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ABSTRACT OF THE DISSERTATION 

Memory Lane: Evaluating Factors that Contribute to Long-term Episodic Memory 
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Dissertation Director: 

Pernille Hemmer 

 

Visual working (WM) and long-term memory (LTM) are intricately intertwined. 

As such, current theories and models of VWM have been extended to characterize 

behavior in long-term memory. For example, a popular framework for investigating 

VWM is the remember-guess paradigm, which suggests that information is either recalled 

with some noise, or is no longer retrievable and individuals resort to random guessing 

(e.g. Brady et al., 2013).  This framework has been extended to include an additional 

factor that contributes to memory, namely interference from non-target information 

(a.k.a. misassociations; Lew et al, 2015). In this way, individuals recall information with 

noise, missassociate memories to other task relevant information, or guess randomly. The 

compilation of these studies has identified the contribution of memory fidelity, 

misassociations, and random guesses to recall performance.  

Notably, the remember-guess framework stands in stark contrast to theoretical 

Bayesian models of memory, which suggests that prior knowledge and expectations for 

the statistical regularities of the environment influences recall from long-term memory 

(Hemmer & Steyvers, 2009b).  The influence of prior knowledge is most prevalent when 

the stimuli in the memory tasks mirror the regularities of the natural world.  
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In this dissertation, I seek to challenge current theories of memory regarding the 

contribution of fidelity, misassociations, and random guesses to LTM, by evaluating the 

simultaneous contribution of prior knowledge. The combination of results from these 

studies suggest that prior knowledge plays a crucial recall in reconstruction from long-

term episodic memory, and when prior knowledge is brought to the task of remembering, 

it alters the contribution of misassociations and random guessing to recall performance.  
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Chapter 1: Introduction 

A particularly important question for memory research regards the nature of episodic 

memory over time is: what happens to memory traces as they transition from visual short-

term/working memory into long-term memory and what factors contribute to long-term 

memory performance? These questions have significant implications for how long-term 

memory is theorized, and in turn operationalized in models of long-term memory. 

Various paradigms and accompanying models have been implemented to explain long-

term memory, with some being derived from studies of visual working memory, under 

the assumption that processes and mechanisms of short-term and working memory also 

exist in long-term memory (Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Donkin, 

Nosofsky, Gold, & Shiffrin, 2014; Huttenlocher, Hedges, & Vevea, 2000; Hemmer & 

Steyvers, 2009b; Persaud & Hemmer, 2016; Lew, Pashler, & Vul, 2015). 

These studies have identified four factors that contribute to the reconstruction of 

information from long-term episodic memory, namely: prior knowledge, memory 

fidelity, random guessing and interference (a.k.a. misassociations) which results when 

non-target information stored in memory interferes with the retrieval of target 

information. Prior knowledge and expectations for the statistical regularities of the 

environment have been shown, on average, to improve recall from long-term memory 

(Hemmer & Steyvers, 2009a; 2009b). Random guessing contributes to recall performance 

when information reaches a low state of fidelity and is no longer retrievable from 

memory (Brady et al., 2013). Alternatively, when information is difficult to retrieve, 
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individuals might use other task relevant information (i.e., missassociate), before 

resorting to random guessing (Lew et al., 2015).  

In this way, the role of each of these factors in long-term episodic memory has been 

studied relatively independent of one another (with the exception of random guessing) in 

terms of their impact on memory. For example, Lew and colleagues (2015) evaluate the 

role of misassociations and random guessing in long-term memory, but not the influence 

of prior knowledge. Similarly, Brady and colleagues (2013) evaluate the role of fidelity 

and random guessing in long-term memory, but not the influence of interference in the 

form of misassociations. However, for certain stimulus environment, particularly when 

the environment reflects features of the real world, the contribution of these factors may 

be intricately intertwined. 

Therefore, the work presented in this dissertation seeks to address the question of 

what happens to information over time, while simultaneously evaluating the combined 

contribution of these four factors to long-term memory performance.  In what follows is a 

brief overview of each topic that will be discussed and the corresponding chapters in 

which they can be found. In the chapters 2-4, I will present published research from three 

studies.  

Chapter 2 details a study that empirically and computationally assessed the role of 

prior knowledge in long-term episodic memory for color and appears in Proceedings of 

the Annual Meeting of the Cognitive Science Society. This work was presented at the 

Cognitive Science Society Conference and received the Glushko Student Travel Award. 

This work demonstrated that people’s categorical knowledge and expectations influence 

episodic memory, and that this reconstructive process can be simulated with a generative 
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Bayesian model. Chapter 3 discusses a provisional cross-cultural study that extended the 

findings from chapter 2, and demonstrated that the use of prior knowledge may be a 

general mechanism of episodic memory. This work also appeared in the Proceedings of 

the Annual Meeting of the Cognitive Science Society and partially in i-Perception. The 

combination of the studies in Chapters 2 and 3 illustrate that the role of prior knowledge 

should not be ignored in theories and models of long-term episodic memory.  

The research presented in Chapter 4 explored the role of memory fidelity, prior 

knowledge, and random guessing in long-term memory and compared the performance of 

current models of memory. This work appears in Cognitive Psychology and was 

presented at the Annual Meeting of the Mathematical Society. The results from this work 

suggested that there are factors that influence memory such as prior knowledge and other 

factors that result in low-state fidelity that have been ignored in previous memory 

models. In previous models, the influence of these factors has erroneously been attributed 

to random guessing. Also, certain analytical practices (e.g. evaluating aggregated error 

distributions) used in past models obscured important contributions of factors to memory, 

such as prior knowledge. This work made transformative discoveries to how memory 

works and exposed a major flaw in current practices for evaluating memory data.  

Lastly, Chapter 5 presents new work evaluating the contribution of prior knowledge, 

interference in the form of misassociations, and random guessing in long-term memory. 

The results from this work demonstrated that a large portion of errors in memory for 

meaningful stimuli, resulted from misassociations and prior knowledge, not random 

guessing. These results supported the hypothesis that there is little to no random guessing 

in LTM for semantically associated, ecologically valid stimuli. The combination of all 
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studies discussed in this dissertation provides a comprehensive understanding of long-

term memory and the factors that contribute to memory performance. 
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Chapter 2: Prior knowledge and Memory 

The Influence of Knowledge and Expectations for Color on Episodic 

Memory 
Kimele Persaud and Pernille Hemmer (2014). Proceedings of the 36th Annual 

Conference of the Cognitive Science Society 

 

K. Persaud and the advisor, P. Hemmer, developed the study concept and study design 

together. Stimulus creation, testing and data collection were performed by K. Persaud. K. 

Persaud performed the data analysis and interpretation, which were then reviewed by the 

advisor P. Hemmer. K. Persaud and P. Hemmer developed and implemented the model 

together. K. Persaud drafted the manuscript. After the manuscript was drafted, K. Persaud 

and the advisor, P. Hemmer, revised the manuscript. K. Persaud implemented all critical 

revisions in response to reviewer comments. 

 

Abstract 

Expectations learned from our environment are known to exert strong influences on 

episodic memory. Furthermore, people have prior expectations for universal color labels 

and their associated hue space—a salient property of the environment. In three 

experiments, we assessed peoples’ color naming preferences, and expectation for color. 

Using a novel experimental paradigm, we then assessed free recall for color. We found 

that people’s color naming preferences were consistent with the universal color terms 

(Berlin & Kay, 1969), as well as a strong subjective agreement on the hue values 

associated with these color labels. We further found that free recall for color was biased 

towards the mean hue value for each preferred color. We modeled this relationship 

between prior expectation and episodic memory with a rational model under the simple 
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assumption that people combine expectations for color with noisy memory 

representations. This model provided a strong qualitative fit to the data. 
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Introduction 

Our knowledge and expectations learned from our environment shapes how we 

perceive, navigate, and interact with the world. They influence how we categorize objects 

and information (Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, Hedges, & 

Vevea 2000; Jern & Kemp, 2013; Galleguillos & Belongie, 2010), how we visually 

perceive objects (Eckstein, Abbey, Pham, & Shimozaki, 2004; Epstein, 2008; Goldstone, 

1995; Mitterer & de Ruiter, 2008; Todorovic, 2010), and how we make predictions 

(Griffiths & Tenenbaum, 2006). In memory, knowledge of the statistical regularities in 

the environment, such as the average height of people and the prototypical sizes of 

objects, exerts strong influences on how we recall such information (Bartlett, 1932; 

Hemmer & Steyvers, 2009a; Hemmer and Steyvers, 2009c; Hemmer, Tauber, and 

Steyvers, 2015; for a review see Hemmer & Persaud, 2014). Assuming that our 

expectations are environmentally derived, an important question for cognition is whether 

differences in environmental structure differentially influence expectations, and in turn 

episodic memory.  

Color is one such feature that changes in representation across environments, and 

might engender differences in expectations. Individual and group differences in color 

knowledge and expectations have been attributed to communicative value (Meo, 

McMahan, & Stone, 2014), environmental occurrence (Stickles & Regier, 2014), and 

internal preferences (Palmer & Schloss, 2010). It has also been suggested that color 

category knowledge develops as a function of cultural experience (e.g. Roberson, Davies, 

& Davidoff, 2000). For example, there are significant differences in perceptual judgments 

for color between different cultural groups. This has been demonstrated in various 
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cultures including Russian, where there are two terms for blue (Paramei, 2005; Winawer, 

Witthoft, Frank, Wu, Wade, & Boroditsky, 2007), Papua New Guinea, who use 5 color 

categories (Roberson, Davies, & Davidoff, 2000), and a semi-nomadic South African 

tribe, who categorizes color based on light and dark (Roberson, Davidoff, Davies, & 

Shapiro, 2004). What remains to be examined is whether differences in the natural 

environment differentially influence long-term episodic memory across cultural and 

social groups. 

The relationship between the structure of the environment and memory has been well 

described by Bayesian models of cognition (e.g., Shiffrin & Steyvers, 1997; Steyvers & 

Griffiths, 2008; Hemmer & Steyvers, 2009; Steyvers, Griffiths, & Dennis, 2006). This 

approach characterizes the computational problem people face when trying to recall real-

world events under varying degrees of uncertainty. The models depict how an observer in 

a task integrates noisy and incomplete information stored in episodic memory with prior 

expectations for the environment when trying to recall an event. When the specific 

feature of an event is first experienced, this leads to noisy memory traces, centered on the 

original feature value, with some variation. It is also assumed that the observer has a prior 

expectation for the feature value that mirrors that of the distribution in the environment. 

The goal of the observer is to recall the feature value using noisy samples retrieved from 

memory and their prior expectation for the distribution of the feature value. 

The assumption that memory is an integration of prior expectations with episodic 

traces stored in memory appears reasonable in the domain of color. For example, memory 

for color has been shown to be a blend of prior knowledge for object color typicality and 

episodic information (Belli, 1988). Belli found that reported color typicality of objects 
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(i.e. beverage pitchers were prototypically yellow) influences later color recognition. In 

his study, participants’ recognition responses were a blend (i.e. yellow-green) of the 

actual study item (i.e. green pitchers) and prior knowledge (i.e. yellow pitchers). Similar 

findings result from a misinformation effect when post event information is blended with 

actual event information to produce recall (Loftus, 1977). Loftus found that recall for the 

color of a car was a blend (i.e. bluish-green) of the true color (i.e. green), and misleading 

information about the color of the car (i.e. blue). 

To examine the influence of expectations learned from natural environments with 

different underlying representations of environmental features (e.g. color) on episodic 

memory, we conduct a cross-cultural investigation. Unlike previous research using 

simple memory measures to assess memory across cultures, such as percent correct (e.g. 

Roberson, et al., 2005), we characterize the optimality of the memory system and detail 

its relationship to the environment. We first quantify prior expectation for color in a 

standard U.S. undergraduate population. Prior expectations are assessed bi-directionally, 

both as a function of color naming preferences and the association of hue values to 

preferred color labels. Next, we employ a continuous recall task to assess the influence of 

prior expectation on recall for color. We implement a simple Bayesian modeling account 

to further characterize the relationship between expectations and episodic memory. 

Importantly, we contrast these findings with a cross-cultural study where we measure 

memory for color in an indigenous population whose natural environment is different 

than the standard U.S. population. We explore whether regularities in memory persists 

across natural environments or are dependent upon the different underlying 

representations for each environment.  
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Experiments 

In experiments 1 and 2, we first sought to quantify peoples’ bi-directional 

expectations for color, both as a function of color labeling preferences and the hue value 

associated with given color labels. The bi-directional assessment allowed us to examine 

linguistic categorization as well as category representativeness of color hue values. The 

resulting distributions over hue values were informative for the implementation of the 

Bayesian model (see section 3 Modeling). In experiment 3, we then assessed the 

influence of expectations on memory via a free recall color task. In all experiments, we 

collected data from as many individuals that volunteered to participant in the study.  

Experiment 1: Color-Naming Task 

Participants  

Forty-seven Introductory Psychology undergraduate students at Rutgers University 

participated in this study in exchange for course credit. Data from one subject was 

discarded because no responses were recorded. 

Materials and Procedure 

The stimuli consisted of 48 colors sampled from the HSL (hue, saturation, luminance) 

color space. Colors varied in hue by 5 units (i.e. hue values of 0, 5, 10, etc) along the full 

hue range from 0-239, based on the ability to perceptually differentiate two sequential 

colors in the range. Saturation and luminance were held constant at 100% and 50%, 

respectively. A color patch measuring three-by-three inches was presented in the center 

of the computer screen. Participants were asked to provide a color label for that specific 

patch by typing their answer in a response box below the color patch. The patch remained 

on the screen until participants were satisfied with their responses and clicked ‘continue’ 
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to view the next patch. Each of the 48 color patches were presented twice in random 

order, for a total of 96 trials.  

Results 

Figure 1.1 shows label frequencies for the 48 hue values. The top panel shows the 7 

most frequent labels (red, orange, yellow, green, blue, purple and pink). The 7 labels 

comprised 28% of all responses and coincide with the universal color terms of Berlin & 

Kay (1969). The bottom panel shows label frequencies for the top 21 labels, comprising 

59% of total labels. The cutoff for including the 21 labels was based on a label being 

given a minimum of 40 times. The results show that participants expressed a large degree 

of agreement in the assignment of color labels to hue values. They also demonstrated a 

flexible color naming granularity for labels, with basic terms (e.g. red) and basic terms 

with modifiers (e.g. light green) being the most frequently used.  This suggests that 

participants have clear knowledge and expectations for color labels.  

Experiment 2: Color Generation Task 

Participants  

Forty-nine undergraduate students at Rutgers University participated for course credit 

or monetary compensation of $10. These participants were not involved in Experiment 1. 

Materials and Procedure  

The stimuli consisted of the 21 most frequent color labels given as responses in 

Experiment 1. The labels were presented one at a time, in 24 point Georgia font at the 

upper right side of the computer screen. The instructions were to generate the color hue 

that best corresponds to each of the labels using a color wheel. Color hue responses were 

generated by moving a cursor over a large black circle presented on the left side of the 
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computer screen. The black circle was a mask over a color wheel that varied in hue only. 

When the black circle was clicked, the corresponding color from that location of the 

underlying color wheel was shown in a three-by-three inch patch to the right of the wheel 

and below the color label. The underlying color wheel was rotated randomly by 45 

degrees for each trial so that it was not possible to predict a color’s location on the wheel 

from trial to trial. Participants were free to click as many times as they wished to generate 

the color they thought best corresponded to the given color label. Once participants were 

satisfied with the color they generated, they pressed the “space bar” to continue to the 

next trial. Participants generated colors for 21 labels twice each, for a total of 42 trials, 

presented in random order.  

Figure 1.1 Frequency distributions over color labels in Experiment 1. (a) Frequency 

distributions over 7 most frequent labels. (b) Frequency distributions over 21 most frequent 

labels. Each bar represents a 5 unit range on the hue scale from 0-239.   
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Results 

The color wheel allowed participants to generate colors that differed by 1 unit of hue, 

resulting in 239 possible hue values. Responses where binned into 48 bins (varying by 5 

units on the hue range from 0-239, such that all hue values that ranged between 2.5-7.5, 

were included in one bin, hue values between 7.5-12.5 fell in the next, and so on). 

Outliers more than 40 hue values from the highest or lowest value in a given colors hue 

range (see Table 1.1) may have reflected inattention to the task or accidental submission, 

and thus were removed, resulting in the removal of 11 responses (0.5% of the data). For 

subsequent model use, we fitted the frequency distributions with von Mises distributions 

(a.k.a. the circular analogue of the normal distribution). The means and standard 

deviations from the von Mises fits are shown in Table 1.1. Figure 1.2 shows frequency 

distributions over the hue values generated for the given color labels. The top panel 

shows the hue value frequency distributions for the 7 most frequent labels from 

Experiment 1 (red, orange, yellow, green, blue, purple and pink). Figure 1.2, bottom 

panel shows the frequency distributions for all 21 stimulus labels. The distributions 

reflect the notion that a given color label is best represented by a small range of hue 

Table 1.1. Mean (SD) of Hue Values and Hue Ranges for Top 7 Color Labels 
                              Mean (SD)         Hue Range 

Red 1.1 (2.56) (230–239, 0 – 5) 

Orange 20.23(5.59) (10-30) 

Yellow 40.05 (3.04) (35-50) 

Green 79.79 (10.34) (55-110) 

Blue 153.53(12.13) (115-170) 

Purple 189.41 (6.27) (175-190) 

Pink 215.60 (9.57) (195-225) 
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values, with some overlap at the edges of the distributions. They also reflect strong 

agreement in the expectations for the association of color labels to hue values across 

participants.  

 Experiment 3: Color Memory Task 

Participants  

Eighteen Introductory Psychology undergraduate students at Rutgers University 

participated for course credit. These participants were not involved in Experiments 1 or 2. 

Materials and Procedure  

 
 

Figure 1.2. Frequency distributions over hue values from Experiment 2. Top panel: 

frequency at which a hue value was generated for the 7 preferred color labels. Bottom 

panel: frequency of hue values generated for the 21 most frequent labels. Each bar 

represents a 5 unit range on the hue continuum from 0-239. 
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Figure 1.3. Sample study/ test sequence. S denotes a study trial and T denotes a test 

trial for with the trial number in subscript. 

S1 S2 T1 S3 S4 S5 S6 T3      S7 S8 T2 S9

Sample Study/Test Sequence

The stimuli consisted of 48 random shapes uniformly filled with the same 48 hue 

values in the HSL color space used in Experiment 1. Study and test trials were presented 

as a continuous sequence and were randomly interleaved (see Figure 1.3 sample 

study/test sequence). The color/shape pairings were randomized across participants and 

were presented one at a time, for 2 seconds each, at the center of the computer screen. On 

a test trial, a shape from a previous study trial, but filled with gray, appeared at the center 

of the screen and participants were asked to make three responses: 1) a recognition 

response: “do you remember studying this shape?” 2) a color label response: “What color 

was the shape at study?” (this question was posed regardless of their response to the 

recognition question). Responses were typed into a text box and participants pressed 

“enter” to continue. 3) a cued recall response for hue: “recreate the color of the shape at 

study”. Responses were given using the same color wheel from Experiment 2
1
 and were 

self-paced. Because of the continuous design where study and test trials were randomly 

interleaved, the lag between a study presentation and a test trial for that study stimulus 

varied from a lag of 1 to a lag of 48 (i.e., up to 47 intervening trials between study and 

test).  

                                                 
1
To determine if the regression to the mean effect borne out in the memory data was merely a result of 

participants being primed by the label they recalled before recreating to color, we piloted another condition 

where participants recreated the color before providing a label, and the results mirrored the original 

memory condition.   
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Figure 1.4. Top panel: Recall bias by color category. Positive bias indicates over 

estimation and negative bias indicates underestimation. The black line indicates no bias. 

The data points are color coded with the hue for that color range and the corresponding 

labels are given on the x-axis. The lines give the regression fits for each color label. 

Bottom panel: Model predictions with regression fits from the memory data. 

