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of non-negative Ricci curvature
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Dissertation Director:

Xiaochun Rong

We study the fundamental groups of open n-manifolds of non-negative Ricci curvature,

via the method of Gromov-Hausdorff convergence. In 1968, Milnor conjectured that any

open n-manifoldM of non-negative Ricci curvature has a finitely generated fundamental

group. In this thesis, we verify this conjecture under various geometrical conditions.

We show that the Milnor conjecture holds when M has dimension 3, or when the

Riemannian universal cover of M has Euclidean volume growth and the unique tangent

cone at infinity, or when π1(M)-action on the Riemannian universal cover satisfies the

no small almost subgroup condition.
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Chapter 1

Introduction

In 1968, Milnor proposed the following conjecture on the fundamental groups of

open manifolds with non-negative Ricci curvature [25].

Conjecture 1.0.1. Let M be an open n-manifold of Ric ≥ 0, then π1(M) is finitely

generated.

The Milnor conjecture remains open. If this conjecture is true, then by the work of

Milnor, Gromov, Kapovitch, and Wilking, π1(M) has polynomial growth and contains

a nilpotent subgroup of index bounded by some constant C(n) [25, 17, 22].

For open manifolds with non-negative sectional curvature, Toponogov’s triangle

comparison controls the small-scale geometry from the large one. This bounds the

number of Gromov’s short generators [16], and finite generation follows. Actually, any

open manifold with non-negative sectional curvature has finite topology [9]. However,

for non-negative Ricci curvature, the manifold may have infinite topology [31]. Un-

like sectional curvature, Ricci curvature lacks a strong relation between the large-scale

geometry and the small-scale one, which is the main difficulty when studying Ricci

curvature.

It is natural to ask: on what additional conditions does the Milnor conjecture hold?

In this thesis paper, we aim to achieve new results regarding this question.

The Milnor conjecture was proved under various additional assumptions in the past

decades. For instance, for a manifold with Euclidean volume growth, Anderson and Li

independently proved that the fundamental group is finite [2, 23]. Sormani discovered

geometric properties for the shortest geodesic loop that represents the short generator

[29]. With this, she showed that the Milnor conjecture holds if the manifold has small

linear diameter growth or linear volume growth. Liu classified open 3-manifolds of



2

nonnegative Ricci curvature using minimal surface theory and Perelman’s work on 3-

manifolds [24]. In particular, it confirms the Milnor conjecture in dimension 3.

The first result we present is a new proof of the Milnor conjecture in dimension

3, using structure results for limits spaces of manifolds with Ricci curvature bounded

below [4, 5, 7, 11] and equivariant Gromov-Hausdorff convergence [14].

Theorem A. The Milnor conjecture is true in dimension 3.

In this thesis, we also verify the Milnor conjecture for manifolds with additional

conditions on the Riemannian universal covers at infinity. Recall that for any open

n-manifold (M,x) of Ric ≥ 0, and any sequence ri → ∞, passing to a subsequence if

necessary, we obtain a tangent cone of M at infinity, which is the Gromov-Hausdorff

limit [18] of

(r−1
i M,x)

GH−→ (Y, y).

In general, M may not have a unique tangent cone at infinity [5]. In other words, (Y, y)

may depend on the scaling sequence ri. By splitting theorem [4], Y is a metric product

Rk×Y ′, where Y ′ has no lines. Cheeger and Colding showed that when M has Euclidean

volume growth, any tangent cone of M at infinity is a metric cone (Rk × C(Z), (0, z))

of dimension n [4], where C(Z) has diam(Z) < π and the vertex z. However, the

dimension of maximal Euclidean factor k may not be unique among all tangent cones

of M at infinity [12].

Theorem B. Let M be an open n-manifold of Ric ≥ 0. If there is an integer k such that

any tangent cone at infinity of the Riemannian universal cover of M is a metric cone,

whose maximal Euclidean factor has dimension k, then π1(M) is finitely generated.

If k = 0, then in fact π1(M) is finite (Proposition 4.1.5). Theorem B, in particular,

confirms the Milnor conjecture for any manifold whose universal cover has Euclidean

volume growth and the unique tangent cone at infinity.

Corollary 1.0.2. Let M be an open n-manifold of Ric ≥ 0. If the Riemannian univer-

sal cover of M has Euclidean volume growth and the unique tangent cone at infinity,

then π1(M) is finitely generated.
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Under the assumption in Theorem B, the Riemannian universal cover M̃ of M may

have different tangent cones at infinity, even with different dimensions.

Our third main result involves the following condition on π1(M,x)-action on M̃ .

Definition 1.0.3. Let ε, η, r > 0 and (M,x) be an n-manifold. For a closed subgroup

G of Isom(M) acting freely on M , we say that G-action has no ε-small η-subgroup at

q ∈M with scale r, if for any nontrivial symmetric subset A of G with

dH(Aq,A2q)

diam(Aq)
≤ η,

Dr,q(A) ≥ rε holds. We say that G-action has no ε-small η-subgroup on B1(x) with

scale r, if it has no ε-small η-subgroup at every point in B1(x) with scale r.

We will explain the motivation behind Definition 1.0.3, and its relation to volume,

later in Chapter 5. We conjecture that a volume lower bound would imply the no small

almost subgroup condition.

Conjecture 1.0.4. Given n, v > 0, there exist positive constants ε(n, v) and η(n, v)

such that if an n-manifold (M,x) satisfies

RicM ≥ −(n− 1), vol(B1(x)) ≥ v,

then any isometric free G-action on M has no ε-small η-subgroup on B1/2(x) with scale

r ∈ (0, 1/2].

We show that if π1(M,x)-action has no ε-small η-subgroup on M̃ with all scales,

then the Milnor conjecture is true.

Theorem C. Let (M,x) be an open n-manifold with RicM ≥ 0. If there are ε, η > 0

such that π1(M,x)-action has no ε-small η-subgroup on M̃ with all scales r > 0, then

π1(M,x) is finitely generated.

Actually, we can bound the number of short generators in terms of ε and η, which

is stronger than the finite generation (see Sections 2.3, 5.1 and 6.6). Note that if Con-

jecture 1.0.4 is true, then Theorem 1 would verify the Milnor conjecture for manifolds

whose universal covers have Euclidean volume growth.
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Theorem C is a joint work with Xiaochun Rong.

We roughly illustrate our approach to the main theorems. When π1(M,x) is not

finitely generated, for instance, π1(M) = Q the additive group of rationals, then on M

we would have infinitely many geodesic loops representing the generators with length to

infinity, and on the Riemannian universal cover (M̃, x̃) we would have orbit points at x̃

coming from the generators with arbitrary far distances to x̃. The equivariant Gromov-

Hausdorff convergence [14] provides an ideal platform to study this phenomenon. For a

sequence ri →∞, passing to a subsequence if necessary, we can consider the equivariant

Gromov-Hausdorff convergence (see Sections 2.1 and 2.3 for details):

(r−1
i M̃, x̃, π1(M,x))

GH−−−−→ (Ỹ , ỹ, G)yπ yπ
(r−1
i M,x)

GH−−−−→ (Y, y).

.

We expect to understand the fundamental group by studying limit spaces (Y, y) and

(Ỹ , ỹ, G), where the structure theory for Ricci limit spaces can be applied. If π1(M,x) is

not finitely generated, then we expect to see the consequence of non-finite generation at

infinity. Indeed, in terms of the base manifold (M,x), we can choose a special sequence

ri →∞ so that the corresponding limit space (Y, y) does not have a pole at y [29]. In

terms of the universal cover (M̃, x̃, π1(M,x)), we can choose a special sequence ri →∞

so that (Ỹ , ỹ, G) has non-connected orbit G · ỹ (see Theorem 2.3.6). These observations

play a crucial rule in proving our main results. For example, in proving Theorem B,

under certain stability condition on M̃ at infinity, the key is to show that π1(M,x)-

action also has certain stability at infinity in terms of equivariant Gromov-Hausdorff

convergence, then a contradiction to non-connected orbit would follow. We will provide

more details on our approach later in Section 2.3.

We organize the thesis as follows. In Chapter 2, we recall Gromov-Hausdorff topol-

ogy, structure theory on Ricci limit spaces, and Gromov’s short generators. We use

these properties frequently through the thesis. Theorems A and B are proved in Chap-

ters 3 and 4 respectively. In Chapter 5, we explore the relation between volume and

group actions, which leads to Definition 1.0.3. In Chapter 6, we prove some technical

results with the no small almost group assumption, then prove Theorem C.
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Chapter 2

Preliminaries

2.1 Gromov-Hausdorff topology

We recall some basic properties on Gromov-Hausdorff topology and its equivariant

version. The main reference is [28].

Let X and Y be two bounded closed subsets of a metric space (Z, d). The Hausdorff

distance between A and B is defined as

dH(X,Y ) = inf{ε > 0 | Bε(X) ⊆ Y,Bε(Y ) ⊆ X},

where Bε(A) is the open ε-neighborhood of A. The Hausdorff distance describes the

global closeness between A and B. Moreover, dH(A,B) = 0 if and only if A = B.

Gromov generalized this notion of distance to the set of all compact metric spaces.

For two compact metric spaces X and Y , we define their Gromov-Hausdorff distance

dGH(X,Y ) = inf
(Z,f,g)

{dH(f(X), g(Y )) | isometric embeddings f : X → Z, g : Y → Z

for some metric space (Z, d)}.

Roughly speaking, the Gromov-Hausdorff distance between X and Y is small, if these

two spaces look alike. dGH(X,Y ) = 0 if and only if X is isometric to Y . Gromov-

Hausdorff distance gives a weak topology on the set of all compact metric spaces.

We are particularly interested in the convergence with respect to Gromov-Hausdorff

topology, which is a powerful tool in studying a class of Riemannian manifolds, due to

the following pre-compactness theorem by Gromov [18].

Theorem 2.1.1. Let Mi be a sequence of complete n-manifolds of

RicMi ≥ −(n− 1), diam(Mi) ≤ D.
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Then after passing to a subsequence, the sequence converges in the Gromov-Hausdorff

topology to some limit space X.

An alternative formulation of Gromov-Hausdorff convergence uses approximation

maps.

Definition 2.1.2. Let X and Y be two compact metric spaces. We say that

dGH(X,Y ) ≤ ε,

if there is a map f : X → Y , called an ε Gromov-Hausdorff approximation, being

(1) ε-isometric, that is, |dX(x1, x2)− dY (f(x1), f(x2))| ≤ ε for all x1, x2 ∈ X, and

(2) ε-onto, that is, Y = Bε(f(X)).

dGH in Definition 2.1.2 may be different in values from the one defined by Hausdorff

distance. However, they generate the same topology on the set of all compact metric

spaces.

Lemma 2.1.3. Let Xi be a sequence of compact metric spaces of bounded diameter.

Then Xi
GH−→ X if and only if there is a sequence of εi Gromov-Hausdorff approximations

fi : X → Y for some εi → 0.

The notion of Gromov-Hausdorff convergence can be extended to complete metric

spaces of unbounded diameter.

Definition 2.1.4. Let (X,x) and (Y, y) be two pointed complete metric spaces. We

say that

dGH((X,x)(Y, y)) ≤ ε,

if there is a map f : (X,x)→ (Y, y) satisfying

(1) d(f(x), y) ≤ ε,

(2) |d(z1, z2)− d(f(z1), f(z2))| ≤ ε for all z1, z2 ∈ B1/ε(x),

(3) B1/ε(y) ⊆ Bε(f(B1/ε(x))).

Fukaya and Yamaguchi introduced equivariant Gromov-Hausdorff convergence. It

takes the symmetries of spaces into account when considering Gromov-Hausdorff con-

vergence. Let (X,x) be a pointed metric space, and let G be a closed subgroup of
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Isom(X). In other words, we assume that G acts effectively and isometrically on X.

We write the triple (X,x,G) for simplicity. We also put

G(R) = {g ∈ G | d(g · x, x) ≤ R}.

Definition 2.1.5. Let (X,x,G) and (Y, y,H) be two spaces. We say that

dGH((X,x,G), (Y, y,H)) ≤ ε,

if there is a triple of maps (f, ψ, φ):

f : (X,x)→ (Y, y), ψ : G

(
1

ε

)
→ H, φ : H

(
1

ε

)
→ G

such that:

(1) f satisfies the conditions in Definition 2.1.4,

(2) if t ∈ G(1
ε ), z ∈ B1/ε(x), t · z ∈ B1/ε(y), then d(f(t · z), ψ(t) · f(z)) ≤ ε,

(3) if s ∈ H(1
ε ), z ∈ B1/ε(x), φi(s) · z ∈ B1/ε(y), then d(f(φ(s) · z), s · f(z)) ≤ ε.

dGH((X,x,G), (Y, y,H)) = 0 in the equivariant Gromov-Hausdorff topology means

that there is an isometry F : (X,x) → (Y, y) and a group isomorphism Ψ : G → H

such that F (x) = y and F (g · z) = Ψ(g) · F (z) for all g ∈ G and z ∈ X.

Fukaya and Yamaguchi showed that for any Gromov-Hausdorff convergent sequence

with isometric actions, we can always find a subsequence converging in the equivariant

Gromov-Hausdorff topology [14].

Theorem 2.1.6. Let

(Xi, xi)
GH−→ (Y, y)

be a Gromov-Hausdorff convergent sequence of pointed metric spaces. Let Gi be a

closed subgroup of Isom(Xi) for each i. Then passing to a subsequence, we can obtain

an equivariant Gromov-Hausdorff convergent sequence

(Xi, xi, Gi)
GH−→ (Y, y,H),

where H is a closed subgroup of Isom(Y ). Moreover, the corresponding sequence of

quotient spaces converges as well:

(Xi/Gi, x̄i)
GH−→ (Y/H, ȳ).
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Equivariant Gromov-Hausdorff convergence is useful when studying fundamental

groups of Riemannian manifolds with curvature bounds. Let (Mi, xi) be a sequence of

complete n-manifolds of

RicMi ≥ −(n− 1),

and let (M̃, x̃i) be the corresponding sequence of Riemannian universal covers. For each

i, π1(Mi, xi) acts isometrically on M̃i. Passing to a subsequence if necessary, we obtain

the convergence diagram below:

(M̃i, x̃i, π1(Mi, xi))
GH−−−−→ (Ỹ , ỹ, G)yπi yπ

(Mi, xi)
GH−−−−→ (Y = Ỹ /G, y).

2.2 Structure of Ricci limit spaces

Next we recall some structure results on Ricci limit spaces, developed mainly by

Cheeger, Colding, and Naber [4, 5, 6, 7, 11].

Definitions 2.2.1. Let n, v > 0 and κ ∈ R. We denoteM(n, κ) as the set of all metric

spaces (X,x) such that (X,x) is the Gromov-Hausdorff limit of a sequence of complete

n-manifolds (Mi, xi) of

RicMi ≥ (n− 1)κ.

We denote M(n, κ, v) as the set of all metric spaces (X,x) such that (X,x) is the

Gromov-Hausdorff limit of a sequence of complete n-manifolds (Mi, xi) of

RicMi ≥ (n− 1)κ, vol(B1(xi)) ≥ v.

Cheeger and Colding proved the splitting theorem for Ricci limit spaces [4], which

is a generalization to splitting theorem for manifolds of non-negative Ricci curvature

[8].

Theorem 2.2.2. [4] Let (X,x) be Gromov-Hausdorff limit of a sequence of complete

n-manifolds (Mi, xi) such that

RicMi ≥ −(n− 1)εi
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for some εi → 0. If X contains a line, then X splits isometrically as R × Y for some

length metric space Y .

Theorem 2.2.2 is crucial in studying the tangent cones of Ricci limit spaces.

Definition 2.2.3. Let (X,x) ∈ M(n,−1) be a Ricci limit space, and y ∈ X be a

point. Let ri → ∞ be a sequence. Passing to a subsequence if necessary, we obtain

Gromov-Hausdorff convergence

(riX, y)
GH−→ (CyX, o).

We say that (CyX, o) is a tangent cone of X at y.

Let (CyX, v) be a tangent cone of some Ricci limit space X ∈ M(n,−1) at y ∈ X.

By a standard diagonal argument, we can find a sequence si →∞ such that

(siMi, xi)
GH−→ (CyX, o).

Since the sequence (siMi, xi) satisfies the curvature condition in Theorem 2.2.2, we

conclude that CyX splits isometrically as Rk × Y , where the metric space Y does not

contain any line.

In general, X may have different tangent cones at y with different dimensions.

Moreover, (CyX, o) may not has a pole at o (see Definition 2.3.9). When (X,x) ∈

M(n,−1, v) is a non-collapsed Ricci limit space, we have a more detailed description

on its tangent cones.

Definition 2.2.4. Let (Z, dZ) be a compact metric space. Let C(Z) be the quotient

space of X × [0,∞) by identifying X × {0} as a point, the vertex of C(Z). We define

a metric on C(Z) by

d((x, r), (y, s)) =


√
r2 + s2 − 2rs cos dZ(x, y), if dZ(x, y) ≤ π;

r + s, if dZ(x, y) ≥ π.

We say that (C(Z), d) is the metric cone over (Z, dZ).

Theorem 2.2.5. Let (X,x) ∈ M(n,−1, v) be a non-collapsed Ricci limit space. For

any point y ∈ X and any tangent cone of X at y, (CyX, o) is a metric cone (C(Z), o)

with vertex o and diam(Z) ≤ π.
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For a manifold with non-negative Ricci curvature, we can similarly define tangent

cones at infinity by blowing down the metric.

Definition 2.2.6. Let (M,x) be an open n-manifold of Ric ≥ 0. We say that (C∞M, o)

is a tangent cone of M at infinity, if there is ri →∞ such that

(r−1
i M,x)

GH−→ (C∞M, o)

Theorem 2.2.7. [4] Let (M,x) be an open n-manifold of Ric ≥ 0. If M has Euclidean

volume growth, that is,

lim
r→∞

vol(Br(x))

rn
> 0,

then any tangent cone of M at infinity (Y, y) is a metric cone (C(Z), y) with vertex y

and diam(Z) ≤ π.

For a Ricci limit space (X,x), we use tangent cones to define regular points of X.

Definition 2.2.8. Let (X,x) ∈M(n,−1) be a Ricci limit space and y be a point in X.

We say that y is k-regular, if any tangent cone of X at y is isometric to the Euclidean

space Rk.

We denote Rk(X), or Rk, as the set of all k-regular points in X.

Colding and Naber showed that there is a unique k such that k-regular points are

abundant [12].

Theorem 2.2.9. Let (X,x) ∈M(n,−1) be a Ricci limit space. Then there is a unique

integer 0 ≤ k ≤ n such that Rk has full measure in X with respect to any renormalized

measure.

One may see the definition of renormalized measure in [5]. In this thesis, we only

need to use the fact that Rk is dense in X.

We call the integer k in Theorem 2.2.9 as the dimension of X in the Colding-Naber

sense. It is a open question whether the dimension in the Colding-Naber sense equals

to the Hausdorff dimension. For the context below, when mentioning the dimension of

some Ricci limit space, we always use the dimension in the Colding-Naber sense.
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This notion of dimension is semi-continuous with respect to Gromov-Hausdorff con-

vergence [20, 21]:

Theorem 2.2.10. Let (Xi, xi) be a sequence of Ricci limit spaces inM(n,−1). Suppose

that dim(Xi) ≤ k and

(Xi, xi)
GH−→ (X∞, x∞).

Then dim(X∞) ≤ k.

Apply Theorem 2.2.10 to tangent cones of X, we obtain:

Corollary 2.2.11. Let (X,x) ∈ M(n,−1) be a Ricci limit space with dimension k.

Then for any y ∈ X and any CyX, a tangent cone of X at y, CyX has dimension at

most k. In particular, Rl(X) is empty for all l > k.

For non-collapsed Ricci limit spaces, we have a better description of the set of n-

regular points [6].

Theorem 2.2.12. Let (X,x) ∈M(n,−1, v) be a non-collapsed Ricci limit space. Then

X −Rn has Hausdorff dimension at most n− 2.

The set of regular points also can be equivalently defined in an effective way. Let

X be a Ricci limit space. Let ε, δ > 0 and let k be an integer. We define

Rkε,δ = {y ∈ X | dGH(Br(y), Bk
r (0)) ≤ εr for all 0 < r < δ},

where Bk
r (0) is the ball of radius r in Rk. It is clear that

Rk =
⋂
ε>0

⋃
δ>0

Rkε,δ.

One important property of non-collapsed Ricci limit spaces is volume convergence

[7, 4].

Theorem 2.2.13. Let (Mi, xi) be a sequence of complete n-manifolds of

RicMi ≥ −(n− 1), vol(B1(xi)) ≥ v > 0

converging to (X,x). Then for all R > 0 and any qi ∈Mi converging to q ∈ X,

vol(BR(qi))→ Hn(BR(q)),
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where Hn is the n-dimensional Hausdorff measure on X. In particular, X has Hausdorff

dimension n.

On a non-collapsed Ricci limit space, x being effectively regular is equivalent to the

almost maximality of local volume [4]. For simplicity, we denote Ψ(δ|n) as a positive

function depending on δ and n such that lim
δ→0

Ψ(δ|n) = 0.

Theorem 2.2.14. Let δ, v > 0. Let (X,x) ∈M(n,−δ, v) be a non-collapsed Ricci limit

space.

(1) If

dGH(B1(x), Bn
1 (0)) ≤ δ,

then

Hn(B1(x)) ≥ (1−Ψ(δ|n))vol(Bn
1 (0)),

where Ψ(δ|n) is some positive function with lim
δ→0

Ψ(δ|n) = 0.

(2) If

Hn(B1(x)) ≥ (1− δ)vol(Bn
1 (0)),

then

dGH(B1(x), Bn
1 (0)) ≤ Ψ(δ|n).

Ricci limit spaces of dimension 1 are well-understood due to the work by Honda and

Chen [10, 19].

Theorem 2.2.15. Suppose that (X,x) ∈ M(n,−1) has dimension 1, then X is a

one-dimensional manifold.

Since we use equivariant Gromov-Hausdorff convergence frequently, it is crucial to

know about the isometry group of a Ricci limit space. Cheeger, Colding, and Naber

showed that the isometry group is always a Lie group [5, 12].

Theorem 2.2.16. For any X ∈M(n,−1), its isometry group is a Lie group.
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2.3 Gromov’s short generators

To study fundamental groups, it is natural to take the universal cover space into

account. This is because π1(M,x) acts on the Riemannian universal cover M̃ isomet-

rically as covering transformations. Gromov introduced the notion of short generators

of π1(M,x) [16].

Definition 2.3.1. We say that {γ1, ..., γi, ...} ⊆ π1(M,x) is a set of short generators of

π1(M,x), if

d(γ1x̃, x̃) ≤ d(γx̃, x̃) for all γ ∈ π1(M,x),

and for each i, γi ∈ π1(M,x)− 〈γ1, ..., γi−1〉 satisfies

d(γix̃, x̃) ≤ d(γx̃, x̃) for all γ ∈ π1(M,x)− 〈γ1, ..., γi−1〉,

where 〈γ1, ..., γi−1〉 is the subgroup generated by γ1, ..., γi−1.

The basic properties of short generators below follow directly from the definition.

Proposition 2.3.2. Let {γ1, ..., γk} be a set of short generators of Γ. Then

(1) for any k > l > 0,

d(γkx̃, γlx̃) ≥ d(γkx̃, x̃);

(2) for any k > 1,

d(Hk · x̃, (Γ−Hk) · x̃) = d(x̃, γkx̃),

where Hk = 〈γ1, ..., γk−1〉.

Proof. (1) Suppose that the contrary holds, that is, there are some k > l > 0 such that

d(γkx̃, γlx̃) < d(γkx̃, x̃).

Consequently,

d(γ−1
l γkx̃, x̃) < d(γkx̃, x̃).

According to the method choosing short generators, we should choose γ−1
l γk as the k-th

short generator instead of γk, a contradiction.
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(2) Because e ∈ Hk and γk ∈ Γ−Hk, it is clear that for each k,

d(Hk · x̃, (Γ−Hk) · x̃) ≤ d(x̃, γkx̃).

Suppose that there are h ∈ Hk and g ∈ Γ−Hk such that

d(hx̃, gx̃) < d(x̃, γkx̃).

Then we should choose g−1h ∈ Γ−Hk instead of γk as the k-th short generator, because

d(g−1hx̃, x̃) < d(x̃, γkx̃).

This completes the proof.

Using Proposition 2.3.2(1) and Toponogov’s comparison theorem, Gromov showed

that for any complete n-manifold with lower sectional curvature bound, the number of

short generators of π1(M,x) can be uniformly controlled for any x ∈M [16].

Theorem 2.3.3. Given n and R, there exists a constant C(n,R) such that the following

holds.

Let M be a complete (compact or non-compact) n-manifold with sec ≥ −1, and x

be any point in M . Then the number of short generators of π1(M,x) with length ≤ R

can be bounded by C(n,R).

Theorem 2.3.3 confirms the Milnor conjecture for manifolds with non-negative sec-

tional curvature by a scaling trick. In fact, Let C = C(n, 1) be the constant in Theorem

2.3.3. Suppose that π1(M,x) has at least C + 1 many short generators γ1, ..., γC+1, ....

Put L = d(γC+1x̃, x̃) and consider the scaled metric L−1M . On L−1M , we have

secL−1M ≥ 0, but π1(L−1M,x) contains C + 1 many short generators of length ≤ 1, a

contradiction to Theorem 2.3.3. To sum up, we showed that π1(M,x) has at most C

many short generators. Note that this is actually stronger than finite generation, since

we can bound the number of short generators at every point.

Regarding Ricci curvature, Kapovitch and Wilking proved the following result on

the number of short generators [22].
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Theorem 2.3.4. Given n and R, there exists a constant C(n,R) such that the following

holds.

