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Yi-Zhi Huang

In this dissertation we systematically study the meromorphic open-string vertex alge-

bra, its representation theory, and its the cohomology theory. Meromorphic open-string

vertex algebra (MOSVA hereafter) is a natural noncommutative generalization of ver-

tex algebra. It is the algebraic structure of vertex operators satisfying associativity,

but not necessarily commutativity. We review the axiomatic system of MOSVA and its

left modules given by Huang and give the definition of right modules and bimodules.

We prove that the rationality of iterates follows from the axioms. We introduce a pole-

order condition which is used to simplify the axiomatic system and give a formulation

by series with formal variables. We introduce the skew-symmetry operator, define the

opposite MOSVA analogous to the opposite algebra of an associative algebra, and study

the relation between modules for a MOSVA and modules for the opposite MOSVA. We

consider the Möbius structure on MOSVA and its modules, and prove that the contrage-

dient of a module with Möbius structure is also a module. We compute an example of

MOSVA that is constructed from the two-dimensional sphere. We use rational function

taking values in the algebraic completion to develop cohomology theory of MOSVA and

ii



its bimodules. We prove that the first cohomology of a MOSVA is isomorphic to the set

of outer derivations. We prove also that if a MOSVA has vanishing first cohomology for

every bimodule, then the its left modules of finite length and satisfying a composability

condition is completely reducible.
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Chapter 1

Introduction

Vertex (operator) algebras are algebraic structures formed by (meromorphic) vertex op-

erators. In mathematics, they arose naturally in the study of representations of infinite-

dimensional Lie algebras and the Monster group (see [FLM] and [B]). In physics, they

arose in the study of two-dimensional conformal field theory (2d CFT hereafter, see

[BPZ] and [MS]). One of the most important properties of the vertex operators for a

vertex (operator) algebra is the commutativity, which plays an important role in the

study of these algebras and their representation theory. Mathematically, the commu-

tativity, especially the equivalent commutator formula, makes it possible to use the

Lie-theoretic methods to study vertex (operator) algebras and modules. Many results

are proved based on the commutativity. In physical terms, vertex operators for a ver-

tex (operator) algebra or a module correspond to fields of a special kind: meromorphic

fields. The commutativity of vertex operators is closely related to the locality of mero-

morphic fields in two-dimensional conformal field theory. This commutativity is one

of the most important reasons for the success of the mathematical construction of 2d

CFT using the vertex (operator) algebras, its modules and the intertwining operators

among the modules.

However, if we want to use vertex-algebraic methods to study quantum field theories

in general, the commutativity might not hold even for meromorphic fields. One impor-

tant class of quantum field theories is the nonlinear σ-model with the target manifold

being a Riemannian manifold. If we want to realize certain differential operators on the

manifold as components of some vertex operators, then these vertex operators cannot

be commutative.

On the other hand, vertex (operator) algebras also have associativity, which is even
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more fundamental. In physical terms, associativity of vertex operators can be viewed as

a strong form of the operator product expansion (OPE hereafter) of meromorphic fields.

And the OPE of fields is expected to hold for all quantum field theories. This is one of

the motivations for studying algebraic structures of suitable vertex operators that have

associativity but not necessarily commutativity. In 2003, Huang and Kong introduced

and constructed open-string vertex algebras in [HK]. In 2012, Huang introduced the

notion of meromorphic open-string vertex algebras in [H3], a special case of open-string

vertex algebra for which the correlation functions are rational functions.

Our motivation of studying meromorphic open-string vertex algebras (MOSVAs

hereafter) are the following: first, just as vertex (operators) algebras can be viewed as

analogues of commutative associative algebras, MOSVAs can be viewed as analogues

of associative algebras that are not necessarily commutative. In particular, all vertex

(operator) algebras are MOSVAs. So all the results for MOSVA also hold for vertex

(operator) algebras. Since all correlation functions are rational functions, it is easier

to deal with issues related to convergence and analytic extensions for MOSVAs than

general open-string vertex algebras.

In 2012, Huang also constructed an example of MOSVA using parallel sections

of tensor products of tangent bundles on any fixed Riemannian manifold (see [H4]).

More importantly, Huang constructed modules generated by eigenfunctions of Laplacian

operator. In physics, the eigenfunctions correspond to quantum states of a particle,

which can be viewed as a degenerated form of a string. Elements of the MOSVAmodules

generated by eigenfunctions can be viewed as suitable string-theoretic excitations of

the particle states. It is Huang’s idea that the MOSVAs constructed from Riemannian

manifolds, together with modules generated by Laplacian eigenfunctions and the still-

to-be-defined intertwining operators among these modules may lead to a mathematical

construction of the quantum two-dimensional nonlinear σ-model. Huang also hopes

that this will shed lights on the four-dimensional Yang-Mills theory, which, though

much more difficult, is indeed analogous to the two-dimensional nonlinear σ-model

whose target manifold is a Lie group.

Another motivation for studying MOSVA is brought by the progress of developing
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cohomological methods. In the representation theory of various algebras, one of the

main tools is the cohomological method. The powerful tool of homological algebra often

provides a unified treatment of many results in representation theory. Such a unified

treatment not only gives solutions to open problems, but also provides a conceptual

understanding of the results. Here we shall particular mention the following results

in associative algebras. Let A be an associative algebra. For an A-bimodule M , we

use Ĥn(A,M) to denote the n-th Hochschild cohomology of A with coefficients in M .

When A is commutative and M is a module (viewed as A-bimodule with the left and

right A-module structures to be both the one from the original A-module structure),

we use Hn(A,M) to denote the the n-th Harrison cohomology of A with coefficients in

M .

1. The first Hochschild cohomology Ĥ1(A,M) is isomorphic to the quotient of the

space of derivations from A to M by the space of inner derivations from A to M .

When A is commutative, the first Harrison cohomology H1(A,M) is isomorphic

to the space of derivations from A to M .

2. The second Hochschild cohomology Ĥ2(A,A) is in one-to-one correspondence with

the set of first-order deformations of A. When A is commutative, the second

Harrison cohomology H2(A,A) is in one-to-one correspondence with the set of

the first-order deformations of A.

3. All the leftA-modules are completely reducible if and only if for everyA-bimodules

B and every n ∈ Z+, the Hochschild cohomology Ĥn(A,B) = 0.

In [H1], Huang introduced the cohomology of a grading-restricted vertex algebra. As

vertex algebras can be viewed as an analogue to commutative associative algebras, the

cohomology introduced in [H1] can be viewed as an analogue of Harrison cohomology.

In [H2], using the cohomology established in [H1], Huang established the analogues of

the results (1) and (2) for a grading-restricted vertex algebra V and grading-restricted

V -modules. To define this cohomology, Huang introduced a larger complex in [H1]

such that the complex for the grading-restricted vertex algebra is a subcomplex, just as
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the Harrison complex is a subcomplex of the Hochschild complex for the commutative

associative algebra. In particular, the larger complex can be viewed as the analogue

of the Hochschild complex. But this complex was defined in [H1] only for a grading-

restricted vertex algebra.

In the dissertation, we give the definition of this larger complex for meromorphic

open-string vertex algebras V and V -bimodules W that are not necessarily grading-

restricted but satisfy the pole-order condition. Using the cohomology of this larger

complex, we can establish the analogues of results (1), (2) and (3). The results (1) and

(3) will be presented in this dissertation. The result (2) will be presented in the future

paper [Q4]. Since a vertex algebra is also a special kind of MOSVA, all these results

above also applies to vertex algebra.

The dissertation is organized as follows:

Chapter 2 focus on the study of the MOSVA. We recall the definitions of a MOSVA

V in [H3] and discuss the following topics for a MOSVA V : the V -valued map in-

terpretation of vertex operators; the rationality of products of any numbers of vertex

operators implies the rationality of iterates of any numbers of vertex operators; the

pole-order condition, together with rationality of products and iterates of two vertex

operators and other axioms, implies the rationality of any numbers of vertex operators;

the formal variable formulation of MOSVA with the pole-order condition; the opposite

MOSVA V op of a MOSVA V . Many of the results in this chapter relies on the technique

of analytic continuation of functions with several complex variables. We also gave an

exposition section to these lemmas.

Chapter 3 focus on the study of modules for a MOSVA V . We recall the definition

of left V -modules in [H3] and define right V -modules and V -bimodules. Aside from

the discussion of the topics in Chapter 2 under the context of left V -modules, right

V -modules and V -bimodules, we also discuss the following topics: the relation between

V -modules and V op-modules; compatibility condition of a V -bimodule W in terms of

the left vertex operator Y L
W and the skew-symmetry operator Y

s(R)
W of the right vertex

operator Y R
W ; Möbius structure on MOSVAs and modules; Contragredient of a Möbius

V -module is also a Möbius V -module.
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Chapter 4 computes an example of MOSVA constructed from parallel sections of

the tensors of tangent bundle of the 2-dimensional sphere. Some exposition is given on

the geometric backgrounds. Due to the limitation of time, we have not discussed the

result for general n-dimensional spheres. Nor have we discussed the modules generated

by the Laplacian eigenfunctions. These important topics will have to wait for future

work.

Chapter 5 establishes the cohomology theory for MOSVAs and bimodules. For

a MOSVA V and a V -bimodule W =
⨿
n∈C

W[n], we discuss W -valued rational func-

tions, where W =
∏
n∈C

W[n] is the algebraic completion of W . We also study series of

W -valued rational functions and prove that the associativity (of Y L
W and of Y

s(R)
W ) and

commutativity (of Y L
W and Y

s(R)
W ) hold when acting on W -valued rational functions sat-

isfying certain convergence conditions. Then we use the linear maps from V ⊗n to the

space of W -valued rational function that satisfy d-conjugation properties, D-derivative

properties and composable condition are used to construct the cochain complex. The

coboundary operators for the cochain complex is defined using the W -valued ratio-

nal functions that the relevant series converge to. which is the key (as observed by

Huang) for the cohomology theory to work as the defining series have disjoint regions

of convergence.

Chapter 6 applies the cohomology theory to give a cohomological criterion of re-

ductivity for left modules for MOSVAs. For a MOSVA V and a V -bimodule M that

are lower-bounded (not necessarily grading-restricted) and satisfy the pole-order condi-

tion, let Ĥ1
∞(V,M) be the first cohomology of V with the coefficients in M . For a left

V -module W , a left V -submodule W2 of W and a graded subspace W1 of W such that

as a graded vector space, W = W1 ⊕W2, let πW1 and πW2 be the projections from W

to W1 and W2, respectively. For a left V -module W and a left V -submodule W2, we

say that the pair (W,W2) satisfies the composability condition if there exists a graded

subspace W1 of W such that W = W1 ⊕ W2 and such that for k, l ∈ N, w′
2 ∈ W2,

w1 ∈ W1, v1, . . . , vk+l, v ∈ V , the series

⟨w′
2, YW2(v1, z1) · · ·YW2(vk, zk)πW2YW (v, z)πW1YW (vk+1, zk+1) · · ·πW1YW (vk+l, zk+l)w1⟩
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is absolutely convergent the region |z1| > · · · > |zk| > |z| > · · · > |zk+l| > 0 to a

suitable rational function. We say that a left V -module W satisfies the composability

condition if for every proper nonzero left V -submodule W2 of W , the pair (W,W2)

satisfies the composability condition. We prove in this paper that if Ĥ1
∞(V,M) = 0 for

every Z-graded V -bimodule M , then every left V -module of finite-length satisfying the

composability condition is completely reducible. Since the first cohomology of V with

coefficients in W is the quotient of the space of derivations from V to M by the space

of inner derivations, the condition Ĥ1
∞(V,M) = 0 in our main theorem above can also

be formulated as the condition that every derivation from V to M is inner.
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Chapter 2

Meromorphic open string vertex algebras

2.1 Basic Definitions

We first recall the notion of meromorphic open-string vertex algebra given in [H3].

2.1.1 The axiomatic definition

Definition 2.1.1. A meromorphic open-string vertex algebra (hereafter MOSVA) is

a Z-graded vector space V =
⨿

n∈Z V(n) (graded by weights) equipped with a vertex

operator map

YV : V ⊗ V → V [[x, x−1]]

u⊗ v 7→ YV (u, x)v

and a vacuum 1 ∈ V , satisfying the following axioms:

1. Axioms for the grading:

(a) Lower bound condition: When n is sufficiently negative, V(n) = 0.

(b) d-bracket formula: Let dV : V → V be defined by dV v = nv for v ∈ V(n).

Then for every v ∈ V

[dV , YV (v, x)] = x
d

dx
YV (v, x) + YV (dV v, x).

2. Axioms for the vacuum:

(a) Identity property: Let 1V be the identity operator on V . Then YV (1, x) = 1V .

(b) Creation property: For u ∈ V , YV (u, x)1 ∈ V [[x]] and limz→0 YV (u, x)1 = u.
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3. D-derivative and D-bracket properties: Let DV : V → V be the operator given

by

DV v = lim
x→0

d

dx
YV (v, x)1

for v ∈ V . Then for v ∈ V ,

d

dx
YV (v, x) = YV (DV v, x) = [DV , YV (v, x)].

4. Rationality: Let V ′ =
⨿

n∈Z V
∗
(n) be the graded dual of V . For u1, · · · , un, v ∈

V, v′ ∈ V ′, the series

⟨v′, YV (u1, z1) · · ·YV (un, zn)v⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function in z1, · · · , zn,

with the only possible poles at zi = 0, i = 1, ..., n and zi = zj , 1 ≤ i ̸= j ≤ n. For

u1, u2, v ∈ V and v′ ∈ V ′, the series

⟨v′, YV (YV (u1, z1 − z2)u2, z2)v⟩

converges absolutely when |z2| > |z1−z2| > 0 to a rational function with the only

possible poles at z1 = 0, z2 = 0 and z1 = z2.

5. Associativity: For u1, u2, v ∈ V and v′ ∈ V ′, we have

⟨v′, YV (u1, z1)YV (u2, z2)v⟩ = ⟨v′, YV (YV (u1, z1 − z2)u2, z2)v⟩

when |z1| > |z2| > |z1 − z2| > 0.

Such a meromorphic open-string vertex algebra is denoted by (V, YV ,1) or simply

by V .

Definition 2.1.2. A meomorphic open-string vertex algebra V is said to be grading-

restricted if dimV(n) < ∞ for n ∈ Z.

Throughout this thesis, all meromorphic open-string vertex algebras are assumed

to be grading-restricted.



9

Remark 2.1.3. If in addition, V satisfies commutativity, namely, for every u1, u2, v ∈

V, v′ ∈ V ′

⟨v′, YV (u1, z1)YV (u2, z2)v⟩

converges absolutely when |z1| > |z2| > 0 to the same rational function that

⟨v′, YV (YV (u1, z1 − z2)u2, z2)v⟩

converges to when |z2| > |z1−z2| > 0, [FHL] shows that in this case the Jacobi identity

for vertex algebras holds and V is a vertex algebra with lower bounded Z-grading. So

MOSVA can be treated as a noncommutative generalization to the vertex algebra. We

have to redevelop a lot of basic results for MOSVA, since in vertex operator algebras

these results are proved using commutativity.

2.1.2 Some immediate consequences

Axioms 1, 2 and 3 make it possible to carry over some facts of vertex algebras to

MOSVA:

Proposition 2.1.4. Let V be a MOSVA. Then

1. For u ∈ V , YV (u, x) can be regarded as a formal series in End(V )[[x, x−1]]

YV (u, x) =
∑
n∈Z

(YV )n(u)x
−n−1

where (YV )n(u) : V → V is a linear map for every n ∈ Z. If u is homogeneous,

then (YV )n(u) is a map of weight wt u− n− 1.

2. For fixed u, v ∈ V , YV (u, x)v is lower truncated, i.e, there are at most finitely

many negative powers of x.

3. For u ∈ V ,

YV (u, x)1 = exDV u

4. Formal Taylor theorem: for u ∈ V ,

YV (u, x+ y) = YV (e
yDV u, x) = eyDV YV (u, x)e

−yDV ,

in End(V )[[x, x−1, y]].
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Remark 2.1.5. In the statement of the formal Taylor’s theorem, the series Y (u, x+y)

should not be regarded as a series with one single variable x + y. Rather, it should

be regarded as a series with two variables x and y, expanded from the series with the

single variable x+ y with positive powers of y. Details are discussed in [LL]

Proof. 1. Follows from the linearity of YV (u, x)v in both u and v, and the d-bracket

formula.

2. When u, v are homogeneous, the coefficient (YV )n(u)v of x−n−1 in YV (u, x)v is

also homogeneous of weight m = wt u+wt v − n− 1. As n gets sufficient large,

m becomes sufficiently negative and by the lower bound condition, V(m) = 0. So

(YV )n(u)v = 0 when n gets sufficiently large, hence the series
∑
n∈Z

(YV )n(u)vx
−n−1

is lower truncated.

3. Use the D-derivative property and induction, it is easy to show for n = 0, 1, ...,

Dn
V v = lim

x→0

dn

dxn
Y (v, x)1

So YV (v, x)1, as a power series, has Dn
V v/n! as the coefficient of xn. Hence

YV (v, x)1 =

∞∑
n=0

(
1

n!
Dn

V v

)
xn = exDV v

4. The first equality follows from the DV -derivative formula. The second equality

follows from the exponentiation of the DV -bracket formula.

2.1.3 On the product and iterate of two vertex operators

Note that Axiom 4 and 5 are formulated using complex functions. To understand these

axioms correctly, let’s consider the example the rationality of the product of two vertex

operators. Let u1, u2, v ∈ V and consider the formal series

YV (u1, x1)YV (u2, x2)v = YV (u1, x1)

(∑
m∈Z

(YV )m(u2)vx
−m−1
2

)

=
∑
m∈Z

YV (u1, x1) ((YV )m(u2)v)x
−m−1
2

=
∑
m∈Z

∑
n∈Z

(YV )n(u1)((YV )m(u2)v)x
−n−1
1 x−m−1

2
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This is a formal series in V [[x1, x2, x
−1
1 , x−1

2 ]]. Note that there are only finitely many neg-

ative powers of x2, since YV (u2, x2)v is lower truncated. However, in general there are in-

finitely many negative and positive powers of x1, since although YV (u1, x1)((YV )m(u2)v)

is lower truncated for each m ∈ Z, the lower bound of powers might not be uniform

with respect to m.

Pairing the formal series with v′ ∈ V ′

⟨v′, YV (u1, x1)YV (u2, x2)v⟩ =
∑
m∈Z

∑
n∈Z

⟨v′, (YV )n(u1)((YV )m(u2)v)⟩x−n−1
1 x−m−1

2

we get a formal series in C[[x1, x−1
1 , x2, x

−1
2 ]]. Since the weight of (YV )n(u1)((YV )m(u2)v)

will be larger than wt v′ when n becomes sufficient negative, in this series there are at

most finitely many positive powers of x1.

After substituting x1, x2 by two complex numbers z1, z2, we will get a series of

complex numbers:

⟨v′, YV (u1, z1)YV (u2, z2)v⟩ =
∑
m∈Z

∑
n∈Z

⟨v′, (YV )n(u1)((YV )m(u2)v)⟩z−n−1
1 z−m−1

2 .

The first part of rationality says that this series of complex numbers converges abso-

lutely when |z1| > |z2| > 0, and the limit is a rational function in z1, z2, with possible

poles only at z1 = 0, z2 = 0, z1 = z2. If we denote the rational function by

f(z1, z2)

zp11 zp22 (z1 − z2)p12
,

where f(z1, z2) is a polynomial function in z1, z2, then the series of complex numbers

is precisely the series expansion of the rational function in the region |z1| > |z2| > 0,

i.e., each (z1 − z2)
−1 factor is expanded as z−1

1

∞∑
k=0

(z2/z1)
k.

To interpret the above in terms of formal variables, we let

ι12 : V [x1, x
−1
1 , x2, x

−1
2 , (x1 − x2)

−1] → V [[x1, x2, x
−1
1 , x−1

2 ]]

be the map that expands (x1 − x2)
−1 by the positive powers of x2. Then the ra-

tionaly above amounts to say that for every v′ ∈ V ′, u1, u2, v ∈ V , the formal series

⟨v′, YV (u1, x1)YV (u2, x2)v⟩ can be obtained by applying ι12 to the rational function, i.e.

⟨v′, YV (u1, x1)YV (u2, x2)v⟩ = ι12

(
f(x1, x2)

xp11 xp22 (x1 − x2)p12

)
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Since the series YV (u2, x2)v is lower-truncated, the power p2 of x2 in the denominator

is bounded above by a constant that depends only on u2 and v.

Also we consider the formal series

YV (YV (u1, x0)u2, x2)v = YV (
∑
m∈Z

(YV )m(u1)u2x
−m−1
0 , x2)v

=
∑
m∈Z

YV ((YV )m(u1)u2, x2)vx
−m−1
0

=
∑
m∈Z

∑
n∈Z

(YV )n((YV )m(u1)u2)vx
−n−1
2 x−m−1

0

in V [[x0, x2, x
−1
0 , x−1

2 ]]. Similarly, there are finitely many negative powers of x0, since

YV (u1, x0)u2 is lower truncated. However there might be infinitely many negative pow-

ers of x2.

Pairing the formal series with with v′ ∈ V ′

⟨v′, YV (YV (u1, x0)u2, x2)v⟩ =
∑
m∈Z

∑
n∈Z

⟨v′, (YV )n((YV )m(u1)u2)v⟩x−n−1
2 x−m−1

0

we get a formal series in C[[x0, x2, x−1
0 , x−1

2 ]]. Since the weight of (YV )n((YV )m(u1)u2)v

will be larger than wt v′ when n becomes sufficient negative, in this series there are at

most finitely many positive powers of x2.

After substituting x0 = z1 − z2, x2 = z2, we will get a series of complex numbers

⟨v′, YV (YV (u1, z1 − z2)u2, z2)v⟩ =
∑
m∈Z

∑
n∈Z

⟨v′, YV ((YV )m(u1)u2)nv⟩z−n−1
2 (z1 − z2)

−m−1.

The second part of rationality states that the series converges absolutely when |z2| >

|z1 − z2| > 0. Together with associativity, we know that the sum is equal to the same

rational function which ⟨v′, YV (u1, z1)YV (u2, z2)v⟩ converges to. In other words, the

series ⟨v′, YV (YV (u1, z1−z2)u2, z2)v⟩ is the series expansion of the same function but in

the different region region |z2| > |z1− z2| > 0, i.e., each z−1
1 factor is expanded as (z2+

z1 − z2)
−1 = z−1

2

∞∑
k=0

[(z1 − z2)/z2]
k. As a consequence, in the series ⟨v′, YV (YV (u1, z1 −

z2)u2, z2)v⟩, there are only finitely positive powers of z2 and finitely many negative

powers of (z1 − z2).

To interpret the above in terms of the formal variables, let

ι20 : C[x0, x2, x−1
0 , x−1

2 , (x0 + x2)
−1] → C[[x0, x2, x−1

0 , x−1
2 ]]
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be the map that expands (x0 + x2)
−1 by the positive power of x0. Since the rational

function is the same, the formal series ⟨v′, YV (YV (u1, x0)u2, x2)v⟩ can be obtained by

applying ι20 to the rational function after substituting x1 = x0 + x2, i.e.

⟨v′, YV (YV (u1, x0)u2, x2)v⟩ = ι20

(
f(x0 + x2, x2)

(x0 + x2)p1x
p2
2 xp120

)
In particular, since the series YV (u1, x0)u2 is lower-truncated, the power of p12 of x0 in

this series is bounded above by a constant that depends only on u1 and u2.

As a consequence of the discussion above, we have the following weak associativity

in terms of correlation functions.

Proposition 2.1.6. Let V be a MOSVA. Let ι12 and ι20 be defined as above. Then for

every v′ ∈ V, u1, u2, v ∈ V ,

ι−1
12 ⟨v

′, YV (u1, x1)YV (u2, x2)v⟩ = ι−1
20 ⟨v

′, YV (YV (u1, x0)u2, x2)v⟩|x1=x0+x2

Remark 2.1.7. Here we shall experience the first difference to usual VOA. In case the

commutativity is also present, then a similar argument shows that p1 is also controlled

above by u1 and v. Then because p1, p2, p12 are independent of the choice of v′, letting

v′ vary in V ′ we will be able to see that the formal series Y (u1, x1)Y (u2, x2)v, after

multiplying suitable powers of x1, x2 and (x1 − x2), is a power series in V [[x1, x2]].

However, we don’t have commutativity for MOSVA. In the most general sense p1 can

be dependent to the choice of v′. So the best we can say is, for the integers p2 and p12,

the formal series

xp22 (x1 − x2)
p12YV (u1, x1)YV (u2, x2)v ∈ V [[x1, x

−1
1 , x2]]

In general, there might not exists an integer p1 such that

xp11 xp22 (x1 − x2)
p12YV (u1, x1)YV (u2, x2)v ∈ V [[x1, x2]]

unless we know something about the pole z1 = 0 of the rational function determined

by ⟨v′, YV (u1, z1)YV (u2, z2)v⟩, as described in the following proposition.

Proposition 2.1.8. Let (V, YV ,1) be a MOSVA. Assume that for every u1, u2, v ∈ V ,

there exists a positive integer p1 such that for every v′ ∈ V ′, the order of the pole z1 = 0
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of the rational function determined by ⟨v′, YV (u1, z1)YV (u2, z2)v⟩ is bounded above by

p1. Then the following associativity holds: for u1, u2, v ∈ V and the integer p1 above,

(x0 + x2)
p1YV (u1, x0 + x2)YV (u2, x2)v = (x0 + x2)

p1YV (YV (u1, x0)u2, x2)v

where both sides are understood as Laurent series in V [[x0, x2]][x
−1
0 , x−1

2 ]

Proof. One sees easily that for every v′ ∈ V ′, there exists p1, p2, p12 ∈ Z+ such that

zp11 zp22 (z1 − z2)
p12⟨v′, YV (u1, z1)YV (u2, z2)v⟩

converges to a polynomial function. Thus with the formal variables x1, x2, the formal

series

xp11 xp22 (x1 − x2)
p12⟨v′, YV (u1, x1)YV (u2, x2)v⟩

has no negative powers of x1, x2. Thus as a formal series with coefficients in W ,

xp11 xp22 (x1 − x2)
p12YV (u1, x1)YV (u2, x2)v

has no negative powers of x1, x2 and thus sits in V [[x1, x2]]. Replace x1 by x0 + x2 and

divide the resulting power series by xp120 xp22 , we see that

(x0 + x2)
p1YV (u1, x0 + x2)YV (u2, x2)v ∈ V [[x0, x2]][x

−1
0 , x−1

2 ]

Similarly, we see that

(x0 + x2)
p1YV (YV (u1, x0)u2, x2)v ∈ V [[x0, x2]][x

−1
0 , x−1

2 ]

The conclusion then follows from Proposition 2.1.6.

Remark 2.1.9. So to recover the commonly-known weak associativity for MOSVAs,

extra conditions on the correlation functions has to be assumed.

2.1.4 On the product of any number of vertex operators

The rationality of the product of n vertex operators can be understood in a similar

fashion: For fixed u1, u2, ..., un, v ∈ V , the formal series

YV (u1, x1)YV (u2, x2) · · ·YV (un, xn)v

=
∑
kn∈Z

· · ·
∑
k1∈Z

(YV )k1(u1)((YV )k2(u2)(· · · ((YV )kn(un)v) · · · ))x
−k1−1
1 x−k2−1

2 · · ·x−kn−1
n
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is in V [[x1, ..., xn, x
−1
1 , ..., x−1

n ]]. There are finitely many negative powers of xn but there

are infinitely many positive and negative powers of all other variables. However the

“peeling off” trick (See for example [LL], Section 3.10) works here: if we look at the coef-

ficient of fixed power of xn, then this coefficient is a series in V [[x1, ..., xn−1, x
−1
1 , ..., x−1

n−1]],

with only finitely many negative powers of xn−1. Similarly if we look at the coefficient

of fixed powers of xn−1 and xn, then it will be a series in V [[x1, ..., xn−2, x
−1
1 , ..., x−1

n−2]]

with finitely many negative powers of xn−2. Similar story is true consecutively for

xn−3, ..., x1.

Evaluating x1 = z1, ..., xn = zn and pair it with v′ ∈ V ′, we get a series of complex

numbers

⟨v′, YV (u1, z1)YV (u2, z2) · · ·YV (un, zn)v⟩

=
∑
kn∈Z

· · ·
∑
k1∈Z

⟨v′, (YV )k1(u1)((YV )k2(u2)(· · · ((YV )kn(un)v) · · · ))⟩z
−k1−1
1 z−k2−1

2 · · · z−kn−1
n .

The rationality states that the series converges absolutely when |z1| > |z2| > · · · >

|zn| > 0 to a rational function with possible poles only at zi = 0, 1 ≤ i ≤ n and

zi = zj , 1 ≤ i ̸= j ≤ n. Equivalently, the series of complex numbers is precisely the

series expansion of the rational function in the region |z1| > |z2| > · · · > |zn| > 0, i.e.,

for any 1 ≤ i < j ≤ n, every (zi − zj)
−1 factor in the rational function is expanded as

z−1
i

∞∑
k=0

(zj/zi)
k. In particular, we know that there are at most finitely many negative

powers of zn and finitely many positive powers of z1.

To interpret the above in terms of formal variables, let S be the multiplicative set

in the polynomial ring C[x1, ..., xn] generated by xi, i = 1, ..., n, and (xi − xj)
−1, 1 ≤

i ̸= j ≤ n. Consider the localization C[x1, ..., xn]S of the polynomial ring with S. Let

ι12..n : C[x1, ...xn]S → C[[x1, ..., xn, x−1
1 , ..., x−1

n ]]

be the map that expands (xi − xj)
−1 for each 1 ≤ i < j ≤ n as the series with positive

powers in xj . Then for every v′ ∈ V ′, u1, ..., un, v ∈ V , we have

⟨v′, YV (u1, x1) · · ·YV (un, xn)v⟩ = ι12...n

(
f(x1, ..., xn)∏n

i=1 x
pi
i

∏
1≤i<j≤n(xi − xj)pij

)
for some polynomial f(x1, ..., xn) ∈ C[x1, ..., xn] and some integers pi, i = 1, ..., n, pij , 1 ≤

i < j ≤ n.
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Remark 2.1.10. We should mention that the rationality of the product of n vertex

operators turns out to be a very subtle issue. It is proved in [FHL], Section 3.5 that the

rationality involving any number of vertex operators holds automatically for a lower

bounded Z-graded vertex algebra, for which all the axioms are formulated using only

two vertex operators. However for MOSVA, commutativity does not hold in general.

So the argument in [FHL] fails for such algebras. To make sense of the product of any

number of vertex operators, it is necessary to assume Axiom 4 for every number n ≥ 2.

Definition 2.1.11. A MOSVA is said to satisfy the pole-order condition, if for ev-

ery v′ ∈ V ′, u1, u2, v ∈ V , the order of the pole z1 = 0 of the rational function

⟨v′, YV (u1, z1)YV (u2, z2)v⟩ converges to is bounded above by a constant that depends

on u1 and v.

The condition here is stronger than that the version used in Proposition 2.1.8. All

the vertex algebras satisfy this condition because of commutativity. With the pole-

order condition, we only need to assume Axiom 4 for n = 2. The rationality of the

product of n > 2 vertex operators is a consequence.

Proposition 2.1.12. Let V =
⨿

n∈Z V(n), YV : V ⊗ V → V [[x, x−1]] and 1 ∈ V(0)

satisfy Axiom 1, 2, 3, 5, the Axiom 4 with only n = 2, and the pole-order condition.

Then Axiom 4 holds for every n > 2. Moreover, for the rational function determined by

⟨v′, YV (u1, z1) · · ·YV (un, zn)v⟩, the order of poles zi = 0 is bounded above by a constant

that depends only on ui and v for i = 1, ..., n; the order of poles zi = zj is bounded

above by a constant that depends only on ui and uj for 1 ≤ i < j ≤ n.

Proof. We first prove the rationality of the product of three vertex operators. Without

loss of generality, let v′ ∈ V ′, u1, u2, u3, v ∈ V be homogeneous elements. We first prove

that for some positive integers p1, p2, p12,

(x1 − x2)
p12(x1 + x3)

p1(x2 + x3)
p2⟨v′, YV (u1, x1 + x3)YV (u2, x2 + x3)YV (u3, x3)v⟩,

as a series in C[[x1, x−1
1 , x2, x

−1
2 , x3, x

−1
3 ]] where all negative powers of (x1 + x3) and

(x2 + x3) are expanded in positive powers of x3, is both upper and lower-truncated. In

other words, it is indeed a Laurent polynomial in C[x1, x−1
1 , x2, x

−1
2 , x3, x

−1
3 ].
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We start by peeling off the variable x3. First note the power of x3 is lower-truncated.

