
c© 2018

Zacharias Psarakis

ALL RIGHTS RESERVED

INTEGRATING AND EVALUATING PLANNING
PRIMITIVES FOR ROBOT MANIPULATION TASKS IN

WAREHOUSE LOGISTICS

by

ZACHARIAS PSARAKIS

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Kostas Bekris

and approved by

New Brunswick, New Jersey

April, 2018

ABSTRACT OF THE THESIS

Integrating and Evaluating Planning Primitives for Robot

Manipulation Tasks in Warehouse Logistics

by Zacharias Psarakis

Thesis Director: Kostas Bekris

The Amazon Robotics Challenge was an event created by Amazon to bring robotics teams

together and try to push forward the research on robotics automation related to warehouse

logistics. The challenge consists of two tasks. The picking task requires a fully autonomous

robotic system to remove target objects from a shelving unit into a tote. The stowing task

requires placing objects from a tote into the shelving unit. The purpose of this thesis is

to present state-of-the-art approaches related to motion, grasp and task planning, pose es-

timation solutions, and how different end-effector modalities can affect the performance of

the autonomous system. Two grasp planning and three task planning approaches are eval-

uated and combined with a PRM* motion planner in the context of the Amazon Robotics

Challenge tasks.

ii

Acknowledgements

I would like to thank my supervisor, Kostas Bekris, who was amazing, wise and patient

throughout our interactions the past 3 years. I would also like to thank my sister Kon-

stantina Psaraki for being the awesomest sister in the world. My parents Manolis Psarakis

and Dionisia Tzaki for everything they taught me and provided the past 29 years. My

colleagues from PRACSYS lab, Thanasis Krontiris, Hristiyan Kourtev, Shaojun Zhu, Colin

Rennie, Zakary Littlefield, Andrew Dobson (Chuples), Rahul Shome, Andrew Kimmel,

Chaitanya Mitash for all their support. Finally my friends, Nikolas Giannopoulos, Dioni-

sis Kalogeropoulos, Dimitris Chaidas, Georgia Anastopoulou, Thanasis Krontiris, Varvara

Kalokyri, Georgios Chantzialexiou, Christos Mitropoulos, Efthimis Mavris, Tasos Dimas,

Georgios Tsilomelekis, Chrisalenia Koumpouzi, Ted Tsoulos, Matina Kalontzi, Anastasia

Papadimitriou, Vilelmini Kalampratsidou and last but not least Hristiyan Kourtev for all

the fun, late nights and beautiful moments.

iii

Dedication

I dedicate this to Fw

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

List of Tables . ix

List of Figures . ix

1. Introduction . 1

1.1. Warehouse Automation . 1

1.1.1. Stowing . 2

1.1.2. Picking . 3

1.2. The Kiva Pod . 4

1.3. The Amazon Robotics Challenge . 4

1.3.1. The 2015 Amazon Picking Challenge 5

Picking Task . 5

Winning Team . 6

1.3.2. The 2016 Amazon Picking Challenge 6

Picking Task . 7

Stowing Task . 7

Winning Team . 8

1.3.3. The 2017 Amazon Robotics Challenge 9

Custom Storage System . 9

Picking Task . 10

Stowing Task . 11

v

Final Round . 12

Winning Team . 12

1.4. PRACSYS Group Participates in the Amazon Picking Challenge 14

1.5. Overview Of The Thesis . 15

2. Hardware Setup And Gripper Design . 16

2.1. Manipulator . 16

2.2. End-effectors . 17

2.2.1. The ReFlex TakkTile Hand . 17

2.2.2. The Custom-made Unigripper End-Effector 18

2.2.3. The Unigripper Hybrid Gripper . 20

2.2.4. Custom High-flow Vacuum Gripper 20

2.3. Vacuum Sources . 21

Air ejectors, driven by a 2 HP air compressor – High Vacuum (-75kPa)

/ Low Flow . 21

Vacuum cleaner – Low Vacuum (-12kPa) / High Flow 21

2.4. Grasp Validation . 22

3. System Integration . 23

3.1. Software Architecture . 23

3.2. Simulation Application . 24

3.3. Task Planner . 25

3.4. Pose Estimation . 25

3.4.1. Brief Overview of the R-CNN Pose Estimation Software 27

3.5. Grasp Planning . 29

3.5.1. Generating a Database of Grasps for Parallel End-Effectors 30

3.5.2. Generating a Database of Grasps for Vacuum End-Effectors 32

3.5.3. Online Generation of Grasps for Parallel End-Effectors 33

3.5.4. Online Generation of Grasps for Vacuum End-Effectors 34

3.6. Motion Planning . 35

vi

3.7. Evaluating the System . 36

4. Hardware and Software Evaluation . 39

4.1. Evaluating the End-Effectors . 39

4.2. Planning Evaluation . 40

4.3. Physical Evaluation . 41

5. Evaluating the Final Approach . 44

5.1. Roadmap Size Effects . 45

5.2. Task Planner Modes . 46

Round Robin Mode . 46

Smart Mode . 47

Smart Fast Cycle Mode . 48

5.3. Planning Without Obstacles . 48

Roadmap Size: 100/30.000, Task Planner Mode: Round Robin, No

Kiva Pod . 48

5.4. Introducing Obstacles . 49

5.4.1. Picking Task . 49

Overall Evaluation . 49

Grasp Planning Evaluation . 50

Motion Planning Evaluation . 51

5.4.2. Stowing Task . 52

Overall Evaluation . 53

Grasp Planning Evaluation . 53

Motion Planning Evaluation . 53

6. Conclusion and Future Improvements . 54

6.1. Re-Evaluate the System with Online Pose Estimation 54

6.2. Introduce Rearrangement . 54

6.3. Discovering Available Bin Space . 55

vii

6.4. Defining Object Preference . 55

6.5. Switching Between Different Roadmaps . 56

6.6. Future Gripper Designs . 56

A. Detailed Statistics . 58

A.1. Without the Kiva Pod . 59

A.2. With the Kiva Pod . 62

Task: Picking, Task Planner Mode: Round Robin 62

Task: Picking, Task Planner Mode: Smart 65

Task: Picking, Task Planner Mode: Smart Fast Cycle 68

Task: Stowing, Task Planner Mode: Smart Fast Cycle 71

Acknowledgment of Previous Publications . 74

References . 75

viii

List of Tables

4.1. Planning statistics . 40

4.2. The planning success ratio for every object. 40

5.1. Planning statistics - Picking Task - No Kiva Pod 49

5.2. Planning statistics - Picking Task . 49

5.3. Planning statistics - Stowing Task . 53

List of Figures

1.1. Amazon Robotics Challenge. 1

1.2. The Kiva Bot. 2

1.3. Amazon warehouse automation: Kiva bots move the pods to the human

workers. 3

1.4. The Kiva Pod. 4

1.5. The RBO team’s robot. 6

1.6. Team delft won the 2016 Amazon Picking Challenge using a custom hybrid

end-effector. 8

1.7. ACRV Wins ARC 2017 . 13

1.8. Cart-man end-effector. 14

2.1. Hardware setup evaluated for warehouse picking. 16

ix

2.2. Gripper comparison - from left to right: (a) The ReFlex Hand, (b) Unigripper

solution, (c) Unigripper solution with suction cups, (d) Hybrid Unigripper

end-effector, (e) Custom high-flow vacuum gripper 17
2.3. Altering the UniGripper design to better fit the Amazon Robotic Challenge

specifications . 19

3.1. Visualization of the simulation application. 24

3.2. Objects in the back of the bin are blocked by the ones in the front. 26

3.3. The 3 different camera placements used for generating learning data. 27

3.4. Reconfiguring the scene. 28

3.5. Matching the 3D CAD models to a real world scene. 29

3.6. (a) The ‘ReFlex Beta’ hand in GraspIt! The red lines are visual markers

showing the virtual contacts, corresponding to the friction cone, aligned with

the contact normal. (b) Sample stable grasp generated without obstacles,

with both the hand and object floating in free space. (c) Setup for the

generation of the grasps in an environment including obstacles and the hand

mounted on a virtual arm. (d) The 24 different axis-aligned object poses

considered arise from the 6 sides of a cube that could face the hand and the

4 different orientations in each case. (e) A pinch grasp. This grasp would

fail even though it is highly ranked by the eigengrasp Planner. 31
3.7. Examples of Unigripper grasps in simulation 32

3.8. Generating grasps for parallel end-effectors. 33

3.9. Generating grasps for vacuum end-effectors. 34

3.10. Motion Planning Pipeline . 35

3.11. Scheme of the System Under Evaluation. 37

4.1. Successful grasps out of two attempts for each object/pose/bin combination.

The objects are placed in pose 1 in the photos. If an object was successfully

retrieved from the Kiva pod, the corresponding end effector image is present

for that pose entry. (left: UniGripper, right: ReFlex) 41

x

4.2. A visual breakdown of the performance of the two end-effectors in real-world

experiments. The number of successful grasps and retrievals from the Kiva

pod is plotted, along with the number of failures with respect to grasping

the object and transferring it. 42

5.1. Initial placement of the objects in the Kiva pod for the picking task. 46

5.2. Initial placement of the objects in the tote for the stowing task. 52

A.1. Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: RR . . 59

A.2. Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: RR . 59

A.3. Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: RR . . 60

A.4. Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: RR 60

A.5. Time Spent per Object. Roadmap Size: 100, Task Planner Mode: RR . . . 61

A.6. Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: RR . 61

A.7. Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: RR . . 62

A.8. Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: RR . 62

A.9. Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: RR . . 63

A.10.Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: RR 63

A.11.Time Spent per Object. Roadmap Size: 100, Task Planner Mode: RR . . . 64

A.12.Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: RR . 64

A.13.Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: Smart . 65

A.14.Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: Smart 65

A.15.Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: Smart . 66

A.16.Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: Smart 66

A.17.Time Spent per Object. Roadmap Size: 100, Task Planner Mode: Smart . . 67

A.18.Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: Smart 67

A.19.Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: SFC . . 68

A.20.Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: SFC 68

A.21.Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: SFC . . 69

A.22.Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: SFC 69

A.23.Time Spent per Object. Roadmap Size: 100, Task Planner Mode: SFC . . . 70

xi

A.24.Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: SFC . 70

A.25.Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: SFC . . 71

A.26.Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: SFC 71

A.27.Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: SFC . . 72

A.28.Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: SFC 72

A.29.Time Spent per Object. Roadmap Size: 100, Task Planner Mode: SFC . . . 73

A.30.Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: SFC . 73

xii

1

Chapter 1

Introduction

1.1 Warehouse Automation

The Amazon Robotics Challenge (Fig. 1.1) triggered a trend towards building a fast,

robust and efficient system that could solve the problem of warehouse picking and stowing.

Many labs in the US as well as around the world [1], [2], [3] focused their resources into

building such a system and competing with each other. The acquisition of Kiva Systems by

Amazon back in 2012 and the introduction of the Kiva bots and Kiva pods [4] in Amazon’s

warehouses was the first step towards a fully automated warehouse.

Figure 1.1: Amazon Robotics Challenge.1

Amazon’s warehouses are on the top of the list of the most automated warehouses. Other

than manually stowing the Kiva pods with the merchandise and removing the corresponding

objects when an order comes in, the rest of the procedure is automated. Amazon owns 8

warehouses totalling 1.2 million square feet in size and it is obvious that managing such a

big volume of merchandise can be challenging.

1Reprinted from “www.amazonrobotics.com”

2

1.1.1 Stowing

One would think that merchandise is stored in the Kiva pods depending on the type, size

or category, sorted by price or in alphabetical order but that is not the case in an Amazon

warehouse. Amazon uses the principal of chaotic storage. This means that there is no area

for clothes or a department for appliances and electronics in a warehouse. A Kiva pod may

contain multiple types of merchandise with different price ranges and characteristics. The

properties of each product stored in a Kiva pod are irrelevant, and the only thing that

matters is the unique bar-code. Note that apart from the products that enter an Amazon

warehouse, each Kiva pod is also associated with a unique bar-code. Amazon warehouse

employees scan incoming products and place them in an unoccupied space inside a Kiva

pod registering the bar-code of the product as well as the bar-code of the pod. That way,

at any given point, a central system knows in which pod a specific product can be found.

Furthermore, the information of which pods are almost empty or full can be recovered by

keeping track of how many products were stowed and removed from the pod. Considering

the size of an Amazon’s warehouse manually moving all the merchandise around and trying

to find a place in a Kiva pod is a time consuming procedure (Fig. 1.3(a)). The solution to

that problem was given by the Kiva bots.

Figure 1.2: The Kiva Bot.2

Instead of moving the incoming products inside the warehouse and placing them in the

pods, using the Kiva bots, the most empty storage units are moved at the entrance of the

2Reprinted from “https://www.bloomberg.com/news/articles/2015-05-28/robot-with-a-human-grasp-is-
amazon-s-challenge-to-students”

3

warehouse where the new products are stowed (Fig. 1.2). After the stowing process the

Kiva bot moves the pod back to the warehouse, updating its final placement. It is worth

mentioning that each pod does not have a specific pre-defined position, but it is placed

closer to the entrance or the worker stations of the warehouse depending on how full it is.

1.1.2 Picking

When a customer’s order comes in, Kiva bots choose the most optimal pods, considering

the distance that they have to travel and the number of different pods needed to fulfil the

order, and transfer them to the worker stations where an Amazon employee is waiting to

pick the products out of the Kiva pod (Fig. 1.3(b)), place them in boxes and labelling

them for shipping to the customer. The final position of the Kiva pod will be decided based

on how many products are left inside: fewer products means that the pod will be placed

closer to the entrance of the warehouse, reducing the time required to transfer it there for

re-loading. An almost full pod will remain close to the worker stations since it is more

possible that it will contain a product included in another order.

