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Visual working(WM) and longterm memory(LTM) are intricately intertwined.

As such, currentheories andmodels of VWM have been extended to characterize
behavior in longerm memory.For example, a popular framework for investigating
VWM is the remembeguess paradigm, which suggests that informasceither recalled
with some noise, or is no longer retrievable and individuals resort to randessimgl
(e.g. Brady et al., 20)3 This framework has been extended to include an additional
factor that contributes to memory, namely interference from-tamet information
(a.k.a. misassociations; Lew et al, 2015). In this way, individweglall information with
noise,missassociatmemories to other sk relevant information, ayuess randomly. The
compilation of these studies has identified the cbatron of memory fidelity,
misassociations, and random guesses to recall performance.

Notably, the remembeguess framework stands in stark contrast to theoretical
Bayesian models of memory, which suggests that prior knowledge and expectations for
the stéistical regularities of the environment influences recall from {@rgh memory
(Hemmer & Steyves; 2009b). The influence of prior knowledge is most prevalent when

the stimuli inthememory tasks mirror the regularities of the natural world.



In this disertation,| seek to challenge current theories of memory regarding the
contribution of fidelity, misassociations, and random guegs&3 M, by evaluating the
simultaneous contribution of prior knowledge. The combination of results from these
studies sugest that prior knowledge plays a crucial recall in reconstruction foowp

term episodic memory, and when prior knowledge is brought to the task of remembering,

it alters the contribution of misassociations and random guessing to recall performance.
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Chapter 1: Introduction

A particularly important question for memory research regards the nature of episodic
memory over time is: what ppens to memory traces as they transition from visual-short
term/working memory into longerm memory and what factors contribute to lbeign
memory performance? These questions have significant implications for howetomg
memory is theorized, and irurh operationalized in models of lotgrm memory.
Various paradigms and accompanying models have been implemented to explain long
term memory, with some being derived from studies of visual working memory, under
the assumption that processes and mechanefnshoriterm and working memory also
exist in longterm memory (BradyKonkle, Gill, Oliva, & Alvarez, 2013; Donkin,
Nosofsky, Gold, & Shiffrin, 2014; Huttenlocher, Hedges, & Vevea, 2000; Hemmer &
Steyvers, 2009b; Persaud & Hemmer, 2016; Lew, Pashyl8&2015).

These studies have identified four factors that contribute to the reconstruction of
information from longterm episodic memory, namely: prior knowledge, memory
fidelity, random guessing and interference (a.k.a. misassociations) which rekatis w
nonttarget information stored in memorinterferes with the retrieval of target
information. Prior knowledge and expectations for the statistical regularities of the
environment have been shown, on average, to improve recall frortdongmemory
(Hemner & Steyvers, 2009a; 2009b). Random guessing contributes to recall performance
when information reaches a low state of fidelity and is no longer retrievable from

memory (Brady et al., 2013). Alternatively, when information is difficult to retrieve,



individuals might use other task relevant information (i.e.,sas®sociate), before
resorting to random guessing (Lew et al., 2015).

In this way, the role of each of these factors in lemgn episodic memory has been
studied relatively independent of oarother (with the exception of random guessing) in
terms of their impact on memory. For example, Lew and colleagues (2015) evaluate the
role of misassociations and random guessing in-teng memory, but not the influence
of prior knowledge. Similarly, Bxdy and colleagues (2013) evaluate the role of fidelity
and random guessing in lotgrm memory, but not the influence of interference in the
form of misassociations. However, for certain stimulus environment, particularly when
the environment reflects feaes of the real world, the contribution of these factors may
be intricately intertwined.

Therefore,the work presented in this dissertation seeks to address the question of
what happens to information over time, while simultaneously evaluating the eambin
contribution of these four factors to lotgym memory performance. In what follows is a
brief overview of each topic that will be discussed and the corresponding chapters in
which they can be found. In the chapte4,2 will present published researfrom three
studies.

Chapter 2 details a study that empirically and computationally assessed the role of
prior knowledge in longerm episodic memory for color and appear®inceedings of
the Annual Meeting of the Cognitive Science SociHtis work was presented at the
Cognitive Science Society Conference and received the Glushko Student Travel Award
This work demonstrated that peoplebds categ

episodic memory, and that this reconstructive process can beatthwith a generative



Bayesian modelChapter 3 discussesprovisional crossultural study thaextended the
findings from chapter 2, and demonstrated tihat use of prior knowledge may be a
general mechanism of episodic memdriis work also appeadlein theProceedings of
the Annual Meeting of the Cognitive Science So@aty partially ini-Perception.The
combination of the studies in Chapters 2 and 3 illustratettieatole of prior knowledge
should not be ignored in theories and models of-kengn episodic memory.

The research presented in Chapter 4 explored the role of memory fidelity, prior
knowledge, and random guessing in ldagn memory and compared the penmhance of
current models of memory. This work appears Gognitive Psychologyand was
presented at th&nnual Meeting of the Mathematical Socielhe results from this work
suggested that there are factors that influence memory such as prior knowleadeean
factors that result in lowstate fidelity that have been ignored in previous memory
models. In previous models, the influence of these factors has erroneously been attributed
to random guessing. Also, certain analytical practices (e.g. evalugigrggated error
distributions) used in past models obscured important contributions of factors to memory,
such as prior knowledge. This work made transformative discoveries to how memory
works and exposed a major flaw in current practices for evaluatingpryedata.

Lastly, Chapter 5 presents new work evaluating the contribution of prior knowledge,
interference in the form of misassociations, and random guessing Htelongnemory.

The results from this work demonstrated that a large portion of erraremory for
meaningful stimuli, resulted from misassociations and prior knowledgerandom
guessing. These results supported the hypothesis that there is little to no random guessing

in LTM for semantically associated, ecologically valid stimuli. The lomation of all



studies discussed in this dissertation provides a comprehensive understanding of long

term memory and the factors that contribute to memory performance.



Chapter 2: Prior knowledge and Memory

The I nfluence of Knowlredgé oandnEEpe
Me mor vy

Kimele Persaud and Pernille Hemmer (20Bfhceedings of the 36th Annual

Conference of the Cognitive Science Society

K. Persaud and the advisor, P. Hemmer, developed the study concept and study design
together. Stimulus creatn, testing and data collection were performed by K. Persaud. K.
Persaud performed the data analysis and interpretation, which were then reviewed by the
advisor P. Hemmer. K. Persaud and P. Hemmer developed and implemented the model
together. K. Persaudafted the manuscript. After the manuscript was drafted, K. Persaud

and the advisor, P. Hemmer, revised the manuscript. K. Persaud implemented all critical

revisions in response to reviewer comments.

Abstract

Expectations learned from our environment an®wn to exert strong influences on

episodic memory. Furthermore, people have prior expectations for universal color labels

and their associated hue space salient property of the environment. In three
experiments, we assess eincespaadhepdectasion forccoldr.or n a
Using a novel experimental paradigm, we then assessed free recall for color. We found

t hat peopl eds <col or naming preferences we.l
(Berlin & Kay, 1969), as well as a strong subjeetimgreement on the hue values
associated with these color labels. We further found that free recall for color was biased
towards the mean hue value for each preferred color. We modeled this relationship

between prior expectation and episodic memory witht@nal model under the simple



assumption that people combine expectations for color with noisy memory

representations. This model provided a strong qualitative fit to the data.



Introduction

Our knowledge and expectations learned from our environrsleapes how we
perceive, navigate, and interact with the world. They influence how we categorize objects
and information (Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, Hedges, &
Vevea 2000; Jern & Kemp, 2013; Galleguillos & Belongie, 2010), how weaNys
perceive objectsHckstein, Abbey, Pham, & Shimozaki, 2004; Epstein, 2@8¢dstone,

1995; Mitterer & de Ruiter, 2008Todorovic, 2010),and how we make predictions
(Griffiths & Tenenbaum, 2006)n memory, knowledge of the statistical regularifies

the environment, such as the average height of people and the prototypical sizes of
objects, exerts strong influences on how we recall such informaBartld€tt, 1932;
Hemmer & Steyvers, 2009&iemmer and Steyvers, 2009c; Hemmer, Tauber, and
Steyvers, 2015; for a review see Hemmer & Persaud, 2014). Assuming that our
expectations are environmentally derived, an important question for cognition is whether
differences in environmental structure differentially influence expectations, and in turn
episodic menory.

Color is one such feature that changes in representation across environments, and
might engender differences in expectations. Individual and group differences in color
knowledge and expectations have been attributed to communicative value (Meo
McMahan, & Stone, 2014), environmental occurrence (Stickles & Regier, 2014), and
internal preferences (Palmer & Schloss, 2010). It has also been suggested that color
category knowledge develops as a function of cultural experience (e.g. Roberson, Davies,
& Davidoff, 2000). For example, there are significant differences in perceptual judgments

for color between different cultural groups. This has been demonstrated in various



cultures including Russian, where there are two terms for blue (Paramei, 20@%yaNin
Witthoft, Frank, Wu, Wade, & Boroditsky, 2007), Papua New Guinea, who use 5 color
categories (Roberson, Davies, & Davidoff, 2000), and a-semiadic South African
tribe, who categorizes color based on light and dark (Roberson, Davidoff, Davies, &
Shapiro, 2004).What remains to be examined is whether differences in the natural
environment differentially influence loAgrm episodic memory across cultural and
social groups.

The relationship between the structure of the environment and memory hagdieen
described by Bayesian models of cognition (e.g., Shiffrin & Steyvers, 1997; Steyvers &
Griffiths, 2008; Hemmer & Steyvers, 2009; Steyvers, Griffiths, & Dennis, 2006). This
approach characterizes the computational problem people face when tryinglitoesdc
world events under varying degrees of uncertainty. The models depict how an observer in
a task integrates noisy and incomplete information stored in episodic memory with prior
expectations for the environment when trying to recall an event. Wieersgecific
feature of an event is first experienced, this leads to noisy memory traces, centered on the
original feature value, with some variation. It is also assumed that the observer has a prior
expectation for the feature value that mirrors that efdistribution in the environment.

The goal of the observer is to recall the feature value using noisy samples retrieved from
memory and their prior expectation for the distribution of the feature value.

The assumption that memory is an integration ofrpexpectations with episodic
traces stored in memory appears reasonable in the domain of color. For example, memory
for color has been shown to be a blend of prior knowledge for object color typicality and

episodic information (Belli, 1988). Belli found ahreported color typicality of objects



(i.e. beverage pitchers were prototypically yellow) influences later color recognition. In
his study, participants® r ec o ggraen)iofotme r es p
actual study item (i.e. green pitcheend prior knowledge (i.e. yellow pitchers). Similar
findings result from a misinformation effect when post event information is blended with
actual event information to produce recall (Loftus, 1977). Loftus found that recall for the
color of a car was hlend (i.e. bluiskgreen) of the true color (i.e. green), and misleading
information about the color of the car (i.e. blue).

