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ABSTRACT OF THE THESIS 
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By ALEXANDRIA PINTO 

Thesis Director: 

Dr. Li Cai 

 

TOP2B is an enzyme that allows for access to the DNA strand for gene transcription. 

During development, TOP2B is found in cells which have finished mitosis and 

proliferation, suggesting its function in cell differentiation. Previously, bulk RNA-seq 

analysis of the retina revealed TOP2B controls expression of genes in the photoreceptor 

gene-regulatory network. However, bulk RNA-seq does not allow for direct analysis of 

individual cells to identify the role of TOP2B in photoreceptor cell differentiation. The 

central hypothesis is that grouping cells based on the photoreceptor gene regulatory 

network and applying bioinformatics analysis to the data can show that TOP2B plays an 

essential role in proper photoreceptor differentiation. In this study, we preform 

bioinformatics analysis on publically available single-cell RNA-seq (scRNA-seq) dataset 

of postnatal day 14 mouse retina (GSE63473) to determine to role of TOP2B in the 

photoreceptor gene regulatory network and identify novel genes which contribute to this 

pathway. Analysis of photoreceptor scRNA-seq data reveals that TOP2B expression is  
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correlated with the expression of photoreceptor marker genes, confirming its role in 

photoreceptor differentiation. In addition, gene Fam19a3 was identified for its novel role 

contributing to the Top2b-controlled photoreceptor gene regulatory network. Thus, this 

study provides further insight into the photoreceptor differentiation processes that could 

be affected by the gene regulatory pathway.  
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Chapter 1 

Introduction 

 
 Single cell RNA-sequencing (scRNA-seq) is becoming a popular data analysis 

technique in biomedical research. scRNA-seq is capable of comparing individual cell 

transcriptomes, allowing for categorization of similarities and differences in a population 

of cells, identification of rare cell types and trace lineage and development of cells [1]. 

While conceptually similar to bulk RNA-seq analyses, scRNA-seq tends to have a 

smaller number of gene counts detected and needs to be normalized by counts per million 

mapped reads, have a non-normally distributed expression measurement, and reveal 

higher biologic variability [1]. After normalization, typical statistical methods can be 

performed, such as the students t-test which has been proven to work on log normalized 

data[23]. scRNA-seq data requires filtering techniques to ensure the best cells are used for 

analysis, and at the moment there does not exist a gold standard [1].  Studies utilizing 

scRNA-seq have provided discoveries on the cellular level since the first published study 

in 2009, such as classification of retinal bipolar neurons [2], dissection of cell types in 

tissues [3], and identify the variety of cells in the cortex and hippocampus [4]. 

 In 2015, the article “Highly parallel genome-wide expression profiling of 

individual cells using nanoliter droplets” by E. Macosko was published to Cell describing 

a new method of obtaining single cell RNA-seq data, Drop-seq. This method creates 

nanoliter droplets holding individual cells that are barcoded for identificationThe dataset 

used in this thesis is obtained from 3T3 mouse retina cells from Macosko’s article using 

the Drop-seq method. Seven mice retinas were digested in a papain solution and the 

tissue was titrated to generate a single cell suspension. The suspended cells then were 



 2 

used in the Drop-seq method, which is the primary method described in the paper. The 

single cell suspensions and barcoded beads are joined in a microfluidic device with oil 

pumping through it. Flow rates differ for each suspension to allow for a single cell and 

single barcoded primer to be in each droplet. Droplets are broken and centrifuged in the 

same tube to obtain the mRNA in all the cells and then reverse transcribed. The resulting 

sequenced library will have all the mRNA of the tissue in one dataset, that is then sorted 

into a count matrix containing the barcoded cells as columns and the genes as rows. In 

each entry is the number of transcript reads, or “counts,” of each gene for each cell[6].  

Drop-seq is currently one of the best methods for obtaining scRNA-seq libraries. 

Since scRNA-seq is a relatively new method, Drop-seq has some room for improvement. 

The droplets are vulnerable to impurities and using the microfluidic device does not 

guarantee that only one cell will be present in each droplet. Macosko et al also claimed 

that the retina dataset that we use in this analysis has about 10% of all cells in the tissue 

being either doublets or impure. However, this is the only publically available scRNA-

seq retina dataset.  

 The retina has become an area of interest in single cell RNA sequencing analysis. 

The tissue contains a diverse amount of cell types and has also proven to have additional 

subtypes. Single cell RNA sequencing has been useful in defining subsets of retinal 

ganglion cells [8] and retinal bipolar cells [2]. However, this method has not yet been 

utilized on the photoreceptor cells. Photoreceptor cells are the most abundant cell type 

accounting for >65% [6] of the retinal cells, with rods composing 97.2% [9] of 

photoreceptors. For this reason, our focus is primarily rods, with some interest in cone 

expression. Rods communicate with the bipolar cells during phototransduction and 
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Shekhar et al. [2] found that there exist fifteen types of bipolar cells in the retina. Because 

of this, we hypothesize that there exist subtypes of rods corresponding to the types of 

bipolar cells. 

 The first step in identifying rod subtypes is identifying rods through rod marker 

genes. Rod marker genes primarily include genes involved in phototransduction, such as 

Rho, Pde6b and Pde6a. Marker genes and their functions are shown in Table 0. Nrl and 

Crx are proven to regulate phototransduction genes and photoreceptor differentiation [10]. 

Below is a simplified map of the gene regulatory networks with transcription factors at 

the top of the map and contributing to changes in target genes (Figure 1) [10]. 

Gene Marker For: Function 
Rho Rods Rhodoposin coding gene, essential for vision in 

low-light conditions 
Sag Rods Inhibits rhodopsin from coupling and preventing 

transductions 
Rcvrn Rods Regulates rhodopsin kinase 
Pde6g Rods Functions in the phototransduction signally 

cascade 
Opn1sw Cones G-protein coupled receptor that allows for blue-

yellow/short wavelength sensory 
Opn1mw Cones G-protein coupled receptor that allows for 

green/medium and long wavelength sensory in the 
cone photoreceptors. 

Gnat2 Cones Creates the cone-specific alpha subunit of 
transducin in phototransduction 

Table 0: Marker genes and their functions 



 4 

 
Figure 1: Simplified gene regulatory network in rod and cone photoreceptors from H. 
Hao et al’s paper “Transcriptional Regulation of Rod Photoreceptor Homeostasis by In 
Vivo NRL Targetome Analysis.” [10] 

 
Topoisomerase IIβ (TOP2B) is an enzyme that changes and controls the 

topological states of double stranded DNA[7]. Top2b is expressed in progenitor cells that 

have gone through the final division and are in neural development [5]. Previously, we 

found that Top2b controls expression of key genes in the photoreceptor gene-regulatory 

network (Crx, Nr2e3, Opn1sw, and Vsx2) (Figure 2) and has a role in late stage 

photoreceptor differentiation and maturation using bulk RNA-seq [5]. Deficiency of 

Top2b in retinal cells has been found to cause defects in the retina. Here we utilize single 

cell RNA sequencing analysis to identify photoreceptors, possible subtypes of 
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photoreceptors and identify genes of interest that may contribute to Top2b’s role in the 

photoreceptor gene regulatory network. (GSE63473)[6].  

 
Figure 2: Schematic drawing of photoreceptor transcriptional network with Top2b as key 
modulator.[5] 
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Chapter 2 

Methods 

 
We acquired a dataset that has been publicly shared on NCBI by the McCarroll 

Lab from Harvard University originally part of E. Macosko et al article “Highly parallel 

genome-wide expression profiling of individual cells using nanoliter droplets”[6]. From 

this dataset, we downloaded the P14 retina merged digital expression matrix. The data 

was converted into R and reformatted so it could be read into the scater package[11]. 