(a) The interior of an Amazon warehouse. (b) Human worker in an Amazon warehouse.

Figure 1.3: Amazon warehouse automation: Kiva bots move the pods to the human work-
ers.3

3(a) Reprinted from “https://www.roboticsbusinessreview.com/supply-chain/amazon warehouse de-
mand devours robots and workers/”. (b) Reprinted from “https://www.firstpost.com/tech/news-analysis
/amazon-rolls-out-more-than-15-000-kiva-robots- for-holiday-season-onslaught-3659875.html”

4

1.2 The Kiva Pod

All the objects in an Amazon warehouse are stored in Kiva pods. The Kiva Pod (Fig.

1.4) has 12 bins, each of which is about 20(width)x25(height)x40(depth) cm size. The two

middle rows of bins have 20cm height. Given the depth, it is difficult to reach objects deep

Figure 1.4: The Kiva Pod.

inside them without extending the robot’s arms. This is one of the reasons that the choice

of the end-effectors that will be used affects the overall system’s performance and success

rate. For this reason our vacuum grippers share some common properties, in particular

they have a long shaft and 1-DOF joint at the tip, which allows the vacuum side to rotate

up to 90 degrees.

1.3 The Amazon Robotics Challenge

In this section we will describe the history of the Amazon Robotics Challenge. How it

begun, what changed over the years, what are the challenges and what were the important

innovation the teams contributed to the robotics community. The purpose of the challenge

was to motivate research groups to provide a fully autonomous system integrating state of

the art object recognition, motion, task and grasp planning, as well as effective end-effector

solutions that would perform well in an industrial environment.

5

1.3.1 The 2015 Amazon Picking Challenge

In 2014, Amazon announced the 1st Amazon Picking Challenge competition which took

place in May 2015 as part of the International Conference on Robotics and Automation

(ICRA) in Seattle, WA. The objective of the competition was to remove from a Kiva pod

a set of objects with a fully autonomous robotic solution.

Picking Task

The objects was placed in the Kiva pod in such a way that the bins were distinguished in

3 categories:

• Single-item bins: At least two bins only contained one object. Both of these objects

were picking targets.

• Double-item bins: At least two bins contained two objects. One object from each of

these bins was a picking target.

• Multi-item bins: At least two bins contained three or more objects. One object from

each of these bins was a picking target.

The teams were provided a JSON file that listed the objects that should be picked up.

Each competing team had 20 minutes to remove 12 objects, out of the total of 24 objects,

from the Kiva pod and place them inside an order bin. The task proved to be challenging as

no team managed to complete the full challenge within the time limit. For each successful

pick, the competing team gained 10, 15 or 20 points depending on how many objects were in

the bin that the target object was picked from. Some objects, considering their uniqueness

in shape and/or texture awarded 1-3 bonus points. Teams were penalized with 12 points if

they removed a non-target object from the Kiva pod, 5 points if they damaged any object or

packaging and 3 points if they dropped an object from a height more than 30cm. Successful

was considered a pick that removed a target object from the Kiva pod, transferred it without

damaging the package or the object and dropped it in the order bin from a height less than

30cm.

6

Figure 1.5: The RBO team’s robot.4

Winning Team

Team RBO from the Technical University of Berlin [5] won the challenge with 10 out of 12

successful picks and 148 points leaving Team MIT in the second place with 7 picks and 88

points.

The winning team chose to use a simple vacuum cleaner shaft as an end-effector mounted

on a single Barrett arm and a mobile base XR4000 (see Fig. 1.5). For pose estimation

purposes they mounted a 3D imaging camera on the arm and for collision checking when

moving the mobile base they used a laser sensor. Instead of using motion planning algo-

rithms to come up with collision free plans, they employed pressure and force-torque sensors

and all the motions were based on control and sensor feedback.

1.3.2 The 2016 Amazon Picking Challenge

In 2016 the Amazon Picking Challenge additionally to the picking task, a stowing task was

also introduced. Competing teams were required to pick 12 objects out of the Kiva pod and

additionally move 12 different objects from a tote into a partially full Kiva pod. The set of

objects used was significantly larger than the first year, consisting of a total of 46 objects

4Reprinted from “http://robotglobe.org/team-rbo-wins-the-amazon-picking-challenge/.”

7

with large variation in size texture shape and weight.

Picking Task

For the picking task the objects were placed inside the Kiva pod so that:

• Each bin contained between one and ten objects.

• Overall the twelve bins contained a total of 50 objects. Notice that 4 objects were not

unique.

• Each bin contained exactly one target object.

• The objects inside of each bin could be partially occluded or in contact with other

objects, making the pose estimation more challenging.

In the beginning of the challenge, each team was provided with a JSON file containing

the target objects. Each team was required to provide a task output file that contained

the final configuration of the Kiva pod i.e. which objects are in which bin after the team’s

attempt. Competing teams had 15 minutes to pick the 12 target objects in the order bin.

For each successful pick a team was awarded with 10 points if the target object was in a

bin with 1 or 2 objects, 15 points if the bin contained 3 or 4 objects or 20 points if the

bin contained 5 or more objects. Similarly to the 2015 Amazon Picking Challenge, points

were deducted for removing non-target objects from the Kiva pod, damaging any object or

the Kiva pod, dropping an object from a height more than 30cm. Additionally points were

deducted if the task output file reported an incorrect final position for an object and if an

object was protruding out of its bin by more than 5cm.

Stowing Task

Regarding the stowing task each team had 15 minutes to remove 12 objects from a tote and

place them inside the Kiva pod:

• 40 non-target objects were placed in the Kiva pod.

• Each bin contained between one and ten objects.

8

• The tote contained only the 12 target objects.

• The target objects were partially or completely occluded below other objects.

Winning Team

Team Delft from TU Delft Robotics Institute [6] won both challenges. Team Delft used a 7

DoF SIA20F Motoman robot arm by Yaskawa mounted on a rail which provided an extra

DoF increasing the reachability of the robot (Fig. 1.6(a)). For pose estimation they used 2

industrial stereo cameras. One was mounted on the arm to scan the bin of the Kiva pod and

the other over the tote to estimate the pose of the objects during the stowing task. Pose

estimation consisted of 2 steps. For object recognition they used a deep learning neural

network based on faster R-CNN and a step of global optimization for the initial estimation

using super4PCS. Team Delft developed a custom hybrid end-effector featuring a suction

cup with 1 DoF and a pinch mechanism to perform grasps on difficult to suck (Fig. 1.6(b)).

(a) Team Delft Robot.
(b) Team Delft custom hybrid end-effector.

Figure 1.6: Team delft won the 2016 Amazon Picking Challenge using a custom hybrid
end-effector. 5

Regarding motion planning, team Delft divided the planning problem into 2 sub-problems:

motion outside the Kiva pod where the trajectories were pre-recorded since the environment

was not dynamic, and motion inside the bins where the sense-plan-act approach was used.

5Reprinted from [6].

9

1.3.3 The 2017 Amazon Robotics Challenge

The Amazon Picking Challenge was renamed in 2017 into Amazon Robotics Challenge. The

challenge focused again on picking and stowing tasks but also allowed teams to create their

own storage systems. The challenge consisted of three phases. The first and second phases

were similar to last year’s picking and stowing tasks. In the final phase only the best teams

from the first two phases competed and the task was to first stow 10 objects in the storage

system and then pick them again and separate them in 3 distinctive groups. One major

difference compared to the previous challenges was the set of objects. The competing teams

were provided with a set of 40 objects prior to the challenge. At the day of the challenge

though, a different set of objects was used. Half of the objects were included in the initial

set, but the other half were new objects provided to the team around 30 minutes before the

beginning of the event, challenging that way the pose estimation approaches for each team.

Custom Storage System

Teams were allowed to design their own storage system following certain specifications

that their purpose were to maintain the intention and spirit of the competition to be the

advancement of state-of-the-art robot manipulation and perception. A custom storage

system:

• Must consist of between one and three objects that are physically distinct from the

Robot and that could be reasonably carried by an Amazon Robotics mobile robot.

These objects may be bolted down or otherwise secured in place for the Challenge.

• Must have at least 2 and no more than 10 distinct internal bins that are clearly labelled

with letters A through J. All objects must be stored within these bins.

• The sum of the outer upright bounding box volumes of the object(s) must be no more

than 95,000 cubic centimetres. All bins must be contained inside this bounding box.

Outer bounding shapes such as cylinders or pyramids may also be considered.

• Must occupy an area of no more than 5,000 square centimetres, and its length, width,

or height must be no longer than 125 centimetres. It may be placed on top of a table

10

or other supporting structure.

• Must be static and contain no motors or actuators. It may contain parts such as

drawers that are moved by the robot, provided that these parts start and end the task

inside the bounding box of the Storage System.

• Any sensors contained within the Storage System must be inexpensive, with a total

price for all such sensors of less than $50.

• The same Storage System must be used of the Pick, Stow, and Final Round Tasks.

Picking Task

The introduction of the custom storage system changed the way the challenge started for

each team. The total number of objects was 32 and each team had the opportunity to

store the objects inside their storage system themselves. Note that 16 objects were part of

the object set announced to the team prior to the challenge, while the other 16 were new

objects.

• Before each team’s attempt, judges handed the objects to the team one by one.

• Team members decided the final placements of each object in their storage system.

• The placements of all the objects had to be completed in less than 8 minutes.

• The team then had 15 minutes to complete 3 work orders: A 5 object order, a 3 object

order and a 2 object order

• Each order had an associated cardboard box and target objects had to be packed in

the correct box for the order.

The competing team was awarded 10 points for each successful placement of a target

object inside the correct box plus an additional 10 points if the objects was one of the new

ones. Furthermore, an additional point for every 5 seconds remaining on the clock after

they completed the task and 10 points if the cardboard box could be closed without having

to re-arrange the objects inside. Regarding point deductions, 15 points were deducted for

11

each non-target objects that was not in the storage system at the end of the task, 15 points

for each target object that was not in the storage system, or in the correct box at the end of

the task, 5 points for each target object that was dropped from a height more than 15cm,

5 points for each item that was protruding more than 2cm out of the storage system, and 5

and 20 points for minor and major damage on an object or a box respectively. An amnesty

tote was also introduced. If a team grasped an object that could not be recognized by their

sensing software they could place it in the amnesty tote and no points would be deducted

for the specific object.

Stowing Task

For the stowing task:

• The competing teams were provided with a tote filled with 20 objects in an unstruc-

tured jumble.

• 10 of the objects were part of the initial object set, while the rest were new objects.

• The tote was placed in a position indicated by the team.

• The robot had 15 minutes to move all 20 objects in the storage system.

• At the end of the task, the final location of each object had to be reported.

For each object successfully stowed in the storage system the team was awarded 5 points

plus 5 additional points if the object was not part of the initial object set. Furthermore, an

additional point for every 5 seconds remaining on the clock after they completed the task

given that at least 15 of the objects were reported at their actual final location. Similarly to

the picking task, 15 points were deducted for each object not in the storage system or the

tote at the end of the stowing task. Additionally, 5 points were deducted for each object in

the storage system or tote with an incorrect final position, 5 points for each object dropped

from a height greater than 15cm, 5 points for every object protruding more than 2cm out

of the storage system and 5 and 20 points for minor and major damage on an object or a

box respectively. The competing team could use the amnesty tote during the stowing task

too, placing inside objects that could not be recognized.

12

Final Round

The top teams that gathered the most points during the picking and stowing task competed

in a final round task that combined stowing and picking. A team had to reach a minimum

of 100 points in either the pick or stow tasks and rank in the top 10 teams based on the

sum of the points gathered in the 2 tasks to qualify to the final round.

• 2 totes containing 16 objects each were provided to each finalist team. Half of the

objects in each tote were included in the initial object set, while the other half were

new objects.

• Each team had to place the contents of the first tote in their storage system

• The robot had 30 minutes for the remainder of the final round divided between stowing

and picking, however each team chose.

• The stowing task included placing all the objects of the second tote in the storage

system. When the team declared that the robot has completed the stowing phase the

time stopped and the remaining time of the 30 minutes was used for the picking task.

• The competing team was then provided with a work order similar to the picking

phase. The 10 objects were chosen from the 32 initial objects regardless if the robot

had succeeded in placing them in the storage system during the stowing task.

• Similarly to the first picking task, the order had to place objects in 3 different card-

board boxes.

• Points were awarder and subtracted using the same rubric as the initial stowing and

picking tasks.

Winning Team

The winner of the 2017 Amazon Robotics Challenge was a custom-built, low-cost Cartesian

robot, cartMan [7], built from scratch by the Australian Centre for Robotic Vision (ACRV)

from Queensland University of Technology. Instead of a robotics arm, the winning team

13

(a) The Cartesian robot cartMan. (b) The custom storage system used by cartMan.

Figure 1.7: Australian Centre for Robotic Vision won the 2017 Amazon Robotics Challenge
with a low-cost Cartesian robot. 6

used a sliding mechanism that picked up products from above (Fig. 1.7(a)). The storage

system designed for the purpose of the competition was 2 horizontally placed bins that were

accessible from the top by cartMan (Fig. 1.7(b)). While other teams combine a vacuum

end-effector and a pinching mechanism into a single tool, cartMan’s designed allowed ACRV

team to design an end-effector with 2 distinct tools selectable by a 180 degree rotation as

shown in Fig. 1.8.