To examine the influence of expectations learned from natural environments with
different underlying representations of environna¢rieatures (e.g. color) on episodic
memory, we conduct a cressltural investigation. Unlike previous research using
simple memory measures to assess memory across cultures, such as percent correct (e.g.
Roberson, et al., 2005), we characterize the @itiynof the memory system and detalil
its relationship to the environment. We first quantify prior expectation for color in a
standard U.S. undergraduate population. Prior expectations are assedisectibnally,
both as a function of color naming prefeces and the association of hue values to
preferred color labels. Next, we employ a continuous recall task to assess the influence of
prior expectation on recall for color. We implement a simple Bayesian modeling account
to further characterize the ralmiship between expectations and episodic memory.
Importantly, we contrast these findings with a crogkural study where we measure
memory for color in an indigenous population whose natural environment is different
than the standard U.S. population. \&glore whether regularities in memory persists
across natural environments or are dependent upon the different underlying

representations for each environment.
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Experiments

I n experi ments 1 and 2, we fdirect®rial sougt
expedtations for color, both as a function of color labeling preferences and the hue value
associated with given color labels. Thediectional assessment allowed us to examine
linguistic categorization as well as category representativeness of color has. Vidie
resulting distributions over hue values were informative for the implementation of the
Bayesian model (see section 3 Modeling). In experimenwve3,then assessed the
influence of expectations on memory vidree recall color task. In all experinmtsnwe
collected data from as many individuals that volunteered to participant in the study.
Experiment 1: ColeNaming Task
Participants

Forty-seven Introductory Psychology undergraduate students at Rutgers University
participated in this study in examge for course credit. Data from one subject was
discarded because no responses were recorded.
Materials and Procedure

The stimuli consisted of 48 colors sampled from the HSL (hue, saturation, luminance)
color space. Colors varied in hue by 5 units (iLee faalues of 0, 5, 10, etc) along the full
hue range from {239, based on the ability to perceptually differentiate two sequential
colors in the range. Saturation and luminance were held constant at 100% and 50%,
respectively. A color patch measuring thimethree inches was presented in the center
of the computer screen. Participants were asked to provide a color label for that specific
patch by typing their answer in a response box below the color patch. The patch remained

on the screen until participant wer e sati sfied with their re
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to view the next patch. Each of the 48 color patches were presented twice in random
order, for a total of 96 trials.
Results

Figure 11 shows label frequencies for the 48 hue values. The togl gaows the 7
most frequent labels (red, orange, yellow, green, blue, purple and pink). The 7 labels
comprised 28% of all responses and coincide with the universal color terms of Berlin &
Kay (1969). The bottom panel shows label frequencies for the tégb2ls, comprising
59% of total labels. The cutoff for including the 21 labels was based on a label being
given a minimum of 40 times. The results show that participants expressed a large degree
of agreement in the assignment of color labels to hue valley also demonstrated a
flexible color naming granularity for labels, with basic terms (e.g. red) and basic terms
with modifiers (e.g. light green) being the most frequently used. 3Jimgests that
participants have clear knowledge and expectationsdtor labels.
Experiment 2: Color Generation Task
Participants

Forty-nine undergraduate students at Rutgers University participated for course credit
or monetary compensation of $10. These participants were not involved in Experiment 1.
Materials and FPocedure

The stimuli consisted of the 21 most frequent color labels given as responses in
Experiment 1. The labels were presented one at a time, in 24 point Georgia font at the
upper right side of the computer screen. The instructions were to generate the color hue
that best corresponds to each of the labels using a color wheel. Color hue responses were

generated by moving a cursor over a large black circle presented on the left side of the
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Figure 11 Frequency distributions over color labels in Experimelig1Frequency
distributions over 7 most frequent lab€ls) Frequency distributions over 21 most frequent
labels. Each bar represents a 5 unit range on the hue scale-28@n 0

computer screen. The black circle was a mask over a color wheel that varied in hue only.
When the black circle was clicked, the corresponding color from that location of the
underlying color wheel was shown in a thid®ethree inch patch to the right ofetlwheel

and below the color label. The underlying color wheel was rotated randomly by 45
degrees for each trial so that it was not
from trial to trial. Participants were free to click as many times aswvighed to generate

the color they thought best corresponded to the given color label. Once participants were
satisfied with the color they generated,
next trial. Participants generated colors for 21 labgise each, for a total of 42 trials,

presented in random order.

t
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Results

The color wheel allowed participants to generate colors that differed by 1 unit of hue,
resulting in 239 possible hue values. Responses where binned into 48 bins (varying by 5
unitson the hue range from2B9, such that all hue values that ranged betweeii.2,5
were included in one bin, hue values betweenl25 fell in the next, and so on).
Outliers more than 40 hue values from the highest or lowest value in a given colors hue
range (see Table 1) may haveeflected inattention to the task or accidental submission,
and thus were removed, resulting in the removal of 1loress (0.5% of the data). For
subsequent model use, we fitted the frequency distributions with von Mises distributions
(a.k.a. the circularanalogue of thenormal distribution). The means and standard

deviations from the von Mises fits are shown in Table Figurel.2 shows frequency

Tablel.1. Mean (SD) of Hue Values and Hue Ranges for Top 7 Color Labels

Mean (SD) Hue Range

Red 1.1 (2.56) (2301239, 07 5)
Orange 20.23(5.59) (10-30)
Yellow 40.05 (3.04) (35-50)
Green 79.79 (10.34) (55-110)
Blue 153.53(12.13) (115170)
Purple 189.41 (6.27) (175190)
Pink 215.60(9.57) (195225)

distributions over the hue values generated for the given color labels. The top panel
shows the hue value frequency distributions for the 7 most frequent labels from
Experiment 1 (red, orange, yellow, green, blue, purple @nk). Figurel.2, bottom

panel shows the frequency distributions for all 21 stimulus labels. The distributions

reflect the notion that a given color label is best represented by a small range of hue
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Figure 1.2. Frequency distributions over hue values from Experimenb@.panel:
frequency at which a hue value was generated for the 7 preferred color labels. Bott
panel: frequency of hue values generated for the 21 most frequent labels. Each bai
represents a 5 unit range on the hue continuum fr@300

values, with some overlap at the edges of the distabsti They also reflect strong
agreement in the expectations for the association of color labels to hue values across
participants.
Experiment 3: Color Memory Task
Participants

Eighteen Introdatory Psychology undergraduate students at Rutgers University
participated for course credit. These participants were not involved in Experiments 1 or 2.

Materials and Procedure
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The stimuli consisted of 48 random shapes uniformly filled with the same 48 hue
values in the HSL color space used in Experiment 1. Study and test trials werggorese
as a continuous sequence and were randomly interleaved (see Eigusample
study/test sequence). The color/shape pairings were randomized across participants and
were presented one at a time, for 2 seconds each, at the center of the computegdscreen
a test trial, a shape from a previous study trial, but filled with gray, appeared at the center
of the screen and participants were asked to make three responses: 1) a recognition
response: Ado you remember stwdeindgWhlaits c®
was the shape at study?06 (this question w
recognition question). Responses were typed into a text box and participants pressed
Aenterodo to continue. 3) a ceucelaroftheshape at r esp
studyo. Responses were given usi‘amgiwerche sam
selfpaced. Because of the continuous design where study and test trials were randomly
interleaved, the lag between a study presentation and aiakdor that study stimulus
varied from a lag of 1 to a lag of 48 (i.e., up to 47 intervening trials between study and

test).

SamplesSiddy/Test Sequence

A 14 EEAN

S ST 555K S S LS

Figure 1.3. Sample study/ test sequenBedenotes a study trial and T denotes a te:
trial for with the trial number in subscript.

To determine if the regression to the mean effect borne out in the memory data was merely a result of
participants being primed by the label they recalled before recreating to color, we piloted another condition
where participants recreated the color befaroviding a label, and the results mirrored the original

memory condition.
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Results

To measure performance, we calculated recall bias as the difference between the
recalled and studied hue value. It appears that the task was very difficult, and error rates
were very high. We therefe restricted the analyzed sample to include only cases in
which subjects provided the correct label on the second question of the test trials (e.qg.
datum was excluded if the subject recalled blue, when the color studied was red (based on
the most frequdnlabel for that hue value in the color naming task), however, responses

such as light blue, if the studied color was blue were acceptable). The hue range for a

Memory Data and Regression
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Figure 1.4. Top panel: Recall bias by color category. Positive bias indicates over
estimation and negative biaglicates underestimation. The black line indicates no bia:
The data points are color coded with the hue for that color range and the corresponc
labels are given on theaxis. The lines give the regression fits for each color label.
Bottom panel: Modepredictions with regression fits from the memory data.
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color category was determined based on the lowest point between two response
distributions in he color naming task. Furthermore, hue responses that deviated by more
than 6 standard deviations from the mean of the determined hue range were excluded.
This corresponded to correctly providing
reconstructing itas red with the color wheel (4 data points). Five test trials were also
excluded because no response was recorded. Thus, 55% of the data was used in this
analysis.

The results revealed regression toward the mean effects as illustrated inlEgope
parel. For each of the 7 colors, subjects overestimated values below the mean hue value
of each color category and underestimated the values above the mean hue of each color
category. A linear regression model was fitted to each subject for each of therrepref
colors assuming a single slope and separate intercept for each regression line (see Figure
14 top panel). A onsvay analysis of variance revealed a significant main effect of
intercepts (F[694]=664, p<.001) across color categories. The negatieedltipe lines
indicates a regression to the mean, and the different intercepts for each of the color
categories signify regression towards different mean values. Tabkhows the slope
and intercepts for the 7 categories.
Modeling

In this section we iplement a simple Bayesian model to characterize the regression
to the mean effect borne out in the memory experiment. In the model, the goal is to
efficiently retrieve relevant information from memory, which needs to be combined with

prior knowledge and gxect ati ons about the environment
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account of how to combine noisy memory representations with prior expectations to
calculate the posterior probability,

pPC M® pyl ) p() Eq (1)
where the posteriop(d ly) gives the likely feature valud given the noisy memory
contenty. We assume that the studied features (i.e., hue values) are Gaussian distributed,
d ~ N (€, &, with the prior meare and variancel® of the features drawn from the
environment. When thepecific featured is studied, we assume this leads to memory
tracesy, with some memory noisg, y ~N(d , ). Sfandard Bayesian techniques (Gelman
et al., 2003) were used to compute the mean of the posterior distribution:

— 0" p 0 W Eq (2)

wherew= (1% [(1/0c%) + (nfi2)] andn is the number of samples taken from episodic

memory.

We specified a prior with mearfor each color category equal to the mean of the von

Tablel1l.2. Mean Slopes and Intercepts by Color Label

Slope Intercept

Mean SD Mean SD
Red -046 0.13 -3.4137 3.26
Orange -046 0.13 10.6451 2.63
Yellow -046 0.13 18.2125 3.61
Green -046 0.13 37.0389 8.79
Blue -046 0.13 64.9861 4.43
Purple -046 0.13 88.1715 4.90
Pink -046 0.13 92.4914 6.79

Note.N=18
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Mises (ircular analogue of theGaussian) distributions calculated from the data in
Experiment 2. In other words, we assume these distributions to be representative of
peoplesd prior expectation over hue values
we set(F for each color category equal to the variances of those distributions and a
memory noiseY) that varies for each category on the standard deviations from those
distributions from Experiment 2 (see Taldld). While Bayesian cognitive models are
generally handitted to the data, here all parameter settings are directly informed by the
experimental data. We used the model to simulate the same trials in the experiment.
Figure 1.4 bottom panel shows th@mulated responses from the model. Overall, the
model produes results that are qualitatively similar to the observed data and captures the
overall trend.This provides strong support for reconstruction from memory being highly
systematic and influenced by prior expectations learned from the environment. Next, we
build on this principle of systematicity, that we assume is a fundamental mechanism of
memory, to investigate how different environments and potentially different expectations
for color might influence regression patterns in memory.
Discussion

In this workwe sought to investigate the influence of expectations for color on episodic
memory. We measured prior expectation via two tasks: a color naming task which
elicited color naming preferences, and a unique task in which participants used a color
wheel to gearate colors most closely associated with the given color label. The results
showed naming preferences that are consistent with the existing literature (Berlin & Kay,
1969), namely red, orange, yellow, green, blue, purple and pink. Subjects also showed a

high level of agreement in both Experiments 1 and 2. We then measured the influence of
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expectation on free recall for color. Results revealed a regression to the mean effect in
free recall, such that studied hue values below the mean of that color categery
overestimated at recall and studied hue values above that color category were
underestimated. This suggests that recall is influenced by expectations for color.

This behavior was modeled with a simple rational model of memory, which assumes
that priorknowledge for different color categories exert an influence on episodic recall.
In this way, recall is a combination of prior expectations and noisy memory cofent
model provides qualitative predictions that are a good fit to the observed dataodéle m
captures the regression to the mean effect for each of the 7 preferred labels. Importantly,
the only assumption made in the model was that prior expectations for color were well
described by the performance in the color generation task.

Here, we do nbprovide an analysis of stlabels (all 21 labels). Howeversults for
hue values within the blue range are interesting in that the pattern of over and
underestimation appears to be dispersed. This may be the result of participants separating
thehuevhues in the blue range to account for
high frequency sulabels (i.e. light blue and sky blu@)his suggests that colors might be
hierarchically organized, such that blue is the general color label, ardbslb are
based on subjective naming preferend¥s. believe that this investigation has provided
important support for existing understanding of the structures of color categories, as well
as a new understanding of relationship between prior expectatoh$ree recall for

color.
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Chapter 3: Inferring Prior Knowledge from Episodic Memory in Special
Populations

This chaptempresents data from a study previously published inPiteeeedings of
the Annual Meeting of the Cognitive Science Soeietyini-PerceptionK. Persaud and
the advisor, P. Hemmer, developed the study concept and study design together. K.
Persaud developed the stimulus. C. Kidd and S. Piantadosi, performed the testing and
data collection which was conducted in a different counBgliyia). K. Persaud
performed the data analysis. K. Persaud and P. Hemmer, together, performed the
interpretation. K. Persaud drafted the manuscript. After the manuscript was drafted, all
authors helped revise the manuscript. K. Persaud implementedtialll gevisions in
response to reviewer comments.

