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ABSTRACT OF THE DISSERTATION

Process Progress Estimation and Activity Recognition

by Xinyu Li

Dissertation Director: Ivan Marsic

Activity recognition is fundamentally necessary in many real-world applications,

making it a valuable research topic. For example, activity tracking and decision support

is crucial in medical settings, and activity recognition and prediction are critical in smart

home applications. In this paper, we focus on activity recognition strategies and their

applications to real-world problems. Depending on the application scenario, activities

can be hierarchically categorized into high-level and low-level activities. The high-level

activities may contain one or more low-level activities. For example, if cooking is a high-

level activity, it may contain several low-level activities such as preparing, chopping,

stiring, etc. . .

Although studied for decades, there are several challenges remaining for high-level

activity recognition, also known as process phase detection. A high-level activity usu-

ally has a long duration and consists of several low-level activities. Treating high-level

activity recognition as a per-time-instance classification problem overlooks the associ-

ations between activities over time. We thus proposed considering high-level activity

recognition as a regression problem. Based on this assumption, we implemented a deep

learning framework that extracts features from input data and designed a rectified tanh

activation function to generate a continuous regression curve between 0 and 1. We used
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the regression result to represent the overall completeness of the event process. Be-

cause the same event often follows similar high-level activity processes, we then used a

Gaussian mixture model (GMM) to take the estimated overall completeness to supple-

ment high-level activity recognition. Since the Gaussian mixture model requires that

there be no duplication of high-level activities in an event (single activity has to follow

Gaussian distribution), it might not fully represent real-world scenarios. To combat

this limitation, we further proposed the use of LSTM layers to replace the GMM for

high-level activity prediction. We applied our system to four real-world sports and

medical datasets, achieving state-of-the-art performance. The system is now working

in a trauma rooms at the Children’s National Medical Center, estimating the over-

all completeness of each trauma resuscitation, the high-level activity of each trauma

resuscitation, and remaining time for a trauma resuscitation to complete in real-time.

Compared to high-level activities, the low-level activities are more challenging to rec-

ognize. This is because low-level activity recognition often requires detailed, noise-free

sensor data, which is often difficult to obtain in real-world scenarios. Many manually

crafted features were proposed to combat the data noise, but these features were often

not generalizable and feature selection was often arbitrary. We are the first to propose

deep learning with passive RFID data for activity recognition. The automatic feature

extraction does not require manual input, making our system transferable and gener-

alizable. We further proposed the RSS-map representation of RFID data, which works

well with ConvNet structures by including both spatial and temporal associations.

Because of the limitations of passive RFIDs, we extended our system from using a

single sensor to working with a sensor network. We studied activity recognition with

multiple sensory types, including RGB-D cameras, a microphone array, and the passive

RFID sensor. We were able to follow previously successful activity recognition research

focusing on each different sensor type. To build a system that makes final decisions

based on features extracted from all sensors, we developed a modified slow fusion strat-

egy, instead of traditional voting. We built a deep multimodal neural network that has

multiple feature extraction sub-networks for different input modalities, that feed into a

single activity prediction network. The multimodal structure is able to increase overall
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activity recognition accuracy, but one key problem remains: the extracted features from

different sensors contain both useful and misleading information. The system simply

takes all the extracted features for activity recognition, because it does not know which

features to rely on for activity recognition.

Addressing this issue, we proposed a network that automatically generates “masks”

that highlight the important features for video-based activity recognition. Unlike many

“attention” based deep learning frameworks, we used a conditional generative adver-

sarial network for mask generating. This is because the conditional GAN gives us

additional control of the generated masks, whereas we have no control of the generated

attention map with regular attention networks. Our experimental results demonstrate

that given manually generated activity performer masks as ground truth, the cGAN is

able to generate masks that only highlight the activity performer. The activity recogni-

tion network with our proposed mask generator achieved performance comparable with

other online systems on the published dataset. Though proven applicable, training the

cGAN requires a large number of manually generated masks as ground truth, which is

not often available in real-world applications. Building on the idea of a cGAN mask gen-

erator, we proposed a multimodal deep learning framework with attention that works

with multi-sensory input. We proposed the feature attention and modality attention

for feature extraction and fusion. The network can be fine-tuned by our asynchronous

fine-tuning strategy using deep Q learning. Our experimental results demonstrate that

our attention network with deep reinforcement learning based fine-tuning outperforms

previous research. The proposed fine-tuning also prevents over-fitting when training a

deep network on a small datasets.

Finally, we propose and introduce our ongoing work on concurrent activity recogni-

tion and our future work. Concurrent activity performance is common in the real-world:

a person can drink while watching TV; a medical team can perform multiple tasks si-

multaneously through different medical personnel. However, recognizing concurrent

activities remains an open research topic because it is neither a simple multi-class nor

a binary classification problem. We proposed a shared feature extractor to extract
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features from different input modalities. We then treated the concurrent activity recog-

nition as a coding problem, and trained a deep auto-encoder to generate binary code

denoting each activities’ relevant and irrelevant features for activity recognition. How-

ever, this network was hard to train and converge because the shared features contains

both . The recognition network easily over-fit to the unrelated features as opposed to

the activity itself. Because the ground truth labels only provide whether the recognized

activity is correct or incorrect, it disregards the associations between recognition results

and the feature space. Addressing such an issue, we further proposed to modify the

reinforcement learning based plugin that has been successfully used in our attention

tuning to provide additional information for concurrent activity recognition. We asked

human to provide feedback on whether the system made the decision based on the

correct and associated features first, and then only partially tuned the network weights

based on human feedback.
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Chapter 1

Introduction

1.1 Overview

The activity recognition in constrained real-world environment, such as medical set-

tings, remains to be a challenge. The challenges mainly from two aspects: 1. the

real-world constraints (e.g., no RGB camera, no wearable devices) and 2. the complex-

ity of activities in medical settings (e.g., crowded environment, RFID signal noise, view

occlusion, etc.). Instead of solving the activity recognition problem at once, we break

down the problem into high-level activity recognition (process progress estimation) and

then activity recognition.

Work processes can be roughly categorized into two types: sequential and parallel.

Our current work does not model parallel processes. Linear sequential processes can

be partitioned into a set of “phases” that occur one after another in a fixed order. For

example, during the trauma resuscitation process or the sports event broadcasting pro-

cess, the phases are rarely skipped or duplicated. Previous process-phase detectors can

be roughly categorized into three types: manual, shallow-modeled, and deep-learning-

based. The first type used manually-generated event logs or medical equipment signals

[20, 75]. As these systems worked with relatively noise-free datasets, they achieved

good performance. However, manual detectors require manual log generation or signals

from specific medical equipment, making them hard to implement and generalize. The

use of sensors addressed these two issues at a cost: sensor data may be hard to ob-

tain (e.g., wearable sensors are not preferred in medical settings as they may interfere

with the work), and are subject to the hardware or environmental noise. The second

type of phase detectors used shallow classifiers to predict phases from noisy sensor data

[20, 10, 83]. Yet, the features and model selection were often arbitrary and difficult
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to generalize, because different researchers using different features can only claim that

those features worked best for their specific scenarios [55]. Due to its success in the

image classification and speech recognition, deep learning and automatic feature extrac-

tion has given rise to the third type of phase detectors. All three approaches treated

the process phase detection as a discrete classification problem, which overlooks the

continuous nature of the processes and misses the associations between process phases

and percentage completion. These limitations have caused systems to return logically

impossible predictions [53].

We address these issues and estimate process completeness as a continuous variable.

Our system is designed to work with sensor data, as opposed to manually-generated

event logs. We designed a multimodal structure to make the system compatible with

different types of input sources. Features in our model are automatically learned using

a deep neural network. We introduce a deep regression model to continuously estimate

process completeness, and the rectified hyperbolic tangent (rtanh) activation function

to bound the regression output values in the context of process completeness. The

system detects the current process phase based on the currently estimated process

completeness using a Gaussian mixture model (GMM). Our model for completeness

estimation is trained on the regression error as well as a novel conditional loss from the

phase prediction. Finally, the remaining time is estimated during run-time using the

calculated process execution speed.

We tested our model with two datasets: a medical dataset containing depth video

and audio records of 35 actual trauma resuscitations at Children’s National Medical

Center (CNMC) [53], and an Olympic swimming dataset containing 60 YouTube video

records of Olympic swimming competitions in different styles. For the resuscitation

dataset, our process progress estimation system achieved 86% average online phase de-

tection accuracy and 0.67 F1-score, outperforming existing systems. Specifically, our

system incurred 12.65% completeness estimation error, with an average 7.5 minute

remaining-time estimation error (14% of total duration). For the Olympic swimming

dataset, the system achieved 88% accuracy with 0.58 F1-score and incurred 6.32%

completeness estimation error with average 2.9 minute remaining-time estimation error
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(18% total duration). Using additional network layers to replace the GMM, our system

slightly outperformed existing process-phase detection systems on the trauma resusci-

tation dataset [105, 100], while simultaneously providing progress and the remaining

time estimation.

The process progress estimation focuses on recognize the high level activities, but

each high level activity (process phase) can be further breakdown into low level activi-

ties. For example, a trauma resuscitation consists of six phases. We started our work

of low level activity recognition with RFID only in two steps. First, the use status of

different objects is determined based on the RFID information, such as signal strength.

Second, activities are predicted based on the use status of objects. For object-use de-

tection, we used small, inexpensive, battery-free passive RFID tags attached to medical

objects and fixed reader antennas. We placed tags on 10 object types commonly used

in trauma resuscitation. Data from these tags were collected by eight RFID-reader

antennas installed in the trauma room in the emergency department of a trauma cen-

ter. By reviewing videos, medical experts of our team coded object-use data and a

synchronized medical activity log from trauma resuscitations. We used these data to

build our activity recognition model.

RFID-based activity recognition has treated activity recognition as a binary classi-

fication problem where a specialized classifier decides whether or not an activity of a

particular type is occurring. These types of systems, however, may not be scalable to a

large number of activities. In addition, the common approach for activity recognition

involves two steps: first detect the use of objects associated with specific activities by

detecting human-to-object-interaction from sensor data, and then recognize activities

based on used objects [52]. The predication errors made by the system in the first step

will be cascaded into second step and impair the final prediction result. Our approach

for activity recognition uses passive RFID sensing. The RFID tags need to be strategi-

cally placed on objects of interest. Various features have been proposed and classifiers

tested for RFID systems in different application settings [52, 79], which makes it un-

feasible to compare their relative efficiency. As a result, feature and classifier selection

for RFID data is often arbitrary.
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We proposed and demonstrates a novel way for activity recognition from RFID

data without using manufactured features [55]. To perform process-phase detection

and activity recognition from RFID data, we treated the process-phase and activity

recognition as a multi-class classification problem instead of extracting manufactured

features and cascading object-use detection with activity prediction. We implemented

a deep convolutional neural network with three convolutional layers and three fully-

connected layers totaling 8.7M weights. The network was developed with a Microsoft

Azure cloud computing platform [69] and locally with Google TensorFlow [1]. We

trained this network with RFID data collected during 16 actual trauma resuscitations

in a trauma center. Different networks were trained for process-phase detection and

for activity recognition. We were the first to introduce the deep learning for passive

RFID data processing and we proposed the ”RSS map“ which is a new RFID data rep-

resentation that fits convolutional neural network. Our system recognized 10 common

medical activities directly from RFID data with F-score 18% greater than an existing

RFID-based system in the same application scenario [52]. To our knowledge, we are

the first to apply deep learning with RFID sensing for activity recognition in complex

teamwork.

A key limitation of our current system is that it relies only on relies on RFID

sensing to capture activity information and making predictions. Some activities, such

as palpation of the patient’s body, do not involve the use of physical objects that can

be tagged. In addition, RFID technology does not work very well with metal objects or

liquid containers, and objects in sterile packages can be tracked only until the packaging

is discarded. Our continuing research involves the use of video and audio for activity

recognition. We introduce an activity recognition system that recognizes activities

using video as input in two steps. First, it localizes the activity by generating an

activity mask outlining the location where the activity is expected to occur. For mask

generation, we used a conditional generative adversarial network (cGAN) [66]. Given

that activities are continuous and usually represented as video clips, we introduced a

Conv-LSTM-Deconv structure as a continuous mask generator with cGAN for training.
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The cGAN-based image generator has shown better performance than a Conv-Deconv-

based generator [34]. The ConvNet-LSTM structure has been used to model spatio-

temporal associations [35, 80]. In addition to the adversarial loss, we introduced a

spatio-temporal loss and implemented perceptual loss [36]. These losses penalize the

neural network for pixel-wise errors in the generated mask and discontinuities between

masks from consecutive frames. Second, the generated mask is appended to each color

channel of its input video frame to delimit the activity region for the activity recognizer.

Because the ConvNet-LSTM structure has been used successfully for modeling spatio-

temporal activity associations [56, 103], we adopted a VGG-LSTM network for activity

recognition. To train and test our system, we manually created activity masks for two

datasets. We selected six activities from a well-known Olympic sports dataset (15 videos

per activity) and for 10 frames of each video manually created binary masks outlining

the activity performer’s location. The proposed method works in real-time, as opposed

to offline prediction based on features extracted from the entire video [107, 58].

Although we made progress on single person activity recognition there are three

main aspects to the challenge: 1. Feature selection: real-time activity recognition often

requires features directly associated with the activity for decision making. However, in

real-world scenarios with multiple people and moving backgrounds, it is hard to extract

only the associated features. This is noticeable especially in small datasets, where the

lack of variance makes the system more likely to learn background features specific

to the training data [35]. We proposed to generate a mask indicating the important

feature subspace (an attention map). Previous research mainly uses ConvNet based

attention modules with deep neural networks for image recognition [65]. We extend

ConvNet attention to work with other input modalities, including video, audio, and

mobile sensors. We also introduce modality attention for feature fusion, which assigns

different modality branches dynamic weights based on their expected contribution to

the activity predictions. 2. Network training: even with an attention mechanism,

there is no way to guarantee the attention module is well trained, because the ground

truth labels only provide right-or-wrong information regarding the final prediction. It

is unclear whether we should penalize the entire net-work or only the attention module
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during model training. It is also possible to make correct predictions based on irrelevant

features (e.g. overfitting to background features). Addressing this issue, we introduce

an asynchronous tuning strategy that first tunes the attention module, and then the

recognition module only. This ensures the system first learns the relevant features to use

when per-forming activity recognition. Because the ground truth labels do not provide

information regarding attention region, we designed the system to use human feedback

on samples of generated attention to improve attention generation. 3. Misalignment

Between Observation and Ground Truth: we noticed that in many datasets the ground

truth label is not well aligned with the data. For example, in the Olympic sports

dataset, a video labeled as long-jump roughly contains 30% frames with no activity in

progress. This is acceptable for some offline methods that first extract features from the

entire video to make a prediction. But online systems making per-frame predictions

would incur inappropriate loss when training on a labeled frame with no activity in

progress. Addressing this issue, we modified the DQN model to assign rewards and

penalties to each frame based on the accumulated prediction results instead of ground

truth for each time instance.

We tested our system with three commonly used and challenging published datasets,

the Olympic sports dataset [72], the Hollywood 2 dataset [65], and the 50-salads dataset

[100] (contains depth, RGB, and 3-axis gyroscope). Our system is able to compete

with state-of-the-art online activity recognition systems with 0.796 mAP on Olympic

sports dataset, 0.631 mAP on Hollywood 2 dataset, and 0.449 mAP on the 50-salads

dataset. The proposed asynchronous tuning with DQN improves mAP by around 6-

9%. We further visualized the attention before and after tuning, demonstrating that

our proposed method helps focus attention on more representative features.

1.2 Organization

The following sections are organized as follows: We will first introduce the deep regres-

sion model based process progress estimation strategy in chapter 3. In chapter 4, we

are going to introduce our initial work using passive RFID for activity recognition with

shallow classifiers and deep learning based strategies. In chapter 5, we introduce the
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attention based multimodal activity recognition strategy. In Chapter 6 we introduce

our under-going work on concurrent activity recognition and possible future works.

Chapter 7 summarize our work and conclude the paper.

1.3 Contribution

Our work on multimodal real-time activity recognition can be summarized :

1 Introduced deep regression network to estimate the event process progress in real-

time and deployed the system in an actual trauma room.

2 Designed RSS map representation for RFID and introduced the ConvNet for

RFID based activity recognition.

3 Introduced conditional GAN based activity mask generating system and activity

recognition based on it.

4 Introduced the multimodal attention network with DQN based tuning for online

activity recognition.

5 Proposed multi-level fully connected network and encoder-decoder based network

for concurrent activity recognition.
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Chapter 2

Background and Related Work

2.1 Process Phase Detection

Process progress modeling can be done from three aspects: the completeness, the pro-

cess phase, and the remaining time. Most of the previous research only focused on

the process phase detection. Based on different application scenarios, previous works

approached process modeling in three ways.

Systems designed to focus only on process modeling or work in very specific applica-

tions (such as certain types of surgery) used manually generated event logs [20] or the

medical equipment signals [75] as the input. These types of input data are relatively

noise free, and can be directly used for process modeling without preprocessing and

feature extraction. Previous approaches treated process phase detection as a classifi-

cation problem and directly applied shallow classifiers commonly used for sequential

data analysis (e.g., HMM or decision tree [75]). Such approaches have proven accurate

and easy to implement, and some association rules could be mined by analyzing the

generated HMM transition matrix or decision tree topology [31]. But the drawback of

these approaches is the use of manually generated event log or the data from specific

equipment, making these systems hard to deploy, and the trained classifier may have

difficulty working with high-dimensional and noisy sensor data.

To avoid such limitations, we designed our system to use commercially available

sensors as the input source. There are previously proposed process phase detection

systems using different sensor data [9, 55, 53]. For daily living and certain surgery

scenarios, the RGB camera and wearable sensors were used to capture the gesture and

posture for process phase estimation [9]. For more constrained scenarios, such as in

medical settings, the less intrusive and privacy-preserving sensors such as passive RFID
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or depth camera were used [55, 53, 6]. Because the sensor data collected in a real-

world environments is noisy (may contain hardware noise, outliers, and missing data),

machine learning algorithms were commonly used to establish the connection between

sensor data and the process phase. On the other hand, the feature and classifier selection

were often chosen arbitrarily or empirically [55, 52], which makes the shallow-modeled

systems difficult to transfer. In addition, when processing multi-modal input data, the

shallow-modeled systems usually make classification independently based on each input

modality and combine them by voting [101]. In this way, potential correlations between

different input modalities are ignored.