To see it is also upper-truncated, we use the weak associativity to see that

(x1 − x2)
p12(x1 + x3)

p1(x2 + x3)
p2⟨v′, YV (u1, x1 + x3)YV (u2, x2 + x3)YV (u3, x3)v⟩

=(x1 − x2)
p12(x1 + x3)

p1(x2 + x3)
p2⟨v′, YV (u1, x1 + x3)YV (YV (u2, x2)u3, x3)v⟩

=(x1 − x2)
p12(x1 + x3)

p1(x2 + x3)
p2⟨v′, YV (YV (u1, x1)YV (u2, x2)u3, x3)v⟩

Note that the second equality is guaranteed by the pole-order condition: since p1 de-

pends only on u1 and v, we don’t need to worry about the infinitely many terms given

by YV (u2, x3)u3. If p1 is only independent of the choice of v′ and depends on u2 as in

Proposition 2.1.8, then the equality may not hold.

We claim that the series on the right-hand-side is upper-truncated in x3. This can

be seen by writing the series as

⟨v′, YV (YV (u1, u1)YV (u2, x2)u3, x3) =
∑
m,n

⟨v′, YV (umn, x3)v⟩x−m−1
1 x−n−1

2

Note that the lowest weight of the components of umn is nonnegative. So the coefficient

of x−p−1
3 in YV (umn, x3)v is nonzero only when min

m,n∈Z
wt umn + wt v − p − 1 = wt v′.

Thus

−p− 1 = wt v′ − wt v − min
m,n∈Z

wt umn ≤ wt v′ − wt v

Hence the power of x3 is upper-truncated.

Now we compute the coefficient of x−m−1
3 for each m ∈ Z.

(x1 − x2)
p12(x1 + x3)

p1(x2 + x3)
p2⟨v′, ex3DV YV (u1, x1)YV (u2, x2)e

−x3DV YV (u3, x3)v⟩

=(x1 − x2)
p12

p1∑
k1=0

(
p1
k1

)
xp1−k1
1 xk13

p2∑
k2=0

(
p2
k2

)
xp2−k2
2 xk23 ·

⟨v′,
∞∑
i=1

1

i!
xi3D

i
V YV (u1, x1)YV (u2, x2)

∞∑
j=1

1

j!
(−x3)

jDj
V

∑
m∈Z

(YV )m(u3)vx
−m−1
3 ⟩

=
∑
m∈Z

p1∑
k1=0

p2∑
k2=0

∞∑
i=1

∞∑
j=1

(−1)j

i!j!
(x1 − x2)

p12

(
p1
k1

)
xp1−k1
1

(
p2
k2

)
xp2−k2
2 ·

⟨v′, Di
V YV (u1, x1)YV (u2, x2)D

j
V (YV )m(u3)v⟩x−m+k1+k2+i+j−1

3

=
∑
m∈Z

p1∑
k1=0

p2∑
k2=0

∞∑
i=1

∞∑
j=1

(−1)j

i!j!
(x1 − x2)

p12

(
p1
k1

)
xp1−k1
1

(
p2
k2

)
xp2−k2
2 ·
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⟨v′, Di
V YV (u1, x1)YV (u2, x2)D

j
V (YV )m+k1+k2+i+j(u3)v⟩x−m−1

3

So the coefficient of x−m−1
3 is

p1∑
k1=0

p2∑
k2=0

∞∑
i=1

∞∑
j=1

(−1)j

i!j!
(x1 − x2)

p12

(
p1
k1

)
xp1−k1
1

(
p2
k2

)
xp2−k2
2 ·

⟨v′, Di
V YV (u1, x1)YV (u2, x2)D

j
V (YV )m+k1+k2+i+j(u3)v⟩

This is actually a finite sum, since for each fixed m, (YV )m+k1+k2+i+j(u3)v = 0 when

wt u3 + wt v − (m + k1 + k2 + i + j) < 0. So both i and j has an upper bound. And

for each fixed m, p1, p2, i, j, we know that

(x1 − x2)
p12⟨v′, Di

V YV (u1, x1)YV (u2, x2)D
j
V (YV )m+k1+k2+i+j(u3)v⟩

is a Laurent polynomial. Therefore, we proved that for each m ∈ Z, the coefficient of

x−m−1
3 is a finite sum of Laurent polynomials. So the power of x1 and x2 is both upper-

and lower-truncated for each m where m ranges in a finite set. So the powers of x1 and

x2 in the series are also upper- and lower-truncated.

Since all the powers of x1, x2, x3 are lower-truncated, we can find positive integers

p13, p23, p3 such that

(x1 + x3)
p1(x2 + x3)

p2xp33 xp131 xp232 (x1 − x2)
p12⟨v′, YV (u1, x1)YV (u2, x2)YV (u3, x3)v⟩

is a polynomial in C[x1, x2, x3]. So the transformation x1 7→ x1−x3, x2 7→ x2−x3, x3 7→

x3, makes sense and leads to the conclusion that

xp11 xp22 xp33 (x1−x2)
p12(x1−x3)

p13(x2−x3)
p23⟨v′, YV (u1, x1)YV (u2, x2)YV (u3, x3)v⟩ (2.1)

is a polynomial in C[x1, x2, x3].

It remains to prove that all the powers p1, p2, p3, p12, p23, p13 are bounded above by

constants that depend only on the corresponding elements. We start by noting that

p3 is bounded above by a constant that depends only on u3 and v, due to the lower

truncation of YV (u3, x3)v. If we rewrite Formula (2.1) as a sum

xp11 (x1−x2)
p12(x1−x3)

p13
∑
n∈Z

xp22 xp33 (x2−x3)
p23⟨v′, (YV )n(u1)YV (u2, x2)YV (u3, x3)v⟩x−n−1

1 ,
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and apply the pole-order condition to each summand, then we see that p2 is bounded

above by a constant that depends only on u2 and v. The associativity tells that Formula

(2.1) equals

xp11 xp22 xp33 (x1 − x2)
p12(x1 − x3)

p13(x2 − x3)
p23⟨v′, YV (u1, x1)YV (YV (u2, x2 − x3)u3, x3)v⟩.

Then p23 is bounded above by a constant that depends only on u2 and u3. Similarly,

the associativity tells that Formula (2.1) equals

xp11 xp22 xp33 (x1 − x2)
p12(x1 − x3)

p13(x2 − x3)
p23⟨v′, YV (YV (u1, x1 − x2)u2, x2)YV (u3, x3)v⟩.

Then p12 is bounded above by a constant that depends only on u1 and u2. Also, the

associativity tells that Formula (2.1) equals

xp11 xp22 xp33 (x1−x2)
p12(x1−x3)

p13(x2−x3)
p23⟨v′, YV (YV (u1, x1−x2)YV (u2, x2−x3)u3, x3)v⟩,

which can be rewritten as

xp11 xp22 xp33 (x1−x2)
p12(x1−x3)

p13(x2−x3)
p23⟨v′,

∑
n∈Z

(YV )n(YV (u1, x1−x3)YV (u2, x2−x3)u3)vx
−n−1
3 ⟩,

Apply the pole-order condition to each summand, we see that p13 is bounded above by

a constant that depends only on u1 and u3. Finally, the associativity tells that Formula

(2.1) is equal to

xp11 xp22 xp33 (x1 − x2)
p12(x1 − x3)

p13(x2 − x3)
p23⟨v′, YV (u1, x1)YV (YV (u2, x2 − x3)u3, x3)v⟩,

which can be rewritten as

xp11 xp22 xp33 (x1−x2)
p12(x1−x3)

p13(x2−x3)
p23
∑
n∈Z

⟨v′, YV (u1, x1)YV ((YV )n(u2)u3, x3)v(x2−x3)
−n−1⟩

Apply the pole-order condition to each summand, to see that p1 is bounded above by

a constant that depends only on u1 and v.

The general case can be done by induction. For brevity, we only give a sketch

without the details:

1. The formal series

n−1∏
i=1

(xi+xn)
pi

∏
1≤r<s≤n−1

(xr−xs)
prs⟨v′, YV (u1, x1+xn) · · ·YV (un−1, xn−1+xn)YV (un, xn)v⟩
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in C[[x1, x−1
1 , ..., xn, x

−1
n ]] has lower-truncated powers of xn. Use weak associativ-

ity to see it is equal to

n−1∏
i=1

(xi + xn)
pi⟨v′, YV (YV (u1, x1) · · ·YV (un−1, xn−1un, xn)v⟩

and thus the power of xn is upper-truncated.

2. Compute the coefficient of x−m−1
n , which looks like

∑
m∈Z

p1,...,pn−1∑
k1,...,kn−1=0

∞∑
i,j=0

n−1∏
i=1

(
pi
ki

)
xpi−ki
i

(−1)j

i!j!

∏
1≤r<s≤n−1

(xr − xs)
prs

⟨v′, Di
V Y (u1, x1)Y (u2, x2) · · ·Y (un−1, xn−1)D

j
V (YV )m+i+j+k1+···+kn−1(un)v⟩(−1)j

argue it is a finite sum of Laurent polynomials in x1, ..., xn−1 which is seen by the

induction hypothesis.

3. So the series we are considering is a Laurent polynomial. Find all the integers

such that

xpnn

n−1∏
i=1

xpini (xi + xn)
pi

∏
1≤r<s≤n−1

(xr − xs)
prs ·

⟨v′, YV (u1, x1 + xn) · · ·YV (un−1, xn−1 + xn)YV (un, xn)v⟩

is a polynomial in C[x1, ..., xn]. Then perform the transformation xi 7→ xi −

xn, xn 7→ xn to see the rationality.

4. Repeatedly use associativity and the pole-order condition obtained in the previous

steps to show the dependence of the upper bounds of the order of poles.

Proposition 2.1.13. Let V =
⨿

n∈Z V[n], YV : V ⊗ V → v[[x, x−1]] satisfy axioms

for the grading, D-derivative property, D-commutator formula, and the following weak

associativity with pole order condition: for every u1, u2, v ∈ V , there exists an integer

p1 that depends only on u1 and v, such that

(x0 + x2)
p1YV (YV (u1, x0)u2, x2)v = (x0 + x2)

p1YV (u1, x0 + x2)YV (u2, x2)v

as formal series in V [[x0, x
−1
0 , x2, x

−1
2 ]], then (V, YV ,1) forms a MOSVA.
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Remark 2.1.14. From this proof one observes that the pole-order condition is crucial

for the formal variable approach. Although this condition holds for all the existing

MOSVAs, with the absence of commutativity this is still not a natural assumption.

That is why for the rest of the thesis, we will still develop the theory of MOSVA

without this condition.

2.2 V -valued map interpretation

Let

V =
∏
n∈Z

V(n)

be the algebraic completion of the graded space
⨿
n∈Z

V(n). Let

>
V =

∏
n∈Z

V ∗∗
(n)

be the full dual space of V ′ =
⨿
n∈Z

V ∗
(n). In general, V is a subspace of

>
V . When V is

grading-restricted, we have V =
>
V .

We shall interpret the vertex operators as V -valued maps for grading-restricted

meromorphic open-string vertex algebras (which is of the most interest and shall be our

main focus). The modification for non-grading-restricted MOSVAs will be discussed in

Remarks 2.2.10, 2.2.14, 2.2.18, 2.2.23, 2.3.12, 2.3.15 and 2.4.9.

2.2.1 One single vertex operator

Since each vertex operator YV (u, x), u ∈ V admits a series expansion

YV (u, x) =
∑
n∈Z

(YV )n(u)x
−n−1

When u is homogeneous, each (YV )n(u) : V → V of weight wt (u) − n − 1. Replacing

x by a nonzero complex number z and apply YV (u, z) to a homogeneous v ∈ V . Then

each (YV )n(u)vz
−n−1 is homogeneous of weight wt (u) + wt (v) − n − 1, hence the

infinite sum ∑
n∈Z

(YV )n(u)vz
−n−1
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gives an element in
∏

n∈Z V(n) = V . This also holds for any u, v ∈ V since they are

finite sums of homogeneous elements. So we conclude the following:

Summary 2.2.1. For a given nonzero z ∈ C, the vertex operator map give rise to the

following map

YV (·, z)· : V ⊗ V → V

Remark 2.2.2. Note that here YV (u, z)v is regarded as one single element in V , instead

of a series of elements in V .

Remark 2.2.3. This interpretation works no matter whether V is grading-restricted

or not.

2.2.2 Product of two vertex operators

Note that for fixed nonzero z1 ∈ C and u1 ∈ V , the map

YV (u1, z1)· : V → V

accepts only inputs of V . To apply the vertex operator YV (u1, z1) to YV (u2, z2)v, the

following steps should be carried out:

1. For each k ∈ Z, apply the projection operator πk :
∏
n∈Z

V(n) → V(k) to the V -

element, so as to get an element πkYV (u2, z2)v ∈ V .

2. Apply the vertex operator YV (u1, z1) to each πkYV (u2, z2), to get

YV (u1, z1)πkYV (u2, z2) ∈
∏
n∈Z

V(n) = V

3. Sum up all k ∈ Z to get the following infinite series

∑
k∈Z

YV (u1, z1)πkYV (u2, z2)v

of elements in V .

To make sense of the infinite series, we need to define a topology on V .
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2.2.3 A note on topology

Here we recall some definitions and notions in topology.

Definition 2.2.4. Let X be a complex vector space. A seminorm on V is a map

p : X → [0,∞) satisfying

1. p(x+ y) ≤ p(x) + p(y),∀x, y ∈ X;

2. p(λx) = |λ|p(x),∀x ∈ X,λ ∈ C.

Definition 2.2.5. Let X be a vector space over C, P be a set of seminorms. Define a

topology on X by

1. A basic neighborhood of 0 is a set N of the form

N = {x ∈ V : p(x) < ϵp for finitely many p ∈ P, ϵp > 0}

Note that N is convex, containing 0. Also note that the intersection of two basic

neighborhoods is also a basic neighborhood.

2. A neighborhood of 0 is a set that contains a basic neighborhood.

3. A set U is a neighborhood of p if U ⊇ p+N for some neighborhood of 0.

4. U is open if U is a neighborhood for every x ∈ U , i.e., ∀p ∈ V, ∃ϵ1, ..., ϵn ∈

R>0, ∃p1, ..., pn ∈ P, {q : p1(q − x) < ϵ1, ..., pn(q − x) < ϵn} ⊆ U

Theorem 2.2.6. With the topology defined above, X is a locally convex topological

vector space.

Proof. See [R].

Definition 2.2.7. Let V =
⨿
n∈Z

V(n) be a graded vector space over C. Let V ′ =⨿
n∈Z V

∗
(n) be the graded dual and let

>
V =

∏
n∈Z V(n) be full dual space of V ′. The

following set of seminorms

{pv′ :
>
V → C, pv′(v) → ⟨v′, v⟩}

defines a locally convex topological vector space structure on
>
V .
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Definition 2.2.8. Let {vλ : λ ∈ Λ} be an indexed family of elements in
>
V . We say the

series ∑
λ∈Λ

vλ

converges absolutely in
>
V if for every v′ ∈ V ′, the complex series∑

λ∈Λ
⟨v′, vλ⟩

converges absolutely. In this case, the sum of the series is a well-defined element in
>
V .

Remark 2.2.9. It suffices to check the definition for homogeneous v′ ∈ V ′, i.e. for

each l ∈ Z and each v′ ∈ V ∗
(l).

Remark 2.2.10. When V is grading-restricted, as V =
>
V , so in this case, the sum of an

absolutely convergent infinite series do fall in V . In general, V is only a linear subspace

of
>
V and might not necessarily be closed. So the sum of an absolutely convergent

infinite series in V does not necessarily fall in V .

Now we investigate the expression YV (u1, z1)YV (u2, z2)v. The rationality states that

for fixed z1, z2 ∈ C such that |z1| > |z2| > 0, the double series

⟨v′, YV (u1, z1)YV (u2, z2)v⟩ =
∑
m∈Z

∑
n∈Z

⟨v′, (YV )n(u1)((YV )m(u2)v)⟩z−n−1
1 z−m−1

2 .

converges absolutely to a complex number, for every v′ ∈ V . Thus at the very least,

the sum of the double series YV (u1, z1)YV (u2, z2)v is well-defined in V .

Moreover, note that when v′, u1, u2, v are homogeneous, the coefficient ⟨v′, (YV )n(u1)((YV )m(u2)v)⟩

is nonzero only when

m+ n = wt (u1) + wt (u2) + wt (v)− wt (v′)− 2

So in this case,

⟨v′, YV (u1, z1)YV (u2, z2)v⟩

=
∑

m+n=wt(u1)+wt(u2)+wt(v)−wt(v′)−2

⟨v′, (YV )n(u1)((YV )m(u2)v)⟩z−n−1
1 z−m−1

2 .

And rationality states that the series converges absolutely when |z1| > |z2| > 0. In

particular, any rearrangement of the series on the right-hand-side converges to the

same value.
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Proposition 2.2.11. For any u1, u2, v ∈ V and any complex numbers z1, z2 satisfying

|z1| > |z2| > 0, the single series∑
k∈Z

YV (u1, z1)πkYV (u2, z2)v

of elements in V is absolutely convergent, i.e.,∑
k∈Z

⟨v′, YV (u1, z1)πkYV (u2, z2)v⟩

is absolutely convergent for any v′ ∈ V ′. Moreover, the sum of the series is equal to the

sum of

YV (u1, z1)YV (u2, z2)v

Proof. We first deal with homogeneous u1, u2, v ∈ V . Since

YV (u2, z2)v =
∑
m∈Z

(YV )m(u2)vz
−m−1
2

For k ∈ Z, we apply πk:

πkYV (u2, z2)v = (YV )m(k)(u2)vz
−m(k)−1
2

to get an element in V(k), where m(k) = wt (u2) + wt (v)− k − 1. So

YV (u1, z1)πkYV (u2, z2)v =
∑
n∈Z

(YV )n(u1)
(
(YV )m(k)(u2)v

)
z
−m(k)−1
2 z−n−1

1

is an element in V , with each component in V(l) being

πlYV (u1, z1)πkYV (u2, z2)v = (YV )n(l)(u1)
(
(YV )m(k)(u2)v

)
z
−m(k)−1
2 z

−n(l)−1
1 ,

where n(l) = wt (u1) + wt (u2) + wt (v) − l − m(k) − 2. Hence the infinite sum∑
k∈Z

YV (u1, z1)πkYV (u2, z2)v of elements in V converges absolutely to an element in V

if for each l ∈ Z and each v′ ∈ V ∗
(l), the infinite sum∑

k∈Z
⟨v′, (YV )n(l)(u1)

(
(YV )m(k)(u2)v

)
⟩z−m(k)−1

2 z
−n(l)−1
1

converges absolutely. When |z1| > |z2| > 0, this is true because the series is a rear-

rangement of the following absolutely convergent series∑
m+n=wt(u1)+wt(u2)+wt(v)−l−2

⟨v′, (YV )n(u1)((YV )m(u2)v)⟩z−n−1
1 z−m−1

2 .



26

So when u1, u2, v ∈ V are homogeneous, we proved that the series
∑
k∈Z

YV (u1, z1)πkYV (u2, z2)v

converges absolutely to an element in V when |z1| > |z2| > 0, where the element is given

by YV (u1, z1)YV (u2, z2)v.

For general nonhomogeneous u1, u2, v, write

u1 =
∑

j1 finite

u
(p1j1

)

1 , u2 =
∑

j2 finite

u
(p2j2

)

2 , v =
∑

m finite

v(qm)

We already know from above that for each fixed j1, j2,m and each fixed l ∈ Z and

v′ ∈ V ∗
(l),

⟨v′, YV (u
(pj1 )
1 , z1)YV (u

(pj2 )
2 , z2)v

(qm)⟩ =
∑
k∈Z

⟨v′, YV (u
(pj1 )
1 , z1)πkYV (u

(pj2 )
2 , z2)v

(qm)⟩,

it follows that

⟨v′, YV (u1, z1)YV (u2, z2)v⟩ =
∑

j1,j2,m finite

⟨v′, YV (u
(pj1 )
1 , z1)YV (u

(pj2 )
2 , z2)v

(qm)⟩

=
∑

j1,j2,m finite

∑
k∈Z

⟨v′, YV (u
(pj1 )
1 , z1)πkYV (u

(pj2 )
2 , z2)v

(qm)⟩

=
∑
k∈Z

∑
j1,j2,m finite

⟨v′, YV (u
(pj1 )
1 , z1)πkYV (u

(pj2 )
2 , z2)v

(qm)⟩

=
∑
k∈Z

⟨v′, YV (u1, z1)πkYV (u2, z2)v⟩,

the third equality of which is justified because a finite sum of absolutely convergent

series is still absolutely convergent, and for absolutely convergent series the order of

summation can be rearranged. So we proved that the sum
∑
k∈Z

YV (u1, z1)πkYV (u2, z2)v

absolutely converges to an element in V when |z1| > |z2| > 0, where the element is

given by YV (u1, z1)YV (u2, z2)v.

Summary 2.2.12. For fixed z1, z2 satisfying |z1| > |z2| > 0, the product of two vertex

operators gives rise to the following map

YV (·, z1)YV (·, z2)· : V ⊗ V ⊗ V → V

which is equal to the map

∑
k∈Z

YV (·, z1)πkYV (·, z2)· : V ⊗ V ⊗ V → V
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Remark 2.2.13. We emphasize that the sum
∑
k∈Z

YV (u1, z2)πkYV (u2, z2)v should be re-

garded as a single series in V , while YV (u1, z1)YV (u2, z2)v =
∑
m∈Z

∑
n∈Z

(YV )m(u1)((Yv)n(u2)v)z
−m−1
1 z−n−1

2

are regarded as a double series in V . The proof above amounts to conclude the the

absolute convergence of the former series from the absolute convergence of the latter

series, which is guaranteed by the rationality. When u1, u2, v ∈ V are homogeneous, the

double series YV (u1, z1)YV (u2, z2)v reduces to a single sum and indeed coincides with

the series
∑
k∈Z

YV (u1, z2)πkYV (u2, z2)v. When u1, u2, v ∈ V are not homogeneous, these

two series no longer coincide and should not be recognized as identical to each other.

It is the sums of these series that are identical, not the series themselves.

Remark 2.2.14. When V is not grading-restricted:

1. The statement of Summary 2.2.12 do not hold when V is not grading-restricted.

In regarding to Remark 2.2.10, unless we know V is a closed linear subspace of
>
V ,

we can only conclude that YV (u1, z1)YV (u2, z2)v and
∑
k∈Z

YV (u1, z1)πkYV (u2, z2)v

are elements in
>
V .

2. However, the conclusions in Proposition 2.2.11 do hold, as essentially we are real-

izing the single complex series
∑
k∈Z

⟨v′, YV (u1, z1)πkYV (u2, z2)v⟩ as a rearrangement

of the absolutely convergent double complex series ⟨v′, YV (u1, z1)YV (u2, z2)v⟩ and

use this realization to prove that the single series is absolutely convergent. Al-

though the sum falls outside V , the series still converges absolutely.

2.2.4 Product of any number of vertex operators

The above discussion generalizes to the product of any number of vertex operators.

Instead of getting into too much technical details, we sketch the steps here:

1. Rationality of the product of n vertex operators states that for each k ∈ Z and

each v′ ∈ V ∗
(k), when |z1| > |z2| > · · · > |zn| > 0, the multi-series

⟨v′, YV (u1, z1)YV (u2, z2) · · ·YV (un, zn)v⟩

absolutely converges. Hence YV (u1, z1)YV (u2, z2) · · ·YV (un, zn)v is well-defined in

V .
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2. When all u1, ..., un and v are homogeneous, we have

⟨v′, YV (u1, z1)YV (u2, z2) · · ·YV (un, zn)v⟩

=
∑

m1+···+mn=wt(u1)+···+wt(un)−k−n
m1,...,mn∈Z

⟨v′, (YV )m1(u1)(· · · ((YV )mn(un)v) · · · )z
−m1−1
1 · · · z−mn−1

n ⟩

Rationality states that this series is absolutely convergent when |z1| > · · · >

|zn| > 0.

3. We argue that when |z1| > |z2| > · · · > |zn|, the series

∑
k1,...,kn−1∈Z

YV (u1, z1)πk1YV (u2, z2)πk2 · · ·YV (un−1, zn−1)πkn−1YV (un, zn)v

of elements of V converges absolutely to an element in V identical to that YV (u1, z1) · · ·YV (un, zn)v

converges to. This is done by first arguing that for each l ∈ Z, each v′ ∈ V ∗
(l) and

each homogeneous u1, u2, ..., un, v ∈ V ,

∑
k1,k2,...,kn−1∈Z

⟨v′, YV (u1, z1)πk1YV (u2, z2)πk2 · · ·πkn−1YV (un, zn)v⟩

is a rearrangement of the multi-series

∑
m1+···+mn=wt(u1)+···+wt(un)−k−n

m1,...,mn∈Z

⟨v′, (YV )m1(u1)(· · · ((YV )mn(un)v) · · · )⟩z
−m1−1
1 · · · z−mn−1

n .

Once we set up the equality for homogeneous elements, using the fact that a finite

sum of absolutely convergent series is absolutely convergent and thus the order

of summation can be rearranged, we generalize the equality to nonhomogeneous

u1, u2, ..., un, v by a finite sum argument. Technical details are skipped here.

Summary 2.2.15. For any u1, ..., un, v ∈ V and any z1, ..., zn ∈ C satisfying |z1| >

|z2| > · · · > |zn| > 0, the series

∑
k1,...,kn−1∈Z

YV (u1, z1)πk1YV (u2, z2)π2 · · ·YV (un−1, zn−1)πkn−1YV (un, zn)v

of elements in V converges absolutely, The sum is equal to the V -element given by

YV (u1, z1) · · ·YV (un, zn)v



29

For fixed z1, z2, ..., zn ∈ C satisfying |z1| > · · · > |zn| > 0, the product of any number of

vertex operators gives rise to a map

YV (·, z1)YV (·, z2) · · ·YV (·, zn)· : V ⊗n ⊗ V → V

and is equal to the sum

∑
k1,...,kn−1∈Z

YV (·, z1)πk1YV (·, z2)πk2 · · ·YV (·, zn−1)πkn−1YV (·, zn)· : V ⊗n ⊗ V → V

Remark 2.2.16. So we also know that when |z1| > |z2| > · · · > |zn| > 0,

∑
k1,...,kn−1∈Z

⟨v′, YV (u1, z1)πk1YV (u2, z2)πk2 · · ·YV (un−1, zn−1)πkn−1YV (un, zn)v⟩

converges absolutely to a rational function with the only possible poles at zi = 0, i =

1, 2, ..., n; zi = zj , i, j = 1, 2, ..., n. As we will see, this makes it easy to discuss of the

region of convergence.

Remark 2.2.17. Just as in Remark 2.2.13, We emphasize that for general u1, ..., un, v ∈

V , the multiseries

∑
k1,...,kn−1∈Z

YV (u1, z1)πk1YV (u2, z2)πk2 · · ·YV (un−1, zn−1)πkn−1YV (un, zn)v

is a (n−1)-multiseries of elements in V and should not be recognized as the same series

as

YV (u1, z1) · · ·YV (un, zn)v =
∑

m1,...,mn∈Z
(YV )m1(u1)(· · · ((YV )mn(un)v) · · · )z

−m1−1
1 · · · z−mn−1

n ,

which is a n-multiseries of elements in V , though their sums are equal when |z1| > · · · >

|zn| > 0.

Remark 2.2.18. When V is not grading-restricted:

1. As shown in Remark 2.2.14, YV (u2, z2)YV (u3, z3)v does not necessarily sit in V .

The πk in the series
∑

k∈Z YV (u1, z1)πkYV (u2, z2)YV (u3, z3)v has to extend to
>
V ,

i.e., πk :
>
V → V ∗∗

(k).
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2. As πkYV (u2, z2)YV (u3, z3)v does not fall in V , we would interpret the action of

YV (u1, z1) on the V ∗∗
(k)-element simply as a rearrangement of summation. More

precisely,

YV (u1, z1)πkYV (u2, z2)YV (u3, z3)

=
∑

wt u2+wt u3−n−p−2=k
n,p∈Z

(
(YV )n(u1)(YV )m(u2)(YV )p(u3)vz

−n−1
1 z−m−1

2 z−m−1
3

)
So although πkYV (u2, z2)YV (u3, z3) falls in the space V ∗∗

(k) much larger than V(k),

YV (u1, z1) still “act” on it in the sense above. Such an action is well-defined

because of the rationality of products of three vertex operators.

3. The interpretation extends to the product of n vertex operators in a similar way,

i.e.

YV (u1, z1)πkYV (u2, z2) · · ·YV (un, zn)v

=
∑

wt u2+···+wt un−m2−···−mn−n+1=k
m2,...,mn∈Z

((YV )m1(u1) · · · (YV )mn(un)v) z
−m1−1
1 · · · z−mn−1

n

4. The conclusion of Summary 2.2.15 has to be modified, as everything now sits in

>
V . Since all the YV (u1, z1) · · ·YV (un, zn)v spans only a very small subspace in V ,

we don’t think it necessary to give an explicit formulation.

5. The conclusion of Remark 2.2.16 still hold, as we did prove the absolute conver-

gence of the series
∑
k∈Z

⟨v′, YV (u1, z1)πk1YV (u2, z2) · · ·πkn−1YV (un, zn)v⟩.

2.2.5 Iterate of two vertex operators

The V -description to vertex operators directly applies to the iterate of two vertex

operators. Let’s fix a nonzero z2 ∈ C and v ∈ V . Then the map

YV (·, z2)v : V → V

accepts only inputs in V . Likewise, for each k ∈ Z, we apply the projection operator

πk to get an element πkYV (u1, z1 − z2)v in V . Then we apply the vertex operator to

get YV (πk(YV (u1, z1 − z2)u2), z2)v ∈ V . Finally we sum up to get the infinite series∑
k∈Z

YV (πk(YV (u1, z1 − z2)u2), z2)v
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of elements in V . The following proposition makes sense of the infinite series for some

choices of z1, z2:

Proposition 2.2.19. For any u1, u2, v ∈ V and any complex numbers z1, z2 satisfying

|z2| > |z1 − z2| > 0, the single series

∑
k∈Z

YV (πk(YV (u1, z1 − z2)u2), z2)v

of elements in V converges absolutely, i.e., the complex series

∑
k∈Z

⟨v′, YV (πk(YV (u1, z1 − z2)u2), z2)v⟩

converges absolutely. Its sum is equal to the V element given by

YV (YV (u1, z1 − z2)u2, z2)v

Proof. We first verify this for homogeneous u1, u2, v ∈ V . Since

YV (u1, z1 − z2)u2 =
∑
m∈Z

(YV )m(u1)u2(z1 − z2)
−m−1

For k ∈ Z, we apply πk:

πkYV (u1, z1 − z2)u2 = (YV )m(k)(u1)u2(z1 − z2)
−m(k)−1

where m(k) = wt (u1) + wt (u2)− k − 1. So

YV (πkYV (u1, z1 − z2)u2, z2)v =
∑
n∈Z

(YV )n((YV )m(k)(u1)u2)z
−n−1
2 (z1 − z2)

−m(k)−1

gives an element in V , with the projection in V(l) being

πlYV (πkYV (u1, z1 − z2)u2, z2)v = (YV )n(l)((YV )m(k)(u1)u2)z
−n(l)−1
2 (z1 − z2)

−m(k)−1

where n(l) = wt u1+wt u2+wt v−m(k)− l−2. The summation
∑
k∈Z

YV (πkYV (u1, z1−

z2)u2, z2)v makes sense in V if for every l ∈ Z and every v′ ∈ V ∗
(l),∑

k∈Z
⟨v′, YV (πkYV (u1, z1 − z2)u2, z2)v⟩

=
∑
k∈Z

⟨v′, (YV )n(l)((YV )m(k)(u1)u2)⟩z
−n(l)−1
2 (z1 − z2)

−m(k)−1
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converges. Note that the the second part of the rationality (Axiom 4) states that when

|z2| > |z1 − z2| > 0, the double series

⟨v′, YV (YV (u1, z1−z2)u2, z2)v⟩ =
∑
m∈Z

∑
n∈Z

⟨v′, (YV )m ((YV )n(u1)u2) v⟩(z1−z2)
−n−1z−m−1

2

converges absolutely. So YV (YV (u1, z1− z2)u2, z2)v is an element in V . Moreover, since

u1, u2, v are homogeneous, ⟨v′, (YV )m ((YV )n(u1)u2) v⟩ is zero except when wt (u1) +

wt (u2) + wt (v)− n−m− 2 = l. So the series

∑
m+n=wt(u1)+wt(u2)+wt(v)−l−2

m,n∈Z

⟨v′, (YV )m ((YV )n(u1)u2) v⟩(z1 − z2)
−n−1z−m−1

2

converges absolutely. With a rearrangement we will recover the series we want

∑
k∈Z

⟨v′, (YV )n(l)((YV )m(k)(u1)u2)⟩z
−n(l)−1
2 (z1 − z2)

−m(k)−1,

So we proved that the sum
∑
k∈Z

YV (πkYV (u1, z1 − z2)u2, z2)v absolutely converges to an

element in V when |z2| > |z1 − z2| > 0, where the element is given by YV (YV (u1, z1 −

z2)u2, z2).