Scater compressed the data into a more usable form and calculated quality control 

metrics, which includes total gene transcript counts in each cell, total counts for each 

gene, and the average expression of each gene. We kept cells with a high gene transcript 

count expression, setting 4000 as the lowest number of counts a cell could have. This 

resulted in 2334 cells kept of the 49300 cells.  

Cells were then broken into categories, TOP2B negative or positive, NRL 

negative or positive, and RHO negative or positive. Using the same dataset, the cells 

were broken down once again by TOP2B negative or positive, CRX negative or positive 

and RHO negative or positive. Cells were deemed negative if there is not a single 

transcript for the gene of interest being expressed in the cell. Cells are positive if at least 

one transcript of the gene is found. A total of 16 groups were found and of those groups 

four contained the genes that are part of the photoreceptor gene regulatory network.  

(Figure 3, Figure 4). These four groups of cells: Top2b+Nrl+Rho+, Top2b+Crx+Rho+, 

Top2b-Nrl(+)Rho(+) and Top2b(-)Crx(+)Rho(+) cells, denoted respectively as T+N+R+, 

T+C+R+, T-N+R+ and T-C+R+ cells respectively from here on), are used for analysis. 
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Figure 3: A tree showing the breakdown of GSE63473 dataset based on NRL. The filter 
breakpoint is based on the total features being expressed in each cell. Cells with more 
than 4000 features are kept for further analysis. Branch points were created based on the 
presence or absence of a single transcript of TOP2B, NRL and RHO. The right most 
groups are then used for further analysis.  
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Figure 4: A tree showing the breakdown and cell counts of GSE63473 dataset based on 
CRX. The filter breakpoint is based on the total features being expressed in each cell. 
Cells with more than 4000 features are kept for further analysis. Branch points were 
created based on the presence or absence of a single transcript of TOP2B, CRX and 
RHO. The right most groups are then used for further analysis. 
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 All groups underwent the same analysis to identify differentially expressed genes. 

The method was adapted from E. Macosko et al article “Highly parallel genome-wide 

expression profiling of individual cells using nanoliter droplets”[1]. Counts were 

converted into counts per million and log transformed. Genes that were not expressed in 

any of the cells were removed. Variance, or the measure of how the log counts of each 

gene is dispersed around the mean of the gene, was calculated using the variance function 

in R. Dispersion measure was also calculated dividing the variance of each gene by its 

mean log counts. Genes were than separated into similarity bins based on mean log 

expression of each gene. A z-score was then found for all genes, genes with less than a 

1.7 z-score were removed. The z-score for each gene is calculated by subtracting the 

average dispersion measure of all genes in a single bin from the dispersion measure of the 

gene and divided by the standard deviation of the dispersion measure across all genes in 

the bin. This process is meant to identify differentially expressed genes that have a high 

variation of expression across all cells. These genes can then be used to identify 

significant differences in cells, potentially identifying different subtypes of cells. Genes 

of interest were kept for analysis as well.  

 Finally, SC3[12] was used for unsupervised clustering of each group. SC3 

identifies clusters and confidence measures describing how correlated the cells are within 

a cluster. This method has been proven to work well with scater and is also the newest 

and simplest method of clustering single cell RNA-seq data at the moment.  

 For additional analysis, a comparison algorithm was created. This allows us to 

compare the top 100 highest expressed genes between groups, identifying genes that are 

shared in groups and genes that are only present in one. The algorithm utilizes scater’s 
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ranking quality control metric generated automatically. This is the easiest method of 

getting a summary of the single cell RNA-seq data at the moment. The method generates 

a breakdown of the data including the total number of different genes expressed in each 

cell, the total number of cells a gene is found in and rank of each gene. The ranking 

system labels genes in such a way that the gene that is most highly expressed in the most 

number of cells has the rank of 1 and a gene that is lowly expressed in only one cell is 

last. Excel sheets were generated to summarize gene expression. To compare differences 

in gene expression between groups, R’s built in function of the student’s t test is used on 

the log counts of each gene.  
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Chapter 3 

Results 

3.1 Typical rod marker genes expressed in T+N+R+ and T+C+R+ cells  

 I wanted to determine which gene regulatory network more accurately identifies 

rods and determine if any genes are contributing significantly to either network. Looking 

back at figures 3 and 4, Top2b is expressed in a majority of all cells at 82.5%. In both the 

Nrl and Crx branching, more than half of all cells are in the T+N+R+ and T+C+R+ 

groups, with 2% more cells in the T+N+R+ group.  

Since the T+N+R+ and T+C+R+ groups are formed from the same dataset, I 

assumed a majority of the cells are shared between groups. There are 1306 cells in the 

T+N+R+ group and 1249 cells in the T+C+R+ group, giving a difference of 57 cells. To 

confirm that these cells are the same, I isolated cells in the T+N+R+ so the gene 

expression of the isolated cells is T+N+C-R+ and in the T+C+R+ so the gene expression 

of the remaining cells is T+N-C+R+. In the isolated T+N+C-R+ group, there are 175 

cells that do not express CRX; while in the isolated T+N-C+R+ group there are 118 cells 

that do not express NRL. The difference in isolated cell groups is also 57. This implies 

that the cells in the all positive group are all the same cells except for the 175 cells in the 

T+N+C-R group and the 118 cells in the T+N-C+R+ group. To confirm this, I compared 

the cell names of both T+N+R+ and T+C+R+ groups and found this assumption to be 

correct.  
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3.1.1 Gene expression in T+N+R+ and T+C+R+ cells are nearly identical 

Of the top 100 genes being expressed in each group, 92 are shared between the 

T+N+R+ group and the T+C+R+ group. The genes that are shared are mostly marker 

genes for photoreceptors, with the top expressed gene in both groups being Rho, the gene 

creating rhodopsin (see appendix for all 100 genes). Other genes include Sag, a gene 

whose protein inhibits rhodopsin from coupling and preventing transductions, Pde6g, 

which functions in the phototransduction signally cascade, and Rcvrn which helps 

regulate rhodopsin kinase. The large expression of these genes indicates that the cells in 

these groups are photoreceptor cells. This means that the network including Top2b à 

Nrl/Crx à Rho is a good indicator of photoreceptor differentiation. The expressions of 

these known photoreceptor marker genes are very similar in both groups, as indicated by 

the p-values obtained from the student’s t-test listed in table 1. P-values indicate that 

differences between most of the marker genes are negligible. This is likely due to the 

larger number of cells that are shared between groups. However, the expression of Crx 

has a significant difference with a p-value of 4.7e-9 while the Nrl expression is 

insignificant. Since the cells are largely the same, the difference likely derives from the 

cells that they do not have in common. This will be looked into further when the groups 

are separated in section 3.1.2.  

Additional analysis was done on cone marker genes, including Opn1sw, Opn1mw 

and Gnat2. Opn1sw is a g-protein coupled receptor that allows for blue-yellow/short 

wavelength sensory in the cone photoreceptors and Opn1mw is a g-protein coupled 

receptor that allows for green/medium and long wavelength sensory in the cone 

photoreceptors. Lastly, Gnat2 creates the cone-specific alpha subunit of transducin in 
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phototransduction[14]. This analysis is meant to identify whether or not Crx has a higher 

chance of creating cone photoreceptors. The p-values found for the cone specific genes 

indicate that no significant difference exists between the T+N+R+ and T+C+R+ groups.  

 
Table 1: A snapshot of highly expressed genes in both T+N+R+ (NRL(+)) and T+C+R+ 
(CRX(+)) cells on a logarithmic scale. Expression values were evaluated and compared. 
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 Nine genes are only in the top 100 genes of the T+C+R+ group (table 2). Genes 

that are not differentially expressed in the T+N+R+ group are Syt4, Prkca and Lmo4. Syt4 

gene creates SYT-4, a calcium sensor acting in the horizontal cells of the outer plexiform 

layer[16], Prkca is typically found in bipolar cells and is involved in signal transduction 

and termination[17], and Lmo4 is a transcription cofactor the helps with the development 

of amacrine cells in the retina[18]. None of these genes are indicative of rod 

photoreceptors; however, all these genes are typically expressed in the retina. This means 

that these genes are not likely to be novel to the gene regulatory network of photoreceptor 

differentiation. 