This limitation of shallow classifiers is not unique for process progress modeling;

many fundamental computer science fields (such as image classification and speech

recognition) face the same issue. In recent years, the CNN and LSTM [96, 33] have

been successfully implemented in these fields and achieved significantly better perfor-

mance compared with the state-of-the-art shallow-modeled solutions [48]. The CNN

was widely used in image classification and image feature extraction, because the CNN

with the learnable filters can automatically learn the representative spatial features from

the raw training data and is proven generalizable (the pre-trained model can be used

as the feature extractor) [23]. The current state-of-the-art process progress estimation

systems use the pre-trained AlexNet [105] for process classification using video frames

as input, but this pure CNN does not consider temporal associations between features

in adjacent frames. To compensate for lost temporal associations that maintain the

logical phase order, previous research attempted using a time window [99], HMM[105],

or modified softmax layer [53]. However, the HMM does not scale well to complex pro-

cess with a large number of phases, because the topology of HMM’s transition matrix

becomes less representative and requires manual tuning. The time-window approach

prevents the system from working online. Based on the LSTM’s ability to model tem-

poral associations in speech recognition [25] and natural language understanding [112],

we implemented the LSTM with CNN in our system to extract the spatio-temporal

features. We then introduced a regression model with GMM to achieve both process

completeness estimation and phase detection.
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2.2 Passive RFID Based Activity Recognition

For low-level activity recognition different types of sensors are widely used. Due to

their unique advantages (small, cheap and battery free), passive RFID tags have been

used in applications where other sensors are not suitable or have failed. These ap-

plications include detection of human-object interaction [120, 120], people and object

tracking [119] and more complex problems such as activity recognition. RFID was used

for activity recognition in a kitchen setting [116], but only as secondary to a vision

system because the received radio signal was subject to noise and interference caused

by moving people and other objects. RFID was also used as the primary system for

process-phase detection with wearable RFID antennas and other sensors [110]. The sys-

tem was able to achieve satisfactory performance for phase recognition, but wearing the

antennas requires user participation and may interfere with work in fast-paced medical

settings. Recent research demonstrated that the status of object manipulation can be

estimated using passive RFID tags and fixed antennas based on manufactured features

extracted from received signal strength indicator (RSSI) [76]. The use of specialized

objects to perform complex activities provided the basis for activity recognition [51].

Challenges remain because the recorded RFID data contain noise and variance due to

environmental changes, such as people moving in the room. The noise and variance

in RFID data compromise the representativeness of manufactured features and in turn

impact activity recognition results. Similar challenges exist in other applications, such

as image recognition and speech recognition, where large part of input data are inessen-

tial (e.g., redundant pixels, background noise), requiring the classifier to be insensitive

to those variations. Earlier research tried to accomplish the complex tasks such as

object recognition or activity recognition by using manufactured features, or building a

hierarchical model with several layers of classifiers to extract low-level features for final

decision making [5, 71]. The use of deep learning in recent years has led to great leaps in

many fields, from image classification [2] to speech recognition [82]. Deep learning has

revolutionized image classification and speech recognition. It is reasonable to expect

similar success in pervasive computing [41]. Earlier research showed that deep learning
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can be applied to data from mobile phone sensors or an accelerometer for recognition

of person’s simple physical activities [4, 12]. No system has yet been developed that

combines deep learning and RFID for activity recognition during complex work, such

as patient care, instead of simple physical activities like sitting or standing. We devel-

oped a deep learning system in a setting similar to one we previously studied [52] and

achieved better performance on medical activity recognition compared with existing

research.

2.3 Region-based Activity Recognition

Besides mobile sensors, the computer vision is also widely used for activity recognition.

The computer vision based activity recognition approaches can be roughly divided into

two classes: representation based and deep learning based [30]. Representation-based

approaches rely on crafted features and descriptors that face generalization issues. The

body skeleton and joints provided by the Kinect sensor [94] are often used for activity

recognition as a representation of body posture [80]. Due to the variety of application

environments, these features and skeletons may fail to generalize and lead to recognition

errors.

Deep learning has been recently applied to activity recognition, initially using single

images independently [121], that ignores the temporal associations of activities. Sub-

sequent ConvNet research used approaches that learned the temporal associations by

feeding in video frames stacked over a time window [38]. This approach could only

model short-range temporal associations of activities in short video clips. Fusion-over-

time strategies partially addressed this issue by stacking the features extracted from

video frames and using slow fusion [38]. Recurrent neural networks and long-short-term

memory networks (LSTMs) also were used for modeling long-range temporal associa-

tions. The ConvNet-LSTM structure was used for activity recognition with different

types of input (RGB video, mobile sensor data) [56, 93, 103].

Most existing research treated the activity recognition as a classification problem

performed within a black-box. It is difficult to tell whether this model learned the actual
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activity related features or over-fitted to the background features. Previous research has

focused on visualizing and understanding the trained ConvNet [115] and LSTM [37],

and the learned feature maps demonstrated that the neural network learned the features

of both activity and its surroundings. Generating the correct label on the testing set

with limited testing data does not prove the model learned the activity; therefore, this

system may not be generalizable. This problem is particularly noticeable for small-size

datasets.

Our approach to activity recognition draws from several existing ideas. The region

proposal method [121, 62] requires a pre-trained object recognition model for region

generating (usually trained on ImageNet [90]). The regions containing the target (and

possibly unrelated people or objects) are generated, and a secondary network takes the

generated regions and their relative location for textual image description or activity

recognition. Unlike this approach, we only generated the activity region for training

the activity recognition model. Other research has relied on the use of trajectory

information to distinguish people from background, and multiple descriptors for action

detection [107, 58], or has used an LSTM autoencoder to help the supervised learning

[98]. Because not all the people in the scene may be involved in the activity, we first

generate masks that only outline the activity location or the performer’s role in a team

instead of simply segmenting the people from the background.

Our approach first mines additional information (activity location or team mem-

bers’ roles) and then does activity recognition based on both inputs and this additional

information. We used a per-pixel mapping strategy for activity localization or team

role labeling, similar to semantic segmentation that distinguishes foreground and back-

ground, or image-to-image mapping [34]. Image segmentation previously used fully-

convolutional networks with convolution and deconvolution [62]. More recent state-of-

the-art research used GAN-based generative structures [66, 24] for the image-to-image

mapping [34] and segmentation [64]. Our work is novel in that we trained the system

to find the activity location information from input data for activity recognition.
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2.4 Attention based Activity Recognition

The research for activity recognition started with feature extraction from different sen-

sor data; many features were proposed [13, 102]. However, most early activity recogni-

tion systems were neither scalable nor generalizable because the feature extraction and

selection was often arbitrary and not transferable.

Deep learning, with the ability to automatically learn the features from raw input

data and capacity to hold mil-lions of weights to generalize to large-scale datasets,

has achieved state-of-the-art performance in many fields [57, 112]. Although the deep

neural network is able to ex-tract many features, it is hard for system to determine

which features to rely on for activity recognition. In some cases, only the activity

performer provides useful information in a frame with multiple irrelevant people [65],

while in other cases like cooking only hand gestures provide information [100]. To

address this issue, some research proposed activity masks generated by a conditional

GAN to assist ConvNets in activity recognition [35]. However, training a GAN mask

generator requires a large number of ground truth masks, which are difficult to obtain.

Another approach is to train an attention subnetwork that generates attention regions

that highlighting the most important feature subset [112]. We modified the ConvNet

attention module to make them work with both images and sensor sequential data while

maintaining the ease of visualizing and tuning. The deep attention neural network can

use different sensor modalities together for activity recognition [15, 87]. There are

several proposed fusion strategies to make use of data from different sensors, including

voting [11] and ensemble [73] methods. For deep learning, the most commonly used

strategy is the multimodal network, which merges the features extracted by different

network branches [26, 106]. As an extension, we propose modality attention on the

fusion strategy to learn and score the importance of different branches.

Supervised training is commonly used for activity recognition tasks, but regular

supervised learning tunes the weights associated with prediction and attention simulta-

neously. Unlike the GAN approach where the generated mask is penalized by a ground

truth mask [11], there is no guide directly associated with attention map generation
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in attention models [112]. As a result, the attention model might generate attentions

that are not associated with activity. We propose an asynchronous tuning method that

tunes the attention generating and recognition separately to ensure the model learns

to recognize based on associated features. Another issue with activity recognition is

temporal association modeling. As argued in [72], many activity clips contain time

instances that are not directly associated with a certain activity. However, to use them

for supervised frame-labeling training, these instances are often labeled with the same

ground truth label as the entire video. The system then receives loss from these time

instances where the activity has either not started yet or has already finished. This

problem is hard to address with supervised learning if we want to make per-instance

predictions, because we have to assign a label for each time instance during training.

However, this is a common problem in the domain of reinforcement learning, e.g. train-

ing machine for game playing [68], where a machine is trained to make a control action

for each time instance without using labels for each time in-stance. The reinforcement

learning tunes the model based on accumulated rewards and penalty. We introduce the

use of DQN for tuning instead of supervised learning. DQN is one type of reinforce-

ment learning which has demonstrated proficiency in control systems, game playing,

and many other problems [68, 67]. We modified the DQN for network tuning based

on the accumulated prediction results so that the network does not receive additional

penalty for time instances with no activity in progress.
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Chapter 3

Process Progress Estimation

3.1 Overview of Chapter

A sequence of activities that achieves a certain goal represents a work process. For

instance, the trauma resuscitation process consists of pre-arrival, patient-arrival, pri-

mary survey, secondary survey, post-secondary survey, and patient-leave phases; each

phase consists of one or more activities. Several successful systems have been intro-

duced for image classification [96] and activity recognition [55]. We take a further

step in this analysis by developing a system for real-time process progress estimation.

Online progress estimation has applications for many real-world problems, including

automated human-computer interaction systems. For example, online detection of a

sports process phase can be used to guide the camera on overhead drones for the video

broadcasting. Online progress information for a medical process, such as the process

completeness and remaining time, can help medical providers organize resources and

schedule treatment timing. We designed and evaluated our sensor-based system to

estimate the work progress in three ways:

1. Process completeness, indicating the percentage completion of the whole pro-

cess.

2. Process phase, indicating a major stage of the process progress. A phase may

contain one or more logically-grouped activities that achieve a larger goal.

3. The remaining-time, representing the estimated time left until the process

finishes.

Work processes can be roughly categorized into two types: sequential and parallel.
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Our current work does not model parallel processes. Linear sequential processes can

be partitioned into a set of “phases” that occur one after another in a fixed order. For

example, during the trauma resuscitation process or the sports event broadcasting pro-

cess, the phases are rarely skipped or duplicated. Nonlinear sequential processes allow

phases to be repeated or performed in an arbitrary order. For example, when making a

salad, the mixing, vegetable chopping, and sauce preparation can be performed in any

order before serving. We focused on characterizing linear processes.

Previous process-phase detectors can be roughly categorized into three types: man-

ual, shallow-modeled, and deep-learning-based. The first type used manually-generated

event logs or medical equipment signals [20, 75]. As these systems worked with rela-

tively noise-free datasets, they achieved good performance. However, manual detectors

require manual log generation or signals from specific medical equipment, making them

hard to implement and generalize. The use of sensors addressed these two issues at a

cost: sensor data may be hard to obtain (e.g., wearable sensors are not preferred in

medical settings as they may interfere with the work), and are subject to the hardware

or environmental noise. The second type of phase detectors used shallow classifiers

to predict phases from noisy sensor data [20, 10, 83]. Yet, the features and model

selection were often arbitrary and difficult to generalize, because different researchers

using different features can only claim that those features worked best for their specific

scenarios [55]. Due to its success in the image classification and speech recognition,

deep learning and automatic feature extraction has given rise to the third type of phase

detectors. All three approaches treated the process phase detection as a discrete clas-

sification problem, which overlooks the continuous nature of the processes and misses

the associations between process phases and percentage completion. These limitations

have caused systems to return logically impossible predictions [53].

We address these issues and estimate process completeness as a continuous variable.

Our system is designed to work with sensor data, as opposed to manually-generated

event logs. We designed a multimodal structure to make the system compatible with

different types of input sources. Features in our model are automatically learned using

a deep neural network. We introduce a deep regression model to continuously estimate
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process completeness, and the rectified hyperbolic tangent (rtanh) activation function

to bound the regression output values in the context of process completeness. The

system detects the current process phase based on the currently estimated process

completeness using a Gaussian mixture model (GMM). Our model for completeness

estimation is trained on the regression error as well as a novel conditional loss from the

phase prediction. Finally, the remaining time is estimated during run-time using the

calculated process execution speed.

3.2 System Structure

Our system consists of four main parts (Fig. 3.1):

CNN LSTM

Feature Extraction

Feature

Overall 
Completeness

Completeness Estimation

Regression
(rtanh)

GMM Based Decision-Making Phase

Process Phase Detection

Process Speed Estimation Time-
Remaining

Time-Remaining Estimation

Figure 3.1: The overall system structure used for modeling process progress
estimation.

Feature extraction: Because we used different sensors for data collection in differ-

ent applications, the first step is the data representation and feature extraction. Instead

of using manually crafted features, we used a CNN and LSTM based model to learn

the spatio-temporal features from the input data [91]. We implemented a multimodal

structure to fuse the features extracted from different sensor data.

Completeness estimation: The system has a deep regression model that directly

produces a single regression output value. We introduced the rtanh activation function

for bounding the neuron output to a valid range.

Phase detection: The system takes estimated completeness as input and uses a

probabilistic GMM inference to detect the process phase. Phase detection provides a

conditional loss function to help train the regression model.

Remaining-time estimation: Our system dynamically updates the estimation of

remaining time based on the observed speed of process execution, which we defined as

the rate at which one percent of the process is being accomplished.



18

3.2.1 Feature Extraction

Similar to the activity recognition [38, 55], our estimation of the process progress relies

on both spatial and temporal features. The spatial features in a video frame define the

activity at a time instance, while the temporal features from consecutive frames define

a phase in the process. The learnable filters in CNNs are commonly used to extract

the spatial features [117], and LSTMs are often used to model temporal dependencies

of the sequential data [37].

Our trauma resuscitation dataset contains low-resolution depth images and audio

from a Kinect [53]. We chose the Kinect depth sensor for our medical application

because it is privacy-preserving (does not capture any facial details). Other types of

sensors can be easily combined by introducing additional multimodal branches into our

system. During every second, the video input branch was directly fed depth frames,

while the audio branch was fed MFSC feature maps [3] for feature extraction. A CNN-

LSTM structure then performed spatio-temporal feature extraction, where we used a

pre-trained CNN structure (AlexNet [40]), followed by multiple LSTM layers. The

features extracted from different sensors are subsequently combined in a fusion layer,

following our previous implementation [53] (Fig. 3.2, top).

Depth Frames
(1 frame per second)

WAV Extract MFSC 

CNMC dataset and preprocessing

Conv (5×5×64)
Pool(2×2)
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Pool(2×2)

Conv (5×5×64)
Pool(2×2)

Conv (3×3×128)
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Conv (3×3×256) Conv (3×3×256)
Pool(2×2)

LSTM
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LSTM
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RGB Frames
(1 frame per second)

WAV Extract MFSC 

Olympic swimming dataset 
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Pool(2×2)
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Pool(2×2)
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Pool(2×2)
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Conv3-256
Conv3-256
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Conv3-512
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Pool(2×2)

Conv3-512
Conv3-512
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Figure 3.2: Feature extraction framework for the trauma resuscitation dataset (top)
and the Olympic swimming dataset (bottom).

The Olympic swimming dataset was collected from YouTube videos recorded by

different types of cameras (including cell phone cameras and professional cameras). This

dataset has videos of different resolutions and audio recorded by cameras at different

distances. Due to our hardware limitation (described in Section 3.5 in Section 3.5), we
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downsampled the video frames from 25 fps to 10 fps and resized them to 256× 256px.

Instead of AlexNet, we used a deeper VGG Net (Fig. 3.2, bottom) with pre-trained

weights [96] for image feature extraction (Fig. 3.2), because RGB images contain more

textural details than depth images.

3.2.2 Process Regression and Completeness Estimation

Unlike image classification or single-image activity recognition where each sample cor-

responds to an individual image, process completeness is a continuous variable which

cannot be estimated as a discrete classification problem. For this reason, we introduce

a regression-fitting model that uses the extracted spatio-temporal features for process

completeness estimation (Fig. 3.3, completeness estimation part).

Extracted 
feature

Fully 
Connected 1

Fully 
Connected 2

Completeness Estimation

+ !"##$

!"##%

rtanh
GMM Based 

Decision-
Making

Completeness

Phase Detection

Phase

!"##

Figure 3.3: The system diagram for completeness estimation and phase prediction.
The Lossc represents the loss from completeness regression error and the Lossp

represents the loss from phase prediction error.

Our deep neural network extracts features from input data and performs regres-

sion using an activation function which generates the regression value ŷ ∈ [0, 1]. The

activation of regression neuron can be expressed as:

ŷ = f(ωTφ+ b) (3.1)

where ω (N × 1) is the weight vector and φ (N × 1) is the output of the last fully

connected layer (Fig. 3.3, fully connected layer 2, with N neurons in total), b is the bias

term and f(·) is the activation function of the output neuron. To model the process

progress, the activation function must have the following properties: (1) the activation

output should be zero if the process has not yet started (e.g. pre-arrival phase of the

trauma resuscitation); (2) the regression value changes continuously from zero to one
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as the process proceeds; and (3) the activation should be equal or close to one, with

a proper strategy (e.g., thresholding) for when the process has been completed (e.g.,

after the patient left the trauma room).

We modified the hyperbolic tangent function for this purpose, and we named it the

rectified hyperbolic tangent (rtanh) function:

rtanh(x) = max(0, tanh(x)) = max(0,
e2x − 1

e2x + 1
) (3.2)

This activation function returns zero for negative inputs and positive values up to

one for positive inputs. This value range makes it suitable for returning a progress

completeness percentage ranging from 0% to 100%. The sigmoid function has the

same value range, but its range of positive values is distributed across all real numbers,

making it slower to train. In addition, during the backpropagation, the gradient of

rtanh activation can better prevent gradient vanishing than the sigmoid because the

derivative of tanh ≤ 1 and of sigmoid ≤ 0.25 [32]. This property will lead to a faster

training under the same setting of the learning rate. To compare the performance of the

rtanh and sigmoid functions, we initialized the neural network parameters to the same

value and trained the network using rtanh and sigmoid with the same training and

testing split of the data. Our experiments showed that the two activations eventually

led to similar accuracies, but the convergence time (the time it takes until accuracy

stabilizes for 3 epochs) using rtanh was 30% shorter than that using sigmoid, because

of rtanh’s steeper gradient. As we focused on modeling a linear process, the current

completeness value should be increasing compared to the previous completeness value.

We used an LSTM after the CNN to retain the estimated progress information and

help the system with tracking the increasing completeness trend.

Similar to a classifier, a regression model can be trained using backpropagation.

When generating the ground truth label, the completeness is labeled differently de-

pending on the application. For example, the completeness of a trauma resuscitation

equals zero before the patient entered the room and remains at one after the patient

left. Given the time at which the data were collected relative to the beginning and

end of a process enactment, we can label the data from a certain time instance with
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the completeness range to which this time instance belonged. We divided the data

into twenty 5%-segments, and labeled each segment with an associated completeness

between 0% (process start) and 100% (process end), forming a stepwise function with

5% increments. The output of the rtanh neuron can be directly used as the regression

result (Fig. 3.3, decision-making part).

