.61) 

GMEWMA 

( *  0.45) 

h = 10.78 h = 7.71 h = 8.67 h = 8.24 

0.00 200.159 200.667 199.801 200.213 

0.10 165.482 157.994 161.481 155.579 

0.25 86.259 76.178 80.912 76.154 

0.50 31.753 30.401 30.591 29.834 

0.75 16.908 18.803 16.448 16.392 

1.00 11.246 14.237 10.927 10.918 

2.00 4.841 8.422 4.657 4.656 

 

In Table 6.4, all control charts show slightly lower ARLs for all shifts than the start-up out-

of-control state. Specifically, there is a greater difference in the large shift than in the small 

shift. For example, there is less than 10% of the ARL increase in small shift and about 70% 

or more increase in large shift for all charts. Since all EWMA charts accumulate past 
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information, it takes a slightly longer time to detect an out-of-control signal in steady state 

specially for the large shift as Lowry et al. (1992) pointed out. This is highly associated 

with the setting of the control limit as mentioned in Section 6.4.1.  

Moreover, the proposed chart and MEWMA chart may show similar behavior for different 

values of ;r  smaller ,r  result in better performance in small shifts and vice versa, because 

they are based on the weighted average statistic of past information. Table 6.5 shows the 

ARL1 performances of both MEWMA and GMEWMA for various r  values when 3.p   

The ALR1 of both charts increases in small shifts and decreases in large shifts as r  

increases. The preliminary work by Prabhu and Runger (1997) presents the out-of-control 

ARL performances in terms of r  and p.  There is a clear pattern of the performance of the 

GMEWMA chart with respect to r  on the same horizon as EWMA-based charts, which 

means that the more accumulation of the past information, the better detection power in 

small shifts. From the observation of the results in Table 6.5, the GMEWMA chart in steady 

state has the same property as MEWMA in terms of ,r  which means that it is characterized 

by a smoothing parameter. 
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Table 6.5. ARL1 performances for various r  values 

r  0.1 0.2 0.4 

Charts MEWMA GMEWMA MEWMA GMEWMA MEWMA GMEWMA 

Shift 

size 
h 10.78 h 8.24 h 11.88 h 9.64 h 12.55 h 10.75 

0.00 200.159 200.213 200.575 200.666 199.569 199.623 

0.25 86.259 75.772 108.662 86.708 136.370 95.762 

0.50 31.753 29.834 41.284 35.535 63.453 42.9043 

1.00 11.246 10.918 11.488 11.368 15.752 14.1542 

2.00 4.841 4.656 4.129 4.151 3.901 4.0691 

3.00 3.193 3.068 2.605 2.604 2.214 2.2983 

r  0.6 0.8 0.9 

Charts MEWMA GMEWMA MEWMA GMEWMA MEWMA GMEWMA 

Shift 

size 
h 12.76 h 11.25 h 12.83 h 11.53 h 12.84 h 11.63 

0.00 199.494 199.9517 201.005 199.5962 200.074 199.6514 

0.25 155.871 100.6189 168.635 103.7607 173.196 105.6528 

0.50 87.123 46.703 109.558 48.8603 119.080 49.6063 

1.00 23.660 16.932 35.868 18.8011 43.714 19.5832 

2.00 4.388 4.539 5.764 5.4163 7.007 5.9268 

3.00 2.081 2.220 2.134 2.3266 2.288 2.4649 

 

6.4.4. Analysis of Directional Variance Property of the GMEWMA Chart 

MEWMA and dMEWMA control charts are classified as ‘diagonal scheme’ and FEWMA 

and GMEWMA charts are classified as ‘non-diagonal scheme.’ In a diagonal scheme, each 

multivariate chart is an extension of a univariate EWMA chart; MEWMA corresponds to 
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EWMA; and dMEWMA corresponds to dEWMA. Thus, the diagonal scheme charts are 

directionally invariant whereas non-diagonal scheme charts are not. Although GMEWMA 

shows considerably good performance, its directional variant property may not reproduce 

the same out-of-control ARL with respect to all directions. In practice, shifts can occur in 

various directions simultaneously; and positive or negative shifts with different magnitudes. 

From Eq. (6.3), we conjecture that the shift of some variables may take slightly longer to 

detect than the others. For instance, suppose that the first variable is highly correlated with 

all the other variables. Then, most 
1 jr ( 1)j   will be relatively larger than the other 

ijr  

( 1, ),i j i   i.e., it provides relatively more information of the other unchanged variables 

to 1 ,t  which results in slightly longer detection time of this mean shift. Table 6.6 shows 

its relative difference of ARL 1  when the following covariance matrix is used. 

1 0.2 0.8

0.2 1 0.5

0.8 0.5 1

 
 


 
  

xΣ  

In order to verify the performance in terms of the directions, we investigate several cases 

with different out-of-control scenarios in terms of the directions as stated below: 

(1) Scenario 1: Shift in single quality characteristic; 

(2) Scenario 2: Simultaneous shifts in two or three quality characteristics; 

(3) Scenario 3: Simultaneous shifts in positive and negative directions; and 
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(4) Scenario 4: Larger shift in highly correlated quality characteristics  

Since there is a large number of combinations of out-of-control scenarios as p increases, 

we keep the number of variables as three. This might be justified with a strong conjecture 

that the performance of the chart would be similar although the number of variables varies. 

We denote the shift direction and its magnitude as a vector form. In Table 6.6, for example, 

( , ,0)   means that the shift occurs along the first variable and the second variable with 

the same magnitude | | , and (-) sign represent negative direction. The shift size in the first 

column represents a noncentrality parameter  .  Thus, when 1  ,  for example, the 

shifted vector satisfies 
1

1 1 1 Xδ Σ δ  where 1 ( , ,0)  δ ( 0.5692,0.5692,0)  .  For the 

case of scenario 4, the principle directions of given correlation matrix noting iu  for 

1,2,3i   are considered noting 1 2 3[ , , ]U u u u  below:  

0.6159 0.5113 0.5993

0.2832 -0.8536 0.4372

 -0.7351 0.0996 0.6706

 
 


 
  

U  

If the process mean vector lies on the direction 1 (0.6159,0.2832, 0.7351), u
 
it appears 

that the shift occurs in the opposite direction while the process variables are positively 

correlated, and thus suitable for scenario 4. That is, in spite of the positive correlation 

13 0.8   the mean shift for 1x  occurs with a magnitude of 0.6159, and the mean shift for 

3x  occurs with an amount of -0.7351. The direction 3u  represents that the highly and 
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positively correlated variables have relatively large shifts, 0.5993 and 0.6706, along 
1x  and 

3x  direction, respectively. The control factor 0.45   is used for GMEWMA by 

following the guidelines for determining   in Eq. (6.4).  

Table 6.6. Comparison of ARL1 for directional mean shifts 

Shift 

size( ) 

MEWMA dMEWMA GMEWMA: Shift scenario (1) 

Directionally invariant ( ,0,0)  (0, ,0)  (0,0, )  

0.10 165.411 153.162 136.201 134.181 139.807 

0.25 83.035 67.234 59.392 57.617 62.463 

0.50 28.782 23.433 22.238 21.801 23.309 

0.75 14.246 12.204 11.698 11.534 11.927 

1.00 8.716 7.640 7.290 7.261 7.366 

2.00 2.860 2.452 2.475 2.472 2.475 

 

Shift 

size ( ) 

GMEWMA: Shift scenario (2) 

( , ,0)   ( ,0, )   (0, , )   ( , , )    

0.10 133.875 149.722 148.273 142.847 

0.25 58.497 65.043 64.883 61.727 

0.50 22.422 22.809 23.050 22.059 

0.75 11.662 11.593 11.702 11.383 

1.00 7.326 7.212 7.291 7.161 

2.00 2.475 2.463 2.476 2.458 
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Shift 

size ( ) 

GMEWMA: Shift scenario (3) 

( , ,0)   (0, , )   ( ,0, )   ( , , )     ( , , )     

0.10 141.264 135.965 138.306 135.079 140.303 

0.25 59.590 59.991 60.640 59.851 60.105 

0.50 21.678 22.755 22.791 22.776 22.264 

0.75 11.475 11.867 11.830 11.831 11.618 

1.00 7.208 7.352 7.336 7.371 7.271 

2.00 2.474 2.486 2.475 2.476 2.469 

 

Shift size 

( ) 

GMEWMA: Shift scenario (4) 

1u
 2u

 3u
 

0.10 136.708 141.946 151.632 

0.25 60.519 58.488 66.791 

0.50 22.749 21.522 22.715 

0.75 11.782 11.362 11.521 

1.00 7.382 7.190 7.187 

2.00 2.478 2.470 2.463 

 

Table 6.6 also shows that the GMEWMA chart detects changes in the mean shift 

considerably faster than the MEWMA chart despite the directional variant property. We 

observe from the experiments that it takes slightly more observations to detect out-of-

control signals when the shift occurs among highly correlated variables such as 3x  

(correlation 0.8 and 0.5 with 1x  and 2x ,  respectively). It is also observed that the detection 
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time increases when the out-of-control process mean lies on directions along highly 

correlated variables such as (0,0, ) ,  ( ,0, )  ,  (0, , )  ,  ( , , )    and 
3.u  Even though 

there is a minor performance difference between directional shifts, the proposed chart 

shows better variant detection power than the other charts. Thus we conclude that the 

detection power is robust to the directional variant property. Moreover, we conjecture that 

this directional variant property is offset when the process has more variables.  