In the study, we sought to examine memory in a population that might have dissimilar
expectationdrom our standard US populatidrased on their natural environment and
culture. These expectations in tumight differentially influence memory. We engage
this questionin the domain of color for a number of reaso@slor holds social and
cul tur al rel evance and peopleds relationsh
connections to color) and externally (e.g. through the visual experience in their
environment) derived. In addition, color is a ubiquitousmdin for research across
developmental, social, and cultural groups, as well as across domains of cognition.

Importantly, for investigative purposes people have similar, but also different
knowledge states of color. There is an extensive literature atherang knowledge of
color across cultures (e.g., Davies & Corbett, 1997; Regier, Kay, & Cook, 2005;
Roberson, Davidoff, Davies, & Shapiro, 2004; Stickles & Regier, 2014; Xu, Griffiths, &

Dowman, 2010), and several clear patterns of color universalitg kanerged. For
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example, it has been shown that universal tendencies persists in color naming across
societies (Berlin & Kay, 1969; Regier, Kay, & Cook, 2005) and that those tendencies are
linked to 11 basic color terms (i.e., red, orange, yellow, grdam, purple, pink, black,

white, gray and brown). A possible source of universal tendencies in color naming is
similarities in favored color percepts (i.e. best examples) across various languages
(Regier, Kay, & Cook, 2005). These color universals are shtmwvhave a subjective
perceptual basis, in that they can be used to partition the color space into distinct regions
that facilitate color categorization (Webster & Kay, 2012).

While these 11 universal categories are found across most industrializetiespcie
there are also substantial individual, environmental, and cultural differences in color
knowledge (e.g., Palmer & Schloss, 2010; Stickles & Regier, 2014). Internal (e.g.,
emotional) relationships and preferences to certain colors serve as a caswlidedeof
variation in individual color knowledge as postulated by the Ecological Valence Theory
of Human Col or Preferences (Palmer & Schlo
emotional response to a color is their cumulative affective respontie tobjects to
which the color is associated. Individuals prefer colors that they have had positive
experiences with (e.g. yelloivcolor of flowers) and do not prefer colors with which they
have had bad experiences (e.g. fecblor of fire), signifyngach per sondés cl «
personal relationship to color.

At the group level, a source of variation in subjective color knowledge is the
relationship between color and the variability in natural environments. For example, color
terms in languages with clinesd of abundant vegetation (e.g. rainforest) are significantly

different from color terms in languages with dry climates (e.g. Savanna), but not in places
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with relatively similar climates (e.g. rainforest and monsoon) (Stickles & Regier, 2014).
The differerce in the greenery of the climates presumably accounts for difference in color
naming. Thus, it appears that local environmental factors influence color knowledge and
promotes variability in color terms across languages.

We tested recognition memory fond o r i n the Tsi malheeNj gr o
Tsi maneN are an indigenous people who i nha
Bolivia. They have minimum contact with the outside world, a uniquely different color
diet relative to our U.S. population,cmaryinglevels of education (see table R.These
factors might contribute to idiosyncratic expectations for color. Furthermore, the
difference in expectations may be foreshadowed by dissimilarities in color language. In
t he Tsi maneNj maarghighlygvariablecandl monphologeally com@lex
e. g., y el | o wof-theguchiécadhtt e @ edcolCot or | anguage i
in that some people know this term for yellow, as well as other color terms, and some do
not.

Color expectation® f the TsimaneN people may | ead
patterns. 1)The pattern might be the same as the U.S. population, such that memory
regresses to the same seven color categories, suggesting that the two populations used the
same categories raglless of environmental variation. 2) The patterns of the two
popul ati ons mi ght di ffer, i n that the Tsi
categories. This is supported by smaller numbers of color categories across some
languages (e.g., Roberson, sy & Davidoff, 2000; Roberson, Davidoff, Davies, &
Shapiro, 2005). 3) The Tgdgegnasobshijvedin Bussian s p |l i

where blue has two terms (e.Baramei, 2005). Such a split could lissed on the high
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Table 2.1Participant Demographics

Age(years) 18 2028 3034 4048 60+
Frequency 4 8 6 3 2
Educationyears) 0 1 2 35 6-9 10
Frequency 4 1 3 9 5 1
Spanish 0 69 1011
(translate out of 11)
Frequency 1 19 3
Countinghighest #) 2 59 1531 4664 93 102
Frequency 1 2 5 3 1 11
Arithmetic(out of 12) 0 1 2-3 4-5 6 1011
Frequency 2 3 10 2 2 3
Note. N=23
variability in color termsi n t he Tsi maneNj | anguage, and

Regression towards the standard universal color categories in both populations would
suggest that these factors (language variability and environment differences) may have
little influence on memory Alternatively, differences in regression patterns would

provide support for cultural and environmental factors influencing memory.

Due to the demands of field research, the task varied in a numbey®taapared
to the controlled laboratory experiment. First, ths i mane Nj di spl ayed a
discomfort with the use of technology and any apparatuses that they themselves had to
use. Thus, we converted from a computerized free recall task to abaaperrecognition
task where participants only needed to point to responses. Second, instructions and
responses required two layers of translation (i.e. from English to Spanish, and then from
Spanish to the Tsi maneN] | ansgessapgas knowledge d t h L
and expectations as was previously done with the U.S. population. We instead relied on

the systematicity of memory (i.e. regression to the mean effect) and the assumptions of
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the Bayesian cognitive model to infer the underlyingcolat egor i es of t he

the influence on memory.

Experiment: Episodic Memory for color in an indigenous population

Participants

Twenty-three individuals participated in this study and were compensated with small
gift bags of local goodsParticipant ages ranged from-&B. Seltreports of education
levels ranged from no formal education to 10 years of education, and arithmetic skills
ranged from @l1 out of 11 questions correct on an ad hoc field measure (using all
addition questions), andhighest count ranging from-202 (meaning knowing all

numbers). Table 2.1 gives a detailed breakdown of the demographics and skill variables.

Materials and Procedure

Stimuli consisted of 24 random shapes uniformly filled with 24 unique colors
sampled fron the hue color space, with saturation and luminance held constant at 100%
and 50%, respectively. The 24 colors were selected from the 7 color categories and varied
in hue by a minimum of 5 units (on a total range of 239). Furthermore, colors were
randomlyselected from each color category, proportional to the size of the color category
(i.e. 2 red, 3 orange, 2 yellow, 6 green, 6 blue, 2 purple, and 3 pink). Study shapes were
printed individually, and test shapes along with 5 distractors, were printedhe¢ogpat
5.5by-8 inch cards (See Figure 2.1a for a sample study test pair). The colors of the
distractors were chosen such that the hue values of two distractors were greater than the
hue value of the target color, two distractors were less than the e target, and the
last distractor hue value was either greater or less than the target, but at a further absolute

distance from the target than the other distractors (see Figure 2.1a for illustration).
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Participants were gathered in a communal classroom, and there were a number of
onlookers during the administration of ttest. Figure 2.1b shows both the experimental
setting and a studiest trial sequence. A translator explained the task, and all participants
appeared to immediately understand the procedure. Presentation time -atethesfudy
card was as close to 1 sadoas possible. The study trial was followed balt@rnative
forced choice immediate recognition. Participants had as much time as they needed, but

most responded immediately, and responses were recorded in a booklet. On some trials

a

Figure 2.1 (a) Sample studyteststimulus.(b) Tsi mane d woman pa

study. The experiment was conducted in a class with onlookers from the commut
(approx. 5%) it was rtoclear where the participant had pointed, and participants were
asked to repeat their choice. They were asked to touch, rather than point, to try to
alleviate this problem. Trial order was randomized between participants. Due to the field
demands, it wasot possible to randomize the target/distractor locations on the test trials.

This means that all participants saw identical test cards.
Results

Prior to analysis, recognition responses that were more than 6 standard deviations
away from the studied hue value were removed. These data points constituted 2.5% of all

the data (14 out of 545 data points). After calculating the bias measure described below,
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individual subject data revealed that there was one participant whose data were very
noisy and appeared essentially random (this was not unexpected given the very noisy
conditions of field data collection). This may have reflected either impairment in color
visofor inattention to the task and this par
analysis.

Recognition Bias and Regressidemory performance was measured in terms of
recognition bias, i.e., the difference between the hue value participants wereenand
the hue value studied. First, bias was calculated for each individual participant and then
averaged across participants for each studied hue value. Figure 2.2 shows recognition
bias as a function of studied hue values. The data show clear regitesthe red, green,
blue and pink color categories. The orange, yellow, and purple categories, however, were
more ambiguous. Based on a visual inspection, we partitioned the averaged bias into 5
categoried combining orange and yellow, and combining peirand pinkd and fit a
linear regression model to each of the 5 resulting color categories (see Figure 2.3). The
slope of the regression in each category (except for the orangel/yellow range) was
negative, indicative of a standard regression to the meact.effee values below the
mean of the category were overestimated and hue values above the mean were
underestimated. This is consistent with the findings from experiment 3. Avaye
analysis of variance revealed a significant main effect of interé§p0%]=25, p<.001)
across color categories, indicating that each category has a different intercept. However,

performance in the orangel/yellow range appeared to be different from the other

2We were not able to conduct a color blindness test. The assessment requires naming knowledge
of some shapes which is confounded dwmbotcdmpletedhisc at i on.
task.
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40 [ . observed data averaged over participants

BIAS (recalled - studied)

STUDY HUE VALUES

Figure 2.2 Recognition bias by hue valukverage mean bias (data points) and
response ranges (box plots) for each studied hue value. Colors of the data mak
indicate the standard universal color categories. Positive bias indicates over
estimation and negative bias indicates underestimatianblEtk line indicates no
bias.

categories. In this category, the slope ran in the opposite diregasitiye slope),
showing a regression towards oraigd rather than towards yellow.

Cluster Analysidigure 2.3 appears to show interestingly different color categories,
compared to theeven classic basic color terifired, orange, yellow, green, blue, purple
and pink). To learn the underlying categoriegattiparticipants may have used, we
conducted a 4means cluster analysis (Figure 2.4). We ran 10 iterations of the cluster
analysis on four different clusters sizes (i.e., 4, 5, 6, and 7) and found the greatest cluster
agreement over the 10 chains for a ®ussize of 5. This cluster size was further
confirmed by the Calinski Harabasz criterion. Consistent with the regression analysis, the
cluster analysis also combined colors in the purple/pink ranges and orange/yellow ranges.
However, the cluster analyshsrther combined the orange/yellow category with red, but
split the universal blue range into two blue categories. These findings suggest that the

pattern of regression behavior to underlying category centers is inherent to memory, but
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Figure 2.3.Regresmn fits to 5 color categories. Categories are partitioned by ht
ranges with orange and yellow combined, and pink and purple combined. The

center black line indicates no bias. The data points are color coded with a hue
that color category. Thénkes give the regression fits for each of the 5 categories

the specific categ@sd either assessed experimental (U.S subject population), or
|l earned from the clowa®tesvironmaent adpgndentsand( afes i mar
reflected in the differential regression behavior between the two subject populations.
Discussion

We examined expectations for color and the influence of those expectations on
episodic memory in two populations: a stan
of Bolivia. We fourd that environment appears to differentially influence category
expectations, and episodic memory. In the U.S. subject population, expectations reflected
naming preferences that were consistent with the existing literature (Berlin & Kay, 1969),
and a highlevel of subject agreement on the association of labels to hue values.
Furthermore, in this population recall regressed toward 7 color categories, suggesting an

influence of expectations for color categories on episodic memory.
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In previouswork, we modeled this relationship between expectations and memory
with a Bayesian cognitive model characterizing the computational problepmddining
prior expectations and noisy episodic contémiportantly, the only assumption made in
the model wadhat prior expectations for color were well described by the performance in
the color generation task. We believe this reflects the optimality of the memory system
and its relationship to the environment. This gives rise to the question of whether
different environments cultural profiles (such as language), or experieraxggender

variation in color expectations and lead to differences in regression behavior.

L L L L

150

100

a1
o

o

&
=]

BIAS (recalled - studied)
T
1

-150 — -

_2000— } ) } _ TeEEEEESSSET 00 7

50 100 150 200
Figure 2.4 K-mean<Cluster Analysis. Bias data partitioned into 5 learned cluster

from an unsupervisedikeans cluster analysis, and color coded with a hue from-
category. Vertical lines and color labels eaxs show the standard universal
categories.