To make the regression smooth as the completeness progresses for real world pro-

cesses, we applied a Gaussian smooth filter after the rtanh neuron. The loss from

completeness estimation error Lossc can be expressed as:

Lossc(θ = {w, b}, D) =

∑|D|
i=0 abs(R(θ = {w, b}, Di)− pi)

|D|
(3.3)

where the θ = {w, b} denotes the model with parameter set θ, and D is the input

dataset. R(θ = {w, b}, Di) denotes the regression output from the model with parame-

ter set θ on dataset D at time instance i as input. pi denotes the ith percentage label

for regression in terms of process completion. We used the mean absolute error for the

loss, which is the abs(·) term in the loss function. Although other error measurements

such as mean square error could be used, the square error would inhibit training by

making the losses even smaller (considering that errors ∈ [0, 1]).

3.2.3 Phase Detection and Conditional Loss

With the completeness estimated by the regression model, we need to predict the dis-

crete phase based on the continuous completeness estimation results. A separate clas-

sification model using the same extracted features can be used for phase detection [53],

but performing classification without considering the completeness ignores the temporal

associations between the extracted process progress features.

Given that the processes we considered are linear, we found that the duration of

each phase is similar to the Gaussian distribution. Therefore, we assumed a Gaussian

distribution for the duration of each phase, which allows us to use a Gaussian mixture

model (GMM) with one centroid per phase for phase prediction (Fig. 3.4, left & middle).

On the other hand, this GMM framework does not generalize to nonlinear processes
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with duplicate or rearrangeable phases (Fig. 3.4, right EndoVis dataset). Nonlinear

processes require modifications in the GMM-based model as discussed in Section.
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Figure 3.4: The probability for each phase plotted against the normalized process
duration for the trauma resuscitation dataset (left) and the Olympic swimming
dataset (middle) and EndoVis dataset (right) that contains nonlinear process.

Training the GMM [8] only requires the occurrence distribution for each phase on

the normalized process duration scale, which can be obtained from the ground truth

data. We can pre-train the GMM using completeness ground truth and establish the

probabilistic association between the overall completeness and process phase. The phase

recognition results can be calculated from:

p̂ = argmax1≤k≤K{log(wk)− 1

2
log(det(2πΣk))− 1

2
(x− µk)TΣ−1k (x− µk)} (3.4)

where p̂ is the predicted phase. x is the completeness estimated by the regression

model. wk is the weight for the kth Gaussian kernel. µk and Σk denote the mean vector

and the covariance matrix for the kth Gaussian kernel. K is the total number of phases.

argmax1≤k≤K{·} denotes the function finding the index k with the largest likelihood

among all K indices.

With equation 3.4 and the regression result, we can directly use the GMM for phase

prediction (Fig. 3.4). We only applied the GMM for four out of the six phases in the

trauma resuscitation dataset, removing the pre-arrival and patient-leave phases. This

is because the duration of the pre-arrival phase depends on the transport time from the

injury scene to the hospital, which was not recorded in the dataset; and the patient-

leave phase is coded as an ending signal lasting only one second. Our GMM-based

phase prediction approach relies only on the regression result, and the phase prediction

error does not impact the backpropagation training process used to tune the regression.
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The regression model can be trained based on both the completeness estimation error

and the phase prediction error. Based on the assumption that the regression value

is correct, the system generates no additional loss if the GMM-based phase detection

result is correct. Otherwise, an additional loss is incurred, calculated as the distance

from the regression result to the mean of occurrence distribution for the actual current

phase. The loss from phase estimation error Lossp is conditional based on the phase

detection result and can be expressed as:

Lossp =


0, p̂ = p

|R(Dp)− µp|, p̂ 6= p

(3.5)

where the p̂ denotes the GMM-predicted phase and p is the actual current phase. Dp

is the input data for phase p and R(Dp) denotes the regression model output. The µp is

the mean of the Gaussian distribution for the actual current phase p. By combining the

loss from regression error and the classification error, the regression model can be tuned

to make completeness estimations and phase predictions that obey a logical order of

phases. During the training, we added weights α for Lossc and β for Lossp in equation

3.6:

Loss = αLossc + βLossp (3.6)

When α = 1 and β = 0, the model becomes a regressor trained only on the regression

error. Alternatively, when α = 0 and β = 1, the model becomes a classifier trained only

on the classification error. Training the system with a larger α would cause the system to

prioritize overall completeness regression instead of minimizing phase prediction error,

and a larger β would do the opposite. We determined α, β empirically by minimizing the

completeness estimation and phase classification error based on a small subset of each

dataset. We used 10 training cases from both datasets to determine the ratio of α vs. β.

Fig. 3.5 shows the averaged completeness estimation error and process phase detection

accuracy with F1-score on the Olympic swimming dataset. We selected α = 0.6 and

β = 0.4 which achieved the best balance between the completeness and phase detection.
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Figure 3.5: The process completeness estimation error and phase detection accuracy
with F1-score using different α, β values.

3.2.4 The Remaining Time Estimation

The speed of process performance may change, which means that our remaining-time

estimator requires a dynamically-updated estimation strategy. We estimated the re-

maining time by calculating the average speed of completing 1% of the process. If ρ

represents the current completeness (in percentage) and τ is the time elapsed since the

start, the remaining time t can be estimated as:

t = (τ/ρ)× (1− ρ) (3.7)

where (τ/ρ) denotes the time needed to make 1% overall progress and (1−ρ) denotes

the remaining percentage for the process to finish. During the runtime, we updated the

remaining-time estimation for every second.

3.2.5 Implementation

We implemented our model with the Keras framework using TensorFlow backend. We

implemented our rtanh activation and loss functions using the tensor interfaces of the

Keras. As proposed in previous research [40], we used the rectified linear unit (ReLU) as

our CNN activation function. For the trauma resuscitation dataset, we initialized and

trained the model using a single GTX 1080 GPU. For the YouTube Olympic swimming

dataset that has a larger input frame resolution and larger network structure, we used

dual GTX 1080 GPUs for training. We used the weights trained in VGG Net [96]

to initialize the VGG Net for RGB frame processing (Fig. 3.2, bottom). The Adam

optimizer [39] was implemented with initial learning rate of 0.001 and a decay of 10−8.
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We configured the system to stop automatically if the performance did not change for

three consecutive epochs using the Keras callback function.

Due to the large model size, we adopted the dropout strategy [97] in the network

to avoid overfitting. We also partitioned the training and testing sets by whole case

instead of segmenting each case for evaluation, to minimize similarities between training

and testing sets, as suggested in [53].

Unlike image classification models with a target in each training image, process

phase classification may be significantly different from case to case (e.g., treating pa-

tients with different injuries or performing different swimming styles). Entering data

into the classifier simultaneously causes slow convergence. For this reason, we used a

training strategy: we initially fed only two process enactment cases into the classifier.

When the system achieved a specified loss value (manually defined), we fed one more

case into the classifier and kept feeding in new cases after each step until all cases have

been used. Using this approach, the model learned the specific scenarios rapidly and

later was able to discriminate between similar classes in other cases.

3.3 Experimental Results

3.3.1 Data Collection

Trauma Resuscitation Dataset: Our trauma resuscitation dataset was collected in

a trauma room at the Children’s National Medical Center in Washington D.C. Use of

this data and its related research have been approved by the hospital’s IRB. 150 trauma

resuscitation cases were manually coded as the ground truth. The data was collected

through a Kinect depth sensor mounted on the side wall of the trauma room [55, 53]

(Fig. 3.6, left). Of the 150 trauma resuscitation cases, 50 cases had synchronized depth

data and 35 from these 50 cases also had the synchronized audio data. We used the

150 coded cases to generate the GMM phase distributions (Fig. 3.4), and 35 cases with

both depth video and audio data for model training and testing. Given the different

patient conditions and times of the day, the durations of resuscitation phases varied

(Fig. 3.6, right). The system recorded depth video at 1 fps to save storage space.
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Olympic Swimming Dataset: The Olympic swimming dataset includes 60 videos

from 2004 to 2016 downloaded from YouTube. The videos were recorded by differ-

ent devices and at different angles and distances. We coded the ground truth for

the six phases of swimming competitions manually. We manually edited some of the

downloaded videos to ensure that all the video clips contained only swimming-related

content. Because some videos did not record the pre-competition phase or result phase,

these cases did not have all six phases.

Kinect 
V2

Intel NUC

Router Trauma Resuscitation Dataset

Olympic Swimming Dataset

Figure 3.6: The trauma room with our Kinect installed (left) and the boxplot of phase
duration in completeness percentage for trauma resuscitation dataset and Olympic

swimming dataset (right).

3.3.2 Evaluation of Process Progress Estimation

We evaluated the proposed system with the trauma resuscitation dataset and the

Olympic swimming dataset for estimating overall completeness, phase, and the re-

maining time. Because the dataset is imbalanced, we used the weighted average for all

evaluations.

Completeness Estimation

We first calculated the overall completeness estimation error (Mean Absolute Error

(MAE)) of the system by inputting 20% of cases into the trained network. Our system

achieved an average 12.65% overall completeness error for trauma resuscitations and

6.32% error for Olympic swimming dataset. For the MAE of the completeness estima-

tion with normalized process duration of testing cases (Fig. 3.7), a large MAE indicates



27

that the system had difficulty distinguishing certain scenarios and a large variance indi-

cates that the system did not generalize well for the testing cases. We further evaluated

the completeness estimation error on each process phase (Fig. 3.8), and showed that

the system performed well in the starting and ending phases, which is due to the ability

of our proposed rtanh function to hold regression output at zero (starting) and one

(ending). The high error rate in the post-secondary phase may be related to the high

similarity in appearance between the activities in secondary and post-secondary phases.

Different types of sensors could be introduced to improve process progress estimation.

The competition and replay phases of the Olympic swimming dataset had a higher error

rate because replay phase is a slow-motion version of the competition phase and at low

frame rates (e.g. 1 fps), the two phases are barely distinguishable. In addition, having

higher-frame-rate videos containing more information can reduce overfitting [97]. To

confirm this, we sampled the video at 1, 5 and 10 fps to retrain the system using the

same setting of the parameters. The results showed that a higher frame rate signifi-

cantly decreases completeness estimation error during the replay phase (Fig. 3.8). In

the rest of this paper, we used 10 fps for the Olympic swimming dataset and 1 fps for

the trauma resuscitation dataset, unless specified otherwise.

These results suggest that the performance of progress completeness estimation can

be further improved by (1) Adding other sensors to provide more input features and

better distinguish the phases with similar sensor data. (2) Using a higher frame rate for

data preprocessing to retain more temporal associations and prevent overfitting. As a

Trauma Resuscitation Dataset Olympic Swimming Dataset

C
om

pl
et

en
es

s 
Es

ti
m

at
io

n 
Er

ro
r

C
om

pl
et

en
es

s 
Es

ti
m

at
io

n 
Er

ro
r

Progress in Percentage Progress in Percentage 

Figure 3.7: Mean (solid line) and Variance (shaded region) of completeness estimation
error plotted against normalized duration of process enactment.
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consequence, the computational resources and storage space cost would increase. Based

on our experiments, a 5-minute video sampled at 10 fps with 256 × 256px resolution

takes more than 8GB of storage; (3) Using deeper models to extract more abstract

features. As shown in computer vision research, using ResNet [29] instead of VGG may

lead to better performance.

We performed additional experiments to confirm that our system structure is supe-

rior to the shallow models. We used the common shallow regressors of Support Vector

Machine (SVM) and Random Forest and we trained them with the same raw video

and audio data used for our deep model. Our deep model achieved significantly better

accuracy than the shallow models, confirming that the CNN-LSTM extracts better mul-

timodal features (Fig. 3.8). The shallow models faced difficulties extracting features

from the raw input, and manually crafted features would be necessary to enhance their

performance.

Phase Detection

To evaluate the performance of process phase detection, we first generated the confusion

matrices of the phase prediction results (Fig. 3.9). Our system achieved an average

86.06% phase prediction accuracy for trauma resuscitation data and 87.99% for the

Olympic swimming data. Our analysis of the confusion matrices showed that our

system is able to make logical phase predictions (Fig. 3.9). The zero values in most

of the upper and lower triangles of the confusion matrices indicate that the system

predictions rarely jumped between non-adjacent phases. This observation confirmed

that our activation function helps maintain the estimated completeness range, and the
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Confusion Matrix of Trauma Resuscitation Dataset Confusion Matrix of Olympic Swimming Dataset

PA A P S PS PL

PA 95.8 4.2 0 0 0 0

A 24.1 43.2 32.6 0 0 0

P 0 12.8 70.9 16.3 0 0

S 0 0 36.4 63.6 0 0

PS 0 0 0 41.3 45.1 5.0

PL 0 0 0 0 6.9 93.1

PC I P C RE R

PC 76.2 23.8 0 0 0 0

I 42.1 29.8 28.1 0 0 0

P 0 0 100.0 0 0 0

C 0 0 16.4 21.2 62.3 0

RE 0 0 0 0 90. 8 9.2

R 0 0 0 0 10.3 89.7

PC I P C RE R

PC 77.8 20.6 1.6 0 0 0

I 9.7 76.2 14.2 0 0 0

P 4.7 19.4 50.2 25.7 0 0

C 0 3.9 14.1 81.2 0.7 0

RE 0 0 0 67.7 32.3 0

R 0 0 0 5.3 28.4 66.2

Figure 3.9: The confusion matrices for predicting phases of trauma resuscitation and
swimming competition.

LSTM enforces an ascending overall completeness prediction. By further comparing

the confusion matrices of both datasets, we found that: (1) The system accurately

predicted the starting and ending phases, due to the rtanh’s ability to maintain the

zeros and ones for the associated starting and ending phases. (2) The phase detection

performance is associated with the regression performance. For example, the regression

and phase detection systems both poorly predicted the post-secondary phase compared

to other phases of trauma resuscitation (Fig. 3.8). This is because the GMM took the

process completeness estimation results as the input for process phase detection, and the

error made in the process completeness estimation was propagated to the process phase

detection. (3) The system achieved a similar performance for both datasets, despite the

differences in camera mobility. The trauma resuscitation dataset was recorded by a fixed

camera, while the Olympic swimming dataset was recorded by moving cameras. The

fixed camera captured the activity’s scene and provided continuous activity sequence

information, while the moving camera might capture some discontinuous unrelated

data. Our approach achieved the similar performance under both scenarios, showing

its potential for analyzing the temporal activity processes regardless of the video input’s

changing viewpoints, due to the ability of CNN-LSTM structure to learn and extract

the representative features.

We then analyzed how our model outperformed the shallow models in learning the

features automatically. Because process phases generally have different durations and
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the amount of available data is imbalanced for different phases, we used three differ-

ent metrics to perform a comprehensive evaluation. The F-measure (weighted average

scores for precision, recall, and F-score) and 2SET metrics [109] were used to break

down the wrongly classified instances into fragmentation, over-filling, and under-filling

[109] (Table 3.1). Because the transition between process phases is instantaneous, the

insertion, deletion, and merging metrics do not apply to our datasets [81]. To com-

pensate for the F-measure’s disregard for false positive samples, we used informedness,

markdness, Matthews correlation coefficient (MCC) for a more comprehensive evalua-

tion (Table 3.1).

Table 3.1: Phase prediction performance comparison using different modalities. The
shallow classifier based results are shaded.

Input Data
Source

Prec. Rec. F1-
s.

Info. Mark.MCC Frag. Under.Over.

Trauma audio 0.33 0.37 0.17 0.09 0.06 0.07 0.01 0.13 0.13

Trauma video 0.63 0.57 0.51 0.35 0.43 0.39 0.01 0.10 0.15

Trauma audio
& video

0.76 0.68 0.67 0.35 0.54 0.54 0.00 0.08 0.12

Swim audio 0.41 0.40 0.32 0.29 0.29 0.26 0.00 0.11 0.23

Swim video 0.58 0.55 0.48 0.37 0.43 0.39 0.00 0.09 0.24

Swim audio &
video

0.67 0.70 0.58 0.52 0.53 0.48 0.00 0.06 0.12

Trauma audio &
video (SVM)

0.09 0.37 0.09 0.07 0.03 0.07 0.03 0.01 0.13

Trauma audio &
video (SVM)*

0.46 0.22 0.30 0.16 0.05 0.06 0.02 0.16 0.06

Trauma audio &
video (RF)

0.17 0.25 0.16 0.01 0.06 0.01 0.08 0.17 0.01

Trauma audio &
video (RF)*

0.44 0.29 0.34 0.12 0.08 0.03 0.02 0.16 0.02

Swim audio &
video (SVM)

0.59 0.24 0.24 0.07 0.18 0.17 0.00 0.15 0.16

Swim audio &
video (SVM)*

0.61 0.27 0.27 0.13 0.30 0.31 0.00 0.15 0.15

Swim audio &
video (RF)

0.34 0.22 0.14 0.01 0.08 0.04 0.07 0.14 0.04

Swim audio &
video (RF)*

0.46 0.30 0.21 0.03 0.14 0.07 0.00 0.16 0.19

*classifier takes the output of last fully connected layer as input.

As previously mentioned, shallow-modeled regressor generated significantly higher
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progress completeness estimation errors (Fig. 3.8), which propagated to the phase de-

tection. To focus on the classification comparison, we built shallow phase classifiers

(SVM and Random Forest) using both raw input data and CNN-extracted features

(Fig. 3.3, fully connected layer 2). The comparison of the metrics (Table 3.1) revealed

that (1) Our deep model was able to achieve significantly higher precision and recall;

most predictions were correct and most true instances were detected. (2) Our deep

model achieved higher MCC score, indicating a positive association between the pre-

diction and the ground truth. (3) Our deep model generated predictions with almost no

fragmentation, while the predictions by the shallow classifier sometimes had fragmen-

tations. Considering that there were gaps between the phases, the zero-fragmentation

indicated that our system was able to make logically-ordered phase detection due to

the use of LSTM to model temporal associations of features. Again, since we were

calculating the 2SET scores using one-versus-rest method, the over-filling of one phase

would result in under-filling of an adjacent phase. The over-filling and under-filling were

similar to each other (not equal because we were calculating their weighted averages).

Our deep model achieved lower under-filling and over-filling, demonstrating the ability

to detect the phase transition points more accurately.

Since we used a multimodal structure, we further studied the impact of using single

and both modalities. The results (Table 3.1) showed that our multimodal structure with

all modalities included still outperformed same structure with single input modality;

both video and audio positively contributed to the performance. We observed that the

video-only system performed fairly well for both datasets, but the performance varied

for the audio-only system. This discrepancy was caused by the difference in the audio

quality. In the Olympic swimming dataset, the sound was clear and loud, while the

trauma audio was often noisy and unclear. This was expected because the microphone

array mounted on the side wall of the trauma room was far from the operation area

(patient bed) and was close to an air vent. Noises from the hallway and air vent

were sometimes louder than the medical equipment sounds and medical team’s voices.

In conclusion, using multiple input sources provided helpful information for process

progress modeling, but only helped significantly if those inputs contained noticeable
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and representative features.

Finally, our system performance was compared to that of domain experts. To give

the experts the same information, we started the video clips from the beginning of the

video and stopped at a random time instance before the end. Using this approach, the

domain experts could not use video’s progress bar to estimate the overall completeness.