 The other genes that table 2 indicate may be of some interest include Lhx4 and 

Fam19a3. The p-values for these genes are below 0.05 indicating that the difference in 

gene expression between T+N+R+ and T+C+R+ is significant. Lhx4 is a LIM-

homeodomain transcription factor that is expressed in bipolar cells[19]. Because this gene 

is known to have a function in the retina, it is not of interest to us. Fam19a3 is shown in 

table 2 to have a greater expression in the T+C+R+ group than the T+N+R+ group. This 

means that the gene is more likely to be working on the Crx pathway. The gene 

expression is only 1.1x higher in T+C+R+, but since the groups share cells a 1.1x higher 

expression is significant. For this reason, we looked at the isolated T+N-C+R+ group in 

section 3.1.2 to determine how much Crx influences Fam19a3 expression.  Fam19a3 

does not have a known function, however it has been linked to Nr2e3 expression in 

retinas lacking Nrl expression in mice[20]. Nr2e3 is a rod-specific transcriptional regulator 

deriving from Nrl and Cheng et al found that Nr2e3 expression without deriving from Nrl 

suppresses cone differentiation[20]. Fam19a3 is not mentioned to have a significant 
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impact on the system, however our finding could indicate that Fam19a3 is important in 

the Top2b à Crx à Rho pathway and the link to the Cheng paper indicates that Nrl 

expression is not necessary for Fam19a3 expression.  

 
Table 2: The nine genes that are in the top 100 highest expressed genes for the 
TOP2B(+)CRX(+)RHO(+) group but not the TOP2B(+)NRL(+)RHO(+) group. N/A 
rows indicate that the gene is not differentially expressed in the 
TOP2B(+)NRL(+)RHO(+) group. 
 
 The nine genes that are exclusively expressed in the top 100 genes of the 

T+N+R+ group are shown in table 3. Syt11 and Jun are not differentially expressed in 
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the T+C+R+ group. Sy11 is a known to be expressed in ganglion cells[21] and Jun a proto-

oncogene that has been detected in all photoreceptors[22]. These genes are expected to be 

expressed in the retina so further analysis is not necessary. Genes that have a significant 

difference in gene expression between T+N+R+ and T+C+R+ groups include Sparcl1 

and Stmn2. Sparcl1 is expressed in the retinal ganglion cell layer[23] and Stmn2 is also 

expressed in retinal ganglion cells[23]. These genes do not give any new insight to the 

gene regulatory pathway for photoreceptors. 
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Table 3: The nine genes that are in the top 100 highest expressed genes for the T+N +R 
+ group but not the T+C+R+ group. N/A rows indicate that the gene is not differentially 
expressed in the T+C+R+ group. 
 
 
3.1.2 Significant differences in gene expression between T+C-N+R+ and T+C+N-R+ 

cells  

 
 To clear up which gene is having a greater impact on rod differentiation, we 

isolated the cells that have no Crx expression in the T+N+R+ group, resulting in 175 

cells, and the cells that have no Nrl expression in the T+C+R+ group, resulting in 118 

cells. This allowed for us to see the impact of Crx and Nrl on Rho without having the 

other gene contributing to the expression. In these cells, we see a significant difference in 

Rho expression, with the Nrl group having a 1.5x higher log expression (Table 4, Figure 

5). This suggests that Nrl has a stronger relationship with rod differentiation. A 

comparison of the top 100 genes expressed in each of these group also supports this 

claim. The T+N+R+ group contains within its top 100 genes, genes that are known to be 

markers for rod photoreceptors, RCVRN and PDE6G. It should be noted that the cells in 

the isolated groups do not have as strong of a relationship with the marker genes of rods 

as the cells that have expression of both Nrl and Crx. For this reason, the conclusion that 

both Nrl and Crx are needed for proper rod differentiation and maturation. 

Very few cells expressed Opn1sw and Opn1mw genes in either T+N+C-R+ or 

T+N-C+R+, with the expression of both genes being similar in the isolated groups. Gnat2 

has a higher expression in the T+N-C+R+ group. This suggests that the Crx gene has a 

stronger relationship with Gnat2 than Nrl. This means that Crx is also involved to some 

degree in cone differentiation. Since we are primarily interested in rod differentiation and 
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a majority of cells in T+N+R+/T+C+R+ groups are the same, we will use T+N+R+ 

clustering results for analysis in section 3.1.3. Ultimately, both NRL and CRX are needed 

for the best differentiation of rod photoreceptors which is supported by literature [10]. 

 
 

 
 

 
Figure 5: A kernel density plot showing the expression of Rho in the isolated groups 
from the T+N+C-R+ and T+N-C+R+ groups. The x-axis is the log count expression and 
the y-axis is the “density” or relative likelihood a cell will be found in that space. The red 
line indicates the expression of RHO in the NRL+ isolated group and the green line 
indicates the expression of RHO in the CRX+ isolated group. 
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Table 4: Significant genes in the T+N+C-R+ and T+N-C+R+ cells.  
 



 20 

 Of the top 100 genes, only 67 are shared between the isolated groups. This means 

that there are 66 genes that can potentially provide insight into either the Top2b à Crx 

à Rho or Top2b à Nrl à Rho pathways, with 33 genes expressed exclusively in the top 

100 genes of either group. Only genes that do not have an identified role in the retina 

were looked into for further expression analysis. 14 genes remained, see tables 5 and 6 

for log normalized gene expression. In table 5, Fam19a3 is highly expressed in both the 

isolated group of T+N-C+R+ and in the whole T+C+R+ group. This gene is expressed in 

41 cells in the T+N-C+R+ group but only 18 cells in the T+N+C-R+ group. The 

difference in expression is found to be significant by the student’s t-test. Average 

expression is almost 5x higher in the T+N-C+R+ group for Fam19a3. This gene is 

therefore a prime candidate for interacting in the Top2b à Crx àRho pathway. 

BC030499 also has a significant difference between the isolated groups that is found to 

be statistically significant. The expression of this gene is slightly higher in the T+N-

C+R+ group. However, this gene expression was not strong enough to have an impact on 

the T+C+R+ group as a whole. This gene is not as promising as Fam19a3 but will be 

looked into further in section 3.2.  

 Table 6 has gene expression of genes that are only expressed in the top 100 genes 

of T+N+C-R+ group. These genes do not have any known function in the retina and 

therefore are potential regulatory genes for the Top2b à Nrl à Rho network. Of the 

eight genes shown, six of them prove to have a significant difference in expression 

between isolated groups. All six of these genes have a higher expression in the T+N+C-

R+ group, but the genes I would like to highlight are Gria3, Rph3a and Cdk14. Gria3 has 

a two-fold higher average log count expression in T+N+C-R+ cells, as well as is 
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expressed in almost three times as many cells. A similar result is found for Cdk14 which 

also has 2x higher expression and three times as many cells expression the gene. Rph3a 

does not have quite as dramatic a difference in gene expression, but was among the 

highest expressed gene in T+N+R+. This means that the difference in expression of 

Rph3a between T+N+R+ and T+C+R+ groups was strong enough for this gene to be 

noted.  

