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ABSTRACT OF THE DISSERTATION

Signal and variance component estimation in

high-dimensional linear models

by Ruijun Ma

Dissertation Director: Lee H. Dicker

Over the past several decades, dimensionalities of many datasets have grown exponentially

as technology advances. Many approaches have been proposed to tackle high-dimensional

problems, where dimensionality is much larger than sample size. This dissertation

focuses on developing methodologies for signal and variance component estimations in

three different areas, compressive sensing, genome-wide association studies and demand

forecasting in e-commerce industry. In literatures, signal and variance component

estimations are usually treated as independent tasks, and this work draws the connection

between these estimation goals.

For the first problem in compressive sensing, we propose an algorithm that

incorporates nonparametric empirical Bayes method with generalized approximate

message passing (AMP). Generalized AMP is an effective algorithm for recovering

signals from noisy linear measurements, assuming known a priori signal distributions.

However, in practice, both the signal distribution and noise level are often unknown.

We propose nonparametric maximum likelihood-AMP (NPML-AMP) for estimating

an arbitrary signal distribution in this setting. In addition, we propose a simple noise

variance estimator for use in conjunction with NPML-AMP.

For the second problem in genome-wide association studies, we focus on heritability
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estimation methods related to variance components estimation problems for linear mixed

models (LMMs). Heritability is the proportion of phenotype variance explained by genetic

variance, and standard approaches to LMM-based heritability estimation have some

unresolved inconsistencies. We suggest that by adopting a slightly different statistical

perspective, many of these inconsistencies can be seamlessly resolved. Moreover, with

Mahalanobis kernel, we define a natural version of heritability, as a conditional variance

under fixed-effects model.

The third problem is associated with predictions for online retailing demand

forecasting and genetic risk prediction. In these big-data applications, regression-based

linear dimension reduction technique performs well in minimizing out-of-sample error. We

identify the asymptotic risk of such sharp estimate with model known to be misspecified.

More importantly, we propose to estimate its asymptotic risk by variance component

estimation discussed in the second problem. The risk evaluation technique can also be

extended to model comparison between other methods with explicit asymptotic risk.
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Chapter 1

Introduction

Consider the linear model y = x>β+ ε where (y,x>)> ∈ Rp+1 is the pair of observed

response and covariates, β ∈ Rp is the vector of effects, and ε is noise with E[ε] = 0 and

Var(ε) = σ2
ε . Provided (y1,x

>
1 )>, . . . , (yn,x

>
n )>, we are generally interested in estimating

β, predicting unseen yn+1 provided xn+1, and estimating σ2
ε for the setting where n << p.

While discussing methodologies in all these areas, this manuscript draws the crucial

connection between signal estimation/prediction and variance component estimation.

1.1 Signal and variance component estimation

In this high-dimensional setting, the ordinary least squares (OLS) fails as the Gram

matrix of the design matrix is not invertible. Then signals in big-data analysis are

usually recovered under certain assumptions, such as structural smoothness and sparsity.

A classical solution, ridge regression, adds a positive constant λ towards the diagonal

entries of this Gram matrix (Tikhonov, 1963; Hoerl and Kennard, 1970) to gain the

invertibility, where λ > 0 governs the strength of the regularization. From the Bayesian

point of view, the ridge regression is equivalent to the posterior mean (and mode) of

a model where βj
i.i.d.∼ N (0, σ2

ε /λ) for j = 1, . . . , p. Similarly, the well-known LASSO

(Tibshirani, 1996) solution is equivalent to the posterior mode provided that every entry

in β follows a Laplace distribution. For both approaches, the optimal regularization

parameter λ in practice is selected via cross-validation. A related random signal recovery

method is discussed in Chapter 2.

Assuming (y,x>)>is p+ 1-dimensional random variable, then variance components,

including noise variance and proportion of explained variance, are also parameters

of interest. In genetics, understanding proportion of explained variance is crucial
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for animal breeding and investigating genetic merits. Moreover, in signal estimation

and prediction problems, known knowledge of residual variance potentially improves

estimation performance. Variance component estimation is also important for model

evaluation purpose. For example, asymptotic risk of many high-dimensional methods are

functions of noise variance and signal-to-noise ratio. Other popular model assessment

criterions such as AIC and BIC (Akaike, 1974; Schwarz et al., 1978) also rely on plug-in

estimates of residual variance. Chapter 3 mainly discusses estimating proportion of

explained variation in the context of genetic data. The estimation method is applied

in Chapter 4 for estimating quadratic out-of-sample error of several high-dimensional

methods.

1.2 Dissertation in a nutshell

Chapter 2 introduces the least squares signal estimator for a model where βj ∼ F by

incorporating nonparametric empirical Bayes method with approximate message passing

(Feng et al., 2017). Generalized approximate message passing (GAMP) is an effective

algorithm for recovering signals from noisy linear measurements, assuming known a

priori signal distributions. However, in practice, both the signal distribution and noise

level are often unknown. The EM-GM-AMP algorithm integrates GAMP with the EM

algorithm to simultaneously estimate the signal distribution and noise variance while

recovering the signal. EM-GM-AMP is built on the assumption that the signal is drawn

from a sparse Gaussian mixture. In this paper, we propose nonparametric maximum

likelihood-AMP (NPML-AMP) for estimating an arbitrary signal distribution in this

setting. In addition to providing more flexibility (and performance improvements), we

argue that the nonparametric approach actually simplifies implementation and improves

stability by leveraging approximate convexity, which is not available in the sparse

Gaussian mixture formulation of EM-GM-AMP. We also propose a simplified plug-in

noise variance estimator for use in conjunction with NPML-AMP (or EM-GM-AMP). A

comprehensive numerical study validates the performance of NPML-AMP algorithm in

reaching nearly minimum mean squared error (MMSE) under various signal distributions,

noise levels, and undersampling ratios.
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Previous examples of regularized least squares commonly assume that effect-sizes are

iid with mean 0. However, the random-effects assumption in many cases is questionable,

and a misspecified assumption could potentially cause biased variance component

estimation. Chapter 3 addresses this issue and discusses heritability estimation in

genome-wide association studies (GWAS) data for linear models. Heritability is the

proportion of phenotype variance explained by genetic variance (Falconer, 1960). Under

linear models, it is defined as

h2 :=
Var(x>β)

Var(y)
.

Existing linear model-based heritability methods generally require specification of a

genetic relationship matrix (GRM), which measures genetic similarity between individuals.

In literature, the GRM is frequently a sample correlation matrix constructed from

the design matrix, which corresponds to a Euclidean distance kernel, or a random-

effects assumption. However, standard approaches to heritability estimation have some

unresolved inconsistencies caused by non-randomness in effect-sizes. In Chapter 3,

we argue that the fixed-effects and random-effects heritabilities are equivalent if one

adopts a Mahalanobis distance-based GRM. Moreover, with the Mahalanobis GRM, it’s

straightforward to define a natural version of heritability, interpreting the heritability

coefficient as a conditional variance under the corresponding fixed-effects model. This

builds a link between narrow-sense (or additive) heritability and broad-sense heritability,

which is a more model-free measure of overall heritability defined in terms of the

conditional variance of a phenotype given the genotype and other specified information.

In high-dimensional prediction problems, portion of explained variation of any out-

of-sample prediction method is bounded by h2. In many applications, reaching this

upper bound (or even a fraction of it) is notoriously challenging. A different approach to

this problem is via linear dimension reduction, where we regress y on finite dimensional

projection of x. Portion of explained variation for linear dimension reduction estimation is

also bounded by the heritability of linearly transformed inputs. Although the upper bound

of dimension reduction method is smaller than h2, with advantages in dimensionality,

estimation with transformed inputs easily achieves its theoretical limit in terms of
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out-of-sample error. In Chapter 4, we derive asymptotic quadratic risk for regression-

based linear dimension reduction methods. Similar to many high-dimensional prediction

methods, the explicit asymptotic risk of projected least squares is in terms of variance

components. Hence, we propose to evaluate out-of-sample error of these methods by

variance component estimation proposed in Chapter 3, and further compare risks of

various models by heritability estimation and Wald test.
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Chapter 2

Nonparametric Maximum Likelihood Approximate
Message Passing

1

2.1 Introduction

We consider reconstructing an N -dimensional signal x = (x1, . . . , xN )> ∈ RN from

M < N linear measurements with noise

y = Ax+ ε,

where A = (Aij) ∈ RM×N is a known transform matrix. The noise vector ε ∈ RN is

assumed to be iid Gaussian ε ∼ N (0, ψIM ), with ψ being the common noise variance.

We consider this high-dimensional problem in the setting where the values x1, . . . , xN

are independently generated from a common probability distribution F . To estimate the

signal x, two natural estimators are themaximum a posteriori (MAP) andminimum mean

squared error (MMSE) estimators. The MAP and MMSE estimators correspond to the

posterior mode and mean of x, respectively. Important special cases of MAP and MMSE

estimators include LASSO (Tibshirani, 1996) and ridge regression (Tikhonov, 1963; Hoerl

and Kennard, 1970). LASSO is the MAP estimator when the signal distribution F is

Laplace; ridge regression is both the MAP and MMSE estimator when F is Gaussian

(the MAP and MMSE estimators coincide for Gaussian F ). Both LASSO and ridge

regression can be formulated as convex optimization problems, and computation of these

estimators is relatively tractable in many large-scale problems. On the other hand,

for many other signal distributions F , the corresponding MAP and MMSE calculation

problems are computationally prohibitive.

1 c©2017 IEEE. reprinted, with permission, from Long Feng, Ruijun Ma and L. H. Dicker,
"Nonparametric maximum likelihood approximate message passing," 2017 51st Annual Conference
on Information Sciences and Systems (CISS), Baltimore, MD, March 2017, pp. 1-6.
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To bypass these computational issues, numerous algorithms have been proposed.

This chapter focuses on approximate message passing (AMP) algorithms for efficiently

computing MMSE estimators for arbitrary unknown F . AMP algorithms have received

significant attention over the past several years (e.g. Donoho et al., 2009, 2010a,b; Rangan,

2011; Montanari, 2012; Vila and Schniter, 2013; Donoho et al., 2011; Bayati et al., 2012)

and form a class of loopy belief propagation algorithms for recovering x. In 2009, Donoho

et al. (2009) proposed an AMP algorithm to speed-up LASSO computations and proved

statistical consistency under Gaussian A (Donoho et al., 2011). Building on this work

and that of others (e.g. Guo and Wang, 2006, 2007; Rangan, 2010), Rangan (2011)

proposed a generalized AMP (GAMP) algorithm to find the MMSE estimator for an

arbitrary known signal distribution F . GAMP is a flexible, effective algorithm; however,

the condition that F is known can be restrictive. To relax this assumption, Vila and

Schniter (2013) proposed an EM-GM-AMP algorithm, which integrated GAMP with

the EM algorithm to estimate the distribution F and the noise variance ψ, along with x.

Their work estimates F among the class of sparse Gaussian mixtures (i.e. F is a finite

mixture of Gaussians and a point mass at 0).

This chapter builds on work of Vila and Schniter (2013). We propose nonparametric

maximum likelihood-AMP (NPML-AMP) algorithm that can estimate arbitrary signal

distributions F and simultaneously estimate the signal x via an approximate NPML-

MMSE estimator. Our algorithm NPML-AMP allows for accurate signal recovery, even

when F cannot be well approximated by a sparse Gaussian mixture. Addtionally, we

argue that NPML-AMP may have computational advantages because the associated

NPML optimization problem is approximately convex, in the scaling limit where M/N →

c ∈ (0,∞). On the other hand, a similar convexity argument does not seem possible

for EM-GM-AMP, because of inherent non-convexity in the sparse Gaussian mixture

likelihood. Finally, we propose a simplified method for estimating the noise variance ψ,

which is used throughout as a part of NPML-AMP, but could also be used to improve

the performance of EM-GM-AMP in settings with low signal to noise ratio.

The rest of the chapter is organized as follows. In Section 2.2, we describe the

NPML-MMSE estimator. In Section 2.3, we discuss approximate convexity. Noise
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variance estimation is discussed in Section 2.4. The NPML-AMP algorithm is described

in Section 2.5. Section 2.6 contains numerical results, and a concluding discussion may

be found in Section 2.7.

Notation: Throughout the chapter, we let Ai· and A·j be the ith row and jth column

of A, respectively. Denote the `2 norm of x by ‖x‖2 = (x2
1 + · · ·+x2

N )1/2 and the `0 norm

of x by ‖x‖0 = |{j; xj 6= 0}|. The function φ is the probability density of the N (0, 1)

distribution. In general, for a probability distribution F , let f denote its corresponding

density function. Additionally, if Ω ⊆ R, then FΩ denotes the collection of all probability

distributions on Ω. Finally, for sequences of real-valued random variables {RM}, {AM},

we write RM = Op(AM ) (and say that “RM is bounded in probability by AM ”) if for

every ε > 0 there is a constant C > 0 such that lim supM P(|RM/AM | > C) < ε.

2.2 The NPML-MMSE Estimator for x

In this section, assume that the noise variance ψ is known. Under the assumption

that ε ∼ N (0, ψIM ) is Gaussian, the conditional distribution of y given x takes the form

p(y|x) ∝ ψ−N/2 exp

(
−‖y −Ax‖22

2ψ

)
.

Recall the assumption on the signal

x1, . . . , xN
iid∼ F.

Then the joint distribution of (y,x), the marginal distribution of y, and the conditional

distribution of x | y are, respectively,

p(y,x;F ) ∝ ψ−N/2 exp

(
−‖y −Ax‖22

2ψ

) N∏
j=1

f(xj),

p(y;F ) ∝
∫
x∈ΩN

ψ−N/2 exp

(
−‖y −Ax‖22

2ψ

) N∏
j=1

dF (xj),

p(x | y;F ) =
p(x,y;F )

p(y;F )
.

Let Ω ⊆ R and assume that F ∈ FΩ. The MMSE estimator for x is given by

x̂ = x̂(F ) =

∫
ΩN
x p(x | y;F ) dx. (2.1)
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If F is unknown, then x̂ cannot be implemented. However, a reasonable strategy is to

replace F in (2.1) with an estimate F̂ . Still, there are two challenges in implementing

x̂(F̂ ): finding a good estimate F̂ and evaluating the multiple integral in (2.1).

We propose to estimate F by maximum likelihood. That is, let F̂ = F̂Ω, where

F̂Ω = argmin
F∈FΩ

− 1

N
log p(y;F ). (2.2)

The estimator (2.2) is the basis of this chapter. At this point, it still may not be evident

that this approach is tractable: whenever Ω is infinite, the optimization problem (2.2) is

infinite dimensional; moreover, evaluating the marginal likelihood p(y;F ) is challenging

because of the multiple integral. However, progress is enabled by first noting that

the existing algorithms EM-GM-AMP and GAMP are essentially designed to handle

the multiple integrals in (2.1)–(2.2). Second, the (infinite dimensional) nonparametric

maximum likelihood problem (2.2) has been studied for independent data going back to

the 1950s (Kiefer and Wolfowitz, 1956; Robbins, 1950) and is known to be well-behaved

in many settings. For instance, if we were in an independent data setting where N = M

and the likelihood factored as p(y | x) =
∏
i p(yi | xi) (e.g. if A was the identity matrix),

then

F̂Ω = argmin
F∈FΩ

− 1

N

N∑
i=1

log

∫
p(yi | xi) dF (xi) (2.3)

and the objective function is convex (as a function of F — indeed, the integral is linear

in F and − log is a convex function). The convex problem (2.3) is known to have a

solution F̂Ω supported on at most N points (regardless of the size of Ω), with F̂Ω → F

as N → ∞ under relatively weak conditions (Kiefer and Wolfowitz, 1956; Lindsay,

1995). While more detailed theoretical results for (2.3) are challenging and much remains

unknown, recent work has focused on computationally feasible approximations to (2.3)

that leverage convexity (Koenker and Mizera, 2014; Dicker and Zhao, 2016) — this is

the jumping-off point for this chapter.

Following recent methods for the independent data NPML problem (Jiang and Zhang,

2010; Koenker and Mizera, 2014; Dicker and Zhao, 2016), our strategy for approximating

(2.2) is to replace Ω with Λ, where Λ ⊆ Ω is a pre-specified finite subset of Ω. This

reduces (2.2) to a finite dimensional optimization problem. Furthermore, in the analagous
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convex problem (2.3), replacing Ω with Λ preserves convexity and convexity of (2.3) is

the key to the approximate convexity results in Section 2.3.

2.2.1 Relationship to EM-GM-AMP

In practice, our approach to reconstructing x is very similar to EM-GM-AMP. Let

FGM denote the class of all sparse Gaussian mixtures on R with at most L ∈ N Gaussian

components. EM-GM-AMP computes the estimator x̂(F̂GM), where F̂GM solves (2.2),

except that the minimization is over FGM instead of FΩ. For EM-GM-AMP the user

must specify L; in the literature it is typically taken to be 3 or 4. Perhaps the most

significant difference between F̂GM and the NPML estimator F̂Ω is that the set FGM is

not convex, unlike FΩ or FΛ. Consequently, the approximate convexity results for (2.2)

do not appear to hold for EM-GM-AMP. We believe this leads to increased instability

in F̂GM for large L, which in turn may limit the class of signal distributions that can

be accurately reconstructed by EM-GM-AMP (specifically, EM-GM-AMP may be most

effective for distributions that can be well-approximated by sparse Gaussian mixtures

with only a few components). On the other hand, approximate convexity appears to

enhance the stability of F̂Λ as the size of Λ ⊆ Ω increases.