The comparison was made using depth data from 10 cases. Experts outperformed

our system in the progress estimation when given high resolution (1080p) RGB videos

(Table 3.2, Olympic swimming dataset). This outcome was expected, as the experts

were the ones who generated the ground truth from RGB videos. Several other reasons

contributed to the system’s lower performance. The key reason is that our system did

not use the state-of-the-art deep learning framework for image feature extraction; a

deep ResNet might lead to better performance (we chose VGG-Net due to our limited

computational power). In addition, the experts mentioned using extensive domain

knowledge while making predictions. For example, in the trauma resuscitation dataset,

the primary-survey phase should last less than 5 minutes. Training the system with

both sensor data and domain knowledge could improve the system performance on

process modeling in some domains.

In addition, our system achieved performance comparable to experts for some tasks

under constrained conditions (Table 3.2, Resuscitation Dataset). For example, due to

the privacy concerns, only depth cameras were allowed in the trauma room. Our results

(Table 3.2) showed that experts were more accurate even on depth videos, but also

significantly slower (30 times slower than the machine) at predicting process phases.

Domain experts used specific indicators for process phase detection, such as certain

resuscitation activities or indicative tool usage. Recognizing specific activities requires

both experience and domain knowledge. This knowledge may be hard for a person to

learn only from depth video and audio. It was also difficult for the domain experts to

estimate overall completeness, and almost impossible for them to estimate the remaining

time while our system was able to estimate both.
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Table 3.2: The Comparison of Process Phase Prediction by Domain Experts and Our
System.

System Avg. Ac-
curacy

Avg.
Preci-
sion

Avg. Re-
call

Avg. F1-
Score

Avg.
time/frame

Resuscitation
Expert

0.95 0.85 0.91 0.87 ≈30s

Resuscitation
Machine

0.86 0.72 0.69 0.67 <1s

Olympic Swim
Expert

1 1 1 1 ≈20s

Olympic Swim
Machine

0.88 0.69 0.66 0.68 <1s

The Remaining Time Estimation

We also evaluated the average remaining-time estimation error, which was 7.5 minutes

(14% of total duration) for the trauma resuscitation dataset and 2.2 minutes (18% of

total duration) for the Olympic swimming dataset. Similar to the calculation of com-

pleteness error, we evaluated the remaining-time error by process phase (Fig. 3.10). We

found that the remaining-time estimation error was not associated with phase detection

error, but with completeness estimation error. A small remaining-time estimation error

in an earlier stage may lead to a large estimation error in the subsequent phases, as the

estimated process speed will be multiplied by the percentage left in the process. Com-

paring the remaining-time estimation error of the trauma resuscitation dataset with

the Olympic swimming dataset, we found that the error was also associated with pro-

cess length (Fig. 3.6, right); the longer processes had larger remaining-time estimation

errors.

3.3.3 Comparison of Phase Prediction to Previous Work

Since we were the first to attempt the estimation of completeness and remaining-time,

we only compared the performance of process phase detection with our previous research

[53]. The same datasets and training-testing splits were used for this comparison (6-

phase trauma resuscitation [53], 9-phase EndoTube dataset [105] and 8-phase TUM

LapChole dataset [99]). Some evaluation scores were not reported in the original papers,
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Figure 3.10: Estimated time error for different datasets.

e.g., the EndoNet handled first two phases as a single phase, and the averaging methods

(average or weighted average) were not specified in the previous publications. Therefore,

we reimplemented the models using the same training-testing splits [105, 99] to make

the comparison fair.

Our current model achieved significantly better performance compared to our previ-

ous model [53] (Fig. 3.11). A major drawback of the previous work was its reliance on

spatial information and the omission of temporal associations [53]. Our previous model

[53] could make incorrect predictions that contradicted common sense, e.g., predicting

the primary-survey phase before patient arrival. To address this issue, we previously

proposed a constraint softmax layer. Because the constraint softmax requires informa-

tion across the window centered at the current time instance, the decision making must

wait for the future data. With such a limitation, our previous system could only be

used for post-event analysis. Our current system instead relies on a regression curve

designed to generate ascending values between [0, 1], enforcing logically ordered pre-

dictions (i.e., patient arrival will happen before the primary-survey). Regression for

completeness can be generated for every frame. Thus, our current system can work on-

line. We further compared the phase prediction performance (Fig. 3.11). The results

showed that our current system outperformed the existing systems (Table 3.3). Our

current system maintained the similar F-score for pre-arrival and patient-leave phases,

but significantly improved the scores for other phases.

We next compared our current system using the EndoTube dataset [105], and the
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TUM LapChole dataset [99]. Since both datasets contain repeating workflows (repeat-

edly performed surgical phases), our GMM based model did not work well on such

datasets and could not compete with the previous research. This confirmed that the

GMM cannot model nonlinear processes, because a single Gaussian distribution does

not fit well to repeated phases. We slightly modified our current system by using an-

other LSTM model instead of GMM for process phase detection and achieved slightly

better performance compared to the existing systems.
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Figure 3.11: Performance comparison of our previous (classification with constraint
softmax [53]) and current models.

We finally compared our system with existing phase-detection systems (Table 3.3).

We were unable to reproduce their results because they didn’t publish their implemen-

tation or datasets, so we used their reported results in this paper for comparison. Since

these existing systems were not evaluated on the same dataset, the reported evalua-

tion scores might not reflect the system performance in each setting but could provide

a general understanding of phase detection performance using different methods. We

noticed that the system with the best performance [20] could predict high-level phases

only using manually generated low-level activity logs. This is a significant limitation

for real-world applications: automatically generated low-level activity logs using sen-

sor data might contain errors, and may significantly influence the system performance.

Moreover, our system is general enough to work with all types of medical resuscitations.

Previous systems for process phase detection were trained to handle datasets with spe-

cific injury types [75, 99, 105], but our current system is trained on cases with a variety

of patient injury types, ages, and conditions. In terms of data collection, our system

uses the economical, easily deployed, and commercially available depth camera with

microphone array, while other early systems required human input, specific medical
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equipment, or obtrusive wearable sensors.

3.4 Summary

We introduced a system for estimating the progress of complex processes. We provided

two real-world datasets collected from different commercially available sensors and used

several published datasets to evaluate our system. Our system outperformed existing

systems on two datasets from linear processes and achieved the performance comparable

to existing systems on datasets from nonlinear processes. Our system can be applied

in many real-world applications, providing essential information for advanced human-

computer interaction. We deployed this system in a hospital trauma room for online

resuscitation progress estimation and discussed potential extensions of the system. The

paper contributes to the community:

1. A regression-based neural network structure for process completeness estimation.

2. The GMM-based approach and conditional loss that can be used with the regres-

sion model for classification tasks.

3. The detailed system deployment instructions that can be used as a guideline to

transfer the system to other fields.

4. The trauma resuscitation and Olympic swimming datasets will be published with

ground truth labels, and can be used for future studies.

5. A hybrid model that uses deep regression with LSTM instead of GMM to model

nonlinear process with repeating phases.
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Table 3.3: Phase prediction performance comparison using different input modalities.

System Gen*Input Data Model Acc. Prec.Rec. F1-
s.

Trauma Resuscitation
Dataset

Multimodal CNN [53] Yes Depth and
audio

Multimodal
CNN

0.62 0.60 0.51 0.50

Multimodal CNN [53] Yes Depth and
audio

Multimodal
CNN +
constraint
softmax

0.80 0.66 0.64 0.63

Our model for linear
processes

Yes Depth and
audio

CNN-LSTM
Regression

0.86 0.72 0.69 0.67

Endovis Dataset

Endonet [105] Yes Endoscope
video

CNN+HHMM 0.63 0.59 0.61 0.59

Our model for linear
processes

Yes Endoscope
video

CNN-LSTM
Regression

0.66 0.55 0.61 0.51

Our model for nonlinear
processˆ

Yes Endoscope
video

CNN-
LSTM-
LSTM

0.67 0.63 0.59 0.61

TUM LapChole Dataset

CNN based approach
[99]

Yes Laparoscopic
video

AlexNet +
time window

0.72 0.61 0.66 0.63

Our model for linear
processes

Yes Laparoscopic
video

CNN-LSTM
Regression

0.78 0.52 0.61 0.56

Olympic Swimming
Dataset

Our model for linear
processes

Yes Video and
audio

CNN-LSTM
Regression

0.88 0.69 0.66 0.58

Other Previous Re-
search

Phase detection from
low-level activities [20]

No Activity log Decision
Tree

n/a 0.75 0.74 0.74

Surgical phases detec-
tion [10]

No Instrument
signal

HMM 0.83 n/a n/a n/a

Phase recognition using
mobile sensors [6]

No Wearable
sensor data

Decision
Tree

0.77 n/a n/a n/a

Surgical workflow mod-
eling [75]

No Instrument
signal

HMM 0.84 0.85 0.84 n/a

Food preparation activi-
ties recognition [100]

No Video and
accelerome-
ter

Random For-
est

n/a 0.65 0.67 n/a

*Gen, If the system do not requires manually crafted feature as input.
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Chapter 4

Sensor Based Activity Recognition

4.1 Overview of Chapter

Activity recognition in medical settings has been challenging due to potential inter-

ference by tracking devices, privacy concerns, and environmental limitations. Trauma

resuscitation, the initial management of critically injured patients in the emergency de-

partment, is a complex process performed by a medical team under time pressure. Pro-

viding real-time decision support in trauma resuscitation requires strategies for tracking

workflow and alerting teams to errors. Our work has focused on activity recognition as

a key component in developing these strategies.

Previous work on activity recognition has used a range of techniques, including

computer vision for identifying body posture, movement, and location related to differ-

ent activities [48, 40]. Most previous approaches, however, are not practical in clinical

settings. The use of RGB cameras can lead to privacy concerns, visual occlusion, and

problems caused by variable illumination. Active wearable sensors require batteries and

may hinder work. To address these limitations, we developed an activity recognition

approach based on detecting object use. It relies on a common finding that an object

or a combination of objects are related to specific activities (e.g., a thermometer is used

only for measuring temperature). By tracking object use, our method allows activity

recognition without cameras or wearable devices.

Our initial system accomplishes activity recognition purely relies on the passive

RFID in two steps. First, the use status of different objects is determined based on

the RFID information, such as signal strength. Second, activities are predicted based

on the use status of objects. For object-use detection, we used small, inexpensive,

battery-free passive RFID tags attached to medical objects and fixed reader antennas.



39

We placed tags on 10 object types commonly used in trauma resuscitation. Data from

these tags were collected by eight RFID-reader antennas installed in the trauma room

in the emergency department of a trauma center. By reviewing videos, medical experts

of our team coded object-use data and a synchronized medical activity log from trauma

resuscitations. We used these data to build our activity recognition model.

RFID based systems, however, have failed to achieve high accuracy of activity recog-

nition in fast-paced and crowded environments. Two key challenges for RFID-based

activity recognition are: the noise in received signal strength (RSS) that cannot be

filtered out, and the absence of a direct link between the raw RSS values and human

activity—an abstract concept. Similar challenges exist in computer vision for large-

scale image classification and in speech recognition for voice-to-text conversion in noisy

environments. Deep learning [48] introduced in those fields has achieved high levels

of performance [48, 38, 2]. The main difference between deep learning and traditional

machine learning algorithms is that instead of manual feature selection and defining

the rules for making correct predictions, deep learning is able to learn the “right” fea-

tures from large datasets and use them for this purpose. Consistent with the views of

others [41], we believe that deep learning has the potential to be successful for mobile

sensing. In this paper, we apply deep learning to the problem of activity recognition in

a fast-paced real-world environment using only passive RFID.

We present a deep-learning architecture that uses only RFID data for detection of

process phases and activities during trauma resuscitation. The resuscitation process has

five consecutive phases: pre-arrival, patient arrival, primary survey, secondary survey,

and post-secondary survey. Each phase consists of several activities—the specific low-

level tasks performed by care providers that may or may not use medical objects. We

define an activity as the interval during which one or more objects are used explicitly for

patient care, which excludes the preparatory or cleanup manipulation of these objects

[52]. We chose trauma resuscitation as our application domain for two reasons. First,

this complex work setting is prone to errors and inefficiencies and is in need of decision

support. Activity recognition is an essential building block to enable the development

of this type of system. Using computer vision is not preferred for privacy concerns
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and active wearable sensors are not feasible because the user must remember to wear

them, they may interfere with work, and they require maintenance, such as battery

charging. From a research perspective, RFID-based activity recognition has treated

activity recognition as a binary classification problem where a specialized classifier

decides whether or not an activity of a particular type is occurring. These types of

systems, however, may not be scalable to a large number of activities. In addition,

the common approach for activity recognition involves two steps: first detect the use of

objects associated with specific activities by detecting human-to-object-interaction from

sensor data, and then recognize activities based on used objects [52]. The predication

errors made by the system in the first step will be cascaded into second step and impair

the final prediction result.

Our approach for activity recognition uses passive RFID sensing. The RFID tags

need to be strategically placed on objects of interest. Various features have been pro-

posed and classifiers tested for RFID systems in different application settings [52, 79],

which makes it unfeasible to compare their relative efficiency. As a result, feature and

classifier selection for RFID data is often arbitrary. Our research demonstrates a novel

way for activity recognition from RFID data without using manufactured features. To

perform process-phase detection and activity recognition from RFID data, we treated

the process-phase and activity recognition as a multi-class classification problem instead

of extracting manufactured features and cascading object-use detection with activity

prediction.

4.2 RFID-Based Medical Activity Recognition

4.2.1 Methodology

System Structure

Our work started with a two-step approach to medical activity recognition. We first

detected when objects were in use based on RFID data and then made activity predic-

tions based on the type of object manipulation for all 10 objects. To test the system

performance, we semi-randomly selected 70% and 30% as training and testing data,
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and repeated the experiments 10 times with different seeds to achieve random selec-

tion. After the classifier model was trained, activity-recognition predictions were made

as follows (Fig. 4.1):

1. The RFID system recorded RFID data from 8 antennas installed in the trauma

room (Fig. 4.1 (a)).

2. Every second the system extracted 6 features based on RFID data and generated

a feature vector as described in Section III (Fig. 4.1 (b)).

3. The features were used as inputs in the classifiers for object-use prediction (Fig.

4.1 (c)). The object-use prediction results were used as input for activity-recognition

classifiers (Fig. 4.1 (d)).

Figure 4.1: Activity recognition system diagram. (a) RFID system data collection
from 8 antennas installed in the trauma room. (b) Six types of features are extracted
from RFID data and feature vectors are generated. (c) Object-use detection based on

extracted features. (d) Activity recognition classification based on object-use
detection results.

Tagging Strategy

We collected RFID data in a trauma room using two Alien 9900+ readers (with 4 ports)

and 8 Alien ALR-8696 antennas (Fig. 4.2). The RFID readers were mounted inside the

ceiling. Antennas 1 to 7 were mounted on the ceiling, facing down, and Antenna 8 was

mounted on the wall, facing downwards at a 45-degree angle. This arrangement ensured

that all equipment were covered by at least two antennas. The RFID readers and the

computer were connected via a router mounted inside the ceiling. To avoid interference
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among nearby antennas, we configured the system to activate a pair of antennas on

the opposite sides of the room for 1-second each. Because continuous use of the RFID

readers caused the hardware to overheat, an automatic approach was needed to start

the readers only when needed. To address this issue, we installed a Honeywell AUROR

passive infrared sensor (PIR) (Fig. 4.2) to monitor movement in the trauma room. If

motion is detected, the PIR sensor signals the RFID system to start recording and stop

recording after no motion is detected.

Figure 4.2: Left: The antenna configuration in trauma room we used for data
collection. Antennas 1 to 7 are mounted on the ceiling and facing down; antenna 8 is
mounted on the wall and facing 45 degrees to the ground. Right: (a) Direct tagging

on BP Bulb. (B) Multi-tag tagging for thermometer. (c) Holder-slot tagging for
otoscope. (d) Differential tagging for BP cuff.

Both RFID readers were set to collect data with maximum power and sensitivity.

The collected data were written into a file using the format: [timestamp, reader IP,

reader port, RSSI] Each file name was based on timestamp when the RFID reader was

activated to allow synchronization between the recorded RFID data and the ground-

truth data. The ground truth was manually coded by medical experts using videos of

trauma resuscitations. We performed two types of ground-truth coding for each case.

The first type was object-use ground truth, which contained information about the

start and end time of object use, and the object name. We also noted whether the

object was in actual use or manipulated (i.e., being relocated), and if manipulation was

related to medical task [52]. The second type was activity ground truth, which focused

on medical activities performed by trauma team members. We recorded the activity

name, start time, and end time for each activity, as well as the objects used for that
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activity, if any [52].

Feature Extraction

We used a 4-second time window ([(n − 3) : n]seconds) for feature extraction, as the

period for antenna switching is 4 secs (each reader has 4 ports and each port is set to

record data for 1 sec). A feature vector was generated every second based on a 4-second

time window. Feature selection is critical for accurate classification. We selected 14

features to extract from RFID data [77, 78, 18, 120]. Our hardware was not able to

provide other useful data, such as the phase angle and Doppler frequency shift, so the

related features could not be used. Not all features worked well for all 10 objects. We

ran the permutation feature importance calculation provided by the Azure platform for

each object and used both precision and recall as the evaluation metrics [5]. We then

chose these six features with the highest importance score:

1 Peak RSSI: The RSSI value is the most common feature for RFID-based systems.

When an object is in use, we can expect a significant change in RSSI values due to

different tagging strategies (Fig. 4.3(a)): (i) the RSSI drops for direct tagging and

multi-tag tagging strategies, (ii) it increases for holder-slot tagging; and (iii) the

difference between RSSI from inner and outer tags increases for the differential

tagging strategy. We used “peak RSSI” in each time window as an RSSI feature,

rather than the “average RSSI” value feature because, a tag is always closer to

some and remoter to other antennas in a room with 8 reader antennas. A tag may

be too far from some antennas and the RSSI values measured by those antennas

may be outliers, thereby falsely bringing down the average. For objects with

multiple tags, we collected the peak RSSI of each tag and averaged them as one

of the features.

2 Time: Time is another important and often underused feature for making object

use predictions. Medical personnel usually follow a routine sequence of procedures

for a given case and the use of many objects often falls into certain time windows.

We evaluated the discriminative power of the time feature by analyzing the RSSI
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recordings from 10 objects during 38 trauma resuscitations. Based on manual

video review, we plotted the distribution of object use over time for 10 objects

(Fig. 4.3(b)). The black color at each time point denotes that the object was

used at that time in more than 50% of cases, while gray color denotes the use

in less than 50% of cases. The timelines in all 38 cases were synchronized with

patient arrival time as time zero. Our results support the assumption that use of

objects follows certain time distributions, which can help us predict their use and

associated activities.

3 Visible Antenna Combination: The visible antenna combination isa set of

antennas that can identify a tag in a particular time window. We implemented

the “zoning positioning” method [18] to use the visible antenna combination as

a feature roughly representing tag position. Objects at different locations in the

trauma room can be represented by different visible antenna combinations. Our

experiments showed that the objects used at the right side of the patient bed

are more likely to be detected by antennas 4,5,7, and 8, while the objects used

at the left side are more likely to be detected by antennas 1,2,6, and 8 (Fig.4.1

). These results confirm our assumption that objects used at different positions

will be detected by different antenna combinations. In our experiments, we used

an eight-digit binary number to represent 8 antennas installed in the trauma

room. If a tag was visible to antenna i, we placed a “1” at the i th digit of the

binary number a value of “0” if not. Finally, we converted the binary numbers

into decimal numbers and used them to represent the visible-antenna-combination

feature.