 

-20

-10

0

10

20

B
IA

S
 (

re
c
a

lle
d

 -
 s

tu
d

ie
d

)

Memory Data and Regression

 

 

                                                                             

observed data

regression fit

-20

-10

0

10

20

STUDY HUE VALUES

B
IA

S
(r

e
c
a
lle

d
-s

tu
d
ie

d
)

Simulation and Memory Data

 

 

re
d

or
an

ge

ye
llo

w

gr
ee

n
bl
ue

pu
rp

le
pi
nk

model prediction

data regression fit

a

b

Results 

To measure performance, we calculated recall bias as the difference between the 

recalled and studied hue value. It appears that the task was very difficult, and error rates 

were very high. We therefore restricted the analyzed sample to include only cases in 

which subjects provided the correct label on the second question of the test trials (e.g. 

datum was excluded if the subject recalled blue, when the color studied was red (based on 

the most frequent label for that hue value in the color naming task), however, responses 

such as light blue, if the studied color was blue were acceptable). The hue range for a 
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color category was determined based on the lowest point between two response 

distributions in the color naming task. Furthermore, hue responses that deviated by more 

than 6 standard deviations from the mean of the determined hue range were excluded. 

This corresponded to correctly providing the label ‘blue’ to a blue hue value, but 

reconstructing it as red with the color wheel (4 data points). Five test trials were also 

excluded because no response was recorded. Thus, 55% of the data was used in this 

analysis. 

The results revealed regression toward the mean effects as illustrated in Figure 1.4 top 

panel. For each of the 7 colors, subjects overestimated values below the mean hue value 

of each color category and underestimated the values above the mean hue of each color 

category. A linear regression model was fitted to each subject for each of the 7 preferred 

colors assuming a single slope and separate intercept for each regression line (see Figure 

1.4 top panel). A one-way analysis of variance revealed a significant main effect of 

intercepts (F[694]=664, p<.001) across color categories. The negative slope of the lines 

indicates a regression to the mean, and the different intercepts for each of the color 

categories signify regression towards different mean values. Table 1.2 shows the slope 

and intercepts for the 7 categories. 

Modeling 

In this section we implement a simple Bayesian model to characterize the regression 

to the mean effect borne out in the memory experiment. In the model, the goal is to 

efficiently retrieve relevant information from memory, which needs to be combined with 

prior knowledge and expectations about the environment. Bayes’ rule gives a principled 
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Table 1.2. Mean Slopes and Intercepts by Color Label

 

 

 

                                  Slope                       Intercept                       

Mean  SD  Mean   SD    

Red   -0.46 0.13  -3.4137 3.26   

Orange   -0.46 0.13  10.6451 2.63 

Yellow   -0.46 0.13  18.2125 3.61 

Green   -0.46 0.13  37.0389 8.79 

Blue   -0.46 0.13  64.9861 4.43 

Purple   -0.46 0.13  88.1715 4.90 

Pink   -0.46 0.13  92.4914 6.79   

Note. N=18 

account of how to combine noisy memory representations with prior expectations to 

calculate the posterior probability, 

p (ϴ|y) ∝ p (y |ϴ)  p (ϴ)    Eq (1) 

where the posterior p(θ |y) gives the likely feature value θ given the noisy memory 

content y. We assume that the studied features (i.e., hue values) are Gaussian distributed, 

θ ~ N (μ, σ
2
), with the prior mean μ and variance σ

2 
of the features drawn from the 

environment. When the specific feature θ is studied, we assume this leads to memory 

traces y, with some memory noise ψ, y ~ N(θ, ψ). Standard Bayesian techniques (Gelman 

et al., 2003) were used to compute the mean of the posterior distribution:   

𝜃 = 𝑤𝜇 + (1 − 𝑤)�̅�    Eq (2) 

where w= (1/σ0
2
)/ [(1/σ0

2
) + (n/σm

2
)] and n is the number of samples taken from episodic 

memory.  

We specified a prior with mean μ for each color category equal to the mean of the von 
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Mises (circular analogue of the Gaussian) distributions calculated from the data in 

Experiment 2. In other words, we assume these distributions to be representative of 

peoples’ prior expectation over hue values for a given color category.  In the same way, 

we set σ
2 

for each color category equal to the variances of those distributions and a 

memory noise (ψ) that varies for each category on the standard deviations from those 

distributions from Experiment 2 (see Table 1.1). While Bayesian cognitive models are 

generally hand-fitted to the data, here all parameter settings are directly informed by the 

experimental data. We used the model to simulate the same trials in the experiment. 

Figure 1.4 bottom panel shows the simulated responses from the model. Overall, the 

model produces results that are qualitatively similar to the observed data and captures the 

overall trend. This provides strong support for reconstruction from memory being highly 

systematic and influenced by prior expectations learned from the environment. Next, we 

build on this principle of systematicity, that we assume is a fundamental mechanism of 

memory, to investigate how different environments and potentially different expectations 

for color might influence regression patterns in memory. 

Discussion 

In this work we sought to investigate the influence of expectations for color on episodic 

memory. We measured prior expectation via two tasks: a color naming task which 

elicited color naming preferences, and a unique task in which participants used a color 

wheel to generate colors most closely associated with the given color label. The results 

showed naming preferences that are consistent with the existing literature (Berlin & Kay, 

1969), namely red, orange, yellow, green, blue, purple and pink. Subjects also showed a 

high level of agreement in both Experiments 1 and 2. We then measured the influence of 
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expectation on free recall for color. Results revealed a regression to the mean effect in 

free recall, such that studied hue values below the mean of that color category were 

overestimated at recall and studied hue values above that color category were 

underestimated. This suggests that recall is influenced by expectations for color. 

This behavior was modeled with a simple rational model of memory, which assumes 

that prior knowledge for different color categories exert an influence on episodic recall. 

In this way, recall is a combination of prior expectations and noisy memory content. The 

model provides qualitative predictions that are a good fit to the observed data. The model 

captures the regression to the mean effect for each of the 7 preferred labels. Importantly, 

the only assumption made in the model was that prior expectations for color were well 

described by the performance in the color generation task. 

Here, we do not provide an analysis of sub-labels (all 21 labels). However, results for 

hue values within the blue range are interesting in that the pattern of over and 

underestimation appears to be dispersed. This may be the result of participants separating 

the hue values in the blue range to account for not just the universal label ‘blue’, but also 

high frequency sub-labels (i.e. light blue and sky blue). This suggests that colors might be 

hierarchically organized, such that blue is the general color label, and sub-labels are 

based on subjective naming preferences. We believe that this investigation has provided 

important support for existing understanding of the structures of color categories, as well 

as a new understanding of relationship between prior expectations and free recall for 

color.   
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Chapter 3: Inferring Prior Knowledge from Episodic Memory in Special 

Populations 

This chapter presents data from a study previously published in the Proceedings of 

the Annual Meeting of the Cognitive Science Society and in i-Perception. K. Persaud and 

the advisor, P. Hemmer, developed the study concept and study design together. K. 

Persaud developed the stimulus. C. Kidd and S. Piantadosi, performed the testing and 

data collection which was conducted in a different country (Bolivia).  K. Persaud 

performed the data analysis. K. Persaud and P. Hemmer, together, performed the 

interpretation. K. Persaud drafted the manuscript. After the manuscript was drafted, all 

authors helped revise the manuscript. K. Persaud implemented all critical revisions in 

response to reviewer comments. 

In the study, we sought to examine memory in a population that might have dissimilar 

expectations from our standard US population based on their natural environment and 

culture. These expectations in turn might differentially influence memory. We engage 

this question in the domain of color for a number of reasons. Color holds social and 

cultural relevance and people’s relationship to color can be both internally (e.g. emotional 

connections to color) and externally (e.g. through the visual experience in their 

environment) derived. In addition, color is a ubiquitous domain for research across 

developmental, social, and cultural groups, as well as across domains of cognition.  

Importantly, for investigative purposes people have similar, but also different 

knowledge states of color. There is an extensive literature characterizing knowledge of 

color across cultures (e.g., Davies & Corbett, 1997; Regier, Kay, & Cook, 2005; 

Roberson, Davidoff, Davies, & Shapiro, 2004; Stickles & Regier, 2014; Xu, Griffiths, & 

Dowman, 2010), and several clear patterns of color universality have emerged. For 
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example, it has been shown that universal tendencies persists in color naming across 

societies (Berlin & Kay, 1969; Regier, Kay, & Cook, 2005) and that those tendencies are 

linked to 11 basic color terms (i.e., red, orange, yellow, green, blue, purple, pink, black, 

white, gray and brown). A possible source of universal tendencies in color naming is 

similarities in favored color percepts (i.e. best examples) across various languages 

(Regier, Kay, & Cook, 2005). These color universals are shown to have a subjective 

perceptual basis, in that they can be used to partition the color space into distinct regions 

that facilitate color categorization (Webster & Kay, 2012).  

While these 11 universal categories are found across most industrialized societies, 

there are also substantial individual, environmental, and cultural differences in color 

knowledge (e.g., Palmer & Schloss, 2010; Stickles & Regier, 2014). Internal (e.g., 

emotional) relationships and preferences to certain colors serve as a candidate source of 

variation in individual color knowledge as postulated by the Ecological Valence Theory 

of Human Color Preferences (Palmer & Schloss, 2010). This theory posits that people’s 

emotional response to a color is their cumulative affective response to the objects to 

which the color is associated. Individuals prefer colors that they have had positive 

experiences with (e.g. yellow – color of flowers) and do not prefer colors with which they 

have had bad experiences (e.g. red – color of fire), signifying each person’s close and 

personal relationship to color.  

At the group level, a source of variation in subjective color knowledge is the 

relationship between color and the variability in natural environments. For example, color 

terms in languages with climates of abundant vegetation (e.g. rainforest) are significantly 

different from color terms in languages with dry climates (e.g. Savanna), but not in places 
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with relatively similar climates (e.g. rainforest and monsoon) (Stickles & Regier, 2014). 

The difference in the greenery of the climates presumably accounts for difference in color 

naming. Thus, it appears that local environmental factors influence color knowledge and 

promotes variability in color terms across languages.  

We tested recognition memory for color in the Tsimane′ group of Bolivia. The 

Tsimane′ are an indigenous people who inhabit rainforests east of the Andes in lowland 

Bolivia. They have minimum contact with the outside world, a uniquely different color 

diet relative to our U.S. population, and varying levels of education (see table 2.1). These 

factors might contribute to idiosyncratic expectations for color. Furthermore, the 

difference in expectations may be foreshadowed by dissimilarities in color language. In 

the Tsimane′ language, color terms are highly variable and morphologically complex—

e.g., yellow is called “color-of-the-cuchi-cuchi-tree”. Color language is also inconsistent 

in that some people know this term for yellow, as well as other color terms, and some do 

not.  

Color expectations of the Tsimane′ people may lead to three possible regression 

patterns. 1) The pattern might be the same as the U.S. population, such that memory 

regresses to the same seven color categories, suggesting that the two populations used the 

same categories regardless of environmental variation. 2) The patterns of the two 

populations might differ, in that the Tsimane′ could potential combine some color 

categories. This is supported by smaller numbers of color categories across some 

languages (e.g., Roberson, Davies, & Davidoff, 2000; Roberson, Davidoff, Davies, & 

Shapiro, 2005). 3) The Tsimane′ might split some categories–e.g., as observed in Russian 

where blue has two terms (e.g., Paramei, 2005). Such a split could be based on the high 
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Table 2.1. Participant Demographics 

 
Note. N=23 

Age (years) 18 20-28 30-34 40-48 60+

Frequency 4 8 6 3 2

Education (years) 0 1 2 3-5 6-9 10

Frequency 4 1 3 9 5 1

Spanish 
(translate out of 11)

0 6-9 10-11

Frequency 1 19 3

Counting (highest #) 2 5-9 15-31 46-64 93 102

Frequency 1 2 5 3 1 11

Arithmetic (out of 12) 0 1 2-3 4-5 6 10-11

Frequency 2 3 10 2 2 3

variability in color terms in the Tsimane′ language, and their natural environment. 

Regression towards the standard universal color categories in both populations would 

suggest that these factors (language variability and environment differences) may have 

little influence on memory. Alternatively, differences in regression patterns would 

provide support for cultural and environmental factors influencing memory. 

Due to the demands of field research, the task varied in a number of ways compared 

to the controlled laboratory experiment. First, the Tsimane′ displayed a great deal of 

discomfort with the use of technology and any apparatuses that they themselves had to 

use. Thus, we converted from a computerized free recall task to a paper based recognition 

task where participants only needed to point to responses. Second, instructions and 

responses required two layers of translation (i.e. from English to Spanish, and then from 

Spanish to the Tsimane′ language), and thus we were unable to assess prior knowledge 

and expectations as was previously done with the U.S. population. We instead relied on 

the systematicity of memory (i.e. regression to the mean effect) and the assumptions of 
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the Bayesian cognitive model to infer the underlying color categories of the Tsimane′ and 

the influence on memory.  

Experiment: Episodic Memory for color in an indigenous population 

Participants  

Twenty-three individuals participated in this study and were compensated with small 

gift bags of local goods. Participant ages ranged from 18-65. Self-reports of education 

levels ranged from no formal education to 10 years of education, and arithmetic skills 

ranged from 0-11 out of 11 questions correct on an ad hoc field measure (using all 

addition questions), and highest count ranging from 2-102 (meaning knowing all 

numbers). Table 2.1 gives a detailed breakdown of the demographics and skill variables. 

Materials and Procedure  

Stimuli consisted of 24 random shapes uniformly filled with 24 unique colors 

sampled from the hue color space, with saturation and luminance held constant at 100% 

and 50%, respectively. The 24 colors were selected from the 7 color categories and varied 

in hue by a minimum of 5 units (on a total range of 239). Furthermore, colors were 

randomly selected from each color category, proportional to the size of the color category 

(i.e. 2 red, 3 orange, 2 yellow, 6 green, 6 blue, 2 purple, and 3 pink). Study shapes were 

printed individually, and test shapes along with 5 distractors, were printed together on 

5.5-by-8 inch cards (See Figure 2.1a for a sample study test pair). The colors of the 

distractors were chosen such that the hue values of two distractors were greater than the 

hue value of the target color, two distractors were less than the hue of the target, and the 

last distractor hue value was either greater or less than the target, but at a further absolute 

distance from the target than the other distractors (see Figure 2.1a for illustration).  
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a       b 

 
 

Figure 2.1. (a) Sample study-test stimulus. (b) Tsimane’ woman participating in the 

study. The experiment was conducted in a class with onlookers from the community.  

 

Participants were gathered in a communal classroom, and there were a number of 

onlookers during the administration of the test. Figure 2.1b shows both the experimental 

setting and a study-test trial sequence. A translator explained the task, and all participants 

appeared to immediately understand the procedure. Presentation time of the 1-item study 

card was as close to 1 second as possible. The study trial was followed by 6-alternative 

forced choice immediate recognition. Participants had as much time as they needed, but 

most responded immediately, and responses were recorded in a booklet. On some trials 

(approx. 5%) it was not clear where the participant had pointed, and participants were 

asked to repeat their choice. They were asked to touch, rather than point, to try to 

alleviate this problem. Trial order was randomized between participants.  Due to the field 

demands, it was not possible to randomize the target/distractor locations on the test trials. 

This means that all participants saw identical test cards. 

Results 

Prior to analysis, recognition responses that were more than 6 standard deviations 

away from the studied hue value were removed. These data points constituted 2.5% of all 

the data (14 out of 545 data points). After calculating the bias measure described below, 
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individual subject data revealed that there was one participant whose data were very 

noisy and appeared essentially random (this was not unexpected given the very noisy 

conditions of field data collection). This may have reflected either impairment in color 

vision
2
 or inattention to the task and this participant’s data was removed from all further 

analysis.  

Recognition Bias and Regression Memory performance was measured in terms of 

recognition bias, i.e., the difference between the hue value participants remembered and 

the hue value studied. First, bias was calculated for each individual participant and then 

averaged across participants for each studied hue value. Figure 2.2 shows recognition 

bias as a function of studied hue values. The data show clear regression to the red, green, 

blue and pink color categories. The orange, yellow, and purple categories, however, were 

more ambiguous. Based on a visual inspection, we partitioned the averaged bias into 5 

categories—combining orange and yellow, and combining purple and pink—and fit a 

linear regression model to each of the 5 resulting color categories (see Figure 2.3). The 

slope of the regression in each category (except for the orange/yellow range) was 

negative, indicative of a standard regression to the mean effect. Hue values below the 

mean of the category were overestimated and hue values above the mean were 

underestimated. This is consistent with the findings from experiment 3. A one-way 

analysis of variance revealed a significant main effect of intercept (F[109]=25, p<.001) 

across color categories, indicating that each category has a different intercept. However, 

performance in the orange/yellow range appeared to be different from the other 

                                                 
2
 We were not able to conduct a color blindness test. The assessment requires naming knowledge 

of some shapes which is confounded with education. Many Tsimane′ participants could not complete this 

task. 
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Figure 2.2.  Recognition bias by hue value. Average mean bias (data points) and 

response ranges (box plots) for each studied hue value. Colors of the data makers 

indicate the standard universal color categories. Positive bias indicates over 

estimation and negative bias indicates underestimation. The black line indicates no 

bias. 
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observed data averaged over participants

categories. In this category, the slope ran in the opposite direction (positive slope), 

showing a regression towards orange-red rather than towards yellow.  

Cluster Analysis Figure 2.3 appears to show interestingly different color categories, 

compared to the seven classic basic color terms (red, orange, yellow, green, blue, purple 

and pink). To learn the underlying categories that participants may have used, we 

conducted a k-means cluster analysis (Figure 2.4). We ran 10 iterations of the cluster 

analysis on four different clusters sizes (i.e., 4, 5, 6, and 7) and found the greatest cluster 

agreement over the 10 chains for a cluster size of 5. This cluster size was further 

confirmed by the Calinski Harabasz criterion. Consistent with the regression analysis, the 

cluster analysis also combined colors in the purple/pink ranges and orange/yellow ranges. 

However, the cluster analysis further combined the orange/yellow category with red, but 

split the universal blue range into two blue categories. These findings suggest that the 

pattern of regression behavior to underlying category centers is inherent to memory, but 
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Figure 2.3. Regression fits to 5 color categories. Categories are partitioned by hue 

ranges with orange and yellow combined, and pink and purple combined. The thick 

center black line indicates no bias. The data points are color coded with a hue for 

that color category. The lines give the regression fits for each of the 5 categories. 

 

-5 5 15 25 30 35 50 60 65 75 80 95 105 115120 130 145 160 170 185190 200 210 225
-30

-20

-10

0

10

20

30

STUDY HUE VALUES

B
IA

S
 (

re
c
a

lle
d

 -
 s

tu
d

ie
d

)

 

 

                                                                             
235 5 15 25 30 35 50 60 65 75 80 95 105 115120 130 145 160 170 185190 200 210 225

-30

-20

-10

0

10

20

30

STUDY HUE VALUES

B
IA

S
 (

re
c
a

lle
d

 -
 s

tu
d

ie
d

)

 

 

                                          -20

-10

0

10

20

STUDY HUE VALUES

B
IA

S
 (

re
c
a

lle
d

 -
 s

tu
d

ie
d

)

Memory Data and Regression

 

 

re
d

or
an

ge

ye
llo

w

gr
ee

n
bl
ue

pu
rp

le
pi
nk

observed data

regression fit

the specific categories— either assessed experimental (U.S subject population), or 

learned from the cluster analysis (Tsimane′)—are environment dependent, and are 

reflected in the differential regression behavior between the two subject populations.  

Discussion 

We examined expectations for color and the influence of those expectations on 

episodic memory in two populations: a standard U.S. population and the Tsimane′ people 

of Bolivia. We found that environment appears to differentially influence category 

expectations, and episodic memory. In the U.S. subject population, expectations reflected 

naming preferences that were consistent with the existing literature (Berlin & Kay, 1969), 

and a high level of subject agreement on the association of labels to hue values. 