To examine whether different environments engender variation in color expectations
and lead to diffrences in regression behavior, we assessed memory in an indigenous
popul ati on, the TsimaneN] of Bolivi a. Due
assess prior expectations for color or utilize the free recall memory design with this

group. Insteadwe worked backwards using the Bayesian assumption of the influence of
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expectations on memory and the results of the U.S. memory experiment to learn the
underlying categories for this group, and in turn, how these category expectations impact
memory perfomance. In this work, two clear patterns emerged. We found a consistent
regression to the mean effect across color categories, with the exception of the yellow
category. This finding may suggest that the regression to the mean effect in memory is a
universa cognitive process and is systematic across cultural and environmental groups.
Interestingly, however, a-keans cluster analysis showed that the categories in the
Tsi maneN) popul ation were different than ot
theU S. group regressed toward seven categor
categories, and combined other categories, resulting in five inferred categories:
red/orange/yellow, green, light blue, dark blue, and purple/pink.

The population specifibi as observed in the Tsi maneN;j
might be related to the underdevelopment of knowledge for some categories. This could
be due to one or more factors, such as low environmental incidence, low frequency in
language, limited formaducation of color, or little communicative need of certain color
terms. From a memory perspective, the underdevelopment of color categories raises
several interesting questions. A color like yellow, which is somewhat rare in the
Tsi maned e nghtileadbtommameutliér (or ion Restorff) effect, where it is better
remembered. Conversely, a pervasive color (with a high prior probability in the
environment) is also likely to lead to better memory, and might account for the shallow
regression line inhe blue category (Figutz3).

We believe that this study provides important evidence for an experience based

mechanism (development and maintenance of prior knowledge) that gives rise to
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differences in color knowledge. This is consistent with the findrigickles and Regier
(2014) that environment impacts language (i.e., color words). Furthermore, the study
provides strong support for the influence of category knowledge on memory, and the

systematicity of memory across groups with varying prior knogdezbntent.



33
Chapter 4: Fidelity and Memory

The Dynamics of Fidelity-tever Memer Vi
Kimele Persaud and Pernille Hemmer (20G3)gnitive Psychology

K. Persaud and the advisor, P. Hemmer, developed the study concept artesigay
together. Stimulus creation, testing and data collection were performed by K. Persaud. K.
Persaud performed the data analysis. Interpretation of the analysis and model
development/implementation was performed by K. Persaud and P. Hemmer, together. K
Persaud drafted the manuscript. After the manuscript was drafted, K. Persaud and the
advisor, P. Hemmer, revised the manuscript. K. Persaud implemented all critical

revisions in response to reviewer comments.

Abstract

Bayesian models of cognition assem t h a t prior knowl edge abol
judgment s. Recent approaches have suggeste
longterm (LT) memory is simply due to an increased rate of guessing (e.g. Brady,
Konkle, Gill, Oliva, & Alvarez, 2013). fiat is, recall is the result of either remembering

(with some noise) or guessing. This stands in contrast yedten models of cognition
whichassume that prior knowledge about the w:
is a combination of expectatisnlearned from the environment and noisy memory
representations. Here, we evaluate the tim
the relative contribution of prior category knowledge and guessing, using a continuous
recall paradigm. At an aggregatee v e | performance repects
However, when aggregate data is partitioned by lag (i.e., the number of presentations

from study to test), or is waggregated, performance appears to be more complex than
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just remembering with some neisand guessing. We implemented three models: the
standard remembguess model, a three component remengiess model, and a
Bayesian mixture model and evaluated these models against the data. The results
emphasize the importance of taking into accourg thfluence of prior category

knowledge on memory.

Introduction

An important question for memory is whether category knowledge biases
performance, and whether an influence of category knowledge changes as a function of
the fidelity of memory. Recent woik visual working memory has suggested that when
recalling stimulus features, observers either remember the episodic information with
some noise or guess (Bradgonkle, Gill, Oliva, & Alvarez,2013; Zhang and Luck,
2008). Zhang and Luck found that fidgliis fixed once capacity of visual working
memory is reached, but that the guessing rate changes. The resulting error distributions
are well fit by a mixture of a Gausstike (remembering with some noise) and uniform
distribution (guessing). They arguéltat observers remember continuous feature values
and are not biased by categorization of those values. Importantly, a finding of category
bias would suggest an intermediating step between remembering and random guessing.
Such a bias was found by Bae amadleagues, establishing that category biases originate
in perception and are reflected in visual working memory (Bae, Olkonnen, Allred, &
Flombaum, 2015).

Several extensions to the original rememipeess model have been implemented to

account for additioal factors that influence visual shogtrm and working memory
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performance (e.g., Bays, Catalao, & Husain, 2009; Bays, Wu, & Husain, 2011; van den
Berg, Shin, Chou, George, & Ma, 2012). For example, the vasmablasion model (VP;

van den Berg, et al,042) postulates variability in the precision with which items are
encoded in working memory. The resulting error distribution is a mixture of many von

Mises distributions (as opposed to the one memory component in the rengrraber

model), to account faresidual noise in memory that the standard model cannot fit. Other
proposed models incorporate tdska s e d component s, such as
Ami sbindingd paramet er s -Huess eadeléBays, Catdlam, st an
& Husain, 2009; Bays, W& Husain, 2011).

Although these models provide substantial revisions to the original, it is important to
note that they are grounded in visual stierm and working memory. Relatively few
studies have sought to apply the rementherss framework to undg#anding longerm
episodic memory. One such application by Brady and colleagues (2013) showed that
there is a loss of fidelity from working into losigrm (LT) memory. They argued that
this decrease in fidelity is due to an increased rate of guessimguivaddressing other
factors that impact lorterm memory.

The remembeguess model stands in direct contrast to a number of Bayesian
cognitive models which assume that LT memory is an integration of expectations learned
from the environment with noisgnemory representations (e.g., Hemmer & Steyvers,
2009; Hemmer, Tauber & Steyvers, 2015; Hemmer, Persaud, Kidd, & Piantadosi, 2015).
These models are pervasive in cognition in general, and in specific domains including
categorization (e.g., Huttenlocher, dfges & Vevea, 2000), generalization (e.g. Griffiths

& Tenenbaum, 2006), semantic memory (Hemmer & Steyvers, 2009b; Steyvers,
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Griffiths, & Dennis, 2006), and episodic memory (Shiffrin & Steyvers, 1997; Steyvers &
Griffiths, 2008).

Bayesian models of cogroth propose a tradeoff between the fidelity of memory
content and the influence of prior expectations. When the fidelity of the episodic trace is
high, for example, as in visual shoerm memory, there is minimal noise and potentially
little influence of pior expectations. As fidelity decreases in working and LT memory,
whether as a function of time or errors in retrieval, the influence of prior expectations
would increase.

At an aggregate level, however, the error distributions resemble a combination of
precise and imprecise memory, which might appear only to be remembered content and
guessing, effectively masking underlying stages between the two. Prior expectation is a
potential factor that might compensate for decreasing memory fidelity at the stage
between precise memory and random guessing. In point of fact, Donkin and colleagues
(2014) showed modddased evidence from visual shtetm memory positing three
discrete states of memory: One, a state based on perceptual memory and high precision,
two, die to memory decay from perception, a state with intermediate precision based on
verbal labeling, and three, guessing. Here, we seek to compare the performance of
models that have been employed to characterize-temng memory, namely the
remembeiguess moel (Brady et al, 2013) and Bayesian models of {targn memory
(e.g., Hemmer & Steyvers, 2009; Persaud & Hemmer, 2014).

In the present work, we explore what happens to the precision of memory over time.
Partitioning performance by the number of interverimas between study and test (i.e.,

lag) allows for the systematic assessment of the time course of fidelity in LT episodic
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memory. To the best of our knowledge, this paper gives the first analysis of free recall by
lag in an effort to understand thea®Ve contributions of prior knowledge and guessing.

We also investigate if category bias, indicative of the employment of prior knowledge, is

a mechanism by which LT memory can be filled in, before individuals resort to random
guessing. If this is the casthen performance at intermediate lags, consistent with the
Bayesian assumption, should reflect the influence of category knowledge on noisy
episodic representations. Such an influence is generally observed as a regression to the
mean effect. We implemernhree models: the standard rememipeess (RG) model, a

three component remembguess (3CRG) model, which assumes two levels of precision

in memory and a Bayesian mixture (BM) model. We also conduct model comparisons as

a function of lag.

Memory for color: Overview of Experiment

Our objective was to determine the contribution of prior expectations to LT episodic
memory and assess the resulting time course of errors. We developed a novel
experimental approach for assessing free recall for color, wizetieipants generated
recalled hue valuessing a continuous color wheel, and wiitkerleaved trials of random
lag lengths between study and test
Participants

Sixty-one Introductory Psychology undergraduate students at Rutgers University
participated ér course credit or $10 compensation. In condition 1 (Label first Condition)
N=18. In condition 2 (Label after Condition) N=5. In condition 3 (No Label Condition)
N=38. All participants reported having normal color vision. No individual participated in

more than one condition.
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Materials

The stimuli consisted of 48 arbitrary shapes uniformly filled with 48 colors sampled
from the winHSL240 (hue, saturation, and luminance) color space. See Bitjuie
sample stimuli. The shapes were selected such taeg thas little prior association of
any color to the shapes, that is, the study set did not result in canonical pairings such as
yellow stars or red hearts. The purpose of the shapes was to cue subjects on test trials to
recall the filkcolor of the shapeColors were sampled in 48 equally sized steps along the
full hue range, based on the ability to perceptually differentiate two sequential colors in
the range. Saturation and luminance were held constant at 100% and 50%, respectively.
The shapes and colomgere paired randomly, and pairings were randomized across
participants. Each shape and color was studied only once.
Procedure

Participants were shown a continuous sttelt sequence of color filled shapes.

Sample Trial Sequence: S, T, S, § S T S Ti T
\ J J

Lag 1
} g Lag 3

What color was the
shape at study?

RED Recreate the ‘ Do you recall

color of this seeing this
shape shape?

Yes No

Do you recall
seeing this
shape?,

Yes No

Figure 3.1. Sample sidy/test sequence by lag. Lag 1, participants study a shape, fol
by a series of memory questions related to the color of the shape. Lag 3, participar
a sequence of three colored shapes, before being asked a series of memory quest
relatedto the color of theued shapé here, thdirst of the three shapes studied.
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Shapes were presented one at a time at the center of the computer screen for 2 seconds.
Participants were told to study the color of each shape, as they would be asked to recall
the color of the shapes. Test trials were randomly interleaved between study trials,
resulting in lags of varying length. This sequence of lag was obtained by first randomly
permuting the order of study trials, and then interleaving test trials, with the condition
that for a test trial to occur, the corresponding study item must have occurred first. Figure
3.1 provides an example of the experimental procedure for a lag ofd lagdf 3 trials,

as well as an illustration of the interleaved study test sequence.

On a test trial, a shape from a previous study trial, but filled with gray, was presented
as a cue and participants were prompted to make several responses. Irealghre
conditions, participants first completed a recognition task for the shape. In the two label
conditions, participants were asked to provide a verbal label for the color of the shape
either before or after recreating the shape color (this questiorpeszsl regardless of
their response to the recognition question). Participants typed responses into a text box
and pressed fAenterd to continue. I n condi
label. In all three conditions, participants were thereddk recreate the studied color of
the shape using a continuous color wheel. The color wheel was covered by a black mask,
and was randomly rotated by 90 degrees on every test trial. Participants clicked on the
wheel to fill the shape with the underlyioglor. Test trials were seffaced.

Results
For analysis, antb accommodate the use of von Mises distributionthe models,

hue values were converted from the winHSL240 color space to degrees.
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The primary purpose of the three labeling conditions washexk that the explicit
label generation did not alter the influence of category knowledge. We find no real
differences between the label versudaitwel conditions, and for the purposes of analysis,
data is pooled across all three conditions (see Appeiidble Al for parameter
estimation for the label versus-tabel conditions).