The teams choice of a pose estimation pipeline consisted of 2 key functions: i) segmen-

tation and identification of the objects and ii) online generation of grasp points for each

object. To achieve this they used RefineNet [8] a state-of-the-art semantic segmentation

network for pixel-wise classification and a custom vision-based grasp approach (as opposed

to a model-based one). For sensing, a RealSense SR300 RGB-D camera was mounted on the

robot’s wrist. Additionally, a second RealSense camera was mounted on the robot’s frame

to compensate for possible classification failures when using the wrist-mounted camera. An

interesting approach was the way the grasp validation was performed. Scales were placed

under the custom storage system that measured the weight before and after an attempted

grasp. If the difference in weight was not the expected object’s weight, the object was

6(a) Reprinted from [7] (b) Reprinted from “http://www.i-programmer.info/news/169-robotics/10997-
rob.html”

14

Figure 1.8: Rotating end-effector with 2 modalities. (A) Rotating suction cup (B) Suction
gripper pitch servo (C) wrist-mounted RealSense camera (D) suction hose attachment (E)
Roll motor (F) Yaw (tool-change) motor (G) Gripper pitch motor (H) Gripper servo (I)
Parallel plate gripper. 7

moved in front of the secondary camera to retry recognition. If there was no weight differ-

ence, the grasp was classified as non successful and the robot retried grasping the same or

a different object. The team reported that the total cost of the robot, the storage system

and the sensors used was approximately $24000, making it the most inexpensive setup in

the challenge.

1.4 PRACSYS Group Participates in the Amazon Picking Challenge

R U Pracsys team from Rutgers University competed in 2015 Amazon Picking Challenge

[9] and finished seventh. Following our participation in the competition, we evaluated

the proposed system and our choice of end-effectors [10] [11]. Although the majority of

the teams competing in the Amazon Challenges prefer using vacuum solutions, the results

presented in our research show that there are cases that an underactuated 3-finger end-

effector out performs the vacuum solution. This observation raises discussion about the

need to have different end-effector modalities in order to achieve robust autonomy in an

7Reprinted from [7]

15

unknown industrial environment. Furthermore, it points out that a hybrid end-effector

solution could help progress towards a fully automated robotic system.

1.5 Overview Of The Thesis

In Chapter 2 we will describe the hardware setup consisting of the manipulator, the end-

effectors and the vacuum sources used. In Chapter 3 The software components of the

system will be presented. More specifically, the task planner, the pose estimation software,

the grasp planner and the motion planner will be described in detail along with the platform

created to evaluate the system. In Chapter 4, the results of preliminary experiments will be

presented that aim in identifying the bottlenecks of our initial approach and the difference

in performance between end-effectors with different modalities. In Chapter 5 our proposed

solution for the Amazon Robotics Challenge is evaluated. Finally in Chapter 6 we will

propose improvements in order to further optimize the hardware and software components

of the system under evaluation. All the charts regarding the performance of the system

under review can be found in Appendix A.

16

Chapter 2

Hardware Setup And Gripper Design

2.1 Manipulator

Figure 2.1: Hardware setup evaluated for warehouse picking.

The considered hardware setup consists of a dual-arm Yaskawa Motoman SDA10F. This

system (see Fig. 2.1) is a dual arm robot, where each arm has 7 DoFs. The robot has

one additional DoF at its torso, which can rotate by 180o degrees in each direction. This

17

capability allows the robot to reach all twelve bins of the Kiva pod with both arms.

2.2 End-effectors

One important choice that has to be made is the type of end-effector that is going to be

used. The following alternative end-effectors were tested: a) a RightHand Robotics ReFlex

TakkTile Hand and a few custom-built grippers, b) a vacuum gripper designed together with

UniGripper using their suction technology, which has 1 wrist-like DOF, c) an alternative

1-DOF vacuum gripper using suction cups, d) a hybrid parallel/vacuum gripper that also

utilizes UniGripper’s technology and e) a high-flow 1-DOF vacuum gripper.

Figure 2.2: Gripper comparison - from left to right: (a) The ReFlex Hand, (b) Unigripper
solution, (c) Unigripper solution with suction cups, (d) Hybrid Unigripper end-effector, (e)
Custom high-flow vacuum gripper

2.2.1 The ReFlex TakkTile Hand

The “ReFlex”hand1, shown in Fig. 2.2(a), is the commercial successor to the i-HY hand,

which was used in the DARPA Autonomous Robotic Manipulation Challenge [12]. It is an

1http://www.labs.righthandrobotics.com/reflex-hand-1

18

underactuated 3-finger hand designed to be simple, inexpensive and durable. The hand has

2 fingers and an opposable thumb, each of which are interchangeable and are comprised

of a proximal and a distal segment. Under-actuation allows easier modelling in simulation

and grasp planning [13], but if in-hand manipulation [14] is required, then a complex hand-

shaped end-effector should be used. The 2 fingers are interconnected by gears and can swivel

0-π/2 degrees. or actuation purposes, it employs 4 Dynamixel servo motors, 3 of them are

used to flex the fingers and thumb, while the fourth changes their pre-shape configuration.

The fingers are interconnected by a set of gears and always move in sync with each other.

Communication and control of the hand is achieved over an Ethernet connection via a ROS

package provided by RightHand Robotics. The fingers and palm have built in “TakkTile”

sensors, which can be used for grasp validation. The hand provides 3 pre-programmed

grasps called “pre-shapes”, which, coupled with high friction rubber coated fingers, allow

it to securely grasp objects of various sizes and shapes. The 3 pre-shapes are: 1) Parallel

grasp: fingers positioned at 0 degrees (parallel to each other and the thumb). When closed

all 3 fingers interlace. It is useful for holding and operating heavy tools or other cylindrical

objects. 2) Spherical/Power grasp: fingers and thumb at 120 degrees from each other. It is

useful for grasping large objects or small objects which need to be manipulated in a circular

pattern (e.g. screwing on a nut on a bolt) 3) Pinch grasp: fingers are spread as far as

possible (π degrees). The thumb remains stationary while the fingers are closed and meet

at the fingertips. This configuration does not provide a very strong grasp but allows for

picking very small objects.

2.2.2 The Custom-made Unigripper End-Effector

The UniGripper end-effector was designed by the PRACSYS team in collaboration with

Unigripper2. Its design was guided by the restrictions associated with handling objects

inside shelves. A Kiva pod bin has about 20(width)x25(height)x40(depth) cm size. The

two middle rows of bins have 20cm height. Given the depth, it is difficult to reach objects

deep inside them without extending the robot’s arms. So, the design of the end effector

2A Swedish company specialized in vacuum grippers for the packing and automation industry:
http://www.unigripper.com.

19

(a) UniGripper design.

(b) Final Implementation.

Figure 2.3: Altering the UniGripper design to better fit the Amazon Robotic Challenge
specifications

has a shaft of 13 cm that ends in the planar vacuum gripper in one extremity. The planar

gripper is able to move up to 90 degrees according to an 1-DOF joint. The initial design

was improved and redesigned by Unigripper to take the form depicted in Fig. 2.2(b).

The planar surface uses a Unigripper patented technology that allows grasping an object

even when only part of the planar gripper touches it. For that, the planar gripper has

many individual vacuum valves that, once an object is sucked by one or more of them,

the others close, allowing the vacuum through just some of the valves to hold the object.

A sponge glued to the planar vacuum gripper, with holes in front of each valve, allows

grasping objects that do not expose planar surfaces. The design was implemented as shown

in Fig. 2.3(a), but could only move to either one or the other extreme of the 90 degrees

1-DOF joint, not allowing for continuous changes. To increase the flexibility of the tool, the

on-off vacuum actuator highlighted in Fig. 2.3(a) was switched to a Firgelli L16-R Miniature

Linear Servo actuator shown in the final instantiation of Fig. 2.3(b). To control the gripper,

20

a hardware module based on the Micro Maestro 6-channel USB Servo Controller was built.

Two channels were used to: (i) control the UniGripper’s 1-DOF joint pose, and (ii) turn the

vacuum on or off. A software module implements a ROS driver for the Unigripper gripper

that uses the ROS actionlib for controlling the joint pose, and a ROS service to turn the

vacuum on or off. Experiments revealed that the gripper was a bit too large and could not

handle some of the heavier objects. It worked better when objects could be picked up from

above as the presence of vacuum foam required the gripper to be pressed against the object.

The custom alternative to the Unigripper end-effector (Fig. 2.2(c)) uses most of the

same hardware but replaces the planar surface with a smaller 3D printed air manifold with

two suction cups. It is considerably smaller, which makes planning easier and can grasp

light objects without toppling. The design features two suction cups since the redundancy

helps with heavier objects.

2.2.3 The Unigripper Hybrid Gripper

The hybrid gripper (Fig. 2.2(d)) was designed in collaboration with Unigripper. It combines

a long fingered parallel gripper and Unigripper’s patented vacuum technology on the flat

side of one of the finger. A vacuum suction cup was later added to the tip as well. The

goal was to explore the benefits of having a gripper that combines several grippers into one.

The hybrid is still being tested, however preliminary results suggest it is bulky and heavy.

Due to the length of the fingers and the requirement for 0-14cm parallel finger range, the

linear servo motors used are large and heavy. Despite the fact that the rest of the gripper

is made of aluminium it is quite heavy. These shortcomings may outweigh the benefits of

having a hybrid, however we believe that with lighter materials and improved design, a

hybrid system will prove useful.

2.2.4 Custom High-flow Vacuum Gripper

Another in-house designed and built vacuum gripper (Fig. 2.2(e)), uses a low-vacuum,

high-flow vacuum source (a powerful vacuum cleaner). It is constructed out of 3D printed

plastic and laser-cut plywood materials for low weight and rapid prototyping. It has a long

arm which allows it to reach deep into the pod and also a wrist 1-DOF, similar to the

21

Unigripper end-effector.

During the Amazon Robotics Challenge it became apparent that systems using a low-

vacuum, high-flow vacuum source often outperform the high-vacuum, low-flow solutions

common in industry. This became quite obvious in the cases when trying to pick porous

and non-planar objects.

2.3 Vacuum Sources

Two types of vacuum are considered:

Air ejectors, driven by a 2 HP air compressor – High Vacuum (-75kPa) / Low

Flow

This setup is one of the most commonly used ways to produce vacuum and highly popular

in industry. Its biggest advantage is the ability to produce very large lifting, which enables

grasping heavy objects, assuming a good seal can be made between the suction cup and

object surface. The low flow requirements also allow for the use of small suction cups, which

is important in space-constrained environments. The main shortcoming of the high-vacuum

setup is its inability to deal with anything but minor vacuum leaks, which is the reason it

just fails for porous, rough and non-planar surfaces. The hardware is also expensive and

relatively complex, requiring an air compressor, air ejectors, air valves, etc..

Vacuum cleaner – Low Vacuum (-12kPa) / High Flow

The results from the Amazon Robotics Challenge proved that a low-vacuum high-airflow

vacuum source, such as a vacuum cleaner was capable of producing results similar and in

some cases better than the more commonly used industry, high-vacuum low-airflow solu-

tions. The biggest advantage of the high-flow solutions is in their ability to pick up objects

securely, despite large vacuum leaks which can be quite common in a warehouse picking

setting. Vacuum leaks are common and sometimes impossible to avoid. They can be due to

the nature of the object’s material and it’s inability to hold vacuum (e.g. cloth), the object’s

geometry making it impossible for the suction cup to form a good seal or simply imperfect

22

positioning of the suction cup (e.g. partial seal). In many cases, low-flow vacuum solutions

fail as the leaks are too large and vacuum cannot be maintained. The hardware setup is

also relatively inexpensive, requiring just a vacuum cleaner and a relay. The biggest limi-

tation of high-flow vacuum is that the maximum lifting force produced is lower compared

to low-flow vacuum and a larger suction cup is required.

2.4 Grasp Validation

Depending on the gripper, we approach grasp-validation differently. In the case of the

ReFlex hand, we use the built-in, tactile and bend sensors to determine if an object has

been picked up. For our vacuum grippers, additional sensors were needed. To validate

grasps for grippers that use low-flow vacuum, we use vacuum sensors. Depending on the

object, the type of surface it has, its weight and other factors different levels of vacuum

ensure a robust grasp, so each object is tested and the minimum vacuum threshold is

identified. In the case of high-flow vacuum, vacuum sensors do not work, since the changes

in vacuum between successful and unsuccessful grasp are minimal. This is why we use a

Mass Air-flow (MAF) sensor instead. The procedure for identifying the maximum airflow

threshold is similar to the one for low-flow vacuum.

23

Chapter 3

System Integration

In this chapter we will describe in detail the system and all the modules we will try to

evaluate.

3.1 Software Architecture

The idea behind the software architecture is to create a system that allows to easily replace

any module without having to reconfigure the system again from scratch. For example, in

order to evaluate the different end-effectors, it was necessary to create a software infras-

tructure that can easily adapt to changes in hardware.

• The lower layer contains necessary definitions and planning primitives such as the

manipulator’s kinematics, required geometries, obstacle definitions, roadmap queries,

graph search algorithms and general end-effector definitions. This provides the re-

quired modularity that enables changes (i.e. different end-effectors, different motion

planning techniques) without having to reimplement the entire pipeline.

• The middle layer consists of manipulation task planners that have the ability to com-

bine planning primitives provided by the lower level into complete plans that satisfy

a specific simple task like pick, place, move, transfer and release.

• The top layer consist of a planning application that can create queries and send them

to the middle layer, combine the resulting plans and then propagate them to the

manipulator.

The system is simulation driven, i.e., a simulation process is employed, which has the

ability to request from the planning application to complete specific high-level tasks. The

24

communication between the simulation and planning applications is achieved through the

Robotic Operating System (ROS). The layered structure described above allows to modify

the behaviour of the system easily.

3.2 Simulation Application

Figure 3.1: Visualization of the simulation application.