Furthermore, in this population recall regressed toward 7 color categories, suggesting an 

influence of expectations for color categories on episodic memory.  
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Figure 2.4. K-means Cluster Analysis. Bias data partitioned into 5 learned clusters 

from an unsupervised k-means cluster analysis, and color coded with a hue from that 

category. Vertical lines and color labels on x-axis show the standard universal 

categories. 
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In previous work, we modeled this relationship between expectations and memory 

with a Bayesian cognitive model characterizing the computational problem of combining 

prior expectations and noisy episodic content. Importantly, the only assumption made in 

the model was that prior expectations for color were well described by the performance in 

the color generation task. We believe this reflects the optimality of the memory system 

and its relationship to the environment. This gives rise to the question of whether 

different environments, cultural profiles (such as language), or experiences engender 

variation in color expectations and lead to differences in regression behavior. 

To examine whether different environments engender variation in color expectations 

and lead to differences in regression behavior, we assessed memory in an indigenous 

population, the Tsimane′ of Bolivia. Due to field work constraints, we were unable to 

assess prior expectations for color or utilize the free recall memory design with this 

group. Instead, we worked backwards using the Bayesian assumption of the influence of 



31 

 

 

 

expectations on memory and the results of the U.S. memory experiment to learn the 

underlying categories for this group, and in turn, how these category expectations impact 

memory performance. In this work, two clear patterns emerged. We found a consistent 

regression to the mean effect across color categories, with the exception of the yellow 

category. This finding may suggest that the regression to the mean effect in memory is a 

universal cognitive process and is systematic across cultural and environmental groups. 

Interestingly, however, a k-means cluster analysis showed that the categories in the 

Tsimane′ population were different than observed in a standard U.S. population. While 

the U.S. group regressed toward seven categories, the Tsimane′ segregated blue into two 

categories, and combined other categories, resulting in five inferred categories: 

red/orange/yellow, green, light blue, dark blue, and purple/pink. 

 The population specific bias observed in the Tsimane′, relative to a U.S. population, 

might be related to the underdevelopment of knowledge for some categories. This could 

be due to one or more factors, such as low environmental incidence, low frequency in 

language, limited formal education of color, or little communicative need of certain color 

terms. From a memory perspective, the underdevelopment of color categories raises 

several interesting questions. A color like yellow, which is somewhat rare in the 

Tsimane’ environment, might lead to an outlier (or Von Restorff) effect, where it is better 

remembered. Conversely, a pervasive color (with a high prior probability in the 

environment) is also likely to lead to better memory, and might account for the shallow 

regression line in the blue category (Figure 2.3). 

We believe that this study provides important evidence for an experience based 

mechanism (development and maintenance of prior knowledge) that gives rise to 
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differences in color knowledge. This is consistent with the findings of Stickles and Regier 

(2014) that environment impacts language (i.e., color words). Furthermore, the study 

provides strong support for the influence of category knowledge on memory, and the 

systematicity of memory across groups with varying prior knowledge content. 
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Chapter 4: Fidelity and Memory 

The Dynamics of Fidelity over the Time Course of Long-term Memory 
Kimele Persaud and Pernille Hemmer (2016). Cognitive Psychology 

 

K. Persaud and the advisor, P. Hemmer, developed the study concept and study design 

together. Stimulus creation, testing and data collection were performed by K. Persaud. K. 

Persaud performed the data analysis. Interpretation of the analysis and model 

development/implementation was performed by K. Persaud and P. Hemmer, together. K. 

Persaud drafted the manuscript. After the manuscript was drafted, K. Persaud and the 

advisor, P. Hemmer, revised the manuscript. K. Persaud implemented all critical 

revisions in response to reviewer comments. 

 

Abstract 

 

Bayesian models of cognition assume that prior knowledge about the world influences 

judgments. Recent approaches have suggested that the loss of fidelity from working to 

long-term (LT) memory is simply due to an increased rate of guessing (e.g. Brady, 

Konkle, Gill, Oliva, & Alvarez, 2013). That is, recall is the result of either remembering 

(with some noise) or guessing. This stands in contrast to Bayesian models of cognition 

which assume that prior knowledge about the world influences judgments, and that recall 

is a combination of expectations learned from the environment and noisy memory 

representations. Here, we evaluate the time course of fidelity in LT episodic memory, and 

the relative contribution of prior category knowledge and guessing, using a continuous 

recall paradigm. At an aggregate level, performance reflects a high rate of guessing. 

However, when aggregate data is partitioned by lag (i.e., the number of presentations 

from study to test), or is un-aggregated, performance appears to be more complex than 
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just remembering with some noise and guessing. We implemented three models: the 

standard remember-guess model, a three component remember-guess model, and a 

Bayesian mixture model and evaluated these models against the data. The results 

emphasize the importance of taking into account the influence of prior category 

knowledge on memory. 

 

Introduction 

An important question for memory is whether category knowledge biases 

performance, and whether an influence of category knowledge changes as a function of 

the fidelity of memory. Recent work in visual working memory has suggested that when 

recalling stimulus features, observers either remember the episodic information with 

some noise or guess (Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Zhang and Luck, 

2008).  Zhang and Luck found that fidelity is fixed once capacity of visual working 

memory is reached, but that the guessing rate changes. The resulting error distributions 

are well fit by a mixture of a Gaussian-like (remembering with some noise) and uniform 

distribution (guessing). They argued that observers remember continuous feature values 

and are not biased by categorization of those values. Importantly, a finding of category 

bias would suggest an intermediating step between remembering and random guessing. 

Such a bias was found by Bae and colleagues, establishing that category biases originate 

in perception and are reflected in visual working memory (Bae, Olkonnen, Allred, & 

Flombaum, 2015). 

Several extensions to the original remember-guess model have been implemented to 

account for additional factors that influence visual short-term and working memory 
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performance (e.g., Bays, Catalao, & Husain, 2009; Bays, Wu, & Husain, 2011; van den 

Berg, Shin, Chou, George, & Ma, 2012). For example, the variable-precision model (VP; 

van den Berg, et al, 2012) postulates variability in the precision with which items are 

encoded in working memory. The resulting error distribution is a mixture of many von 

Mises distributions (as opposed to the one memory component in the remember-guess 

model), to account for residual noise in memory that the standard model cannot fit. Other 

proposed models incorporate task-based components, such as “misassociation” or 

“misbinding” parameters to extend the standard remember-guess model (Bays, Catalao, 

& Husain, 2009; Bays, Wu, & Husain, 2011).  

Although these models provide substantial revisions to the original, it is important to 

note that they are grounded in visual short-term and working memory. Relatively few 

studies have sought to apply the remember-guess framework to understanding long-term 

episodic memory. One such application by Brady and colleagues (2013) showed that 

there is a loss of fidelity from working into long-term (LT) memory. They argued that 

this decrease in fidelity is due to an increased rate of guessing, without addressing other 

factors that impact long-term memory.  

The remember-guess model stands in direct contrast to a number of Bayesian 

cognitive models which assume that LT memory is an integration of expectations learned 

from the environment with noisy memory representations (e.g., Hemmer & Steyvers, 

2009; Hemmer, Tauber & Steyvers, 2015; Hemmer, Persaud, Kidd, & Piantadosi, 2015). 

These models are pervasive in cognition in general, and in specific domains including 

categorization (e.g., Huttenlocher, Hedges & Vevea, 2000), generalization (e.g. Griffiths 

& Tenenbaum, 2006), semantic memory (Hemmer & Steyvers, 2009b; Steyvers, 



36 

 

 

 

Griffiths, & Dennis, 2006), and episodic memory (Shiffrin & Steyvers, 1997; Steyvers & 

Griffiths, 2008). 

Bayesian models of cognition propose a tradeoff between the fidelity of memory 

content and the influence of prior expectations. When the fidelity of the episodic trace is 

high, for example, as in visual short-term memory, there is minimal noise and potentially 

little influence of prior expectations. As fidelity decreases in working and LT memory, 

whether as a function of time or errors in retrieval, the influence of prior expectations 

would increase.  

At an aggregate level, however, the error distributions resemble a combination of 

precise and imprecise memory, which might appear only to be remembered content and 

guessing, effectively masking underlying stages between the two. Prior expectation is a 

potential factor that might compensate for decreasing memory fidelity at the stage 

between precise memory and random guessing. In point of fact, Donkin and colleagues 

(2014) showed model-based evidence from visual short-term memory positing three 

discrete states of memory: One, a state based on perceptual memory and high precision, 

two, due to memory decay from perception, a state with intermediate precision based on 

verbal labeling, and three, guessing. Here, we seek to compare the performance of 

models that have been employed to characterize long-term memory, namely the 

remember-guess model (Brady et al, 2013) and Bayesian models of long-term memory 

(e.g., Hemmer & Steyvers, 2009; Persaud & Hemmer, 2014). 

In the present work, we explore what happens to the precision of memory over time. 

Partitioning performance by the number of intervening trials between study and test (i.e., 

lag) allows for the systematic assessment of the time course of fidelity in LT episodic 
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memory. To the best of our knowledge, this paper gives the first analysis of free recall by 

lag in an effort to understand the relative contributions of prior knowledge and guessing. 

We also investigate if category bias, indicative of the employment of prior knowledge, is 

a mechanism by which LT memory can be filled in, before individuals resort to random 

guessing. If this is the case, then performance at intermediate lags, consistent with the 

Bayesian assumption, should reflect the influence of category knowledge on noisy 

episodic representations. Such an influence is generally observed as a regression to the 

mean effect. We implement three models: the standard remember-guess (RG) model, a 

three component remember-guess (3CRG) model, which assumes two levels of precision 

in memory and a Bayesian mixture (BM) model. We also conduct model comparisons as 

a function of lag.  

Memory for color: Overview of Experiment  

Our objective was to determine the contribution of prior expectations to LT episodic 

memory and assess the resulting time course of errors. We developed a novel 

experimental approach for assessing free recall for color, where participants generated 

recalled hue values using a continuous color wheel, and with interleaved trials of random 

lag lengths between study and test.  

Participants  

Sixty-one Introductory Psychology undergraduate students at Rutgers University 

participated for course credit or $10 compensation. In condition 1 (Label first Condition) 

N=18. In condition 2 (Label after Condition) N=5. In condition 3 (No Label Condition) 

N=38. All participants reported having normal color vision. No individual participated in 

more than one condition.  



38 

 

 

 

 

Figure 3.1. Sample study/test sequence by lag. Lag 1, participants study a shape, followed 

by a series of memory questions related to the color of the shape. Lag 3, participants study 

a sequence of three colored shapes, before being asked a series of memory questions 

related to the color of the cued shape – here, the first of the three shapes studied. 

Lag 1

. . .

Do you recall 
seeing this 
shape?

Yes No
What color was the 
shape at study?

RED Recreate the 
color of this 
shape

. . .

Do you recall 
seeing this 
shape?

Yes No

Lag 3

Sample Trial Sequence: S1,    T1,    S2,    S3,    S4,    T2,    S5,    T4,    T3…

Lag 1 Lag 3

Materials  

The stimuli consisted of 48 arbitrary shapes uniformly filled with 48 colors sampled 

from the winHSL240 (hue, saturation, and luminance) color space. See Figure 3.1 for 

sample stimuli. The shapes were selected such that there was little prior association of 

any color to the shapes, that is, the study set did not result in canonical pairings such as 

yellow stars or red hearts. The purpose of the shapes was to cue subjects on test trials to 

recall the fill-color of the shape. Colors were sampled in 48 equally sized steps along the 

full hue range, based on the ability to perceptually differentiate two sequential colors in 

the range. Saturation and luminance were held constant at 100% and 50%, respectively. 

The shapes and colors were paired randomly, and pairings were randomized across 

participants. Each shape and color was studied only once.  

Procedure  

Participants were shown a continuous study-test sequence of color filled shapes. 
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Shapes were presented one at a time at the center of the computer screen for 2 seconds. 

Participants were told to study the color of each shape, as they would be asked to recall 

the color of the shapes. Test trials were randomly interleaved between study trials, 

resulting in lags of varying length. This sequence of lag was obtained by first randomly 

permuting the order of study trials, and then interleaving test trials, with the condition 

that for a test trial to occur, the corresponding study item must have occurred first. Figure 

3.1 provides an example of the experimental procedure for a lag of 1 and a lag of 3 trials, 

as well as an illustration of the interleaved study test sequence.  

On a test trial, a shape from a previous study trial, but filled with gray, was presented 

as a cue and participants were prompted to make several responses. In all three test 

conditions, participants first completed a recognition task for the shape. In the two label 

conditions, participants were asked to provide a verbal label for the color of the shape 

either before or after recreating the shape color (this question was posed regardless of 

their response to the recognition question). Participants typed responses into a text box 

and pressed “enter” to continue. In condition 3, participants did not provide a verbal 

label. In all three conditions, participants were then asked to recreate the studied color of 

the shape using a continuous color wheel. The color wheel was covered by a black mask, 

and was randomly rotated by 90 degrees on every test trial.  Participants clicked on the 

wheel to fill the shape with the underlying color. Test trials were self-paced. 

Results  

For analysis, and to accommodate the use of von Mises distributions in the models, 

hue values were converted from the winHSL240 color space to degrees. 
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The primary purpose of the three labeling conditions was to check that the explicit 

label generation did not alter the influence of category knowledge. We find no real 

differences between the label versus no-label conditions, and for the purposes of analysis, 

data is pooled across all three conditions (see Appendix Table A1 for parameter 

estimation for the label versus no-label conditions). 

Lag Analysis To measure the time course of fidelity in LT memory, the data was 

partitioned by lag and each resulting error distribution was analyzed. Since lag intervals 

encompassed participant responses which were self-paced, lag intervals varied both 

across trials (with the same lag) and across participants. For an approximation of the 

correspondence of lag intervals to units of time, we calculated the average study plus 

response time for each condition and collapsed across conditions. The results were as 

follows: Label First: M= 16.2s, SD= 9.0s, MO= 10.0s; Label Last: M= 18.5s, SD= 8.2s, 

MO= 10.0s; No label: M= 11.2s, SD= 7.1s, MO= 5.0s; All conditions: M= 13.3s, SD= 

8.3s, MO= 9.0s. A Pearson’s correlation revealed a strong positive correlation between 

lag and response times (r = 0.7, p<.000).  

Initially, all lag groups were examined separately, but then grouped based on a 

meaningful progression in the parameter contributions. This was done both for visual 

clarity, and in order to increase the “speed” of model fitting. See Appendix Table A2 for 

fits to all lags. Figure 3.2, from left to right shows the error distributions for lag 1, 2-3, 4-

9, 10+, and the aggregate of all lags. The error distributions reveal that the fidelity of 

memory is quite high at lag 1. This is evidenced by the tight grouping of responses 

around 0 error and virtually no responses past 50 degrees of error. For the remaining lags, 

memory fidelity is not as high as in lag 1, but does appear to be stable over time. 
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Figure 3.2. Histograms of errors as a function of lag: lag 1, lag 2-3, lag 4-9, lag 10+, as 

well as the error distribution for all lags. 

However, there is also an increased frequency of responses past 50 degrees of error (i.e., 

increased rate of guessing).   

Partitioning the data by lag shows a progression in the decrease of fidelity, and 

corresponding increase in the rate of guessing, that cannot be discerned from an 

aggregate error distribution. Furthermore, in the aggregate error distribution (Figure 3.2, 

‘All lags’ panel), the center portion of the error distribution—which under the remember-

guess model is characterized by a single Gaussian distribution—appears to have both a 

sharp peak as well as  broad 'shoulders' suggesting multiple components. However, a 

visual inspection of the error distributions by lag is insufficient to determine whether the 

composition of the error distribution is strictly that of remembering and guessing, or if 

there are additional factors at play. 

Recall bias To assess bias in recall we calculated the difference between the hue value 

recalled and the hue value studied. Figure 3.3, top left panel, shows study hue values as a 

function of bias. The square boxes illustrate the bias for each studied value scaled by the 
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frequency at which the response was given across participants. Each square box is 

colored with the true recalled hue value given for each studied value. All responses to a 

particular studied value form a straight horizontal line, and correctly recalled hue values 

lie vertically at the zero-bias line of the x-axis. The results shows regression to the mean 

effects for several color categories, where accuracy is greatest closer to the mean of the 

categories and hue values greater than the category mean are predominately 

underestimated (to the left of the zero bias line in Figure 3.3, top middle panel), while 

hue values less than the mean are overestimated (to the right of the zero baseline in 

Figure 3.3, top middle panel). Notably, there is an asymmetry in the distribution of 

responses around the zero bias line within color categories. When there is a large mass of 

values to the left of the zero bias line (underestimation), there are very few values to the 

immediate right, and vice versa. This results in strong diagonal bands (tilted on the 

vertical axis) within categories that are not merely a result of how the data are plotted. 

We take the asymmetry to indicate regression to distinct categories, and evidence of an 

influence of prior category knowledge on memory (Hemmer, Tauber, & Steyvers, 2015; 

Hemmer & Steyvers 2009a; Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, 

Hedges, & Vevea 2000; Hemmer, Persaud, Kidd, & Piantadosi, 2015).  

Regression analysis Based on established universal categories (red, orange, yellow, 

green, blue, purple and pink; Berlin & Kay, 1969), we assume that the observed recall 

bias is toward these seven categories (also, see Persaud & Hemmer, 2014). A linear 

regression model was fitted to each subject for each category (Figure 3.3, top right 

panel). Because the regression effect is assumed to operate on memory (not guessing), 

the data were trimmed to remove responses assumed to be guessing. It is unclear prior to 
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Figure 3.3. Recall response bias to studied hue values. Top left panel: All responses 

for a given study hue value appear in a horizontal row. The response markers are 

scaled by the frequency at which they were given (larger boxes indicate greater 

frequency) and colored with the exact hue value chosen. Top middle panel: 

Illustration of the asymmetry that results from a regression to the mean effect. Top 

right panel: Regression lines fitted to averaged recall data within 3 Tau of study 

values, by color category (see Persaud & Hemmer, 2014 for category boundaries). 

Here red has been wrapped to show the regression line for the category. In other 

panels, red reflects its true location in color space, which is on both ends of the 

spectrum. Bottom row panels: simulated recall responses from the RG, 3CRG, and 

BM models, respectively.  

 

model fitting how to determine a guessing trial, therefore, data were trimmed following 
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Figure 3.4. Model predictions. Left panel shows stylized predictions of the fit of the 

standard RG model to the aggregate data. The solid black line represents the 

memory contribution and the -. dashed line represents guessing. Right panel shows 

predictions of the fit of a 3CRG model to capture the 'shoulder' of the error 

distribution. The --dashed black line represents the contribution of the additional 

component in memory. 

 
two different procedures: First, singletons in the data, grouped over response frequency, 

(Figure 3.3, top left panel) were removed and only responses within 75 hue values of the 

study value were considered for the analysis. A t-test of the subject slopes for each 

category found that slopes were significantly different from zero for all categories except 

orange, yellow and purple [red: t(60)= -2.82, p<0.001; orange t(60)= -0.15, p=0.44; 

yellow: t(60)= 1.96, p=0.97; green: t(60)= -3.82, p< 0.001; blue: t(60)= -1.78, p= 0.04; 

purple: t(60)=0.94, p= 0.83; pink: t(60)=-1.65, p< 0.05]. Mean slopes were red: -0.69; 

orange: -0.02; yellow: 0.27; green: -0.47; blue: -0.17; purple: 0.2; pink: -0.16. Second, 

guessing responses were trimmed based on the inferred parameters from the Bayesian 

mixture model to all data. Thus, only responses within 3 standard deviations [τ= 25.88] of 

the study value were considered for the analysis. A t-test of the subject slopes for each 

category found that slopes were significantly different from zero for green [t(60)=-5.09, 

p= 0.00] and blue [t(60)=-1.87, p= 0.03], marginally significant for red [t(60)=-1.38, p= 

0.09], but not for orange, yellow, purple or pink. Mean slopes were red: -0.36; orange: 

0.12; yellow: 0.54; green: -0.30; blue: -0.10; purple: 0.93; pink: -0.16.  
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Visual inspection of Figure 3.3 suggests that the lack of significant regression in the 

purple category might be due to purple not being as salient as any of the other categories. 