For general nonhomogeneous u1, u2, v, write

u1 =
∑

j1 finite

u
(p1j1

)

1 , u2 =
∑

j finite

u
(p2j2

)

2 , v =
∑

m finite

v(qm)

We already know from above that for each fixed j1, j2,m and each fixed l ∈ Z and

v′ ∈ V ∗
(l),

⟨v′, YV (YV (u
(pj1 )
1 , z1 − z2)u

(pj2 )
2 , z2)v

(qm)⟩ =
∑
k∈Z

⟨v′, YV (πkYV (u
(pj1 )
1 , z1 − z2), z2)v

(qm)⟩,

it follows that

⟨v′, YV (YV (u1, z1 − z2)u2, z2)v⟩ =
∑

j,m,n finite

⟨v′, YV (YV (u
(pj1 )
1 , z1 − z2)u

(pj2 )
2 , z2)v

(qm)⟩

=
∑

j,m,n finite

∑
k∈Z

⟨v′, YV (πkYV (u
(pj1 )
1 , z1 − z2)u

(pj2 )
2 , z2)v

(qm)⟩

=
∑
k∈Z

∑
j,m,n finite

⟨v′, YV (πkYV (u
(pj1 )
1 , z1 − z2)u

(pj2 )
2 , z2)v

(qm)⟩

=
∑
k∈Z

⟨v′, YV (πkYV (u1, z1 − z2)u2, z2)v⟩
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the third equality of which is justified because a finite sum of absolutely convergent series

is still absolutely convergent, and for absolutely convergent series the order of summa-

tion can be rearranged. So we proved that the sum
∑
k∈Z

YV (πkYV (u1, z1 − z2)u2, z2)v

absolutely converges to an element in V when |z2| > |z1 − z2| > 0, where the element

is given by YV (YV (u1, z1 − z2)u2, z2)v.

Summary 2.2.20. For fixed z1, z2 satisfying |z2| > |z1 − z2| > 0, the iterate of two

vertex operators gives rise to a map

YV (YV (·, z1 − z2)·, z2)· : V ⊗ V ⊗ V → V

which is equal to the sum∑
k∈Z

YV (πkYV (·, z1 − z2)·, z2)· : V ⊗ V ⊗ V → V

Remark 2.2.21. Just as in Remark 2.2.13, We emphasize that for general u1, u2, v ∈ V ,

the series ∑
k∈Z

YV (πkYV (u1, z1 − z2)u2, z2)v

is a single series of elements in V and should not be recognized as the same series as

YV (YV (u1, z1 − z2)u2, z2)v =
∑
m∈Z

∑
n∈Z

(YV )n((YV )m(u1)v)(z1 − z2)
−m−1z−n−1

2

which is a double series of elements in V . It is their sums that are equal when |z2| >

|z1 − z2| > 0, not the series themselves.

Taking the associativity in Axiom 5 into account, we have the following:

Summary 2.2.22. For fixed z1, z2 satisfying |z1| > |z2| > |z1 − z2| > 0, the following

maps

YV (·, z1)YV (·, z2)· : V ⊗ V ⊗ V → V∑
k∈Z

YV (·, z1)πkYV (·, z2)· : V ⊗ V ⊗ V → V

YV (YV (·, z1 − z2)·, z2)· : V ⊗ V ⊗ V → V∑
k∈Z

YV (πkYV (·, z1 − z2)·, z2)· : V ⊗ V ⊗ V → V

are equal.
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Remark 2.2.23. When V is not grading-restricted, all the maps in Summary 2.2.22

are
>
V -valued.

2.3 Rationality of the iterate of n vertex operators

We shall use the V -valued maps interpretation to prove the rationality of the iteration

of any number of vertex operators, i.e., the series

⟨v′, YV (YV (· · ·YV (u1, z1 − z2)u2, · · · , zn−1 − zn)un, zn)v⟩

converges absolutely to the same rational function

⟨v′, YV (u1, z1) · · ·YV (un, zn)v⟩

for certain choices of (z1, ..., zn) ∈ Cn. As this is an analytic statement, some facts in

complex analysis will be needed.

2.3.1 A note on complex analysis

Definition 2.3.1. A multicircular domain E ⊆ Cn (centered at the origin) is an open

subset such that

(z1, ..., zn) ∈ E implies (z1e
iθ1 , ..., zne

iθn) ∈ E

for every θ1, ..., θn ∈ R. The trace of a multicircular domain E ⊂ C is given by

TrE = {(|z1|, ..., |zn|) ∈ Rn
+ : (z1, ..., zn) ∈ E}

We need the following results in several complex variable functions (see for example

[KW]

Lemma 2.3.2. A multicircular domain E ⊂ Cn is connected if and only if TrE ⊂ Rn
+

is connected.

Proof. Since the map ϕ : Cn → Rn
+ : (z1, ..., zn) → (|z1|, ..., |zn|) is continuous, thus if

E is connected then TrE is also connected. Conversely, if E = E1 ∪E2 with E1 ∩E2 =

∅, then both E1 and E2 are multicircular, and ϕ(E) = ϕ(E1) ∪ ϕ(E2). We claim
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that ϕ(E1) ∩ ϕ(E2) = ∅. Suppose this is not the case, then there exists two points

(z1, ..., zn) ∈ E1 and (w1, ..., wn) ∈ E2 such that |z1| = |w1|, ..., |zn| = |wn|. Hence

there exists θ1, ..., θn ∈ R such that z1 = eiθ1w1, ..., zn = eiθnwn. But since E2 is also

multicircular, this is to say that (z1, ..., zn) is also in E2,

Theorem 2.3.3. Let E be a connected multicircular domain. Let f be a holomorphic

function on E. Then there is a unique n-variable Laurent series with center 0 and

constant coefficients which converges to f(z1, ..., zn) at every point of E for some total

ordering of its terms. It is the series

∑
α1∈Z,...,αn∈Z

cα1...αnz
−α1−1
1 · · · z−αn−1

n

whose coefficients are given by the formula

cα1...αn =
1

(2πi)n

∫
· · ·
∫
T (0,r)

f(z)zα1
1 · · · zαn

n dz1 · · · dzn

for any r = (r1, ..., rn) > 0 in the trace of E. The series will actually be absolutely

convergent on E and it will converge uniformly to f on any compact subset of E.

Proof. See Theorem 1.5.4, Theorem 2.7.1 and the discussion in Section 2.8 of [KW].

Remark 2.3.4. If the Laurent series is lower-truncated in zn, let −Mn be a lower bound

of the powers of zn, then one can recover the coefficient of zn from the derivatives of

zMn
n f(z1, ..., zn). More precisely, we have

∑
α1,...,αn−1∈Z

cα1...αnz
α1
1 · · · zαn−1

n−1 =
1

(αn +Mn)!
lim
zn=0

(
∂

∂zn

)αn+Mn

(zMn
n f(z1, ..., zn))

Lemma 2.3.5. Let f be a rational function in z1, z2. Let T be a connected multicircular

domain on which the lowest power of z2 in the Laurent series expansion of f(z1, z2) is

the same as the order of pole z2 = 0. Let S be a nonempty open subset of T and S′ be

the image of S via the projection (z1, z2) 7→ z1. Assume that for any fixed k2 ∈ Z, the

series ∑
k1∈Z

ak1k2z
k1
1
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converges absolutely for every z1 ∈ S′, and

∑
k2∈Z

∑
k1∈Z

ak1k2z
k1
1

 zk22 , (2.2)

viewed as a series whose terms are
(∑

k1∈Z ak1k2z
k1
1

)
zk22 , is lower-truncated in z2 and

converges absolutely to f(z1, z2) whenever (z1, z2) ∈ S. Then the corresponding multi-

series ∑
k1,k2∈Z

ak1k2z
k1
1 zk22 (2.3)

converges absolutely to f(z1, z2) whenever |z1| > |z2| > 0.

Proof. Fix z1 ∈ C and let z2 ∈ C such that (z1, z2) ∈ S. Since S is open and the series

∑
k2∈Z

∑
k1∈Z

ak1k2z
k1
1

wk2
2 ,

is lower-truncated in w2, one can find a real number r ≥ |z2| > 0 (depending on z1)

such that the series converges absolutely in the region {w2 ∈ C : 0 < |w2| < r} to

f(z1, w2). By assumption, the power of w2 is lower-truncated. Let M2 be the lowest

power of w2. Then

wM2
2

∑
k2∈Z

∑
k1∈Z

ak1k2z
k1
1

wk2
2 ,

is a power series with variable w2, which converges uniformly in the region {w2 ∈ C :

|w2| < r} to wM1
2 f(z1, w2). In particular, wM1

2 f(z1, w2) is defined when w2 = 0. From

the limit ratio test and the fact that limn→∞ n/(n + 1) = 1 < 2, one sees that the

derivative of the series

∑
k2∈Z

(k2 +M2)

∑
k1∈Z

ak1k2z
k1
1

wk2+M2−1
2

converges uniformly in the region {w2 ∈ C : |w2| < r/2}. Thus we can perform term-

by-term partial differentiation, then evaluate w2 = 0, to conclude that for each k2 ∈ Z

∑
k1∈Z

ak1k2z
k1
1 = lim

w2=0

(
∂

∂w2

)k2+M2

(wM2
2 f(z1, w2))

As the left-hand-side is an absolutely convergent series, the right-hand-side is a

holomorphic function in z1 that is defined on an open set in C (the image of S via
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the projection (z1, z2) 7→ z1, which is open). Thus one can find an annulus where

the left-hand-side converges absolutely. In particular, if we use gk2(z1) to denote the

holomorphic function defined by the right-hand-side, then gk2(z1) is defined on an

annulus. With Theorem 2.3.3, we know that
∑

k1∈Z
ak1k2z

k1
1 is precisely the Laurent

series expansion of gk2(z1), with

ak1k2 =

∫
γ
z−k1−1
1 gk2(z1)dz1

for some circle γ.

Now we consider the Laurent series expansion of f(z1, z2). By Theorem 2.3.3, this

function can be expanded uniquely as a Laurent series in z1, z2 on T . By assumption,

the lowest power of z2 in this double series is bounded below by the order of pole z2 = 0.

As pointed out above, the function zM2
2 f(z1, z2) is defined when z2 = 0, so the order

of pole is bounded below by −M2. Thus for each k2 ∈ Z, the coefficient of zk22 in this

series expansion is precisely

lim
z2=0

(
∂

∂z2

)k2+M2

(zM2
2 f(z1, z2))

that coincides with gk2(z1). Moreover, from the way of expansion, one easily sees that

gk2(z1) is a polynomial function in z1 (with possibly finitely negative powers of z1).

Thus gk2(z1) is defined on γ and one can perform the integration on γ. Therefore, the

coefficient of zk11 zk22 in the Laurent series expansion of f(z1, z2) is precisely∫
γ
z−k1−1
1 gk2(z1)dz1 =

∫
γ
z−k1−1
1 lim

z2=0

(
∂

∂z2

)k2+M2

(zM2
2 f(z1, z2))dz1

which coincides with ak1k2 .

So we proved that the double series

∑
k1,k2∈Z

ak1k2z
k1
1 zk22

is precisely the Laurent series expansion of the function f(z1, z2) in the T . In particular,

this double series converges absolutely for every (z1, z2) ∈ T .

To generalize the above lemma, we need the following lemma:
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Lemma 2.3.6 (Hartogs’ Theorem). Let U ⊆ Cn be an open set and f : U → C.

Suppose that for each i = 1, ..., n and each fixed z1, ..., zi−1, zi+1, ..., zn, the function

ζ 7→ f(z1, ..., zi−1, ζ, zi+1, ..., zn)

is holomorphic, in the classical one-variable sense, on the set

U(z1, ..., zi−1, zi+1, ..., zn) := {ζ ∈ C : (z1, ..., zi−1, ζ, zi+1, ..., zn) ∈ U}

Then f is holomorphic on U .

Proof. See [K], Theorem 1.2.5.

Lemma 2.3.7. Let n be a positive integer. Let f be a rational function in z1, ..., zn. Let

T be a connected multicircular domain on which the lowest power of zn in the Laurent

series expansion of f(z1, ..., zn) is the same as the negative of the order of pole zn = 0.

Let S be a nonempty open subset of T and S′ be the image of S via the projection

(z1, ..., zn) 7→ (z1, ..., zn−1). Assume that for each fixed kn ∈ Z, the series

∑
k1,k2,...,kn−1∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkn−1

n−1

converges absolutely for every (z1, z2, ..., zn−1) ∈ S′, and

∑
kn∈Z

 ∑
k1,k2,...,kn−1∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkn−1

n−1

 zknn , (2.4)

viewed as a series whose terms are

( ∑
k1,k2,...,kn−1∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkn−1

n−1

)
zknn , is

lower-truncated in zn and converges to f(z1, ..., zn) for every (z1, z2, ..., zn−1, zn) ∈ S.

Then the corresponding Laurent series

∑
k1,k2,...,kn−1,kn∈Z

ak1k2...knz
k1
1 zk22 · · · zkn−1

n−1 zknn , (2.5)

converges absolutely to f(z1, ..., zn) for every (z1, ..., zn) ∈ T

Proof. Fix z1, ..., zn−1 ∈ C and let zn ∈ C such that (z1, ..., zn) ∈ S. Since the series

∑
kn∈Z

 ∑
k1,...,kn−1∈Z

ak1...knz
k1
1 · · · zkn−1

n−1

wkn
n ,
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is lower-truncated in wn and converges when wn = zn and S is open, one can find a

real number r ≥ |zn| > 0 (depending on z1, ..., zn−1) such that the series converges

absolutely in the region {wn ∈ C : 0 < |wn| < r} to f(z1, ..., zn−1, wn). Let −Mn be

the lowest power of wn. Then

wMn
n

∑
kn∈Z

 ∑
k1,...,kn−1∈Z

ak1...knz
k1
1 · · · zkn−1

n−1

wkn
n ,

is a power series with variable wn, which converges uniformly in the region {wn ∈ C :

|wn| < r} to wM1
n f(z1, ..., zn−1, wn). In particular, wM1

n f(z1, ..., zn−1, wn) is defined

when wn = 0. From the limit ratio test and the fact that limn→∞ n/(n + 1) = 1 < 2,

one sees that the derivative of the series

∑
kn∈Z

(kn +Mn)

 ∑
k1,...,kn−1∈Z

ak1...knz
k1
1 · · · zkn−1

n−1

wk2+M2−1
2

converges uniformly in the region {wn ∈ C : |wn| < r/2}. Thus we can perform term-

by-term partial differentiation, then evaluate wn = 0, to conclude that for each kn ∈ Z

∑
k1,...,kn−1∈Z

ak1...knz
k1
1 · · · zkn−1

n−1 = lim
wn=0

(
∂

∂wn

)kn+Mn

(wM2
n f(z1, ..., zn−1, wn))

We denote the right-hand-side function as gkn(z1, ..., zn−1) and prove that it is

holomorphic on S′. Here we will use Hartogs’ theorem. Fix i = 1, ..., n − 1 and

z1, ..., zi−1, zi+1, ..., zn−1. Then for every ζ ∈ S′(z1, ..., zi−1, zi+1, ..., zn−1), since the

left-hand-side series

∑
k1,...,kn∈Z

ak1...knz
k1
1 · · · zki−1

i−1 ζkiz
ki+1

i+1 · · · zkn−1

n−1

is an absolutely convergent multi-Laurent series in z1, ..., ζ, ..., zn−1, in particular, we

can arrange it as an absolutely convergent single Laurent series in ζ:

∑
ki∈Z

 ∑
k1,...,ki−1,ki+1,...,kn∈Z

ak1...knz
k1
1 · · · zki−1

i−1 z
ki+1

i+1 · · · zkn−1

n−1

 ζki

where the parenthesis sum is now treated as the coefficient of the single Laurent series.

Then from the absolute convergence, the limit function of this single Laurent series
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is holomorphic at every ζ ∈ S′(z1, ..., zi−1, zi+1, ..., zn−1). In other words, the right-

hand-side function gkn(z1, ..., zi−1, ζ, zi+1, ..., zn) is holomorphic in the classical one-

variable sense on s′(z1, ..., zi−1, zi+1, ..., zn−1). So from Hartog’s theorem, we conclude

that gkn(z1, ..., zn−1) is holomorphic on S′.

Since in the multicircular domain {(eiθ1z1, ..., eiθn−1zn−1) : (z1, ..., zn−1) ∈ S′, θ1, ..., θn−1 ∈

[0, 2π)}, the left-hand-side series converges absolutely, gkn(z1, ..., zn−1) is defined on this

multicircular domain. With Theorem 2.3.3, we know that
∑

k1,...,kn−1∈Z
ak1...knz

k1
1 · · · zkn−1

n−1

is precisely the Laurent series expansion of gkn(z1, ..., zn), with

ak1...kn =

∫
· · ·
∫
γ
z−k1−1
1 · · · z−kn−1−1

n−1 gkn(z1, ..., zn−1)dz1 · · · dzn−1

where γ = {(r1eiθ, · · · rn−1e
iθn−1) : θ1, ..., θn−1 ∈ [0, 2π)} with any (r1, ..., rn) ∈Tr S′.

Now we consider the Laurent series expansion of f(z1, ..., zn). By Theorem 2.3.3,

this function can be expanded uniquely as a Laurent series in z1, ..., zn on T . By

assumption, the lowest power of zn in this series is bounded below by the order of pole

zn = 0. As pointed out above, the function zM2
n f(z1, ..., zn) is defined when zn = 0, so

the order of pole is bounded below by −M2. Thus for each kn ∈ Z, the coefficient of

zk2n in this series expansion is precisely

lim
zn=0

(
∂

∂zn

)kn+Mn

(zMn
n f(z1, ..., zn))

that coincides with gkn(z1, ..., zn). Thus we can perform the integration on the multicir-

cle γ, to see the coefficient of zk11 · · · zknn in the Laurent series expansion of f(z1, ..., zn)

is precisely∫
· · ·
∫
γ
z−k1−1
1 · · · z−kn−1−1

n gk2(z1, ..., zn−1)dz1 · · · dzn−1

=

∫
· · ·
∫
γ
z−k1−1
1 · · · zkn−1

n−1 lim
zn=0

(
∂

∂zn

)kn+Mn

(zMn
n f(z1, ..., zn))dz1 · · · dzn−1

which coincides with ak1...kn .

So we proved that the multiseries∑
k1,...,kn∈Z

ak1...knz
k1
1 · · · zknn

is precisely the Laurent series expansion of the function f(z1, ..., zn) in the region T . In

particular, this multiseries converges absolutely in T .
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The following generalization of Lemma 2.3.7 can be proved similarly and will be

frequently quoted in future papers.

Lemma 2.3.8. Let n be a positive integer. Let f be a rational function in z1, ..., zn. Let

T be a connected multicircular domain on which the lowest power of zn in the Laurent

series expansion of f(z1, ..., zn) is the same as the order of pole zn = 0. Let S be a

nonempty open subset of T and S′ be the image of S via the projection (z1, ..., zn) 7→

(z1, ..., zn−1). Assume that for each fixed kp+1, ..., kn ∈ Z, the series

∑
k1,k2,...,kp∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkpp

converges absolutely for every (z1, z2, ..., zp) ∈ S′, and

∑
kn∈Z

 ∑
k1,k2,...,kp∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkpp

 z
kp+1

p+1 · · · zknn ,

viewed as a series whose terms are

( ∑
k1,k2,...,kp∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkpp

)
z
kp+1

p+1 · · · zknn ,

satisfies the following:

1. The series is lower truncated in zn. Moreover, for every i = p+2, ..., n− 1, every

fixed ki+1, ..., kn ∈ Z, the series is lower-truncated in zi.

2. The series converges absolutely to f(z1, ..., zn) for every (z1, z2, ..., zn−1, zn) ∈ S.

Then the corresponding Laurent series

∑
k1,k2,...,kn−1,kn∈Z

ak1k2...knz
k1
1 zk22 · · · zkn−1

n−1 zknn ,

converges absolutely to f(z1, ..., zn) for every (z1, ..., zn) ∈ T

Proof. For convenience, we only give a sketch of the steps here:

1. Fix kp+1, ..., kn ∈ Z. We first conclude that there exists positive integersMn, ...,Mp+1,

such that

∑
k1,...,kp∈Z

ak1...knz
k1
1 · · · zkpp = lim

(wp+1,...,wn)→(0,...,0)

(
∂

∂wp+1

)kp+1+Mp+1

· · ·
(

∂

∂wn

)kn+Mn

(w
Mp+1

p+1 · · ·wMn
n f(z1, ..., zp, wp+1, ..., wn)).
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2. Denote by gkp+1...kn(z1, ..., zp) the function that maps (z1, ..., zp) to the right-hand-

side. Then we use Hartogs’ theorem to conclude that the gkp+1...kn(z1, ..., zp) is

holomorphic on S′.

3. One sees that the left-hand-side series is precisely the Laurent series expansion of

gkp+1...kn(z1, ..., zp) on the multicircular domain{(eiθ1z1, ..., eiθpzp) : (z1, ..., zp) ∈

S′, θ1, ..., θp ∈ [0, 2π)}. In particular,

ak1...kn =

∫
· · ·
∫
γ
z−k1−1
1 · · · z−kp−1

p gkp+1...kn(z1, ..., zp)dz1 · · · dzp

where γ = {(r1eiθ, · · · rn−1e
iθp) : θ1, ..., θp ∈ [0, 2π)} for any (r1, ..., rn) ∈Tr S′.

4. Consider the Laurent series expansion of f(z1, ..., zn) on T . Argue that the series

coefficient of zk11 · · · zknn in the Laurent series expansion of f(z1, ..., zn) is precisely∫
· · ·
∫
γ
z−k1−1
1 · · · z−kp−1

p gkp+1...kn(z1, ..., zp)dz1 · · · dzp

which coincides with ak1...kn . Thus the series

∑
kn∈Z

 ∑
k1,k2,...,kp∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkpp

 z
kp+1

p+1 · · · zknn

converges absolutely for every (z1, ..., zn) ∈ T .

For iterated series that are “locally” upper truncated, we also have a similar result.

Lemma 2.3.9. Let n be a positive integer. Let f be a rational function in z1, ..., zn. Let

T be a connected multicircular domain on which the highest power of zn in the Laurent

series expansion of f(z1, ..., zn) is the same as the negative of the order of pole zn = ∞.

Let S be a nonempty open subset of T and S′ be the image of S via the projection

(z1, ..., zn) 7→ (z1, ..., zn−1). Assume that for each fixed kn ∈ Z, the series∑
k1,k2,...,kn−1∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkn−1

n−1

converges absolutely for every (z1, z2, ..., zn−1) ∈ S′, and

∑
kn∈Z

 ∑
k1,k2,...,kn−1∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkn−1

n−1

 zknn ,
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viewed as a series whose terms are

( ∑
k1,k2,...,kn−1∈Z

ak1k2...kn−1knz
k1
1 zk22 · · · zkn−1

n−1

)
zknn , is

upper-truncated in zn and converges to f(z1, ..., zn) for every (z1, z2, ..., zn−1, zn) ∈ S.

Then the corresponding Laurent series∑
k1,k2,...,kn−1,kn∈Z

ak1k2...knz
k1
1 zk22 · · · zkn−1

n−1 zknn ,

converges absolutely to f(z1, ..., zn) for every (z1, ..., zn) ∈ T

Proof. It suffices to perform the transformation zn 7→ 1/zn and apply the Lemma

2.3.7

2.3.2 Iterate of three vertex operators

With the above preparation, we can start to deal with vertex operators. To make it

easier, we first investigate the iterate of three vertex operators, i.e.

⟨v′, YV (YV (YV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩.

To show that this series converges absolutely and to find the region of convergence, we

need the following intermediate proposition:

Proposition 2.3.10. For any u1, u2, u3, v ∈ V, v′ ∈ V ′, fixed z1, z2, z3 ∈ C satisfying

|z2| > |z1 − z2 − z3|, |z2| > |z1 − z2| > 0, |z2| > |z3| > 0, the series∑
k∈Z

⟨v′, YV (πkYV (u1, z1 − z2)u2, z2 − z3)πlYV (u3, z3)v⟩

converges absolutely to the rational function that is determined by

⟨v′, YV (u1, z1)YV (u2, z2)YV (u3, z3)v⟩

Proof. From Summary 2.2.15 and Remark 2.2.16,

⟨v′, YV (u1, z1)YV (u2, z2)YV (u3, z3)v⟩ =
∑
k∈Z

∑
l∈Z

⟨v′, YV (u1, z1)πkYV (u2, z2)πlYV (u3, z3)v⟩

gives a rational function on {(z1, z2, z3) ∈ C3 : |z1| > |z2| > |z3| > 0} that has the only

possible poles at z1 = 0, z2 = 0, z3 = 0, z1 = z2, z2 = z3, z1 = z3. Denote this rational

function by f(z1, z2, z3). Then

f(z1, z2, z3) =
g(z1, z2, z3)

zp11 zp22 zp33 (z1 − z2)p12(z2 − z3)p23(z1 − z3)p13
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for some integers p1, p2, p3, p12, p23, p13 ≥ 0 and some polynomial g(z1, z2, z3).

Now we fix l and consider the series∑
k∈Z

YV (u1, z1)πkYV (u2, z2)(πlYV (u3, z3)v)

where πlYV (u3, z3)v is an element in V . As part of an absolutely convergent double

series, it is also absolutely convergent. From Summary 2.2.22, it is equal to∑
k∈Z

YV (πkYV (u1, z1 − z2)u2, z2)πlYV (u3, z3)v

when |z1| > |z2| > |z1 − z2| > 0 for each fixed l. We sum up all l ∈ Z to see that∑
l∈Z

(∑
k∈Z

YV (πkYV (u1, z1 − z2)u2, z2)πlYV (u3, z3)v

)
viewed as a series whose terms are

∑
k∈Z

YV (πkYV (u1, z1 − z2)u2, z2)πlYV (u3, z3)v, con-

verges absolutely and the sum is equal to YV (u1, z1)YV (u2, z2)YV (u3, z3)v when z1, z2, z3 ∈

C satisfy |z1| > |z2| > |z3| > 0, |z2| > |z1 − z2| > 0. In other words,∑
l∈Z

(∑
k∈Z

⟨v′, YV (πkYV (u1, z1 − z2)u2, z2)πlYV (u3, z3)v⟩

)
viewed as a complex series whose terms are

∑
k∈Z

⟨v′, YV (πkYV (u1, z1−z2)u2, z2)πlYV (u3, z3)v⟩,

converges to f(z1, z2, z3) when |z1| > |z2| > |z3| > 0, |z2| > |z1 − z2| > 0.

To see that the double series∑
l∈Z

∑
k∈Z

⟨v′, YV (πkYV (u1, z1 − z2)u2, z2)πlYV (u3, z3)v

converges absolutely to f(z1, z2, z3) when |z2| > |z3| + |z1 − z2|, |z3| > 0, |z1 − z2| > 0,

we need to apply Lemma 2.3.7 with the following parameter transformation ζ1 = z1 −

z2, ζ2 = z2, ζ3 = z3. Let

T = {(ζ1, ζ2, ζ3) : |ζ2| > |ζ3|+ |ζ1|, |ζ1| > |ζ3| > 0}}

With Lemma 2.3.2, we see that T is a connected multicircular domain. Moreover, T is

a subset of {(ζ1, ζ2, ζ3) : |ζi| > |ζ3|, i = 1, 2}. Now we express the function f(z1, z2, z3)in

terms of the variables ζ1, ζ2, ζ3 as

f(ζ1 + ζ2, ζ2, ζ3) =
g(ζ1 + ζ2, ζ2, ζ3)

(ζ1 + ζ2)p1ζ
p2
2 ζp33 ζp121 (ζ2 − ζ3)p23(ζ1 + ζ2 − ζ3)p13

,

admits an expansion as Laurent series in ζ1, ζ2, ζ3 by the following steps
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1. Expand the negative powers of ζ1 + ζ2 as a power series ζ1. The resulted series

converges when |ζ2| > |ζ1|.

2. Expand the negative powers of ζ2 − ζ3 as a power series of ζ3. The resulted series

converges when |ζ2| > |ζ3|.

3. Expand the negative powers of ζ1+ ζ2− ζ3 as power series of ζ1− ζ3, then further

expand all the positive power of ζ1 − ζ3 as polynomials. The resulted series

converges in |ζ2| > |ζ1 − ζ3|.

Obviously elements if (ζ1, ζ2, ζ3) ∈ T , then all the above conditions are satisfied (note

that |ζ2| > |ζ3| + |ζ1| implies that |ζ2| > |ζ1 − ζ3| by triangle inequality). Thus f(ζ1 +

ζ2, ζ2, ζ3) is expanded as an absolutely convergent Laurent series in T . From Theorem

2.3.3, the Laurent series is unique. Note that the lowest power of ζ3 in this Laurent is

−p3.

Set

S = {(ζ1, ζ2, ζ3) ∈ C3 : |ζ1 + ζ2| > |ζ2| > |ζ3| > 0, |ζ2| > |ζ1| > 0} ∩ T

Obviously, S is a nonempty open subset of T . We know that the series∑
k∈Z

⟨w′, Y L
W (πV

k YV (u1, ζ1)u2, ζ2)π
W
l Y L

W (u3, ζ3)w⟩

is absolutely convergent whenever (ζ1, ζ2, ζ3) ∈ S, and the series

∑
l∈C

(∑
k∈Z

⟨w′, Y L
W (πV

k YV (u1, ζ1)u2, ζ2)π
W
l Y L

W (u3, ζ3)w⟩

)
,

viewed as a series whose terms are
∑
k∈Z

⟨w′, Y L
W (πV

k YV (u1, ζ1)u2, ζ2)π
W
l Y L

W (u3, ζ3)w⟩, is

lower-truncated in z3 and absolutely convergent to f(ζ1+ζ2, ζ2, ζ3) whenever (ζ1, ζ2, ζ3) ∈

S. Thus Lemma 2.3.7 implies that the series∑
l∈C

∑
k∈Z

⟨w′, Y L
W (πV

k YV (u1, ζ1)u2, ζ2)π
W
l Y L

W (u3, ζ3)w⟩

converges absolutely when (ζ1, ζ2, ζ3) ∈ T .

Finally, since the expansion of the rational function is done in the region

{(ζ1, ζ2, ζ3) ∈ C3 : |ζ2| > |ζ1 − ζ3|, |ζ2| > |ζ1| > 0, |ζ2| > |ζ3| > 0},
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the Laurent series also converges absolutely in this region. That is to say, in terms of

variables z1, z2, z3, the series

∑
l∈C

∑
k∈Z

⟨w′, Y L
W (πV

k YV (u1, z1 − z2)u2, z2)π
W
l Y L

W (u3, z3)w⟩

converges absolutely to f(z1, z2, z3) when |z2| > |z1− z2− z3|, |z2| > |z1− z2| > 0, |z2| >

|z3| > 0.

Proposition 2.3.11. For any u1, u2, u3, v ∈ V, v′ ∈ V ′, fixed z1, z2, z3 ∈ C satisfying

|z3| > |z1 − z3|, |z2 − z3| > |z1 − z2| > 0, the series

⟨v′, YV (YV (YV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩

converges absolutely to the rational function determined by

⟨v′, YV (u1, z1)YV (u2, z2)YV (u3, z3)v⟩

Proof. We proceed similarly based on the result above: in the double series

∑
l∈Z

∑
k∈Z

YV (πkYV (u1, z1 − z2)u2, z2)πlYV (u3, z3)v

we fix k and consider the series

∑
l∈Z

YV (πkYV (u1, z1 − z2)u2, z2)πlYV (u3, z3)v

where πkYV (u1, z1 − z2)u2 is an element in V . As part of an absolutely convergent

double series, this series is also absolutely convergent. From Summary 2.2.22, it is

equal to ∑
l∈Z

YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v

when |z2| > |z3| > |z2 − z3| > 0. We sum up all k ∈ Z. From the proof of the previous

proposition,

∑
k∈Z

(∑
l∈Z

YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v

)
,

viewed as a series whose terms are
∑
l∈Z

YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v,

converges absolutely and the sum is equal to YV (u1, z1)YV (u2, z2)YV (u3, z3)v when
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z1, z2, z3 ∈ C satisfy |z2| > |z2 − z3| > 0, |z2| > |z3|+ |z1 − z2|, |z1 − z2| > 0, |z3| > 0. In

other words,

∑
k∈Z

(∑
l∈Z

⟨v′, YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩

)
,

viewed as a series whose terms are
∑
l∈Z

⟨v′, YV (πlYV (πkYV (u1, z1−z2)u2, z2−z3)u3, z3)v⟩,

converges absolutely to f(z1, z2, z3) when |z2| > |z2−z3|, |z2| > |z3|+|z1−z2|, |z1−z2| >

0, |z3| > 0. Moreover, one sees that the power of (z1−z2) in this series is lower-truncated.

We claim that the double series

∑
k∈Z

∑
l∈Z

⟨v′, YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩,

converges absolutely to f(z1, z2, z3) when |z3| > |z1−z2|+|z2−z3|, |z2−z3| > |z1−z2| >

0.