6.5. Case Study: Continuous Monitoring of Dimensions of Bolts 

Quality control of products and components may be monitored using image processing 

which detects changes in features like shape, color, and any change in the process, since 

some of these characteristics are difficult to measure with traditional measurement methods 

(Radke et al., 2005, Qiu, 2005). In this section, we present a case study conducted in a 

laboratory with an industry sponsor to develop an automatic and continuous monitoring 

system for bolts’ dimensions using image processing techniques. The system is able to 

detect changes in the bolts’ dimensions. This system is described as follows: When infrared 

sensors detect a bolt as it travels on a conveyer belt, a high resolution camera takes images 

of the bolt which are instantaneously processed using image processing algorithms. The 

dimensions (in pixels) are compared with in-control images, and when any of the 

dimensions exceeds its corresponding threshold value, the bolt is automatically diverted 

from the conveyor. We consider a bolt to be acceptable when all the following four 

dimensions are within the acceptable threshold pixel count. The four dimensions of the bolt 

are: the head diameter ( 1x ), the head height ( 2x ), the bolt diameter ( 3x ), and the length of 
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the bolt (
4x ) as shown in Figure 6.2. It should be noted that the gray scaled image of the 

bolt is assessed by finding the smallest rectangle containing the bolt and head through the 

image pixel matrices. 

Figure 6.2. Measurements of bolt (left) and image measurement (right) 

The summary statistics of bolts from the in-control process are shown in Table 6.7. The 

large negative correlation between 2x  and 4x  in the correlation matrix demonstrates that 

these variables have strong interrelationships. 
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Table 6.7. Multivariate summary statistics of bolt image data 

 1x
 2x

 3x
 4x

 

Mean 0.3673 0.2449 0.2502 0.7346 

Standard 

deviation 
0.0018 0.0063 0.0032 0.0075 

 

Correlation matrix 

1x
 1.0000 -0.1853 0.3231 0.2026 

2x
 -0.1853 1.0000 0.1025 -0.9511 

3x
 0.3231 0.1025 1.0000 -0.1516 

4x
 0.2026 -0.9511 -0.1516 1.0000 

  

Let 1 2 3 4( , , , )t t t t tx x x xx  be an observation vector at time ,t  where itx  denotes an 

observation of thi  dimension at time .t  There are 40 test measurements 1 2 40, ,...,x x x  in 

Table 6.8, the first 25 observations are from an in-control process while the other 15 

observations are from an out-of-control process which has a negative change for the mean 

of 4x  of  0.7279 representing change in the bolt dimensions due to tool wear out during  

machining. Each observation is used to be monitored as a subgroup size equal to one. The 

MEWMA, FEWMA, dMEWMA and GMEWMA charts are used for performance 

comparison; the results are shown in Figure 6.3.  
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Table 6.8. Bolt measurements (inch) 

Sample 

Number 
1x
 2x

 3x
 4x

 

1 0.370628 0.254686 0.251137 0.723283 

2 0.367139 0.247098 0.246640 0.730371 

3 0.366800 0.249428 0.247779 0.725521 

4 0.367001 0.250363 0.249392 0.725039 

5 0.369994 0.233658 0.247023 0.747591 

6 0.367196 0.235647 0.255932 0.739443 

7 0.369168 0.249010 0.258968 0.725309 

8 0.367572 0.249508 0.248305 0.725550 

9 0.370375 0.246569 0.252285 0.724183 

10 0.365189 0.244316 0.246981 0.731474 

11 0.367861 0.248050 0.247536 0.729589 

12 0.369859 0.243923 0.246098 0.732441 

13 0.368251 0.248883 0.254636 0.726934 

14 0.367631 0.244285 0.251243 0.733613 

15 0.367906 0.251682 0.250763 0.725142 

16 0.370247 0.239627 0.252208 0.735005 

17 0.364437 0.239062 0.243603 0.735645 

18 0.367602 0.246370 0.246498 0.734107 

19 0.368349 0.236231 0.249067 0.738114 

20 0.368715 0.240900 0.253322 0.736646 

21 0.369529 0.246852 0.249108 0.728854 

22 0.361626 0.243270 0.245834 0.728858 

23 0.369189 0.249621 0.250636 0.728972 

24 0.367542 0.240844 0.245311 0.734529 

25 0.365522 0.243802 0.249774 0.734210 

26 0.370026 0.242646 0.250071 0.730969 

27 0.366348 0.232486 0.247360 0.742526 

28 0.368187 0.247120 0.256806 0.725110 

29 0.368215 0.241477 0.252176 0.731347 

30 0.364544 0.257483 0.248535 0.716462 

31 0.364711 0.251427 0.248602 0.721296 
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32 0.367363 0.250724 0.251839 0.723443 

33 0.371126 0.242866 0.251777 0.731991 

34 0.366043 0.246791 0.247075 0.727952 

35 0.366335 0.250986 0.247080 0.724394 

36 0.365567 0.246144 0.249244 0.726775 

37 0.368617 0.258029 0.252128 0.713560 

38 0.363502 0.250981 0.247695 0.721604 

39 0.366565 0.248175 0.255167 0.723879 

40 0.366645 0.250225 0.245910 0.721555 

 

Figure 6.3 demonstrates the out-of-control run length performance. The control limits of 

the charts for Figure 6.3(a) – (d) are calibrated for an ARL0 of 200 as 12.93, 11.09, 9.88, 

and 10.97, respectively, drawn as horizontal lines in the Figure 6.3. The vertical axis 

represents the monitoring statistic value. All charts are characterized by a smoothing 

parameter of 0.1. The FEWMA and GMEWMA have the ratio parameter c  and   as 0.42 

and 0.44, respectively, according to the correlation structure, and they are set for the 

comparison with the same magnitude of diagonal elements. In Figure 6.3(c), the MEWMA 

chart shows the out-of-control signal at the 36th observation. The FEWMA chart and the 

dMEWMA chart detect the shift at the 31st and 33rd observations, respectively, while the 

GMEWMA chart detects it at the 29th observation. This demonstrates that the proposed 

chart significantly improves the detection ability when compared with the other charts. 
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                              (a) MEWMA                                                        (b) FEWMA 

     

                              (c) dMEWMA                                                   (d) GMEWMA 

Figure 6.3. Control charts of (a) MEWMA, (b) FEWMA, (c) dEWMA and (d) 

GMEWMA for detecting a change when ARL0 is 200. 

6.6. Conclusion 

In this chapter, we present an interpretation of the non-diagonal elements of the smoothing 

matrix and develop a new method for assigning these non-diagonal elements. We also 
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present guidelines to determine the proper ratio factor between diagonals and off-diagonals 

considering the correlation structure of variables so that the processes can be monitored 

adaptively.    

The GMEWMA chart shows a better ARL performance when compared with the existing 

EWMA-based approaches, specially in detecting smaller shifts. As the correlation structure 

becomes more unbalanced, the in-control ARL performance of the GMEWMA chart 

increases and approaches the performance of the MEWMA chart. Moreover, the proposed 

GMEWMA chart demonstrates better performance in most of the correlation structures 

whereas the FEWMA chart performs well when all of the correlation coefficients are 

identical, which can rarely happen. In addition, we investigate the advantage of the 

proposed chart in two different cases when: (i) the process starts up with an exposed risk 

of out-of-control, and (ii) process undergoes the out-of-control after stabilization. The 

performance of the GMEWMA chart is superior to all charts in both cases. It is more 

comparable to another accumulation-based chart such as dMEWMA chart when a large 

shift occurs in steady state.  

Similar to the FEWMA chart, the GMEWMA chart is not directionally invariant. We 

demonstrate the chart performance with cases of multiple shift scenarios. Despite the 

directional variant property, the chart performance is robust to the directional issue.   

Even though we can interpret the meaning of the ratio factor based on the moving average 

concept, finding an optimal ratio theoretically in terms of the shift magnitude is challenging. 
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We expect that theoretical derivation of the average run length may provide a better 

suggestion for the chart design resulting in a better ARL performance.  
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CHAPTER 7   

BAYESIAN SEQUENTIAL UPDATE FOR MONITORING HIGH-

DIMENSIONAL PROCESSES 

7.1. Introduction 

The VS-based methods in Chapter 3 and 4 select several suspicious variables that are 

believed to be the cause of process abnormality, and to monitor the process based on the 

selected variables. Specifically, the process parameter of interest such as a mean tμ  at 

sampling point t  is estimated as a sparse vector, ˆ
tμ  consisting of mostly zero when the in-

control parameter, 0 .μ 0  Although these VS-based methods perform well in monitoring 

high-dimensional processes under sparsity, they do not perform well in detecting small 

process changes, which is substantially of significance in modern industries, because VS 

methods would possibly fail to identify the truly changed variables. Furthermore, they do 

not involve the sequential information of the process change in performing VS, i.e., the 

current VS is independent of the result from the previous VS, which makes it inappropriate 

in high-speed online monitoring. Thus, the location of the nonzero components in ˆ
tμ  may 

be sampling specific in existing VS-based methods. Consequently, this would become an 

issue of the VS-based methods detection when the size of the shift is sufficiently small 

because VS would possible select different variables at every sampling point due to the 

large type II error, which is the motivation of this chapter.  
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In this chapter, we propose an efficient methodology for monitoring high-dimensional 

processes through the Bayesian sequential update for the posterior distribution of the 

process mean. The principle of the proposed approach is that the parameter of interest 

follows a stochastic process; i.e., tμ  is in a dynamic state and is determined through the 

path, 1 2 1, ,..., .t t μ μ μ  The Bayesian approach sequentially updates the posterior 

distribution of tμ  and supports the decision making in detecting the process change. 