2.2.2 Choosing Λ

By increasing the size of Λ ⊆ Ω, it is reasonable to expect that F̂Λ becomes a more

accurate approximation to F̂Ω. We take the point of view that F̂Λ inherits its properties

from F̂Ω and, in practice, computational limitations appear to be the main issue in

choosing the size of Λ (in all of the numerical experiments we take |Λ| = 100).

To gain some additional intuition on choosing Λ, define

x̂ =

∑N
j=1 A

>
·jy∑

1≤j1,j2≤N A>·j1A·j2
;

x̃2 =
‖y‖22 − x̂2

∑
j1 6=j2 A

>
·j1A·j2 −Mψ∑N

j=1 A
>
·jA·j

.

Then we have the moment identities

E(xj) = E(x̂ | A),
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E(x2
j ) = E(x̃2 | A),

Var(x2
j ) = E(x̃2 | A)− E(x̂ | A)2.

The moment identities are verified in the appendix of this chapter. This suggests that

for some k ≥ 0, we should typically have

x̂− k
√
x̃2 − x̂2 ≤ xj ≤ x̂+ k

√
x̃2 − x̂2.

Hence, it is reasonable to take

Λ ⊆ Ω ∩
[
x̂− k

√
x̃2 − x̂2, x̂+ k

√
x̃2 − x̂2

]
. (2.4)

In the experiments in this chapter we have taken Λ to be a regular grid with 100 points,

satisfying (2.4) with k = 5.

2.3 Approximate convexity

In Section 2.2, we discussed (2.3) — the independent data analogue of the NPML

problem (2.2) — and noted that it is a convex optimization problem. In this section, we

show that the original NPML problem (2.2) is approximately convex in the scaling limit

where M/N → c ∈ (0,∞), which lends additional structure to the problem. Specifically,

the next theorem shows that the objective function in (2.2) can be approximated by a

convex function.

Theorem 1. Let Ω ∈ R be a bounded set, so that Ω ⊆ [xmin, xmax] for some −∞ <

xmin < xmax <∞. Let x∗ = max (|xmin|, |xmax|) and for F ∈ FΩ define

`(F ) = − 1

N
log p(y;F ),

`conv(F ) = − 1

N

N∑
j=1

log

∫
1

ψN/2
exp

{ 1

ψ
(A>·jy)xj−

1

2ψ
‖A·j‖22x2

j

}
dF (xj) +

‖y‖22
2Nψ

. (2.5)

Assume Aij are iid random variables with E(Aij) = 0 and E(A4
ij) ≤ C for some constant

C > 0. If M →∞ and M/N → c ∈ (0,∞), then,

sup
F∈FΩ

|`(F )− `conv(F )| = Op
(
{x∗}2

ψ
√
M

)
. (2.6)
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A proof of Theorem 1 is contained in the appendix at the end of this chapter.

Observe that `conv(F ) is convex in F . Moreover, `conv(F ) is the objective function for

an independent data NPML problem, where the available data are

zj = A>·jy/‖A·j‖22, j = 1, . . . , N,

and zj | xj ∼ N (xj , ψ/‖A·j‖22). In other words, the NPML objective function `conv(F )

is obtained by replacing the data (y,A) with z1, . . . , zN and ignoring the correlation

between zi, zj .

While Theorem 1 suggests that the objective function in (2.2) can be well-

approximated by an independent data NPML objective function, it does not imply that

F̂Ω can be found by optimizing `conv(F ); indeed, preliminary numerical work suggests

that optimizing `conv(F ) directly leads to a significant loss in estimation accuracy.

2.4 Gaussian MLE for noise variance estimation

When the noise variance ψ is unknown, the EM-GM-AMP algorithm takes an

additional EM step within each interation to provide updated estimates of ψ. This

approach is also feasible for NPML-AMP. However, through numerical experimentation

we have found that these estimates for ψ can be unstable, and that inaccurate estimates

of ψ can lead to degraded performance in terms of signal recovery.

As a simple alternative to the approach described above, where estimating ψ is

interwoven with the algorithm for estimating F and computing x̂, we propose to estimate

ψ using the well-known Gaussian variance components MLE up front and then take this

as a plug-in estimate for ψ throughout the AMP algorithm without any more updates

for estimating ψ.

Specifically, for θ = (ψ, τ) ∈ R2 with ψ, τ ≥ 0, define

l(θ) =
1

2
log det

(
τAA> + ψIM

)
+

1

2
y>
(
τAA> + ψIM

)−1
y

and

θ̂ = (ψ̂, τ̂) = argmin
ψ,τ≥0

l(θ). (2.7)
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Then θ̂ is the MLE for θ under the model where xj ∼ N (0, τ) and we use ψ̂ to estimate

ψ in our AMP implementations. While ψ̂ is derived under the assumption that the signal

x is Gaussian, ψ̂ is known to perform well for non-Gaussian x as long as the entries of

A are centered (Jiang et al., 1996; Dicker and Erdogdu, 2016a) .

In numerical experiments, we have found that the MLE ψ̂ is often substantially more

accurate than other estimators for ψ — including the original EM-GM-AMP estimator

for ψ — especially in settings where NE(x2
j )/(Mψ) is small (i.e. small signal to noise

ratio; results from these experiments ares not reported here due to space constraints).

For the NPML-AMP algorithm, this approach to estimating ψ can also be interpreted

as de-coupling the non-convex part of the problem from the (approximately) convex

part: (2.7) is a non-convex problem, while (2.2) is approximately convex (by Theorem

1). Moreover, (2.7) is a relatively simple non-convex problem, which can be reduced to

a univariate optimization problem by standard methods (Dicker and Erdogdu, 2016a;

Jiang et al., 1996).

2.5 Implementation of NPML-AMP

Similar to EM-GM-AMP, the NPML-AMP algorithm alternates between GAMP and

EM steps. The GAMP steps are exactly as described in (Rangan, 2011; Vila and Schniter,

2013). The EM steps of NPML-AMP for estimating F are described in Algorithm 1.

We proceed here under the assumption that the noise variance ψ is known, with

the understanding that if it is unknown, then it should be estimated as in Section

2.4. Additionally, we assume that Λ = {θ1, . . . , θL} ⊆ Ω has been pre-determined (for

instance, as described in Section 2.2.2). In Algorithm 1, ω(t) = (ω1(t), . . . , ωL(t))> ∈ RL

denotes the probabilities corresponding to Λ, so that at step t of the algorithm, xj = θl

with probability ωl(t); x̂(t) is the value of the estimate x̂ at step t. Finally, r̂(t) and

µr(t) are parameters generated by the GAMP algorithm described in Table I of (Vila

and Schniter, 2013).

Algorithm 1 returns the estimated signal x̂(t) and the weights ω(t). The probability

distribution
∑L

l=1 ωl(t)δθl should be viewed as an approximation to F̂Λ, which in turn is
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Algorithm 1 NPML-AMP: EM steps for estimating F .

Input Λ, Tmax, εbreak.

Initialize ω(0) = (1/L, . . . , 1/L), x̂(0) =
∑L

l=1 ωl(0)θl.

for t = 1 to Tmax do

Following Table I of Vila and Schniter (2013), use GAMP with inputs Λ, ω(t− 1),

and ψ to generate x̂(t), r̂(t) and µr(t).

if ‖x̂(t)− x̂(t− 1)‖22/‖x̂(t− 1)‖22 < εbreak then

Break.

end if

for l = 1 to L and j = 1 to N do

qj,l(t)←
ωl(t−1)µrj (t)

−1/2φ{θl−r̂j(t)}∑L
l=1 ωl(t−1)µrj (t)

−1/2φ{θl−r̂j(t)}
.

end for

for l = 1 to L do

ωl(t)←
∑N
j=1 qj,l(t)∑L

l′=1

∑N
j=1 qj,l′ (t)

.

end for

end for

Output ω(t), x̂(t).

our proposed approximation to F̂Ω.

2.6 Numerical results

In this section, we compare the performance of NPML-AMP, EM-GM-AMP and

GAMP in several numerical experiments. In each setting, the GAMP estimates can be

viewed as the optimal or oracle solution, since it makes use of the true signal distribution

and noise variance. In the experiments, the performance of an estimator x̂ is assessed by

NMSE[dB] := 10 log10

(
‖x̂− x‖22/‖x‖22

)
.

Throughout, we set the tolerance rates for the algorithms to be εbreak = 10−6; the

maximum number of iterations for each GAMP call is Tmax = 50 (see Table I from

Vila and Schniter (2013)); and Tmax = 200 for the EM loops in EM-GM-AMP and

NPML-AMP (in Algorithm 1 above). For NPML-AMP, the number of grid points in Λ
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is fixed at 100; for EM-GM-AMP, the number of Gaussian components L was fixed at 3

for the sparse Gaussian mixture experiment describe in Section 2.6.1 (Figs. 2.1–2.2) and

was 4 for the remaining settings. Finally, in all of the experiments in this section A has

iid N (0, 1/M) entries. Our focus on iid Gaussian measurement matrices follows much of

the earlier work on AMP algorithms (e.g. Donoho et al., 2009). More recent work has

focused on extending AMP to other measurement ensembles (e.g. Rangan et al., 2014,

2017); we expect that similar extensions are possible for NPML-AMP and this is a topic

for future research.

2.6.1 Signal recovery at various M/N ratio

In the first set of experiments, we fixed the signal to noise ratio

SNR[dB] := 10 log10{NE(x2
j )/(Mψ)}

at 10 dB in all settings and fixed N = 1000. We varied M so that the undersampling

ratio was M/N ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} and considered three different signal

distributions — a sparse Gaussian mixture, an exponential signal, and a discrete uniform

signal. For each undersampling ratio and signal distribution, we generated I = 100

independent datasets.

For each dataset, we computed several estimators for x. Specifically, we computed

the GAMP estimator; the EM-GM-AMP estimator with unknown variance (following the

algorithm described in (Vila and Schniter, 2013) exactly); the EM-GM-AMP estimator

with known noise variance ψ, denoted EM-GM-AMP-KV; the NPML-AMP with unknown

variance (using the method in Section 2.4 to estimate ψ); and the NPML-AMP estimator

with known variance, denoted NPML-AMP-KV. For reference, we also computed the

LASSO estimator for one of the signal distributions (Figs. 2.1–2.2; for each of the other

signal distributions, all of the AMP methods dramatically out-perform LASSO and

the LASSO NMSE[dB] would be off the scale in the plots). Finally, we recorded the

estimated noise variance for the methods where the noise variance was unknown.

For LASSO, we used 10-fold cross validation to choose the regularization parameter
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and estimated the variance parameter ψ by

ψ̂L = ‖y −Ax̂L‖22/(M − N̂L),

where x̂L is the LASSO estimated signal and N̂L = ‖x̂L‖0 is the estimated sparsity.
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Figure 2.1: Median NMSE[dB] vs. undersampling ratio M/N for sparse Gaussian
mixture signal.
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Figure 2.2: Median noise variance estimation vs. undersampling ratio M/N ratio for
sparse Gaussian mixture signal.

Figures 2.1–2.2 depict the median NMSE[dB] and median values of the noise variance

estimates ψ̂, respectively, computed over 100 independent datasets, when the signal

distribution was a sparse Gaussian mixture satisfying P(xj = 0) = 0.8 and xj ∼ N (1, 1)

with probability 0.2. From Fig. 2.1, it appears that EM-GM-AMP slightly out-performs

NPML-AMP, and both out-perform LASSO. This setting is favorable to EM-GM-AMP,
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since EM-GM-AMP is designed to estimate sparse Gaussian mixtures. In terms of

NMSE[dB], there is little difference between the AMP methods when the noise variance

is known or unknown. On the other hand, in Fig. 2.2, it appears that NPML-AMP gives

the most accurate estimates of ψ (for NPML-AMP, recall that ψ̂ is just the Gaussian

variance components MLE for ψ).
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Figure 2.3: Median NMSE[dB] vs. undersampling ratio M/N for discrete uniform signal.
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Figure 2.4: Median noise variance estimation vs. undersampling ratio M/N ratio for
discrete uniform signal.

In Figs. 2.3–2.4, xj ∈ {−1, 0, 1} follows a discrete uniform distribution, and in Figs.

2.5–2.6, xj ∼ exponential(1). In these settings, NPML-AMP outperforms EM-GM-AMP

in terms of NMSE[dB]. As in Figs. 2.1–2.2, the NMSE[dB] results are similar for the

known and unknown variance methods, while the NPML-AMP variance estimation
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Figure 2.5: Median NMSE[dB] vs. undersampling ratio M/N for exponential signal.
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Figure 2.6: Median noise variance estimation vs. undersampling ratio M/N ratio for
exponential signal.

appears to be significantly more accurate than EM-GM-AMP.

2.6.2 Signal Recovery at various SNR

We also conducted experiments where we varied the signal to noise ratio, while fixing

the undersampling ratio M/N = 0.4 (with N = 1000 and M = 400 throughout). Here,

we report results for the discrete uniform signal distribution with xj ∈ {−1, 0, 1} and

SNR[dB] across SNR[dB] ∈ {0, 5, 10, 15, 20, 25}. As in the previous section, we generated

I = 100 independent datasets for each setting and computed several estimators for each

dataset. Summary statistics for NMSE[dB] and variance estimation are reported in Figs.
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2.7–2.8.
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Figure 2.7: Median NMSE[dB] vs. SNR[dB] for discrete uniform signal.
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Figure 2.8: Median noise variance estimation vs. SNR for discrete uniform signal

In Fig. 2.7, NPML-AMP has smaller median NMSE[dB] than EM-GM-AMP across

the entire range of signal to noise ratios. Fig. 2.8 indicates that for noise variance

estimation, NPML-AMP may outperform EM-GM-AMP in this setting.

2.7 Conclusion

We have proposed a signal recovery algorithm for generic signal distributions, building

upon GAMP and EM-GM-AMP. Our numerical results confirm that NPML-AMP
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provides nearly MMSE solutions and closes the gap between EM-GM-AMP and the

oracle GAMP with known signal distributions. Although the experiments in this chapter

focus on settings where A has iid Gaussian entries, suitable modifications of NPML-

AMP should continue to perform well other measurement matrices. In fact, recently

vector AMP (VAMP) algorithm (Rangan et al., 2017) is established for right-rotationally

invariant measurement matrices. We expect similar performance results hold for a

broader class of measurement matrices modifying NPML-AMP accordingly. Other

interesting areas for future research include algorithmic refinements for NPML-AMP;

deriving theoretical results on the convergence of NPML-AMP by leveraging approximate

convexity; and deriving statistical properties of NPML-AMP and the NPML estimator

F̂Ω.

2.8 Appendix

2.8.1 Proof of Theorem 1

Theorem 1. Let Ω ∈ R be a bounded set, so that Ω ⊆ [xmin, xmax] for some −∞ <

xmin < xmax <∞. Let x∗ = max (|xmin|, |xmax|) and for F ∈ FΩ define

`(F ) = − 1

N
log p(y;F ),

`conv(F ) = − 1

N

N∑
j=1

log

∫
1

ψN/2
exp

{ 1

ψ
(A>·jy)xj−

1

2ψ
‖A·j‖22x2

j

}
dF (xj) +

‖y‖22
2Nψ

.

Assume Aij are iid random variables with E(Aij) = 0 and E(A4
ij) ≤ C for some constant

C > 0. If M →∞ and M/N → c ∈ (0,∞), then,

sup
F∈FΩ

|`(F )− `conv(F )| = Op
(
{x∗}2

ψ
√
M

)
.

Proof. First we consider the term ‖
∑N

j=1 A·jxj‖2. Since Aij ∼ N
(
0, 1

M

)
,

EA>·j1A·j2 = E
M∑
i=1

Ai,j1Ai,j2 = 0,

E(A>·j1A·j2)2 = E
M∑
i=1

(Ai,j1Ai,j2)2 =
1

M
.
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Moreover, for j1 6= j′1,

Cov(A>·j1A·j2 ,A
>
·j′1
A·j2) = E

(
M∑
i=1

Ai,j1Ai,j2

)(
M∑
i=1

Ai,j′1
Ai,j2

)
= 0.

It follows that

Var
( ∑

1≤j1<j2≤N
A>·j1A·j2xj1xj2

)
=

1

M

∑
1≤j1<j2≤N

x2
j1x

2
j2 . (2.8)

Then ∣∣∣∣∣∣
∑

1≤j1<j2≤N
A>·j1A·j2xj1xj2

∣∣∣∣∣∣ ≤ C1√
M

( ∑
1≤j1<j2≤N

x2
j1x

2
j2

)1/2 (2.9)

for certain constant C1. Also, by the law of large numbers, ‖A·j‖22 → 1, or

(1− ε)
N∑
j=1

x2
j ≤

N∑
j=1

‖A·j‖22x2
j ≤ (1 + ε)

N∑
j=1

x2
j

for any ε > 0. Thus

|
∑

1≤j1<j2≤N A>·j1A·j2xj1xj2 |∑N
j=1 ‖A·j‖22x2

j

≤ C1

(1− ε)
√
M

(∑
1≤j1<j2≤N x

2
j1
x2
j2

)1/2∑N
j=1 x

2
j

≤ C1

(1− ε)
√
M
.