To apply Lemma 2.3.7, we perform the transformation ζ1 = z1−z2, ζ2 = z2−z3, ζ3 =

z3. Set

T = {(ζ1, ζ2, ζ3) : |ζ3| > |ζ1|+ |ζ2|, |ζ2| > |ζ1| > 0}

With Lemma 2.3.2, we see that T is a connected multicircular domain Moreover, T is

a subset of {(ζ1, ζ2, ζ3) ∈ C3 : |ζi| > |ζ1|, i = 2, 3}. We express the function f(z1, z2, z3)

in terms of the variables ζ1, ζ2, ζ3 as

f(ζ1 + ζ2 + ζ3, ζ2 + ζ3, ζ3) =
g(ζ1 + ζ2 + ζ3, ζ2 + ζ3, ζ3)

(ζ1 + ζ2 + ζ3)p1(ζ2 + ζ3)p2ζ
p3
3 ζp121 ζp232 (ζ1 + ζ2)p

13 ,

which admits a Laurent series expansion in the following steps:

1. Expand negative powers of ζ1 + ζ2 + ζ3 as power series of ζ1 + ζ2, then further

expand the positive powers of ζ1 + ζ2 as polynomials in ζ1 and ζ2. This series

converges absolutely when |ζ3| > |ζ1 + ζ2|

2. Expand negative powers of ζ2 + ζ3 as power series of ζ2. This series converges

absolutely when |ζ3| > |ζ2|

3. Expand negative powers of ζ1 + ζ2 as power series of ζ1. This series converges

absolutely when |ζ2| > |ζ1|
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Obviously if (ζ1, ζ2, ζ3) ∈ E, then all the above conditions are satisfied (Note that |ζ3| >

|ζ1|+|ζ2| implies that |ζ3| > |ζ1+ζ2| by triangle inequality). Thus f(ζ1+ζ2, ζ2+ζ3, ζ3) is

expressed as an absolutely convergent Laurent series. From Theorem 2.3.3, the Laurent

series is unique.

Set

S = {(ζ1, ζ2, ζ3) : |ζ2| > |ζ3|+ |ζ1|, |ζ1| > 0, |ζ3| > 0} ∩ T.

So S is a nonempty open subset of T . We know that the series

∑
l∈Z

⟨w′, Y L
W (πV

l YV (π
V
k YV (u1, ζ1)u2, ζ2)u3, ζ3)w⟩

converges absolutely when (ζ1, ζ2, ζ3) ∈ S, and the series

∑
k∈Z

(∑
l∈Z

⟨w′, Y L
W (πV

l YV (π
V
k YV (u1, ζ1)u2, ζ2)u3, ζ3)w⟩

)
,

viewed as a series whose terms are
∑
l∈Z

⟨w′, Y L
W (πV

l YV (π
V
k YV (u1, ζ1)u2, ζ2)u3, ζ3)w⟩, con-

verges absolutely to f(ζ1 + ζ2, ζ2 + ζ3, ζ3) when (ζ1, ζ2, ζ3) ∈ S. Thus Lemma 2.3.7

implies that the series

∑
k∈Z

∑
l∈Z

⟨w′, Y L
W (πV

l YV (π
V
k YV (u1, ζ1)u2, ζ2)u3, ζ3)w⟩,

converges absolutely when (ζ1, ζ2, ζ3) ∈ T .

Finally, as the expansion is done in the region

{(ζ1, ζ2, ζ3) ∈ C3 : |ζ3| > |ζ1 + ζ2| > 0, |ζ3| > |ζ2| > |ζ1| > 0}

the series also converges absolutely in this region. That is to say, in terms of variables

z1, z2, z3, the series

∑
k∈Z

∑
l∈Z

⟨w′, Y L
W (πV

l YV (π
V
k YV (u1, z1 − z2)u2, z2 − z3)u3, z3)w⟩

converges absolutely to f(z1, z2, z3) when |z3| > |z1−z3|, |z3| > |z2−z3| > |z1−z2| > 0.

Now we claim that the triple series

⟨v′, YV (YV (YV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩

=
∑

m,n,p∈Z
⟨v′, (YV )p((YV )n((YV )m(u1)u2)u3)v⟩(z1 − z2)

−m−1(z2 − z3)
−n−1z−p−1

3
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of elements in V converges absolutely when |z3| > |z1−z2|+|z2−z3|, |z2−z3| > |z1−z2| >

0. We start by the special case when v′ ∈ V, u1, u2, u3, v ∈ V are homogeneous, when

the triple series degenerates to a double series

∑
m+n+p=wt(u1)+wt(u2)+wt(u3)−wt(v′)−3

m1,...,mn∈Z

⟨v′, (YV )p((YV )n((YV )m(u1)u2)u3)v⟩(z1−z2)
−m−1(z2−z3)

−n−1z−p−1
3 .

Note that in this case,

πkYV (u1, z1 − z2)u2 = (YV )n(k)(u1)u2(z1 − z2)
−n(k)−1

where n(k) = wt (u1) + wt (u2)− k − 1, and

πlYV (πkYV (u1, z1−z2)u2, z2−z3)u3 = (YV )m(l)((YV )n(k)(u1)u2)u3(z1−z2)
−n(k)(z2−z3)

−m(l)−1

where m(l) = k − l − 1 + wt (u3). So

YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v

=
∑
p

(YV )p((YV )m(l)((YV )n(k)(u1)u2)u3)v(z1 − z2)
−n(k)(z2 − z3)

−m(l)−1z−p−1
3

and finally

⟨v′, YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩

= ⟨v′, (YV )p((YV )m(l)((YV )n(k)(u1)u2)u3)v⟩(z1 − z2)
−n(k)(z2 − z3)

−m(l)−1z−p−1
3

where p = l − wt v′ − 1 + wt v. Since the double series∑
k∈Z

∑
l∈Z

⟨v′, YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩

=
∑
k∈Z

∑
l∈Z

⟨v′, (YV )p((YV )m(l)((YV )n(k)(u1)u2)u3)v⟩(z1 − z2)
−n(k)(z2 − z3)

−m(l)−1z−p−1
3

converges absolutely to f(z1, z2, z3) when |z3| > |z1−z2|+|z2−z3|, |z2−z3| > |z1−z2| >

0, so does the double series

∑
m+n+p=wt(u1)+wt(u2)+wt(u3)−wt(v′)−3

m1,...,mn∈Z

⟨v′, (YV )p((YV )n((YV )m(u1)u2)u3)v⟩(z1−z2)
−m−1(z2−z3)

−n−1z−p−1
3

as it is a rearrangement.
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For nonhomogeneous v′ ∈ V ′, u1, u2, u3, v ∈ V , we similarly write

v′ =
∑

i finite

(v′)(i), u1 =
∑

j1 finite

u
(p1j1

)

1 , u2 =
∑

j2 finite

u
(p2j2

)

2 , u3 =
∑

j3 finite

u
(p3j3

)

3 , v =
∑

m finite

v(qm).

It follows that∑
k∈Z

∑
l∈Z

⟨v′, YV (πlYV (πkYV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩

=
∑
k∈Z

∑
l∈Z

∑
i,j1,j2,j3,m finite

⟨(v′)(i), YV (πlYV (πkYV (u
(p1j1

)

1 , z1 − z2)u
(p2j2

)

2 , z2 − z3)u
(p3j3

)

3 , z3)v
(qm)⟩

=
∑

i,j1,j2,j3,m finite

∑
k∈Z

∑
l∈Z

⟨(v′)(i), YV (πlYV (πkYV (u
(p1j1

)

1 , z1 − z2)u
(p2j2

)

2 , z2 − z3)u
(p3j3

)

3 , z3)v
(qm)⟩

=
∑

i,j1,j2,j3,m finite

⟨(v′)(i1), YV (YV (YV (u
(p1j1

)

1 , z1 − z2)u
(p2j2

)

2 , z2 − z3)u
(p3j3

)

3 , z3)v
(qm)⟩

=⟨v′, YV (YV (YV (u1, z1 − z2)u2, z2 − z3)u3, z3)v⟩.

the third equality of which is justified because a finite sum of absolutely convergent

series is still absolutely convergent, and for absolutely convergent series the order of

summation can be rearranged. So we proved that the triple series ⟨v′, YV (YV (YV (u1, z1−

z2)u2, z2 − z3)u3, z3)v⟩ converges absolutely to f(z1, z2, z3) when |z3| > |z1 − z2|+ |z2 −

z3|, |z2 − z3| > |z1 − z2| > 0, where f(z1, z2, z3) is the same rational function that

⟨v′, YV (u1, z1)YV (u2, z2)YV (u3, z3)v⟩ converges to.

Remark 2.3.12. Although we are guided by the V -valued map interpretation laid

down in the previous sections, in the proof we only used the absolute convergence of

the corresponding complex series. So all the proofs and discussion here extends to the

case when V is not grading-restricted.

2.3.3 Iterate of any number of vertex operators

With induction one can prove:

Proposition 2.3.13. For u1, u2, ..., un, v ∈ V, v′ ∈ V ′, the series

⟨v′, YV (YV (· · ·YV (YV (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)v⟩

converges absolutely in the region(z1, ..., zn) ∈ Cn :
|zn| > |zi − zn| > 0, i = 1, ..., n;

|zi − zi+1| > |zj − zi| > 0, 1 ≤ j < i ≤ n− 1


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to the rational function that

⟨v′, YV (u1, z1)YV (u2, z2) · · ·YV (un, zn)v⟩

converges to.

Proof. Here we only give a brief sketch without going into the details. Assume the

conclusion is true for the product of n− 1 vertex operators.

1. Use Summary 2.2.15 to write

YV (u1, z1) · · ·YV (un, zn)v

=
∑

k1,...,kn−1∈Z
YV (u1, z1)πk1YV (u2, z2)πk2 · · ·YV (un−1, zn−1)πkn−1YV (un, zn)v

and hence

⟨v′, YV (u1, z1) · · ·YV (un, zn)v⟩

=
∑

k1,...,kn−1∈Z
⟨v′, YV (u1, z1)πk1YV (u2, z2)πk2 · · ·YV (un−1, zn−1)πkn−1YV (un, zn)v⟩

when |z1| > |z2| > · · · > |zn| > 0.

2. For each fixed kn−1, we use the induction hypothesis to see that∑
k1,...,kn−2∈Z

⟨v′, YV (u1, z1)πk1YV (u2, z2)πk2 · · ·YV (un−1, zn−1)πkn−1YV (un, zn)v⟩

=
∑

k1,...,kn−2∈Z
⟨v′, YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)πkn−1YV (un, zn)v⟩

when |z1| > |z2| > · · · > |zn| > 0, |zn−1| > |zi − zn−1| > 0, i = 1, ..., n − 2, |zi −

zi+1| > |zj − zi| > 0, 1 ≤ j < i ≤ n− 2. In particular, the right hand side, as an

(n− 1)-multiseries in z1 − z2, z2 − z3, ..., zn−2 − zn−1, zn−1, converges absolutely.

3. Summing up all kn−1’s to see that∑
kn−1∈Z

∑
k1,...,kn−2∈Z

⟨v′, YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)πkn−1YV (un, zn)v⟩

viewed as a single complex series whose terms are∑
k1,...,kn−2∈Z

⟨v′, YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)πkn−1YV (un, zn)v⟩
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converges to the rational function that ⟨v′, YV (u1, z1) · · ·YV (un−1, zn−1)YV (un, zn)v⟩

converges to, when |z1| > |z2| > · · · > |zn| > 0, |zn−1| > |zi − zn−1| > 0, i =

1, ..., n − 2, |zi − zi+1| > |zj − zi| > 0, 1 ≤ j < i ≤ n − 2. Note that the power of

zn is lower-truncated.

4. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that

the series

∑
k1,...,kn−2,kn−1∈Z

⟨v′, YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)πkn−1YV (un, zn)v⟩

converges absolutely when

|zn−1| > |zn|+|z1−z2|+· · ·+|zn−2−zn−1|, |zn| > 0, |zn−2−zn−1| > · · · > |z1−z2| > 0

to the rational function that ⟨v′, YV (u1, z1) · · ·YV (un−1, zn−1)v⟩ converges to. From

the way of expansion, one can further enlarge the region of convergence and obtain

a generalization of Proposition 2.3.10, i.e., the series

⟨v′, YV (YV (YV (· · ·YV (u1, z1−z2)u2, · · · )un−2, zn−2−zn−1)un−1, zn−1)YV (un, zn)v⟩

converges absolutely in the region
(z1, ..., zn) ∈ Cn :

|zn| > 0, |zn−1| > |zi − zn−1| > 0, i = 1, ..., n− 2

|zn−1| > |zi − zn−1 − zn| > 0, i = 1, ..., n− 2

|zj−1 − zj | > |zi − zj−1| > 0, 1 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n


(2.6)

to the rational function that

⟨v′, YV (u1, z1) · · ·YV (un, zn)v⟩

converges to.

5. For each fixed k1 ∈ Z, we use the associativity to see that∑
k2,...,kn−1∈Z

YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)πkn−1YV (un, zn)v

=

∑
k2,...,kn−1∈Z

YV (πkn−1YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)un, zn)v
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when |zn−1| > |zn|+ |zn−2−zn−1|+ · · ·+ |z1−z2|, |zn−2−zn−1| > · · · > |z1−z2| >

0, |zn| > |zn−1 − zn|. In particular, we know that∑
k2,...,kn−1∈Z

⟨v′, YV (πkn−1YV (πk1YV (· · ·πkn−2YV (u1, z1−z2)u2, · · · )un−1, zn−1)un, zn)v⟩,

as part of an absolutely convergent n-multiseries in z1 − z2, z2 − z3, ..., zn−2 −

zn−1, zn−1 − zn, zn, converges absolutely.

6. Summing up all k1’s to see that

∑
k1∈Z

 ∑
k2,...,kn−1∈Z

⟨v′, YV (πkn−1YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)un, zn)v⟩

 ,

viewed as a single complex series whose terms are ∑
k2,...,kn−1∈Z

⟨v′, YV (πkn−1YV (πk1YV (· · ·πkn−2YV (u1, z1 − z2)u2, · · · )un−1, zn−1)un, zn)v⟩

 ,

converges to the rational function that ⟨v′, YV (u1, z1) · · ·YV (un−1, zn−1)YV (un, zn)v⟩

converges to, when |zn−1| > |zn|+ |zn−2 − zn−1|+ · · ·+ |z1 − z2|, |zn−2 − zn−1| >

· · · > |z1 − z2| > 0, |zn| > |zn−1 − zn|.

7. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that

the series∑
k1,k2,...,kn−1∈Z

⟨v′, YV (πkn−1YV (πk1YV (· · ·πkn−2YV (u1, z1−z2)u2, · · · )un−1, zn−1)un, zn)v⟩,

converges absolutely when

|zn| > |zn−1−zn|+|zn−2−zn−1|+· · ·+|z1−z2|, |zn−1−zn| > |zn−2−zn−1| > · · · > |z1−z2| > 0

to the rational function that ⟨v′, YV (u1, z1) · · ·YV (un, zn)v⟩ converges to. From

the way of expansion, one can further enlarge the region of convergence, thus

proving that the series

⟨v′, YV (YV (· · ·YV (u1, z1 − z2)u2, · · · )un−1, zn−1)un, zn)v⟩

converges absolutely in the region(z1, ..., zn) ∈ Cn :
|zn| > |zi − zn| > 0, i = 1, ..., n;

|zi − zi+1| > |zj − zi| > 0, 1 ≤ j < i ≤ n− 1


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to the rational function that

⟨v′, YV (u1, z1) · · ·YV (un, zn)v⟩

converges to.

Because of the rationality, it is easy to obtain the following analogue of Summary

2.2.15:

Summary 2.3.14. For any u1, ..., un ∈ V and any z1, ..., zn satisfying |zn| > |zi−zn| >

0, i = 1, ..., n; |zi − zi+1| > |zj − zi| > 0, 1 ≤ j < i ≤ n− 1,

YV (YV (· · ·YV (YV (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)v

=
∑

k1,...,kn−1∈Z
YV (πk1YV (· · ·YV (πkn−1YV (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)v

For fixed z1, z2, ..., zn ∈ C satisfying |zn| > |zi − zn| > 0, i = 1, ..., n; |zi − zi+1| >

|zj − zi| > 0, 1 ≤ j < i ≤ n− 1, the iterate of any number of vertex operators gives rise

to the following map

YV (YV (· · ·YV (YV (·, z1 − z2)·, z2 − z3) · · · , zn−1 − zn)·, zn)· : V ⊗n ⊗ V → V

If in addition, |z1| > |z2| > · · · > |zn|, then the map coincides with

YV (·, z1)YV (·, z2) · · ·YV (·, zn)· : V ⊗n ⊗ V → V

Remark 2.3.15. When V is not grading-restricted:

1. just as Remark 2.3.12 mentioned, the proof of Proposition 2.3.13 is also valid. So

the rationality of iterate of n vertex operators still holds.

2. In the Summary 2.3.14, all the maps involved are actually
>
V -valued. However as

we have explained in Remark 2.2.18, an explicit formulation is not necessary.
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2.4 Opposite MOSVA

In this section, for a given MOSVA, we will introduce its opposite MOSVA using the

skew-symmetry opposite vertex operator. This can be viewed as the analogue of the

opposite associative algebra of a given associative algebra. Analogously, we prove that

a right module for the MOSVA is the same as the left module for the opposite MOSVA,

and a left module for the MOSVA is the same as the right module for the opposite

MOSVA. The rationality of iterates we proved in the previous section will be used in

the proofs of these theorems.

2.4.1 The opposite vertex operator

Definition 2.4.1. Let (V, YV ,1) be a MOSVA. The opposite vertex operator map Y s
V

of YV is defined as follows

Y s
V : V ⊗ V → V [[x, x−1]]

u⊗ v 7→ exDV YV (v,−x)u

where exDV YV (v,−x)u is understood as a single series that is obtained by multiplying

two formal series exDV and YV (v,−x)u.

One sees easily that the series defining the skew-symmetry opposite vertex operator

is lower truncated. Moreover, for any nonzero complex number z that is substituting

x, the resulted complex series gives a well-defined element in V .

2.4.2 Rationality and Associativity

Proposition 2.4.2. For v′ ∈ V ′, u1, u2, v ∈ V , the double complex series

⟨v′, Y s
V (u1, z1)Y

s
V (u2, z2)v⟩

converges absolutely when |z1| > |z2| > 0 to a rational function with the only possible

poles z1 = 0, z2 = 0, z1 = z2.

Proof. The proof will be divided in three steps.
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1. From the conclusion of Theorem 2.3.13 that the series

⟨v′, YV (YV (v,−z2)u2,−z1 + ζ2)u1⟩

converges absolutely when | − z1 + ζ2| > |z2| > 0 to a rational function that has

the only possible poles at z2 = 0, z1 = ζ2, z1 + z2 = ζ2, with the D-conjugation

property (See Part (4) of Proposition 2.1.4) and Lemma 2.3.7, we can prove that

the series

⟨v′, YV (eζ2DV YV (v,−z2)u2,−z1)u1⟩

converges absolutely when |z1| > |z2−ζ2|, |z1| > |ζ2|, |z2| > 0 to a rational function

that has the only possible poles at z1 + z2 = ζ2, z2 = 0, z1 = ζ2. The argument is

very similar to that in the proof of Theorem 2.3.13 and is omitted here.

2. Since ζ2 = z2 is contained in the region of the convergence, we then evaluate

ζ2 = z2 to see that the series

⟨v′, YV (ez2DV YV (v,−z2)u2,−z1)u1⟩

converges absolutely when |z1| > |z2| > 0 to the rational function determined by

⟨v′, YV (YV (v,−z2)u2,−z1 + z2)u1⟩

that has the only possible poles at z1 = 0, z2 = 0, z1 = z2.

3. Now we argue that for every v′ ∈ V ′, u1, u2, v ∈ V , the series

⟨v′, ez1DV YV (e
z2DV YV (v,−z2)u2,−z1)u1⟩ (2.7)

converges absolutely in the same region S. We first note that the adjoint D′
V :

V ∗ → V ∗ of DV , defined by

⟨D′
V v

′, v⟩ = ⟨v′, DV v⟩, v′ ∈ V ′, v ∈ V,

restrics to a homogeneous linear operator on V ′ of weight −1. Thus for every

z ∈ C×, the action of ezD
′
V on v′ ∈ V ′ is a finite sum of elements of V ′. So the

series (2.7) is the same as

⟨ez1D′
V v′, YV (e

z2DV YV (v,−z2)u2,−z1)u1⟩
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which is a finite sum of series that converges absolutely to rational functions with

the only possible poles at z1 = 0, z2 = 0, z1 = z2. Thus the sum also converges

absolutely in the same region to a rational function of the same type.

Remark 2.4.3. The argument we have used in dealing with ezD operator can be

generalized to products and iterates of any numbers of vertex operators. One should

also note that we don’t need V to be grading-restricted. The same result also holds for

left modules, right modules and bimodules for MOSVAs. For brevity, in the future we

will not repeat the argument, but refer to this remark when we need the ezD operator.

Proposition 2.4.4. For v′ ∈ V ′, u1, ..., un, v ∈ V , the complex n-multiseries

⟨v′, Y s
V (u1, z1) · · ·Y s

V (un, zn)v⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function with the only

possible poles at zi = 0, i = 1, ..., n; zi = zj , 1 ≤ i < j ≤ n.

Proof. Likewise, the proof is divided into three steps. For brevity, we only state the

conclusions of each step.

1. With the conclusion of Theorem 2.3.13, the D-conjugation property (See Part (4)

of Proposition 2.1.4) and Lemma 2.3.8 we can prove that the series

⟨v′, YV (eζ2DV · · ·YV (eζn−1DV YV (e
ζnDV YV (v,−zn)un,−zn−1)un−1,−zn−2) · · · ,−z1)u1⟩

converges absolutely when

|zk| > |ζk+1 + (−zk+1 + ζk+2) + · · ·+ (−zn−1 + ζn)− zn|, k = 1, ..., n− 1,

|zk| > |ζk+1 + (−zk+1 + ζk+2) + · · ·+ (−zi + ζi+1)|, k = 1, ..., n− 1, i = k, ..., n− 1.

to the rational function determined by

⟨v′, YV (· · ·YV (YV (YV (v,−zn)un,−zn−1+ζn)un−1,−zn−2+ζn−1) · · · ,−z1+ζ2)u1⟩

that has the only possible poles at

−zn + (zn−1 + ζn) + · · ·+ (−zk + ζk+1) = 0, k = 1, ..., n− 1;

(−zi + ζi+1) + · · ·+ (−zk + ζk+1) = 0, k = 1, ..., n− 1, i = k, ..., n− 1.
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2. Since ζi = zi, i = 2, ..., n is contained in the region of the convergence, we then

evaluate ζi = zi for every i = 2, ..., n, to see that the series

⟨v′, YV (ez2DV · · ·YV (ezn−1DV YV (e
znDV YV (v,−zn)un,−zn−1)un−1,−zn−2) · · · ,−z1)u1⟩

converges absolutely when |z1| > · · · > |zn| > 0 to the rational function deter-

mined by

⟨v′, YV (· · ·YV (YV (YV (v,−zn)un,−zn−1+zn)un−1,−zn−2+zn−1) · · · ,−z1+z2)u1⟩

that has the only possible poles at zi = 0, i = 1, ..., n; zi = zj , 1 ≤ i < j ≤ n.

3. Finally we use Remark 2.4.3 to conclude that the series

⟨v′, Y s
V (u1, z1) · · ·Y s

V (un, zn)v⟩,

which is precisely

⟨v′, ez1DV YV (e
z2DV · · ·YV (ezn−1DV YV (e

znDV YV (v,−zn)un,−zn−1)un−1,−zn−2) · · · ,−z1)u1⟩,

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function that has

the same types of poles.

Proposition 2.4.5. For v′ ∈ V ′, u1, u2, v ∈ V , the complex double series

⟨v′, Y o
V (Y

o
V (u1, z1 − z2)u2, z2)v⟩

converges absolutely when |z2| > |z1 − z2| > 0 to a rational function with the only

possible poles at z1 = 0, z2 = 0, z1 = z2

Proof. 1. With the rationality of products the D-conjugation property and Lemma

2.3.7, we can prove that the series

⟨v′, eζDV YV (v,−z2)e
−ζDV YV (u2,−z1 + z2)u1⟩

converges absolutely when |z2| > |ζ|, |z2| > |z1 − z2 + ζ|, |z1 − z2| > 0 to the

rational function determined by

⟨v′, YV (v,−z2 + ζ)YV (u2,−z1 + z2)u1⟩

that has the only possible poles at z2 = ζ, z1 = z2, z1 − z2 + ζ = z2
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2. Since ζ = −z1+z2 is contained in the region of the convergence, we then evaluate

ζ = −z1 + z2 to see that the series

⟨v′, e(−z1+z2)DV YV (v,−z2)e
(z1−z2)DV YV (u2,−z1 + z2)u1⟩

converges absolutely when |z2| > |z1−z2| > 0 to the rational function determined

by

⟨v′, YV (v,−z1)YV (u2,−z1 + z2)u1⟩

that has the only possible poles at z1 = 0, z1 = z2, z2 = 0.

3. Finally we use Remark 2.4.3 to conclude that the series

⟨v′, Y s
V (Y

s
V (u1, z1 − z2)u2, z2)v⟩,

which is precisely

⟨v′, ez2DV YV (v,−z2)e
(z1−z2)DV YV (u2,−z1 + z2)u1⟩,

converges absolutely when |z2| > |z1 − z2| > 0 to a rational function that has the

same types of poles.

2.4.3 (V, Y s
V ,1) forms a MOSVA

Proposition 2.4.6. Given a MOSVA (V, YV ,1), with the opposite vertex operator map

Y s
V : V ⊗ V → V [[x, x−1]]

u⊗ v 7→ exDV YV (v,−x)u

(V, Y s
V ,1) is also a MOSVA.

Proof. 1. The lower bound condition is trivial. We verify the dV -bracket formula:

for every u ∈ V

[dV , Y
s
V (u, x)] = x

d

dx
Y s
V (u, x) + Y s

V (dV u, x)

Without loss of generality, let u, v be homogeneous element

[dV , Y
s
V (u, x)]v = dV Y

s
V (u, x)v − Y s

V (u, x)dV v
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=dV e
xDV YV (v,−x)u− exDV YV (dV v,−x)u

=
∑
m,n

dV

(
1

m!
Dm

V (YV )n(v)u

)
xm(−x)−n−1

−
∑
m,n

1

m!
Dm

V (wt v)(YV )n(v)ux
m(−x)−n−1

=
∑
m,n

(wt u− n− 1 + wt v +m− wt v)
1

m!
Dm

V (YV )n(v)ux
m(−x)−n−1

=
∑
m,n

(wt u− n− 1 +m)
1

m!
(Dm

V (YV )n(v)u)x
m(−x)−n−1

=
∑
m,n

(wt u)
1

m!
(Dm

V (YV )n(v)u)x
m(−x)−n−1

+
∑
m,n

(−n+m− 1)
1

m!
(Dm

V (YV )n(v)u)x
m(−x)−n−1

=(wt u)exDV YV (v,−x)u+ x
d

dx

(
exDV YV (v,−x)u

)
=Y s

V (dV u, x)v + x
d

dx
Y s
V (u, x)v

2. Since for v ∈ V ,

Y s
V (1, x)v = exDV YV (v,−x)1 = exDV e−xDV v = v,

the identity property follows. Since for u ∈ V ,

Y s
V (u, x)1 = ezDV YV (1,−x)u = ezDV u,

the creation property follows.

3. It follows directly from Y s
V (u, x)1 = ezDV u that

Du = lim
x→0

d

dx
Y s
V (u, x)1

We prove the D-derivative formula as follows:

Y s
V (DV u, x)v = exDV YV (v,−x)DV u = exDV DV YV (v,−x)u+ exDV [DV , YV (v,−x)]u

= exDV DV YV (v,−x)u+ exDV
d

d(−x)
YV (v,−x)u

=
d

dx
exDV YV (v,−x)u =

d

dx
Y s
V (u, x)v
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Then the DV -bracket formula follows from

[DV , Y
s
V (u, x)]v = DV Y

s
V (u, x)v − Y s

V (u, x)DV v

= DV e
xDV Y (v,−x)u− exDV Y (DV v,−x)u

= exDV DV YV (v,−x)u+ exDV
d

d(−x)
YV (v,−x)u = Y o(DV u, x)V

4. This has been done in Proposition 2.4.4 and Proposition 2.4.5

5. Fix u1, u2, v ∈ V and v′ ∈ V ′. Let S1 = {(z1, z2) : |z1| > |z2| > 0} and S2 =

{(z1, z2) : |z2| > |z1 − z2| > 0}. A careful analysis of the proof to Proposition

2.4.4 shows that, the series

⟨v′, Y o
V (u1, z1)Y

o
V (u2, z2)v⟩

converges absolutely in S1 to the same rational function as that

⟨v′, ez1DV YV (YV (v,−z2)u− 2,−z1 + z2)u1⟩

converges to (in the region |z1 − z2| > |z2| > 0). Also the proof to Proposition

2.4.5 shows that when |z2| > |z1 − z2| > 0, the series

⟨v′, Y o
V (Y

o
V (u1, z1 − z2)u2, z2)v⟩

converges absolutely in S2 to the same rational function as that

⟨v′, ez1DV YV (v,−z1)YV (u2,−z1 + z2)u1⟩

converges to (in the region |z1| > |z1 − z2| > 0). From the associativity of YV , we

know that these rational functions are identical. In other words, ⟨v′, Y o
V (u1, z1)Y

o
V (u2, z2)v⟩

and ⟨v′, Y o
V (Y

o
V (u1, z1−z2)u2, z2)v⟩ converges absolutely to the same rational func-

tion respectively in the region S1 and S2. So in S1 ∩ S2 their sums are equal.

2.4.4 Other Remarks

Remark 2.4.7. Given a MOSVA (V, YV ,1), from the fact that

(Y o)o(u, x)v = exDV Y s
V (v,−x)u = exDV e−xDV Y (u, x)v = Y (u, x)v

we have (V op)op = V .
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Remark 2.4.8. For a vertex algebra with a lower-bounded grading, we know that

YV = Y s
V because this is precisely the skew-symmetry identity. Conversely, if a MOSVA

V satisfies YV = Y s
V , i.e. for v

′ ∈ V ′, u1, u2, v ∈ V and any x ̸= 0,

⟨v′, YV (u, z)v⟩ = ⟨v′, ezDV YV (v,−z)u⟩

then V is a vertex algebra with a lower-bounded grading, since associativity and skew-

symmetry identity imply the Jacobi identity (see [H5] Proposition 2.2 and [LL], Section

3.6.)

Remark 2.4.9. The discussion here works also when V is not grading-restricted.
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Chapter 3

Modules of meromorphic open string vertex algebras

Throughout the whole chapter, all MOSVAs are assumed to be grading-restricted.

3.1 Left V -modules

The notion of left V -module for a meromorphic open-string vertex algebra was intro-

duced in [H3]. Here we recall the definition.

3.1.1 The axiomatic definition

Definition 3.1.1. Let (V, YV ,1) be a meromorphic open-string vertex algebra. A left

V -module is a C-graded vector space W =
⨿

m∈CW[m] (graded by weights), equipped

with a vertex operator map

Y L
W : V ⊗W → W [[x, x−1]]

u⊗ w 7→ Y L
W (u, x)v,

an operator dW of weight 0 and an operator DW of weight 1, satisfying the following

axioms:

1. Axioms for the grading:

(a) Lower bound condition: When Re(m) is sufficiently negative, W[m] = 0.

(b) d-grading condition: for every w ∈ W[m], dWw = mw.

(c) d-bracket property : For u ∈ V ,

[dW , Y L
W (u, x)] = Y L

W (dV u, x) + x
d

dx
Y L
W (u, x).

2. The identity property : Y L
W (1, x) = 1W .
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3. The D-derivative property and the D-commutator formula: For u ∈ V ,

d

dx
Y L
W (u, x) = Y L

W (DV u, x)

= [DW , Y L
W (u, x)].

4. Rationality : For u1, . . . , un ∈ V,w ∈ W and w′ ∈ W ′, the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (un, zn)v⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function in z1, . . . , zn

with the only possible poles at zi = 0 for i = 1, . . . , n and zi = zj for i ̸= j. For

u1, u2 ∈ V,w ∈ W and w′ ∈ W ′, the series

⟨w′, Y L
W (YV (u1, z1 − z2)u2, z2)v⟩

converges absolutely when |z2| > |z1−z2| > 0 to a rational function with the only

possible poles at z1 = 0, z2 = 0 and z1 = z2.

5. Associativity : For u1, u2 ∈ V,w ∈ W , w′ ∈ W ′,

⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2)v⟩ = ⟨w′, Y L

W (YV (u1, z1 − z2)u2, z2)v⟩

when |z1| > |z2| > |z1 − z2| > 0.

A left V -module is said to be grading-restricted if dimW[m] < ∞ for every m ∈ C.

We denote the left V -module just defined by (W,Y L
W ,dW , DW ) or simply W when

there is no confusion.