Furthermore, the lack of significant regression in the yellow category might be due to 

yellow being the smallest category, and because of very high accuracy. Both orange and 

yellow also appear to have large overlap with the red category.  

Modeling 

To investigate the components of the error distributions and the observed regression 

patterns, we implemented two extensions of the standard remember-guess (RG) model: A 

three component remember-guess (3CRG) model, and a Bayesian mixture (BM) model. 

The standard RG model assumes that the error distributions are composed of two 

elements, a Gaussian-like memory distribution and a uniform distribution. See Figure 3.4, 

left panel for a graphical illustration of predictions for the RG model. Based on our 

observed pattern of data in the center portion of the error distribution, we predict that the 

combination of these two distributions will miss some of the area in the error distribution. 

If the memory component captures the peak of the error distribution, then it may miss the 

'shoulders' and vice versa. This combination of a peak and shoulders might signal 

multiple components in memory.  

To explain this pattern in the data, we first implement a simple extension assuming 

that memory is drawn from two normal distributions, one with high precision and one 

with lower precision. This additional parameter will allow the model to capture both the 

peak and the shoulder of the error distribution. See Figure 3.4, right panel for a graphical 

illustration of predictions for the 3CRG model. 
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Another pattern in the data that cannot be explained by the RG model, or by our first 

model extension, is the regression to the mean effect (we will return to a detailed 

regression analysis in the model comparison sections. See 4.3 Comparison of 

Regression). The 3CRG model also does not give a theoretical explanation of what the 

extra component (the low precision memory distribution) represents. Therefore, we 

implement a second extension—a Bayesian mixture model—which assumes that the 

additional component is the contribution of prior category knowledge. Rather than the 

mixture of two separate Gaussian distributions in the 3CRG model, the BM model 

assumes a single Gaussian distribution where the mean is a weighted linear combination 

of memory and prior knowledge. This model inherently predicts the regression to the 

mean effect. However, this effect is obscured in the error distributions, and necessitates 

the evaluation of the model to the full range of responses, rather than aggregate errors. 

Next, we detail the implementation of the three models and describe the results of the 

model comparisons.  

Standard ‘Remember-Guess’ Model (RG) 

We implemented the standard RG model using the MemToolbox (Suchow, Brady, 

Fougnie, & Alvarez, 2013; memtoolbox.org). In this model, the probability density 

function is given by,  

(1 − 𝑔) ∗ von Mises(0, 𝜎) + 𝑔 ∗ Unif(−180, 180)     (Eq 1) 
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Table 3.1. Model Parameter Values (confidence intervals) 

Remember-Guess Model (RG) 

 Fidelity (Conf. Int.) 

σ (°) 

Guess Rate (Conf. Int.) 

g 

Lag 1 11.85  (11.85-13.49) 0.06  (0.03-.010) 

Lag 2-3 16.15  (14.40-18.25) 0.42  (0.37-0.46) 

Lag 4-9 17.63  (15.82-19.70) 0.49  (0.46-0.53) 

Lag 10+ 15.02  (12.03-20.67) 0.61  (0.53-0.69) 

All 15.82  (15.03-17.13) 0.46  (0.44-0.48) 

 
3 Component Remember-Guess Model (3CRG) 

 Fidelity (Con. 

Int.) 

σ (°) 

Fidelity (Con. Int.) 

τ (°) 

Guess Rate (Con. 

Int.) 

g 

Mixing Parameter 

w* 

Lag 1 11.44  (9.87-

15.84) 

28.76  (13.68-

58.43) 

0.03  (0.01-0.09) 0.28 

Lag 2-

3 

15.27  (13.68-

17.69) 

27.87  (20.90-

36.96) 

0.40  (0.36-0.45) 0.35 

Lag 4-

9 

17.13  (15.12-

19.69) 

29.69  (24.12-

48.72) 

0.48  (0.44-0.51) 0.37 

Lag 

10+ 

15.21  (12.44-

32.11) 

35.21  (13.36-

73.98) 

0.59  (0.51-0.68) 0.30 

All 15.40  (15.24-

16.74) 

28.51  (22.95-

32.50) 

0.44  (0.42-0.47) 0.35 

 
Bayesian Mixture Model (BM) 

 Fidelity (Con. Int.) 

ψ (°) 

Fidelity (Con. Int.) 

τ (°) 

Guess Rate (Con. 

Int.) 

g 

Mixing Parameter 

w* 

Lag 1 22.12  (17.22-

23.85) 
23.43  (14.10-26.00) 0.05  (0.01-0.09) 0.49 

Lag 2-3 19.80  (14.17-

19.80) 
21.12 (17.40-22.09) 0.43  (0.39-0.58) 0.48 

Lag 4-9 18.55  (16.11-

18.55) 
25.27  (23.81-25.89) 0.54  (0.54-0.62) 0.42 

Lag 

10+ 

20.29  (12.96-

27.71) 
250.6  (242.0-254.9) 0.60  (0.51-0.72) 0.08 

All 19.03  (18.77-

20.70) 
25.88  (23.68-26.79) 0.47  (0.47-0.52) 0.42 

 
*w= (1/τ

2
)/ [(1/τ

2
) + (1/ψ

2
)]  

 

where remembered responses are von Mises distributed (due to the circular hue space) 

with a mean of μ and standard deviation 𝜎. Guessing responses are produced with 

probability g and are uniformly distributed across the stimulus range from -180 to 180 

degrees. Furthermore, because the error distribution is centered on zero μ=0, this 

parameter will not be considered in this implementation. 
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Table 3.1 gives the inferred parameters and 95% confidence intervals. Figure 3.3, 

bottom left panel shows the simulated draws from the posterior of the RG model. 

According to the model fits, there is a substantial increase in memory noise (𝜎)—i.e., 

decrease in memory fidelity—between lag 1 and lags 2-3. Thereafter, memory fidelity 

appears relatively constant (overlap in confidence intervals between lag groupings). In 

addition, there is a steady increase in the guessing rate (g) from lag 1 and forward. The 

model appears to capture the general trend in the data, with the exception of missing the 

peak of the distribution at some lags and a small portion of the shoulder at others.  

Three component 'Remember-Guess' Model (3CRG) 

Next, we implement the first extension. We assume that the memory component is 

itself a mixture of two Gaussian distributions. This is very similar to the Donkin et al. 

(2014) model, which assumes two components in guessing, where the extra component 

only applies at retrieval. Our model, in contrast, makes the assumption that the increased 

noise is attached to the memory component rather than the guessing component. Our 

memory mixture is also not conditioned on labeling, but rather applies to all trials. While 

mathematically the two models are equivalent, they differ in the conceptual 

underpinnings.  

In the 3CRG model, we first assume the additional component is related to the 

memory component in anticipation of the BM model. Second, we use the noise from the 

two Gaussian components to determine the mixing, rather than assume an additional free 

parameter. Third, the assumption that the additional component attaches to memory is 

agnostic about whether the influence of the additional component happens at encoding or 

retrieval.  
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The probability density function of the 3CRG model is then given by, 

(1 − 𝑔) ∗ ((1 − 𝑤) ∗ von Mises(0, 𝜎mem) + 𝑤 ∗ von Mises(0, 𝜏)) +             Eq (2) 

                                                𝑔 ∗ Unif(−180,180)                                       

We assume that the mixture of von Mises distributions w is based on the fidelity of 

these two distributions. This is strongly motivated by the assumption of the BM model 

that the linear weighting is a Bayesian integration such that w= (1/τ
2
)/ [(1/τ

2
) + (1/ψ

2
)]. 

For clarity this can be rewritten as w= ψ
 2

/ [τ
2
+ ψ

2
]. Using the noise parameters in this 

way ensures a tradeoff between the two memory components such that when one has 

high precision it carries more weight, which seems a reasonable assumption of memory. 

Furthermore, the noise in one of the von Mises distributions is dependent on the noise in 

the second distribution, σmem=√(1/[(1/τ
2
) + (1/ψ

2
)]. Using the noise parameters in this way 

establishes a difference in the precision on the two von Mises distributions, such that 

σmem is always smaller than τ, and that when ψ and τ are the same, the noise on one von 

Mises is smaller than the other
3
. 

It should be noted that for completeness, we also implemented a number of other 

variations of the 3CRG model including versions where: 1) the weighting w is inferred 

but σmem is still calculated from ψ and τ as above, 2)  the weighting w is calculated as 

above, but σmem as the noise on one von Mises is replaced with ψ, treating  the noise 

parameters as independent (See Appendix A4), and 3) all parameters are inferred, that is 

the weighting w is inferred, ψ is the memory noise on one von Mises and τ as noise on the 

other—that is, σmem is not calculated as above (See Appendix A5). Alternate version 1) 

proved to be very unstable at lag 10+ in the hierarchical fitting (see section 4.2 for 

                                                 
3
 As a toy example, if ψ=20 and τ=50, σmem=18.6 If ψ=20 and τ=30, σmem=16.66. If ψ=20 and τ=20, 

σmem=14.1 
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hierarchical fitting of the RG, 3CRG and BM models), and we ultimately abandoned this 

model. Alternate version 2) provided identical patterns in parameter values as the version 

implemented in Eq. 2 above, identical values of AIC and BIC, and an even better DIC 

score. However, the consequence of not tying the noise parameter via σmem means the 

model is agnostic about which component is the primary and which is the secondary, and 

for lag 10+ the hierarchical fitting would sometimes switch whether ψ had the smaller 

value or τ had the smaller value. Alternate version 2) was also unstable in the hierarchical 

fitting, but adds some interesting insights (See Appendix A5 for discussion). It should 

also be noted that the 3CRG model (in any of these versions) is very stable when fitted at 

individual lags, indicating the robustness of the model. 

Table 3.1 gives the inferred parameters of the 3CRG model. Figure 3.3, bottom 

middle panel shows the simulated draws from the posterior of the 3CRG model. Similar 

to the model fits of the standard RG model, there is an increase in memory noise (𝜎)—

i.e., decrease in fidelity—between lag 1 and lags 2-3, and memory noise stabilizes across 

remaining lags. The second memory noise parameter (𝜏) follows a similar trajectory. 

There is also an increase in the guessing rate (g) from lag 1 and forward. Overall, the 

3CRG model posits a similar noise in memory for the σ parameter, and a fairly similar 

guessing rate, relative to the standard RG model. In this respect, our findings are 

remarkably consistent with Zhang and Luck (2008), Brady et al. (2013), and Donkin et al. 

(2014). The failure of the standard RG model to capture the shoulder of the central error 

distribution is accounted for by the additional noise parameter of the 3CRG model, while 

simultaneously providing a better fit to the peak of the distributions (for model 

comparison see Table 3.2). 
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 Bayesian Mixture Model (BM) 

Motivated by the experimental results, which show a regression to the mean (see 

Figure 3.3, top right panel) for a number of color categories, we sought to develop a 

model that could take into account this behavior. We propose a Bayesian mixture model 

where recall is a combination of three inputs: noisy representations stored in memory, 

prior expectations (category knowledge), and random guessing. This approach combines 

the likelihood from the Bayesian Cognitive model (BCM) developed by Hemmer and 

Steyvers (2009b) and Hemmer, Tauber, and Steyvers (2015) with the standard RG model 

of Zhang and Luck (2008). Importantly, in order to visualize the full range of samples 

from the posterior to demonstrate the regression to the mean effect, we now fit the model 

to the observed responses, rather than the error distributions.
4
  

We extend the RG model by assuming that responses are based on a combination of 

samples drawn from memory, with probability w, and prior expectations, and otherwise, 

with probability g, responses are assumed to be guesses. In the BM model, standard 

Bayesian techniques (Gelman et al., 2003) can be used to compute the mean of the 

posterior distribution:   

        𝑅𝑒𝑐𝑎𝑙𝑙~ N((1 − 𝑤) ∗ �̅� + 𝑤 ∗ 𝜇, 𝜎mem)     Eq (3) 

where recall is a weighted linear combination, of samples y drawn from memory with 

noise ψ and some prior expectation with mean µ and standard deviation τ, for the 

stimulus feature, and with fidelity σmem=√(1/[(1/τ
2
) + (1/ψ

2
)]. The µ for each category 

was specified based on the assessment of expectations for color categories in Persaud and 

Hemmer (2014; See Persaud & Hemmer, 2014 for predictions from the Bayesian model 

                                                 
4
 We also refitted the standard remember-guess model to the full response distribution. See Appendix Table 

A3. There is no difference in the parameters of this model between the two fittings. 
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over the true color space).
5
 The weights are a combination of the noise in memory and 

the fidelity of the prior, such that w= (1/τ
2
)/ [(1/τ

2
) + (1/ψ

2
)]. The probability density of 

recall is given by 

                (1 − 𝑔) ∗ von Mises((1 − 𝑤)�̅� + 𝑤𝜇, 𝜎mem) +   Eq (4) 

      𝑔 ∗ Unif(0,360)                                       

Table 3.1 gives the inferred model parameters for the BM model. Different from the 

model fits of both the standard RG model and the 3CRG model, there is no change in 

memory noise (ψ) between lag 1 and lags 2-3, rather memory noise is stable across all 

lags. The noise on the prior (𝜏) grows slightly from lag 2-3 to lag 4-9 and then jumps 

dramatically for lag 10+. The weighting w is steady and evenly split between the memory 

trace and the prior until lag 10+ where, in response to the large increase in τ, it decreases. 

As in the RG and 3CRG models the guessing rate (g) increases gradually from lag 1 and 

forward.  

Figure 3.3, bottom right panel shows the simulated draws from the posterior of the 

BM model. Both the RG model and 3CRG model simulations (Figure 3.3, bottom left 

and middle panels) show a mass of responses near the center zero-bias line and a uniform 

spread of remaining responses to either side. That is, responses are equally likely to be 

over and under-estimated regardless of the study hue value relative to the mean of the 

color categories. See section 4.3 for regression fit to the RG and 3CRG models. Unlike 

the RG model and 3CRG model, the BM model can capture the regression to the mean 

effect, where simulated responses for hue values greater than the category means are 

                                                 
5
 Category means: 1.65°, 30.35°, 60.08°, 119.69°, 230.30°, 284.12°, 323.40°  
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Table 3.2. AIC and BIC Model Comparisons by Lag Group 

 AIC BIC 

 RG 3CRG BM RG 3CRG BM 

Lag 1 1663.16 1657.47 1915.22 1673.42 1672.87 1930.62 

Lag 2-3 9264.21 9249.76 9647.52 9277.43 9269.59 9667.35 

Lag 4-9 17090.03 17074.14 17477.20 17104.41 17095.72 17498.77 

Lag 10+ 3182.68 3182.96 3232.12 3193.45 3199.43 3248.58 

All 31374.58 31332.22 32275.59 31390.22 31355.67 32298.79 

 
*Bold font indicates better fits with a difference score greater than 5, while italicized 

font indicates marginally better fits with a difference score less than 5. 

more likely to be underestimated, while values less than the mean are more likely to be 

overestimated, creating an asymmetry similar to the raw data. 

Model Comparison 

Comparison by lag 

Model comparison between the RG and the 3CRG models was conducted using the 

MemToolBox (Suchow, et al, 2013; memtoolbox.org). The AIC and BIC values for the 

two models are reported in Table 3.2 (bold font indicates better fits with a difference 

score greater than 5, while italicized font indicates marginally better fits with a difference 

score less than 5). Due to the fact that each participant only performed 48 trials with 

varying lags leading to a sparsity of data for some lags, individual differences were not 

assessed. The data was pooled across subjects, and subjects were treated as fixed in both 

AIC and BIC. An improved fit was observed for the 3CRG model for the aggregate error 

distribution and all lag groupings, except 10+. It seems reasonable that the model 

comparison favors the standard RG model at lag 10+ given the increase in the guessing 
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component of the error distribution. The uniform distribution has lifted and could 

potentially account for the portion of the error distribution that would be accounted for by 

the second fidelity component parameter. While the improvement is marginal for lag 1 

(less than a 5 point difference in AIC between RG and 3CRG), the improvement is 

substantial for lags 2-3 and 4-9. Memory at lag 1 appears to have a high level of precision 

and a majority of the performance can be attributed to remembering with little influence 

of guessing. In contrast, memory is both precise and less precise at other lags and there is 

a greater rate of guessing. This is consistent with the 3CRG assumption that there is both 

a memory component with high fidelity and a component with greater noise. The 3CRG 

model makes it clear that there is additional information in the error distribution that 

cannot be solely explained by remembering with noise and guessing (i.e. the RG model). 

The AIC and BIC values for the BM model are also reported in Table 3.2. No 

improvement in fit was observed for the BM model relative to either the RG or the 3CRG 

models. There are several reasons why the BM model might lose out in the model 

comparison. For example, we assume only one value for tau for all categories, and we 

specify the color categories based on universal color categories. Furthermore, the weak 

regression effects in the data allow the 3CRG model to successfully fit all the data 

without accounting for the regression effects. We discuss all of these reasons along with 

possible remedies in the discussion section. It is important to note that making allowances 

for an influence of category information in the BM model produced the characteristic 

regression to the mean effect which cannot be captured by the two other models, and we 

still see this as a substantial strength of the BM model. Restricting analysis to error 

models—while producing an improved fit—leads to very different conclusions about 
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memory. The regression effect makes it clear that category knowledge plays an important 

role in recall, and that this must be considered in models of LT memory.  

 

Hierarchical model comparison 

Thus far, we have evaluated the models based on fits at the individual lags. It is 

reasonable, however, to assume that the same model applies to all lags. Therefore, in 

addition to fitting the separate models for each lag, we also fitted a single hierarchical 

model to all lag groupings together, for each of the three models. This model treats each 

of the lag groupings parameters as samples from a normally-distributed population and 

then infers both best fitting parameters for each lag grouping, as well as the population 

mean parameter.  

Because AIC and BIC are not appropriate for assessing hierarchical models, here we 

report DIC scores (Deviance Information Criterion; Spiegelhalter et al., 2002, van der 

Linde, 2005). The DIC is a generalization of the AIC for hierarchical models, which 

penalizes both for quality of fit and number of parameters. As before, the fitting was 

conducted using the MemToolBox. 

The parameters for each of the three hierarchical implementations were essentially 

identical to the parameters reported in Table 3.1 across all lag groupings. However, due 

to the sparsity in the data at lag 10+ some of the models are very sensitive to the choice 

of prior distribution. This particularly affects the BM model in the hierarchical 

implementation. The DIC for the models were as follows: RG = 31280, 3CRG = 31230, 

and BM = 32173. This replicates the pattern of model comparison when lags are 
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estimated separately. There is an improved fit observed for the 3CRG model over both 

the RG and BM models. 

Regression Comparison 

To further understand how the models capture the observed data, a regression analysis 

was performed on the simulations from each of the three models, similar to the regression 

analysis performed on the subject data (see section 2.2.3). We simulated draws from the 

RG model assuming 61 subjects and 48 study hue values as in the experiment (Figure 

3.3, bottom left panel). Because the regression effect is assumed to operate on memory 

(not guessing), only responses assumed to be drawn from memory (within 3 standard 

deviations [σ= 15.82] of the study value) were considered for the analysis. A linear 

regression model was fitted to each simulated subject for each of seven universal color 

categories: red, orange, yellow, green, blue, purple and pink (similar to the regression 

analysis for the raw data).  Recall that, t-tests of the observed subject data revealed that 

the slopes of 4 of the 7 categories were significantly different from zero. In stark contrast 

to the subject data, one sample t-tests of the RG model slopes failed to find a significant 

difference from zero in any category. The mean slopes for all categories were: red: -0.04; 

orange: -0.16; yellow: -0.31; green: 0.09; blue: 0.11; purple: 0.07; pink: -0.05. 

We simulated draws from the 3CRG model following the same procedure as for the RG 

model. Responses within 3 standard deviations [τ= 28.51] of the study value were 

analyzed. One-sample t-tests of the 3CRG model slopes failed to find a significant 

difference from zero in all categories, except purple [t(60) =-1.90, p= 0.03]. Note that the 

observed subject slopes are not significantly different from zero for the purple category, 

and thus, the 3CRG model does not mirror the subject data for this category. Mean slopes 
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were red: 0.79; orange: -0.62; yellow: -0.29; green:-0.07; blue: -0.04; purple: -0.98; pink: 

-0.29. 