Moreover, the analytical solution of the estimation with appropriately defined sparsity-

promoting prior distribution of the parameter makes it attractive in online monitoring of 

the high-dimensional processes. The technical derivation of the Bayesian sequential update 

for the posterior distribution is described in Section 7.2. Practical significances and 

advantages of the proposed method over the existing methodologies such as VS-based 

charts and the Kalman filter model in the viewpoint of updating the posterior are discussed 

in Section 7.3. In Section 7.4, we demonstrate the power of the proposed method especially 

in detecting the small shift via various simulations and present the graphical 

implementation of the path of the estimated parameter. An illustrative example is presented 

in Section 7.5, and is followed by the conclusion in Section 7.6. 

7.2. Bayesian Sequential Update  

Let the p -dimensional process observation { : 1,2,...}t t x  be represented by a linear 

generative model   
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t t t x μ ε  

where tε  represents an independent and identically distributed random sequence. The 

unknown parameter, tμ  is continuously monitored and can be appropriately described 

stochastically. A Markovian state dynamics can be applied to the model of the unknown 

state, tμ  as  

1 ,t t t  μ μ η  

where tη  is the model error. Under the sparsity assumption, a few or moderate number of 

process parameters would be responsible for the process abnormality. Moreover the 

variability of 
,t i  can be interpreted as a change of the state 

,t i  for the variable .i  Details 

of the prior distribution is discussed in Section 7.2.1.  

Process monitoring with a single observation tx  at each sampling epoch can be carried out 

statistically through the sequential hypothesis testing 0 0:H μ μ  and 1 0: ,H μ μ  where 

0μ  is an in-control process parameter. As assumed in previous chapters, the covariance 

remains in control, and 0 0μ  without loss of generality. Then the Bayesian decision rule 

for out-of-control process is 0 1( ) ( | ) / ( | ) ,t t tp H p H L  x x x  where L  is a 

predetermined threshold (Jeffreys, 1998, Woodward and Naylor, 1993). Thus, we propose 
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the following monitoring statistic with respect to the estimated parameter, ˆ
tμ  by applying 

the Bayes rule and Jeffrey’s prior, i.e., 0 1( ) ( ),p H p H  to the criterion, and refer to it as a 

Bayesian sequential update (BSU) chart. 

0

1

( | )
( ) .

max ( | )
t

t
t

t

p H
L

p H
  

μ

x
x

x
 

Further notice that the Bayesian decision rule becomes identical to the general likelihood 

ratio test statistic with a single observation available at every sampling point and the 

assumption of Jeffrey’s prior (Kass and Raftery, 1995). The strategy to increase the 

sensitivity of the monitoring statistic with respect to the high-dimensional vector tμ  is to 

update the posterior probability distribution of tμ  given a set of all sequential observations 

and the previous estimates. Denoting 1{ ,..., }t tx x x  and 1{ ,..., },t tμ μ μ  the Bayesian 

analysis updates the posterior distribution of  1| ,t t tμ x μ  stochastically as 

 1
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
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x
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x
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                                 (7.1) 

Eq. (7.1) can be interpreted that the posterior distribution given the sequence of 

observations and the path of the process parameter is proportional to the updated prior 
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distribution of 1|t tμ μ  and the likelihood probability represented by ( | ).t tp x μ  The second 

equality holds due to the Markovian property. (See Appendix D.)  

The generality that results from the vast literature of the SPC enables close estimate of the 

parameter, tμ  to the true process parameter. This leads to the most sensitive value of the 

monitoring statistic against the process abnormality. Accordingly, we obtain the most 

probable process parameter, ˆ
tμ  by maximizing a posterior distribution (MAP) as 

   1
ˆ arg max | arg max ln ( | ) ( | )

t t

t t t t t t tp p p 
μ μ

μ μ x μ μ x μ                     (7.2) 

7.2.1. Prior Probability Distributions  

In this section we discuss the specification of the likelihood probability and the prior 

distribution under sparsity in high-dimensional processes. Given the linear model 

,t t t x μ ε  the likelihood probability is determined through the distribution of .tε  When 

the Gaussian error distribution is considered as ~ ( , ),t Nε 0 Σ  the likelihood probability can 

be derived through the multivariate normal distribution with the mean tμ  and the 

covariance .Σ   

Now let 1( | ; , )t tp μ μ θ K  be an updated prior distribution with a location parameter, θ  and 

a scale parameter, ,K  respectively. The posterior distribution of 1tμ  given 1tx  and 2tμ  
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includes not only the explicit fluctuation of 
1tμ  given past information but also the implicit 

belief of the likelihood of .tμ  The latter advocates the use of a distribution that places more 

mass at zero for contemporaneously sparse shifts. Moreover, the scale matrix for the prior 

distribution, [ ]ijK  refers to the variance of ,tμ  and plays a key role in the variability 

of the process change as seen in the state dynamics. Indeed, we can let ( )fK Σ  as having 

more observations although the variability of tμ  does not necessarily to be the same Σ  

over time. Thus, the matrix K  can be rather determined based on the knowledge of 

engineering and physical structure of the process dynamics than merely be set through f  

over time. To promote the dynamics of tμ  and the sparse shift in high-dimensional process, 

we consider the Laplacian prior of 
,t i  with time-varying parameters, 

,t i  and 
, , .t ii t iK  

Moreover, we assume 
, 0,t ij K  for all i j  over t  because updating the covariance in 

dynamics is not apparent with non-Gaussian distribution compared to the Gaussian Kalman 

filter update, and it does not provide the meaningful interpretation in a sparsity perspective 

(Charles et al., 2016). Thus, the prior distribution for the variable i  is determined as 

follows. 

  , , 1,ˆ,

, 1, ,| , ,
2

t i t i t it i

t i t i t ip e
  

    

        1,..., .i p                                 (7.3) 
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The location parameter, 
,t i  of the prior can be set as the parameter estimated in the 

posterior distribution at 1,t   i.e., 
, 1,

ˆ ,t i t i    which analogies a linear Gaussian Kalman 

filter recursion.  

Based on the Laplacian prior and the Gaussian likelihood probability distributions, a MAP 

leads to the solution as follows. 

 
2

, , 1,,2
1

ˆ ˆarg min
t

p

t t t t t i t i t i

i

   



 
    

 
Σμ

μ x Z μ                          (7.4) 

where 
2

,2|| ||Σx  represents 1 .T 
x Σ x  Eq. (7.4) forms a weighted 1L  optimization which is 

similar to the fused LASSO introduced by Tibshirani et al. (2005). The term 
, , 1,

ˆ
t i t i t i     

encourages sparsity in the deviation of the consecutive process parameters. Thus, it 

enforces the deviation towards zero if there is no change detected, otherwise it remains as 

nonzero.  

7.2.2. Bayesian Hierarchical Model  

In this section, we develop a Bayesian hierarchical model for the dynamics of the scale 

parameter, 
,t i  to control sparsity discussed in the previous section. We consider the 

gamma distribution for ,t i  which explains the probabilistic behavior of the variability 

properly in Bayesian statistics as  
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1

,

,( )
( )

t it i

t ip e

 
 










 

where ( )   is the gamma function and   and   are the hyperparameters. As the process 

continues to operate in control, the posterior parameters are updated with sufficient amount 

of the normal observations, which leads to decreasing the variability of .μ  Since 
,t i  is the 

reciprocal of the variance of the prior distribution, it becomes large as the process remains 

in control. On the other hand, when several variables cause the process to be out of control, 

the corresponding 
,t i ’s are expected to become smaller since these variables would have 

large variabilities.  

The posterior distribution can now be maximized with respect to both tμ  and 
,t i ’s. 