Lag AnalysisTo measure the time course of fidelity in LT memory, the data was
partitioned by lag and each resulting error distribution was analyzed. Since lag intervals
encompassed participant responses which werepae#fd, lag intervals varied both

across trials (wh the same lag) and across participants. For an approximation of the
correspondence of lag intervals to units of time, we calculated the average study plus
response time for each condition and collapsed across conditions. The results were as
follows: Lakel First: M= 16.2s, SD= 9.0s, MO= 10.0s; Label Last: M= 18.5s, SD= 8.2s,

MO= 10.0s; No label: M= 11.2s, SD= 7.1s, MO= 5.0s; All conditions: M= 13.3s, SD=

8. 3s, MO= 9. 0s. A Pearsonds correlation r e
lag and resporstimes (r = 0.7, p<.000).

Initially, all lag groups were examined separately, but then grouped based on a
meaningful progression in the parameter contributions. This was done both for visual
clarity, and in order to SeamAppeadixJable Ahf@ fNspe
fits to all lags. Figur&.2, from left to right shows the error distributions for lag B, 2
9, 10+, and the aggregate of all lags. The error distributions reveal that the fidelity of
memory is quite high at lag 1. This isi@enced by the tight grouping of responses
around O error and virtually no responses past 50 degrees of error. For the remaining lags,

memory fidelity is not as high as in lag 1, but does appear to be stable over time.
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Figure 3.2. Histogramsof errors as a function ¢dg: lag 1, lag 23, lag 49, lag10+,as
well as the error distribution fall lags.

oLl

However, there is also an increaseefjfiency of responses past 50 degrees of error (i.e.,
increased rate of guessing).

Partitioning the data by lag shows a progression in the decrease of fidelity, and
corresponding increase in the rate of guessing, that cannot be discerned from an
aggregate error distribution. Furthermore, in the aggregate error distribution (Bigure
All | agsd panel ), the c edwhiehrundprohe tenemmber o f t h
guess model is characterized by a single Gaussian distribugippears to have both a
sharp peak as well as broad 'shoulders’' suggesting multiple components. Hawever,
visual inspection of the error distributions by lag is insufficient to determine whether the
composition of the error distribution is strictly that of remembering and guessing, or if
there are additional factors at play.

Recall biasTo assess bias in @t we calculated the difference between the hue value
recalled and the hue value studied. Figdi8 top left panel, shows study hue values as a

function of bias. The square boxes illustrate the bias for each studied value scaled by the
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frequency at whic the response was given across participants. Each square box is
colored with the true recalled hue value given for each studied value. All responses to a
particular studied value form a straight horizontal line, and correctly recalled hue values
lie vertically at the zerdvias line of the saxis. The results shows regression to the mean
effects for several color categories, where accuracy is greatest closer to the mean of the
categories and hue values greater than the category mean are predominately
understimated (to the left of the zero bias line in Fig8r@, top middle panel), while

hue values less than the mean are overestimated (to the right of the zero baseline in
Figure 3.3, top middle panel). Notably, there is an asymmetry in the distribution of
responses around the zero bias line within color categories. When there is a large mass of
values to the left of the zero bias line (underestimation), there are very few values to the
immediate right, and vice versa. This results in strong diagonal bafltdd ¢in the
vertical axis) within categories that are not merely a result of how the data are plotted.
We take the asymmetry to indicate regression to distinct categories, and evidence of an
influence of prior category knowledge on memory (Hemmer, Tadb&teyvers, 2015;
Hemmer & Steyvers 2009a; Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher,
Hedges, & Vevea 2000; Hemmer, Persaud, Kidd, & Piantadosi, 2015).

Regression analysiBased on established universal catego(resl, orange, yellow,
green, hlie, purple and pink; Berlin & Kay, 1969), we assume that the observed recall
bias is toward these seven categories (also, see Persaud & Hemmer, 2014). A linear
regression model was fitted to each subject for each category (RBdyréop right

panel). Beause the regression effect is assumed to operate on memory (not guessing),

the data were trimmed to remove responses assumed to be guessing. It is unclear prior to
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Figure 3.3 Recall response bias to studied hue values. Top left panel: All respc
for a given study hue value appear in a horizontal row. The response markers
scaled by the frequency at which they were given (larger boxes indicate greate
freauency) and colored with the exact hue value chosen. Top middle panel:

model fitting how to determine a guessing trial, therefore, data were trimmed following



44

Standard RG Model 3CRG Model

180 90 0 90 180 -180 -90 O 90 180

Error (degrees)

Figure 3.4. Model predictionsLeft panel shows stylized predictions of the fit of tF
standard RG model to the aggregate data. The solid black line represents the
memory contribution and the dashedine represents guessing. Right panel show
predictions of the fit of a 3CRG model to capture the 'shoulder’ of the error
distribution. The-dashed black line represents the contribution of the additional

two different procedures: First, singletons in the data, grouped over response frequency,
(Figure 3.3, top left panel) were removed and only responses within 75 huesvaf the

study value were considered for the analysis.-tAst of the subject slopes for each
category found that slopes were significantly different from zero for all categories except
orange, yellow and purple [red(60)= -2.82, p<0.001; orange(60)= -0.15, p=0.44;

yellow: t(60)= 1.96,p=0.97; greent(60)=-3.82,p< 0.001; bluet(60)=-1.78,p= 0.04;

purple: t(60)=0.94,p= 0.83; pink:t(60)=1.65, p< 0.05]. Mean slopes were red).69;
orange:-0.02; yellow: 0.27; green0.47; blue:-0.17; purple:0.2; pink:-0.16. Second,
guessing responses were trimmed based on the inferred parameters from the Bayesian
mixture model to all data. Thusnly responses within 3 standard deviatidgs25.88] of

the study value were considered for the analysisiestt of the subject slopes for each
category found that slopes were significantly different from zero for gitéed)+5.09,

p= 0.0Q and blue {(60)=1.87, p= 0.0B marginally significant for redt(60)=1.38, p=

0.09, but not for orange, yellow, purpler pink. Mean slopes were red).36; orange:

0.12; yellow: 0.54; green0.30; blue-0.10; purple: 0.93; pink0.16.
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Visual inspection of Figur8.3 suggests that the lack of significant regression in the
purple category might be due to purple not being as salient as any of the other categories.
Furthermore, the lack of siicant regression in the yellow category might be due to
yellow being the smallest category, and because of very high accuracy. Both orange and

yellow also appear to have large overlap with the red category.

Modeling

To investigate the components of #eor distributions and the observed regression
patterns, we implemented two extensions of the standard remgunss (RG) model: A
three component remembguess (3CRG) model, and a Bayesian mixture (BM) model.
The standard RG model assumes that ther edistributions are composed of two
elements, a Gaussiiike memory distribution and a uniform distribution. See Figiue
left panel for a graphical illustration of predictions for the RG model. Based on our
observed pattern of data in the centeriparbf the error distribution, we predict that the
combination of these two distributions will miss some of the area in the error distribution.
If the memory component captures the peak of the error distribution, then it may miss the
'shoulders' and viceevsa. This combination of a peak and shoulders might signal
multiple components in memory.

To explain this pattern in the data, we first implement a simple extension assuming
that memory is drawn from two normal distributions, one with high precisioroaad
with lower precision. This additional parameter will allow the model to capture both the
peak and the shoulder of the error distribution. See F@dreight panel for a graphical

illustration of predictions for the 3CRG model.
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Another pattern in thdata that cannot be explained by the RG model, or by our first
model extension, is the regression to the mean effect (we will return to a detailed
regression analysis in the model comparison sections. See 4.3 Comparison of
Regression). ThBCRG model alsodoes not give a theoretical explanation of what the
extra component (the low precision memory distribution) represents. Therefore, we
implement a second extensibma Bayesian mixture modelwhich assumes that the
additional component is the contribution @for category knowledge. Rather than the
mixture of two separate Gaussian distributions in the 3CRG model, the BM model
assumes a single Gaussian distribution where the mean is a weighted linear combination
of memory and prior knowledge. This model inmhe predicts the regression to the
mean effect. However, this effect is obscured in the error distributions, and necessitates
the evaluation of the model to the full range of responses, rather than aggregate errors.
Next, we detail the implementation dfet three models and describe the results of the
model comparisons.

Standard -GResmenb®Model (RG)

We implemented the standard RG model using the MemToolbox (Suchow, Brady,

Fougnie, & Alvarez, 2013; memtoolbox.org). In this model, the probabilitysitden

function is given by,

p QzOTITEOHMO 51 EFYm Y (Eq 1)



Table3.1. Model Parameter Values (confidence intervals)
RememberGuess Model (RG)

Fidelity (Conf. Int.)

Guess RatgConf. Int.)

a7

4 () g
Lag 1 11.85(11.8513.49) 0.06 (0.03.010)
Lag 2-3 16.15 (14.4018.25) 0.42 (0.37-0.46)
Lag 4-9 17.63 (15.8219.70) 0.49 (0.460.53)
Lag 10+ 15.02 (12.0320.67) 0.61 (0.530.69)
All 15.82 (15.0317.13) 0.46 (0.440.48)
3 Component RemembeiGuess Model (SCRG)
Fidelity (Con Fidelity (Con Int.) Guess RatgqCon Mixing Parameter
Int.) 0(°) Int.) w*
a(°) g
Lag 1 11.44 (9.87 28.76 (13.68 0.03 (0.01-0.09) 0.28
15.84) 58.43)
Lag 2- 15.27 (13.68 27.87 (20.90 0.40 (0.360.45) 0.35
3 17.69) 36.96)
Lag 4- 17.13 (15.12 29.69 (24.12 0.48 (0.440.51) 0.37
9 19.69) 48.72)
Lag 15.21 (12.44 35.21 (13.36 0.59 (0.51-0.68) 0.30
10+ 32.11) 73.98)
All 15.40 (15.24 28.51 (22.95 0.44 (0.420.47) 0.35
16.74) 32.50)
Bayesian Mixture Model (BM)
Fidelity (Con Int.)  Fidelity (Con Int.) Guess RatgCon Mixing Parameter
Y (°) u(®) Int.) w*
g
Lag 1 22.12 (17.22 23.43 (14.1026.00) 0.05 (0.01-:0.09) 0.49
23.85)
Lag 2-3 19.80 (14.1F 21.12(17.4022.09) 0.43 (0.390.58) 0.48
19.80)
Lag 4-9 18.55 (16.1 25.27 (23.81:25.89) 0.54 (0.540.62) 0.42
18.55)
Lag 20.29 (12.96 250.6 (242.0254.9) 0.60 (0.51:0.72) 0.08
10+ 27.71)
All 19.03 (18.7F 25.88 (23.6826.79) 0.47 (0.47-0.52) 0.42
20.70)

*w= (10)/ [(1/8) + (1K )]

where remembered responses are von Mises distributed (due to the circular hue space)
with a mean ofe and standard deviation. Guessing responses are produced with
probability g and are uniformly distributed across the stimulus range #1860 to BO
degrees. Furthermore, because the error distribution is centered ore=fErdhis

parameter will not be considered in this implementation.
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Table 3.1 gives the inferred parameters and 95% confidence intervals. B@jre
bottom left panel shows thsimulated draws from the posterior of the RG model.
According to the model fits, there is a substantial increase in memory pj&e.«.,
decrease in memory fidelilybetween lag 1 and lags® Thereafter, memory fidelity
appears relatively constant (oks@ in confidence intervals between lag groupings). In
addition, there is a steady increase in the guessinggiafeofm lag 1 and forward. The
model appears to capture the general trend in the data, with the exception of missing the
peak of the distribiion at some lags and a small portion of the shoulder at others.

Three component 'Rememiiguess’' Model (3CRG)

Next, we implement the first extension. We assume that the memory component is
itself a mixture of two Gaussian distributions. This is very lsimio the Donkin et al.
(2014) model, which assumes two components in guessing, where the extra component
only applies at retrieval. Our model, in contrast, makes the assumption that the increased
noise is attached to the memory component rather thagu&ssing component. Our
memory mixture is also not conditioned on labeling, but rather applies to all trials. While
mathematically the two models are equivalent, they differ in the conceptual
underpinnings.

