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Visual working (WM) and long-term memory (LTM) are intricately intertwined. 

As such, current theories and models of VWM have been extended to characterize 

behavior in long-term memory. For example, a popular framework for investigating 

VWM is the remember-guess paradigm, which suggests that information is either recalled 

with some noise, or is no longer retrievable and individuals resort to random guessing 

(e.g. Brady et al., 2013).  This framework has been extended to include an additional 

factor that contributes to memory, namely interference from non-target information 

(a.k.a. misassociations; Lew et al, 2015). In this way, individuals recall information with 

noise, missassociate memories to other task relevant information, or guess randomly. The 

compilation of these studies has identified the contribution of memory fidelity, 

misassociations, and random guesses to recall performance.  

Notably, the remember-guess framework stands in stark contrast to theoretical 

Bayesian models of memory, which suggests that prior knowledge and expectations for 

the statistical regularities of the environment influences recall from long-term memory 

(Hemmer & Steyvers, 2009b).  The influence of prior knowledge is most prevalent when 

the stimuli in the memory tasks mirror the regularities of the natural world.  
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In this dissertation, I seek to challenge current theories of memory regarding the 

contribution of fidelity, misassociations, and random guesses to LTM, by evaluating the 

simultaneous contribution of prior knowledge. The combination of results from these 

studies suggest that prior knowledge plays a crucial recall in reconstruction from long-

term episodic memory, and when prior knowledge is brought to the task of remembering, 

it alters the contribution of misassociations and random guessing to recall performance.  
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Chapter 1: Introduction  

A particularly important question for memory research regards the nature of episodic 

memory over time is: what happens to memory traces as they transition from visual short-

term/working memory into long-term memory and what factors contribute to long-term 

memory performance? These questions have significant implications for how long-term 

memory is theorized, and in turn operationalized in models of long-term memory. 

Various paradigms and accompanying models have been implemented to explain long-

term memory, with some being derived from studies of visual working memory, under 

the assumption that processes and mechanisms of short-term and working memory also 

exist in long-term memory (Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Donkin, 

Nosofsky, Gold, & Shiffrin, 2014; Huttenlocher, Hedges, & Vevea, 2000; Hemmer & 

Steyvers, 2009b; Persaud & Hemmer, 2016; Lew, Pashler, & Vul, 2015). 

These studies have identified four factors that contribute to the reconstruction of 

information from long-term episodic memory, namely: prior knowledge, memory 

fidelity, random guessing and interference (a.k.a. misassociations) which results when 

non-target information stored in memory interferes with the retrieval of target 

information. Prior knowledge and expectations for the statistical regularities of the 

environment have been shown, on average, to improve recall from long-term memory 

(Hemmer & Steyvers, 2009a; 2009b). Random guessing contributes to recall performance 

when information reaches a low state of fidelity and is no longer retrievable from 

memory (Brady et al., 2013). Alternatively, when information is difficult to retrieve, 
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individuals might use other task relevant information (i.e., missassociate), before 

resorting to random guessing (Lew et al., 2015).  

In this way, the role of each of these factors in long-term episodic memory has been 

studied relatively independent of one another (with the exception of random guessing) in 

terms of their impact on memory. For example, Lew and colleagues (2015) evaluate the 

role of misassociations and random guessing in long-term memory, but not the influence 

of prior knowledge. Similarly, Brady and colleagues (2013) evaluate the role of fidelity 

and random guessing in long-term memory, but not the influence of interference in the 

form of misassociations. However, for certain stimulus environment, particularly when 

the environment reflects features of the real world, the contribution of these factors may 

be intricately intertwined. 

Therefore, the work presented in this dissertation seeks to address the question of 

what happens to information over time, while simultaneously evaluating the combined 

contribution of these four factors to long-term memory performance.  In what follows is a 

brief overview of each topic that will be discussed and the corresponding chapters in 

which they can be found. In the chapters 2-4, I will present published research from three 

studies.  

Chapter 2 details a study that empirically and computationally assessed the role of 

prior knowledge in long-term episodic memory for color and appears in Proceedings of 

the Annual Meeting of the Cognitive Science Society. This work was presented at the 

Cognitive Science Society Conference and received the Glushko Student Travel Award. 

This work demonstrated that peopleôs categorical knowledge and expectations influence 

episodic memory, and that this reconstructive process can be simulated with a generative 
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Bayesian model. Chapter 3 discusses a provisional cross-cultural study that extended the 

findings from chapter 2, and demonstrated that the use of prior knowledge may be a 

general mechanism of episodic memory. This work also appeared in the Proceedings of 

the Annual Meeting of the Cognitive Science Society and partially in i-Perception. The 

combination of the studies in Chapters 2 and 3 illustrate that the role of prior knowledge 

should not be ignored in theories and models of long-term episodic memory.  

The research presented in Chapter 4 explored the role of memory fidelity, prior 

knowledge, and random guessing in long-term memory and compared the performance of 

current models of memory. This work appears in Cognitive Psychology and was 

presented at the Annual Meeting of the Mathematical Society. The results from this work 

suggested that there are factors that influence memory such as prior knowledge and other 

factors that result in low-state fidelity that have been ignored in previous memory 

models. In previous models, the influence of these factors has erroneously been attributed 

to random guessing. Also, certain analytical practices (e.g. evaluating aggregated error 

distributions) used in past models obscured important contributions of factors to memory, 

such as prior knowledge. This work made transformative discoveries to how memory 

works and exposed a major flaw in current practices for evaluating memory data.  

Lastly, Chapter 5 presents new work evaluating the contribution of prior knowledge, 

interference in the form of misassociations, and random guessing in long-term memory. 

The results from this work demonstrated that a large portion of errors in memory for 

meaningful stimuli, resulted from misassociations and prior knowledge, not random 

guessing. These results supported the hypothesis that there is little to no random guessing 

in LTM for semantically associated, ecologically valid stimuli. The combination of all 
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studies discussed in this dissertation provides a comprehensive understanding of long-

term memory and the factors that contribute to memory performance. 
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Chapter 2: Prior knowledge and Memory 

The Influence of Knowledge and Expectations for Color on Episodic 

Memory 
Kimele Persaud and Pernille Hemmer (2014). Proceedings of the 36th Annual 

Conference of the Cognitive Science Society 

 

K. Persaud and the advisor, P. Hemmer, developed the study concept and study design 

together. Stimulus creation, testing and data collection were performed by K. Persaud. K. 

Persaud performed the data analysis and interpretation, which were then reviewed by the 

advisor P. Hemmer. K. Persaud and P. Hemmer developed and implemented the model 

together. K. Persaud drafted the manuscript. After the manuscript was drafted, K. Persaud 

and the advisor, P. Hemmer, revised the manuscript. K. Persaud implemented all critical 

revisions in response to reviewer comments. 

 

Abstract 

Expectations learned from our environment are known to exert strong influences on 

episodic memory. Furthermore, people have prior expectations for universal color labels 

and their associated hue spaceða salient property of the environment. In three 

experiments, we assessed peoplesô color naming preferences, and expectation for color. 

Using a novel experimental paradigm, we then assessed free recall for color. We found 

that peopleôs color naming preferences were consistent with the universal color terms 

(Berlin & Kay, 1969), as well as a strong subjective agreement on the hue values 

associated with these color labels. We further found that free recall for color was biased 

towards the mean hue value for each preferred color. We modeled this relationship 

between prior expectation and episodic memory with a rational model under the simple 



6 

 

 

 

assumption that people combine expectations for color with noisy memory 

representations. This model provided a strong qualitative fit to the data. 
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Introduction  

Our knowledge and expectations learned from our environment shapes how we 

perceive, navigate, and interact with the world. They influence how we categorize objects 

and information (Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, Hedges, & 

Vevea 2000; Jern & Kemp, 2013; Galleguillos & Belongie, 2010), how we visually 

perceive objects (Eckstein, Abbey, Pham, & Shimozaki, 2004; Epstein, 2008; Goldstone, 

1995; Mitterer & de Ruiter, 2008; Todorovic, 2010), and how we make predictions 

(Griffiths & Tenenbaum, 2006). In memory, knowledge of the statistical regularities in 

the environment, such as the average height of people and the prototypical sizes of 

objects, exerts strong influences on how we recall such information (Bartlett, 1932; 

Hemmer & Steyvers, 2009a; Hemmer and Steyvers, 2009c; Hemmer, Tauber, and 

Steyvers, 2015; for a review see Hemmer & Persaud, 2014). Assuming that our 

expectations are environmentally derived, an important question for cognition is whether 

differences in environmental structure differentially influence expectations, and in turn 

episodic memory.  

Color is one such feature that changes in representation across environments, and 

might engender differences in expectations. Individual and group differences in color 

knowledge and expectations have been attributed to communicative value (Meo, 

McMahan, & Stone, 2014), environmental occurrence (Stickles & Regier, 2014), and 

internal preferences (Palmer & Schloss, 2010). It has also been suggested that color 

category knowledge develops as a function of cultural experience (e.g. Roberson, Davies, 

& Davidoff, 2000). For example, there are significant differences in perceptual judgments 

for color between different cultural groups. This has been demonstrated in various 
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cultures including Russian, where there are two terms for blue (Paramei, 2005; Winawer, 

Witthoft, Frank, Wu, Wade, & Boroditsky, 2007), Papua New Guinea, who use 5 color 

categories (Roberson, Davies, & Davidoff, 2000), and a semi-nomadic South African 

tribe, who categorizes color based on light and dark (Roberson, Davidoff, Davies, & 

Shapiro, 2004). What remains to be examined is whether differences in the natural 

environment differentially influence long-term episodic memory across cultural and 

social groups. 

The relationship between the structure of the environment and memory has been well 

described by Bayesian models of cognition (e.g., Shiffrin & Steyvers, 1997; Steyvers & 

Griffiths, 2008; Hemmer & Steyvers, 2009; Steyvers, Griffiths, & Dennis, 2006). This 

approach characterizes the computational problem people face when trying to recall real-

world events under varying degrees of uncertainty. The models depict how an observer in 

a task integrates noisy and incomplete information stored in episodic memory with prior 

expectations for the environment when trying to recall an event. When the specific 

feature of an event is first experienced, this leads to noisy memory traces, centered on the 

original feature value, with some variation. It is also assumed that the observer has a prior 

expectation for the feature value that mirrors that of the distribution in the environment. 

The goal of the observer is to recall the feature value using noisy samples retrieved from 

memory and their prior expectation for the distribution of the feature value. 

The assumption that memory is an integration of prior expectations with episodic 

traces stored in memory appears reasonable in the domain of color. For example, memory 

for color has been shown to be a blend of prior knowledge for object color typicality and 

episodic information (Belli, 1988). Belli found that reported color typicality of objects 



9 

 

 

 

(i.e. beverage pitchers were prototypically yellow) influences later color recognition. In 

his study, participantsô recognition responses were a blend (i.e. yellow-green) of the 

actual study item (i.e. green pitchers) and prior knowledge (i.e. yellow pitchers). Similar 

findings result from a misinformation effect when post event information is blended with 

actual event information to produce recall (Loftus, 1977). Loftus found that recall for the 

color of a car was a blend (i.e. bluish-green) of the true color (i.e. green), and misleading 

information about the color of the car (i.e. blue). 

To examine the influence of expectations learned from natural environments with 

different underlying representations of environmental features (e.g. color) on episodic 

memory, we conduct a cross-cultural investigation. Unlike previous research using 

simple memory measures to assess memory across cultures, such as percent correct (e.g. 

Roberson, et al., 2005), we characterize the optimality of the memory system and detail 

its relationship to the environment. We first quantify prior expectation for color in a 

standard U.S. undergraduate population. Prior expectations are assessed bi-directionally, 

both as a function of color naming preferences and the association of hue values to 

preferred color labels. Next, we employ a continuous recall task to assess the influence of 

prior expectation on recall for color. We implement a simple Bayesian modeling account 

to further characterize the relationship between expectations and episodic memory. 

Importantly, we contrast these findings with a cross-cultural study where we measure 

memory for color in an indigenous population whose natural environment is different 

than the standard U.S. population. We explore whether regularities in memory persists 

across natural environments or are dependent upon the different underlying 

representations for each environment.  
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Experiments 

In experiments 1 and 2, we first sought to quantify peoplesô bi-directional 

expectations for color, both as a function of color labeling preferences and the hue value 

associated with given color labels. The bi-directional assessment allowed us to examine 

linguistic categorization as well as category representativeness of color hue values. The 

resulting distributions over hue values were informative for the implementation of the 

Bayesian model (see section 3 Modeling). In experiment 3, we then assessed the 

influence of expectations on memory via a free recall color task. In all experiments, we 

collected data from as many individuals that volunteered to participant in the study.  

Experiment 1: Color-Naming Task 

Participants  

Forty-seven Introductory Psychology undergraduate students at Rutgers University 

participated in this study in exchange for course credit. Data from one subject was 

discarded because no responses were recorded. 