4 Spearman Rank Correlation Coefficient (SRCC): The Spearman Rank

correlation coefficient is defined as the linear correlation coefficient of the ranks.

We divided the RSSI data recorded in each 4-second time window into a two-

second left window (L) and a two-second right window (R). Because the reading

rate changes rapidly, we interpolated the data in L and R to ensure that they

had the same length w. Our hypothesis was that when an object is not used and
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is stationary, the RSSI data in the L and R windows should be similar. When

the object is in use, the tag will be occluded by a hand and the signal partially

reflected or absorbed by the human body. As a result, the RSSI in the left and

right windows for an object in use should not correlate well with each other. If we

use Li and Ri to denote the i th RSSI value in left and right windows, the SRCC

was calculated as [82]:

ρ = 1−
6 ·

∑w
i=1(Li −Ri)

w · (w2 − 1)
(4.1)

5 Entropy: Entropy is a measure of uncertainty and has been used as a feature for

RSSI-based classification [18]. When an object is not in use, the entropy will be

small due to small variance. When an object is in use, the uncertainty of the data

grows. We start by dividing the RSSI range into N bins with equal bin length or

BL (BL = 100 in this paper); for each object at each time window, RSSImax and

RSSImin denote the maximum and minimum RSSI values, and the total number

of bins, N = [(RSSImax−RSSImin)/BL]. Using the number of RSSI values in the

i th bin, xi, we estimated the probability of RSSI values in the i th RSSI interval

as pi = xi/
∑N

i=1 xi. The discrete entropy was calculated as:

Entropy = −
N∑
i=1

(pi · log(1− pi)) (4.2)

We calculated the entropy of RSSI for different objects using data from actual

resuscitations. The calculation results confirmed our hypothesis that the RF

signal is more randomly distributed when people are present or use objects for

work. The entropy becomes higher when object is in use (Fig. 4.3).

6 Dominant Frequency: The dominant frequency of sensor signal has been pre-

viously used for activity classification of data from wearable devices [120]. We

hypothesized that the dominant frequency of received RSSI data will be low for

stationary objects as the RSSI values for motionless tags that deviate less than

those of tags in use or in motion. When an object is in use, the RSSI is unsta-

ble, leading to higher dominant frequency because of tag movement and signal

occlusion by the person holding the object (Fig. 4.3(c)).
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Figure 4.3: (a) Heat map of RSSI features for different tagging strategies. The RSSI
decrease when the object with direct-tagging and multi-tag tagging is in use, the RSSI

difference between inner and outer tag increases when the object with differential
tagging strategy is in use. (b) A heat map for object-use time distribution for 10

objects used in this paper. Darker color means that the object was used in more than
half of the resuscitations and lighter color means that it was used in less than half of

the resuscitations. (c) The entropy and dominant frequency features for scenarios
when object is in use and not in use.

For object-use detection, we constructed a feature vector for each of the 10 objects

based on these two observations: 1. In the trauma room, all objects are clustered in a

small area. When people use an object, their body may interfere with tag signals from

other objects. The changes in signal strength of other objects may help with object-use

detection. 2. Some activities are performed using more than one object, e.g., measuring

blood pressure requires blood-pressure cuff and bulb. Using RFID data from several

objects allows better detection of individual objects during multi-object activities. For

each of the 10 objects, a feature vector consisted of the six features, which were then

used for object-use detection:

RFID Feature = [Time, Peak RSSIobj(1:obj10) , V isiable Antenna Combinationobj1:obj10,

SRCCobj1:obj10, Entropyobj1 : obj10, Dominant Frequencyobj1:obj10]

Object-Use Estimation

We treated the RFID-based object-use detection as a binary classification problem. We

used the Microsoft Azure Machine Learning toolbox in our experiments [7]. To train

the model, we used more than 20,000 seconds of raw RSSI data recorded in 10 actual

trauma resuscitations. Medical objects were used only for a fraction of time relative to

the entire resuscitation process (Table 4.1). As a result, instances of object use versus
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not-use are not equally represented in the RSSI data. Randomly selecting 70% of these

data would not ensure sufficient number of examples for model training when objects

were used. By referring to the ground-truth data, we randomly selected 70% of the

data when an object was in use and 70% of the data when an object was not used.

We then extracted features from these training subsets and used the remaining 30%

of the data to test the model. Using this semi-random selection, we ensured balanced

representation of both in-use and not-in-use classes in the training data.

Table 4.1: The object-use time, manipulation time and the breakdown of the manipu-
lation time: In use, task-related motion, and unrelated motion.

Object In-use
time
(sec-
onds)

Manipulation
time,
percent
of total
time

In-use
time,
percent of
manip-
ulation
time

Task-
related
motion,
% of
manip-
ulation
time

Task-
unrelated
motion,
% of
manip-
ulation
time

Ophthalmoscope243 1.17% 21.53% 5.74% 72.73%

Otoscope 1294 6.24% 29.33% 8.85% 61.82%

BP Bulb 3771 18.17% 4.90% 2.17% 92.93%

Pulse Ox
Adapter

11904 57.37% 74.74% 1.40% 24.14%

Cardiac
Monitoring
Adapter

12517 60.32% 78.74% 1.16% 20.10%

Small NRB 1315 6.33% 41.89% 2.72% 55.39%

Adult NRB 10 ≈0% 40% 5% 55%

BP Cuff 1038 5.00% 24.47% 9.04% 66.49%

Bair Hugger
Connector

11107 53.53% 97.38% 0.34% 2.28%

Thermometer 416 2.00% 50.40% 8.80% 40.80%

Activity Recognition

Prior research has suggested that object-use status can be used for activity recognition,

by assuming that an activity is performed when a related object is detected as used.

This assumption, however, does not always hold true during resuscitation. When we

reviewed the recorded resuscitations for ground truth data, we found that a person

might manipulate an object without performing the actual task. For example, people
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may relocate an object or prepare it for future work activity. People may also hold

objects for extended time without meaningful interaction. For these reasons, we divided

the types of human-object interaction into three categories (Table 4.1):

1 Object in use: The object is used for its intended work purpose of performing a

specific task.

2 Object in task-related motion: The object is relocated from its storage place or

prepared for future use.

3 Object in task-unrelated motion: The object manipulation is not related to any

task, e.g., fiddling with the object.

We also found that several objects could be used together to complete a task, such as

blood-pressure cuff and bulb to measure blood pressure. At the same time, other people

may use other objects for different tasks or interact with objects without performing

any task. It is unlikely, however, that relocation and accidental manipulation will follow

any regular pattern for task-related use of multiple objects. To detect when an object

is used for task performance, we use the combination of use-status of related objects.

Manipulation of objects that were not related to tasks would appear as “noise” that

needs to be addressed. We treated activity recognition as a classification problem in

which object-use detection is indicative of activity performance. The object-use status

(in-use vs. not-in-use) of all 10 object types was treated as features, and classifiers made

activity recognition predictions. We generated a feature vector every second based on

object manipulation type as follows:

ObjectF eatureV ector = [obj1, obj2, . . . , obj10] (4.3)

where obji denotes the type of manipulation for i th object. We used obji =1 for

objects in-use and obji =0 for not-in-use. To train the activity recognition model,

we used the same train-test split of data as before for training the object-use detection

model. This method ensured that the testing data for object-use detection was not used

as training data for activity recognition, reducing the likelihood of over-fitting. We used

the object-use status of all 10 object types as a feature for activity recognition, and
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chose a commonly-used Random Forest as our classifier [77]. We did not use HMM,

which is also commonly used for a similar purpose, because we did not have enough

data to train the transition matrix. Microsoft Azure cloud computing platform was

used for classification. A classifier was trained for each activity.

4.2.2 Experimental Results

Object-use detection results served as the input for activity recognition. We first applied

the object-use ground truth of 70% data to train the activity-recognition model. Each

activity-recognition task was treated as a binary classification. We repeated the training

and testing phase 10 times with different data splits and manually tuned the decision

threshold for activity prediction. We used the same evaluation metrics as for the object-

use detection (Fig. 4.4).

Figure 4.4: Activity recognition evaluation results using ground truth as input and
using object use detection from sensor data as input.

Because the activity-recognition stage follows the object-use detection stage, any

errors in object-use detection will propagate to activity recognition. To evaluate per-

formance of activity recognition with erroneous input data, we compared our activity

recognition using both ground truth (“perfect input”) data about object use and predic-

tions from the use-detection stage (“erring input”). The comparison showed a decrease

of roughly 20% in F-Score, Informedness and Markedness for activity recognition when

applying object-use predictions as input, instead of object-use ground truth. Only a

few studies have addressed the challenge of activity recognition in medical settings,

limiting comparison of our work with prior work. One study achieved an accuracy of



50

82.8% for process-phase detection with wearable sensors [6]. Our system achieved com-

parable performance with fixed antennas and required no wearable sensors. Another

study achieved relatively good prediction results in recognizing four phases of the pro-

cess using manually generated “low-level activity” records [20]. Unlike predictions in

that study, our predictions were based only on RFID data and did not require human

input. In addition, instead of predicting a few high-level phases of the process, we pre-

dicted activities within the phases, which is more challenging and can be more useful

for real-world applications such as workflow tracking.

4.3 Deep Learning for RFID-Based Activity Recognition

4.3.1 Data Processing

Automated RFID Recording

We installed the hardware for RFID data collection and system activation control in

an actual trauma room. The RFID data were collected with two Impinj R420 (8

ports) readers, set to record RFID data in maxmiller mode and dual target search

mode. Because trauma events occur without warning, we could not keep the system

continuously recording. We developed a fully automated system that is activated at

the start of each resuscitation and keeps recording RFID data from all tags while the

resuscitation is in progress. We set up a Kinect V2 sensor to monitor the number of

people in the room. The RFID system will be activated to record data when more

than two people are in the room and stops when no people are in the room (Fig.

4.5). To recognize 10 medical activities (Table 4.2), we tagged 11 types of medical

objects following existing tagging strategies [52]. Because the blood-pressure (BP) cuff

was tagged on the inside and outside, we counted it as two different object types,

resulting in a total of 12 types of medical objects. The system recorded the received

signal strength (RSS) from tags during 16 actual trauma resuscitations in this format:

[Timestamp, Tag ID, RSS, Reader Name, Port Number]. Attributes of RFID signal

other than RSS, such as Doppler shift and phase angle, have been used for human-object

interaction detection or people tracking [114, 27]. Our experience and that of others
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[27] has shown that Doppler shift measured by Inpinj R420 reader API is not accurate

enough for our purposes. The U.S. government regulation requires that RFID readers

perform frequency hopping, which affects the phase-angle measurements. Based on our

experiments, the phase angle measured by the Impinj reader will have around 2.68 rad

standard deviation for a stationary tag, which makes it unsuitable for classification.

Figure 4.5: Left: Antennas 1 to 7 are mounted on the ceiling and facing down;
Antenna 8 is mounted on the wall and facing 45o to the ground. Middle: A photo of

the room with the antennas labeled with blue rectangles and the Kinect and Mini PC
labeled with a red rectangle. Right: Zoom-in of the Kinect, router, and Mini PC.

Table 4.2: Activities used in this paper and their medical code.

Activity Code Activity Code

Pulse Ox Placement BA Ear Exam EAR

Oxygen Preparation BC Warm Sheet EC

Blood Pressure Measure-
ment

BP Mouth Exam M

Cardiac Lead Placement CA Nose Exam N

Temperature Measure-
ment

EA Pupils Exam PU

Pre-processing

Because of multiple instances of tracked objects and variable readout success rate, the

recorded data needed to be preprocessed. We preprocessed the data in three steps:

1 Object name lookup: Many objects of the same type may be in the monitored

area, such as four thermometers in our trauma room. We tagged all instances of

an object type to ensure that all the objects used during trauma resuscitations
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are tracked, which resulted in about 50 tags in the trauma room. Not all the

tags were visible to antennas all the time, because some objects were kept inside

a cabinet or shelf. We maintained a lookup table mapping tag IDs to the tagged

objects. Before further processing the data, we replaced each tag ID with the

name of its associated object type. All instances of the same object type were

given the same object name, so that each RSS data entry represented one of 12

object types. The RSS data from multiple instances of the same object were

combined during averaging in the following step.

2 Regularization of RSS data: Because the number of successful readings by each

antenna varies over time for each tag, the recorded time series had to be regu-

larized to a constant sampling rate. The sampling rate was determined based

on the minimum achieved reading rate of the tags. For our study, we used 1

second as the sample time because the number of readings per second for tags

in the trauma room were greater than one if the tags were not occluded by peo-

ple or other objects. The output of regularization is an I × J matrix (we call

it an “antenna-object frame”), where I rows represent I tagged object types and

J columns represent J antennas installed in the room. The element (i, j) is the

averaged RSS collected during one second for object type i by antenna j. We had

I = 12 types of objects and J = 8 antennas. The regularization process for every

second generated a 12×8 matrix. We put a zero if no data was received by an

antenna for a given point. Note that the RSS value has a physical meaning, where

“0” means the received signal strength is 1 mW. Because in our implementation

the distance between tags and antennas is at least 2m, the actual received signal

strength is much lower than 1 mW, so it is safe to use “0” to indicate that no

data were received.

3 Stacking antenna-object frames: The final step is to stack the antenna-object

frames over time (Fig. 4.6). The pre-processed RFID data forms a 3D matrix

with T layers of antenna-object frames, where T is the total time (in seconds) of

recorded RFID data from all executions of the process. In our case, T = 50, 000
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sec, collected during 16 resuscitations.

Figure 4.6: Our preprocessing procedure for RFID data.

4.3.2 Deep Learning Model

Neural Network Structure

Several types of deep learning models have been proposed for different application and

sensor types. Examples include the Convolutional Neural Network (CNN), widely used

for image classification [114] and recently for speech recognition [2]], the Deep Neural

Network (DNN), used for speech recognition and audio sensing [42], and a multimodal

structure used for audio-visual speech recognition [70]. Our choice of network structure

was driven by the nature of our RFID data. The RFID signal received from a single

tag by one reader antenna is a one-dimensional series, similar to a speech signal, for

which both the DNN and CNN have been used. Our RFID data were collected by

several antennas from multiple tags on same or different objects, which resulted in two

additional dimensions: the receiving antenna and object/tag ID. We chose CNN over

DNN because we wanted to process data from all tags together to capture potential

concurrent object uses. CNN better handles high-dimensional input by representing

it as a high-dimensional matrix. In addition, DNN is ineffective at learning features

and requires as input extracted features rather than raw data. Given that it is hard

to optimize manually selected features, a poor selection will lead to poor performance.

CNN can generate useful features via its learnable filters, so it can directly accept RSS

data as input. We implemented the CNN with three convolutional layers, followed by
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three fully-connected layers and a softmax layer for output (Fig. 4.7) . We used the

CNN with rectified linear units (ReLUs) because such units train several times faster

than traditional tanh units [40, 42]. We recently implemented a modified DNN structure

using a similar dataset, but directly using high-dimensional RSS in the input layer

remains a challenge [54]. Unlike CNN structures for other applications, we designed

the input and convolutional layers to reflect the structure of RFID data collected with

multiple antennas. We next describe the building blocks of our CNN (Fig. 4.7).

Figure 4.7: The convolutional neural network structure with 3 convolutional layers
and 3 fully (dense) connected layers.

Input Layer

The input layer prepares the input data for the convolutional network. The input data

needs to be represented differently for different applications. For image classification,

the input layer is often a single gray-scale image or three gray-scale images (for red,

green and blue channels of color images). For speech recognition, the input layer is often

constructed as a time-frequency feature map. In general, RFID data in the input layer

has three dimensions that represent the objects, the antennas, and the observation

time window. Unlike speech from a single microphone, RFID data are recorded by

multiple antennas and have an extra dimension of space. Unlike stationary images,
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RFID data are related in three dimensions: spatially across antennas, temporally over

time, and semantically over tagged objects that are manipulated concurrently in one

or several parallel activities. Some similarity exists with video data processing where

image frames are temporally related and pixels in each frame are spatially related [95].

Our input layer is formed in two steps: first stacking t antenna-object frames collected

over t seconds, and second rotating the 3-D matrix to make the object and time as the

first two dimensions (Fig. 4.7), and antenna as the third dimension. The time window

t is determined by the duration of the shortest activity. A window shorter than the

shortest activity minimizes the chance that multiple activities will be represented in

it. In our problem domain, some activities take a short time, such as evaluating the

ears, which on average lasts 10 seconds and has the lowest average duration. Based

on Nyquist theorem, we chose t=5 to ensure that the time window is just 50% shorter

than the shortest activities. The convolution operation sums the contributions from

different planes in the input layer and uses ReLU as:

hj = max(0,

K∑
k=1

hk ∗ wkj) (4.4)

where hj is the jth plane of output data from each convolutional layer, hk is the kth

plane of input data which has K planes in total and wkj is the kth plane of kernel j. We

used the number of object types and the time value as the first two dimensions of input

layer, and the number of antennas as the third dimension. The first two dimensions

represent the RSS from each object over a time window, which for stationary objects

should appear flat when visualized as a gray-scale image. If an object is manipulated,

the RSS of its tag should be very different from stationary state in the visualization.

This arrangement also ensures that each convolutional operation is performed on the

data collected by all antennas, which makes our network structure applicable to sce-

narios with different number of antennas and antenna arrangements.
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Convolutional Layers

The convolutional layers with sets of learnable filters are the core building blocks of

convolutional neural networks, and the pooling layers implement the input data down-

sampling. Several parameters need to be determined for constructing the convolutional

layers [40, 49]. For each convolutional layer, the size of the convolutional kernel decides

the shape and number of feature maps used in convolution operation. No analytical

procedure is available to determine the optimal number of convolutional layers for a

given application. The most suitable network structure is usually determined empiri-

cally. We chose to have 3 convolutional layers in our network, with odd-number kernel

sizes: 3×3×32, 3×3×64 and 3×3×128, and with stride 1, which have been shown as

efficient in the VGG net [96]. Because the input data had a small dimension (12 objects

× 5 one-second frames) in each antenna plane, zero padding was added to perform a

wide-type convolution in order to maintain the size of each output plane the same as

the input plane. The number of feature maps in each kernel and the number of convo-

lutional layers was determined empirically. We used 5,000 seconds of data from 50,000

seconds of total available RFID data as training data for classifying the five resuscita-

tion phases. The number of feature maps in each convolutional layer was determined

by a script looping through the powers of 2 from 16 to 256 and choosing the combina-

tion of kernel sizes for convolutional layers that performed best on detecting the five

resuscitation phases. We reasoned that 3 convolutional layers will also provide the best

tradeoff for activity recognition, because phase detection and activity recognition use

the same RFID data as input data. More convolutional layers generally yield better

performance, but the performance gain diminishes. We only tested the CNN with 1 to

4 convolutional layers, because the network with 5 layers has over 30M weights which

was not feasible for our hardware. The results show only a small gain in precision, recall

and F-Score when using four convolutional layers but a large difference in memory cost

(around 2 times). We concluded that using 3 convolutional layers has the best tradeoff

between the computational resources and performance gain. We did not use pooling

layers, which in other applications have been used to extract low-level, shift-invariant
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features, and to reduce the data dimensionality for computational efficiency. Unlike im-

ages, which normally contain redundant pixels unimportant for the classification, the

raw RFID data matrix has very little redundancy. Pooling with a minimum window

(2×2) would only leave one fourth of the pooled data which would distort the spatial

and temporal relationships of the RFID data. A new pooling strategy with learnable

weights was recently proposed [2], which will be tested in our future work.