A simulation application has the role of the coordinator and is responsible for communi-

cating with the rest of the system components. Initially the manipulator, the Kiva shelving

unit and the object models are loaded into the simulation. Precomputed roadmaps storing

arm trajectories are de-serialized and the work order file is loaded. Internally a high level

automaton is utilized to keep track of the current task as well as invoke the corresponding

procedure when required. The states of the automaton correspond to high level concepts

25

like move to initial position, move to sensing position, sense, pick and place etc. Each of

these states make the appropriate calls to the corresponding component. For example, the

state move to sensing position will request from the associated planning application a plan

that will move the manipulator from its current position to one of the pre-defined camera

placements, while sense will send the collected RGB-D images to the perception pipeline,

will wait for the pose estimation and finally will update the object’s pose in simulation to

agree with the estimated one. The visualization of the initial state of the simulation after

loading all the required components is displayed in Fig. 3.1.

3.3 Task Planner

The task planner is the decision making part of the software. This means that the task

planner is responsible to send the correct commands to the simulation application in order

to complete each task as well as solve the high level problem we are attempting to approach

as efficient as possible. In our scenario, the task planner is going to choose the order of the

objects that are going to be removed from the Kiva pod or the tote. Choosing which object

to attempt is not a trivial task as it is a dynamic problem since it is affected by the state

of the real world (i.e. which objects are contained in every bin) and the end-effectors that

are currently used (i.e. which end-effector is able to grasp the target object).

For example, consider the bin displayed in Fig. 3.2. Grasping the “crayola” is impossible

since the “duct tape” has to be removed first. The task planner has to figure this out in

real time during the execution and avoid wasting time trying to remove the “crayola” from

the bin before the “duct tape” is removed. In Chapter 5 we will describe how we used the

grasp planner in order to improve the overall performance of the system.

3.4 Pose Estimation

Pose estimation for objects inside the Kiva shelving unit is a challenging problem. Especially

in a scenario that time is limited, a lightweight and fast perception solution is needed.

Competing teams in the Amazon Robotics Challenge used software like the “Point Cloud

Library (PCL)” [15], “Open Computer Vision Library (OpenCV)” [16], “Object Recognition

26

Figure 3.2: Objects in the back of the bin are blocked by the ones in the front.

Kitchen (ORK)” [17], “Simultaneous Detection and Estimation (SDS)” [18], “Linemod”

[19], “Ecto”[20] and “Scikit Learn” [21].

To assist work in pose estimation, the Rutgers team generated a dataset including RGB-

D data for all the ARC objects [22]. Originally, the solution considered corresponded to

SimTrack [23], i.e., a pose estimation and tracking software that keeps track of the relative

pose between the camera and the objects using predefined visual features. The longer the

camera observes the object, the accuracy of the pose estimation increases. In order to get a

good pose estimation for a target object, trajectories were recorded that moved the camera

slowly in front of each bin. Because of the requirement to move the camera slowly in front of

each bin in order to get an accurate estimation, this procedure was a bottleneck and instead

a perception solution [24] using Regions with Convolutional Neural Network (R-CNN) was

27

developed. This faster approach uses 3 pre-defined camera placements in front of each bin

allowing estimations even for partially occluded objects. An RGB-D image is captured at

each camera placement and sent to the perception pipeline. After an initial pose estimation,

physics are applied to the object in simulation in order to correct the pose estimated.

3.4.1 Brief Overview of the R-CNN Pose Estimation Software

Figure 3.3: The 3 different camera placements used for generating learning data. 1

Offline and before using the pose estimation software in a real world experiment 3D

CAD models were generated for each of the objects we want to recognize and estimate their

pose. A challenging procedure when using machine learning and convolutional networks is

the training of the network. The initial approach was to initialize a physics aware simulator

with the 3D CAD models to train the R-CNN. The scene was automatically altered and

labelled in the simulator and the output data was used for training the network. When

testing the R-CNN on real images, the success ratio for detection was high, although it

failed for specific views and lighting. To compensate for these cases the decision to use real

RGB-D images from real world scenes was made. This procedure is time consuming and

1Reprinted from “http://paul.rutgers.edu/ cm1074/”

28

requires a lot of manual labour. In order to do avoid having a person changing the scene

manually and labelling it in order to creating a variety of scenes and training data, the

manipulator itself was used.

A scene was set in front of the robot on a table-top. Then the manipulator moved the

camera which was mounted on its arm in 3 pre-defined camera placements (Fig. 3.3) and

captured an RGB-D image. Those images and point clouds were merged and labelled. The

R-CNN trained with the simulated data was used in order to estimate the poses of the

objects in the scene. A random object was chosen and the robot picked it and placed it in a

different location and the above procedure was repeated (Fig. 3.4). That way labelled data

were created and used for training the R-CNN. This data was used to train the R-CNN

with real world data.

Figure 3.4: Reconfiguring the scene. 2

During an experiment, the robot moves the camera in the 3 pre-defined camera place-

ments and captures the point cloud for the whole scene. Then, the R-CNN is used to

recognize the object we are interested in estimating its pose. The 3 point-clouds are merged

and 3D segmentation is used to remove the resting surfaces and outliers from the resulting

point cloud. Model matching registers the 3D CAD models to the segmented point cloud

(Fig. 3.5) producing a 6D pose estimation for the object in question. Finally, to improve

2Reprinted from “http://paul.rutgers.edu/ cm1074/”

29

the estimation, after the pose of all the objects in the scene is estimated, physics are applied

to correct possible errors in estimation. Testing and evaluating the pose estimation software

is out of the scope of this thesis, so during the experimental evaluation we suppose that the

poses of the objects in the scene is already known.

Figure 3.5: Matching the 3D CAD models to a real world scene. 3

3.5 Grasp Planning

Many methods have been proposed, both on-line and off-line [25], [26], [27], to generate

grasps given an end-effector and an object pose. A grasp is classified as valid if there exists

a collision free IK-solution for the whole manipulator, such that the end-effector can be

attached to the object’s surface without colliding with the obstacle geometries around the

object (i.e. Kiva shelving unit, other objects). After estimating the object’s pose, the

process is to:

• Create the set of feasible grasps in simulation by moving the end-effector’s geometry,

without the rest of the manipulator’s arm, on the target object’s graspable surfaces

and rejecting the grasps with insufficient overlaps between the 2 geometries. The

sampling process is guided towards the surfaces that are not hidden or away from the

manipulator.

3Reprinted from “http://paul.rutgers.edu/ cm1074/”

30

• For each of the sampled grasps in the feasible set, “TRAC-IK” [28] is used to find

collision-free IK solutions for the whole arm. If a solution is found that is collision-free,

the grasp is marked as valid.

• For each of the valid grasps, motion planning is invoked to provide a plan that moves

the end-effector to the grasping pose. If motion planning succeeds in providing a

collision-free plan, the procedure is repeated for placing the object in a specific target

pose (i.e. order bin).

The first step is to create the feasible set of grasps. We need to use a different approach

depending on the end-effector. The reason for that is that a parallel end effector needs to

be placed in a way that the fingers are surrounding the object before attempting to grasp,

while in the case of a vacuum end-effector, in order to have a successful grasp, we need to

bring the end effector on the surface of the object.

The initial approach was to generate offline grasping databases using “GraspIt!” [29]

for each object. Because of the high volume of manual work required, the current system

uses an on-line approach to get valid grasps that are dependent on the object pose during

the execution of each experiment and invoke motion planning algorithms to move the end-

effector to one of those valid grasps.

3.5.1 Generating a Database of Grasps for Parallel End-Effectors

The GraspIt! software [30], [31] was used to generate stable valid grasps for the “ReFlex”

hand, which generates grasps by using a set of predefined “virtual contact points” on the

3D model of the end-effector (Fig. 3.6(a)). The planner samples various hand positions

and orientations to bring the contact points close to the object surface. Depending on the

contact point positions different types of grasps can be encouraged. Each grasp is then

evaluated and scored according to a grasping metric [32], [33]. Such metrics consider the

objects’ 3D geometry and contact-point information, so as to detect high-quality grasps

that can withstand disturbances [34], [35], [36].

Many grasps generated in this way are not feasible as they result in collisions between

the end-effector and the environment. For example, the grasp of Fig. 3.6(b) will certainly

31

(a)
(b)

(c)

(d)
(e)

Figure 3.6: (a) The ‘ReFlex Beta’ hand in GraspIt! The red lines are visual markers showing
the virtual contacts, corresponding to the friction cone, aligned with the contact normal. (b)
Sample stable grasp generated without obstacles, with both the hand and object floating in
free space. (c) Setup for the generation of the grasps in an environment including obstacles
and the hand mounted on a virtual arm. (d) The 24 different axis-aligned object poses
considered arise from the 6 sides of a cube that could face the hand and the 4 different
orientations in each case. (e) A pinch grasp. This grasp would fail even though it is highly
ranked by the eigengrasp Planner.

result in collisions with the resting surface unless the object is balancing on its small side,

which is highly unlikely. To improve the quality of the grasping databases, such constraints

were taken into account during the grasp generation process. A setup was used where the

object is placed on a resting surface and the hand attached to a virtual arm link is only

allowed to approach the object from a specific direction as in Fig. 3.6(c).

Then there are 24 different object poses for a cuboid that is axis-aligned that one can

consider, as in Fig. 3.6(d). A different grasping database was generated offline for each such

pose of an object inside the constrained setup of Fig. 3.6(c). Thirty grasps were generated

for each pose with the exception of objects that it was not possible to reach this number.

Online and once object pose recognition is performed, the 2 or 3 closest axis-aligned poses

are identified and the corresponding grasping databases are loaded.

To simplify online planning, the ReFlex hand was limited to parallel grasps (Fig. 3.6(b))

and pinch grasps (Fig. 3.6(e)). Several different virtual contact definitions were used to

32

favour the generation of these types of grasps. The GraspIt! eigengrasp planner used the

“Hand Contacts” and “Potential Quality” functions to rank grasps and executed 40,000

“Simulated Annealing” iterations. Upon completion, GraspIt! returned the top 50 pre-

grasps ranked based on “grasp energy”. Some of the resulting grasps, despite having a high

score were not robust (see Fig. 3.6(e)) and they were visually pruned from the databases.

3.5.2 Generating a Database of Grasps for Vacuum End-Effectors

Similar to the Reflex hand, 24 Unigripper databases were generated for different axis-aligned

object poses. Each object was approximated by a cuboid. As the vacuum solution requires

part of the planar gripper surface to touch the object, the generation process simply samples

grasps on each face of the approximated cuboid. For each pose, the object is considered to

be inside a constrained setup similar to Fig. 3.6(c) and cannot be grasped from the bottom

or the back. Grasps are sampled only for the front, top, left, and right face:

• Front face: 2 positions are sampled (p0: face centre, and p1: 1/6 of the face’s height

above p0) and 8 orientations for each position (multiples of 45o).

• Top face: 2 positions are sampled (p0: face centre, and p1: 1/6 of the face’s length in

front of p0) and 3 orientations for each position (-45, 0, and 45o rotations).

• Left/Right faces: 3 positions are sampled (p0: face centre, p1: 1/6 of the face’s height

above p0, and p2: 1/6 of the face’s length in front of p1) and 3 orientations for each

position (-45, 0, and 45o rotations).

(a) A grasp on the front face. (b) A grasp on the left face.

Figure 3.7: Examples of Unigripper grasps in simulation

33

This results in 40 grasps per object pose. Grasps that collide with the resting surface or

grasps that do not provide enough overlap between the gripper sponge and the object face

are filtered out. The required overlap is set to be either half of the total area of the sponge

or the area of the object face, whichever is smaller. After filtering, the resulting databases

stored on average 30 grasps for each pose, equivalent to the ReFlex databases.

3.5.3 Online Generation of Grasps for Parallel End-Effectors

When working with parallel end-effectors we add cylindrical geometries around the mesh

of each object (Fig. 3.8(a)) that we want to manipulate. We also create a cuboid that we

place between the fingers of the end-effector. The cuboid is displayed in Fig. 3.8(b). Next

we start sampling grasps so that the cuboid collides with the cylindrical geometries and

at same time the fingers are not colliding with the object itself. In order to populate the

feasible set with grasps that we can also bring the arm to, we limit the faces of the object

depending on its pose. That means that we allow sampling only on the front, top and side

faces of the object in respect to the manipulator’s position.

(a) Grasp descriptors for parallel end-effectors. (b) Geometry defined between the fingers.

Figure 3.8: Generating grasps for parallel end-effectors.

The placement and size of that cuboid will affect the number and quality of grasps that

will be generated, so coming up with the most optimal parameters can be a challenge. If the

cuboid is placed close to the palm all the sampled grasps will have a higher probability that

34

will result in a successful grasp in a real world experiment, but at the same time planning

for this kind of grasp will be more challenging as the end effector will need to go deeper in

the Kiva pod. Also there is always a chance of tipping the object off with the end-effector

resulting in a failed grasp.

3.5.4 Online Generation of Grasps for Vacuum End-Effectors

In order to generate grasps for a vacuum end-effector, we need to define a geometry on the

vacuum surface of the end-effector. Notice the red rectangle in Fig. 3.9(b). Then, we also

need to define geometries on the surface of the object as shown in Fig. 3.9(a) . Finally, a

grasp is generated by moving the end-effector on the object so that the geometry on the

vacuum surface overlaps with on of the geometries on the surface of the object. Similarly

to the parallel end-effector case, we also limit the faces of the object that we are going to

sample, so that we get grasps only on the front, top and sides of the object with respect to

the manipulator.

(a) Grasp descriptors for vacuum end-effectors. (b) Geometry defined on the vacuum surface

Figure 3.9: Generating grasps for vacuum end-effectors.

A score can be used to choose the best grasps based on the overlap between the geometry

on the vacuum surface and the geometries on the surface of the object.

35

3.6 Motion Planning

A variety of approaches for motion planning is available like “MoveIt!” [37], “OpenRave”

[38], “Drake” [39], and “trajopt” [40]. For the experiments of this thesis an in-house built

planning software [41], [42].