Materials and Procedure 

The stimuli consisted of 48 colors sampled from the HSL (hue, saturation, luminance) 

color space. Colors varied in hue by 5 units (i.e. hue values of 0, 5, 10, etc) along the full 

hue range from 0-239, based on the ability to perceptually differentiate two sequential 

colors in the range. Saturation and luminance were held constant at 100% and 50%, 

respectively. A color patch measuring three-by-three inches was presented in the center 

of the computer screen. Participants were asked to provide a color label for that specific 

patch by typing their answer in a response box below the color patch. The patch remained 

on the screen until participants were satisfied with their responses and clicked ócontinueô 
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to view the next patch. Each of the 48 color patches were presented twice in random 

order, for a total of 96 trials.  

Results 

Figure 1.1 shows label frequencies for the 48 hue values. The top panel shows the 7 

most frequent labels (red, orange, yellow, green, blue, purple and pink). The 7 labels 

comprised 28% of all responses and coincide with the universal color terms of Berlin & 

Kay (1969). The bottom panel shows label frequencies for the top 21 labels, comprising 

59% of total labels. The cutoff for including the 21 labels was based on a label being 

given a minimum of 40 times. The results show that participants expressed a large degree 

of agreement in the assignment of color labels to hue values. They also demonstrated a 

flexible color naming granularity for labels, with basic terms (e.g. red) and basic terms 

with modifiers (e.g. light green) being the most frequently used.  This suggests that 

participants have clear knowledge and expectations for color labels.  

Experiment 2: Color Generation Task 

Participants  

Forty-nine undergraduate students at Rutgers University participated for course credit 

or monetary compensation of $10. These participants were not involved in Experiment 1. 

Materials and Procedure  

The stimuli consisted of the 21 most frequent color labels given as responses in 

Experiment 1. The labels were presented one at a time, in 24 point Georgia font at the 

upper right side of the computer screen. The instructions were to generate the color hue 

that best corresponds to each of the labels using a color wheel. Color hue responses were 

generated by moving a cursor over a large black circle presented on the left side of the 
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computer screen. The black circle was a mask over a color wheel that varied in hue only. 

When the black circle was clicked, the corresponding color from that location of the 

underlying color wheel was shown in a three-by-three inch patch to the right of the wheel 

and below the color label. The underlying color wheel was rotated randomly by 45 

degrees for each trial so that it was not possible to predict a colorôs location on the wheel 

from trial to trial. Participants were free to click as many times as they wished to generate 

the color they thought best corresponded to the given color label. Once participants were 

satisfied with the color they generated, they pressed the ñspace barò to continue to the 

next trial. Participants generated colors for 21 labels twice each, for a total of 42 trials, 

presented in random order.  

Figure 1.1 Frequency distributions over color labels in Experiment 1. (a) Frequency 

distributions over 7 most frequent labels. (b) Frequency distributions over 21 most frequent 

labels. Each bar represents a 5 unit range on the hue scale from 0-239.   
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Results 

The color wheel allowed participants to generate colors that differed by 1 unit of hue, 

resulting in 239 possible hue values. Responses where binned into 48 bins (varying by 5 

units on the hue range from 0-239, such that all hue values that ranged between 2.5-7.5, 

were included in one bin, hue values between 7.5-12.5 fell in the next, and so on). 

Outliers more than 40 hue values from the highest or lowest value in a given colors hue 

range (see Table 1.1) may have reflected inattention to the task or accidental submission, 

and thus were removed, resulting in the removal of 11 responses (0.5% of the data). For 

subsequent model use, we fitted the frequency distributions with von Mises distributions 

(a.k.a. the circular analogue of the normal distribution). The means and standard 

deviations from the von Mises fits are shown in Table 1.1. Figure 1.2 shows frequency 

distributions over the hue values generated for the given color labels. The top panel 

shows the hue value frequency distributions for the 7 most frequent labels from 

Experiment 1 (red, orange, yellow, green, blue, purple and pink). Figure 1.2, bottom 

panel shows the frequency distributions for all 21 stimulus labels. The distributions 

reflect the notion that a given color label is best represented by a small range of hue 

Table 1.1. Mean (SD) of Hue Values and Hue Ranges for Top 7 Color Labels 
                              Mean (SD)         Hue Range 

Red 1.1 (2.56) (230ï239, 0 ï 5) 

Orange 20.23(5.59) (10-30) 

Yellow 40.05 (3.04) (35-50) 

Green 79.79 (10.34) (55-110) 

Blue 153.53(12.13) (115-170) 

Purple 189.41 (6.27) (175-190) 

Pink 215.60 (9.57) (195-225) 

  



14 

 

 

 

values, with some overlap at the edges of the distributions. They also reflect strong 

agreement in the expectations for the association of color labels to hue values across 

participants.  

 Experiment 3: Color Memory Task 

Participants  

Eighteen Introductory Psychology undergraduate students at Rutgers University 

participated for course credit. These participants were not involved in Experiments 1 or 2. 

Materials and Procedure  

 
 

Figure 1.2. Frequency distributions over hue values from Experiment 2. Top panel: 

frequency at which a hue value was generated for the 7 preferred color labels. Bottom 

panel: frequency of hue values generated for the 21 most frequent labels. Each bar 

represents a 5 unit range on the hue continuum from 0-239. 
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Figure 1.3. Sample study/ test sequence. S denotes a study trial and T denotes a test 

trial for with the trial number in subscript. 

S1 S2 T1 S3 S4 S5 S6 T3      S7 S8 T2 S9

Sample Study/Test Sequence

The stimuli consisted of 48 random shapes uniformly filled with the same 48 hue 

values in the HSL color space used in Experiment 1. Study and test trials were presented 

as a continuous sequence and were randomly interleaved (see Figure 1.3 sample 

study/test sequence). The color/shape pairings were randomized across participants and 

were presented one at a time, for 2 seconds each, at the center of the computer screen. On 

a test trial, a shape from a previous study trial, but filled with gray, appeared at the center 

of the screen and participants were asked to make three responses: 1) a recognition 

response: ñdo you remember studying this shape?ò 2) a color label response: ñWhat color 

was the shape at study?ò (this question was posed regardless of their response to the 

recognition question). Responses were typed into a text box and participants pressed 

ñenterò to continue. 3) a cued recall response for hue: ñrecreate the color of the shape at 

studyò. Responses were given using the same color wheel from Experiment 2
1
 and were 

self-paced. Because of the continuous design where study and test trials were randomly 

interleaved, the lag between a study presentation and a test trial for that study stimulus 

varied from a lag of 1 to a lag of 48 (i.e., up to 47 intervening trials between study and 

test).  

                                                 
1
To determine if the regression to the mean effect borne out in the memory data was merely a result of 

participants being primed by the label they recalled before recreating to color, we piloted another condition 

where participants recreated the color before providing a label, and the results mirrored the original 

memory condition.   
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Figure 1.4. Top panel: Recall bias by color category. Positive bias indicates over 

estimation and negative bias indicates underestimation. The black line indicates no bias. 

The data points are color coded with the hue for that color range and the corresponding 

labels are given on the x-axis. The lines give the regression fits for each color label. 

Bottom panel: Model predictions with regression fits from the memory data. 
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Results 

To measure performance, we calculated recall bias as the difference between the 

recalled and studied hue value. It appears that the task was very difficult, and error rates 

were very high. We therefore restricted the analyzed sample to include only cases in 

which subjects provided the correct label on the second question of the test trials (e.g. 

datum was excluded if the subject recalled blue, when the color studied was red (based on 

the most frequent label for that hue value in the color naming task), however, responses 

such as light blue, if the studied color was blue were acceptable). The hue range for a 
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color category was determined based on the lowest point between two response 

distributions in the color naming task. Furthermore, hue responses that deviated by more 

than 6 standard deviations from the mean of the determined hue range were excluded. 

This corresponded to correctly providing the label óblueô to a blue hue value, but 

reconstructing it as red with the color wheel (4 data points). Five test trials were also 

excluded because no response was recorded. Thus, 55% of the data was used in this 

analysis. 

The results revealed regression toward the mean effects as illustrated in Figure 1.4 top 

panel. For each of the 7 colors, subjects overestimated values below the mean hue value 

of each color category and underestimated the values above the mean hue of each color 

category. A linear regression model was fitted to each subject for each of the 7 preferred 

colors assuming a single slope and separate intercept for each regression line (see Figure 

1.4 top panel). A one-way analysis of variance revealed a significant main effect of 

intercepts (F[694]=664, p<.001) across color categories. The negative slope of the lines 

indicates a regression to the mean, and the different intercepts for each of the color 

categories signify regression towards different mean values. Table 1.2 shows the slope 

and intercepts for the 7 categories. 

Modeling 

In this section we implement a simple Bayesian model to characterize the regression 

to the mean effect borne out in the memory experiment. In the model, the goal is to 

efficiently retrieve relevant information from memory, which needs to be combined with 

prior knowledge and expectations about the environment. Bayesô rule gives a principled 
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Table 1.2. Mean Slopes and Intercepts by Color Label

 

 

 

                                  Slope                       Intercept                       

Mean  SD  Mean   SD    

Red   -0.46 0.13  -3.4137 3.26   

Orange   -0.46 0.13  10.6451 2.63 

Yellow   -0.46 0.13  18.2125 3.61 

Green   -0.46 0.13  37.0389 8.79 

Blue   -0.46 0.13  64.9861 4.43 

Purple   -0.46 0.13  88.1715 4.90 

Pink   -0.46 0.13  92.4914 6.79   

Note. N=18 

account of how to combine noisy memory representations with prior expectations to 

calculate the posterior probability, 

p ( |᷊y)  θp (y |᷊ )  p ( )᷊    Eq (1) 

where the posterior p(ɗ |y) gives the likely feature value ɗ given the noisy memory 

content y. We assume that the studied features (i.e., hue values) are Gaussian distributed, 

ɗ ~ N (ɛ, ů
2
), with the prior mean ɛ and variance ů

2 
of the features drawn from the 

environment. When the specific feature ɗ is studied, we assume this leads to memory 

traces y, with some memory noise ɣ, y ~ N(ɗ, ɣ). Standard Bayesian techniques (Gelman 

et al., 2003) were used to compute the mean of the posterior distribution:   

— ύ‘ ρ ύώ    Eq (2) 

where w= (1/ů0
2
)/ [(1/ů0

2
) + (n/ům

2
)] and n is the number of samples taken from episodic 

memory.  

We specified a prior with mean ɛ for each color category equal to the mean of the von 
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Mises (circular analogue of the Gaussian) distributions calculated from the data in 

Experiment 2. In other words, we assume these distributions to be representative of 

peoplesô prior expectation over hue values for a given color category.  In the same way, 

we set ů
2 

for each color category equal to the variances of those distributions and a 

memory noise (ɣ) that varies for each category on the standard deviations from those 

distributions from Experiment 2 (see Table 1.1). While Bayesian cognitive models are 

generally hand-fitted to the data, here all parameter settings are directly informed by the 

experimental data. We used the model to simulate the same trials in the experiment. 

Figure 1.4 bottom panel shows the simulated responses from the model. Overall, the 

model produces results that are qualitatively similar to the observed data and captures the 

overall trend. This provides strong support for reconstruction from memory being highly 

systematic and influenced by prior expectations learned from the environment. Next, we 

build on this principle of systematicity, that we assume is a fundamental mechanism of 

memory, to investigate how different environments and potentially different expectations 

for color might influence regression patterns in memory. 

Discussion 

In this work we sought to investigate the influence of expectations for color on episodic 

memory. We measured prior expectation via two tasks: a color naming task which 

elicited color naming preferences, and a unique task in which participants used a color 

wheel to generate colors most closely associated with the given color label. The results 

showed naming preferences that are consistent with the existing literature (Berlin & Kay, 

1969), namely red, orange, yellow, green, blue, purple and pink. Subjects also showed a 

high level of agreement in both Experiments 1 and 2. We then measured the influence of 
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expectation on free recall for color. Results revealed a regression to the mean effect in 

free recall, such that studied hue values below the mean of that color category were 

overestimated at recall and studied hue values above that color category were 

underestimated. This suggests that recall is influenced by expectations for color. 

This behavior was modeled with a simple rational model of memory, which assumes 

that prior knowledge for different color categories exert an influence on episodic recall. 

In this way, recall is a combination of prior expectations and noisy memory content. The 

model provides qualitative predictions that are a good fit to the observed data. The model 

captures the regression to the mean effect for each of the 7 preferred labels. Importantly, 

the only assumption made in the model was that prior expectations for color were well 

described by the performance in the color generation task. 

Here, we do not provide an analysis of sub-labels (all 21 labels). However, results for 

hue values within the blue range are interesting in that the pattern of over and 

underestimation appears to be dispersed. This may be the result of participants separating 

the hue values in the blue range to account for not just the universal label óblueô, but also 

high frequency sub-labels (i.e. light blue and sky blue). This suggests that colors might be 

hierarchically organized, such that blue is the general color label, and sub-labels are 

based on subjective naming preferences. We believe that this investigation has provided 

important support for existing understanding of the structures of color categories, as well 

as a new understanding of relationship between prior expectations and free recall for 

color.   
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Chapter 3: Inferring Prior Knowledge from Episodic Memory in Special 

Populations 

This chapter presents data from a study previously published in the Proceedings of 

the Annual Meeting of the Cognitive Science Society and in i-Perception. K. Persaud and 

the advisor, P. Hemmer, developed the study concept and study design together. K. 