Fully Connected Layers

No more than two fully-connected layers have commonly been used to avoid overfitting

[40, 2]. Our experiments showed that in our domain 3 fully connected layers work better

than 2 layers. This finding is due to the orders-of-magnitude dimensionality reduction

between the neurons in the last convolutional layer (7680) and the output layer (5 for

process phases and 10 for activities).

Model Training

We trained two CNNs to detect 5 process phases and 10 resuscitation activities, re-

spectively, using preprocessed RFID data (Fig. 4.6) from 16 trauma resuscitations.

The label (one of 5 process phases or 10 activities) for each second of data was man-

ually generated by medical experts from video review of the corresponding trauma

resuscitations. The 16 resuscitations provided a total of 50,000 seconds of data. Due

to the great variability of the resuscitation process, the duration of each activity is

unpredictable, and some of the 10 activities were not well represented, unlike the 5

resuscitation phases which were all well represented. Given the unbalanced dataset,

randomly selecting the number of samples would not guarantee sufficient data for all

activity classes during training and testing. As suggested [52], we selected a percentage

of data from each class for training and used the remainder for testing. Over-fitting

was a concern because process-phase detection is a relatively small multi-class classi-

fication problem with only 5 classes, compared with other CNN applications, such as

image classification with thousands of classes [40]. We took two steps to avoid model

overfitting. First, we applied the “dropout” in fully-connected layers, which is widely
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used in CNNs to avoid overfitting during model training [97]. Second, we implemented

the cross-validation and set the system to stop training when the cross-validation error

starts to increase. We initialized the learning rate at 0.01 and adjusted it based on the

ADAM optimization (Adam Optimizer in TensorFlow) [39].

We implemented our CNN using Microsoft Azure cloud service and locally with

Google TensorFlow [1]. Both frameworks achieved similar performance and allow users

to manually define the CNN with sharp Net or Python. The advantage of Azure is that

it allows the user simultaneously run several CNN training processes with different data

or network parameters and easily compare their performance. The training process

is faster in Azure compared to training with computers using a Core i5 CPU. On

the other hand, in Azure the trained weights are not accessible to the user. The

TensorFlow runs locally, though the training speed depends on hardware and it is

impractical simultaneously to train several models on a single computer. All the trained

weights, however, are accessible, which makes TensorFlow suitable for model analysis.

Because of these features, we used Azure for CNN model design and TensorFlow for

experimental evaluation.

4.3.3 Experimental Results

Compared with detecting phases of a process, medical activity recognition is considered

more important, because of its fundamental role in building decision-support systems

or other artificial intelligence systems that help improve patient care and outcomes.

Unlike systems designed for recognizing simple physical activities of individuals, such

as sitting, standing, or sleeping [4, 12, 44], recognizing complex teamwork activities is

significantly more challenging. We trained our convolutional neural network (Fig. 4.7)

with preprocessed RFID data for 11 medical activities (10 shown in (Table 4.2) and

“other” as a catch-all activity). We could not split the training and testing data as

we did for process-phase detection, where we used 5000 RSS samples from each class

for training data and the rest for testing, because we had very limited data for brief

activities, such as evaluation of patient’s ear. Using the same number of instances for

training each activity could cause bias. We randomly selected 40% of data in each
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class for training and the remaining 60% data for testing. Our system achieved average

accuracy of 80.40% for recognition of 11 activities (Fig. 4.8).

Figure 4.8: Confusion matrix for recognition of 11 resuscitation activities. “OT” for
activity other than selected 10 activities.

Unlike some other activity recognition systems that trained independent binary

classifiers for different activities [52, 110], our system treats activity recognition as a

multi-class classification problem and can scale up if additional activities need to be

recognized. To avoid the evaluation bias caused by different training and testing sets,

we fed the same training and testing sets into traditional classifiers. We compared

the performance of our convolutional neural network to traditional classifiers using

evaluation metrics introduced above. Our network still performed best compared with

all other classifiers (Fig. 4.9). It achieved about 10% higher F-score compared with

random forest, which was the second best classifier, and around 30% higher F score

compared with all other classifiers. The same performance gain held for other evaluation

metrics.

To demonstrate the advantage of our deep learning system in medical applications,

we first compared this system with our previous system for resuscitation activity recog-

nition from passive RFID that uses a cascade model with manufactured features such

as visible antenna combination, the Spearman rank correlation coefficient, and other

features [52]. The RFID data used for evaluating our deep learning and that we pre-

viously used [52] were collected in same environment with real-patients, using different

RFID readers (Impinj vs. Alien). Our deep learning achieved 30% higher F-score, and

MCC and double informedness scores compared with the system in [52] using sensor
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Figure 4.9: Left: Comparison of results using different classifiers for resuscitation
phase prediction. Right: Comparison of results in [52] with our deep learning system

in the same application environment.

data as input. Even when our previous system used ground truth of object-use as

input to the classifier (instead of object-use detected from sensor data), our deep learn-

ing still achieved better performance in F-score, informedness and MCC (Fig. 4.9) .

This comparison shows the power of deep learning to process the noisy RFID data and

the potential of deep learning model applied to RFID-based applications. We also com-

pared the performance of our deep-learning system using RFID data for medical activity

recognition with several state-of-the-art recognition systems for real-world application

scenarios [110, 17, 16] (Table 4.3). Although these systems were implemented for dif-

ferent environments, a comparison shows that our deep learning was able to achieve

performance similar to vision-based systems for activity recognition. As was the case

with other applications [2,4], our deep learning-based activity recognition system also

achieved better performance compared to systems that used traditional classifiers.

4.3.4 Possible Extension

Unlike image and audio, mobile sensors such as RFIDs have had relatively few deep

learning implementations. Previous research preprocessed the data into a 3D antenna-

object-time matrix [3]. Although feasible, this data format faces two problems: (a)

there is no redundancy for ConvNet pooling operations, and (b) the spatial relationships

between reader antennas and tags present in the received signal strength (RSS) data are

not well represented. We introduce RSS maps, a new RFID data representation suitable
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Table 4.3: The Comparison of Process Phase Prediction by Domain Experts and Our
System.

Activity Recognition
System

Input
Source

Method Accuracy of Activity
Recognition

A Scalable Approach
to Activity Recognition
based on Object Use [110]

Video
data
and
RFID

Dynamic
Bayesian
Network

60.84% average accuracy
for 16 single-person daily-
life activities, without us-
ing domain knowledge

Structure Inference Ma-
chines: Recurrent Neu-
ral Networks for Analyz-
ing Relations in Group
Activity Recognition [16]

Images Recurrent
Neural
Net-
works

81.2% average accuracy
for 5 real-life group activ-
ities

Deep Structured Models
for Group Activity Recog-
nition [17]

Images ConvNet 80.6% average accuracy
for 5 real-life group activ-
ities

Our deep learning net-
work

RFID ConvNet 80.2% average accuracy
for 10 group activities
during actual resuscita-
tions

for spatial feature extraction in ConvNets. An RSS map projects the RSSs received

from each tag onto the effective field of coverage for each antenna (Fig. 5 right). In our

experiments, 7 of the 8 reader antennas were hung on the ceiling facing down (black

boxes in Fig. 5 left). We approximated antenna’s coverage area by a circle on the room

floorplan (scale: 1px ↔ 1dm2). The circle radii were manually measured by moving

a tag horizontally away from the antenna in several directions, always starting below

the antenna moving away until the tag could not be detected by the antenna. The

coverage radius was determined as the average tag-visibility-loss distance from these

experiments. In our case, most tags were 0.6 meters above the ground (approximately

at the height of person’s hands, assuming that tagged objects are used for work), and

were visible laterally up to about 1.2 meters away from an antenna. For the tilted

antenna mounted on the wall facing the area of interest (triangle in Fig. 5 left), we

used an ellipse approximation. The room’s operational area was roughly 3.6×4.8m, so

each object’s RSS map was 36×48px.

Generating the combined RSS map for all (25 types of) tagged objects required two

steps. First, we created maps for each object type (Fig. 5 right). Coverage areas of the
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8 antennas were filled-in with that object’s RSS (with zero values outside the coverage).

The 8 resulting maps were then averaged, generating one RSS map per object type.

Second, we created the combined RSS map by stacking the 25 2D maps for 25 object

types into a 3D matrix.

Figure 4.10: Left: our RFID reader antenna configuration. Right: example RSS map
visualization for a tagged object.

4.4 Summary

A key limitation of our current system is that it relies only on relies on RFID sens-

ing to capture activity information and making predictions. Some activities, such as

palpation of the patient’s body, do not involve the use of physical objects that can be

tagged. In addition, RFID technology does not work very well with metal objects or

liquid containers, and objects in sterile packages can be tracked only until the pack-

aging is discarded. Our continuing research involves the use of multimodal sensing for

activity recognition. In particular, we are using the Kinect sensor with microphone

array to capture depth images and ambient sound for more reliable and complete ac-

tivity recognition. Generalization is an important aspect of a classifier, and our system

generalizes well for different attributes of trauma resuscitations. The cases we used for

training and testing were performed by different trauma teams with patients having

different injuries and health conditions. Unlike a model trained for image classification,

a CNN model trained for RFID data cannot be directly used in a different environment

with different antenna configuration or tagging strategy. For image analysis, a target

appears similar regardless of the changing background or camera. On the other hand,
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the same activity captured in RFID data by different antenna configurations and tag-

ging strategies may be rather different because the radio signal may experience very

different conditions. As a result, the model has to be retained for different antenna

configurations or tagging strategies. Input data that is less influenced by the hardware

configuration, such as using the standard deviation of RSS instead of RSS values would

partially solve this problem because standard deviation is lacking other information.

RSS values depend on the distance between tag and reader antennas and the status

of the tag (covered or exposed) while the standard deviation does not contain such

information. Further investigation is needed to find the sensory input both robust to

hardware configuration and representative enough to support activity recognition and

better model generalization, which will be our future work.
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Chapter 5

Attention And Multi-sensory Based Activity Recognition

5.1 Chapter Introduction

We introduce an activity recognition system that recognizes activities in two steps.

First, it localizes the activity by generating an activity mask outlining the location

where the activity is expected to occur. For mask generation, we used a conditional

generative adversarial network (cGAN) [66]. Given that activities are continuous and

usually represented as video clips, we introduced a Conv-LSTM-Deconv structure as a

continuous mask generator with cGAN for training. The cGAN-based image generator

has shown better performance than a Conv-Deconv-based generator [34]. The ConvNet-

LSTM structure has been used to model spatio-temporal associations [35, 80]. In ad-

dition to the adversarial loss, we introduced a spatio-temporal loss and implemented

perceptual loss [36]. These losses penalize the neural network for pixel-wise errors in

the generated mask and discontinuities between masks from consecutive frames. Sec-

ond, the generated mask is appended to each color channel of its input video frame

to delimit the activity region for the activity recognizer. Because the ConvNet-LSTM

structure has been used successfully for modeling spatio-temporal activity associations

[56, 103], we adopted a VGG-LSTM network for activity recognition.

To train and test our system, we manually created activity masks for two datasets.

We selected six activities from a well-known Olympic sports dataset (15 videos per

activity) and for 10 frames of each video manually created binary masks outlining the

activity performer’s location. We also manually created multilevel masks highlighting

trauma team members and their roles for depth videos of trauma resuscitations.

Our system achieved state-of-the-art performance compared with previous activity

recognition approaches [43, 72, 21, 35]. In addition, it generated activity location masks.
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Our system works online, as opposed to offline prediction based on features extracted

from the entire video [107, 58]. Unlike the approaches that rely on crafted features or

purely rely on learned features, our system automatically generates activity masks that

promote learning the most representative features. This property makes our system

generalizable and scalable. Our visualization of the learned feature maps demonstrates

that the generated masks enable the system to learn the features that are associated

with activities, unlike a VGG net trained using only video frames.

5.2 Region-based Activity Recognition

5.2.1 Methodology

Our system has two network structures (Fig. 5.1), one for activity-mask generation that

includes a generator and discriminator and one for activity recognition. For selected

video frames in our datasets, we manually created a binary activity mask outlining the

activity performer, or a multilevel mask for team members with different roles. We

used these masks as the ground truth for system training.

Mask Generator

Convolution (3×3) Pooling Batch Normalize

LSTM (1024) De-pooling De-convolution (3×3)Mask Discriminator
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Figure 5.1: Our Conv-LSTM-Deconv cGAN structure with U-Net connection (dark
shaded boxes on the left [88]). The numbers above convolution layers indicate the
number of filters in each convolution kernel. (See digital version for color codes.)

Model Structure

We used a cGAN to generate the activity masks and a VGG-LSTM structure for

activity recognition (Fig. 5.1). Generating the mask is comparable to other space-

transformation or mapping tasks, such as text-to-image mapping [84], image-to-image

mapping [34], or image super resolution (low to high-resolution mapping) [50]. The
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current state-of-the-art approaches to these problems are GAN-based, We developed

our model based on cGAN to generate the continuous activity masks.

Unlike single image segmentation which relies only on the spatial associations be-

tween inputs and outputs, generating activity masks for continuous video frames relies

on both spatial and temporal associations. The generated mask should spatially match

the ground truth mask. The generated mask should temporally be continuous over time

(i.e., smoothly transitioning). We introduced a Conv-LSTM-Deconv structure as the

generator of the conditional GAN model (Fig. 5.1, generator). The Conv-Deconv net-

work with fully convolutional structure was used [62] to avoid the use of fully-connected

layers, making the model more memory-efficient and better at preserving spatial fea-

tures. The LSTM [22] has been widely used to model temporal associations and recently

for acoustic modeling [92]. We inserted the LSTM layers between the convolutional and

deconvolutional networks to model the temporal associations of spatial features learned

by the ConvNet. This approach increased the average precision of activity recognition

by 6% compared with the Conv-Deconv generator alone (Fig. 5.1).

The adversarial loss from the discriminator (LA in Fig. 5.1) can only tune the

weights in the mask generator based on the feature-wise difference between the gen-

erated and ground-truth masks. To better tune the generator, we built a cascade of

the mask generator followed by activity recognizer (Fig. 5.1) which produces activ-

ity recognition error to penalize the generator (LC in Fig. 5.1). This structure takes

the generated mask and original image, appends the mask after each color channel, and

uses it for activity recognition. Because recognizing some activities requires background

features, we decided to append the generated mask as an additional “color channels” of

the input image after each regular RGB color channel, instead of directly applying the

mask on the input image. This approach allows the system to learn some features not

directly associated with the activity performer. Our activity recognition module favors

the area covered by the activity mask but also allows inclusion of the whole background.

The activity recognition loss is backpropagated for tuning the generator (LC in Fig.

5.1).

As previously shown [30], deep Conv-Deconv structures are hard to converge. To
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improve the convergence, we adopted the “U-Net” [88] to add extra connections between

the associated convolutional and de-convolutional layers.

Loss Functions

The generative adversarial network (GAN) [24] learns the mapping of input data z to

output mask y, denoted as G : z → y [24]. The regular GAN model can be extended

to a conditional model that uses additional information x. The conditional GAN [66]

establishes the mapping function based on both the input data z and conditional in-

formation x, denoted as G : {x, z} → y. The additional information x can be any

auxiliary information. We used the manually generated masks which contained ones or

categorical labels at pixels related to the activity, and zeros for the unrelated pixels as

the condition x.

Our system was designed for activity recognition, so that loss could be measured

spatially and temporally. In addition to the regular adversarial loss LA, we used three

other losses:

L∗ = LA(G,D) + αLst(G) + Lp(G) + βLC(G,C) (5.1)

where α, β are the manually defined weights. We empirically determined that α = 0.8

and β = 0.2 showed the best performance.

The first term LA(G,D) is the regular adversarial loss from the mask discriminator

(Fig. 5.1). The discriminator uses the ConvNet structure to measure the feature-wise

similarity between the generated and activity masks, and normalizes the similarity to

the range of zero to one. The adversarial loss of cGAN model is:

LA(G,D) = Ex,y∼pdata(x,y)[logD(x, y)] (5.2)

+ Ex∼pdata(x),z∼pz(z)(1− log (1−D(x,G(x, z))))

where G denotes the mask generator and D denotes the discriminator. The train-

ing adjusts the parameters of G to minimize the objective while the discriminator D

maximizes the objective.

The second term Lst = L`1 + Lt is the proposed spatio-temporal loss calculated

by the generator itself. L`1 denotes the pixel-wise loss between the generated activity
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mask and the ground truth, which is commonly used in GAN image generation tasks

as:

L`1 =
1

CWH

C∑
c=1

W∑
w=1

H∑
h=1

||[φG(x)]c,w,h − yc,w,h||1 (5.3)

where image dimensions are the number of color channels C, width W and height H.

In our case of activity masks, C = 1 because of single mask per frame, whether the

mask is binary or multilevel. The φG(·) denotes the generated mask, and y denotes

the ground-truth mask. || · ||1 denotes the pixel-wise L1 norm which favors similarity

between the generated activity mask and ground truth for every frame. The Lt is the

temporal loss. To make the system generate masks for continuous activities, the L1

distance of the consecutive masks should have minimal variation. We thus introduced

Lt to model the temporal loss between frames as:

Lt = std([L`1]) (5.4)

where the std(·) denotes the standard deviation of the list [L`1] of the pixel-wise L1

distances across frames.

The third term, Lp(G), denotes the perceptual loss for the generator [36]. We

define ŷ = φG(x) as the output of the generator. We followed the definition:

Li
feat(ŷ, y) =

1

CiWiHi
||φivgg(ŷ)− φivgg(y)||22 (5.5)

Li
style(ŷ, y) = ||Gi

vgg(ŷ)−Gi
vgg(y)||2F (5.6)

where Ci×Wi×Hi defines the shape of the feature map, Li
feat denotes the feature loss

and Li
style denotes the style loss at corresponding ith convolution layer of the VGG net

[96]. The || · ||22 denotes the squared L2 norm, and || · ||2F denotes the squared Frobenius

norm. The φivgg(·) term denotes the channel-wise Gram matrix at ith convolution layer

of VGG net. The element in position 1 ≤ m,n ≤ Ci of Gram matrix for any feature

map f is defined as:

[Gi
vgg(f)]m,n =

1

CiWiHi

Wi∑
w=1

Hi∑
h=1

(fm,w,h × fn,w,h) (5.7)

In addition, we applied a total variant regularization LTL(ŷ) to generator output ŷ for

smoothing [36]. The perceptual loss consists of feature-reconstruction loss, style loss
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and total variation regularization, which have been successfully used for GAN-based

image generation [36, 50]. We used this loss for generator tuning.