3.1.2 Some immediate consequences

Similarly, the following proposition holds

Proposition 3.1.2. Let V be a MOSVA and W be a left V -module. then

1. For u ∈ V , Y L
W (u, x) can be regarded as a formal series in End(W )[[x, x−1]]

Y L
W (u, x) =

∑
n∈Z

(Y L
W )n(u)x

−n−1

where (Y L
W )n(u) : W → W is a linear map for every n ∈ Z. If u is homogeneous,

then (Y L
W )n(u) is a map of weight wt u− n− 1.
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2. For fixed u ∈ V,w ∈ W , Y L
W (u, x)w is lower truncated, i.e, there are at most

finitely many negative powers of x.

3. Formal Taylor theorem: for u ∈ V ,

Y L
W (u, x+ y) = YV (e

yDV u, x) = eyDW Y L
W (u, x)e−yDW ,

in End(W )[[x, y, x−1]].

Proof. Similar to the argument of Proposition 2.1.4. For the second statement, note

that W is lower truncated in the sense that W[m] < 0 when Rem << 0.

Remark 3.1.3. If we let

f(z1, ..., zn)
n∏

i=1
zpii

∏
1≤i<j≤n

(zi − zj)pij

be the rational function determined by the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (un, zn)w⟩,

then for homogeneous u1, ..., un ∈ V,w ∈ W,w′ ∈ W ′, we can explicitly compute the

total degree of the homogeneous polynomial f(z1, ..., zn) in terms of the weights and

pi, pij ’s. We start by expanding the series as

∑
k1,...,kn

⟨w′, (Y L
W )k1(u1) · · · (Y L

W )kn(un)w⟩z
−k1−1
1 · · · z−kn−1

n

then the coefficients are nonzero only when

wt w′ = wt u1 − k1 − 1 + · · ·+wt un − kn − 1 + wt w

In particular,

Re wt w′ = wt u1 − k1 − 1 + · · ·+wt un − kn − 1 + Re wt w

Thus

deg f =
n∑

i=1

pi +
∑

1≤i<j≤n

pij + (−k1 − 1− k2 − 1− · · · − kn − 1)

=

n∑
i=1

pi +
∑

1≤i<j≤n

pij +Re wt w′ −
n∑

i=1

wt ui − Re wt w
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In particular, when there are only two vertex operators, the total degree of the homo-

geneous polynomial in the numerator is just

p1 + p2 + p12 +Re wt w′ − wt u1 − wt u2 − Re wt w

3.1.3
>
W -valued map interpretation

In Chapter 2, we interpreted vertex operators as V -valued maps, under the assumption

that V is grading-restricted. Since we always work with grading-restricted MOSVA, all

the results concerning non-grading-restricted MOSVAs were given in Remarks. This

is no long the case when we talk about modules: modules W =
⨿
n∈C

W[n] that are

not grading-restricted (dimW[n] need not be finite) arise naturally in our studies. In

this scenario, the full dual
>
W =

∏
n∈C

W ∗∗
[n] of the graded dual W ′ =

⨿
n∈C

W ∗
[n] no longer

coincides with the algebraic completion W =
∏
n∈C

W[n] of W . As a result, we need to

modify all the previous summaries and interpret vertex operators as
>
W -valued maps.

Form ∈ C, let πW
m :

>
W → W ∗∗

[m] be the projection operator. This projection operator

can be restricted to W to give the projection W → W[m], which we also denote by πW
m .

For one single operator, a similar discussion to Summary 2.2.1 with Proposition

3.1.2 will lead us to the following summary:

Summary 3.1.4. For u ∈ V,w ∈ W and any nonzero complex number z, the summa-

tion

Y L
W (u, z)w =

∑
n∈Z

Y L
W (u)nwz

−n−1

gives an element in W . For a given nonzero z ∈ C, the vertex operator map give rise

to the following map

Y L
W (·, z)· : V ⊗W → W ⊂

>
W

Since the Y L
W (u, z)w ∈ W , there is not much trouble in understanding the product

of two vertex operators Y L
W (u1, z1)Y

L
W (u2, z2)w: for each r ∈ C we apply the operator

πW
m : W → W[m] to the W element Y L

W (u2, z2)w, then act Y L
W (u1, z1) to the W element

πW
m Y L

W (u1, z1)w. The proof of Proposition 2.2.11 applies similarly here: we know that
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the series of W -elements

∑
r∈C

Y L
W (u1, z1)π

W
m Y L

W (u2, z2)w

converges absolutely in the sense of Definition 2.2.8 and it should coincide with the

element Y L
W (u1, z1)Y

L
W (u2, z2)w. However since W is in general not a closed subspace

of
>
W , we can only say that the sum of the series is an element in

>
W and it does not

necessarily fall in W . So the summary must be modified as follows

Summary 3.1.5. For any u1, u2 ∈ V , w ∈ W and any complex numbers z1, z2 satis-

fying |z1| > |z2| > 0, the single series

∑
r∈C

Y L
W (u1, z1)π

W
m Y L

W (u2, z2)w

of elements in W converges absolutely, i.e., for any w′ ∈ W ′,

∑
r∈C

⟨w′, Y L
W (u1, z1)π

W
m Y L

W (u2, z2)w⟩

converges absolutely. Moreover, the sum of the series is equal to the sum of the double

series

Y L
W (u1, z1)Y

L
W (u2, z2)w

For fixed z1, z2 satisfying |z1| > |z2| > 0, the product of two vertex operators gives rise

to the following map

Y L
W (·, z1)Y L

W (·, z2)· : V ⊗ V ⊗W →
>
W

which is equal to the map

∑
r∈C

Y L
W (·, z1)πW

m Y L
W (·, z2)· : V ⊗ V ⊗W →

>
W

Remark 3.1.6. Although the summation is over C, it is easy to see that only countably

many indexes will be involved, as every element in W must be a finite sum of homoge-

neous elements, and vertex operators acting on homogeneous elements w ∈ W[m] only

gives a series of elements with weights in the equivalent class m+ Z ∈ C/Z. Also note

that when paired to w′ ∈ W ′, the complex series is still of integral power. No fractional

powers should arise here.
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When we want to consider the product of three vertex operators, say Y L
W (u1, z1)Y

L
W (u2, z2)Y

L
W (u3, z3)w,

problems arise, as Y L
W (u2, z2)Y

L
W (u3, z3)w ∈

>
W , thus πW

m Y L
W (u2, z2)Y

L
W (u3, z3)w is no

longer an element in W[m], but in a larger space W ∗∗
[m], and we don’t have any definition

of Y L
W (u1, z1) acting W ∗∗

[m].

One way to resolve the problem is to understand each term Y L
W (u1, z1)π

W
m Y L

W (u2, z2)Y
L
W (u3, z3)w

simply as part of the triple series Y L
W (u1, z1)Y

L
W (u2, z2)Y

L
W (u3, z3)w. More precisely, for

homogeneous u2, u3 ∈ V and w ∈ W , as

πW
m Y L

W (u2, z2)Y
L
W (u3, z3)w =

∑
wtu2+wtu3+wtw−n2−n3−2=m

n2,n3∈Z

(Y L
W )n2(u2)(Y

L
W )n3(u3)wz

−n2−1
2 z−n3−1

3

we naturally have

Y L
W (u1, z1)π

W
m Y L

W (u2, z2)Y
L
W (u3, z3)w

=Y L
W (u1, z1)

 ∑
wtu2+wtu3+wtw−n2−n3−2=m

n2,n3∈Z

(Y L
W )n2(u2)(Y

L
W )n3(u3)wz

−n2−1
2 z−n3−1

3



=
∑
n1∈Z

(Y L
W )n1(u1)

 ∑
wtu2+wtu3+wtw−n2−n3−2=m

n2,n3∈Z

(Y L
W )n2(u2)(Y

L
W )n3(u3)wz

−n2−1
2 z−n3−1

3

 z−n1−1
1

=
∑

wtu2+wtu3+wtw−n2−n3−2=m
n1,n2,n3∈Z

(Y L
W )n1(u1)(Y

L
W )n2(u2)(Y

L
W )n3(u3)wz

−n1−1
1 z−n2−1

2 z−n3−1
3

If we treat the element in the parenthesis as an element of W ∗∗
[m], then the sum gives an

element in
>
W . So summing up all r ∈ C will yield a series in

>
W . However, after pairing it

with w′, we see that the resulted complex series
∑
m∈C

⟨w′, Y L
W (u1, z1)π

W
m Y L

W (u2, z2)Y
L
W (u3, z3)w⟩

is just a rearrangement of the absolutely convergent triple series Y L
W (u1, z1)Y

L
W (u2, z2)Y

L
W (u3, z3)w.

For nonhomogeneous u2, u3 ∈ V and w ∈ W , we use the same argument as in Propo-

sition 2.2.11 to write the corresponding series as a finite sum of absolutely convergent

series.

With the above argument in mind, one can modify the arguments in Summary

2.2.15 similarly, to get

Summary 3.1.7. For any u1, ..., un ∈ V , w ∈ W and any z1, ..., zn ∈ C satisfying
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|z1| > |z2| > · · · > |zn| > 0, the series

∑
m1,...,mn−1∈Z

Y L
W (u1, z1)π

W
m1

Y L
W (u2, z2)π

W
m2

· · ·Y L
W (un−1, zn−1)π

W
mn−1

Y L
W (un, zn)w

of elements in
>
W converges absolutely, The sum is equal to the

>
W element given by

Y L
W (u1, z1) · · ·Y L

W (un, zn)w

For fixed z1, z2, ..., zn ∈ C satisfying |z1| > · · · > |zn| > 0, the product of any number of

vertex operators gives rise to a map

Y L
W (·, z1)Y L

W (·, z2) · · ·Y L
W (·, zn)· : V ⊗n ⊗W →

>
W

and is equal to the sum

∑
m1,...,mn−1∈Z

Y L
W (·, z1)πW

m1
Y L
W (·, z2)πW

m2
· · ·Y L

W (·, zn−1)π
W
mn−1

Y L
W (·, zn)· : V ⊗n ⊗W →

>
W

Remark 3.1.8. We put all πW
mi

’s on for completeness. In practice it is absolutely fine

to omit any number of them.

Remark 3.1.9. Another way to resolve this issue is to extend the vertex operator

actions to
>
W using the double adjoint process. Let L : W → W be a homogeneous

linear operator, then L can be extended to
>
W →

>
W by the double adjoint process: first

define the adjoint L′ on L by

⟨L′w′, w⟩ = ⟨w′, Lw⟩

One checks that L′ is also a homogeneous operator on W ′. In particular, for every

w′ ∈ W ′, L′w′ ∈ W ′. Thus the image of L′ on W ′ still falls in W ′ (if L is not

homogeneous, then we only know that L′W ′ ⊆ W ∗ and not necessarily in W ′). Hence

L′ : W ′ → W ′ is an operator. We then define the extension L :
>
W →

>
W by

⟨w′, L>w⟩ = ⟨L′w′,>w⟩

In particular, the operators dW , adW (a ∈ C×), DW , and (Y L
W )n(u), (Y

R
W )n(u) for

n ∈ Z obtained from the vertex operators with homogeneous u ∈ V can be extended to
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operators on
>
W . For convenience, we will not add an arc on these extended operators,

but simply use the same notation.

Now let L : W → W be a finite sum of homogeneous linear operators on L, by

extending each summands we see that L also admits an extension to
>
W . In particular,

the components of vertex operators (Y L
W )n(u) and (Y R

W )n(u) admits an extension for

every u ∈ V and n ∈ Z.

Thus, for each fixed z ∈ C×, the actions of the vertex operator Y L
W (u, z)· and

Y R
W (·, z)u on an element >w ∈

>
W amounts be giving infinite sums of elements

>
W .

To make sense of Y L
W (u, z)>w and Y R

W (>w, z)u, both >w and z has to be chosen care-

fully so that these infinite sums converge absolutely. For example, if >w is chosen as

Y L
W (u1, z1) · · ·Y L

W (un, zn) for |z1| > · · · > |zn| > 0 and z is chosen such that |z| > |z1|,

then Y L
W (u, z)>w converges absolutely and thus is a well-defined element in

>
W .

Similar to the principle above, the ezDW operator onW is extended to an operator on

>
W , provided that z and >w are carefully chosen to make sure the series

∑∞
i=0 1/i!z

iDi
W

>w

converges absolutely.

Remark 3.1.10. From the extension process, one can easily check that the equality of

two vertex operator actions onW extends to
>
W , provided the actions are well-defined on

>
W . For example, let W be a left V -module, for u1, u2 ∈ V , if >w ∈

>
W and z1, z2 ∈ C are

chosen such that both Y L
W (u1, z1)Y

L
W (u2, z2)

>w and Y L
W (YV (u1, z1−z2)u2, z2)

>w converges

absolutely, then the sums of these series in
>
W are equal.

We remind the reader that it is crucial to check if the actions are well-defined, i.e.,

the corresponding series in
>
W converges absolutely.

3.1.4 Rationality of iterates

For left V -modules, it is relatively easier to make the modifications on the iterates. As

the MOSVA is always assumed to be grading-restricted, the interpretation

Y L
W (YV (u1, z1 − z2)u2, z2)w =

∑
k∈Z

Y L
W (πkYV (u1, z1 − z2)u2, z2)w
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and

Y L
W (YV (· · ·YV (YV (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)w

=
∑

k1,...,kn−1∈Z
Y L
W (πkn−1YV (· · ·YV (πk1YV (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)w

in Chapter 2 still applies here, for any u1, ..., un ∈ V,w ∈ W . Of course, the resulted

element may still fall outside of W . But the following conclusions similarly hold.

Summary 3.1.11. For fixed z1, z2 satisfying |z2| > |z1 − z2| > 0, the iterate of two

vertex operators gives rise to a map

Y L
W (YV (·, z1 − z2)·, z2)· : V ⊗ V ⊗W →

>
W

which is equal to the sum∑
k∈Z

Y L
W (πkYV (·, z1 − z2)·, z2)· : V ⊗ V ⊗W →

>
W

Summary 3.1.12. For fixed z1, z2 satisfying |z1| > |z2| > |z1 − z2| > 0, the following

maps

Y L
W (·, z1)Y L

W (·, z2)· : V ⊗ V ⊗W →
>
W∑

m∈C
Y L
W (·, z1)πW

m Y L
W (·, z2)· : V ⊗ V ⊗W →

>
W

Y L
W (Y L

W (·, z1 − z2)·, z2)· : V ⊗ V ⊗W →
>
W∑

m∈C
Y L
W (πW

m Y L
W (·, z1 − z2)·, z2)· : V ⊗ V ⊗W →

>
W

are equal.

For the iterate of n vertex operators, the module version is formulated similarly as

in Chapter 2:

Proposition 3.1.13. For u1, u2, ..., un ∈ V,w ∈ W,w′ ∈ W ′, the series

⟨w′, Y L
W (YV (· · ·YV (YV (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)w⟩

converges absolutely in the region
(z1, ..., zn) ∈ Cn :

|zn| > |zn−1 − zn|+ |zn−2 − zn−1|+ · · ·+ |z1 − z2|,

|zi − zi+1| >
i−1∑
j=1

|zj − zj+1|, i = 3, ..., n− 1

|z2 − z3| > |z1 − z2| > 0


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to the rational function that

⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2) · · ·Y L

W (un, zn)w⟩

converges to.

Proof. The formulations in Section 2.2 and 2.3 and the proof of Proposition 2.3.13

carry over to the modules. Alternatively, one can formulate a proof using the extended

operators. Here we only show this approach in detail for 3 vertex operators. The

argument of induction is similar to that in Proposition 2.3.13.

We first prove the following intermediate conclusion: for any u1, u2, u3 ∈ V,w ∈

W,w′ ∈ w′, fixed z1, z2, z3 ∈ C satisfying |z2| > |z1 − z2 − z3|, |z2| > |z1 − z2| > 0, |z2| >

|z3| > 0, the series

⟨w′, Y L
W (YV (u1, z1 − z2)u2, z2 − z3)Y

L
W (u3, z3)w⟩

converges absolutely to the rational function that

⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2)Y

L
W (u3, z3)w⟩

converges to.

From the rationality of products, we know that

⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2)Y

L
W (u3, z3)w⟩

=
∑

k1,k2,k3∈Z
⟨w′, (Y L

W )k1(u1)(Y
L
W )k2(u2)(Y

L
W )k3(u3)w⟩z

−k1−1
1 z−k2−1

2 z−k3−1
3

converges absolutely in the region {(z1, z2, z3) ∈ C3 : |z1| > |z2| > |z3| > 0} to a rational

function that has the only possible poles at z1 = 0, z2 = 0, z3 = 0, z1 = z2, z2 = z3, z1 =

z3. Denote this rational function by f(z1, z2, z3). Then

f(z1, z2, z3) =
g(z1, z2, z3)

zp11 zp22 zp33 (z1 − z2)p12(z2 − z3)p23(z1 − z3)p13
(3.1)

for some integers p1, p2, p3, p12, p23, p13 ≥ 0 and some polynomial g(z1, z2, z3).

Now for each fixed k3 ∈ Z, we consider the series

⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2)(Y

L
W )k3(u3)w⟩
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=
∑

k1,k2∈Z
⟨w′, (Y L

W )k1(u1)(Y
L
W )k2(u2)(Y

L
W )k3(u3)w⟩z

−k1−1
1 z−k2−1

2 .

As part of an absolutely convergent series, it is also absolutely convergent. From asso-

ciativity, its sum is equal to

⟨w′, Y L
W (YV (u1, z1 − z2)u2, z2)(Y

L
W )k3(u3)w⟩

when |z1| > |z2| > |z1 − z2| > 0 for each fixed l. We multiply it with z−k3−1
3 and sum

up all k3 ∈ Z to see that

∑
k3∈Z

⟨w′, Y L
W (YV (u1, z1 − z2)u2, z2)(Y

L
W )k3(u3)w⟩z

−k3−1
3

=
∑
k3∈Z

 ∑
k1,k2∈Z

⟨w′, (Y L
W )k2((YV )k1(u1)u2)(Y

L
W )k3(u3)w⟩(z1 − z2)

−k1−1z−k2−1
2

 z−k3−1
3

viewed as a single complex series whose terms are ∑
k1,k2∈Z

⟨w′, (Y L
W )k2((YV )k1(u1)u2)(Y

L
W )k3(u3)w⟩(z1 − z2)

−k1−1z−k2−1
2

 z−k3−1
3 ,

converges to f(z1, z2, z3) when |z1| > |z2| > |z3| > 0, |z2| > |z1− z2| > 0. Moreover, one

checks easily that the power of z3 is lower-truncated.

We now use Lemma 2.3.7 to elaborately show that the series

⟨w′, Y L
W (YV (u1, z1 − z2)u2, z2)Y

L
W (u3, z3)w⟩

=
∑

k1,k2,k3∈Z
⟨w′, (Y L

W )k2((YV )k1(u1)u2)(Y
L
W )k3(u3)w⟩(z1 − z2)

−k1−1z−k2−1
2 z−k3−1

3

converges absolutely to f(z1, z2, z3) when |z2| > |z1− z2− z3|, |z2| > |z1− z2| > 0, |z2| >

|z3| > 0. First we set ζ1 = z1 − z2, ζ2 = z2, ζ3 = z3. Let

T = {(ζ1, ζ2, ζ3) : |ζ2| > |ζ3|+ |ζ1|, |ζ1| > 0, |ζ3| > 0}

With Lemma 2.3.2, we see that T is a connected multicircular domain. Now we express

the function f(z1, z2, z3) in terms of the variables ζ1, ζ2, ζ3 as

f(ζ1 + ζ2, ζ2, ζ3) =
g(ζ1 + ζ2, ζ2, ζ3)

(ζ1 + ζ2)p1ζ
p2
2 ζp33 ζp121 (ζ2 − ζ3)p23(ζ1 + ζ2 − ζ3)p13

,

which admits a Laurent series expansion in ζ1, ζ2, ζ3 by the following steps:
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1. Expand the negative powers of ζ1+ ζ2 as a power series in ζ1. The resulted series

converges when |ζ2| > |ζ1|.

2. Expand the negative powers of ζ2− ζ3 as a power series in ζ3. The resulted series

converges when |ζ2| > |ζ3|.

3. Expand the negative powers of ζ1+ ζ2− ζ3 as power series in ζ1− ζ3, then further

expand all the positive power of ζ1 − ζ3 as polynomials. The resulted series

converges in |ζ2| > |ζ1 − ζ3|.

Obviously if (ζ1, ζ2, ζ3) ∈ T , then all the above conditions are satisfied (note that

|ζ2| > |ζ3|+|ζ1| implies that |ζ2| > |ζ1−ζ3| by triangle inequality). Thus f(ζ1+ζ2, ζ2, ζ3)

is expanded as an absolutely convergent Laurent series in T . From Theorem 2.3.3, the

Laurent series is unique. Note that the lowest power of ζ3 in this Laurent is −p3.

Set

S = {(ζ1, ζ2, ζ3) ∈ C3 : |ζ1 + ζ2| > |ζ2| > |ζ3| > 0, |ζ2| > |ζ1| > 0} ∩ T

Obviously, S is a nonempty open subset of T . We know that the series

∑
k1,k2∈Z

⟨w′, (Y L
W )k2((YV )k1(u1)u2)(Y

L
W )k3(u3)w⟩ζ

−k1−1
1 ζ−k2−1

2 ζ−k3−1
3

is absolutely convergent whenever (ζ1, ζ2, ζ3) ∈ S, and the series

∑
k3∈Z

 ∑
k1,k2∈Z

⟨w′, (Y L
W )k2((YV )k1(u1)u2)(Y

L
W )k3(u3)w⟩ζ

−k1−1
1 ζ−k2−1

2

 ζ−k3−1
3 ,

viewed as a series whose terms are
∑
k∈Z

⟨w′, Y L
W (πV

k YV (u1, ζ1)u2, ζ2)π
W
l Y L

W (u3, ζ3)w⟩, is

lower-truncated in ζ3 and absolutely convergent to f(ζ1+ζ2, ζ2, ζ3) whenever (ζ1, ζ2, ζ3) ∈

S. Thus Lemma 2.3.7 implies that the series

∑
k3∈Z

∑
k1,k2∈Z

⟨w′, (Y L
W )k2((YV )k1(u1)u2)(Y

L
W )k3(u3)w⟩ζ

−k1−1
1 ζ−k2−1

2 ζ−k3−1
3

converges absolutely when (ζ1, ζ2, ζ3) ∈ T . Finally, since the expansion of the rational

function is given in the region

{(ζ1, ζ2, ζ3) ∈ C3 : |ζ2| > |ζ1 − ζ3|, |ζ2| > |ζ1| > 0, |ζ2| > |ζ3| > 0},
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the Laurent series also converges absolutely in this region. That is to say, in terms of

variables z1, z2, z3, the series∑
k1,k2,k3∈Z

⟨w′, (Y L
W )k2((YV )k1(u1)u2)(Y

L
W )k3(u3)w⟩(z1 − z2)

−k1−1z−k2−1
2 z−k3−1

3

converges absolutely to f(z1, z2, z3) when |z2| > |z1− z2− z3|, |z2| > |z1− z2| > 0, |z2| >

|z3| > 0.

Now we prove that for any u1, u2, u3 ∈ V,w ∈ W,w′ ∈ w′, fixed z1, z2, z3 ∈ C

satisfying |z3| > |z1 − z3|, |z3| > |z2 − z3| > |z1 − z2| > 0, the series

⟨w′, Y L
W (YV (YV (u1, z1 − z2)u2, z2 − z3)u3, z3)w⟩

converges absolutely to the rational function that

⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2)Y

L
W (u3, z3)w⟩

converges to.

The process is similar: in the series

⟨w′, Y L
W (YV (u1, z1 − z2)u2, z2)Y

L
W (u3, z3)w⟩

=
∑

k1,k2,k3∈Z
⟨w′, (Y L

W )k2((YV )k1(u1)u2)(Y
L
W )k3(u3)w⟩(z1 − z2)

−k1−1z−k2−1
2 z−k3−1

3

we fix k1 and consider the series

⟨w′, Y L
W ((YV )k1(u1)u2, z2)Y

L
W (u3, z3)w⟩

=
∑

k2,k3∈C
⟨w′, (Y L

W )k2((YV )k1(u1)u2)(Y
L
W )k3(u3)w⟩z

−k2−1
2 z−k3−1

3 .

As part of an absolutely convergent series, this series is also absolutely convergent.

From associativity, its sum is equal to

⟨w′, Y L
W (YV ((YV )k1(u1)u2, z2 − z3)u3, z3)w⟩

=
∑

k2,k3∈Z
⟨w′, (Y L

W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩(z2 − z3)
−k2−1z−k3−1

3 .

when |z2| > |z3| > |z2 − z3| > 0. We multiply it with (z1 − z2)
−k1−1 sum up all k1 ∈ Z.

With the conclusion of the previous proposition, we see that∑
k1∈Z

⟨w′, Y L
W (YV ((YV )k1(u1)u2, z2 − z3)u3, z3)w⟩(z1 − z2)

−k1−1
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=
∑
k1∈Z

 ∑
k2,k3∈Z

⟨w′, (Y L
W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩(z2 − z3)

−k2−1z−k3−1
3

 (z1 − z2)
−k1−1.

viewed as a single complex series whose terms are ∑
k2,k3∈Z

⟨w′, (Y L
W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩(z2 − z3)

−k2−1z−k3−1
3

 (z1 − z2)
−k1−1,

converges absolutely to f(z1, z2, z3) when |z2| > |z2−z3|, |z2| > |z3|+|z1−z2|, |z1−z2| >

0, |z3| > 0, for the same f(z1, z2, z3) as that in Formula (3.1). Moreover, one sees that

the power of (z1 − z2) in this series is lower-truncated.

We similarly use Lemma 2.3.7 to elaborately show that the series

⟨w′, Y L
W (YV (YV (u1, z1 − z2)u2, z2 − z3)u3, z3)w⟩

=
∑

k1,k2,k3∈Z
⟨w′, (Y L

W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩(z1 − z2)
−k1−1(z2 − z3)

−k2−1z−k3−1
3 .

converges absolutely to f(z1, z2, z3) when |z3| > |z1 − z3|, |z2 − z3| > |z1 − z2| > 0.

First we perform the transformation ζ1 = z1 − z2, ζ2 = z2 − z3, ζ3 = z3. Set

T = {(ζ1, ζ2, ζ3) : |ζ3| > |ζ1|+ |ζ2|, |ζ2| > |ζ1| > 0}

With Lemma 2.3.2, we see that T is a connected multicircular domain. Moreover, T is

a subset of {(ζ1, ζ2, ζ3) ∈ C3 : |ζi| > |ζ1|, i = 2, 3}. We express the function f(z1, z2, z3)

in terms of the variables ζ1, ζ2, ζ3 as

f(ζ1 + ζ2 + ζ3, ζ2 + ζ3, ζ3) =
g(ζ1 + ζ2 + ζ3, ζ2 + ζ3, ζ3)

(ζ1 + ζ2 + ζ3)p1(ζ2 + ζ3)p2ζ
p3
3 ζp121 ζp232 (ζ1 + ζ2)p

13 ,

which admits a Laurent series expansion in the following steps:

1. Expand negative powers of ζ1 + ζ2 + ζ3 as power series in ζ1 + ζ2, then further

expand the positive powers of ζ1 + ζ2 as polynomials in ζ1 and ζ2. This series

converges absolutely when |ζ3| > |ζ1 + ζ2|

2. Expand negative powers of ζ2 + ζ3 as power series in ζ2. This series converges

absolutely when |ζ3| > |ζ2|

3. Expand negative powers of ζ1 + ζ2 as power series in ζ1. This series converges

absolutely when |ζ2| > |ζ1|
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Obviously if (ζ1, ζ2, ζ3) ∈ T , then all the above conditions are satisfied (Note that |ζ3| >

|ζ1|+|ζ2| implies that |ζ3| > |ζ1+ζ2| by triangle inequality). Thus f(ζ1+ζ2, ζ2+ζ3, ζ3) is

expressed as an absolutely convergent Laurent series. From Theorem 2.3.3, the Laurent

series is unique.

Set

S = {(ζ1, ζ2, ζ3) : |ζ2| > |ζ3|+ |ζ1|, |ζ1| > 0, |ζ3| > 0} ∩ T.

So S is a nonempty open subset of T . We know that the series

∑
k2,k3∈Z

⟨w′, (Y L
W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩ζ

−k2−1
2 ζ−k3−1

3 ζ−k1−1
1 .

converges absolutely when (ζ1, ζ2, ζ3) ∈ S, and the series

∑
k1∈Z

 ∑
k2,k3∈Z

⟨w′, (Y L
W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩ζ

−k2−1
2 ζ−k3−1

3

 ζ−k1−1
1 ,

viewed as a series whose terms are

∑
k2,k3∈Z

⟨w′, (Y L
W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩ζ

−k2−1
2 ζ−k3−1

3 ζ−k1−1
1 ,

converges absolutely to f(ζ1 + ζ2, ζ2 + ζ3, ζ3) when (ζ1, ζ2, ζ3) ∈ S. Thus Lemma 2.3.7

implies that the triple series

∑
k1∈Z

∑
k2,k3∈Z

⟨w′, (Y L
W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩ζ

−k2−1
2 ζ−k3−1

3 ζ−k1−1
1 ,

converges absolutely when (ζ1, ζ2, ζ3) ∈ T . Finally, as the expansion is done in the

region

{(ζ1, ζ2, ζ3) ∈ C3 : |ζ3| > |ζ1 + ζ2| > 0, |ζ3| > |ζ2| > |ζ1| > 0}

the series also converges absolutely in this region. That is to say, in terms of variables

z1, z2, z3, the series

∑
k1,k2,k3∈Z

⟨w′, (Y L
W )k3((YV )k2((YV )k1(u1)u2)u3)w⟩(z2 − z3)

−k2−1z−k3−1
3 (z1 − z2)

−k1−1

converges absolutely to f(z1, z2, z3) when |z3| > |z1 − z3|, |z3| > |z2 − z3| > |z1 − z2| >

0.
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Remark 3.1.14. One can also use the approach with the projection operator after

having extended the vertex operators to
>
W . The convergence of corresponding series

still holds because they are part of absolutely convergent series.

Summary 3.1.15. For any u1, ..., un ∈ V,w ∈ W and any z1, ..., zn satisfying |zn| >

|zn−1−zn|+|zn−2−zn−1|+· · ·+|z1−z2|, |zn−1−zn| > |zn−2−zn−1| > · · · > |z1−z2| > 0,

Y L
W (Y L

W (· · ·Y L
W (Y L

W (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)w

=
∑

k1,...,kn−1∈Z
Y L
W (πkn−1YV (· · ·YV (πk1YV (u1, z1 − z2)u2, z2 − z3)u3 · · · , zn−1 − zn)un, zn)w

For fixed z1, z2, ..., zn ∈ C satisfying |zn| > |zn−1 − zn| + |zn−2 − zn−1| + · · · + |z1 −

z2|, |zn−1 − zn| > |zn−2 − zn−1| > · · · > |z1 − z2| > 0, the iteration of any number of

vertex operators gives rise to the following map

Y L
W (YV (· · ·YV (YV (·, z1 − z2)·, z2 − z3) · · · , zn−1 − zn)·, zn)· : V ⊗n ⊗W →

>
W

If in addition, |z1| > |z2| > · · · > |zn|, then the map coincides with

Y L
W (·, z1)Y L

W (·, z2) · · ·Y L
W (·, zn)· : V ⊗n ⊗W →

>
W

Remark 3.1.16. Because of the rationality of iterates, we know that for fixed z1, ..., zn ∈

C such that |z1| > · · · > |zn| > |zn−1−zn|+· · ·+|z1−z2|, |zn−1−zn| > · · · > |z1−z2| > 0,

the vector subspace spanned by {Y L
W (u1, z1) · · ·Y L

W (un, zn)w : u1, ..., un ∈ V,w ∈ W}

in
>
W is isomorphic to that spanned by {Y L

W (YV (· · · (YV (u1, z1 − z2)u2, z2) · · · , zn−1 −

zn)un−1, zn)w : u1, ..., un ∈ V,w ∈ W}. Taking account the change of parameters, the

subspace is at most of dimW times the continuum. This in general is much smaller

than the full
>
W . So in general, the maps we mention above take values in a much

smaller subspace of
>
W than

>
W itself.

Remark 3.1.17. Similarly we can prove the rationality of products and iterates of any

number of vertex operators.

3.1.5 Pole-order condition and formal variable formulation

Similar to the discussion in Chapter 2, we have the pole-order condition for modules.
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Definition 3.1.18. Let V be a MOSVA. LetW =
⨿

m∈C
W[m], Y

L
W : V ⊗W → W [[x, x−1]]

satisfy axioms for gradings, rationality of products and iterates of two vertex operators

and associativity in Definition 3.1.1 . Y L
W is said to satisfy the pole-order condition,

if for every w′ ∈ W ′, u1, u2 ∈ V,w ∈ W , the order of the pole z1 = 0 of the rational

function that⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2)w⟩ converges to is bounded above by an integer

that depends only on u1 and w.