Let C2 = C1/(1− ε) and

N∑
j=1

‖A·j‖22x2
j

(
1− 2C2√

M

)
≤ ‖

N∑
j=1

A·jxj‖22 ≤
N∑
j=1

‖A·j‖22x2
j

(
1 +

2C2√
M

)
. (2.10)

It then follows that for any ω,

`(ω) ≤ − 1

N
log

∑
x∈ΛN

1

ψN
exp

{ 1

2ψ

(
2

N∑
j=1

xjA
>
·jy −

N∑
j=1

‖A·j‖22x2
j

(
1 +

2C2√
M

)}
N∏
j=1

( L∑
l=1

ωl1(xj = θl)
)

= − 1

N

N∑
j=1

log

L∑
l=1

exp
{ 1

ψ
(A>·jy)θl −

1

2ψ
‖A·j‖22θ2

l

(
1 +

2C2√
M

)}
wl

≤ − 1

N

N∑
j=1

log

L∑
l=1

exp
{ 1

ψ
(A>·jy)θl −

1

2ψ
‖A·j‖22θ2

l

)}
exp

{
− ‖A·j‖

2
2{θ∗}2

2ψ

2C2√
M

}
wl

≤ − 1

N

N∑
j=1

log
L∑
l=1

exp
{ 1

ψ
(A>·jy)θl −

1

2ψ
‖A·j‖22θ2

l

)}
wl +

1

N

N∑
j=1

‖A·j‖22{θ∗}2

ψ

C2√
M

≤ − 1

N

N∑
j=1

log

L∑
l=1

exp
{ 1

ψ
(A>·jy)θl −

1

2ψ
‖A·j‖22θ2

l

)}
wl +

(1 + ε)C2{θ∗}2

ψ
√
M

. (2.11)
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The last inequality holds due to (1/N)
∑N

i=1 ‖A.j‖22 ≤ 1 + ε. Let C = (1 + ε2)C2, we

have

`(ω)− h(ω) ≤ C{θ∗}2

ψ
√
M

, ∀ω ∈ ∆L−1.

Similarly, `(ω)− h(ω) ≥ −C{θ∗}2
ψ
√
M

for any ω ∈ ∆L−1, then (2.6) holds.

Moreover, we notice that

E‖A>·jy‖2 =
N +M + 1

N
τ2 + ψ, τ2 =

1

M

N∑
j=1

x2
j .

It then follows that

h(ω) = − 1

N

N∑
j=1

log
L∑
l=1

exp
{ 1

ψ
(A>·jy)θl −

1

2ψ
‖A·j‖22θ2

l

)}
wl

= − 1

N

N∑
j=1

log
L∑
l=1

exp
{
− ‖A·j‖

2
2

2ψ

(
θl −

A>·jy

‖A·j‖22

)2
+

(
A>·jy

)2
ψ‖A·j‖22

}
wl

≥ − 1

N

N∑
j=1

(
A>·jy

)2
ψ‖A·j‖22

→ −(N +M + 1)τ2

Nψ
− 1.

Moreover,

h(ω) ≤ max(a, b),

where

a = − 1

N

N∑
j=1

1

ψ
(A>·jy)θ∗ −

1

2ψ
‖A·i‖22θ2

∗,

b = − 1

N

N∑
j=1

1

ψ
(A>·jy)θ∗ − 1

2ψ
‖A·j‖22{θ∗}2.

We note that

h(ω) = − 1

N

N∑
j=1

log

{
Ex exp

( 1

ψ
(AT·jy)x− 1

2ψ
‖A·j‖22x2

)}

< − 1

N

N∑
j=1

EX log

{
exp

( 1

ψ
(A>·jy)x− 1

2ψ
‖A·j‖22x2

)}

= − 1

N

N∑
j=1

EX
( 1

ψ
(A>·jy)x− 1

2ψ
‖A·j‖22x2

)
= −

((N +M + 1)τ2

Nψ
+ 1
)
Ex+

1

2ψ
Ex2.
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2.8.2 Moment identities

Let

x̂ =

∑N
j=1 A

>
·jy∑

1≤j1,j2≤N A>·j1A·j2
;

x̃2 =
‖y‖22 − x̂2

∑
j1 6=j2 A

>
·j1A·j2 −Mψ∑N

j=1 A
>
·jA·j

.

we would like to show that

E(xj) = E(x̂ | A),

E(x2
j ) = E(x̃2 | A),

Var(x2
j ) = E(x̃2 | A)− E(x̂ | A)2.

Proof. The linear model can be written as

y =
N∑
j=1

A·jxj + ε.

Equivalently,

N∑
j=1

EX,εA>·jy =
N∑
j=1

EX,ε

A>·i
 N∑
j=1

A·jxj + A>·jε


=

N∑
j=1

EX

A>·j
 N∑
j=1

A·jxj


= (EXx1)

N∑
j1,j2=1

A>·j1A·j2 .

Let

X̄ =

∑N
j=1 A

>
·jy∑N

j1,j2=1 A
>
·j1A·j2

,

This lead to

EXx1 =

∑N
j=1 EX,εA>·jy∑N
j1,j2=1 A

>
·j1A·j2

≈ X̄. (2.12)

Moreover,

EX,ε‖y‖22 = EX,ε

∥∥∥∥∥∥
N∑
j=1

A·ixj + ε

∥∥∥∥∥∥
2

2
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= (EXx2
1)

N∑
j=1

A>·jA·j + (EXx1)2
∑
j1 6=j2

A>·j1A·j2 +Mψ.

This leads to

EXx2
1 =

EX,ε‖y‖22 −Mψ − (EXx1)2
∑

j1 6=j2 A
>
·j1A·j2∑N

j=1 A
>
·jA·j

≈ X̃2,

where

X̃2 =
‖y‖22 −Mψ − X̄2

∑
j1 6=j2 A

>
·j1A·j2∑N

j=1 A
>
·jA·j

.

Furthermore,

VarX(X1) = EXx2
1 − (EXx1)2 ≈ X̃2 − X̄2. (2.13)

Combine (2.12) and (2.13), we can approximate the range of X by

X ∈
(
X̄ − k

√
X̃2 − X̄2, X̄ + k

√
X̃2 − X̄2

)
.

As N,M →∞,

X̄ → EX;

X̃2 − X̄2 → Var(X).

In the case where ψ is unknown, we let the term Mψ in X̃2 be 0 to further relax the

interval.

By Chebyshev inequality, we can assure that asymptotically,

P

(
X ∈

(
X̄ − k

√
X̃2 − X̄2, X̄ + k

√
X̃2 − X̄2

))
≥ 1− 1

k2
.

2.8.3 Derivation of M-step

In this subsection, we derive the maximization step for the EM algorithm.

ω(t+ 1) = argmax
ω>0:

∑
l ωl=1

Ê{ln p(x,y;ω(t))}

= argmax
ω>0:

∑
l ωl=1

Ê
{

ln

 N∏
j=1

pX(xj |y,ω(t))

}
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= argmax
ω>0:

∑
l ωl=1

N∑
j=1

Ê{ln pX(xj ;ω, ψ)|y;ω(t)} (2.14)

The Lagrange multiplier problem can be written as

L(ω, λ) =
N∑
j=1

Ê{ln pX(xj ;ω)|y;ω(t)} − λ
( L∑
l=1

wl − 1
)

=
N∑
j=1

L∑
l=1

pX|Y (xj = θl|y;ω(t)) ln pX(xj = θl;ω)− λ
( L∑
l=1

wl − 1
)
.(2.15)

We set dL
dωl

= 0 and derive that

N∑
j=1

pX|Y (xj = θl|y;ω(t))
d

dωl
ln pX(xj = θl;ω) = λ

N∑
j=1

1

ωl

ωtlµ
−1/2
j φ(θl − r̂j)∑L

l=1 ω
t
lµ
−1/2
j φ(θl − r̂j)

= λ (2.16)

, where
ωtlµ
−1/2
j φ(θl−r̂j)∑L

l=1 ω
t
lµ
−1/2
j φ(θl−r̂j)

is previously defined as Qtj,l.

Multiplying both sides by ωl for l = 1, . . . , L, since
∑L

l=1 ωl = 1,

λ =
L∑
l=1

N∑
j=1

Qtj,l. (2.17)

Plugging (2.17) back to (2.16), we have

ωl(t+ 1) =

∑N
j=1Qtj,l∑L

l=1

∑N
j=1Qtj,l

. (2.18)
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Chapter 3

Heritability estimation in genome-wide association studies:
fixed-effects vs random-effects methods

3.1 Introduction

Heritability is the proportion of phenotype variance explained by genetic variance

(Falconer, 1960; Lynch et al., 1998). There are many different definitions of heritability

and different methods for estimating heritability from data (e.g. Yang et al., 2010,

2011a; Golan et al., 2014; Bulik-Sullivan et al., 2015). This chapter is focused on

heritability estimation methods related to variance components estimation problems

for linear mixed models (LMMs). LMM-based methods for heritability estimation have

been used since the 1950s (Henderson, 1950); additionally, over the last ten years they

have emerged as one of the most widely-used methods for estimating heritability with

genome-wide association studies (GWAS) data (Hindorff et al., 2009; Yang et al., 2010;

Kang et al., 2010; Zaitlen and Kraft, 2012). However, standard approaches to heritability

estimation with LMMs have some unresolved inconsistencies related to important topics

in genetics, including linkage disequilibrium (LD), the distribution of causal variants, and

partitioning heritability (Zaitlen and Kraft, 2012; Speed et al., 2012; Gusev et al., 2013,

2014). This chapter contains new statistical results, which suggest that by adopting a

slightly different statistical perspective, many of these inconsistencies with LMM-based

heritability estimation can be seamlessly resolved.

LMM-based heritability methods typically require specification of a genetic

relationship matrix (GRM), which measures genetic similarity between subjects in

a study. The GRM may be based on familial or other information; in GWAS, the GRM

is frequently a sample correlation matrix constructed from study participant’s single
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nucleotide polymorphism (SNP) values, which corresponds to a Euclidean distance kernel

(Yang et al., 2010; Zaitlen and Kraft, 2012). In this chapter, we argue that if one adopts

a Mahalanobis distance-based genetic relationship matrix for LMM analysis, then many

of the previously noted LMM inconsistencies related to LD and causal variants are

immediately resolved. Moreover, with the Mahalanobis GRM, it’s straightforward to

define a natural version of partitioned heritability, which avoids some of the pitfalls that

have been noted for other approaches (Speed et al., 2012; Gusev et al., 2013, 2014).

While the Mahalanobis GRM resolves these consistency questions at the modeling level,

it also heightens the importance of understanding and estimating the LD structure for

the study population – indeed, the LD matrix is required for computing the Mahalanobis

kernel.

Our arguments for the Mahalanobis kernel touch on several fundamental aspects

of statistical modeling in modern genetics. Questions about fixed- and random-effects

modeling have been raised repeatedly in research on heritability estimation (Gibson,

2012). Many of these questions can be summarized as follows: should genetic effects

be modeled as fixed or random quantities? To resolve this question, we argue that for

the Mahalanobis kernel, the fixed- and random-effects models are essentially equivalent.

Furthermore, under the Mahalanobis kernel, we show that the LMM heritability coefficient

can also be interpreted as a conditional variance – which we refer to as the C-heritability

(C for “conditional”) – under the corresponding fixed-effects model (the random-effects

interpretation is more standard in the literature, to date). This builds a link between

narrow-sense (or additive) heritability, which LMM-based methods have traditionally

been designed to estimate, and broad-sense heritability, which is a more model-free

measure of overall heritability defined in terms of the conditional variance of a phenotype

given the genotype and other specified information.
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3.2 LMMs for heritability estimation

3.2.1 Additive decomposition: From GRMs to LMMs

In this section, we describe a statistical model that forms the basis for many LMM

heritability methods (Yang et al., 2010; Zaitlen and Kraft, 2012). Let y = (y1, . . . , yn)> ∈

Rn be a vector of centered, real-vaued outcomes, where yi represents the phenotypic

value of individual i in some population. Assume that

y = g + e (3.1)

can be decomposed as the sum of an additive genetic effect g = (g1, . . . , gn)> ∈ Rn

and an uncorrelated noise vector e = (e1, . . . , en)> ∈ Rn, which may contain other non-

additive genetic effects, environmental noise, and measurement error. Further assume

that the data are centered, so that E(g) = E(e) = 0, and that Cov(g) = σ2
gK and

Cov(e) = σ2
eI, where σ2

g , σ
2
e ≥ 0 are genetic and environmental real-valued variance

components, respectively, and K is the n× n GRM.

The diagonal noise covariance matrix assumption comes from two extra steps in

data collecting. On one hand, individuals i = 1, . . . , n are selected by removing ones

whose pairwise relatedness are greater than certain threshold. The relatedness is usually

measured by the kernel defined according to K, and maximum pairwise relatedness in

the sample is corresponding to cousins 2-3 times removed (Yang et al., 2010; Speed et al.,

2012). On the other hand, y is a projected response that is orthogonal to the space of

demographic covariates such as sex, age and handedness (Yang et al., 2011a; Bonnet

et al., 2015; Lee et al., 2016).

Then

y ∼MV(0, σ2
gK + σ2

eI) (3.2)

and the (narrow-sense) heritability is defined to be

h2 =
σ2
g

σ2
g + σ2

e

. (3.3)

The GRM is typically normalized so that its diagonal entries all equal 1; in this case, the

correlation matrix for y is Corr(y) = h2K + (1− h2)I and the heritability parameter h2
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represents the extent of correlation between individuals in the population determined by

genetic relatedness.

With GWAS data, genetic relatedness can be encoded by similarities between

sequences of single nucleotide polymorphisms (up to hundreds of thousands or millions

of SNPs). Let zi = (zi1, . . . , zim)> be the vector of normalized SNPs for individual i, in

the sense that

zij =
fij − 2pj√
2pj(1− pj)

,

where fij = 0, 1, 2 respectively if the genotype of individual i at SNP j is aa, Aa or AA,

and pj is the minor allele frequency (MAF) of SNP j (Meuwissen and Goddard, 2001;

Hayes et al., 2009; Zaitlen and Kraft, 2012). Then the ij-entry of the GRM K = (Kij)

is determined by some kernel function K : Rm × Rm → R, whereby Kij = K(zi, zj).

Traditionally, the GRM (or kinship matrix) indicates proportion of identical genetic

regions that individual i and j inherited from common ancestors. This identity-by-

descent (IBD) kernel is defined with respect to a pedigree, and knowledge of an explicit

pedigree for the population in the study is usually infeasible. In the absense of pedigree

information, GRM is frequently defined by the identity-by-state (IBS) GRM, where

K(zi, zj) =
1

m
z>i zj . (3.4)

The IBS GRM definition corresponds to the normalized linear kernel, and measures

average allelic correlations (Powell et al., 2010; Speed and Balding, 2015). Other kernel

functions have been proposed for GWAS heritability estimation problems (e.g. the

Gaussian kernel or higher-order polynomial kernels (Akdemir and Jannink, 2015)).

However, to date, there appears to be limited evidence for preferring these kernels over

linear kernels.

The linear kernel (3.4) corresponds to a linear random effects model — or, a LMM

before projecting out fixed covariates — hence, the term LMM-based heritability

estimation. In this corresponding random effects model, g = Zu in (3.1), where

u = (u1, . . . , um)> ∈ Rm is a vector of independent random genetic effects with

ui ∼ MV(0, σ2
g/m) and Z = (z1, . . . , zn)> is the n × m matrix of genotypes. Thus,
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under these assumptions, we can rewrite (3.1) as

y = Zu + e. (3.5)

In this model, the data from each subject is the (phenotype, genotype)-pair (yi, zi) ∈

Rm+1.

The main focus of this paper is the Mahalanobis kernel. Let Σ be the m×m positive

semi-definite matrix representing the population-level covariance (linkage disequilibrium)

matrix for the SNPs zi. The Mahalanobis kernel is defined by K(zi, zj) = z>i Σ−1zj . The

Mahalanobis kernel has been widely used in other applications involving genetics, e.g.

genetic association testing (Majumdar et al., 2015). However, it appears to have received

little attention in the context of heritability estimation. The Mahalanobis kernel also

corresponds to a linear model with correlated random effects with u ∼MV(0, τ2
g /mΣ−1)

in (3.5). We would like to show that whitening the design matrix is the key to unbiased

heritability estimation. In the remainder of the paper, we will derive several attractive

features of the Mahalanobis kernel for heritability estimation.

3.2.2 Estimating h2

Moment methods and maximum likelihood are two widely used classes of methods

for estimating h2 under (3.2). Note that these methods are applicable for any GRM K.

In this subsection, suppose the GRM is normalized with its diagonal entries all equal 1,

suppose y is centered. Then

Cov(y) = σ2
gK + σ2

eI. (3.6)

One of the classical moment estimators for h2 comes from observing that σ2
g is the

least squares coefficient for regressing yiyj on Kij for all i < j. This is because (3.6)

implies that

E(yiyj |K) = σ2
gKij , i 6= j

The corresponding estimator for σ2
g is

σ̃2
g =

(
V̂ar(Kij)

)−1
Ĉov(yiyj ,Kij),
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where

V̂ar(Kij) =
2

n(n− 1)

∑
i<j

K2
ij

Ĉov(yiyj ,Kij) =
2

n(n− 1)

∑
i<j

yiyjKij .

Henderson used least squares in this way to estimate h2 with

h̃2 =
σ̃2
g

‖y‖22/n
,

and variants of this method are still used today (Haseman and Elston, 1972; Henderson,

1984; Golan et al., 2014); this approach is also referred to as Haseman-Elston regression.

In the standard maximum likelihood approach, one assumes that y is Gaussian, i.e.

y ∼ N (0, σ2
gK + σ2

eI),

and estimates σ2
g , σ2

e and, subsequently, h2, by maximizing the Gaussian likelihood for

this model. Specifically, let η2 = σ2
g/σ

2
e . The maximum likelihood estimator for (σ2

e , η
2)

is

(σ̂2
e , η̂

2) = argmax
σ2
e ,η

2>0

l(σ2
e , η

2),

where

l(σ2
e , η

2) = −1

2
log(σ2

e)−
1

2n
log det(η2/mK + I)

− 1

2nσ2
e

y>(η2/mK + I)−1y.

