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ABSTRACT OF THE DISSERTATION

Constructing Confidence Intervals in High-Dimensional

Models and Dealing with Pleiotropy in Mendelian

Randomization

by Sai Li

Dissertation Director: Cun-Hui Zhang and Steven Buyske

Constructing confidence intervals in high-dimensional models is a challenging task due

to the lack of knowledge on the distribution of many regularized estimators. The

debiased Lasso approach (Zhang and Zhang, 2014) has been proposed for constructing

confidence intervals of low-dimensional parameters in high-dimensional linear models.

This thesis generalizes the idea of “debiasing” to make inference in high-dimensional Cox

models with time-dependent covariates. A quadratic optimization algorithm is proposed

for computing the debiased Lasso estimator and its benefits are demonstrated. This

thesis also studies the sample size conditions for inference in high-dimensional linear

models with bootstrapped debiased Lasso. It is proved that bootstrap can further

correct the bias of debiased Lasso and new sample size conditions involving the number

of weak signals are obtained.

In many economical and biological applications, estimating the causal effect of an

exposure on an outcome is an important task. Mendelian Randomization, in particular,

uses genetic variants as instruments to estimate causal effects in epidemiological

studies. However, when there exist pleiotropic effects, conventional instrumental

variable methods can be biased. Theoretical properties of Bayes estimators induced

ii



by single and mixture Gaussian priors are studied in the existence of pleiotropy.

The methods under consideration are generalized to deal with summarized data and

demonstrated in various simulation settings and on two real datasets.
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Chapter 1

Introduction

Regression models are fundamental tools to study the association between predictors

and response variables. In low-dimensional or fixed-dimensional settings, the least

square estimator (LSE) and maximum likelihood estimator (MLE) have been well-

studied under some classical assumptions. However, those assumptions can be too

restrictive in modern applications. Consider a low-dimensional Gaussian linear model:

y = Xβ + ε, (1.1)

where the regression coefficient vector β ∈ Rp, the design X ∈ Rn×p can be either

deterministic or random and the random error εi ∼i.i.d. N(0, σ2) conditioning on X

for some positive constant σ2. In the low-dimensional case (p < n), the least square

estimator for β is

β̂(LS) = (XTX)−1XT y

and its consistency and asymptotic normality can be proved without much efforts.

When some of the classical assumptions are violated, the LSE may have undesirable

performance and new techniques and methodologies need to be developed. The topics

in this thesis arise from following generalizations and relaxations of regression model

(1.1), which are motivated by broad applications in modern science.

(a) We consider the high-dimensional setting, where the dimension p of the model

is allowed to be larger or much larger than the sample size n. In this case, the

sample Gram matrix XTX/n is not invertible and the least square estimator

is undefined. This motivates new methodologies, say regularized least square

estimators, for estimation and inference in high-dimensional models.
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(b) We consider the effect of unknown confounders, which results in the correlation

between some predictors and the random errors. In this case, the least square

estimator can be biased. This motivates the use and study of instrumental

variables.

1.1 High-Dimensional inference

In many areas of applications, including genomics, machine learning and astronomy,

many opportunities and challenges have been posed by large-scale data. It is common

to observe large numbers of parameters and/or large numbers of observations. Hence,

it is important to study the methodologies and theory in high-dimensional scenarios.

When the dimension p of the model is larger than the sample size n, regularized least

square estimators are typically used when the signal is believed to be sparse. Popular

approaches include, but are not restricted to, the Lasso (Tibshirani, 1996), SCAD (Fan

and Li, 2001), Adaptive Lasso (Zou, 2006), Dantzig Selector (Candes and Tao, 2007),

Lasso and Dantzig (Bickel et al., 2009), MCP (Zhang, 2010) and scaled Lasso (Sun and

Zhang, 2012). Properties of regularized least square estimators in prediction, estimation

and variable selection have been extensively studied in high-dimensional linear models.

Among the regularized regression procedures, the Lasso (Tibshirani, 1996) is one of

the most popular methods as it is computationally manageable and theoretically well-

understood (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Bunea et al., 2007;

Zhang and Huang, 2008; Meinshausen and Yu, 2009; Wainwright, 2009; Ye and Zhang,

2010).

Some approaches have been generalized beyond linear models. For example, van de

Geer (2008) and Huang and Zhang (2012) studied the oracle inequality of weighted

Lasso in high-dimensional generalized linear models. Tibshirani (1997) and Fan and

Li (2002) extended the Lasso and SCAD to the Cox model, respectively. Bradic et al.

(2011) established strong oracle properties of nonconcave penalized methods for non-

polynomial dimensional Cox model. Huang et al. (2013) and Kong and Nan (2014)

studied the non-asymptotic oracle inequalities of the Lasso in the high-dimensional Cox
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regression. Lin and Lv (2013) studied a class of penalized methods for variable selection

and estimation in the high-dimensional additive hazards models. Belloni et al. (2012)

and Spindler (2016) studied the Lasso and Post-Lasso in linear instrumental variable

models with high-dimensional instruments.

However, the distributions of many regularized estimators are not tractable. For

example, the limiting distribution of the Lasso estimator (Knight and Fu, 2000) depends

on unknown parameters in low-dimensional settings and is not available in high-

dimensional settings. Thus, there is substantial difficulty in drawing valid inference

based on the Lasso estimates directly.

1.1.1 Debiased Lasso

In the p � n scenario, Zhang and Zhang (2014) proposed to construct confidence

intervals for low-dimensional regression coefficients by “debiasing” an initial Lasso

estimator. Such estimators enjoy asymptotic normality under certain conditions and

are known as the low-dimensional projection estimator (LDPE) or “debiased Lasso”.

It is worth mentioning that unlike the approaches based on selection consistency, the

debiased Lasso approach does not assume the “beta-min” condition, which requires all

the signals to be stronger than certain threshold level.

Along this line of research, many recent papers study computational algorithms and

theoretical guarantees for the debiased Lasso and its extensions beyond linear models.

van de Geer et al. (2014) proved asymptotic efficiency of the debiased Lasso estimator in

linear models and for convex loss functions. Javanmard and Montanari (2014a) carefully

studied quadratic programming in Zhang and Zhang (2014) to generate a direction for

debiasing the Lasso in high-dimensional linear models. The asymptotic normality of the

resulting estimator does not rely on the condition on the sparsity of the precision matrix

of the design. Belloni et al. (2013, 2014) proposed to construct confidence regions for the

quantile regression and instrumental median regression estimator, respectively, based

on Neyman’s orthogonalization, which is first-order equivalent to the bias correction.

Jankova and van de Geer (2015) and Ren et al. (2015) proved asymptotic efficiency of

the debiased Lasso in estimating individual entries of a precision matrix. Mitra and
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Zhang (2016) proposed to debias a scaled group Lasso for chi-squared-based statistical

inference for large variable groups. Fang et al. (2016) considered statistical inference

for a single parameter with a decorrelated Wald statistic based on debiased Lasso in

high-dimensional Cox model. Chernozhukov et al. (2017) studied debiased method in

a semiparametric model with machine learning approaches.

In Chapter 2, we consider a low-dimensional projection estimator (LDPE) for a

linear combination of regression coefficients in high-dimensional Cox models with time-

dependent covariates. The computation is via a quadratic optimization algorithm,

which can be viewed as the extension of the quadratic programming in linear models

(Zhang and Zhang, 2014; Javanmard and Montanari, 2014a) to the Cox model with

time-dependent covariates. We prove the asymptotic normality of LDPE under proper

conditions.

The sample size requirement for asymptotic normality of the debiased Lasso in

aforementioned papers is typically n � (s log p)2, where s is the number of nonzero

regression coefficients. However, it is known that estimation consistency (in `1-norm)

of the Lasso estimator holds with n � s log p. Therefore, it becomes an intriguing

question whether it is possible to conduct statistical inference of individual coefficients

in the range s log p� n . (s log p)2.

Very little work has been done in this direction. For the standard Gaussian

design, Javanmard and Montanari (2014b) studied that the debiased estimator is

asymptotically Gaussian in an average sense if s = O(n/ log p) with s/p, n/p constant,

but they did not provide theoretical results when the covariance of the design is

unknown. Let sj be the number of nonzero elements in j-th column of the precision

matrix. Javanmard and Montanari (2015) proved that asymptotic normality for the

debiased Lasso holds when s � n/(log p)2, sj � n/ log p and min{s, sj} �
√
n/ log p

under Gaussian design with unknown covariance matrix and other technical conditions.

Cai and Guo (2017) proved that adaptivity in s is infeasible for statistical inference

with random design when n . (s log p)2 in a minimax sense.



5

1.1.2 Bootstrap

Bootstrap has been widely studied for conducting inference in both low-dimensional

and high-dimensional models. Mammen (1993) considered estimating the distribution

of linear contrasts and of F-test statistics when p increases with n. Chatterjee and

Lahiri (2010) showed the inconsistency of residual bootstrap for the Lasso if at least

one true coefficient is zero in fixed-dimensional settings. For fixed number of covariates

p, Chatterjee and Lahiri (2011) proposed to apply bootstrap to a modified Lasso

estimator as well as to the Adaptive Lasso estimator. Chatterjee and Lahiri (2013)

showed the consistency of bootstrap for Adaptive Lasso when p increases with n under

some conditions which guarantee sign consistency. They also proved the second-order

correctness for a studentized pivot with a bias-correction term. It is worth mentioning

that a beta-min condition is required in their theorems as sign consistency is used

to prove bootstrap consistency. In the high-dimensional setting, multiplier bootstrap

has been studied to approximate the maximum of a sum of high-dimensional random

vectors (Chernozhukov et al., 2013; Deng and Zhang, 2017).

For the debiased Lasso procedure, Zhang and Cheng (2017) proposed a Gaussian

bootstrap method to conduct simultaneous inference with non-Gaussian errors. Dezeure

et al. (2016) proposed residual, paired and wild multiplier bootstrap for debiased Lasso

estimators, which demonstrates the benefits of bootstrap for heteroscedastic errors as

well as simultaneous inference. However, the aforementioned papers do not provide

improvement on the sample size conditions.

In Chapter 3, we prove the consistency of bootstrap approximation for the

distribution of debiased Lasso under proper regularity conditions. We prove that the

required sample size condition can be weaker than the typical condition for debiased

Lasso, which involves the number of weak signals.
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1.2 Causal effect estimation in Mendelian Randomization

1.2.1 Mendelian Randomization

Studying the causality between exposures and outcomes is a crucial task in social science

and epidemiology. Mendelian randomization (MR) uses genetic variants as instruments

to measure the causal effect of a specific exposure on an outcome (Lawlor et al., 2008;

Davey Smith and Hemani, 2014). As a counterpart to the randomized controlled trial

(RCT), MR can address areas where an RCT would be impossible or unethical. With

more and more available genome-wide association studies (GWAS), researchers are able

to find genetic variants which are robustly associated with target exposures and infer

the causality between exposures and outcomes via the variation of genetic variants.

For instance, some recent studies raised a puzzling question whether there exists

a causal relationship between low-density lipoprotein (LDL) cholesterol and type 2

diabetes. Statin therapy has been shown to reduce cardiovascular disease by lowering

LDL (Baigent et al., 2005). However, it is associated with a 9% increased risk for

incident diabetes in RCT studies (Sattar et al., 2010). On the other hand, another

LDL lowering drug, Evolocumab, which uses a different bological pathway, has not

been shown to have a significant effect on the incident diabetes in RCTs (Sabatine

et al., 2017). Thus, it is of interest to study whether the increased risk of diabetes

is caused by lowering LDL as opposed to medication-specific effects. This problem is

analyzed in Chapter 4 as a case study with MR methods applied on summary data

from GWAS.

There are many advantages of genetic variants serving as instruments. Firstly, in

genetic associations, the direction of causation is always from the genetic polymorphism

to the phenotype of interest, and not vice versa. Secondly, genetic variants are subject

to relatively small measurement error or confoundedness, as opposed to conventionally

measured environmental exposures, which are often associated with a wide range of

behavioral, social and physiological confounding factors. Thirdly, MR is more cost-

effective compared with RCTs.
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1.2.2 Instrumental variable assumptions and two-stage least square

estimator

By conventional instrumental variable literatures, typical assumptions for genetic

variants to be valid instruments (Figure 1.1) are (van Kippersluis and Rietveld, 2017)

(i) Relevance: The genetic variants have an effect on exposure.

(ii) Independence: The genetic variants are uncorrelated with any confounders of the

exposure-outcome relationship.

(iii) Exclusion restriction (ER): The genetic variants affect the outcome only through

exposure.

ZJ

Z2

Z1

D Y

U

(i)

(ii)

(iii)×

?

×

Figure 1.1: Illustrative diagram of conventional instrumental variable assumptions.

Z1, . . . , ZJ are J genetic variants as instruments. D and Y are the exposure and the

outcome under consideration. U represents common confounders of D and Y . Crosses

indicate violations of assumptions.

Observed genotypes are usually coded as the number of minor alleles, 0, 1 or 2.

Without loss of generality, we consider the case where the instruments are continuous.

Let Z be an n × J matrix of genetic variants whose i-th row consists of the i-th

observation Zi. Let D = (D1, . . . , Dn)T ∈ Rn, where Di ∈ R is the i-th observation

of the exposure. Let Y = (Y1, . . . , Yn) ∈ Rn, where Yi ∈ R is the i-th observation of

the outcome. Suppose that we observe independent copies of (Zi, Di, Yi), i = 1, . . . , n.
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We adopt the Neyman-Rubin’s potential outcome framework (Rubin, 1974; Splawa-

Neyman, 1990) and set up the model for observed data under IV assumptions (i) - (iii).

For i = 1, . . . , n,  Di = Ziγ + vi

Yi = βDi + εi,
(1.2)

where γ = (γ1, . . . , γJ)T ∈ RJ with γj the strength of the j-th instrumental variable,

β ∈ R is the causal effect of interest, and (vi, εi) has mean zero and covariance matrixσ2
v σ2

vε

σ2
vε σ2

ε

 conditioning on Z, β ∈ R is the causal effect of interest. v and ε are

correlated due to the effect of the common confounders U . In model (1.2), D is

correlated with the error term ε and hence the LSE based on the exposure-outcome

model in (1.2) can be biased. The Two-Stage Least Square (TSLS) estimator has been

proposed to solve this issue.

Specifically, one can construct a proxy of D, namely the least square estimate D̂,

such that

D̂ = Zγ̂, with γ̂ = (ZTZ)−1ZTD. (1.3)

Then we use D̂ as a proxy of D in the exposure-outcome model:

Yi = βD̂i + η̂i, (1.4)

where η̂i = εi + β(Di − D̂i). The moment condition E[ZTi η̂i] = 0, resulting from the

model assumption, sheds light on the TSLS estimator:

β̂(TSLS) = arg min
β∈R

‖Y − D̂β‖22.

It is easy to see that β̂(TSLS) is an asymptotically unbiased estimator of β assuming

that ‖D̂‖22/n→ K1 > 0 as n→∞.

1.2.3 Dealing with pleiotropy

Some concerns, such as weak instruments, the confoundness of genotype and

canalization, have been raised about applying the MR methods. Using multiple

instruments can increase the power of genotype-exposure and genotype-outcome
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association, but may also introduce issues with linkage disequilibrium and pleiotropy

(Davey Smith and Ebrahim, 2008; VanderWeele et al., 2014). Genetic variants with

pleiotropy, which means that one gene can influence two or more seemingly unrelated

phenotypic traits, may fail the ER assumption, because they may have direct effects

on the outcome. To deal with this issue, we consider causal effect estimation in the

scenario of Figure 1.2 in comparison to Figure 1.1.

ZJ

Z2

Z1

D Y

U

i(γ)

ii

iii(α)

(β)

×

Figure 1.2: Illustrative diagram of relaxing ER assumption as a result of the existence

of pleiotropic effects. Dashed arrows indicate the effects allowed to exist in this paper.

Parameters in the parentheses correspond to the notations in model (1.5).

The model for observed data corresponding to Figure 1.2 can be formulated as

follows. For i = 1, . . . , n,  Di = Ziγ + vi

Yi = βDi + Ziα+ εi,
(1.5)

where αj the effect of j-th genetic variant Zj on the outcome Y not via the exposure

D. For simplicity, we refer to αj as the pleiotropic effect of Zj . As in (1.4), we can

rewrite the exposure-outcome model in (1.5) as

Yi = βD̂i + Ziα+ η̂i, (1.6)

for D̂ defined via (1.3). Since D̂ is a linear combination of Z, the column space of

matrix (D̂, Z) ∈ Rn×(J+1) is rank deficient. If it is known the subset of genetic variants

with pleiotropic effects, i.e. the support of α is known and ‖α‖0 < J , one can perform a
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multivariate least square regarding (1.6) (Donald and Newey, 2001). However, in many

realistic cases, the support of α is always unknown.

Many recent works have studied causal effect estimation in existence of pleiotropic

effects from various perspectives. Bowden et al. (2015) introduced Egger’s regression

method under the InSIDE assumption (instrument strength independent of direct

effect). Kang et al. (2016) showed that the causal effect can be identified if at least 50%

of instruments are valid and also developed a Lasso-type estimator under some sparsity

conditions and other regularity conditions. Bowden et al. (2016) developed a weighted

median estimator which is consistent when at least 50% of instruments are valid. A

pleiotropy-robust MR method was introduced by van Kippersluis and Rietveld (2017)

using a subsample which is independent of the exposure to estimate the pleiotropic

effects. However, these types of assumptions can be hard to check in reality and hence

restrict the applicability of such estimators.

The Bayesian methods have been used and studied in order to deal with pleiotropic

effects. However, theoretical properties of Bayesian estimators are not well understood.

Feller and Gelman (2015) considered a hierarchical model to account for the randomness

in data collection, unmeasured covariates and treatment effect variation. However,

their approach does not incorporate instrumental variables, while an MR problem

is intrinsically equipped with genetic variants as instruments. Berzuini et al. (2017)

considered horseshoe prior on pleiotropic effects and demonstrated its performance

through simulations. Thompson et al. (2017) considered Bayesian model averaging

among three pleiotropy models. Schmidt and Dudbridge (2017) studied a joint normal

prior on causal effect and direct effects via simulation. However, there have been no

theoretical justifications on the non-asymptotic or asymptotic performance of Bayesian

estimators in MR problem with pleiotropy. It is important to study theoretical

performance of Bayesian methods, which can provide some guidance in applications.

The purpose of Chapter 4 is to study the theoretical performance of Bayesian estimators

under some well-adopted priors.
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1.3 Notations

We use following general notations in this thesis. For vectors u and v, let ‖u‖q denote

the `q norm of u, ‖u‖0 the number of nonzero entries of u, 〈v, u〉 = uT v the inner

product. For a set T , let T c denote its complement, |T | the cardinality of T and uT

the subvector of u with components in T . Define u⊗0 = 1 ∈ R, u⊗1 = u and u⊗2 = uuT .

We use ej to refer to the j-th standard basis element, for example, e1 = (1, 0, . . . , 0).

For a matrix A ∈ Rk1×k2 , let ‖A‖q denote the `q operator norm of A. Specially, let

‖A‖∞ = maxj≤k1 ‖Aj,.‖1. let PA be the k1 × k1 orthonormal projection matrix onto

the column space of A, i.e. PA = A(ATA)−1AT and P⊥A = Ik1×k1 − PA. Let Λmax(A)

and Λmin(A) be the largest and smallest singular values of A, AT1,T2 the submatrix of

A consisting of rows in T1 and columns in T2. We say A′ � A iff A − A′ is a positive

definite matrix.

Let Φ(·) and φ(·) be the cdf and pdf of a standard Gaussian random variable,

respectively. Let U[a, b] be the uniform distribution on [a, b] for a < b. Let
D−→ denote

convergence in distribution.

1.4 Organization of the thesis

In Chapter 2, we study constructing confidence intervals for a linear combination of

coefficients in high-dimensional Cox models with time-dependent covariates with a

quadratic optimization scheme. In Chapter 3, we prove that bootstrap can further

correct the bias of debiased Lasso for both deterministic and Gaussian designs. In

Chapter 4, we study Bayesian estimators of causal effect in the existence of pleiotropy.
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Chapter 2

Confidence intervals in high-dimensional Cox models with

time-dependent covariates

In this chapter, we consider interval estimates and hypothesis testing in high-

dimensional Cox models with time-dependent covariates. We first formally define a

low-dimensional projection estimator (LDPE) for a linear combination of regression

coefficients and then develop a one-step estimator (OSE) as a computationally efficient

alternative of LDPE. The OSE in the high-dimensional linear model is equivalent to

the debiased Lasso approach (Zhang and Zhang, 2014). The computation of LDPE and

OSE is via a quadratic optimization algorithm, which can be viewed as the extension

of Zhang and Zhang (2014) and Javanmard and Montanari (2014a) to the Cox model

with time-dependent covariates. We prove the asymptotic normality of LDPE and OSE

under proper conditions.

Fang et al. (2017) considered a similar problem as ours. They developed a

decorrelated Wald test for a single parameter. It can be seen from latter sections

that our analysis applies to a general problem with different set of conditions. Detailed

discussion is in Section 2.3.

2.1 Model set-up

Let N(n)(t) = (N1(t), · · · , Nn(t))′, t > 0 be an n-dimensional counting process on a time

interval [0, τ ] with τ > 0, where Ni(t) counts the number of observed events for the

i-th individual in the time interval [0, t]. For t > 0, let Ft be the filtration representing

all the information available up to time t. Following the definitions in Andersen and

Gill (1982), assume that for {Ft, t ≥ 0}, N(n) has a predictable compensator Λ(n) =
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(Λ1, · · · ,Λn) with

dΛi(t) = Yi(t) exp{Xi(t)β0}dΛ0(t), 1 ≤ i ≤ n, (2.1)

where β0 ∈ Rp is the true unknown parameter, Λ0(t) =
∫ t

0 λ0(s)ds is an unknown

baseline cumulative hazard function and for each i, Yi(t) ∈ {0, 1} and Xi(t) =

(Xi1(t), Xi2(t), . . . , Xip(t))
′ are both Ft predictable. Here p is large and possibly much

larger than n.

To ease our notation, define

γni(t, β) =
Yi(t) exp{Xi(t)β}

nS(0)(t, β)
and S(r)(t, β) =

1

n

n∑
i=1

Xi(t)
⊗rYi(t)e

Xi(t)β, r = 0, 1, 2.

For two time-dependent vectors f(t), g(t) ∈ Rn, t ∈ [τ1, τ2], define

f̄n(t, β) =

n∑
i=1

γni(t, β)fi(t, β)

Cov(f, g)(t, β) =

n∑
i=1

γni(t, β)(fi(t)− f̄n(t, β))(gi(t)− ḡn(t, β))T

Var(f)(t, β) = Cov(f, f)(t, β).

As in Andersen and Gill (1982), the log-partial likelihood function is defined as:

C(β, τ) =
n∑
i=1

∫ τ

0
{Xi(t)β}dNi(t)−

∫ τ

0
log

[
n∑
i=1

Yi(t) exp{Xi(t)β}
]
dN̄(t),

where N̄ =
∑n

i=1Ni. Let `([0, τ ];β) = −C(β, τ)/n for some τ > 0. By differentiation

and rearrangement of terms, it can be shown that the gradient of `([0, τ ], β) is

˙̀([0, τ ];β) =
∂`([0, τ ];β)

∂β
=

1

n

n∑
i=1

∫ τ

0
[Xi(t)− X̄n(t, β)]dNi(t) (2.2)

and the Hessian matrix of `([0, τ ];β) is

῭([0, τ ];β) =
∂2`([0, τ ];β)

∂β∂βT
=

1

n

∫ τ

0
Var(X)(t, β)dN̄(t). (2.3)

Different from linear models and generalized linear models, the score function and

Hessian matrix of the Cox model do not have the structure of sum of independent

variables. In the low-dimensional case, the central limit theory of MLE is based on the

martingale structure of the score function. In the high-dimensional case, we need to
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keep the martingale property of the score function regarding the proposed estimator and

prove the consistency of Hessian matrix by a careful decomposition based on empirical

process theory.