Let M be a complete (compact or non-compact) n-manifold with Ric ≥ −(n − 1),

and x be any point in M . Then there exists a point y ∈ B1(x) such that the number of

short generators of π1(M,y) with length ≤ R can be bounded by C(n,R).

Unlike Theorem 2.3.3, Theorem 2.3.4 bounds the number of short generators at

some unspecified point y around x. Due to this, Theorem 2.3.3 fails to confirm the

Milnor conjecture.

Note that if one can show that under additional conditions, the number of short

generators of π1(M,x) can be uniformly bounded for any x, then partial result of the

Milnor conjecture would follow. This is the approach used in Chapters 5 and 6 to prove

Theorem C.

The other approach than bounding the number of short generators uniformly is using

a contradicting argument: assuming that π1(M,x) has infinitely many short generators,

then we seek to find a contradiction from the consequences of non-finite generation.

For an open n-manifold M , if Γ = π1(M,x) is not finitely generated, then Γ would

have infinitely many short generators. Using the properties of these generators (Propo-

sition 2.3.2) and Gromov-Hausdorff convergence, we can see the impact of non-finite

generation from the tangent cones of M or M̃ at infinity.

Definition 2.3.5. Let (M,x) be an open n-manifold with Ric ≥ 0 and an isometric

Γ-action. We say that (C∞M,o,G), a pointed metric space (C∞M,o) with isometric

G-action, is an equivariant tangent cone of (M,Γ) at infinity, if there is ri → ∞ such

that

(r−1
i M,x,Γ)

GH−→ (C∞M, o,G).

Lemma 2.3.6. Let (M,x) be an open n-manifold with Ric ≥ 0 and (M̃, x̃) be its

universal cover. Suppose that Γ = π1(M,x) has infinitely many short generators

{γ1, ..., γi, ...}. Then in the following equivariant tangent cone of (M̃,Γ) at infinity

(r−1
i M̃, x,Γ)

GH−→ (Ỹ , ỹ, G),
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the orbit G · ỹ is not connected, where ri = d(γix̃, x̃)→∞.

Proof. On r−1
i M̃ , γi has displacement 1 at x̃. By Proposition 2.3.2(2), γi ·x̃ has distance

1 from the orbit Hi · x̃, where Hi = 〈γ1, ..., γi−1〉. From the equivariant convergence

(r−1
i M̃, x̃,Hi, γi)

GH−→ (Ỹ , ỹ, H∞, γ∞),

we conclude d(γ∞ · ỹ, H∞ · ỹ) = 1. Moreover, for any element g ∈ G−H∞, we can find

a sequence gi ∈ Γ−Hi such that

(r−1
i M̃, x̃, gi)

GH−→ (Ỹ , ỹ, g).

Again by Proposition 2.3.2(2), we see that d(g · ỹ, H∞ · ỹ) ≥ 1. We divide the orbit G · ỹ

into two non-empty subsets: H∞ · ỹ and (G − H∞) · ỹ. Since these two subsets have

distance 1 between them, we conclude that the orbit G · ỹ must be non-connected.

Corollary 2.3.7. Let M be an open n-manifold of Ric ≥ 0. Suppose that for any

equivariant tangent cone of (M̃,Γ) at infinity (C∞M̃, õ, G), the orbit G · õ is connected,

then π1(M,x) is finitely generated.

It is unknown to the author whether there is M that fails the condition in Corollary

2.3.7. However, given a generic M , usually it is hard to check this condition. One

wishes to find natural geometrical constraints that imply such a condition, then the

partial result of the Milnor conjecture would follow. This idea leads to Theorem B (see

Chapter 4.1 for details).

Sormani has applied a similar idea in her work [29]. For short generators of π1(M,x),

we can view them as covering transformations on M̃ as in Lemma 2.3.6, and we can

also view them as geodesic loops in M at x. The properties of these geodesic loops

were discovered by Sormani [29].

Theorem 2.3.8. Let M be a complete n-manifold of Ric ≥ 0 and dimension n ≥ 3.

Let {γ1, γ2, ...} be a set of short generators of π1(M,x). Suppose that each γi has unit

speed minimal representative geodesic loops σi of x of length di, then for each i

(1) the loop σi is minimal on [0, di/2] and is also minimal on [di/2, di];
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(2) there is a universal constant Sn such that if y ∈ ∂BRdi(x) where R ≥ 1/2+Sn, then

d(y, σi(di/2)) ≥ (R− 1/2)di + 2Sndi

We indicate the geometry of Theorem 2.3.8. The first half of Theorem 2.3.8 implies

that the midpoint of σi is a cut point. In particular, a minimal geodesic of length di can

not go through σi(di/2). The second half is called uniform cut theorem, in the sense

that there is a uniform lower bounder on the distance between any minimal geodesic of

length di and the midpoint σi(di/2) (see [29]). Passing this property to infinity, we see

the consequence of non-finite generation at infinity.

Definition 2.3.9. Let X be a complete length metric space. We say that X has a pole

at x ∈ X, if for any y ∈ X, there is a ray starting at x going through y.

Theorem 2.3.10. [29] Let (M,x) be an open n-manifold with Ric ≥ 0. Suppose that Γ

has infinitely many short generators {γ1, ..., γi, ...}. Then in the following tangent cone

of M at infinity

(r−1
i M,x)

GH−→ (Y, y),

Y can not have a pole at y, where ri = d(γix̃, x̃)→∞.

We finish Chapter 2 with a handful reduction by Wilking on the Milnor conjecture

[32]:

Theorem 2.3.11. Let M be an open n-manifold with RicM ≥ 0. If π1(M) is not

finitely generated, then it contains a non-finitely generated abelian subgroup.
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Chapter 3

Milnor conjecture in dimension 3

We prove Theorem A in this Chapter. We start with a topological result by Evans

and Moser [13].

Theorem 3.0.1. Let M be a 3-manifold. If π1(M) is abelian and not finitely generated,

then π1(M) is torsion free.

Evans and Moser [13] actually showed that π1(M) is a subgroup of the additive

group of rationals. Being torsion free is sufficient to prove Theorem A.

Let M be an open 3-manifold with RicM ≥ 0. Suppose that Γ = π1(M,x) is not

finitely generated, then by Theorems 2.3.11 and 3.0.1, without lose of generality, we

can assume that Γ is abelian and torsion free. Let {γ1, ..., γi, ...} be an infinite set of

short generators at x. Passing to a subsequence if necessary, we obtain the following

equivariant Gromov-Hausdorff convergence:

(r−1
i M̃, x̃,Γ)

GH−−−−→ (Ỹ , ỹ, G)yπ yπ
(r−1
i M,x)

GH−−−−→ (Y = Ỹ /G, y).

,

where ri = d(γix̃, x̃) → ∞. By Theorem 2.3.6, the orbit G · ỹ must be non-connected.

We also know that y is not a pole of Y according to Theorem 2.3.10. We prove Theorem

A by eliminating all the possibilities regarding the dimension of Y and Ỹ above in the

Colding-Naber sense. There are three possibilities listed as below, and we rule out each

of them, which finishes the proof of Theorem A:

Case 1. dim(Ỹ ) = 3 (Lemma 3.0.4);

Case 2. dim(Y ) = dim(Ỹ ) = 2 (Lemma 3.0.5);

Case 3. dim(Y ) = 1 (Lemma 3.0.6).
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One important observation follows from Theorem 3.0.1: the limit orbit G · ỹ can not

be discrete.

Proposition 3.0.2. Let (M,x) be an open n-manifold with RicM ≥ 0 and (M̃, x̃) be

its universal cover. Suppose that Γ = π1(M,x) is torsion free, then for any si → ∞

and any convergent sequence

(s−1
i M̃, x̃,Γ)

GH−→ (C∞M̃, õ, G),

the orbit G · õ is not discrete.

Lemma 3.0.3. Let (Mi, xi) be a sequence of complete n-manifolds and (M̃i, x̃i) be their

universal covers. Suppose that the following sequence converges

(M̃i, x̃i,Γi)
GH−→ (X̃, x̃, G),

where Γi = π1(Mi, xi) is torsion free for each i. If the orbit G · x̃ is discrete in X̃, then

there is an integer N such that

#Γi(1) ≤ N

for all i, where #Γi(1) is the number of elements in

Γi(1) = {γ ∈ Γi | d(γx̃i, x̃i) ≤ 1}.

Proof. We claim that if a sequence γi ∈ Γi converges to g ∈ G with g fixing x̃, then

g = e, the identity element, and γi = e for all i sufficiently large. In fact, suppose that

γi 6= e for some subsequence. Since γi is torsion free, we always have diam(〈γi〉·x̃i) =∞.

Together with d(γix̃i, x̃i)→ 0, we see that G · x̃ can not be discrete, a contradiction to

the assumption.

Therefore, there exists i0 large such that for all g ∈ G(2) and any two sequences

with γi
GH→ g and γ′i

GH→ g, γi = γ′i holds for all i ≥ i0. In particular, we conclude that

#Γi(1) ≤ #G(2) <∞

for all i ≥ i0.
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Proof of Proposition 3.0.2. The proof follows directly from Lemma 3.0.3. If G · õ is

discrete, then there is N such that #Γ(si) ≤ N for all i. On the other hand, #Γ(si)→

∞ because Γ is torsion free, a contradiction.

Now we begin to rule out the possibilities listed in the beginning of this chapter.

Lemma 3.0.4. Case 1 can not happen.

Proof. When dim(Ỹ ) = 3, Ỹ is a non-collapsing limit space, that is, there is v > 0 such

that

vol(B1(x̃, r−1
i M̃)) ≥ v

for all i. By relative volume comparison, this implies that M̃ has Euclidean volume

growth

lim
r→∞

vol(Br(x̃))

rn
≥ v.

By Theorem 2.2.7, Ỹ is a metric cone Rk × C(Z) with vertex ỹ = (0, z), where C(Z)

has vertex z and diam(Z) < π. We rule out all the possibilities of k ∈ {0, 1, 2, 3}.

If k = 3, then Ỹ = R3. Thus M̃ is isometric to R3 [7].

If k = 2, then by Theorem 2.2.12, Ỹ = R3 holds.

If k = 1, then Y = R × C(Z). By Proposition 4.1.2, the orbit G · ỹ is contained

in R × {z}. Applying Lemma 2.3.6, we see that G · ỹ is not connected. Note that a

non-connected orbit in R is either a Z-translation orbit, or a Z2-reflection orbit. In

particular, the orbit G · ỹ must be discrete. This contradicts with Proposition 3.0.2.

If k = 0, then Y = C(Z) with no lines. Again by Proposition 4.1.2, the orbit G · ỹ

must be a single point ỹ, a contradiction to Lemma 2.3.6.

Lemma 3.0.5. Let (M,x) be an open n-manifold with RicM ≥ 0 and (M̃, x̃) be its

universal cover. Assume that Γ = π1(M,x) is torsion free. Then for any si → ∞ and

any convergent sequence

(s−1
i M̃, x̃,Γ)

GH−−−−→ (C∞M̃, õ, G)yπ yπ
(s−1
i M,x)

GH−−−−→ (C∞M, o),



21

dim(C∞M̃) = dim(C∞M) can not happen. In particular, Case 2 can not happen.

Proof of Lemma 3.0.5. We claim that when dim(C∞M̃) = dim(C∞M) = k, G must

be a discrete group. If this claim holds, then the desired contradiction follows from

Proposition 3.0.2.

It remains to verify the claim. Suppose that G0 is non-trivial, then we pick g 6= e in

G0. We first show that there is a k-regular point q̃ ∈ C∞M̃ such that d(gq̃, q̃) > 0 and

q̃ projects to a k-regular point q ∈ C∞M . In fact, let Rk(C∞M) be the set of k-regular

points in C∞M . Since Rk(C∞M) is dense in C∞M , its pre-image π−1(Rk(C∞M)) is

also dense in C∞M̃ . Let q̃ be a point in the pre-image such that d(gq̃, q̃) > 0. Note

that any tangent cone at q̃ splits Rk-factor isometrically. By Corollary 2.2.11, it follows

that any tangent cone at q̃ is isometric to Rk. In other words, q̃ is k-regular.

Along a one-parameter subgroup of G0 containing g, we can choose a sequence of

elements gj ∈ G0 with d(gj q̃, q̃) = 1/j → 0. We consider a tangent cone at q̃ and

q respectively coming from the sequence j → ∞. Passing to some subsequences if

necessary, we obtain

(jC∞M̃, q̃, G, gj)
GH−−−−→ (Cq̃C∞M̃, õ′, H, h)yπ yπ

(jC∞M, q)
GH−−−−→ (CqC∞M,o′).

with Cq̃C∞M̃/H = CqC∞M and d(hõ′, õ′) = 1. On the other hand, since both q and

q̃ are k-regular, Cq̃C∞M̃ = CqC∞M = Rk. This is a contradiction to H 6= {e}. Hence

the claim holds.

To rule out the last case dim(Y ) = 1, we make use Sormani’s pole group theorem

(Theorem 2.3.10) and Theorem 2.2.15.

Lemma 3.0.6. Case 3 can not happen.

Proof. By Theorem 2.2.15, Y is a topological manifold of dimension 1. Since Y is

non-compact, Y is either a line (−∞,∞) or a half line [0,∞). By Theorem 2.3.10,

Y can not have a pole at y. Thus there is only one possibility left: Y = [0,∞) but

y is not the endpoint 0 ∈ [0,∞). Put d = dY (0, y) > 0. We rule out this case by a
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rescaling argument and Lemmas 3.0.4, 3.0.5 above. (In general, it is possible for an

open manifold to have a tangent cone at infinity as [0,∞), with base point not being

0; see example 3.0.7.)

Let α(t) be a unit speed ray in M starting from x, and converging to the unique ray

from y in Y = [0,∞) with respect to the sequence (r−1
i M,x)

GH−→ (Y, y). Let zi ∈ r−1
i Mi

be a sequence of points converging to 0 ∈ Y , then r−1
i dM (x, zi) → d. For each i, let

ci(t) be a minimal geodesic from zi to α(dri), and qi be a closest point to x on ci. We

re-parametrize ci so that ci(0) = qi. With respect to the sequence (r−1
i M,x)

GH−→ (Y, y),

ci sub-converges to the unique segment between 0 and 2d ∈ [0,∞). Clearly,

r−1
i dM (zi, α(dri))→ 2d, r−1

i di → 0,

where di = dM (x, ci(0)).

If di →∞, then we rescale M and M̃ by d−1
i → 0. Passing to some subsequences if

necessary, we obtain

(d−1
i M̃, x̃,Γ)

GH−−−−→ (Ỹ ′, ỹ′, G′)yπ yπ
(d−1
i M,x)

GH−−−−→ (Y ′, y′).

If dim(Y ′) = 1, then we know that Y ′ = (−∞,∞) or [0,∞). On the other hand, since

d−1
i dM (ci(0), zi)→∞, d−1

i dM (ci(0), α(dri))→∞, d−1
i dM (ci, x) = 1,

ci sub-converges to a line c∞ in Y ′ with d(c∞, y
′) = 1. Clearly this can not happen in

Y ′ = (−∞,∞) nor [0,∞). If dim(Ỹ ′) = 3, then M̃ has Euclidean volume growth. Thus

with the sequence r−1
i , the corresponding limit spaces Y and Ỹ must satisfy dim(Y ) = 1

and dim(Ỹ ) = 3, which is already covered in Lemma 3.0.4. The only situation left is

dim(Ỹ ′) = dim(Y ′) = 2. By Lemma 3.0.5, this also leads to a contradiction. In

conclusion, di →∞ can not happen.

If there is some R > 0 such that di ≤ R for all i, then on M , ci subconverges

to a line c with c(0) ∈ B2R(x). Consequently, M splits off a line isometrically [8], a

contradiction to Y = [0,∞). This completes the proof.
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Example 3.0.7. We construct a surface (S, x) isometrically embedded in R3 such

that S has a tangent cone at infinity as [0,∞), but x does not correspond to 0. We

first construct a subset of xy-plane by gluing intervals. Let ri → ∞ be a positive

sequence with ri+1/ri → ∞. Starting with a interval I1 = [−r1, r2], we attach a

second interval I2 = [−r3, r4] perpendicularly to I1 by identifying r2 ∈ I1 and 0 ∈ I2.

Repeating this process, suppose that Ik is attached, then we attach the next interval

Ik+1 = [−r2k+1, r2k+2] perpendicularly to Ik by identifying r2k ∈ Ik and 0 ∈ Ik+1.

In this way, we construct a subset T in the xy-plane consisting of segments. We can

smooth the ε-neighborhood of T in R3 so that it has sectional curvature ≥ −C, where

ε, C > 0. We call this surface S. Let p ∈ S be a point closest to 0 ∈ I1 as the base

point. If we rescale (S, x) by r−1
2k+1 → 0, then

(r−1
2k+1S, x)

GH−→ ([−1,∞), 0)

because ri+1/ri →∞. In other words, S has a tangent cone at infinity as the half line,

but the base point does not correspond to the end point in this half line.
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Chapter 4

Stability of Euclidean factors at infinity

4.1 Introduction

We prove Theorem B in this chapter. For convenience, we introduce the following

notion for the stability assumption in Theorem B.

Definition 4.1.1. Let M be an open n-manifold with Ric ≥ 0, and let k be an integer.

We say that M is k-Euclidean at infinity, if any tangent cone of M at infinity (Y, y) is

a metric cone, whose maximal Euclidean factor has dimension k, that is, (Y, y) splits

as (Rk × C(Z), (0, z)), where C(Z) is a metric cone with diam(Z) < π and vertex z.

We point out that, Definition 4.1.1 implies a uniform control on the diameter of Z:

for any tangent cone of M at infinity (Rk×C(Z), (0, z)), diam(Z) ≤ π−η(M) for some

positive constant η(M) (see Lemma 4.2.1 and Remark 4.2.2).

For a metric cone Rk×C(Z) with diam(Z) < π, it is known that its isometry group

has a splitting structure.

Proposition 4.1.2. Let (Rk × C(Z), (0, z)) ∈ M(n, 0) be a metric cone, where C(Z)

has vertex z and diam(Z) < π. Then for any isometry g of C(Z), we have

g · (Rk × {z}) ⊆ Rk × {z}.

Proposition 4.1.3. Let Y = Rk×C(Z) ∈M(n, 0) be a metric cone with diam(Z) < π.

Then its isometry group Isom(Y ) splits as Isom(Rk)× Isom(Z).

Proof. For any F ∈ Isom(Rk × C(Z)), we write

F (v, w) = (F1(v, w), F2(v, w))
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for any v ∈ Rk and w ∈ C(Z). We claim that F1 and F2 are independent of w and v,

respectively.

In fact, notice that for any line σ(t) = (σ1(t), σ2(t)) in Y , because the C(Z)-factor

contains no lines, σ2 must be a constant map. For any w ∈ C(Z) and any arbitrary

v1, v2 ∈ Rk, let σ1(t) be the line through v1 and v2 in Rk. We consider the line

σ(t) = (σ1(t), w).

Through the isometry F , F ◦ σ(t) is another line, whose C(Z)-component must be

constant. This shows that F2(v1, w) = F2(v2, w). Also, for any v ∈ Rk, the image

of {v} × C(Z) under F is a cone orthogonal to the Rk-factor, thus F ({v} × C(Z)) =

({v′}×C(Z)) for some v′ ∈ Rk, This shows that F1 is independent of elements in C(Z).

Therefore, any F ∈ Isom(Y ) can be written as

F (v, w) = (F1(v, w), F2(v, w)) = (F1(v), F2(w))

with F1 ∈ Isom(Rk) and F2 ∈ Isom(C(Z)).

Due to Proposition 4.1.3, for a metric cone Y = Rk × C(Z) ∈ M(n, 0), where

diam(Z) < π, there is a natural projection map:

p : Isom(Y )→ Isom(Rk).

Throughout this Chapter, we always use p to denote this projection map.

We explain our approach to Theorem B as follows. We consider all the possible

equivariant tangent cones of (M̃, π1(M,x)) at infinity (see Definition 2.3.5). Our main

discovery is that, if M̃ is k-Euclidean at infinity, there is certain equivariant stability

among all the equivariant tangent cones of (M̃, π1(M,x)) at infinity:

Theorem 4.1.4. Let M be an open n-manifold of Ric ≥ 0. Suppose that π1(M) is

abelian and M̃ is k-Euclidean at infinity. Then there exist a closed abelian subgroup

K of O(k) and an integer l ∈ [0, k] such that for any equivariant tangent cone of

(M̃, π1(M,x)) at infinity (Ỹ , ỹ, G) = (Rk × C(Z), (0, z), G), the projected G-action on

Rk-factor (Rk, 0, p(G)) satisfies that p(G) = K × Rl, with K fixing 0 and the subgroup

{e} × Rl acting as translations in Rk.
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Theorem B follows directly from Theorem 4.1.4 due to Theorem 2.3.11 and Corollary

2.3.7.

We illustrate our approach to Theorem 4.1.4. Put Γ = π1(M,x). Given two equiv-

ariant tangent cones of (M̃,Γ) at infinity (Ỹi, ỹi, Gi) (i = 1, 2), assume that their pro-

jected actions (Rk, 0, p(Gi)) are different. We consider the set of all equivariant tangent

cones of (M̃,Γ) at infinity, denoted by Ω(M̃,Γ). It is known that Ω(M̃,Γ) is compact

and connected in the equivariant Gromov-Hausdorff topology. Consequently, for any

ε > 0, there are finitely many spaces (Wj , wj , Hj) ∈ Ω(M̃,Γ) (j = 1, ..., l) such that

(W1, w1, H1) = (Ỹ1, ỹ1, G1), (Wl, wl, Hl) = (Ỹ2, ỹ2, G2), and

dGH((Wj , wj , Hj), (Wj+1, wj+1, Hj+1)) ≤ ε

for all j = 1, ..., l − 1. When M̃ is k-Euclidean at infinity, Wi = Rk × C(Zi) with

diam(Zi) ≤ π− η(M̃). Under this control, the associated chain of Rk-factor in Wj with

projected p(Hj)-action {(Rk, 0, p(Hj))}lj=1 form a ψ(ε) chain, where ψ(ε) is a positive

function with ψ(ε)→ 0 as ε→ 0.

To see a contradiction without involving the complexity in general situation, we

restrict to the special case that all p(Hj)-actions fix 0. Then this leads to the following

stability of isometric actions on the unit sphere Sk−1 ⊆ Rk: if (Sk−1,K1) and (Sk−1,K2)

are sufficiently close in the equivariant Gromov-Hausdorff topology, then either K1 and

K2 are conjugate in O(k), or dim(K1) 6= dim(K2) (see Proposition 4.3.3). It turns out

this stability is enough for us to derive a contradiction. For instance, if p(G1) = {e}

and p(G2) = Z2, there is no ε-chain {(Rk, 0, p(Hj))}lj=1, with p(Hi) fixing 0, between

(Rk, 0, {e}) and (Rk, 0,Z2), given that ε is small (see Lemma 4.2.3). To deal with the

general situation where these p(Hi)-action may not fix 0, we develop a key technical

tool, referred as critical rescaling (see Section 4.2 for details).

To complete the introduction to chapter 4, we show that if M̃ is 0-Euclidean at

infinity, then π1(M) must be finite.

Proposition 4.1.5. Let M be an open n-manifold of Ric ≥ 0. If M̃ is 0-Euclidean at

infinity, then π1(M) is finite.

Proof. Suppose that Γ = π1(M,x) is an infinite group, then there are elements γi ∈
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π1(M,x) with ri := d(γix̃, x̃)→∞. Passing to a subsequence if necessary, we consider

an equivariant tangent cone of (M̃,Γ) at infinity:

(r−1
i M̃, x̃,Γ)

GH−→ (Ỹ , ỹ, G).

By our choice of ri, there is g ∈ G such that d(g · ỹ, ỹ) = 1. On the other hand, since M̃

is 0-Euclidean at infinity, (Ỹ , ỹ) is a metric cone with no lines and ỹ is the unique vertex.

Thus the orbit G · ỹ must be a single point ỹ by Proposition 4.1.2. A contradiction.

Corollary 4.1.6. Let (M,x) be an open n-manifold of Ric ≥ 0. If its universal cover

(M̃, x̃) has Euclidean volume growth and non-maximal diameter growth

lim sup
R→∞

diam(∂BR(x̃))

R
< 2,

then π1(M,x) is a finite group. Consequently, M itself has Euclidean volume growth.

Here we use extrinsic metric on diam(∂BR(x̃)), so we always have

diam(∂BR(x̃))

R
≤ 2.

4.2 A critical rescaling argument

In this section, we develop the critical rescaling argument, a key technical tool as

mentioned in the introduction, to prove a special case of Theorem 4.1.4: if there is

(Ỹ , ỹ, G) ∈ Ω(M̃,Γ) such that p(G) is trivial, then for any (W̃ , w̃,H) ∈ Ω(M̃,Γ), p(H)

is also trivial (see Proposition 4.2.5). The proof of Theorem 4.1.4 is also modeled on

the proofs in this section.

We first show that if M is k-Euclidean at infinity, then for any Y = Rk × C(Z) ∈

Ω(M), there is a uniform gap between Y and any Ricci limit space splitting off a

Rk+1-factor. This is indeed a direct consequence of being k-Euclidean at infinity.

Lemma 4.2.1. Let M be an open n-manifold of Ric ≥ 0. If M is k-Euclidean at

infinity, then there is ε(M) > 0 such that for any (Y, y) ∈ Ω(M) and any Ricci limit

space Rl ×X ∈M(n, 0) with l > k, we have

dGH((Y, y), (Rl ×X, (0, x))) ≥ ε(M).
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Proof. Suppose the contrary, then we would have a sequence (Yi, yi) ∈ Ω(M) such that

as i→∞,

dGH((Yi, yi), (Rli ×Xi), (0, xi))→ 0,

where Rli × Xi ∈ M(n, 0) and k < li ≤ n. By pre-compactness, we can pass to a

subsequence and have convergence

(Rli ×Xi, (0, xi))
GH−→ (Rl∞ ×X∞, (0, x∞))

with integer l∞ > k. For the corresponding subsequence of (Yi, yi), it has the same

limit. By a standard diagonal argument, (Rl∞ × X∞, (0, x∞)) is also a tangent cone

of M at infinity. This is a contradiction to the assumption that M is k-Euclidean at

infinity.