Hence, the MLE of h2 is

ĥ2 =
η̂2

η̂2 + 1
.

Established by Yang et al. (2010, 2011a), the MLE with linear kernel-based GRM has

become the landmark approach in estimating h2.

Both maximum likelihood and moment estimators for h2 often have nice statistical

properties (e.g. consistency). In some circumstances, maximum likelihood estimators

may have advantages over moment estimators in terms of efficiency (reduced variance).

On the other hand, moment estimators have been the subject of renewed interest recently

because of potential advantages related to computation and data privacy (as many data

only disclose summary GWAS statistics for the population (Finucane et al., 2015)).
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3.3 Challenges for LMMs

LMM methods for estimating h2 may give inconsistent or unexpected results when

used in settings where the generative model for y differs from (3.2), i.e. under model

misspecification. This has been noted repeatedly in the heritability literature (Zaitlen

and Kraft, 2012), and is important because many of the leading generative models

from genetics for linking phenotypes y and SNP values z differ substantially from (3.2)

(Barrett et al., 2009; Stahl et al., 2010; Gibson, 2012). We outline two such examples in

Sections 3.3.1 and 3.3.2 below.

3.3.1 Causal variants and linkage disequilibrium

Many genetics models hypothesize a collection of causal loci (or causal variants),

which are fixed locations along the genome, where the specific nucleotide combination

impacts the phenotype — other, non-causal loci are assumed to have no direct impact

on the phenotype (Pritchard, 2001). In the context of the LMM (3.5), this is frequently

encoded by taking S ⊆ [m] to be the collection of causal loci and assuming:

uj ∼ F are independent for j ∈ S,

uj = 0 if j /∈ S.
(3.7)

The assumptions (3.7) violate the exchangeability assumptions on the coordinates of u

that are required under (3.5).

It turns out that violating exchangeability in (3.7) alone is not necessarily problematic

for LMM heritability estimation. However, it has been noted previously that under the

linear GRM, estimates of h2 can be systematically unreliable when non-exchangeable

genetic effects are coupled with linkage disequilibrium. Specifically, estimators with

linear GRM is biased when LD-level of causal variants is substantially different from

average LD-level for variants in the study (Zaitlen and Kraft, 2012; Speed et al., 2012;

Gusev et al., 2013; Yang et al., 2015).

If the SNP values zi are modeled to be random, then LD is measured by Cov(zi) = Σ.

In particular, if Σ is diagonal, then there is no LD; if zij and zij′ are highly correlated,

then LD between SNPs j and j′ is high. If S is associated with the LD structure, e.g. if S
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is concentrated among a group of SNPs with relatively low or high LD, then heritability

estimates may be biased (Speed et al., 2012).

Suppose y is normalized (i.e. σ2
e = 1− σ2

g), conditioning on u, heritability measures

u>Σu =

m∑
i,j

uiujΣij .

The random-effects assumption suggests that Eu(u>Σu) = σ2
gtr(Σ)/m; in other words,

it assumes that Eu (uiujΣij) = 0 for i 6= j. Omitting these terms is reasonable as long

as either S is not associated with the LD structure or there is no LD. Otherwise, when

S is within a group of SNPs with different levels of LD, Eu [uiujΣij ] 6= 0 when i 6= j. As

a result, random-effects heritability can cause potential bias because they ignore the

impact of up to m(m− 1) cross terms.

There are many approaches to account for LD issue in linear GRM-based heritability

estimation. One simple treatment is pruning. To achieve a diagonal Σ, one of every

pair of correlated SNPs are romoved from the analysis (Purcell et al., 2007; Stahl et al.,

2012). Without information of S, causal loci could potentially be removed during the

pruning step, and causes bias in estimating h2. Other treatments focus on transforming

and re-weighting the design matrix. For example Gusev et al. (2013) built on work of

Patterson et al. (2006), and proposed to transform the design matrix such that each

genotype is regressed on all preceeding SNPs. Each genotype is then replaced by the

regression residuals. The LDAK method suggests to assign different weights to SNPs.

The optimal SNP weights are computed by considering local LD and distance with

neighboring SNPs and solving a linear programming problem. After the scaling step,

SNPs with high LD is downweighted, and the lost signal can be compensated by its

neighboring SNPs (Speed et al., 2012).

All of the previous LD adjustment methods are based on the normalized linear kernel.

Although they target on mitigating h2 estimation bias caused by LD issue, there are

combinations of u and Σ where LD residual and LDAK adjustments fail to estimate h2

consistently (Yang et al., 2015). We show that the Mahalanobis estimator also effectively

resolves the uneven LD issue in the empirical example below. Moreover, in Section 3.4.1,

we will discuss why the Mahalanobis estimator works for any Σ and u.



33

Consider the case where ej is Gaussian and uj ∼ N (0, σ2
g/|S|). Let ZS denote the

n× |S| matrix obtained by extracting the columns of Z corresponding to S. Then

y ∼MV

(
0,
σ2
g

|S|
ZSZ

>
S + σ2

eI

)

follows the model (3.2) with Ki,j = z>i,Szj,S/|S| and zi,S = (zik)k∈S ∈ R|S|, so the

heritability coefficient is h2. On the other hand, in the absence of additional information

about S, the least squares and maximum likelihood estimators for h2 are frequently fit

according to the model (3.5), with the linear kernel (3.4). We carry out some simulations

below. We also fit the Mahalanobis estimator, assuming (3.5) using the Mahalanobis

kernel, which requires additional information about LD. We ran a simple simulation

study under this setting, with:

(i) n = 500, m = 1000.

(ii) S = {1, . . . ,m/2}.

(iii) σ2
g = σ2

e = 0.5.

(iv) z1, . . . , zn ∼ N (0,Σ), where

Σ =

 AR(0.3) 0

0 AR(0.7)


and AR(ρ) is the m/2×m/2 matrix with ij-entry ρ|i−j|.

In this model, h2 = 0.5. We simulated 50 independent datasets specified according

to this model, and for each dataset maximum likelihood estimator with the linear kernel

and the Mahalanobis maximum likelihood estimator are computed. The least squares

estimator is not considered in this experiment because it relys on the approximation

u>Σ2u ≈ ‖u‖2tr(Σ2)/m, however, under this simulation setting the approximation does

not hold. Summary statistics are reported in Table 3.1.

From Table 3.1, it’s evident that the estimator based on the linear kernel is

substantially biased, and the Mahalanobis estimator is not. We defer a more

comprehensive numerical analysis to Section 3.5.1.
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Table 3.1: Means and confidence intervals for estimates of h2. Based on results from 50
independent datasets. h2 is estimated by MLE with linear and Mahalanobis kernels.

h2 Linear MLE Mahalanobis MLE
0.5 Mean: 0.454 Mean: 0.495

95% CI: (0.427,0.482) 95% CI: (0.468, 0.522)

3.3.2 Partitioning heritability

Studies on partitioning heritability seek to identify the heritability h2
S , which is

attributable to a subset of SNPs S ⊆ [m] (Gusev et al., 2014; Finucane et al., 2015).

Usually the SNPs are partitioned by functional areas such as genomes, levels of MAF and

functional annotations (Davis et al., 2013). Care must be taken when disentangling the

effects of SNPs in S with SNPs that are in linkage disequilibrium with S. In particular,

if LD is ignored, then estimates of h2
S can be badly biased.

In (Yang et al., 2011b; Kostem and Eskin, 2013; Gusev et al., 2014), y is assumed to

follow a LMM with two variance components

y = ZSuS + ZScuSc + e, (3.8)

where

ui ∼

 MV
(

0,
σ2
S
|S|

)
, if i ∈ S,

MV
(

0,
σ2
Sc

m−|S|

)
, if i /∈ S.

Under this model, the heritability due to S is defined as

h2
S =

σ2
S

σ2
S + σ2

Sc + σ2
e

, (3.9)

and it can be estimated using maximum likelihood (further assuming a Gaussian model

for the variance components, and then jointly estimate σ2
S , σ

2
Sc and σ2

e (Yang et al.,

2011a,b; Davis et al., 2013; Gusev et al., 2014)). However, if the hypothesis of causal

loci holds in the total heritability LMM, then in this two variance components LMM,

effect-sizes should really follow

ui ∼


MV

(
0,

σ2
S
|A1|

)
, if i ∈ A1 ⊆ S,

MV
(

0,
σ2
Sc
|A2|

)
, if i ∈ A2 ⊆ Sc,

0, otherwise,
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where A1 and A2 are the sets of causal loci in S and Sc, with A1 ∩ A2 = ∅. If the

causal loci are concentrated in a high/low LD region, then similar bias observed in

total heritability estimation is expected for partitioned heritability estimation with the

landmark estimator restricted maximum likelihood (REML) approach with linear GRM

(Yang et al., 2011a). The simulation results regarding the bias is discussed in Section

3.5.2, after introducing the Mahalanobis estimator for partitioned heritability.

With existence of non-exchangeable genetic effects, the current definition of

partitioned heritability (3.9) is invalid because for extreme Σ and u, it is possible

to have h2
S(Σ,u) > h2. This phenomenon is unreasonable because contribution of any

subset in explained variation should not exceed the contribution of the universal set.

Provided Σ and fixed u, we define the heritability attributable to S be

h2
S = 1− Var(y | zS)

Var(y)
=

u>Σu− u>ScΣSc|SuSc

u>Σu + σ2
e

.

This definition is a natural consequence of several reasonable properties of partitioned

heritability, and we defer the formal discussion of the definition to Section 3.4.2. However,

it is worth noting that the modified partitioned heritability definition may be different

from the estimand defined in (3.9) even for iid random effects in S and Sc.

Due to difference in estimands, estimators designed for (3.9) are potentially biased

in estimating h2
S when LD exists. Let Cov(zi) = Σ, for S ⊆ {1, . . . ,m}, let ΣS,Sc be

the submatrix of Σ with rows and columns selected according to S,Sc ⊆ {1, . . . ,m},

respectively. Linear kernel-based heritability estimation measures σ2
S (assuming Var(y) =

1), however, it automatically ignores the interaction between SNPs in group S and SNPs

in Sc through ΣS,Sc . Thus, standard linear kernel approach to h2
S create large bias. The

numerical results regarding the bias is shown in Section 3.5.2.

3.4 Fixed-effects models and C-heritability

3.4.1 Fixed-effects heritability

The previous section illustrates some LD-related pitfalls that may arise in LMM-based

approaches to heritability estimation. In this section we propose an alternative approach:
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we consider a fixed effects model with Gaussian data. Based on the fixed effects model,

we propose new definitions of heritability and partitioned heritability, which lean more

heavily on the concept of broad-sense heritability. We also show that these concepts

coincide with the random-effects approach under a Mahalanobis GRM or kernel.

In this section, we assume that the linear model (3.5) holds with some fixed (non-

random) u. We additionally assume that

z1, . . . , zn ∼ N (0,Σ) and e1, . . . , en ∼ N (0, σ2
e) (3.10)

are independent. These normality assumptions are unrealistic in practice (the entries

of zi are typically discrete). However, instead of taking these assumptions literally,

we rely on them for motivation for the methods proposed in this section. Many other

high-dimensional variance component estimation with fixed effects model (e.g. Dicker,

2014; Janson et al., 2017) require the same multivariate Gaussian random-design (3.10),

for its invariance property under orthogonal transformations. Work of Bai et al. (2007) in

random matrix theory has shown that in the large limit where n,m→∞, the invariance

property holds for a broader class of random matrices. We expect our estimator to

be robust asymptotically for reasonable trinary random designs, similar to simulation

results in (Janson et al., 2017). Theoretical results on relaxing the Gaussian random

design assumptions for the Mahalanobis estimator (by building on results in (Dicker and

Erdogdu, 2016b)) would be an interesting future research direction.

Let (y, z) be a generic draw from the study population. We define the (fixed-effects)

heritability to be

h2 = 1− Var(y | z)

Var(y)
=

u>Σu

u>Σu + σ2
e

. (3.11)

The fixed-effects heritability (3.11) captures correlation between SNPs and LD through

the quadratic form u>Σu. We also have the following bound for fixed-effects heritability:

λm‖u‖2

λm‖u‖2 + σ2
e

≤ h2 ≤ λ1‖u‖2

λ1‖u‖2 + σ2
e

,

where λ1 and λm are the largest and smallest eigenvalues of Σ, respectively.

For the sake of simplicity we assume that Var(y) = 1. Consider the case where

Cov(zi) = Σ where diagonal of Σ are all 1. Then (3.11) becomes h2
fe = Var(z>u|u) =



37

u>Σu. The normalized linear kernel is equivalent to a random-effects assumption such

that effects in u are iid with Var(u) = σ2
g/mI, then its corresponding random-effects

heritability is h2
lk = Var(z>u|z) = σ2

g/mE(z>z) = σ2
g . When Σ = I, h2

fe = ‖u‖22. then

fixed- and random-effects heritabilities are equivalent in the sense that Eu(h2
fe) = h2

lk.

However, when Σ 6= I, h2
fe = ‖u‖22 + 2

∑
i<j uiujΣij , and the linear kernel-based h2

lk

could not pick up the cross-terms.

With Mahalanobis kernel, it is equivalent to assume that effects in Σ1/2u are iid

centered at 0 and with Var(Σ1/2u) = τ2/m, then the Mahalanobis-based random-effects

heritability is

h2
mk = Var(z>u|z) = Var(z>Σ−1/2Σ1/2u|z) = τ2/mE(z>Σ−1z) = τ2.

Hence, for any Σ > 0, random-effects heritability is similar to fixed-effects heritability

such that Eu(h2
fe) = h2

mk.

3.4.2 Partitioning heritability

Broad-sense heritability and the fixed-effects linear model described in Section 3.4.1

also motivate a natural definition of partitioned heritability. For S ⊆ {1, . . . ,m}, we

define the heritability attributable to S to be

h2
S = 1− Var(y | zS)

Var(y)
=

u>Σu− u>ScΣSc|SuSc

u>Σu + σ2
e

, (3.12)

where ΣSc|S = ΣSc,Sc − ΣSc,SΣ−1
S,SΣS,Sc and ΣS1,S2 is the submatrix of Σ with rows

and columns selected according to S1,S2 ⊆ {1, . . . ,m}, respectively. This definition for

parititoned heritability consistently accounts for correlation between LD and SNPs.

The definition (3.12) makes sense in the context of broad-sense heritability, and

when the genetic features are Gaussian (or approximately Gaussian). As discussed in

Section 3.4.1, the Gaussian assumption almost never holds in practice. In the following

proposition, we argue that (3.12) is also a natural consequence of three reasonable

properties we might expect of any quadratic form-based estimator for partitioned

heritabilty for linear models.
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Proposition 1. Assume that the linear model (3.5) holds, that u ∈ Rm is a fixed vector

and that E(z) = 0, Var(z) = Σ. If the heritability attributable to S, h2
S = h2

S(u; Σ), is a

quadratic form in u satisfying the following properties

(i) 0 ≤ h2
S(u; Σ) ≤ h2(u; Σ) for all u ∈ Rm, where h2 = h2(u; Σ) is the fixed-effects

heritability (3.11),

(ii) h2
S(u; Σ) = h2(u; Σ) if and only if uSc = 0, and

(iii) h2
S(u; Σ) does not depend on ΣSc,Sc ,

then we must have

h2
S =

u>Σu− u>ScΣSc|SuSc

u>Σu + σ2
e

.

Proposition 1 is proved in Section 3.6. Condition (i) in Proposition 1 says that the

heritability attributable to a subset of SNPs S must be smaller than the total heritability

(i.e. the heritability attributable to all measured SNPs); condition (ii) means that the

heritability attributable to S is equal to the total heritability if and only if all causal loci

are contained in S; condition (iii) means that the heritability attributable to S should

not depend on LD amongst SNPs that are not S (though it certainly may depend on

LP between SNPs in S and those not in S). We defer discussion of how to estimate h2
S

until the following sub-section.

3.4.3 C-heritability with projections

In addition to focusing on the heritability attributable to a subset of SNPs S with

partitioned heritability, we can extend the definition of heritability to variation explained

by any linear projection C>z, for m× k matrices C with rank k:

h2
C = h2

C(u; Σ) = 1− Var(y | C>z)

Var(y)
.

Under the linear model with Gaussian data (3.10) and the additional assumption that

Var(y) = 1, we have

h2
C = u>ΣC(C>ΣC)−1C>Σu. (3.13)

The following lemma summarizes some useful facts about h2
C .
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Lemma 1. Assume (3.5) and (3.10) and that Var(y) = 1. Then

h2
C(u; I) = u>C(C>C)−1C>u (3.14)

and

h2
C(u; Σ) = h2

Σ1/2C
(Σ1/2u; I). (3.15)

If, furthermore, m = k, then

h2
C(u; Σ) = u>Σu. (3.16)

The proof of Lemma 1 is trivial. The second identity in the lemma (3.15) helps to

explain the connection between LD and heritability – it implies that heritability in a

model with LD structure Σ is equivalent to heritability in a model where LD has been

removed through a whitening transformation z 7→ Σ−1/2z. The third identity (3.16)

implies that C-heritability is invariant under (full rank) change-of-basis for the genotype

z 7→ C−1z.

The projected C-heritability (3.4.3) is equivalent to partitioned heritability from the

previous section.

Lemma 2. Assume (3.5) and (3.10) and that Var(y) = 1. Let S ⊆ {1, . . . ,m} and let

ΠS be the projection matrix onto coordinates indexed by S. Then h2
S = h2

ΠS
.

The proof of Lemma 2 is trivial. However, the lemma is useful because it provides a

direct method for estimating h2
S when combined with the results in the next sub-section.

3.4.4 Estimating C-heritability

In this section, we assume fixed-effects linear model and suppose x ∼ N (0,Σ). We

would like to estimate h2
C(u; Σ), for some full rank matrix C ∈ Rm×k.