2.2 Methdology

2.2.1 LDPE

Consider the problem of estimating a linear functional θ = 〈a0, β〉 with respect to

the negative partial likelihood `([0, τ ];β). As proposed in Zhang (2011), the low-

dimensional projection estimator (LDPE) of θ can be constructed as a univariate MLE

θ̂(LDP ) = 〈a0, β̂
(init)〉+ arg min

φ∈R
`
(
[0, τ ]; β̂(init) + uφ

)
, (2.4)

where β̂(init) is an initial estimator of β with desired rate of convergence and u is the

least favorable submodel which has proper bias correction effect. Realization of β̂(init)

and u will be specified in next section. The formulation of LDPE in (2.4) is equivalent

to

θ̂(LDP ) = arg min
θ∈R

`
(

[0, τ ]; β̂(init) + u
(
θ − 〈a0, β̂

(init)〉
))
. (2.5)

The negative partial score function regarding (2.5) is

D(θ) = uT ˙̀
(

[0, τ ]; β̂(init) + u(θ − 〈a0, β̂
(init)〉)

)
=

1

n

n∑
i=1

∫ τ

0

[
zi(t)−

∑n
i=1 zi(t)Yi(t)e

Xi(t)β̂
(init)+zi(t)(θ−θ̂(init))∑n

i=1 Yi(t)e
Xi(t)β̂(init)+zi(t)(θ−θ̂(init))

]
dNi(t), (2.6)

where zi(t) = Xi(t)u. Hence, θ̂(LDP ) can be solved by finding the root of D(θ) = 0 for

given z(t).

2.2.2 The proposed approach

The asymptotic normality of θ̂(LDP ) defined in (2.5) requires β̂(init) to satisfy certain

rate of estimation consistency and z(t) to be a Ft-predictable process with large

probability. Since the computation of z(t) is based on β̂(init), we propose to compute

β̂(init) based on the history information prior to the time interval where z(t) is calculated
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from. Specifically, we assume that the time interval we observed is [−τ0, τ ] for the sake

of notational simplicity. We split [−τ0, τ ] into two parts and estimate β̂(init) with the

observed events in [−τ0, 0]. Based on this β̂(init), we compute z(t), t ∈ [0, τ ] with the

events in [0, τ ].

For high-dimensional Cox model, the Lasso (Tibshirani, 1997) and SCAD (Fan and

Li, 2002) approaches have been developed. We use the Lasso method to construct

β̂(init). That is, for a tuning parameter λ > 0,

β̂(init) = arg min
β∈Rp

{`([−τ0, 0];β) + λ‖β‖1}. (2.7)

Oracle inequalities and rate of convergence of β̂(init) have been studied in Huang et al.

(2013) under certain conditions. Another possibility is to estimate β̂(init) from a set of

independent observations, which can be achieved by randomly splitting the data into

two parts, computing β̂(init) from one part of the data and computing z(t) from the

other part of data.

To compute the correction score z(t), we first compute z′(t), t ∈ [0, τ ] via the

following optimization scheme. Suppose there are q ordered failure times in [0, τ ]:

0 ≤ T(1) ≤ T(2) ≤ · · · ≤ T(q) ≤ τ (setting T(0) = 0 and T(q+1) = τ). At each T(l) for

l = 1, . . . , q, consider

min
z′(T(l))∈R(n)

Var(z′)(T(l), β̂
(init)) (2.8)

subject to

 maxi∈R(T(l)) |z′i(T(l))| ≤ K4∥∥∥Cov(z′, X)(T(l), β̂
(init))− a0

∥∥∥
∞
≤ λ′ �

√
log p
n .

Let z′(t) = z′(T(l)) for t ∈ [T(l), T(l+1)) and z′(t) = 0 for t ∈ [T(0), T(1)). Then we obtain

z(t) by

z(t) = z′(t)/Var(z′)(t, β̂(init)) for t ∈ [0, τ ]. (2.9)

The construction of such optimization scheme (2.8) clearly demonstrates the necessary

conditions for the success of the debiased Lasso: achieving smallest variance (target

function) with sufficient bias reduction guaranteed (second constraint). Specifically,

the boundedness restriction of z′(t) is used to justify that the dominating term in the

error of θ̂(LDP ) is a locally bounded martingale. The second restriction imposes the
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bias correction effect of z′(t) and will guarantee the remainder terms in the estimation

error of θ̂(LDP ) are sufficiently small under some regularity conditions.

Moreover, an important advantage of optimization over the Lasso approach is that

any realized correction score z(t) via (2.8) and (2.9), which is not required to be close to

the true least favorable direction, can successfully debias the initial estimator. Hence,

the conditions regarding the existence of the true least favorable direction and the

consistency of the estimated one are not required. We will specify our conditions in

section 2.3.

The computation of z′(t) via (2.8) is manageable but more demanding than the Lasso

approach proposed in Fang et al. (2017) for debiasing a single parameter. However, (2.8)

a more natural condition and it requires weaker regularity conditions. Especially, the

“debiasing” efect of z(t) does not rely on the sparsity of Fisher information at β0 and

time t (2.14).

Remark 2.2.1. Actually, to get sufficient bias correction effect, the second constraint

in (2.8) can be replaced with∥∥∥∥ 1

n

∫ τ

0
Cov(z′, X)(t, β̂(init))dN̄(t)− a0

∥∥∥∥
∞
≤ λ′ �

√
log p

n
.

However, the z′(t) calculated under the above constraint does not have the martingale

property and this will bring difficulty to the justification for the central limit theory.

Based on β̂(init) and z(t) computed as above, θ̂(LDP ) can be computed as the solution

to D(θ) = 0 for D(θ) defined in (2.6). For a faster computation, we can construct a one-

step estimator (OSE) based on the first Newton-Raphson iteration as an approximation

of θ̂(LDP ):

θ̂(OS) =
〈
a0, β̂

(init)
〉
−
{
dD(θ)

dθ

∣∣∣
θ=θ̂(init)

}−1

D(θ̂(init)). (2.10)

2.2.3 Outline of the proof

We will show that with β̂(init) defined in (2.7) and z(t) computed via (2.8) and (2.9),

for any constant δ and D(θ) defined in (2.6),

√
nD
(
θ0 + δ/

√
n
)

=
√
nξ(0, β0) + δFz([0, τ ];β0) + oP (1), (2.11)
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where

ξ(0, β0) =
1

n

n∑
i=1

∫ τ

0
[zi(t)− z̄n(t, β0)]dNi(t) (2.12)

is asymptotically normal and Fz([0, τ ];β0) can be viewed as the Fisher information when

z(t) is given the least favorable direction for the estimation of θ (See (2.16) below).

As a consequence, we can prove that under certain regularity conditions, for the

estimators defined in (2.5) and (2.10) respectively, we have

√
n(θ̂(LDP ) − θ0) = −√nFz([0, τ ];β0)−1ξ(0, β0) + oP (1)

D−→ N(0, F−1
z ([0, τ ];β0))

(2.13a)

√
n(θ̂(OS) − θ0) = −√nFz([0, τ ];β0)−1ξ(0, β0) + oP (1)

D−→ N(0, F−1
z ([0, τ ];β0)).

(2.13b)

Hence, confidence intervals and hypothesis testing procedures can be performed based

on θ̂(LDP ) or θ̂(OS). Detailed analysis will be carried out in the next section.

2.3 Theoretical properties

Define the following population version of quantities

s(r)(t, β0) = E[S(r)(t, β0)], r = 0, 1, 2, µ(t, β0) =
s(1)(t, β0)

s(0)(t, β0)
.

The Fisher information of β at β0 and time t is defined as

F (t, β0) =
s(2)(t, β0)

s(0)(t, β0)
− µ⊗2(t, β0). (2.14)

The Fisher information of β at β0 over [0, τ ] is defined as

F ([0, τ ];β0) =

∫ τ

0
F (t, β0)s(0)(t, β0)dΛ0(t). (2.15)

To establish the asymptotic properties of the LDPE (2.5) and OSE (2.10) for Cox

model (2.1), we require the following conditions.

Condition 2.3.1. For any vector v belonging to the cone C (ξ, S) = {v ∈ Rp : ‖vSc‖1 ≤

ξ‖vS‖1}, there is a constant K0 such that

RE(ξ, S) = inf
0 6=v∈C (ξ,S)

{vT ῭([−τ0, 0];β0)v}1/2
‖v‖2

≥ K0 > 0.
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Condition 2.3.2. {Yi(t), Xi(t), i = 1, . . . , n} are i.i.d. processes from {Y (t), X(t), t ∈

[−τ0, τ ]}, P
{

max
1≤i≤n

Ni(τ) ≤ 1

}
= 1 and

P

{
sup

t∈[−τ0,τ ]
max

1≤i≤n
‖Xi(t)− µ(t, β0)‖∞ > K1

}
= o(1).

Condition 2.3.3. It holds that

P

{
sup

t∈[−τ0,τ ]
max

1≤i≤n
|eXi(t)β0/s(0)(t, β0)| > K2

}
= o(1).

Condition 2.3.4. For F (t, β0) in (2.14) and F ([0, τ ];β0) in (2.15), it holds that

Λmax(F ([0, τ ];β0)) ≤ c∗1 and sup
t∈[0,τ ]

max
1≤j≤p

(Fj,j(t, β0)) ≤ c∗2.

Moreover,∫ τ

0
Var(z)(t, β0)S(0)(t, β0)dΛ0(t)→ Fz([0, τ ];β0) > ε > 0 in probability. (2.16)

Condition 2.3.5. The parameter of interest θ = 〈a0, β〉 is given with a constant vector

a0 ∈ Rp satisfying ‖a0‖2 = OP (1) and ‖a0‖∞ ≥ a∗.

Condition 2.3.1 assumes that the restricted eigenvalue of ῭([−τ0, 0];β0) is lower

bounded, which was used to prove desired rate of consistency for β̂(init) in Huang et al.

(2013) together with Condition 2.3.2. Condition 2.3.3 is used to prove desirable rate of

convergence of the Hessian matrix (2.3). In Condition 2.3.4, the diagonal elements of

the Fisher information at each t for t ∈ [0, τ ] are required to be upper bounded. This

is due to our construction of the time-dependent correction score z(t). Condition 2.3.4

also assumes that (2.16) holds true, which can be justified under some other conditions

(see Lemma 2.3.7). Condition 2.3.5 puts some conditions on the linear coefficients a0,

which can be easily satisfied in many situations.

Note that Conditions 2.3.2 and 2.3.3 are normalized and weaker versions of

Assumptions 1 and 3 in Fang et al. (2017). Especially, neither the low bound

on the eigenvalues of F ([0, τ ];β0) nor the sparsity of the least favorable direction

F−1([0, τ ];β0)a0 are required.
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2.3.1 Main theorems

Now we state the main theorems characterizing the asymptotic normality of the LDPE

(2.5) and OSE (2.10) of θ0, respectively. Define

√
nξ(0, β0) = n−1/2

n∑
i=1

∫ τ

0
[zi(t)− z̄n(t, β0)]dNi(t). (2.17)

Theorem 2.3.1. Assume Conditions 2.3.1-2.3.5 hold true, λ � λ′ �
√

log p/n and

s = o(
√
n/ log p). Suppose z(t) is a correction score computed via (2.8) and (2.8). For

any constant δ,

√
nD
(
θ0 + δn−1/2

)
=
√
nξ(0, β0) + δFz([0, τ ];β0) + oP (1).

The proof of Theorem 2.3.1 is in the Appendix. The result of Theorem 2.3.1 is

based on the second order expansion of D(θ) (2.6). The remainder terms are controlled

by the second constraint in (2.8) and continuity of Ḋ(θ0) in its exponent (see Lemma

A.1.3). With the above theorem, we are able to establish the asymptotic normality for

θ̂(LDP ) and θ̂(OS) as desired. The inverse of variance estimator can be computed via

F̂z(β̂
(init)) =

1

n

∫ τ

0
Var(z)(t, β̂(init))dN̄(t). (2.18)

Corollary 2.3.2. Under the conditions of Theorem 2.3.1. The estimators θ̂(LDP ) in

(2.5) and θ̂(OS) in (2.10) satisfy, respectively,√
nF̂z(β̂(init))(θ̂(LDP ) − θ0)

D−→ N(0, 1)√
nF̂z(β̂(init))(θ̂(OS) − θ0)

D−→ N(0, 1),

for F̂z(β̂
(init)) defined in (2.18).

The confidence interval and hypothesis testing for parameter θ can be constructed

based on Corollary 2.3.2. Here we omit the proof details.

Corollary 2.3.3. Under the conditions of Theorem 2.3.1, an asymptotic two-sided

confidence interval for θ0, with significance 0 < α < 1 is given by

(
θ̂ − (nF̂z(β̂

(init)))−1/2Φ−1(1− α/2), θ̂ + (nF̂z(β̂
(init)))−1/2Φ−1(1− α/2)

)
.
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Moreover, the asymptotic p-value for testing the hypothesis H0 : θ0 = 0 versus HA :

θ0 6= 0 is

P = 2

{
1− Φ

(√
nF̂z(β̂(init))|θ̂|

)}
,

where F̂z(β̂
(init)) is defined in (2.18), and θ̂ can be the LDPE or OSE, which are given

in (2.5) and (2.10), respectively.

2.3.2 Supporting Lemmas

We state several preliminary lemmas which are important for proving the asymptotic

normality of θ̂(LDP ) and θ̂(OS). We postpone the proofs to the Appendix.

Lemma 2.3.4 (Properties of the initial Lasso estimator). Assume Conditions 2.3.1 -

2.3.2 hold. For λ �
√

log p/n and β̂(init) defined in (2.7), it holds that

‖β̂(init) − β0‖1 = OP (sλ) and ‖β̂(init) − β0‖22 = OP (sλ2).

Lemma 2.3.4 states the rate of convergence of the initial Lasso estimator β̂(init).

The results are directly from Theorem 4.1 of Huang et al. (2013).

Lemma 2.3.5 (Asymptotic normality of the dominant term). Suppose z′(t) is a

solution to (2.8) and z(t) is computed via (2.9). Under Conditions 2.3.1-2.3.5, for

ξ(0, β0) defined in (2.12) and Fz([0, τ ];β0) defined in (2.16), we have

√
nξ(0, β0)

D−→ N(0, Fz([0, τ ];β0)), as n→∞.

In the proof of Lemma 2.3.5, we mainly use the martingale central limit theorem.

Lemma 2.3.6 (Consistency of variance estimator). Under Conditions 2.3.1 -

2.3.5, F̂z(β̂
(init)) (2.18) is a consistent estimator of Fz([0, τ ];β0) (2.16), i.e.

F̂z(β̂
(init)) = Fz([0, τ ];β0) + oP (1).

In the next Lemma, we provide sufficient conditions guaranteeing (2.16) in Condition

2.3.4.
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Lemma 2.3.7. Suppose that supt∈[0,τ ] λ‖u0(t, β0)‖1 = o(1) and z′(T(l)) is a solution of

(2.8) for l = 1, . . . , q. Then we have

Var(z′)(T(l), β0) = aT0 F
−1(T(l), β0)a0 + oP (1).

This Lemma implies that Fz([0, τ ], β0) satisfies, specifically,

lim
n→∞

∫ τ

0
Var(z)(T(l), β0)S(0)(t, β0)dΛ0(t) = lim

n→∞

∫ τ

0
(aT0 F

−1(t, β0)a0)−1S(0)(t, β0)dΛ0(t)

=

∫ τ

0
(aT0 F

−1(t, β0)a0)−1s(0)(t, β0)dΛ0(t).

Note that condition supt∈[0,τ ] λ‖u0(t, β0)‖1 = o(1) implies supt∈[0,τ ] ‖u0(t, β0)‖1 =

o(
√
n/ log p).

2.3.3 Feasibility

As discussed before, the asymptotic normality holds with any realized z(t) via (2.8)

and (2.9). To provide theoretical guarantees for the existence of a solution, we further

assume the following conditions.

Condition 2.3.6. inft∈[0,τ ] Λmin(F (t, β0)) ≥ c∗.

Condition 2.3.7. Let u0(t, β0) = F−1(t, β0)a0. It holds that

P

{
sup
t∈[0,τ ]

max
1≤i≤n

|(Xi(t)− µ(t, β0))u0(t, β0)| > K3

}
= o(1).

Condition 2.3.6 guarantees the existence of u0(t, β0) in Condition 2.3.7. Condition

2.3.7 is a weaker version of Assumption 4 in Fang et al. (2017).

Lemma 2.3.8 (Feasibility of the optimization scheme (2.8)). Assume Conditions 2.3.1-

2.3.7. If λ′ � λ �
√

log p/n and s = o(
√
n/ log p), then the optimization problem

defined in (2.8) is feasible with large probability.

The feasibility is proved by showing that a modification of X(t)u0(t, β0) defined

in Condition 2.3.7 satisfies the constraints in (2.8) under our conditions with large

probability.
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2.4 Discussion

The quadratic programming for computing debiased Lasso was first proposed in

equation (46) of Zhang and Zhang (2014) for high-dimensional linear models and its

theoretical properties were carefully studied in Javanmard and Montanari (2014a). In

this chapter, we extend the quadratic optimization scheme to debias the Lasso estimator

in high-dimensional Cox models. By proposing a time-dependent correction score, the

martingale property of the score function regarding θ is maintained.

We emphasize that there is no need to check the conditions which are only used

to prove the feasibility of the optimization algorithm (2.8) in application. This is

because once a solution from (2.8) is obtained, the feasibility is automatically satisfied.

Moreover, for any realization from the optimization algorithm, its bias-correction effect

is automatically guaranteed. Hence, the regularity conditions regarding the true least

favorable direction are not required for proving the asymptotic normality.
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Chapter 3

Debiasing the debiased Lasso with bootstrap

As introduced in Section 1.1.1, there is a gap of required sample size between estimation

consistency (n � s log p) and inference with debiased Lasso (n � (s log p)2) in high-

dimensional linear models. In this chapter, we prove that the bias of the debiased

Lasso estimator (Zhang and Zhang, 2014) can be further removed by bootstrap without

assuming the beta-min condition for both deterministic and Gaussian designs. We

provide a refined analysis to distinguish the effects of small and large coefficients and

show that bootstrap can remove the bias caused by strong coefficients. Our results

demonstrate that if a majority of signals are strong, our sample size condition is weaker

than the usual n� (s log p)2.

3.1 Methodology

Consider a linear regression model

yi = xiβ + εi,

where β ∈ Rp is the true unknown parameter and ε1, . . . , εn are i.i.d. random variables

with mean 0 and variance σ2. We assume the true β is sparse in the sense that

the number of nonzero entries of β is relatively small compared with min{n, p}. For

simplicity, we also assume that xj ’s are normalized, s.t. ‖xj‖22 = n, for j = 1, . . . , p.

The Lasso estimator (Tibshirani, 1996) is defined as

β̂ = arg min
b∈Rp

{
1

2n
‖y −Xb‖22 + λ‖b‖1

}
, (3.1)

where λ > 0 is a tuning parameter.

Suppose that we are interested in making inference of a single coordinate βj , j =

1, . . . , p. The debiased Lasso (Zhang and Zhang, 2014) corrects the Lasso estimator by
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a term calculated from residuals. Specifically, it takes the form

β̂
(DB)
j = β̂j +

zTj (y −Xβ̂)

zTj xj
, (3.2)

where zj is an estimate of the least favorable direction (Zhang, 2011). For the

construction of zj , it can be computed either as the residual of another `1-penalized

regression of xj on X−j (Zhang and Zhang, 2014; van de Geer et al., 2014) or by a

quadratic optimization (Zhang and Zhang, 2014; Javanmard and Montanari, 2014a).

We adopt the first procedure in this paper. Formally,

zj = xj −X−j γ̂−j , with (3.3)

γ̂−j = arg min
γ−j∈Rp−1

{
1

2n
‖xj −X−jγ−j‖22 + λj‖γ−j‖1

}
, λj > 0. (3.4)

While it is also possible to debias other regularized estimators of β, such as Dantzig

selector (Candes and Tao, 2007), SCAD (Fan and Li, 2001) and MCP (Zhang, 2010),

we restrict our attention to bootstrapping the debiased Lasso.

We consider Gaussian bootstrap although the noise εi are not necessarily assumed

to be normally distributed. We generate the bootstrapped response vector as

y∗i = xiβ̂ + ε̂∗i , i = 1, . . . , n, (3.5)

where xi are unchanged and ε̂∗i are i.i.d. standard Gaussian random variables multiplied

by an estimated standard deviation σ̂. Namely,

ε̂∗i = σ̂ξi, i = 1, . . . , n, (3.6)

where ξi are i.i.d standard normal. For the choice of variance estimator, we use

σ̂2 =
1

n− ‖β̂‖0
‖y −Xβ̂‖22 (3.7)

(Sun and Zhang, 2012; Reid et al., 2016; Zhang and Cheng, 2017; Dezeure et al., 2016).

This is the same proposal of bootstrapping the residuals as in Zhang and Cheng (2017).

However, we do not directly use ε̂∗i in (3.6) to simulate the distribution of the debiased

estimator. Instead, we recompute the debiased Lasso based on (X, y∗) as follows:

β̂
(∗,DB)
j = β̂∗j +

zTj (y∗ −Xβ̂∗)
zTj xj

, (3.8)
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where zj is the same as the sample version in (3.3) and β̂∗ is the bootstrap version of

the Lasso estimator computed via (3.1) with (X, y∗) instead of the original sample.

We construct the confidence interval for βj as

(
β̂

(DB)
j − q1−α/2(β̂

(∗,DB)
j − β̂j), β̂(DB)

j − qα/2(β̂
(∗,DB)
j − β̂j)

)
, (3.9)

where qc(u) is the c-quantile of the distribution of u.

We prove that under proper conditions, the approximation error of the debiased

Lasso estimator β̂
(DB)
j in (3.2) is dominated by a constant term. We propose to estimate

this dominating constant bias by the median of the bootstrapped approximation errors

and construct a double debiased Lasso (DDB) estimator

β̂
(DDB)
j = β̂

(DB)
j −median

(
β̂

(∗,DB)
j − β̂j

)
, (3.10)

which is asymptotically normal under proper conditions.

3.2 Main ideas

Our analysis is based on a different error decomposition for the debiased Lasso from

the one originally introduced. In Zhang and Zhang (2014), the error of the debiased

Lasso is decomposed into two terms, a noise term and a remainder term:

β̂
(DB)
j − βj =

zTj ε

zTj xj︸ ︷︷ ︸
Orig.noise

−
(
eTj −

zTj X

zTj xj

)
(β̂ − β)︸ ︷︷ ︸

Orig.remainder

. (3.11)

This is the starting point of many existing analysis of the debiased Lasso (van de Geer

et al., 2014; Javanmard and Montanari, 2014a; Dezeure et al., 2016). Typically, the

Orig.remainder is bounded by OP (sλλj) through an `∞-`1 splitting with λj in (3.4).

Our analysis is motivated by the following observations. Let S and Ŝ be the support

of β and β̂ respectively. For a vector b ∈ Rp, let sgn(b) be an element of the sub-

differential of the `1 norm of b. It follows from the KKT condition of the Lasso (3.1)

that

β̂Ŝ = βŜ +

(
1

n
XT
Ŝ
XŜ

)−1( 1

n
XT
Ŝ
ε

)
− λ

(
1

n
XT
Ŝ
XŜ

)−1

sgn(β̂Ŝ) and β̂Ŝc = 0,
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assuming that XT
Ŝ
XŜ/n is invertible. Our idea is to approximate β̂ by an oracle

estimator β̂o in the analysis, where

β̂oS = βS +

(
1

n
XT
SXS

)−1( 1

n
XT
S ε

)
− λ

(
1

n
XT
SXS

)−1

sgn(βS) and β̂oSc = 0, (3.12)

when XT
SXS/n is invertible. This estimator β̂o is oracle as it requires the knowledge of

the true support of β. However, it is different from the oracle least square estimator as

the last term in β̂oS is added to mimic the Lasso estimator. In fact, β̂o = β̂ when the

Lasso estimator is sign consistent.

Inference based on the oracle estimator β̂o (3.12) is relatively easy, because

its approximation error does not involve random support selection. In fact, its

approximation error is linear in ε with an unknown intercept. Our idea is that when

the difference between the oracle estimator β̂o and the Lasso estimator β̂ is small,

the approximation error of the debiased Lasso in (3.11) is dominated by a bias term

associated with this intercept. Therefore, bootstrap can be used to remove this main

bias term. Specifically, we decompose the error of the debiased Lasso in (3.2) as

β̂
(DB)
j − βj =

zTj ε

zTj xj
−
(
eTj −

zTj X

zTj xj

)
S

(β̂o − β)−
(
eTj −

zTj X

zTj xj

)
(β̂ − β̂o)

=
zTj ε

zTj xj
−
(
eTj −

zTj X

zTj xj

)
S

(
1

n
XT
SXS

)−1( 1

n
XT
S ε

)
︸ ︷︷ ︸

Noise

+ λ

(
eTj −

zTj X

zTj xj

)
S

(
1

n
XT
SXS

)−1

sgn(βS)︸ ︷︷ ︸
Bias

+

(
eTj −

zTj X

zTj xj

)
(β̂o − β̂)︸ ︷︷ ︸

Remainder

.