The goal is to come up with a motion plan that brings the end-effector to the current

pose of the object, grasp it and then transfer it to the target pose. The final motion plan

consists of 7 components:

Figure 3.10: Motion Planning Pipeline

• The Transit plan brings the manipulator from the initial state to the connection

state using a PRM* roadmap, which was created off-line. The connection state is a

state that belongs to the roadmap and at the same time is at close proximity to the

target object.

• The Transit Connection plan brings the manipulator from the connection state to

the retraction state. The retraction state is a state in the proximity of the target object

but not on the roadmap. IK-based local planning is used to steer the end-effector to

36

the retraction state.

• The Reaching plan brings the manipulator from the retraction state to the surface

of the object through Jacobian-based computation of velocity kinematics.

• Secure grasp plan: A real-world grasp might fail due to pose estimation errors. So,

a push control is added to the direction the end-effector is facing. This plan is also

computed by using Jacobian-based velocity kinematics.

• The Retracting plan brings the manipulator with the object to the retraction state.

This plan is the reverse of the Reaching plan. This procedure brings the end-effector

and the object away from the static or non-static geometries, simplifying the planning

process from there to the object’s target pose.

• The Transfer Connection plan attempts to bring the manipulator back to a node

on the PRM* roadmap. From there, it is possible to plan and bring the object to its

target pose. To compute this plan, IK-based local planning and interpolation at the

joint space is used.

• The Transfer plan brings the end-effector with the object to the target pose through

the roadmap. The plan is lazily collision checked to ensure there are no collisions with

other objects.

The same pipeline can be used for both the picking and the stowing tasks. The only

thing that will change between those tasks is the initial and final position of each object.

The motion planning pipeline is summarized in Fig. 3.10

3.7 Evaluating the System

Let’s consider the modular system described above. A graphical representation of the

components and modules of the system under evaluation is shown in Fig. 3.11. We observe

that several modules are interconnected and it is not clear how the overall performance of

the system will be affected if a module is changed or replaced.

37

A change on a module of the system can affect the performance of the whole system.

However, even if the performance of a module is improved, it is not guaranteed that the

performance of the whole system is also improved. Similarly, if the performance of a module

decreases it may not affect the performance of the whole system. This is why having a way

to evaluate a system and all of its modules as a whole is essential in order to achieve best

performance as well as find out where are the bottlenecks and which modules should be

further improved. This thesis proposes an evaluation platform that can be used to easily

evaluate a complex modular system. The evaluation of a system can be both on the software

used as well as the hardware.

Figure 3.11: Scheme of the System Under Evaluation.

In order to evaluate the end-effectors we set up an experiment in an environment similar

to the one of the Amazon Robotics Challenge but with only one object present in a pre-

defined bin for each attempt. We tried to be as unbiased as possible regarding the different

placements of the objects and not favour a specific end-effector of the ones we put under

test. Along with the evaluation of the end-effectors we gathered statistics about the grasp

and motion planning pipelines that showed us which modules caused the most failures. The

38

results of these experiments are presented in Chapter 4. Those results gave us indications

of which modules needed refining or replacement which we took into consideration during

our final approach described in Chapter 5.

39

Chapter 4

Hardware and Software Evaluation

In this chapter we will present the preliminary results of an experiment that was intended

to help us make decisions on which of the available hardware performed better in a similar

scenario to the Amazon’s Robotics Challenge, as well as identify the bottlenecks in our

software pipeline. In these experiments we use the Kiva pod and the Amazon objects, in

each experiment only the target object is placed at the centre of a bin.

Taking into account the results of these experiments we modified our initial approach

were it was necessary, improving the modules that affected the overall performance the

most. The final approach is evaluated at Chapter 5 where the actual picking and stowing

tasks of the Amazon Robotics Challenge are attempted.

4.1 Evaluating the End-Effectors

A grasping challenge is setup to evaluate the two end-effectors. Every experiment starts

from a collision free state where the arms are outside the Kiva pod. The objects are placed in

a specified pose inside a bin of the Kiva pod. The planning module loads the pre-computed

grasps and tries to compute (i) a collision free trajectory for the target arm to a feasible

grasping state for the current object, (ii) moving the object out of the bin, and (iii) dropping

it at a target location outside the Kiva pod. The parameters that vary are the following:

• 2 end-effectors: Unigripper and ReFlex hand.

• 12 objects that vary in dimension, shape, weight, deformability, and material.

• 2 bins of the Kiva pod - the top middle bin and the one below it, which has a smaller

height.

40

Table 4.1: Planning statistics

End Effec-
tor

Grasp
success
ratio

Planning
success
ratio

Solution
quality
(sec)

Comp.
time upon
success
(sec)

Comp. time
upon grasp-
ing failure
(sec)

Comp. time
upon plan-
ning failure
(sec)

Average
failure
time
(sec)

UniGripper 0.0449 0.6406 47.1128 3.3817 0.1014 12.5685 0.3098

Reflex 0.0333 0.6335 46.1100 3.3590 0.0993 12.4044 0.2552

Table 4.2: The planning success ratio for every object.

spark
plug

cheezit crayola rolodex elmers
glue

feline

Unigripper 0.9487 0.1573 0.6327 0.6623 0.9565 0.5185

Reflex 0.9667 0.2143 0.6552 0.8889 0.7879 0.5882 Average

sticky
notes

kong
duck

kyjen mark
twain

outlet
plugs

duck toy 0.6371

Unigripper 0.8214 0.8095 1.0000 0.4615 0.6667 0.7813
Reflex 0.9412 0.6667 0.8750 0.3000 0.5789 0.9375

• 3 poses in each bin starting with the pose shown in Fig. 4.1. The second pose is

rotated 45◦ about +Z (pointing up) and the third is rotated 90◦ about +X (pointing

to the Kiva pod) relative to the initial pose.

The offline generated grasping databases that were described in Section 3.5 were used

in order to evaluate the 2 end-effectors. All these combinations are executed in simulation.

For every object-end effector pair, there is a grasping database that corresponds to the set

of relative configurations representing stable grasps. All the grasps are attempted. For the

grasps, that can be reached with a collision free grasping state, the planning infrastructure

tries to solve the motion planning problem to connect this state and solve the problem.

4.2 Planning Evaluation

All the grasps for the corresponding object/end-effector database are attempted. For suc-

cessful collision-free grasps, the motion planner is invoked and the ratio of successful plan-

ning attempts is evaluated. The duration of the generated motions is used to measure the

quality of the solution given similar maximum arm velocity. For every parameter combi-

nation, the two grasps that yield the best solution quality are evaluated in a real-world

execution.

Table 4.1 summarizes the planning evaluation. The first column identifies the ratio of

precomputed grasps, which are both reachable in terms of IK, collision free and provide

41

Figure 4.1: Successful grasps out of two attempts for each object/pose/bin combination.
The objects are placed in pose 1 in the photos. If an object was successfully retrieved from
the Kiva pod, the corresponding end effector image is present for that pose entry. (left:
UniGripper, right: ReFlex)

collision-free reaching and retracting plans. About 4.5% of the precomputed grasps for the

UniGripper and 3.33% of the grasps for the ReFlex end up being valid in this manner.

Then, the motion planning phase solves the majority of the corresponding problems (63%

to 64%), given a successful grasp. The resulting path quality is equivalent for the two end-

effectors. Grasping evaluation is significantly faster than motion planning, both when it

succeeds and fails. Planning takes 3 seconds on average when a plan is found and about 12

seconds upon a failure. But the average failure computation time is small given that most

failures arise from the grasping evaluation. Computation times are similar between the two

end effectors.

Table 4.2 shows that the problem is harder for bigger objects, such as the cheezit, feline

and mark twain, which are difficult to maneuver out of the bin. The object pose also affects

whether grasping succeeds. For objects, such as mark twain, kong duck, elmers glue, and

outlet plugs, the Reflex hand will not have a grasp when the object has a face that is flush

against the supporting floor and the fingers need to wrap around that face for a stable grasp.

For objects like the feline and elmers glue, it is difficult to find grasps with the UniGripper

in poses that have the narrow face facing outwards. Since certain faces are impossible to

grasp with a suction surface, these narrow faces do not give rise to grasps in the databases.

4.3 Physical Evaluation

To setup the physical evaluation, the poses used in planning were reproduced in the real-

world. The Amazon-Kiva pod was placed at the specified distance in front of the robot

42

Figure 4.2: A visual breakdown of the performance of the two end-effectors in real-world
experiments. The number of successful grasps and retrievals from the Kiva pod is plotted,
along with the number of failures with respect to grasping the object and transferring it.

and each objects was placed inside the bin at the corresponding pose. The experiments

consisted of replaying the two best quality solutions for each pose provided by simulation,

and logging whether a grasp was successful in the real world. A grasp may fail either

because the object was moved by the end effector before grasping, or because the object’s

shape or target grasp area prevented a successful grasp. Furthermore, even if the object

was grasped it may be dropped during the transfer from the bin to the target location. In

Figure 4.2, one can observe the success count for each end effector and object tested as well

as the reason a certain solution failed.

Figure 4.1 demonstrates that, depending on the surface properties and morphology

of each object, the use of a specific end effector was more advantageous than the other.

For instance, the “mark twain” object, was successfully grasped by the Unigripper for all

executions attempted, since it is physically easier for a vacuum gripper to grasp an object

with flat surfaces. The ReFlex hand, however, is unable to grab a book while lying on a

flat surface. On the other hand, “rolodex” was almost impossible for the Unigripper to

grasp given its mesh surface, while the ReFlex was successful most of the times. Even for

cases that solutions were provided from planning for every pose of an object (i.e., “kyjen”),

Unigripper was unable to perform a successful grasp as the object does not expose a large

enough flat surface.

Overall, 122 trajectories were tested for the UniGripper in real-world experiments 1.

1Videos can be found in: https://drive.google.com/open?id=0Byh0TCcqXnO-ZzF6QWdlVVJxVm8

43

Out of those, 63 succeeded. The majority of failures arise from three objects (“rolodex”,

“kyjen” and “duck toy”) for which it is difficult to establish suction. It is easy to include

this knowledge during the planning process and not generate such solutions. For the ReFlex

hand, 85 trajectories were computed, which is a smaller number, showing it is harder to

plan for this end-effector. Out of those, however, 62 trajectories were successful. These

failures are more equally distributed over objects and more unpredictable. Out of the 78

considered poses (2 bins x 3 poses per bin x 12 objects), it was possible to find a successful

grasp with either end effector 57 times.

44

Chapter 5

Evaluating the Final Approach

After evaluating the findings of the experiment described in Chapter 4, we noticed that

the biggest bottleneck was the grasp planning approach. By creating grasping databases

as part of our pre-processing procedure, we were very dependent on the quality of the each

recorded grasp. Furthermore, only a small percentage of grasps, if any, were valid for the

target object and if motion planning failed for these, there was no way to recover. For that

reason we swapped our grasping database approach for an online grasping generation one as

described in Chapter 3. This change though had an impact in the computation time spent

upon planning failure, since we could keep generating new grasps and try to come up with a

motion plan in difficult instances of narrow passage problems. An obvious but not efficient

solution was to set an upper time limit for each attempt on a target object, but a more

effective solution had to be found. Last but not least, since we introduced more objects in

every bin resulting in partially or totally occluded objects, an efficient task planner that

would choose which object was available for grasping and which objects were blocked had

to be implemented.

The experiment consists of 2 tasks:

• The picking task where the objective is to remove all the objects from the Kiva pod.

As described above multiple objects will be placed in the same bin, increasing the

difficulty of the task.

• The stowing task where the objective is to remove all the objects from a densely

packed tote in front of the robot.

The time available to complete each of the tasks is 15 minutes (900 seconds).

45

In each of the following sections a different approach in solving the Amazon Robotics

Challenge is described and evaluated. For each approach we will present:

• A table containing the average failure time, the average success, the average quality

of the solutions in seconds, the average planning time, how many objects were picked

on the first try and the total time spent on the task.

• A chart showing the number of feasible and valid grasps for each object

• A chart showing the timestamps each objects was picked up and removed from the

pod/tote

• A chart showing how the total time was allocated between the different objects.

The elements that will vary between each of the experiments are:

• The size of the roadmap used and

• The task planner intelligence

We will use the results of each approach to improve our final implementation which will be

described at the end of this chapter.

5.1 Roadmap Size Effects

The size of the roadmap used affects both the efficiency of the final approach and the quality

of the motion plans. As shown from the preliminary results described in 4, a significant

amount of time is spent on motion planning failures. The motion planning pipeline tries to

find a collision free path passing from the nodes of the roadmap using A*. The size of the

roadmap affects the amount of time needed for A* to traverse the roadmap. On the other

hand a small roadmap affects both the quality of solutions and the overall success rate of the

system. We will try to measure the effects of the roadmap in the Amazon Robotics Challenge

scenario by using a small 100 node roadmap, and a large 30.000 node roadmap. Since we

identified the vacuum end-effector as the most efficient in our preliminary experiments, we

are going to perform this round of experiments using only that. The initial placement of

the objects in the Kiva pod is shown in Fig. 5.1

46

Figure 5.1: Initial placement of the objects in the Kiva pod for the picking task.

5.2 Task Planner Modes

The task planner we use can run with 3 different modes. Each new mode was developed to

improve on the previous and attempt to increase the quality and the efficiency of the final

approach.

Round Robin Mode

Our initial and simplest approach is that the task planner will choose which object to

attempt based on a random order. A list is compiled containing all the objects in the shelf.

The task planner will start going through that list and choose the target object based on its

position in the list. After the target object is provided to the simulation application from

47

the task planner, the planning pipeline will be allowed to try to find valid grasps and motion

plans for the pre-specified amount of time of 20 seconds. During that time the simulation

application will:

• Invoke the grasp planner to come up with a set of valid grasps. The grasp planner will

sample a pre-specified number of grasps and will try to find IK solutions for these. If

an IK-solution is not found, the grasp planner will be invoked again to sample more

grasps.