Let UC be a m × k matrix with orthonormal columns such that

Σ1/2C(C>ΣC)−1C>Σ1/2 = UCU
>
C . Let UC⊥ be a corresponding m × (m − k) matrix
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with orthonormal columns satisyfing U>C UC⊥ = 0 and I = UCU
>
C + UC⊥U

>
C⊥

. Then

y = Zu + e

= ZΣ−1/2UCU
>
C Σ1/2u + ZΣ−1/2UC⊥U

>
C⊥Σ1/2u + e

= WCvC +WC⊥vC⊥ + e

= ZCvC + eC , (3.17)

where

WC = ZΣ−1/2UC = ZC(C>ΣC)−1/2, WC⊥ = ZΣ−1/2UC⊥ ,

vC = U>C Σ1/2u, vC⊥ = U>C⊥Σ1/2u,

eC = ZC⊥vC⊥ + e.

Thus, we’ve transformed the original linear model with data (y, Z) into the linear model

(3.17) with data (y,WC), where

WC ∼ N (0, I), eC ∼ N
(
0, (‖vC⊥‖2 + σ2

e)I
)
. (3.18)

Moreover, h2 for the model (3.17) is equivalent to the C-heritability h2(u; Σ) for the

original linear model. Thus, to estimate h2(u; Σ), we simply esimate h2 under (3.17).

Let σ2
C⊥

= ‖vC⊥‖2 + σ2
e and τ2

C = ‖vC‖2. Consequently, we can estimate τ2
C

and σ2
C with Gaussian maximum likelihood, for a random-effects model where vC ∼

N{0, (τ2
C/k)I} and independent of eC and WC (Dicker and Erdogdu, 2016b). Let

η2
C = τ2

C/σ
2
C⊥

, then our proposed fixed-effects heritability estimator is

ĥ2
C =

η̂2
C

1 + η̂2
C

,

where

(η̂2
C , σ̂

2
C⊥) := argmax

η2
C , σ

2
C⊥

−1

2
log(σ2

C⊥)− 1

2n
log det

(
η2/kWCW

>
C + I

)
− 1

2nσ2
C⊥

y>
(
η2/kWCW

>
C + I

)−1
y.

Despite ĥ2
C is motivated by maximizing likelihood of multivariate Gaussian variable

y | WC , it is consistent in estimating fixed u ∈ Rm under the assumption that k/n→

ρ ∈ (0,∞)/{1}.
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Proposition 2. Assume (3.17)-(3.18) hold, and suppose (σ2
C , η

2
C) ∈ K for some compact

set K ⊆ (0,∞) and ρ ∈ (0,∞)/{1}, then as k/n→ ρ,

ĥ2
C =

η̂C
η̂C + 1

→ h2
C

in probability. Moreover, define I = 1
kWCW

>
C and J =

η2
C
k WCW

>
C + I, then

√
n(ĥ2

C − h2
C)

D−→ N

(
0,

2σ4
C⊥

(1 + η2
C)4

(
1− tr(IJ −1)2

ntr(I2J −2)

)−1
)−1

.

Consistency of ĥ2
C is an immediate result of Theorem 1 from (Dicker and Erdogdu,

2016b) and Slutsky’s theorem. In addition asymptotic normality of ĥ2
C can be easily

derived by Theorem 2 of (Dicker and Erdogdu, 2016b) and the delta method. The

asymptotic variance is derived in Section 3.6 .

This estimator performs well for the fixed effects model, however, under Mahalanobis

kernel, it is also the standard Gaussian variance component maximum likelihood approach

for random-effects model such that the vector of effects follows vC ∼ N (0, τ2
C/kI). Work

of Dicker and Erdogdu (2016a,b) has shown that the MLE approach is reliable not only

for Gaussian iid effects, but also for correlated random effects and even fixed effects

by a coupling argument and a concentration bound for the MLE. Hence, our proposed

estimator is also very flexible in terms of model specification. As previously mentioned,

the least squares approach is sometimes preferred due to data privacy. Building on

(3.17), method of moments approach to C-heritability estimation is also possible. We

refer the reader to (Dicker, 2014) for details.

3.5 Numerical experiments

In this section, we run comprehensive numerical experiments on total and partitioned

heritability estimation. Performance of total heritability estimators are compared while

varying LD-level and sparsity of causal variants. Performance of partitioned heritability

estimators are compared when either LD exists between partitioned sets of SNPs or

LD-level of causal variants is uneven.
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3.5.1 Total heritability estimation

For total heritability estimation, we consider the following model

y ∼MV

(
0,
σ2
g

|S|
ZSZ

>
S + σ2

eI

)

where ej ∼ N (0, σ2
e) and uj ∼ N (0, σ2

g/|S|). In the absence of additional information

about S, estimators for h2 are usually fit according to the linear model (3.5). The

simulation setting is very similar to that in Section 3.3.1, such that:

(i) n = 500, m = 1000.

(ii) σ2
e = 1− σ2

g .

(iii) z1, . . . , zn ∼ N (0,Σ), where

Σ =

 AR(0.3) 0

0 AR(0.7)


and AR(ρ) is the m/2×m/2 matrix with ij-entry ρ|i−j|.

Let Rl = {1, . . . ,m/2} be the low LD region and Rh = {m/2 + 1, . . . ,m} be the high

LD region. We vary location of causal variants and σ2
g = 0.3, 0.5, 0.7 for experiment

d = 1, . . . , 50, such that u(d)
j ∼ N (0, σ2

g/|S|) for j ∈ S with

(i) S = Rh ∪Rl;

(ii) S = Rh;

(iii) S = Rl.

In each of these senarios, we simulated 50 independent datasets specified according to

this model, and for each dataset we compute the Mahalanobis estimator, maximum

likelihood estimator with linear kernel proposed by (Yang et al., 2010, 2011a). We also

include LD-adjusted kinship (LDAK) approach proposed by (Speed et al., 2012), which

is designed to improve the total heritability estimation performance of linear MLE when

uneven LD structure exists. For LDAK, the Linear GRM is adjusted by re-weighing

each predictor, and the modified REML method takes new inputs y and LD-adjusted X.
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Distributional summary statistics are reported in Figure 3.1.
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Figure 3.1: Confidence intervals of linear kernel-based maximum likelihood estimator

(L-MLE), MLE with LD adjusted linear GRM (LDAK) and Mahalanobis kernel-based

MLE (M-MLE) with causal variants from different LD-level regions. Underlying h2 in

panels from top to bottom are respectively 0.3, 0.5, 0.7 and marked in red dashed line.

In Figure 3.1, maximum likelihood estimator with linear kernel is generally biased when

causal effects are generated from high or low LD regions. The estimator does not show

obvious bias in either direction when all SNPs are causal. LDAK attempts to adjust the

biased linear MLE towards the underlying h2. It shows some improvement in adjusting

the biased linear MLE when uneven LD structure exists. However, when the bias of linear

MLE is small (when h2 = 0.7), the LDAK over-adjusts the linear MLE and becomes

badly biased. With Mahalanobis GRM, the MLE is not biased when LD is coupled
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with causal loci. Since all three methods belong to the same maximum likelihood family,

widths of their confidence intervals are very similar.

In the next experiment, we vary sparsity of effects. We let n = 500, m = 1000,

σ2
g = σ2

e = 0.5 and z1, . . . , zn follow the same Gaussian distribution in the previous

experiment setting. Given |S|, we let uj ∼ N (0, σ2
g/|S|) for j ∈ S with elements in S

uniformly sampled without replacement from region A. For |S| = 25, 50, 100, 200, we

vary A as follows

(i) A = Rh ∪Rl ;

(ii) A = Rh;

(iii) A = Rl.

For each setting above, we simulate 50 independent datasets with common effect-sizes

according to this model. For each dataset, we compute the same three estimators for

the fixed-effects heritability.

In Figure 3.2, the underlying h2 is a piece-wise constant function because of the

fixed effects setting. The experiments show that the linear MLE is less stable when

effect-sizes become more sparse (consistent with results in (Speed et al., 2012)). As

number of causal variants decreases, it is more likely that the collection of causal variants

is enriched in either high or low LD region. As a result, the top panel shows that

there is obvious downward bias even when effects are randomly sampled from average

LD region (indicates that the majority of causal effects are in low LD region). For all

sparsity settings, linear kernel-based MLE is biased in the direction corresponding to the

LD-level. Moreover, we observe that LDAK adjusts the bias of linear MLE towards the

underlying h2, however, it under-adjusts the estimate, and remains biased in panel 1 and

4. Regardless of sparsity, the Mahalanobis estimator is free of LD issues in estimating

fixed-effects heritability.
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Figure 3.2: Confidence intervals of maximum likelihood estimator (L-MLE), MLE with

LD adjusted linear GRM (LDAK) and Mahalanobis kernel-based MLE (M-MLE) with

causal variants from different LD-level regions. Underlying h2 is marked in red dashed

line. Effect sparsities from top panel to bottom are 25, 50, 100, 200, respectively.
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3.5.2 Partitioned heritability estimation

Consider the two variance components linear model

y = ZSuS + ZScuSc + e, (3.19)

where

ui ∼


N
(

0,
σ2
S
|A1|

)
, if i ∈ A1 ⊆ S,

N
(

0,
σ2
Sc
|A2|

)
, if i ∈ A2 ⊆ Sc,

0, otherwise,

provided ej ∼ N (0, σ2
e) and σ2

e = 0.5. We would like to estimate h2 associated with S.

The first experiment considers the setting where all variants are causal and LD exists

between two partitions of SNPs. Specifically, we let

(i) n = 500, m = 1000.

(ii) S = {i ∈ [m]; 1 ≡ i(mod4)}.

(iii) A1 = S and A2 = Sc.

(iv) z1, . . . , zn ∼ N (0,Σ) where

Σ =

 AR(0.3) 0

0 AR(0.7)


and AR(ρ) is the m/2×m/2 matrix with ij-entry ρ|i−j|.

We vary size of σ2
S = 0.1, 0.3, 0.5. For each setting, we simulated 50 independent datasets

specified according to this model, and for each dataset we compute the Mahalanobis

estimator and restricted maximum likelihood with linear kernel (Gilmour et al., 1995;

Yang et al., 2011a). REML finds the maximum likelihood estimator for two variance

components linear model. Distributional summary statistics are reported in Figure 3.3.
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Figure 3.3: Confidence intervals of linear REML (L-REML) and Mahalanobis kernel-

based MLE (M-MLE) with different signal strength in S (σ2
S = 0.1, 0.3, 0.5) when

partitions of SNPs are in high LD. Underlying h2
S is marked in red dashed line.

Since elements in S is chosen such that they are spreaded out, the LD between

two partitions of SNPs is very significant. It is shown in Figure 3.3 that the linear

kernel-based MLE is consistent in estimating σ2
S , however, it has downward bias in

estimating h2
S when σ2

S < 0.5; the bias is due to difference in estimand, and estimand

of linear REML σ2
S is less than h2

S when σ2
Sc 6= 0. When σ2

S = 0.5, h2
S = σ2

S because

all causal loci are contained in S. As σ2
S decreases, the downward bias of linear REML

becomes larger due to larger difference between σ2
S and h2

S . The Mahalanobis estimator

is consistent in estimating h2
S as it considered the LD between two partitions. Due to

similar nature, the confidence intervals of two methods are roughly the same.

In the next experiment, causal loci are selected to be from uneven LD regions. We let

(i) n = 500, m = 1000.
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(ii) S = {m/4 + 1, . . . , 3m/4}.

(iii) A1 = {m/4 + 1,m/2}.

(iv) z1, . . . , zn ∼ N (0,Σ) where

Σ =



AR(0.3) 0 0 0

0 AR(0.3) 0 0

0 0 AR(0.7) 0

0 0 0 AR(0.7)


and AR(ρ) is the m/4×m/4 matrix with ij-entry ρ|i−j|.

Denote Rl = {1, . . . ,m/4} and Rh = {3m/4 + 1, . . . ,m} be the set of indices in low and

high LD regions, respectively. We vary locations of A2, such that

(i) A2 = Rl ∪Rh;

(ii) A2 = Rh;

(iii) A2 = Rl.

For each setting, we simulated 200 random-effects vectors and independent datasets, and

for each dataset we compute the Mahalanobis estimator and REML with linear kernel.

Distributional summary statistics are reported in Figure 3.4.
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Figure 3.4: Confidence intervals of linear REML (L-REML) and Mahalanobis kernel-
based MLE (M-MLE) with causal loci of partitions from uneven LD regions. Underlying
h2
S is marked in red dashed line. Causal loci S is from low-LD region while LD-level of

causal loci in Sc varies.
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In all three cases, the Mahalanobis estimator is consistent in estimating

h2
S =

σ2
S

σ2
S + σ2

Sc + σ2
e

= 0.25,

while the linear REML shows downward bias (as expected). The objective of increasing

the number of experiments is to shorten the confidence intervals in three cases and show

the subtle difference of REML with linear GRM when LD-level of causal loci in Sc varies.

In the first setting, causal loci in S are from low LD region, while causal loci in Sc

are from average LD region. When causal loci in Sc are instead from high-LD area,

estimates of h2
S increases surprisingly. Notice that linear REML’s estimated ĥ2

S is derived

by plugging in estimated σ̂2
S , σ̂

2
Sc , σ̂

2
e . A possible explanation is that in the first setting,

the overall LD-level of all causal variants is below average, and σ2
e is over-estimated.

As LD-level in Sc increases, the overall LD-level of all causal variants becomes even,

therefore, upward bias in σ̂2
e is reduced. Although σ̂2

Sc becomes upward biased because

of uneven LD in Sc, due to magnitude difference between σ2
e and σ2

Sc , the decrease in

σ̂2
e outweigh the increase in σ̂Sc . Thus, the overall ĥ2

S shows less downward bias. When

causal loci is from low LD region, similar reasoning explains why ĥ2
S performs worse

than the first setting.

3.6 Appendix

3.6.1 Proof of Proposition 1

Proposition 1. Assume that the linear model (3.5) holds, that u ∈ Rm is a fixed vector

and that E(z) = 0, Var(z) = Σ. If the heritability attributable to S, h2
S = h2

S(u; Σ), is a

quadratic form in u satisfying the following properties

(i) 0 ≤ h2
S(u; Σ) ≤ h2(u; Σ) for all u ∈ Rm, where h2 = h2(u; Σ) is the fixed-effects

heritability (3.11),

(ii) h2
S(u; Σ) = h2(u; Σ) if and only if uSc = 0, and

(iii) h2
S(u; Σ) does not depend on ΣSc,Sc ,
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then we must have

h2
S =

u>Σu− u>ScΣSc|SuSc

u>Σu + σ2
e

.

Proof. For the sake of simplicity, assume Var(y) = 1. Without loss of generality,

assume that S = {1, . . . , |S|}, let u = (u>S ,u
>
Sc)
> and Σ =

 ΣS ΣS,Sc

Σ>S,Sc ΣSc .

 Then the

quadratic form based heritability h2
S(u,Σ) = u>Γu where Γ =

 ΓS ΓS,Sc

Γ>S,Sc ΓSc

 is a

p× p. Moreover, due to property (i), 0 ≤ Γ ≤ Σ.

If ucS = 0, ∀ uS ∈ R|S|,

h2 = u>SΣSuS ,

h2
S = u>SΓSuS .

By property (ii), this implies ΓS = ΣS . If uS = 0 and uSc 6= 0,

h2 = u>ScΣScuSc ,

h2
S = u>ScΓScuSc .

Then by Property (i) and (ii), ΓSc < ΣSc . Next, Property (i) suggests that

Σ− Γ =

 0 ΣS,Sc − ΓS,Sc

(ΣS,Sc − ΓS,Sc)
> ΣSc − ΓSc

 ≥ 0

Since ΣSc − ΓSc > 0, Σ− Γ ≥ 0 is equivalent to

0− (ΣS,Sc − ΓS,Sc)(ΣSc − ΓSc)
−1(ΣS,Sc − ΓS,Sc)

> ≥ 0

(ΣS,Sc − ΓS,Sc)(ΣSc − ΓSc)
−1(ΣS,Sc − ΓS,Sc)

> ≤ 0

However, (ΣS,Sc − ΓS,Sc)(ΣSc − ΓSc)
−1(ΣS,Sc − ΓS,Sc)

> ≥ 0 because Σ − Γ ≥ 0 and

ΣSc − ΓSc > 0. Therefore,

(ΣS,Sc − ΓS,Sc)(ΣSc − ΓSc)
−1(ΣS,Sc − ΓS,Sc)

> = 0

Thus, ΓS,Sc = ΣS,Sc . Moreover, Γ ≥ 0 implies

ΓSc − Σ>S,ScΣ
−1
S ΣS,Sc ≥ 0 (3.20)
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We then let

ΓSc = Σ>S,ScΣ
−1
S ΣS,Sc +M, M ≥ 0

Finally, we would like to prove M = 0 by contradiction. Suppose that there exist some

uSc = β and Σ such that β>M β̃ > 0. Let u = (0, . . . , 0, β)>, then

h2
S = β>Σ>S,ScΣ

−1
S ΣS,Scβ + β>Mβ

Now let

Σ̃ =

 ΣS ΣS,Sc

Σ>S,Sc Σ>S,ScΣ
−1
S ΣS,Sc +

1

2
M +

β>Mβ

4‖β‖22
I

 > 0

By property (iii), h2
S(u, Σ̃) = h2

S(u,Σ). However,

h2(u, Σ̃) = β>Σ>S,ScΣ
−1
S ΣS,Scβ +

3

4
β>Mβ

= h2
S(u, Σ̃)− 1

4
β>Mβ

This contradicts with Property (i). Therefore, M = 0 and ΓSc = Σ>S,ScΣ
−1
S ΣS,Sc .