Lastly, we simulated draws from the BM model following the same procedure as for 

the other models. Responses within 3 standard deviations [τ= 25.88] of the study value 

were analyzed. One sample t-tests for the simulated BM model data revealed a similar 

pattern to the subject data, in that 4 of the category slopes were different from zero 

(yellow: t(60)= -4.26, p=.00; green: t(60)= -3.62, p=.00; blue: t(60)= -4.18, p=.00; pink: 

t(60)= -3.68, p=.00). The mean slopes for all categories were red: -0.48; orange: -1.07; 

yellow: -0.17; green:-0.36; blue: -0.37; purple: -0.30; pink: -0.65. 

For completeness, we then compared the slopes from the subject data for each 

category to the slopes of the simulated data. We sought to evaluate whether observed 

regression patterns in the subject data were observed in the model simulations – i.e., in 

the categories in the subject data where the slopes were significantly different from zero, 

the model simulations also resulted in non-zero slopes of the same degree. For the RG 

model, there were significant and marginal differences in slopes, when compared to the 

subjective slopes, for four categories (red: t(120)= -1.74, p= 0.08; yellow: t(120)= 2.12, 

p= 0.04; green: t(120)= -2.87, p= 0.00; blue: t(120)=-2.38, p= 0.02). This was due to the 

RG model either failing to predict a regression (red and green), or predicting an effect in 

the opposite direction of the observed data (yellow and blue). In the three remaining 

categories, the failure to find significant differences between the model and the subject 

data was due to the RG model predicting no regression when there was no regression 

effect in the observed data (orange and purple), or when the regression effect in the data 
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was weak (pink). In total, the RG model only correctly predicted two categories—yellow 

and purple.  

Similar to the RG model, for the 3CRG model there were significant and marginal 

differences in slopes, when compared to the subjective slopes, for four categories (red: 

t(120)= -2.24, p= 0.03; yellow: t(120)= 1.72, p= 0.09; green: t(120)= -2.53, p= 0.01; 

purple: t(120)=2.11, p= 0.04). This was due to the 3CRG model either failing to predict a 

regression (green), predicting the effect in the opposite direction (red and yellow), or 

predicting a strong regression when there was no observed regression in the data (purple). 

In the remaining three categories, the failure to find significant differences was due to the 

3CRG model predicting a weak, but non-significant regression effect, when there was a 

weak, but significant effect in the data (blue and pink), or predicting a weak, but 

marginally significant regression, when there was no regression effect in the data 

(orange). In total, the 3CRG model only correctly predicted the regression pattern in the 

blue and pink categories.  

In contrast, for the BM model, there was no significant difference in five of the seven 

categories. This means that the BM model either predicted a regression to the category 

mean (red, green, and blue) or no regression (yellow and purple) for the same categories 

as was observed in the data. In one category (pink: t(120)=2.47, p= 0.02), the observed 

difference is due to the BM model over-predicting the steepness of the regression, rather 

than failing to predict the regression effect. Only in one category (orange: t(120)=3.59, 

p= 0.00), does the BM model fail to predict the pattern in the subjective data—by 

predicting a negative slope when the slope  in the subject data, although negative, was not 

significantly different from zero. 
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In summation, the collective results of the regression analyses suggests that the slopes 

generated from the BM model more closely resemble the regression behavior in the 

subject data, compared to both the RG and 3CRG models.  

Discussion 

Summary We investigated the time course of errors in recall in an effort to understand the 

components that contribute to LT episodic memory. We employed a novel experimental 

paradigm and conducted a lag analysis to characterize the influence of category 

knowledge, and memory over time. We then implemented three distinct cognitive models 

to evaluate the potential contributing components to memory. Furthermore, we found that 

there are two important factors in LTM that cannot be accounted for by the standard RG 

model. In the aggregate, recall reflects a combination of three components: a peaked 

memory component, a less precise memory component, and a guessing component, 

capturing the peak and ‘shoulders’ in the error distributions. In the full response data, 

recall reflects regression to the mean effects for several color categories, indicating a 

contribution of prior category knowledge to memory.  

The 3CRG model can account for the additional component in memory, and provided 

a large improvement in the fit over the RG model. The benefit of the 3CRG model is that 

it has an additional component that can account for a number of mechanisms that might 

influence LT memory, such as verbal labeling (Donkin et al., 2014), and variable 

precision in memory (van den Berg et al., 2012). Despite the strengths of the 3CRG 

model, there is no clear theoretical interpretation of what is encompassed in this 

component. Moreover, like the RG model, it also cannot capture the regression patterns 

in the data. The BM model, in contrast, can account for both a second memory 



60 

 

 

 

component and the regression patterns, and the BM model also has a theoretical 

framework for the additional component. It, however, loses dramatically in the model 

comparisons. The BM model we implemented here is a first pass at understanding the 

influence of category knowledge, and there are a number of factors that might account for 

the 3CRG model being favored over the BM model, such as weak regression effects in 

the data, fragile associations, incorrect category assumptions and other general modeling 

assumptions. There are also several possible remedies that might improve the BM model 

and are discussed in the next section. Furthermore, our results have important 

implications for understanding mechanisms such as decay, sudden death and interference. 

Weak regression effects  

A key assumption of the BM is the regression to the mean effect. This effect has been 

demonstrated to be robust in memory (Hemmer & Persaud, 2014; Hemmer & Steyvers, 

2009a; Hemmer, Tauber, Steyvers, 2015; Huttenlocher, Hedges, and Duncan, 1991; 

Huttenlocher, Hedges, & Vevea 2000; Persaud & Hemmer, 2014; Hemmer, Persaud, 

Kidd, & Piantadosi, 2015). In our data however, using seven universal color categories as 

a benchmark resulted in poor alignment to the data. The regression analysis revealed that 

there was no significant regression in three categories, suggesting that the use of 

universal color categories in the regression assumptions is likely not representative of our 

data. Furthermore, the fact that the 3CRG model outperforms the BM model, in both AIC 

and BIC, suggests that the regression effects are weak enough that the inability of the 

3CRG model to fit the regression effects is outweighed by its improved fit to the rest of 

the data. While Persaud and Hemmer (2014) found strong regression effects to all seven 

universal color categories, they conditioned their regression analysis on responses where 
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participants also provided the correct verbal label for the study value at test. In other 

words, they only analyzed data where the participants were able to recall the association 

between the test cue (shape) and the study color. Here we include all data, which likely 

includes trials where participants misassociated shape cues to studied colors, guessed, or 

made some other error. A key test for the flexibility of 3CRG model without accounting 

for regression effects would be if the model still outperformed the BM model for the 

finding of differential bias to two separate categories for stimuli studied at the same size 

(i.e., a large strawberry and a small apple –See Hemmer & Steyvers, 2009a).  

We acknowledge that our findings are likely data dependent. There are several 

possible considerations that might improve the fit of the BM model, or help to lend 

further support for the strength and flexibility of the 3CRG model. Since the stimuli were 

drawn from the true hue space, categories had varying sizes. An example of this can be 

seen in Figure 3.3, top left panel, where the raw data shows high accuracy (large squares) 

around the yellow category, because this is a very small category. A possible future 

extension to the BM model would be one that considers variable precision in the Tau 

parameter (here we have assumed that there is only one value of tau for all categories). 

This would be akin to the van den Berg et al. (2012) variable-precision model which 

assumes variability in the precision with which items are encoded, but with variable 

precision in the categories. This could remedy the weak regression effects in small 

categories which obscures the importance of capturing the regression effects in other 

categories. 
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Alternative color categories 

The samples drawn from the posterior of the BM model (Figure 3.3 bottom right) 

reveals a misalignment between the color categories used to inform the model, and the 

actual categories borne out in the data. For example, in the data there appears to be two 

blue categories–light blue and dark blue. However, the BM model only exhibits 

regression to one blue category –consistent with universal categories. To better 

understand what color categories participants might have regressed toward in the 

response data, we conducted a cluster analysis (see Appendix A6). Interpreting the 

clusters relative to the standard universal color categories, suggests that observers may be 

using eight categories—five of which can be interpreted relative to the universal color 

categories: a category composed of red, orange, and yellow universal color values 

(visualized in red; Figure A1); another category predominately composed of green 

values; two separate categories for the hue space encompassing blue values (visualized in 

light blue and dark blue); one category for purple; and one for pink (although pink may 

contain red values, given the circular nature of the hue space). Interestingly, there were 

two uniform clusters that span the entire hue range and fell on the top and bottom edges 

of the graph. These clusters may potentially correspond to the guessing component, or 

could relate to the large value for τ at lag 10+ in the BM model. Participants also appear 

to use color categories at various levels in the color hierarchy. For example, participants 

appear to use the subordinate categories of light blue and dark blue. On the other hand, 

for colors in the universal red and orange ranges, they use a superordinate color category 

for warm colors (i.e. a blended category for red, orange, and yellow).  
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Another interesting feature of the cluster analysis is the natural prediction of 

regression to the mean behavior in the data. The inherent regression effect learned from 

the cluster analysis and the use of color categories with different boundaries, provide 

important constraints for future considerations of Bayesian modeling of color space. 

While we think that the BM model provides an important theoretical framework in 

considering regression effects and category influences, continued failures of the BM 

model even under improved category assumptions would lend further strength to the 

3CRG model. 

Fragile associations 

Another factor that might impact the performance of the models—particularly in the 

individual lag fits—is that of fragile associations. Modeling paradigms in visual short-

term memory have successfully extended the RG model to incorporate task-based 

components, such as “misassociation” or “misbinding” parameters (Bays, Catalao, & 

Husain, 2009; Bays, Wu, & Husain, 2011). There are some hints that there might be 

fragile associations in our data as well.  

At lag 10+, precision in the additional component in both the 3CRG and BM models 

is low and the rate of guessing is high, favoring the RG model. In fact, lag 10+ is the only 

lag grouping where the 3CRG model loses. This however, might be a consequence of the 

experimental design.  Following standard procedures in color memory paradigms in 

visual working memory, we deliberately use an experimental design where we assign 

colors to random objects (e.g., Brady et al., 2013). An important consequence of this 

design, in conjunction with long lags, in the study of LTM, is that the object color pairing 

might be what is forgotten. In other words, performance at lag 10+ gives the appearance 
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of a high rate of guessing, not because of a failure to remember the studied hues, but due 

to a failure of the shape cue to retrieve the correct hue pairing. A natural task with a 

stronger cue-target association might result in a substantially different pattern of data – 

one where the rate of guessing is lower. Recent work by Lew, Pashler, and Vul (2015) 

proposes an interesting new model of fragile associations in LTM. While this is beyond 

the scope of this paper, given that we cannot assess fragile associations in the current 

experimental paradigm, we agree that this is an important future direction. Fragile 

associations might hamper the BM model more than the other models because the 

behavior looks like guessing, but it has a strong memory trace, albeit bound to the wrong 

cue. Therefore, the model has a difficult time assigning the behavior, and the role of prior 

knowledge appears more diffuse. 

Interference vs. Decay 

Models of memory have varied in their mechanisms of forgetting. Some models 

theorize that forgetting occurs as a function of decay of memory traces over time (e.g., 

Barrouillet, Bernardin, & Camos, 2004; Portrat, Barrouillet, & Camos, 2008), while 

others attribute forgetting to interference (e.g., Lewandosky, Oberauer, Brown, 2009; 

Neath & Brown, 2012). Our findings appear to provide support for both forgetting 

mechanisms. First, our results reveal a decrease in memory fidelity (increased noise in 

the models’ σ parameter) from lag 1 to lag 2-3 in the RG model, but in all three models 

memory fidelity then remains stable across remaining lag groups. This suggests that the 

memory trace initially suffers some decay during virtually short-term/working memory, 
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which supports the decay account (Baddeley & Scott, 1971
6
), but is stable into LT 

memory. This progression in parameters also suggest that— although we are modeling 

the lag groupings under the assumption that one model should account for all 

groupings—there is something different about the data at lag 1— namely very high 

precision, no second component and virtually no guessing, consistent with short-

term/working memory.  

While memory noise stays steady across lags, guessing (g) increases across lags for 

all models. In this respect, our findings are remarkably consistent with Zhang and Luck, 

2008, Brady et al., 2013, and Donkin et al., 2014. This has led to the interpretation that 

there is an upper bound on memory noise in LTM, and that memory suffers a ‘sudden 

death’ (Brady et al., 2013). Brady et al., 2013, however, could only make this assertion 

evaluating the transition from working to LT memory. Our design allows us to 

understand what happens across lags (time) in LTM. For the BM model, the noise in the 

prior (τ), exhibits a very different pattern from the RG model: τ is steady on lags 1-3, then 

increases slightly for lags 4-9, but increases dramatically for lags 10+ (a similar pattern 

can be seen in the alternative implementation of the 3CRG model (Appendix A5) with all 

parameters inferred). As a result, the weighting (w) of samples from memory and the 

prior changes across lags. This can be understood as sampling from different granularities 

of prior knowledge, consistent with hierarchical influences in LTM (e.g., Hemmer & 

Steyvers, 2009), and the hierarchical nature of colors (Persaud & Hemmer, 2014). On 

earlier lags One might use a specific prior (e.g., light red or dark red), but on intermediate 

lags One might use a prior of ‘red’, and at later lags, where the noise on the prior is very 

                                                 
6
 Although more recent work suggests that forgetting in short-term memory can also be explained 

by an interference account of forgetting (see Lewandosky, Oberauer, Brown, 2009 for other interference 

based views accounting for data traditionally thought to support the trace decay account).  
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large, One might simply use a prior of warm versus cool—or some similar strategy. This 

progression in parameters in the BM model is contrary to the idea of sudden death. Taken 

together, our data suggests that not only is fidelity fixed in LTM, but also, category 

information plays an important role before One resorts to random guessing. Moreover, 

there is no decay in LTM and no sudden death.  

This leaves interference (Neath & Brown, 2012) as the likely mechanism for 

increased guessing; especially since the trials in our task are interleaved, and the target-

cue bindings (color-shape pairing) are arbitrary in nature. Thus, by lag 10+ it is possible 

that the memory trace (color) is present, but the association to the cue is difficult to 

retrieve as a result of studying other target-cue combinations. Such an interference 

explanation is consistent with a fragile association account of memory (Lew, Pashler, & 

Vul, 2015), where recall is thought to be a combination of remembered information, 

misassociated information (incorrectly binding targets to cues), and guessing. 

Recent work assessing event-based memory in rhesus monkeys lends further credence 

to interference being the mechanism of forgetting (Devkar & Wright, 2016). Memory 

accuracy was found to decrease as a function of proactive interference, such that, 

previously presented stimuli (as far back as 16 trials) interfered with same/different 

recognition responses. Also, the influence of proactive interference did not change as a 

function of presentation time between study and test, and inter-trial time. In other words, 

longer delays between study and test and between trials, where previously studied 

information would have decayed, did not hamper interference (again, even when the 

information was studied 16 trials prior).  

Serial dependencies are potentially another source of interference that appears as 
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guessing. Serial dependences refer to the bias in memory that results from information 

experienced on previous and present trials. It has been demonstrated in visual perception 

that memory for one item is influenced by accompanying (even task-irrelevant) 

information and a running average over previous trials (Huang & Sekuler, 2010). 

Similarly, the perceptual system is serial dependent in that perception is informed by both 

prior and present information (Fischer and Whitney, 2014).  

While serial dependencies may be present at later lags before participants resort to 

guessing randomly, they are not the source of interference at earlier lags where category 

information is still available. Hemmer and Steyvers (2009a) showed that in LT memory, 

the regression to the mean effect is not a result of sequential dependencies. They 

demonstrated a differential bias when two items from different object priors (e.g., an 

apple and a strawberry) were studied at the same size. This is also the case in the data 

presented here (see Figure 3.3, top row middle panel) where there is a differential bias, 

for example on the boundary between yellow and green, where neighboring hue value 

results in regression to opposite categories. Sequential dependencies would result in an 

equal bias towards either category on the boundary dependent on the previous trial (i.e., if 

previous trial was green bias would be to green but if previous trial was yellow bias 

would towards yellow). A critically explicit prediction of the BM model is exactly the 

differential regression at category boundaries as observed in our data.  

Given the design of the paradigm used in this investigation, we draw our conclusions 

with some caution. It is difficult to disentangle the roles of memory decay and 

interference as mechanisms of errors and forgetting because we do not control for 

rehearsal (Lewandosky, Oberauer, Brown, 2009; Portrat, Barrouillet, & Camos, 2008), 
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and trials are interleaved—which could result in intra-sequence interference (Neath & 

Brown, 2012)—both factors that are required to discern between decay and interference. 

The decay versus interference differentiation is further complicated by the idea of 

equivalence, which suggests that both decay and non-decay models provide strong fits to 

the same data (Neath & Brown, 2012). 

Lastly, a contributing factor to memory fidelity, that is not explored in this work but 

is noteworthy, is the role of intentional forgetting. When participants are instructed to 

forget certain information in the study stimuli, this leads to a decrease in the probability 

that the memory trace is retrievable and a decrease in the overall fidelity of the memory 

trace (Fawcett, Lawrence, & Taylor, 2016). In this way, memory intentions influence the 

quantity of information encoded into LTM and the quality of the information. Fawcett, 

Lawrence, & Taylor  (2016) modeled this finding using a hierarchical variable-precision 

mixture model similar to the standard RG model, with the allowance of variability in 

encoding similar to van den Berg et al (2012).  

Conclusions 

The implications of the findings from these three models highlight significant 

characteristics of LT memory. First, consistent with Donkin et al. (2014), there is a clear 

intermediate stage in LT memory between precise recall and random guessing. While the 

difference between our 3CRG model and the Donkin et al. (2014) model is a question of 

technical assumptions, the difference of these two models to the BM model, however, is 

one of core assumptions, namely that there is an influence of prior knowledge and a 

regression to known categories. We further argue that at this intervening step, there is a 

more generalized influence of expectations beyond verbal labeling. Notably, restricting 
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analysis to error models that mask intervening steps leads to very different conclusions 

about memory.  Deriving conclusions about memory based solely on error distributions is 

misleading in that it can obscure critical features of memory, such as the influence of 

prior category knowledge. Therefore, it is important that future research seeks to move 

beyond the standard remember-guess paradigm for LT memory, and work to elucidate 

the role of fragile associations and interference. We believe that we have clearly 

demonstrated that the 3CRG model is robust and consistently outperforms the other 

models, and that the BM model explains important patterns in the data.  

Appendix 

A.1 Label vs No-Label Parameters 

Table A1 gives the parameter values for the three experimental conditions: Label 

First (recall color label before generating the color), Label Last (generate a color before 

recalling color label), and No Label (never provided a color label). For some lag groups, 

the model had a difficult time converging given the sparsity of the data. Also, there was 

no lag of 1 in the No label condition. 

 

Table A1. Parameter estimates and (confidence intervals) for label vs. no-label 

conditions 
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A.2 Parameters at All Lags 

To develop reasonable lag groups we first infer parameter values for all lags using the 

RG model. Table 3B provides RG model parameter values for each individual lag.  

A.3 RG model 0-360 

For comparison to the Bayesian Model on the full range of hue values, we 

implemented the RG model on the same response data space (0-360 degree). There is no 

difference in the parameters between the two fittings of the RG model. See Table A3 for 

the inferred parameters. 

 

Table A2. Parameters for each lag 
 
 Fidelity 

σ (°) 
Guess 

g 

Lag 1 11.85 .06 

Lag 2 18.13 .37 

Lag 3 14.07 .47 

Lag 4 18.13 0.44 

Lag 5 18.10 0.47 

Lag 6 16.09 0.52 

Lag 7 17.14 0.56 

Lag 8 18.04 0.49 

Lag 9 19.38 0.54 

Lag 10 14.78 0.63 

Lag 11 10.37 0.48 

All 15.84 0.46 

  
 

 Table A3. RG Model Parameter Values (0-360) 
 

 Fidelity (Conf. Int.) 