(3.13)

Here the Noise term is the sum of the Orig.noise in (3.11) and a noise term associated

with the oracle estimator β̂o in (3.12). The Bias term is from the intercept of the oracle

estimator β̂o in (3.12), which is a constant of order OP (sλλj) (Remark 3.3.1 in Section

3.3). The Remainder term arises from the difference between the oracle estimator β̂o

and the Lasso estimator β̂ in (3.1). We prove the consistency of bootstrap when the

Remainder term is of order o(n−1/2), even if the Bias term is of larger order than n−1/2.

The error decomposition in (3.13) will demonstrate benefits over the decomposition in
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(3.11) when the Remainder term in (3.13) is of smaller order than the Orig.remainder

term in (3.11).

One way to bound the Remainder term in (3.13) is by considering the event that

the selected support by Lasso is inside the true support and the an `∞-bound exists for

its estimation error:

Ω0 =
{
Ŝ ⊆ S and ‖β̂ − β‖∞ ≤ Cn,pλ, Cn,p > 0

}
. (3.14)

Recall that when the Lasso estimator β̂ is sign consistent, β̂o = β̂ and Remainder in

(3.13) is zero. Let S̃ be a set of “small” coefficients, such that S̃ = {j : 0 < |βj | ≤

Cn,pλ}. In Ω0, we can get sgn(βj) = sgn(β̂j), for j ∈ S\S̃. And hence the sign

inconsistency only occurs on S̃. Formally,

‖sgn(β̂S)− sgn(βS)‖1 ≤ 2|S̃|. (3.15)

We show that the Remainder term in (3.13) is associated with the order of |S̃|. This

leads to the improvement in sample size requirement when |S̃| is of smaller order than

|S|.

3.3 Main results: deterministic designs

In this section, we carry out detailed analysis for deterministic designs. We first provide

sufficient conditions for our theorems. For ease of notation, let Σn = XTX/n.

Condition 3.3.1. The design matrix X is deterministic with

Λmin(Σn
S,S) = Cmin > 0 and max

i≤n,j≤p
|Xi,j | ≤ K0.

Condition 3.3.2. ∥∥Σn
Sc,S(Σn

S,S)−1
∥∥
∞ ≤ κ < 1.

Condition 3.3.3. ∥∥(Σn
S,S)−1

∥∥
∞ ≤ K1 <∞.

Condition 3.3.4. εi, i = 1, . . . , n, are i.i.d. random variables from a distribution with

E[ε1] = 0,E[ε21] = σ2 and E[|ε1|4] ≤M0.
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Condition 3.3.5. For any j ≤ p, ‖zj‖44 = o(‖zj‖42) and ‖zj‖22/n ≥ K2 > 0.

As K1 is assumed to be a constant in Condition 3.3.3, the eigenvalue condition

in Condition 3.3.1 is redundant in the sense that Λmin(Σn
S,S) ≥ 1/K1. Note that the

eigenvalue condition and Condition 3.3.3 are only required on a block of the Gram

matrix consisting of rows and columns in the true support. The quantity in Condition

3.3.2 is called incoherence parameter (Wainwright, 2009). This condition is equivalent to

the uniformity of the strong irrepresentable condition (Zhao and Yu, 2006) over all sign

vectors. Another related condition, the neighborhood stability condition (Meinshausen

and Bühlmann, 2006), has been studied for model selection in Gaussian graphical

models. Condition 3.3.3 is required for establishing an `∞-bound of estimation error

of the Lasso estimator. Condition 3.3.4 involves only first four moments of ε allowing

some heavy-tailed distributions. Condition 3.3.5 contains some regularity conditions on

zj , which are verifiable after the calculation of zj .

We first prove that event Ω0 in (3.14) holds true with large probability for

deterministic designs.

Lemma 3.3.1. Suppose that Conditions 3.3.1 - 3.3.4 are satisfied and (n, p, s, λ)

satisfies that

n ≥ 32σ2

λ2(1− κ)2
and λ >

16σ

1− κ

√
2 log p

n
. (3.16)

Then it holds that

Ŝ ⊆ S and ‖β̂S − βS‖∞ ≤ K1λ+ 8σ

√
2 log p

Cminn︸ ︷︷ ︸
g1(λ)

, (3.17)

with probability greater than 1− 4 exp(−c1 log p)− c2/n for some c1, c2 > 0.

Lemma 3.3.1 is proved in Appendix. Lemma 3.3.1 asserts that the Lasso estimator

does not have false positive selection with large probability under Conditions 3.3.1 -

3.3.4. It is known that Condition 3.3.3 and beta-min condition together imply the

selection consistency of the Lasso estimator. However, we do not impose the beta-min

condition but distinguish the effects of small and large signals. Note that g1(λ) � λ for

λ �
√

log p/n.
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Next we show that analogous results of Lemma 3.3.1 hold for the bootstrap version

of the Lasso estimator β̂∗.

Lemma 3.3.2. Assume that Conditions 3.3.1 - 3.3.4 are satisfied. If (n, p, s, λ) satisfies

(3.16), n� s log p and

4σ

1− κ

√
2 log p

n
≤ λ �

√
log p/n, (3.18)

then with probability going to 1,

Ŝ∗ ⊆ S and ‖β̂∗S − β̂S‖∞ ≤ K1λ+ 2σ

√
2 log p

Cminn︸ ︷︷ ︸
g′1(λ)

. (3.19)

Lemma 3.3.2 is proved in Appendix. We mention that the condition n � s log p

is required for the consistency of σ̂2 (see Lemma A.2.4 for details). Note that it is

Ŝ instead of S that is the true support under the bootstrap resampling proposal and

Ŝ ⊆ S with large probability by Lemma 3.3.1. In fact, as will be proved in the next

lemma, (3.19) is sufficient for achieving the following decomposition.

β̂
(∗,DB)
j − β̂j =

zTj ε̂
∗

zTj xj
−
(
eTj −

zTj X

zTj xj

)
S

(
1

n
XT
SXS

)−1( 1

n
XT
S ε̂
∗
)

︸ ︷︷ ︸
Noise∗

+ Bias

+ λ

(
eTj −

zTj X

zTj xj

)
S

(
1

n
XT
SXS

)−1 (
sgn(β̂∗S)− sgn(βS)

)
︸ ︷︷ ︸

Remainder∗

, (3.20)

for Bias defined in (3.13). Thus, bootstrapping the debiased Lasso is consistent when

Remainder and Remiander∗ are sufficiently small and the bootstrap approximation of

Noise∗ to Noise is consistent.

To bound the remainder terms, let s̃ be the number of small coefficients, such that

s̃ =
∣∣{j : 0 < |βj | < g1(λ) + g′1(λ)

}∣∣ , (3.21)

for g1(λ) and g′1(λ) defined in (3.17) and (3.19) respectively.

Lemma 3.3.3. Suppose that Conditions 3.3.1 - 3.3.4 hold true, λ �
√

log p/n satisfies

(3.16) and (3.18) and n � s log p. For β̂
(DB)
j and β̂

(∗,DB)
j defined in (3.2) and (3.8)
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respectively, we have

P

(∣∣∣β̂(DB)
j − βj −Noise−Bias

∣∣∣ > 2K1
s̃λλj

zTj xj/n

)
= o(1), (3.22)

P

(∣∣∣β̂(∗,DB)
j − β̂j −Noise∗ −Bias

∣∣∣ > 2K1
s̃λλj

zTj xj/n

)
= o(1), (3.23)

where Noise and Bias are defined in (3.13), Noise∗ is defined in (3.20) and s̃ is defined

in (3.21).

Lemma 3.3.3 is proved in Appendix. The factor zTj xj/n is calculable and can be

treated as a positive constant typically. In fact, this factor is proportional to the

standard deviation of Noise and Noise∗, so that it will be cancelled in the analysis

of the asymptotic normality. Therefore, we have proved that the Remainder term in

(3.13) and the Remainder∗ term in (3.20) are of order OP (s̃λλj).

Remark 3.3.1. Under Conditions 3.3.1 - 3.3.4 and λ � λj �
√

log p/n, we can get a

natural upper bound on Bias in (3.13):

Bias = OP

(
sλλj

(zTj xj/n)Cmin

)
= OP

(
s log p

n

)
= oP (1).

Note that the order of Bias is not guaranteed to be o(n−1/2) under the sample size

conditions of Lemma 3.3.3. There will be no guarantee of improvement on the sample

size requirement if we do not remove the Bias term.

Inference for βj is based on the following pivotal statistics

Rj =
zTj xj

‖zj‖2
(β̂

(DB)
j − βj) and R∗j =

zTj xj

‖zj‖2
(β̂

(∗,DB)
j − β̂j), (3.24)

where β̂
(DB)
j and β̂

(∗,DB)
j are defined in (3.2) and (3.8) respectively. We show the

consistency of bootstrap approximation of R∗j to Rj as well as the asymptotic normality

of a pivot based on the double debiased Lasso estimator β̂
(DDB)
j in (3.10):

R
(DDB)
j =

zTj xj

σ̂‖zj‖2
(β̂

(DDB)
j − βj). (3.25)

We specify the sample size conditions as following:

A1 =
{

(n, p, s, s̃, λ, λj) : (n, p, s, λ) satisfies (3.16) and (3.18), λ � λj �
√

log p/n

and n� max{s log p, (s̃ log p)2} for s̃ in (3.21)
}
. (3.26)
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As mentioned in Section 1, the condition on the overall sparsity recovers the rate of

point estimation. If s̃ � s, our sample size condition is weaker than the typical one

n� (s log p)2.

Theorem 3.3.4. Assume that Conditions 3.3.1 - 3.3.5 hold true and (n, p, s, s̃, λ, λj) ∈

A1. Then for Rj and R∗j defined in (3.24), it holds that

sup
α∈(0,1)

∣∣P{Rj ≤ qα(R∗j )} − α
∣∣ = oP (1),

where qα(R∗j ) is the α-quantile of the distribution of R∗j . Moreover, for R
(DDB)
j defined

in (3.25), we have

sup
α∈(0,1)

∣∣∣P(R
(DDB)
j ≤ zα)− α

∣∣∣ = oP (1).

Theorem 3.3.4 is proved in Appendix. Based on Theorem 3.3.4, a two-sided 100×

(1− α)% confidence interval for βj can be constructed as in (3.9).

For the double debiased estimator (3.10), the Bias in (3.20) is estimated by the

median of the distribution of β̂
(∗,DB)
j − β̂j . In practice, the median

(
β̂

(∗,DB)
j − β̂j

)
can

be approximated by the sample median of bootstrap realizations.

Remark 3.3.2. Suppose we are interested in making inference for a linear combination

of regression coefficients 〈a0, β〉 for a0 ∈ Rp. It is not hard to see that Gaussian bootstrap

remains consistent under the conditions of Theorem 3.3.4 if ‖a0‖1/‖a0‖2 is bounded.

3.4 Main results: Gaussian designs

This section includes main results in the case of Gaussian designs. The proof follows

similar steps as for deterministic designs. We first describe conditions we impose in our

theorems.

Condition 3.4.1. The design matrix X has independent Gaussian rows with mean 0

and covariance Σ.

Condition 3.4.2. ∥∥∥ΣSc,SΣ−1
S,S

∥∥∥
∞
≤ κ < 1.
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Condition 3.4.3. ∥∥∥Σ
−1/2
S,S

∥∥∥2

∞
≤ K1 <∞.

Condition 3.4.4.

Λmin(ΣS,S) ≥ Cmin, max
j≤p

(Σ−1)j,j ≤ 1/C∗ and max
j≤p

Σj,j ≤ C∗ <∞.

Condition 3.4.5. εi, i = 1, . . . , n, are i.i.d from Gaussian distribution with mean 0

and variance σ2.

Condition 3.4.2 - Condition 3.4.3 are population versions of Condition 3.3.2 -

Condition 3.3.3. In Condition 3.4.4, we require that the largest diagonal element of

Σ−1 is upper bounded, in order to lower bound ‖zj‖22/n asymptotically. It is also

worth mentioning that Condition 3.4.3 is related to condition (iii) in Javanmard and

Montanari (2015) (denoted as [JM15]). Specifically, [JM15] required that

ρ(Σ, C0s0) = max
T⊆[p],|T |≤C0s

∥∥∥Σ−1
T,T

∥∥∥
∞
< ρ, for C0 ≥ 33.

This condition is on a set T , which is actually the support of the estimation error

of a perturbed Lasso estimator, while Condition 3.4.3 is assumed on the true support

S.

Lemma 3.4.1. Assume that Conditions 3.4.1 - 3.4.5 are satisfied and (n, p, s, λ)

satisfies that

sλ2 ≤ σ2Cmin

2
and λ ≥ 8σ

1− κ

√
C∗ log p

n
. (3.27)

Then for

g2(λ) = (1 + Cn)K1λ+ 4σ

√
log p

Cminn
with Cn = O

(
s ∨√s log p√

n

)
, (3.28)

it holds that

Ŝ ⊆ S and ‖β̂S − βS‖∞ ≤ g2(λ), (3.29)

with probability greater than 1−c1/n−2 exp(−c2 log p)−2 exp(−c3n) for some c1, c2, c3 >

0.
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Lemma 3.4.1 is proved in Appendix. Note that g2(λ) = o(1) if n � s log p. If

s2 ∨ s log p = O(n), then g2(λ) = O(λ). In fact, Theorem 3 in Wainwright (2009)

considers the same scenario, but their results require s→∞ and their upper bound on

‖β̂ − β‖∞ only holds for sign consistency case.

In the next Lemma, we prove a bootstrap analogue of Lemma 3.4.1.

Lemma 3.4.2. Assume that Conditions 3.4.1 - 3.4.5 hold true. If (n, p, s, λ) satisfies

(3.27), n� s log p and

4σ

1− κ

√
log p

n
≤ λ �

√
log p

n
, (3.30)

then with probability going to 1,

Ŝ∗ ⊆ S and ‖β̂∗S − β̂S‖∞ ≤ g2(λ), for g2(λ) in (3.28). (3.31)

Lemma 3.4.2 in proved in Appendix. Same as the deterministic design case, the

condition n� s log p is required for the consistency of σ̂2.

Under Conditions 3.4.1 - 3.4.5, we prove the consistency of Gaussian bootstrap

under Gaussian designs.

For g2(λ) defined in (3.28), define

s̃ = |{j : 0 < |βj | < 2g2(λ)}| . (3.32)

We specify the required sample size condition as following:

A2 =
{

(n, p, s, s̃, sj , λ, λj) : (n, p, s, λ) satisfies (3.27) and (3.30), λ � λj �
√

log p/n

and n� max{s log p, ss̃ log p, (s̃ log p)2, sj log p} for s̃ in (3.32)
}
. (3.33)

Theorem 3.4.3. Suppose that Conditions 3.4.1 - 3.4.5 are satisfied and

(n, p, s, s̃, sj , λ, λj) ∈ A2. Then it holds that

sup
α∈(0,1)

∣∣P{Rj ≤ qα(R∗j )} − α
∣∣ = oP (1).

Moreover, for R
(DDB)
j defined in (3.25), we have

sup
α∈(0,1)

∣∣∣P(R
(DDB)
j ≤ zα)− α

∣∣∣ = oP (1).
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It can be seen from the proof that condition n � ss̃ log p in (3.33) is used to

achieve desired rates of |Remainder| and |Remainder∗|, such that ‖(Σn
S,S)−1‖∞s̃λ2 =

oP (n−1/2). The condition n � sj log p is required to prove that ‖zj‖22/n is

asymptotically bounded away from zero.

In terms of the sparsity requirements, A2 (3.33) implies that it is sufficient to

require s = O(
√
n) and s̃ = o(

√
n/ log p). Compared with the typical condition,

s = o(
√
n/ log p), our condition allows at least an extra order of log p. Moreover, if

s̃ is constant, our requirement on s is s � n/ log p, which recovers the rate of point

estimation. Comparing with the sparsity condition assumed in [JM15] for unknown

Gaussian design case, our analysis still benefits when s̃ is sufficiently small:

• If the sparsity of the j-th column of precision matrix is much larger than the

sparsity of β, i.e. s̃ ≤ s � sj , [JM15] required n � max{(s log p)2, sj log p},

which is no better than the rate in A2 (3.33) as discussed above. If s̃� s, A2 is

weaker than the sparsity conditions assumed in [JM15].

• If the j-th column of the precision matrix is much sparser, i.e. s � sj , [JM15]

required that n� max{s(log p)2, (sj log p)2}. If s̃� log p, then s(s̃ ∨ 1) log p�

s(log p)2 and hence the sample size condition in A2 is weaker. If s̃� log p, [JM15]

required weaker condition on s but stronger condition on sj .

3.5 Simulations

In this section, we report the performance of the debiased Lasso with Gaussian

bootstrap and other comparable methods in simulation experiments.

Consider deterministic design case with n = 100, p = 500, Xi ∼ N(0, Ip) and

εi ∼ N(0, 1). We consider a relatively large sparsity level, s = 20, and two levels of true

regression coefficients as following.

(i) All the signals are strong: β1 = · · · = β20 = 2.

(ii) A large proportion of signals are strong: β1 = · · · = β5 = 1, β6 = · · · = β20 = 2.
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We compare the performance of bootstrapping the debiased Lasso (BS-DB), the

debiased Lasso without bootstrap (DB) and the Adaptive Lasso with residual bootstrap

(BS-ADP). For BS-DB, we generate (1 − α)% confidence interval (CI) according to

(3.9) with 500 bootstrap resamples. We take λ = λj at the universal level for the

Lasso procedures. For DB, we estimate the noise level by (3.7) and take λ = λj at the

universal level for the Lasso procedures. (1 − α)% confidence intervals are generated

according to (
β̂

(DB)
j + σ̂zα/2

‖zj‖2
zTj xj

, β̂
(DB)
j + σ̂z1−α/2

‖zj‖2
zTj xj

)
.

For BS-ADP, we consider the pivot defined in (4.2) of Chatterjee and Lahiri (2013),

which can achieve second-order correctness under some conditions. Such estimators

also have a bias-correction term, which can be explicitly calculated assuming sign

consistency. The choices of λ1,n and λ2,n are according to Section 6 of Chatterjee

and Lahiri (2013). Each confidence interval is generated with 500 bootstrap resamples.

We construct two-sided 95% confidence intervals using each of the aforementioned

methods. Each setting is replicated with 1000 independent realizations. In the following

table, we report the average coverage probability on S and Sc (ĉovS and ĉovSc ,

respectively) as well as the average length of CIs on S and Sc (`S and `Sc , respectively)

for identity covariance matrix and equicorrelated covariance matrix with Σj,j = 1 and

Σj,k = 0.2 (j 6= k).

β Methods
Σj,k = 0 (j 6= k) Σj,k = 0.2 (j 6= k)

ĉovS ĉovSc `S `Sc ĉovS ĉovSc `S `Sc

(i)

BS-DB 0.997 0.999 1.127 0.539 0.893 0.997 1.074 0.436

DB 0.940 0.982 0.886 0.885 0.627 0.934 0.760 0.778

BS-ADP 0.274 0.950 0.181 0.201 0.241 0.945 0.432 0.319

(ii)

BS-DB 0.974 0.998 1.057 0.554 0.820 0.987 0.963 0.424

DB 0.939 0.982 0.887 0.886 0.649 0.925 0.716 0.733

BS-ADP 0.279 0.951 0.195 0.187 0.280 0.943 0.638 0.280

One can see that BS-DB always gives larger coverage probabilities than DB across

different settings. We mention that noise level is overestimated. For example, in setting

(i) and (ii) with the identity covariance matrix, the average of σ̂ is 2.240 and 2.244,
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respectively. The CIs given by BS-DB are longer than those computed with DB on

S, but on Sc the CIs given by BS-DB are shorter than the ones given by DB. On

the other hand, BS-ADP exhibits the overconfidence phenomenon: the average lengths

of CIs are small, which results in low coverage probabilities on S. In the presence

of equicorrelation, which is a harder case, BS-DB is significantly better than DB and

BS-ADP in terms of coverage probability.
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Figure 3.1: Boxplots of the double debiased Lasso (DDB) (3.10), the debiased Lasso

(DB) (3.2) and the Lasso (Las) (3.1) with the identity covariance matrix in setting

(ii). First row consists of estimates for strong signals: β6 = β7 = β8 = 2. Second

row consists of estimates for strong signals: β1 = β2 = β3 = 1. Third row consists of

estimates for zeros: β21 = β22 = β23 = 0. Each Boxplot is based on 1000 independent

replications.

Figure 3.1 demonstrates the bias-correction effects of debiasing and bootstrap across



37

different levels of signal strengths. Concerning the overall performance, DDB is better

than DB in terms of bias-correction, which is in line with our theoretical results. For

j ∈ S, DDB and DB are less biased than the Lasso estimators. On Sc, the Lasso

estimates the regression coefficients as zero with a large probability. Thus, the Boxplot

degenerates to a point at zero with a few outliers. Comparing row-wise, one can see

that bootstrap has more significant correction effects on strong signals (first row) than

on weak signals (second row). When true coefficients are zeros, DDB is also less biased

than DB.

3.6 Discussions

We consider the bias-correction effect of bootstrap for statistical inference with debiased

Lasso under proper conditions. Our analysis on the approximation error of debiased

Lasso admits sample size conditions in terms of the number of weak signals. Our

results contribute to the inference problem in the regime s log p � n . (s log p)2, but

also demonstrate the benefits of having strong signals for the debiased Lasso procedure.

We establish the consistency of Gaussian bootstrap and show that confidence intervals

can be constructed based on bootstrap samples.

Besides Gaussian bootstrap, we also considered residual bootstrap, which is robust

in the presence of heteroscedastic errors. However, the proof involves a more technical

analysis and may impair the sample size conditions. To focus on the main idea, this

is omitted from the paper. We also considered the proof techniques in [JM15], which

construct a perturbed version of the Lasso estimator assuming βj is known and utilize

its independence of xj . However, these techniques cannot be directly applied to the

bootstrapped debiased Lasso, since the “true” parameters β̂ and σ̂ under the bootstrap

resampling plan are not independent with xj for j ∈ S.
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Chapter 4

Dealing with pleiotropy in Mendelian Randomization

In this chapter, we consider causal effect estimation with instruments which may violate

the ER assumption (Figure 1.1). Mathematically, our goal is to identify β given possibly

nonzero α in model (1.5). We first consider a single Gaussian prior on α and characterize

the estimation error of the Bayes rule in terms of the ratio of the variation within

α and the instrument strength. We also study a joint estimation of unknown hyper

parameters and parameters of interests. Secondly, we consider a mixture Gaussian prior

to deal with sparse α. We study the estimation error of posterior mean and propose a

computation algorithm to deal with unknown hyper parameters. The proposed method

is generalized to fit summarized data under some conditions. Simulations and real

studies are demonstrated in Section 4.5.

4.1 Motivation of Bayesian methods

Bayesian methods have been used to deal with pleiotropic effects in MR for its

robustness to model misspecification (Thompson et al., 2017; Schmidt and Dudbridge,

2017). Our analysis of Bayesian methods is motivated by following observations from

a frequentist point of view. Suppose that pleiotropic effects αj are all equal but not

necessarily zero, i.e. α1 = · · · = αJ = µα and µα is unknown. Then the exposure-

outcome model (1.6) can be written as

Yi = D̂iβ + Z̃iµα + η̂i, (4.1)

where Z̃i =
∑J

j=1 Zi,j . A multiple least square estimator with respect to (4.1) is

consistent under typical assumptions as long as D̂ is linearly independent of Z̃. This

motivates us to develop an estimator of β, which is consistent when the variation within
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pleiotropic effects α is “sufficiently” small. Such estimators can be very useful when we

have prior knowledge of the approximate variation of α. Let us consider a regularized

least square estimator with `2-regularization:

(β̂, α̂) = arg min
b∈R,a∈RJ

‖Y − D̂b− Za‖22 + λ
J∑
j=1

(aj − µα)2

 , (4.2)

for some µα ∈ R and tuning parameter λ > 0. The penalty term in (4.2) plays two roles:

Firstly, it regularizes the rank deficient Gram matrix formed by (D̂, Z). Secondly, it

favors small variation in pleiotropic effects α. Specially, if α1 = · · · = αJ = µα, then the

penalty part of (4.2) is zero. It is worth mentioning that different from a typical Ridge-

regression, the causal effect β is not penalized in (4.2). We can equivalently formulate

(4.2) in a Bayesian framework by specifying some proper priors on α, in order to get

some generalization on the penalty term in later sections. We mention that we focus

on the low-dimensional scenario of α, i.e. J < n.

4.2 Hierarchical models

Hierarchical models are useful tools for pooling information and simultaneous inference.