3.6.2 Proof of Proposition 2

Proposition 2. Assume (3.17)-(3.18) hold, and suppose (σ2
C , η

2
C) ∈ K for some compact

set K ⊆ (0,∞) and ρ ∈ (0,∞)/{1}, then as k/n→ ρ,

ĥ2
C =

η̂C
η̂C + 1

→ h2
C

in probability. Moreover, define I = 1
kWCW

>
C and J =

η2
C
k WCW

>
C + I, then

√
n(ĥ2

C − h2)
D−→ N

(
0,

2σ4
C⊥

(1 + η2
C)4

(
1− tr(IJ −1)2

ntr(I2J −2)

)−1
)−1

.

Proof. By Theorem 2 of (Dicker and Erdogdu, 2016b),

√
n(η̂2

C − η2
C)

D−→ N (0, ψ).

where ψ = (ι2 − ι23/ι4)−1 and

ια =
1

2nσ
2(4−α)

C⊥

tr

{(
1

k
WCW

>
C

)α−2(η2
C

k
WCW

>
C + I

)2−α}
.
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Let I = 1
kWCW

>
C and J =

η2
C
k WCW

>
C + I, It follows that

ψ = 2σ4
C⊥

(
1− tr(IJ −1)2

ntr(I2J −2)

)−1

.

By the Delta method,

√
n(ĥ2

C − h2)
D−→ N

(
0,

ψ

(1 + η2
C)4

)
.
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Chapter 4

Projected least squares and risk estimation for
out-of-sample prediction

4.1 Introduction

Model complexity in high-dimensional data analysis makes regularization essential

for estimating the parameters. On one hand, outcomes in these big data problems can be

predicted via the shrinkage approach with additional structural smoothness or sparsity

assumptions, for example, as discussed in Chapter 2. On the other hand, for non-random

signals, a simple but effective approach is via dimension reduction. Moreover, the optimal

approach is usually chosen by minimizing the risk, and heritability estimation discussed

in Chapter 3 provides consistent risk estimation for fixed effects models. This chapter

contains new model evaluation approach that identifies and assesses simple dimension

reduction techniques for high-dimensional data analysis, with models that are known to

be misspecified.

4.1.1 The model

Consider the linear model

y = Xβ + ε, (4.1)

where y = (y1, . . . , yn)> ∈ Rn is centered and real-valued response vector, X =

(x1, . . . ,xn)> ∈ Rn×p is centered full rank design matrix, β ∈ Rp is parameter vector

of length p, and ε is noise vector of length n, such that E(ε) = 0 and Var(ε) = σ2
ε I.

We are interested in the out-of-sample prediction problem under the setting where

(yi,xi)
iid∼ F and p/n → ρ ∈ (0,∞) when n, p → ∞. Under quadratic loss, portion

of explained variation for out-of-sample prediction method has an upper bound of
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Var(x>β)/Var(y). In the context of genome-wide association studies (GWAS), the upper

bound is interpreted as the narrow-sense heritability in Chapter 3. However, in practice,

reaching this upper bound (or even a fraction of it) is notoriously challenging for this

high-dimensional prediction problem as most of effect-sizes are small and insignificant,

but not sparse (Consortium et al., 2009; Wray et al., 2013).

4.1.2 Motivation

In many high-dimensional data problems, out-of-sample prediction are optimized by

complicated feature engineering methods (Zhang et al., 2016). These methods target at

pushing portion of explained variation towards the upper bound — total heritability.

However, in some applications, effects can be naturally partitioned into finitely many

clusters. Instead of estimating each effect, we could simply estimate the (weighted)

average effect within each cluster. Such strategy is equivalent to linearly transform the

input vector. The average effects within clusters can be estimated easily when sample size

is sufficiently large, and this linear dimension reduction method is easy to interpret and

implement; however, since the linear dimension reduction approach ignores within-cluster

variations, the model becomes misspecified. Comparing to portion of explained variation

of correct model methods, that of misspecified dimension reduction has a smaller upper

bound — C-heritability (defined as (3.13)). Although the upper bound C-heritability

is smaller than the total heritability, it is much easier to achieve because misspecified

dimension reduction deals with finitely many parameters.

Intuitively, when effects behave nicely within clusters (i.e., same direction and/or

small variation), the misspecified error is small and misspecified dimension reduction

should perform well. This approach has shown comparatively good performance in several

areas such as demand forecasting, genetic risk prediction and asset return forecasting

(Mark and Sul, 2011). In online retailing, the weekly demand of every product sold online

is required for inventory planning. Training a common univariate time series model for

all products has shown higher prediction accuracy under various metrics than other high-

dimensional time series methods. Moreover, genetic risk prediction is an important topic

in genetics for animal breeding and human disease prevention/intervention (Henderson,
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1984; Consortium et al., 2009). The (multi-)polygenic score approach to quantitative

trait prediction has drawn much attention recently (e.g. Krapohl et al., 2017; Selzam

et al., 2017). The polygenic score (also known as genetic risk score) summarizes all

genetic variants associated with a given risk factor by weighted sum over all genotypes

(weights are derived by repeated simple regression from a large repetition sample). The

prediction model is then fitted against multiple polygenic scores. Multi-polygenic score

approach has shown to be effective in predicting educational attainment (Krapohl et al.,

2017). Both pooling/stacking data in demand forecasting and multi-polygenic score

approach are applications of misspecified dimension reduction method, and the goal of

this chapter is to investigate the conditions for this approach to perform well, comparing

to alternative methods.

4.1.3 Related work

The linear model (4.1) is sometimes derived by combining (stacking) many individual

linear models despite heteroscedasticity and correlated error, especially for high-

dimensional time-series analysis such as online-retailing data. For these datasets,

generalized least squares is usually performed to transform the data to achieve

uncorrelated and homoscedastic error, provided that covariance matrix of error is known

up to a scalar factor (Fahrmeir et al., 2007). Comparing to the classical ordinary least

squares, generalized least squares has advantage in terms of reduced variance.

However, generalized least squares does not handle problems of high-dimensionality

and collinearity among predictors. If the majority of features are assumed to be zero,

then the parameters can possibly be estimated consistently with some feature selection

method. For non-sparse signal, its dimensionality is usually reduced by feature extraction.

After reducing the model complexity, novel parameters could be easily estimated the by

least squares method.

Principal component regression (PCR) is a classical feature extraction approach that

handles high-dimensionality issue by regressing the response on top principal components

of predictors. When PCR was first introduced by Hotelling (1957), the PCR was treated

as a change-of-basis variation of the original least squares problem, where all principal
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components (PCs) remain in the least squares model regardless their corresponding

magnitudes of variances. However, for dimension reduction purpose, low-variance PCs are

usually dropped from the model assuming that the loss of prediction power is very little.

Many real data examples noted in (Jolliffe, 1982) contradicts with this assumption, by

showing the significance of low-variance PCs. Since PCR drops low-variance PCs without

considering the responses, the approach could potentially result in large misspecification

error.

Partial Least squares method is another linear dimension reduction approach.

It is developed by (Wold, 1975; Wold et al., 1984) primarily for models with high

dimensionality and multicollinearity issues in the field of chemometrics. The method has

been widely applied in genomic data for regression and classification purposes (Boulesteix

and Strimmer, 2006). In contrast to PCR, partial least squares creates a sequence of

orthogonal input directions by iteratively maximizing variance between response and

predictors (Hastie et al., 2009). The dimensionality of the problem can be reduced by

dropping trailing input directions in the sequence, and the majority of prediction power

retains in the misspecified model.

Both PCR and partial least squares project the data to some lower dimensional

subspace. The response is then predicted by least squares. We refer projected least squares

to be the class of least squares estimators that takes a linearly transformed covariates.

The projection-based dimension reduction methods are based on distances calculated

under the linear kernel. With different kernels, many linear dimension reduction methods

can be extended to non-linear manifold methods (Nasrabadi, 2007).

4.1.4 Contribution

Previously mentioned linear dimension reduction approaches discuss specific

implementations of finding the projection directions for design matrix. However, to the

best of our knowledge, risk estimation for fitting these misspecified model is not yet

available for methods with derived input directions. This chapter derives asymptotic

out-of-sample error for projected least squares approach rather than focuses on deriving

the transformed directions. Similar to many high-dimensional prediction methods (Bayati
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and Montanari, 2012; Dicker, 2016), the explicit asymptotic risk of projected least squares

is in terms of variance components.

Recall that in Chapter 3, we have discussed an estimation method for evaluating

proportion of explained variance in a model with random-design assumption. Hence,

we propose to evaluate out-of-sample error by variance component estimation, and

furthermore compare risks of various models by heritability estimation. The evaluation

tool can be directly applied to risk estimation and model evaluation in multi-polygenic

score method for genetic risk prediction.

Rest of the chapter is organized as follows: Section 4.2 discusses out-of-sample error

of ordinary least squares (OLS) estimator. Section 4.3 presents asymptotic risk of

projected least squares. Risk estimation for various high-dimensional methods with

explicit asymptotic risk is contained in Section 4.4. Section 4.5 and 4.6 discuss numerical

analysis regarding genetic risk prediction and demand forecasting, respectively.

Notations. For v ∈ Rn and M ∈ Rn×n, denote the l2 norm ‖v‖2 :=
√
v>v,

denote the matrix norm ‖v‖M :=
√
v>Mv, and denote the spectral norm ‖M‖ :=

max‖x‖2=1 ‖Mx‖22.

4.2 Out-of-sample prediction and OLS

4.2.1 Loss function and random-design assumption

For in-sample prediction only, we usually pursue an estimator such that it minimizes

the Euclidean distance with y, i.e. minimizing

lin(δ;X,y) = ‖Xδ − y‖22. (4.2)

When ρ < 1, the OLS estimator of (4.1), by definition, is the minimizer of (4.2), where

β̂ols = (X>X)−1X>y.

Although β̂ols achieves the minimum in-sample error (4.2), supervised learning is primarily

used to predict unseen data. For out-of-sample prediction, random-design assumption

is usually required. We assume that for i = 1, . . . , n, zi = (yi,x
>
i )> is the ith sample
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drawn from the population with a distribution F , where E(xi) = 0 and Var(xi) = Σ.

Therefore, we would like to find an estimator that minimizes the expected l2 loss for

unseen data zn+1. Then, the out-of-sample error of an estimator δ̂ conditioning on the

training set (y, X) is

l(δ̂;y, X,Σ) = ‖δ̂ − β‖2Σ. (4.3)

Throughout the chapter, our goal is to minimize (4.3).

In this chapter, we have strong distributional assumption on F , such that

x1, . . . ,xn
iid∼ N (0,Σ) and ε1, . . . , εn

iid∼ N (0, σ2
ε ) (4.4)

are independent, where Σ is a positive definite and σ2
ε > 0. Therefore,

zi
iid∼ N

0,

β>Σβ + σ2
ε β>Σ

Σβ Σ

 .

With only mild conditions (without Gaussian assumption) on the design distribution,

bounds of the non-asymptotic risk of OLS, ridge regression, and misspecified OLS are

derived by Hsu et al. (2011). However, exact asymptotic risks are challenging without

multivariate Gaussian assumption on zi. Similar Gaussian assumption on F has been

made in linear model risk studies such as Breiman and Freedman (1983); Leeb et al.

(2009); Dicker (2013). Lemma 3 and 4 depends on the closed-form expectation of trace

of inverse Wishart distribution. Moreover, proofs of these lemmas rely on orthogonal

invariance of Gaussian noise distribution.

4.2.2 Generalization of ordinary least squares estimator

For online-retailing data, dimensionality of covariates is approximately the same as

number of observations; therefore, we are still interested in the case where ρ < 1. OLS

method is the classical estimator when p < n, and its asymptotic risk can be computed

under assumption (4.4).

Lemma 3. Let n, p→∞ and p/n→ ρ ∈ (0, 1), assume condition (4.4) holds, then

lim
n,p→∞

‖β̂ols − β‖2Σ =
σ2
ε ρ

1− ρ
.
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The proof of Lemma 3 is contained in Section 4.7, and is consistent with results

derived by Dicker (2013). As ρ approaches to 1 from the left, OLS is expected to

gain tremendous out-of-sample error. Therefore, it is reasonable to consider other high-

dimensional methods in this senario. Risk for other linear shrinkage estimators such as

oracle solution of ridge regression is also derived similarly under Gaussian assumption

(4.4) (Dicker, 2013, 2016). Asymptotic squared-error risk of LASSO is proofed based

on analysis of approximate message passing algorithm discussed in Chapter 2 under

assumption (4.4) and Σ = I (Bayati and Montanari, 2012).

In the e-commerce data, predicted demands are further analyzed for the purpose of

inventory planning. Since the cost of failing to fulfill cosumers’ demand outweigh cost of

storing extra inventory, we may also be interested in other loss functions such as quantile

loss and absolute loss. Exact risk is only available for squared-error loss, but in practice

similar phenomena seem to hold for these other loss functions.

4.3 Projected least squares estimation

For the purpose of out-of-sample prediction, we propose an OLS-type estimator,

which regresses y on linearly transformed predictors XC, where C ∈ Rp×k (k/p→ 0).

This approach provides a sharp estimate of the coefficients while introducing some

misspecification error.

The transformation matrix C is given a priori. For example, in online-retailing data,

suppose there are m products sold online, then C could correspond to pooling the data

across products and create a common univariate time-series/regression model for all

products. The linearly transformed predictors provide information of average overall

demand for each previous week. For multi-polygenic score approach in genetic risk

prediction, the weights in C are noisy estimations of each parameter acquired in a large

repetition sample (Selzam et al., 2017). The projected design summarizes all genetic

variants associated with a given risk factor by weighted sum over all genotypes.

In many other problems where projection directions are not obvious, it is important

to investigate the suitable transformations. The directions can be found by dimension
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reduction techniques, including classical principal component analysis and partial least

squares noted previously. In addition, these directions derived can be converted into a

coarser group mapping by projected-clustering method such as k-means. The clustering

pattern might also lie within subspace of the data; however this approach might not be

as effective due to the curse of dimensionality (Kriegel et al., 2009). However, for out-of-

sample prediction, the best choice of finite dimensional projection C should maximize

its corresponding C-heritability.

4.3.1 Asymptotic risk

Similar to the argument on (3.17) from Chapter 3, with random-design assumption,

we can decompose y into the following form

y = Xβ + ε

= ZΣ1/2β + ε

= ZΣ1/2C(C>ΣC)−1C>Σβ + Z(I − Σ1/2C>(C>ΣC)−1C>Σ1/2)Σ1/2β + ε

= XCµ+Xγ + ε

where

Z := XΣ−1/2,

µ := (C>ΣC)−1C>Σβ

γ := β − Cµ.

The estimand of projected least squares µ is a linear transformation of β. Consider the

new noise being ε′ = (ε′1, . . . , ε
′
n)> = Xγ + ε, under assumption (4.4),

ε′i
i.i.d.∼ N (0,γ>Σγ + σ2

ε ) and independent of C>xi.

Then we take the least squares approach to estimate Cµ. The least squares estimate

provides a sharp estimate on Cµ as k/p→ 0, while introducing some bias because of

model misspecification. Such bias-variance tradeoff is shown in asymptotic out-of-sample

error of projected least squares below.
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Lemma 4. Assume that the linear model (4.1) holds, that β ∈ Rp is a fixed vector.

Suppose that zi = (yi, Xi·)
> and

zi
i.i.d.∼ N

0,

β>Σβ + σ2
ε β>Σ

Σβ Σ

 .

Let C ∈ Rp×k, k/p→ 0, and define

β̂proj := Cµ̂proj = C(C>X>XC)−1C>X>y.

Then,

lim
n→∞

‖β̂proj − β‖2Σ = γ>Σγ.

This lemma is derived in Section 4.7. In the large limit, all of out-of-sample error of

projected least squares comes from the misspecified error. Moreover, from the heritability

point of view, consider new response be ε′, then γ>Σγ measures the total amount of

variation with in ε′ that is attributable to predictors X. In other words, the portion of

explained variation for projected least squares achieves its upper bound (C-heritability)

in the large limit.

4.4 Risk estimation and model evaluation

4.4.1 Random-effects assumption

In Chapter 3, we have discussed the maximum likelihood approach for fixed-effects

variance component estimation. When Σ = I, the random-effects Gaussian maximum

likelihood method estimate is consistent in estimating γ>Σγ (Dicker and Erdogdu, 2016b).

When Σ is known, the data can be reduced to the iid design case after transforming

the data (y, X) 7→ (y, XΣ−1/2). Therefore, for risk estimation purpose, Σ1/2γ ∈ Rp is

treated as id random effects to quantify the magnitude of lost signal. Hence, assume that

β = Cµ+ γ, C ∈ Rp×k,µ ∈ Rk and Σ1/2γ ∼ N
(

0,
τ2

p
Ip

)
. (4.5)

Under the assumption above, the out-of-sample error of projected least squares is

equivalent to τ2. Moreover, it has been previous noted in Chapter 3 that the popular



62

linear kernel-based maximum likelihood approach is potentially biased in estimating

γ>Σγ for fixed γ, and the whitening transformation step (y, X) 7→ (y,XΣ−1/2) is crucial

in avoiding biased estimation results. Therefore, in this section, we assume that the

structure of Σ is known.

As noted previously, τ2 is the amount of signal variation within ε′, and variance

component estimation requires ε′. As an immediate result of Lemma 4 ,

lim
n,p→∞

‖Cµ− β̂proj‖2Σ → 0.

Let

ỹ := y −Xβ̂proj . (4.6)

Then, the residual ỹ is a proxy of ε′ in the large limit.