Remark 3.1.19. With the same notations and assumptions in Definition 3.1.18, we

see that for every u1, u2 ∈ V,w ∈ W , p1 appearing in the weak associativity

(x0 + x2)
p1Y L

W (u1, x0 + x2)Y
L
W (u2, x2)w = (x0 + x2)

p1Y L
W (YV (u1, x0)u2, x2)w

can be chosen as an integer that depends only on u1 and w. Conversely, if W and Y L
W

satisfy axioms for gradings, weak associativity with the choice of p1 depending only on

u1 and w, then one can prove that Y L
W satisfies the rationality of products and iterates

for two vertex operators, associativity and the pole-order condition.

Remark 3.1.20. Note that this condition holds automatically when the commutativity

holds. Therefore for vertex algebras, we don’t need any extra condition to have a formal

variable formulation.

Proposition 3.1.21. Let V be a MOSVA. Let W =
⨿

n∈CW[n], Y L
W : V ⊗ W →

W [[x, x−1]] satisfy the axioms for the grading, the D-derivative and D-commutator

properties, rationality of products and iterates of two vertex operators, associativity, and

the pole-order condition in Definition 3.1.18. Then rationality of products holds for any

numbers of vertex operators. More precisely, for every u1, ..., un ∈ V,w′ ∈ W ′, w ∈ W ,

the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (un, zn)w⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function with the only

possible poles at zi = 0, i = 1, ..., n and zi = zj. Moreover, for each i = 1, ..., n, the

order of the pole zi = 0 is bounded above by an integer that depends only on ui and w;

for each i, j with 1 ≤ i < j ≤ n, the order of the pole zi = zj is bounded above by an

integer that depends only on ui and uj.
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Proof. The proof is similar to that in Proposition 2.1.12. We shall not repeat it here.

In regards of Remark 3.1.19, we have the following theorem:

Theorem 3.1.22. Let V be a MOSVA, Let W =
⨿

n∈C V[n], Y
L
W : V⊗W → W [[x, x−1]],dW :

W → W of weight 0, and DW : W → W of weight 1 satisfy axioms for the grading, D-

derivative property, D-commutator formula, and the following weak associativity with

pole-order condition: for every u1, u2 ∈ V , w ∈ W , there exists an integer p1 that

depends only on u1 and w, such that

(x0 + x2)
p1Y L

W (YV (u1, x0)u2, x2)w = (x0 + x2)
p1Y L

W (u1, x0 + x2)Y
L
W (u2, x2)w

as formal series in W [[x0, x
−1
0 , x2, x

−1
2 ]], then (W,Y L

W ,dW , DW ) forms a left V -module,

with Y L
W satisfying the pole-order condition.

Not only is the pole-order condition crucial for the formal variable approach, it also

provides the following surprising result.

Proposition 3.1.23. For every u1, ..., un ∈ V,w ∈ W and z1, ..., zn ∈ C satisfying

|z1| > · · · > |zn| > 0, the sum of the series

Y L
W (u1, z1) · · ·Y L

W (un, zn)w

takes value in W .

Proof. Consider the easier case when n = 2. Thus, we want to argue that the projection

of the series

Y L
W (u1, z1)Y

L
W (u2, z2)w

onto any fixed homogeneous subspace of W is a finite sum. In other words, for every

fixed r ∈ Z, we want to have

∑
m∈Z

(u1)(Y
L
W )r−m(u2)mwz−r+m−1

1 z−m−1
2

to be a finite sum. Obviously, m is upper-truncated. So it suffices to prove that m is

lower-truncated.
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From the pole condition, we know that there exists p1, p2, p12, such that

zp11 zp22 (z1 − z2)
p12Y L

W (u1, z1)Y
L
W (u2, z2)w =

∞∑
i1,i2=0

bi1i2z
i1
1 zi22 ∈ W [[z1, z2]]

Multiplying both sides with the series

z−p1
1 z−p2

2 ι12(z1 − z2)
−p12 =

∞∑
j=0

(
−p12
j

)
z−p1−p12−j
1 zj−p2

2

to see that

Y L
W (u1, z1)Y

L
W (u2, z2)w =

∞∑
i1,i2=0

bi1i2z
i1
1 zi22

∞∑
k=0

(
−p12
k

)
z−p1−p12−k
1 z−p2+k

2

=
∞∑

i1,i2=0

∞∑
k=0

bi1i2

(
−p12
k

)
zi1−p1−p12−k
1 zi2−p2+k

2

=

∞∑
i1=0

∞∑
i′2=−p2

∞∑
k=0

bi1,i′2+p2−k

(
−p12
k

)
zi1−p1−p12−k
1 z

i′2
2

=
∑
i′1∈Z

∞∑
i′2=−p2

∞∑
k=0

bi′1+p1+p12+k,i′2+p2−k

(
−p12
k

)
z
i′1
1 z

i′2
2

Thus we have the equality

(u1)−i′1−1(u2)−i′2−1w =

∞∑
k=0

bi′1+p1+p12+k,i′2+p2−k

(
−p12
k

)
Or,

(u1)m1(u2)m2w =
∞∑
k=0

b−m1−1+p1+p12+k,−m2−1+p2−k

(
−p12
k

)
Thus ∑

m∈Z
(u1)r−n(u2)nw =

∑
n∈Z

∞∑
k=0

b−r+n−1+p12+k,−n−1−k

(
−p12
k

)
Note that the sum of the indices is −k − 2 + p12. It is clear that there are at most

finitely many (i1, i2) satisfies i1 + i2 = −k − 2 + p12 and bi1i2 ̸= 0. Thus the sum is

indeed finite. Thus the left-hand-side is also a finite sum.

In general, the pole-order condition yields integers pij depending only on ui and uj ,

such that

n∏
i=1

zpii
∏

1≤i<j≤n

(zi − zj)
pijY L

W (u1, z1) · · ·Y L
W (un, zn)w =

∞∑
i1,...,in=0

bi1...inz
i1
1 · · · zinn .
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is in W [[z1, ..., zn]]. Thus

Y L
W (u1, z1) · · ·Y L

W (un, zn)w

=
n∏

i=1

z−pi
i

∏
1≤i<j≤n

ιij(zi − zj)
−pij

∞∑
i1,...,in=0

bi1...inz
i1
1 · · · zinn

=
∏

1≤i<j≤n

∞∑
kij=0

(
−pij
kij

)
z
−pij−kij
i z

kij
j

∞∑
i1,...,in=0

bi1...inz
i1−p1
1 · · · zin−pn

n

=
∏

1≤i<j≤n−1

∞∑
kij=0

(
−pij
kij

) ∞∑
k1n,...,kn−1n=0

∏
1≤i<n

(
−pin
kin

)
z−pin−kin
i zkinn

∞∑
i1,...,in=0

bi1...inz
i1−p1
1 · · · zin−pn

n

=
∏

1≤i<j≤n−1

∞∑
kij=0

(
−pij
kij

) ∞∑
k1n,...,kn−1n=0

∏
1≤i<n

(
−pin
kin

)
z−p1n−k1n
1 · · · z−pn−1n−kn−1n

n−1 zk1n+···+kn−1n
n

∞∑
i1,...,in=0

bi1...inz
i1−p1
1 · · · zin−pn

n

=
∏

1≤i<j≤n−1

∞∑
kij=0

(
−pij
kij

) ∞∑
k1n,...,kn−1n=0

∏
1≤i<n

(
−pin
kin

)
∞∑

i1,...,in=0

bi1...inz
i1−p1−p1n−k1n
1 · · · zin−1−pn−1−pn−1,n−kn−1,n

n−1 z
in−pn+

∑n−1
i=1 kin

n

=
∏

1≤i<j≤n−1

∞∑
kij=0

(
−pij
kij

) ∞∑
k1n,...,kn−1n=0

∏
1≤i<n

(
−pin
kin

)
∞∑

i1,...,in=0

bi1...inz
i1−p1−p1n−k1n
1 · · · zin−1−pn−1−pn−1,n−kn−1,n

n−1 z
in−pn+

∑n−1
i=1 kin

n

=

∞∑
i1,...,in=0

∑
kij≥0,1≤i<j≤n

∏
1≤i<j≤n

(
−pij
kij

)
bi1...inz

i1−p1−
∑

j>1(p1j+k1j)

1 z
i2−p2−

∑
j>2(p2j+k2j)+k12

2

· · · zil−pl−
∑

j>l(plj+klj)+
∑

j<l kjl
l · · · z

in−1−pn−1−pn−1,n−kn−1,n+
∑n−2

j=1 kj,n−1

n−1 z
in−pn+

∑n−1
i=1 kin

n

If we set

i′1 = i1 − p1 −
∑
j>1

(p1j + k1j)

i′2 = i2 − p2 −
∑
j>2

(p2j + k2j) + k12

· · · · · ·

i′l = il − pl −
∑
j>l

(plj + klj) +
∑
j<l

kjl
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· · · · · ·

i′n−1 = in−1 − pn−1 − pn−1,n − kn−1,n +
∑

j<n−1

kj,n−1

i′n = in − pn +
n−1∑
i=1

kin

Then the series can be written as

∑
i′1,...,i

′
n∈Z

∑
kij≥0,1≤i<j≤n

plus other inequalities

∏
1≤i<j≤n

(
−pij
kij

)

bi′1+p1+
∑

j>1(p1j+k1j),...,i′l+pl+
∑

j>l(plj+klj)−
∑

j<l kjl,...,i
′
n+pn−

∑
j<n kinz

i′1
1 · · · zi′nn

For fixed i′1, ..., i
′
n, since in is nonnegative, for each fixed i′n we have

∑n−1
i=1 kin ≤ i′n+pn.

In particular, all k1n, ..., kn−1,n are bounded above. Since in−1 is nonnegative, we have∑
j<n−1 kj,n−1 ≤ i′n−1+pn−1+pn−1,n+kn−1,n where kn−1,n is bounded above. Thus all

kj,n−1’s are bounded above. Repeating the argument to see that all kij ’s are bounded

above. Thus the summation involving the kij ’s are all finite.

We thus have

(u1)−i′1−1 · · · (un)−i′n−1w =
∑

kij finite

∏
1≤i<j≤n

(
−pij
kij

)

bi′1+p1+
∑

j>1(p1j+k1j),...,i′l+pl+
∑

j>l(plj+klj)−
∑

j<l kjl,...,i
′
n+pn−

∑
j<n kin

In other words,

(u1)m1 · · · (un)mnw =
∑

kij finite

∏
1≤i<j≤n

(
−pij
kij

)

b−m1−1+p1+
∑

j>1(p1j+k1j),...,−ml−1+pl+
∑

j>l(plj+klj)−
∑

j<l kjl,...,−mn−1+pn−
∑

j<n kin

To show that for each fixed r ∈ Z,

∑
m1+···+mn=r

(u1)m1 · · · (un)mnwz
−m1−1
1 · · · z−mn−1

n

=
∑

m1+···+mn=r

∑
kij finite

∏
1≤i<j≤n

(
−pij
kij

)
z−m1−1
1 · · · z−mn−1

n

b−m1−1+p1+
∑

j>1(p1j+k1j),...,−ml−1+pl+
∑

j>l(plj+klj)−
∑

j<l kjl,...,−mn−1+pn−
∑

j<n kin
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is a finite sum, it suffices to notice that that the sum of the indices of b is indeed a fixed

constant

−r − n+
n∑

i=1

pi +
∑

1≤i<j≤n

pij

It is clear that there are at most finitely many (i1, ..., in) such that the sum of all ij ’s

is equal to the constant, and bi1...in ̸= 0. Thus the sum above must be finite.

Remark 3.1.24. This result is observed by Huang. His argument uses W -valued

rational functions, which is more conceptual than what was shown above.

3.2 Right V -modules

We now introduce the notion of right V -modules. This notion and the elementary

properties have been known to Huang.

3.2.1 Basic definitions

Definition 3.2.1. Let (V, YV ,1) be a meromorphic open-string vertex algebra. A right

V -module is a C-graded vector space W =
⨿

n∈CW[n] (graded by weights), equipped

with a vertex operator map

Y R
W : W ⊗ V → W [[x, x−1]]

w ⊗ u 7→ Y R
W (w, x)u,

an operator dW and an operator DW of weight 1, satisfying the following axioms:

1. Axioms for the grading:

(a) Lower bound condition: When Re(n) is sufficiently negative, W[n] = 0.

(b) d-grading condition: for every w ∈ W[n],dWw = nw.

(c) d-bracket property : For w ∈ W ,

dWY R
W (w, x)− Y R

W (w, x)dV = Y R
W (dWw, x) + x

d

dx
Y R
W (w, x).

2. The Creation property : For w ∈ W , Y R
W (w, x)1 ∈ W [[x]] and lim

x→0
Y R
W (w, x)1 = w.
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3. The D-derivative property and the D-commutator formula: For u ∈ V ,

d

dx
Y R
W (w, x) = Y R

W (DWw, x)

= DWY R
W (w, x)− Y R

W (w, x)DV .

4. Rationality : For u1, . . . , un ∈ V,w ∈ W and w′ ∈ W ′, the series

⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function in z1, . . . , zn

with the only possible poles at zi = 0 for i = 1, . . . , n and zi = zj for i ̸= j. For

u1, u2 ∈ V,w ∈ W and w′ ∈ W ′, the series

⟨w′, Y R
W (Y R

W (w, z1 − z2)u1, z2)u2⟩

converges absolutely when |z2| > |z1−z2| > 0 to a rational function with the only

possible poles at z1 = 0, z2 = 0 and z1 = z2.

5. Associativity : For u1, u2 ∈ V,w ∈ W , w′ ∈ W ′,

⟨w′, Y R
W (w, z1)YV (u1, z2)u2⟩ = ⟨w′, Y R

W (Y R
W (w, z1 − z2)u1, z2)u2⟩

when |z1| > |z2| > |z1 − z2| > 0.

A right V -module is said to be grading-restricted if dimW[n] < ∞ for n ∈ C.

When there is no confusion, we also denote the right V -module just defined by

(W,Y R
W ,dW , DW ) or simply W .

Remark 3.2.2. The right module is defined with the following philosophy: all the

properties of intertwining operators of type
(

W
WV

)
that make sense hold. With such a

formulation, all the issues on convergence can be analyzed similarly as the usual vertex

operators.

3.2.2 Some immediate consequences

Proposition 3.2.3. Let V be a MOSVA and W be a right V -module. then
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1. For u ∈ V , Y R
W (·, x)u can be regarded as a formal series in End(W )[[x, x−1]]

Y R
W (·, x)u =

∑
n∈Z

(Y R
W )n(u)x

−n−1

where (Y R
W )n(u) : W → W is a linear map for every n ∈ Z. If u is homogeneous,

then (Y R
W )n(u) is a map of weight wt u− n− 1.

2. For fixed u ∈ V and w ∈ W , Y R
W (w, x)u is lower truncated, i.e, there are at most

finitely many negative powers of x.

3. For w ∈ W ,

Y R
W (w, x)1 = exDWw

4. Formal Taylor theorem: for w ∈ V ,

Y R
W (w, x+ y) = Y R

W (eyDWw, x) = eyDW Y R
W (w, x)e−yDV ,

in End(W )[[x, y, x−1]].

Proof. The arguments for (1), (2) and (4) are similar to those for Proposition 2.1.4. To

see (3), one first note that

DWw = lim
x→0

Y R
W (DWw, x)1 = lim

x→0

d

dx
Y R
W (w, x)

(the first equality follows from the creation property, the second from D-derivative

property), then apply the arguments in Proposition 2.1.4.

3.2.3
>
W -valued map interpretation

Just like what we did for left V -modules, similar results work for right modules: for

one vertex operator, we have

Summary 3.2.4. For u ∈ V,w ∈ W and any nonzero complex number z, the summa-

tion

Y R
W (w, z)u =

∑
n∈Z

Y R
W (u)nwz

−n−1

gives an element in W . For a given nonzero z ∈ C, the vertex operator map give rise

to the following map

Y R
W (·, z)· : W ⊗ V → W ⊂

>
W
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For the product of two vertex operators, we have

Summary 3.2.5. For any u1, u2 ∈ V , w ∈ W and any complex numbers z1, z2 satis-

fying |z1| > |z2| > 0, the single series

∑
k∈Z

Y R
W (w, z1)πkYV (u1, z2)u2

of elements in W converges absolutely, i.e., for any w′ ∈ W ′,

∑
k∈Z

⟨w′, Y R
W (w, z1)πkYV (u1, z2)u2⟩

converges absolutely. Moreover, the sum of the series is equal to the sum of the double

series

Y R
W (w, z1)YV (u1, z2)u2

For fixed z1, z2 satisfying |z1| > |z2| > 0, the product of two vertex operators gives rise

to the following map

Y R
W (·, z1)Y R

W (·, z2)· : W ⊗ V ⊗ V →
>
W

which is equal to the map

∑
k∈Z

Y R
W (·, z1)πkY R

W (·, z2)· : W ⊗ V ⊗ V →
>
W

For the product of three vertex operators, although we don’t know if Y R
W (w, z1)YV (u1, z1)u2

sits in W , since YV (u1, z2)YV (u2, z3)u3 is in V , the expression

Y R
W (w, z1)πkYV (u1, z1)YV (u2, z2)u3

can be understood just as in Chapter 2. So no modifications is needed to give the

following:

Summary 3.2.6. For any u1, ..., un ∈ V , w ∈ W and any z1, ..., zn ∈ C satisfying

|z1| > |z2| > · · · > |zn| > 0, the series

∑
k1,...,kn−1∈Z

Y R
W (w, z1)πk1YV (u1, z2)π2 · · ·YV (un−1, zn−2)πkn−1YV (un−1, zn)un
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of elements in
>
W converges absolutely, The sum is equal to the

>
W element given by

Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un

For fixed z1, z2, ..., zn ∈ C satisfying |z1| > · · · > |zn| > 0, the product of any number of

vertex operators gives rise to a map

Y R
W (·, z1)YV (·, z2) · · ·YV (·, zn)· : W ⊗ V ⊗n →

>
W

and is equal to the sum∑
k1,...,kn−1∈Z

Y R
W (·, z1)πk1YV (·, z2)πk2 · · ·YV (·, zn−1)πkn−1YV (·, zn)· : W ⊗ V ⊗n →

>
W

Remark 3.2.7. We put all πki ’s on for completeness. In practice it is absolutely fine

to omit any number of them.

3.2.4 Rationality of iterates

For the iterate of two vertex operators, since Y R
W (w, z1 − z2)u1 ∈ W , we still have the

following interpretation:

Summary 3.2.8. For any u1, u2 ∈ V,w ∈ W and any complex numbers z1, z2 satisfying

|z2| > |z1 − z2| > 0, the single series∑
m∈C

Y R
W (πW

m Y R
W (w, z1 − z2)u1, z2)u2

of elements in W converges absolutely, i.e., the complex series∑
m∈C

⟨w′, Y R
W (πW

m Y R
W (w, z1 − z2)u1, z2)u2⟩

converges absolutely. The sum is equal to the
>
W element given by

Y R
W (Y R

W (w, z1 − z2)u1, z2)u2

For fixed z1, z2 satisfying |z2| > |z1 − z2| > 0, the iterate of two vertex operators gives

rise to a map

Y R
W (Y R

W (·, z1 − z2)·, z2)· : W ⊗ V ⊗ V →
>
W

which is equal to the sum∑
m∈C

Y R
W (πW

m Y R
W (·, z1 − z2)·, z2)· : W ⊗ V ⊗ V →

>
W
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Summary 3.2.9. For fixed z1, z2 satisfying |z1| > |z2| > |z1 − z2| > 0, the following

maps

Y R
W (·, z1)YV (·, z2)· : W ⊗ V ⊗ V →

>
W∑

k∈Z
Y R
W (·, z1)πkYV (·, z2)· : W ⊗ V ⊗ V →

>
W

Y R
W (Y R

W (·, z1 − z2)·, z2)· : W ⊗ V ⊗ V →
>
W∑

m∈C
Y R
W (πW

m Y R
W (·, z1 − z2)·, z2)· : W ⊗ V ⊗ V →

>
W

are equal.

For the iterate of more than three vertex operators, problems arise, as we don’t

know how to define Y R
W (·, zn)un on the

>
W -element Y R

W (· · ·Y R
W (Y R

W (w, z1 − z2)u1, z2 −

z3) · · · , zn−1 − zn)un−1. We have to prove the convergence of the iterate first.

Proposition 3.2.10. For u1, u2, ..., un ∈ V,w ∈ W,w′ ∈ W ′, the series

⟨w′, Y R
W (Y R

W (· · ·Y R
W (Y R

W (w, z1 − z2)u1, z2 − z3)u2 · · · , zn−1 − zn)un−1, zn)un⟩

converges absolutely in the region
(z1, ..., zn) ∈ Cn :

|zn| > |zn−1 − zn|+ |zn−2 − zn−1|+ · · ·+ |z1 − z2|,

|zi − zi+1| >
i−1∑
j=1

|zj − zj+1|, i = 3, ..., n− 1

|z2 − z3| > |z1 − z2| > 0


to the rational function that

⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges to.

Proof. The steps are similar to the proof of Proposition 2.3.13. We give only a sketch

here: Assume the conclusion is true for the iterate of n− 1 vertex operators:

1. Use Summary 3.2.6 to write

Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un
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=
∑

k1,...,kn−1∈Z
Y R
W (w, z1)πk1YV (u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un

and hence

⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

=
∑

k1,...,kn−1∈Z
⟨w′, Y R

W (w, z1)πk1YV (u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un⟩

when |z1| > |z2| > · · · > |zn| > 0.

2. For each fixed k2, we use the associativity to see that∑
k1,k3,...,kn−1∈Z

⟨w′, Y R
W (w, z1)πk1YV (u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un⟩

=
∑
r1∈C

∑
k3,...,kn−1∈Z

⟨w′, Y R
W (πW

r1 Y
R
W (w, z1 − z2)u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un⟩

when |z1| > |z2| > · · · > |zn| > 0, |z2| > |z1 − z2| > 0. In particular, the right

hand side, as part of an absolutely convergent n-multiseries in z1 − z2, z2, ..., zn,

converges absolutely.

3. Summing up all k2’s to see that

∑
k2∈Z

∑
r1∈C

∑
k3,...,kn−1∈Z

⟨w′, Y R
W (πW

r1 Y
R
W (w, z1 − z2)u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un⟩


viewed as a single complex series whose terms are∑

r1∈C

∑
k3,...,kn−1∈Z

⟨w′, Y R
W (πW

r1 Y
R
W (w, z1 − z2)u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un⟩

 ,

converges to the rational function that ⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges to, when |z1| > |z2| > · · · > |zn| > 0, |z2| > |z1 − z2| > 0.

4. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that

the series

∑
k2∈Z

∑
r1∈C

∑
k3,...,kn−1∈Z

⟨w′, Y R
W (πW

r1 Y
R
W (w, z1−z2)u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un⟩
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converges absolutely to the rational function that ⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges to, when |z2| > |z1− z2|+ |z3|, |z1− z2| > 0, |z3| > |z4| > · · · > |zn| > 0.

In other words, the series

⟨w′, Y R
W (Y R

W (w, z1 − z2)u1, z2)YV (u2, z3) · · ·YV (un−1, zn)un⟩

converges absolutely in the region

{(z1, ..., zn) ∈ Cn : |z2| > |z1 − z2|+ |z3|, |z1 − z2| > 0, |z3| > |z4| > · · · > |zn| > 0}

to the rational function that

⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges to.

5. For each fixed r ∈ C, we use the the induction hypothesis to see that∑
k2,...,kn−1∈Z

⟨w′, Y R
W (πW

r1 Y
R
W (w, z1 − z2)u1, z2)πk2YV (u2, z3) · · ·πkn−1YV (un−1, zn)un⟩

=
∑

r2,...,rn−1∈C
⟨w′, Y R

W (πr2Y
R
W (· · ·πrn−1Y

R
W (πr1Y

R
W (w, z1 − z2)u1, z2 − z3)u2, · · · )un−1, zn)un⟩

when |z2| > |z1 − z2| + |z3|, |z1 − z2| > 0, |z3| > |z4| > · · · > |zn| > |z2 − z3| +

· · · + |zn − zn−1|, |zn−1 − zn| > · · · > |z2 − z3| > 0. In particular, the right hand

side, as an (n− 1)-multiseries in z2 − z3, ..., zn−2 − zn−1, zn−1 − zn, zn, converges

absolutely.

6. Summing up all r1’s to see that

∑
r1∈C

 ∑
r2,...,rn−1∈C

⟨w′, Y R
W (πr2Y

R
W (· · ·πrn−1Y

R
W (πr1Y

R
W (w, z1 − z2)u1, z2 − z3)u2, · · · )un−1, zn)un⟩

 ,

viewed as a single complex series whose terms are ∑
r2,...,rn−1∈C

⟨w′, Y R
W (πr2Y

R
W (· · ·πrn−1Y

R
W (πr1Y

R
W (w, z1 − z2)u1, z2 − z3)u2, · · · )un−1, zn)un⟩

 ,

converges to the rational function that ⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges to, when |z2| > |z1 − z2| + |z3|, |z1 − z2| > 0, |z3| > |z4| > · · · > |zn| >

|z2 − z3|+ · · ·+ |zn − zn−1|, |zn−1 − zn| > · · · > |z2 − z3| > 0.
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7. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that

the series

∑
r1,r2,...,rn−1∈C

⟨w′, Y R
W (πr2Y

R
W (· · ·πrn−1Y

R
W (πr1Y

R
W (w, z1−z2)u1, z2−z3)u2, · · · )un−1, zn)un⟩,

converges absolutely to the rational function that ⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges to, when |zn| > |zn−1−zn|+ |zn−2−zn−1|+ · · ·+ |z1−z2|, |zn−1−zn| >

|zn−2 − zn−1| > · · · > |z1 − z2| > 0.

Because of this proposition, we can now understand the action of Y R
W (·, z3)u3 on

πW
m Y R

W (Y R
W (w, z1−z2)u1, z2−z3)u2 ∈ W ∗∗

[m] as the part of the triple series Y
R
W (Y R

W (Y R
W (w, z1−

z2)u1, z2 − z3)u2, z3)u3. More precisely, for homogeneous u1, u2 ∈ V and w ∈ W , as

πW
m Y R

W (Y R
W (w, z1 − z2)u1, z2 − z3)u2

=
∑

wtu1+wtu2+wtw−n2−n3−2=m
n2,n3∈Z

(Y R
W )n2(u2)(Y

R
W )n1(u1)w(z1 − z2)

−n1−1(z2 − z3)
−n2−1

we naturally have

Y R
W (πW

m Y R
W (Y R

W (w, z1 − z2)u1, z2 − z3)u2, z3)u3

=Y R
W

 ∑
wtu1+wtu2+wtw−n2−n3−2=m

n2,n3∈Z

(Y R
W )n2(u2)(Y

R
W )n1(u1)w(z1 − z2)

−n1−1(z2 − z3)
−n2−1, z3

u3

=
∑
n3∈Z

(Y R
W )n3(u3)· ∑

wtu1+wtu2+wtw−n2−n3−2=m
n2,n3∈Z

(Y R
W )n2(u2)(Y

R
W )n1(u1)w(z1 − z2)

−n1−1(z2 − z3)
−n2−1

 z−n3−1
3

=
∑

wtu1+wtu2+wtw−n2−n3−2=m
n1,n2,n3∈Z

(
(Y R

W )n1(u1)(Y
R
W )n2(u2)(Y

R
W )n1(u1)w(z1 − z2)

−n1−1(z2 − z3)
−n2−1

)
z−n3−1
3

If we treat the element in the parenthesis as an element ofW ∗∗
[m], then the sum gives an el-

ement in
>
W . So summing up allm ∈ C will yield a series in

>
W . However, after pairing it

with w′, we see that the resulted complex series
∑
r∈C

⟨w′, Y R
W (u1, z1)π

W
m Y R

W (u2, z2)Y
R
W (u3, z3)w⟩
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is just a rearrangement of the absolutely convergent triple series ⟨w′, Y R
W (u1, z1)Y

R
W (u2, z2)Y

R
W (u3, z3)w⟩.

For nonhomogeneous u2, u3 ∈ V and w ∈ W , we use the same argument as in Propo-

sition 2.2.11 to write the corresponding series as a finite sum of absolutely convergent

series.

Remark 3.2.11. Alternatively, we can also extend the operator Y R
W (·, z)u using the

double adjoint process in the same way as in Remark 3.1.9. The proof of Proposition

3.2.10 can also be rewritten without using the projection operators. The details are

similar to those in Proposition 3.1.13.

Similarly, we have the following summary

Summary 3.2.12. For any u1, ..., un ∈ V,w ∈ W and any z1, ..., zn satisfying |zn| >

|zn−1−zn|+|zn−2−zn−1|+· · ·+|z1−z2|, |zn−1−zn| > |zn−2−zn−1| > · · · > |z1−z2| > 0,

Y R
W (Y R

W (· · ·Y R
W (Y R

W (w, z1 − z2)u1, z2 − z3)u2 · · · , zn−1 − zn)un−1, zn)un

=
∑

m1,...,mn−1∈Z
Y R
W (πmn−1Y

R
W (· · ·Y R

W (πm1Y
R
W (w, z1 − z2)u1, z2 − z3)u2 · · · , zn−1 − zn)un−1, zn)un

For fixed z1, z2, ..., zn ∈ C satisfying |zn| > |zn−1 − zn| + |zn−2 − zn−1| + · · · + |z1 −

z2|, |zn−1 − zn| > |zn−2 − zn−1| > · · · > |z1 − z2| > 0, the iteration of any number of

vertex operators gives rise to the following map

Y R
W (Y R

W (· · ·Y R
W (Y R

W (·, z1 − z2)·, z2 − z3) · · · , zn−1 − zn)·, zn)· : W ⊗ V ⊗n →
>
W

If in addition, |z1| > |z2| > · · · > |zn|, then the map coincides with

Y R
W (·, z1)YV (·, z2) · · ·YV (·, zn)· : W ⊗ V ⊗n →

>
W

3.2.5 Pole-order condition and formal variable formulation

We similarly have the following pole-order condition for right V -modules. All the proofs

are similar to those proved for the left modules. We shall not repeat them here.

Definition 3.2.13. Let V be a MOSVA. LetW =
⨿

m∈C
W[m], Y

R
W : W⊗V → W [[x, x−1]]

satisfy axioms for gradings, rationality of products and iterates of two vertex operators

and associativity in Definition 3.1.1 . Y L
W is said to satisfy the pole-order condition,
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if for every w′ ∈ W ′, u1, u2 ∈ V,w ∈ W , the order of the pole z1 = 0 of the rational

function that⟨w′, Y R
W (w, z1)Y

R
W (u1, z2)u2⟩ converges to is bounded above by an integer

that depends only on w and u2.

Remark 3.2.14. With the same notations and assumptions in Definition 3.2.13, we

see that for every u1, u2 ∈ V,w ∈ W , p1 appearing in the weak associativity

(x0 + x2)
p1Y R

W (w, x0 + x2)Y
L
W (u1, x2)u2 = (x0 + x2)

p1Y R
W (Y R

W (w, x0)u1, x2)u2

can be chosen as an integer that depends only on w and u2. Conversely, if W and Y L
W

satisfy axioms for gradings, weak associativity with the choice of p1 depending only on

w and u2, then one can prove that Y R
W satisfies the rationality of products and iterates

for two vertex operators, associativity and the pole-order condition.

Proposition 3.2.15. Let V be a MOSVA. Let W =
⨿

n∈CW[n], Y R
W : W ⊗ V →

W [[x, x−1]] satisfy the axioms for the grading, the D-derivative and D-commutator

properties, rationality of products and iterates of two vertex operators, associativity, and

the pole-order condition in Definition 3.2.13. Then rationality of products holds for any

numbers of vertex operators. More precisely, for every u1, ..., un ∈ V,w′ ∈ W ′, w ∈ W ,

the series

⟨w′, Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function with the only

possible poles at zi = 0, i = 1, ..., n and zi = zj. Moreover, the order of the pole z1 = 0

is bounded above by an integer that depends only on w and un; for each i = 2, ..., n, the

order of the pole zi = 0 is bounded above by an integer that depends only on ui−1 and

un; for each i = 2, ..., n, the order of the pole z1 = zi is bounded above by an integer

that depends only on w and ui−1; for each i, j with 2 ≤ i < j ≤ n, the order of the pole

zi = zj is bounded above by an integer that depends only on ui−1 and uj−1.

In regards of Remark 3.1.19, we have the following theorem:

Theorem 3.2.16. Let V be a MOSVA, Let W =
⨿

n∈C V[n], Y
R
W : W⊗V → W [[x, x−1]],dW :

W → W of weight 0, and DW : W → W of weight 1 satisfy axioms for the grading, D-

derivative property, D-commutator formula, and the following weak associativity with
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pole-order condition: for every u1, u2 ∈ V , w ∈ W , there exists an integer p1 that

depends only on w and u2, such that

(x0 + x2)
p1Y R

W (Y R
W (w, x0)u1, x2)u2 = (x0 + x2)

p1Y R
W (w, x0 + x2)YV (u1, x2)u2

as formal series in W [[x0, x
−1
0 , x2, x

−1
2 ]], then (W,Y R

W ,dW , DW ) forms a right V -module,

with Y R
W satisfying the pole-order condition.