In Genetics, effect sizes are often modeled under a Gaussian prior (Stephens and

Balding, 2009). We first consider a single Gaussian prior where the hyper parameters

can be known or unknown. Then we consider utilizing a mixture Gaussian prior to deal

with possibly sparse pleiotropic efffects.

4.2.1 Single Gaussian prior

It is not hard to see that (β̂, α̂) defined in (4.2) can be viewed as the posterior mode of

the following hierarchical model.

Yi|D̂, Z, β, α, σ2
η ∼ind N(D̂iβ + Ziα, σ

2
η), (4.3)

αj |σ2
η ∼iid N(µα, τ

2
nσ

2
η), (4.4)

σ−2
η ∼ Gamma(ν1, ν2), (4.5)

where Gamma(a, b) is Gamma distribution with shape parameter a and rate parameter

b and µα, τ2
n, ν1, ν2 are some prespecified constants based on our prior knowledge. We
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emphasize that (4.3) - (4.5) are not assumptions on the unknown parameters but used

to induced proper regularization from its log-likelihood. Note that the target function

in (4.2) is proportional to its negative log likelihood with λ = τ−2
n . We set ν1 and ν2

to be small in order to make the priors noninfluential. In (4.4), we allow the variance

of αj , τ
2
n, to depend on sample size n. The next theorem justifies a non-asymptotic

error bound for the Bayes rule β̂(SG) in the model (4.3) - (4.5) with the single Gaussian

prior. Let Σn
Z = ZTZ/n.

Condition 4.2.1. The eigenvalues of Σn
Z are bounded from above and below.

Theorem 4.2.1. If Condition 4.2.1 holds, then estimation error of β̂ satisfies

|β̂(SG) − β| ≤ Λ
1/2
max(Σn

Z)

Λ
1/2
min(Σn

Z)

‖α− µα1J‖2
‖γ̂‖2

+
τ2
n

√
nΛ

1/2
max(Σn

Z)‖ZTP⊥
D̂
η̂‖2

‖D̂‖2
+
|D̂T η̂|
‖D̂‖22

. (4.6)

The proof of Theorem 4.2.1 can be found in the Appendix. Inequality (4.6) provides

an empirical bound for the estimation error of β̂(SG). The first term arises from the

bias of β̂(SG), which is caused by the regularization on α. It is quantified by the ratio of

variation of pleiotropic effects from µα, ‖α − µα1J‖2, and overall instrument strength

‖γ̂‖2. The eigenvalues of the sample Gram matrix Σn
Z are positive finite numbers when

Σn
Z is positive definite, which is not hard to satisfy in low-dimensional setting. The last

two terms in (4.6) arise from the noise. Specifically, the variance parameter in the prior

distribution τ2
n plays a role in regularizing the second term. We need small enough τ2

n

for the second term to converge to zero. In the next Corollary, we study the order of

the noise-related terms, which sheds lights on the selection of τ2
n.

Corollary 4.2.2. If Condition 4.2.1 holds true, then

|β̂(SG) − β| ≤ ‖α− µα1J‖2‖γ̂‖2
Λ

1/2
max(Σn

Z)

Λ
1/2
min(Σn

Z)
+OP

(
τ2
n

√
JnσεΛmax(Σn

Z)

‖D̂‖2
+

σε

‖D̂‖2

)
. (4.7)

Corollary 4.2.2 implies that for β̂ to be consistent, it is sufficient for the variation of

α from µα to be of smaller order than the instrument strength, i.e. ‖α−µα‖2 = o(‖γ̂‖2),

and parameter τ2
n = o(‖D̂‖2/(

√
Jn)).

Note that if we fix µα = 0, then the first term in (4.7) is proportional to the

ratio of the strength of pleiotropic effects, ‖α‖2, and instrument strength, ‖γ̂‖2. In
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many applications, the hyper parameter µα is unknown. We propose to treat it as

another nuisance parameter and estimate (β, α, µα) via the profile likelihood method

with respect to (4.2). This can be considered as an empirical Bayes method, where hyper

parameters are estimated from the sample. Specifically, consider estimating unknown

µα in the following way.

(β̂(SG∗), α̂(SG∗), µ̂(SG∗)
α ) = arg min

b∈R,a∈RJ ,µa∈R

‖Y − D̂b− Za‖22 + τ−2
n

J∑
j=1

(aj − µa)2

 ,

(4.8)

for some τ2
n > 0.

For two vectors a1 ∈ Rk, a2 ∈ Rk, let Cor(a1, a2) be the correlation between a1 and

a2, i.e.

Cor(a1, a2) = 〈a1, a2〉/‖a1‖2‖a2‖2.

Condition 4.2.2. For Z̃ = Z1J ,

|Cor(D̂, Z̃)| <
√

Λmin(Σn
Z)

Λmax(Σn
Z)

+ 1− 1.

Theorem 4.2.3. Assume that Conditions 4.2.1 and 4.2.2 hold true. If nτ2
n ≤

Λ−1
max(Σn

Z), then β̂(SG∗) defined in (4.8) satisfies

|β̂(SG∗) − β| ≤ Λ
1/2
max(Σn

Z)

Λ
1/2
min(Σn

Z)

‖α− ᾱ1J‖2
nτ2

nr
∗
n‖γ̂‖2

+OP

(√
JσεΛmax(Σn

Z)

r∗n‖D̂‖2
+

σε

‖D̂‖2

)
, (4.9)

where r∗n = Λmin(Σn
Z) + Λmax(Σn

Z)− Λmax(Σn
Z)(|Cor(D̂, Z̃)|+ 1)2.

The proof of Theorem 4.2.3 is in the Appendix. Theorem 4.2.3 implies that if the

correlation between D̂ and Z̃ is sufficiently small, then the bias of β̂(SG∗) caused by

regularization is proportional to the ratio of the variation of α (from its mean) and the

overall instrument strength. We can see that the first term on the right hand side of

(4.9) favors large τ2
n. Together with our conditions, it suggests taking nτ2

n � 1.

Remark 4.2.1. The Egger’s regression method is also related to the variation of

pleiotropic effects. The causal effect estimate via Egger’s regression is

β̂(Egger) =
(γ̂ − ¯̂γ1J)T (Γ̂− ¯̂

Γ1J)

‖γ̂ − ¯̂γ1J‖22
,
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where Γ̂ is the least square estimate of Y on Z. It can be easily shown that

|β̂(Egger) − β| ≤ ‖α− ᾱ1J‖2‖γ̂ − ¯̂γ1J‖2
+OP

(
σε√

nΛ
1/2
min(Σn

Z)‖γ − γ̄1J‖2

)
.

The bias term of Egger’s estimator is bounded above by the ratio of the variation in

α and γ̂, while the first term of β̂ in (4.7) has the order of the ratio of the variation

within α and the size of γ̂. Note that ‖γ̂‖2 is always no smaller than ‖γ̂ − ¯̂γ1J‖2. A

scenario favoring the Bayes rule over the Egger’s method is when γ̂j’s are nonzero but

close to each other.

It is also important to consider the case where some genetic variants do not have

pleiotropic effects, i.e. αj = 0 for some j ∈ {1, . . . , J}. On one hand, a direct application

of a single Gaussian prior with nonzero µα is not desirable because the penalty term

in (4.2) cannot be zero in this case. On the other hand, sparsity of α may also bring

some benefits on the invertibility of the Gram matrix. In the next section, we consider

a proper model for sparse α.

4.2.2 A mixture Gaussian prior

In this section, we consider a hierarchical model with a mixture Gaussian prior.

αj |µα, ξj , σ2
η ∼ind N(µαξj , τ

2
0nσ

2
η + (τ2

1n − τ2
0n)ξjσ

2
η) (4.10)

ξj |p1 ∼iid Bernoulli(p1) (4.11)

σ−2
η ∼ Gamma(ν1, ν2), (4.12)

where µα, p1, τ2
0n and τ2

1n are prespecified constants. If ξj = 1, the prior distribution

of αj is N(µα, τ
2
1nσ

2
η); if ξj = 0, the prior distribution of αj is N(0, τ2

0nσ
2
η) with a small

constant τ2
0n (τ2

0n = o(1)).

The above model is closely related to the “Spike-and-Slab” (George and McCulloch,

1993, 1997; Ročková and George, 2014; Narisetty and He, 2014), which is a well-

established Bayesian variable selection procedure. The “Spike-and-Slab” prior consists

of a spike component and a slab component both centered at 0. Especially, the

estimation consistency of ξ with Spike-and-Slab prior has been carefully studied in
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Narisetty and He (2014) under the same hierarchical prior as (4.10) - (4.12) for high-

dimensional regression, in which case an initial LSE estimator is not attainable. This

is analogous to the situation under consideration with µα = 0.

Nevertheless, a nonzero µα is of practical importance when unbalanced pleiotropic

effect is of interest and our goal is estimation rather than variable selection. Hence, we

will first provide theoretical justifications of the posterior mean β̂(MG) (under mixture

Gaussian prior) for any given hyper-parameters µα and p0. Then we will illustrate the

realizations when hyper parameters are unknown.

The regularization property of the mixture Gaussian prior with nonzero center (4.10)

- (4.12) can be analyzed similarly as for the Spike-and-Slab Lasso penalty in Ročková

and George (2016). Consider the marginal prior of α given σ−2
η , which is

αj |p1, τ
2
0n, τ

2
1n, σ

2
η ∼ind p1N(µα, τ

2
1nσ

2
η) + (1− p1)N(0, τ2

0nσ
2
η).

The estimation of β̂(MG) with respect to (4.10)-(4.12) and (4.3) can be formulated

as

(β̂(MG), α̂(MG)) = arg min
b∈R,a∈RJ

{
‖Y − D̂b− Za‖22 + Pen(a)

}
, (4.13)

where

Pen(a) = −2σ2
η

J∑
j=1

log
(
p1φ(aj ;µα, τ

2
1nσ

2
η) + (1− p1)φ(aj ; 0, τ2

0nσ
2
η)
)
. (4.14)

By studying the derivative of Pen(a), the following Lemma characterizes the

regularization property of prior (4.10)-(4.12). Let π1(aj) be the posterior probability

of ξj = 1 conditioning on αj = aj , i.e.

π1(aj) = p(ξj = 1|αj = aj , µα, τ
2
0n, τ

2
1n, σ

2
η) =

p1φ(aj ;µα, τ
2
1nσ

2
η)

p1φ(aj ;µα, τ2
1nσ

2
η) + (1− p1)φ(aj ; 0, τ2

0nσ
2
η)
.

Lemma 4.2.4. The derivative of Pen(α) in (4.14) satisfies

∂Pen(α)

∂αj
= 2

[
1− π1(αj)

τ2
0n

+
π1(αj)

τ2
1n

]
(αj − ω(αj)µα) , (4.15)

where

ω(αj) =
π1(αj)/τ

2
1n

π1(αj)/τ2
1n + (1− π1(αj))/τ2

0n

.
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Equation (4.15) shows that Pen(α) has adaptive shrinkage effects. As expected,

larger π1(αj) favors smaller regularization τ−2
1n and a larger center parameter ω(αj)µα.

Especially, the center ω(αj)µα = o(1) if π1(αj)/(1−π1(α)) = o(τ2
1n/τ

2
0n). In comparison,

the penalty specified by prior (4.4) - (4.5) has a constant level of regularization (τ−2
n )

and a fixed center µα.

The format of penalty obtained in Lemma 4.2.4 suggests that the results in Theorem

4.2.1 can be extended to quantify the estimation error of β̂(MG) in (4.13). However, in

the next Theorem, we study the estimation error of β̂(MG) by considering the effect of

different amount of shrinkage imposed on vector α.

Let Qn = ZTP⊥
D̂
Z/n. For prior parameters, we take τ2

0n = n−1 for simplicity

and τ2
1n is a positive constant. We split the set of pleiotropic effects into two sets

according to the posterior distribution of ξj , π1(α̂
(MG)
j ). Secifically, let Ŝα be Ŝα =

{j : limn→∞ π1(α̂
(MG)
j ) = 1}. The complement of Ŝα can be written as Ŝcα = {j :

π1(α̂
(MG)
j ) ≤ 1− c0, for some constant c0 > 0}.

Condition 4.2.3. We assume that Ŝα 6= [J ] and Λmin(Qn
Ŝα,Ŝα

) > 0.

In Condition 4.2.3, it is assumed that not all estimated αj has large probability to

be selected to the nonzero component.

Theorem 4.2.5. Under Conditions 4.2.1 and 4.2.3, for given p1 and µα, the estimation

error of β̂(MG) in (4.13) satisfies

|β̂(MG) − β| ≤2c∗nΛ
1/2
max(Σn

Z)

Λ
1/2
min(Σn

Z)

[
c1n‖(α− ω(α̂(MG))µα)Ŝα‖2

‖γ̂‖2
+
‖αŜcα − c2n‖2
‖γ̂‖2

]

+OP

(√
JΛmax(Σn

Z)σε

‖D̂‖2
+

σε

‖D̂‖2

)
, (4.16)

where c∗n ≤ max

{
1+c−1

0 Λmax(ΣnZ)

Λmin(Qn
Ŝα,Ŝα

) , c
−1
0

}
, c1n = o(1) and c2n = O(n−1).

The proof is in the Appendix. In Theorem 4.2.5, we consider the shrinkage effects

of αj in Ŝα and Ŝcα separately. As discussed before, adaptive mixing weights provide

different amount of regularization on pleiotropic effects. It is possible to use large

regularization (Hj,j , j ∈ Ŝcα) on a subset of α to sufficiently stabilize the Gram matrix.
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Specifically, in the proof we show that if Λmin(Qn
Ŝα,Ŝα

) is a positive constant and τ2
0n =

n−1, then c∗n can be treated as a constant. The eigenvalue condition on Qn is restricted

to a submatrix and it can be viewed as a restricted isometry condition. As a result,

this allows for small regularizations (of order o(1)) on αj , j ∈ Ŝα, which can reduce the

bias caused by the variation of αŜα . For j ∈ Ŝcα, the benefit of adaptivity is shown by

shrinking the weighted center to zero at the rate of n−1.

4.3 Dealing with unknown hyper parameters

In this section, we mainly discuss the computation algorithm of the posterior mean

considered in section 4.2.2.

For β̂(MG) given by model (4.3) and (4.10) - (4.12), if hyper parameters µα and p1 are

known, Gibbs sampler can be applied to draw samples from the posterior distribution

of β̂(MG). Implementation details can be found in the Appendix. In many applications,

however, the hyper parameters are always unknown.

When µα and p1 are unknown, we propose an empirical Bayes method to estimate

them from the data, which can be viewed as an approximation of a fully hierarchical

Bayes analysis (Carlin and Gelfand, 1990, 1991). The estimation can be realized by a

variation of expectation-maximization (EM) algorithm, the Monte Carlo EM (MCEM)

algorithm (Meng and Schilling, 1996; Levine and Casella, 2001). After m rounds of

Gibb’s sampling conditioning on hyper parameters, we compute hyper parameters as

the maximizer of the marginal likelihood approximated by Gibbs samples. The MCEM

algorithm iteratively estimates the marginal parameters and samples the middle-

layered parameters until it converges. (See Casella (2001) for a general description.)

Implementation details can be found in the Appendix.

Another realistic concern is the inverse of the sum of Σn
Z and a diagonal matrix,

which can be computationally expensive. This issue can be efficiently solved by block

updates (Ishwaran and Rao, 2005).
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4.4 Implementation with summary data

Many public datasets, especially GWAS datasets, are available only up to summary

statistics for the association studies between individual genetic variants and traits.

Moreover, in many cases the data on the interested exposure and that on the interested

outcome are available in independent samples. Developing methodology for this type

of data can broaden the applicability of MR and is of great relevance.

We generalize the methods under consideration to the case where only (γ̂(2), Γ̂, σ̂2
Γ)

are available, where Γ̂j (j = 1, . . . , J) is the estimated regression coefficient between

the interested outcome Y and the j-th genetic variant Zj , σ̂
2
Γ,j (j = 1, . . . , J) is the

estimated variance of Γ̂j and γ̂
(2)
j (j = 1, . . . , J) is the estimated regression coefficient

between the interested exposure D and Zj from an independent sample. To apply the

methods under consideration, we assume that ZTZ is a diagonal matrix, i.e. there is

no linkage disequilibrium. Then we can replace (4.3) by

Γ̂j |γ̂, β, α, σ2
Γ ∼ind N(γ̂jβ + αj , σ

2
Γ,j). (4.17)

A conjugate prior on α, say mixture Gaussian prior, can be

αj |µα, ξj , σ2
Γ ∼ind N(µαξj , τ

2
0nσ

2
Γ,j + (τ2

1n − τ2
0n)ξjσ

2
Γ,j) (4.18)

ξj ∼i.i.d Bernoulli(p1). (4.19)

Implementation details of the MCEM algorithm can be found in the Appendix.

4.5 Simulations and real studies

4.5.1 Synthetic data experiments

In this section, we evaluate the performance of Bayesian estimators considered in Section

4.2. We consider (1) the model under single Gaussian prior (4.3) - (4.5) with a data-

driven center (SG*); (2) the model under mixture Gaussian prior (4.3), (4.10) - (4.12)

with µα = 0 and p1 = 0.5 (MG); (3) the model under mixture Gaussian prior (4.3),

(4.10) - (4.12) with data-driven µα and p0 (MG*). These methods are numerically

studied in comparison to the TSLS and the Lasso estimators in various simulation
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settings. The TSLS estimator is computed as a benchmark from classical instrumental

variable literatures. The Lasso estimator, which is essentially the sisVIVE estimator in

Kang et al. (2016), is proposed to deal with sparse α and hence is added in comparison.

The threshold parameter is chosen by 10-fold cross validation as suggested in the paper.

In all the experiments presented in this section, each sample consists of n = 1000

observations and J = 30 candidate genetic variants. The genetic variants Zi, i =

1, . . . , n, are drawn from a multivariate normal distribution with mean zero and identity

covariance matrix. The phenotypes (Di, Yi), i = 1, . . . , n, are generated according to

model (1.5), where each (vi, εi) is generated from a bivariate normal distribution with

mean zero and covariance matrix

 1 0.2

0.2 1

.

With and without the InSIDE assumption, we allow the following parameters to

vary: the strength of causal effect, the distribution of pleiotropic effects and the

proportion of invalid instruments. Specifically, we consider two levels of signal strength

β ∈ {0, 0.2}, three levels of the mean of pleiotropic effects µα ∈ {−0.2, 0, 0.2}, and

five levels of sparsity (p∗1 ∈ {0, 0.25, 0.5, 0.75, 1}) of α. In each of these settings, we

generate γj from U[0.1, 0.3], ξ∗j from Bernoulli(1, p∗1), and uj from U[µα − 0.2, µα + 0.2]

in an i.i.d. fashion for j = 1, . . . , J . The pleiotropic effects αj = ξ∗juj if the InSIDE

assumption is satisfied and αj = (0.2γj+uj)ξ
∗
j if the InSIDE assumption is not satisfied,

for j = 1, . . . , J . In each setting, the experiment is independently replicated for 100

times and the mean square error (MSE) is reported.

As explained before, we set ν1 and ν2 to be small numbers, ν1 = ν2 = 0.001, and

τ2
n = τ2

0n = 1/n and τ2
1n = 1.
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Figure 4.1: β = 0 and InSIDE assumption is satisfied. The x-axis of each plot is

the number of nonzero αj . Each point represents the MSE of 200 experiments for

µα = −0.2, 0 and 0.2 from left to right, respectively.
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Figure 4.2: β = 0.2 and InSIDE assumption is satisfied. The x-axis of each plot is

the number of nonzero αj . Each point represents the MSE of 200 experiments for

µα = −0.2, 0 and 0.2 from left to right, respectively.
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Figure 4.3: β = 0.2 and InSIDE assumption is not satisfied. The x-axis of each plot

is the number of nonzero αj . Each point represents the MSE of 200 experiments for

µα = −0.2, 0 and 0.2 from left to right, respectively.
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Figure 4.4: β = 0.2 and InSIDE assumption is not satisfied. The x-axis of each plot

is the number of nonzero αj . Each point represents the MSE of 200 experiments for

µα = −0.2, 0 and 0.2 from left to right, respectively.

From the above plots, one can see that Bayesian methods with mixture Gaussian

prior (MG and MG*) have reliable performance at many levels of sparsity. MG* has

superior performance in the unbalanced pleiotropic effects scenario, while MG is slightly

more accurate in the balanced pleiotropic effects case. On the other hand, the method

with single Gaussian prior (SG*) has smaller MSE comparing with other methods

when all the pleiotropic effects are nonzero, especially when the pleiotropic effects are



50

unbalanced. This is due to the appropriateness of the prior as well as the data-dependent

selection of µα.

The benefits of the Lasso approach under sparsity conditions have been studied in

Kang et al. (2016). In comparison to 2SLS and the Lasso approach, MG and MG*

have smaller MSE remains stable in a broader range of sparsity levels in comparison

to existing methods. Moreover, the performances of 2SLS and the Lasso are sensitive

to the unbalanced pleiotropic effects. As explained before, the Bayesian methods with

data-dependent priors (SG* and MG*) have demonstrated more reliable performance.

When InSIDE assumption is not satisfied (Figure 4.3 and 4.4), which is a harder

scenario, we observe similar pattern as when InSIDE assumption is satisfied. Especially,

MG* has most reliable performance as long as not all pleiotropic effects are nonzero.

4.5.2 Case study (i): HDL and type 2 diabetes

The high density lipoprotein (HDL) cholesterol has the reputation as a “good”

cholesterol, since it is negatively associated in observational studies with the risk of

many diseases, for example, myocardial infarction and type 2 diabetes. However, the

supporting studies have been unable to control various potential confounders, while the

negative association with HDL has lacked convincing biological mechanisms. Hence,

the association does not necessarily imply a causal effect.

Haase et al. (2012) use the traditional MR method to estimate the causality between

HDL and the risk of type 2 diabetes. Their results suggest that there is no causal effect

of HDL on type 2 diabetes. We access a different set of summary data from MRbase

(Hemani et al., 2016) and arrive at a similar conclusion for a related trait. The MRbase

is a database and an analytical platform for MR studies, which provides summary data

of many published GWAS and some basic analytic tools.

The exposure data is measured plasma HDL cholesterol (unit: mg/dL) from the

Global Lipids Genetics Consortium (Willer et al., 2013) with a sample size 187167.

The outcome data is measured fasting glucose (unit: mmol/L) from the Meta-Analyses

of Glucose and Insulin-related traits Consortium (Dupuis et al., 2010) with a sample

size 46186. Hyperglycemia in the fasting state is one of the criteria that defines type
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2 diabetes (Kahn, 2003). Thus, fasting glucose is an important indicator of Type 2

diabetes.

For the analysis, 83 genetic variants are selected and harmonized automatically

by the MRbase, which excludes linkage disequilibrium and selects variants which are

robustly associated with the target traits with the genome-wide significance threshold

5× 10−8.

Four method are applied on this dataset. The estimate given by TSLS is -0.0282

mmol/L per mg/dL; the estimate given by the Egger’s regression (Bowden et al., 2015)

is -0.0345 mmol/L per mg/dL; the estimate given by the inverse-variance weighted

median estimator (Bowden et al., 2016) is -0.0290 mmol/L per mg/dL; the estimate

given by the MG* estimator is -0.0312 mmol/L per mg/dL, where τ2
0n and τ2

1n are

specified as 0.0001 and 0.1, respectively. One can see that these methods generate

similar estimates for this dataset.

4.5.3 Case study (ii): LDL and type 2 diabetes

As introduced at the beginning of the paper, we study the causal effect of LDL

cholesterol on the type 2 diabetes in this section.

The exposure data is measured plasma LDL cholesterol (unit: mg/dL) from the

Global Lipids Genetics Consortium (Willer et al., 2013) with a sample size 173082.

The outcome data is the fasting glucose (unit: mmol/dL) which is from the same

source of data as in case study (i). For the analysis, 72 genetic variants are selected

and harmonized.

For this dataset, the estimate given by TSLS is -0.0157 mmol/L per mg/dL; the

estimate given by the Egger’s regression (Bowden et al., 2015) is -0.0248 mmol/L per

mg/dL; the estimate given by the inverse-variance weighted median estimator (Bowden

et al., 2016) is -0.0121 mmol/L per mg/dL; the estimate given by the MG* estimator

is -0.0038 mmol/L per mg/dL, for which τ2
0n and τ2

1n are specified as 0.0001 and 0.1,

respectively.
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4.6 Discussions

In this chapter, we have studied Bayesian hierarchical models for estimating the causal

effect in the presence of invalid instruments for MR studies. Due to the confoundedness

of pleiotropic effects, the causal effect cannot be identified with the traditional TSLS

estimator. To deal with this problem, we consider single Gaussian priors and mixture

Gaussian priors to incorporate the pleiotropic effects. The estimation errors of the

considered methods are studied under proper conditions. In order to deal with unknown

hyper parameters, computational algorithm are proposed to estimate them from data,

which demonstrate superior performance in unbalanced pleiotropic effects scenario

through our simulation. Moreover, the Bayesian estimators under mixture Gaussian

prior are more stable in a broader range of sparsity levels of pleiotropic effects in

comparison to some other comparable methods, say the Lasso.