4.4.2 Heritability estimation

In prediction problems, the optimal approach is selected by minimizing the risk. In

this subsection, we would like to discuss how to compare out-of-sample error of projected

least squares estimation to that of alternative methods. Let h2 := τ2

τ2+σ2
ε
, which measures

the variation in residual ε′ that is attributable to predictors. Then h2 indirectly measures

risk of projected least squares, and the optimal approach to the problem can be measured

by h2 and heritabilities of other approaches.

First of all, when ρ < 1, h2 provides a rule of thumb for deciding whether projected

least squares is superior than OLS. Since in the online retailing data, n ≈ p, we are still

interested in the performance of projected least squares when ρ < 1. The decision rule is

shown as follows:

Corollary 1. As n, p→∞ and p/n→ ρ ∈ (0, 1), under assumption (4.5), l
(
β̂proj

)
<

l
(
β̂ols

)
is equivalent to

τ2

τ2 + σ2
ε

< ρ. (4.7)

The corrollary is an immediate result of Lemma 3 and 4. The left hand side of the

inequality h2 compares the squared bias with noise variance for a model where variance
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of the estimator converges to zero in probability. Such risk evaluation can also be applied

to residual of other high-dimensional methods with variance converges to zero.

Heritability h2 can be measured by maximum likelihood estimation with Mahalanobis

kernel. Motivated by random-effects assumption 4.5, let η2 = τ2/σ2
ε and the maximum

likelihood estimator (MLE) for variance components (σ2
ε , η

2) is

(σ̂2
ε , η̂

2) = argmax
σ2
ε ,η

2>0

l(σ2
ε , η

2), (4.8)

where

l(σ2
ε , η

2;XΣ−1/2, ỹ) = −1

2
log(σ2

ε )−
1

2n
log det(η2/pXΣ−1X> + I)

− 1

2nσ2
ε

ỹ>(η2/pXΣ−1X> + I)−1ỹ

is the log-likelihood of ỹ|XΣ−1/2. The corresponding MLE of h2 is

ĥ2 =
η̂2

1 + η̂2
.

We refer statistical properties (i.e. consistency and asymptotic normality) of ĥ2 to

Proposition 2 in Chapter 3. Comparing to ordinary least squares, the projected least

squares is preferred when ĥ2 < ρ, a standard Wald test can be applied for the decision

of whether to perform the projected least squares method.

When comparing out-of-sample error of projected least squares with that of other

sharp estimation approach (e.g. projected least squares with other candidate projections),

the preference can also be carried out by variance component estimation (i.e. the

projection matrix is prefered when its associated C-heritability is larger). Suppose β̂alt

is the estimate of an alternative method such that

lim
n,p→∞

∥∥∥β̂alt − E
(
β̂alt

)∥∥∥2

Σ
→ 0.

Then let the residual of the alternative method be ỹ′ = y −Xβ̂alt and assume ỹ′ →

Xγ ′ + ε where γ ′ = β − E(β̂alt). Let η′2 = τ ′2/σ2
ε , then η̂′2 is an estimator of η′2 via

Gaussian variance component MLE (4.8). Then the original projected least squares

method has a smaller misspecified error when Wald test rejects the null hypothesis

H
(a)
0 : η2 − η′2 > 0.
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For other estimators that are less sharp, direct analysis on variance components in

residual could potentially cause biased estimation results. However, if the asymptotic

risk has an explicit form in terms of quadratic form-based signal-to-noise ratio, we can

also use similar technique to estimate the risk.

Take ridge regression as an example. Provided Cov(x) = Σ, define the ridge regression

estimator corresponds to the regularization estimator t2 ∈ [0,∞] be

β̂ridge(t
2) := Σ−1/2(Σ−1/2X>XΣ−1/2 + p/t2)−1Σ−1/2X>y,

= (X>X + p/t2Σ)−1X>y.

Let κ2 = β>Σβ/σ2
ε be the signal-to-noise ratio (SNR) of linear model (4.1), then define

the optimal ridge regression estimator be

β̂ridge(κ
2) := (X>X + p/κ2Σ)−1X>y. (4.9)

β̂ridge(κ
2) is “oracle” in the sense that

l
(
β̂ridge(κ

2)
)

= inf
t2∈[0,∞]

l
(
β̂ridge(t

2)
)
.

Moreover, assuming β>Σβ <∞, we have

lim
n,p→∞

sup
β∈Rp

∣∣∣l (β̂ridge(κ2)
)
− σ2

εRridge(κ
2, ρ)

∣∣∣ = 0,

where

Rridge(κ
2, ρ) =

1

2ρ

[
κ2(ρ− 1)− ρ+

√
(κ2ρ− κ2 − ρ)2 + 4κ2ρ2

]
.

The asymptotic risk of oracle ridge estimator is derived in (Dicker, 2013, 2016). Similar

to residual variance component estimation (4.8) discussed earlier, assuming that Σ1/2β

is iid Gaussian, the MLE of κ2 is κ̂2, which estimates the SNR within the original linear

model (4.1). Then we claim that projected least squares is expected to have smaller

out-of-sample error when Wald test rejects H(b)
0 : η2 −Rridge(κ2, ρ) > 0.

4.5 Application: genetic risk prediction

4.5.1 Projected least squares in genetics

In animal and plant breeding, and even in human genetics, genetic merit could be

predicted based on genome-wide association studies (GWAS) data. Since (Meuwissen
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and Goddard, 2001), many literature assume a high-dimensional linear model, such that

y = Xβ + ε (4.10)

where y ∈ Rn is the vector of quantitative traits, β ∈ Rp is the effect-sizes, and ε

is additive environmental noise follows N (0, σ2
ε ). The ith row of X is a centered and

standardized corresponding p-dimensional vector of predictors for individual i indicating

the genotyped SNP. The genotype j for individual i is trinary and depends on minor

allele frequency (MAF) of SNP j (Yang et al., 2010; Zaitlen and Kraft, 2012).

Since quantitative traits are usually affected by numerous SNPs with small effects

(Buckler et al., 2009), comparing to limited number of observations, we generally consider

the setting where n << p. A classical method in genetic prediction is best linear unbiased

prediction (BLUP) proposed by (Henderson, 1950, 1984). In the ideal case when there is

no linkage disequilibrium (i.e. Cov(x) = I), and assuming that β1, . . . , βp
iid∼ N (0, σ2

β/p),

The BLUP is equivalent to the oracle ridge regression estimator, such that

β̂blup := (X>X + pσ2
ε /σ

2
βI)−1X>y.

The ridge regression effectively controls model complexity and is commonly used in

predicting breeding values (de Vlaming and Groenen, 2015).

Many common complex traits have been discovered to be associated with finitely

many intermediate risk factors. Although most of SNPs genotyped are insignificant, they

are jointly associated with the trait (Consortium et al., 2009). Multi-polygenic score

method allows all SNPs to be included for predicting the quantitative phenotype of these

complex traits (Krapohl et al., 2017). A polygenic score summarizes all genetic variants

associated with a given risk factor by weighted sum over all genotypes, and the phenotype

is then predicted by a function of polygenic scores. In practice, the weighted sum is

acquired from a replication sample by simple regression analysis (Selzam et al., 2017).

In other words, weights associated to a risk factor is a noisy estimation of the effects.

Therefore, we further assume that β follows assumption 4.5. Although the individual

effect-sizes are small and insignificant, the signal is significant after aggregating the

genotypes with known weight matrix C, where each parameter of the projected design

matrix quantifies the impact of a specific risk factor.



66

4.5.2 Numerical results

The rest of this section includes simulated quantitative trait prediction. Consider

y = Xβ + ε where y ∈ Rn is quantitative trait and ε ∼ N (0, σ2
ε I). In addition, we let

(i) n = 1000, p = 2000, k = 10.

(ii) x1, . . . ,xn
iid∼ N (0,Σ) where ij-th entry of Σ is 0.5|i−j|. Although entries in x are

trinary and depends on MAF of each SNP, we approximate the predictors with

Gaussian design, similar to Chapter 3 .

(iii) Let

C =



c1 0 . . . 0

0 c2 0 . . .

...
...

. . .
...

0 . . . 0 ck


where ci ∈ Rp/k represents computed weights for SNPs associated with risk factor

i. Coordinates of ci are iid and follow (k/p)χ2
1.

(iv) µ ∼
√

5N (0, I).

(v) σ2
ε = 0.1.

Let

β =
√

1− ωCµ+ γ, (4.11)

where γ ∼ N (0, σ2
γ/pI) and σ2

γ = ωµ>C>ΣCµ. Fixing C and µ, we vary ω =

0.2, 0.3, . . . , 0.9. For each setting, we simulate 50 independent datasets (y,X), and

compute the projected least squares estimator provided C and oracle ridge regression

estimator (4.9) provided κ2 = β>Σβ/σ2
ε . Risk of each estimator is computed by Gaussian

variance component MLE (4.8). Mean of risk estimators are shown in Table 4.1.

When ω varies, r2
proj increase linearly in ω. Signal-to-noise ratio is expected to hold

the same when ω varies, and the fluctuations in r2
blup for each ω in Table 4.1 is due

to randomness in γ. Estimated risk for projected least squares r̂2
proj shows downward
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Table 4.1: Mean estimates of out-of-sample error of projected least squares and the
BLUP estimator. r2

proj and r
2
blup are the expected out-of-sample error of projected least

squares and the BLUP estimator respectively. Their average risk estimates are r̂2
proj and

r̂2
blup, follows the Mahalanobis kernel maximum likelihood estimator from Chapter 3 .
r̃2
proj is the finite sample corrected estimate for r̂2

proj .

ω r2
proj r̂2

proj r̃2
proj r2

blup r̂2
blup

0.2 0.154 0.136 0.140 0.465 0.461
0.3 0.242 0.229 0.234 0.470 0.470
0.4 0.313 0.312 0.319 0.454 0.456
0.5 0.385 0.381 0.389 0.450 0.449
0.6 0.423 0.410 0.419 0.420 0.408
0.7 0.508 0.504 0.515 0.429 0.430
0.8 0.560 0.547 0.559 0.434 0.431
0.9 0.639 0.631 0.644 0.419 0.422

bias, especially when ω is large, this is because the difference between r2
proj and actual

estimand of r̂2
proj is

ι2 =
k − 1

n− k
r2
proj +

k

n− k − 1
(σ2
γ + σ2

ε ),

and we expect the difference to be vanished as n→∞. Let r̃2
proj = r̂2

proj + ι̂2 to be the

finite sample corrected estimate of r2
proj . After adjusting the non-asymptotic bias for

projected least squares, the Mahalanobis MLE is consistent in estimating the risk for

both methods. We refer to Chapter 3 for asymptotic variance the Mahalanobis estimator.

●

●

●

●

●

●

●

●

0.4 0.6 0.8 1.0 1.2 1.4

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

risk ratio

ra
tio

 o
f e

st
im

at
ed

 r
is

ks

Figure 4.1: For various ω, ratio of risks between projected least squares and BLUP
r2
proj/r

2
blup is plotted against the ratio of average risk estimates r̂2

proj/r̂
2
blup in red line

with dots. r2
proj/r

2
blup is plotted against r̃2

proj/r̂
2
blup in blue line with dots. The black line

is a diagonal reference line.
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Figure 4.1 shows the ratio of risks between projected least squares and BLUP against

the ratio of mean estimated risk for various ω. A ratio of r2
proj/r

2
blup > 1 means that

projected least squares given C is preferred, and the black diagonal reference line indicates

the situation where estimated ratio perfectly identifies the underlying risk ratio. It is

shown that the unadjusted ratio usually underestimates the underlying ratio as expected.

The finite sample corrected estimated ratio oscillates around the reference diagonal

line, suggesting that the relationship between projected least squares and BLUP is

well-estimated.

In the next experiment, we fix ω = 0.6 in (4.11) and vary the undersampling ratio

n/p = 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7

given p = 2000. Keeping all other settings the same, we simulate 50 independent datasets

with fixed β. The distributional statistics are summarized in Table 4.2.

Table 4.2: Mean estimates of out-of-sample error of projected least squares the BLUP
estimator. r2

proj and r
2
blup are the expected out-of-sample error of projected least squares

and the BLUP estimator respectively. Their average risk estimates are r̂2
proj and r̂

2
blup,

follows the Mahalanobis kernel maximum likelihood estimator. The adjusted projected
least squares risk estimator for non-asymptotic bias is r̃2

proj .

n r2
proj r̂2

proj r̃2
proj r2

blup r̂2
blup

700 0.479 0.474 0.488 0.569 0.576
800 0.478 0.464 0.477 0.539 0.537
900 0.478 0.465 0.476 0.507 0.507
1000 0.476 0.464 0.473 0.478 0.475
1100 0.475 0.470 0.479 0.446 0.447
1200 0.475 0.461 0.470 0.420 0.415
1300 0.475 0.471 0.479 0.391 0.393
1400 0.474 0.456 0.463 0.364 0.366

r2
proj is fixed because of fixed β within this simulation. In Table 4.2, we again observed

that the estimated risk for projected least squares are biased because of finite sample

sizes. After adjusting for the non-asymptotic bias, the gap between average estimated

risk and r2
proj is eliminated. In Figure 4.2, estimated ratio between two method is biased

without finite sample correction while the adjusted estimated ratio oscillates around the

referece line.
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Figure 4.2: For various n, ratio of risk between projected least squares and BLUP
r2
proj/r

2
blup is plotted against the ratio of average risk estimates r̂2

proj/r̂
2
blup in red line

with dots. r2
proj/r

2
blup is plotted against r̃2

proj/r̂
2
blup in blue line with dots. The black line

is a diagonal reference line.

4.6 Application: demand forecasting

4.6.1 Banded vector autoregressive model

The forecasting team in online-retailing industry is responsible to forecast the weekly

demand for all m → ∞ products sold online, that is to estimate an extremely high-

dimensional time series. Let dt = (d1,t, . . . , dm,t)
> ∈ Rm be the demand vector for week

t. We could assume that dt follows the vector autoregressive (VAR) model, such that

dt =

q∑
j=1

Bjdt−j + et, (4.12)

where q << m, Bj is a sparse coefficient matrix, et is independent of dt−j ∀j < t,

with E(et) = 0, and Var(et) = Ω ∈ Rm×m. Estimating the full coefficient matrices is

extremely challenging, therefore works have been developed on model selection techniques

on VAR model (e.g. Hsu et al., 2008; Haufe et al., 2008).

Suggested by Guo et al. (2016), after re-arranging the order of products, we can

assume that Bj is banded in the sense that (Bj)i,i′ = 0 if |i− i′| > s0. Provided training

data dt, t = 1, . . . , T , let p1 = q(2s0 + 1) and n1 = T − q, this data set can be written

in linear models. For almost every product a ∈ [m], the individual linear model is

ya = Xaβa + εa, where βa ∈ Rp1 and the design matrix is n1 × p1 matrix with full

rank and n1 > p1 (despite 2k0 design matrices among them have less than p1, i.e. when
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a ≤ s0 or a ≥ m− s0 + 1). Similar to the random-design assumption for generic design

matrix, suppose that

(Xa)i· ∼ N (0,Σ1) ∀a ∈ [m] and i ∈ [n1]; (4.13)

βa = µ+ γa,where µ ∈ Rk and Σ
1/2
1 γa ∼ N

(
0,
σ2
β

p
Ip1

)
. (4.14)

Let Σ∗ = diag(Σ1, . . . ,Σ1), let n = mn1, p = mp1 and n/p → ρ ∈ (0, 1). In a stacked

form, the model is

y∗ = X∗β∗ + ε∗, (4.15)

where y∗ = (y>1 , ...,y
>
m)>, X∗ = diag(X1, X2, · · · , Xm), β∗ = (β>1 , . . . ,β

>
m)> and ε∗ =

(ε>1 , . . . , ε
>
m)>.

Guo et al. (2016) focuses on finding optimal s0 and estimate β∗ with OLS estimator.

Although ε∗ is correlated, the OLS provides consistent estimation results. However, it

is worth mentioning that the design matrix X∗ is extremely sparse, such that only the

m n1 × p1 block matrices along the diagonal in the design matrix are non-sparse. Due

to the sparsity and high dimensionality (n ≈ p), the OLS estimator usually generalizes

poorly, we would like to improve the OLS estimator by performing dimension reduction

as well as reducing sparsity within the design matrix X∗. Let the transformation matrix

be I∗ := (Ip, . . . , Ip)
>, then I∗ can be interpreted as the grouping of features, i.e. jth

feature of βa is assigned to group j ∀a ∈ [m].

4.6.2 Asymptotic risks of projected least squares and OLS

In the following subsection, we assume ε∗ ∼ N (0, σ2
ε I), the uncorrelated error is

unrealistic for time series, however it is essential for computing the asymptotic risk.

The risk of β̂
(ols)

∗ =
(
β̂

(ols)

1 , . . . , β̂
(ols)

m

)>
is calculated as follows, the risk is multiplied

by 1/m to control it to a finite value.

1

m
‖β̂(ols)

∗ − β∗‖2Σ∗ =
1

m

m∑
a=1

‖β(ols)
a − βa‖2Σ1

=
1

m

m∑
a=1

‖(X>a Xa)
−1X>a ya − βa‖2Σ1
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=
1

m

m∑
a=1

‖(X>a Xa)
−1X>a εa‖2Σ1

=
1

m

m∑
a=1

‖(Z>a Za)−1Z>a εa‖22,

where Za = XaΣ
−1/2
1 is iid n1 × p1 Gaussian unitary random matrix.