The last term LC(G,C) is our proposed classification loss. We designed the

generator to take the additional loss from the error of the activity recognition network

C. The activity recognition loss is defined as the categorical cross-entropy from the

activity recognizer. The cross-entropy is calculated using the stacked generated masks

and input images as input and activity ground truth as output. This classification loss

can be expressed as:

LC = −
∑
N

y′n log yn (5.8)

where N is the total number of classes, y′n is the predicted probability distribution of

class n, and yn is the ground truth for class n. For each iteration, we first trained

the activity recognizer using the stacked ground truth mask and the input image as

input, and used the activity label to tune the weights of the recognizer. To generate

the activity recognition loss, we used the generated mask instead of the ground truth

for activity recognition and calculated the categorical cross-entropy of activities.

To study the impact of different losses, we ran the comparison experiments with

versions of our system trained on different losses. The results show that the proposed

spatio-temporal loss has a positive contribution to activity recognition and segmenta-

tion (Table 5.1). We used the per-pixel accuracy [14], as well as per-frame activity

recognition accuracy for this comparison.

Table 5.1: Activity recognition accuracy and generated mask per-pixel accuracy for
different loss combinations.

Loss functions Activity rec acc’y Per-pixel acc’y

LA 62.21% 69.29%

LA + LC 64.68% 71.03%

LA + Lst + LC 78.16% 81.37%
LA + Lp + LC 70.92% 83.89%
LA + Lst + Lp + LC 81.75% 86.71%
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Activity Recognition and Localization

Once the system is trained, we append the activity recognizer after the generator and

run feed-forward for activity recognition. It is possible that a dataset contains a large

number of video clips, but only a few of them have manually-generated masks for

training. A system trained with a limited amount of generator-training data is more

likely to make mistakes when generating masks. To avoid the mask generation errors

propagating to the activity recognition results and help the system tolerate these errors,

we chose to append the generated mask to the original image after each channel instead

of directly applying the mask to the original image by performing their multiplication.

In this way, information from the original input image is preserved even when the

generated mask contains errors.

The activity recognition network was not well trained during mask generator train-

ing due to the limited number of frames with ground truth masks. We then used the

data with only activity class labels and no activity masks to further fine-tune the ac-

tivity recognition network (VGG). The system first generated the mask for each input

frame and then appends the generated mask to this input frame. This stacked image

is then fed into the activity recognizer, which is trained using ground truth activity

labels. We set the weights of the mask generator as untrainable during this fine tuning

so that we can only tune the weights of the activity recognizer.

Activity localization is an end product of our method that can be simply accom-

plished by calculating the bounding box of the fully-connected regions in the generated

masks and applying the bounding box to the input image. During activity prediction,

we performed an image morphology close operation to the generated masks to eliminate

the noise before calculating the bounding box.

Model Implementation

We implemented our system with Keras using the Theano backend. We used the fully

convolutional structure [62] with He initialization [29]. Leaky ReLU and tanh were used

as activation functions. The batch normalization and dropout strategy [97] was used
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to avoid overfitting. The generator was tuned three times in each training iteration:

first using the adversarial loss from the discriminator, then using the spatio-temporal

and perceptual losses [36], and finally using the classification loss from the activity

recognizer.

We trained the network on the single GTX1080 GPU with 8GB memory. The loss

functions were manually defined using Keras backend programming. Training with

128 × 128 frames took two days to converge. Because we used Leaky ReLU and tanh

as activation functions, we first normalized the input data in [−1, 1].

5.2.2 Experimental Results

Dataset

Olympic Sports Dataset with Masks: We selected six activities from a Olympic

sports dataset for labeling (Table 5.2). The dataset contains videos recorded with

moving backgrounds and moving athletes. Because the original videos had different

frame rates, and most of the frames within each second were visually similar before the

activity started, we down sampled the original color video to three frames per second

and selected only the most representative frames (covering different stages of activity

performance) for manual labeling. The video frame selection can be automatically

accomplished based on the pixel difference between adjacent frames by selecting the

frames most different than previous frames. The frame difference can be estimated by

calculating the optical flow. We manually selected masks for 15 videos for each of the

six activities, resulting in a total of 900 frames. We kept generating more masks for all

16 activities in the Olympic sports dataset.

Activity Recognition in Sports Videos

We evaluated three aspects: the overall performance, the performance breakdown for

each activity and the system generalizability.

We first evaluated the overall activity recognition performance using ac-

curacy and the commonly used F-measure with 30% videos of each activity (Table
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Table 5.2: Activities and background labels in our datasets.

Olympic Sports Label # Trauma team roles Label #

Background 1 Background 1

Lay Up 2 Patient Bed 2

Bowling 3 Nurse Left 3

Weight Lifting 4 Respiratory Therapist 4

High Jump 5 Examine Provider 5

Long Jump 6 Team Leader 6

Lay Up 7

5.3). We compared our system with baseline activity recognition models (ConvNet,

CNN-LSTM) using the same dataset (Table 5.3). We also compared the system per-

formance with a different configuration for activity recognition (Table 5.3) to analyze

the contribution of different losses to our proposed system. The results shown that:

1 Our baseline VGG net and VGG-LSTM structure achieved performance similar to

representation-based approaches [43, 72] (Table 5.3, left side). While the regular deep-

learning models have the ability to learn representative features, this finding showed

that, they are also limited by their simple structure when generalizing to complex tasks

such as recognizing activities where unrelated people are present. The VGG-LSTM

achieved an increase in accuracy increase of about 5% compared with ConvNet only,

due to its ability to model the temporal associations of extracted features. 2 We also

observed that different network models generated masks of different quality (Table 5.1).

The cGAN with our proposed losses generated the most accurate masks for most video

frames (Fig. 5.2). We also quantitatively evaluated the generated masks. Because

we do not have the ground truth masks for all videos, we adopted the 80% - 20% ra-

tio to split the training and testing sets for the frames that had ground truth masks

(Table 5.1). 3 The quality of generated masks affected the activity recognition results

(Table 5.1, 5.3). Our proposed spatio-temporal loss increased the activity recognition

accuracy by ≈3% compared to a regular cGAN trained only using the adversarial loss

(Table 5.3). Including the classification loss into our structure increased the activity

recognition accuracy by ≈2% (Table 5.3). 4 The state-of-the-art activity recognition

strategies [107, 58] ] used representation based on multiple features and moving trajec-

tories to describe the entire video. These methods require computationally expensive
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calculations for feature representation from the entire video. Our proposed approach

can make per-frame activity predictions at 20fps by running feedforward networks, and

simultaneously provide the activity location information. We believe runtime operation

offers significant advantage though with slightly lower performance.

Table 5.3: Averaged accuracy and F-scores of different activity recognition methods
for 6 activities in Olympic sports dataset.

System Acc. Prec. Rec. F1

Ref. [43] na 65.35 na na

Ref. [72] na 74.93 na na

Ref. [21],[35] na 74.5/80.0 na na

Ref. [58],[107] na 91.2/91.4 na na

ConvNet 57.38 69.34 57.38 62.80

Conv-LSTM 59.15 75.62 59.15 66.38

Conv-Deconv 40.10 64.01 40.10 38.77

Conv-LSTM-Deconv 61.92 72.89 61.92 61.45

Our cGAN (LA, Lst&LC) 78.16 84.88 78.16 79.52

Our cGAN (LA, Lp&LC) 70.92 83.63 70.92 73.78

Our cGAN (LA, Lst, Lp&LC ,6 activities) 81.75 87.79 81.75 84.66

Our cGAN (LA, Lst, Lp&LC ,16 activities) 73.62 80.01 73.62 76.68

Generated Mask

Original Mask

Input Frames

① Conv-Deconv ② Conv-LSTM-Deconv ③ cGAN (!" + !$% + !&) ④ cGAN (!" + !' + !&) ⑤ cGAN (!" + !$% + !' + !&)

① ② ③ ④ ⑤ ① ② ③ ④ ⑤

Figure 5.2: Left: The generated masks and ground truth for a sequence of input
frames. Right: The input video frames with activity bounding box generated using

different generator structures. (See digital version for colors.)

Second, we evaluated the recognition performance for each of six sports

activities and compared that with previous research on the same dataset (Table 5.4).

Our structure outperformed existing methods [43, 72, 38, 62, 92], particularly for the

activities during which unrelated people were present (shaded in Table 5.4), such as

judges and observers. For these activities, activity location was critical for recognition.

The gym vault shares a similar starting posture (running) with other activates, and
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the running step lasts longer than other steps. This fact makes the gym vault appear

similar to some other activities, causing low predictive performance.

We finally tested generalization in our system. We used the generator trained

for the six sports activities to generate masks for 16 activities that included the original

six. We then tuned the activity recognizer to recognize all 16 activities. For all 16

activities, our system achieved 7% lower performance than for the six it trained on

(Table 5.3), which was caused by errors in the generated masks. Our system was still

able to achieve performance comparable to existing systems [43, 72, 35, 21], showing

that it generalizes and to some extent tolerates errors in the generated masks.

Table 5.4: Activities and background labels in our datasets.

Activity Ref.
[43]

Ref.
[72]

Ref.
[38]

Ref.
[92]

Ref.
[107]

Ref.
[62]

Our cGAN
(LA, Lst, LC)

Our cGAN
LA, Lp, LC)

Our cGAN
(LA, Lst, Lp, LC)

Lay
Up

75.8 77.9 85.7 35.5 67.2 64.0 89.9 87.8 96.7

Bowling 66.7 72.7 87.6 70.5 68.6 66.6 92.2 91.4 93.6

Snatch 41.8 69.2 81.3 65.6 76.2 93.8 87.6 80.2 93.3

High
Jump

52.4 68.9 40.7 58.5 53.9 69.8 85.7 82.5 96.5

Long
Jump

66.8 74.7 35.7 37.6 48.1 48.9 66.7 68.7 74.8

Lay
Up

88.6 86.1 76.5 66.0 42.4 51.9 43.2 45.2 48.8

5.3 Activity Recognition with Attention

We introduce a multimodal deep neural network with our proposed feature attention

and modality attention for activity recognition. There are three main steps for making

online activity prediction: data pre-processing, feature extraction and fusion using

attention, and finally decision making (Fig. 5.3).

Data Pre-processing

The data pre-processing serves two purposes: formatting the different sensor data into

a unified representation and preparing the data for attention generation. We chose to

represent data into 3D matrices so that they can be processed using ConvNets and
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Figure 5.3: An overview of our multimodal attention network for activity recognition.

easily visualized. The visualizations of the attention are easy to interact with and will

help us further tune the network.

We categorize raw data from different sensors in two ways: spatial and sequential.

The spatial data (M × N × C) includes RGB images, depth images and optical flow,

where there is a spatial association between data points. The M × N denotes the

dimension of the input data and C denotes the channel of the input data; for gray scale

image C = 1 (Fig. 5.3, pre-processing top). The sequential data represents data with

temporal associations between data points. Most mobile sensor data, such as 3-axis

gyroscope, passive RFID data or audio data rec-orded by the microphone array, can

be categorized as sequential data (O × T × C) [112]. Where O denotes the number of

sensors deployed(Fig. 5.3, pre-processing bottom) and C denotes the sensor channel.

For most sensors C = 1, gyroscopes have three channels, and microphone arrays may

denotes the sensor channel (Fig. 5.3, pre-processing bottom).

Feature Attention

We modified the residual attention module (Figure 1, Gray shaded block) [106] to

accommodate the preprocessed spatial and sequential data structures.

The attention module consists of two parts: a conv-deconv network used to generate

a set of attention maps in the convolutional layers, and a sigmoid layer that generates a

single attention map from a set of activation maps in the last convolutional layer (Fig.

5.4). The soft-attention operation [106] was applied to use the learned attention map
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as an indicator of important features while preserving the in-formation of the original

features.

Figure 5.4: Feature attention to spatial and sequential data. O denotes the number of
objects.

Our proposed sequential attention slightly differs from existing spatial attention

[106]. Sequential attention can be intuitively understood as a temporal window that

indicates the importance of time instances within the window for activity recognition.

The generated sequential attention mask should emphasize temporal associations and

ignore spatial associations, so we fixed the size of the sequential attention mask to cover

all objects (O) at any highlighted time (Fig. 5.3, pre-processing, red region). Note that

there are other temporal attention frameworks for sequential data. Encoder-decoder

structures [111] or RNNs with modified LSTM neurons [60] are commonly used for

sequential data modeling. We didn’t use those methods because they are difficult to

visualize, and our system requires humans to determine the attention quality for later

network tuning. With the introduced ConvNet attention module, we can easily tell if

the model is putting attention on the correct spot by visualizing the generated attention

map on the input im-age and then provide feedback for further network tuning.

Modality Attention

Feature level fusion is a commonly used strategy to use features extracted from different

input modalities together for activity recognition [70]]. But simply concatenating all
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the extracted features together is not good enough, since the same sensor may have

different contributions to recognizing different activities. For example, cameras might

provide useful in-formation for sports activity recognition, but microphones are better

at verbal activities when people remain in similar postures while talking. We proposed

an intuitive inter-branch attention to learn modality dependency (Fig. 5.3, modality

attention part). The modality attention module contains a fusion layer (fully connected

layer), a score layer (softmax layer), and a linear combination layer between the original

modality feature vectors and modality scores. The proposed modality attention is

scalable to a large number of input modalities, and can be expressed as:

p = softmax(

K∑
i=1

σ(Wi · zi + bi)) (5.9)

where p is a vector that denotes the importance score vector for all modalities, gen-

erated by the softmax regression. K denotes the number of input branches, σ(∗) is

the activation function for the fusion layer. Wi, bi indicates the weight matrix and bias

vector for to the fusion layer respectively, and zi is the feature vector from the ith

modality. Similarly, the output after applying modality attention is:

y = σ(

K∑
i=1

(1 + pi) · (Wi · zi + bi)) (5.10)

where p is a vector that denotes the importance score vector for all modalities. σ(∗)

is the activation function. The (1 + pi) · zi term denotes the soft-attention applied

to the input feature vector. The modality attention can be intuitively understood as

the focusing on one or few types of sensors over others. Our experimental results on

the 50-salads dataset [100] show that the modality attention brought around 3% mAP

increase to the final activity recognition result.

5.3.1 Network Tuning

Tuning Motivation

The network can be trained in a supervised way, by tuning all of the weights in the

network and using the loss from each instance. This leads to two problems: first, the

supervised learning uses the activity recognition loss (categorical cross entropy) to tune
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the weights associated with attention and recognition. But the activity label does not

provide any information about the attention, so there is no guarantee that the attention

module generates a reasonable attention map even though the final prediction results

may be correct. Second, the observation might be not well-aligned with the activity

ground truth for each time instance. The supervised learning may assign loss to each

instance even if the instance contains no activity in progress. Addressing this issue, we

introduce an asynchronous tuning strategy based on DQN.

Asynchronous Tuning

The weights in the proposed network can be roughly categorized into two types: asso-

ciated with decision making (Fig. 5.3, unshaded part) and associated with attention

generating (Figure 1 shaded part). We propose tuning these two types of weights sepa-

rately. We started tuning the attention associated weights by setting the other weights

untrainable. After tuning the attention module and obtaining preliminary attention

generation, we stop attention training and start tuning the recognition parameters.

The asynchronous tuning makes the activity recognition based on associated features

by first tuning the system generate reasonable attention map. The tuning process can

be repeated, and our experiments show that asynchronous tuning leads to around 3%

accuracy gain.

As we argued, tuning attention module with activity ground truth labels is neither

efficient nor accurate be-cause the activity labels contain no information about the

attention region. We design a simple but efficient way to let humans provide usable

feedback on generated attention maps (Fig. 5.5). The system will randomly sample the

input data and generate attention maps. Because we used a ConvNet based attention

module, it is easy to visualize and overlay the generated attention onto the original

image and determine if the generated attention matches human experience. Humans

can reject generated attention maps and provide their feedback by clicking on the

original image. For each click, the system will generate a circle with an adjustable

radius indicating the attention region provided by a human. If multiple clicks were

made to a single image, the overlapped regions would not be summed up (Fig. 5.5 (a)).
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Note that a single image can have multiple attention regions. For sequential data, we

provided synchronized video frames so that one can mark important segments on the

sequential attention map. The generated attention map for sequential data will cover

all the object channels (Fig. 5.5 (b)).

Figure 5.5: (a). the attention map for spatial data can be generated by clicking on the
important region (b). the attention map for sequential data can be generated by

selecting important frames.

Tuning with DQN

One remaining problem is the misalignment between observations and ground truth

labels. Supervised learning usually needs a label for each instance for loss calculation,

which is often not available in published datasets. It is common to use the entire

video’s label as the label for each instance but doing this assumes each frame contains

an activity (which is not often true). Addressing this issue, we still build the system

to make online prediction but we only take the prediction from the last instance as

the final activity recognition result for entire video. Instead of calculating the loss per-

instance, we build the system to update the rewards for previous instances based on

final prediction result strategically.

Our tuning can be then formulated as a DQN problem (Fig. 5.6). The activity

recognition network with attention (Fig. 5.3) is the agent of our DQN problem that

tries to make activity predictions (actions of our DQN). The quality of each action is
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Figure 5.6: (a). the attention map for spatial data can be generated by clicking on the
important region (b). the attention map for sequential data can be generated by

selecting important frames.

determined on the final activity recognition result. The proposed DQN framework is

different from the regular DQN framework in following aspects:

The memory replay queue: To avoid over-fitting and make training more ef-

ficient, the memory replay queue was introduced in [68, 67]. In our application, we

directly used the training set for sampling. This is because unlike games that have

unlimited number of states, the dataset with limited instances has a limited number of

states.

The rewards: To avoid the influence from assigning labels to instances that have

no activity in progress, we use rewards and penalties to represent the impact of the

decision on each time instance. We use a queue to keep saving the Q values calculated

from each time instance and update the rewards when the prediction of the last instance

is made. The loss (categorical cross-entropy) is:

Loss = −
∑

S(r + r′ + γQ̂sa)logQsa (5.11)

where r denotes the rewards and r′ denotes the additional rewards we defined. Q̂sa is

the predicted action-value vector and Qsa is the actual action-value vector (softmax
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output). Because we used cross entropy as loss function which requires (r+r′+γQ̂sa) ∈

[0, 1], we defined a rectification function:

S(x) = min(max(x, 0), 1) (5.12)

If the final prediction is correct, we don’t penalize the previous incorrectly predicted

instances, since we don’t know if activity actually happens in those time instances.

Similarly, we only penalize the incorrectly predicted instances if the final prediction

result is incorrect. Given a sample with N instances, we assign rewards as:

ri =



0.1, if pi = landpN = landj = argmax(Qsa).

0, if pi 6= landpN = landj = argmax(Qsa).

0, if pi = landpN 6= landj = argmax(Qsa).

−0.1, if pi 6= landpN 6= landj = argmax(Qsa).

0, otherwise

(5.13)

where ri denotes the rewards for the ith instance at jth label, pi is the prediction for

ith instance. The l is the ground truth label and pN is the prediction of last instance.

We defined an additional reward to take the quality of generated attention maps

into consideration. For each DQN training step, the network will randomly sample a

batch of manually generated attention maps and compare them with machine-generated

attention maps. We used the intersection over union (IoU) to measure the similarity of

these attention maps and set 0.5 as the threshold. The r′ is defined as:

r′ =


0.5− IoU, j = argmax(Qsa).