There are still interesting and open problems in the scope of current topic. Firstly,

many epidemiological studies are interested in the causal effect of exposures on the

risk of certain diseases. An important generalization of the proposed method is to

estimate the causal effect for the binary outcome data, or equivalently the probability

of occurrence of an event. Secondly, this paper together with many previous works have

been focusing on the estimation procedure, while generating valid interval estimates

with mild conditions and cheap computation remains to be a challenging and worthwhile

topic.
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Appendix A

Appendices

A.1 Proofs in Chapter 2

A.1.1 Supportive lemmas

Lemma A.1.1. Under Conditions 2.3.1 - 2.3.5, if v(t) ∈ Rp satisfies

max1≤i≤n supt∈[0,τ ] |Xi(t)v(t)− µ(t, β0)v(t)| = OP (K), then (i)

max
1≤j,k≤p

sup
t∈[0,τ ]

∣∣∣Var(X)(t, β0)− F (t, β0)
∣∣∣
j,k

= OP (K2
1K2

√
log p

n
).

(ii)

max
1≤j≤p

sup
t∈[0,τ ]

∣∣∣[Var(X)(t, β0)− F (t, β0)]v(t)
∣∣∣
j

= OP (K1K2K

√
log p

n
).

Proof of Lemma A.1.1. First define

Gn(t, β0) =
1

n

n∑
i=1

{Xi(t)− µ(t, β0)}⊗2γni(t, β0), t ∈ [0, τ ]. (A.1)

By (2.14) and (A.1), we have

[
Var(X)(t, β0)− F (t, β0)

]
=
[
Var(X)(t, β0)−Gn(t, β0)

]
︸ ︷︷ ︸

T1

+

[
Gn(t, β0)−

(
s(2)(t, β0)

s(0)(t, β0)
− µ⊗2(t, β0)

)]
︸ ︷︷ ︸

T2

For T1, note that

Var(X)(t, β0) = Gn(t, β0)− (X̄n(t, β0)− µ(t, β0))⊗2.

It is easy to see that, ∀1 ≤ j, k ≤ p,

|T1|j,k ≤ sup
t∈[0,τ ]

{
|X̄n(t, β0)− µ(t, β0)|j |X̄n(t, β0)− µ(t, β0)|k

}
.
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By SLLN, for ∀t ∈ [0, τ ],

S(0)(t, β0) = s(0)(t, β0) + oP (1). (A.2)

By Condition 2.3.2 and 2.3.3,

max
1≤i≤n

max
1≤j≤p

sup
t∈[0,τ ]

∣∣∣∣∣(Xi,j(t)− µj(t, β0))Yi(t)e
Xi(t)β0

S(0)(t, β0)

∣∣∣∣∣
= max

1≤i≤n
max

1≤j≤p
sup
t∈[0,τ ]

∣∣∣∣∣(Xi,j(t)− µj(t, β0))Yi(t)e
Xi(t)β0

s(0)(t, β0)

∣∣∣∣∣+ oP (1) = OP (K1K2).

We have proved that, with large probability X̄n(t, β0)−µ(t, β0) is an average of bounded

independent random variables. By Hoeffding’s inequality,

max
1≤j≤p

sup
t∈[0,τ ]

|X̄n(t, β0)− µ(t, β0)|j = OP

(
K1K2

√
log p

n

)

Thus,

max
1≤j,k≤p

sup
t∈[0,τ ]

|T1|j,k = OP

(
K1K2K

√
log p

n

)
.

For T2, by (A.2), Conditions 2.3.2 and 2.3.3, we have

max
1≤i≤n

max
1≤j,k≤p

sup
t∈[0,τ ]

∣∣∣∣∣ [Xi(t)− µ(t, β0)]j [Xi(t)− µ(t, β0)]kYi(t)e
Xi(t)β0

S(0)(t, β0)

∣∣∣∣∣
= max

1≤i≤n
max

1≤j,k≤p
sup
t∈[0,τ ]

∣∣∣∣∣ [Xi(t)− µ(t, β0)]j [Xi(t)− µ(t, β0)]kYi(t)e
Xi(t)β0

s(0)(t, β0)

∣∣∣∣∣+ oP (1)

= OP (K1K2K).

And

E
[
[Xi,j(t)− µ(t, β0)j ][Xi(t)− µ(t, β0)]kYi(t)e

Xi(t)β0
]

= s
(2)
j,k(t, β0)− µj(t, β0)µk(t, β0)s(0)(t, β0).

Thus, by Hoeffding’s inequality, ∀1 ≤ j ≤ p,

max
1≤j,k≤p

sup
t∈[0,τ ]

|T2|j,k = OP

(
K1K2K

√
log p

n

)
.

Second statement in Lemma A.1.1 can be proved similarly.
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To facilitate the proof of the subsequent lemmas, we define a function 〈·, ·〉(θ) for

some θ(t) = (θ1(t), . . . , θn(t))T , t ∈ [0, τ ] and show that it is a semi-inner product with

some operational properties.

Let f(t) = (f1(t), . . . , fn(t)) and g(t) = (g1(t), . . . , gn(t)) for t ∈ [0, τ ]. Let ∆fi,l(t) =

fi(t)− fl(t), 1 ≤ i, l ≤ n and ∆gi,l(t) be similarly defined. Define

〈f, g〉(t, θ) =

∑
1≤i,l≤n

Yi(t)Yl(t)e
θi(t)+θl(t)∆fi,l(t)∆gi,l(t)∑

1≤i,l≤n
2Yi(t)Yl(t)eθi(t)+θl(t)

(A.3)

〈f, g〉(θ) =
1

n

∫ τ

0
〈f, g〉(t, θ)dN̄(t). (A.4)

Let ‖f‖2(t, θ) = 〈f, f〉(t, θ) and ‖f‖2(θ) = 〈f, f〉(θ).

Lemma A.1.2. The following inequalities hold for any given θ(t) ∈ Rn, t ∈ [0, τ ],

〈f, g〉(t, θ) and 〈f, g〉(θ) defined in (A.3) and (A.4).

|〈f, g〉(t, θ)| ≤ ‖f‖(t, θ)‖g‖(t, θ) and |〈f, g〉(θ)| ≤ ‖f‖(θ)‖g‖(θ).

Proof of Lemma A.1.2. It is easy to prove 〈f, g〉(θ) satisfies:

〈f, g〉(θ) = 〈g, f〉(θ)

〈af, g〉(θ) = a〈f, g〉(θ)

〈f + z, g〉(θ) = 〈f, g〉(θ) + 〈z, g〉(θ)

〈f, f〉(θ) ≥ 0.

Thus, 〈f, g〉(θ) is a semi-product and Cauchy-Schwarz inequality follows. The proof for

〈f, g〉(t, θ) is exactly the same.

Lemma A.1.3. Assume Conditions 2.3.2-2.3.3. For some θ′(t) ∈ Rn, t ∈ [0, τ ], let

ci,l(t) = θ′i(t)− θ0,i(t) + θ′l(t)− θ0,l(t)− 2[θ̄′n(t, β0)− θ̄0,n(t, β0)].

If max
1≤i,l≤n

sup
t∈[0,τ ]

|ci,l(t)| = oP (1) and max
1≤i,l≤n

sup
t∈[0,τ ]

|∆gi,l(t)| = OP (K), then

|〈f, g〉(t, θ′)− 〈f, g〉(t, θ0)| ≤ OP (K)‖f‖(t, θ0)Var(θ0 − θ′)(t, β0)1/2. (A.5)

|〈f, g〉(θ′)− 〈f, g〉(θ0)| ≤ OP (K)‖f‖(θ0)Var(θ0 − θ′)(β0)1/2. (A.6)
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Proof of Lemma A.1.3. Without loss of generality, we only prove the more general

result (A.6). To simplify the proof of this lemma, we first declare some notations.

ωi(t) = Yi(t)e
θ0,i(t)−θ̄0,n(t,β0) ω′i(t) = Yi(t)e

θ′i(t)−θ̄′n(t,β0)

ω..(t) = n−2
∑

1≤i,l≤n
2ωi(t)ωl(t) ω′..(t) = n−2

∑
1≤i,l≤n

2ω′i(t)ω
′
l(t).

By definition (A.4),

〈f, g〉(θ′) =
1

n

∫ τ

0

n−2
∑

1≤i,l≤n ∆fi,l(t)∆gi,l(t)ω
′
i(t)ω

′
l(t)

ω′..(t)
dN̄(t),

=
1

n

∫ τ

0

n−2
∑

1≤i,l≤n ∆fi,l(t)∆g
′
i,l(t)ωi(t)ωl(t)

ω..(t)
dN̄(t) = 〈f, g′〉(θ0),

where

∆g′i,l(t) = ∆gi,l(t)e
ci,l(t)

ω..(t)

ω′..(t)
.

By Lemma A.1.2, we have

|〈f, g′〉(θ0)− 〈f, g〉(θ0)| = |〈f, g′ − g〉(θ0)| ≤ ‖f‖(θ0)‖g′ − g‖(θ0). (A.7)

Now we derive an upper bound for ‖g′ − g‖(θ0). First note that

(∆g′i,l(t)−∆gi,l(t))
2 = ∆g2

i,l(t)

(
eci,l(t)ω..(t)− ω..(t) + ω..(t)− ω′..(t)

ω′..(t)

)2

≤ ∆g2
i,l(t)

2(eci,l(t)ω..(t)− ω..(t))2 + 2(ω..(t)− ω′..(t))2

(ω′..(t))
2

. (A.8)

By the inequality that (ea − eb)/(a− b) ≤ e|a|∨|b| for ∀a, b, we have for ∀t ∈ [0, τ ],

|eci,l(t) − 1| ≤ e|ci,l(t)||ci,l(t)|. (A.9)

As a result, for ∀t ∈ [0, τ ],

∣∣ω′..(t)− ω..(t)∣∣ =

∣∣∣∣∣∣n−2
∑

1≤i,l≤n
2ωi(t)ωl(t)(e

ci,l(t) − 1)

∣∣∣∣∣∣ ≤ n−2
∑

1≤i,l≤n
2ωi(t)ωl(t)e

|ci,l(t)||ci,l(t)|.

From the above inequality, we can get following two conclusions. For ∀t ∈ [0, τ ],∣∣ω′..(t)− ω..(t)∣∣ /ω..(t) = OP

(
max

1≤i,l≤n
sup
t∈[0,τ ]

e|ci,l(t)||ci,l(t)|
)

= oP (1). (A.10)

∣∣ω′..(t)− ω..(t)∣∣ ≤√n−2
∑

1≤i,l≤n
2ωi(t)ωl(t)

√
n−2

∑
1≤i,l≤n

2ωi(t)ωl(t)e
2|ci,l(t)|c2

i,l(t)

=
√
ω..(t)

√
n−2

∑
1≤i,l≤n

2ωi(t)ωl(t)e
2|ci,l(t)|c2

i,l(t). (A.11)
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For ∀t ∈ [0, τ ], we have

(∆g′i,l(t)−∆gi,l(t))
2

≤
2∆g2

i,l(t)

(ω′..(t))
2

c2
i,l(t)e

2|ci,l(t)|ω2
..(t) + ω..(t)n

−2
∑

1≤i,l≤n
2ωi(t)ωl(t)e

2|ci,l(t)|c2
i,l(t)



= 2∆g2
i,l(t)c

2
i,l(t)(1 + oP (1)) +

2(1 + oP (1))∆g2
i,l(t)

[
n−2

∑
1≤i,l≤n

2ωi(t)ωl(t)c
2
i,l(t)

]
ω..(t)

≤ 2∆g2
i,l(t)(1 + oP (1))

c2
i,l(t) +

n−2
∑

1≤i,l≤n
2ωi(t)ωl(t)c

2
i,l(t)

ω..(t)

 , (A.12)

where the first step is by plugging (A.9) and (A.11) into (A.8), the second step is by

(A.10) and the last step is by simple calculation.

Since max
1≤i,l,≤n

sup
t∈[0,τ ]

|∆gi,l(t)| = OP (K), (A.12) implies that

‖g′ − g‖2(θ0) =
1

n

∫ τ

0

n−2
∑

1≤i,l≤n ωi(t)ωl(t)(∆g
′
i,l(t)−∆gi,l(t))

2

ω..(t)
dN̄(t)

=
OP (2K2)

n

[∫ τ

0

n−2
∑

1≤i,l≤n ωi(t)ωl(t)c
2
i,l(t)

ω..(t)
dN̄(t)

+

∫ τ

0

n−2
∑

1≤i,l≤n ωi(t)ωl(t)c
2
i,l(t)

ω..(t)
dN̄(t)

]

=
OP (4K2)

n

∫ τ

0

n−2
∑

1≤i,l≤n ωi(t)ωl(t)c
2
i,l(t)

ω..(t)
dN̄(t).

Note that

c2
i,l(t) ≤ 2[θ0,i(t)− θ̄0,n(t, β0)− θ′i(t) + θ̄′n(t, β0)]2 + 2[θ0,l(t)− θ̄0,n(t, β0)− θ′l(t) + θ̄′n(t, β0)]2.

Thus, we have

1

n

∫ τ

0

n−2
∑

i,l ωi(t)ωl(t)c
2
i,l(t)

ω..(t)
dN̄(t)

≤ 2

n

∫ τ

0

∑
1≤i≤n Yi(t)e

Xi(t)β0 [θ0,i(t)− θ̄0,n(t, β0)− θ′i(t) + θ̄′n(t, β0)]2∑
1≤i≤n Yi(t)e

Xi(t)β0
dN̄(t)

=
2

n

∫ τ

0
Var(θ0 − θ′)(t, β0)dN̄(t)

= 2Var(θ0 − θ′)(β0).
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Thus from (A.7), we proved that

|〈f, g〉(θ′)− 〈f, g〉(θ0)| ≤ OP (K)‖f‖(θ0)Var(θ0 − θ′)(β0)1/2.

which gives the inequality in (A.6).

Lemma A.1.4. Suppose z′(T(l)), l = 1, . . . , q is a solution to (2.8) and z(t) is computed

via (2.9). For λ′ �
√

log p
n we have

Var(z)(T(l), β̂
(init)) ≤

maxj≤p Fj,j(T(l), β0) + oP (1)

‖a0‖∞ − λ′
. (A.13)

Proof. By (2.9),

a0,j − Cov(z′, Xj)(T(l), β̂
(init)) ≤ λ′.

For c ∈ R,

Var(z′)(t, β̂(init)) ≥ Var(z′)(t, β̂(init)) + c(a0,j − λ′)− Cov(z′, Xj)(t, β̂
(init))

≥ min
z′(t)
{Var(z′)(t, β̂(init)) + c(a0,j − λ′)− Cov(z′, Xj)(t, β̂

(init))}

= c(a0,j − λ′)−
c2

4
Var(Xj)(t, β̂

(init)).

Optimizing this bound over c, we arrive at

Var(z′)(t, β̂(init)) ≥ a0,j − λ′
Var(Xj)(t, β̂(init))

.

with c = 2(a0,j − λ′)/Var(Xj)(t, β̂
(init)).

By Lemma A.1.3,

Var(Xj)(t, β̂
(init)) = Var(Xj)(t, β0) + Var(Xj)(t, β0)1/2Var(Xh)(t, β0)1/2OP (K1).

(A.14)

Note that∣∣∣Var(Xh)(t, β0)
∣∣∣ ≤ |hTF (t, β0)h|+ |hTVar(X)(t, β0)− F (t, β0))h|

≤ ‖h‖22Λmax(F (t, β0)) + ‖h‖1 max
1≤j≤p

|Var(X)(t, β0)h− F (t, β0)h|j

= OP (sλ2 + s2λ3),
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where the last step is by Lemma A.1.1. Thus, using (A.14) and Lemma A.1.1 (ii), we

have

max
j≤p

Var(Xj)(t, β̂
(init)) ≤ max

j≤p
sup
t∈[0,τ ]

Var(Xj)(t, β0) +OP (s1/2λ)

= max
j≤p

sup
t∈[0,τ ]

Fj,j(t, β0) + oP (1).

A.1.2 Proof of Lemmas in Section 2.3.2

Proof of Lemma 2.3.4. Theorem 3.2 in Huang et al. (2013) and the relationship among

compatibility and invertibility factors and restricted eigenvalue discussed at the top of

page 9 of Huang et al. (2013) impies that for λ �
√

log p
n′ ,

‖h‖1 = OP (sλ) and ‖h‖2 = OP (sλ2),

under Conditions 2.3.1-2.3.2.

Proof of Lemma 2.3.8. Define z0(T(l)) = X(T(l))u0(T(l), β0) for u0(T(l), β0) defined in

Condition 2.3.7, l = 1, . . . , q. By Condition 2.3.6, F−1(T(i), β0) is well-defined. Consider

z∗i (T(l)) =
S(0)(T(l), β̂

(init))

S(0)(T(l), β0)
e−Xi(T(l))h[z0,l(T(l))− z̄0,n(T(l), β0)]. (A.15)

We show that z∗(T(l)) ∈ Rn defined in (A.15) is a feasible solution to (2.8) for l =

1, . . . , q. First note that

z̄∗n(T(l), β̂
(init)) =

n∑
i=1

γni(T(l), β̂
(init))z∗i (T(l)) =

∑
i∈R(0)

γni(T(l), β0)[z0,i(T(l))−z̄0,n(T(l), β0)] = 0.

One can see that

Cov(z∗, X)(T(l), β̂
(init))− a0 =

n∑
i=1

γni(T(l), β̂
(init))[z∗i (T(l))− z̄∗n(T(l), β̂

(init))]Xi(T(l))− a0

=
n∑
i=1

γni(T(l), β̂
(init))z∗i (T(l))Xi(T(l))− a0

=

n∑
i=1

γni(T(l), β0)[z0,i(T(l))− z̄0,n(T(l), β0)]Xi(T(l))− a0

=u0(T(l), β0)
[
Var(X)(T(l), β0)− F (T(l), β0)

]
,
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where u0(t, β0) = F−1(t, β0)a0. Condition 2.3.7 and Lemma A.1.1 (i) together imply

that

sup
t∈[0,τ ]

∥∥∥u0(t, β0)T
[
Var(X)(t, β0)− F (t, β0)

]∥∥∥
∞

= OP

(
K1K2K3

√
log p

n

)
.

Moreover, it is easy to see that

max
1≤i≤n

max
1≤l≤q

∣∣z∗i (T(l))
∣∣ ≤ max

1≤i≤n
max
1≤l≤q

∣∣z0,i(T(l))− z̄0,n(T(l), β0)
∣∣+OP (sλ) = OP (K3).

Proof of Lemma 2.3.5. Note that

√
nξ(0, β0) =

n∑
i=1

∫ τ

0
ξi(t, β0)dNi(t),

where ξi(t, β0) = n−1/2[zi(t)− z̄n(t, β0)].

First note that zi(t) t ∈ [T(l), T(l+1)) is a function of (X(T(l)), Y (T(l)), β̂
(init)).

Since (X(t), Y (t)) are predictable processes and β̂(init) is F0 measurable, i(t) is a Ft
predictable process for t ∈ [0, τ ]. Moreover, since z(t) = z′(t)Var(z)(t, β̂(init)), Lemma

A.1.4 implies that

max
i∈R(0)

sup
t∈[0,τ ]

|ξi(t, β0)| ≤ max
i∈R(0)

sup
t∈[0,τ ]

n−1/2|z′i(t)− z̄′n(t, β0)|Var(z)(t, β̂(init))

≤ sup
t∈[0,τ ]

2K4n
−1/2

[
maxj≤p Fj,j(t, β0)

‖a0‖∞ − λ
+ oP (1)

]
, (A.16)

where supt∈[0,τ ] maxj≤p Fj,j(t, β0) ≤ c∗2 by Condition 2.3.4.

To utilize the martingale CLT, we first check

〈√nξ(0, β0),
√
nξ(0, β0)〉(t) =

n∑
i=1

∫ τ

0
ξ2
i (t, β0)dΛi(t)

=

∫ τ

0
Var(z)(t, β0)S(0)(t, β0)dΛ0(t)→ Fz([0, τ ], β0),

in probability by Condition 2.3.4. It remains to check the Lindeberg condition

n∑
i=1

∫ τ

0
ξ2
i (t, β0)I{|ξi(t,β0)|>ε}dΛi(t)→ 0 in probability fo all ε > 0. (A.17)
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The left hand side of (A.17) is bounded by

1{max1≤i≤n supt∈[0,τ ] |ξi(t,β0)|>ε}
∑

1≤i≤n

∫ τ

0
ξ2
i (t, β0)dΛi(t)

= 1{max1≤i≤n supt∈[0,τ ] |zi(t)−z̄n(t,β0)|>
√
nε}

∑
1≤i≤n

∫ τ

0
ξ2
i (t, β0)dΛi(t)

→ 0 as n→∞,

due to (A.16).

Proof of Lemma 2.3.6. First by Lemma A.1.3 and Lemma 2.3.4,

Cov(z)(β̂(init)) = Cov(z)(β0) +OP (K4s
1/2λ).

Since Cov(z)(t, β0) is a bounded process, by Lemma 3.3(i) in Huang et al. (2013),

Cov(z)(β0)− Fz([0, τ ];β0) = OP (n−1/2).

(2.18) is proved by combining above two equations.

Proof of Lemma 2.3.7. For any t ∈ {T(1), . . . , T(q)}, by the proof of Lemma 2.3.8,

Var(z′)(t, β̂(init)) ≤ Var(z∗)(t, β̂(init)) = aT0 F
−1(t, β0)a0 + oP (1),

where the last step is due to Lemma A.1.3. And the upper bound is proved. On the

other hand, since z′(t) satisfies the constraints in (2.8), with large probability it holds

that

a0,j − λ′ ≤ Cov(z′, Xj)(t, β̂
(init)) ≤ a0,j + λ′.

Thus, we can obtain that

Cov(z′, Xu0)(t, β̂(init)) =

p∑
j=1

Cov(z′, Xj)(t, β̂
(init))u0,j(t)

≥
∑

u0,j(t)≥0

(a0,j − λ′)u0,j(t) +
∑

u0,j(t)<0

(a0,j + λ′)u0,j(t)

= aT0 u0(t)− λ‖u0(t)‖1.

By Cauchy-Schwarz inequality, we arrive at

Var(z′)
1/2

(t, β̂(init))Var(Xu0)
1/2

(t, β̂(init)) ≥ aT0 F−1(t, β0)a0 − λ‖u0(t)‖1.
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By Lemma A.1.1 and Lemma A.1.3, we have Var(Xu0)(t, β̂(init)) = aT0 F (t, β0)a0+oP (1)

and

.Var(z′)
1/2

(t, β̂(init)) ≥ (aT0 F
−1(t, β0)a0)1/2 − oP (1).

A.1.3 Proof of theorems in Section 2.3.1

Proof of Theorem 2.3.1. To see the expansion in (2.11), we reparamaterize D(θ0) as

ξ(h, β0):

ξ(h, β0) :=
1

n

n∑
i=1

∫ τ

0

[
zi(t)−

∑n
i=1 zi(t)Yi(t)e

Xi(t)β0+Xi(t)h−zi(t)aT0 h∑n
i=1 Yi(t)e

Xi(t)β0+Xi(t)h−zi(t)aT0 h

]
dNi(t). (A.18)

Then we have

√
nD
(
θ0 + δn−1/2

)
=
√
nD(θ0) + δ

∫ 1

0
Ḋ(θ0 + xδn−1/2)dx

=
√
nξ(h, β0) + δ

∫ 1

0
Ḋ(θ0 + xδn−1/2)dx

=
√
nξ(0, β0) +

√
n

∫ 1

0
hT ξ̇(xh, β0)dx+ δ

∫ 1

0
Ḋ(θ0 + xδn−1/2)dx

=
√
nξ(0, β0) + δFz([0, τ ];β0) +

√
nhT ξ̇(0, β̂(init))︸ ︷︷ ︸

Rem1

+
√
n

[∫ 1

0
hT ξ̇(xh, β0)dx− hT ξ̇(0, β̂(init))

]
︸ ︷︷ ︸

Rem2

+ δ

∫ 1

0
Ḋ(θ0 + xδn−1/2)dx− δFz([0, τ ];β0)︸ ︷︷ ︸

Rem3

. (A.19)

Taking derivative of (A.18) with respect to h, we can obtain that

hT ξ̇(0, β̂(init)) =
1

n

∫ τ

0

[
Cov(z,X)(t, β̂(init))h− Cov(z, zaT0 )(t, β̂(init))h

]
dN̄(t)

=
1

n

∫ τ

0

[
Cov(z,X − zaT0 )(t, β̂(init))h

]
dN̄(t)

=
1

n

∫ τ

0
Var(z)(t, β̂(init))[Cov(z′, X)(t, β̂(init))− aT0 ]hdN̄(t)

=
1

n

q∑
l=1

Var(z)(T(l), β̂
(init))[Cov(z′, X)(T(l), β̂

(init))− aT0 ]h
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It follows from (2.8) and Lemma A.1.4 that

|Rem1|

≤ max
1≤l≤q

√
n
∥∥∥Cov(Z ′, X)(T(l), β̂

(init))− aT0
∥∥∥
∞
‖h‖1

∣∣∣∣∣ 1n
q∑
l=1

Var(Z)(T(l), β̂
(init))

∣∣∣∣∣
= OP (

√
nsλλ′)

∣∣∣∣ 1n
∫ τ

0
Var(Z)(t, β̂(init))dN̄(t)

∣∣∣∣
= oP (1),

where the last step is due to (2.18) and Lemma 2.3.6.