 
Table 5: Significant genes that are only expressed in the top 100 genes of 
TOP2B(+)NRL(-)CRX(+)RHO(+) cells.  
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Table 6: Gene expression of genes that are expressed only in the 
TOP2B(+)NRL(+)CRX(-)RHO(+) top 100 genes. 
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3.1.3 Clustering of T+N+R+ cells supports claim that these cells are photoreceptor cells 
 

Since the difference in number of cells between the T+N+R+ and T+C+R+ 

groups is so small, we can utilize the Nrl gene regulatory network for the remainder of 

our analysis because Nrl has a higher chance of producing rod cells. Both groups 

produced 13 clusters identified by SC3. A heatmap was produced explaining the 

relationship between all cells in the groups (Figure 6). All clusters were not clearly 

defined, with the exception of cluster 11. This cluster produced 76 marker genes (see 

appendix), but none were marker genes for rods. Other clusters that are clearer are 1, 2 

and 3. Cluster 1’s marker genes include Prdm1, Arr3 and Opn1mw, indicating that these 

cells are cone photoreceptor cells. Prdm1 is a gene that prevents a photoreceptor cell 

from specifying into a bipolar cell[13]. Arr3 is a known retinal cone arrestine. Cluster 2 

has some similarities with cluster 1 in that it appears to be cone photoreceptors. Cluster 

2’s significant marker genes include Opn1sw, Gnat2, and Pde6h (see appendix for more). 

Pde6h is a cone-specific phosphodiesterase[15]. Cluster 3 is the only cluster that is very 

clearly rod photoreceptors, with Pde6a and Crx as marker genes. The remaining clusters 

are also rod photoreceptors but gene expression is too similar to separate the cells. This 

validates SC3’s clustering algorithm from its ability to tease out cone photoreceptor cells 

from the rod photoreceptor cell. This means that later in section 3.2 the results found 

there are valid. 

Genes that were found to be significant in the T+N-C+R+ group, Fam19a3 and 

Bc030499, are marker genes for cluster 6 and 7 for T+N+R+. This group is not clearly 

defined, likely because these cells are photoreceptor cells. This proves that a stronger 

algorithm is needed to tease out potential subgroups in rod photoreceptors. This also 
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supports the hypothesis that Fam19a3 and Bc030499 are involved in the differentiation of 

rod photoreceptors.  

 

Figure 6: SC3 heatmap plot of cells in TOP2B(+)NRL(+)RHO(+).The x and y axes are 
cells, ideally there will be a clear red diagonal indicating similarity between nearby cells. 
White space in the plot indicate different clusters. Darker red indicates a stronger 
relationship. Darker blue means that there is no relationship between cells 
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3.2 Comparison of T+N+R+/T+C+R+ and T-N+R+/T-C+R+ cells shows Top2b 

expression promotes expression of rod marker genes 

 Top2b is expected to be expressed in all post-mitotic cells[7]. However, there 

exists several hundred cells in this dataset that do not have any expression of Top2b in 

this dataset. Here, we analyze the differences in gene expression and clusters between the 

Top2b positive and top2b negative photoreceptor cells.  

3.2.1 Comparison of T+N+R+ and T-N+R+ cells shows stronger gene expression of rod 

marker genes 

 The top highest expressed genes in both T+N+R+ and T-N+R+ include rod 

photoreceptor marker genes Rho, Sag, Pde6g and Rcvrn (figure 7 and 8). This indicates 

that both groups contain a large amount photoreceptor cells. No significant difference can 

be discerned from the figures alone, so we looked at the expressions of these genes to 

determine if there is any difference in how these genes are expressed in the Top2b 

positive and negative groups (table 7). Despite the groups having nearly identical top 10 

genes, it can be seen that Rho, Nrl, Crx, Sag, Pde6g and Rcvrn expression is higher in 

cells that express Top2b. This is confirmed to be statistically significant by the students t-

test, shown by the p values.  In T+N+R+ cells, the percentage of cells that have the rod 

marker genes expressed is always higher than cells without Top2b expression. It can be 

inferred that Top2b, while not necessary for differentiation into rods, promotes the quality 

and number of cells that differentiate into rods. However, no difference was found in 

cone marker genes, likely because NRL is involved more directly with rod differentiation 

than in cone differentiation.  
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Figure 7: A plot of the top 10 highest expressed genes in TOP2B(+)NRL(+)RHO(+) 
group. The y axis is the name of the gene and the x axis indicates the percentage of total 
counts in each cell the gene accounts for. Each line indicates a cell. The color of the line 
indicates the total genes that are expressed in that cell. Since we are only looking at 
differentially expressed genes, the total features are always below 2000.  
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Figure 8: A plot of the top 10 highest expressed genes in TOP2B(-)NRL(+)RHO(+) 
group. The y axis is the name of the gene and the x axis indicates the percentage of total 
counts in each cell the gene accounts for. Each line indicates a cell. The color of the line 
indicates the total genes that are expressed in that cell. Since we are only looking at 
differentially expressed genes, the total features are always below 2000.  
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Table 7: Photoreceptor marker genes expression in TOP2B(+/-)NRL(+)RHO(+) groups. 
 

 In section 3.1.2, we found 14 genes that have no known function in the retina but 

were highly expressed in the isolated all positive groups. To see if these genes have any 

relation to the Top2b, we looked at the differences in expression shown in table 8. Of the 

top 100 highest expressed genes in both groups, B3galt2, Gpr179, Bc030499 and Frmd5 

were found to be only expressed in the T+N+R+ group. Of those genes, B3galt2, Gpr179 

and Bc030499 have statistically significant differences between groups. These genes 
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Table 8:  Expression table of   genes that possibly contribute to the TOP2B à NRL -- > 
RHO regulatory pathway. Italicized and bolded genes are genes that are found 
exclusively in the top 100 genes of TOP2B(+) cells.  
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are regularly expressed more highly in T+N+R+ cells. The Bc030499 gene is expressed 

in 6.5% more cells in T+N+R+ groups and is on average 1.4x higher in logarithmic 

expression. B3galt2 is expressed in 7% more cells and is on average 1.3x higher in 

logarithmic expression and Gpr179 is expressed in 5% more cells and 1.4x higher in 

logarithmic expression. These genes and their expressions in these groups indicate that 

Top2b could be regulating their expression on some level. However, Bc030499, B3galt2 

and Gpr179 were found to be more highly expressed in T+C+R+ cells, which we will 

look into next.  

3.2.2 Comparison of T+C+R+ and T-C+R+ cells shows stronger gene expression of rod 

marker genes but no difference in cone marker gene expression 

 Expression of rod photoreceptor marker genes in T+C+R+ and T-C+R+ groups is 

strong and once again strongly suggests that these are photoreceptor cells. Differences in 

gene expression show (table 9) that rod specific marker genes (Rho, Sag, Pde6g, Rcvrn) 

are more highly expressed in cells with Top2b expression. These results are significant 

based on the p-values obtained from the students t-test. Once again, these computational 

results show that Top2b, while perhaps not vital for rod differentiation, does enhance and 

prove maturity of rod cells. The cells that do not have Top2b expression could still be in 

the mitotic phase and have not reached full maturity. However, differences in cone 

marker gene expression (Opn1sw, Opn1mw and Gnat2) are not affected by Top2b 

expression.  

 Genes of interest that were found in section 3.1.2 from isolated groups are once 

again looked at. Fam19a3 and Nnat were found to be in the top 100 highly expressed 

genes in T+C+R+ group but not in the T-C+R+ group. The average expression of 
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Fam19a3 in the T+C+R+ group is 1.5x higher than in the T-C+R+ group, as well as 

having 10% more cells expression. The bioinformatics analysis suggests that Fam19a3 is 

a prime candidate for participating in the Top2b à Crx àRho gene regulatory system. 