• If at least one valid grasp is found, motion planning is invoked and tries to come up

with a motion that will guide the end-effector to that grasp.

• If the motion planner succeeds, the attempt is classified as successful and the simula-

tion application executes the plan and the statistics for that attempt are sent to the

task planner.

• If the motion planner fails, the statistics are sent to the task planner and the simulation

application waits for the next target object.

When that time runs out, or a solution is found, the next in line object is chosen as a

target. Every time a success occurs the target object is removed from the list. The task

ends if all the objects are successfully removed or the 15 minutes time runs out.

Smart Mode

After gathering statistics with the task planner running in Round Robin mode, we observed

that a significant amount of time, specifically 20 seconds, was spent trying to come up with

grasps for objects that were impossible for the end-effector to reach because they were

blocked by other objects. To avoid that we implemented logic that allowed the task planner

to mark objects as blocked. If the grasp planner did not find any valid grasps for a target

objects, the object was marked as blocked and the next target object was chosen. In order

to mark the blocked objects as non blocked we used the information of which objects are

in each bin. When a successful pick occurred from a bin, all the blocked objects in that bin

48

were marked as unblocked. As a result the grasp planner spent the full 20 seconds on an

impossible to grasp object only once until that object was potentially unblocked.

Smart Fast Cycle Mode

Our third and final iteration tackled the fact that we were spending 20 seconds to identify

a blocked object. Considering that an object could not become unblocked even if another

object was removed from its bin (i.e. the object was blocked by multiple objects), we were

still spending too much time attempting to grasp blocked objects. To avoid that, our third

iteration of the task planner allowed the grasp planner to sample feasible grasps and attempt

to find an IK solution to these only once. This means that for each attempt on a blocked

object it was impossible to spend all 20 seconds trying to sample valid grasps and indeed

the average failure time was significantly reduced.

5.3 Planning Without Obstacles

Initially we will execute the picking task without the Kiva pod. The objects are placed in

front of the robot as if they were in the bins of the Kiva pod, but the actual Kiva pod is

not present in the experiment. That way we can make sure that the online grasp planner

can generate grasps for all the objects and the motion planner can generate plans that will

solve the problem without the introduction of narrow passages (i.e. the bins of the Kiva

pod).

Roadmap Size: 100/30.000, Task Planner Mode: Round Robin, No Kiva Pod

The overall statistics of the experiment runs without the Kiva Pod are presented in Table

5.1. The grasp planner found valid grasps for all the objects except for the “rolodex” object.

This is expected because of the placement of that object as shown in Fig. 5.1. Although

by a small margin, we notice that the overall performance of the small roadmap is better

that the large one. This is expected since the problem without the introduction of the Kiva

Pod is not challenging for motion planning so the small size of the roadmap increases the

traversing speed of the A* algorithm and results in faster solutions. Note here that since

49

the “rolodex” object could not be picked by the vacuum end-effector so the experiment was

manually stopped after the rest of the objects were removed from the Kiva Pod.

Table 5.1: Planning statistics - Picking Task - No Kiva Pod

Task
Planner
Mode

Roadmap
Size

Total
Picks

First/Last
Pick
(sec)

Avg
Failure
Time
(sec)

Avg
Success
Time
(sec)

Avg
Plan-
ning
Time
(sec)

Avg
Solution
Quality
(sec)

Total
Time
(sec)

RR 100 14/15 5/174 20.094 2.292 6.248 5.892 194.981

RR 30.000 14/15 7/192 20.089 2.780 6.627 6.698 213.070

5.4 Introducing Obstacles

5.4.1 Picking Task

We will now introduce the Kiva Pod to our experiment. Table 5.2 shows the overall per-

formance of the system during the experiments with the 3 modes of the Task Planned and

the 2 different sizes of roadmaps.

Table 5.2: Planning statistics - Picking Task

Task
Planner
Mode

Roadmap
Size

Total
Picks

First/Last
Pick
(sec)

Avg
Failure
Time
(sec)

Avg
Success
Time
(sec)

Avg
Plan-
ning
Time
(sec)

Avg
Solution
Quality
(sec)

Total
Time
(sec)

RR 100 11/15 43/782 10.783 2.417 9.588 14.476 897.518

RR 30.000 12/15 39/607 18.014 3.228 14.602 10.613 886.668

Smart 100 12/15 59/783 3.690 2.238 3.603 12.913 891.907

Smart 30.000 14/15 39/574 14.460 4.102 10.644 12.149 574.534

Smart-FC 100 12/15 30/325 2.645 2.406 2.633 16.388 885.550

Smart-FC 30.000 14/15 38/468 11.350 5.462 8.852 12.629 468.925

Overall Evaluation

From the planning statistics presented in Table 5.2 we notice that the only cases we removed

all possible objects (all but the “rolodex” object) from the Kiva Pod was when we used the

50

smart and smart-FC modes of the task planner along with the large 30.000 node roadmap.

The smart task planner solved the task in 574 seconds while the smart-FC task planner

required only 469 seconds. We also notice the big average failure time when the round robin

mode is used, and confirm that the implementation of the 2 other modes of the task planner

was necessary to solve the task.

The quality of solutions was generally better when the large roadmap was used which

is expected since using a small roadmap leaves a big part of the motion planning to the

local planner which can come up with unnecessary motions in the workspace of the manip-

ulator. The difference between the average solution quality when using the small roadmap

in the cases of the smart and smart-FC task planner modes, can also be explained by the

inconsistency of the local planner.

On the other hand, the failure, success and average planning times were significantly

smaller in the cases we used the small roadmap. Specifically in the failure cases, the search

in the small roadmap takes a lot less time compared to the case we have to search 30.000

nodes to declare failure. Failing fast for an object allows us to try more objects in the same

amount of time, giving us the opportunity to remove an object that is easier to pick and

making the overall task easier to solve. It is worth going into detail and see what happened

in the other runs as we will discover some interesting findings In the following sections we

will try to interpret the statistics we gathered from the combination of the different modes

and different sizes of the roadmap.

Grasp Planning Evaluation

As shown in Figures A.7, A.8, A.13, A.14, A.19, A.20 the grasp planner comes up with

significantly less grasps compared to the experiments run without the Kiva Pod (Figures

A.1, A.2,). This happens because the majority of the sampled grasps are invalidated due

to collisions with the Kiva Pod and/or other objects. The number of feasible/valid grasps

shown in the aforementioned figures refer to the last attempt of each object during the

experiment. We also notice that once again we get no valid grasps for the “rolodex” object.

Generally the performance of the grasp planner is consistent between the experiments with

some fluctuation depending on the order of the objects that were removed from the Kiva

51

Pod.

Motion Planning Evaluation

The first thing we notice is the large average failure times in the case of the round robin

mode of the task planner. As mentioned in Section 5.2, when using the round robin mode

we allow a specific time to the grasp and the motion planner for each attempt. Even if the

object is blocked and no valid grasps are returned, the planning pipeline will keep trying to

come up with valid grasps. Moving to the the smart mode we notice that the average failure

time is significantly reduced by 65% in the case of the small roadmap and 20% in the case

of the large roadmap. That reduction in the average failure time is due to the fact that we

no longer try to plan for blocked objects since we can identify and skip them until another

object is removed from the same bin. This means that in the case of failure most of the time

was spent trying to come up with a valid motion plan for a valid grasp rather than trying

to find a valid grasp for a blocked object. We further improve the average failure time by

an additional 30% and 27% for the small and large roadmap respectively when using the

smart-FC mode of the task planner. In both cases we also notice an improvement in the

average planning time which is natural since the average planning time metric is affected

directly by the average failure time.

Focusing on the first picked object timestamp of Table 5.2 we notice that although the

timestamps when using the large roadmaps are consistent, that is not the case when using

the small ones. That can be explained from the fact that the local planner that is used more

in the case of the small roadmap is more susceptible to fail and additionally the quality of

the resulting motion plan can be significantly worse. An interesting fact when looking at

the last picked object timestamps in the case of the smart-FC task planner is that when

using the small roadmap the last successful pick took place 325 seconds after the beginning

of the experiment. The remaining 575 seconds were used to try and plan for an object

that was difficult for the local planner to solve. Fact that can be validated when looking at

Figure A.23. The 2 remaining objects in the Kiva Pod are the “I am a bunny book” and the

“laugh out loud joke book”. The task planner correctly marked the latter as blocked and

failed 216 times to pick the “I am a bunny book” from bin for a total of 562 seconds. This

52

is an indication that the overall performance can be improved by combining 2 roadmaps of

different size in a single experiment. That way we can take advantage of the fast planning

times of a small roadmap and pick as many objects we can as fast as possible and when we

start to get many failures for a specific object, load the large roadmap and try to pick the

more challenging objects. Comparing the Figures A.23 and A.24 we notice that until the

12th pick the small roadmap outperforms the large one. Similar are the observations when

comparing the experiments ran with the smart mode of the task planner (Figures A.17 and

A.18).

We note the importance of reducing the planning time as much as possible, since we

want to allow the Pose Estimation software as much time as possible in order to get an as

accurate as possible estimation of the objects.

5.4.2 Stowing Task

Moving to the stowing task, we present the results of the experiments in Table 5.3. Fig.

5.2 shows the placement of the objects in the tote. Notice that because of the placement

Figure 5.2: Initial placement of the objects in the tote for the stowing task.

of the “rolodex” we now expect to be able to grasp it with the vacuum end-effector used.

The experiments performed for the picking task showed that the best performing mode of

the task planner is the smart-FC which is the one used during the stowing experiment.

53

Table 5.3: Planning statistics - Stowing Task

Task
Planner
Mode

Roadmap
Size

Total
Picks

First/Last
Pick
(sec)

Avg
Failure
Time
(sec)

Avg
Success
Time
(sec)

Avg
Plan-
ning
Time
(sec)

Avg
Solution
Quality
(sec)

Total
Time
(sec)

Smart-FC 100 15/15 18/298 2.672 2.734 2.691 10.918 298.346

Smart-FC 30.000 15/15 14/258 3.153 3.977 3.528 9.453 258.225

Overall Evaluation

The task was completed when using both the small and the large roadmap. Overall, both of

the roadmaps performed similarly as shown in Figures A.27, A.28, A.29 and A.30. Similarly

to the picking task, the average failure success and overall planning times reported when

using the small are better than the ones reported when using the large roadmap but only

slightly. The overall time, although, is 40 seconds faster in the case of the large roadmap.

This can be explained from the fact that the small roadmap failed more times when motion

planning as well as from the fact that the average quality of the motion plans was worse

compared to the large roadmap’s.

Grasp Planning Evaluation

Comparing the Figures A.25 and A.26 we can see that the grasp planner is consistent since

the number of valid grasps for each object in both cases are similar.

Motion Planning Evaluation

When using the small roadmap, the average failure, success and planning times are consis-

tent with the picking task. That is not the case though when using the large roadmap. We

notice that the reported times are 60% better compared to the times of the picking task.

That can be explained if we consider that removing an object from the tote is an easier

planning problem compared to removing an object from a bin since the bin is significantly

smaller. Although, since our experiments included only removing objects from the tote and

not placing them inside the Kiva Pod, we expect that when the complete stowing task is

attempted the times will be closer to the ones reported during the picking task.

54

Chapter 6

Conclusion and Future Improvements

6.1 Re-Evaluate the System with Online Pose Estimation

The results presented in the previous chapters use the assumption that the objects’ pose is

already known. In the real Amazon Robotics Challenge though, each team had to estimate

the pose of each object in real time with a pose estimation. The estimation of the pose is

a procedure that takes time and the actual estimation is susceptible to noise. As a result,

even if the planning pipeline comes up with a collision free plan to the estimated pose,

the end-effector might fail to grasp it. To recover from failed grasps like that, online grasp

validation might be employed as well as visual servoing with a small camera mounted on

the end-effector to assist in grasping. It is worth mentioning a real world problem we faced

during the execution of some preliminary experiments including pose estimation. There

were cases that the end-effector was almost touching the object but could not grasp it due

to small errors in pose estimation. For that reason we introduced the push control described

in Section 3.6 that will move the end-effector 2cm towards the direction of the object in

order to compensate for that error.

6.2 Introduce Rearrangement

In some cases the target object might be inaccessible due to other objects. In that case,

the task planner with the assistance of the pose estimation software should include logic

that will command the planning pipeline to remove the occluding objects and place them

in different bin of the shelf in order to access the target object. The implementation to this

is not trivial and is very dependent in pose estimation. In order to address this issue many

questions have to be answered like, where is the best position to place the occluding objects

55

so that no more target objects are occluded. Implementing rearrangement logic adds an

additional layer of complexity to the system since in order to grasp a target object more

than one collision free plan must be found be the planning pipeline.

6.3 Discovering Available Bin Space

The stowing task results presented in the previous chapters only included the part of remov-

ing all the objects from the tote. The next step in order to complete the task is actually

place them in the Kiva pod. Completing this task can be a challenge, especially if the

Kiva pod already contains other objects. In cooperation with the pose estimation software

a logic must be implemented to discover available space in the bins in order to place the

objects from the tote. The same logic can also be used with the rearrangement procedure

discussed in the previous section. It is worth mentioning that during the Amazon Robotics

Challenge, placements of objects inside bins with more items awarded more points. This

suggests that feedback planning might provide better as opposed to collision free motion

planning. This means that the manipulator will try to push the target object slowly inside

a bin with objects without checking for collision free paths as long as the feedback sensors

report resistance forces below certain thresholds.

6.4 Defining Object Preference

By analysing the experimental evaluation of the previous chapters, we notice that the success

ratio of the planning pipeline was higher for specific objects. This information should be

included and a high level logic should be implemented that will give priority to those objects.