0, otherwise

(5.14)

The termination: The current DQN training loop can be terminated if the pre-

diction from the last time instance do not match the ground truth. We will assign a

large penalty (-1 in our experiments) to the network and fine-tune the weights.

Implementation

We implemented the network with Keras and TensorFlow backend. Because we are

using the video as input, and we have to maintain a reasonably large batch size to
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have enough diversity within each batch, we down-sampled the video to 5fps. The

network was trained on dual GTX 1080TI GPU and 32GB RAM. We used ReLU

activation for convolutional layers and used the Adam optimizer. To avoid overfitting

and boost training, we used batch normalization after each of the convolutional layers,

and also adopted dropout after fully connected layers. We initialized spatial branch

with pre-trained VGG weights, and randomly initialized the sequential branch weights.

The model is first trained with supervised manner. When the training accuracy stops

growing, we started tuning with proposed method..

5.3.2 Experimental Results

Dataset

We used three commonly used datasets for experiments. The Olympic sports dataset

[72] contains 16 activities. We used the official training and testing split to make

comparison fair. Hollywood 2 datasets [70] contain 12 classes of human actions over

3669 video clips and approximately 20.1 hours of video in total, we used the official

training and testing split. We also tested our system with the 50-salads dataset [70]

which contains multi-sensory data from RGB-D camera and 3-axis gyroscope. We ran

our experiments on the most challenging 17-label setting.

Activity Recognition Performance

We achieved the 0.796 mAP on Olympic sports dataset, outperforming the state-of-the-

art online recognition system [113] on the same dataset. We noticed that some offline

systems [21, 58] achieved better performance on the same dataset, but they require

global feature extraction before recognition, which makes their application limited.

On the Hollywood2 dataset, our system achieved 0.582 mAP without using proposed

tuning and 0.631 mAP with proposed tuning, which is comparable to state-of-the-art

online systems [65, 104]. Some research demonstrated that combining the global feature

achieved the better performance than our system [104], but the global feature also

makes the activity recognition offline. Our system can use stacked dilated convolution
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layers over time or use global feature as input for our system as other applications for

performance boosting [59, 19]. We further tested our system on the 50 salads dataset

with both RGB-D input and sensor data, demonstrating our system with similar input

modalities and network structure outperformed other systems [47, 45] on 17 activities

(Table 5.5). The system is also able to beat other systems [47, 45] on the 7-activity

setting.

We made several observations worth mentioning: 1. For each dataset, we compared

the performance using CNN-LSTM (Fig. 5.3, unshaded part), the proposed net-work

with attention only, and the proposed network with proposed tuning. The experimental

results show that the attention brings about 11% mAP gain to the CNN-LSTM network.

The tuning will further bring about 8% accuracy gain, exemplifying the advantages of

our proposed attention framework and tuning. 2. For the 50 salads dataset, we tried

to implement the fusion layer with and without modality attention. Our experiments

show that the system using the proposed modality attention achieves around 3% higher

mAP. 3. we also studied the impact of the number of human attention feedbacks on

the final activity recognition results. Our experiments show that labeling 10% of the

dataset is sufficient enough for tuning. More manually labeled data does not lead to

significant performance boost.

Table 5.5: Activity recognition system performance comparison on Olympic sport, 50
salads and Hollywood 2 dataset. The shaded systems require offline feature processing.

Olympic Sports 50 Salads Hollywood 2

system mAP System mAP Acc. System mAP Acc.

CNN-LSTM 0.613 CNN-LSTM
(all sensory)

0.271 na CNN-LSTM 0.441 0.473

Ref. [43] 0.620 Ref. [86] 0.379 0.542 Ref. [59] na 0.785

Ref. [113] 0.764 Ref. [46] 0.579 0.597 Ref. [104] 0.563 na

Ref. [21] 0.855 Ref. [85] na 0.575 Ref. [19] na 0.767

Ref. [58] 0.966 Ours (video
only)*

0.382 0.413 Ref. [65] na 0.654

Ours* 0.686 Ours (all sen-
sory)*

0.411 0.476 Ours* 0.582 0.625

Ours 0.796 Ours (all sen-
sory)

0.449 0.501 Ours 0.631 0.689

We further tested the generalizability of our system using sports video clips we
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collected ourselves on campus, where sports activities similar to those in the training

set occur on very different backgrounds. We compared the performance of our model

with and without our proposed tuning. The network without tuning suffered around

a 19% performance drop, while the network with tuning only suffered 6%. This is

because our proposed asynchronous DQN tuning encourages the system to focus on

the associated features. We further visualized the generated attention maps outputted

from the sigmoid layer (Fig. 5.3, pointed by black arrow), and the results clearly show

that our proposed tuning helps put attention on the representative features (Fig. 5.7).

Because we resized the generated attention map from 16×16 to 256×256 for the image

overlay visualization, some of the attention does not perfectly cover the associated

features. The generated attention map can be further used to define a bounding box

indicating the activity location.

Figure 5.7: The generated attention map for Olympic sports activities after tuning.

As we argued, the DQN-based training does not assign additional loss to the in-

stances without an activity in progress to avoid overfitting to background features.
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The system should have high softmax scores when representative features appear, and

have low softmax scores for instances with no activity in progress. Based on this, we can

predict if there is an activity in progress by thresholding the softmax score. The exper-

imental results (using 0.5 as threshold) demonstrate that when representative features

are present, the system can make predictions with high confidence. However, when

there is no activity being observed, the system remains uncertain about the prediction

results (Fig. 5.8).

Figure 5.8: The system can predict activities with high confidence when
representative features are present and maintains uncertainty when there is no

activity (see digital version for better resolution).

5.4 Summary

We presented two applications of our proposed system: activity recognition. Our frame-

work, however, is generalizable to a wider range of activity recognition problems. The

idea of generating a mask can be compared to region proposal, which was used for tar-

get recognition and tracking. Instead of generating the activity-location or team-role

masks, we could generate masks for any people or objects. One could also generate

the masks to distinguish different activity performers and achieve concurrent activity
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recognition together with their locations. We further introduced the asynchronous tun-

ing and DQN based tuning to boost the training process and lead to better recognition

performance.
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Chapter 6

Concurrent Activity Recognition (Future Work)

6.1 Motivation

Concurrent activities are common, our analysis of the 42 trauma resuscitations dataset

showed that more than 50% of time instances had at least two concurrent activities.

Even for daily living scenarios (Charades dataset) there were more than 70% time

instances with at least two concurrent activities. The challenge is: With N activities,

there are N labels for individual-activity prediction but 2N potential combinations of

concurrent activities. An efficient classifier structure is needed for concurrent activity

prediction.

6.2 Encoder-Decoder for Concurrent Activity Recognition

6.2.1 System Overview

Our system consists of two main component: the encoder and decoder. Because the ac-

tivity is a continuous concept, and the observation of an activity at single time instance

can be misleading, we used a small sliding time-window (10 seconds in this paper) to

sample the collected data for activity recognition and make predicntions based on the

observation over the time windows. The set the step of the time window as one-second

so that the system is still able to make prediction online. The encoder consists of two

modules, the feature extraction and temporal association encoder (Fig. 6.1). The fea-

ture extraction module extract features from different input modality using ConvNet

and attention designed for different types of data. The LSTM layer is used to further

combine the extracted feature over the time-window into a single feature vector. The

generated vector is considered contains all the important spatial-temporal feature for
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activity recognition.

The decoder is a set of stacked LSTM layers (Fig. 6.1) that make a prediction for

the activities one at a time. In this way, the association of activities is considered for

activity prediction.

Figure 6.1: The encoder-decoder framework.

6.2.2 Encoder

Input Pre-processing

Before feature extraction, we have to pre-process the data collected from different sen-

sory. The data pre-processing serves two purposes: formatting the different sensor data

into a unified representation and preparing the data for attention generation. We chose

to represent data into 3D matrices so that they can be processed using ConvNets and

easily visualized.

We represent the spatial data includes RGB images, depth images, and optical flow,

where there is a spatial association between data points as a 3D matrix (M ×N ×C).

The M ×N denotes the dimension of the input data and C denotes the channel of the

input data; for gray scale image C = 1 (Fig. 6.2, pre-processing top). For the sensor

data such as passive RFID used in our research, we converted the received RFID raw

data as RSS map. In this way, the sensor data is represented as a 3D matrix and can

be processed with the ConvNet with attention as well.
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Figure 6.2: Multimodal structure with introduced feature attention.

Feature Attention

We modified the residual attention module [19] to accommodate the preprocessed spa-

tial and sequential data structures (Fig. 6.2, Gray shaded block).

The attention module consists of two parts: a conv-deconv network used to generate

a set of attention maps in the convolutional layers, and a sigmoid layer that generates a

single attention map from a set of activation maps in the last convolutional layer (Fig.

6.2). The soft-attention operation was applied to use the learned attention map as an

indicator of important features while preserving the information of the original features.

Because recognizing each of the simultaneous happened activities require the attention

located at the different spot of the input space, it is critical to tuning the attention

module and ensures the generated attention matches the human experience. With

the introduced ConvNet attention module, we can easily tell if the model is putting

attention on the correct spot by visualizing the generated attention map on the input

image and then provide feedback for further network tuning. The feature level fusion

is implemented to combine the extracted feature from different input modality.

Temporal Encoding

As we argued that activity recognition requires temporal association between observa-

tions over time, and several strategies were proposed to build the temporal association
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between observations. The slow fusion strategy stacks the convolutional layers overtime,

and 3D convolutional based strategy suggest that it is possible to directly perform con-

volution in 3D to extract spatial and temporal feature simultaneously. Though proved

to be applicable, the slow fusion and 3D convolution have a very redundant represen-

tation fo temporal association, which is hard to generalize and not scale well to large

time-window. Most recent research on video to text translation and language transla-

tion, a LSTM based temporal encoder is widely used, such framework is light-weight,

and LSTM is able to handle the temporal association more efficiently than ConvNet

due to its unique gates system. We adopted the same structure to encode the extracted

feature vector over time windows.

6.2.3 Decoder

Different from the single activity recognition that each activity decision is only based on

observation, we noticed that the activity combination also provide additional informa-

tion for concurrent activity recognition. For example, if a person is walking, he cannot

be running at the same time. Therefore, we need a strategy to make the prediction not

only based on extracted features but also based on the logic and associations between

different activities.

The video to text translation or language faced the similar challenge since the words

in the generated sentence have to deliver the correct meaning while maintaining the

correct order. We used the bi-directional LSTM to make the concurrent activity recog-

nition based on both extracted feature and association between activities. Because we

are doing activity recognition, the softmax layer is used for activity prediction.

6.3 Network Training and Tuning

6.3.1 Tuning Motivation

Our proposed model can be trained in supervised manner. The supervised learning use

cross entropy as loss for network tuning. One problem is that the supervised learning

is sensitive to the data imbalance, the system tend to make positive predictions for
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labels with higher occurrence and negative prediction for labels with lower occurrence

to minimize the loss. Our statistics show that the duration of different concurrent

activities are different, the long activity’s (play) duration is 100 times compared with

short activity (goal) on hokey dataset. The accuracy is not a good metric to measure

the quality of system prediction if the dataset is imbalance and the cross entropy based

loss can not well represent the overall performance of the system.

The precision and recall is much better measurement, but the overall precision and

recall cannot be measured before the prediction of a video is finished. we propose a

method that first train the network with supervised method, once the prediction for

a full video is generated, we further tune the weights based on overall performance.

During tuning, we want to penalize the network (by assign a big loss) based on both

short term loss (the per-instance prediction results) and long term loss (the F score for

entire video).

6.3.2 Network Tuning with DQN

Our tuning can be formulated as a DQN problem (Fig. 6.3) . The activity recognition

network with encoder and decoder (Fig. 6.1) is the agent of our DQN problem that tries

to make activity predictions (actions of our DQN). Instead of trying to minimize the loss

in a supervised manner, we defined the rewards and tuned the network in reinforcement

learning way. The rewards are defined based on both short-term per-frame prediction

results and long-term F-score for each case. (Fig. 6.3). Our DQN for tuning follows

the general rules of regular DQN, but it is Unique in following ways:

The Loss: Because the ultimate goal of our system is to make activity recognition,

instead of using the linear layer as the last layer for Q-value, we kept the softmax layer

and used the softmax score as Q value. This design enables us to directly “attach”

the DQN module to the per-trained network for tuning without add and dropping any

layers. To better work with the softmax layer, we used the categorical cross entropy as

loss to tuning. The loss (categorical cross-entropy) is:

Loss = −
∑

S(r + r′ + γQ̂sa)logQsa (6.1)



92

Figure 6.3: The overall diagram of our DQN based tuning.

where r denotes the rewards vector defined by the per-frame prediction results and

r′ is the additional rewards vector denotes the rewards based on long-term prediction

results. Q̂sa is the predicted action-value vector and Qsa is the actual action-value

vector (softmax output). Because we used cross entropy as loss function which requires

(r + r′ + γQ̂sa) ∈ [0, 1], we defined a rectification function:

S(x) = min(max(x, 0), 1) (6.2)

The additional rewards: As we argued that use the per-frame prediction results

for loss calculation is bias especially when the data is imbalanced. We introduced

the additional rewards that is estimated based on the F-score estimated based on the

complete prediction on each case:

r′ij = F1ij − Ej (6.3)

where rij denotes the rewards for the ith case at jth label, F1ij is the F1 score calculated

based on the prediction for ith case for activity j. The Ei denotes the expected F1

score for at jth label which can be manually determined based on different dataset.

The additional rewards has positive value if the system is able to make good prediction
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that lead to better F1 score than the expected F1 score. Otherwise, the additional

rewards turns to negative value which penalize the system.

The additional rewards is considered as long-term rewards denotes the overall per-

formance of the system on entire case instead of at each time instance.

The F1 score calculation: Calculate the F1 score requires the complete prediction

results for each case, but when tuning the network, we used the clips randomly selected

from different cases to provide enough diversity for each batch. We build a buffer array

to keep buffer the predicted data from each batch belongs to different cases . When

a buffer is filled with data, we take all the predicted data out of buffer and calculate

the F-score for each of the activity in this case and clear the buffer. The F1 score was

calculate the for each of the activities.

The memory replay queue: To avoid over-fitting and make training more ef-

ficient, the memory replay queue was introduced in [68, 67]. We adopted the idea of

memory replay queue with a unique dequeue strategy. When the F1 score is updated

for a case, all the instances that are associated with the case will be dequeued and later

replaced with new data.

The termination: The current DQN training loop can be terminated if the accu-

racy is low than a certain threshold, in our case the threshold is set to 0.8 due to the

dataset contains very imbalanced data.

6.3.3 Implementation

The network was implemented with Keras using TensorFlow as back-end. We down-

sampled the video to 5fps to reduce the calculation without compromise the perfor-

mance. To deliver enough diversity to each mini-batch, we cut each video into 30 frame

clips and randomly sample the clips over the videos. The batch normalization was used

after each of the convolutional layers, and also adopted dropout after fully connected

layers. The network was trained on dual GTX 1080TI GPU and 32GB RAM. We used

ReLU activation for convolutional layers and used the Adam optimizer.
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6.4 Preliminary Results

We applied our model on CelebA dataset. CelebA [61] is a large-scale face attributes

dataset which includes more than 200K images of human faces. There are 40 attribute

notes in total and each face will contain one or more than one attributes. We used the

official training-testing split to compare with previous research. Although it is not an

activity dataset, it is a well-known multi-label dataset. We implemented our system

on it to demonstrate our proposed encoder-decoder can be generalized to multi-label

classification problems.

Our system achieved the state-of-the-art performance compared with most recent

published papers use the same dataset (Table 6.1).

Table 6.1: Experimental results and comparison on CelebA dataset.

System Accuracy Precision (Top 10) Recall (Top 10)

ref. [108] 0.88 na na

ref. [89] 0.91 na na

ref. [28] 0.91 na na

VGG (without attention) 0.91 na 0.74

VGG (with attention) 0.87 0.87 0.87

ref. [63] 0.91 na 0.71

Our model 0.91 0.93 0.93

6.5 Future Work

We demonstrate the proposed encoder-decoder framework with tuning works for single

image based multi-label classification problems. Our future work will be:

1. More testing: implementing our system on more real-world concurrent recog-

nition datasets to further test our system performance and further improve it.

2. Better tuning: better tuning the attention module with human feedback on

generated attention map.

3. better tuning strategy: although the introduced DQN based tuning works for

concurrent activity recognition, the DQN based tuning is slow. This is partly
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because we used the categorical cross-entropy as the loss. Design the new tuning

strategy or training strategy for better training performance and efficiency will

be our future work.
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Chapter 7

Conclusion

Due to its high application value, the activity recognition is still one of the most heated

discussed research topic. We start from high-level activity recognition, process progress

estimation and further introduced the low-level activity recognition.

For high-level (process phase) activity recognition, We introduce a deep regression

based linear process progress estimation strategy and associated application in an ac-

tual trauma room. The proposed system is able to continuously estimate the overall

completeness of a event, the remaining-time for process to complete. Our contribution

on high-level activity recognition can be summarized as:

1. A novel deep regression-based approach for process progress estimation and

phase detection using commercially available sensors, as well as a new rectified

hyperbolic tangent (rtanh) activation function that bounds the regression value

to a meaningful range and accelerates the neural network training.

2. A GMM-based phase detection approach based on completeness regression

results, as well as a conditional loss function for model tuning using regression

and classification error.

3. A deep learning structure that models the progress of nonlinear processes,

which is derived from our structure for linear process modeling.

For low level (fine-level) activity recognition, we started with single sensor based

low level activity recognition systems. We studied the passive RFID based activity

recognition using both shallow and deep models. We are the first to use deep learning

for RFID data based activity recognition. We further studied the activity recognition

using video and audio as input with deep learning based approaches. To make system
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aware the important features and ignore irrelevant features, we proposed the cGAN

and attention based framework. Our future work will focus on concurrent activity

recognition. Our contribution can be summarized as:

1. Object tagging strategies and features combinations for object-use clas-

sification.

2. A deep learning model for activity recognition in complex teamwork

based on passive RFID: We developed a system for complex activity recogni-

tion from RFID data using a deep convolutional neural network. Unlike existing

systems that rely on manufactured features and a cascade structure with object-

use detection followed by activity recognition, our system works directly with

RFID data and performs multiclass classification of activities or process phases.

3. A novel approach for activity recognition that first generates activity masks

to provide additional information for subsequent activity recognition. The system

uses the generated masks as an additional color channel of the original input image

to perform per-frame activity recognition and find the activity’s bounding box.

4. The Conv-LSTM-Deconv generator for cGAN used to generate an output

sequence of video masks based on the spatio-temporal associations in a sequence

of input video frames. Our spatio-temporal loss function can tune the mask

generator based on pixel-wise errors of the generated masks and discontinuities

in the mask sequence.

5. A cascade-structure mask generator that generates the activity mask before

the activity is recognized using a VGG-LSTM network. We introduced activity

recognition loss to tune the weights of the conditional GAN generator based

6. A reinforcement learning framework for attention fine tuning that can

be easily attached to ConvNet-based attention models.
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