σ (°) 

Guess Rate (Conf. Int.) 

g 

Lag 1 11.81 (10.59-13.26) 0.06 (0.03-.010) 

Lag 2-3 16.08 (14.40-18.15) 0.42 (0.37-0.46) 

Lag 4-9 17.68 (16.05-19.40) 0.49 (0.46-0.53) 

Lag 10+ 15.13 (12.03-20.65) 0.61 (0.53-0.69) 

All 15.83 (14.82-16.95) 0.46 (0.44-0.48) 
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A.4 3CRG model without independent noise parameters 

 An alternate version of the 3CRG model where the weighting w= ψ
 2

/ [τ
2
+ ψ

2
], but 

σmem as the noise on one von Mises is replaced with ψ, was implemented. Instead of the 

noise component in one von Mises distribution being dependent on the other, here the 

noise parameters were treated as independent.  

 The probability density function of the 3CRG model with all inferred parameters 

is given by, 

(1 − 𝑔) ∗ ((1 − 𝑤) ∗ von Mises(0, 𝜏) + 𝑤 ∗ von Mises(0, 𝜓)) +              Eq(A1) 

                                                𝑔 ∗ Unif(0, 360)                                       

where g , 𝜓 and 𝜏 are all inferred values from the data. Table A4 shows the parameter 

values for each lag group under this model and reports the AIC and BIC scores relative to 

the RG model. The parameter values for this model in the hierarchical fitting detailed in 

the modeling section (see section 4.2) were identical to the individual lag fitting and are 

not reported. Note that the parameter values at lag 10+ had a tendency to reverse in 

different runs of the hierarchical model, such that sometimes ψ
 
≈14 and τ ≈30, but at 

other times ψ
 
≈30 and τ ≈14. Irrespective of the order of the parameter values this version 

Table A4. Hierarchical 3CRG Model with independent noise parameters 
3 Component Remember-Guess Model with independent noise parameters 

 Fidelity (Con. Int.) 
σ (°) 

Fidelity (Con. Int.) 
τ (°) 

Guess (Con. 
Int.)  

g 

Mixin
g 

w* 

AIC BIC 

Lag 
1 

10.62  (9.41-12.74) 28.55  (17.05-
80.52) 

.03  (.007-

.082) 
0.56 1657.81 1673.20 

Lag 
2-3 

13.77  (12.30-
16.15) 

29.46  (23.06-
44.79) 

.41  (.35-.45) 0.45 9252.46 9272.29 

Lag 
4-9 

15.30  (13.65-
16.83) 

31.26  (23.61-
35.52) 

.48  (.45-.52) 0.44 17077.1
4 

17098.7
2 

Lag 
10+ 

14.02  (12.28-
581.89) 

31.06  (11.93-
989.33) 

.58  (.53-.69) 0.45 3183.15 3199.61 

All 13.86  (13.01-
15.07) 

29.60  (25.04-
39.40) 

.44  (.41-.47) 0.48 31339.0
2 

31362.4
8 
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of the 3CRG model consistently had the lowest DIC=31177.53 in the hierarchical 

implementation of this model, which favors this model relative to both the RG and BM 

models. 

A.5 3CRG model with all parameters inferred 

The 3CRG model with all the model parameters inferred was implemented. Instead of the 

noise component in one von Mises distribution being dependent on the other, here the 

noise parameters were treated as independent and w is an additional free parameter. 

The probability density function of the 3CRG model with all inferred parameters is given 

by, 

(1 − 𝑔) ∗ ((1 − 𝑤) ∗ von Mises(0, 𝜏) + 𝑤 ∗ von Mises(0, 𝜓)) +        Eq (A2) 

                                                𝑔 ∗ Unif(0, 360)                                       

where g, w, 𝜓 and 𝜏 are all inferred values from the data. Table A5 shows the 

parameter values for each lag group under this model and reports the AIC and BIC scores 

relative to the RG model. Table A6 shows the parameter values for this model in the 

hierarchical fitting detailed in the modeling section (see section 4.2). Note that the 

parameter values at lag 10+ changes between the two implementations of this model. The 

Table A5. 3CRG Model with all parameters inferred, and with AIC and BIC Scores 
3 Component Remember-Guess Model with all parameters inferred 

 Fidelity (Con. 

Int.) 

σ (°) 

Fidelity (Con. 

Int.) 

τ (°) 

Guess 

(Con. Int.)  

g 

Mixi

ng 

w* 

AIC BIC 

Lag 

1 

6.97  (5.02-

11.84) 
19.95  (13.43-

47.71) 
0.03  (.008-

.082) 
0.56 1657.8

7 
1678.3

9 
Lag 

2-3 

8.45  (6.66-

11.27) 
28.40  (23.23-

46.63) 
0.36  (0.30-

0.41) 
0.45 9229.6

0 
9256.0

3 
Lag 

4-9 

9.57  (7.66-

12.45) 
31.05  (24.76-

44.41) 
0.43  (0.38-

0.48) 
0.44 17051.

95 
17080.

72 
Lag 

10+ 

13.07  (10.37-

19.02) 
94.68  (25.88-

439.98) 
0.28  (0.03-

0.65) 
0.45 3312.5

4 
3334.4

9 
All 9.04  (7.71-

10.63) 
29.64  (24.96-

39.28) 
0.40  (0.36-

0.43) 
0.48 1657.8

7 
31314.

45 
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Figure A1. The 8-group unconstrained model-based classification of the data. 8 optimal 

clusters were learned from the Expectation-Maximization algorithm evaluated by BIC 

scores. Each of the 8 colors correspond to a different cluster that is color coded to reflect 

the color category to which most of the study values in the data belong. 

DIC score of the hierarchical version of this model was 31194.54, which still favors this 

model relative to both the RG and BM models. 

A.6 Cluster analysis The cluster analysis was implemented to infer the categories 

participants regressed to in the experiment. Briefly, the clustering algorithm (Fraley & 

Raftery, 2006) performs a hierarchical agglomeration to maximize the classification 

likelihood for up to 9 groups in each model. Next, the Expectation-Maximization (EM) 

algorithm calculates the maximum likelihood estimation for all models and number of 

cluster combinations. Lastly, the algorithm computes the BIC scores for each cluster 

mixture model with optimal parameter values and returns the best fitting cluster size 

model. The best BIC score (BIC = -66210.13) revealed that 8 clusters produced the most 

Table Table A6. Hierarchical 3CRG Model with all parameters inferred 
 

Hierarchical 3CRGall 

 Fidelity (Con. Int.) 

σ (°) 

Fidelity (Con. Int.) 

τ (°) 

Guess (Con. Int.) 

g 

Mixing 

w* 

Lag 1 7.06  (6.40-13.61) 19.50 (6.86-140.95) 0.04 (0.01-0.12) 0.56 

Lag 2-3 8.38  (8.38-14.26) 28.65 (28.65-149.05) 0.36 (0.01-0.38) 0.45 

Lag 4-9 9.68  (8.58-15.99) 31.68 (20.68-131.25) 0.44 (0.29-0.53) 0.44 

Lag 10+ 13.19 (.25-15.45) 114.68 (21.95-114.68) 0.00 (0.00-0.63) 0.33 
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optimal partitioning of the data. Figure A1, shows the output from the learned clusters. 

The mean of the 8 inferred clusters (in degrees) were: 39.59, 151.76, 171.21, 113.88, 

182.15, 238.42, 288.69, and 335.57).  
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Chapter 5: Misassociations, Random Guessing, and Prior Knowledge  

K. Persaud took the lead on the study concept and study design with feedback from the 

advisor, P. Hemmer. K. Persaud performed the stimulus creation, and supervised 

undergraduates in the lab on testing and data collection. K. Persaud performed the data 

analysis and the interpretation of the analysis was performed by K. Persaud and P. 

Hemmer together. K. Persaud wrote the chapter with feedback from the advisor P. 

Hemmer.  

The memory system stores associative information, such as the relationships between 

information (e.g. the placement of objects to locations in space) over time. The nature of 

the associative information, such as the semantic coherence and meaningfulness of the 

associations may impact how this information is stored. On the one hand, 

previous research suggests that although memory traces can be quickly formed and 

retained for a long time, memory associations are slowly formed and are quickly 

forgotten (Lew, Pashler, & Vul, 2015).  On the other hand, other work suggests that prior 

meaningful associative information in the stimulus environment influences recall 

of current episodic events and improves average accuracy (Hemmer & Steyvers, 2009a; 

Hemmer, Persaud, Venaglia, & DeAngelis, 2014; Persaud & Hemmer, 2016). These 

contradictory findings can be reconciled by understanding the nature of the associative 

information. While arbitrary associations (e.g., the location of objects or color squares in 

a circle) are fragile in nature, accounting for the difficulty in forming and retaining 

information, we hypothesize that semantically coherent associations that may have basis 

in the real world (e.g. airplane in the sky) might produce an opposite effect. When 

participants bring this knowledge to a task, associations might be learned more quickly 
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and allow for more strategic recall when retrieving associations from memory. Here, we 

present the findings from three experiments assessing memory for associations that vary 

in degree of meaningfulness.  

Introduction  

In the past decade, there has been an explosion of computational models that 

characterize the behavior of  visual working memory(WM),  and have been used to  

characterize to long-term memory (LTM)  (e.g. Bays, Catalao, Husain, 2009; Bays, Wu, 

& Husain, 2011; Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Donkin, Nosofsky, Gold, 

& Shiffrin, 2014; Fougnie, Suchow, & Alvarez, 2012; van den Berg, Shin, Chou, George, 

& Ma, 2012; Zhang & Luck, 2008). These frameworks were developed to explain several 

memory phenomena, including capacity limits (Alvarez & Cavanagh, 2004; Wilken & 

Ma, 2004; Zhang & Luck, 2008), memory fidelity (Brady, et al., 2013; Persaud & 

Hemmer, 2016), the influence of task-dependent factors (Bays, Catalao, Husain, 2009; 

Bays, Wu, & Husain, 2011; Donkin, Nosofsky, Gold, & Shiffrin, 2014), and the role of 

pre-experimental category knowledge (Bae, Olkonnen, Allred, & Flombaum, 2015; 

Persaud & Hemmer, 2014; Persaud & Hemmer, 2016). Importantly, a prominent 

assumption of many of these models, particularly those that use and extend the popular 

remember-guess framework (Zhang & Luck, 2008), is that random guessing is a major 

contributor to recall performance. However, when trying to recall information from 

memory, do people really guess randomly?  

Consider the following example: imagine telling your friend about a scuba diving 

excursion during your last tropical island vacation. You are trying to recall as much as 

possible, but the vacation was a long time ago and the details are a bit blurry. Some of 

your episodic memory representations might be clear and precise (i.e. encoded with high 
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fidelity), and you recall fish, dolphins, coral, and sea turtles. Other representations might 

be less clear (i.e. encoded with less fidelity) making them difficult to retrieve from 

memory, so you simply guess randomly that you saw a coffee cup. What? Now, it is not 

completely unlikely that you saw a coffee cup - one could have fallen off a boat - but it is 

improbable. It is also unlikely that you would resort to completely randomly guessing
7
. A 

completely random guess in this case is not constrained to guessing an object, but instead 

all possible things including concepts such as love or justice (i.e. sampling from 

an unconstrained distribution over all possible responses in the world). In this example, it 

seems more likely that you would guess with meaningful information, such as seaweed or 

sand - things that you would find in the scuba diving context (i.e. sampling from 

a constrained prior distribution over possible responses in the task, assigning more 

probability to the objects that are most related to the studied object). While random 

guessing in real world contexts seems like an unlikely strategy to use, notably many of 

the aforementioned models assume memory to be strictly a combination of noisy 

                                                 
7
 The term random guessing can be ambiguous and requires both a theoretical and computational 

description. Theoretically, a random guess is a sample drawn from an unconstrained uniform distribution 

over all possible features or concepts in the real world. This is analogous to the example given above, i.e. 

randomly guessing the concept love, peace, or coffee cup. However in a computational model, such as 

those discussed in this paper, a random guess is a sample drawn from a constrained uniform distribution 

over all possible response options within a task. For example, a random guess could be to guess from the 

set of available objects or the colors present on a color wheel. To use prior knowledge is to sample from a 

prior distribution that might assign more probability to certain response options relative to others. For 

example, if an individual studies an object above an island, they might guess using only objects that belong 

above the island (using a prior distribution). If they guess randomly within the computational interpretation 

of a random guess (i.e. constrained to task based response options), they might guess uniformly over all 

objects available (regardless of where they belong relative to an island). Importantly, current studies using 

the remember-guess paradigm (e.g. Brady et al, 2013; Lew et al, 2015; Zhang & Luck, 2008) fail to make 

this distinction. They discuss random guessing in terms of the theoretical interpretation (unconstrained 

guessing), but the model assumes the computational interpretation (constrained). It is unclear which 

interpretation is favored in these studies. In terms of describing behavior, i.e. what people do when trying to 

recall information from memory, claiming that people guess randomly in the world, but guess in some 

constrained way in the task is misleading about how memory actually works. 
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memories and random guessing. If people are not guessing randomly, then what are they 

doing?  

One potential explanation is that people are not guessing randomly, but instead are 

producing misassociations (Lew, Pashler, & Vul, 2015). Misassociations occur when 

previously studied non-target information interferes with the recall of target information 

at test. In this way, individuals can either recall target information with noise, 

misattribute or miss-bind target and cue information, or guess randomly. In the context of 

the earlier example, this is equivalent to recalling details, such as seeing a Morey eel, but 

from a different scuba trip. Lew et al. argued that some information (e.g., location) 

is easy to store and difficult to forget, but associative information (i.e., memory for the 

associations of individual items to studied locations) is difficult to store and easy to 

forget, leading to errors of misassociation.  

Another explanation is that people are not guessing randomly, but are using pre-

experimental prior knowledge. The use of prior knowledge might be reflected in the 

finding of a lack of random guessing in a memory task, and instead can reflect informed 

guessing which assigns more probability to response options that better fit the to-be-

remembered information (e.g. guessing sting ray in the context of scuba diving). Prior 

knowledge has been shown to exert a strong influence on recall, when the to-be 

remembered information is ecologically valid and meaningful (Hemmer, Persaud, Kidd, 

& Piantadosi, 2015; Hemmer, Persaud, Venaglia, & DeAngelis, 2014; Hemmer 

& Steyvers, 2009a; Steyvers & Hemmer, 2012). The influence of prior knowledge has 

been characterized by Bayesian cognitive models of memory which assume 

that prior expectations for the statistical regularities of the environment are integrated 
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with noisy episodic content at recall (Hemmer & Steyvers, 2009b; Hemmer, Tauber, 

& Steyvers, 2015; Huttenlocher, Hedges & Vevea, 2000; Persaud & Hemmer, 2014; 

Persaud & Hemmer, 2016; Shiffrin & Steyvers, 1997; Steyvers, Griffiths, & Dennis, 

2006). These models, assuming prior knowledge influences memory, suggest 

that events can be reconstructed based not only on memory, but also 

on category knowledge and expectations for items naturally associated with the context 

(in the scuba diving example: fish, coral, etc.). The influence of prior knowledge has been 

demonstrated in a number of cognitive domains, including word learning (Xu 

& Tenenbaum, 2007), attention (Kim & Rehder, 2011), human gaze control (Henderson, 

2003), functional memory capacity (Ricks & Wiley, 2009), incidental category learning 

(Clapper, 2012), reading comprehension (Bransford & Johnson, 1972), perceptual 

categorization (Huttenlocher, Hedges, and Duncan, 1991; Huttenlocher, Hedges, 

& Vevea 2000; Jern and Kemp, 2013; Galleguillos  and Belongie, 2010), among  others.  

Determining the role of random guessing in LTM and the circumstances under which 

it may, or may not, happen places constraints on experimental design and the applications 

of theories of WM to LTM. In this paper, we seek to challenge prevailing theories of 

visual long-term memory that assume that random guessing is a large contributor to 

memory performance. We hypothesize that a larger portion of errors in memory result 

from misassociations and an influence of prior knowledge, not random guessing, when 

stimuli are aligned with people’s expectations. When individuals use prior knowledge in 

tasks, they may guess strategically (i.e. not randomly) when trying to recall information. 

The ability to use any form of prior knowledge might reduce that amount of random 

guessing (i.e. assigning uniform probability to all response options within a task). 
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The goal of this work is to first establish, experimentally whether participants have 

expectations for the placement of objects to location in space, particularly in an artificial 

laboratory based stimulus environment and then experimentally assess if the behavior of 

memory (i.e. whether people recall information correctly, missassociate to other studied 

information, or guess randomly) differs when people have expectations for the to-be-

remembered information (meaningful associations) relative to when they do not(random 

associations). The direct contribution of the types of responses individuals may make 

during recall cannot be observed experimentally in this paradigm, and therefore, we 

employ a model of misassociations (Lew et al., 2015). Since the goal of this paper was to 

determine if a simple manipulation of the stimuli can result in a change in the behavior of 

memory, we directly implemented the Misassociations model and its current form outline 

in Lew et al., 2015.  We acknowledge that there may be a host of other models that better 

describe performance in the task, and discuss limitations of using this model and 

discussions modifications that could be made.  

Here, we quantify the combined contribution of misassociations, prior knowledge, 

and random guessing to long-term memory. We bring together two lines of research (one 

evaluating the role of prior knowledge and the other evaluating misassociations) to 

provide a comprehensive explanation of long-term memory. Understanding the role of 

prior knowledge relative to misassociations and random guessing has important 

implications for theory development of factors that contribute to long-term memory and 

future modeling implementation.  
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Figure 4.1 Experimental Stimuli. The first two rows show the objects that were used in 

each condition. The third row shows sample study locations of objects in each 

condition. 

 

Experiments  

To assess the contribution of misassociations, prior knowledge, and random 

guessing to long-term memory, we employed the experimental design of Lew, Pashler, 

and Vul (2015) where observers performed cued recall for the locations of 10 discrete 

objects presented in a circle. Similar to previous work, we started our investigation by 

first assessing people’s prior expectations for the stimulus environment under the 

assumption that people bring those expectations with them to the task of remembering 

(Experiment 1).  In experiments 2 and 3, we followed the training and testing procedures 

of Lew et al., 2015. In their original design, they trained participants on the locations of 

10 semantically unrelated objects presented in random locations around a circle, and 
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assessed memory for object-location pairings learned during training. In experiment 2, 

we adopted this training procedure, and in experiment 3 we also tested memory. Both 

experiment 2 and 3 had three conditions, carried out between subjects. In condition 1, we 

sought to replicate the findings of Lew et al., by training participants on the 

10 unrelated objects presented in random locations (see Figure 4.1). In condition 2, we 

used 10 objects that were semantically related to a center object and presented 

in semantically coherent locations around a center object. This approach allowed us to 

evaluate the effect that meaningful information had on forming and storing the 

associations in memory.   

In condition 3, we used the same semantically related objects from condition 2, and 

presented them in random locations. This condition allowed us to disambiguate the 

contribution of the semantic relationship of the objects from the coherence of the object-

location associations on long-term memory. In Experiment 3, we adopted a modified 

training procedure and tested memory for object-location associations over time. This 

procedure also mirrored the methodology of Lew et al. We chose to mirror their approach 

in order to compare performance in our tasks with that of theirs. See Table 4.1 for a 

breakdown of experimental conditions.  

Methods  

Participants One-hundred and thirty-six Rutgers University students participated in this 

study for either monetary compensation or course credit. Twenty-eight students 

participated in the prior knowledge task for Experiment 1. Forty-nine students 

participated in Experiment 2 (15 in condition 1, 18 in condition 2, and 16 in condition 

3). Fifty-nine students participated in Experiment 3 (19 in condition 1, 20 in condition 2, 
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and 20 in condition 3).  Two participants failed to complete all three sessions of the study 

(both from condition 2) and were therefore, omitted from the testing analysis.  