Another candidate is Nnat. Nnat was not found to have a significant role in either Nrl or 

Crx specific pathways, seen in section 3.1.2, however in tables 8 and 10 differences in 

expression between Top2b(+) and Top2b(-) cells are seen. There is a more significant 

expression of Nnat with the T+C+R+ cells, having a p value of 0.003995 compared to the 

T+N+R+ group’s p value of 0.045. The computational results suggests that Nnat has 

some type of relationship with Top2b and Crx. The average expression of Nnat in 

T+C+R+ cells is 1.5x higher than that of T-C+R+ cells. T+C+R+ cells also have a 10% 

higher chance of expressing B3galt2 with a 1.4x higher expression average. Other 

significant differences in expression include Gpr179 and Bc030499. All these genes were 

originally found from the isolated T+N-C+R+ group of cells, and they all have a 

relationship with Top2b expression. These results indicate that these genes work more 

directly with Crx than Nrl.  
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Table 9: Photoreceptor Marker genes in TOP2B(+/-)CRX(+)RHO(+) groups.  
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Table 10: Possible candidates for TOP2B à CRX à RHO gene regulatory network 
regulation. 
 

3.2.3 Clustering of T-N+R+ cells shows novel gene is among photoreceptor marker 

genes 

 SC3 provides a method of unsupervised clustering that we applied to the T-N+R+ 

group. The result is 6 clusters shown in figure 9. Cluster 2 has all the marker genes for 

rod photoreceptors including Rcvrn, Tulp1, Pde6h and Crx, strongly suggesting that this 

cluster contains photoreceptor cells. Additionally, Fam19a3 is a marker gene for these 
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cells. This suggests that Fam19a3 is also involved in photoreceptor differentiation. The 

remaining clusters’ marker genes contain known marker genes for either bipolar or 

ganglion cells. See appendix for full list of marker genes for all clusters.  

 

Figure 9: SC3 heatmap plot of cells in TOP2B(-)NRL(+)RHO(+).The x and y axes are 
cells, ideally there will be a clear red diagonal indicating similarity between nearby cells. 
White space in the plot indicate different clusters. Darker red indicates a stronger 
relationship. Darker blue means that there is no relationship between cells 
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3.2.3 Clustering of T-C+R+ cells shows novel gene is among photoreceptor marker 

genes 

 Unsupervised clustering of the T-C+R+ group found only 4 clusters. None of the 

clusters appear to have clear clustering but cluster 1 contains the marker genes for rod 

photoreceptor cells, including Rcvrn, Nrl, Tulp1, Pde6d and Nr2e3. This group contains 

80 of the 183 cells in the group and is the largest cluster (figure 10). Interestingly, this 

group also contains Fam19a3 as a marker gene. This further solidifies our claim that 

Fam19a3 could be involved in the Top2b à Crx à Rho gene regulatory pathway. The 

other remaining clusters contain long lists of marker genes, most of which indicate 

ganglion or bipolar cell types (see appendix for list).  
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 Figure 10: SC3 heatmap plot of cells in TOP2B(-)CRX(+)RHO(+).The x and y axes are 
cells, ideally there will be a clear red diagonal indicating similarity between nearby cells. 
White space in the plot indicate different clusters. Darker red indicates a stronger 
relationship. Darker blue means that there is no relationship between cells 
 

3.3 Conclusions 

 From the computational results given, we can only guess the role of Top2b in rod 

differentiation. While the results suggest that Top2b results in higher Rho and other rod 

photoreceptor marker gene expression, more data is needed to confirm the exact nature of 

its involvement. These cells are expected to be fully mature and no longer undergoing 

mitosis at this time point, meaning Top2b will be expressed in all cells. However, there 

are several hundred of cells that do not exhibit any Top2b expression. The cells that have 

the expression profile of a rod photoreceptor but do not have Top2b expression have 

significantly less expression of the photoreceptor marker genes. This means that the cells 

could still be differentiating at this mature stage. Alternatively, the sequenced data could 

be of poor quality and these cells may actually have Top2b expression, but the transcripts 

were missing when the cells were sequenced. To confirm the exact contribution of Top2b 

further analysis at several different time points with several datasets would be necessary. 

  The computational approach of separating the cells based on the gene regulatory 

pathways proved to provide some novel insights. In a comparison of Crx and Nrl gene 

regulatory pathways in photoreceptors, we found that Fam19a3 is a promising candidate 

to be involved in the Top2b à Crx àRho pathway. Fam19a3 is expressed more highly 

in T+N-C+R+ cells than in T+N+C-R+ cells. This means that Fam19a3 is more closely 

related to Crx. Additionally, when comparing Top2b negative and positive cells, 

Fam19a3 is consistently more highly expressed in Top2b positive cells.  Other genes that 
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can potentially be contributing to a photoreceptor gene regulatory pathway includes 

Bc030499, Nnat and B3galt2. However, none of these genes have as clear a relationship 

with photoreceptor expression as Fam19a3. 

 

3.4 Future Directions 

 Here, we used bioinformatics analysis to provide some insight into the 

photoreceptor gene regulatory network. We found that separating the cells based on the 

gene regulatory network makes it easier to identify cell types and can provide novel 

insights. We found that less cells are photoreceptors if Top2b is not expressed and that 

expression of both Nrl and Crx can upregulate the rod marker genes. We also found a 

novel gene that could be involved in the Top2b à Crx à Rho  pathway. This thesis was 

focused only on bioinformatics methods on a healthy retina with nothing altered. This 

means that clearly defining the pathways needs further experiments.  

We hope to use similar bioinformatics analysis on our own wet lab experiments of 

single cell RNA-seq data. We need to use data to analyze the retina at different 

developmental time points, not just P14 when most cells are already mature. If we can 

look at the different time points, we will truly be able to see if Top2b is contributing to 

the development of Rho and the differentiation of rod photoreceptors.  Our lab is 

currently performing Top2b knockout experiments in the retina and working towards 

following Macosko’s Drop-seq method of gathering RNA-seq libraries. Additionally, 

knockout experiments and staining of Fam19a3 should be utilized to identify whether or 

not this gene is significant in the photoreceptor differentiation pathway. 
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Appendix A 

Software Packages 

Analysis was performed on the server that works on Ubuntu x86_64-pc-linux-gnu and 

RStudio. Work was done primarily in R version 3.4.3. R Packages needed include: 

• Hexbin_1.27.2 

• Sm_2.2-5.4 

• Scatterplot3d_0.3-40 

• SC3_1.7.7 

• Xlsx_0.5.7 

• Xlsjars_0.6.1 

• rJava_0.9-9 

• scater_1.6.2 

• ggplot2_2.2.1 

• SingleCellExperiment_1.0.0 

• SummarizedExperiment_1.8.1 

• DelayedArray_0.4.1 

• MatrixStats_0.53.0 

• Biobase_2.38.0 

• GenomicRanges_1.30.1 

• GenomeInfoDb_1.14.0 

• IRanges_2.12.0 

• S4Vectors_0.16.0 

• BiocGenerics_0.24.0 
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Appendix B 

Code 

B.1  Obtaining Data  

From Gene Expression Omnibus, GSE63472 “Drop-Seq analysis of P14 mouse retina 

single-cell suspension” was downloaded by selecting 

GSE63472_P14Retina_merged_digital_expression.txt.gz. This was renamed in the server 

to p14unsorted.txt for simplicity.  