Persaud developed the stimulus. C. Kidd and S. Piantadosi, performed the testing and 

data collection which was conducted in a different country (Bolivia).  K. Persaud 

performed the data analysis. K. Persaud and P. Hemmer, together, performed the 

interpretation. K. Persaud drafted the manuscript. After the manuscript was drafted, all 

authors helped revise the manuscript. K. Persaud implemented all critical revisions in 

response to reviewer comments. 

In the study, we sought to examine memory in a population that might have dissimilar 

expectations from our standard US population based on their natural environment and 

culture. These expectations in turn might differentially influence memory. We engage 

this question in the domain of color for a number of reasons. Color holds social and 

cultural relevance and peopleôs relationship to color can be both internally (e.g. emotional 

connections to color) and externally (e.g. through the visual experience in their 

environment) derived. In addition, color is a ubiquitous domain for research across 

developmental, social, and cultural groups, as well as across domains of cognition.  

Importantly, for investigative purposes people have similar, but also different 

knowledge states of color. There is an extensive literature characterizing knowledge of 

color across cultures (e.g., Davies & Corbett, 1997; Regier, Kay, & Cook, 2005; 

Roberson, Davidoff, Davies, & Shapiro, 2004; Stickles & Regier, 2014; Xu, Griffiths, & 

Dowman, 2010), and several clear patterns of color universality have emerged. For 
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example, it has been shown that universal tendencies persists in color naming across 

societies (Berlin & Kay, 1969; Regier, Kay, & Cook, 2005) and that those tendencies are 

linked to 11 basic color terms (i.e., red, orange, yellow, green, blue, purple, pink, black, 

white, gray and brown). A possible source of universal tendencies in color naming is 

similarities in favored color percepts (i.e. best examples) across various languages 

(Regier, Kay, & Cook, 2005). These color universals are shown to have a subjective 

perceptual basis, in that they can be used to partition the color space into distinct regions 

that facilitate color categorization (Webster & Kay, 2012).  

While these 11 universal categories are found across most industrialized societies, 

there are also substantial individual, environmental, and cultural differences in color 

knowledge (e.g., Palmer & Schloss, 2010; Stickles & Regier, 2014). Internal (e.g., 

emotional) relationships and preferences to certain colors serve as a candidate source of 

variation in individual color knowledge as postulated by the Ecological Valence Theory 

of Human Color Preferences (Palmer & Schloss, 2010). This theory posits that peopleôs 

emotional response to a color is their cumulative affective response to the objects to 

which the color is associated. Individuals prefer colors that they have had positive 

experiences with (e.g. yellow ï color of flowers) and do not prefer colors with which they 

have had bad experiences (e.g. red ï color of fire), signifying each personôs close and 

personal relationship to color.  

At the group level, a source of variation in subjective color knowledge is the 

relationship between color and the variability in natural environments. For example, color 

terms in languages with climates of abundant vegetation (e.g. rainforest) are significantly 

different from color terms in languages with dry climates (e.g. Savanna), but not in places 
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with relatively similar climates (e.g. rainforest and monsoon) (Stickles & Regier, 2014). 

The difference in the greenery of the climates presumably accounts for difference in color 

naming. Thus, it appears that local environmental factors influence color knowledge and 

promotes variability in color terms across languages.  

We tested recognition memory for color in the Tsimaneǋ group of Bolivia. The 

Tsimaneǋ are an indigenous people who inhabit rainforests east of the Andes in lowland 

Bolivia. They have minimum contact with the outside world, a uniquely different color 

diet relative to our U.S. population, and varying levels of education (see table 2.1). These 

factors might contribute to idiosyncratic expectations for color. Furthermore, the 

difference in expectations may be foreshadowed by dissimilarities in color language. In 

the Tsimaneǋ language, color terms are highly variable and morphologically complexð

e.g., yellow is called ñcolor-of-the-cuchi-cuchi-treeò. Color language is also inconsistent 

in that some people know this term for yellow, as well as other color terms, and some do 

not.  

Color expectations of the Tsimaneǋ people may lead to three possible regression 

patterns. 1) The pattern might be the same as the U.S. population, such that memory 

regresses to the same seven color categories, suggesting that the two populations used the 

same categories regardless of environmental variation. 2) The patterns of the two 

populations might differ, in that the Tsimaneǋ could potential combine some color 

categories. This is supported by smaller numbers of color categories across some 

languages (e.g., Roberson, Davies, & Davidoff, 2000; Roberson, Davidoff, Davies, & 

Shapiro, 2005). 3) The Tsimaneǋ might split some categoriesïe.g., as observed in Russian 

where blue has two terms (e.g., Paramei, 2005). Such a split could be based on the high 
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Table 2.1. Participant Demographics 

 
Note. N=23 

Age (years) 18 20-28 30-34 40-48 60+

Frequency 4 8 6 3 2

Education (years) 0 1 2 3-5 6-9 10

Frequency 4 1 3 9 5 1

Spanish 
(translate out of 11)

0 6-9 10-11

Frequency 1 19 3

Counting (highest #) 2 5-9 15-31 46-64 93 102

Frequency 1 2 5 3 1 11

Arithmetic (out of 12) 0 1 2-3 4-5 6 10-11

Frequency 2 3 10 2 2 3

variability in color terms in the Tsimaneǋ language, and their natural environment. 

Regression towards the standard universal color categories in both populations would 

suggest that these factors (language variability and environment differences) may have 

little influence on memory. Alternatively, differences in regression patterns would 

provide support for cultural and environmental factors influencing memory. 

Due to the demands of field research, the task varied in a number of ways compared 

to the controlled laboratory experiment. First, the Tsimaneǋ displayed a great deal of 

discomfort with the use of technology and any apparatuses that they themselves had to 

use. Thus, we converted from a computerized free recall task to a paper based recognition 

task where participants only needed to point to responses. Second, instructions and 

responses required two layers of translation (i.e. from English to Spanish, and then from 

Spanish to the Tsimaneǋ language), and thus we were unable to assess prior knowledge 

and expectations as was previously done with the U.S. population. We instead relied on 

the systematicity of memory (i.e. regression to the mean effect) and the assumptions of 
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the Bayesian cognitive model to infer the underlying color categories of the Tsimaneǋ and 

the influence on memory.  

Experiment: Episodic Memory for color in an indigenous population 

Participants  

Twenty-three individuals participated in this study and were compensated with small 

gift bags of local goods. Participant ages ranged from 18-65. Self-reports of education 

levels ranged from no formal education to 10 years of education, and arithmetic skills 

ranged from 0-11 out of 11 questions correct on an ad hoc field measure (using all 

addition questions), and highest count ranging from 2-102 (meaning knowing all 

numbers). Table 2.1 gives a detailed breakdown of the demographics and skill variables. 

Materials and Procedure  

Stimuli consisted of 24 random shapes uniformly filled with 24 unique colors 

sampled from the hue color space, with saturation and luminance held constant at 100% 

and 50%, respectively. The 24 colors were selected from the 7 color categories and varied 

in hue by a minimum of 5 units (on a total range of 239). Furthermore, colors were 

randomly selected from each color category, proportional to the size of the color category 

(i.e. 2 red, 3 orange, 2 yellow, 6 green, 6 blue, 2 purple, and 3 pink). Study shapes were 

printed individually, and test shapes along with 5 distractors, were printed together on 

5.5-by-8 inch cards (See Figure 2.1a for a sample study test pair). The colors of the 

distractors were chosen such that the hue values of two distractors were greater than the 

hue value of the target color, two distractors were less than the hue of the target, and the 

last distractor hue value was either greater or less than the target, but at a further absolute 

distance from the target than the other distractors (see Figure 2.1a for illustration).  



26 

 

 

 

a       b 

 
 

Figure 2.1. (a) Sample study-test stimulus. (b) Tsimaneô woman participating in the 

study. The experiment was conducted in a class with onlookers from the community.  

 

Participants were gathered in a communal classroom, and there were a number of 

onlookers during the administration of the test. Figure 2.1b shows both the experimental 

setting and a study-test trial sequence. A translator explained the task, and all participants 

appeared to immediately understand the procedure. Presentation time of the 1-item study 

card was as close to 1 second as possible. The study trial was followed by 6-alternative 

forced choice immediate recognition. Participants had as much time as they needed, but 

most responded immediately, and responses were recorded in a booklet. On some trials 

(approx. 5%) it was not clear where the participant had pointed, and participants were 

asked to repeat their choice. They were asked to touch, rather than point, to try to 

alleviate this problem. Trial order was randomized between participants.  Due to the field 

demands, it was not possible to randomize the target/distractor locations on the test trials. 

This means that all participants saw identical test cards. 

Results 

Prior to analysis, recognition responses that were more than 6 standard deviations 

away from the studied hue value were removed. These data points constituted 2.5% of all 

the data (14 out of 545 data points). After calculating the bias measure described below, 
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individual subject data revealed that there was one participant whose data were very 

noisy and appeared essentially random (this was not unexpected given the very noisy 

conditions of field data collection). This may have reflected either impairment in color 

vision
2
 or inattention to the task and this participantôs data was removed from all further 

analysis.  

Recognition Bias and Regression Memory performance was measured in terms of 

recognition bias, i.e., the difference between the hue value participants remembered and 

the hue value studied. First, bias was calculated for each individual participant and then 

averaged across participants for each studied hue value. Figure 2.2 shows recognition 

bias as a function of studied hue values. The data show clear regression to the red, green, 

blue and pink color categories. The orange, yellow, and purple categories, however, were 

more ambiguous. Based on a visual inspection, we partitioned the averaged bias into 5 

categoriesðcombining orange and yellow, and combining purple and pinkðand fit a 

linear regression model to each of the 5 resulting color categories (see Figure 2.3). The 

slope of the regression in each category (except for the orange/yellow range) was 

negative, indicative of a standard regression to the mean effect. Hue values below the 

mean of the category were overestimated and hue values above the mean were 

underestimated. This is consistent with the findings from experiment 3. A one-way 

analysis of variance revealed a significant main effect of intercept (F[109]=25, p<.001) 

across color categories, indicating that each category has a different intercept. However, 

performance in the orange/yellow range appeared to be different from the other 

                                                 
2
 We were not able to conduct a color blindness test. The assessment requires naming knowledge 

of some shapes which is confounded with education. Many Tsimaneǋ participants could not complete this 

task. 
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Figure 2.2.  Recognition bias by hue value. Average mean bias (data points) and 

response ranges (box plots) for each studied hue value. Colors of the data makers 

indicate the standard universal color categories. Positive bias indicates over 

estimation and negative bias indicates underestimation. The black line indicates no 

bias. 
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observed data averaged over participants

categories. In this category, the slope ran in the opposite direction (positive slope), 

showing a regression towards orange-red rather than towards yellow.  

Cluster Analysis Figure 2.3 appears to show interestingly different color categories, 

compared to the seven classic basic color terms (red, orange, yellow, green, blue, purple 

and pink). To learn the underlying categories that participants may have used, we 

conducted a k-means cluster analysis (Figure 2.4). We ran 10 iterations of the cluster 

analysis on four different clusters sizes (i.e., 4, 5, 6, and 7) and found the greatest cluster 

agreement over the 10 chains for a cluster size of 5. This cluster size was further 

confirmed by the Calinski Harabasz criterion. Consistent with the regression analysis, the 

cluster analysis also combined colors in the purple/pink ranges and orange/yellow ranges. 

However, the cluster analysis further combined the orange/yellow category with red, but 

split the universal blue range into two blue categories. These findings suggest that the 

pattern of regression behavior to underlying category centers is inherent to memory, but 
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Figure 2.3. Regression fits to 5 color categories. Categories are partitioned by hue 

ranges with orange and yellow combined, and pink and purple combined. The thick 

center black line indicates no bias. The data points are color coded with a hue for 

that color category. The lines give the regression fits for each of the 5 categories. 
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the specific categoriesð either assessed experimental (U.S subject population), or 

learned from the cluster analysis (Tsimaneǋ)ðare environment dependent, and are 

reflected in the differential regression behavior between the two subject populations.  

Discussion 

We examined expectations for color and the influence of those expectations on 

episodic memory in two populations: a standard U.S. population and the Tsimaneǋ people 

of Bolivia. We found that environment appears to differentially influence category 

expectations, and episodic memory. In the U.S. subject population, expectations reflected 

naming preferences that were consistent with the existing literature (Berlin & Kay, 1969), 

and a high level of subject agreement on the association of labels to hue values. 

Furthermore, in this population recall regressed toward 7 color categories, suggesting an 

influence of expectations for color categories on episodic memory.  
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Figure 2.4. K-means Cluster Analysis. Bias data partitioned into 5 learned clusters 

from an unsupervised k-means cluster analysis, and color coded with a hue from that 

category. Vertical lines and color labels on x-axis show the standard universal 

categories. 
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In previous work, we modeled this relationship between expectations and memory 

with a Bayesian cognitive model characterizing the computational problem of combining 

prior expectations and noisy episodic content. Importantly, the only assumption made in 

the model was that prior expectations for color were well described by the performance in 

the color generation task. We believe this reflects the optimality of the memory system 

and its relationship to the environment. This gives rise to the question of whether 

different environments, cultural profiles (such as language), or experiences engender 

variation in color expectations and lead to differences in regression behavior. 