In the 3CRG model, we first assume the addificc@nponent is related to the
memory component in anticipation of the BM model. Second, we use the noise from the
two Gaussian components to determine the mixing, rather than assume an additional free
parameter. Third, the assumption that the additionalpoment attaches to memory is
agnostic about whether the influence of the additional component happens at encoding or

retrieval.
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The probability density function of the 3CRG model is then given by,
p Qz p 0 zOT 1 EOHO 0VzOT 1 EOHD Eq (2)
251 E @Yy

We assume that the mixture of von Mises distributianis based on the fidelity of
these two distributions. This is strongly motivated by theiragsion of the BM model
that the linear weighting is a Bayesian integration suchwiiva¢1/3)/ [(1/3) + (1k?)].
For clarity this can be rewritten as= y % [3+ y?]. Using the noise parameters in this
way ensures a tradeoff between the two memory components such that when one has
high precision it carries more weight, which seems a reasonable assumption of memory.
Furthermore, the noise in one of the von Mises digtidins is dependent on the noise in
the second distributiofimer= & ( 1 &) f (LA%)]. Using the noise parameters in this way
establishes a difference in the precision on the two von Mises distributions, such that
Omemis always smaller that) and thatvheny andUare the same, the noise on one von
Mises is smaller than the otfer

It should be noted that for completeness, we also implemented a number of other
variations of the 3CRG model including versions where: 1) the weightirsginferred
but Bmem is still calculated fromy  a nad abdle, 2)the weightingw is calculated as
above, butlnem as the noise on one von Mises is replaced witfreating the noise
parameters as independ¢8te Appendix A4)and 3)all parameters are inferred, that is
theweightingw is inferred,y is the memory noise on one von Mises &lag noise on the
othe® that is, lmemiS Not calculated as above (See Appendix A5). Alternate version 1)

proved to be very unstable at lag 10+ in the hierarchical fitting (see secfiofor

3 As a toy example, if = 2aBd(350, Onen=18.61f y = 2a0d(E30, (iner=16.66. fy = 2aBd(*20,
Cor=14.1
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hierarchical fitting of the RG, 3CRG and BM models), and we ultimately abandoned this
model. Alternate version 2) provided identical patterns in parameter values as the version
implemented in Eq. 2 above, identical values of AIC and BIC, and am et¢er DIC

score. However, the consequence of not tying the noise paramet&eyimeans the
model is agnostic about which component is the primary and which is the secondary, and
for lag 10+ the hierarchical fitting would sometimes switch whethéied the smaller

value orUhad the smaller value. Alternate version 2) was also unstable in the hierarchical
fitting, but adds some interesting insights (See Appendix A5 for discussion). It should
also be noted that the 3CRG model (in any of these versgusjy stable when fitted at
individual lags, indicating the robustness of the model.

Table 3.1 gives the inferred parameters of the 3CRG model. Fi§Be bottom
middle panel shows the simulated draws from the posterior of the 3CRG model. Similar
to themodel fits of the standard RG model, there is an increase in memory njse (

i.e., decrease in fideli®y between lag 1 and lags3® and memory noise stabilizes across
remaining lags. The second memory noise param#jefollows a similar trajectory.
There is also an increase in the guessing @térdm lag 1 and forward. Overall, the
3CRG model posits a similar noise in memory for hgarameter, and a fairly similar
guessing rate, relative to the standard RG mobhelthis respect, our findings er
remarkably consistent with Zhang and Luck (2008), Brady et al. (2013), and Donkin et al.
(2014).The failure of the standard RG model to capture the shoulder of the central error
distribution is accounted for by the additional noise parameter of the 3@ii@l, while
simultaneously providing a better fit to the peak of the distributions (for model

comparison see Tab8?2).
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Bayesian Mixture Model (BM)

Motivated by the experimental results, which show a regression to the mean (see
Figure 3.3, top right pael) for a number of color categories, we sought to develop a
model that could take into account this behawde propose a Bayesian mixture model
where recall is a combination of three inputs: noisy representations stored in memory,
prior expectations @tegory knowledge), and random guessing. This approach combines
the likelihood from the Bayesian Cognitive model (BCM) developed by Hemmer and
Steyvers (2009b) and Hemmer, Tauber, and Steyvers (2015) with the standard RG model
of Zhang and Luck (2008)mportantly, in order to visualize the full range of samples
from the posterior to demonstrate the regression to the mean effect, we now fit the model
to the observed responses, rather than the error distribfitions.

We extend the RG model by assuming thapomses are based on a combination of
samples drawn from memory, with probabily and prior expectations, and otherwise,
with probability g, responses are assumed to be guesses. In the BM model, standard
Bayesian techniques (Gelman et al.,, 2003) camudssl to compute the mean of the

posterior distribution:
YQwxdad 0 26 0z°h, Eq (3)
where recall is a weighted linear combination, of sampldsawn from memory with
noisey and some prior expectation with megnand st andard devi at.
stimulus featur g a&ad)[ ¢dly?).HThefuifod eathicategoryd

was specified based on the assessment of expectations for color categories in Persaud and

Hemmer (2014; See PersaudH&mmer, 2014 for predictions from the Bayesian model

* We also refitted the standard remembaess model to the full response distributi®ae AppendiTable
A3. There is no ifference in the parameters of this model between the two fittings.



52

over the true color space)The weights are a combination of the noise in memory and
the fidelity of the prior, such that= (1/3)/ [(1/3) + (14?)]. The probability density of
recall is given by
p QzOTTEOHOUL & U A Eq (4)
251 HEEQ T

Table3.1 gives the inferred model parameters for the BM model. Different from the
model fits of both the standard RG model and the 3SCRG mtidek is no change in
memory noisey) between lag 1 and lags3 rather memory noise is stable across all
lags. The noise on the priot)(grows slightly from lag B to lag 49 and then jumps
dramatically for lag 10+. The weightingis steady and ev@nsplit between the memory
trace and the prior until lag 10+ where, in response to the large incrdagedecreases.
As in the RG and 3CRG models the guessing gten¢reases gradually from lag 1 and
forward.

Figure 3.3, bottom right panel showbe simulated draws from the posterior of the
BM model. Both the RG model and 3CRG model simulations (Fig@ebottom left
and middle panels) show a mass of responses near the centeiaadine and a uniform
spread of remaining responses to eithée.sThat is, responses are equally likely to be
over and undeestimated regardless of the study hue value relative to the mean of the
color categories. See section 4.3 for regression fit to the RG and 3CRG models. Unlike
the RG model and 3CRG model, tB& model can capture the regression to the mean

effect, where simulated responses for hue values greater than the category means are

® Category meang..65, 30.35, 60.08, 119.69, 230.30, 284.12, 323.40
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more likely to be underestimated, while values less than the mean are more likely to be

overestimated, creating an asymmietimilar to the raw data.

Model Comparison
Comparison by lag

Model comparison betwedhe RG and the 3CRG models was conducted using the
MemToolBoxSuchow, et al, 2013; memtoolbox.ar@he AIC and BIC values for the
two models are reported in TalB2 (bold font indicates better fits with a difference
score greater than 5, while italicized font indicates marginally better fits with a difference
score less than 5). Due to the fact that each participant only performed 48 trials with
varying lags leading ta sparsity of data for some lags, individual differences were not
assessed. The data was pooled across subjects, and subjects were treated as fixed in both
AIC and BIC. An improved fit was observed for the 3CRG model for the aggregate error
distribution aml all lag groupings, except 10+. It seems reasonable that the model

comparison favors the standard RG model at lag 10+ given the increase in the guessing

Table 3.2 AIC and BIC Model Comparisons by Lag Group

AIC BIC
RG 3CRG BM RG 3CRG BM
Lag 1 1663.16  1657.47 1915.22 1673.42 1672.87 1930.62

Lag 2-3 9264.21 9249.76 9647.52 9277.43 9269.59 9667.35
Lag 49  17090.03 17074.14 17477.20 17104.41 17095.72 17498.77
Lag 10+ 318268 3182.96 3232.12 3193.45 3199.43 3248.58
All 31374.58 31332.22 3227559 31390.22 31355.67 32298.79

*Bold font indicates better fits with a difference score greater than 5, while italic
font indicatesnarginally better fits with a difference score less than 5.
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component of the error distribution. The uniform distribution has lifted and could
potentially accountor the portion of the error distribution that would be accounted for by
the second fidelity component parameter. While the improvement is marginal for lag 1
(less than a 5 point difference in AIC between RG and 3CRG), the improvement is
substantial fordgs 23 and 49. Memory at lag 1 appears to have a high level of precision
and a majority of the performance can be attributed to remembering with little influence
of guessing. In contrast, memory is both precise and less precise at other lags and there is
a greater rate of guessing. This is consistent with the 3CRG assumption that there is both
a memory component with high fidelity and a component with greater Atise3CRG
model makes it clear that there is additional information in the error distnibtiiat
cannot be solely explained by remembering with noise and guessing (i.e. the RG model).
The AIC and BIC values for the BM model are also reported in Talde No
improvement in fit was observed for the BM model relative to either the RG or the 3CRG
models. There are several reasons why the BM model might lose out in the model
comparison. For example, we assume only one value foiotaall categories, and we
specify the color categories based on universal color categories. Furthermore, the weak
regession effects in the data allow the 3CRG model to successfully fit all the data
without accounting for the regression effects. We discuss all of these reasons along with
possible remedies in the discussion section. It is important to note that makngraies
for an influence of category information in the BM model produced the characteristic
regression to the mean effect which cannot be captured by the two other models, and we
still see this as a substantial strength of the BM model. Restricting @n&dysrror

model® while producing an improved @tleads to very different conclusions about



55

memory. The regression effect makes it clear that category knowledge plays an important

role in recall, and that this must be considered in models of LT memory.

Hierarchical model comparison

Thus far, we have evaluated the models based on fits at the individual lags. It is
reasonable, however, to assume that the same model applies to all lags. Therefore, in
addition to fitting the separate models for each lag,alge fitted a single hierarchical
model to all lag groupings together, for each of the three mobeils.model treats each
of the lag groupings parameters as samples from a noroiathbuted population and
then infers both best fitting parameters facke lag grouping, as well as the population
mean parameter.

Because AIC and BIC are not appropriate for assessing hierarchical models, here we
report DIC scores (Deviance Information Criterion; Spiegelhalter et al., 2002, van der
Linde, 2005). The DIC is generalization of the AIC for hierarchical models, which
penalizes both for quality of fit and number of parameters. As before, the fitting was
conducted using thelemToolBox.

The parameters for each of the three hierarchical implementations wereadlgsenti
identical to the parameters reported in Tahleacross all lag groupings. However, due
to the sparsity in the data at lag 10+ some of the models are very sensitive to the choice
of prior distribution. This particularly affects the BM model in theerarchical
implementationThe DIC for the models were as follows: RG = 31280, 3CRG = 31230,

and BM = 32173 This replicates the pattern of model comparison when lags are
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estimated separately. There is an improved fit observed for the 3CRG aveddioth
the RG and BM models.
Regression Comparison

To further understand how the models capture the observed data, a regression analysis
was performed on the simulations from each of the three models, similar to the regression
analysis performed on the subject data (see se2tihB. We simulated drawsdm the
RG model assuming 61 subjects and 48 study hue values as in the experiment (Figure
3.3, bottom left panel). Because the regression effect is assumed to operate on memory
(not guessing), only responses assumed to be drawn from memory (within &rétand
deviations {i= 15.82] of the study value) were considered for the analysis. A linear
regression model was fitted to each simulated subject for each of seven universal color
categories: red, orange, yellow, green, blue, purple and pink (similar teghession
analysis for the raw data)Recall that, tests of theobserved subjedata revealed that
the slopes of 4 of the 7 categories were significantly different from kesbark contrast
to the subject data, one sampledts of the RG model gles failed to find a significant
difference from zero in any categoihe mean slopes for all categories weeet:-0.04;
orange=-0.16; yellow:-0.31; green: 0.09; blue: 0.11; purple: 0.07; phik05.
We simulated draws from the 3CRG model followihg same procedure as for the RG
model. Responses within 3 standard deviatiods J8.51] of the study value were
analyzed. Onsample ttests of the 3CRG model slopes failed to find a significant
difference from zero in all categories, except purffg0]) =-1.90,p= 0.03. Note that the
observed subject slopes are not significantly different from zero for the purple category,

and thus, the 3CRG model does not mirror the subject data for this catdgaryslopes
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were red: 0.79; orange0.62; yellow:-0.29; green:0.07; blue:-0.04; purple-0.98; pink:
-0.29.

Lastly, we simulated draws from the BM model following the same procedure as for
the other models. Responses within 3 standard deviatibrs[88] of the study value
were analyzedOne sample-teds for the simulated BM model data revealed a similar
pattern to the subject data, in that 4 of the category slopes were different from zero
(yellow: t(60)=-4.26,p=.00; greent(60)=-3.62,p=.00; blue:t(60)=-4.18, p=.00; pink:
t(60)=-3.68, p=.00). The mean slopes for all categories wext -0.48; orange:1.07,;
yellow: -0.17; green0.36; blue=-0.37; purple:0.30; pink:-0.65.