B.2 Filtering and Separating Groups 

The count matrix was loaded into R and filtered. Genes that had no expression in any of 

the cells were removed and spike in were labeled. Scater’s calculateQCMetrics method 

was run to simplify the format of the matrix. Cells were filtered out if less than 4000 

transcript reads were found. The index location of TOP2B, NRL, CRX and RHO were 

found. The indices were then used to break the data into 16 different groups based on 

whether or not each gene was expressed. Code for the NRL branched data is shown 

below. 

library(scater) 
library(SC3) 
#First steps using p14sorted.txt 
#p14 <- read.table("P14unsorted.txt", header = TRUE, row.names = 1) 
#p14 <- data.matrix(p14) 
#p14SCE <- SingleCellExperiment(assays = list(counts = p14)) 
#Original Data contains 24658 genes and 49300 cells 
load("~/Documents/Research Summer 2017/p14sce.RData") 
 
#remove genes that have no expression results in 24071 genes kept 
keep_gene <- rowSums(counts(p14SCE)>0)>0 
p14SCE <- p14SCE[keep_gene,] 
 
#Labels spike ins 
isSpike(p14SCE, "ERCC") <- grepl("^ERCC", rownames(p14SCE)) 
isSpike(p14SCE,"MT") <- grepl("^MT-",rownames(p14SCE)) 
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#normalize data by log, results in assay data called "logcounts" 
exprs(p14SCE) <- log2(calculateCPM(p14SCE, use.size.factors = FALSE)+1) 
 
#calculateQC metrics and eliminate cells with poor quality 
p14SCE <- calculateQCMetrics(p14SCE, feature_controls = list(ERCC = 
isSpike(p14SCE,"ERCC"), MT = isSpike(p14SCE,"MT")), exprs_values = "logcounts")  
p14SCE <- calculateQCMetrics(p14SCE, feature_controls = list(ERCC = 
isSpike(p14SCE,"ERCC"), MT = isSpike(p14SCE,"MT")))  
 
#Keeping cells with more than 4000 transcript reads to ensure high quality cells are used 
for analysis.  
keepcell <- (p14SCE$total_counts >= 4000) 
p14SCE <- p14SCE[,keepcell] 
keep_gene <- rowSums(counts(p14SCE)>0)>0 
p14SCE <- p14SCE[keep_gene,] 
 
 
grep("^TOP2B",rownames(p14SCE))# index  4217 
 
#Identify top2b negative cells 
 
NoExpresTop <- counts(p14SCE)[4217,] == 0# 10811 cells have no top2b being 
expressed 
NoTop2b <- p14SCE[,NoExpresTop] 
 
grep("^RHO$", rownames(NoTop2b))#index 14836 
grep("^NRL$", rownames(NoTop2b)) #index 4534 
 
 
topNnrlP <- NoTop2b[,counts(NoTop2b)[4534,]>0] 
topNnrlPrhoP<- topNnrlP[,counts(topNnrlP)[14836,]>0] 
#saveRDS(topNnrlPrhoP,"topNnrlPrhoP.rds") 
topNnrlPrhoN <- topNnrlP[,counts(topNnrlP)[14836,]==0] 
#saveRDS(topNnrlPrhoN,"topNnrlPrhoN.rds") 
 
topNnrlN <- NoTop2b[,counts(NoTop2b)[4534,]==0] 
topNnrlNrhoN <- topNnrlN[,counts(topNnrlN)[14836,]==0] 
#saveRDS(topNnrlNrhoN,"topNnrlNrhoN.rds") 
topNnrlNrhoP <- topNnrlN[,counts(topNnrlN)[14836,]>0] 
#saveRDS(topNnrlNrhoP,"topNnrlNrhoP.rds") 
 
 
#top2b expressing 
grep("^TOP2B$",rownames(p14SCE)) #index 4232 
range(counts(p14SCE)[4217,])# 0 to 28 
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highExpressingTop <- counts(p14SCE)[4217,] >=1 
top2BSCE <- p14SCE[,highExpressingTop] 
grep("^RHO$",rownames(top2BSCE)) #index 14836 
grep("^NRL$",rownames(top2BSCE))#index 4534 
 
 
topPnrlN <- top2BSCE[,counts(top2BSCE)[4534,] == 0]  
topPnrlNrhoN <- topPnrlN[,counts(topPnrlN)[14836,] == 0]  
#saveRDS(topPnrlNrhoN,"topPnrlNrhoN.rds") 
topPnrlNrhoP <- topPnrlN[,counts(topPnrlN)[14836,] >= 1]  
#saveRDS(topPnrlNrhoP,"topPnrlNrhoP.rds") 
topPnrlP <- top2BSCE[,counts(top2BSCE)[4534,] >=1 ]  
topPnrlPrhoP <- topPnrlP[,counts(topPnrlP)[14836,] >= 1]  
#saveRDS(topPnrlPrhoP,"topPnrlPrhoP.rds") 
topPnrlPrhoN <- topPnrlP[,counts(topPnrlP)[14836,]==0]  
#saveRDS(topPnrlPrhoN,"topPnrlPrhoN.rds") 
 
 
 
B.3 Finding Differentially Expressed Genes and Clustering 

To find differentially expressed genes the method found in E. Macosko et al’s paper 

“Highly Parallel Genome-wide expression profiling of individual cells using nanoliter 

droplets” was adapted. In this method, the variation across all cells for each gene was 

calculates as well as the dispersion measure. Dispersion measure is calculated by dividing 

the variation of each gene by the average log counts of the gene. Genes are then placed 

into twenty “similarity” bins based on their mean log expression. The z-score for each 

gene is then calculated by subtracting the average dispersion measure of all genes in a 

single bin from the dispersion measure of the gene and divided by the standard deviation 

of the dispersion measure across all genes in the bin. High variation genes are genes that 

have a z-score greater than 1.7. These genes, along with genes of interest for our 

purposed are kept. SC3 then calculates the number of clusters that can be found from the 

differentially expressed genes. The sc3 method places the cells into clusters and labels the 
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genes that are marker genes for each cluster. The following code is utilized in the 

command line. It is used for all groups of data.  

library(scater) 
library(SC3) 
clusterFunction <- function(SCEObject,name){ 
  #find spike ins 
  isSpike(SCEObject,"ERCC")<- grep("^ERCC-",rownames(SCEObject)) 
  isSpike(SCEObject,"MT") <- grep("^MT-", rownames(SCEObject)) 
  #renormalize the data for the group 
  logcounts(SCEObject) <- log2(calculateCPM(SCEObject, use.size.factors = FALSE) + 
1) 
  SCEObject #23462 genes 5812 cells 
  #need to rerun QCmetrics because different percentages will present themselves in each 
group 
  SCEObject <- calculateQCMetrics(SCEObject,feature_controls = list(ERCC = 
isSpike(SCEObject,"ERCC"),MT = isSpike(SCEObject,"MT")), exprs_values = 
"logcounts") 
  SCEObject <- calculateQCMetrics(SCEObject,feature_controls = list(ERCC = 
isSpike(SCEObject,"ERCC"),MT = isSpike(SCEObject,"MT")), exprs_values = 
"counts") 
  #remove  genes with no expression 
  keepGene <- rowSums(logcounts(SCEObject)>0)>0 
  SCEObject <- SCEObject[keepGene,]  
 
  #this field is required to be able to run sc3 prepare 
  rowData(SCEObject)$feature_symbol <- rownames(SCEObject) 
 
   
  #calculate variation of logcounts per gene/feature 
  variation <- apply(logcounts(SCEObject),1,var) 
  #save in SCE rowData 
  rowData(SCEObject)$varianceOfLogCount <- as.vector(variation) 
   
  #calculate dispersion measure variance/mean of gene 
  rowData(SCEObject)$dispersionMeasure <- 
(rowData(SCEObject)[,"varianceOfLogCount"] / 
rowData(SCEObject)[,"mean_logcounts"]) 
   