To examine whether different environments engender variation in color expectations 

and lead to differences in regression behavior, we assessed memory in an indigenous 

population, the Tsimaneǋ of Bolivia. Due to field work constraints, we were unable to 

assess prior expectations for color or utilize the free recall memory design with this 

group. Instead, we worked backwards using the Bayesian assumption of the influence of 
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expectations on memory and the results of the U.S. memory experiment to learn the 

underlying categories for this group, and in turn, how these category expectations impact 

memory performance. In this work, two clear patterns emerged. We found a consistent 

regression to the mean effect across color categories, with the exception of the yellow 

category. This finding may suggest that the regression to the mean effect in memory is a 

universal cognitive process and is systematic across cultural and environmental groups. 

Interestingly, however, a k-means cluster analysis showed that the categories in the 

Tsimaneǋ population were different than observed in a standard U.S. population. While 

the U.S. group regressed toward seven categories, the Tsimaneǋ segregated blue into two 

categories, and combined other categories, resulting in five inferred categories: 

red/orange/yellow, green, light blue, dark blue, and purple/pink. 

 The population specific bias observed in the Tsimaneǋ, relative to a U.S. population, 

might be related to the underdevelopment of knowledge for some categories. This could 

be due to one or more factors, such as low environmental incidence, low frequency in 

language, limited formal education of color, or little communicative need of certain color 

terms. From a memory perspective, the underdevelopment of color categories raises 

several interesting questions. A color like yellow, which is somewhat rare in the 

Tsimaneô environment, might lead to an outlier (or Von Restorff) effect, where it is better 

remembered. Conversely, a pervasive color (with a high prior probability in the 

environment) is also likely to lead to better memory, and might account for the shallow 

regression line in the blue category (Figure 2.3). 

We believe that this study provides important evidence for an experience based 

mechanism (development and maintenance of prior knowledge) that gives rise to 
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differences in color knowledge. This is consistent with the findings of Stickles and Regier 

(2014) that environment impacts language (i.e., color words). Furthermore, the study 

provides strong support for the influence of category knowledge on memory, and the 

systematicity of memory across groups with varying prior knowledge content. 
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Chapter 4: Fidelity and Memory 

The Dynamics of Fidelity over the Time Course of Long-term Memory 
Kimele Persaud and Pernille Hemmer (2016). Cognitive Psychology 

 

K. Persaud and the advisor, P. Hemmer, developed the study concept and study design 

together. Stimulus creation, testing and data collection were performed by K. Persaud. K. 

Persaud performed the data analysis. Interpretation of the analysis and model 

development/implementation was performed by K. Persaud and P. Hemmer, together. K. 

Persaud drafted the manuscript. After the manuscript was drafted, K. Persaud and the 

advisor, P. Hemmer, revised the manuscript. K. Persaud implemented all critical 

revisions in response to reviewer comments. 

 

Abstract 

 

Bayesian models of cognition assume that prior knowledge about the world inþuences 

judgments. Recent approaches have suggested that the loss of ýdelity from working to 

long-term (LT) memory is simply due to an increased rate of guessing (e.g. Brady, 

Konkle, Gill, Oliva, & Alvarez, 2013). That is, recall is the result of either remembering 

(with some noise) or guessing. This stands in contrast to Bayesian models of cognition 

which assume that prior knowledge about the world inþuences judgments, and that recall 

is a combination of expectations learned from the environment and noisy memory 

representations. Here, we evaluate the time course of ýdelity in LT episodic memory, and 

the relative contribution of prior category knowledge and guessing, using a continuous 

recall paradigm. At an aggregate level, performance reþects a high rate of guessing. 

However, when aggregate data is partitioned by lag (i.e., the number of presentations 

from study to test), or is un-aggregated, performance appears to be more complex than 
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just remembering with some noise and guessing. We implemented three models: the 

standard remember-guess model, a three component remember-guess model, and a 

Bayesian mixture model and evaluated these models against the data. The results 

emphasize the importance of taking into account the influence of prior category 

knowledge on memory. 

 

Introduction  

An important question for memory is whether category knowledge biases 

performance, and whether an influence of category knowledge changes as a function of 

the fidelity of memory. Recent work in visual working memory has suggested that when 

recalling stimulus features, observers either remember the episodic information with 

some noise or guess (Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Zhang and Luck, 

2008).  Zhang and Luck found that fidelity is fixed once capacity of visual working 

memory is reached, but that the guessing rate changes. The resulting error distributions 

are well fit by a mixture of a Gaussian-like (remembering with some noise) and uniform 

distribution (guessing). They argued that observers remember continuous feature values 

and are not biased by categorization of those values. Importantly, a finding of category 

bias would suggest an intermediating step between remembering and random guessing. 

Such a bias was found by Bae and colleagues, establishing that category biases originate 

in perception and are reflected in visual working memory (Bae, Olkonnen, Allred, & 

Flombaum, 2015). 

Several extensions to the original remember-guess model have been implemented to 

account for additional factors that influence visual short-term and working memory 
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performance (e.g., Bays, Catalao, & Husain, 2009; Bays, Wu, & Husain, 2011; van den 

Berg, Shin, Chou, George, & Ma, 2012). For example, the variable-precision model (VP; 

van den Berg, et al, 2012) postulates variability in the precision with which items are 

encoded in working memory. The resulting error distribution is a mixture of many von 

Mises distributions (as opposed to the one memory component in the remember-guess 

model), to account for residual noise in memory that the standard model cannot fit. Other 

proposed models incorporate task-based components, such as ñmisassociationò or 

ñmisbindingò parameters to extend the standard remember-guess model (Bays, Catalao, 

& Husain, 2009; Bays, Wu, & Husain, 2011).  

Although these models provide substantial revisions to the original, it is important to 

note that they are grounded in visual short-term and working memory. Relatively few 

studies have sought to apply the remember-guess framework to understanding long-term 

episodic memory. One such application by Brady and colleagues (2013) showed that 

there is a loss of fidelity from working into long-term (LT) memory. They argued that 

this decrease in fidelity is due to an increased rate of guessing, without addressing other 

factors that impact long-term memory.  

The remember-guess model stands in direct contrast to a number of Bayesian 

cognitive models which assume that LT memory is an integration of expectations learned 

from the environment with noisy memory representations (e.g., Hemmer & Steyvers, 

2009; Hemmer, Tauber & Steyvers, 2015; Hemmer, Persaud, Kidd, & Piantadosi, 2015). 

These models are pervasive in cognition in general, and in specific domains including 

categorization (e.g., Huttenlocher, Hedges & Vevea, 2000), generalization (e.g. Griffiths 

& Tenenbaum, 2006), semantic memory (Hemmer & Steyvers, 2009b; Steyvers, 
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Griffiths, & Dennis, 2006), and episodic memory (Shiffrin & Steyvers, 1997; Steyvers & 

Griffiths, 2008). 

Bayesian models of cognition propose a tradeoff between the fidelity of memory 

content and the influence of prior expectations. When the fidelity of the episodic trace is 

high, for example, as in visual short-term memory, there is minimal noise and potentially 

little influence of prior expectations. As fidelity decreases in working and LT memory, 

whether as a function of time or errors in retrieval, the influence of prior expectations 

would increase.  

At an aggregate level, however, the error distributions resemble a combination of 

precise and imprecise memory, which might appear only to be remembered content and 

guessing, effectively masking underlying stages between the two. Prior expectation is a 

potential factor that might compensate for decreasing memory fidelity at the stage 

between precise memory and random guessing. In point of fact, Donkin and colleagues 

(2014) showed model-based evidence from visual short-term memory positing three 

discrete states of memory: One, a state based on perceptual memory and high precision, 

two, due to memory decay from perception, a state with intermediate precision based on 

verbal labeling, and three, guessing. Here, we seek to compare the performance of 

models that have been employed to characterize long-term memory, namely the 

remember-guess model (Brady et al, 2013) and Bayesian models of long-term memory 

(e.g., Hemmer & Steyvers, 2009; Persaud & Hemmer, 2014). 

In the present work, we explore what happens to the precision of memory over time. 

Partitioning performance by the number of intervening trials between study and test (i.e., 

lag) allows for the systematic assessment of the time course of fidelity in LT episodic 
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memory. To the best of our knowledge, this paper gives the first analysis of free recall by 

lag in an effort to understand the relative contributions of prior knowledge and guessing. 

We also investigate if category bias, indicative of the employment of prior knowledge, is 

a mechanism by which LT memory can be filled in, before individuals resort to random 

guessing. If this is the case, then performance at intermediate lags, consistent with the 

Bayesian assumption, should reflect the influence of category knowledge on noisy 

episodic representations. Such an influence is generally observed as a regression to the 

mean effect. We implement three models: the standard remember-guess (RG) model, a 

three component remember-guess (3CRG) model, which assumes two levels of precision 

in memory and a Bayesian mixture (BM) model. We also conduct model comparisons as 

a function of lag.  

Memory for color:  Overview of Experiment  

Our objective was to determine the contribution of prior expectations to LT episodic 

memory and assess the resulting time course of errors. We developed a novel 

experimental approach for assessing free recall for color, where participants generated 

recalled hue values using a continuous color wheel, and with interleaved trials of random 

lag lengths between study and test.  

Participants  

Sixty-one Introductory Psychology undergraduate students at Rutgers University 

participated for course credit or $10 compensation. In condition 1 (Label first Condition) 

N=18. In condition 2 (Label after Condition) N=5. In condition 3 (No Label Condition) 

N=38. All participants reported having normal color vision. No individual participated in 

more than one condition.  
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Figure 3.1. Sample study/test sequence by lag. Lag 1, participants study a shape, followed 

by a series of memory questions related to the color of the shape. Lag 3, participants study 

a sequence of three colored shapes, before being asked a series of memory questions 

related to the color of the cued shape ï here, the first of the three shapes studied. 

Lag 1

. . .

Do you recall 
seeing this 
shape?

Yes No
What color was the 
shape at study?

RED Recreate the 
color of this 
shape

. . .

Do you recall 
seeing this 
shape?

Yes No

Lag 3

Sample Trial Sequence: S1,    T1,    S2,    S3,    S4,    T2,    S5,    T4,    T3é

Lag 1 Lag 3

Materials  

The stimuli consisted of 48 arbitrary shapes uniformly filled with 48 colors sampled 

from the winHSL240 (hue, saturation, and luminance) color space. See Figure 3.1 for 

sample stimuli. The shapes were selected such that there was little prior association of 

any color to the shapes, that is, the study set did not result in canonical pairings such as 

yellow stars or red hearts. The purpose of the shapes was to cue subjects on test trials to 

recall the fill-color of the shape. Colors were sampled in 48 equally sized steps along the 

full hue range, based on the ability to perceptually differentiate two sequential colors in 

the range. Saturation and luminance were held constant at 100% and 50%, respectively. 

The shapes and colors were paired randomly, and pairings were randomized across 

participants. Each shape and color was studied only once.  

Procedure  

Participants were shown a continuous study-test sequence of color filled shapes. 
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Shapes were presented one at a time at the center of the computer screen for 2 seconds. 

Participants were told to study the color of each shape, as they would be asked to recall 

the color of the shapes. Test trials were randomly interleaved between study trials, 

resulting in lags of varying length. This sequence of lag was obtained by first randomly 

permuting the order of study trials, and then interleaving test trials, with the condition 

that for a test trial to occur, the corresponding study item must have occurred first. Figure 

3.1 provides an example of the experimental procedure for a lag of 1 and a lag of 3 trials, 

as well as an illustration of the interleaved study test sequence.  

On a test trial, a shape from a previous study trial, but filled with gray, was presented 

as a cue and participants were prompted to make several responses. In all three test 

conditions, participants first completed a recognition task for the shape. In the two label 

conditions, participants were asked to provide a verbal label for the color of the shape 

either before or after recreating the shape color (this question was posed regardless of 

their response to the recognition question). Participants typed responses into a text box 

and pressed ñenterò to continue. In condition 3, participants did not provide a verbal 

label. In all three conditions, participants were then asked to recreate the studied color of 

the shape using a continuous color wheel. The color wheel was covered by a black mask, 

and was randomly rotated by 90 degrees on every test trial.  Participants clicked on the 

wheel to fill the shape with the underlying color. Test trials were self-paced. 

Results  

For analysis, and to accommodate the use of von Mises distributions in the models, 

hue values were converted from the winHSL240 color space to degrees. 
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The primary purpose of the three labeling conditions was to check that the explicit 

label generation did not alter the influence of category knowledge. We find no real 

differences between the label versus no-label conditions, and for the purposes of analysis, 

data is pooled across all three conditions (see Appendix Table A1 for parameter 

estimation for the label versus no-label conditions). 

Lag Analysis To measure the time course of fidelity in LT memory, the data was 

partitioned by lag and each resulting error distribution was analyzed. Since lag intervals 

encompassed participant responses which were self-paced, lag intervals varied both 

across trials (with the same lag) and across participants. For an approximation of the 

correspondence of lag intervals to units of time, we calculated the average study plus 

response time for each condition and collapsed across conditions. The results were as 

follows: Label First: M= 16.2s, SD= 9.0s, MO= 10.0s; Label Last: M= 18.5s, SD= 8.2s, 

MO= 10.0s; No label: M= 11.2s, SD= 7.1s, MO= 5.0s; All conditions: M= 13.3s, SD= 

8.3s, MO= 9.0s. A Pearsonôs correlation revealed a strong positive correlation between 

lag and response times (r = 0.7, p<.000).  