However, even in a simple case with 1,   the MAP estimator becomes  

 
2

, , 1, , ,,2,
1 1 1

ˆˆ ˆ, arg min ln
t t

p p p

t t t t t t i t i t i t i t i

i i i

     

  

  
       

  
  Σμ κ

μ κ x Z μ         (7.5) 

which is challenging to be optimized for both ˆ
tμ  and ˆ .tκ  Therefore, we propose the 

following expectation-maximization (EM) algorithm.  
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,
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, ˆ( | )

( 1) ( )

,

Expectation step:         

Maximization step:      arg max ( | )

n
t i t i

t i

n

t i p
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t i t t

E

p

 





 

  

 μ κ

                                 (7.6) 

where 
( )

, ,

( )

, ˆ( | )
n

t i t i

n

t i p
E

 
    denotes a conditional expectation of 

,t i  in the n th iteration with 

respect to the conditional density, 
( )

, ,
ˆ( | ).n

t i t ip    The algorithm terminates the iterations if 

( ) ( 1)
, , , ,

( ) ( 1)

, ,ˆ ˆ( | ) ( | )
,

n n
t i t i t i t i

n n

t i t ip p
E E

   
  





         

where   is a sufficiently small value. The conditional distribution, 
( )

, ,
ˆ( | )n

t i t ip    can be 

obtained through the Bayesian rule as 

( )

, , ,( )

, , ( )

,

ˆ( | ) ( )
ˆ( | ) ,

ˆ( )

n

t i t i t in

t i t i n

t i

p p
p

p

  
 


                                                (7.7) 

where 
( )

, ,
ˆ( | )n

t i t ip    is a Laplacian distribution and 
,( )t ip   is a gamma distribution. The 

probability density, 
( )

,
ˆ( )n

t ip   is obtained analytically by marginalizing in terms of 
,t i  

(Appendix E). Then, 
( )

, ,
ˆ( | )n

t i t ip    is analytically obtained as a gamma distribution as 

( )
, 1, ,

( ) 1
ˆ ˆ( | |), 1, ,( )

, ,

ˆ ˆ( | |)
ˆ( | )

( 1)

n
t i t i t i

n

t i t i t in

t i t ip e

 
      

 





   


 
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with parameters, 1   and 
( )

, 1,
ˆ ˆ| |n

t i t i      for the shape and the inverse scale parameters, 

respectively, so called conjugacy (Charles et al., 2016, Garrigues and Olshausen, 2010). In 

particular, the expected value of 
,t i  conditioned on 

( )

,
ˆ n

t i  exactly determines the solution 

of the E-step as a closed form as  

( )
, ,

( )

, ( )ˆ( | )
, 1,

1
,

ˆ| |
n

t i t i

n

t i np
t i t i

E
 




   


     

                                             (7.8) 

which enhances the computation of the algorithm significantly. 

7.2.3. Determination of Hyperparameters 

The hyperparameters in the prior distribution play an important role in controlling the 

sparsity. Since the scale parameter, 
,t i  can be seen as a regularization in Eq. (7.4), it is 

appropriate to be set according to the level of shift in the process variable .i  In particular, 

if the process parameter i  is believed to be shifted, 
,t i  is set to be small, which leads to 

the nonzero value of .i  On the contrary, if the process parameter i  is considered as 

unchanged, 
,t i  is set as large so that the estimation of i  will be most likely a zero. To 

introduce the dynamics of μ  over time-varying κ  to each variable, we determine the 

hyperparameters of ,( )t ip   for which the conditional expectation controls sparsity based 

on the path of the estimates, i.e., ,
ˆ

t i  as an informative way as follows.  
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( )

, , 1,
ˆ ˆ( , )n

t i t i t if    
     

where   is a sufficiently small positive value to avoid 
, 0.t i   We note that the 

hyperparameter,   is also of importance for the determination of 
,[ ].t iE   However, the 

effect of   can be approximately cancelled out, by setting   as a linear function of   

because the term in the denominator 
( )

, 1,
ˆ| |n

t i t i    is mostly small over the sampling period 

assuming the high-speed online monitoring. Thus, the expectation of 
,t i  is bounded in a 

small value regardless of .   

Furthermore, the conditional expectation of 
,t i  regularizes the solution behavior of MAP 

in two ways. Firstly, 
,t i  controls the sparsity against the deviation of the current estimate 

and the previous estimate from Eq. (7.4). Thus, if a sudden process shift occurs at ,t  the 

deviation, 
( )

, 1,
ˆ| |n

t i t i    would become large resulting in the nonzero value for 
,

ˆ
t i  due to 

a small value of the conditional expectation of 
,t i  from Eq. (7.8). Secondly, the 

hyperparameter, 
,t i  incorporates the information of the entire sequence of the parameter 

estimates, ,
ˆ

t i  through a function 
( )

, 1,
ˆ ˆ( , )n

t i t if     by the Markovian state dynamics. Thus, 

( )

, 1,
ˆ ˆ( , )n

t i t if     can be set proportional to the magnitude of successive estimates of the 

process parameter. For example, if the current and the previous estimates are sufficiently 

large, we consider the process to be out of control. Similarly, when the consecutive 

estimates are close to the in-control value, the process would likely be in control. 
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Throughout this chapter, we consider 
( ) ( )

, 1, , 1,
ˆ ˆ ˆ ˆ( , ) | (1 ) |,n n

t i t i t i t if c c        as a weighted 

average of the consecutive estimates, and 0 1.c    

7.3. Discussion 

In this section we investigate the relationship of the proposed model with the linear state 

space model and the penalized likelihood based model in VS-based control charts. We 

investigate the similarity/dissimilarity and the advantages of the proposed method over the 

methods through those models.  

7.3.1. Kalman Filter Model 

The sequential Bayesian update with the Markovian model for the parameter can be written 

through a state space representation as 

1t t t

t t t

  

 

μ μ η

x μ ε
                                                                (7.9) 

Assuming that the errors follow normal distribution, we obtain the solution for the 

estimation of ˆ
tμ  as  

 2 1

, 1, | 1 , 1,,2
ˆ ˆ ˆarg min ( ) ( ) ( )

t

T

t t t t t i t i t t t t i t i   

       
Σμ

μ x Z μ P K             (7.10) 
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where 
| 1t tP  is the conditional variance of the parameter tμ  given past observations, 1tx  

and tK  is a scale matrix of the model error, .tη  This has a closed form of the solution for 

ˆ
tμ  known as the Kalman filter update and guarantees the simplicity and optimality in linear 

Gaussian model assumption (Durbin and Koopman, 2012). However, this model does not 

cover the sparsity in the estimation even if it may shrink the estimation close to zero as a 

ridge estimator or a principle component analysis. A number of approaches have been 

developed in the spirit of the linear state space model for the different purposes such as 

nonlinear system dynamics and sparse estimation of the high-dimensional parameter 

(Burgers et al., 1998, Julier and Uhlmann, 1997, Taghvaei et al., 2018, Xiong, 2008).  

The proposed model can be modelled through a state space as in (7.9) by assuming 1 |t tμ μ  

follows Laplacian, which is identical to the parameter equation with the Laplacian error 

distribution. While the Gaussian Kalman filter model has closed form expression for the 

conditional expectation and the variance for the estimator is obtained through propagation 

from the sequence, the proposed model employs the EM algorithm for the variance of the 

estimator rather than evolving it through the dynamics. The reason is that updating the 

variance is not immediately apparent with Laplacian distribution, and it would probably 

not provide the meaningful update in a sparsity perspective. Another reason is the 

computational difficulty because when the dimension of the signal, p  is sufficiently high, 

it demands 
3( )O p  of the complexity for computing the inverse covariance matrix at each 

sampling point. Therefore, although we do not evolve the covariance matrix for the 
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estimator, the 
,t i  determined from the past sequence of the estimates would provide more 

appropriate solution for the sparse estimation. 

7.3.2. VS-Based Control Charts 

The recently developed methodologies for monitoring high-dimensional processes can be 

summarized through the penalized likelihood function. 

 2

,2
( ) min ( )

t
t t tPL g  

Σμ
μ x μ μ  

where ( )g  is a penalty function and ( 0)   is a complexity parameter that controls the 

size of penalty. Wang and Jiang (2009) and Jiang et al. (2012) apply 0L  type penalty 

function, and Zou and Qiu (2009) employ 1L  type penalty, which is a LASSO penalty. The 

methods with 0L  type penalty require another parameter that controls the sparsity, i.e., the 

number of nonzero in .μ  Thus, when the number of true shifted variables is deviated from 

the number of selected variables, the control chart may lose the power of detection 

regardless of the choice of VS technique. Zou and Qiu (2009) choose the most likely 

number of suspicious variables through the maximal type of monitoring statistic that 

maximizes the value of monitoring statistic according to the different number of selection. 

Thus, this method is expected to perform better than the one of choosing the fixed number 

of selection when the true number of changed variables is completely unknown.  
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The proposed method estimates the process parameter, tμ  using Eq. (7.4) which is similar 

to the penalized likelihood. The difference is that the complexity parameter, κ  in the 

proposed method is determined dynamically in online processing as a vector while existing 

methods employ a scalar value of .  In addition, the maximal statistic by Zou and Qiu 

(2009) can be seen similarly to the proposed method in that the estimation of tμ  results 

from the different   at every sampling point. However, it may lead to the suboptimal 

solution since the same   is applied for all variables regardless of the status of each 

parameter, i.e., whether the individual variable is in-control or out-of-control at a certain 

sampling point, while the proposed methods determines the different   to each variable 

according to its sequential path of parameter estimations. Therefore, the estimator of the 

proposed method would be flexibly changing over time and adaptively selecting variables 

under sparsity based on the potential shift.  