Remark 4.2.2. Note that for a metric cone C(Z) ∈ M(n, 0), C(Z) splits off a line if

and only if diam(Z) = π. From this perspective, Lemma 4.2.1 implies that if M is k-

Euclidean at infinity, then there exists η(M) > 0 such that for any Rk×C(Z) ∈ Ω(M),

Z has diameter no more than π − η(M).

Next we prove a gap phenomenon between two classes of group actions on spaces in

Ω(M), which is a key property needed in the critical rescaling argument.

Lemma 4.2.3. Let M be an open n-manifold of Ric ≥ 0. Suppose that M̃ is k-

Euclidean at infinity. Then there exists a constant ε(M) > 0 such that the following

holds.

For two spaces (Ỹj , ỹj , Gj) ∈ Ω(M̃,Γ) with (Ỹj , ỹj) = (Rk×C(Zj), (0, zj)) (j = 1, 2)

if

(1) p(G1) is trivial, and

(2) there is g ∈ G2 such that p(g) 6= e and d(g · ỹ2, ỹ2) ≤ 1,

then

dGH((Ỹ1, ỹ1, G1), (Ỹ2, ỹ2, G2)) ≥ ε(M).

For the Euclidean space Rk with isometric G-action and a non-identity element

g ∈ G, if d(g · 0, 0) ≤ 1, then it is obvious that

dGH((Rk, 0, G), (Rk, 0, {e})) ≥ 1/2.
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Let (Ỹ1, ỹ1, G1) and (Ỹ2, ỹ2, G2) be two spaces in Ω(M̃,Γ) as in Lemma 4.2.3. Roughly

speaking, Lemma 4.2.1 assures that for ε sufficiently small, any ε-approximation from

(Ỹ1, ỹ1) to (Ỹ2, ỹ2) can not map Rk-factor to non-Euclidean cone factor C(Z2). In other

words, an ε-approximation map should map Rk-factor to Rk-factor. Together with the

p(Gj)-action on Rk-factor, we see that there should be a gap between (Ỹ1, ỹ1, G1) and

(Ỹ2, ỹ2, G2).

Proof of Lemma 4.2.3. Suppose the contrary, then we have two sequences in Ω(M,Γ):

{(Ỹi1, ỹi1, Gi1)} and {(Ỹi2, ỹi2, Gi2)} such that

(1) p(Gi1) is trivial,

(2) there is gi ∈ Gi2 such that p(gi) 6= e and d(gi · ỹi2, ỹi2) ≤ 1,

(3) dGH((Ỹi1, ỹi1, Gi1), (Ỹi2, ỹi2, Gi2))→ 0 as i→∞.

Passing to some subsequences if necessary, the above two sequences converge to the

same limit:

(Ỹi1, ỹi1, Gi1)
GH−→ (Ỹ∞, ỹ∞, G∞),

(Ỹi2, ỹi2, Gi2)
GH−→ (Ỹ∞, ỹ∞, G∞),

with (Ỹ∞, ỹ∞) = (Rk×C(Z∞), (0, z∞)). By Lemma 4.2.1, C(Z∞) does not split off any

line, and thus

(Rk × {zi1}, ỹi1, p(Gi1))
GH−→ (Rk × {z∞}, ỹ∞, p(G∞)),

(Rk × {zi2}, ỹi2, p(Gi2))
GH−→ (Rk × {z∞}, ỹ∞, p(G∞)).

From the first sequence, we see that p(G∞) is trivial because p(Gi1) = {e}. On the

other hand, p(Gi2) contains some element βi with dRk(βi · 0, 0) ≤ 1. βi sub-converges

to some element β∞ ∈ G∞ with d(β∞ · 0, 0) ≤ 1. If β∞ 6= e, then p(G∞) is non-trivial.

If β∞ = e, then we consider the subgroup Hi = 〈βi〉. The sequence of subgroups Hi

sub-converges to some non-trivial subgroup H∞ of p(G∞) because D1(Hi) ≥ 1/20,

where D1(Hi) is the displacement of Hi on B1(0) ⊆ Rk. In either case, p(G∞), a

contradiction.

Remark 4.2.4. The gap in Lemma 4.2.1 plays a key role in the above proof; it guarantees

that symmetries on the non-Euclidean cone factor and on the Euclidean factor can
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not interchange. If there is no gap between the non-Euclidean cone factor C(Z) and

spaces splitting off lines, then Lemma 4.2.3 would fail. As an example, we construct a

continuous family of metric cones (Yt, yt, Gt) (−δ ≤ t ≤ δ) such that Yt = R2 × C(Zt),

where diam(Zt) ≤ π. As t→ 0,

dGH((R2 × {z−t}, (0, z−t), p(G−t)), (R2 × zt, (0, zt), p(Gt))) 6→ 0.

For |t| < δ small, we put Yt = R2 × C(S1
t ), where S1

t is the round circle of diameter

π − |t|. When t = 0, then Yt = R4. Next we define Gt-action on Yt. For t > 0,

Gt = S1 acting as rotations on the C(S1
t )-factor; while for t ≤ 0, Gt = S1 acting as

rotations about the origin on R2-factor. It is clear that (Yt, yt, Gt) is a continuous path

in the equivariant Gromov-Hausdorff topology. However, p(Gt) is trivial for t > 0 while

p(Gt) = S1 for t < 0; they can not be arbitrarily close as t→ 0.

We are ready to prove the following rudimentary version of Theorem B.

Proposition 4.2.5. Let (M,x) be an open n-manifold of Ric ≥ 0, whose universal

cover is k-Euclidean at infinity. If there is (Ỹ , ỹ, G) ∈ Ω(M̃,Γ) such that p(G) is

trivial, then for any space (W̃ , w̃,H) ∈ Ω(M̃,Γ), p(H) is also trivial.

Proof. We argue by contradiction. Suppose that there are ri → ∞ and si → ∞ such

that

(r−1
i M̃, x̃,Γ)

GH−→ (Ỹ1, ỹ1, G1),

(s−1
i M̃, x̃,Γ)

GH−→ (Ỹ2, ỹ2, G2),

where p(G1) is trivial but p(G2) is not. Scaling down the sequence s−1
i by a constant if

necessary, we assume that there is g ∈ G2 such that p(g2) 6= e and d(g · ỹ2, ỹ2) ≤ 1. We

pass to a subsequence and assume that ti := s−1
i /r−1

i →∞. This enables us to regard

the above first sequence as a rescaling of the second one. Put

(Ni, qi,Γi) = (s−1
i M̃, x̃,Γ).

In this way, we can rewrite these two convergent sequences as (ti →∞):

(Ni, qi,Γi)
GH−→ (Ỹ1, ỹ1, G1),



31

(tiNi, qi,Γi)
GH−→ (Ỹ2, ỹ2, G2).

We look for a contradiction in some intermediate rescaling sequence. For each i, we

define a set of scales

Li := { 1 ≤ l ≤ ti | dGH((lNi, qi,Γi), (W,w,H)) ≤ ε/3

for some space (W,w,H) ∈ Ω(M̃,Γ)

such that H has some element h

with p(h) 6= e and d(h · w̃, w̃) ≤ 1},

where ε = ε(M) > 0 is the constant in Lemma 4.2.3. It is clear that ti ∈ Li for all i

large, thus Li is non-empty. We choose li ∈ Li such that inf Li ≤ li ≤ inf Li + 1/i. We

regard this li as the critical rescaling sequence.

Claim 1: li → ∞. Suppose that li subconverges to C < ∞, then for this subse-

quence, we can pass to a subsequence again and obtain the convergence

(liNi, qi,Γi)
GH−→ (C · Ỹ1, ỹ1, G1).

Since li ∈ Li, by definition of Li and the above convergence, we conclude that

dGH((C · Ỹ1, ỹ1, G1), (W,w,H)) ≤ ε/2

for some space (W,w,H) such that there is h ∈ H with p(h) 6= e and d(h · w̃, w̃) ≤ 1.

On the other hand, on (C · Ỹ1, ỹ1, G1), p(G1) is trivial. This is a contradiction to the

choice of ε and Lemma 4.2.3. Hence Claim 1 is true.

Next we consider the convergence

(liNi, qi,Γi)
GH−→ (Ỹ ′, ỹ′, G′) ∈ Ω(M̃,Γ).

We will derive a contradiction by ruling out all the possibilities of p(G′)-action on the

Rk-factor of Ỹ ′.

Claim 2: p(G′) is non-trivial. For each i, because li ∈ Li, we know that

dGH((liNi, qi,Γi), (Wi, wi,Ki)) ≤ ε/3
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for some (Wi, wi) ∈ Ω(M̃) with Ki-action such that there is ki ∈ Ki with p(ki) 6= e and

d(ki · w̃i, w̃i) ≤ 1. Since (liNi, qi,Γi) converges to (Ỹ ′, ỹ′, G′), the limit space satisfies

dGH((Ỹ ′, ỹ′, G′), (Wi, wi,Ki)) ≤ ε/2

for i large. By Lemma 4.2.3, p(G′) is nontrivial.

By Claim 2, there is some g′ ∈ G′ such that p(g′) 6= e. We put d := d(g′ · ỹ′, ỹ′). If

d ≤ 1, we consider the scaling sequence li/2:

(li/2 ·Ni, qi,Γi)
GH−→ (1/2 · Ỹ ′, ỹ′, G′).

Note that on (1/2 · Ỹ ′, ỹ′, G′), there is some element g′ ∈ G′ with p(g′) 6= e and

d(g′ · ỹ′, ỹ′) ≤ 1/2. This shows that li/2 ∈ Li for i large, which is a contradiction

our choice of li with inf Li ≤ li ≤ inf Li + 1/i. If d > 1, then we consider the scaling

sequence li/(2d):

(li/(2d) ·Ni, qi,Γi)
GH−→ (1/(2d) · Ỹ , ỹ, H ′).

and a similar contradiction would arise because li/(2d) ∈ Li. In any case, we see a

contradiction. This completes the proof.

Remark 4.2.6. In the above proof when defining Li, we include all the contradictory H-

actions with p(H) 6= {e} and a constraint on its displacement. In particular, this allows

p(H) to be different from p(G2). Doing so is necessary. For example, if p(G2) = Z and

we require p(H) = Z when defining Li, then the intermediate sequence

(liNi, qi,Γi)
GH−→ (Ỹ ′, ỹ′, G′)

may have a limit group with p(G′) = Zp, where p is a large integer. This Zp acts on Rk

as rotations on a plane about a point far away from 0, so that (Rk, 0,Zp) and (Rk, 0,Z)

are very close. In this situation, one can not derive a contradiction by dividing li by a

constant.

4.3 Stability of isometric actions

For an isometric G-action on a Riemannian manifold M , we always assume that G

is a closed subgroup of Isom(M). The goal of this section is Proposition 4.3.3 below, a
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stability result on isometric actions on any compact manifold M , which will be used in

the proof of Theorem 4.1.4 with M being the unit sphere Sk−1.

For convenience, we introduce a definition first.

Definition 4.3.1. Let (Yj , yj) be a metric space with isometric Lie group Gj-action

(j = 1, 2). We say that (Y1, y1, G1) is equivalent to (Y2, y2, G2), if

dGH((Y1, y1, G1), (Y2, y2, G2)) = 0;

or equivalently, there is an isometry F : Y1 → Y2 with F (y1) = y2, and a Lie group

isomorphism ψ : G1 → G2 such that F (g1 · x1) = ψ(g1) · F (x1) for any g1 ∈ G and

x1 ∈ Y1.

Remark 4.3.2. For any isometry F : Y1 → Y2, it induces an Lie group isomorphism

CF : Isom(Y1)→ Isom(Y2) by conjugation, that is, CF (g) = F ◦ g ◦ F−1. It is direct to

check CF satisfies

CF (g1) · F (x1) = F (g1 · x1)

for any x1 ∈ Y1 and any g1 ∈ Isom(Y1). This implies that the Lie group isomorphism ψ

in Definition 4.3.1 must be the conjugation map CF . Indeed, consider the composition

id = F−1 ◦ F , then CF−1 ◦ ψ satisfies

(CF−1 ◦ ψ)(g1) · x1 = g1 · x1

for all x1 ∈ Y1 and g1 ∈ G1. This shows that ψ = (CF−1)−1 = CF .

Proposition 4.3.3. Let (M,G) be a compact Riemannian manifold with isometric G-

action. Then there exists a constant ε > 0, depending on (M,G), such that the following

holds.

For any isometric H-action on M , if

dGH((M,G), (M,H)) ≤ ε,

then either (M,G) is equivalent to (M,H), or dim(H) < dim(G).

One may compare Proposition 4.3.3 with the result below by Grove and Karcher

[15].
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Theorem 4.3.4. Let M a compact Riemannian manifold. Then there exists ε(M) > 0

such that for any two isometric G-actions

µ1, µ2 : G×M →M

with dM (µ1(g, x), µ2(g, x)) ≤ ε(M) for all g ∈ G and x ∈ M , these two actions are

conjugate by an isometry.

We mention that the stability of group actions can be traced back to Palais [27]. He

shows that any two C1-close G-actions, as diffeomorphisms on M , can be conjugated by

a diffeomorphism, where G is a compact Lie group. Grove and Karcher use the center of

mass technique, and explicitly construct the conjugation map. They also interpret the

C1-closeness in terms of curvature bounds of M , when one of actions is by isometries.

For our purpose, we restrict our attention to isometric actions only here.

Proposition 4.3.3 is different from Theorem 4.3.4 in the following aspects. Proposi-

tion 4.3.3 considers two isometric actions with possibly different groups. For instance,

G = S1 and we can take H = Zp ⊆ G with large integer p. Even if one assume G = H,

the closeness of these two actions in the equivariant Gromov-Hausdorff topology is

weaker than the pointwise closeness condition in Theorem 4.3.4. For example, we know

that there is a sequence of circle actions on the standard torus T 2 = S1×S1 converging

to T 2-action:

(T 2, S1
i )

GH−→ (T 2, T 2).

Thus for any ε > 0, we can find two different circle actions in the tail of this sequence

such that

dGH((T 2, S1
j ), (T 2, S1

k)) ≤ ε,

where j, k are sufficiently large. However, these circle actions are not pointwise close.

This example also illustrates that the ε in Proposition 4.3.3 has to depend on the

G-action.

To prove Proposition 4.3.3, we recall some facts on equivariant Gromov-Hausdorff

convergence [14]. Given (M,Hi)
GH−→ (M,G), one can always assume that the identity

map on M gives equivariant εi-approximations for some εi → 0. We endow Isom(M)
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with a natural bi-invariant metric d from its action on M :

dG(g1, g2) = max
x∈M

dM (g1 · x, g2 · x).

Then Hi converges to the limit G with respect to the Hausdorff distance induced by

(Isom(M), d).

In our proof of Proposition 4.3.3, we use the following results.

Proposition 4.3.5. [15] Let µ1, µ2 : H → G be two homomorphisms of compact Lie

group H into the Lie group G with a bi-invariant Riemannian metric. There exists

ε(G) > 0 such that if d(µ1(h), µ2(h)) ≤ ε(G) for all h ∈ H, then the subgroups µ1(H)

and µ2(H) are conjugate in G.

Proposition 4.3.6. [26] Let G be a Lie group with left-invariant Riemannian metric.

Then there exists a constant ε(G) > 0 such that if φ : H → G is a map from a Lie

group H to G such that

d(φ(h1h2), φ(h1)φ(h2)) ≤ ε < ε(G)

for all h1, h2 ∈ H, then there is a Lie group homomorphism φ̄ : H → G with

d(φ̄(h), φ(h)) ≤ 2ε

for all h ∈ H.

We call such a map φ : H → G with

d(φ(h1h2), φ(h1)φ(h2)) ≤ ε

an ε-homomorphism. In practice, we may start with some bi-invariant distance function

d on G. We can equip G with a bi-invariant Riemannian metric d0 (we can do this

because G is compact). Then there is some constant C ≥ 1 such that C−1d0 ≤ dG ≤

Cd0. With this observation, for a sequence of εi-homomorphisms with respect to d, it

is a sequence of Cεi-homomorphisms with respect to d0. Therefore, we can still apply

Proposition 4.3.6 for i large.
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Proof of Proposition 4.3.3. Let {Hi} be a sequence of group actions on M such that

(M,Hi)
GH−→ (M,G). We show that if dim(Hi) ≥ dim(G), then (M,Hi) is equivalent to

(M,G) for all i large.

As pointed out, for (M,Hi)
GH−→ (M,G), it is equivalent to consider the Hausdorff

convergence Hi
H→ G in (Isom(M), d), where d is given by

d(g1, g2) = max
x∈M

dM (g1 · x, g2 · x).

We know that there is εi → 0 such that dH(Hi, G) ≤ εi. For each h ∈ Hi, we choose

φi(h) as an element in G that is εi-close to h. This defines a map

φi : Hi → G.

It is straight-forward to check that φi is a 3εi-homomorphism with respect the metric

d|G:

d(φi(h1h2), φi(h1)φi(h2))

≤ d(φi(h1h2), h1h2) + d(h1h2, h1φi(h2)) + d(h1φi(h2), φi(h1)φi(h2))

≤ 3εi

for any h1, h2 ∈ Hi. Apply Proposition 4.3.6, we obtain a sequence of Lie group

homomorphisms:

φ̄i : Hi → G.

Claim: φ̄i is a Lie group isomorphism for all i large. We first show that φ̄i is

injective. Suppose that ker(φ̄i) 6= {e}, then we have a sequence of non-trivial subgroups

converging to {e}:

ker(φ̄i)
H→ {e}.

However, there exists δ > 0 such that any non-trivial subgroup of Isom(M) has dis-

placement at least δ on M . This is because Isom(M) is a Lie group, which can

not have arbitrarily small non-trivial subgroups. Thus ker(φ̄i) = {e} for all i large.

Recall the assumption that dim(Hi) ≥ dim(G). Since φ̄i is injective, we must have

dim(Hi) = dim(G). Also note that the image φ̄i(Hi) is Cεi-dense in G, thus φ̄i must

be surjective for i large.
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Now Hi has two embeddings into Isom(M):

ιi : Hi → Isom(M), φ̄i : Hi → G ⊆ Isom(M),

where ιi is the inclusion map. Note that

d(h, φ̄i(h)) ≤ Cεi → 0

for all h ∈ Hi and some constant C. By Proposition 4.3.5, we conclude that for i large

G = φ̄i(Hi) is conjugate to Hi as subgroups in Isom(M). In other words, there is some

isometry gi ∈ Isom(M) such that g−1
i Ggi = Hi. This shows that (M,Hi) and (M,G)

are equivalent for i large.

4.4 Proof of equivariant stability at infinity

Without mentioning, we always assume that groups in this section are abelian. We

prove Theorem 4.1.4 in two steps. First we show that for all

(Ỹ , ỹ, G) = (Rk × C(Z), (0, z), G) ∈ Ω(M̃,Γ),

the isotropy subgroup of p(G) at 0 is independent of (Ỹ , ỹ, G), and (Rk, 0, p(G)) satisfies

property (P) (see Definition 4.4.2 below). Secondly, we prove the non-compact factor in

p(G) is also independent of (Ỹ , ỹ, G). The proof of each step shares the same structure

as Proposition 4.2.5: we show that there exists a gap between two certain classes of

group actions, then choose a critical rescaling to derive a desired contradiction in the

corresponding limit space.

Recall that once we specify a point in Rk as the origin 0, then every element in

Isom(Rk) = Rk o O(k) can be written as (A, v), where A ∈ O(k) fixing 0 and v ∈ Rk.

For convenience, we introduce a definition.

Definition 4.4.1. Let (Rk, 0, G) be the k dimensional Euclidean space with an isomet-

ric abelian G-action. We say that (Rk, 0, G) satisfies property (P), if

(P) for any element (A, v) ∈ G, (A, 0) is also an element of G.

Property (P) has the following consequence.
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Lemma 4.4.2. If (Rk, 0, G) satisfies property (P), then

(1) any compact subgroup of G fixes 0;

(2) G admits decomposition G = Iso0G × Rl × Zm, and any element in the subgroup

{e} × Rl × Zm is a translation, where Iso0G is the isotropy subgroup of G at 0.

Proof. (1) Let K be any compact subgroup of G. Suppose that K does not fix 0. Then

there is g = (A, v) ∈ K such that

0 6= g · 0 = (A, v) · 0 = v.

By assumption, (A, 0) ∈ G. Hence (A, v) · (A−1, 0) = (I, v) is also an element of G.

Because G is abelian, (A, 0) and (I, v) commutes. This implies that A · v = v, and thus

(A, v)k = (Ak, kv) for any integer k. We see that the subgroup generated by (A, v) can

not be contained in any compact group, a contradiction.

(2) This follows from (1) and the structure of abelian Lie groups.

It is clear that (2) in Lemma 4.4.2 is equivalent to property (P).

Lemma 4.4.3. Let G be an abelian subgroup of Isom(Rk), and x be a point in Rn. For

a sequence ri → ∞, consider the following equivariant tangent cones of (Rn, G) at x

and infinity:

(riRk, x,G)
GH−→ (Rk, 0, Gx),

(r−1
i Rk, x,G)

GH−→ (Rk, 0, G∞).

Then both (Rk, 0, Gx) and (Rk, 0, G∞) satisfy property (P).

Proof. Let K be the subgroup of G fixing x. It is clear that

(riRk, x,G)
GH−→ (Rk, 0,K × Rl),

where l is the dimension of the orbit G · x and {e} × Rl acts as translations.

Next we check that (Rk, 0, G∞) satisfies property P. Let (A, v) be an element in G∞

with v 6= 0. Due to the convergence, this means there are a sequence (Ai, tivi) ∈ G

with ti/ri → 1, Ai → A and vi → v. For each fixed integer k,

(r−1
i Rk, x, (Ak, tkvk))

GH−→ (Rk, 0, (Ak, 0)).
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Thus (Ak, 0) ∈ G∞. Since Ak → A as k → ∞ and G∞ is closed, we conclude that

(A, 0) ∈ G∞. Therefore, (Rk, 0, G∞) satisfies property (P).

Remark 4.4.4. Let M be an open n-manifold of Ric ≥ 0. Suppose that

(Ỹ , ỹ, G) = (Rk × C(Z), (0, z), G) ∈ Ω(M̃,Γ)

is a metric cone with isometric G-action, where C(Z) has vertex z and diam(Z) < π. We

do not know any example so that (Rk, 0, p(G)) does not satisfy property (P). However,

by Lemma 4.4.3, we can always find ones with property (P) in Ω(M̃,Γ) by passing to

the equivariant tangent cone of (Ỹ , ỹ, G) at ỹ, or at infinity (j →∞):

(jỸ , ỹ, G)
GH−→ (Ỹ , ỹ, Gỹ),

(j−1Ỹ , ỹ, G)
GH−→ (Ỹ , ỹ, G∞).

Remark 4.4.5. If (Rk, 0, G) does not satisfy property (P), then there is an element

(A, v) ∈ G, but (A, 0) 6∈ G. After blowing down

(j−1Rk, 0, G, (A, v))
GH−→ (Rk, 0, G∞, (A, 0)).

Thus (A, 0) ∈ G∞. Note that Iso0p(G) is preserved as a subgroup of Iso0p(G∞). Hence

Iso0p(G) is a proper subgroup of Iso0p(G∞).

We restate Theorem 4.1.4 in terms of Definition 4.4.1.

Theorem 4.4.6. Let M be an open n-manifold with abelian fundamental group and

Ric ≥ 0, whose universal cover M̃ is k-Euclidean at infinity. Then there exist a closed

abelian subgroup K of O(k) and an integer l ∈ [0, k] such that for any space (Ỹ , ỹ, G) ∈

Ω(M̃,Γ), (Rk, 0, p(G)) satisfies property (P) and p(G) = K × Rl.

We first establish a gap phenomenon between two classes of actions with property

(P) but different projected isotropy groups.

Lemma 4.4.7. Let M be an open n-manifold of Ric ≥ 0, whose universal cover is

k-Euclidean at infinity. Let K be an isometric action on Rk fixing 0. Then there exists

ε > 0, depending on M and K-action, such that the following holds.
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For any two spaces (Ỹj , ỹj , Gj) ∈ Ω(M̃,Γ) (j = 1, 2) satisfying

(1) (Rk, 0, p(Gj)) satisfies property (P) (j = 1, 2),

(2) (Rk, 0, Iso0p(G1)) is equivalent to (Rk, 0,K),

(3) dim(Iso0p(G2)) ≥ dim(K) and (Rk, 0, Iso0p(G2)) is not equivalent to (Rk, 0,K),

then

dGH((Ỹ1, ỹ1, G1), (Ỹ2, ỹ2, G2)) ≥ ε.

Proof. Suppose that there are two sequences in Ω(M): {(Ỹij , ỹij , Gij)}i (j = 1, 2) such

that for all i,

(1) (Rk, 0, p(Gij)) satisfies property (P) (j = 1, 2);

(2) (Rk, 0, Iso0p(Gi1)) is equivalent to (Rk, 0,K);

(3) dim(Ki) ≥ dim(K) and (Rk, 0,Ki) is not equivalent to (Rk, 0,K), where Ki =

Iso0p(Gi2);

(4) dGH((Ỹi1, ỹi1, Gi1), (Ỹi2, ỹi2, Gi2))→ 0 as i→∞.