For Rem2, note that

hT ξ̇(xh, β0) = 〈z,Xh〉(θx) and hT ξ̇(0, β̂(init)) = 〈z,Xh〉(θ̂(init)),

where θx(t) = X(t)β0 + xX(t)h− xZ(t)aT0 h.

We apply Lemma A.1.3 with θ′(t) = θx(t), f(t) = X(t)h and g(t) = z(t). Then

ci,l(t)

= x(Xi(t)h− zi(t)aT0 h) + x(Xl(t)h− zl(t)aT0 h)− 2x(X̄n(t, β0)h− z̄n(t, β0)aT0 h).

Since

|aT0 h| ≤ ‖a0‖2‖h‖2 = OP (s1/2λ), (A.20)

together with Conditions 2.3.2-2.3.3 and (2.8),

sup
t∈[0,τ ]

max
1≤i,l≤n

|ci,l(t)| = OP (K1sλ) + sup
t∈[0,τ ]

max
1≤j≤p

Fj,j(t, β0)OP (K4s
1/2λ) = oP (1).

Thus, (A.5) implies that

|〈z,Xh〉(θx)− 〈z,Xh〉(θ0)| = OP (K4)‖Xh‖(θ0)Var(Xh− zaT0 h)(β0)1/2.

On the right hand side,

‖Xh‖2(θ0) = 〈h, ῭([0, τ ];β0)h〉

≤ hTF ([0, τ ];β0)h+
∣∣∣hT (῭([0, τ ];β0)− F ([0, τ ];β0))h

∣∣∣
≤ ‖h‖22Λmax(F ([0, τ ];β0)) + ‖h‖1

∥∥∥(῭([0, τ ];β0)− F ([0, τ ];β0))h|
∥∥∥
∞

= OP (c∗1sλ
2 +K1s

2λ3),
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where the last step is due to Condition 2.3.2 and 2.3.4 and Lemma 2.3.4 and A.1.1.

Moreover,

Var(Xh− zaT0 h)(β0) ≤ 2Var(Xh)(β0) + 2(aT0 h)2Var(z)(β0)

= 2〈h, ῭([0, τ ];β0)h〉+ 2(aT0 h)2Var(z)(β0)

= OP (sλ2) +OP (c∗1sλ
2),

where the last step is due to (A.20) and Lemma A.1.3. Similarly,∣∣∣〈z,Xh〉(θ̂(init))− 〈z,Xh〉(θ0)
∣∣∣ = OP (K4)‖Xh‖(θ0)‖Var(Xh)(β0)1/2

= OP (K4)hT ῭([0, τ ], β0)h = OP (c∗1sλ
2).

Thus,

|Rem2| ≤
∣∣∣hT ξ̇(xh, β0)− hT ξ̇(0, β̂(init))

∣∣∣√n ∫ 1

0
dx = OP (

√
nsλ2) = oP (1). (A.21)

For Rem3, we can see that

Ḋ(θ0 + xδ) = ‖z‖2(θ̃),

where θ̃(t) = X(t)β̂(init) + z(t)(xδn−1/2 − aT0 h). Note that

c̃i,l(t) = Xi(t)h+ zi(t)(xδn
−1/2 − aT0 h) +Xl(t)h+ zl(t)(xδn

−1/2 − aT0 h) = oP (sλ).

Applying Lemma A.1.3 again, we have

|‖z‖2(θ̃)− ‖z‖2(θ0)| ≤ ‖z‖(θ0)Var(Xh+ z(xδn−1/2 − aT0 h))(θ0)1/2OP (K4).

By similar arguments as for Rem2 and Condition 2.3.4, we have

δ‖z‖2(θ̃) = δ‖z‖2(θ0) +OP (δs1/2λ) = δFz([0, τ ];β0) + oP (1).

Putting our arguments together, we have

√
nD
(
θ0 + δn−1/2

)
=
√
nξ(0, β0) + δFz([0, τ ];β0) + oP (1).
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Proof of Corollary 2.3.2. We first show the MLE θ̂(LDP ) defined via (2.5) satisfies

θ̂(LDP ) = θ0 + OP (n−1/2). By the convexity of the log-likelihood, it is sufficient to

show that there exist B > 0, such that ∀B′ > B

inf
ε∈{±1}

P
{

(B′ −B)n−1/2εD(θ0 +Bn−1/2ε) > 0
}
≥ 1− ε, for large enough n.

By the results in Theorem 2.3.1(i),

D(θ0 +Bn−1/2ε) = ξ(0, β0) +Bn−1/2εFz([0, τ ];β0) + oP (n−1/2).

As a result,

inf
ε∈{±1}

P
{

(B′ −B)n−1/2εD(θ0 +Bn−1/2ε) > 0
}

≥ P
{√

nξ(0, β0) > −BFz([0, τ ];β0)
}
− oP (1).

Since ξ(0, β0) is a locally bounded martingale, it is easy to show ξ(0, β0) = OP (n−1/2)

and the right hand side of the above inequality equals 1− oP (1).

Since θ̂(LDP ) − θ0 = OP (n−1/2), by the results in Theorem 2.3.1(i), the equation

D(θ) = 0 yields that

0 = D(θ̂(LDP )) = ξ(0, β0) + Fz([0, τ ];β0)(θ̂(LDP ) − θ0) + oP (n−1/2).

Then we have

√
n(θ̂(LDP ) − θ0) = −F−1

z ([0, τ ];β0)ξ(0, β0) + oP (n−1/2).

With Lemma 2.3.5 and Theorem 2.3.1 (ii), we apply Slutsky’s lemma to obtain that√
nF̂z(β̂(init))(θ̂(LDP ) − θ0)

D−→ N(0, 1).

For θ̂(OS) defined in (2.10), we have

θ̂(OS) − θ0 = 〈a0, h〉 −D(θ̂(init))/F̂z(β̂
(init)).

We expand D(θ̂(init)) as in Theorem 2.3.1 (i), which gives

θ̂(OS) − θ0 = 〈a0, h〉 − ξ(0, β0)/F̂z(β̂
(init))− 〈a0, h〉+ oP (n−1/2)

= −ξ(0, β0)/F̂z(β̂
(init)) + oP (n−1/2).
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Again by Slutsky’s Lemma, we arrive at√
nF̂z(β̂(init))(θ̂(OS) − θ0)

D−→ N(0, 1).

A.2 Proofs for theorems and lemmas in Section 3

A.2.1 Some technical lemmas

To facilitate the proofs of lemmas in the paper, we first prove two technical lemmas. To

simplify our notations, let ûS = β̂S − βS , û∗S = β̂∗S − β̂S , Wn
S = XT

S ε/n, W ∗S = XT
S ε̂
∗/n

and S\j = S\{j}.

Lemma A.2.1 (Symmetrization). Assume that Conditions 3.3.1 - 3.3.4 hold true,

λ >
16σ

1− κ

√
2 log p

n
and n ≥ 32σ2

λ2(1− κ)2
.

Then we have

P

(
max
j∈Sc

∣∣∣∣∣xTj P⊥S εnλ

∣∣∣∣∣ > 1− κ
2

)
≤ 4 exp(−c1 log p) +

c2

n
, (A.22)

P

(
max
j∈S

∣∣∣(Σn
S,S)−1

j,. W
n
S

∣∣∣ > 8σ

√
2 log p

Cminn

)
≤ 4 exp(−c1 log p) +

c2

n
, (A.23)

for some c1, c2 > 0.

Proof. In this proof, we apply standard symmetrization techniques.

Let

Q1,j =
xTj P

⊥
S ε

nλ
=

1

n

n∑
i=1

(xTj P
⊥
S )iεi

λ
,

(ε̃1, . . . , ε̃n) be an independent copy of (ε1, . . . , εn). Q̃1,j = xTj P
⊥
S ε̃/(nλ) and ω1, . . . , ωn

be a Rademacher sequence. Note that

max
j∈Sc

E

[
(xTj P

⊥
S )iεi

λ

]
= 0,

max
j∈Sc

1

n

n∑
i=1

E

((xTj P
⊥
S )iεi

λ

)2
 =

1

nλ2

∥∥∥P⊥S xj∥∥∥2

2
σ2 ≤ σ2

λ2
≡ C1.
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We apply symmetrization inequalities (Problem 14.5 in Bühlmann and van De Geer

(2011)), which gives for ∀ 0 < η < 1,

P
(

max
j∈Sc
|Q1,j | > t

)
≤

P
(

maxj∈Sc |Q1,j − Q̃1,j | > (1− η)t
)

1− C1/nη2t2

≤
2P
(

maxj∈Sc

∣∣∣∣ 1
n

∑n
i=1

(xTj P
⊥
S )iεiωi
λ

∣∣∣∣ > (1− η)t/2

)
1− C1/nη2t2

.

For n ≥ 2C1/(η
2t2), we have

P
(

max
j∈Sc
|Q1,j | > t

)
≤ 4P

(
max
j∈Sc

∣∣∣∣∣ 1n
n∑
i=1

(xTj P
⊥
S )iεiωi

λ

∣∣∣∣∣ > (1− η)t/2

)
. (A.24)

Conditioning on ε, by McDiarmid’s inequality, we have

P

(
max
j∈Sc

∣∣∣∣∣ 1n
n∑
i=1

(xTj P
⊥
S )iεiωi

λ

∣∣∣∣∣ > (1− η)t/2
∣∣∣ε) ≤∑

j∈Sc
exp

− 2((1− η)t/2)2∑n
i=1

[
2(xTj P

⊥
S )iεi/(nλ)

]2

 .

(A.25)

Moreover, by Chebyshev’s inequality, ∀j ∈ Sc

max
j∈Sc

P

(
n∑
i=1

[
2(xTj P

⊥
S )iεi/(nλ)

]2
− 4σ2

nλ2
> t

)
≤ max

j∈Sc
16‖P⊥S xj‖44E[ε4i ]

(nλ)4t2

≤ 16(K0 +K0κ)2M0

n3λ4t2
,

where the last step is due to

max
j∈Sc
‖P⊥S xj‖44 ≤ max

j∈Sc,i≤n
(xTj P

⊥
S )2

i ‖P⊥S xj‖22

≤ n max
j∈Sc,i≤n

∣∣xi,j − xi,S(XT
SXS)−1XT

S xj
∣∣2

≤ n
[
max
i,j
|xi,j |+ max

i,j
|xi,j |‖Σn

Sc,S(Σn
S,S)−1‖∞

]2

≤ n(K0 +K0κ)2.

Thus, for any constant C2,

P

(
n∑
i=1

[
2(xTj P

⊥
S )iεi/(nλ)

]2
>

4σ2

nλ2
+
C2(K0 +K0κ)

√
M0

nλ2

)
≤ 16

nC2
2

→ 0.

And hence by (A.24) and (A.25), for n ≥ 8σ2/(λ2η2(1− κ)2),

P
(

max
j∈Sc
|Q1,j | >

1− κ
2

)
≤ 4(p− s) exp

{
− 2[(1− η)(1− κ)/4]2nλ2

4σ2 + C2(K0 +K0κ)
√
M0

}
+

16

nC2
2

.
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Take C2 = 4σ2

(K0+K0κ)
√
M0

and η = 1/2. Then for λ > 16σ
1−κ

√
2 log p
n and n ≥ 32σ2

λ2(1−κ)2
, we

have

P
(

max
j∈Sc
|Q1,j | >

1− κ
2

)
≤ 4 exp (−c1 log p) +

c2

n
,

for some c1, c2 > 0.

(ii) Now consider Q2,j =
∑n

i=1(Σn
S,S)−1

j,SX
T
i,Sεi/n. Previous arguments still applies

with

1

n
max
j∈S

E

[
n∑
i=1

(Xi,S(Σn
S,S)−1

S,j)
2ε2i

]
≤ 1

n
max
j∈S

∥∥∥XS(Σn
S,S)−1

.,j

∥∥∥2

2
E
[
ε2i
]

= max
j∈S

eTj (Σn
S,S)−1ejσ

2 ≤ σ2

Cmin
,

max
j∈S

Var

[
n∑
i=1

(
2(Σn

S,S)−1
j,SX

T
i,Sεi/n

)2
]
≤ max

j∈S

M0

n4

n∑
i=1

(
2(Σn

S,S)−1
j,SX

T
i,S

)4

≤ max
j∈S

16M0

n4

n∑
i=1

(
‖(Σn

S,S)−1
j,S‖1‖XT

i,S‖∞
)4

≤ 16M0K
4
1K

4
0

n3
.

Thus,

P

(
max
j∈S
|Q2,j | > 8σ

√
2 log p

Cminn

)
≤ 4 exp(−c3 log p) +

c4

n
.

Lemma A.2.2 (Selection consistency of the bootstrapped Lasso). Formally, the

bootstrapped Lasso estimator β̂∗ is defined via

β̂∗ = arg min
b∈Rp

1

2n
‖y∗ −Xb‖22 + λ‖b‖1. (A.26)

Define a restricted Lasso problem with observations (XS , y
∗):

β̌∗S = arg min
b∈Rs

1

2n
‖y∗ −XSbS‖22 + λ‖bS‖1 and β̌∗Sc = 0. (A.27)

Define T ∗j as

T ∗j = xTj

(
XS(XT

SXS)−1sgn(β̌∗S) +
P⊥S ε̂

∗

nλ

)
. (A.28)

If Ŝ ⊆ S, maxj∈Sc |T ∗j | < 1, and Σn
S,S is invertible, then β̌∗ in (A.27) is the unique

solution to the bootstrapped Lasso (A.26) and Ŝ∗ ⊆ S.
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Proof. In the event that {Ŝ ⊆ S}, β̂Sc = 0. By the KKT condition of β̌∗S in (A.27),

Σn
S,S(β̌∗S − β̂S)−W ∗S + λsgn(β̌∗S) = 0.

If |T ∗j | < 1 for ∀ j ∈ Sc, then there exists sgn(β̌∗Sc) such that

Σn
Sc,S(β̌∗S − β̂S)−W ∗Sc + λsgn(β̌∗Sc) = 0.

And hence there exists sgn(β̌∗) such that β̌∗ in (A.27) is a solution to

Σn(β̌∗ − β̂)−W ∗ + λsgn(β̌∗) = 0,

which is the KKT condition of the bootstrapped Lasso (A.26). By Lemma 1 in

Wainwright (2009), β̌∗ is an optimal solution to the bootstrapped Lasso problem (A.26).

Moreover, β̌∗ is the unique solution, since Σn
S,S is invertible and |T ∗j | < 1 for ∀ j ∈ Sc.

This implies that Ŝ∗ ⊆ S.

Lemma A.2.3 (Bounds on the `2-norm and `∞-norm of (Σn
S,S)−1). Under Conditions

3.4.1 - 3.4.4, we have the following results.

(i) For c1 > 4, c2 > 0 and n > c1s, with probability at least 1− 2 exp(−c2n)→ 1,

Λmax((Σn
S,S)−1) ≤ 4

Cmin
. (A.29)

(ii) Let cn = (
√
s ∨√log p)/

√
n and Cn = 4

√
scn/(1− 2cn)2 = O((s ∨√s log p)/

√
n).

With probability at least 1− 2 exp(− log p/2),

‖(Σn
S,S)−1‖∞ ≤ K1 (1 + Cn) . (A.30)

Proof of Lemma A.2.3. Let X̃ = XΣ−1/2 and Σ̃n = X̃T X̃/n. Then Σ̃n = Ip×p.

By Corollary 5.35 of Vershynin (2010), with probability at least 1− 2 exp(−x2/2),(
1−

√
s

n
− x√

n

)2

≤ Λmin(Σ̃n
S,S) ≤ Λmax(Σ̃n

S,S) ≤
(

1 +

√
s

n
+

x√
n

)2

. (A.31)

For x =
√
n/2−√s and n� 4s, with probability at least 1−2 exp(−(

√
n/2−√s)2/2)→

1,

Λmin(Σ̃n
S,S) ≥ 1/4.
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And hence,

Λmax((Σ̃n
S,S)−1) = Λ−1

min(Σ̃n
S,S) ≤ 4

Λmax((Σn
S,S)−1) = ‖(Σn

S,S)−1‖2 ≤ ‖Σ−1/2
S,S ‖2‖(Σ̃n

S,S)−1‖2‖Σ−1/2
S,S ‖2 ≤

4

Cmin
.

Moreover,

‖(Σ̃n
S,S)−1‖∞ ≤ 1 + ‖(Σ̃n

S,S)−1 − I‖∞

≤ 1 +
√
s‖(Σ̃n

S,S)−1 − I‖2

≤ 1 +
√
sΛmax((Σ̃n

S,S)−1)− I)

≤ 1 +
√
s(Λ−1

min(Σ̃n
S,S)− 1).

Taking x =
√
s ∨√log p in (A.31), we have with probability 1− exp(− log p/2),

Λ−1
min(Σ̃n

S,S)− 1 ≤
(

1− 2

√
s ∨√log p√

n

)−2

− 1

=
4(
√
s ∨√log p)/

√
n− 4(

√
s ∨√log p)2/n(

1− 2
√
s∨
√

log p√
n

)2

≤ Cn/
√
s.

Putting these arguments together, we have

∥∥(Σn
S,S)−1

∥∥
∞ ≤

∥∥∥Σ
−1/2
S,S (Σ̃n

S,S)−1Σ
−1/2
S,S

∥∥∥
∞

≤ ‖Σ−1/2
S,S ‖2∞

∥∥∥(Σ̃n
S,S)−1

∥∥∥
∞

= K1(1 + Cn).

Lemma A.2.4 (Consistency of variance estimator). Assume that n � s log p and

λ �
√

log p/n. If either (i) Conditions 3.3.1 - 3.3.5 hold true, or (ii) Conditions 3.4.1

- 3.4.5 hold true, then we have

σ̂2 = σ2 + oP (1), (A.32)

for σ̂2 defined in (3.7).
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Proof of Lemma A.2.4. (i) For deterministic designs with ε satisfying Condition 3.3.4,

we have

‖XT
S ε/n‖∞ = OP (λ),

By (A.23) in Lemma A.2.1, In the event that (3.17) holds, we have

‖ûS‖22 ≤ 2‖(Σn
S,S)−1Wn

S ‖22 + 2λ2‖(Σn
S,S)−1sgn(β̂S)‖22

≤ 2s‖(Σn
S,S)−1Wn

S ‖2∞ +
2λ2

C2
min

‖sgn(β̂S)‖22

= OP

(
s log p

n

)
.

Therefore, ‖ûS‖1 ≤
√
s‖ûS‖2 = OP (s

√
log p/n) and |εTXS ûS | ≤ n‖Wn

S ‖∞‖ûS‖1 =

OP (s log p), by a similar proof as for (A.23). Moreover, by the KKT condition of the

Lasso (3.1),

ûTSΣn
S,S ûS = ûTS

(
Wn
S − λsgn(β̂S)

)
≤ ‖ûS‖1‖Wn

S − λsgn(β̂S)‖∞ = OP

(
s log p

n

)
.

(A.33)

Note that |Ŝ| ≤ |S| � n. Hence,

σ̂2 =
1

n− |Ŝ|
‖y −Xβ̂‖22

=
1

n− |Ŝ|
(
‖ε‖22 + ‖Xû‖22 − 2εTXû

)
(A.34)

= σ2 +OP

(
1

n
+
s log p

n

)
+ oP (1)

= σ2 + oP (1).

(ii) For the Gaussian designs with Gaussian errors (Condition 3.4.4), we have

P
(
‖XT

S ε‖∞ > x|XS

)
≤ s exp

(
− x2

2nσ2

)
.

In the event that (3.29) holds,

‖ûS‖22 ≤ 2‖(Σn
S,S)−1Wn

S ‖22 + 2λ2‖(Σn
S,S)−1sgn(β̂S)‖22

= OP

(
8

Cmin

(
s‖Wn

S ‖2∞ + sλ2
))

= OP

(
s log p

nCmin

)
.
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Hence, ‖ûS‖1 = OP (sλ). By (A.33), (A.34) and (A.29) in Lemma A.2.3,

σ̂2 = σ2 +OP

(
1

n
+
s log p

n

)
= σ2 + oP (1).

A.2.2 Proof of lemmas and theorems in Section 3

Now we are ready to prove the lemmas in the paper.

Proof of Lemma 3.3.1. Firstly, we use Lemma 1 - Lemma 3 in Wainwright (2009) to

prove that (3.17) holds with large probablity. Consider a restricted Lasso problem

β̌S = arg min
b∈Rs

1

2n
‖y −XSbS‖22 + λ‖bS‖1 and β̌Sc = 0. (A.35)

Define Tj as

Tj = xTj

(
XS(XT

SXS)−1sgn(β̌S) +
P⊥S ε

nλ

)
. (A.36)

By Lemma 1 of Wainwright (2009), if Σn
S,S is invertible and |Tj | < 1 for ∀j ∈ Sc, then

the β̌ is the unique solution to the Lasso with Ŝ ⊆ S. Note that

max
j∈Sc
|Tj | ≤ ‖XT

ScXS(XT
SXS)−1sgn(β̌S)‖∞ + max

j∈Sc

∣∣∣∣∣xTj P⊥S εnλ

∣∣∣∣∣
≤
∥∥XT

ScXS(XT
SXS)−1

∥∥
∞ + max

j∈Sc

∣∣∣∣∣xTj P⊥S εnλ

∣∣∣∣∣︸ ︷︷ ︸
Q1

.

We use standard symmetrization techniques to prove that Q1 ≤ (1 − κ)/2 with large

probability (see Lemma A.2.1 for detailed results). By Condition 3.3.2 and (A.22) in

Lemma A.2.1, there exists some c1, c2 > 0 such that

P
(

max
j∈Sc
|Tj | >

κ+ 1

2

)
≤ P

(
Q1 >

1− κ
2

)
≤ 4 exp (−c1 log p) +

c2

n
,

for λ in (3.16). Together with Condition 3.3.1, we have Ŝ ⊆ S with probability greater

than 4 exp (−c1 log p) + c2/n. By the KKT condition of the Lasso (3.1), Ŝ ⊆ S implies

that

ûS = (Σn
S,S)−1Wn

S − λ(Σn
S,S)−1sgn(β̂S). (A.37)
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Then we have

‖ûS‖∞ = ‖(Σn
S,S)−1Wn

S − λ(Σn
S,S)−1sgn(β̂S)‖∞

≤ ‖(Σn
S,S)−1Wn

S ‖∞︸ ︷︷ ︸
Q2

+λ‖(Σn
S,S)−1‖∞.

By (A.23) in Lemma A.2.1 and Condition 3.3.3, there exists some c3, c4 > 0 such that

P

(
‖ûS‖∞ > K1λ+ 8σ

√
2 log p

Cminn

)
≤ 4 exp(−c3 log p) +

c4

n
.

Proof of Lemma 3.3.2. Consider the bootstrapped Lasso problem (A.26). By Condition

3.3.1 and Lemma A.2.2, for T ∗j defined in (A.28),

P(Ŝ∗ ⊆ S) ≥ P
(

max
j∈Sc
|T ∗j | < 1, Ŝ ⊆ S

)
= P

(
max
j∈Sc
|T ∗j | < 1

)
− P(Ŝ 6⊆ S) (A.38)

Note that

max
j∈Sc
|T ∗j | ≤ max

j∈Sc

∥∥xTj XS(XT
SXS)−1sgn(β̌∗S)

∥∥
1

+ max
j∈Sc

∣∣∣∣∣xTj P⊥S ε̂∗nλ

∣∣∣∣∣︸ ︷︷ ︸
Q∗1,j

.