7.4. Performance Analysis 

In this section, we present simulation results illustrating the performance of the proposed 

BSU chart. In order to detect small shifts, we transform the observation vector x  to the 

exponentially weighted moving average, i.e., 1(1 ) ,t t tr r  w w x  1,2,...,t   and 

consider a small value of 0.2.r   The performance of BSU control chart is compared with 

the conventional MEWMA chart and VSMEWMA chart (represented as VS in tables) 

which has been recently proposed for monitoring high-dimensional processes. In addition, 

the Kalman filter update can be also utilized to monitor the process based on the general 
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likelihood ratio test, 1 ( ) ( ) 1 ( )ˆ ˆ ˆ2 T K K T K

t t t t

 x Σ μ μ Σ μ  in the same horizon as the penalized 

likelihood, where ( )ˆ K

tμ  is the Kalman filter update shown in (7.10).  

7.4.1. Out-of-Control ARL Performance 

The performance of the chart is measured by the out-of-control average run length (ARL1) 

whose in-control ARL (ARL0) is fixed at 200; i.e., Type I error is set 0.005. The true shift 

occurs at 100t   so that we assume the process is in control and ignore the alarm before 

100 steps of sampling. Further, we consider few or moderate number of the components in 

1,μ  which is the out-of-control parameter, to be nonzero under sparsity. Denoting 

0 1 0|| || ,p  μ  we consider 0 2,4,6p   and 8,  and the magnitude is equal values of ,  e.g., 

1 [ 0 0 0] ,T μ  when 0 2.p    

In VSMEWMA, the parameter, s  as the number of selection must be chosen. Throughout 

the simulation study, we choose 2,s   which shows the overall best results for cases 

considered. In BSU, the weight c  and the initial ,κ  say 0 ,κ  to obtain (1)ˆ
tμ  for the first 

iteration of EM need to be specified. Likely to the EWMA transformed observation, the 

( )

, 1,
ˆ ˆ( , )n

t i t if     can be interpreted as the weighted average of the current estimate and the 

previous estimates shown in Section 2.3. Then, it is reasonable to set 0.2.c r   Moreover, 

0κ  can be set any reasonable value so that it leads to at least a few nonzero values for (1)ˆ .tμ  

We here choose 0, 3i   for all i  to be conservative to the shift. Determining the 0κ  will 

be discussed more specifically in Section 7.4.3.  
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Tables 7.1, 7.2 and 7.3 show the ARL1 performances according to 25,p   50  and 100,  

respectively. The additive shift,   is mostly set as a small size ranging from 0.2 to 2.0. 

The bold case represents the smallest ARL1. The results demonstrate that the proposed 

chart outperforms the others in most of the cases. Even in the cases where BSU 

underperforms VSMEWMA, the ARL1s are quite close to each other. Specially, the 

VSMEWMA shows the deterioration of the performance in detecting small shifts, which 

is one of the major drawbacks of VSMEWMA. Several VS-based control charts such as 

VSMSPC by Wang and Jiang (2009) and LEWMA by Zou and Qiu (2009) also have the 

same issue in detecting small process changes and show the worse performance than 

conventional control charts. For example, the ARL1’s for MEWMA, VSMEWMA and 

BSU are 134.73, 158.13 and 107.46, respectively, when 0 6p   with 0.2   in 100.p   

The average detection time of BSU is almost two third of that of VSMEWMA and about 

four fifth of that of MEWMA, which is a significant improvement in detecting such a small 

change of the process. Specifically, the deterioration of the power of VSMEWMA in small 

shift detection can be figured out in the viewpoint of variable selection. This is possibly 

because the VS techniques would mostly fail to identify the suspicious variables. Although 

the EWMA transform incorporates the information of the past, the VS may malfunction 

due to the small size of the shift. However, BSU takes the previous selection into 

consideration to select the next suspicious variables by changing , .t i  Moreover, since ,t i  

differs for all variables, BSU takes an advantage of selecting different number of variables 

according to their mean path so as to increase the chance of selecting the suspicious 

variables. 



151 

 

Table 7.1. ARL performance when 25p   

  
0 2p 

   0 4p 
 

MEWMA VS Kalman BSU   MEWMA VS Kalman BSU 

0.2 152.52 160.97 150.19 142.15 
 

119.95 132.55 115.52 107.02 

0.4 78.62 78.24 77.51 68.00 
 

42.47 48.35 41.21 34.68 

0.6 37.83 33.62 36.78 30.70 
 

18.48 18.81 17.21 14.65 

0.8 20.71 16.98 19.39 16.42 
 

10.60 10.34 9.62 8.70 

1.0 13.15 10.56 12.20 10.53 
 

7.40 6.97 6.64 6.16 

1.5 6.81 5.25 6.06 5.41 
 

4.35 3.92 3.84 3.61 

2.0 4.68 3.57 4.11 3.72   3.23 2.79 2.77 2.64 

          

  
0 6p 

   0 8p 
 

MEWMA VS Kalman BSU   MEWMA VS Kalman BSU 

0.2 95.22 111.87 93.86 81.43 
 

78.00 96.86 76.63 66.61 

0.4 28.32 34.28 26.67 22.45 
 

20.82 26.57 19.20 16.81 

0.6 12.35 14.11 11.32 10.27 
 

9.61 11.58 8.77 8.17 

0.8 7.61 8.16 6.87 6.50 
 

6.24 6.93 5.52 5.42 

1.0 5.58 5.72 4.95 4.79 
 

4.68 5.04 4.10 4.09 

1.5 3.51 3.37 3.03 2.97 
 

3.04 3.07 2.61 2.65 

2.0 2.67 2.47 2.27 2.25   2.28 2.27 2.02 2.01 
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Table 7.2. ARL performance when 50p    

  
0 2p 

   0 4p 
 

MEWMA VS Kalman BSU   MEWMA VS Kalman BSU 

0.2 164.13 170.98 163.60 147.89 
 

137.03 150.67 136.70 116.64 

0.4 100.20 100.50 99.36 80.30 
 

59.15 63.93 57.20 42.30 

0.6 53.14 43.39 50.83 37.69 
 

25.99 24.65 24.00 17.34 

0.8 29.24 20.64 27.44 19.43 
 

14.14 12.49 12.92 9.88 

1.0 18.19 12.30 16.57 12.10 
 

9.47 8.02 8.40 6.81 

1.5 8.64 5.81 7.64 6.07 
 

5.38 4.36 4.58 3.94 

2.0 5.79 3.89 4.92 4.13   3.91 3.04 3.21 2.87 

          

  
0 6p 

   0 8p 
 

MEWMA VS Kalman BSU   MEWMA VS Kalman BSU 

0.2 116.84 135.71 115.10 95.04 
 

99.89 120.75 99.58 76.94 

0.4 39.58 47.30 38.45 26.92 
 

29.10 37.60 27.38 20.07 

0.6 16.92 17.78 15.29 11.69 
 

12.66 14.54 11.35 9.26 

0.8 9.78 9.82 8.68 7.20 
 

7.82 8.35 6.84 5.95 

1.0 6.99 6.60 6.04 5.24 
 

5.81 5.79 4.92 4.46 

1.5 4.28 3.74 3.54 3.23 
 

3.70 3.41 3.01 2.84 

2.0 3.22 2.70 2.60 2.41   2.88 2.49 2.26 2.15 
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Table 7.3. ARL performance when 100p    

  
0 2p 

   0 4p 
 

MEWMA VS Kalman BSU   MEWMA VS Kalman BSU 

0.2 180.09 187.67 173.16 156.58 
 

155.26 173.80 152.08 130.53 

0.4 125.10 125.13 118.56 91.97 
 

82.53 87.31 77.31 49.19 

0.6 75.00 57.15 69.71 44.55 
 

38.42 34.05 34.97 18.78 

0.8 43.34 26.62 39.95 22.62 
 

20.11 16.16 17.84 10.33 

1.0 26.36 14.91 24.13 13.15 
 

12.83 9.88 11.08 7.18 

1.5 11.43 6.72 9.90 6.43 
 

6.79 5.11 5.59 4.20 

2.0 7.31 4.41 6.12 4.41   4.84 3.57 3.83 3.06 

          

  
0 6p 

   0 8p 
 

MEWMA VS Kalman BSU   MEWMA VS Kalman BSU 

0.2 134.73 158.13 131.19 107.46 
 

120.22 147.02 119.07 90.39 

0.4 55.28 67.91 53.46 30.45 
 

41.95 54.89 40.22 21.99 

0.6 23.63 24.58 22.26 12.50 
 

17.62 19.91 15.79 9.70 

0.8 13.14 12.41 11.65 7.53 
 

10.16 10.65 8.81 6.27 

1.0 8.96 8.13 7.76 5.51 
 

7.30 7.25 6.08 4.74 

1.5 5.28 4.50 4.23 3.42 
 

4.55 4.17 3.57 3.02 

2.0 3.95 3.24 3.04 2.57   3.43 3.06 2.62 2.30 

 

In the preceding experiments, the shift occurs at 100.t   As shown in several EWMA-

based control charts, the behavior of ARL1 may considerably differ when the process is 

out-of-control at the start up stage, e.g., due to the setup bias or the ramp-up period, called 

zero-state shift, from when the shift occurs after the process is stabilized, called steady-
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state shift (Jiang et al., 2012, Kim et al., 2017b). For example, double MEWMA introduced 

by Alkahtani and Schaffer (2012) shows the substantial difference between the zero-state 

ARL and the steady state ARL (See Table 8 in Kim et al. (2017b)). Figure 7.1 shows the 

relative efficiency (RE) in terms of the power, which calculates the ratio of the power of 

each chart over that of MEWMA. Thus, the horizontal line represents the RE of MEWMA 

itself, and the RE greater than 1 indicates better power than MEWMA. The result shows 

that the steady-state ARL is slightly shorter than the zero-state ARL, but not too much 

different. Moreover, the RE of BSU presents always greater than 1, which indicates that 

the detection ability of BSU is always better than that of MEWMA. However, VSMEWMA 

shows considerably low detection power in small shift cases being worse than that of 

MEWMA, and the RE increases as the size of the shift increases, which is expected.  