Stimuli The 10 semantically unrelated objects for condition 1 were selected for the Lew et 

al., 2015: boot, die, baseball cap, camera, fan, clock, key, bowl, comb, and chair. We 

selected the 10 objects for conditions 2 and 3 to be semantically related to an island 

scene, both in terms of meaning and location. The objects were: an airplane, shark, cloud, 

hot air balloon, buoy, bird, jet-ski, treasure chest, seahorse, and an anchor. The images of 

the objects were 60 x 60 pixels in size and were presented within a circle with a 50 x 50 

pixel island image in the middle, serving as a landmark for the center of the circle. The 

circle had a radius of 450 pixels. In Experiment 3, conditions 1 and 3, the objects were 

placed in random locations around the circle. In condition 2, object placement was 

constrained by the location association to the island: four objects appeared in the section 

above the center island – which could be interpreted as the sky (airplane, cloud, hot air 

balloon, bird), 2 appeared on line with the island (buoy, jet-ski), and four appeared in the 

section below the island – which could be interpreted as the water (shark, treasure chest, 

seahorse). The display of the circle and objects was maximized across the entire 

computer screen. The experiment was written in the Matlab computer programming 

language and all participants performed the study in the laboratory setting.   

Design & Procedure 

Experiment 1 

In the prior knowledge task, participants were presented with two sets of objects, one set 

composed of the island objects and the other set composed of the mixed items from Lew  
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Table 4.1 Experiments and Conditions 

 

 
 

et al. (2015). The sets were presented in random order across participants. Participants 

were shown a large circle in the center of the computer screen. The circle contained an 

image of an island directly in the center. Each object was presented one at a time in top 

left corner of the screen (outside of the circle). Participants were instructed to place the 

object in a location inside the circle where they would normally expect to find it. After 

placing all the objects from one set, there was a brief inter-stimulus interval where the 

screen was blank for 1s, followed by the presentation of the objects from the second 

set. This task was self-paced.  

Experiment 2-3  

 Experiments 2 and 3 investigated learning and memory for the locations of objects. 

Participants were given a cover story that they had just returned from a sight-seeing trip 

on an island, and had convinced their friends to visit. The friends are now visiting the 

island, and the participants must remember the location of all the exciting objects to point 

out to their friends. The experiment was carried out in three phases: a training phase, a 
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distracter task, and an object location recall phase. For the recall phase, participants were 

tested on the same day of training, one day later, and seven days later.   

Training Phase Following the methodology of Lew et al. (2015), Experiment 2 was 

training only and Experiment 3 was both training and recall. In both Experiments, 

individual objects appeared outside of the circle, in the upper left corner, and 

participants were instructed to learn the location of the objects. They responded by 

clicking within the circle. A red crosshair appeared in the location the participant 

selected, and the object appeared in its correct location as feedback. For experiment 2, 

participants followed this procedure for all ten objects for a total of 20 blocks. In other 

words, each object was practiced 20 times with feedback. For experiment 

3, participants only advanced to the next block if all of the objects were placed correctly. 

An object was classified as correct if the participant responded within 50 pixels of 

the true location. Correctly located objects were dropped out of future trials in the current 

block, and incorrectly located objects were repeated as another trial within that current 

block. A participant advanced to another training block once all object locations were 

correctly reconstructed in the current block. A participant completed the training phase 

after 5 blocks. Responses in all training blocks of both Experiments were self-paced.  

Distractor Phase (Experiment 3 only) Once the training phase was completed, 

participants completed a distractor task, consisting of 12 arithmetic problems utilizing 

two operands (+ or -), and numbers from 0 to 40. Participants were instructed to solve the 

problems as quickly and accurately as possible. They were not provided with a calculator. 

The distractor phase was also self-paced.  
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Figure 4.2 Semantically related and unrelated objects. Boot is an unrelated object 

(condition 1). Cloud is a related objects object found prototypically above the island 

and the seahorse is a related object found prototypically below the island 

(conditions 2 and 3). Placement locations, Heat maps, and Contour plots. 

 

Testing Phase (Experiment 3 only) After providing responses for all 12 distractor 

problems, participants were instructed to recall the studied locations of each 

object learned during the training phase.  Similar to the training phase, participants were 

shown each object, one at a time, in the upper left corner outside of the circle. The island 
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was located in the center of the circle serving as a spatial reference. They clicked in the 

circle where they recalled studying the object during the training phase, and a red 

crosshair appeared where they had selected. Unlike the training phase, no feedback was 

provided. This phase consisted of only one block, and was complete after the participant 

recalled the locations of all 10 objects. For the two subsequent testing days (i.e., one day 

later and 7 days later), the study mimicked the first day except there was no training 

phase or distracter phase, and no feedback was given after the participants recalled object 

locations. The recall task was self-paced.  

Results   

Experiment 1  

We first present data from the prior knowledge condition (experiment 

1). Figure 4.2 shows heatmaps and contour plots for the random objects (condition 1) 

and semantically associated island objects (conditions 2 and 3). The heatmaps and 

contour plots visually support the idea that people have expectations for where objects 

belong that are consistent with the coherent locations of these objects in the real world. 

For example, the airplane and hot air balloon were generally placed in the northern 

hemisphere of the circle, i.e., above the center island object – which could be interpreted 

as the sky. Conversely, the seahorse and anchor were generally placed in the southern 

hemisphere, i.e., below the island object – which could be interpreted as the water. In 

fact, out of the 112 responses for the above and below objects, only 15% of the objects of 

either type (above or below) violated the expected placement relative to the island. Above 

objects were expected to be placed above the island (i.e. having a y-coordinate greater 
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than 500 which is the y-coordinate for the island) and the below objects were expected to 

be placed below the island (i.e. having a y-coordinate less than 500).   

Given that the semantically related objects were associated with prototypical 

locations along the y-axis, we tested for a difference in the y-coordinate placement of 

these objects. There was a significant difference (t(6)=8.18, p<.001) in the y-coordinates 

for objects that prototypically belong above the island (i.e., cloud, hot air balloon, 

airplane, and bird) compared to the objects that are prototypically found in the water 

below an island (i.e., seahorse, anchor, shark, and treasure chest). Also, a one-sample 

directional t-tests revealed that the y-coordinates for the above objects were significantly 

greater than 500, which is the level of the ‘horizon line’ of the island 

(t(111)=9.70, p<.001) and the y-coordinates for the below objects were significantly less 

than 500 (t(111)=-6.99, p<.001).  

The remaining two objects (i.e., the buoy and jet ski) could be prototypically found 

on the horizon line of the island, which was located at 500 on the y-axis. A one-sample t-

test revealed no difference in the y-coordinates of these two objects from 500 (p>.1). 

Taken together, these results suggest a strong subjective agreement of the prior locations 

for the semantically related objects.  These expectations were elucidated in a relatively 

arbitrary task (i.e., placing objects in a circle), where little prior instruction was given. 

Participants clearly have pre-experimental expectations for stimuli that can potentially 

impact performance in even simple cognitive tasks. It should be noted, however, that this 

agreement on object placement only applied to placing the objects above or below the 

island. These expectations are not constrained to how high above or far below the objects 

were placed relative to the island. Neither did it constrain the placement of objects to the 
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right or the left of the island (along the x-axis). This resulted in some variability of object 

placement, even though the objects were placed in the coherent hemispheres. In this way, 

an influence of expectations borne out in the subsequent memory task might only reflect 

placing the objects within the coherent hemisphere, and not necessarily at the true 

location within the hemisphere. See appendix section 1 for visualizations of the memory 

data.  

Unlike the semantically related objects, the semantically unrelated objects for 

condition 1 did not have a strong prior association for belonging above or below the 

island. As a result, a majority of the random objects were placed in close proximity to the 

island (see Figure 4.2). While a one-sample t-test revealed that the y-coordinates for the 

random objects were significantly different from 500 (t(6)=8.18, p<.001), the confidence 

interval suggests that responses were only slightly above the horizon line of the island. Of 

the 280 responses to the semantically unrelated objects, 50% fell above the island and 

49%, fell below the island (the remaining 2% fell directly on the horizon line). This 

roughly 50/50 split suggests no strong bias to placing the unrelated objects in either 

hemisphere around the island. The difference in expectations for the two sets of objects 

foreshadows a difference in memory performance in subsequent tasks.  

Experiment 2-3  

As a roadmap of the results for experiments 2 and 3, we first compared memory 

performance across the three testing days within each condition. Next we calculated the 

memory reaction times across days and conditions. After, we implemented Lew et 

al. (2015) Misassociation model to learn the contribution of noisy memory, 

misassociations, and random guessing to performance in each condition. Memory 
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performance during both training and testing was evaluated by calculating root mean 

square error (Figure 4.3). The error measure used was the Euclidean distance between 

studied and recalled object locations
8
.   

Comparisons of Recall Within Condition  

A difference in error across testing days might suggest a difference in the contribution 

of noisy memory, misassociations, or random guessing over time. A series of analysis of 

variance (ANOVA) tests were conducted to evaluate root mean square error 

(RMSE) across the three test days within each condition (Figure 4.3). For condition 1, 

where the objects were all semantically unrelated and presented in random locations 

(replication), there was a marginally significant difference in error across test days  (F[2, 

42 ] = 2.99, p=.06), such that earlier test days had less errors (Day1: M=47.72[36.6]; 

Day2: M=67.37[64.6], Day3: M=105.55[86.53]). Planned post hoc analyses revealed a 

significant difference between testing days 0 and 7(t(28) = -2.38, p<.05), but not between 

days 0 and 1(p>.05) and 1 and 7(p>.05).  

Similarly, for  condition 2, where the objects were all semantically related and 

presented in semantically coherent locations, there was a significant difference in error 

across test days  (F [2, 45 ] =4.59, p<.05), such that earlier test days had less 

errors (Day1: M=45.14[26.94]; Day2: M=50.26[20.3], Day3: M=76.07[41.66]). Planned 

post hoc analyses revealed a significant difference between days 0 and 7(t(30) = -

                                                 
8
 Since the goal of this paper was to evaluate whether the types of error in long-term memory 

change as a function of the stimulus associations, we chose to evaluate performance using RMSE which 

allowed us to implement the Misassociations model. However, RMSE does not provide information about 

the direction of responses given to studied locations (e.g. did participants place objects studied above in the 

above location or somewhere else in the circle). Therefore, we visualize and discuss object placement 

during recall. See appendix section 1. 
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Figure 4.3 Error Root mean square error (RMSE) for training and testing across 

conditions. Bottom right panel shows testing from the three conditions overlaying 

each other. Blue is condition 1, red is condition 2, and green is condition 3. 

2.49, p<.05) and days 1 and 7(t(30) = -2.23, p<.05), but not between days 0 and 1(p>.05). 

For condition 3, where the objects were all semantically related, but were placed in 

random locations around the circle, there was a significant difference in error across test 

days  (F[2, 45 ] =3.36 , p<.05), such that earlier test days had less errors (Day1: 

M=37.14[24.06]; Day2: M=49.62[34.41], Day3: M=71.31[50.13]). Planned post hoc 

analyses revealed a significant difference between days 0 and 7 (t(30) = -2.46, p<.05), but 

not between days 0 and 1 (p>.05), and days 1 and 7(p>.05). The changes in error across 

days, especially between days 0 and 7 may suggest that forgetting is taking place over 

time. This may potentially result in a difference in contribution of the three error 
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Figure 4.4 Response Times Graphs show mean response time by testing day for all 

conditions. 

 

types (i.e. noisy correct responses, misassociations, and random guesses) over time. For 

example, there may be more random guessing during day 7 compared to day 0.  

Response Time Analysis  
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Based on a difference in error performance between days 0 and 7 for each 

experimental condition, we tested to see whether response times varied across days. A 

potential explanation for a difference in response time, is the remember/know distinction. 

‘Remember’ responses (i.e., recollected responses that are accompanied by details of the 

encoding episode) are thought to have a slower reaction time than ‘know’ responses (i.e., 

judgments of familiarity that are not accompanied by specific episodic 

information; Gimbel & Brewer, 2011). A difference in response time might indicate that 

participants varied in their remember/know responses over time. Participants may have 

made more ‘remember’ responses during earlier testing days, which have less error, and 

more ‘know’ responses during later testing days. Alternatively, if there are no differences 

in response time, then the source driving differences in error across days might be more 

nuanced than the remember/know distinction. A potential source might a difference in the 

contribution of the three error types (i.e. noisy correct responses, misassociations, and 

random guesses), as previous work has found no difference in response time as a function 

of error type (Lew et al, 2015). In this way, a misassociation, for example, does not take 

longer to make than a correct association. Neither does a correct response take longer to 

make than a random guess. Figure 4.4 present graphs of response times by testing day 

across conditions. 

For all conditions, a series of analysis of variance tests revealed no significant 

difference in response time across days (p>.05). As a check for the quality of the stimulus 

(unbiased by object), we also assessed for differences in response times by object to 

make sure participants did not spend more time recalling some objects relative to others. 

Across all conditions, there was no difference in response times by objects (p>.05). This 
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lack of difference in response time suggests that differences in performance in this task 

were more nuanced than the remember/know explanation can detect, potentially lending 

support to the idea that the change in error across days is due to differences in the 

contribution of the types of error.   

Contribution of Noisy Memories, Misassociations, and Random Guessing 

 To evaluate the contribution of the three error types to performance in each 

condition, we employed the Misassociations model (Lew et al., 2015). The 

Misassociations model, a variant of the standard remember-guess model (see chapter 3), 

is a finite mixture model that was fit to subject responses and used to estimate the 

probability of responses being misassociations and random guesses as well as the noise of 

memories. There were two stages to implementing the model. The first stage was to fit 

the mixture model to the data to learn the probabilities of making each error type and the 

second stage was to use maximum likelihood estimation to then evaluate how each 

component contributed to the RMSE observed in the task.  

 The mixture model assumes that are three types of responses that can be made in the 

recall task: a noisy correct response of the true target location, an incorrect response of a 

non-target location (i.e., a misassociation – all other locations studied in the task), or a 

random guess (a location in the task where no study object appeared). A noisy response 

of the target location is assumed to be distributed as a two-dimensional Gaussian (for x 

and y locations) centered on the true location of the target. A misassociated response to a 

non-target is also assumed to be distributed as a two-dimensional Gaussian, but is 

centered on the non-target locations. A random guess is assumed to be a sample drawn 

from a truncated Gaussian centered on the stimulus environment (in this case the circle) 



95 

 

 

 

and bounded by the edges of the circle. In this way, the mixture model provides estimates 

of three parameters: the probability of selecting a target location (𝑝𝑇), the precision
9
 

(noise) of location memories (σ), and the probability of selecting a misassociated location 

(𝑝𝑀). The probability of random guessing ( 𝑝𝑅) is determined by the probabilities of 

selecting the target and making a misassociation, such that  𝑝𝑅 = 1 - 𝑝𝑇 - 𝑝𝑀. The 

mixture-model likelihood of reporting a location 𝑦 is given by: 

𝑃(𝑦|𝑡) = 𝑝𝑇𝑁(𝑦|𝑥𝑡 , 𝜎) + 𝑝𝑀 (
1

𝑛−1
) Σ𝑁(𝑦|𝑥𝑖, 𝜎) +  (1 − 𝑝𝑇 − 𝑝𝑀)𝑅(𝑦),             Eq (2) 

where 𝑥𝑡 is the true studied location for a particular trial t.  Σ𝑁(𝑦|𝑥𝑖 , 𝜎) is the sum over 

all other studied locations (𝑥𝑖). This allows 𝑝𝑀 to be evenly split among the other studied 

locations. The total number of studied locations is denoted as n. 𝑅(𝑦) gives the likelihood 

of randomly guessing𝑦, which is the mean location of a truncated normal bounded by the 

edges of the circle. When the standard deviation of the truncated normal is large, it 

closely resembles a uniform distribution. The mixture model was fit to each testing block 

using a Gibbs sampler. The sampler had a burn-in of 500 samples and after the burn-in it 

used 700 samples. There was no thinning procedure implemented. The initialized values 

chosen for the three parameters were: .33 for both the probability of selecting a target 

location and the probability of selecting a misassociated location, and 60 for the noise on 

location memories.
10

 

                                                 
9
 Although precision usually refers to inverse variance, in the Misassociations model, precision is 

used conceptually (not computationally) and therefore, refers to the standard deviation of location 

memories. There appears to be a lack of consistency in the use of precision across remember-guess models. 

The standard remember-guess model developed by Zhang & Luck, 2008 used the same terminology of 

precision to describe standard deviation. However, the mixture model of Bays, Gorgoraptis, Wee, Marshall, 

& Husain, 2011, use precision as the inverse standard deviation.  
10

 The initialized parameter values, number of samples, and the sampler chosen were all consistent 

with what was used by Lew et al., 2015.  
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Figure 4.5. Error Partitions Graphs show learning and forgetting over time in each 

condition with errors partitioned based on their estimated source. The black line 

indicates subjects’ raw root-mean-square error (RMSE; identical to Figure 4.3). 

Shading indicates the estimated errors due to noise from recalled locations, 

misassociations and random guessing. 

 
During the second stage, maximum likelihood estimation was then employed to infer 

the contribution of each error type to RMSE, based on the estimate of noisy memory 

locations and the probabilities of making each error type learned from the model. Given 
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the parameter estimates, the models RMSE was calculated for each error type. In other 

words, for each response, the error due to the estimated standard deviation of location 

memories, the error due to the distance between the target location and the misassociated 

location (misassociation), and the error due to the distance between the target location 

and the center (random guess), was then calculated.  

Most variants of the standard remember-guess model are employed to address 

questions regarding the fidelity of memory, resources of memory, and the capacity of  

 memory, as detailed in Chapter 4. The Misassociation model, however, addresses the 

process of memory as it relates to competing information and the binding of information 

(e.g., object to location) that is implicit in all the other tasks modeled by remember-guess. 

In this way, this model presupposes a different contributor to long-term memory. 

Although this model is informative in deciphering the sources of error that contribute to 

performance across conditions, there are number of assumptions and limitations of this 

modeling framework as it pertains to characterizing data from this study. Given these 

limitations, drawing strict conclusions based on the model warrants caution. There are 

number of modifications and alternative models that could be implemented to evaluate 

the current model and/or potentially provide a better fit to the data. As a first pass, we 

employed the model strictly to parcel out error contributions, not to assess model fit or 

model assumptions. For a discussion of modeling assumptions and limitations, see 

Appendix section 2.   

    Figure 4.5 shows the model partitions of error for each condition. In condition 1 

(semantically unrelated objects studied in random locations), it appeared that random 

guessing made the largest contribution to error at the onset of training, followed closely 
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by misassociations, and then noisy correct responses. As training progressed, there was a 

decrease in the amount of random guessing and misassociations, suggesting that 

participants were learning the object-location associations. During testing, the first day 

appeared to have the least amount of error and was comprised of mostly noisy correct 

responses, and a small portion of random guessing. The second day saw an increase in 

misassociations that tapered off over time. During the last day of testing, majority of the 

error was due to random guessing with a small contribution of noisy responses and even 

smaller contribution of random guessing. This trajectory of error contribution is 

consistent with the results of Lew et al. and suggests that participants learned the 

associations during training but forgot during testing as evidenced by the increase in 

random guessing.  

Errors resulting from condition 2 training trials (semantically related objects studied 

in coherent locations) had a similar contribution of error types as condition 1. There was 

a large contribution of random guessing early on that decreased over training blocks. 

However, misassociations made a larger contribution to error in the earlier training 

blocks compared to condition 1. During testing, condition 2 deviated dramatically from 

condition 1 (and 3, see below). Critically important, there was relatively little 

contribution of random guessing in condition 2, even during the last day of testing for 

condition 2, compared to condition 1. This confirms our hypothesis that when 

associations are meaningful, the contribution that the sources of error makes to long-term 

memory changes. Specifically, using a strategy of random guessing disappears.   