Initially, all lag groups were examined separately, but then grouped based on a 

meaningful progression in the parameter contributions. This was done both for visual 

clarity, and in order to increase the ñspeedò of model fitting. See Appendix Table A2 for 

fits to all lags. Figure 3.2, from left to right shows the error distributions for lag 1, 2-3, 4-

9, 10+, and the aggregate of all lags. The error distributions reveal that the fidelity of 

memory is quite high at lag 1. This is evidenced by the tight grouping of responses 

around 0 error and virtually no responses past 50 degrees of error. For the remaining lags, 

memory fidelity is not as high as in lag 1, but does appear to be stable over time. 
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Figure 3.2. Histograms of errors as a function of lag: lag 1, lag 2-3, lag 4-9, lag 10+, as 

well as the error distribution for all lags. 

However, there is also an increased frequency of responses past 50 degrees of error (i.e., 

increased rate of guessing).   

Partitioning the data by lag shows a progression in the decrease of fidelity, and 

corresponding increase in the rate of guessing, that cannot be discerned from an 

aggregate error distribution. Furthermore, in the aggregate error distribution (Figure 3.2, 

óAll lagsô panel), the center portion of the error distributionðwhich under the remember-

guess model is characterized by a single Gaussian distributionðappears to have both a 

sharp peak as well as  broad 'shoulders' suggesting multiple components. However, a 

visual inspection of the error distributions by lag is insufficient to determine whether the 

composition of the error distribution is strictly that of remembering and guessing, or if 

there are additional factors at play. 

Recall bias To assess bias in recall we calculated the difference between the hue value 

recalled and the hue value studied. Figure 3.3, top left panel, shows study hue values as a 

function of bias. The square boxes illustrate the bias for each studied value scaled by the 
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frequency at which the response was given across participants. Each square box is 

colored with the true recalled hue value given for each studied value. All responses to a 

particular studied value form a straight horizontal line, and correctly recalled hue values 

lie vertically at the zero-bias line of the x-axis. The results shows regression to the mean 

effects for several color categories, where accuracy is greatest closer to the mean of the 

categories and hue values greater than the category mean are predominately 

underestimated (to the left of the zero bias line in Figure 3.3, top middle panel), while 

hue values less than the mean are overestimated (to the right of the zero baseline in 

Figure 3.3, top middle panel). Notably, there is an asymmetry in the distribution of 

responses around the zero bias line within color categories. When there is a large mass of 

values to the left of the zero bias line (underestimation), there are very few values to the 

immediate right, and vice versa. This results in strong diagonal bands (tilted on the 

vertical axis) within categories that are not merely a result of how the data are plotted. 

We take the asymmetry to indicate regression to distinct categories, and evidence of an 

influence of prior category knowledge on memory (Hemmer, Tauber, & Steyvers, 2015; 

Hemmer & Steyvers 2009a; Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, 

Hedges, & Vevea 2000; Hemmer, Persaud, Kidd, & Piantadosi, 2015).  

Regression analysis Based on established universal categories (red, orange, yellow, 

green, blue, purple and pink; Berlin & Kay, 1969), we assume that the observed recall 

bias is toward these seven categories (also, see Persaud & Hemmer, 2014). A linear 

regression model was fitted to each subject for each category (Figure 3.3, top right 

panel). Because the regression effect is assumed to operate on memory (not guessing), 

the data were trimmed to remove responses assumed to be guessing. It is unclear prior to 
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Figure 3.3. Recall response bias to studied hue values. Top left panel: All responses 

for a given study hue value appear in a horizontal row. The response markers are 

scaled by the frequency at which they were given (larger boxes indicate greater 

frequency) and colored with the exact hue value chosen. Top middle panel: 

Illustration of the asymmetry that results from a regression to the mean effect. Top 

right panel: Regression lines fitted to averaged recall data within 3 Tau of study 

values, by color category (see Persaud & Hemmer, 2014 for category boundaries). 

Here red has been wrapped to show the regression line for the category. In other 

panels, red reflects its true location in color space, which is on both ends of the 

spectrum. Bottom row panels: simulated recall responses from the RG, 3CRG, and 

BM models, respectively.  

 

model fitting how to determine a guessing trial, therefore, data were trimmed following 
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Figure 3.4. Model predictions. Left panel shows stylized predictions of the fit of the 

standard RG model to the aggregate data. The solid black line represents the 

memory contribution and the -. dashed line represents guessing. Right panel shows 

predictions of the fit of a 3CRG model to capture the 'shoulder' of the error 

distribution. The --dashed black line represents the contribution of the additional 

component in memory. 

 
two different procedures: First, singletons in the data, grouped over response frequency, 

(Figure 3.3, top left panel) were removed and only responses within 75 hue values of the 

study value were considered for the analysis. A t-test of the subject slopes for each 

category found that slopes were significantly different from zero for all categories except 

orange, yellow and purple [red: t(60)= -2.82, p<0.001; orange t(60)= -0.15, p=0.44; 

yellow: t(60)= 1.96, p=0.97; green: t(60)= -3.82, p< 0.001; blue: t(60)= -1.78, p= 0.04; 

purple: t(60)=0.94, p= 0.83; pink: t(60)=-1.65, p< 0.05]. Mean slopes were red: -0.69; 

orange: -0.02; yellow: 0.27; green: -0.47; blue: -0.17; purple: 0.2; pink: -0.16. Second, 

guessing responses were trimmed based on the inferred parameters from the Bayesian 

mixture model to all data. Thus, only responses within 3 standard deviations [Ű= 25.88] of 

the study value were considered for the analysis. A t-test of the subject slopes for each 

category found that slopes were significantly different from zero for green [t(60)=-5.09, 

p= 0.00] and blue [t(60)=-1.87, p= 0.03], marginally significant for red [t(60)=-1.38, p= 

0.09], but not for orange, yellow, purple or pink. Mean slopes were red: -0.36; orange: 

0.12; yellow: 0.54; green: -0.30; blue: -0.10; purple: 0.93; pink: -0.16.  



45 

 

 

 

Visual inspection of Figure 3.3 suggests that the lack of significant regression in the 

purple category might be due to purple not being as salient as any of the other categories. 

Furthermore, the lack of significant regression in the yellow category might be due to 

yellow being the smallest category, and because of very high accuracy. Both orange and 

yellow also appear to have large overlap with the red category.  

Modeling 

To investigate the components of the error distributions and the observed regression 

patterns, we implemented two extensions of the standard remember-guess (RG) model: A 

three component remember-guess (3CRG) model, and a Bayesian mixture (BM) model. 

The standard RG model assumes that the error distributions are composed of two 

elements, a Gaussian-like memory distribution and a uniform distribution. See Figure 3.4, 

left panel for a graphical illustration of predictions for the RG model. Based on our 

observed pattern of data in the center portion of the error distribution, we predict that the 

combination of these two distributions will miss some of the area in the error distribution. 

If the memory component captures the peak of the error distribution, then it may miss the 

'shoulders' and vice versa. This combination of a peak and shoulders might signal 

multiple components in memory.  

To explain this pattern in the data, we first implement a simple extension assuming 

that memory is drawn from two normal distributions, one with high precision and one 

with lower precision. This additional parameter will allow the model to capture both the 

peak and the shoulder of the error distribution. See Figure 3.4, right panel for a graphical 

illustration of predictions for the 3CRG model. 
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Another pattern in the data that cannot be explained by the RG model, or by our first 

model extension, is the regression to the mean effect (we will return to a detailed 

regression analysis in the model comparison sections. See 4.3 Comparison of 

Regression). The 3CRG model also does not give a theoretical explanation of what the 

extra component (the low precision memory distribution) represents. Therefore, we 

implement a second extensionða Bayesian mixture modelðwhich assumes that the 

additional component is the contribution of prior category knowledge. Rather than the 

mixture of two separate Gaussian distributions in the 3CRG model, the BM model 

assumes a single Gaussian distribution where the mean is a weighted linear combination 

of memory and prior knowledge. This model inherently predicts the regression to the 

mean effect. However, this effect is obscured in the error distributions, and necessitates 

the evaluation of the model to the full range of responses, rather than aggregate errors. 

Next, we detail the implementation of the three models and describe the results of the 

model comparisons.  

Standard óRemember-Guessô Model (RG) 

We implemented the standard RG model using the MemToolbox (Suchow, Brady, 

Fougnie, & Alvarez, 2013; memtoolbox.org). In this model, the probability density 

function is given by,  

ρ Ὣ ÖzÏÎ -ÉÓÅÓπȟ„ Ὣz 5ÎÉÆρψπȟρψπ     (Eq 1) 
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Table 3.1. Model Parameter Values (confidence intervals) 

Remember-Guess Model (RG) 

 Fidelity  (Conf. Int.) 

ů (°) 

Guess Rate (Conf. Int.) 

g 

Lag 1 11.85  (11.85-13.49) 0.06  (0.03-.010) 

Lag 2-3 16.15  (14.40-18.25) 0.42  (0.37-0.46) 

Lag 4-9 17.63  (15.82-19.70) 0.49  (0.46-0.53) 

Lag 10+ 15.02  (12.03-20.67) 0.61  (0.53-0.69) 

All  15.82  (15.03-17.13) 0.46  (0.44-0.48) 

 
3 Component Remember-Guess Model (3CRG) 

 Fidelity  (Con. 

Int.) 

ů (°) 

Fidelity  (Con. Int.) 

Ű (°) 

Guess Rate (Con. 

Int.) 

g 

Mixing Parameter 

w* 

Lag 1 11.44  (9.87-

15.84) 

28.76  (13.68-

58.43) 

0.03  (0.01-0.09) 0.28 

Lag 2-

3 

15.27  (13.68-

17.69) 

27.87  (20.90-

36.96) 

0.40  (0.36-0.45) 0.35 

Lag 4-

9 

17.13  (15.12-

19.69) 

29.69  (24.12-

48.72) 

0.48  (0.44-0.51) 0.37 

Lag 

10+ 

15.21  (12.44-

32.11) 

35.21  (13.36-

73.98) 

0.59  (0.51-0.68) 0.30 

All  15.40  (15.24-

16.74) 

28.51  (22.95-

32.50) 

0.44  (0.42-0.47) 0.35 

 
Bayesian Mixture Model (BM) 

 Fidelity  (Con. Int.) 

ɣ (°) 

Fidelity  (Con. Int.) 

Ű (°) 

Guess Rate (Con. 

Int.) 

g 

Mixing Parameter 

w* 

Lag 1 22.12  (17.22-

23.85) 
23.43  (14.10-26.00) 0.05  (0.01-0.09) 0.49 

Lag 2-3 19.80  (14.17-

19.80) 
21.12 (17.40-22.09) 0.43  (0.39-0.58) 0.48 

Lag 4-9 18.55  (16.11-

18.55) 
25.27  (23.81-25.89) 0.54  (0.54-0.62) 0.42 

Lag 

10+ 

20.29  (12.96-

27.71) 
250.6  (242.0-254.9) 0.60  (0.51-0.72) 0.08 

All  19.03  (18.77-

20.70) 
25.88  (23.68-26.79) 0.47  (0.47-0.52) 0.42 

 
*w= (1/Ű

2
)/ [(1/Ű

2
) + (1/ɣ

2
)]  

 

where remembered responses are von Mises distributed (due to the circular hue space) 

with a mean of ɛ and standard deviation „. Guessing responses are produced with 

probability g and are uniformly distributed across the stimulus range from -180 to 180 

degrees. Furthermore, because the error distribution is centered on zero ɛ=0, this 

parameter will not be considered in this implementation. 
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Table 3.1 gives the inferred parameters and 95% confidence intervals. Figure 3.3, 

bottom left panel shows the simulated draws from the posterior of the RG model. 

According to the model fits, there is a substantial increase in memory noise („)ði.e., 

decrease in memory fidelityðbetween lag 1 and lags 2-3. Thereafter, memory fidelity 

appears relatively constant (overlap in confidence intervals between lag groupings). In 

addition, there is a steady increase in the guessing rate (g) from lag 1 and forward. The 

model appears to capture the general trend in the data, with the exception of missing the 

peak of the distribution at some lags and a small portion of the shoulder at others.  

Three component 'Remember-Guess' Model (3CRG) 

Next, we implement the first extension. We assume that the memory component is 

itself a mixture of two Gaussian distributions. This is very similar to the Donkin et al. 

(2014) model, which assumes two components in guessing, where the extra component 

only applies at retrieval. Our model, in contrast, makes the assumption that the increased 

noise is attached to the memory component rather than the guessing component. Our 

memory mixture is also not conditioned on labeling, but rather applies to all trials. While 

mathematically the two models are equivalent, they differ in the conceptual 

underpinnings.  

In the 3CRG model, we first assume the additional component is related to the 

memory component in anticipation of the BM model. Second, we use the noise from the 

two Gaussian components to determine the mixing, rather than assume an additional free 

parameter. Third, the assumption that the additional component attaches to memory is 

agnostic about whether the influence of the additional component happens at encoding or 

retrieval.  
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The probability density function of the 3CRG model is then given by, 

ρ Ὣᶻ ρ ύ ÖzÏÎ -ÉÓÅÓπȟ„ ύ ÖzÏÎ -ÉÓÅÓπȟ†              Eq (2) 

                                                Ὣ 5zÎÉÆρψπȟρψπ                                       

We assume that the mixture of von Mises distributions w is based on the fidelity of 

these two distributions. This is strongly motivated by the assumption of the BM model 

that the linear weighting is a Bayesian integration such that w= (1/Ű
2
)/ [(1/Ű

2
) + (1/ɣ

2
)]. 