For completeness, we then compared the slopes fronsubgect data for each
category to the slopes of the sintelh data. We sought to evaluate whether observed
regression patterns in the subject data were observed in the model simtlatens
the categories in the subject data where the slopes were significantly different from zero,
the model simulations asresulted in noizero slopes of the same degree. For the RG
model, there were significant and marginal differences in slopes, when compared to the
subjective slopes, for four categories (rgd20)=-1.74,p= 0.08;yellow: t(120)=2.12,
p= 0.04;green:t(120)=-2.87,p= 0.00; blue1(120)=2.38,p= 0.02). This was due to the
RG model either failing to predict a regression (red and green), or predicting an effect in
the opposite direction of the observed data (yellow and blue). In the three remaining
categries, the failure to find significant differences between the model and the subject
data was due to the RG model predicting no regression when there was no regression

effect in the observed data (orange and purple), or when the regression effect ta the da
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was weak (pink). In total, the RG model only correctly predicted two catedoyaikow
and purple.

Similar to the RG modelfor the 3CRG model there were significant and marginal
differences in slopes, when compared to the subjective slopes, forafimgodes (red:
t(120)=-2.24, p= 0.03; yellow: t(120)=1.72, p= 0.09; green:t(120)=-2.53, p= 0.0%
purple:t(120)=2.11,p= 0.04. This was due to the 3CRG model either failing to predict a
regression (green), predicting the effect in the opposite dire¢ted and yellow), or
predicting a strong regression when there was no observed regression in the data (purple).
In the remaining three categories, the failure to find significant differences was due to the
3CRG model predicting a weak, but reignificant regression effect, when there was a
weak, but significant effect in the data (blue and pink), or predicting a weak, but
marginally significant regression, when there was no regression effect in the data
(orange). In total, the 3SCRG model only corregihgdicted the regression pattern in the
blue and pink categories.

In contrast, for the BM model, there was no significant difference in five of the seven
categories. This means that the BM model either predicted a regression to the category
mean (red, gren, and blue) or no regression (yellow and purple) for the same categories
as was observed in the data. In one catequnki(t(120)=2.47,p= 0.02), the observed
difference is due to the BM model overedicting the steepness of the regression, rather
than failing to predict the regression effect. Only in one catefmange:t(120)=3.59,
p= 0.00), does the BM model fail to predict the pattern in the subjectivé tigta
predicting a negative slope when the slope in the subject data, although negativet wa

significantly different from zero.
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In summation, the collective results of the regression analyses suggests that the slopes
generated from the BM model more closely resemble the regression behavior in the
subject data, compared to both the RG and@@#dels.

Discussion

SummaryVe investigated the time course of errors in recall in an effort to understand the
components that contribute to LT episodic memory. We employed a novel experimental
paradigm and conducted a lag analysis to characterize the influence of category
knowledgeand memory over time. We then implemented three distinct cognitive models
to evaluate the potential contributing components to memory. Furthermore, we found that
there are two important factors in LTM that cannot be accounted for by the standard RG
model. In the aggregate, recall reflects a combination of three components: a peaked
memory component, a less precise memory component, and a guessing component,
capturing the peak and O0shoulders6 in the
recall refects regression to the mean effects for several color categories, indicating a
contribution of prior category knowledge to memory.

The 3CRG model can account for the additional component in memory, and provided
a large improvement in the fit over the R@del. The benefit of the 3CRG model is that
it has an additional component that can account for a number of mechanisms that might
influence LT memory, such as verbal labeling (Donkin et al., 2014), and variable
precision in memory (van den Berg et al. 120 Despite the strengths of the 3CRG
model, there is no clear theoretical interpretation of what is encompassed in this
component. Moreover, like the RG model, it also cannot capture the regression patterns

in the data. The BM model, in contrast, can cact for both a second memory
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component and the regression patterns, and the BM model also has a theoretical
framework for the additional component. It, however, loses dramatically in the model
comparisons. The BM model we implemented here is a first gtagaderstanding the
influence of category knowledge, and there are a number of factors that might account for
the 3CRG model being favored over the BM model, such as weak regression effects in
the data, fragile associations, incorrect category assump@hsther general modeling
assumptions. There are also several possible remedies that might improve the BM model
and are discussed in the next section. Furthermore, our results have important
implications for understanding mechanisms such as decay, sdedénand interference.
Weak regression effects

A key assumption of the BM is the regression to the mean effect. This effect has been
demonstrated to be robust in memory (Hemmer & Persaud, BEMmer & Steyvers,
2009a; Hemmer, Tauber, Steyvers, 201%ttehlocher, Hedges, and Duncan, 1991,
Huttenlocher, Hedges, & Vevea 2000; Persaud & Hemmer, 2014; Hemmer, Persaud,
Kidd, & Piantadosi, 2015 In our data howeveusing seven universal color categories as
a benchmark resulted in poor alignment to the.det@ regression analysis revealed that
there was no significant regression in three categories, suggestingh¢hatse of
universal color categories in the regression assumptions is likely not representative of our
data.Furthermore, the fact that the RG model outperforms the BM model, in both AIC
and BIC, suggests that the regression effects are weak enough that the inability of the
3CRG model to fit the regression effects is outweighed by its improved fit to the rest of
the data. While Persaud and Haer (2014) found strong regression effects to all seven

universal color categories, they conditioned their regression analysis on responses where
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participants also provided the correct verbal label for the study value at test. In other
words, they only arlgzed data where the participants were able to recall the association
between the test cue (shape) and the study color. Here we include all data, which likely
includes trials where participants misassociated shape cues to studied colors, guessed, or
made sme other error. A key test for the flexibility of 3CRG model without accounting

for regression effects would be if the model still outperformed the BM model for the
finding of differential bias to two separate categories for stimuli studied at the same si
(i.e., a large strawberry and a small agi@ee Hemmer & Steyvers, 2009a).

We acknowledge that our findings are likely data dependent. There are several
possible considerations that might improve the fit of the BM model, or help to lend
further suppdrfor the strength and flexibility of the 3CRG model. Since the stimuli were
drawn from the true hue space, categories had varying sizes. An example of this can be
seen in Figurd.3, top left panel, where the raw data shows high accuracy (large squares)
around the yellow category, because this is a very small category. A possible future
extension to the BM model would be one that considers variable precision in the Tau
parameter (here we have assumed that there is only one value of tau for all categories).
This would be akin to the van den Berg et al. (20d&)ableprecision model which
assumes variability in the precision with which items are encoded, but with variable
precision in the categories. This could remedy the weak regression effects in small
caegories which obscures the importance of capturing the regression effects in other

categories.
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Alternative color categories

The samples drawn from the posterior of the BM model (Fi@Bebottom right)
reveals a misalignment between the color categarsz=d to inform the model, and the
actual categories borne out in the data. For example, in the data there appears to be two
blue categoriddight blue and dark blue. However, the BM model only exhibits
regression to one blue categorygonsistent with umersal categories. To better
understand whatolor categories participants might have regressed toward in the
response dataye conducted a cluster analyqisee Appendix A6). Interpreting the
clusters relative to the standard universal color categotiggests that observers may be
using eight categoriésfive of which can be interpreted relative to the universal color
categories: a category composed of red, orange, and yellow universal color values
(visualized in red; Figure Al); another category predatdly composed of green
values; two separate categories for the hue space encompassing blue values (visualized in
light blue and dark blue); one category for purple; and one for pink (although pink may
contain red values, given the circular nature ofithe space). Interestingly, there were
two uniform clusters that span the entire hue range and fell on the top and bottom edges
of the graph. These clusters may potentially correspond to the guessing component, or
could relate to the large value f0at lag 10+ in the BM model. Participants also appear
to use color categories at various levels in the color hierarchy. For example, participants
appear to use the subordinate categories of light blue and dark blue. On the other hand,
for colors in the universakd and orange ranges, they use a superordinate color category

for warm colors (i.e. a blended category for red, orange, and yellow).
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Another interesting feature of the cluster analysis is the natural prediction of
regression to the mean behavior in tfe@a. The inherent regression effect learned from
the cluster analysis and the use of color categories with different boundaries, provide
important constraints for future considerations of Bayesian modeling of color space.
While we think that the BM modegbrovides an important theoretical framework in
considering regression effects and category influences, continued failures of the BM
model even under improved category assumptions would lend further strength to the
3CRG model.

Fragile associations

Another factor that might impact the performance of the médpésticularly in the
individual lag fit® is that of fragile associations. Modeling paradigms in visual short
term memory have successfully extended the RG model to incorporatéatsesk
compon@at s, such as fAmisassociationo or Ami st
Husain, 2009; Bays, Wu, & Husain, 2011). There are some hints that there might be
fragile associations in our data as well.

At lag 10+, precision in the additional component inhbibie 3CRG and BM models
is low and the rate of guessing is high, favoring the RG model. In fact, lag 10+ is the only
lag grouping where the 3CRG model loses. This however, might be a consequence of the
experimental design. Following standard proceduregalor memory paradigms in
visual working memory, we deliberately use an experimental design where we assign
colors to random objects (e.g., Brady et al., 2013). An important consequence of this
design, in conjunction with long lags, in the study of LTistthat the object colgrairing

might be what is forgotten. In other words, performance at lag 10+ gives the appearance
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of a high rate of guessing, not because of a failure to remember the studied hues, but due
to a failure of the shape cue to retrieve torrect hue pairing. A natural task with a
stronger cugarget association might result in a substantially different pattern ofi data
one where the rate of guessing is lower. Recent work by Lew, Pashler, and Vul (2015)
proposes an interesting new modélfragile associations in LTMWhile this is beyond
the scope of this paper, given that we cannot assess fragile associations in the current
experimental paradigm, we agree that this is an important future dire€uagile
associations might hamper tigM model more than the other models because the
behavior looks like guessing, but it has a strong memory trace, albeit bound to the wrong
cue. Therefore, the model has a difficult time assigning the behavior, and the role of prior
knowledge appears mordfdse.
Interference vs. Decay

Models of memory have varied in their mechanisms of forgetting. Some models
theorize that forgetting occurs as a function of decay of memory traces over time (e.g.,
Barrouillet, Bernardin, & Camos, 2004; Portrat, Barrouill@t,Camos, 2008 while
others attribute forgetting to interference (e.g., Lewandosky, Oberauer, Brown, 2009;
Neath & Brown, 2012). Our findings appear to provide support for both forgetting
mechanisms. First, our results reveal a decrease in memory fidettgased noise in
the model s6 0 par anddntleRE mddel,dm in bllattgee thodeélso | a g
memory fidelity then remains stable across remaining lag groups. This suggests that the

memory trace initially suffers some decay during virtualyrtterm/working memory,
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which supports the decay account (Baddeley & Scott, )9Blt is stable into LT
memory. This progression in parameters also suggest ththough we are modeling
the lag groupings under the assumption that one model shouttirdctor all
grouping® there is something different about the data at l&g damely very high
precision, no second component and virtually no guessing, consistent with short
term/working memory.

While memory noise stays steady across lags, guesgingc(eases across lags for
all models.In this respect, our findings are remarkably consistent with Zhang and Luck,
2008, Brady et al., 2013, and Donkin et al., 200l4is has led to the interpretation that
there is an upper bound on memory noise in LTM, tard a t memory suffer s
deathdé (Brady et al ., 2013) . Brady et al .,
evaluating the transition from working to LT memory. Our design allows us to
understand what happens across lags (time) in LTM. ForMhenBdel, the noise in the
prior (0, exhibits a very different pattern from the RG motlks: steady on lags-3, then
increases slightly for lags-9, but increases dramatically for lags 10+ (a similar pattern
can be seen in the alternative implementatbthe 3CRG model (Appendix A5) with all
parameters inferred). As a result, the weightimy) ¢f samples from memory and the
prior changes across lags. This can be understood as sampling from different granularities
of prior knowledge, consistent with drarchical influences in LTM (e.g., Hemmer &
Steyvers, 2009), and the hierarchical nature of colors (Persaud & Hemmer, 2014). On
earlier lags One might use a specific prior (e.g., light red or dark red), but on intermediate

|l ags One mi ghedda, eamd pati olratodr oOlrags, where

® Although more recent work suggests that forgetting in steont memory can also be explained
by an interference account of forgetting (kegvandosky, Oberauer, Brown, 2009 for other interference
based views accounting for data traditionally thought fpett the trace decay account).
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large, One might simply use a prior of warm versus&awl some similar strategyhis
progression in parameters in the BM model is contrary to the idea of sudden death. Taken
together, our datasuggests that not only is fidelity fixed in LTM, but also, category
information plays an important roleefore One resorts to random guessisgreover,

there is no decay in LTM and no sudden death.