 

Figure 7.1. Zero-state ARL and steady-state ARL ( 25p  ) 
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7.4.2. Tracking the Process Mean 

The preceding experiments fall into the problem of the hypothesis test, 0 0:H μ μ  and 

1 1: .H μ μ  This is a common test in conventional SPC literature in which 1μ  is considered 

as a sudden jump at certain point of time and remains unchanged after the occurrence. 

However, in many applications of the manufacturing process the process parameter may 

change over time by process shifts. For example, in the chemical manufacturing process, 

some process parameter shows a severe dynamic behavior once the disturbances are 

occurred, e.g., drift, oscillation and step change (Raich and Cinar, 1996). Here we construct 

the testing problem as 0 0:H μ μ  and 1 0: ,H μ μ  and the true out-of-control mean after 

the occurrence of the disturbance is considered as a function of the sampling time, i.e., 

1( ).tμ  This can be seen as tracking the multivariate sparse mean over time. In following 

experiments, we measure the mean squared error (MSE), i.e., 
2

1 21
ˆ1/ || ( ) || ,

T

tt
T t


 μ μ  

where T  is the sampling period. We consider 40,T   and assume that the process is in 

control when 10,t   and out of control when 10 .t T   Moreover, one thousand 

replications are applied for computing the MSE. For the faulty mean functions, we consider 

( ) 0.5arctan( ),a t t    where 10,   for the drift type of the mean shift; consider 

( ) 0.3sin(0.15( )),b t t    where 10,   for the oscillation type of shift; and consider 

( ) 0.3c t   when 10 25,t   and 0.2  when 25,t   for the step change of the shift. 

Figures 7.2, 7.3 and 7.4 illustrate the sample paths of the true mean and estimated means 

of MEWMA, VSMEWMA, Kalman filter update and BSU for one shifted variable. The 
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asterisks symbol is used to plot the observation, ;tx  the solid line, dashed line, long dashed 

line, dash-dotted line and the solid line with asterisks represent the true mean path, 

MEWMA, VS-MESNA, Kalman update and BSU, respectively. The MSE values are 

shown in Table 7.4.  

 

Figure 7.2. Sample paths of the estimated means with ( )a t  
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Figure 7.3. Sample paths of the estimated means with ( )b t  

 

Figure 7.4. Sample paths of the estimated means with ( )c t  
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Table 7.4. MSE of MEWMA, VSMEWMA, Kalman filter update and BSU for ( ),a t  

( )b t  and ( )c t  

  ( )a t
 

( )b t
 

( )c t
 

MEWMA 3.0326 2.8416 2.8902 

VSMEWMA 2.3716 2.0198 2.0761 

Kalman update 2.5598 2.3677 2.4303 

BSU 1.6870 1.3384 1.4544 

 

Figures 7.2, 7.3 and 7.4 show that BSU reacts quickly to the change of the mean. Since the 

EWMA transform is applied, all charts do not immediately react to the process change due 

to the inertia effect. However, BSU tends to trace the changing mean quite well after a 

short delay. On the other hand, it is hard to see whether the VSMEWMA keeps track of 

the mean. Although VSMEWMA starts plotting consecutive nonzero values from 31,t   

it is still incapable of confirming that the process mean is accurately estimated. In Figures 

7.3 and 7.4, BSU reacts the fluctuating mean and the changing the direction of the mean 

shift even if the size is small, while VSMEWMA cannot capture the process change over 

the most sampling points. In addition, the Kalman filter update rather tends to track the 

MEWMA regardless of the path of the true mean because the update is based solely on the 

MEWMA transformed observations. Although it provides a good smoothing the 

fluctuating measurements like a ridge estimator – apparently the Kalman filter update can 

reduce to the ridge estimator with certain conditions – it does not guarantee the detection 

ability under sparsity because the estimator (Kalman gain) still includes significant noises 
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and may contaminate the monitoring statistic. Accordingly, the result of MSE shown in 

Table 7.4 demonstrate that the BSU outperforms the other methods in tracking the true 

mean under sparsity conditions.  

7.4.3. Determination of Initial Prior Parameter 0κ   

One remaining challenge to apply BSU is to determine the initial scale parameter, 0κ  for 

the first iteration of EM. Basically the 0κ  is directly related to the variance of the process 

parameter μ  before being updated in EM, where the variance of the Laplacian distribution 

is 22 / .tκ  Thus, prior knowledge of the process by engineers or the engineering physics, if 

available, would enable to set 0κ  properly based on the variability of the process shift. If 

there is no prior information available about a process shift, it can be reasonably set 

0, 2 / ,i ii   where ii  is the standard deviation of the i th variable by setting the 

variance of i  equal to the process variability ii  (Jain et al., 1993).  

Although the parameter 0κ  can be determined in a certain way, it will be changing 

dynamically over sampling time and adaptively to each variable at every sampling epoch 

based only on the observations. Thus, it is expected that the effect of the initial value of κ  

would not affect the performance of the chart significantly. Thus, as long as 0  is initially 

set within an acceptable range of the variation of the process parameter, e.g., l  standard 

deviation (i.e., 2 / iil  ),  the ARL performance would be robust over the selection of 
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0.  Table 7.5 shows the effect of 
0  in ARL performance when 25.p   We test the value 

of 0κ  as 5 3 2  with 1ii   for the maximum sparsity of the estimator from 1 for the 

minimum sparsity.  

Table 7.5. Effect of 
0  

  
0 2p 

   0 4p 
 

0 1 
 0 3 

 0 5 
   0 1 

 0 3 
 0 5 

 

0.2 144.63 145.61 146.44 
 

108.05 109.18 109.36 

0.4 68.72 69.58 69.50 
 

36.11 35.83 36.01 

0.6 32.38 31.87 31.07 
 

15.73 15.81 15.93 

0.8 17.45 17.44 17.12 
 

9.56 9.39 9.79 

1.0 11.42 11.29 11.33 
 

6.81 6.80 6.95 

1.5 6.10 6.06 5.98 
 

4.10 4.10 4.12 

2.0 4.24 4.24 4.11   3.00 3.00 3.00 

        

  
0 6p 

   0 8p 
 

0 1 
 0 3 

 0 5 
   0 1 

 0 3 
 0 5 

 

0.2 83.66 83.96 84.24 
 

68.90 67.03 69.86 

0.4 23.79 23.83 24.48 
 

18.02 18.29 18.96 

0.6 11.10 11.21 11.69 
 

8.92 9.08 9.52 

0.8 7.16 7.18 7.46 
 

6.09 6.10 6.32 

1.0 5.40 5.37 5.60 
 

4.66 4.69 4.89 

1.5 3.41 3.42 3.49 
 

3.07 3.05 3.16 

2.0 2.54 2.54 2.60   2.26 2.27 2.35 
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Table 7.5 shows that the ARL performance becomes slightly better with a small 0κ  as 0p  

increases and vice versa. This is reasonable because a small 0κ  allows more nonzero 

values in the estimate so as to include more shift information, and the opposite case is also 

interpretable in the same way. Moreover, when   is small, a small 0κ  generates slightly 

better results because it decrease a chance of misidentification of VS by estimating μ  less 

sparse. However, above all, the difference among the ARLs in terms of 0κ  is ignorable 

according to the results, which demonstrates the ARL performance of BSU is robust to the 

initial setting of 0.κ  This makes the proposed method more attractive to the practitioner 

because it can be seen as a parameter-free method. Throughout the chapter, we set 0 3κ  

which is approximately 2 standard deviation of the inherent variability of the process 

parameter ,ii  i.e., 0 2 2 / iiκ .  

7.5. Case Study 

In this section, we illustrate the proposed chart using an industrial process described by 

Tennessee Eastman (TE) Chemical Company (Downs and Vogel, 1993). The process is 

composed of five major units: a reactor, a product condenser, a recycle compressor, a 

vapor-liquid separator and a product stripper as shown in Figure 7.5. It manufactures two 

products along with a by-product from four reactants, and an inert which is produced 

separately through the downstream operations. The data set includes ten quality 

measurements to be monitored listed with their nominal values in Table 7.6. The normality 

of the error variance in the measurement equation is valid for the dataset from the Mardia’s 
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multivariate normality test (Mardia, 1970). The shift occurs after the normal operation due 

to the change of one of the reactants’ temperature ( D  feed temperature), which leads to a 

slight downward shift. The raw data are plotted in Figure 7.6.  