Training in condition 3 (semantically related object in random locations) was slightly 

different than conditions 1 and 2 in that majority of the error was comprised of random 
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guessing. There was a little contribution of noisy correct responses and even less 

contribution of misassociations. During testing, there was a greater contribution of 

random guessing than in condition 2, but less random guessing than condition 1. The 

results of the model partitions across conditions suggest that associations are better 

formed in long-term memory when they are semantically coherent and have basis in the 

observers’ model of the real world. Arbitrary associations are less easy to form, and are 

likely to result in more random guessing. Taken together the difference in partitioning 

between conditions 1 and 2, these results confirm our hypothesis that memory behaves 

differently depending on the types of associations the system is tasked with recalling.  

Decay Functions  

To determine whether some aspects of memory were acquired more quickly than 

others, similar to Lew et al., we fit exponential decay functions to the parameter estimates 

(noisy location responses (here referred to as targets), misassociations, and random 

guesses). The decay function took the form:𝐵 + (𝐴 − 𝐵)𝑒𝜏
−𝑡, and quantified the speed 

with which these sources of error changed during training (learning). Parameters 𝐴 and 𝐵 

of the exponential function indicated the initial and asymptotic values of the parameter 

estimates. Parameter τ reflected the time constant, where larger values indicate a slower 

rate of change and slower acquisition. Parameter t indicated the block number. 

Table 4.2 reports the mean exponential fits to each parameter for each condition.   

The decay fits to the target parameter suggests that the initial proportion of targets 

(𝐴 of target) across conditions was relatively the same. However, the asymptote for the 

acquisition of targets (𝐵 of target) was much lower in condition 3, relative to conditions 1 

and 2.  Also, correct target associations were learned faster (τ of target) in condition 2 
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Table 4.2. Mean Exponential Fits to Parameters 

 
 

 

 

 
compared to condition 1, and fastest in condition 3. However, also note that the 

asymptote for condition 3 was much lower than condition 2, which might suggests that 

there were less targets acquired, and therefore, less time needed to learn those fewer 

targets.   

Participants also made more misassociations initially in condition 2 compared 

to conditions 1 and 3, as evidenced by a higher 𝐴 value in misassociations. In condition 2, 

participants made slightly less random guesses than in condition 1 and condition 3, as 

reflected in the lower 𝐴 value for random guesses. Furthermore, participants had less 

initial error on location memories in condition 2 compared to condition 1 and 3 (lower 𝐴 

of SD). Across all conditions, the time constant (τ) for correct associations (target) was 

considerably larger than the imprecision of locations (τ of SD), which indicated slower 

learning of associations than accurate recall of exact locations.  

The decay fits to the parameter estimates suggest that correct associations were 

learned fastest in condition 2, relative to the other conditions and there were more 

misassociations than random guesses. This pattern of training was consistent with the 

pattern of testing where most of the responses in this condition were classified as noisy 

correct responses and misassociations, but not random guesses.  
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Discussion  

Long-term episodic memory encodes the associative relationships between pieces of 

information, such as the location of objects in space. In a real world scenario, this 

associative information equates to remembering the location of an airplane above an 

island. Previous research suggests that associations between information (i.e., objects to 

locations in space) can be difficult to form and retain over time (Lew et al., 2015). Recall 

of this information can result in three types of error: noisy correct responses, 

misassociations (pairing objects to the wrong locations), and random guesses. The 

contribution of these error types, however, might be mediated by the degree of 

meaningfulness between the associations. For example, objects that are associated 

to semantically coherent locations in space (e.g. airplanes in the sky), might be more 

quickly formed during learning and allow for more strategic or informed guessing when 

trying to retrieve associations from memory. People can use expectations for the 

prototypical associations of information to inform retrieval or guessing. 

In this work, we explored the contribution of the three types of error in memory as a 

function of the meaningfulness of associations.  We first assessed people’s prior 

expectations for the associations of objects to locations in space and then used an 

established paradigm for assessing misassociations to measure memory for associations 

(Lew, et al., 2015). In the task assessing expectations (Experiment 1), we simply asked 

people to place objects where they normally expect to find them. This procedure revealed 

a strong subjective agreement in the placement of objects that were semantically related 

to the center object. Objects that prototypically belonged above the center object were 

consistently placed in that area and objects the prototypically belonged below the center 
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object were placed below. Objects that did not have a prototypical location assignment 

relative to the center object (i.e., random objects) did not reflect the same level of 

consistency in placement. Overall, the pattern of behavior observed in the prior 

knowledge task revealed that people have clear expectations for the placement of objects 

to locations. These expectations, in turn might impact how associations in an 

experimental task are formed and stored in long-term memory.    

 In the learning and memory tasks (Experiment 2 and 3), observers were trained on 

the location of objects in a circle, and then completed three cued recall tasks over the 

course of 7 days. Importantly, we manipulated the degree of meaningfulness of the 

object-location associations. The results illustrated that when the associations were the 

least meaningful (condition 1), there was an increasingly large contribution of random 

guessing over time. When the associative information was the most meaningful 

(condition 2), there was only minimal random guessing, even after a 7 day retention 

interval. When the associations were moderately meaningful (condition 3), there was 

considerably more forgetting than the most meaningful associations, but less forgetting 

than the least meaningful associations. Taken together, the results from these experiments 

demonstrated that the standard finding of high rates of random guessing (i.e. guessing 

relatively uniformly across the stimulus space) hinges on the stimuli with which the 

memory system is tasked with storing and retrieving.   

The difference in finding between conditions 1 and 2 regarding the formation of 

associations and the contribution of random guessing to recall can be reconciled by 

understanding the nature of the to-be-remembered associative information. Arbitrary 

associations might be difficult to form and store over time. This can lead to individuals 



103 

 

 

 

resorting to guessing randomly across the stimulus environment. People have clear 

expectations for object locations; however, those expectations might not be useful in a 

task where the target-cue pairing is intentionally random. In this case an individual could 

only recall the information, use other task relevant information (misassociations), or 

guess. On the other hand, when associations are meaningful, people can use their prior 

expectations to fill in for noisy memories. The influence of prior knowledge can be 

observed as informed guessing. Instead of guessing uniformly across the space, people 

might guess using the hemisphere they expect to find the object located. The 

Misassociations model, in its current form, does not parameterize this type of guessing. 

However, the model could be modified to have an added mixture component to capture 

this type of informed guessing. Alternatively, based on the output of the model in the 

fully associated condition (no random guessing), it is possible that people did not use a 

guessing strategy at all, (if one considers making misassociations a form of guessing). 

Recall errors from the fully associated condition were classified as noisy correct 

responses and misassociations. To confirm the possibility of no random guessing in the 

fully associated condition, a model could be implemented that removes the guessing 

component altogether. Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) values can be calculated for this alternate model and compared to values 

of the full model.  

Importantly, when the stimulus structure closely resembles that of the natural 

environment and memory is noisy, individuals either missassociate information or use 

prior knowledge as a strategy to inform retrieval, but they do not randomly guess. This 
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finding has significant implications for how working and long-term memory are 

understood and transformative potential for current models of memory.  

Appendix 

 

Section 1 Location Responses 

The results from the memory tasks across conditions are presented as root mean 

square error (RMSE) in the main text. However, this error measure obscures some of 

interesting trends in the data, such as whether the locations that participants recalled 

reflected the differences in study locations across conditions. Here, we present figures 

from the recall results in each condition. Figure 4.6, shows the study locations for three of 

the objects in the fully associated conditions across participants (left panel). It also shows 

both the studied (black square) and recalled locations (red circle) for those objects across 

the three testing days. The first row contains the study and recall locations from an object 

that was always presented above the island (e.g. cloud). The second row shows the 

locations for an object presented in line with the island (e.g. jet ski) and the third row 

shows an object presented below an island (e.g. shark). The graphs suggest that 

participants were sensitive to the study location of the object and there were only a small 

number of responses that were given that fell well below the true studied locations (in the 

southern hemisphere). A similar pattern was observed for the objects that fell online with 

island as well as the objects that fell below the island. This pattern was observed even 

after the 7-day retention interval (testing day 3). Although only one object from each 

category is presented here, the results were consistent across all objects within these 

categories. 
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In the partially associated condition (Figure 4.7) the locations of these same objects 

were spread throughout the circle. This finding may reflect people’s sensitivity to the 

studied locations, relative to their prior expectations for where these objects belong. If 

people where strictly using their prior expectations, especially during the last testing 

session, there might be more responses reflecting the semantically correct hemispheres. 

However, this pattern of responding was not observed. Similar to the partially associated 

condition, in the fully random condition (Figure 4.8), where the objects were not 

associated pre-experimentally to a particular location, the response locations were 

dispersed throughout the circle.  

 

 

 

 

 

 

 

 

  

 
Figure 4.6. Graphs of study and response locations across days for objects from the 

fully associated condition 
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Figure 4.7. Graphs of study and recall locations across participants in the partially 

random condition. 

 
Figure 4.8. Graphs of study and recall locations across participants in the partially 

random condition. 
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Section 2 Misassociations Model 

There are number of assumptions and limitations of the Misassociation model. First, 

the model assumes that the noise on the target location is equal to the noise on all non-

target locations, and therefore only estimates a single precision parameter for location 

memories. This assumption is also a limitation of the model because it is possible that 

there is variability in precision for locations associated with incorrect objects relative to 

correct objects. However, the authors of the model argue that memory for locations and 

associations are stored separately, so the precision of the location is theoretically 

independent of the associations. In this way, the precision of the location memory is the 

same regardless of the association being correct. This is the justification for assuming a 

single parameter for noise on location memories. To address this issue, an alternative 

model that adds another parameter to allow for a difference in precision for correct and 

misassociated objects could be implemented. Model comparisons between this alternative 

model and the single noise parameter model can be performed (as long as the test 

acknowledges the difference in the number of parameters). If the single noise model 

provides the superior fit to the data, then the assumption might be justified. 

Another assumption of the model is that random guesses are drawn from a truncated 

normal distribution centered in the stimulus environment (i.e. the center of the circle). 

This assumes that when individuals randomly guess, they use the center of the circle as 

opposed to guessing uniformly across the circle. This assumption deviates from other 

instantiations of the remember-guess paradigm where random guessing is parameterized 

as a draw from a uniform distribution over all response options (Bays, Catalao, & Husain, 

2009; Bays, Gorgoraptis, Wee, Marshall, & Husain, 2011; Brady et al., 2013; Zhang & 
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Luck, 2008). This difference poses a theoretical concern in the interpretation of what a 

random guess is. In the Misassociations model, the random guess is not a ‘random guess’ 

(in the traditional characterization sense) because it uses some information about the task, 

namely the location of the center of the circle to inform the response. It could be argued 

that the use of this type of information is not a random guess, but an informed guess. 

However, when variability in the truncated Gaussian is relatively high, the distribution 

approaches a uniform. This might be the rationale for the authors of the model choosing 

to parameterize random guessing in this way. Unfortunately, this further complicates the 

issue of what working and long-term memory researchers mean when they say guessing 

randomly.  

A third assumption, and arguably the most alarming given the experimental 

manipulation (type of associations), is that the model assumes independence in the 

probabilities of error type. By assuming independence, the model assigns equal 

probabilities to the error types across trials. However, it is conceivable that when 

participants are performing in the task, they may be aware that they correctly placed an 

object on an earlier trial, which can then change the probabilities of making the other 

types of error, because participants now have to consider fewer locations. This issue is 

even more salient in the fully associated condition, where participants might have learned 

the number of objects that appeared above or below the island, adding another layer of 

location dependence.  

In its current form, the model does not use built-in assumptions about possible 

changes in probabilities over trials, and therefore does not account for interactions among 

targets. In other studies using the remember-guess paradigm, the targets are usually 
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sampled independently of one another,(e.g. colored squares in a circle- Bays, Catalao, & 

Husain, 2011; orientation of colored lines – Bays, Gorgoraptis, Wee, Marshall, & Husian, 

2011), and an interaction of targets is never addressed in the model. For example, Bays 

and colleagues (2011) used a finite mixture model similar to the one used in this paper 

(classifies error into the three types). However, in the task, participants studied the 

orientation of colored lines and importantly, the orientations were sampled independent 

of one another. While the orientations are selected at random and independent, in the task 

described in this paper, there is a constraint that the studied locations of objects cannot 

overlap with one another which indicates some dependence of target locations and 

potential non-independence at retrieval. A model that is more suitable for analyzing 

performance in this task would need to take into account the potential interaction between 

targets as decisions are made across trials. 

A model that is sensitive to the lack of independence might be revised in a number of 

ways. For instance, the Misassociation term in the model is a sum over all locations that 

are not the target. If on the first trial, a participant correctly places an object to a location, 

this location can then be ruled out as a potential misassociation location for later trials, 

effectively changing the probability of misassociations. The only issue with this approach 

is that it is hard to know a priori if this is how participants truly behave. It is possible that 

even when participants believe they have placed an object correctly, when they see 

another object that is potentially similar (e.g. it also belongs above an island), they can 

still missassociate to the location that once was deemed correct. Alternatively, a model 

would need a substantial number of additional parameters to capture the relationship and 

changes of error types across trials. Furthermore, behavior might be different across 
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individuals, thus a model of individual differences might also be warranted. Given the 

issue of assumptions with the model and the experimental manipulations in the task, 

alternative models need to be considered.  

The goal of implementing the model was to evaluate if the contribution of the three 

error types change across experimental conditions, and was primarily intended as an aid 

to the empirical study. Therefore, it would also be informative to evaluate how this 

particular model compares to alternative models in terms of explaining the data. For 

example, it was speculated that random guessing would be absent from the fully 

associated condition. A model with the random guessing component removed, but still 

contained misassociations and noisy correct responses (a two-term model), could be 

implemented and compared to the full model. If the two-term model provides a better fit 

to the fully associated condition, this might provide stronger evidence the nature of the 

associations in the fully associated condition resulted in less random guesses.  

Furthermore, this study discussed in this chapter attributes the lack of random 

guessing (guessing uniform over the stimulus space) in the fully associated to the fact that 

people have prior expectations for the locations of objects and used that information in 

the task. However, the current model does not parameterize the role of this contribution. 

To address this, a variant model could be implemented that adds or changes what is 

considered guessing the task. If people are using their expectations, they might not guess 

uniformly around the circle. Instead, they might sample from a truncated distribution that 

is not only bounded by the edges of the circle but also by the edges of the hemisphere for 

which the studied object belong (i.e. either above or below the island). This model can 

either add this type of random guessing or change the current random guessing 
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component to reflect this behavior. In this way, using prior expectations is assumed to be 

informed guessing as opposed to a feature of memory. Again, model comparisons for the 

two types of guessing components could be implemented to evaluate this contribution. 
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Chapter 6: Conclusion 

 

A fundamental question regarding long-term memory (LTM) is what happens to 

information over time. There are several theoretical frameworks spanning working and 

LTM that have been employed to address this question. A particularly popular framework 

is the remember-guess paradigm which characterizes errors in WM as either noisy 

memory traces or random guesses. In this paradigm, it is assumed that once memory 

traces become too noisy, or are no longer retrievable, people resort to random guessing 

(Brady, Konkle, Gill, Oliva, & Alvarez, 2013). While it has been demonstrated that LTM 

has an impressive storage capacity (Brady, Konkle, Alvarez, & Oliva, 2008), work within 

this paradigm suggests that the system struggles to form and store associative information 

between memories, resulting in fragile associations (Lew, Pashler, & Vul, 2015). In this 

way, information is either noisily recalled, misassociated to other studied content, or no 

longer retrievable.   

What often goes unmentioned is the role of prior knowledge in memory. People have 

a rich database of knowledge that they bring to the task of reconstructing events from 

memory (Hemmer & Persaud, 2014).  In Chapter 2 of this dissertation, we learn that 

people have strong subjective agreement on expectations for information that is 

consistent with the environment. We also learn that memory is biased and can reflect 

those expectations, especially when episodic information is noisy. In Chapter 3 we learn 

that the biases in memory also persist across cultures, suggesting that the use of prior 

knowledge might be a general mechanism for reconstructing events from memory. This 

relationship between prior expectations and episodic memory is well fit by a generative 

rational model under the simple assumption that people combine expectations for the 
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statistical regularities in the environment with noisy episodic representations to produce 

recall.  

The benefit of prior knowledge is most notable when the stimulus environment is 

ecologically valid and consistent with the statistical regularities of the real world. Prior 

knowledge is used to fill in episodic information when memory traces are noisy or 

incomplete. Furthermore, the influence of prior knowledge has also been demonstrated 

across a number of other cognitive domains, including attention (Kim & Rehder, 2011), 

functional memory capacity (Ricks & Wiley, 2009), and perceptual categorization 

(Huttenlocher, Hedges, & Vevea 2000). In this way, prior knowledge can facilitate 

storage and retrieval of episodic information over time and the role of prior knowledge 

should not be ignored in theories and models of memory. 

In Chapter 4 we draw on analytical practices from the remember-guess framework 

and Bayesian framework (as described in Chapter 2), to extend the memory study from 

Chapter 2 and perform model comparisons. The extension of the free recall task also 

revealed a bias in memory toward categorical expectations. Importantly, this bias was 

observed regardless of whether or not participants were cued to think about the category 

(i.e., asked to explicitly label the studied colors). 

The aggregate data from this task appeared to have a high rate of random guessing. 

However, when partitioned by lag (i.e., the number of intervening trials between study 

and test), immediate memory mirrored perception in its high fidelity, but with increasing 

lag, intermediate memory appeared to be more complex, and at longer lags recall 

appeared to be a mixture of episodic information, and guessing. Performance at 

intermediate lags, consistent with the Bayesian assumption, might reflect the influence of 
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category knowledge on noisy episodic representations. Three models were then 

implemented, including the standard ‘Remember-Guess’ model, a variant of this model, 

and a Bayesian memory model. Relative to the data, the variant of the standard model 

which posits two states of fidelity (high fidelity and low fidelity) for memory provided a 

superior fit. Although this model fits the data, it was agnostic about what constitutes the 

low fidelity memory state and therefore did not capture the regression to the mean pattern 

born out in the data. In fact, the Bayesian model was the only model to capture this 

regression behavior. The results from this study suggest that memory is not simply a 

combination of remembering and guessing, but other factors may influence performance.  

Chapter 5 presents research from a new study that evaluated the potential contribution 

of another factor to long-term memory, namely misassociations. Previous work has 

suggested that observers recall target information with noise, misattribute target and cue 

information, or guess randomly (Lew, Pashler, & Vul, 2015). The research presented in 

Chapter 5 extended the findings from this earlier study by manipulating the stimulus 

environment to further evaluate the role prior knowledge and misassociations in memory. 

The experiments in this study assessed 1) people’s prior knowledge and expectations for 

associative information, 2) cued recall for random objects in random locations, 3) 

associated objects in meaningful locations, and 4) associated objects in random locations. 

The results revealed that memory for meaningful associations, relative to random 

associations, did not result in a high contribution of random guessing. Lew et al.’s 

Misassociations model (Lew et al., 2015) which classifies the errors in memory as noisy 

memory, misassociations (misbinding of target and cue), and random guesses was fit to 

the data.  
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The Misassociations model fit to the random associations data (i.e., unrelated objects 

in random locations) demonstrated that errors in memory were comprised of a large 

portion of random guessing and misassociations, while the model fit to the meaningful 

associations (i.e., associated objects in meaningful locations) demonstrated that a large 

portion of errors in memory resulted from noisy memories, misassociations, but not 

random guessing. The lack of random guessing could either indicate that when recalling 

meaningful associations, guessing is not a strategy that is employed or that instead of 

guessing randomly, people use prior knowledge to guess with relevant information. The 

latter explanation might explain the presence of misassociations in the fully associated 

condition. The results of this study support the hypothesis that there is little to no random 

guessing in LTM for semantically associated, ecologically valid stimuli and prior 

knowledge may underlie this finding. 

The overarching message of the work discussed in this dissertation is that people have 

a wealth of knowledge that they bring to the task of remembering and this knowledge 

often influences the reconstruction of events from memory. The influence of prior 

knowledge and expectations is further amplified when the stimulus environment in the 

memory task reflects information from the real world. Theories of long-term memory, 

especially those that are extensions from working memory should acknowledge the role 

that prior knowledge plays when designing experiments and drawing conclusions about 

memory as a reconstructive process.  
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