For clarity this can be rewritten as w= ɣ
 2

/ [Ű
2
+ ɣ

2
]. Using the noise parameters in this 

way ensures a tradeoff between the two memory components such that when one has 

high precision it carries more weight, which seems a reasonable assumption of memory. 

Furthermore, the noise in one of the von Mises distributions is dependent on the noise in 

the second distribution, ůmem=ã(1/[(1/Ű
2
) + (1/ɣ

2
)]. Using the noise parameters in this way 

establishes a difference in the precision on the two von Mises distributions, such that 

ůmem is always smaller than Ű, and that when ɣ and Ű are the same, the noise on one von 

Mises is smaller than the other
3
. 

It should be noted that for completeness, we also implemented a number of other 

variations of the 3CRG model including versions where: 1) the weighting w is inferred 

but ůmem is still calculated from ɣ and Ű as above, 2)  the weighting w is calculated as 

above, but ůmem as the noise on one von Mises is replaced with ɣ, treating  the noise 

parameters as independent (See Appendix A4), and 3) all parameters are inferred, that is 

the weighting w is inferred, ɣ is the memory noise on one von Mises and Ű as noise on the 

otherðthat is, ůmem is not calculated as above (See Appendix A5). Alternate version 1) 

proved to be very unstable at lag 10+ in the hierarchical fitting (see section 4.2 for 

                                                 
3
 As a toy example, if ɣ=20 and Ű=50, ůmem=18.6 If ɣ=20 and Ű=30, ůmem=16.66. If ɣ=20 and Ű=20, 

ůmem=14.1 
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hierarchical fitting of the RG, 3CRG and BM models), and we ultimately abandoned this 

model. Alternate version 2) provided identical patterns in parameter values as the version 

implemented in Eq. 2 above, identical values of AIC and BIC, and an even better DIC 

score. However, the consequence of not tying the noise parameter via ůmem means the 

model is agnostic about which component is the primary and which is the secondary, and 

for lag 10+ the hierarchical fitting would sometimes switch whether ɣ had the smaller 

value or Ű had the smaller value. Alternate version 2) was also unstable in the hierarchical 

fitting, but adds some interesting insights (See Appendix A5 for discussion). It should 

also be noted that the 3CRG model (in any of these versions) is very stable when fitted at 

individual lags, indicating the robustness of the model. 

Table 3.1 gives the inferred parameters of the 3CRG model. Figure 3.3, bottom 

middle panel shows the simulated draws from the posterior of the 3CRG model. Similar 

to the model fits of the standard RG model, there is an increase in memory noise („)ð

i.e., decrease in fidelityðbetween lag 1 and lags 2-3, and memory noise stabilizes across 

remaining lags. The second memory noise parameter (†) follows a similar trajectory. 

There is also an increase in the guessing rate (g) from lag 1 and forward. Overall, the 

3CRG model posits a similar noise in memory for the ů parameter, and a fairly similar 

guessing rate, relative to the standard RG model. In this respect, our findings are 

remarkably consistent with Zhang and Luck (2008), Brady et al. (2013), and Donkin et al. 

(2014). The failure of the standard RG model to capture the shoulder of the central error 

distribution is accounted for by the additional noise parameter of the 3CRG model, while 

simultaneously providing a better fit to the peak of the distributions (for model 

comparison see Table 3.2). 
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 Bayesian Mixture Model (BM) 

Motivated by the experimental results, which show a regression to the mean (see 

Figure 3.3, top right panel) for a number of color categories, we sought to develop a 

model that could take into account this behavior. We propose a Bayesian mixture model 

where recall is a combination of three inputs: noisy representations stored in memory, 

prior expectations (category knowledge), and random guessing. This approach combines 

the likelihood from the Bayesian Cognitive model (BCM) developed by Hemmer and 

Steyvers (2009b) and Hemmer, Tauber, and Steyvers (2015) with the standard RG model 

of Zhang and Luck (2008). Importantly, in order to visualize the full range of samples 

from the posterior to demonstrate the regression to the mean effect, we now fit the model 

to the observed responses, rather than the error distributions.
4
  

We extend the RG model by assuming that responses are based on a combination of 

samples drawn from memory, with probability w, and prior expectations, and otherwise, 

with probability g, responses are assumed to be guesses. In the BM model, standard 

Bayesian techniques (Gelman et al., 2003) can be used to compute the mean of the 

posterior distribution:   

        ὙὩὧὥὰὰ ͯ. ρ ύ ώz ύ ‘zȟ„      Eq (3) 

where recall is a weighted linear combination, of samples y drawn from memory with 

noise ɣ and some prior expectation with mean µ and standard deviation Ű, for the 

stimulus feature, and with fidelity ůmem=ã(1/[(1/Ű
2
) + (1/ɣ

2
)]. The µ for each category 

was specified based on the assessment of expectations for color categories in Persaud and 

Hemmer (2014; See Persaud & Hemmer, 2014 for predictions from the Bayesian model 

                                                 
4
 We also refitted the standard remember-guess model to the full response distribution. See Appendix Table 

A3. There is no difference in the parameters of this model between the two fittings. 
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over the true color space).
5
 The weights are a combination of the noise in memory and 

the fidelity of the prior, such that w= (1/Ű
2
)/ [(1/Ű

2
) + (1/ɣ

2
)]. The probability density of 

recall is given by 

                ρ Ὣ ÖzÏÎ -ÉÓÅÓρ ύώ ύ‘ȟ„    Eq (4) 

      Ὣz 5ÎÉÆπȟσφπ                                       

Table 3.1 gives the inferred model parameters for the BM model. Different from the 

model fits of both the standard RG model and the 3CRG model, there is no change in 

memory noise (ɣ) between lag 1 and lags 2-3, rather memory noise is stable across all 

lags. The noise on the prior (†) grows slightly from lag 2-3 to lag 4-9 and then jumps 

dramatically for lag 10+. The weighting w is steady and evenly split between the memory 

trace and the prior until lag 10+ where, in response to the large increase in Ű, it decreases. 

As in the RG and 3CRG models the guessing rate (g) increases gradually from lag 1 and 

forward.  

Figure 3.3, bottom right panel shows the simulated draws from the posterior of the 

BM model. Both the RG model and 3CRG model simulations (Figure 3.3, bottom left 

and middle panels) show a mass of responses near the center zero-bias line and a uniform 

spread of remaining responses to either side. That is, responses are equally likely to be 

over and under-estimated regardless of the study hue value relative to the mean of the 

color categories. See section 4.3 for regression fit to the RG and 3CRG models. Unlike 

the RG model and 3CRG model, the BM model can capture the regression to the mean 

effect, where simulated responses for hue values greater than the category means are 

                                                 
5
 Category means: 1.65°, 30.35°, 60.08°, 119.69°, 230.30°, 284.12°, 323.40°  
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Table 3.2. AIC and BIC Model Comparisons by Lag Group 

 AIC  BIC 

 RG 3CRG BM RG 3CRG BM 

Lag 1 1663.16 1657.47 1915.22 1673.42 1672.87 1930.62 

Lag 2-3 9264.21 9249.76 9647.52 9277.43 9269.59 9667.35 

Lag 4-9 17090.03 17074.14 17477.20 17104.41 17095.72 17498.77 

Lag 10+ 3182.68 3182.96 3232.12 3193.45 3199.43 3248.58 

All  31374.58 31332.22 32275.59 31390.22 31355.67 32298.79 

 
*Bold font indicates better fits with a difference score greater than 5, while italicized 

font indicates marginally better fits with a difference score less than 5. 

more likely to be underestimated, while values less than the mean are more likely to be 

overestimated, creating an asymmetry similar to the raw data. 

Model Comparison 

Comparison by lag 

Model comparison between the RG and the 3CRG models was conducted using the 

MemToolBox (Suchow, et al, 2013; memtoolbox.org). The AIC and BIC values for the 

two models are reported in Table 3.2 (bold font indicates better fits with a difference 

score greater than 5, while italicized font indicates marginally better fits with a difference 

score less than 5). Due to the fact that each participant only performed 48 trials with 

varying lags leading to a sparsity of data for some lags, individual differences were not 

assessed. The data was pooled across subjects, and subjects were treated as fixed in both 

AIC and BIC. An improved fit was observed for the 3CRG model for the aggregate error 

distribution and all lag groupings, except 10+. It seems reasonable that the model 

comparison favors the standard RG model at lag 10+ given the increase in the guessing 
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component of the error distribution. The uniform distribution has lifted and could 

potentially account for the portion of the error distribution that would be accounted for by 

the second fidelity component parameter. While the improvement is marginal for lag 1 

(less than a 5 point difference in AIC between RG and 3CRG), the improvement is 

substantial for lags 2-3 and 4-9. Memory at lag 1 appears to have a high level of precision 

and a majority of the performance can be attributed to remembering with little influence 

of guessing. In contrast, memory is both precise and less precise at other lags and there is 

a greater rate of guessing. This is consistent with the 3CRG assumption that there is both 

a memory component with high fidelity and a component with greater noise. The 3CRG 

model makes it clear that there is additional information in the error distribution that 

cannot be solely explained by remembering with noise and guessing (i.e. the RG model). 

The AIC and BIC values for the BM model are also reported in Table 3.2. No 

improvement in fit was observed for the BM model relative to either the RG or the 3CRG 

models. There are several reasons why the BM model might lose out in the model 

comparison. For example, we assume only one value for tau for all categories, and we 

specify the color categories based on universal color categories. Furthermore, the weak 

regression effects in the data allow the 3CRG model to successfully fit all the data 

without accounting for the regression effects. We discuss all of these reasons along with 

possible remedies in the discussion section. It is important to note that making allowances 

for an influence of category information in the BM model produced the characteristic 

regression to the mean effect which cannot be captured by the two other models, and we 

still see this as a substantial strength of the BM model. Restricting analysis to error 

modelsðwhile producing an improved fitðleads to very different conclusions about 
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memory. The regression effect makes it clear that category knowledge plays an important 

role in recall, and that this must be considered in models of LT memory.  

 

Hierarchical model comparison 

Thus far, we have evaluated the models based on fits at the individual lags. It is 

reasonable, however, to assume that the same model applies to all lags. Therefore, in 

addition to fitting the separate models for each lag, we also fitted a single hierarchical 

model to all lag groupings together, for each of the three models. This model treats each 

of the lag groupings parameters as samples from a normally-distributed population and 

then infers both best fitting parameters for each lag grouping, as well as the population 

mean parameter.  

Because AIC and BIC are not appropriate for assessing hierarchical models, here we 

report DIC scores (Deviance Information Criterion; Spiegelhalter et al., 2002, van der 

Linde, 2005). The DIC is a generalization of the AIC for hierarchical models, which 

penalizes both for quality of fit and number of parameters. As before, the fitting was 

conducted using the MemToolBox. 

The parameters for each of the three hierarchical implementations were essentially 

identical to the parameters reported in Table 3.1 across all lag groupings. However, due 

to the sparsity in the data at lag 10+ some of the models are very sensitive to the choice 

of prior distribution. This particularly affects the BM model in the hierarchical 

implementation. The DIC for the models were as follows: RG = 31280, 3CRG = 31230, 

and BM = 32173. This replicates the pattern of model comparison when lags are 
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estimated separately. There is an improved fit observed for the 3CRG model over both 

the RG and BM models. 

Regression Comparison 

To further understand how the models capture the observed data, a regression analysis 

was performed on the simulations from each of the three models, similar to the regression 

analysis performed on the subject data (see section 2.2.3). We simulated draws from the 

RG model assuming 61 subjects and 48 study hue values as in the experiment (Figure 

3.3, bottom left panel). Because the regression effect is assumed to operate on memory 

(not guessing), only responses assumed to be drawn from memory (within 3 standard 

deviations [ů= 15.82] of the study value) were considered for the analysis. A linear 

regression model was fitted to each simulated subject for each of seven universal color 

categories: red, orange, yellow, green, blue, purple and pink (similar to the regression 

analysis for the raw data).  Recall that, t-tests of the observed subject data revealed that 

the slopes of 4 of the 7 categories were significantly different from zero. In stark contrast 

to the subject data, one sample t-tests of the RG model slopes failed to find a significant 

difference from zero in any category. The mean slopes for all categories were: red: -0.04; 

orange: -0.16; yellow: -0.31; green: 0.09; blue: 0.11; purple: 0.07; pink: -0.05. 

We simulated draws from the 3CRG model following the same procedure as for the RG 

model. Responses within 3 standard deviations [Ű= 28.51] of the study value were 

analyzed. One-sample t-tests of the 3CRG model slopes failed to find a significant 

difference from zero in all categories, except purple [t(60) =-1.90, p= 0.03]. Note that the 

observed subject slopes are not significantly different from zero for the purple category, 

and thus, the 3CRG model does not mirror the subject data for this category. Mean slopes 
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were red: 0.79; orange: -0.62; yellow: -0.29; green:-0.07; blue: -0.04; purple: -0.98; pink: 

-0.29. 