 

Figure 7.5. A diagram of the TE process (Yin et al., 2012)  
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  Table 7.6. Nominal values of the ten variables 

Block name Variable name Nominal value Units 

Input feed E feed flow  700.92 kg/h 

 
A and C feed flow 7.83 kscmh  

Reactor Reactor feed rate 32.15 kscmh  

 
Reactor level 65.00 % 

 
Reactor temperature 121.90 °C 

Separator Separator level 50.00 % 

 
Separator underflow 17.56 

3m /h 

Stripper Stripper underflow 18.00 
3m /h 

 
Stripper steam flow 5.31 kg/h 

Miscellaneous Reactor water temperature 101.86 °C 

 

 

Figure 7.6. Raw data of the TE process  
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We illustrate the implementation of the BSU, MEWMA, VSMEWMA and Kalman filter 

update based control charts using this dataset. We set the significance level to 0.005 for all 

charts; the control limits of BSU, MEWMA, VSMEWMA and Kalman filter update are 

obtained as 1.8011, 2.6767, 1.7689 and 2.5978 based on the in-control parameters. The 

number of selection for VSMEWMA chart is set as 2.s   Ten observations are sampled 

before the occurrence of the shift and thirty observations are taken consecutively after the 

shift. Figures 7.7 shows the monitoring paths of the charts over the time. The solid line 

with connecting stars represents the BSU; the dashed line with triangles shows the 

MEWMA chart; the line with long dashes connecting diamonds reveals the VSMEWMA; 

and the dash-dotted line represents the Kalman filter update based chart. The same styles 

of the horizontal lines are applied to the corresponding control charts as their control limits. 

Values of monitoring statistics are shown on the left vertical axis.  

The BSU chart triggers the alarm four times at the 29th, 30th, 31st and the 36th observations 

without adjusting the process after the alarms, while MEWMA, VSMEWMA and Kalman 

filter update charts triggers 2, 0 and 2 alarms, respectively. Moreover, except commonly 

alarmed 30th and 31st observations, BSU alarms at the 29th observation as its first alarm, 

which shows the faster detection than others. 
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Figure 7.7. BSU, MEWMA, VSMEWMA and Kalman filter update charts for monitoring 

the TE process  

7.6. Conclusion 

In this chapter, we develop a Bayesian approach for monitoring high-dimensional 

processes. The BSU chart considers the stochastic behavior of the process parameter in 

high speed monitoring systems. Further, the sparsity of the high-dimensional vector is 

appropriately implemented at each sampling point according to the dynamic path of the 

process parameter. Several attractive features of the proposed chart are summarized as 

follows. The BSU chart adaptively selects the suspicious variables based on the recent 

selections. The hyperparameter of the prior distribution is appropriately determined at each 

sampling point based on the path of the previous estimates and reflected to update the prior 
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for the next sampling. This makes the BSU chart significantly useful in Phase II monitoring 

where the information of the shift, e.g., direction and the size, is completely unknown. 

Particularly, the BSU controls the sparsity, i.e., the number of nonzero elements in the 

estimate, and determines the value of nonzero based on the potential possibility of the shift 

for each variable.  

Another significance of the proposed method is that the BSU is free from manual parameter 

adjustment. Although it requires to set the initial hyperparameter, the effect of the initial 

value diminishes rapidly in the iteration of EM. Moreover, the ARL1 results show the 

robustness to the detection over various considerations of the initial prior parameter. Thus, 

when it is determined in a reasonable range, e.g., one to three sigma level of the confidence, 

the practitioner may not need to take actions to adjust the parameter even if the information 

of the shift is provided.  

Furthermore, the closed form analytical expression of the conditional distribution given the 

history of the estimations makes the practical implementation of the online monitoring 

significantly convenient. Unlike the Kalman filter model, the BSU updates the posterior 

based on the empirically determined variation rather than evolving covariance. This 

simplifies the updating algorithm and reduces the computational complexity compared to 

the Kalman filtering. Moreover, while Kalman filtering is not immediately apparent in 

sparsity perspectives, the BSU provides a practical advantage to implement the sparsity.  
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CHAPTER 8   

CONCLUSION AND FUTURE WORK 

This dissertation proposes and subsequently develops procedures for monitoring of high-

dimensional processes. This chapter presents the summary and conclusions of this 

dissertation and describes the possible future research related to this dissertation. 

8.1. Summary and Conclusions 

8.1.1. Variable Selection-Based Multivariate SPC in Multistage Processes 

In Chapter 3, we introduce a high-dimensional multistage SPC chart for monitoring output 

variables that follow a beta distribution. The cascade property in multistage processes is 

removed by using deviance residuals through the model-based approach accommodating 

the beta regression. The vectorized deviance residuals from all stages are regarded as 

observations, and the covariance matrix is properly determined to represent the correlations 

of variables within a stage and the cross correlations among stages. The partial regression-

based model selection is developed to improve the capability of the detection of the 

changes in high-dimensional processes under sparsity. In addition, the capability of the 

identification of root cause of fault is compared with the existing VS-based charts. 

Extensive simulation studies from the setting of the LNG process as a representative 

multistage process are performed to compare the performance of the proposed method with 

existing methods.  
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8.1.2. Monitoring of High-Dimensional Processes via Sparse Group LASSO 

In Chapter 4, we propose a group variable selection based SPC chart for monitoring high 

dimensional processes while Chapter 3 incorporates the individual variable selection into 

the monitoring scheme. It is expected to perform well especially when the process data 

have grouped structure and when the behavior of the process shift is grouped. Under 

sparsity of both between groups and within-a-group, we apply the idea of sparse group 

LASSO and modify it appropriately in SPC point of view by adjusting the parameter 

settings as a ratio, which helps practitioner’s intuitive access and utilization of the 

procedure based on their engineering knowledge. The proposed method selects the 

variables flexibly considering the estimated shift size and number of shifted variables. 

Extensive simulation studies show that the proposed method outperforms existing ones 

when the shift tends to occur in sparse groups.  

8.1.3. Ridge Penalized Likelihood-Based SPC Chart 

The monitoring methodologies introduced in Chapters 3 and 4 integrate the variable 

selection as a prediagosis procedure. They perform generally well in many cases under 

sparsity. However, when the shift size is small, the ARL1 performance tends to decrease 

due to the misidentification of the changed variables based on the variable selection 

techniques especially when variables are highly correlated. In Chapter 5, we focus on the 

problem of detecting small mean shifts in high-dimensional processes when the quality 

measurements are strongly correlated. We propose an efficient quality control method for 

such processes based on 2L  norm penalized likelihood approach that does not do ‘variable 
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selection’ but does ‘shrinkage’ considering the correlation structure of the data. We could 

obtain the accurate probability distributions of the monitoring statistic under 
0H  and under 

1H  with respect to the potential shift directions and provide the theoretical boundary for 

the performance based on a geometrical interpretation. The numerical results of simulation 

demonstrate that the proposed method performs better than existing methods in detecting 

small mean changes.  

8.1.4. Generalized Smoothing Parameters of a Multivariate EWMA Control Chart 

In Chapter 6, we focus more on detecting small mean shift by utilizing the correlation 

structure of the data. Rather than shrinking the measurement vector for the mean estimation 

at each sampling point, we put additional weight to the EWMA transformed vector 

according to the correlation. It has been known that the MEWMA control chart is effective 

in detecting a small process mean shift. Its simplicity and generality stem from the 

assumption that the smoothing parameters of the variables are given constants and equally 

distributed on the diagonal of the smoothing matrix. In this chapter, we propose a 

generalized model for the MEWMA that uses appropriate non-diagonal elements in the 

smoothing matrix based on the correlation among variables. We also offer an interpretation 

of off-diagonal elements of the smoothing matrix and suggest an optimal design for a 

proposed MEWMA chart. The proposed chart shows a better ARL performance when 

compared with existing approaches, especially in detecting smaller shifts. We demonstrate 

the chart’s performnace with various cases of shift scenarios and show that the chart 

performance is robust to the shift direction. A case study on the automatic monitoring of 
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dimensions of bolts using an imaging processing system is presented to illustrate the 

proposed control chart.  

8.1.5. Bayesian Sequential Update for Monitoring High-Dimensional Processes 

In this chapter, we develop an efficient statistical process monitoring methodology in high-

dimensional processes based on the Bayesian approach. The key idea of this chapter is to 

sequentially update a posterior distribution of the process parameter of interest through the 

Bayesian rule. A sparsity promoting prior distribution of the parameter is applied properly 

under sparsity in high-dimensional data, and is sequentially updated in online processing. 

A Bayesian hierarchical model with a data-driven way of determining the hyperparameters 

enables the monitoring scheme to be effective to the detection of process shifts with less 

computational complexity in the high-dimensional processes. Comparisons with recently 

proposed methods for monitoring high-dimensional processes demonstrates the superiority 

of the proposed method in detecting small shifts. In addition, graphical presentations in 

tracking the process parameter provides the information about decisions regarding whether 

a process needs to be adjusted before it triggers alarm. 