This leaves interference (Neath & Brown, 2012) as thkelyi mechanism for
increased guessing; especially since the trials in our task are interleaved, and the target
cue bindings (coleshape pairing) are arbitrary in nature. Thus, by lag 10+ it is possible
that the memory trace (color) is present, but th@a@ason to the cue is difficult to
retrieve as a result of studying other targe¢ combinations. Such an interference
explanation is consistent with a fragile association account of memory (Lew, Pashler, &
Vul, 2015), where recall is thought to be a domation of remembered information,
misassociated information (incorrectly binding targets to cues), and guessing.

Recent work assessing ewdratsed memory in rhesus monkeys lends further credence
to interference being the mechanism of forgetting (DevkaWéght, 2016). Memory
accuracy was found to decrease as a function of proactive interference, such that,
previously presented stimuli (as far back as 16 trials) interfered with same/different
recognition responses. Also, the influence of proactive imeée did not change as a
function of presentation time between study and test, andtridgktime. In other words,
longer delays between study and test and between trials, where previously studied
information would have decayed, did not hamper intenfsge(again, even when the
information was studied 16 trials prior).

Serial dependencies are potentially another source of interference that appears as
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guessing. Serial dependences refer to the bias in memory that results from information
experienced on prious and present trials. It has been demonstrated in visual perception
that memory for one item is influenced by accompanying (even-it@tk&vant)
information and a running average over previous trials (Huang & Sekuler, 2010).
Similarly, the perceptuaystem is serial dependent in that perception is informed by both
prior and present information (Fischer and Whitney, 2014).

While serial dependencies may be present at later lags before participants resort to
guessing randomly, they are not the sourfceterference at earlier lags where category
information is still available. Hemmer and Steyvers (2009a) showed that in LT memory,
the regression to the mean effect is not a result of sequential dependencies. They
demonstrated a differential bias when titems from different object priors (e.g., an
apple and a strawberry) were studied at the same size. This is also the case in the data
presented here (see Fig88, top row middle panel) where there is a differential bias,
for example on the boundary teten yellow and green, where neighboring hue value
results in regression to opposite categories. Sequential dependencies would result in an
equal bias towards either category on the boundary dependent on the previous trial (i.e., if
previous trial was greebias would be to green but if previous trial was yellow bias
would towards yellow). A critically explicit prediction of the BM model is exactly the
differential regression at category boundaries as observed in our data.

Given the design of the paradigmed in this investigation, we draw our conclusions
with some caution. It is difficult to disentangle the roles of memory decay and
interference as mechanisms of errors and forgetting because we do not control for

rehearsal (Lewandosky, Oberauer, BrownQ@@Portrat, Barrouillet, & Camos, 20Q08)
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and trials are interleavédwhich could result in intrdequence interference (Neath &
Brown, 20129 both factors that are required to discern between decay and interference.
The decay versus interference differettia is further complicated by the idea of
equivalence, which suggests that both decay anedacay models provide strong fits to
the same data (Neath & Brown, 2012).

Lastly, a contributing factor to memory fidelity, that is not explored in this work but
is noteworthy, is the role of intentional forgettingghen participants are instructed to
forget certain information in the study stimuli, this leads to a decrease in the probability
that the memory trace is retrievable and a decrease in the overalyfafelne memory
trace (Fawcett, Lawrence, & Taylor, 2016). In this way, memory intentions influence the
guantity of information encoded into LTM and the quality of the information. Fawcett,
Lawrence, & Taylor (2016) modeled this finding using a hieraathiariableprecision
mixture model similar to the standard RG model, with the allowance of variability in
encoding similar to van den Berg et al (2012).
Conclusions

The implications of the findings from these three models highlight significant
charactestics of LT memory. First, consistent with Donkin et al. (2014), there is a clear
intermediate stage in LT memory between precise recall and random guessing. While the
difference between our 3CRG model and the Donkin et al. (2014) model is a question of
technical assumptions, the difference of these two models to the BM model, however, is
one of core assumptions, namely that there is an influence of prior knowledge and a
regression to known categoriéd'e further argue that at this intervening step, thee

more generalized influence of expectations beyond verbal labeling. Notesigcting
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analysis to error models that mask intervening steps leads to very different conclusions
about memory.Deriving conclusions about memory based solely on errtnilgisions is
misleading in that it can obscure critical features of memory, such as the influence of
prior category knowledge. Therefore, it is important that future research seeks to move
beyond the standard rememigeress paradigm for LT memory, and Wwdo elucidate

the role of fragile associations and interference. We believe that we have clearly
demonstrated that the 3CRG model is robust and consistently outperforms the other
models, and that the BM model explains important patterns in the data.

Appendix

A.1 Label vs Nd.abel Parameters

Table Al.Parameter estimates and (confidence intervals) for label vialed
conditions

Label First Label Last No Label

Fidelity ¢ (°) Guess g Fidelity ¢ (°) Guess g Fidelity o (°) Guess g

Lagl 1219 (11.0-1397)  0.04 (001-008) 9.7 (7.93-1436)  0.08 (0.02-0.20) - -
Lag23 1317 (1099-1789) 033 (0.23-042) 89 (68-1832) 04 (021-0.55) 1746 (15.23-20.49) 0.45 (0.39-0.51)
Lag49 1524 (1256-1949) 046 (038-0.53) 109 (888-1417) 0.4 (0310.54) 1996 (18102279) 045 (0.4520.533)

Lagl0+ 1533 (1256-1949) 046 (038-053) 29.84 (1469-93.48) 0.61 (0.02-0.83) - -
Al 13.65 (1240-15.36)  0.40 (036-0.44) 1041 (8:64-1297) 043 (0.35-050) 18.61 (1694-20.79) 0.48 (0.4470.515)

Table Al gives the parameter values for the three experimental conditions: Label
First (recall color label before generating the color), Label Last (generate a color before
recalling color label), and No Label (never provided a color label). For some lag groups,
the model had a difficult time converging given the sparsity of the data. Also, there was

no lag of 1 in the No label condition.



70

A.2 Parameters at All Lags

To develop reasonable lag groups we first infer parameter values for all lags using the
RG model. Thle 3B provides RG model parameter values for each individual lag.
A.3 RG model 360

For comparison tohe Bayesian Model on the full range of hue values, we

implemented the RG model on the same response data sga@@ degree). There is no

Table A2 Parameters for each lag

Fidelity Guess
G () g
Lag1 11.85 .06
Lag 2 18.13 37
Lag 3 14.07 A7
Lag 4 18.13 0.44
Lag 5 18.10 0.47
Lag 6 16.09 0.52
Lag 7 17.14 0.56
Lag 8 18.04 0.49
Lag 9 19.38 0.54
Lag 10 14.78 0.63
Lag 11 10.37 0.48
All 15.84 0.46

Table A3.RG Model Parameter Values-850)

Fidelity (Conf. Int.) Guess RatgConf. Int.)
G () g
Lag 1 11.81(10.5913.26) 0.06(0.03.010)
Lag 2-3 16.08(14.4018.15) 0.42(0.37-0.46)
Lag 4-9 17.68(16.0519.40) 0.49(0.46:0.53)
Lag 10+ 15.13(12.0320.65) 0.61(0.530.69)
All 15.83(14.8216.95) 0.46(0.440.48)

difference in the parameters between the two fittings of the RG model. See Table A3 for

the inferred parameters.



Table A4.Hierarchical 3CRG Modelith independent noise parameters

3 Component RemembeGuess ModeWwith independent noise parameters

Fidelity(Con Int.)  Fidelity(Con Int.)  GuesgCon Mixin AlIC BIC
() - Int.) g
g w*
Lag 10.62(9.413-12.74) 28.55 (7.05 .03 (.007 0.56  1657.81 1673.20
1 80.52) .082)
Lag 13.77 (2.30 29.46 R3.06 41 (.35.45) 0.45 925246 9272.29
2-3  16.15) 44.79)
Lag 15.30 (3.65 31.26 (23.6: 48 (45.52) 0.44  17077.1 17098.7
49  16.83) 35.52) 4 2
Lag 14.02 (2.28 31.06 (1.93 .58 (53.69) 0.45  3183.15 3199.61
10+ 581.89) 989.33)
All 13.86 (13.0k 29.60 (25.04 44 (.41-47) 048  31339.0 31362.4
15.07) 39.40) 2 8

A.4 3CRG model withoutdependent noise parameters
An alternate version of the 3CRG model where the weighting % [3+ y?, but
Umem @S the noise on one von Mises is replaced wittvas implemented. Instead of the
noise component in one von Mises distribution being dependent on the other, here the
noise parameters were treated as independent.
The probability density function of the 3CRG model with all inferred parameters
is given by
6 2011 EOHKD 62071 E OO

p Qz p Eq(Al)

51 EEQ T
whereg,[ andt are all inferred values from the data. Table A4 shows the parameter
values for each lag group under this model and reports the AIC and BIC scores relative to
the RG model. The parameter values for this model in the hierarchical fitting detailed in
the moealing section (see section 4.2) were identical to the individual lag fitting and are
not reported. Note that the parameter values at lag 10+ had a tendency to reverse in
different runs of the hierarchical model, such that sometiynésl 4 @Gar3d0 , but
order

othertimesy 830 UAdAdd . Il rrespective of the

at

o f
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of the 3CRG model consistently had the lowest ACE/7.53 in the hierarchical

TableA5. 3CRG Modelvith dl parameters inferred, andith AIC and BIC Scores
3 Component RemembeiGuess Model with all parameters inferred

Fidelity (Con Fidelity (Con Guess Mixi AIC BIC
Int.) Int) (Con Int.) ng

i (°) U g w
6.97 (5.02 19.95 (13.43 0.03 (.008 0.56 1657.8 1678.3
11.84) 47.71) .082) 7 9
8.45 (6.66 28.40 (23.23 0.36 (0.300 0.45 9229.6 9256.0
11.27) 46.63) 0.41) 0 3
9.57 (7.66 31.05 (24.76 0.43 (0.38 0.44 17051. 17080.
12.45) 44.41) 0.48) 95 72
13.07 (10.37 94.68 (25.88 0.28 (0.03 0.45 33125 33344
19.02) 439.98) 0.65) 4 9
9.04 (7.71- 29.64 (24.96 0.40 (0.36¢ 0.48 1657.8 31314.
10.63) 39.28) 0.43) 7 45

implementation of this model, which favors this model relative to both the RG and BM

models.

A.5 3CRG model with all parameters inferred
The 3CRG model with all the model parameters inferred was implemented. Instead of the
noise component in one von Mises distribution being dependent on the other, here the
noise parameters were treated as independemnt @ndn additional free parameter.
The probability density function of the 3CRG model with all inferred parameters is given
by,
p Qz p 0 zOTTEOAD 0:z0711EO#HO Eq (A2)
51 EEQ T
whereg, w, [ and t are all inferred values from the data. Table A5 shows the
parameter values for each lag group under this model and reports the AIC and BIC scores
relative to the RG model. Table A6 shows the parameter values for this model in the
hierarchical fitting detded in the modeling section (see section 4.2). Note that the

parameter values at lag 10+ changes between the two implementations of this model. The
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+ Table A6Hierarchical 3SCRG Modelvith dl parameters inferred

DIC score of the hierarchical version of this model was 31194.54, which still favors this

model relative tdoth the RG and BM models.

A.6 Cluster analysisThe cluster analysis was implemented to infer the categories
participants regressed to in the experiment. Briefly, the clustering algorithm (Fraley &
Raftery, 2006) performs a hierarchical agglomeration to maximize the classification
likelihood for up to 9 goups in each model. Next, the Expectatiaximization (EM)
algorithm calculates the maximum likelihood estimation for all models and number of
cluster combinations. Lastly, the algorithm computes the BIC scores for each cluster
mixture model with optimaparameter values and returns the best fitting cluster size

model. The best BIC score (BIC-66210.13) revealed that 8 clusters produced the most

Figure A1.The &group unconstrained modeased classification of the data. 8 optime
clusters were learned from the ExpectatMaximization algorithm evaluated by BIC
scores. Each of the 8 colors corresptind different cluster that is color coded to refle
the color category to which most of the study values in the data belong.