In view of (3.5), Q∗1,j is a Gaussian variable with mean zero and variance no larger than

σ̂2/(nλ2), ∀j ∈ Sc, conditioning on σ̂2. Thus,

P
(

max
j∈Sc
|Q∗1,j | ≥

1− κ
2

)
≤ P

(
max
j∈Sc
|Q∗1,j | ≥

1− κ
2
|σ̂2 ≤ 2σ2

)
+ P(σ̂2 ≥ 2σ2)

≤ 2(p− s) exp

{
−nλ

2(1− κ)2

16σ2

}
+ o(1),

where the last step is due to the consistency of σ̂2 in (3.7) (see Lemma A.2.4). Condition

3.3.2 implies that maxj∈Sc ‖xTj XS(XT
SXS)−1sgn(β̌∗S)‖1 ≤ κ. For λ > 4σ

1−κ

√
2 log p
n and

some c1 > 0, we have

P
(
|T ∗j | ≤

1 + κ

2
< 1

)
≥ 1− 2 exp(−c1 log p)− o(1).

By Lemma 3.3.1 and (A.38), P(Ŝ ⊆ S)→ 1 and hence

P (Ŝ∗ ⊆ S) ≥ 1− 2 exp(−c1 log p)− o(1).
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By the KKT condition of the bootstrapped Lasso (A.26), in the event that {Ŝ∗ ⊆ S},

û∗S = (Σn
S,S)−1W ∗S − λ(Σn

S,S)−1sgn(β̂∗S). (A.39)

Therefore,

‖û∗S‖∞ ≤ ‖(Σn
S,S)−1W ∗S‖∞ + ‖λ(Σn

S,S)−1sgn(β̂∗S)‖∞

≤ ‖(Σn
S,S)−1W ∗S‖∞ + λK1. (A.40)

Again using the Gaussian property of ε̂∗, there exists some c2 > 0 such that

P

(
‖(Σn

S,S)−1W ∗S‖∞ ≥
2σ√
Cmin

√
log p

n

)

≤ P

(
‖(Σn

S,S)−1W ∗S‖∞ ≥
2σ√
Cmin

√
log p

n

∣∣∣σ̂2 ≤ 2σ2, Ŝ∗ ⊆ S
)

+ P(σ̂2 > 2σ2) + P(Ŝ∗ 6⊆ S)

≤ 2 exp(−c2 log p) + o(1).

Together with (A.40), the proof is completed.

Proof of Lemma 3.3.3. In the event that (3.17) holds true, (A.37) holds true and hence

we can rewrite Remainder in (3.13) as

Remainder = λ

(
eTj −

zTj X

zTj xj

)
S

(Σn
S,S)−1[sgn(β̂S)− sgn(βS)]. (A.41)

Let S̃ be the set of small coefficients, such that S̃ = {j : 0 < |βj | < g1(λ) + g′1(λ)}

for g1(λ) and g′1(λ) in (3.17) and (3.19) respectively. ‖ûS‖∞ ≤ g1(λ) further implies

that for ∀j ∈ S\S̃,

β̂j = βj + ûj > βj −max
j
|ûj | > βj − g1(λ) > g′1(λ), for βj > g1(λ) + g′1(λ).

β̂j = βj + ûj < βj + max
j
|ûj | < βj + g1(λ) < −g′1(λ), for βj < −[g1(λ) + g′1(λ)].

Therefore, if (3.17) holds true, then

sgn(βj) = sgn(β̂j) and |β̂j | > g′(λ) for j ∈ S\S̃. (A.42)

The sign inconsistency of the Lasso estimator β̂ only occurs on S̃ and hence∥∥∥sgn(β̂S)− sgn(βS)
∥∥∥

1
≤ 2s̃. (A.43)
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By (A.41), we have

|Remainder| ≤ λ
∥∥∥∥∥
(
eTj −

zTj XS

zTj xj

)
S

(Σn
S,S)−1

∥∥∥∥∥
∞

∥∥∥sgn(β̂S)− sgn(βS)
∥∥∥

1

≤ λ
∥∥∥∥∥zTj XS\j

zTj xj

∥∥∥∥∥
∞

∥∥(Σn
S,S)−1

∥∥
∞

∥∥∥sgn(β̂S)− sgn(βS)
∥∥∥

1

≤ 2K1λλj s̃

zTj xj/n
,

where the last step is due to Condition 3.3.3, (A.58) and (A.43). The proof for (3.22)

is completed by the fact that (3.17) holds with probability going to 1.

For the bootstrap version, define an oracle Lasso estimator computed with the

bootstrap samples. Formally,

β̂
(∗,o)
S = β̂S +

(
Σn
S,S

)−1
[W ∗S − λsgn(βS)] and β̂

(∗,o)
Sc = 0. (A.44)

If Ŝ ⊆ S and Ŝ∗ ⊆ S, we can plug in β̂
(∗,o)
S and obtain that

β̂
(∗,DB)
j − β̂j =

zTj ε̂
∗

zTj xj
+

(
eTj −

zTj X

zTj xj

)
S

(β̂
(∗,o)
S − β̂S) +

(
eTj −

zTj X

zTj xj

)
S

(
β̂∗S − β̂(∗,o)

S

)
=
zTj ε̂
∗

zTj xj
−
(
eTj −

zTj X

zTj xj

)
S

(Σn
S,S)−1W ∗S︸ ︷︷ ︸

Noise∗

+ Bias

+ λ

(
eTj −

zTj X

zTj xj

)
S

(Σn
S,S)−1

(
sgn(β̂∗S)− sgn(βS)

)
︸ ︷︷ ︸

Remainder∗

.

In view of (3.19) and (A.42) , we have sgn(β̂∗j ) = sgn(β̂j) = sgn(βj) for j ∈ S\S̃.

Hence,

‖sgn(β̂∗S)− sgn(βS)‖1 ≤ 2s̃. (A.45)

Together with (A.58) and Condition 3.3.3, it holds that

|Remainder∗| ≤ 2K1s̃λλj

zTj xj/n
= oP (1),

in the event that {Ŝ ⊆ S, Ŝ∗ ⊆ S}, which holds with large probability by Lemma 3.3.1

and 3.3.2.
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Proof of Lemma 3.4.1. (i) Let

toj = xj −XSΣ−1
S,SΣS,j , for j ∈ Sc. (A.46)

For β̌S and Tj defined in (A.35) and (A.36) respectively, we can rewrite Tj as

Tj = (toj)
T

(
XS(XT

SXS)−1sgn(β̌S) +
P⊥S ε

nλ

)
︸ ︷︷ ︸

E1,j

+Σj,SΣ−1
S,S .

Conditioning on XS and ε, toj is a Gaussian random variable with mean 0 and variance

at most Σj,j . Thus,

Var(E1,j |XS , ε) ≤ Σj,j

∥∥∥∥(XS(XT
SXS)−1sgn(β̌S) +

P⊥S ε

nλ

∥∥∥∥2

2

≤ Σj,j

[
(sgn(β̌S))T (XT

SXS)−1sgn(β̌S) + ‖ε‖22/(nλ)2
]
. (A.47)

Define an event

B1 =
{
‖ε‖22/n ≤ 2σ2, Λmax((Σn

S,S)−1) ≤ 4

Cmin
, ‖(Σn

S,S)−1‖∞ ≤ (1 + Cn)K1 for

Cn in Lemma A.2.3 (ii)
}
.

B1 implies that

sgn(β̌S)T (XT
SXS)−1sgn(β̌S) ≤ ‖sgn(β̌S)‖22‖(XT

SXS)−1‖2 ≤
s

n
Λmax((Σn

S,S)−1) ≤ 4s

nCmin
.

Thus, by (A.47) and Condition 3.4.4, in B1,

max
j∈Sc

Var(E1,j) ≤ C∗
(

4s

nCmin
+

2σ2

nλ2

)
. (A.48)

Thus, by Lemma A.2.3 and Condition 3.4.5,

P
(

max
j∈Sc
|E1,j | > x

)
≤ P

(
max
j∈Sc
|E1,j | > x,B1

)
+ P(Bc1)

≤ 2(p− s) exp

{
− x2

2C∗( 4s
nCmin

+ 2σ2

nλ2
)

}
+
c1

n

+ 2 exp(−c2 log p) + 2 exp(−c3n),

for some constant c1, c2, c3 > 0. Let x = (1− κ)/2 and solve

x2

2C∗( 4s
nCmin

+ 2σ2

nλ2
)
≥ 2 log p.
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For

sλ2 ≤ σ2Cmin

2
and λ ≥ 8σ

1− κ

√
C∗ log p

n
,

there exists some c1 > 0, such that

P
(

max
j∈Sc
|Tj | >

1 + κ

2

)
≤ c1

n
+ 2 exp(−c4 log p) + 2 exp(−c3n),

for some constant c1, c3, c4 > 0.

(ii) The second task is to bound ‖ûS‖∞. In the event that {Ŝ ⊆ S},

‖ûS‖∞ ≤ ‖(Σn
S,S)−1Wn

S ‖∞ + λ‖(Σn
S,S)−1sgn(β̂S)‖∞

≤ ‖(Σn
S,S)−1Wn

S ‖∞︸ ︷︷ ︸
E2

+λ‖(Σn
S,S)−1‖∞︸ ︷︷ ︸
E3

.

For E2, conditioning on X, (Σn
S,S)−1Wn

S is a Gaussian random vector with mean 0 and

variance (σ2/n)(Σn
S,S)−1. And hence,

P (E2 > x) ≤ P (E2 > x,B1) + P (Bc1) ≤ 2s exp

(
−nCminx

2

8σ2

)
+ P (Bc1) .

Lemma A.2.3 implies that

P (E3 > λ(1 + Cn)K1) ≤ 2 exp(−c5 log p),

for some c5 > 0. Using part (i) of the proof, we can obtain that for some c6, c7, c8 > 0,

P

(
‖ûS‖∞ ≤ 4σ

√
log p

Cminn
+ λ(1 + Cn)K1

)

≥ 1− c6

n
− 2 exp(−c7n)− 2 exp(−c8 log p).

Proof of Lemma 3.4.2. (i) Define an event

B2 =

{
max
j∈Sc
|Tj | < 1 for Tj defined in (A.36) and Λmax((Σn

S,S)−1) ≤ 4

Cmin

}
.

Since B2 implies {Ŝ ⊆ S}, for T ∗j defined in (A.28), Lemma A.2.2 implies that

P(Ŝ∗ ⊆ S) ≥ P
(

max
j∈Sc
|T ∗j | < 1,B2

)
.
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For toj defined in (A.46), we have

max
j∈Sc
|T ∗j | ≤ max

j∈Sc

∣∣∣∣xTj (XS(XT
SXS)−1sgn(β̌∗S) +

P⊥S ε̂
∗

nλ

)∣∣∣∣
≤ max

j∈Sc

∣∣∣∣(toj)T (XS(XT
SXS)−1sgn(β̌∗S) +

P⊥S ε̂
∗

nλ

)∣∣∣∣︸ ︷︷ ︸
E∗1,j

+
∥∥∥ΣSc,SΣ−1

S,S

∥∥∥
∞
. (A.49)

Recall that under the bootstrap resampling plan (3.5) and (3.6), y∗i ∼ N(xi,Ŝ β̂Ŝ , σ̂
2)

conditioning on (X, β̂, Ŝ, σ̂2).

For E∗1,j , we first show that XS(XT
SXS)−1sgn(β̌∗S) is independent of toj in (A.46)

∀j ∈ Sc, in the event of B2. Note that by Lemma 1 in Wainwright (2009), B2 implies

that β̌ in (A.35) is the unique solution to the Lasso (3.1). As a result, β̂ is a function of

(XS , ε) and Ŝ ⊆ S. Ŝ ⊆ S further implies that β̌∗S in (A.27) is a function of (XS , β̂, ε̂
∗).

Therefore, the following arguments hold true:

B2 ⊆ {β̂ is a function of (XS , ε), β̌
∗
S in (A.27) is a function of (XS , β̂, ε̂

∗)}

⊆ {β̂ is a function of (XS , ε), σ̂
2 in (3.7) is a function of (XS , ε),

β̌∗S in (A.27) is a function of (XS , ε, σ̂, ξ)}

⊆ {β̂ is a function of (XS , ε), σ̂
2 in (3.7) is a function of (XS , ε),

β̌∗S in (A.27) is a function of (XS , ε, ξ)}

⊆ {XS(XT
SXS)−1sgn(β̌∗S) is a function of (XS , ε, ξ)}. (A.50)

Moreover, B2 ∩ {σ̂2 ≤ 2σ2, ‖ξ‖22 ≤ 2n} implies that∥∥∥∥XS(XT
SXS)−1sgn(β̌∗S) +

P⊥S ε̂
∗

nλ

∥∥∥∥2

2

≤ 4s

Cminn
+
σ̂2‖ξ‖22
n2λ2

≤ 4s

Cminn
+

4σ2

nλ2
. (A.51)

Thus,

P
(

max
j∈Sc

E∗1,j ≥
1− κ

2
, B2, σ̂

2 ≤ 2σ2, ‖ξ‖22 ≤ 2n

)
≤ P

(
max
j∈Sc

E∗1,j ≥
1− κ

2
, (A.50) and (A.51) hold true

)
≤ 2(p− s) exp

{
− (1− κ)2

8C∗( s
nCmin

+ σ2

nλ2
)

}

≤ 2 exp(−c1 log p),
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for n� s log p and λ ≥ 4σ
1−κ

√
log p
n .

We conclude that for n� s log p and λ > 4σ
1−κ

√
log p
n ,

P
(

max
j∈Sc
|T ∗j | ≤

1 + κ

2
,B2

)
≥ P

(
max
j∈Sc
|E∗1,j | <

1− κ
2

,B2

)
= P(B2)− P

(
max
j∈Sc
|E∗1,j | ≥

1− κ
2

,B2

)
≥ P(B2)− P

(
max
j∈Sc
|E∗1,j | ≥

1− κ
2

,B2, σ̂
2 ≤ 2σ2, ‖ξ‖22 ≤ 2n

)
− P

(
σ̂2 > 2σ2

)
− P

(
‖ξ‖22 > 2n

)
= 1− o(1).

(ii) Let

B3 =
{
Ŝ∗ ⊆ S, Λmax((Σn

S,S)−1) ≤ 4

Cmin
, ‖(Σn

S,S)−1‖∞ ≤ K1(1 + Cn) for

Cn in Lemma A.2.3 (ii), σ̂2 ≤ 2σ2
}
. (A.52)

In B3, (A.39) holds true and we have

‖û∗S‖∞ ≤ ‖(Σn
S,S)−1W ∗S‖∞ + λ‖(Σn

S,S)−1sgn(β̂∗S)‖∞

≤ max
j∈S

∣∣∣σ̂(Σn
S,S)−1

j,SX
T
S ξ/n

∣∣∣︸ ︷︷ ︸
E∗2,j

+λ‖(Σn
S,S)−1‖∞.

In B3, for ∀j ∈ S,

n∑
i=1

((Σn
S,S)−1

j,. X
T
i,S/n)2 = ‖(Σn

S,S)−1
j,. X

T
S /n‖22 ≤

1

n
Λmax((Σn

S,S)−1) ≤ 4

nCmin
.

By the Gaussian property of ξ, in B3,

P
(

max
j∈S

E∗2,j > x

)
≤ 2s exp(−nCminx

2

16σ2
).

B3 is a large probability event due to part (i) of the proof, Lemma A.2.3 and Lemma

A.2.4. Putting these pieces together, we have

P

(
‖û∗S‖∞ > 4σ

√
log p

Cminn
+K1(1 + Cn)λ

)
≤ 2 exp(−c2 log p) + o(1)→ 0,

for some c2 > 0 and λ satisfying (3.30).
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Proof of Theorem 3.3.4. To simplify the notations, let S\j = S\{j}. For the terms in

(3.13) and (3.20), let

bj = Bias in (3.13), Remj = Remainder in (3.13), ηj = Noise in (3.13),

Rem∗j = Remainder∗ in (3.20), η∗j = Noise∗ in (3.20). (A.53)

Define a version of pivots in (3.24) which is standardized and bias-removed:

Roj =
zTj xj

σ‖zj‖2
(β̂

(DB)
j − βj − bj) and R

(∗,o)
j =

zTj xj

σ‖zj‖2
(β̂

(∗,DB)
j − β̂j − bj). (A.54)

We first find the limiting distribution for Roj and R
(∗,o)
j .

Let ζj be a normalized version of ηj in (A.53):

ζj =
zTj xj

σ‖zj‖2
ηj =

n∑
i=1

ζi,j , (A.55)

where ζi,j = 1
σ‖zj‖2

(
zi,jεi − (zTj xje

T
j − zTj XS)(Σn

S,S)−1XT
i,Sεi/n

)
.

Statement (3.22) in Lemma 3.3.3 implies that

Roj = OP

(
nK1s̃λλj
σ‖zj‖2

)
+

zTj xj

σ‖zj‖2
ηj = OP

(√
nK1s̃λλj
σK2

)
+ ζj = oP (1) + ζj , (A.56)

where the second step is due to Condition 3.3.5 and the last step is by our sample size

condition in A1 (3.26). Note that ζj is a random variable with mean zero and variance

s2
n, where

s2
n = V ar(ζj)

=
1

‖zj‖22
‖zj − (zTj xje

T
j − zTj X)S(Σn

S,S)−1XT
S /n‖22

= 1 +
1

n‖zj‖22
(zTj xje

T
j − zTj X)S(Σn

S,S)−1(zTj xjej −XT zj)S

− 2

n‖zj‖22
zTj XS(Σn

S,S)−1(zTj xjej −XT zj)S

= 1 +
3

n‖zj‖22
(zTj xje

T
j − zTj X)S(Σn

S,S)−1(zTj xjej −XT zj)S︸ ︷︷ ︸
H1

− 2

n‖zj‖22
zTj xje

T
j (Σn

S,S)−1(zTj xjej −XT zj)S︸ ︷︷ ︸
H2

. (A.57)
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Note that the KKT condition of (3.4) is∥∥∥∥ 1

n
zTj X−j

∥∥∥∥
∞
≤ λj . (A.58)

Therefore, H1 in (A.57) can be bounded by

|H1| ≤
3
∥∥∥(zTj xje

T
j − zTj X)S/n

∥∥∥2

2

∥∥∥(Σn
S,S)−1

∥∥∥
2

‖zj‖22/n

≤
3s‖zTj XS\j/n‖2∞

K2Cmin
≤

3sλ2
j

K2Cmin
, (A.59)

where the second last step is by Conditions 3.3.1 and 3.3.5 and the last step is by (A.58).

Similarly, H2 in (A.57) can be bounded by

|H2| ≤
2

‖zj‖22

∥∥∥zTj XS\j/n
∥∥∥

2

∥∥(Σn
S,S)−1

∥∥
2

∣∣xTj zj∣∣ ≤ √
sλj√

K2Cmin
. (A.60)

Thus, for n� s log p, we have

s2
n = 1 + o(1). (A.61)

Now we check the Lyapunov condition, say

lim
n→∞

1

s4
n

n∑
i=1

E[|ζi,j |4] = 0.

Using Condition 3.3.4, we can obtain that

n∑
i=1

E[ζi,j |4] ≤ E[|ε|4]

σ4‖zj‖42

n∑
i=1

|zi,j − (zTj xje
T
j − zTj X)S(Σn

S,S)−1XT
i,S/n|4

≤ M0

σ4‖zj‖42
23

(
n∑
i=1

|zi,j |4 +

n∑
i=1

|(zTj xjeTj − zTj X)S(Σn
S,S)−1XT

i,S/n|4
)
.

(A.62)

For ease of notation, let ci = (zTj xje
T
j − zTj X)S(Σn

S,S)−1XT
i,S/n, i = 1, . . . , n. Then we

have

‖c‖22 =
‖zj‖22

3
H1 ≤

nsλ2
j

Cmin
,

max
i≤n
|ci| ≤ s

∥∥∥zTj XS\j/n
∥∥∥
∞

∥∥(Σn
S,S)−1

∥∥
∞max

i,j
|xi,j | ≤ K1K0sλj .

As a consequence,

n∑
i=1

|ci|4 ≤ max
i≤n
|ci|2

n∑
i=1

|ci|2 ≤ (K1K0sλj)
2
nsλ2

j

Cmin
=
nK2

1K
2
0s

3λ4
j

Cmin
.
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In view of (A.62), it holds that

lim
n→∞

1

s4
n

n∑
i=1

E[ζi,j |4] ≤ lim
n→∞

M023(nK2
1K

2
0s

3λ4
j/Cmin + ‖zj‖44)

σ4‖zj‖42(1− o(1))2

≤ lim
n→∞

M023K2
1K

2
0s

3λ4
j

σ4K2
2Cminn

= 0,

as long as s3λ4 � n. For s � n/ log p and λj �
√

log p
n , it is easy to check that

s3λ4 = O(n/ log p)� n.

We have proved that

ζj/sn
D−→ Z, for Z ∼ N(0, 1).

Together with (A.56) and (A.61), we have

sup
c∈R

∣∣P(Roj ≤ c)− Φ(c)
∣∣ = oP (1). (A.63)

For the bootstrap version, consider R
(∗,o)
j defined in (A.54). By (3.23) in Lemma

3.3.3,

R
(∗,o)
j = OP

(
nK1s̃λλj
σ‖zj‖2

)
+

zTj xj

σ‖zj‖2
ηj + oP (1)

= OP

(√
nK1s̃λλj
σK2

)
+ ζ∗j + oP (1) = oP (1) + ζ∗j ,

where

ζ∗j =
zTj xj

σ‖zj‖2
η∗j (A.64)

is a Gaussian variable with mean zero and variance 1 + oP (1) by Lemma A.2.4. This

implies that

sup
c∈R

∣∣∣P(R
(∗,o)
j ≤ c)− Φ(c)

∣∣∣ = oP (1). (A.65)

Let F∗(c) be the cumulative distribution function of ζ∗j , i.e. F∗(c) = P(ζ∗j ≤ c). For

∀v1, v2 > 0 and ∀α ∈ (0, 1),

P
(
qα(R

(∗,o)
j )− zα > v1

)
≤ P

{
F∗

(
qα

(
R

(∗,o)
j

))
> F∗(zα + v1)

}
≤ P {α > F∗(zα + v1)}

≤ P {α+ v2 > Φ(zα + v1)}+

P {F∗(zα + v1) ≤ Φ(zα + v1)− v2}

= P {α+ v2 > Φ(zα + v1)}+ o(1),
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where the first step is due to the monotonicity of F∗, the second step is by the definition

of quantile function, and the last step is due to (A.65). By first taking v2 → 0, we have

proved that for ∀α ∈ (0, 1) and ∀v1 > 0,

P
{
qα

(
R

(∗,o)
j

)
− zα > v1

}
= o(1).

A matching lower bound can be proved by a completely analogous argument. Thus,

sup
α∈(0,1)

∣∣∣qα (R(∗,o)
j

)
− zα

∣∣∣ = oP (1). (A.66)

To complete our proof, note that

Rj = σRoj +
zTj xj

‖zj‖2
bj + oP (1) and R∗j = σR

(∗,o)
j +

zTj xj

‖zj‖2
bj + oP (1). (A.67)

Together with (A.63) and (A.66), it holds that

sup
α∈(0,1)

∣∣P{Rj ≤ qα(R∗j )
}
− α

∣∣ ≤ sup
α∈(0,1)

∣∣∣P{Roj ≤ qα (R(∗,o)
j

)}
− α

∣∣∣
≤ sup

α∈(0,1)

∣∣P{Roj ≤ zα} − α∣∣+ oP (1)

= oP (1).

Next, we prove the asymptotic normality of R
(DDB)
j in (3.25). Note that β̂

(DDB)
j in

(3.10) corrects β̂
(∗,DB)
j with an estimated bias

b̂j = median
(
β̂

(∗,DB)
j − β̂j

)
. (A.68)

Due to (3.20), we can easily obtain that

zTj xj

σ‖zj‖2
b̂j =

zTj xj

σ‖zj‖2
bj +median

(
R

(∗,o)
j

)
=

zTj xj

σ‖zj‖2
bj + z0.5 + oP (1)

=
zTj xj

σ‖zj‖2
bj + oP (1),

where the second step is due to (A.66). By definition of β̂
(DDB)
j (3.10) and Rj defined

in (3.24),

zTj xj

σ‖zj‖2
(β̂

(DDB)
j − βj) =

1

σ
Rj −

zTj xj

σ‖zj‖2
b̂j = Roj + oP (1) = Z + oP (1), (A.69)
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where the last step is due to (A.63) for Z ∼ N(0, 1). For R
(DDB)
j defined in (3.25),

(A.69) and Lemma A.2.4 implies that

P
(
R

(DDB)
j ≤ c

)
= P(Z ≤ c) + oP (1) = Φ(c) + oP (1).