After passing to some subsequences, this gives convergence

(Ỹi1, ỹi1, Gi1)
GH−→ (Ỹ∞, ỹ∞, G∞),

(Ỹi2, ỹi2, Gi2)
GH−→ (Ỹ∞, ỹ∞, G∞),

with (Ỹ∞, ỹ∞) = (Rk × C(Z∞), (0, z∞)), where diam(Z∞) < π and z∞ is the vertex of

C(Z∞) (Lemma 4.2.1). Consequently,

(Rk, 0, p(Gi1))
GH−→ (Rk, 0, p(G∞)),

(Rk, 0, p(Gi2))
GH−→ (Rk, 0, p(G∞)).

Because each (Rk, 0, p(Gij)) satisfies property (P) for all i and j, we conclude that

(Sk−1,K)
GH−→ (Sk−1,K∞),

(Sk−1,Ki)
GH−→ (Sk−1,K∞),

where Sk−1 is the unit sphere in Rk and K∞ = Iso0p(G∞). Note that (Sk−1, 0,K∞)

is equivalent to (Sk−1, 0,K). By Proposition 4.3.3, for all i sufficiently large, either

dim(Ki) < dim(K) or (Sk−1, 0,Ki) is equivalent to (Sk−1, 0,K). This contradicts the

hypothesis (3) on Ki.
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Lemma 4.4.8. Let M be an open n-manifold of Ric ≥ 0 and abelian fundamental group.

Suppose that M̃ is k-Euclidean at infinity. Then for any space (Ỹ , ỹ, G) ∈ Ω(M̃,Γ),

p(G)-action on (Rk, 0, G) satisfies property (P). Moreover, Iso0p(G) is independent of

(Ỹ , ỹ, G).

The key to prove Lemma 4.4.8 is the following lemma.

Lemma 4.4.9. Let M be an open n-manifold of Ric ≥ 0 and abelian fundamental

group. Suppose that M̃ is k-Euclidean at infinity. Then for any two spaces (Ỹj , ỹj , Gj) ∈

Ω(M̃,Γ) with (Rk, 0, p(Gj)) satisfying property (P) (j = 1, 2), (Rk, 0, Iso0p(G1)) must

be equivalent to (Rk, 0, Iso0p(G2)).

We prove Lemma 4.4.9 by induction, in terms of the following order on the set of

all compact abelian Lie groups.

Definition 4.4.10. For a compact Lie group K, we define D(K) = (dimK,#K/K0).

For two compact Lie groups K and H, with D(K) = (l1, l2) and D(H) = (m1,m2),

we say that D(K) < D(H), if l1 < m1, or if l1 = m1 and l2 < m2. We say that

D(K) ≤ D(H), if D(K) = D(H) or D(K) < D(H).

Proof of Lemma 4.4.9. We argue by contradiction. Suppose that there are two spaces

(Ỹj , ỹj , Gj) ∈ Ω(M̃,Γ) such that (Rk, 0, p(Gj)) satisfies property (P) (j = 1, 2), and

(Rk, 0, Iso0p(G1)) is not equivalent to (Rk, 0, Iso0p(G2)). We derive a contradiction by

the critical rescaling argument and Lemma 4.4.7.

We argue this by induction on min{D(K1), D(K2)}, where Kj = Iso0p(Gj) (j =

1, 2). Without lose of generality, we assume that D(K1) ≤ D(K2). Assuming that

the above can not happen when D(K1) < (m1,m2), we will derive a contradiction for

D(K1) = (m1,m2).

Let ri →∞ and si →∞ be two sequences such that

(r−1
i M̃, x̃,Γ)

GH−→ (Ỹ1, ỹ1, G1),

(s−1
i M̃, x̃,Γ)

GH−→ (Ỹ2, ỹ2, G2),
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and ti := (s−1
i )/(r−1

i )→∞. Put (Ni, qi,Γi) = (r−1
i M̃, x̃,Γ), then we have

(Ni, qi,Γi)
GH−→ (Ỹ1, ỹ1, G1),

(tiNi, qi,Γi)
GH−→ (Ỹ2, ỹ2, G2).

We know that (Rk, 0, p(Gj)) satisfies property (P) (j = 1, 2), D(K1) = (m1,m2) ≤

D(K2), and (Rk, 0,K1) is not equivalent to (Rk, 0,K2).

For each i, we define a set of scales

Li := { 1 ≤ l ≤ ti | dGH((lNi, qi,Γi), (W,w,H)) ≤ ε/3

for some space (W,w,H) ∈ Ω(M̃,Γ)

such that (Rk, 0, p(H)) satisfies property (P);

moreover, D(Iso0p(H)) > (m1,m2), or

D(Iso0p(H)) = (m1,m2) but (Rk, 0, Iso0p(H))

is not equivalent to (Rk, 0,K1)}.

We choose the above ε > 0 as follows: by Lemma 4.4.7, there is ε > 0, depending on

M and (Rk, 0,K1) such that for any (Wj , wj , Hi) ∈ Ω(M̃,Γ) (j = 1, 2) satisfying

(1) (Rk, 0, p(Hj)) satisfies property (P) (j = 1, 2),

(2) (Rk, 0, Iso0p(H1)) is equivalent to (Rk, 0,K1),

(3) dGH((W1, w1, H1), (W2, w2, H2)) ≤ ε,

then dim(Iso0p(H2)) < dim(K1), or (Rk, 0, Iso0p(H2)) is equivalent to (Rk, 0,K1).

Since ti ∈ Li for i large, we choose li ∈ Li with inf Li ≤ li ≤ inf Li + 1/i.

Claim 1: li → ∞. Suppose that li → C < ∞ for some subsequence, then for this

subsequence,

(liNi, qi,Γi)
GH−→ (C · Ỹ1, ỹ1, G1).

Together with the fact that li ∈ Li, we know that there is some space (W,w,H) ∈

Ω(M̃,Γ) with the properties below:

(1) (Rk, 0, p(H)) satisfies property (P),

(2) D(Iso0p(H)) > (m1,m2), or D(Iso0p(H)) = (m1,m2) but (Rk, 0, Iso0p(H)) is not

equivalent to (Rk, 0,K1),
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(3) dGH((C · Ỹ1, ỹ1, G1), (W,w,H)) ≤ ε/2.

Since (Rk, 0, p(H)) satisfies property (P), we see that (Rk, 0, Iso0p(H)) is equivalent

to (C · Rk, 0, Iso0p(H)). By Lemma 4.4.7 the choice of ε, we conclude that either

dim(Iso0p(H)) < dimK1, or (Rk, 0, Iso0p(H)) is equivalent to (Rk, 0,K1), which is a

contradiction to the condition (2) above. We have verified Claim 1.

Passing to a subsequence if necessary, we have convergence

(liNi, qi,Γi)
GH−→ (Ỹ ′, ỹ′, G′).

To draw a contradiction, the goal is ruling out all the possibilities of p(G′)-action.

Claim 2: D(K ′) ≥ (m1,m2), where K ′ = Iso0p(G
′). If D(K ′) < (m1,m2), we pass

to the equivariant tangent cone of (Ỹ ′, ỹ′, G′) at ỹ′. In this way, we have (Ỹ ′, ỹ′, G′ỹ′) with

(Rk, 0, p(G′ỹ′)) satisfying property (P) (see Remark 4.4.4). Note that (Rk, 0, Iso0p(G
′
ỹ′))

is equivalent to (Rk, 0,K ′) and D(K ′) < (m1,m2). We know that this can not happen

due to the induction assumption.

Claim 3: (Rk, 0, p(G′)) satisfies property (P), and D(K ′) = (m1,m2). In fact, we

pass to the equivariant tangent cone of (Ỹ ′, ỹ′, G′) at infinity:

(j−1Ỹ ′, ỹ′, G′)
GH−→ (Ỹ ′, ỹ′, G′∞).

For this space, (Rk, 0, p(G′∞)) satisfies property (P) (see Remark 4.4.4). Suppose that

Claim 3 fails, then D(Iso0p(G
′
∞)) > (m1,m2) (see Remark 4.4.5). We choose a large

integer J such that

dGH((J−1Ỹ ′, ỹ′, G′), (Ỹ ′, ỹ′, G′∞)) ≤ ε/4.

Hence for all i large, we have

dGH((J−1liNi, qi,Γi), (Ỹ
′, ỹ′, G′∞)) ≤ ε/3.

This implies that li/J ∈ Li for all i large, which is a contradiction to our choice of li.

Claim 4: (Rk, 0,K ′) is equivalent to (Rk, 0,K1). Suppose not, then we consider

the sequence li/2:

(li/2 ·Ni, qi,Γi)
GH−→ (1/2 · Ỹ ′, ỹ′, G′).
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Since (Rk, 0, p(G′)) satisfies property (P), (1/2 · Rk, 0,K ′) is equivalent to (Rk, 0,K ′),

which is not equivalent to (Rk, 0,K1). This means that li/2 ∈ Li for i large. A

contradiction.

This leads to the ultimate contradiction: Because li ∈ Li, there is some space

(W,w,H) ∈ Ω(M̃,Γ) satisfying the conditions (1)(2) in the proof of Claim 1, and

dGH((Ỹ ′, ỹ′, G′), (W,w,H)) ≤ ε/2.

On the other hand, by Claims 3, 4, Lemma 4.4.7 and the choice of ε, (W,w,H) can not

fulfill condition (2) (cf. proof of Claim 1).

For the remaining base case D(K1) = (0, 0), note that in the above proof, the

induction assumption is only used in Claim 2 to conclude D(K ′) ≥ (m1,m2). For the

base case (m1,m2) = (0, 0), it is trivial that D(K ′) ≥ (0, 0).

Proof of Lemma 4.4.8. With Lemma 4.4.9, it is enough to show that for any space

(Ỹ , ỹ, G) ∈ Ω(M̃,Γ), (Rk, 0, p(G)) always satisfies property (P). Suppose the contrary,

that is, (Rk, 0, p(G)) does not satisfy property (P) for some (Ỹ , ỹ, G) in Ω(M̃,Γ). We

pass to the equivariant tangent cone of (Ỹ , ỹ, G) at ỹ and at infinity respectively (see Re-

mark 4.4.4). We obtain (Ỹ , ỹ, Gỹ) and (Ỹ , ỹ, G∞). For these two spaces, (Rk, 0, p(Gỹ))

and (Rk, 0, p(G∞)) always satisfy property (P). By Lemma 4.4.9, (Rk, 0, Iso0p(Gỹ)) is

equivalent to (Rk, 0, Iso0p(G∞)).

On the other hand, because (Rk, 0, p(G)) does not satisfy property (P), Iso0p(G)

is a proper subgroup of Iso0p(G∞) (Remark 4.4.5). Since Iso0p(G) = Iso0p(Gỹ), we

conclude that (Rk, 0, Iso0p(Gỹ)) and (Rk, 0, Iso0p(G∞)) can not be equivalent, a con-

tradiction to Lemma 4.4.9.

Lemmas 4.4.2 and 4.4.8 imply that there exists a closed subgroup K of O(k) such

that for any (Ỹ , ỹ, G) ∈ Ω(M̃,Γ), (Rk, 0, p(G)) satisfies property (P), and p(G) =

K×Rl×Zm. To finish the proof of Theorem 4.4.6, we need to show that l is independent

of (Ỹ , ỹ, G) and m is always 0.

We prove the following gap lemma on the non-compact factor of p(G), which does

not require Lemma 4.4.7.
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Lemma 4.4.11. Let M be an open n-manifold of Ric ≥ 0. Suppose that M̃ is k-

Euclidean at infinity. Then there exists ε(M) > 0 such that the following holds.

For any two spaces (Ỹj , ỹi, Gj) ∈ Ω(M̃,Γ) (j = 1, 2) satisfying

(1) (Rk, 0, p(Gj)) satisfies property (P) (j = 1, 2),

(2) p(G1) = Iso0p(G1)× Rl (cf. Lemma 4.4.2),

(3) p(G2) contains Rl×Z as a closed subgroup; for this extra Z subgroup, it has generator

γ with dRk(γ · 0, 0) ≤ 1.

Then

dGH((Ỹ1, ỹ1, G1), (Ỹ2, ỹ2, G2)) ≥ ε(M).

Proof. We argue by contradiction. Suppose that there are two sequences of spaces in

Ω(M̃,Γ): {(Ỹij , ỹij , Gij)}i (j = 1, 2) such that

(1) (Rk, 0, p(Gij)) satisfies property (P) (j = 1, 2);

(2) p(Gi1) = Ki1 × Rl, where Ki1 = Iso0p(Gi1);

(3) p(Gi2) contains Rl × Z as a closed subgroup; for this extra Z subgroup, it has

generator γi with dRk(γi · 0, 0) ≤ 1;

(4) dGH((Ỹi1, ỹi1, Gi1), (Ỹi2, ỹi2, Gi2))→ 0 as i→∞.

This gives the convergence

(Ỹi1, ỹi1, Gi1)
GH−→ (Ỹ∞, ỹ∞, G∞),

(Ỹi2, ỹi2, Gi2)
GH−→ (Ỹ∞, ỹ∞, G∞);

thus

(Rk, 0, p(Gi1))
GH−→ (Rk, 0, p(G∞)),

(Rk, 0, p(Gi2))
GH−→ (Rk, 0, p(G∞)).

Since p(Gi1) = Ki1 × Rl and (Rk, 0, p(Gi1)) satisfies property (P), we conclude that

(Rk, 0, p(G∞)) also satisfies property (P), and p(G∞) = K∞ × Rl with K∞ fixing

0. On the other hand, by hypothesis (3), p(Gi2) contains a proper closed subgroup

Hi = Ki2 × Rl with Ki2 = Iso0p(Gi2). Moreover, there is some element αi ∈ p(Gi2)

outside Hi such that d(Hi · 0, αi · 0) ∈ (1, 3). This yields

(Rk, 0, Hi, αi)
GH−→ (Rk, 0, H∞, α∞),
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where α∞ is outside H∞ with d(H∞ ·0, α∞ ·0) ∈ (1, 3). Therefore, p(G∞) also contains

Rl × Z as a closed subgroup, a contradiction.

Proof of Theorem 4.4.6. By Lemmas 4.4.2 and 4.4.8, for any space (Ỹ , ỹ, G) ∈ Ω(M̃,Γ),

(Rk, 0, p(G)) always satisfies property (P), and p(G) = K×Rl×Zm, where K is a closed

subgroup of O(k) independent of (Ỹ , ỹ, G). It remains to show that l is independent of

(Ỹ , ỹ, G) and m is always 0.

We argue by contradiction with the critical rescaling argument and Lemma 4.4.11.

By passing to the tangent cones at the base point of spaces in Ω(M̃,Γ), we can choose

contradictory two spaces (Ỹj , ỹj , Gj) ∈ Ω(M̃,Γ) (j = 1, 2) with p(G1) = K × Rl and

p(G2) containing Rl × Z as a closed subgroup. We rule out this by induction on l.

Assuming that this can not happen for p(G1) has non-compact factor with dimension

0, .., l − 1, we prove the case p(G1) = K × Rl.

Let ri →∞ and si →∞ be two sequences such that

(r−1
i M̃, x̃,Γ)

GH−→ (Ỹ1, ỹ1, G1),

(s−1
i M̃, x̃,Γ)

GH−→ (Ỹ2, ỹ2, G2),

and ti := (s−1
i )/(r−1

i ) → ∞. Rescale s−1
i down by a constant if necessary, we assume

that the extra Z subgroup in p(G2) has generator γ with dRk(γ · 0, 0) ≤ 1. We put

(Ni, qi,Γi) = (r−1
i M̃, x̃,Γ), then

(Ni, qi,Γi)
GH−→ (Ỹ1, ỹ1, G1),

(tiNi, qi,Γi)
GH−→ (Ỹ2, ỹ2, G2).

For each i, we define

Li := { 1 ≤ l ≤ ti | dGH((lNi, qi,Γi), (W,w,H)) ≤ ε/3

for some space (W,w,H) ∈ Ω(M̃,Γ) such that

p(H) contains Rl × Z as a closed subgroup;

moreover, this extra Z-subgroup

has generator h with dRk(h · 0, 0) ≤ 1.}
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In the above definition, we choose ε = ε(M) > 0 as the constant in Lemma 4.4.11.

ti ∈ Li for i large. We choose li ∈ Li with inf Li ≤ li ≤ inf Li + 1/i.

Claim 1: li →∞. If li → C, then

(liNi, qi,Γi)
GH−→ (C · Ỹ1, ỹ1, G1).

The projection to Euclidean factor (C · Rk, 0, p(G1)) is equivalent to (Rk, 0, p(G′)),

because the later one satisfies property (P) and p(G′) = K × Rl. Since li ∈ Li,

dGH((C · Ỹ1, ỹ1, G1), (W,w,H)) ≤ ε/2

for some (W,w,H) ∈ Ω(M̃,Γ) with p(H) containing Rl × Z as a closed subgroup.

Moreover, the extra Z-subgroup has generator h with dRk(h · 0, 0) ≤ 1. This is a

contradiction to our choice of ε and Lemma 4.4.11.

Next we consider convergence

(liNi, qi,Γi)
GH−→ (Ỹ ′, ỹ′, G′).

Claim 2: p(G′) = K × Rl. Indeed, because (Rk, 0, p(G′)) satisfies property (P),

we can write p(G′) = K × Rl′ × Zm′ . We can also assume that l′ ≥ l due to induction

assumption. If l′ > l or m′ 6= 0, then p(G′) contains Rl × Z as a closed subgroup.

Consequently, li/d ∈ Li for some constant d ≥ 2, which contradicts our choice of li.

Hence Claim 2 holds.

We derive the desired contradiction: li ∈ Li so

dGH((Ỹ ′, ỹ′, G′), (W,w,H)) ≤ ε/2

for some space (W,w,H) ∈ Ω(M̃,Γ), where p(H) contains Rl×Z as a closed subgroup,

and the extra Z-subgroup has generator h with dRk(h · 0, 0) ≤ 1. A contradiction to

Lemma 4.4.11.

For the remaining base case p(G1) = K (l = 0), the above proof also goes through.

Indeed, note that we use the induction assumption to conclude that l′ ≥ l in Claim 2.

For l = 0, l′ ≥ 0 holds trivially.



48

Remark 4.4.12. Theorems B and 4.1.4 remains true if one replace the k-Euclidean at

infinity condition by the following: there is k such that any tangent cone of M̃ at infinity

splits as (Rk ×X, (0, x)), where (X,x) satisfies

(1) X has no lines,

(2) any isometry of X fixes x.

With this assumption, tangent cones of M̃ at infinity may not be metric cones nor

be polar spaces. Nevertheless, we still have the desired properties on Isom(Ỹ ) for any

Ỹ = Rk ×X ∈ Ω(M̃) (cf. Propositions 4.1.2 and 4.1.3):

(1) Isom(Rk ×X) = Isom(Rk)× Isom(X),

(2) g · (v, x) = (p(g) · v, x) for any g ∈ Isom(Ỹ ) and any v ∈ Rk, where p : Isom(Ỹ ) →

Isom(Rk) is the natural projection.

These properties are all that we required in our proof of Theorems B and 4.1.4.



49

Chapter 5

No small subgroups and no small almost subgroups

5.1 Introduction

We first introduce the motivation and main results of Chapters 5 and 6.

For a metric space (X,x) and a subset A of Isom(X), put

Dr,x(A) = sup
f∈A,q∈Br(x)

d(fq, q).

If the base point x is clear, we write Dr(A) for simplicity. We regard A as being ε-

small at x with scale r, if Dr,x(A) < εr. Cheeger, Colding ,and Naber showed that for

any X ∈ M(n,−1) coming from a sequence of complete manifolds, its isometry group

Isom(X) is a Lie group, by ruling out non-trivial small subgroups of Isom(X) [6, 11].

More precisely, they showed that for X ∈M(n,−1), if there is a sequence of subgroups

Hi of Isom(X) such that DR,z(Hi)→ 0 for all R > 0 and all z ∈ X, then Hi = {e} for

i large. Our first result in this Chapter is a quantitative version of no small subgroup

property for non-collapsing Ricci limit spaces.

Theorem 5.1.1 (No small subgroup). Given n, v > 0, there exists a positive constant

δ(n, v) such that for any Ricci limit space (X,x) ∈ M(n,−1, v) and any nontrivial

subgroup H in Isom(X), Dr,x(H) ≥ rδ holds for all r ∈ (0, 1].

This quantitative lower bound on displacements fails if one drops the volume lower

bound assumption. As an application of Theorem 5.1.1, we derive a stability result on

fundamental groups for non-collapsing manifolds with bounded diameter.

Theorem 5.1.2. Let (Mi, xi) be a sequence of closed n-manifolds with

RicMi ≥ −(n− 1), diam(M) ≤ D, vol(B1(xi)) ≥ v > 0

If the following sequences converge
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(M̃i, x̃i,Γi)
GH−−−−→ (X̃, x̃, G)yπi yπ

(Mi, xi)
GH−−−−→ (X,x),

then Γi is isomorphic to G for all i large.

Theorem 5.1.2 implies finiteness of fundamental groups in [1]. For more applications

of Theorem 5.1.1 on the structure of fundamental groups, see Section 5.3.

Next we extend this idea of “no small subgroups” to certain subsets that are very

close to being subgroups. We say that a subset A of a group is symmetric, if e ∈ A and

A = A−1 = {a−1|a ∈ A}. We denote dH as the Hausdorff distance between two subsets

in some metric space. Theorem 5.1.1 implies the following result:

Proposition 5.1.3. Given n, v > 0, there exist positive constants ε(n, v) and η(n, v)

such that the following holds.

Let (M,x) be a complete n-manifold with

RicM ≥ −(n− 1), vol(B1(x)) ≥ v.

For any free isometric G-action on (M,x) and any nontrivial symmetric subset A of

G, if

sup
q∈B1(x)

dH(Aq,A2q)

diam(Aq)
≤ η,

then Dr,x(A) ≥ rε for all r ∈ (0, 1/2].

The ratio dH(Aq,A2q)/diam(Aq) describes how close a symmetric subset A is close

to being a subgroup with respect to its orbit at q. Note that when this ratio equals

zero, A is indeed a subgroup. If this ratio is less than η, we regard A as an η almost

subgroup at q. Inspired by Proposition 5.1.3, we introduce the definition below.

Definition 5.1.4. Let ε, η, r > 0 and (M,x) be an n-manifold. For a subgroup G of

Isom(M) acting freely on M , we say that G-action has no ε-small η-subgroup at q ∈M

with scale r, if for any nontrivial symmetric subset A of G with

dH(Aq,A2q)

diam(Aq)
≤ η,

Dr,q(A) ≥ rε holds. We say that G-action has no ε-small η-subgroup on B1(x) with

scale r, if it has no ε-small η-subgroup at every point in B1(x) with scale r.
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We conjecture that no small almost subgroup property always holds when there is

a lower bound on the volume, which is also mentioned in Chapter 1.

Conjecture 5.1.5 (No small almost subgroup). Given n, v > 0, there exist positive

constants ε(n, v) and η(n, v) such that if an n-manifold (M,x) satisfies

RicM ≥ −(n− 1), vol(B1(x)) ≥ v,

then any isometric free G-action on M has no ε-small η-subgroup on B1/2(x) with scale

r ∈ (0, 1/2].

We point out that to verify Conjecture 5.1.5, it is sufficient to answer the question

below:

Question 5.1.6. Let (Mi, xi) be a sequence of complete n-manifolds of

RicMi ≥ −(n− 1), vol(B1(xi)) ≥ v > 0,

and fi be a sequence of isometries on Mi. Suppose that the following sequences converge

(ri →∞):

(Mi, xi, fi)
GH−→ (X,x, f∞),

(riMi, xi, fi)
GH−→ (X ′, x′, id),

where id means the identity map. Is it true that f∞ = id always holds?

For more explanations related to Question 5.1.6 and Conjecture 5.1.5, see Section

5.4. We also confirm Question 5.1.6, thus Conjecture 5.1.5 holds under a stronger

curvature condition secM ≥ −1 (See Corollary 5.4.8).

The main result of Chapters 5 and 6 is the following theorem on bounding the

number of short generators under the small almost subgroup condition. Let S(x) be a

set of short generators of π1(M,x). For convenience, we denote S(x,R) as the subset

of S(x) consisting of elements with length less than R, and |S(x,R)| as the cardinality

of this subset.

Theorem 5.1.7. Given n,R, ε, η > 0, there exists a constant C(n,R, ε, η) such that for

any complete n-manifold M with RicM ≥ −(n−1), if π1(M,x) is abelian and π1(M,x)-

action has no ε-small η-subgroup on B1(x̃) with scale r ∈ (0, 1], then |S(x,R)| ≤

C(n,R, ε, η).
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As indicated in Section 2.3, Theorem 5.1.7 implies Theorem C. It also follows from

Theorem C that, an verification on Conjecture 5.1.5 would imply that Milnor conjecture

holds for manifolds whose universal covers have Euclidean volume growth.

Proof of Theorem 5.1.7 is closely related to a rescaling argument. For ri → ∞, we

consider

(M̃i, x̃i,Γi)
GH−−−−→ (X̃, x̃, G)yπi yπ

(Mi, xi)
GH−−−−→ (X,x),

(riM̃i, x̃i,Γi)
GH−−−−→ (X̃ ′, x̃′, G′)yπi yπ′

(riMi, xi)
GH−−−−→ (X ′, x′),

(∗)

where Γi = π1(Mi, xi). The limit group G (resp. G′), as a closed subgroup of Isom(X̃)

(resp. Isom(X̃ ′)), is a Lie group [6, 11]. Our main technical result is the following

relation between G and G′ when Γi-action has no small almost subgroup.

Theorem 5.1.8 (Dimension monotonicity of symmetries). Let (Mi, xi) be a sequence

of complete n-manifolds with abelian fundamental groups Γi and RicMi ≥ −(n − 1).

Consider the convergent sequence and any rescaling sequence as in (∗). If there are

ε, η > 0 such that for each i, Γi-action has no ε-small η-subgroups on B1(x̃i) with scale

r ∈ (0, 1], then

dim(G′) ≤ dim(G).