  #create similarity bins, each bin contains the indexes "Highly Parallel Genome-wide 
expression profliling of individual cells using nanoliter droplets" by E. Macosko et al. 
  bin1 <- which(rowData(SCEObject)[,"mean_logcounts"] >= 1) 
  bin2 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .25 & 
rowData(SCEObject)[,"mean_logcounts"] < 1) 
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  bin3 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .15 & 
rowData(SCEObject)[,"mean_logcounts"] < 0.25) 
  bin4 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .1 & 
rowData(SCEObject)[,"mean_logcounts"] < 0.15) 
  bin5 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .068 & 
rowData(SCEObject)[,"mean_logcounts"] < 0.1) 
  bin6 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .04 & 
rowData(SCEObject)[,"mean_logcounts"] < .068) 
  bin7 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .028 & 
rowData(SCEObject)[,"mean_logcounts"] < .04) 
  bin8 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .02 & 
rowData(SCEObject)[,"mean_logcounts"] < .028) 
  bin9 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .012 & 
rowData(SCEObject)[,"mean_logcounts"] < .02) 
  bin10 <-which(rowData(SCEObject)[,"mean_logcounts"] >= .007 & 
rowData(SCEObject)[,"mean_logcounts"] < .012) 
  bin11 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .0035 & 
rowData(SCEObject)[,"mean_logcounts"] < .007) 
  bin12 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .0018 & 
rowData(SCEObject)[,"mean_logcounts"] < .0035) 
  bin13 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .0009 & 
rowData(SCEObject)[,"mean_logcounts"] < .0018) 
  bin14 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .0004 & 
rowData(SCEObject)[,"mean_logcounts"] < .0008) 
  bin15 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .0003 & 
rowData(SCEObject)[,"mean_logcounts"] < .0006) 
  bin16 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .00015 & 
rowData(SCEObject)[,"mean_logcounts"] < .0003) 
  bin17 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .00008 & 
rowData(SCEObject)[,"mean_logcounts"] < .00015) 
  bin18 <-which(rowData(SCEObject)[,"mean_logcounts"] >= .000046 & 
rowData(SCEObject)[,"mean_logcounts"] < .00008) 
  bin19 <- which(rowData(SCEObject)[,"mean_logcounts"] >= .000015 & 
rowData(SCEObject)[,"mean_logcounts"] < .000046) 
  bin20 <- which(rowData(SCEObject)[,"mean_logcounts"] <.000015) 
   
  #binlistnames and binlist variables are created for easier iteration and calculation of 
zscores 
  binlistnames <- c("bin1", 
"bin2","bin3","bin4","bin5","bin6","bin7","bin8","bin9","bin10","bin11","bin12","bin13"
,"bin14","bin15","bin16","bin17","bin18","bin19","bin20") 
  binlistVariables <-
list(bin1,bin2,bin3,bin4,bin5,bin6,bin7,bin8,bin9,bin10,bin11,bin12,bin13,bin14,bin15,bi
n16,bin17,bin18,bin19,bin20) 
  count = 1 
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  #find zscore. divide each individual (gene dispersion measure subtract similarity group's 
mean) by standard deviation of the similarity group 
  for ( i in binlistnames){ 
    accessIndex <- binlistVariables[[count]] 
    rowData(SCEObject)[accessIndex,"zscoreDispersion"] <- 
(rowData(SCEObject)[accessIndex,"dispersionMeasure"]-
mean(rowData(SCEObject)[accessIndex,"dispersionMeasure"]))/ 
sd(rowData(SCEObject)[accessIndex,"dispersionMeasure"]) 
    count <- count + 1 
  } 
   
  #keep genes with a zscore higher than 1.7 and genes of interest 
  #this is a logical of all high variation genes 
  highVariationGenes <- rowData(SCEObject)[,"zscoreDispersion"] > 1.7 
   
  #create logicals for genes of interest because this format can then be merged into the 
high variation gene logical 
  Top2b <- grepl("^TOP2B$", rownames(SCEObject)) 
  Crx <- grepl("^CRX$",rownames(SCEObject)) 
  Rho <- grepl("^RHO$",rownames(SCEObject)) 
  Opn <- grepl("^OPN1",rownames(SCEObject)) 
  Pde6 <- grepl("^PDE6", rownames(SCEObject)) 
  Rcv <- grepl("^RCVRN", rownames(SCEObject)) 
  Nrl <- grepl("^NRL", rownames(SCEObject)) 
  Tulp1 <- grepl("^TULP1$", rownames(SCEObject)) 
  Sag <-  grepl("^SAG$", rownames(SCEObject)) 
  Nr2e3 <- grepl("^NR2E3",rownames(SCEObject)) 
  Olig2 <- grepl("^OLIG2", rownames(SCEObject)) 
  Otx2 <- grepl("OTX2",rownames(SCEObject)) 
  Ascl1 <- grepl("ASCL1",rownames(SCEObject)) 
  Vsx2 <- grepl("VSX2",rownames(SCEObject)) 
  Rorb <- grepl("RORB",rownames(SCEObject)) 
  Prdm1 <- grepl("PRDM1",rownames(SCEObject)) 
  Rxrg <- grepl("RXRG", rownames(SCEObject)) 
  Glo1 <- grepl("GLO1",rownames(SCEObject)) 
  Smim13 <- grepl("SMIM13", rownames(SCEObject)) 
  Bc <- grepl("BC030499", rownames(SCEObject)) 
  Rp <- grepl("RPH3A",rownames(SCEObject)) 
  #keep genes of interest, high variation genes and spike ins 
  #create a list of large logicals  
  keeptheseGenes <- list(highVariationGenes,Top2b, Rho, Crx, Opn, 
Pde6,Rcv,Nrl,Tulp1,Sag,Nr2e3,Olig2,Otx2,Ascl1,Vsx2,Rorb,Prdm1,Rxrg,Glo1,Smim13,
Bc, Rp,isSpike(SCEObject)) 
  keepGenes <- Reduce("|",keeptheseGenes) #merge all the logicals on the "OR" operator 
  keepGenes[is.na(keepGenes)] <- FALSE #if NA set to false 
  SCEObject <- SCEObject[keepGenes,] 
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  #get rid of genes that are not being expressed in logcounts 
  SCEObject <- SCEObject[,SCEObject$total_logcounts >0] 
   
   
  SCEObject <- sc3_prepare(SCEObject) #prepare the set for cluster estimation 
  #estimate the number of clusters present in the data 
  SCEObject <- sc3_estimate_k(SCEObject) 
  kEstimation = metadata(SCEObject)$sc3$k_estimation 
   
  #run tsne on data 
  SCEObject<-runTSNE(check_duplicates = FALSE, SCEObject, perplexity = 30) 
  fit <- kmeans(reducedDim(SCEObject,"TSNE"), kEstimation, nstart =40) 
  colData(SCEObject)$clusterTSNE <- fit$cluster 
   
  #this for some reason does not work in the command line call, so I ran this same code in 
R for get the plots (officially) 
  plotTSNE(SCEObject, colour_by = 'clusterTSNE') 
  plotHighestExprs(SCEObject[!isSpike(SCEObject),],n=20) 
   
   
  #find marker cells and consensus  
  SCEObject <- sc3(SCEObject, ks = kEstimation, biology = TRUE) 
   
  saveRDS(SCEObject, file = paste(name, "SC3.rds", sep="")) 
   
  #save plots 
  pdf(paste(name, "pdf", sep="Consensus.")) 
  sc3_plot_consensus(SCEObject,k = kEstimation) 
  dev.off() 
  png(paste(name, "png", sep="Conensus.")) 
  sc3_plot_consensus(SCEObject,k = kEstimation) 
  dev.off() 
   
   
} 
 
 
SCEObject <- commandArgs(trailingOnly=TRUE) 
# test if there is at least one argument: if not, return an error 
if (length(SCEObject)==0) { 
  stop("At least one argument must be supplied (input file).n", call.=FALSE) 
} else if (length(SCEObject)==1) { 
  #keep the name of the object so we can save graphs and new data  
  name <- SCEObject 
  name <- gsub(".rds","",name) 
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  SCE <- readRDS(SCEObject) 
 
  clusterFunction(SCE,name) 
 
 
B.4 Comparison of Highly Expressed Genes 

A comparison of the top 100 genes in each group was done by inputting two groups into 

the comparison function. The comparison function utilized scater’s rank object that is 

automatically generated. Using R’s %in% function allowed us to create three files 

containing the genes that are shared between the groups and genes that are only in one of 

the groups. This code was made to be run in the command line and used over multiple 

groups.  