Proof of Theorem 3.4.3. Under Gaussian designs, we still consider error decompositions

as in (3.13) and (3.20). We use simplified notations described in (A.53).

In the event that (3.29) holds, we can obtain that

|Remj | ≤ λ
∣∣∣∣∣
(
eTj −

zTj XS

zTj xj

)
S

(Σn
S,S)−1[sgn(β̂S)− sgn(βS)]

∣∣∣∣∣
1

≤ λ
∥∥∥∥∥zTj XS\j

zTj xj

∥∥∥∥∥
∞

∥∥(Σn
S,S)−1

∥∥
∞

∥∥∥sgn(β̂S)− sgn(βS)
∥∥∥

1

= OP

(
K1(1 + Cn)ns̃λλj

zTj xj

)
,

where the last step is by (A.58), Lemma A.2.3, Lemma 3.4.1 and the definition of s̃ in

(3.32).

By Lemma 5.3 of van de Geer et al. (2014), if n� sj log p,

‖zj‖22/n = 1/(Σ−1)j,j + oP (1), (A.70)

where maxj≤p(Σ
−1)j,j ≤ 1/C∗ by Condition 3.4.4. Thus, for Roj defined in (A.54) and

ζj in (A.55) we have

Roj = OP

(
nK1(1 + Cn)s̃λλj

σ‖zj‖2

)
+ ζj + oP (1)

= OP

(√
nK1(1 + Cn)s̃λλj

σ
√
C∗

)
+ ζj + oP (1)

= oP (1) + ζj , (A.71)

where the last step is due to in A2 (3.33),

√
ns̃λλj =

s̃ log p

n
= o(1), ss̃λλj =

ss̃ log p

n
= o(1) and√

s log ps̃λλj =

√
s log p

n

s̃ log p

n
= o(1).
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Next we show that for ζj in (A.71),

sup
c∈R
|P(ζj ≤ c)− Φ(c)| = oP (1).

Conditioning on X, ζj is a Gaussian random variable with mean 0 and variance of the

form (A.57). By (A.70) and Lemma A.2.3, we can similarly prove (A.59) and (A.60)

by replacing K2 with C∗(1 − oP (1)) and replacing Cmin with Cmin/4 + oP (1). Hence,

|s2
n − 1| = OP (

√
sλj) = oP (1). Then we have,

P(ζj ≤ c) = E[P(ζj ≤ c|X)] = E[Φ(c/sn)] = Φ(c) + oP (1).

For the bootstrap version R
(∗,o)
j in (A.54) and ζ∗j in (A.64), Lemma 3.4.2 implies

that

R
(∗,o)
j = OP

(√
nK1(1 + Cn)s̃λλj

σ
√
C∗

)
+ ζ∗j + oP (1) = oP (1) + ζ∗j . (A.72)

Conditioning on X and ε, we can similarly prove ζ∗j is a Gaussian random variable

with mean 0 and variance 1 + oP (1). Thus,

sup
c∈R

∣∣∣P(R
(∗,o)
j ≤ c)− Φ(c)

∣∣∣ = oP (1).

Together with (A.67), (A.71), (A.72) and Lemma A.2.4,

sup
α∈(0,1)

∣∣P{Rj ≤ qα(R∗j )
}
− α

∣∣ ≤ sup
α∈(0,1)

∣∣∣P{Roj ≤ qα (R(∗,o)
j

)}
− α

∣∣∣
≤ sup

α∈(0,1)

∣∣P{Roj ≤ zα} − α∣∣+ oP (1)

= oP (1).

The asymptotic normality of R
(DDB)
j can be similarly proved as for the fixed design

case and is omitted here.

A.3 Proofs for Chapter 4

A.3.1 Proof of theorems and lemmas

Proof of Theorem 4.2.1. Let H = (nτ2
n)−1IJ×J , Σ̃n = 1

n

D̂T D̂ D̂TZ

ZT D̂ ZTZ

 and Σ̃n
H =

1
n

D̂T D̂ D̂TZ

ZT D̂ ZTZ + nH

. First we show the symmetric matrix Σ̃n
H is invertible for any



95

τ2
n > 0.

min
u∈R(J+1),‖u‖2=1

uT Σ̃n
Hu = min{ min

u∈R(J+1),u1=1
uT Σ̃n

Hu, min
u∈R(J+1),u1 6=1

uT Σ̃n
Hu}

= min{‖D̂‖22/n, min
u∈R(J+1),u1 6=1

uT Σ̃n
Hu}

= min{‖D̂‖22/n, min
u∈R(J+1),u1 6=1

(uT Σ̃nu+ uT−1Hu−1)}

≥ min{‖D̂‖22/n, min
u∈R(J+1),u1 6=1

uT−1Hu−1}

> 0,

where the first inequality is due to Σ̃n is a nonnegative definite matrix and the second

inequality is by our assumption.

By Bayes rule, we can getβ̂(SG)

α̂(SG)

 = (Σ̃n
H)−1

 D̂TY/n

ẐTY/n+Hµα


= (Σ̃n

H)−1

 D̂TY/n

ZTY/n+Hα−H(α− µα1J)


=

β
α

+ (Σ̃n
H)−1

 D̂T η̂/n

ZT η̂/n−H(α− µα1J)

 .

Hence,

β̂(SG) = β +
1

n
(Σ̃n

H)−1
1,1D̂

T η̂ +
1

n
(Σ̃n

H)−1
1,[J ](Z

T η̂ + nH (µα1J − α))

= β +
1

n
(Σ̃n

H)−1
1,1D̂

T η̂ +
1

n
(Σ̃n

H)−1
1,[J ]Z

TPD̂η̂︸ ︷︷ ︸
E1

+
1

n
(Σ̃n

H)−1
1,[J ]Z

TP⊥
D̂
η̂︸ ︷︷ ︸

E2

− (Σ̃n
H)−1

1,[J ]H(α− µα1J)︸ ︷︷ ︸
E3

. (A.73)

By the matrix inverse formula and some simple algebra, we can get

(Σn
H)−1

[J ],[J ] =

(
ZTZ/n+H − ZT D̂D̂TZ

D̂T D̂
/n

)−1

=
(
ZTP⊥

D̂
Z/n+H

)−1
(A.74)

(Σn
H)−1

1,[J ] = −
D̂TZ(Σn

H)−1
[J ],[J ]

D̂T D̂
= −

D̂TZ
(
ZTP⊥

D̂
Z/n+H

)−1

D̂T D̂
. (A.75)
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Thus, for E1 in (A.73), we have

E1 =
1

n
(Σn

H)−1
1,1D̂

T η̂ +
(Σn

H)−1
1,[J ]Z

T D̂D̂T η̂

nD̂T D̂

=
(

(Σn
H)−1

1,1 − (Σn
H)−1

1,[J ](Σ
n
H)[J ],[J ](Σ

n
H)−1

[J ],1

)
D̂T η̂

=
D̂T η̂

D̂T D̂
,

where the second equality can be seen from the first part of (A.75) and the last step is

by the matrix inverse formula.

By (A.75), we have

|E3| =
1

nτ2
n‖D̂‖22

|D̂TZ(Σ̃n
H)−1(α− µα1J)|

≤ 1

nτ2
n‖D̂‖22

‖D̂TZ‖2Λmax((Σ̃n
H)−1)‖α− µα1J‖2

≤ ‖D̂
TZ‖2‖α− µα1J‖2

‖D̂‖22

≤ ‖α− µα1J‖2Λ
1/2
max(Σn

Z)

‖D̂‖2/
√
n

≤ ‖α− µα1J‖2Λ
1/2
max(Σn

Z)

‖γ̂‖2Λ
1/2
min(Σn

Z)
,

where the second inequality is due to

Λmax((Σ̃n
H)−1) ≤ Λ−1

min((nτ2
n)−1IJ×J) = nτ2

n

and the last step is due to

‖D̂‖2/
√
n = ‖Zγ̂‖2/

√
n ≥ ‖γ̂‖2Λ

1/2
min(Σn

Z).

Similarly,

|E2| ≤
τ2
nΛ

1/2
max(Σn

Z)‖ZTP⊥
D̂
η̂‖2

‖D̂‖2/
√
n

.

Proof of Corollary 4.2.2. Note that

‖ZTP⊥
D̂
η̂‖2 ≤

√
J max

j
‖ZTj P⊥D̂ η̂‖2



97

and

‖ZTj P⊥D̂ η̂‖2 = ‖ZTj P⊥D̂ (ε+ βP⊥Z v)‖2 ≤ ‖ZTj ε‖2 = OP (‖Zj‖2σε) = OP (
√
nΛ1/2

max(Σn
Z)σε).

For the third term, it holds that

|D̂T η̂| = |D̂T (ε+ βP⊥Z v)| = |D̂T ε| = OP (‖D̂‖2σε).

Proof of Theorem 4.2.3. Define a matrix En ∈ RJ×J , where Enj,. = 1
T
J /J for j =

1, . . . , J . Let H ′ = H(IJ×J − En). First we show that ZTP⊥
D̂
Z/n+H ′ is invertible.

Λmin(ZTP⊥
D̂
Z + nH ′)

= min
‖u‖2=1

uT (ZTP⊥
D̂
Z + nH ′)u

≥ Λmin(ZTZ) + min
‖u‖2=1

{τ−2
n uT (u− ū1J)− uTZTPD̂Zu}

≥ Λmin(ZTZ) + min
‖u‖2=1

{τ−2
n (u− ū1J)T (u− ū1J)

− (u− ū1J)TZTPD̂Z(u− ū1J)− ū2
1
T
JZ

TPD̂Z1J − 2ū1TJZ
TPD̂Z(u− ū1J)}

≥ Λmin(ZTZ) + min
‖u‖2=1

{[τ−2
n − Λmax(ZTZ)](u− ū1J)T (u− ū1J)

− 2ū1TJZ
TPD̂Z(u− ū1J)− ū2

1
T
JZ

TPD̂Z1J}

≥ Λmin(ZTZ)− min
‖u‖2=1

{2ū1TJZTPD̂Z(u− ū1J) + ū2
1
T
JZ

TPD̂Z1J},

for τ−2
n > nΛmax(Σn

Z). Moreover,

‖PD̂Z1J‖2 =
J‖D̂D̂T Z̃‖2

D̂T D̂
≤ ‖Z1J‖2|Cor(D̂, Z̃)|.

Since
√
nJΛ

1/2
max(Σn

Z) ≥ ‖Z1J‖2 ≥
√
nJΛ

1/2
min(Σn

Z) and |ū| ≤ J−1/2, we can get

Λmin(ZTP⊥
D̂
Z + nH ′) ≥ nΛmin(Σn

Z)− 2n|Cor(D̂, Z̃)|Λmax(Σn
Z)− nCor2(D̂, Z̃)Λmax(Σn

Z)

≥ nr∗n,

for r∗n = Λmin(Σn
Z)− 2|Cor(D̂, Z̃)|Λmax(Σn

Z)− Cor2(D̂, Z̃)Λmax(Σn
Z).

To get r∗n > 0, we need

0 < |Cor(D̂, Z̃)| <
√

Λmin(Σn
Z)

Λmax(Σn
Z)

+ 1− 1.
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Computing the MLE, we can get µ̂
(SG∗)
α = α̂(SG∗)

1J/J .β̂(SG∗)

α̂(SG∗)

 = (Σ̃n
H −HEn)−1

D̂TY/n

ẐTY/n


= (Σ̃n

H −HEn)−1

 D̂TY/n

ZTY/n+H ′α−H ′α


=

β
α

+ (Σ̃n
H −HEn)−1

 D̂T η̂/n

ZT η̂/n−H ′α

 ,

where H ′α = τ−2
n (α− ᾱ1J).

By similar proof of Theorem 4.2.1, we can get desired results.

Proof of Theorem 4.2.5. We first state and prove the following lemma. Let Bα = Qn +

Hα and c∗n = max
{

Λmax((B−1
α )Ŝα,Ŝα),Λmax((B−1

α )Ŝcα,Ŝcα
)
}

.

Lemma A.3.1. Suppose that the eigenvalues of Σn
Z are bounded from above. Let τ2

0n =

n−1 and τ2
1n be a positive constant. If Λmin(Qn

Ŝα,Ŝα
) > 0 for some Ŝα 6= [J ], then

c∗n ≤ max

{
1 + c−1

0 Λmax(Σn
Z)

Λmin(Qn
Ŝα,Ŝα

)
, c−1

0

}
,

for some constant c1 > 0.

Proof of Lemma A.3.1. Let π0(α̂
(MG)
j ) = 1 − π1(α̂

(MG)
j ). First note that by definition

of Ŝcα and the condition on τ2
0n, minj∈Ŝcα

(Hα)j,j ≥ minj∈Ŝcα
π0(α̂

(MG)
j )

nτ20n
≥ c0 for some

constant c0 > 0.

Λmax((B−1
α )Ŝα,Ŝα) = Λmax

({
(Bα)Ŝα,Ŝα − (Bα)Ŝα,Ŝcα

(Bα)−1

Ŝcα,Ŝ
c
α

(Bα)Ŝcα,Ŝα

}−1
)

= Λ−1
min

(
(Bα)Ŝα,Ŝα − (Bα)Ŝα,Ŝcα

(Bα)−1

Ŝcα,Ŝ
c
α

(Bα)Ŝcα,Ŝα

)
, (A.76)

where

(Bα)Ŝα,Ŝα − (Bα)Ŝα,Ŝcα
(Bα)−1

Ŝcα,Ŝ
c
α

(Bα)Ŝcα,Ŝα

= (Hα)Ŝα,Ŝα +Qn
Ŝα,Ŝα

−Qn
Ŝα,Ŝcα

(Qn
Ŝcα,Ŝ

c
α

+ (Hα)Ŝcα,Ŝcα
)−1Qn

Ŝcα,Ŝα

� (Hα)Ŝα,Ŝα +Qn
Ŝα,Ŝα

−Qn
Ŝα,Ŝcα

(Qn
Ŝcα,Ŝ

c
α

+ c0IŜcα,Ŝcα
)−1Qn

Ŝcα,Ŝα
.
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Thus, (A.76) satisfies

(A.76) ≤
{

min
j∈Ŝα

(Hα)j,j + Λmin(Qn
Ŝα,Ŝα

)

[
1−

Λmax(Qn
Ŝcα,Ŝ

c
α
)

c0 + Λmax(Qn
Ŝcα,Ŝ

c
α

)

]}−1

.

Thus,

Λmax((B−1
α )Ŝα,Ŝα) ≤

1 + c−1
0 Λmax(Qn

Ŝcα,Ŝ
c
α
)

Λmin(Qn
Ŝα,Ŝα

)
.

Similarly, we can get

Λmax((B−1
α )Ŝcα,Ŝcα

) ≤
{
c0 + Λmin(Qn

Ŝcα,Ŝ
c
α
)

minj∈Ŝα(Hα)j,j

minj∈Ŝα(Hα)j,j + Λmax(Qn
Ŝα,Ŝα

)

}−1

≤ c−1
0 .

Since Λmax(Qn
Ŝα,Ŝα

) ≤ Λmax(Σn
Z) which is a constant,

c∗n ≤ max

{
1 + c−1

0 Λmax(Σn
Z)

Λmin(Qn
Ŝα,Ŝα

)
, c−1

0

}
.

Now we are ready to prove Theorem 4.2.5. Let Hα be a diagonal matrix with

(Hα)j,j = (1 − π1(α̂
(MG)
j )/(nτ2

0n) + π1(α̂
(MG)
j )/(nτ2

1n) for j = 1, . . . J and Σ̃n
Hα

=

1
n

D̂T D̂ D̂TZ

ZT D̂ ZTZ + nH−1
α

. Replacing H by Hα in the proof of Theorem 4.2.1, we

can obtain that Σ̃n
Hα

is invertible for any τ2
0n, τ

2
1n > 0. Then

β̂(MG) =β +
1

n
(Σ̃n

Hα)−1
1,1D̂

T η̂ +
1

n
(Σ̃n

Hα)−1
1,[J ]Z

TPD̂η̂︸ ︷︷ ︸
E′1

+
1

n
(Σ̃n

Hα)−1
1,[J ]Z

TP⊥
D̂
η̂︸ ︷︷ ︸

E′2

+ (Σ̃n
Hα)−1

1,[J ]Hα

(
ω(α̂(MG))µα − α

)
︸ ︷︷ ︸

E′3

, (A.77)

where E′1 = E1.

For E′3, by matrix inverse formula as in (A.74) and (A.75),

|E′3| ≤
1

‖D̂‖22

∣∣∣D̂TZŜα(B−1
α )Ŝα,Ŝα(Hα)Ŝα,Ŝα(α− µαω(α̂(MG)))Ŝα

∣∣∣
+

1

‖D̂‖22

∣∣∣D̂TZŜα(B−1
α )Ŝα,Ŝcα

(Hα)Ŝcα,Ŝcα
(α− µαω(α̂(MG)))Ŝcα

∣∣∣
+

1

‖D̂‖22

∣∣∣D̂TZŜcα
(B−1

α )Ŝcα,Ŝα
(Hα)Ŝα,Ŝα(α− µαω(α̂(MG)))Ŝα

∣∣∣
+

1

‖D̂‖22

∣∣∣D̂TZŜcα
(B−1

α )Ŝcα,Ŝcα
(Hα)Ŝcα,Ŝcα

(α− µαω(α̂(MG)))Ŝcα

∣∣∣ . (A.78)
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For the first term on the right hand side of (A.78), we have

1

‖D̂‖22

∣∣∣D̂TZŜα(B−1
α )Ŝα,Ŝα(Hα)Ŝα,Ŝα(α− µαω(α̂(MG)))Ŝα

∣∣∣
≤
‖D̂TZŜα‖2
‖D̂‖22

Λmax((B−1
α )Ŝα,Ŝα)

∥∥∥(Hα)Ŝα,Ŝα(α− µαω(α̂(MG)))Ŝα

∥∥∥
2

=
c∗nΛ

1/2
max(Σn

Z)

‖D̂‖2/
√
n

∥∥∥(Hα)Ŝα,Ŝα(α− µαω(α̂(MG)))Ŝα

∥∥∥
2

≤ c∗nΛ
1/2
max(Σn

Z)

‖γ̂‖2Λ
1/2
min(Σn

Z)

∥∥∥(Hα)Ŝα,Ŝα(α− µαω(α̂(MG)))Ŝα

∥∥∥
2

≤ c∗nc1nΛ
1/2
max(Σn

Z)

‖γ̂‖2Λ
1/2
min(Σn

Z)

∥∥∥(α− µαω(α̂(MG)))Ŝα

∥∥∥
2

for some c1n = o(1),

where the last step is due to

max
j∈Ŝα

(Hα)j,j ≤ max
j∈Ŝα

π0(α̂
(MG)
j )

nτ2
0n

= o(1).

Also note that maxj∈Ŝcα
(Hα)j,j ≤ 1 and

ω(α̂j) ≤
1

1 + minj∈Ŝcα
π0(α̂

(MG)
j )nτ2

1n

= O(n−1).

For the second term on the right hand side of (A.78), we have

1

‖D̂‖22

∣∣∣D̂TZŜα(B−1
α )Ŝα,Ŝcα

(Hα)Ŝcα,Ŝcα
(αŜcα

− ω(α̂(MG))Ŝcα
µα)
∣∣∣

≤
‖D̂TZŜα‖2
‖D̂‖22

Λ1/2
max((B−1

ξ )Ŝα,Ŝα)Λ1/2
max((B−1

ξ )Ŝcα,Ŝcα
)
∥∥∥αŜcα − c2n

∥∥∥
2

≤ c∗nΛ
1/2
max(Σn

Z)

‖γ̂‖2Λ
1/2
min(Σn

Z)

∥∥∥αŜcα − c2n

∥∥∥
2
,

where c2n = O(n−1). Dealing the third and fourth term in (A.78) similarly, we have

|E′3| ≤
2c∗nΛ

1/2
max(Σn

Z)

Λ
1/2
min(Σn

Z)

[
c1n‖(α− ω(α̂(MG))µα)Ŝα‖2

‖γ̂‖2
+
‖αŜcα − c2n‖2
‖γ̂‖2

]
,

for some c1n = o(1) and c2n = O(n−1). For E′2, we can similarly prove that

|E′2| ≤
2c∗n‖D̂TZ/n‖2(‖ZT

Ŝα
P⊥
D̂
η̂‖2 + ‖ZT

Ŝcα
P⊥
D̂
η̂‖2)

‖D̂‖22

≤
4c∗nΛ

1/2
max(Σn

Z)‖ZTP⊥
D̂
η̂‖2

√
n‖D̂‖2

.
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A.3.2 Implementation details

In this section, we discuss the computation of the conditional posterior mean under

prior (4.10)-(4.12). For the initial values, take β̂(0) = 0. For known µα and p0, the

Gibbs samples can be generated with respect to

α̂(t) ∼ N(θα,ξ,Σα,ξ), β̂(t) ∼ N(θβ,ξ, σ
2
β,ξ), ξ

(t)
j ∼ Ber(pj), j = 1, . . . , p, (A.79)

(σ−2
η )(t) ∼ Gamma(ν1 +

n

2
+
J

2
, ν2 +

1

2
‖Y − D̂β̂(t−1) − Zα̂(t)‖22

+
J∑
j=1

(α̂
(t)
j − µαξ

(t)
j )2

2τ2
0n + 2(τ2

1n − τ2
0n)ξ

(t)
j

), (A.80)

where

Σα,ξ =
(
ZTZ + (H

(t)
ξ )−1

)−1
(σ2
η)

(t−1),

θα,ξ = Σα,ξ(Z
T (Y − D̂β̂(t−1)) + (H(t)

α )−1µα),

for a diagonal matrix H
(t)
α with (H

(t)
α )j,j = (τ2

0n + (τ2
1n − τ2

0n)ξ
(t)
j ),

θβ,ξ =
D̂T (Y − Zα̂(t))

D̂T D̂
, σ2

β,ξ =
(σ2
η)

(t−1)

D̂T D̂

and

pj =
p1φ(α̂

(t)
j |µα, τ2

1n)(σ2
η)

(t−1)

p1φ(α̂
(t)
j |µα, τ2

1n)(σ2
η)

(t−1)) + (1− p1)φ(α̂
(t)
j |0, τ2

0n(σ2
η)

(t−1))

For unknown µα and p0, we can apply the MCEM algorithm with some

modifications.

Start with initial values µ̂
(0)
α = 0 and p̂

(0)
1 = 0.5.

E-step: Generate (α
(t)
i , β

(t)
i , ξ

(t)
i , (σ2

η)
(t)
i ), i = 1, . . . ,m, by running m rounds of

Gibbs sampling as (A.79) and (A.80) replacing µα and p1 with µ̂
(t−1)
α and p̂

(t−1)
1

respectively.

M-step:

(µ̂(t)
α , p̂

(t)
1 ) = arg max

(µα,p1)

1

m

m∑
i=1

log p(β, µα, p1|D, α(t)
i , β

(t)
i , ξ

(t)
i , (σ2

η)
(t)
i ).

Specifically, the maximizers in the M-step take the form

µ̂(t)
α =

∑m
i=1

∑J
j=1 α̂

(t)
i,j ξ̂

(t)
i,j /(σ

2
η)

(t)
i∑m

i=1

∑J
j=1 ξ̂

(t)
i,j /(σ

2
η)

(t)
i

p̂
(t)
1 =

1

mJ

m∑
i=1

J∑
j=1

ξ̂
(t)
i,j .
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At the convergence of (µ̂
(t)
α , p̂

(t)
1 ), produce 1

m

∑m
i=1 β̂

(t)
i as the final estimate of β.

A.3.3 Implementation with summary statistics

Suppose we observe Γ̂j ∈ R as the association estimate between the interested outcome

Y and the j-th genetic variant Zj , σ̂
2
Γ,j ∈ R as the estimated variance of Γ̂j and γ̂j ∈ R

be the association estimate between the interested exposure D and Zj . Let γ̂(2) be a

version of γ̂ obtained from an independent sample (Z(2), D(2)). In model (4.17) - (4.19),

the sample moments used throughout the computation are replaced by the summary

statistics as follows.

ZTZ = IJ×J , ZT D̂ = γ̂(2),

ZTY = Γ̂, D̂T D̂ = (γ̂(2))T γ̂(2), D̂TY = (γ̂(2))T Γ̂.

We use σ̂2
Γ as an estimate of σ2

Γ. Thus, we are able to get an empirical Bayes estimator

with summary statistics based on the algorithm in the previous section.
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