We prove a more detailed relation between G and G′ in Chapter 6. Also note that

in Theorem 5.1.8, there is no requirements on volume and X̃ can be collapsed. If in (∗)

there exists a sequence of symmetric subsets Ai with Ai
GH→ {e} and

dH(Aix̃i, A
2
i x̃i)

diam(Aix̃i)
→ 0,

then dim(G′) ≤ dim(G) may fail (see Examples 3.2).

We now indicate our approach to Theorem 5.1.8, and Theorem 5.1.7 by assuming

Theorem 5.1.8.

For Theorem 5.1.8, let us first consider an easy case: G = R and G′ = R × S1.

Assume that S1-action is free at some q ∈ X ′ and let qi ∈ riMi converging to q. Let γ

be the element of order 2 in S1 and γi ∈ Γi such that

(riMi, xi, γi)
GH−→ (X ′, x′, γ).
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Put Ai = {e, γ±1
i }. Then with respect to the above sequence, Ai

GH→ 〈γ〉 and thus the

scaling invariant

dH(Aiqi, A
2
i qi)

diam(Aiqi)
→ 0.

Note that before rescaling D1,xi(Ai)→ 0, a contradiction to assumption that Γi-action

has no ε-small η-subgroup on B1(x̃i). Next we consider a typical situation: G = R and

G′ = R2. The difficulty compared with the previous case is that, there is no indication

to choose a sequence of collapsed almost subgroups from G′ = R2. Our strategy is

finding a suitable intermediate rescaling sequence, from which we are able to pick up

a sequence of small almost groups (See Chapter 6 for details). This is similar to the

critical rescaling argument in Chapter 4.

In the proof of Theorem 5.1.7, suppose that there is a contradicting sequence

(M̃i, x̃i,Γi)
GH−−−−→ (X̃, x̃, G)yπi yπ

(Mi, xi)
GH−−−−→ (X,x)

satisfying the following conditions:

(1) RicMi ≥ −(n− 1),

(2) π1(Mi, xi) is abelian, whose action has no ε-small η-subgroup on B1(x̃i) with scale

r ∈ (0, 1];

(3) |S(xi, R)| → ∞.

Roughly speaking, we derive a contradiction by induction on the dimension of G. As-

sume that dim(G) = 0, or G is discrete. Recall that there is a sequence of εi-equivariant

maps [14]

ψi : Γi(R)→ G(R), Γi(R) = {γ ∈ Γi | d(γx̃i, x̃i) ≤ R}

for some εi → 0. By the discreteness of G(R) and no small almost subgroup assump-

tion, it is not difficult to check that |S(xi, R)| is uniformly bounded (see Proposition

6.2.3 for details), a contradiction to (3). Assume that there is no such contradicting

sequence with dim(G) ≤ k, while there is one with dim(G) = k + 1. We shall obtain

a contradiction by constructing a new contradicting sequence with dim(G) ≤ k. For

a sequence mi → ∞, let Γi,mi be the subgroup of Γi generated by the first mi short
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generators at xi. If for some mi →∞,

(M̃i, x̃i,Γi,mi)
GH−→ (X̃, x̃,H).

and dim(H) ≤ k, then we are done. Without lose of generality, we assume that

dim(H) = k+1 for all mi →∞. For some mi →∞ with |βi| → 0, where βi = γi,mi+1 is

the (mi + 1)-th short generator in Γi, we consider a sequence of intermediate coverings,

(M̃i, x̃i, 〈Γi,mi , βi〉)
GH−−−−→ (X̃, x̃,K)yπi yπ

(M i = M̃i/Γi,mi , x̄i, 〈βi〉)
GH−−−−→ (X, x̄,Λ).

Because d(βix̃i, x̃i) → 0 and dim(H) = dim(K), one can show that Λ is discrete and

fixes x̄. Put ri = diam(〈βi〉 · x̄i)→ 0 and consider the rescaling sequences

(r−1
i M̃i, x̃i,Γi,mi , 〈Γi,mi , βi〉)

GH−−−−→ (X̃ ′, x̃′, H ′,K ′)yπi yπ
(r−1
i M i, x̄i, 〈βi〉)

GH−−−−→ (X
′
, x̄′,Λ′).

By Theorem 5.1.8, dim(K ′) ≤ dim(K) = k + 1. If dim(H ′) < dim(K ′), then we reduce

the dimension successfully. One can check that (r−1
i M i, x̄i) is a desired contradicting

sequence. If dim(H ′) = dim(K ′), then we will look into the isotropy subgroups of

H ′ and K ′ at x̃′, and use an induction argument on the number of the connected

components of the isotropy subgroups (See Chapter 6 for details).

5.2 Volume and no small subgroups

We start with the following characterization of identity maps on Ricci limit spaces.

Lemma 5.2.1. Let (X,x) ∈ M(n,−1) be a Ricci limit space. If g ∈ Isom(X) has

trivial action on B1(x), then g = e.

Proof. The proof is a modification of the arguments of Theorem 4.5 in [6] and Theorem

1.14 in [11]. Let k be the dimension of X in the Colding-Naber sense [11] and Rk be

the set of points of which any tangent cone is isometric to Rk. Recall that the effective

regular set Rkε,δ is defined as all points y ∈ X such that

dGH(Br(y), Bk
r (0)) ≤ εr
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for all 0 < r < δ.

We recall the uniform Reifenberg property proved in [11]: almost every y ∈ Rk and

almost every z ∈ Rk have the property that for any ε > 0, there exist δ > 0 and a

geodesic γyz connecting y and z such that γyz ⊆ Rkε,δ.

Suppose that g is not the identity element. Let H be the closure of the subgroup

generated by g, then clearly H|B1(x) = id. Since H 6= {e}, for any ε > 0, there exist

θ ∈ (0, ε) and a k-regular point w ∈ (Rk)ε,θ such that

θ−1Dθ,w(H) ≥ 1/20.

On the other hand, because H acts trivially on B1(x), there are η > 0 and a k-regular

point y ∈ B1/2(x) ∩ (Rk)ε,η with

η−1Dη,y(H) = 0.

We further assume that the points w and y chosen above satisfy the uniform Reifenberg

property, that is, there are λ < min{θ, η} and such that γwy lies in Rkε,λ.

If λ−1Dλ,w(H) ≤ 1/20, then by intermediate value theorem, we can find r ∈ [λ, η]

such that

r−1Dr,w(H) = 1/20.

If λ−1Dλ,w(H) > 1/20, together with

λ−1Dλ,y(H) = 0 < 1/20,

we can find z along γwy such that

λ−1Dλ,z(H) = 1/20.

Replace the arbitrary ε > 0 by a sequence εi → 0. Then we can find τi ≥ ri → 0,

zi ∈ Rkεi,τi such that

Dri,zi(H) = ri/20.

Consequently,

(r−1
i Bri(zi), zi, H)

GH−→ (Bk
1 (0), 0, H∞)

with D1,0(H∞) = 1/20. However, there is no such a subgroup H∞ of Isom(Rk), a

contradiction.
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Next we prove Theorem 5.1.1 as follows; the proof is also similar to the one of

Theorem 4.5 in [6].

Proof of Theorem 5.1.1. We show that D1,x(H) ≥ δ(n, v). For the result Dr,x(H) ≥

rδ(n, v), with a possibly different δ, for all r ∈ (0, 1], we can scale the metric by r−1.

Then by relative volume comparison on (r−1X,x) the unit ball has volume vol(B1(x)) ≥

C(n)v and thus D1,x(H) ≥ δ(n,C(n)v) on (r−1X,x) for all r ∈ (0, 1]. Scale the metric

back to (X,x), we have Dr,x(H) ≥ δ(n,C(n)v)r.

Suppose the contrary, then there is a sequence of spaces (Xi, xi) ∈M(n,−1, v) and

nontrivial subgroups Hi of Isom(Xi) with D1(Hi) → 0. By Lemma 5.2.1, passing to a

subsequence if necessary,

(Xi, xi, Hi)
GH−→ (X,x, {e}).

We will find a subsequence i(j), εj(i) → 0, τi(j) ≥ ri(j) > 0, zi(j) ∈ Rεi(j),τi(j) ⊆ Xi(j)

and Dri(j),zi(j)(Hi(j)) =
1

20
ri(j). Then

(r−1
i(j)Bri(j)(zi(j)), zi(j), Hi(j))

GH−→ (Bn
1 (0), 0, H∞)

with D1(H∞) = 1/20; and the desired contradiction follows.

Fix a regular point y ∈ B1(x) ⊂ X. For each ε > 0, there is δ > 0 such that

y ∈ Rε,δ. Pick a sequence of regular points yi ∈ Xi converging to y. Put

ηi = dGH(δ−1Bδ(yi), δ
−1Bδ(y))→ 0.

Because y ∈ Rε,δ,

dGH(δ−1Bδ(yi), B
n
1 (0)) ≤ ηi + ε.

By Theorem 2.2.14, for all 0 < s ≤ δ,

dGH(s−1Bs(yi), B
n
1 (0)) ≤ Φ(ηi + ε, δ|n).

In other words, yi ∈ RΦi,δ. Also, because Hi → {e},

δ−1Dδ,yi(Hi)→ 0.

For each ε, pick i(ε) large such that for all i ≥ i(ε), we have

ηi ≤ δ and δ−1Dδ,yi(Hi) ≤
1

20
.
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Now consider a sequence εj → 0, then y ∈ Rεj ,δj for some δj → 0. There is a

subsequence i(j) such that

1. ηi(j) ≤ δj , thus yi(j) ∈ RΦi(j),δj , where Φi(j) = Φ(δj + εj |n);

2. Dδj ,yi(j)(Hi(j)) ≤
1

20
δj .

On each Xi(j), there is θi(j) > 0, wi(j) ∈ RΦi(j),θi(j) such that

Dθi(j),wi(j)
(Hi(j)) ≥

1

20
θi(j).

The remaining proof is essentially the same as Theorem 4.5 in [CC00a].

For fundamental group actions on universal covers, one can prove no small subgroup

property alternatively by using Dirichlet domains and volume convergence.

Corollary 5.2.2. Let (Mi, xi) be a sequence of complete n-manifolds and (M̃i, x̃i) be

the sequence of their universal covers with

RicMi ≥ −(n− 1), vol(B1(x̃i)) ≥ v > 0.

If Hi is a sequence of subgroups of π1(Mi, xi) with D1(Hi) → 0, then Hi = {e} for all

i sufficiently large.

Proof. Suppose the contrary, i.e. #Hi ≥ 2 for some subsequence. Passing to this

subsequence, we may assume that #Hi ≥ 2 for all i. Let hi be a sequence of nontrivial

elements in Hi. Notice that by Lemma 5.2.1, D1(Hi) → 0 implies that Hi
GH−→ {e}.

Passing to some subsequences if necessary, we consider

(M̃i, x̃i, Hi)
GH−−−−→ (X̃, x̃, {e})yπi yπ

(M i = M̃i/Hi, x̄i)
GH−−−−→ (X̃/{e}, x̄).

By Theorem 2.2.13,

vol(B1(x̃i))→ Hn(B1(x̃));

vol(B1(x̄i))→ Hn(B1(x̄)) = Hn(B1(x̃)),

where Hn denotes the n-dimensional Hausdorff measure on the limit spaces.



58

On the other hand, there is εi → 0 such that Hi(B1(xi)) ⊆ B1+εi(xi). Let Fi be the

Dirichlet domain centered at x̃i. Then we have

vol(B1(x̄i)) =
1

2
(vol(B1(x̃i) ∩ Fi) + vol(hi(B1(x̃i) ∩ Fi)))

≤ 1

2
· vol(B1+εi(x̃i))

→ 1

2
· Hn(B1(x̃)).

We end in a contradiction.

5.3 Applications of no small subgroups

As one of applications of Theorem 5.1.1, we prove Theorem 5.1.2. Recall that

Theorem 5.1.1 implies that if (M,x) satisfies

RicM ≥ −(n− 1), vol(B1(x̃)) ≥ v > 0,

then any nontrivial subgroup H of Γ has D1,x̃(H) ≥ δ(n, v). Under a stronger volume

condition

vol(B1(x)) ≥ v > 0,

we show that such a lower bound on displacement holds for any nontrivial covering

transformation.

Lemma 5.3.1. Given n and v > 0, there is a constant δ(n, v) > 0 such that for any

n-manifold (M,x) with

RicM ≥ −(n− 1), vol(B1(x)) ≥ v

and any nontrivial element γ ∈ π1(M,x), we have D1,x̃(γ) ≥ δ.

Proof. We argue by contradiction. Suppose that we have the following convergent

sequences

(M̃i, x̃i,Γi)
GH−−−−→ (X̃, x̃, G)yπi yπ

(Mi, xi)
GH−−−−→ (X,x).
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with

RicM ≥ −(n− 1), vol(B1(x)) ≥ v;

and a sequence of nontrivial elements γi ∈ Γi converging to the identity map, where

Γi = π1(M,x).

By [1], there are positive constants L(n, v) and N(n, v) such that for any subgroup

in π1(M,x) generated by elements of length ≤ L, this subgroup has order ≤ N (In [1],

only closed manifolds with bounded diameter are considered, but its proof extends to

open manifolds). Since γi → id, for all i large γi has length ≤ L, thus has order ≤ N .

Consequently, the sequence of subgroups generated by γi also converges to {e}. By

Theorem 5.1.1, this implies that 〈γi〉, and thus γi, is identity for i large.

With Lemma 5.3.1, we prove Theorem 5.1.2, the stability of π1 under equivariant

GH convergence for non-collapsing manifolds with bounded diameter.

Proof of Theorem 5.1.2. We first notice thatG is a discrete group (intuitively, otherwise

Mi would be collapsed). In fact, we consider 〈Γi(L)〉, the subgroup generated by loops

of length ≤ L, where L = L(n, v) is the constant mentioned in the proof of Lemma

5.3.1. We consider

(M̃i, x̃i,Γi(L))
GH−→ (X̃, x̃,H).

Since each Γi(L) has order ≤ N , so does H. Note that H contains G0, thus G0 = {e}

and G is discrete.

By [14], there exists a sequence of subgroups Hi of Γi such that

(M̃i, x̃i, Hi)
GH−→ (X̃, x̃, G0)

and Γi/Hi is isomorphic to G/G0 for all i large. In our situation, G0 = {e} and thus

Hi
GH→ {e}. By Theorem 5.3.1, we see that Hi = {e} for all i large. Consequently, Γi is

isomorphic to G for all i large.

We also prove two structure theorems below on fundamental groups of closed man-

ifolds with non-collapsing conditions on the universal covers.
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Theorem 5.3.2. Given n,D, v > 0, there exists a constant C(n,D, v) such that if a

complete n-manifold (M,x) with finite fundamental group satisfies

RicM ≥ −(n− 1), diam(M) ≤ D, vol(B1(x̃)) ≥ v > 0,

then π1(M) contains an abelian subgroup of index ≤ C(n, v). Moreover, this subgroup

can be generated by at most n elements.

Theorem 5.3.3. Given n, v > 0, there exists a constant C(n, v) such that if a complete

n-manifold (M,x) satisfies

RicM ≥ 0, diam(M) = 1, vol(B1(x̃)) ≥ v > 0,

then π1(M) contains an abelian subgroup of index ≤ C(n, v). Moreover, this subgroup

can be generated by at most n elements.

Theorems 5.3.2 and 5.3.3 generalize Theorems D and E in [26], where the curvature

conditions are on sectional curvature. Given Theorem 8 in [22] and Theorem 4.1 [6],

actually their proof [26] extends to the Ricci case. Here we give an alternative approach

by applying Theorem 5.1.1 and Kapovitch-Wilking’s work [22]. Our new proof also gives

a bound of generators of the abelian subgroup.

Theorems 5.3.2 and 5.3.3 partially verify the following conjectures respectively.

Conjecture 5.3.4. Given n and D, there exists a constant C(n,D) such that the

following holds. Let M be an n-manifold with finite fundamental group and

RicM ≥ −(n− 1), diam(M) ≤ D,

then π1(M) contains an abelian subgroup of index ≤ C(n,D). Moreover, this subgroup

can be generated by at most n elements.

Conjecture 5.3.5 (Fukaya-Yamaguchi). Given n, there exists a constant C(n) such

that for any n-manifold with nonnegative Ricci curvature, its fundamental group con-

tains an abelian subgroup of index ≤ C(n). Moreover, this subgroup can be generated

by at most n elements.

We make use of some results on nilpotent groups.
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Lemma 5.3.6. Any compact connected nilpotent Lie group is abelian, thus a torus.

Lemma 5.3.7. [30] Let Γ be a nilpotent group generated by n elements x1, ..., xn. Then

every element in [Γ,Γ] is a product of n commutators [x1, g1], ..., [xn, gn] for suitable

gi ∈ G (i = 1, ..., n).

Proof of Theorem 5.3.2. Suppose that the statement does not hold, then we have a

contradicting sequence

(M̃i, x̃i,Γi)
GH−−−−→ (X̃, x̃, G)yπi yπ

(Mi, xi)
GH−−−−→ (X,x)

with finite fundamental groups and

RicMi ≥ −(n− 1), diam(Mi) = D, vol(B1(x̃i)) ≥ v > 0,

but any abelian subgroup in π1(Mi) has index larger than i. By [22], Γi is C(n)-

nilpotent with a cyclic chain of length ≤ n. Thus without lose of generality, we may

assume that Γi is nilpotent with a cyclic chain of length ≤ n for all i, and thus G is a

nilpotent Lie group.

By Diameter Ratio Theorem [22], diam(M̃i) has an upper bound D̃(n,D). Thus

the limit space X̃ and its limit group G are compact. G0, as a connected compact

nilpotent Lie group, must be a torus. We call this torus T . Since G is compact, there

is a sequence of subgroups Hi converging to T such that Γi/Hi ' G/T . In particular,

[Γi : Hi] = [G : T ] <∞.

We complete the proof once we show that Hi is abelian and can be generated by at

most n-elements.

Since Γi is nilpotent with a cyclic chain of length ≤ n, Hi can be generated by at

most n-elements. To show that Γi is abelian, we consider the commutator subgroup

[Hi, Hi]. We claim that [Hi, Hi]
GH−→ e, then by Corollary 5.2.2, [Hi, Hi] = e and thus Hi

is abelian. Indeed, for any sequence γi in [Hi, Hi], by lemma 5.3.7 it can be written as∏n
j=1[xi,j , hi,j ], where {xi,j}nj=1 are generators of Hi and hi,j ∈ Hi. Since the limit group
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T is compact, passing to a subsequence if necessary, we may assume that xi,j → xj ∈ T

and hi,j → hj ∈ T . Because T is abelian, [xi,j , hi,j ]→ [xj , hj ] = e and thus γi → e.

Next we consider closed manifolds with nonnegative Ricci curvature.

Lemma 5.3.8. Given n, there exists a constant C(n) such that the following holds.

Let M be a closed n-Riemannian manifold with

RicM ≥ 0, diam(M) = 1.

Then M̃ splits isometrically as N × Rk with diam(N) ≤ C(n).

Proof. By Cheeger-Gromoll splitting theorem [8], we know that M̃ splits isometrically

as N × Rk, where N is compact and simply connected. Suppose that we have a con-

tradicting sequence: Mi with

RicMi ≥ 0, diam(Mi) = 1,

but Ni, the compact factor of M̃i, has diameter→∞. By generalized Margulis Lemma

[22], it is easy to see that Γi = π1(Mi, xi) is C(n)-nilpotent. Hence without lose of

generality, we may assume that Γi itself is nilpotent.

Put ri = diam(Ni)→∞ and consider the rescaling sequence

(r−1
i Ni × Rk, x̃i,Γi)

GH−−−−→ (Y × Rk, x̃, G)yπi yπ
(r−1
i Mi, xi)

GH−−−−→ point

where G is a nilpotent Lie group acting transitively on the limit space Y × Rk. Let

K be the subgroup of G acting trivially on Rk-factor. Then K acts effectively and

transitively on Y . In particular, Y is a compact topological manifold homeomorphic to

K/Iso. By Lemma 5.3.6, K0 is a torus, which acts freely and effectively on Y . With

these facts, it is easy to verify that Y itself is also a torus.

On the other hand, we have r−1
i Ni

GH−→ Y . Since each Ni is simply connected and Y

is a compact manifold, Y must be simply connected. We obtained a contradiction.

Remark 5.3.9. We point out that in [26]’s proof, they also need Lemma 5.3.8, but their

proof of this diameter bound has a mistake.
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Proof of Theorem 5.3.3. We argue by contradiction. Suppose the contrary, then we

have a contradicting sequence Mi with

RicMi ≥ 0, diam(Mi) = 1, vol(B1(x̃i)) ≥ v > 0,

but any abelian subgroup of π1(Mi) has index > i. By generalized Margulis Lemma

[22], we may assume that for each i, π1(Mi) is nilpotent with a cyclic chain of length

at most n.

By Lemma 5.3.8, M̃i splits as Ni × Rki isometrically with diam(Ni) ≤ C(n). Since

ki ≤ n for all i, passing to a subsequence, we may assume ki = k for all i. Passing to a

subsequence again, we obtain the following convergent sequences.

(Ni × Rk, x̃i)
GH−−−−→ (N × Rk, x̃)y y

(Mi, xi)
GH−−−−→ (X,x),

where N is compact. From the assumption that vol(B1(x̃i)) ≥ v > 0, it is obvious that

vol(Ni) ≥ v0 > 0 for some v0.

Let pi : Isom(Ni × Rk) → Isom(Rk) and qi : Isom(Ni × Rk) → Isom(Ni) be the

natural projection maps. Consider qi(Γi) acting onNi and the corresponding convergent

sequence

(Ni, qi(Γi))
GH−→ (N,G).

N is compact and thus G is also compact. Then by a similar argument in the proof of

Theorem 5.3.2, we can show that qi(Γi), and thus qi(Γi), is C1-abelian, where C1 is a

constant independent of i. Also, xi(Γi) acts co-compactly on Rk, thus by Bieberbach

theorem, xi(Γi) is C2(n)-abelian.

Finally, we treat Γi as a subgroup of qi(Γi) × xi(Γi). It is easy to check that

Γi contains an abelian subgroup of index ≤ C1C2. Moreover, this subgroup can be

generated by at most n-elements because Γi is nilpotent with a cyclic chain of length

at most n.
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5.4 No small almost subgroups and almost identity isometries

We explore the relations between volume, no small almost subgroup property and

isometries that are close to identity maps in this section. We present two equivalent

statements implying Conjecture 5.1.5 (See Proposition 5.4.3). We also show that Con-

jecture 5.1.5 holds when sectional curvature has a lower bound (See Corollary 5.4.8).

Using Theorem 5.1.1, we first prove Proposition 5.1.3.

Proof of Proposition 5.1.3. We argue by contradiction. Suppose that there is a se-

quence of complete n-manifolds (Mi, xi) with

RicMi ≥ −(n− 1), vol(B1(xi)) ≥ v;

and a sequence of symmetric subsets Ai 6= {e} of Γi with D1,xi(Ai)→ 0 and

sup
q∈B1(xi)

dH(Aiq, A
2
i q)

diam(Aiq)
→ 0.

Let δ = δ(n, v) be the constant in Theorem 5.1.1. For any positive integer j, we can

choose i(j) large with

D1(Ai(j)) ≤ δ/2.

For this i(j), there is θ(j) > 0 such that

θ(j)−1Dθ(j)(Ai(j)) ≥ δ/2.

Otherwise Ai would fix x̃i. By intermediate value theorem, there is r(j) ∈ [θ(j), 1] such

that

r(j)−1Dr(j)(Ai(j)) = δ/2.

For simplicity, we just call r(j) as ri and the subsequence i(j) as i.

We know that

sup
q∈Bri (xi)

dH(Aiq, A
2
i q)

diam(Aiq)
→ 0.

Then after rescaling r−1
i →∞,

(r−1
i Mi, xi, Ai)

GH−→ (X ′, x′, A∞).
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A∞ satisfies D1(A∞) = δ/2. By Theorem 5.1.1, A∞ is not a subgroup. So there is

some point q ∈ B1(x′) such that A2
∞q 6= A∞q (See Lemma 5.2.1).

On the other hand, for a sequence qi converging to q,

r−1
i dH(Aiqi, A

2
i qi) ≤ εi · r−1

i D1(Ai) = εiδ/2→ 0

for some sequence εi → 0. Thus A∞q = A2
∞q, a contradiction.

Remark 5.4.1. Conjecture 5.1.5 says that there is no small almost subgroup, where

almost subgroup means

dH(Ax,A2x)

diam(Ax)
≤ η

for a single point x, while in Proposition 5.1.3, we showed that for an almost subgroup

in the sense of

sup
q∈B1(x)

dH(Aq,A2q)

diam(Aq)
≤ η,

its displacement can not be too small.

Remark 5.4.2. Theorem 5.1.1 and Proposition 5.1.3 are evidents supporting Conjecture

5.1.5. Later, we will see that Conjecture 5.1.5 holds under a stronger curvature condition

secM ≥ −1 (See Corollary 5.4.8).

Proposition 5.4.3. Let (Mi, xi) be a sequence of complete n-manifolds with

RicMi ≥ −(n− 1), vol(B1(xi)) ≥ v > 0.

Let Gi be a group acting isometrically and freely on M for each i. Suppose that one of

the following statements holds:

(1) For any sequence fi ∈ Gi and ri →∞ with

(Mi, xi, fi)
GH−→ (X,x, id),

(riMi, xi, fi)
GH−→ (X ′, x′, f ′∞),

if f ′∞ fixes x′, then f ′∞ = id.

(2) For any sequence fi ∈ Gi and ri →∞ with

(Mi, xi, fi)
GH−→ (X,x, f∞),
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(riMi, xi, fi)
GH−→ (X ′, x′, id),

then f∞ = id.