In the large limit, by law of large numbers,

lim
m→∞

1

m

m∑
a=1

‖(Z>a Za)−1Z>a εa‖22 → E‖(Z>a Za)−1Z>a εa‖22,

where

E‖(Z>a Za)−1Z>a εa‖22 = EZEε|Z‖(Z>a Za)−1Z>a εa‖22 =
p1σ

2
ε

n1 − p1 − 1

by properties of inverse-Wishart distributions.

In this problem, the projection direction can be viewed as a way of grouping the

features. The j-th feature of every βa is mapped to group j, i.e. letting the projection

direction be I∗ := (Ip, . . . , Ip)
>. From the parameter perspective, the projection direction

utilizes the knowledge of grouping in effects, assuming that effects in the same group

have small variance. For example, a projection direction of I∗ indicates that the jth

feature of every βa are the same. For this special case with sparse design matrix, from

the design matrix perspective, the projection direction reduces the dimensionality and

sparsity within the design matrix, and can be treated as a way of compressing the signal

in the design matrix. Define

β̂
(proj)

∗ := I∗(I
>
∗ X

>
∗ X∗I∗)

−1I>∗ X
>y∗

The assumption (4.13) also makes it possible to compute the risk of projected least

squares estimator.

Corollary 2. Assume (4.13) holds, let m→∞ and n1/p1 = ρ ∈ (0, 1), then

lim
m→∞

1

m
‖β̂(proj)

∗ − β∗‖2Σ∗ =
σ2
βtr(Σ1)

mp1
.

With assumption that Xa’s share the same Σ1, this corrollary is an immediate result

of Theorem 1. Then similar heritability estimation technique and Wald test in Section

4.4 can be applied to this problem.
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4.6.3 Numerical results

Consider linear model y = Xβ + ε assuming uncorrelated error ε ∼ N (0, σ2
ε I). We

first investigate how projected least squares react with block diagonal design matrix. Let

(i) n = 2000, p = 1000, k = 10.

(ii) X∗ = diag(X1, X2, · · · , Xm);

for a = 1, . . . ,m, (Xa)i·
iid∼ N (0,Σ1) where (Σ1)ij = 0.2|i−j|.

(iii) Let 1 is be length-p/k vector of 1s, assume

C =



1 0 . . . 0

0 1 0 . . .

...
...

. . .
...

0 . . . 0 1


(4.16)

(iv) µ ∼ 1/
√

10N (0, I).

(v) σ2
ε = 1.

Let β =
√

1− ωCµ+ γ, where γ ∼ N (0, σ2
γ/pI) and σ2

γ = ωµ>C>ΣCµ. Fixing C and

µ, we vary ω = 0.2, 0.3, . . . , 0.9. For each setting, we simulate 50 independent datasets,

and compute projected least squares and ordinary least squares.

Table 4.3: Mean estimates of out-of-sample error of projected least squares and ordinary
least squares. r2

proj and r2
ols are the expected out-of-sample error of projected least

squares and OLS respectively. Their average risk estimates are r̂2
proj and r̂

2
ols, follows the

Mahalanobis kernel maximum likelihood estimator. r̃2
proj is the finite sample corrected

estimate for r̂2
proj .

ω r2
proj r̂2

proj r̃2
proj r2

ols r̂2
ols

0.2 22.1 20.1 21.7 111.4 112.4
0.3 42.8 41.5 42.4 110.8 110.8
0.4 49.7 48.4 49.4 111.8 111.5
0.5 61.7 61.3 62.4 109.5 110.3
0.6 71.0 69.3 70.5 110.3 110.2
0.7 84.4 81.8 83.1 109.7 112.3
0.8 99.7 98.7 100.2 110.9 110.6
0.9 117.1 114.0 115.6 109.5 110.8
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Mean of risk estimators computed by Gaussian variance component MLE (4.8) are

shown in Table 4.3 and the risk ratio plot in Figure 4.3. Although the design is a sparse

block diagonal matrix, Table 4.3 and Figure 4.3 show similar results as in genetic risk

prediction (with non-sparse design).
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Figure 4.3: For various ω, ratio of risk between projected least squares and ordinary
least squares r2

proj/r
2
ols is plotted against the ratio of average risk estimates r̂2

proj/r̂
2
ols

in red line with dots. r2
proj/r

2
ols is plotted against r̃2

proj/r̂
2
ols in blue line with dots. The

black line is a diagonal reference line.

For the next experiment, we fix ω = 0.3 and σe = 0.5, and vary the number of

observations from 1600 to 3000 in increments of 200s. Keeping all other settings the

same, we simulate 50 independent datasets with fixed β. Similar patterns are observed

in Table 4.4 and Figure 4.4 below.

Table 4.4: Mean estimates of out-of-sample error of projected least squares and ordinary
least squares. r2

proj and r2
ols are the expected out-of-sample error of projected least

squares and OLS respectively. Their average risk estimates are r̂2
proj and r̂

2
ols, follows the

Mahalanobis kernel maximum likelihood estimator. r̃2
proj is the finite sample corrected

estimate for r̂2
proj .

n r2
proj r̂2

proj r̃2
proj r2

ols r̂2
ols

1600 38.2 37.1 37.9 98.9 100.7
1800 38.1 36.5 37.1 71.1 71.2
2000 38.1 37.8 38.4 55.1 54.5
2200 38.0 36.8 37.3 44.6 45.5
2400 38.0 37.6 38.1 38.1 38.0
2600 38.0 36.7 37.2 32.8 33.2
2800 37.9 37.5 38.0 29.7 29.7
3000 37.9 37.6 38.0 26.0 26.3
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Figure 4.4: For various n, ratio of risk between projected least squares and ordinary
least squares r2

proj/r
2
ols is plotted against the ratio of average risk estimates r̂2

proj/r̂
2
ols

in red line with dots. r2
proj/r

2
ols is plotted against r̃2

proj/r̂
2
ols in blue line with dots. The

black line is a diagonal reference line.

In the following section, we would like to implement projected least squares for with

times series data. We simulate the e-commerce data according to the following VAR

model. For t = k + 1, . . . , T , let

dt =
k∑
j=1

b>t−jdt−j + et, k < T (4.17)

where dt is the m-dimensional demand vector at time t and bj is a coefficient vector.

We assume that et ∼ N (0, σ2
eI) are noise vectors for t = 1, . . . , T . Let n = T − k,

D = (d1, . . . ,dT ), B = (b1, . . . , bk)
> and E = (e1, . . . , en)>, then we can write an

individual linear model for each product a ∈ [m]. Let ya = Xaβa + εa, where

ya = (Dk+1,a, Dk+2,a, . . . , Dn,a)
>

Xa =



D1,a . . . Dk,a

D2,a . . . Dk+1,a

...
. . .

...

Dn,a . . . Dn+k−1,a


βa = Ba·

εa = Ea·

In a stacked form, (4.17) is equivalent to

y = Xβ + ε (4.18)
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with

y = (y>1 , . . . ,y
>
m)>,

X =



X1 0 . . . 0

0 X2 . . . 0

...
...

. . .
...

0 . . . . . . Xm


,

β = (β>1 , . . . ,β
>
m)>,

ε = (ε>1 , . . . , ε
>
m).

In the experiment, we let

(i) m = 100, n = 20, k = 10.

(ii) µ1, . . . , µk
iid∼ 1

kUnif(0.3, 1).

(iii) σ2
e = 1.

For i = 1, . . . , k, let bi =
√

1− ωµ+γi, where γi ∼ N (0, σ2
γ/pI) and σ2

γ = mωµ>µ. We

vary ω = 0.2, 0.3, . . . , 0.9. Projected least squares given (4.16) and ordinary least squares

are fitted for the linear model (4.18). Estimated asymptotic risks for two approaches are

listed in Table 4.5.

Table 4.5: Mean estimates of out-of-sample error of projected least squares and ordinary
least squares. r2

proj and r2
ols are the expected out-of-sample error of projected least

squares and OLS respectively. Their average risk estimates (assuming additive white
Gaussian noise) are r̂2

proj and r̂
2
ols, follows the Mahalanobis kernel maximum likelihood

estimator. r̃2
proj is the finite sample corrected estimate for r̂2

proj .

ω r2
proj r̂2

proj r̃2
proj r2

ols r̂2
ols

0.2 1.57 0.98 1.48 76.32 105.60
0.3 2.17 1.12 1.63 77.26 107.15
0.4 2.59 1.60 2.12 77.51 107.21
0.5 3.65 2.64 3.17 76.97 106.71
0.6 3.51 2.62 2.79 76.22 108.75
0.7 4.05 2.83 3.37 77.01 109.18
0.8 4.59 3.52 4.06 77.06 110.33
0.9 5.31 4.15 4.70 76.96 108.96

In Table 4.5, both r2
proj and r

2
ols are the average out-of-sample error of 50 replicates.

Because both methods belong to the class of ordinary least squares estimation, they are
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misspecified when responses are correlated. As a result, the correlation in noise causes

the difference between empirical risk and estimand of risk estimators, and all estimators

show bias in estiating risk of least squares with correlated error. Although Gaussian

variance component MLE assumes additive white Gaussian noise, the estimated σ2
e and

σ2
γ remain unbiased. r2

ols has an unexpected large upward bias, we suspect it is due to

the limited sample size.
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Figure 4.5: For various ω, empirical risk of projected least squares r2
proj is plotted against

the average risk estimates r̂2
proj in red line with dots, and plotted against r̃2

proj in blue
line with dots. The black line is a diagonal reference line.

Figure 4.5 plots empirical and estimated risks for projected least squares. We omit

ordinary least squares since it is unreliable with limited sample size. We observe that

the portion of bias is relative stable for various ω.

The final experiment assumes ω = 0.3 and vary n from 1600 to 3000 increments of

200s. The distributional statistics of estimated risks are reported in Table 4.6.

From Table 4.6, we observed that empirical risk r2
proj decreases gradually as n

increases. Moreover, the difference (unusualy pattern) between r2
ols and r̂

2
ols is smaller as

sample size increase. We conjecture that empirical risk for OLS-type estimation is very

sensitive to sample size when responses are actually correlated, which suggests that the

unexpected pattern for OLS we observed in the previous setting is due to insufficient

sample size.

In real e-commerce data analysis, m is usually in units of millions. By stacking the

predictors, we could essentially create an ideal situation where k/n→ 0. We expect that
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Table 4.6: Mean estimates of out-of-sample error of projected least squares and ordinary
least squares. r2

proj and r2
ols are the expected out-of-sample error of projected least

squares and OLS respectively. Their average risk estimates are r̂2
proj and r̂

2
ols, follows the

Mahalanobis kernel maximum likelihood estimator. r̃2
proj is the finite sample corrected

estimate for r̂2
proj .

n r2
proj r̂2

proj r̃2
proj r2

ols r̂2
ols

1600 2.28 1.35 2.00 123.70 191.92
1800 2.24 1.17 1.75 94.52 137.42
2000 2.11 1.03 1.54 77.79 106.60
2200 2.08 0.92 1.39 65.38 87.76
2400 2.08 1.18 1.61 57.38 78.88
2600 2.02 1.19 1.59 50.92 64.87
2800 2.02 1.45 1.82 47.17 57.32
3000 1.99 1.07 1.41 42.04 51.21

in real data analysis the risk estimation for projection least squares becomes unbiased

because of sufficiently large sample size.
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4.7 Appendix

4.7.1 Proof of Lemma 3

Lemma 3. Let n, p→∞ and p/n→ ρ ∈ (0, 1), assume condition (4.4) holds, then

lim
n→∞

‖β̂ols − β‖2Σ =
σ2
ε ρ

1− ρ
.

Proof. Let Z = XΣ−1/2 and Z = UΛV > be its singular value decomposition, then

l
(
β̂ols

)
= ‖(X>X)−1X>y − β‖2Σ

= ‖(X>X)−1X>(Xβ + ε)− β‖2Σ

= ‖(X>X)−1X>ε‖2Σ

= ‖(Σ1/2Z>ZΣ1/2)−1Σ1/2Z>ε‖2Σ

= ‖(Z>Z)−1Z>ε‖22

= ε>UΛV >(V Λ2V >)−2V ΛU>ε

= ε>UΛ−2U>ε

Let ε̃ = (ε̃1, . . . , ε̃p)
> = U>ε, then ε̃j

i.i.d.∼ N(0, σ2
ε ) because of orthogonal invariance of

multivariate Gaussian distribution. Let Λ̃ = diag(λ̃1, . . . , λ̃p) = Λ−2. Then

l
(
β̂

(ols)
)

=

p∑
j=1

λ̃j ε̃
2
j

By (Etemadi, 2006),

1∑p
j=1 λ̃j

p∑
j=1

λ̃j ε̃
2
j
a.s.→ E(ε̃2j ).

Let W = Z>Z, then W ∼ Wishart(n, Ip) and tr(W−1) =
∑p

j=1 λ̃j . By (von Rosen,

1988),

Etr(W−1) = tr(E(W−1)) = tr

(
1

n− p− 1
Ip

)
=

p

n− p− 1

E(tr(W−1)2) = tr(E(tr(W−1)W−1))

= tr(c1tr(Ip)Ip + 2c2Ip)

= c1p
2 + 2c2p
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where c1 = (n− p− 2)c2 and c−1
2 = (n− p)(n− p− 1)(n− p− 3). Then

Var(tr(W−1)) = c1p
2 + 2c2p−

p2

(n− p− 1)2

=
(n− p− 1)(n− p− 2)p2 + 2p(n− p− 1)− p2(n− p)(n− p− 3)

(n− p)(n− p− 1)2(n− p− 3)

=
2p2 + 2p(n− p− 1)

(n− p)(n− p− 1)2(n− p− 3)

=
2p(n− 1)

(n− p)(n− p− 1)2(n− p− 3)
.

Then in the large limit,

lim
n,p→∞

Var(tr(W−1)) =
2np

(n− p)4
=

2ρ

n2(1− ρ)4

Since ρ < 1, 1/(1− ρ) <∞, we thus have 2np
(n−p)4 → 0. Therefore, we have shown that

E(tr(W−1)− E(tr(W−1)))2 → 0, then

tr(W−1)→ ρ

1− ρ

Therefore, by Slutsky’s theorem,

ε>UΛ−2U>ε→ σ2
ε ρ

1− ρ
.

4.7.2 Proof of Lemma 4

Lemma 4. Assume that the linear model (4.1) holds, that β ∈ Rp is a fixed vector.

Suppose that zi = (yi, Xi·)
> and

zi
i.i.d.∼ N

0,

β>Σβ + σ2
ε β>Σ

Σβ Σ

 .

Let C ∈ Rp×k, k/p→ 0, and define

β̂proj := Cµ̂proj = C(C>X>XC)−1C>X>y.

Then,

lim
n→∞

‖βproj − β‖2Σ = γ>Σγ.
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Proof. The loss of β̂proj is

l
(
β̂proj

)
= ‖C(C>X>XC)−1C>X>y − β‖2Σ

= ‖C(C>X>XC)−1C>X>(XCµ+Xγ + ε)− Cµ− γ‖2Σ

= ‖C(C>X>XC)−1C>X>(Xγ + ε)− γ‖2Σ

Let PC be a p×k matrix with orthonormal columns such that Σ1/2C(C>ΣC)−1C>Σ1/2 =

PCP
>
C . Let PC⊥ be a corresponding p×(p−k) matrix with orthonormal columns satisyfing

P>C PC⊥ = 0 and I = PCP
>
C + PC⊥P

>
C⊥

. Then

‖β̂proj − β‖2Σ

= ‖C(C>X>XC)−1C>X>(XΣ−1/2(PCP
>
C + PC⊥P

>
C⊥)Σ1/2γ + ε)− γ‖2Σ

= ‖C(C>X>XC)−1C>X>(XΣ−1/2(PC⊥P
>
C⊥)Σ1/2γ + ε) + C(C>ΣC)−1Σγ − γ‖2Σ

= ‖Σ1/2C(C>X>XC)−1C>X>(XΣ−1/2(PC⊥P
>
C⊥)Σ1/2γ + ε)‖22 + ‖P>C⊥Σ1/2γ‖22.

Here the first term is noise variation in estimating β, the second term is caused by

the bias we introduced when projecting the design matrix, the cross-term is zero because

‖P>
C⊥

Σ1/2C‖2F = 0. We further decompose the noise variation:

‖Σ1/2C(C>X>XC)−1C>X>(XΣ−1/2PC⊥P
>
C⊥Σ1/2γ + ε)‖22

= ‖Σ1/2C(C>ΣC)−1/2(Z>CZC)−1ZCε
′‖22

= ‖(Z>CZC)−1ZCε
′‖22.

where ZC = XC(C>ΣC)−1/2 is a Gaussian random matrix, and ε′ =

XΣ−1/2PC⊥P
>
C⊥

Σ1/2γ + ε. We have ZC independent of ε′ because ‖P>
C⊥

Σ1/2C‖2F = 0.

We can apply previous technique after finding the first two moments of ε′. Since

ε′i
i.i.d.∼ N (0, ‖P>

C⊥
Σ1/2γ‖22 + σ2

ε ), we have

‖(Z>CZC)−1ZCεC⊥‖22 →
k

n− k − 1
(‖P>C⊥Σ1/2γ‖22 + σ2

ε ).

Therefore,

lim
n→∞

‖β̂proj − β‖2Σ = lim
n→∞

n− 1

n− k
‖P>C⊥Σ1/2γ‖22 +

k

n− k − 1
σ2
ε

= ‖P>C⊥Σ1/2γ‖22
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Moreover,

‖P>C⊥Σ1/2γ‖22 = γ>Σγ − γ>Σ1/2PCP
>
C Σ1/2γ

= γ>Σγ − ‖P>C Σ1/2(Σ−1/2PC⊥P
>
C⊥Σ1/2β)‖22

= γ>Σγ.
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