Lastly, we simulated draws from the BM model following the same procedure as for 

the other models. Responses within 3 standard deviations [Ű= 25.88] of the study value 

were analyzed. One sample t-tests for the simulated BM model data revealed a similar 

pattern to the subject data, in that 4 of the category slopes were different from zero 

(yellow: t(60)= -4.26, p=.00; green: t(60)= -3.62, p=.00; blue: t(60)= -4.18, p=.00; pink: 

t(60)= -3.68, p=.00). The mean slopes for all categories were red: -0.48; orange: -1.07; 

yellow: -0.17; green:-0.36; blue: -0.37; purple: -0.30; pink: -0.65. 

For completeness, we then compared the slopes from the subject data for each 

category to the slopes of the simulated data. We sought to evaluate whether observed 

regression patterns in the subject data were observed in the model simulations ï i.e., in 

the categories in the subject data where the slopes were significantly different from zero, 

the model simulations also resulted in non-zero slopes of the same degree. For the RG 

model, there were significant and marginal differences in slopes, when compared to the 

subjective slopes, for four categories (red: t(120)= -1.74, p= 0.08; yellow: t(120)= 2.12, 

p= 0.04; green: t(120)= -2.87, p= 0.00; blue: t(120)=-2.38, p= 0.02). This was due to the 

RG model either failing to predict a regression (red and green), or predicting an effect in 

the opposite direction of the observed data (yellow and blue). In the three remaining 

categories, the failure to find significant differences between the model and the subject 

data was due to the RG model predicting no regression when there was no regression 

effect in the observed data (orange and purple), or when the regression effect in the data 
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was weak (pink). In total, the RG model only correctly predicted two categoriesðyellow 

and purple.  

Similar to the RG model, for the 3CRG model there were significant and marginal 

differences in slopes, when compared to the subjective slopes, for four categories (red: 

t(120)= -2.24, p= 0.03; yellow: t(120)= 1.72, p= 0.09; green: t(120)= -2.53, p= 0.01; 

purple: t(120)=2.11, p= 0.04). This was due to the 3CRG model either failing to predict a 

regression (green), predicting the effect in the opposite direction (red and yellow), or 

predicting a strong regression when there was no observed regression in the data (purple). 

In the remaining three categories, the failure to find significant differences was due to the 

3CRG model predicting a weak, but non-significant regression effect, when there was a 

weak, but significant effect in the data (blue and pink), or predicting a weak, but 

marginally significant regression, when there was no regression effect in the data 

(orange). In total, the 3CRG model only correctly predicted the regression pattern in the 

blue and pink categories.  

In contrast, for the BM model, there was no significant difference in five of the seven 

categories. This means that the BM model either predicted a regression to the category 

mean (red, green, and blue) or no regression (yellow and purple) for the same categories 

as was observed in the data. In one category (pink: t(120)=2.47, p= 0.02), the observed 

difference is due to the BM model over-predicting the steepness of the regression, rather 

than failing to predict the regression effect. Only in one category (orange: t(120)=3.59, 

p= 0.00), does the BM model fail to predict the pattern in the subjective dataðby 

predicting a negative slope when the slope  in the subject data, although negative, was not 

significantly different from zero. 
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In summation, the collective results of the regression analyses suggests that the slopes 

generated from the BM model more closely resemble the regression behavior in the 

subject data, compared to both the RG and 3CRG models.  

Discussion 

Summary We investigated the time course of errors in recall in an effort to understand the 

components that contribute to LT episodic memory. We employed a novel experimental 

paradigm and conducted a lag analysis to characterize the influence of category 

knowledge, and memory over time. We then implemented three distinct cognitive models 

to evaluate the potential contributing components to memory. Furthermore, we found that 

there are two important factors in LTM that cannot be accounted for by the standard RG 

model. In the aggregate, recall reflects a combination of three components: a peaked 

memory component, a less precise memory component, and a guessing component, 

capturing the peak and óshouldersô in the error distributions. In the full response data, 

recall reflects regression to the mean effects for several color categories, indicating a 

contribution of prior category knowledge to memory.  

The 3CRG model can account for the additional component in memory, and provided 

a large improvement in the fit over the RG model. The benefit of the 3CRG model is that 

it has an additional component that can account for a number of mechanisms that might 

influence LT memory, such as verbal labeling (Donkin et al., 2014), and variable 

precision in memory (van den Berg et al., 2012). Despite the strengths of the 3CRG 

model, there is no clear theoretical interpretation of what is encompassed in this 

component. Moreover, like the RG model, it also cannot capture the regression patterns 

in the data. The BM model, in contrast, can account for both a second memory 
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component and the regression patterns, and the BM model also has a theoretical 

framework for the additional component. It, however, loses dramatically in the model 

comparisons. The BM model we implemented here is a first pass at understanding the 

influence of category knowledge, and there are a number of factors that might account for 

the 3CRG model being favored over the BM model, such as weak regression effects in 

the data, fragile associations, incorrect category assumptions and other general modeling 

assumptions. There are also several possible remedies that might improve the BM model 

and are discussed in the next section. Furthermore, our results have important 

implications for understanding mechanisms such as decay, sudden death and interference. 

Weak regression effects  

A key assumption of the BM is the regression to the mean effect. This effect has been 

demonstrated to be robust in memory (Hemmer & Persaud, 2014; Hemmer & Steyvers, 

2009a; Hemmer, Tauber, Steyvers, 2015; Huttenlocher, Hedges, and Duncan, 1991; 

Huttenlocher, Hedges, & Vevea 2000; Persaud & Hemmer, 2014; Hemmer, Persaud, 

Kidd, & Piantadosi, 2015). In our data however, using seven universal color categories as 

a benchmark resulted in poor alignment to the data. The regression analysis revealed that 

there was no significant regression in three categories, suggesting that the use of 

universal color categories in the regression assumptions is likely not representative of our 

data. Furthermore, the fact that the 3CRG model outperforms the BM model, in both AIC 

and BIC, suggests that the regression effects are weak enough that the inability of the 

3CRG model to fit the regression effects is outweighed by its improved fit to the rest of 

the data. While Persaud and Hemmer (2014) found strong regression effects to all seven 

universal color categories, they conditioned their regression analysis on responses where 
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participants also provided the correct verbal label for the study value at test. In other 

words, they only analyzed data where the participants were able to recall the association 

between the test cue (shape) and the study color. Here we include all data, which likely 

includes trials where participants misassociated shape cues to studied colors, guessed, or 

made some other error. A key test for the flexibility of 3CRG model without accounting 

for regression effects would be if the model still outperformed the BM model for the 

finding of differential bias to two separate categories for stimuli studied at the same size 

(i.e., a large strawberry and a small apple ïSee Hemmer & Steyvers, 2009a).  

We acknowledge that our findings are likely data dependent. There are several 

possible considerations that might improve the fit of the BM model, or help to lend 

further support for the strength and flexibility of the 3CRG model. Since the stimuli were 

drawn from the true hue space, categories had varying sizes. An example of this can be 

seen in Figure 3.3, top left panel, where the raw data shows high accuracy (large squares) 

around the yellow category, because this is a very small category. A possible future 

extension to the BM model would be one that considers variable precision in the Tau 

parameter (here we have assumed that there is only one value of tau for all categories). 

This would be akin to the van den Berg et al. (2012) variable-precision model which 

assumes variability in the precision with which items are encoded, but with variable 

precision in the categories. This could remedy the weak regression effects in small 

categories which obscures the importance of capturing the regression effects in other 

categories. 
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Alternative color categories 

The samples drawn from the posterior of the BM model (Figure 3.3 bottom right) 

reveals a misalignment between the color categories used to inform the model, and the 

actual categories borne out in the data. For example, in the data there appears to be two 

blue categoriesïlight blue and dark blue. However, the BM model only exhibits 

regression to one blue category ïconsistent with universal categories. To better 

understand what color categories participants might have regressed toward in the 

response data, we conducted a cluster analysis (see Appendix A6). Interpreting the 

clusters relative to the standard universal color categories, suggests that observers may be 

using eight categoriesðfive of which can be interpreted relative to the universal color 

categories: a category composed of red, orange, and yellow universal color values 

(visualized in red; Figure A1); another category predominately composed of green 

values; two separate categories for the hue space encompassing blue values (visualized in 

light blue and dark blue); one category for purple; and one for pink (although pink may 

contain red values, given the circular nature of the hue space). Interestingly, there were 

two uniform clusters that span the entire hue range and fell on the top and bottom edges 

of the graph. These clusters may potentially correspond to the guessing component, or 

could relate to the large value for Ű at lag 10+ in the BM model. Participants also appear 

to use color categories at various levels in the color hierarchy. For example, participants 

appear to use the subordinate categories of light blue and dark blue. On the other hand, 

for colors in the universal red and orange ranges, they use a superordinate color category 

for warm colors (i.e. a blended category for red, orange, and yellow).  
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Another interesting feature of the cluster analysis is the natural prediction of 

regression to the mean behavior in the data. The inherent regression effect learned from 

the cluster analysis and the use of color categories with different boundaries, provide 

important constraints for future considerations of Bayesian modeling of color space. 

While we think that the BM model provides an important theoretical framework in 

considering regression effects and category influences, continued failures of the BM 

model even under improved category assumptions would lend further strength to the 

3CRG model. 

Fragile associations 

Another factor that might impact the performance of the modelsðparticularly in the 

individual lag fitsðis that of fragile associations. Modeling paradigms in visual short-

term memory have successfully extended the RG model to incorporate task-based 

components, such as ñmisassociationò or ñmisbindingò parameters (Bays, Catalao, & 

Husain, 2009; Bays, Wu, & Husain, 2011). There are some hints that there might be 

fragile associations in our data as well.  

At lag 10+, precision in the additional component in both the 3CRG and BM models 

is low and the rate of guessing is high, favoring the RG model. In fact, lag 10+ is the only 

lag grouping where the 3CRG model loses. This however, might be a consequence of the 

experimental design.  Following standard procedures in color memory paradigms in 

visual working memory, we deliberately use an experimental design where we assign 

colors to random objects (e.g., Brady et al., 2013). An important consequence of this 

design, in conjunction with long lags, in the study of LTM, is that the object color pairing 

might be what is forgotten. In other words, performance at lag 10+ gives the appearance 
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of a high rate of guessing, not because of a failure to remember the studied hues, but due 

to a failure of the shape cue to retrieve the correct hue pairing. A natural task with a 

stronger cue-target association might result in a substantially different pattern of data ï 

one where the rate of guessing is lower. Recent work by Lew, Pashler, and Vul (2015) 

proposes an interesting new model of fragile associations in LTM. While this is beyond 

the scope of this paper, given that we cannot assess fragile associations in the current 

experimental paradigm, we agree that this is an important future direction. Fragile 

associations might hamper the BM model more than the other models because the 

behavior looks like guessing, but it has a strong memory trace, albeit bound to the wrong 

cue. Therefore, the model has a difficult time assigning the behavior, and the role of prior 

knowledge appears more diffuse. 

Interference vs. Decay 

Models of memory have varied in their mechanisms of forgetting. Some models 

theorize that forgetting occurs as a function of decay of memory traces over time (e.g., 

Barrouillet, Bernardin, & Camos, 2004; Portrat, Barrouillet, & Camos, 2008), while 

others attribute forgetting to interference (e.g., Lewandosky, Oberauer, Brown, 2009; 

Neath & Brown, 2012). Our findings appear to provide support for both forgetting 

mechanisms. First, our results reveal a decrease in memory fidelity (increased noise in 

the modelsô ů parameter) from lag 1 to lag 2-3 in the RG model, but in all three models 

memory fidelity then remains stable across remaining lag groups. This suggests that the 

memory trace initially suffers some decay during virtually short-term/working memory, 
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which supports the decay account (Baddeley & Scott, 1971
6
), but is stable into LT 

memory. This progression in parameters also suggest thatð although we are modeling 

the lag groupings under the assumption that one model should account for all 

groupingsðthere is something different about the data at lag 1ð namely very high 

precision, no second component and virtually no guessing, consistent with short-

term/working memory.  

While memory noise stays steady across lags, guessing (g) increases across lags for 

all models. In this respect, our findings are remarkably consistent with Zhang and Luck, 

2008, Brady et al., 2013, and Donkin et al., 2014. This has led to the interpretation that 

there is an upper bound on memory noise in LTM, and that memory suffers a ósudden 

deathô (Brady et al., 2013). Brady et al., 2013, however, could only make this assertion 

evaluating the transition from working to LT memory. Our design allows us to 

understand what happens across lags (time) in LTM. For the BM model, the noise in the 

prior (Ű), exhibits a very different pattern from the RG model: Ű is steady on lags 1-3, then 

increases slightly for lags 4-9, but increases dramatically for lags 10+ (a similar pattern 

can be seen in the alternative implementation of the 3CRG model (Appendix A5) with all 

parameters inferred). As a result, the weighting (w) of samples from memory and the 

prior changes across lags. This can be understood as sampling from different granularities 

of prior knowledge, consistent with hierarchical influences in LTM (e.g., Hemmer & 

Steyvers, 2009), and the hierarchical nature of colors (Persaud & Hemmer, 2014). On 

earlier lags One might use a specific prior (e.g., light red or dark red), but on intermediate 

lags One might use a prior of óredô, and at later lags, where the noise on the prior is very 

                                                 
6
 Although more recent work suggests that forgetting in short-term memory can also be explained 

by an interference account of forgetting (see Lewandosky, Oberauer, Brown, 2009 for other interference 

based views accounting for data traditionally thought to support the trace decay account).  