Then there are ε, η > 0 such that for all i, Gi-action has no ε-small η-almost subgroup

at xi with scale 1.

Moreover, (1) and (2) are equivalent.

Proof. We first show that Gi-action has no ε-small η-almost subgroup at xi by assuming

(1). Suppose that each Gi contains a symmetric subset Ai with D1,xi(Ai)→ 0 and

dH(Aixi, A
2
ixi)

diam(Aixi)
→ 0.

We rescale the sequence by r−1
i as in the proof of Proposition 5.1.3

(r−1
i Mi, xi, Ai)

GH−→ (X ′, x′, A∞)

so that D1(A∞) = δ/2, where δ = δ(n, v) is the constant in Theorem 5.1.1; and thus

A∞ is not a subgroup. At point x′, A∞-orbit satisfies

dH(A∞x
′, A2
∞x
′) = lim

i→∞
dH(Aixi, A

2
ixi) (On r−1

i Mi)

≤ lim
i→∞

εidiam(Aixi)

≤ lim
i→∞

εiδ/2→ 0.

This means that there is an non-identity element a ∈ A3
∞ fixing x′. Therefore, we have

a sequence ai ∈ A3
i such that

(Mi, xi, ai)
GH−→ (X,x, id);

(r−1
i Mi, xi, ai)

GH−→ (X ′, x′, a).

On the other hand, by assumptions we have a = id. A contradiction.

Proof of (2)⇒(1). Suppose that there exists ri →∞ and fi ∈ Gi such that

(Mi, xi, fi)
GH−→ (X,x, id),

(riMi, xi, fi)
GH−→ (X ′, x′, f ′∞)

where f ′∞ fixes x′, but f ′∞ 6= id.
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Without lose of generality, we assume that f ′∞ has finite order. Actually, if f ′∞ has

infinite order, then 〈f ′∞〉 has a circle subgroup. We take Ai = {e, f±1
i , ..., f±kii } such

that ki →∞ and

(Mi, xi, Ai)
GH−→ (X,x, {e}).

After rescaling ri, the limit of Ai contains 〈f ′∞〉. So there is gi ∈ Ai such that

(Mi, xi, gi)
GH−→ (X,x, id),

(riMi, xi, gi)
GH−→ (X ′, x′, g′∞),

where g′∞ fixes x′ and has finite order.

Let N <∞ be the order of f ′∞. By Theorem 5.1.1,

D1(f ′∞) ≥ δ/N.

By intermediate value theorem, there is a rescaling sequence si →∞ such that ri/si →

∞ and

(siMi, xi, fi)
GH−→ (X ′′, x′′, f ′′∞),

with f ′′∞ satisfying D1(f ′′∞) = δ/(2N). By Theorem 5.1.1, it is clear that f ′′∞ has order

≥ 2N . Now we result in the following sequence:

(siMi, xi, f
N
i )

GH−→ (X ′′, x′′, (f ′′∞)N 6= id);

(riMi, xi, f
N
i )

GH−→ (X ′, x′, id).

This contradicts with the assumption.

Proof of (1)⇒(2). The proof is very similar to the one of (2)⇒(1). If the statement

is false, then one can find a contradiction to (1) in some intermediate rescaling sequence.

Remark 5.4.4. According to Proposition 5.4.3, if statement (1) or (2) above holds for

any sequence (Mi, xi, fi) with

RicMi ≥ −(n− 1), vol(B1(xi)) ≥ v > 0,
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then Conjecture 5.1.5 would follow from Bishop-Gromov relative volume comparison

and Proposition 5.4.3. Note that both statements fail if when remove the lower volume

bound. For (2), recall that horns can appear as Ricci limit spaces [4], so one can con-

struct a sequence (Mi, xi, fi) such that (X,x, f∞) is a horn with a rotational isometry,

while (X ′, x′, f ′∞) is a half line with identity isometry.

We can further reduce statement (2), or (1), in Proposition 5.4.3 to the following

situation:

Without lose of generality, we can assume that both X, X ′ are Euclidean cones, and

f∞ has finite order.

In fact, if f∞ has infinite order, we consider the following sequence of symmetric

subsets Ai = {e, f±1
i , ..., f±kii }. We choose ki →∞ slowly so that

(riMi, xi, Ai)
GH−→ (X ′, x′, {e}).

Since before rescaling ri, the limit of fi fixes x. Thus the limit of Ai contains a circle

subgroup fixing x. As a result, there is gi ∈ Ai such that

(Mi, xi, gi)
GH−→ (X,x, g∞),

(riMi, xi, gi)
GH−→ (X ′, x′, id),

where g∞ fixes x and has finite order.

Reduction to metric cones follows directly from the lemma below and a standard

rescaling argument by passing to tangent cones (See Theorem 2.2.5). More precisely,

under the conditions of Proposition 5.4.3, we can find si →∞, s′i →∞ with s′i/si →∞

and

(siMi, xi)
GH−→ (CpX, o)

(s′iMi, xi)
GH−→ (Cx′X

′, o′).

Lemma 5.4.5. Let (Y, y) be an non-collapsing Ricci limit space and f be any isometry

of Y fixing y. Suppose that f has finite order k, then for any ri →∞ and any convergent

subsequence

(riY, y, f)
GH−→ (CyY, o, fy),

fy has order k.
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Proof. Because f has finite order, for any ri →∞ and any convergent subsequence, we

have

(riY, y, 〈f〉)
GH−→ (CyY, o, 〈fy〉).

Since f has order k, fy has order at most k. Suppose that fy has order l < k. This

implies that

(riY, y, f
l)

GH−→ (CyY, o, e).

Together with the fact that 〈f〉 is a discrete group, we see that

(riY, y, 〈f l〉)
GH−→ (CyY, o, {e}).

By Theorem 5.1.1, 〈f l〉 = e, contradiction.

We show that Theorem 5.4.3(2) holds when secMi ≥ −1 (volume condition is not

required in this situation).

Lemma 5.4.6. Let (Mi, xi) be a sequence of n-manifolds with secMi ≥ −1 and fi be a

sequence of isometries of Mi. Suppose that

(Mi, xi, fi)
GH−→ (X,x, f∞);

(riMi, xi, fi)
GH−→ (X ′, x′, id).

Then f∞ = id.

For 0 < r ≤ R, we define the (r,R)-scale segment domain at x as follows.

SRr (x) = {γ|[0,r] | γ is a unit speed minimal geodesic from x of length at least R}.

Note that SRr (x) is always a subset of Br(x), but it may not be equal to Br(x). We

also define the r-scale exponential map at x (0 < r < 1):

exprp : S1
r (x) → B1(x)

expp(v) 7→ expp(r
−1v).

Lemma 5.4.7. If (Mi, xi)
GH→ (X,x) and (X,x) is a metric cone with vertex x, then

S1
1(xi)

GH→ B1(x).



70

Proof. For any z ∈ B1(x) with z 6= x, put d = d(z, x). Let γ be the unique unit speed

minimal geodesic from x to z. Extend γ to a ray starting at x and put q := γ(2). Pick

qi ∈ Mi with qi → q. For each i, let γi be a unit speed minimal geodesic from xi to

qi. It is clear that the image of γi|[0,1] is in S1
1(xi). γi converges to a minimal geodesic

from x to q, which must be γ|[0,2]. In particular, γi(d)→ z.

Proof of Lemma 5.4.6. As discussed above on the reduction, we may assume that both

X and X ′ are metric cones (Note that both X and X ′ are Alexandrov spaces, thus

their tangent cones are always metric cones [3]).

For each i, we consider the commutative diagram:

riS
1
r−1
i

(xi)
fi−−−−→ riS

1
r−1
i

(fi(xi))yri exp
r−1
i

xi

yri exp
r−1
i

fi(xi)

B1(xi)
fi−−−−→ B1(fi(xi))

Let S(x′) be the limit of riS
1
r−1
i

(xi). Since after rescaling ri, fi
GH→ e, S(x′) is also

the limit of riS
1
r−1
i

(fi(xi)). By Toponogov theorem, ri exp
r−1
i
xi and ri exp

r−1
i

fi(xi)
are L(n)-

Lipschitz maps. Passing to a subsequence, these two sequences of maps converge to α

and α′ : S(x′)→ B1(x) as i→∞ respectively. By Lemma 5.4.7, α and α′ are surjective.

We claim that α = α′. In fact, if for some q ∈ S(x′), α(q) 6= α′(q), then we can find

minimal geodesics γi and γ′i from xi such that

(riMi, γi(r
−1
i d), γ′i(r

−1
i d))

GH−→ (X, q, q)

(Mi, γi(d), γ′i(d))
GH−→ (X,α(q), α′(q)),

where d = d(x, q). By Toponogov comparison theorem, we see a bifurcation of minimal

geodesics at q. But we know this can not happen in X ′ [3].

Now we have a commutative diagram of limit spaces

S(x′)
id−−−−→ S(x′)yα yα

B1(x)
f∞−−−−→ B1(x),

where f∞ is an isometry and α is surjective. Therefore, f∞ = id.
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Since we have showed that Proposition 5.4.3(2) holds when secM ≥ −1, we see that

the following corollary holds.

Corollary 5.4.8. Conjecture 5.1.5 holds when (M,x) satisfies

secM ≥ −1, vol(B1(x)) ≥ v > 0.
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Chapter 6

Dimension monotonicity of symmetries

6.1 Introduction

We state the dimension monotonicity of symmetries, which is the main technical

tool to prove Theorem C.

Theorem 6.1.1. Let (Mi, xi) be a sequence of complete n-manifolds with

RicMi ≥ −(n− 1)

and Γi be a discrete abelian group acting freely and isometrically on Mi for each i.

Suppose that each Γi-action has no ε-small η-subgroup on B1(xi) with scale r ∈ (0, 1].

If the following two sequences converge (ri →∞):

(Mi, xi,Γi)
GH−→ (X,x,G),

(riMi, xi,Γi)
GH−→ (X ′, x′, G′),

then the following holds:

(1) dim(G′) ≤ dim(G);

(2) If G′ contains a compact subgroup K ′ with K ′0 = Tl, then G contains a subgroup K

fixing x with K0 = Tl and K/K0 being isomorphic to K ′/K ′0.

To roughly illustrate why no small almost subgroup condition is the key criterion for

dimension monotonicity of symmetries, regardless whether the manifolds are collapsed

or not, we consider the following examples.

Examples 6.1.2. Let Mi = R× (S3, 1
i d0), where d0 is the standard metric on S3, and

xi be a point in Mi. S
3 admits a circle group S1 acting freely and isometrically on S3.
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For a number θ ∈ S1 = [0, 2π]/ ∼, we denote R(θ) as the corresponding isometry on

S3. We define two isometries of Mi by

αi(x, y) =(x+ i−2, R(2π/i)y);

βi(x, y) =(x+ i−3, R(2π/i)y).

As i→∞, both 〈αi〉-action and 〈βi〉-action converges to standard R-translations in the

limit space R, because S3-factor disappears in the limit. Now we rescale this sequence

by ri = i. Then riMi = R× (S3, g0), on which αi and βi acts as

αi(x, y) =(x+ i−1, R(2π/i)y);

βi(x, y) =(x+ i−2, R(2π/i)y).

It is clear that

(riMi, xi, 〈αi〉, 〈βi〉)
GH−→ (R× S3, x′,R,R× S1).

The limit group of 〈αi〉 is R acting as

t · (x, y) = (x+ t, R(2πt)y), t ∈ R,

while the limit group of 〈βi〉 has an extra dimension. This extra dimension comes

from a sequence of collapsed almost subgroups in 〈βi〉. More precisely, if we put Bi =

{e, β±1
i , ..., β

±(i−1)
i }, then on (Mi, xi) we have D1,xi(Bi)→ 0 and

dH(Bixi, B
2
i xi)

diam(Bixi)
→ 0.

On (Mi, xi, 〈αi〉), there is no such small almost subgroup. We can take the same

symmetric subsets Ai = {e, α±1
i , ..., α

±(i−1)
i }. Although Ai satisfies

dH(Aixi, A
2
ixi)→ 0, D1,xi(Ai)→ 0,

the ratio is away from 0 for all i

dH(Aixi, A
2
ixi)

diam(Aixi)
≥ 1/2π.

The proof of Theorem 6.1.1 is technical and involved. We have illustrated on how to

rule out G = R with G′ = R×S1 in the introduction. Here we give some indications on
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how to rule out G = R with G′ = R2. Suppose that G′-action is standard translation

for simplicity. One may consider a parameter s changing the scale from 1 to ri as

1 + s(ri − 1), s ∈ [0, 1]. In this way, one may imagine that there is a path, consisting

of intermediate rescaling limits, and varying from R-action to R2-translation. Then we

can find an intermediate rescaling sequence si →∞ with ri/si →∞ and

(siMi, xi,Γi)
GH−→ (Y, q,H),

where H-action is very close to R2-translation in the equivariant Gromov-Hausdorff

topology but H 6= R2. If H = R × Z, then we can apply a scaling trick to rule it out

(See proof of Proposition 6.3.1(1) later for details). If H = R × S1, then we result

in the case that we know can not happen. The situation that needs some additional

arguments is H = R, whose action is very close to R2-translation. We take a closer

look at such an R-action.

Example 6.1.3. Consider Mi = R× (S1, i · d0) and R acting on Mi by

t(x, y) = (x+ t/i, R(2πt)y), t ∈ R.

Then dGH((Mi, xi,R), (R2, 0,R2)) ≤ 2/i.

Note that in this particular example, R-action on Mi has almost subgroups. For

A = [−1, 1] ⊆ R, we have

dH(Axi, A
2xi)

diam(Axi)
≤ 1/(2πi2).

A key observation is that such phenomenon also happens in the general case: if a

R-action is very close to some R2-action, then it must contain some almost subgroup

(See Lemma 6.3.7). With this observation, we can rule out such intermediate rescaling

sequence from the no small almost subgroup assumption.

We start with some definitions.

Definition 6.1.4. Let G be a Lie group. We say that a symmetric subset A of G is

one-parameter, if A has one of the following forms:

I. A = {e, g±1, ..., g±k} for some g ∈ G and k ∈ Z+;

II. A = {exp(tv) | t ∈ [−1, 1]} for some v ∈ g, the Lie algebra of G.



75

Definition 6.1.5. Let η > 0 and (Y, q,G) be a space. We say that G-action has no η-

subgroup of one-parameter at y ∈ Y , if for any one-parameter symmetric subset A ⊂ G

with diam(Ay) > 0, we have

dH(Ay,A2y)

diam(Ay)
≥ η.

Lemma 6.1.6. Let (Y, q,R) be a space. Then R contains a one-parameter symmetric

subset A of form I with

dH(Aq,A2q)

diam(Aq)
< η

if and only if it contains a one-parameter symmetric subset B of form II with

dH(Bq,B2q)

diam(Bq)
< η.

Proof. Suppose that R contains a one-parameter symmetric subset A of form I with

dH(Aq,A2q)

diam(Aq)
< η.

We write A as {e, g±1, ..., g±k}. For g2k ∈ A2, there is gn ∈ A with

d(g2kq, gnq) < η · diam(Aq).

Case 1: n ≥ 0.

Since g ∈ R, g = exp(v) for some v ∈ g = R. Consider

B = {exp(tv) | t ∈ [−k, k]}.

For any s ∈ [0, k],

d(exp((2k − s)v)q, exp((n− s)v)q) < η · diam(Aq) ≤ η · diam(Bq)

with exp((n− s)v) ∈ B. Thus B is a one-parameter symmetric subset of form II with

dH(Bq,B2q)

diam(Bq)
< η.

Case 2: n < 0.

In this case, we have 2k − n > 2k and

d(g2k−nq, q) = d(g2kq, gnq) < η · diam(Aq).
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Now A′ := {e, g±1, ..., g±(2k−n−1)} satisfies

dH(A′q, (A′)2q)

diam(A′q)
< η

and the condition in Case 1. By the same method as in Case 1, we are able to construct

a desired subset B.

Conversely, if we have B = { exp(tv) | t ∈ [−1, 1]} with

dH(Bq,B2q)

diam(Bq)
< η.

For each positive integer k, define Bk = {exp(± j
kv) | j = 0,±1, ...,±k}. It is clear that

Bkq converges to Bq in the Hausdorff sense. Thus for k sufficiently large, A := Bk is a

one-parameter symmetric subset of form I with the desired property.

6.2 Convergence of actions with no small almost subgroups

Under the assumption of no small almost subgroup, we recover some properties that

were proved for non-collapsing manifolds in Chapter 5 (Cf. Theorems 5.1.1, 5.1.2 and

Proposition 5.4.3).

Lemma 6.2.1. Let (Mi, xi) be a sequence of n-manifolds with RicMi ≥ −(n − 1) and

Γi be groups acting freely and isometrically on Mi. Suppose that Γi-action has no ε-

small η-subgroup on B1(xi) with scale 1 for some ε, η > 0. We consider the convergent

sequence

(Mi, xi,Γi)
GH−→ (X,x,G).

Then G has no nontrivial subgroup H of D1,x(H) ≤ ε/2.

Proof. Suppose that G has a nontrivial subgroup H with D1(H) ≤ ε/2. Without

lose of generality, we will assume that H is a closed subgroup, thus compact. Let γ

be an non-identity element of finite order in H and K be the finite group generated

by γ. It is clear that D1(K) ≤ ε/2. Choose γi ∈ Γi converging to γ, and define

Ai := {e, f±1
i , ..., f

±(k−1)
i }, where k is the order of γ. We have

(Mi, xi, Ai)
GH−→ (X,x,K).
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By Lemma 5.2.1, there is q ∈ B1(x) such that the K-orbit at q is not a single point.

Choose qi ∈ B1(xi) converging to q. Then for i large, Ai has displacement D1,qi(Ai) ≤ ε,

but

dH(Aiqi, A
2
i qi)

diam(Aiqi)
→ 0

as i → ∞. A contradiction to the condition that Γi-action has no ε-small η-subgroup

on B1(xi).

Lemma 6.2.2. Let (Mi, xi) be a sequence of n-manifolds with RicMi ≥ −(n−1) and Γi

be groups acting freely and isometrically on Mi. Suppose that Γi-action has no ε-small

η-subgroup on B1(xi) with scale r ∈ (0, 1] for some ε, η > 0. Let fi be a sequence of

elements in Γi. We consider the following convergent sequences (ri →∞):

(Mi, xi, fi)
GH−→ (X,x, f∞);

(riMi, xi, fi)
GH−→ (X ′, x′, f ′∞).

(1) If f ′∞ = id, then f∞ = id;

(2) If f∞ = id and f ′∞ fixes x′, then f ′∞ = id.

Proof. We first prove (2). Suppose that f ′∞ 6= id. Let H be the closure of the subgroup

generated by f ′∞ in Isom(X ′). We choose a sequence of symmetric subsets Ai as follows:

If H is a finite group of order k, we put Ai := {e, f±1
i , ..., f

±(k−1)
i };

If H is an infinite group, we put Ai := {e, f±1
i , ..., f±kii } with ki →∞ slowly so that

(Mi, xi, Ai)
GH−→ (X,x, {e}),

(riMi, xi, Ai)
GH−→ (X ′, x′, H).

By Lemma 5.2.1, there is q ∈ B1(x′) such that H-orbit at q is not a single point.

Thus at q, we have

dH(Hq,H2q)

diam(Hq)
= 0.

Pick qi ∈ B1(xi) ⊂Mi with

(riMi, qi)
GH−→ (X ′, q).
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It is clear that for i sufficiently large, we have D1,xi(Ai) ≤ ε, but

dH(Aiqi, A
2
i qi)

diam(Aiqi)
< η/2.

This contradicts with that Γi-action has no ε-small η-subgroup at B1(xi).

(1) follows from (2) by Lemma 6.2.1 and a rescaling trick as we applied in the proof

of Proposition 5.4.3.

Lemma 6.2.3. Let (Mi, xi) be a sequence of n-manifolds with RicMi ≥ −(n−1) and Γi

be groups acting freely and isometrically on Mi. Suppose that Γi-action has no ε-small

subgroup on B1(xi) with scale 1 for some ε, η > 0. If

(Mi, xi,Γi)
GH−→ (X,x,G)

with G being discrete, then there is N > 0 such that

#Γi(1) ≤ N <∞.

Furthermore, if there is D > 0 such that diam(Mi) ≤ D, then Γi is isomorphic to

G for all i large.

Proof. Notice that if γi → e, then γi = e for all i large. Indeed, because G is a discrete

group, it is easy to see that the group generated by γi also converges to {e}. On

the other hand, every nontrivial subgroup of Γi has displacement at least ε on B1(xi).

Therefore, γi = e. This implies that there is a large number i0 such that if two sequences

γi
GH→ g, γ′i

GH→ g with g ∈ G(2), then γi = γ′i for all i ≥ i0. Thus for all i ≥ i0,

#Γi(1) ≤ #G(2) <∞.

When diam(Mi) ≤ D, there is a sequence of subgroups Hi
GH→ G0 = {e} such that

Γi/Hi is isomorphic to G/G0 = G for all i large [14]. By assumptions, we conclude that

Hi = {e} for all i large and complete the proof.

6.3 Free actions

We deal with a special case of dimension monotonicity in this section: G-action is

free at x. Our goal is the following.
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Proposition 6.3.1. Theorem 6.1.1 holds when G action is free at x, that is,

(1) dim(G′) ≤ dim(G). Moreover,

(2) G′ has no nontrivial compact subgroups.

It is direct to prove (2) in Proposition 6.3.1:

Proof of Proposition 6.3.1(2). Suppose that G′ has a nontrivial compact subgroup K.

Without lose of generality, we may assume that K is a finite group of prime order k.

Let γ be a generator of K. We choose a sequence of elements γi ∈ Γi converging to γ,

and consider the symmetric subset Ai = {e, γ±1
i , ..., γ

±(k−1)
i }. Clearly

(riMi, xi, Ai)
GH−→ (X,x,K).

Before rescaling ri, since diam(Aixi) → 0 and G-action is free at x, we conclude that

Ai → e. By Lemma 6.2.2, K acts freely at x′. With respect to the metric riMi,

diam(Aixi)→ diam(Kx) > 0.

Also dH(Aixi, A
2
ixi) → 0 because K is a subgroup. This gives

dH(Aixi, A
2
ixi)

diam(Aixi)
→ 0.

However, D1,xi(Ai) < ε for i large. A contradiction to the no small almost subgroup

assumption.

Corollary 6.3.2. Under the assumptions of Proposition 6.3.1, G′-action is free.

Proof. Otherwise, G′ would have an isotropy subgroup, which is compact.

Lemma 6.3.3. Under the assumptions of Proposition 6.3.1, G′-action on X ′ has no

η-subgroup of one-parameter.

Proof. Suppose that there is a point q ∈ X ′ and a one-parameter symmetric subset A

of G′ with diam(Aq) <∞ and
dH(Aq,A2q)

diam(Aq)
< η.

By Corollary 6.3.2, G′-action is free. Thus diam(Aq) ∈ (0,∞). Pick a sequence of

symmetric subsets Ai ⊆ Γi and a sequence of points qi ∈ B1(xi) such that

(riMi, qi, Ai)
GH−→ (X ′, q, A).

By a similar argument we used in Proposition 6.3.1(2), before rescaling ri, we have

D1,qi(Ai)→ 0 but
dH(Aiqi, A

2
i qi)

diam(Aiqi)
< η for i large. A contradiction.
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Lemma 6.3.4. Let (Y, q,G) be a space and g be an element in G. Suppose that 〈g〉-

action is free at q and has no η-subgroup of one-parameter at q. If d(q, gq) ≥ r and

d(q, gNq) ≤ R for some N , then

(1) d(q, gjq) ≥ ηr for all j. In particular, 〈g〉q is ηr-disjoint;

(2) d(q, gjq) ≤ η−1R for all −N < j < N ;

(3) there is a constant C = C(n, η, r, R) such that N ≤ C.

Proof. (1) If d(q, gjq) < ηr for some j, we consider A = {e, g±1, ..., g±j}. Then

diam(Aq) ≥ d(q, gq) ≥ r. Thus

dH(Aq,A2q)

diam(Aq)
<
ηr

r
= η.

A contradiction.

(2) This time we put A = {e, g±1, ..., g±N}. Then

diam(Aq) ≤ η−1dH(Aq,A2q) ≤ η−1d(q, gNq) = η−1R.

(3) This follows from (1),(2), relative volume comparison (of limit renormalized

measure) and a standard packing argument.

Remark 6.3.5. To prove Lemma 6.3.4(3) only, the assumptions above can be weakened.

Instead of assuming that 〈g〉-action has no η-subgroup of one-parameter at q, we can

assume the following condition:

For every nontrivial symmetric subset B of A = {e, g±1, ..., g±N}, we have

dH(Bq,B2q)

diam(Bq)
≥ η.

Under this condition, we can show that the points {q, g1q, ..., gNq} are ηr-disjoint by

the similar method. The remaining proof is the same.

Remark 6.3.6. If Y ∈ M(n,−1) is a limit space of a sequence of manifolds Mi with

RicMi ≥ −(n − 1)εi → 0, then the constant C in Lemma 6.3.4 only depends on n, η

and R/r.

We prove a key lemma for Proposition 6.3.1(1), which states that there exists an

equivariant Gromov-Hausdorff distance gap between Rk-actions with no almost sub-

groups and any (Rk × Z)-actions.
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Lemma 6.3.7. There exists a constant δ(n, η) > 0 such that the following holds.

Let (Y, q,G) be a space such that G = Rk and G-action has no η-subgroup of one-

parameter at q. Let (Y ′, q′, G′) be another space with

(C1) G′ contains Rk × Z as a closed subgroup,

(C2) this Z subgroup has generator whose displacement at q′ is less than 1.

Then

dGH((Y, q,G), (Y ′, q′, G′)) > δ(n, η).