Proposition 3.2.17. For every u1, ..., un ∈ V,w ∈ W and z1, ..., zn ∈ C satisfying

|z1| > · · · > |zn| > 0, the sum of the series

Y R
W (w, z1)YV (u1, z2) · · ·YV (un−1, zn)un

takes value in W .

3.2.6 V -modules and V op-modules

If V is a vertex algebra, then a left V -module automatically makes a right V -module.

More generally, we have the following proposition:

Proposition 3.2.18. Given a right V -module (W,Y R
W ,dW , DW ), we define the vertex

operator map

Y
s(R)
W :V ⊗W → W

v ⊗ w 7→ exDW Y R
W (w,−x)v

Then (W,Y
s(R)
W ,dW , DW ) is a left V op-module.

Conversely, given a left V op-module (W,Y
s(R)
W ,dW , DW ), we define the vertex operator

map

Y R
W :W ⊗ V → W

w ⊗ v 7→ exDW Y
s(R)
W (v,−x)w

then (W,Y R
W ,dW , DW ) is a right V -module.

Proof. Let (W,Y R
W ,dW , DW ) be a right V -module. We verify all the axioms of the left

V op-module.
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1. The grading of W obviously satisfy the lower bound condition and the d-grading

condition. The proof of the d-commutator formula is similar to that in the proof

of Proposition 2.4.6.

2. The identity property follows from Proposition 3.2.3

Y
s(R)
W (1, x)w = exDW Y R

W (w,−x)1 = exDW e−xDWw = w

3. We first prove the D-derivative property

d

dx
Y

s(R)
W (v, x)w =

d

dx

(
exDW Y R

W (w,−x)v
)
= DW exDW Y R

W (w,−x)v + exDW
d

dx

(
Y R
W (w,−x)v

)
= exDWDWY R

W (w,−x)v + exDW
d

dx

(
Y R
W (w,−x)v

)
= exDW [DW , Y R

W (w,−x)]v + exDW Y R
W (w,−x)DV v + exDW

d

dx

(
Y R
W (w,−x)v

)
= exDW

d

d(−x)
Y R
W (w,−x)v + exDW Y R

W (w,−x)DV v + exDW
d

dx

(
Y R
W (w,−x)v

)
= exDW Y R

W (w,−x)DV v = Y
s(R)
W (DV v, x)w

The D-commutator formula follows

[DW , Y
s(R)
W (v, x)]w = DW exDW Y R

W (w,−x)v − exDW Y R
W (DWw,−x)v

= exDWDWY R
W (w,−x)v + exDW

d

dx

(
Y R
W (w,−x)v

)
=

d

dx

(
exDW Y R

W (w,−x)v
)
=

d

dx
Y

s(R)
W (v, x)w

4. It suffices to replace YV by Y R
W and Y s

V by Y
s(R)
W in the arguments of Proposition

2.4.4 and Proposition 2.4.5.

5. It suffices to replace YV by Y R
W and Y s

V by Y
s(R)
W in the arguments of Part (5) of

Proposition 2.4.6.

The converse can be proved similarly. We omit the details here.

Similarly, one can prove the following theorem:

Proposition 3.2.19. Given a left V -module (W,Y L
W ,dW , DW ), we define the vertex

operator map

Y
s(L)
W :W ⊗ V → W

w ⊗ v 7→ exDW Y L
W (v,−x)w
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Then (W,Y
s(L)
W ,dW , DW ) is a left V op-module.

Conversely, given a right V op-module (W,Y
s(L)
W ,dW , DW ), we define the vertex operator

map

Y L
W :V ⊗W → W

v ⊗ w 7→ exDW Y
s(L)
W (w,−x)v

then (W,Y L
W ,dW , DW ) is a left V -module.

3.3 V -bimodules

In this section we define V -bimodules. Many results in the previous sections can be

generalized to V -bimodules. We will list these results without giving any explicit ar-

guments. Then we will discuss some convergence results that will be used in the later

Chapters.

3.3.1 The definition and the summaries

Definition 3.3.1. Let (V, YV ,1) be a meromorphic open-string vertex algebra. A V -

bimodule is a vector space equipped with a left V -module structure and right V -module

structure such that these two strutcure are compatible. More precisely, a V -bimodule

is a C-graded vector space

W =
⨿
n∈C

W[n]

equipped with a left vertex operator map

Y L
W : V ⊗W → W [[x, x−1]]

u⊗ w 7→ Y L
W (u, x)v,

a right vertex operator map

Y R
W : W ⊗ V → W [[x, x−1]]

w ⊗ u 7→ Y R
W (w, x)u,

and linear operators dW , DW on W satisfying the following conditions.

1. (W,Y L
W ,dW , DW ) is a left V -module.
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2. (W,Y R
W ,dW , DW ) is a right V -module.

3. Compatibility :

(a) Rationality of left and right vertex operator maps: For u1, ..., un, un+1, ..., un+m ∈

V , w ∈ W , the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (un, zn)Y
R
W (w, zn+1)YV (un+1, zn+2) · · ·YV (un+m−1, zn+m)un+m⟩

converges absolutely in the region |z1| > |z2| > · · · > |zn| > |zn+1| > · · · >

|zn+m| > 0 to a rational function in z1, ..., zn, zn+1, ..., zn+m.

(b) Associativity for left and right vertex operator maps: For u, v ∈ V , w ∈ W

and w′ ∈ W ′, the series

⟨w′, Y L
W (u, z1)Y

R
W (w, z2)v⟩

⟨w′, Y R
W (Y L

W (u, z1 − z2)w, z2)v⟩

converges absolutely in the region |z1| > |z2| > 0 and |z2| > |z1 − z2| >

0, respectively, to a common rational function in z1 and z2 with the only

possible poles at z1, z2 = 0 and z1 = z2.

The V -bimodule just defined is denoted by (W,Y L
W , Y R

W ,dW , DW ) or simply by W .

Remark 3.3.2. It is possible to generalize the definition to allow the left and right

module structure on W to wield different d and D operators. Since we don’t have

any essential examples and certain subtlety also arise when modules are not grading-

restricted, we choose not to discuss it here.

Remark 3.3.3. If V is a vertex algebra andW is a V -module (a vertex algebra module),

then W can be regarded as a bimodule of the MOSVA V . Just as a module of a

commutative associative algebra A can be viewed as a A-bimodule when A is viewed as

an associative algebra. However, not all V -bimodules come in that way. In general, on

the same space W one may have two different V -module action that are compatible, so

as to make W a V -bimodule.
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3.3.2
>
W -valued map interpretation and rationality of iterates

Likewise, we have the following summaries

Summary 3.3.4. For any u1, u2 ∈ V , w ∈ W and any complex numbers z1, z2 satis-

fying |z1| > |z2| > 0, the single series∑
r∈C

Y L
W (u1, z1)π

W
r Y R

W (w, z2)u2

of elements in W converges absolutely, i.e., for any w′ ∈ W ′,∑
r∈C

⟨w′, Y L
W (u1, z1)π

W
r Y R

W (w, z2)u2⟩

converges absolutely. Moreover, the sum of the series is equal to the sum of the double

series

Y L
W (u1, z1)Y

R
W (w, z2)u2

For fixed z1, z2 satisfying |z1| > |z2| > 0, the product of two vertex operators gives rise

to the following map

Y L
W (·, z1)Y R

W (·, z2)· : V ⊗W ⊗ V →
>
W

which is equal to the map∑
r∈C

Y L
W (·, z1)πW

r Y R
W (·, z2)· : V ⊗W ⊗ V →

>
W

Summary 3.3.5. For any u1, ..., un, un+1, ..., un+m ∈ V , w ∈ W and any z1, ..., zn+m ∈

C satisfying |z1| > |z2| > · · · > |zn+m| > 0, the series∑
r1,...,rn∈C

∑
kn+1,...kn+m−1∈Z

Y L
W (u1, z1)π

W
r1 Y

L
W (u2, z2) · · ·πW

rn−1
Y L
W (un, zn)π

W
rnY

R
W (w, zn+1)

πkn+1YV (un+1, zn+2) · · ·πkn+m−1YV (un+m−1, zn+m)un+m

of elements in
>
W converges absolutely, The sum is equal to the

>
W element given by

Y L
W (u1, z1) · · ·Y L

W (un, zn)Y
R
W (w, zn+1)YV (un+1, zn+2) · · ·YV (un+m−1, zn+m)un+m

For fixed z1, z2, ..., zn, zn+1, ..., zn+m ∈ C satisfying |z1| > · · · > |zn+m| > 0, the product

of any number of vertex operators gives rise to a map

Y L
W (·, z1) · · ·Y L

W (·, zn)Y R
W (·, zn+1)YV (·, zn+2) · · ·YV (·, zn+m)· : V ⊗n ⊗W ⊗ V ⊗m →

>
W
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and is equal to the sum

∑
r1,...,rn∈C

∑
kn+1,...,kn+m−1∈Z

Y L
W (·, z1)πW

r1 · · ·Y L
W (·, zn)πW

rnY
R
W (·, zn+1)

πkn+1YV (·, z2)πkn+2 · · ·YV (·, zn−1)πkn+m−1YV (·, zn)· : W ⊗ V ⊗n →
>
W

Summary 3.3.6. For fixed z1, z2 satisfying |z1| > |z2| > |z1 − z2| > 0, the following

maps

Y L
W (·, z1)Y R

W (·, z2)· : V ⊗W ⊗ V →
>
W∑

r∈C
Y L
W (·, z1)πW

r Y R
W (·, z2)· : V ⊗W ⊗ V →

>
W

Y R
W (Y L

W (·, z1 − z2)·, z2)· : V ⊗W ⊗ V →
>
W∑

r∈C
Y R
W (πW

r Y L
W (·, z1 − z2)·, z2)· : V ⊗W ⊗ V →

>
W

are equal.

Also, the rationality of iterates holds:

Proposition 3.3.7. For u1, ..., un, un+1, ...un+m ∈ V,w ∈ W,w′ ∈ W ′, the series

⟨w′, Y R
W (· · ·Y R

W (Y L
W (YV (· · · (YV (u1, z1−z2) · · ·un, zn−zn+1)w, zn+1−zn+2) · · ·un+m−1, zn+m)un+m⟩

converges absolutely in the region
(z1, ..., zn) ∈ Cn :

|zn| > |zn−1 − zn|+ |zn−2 − zn−1|+ · · ·+ |z1 − z2|,

|zi − zi+1| >
i−1∑
j=1

|zj − zj+1|, i = 3, ..., n− 1

|z2 − z3| > |z1 − z2| > 0


to the same rational function that

⟨w′, Y L
W (u1, z1) · · ·Y L

W (un, zn)Y
R
W (w, zn+1)YV (un+1, zn+2) · · ·YV (un+m−1, zn+m)un+m⟩

converges to.

Summary 3.3.8. For any u1, ..., un+m ∈ V,w ∈ W and any z1, ..., zn+m satisfying

|zn+m| > |zn+m−1 − zn+m| + |zn+m−2 − zn+m−1| + · · · + |z1 − z2|, |zn+m−1 − zn+m| >
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|zn+m−2 − zn+m−1| > · · · > |z1 − z2| > 0,

Y R
W (· · ·Y R

W (Y L
W (YV (· · · (YV (u1, z1 − z2) · · ·un, zn − zn+1)w, zn+1 − zn+2) · · ·un+m−1, zn+m)un+m

=
∑

r1,...,rn∈C

∑
kn+1,...kn+m−1∈Z

Y L
W (u1, z1)π

W
r1 Y

L
W (u2, z2) · · ·πW

rn−1
Y L
W (un, zn)π

W
rnY

R
W (w, zn+1)

πkn+1YV (un+1, zn+2) · · ·πkn+m−1YV (un+m−1, zn+m)un+m

For fixed z1, z2, ..., zn ∈ C satisfying |zn+m| > |zn+m−1 − zn+m|+ |zn+m−2 − zn+m−1|+

· · ·+ |z1− z2|, |zn+m−1− zn+m| > |zn+m−2− zn+m−1| > · · · > |z1− z2| > 0, the iteration

of any number of vertex operators gives rise to the following map

Y R
W (· · ·Y R

W (Y L
W (YV (· · · (YV (·, z1−z2) · · · )·, zn−zn+1)·, zn+1−zn+2) · · · )·, zn+m)· : V ⊗n⊗W⊗V ⊗m →

>
W

If in addition, |z1| > |z2| > · · · > |zn+m|, then the map coincides with

Y L
W (·, z1) · · ·Y L

W (·, zn)Y R
W (·, zn+1)YV (·, zn+2) · · ·YV (·, zn)· : V ⊗n ⊗W ⊗ V ⊗m →

>
W

3.3.3 The pole-order condition and formal variable formulation

For V -bimodules, we can define the following pole-order condition:

Definition 3.3.9. Let V be a MOSVA with YV satisfies the pole-order condition in

Definition 2.1.11. Let W =
⨿
n∈C

W[n], Y
L
W : V ⊗ W → W [[x, x−1]], Y R

W : W ⊗ V →

W [[x, x−1]],dW : W → W satisfy the following

1. The axioms for grading in Definition 3.1.1 hold for (W,Y L
W ,dW ). The axioms for

grading in Definition 3.2.1 hold for (W,Y R
W ,dW ).

2. The rationality of products and iterates of two vertex operators, and the associa-

tivity in Definition 3.1.1 hold for Y L
W . The rationality of products and iterates of

two vertex operators, and the associativity in Definition 3.2.1 hold for Y R
W .

3. The compatibility condition in Definition 3.3.1 hold for two vertex operators.

We say the pair (Y L
W , Y R

W ) satisfies the pole-order condition if

1. Y L
W satisfies the pole-order condition in Definition 3.1.18. Y R

W satisfies the pole-

order condition in Definition 3.2.13.
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2. For every u1, u2 ∈ V , there exists C > 0, such that for every w′ ∈ W ′, w ∈ W ,

the pole z1 = 0 of the rational functions determined by

⟨w′, Y L
W (u1, z1)Y

R
W (w, z2)u2⟩

has order less than C.

Proposition 3.3.10. Let V be a MOSVA. Let W =
⨿
n∈C

W[n], Y L
W : V ⊗ W →

W [[x, x−1]], Y R
W : W ⊗ V → W [[x, x−1]],dW : W → W,DW : W → W satisfy the

following

1. The axioms for grading in Definition 3.1.1 hold for (W,Y L
W ,dW ). The axioms for

grading in Definition 3.2.1 hold for (W,Y R
W ,dW ).

2. The rationality of products and iterates of two vertex operators in Definition 3.1.1

hold for Y L
W . The rationality of products and iterates of two vertex operators in

Definition 3.2.1 hold for Y R
W .

3. The D-derivative and D-commutator properties in Definition 3.1.1 hold for Y L
W .

The D-derivative and D-commutator properties in Definition 3.2.1 hold for Y R
W .

4. The compatibility condition in Definition 3.3.1 holds for two vertex operators.

Then the compatibility condition holds for any numbers of vertex operators. More pre-

cisely, for every u1, ..., un, un+1, ..., un+m ∈ V,w′ ∈ W ′, w ∈ W , the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (un, zn)Y
R
W (w, zn+1)YV (un+1, zn+2) · · ·YV (un+m−1, zn+m)un+m⟩

converges absolutely when |z1| > · · · > |zn+m| > 0 to a rational function with the only

possible poles at zi = 0, i = 1, ..., n+m and zi = zj , 1 ≤ i < j ≤ n+m. Moreover,

• For each i = 1, ..., n the order of the pole zi = 0 is bounded above by an integer

that depends only on ui and un+m.

• The order of the pole zn+1 = 0 is bounded above by an integer that depends only

on w and un+m.
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• For each i = n+ 2, ..., n+m, the order of the pole zi = 0 is bounded above by an

integer that depends only on ui−1 and un+m.

• For each i, j with 1 ≤ i < j ≤ n, the order of the pole zi = zj is bounded above by

an integer that depends only on ui and uj

• For each i = 1, ..., n, the order of the pole zi = zn+1 is bounded above by an integer

that depends only on ui and w.

• For each i = n+ 2, ..., n+m, the order of the pole zn+1 = zi is bounded above by

an integer that depends only on w and ui−1.

• For each i, j with n+ 2 ≤ i < j ≤ n+m, the order of the pole zi = zj is bounded

above by an integer that depends only on ui−1 and uj−1.

Theorem 3.3.11. Let V be a MOSVA, Let W =
⨿

n∈C V[n], Y
L
W : V⊗W → W [[x, x−1]], Y R

W :

W ⊗ V → W [[x, x−1]],dW : W → W of weight 0, and DW : W → W of weight 1 sat-

isfy axioms for the grading, D-derivative property, D-commutator formula, and the

following weak associativities with pole-order condition:

1. For every u1, u2 ∈ V , w ∈ W , there exists an integer p1 that depends only on w

and u2, such that

(x0 + x2)
p1Y L

W (YV (u1, x0)u2, x2)w = (x0 + x2)
p1Y L

W (u1, x0 + x2)YV (u2, x2)w

as formal series in W [[x0, x
−1
0 , x2, x

−1
2 ]],

2. For every u1, u2 ∈ V , w ∈ W , there exists an integer p1 that depends only on w

and u2, such that

(x0 + x2)
p1Y R

W (Y R
W (w, x0)u1, x2)u2 = (x0 + x2)

p1Y R
W (w, x0 + x2)YV (u1, x2)u2

as formal series in W [[x0, x
−1
0 , x2, x

−1
2 ]],

3. For every u1, u2 ∈ V , w ∈ W , there exists an integer p1 that depends only on u1

and u2, such that

(x0 + x2)
p1Y R

W (Y L
W (u1, x0)w, x2)u2 = (x0 + x2)

p1Y L
W (u1, x0 + x2)Y

R
W (w, x2)u2

as formal series in W [[x0, x
−1
0 , x2, x

−1
2 ]],
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Then (W,Y L
W , Y R

W ,dW , DW ) forms V -bimodule, with Y L
W , Y R

W and the pair (Y L
W , Y R

W )

satisfying the corresponding pole-order conditions.

Proposition 3.3.12. For every u1, ..., un, un+1, ..., un+m ∈ V,w ∈ W and z1, ..., zn ∈ C

satisfying |z1| > · · · > |zn| > 0, the sum of the series

Y L
W (u1, z1) · · ·Y L

W (un, zn)Y
R
W (w, zn+1) · · ·Y R

W (un+m−1, zn+m)un+m

takes value in W .

3.3.4 In terms of the opposite MOSVAs

Recall that in the previous sections, we proved that for a MOSVA (V, YV ,1), the space

V with the following vertex operator

Y s
V : V ⊗ V → V [[x, x−1]]

Y s
V (u, x)v = exDV YV (v,−x)u

and the vacuum 1 ∈ V also forms a MOSVA, called the opposite MOSVA of V and

denoted V op. We also proved that a right V -module (W,Y R
W ,dW , DW ) is equivalent to

a left V op-module (W,Y
s(R)
W ,dW , DW ), where Y

s(R)
W is defined by

Y
s(R)
W (v, x)w = exDW Y R

W (w,−x)v.

In Chapter 5, we will use the Y
s(R)
W operator extensively. For convenience, we list

some properties here.

Proposition 3.3.13. Let V be a MOSVA and W be a right V -module. Then

1. For u ∈ V , Y
s(R)
W (u, x) can be regarded as a formal series in End(W )[[x, x−1]]

Y
s(R)
W (u, x) =

∑
n∈Z

(Y
s(R)
W )n(u)x

−n−1

where (Y
s(R)
W )n(u) : V → V is a linear map for every n ∈ Z. If u is homogeneous,

then (Y
s(R)
W )n(u) is a map of weight wt u− n− 1.

2. For fixed u, v ∈ V , YV (u, x)v is lower truncated, i.e, there are at most finitely

many negative powers of x.
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3. D-conjugation property: for u ∈ V ,

Y
s(R)
W (u, x+ y) = Y

s(R)
W (eyDV u, x) = eyDW Y

s(R)
W (u, x)e−yDW ,

in End(V )[[x, x−1, y]].

4. d-conjugation property: for u ∈ V ,

eydV Y
s(R)
W (u, x)e−ydV = Y

s(R)
W (eydV u, xy)

in End(V )[[x, x−1, y, y−1]].

Theorem 3.3.14. Let W be a V -bimodule. Then the compatibility condition can be

formulated in terms of Y L
W and Y

s(R)
W as follows

1. For every n ∈ Z+, l = 1, ..., n, u1, ..., un ∈ V , w ∈ W , w′ ∈ W ′,

⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩

converges absolutely to a rational function with the only possible poles at zi =

0, i = 1, ..., n and zi = zj , 1 ≤ i < j ≤ n.

2. For every u1, u2 ∈ V,w ∈ W,w′ ∈ W ′,

⟨w′, Y L
W (u1, z1)Y

s(R)
W (u2, z2)w⟩

⟨w′, Y
s(R)
W (u2, z2)Y

L
W (u1, z1)w⟩

converges absolutely to a common rational function respectively in the region |z1| >

|z2| > 0 and |z2| > |z1| > 0.

Proof. We only give a sketch here. From the compatibility condition of Y L
W and Y R

W ,

⟨w′, Y L
W (u1, z1−zl+1) · · ·Y L

W (ul, zl−zl+1)Y
R
W (w,−zl+1)YV (un,−zl+1+zn) · · ·YV (ul+2,−zl+1+zl+2)ul+1⟩

converges absolutely when

|z1 − zl+1| > · · · > |zl − zl+1| > |zl+1| > |zl+1 − zn| > · · · > |zl+1 − zl+2| > 0
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to a rational function with the only possible poles at zi = 0, i = 1, ..., n and zi = zj , 1 ≤

i < j ≤ n. Then one uses Lemma 2.3.7 to argue that

⟨w′, Y L
W (u1, z1−zl+1) · · ·Y L

W (ul, zl−zl+1)Y
R
W (· · ·Y R

W (Y R
W (w,−zn)un,−zn−1+zn)un−1, · · · ,−zl+1+zl+2)ul+1⟩

converges absolutely when

|z1 − zl+1| > · · · > |zl − zl+1| > |zl+1 − zl+2|+ · · ·+ |zn−1 − zn|+ |zn|;

|zi − zi+1| > |zi+1 − zi+2|+ · · ·+ |zn−1 − zn|+ |zn| > 0, i = 1, ..., n− 1.

to the same rational function. If we further expand the negative powers of zi−zl+1 as a

power series in zl+1 for i = 1, ..., l, and further expand the negative powers of −zi+zi+1

as a power series zi+1 for i = l+ 1, ..., n− 1, the resulting series in z1, ..., zn is precisely

⟨w′, e−zl+1DW Y L
W (u1, z1) · · ·Y L

W (ul, zl)e
zl+1DW Y R

W (· · · eznDW Y R
W (w,−zn)un, · · · ,−zl+1)ul+1⟩

One uses Lemma 2.3.7 that this series converges absolutely when

|z1| > · · · > |zn| > 0

to the same rational function. Thus we proved that the series

⟨w′, e−zl+1DW Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩

converges absolutely when |z1| > · · · > |zn| > 0. The conclusion of (1) then follows

from Remark 2.4.3, which allows us to apply another ezl+1DW to the front and keep the

convergence (though the rational function might change).

For (2), note that

⟨w′, ez2DW Y L
W (u1, z1 − z2)Y

R
W (w,−z2)u2⟩ = ⟨w′, ez2DW Y R

W (Y L
W (u1, z1)w,−z2)u2

when |z1 − z2| > |z2| > |z1| > 0. Both sides converge to the same rational function.

If the negative powers of z1 − z2 in the series on the left-hand-side are expanded as a

power series in z2, then the resulting series is precisely ⟨w′, Y L
W (u1, z1)Y

s(R)
W (u2, z2)w⟩

and converges absolutely in the region |z1| > |z2| > 0, |z1− z2| > 0 to the same rational

function. We then use Lemma 2.3.7 to see that ⟨w′, Y L
W (u1, z1)Y

s(R)
W (u2, z2)w⟩ converges
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absolute when |z1| > |z2| > 0 to the same rational function as the right-hand-side, while

the right-hand-side is precisely ⟨w′, Y s
W (R)(u2, z2)Y

L
W (u1, z1)w⟩. Thus the conclusion is

proved.

Remark 3.3.15. The associativity relation of Y L
W and Y R

W translates to the commuta-

tivity relation of Y L
W and the skew-symmetry operator Y

s(R)
W .

Remark 3.3.16. The pole-order condition can also be expressed in terms of Y
s(R)
W .

More precisely, if V is a MOSVA and W is a V -bimodule with all vertex operators

satisfying the corresponding pole-order condition, then

1. For every u1 ∈ V,w ∈ W , there exists C > 0 such that for every w′ ∈ W ′, u2 ∈ V ,

the pole z1 = 0 of the rational function determined by

⟨w′, Y
s(R)
W (u1, z1)Y

s(R)
W (u2, z2)w⟩

has order less than C. In fact, C can be chosen to be the same upper bound of

the order pole z1 = 0 for ⟨w′, Y R
W (w, z1)YV (u2, z2)u1⟩.

2. For every u1, u2 ∈ V , there exists C > 0 such that for every w′ ∈ W ′, w ∈ W , the

pole z1 = z2 of the rational function determined by

⟨w′, Y L
W (u1, z1)Y

s(R)
W (u2, z2)w⟩

has order less than C. In fact, C can be chosen to be the same upper bound of

the order pole z1 = 0 for ⟨w′, Y L
W (u1, z1)Y

R
W (w, z2)u2⟩.

Remark 3.3.17. Similarly, one can prove that for the rational function determined by

⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩

the order of the pole zi = 0 is bounded above by a constant that depends only on ui

and w, i = 1, ..., n; and the order of the pole zi = zj is bounded above by a constant

that depends only on ui and uj , 1 ≤ i < j ≤ n.
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3.4 Möbius Structure and Contragredient Modules

In this section we define Möbius structure on MOSVAs and the left (right, bi-) modules

for such MOSVAs. With this structure, we prove that the graded dual of a grading-

restricted left module for a MOSVA forms a Möbius right module for the MOSVA. For

Möbius left modules that are not grading-restricted, we prove the same result under a

pole-order condition stronger than that in Definition 2.1.11. The results in this section

generalize the theory of contragredient modules for Möbius vertex algebras developed

in [FHL] and [HLZ].

3.4.1 Basic definitions

Definition 3.4.1. A Möbius MOSVA is a MOSVA (V, YV ,1) with a representation ρV

of the Lie algebra sl(2) on V , given by

LV (0) = ρV (L0) = dV , LV (−1) = ρV (L1) = DV , LV (1) = ρV (L1)

where {L−1, L0, L1} is a basis of sl(2) with Lie commutators

[L0, L−1] = L−1, [L0, L1] = −L1, and [L−1, L1] = −2L0,

and the following conditions hold for every u ∈ V :

[LV (1), YV (u, x)] = Y (LV (1)u, x) + 2xY (LV (0)u, x) + x2Y (LV (−1)u, x)

We will use the notation (V, YV ,1, ρV ) to denote a Möbius MOSVA. When there is no

confusion, we will simply use the notation V .

Remark 3.4.2. Since dV = LV (0) and [LV (0), LV (1)] = −LV (1), we know that LV (1)

is actually a linear operator of weight −1. Since the grading on V is lower-bounded,

the operator is actually locally nilpotent, i.e., for every v ∈ V , there exists m ∈ Z+

such that LV (1)
mv = 0. Moreover, with the identity property and creation property,

we can see that

LV (j)1 = 0, j = 0,±1

Proposition 3.4.3. Let (V, YV ,1, ρV ) be a Möbius MOSVA. Then the opposite MOSVA

(V, Y s
V ,1, ρV ) is also a Möbius MOSVA.
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Proof. It suffices to check the commutator formula

[LV (1), Y
s
V (u, x)] = Y s

V (LV (1)u, x) + 2xY s
V (LV (0)u, x) + x2Y s

V (LV (−1)u, x).

We first compute the left-hand-side:

[LV (1), Y
s
V (u, x)]v = LV (1)Y

s
V (u, x)v − Y s

V (u, x)LV (1)v

= LV (1)e
xLV (−1)YV (v,−x)u− exLV (−1)YV (LV (1)v,−x)u

In order to interchange LV (1) and exLV (−1) that appear in the first term, we note that

for every n ∈ N,

LV (1)LV (−1)n = LV (−1)nLV (1) + LV (−1)n−12nLV (0) + n(n− 1)LV (−1)n−1,

which can be easily proved by induction. Then a straightforward computation shows

that

LV (1)e
xLV (−1) = exLV (−1)LV (1) + 2xexLV (−1)LV (0) + x2exLV (−1)LV (−1).

So the left-hand-side is

exLV (−1)LV (1)YV (v,−x)u+ 2xexLV (−1)LV (0)YV (v,−x)u

+ x2exLV (−1)LV (−1)YV (v,−x)u− exLV (−1)Y (LV (1)v,−x)u

Then we use the commutator relation between LV (j), j = 0,±1 and YV (v,−x) to deal

with the first three terms. The first term is equal to

exLV (−1)YV (v,−x)LV (1)u+ exLV (−1)YV (LV (1)v,−x)u

− 2xexLV (−1)YV (LV (0)v,−x)u+ x2exLV (−1)YV (LV (−1)v,−x)u

The second term is equal to

2xexLV (−1)YV (v,−x)LV (0)u+2xexLV (−1)YV (LV (0)v,−x)u−2x2exLV (−1)YV (LV (−1)v,−x)u

The third term is equal to

x2exLV (−1)YV (v,−x)LV (−1)u+ x2exLV (−1)YV (LV (−1)v,−x)u

The summation of the above three formulas, together with the fourth term, would then

simplify to the right-hand-side.
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Definition 3.4.4. Let (V, YV ,1, ρV ) be a Möbius MOSVA. A Möbius left V -module W

is a left V -module (W,Y L
W ,dW , DW ) with a representation ρW of the Lie algebra sl(2)

on W , such that

LW (0) = ρW (L0), LW (−1) = ρW (L−1) = DW , LW (1) = ρW (L1),

and for every u ∈ V ,

[LW (0), Y L
W (u, x)] = Y L

W (LV (0)u, x) + xY L
W (LV (−1)u, x)

[LW (1), Y L
W (u, x)] = Y L

W (LV (1)u, x) + 2xY L
W (LV (0)u, x) + x2Y L

W (LV (−1)u, x),

and for every n ∈ C, w ∈ W[n], there exists m ∈ N such that (LW (0)− n)mw = 0.

We will use the notation (W,Y L
W , ρW ) to denote Möbius left V -modules. The oper-

ator dW can be defined as the semisimple part of LW (0), and the operator DW is just

LW (−1). So the representation ρW has all the information of these two operators and

thus we don’t need to include them in the notation. When there is no confusion, we

will simply use W .

Remark 3.4.5. In [HLZ], modules in which LW (0) is not semisimple are called gen-

eralized modules. In the MOSVA setting, we don’t use this terminology because we

are not requiring the operator dW to be coincide with LW (0). Indeed, given LW (0)

satisfying the commutator formulas, one can define dW as the semisimple of LW (0).

By similar arguments as those in [HLZ], we have

[dW , (Y L
W )n(v)] = [LW (0), (Y L

W )n(v)] for all v ∈ V and n ∈ Z;

[dW , LW (j)] = [LW (0), LW (j)] for j = 0,±1.

Thus a Möbius left V -module is still a left V -module and should not be entitled with

the word “generalized”.

Remark 3.4.6. In accordance with convention, when we discuss MOSVA and mod-

ules with Möbius structure, we will refer d-commutator formula as L(0)-commutator

formula, D-derivative property and D-commutator formula as L(−1)-commutator for-

mula.
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Definition 3.4.7. Let (V, YV ,1, ρV ) be a Möbius MOSVA. A Möbius right V -module

W is a right V -module (W,Y R
W ,dW , DW ) with a representation ρW of the Lie algebra

sl(2) on W , such that

LW (0) = ρW (L0), LW (−1) = ρW (L−1) = DW , LW (1) = ρW (L1),

and for every w ∈ W ,

[LW (0), Y R
W (u, x)] = Y L

W (LW (0)w, x) + xY L
W (LW (−1)w, x)

LW (1)Y R
W (w, x)−Y R

W (w, x)LV (1) = Y L
W (LW (1)w, x)+2xY L

W (LW (0)w, x)+x2Y L
W (LW (−1)w, x),

and for every n ∈ C, w ∈ W[n], there exists m ∈ N such that (LW (0)− n)mw = 0

Remark 3.4.8. With similar arguments as Proposition 3.4.3, one can prove the Möbius

version of Theorem 3.2.18. In particular, (W,Y R
W , ρW ) is a Möbius right V -module if

and only if (W,Y
s(R)
W , ρW ) is a Möbius left V op-module, where Y

s(R)
W and Y R

W are skew-

symmetry opposite vertex operators to each other. This will be used in the proof of

Theorem 3.4.14 and 3.4.17.

Definition 3.4.9. Let (V, YV ,1, ρV ) be a Möbius MOSVA. A Möbius V -bimodule W is

a V -bimodule (W,Y L
W , Y R

W ,dW , DW ) with a representation ρW of the Lie algebra sl(2)

on W , such that (W,Y L
W , ρW ) forms a Möbius left V -module, and (W,Y R

W , ρW ) forms a

Möbius right V -module.