Removing objects from the Kiva pod makes the problem easier and less constraint for the

objects remaining. Furthermore, the rules of the Amazon Robotics Challenge, in case of

a draw between 2 teams, give the advantage to the team that removed their first target

object faster.

56

6.5 Switching Between Different Roadmaps

The proposed system at the time of evaluation did not have the ability to load more than

one roadmaps. The roadmap that was chosen in the beginning of the experiment was the

one that was going to be used during the experiment. From the experimental evaluation

of the system we observe that roadmaps with different size perform better on different

circumstances. For example it would beneficial time-wise to initially use a small roadmap

since the time required to come up with a collision free solution as well as the average time

required to fail is considerably lower compared to the one of a big roadmap. That way all

the objects that are not a challenge to plan to will be removed from the scene, leaving the

most challenging to attempt with a bigger roadmap.

6.6 Future Gripper Designs

Choosing the correct end-effector for the task is one of the most important choices that

have to be made in every manipulation problem. The software and the planning pipeline

will greatly benefit from an end-effector that is easy to plan for. We showed that for narrow

passage problems like the Amazon Robotics Challenge, a vacuum end-effector attached

to a long shaft has the best performance compared to a bulky hand shaped end-effector.

Although there are object with specific texture, like the “rolodex” that a vacuum end

effectors is almost impossible to grasp.

We are currently working on a new version of Unigripper solution with suction cups (Fig.

2.2(c)). We are experimenting with 10mm diameter suction cups (versus the old 35mm cups)

and the results are promising. While lifting force is reduced it still seems sufficient for the

heavier objects in our set. The smaller cup size will result in less vacuum leaks and will

allow for much smaller overall size, making planning easier. We are also working on several

soft-robotics inspired grippers [44], which will be able to provide robust grasps and handle

collisions without getting damaged or damaging the objects or the environment. This will

allow us to run learning algorithms with minimal supervision.

57

Appendix A

Detailed Statistics

58

A.1 Without the Kiva Pod

139

355

131

207

30

90

200
176

39

150

210

143

205

444

0

510 500 500 500 500 500 510 510 500 490
510 500 500 500

172

Valid Grasps Pheasible Grasps

Figure A.1: Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: RR

141

340

177
203

40

119

209
171

40

195 196
169

188

449

0

510 500 500 500 500 500 510 510 500 490
510 500 500 500

172

Valid Grasps Pheasible Grasps

Figure A.2: Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: RR

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14

5.21589303

32.25117993

59.5387857

66.96543288

85.42648029

94.65267634

100.7503111

106.6994314

136.4546046

146.4562516

154.4412019

162.5213742

169.2207441

174.848316

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Picking
Roadmap Size: 100
Identify Blocked Objects: OFF
Skip on Grasp Planner Failure: OFF

Figure A.3: Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: RR

1 2 3 4 5 6 7 8 9 10 11 12 13 14

7.915119886

36.12240982

65.50326729

75.54998994

85.68553829

93.6886096

103.9710686

112.007256

144.690381

155.7823331

165.723176

176.6394851

185.4687812

192.9377906

Ti
m

e
(S

ec
o

n
d

s)

Number of Objects Picked

Task: Picking
Roadmap Size: 30.000
Identify Blocked Objects: OFF
Skip on Grasp Planner Failure: OFF

Figure A.4: Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: RR

60

expo_dry_erase_board_eraser

up_glucose_bottle

kleenex_tissue_box

elmers_washable_no_run_school_glue

command_hooks

scotch_duct_tape

i_am_a_bunny_book

soft_white_lightbulb

clorox_utility_brush

folgers_classic_roast_coffee

laugh_out_loud_joke_book

dasani_water_bottle

crayola_24_ct

dove_beauty_bar

rolodex_jumbo_pencil_cup

0

0

0

0

0

0

0

0

0

0

0

0

1

1

2

2.089599133

2.154107571

2.195893049

2.266647339

2.286195993

2.29763484

2.307500362

2.309120178

2.324950457

2.341647148

2.381047487

2.460172415

22.34107018

22.44505739

40.28070259

Time Spent Planning Failures

Figure A.5: Time Spent per Object. Roadmap Size: 100, Task Planner Mode: RR

kleenex_tissue_box

command_hooks

folgers_classic_roast_coffee

i_am_a_bunny_book

laugh_out_loud_joke_book

scotch_duct_tape

elmers_washable_no_run_school_glue

up_glucose_bottle

expo_dry_erase_board_eraser

clorox_utility_brush

soft_white_lightbulb

dasani_water_bottle

dove_beauty_bar

crayola_24_ct

rolodex_jumbo_pencil_cup

0

0

0

0

0

0

0

0

0

0

0

0

1

1

2

2.375119925

2.463071346

2.631952047

2.635452747

2.715548277

2.76245904

2.82672286

2.849916458

2.86061883

2.880842924

2.936187506

2.976309061

22.91596699

23.17995024

40.28070259

Time Spent Planning Failures

Figure A.6: Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: RR

61

A.2 With the Kiva Pod

Task: Picking, Task Planner Mode: Round Robin

32 34
72

96

46

100

167

127 122

14

119

50
17 20

0

500 500 500 510 510 500 500 510 510 500 490 500 500 500

122

Valid Grasps Pheasible Grasps

Figure A.7: Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: RR

44 46

87
49

80
62

223

120

27
44

93
117

11 0 0

500 500 500 510
490 500 500 510 500 510 500 510 500

397

248

Valid Grasps Pheasible Grasps

Figure A.8: Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: RR

62

1 2 3 4 5 6 7 8 9 10 11

43.10804498

72.77192748

101.6715506

133.9833108

160.1947111

243.2928067
255.862193

321.0746886

358.0692025

771.2550515
782.9552244

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Picking
Roadmap Size: 100
Identify Blocked Objects: OFF
Skip on Grasp Planner Failure: OFF

Figure A.9: Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: RR

1 2 3 4 5 6 7 8 9 10 11 12

39.30846941

73.66069543
91.5700897

147.2134804

216.3909086

252.1334027

299.1245996

402.2173246

466.7809113
475.9295787

529.9183987

607.4129132

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Picking
Roadmap Size: 30.000
Identify Blocked Objects: OFF
Skip on Grasp Planner Failure: OFF

Figure A.10: Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: RR

63

up_glucose_bottle

expo_dry_erase_board_eraser

scotch_duct_tape

soft_white_lightbulb

elmers_washable_no_run_school_glue

clorox_utility_brush

kleenex_tissue_box

crayola_24_ct

dove_beauty_bar

folgers_classic_roast_coffee

command_hooks

i_am_a_bunny_book

dasani_water_bottle

laugh_out_loud_joke_book

rolodex_jumbo_pencil_cup

0

0

0

0

0

1

2

1

1

7

12

7

11

12

12

1.821264982

1.899975657

2.019205332

3.271399736

3.519623995

6.868321657

9.222299099

21.79200339

22.24202728

26.43069959

35.32209802

39.21422029

152.4274468

170.8041623

241.4242344

Time Spent Planning Failures

Figure A.11: Time Spent per Object. Roadmap Size: 100, Task Planner Mode: RR

expo_dry_erase_board_eraser

folgers_classic_roast_coffee

up_glucose_bottle

scotch_duct_tape

dasani_water_bottle

elmers_washable_no_run_school_glue

clorox_utility_brush

crayola_24_ct

soft_white_lightbulb

kleenex_tissue_box

command_hooks

dove_beauty_bar

i_am_a_bunny_book

laugh_out_loud_joke_book

rolodex_jumbo_pencil_cup

0

0

0

0

0

0

1

1

2

4

2

3

9

9

9

1.722497106

2.154932022

2.18727088

2.417116165

4.150305271

6.409394264

20.21946454

23.65737176

36.18965435

42.3138485

42.90059519

62.56997204

150.7531247

180.6189995

181.0434132

Time Spent Planning Failures

Figure A.12: Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: RR

64

Task: Picking, Task Planner Mode: Smart

55 62
82

130
146

39

113
77

113

27

117

32
8 0 0

500 510
490

510 500 510 500 500 500 500 510 500 500

375

257

Valid Grasps Pheasible Grasps

Figure A.13: Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: Smart

64

123

21

78 92 78

150

61 51 51
87

115

12 16
0

500 500 500 510
490

510 500 500 500 510 500 510 500 500

188

Valid Grasps Pheasible Grasps

Figure A.14: Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: Smart

65

1 2 3 4 5 6 7 8 9 10 11 12

59.21943188

115.5627592

170.3141935
183.3469729

212.3750278

290.6598302
300.6271654

321.3805728
340.6754563

482.2872536

745.2480161

783.6709344

Ti
m

e(
Se

co
n

d
s)

Number of Picked Objects

Task: Picking
Roadmap Size: 100
Identify Blocked Objects: ON
Skip on Grasp Planner Failure: OFF

Figure A.15: Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: Smart

1 2 3 4 5 6 7 8 9 10 11 12 13 14

39.38279653

72.64270329

106.5764165
118.919647

183.2067151
197.81183

237.6258342
249.9036305

315.8906293

336.2327895
349.5093858

464.4748204

555.1765358

574.5339754

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Picking
Roadmap Size: 30.000
Identify Blocked Objects: ON
Skip on Grasp Planner Failure: OFF

Figure A.16: Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: Smart

66

up_glucose_bottle

folgers_classic_roast_coffee

scotch_duct_tape

clorox_utility_brush

soft_white_lightbulb

expo_dry_erase_board_eraser

rolodex_jumbo_pencil_cup

crayola_24_ct

dove_beauty_bar

elmers_washable_no_run_school_glue

laugh_out_loud_joke_book

command_hooks

dasani_water_bottle

kleenex_tissue_box

i_am_a_bunny_book

0

0

0

0

3

4

1

1

1

3

2

14

42

39

77

1.997313023

2.082703352

2.111783981

2.252779722

11.81201768

14.02312863

20.09770393

21.71911204

22.30072355

29.62715411

40.22772789

44.4422915

128.9509666

152.9688177

222.3334794

Time Spent Planning Failures

Figure A.17: Time Spent per Object. Roadmap Size: 100, Task Planner Mode: Smart

kleenex_tissue_box

dove_beauty_bar

expo_dry_erase_board_eraser

crayola_24_ct

up_glucose_bottle

elmers_washable_no_run_school_glue

laugh_out_loud_joke_book

command_hooks

scotch_duct_tape

soft_white_lightbulb

rolodex_jumbo_pencil_cup

i_am_a_bunny_book

folgers_classic_roast_coffee

clorox_utility_brush

dasani_water_bottle

0

0

0

0

0

0

1

2

1

1

1

1

2

6

9

2.303230524

2.414653063

2.462568045

2.670286894

2.815883875

3.225114822

4.343432188

15.60677028

20.11049271

22.31287169

22.48398709

28.47946262

44.53701258

48.61094141

182.0772667

Time Spent Planning Failures

Figure A.18: Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: Smart

67

Task: Picking, Task Planner Mode: Smart Fast Cycle

57

10

94

52

161

107
81

37

84 72

16
35

16
0 0

500 500 500 510 500 510 510 510 500 490 500 500 500 500 500

Valid Grasps Pheasible Grasps

Figure A.19: Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: SFC

58
35

91
72

153
118

138

39

105

10

91

28 31 31
0

500 500 500 510 510 510 500 510 500 500 490 500 500 500 500

Valid Grasps Pheasible Grasps

Figure A.20: Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: SFC

68

1 2 3 4 5 6 7 8 9 10 11 12

30.41461742

50.75726491

62.24744946

82.14634973

121.8239829

165.2690209

192.3336607

215.6969259

238.6091145

255.5536314

280.8850484

325.1739522

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Picking
Roadmap Size: 100
Identify Blocked Objects: ON
Skip on Grasp Planner Failure: ON

Figure A.21: Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: SFC

1 2 3 4 5 6 7 8 9 10 11 12 13 14

38.8855257

55.52939832

75.59766519

111.0520577

161.9354492

177.7855024

197.6051497

234.513823
245.4234877

333.1667461

367.5586917

423.5452945

439.8665226

468.9248612

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Picking
Roadmap Size: 30.000
Identify Blocked Objects: ON
Skip on Grasp Planner Failure: ON

Figure A.22: Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: SFC

69

rolodex_jumbo_pencil_cup

scotch_duct_tape

elmers_washable_no_run_school_glue

up_glucose_bottle

expo_dry_erase_board_eraser

crayola_24_ct

laugh_out_loud_joke_book

dove_beauty_bar

dasani_water_bottle

clorox_utility_brush

folgers_classic_roast_coffee

kleenex_tissue_box

soft_white_lightbulb

command_hooks

i_am_a_bunny_book

1

0

0

0

0

1

2

1

2

2

3

2

3

9

216

1.853436947

2.083799839

2.130184889

2.143936634

2.680552959

2.700048745

4.032892108

4.603746533

7.470196247

10.73954773

11.32471919

11.63268042

13.52021861

28.98736954

562.9871554

Time Spent Planning Failures

Figure A.23: Time Spent per Object. Roadmap Size: 100, Task Planner Mode: SFC

rolodex_jumbo_pencil_cup

up_glucose_bottle

scotch_duct_tape

dove_beauty_bar

clorox_utility_brush

crayola_24_ct

elmers_washable_no_run_school_glue

expo_dry_erase_board_eraser

kleenex_tissue_box

soft_white_lightbulb

folgers_classic_roast_coffee

laugh_out_loud_joke_book

i_am_a_bunny_book

dasani_water_bottle

command_hooks

1

0

0

1

0

1

0

0

1

1

2

3

2

4

3

1.936051011

2.172511339

2.579102516

3.817291737

5.57518959

7.351009011

9.728266716

11.26016808

15.29723001

23.14657497

26.15148616

30.40731251

36.16067553

52.66751063

63.87448215

Time Spent Planning Failures

Figure A.24: Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: SFC

70

Task: Stowing, Task Planner Mode: Smart Fast Cycle

275

200

426

379

82 79

407

119

28

117
143

329

23

103

43

500 500 500 500 500 500 500 500 500 500 500 500 500 510 510

Valid Grasps Pheasible Grasps

Figure A.25: Feasible vs Valid Grasps. Roadmap Size: 100, Task Planner Mode: SFC

303

166

446

371

74

25

116 124

395

167

352

137

13

106

15

500 500 500 500 500 500 500 500 500 500 500 500 500 510 510

Valid Grasps Pheasible Grasps

Figure A.26: Feasible vs Valid Grasps. Roadmap Size: 30.000, Task Planner Mode: SFC