Proof. Recall that we assume that (Y, q) ∈ M(n,−1), and it is clear that k ≤ n. We

first select a basis of Rk as follows. Fix any element v1 6= e in Rk. There is t1 > 0

such that d(t1v1q, q) = 1/n and d(tv1q, q) < 1/n for all t ∈ (0, t1). Put e1 = t1v1 as

the first element in the basis. Consider the quotient space (Y/Re1, q̄,Rk−1). Select an

element ē2 ∈ Rk−1 such that d(ē2q̄, q̄) = 1/n and d(tē2q̄, q̄) < 1/n for all t ∈ (0, 1). ē2

corresponds to a coset in Rk. In this coset, choose e2 such that d(e2q, q) = d(ē2q̄, q̄). By

our choice of e2, it is easy to see that d(te2q, q) = d(tē2q̄, q̄) for all t ∈ (0, 1). Continue

this process until we obtain a basis {e1, ..., ek} in Rk.

We claim that the basis we choose has the following property: For z =
∑k

j=1 αjej

with |αj | ≤ 1 for all j and |αm| = 1 for some m, we have d(zq, q) ≥ r(n, η), where

r(n, η) > 0 is a small constant. In fact, first notice that by our choice of em,

d

(
m∑
j=1

αjej)q, q

 ≥ d(ejq, q) = 1/n.

If d(αm+1em+1q, q) < 1/2n, then clearly

d

(
m+1∑
j=1

αjej)q, q

 ≥ 1/2n.

If d(αm+1em+1q, q) ≥ 1/2n, by Lemma 6.3.4,

|αm+1| ≥
1

2C(n, η, 1/2n, 1/n)
=: r1(n, η).

Consequently,

d

(

m+1∑
j=1

αjej)q, q

 ≥ r1(n, η).



82

Iterate this process at most k − m − 1(< n) times, we result in the desired estimate

d(zq, q) ≥ r(n, η).

We set δ = 1/100 now and will further determine it later. Let L = 〈e1, .., ek〉 be the

lattice generated by e1, ..., ek. Notice that Lq is 1-dense in the orbit Gq. Let e′j ∈ G′

be an element δ-close to ej (j = 1, ..., k). Let L′ := 〈e′1, ..., e′k〉 be the subgroup of G′

generated by these elements. Notice that conditions (C1)(C2) guarantee that there is

w′ ∈ G′ such that d(w′q′, q′) = d(w′q′, L′q′) ∈ (8, 10). Let w ∈ G = Rk be the element

δ-close to w′. Since Lq is 1-dense in Gq, there is v ∈ L such that d(v, w) < 1. We write

v =
∑k

j=1 βjej (βj ∈ Z). Put M := maxj(|βj |) and z = 1
M v. Then z =

∑k
j=1 αjej

with |αj | ≤ 1 for all j and |αm| = 1 for some m. By our choice of {e1, ..., ek}, we

have d(zq, q) ≥ r(n, η). Also, d(Mzq, z) ≤ 12. Apply Lemma 6.3.4, we conclude that

M ≤ C0(n, η). Consequently, if we set δ with nC0(n, η)δ ≤ 1/100, then v′ :=
∑k

j=1 βje
′
j

is 1/100-close to v. This leads to a contradiction because d(v′q′, L′q′) > 6.

Remark 6.3.8. Inspecting the proof above, we see that only property (3) in Lemma

6.3.4 is applied. Hence we may replace the condition that Rk-action has no η-subgroup

of one-parameter at q by the following one:

There exists a function C(r,R) > 0 such that for all z ∈ Rk with d(zq, q) ≥ r and

d(Nzq, q) ≤ R, we have N ≤ C(r,R).

Correspondingly, the equivariant Gromov-Hausdorff distance gap δ will depend on

n and the function C.

Remark 6.3.9. Another observation on the proof of Lemma 6.3.7 is that, we find a

contradiction when two orbits Gq and G′q′ are close. Therefore, only the properties of

the orbits at the base points matter in this proof.

Remark 6.3.10. Later in Section 6.5, we will generalize Lemma 6.3.7 to the case when

G is a nilpotent Lie group diffeomorphic to Rk.

Lemma 6.3.11. Under the assumption of Proposition 6.3.1, for any sj →∞, passing

to a subsequence if necessary, we consider a tangent cone at x:

(sjX,x,G)
GH−→ (CxX, v,Gx).
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Then Gx = Rdim(G).

Proof. We prove the case G = Rk. For the general case, we consider pseudo-action

instead and the proof is similar. We know that Gx has no nontrivial compact subgroups

from Proposition 6.3.1(2). It is also clear that Gx contains Rk. As a result, if Gx is not

Rk, it must contain Rk × Z as a closed subgroup. To prove that Gx = Rk, it is enough

to show the following: There is δ0 > 0, which depends on (X,x,G), such that for any

s ≥ 1 and for any space (Y ′, q′, G′) with

(C1) G′ contains Rk × Z as a closed subgroup,

(C2) this Z subgroup has generator whose displacement at q′ is less than 1,

then

dGH((sX, x,G), (Y ′, q′, G′)) > δ0.

By Remark 6.3.8, it suffices to prove the following claim.

Claim: There exists a function C(r,R) such that for any τ ∈ (0, 1] and any z ∈ Rk

with d(zx, x) ≥ τr and d(Nzx, x) ≤ τR, we have N ≤ C(r,R).

For r > 0, we define

A(r) = {v ∈ Rk | d(vx, x) = r, d(tvx, x) ≤ r for all 0 < t < 1},

It is clear that A(r) is compact. For R > 0, we define a function on A(r):

Fr,R : A(r)→ R+

v 7→ sup{t > 0 | d(tvx, x) = R}.

Since Rk is a closed subgroup, Fr,R(v) exists and is finite for each v ∈ A(r). Though

Fr,R may not be continuous in general, we can check that it is always upper semi-

continuous. In fact, given vj ∈ A(r) with vj → v, we put tj = Fr,R(vj) for simplicity.

Then d(tjvjx, x) = R and d(tvjx, x) > R for all t > tj . It is clear that lim sup
j→∞

tj <∞.

Since d(tvx, x) ≥ R for all t > lim sup
j→∞

tj , we conclude that lim sup
j→∞

tj ≤ Fr,R(v). Let

Mr,R <∞ be the maximum of Fr,R on A(r). If we have z ∈ Rk with d(zx, x) ≥ r and

d(Nzx, x) ≤ R, then N ≤Mr,R. By our construction of Fr,R, we see that

Mτr,τR ≤Mτ0r,R
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for all τ ∈ [τ0, 1]. Here τ0 > 0 is a very small number that will be determined later.

This shows that claim holds for τ ∈ [τ0, 1]. It remains to prove that claim also holds

when τ ∈ (0, τ0] for sufficiently small τ0.

We further define

Ω(R) = {tv | t ∈ [0, 1], v ∈ Rk with d(vx, x) = R

and d(svx, x) > R for all s > 1}.

Observe that D1(Ω(R))→ 0 as R→ 0. So there is τ0 small such that

D1(Ω(R(τ))) < ε

for all τ ≤ τ0. By assumptions, for any symmetric subset B 6= {e} of Ω(R(τ0)), we have

dH(Bx,B2x)

diam(Bx)
≥ η.

By Lemma 6.3.4, Remarks 6.3.5 and 6.3.6, there is some constant C0(n, η, r, R) such

that the claim holds for τ ∈ (0, τ0]. Put C(r,R) = max{C0(n, η, r, R),Mτ0r,R} and we

proves the claim.

Now we prove Proposition 6.3.1(1) by induction on dim(G).

Proof of Proposition 6.3.1(1). We first show that statement holds when dim(G) = 0.

In this case, we claim that G′ = {e}. In fact, suppose that G′ has an nontrivial element

g′, then we pick γi ∈ Γi converging to g′. Because G-action is free at x, before rescaling

γi → e ∈ G. By Lemma 6.2.3, γi = e for i large. Hence γi can not converge to g′ 6= e

after rescaling.

Assuming the statement also holds for dim(G) = 1, ..., k − 1, we verify the case

dim(G) = k.

We make the following reductions: By a standard rescaling and diagonal argument,

we may assume that

(tiMi, xi,Γi)
GH−→ (CxX, v,Gx)

with ti →∞ and ri/ti → 0. Here CpX is a tangent cone at x and Gp = Rk. By Lemma

6.3.3, Gx-action has no η-subgroup of one-parameter. Now we replace

(Mi, xi,Γi)
GH−→ (X,x,G)
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by

(tiMi, xi,Γi)
GH−→ (CxX, v,Rk)

and continue the proof.

We know that G′0 = Rl because it is abelian and it has no nontrivial compact

subgroup. We show that l ≤ k. Suppose that the contrary holds. In other words,

G′ contains Rk+1 as a closed subgroup. Then G′ would contain Rk × Z as a closed

subgroup. Scaling the sequence down by a constant, we may assume that for this Z

subgroup, its generator has displacement at x′ less than 1.

Put δ(n, η) > 0 as the constant in Lemma 6.3.7. For each i, consider the following

set of scales

Si := { 1 ≤ s ≤ ri | dGH((sMi, xi,Γi), (Y, q,H)) ≤ δ/3 for some space (Y, q,H)

satisfying the following conditions

(C1) H contains Rk × Z as a closed subgroup,

(C2) this Z subgroup has generator whose displacement

at q is less than 1.}

Si is nonempty for i sufficiently large because ri ∈ Si. Pick critical rescalings si ∈ Si

with inf Si ≤ si ≤ inf Si + 1/i.

Step 1: si →∞.

Otherwise passing to a subsequence, si → s <∞. Then

(siMi, xi,Γi)
GH−→ (sX, x,Rk).

Since si ∈ Si, for each i, there is (Yi, qi, Hi) with (C1)(C2) and for i large,

dGH((Yi, qi, Hi), (sX, x,Rk)) ≤ δ/2.

This would contradict Lemma 6.3.7 because Rk-action on sX has no η-subgroup of

one-parameter.

Step 2: ri/si →∞.

If ri/si ≤ C for some C ≥ 1. Then consider

(
ri
2C

Mi, xi,Γi)
GH−→ (

1

2C
X ′, x′, G′).
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This would imply that ri/2C ∈ Si for i large. This contradicts to ri/ inf(Si) ≤ C.

Step 3: Passing to a subsequence, (siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞), where H∞

contains Rk as a proper closed subgroup.

By Proposition 6.3.1(2), H∞ has no nontrivial compact subgroups and thus (H∞)0 =

Rm. If m < k, we consider

(siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞)

and its rescaling sequence (ri/si →∞)

(riMi, xi,Γi)
GH−→ (X ′, x′, G′)

with G′ containing Rk+1 (k > m). This contradicts with the induction assumptions. It

remains to rule out the case H∞ = Rk to finish Step 3. By Lemma 6.3.3, H∞-action

has no η-subgroup of one-parameter. Together with the fact that si ∈ Si, (C2) and

Lemma 6.3.7, we can rule out this case.

Step 4: We claim that H∞ contains Rk × Z as a closed subgroup. If this claim

holds, we draw a contradiction as follows. Let h be the generator of this Z subgroup.

We also know that h moves q∞. Put l = d(hq∞, q∞) > 0. If l ≤ 1, then we choose

ti = si/2→∞. Then

(tiMi, xi,Γi)
GH−→ (

1

2
Y∞, q∞, H∞).

Hence ti ∈ Si for i sufficiently large. But ti < inf(Si), which is a contradiction. If l > 1,

then we put ti = si/2l and we will result in a similar contradiction.

It remains to verify the claim that H∞ contains Rk×Z as a proper closed subgroup.

From Step 3, we know that H∞ contains Rk. If dim(H∞) > k, since H∞ is abelian and

has no nontrivial compact subgroups, then H∞ contains Rk+1 and the claim follows. If

dim(H∞) = k, then H∞ contains Rk × Z by Proposition 6.3.1(2).

Remark 6.3.12. Note that through the proof above, we also eliminate G = Rk while

G′ = Rk×Z. The proof of Proposition 6.3.1(1) is a prototype for the proof of the general

case. Here we choose a critical rescaling sequence with limit (Y∞, q∞, H∞), then make

use of Proposition 6.3.1(2), Lemmas 6.3.3 and 6.3.7 to rule out every possibility of
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(Y∞, q∞, H∞). When dealing with general G-action, we will first extend Proposition

6.3.1(2) and Lemma 6.3.3 (See Proposition 6.4.1 and Lemma 6.5.1), then apply a similar

critical rescaling argument as the proof of Proposition 6.3.1(1).

6.4 Compact subgroups in G′

We look into the compact subgroups of G′ and prove Theorem 6.1.1(2) in this section.

By Proposition 6.3.1(2), we know that if G′ has nontrivial compact subgroups, then

G-action has nontrivial isotropy subgroups at x. We restate Theorem 6.1.1(2) here for

convenience:

Proposition 6.4.1. Suppose that G′ contains a compact subgroup K ′ with K ′0 = Tl.

Then G contains a subgroup K fixing x with K0 = Tl and K/K0 being isomorphic to

K ′/K ′0.

Remark 6.4.2. Actually one can show that K is isomorphic to K ′, but Proposition 6.4.1

is sufficient for applications. In fact, even #K/K0 ≥ #K ′/K ′0 will be sufficient.

Lemma 6.4.3. Suppose that (Mi, xi, fi)
GH−→ (X,x, id) and fi ∈ Γi. Let ri → ∞ be a

rescaling sequence. After passing to a subsequence, we have (riMi, xi, fi)
GH−→ (X ′, x′, f).

If 〈f〉 is a compact group, then f = e.

Proof. Suppose f 6= e. Since (Mi, xi, fi)
GH−→ (X,x, id), there is a sequence ki → ∞

slowly such that Ai := {e, f±1
i , ..., f±kii } GH→ {e}. But after rescaling ri, the limit of Ai

contains a compact subgroup 〈f〉. By the same proof of Proposition 6.3.1(2), we see a

contradiction to the no small almost subgroup assumption.

Lemma 6.4.4. Let S be a circle factor in G′0, then there is a sequence of symmetric

subsets Ai ⊆ Γi such that

(riMi, xi, Ai)
GH−→ (X ′, x′,S).

Before rescaling we have

(Mi, xi, Ai)
GH−→ (X,x,A∞)

with A∞ fixing x and containing a circle group.
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Proof. Select an element γ′ ∈ S such that 〈γ′〉 = S, and a sequence γi ∈ Γi with

(riMi, xi, γi)
GH−→ (X ′, x′, γ′).

Put Ai := {e, γ±1
i , ..., γ±kii }, where ki →∞ slowly such that

(riMi, xi, Ai)
GH−→ (X ′, x′,S).

Before rescaling ri, let A∞ be the limit of Ai and γ be the limit of γi. By no small

almost subgroup assumption, A∞ satisfies D1(A∞) ≥ ε. In particular, A∞ 6= {e}.

Moreover, A∞ fixes x because after rescaling diam(Sx′) < ∞. We claim that γ has

infinite order. In fact, suppose that γ has finite order. Let N be the order of 〈γ〉, then

(Mi, xi, γ
N
i )

GH−→ (X,x, id).

But after rescaling ri, we have

(riMi, xi, γ
N
i )

GH−→ (X ′, x′, (γ′)N ).

Since (γ′)N 6= e, by Lemma 6.4.3 we result in a contradiction.

Since γ has infinite order and 〈γ〉 is contained in the isotropy subgroup at x, we

know that 〈γ〉 is compact and thus contains a circle subgroup S1. It is clear that A∞

contains this circle.

Lemma 6.4.5. Let Tl be a torus subgroup of G′. Then G also contains Tl, whose

action fixes x.

Proof. Let Sj (j = 1, ..., l) be the j-th circle factor in Tl. For each j, by the proof of

lemma 6.4.4, we can choose symmetric subsets Ai,j ⊆ Γi with the following properties:

(1). (riMi, xi, Ai,j)
GH−→ (X ′, x′,Sj);

(2). Ai,j is generated a single element γi,j , Ai,j = {e, γ±1
i,j , ..., γ

±ki,j
i,j };

(3). (Mi, xi, Ai,j)
GH−→ (X,x,A∞,j) with A∞,j fixing x and containing a circle S1.

We claim that the set ∪lj=1A∞,j contains l independent circles. We argue this by

induction on j. By property (3), the claim holds for l = 1. Assuming it holds for l,

we consider the case l+ 1. By induction assumption, ∪lj=1A∞,j contains l independent



89

circles and A∞,l+1 contains an additional circle. Suppose that ∪l+1
j=1A∞,j does not

have l + 1 independent circles, then A∞,l+1 ⊂ Tl, where Tl is the torus generated by l

independent circles in ∪lj=1A∞,j . Recall that Ai,j+1 is generated by γi,j+1 with property

(2). Since γj+1 ∈ Tl, there exists a sequence βi =
∏l
j=1 γ

pi,j
i,j such that |pi,j | ≤ ki,j and

(Mi, xi, βi)
GH−→ (X,x, γj+1).

After rescaling ri,

(riMi, xi, βi)
GH−→ (X ′, x′, β′).

By our choice of βi, its limit β′ is outside Sl+1. Now consider the sequence zi =

β−1
i γi,j+1. Before rescaling zi

GH→ e, while after rescaling ri,

zi
GH→ z′ = (β′)−1γ′j+1 6= e.

However, 〈z′〉 is a compact group, which is a contradiction to Lemma 6.4.3.

For finite subgroups of G′, there is a similar property.

Lemma 6.4.6. Let F ′ be a finite group of G′, then G contains a subgroup isomorphic

to F ′, whose action fixes x.

Proof. Let g′1, ..., g
′
k be a set of generators of F ′. We present F ′ as

〈g′1, ..., g′k|R1, ..., Rl〉,

where R1, ..., Rl = e are relations among these generators. For each generator g′j , there

is sequence γi,j ∈ Γi such that

(riMi, xi, γi,j)
GH−→ (X ′, x′, g′j).

Before rescaling, passing to a subsequence if necessary, we have

(Mi, xi, γi,j)
GH−→ (X,x, gj).

In this way, we obtain k elements g1, ..., gk in G. Let F be the subgroup generated by

these k elements. It is clear that F -action fixes x. We show that F is isomorphic to F ′.
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Let W be a word consisting of g1, ..., gk. Correspondingly, we have words Wi ∈ Γi

and W ′ ∈ G′ of the same form. Clearly,

(Mi, xi,Wi)
GH−→ (X,x,W );

(riMi, xi,Wi)
GH−→ (X,x,W ′).

Recall that W ′ generates a finite group. Thus by Lemmas 6.4.3 and 6.2.2(1), W = e if

and only if W ′ = e. This shows that F and F ′ has the same presentation.

We prove Proposition 6.4.1.

Proof of Proposition 6.4.1. By Lemma 6.4.5, we know that G has a compact subgroup

Tl. We pick a set of generators ḡ′j (j = 1, ..., k) of K ′/K ′0 and present the group K ′/K ′0

as

〈ḡ′1, ..., ḡ′k|R̄1, ..., R̄l〉,

For each j = 1, ..., k, let g′j ∈ K ′ be an element representing ḡ′j ∈ K ′/K ′0. Then on

K ′, the relations R̄1, ..., R̄l = e are equivalent to R1, ..., Rk ∈ K ′0, where R1, ..., Rk are

the words of the same form as R̄1, ..., R̄l (replace ḡ′j by g′j). By a similar application of

Lemmas 6.4.3 and 6.2.2 as we used in the proof of Lemma 6.4.6, we can find a desired

subgroup K in G.

We finish this section by the following results on passing isotropy group to any

tangent cone.

Lemma 6.4.7. For (Mi, xi,Γi)
GH−→ (X,x,G) and sj →∞, passing to a subsequence if

necessary we consider a tangent cone at x:

(sjX,x,G)
GH−→ (CpX, v,Gx).

If G is a compact group fixing x with G0 = Tl, then (Gx)0 = Tl and

#π0(Gx) ≤ #π0(G).

Proof. It is clear that Gx fixes v. We first prove the case G = Tl. By Proposition

6.4.1, we know that G contains a subgroup isomorphic to Gx. Since G = Tl, Gx has
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to be a subgroup of Tl. We show that (Gx)0 = Tl, which will imply that Gx = Tl.

Suppose that (Gx)0 = Tm with m < l. Notice that G = Tl contains exactly 2l − 1

many non-identity elements of order 2. From the sequence {(sjX,x,G)}j , we obtain

2l − 1 different sequences of elements with order 2 in G. It is clear that, passing to a

subsequence if necessary, their limits are contained in (Gx)0 and have order 2. On the

other hand, (Gx)0 = Tm has 2m− 1 many non-identity elements of order 2. Thus there

must be two sequences {α1,j}, {α2,j} such that

αk,j 6= e, α2
k,j = e (k = 1, 2), α1,j 6= α2,j

but their limits are the same. Then βj = α1,jα2,j 6= e would converge to e. On the other

hand, βj has order 2; thus by the no small almost subgroup assumption, D1(βj) ≥ ε > 0.

This is a contradiction.

For the general case, G may have multiple components. Apply the same argument

above, we see that (Gx)0 = Tl; and thus the result follows from Proposition 6.4.1.

Remark 6.4.8. In Lemma 6.4.7, one can actually show that Gp is isomorphic to G. The

current statement is sufficient for proving dimension monotonicity of symmetries.

Corollary 6.4.9. For (Mi, xi,Γi)
GH−→ (X,x,G) with G0 = Rk × Tl, and sj → ∞,

passing to a subsequence if necessary, we consider a tangent cone at x:

(sjX,x,G)
GH−→ (CxX, v,Gx).

Then Gx = Rk ×K, where K-action fixes v, K0 = Tl and

#π0(K) ≤ #π0(Iso(x,G)).

Proof. We put K as the limit of Iso(x,G) with respect to the sequence

(sjX,x,G)
GH−→ (CxX, v,Gx).

With Lemmas 6.3.11 and 6.4.7, it remains to check that Gx has the splitting Rk ×K.

In fact, note that K ∩ Rk = e and 〈Rk,K〉 = Gx. Hence the splitting follows.

Remark 6.4.10. For a space (Y, q,H), as long as the orbit H · q is connected, we always

have the splitting H = Rk × Iso(q,H).
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6.5 Proof of dimension monotonicity

We complete the proof of Theorem 6.1.1 in this section. We make some reductions

at first. By Lemma 6.4.9, a standard rescaling and diagonal argument, we may pass to

a tangent cone of X at x and assume that G = Rk × Iso(x,G) (See Remark 6.4.10).

We will always assume this reduction when proving Theorem 6.1.1(1).

For a space (X,x,G) with G = Rk × Iso(x,G), we define dimR(G) = k and

dimT (G) = dim(Iso(x,G)) as the dimension of R-factors and torus factors in G re-

spectively. We will prove Theorem 6.1.1 by a triple induction on dimT (G), dimR(G)

and #π0(G). Also note that the case dimT (G) = 0 with #G/G0 = 1 is proved as

Proposition 6.3.1(1); and the case dimR(G) = dimT (G) = 0 follows from Lemma 6.2.3.

When we say such G in the induction assumptions, we always mean that such limit

group is possible to exist as the limit of (Mn
i , xi,Γi) (for example, k is always no greater

than n).

Triple induction:

• Induction on #π0(G): Under the reductions, suppose that Theorem 6.1.1(1) holds

when

(1) G0 = Rk × Tl with #π0(G) ≤ m, or

(2) dimT (G) = l with dimR(G) < k, or

(3) dimT (G) < l.

Then it holds for G0 = Rk × Tl with #π0(G) = m+ 1.

• Induction on dimR(G): Under the reductions, suppose that Theorem 6.1.1(1)

holds when

(1) dimT (G) = l with dimR(G) ≤ k, or

(2) dimT (G) < l.

Then it holds for G = Rk+1 × Tl.

• Induction on dimT (G): Under the reductions, suppose that Theorem 6.1.1(1)

holds for dimT (G) ≤ l, then it holds for G = Tl+1.

Applying these three inductions above repeatedly, we will eventually cover every
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possible G. More precisely, we start with the base case dimR(G) = dimT (G) = 0

(Lemma 6.2.3). Together with Proposition 6.3.1(1), induction on dimR(G) and on

#G/G0, we conclude that Theorem 6.1.1 holds for G = Rk × F , where F is a finite

group fixing x. Then by induction on dimT (G), we know it also holds for G = S1.

After that, apply inductions on dimR(G) and on #π0(G) again, and we cover the case

G = Rk× Iso(x,G) with Iso(x,G)0 = S1. We continue this process and finish the proof

of Theorem 6.1.1(1).

All these three induction arguments are similar to the proof of Proposition 6.3.1(1):

choose a critical rescaling sequence and rule out every possibility in the corresponding

limit. To illustrate this strategy, we consider the case G = R × S1 as an example. By

Proposition 6.4.5, we know that G′ has no torus of dimension > 1. Thus we need to

rule out the cases like G′ = R3 or G′ = R2 × S1. In either case, G′ contains R2 × Z as

a closed subgroup. For δ > 0 small, we consider

Si := { 1 ≤ s ≤ ri | dGH((sMi, xi,Γi), (Y, q,H)) ≤ δ for some space (Y, q,H)

with H-action satisfying the following conditions

(C1) H contains R2 × Z as a closed subgroup ,

(C2) This Z subgroup has generator whose displacement

at q is less than 1.

Pick si ∈ Si with inf(Si) ≤ si ≤ inf Si + 1/i. Assume si →∞ and we consider

(siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞).

Like step 4 in the proof of Proposition 6.3.1(1), if H∞ contains R2 × Z as a closed

subgroup, then we will obtain a contradiction by scaling si down by a constant. One

can also apply induction assumptions to rule out the cases like H∞ = R×F or H∞ = S1.

If H∞ = R× S1 but S1-action is free at q∞, then we can apply the result in free case.

The last case we want to eliminate is that H∞ = R× S1 with S1-action fixing q∞.