library(scater) 
 
comparison <- function(sce1,sce2,sce1Name,sce2Name){ 
  #get indices in order based on the highest expression without spike ins 
  rank1 <-order(rowData(sce1)$rank_logcounts[!isSpike(sce1)],decreasing = TRUE) 
 
  rank2 <-order(rowData(sce2)$rank_logcounts[!isSpike(sce2)],decreasing = TRUE) 
 
  #rownames in order without spike in 
  rownames1 <- rownames(sce1)[!isSpike(sce1)] 
  rownames2 <- rownames(sce2)[!isSpike(sce2)] 
   
  #get rownames of highest expression 1-50 
  ranked1 <- rownames1[rank1[1:100]] 
  ranked2 <- rownames2[rank2[1:100]] 
   
  in1<-paste("In",sce1Name,sep = "_") 
  #in 1 not in 2 
  write.table(ranked1[!(ranked1 %in% ranked2)],file= paste(in1,"txt",sep = ".")) 
 
  in2 <- paste("In", sce2Name,sep="_") 
  #in 2 not in 1 
  write.table(ranked2[!(ranked2 %in% ranked1)],file =paste(in2,"txt",sep = ".") ) 
 
  #shared genes 
  shared <-paste(sce1Name,sce2Name, sep="_") 
  write.table(ranked1[ranked1 %in% ranked2],file = paste(shared,"txt",sep=".")) 
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} 
 
 
args <- commandArgs(trailingOnly=TRUE) 
# test if there is at least one argument: if not, return an error 
if (length(args)<2) { 
  stop("At least two arguments must be supplied (input file).n", call.=FALSE) 
} else if (length(args)==2) { 
  sce1Name <- args[1] 
  sce1Name <- gsub("/home/aep139/retina/allMyRData/SC3Complete/","",sce1Name) 
  sce1Name <- gsub("SC3.rds","",sce1Name) 
  sce1 <- readRDS(args[1]) 
  sce2Name <- args[2] 
  sce2Name <- gsub("SC3.rds","",sce2Name) 
  sce2Name <- gsub("/home/aep139/retina/allMyRData/SC3Complete/","",sce2Name) 
  sce2 <- readRDS(args[2]) 
  comparison(sce1,sce2,sce1Name,sce2Name) 
} 
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Appendix C 

Supplementary Tables 

C1  Table of  Top 100 Genes Expressed in TOP2B(+)NRL/CRX(+)RHO(+) 

Shared NRL(+) CRX(+) 
"RHO" "SYT11" "SYT4" 
"SAG" "JUN" "PRKCA" 
"PDE6G" "SPOCK3" "LHX4" 
"TULP1" "CACNG4" "LMO4" 
"RCVRN" "SPARCL1" "TRNP1" 
"PDE6B" "DNER" "TMEM215 
"NRL" "STMN2" "FAM19A3" 
"NR2E3" "RPH3A" "NNAT" 
"MEG3" "NSG2" "RUNX1T1" 
"CRX" 
"PDE6A" 
"OTX2" 
"TOP2B" 
"GNAO1" 
"CELF4" 
"RORB" 
"SNHG11" 
"GNGT2" 
"GNB3" 
"GRIA2" 
"NRXN3" 
"PCP4" 
"MARCKS" 
"GLO1" 
"PDE6H" 
"GUCA1A" 
"GNG3" 
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"SCG2" 
"TUBB2A" 
"APP" 
"NAP1L5" 
"ITM2C" 
"FOS" 
"GPM6A" 
"STMN3" 
"LIN7A" 
"BASP1" 
"ATP1B1" 
"PTPRD" 
"EGR1" 
"TCF4" 
"GNG13" 
"SPHKAP" 
"HLF" 
"GNAT2" 
"CADPS" 
"PDE6D" 
"OPN1SW" 
"TRPM1" 
"GUCY1A3" 
"NEUROD4" 
"UCHL1" 
"GLUL" 
"GM4792" 
"NDRG4" 
"ARR3" 
"SIX3" 
"LRTM1" 
"NRXN2" 
"OPN1MW" 
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"PAX6" 
"ISL1" 
"GABRA1" 
"CCDC136" 
"2900011O08RIK" 
"PCP2" 
"TKT" 
"PROX1" 
"THSD7A" 
"CABP5" 
"CPLX2" 
"SMIM13" 
"TFAP2B" 
"RAB3C" 
"SCGN" 
"ELAVL3" 
"PDE6C" 
"VSX2" 
"KCNE2" 
"DKK3" 
"SLC6A1" 
"SYNPR" 
"CAR10" 
"BC030499" 
"ADARB1" 
"GRM6" 
"FRMD3" 
"B3GALT2" 
"SLC24A3" 
"GPR179" 
"SLIT2" 
 

 



 51 

C2  Table Of TOP2B(+)NRL(+)RHO(+) Marker Genes for Clusters 
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C3 Table of 100 Genes Expressed in Isolated TOP2B(+)NRL(+)CRX(-)RHO(+) and 

TOP2B(+)NRL(-)CRX(+)RHO(+) 

 
CRX(+)NRL(-) CRX(-)NRL(+) Shared 
"SYT4" "SYT11" "MEG3" 
"GNG13" "RCVRN" "GNAO1" 
"TRPM1" "NRL" "GRIA2" 
"NEUROD4" "PDE6B" "CELF4" 
"ISL1" "GAP43" "SNHG11" 
"PCP2" "C1QL1" "NRXN3" 
"CRX" "RPH3A" "TUBB2A" 
"LRTM1" "NR2E3" "PCP4" 
"GNB3" "TPM3" "SCG2" 
"CABP5" "NEFL" " "APP" 
"SCGN" "CACNG4" " "MARCKS" 
"VSX2" "CALB2" " "GNG3" 
"FRMD3" "CDK14" " "NAP1L5" 
"CAR10" "THY1" " "CADPS" 
"B3GALT2" "NEFM" " "RHO" 
"GPR179" "ELAVL4" " "LIN7A" 
"LHX4" "GRIA3" " "PTPRD" 
"GM4792" "NRXN1" " "GUCY1A3" 
"NNAT" "FRMD5" " "STMN3" 
"GRM6" "RBFOX1" " "ATP1B1" 
"LMO4" "RBFOX2" " "TOP2B" 
"ZFHX4" "PDE6A" " "HLF" 
"ZFHX3" "SLC4A3" " "BASP1" 
"SLC24A3" "STMN4" " "ITM2C" 
"BC030499" "PTN" " "SAG" 
"TRNP1" "ID4" " "GPM6A" 
"CACNA2D1" "SYT7" " "UCHL1" 
"SLIT2" "AI593442" " "PROX1" 
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"GRIK1" "GLO1" " "OTX2" 
"TMEM215" "NCALD" " "NRXN2" 
"GNGT2" "GAD2" " "NDRG4" 
"IGF1" "SCN2A1" " "GABRA1" 
"LPHN2" "6330403K07RIK" " "SPHKAP" 
  " "THSD7A" 
  " "TCF4" 
  " "2900011O08RIK" 
  " "PAX6" 
  " "RAB3C" 
  " "SLC6A1" 
  " "TKT" 
  " "GLUL" 
  " "SIX3" 
  " "RORB" 
  " "ELAVL3" 
  " "CPLX2" 
  " "SPOCK3" 
  " "LSAMP" 
  " "SPARCL1" 
  " "DNER" 
  " "TFAP2B" 
  " "RUNX1T1" 
  " "DLGAP1" 
  " "FOS" 
  " "PDE6G" 
  " "ZEB2" 
  " "ADARB1" 
  " "TULP1" 
  " "SYNPR" 
  " "GAD1" 
  " "NSG2" 
  " "DKK3" 
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  " "GNG2" 
  " "STMN2" 
  " "CACNA2D2" 
  " "VSNL1" 
  " "SLC32A1" 
  " "DTNBP1" 
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