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18.88617527

26.90675938

36.01825583

55.02674961

66.65437794

84.66232824

99.09526801

112.2766201

137.1108469

149.3337675

178.0697011

198.9647422

224.1848307

284.180588

298.3465309

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Stowing
Roadmap Size: 100
Identify Blocked Objects: ON
Skip on Grasp Planner Failure: ON

Figure A.27: Timestamp for each Pick. Roadmap Size: 100, Task Planner Mode: SFC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14.85987765

24.04050881
31.69251281

57.08339578

65.26606733

79.18156511

93.37610728

103.0918971

112.837411

138.8612242

155.5386205

171.3089464

193.160836

245.2375072

258.2253621

Ti
m

e(
Se

co
n

d
s)

Number of Objects Picked

Task: Stowing
Roadmap Size: 30.000
Identify Blocked Objects: ON
Skip on Grasp Planner Failure: ON

Figure A.28: Timestamp for each Pick. Roadmap Size: 30.000, Task Planner Mode: SFC

72

up_glucose_bottle

clorox_utility_brush

i_am_a_bunny_book

elmers_washable_no_run_school_glue

rolodex_jumbo_pencil_cup

crayola_24_ct

dove_beauty_bar

expo_dry_erase_board_eraser

folgers_classic_roast_coffee

dasani_water_bottle

soft_white_lightbulb

laugh_out_loud_joke_book

scotch_duct_tape

command_hooks

kleenex_tissue_box

0

0

0

0

0

0

1

1

1

1

2

4

5

3

17

2.420584202

2.506651402

2.507628441

2.511496544

2.690372705

3.155344009

3.390305758

4.691244483

5.277831793

5.751002789

6.506751895

10.7980808

12.73440099

13.3958739

56.22896194

Time Spent Planning Failures

Figure A.29: Time Spent per Object. Roadmap Size: 100, Task Planner Mode: SFC

dasani_water_bottle

i_am_a_bunny_book

up_glucose_bottle

crayola_24_ct

elmers_washable_no_run_school_glue

folgers_classic_roast_coffee

clorox_utility_brush

dove_beauty_bar

soft_white_lightbulb

command_hooks

rolodex_jumbo_pencil_cup

laugh_out_loud_joke_book

scotch_duct_tape

expo_dry_erase_board_eraser

kleenex_tissue_box

0

0

0

0

0

0

0

1

1

1

0

2

3

1

9

2.435789585

2.602671623

2.620631218

2.735147953

2.772003889

2.875497818

3.174541712

3.693655193

5.099035978

6.038617849

6.672485352

7.835902214

8.873855829

12.85569203

46.13983321

Time Spent Planning Failures

Figure A.30: Time Spent per Object. Roadmap Size: 30.000, Task Planner Mode: SFC

73

Acknowledgment of Previous Publications

[1] Zakary Littlefield, Shaojun Zhu, Hristiyan Kourtev, Zacharias Psarakis, Rahul Shome,

Andrew Kimmel, Andrew Dobson, Alberto F De Souza, and Kostas E Bekris. Evaluating

end-effector modalities for warehouse picking: A vacuum gripper vs a 3-finger underactu-

ated hand. In Automation Science and Engineering (CASE), 2016 IEEE International

Conference on, pages 11901195. IEEE, 2016.

[2] H. Kourtev, Z. Psarakis, K. E. Bekris. Evaluating End-Effector Modalities for Ware-

house Picking. In Northeast Robotics Colloquium 2016 (NERC), October 2016

[3] Z. Psarakis, H. Kourtev, A. Boularias and K.E. Bekris. Evaluating End-Effectors

and System Integration for Warehouse Picking. In 2017 Warehouse Picking Automation

Workshop 2017 (WPAW), May 2017

74

References

[1] P. R. Wurman, R. DAndrea, and M. Mountz, “Coordinating hundreds of cooperative,
autonomous vehicles in warehouses,” AI magazine, vol. 29, no. 1, p. 9, 2008.

[2] R. DAndrea, “Guest editorial: A revolution in the warehouse: A retrospective on
Kiva systems and the grand challenges ahead,” IEEE Transactions on Automation
Science and Engineering, vol. 4, no. 9, pp. 638639, 2012.

[3] P. Baker and Z. Halim, “An exploration of warehouse automation implementations:
cost, service and flexibility issues,” Supply Chain Management: An International
Journal, vol. 12, no. 2, pp. 129138, 2007.

[4] E. Guizzo. Three engineers, hundreds of robots, one warehouse. IEEE Spectrum,
45(7):26–34, July 2008.

[5] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert Causo,
Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and Peter R. Wur-
man. Lessons from the amazon picking challenge. CoRR, abs/1601.05484, 2016.

[6] Carlos Hernandez, Mukunda Bharatheesha, Wilson Ko, Hans Gaiser, Jethro Tan,
Kanter van Deurzen, Maarten de Vries, Bas Van Mil, Jeff van Egmond, Ruben Burger,
Mihai Morariu, Jihong Ju, Xander Gerrmann, Ronald Ensing, Jan van Franken-
huyzen, and Martijn Wisse. Team delft’s robot winner of the amazon picking challenge
2016. CoRR, abs/1610.05514, 2016.

[7] D. Morrison, Adam W. Tow, M. McTaggart, R. Smith, N. Kelly-Boxall, S. Wade-
McCue, J. Erskine, R. Grinover, A. Gurman, T. Hunn, D. Lee, Anton Milan, T. Pham,
G. Rallos, A. Razjigaev, T. Rowntree, K. Vijay, Z. Zhuang, Christopher F. Lehnert,
Ian D. Reid, Peter Corke, and Jürgen Leitner. Cartman: The low-cost cartesian
manipulator that won the amazon robotics challenge. CoRR, abs/1709.06283, 2017.

[8] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D. Reid. Refinenet:
Multi-path refinement networks for high-resolution semantic segmentation. CoRR,
abs/1611.06612, 2016.

[9] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada,
A. Rodriguez, J. M. Romano, P. R. Wurman. “Lessons from the Amazon Pick-
ing Challenge,” IEEE Transactions on Automation Science and Engineering. Also
in arXiv:1601.05484 [cs.RO], 2016.

[10] Z. Littlefield, Shaojun Zhu, H. Kourtev, Z. Psarakis, R. Shome, A. Kimmel, A. Dob-
son, A. F. De Souza, and K. E. Bekris. Evaluating end-effector modalities for ware-
house picking: A vacuum gripper vs a 3-finger underactuated hand. In 2016 IEEE In-
ternational Conference on Automation Science and Engineering (CASE), pages 1190–
1195, Aug 2016.

75

[11] Z. Psarakis, H. Kourtev, A. Boularias and K. E. Bekris. Evaluating End-Effectors and
System Integration for Warehouse Picking. In 2017 Warehouse Picking Automation
Workshop 2017 (WPAW), May 2017

[12] Lael U. Odhner, Leif P. Jentoft, Mark R. Claffee, Nicholas Corson, Yaroslav Tenzer,
Raymond R. Ma, Martin Buehler, Robert Kohout, Robert D. Howe, and Aaron M.
Dollar “A Compliant, Underactuated Hand for Robust Manipulation,” International
Journal of Robotics Research, vol. 33(5), pp. 736-752, 2014.

[13] A. Rocchi, B. Ames, J. Li, and K. Hauser. “Stable Simulation of Underactuated
Compliant Hands,” IEEE Int’l. Conf. on Robotics and Automation (ICRA), 2016.

[14] R. Paolini, A. Rodriguez, S. Srinivasa, and M. T. Mason “A Data-Driven Statisti-
cal Framework for Post-Grasp Manipulation,” The International Journal of Robotics
Research (IJRR), Vol. 33, No. 4, April, 2014, pp. 600-615.

[15] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pp. 14, IEEE, 2011.

[16] “G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV
library,” OReilly Media, Inc., 2008.

[17] R. C. Willow Garage, “ORK: Object Recognition Kitchen,” https:// github.com/wg-
perception/object recognition core.

[18] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, “Simultaneous detection and
segmentation,” European Conference on Computer Vision (ECCV), 2014.

[19] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit,
“Gradient Response Maps for Real-Time Detection of Texture-Less Objects,” IEEE
Transactions on Pattern Analysis and Maschine Intelligence (TPAMI), vol. 34, no. 5,
pp. 876888, 2012.

[20] R. c. Willow Garage, “Ecto a c++/python computation graph framework,”
http://plasmodic.github.io/ecto/.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning
in python,” The Journal of Machine Learning Research, vol. 12, pp. 28252830, 2011.

[22] Rennie, C., R. Shome, KE Bekris, and Ferreira A. De Souza. 2016. “A Dataset For
Improved Rgbd-Based Object Detection And Pose Estimation For Warehouse Pick-
And-Place,” IEEE Robotics and Automation Letters (RA-L) [Also accepted to appear
at the 2016 IEEE International Conference on Robotics and Automation (ICRA)] 1(2):
1179 - 1185.

[23] Pauwels, Karl and Kragic, Danica “SimTrack: A Simulation-based Framework for
Scalable Real-time Object Pose Detection and Tracking,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, Hamburg, Germany, 2015.

[24] C. Mitash, K. E. Bekris, A. Boularias, “A Self-supervised Learning System for Object
Detection using Physics Simulation and Multi-view Pose Estimation,” arXiv preprint
arXiv:1703.03347 , 2017

76

[25] Leitner J, Frank M, Forster A, Schmidhuber J, “Reactive reaching and grasping on a
humanoid: Towards closing the action-perception loop on the iCub,” Proceedings of
the 2014 11th International Conference on Informatics in Control, Automation and
Robotics (ICINCO), Volume 1 p102-109, 2014.

[26] A. Bicchi and V. Kumar, “Robotic Grasping and Contact: A Review,” in ICRA, 2000.

[27] A. Sahbani, S. El-Khoury, and P. Bidaud, “An Overview of 3D Object Grasp Synthesis
Algorithms,” RAS, vol. 60, no. 3, pp. 326336, 2012.

[28] P. Beeson and B. Ames, “TRAC-IK: An open-source library for improved solving of
generic inverse kinematics,” HUMANOIDS, Seoul, Korea, November 2015.

[29] A. Miller and P. Allen, “GraspIt!: A Versatile Simulator for Robotic Grasping,” IEEE
RAM, vol. 11, no. 4, pp. 110122, 2004.

[30] A. Miller and P. Allen. GraspIt!: A Versatile Simulator for Robotic Grasping. IEEE
RAM, 11(4):110–122, 2004.

[31] M. Ciocarlie and P. Allen. A Design and Analysis Tool for Underactuated Compliant
Hands. In IROS, 2009.

[32] M. Roa and R. Surez. Grasp Quality Measures: Review and Performance. Au-
tonomous Robots, 38:65–88, 2015.

[33] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka. Human-
guided Grasp Measures Improve Grasp Robustness on Physical Robot. In ICRA,
2010.

[34] Z. Li and S. S. Sastry. Task-oriented Optimal Grasping by Multi-fingered Robot
Hands. In Journal of Robotics and Automation, pages 32–44, 1988.

[35] C. Ferrari and J. Canny. Planning Optimal Grasps. In ICRA, 1992.

[36] S. Liu and S. Carpin. A Fast Algorithm for Grasp Quality Evaluation Using the
Object Wrench Space. In CASE, 2015.

[37] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of
complex robotic software: a moveit! case-study,” Journal of Software Engineering in
Robotics, Special issue on Best Practice in Robot Software Development, vol. 5, no.
1, pp. 316, 2014.

[38] R. Diankov and J. Kuffner, “Openrave: A planning architecture for autonomous
robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, vol. 79,
2008.

[39] R. Tedrake, “Drake: A planning, control, and analysis toolbox for nonlinear dynamical
systems,” 2014.

[40] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally
optimal, collision-free trajectories with sequential convex optimization,” Robotics:
Science and Systems, vol. 9, pp. 110, Citeseer, 2013.

77

[41] Kimmel, A, A Dobson, Z Littlefield, A Krontiris, J Marble, and KE Bekris. 2012.
“Pracsys: An Extensible Architecture For Composing Motion Controllers And Plan-
ners,” Simulation, Modeling and Programming for Autonomous Robots (SIMPAR),
Tsukuba, Japan.

[42] Littlefield, Z, A Krontiris, A Kimmel, A Dobson, R. Shome, and KE Bekris. 2014.
“An Extensible Software Architecture For Composing Motion And Task Planners,”
International Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), Bergamo, Italy.

[43] S. Kumar and L. Behera, “Implementation of a neural network based visual motor
control algorithm for a 7 DOF redundant manipulator,” World congress on computa-
tional intelligence (WCCI), Hong Kong, June 1- 6, 2008.

[44] H. Kourtev, 2018. “A robust soft and vacuum hybrid end-effector and
compliant arm for picking in clutter.”, M.S. Thesis, Rutgers University,
https://rucore.libraries.rutgers.edu/rutgers-lib/56044/