 8.2. Future Research 

Chapters 3, 4 and 7 implements the sparsity in the high-dimensional processes considering 

that only small number of variables would possibly be shifted simultaneously. Chapters 3 

and 4 directly apply the variable selection technique to the quality characteristics that are 

measured at every sampling point; and Chapter 7 utilizes sparsity promoting prior 
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distribution to implement the sparsity. One warrant research, in that the adaptive variable 

selection over sampling points can be modeled with a state space model, is the extension 

to the cascade process monitoring. A large pool of the literature exploit the conversion of 

the state space model to the autoregressive and moving average model (ARMA) for 

monitoring such cascade processes (Triantafyllopoulos and Bersimis 2016; Du et al. 2015; 

Cheng et al. 2014; Psarakis and Papaleonida 2007; Pan and Jarrett 2004). Once the accurate 

estimations for the model parameters are obtained in the retrospective analysis (Phase I 

analysis), similar procedures incorporating the adaptive variable selection can be 

immediately applicable to monitor the cascade process.  

Another interesting research topic is to monitor the process variability as well as the 

centrality. Having n  samples at each sampling, it can be shown that 
1ˆ~ ( , )N n

x μ Σ  and 

~ ( , 1),W nS Σ  where ( , 1)W nΣ  denotes a Wishart distribution with the covariance 

matrix, Σ  and the degrees of freedom, 1.n  In a similar vein in updating the mean shown 

in Chapter 7, the posterior distribution of interest is  1
ˆ| ,t t tp Σ S Σ  and may be derived as 

proportional to the updated prior and the likelihood. The difficulties are expected to 

determine a joint likelihood considering 1( , )t tCov S x  may not be zero, and to promote the 

sparsity in the covariance matrix. The recursive mechanism to update both mean and 

covariance, and soft/hard thresholding to the quantity 1 1
ˆ |t t t S Σ S  may be useful.  



172 

 

Unlike the variable selection based methodologies, Chapters 5 and 6 focus on utilizing the 

correlation structure of the data. The method in Chapter 5 shrinks the measurement vector 

based on the correlation; and that in Chapter 6 assigns additional weight to the 

measurement vector according to the correlation. Thus, it would be interesting to 

investigate the integration of variable selection and utilization of the correlation. For 

example, the combination of 
1L  and 

2L  in the likelihood function can be a trivial procedure 

sharing two different features with VS-based methods and shrinkage-based method 

according to the correlation. Consequently, it selects suspicious variables like LASSO, and 

shrinks the correlated covariates together like ridge. It is expected to overcome the 

drawbacks of the VS-based chart in highly correlated data structure, and is expected to 

perform well when the shift tends to occur in a grouped fashion due to the nature of 

shrinkage of 2L  regularization.  

In addition, the proposed methodologies developed in this dissertation can be extended to 

the problem of monitoring non-normally distributed high dimensional processes (Chen et 

al. 2016). Furthermore, the lack of historical dataset is also common in industry. It 

motivates more research to extend to Phase I analysis, in which the estimation accuracy of 

covariance would significantly affect the chart performance since our method is highly 

dependent on the correlation structure. 
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Appendix A. Proof of Proposition 4.1  

i) Proof of part a. 

The chart statistic Q can be rewritten as a general quadratic form as 

2 1 1( ) ,T TQ     x Σ Σ x x A x  

where 2. A Σ Σ  Using an eigen-decomposition of Σ  as TΣ PΛP  where P  

represents an eigenvector matrix of Σ  and Λ  is a diagonal matrix whose diagonal entries 

are eigenvalues of ,Σ  the matrix A can be expressed as 

2 2 2( ) .T T T       A Σ Σ PΛP PΛ P P Λ Λ P  

Then, the chart statistic can be rewritten as  

 
1

2 1 2( )T TQ  


   x Σ Σ x y Λ Λ y  

where Ty P x  and ~ (0, )pNy Λ . It can be expanded as  

 
1

2 2

1

1

1

p
T

i

i i

Q z






  


y Λ Λ y  
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where iz ’s are independent standard normal random variables. Thus, the statistic Q  forms 

a weighted sum of independent chi-square variables with weight 1(1 ) .i   When 0, 

it reduces to the sum of chi-square random variables resulting in Hotelling 2T  chart since 

all weights are identical to 1.  

By adopting Welch-Satterthwaite (WS) method (Welch, 1938, Satterthwaite, 1946), we 

can approximates the statistic Q  to the gamma distribution. Since the expected value and 

the variance of Q  under 0 ,H  are 2

1 1

( ) ,
p p

i i i

i i

E Q E w z w k
 

 
   

 
   and 

2 2

1

( ) 2 ,
p

i

i

Var Q w k


   we obtain two parameters as in Proposition 1 a.  

ii) Proof of part b. 

The chart statistic Q with a certain mean shift 1μ  can be expressed as a weighted sum of 

non-central chi-square random variables as 

2

,

1

1
( )

1

p

i i

i i

Q z 





 z  

where 
2

, ,i z i z  and the vector z
μ  is a projection of 1μ  onto the orthogonal space of z  

that satisfies 1/2

1.
Tzμ Λ P μ  Thus the chart statistic under 1H  with a shift 1μ  is composed 

of non-central chi-square random variables with noncentrality ,i
z

 and weight .iw  
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Letting ,1 1
,

p pk k

k i i z ii i
c w k w 

 
   3/2

1 3 2/s c c  and 2

2 4 2/s c c , the parameters l  and   

can be determined by making the skewness of Q  and 
2 ( )l    to be equal while the 

difference of kurtoses being minimized (Liu et al., 2009a). That is, if 2

1 2 ,s s  

3 2

1s a a    and 
2 2l a   , where  2

1 1 21/ .a s s s    ; otherwise, 0   and 

2

11/ .l s  Then, the tale distribution of the quality characteristic Q  under 
1H  can be 

approximated as 

 

 

1 1

2

2

Pr | Pr |

( )
Pr Pr ( )

Q

Q

l

l

Q
Q L v

v v
 
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





  
   



 
    

 

 
      

 
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Appendix B. Proof of Proposition 4.2 

For a given observation ,x  the chart statistics of Hotelling 2T  and RMSPC are 

2

1 ,T

T
Q  x Σ x  and 2 1( ) .T

RMSPCQ   x Σ Σ x  

Then, the proportional distances to the boundaries with a significance level   for 

Hotelling 2T  and RMSPC become 2 2 ,
/

T T
Q H


 and ,/ ( ),RMSPC RMSPCQ H    respectively. 

Therefore, when the relative performance index (RPI) is larger than 1, RMSPC chart 

performs better than Hotelling 2T  chart.  
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2

2 1

,

1

,

( ) / ( )
RPI

/

T

RMSPC

T

T

H

H




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




x Σ Σ x

x Σ x
                                  (B.1) 

By the extension of Cauchy-Schwarz inequality, we obtain the following result for Eq. (B.1) 

as 

2

2

2 1

, ,

1

min ,,

( ) / ( ) 1
max

/ 1 ( )

T

RMSPC T

T

RMSPCT

HH

H H

 



 

 






 

x 0

x Σ Σ x

x Σ x
 

when the equality holds when x  is equal to the corresponding eigenvector to the maximum 

eigenvalue of the matrix 1( ) , I Λ  i.e., 1

min(1 ) ,   where min  is a minimum 

eigenvalue of the correlation matrix .Σ  Therefore, for all 1,2,..., ,i p  if 

2 ,

,

1
1

1 ( )

T

i RMSPC

H

H



 
 


, 

the value of monitoring statistics of the proposed chart is relatively closer to the control 

limit, resulting in larger power than that of 2T  chart.  

Appendix C. Derivation of the Minimum *  

The suggestion of   in Eq. (6.4) can be derived by the constraint that the off-diagonals in 

the smoothing matrix cannot be larger than the diagonal elements.  Let us define onr  as a 
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diagonal element in the smoothing matrix, since all diagonals are equal.  From the 

constraint that ,on ijr r  ,i j  for each column ,j  we can obtain the following equation: 

| | | |
( ) ( )

| | | |

ij ij

on ij on

ij ij

i j i j

r r r r r r r
 

 
 

 

         
 

 

for all i ’s ( i j ).  Note that we do not consider ii  because it is always 1 and is not 

considered to determine the off-diagonals.  Then the above equation can be written as: 

1 ,
max | |

(1 )
| |

ij
i p i j

ij

i j


 



  



  


. 

By rearranging each side with respect to ,  we obtain  

1 ,

1 ,

max | |

| | max | |

ij
i p i j

ij ij
i p i j

i j




 

  

  





. 

Therefore, the minimum   value, *,  is given by 
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Appendix D. Proof of Eq. (7.1) 

The joint distribution ( , )t tp x μ  can be recursively obtained as 
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where the density function ( )tp μ  is 
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In the second equality holds the Markovian property. By plugging it into Eq. (D.1), the 

joint probability density, ( , )t tp x μ  can be obtained as 

0 1 1

1

( , ) ( ) ( | ) ( | , ).
t

t t i i i i i

i

p p p p 



 x μ μ μ μ x x μ   

The denominator probability, 1( , )t tp x μ  is written as 
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Then, the posterior is written as 
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When the observations, 'six  are all independent and determined only by the current mean, 

,iμ  the distribution can be simply written as 
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Q.E.D. 

Appendix E. Proof of Eq. (7.8) 

The conditional distribution, 
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where 
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By substituting Eq. (E.2) into (E.1), we obtain the density function of (E.1) as a gamma 

distribution as 
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Therefore, the expected value can be obtained as 
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