66 

 

 

 

large, One might simply use a prior of warm versus coolðor some similar strategy. This 

progression in parameters in the BM model is contrary to the idea of sudden death. Taken 

together, our data suggests that not only is fidelity fixed in LTM, but also, category 

information plays an important role before One resorts to random guessing. Moreover, 

there is no decay in LTM and no sudden death.  

This leaves interference (Neath & Brown, 2012) as the likely mechanism for 

increased guessing; especially since the trials in our task are interleaved, and the target-

cue bindings (color-shape pairing) are arbitrary in nature. Thus, by lag 10+ it is possible 

that the memory trace (color) is present, but the association to the cue is difficult to 

retrieve as a result of studying other target-cue combinations. Such an interference 

explanation is consistent with a fragile association account of memory (Lew, Pashler, & 

Vul, 2015), where recall is thought to be a combination of remembered information, 

misassociated information (incorrectly binding targets to cues), and guessing. 

Recent work assessing event-based memory in rhesus monkeys lends further credence 

to interference being the mechanism of forgetting (Devkar & Wright, 2016). Memory 

accuracy was found to decrease as a function of proactive interference, such that, 

previously presented stimuli (as far back as 16 trials) interfered with same/different 

recognition responses. Also, the influence of proactive interference did not change as a 

function of presentation time between study and test, and inter-trial time. In other words, 

longer delays between study and test and between trials, where previously studied 

information would have decayed, did not hamper interference (again, even when the 

information was studied 16 trials prior).  

Serial dependencies are potentially another source of interference that appears as 
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guessing. Serial dependences refer to the bias in memory that results from information 

experienced on previous and present trials. It has been demonstrated in visual perception 

that memory for one item is influenced by accompanying (even task-irrelevant) 

information and a running average over previous trials (Huang & Sekuler, 2010). 

Similarly, the perceptual system is serial dependent in that perception is informed by both 

prior and present information (Fischer and Whitney, 2014).  

While serial dependencies may be present at later lags before participants resort to 

guessing randomly, they are not the source of interference at earlier lags where category 

information is still available. Hemmer and Steyvers (2009a) showed that in LT memory, 

the regression to the mean effect is not a result of sequential dependencies. They 

demonstrated a differential bias when two items from different object priors (e.g., an 

apple and a strawberry) were studied at the same size. This is also the case in the data 

presented here (see Figure 3.3, top row middle panel) where there is a differential bias, 

for example on the boundary between yellow and green, where neighboring hue value 

results in regression to opposite categories. Sequential dependencies would result in an 

equal bias towards either category on the boundary dependent on the previous trial (i.e., if 

previous trial was green bias would be to green but if previous trial was yellow bias 

would towards yellow). A critically explicit prediction of the BM model is exactly the 

differential regression at category boundaries as observed in our data.  

Given the design of the paradigm used in this investigation, we draw our conclusions 

with some caution. It is difficult to disentangle the roles of memory decay and 

interference as mechanisms of errors and forgetting because we do not control for 

rehearsal (Lewandosky, Oberauer, Brown, 2009; Portrat, Barrouillet, & Camos, 2008), 



68 

 

 

 

and trials are interleavedðwhich could result in intra-sequence interference (Neath & 

Brown, 2012)ðboth factors that are required to discern between decay and interference. 

The decay versus interference differentiation is further complicated by the idea of 

equivalence, which suggests that both decay and non-decay models provide strong fits to 

the same data (Neath & Brown, 2012). 

Lastly, a contributing factor to memory fidelity, that is not explored in this work but 

is noteworthy, is the role of intentional forgetting. When participants are instructed to 

forget certain information in the study stimuli, this leads to a decrease in the probability 

that the memory trace is retrievable and a decrease in the overall fidelity of the memory 

trace (Fawcett, Lawrence, & Taylor, 2016). In this way, memory intentions influence the 

quantity of information encoded into LTM and the quality of the information. Fawcett, 

Lawrence, & Taylor  (2016) modeled this finding using a hierarchical variable-precision 

mixture model similar to the standard RG model, with the allowance of variability in 

encoding similar to van den Berg et al (2012).  

Conclusions 

The implications of the findings from these three models highlight significant 

characteristics of LT memory. First, consistent with Donkin et al. (2014), there is a clear 

intermediate stage in LT memory between precise recall and random guessing. While the 

difference between our 3CRG model and the Donkin et al. (2014) model is a question of 

technical assumptions, the difference of these two models to the BM model, however, is 

one of core assumptions, namely that there is an influence of prior knowledge and a 

regression to known categories. We further argue that at this intervening step, there is a 

more generalized influence of expectations beyond verbal labeling. Notably, restricting 
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analysis to error models that mask intervening steps leads to very different conclusions 

about memory.  Deriving conclusions about memory based solely on error distributions is 

misleading in that it can obscure critical features of memory, such as the influence of 

prior category knowledge. Therefore, it is important that future research seeks to move 

beyond the standard remember-guess paradigm for LT memory, and work to elucidate 

the role of fragile associations and interference. We believe that we have clearly 

demonstrated that the 3CRG model is robust and consistently outperforms the other 

models, and that the BM model explains important patterns in the data.  

Appendix 

A.1 Label vs No-Label Parameters 

Table A1 gives the parameter values for the three experimental conditions: Label 

First (recall color label before generating the color), Label Last (generate a color before 

recalling color label), and No Label (never provided a color label). For some lag groups, 

the model had a difficult time converging given the sparsity of the data. Also, there was 

no lag of 1 in the No label condition. 

 

Table A1. Parameter estimates and (confidence intervals) for label vs. no-label 

conditions 
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A.2 Parameters at All Lags 

To develop reasonable lag groups we first infer parameter values for all lags using the 

RG model. Table 3B provides RG model parameter values for each individual lag.  

A.3 RG model 0-360 

For comparison to the Bayesian Model on the full range of hue values, we 

implemented the RG model on the same response data space (0-360 degree). There is no 

difference in the parameters between the two fittings of the RG model. See Table A3 for 

the inferred parameters. 

 

Table A2. Parameters for each lag 
 
 Fidelity  

ů (°) 
Guess 

g 

Lag 1 11.85 .06 

Lag 2 18.13 .37 

Lag 3 14.07 .47 

Lag 4 18.13 0.44 

Lag 5 18.10 0.47 

Lag 6 16.09 0.52 

Lag 7 17.14 0.56 

Lag 8 18.04 0.49 

Lag 9 19.38 0.54 

Lag 10 14.78 0.63 

Lag 11 10.37 0.48 

All  15.84 0.46 

  
 

 Table A3. RG Model Parameter Values (0-360) 
 

 Fidelity  (Conf. Int.) 

ů (°) 

Guess Rate (Conf. Int.) 

g 

Lag 1 11.81 (10.59-13.26) 0.06 (0.03-.010) 

Lag 2-3 16.08 (14.40-18.15) 0.42 (0.37-0.46) 

Lag 4-9 17.68 (16.05-19.40) 0.49 (0.46-0.53) 

Lag 10+ 15.13 (12.03-20.65) 0.61 (0.53-0.69) 

All  15.83 (14.82-16.95) 0.46 (0.44-0.48) 
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A.4 3CRG model without independent noise parameters 

 An alternate version of the 3CRG model where the weighting w= ɣ
 2
/ [Ű

2
+ ɣ

2
], but 

ůmem as the noise on one von Mises is replaced with ɣ, was implemented. Instead of the 

noise component in one von Mises distribution being dependent on the other, here the 

noise parameters were treated as independent.  

 The probability density function of the 3CRG model with all inferred parameters 

is given by, 

ρ Ὣᶻ ρ ύ ÖzÏÎ -ÉÓÅÓπȟ† ύ ÖzÏÎ -ÉÓÅÓπȟ‪               Eq(A1) 

                                                Ὣ 5zÎÉÆπȟσφπ                                       

where g , ‪ and † are all inferred values from the data. Table A4 shows the parameter 

values for each lag group under this model and reports the AIC and BIC scores relative to 

the RG model. The parameter values for this model in the hierarchical fitting detailed in 

the modeling section (see section 4.2) were identical to the individual lag fitting and are 

not reported. Note that the parameter values at lag 10+ had a tendency to reverse in 

different runs of the hierarchical model, such that sometimes ɣ
 
å14 and Ű å30, but at 

other times ɣ
 
å30 and Ű å14. Irrespective of the order of the parameter values this version 

Table A4. Hierarchical 3CRG Model with independent noise parameters 
3 Component Remember-Guess Model with independent noise parameters 

 Fidelity (Con. Int.) 
ˋ (°) 

Fidelity (Con. Int.) 
ˍ (°) 

Guess (Con. 
Int.)  

g 

Mixin
g 

w*  

AIC BIC 

Lag 
1 

10.62  (9.41-12.74) 28.55  (17.05-
80.52) 

.03  (.007-

.082) 
0.56 1657.81 1673.20 

Lag 
2-3 

13.77  (12.30-
16.15) 

29.46  (23.06-
44.79) 

.41  (.35-.45) 0.45 9252.46 9272.29 

Lag 
4-9 

15.30  (13.65-
16.83) 

31.26  (23.61-
35.52) 

.48  (.45-.52) 0.44 17077.1
4 

17098.7
2 

Lag 
10+ 

14.02  (12.28-
581.89) 

31.06  (11.93-
989.33) 

.58  (.53-.69) 0.45 3183.15 3199.61 

All 13.86  (13.01-
15.07) 

29.60  (25.04-
39.40) 

.44  (.41-.47) 0.48 31339.0
2 

31362.4
8 
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of the 3CRG model consistently had the lowest DIC=31177.53 in the hierarchical 

implementation of this model, which favors this model relative to both the RG and BM 

models. 

A.5 3CRG model with all parameters inferred 

The 3CRG model with all the model parameters inferred was implemented. Instead of the 

noise component in one von Mises distribution being dependent on the other, here the 

noise parameters were treated as independent and w is an additional free parameter. 

The probability density function of the 3CRG model with all inferred parameters is given 

by, 

ρ Ὣᶻ ρ ύ ÖzÏÎ -ÉÓÅÓπȟ† ύ ÖzÏÎ -ÉÓÅÓπȟ‪         Eq (A2) 

                                                Ὣ 5zÎÉÆπȟσφπ                                       

where g, w, ‪ and † are all inferred values from the data. Table A5 shows the 

parameter values for each lag group under this model and reports the AIC and BIC scores 

relative to the RG model. Table A6 shows the parameter values for this model in the 

hierarchical fitting detailed in the modeling section (see section 4.2). Note that the 

parameter values at lag 10+ changes between the two implementations of this model. The 

Table A5. 3CRG Model with all parameters inferred, and with AIC and BIC Scores 
3 Component Remember-Guess Model with all parameters inferred 

 Fidelity  (Con. 

Int.) 

ů (°) 

Fidelity  (Con. 

Int.) 

Ű (°) 

Guess 

(Con. Int.)  

g 

Mixi

ng 

w* 

AIC  BIC 

Lag 

1 

6.97  (5.02-

11.84) 
19.95  (13.43-

47.71) 
0.03  (.008-

.082) 
0.56 1657.8

7 
1678.3

9 
Lag 

2-3 

8.45  (6.66-

11.27) 
28.40  (23.23-

46.63) 
0.36  (0.30-

0.41) 
0.45 9229.6

0 
9256.0

3 
Lag 

4-9 

9.57  (7.66-

12.45) 
31.05  (24.76-

44.41) 
0.43  (0.38-

0.48) 
0.44 17051.

95 
17080.

72 
Lag 

10+ 

13.07  (10.37-

19.02) 
94.68  (25.88-

439.98) 
0.28  (0.03-

0.65) 
0.45 3312.5

4 
3334.4

9 
All  9.04  (7.71-

10.63) 
29.64  (24.96-

39.28) 
0.40  (0.36-

0.43) 
0.48 1657.8

7 
31314.

45 
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Figure A1. The 8-group unconstrained model-based classification of the data. 8 optimal 

clusters were learned from the Expectation-Maximization algorithm evaluated by BIC 

scores. Each of the 8 colors correspond to a different cluster that is color coded to reflect 

the color category to which most of the study values in the data belong. 

DIC score of the hierarchical version of this model was 31194.54, which still favors this 

model relative to both the RG and BM models. 

A.6 Cluster analysis The cluster analysis was implemented to infer the categories 

participants regressed to in the experiment. Briefly, the clustering algorithm (Fraley & 

Raftery, 2006) performs a hierarchical agglomeration to maximize the classification 

likelihood for up to 9 groups in each model. Next, the Expectation-Maximization (EM) 

algorithm calculates the maximum likelihood estimation for all models and number of 

cluster combinations. Lastly, the algorithm computes the BIC scores for each cluster 

mixture model with optimal parameter values and returns the best fitting cluster size 

model. The best BIC score (BIC = -66210.13) revealed that 8 clusters produced the most 

Table Table A6. Hierarchical 3CRG Model with all parameters inferred 

 