Here comes the distinction between general case and free case in Section 6.2: for

general limit G-action, rescaling limit group H∞-action may have η-subgroups at x′.

The observation is that, if H∞ contains a torus of the same dimension as dimT (G) and
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this torus fixes x′, then actions of Rk subgroups in G′ should have no η-subgroups of

one-parameter at x′ (See Lemma 6.5.1 below for the precise statement). With this in

hand, then together with an equivariant GH-distance gap between (Y∞, q∞, H∞) and

the spaces we used to define Si (See Lemma 6.5.4), we can rule out the case H∞ = R×S1

when δ is sufficiently small.

Following this idea, we prove the lemma below.

Lemma 6.5.1. Suppose that Iso(x,G) has identity component Tl. Further suppose that

Iso(x′, G′) contains a torus of dimension l, that is, G′0 = Rk×Tl with Tl fixing x′ (torus

factor in G′0 can not have dimension > l by Lemma 6.4.5). Then Rk-action on X ′ has

no η-subgroup of one-parameter at x′.

Remark 6.5.2. In Lemma 6.5.1, G′ contains infinitely many subgroups isomorphic to

Rk, but their orbits at x′ are exactly the same. Thus the condition that Rk-action has

no η-subgroup of one-parameter at x′ has no ambiguity.

One may regard Lemma 6.5.1 as a generalization of Lemma 6.3.3, where Iso(x,G)

is trivial (also compare with the proof of Lemma 6.4.5).

Lemma 6.5.3. Let η be the constant in the no small subgroup group assumption and

fi ∈ Γi. Suppose that the following sequences converge (ri →∞)

(Mi, xi, fi)
GH−→ (X,x, id)

(riMi, xi, fi)
GH−→ (X ′, x′, f).

Then the following can NOT happen: for some integer k and some point q ∈ X ′,

A∞ = {e, f±1, ..., f±k} satisfies

dH(A∞q,A
2
∞q)

diam(A∞q)
< η.

Proof. diam(A∞q) is the denominator so f 6= id. Put Ai = {e, f±1
i , ..., f±ki }, then

(Mi, xi, Ai)
GH−→ (X,x, {e})

and

(riMi, xi, Ai)
GH−→ (X ′, x′, A∞).

Clearly this contradicts with (P1).
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Proof of Lemma 6.5.1. Suppose that Rk-action has η-subgroup of one-parameter at x′.

We will show that G contains Tl+1, which contradicts with the assumption.

We follow the proof of Lemma 6.4.5. For each circle factor Sj in G′ (j = 1, ..., k),

we can pick Ai,j = {e, γ±1
i,j , ..., γ

±ki,j
i,j } ⊂ Γi with properties (1)-(3) as in the proof of

Lemma 6.4.5. We also know that {A∞,j}lj=1 contains l independent circles.

Since Rk-action has η-subgroup of one-parameter at x′, it contains a one-parameter

symmetric subset T such that

dH(T x′, T 2x′)

diam(T x′)
< η.

By Lemma 6.1.6, we may assume that T has form II, and thus we may write T as

{tg | t ∈ [−1, 1]}. Put F := π0(Iso(x,G)), which is a finite group. We choose a

large integer m0 such that 1
m0
g satisfies the following property: for each integer N =

1, ...,#F + 1, TN := {e, Nm0
g, 2N

m0
g, ..., kNNm0

g} satisfies

dH(TNx′, (TN )2x′)

diam(TNx′)
< η,

where kN is the largest integer with kNN ≤ m0.

Choose fi ∈ Γi with

(riMi, xi, fi)
GH−→ (X ′, x′,

1

m0
g).

Let f be a limit of fi before rescaling. By Lemma 6.5.3, the know that fN 6= e for all

N = 1, ...,#F + 1.

Claim : For all N = 1, ...,#F + 1, fN is outside the torus subgroup generated by l

independent circles in ∪lj=1A∞,j .

Suppose that fN is in the group generated by l independent circles in {A∞,j}lj=1.

Then there is βi =
∏l
j=1 γ

pi,j
i,j with |pi,j | ≤ ki,j such that

(Mi, xi, βi)
GH−→ (X,x, fN ).

After rescaling ri,

(riMi, xi, βi)
GH−→ (X ′, x′, β′)

with β′ ∈ Tl. We consider zi = β−1
i fNi . It is clear that zi

GH→ e, while after rescaling

ri → ∞, zi
GH→ z′ 6= e because β′ ∈ Tl and N

m0
g is in some closed R subgroup. Put
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C = {e, z±1, ..., z±k}. Since Tl-action fixes x′, the orbit Cx′ is identically the same as

TNx′. Apply Lemma 6.5.3 and we obtain the desired contradiction.

Finally, notice that all these fN (N = 1, ...,#F + 1) lie in Iso(x,G), which consists

of exactly #F connected components, so there must be some N such that fN ∈ G0.

Together with the Claim we just showed, we see that Iso(x,G) contains Tl+1, which is

a contradiction.

Besides Lemma 6.5.1, another ingredient is an equivariant Gromov-Hausdorff gap

like Lemma 6.3.7. Actually here we only need to modify the statement of Lemma 6.3.7,

because in its proof, we only used the properties of G-orbit at q (Remark 6.3.9).

Lemma 6.5.4. There exists a constant δ(n, η) > 0 such that the following holds.

Let (Y, q,G) be a space with G = Rk × Iso(q,G). Suppose that Rk-action on Y has

no η-subgroup of one-parameter at q. Let (Y ′, q′, G′) be another space with

(C1) G′ contains Rk × Z as a closed subgroup,

(C2) this Z subgroup has generator whose displacement at q′ is less than 1.

Then

dGH((Y, q,G), (Y ′, q′, G′)) > δ(n, η).

With all these preparations, we start the triple induction described in the beginning

of this section. We begin with the easiest one among these three: induction on dimT (G).

Actually for this one, we do not even need the preparations above.

Proof of Induction on dimT (G). Under the reductions, assuming that the Theorem

6.1.1 holds when dimT (G) ≤ l, we need to verify the case G = Tl+1 with G fixing

x. Out goal is to rule out dim(G′) > l + 1. We argue by contradiction, suppose that

for some ri →∞ and some convergent subsequence

(riMi, xi,Γi)
GH−→ (X ′, x′, G′),

we have dim(G′) > l + 1.

By Lemma 6.4.5, we know that G′ can not contain a torus of dimension > l+ 1. As

a result, if dim(G′) > l+ 1, then G′ contains a closed R subgroup, and thus contains a

closed Z subgroup.
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For δ = 1/10, we consider the following set of scales for each i,

Si := { 1 ≤ s ≤ ri | dGH((sMi, xi,Γi), (Y, q,H)) ≤ δ/3 for some space (Y, q,H)

satisfying the following conditions

(C1) H contains Z as a closed subgroup,

(C2) this Z subgroup has generator whose displacement

at q is less than 1.}

(See Remark 6.5.5 for explanations on the definition of Si)

Since G′ contains a closed R subgroup, we conclude that ri ∈ Si for i large. Pick

si ∈ Si with inf(Si) ≤ si ≤ inf(Si) + 1/i.

We show that si → ∞. In fact, suppose si subconverges to s < ∞, then after

passing to a subsequence, we have

(siMi, xi,Γi)
GH−→ (sX, x,G).

Since si ∈ Si, each (siMi, xi,Γi) is δ-close to some space (Yi, qi, Hi) with conditions

(C1)(C2). G fixes x while Hi contains some element hi moving qi with displacement

less than 1. Furthermore, by condition (C1) the orbit 〈hi〉qi has infinite diameter.

Obviously, such (Yi, qi, Hi) can not be δ close to (sX, x,G). A contradiction.

As Step 2 in the proof of Proposition 6.3.1, we follow the same argument and

conclude that ri/si →∞.

Now consider the convergent sequence

(siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞).

and we make the following observations:

1. If dim(H∞) ≤ l + 1, or Iso(q∞, H∞) has dimension less than l + 1, then we would

obtain a contradiction to the induction assumptions by passing to the tangent cone at

q∞ and applying the fact that ri/si →∞.

2. If dim(H∞) > l + 1, then H∞ contains a closed R subgroup and we follow the

methods used in Step 4 of the proof of Proposition 6.3.1 to draw a contradiction. More

precisely, we can rescale si down by a constant but this smaller sequence still belongs
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to Si for i large, and this leads to a contradiction to our choice of si.

3. If H∞ = Tl fixing q∞, then we also end in a contradiction. This is because each

(siMi, xi,Γi) is δ/3 close to some (Yi, qi, Hi), where Hi has some element hi moving qi

with displacement less than 1 and diam(〈hi〉qi) =∞. This can not happen for δ = 1/10.

Therefore, the only situation left is that, H∞ contains (H∞)0 = Tl+1 as a proper

subgroup with Tl+1-action fixing q∞. By Proposition 6.4.1, H∞ does not contain any

element of finite order outside (H∞)0. If H∞ contain a closed Z subgroup, then we can

rule out this case as we did in observation 2 above.

We have ruled out every possibility of (Y∞, q∞, H∞), and this completes the proof.

Remark 6.5.5. When defining Si in the proof above, we only require that (Y, q,H)

contains some Z subgroup moving q (but not too far). So logically, if G′ = R, which

may happen, then such Si is still nonempty and we can still pick si close to inf(Si).

However, in this case, we will not find any contradiction. Inspecting the proof above, we

used the fact that G′ actually has higher dimension than G to rule out every possibility

of (Y∞, q∞.H∞).

Next we prove induction on dimR(G).

Proof of Induction on dimR(G). Under the reductions, assuming that Theorem 6.1.1

holds when

(1) dimT (G) = l with dimR(G) ≤ k, or

(2) dimT (G) < l,

we need to show that if G = Rk+1×Tl with Tl fixing x, then for any rescaling sequence

ri →∞ and any convergent subsequence

(riMi, xi,Γi)
GH−→ (X ′, x′, G′),

we have dim(G′) ≤ (k + 1) + l.

We argue by contradiction. Suppose that there is a rescaling sequence ri →∞ such

that the corresponding limit group G′ has dimension > (k + 1) + l. By Proposition
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6.4.1, we know that G′ has no torus factor of dimension > l, thus it must contain Rk+2

as a closed subgroup. In particular, G′ contains a closed subgroup Rk+1 × Z.

Let δ = δ(n, η) > 0 be the constant in Lemma 6.5.4. We consider

Si := { 1 ≤ s ≤ ri | dGH((sMi, xi,Γi), (Y, q,H)) ≤ δ/3 for some space (Y, q,H)

satisfying the following conditions

(C1) H contains Rk+1 × Z as a closed subgroup,

(C2) this Z subgroup has generator whose displacement

at q is less than 1.}

We know that ri ∈ Si for i large. Pick si ∈ Si such that inf(Si) ≤ si ≤ inf(Si) + 1/i.

We show that si →∞. Suppose that si sub-converges to s <∞, then

(siMi, xi,Γi)
GH−→ (sX, x,G).

For i large, since si ∈ Si, there is some space (Yi, qi, Hi) with conditions (C1)(C2) above

and

dGH((sX, x,G), (Yi, qi, Hi)) ≤ δ/2.

Recall that by the reductions at the beginning of this section and Lemma 6.5.1, we may

assume that Rk+1-action has no η-subgroup of one-parameter at x (Rk+1 ⊆ G). We

apply Lemma 6.5.4 and obtain the desired contradiction.

Follow the same proof as Step 2 in Proposition 6.3.1, we derive that ri/si →∞.

We consider

(siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞).

If dim(H∞) > (k+1)+l, then H∞ contains Rk+1×Z; and just like step 4 in the proof of

Proposition 6.3.1, we will get a contradiction by rescaling down si by a constant. Thus

we always have dim(H∞) ≤ (k+1)+l. If dim(H∞) < (k+1)+l, or dim(H∞) = (k+1)+l

but Iso(q∞, H∞) has dimension < l, then we consider

(siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞)

and its rescaling sequence (ri/si →∞)

(riMi, xi,Γi)
GH−→ (X ′, x,G′).
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Apply the induction assumptions, we rule out such cases.

The only remaining case is (H∞)0 = Rk+1×Tl with Tl-action fixing q∞. By Lemma

6.5.1, Rk+1-action has no η-subgroup of one-parameter at q∞. If H∞ is connected, we

apply Lemma 6.5.4 once again and end in a contradiction. If H∞ has finitely many

components, then the contradiction arises from Proposition 6.4.1. If H∞ has infinitely

many components, then again by Proposition 6.4.1, H∞ contains Rk+1 × Z as a closed

subgroup, which would contradict with our choice of si.

We finish the proof of Theorem 6.1.1(1) by verifying the last induction on #π0(G).

Proof of Induction on #π0(G). Under the reductions, assuming that Theorem 6.1.1

holds when

(1) G0 = Rk × Tl with #G/G0 ≤ m, or

(2) dimT (G) = l with dimR(G) < k, or

(3) dimT (G) < l.

We need to verify the case G0 = Rk × Tl with #π0(G) = m + 1. By reductions, we

know that G = Rk × Iso(x,G).

We argue by contradiction. Suppose that for some ri →∞,

(riMi, xi,Γi)
GH−→ (X ′, x,G′)

dim(G′) > k+ l happens. By Lemma 6.4.5, G′ contains Rk+1 as a closed subgroup, and

thus it contains Rk × Z as a closed subgroup.

Let δ(n, η) > 0 be the constant in Lemma 6.5.4. We consider

Si := { 1 ≤ s ≤ ri | dGH((sMi, xi,Γi), (Y, q,H)) ≤ δ/3 for some space (Y, q,H)

satisfying the following conditions

(C1) H contains Rk × Z as a closed subgroup,

(C2) this Z subgroup has generator whose displacement

at q is less than 1.}

Si is nonempty because ri ∈ Si for i large. We pick si ∈ Si with inf(Si) ≤ si ≤

inf(Si) + 1/i.
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By Lemma 6.5.4 and the same argument we applied before, we conclude that si →

∞. By our choice of si, we also have ri/si →∞.

We consider

(siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞).

If dim(H∞) > k + l, then it contains Rk × Z as a closed subgroup, and we get a

contradiction by scaling down si by a constant. If dim(H∞) < k+l, or dim(H∞) = k+l

but Iso(q∞, H∞) has dimension < l, or dim(H∞) = k + l with dim(Iso(q∞, H∞)) = l

but number of connected components of Iso(q∞, H∞) being less than m + 1, then we

consider

(siMi, xi,Γi)
GH−→ (Y∞, q∞, H∞)

and its rescaling sequence (ri/si →∞)

(riMi, xi,Γi)
GH−→ (X ′, x,G′).

Apply the induction assumptions and passing to the tangent cone if necessary, we rule

out these cases.

The only remaining case is (H∞)0 = Rk × Tl with Tl fixing q∞ and Iso(q∞, H∞)

having at least m+ 1 many components. According to Proposition 6.4.1, Iso(q∞, H∞)

has exactly m + 1 many components. If #π0(H∞) is finite, then by Proposition 6.4.1

again, #π0(H∞) = m + 1 and H∞ = Rk × Iso(q∞, H∞). Apply Lemmas 6.5.1 and

6.5.4 here, we result in a desired contradiction. If #π0(H∞) = ∞, then H∞ contains

a closed subgroup Rk × Z, and we can scale down si by a suitable constant to rule out

this case.

One can regard the tuple (dimT (G),dimR(G),#π0(G)) as an order. Recall that for

a space (X,x,G) with G = Rk × Iso(x,G), we define dimR(G) = k and dimT (G) =

dim(Iso(x,G)). For a general G-action on (X,x), we introduce the following definition.

Definition 6.5.6. Let (X,x,G) be a space, we put G as the subgroup generated by G0

and Iso(x,G). We define dimT (G) = dim(Iso(x,G)) and dimR(G) = dim(G)−dimT (G)

(Compare with Corollary 6.4.9).
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Definition 6.5.7. Let (Y1, q1, H1) and (Y2, q2, H2) be two spaces. We say that

(Y1, q1, H1) < (Y2, q2, H2),

if one of the following holds:

(1) dimT (H1) < dimT (H2);

(2) dimT (H1) = dimT (H2), dimR(H1) < dimR(H2);

(3) dimT (H1) = dimT (H2), dimR(H1) = dimR(H2), #π0(H1) < #π0(H2).

We say that (Y1, q1, H1) ∼ (Y2, q2, H2), if

dimT (H1) = dimT (H2), dimR(H1) = dimR(H2), #π0(H1) = #π0(H2).

Similarly, we can define (Y1, q1, H1) . (Y2, q2, H2).

With respect to this order, the three inductions in the proof of Theorem 6.1.1(1)

mean that, if Theorem 6.1.1(1) holds for all (X1, x1, G1) with (X1, x1, G1) < (X,x,G),

then it holds for (X,x,G). With this definition, we derive the following proposition

from Theorem 6.1.1:

Proposition 6.5.8. Let (Mi, xi) be a sequence of complete n-manifolds with

RicMi ≥ −(n− 1)

and Γi be a discrete abelian group acting freely and isometrically on Mi for each i.

Suppose that each Γi-action has no ε-small η-subgroup on B1(xi) with scale r ∈ (0, 1].

If the following two sequences converge (ri →∞):

(Mi, xi,Γi)
GH−→ (X,x,G),

(riMi, xi,Γi)
GH−→ (X ′, x′, G′),

then (X ′, x′, G′) . (X,x,G). Moreover, if (X ′, x′, G′) ∼ (X,x,G), then G′ = G′.

Proof. The first part follows from Theorem 6.1.1 (also see the reduction step at the

beginning of this section). For the second part, when (X ′, x′, G′) ∼ (X,x,G), suppose

that G′ is proper in G′, then G′ either contains G′×Z as a closed subgroup, or contains

a finite extension of G′. Both cases are ruled out in the proof of Theorem 6.1.1.
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Remark 6.5.9. Notice that Theorem 6.1.1 can eliminate G = S1 fixing base point with

G′ = R2, while Proposition 6.5.8 can not. However, this is sufficient for the argument

in next section and streamlines the proof (See proof of Theorem 5.1.7 in Section 6.6).

We prove a corollary to end this section, which will be used in Section 6.6 to bound

the number of short generators.

Corollary 6.5.10. Let (Mi, xi) be a sequence of complete n-manifolds with

RicMi ≥ −(n− 1).

Let Γi be a discrete abelian group acting freely and isometrically on Mi for each i and Hi

be a subgroup of Γi. Suppose that each Γi-action has no ε-small η-subgroup on B1(xi)

with scale r ∈ (0, 1]. If the following two sequences converge (ri →∞):

(Mi, xi,Γi, Hi)
GH−→ (X,x,G,H),

(riMi, xi,Γi, Hi)
GH−→ (X ′, x′, G′, H ′)

with G = H and H ′ being a proper subgroup of G′, then (X ′, x′, H ′) < (X,x,G).

Proof. By Theorem 6.5.8,

(X ′, x′, H ′) . (X ′, x′, G′) . (X,x,G);

(X ′, x′, H ′) . (X,x,H) ∼ (X,x,G).

Suppose that (X ′, x′, H ′) ∼ (X,x,G) happens, then

(X ′, x′, H ′) ∼ (X ′, x′, G′).

On the other hand, by the second part of Theorem 6.5.8, we have H ′ = H ′ and G′ = G′.

Since H ′ is a proper subgroup of G′, H ′ is proper in G′. In other words,

(X ′, x′, H ′) < (X ′, x′, G′).

We end in a contradiction.
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Remark 6.5.11. Later in Section 6.6, we bound the number of short generators by in-

duction on the order introduced in Definition 6.5.7. Notice that for any space (X,x,G),

if there is a series of spaces

(X,x,G) > (X1, x1, G1) > (X2, x2, G2) > ... > (Xi, xi, Gi) > ...,

then this series must stop at certain k, that is, Gk = {e}.

6.6 Bounding number of short generators

We prove Theorems 5.1.7 and C. Recall that to prove results on Milnor conjecture,

by Theorem 2.3.11, it suffices to check abelian fundamental groups.

Proof of Theorems 5.1.7. Suppose that there exists a contradicting convergent sequence

of n-manifolds with RicMi ≥ −(n− 1)

(M̃i, x̃i,Γi)
GH−−−−→ (X̃, x̃, G)yπi yπ

(Mi, xi)
GH−−−−→ (X,x)

satisfying the following conditions:

(1) Γi can be generated by loops of length less than R,

(2) |S(xi)| ≥ 2i,

(3) Γi is abelian and Γi-action has no ε-small η-subgroup on B1(x̃i) with scale r ∈ (0, 1].

To derive a contradiction, the goal is to show that |S(xi)| ≤ N for some N . We

rule out such contradicting sequence above by induction on the order of limit space

(X̃, x̃, G) (See Remark 6.5.11).

If G is discrete, then by Lemma 6.2.3, there is N such that #Γi(R) ≤ N for all i

large. In particular, |S(xi)| can not diverge to infinity. A contradiction.

Assuming that the statement holds for all possible limit spaces (X̃1, x̃1, G1) with

(X̃1, x̃1, G1) < (X̃, x̃, G),

we show that it also holds for (X̃, x̃, G).

Given each ε > 0, by basic properties of short basis and Bishop-Gromov relative

volume comparison, number of short generators with length between ε and R is bounded
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by some constant C(n,R, ε). Thus number of short generators with length less than ε is

larger than 2i−C(n,R, ε)→∞. By a diagonal argument and passing to a subsequence,

we can pick εi → 0 such that number of short generators with length less than εi is

larger than 2i. Replacing Mi by M̃i/〈Γi(εi)〉, we may assume that Γi = 〈Γi(εi)〉.

We introduce some notations here. For an integer m, we denote γi,m as the m-

th short generator of Γi. For a sequence mi → ∞ below, we always assume that

mi ≤ |S(xi)|. We consider Hi as the subgroup in Γi generated by first mi short

generators and H as a limit group of Hi

(M̃i, x̃i, Hi)
GH−→ (X̃, x̃,H).

Case 1: There is a sequence mi →∞ such that (X̃, x̃,H) < (X̃, x̃, G)

If this happens, we replace Mi by M̃i/Γi,mi and finish the induction step.

Case 2: For any sequence mi →∞, (X̃, x̃,H) ∼ (X̃, x̃, G).

Recall that this means H = G (See Definition 6.5.7). We pass this to tangent cone of

X̃ at x̃ (See Corollary 6.4.9). By a standard diagonal argument, there is some si →∞

slowly such that εisi → 0 and

(siM̃i, x̃i,Γi, Hi)
GH−→ (Cx̃X̃, õ, Gx̃, Hx̃).

We can assume that Gx̃ = Hx̃ here. Otherwise,

(Cx̃X̃, õ,Hx̃) < (X̃, x̃, G)

and we can apply the induction assumption to rule out such a sequence. We replace

Mi by siMi and continue the proof.

Now we have

(M̃i, x̃i,Γi, Hi)
GH−→ (X̃, x̃, G,H)

with G = H. We consider intermediate coverings M i = M̃i/Hi and Ki = Γi/Hi

(M i, x̄i,Ki)
GH−→ (X, x̄, {e}).

Since Ki is generated by elements with length less than εi → 0, we have

diam(Ki · x̄i)→ 0.
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Put ri = diam(Ki · x̄i)−1 →∞. Rescaling the above sequences by ri and passing to

a subsequence, we obtain the following convergent sequences:

(riM̃i, x̃i,Γi, Hi)
GH−−−−→ (X̃ ′, x̃′, G′, H ′)y y

(riM i, x̄i,Ki)
GH−−−−→ (X

′
, x̄′,Λ)

with diam(Λ · x̄) = 1. In particular, we conclude that H ′ is a proper subgroup of G′.

By Corollary 6.5.10,

(X̃ ′, x̃′, H ′) < (X̃, x̃, G).

Claim : On M , π1(M i, x̄i) can be generated by loops of length less than 1.

Indeed, ri|γi,mi | ≤ 1 because

r−1
i = diam(Ki · x̄i)

= sup
γ∈Γi

d(γHi · x̃i, Hi · x̃i)

≥ d(γi,mi+1Hi · x̃i, Hi · x̃i)

= d(γi,mi+1t · x̃i, x̃i) (for some t ∈ Hi)

≥ d(γi.mi · x̃i, x̃i).

The last inequality follows from the method by which we select short generators.

Now we have the following new contradicting sequence:

(riM̃i, x̃i,Γi,mi)
GH−−−−→ (X̃ ′, x̃′, H ′)y y

(riM i, x̄i)
GH−−−−→ (X

′
, x̄′)

with (X̃ ′, x̃′, H ′) < (X,x,G). Applying the induction assumption, we can rule out the

existence of such a sequence and complete the proof.

Remark 6.6.1. In the proof above, if dimT (H ′) = dimT (G) and dimR(H ′) = dimR(G),

then

(X̃ ′, x̃′, H ′) < (X̃, x,G)

means #π0(Iso(x̃′, H ′)) < #π0(Iso(x̃, G)). Therefore, when the dimension does not

decrease, we actually did an induction on the number of connected components of the

isotropy subgroup, as indicated in Section 5.1.
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Theorem C follows from Theorem 5.1.7 by a rescaling trick indicated in Section 2.3.

Proof of Theorem C. By Theorem 2.3.11, we can assume that π1(M,x) is abelian. Let

{γ1, ..., γi, ...} be a set of short generators at x. We show that there are at most C many

short generators, where C = C(n, 0, ε, η, 1) is the constant in Theorem 5.1.7. Suppose

that there are at least C + 1 many short generators. We put R as the length of γC+1.

Then on (R−1M̃, x̃, π1(M,x)), π1(M,x)-action has ε-small η-almost subgroup for all

scales r ∈ (0, 1], but there are C + 1 many short generators of length ≤ 1. This is a

contradiction to Theorem 5.1.7.
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mathematiques I.H.É.S., 53:53-75, 1981.

[18] M. Gromov. Metric structure for Riemannian and non-Riemannian spaces.
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