3.4.2 The opposite vertex operator

Definition 3.4.10. Let (V, YV ,1, ρV ) be a Möbius MOSVA and (W,Y L
W , ρW ) be a

Möbius left V -module. We define the opposite vertex operator on W associated to

u ∈ V by

Y o
W (u, x) = Y L

W (exL(1)(−x−2)L(0)u, x−1).

For homogeneous u ∈ V , we have

Y o
W (u, x) =

∑
n∈Z

(Y o
W )n(u)x

−n−1

=
∑
n∈Z

(
(−1)wt u

∞∑
m=0

1

m!
(Y L

W )−n−m−2+2wt u(L(1)
mv)

)
x−n−1
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Note that since L(1) is locally nilpotent, the summation about variable m is actually

finite. Thus each component (Y o
W )n(u) is well-defined. Also, the order of summation

can be switched at our convenience.

Remark 3.4.11. The opposite vertex operator we are defining here should not be

confused with the skew-symmetry operator we introduced in the previous section.

Proposition 3.4.12. For every u1, ..., un ∈ V,w ∈ W,w′ ∈ W ′, the series

⟨w′, Y o
W (un, zn) · · ·Y o

W (u1, z1)w⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function with the only

possible poles at zi = 0, i = 1, ..., n and zi = zj , 1 ≤ i < j ≤ n.

Proof. It suffices to consider the case when u1, ..., un ∈ V are homogeneous. In this

case,

⟨w′, Y o
W (un, zn) · · ·Y o

W (u1, z1)w⟩

=
∑

m1,...,mn finite

(−1)wt u1+···+wt unz−2wt u1
1 · · · z−2wt un

n ⟨w′, Y L
W (L(1)mnu)n, z

−1
n )w · · ·Y L

W (L(1)m1u1, z
−1
1 )⟩.

By the rationality of Y L
W , for fixedm1, ...,mn, ⟨w′, Y L

W (L(1)mnu)n, z
−1
n )w · · ·Y L

W (L(1)m1u1, z
−1
1 )⟩

converges absolutely when |z−1
n | > · · · > |z1|−1 > 0 to a rational function of the form

f(z−1
1 , ..., z−1

n )
n∏

i=1
z−pi
i

∏
1≤i<j≤n

(z−1
i − z−1

j )pij
=

f(z−1
1 , ..., z−1

n )
n∏

i=1
z
pi+

n∑
j=i+1

pij

i∏
1≤i<j≤n

(zj − zi)pij

As the polyonomial f(z−1
1 , ..., z−n

n ) provides negative powers of zi, i = 1, ..., n, this

fraction is a rational function with possible poles at zi = 0, i = 1, ..., n and zi =

zj , 1 ≤ i < j ≤ n. Then ⟨w′, Y o
W (un, zn) · · ·Y o

W (u1, z1)w⟩, as a finite sum of absolutely

convergent series, also converges absolutely when |z1| > · · · > |zn| > 0 to a rational

function with the only possible poles at zi = 0, i = 1, ..., n and zi = zj , 1 ≤ i < j ≤

n.

Proposition 3.4.13. For every u1, u2 ∈ V,w ∈ W,w′ ∈ W ′. the series

⟨w′, Y o
W (YV (u2, z2 − z1)u1, z1)w⟩
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converges absolutely when |z1| > |z2 − z1| > 0 to a rational function with the only

possible poles at z1 = 0, z2 = 0, z1 = z2. Moreover,

⟨w′, Y o
W (u2, z2)Y

o
W (u1, z1)w⟩ = ⟨w′, Y o

W (YV (u2, z2 − z1)u1, z1)w⟩

when |z1| > |z2| > |z1 − z2| > 0

Proof. We will use Formula (5.2.35) in [FHL]: for every u ∈ V , we have

exL(1)(−x−2)L(0)YV (u, x0) = YV

(
e(x+x0)L(1)(−(x+ x0)

−2)L(0)u,− x0
(x+ x0)x

)
exL(1)(−x−2)L(0)

as formal series in (End V )[[x, x−1, x0, x
−1
0 ]] where all the negative powers of x + x0

are expanded as power series in x0. The proof of the formula can be found in [FHL],

Section 5.2. The idea is to use the L(0)-commutator formula and L(1)-commutator

formula to obtain L(0)-conjugation formula and L(1)-conjugation formula. No other

property was needed. So the proof carries over to MOSVAs and their modules.

To apply this formula, we first study the formal series

⟨w′, Y L
W

(
ex1L(1)(−x−2

1 )L(0)YV (u2, x0)u1, x
−1
1

)
w⟩

in C[[x0, x−1
0 , x1, x

−1
1 ]]. By the formula above, the formal series is equal to⟨

w′, Y L
W

(
YV

(
e(x1+x0)L(1)(−(x1 + x0)

−2)L(0)u,− x0
(x1 + x0)x1

)
ex1L(1)(−x−2

1 )L(0)u1, x
−1
1

)
w

⟩
(3.2)

in C[[x0, x−1
0 , x1, x

−1
1 ]], with all the negative powers of x1+x0 expanded as power series

in x0. Moreover, it is easy to see that this series has at most finitely many negative

powers of x0 and at most finitely many positive powers of x1.

In order to substitute x0 and x1 by complex numbers z0 and z1, we first note from

the rationality of iterates of two vertex operators, for complex numbers z0, z1, ζ0, ζ1

with |ζ1| > |z0ζ1/((z1 + ζ0))| > 0, i.e., |z1 + ζ0| > |z0| > 0, |ζ1| > 0, the complex series⟨
w′, Y L

W

(
YV

(
e(z1+ζ0)L(1)(−(z1 + ζ0)

−2)L(0)u,− z0ζ1
(z1 + ζ0)

)
ez1L(1)(−z−2

1 )L(0)u1, ζ1

)
w

⟩
=
∑

i finite

∑
m,n

amni(z1 + ζ0)
i

(
− z0ζ1
(z1 + ζ0)

)−m−1

(ζ1)
−n−1

(with variables −z0ζ1/((z1 + ζ0)) and ζ1) converges absolutely to a rational function

with the only possible poles at z0 = 0, z1 = 0, ζ1 = 0, z1 + ζ0 = 0, z1 + ζ0 = z0 (note
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the operators e(z1+ζ0)L(1) and ez1L(1) acts as polynomials, and (−(z1 + ζ0)
−2)−L(0) and

(−z−2
1 )L(0) acts by a scalar multiplication on homogeneous elements). Note that in

this expansion, the power of (−z0ζ1/(z1 + ζ0)) is lower-truncated, i.e., m is bounded

above. In particular, the power of z0 is lowert-truncated. Moreover, for each fixed m,

the power of ζ1 is lower-truncated, i.e., n is also bounded above for each fixed m.

Now, we further expand the negative powers of z1 + ζ0 as power series in ζ0, i.e.,∑
i finite

∑
m,n

amni(z1 + ζ0)
i

(
− z0ζ1
(z1 + ζ0)

)−m−1

ζ−n−1
1

=
∑

i finite

∑
m,n

amni(−1)m+1z−m−1
0 ζ−m−n−2

1

( ∞∑
k=0

(
m+ 1 + i

k

)
zm+1+i−k
1 ζk0

)
.

The resulting iterated series on the right-hand-side converges absolutely to the rational

function when |z1 + ζ0| > |z0| > 0, |z1| > |ζ0|, |ζ1| > 0. We check that all the conditions

of Lemma 2.3.8 is satisfied. Thus the complex series corresponding to the iterated

series on the right-hand-side is precisely the Laurent series expansion of the rational

function when |z1| > |ζ0|, |z1| > |ζ0 − z0|, |ζ1| > 0, |z0| > 0. In particular, the complex

series converges absolutely when |z1| > |ζ0|, |z1| > |ζ0 − z0|, |ζ1| > 0, |z0| > 0. Now we

substitute ζ0 = z0, ζ1 = z−1
1 to see that the complex series⟨

w′, Y L
W

(
YV

(
e(z1+z0)L(1)(−(z1 + z0)

−2)L(0)u,− z0z
−1
1

(z1 + z0)

)
ez1L(1)(−z−2

1 )L(0)u1, z
−1
1

)
w

⟩
converges absolutely when |z1| > |z0| > 0 to a rational function with the only possible

poles at z0 = 0, z1 = 0, z1 + z0 = 0. And this series is precisely the complex series

obtained from substituting x0 = z0 and x1 = z1 in the formal series (3.2).

We then perform the transformation z0 7→ z2 − z1 to see that the complex series⟨
w′, Y L

W

(
YV

(
ez2L(1)(−z−2

2 )L(0)u,−z2 − z1
z2z1

)
ez1L(1)(−z−2

1 )L(0)u1, z
−1
1

)
w

⟩
=⟨w′, Y L

W (YV (e
z2L(1)(−z−2

2 )L(0)u,−z−1
1 + z−1

2 )ez1L(1)(−z−2
1 )L(0)u1, z

−1
1 )w⟩

which is equal to

⟨w′, Y o
W (YV (u2, z2 − z1)u1, z1)w⟩,

converges absolutely when |z1| > |z1 − z2| > 0 to a rational function with the only

possible poles at z1 = 0, z2 = 0, z1 = z2.
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Now we use the definition of Y o
W to rewrite the left-hand-side as

⟨w′, Y L
W (ez2L(1)(−z−2

2 )L(0)u2, z
−1
2 )Y L

W (ez1L(1)(−z−2
1 )L(0)u1, z

−1
1 )w⟩

This series converges absolutely when |z−1
1 | > |z−1

2 | > 0 to a rational function with

the only possible poles at z1 = 0, z2 = 0, z1 = z2. Moreover, by associativity, when

|z−1
2 | > |z−1

1 | > |z−1
1 − z−1

2 | > 0, i.e., |z1| > |z2| > |z1 − z2| > 0, it is equal to

⟨w′, Y L
W (YV (e

z2L(1)(−z−2
2 )L(0)u2, z

−1
2 − z−1

1 )ez1L(1)(−z−2
1 )L(0)u1, z

−1
1 )w⟩

Thus left-hand-side is equal to right-hand-side when |z1| > |z2| > |z1 − z2| > 0.

3.4.3 Contragredient of a Möbius left V -module

We first discuss the results for grading-restricted Möbius left V -modules. Then we deal

with the non-grading-restricted case with a stronger pole-order condition.

Theorem 3.4.14. Let (V, YV ,1, ρV ) be a Möbius MOSVA and (W,Y L
W , ρW ) be a grading-

restricted Möbius left V -module. On the graded dual W ′ =
⨿

n∈CW ∗
[n], we define a

vertex operator action of V by

⟨Y ′
W (u, z)w′, w⟩ = ⟨w′, Y o

W (u, z)w⟩ = ⟨w′, Y L
W (ezL(1)(−z−2)L(0)u, z−1)w⟩,

and an sl(2)-action ρ′W by ρ′W (Lj) = L′(j) for j = 0,±1, where

⟨L′
W (j)w′, w⟩ = ⟨w′, LW (−j)w⟩.

Then (W ′, Y ′
W , ρ′W ) forms a Möbius right V -module.

Proof. The commutator formulas for L′
W (0), L′

W (−1) and L′
W (1) follows from the com-

putations in [HLZ], Lemma 2.22. The argument there carries over to MOSVAs and

requires some work. For brevity we will not include them here but redirect the reader to

[HLZ], Page 59 to 61. From Remark 3.4.8, it suffice to verify that (W ′, Y ′
W ,d′

W , L′
W (−1))

forms a left V op-module.

1. The lower bound condition obviously hold. The d-grading condition and d-

commutator formula follow from the discussions in Remark 3.4.5. In particular,

from the d-commutator formula and the lower bound condition, one sees that the

series Y ′
W (u, z)w′ is lower truncated.
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2. To see the identity property, note that LV (1)1 = 0 and LV (0)1 = 0, thus

exL(1)(−x−2)L(0)1 = 1. So Y o
W (1, x) = Y L

W (1, x−1) = 1W . Then follows Y ′
W (1, x)w′ =

w′.

3. The L(−1)-derivative property is verified in [FHL]. See [FHL], Page 47 and 48.

4. Since W is grading restricted, (W ′)′ = W . Thus for the rationality of products,

it suffices to verify that for every w′ ∈ W ′, w ∈ W,u1, ..., un ∈ V , the series

⟨Y ′
W (u1, z1) · · ·Y ′

W (un, zn)w
′, w⟩ = ⟨w′, Y o

W (un, zn) · · ·Y o
W (u1, z1)w⟩

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function with the

only possible poles at zi = 0, i = 1, ..., n and zi = zj , 1 ≤ i < j ≤ n. This was

shown in Proposition 3.4.12. For the rationality of iterates, it suffices to show

that for every w′ ∈ W ′, w ∈ W,u1, u2 ∈ V , the series

⟨Y ′
W (Y s

V (u1, z1 − z2)u2, z2)w
′, w⟩

converges absolutely when |z2| > |z1−z2| > 0 to a rational function with the only

possible poles at z1 = 0, z2 = 0 and z1 = z2. We first use the definition of Y s
V ,

then use L(−1)-conjugation property to see that

⟨Y ′
W (Y s

V (u1, z1 − z2)u2, z2)w
′, w⟩

=⟨Y ′
W (e(z1−z2)L(−1)YV (u2, z2 − z1)u1, z2)w

′, w⟩

=⟨Y ′
W (YV (u2, z2 − z1)u1, z1)w

′, w⟩

Note that from Remark 2.1.5, this series is still in variables z2 and z1 − z2, where

z1 should be regarded as the sum z2 + z1 − z2 and thus negative powers of z1

should be expanded as power series in (z1 − z2). Then we use the definition of

Y ′
W to see that this series is equal to

⟨w′, Y o
W (YV (u2, z2 − z1)u1, z1)w⟩.

And the proof of Proposition 3.4.13 shows that this series converges absolutely

when |z2| > |z1−z2| > 0 to the same rational function as ⟨w′, Y o
W (u2, z2)Y

o
W (u1, z1)w⟩
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5. The associativity follows from the discussion above and Proposition 3.4.13.

Definition 3.4.15. The module (W ′, Y ′
W , ρ′W ) is referred as the contragredient module

of (W,Y L
W , ρW ). In case there is no confusion, we just use W ′ to denote it. From the

results in Section 5 and Proposition 3.4.3 , one easily sees that W ′ also a Möbius right

V -module.

Remark 3.4.16. When W is not grading restricted, one has to verify the rationality

with w taking value in the much larger space (W ′)′. So the above proof does not

work. To construct the contragredient module for non-grading-restricted modules, an

additional condition has to be assumed.

Theorem 3.4.17. Let (V, YV ,1, ρV ) be a Möbius MOSVA and (W,Y L
W , ρW ) be a Möbius

left V -module. If the vertex operator Y L
W satisfies the strong pole-order condition, that

there exists a real number C, such that for every homogeneous u1, u2 ∈ V,w′ ∈ W ′ and

w ∈ W , the order of the pole z1 = 0 in the rational function given by

⟨w′, Y L
W (u1, z1)Y

L
W (u2, z2)w⟩

is bounded above by wt u1 + Re wt w + C, then with Y ′
W and ρ′W are defined in the

same way as the above theorem, (W ′, Y ′
W , ρ′W ) forms a Möbius left V op-module.

Proof. It suffices to deal with the rationality and associativity axioms. The idea is to

use the formal variable approach. With the strong pole-order condition, we proceed

to verify the weak associativity with the pole-order condition in Theorem 3.1.22 based

on the results of Proposition 3.4.12 and 3.4.13. Then the conclusion follows from the

theorem.

Let w′ ∈ W ′, u1, u2 ∈ V,w ∈ W be homogeneous. We rewrite the series

⟨Y ′
W (u1, z1)Y

′
W (u2, z2)w

′, w⟩ = ⟨w′, Y o
W (u2, z2)Y

o
W (u1, z1)w⟩
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as

finite∑
m1=0

finite∑
m2=0

(−1)wt u2+wt u1
1

m1!

1

m2!
zm2−2wt u2
2 zm1−2wt u1

1 · (3.3)

⟨w′, Y L
W (L(1)m2u2, z

−1
2 )Y L

W (L(1)m1u1, z
−1
1 )w⟩

We shall use the computations in Remark 3.1.3 to give an explicit upper bound of the

order of the pole z1 = 0 for the rational function given by each term in the sum.

For each fixedm1,m2, the rational function determine by ⟨w′, Y L
W (L(1)m2u2, z

−1
2 )Y L

W (L(1)m1u1, z
−1
1 )w⟩

is of the form

f(z−1
2 , z−1

1 )

z−p1
2 z−p2

1 (z−1
2 − z−1

1 )
p12 =

f(z−1
2 , z−1

1 )

z−p1−p12
2 z−p2−p12

1 (z1 − z2)
p12

Note that Y L
W satisfies the strong pole-order condition, thus

p1 ≤ wt (L(1)m2u2) + Re wt w + C

Let d be the degree of f as a polynomial in z−1
2 , z−1

1 . From Remark 3.1.3,

d = p1 + p2 + p12 +wt w′ − wt (L(1)m2u2)− wt (L(1)m1u1)− wt w

Note that though wt w′ and wt w might be complex numbers, their difference is sup-

posed to be an integer. In particular, we know that

wt w′ − wt w = Re wt w′ − Re wt w

If we write

f(x1, x2) =
d∑

k=0

akx
k
1x

d−k
2 ,

then

f(z−1
2 , z−1

1 ) =
d∑

k=0

akz
−k
2 z−d+k

1

where the lowest possible power of z1 is −d. Therefore, the order of pole of the rational

function that each term in (3.3) converges to is bounded above by

d− p2 − p12 −m1 + 2wt u1 = p1 +wt w′ − wt (L(1)m2u2)− wt (L(1)m1u1)− wt w −m1 + 2wt u1

= p1 +Re wt w′ − wt (L(1)m2u2)− Re wt w +wt u1
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≤ Re wt w′ +wt u1 + C.

This upper bound is independent of m1,m2. Thus we have proved that the order of

the pole z1 = 0 of the rational function given by

⟨Y ′
W (u1, z1)Y

′
W (u2, z2)w

′, w⟩ = ⟨w′, Y o
W (u2, z2)Y

o
W (u1, z1)w⟩

is controlled above by the real number that depends only u1 and w1. So with the as-

sumption here, the vertex operator Y ′
W satisfies the pole-order condition as in Definition

2.1.11.

Now with the conclusion of Proposition 3.4.12 and 3.4.13, we know that one can

choose q1 = wt w′ +wt u1 + C depending only on u1 and w′, q2 depending only on u2

and w′, q12 depending only on u1 and u2, such that

(z0+z2)
q1zq22 zq120 ⟨Y ′

W (u1, z0+z2)Y
′
W (u2, z2)w

′, w⟩ = (z0+z2)
q1zq22 zq120 ⟨Y ′

W (Y s
V (u1, z0)u2, z2)w

′, w⟩

converges absolutely to a polynomial function. Thus as formal series with coefficients

in W ′,

(x0+x2)
q1xq22 xq120 ⟨Y ′

W (u1, x0+x2)Y
′
W (u2, x2)w

′ = (x0+x2)
q1xq22 xq120 ⟨Y ′

W (Y s
V (u1, x0)u2, x2)w

′ ∈ W ′[[x0, x2]].

has no negative powers of x0 and x2. Thus they all live in W ′[[x0, x2]]. The weak

associativity relation is then seen by dividing both sides by xq22 and xq120 . Moreover, the

choice of q1 depends only on u1 and w′. Thus, as a consequence of Theorem 3.1.22, the

rationality and associativity axioms hold.

Remark 3.4.18. This strong pole-order condition is natural because it is satisfied by

all the Möbius left modules for vertex algebras.
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Chapter 4

MOSVA constructed from 2d unit sphere

In this chapter we study the MOSVA constructed on the 2-dimensional sphere. Through-

out this chapter, S2 denotes the unit sphere in the three-dimensional Euclidean space.

TS2 denotes the tangent bundle of S2. We will use the parallel sections of the tensor

bundles (TS2)⊗k, k = 0, 1, ... to construct the MOSVA.

4.1 Basic Geometry Facts

Most of the results in this section can be found in [KN], and [P] and [T]. To be

self-contained, we will still give some brief arguments regarding these facts.

Let E be a vector bundle over a connected Riemannian manifold M with a con-

nection ∇. Fix a point p ∈ M and a piecewise smooth path γ : [0, 1] → M based at

p. A smooth section along γ is a smooth map X : [0, 1] → E with X(t) ∈ Eγ(t). A

smooth section X along γ is parallel if ∇γ̇X = 0. For every vector X0 ∈ Ep, from the

existence and uniqueness of ODE, there exists a parallel smooth section X : [0, 1] → E

with X(0) = X0. This gives rise to the notion of parallel translation, which is a family

of linear maps Pγ(t) : Ep → Eγ(t) that maps X0 to X(t). In case γ is a loop with

γ(0) = γ(1) = p, then Pγ(1) : Ep → Ep is an automorphism of the fiber Ep. The

subgroup of GL(Ep) generated by all such Pγ(1)’s is the holonomy group of E at p.

Since M is connected, the holonomy group of E at different p are isomorphic to each

other. We should use the notation Hol(E) to denote it.

Theorem 4.1.1. The holonomy group on TS2 is precisely SO(2,R).

Proof. Fix p, q, r on the sphere. Let γ1, γ2, γ3 be geodesics connecting pq, qr and rp.

Let αp, αq, αr be the angles formed by the tangent vectors of spherical triangle pqr. Let
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v ∈ TpM be a unit vector. One sees easily that that composition of parallel transport

along γ1, γ2 and γ3 will end up with a unit vector w ∈ TpM , such that the angle of w

and v is α1 + α2 + α3, which by Gauss-Bonnet theorem, is precisely π+Area(pqr). As

p, q, r varies, the angle varies from (π, 2π]. Wrapping around the loop again to see that

the angle varies from (2π, 4π] that covers all the rotations in SO(2,R).

Let X : M → E be a smooth section. X is parallel if for every Y ∈ T , ∇Y X = 0.

Equivalently, for every p ∈ M and every piecewise smooth path γ based at p, Xγ(t) =

Pγ(t)Xp. The space of parallel sections of E is denoted by Π(E).

Proposition 4.1.2. Let E be a vector bundle over a Riemannian manifold M with a

connection. Fix a point p on M . The space of parallel sections Π(E) of E is isomorphic

to the fixed point subspace E
Hol(E)
p of Ep under the action of the holonomy group Hol(E).

Proof. Given a parallel section, its restriction at p is obviously a vector fixed by all

parallel transports along piecewise smooth loops. Conversely, given a vector that is

invariant under the holonomy group action, the parallel transport along the path con-

necting p and any other point q on M yields a parallel vector field. Easy to see that

these two operations are inverse to each other.

Proposition 4.1.3. Let E1, E2, ... be a sequence of vector bundles on M . Let E =⊕∞
i=1Ei. Then the parallel sections of E is the direct sum of the parallel sections of

Ei, i.e., Π(E) =
⊕∞

i=1Π(Ei).

Proof. Obviously
⊕∞

i=1Π(Ei) ⊂ Π(E). We show the inverse inclusion here. Let X

be a parallel section of E. Fix any p ∈ M and piecewise smooth path γ based on p.

Consider Xp =
∑

i finite

(Xi)p, which is a finite sum of components in (E1)p, (E2)p, ... The

parallel transport PE
γ(1) applied on X amounts to the sum of the action of PEi

γ(1) on Xi.

Since it is a direct sum, we necessarily have PEi

γ(1)(Xi)p = (Xi)p. Since γ is arbitrarily

chosen, we see that (Xi)p ∈ (Ei)
Hol(E)
p . That is to say, Xp is a finite sum of elements

in (Ei)
Hol(E)
p . Thus X is a finite sum of parallel sections in Ei. So we proved that

Π(E) ⊂
⊕∞

i=1Π(Ei).
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4.2 Complexified parallel tensor fields on S2

We start with the following elementary problem: fix an arbitrary positive integer k, we

proceed to determine all the parallel k-tensor fields on the tangent bundle (TS2)⊗k.

Proposition 4.2.1. The holonomy group of ⊗kTS2 is SO(2,R)/{±1} when k is even;

SO(2,R) when k is odd. In any case, SO(2,R) acts on the vector tensor space ⊗kTpS
2:

v1, ..., vk ∈ TpS
2, g ∈ SO(2,R),

g(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk

Proof. For simplicity we just proceed with k = 2. For higher k’s the proof easily

generalizes. Let γ : [0, 1] → S2 be a path based on p and denote by Tγ(t) : TpS
2 →

Tγ(t)S
2 the parallel transportation along γ over the tangent bundle, and T 2

γ(t) : (TS
2 ⊗

TS2)p → (TS2 ⊗ TS2)γ(t) the parallel transportation along γ over the tensor bundle

TS2 ⊗ TS2. We claim that for every v1, v2 ∈ TpS
2,

T 2
γ(t)(v1 ⊗ v2) = Tγ(t)v1 ⊗ Tγ(t)v2.

As the equality stands for t = 0, it suffices to verify that the derivatives of both sides

are equal. By the definition of parallel transportations,

d

dt

[
T 2
γ(t)(v1 ⊗ v2)

]
= ∇γ̇T

2
γ(t)(v1 ⊗ v2) = 0

d

dt

[
Tγ(t)v1 ⊗ Tγ(t)v2

]
= ∇γ̇(Tγ(t)v1 ⊗ Tγ(t)v2)

= ∇γ̇Tγ(t)v1 ⊗ Tγ(t)v2 + Tγ(t)v1 ⊗∇γ̇Tγ(t)v2

= 0

So the claim is proved.

As every element in the holonomy group of TS2⊗TS2 is of the form T 2
γ(1), the claim

we proved implies that the map Holp(TS
2) → Holp(TS

2⊗TS2) : Tγ(1) 7→ (Tγ(1), Tγ(1))

is surjective. All it remains is to study the kernel of the map. Fixing γ and a basis of

TpS
2, so that Tγ(1) admits a matrix representation

A =

 a11 a12

a21 a22


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Then the matrix representation of (Tγ(1), Tγ(1)) on TpS
2⊗TpS

2 is simply the Kronecker

product  a11A a12A

a21A a22A


Now if Tγ(1) lies in the kernel, then the above 4-by-4 matrix must be the identity. To

achieve this, it is necessary that a12 = a21 = 0, a211 = a222 = a11a22 = 1 ⇒ A = id or

A = −id.

Corollary 4.2.2. For the complexified tensor bundle TS2⊗RC where C is regarded as a

trivial bundle with two-dimension fiber over S2, we have Hol((TS2⊗RC)⊗k) =Hol((TS2)⊗k).

Proof. It suffices to notice that ∇γ̇(v(t) ⊗ a(t)) = ∇γ̇v(t) ⊗ a(t). All the computation

above generalizes easily.

Proposition 4.2.3. For odd k, Π((TS2)⊗k) = 0.

Proof. It suffices to notice that −id is an element in the holonomy group.

Proposition 4.2.4. For even k, the parallel k-tensor fields are described as follows:

Pick a generic

g(θ) :=

 cos θ sin θ

− sin θ cos θ


in SO(2,R). Let v1 ∈ C2 be an eigenvector of g(θ) with eigenvalue eiθ over the com-

plexified tangent space (TpS
2)C and v2 be its complex conjugate. Then the invariant

subspace of ⊗kTpS
2 (aka, parallel k-tensor fields) are spanned by the real parts and the

imaginary parts of the k-tensors vi1 ⊗· · ·⊗ vik satisfying #{j : ij = 1} = #{j : ij = 2}.

Proof. To see the second conclusion, let I = (i1, ..., ik) be a sequence of length k with

ij ∈ {1, 2} for each j = 1, ..., k. Set vI = vi1⊗· · ·⊗vik and N(I) = #{j : ij = 1}−#{j :

ij = 2}. It’s easy to see that as I ranges through all sequences, all vectors vI ’s form a

basis of complexified (⊗kTpS
2)C and each vI is an eigenvector of g(θ) with eigenvalue

eiN(I)θ. So the complexified invariant space is spanned by those vI ’s with N(I) = 0.

Since v1 and v2 are conjugate to each other, the complexified invariant space is closed
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under conjugation. Therefore the real invariant space in TpS
2 is spanned by real and

imaginary parts of vI (with N(I) = 0).

4.3 Parallel Sections of T (T̂M−) and the MOSVA

Recall that

T̂M− = TM ⊗R (M × t−1C[t−1])

and

T (T̂M−) = C⊕ T̂M− ⊕ T̂M− ⊗C T̂M− ⊕ · · ·

We consider the following grading structure on T (T̂M−), that

T (T̂M−) =
∞⊕
n=0

 n⊕
m=0

k1+···km=n⊕
k1,...,km∈Z+

(TM ⊗R (M × Ct−k1))⊗C · · · ⊗C (TM ⊗R (M × Ct−km))


Thus, for any open subset U of M ,

ΠT (T̂M−) =

∞⊕
n=0

 n⊕
m=0

k1+···km=n⊕
k1,...,km∈Z+

Π[(TM ⊗R (M × Ct−k1))⊗C · · · ⊗C (TM ⊗R (M × Ct−km))]


which is isomorphic to

T (T̂pM−)
Hol(U) =

∞⊕
n=0

 n⊕
m=0

k1+···km=n⊕
k1,...,km∈Z+

[(TpM
C)⊗m]Hol(U)


In case M = S2, it is isomorphic to

∞⊕
n=0

n⊕
m=0

k1+···km=n⊕
k1,...,km∈Z+

span
{
{(vi1 ⊗ t−k1)⊗ · · · ⊗ (vim ⊗ t−km) : ij ∈ {1, 2},#{j : ij = 1} = #{j : ij = 2}

}
In other words, our MOSVA V is a graded vector space V = ⊕∞

n=0Vn, with each Vn

spanned by the elements

(vi1 ⊗ t−k1)⊗ · · · ⊗ (vim ⊗ t−km) :0 ≤ m ≤ n, k1, ..., km ≥ 0, k1 + · · ·+ km = n,

i1, ..., im ∈ {1, 2},#{j : ij = 1} = #{j : ij = 2}

The vertex operator is defined the same way as in [H3]. We recall the definition

here. Let h = TpM , which is a finite-dimensional Euclidean space over R. Let

ĥ = h⊗R C[t, t−1]⊕ Ck
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be the ambient vector space of the Heisenberg algebra. Note that ĥ = ĥ− ⊕ ĥ0 ⊕ ĥ+.

Let N(ĥ) be the quotient of the tensor algebra T (ĥ) of ĥ modulo the two-sided ideal I

generated by

(a⊗ tm)⊗ (b⊗ tn)− (b⊗ tn)⊗ (a⊗ tm)−m(a, b)δm+n,0k,

(a⊗ tk)⊗ (b⊗ t0)− (b⊗ t0)⊗ (a⊗ tk),

(a⊗ tk)⊗ k− k⊗ (a⊗ tk)

for a, b ∈ h, m ∈ Z+, n ∈ −Z+, k ∈ Z. Note that in the quotient, there are no

relations between X ⊗ tm and Y ⊗ tn for m,n ∈ Z+ and for m,n ∈ Z−. Also note that

N(ĥ) ≃ T (ĥ−)⊗ T (ĥ0)⊗ T (ĥ+)⊗ T (Ck) as vector spaces.

Let C = C1 be a one-dimensional vector space on which h acts by 0. Define the

action of k by 1 and ĥ+ by 0. One can prove that the induced module N(ĥ)⊗N(ĥ+⊕ĥ0)
C

is isomorphic to T (ĥ−) as a vector space. We regard T (ĥ−) now as an N(ĥ)-module and

denote the action of h⊗ tk by h(k). Then T (ĥ−) is spanned by h1(−k1) · · ·hm(−km)1

for m ∈ N, h1, ..., hm ∈ h, k1, ..., km ∈ Z+.

Huang proved the following theorem in [H3]

Theorem 4.3.1 (Huang, 2012). The left N(ĥ)-module T (ĥ−) forms a grading-restricted

MOSVA with the following vertex operator action:

Y (h1(−k1) · · ·hm(−km)1, x)

= ◦
◦

1

(k1 − 1)!

dk1−1

dxk1−1
h1(x) · · ·

1

(k1 − 1)!

dkm−1

dxkm−1
hk(x) ◦

◦

where hi(x) =
∑

n∈Z hi(n)x
−n−1

With the knowledge of the parallel sections of the bundle T (T̂M−), from the con-

clusions of [H4], we have the following theorem:

Theorem 4.3.2. The subspace V =
⊕

n≥0 Vn ⊂ N(ĥ−) with

Vn = span

vi1(−k1) · · · vim(−km)1 :

0 ≤ m ≤ n, k1, ...km ≥ 0,

m∑
j=1

kj = n

, i1, ..., ik ∈ {1, 2},#{j : ij = 1} = #{j : ij = 2}

 ,



126

together with the following vertex operator

Y (vi1(−k1) · · · vim(−km)1, x) = ◦
◦

1

(k1 − 1)!

dk1−1

dxk1−1
vi1(x) · · ·

1

(k1 − 1)!

dkm−1

dxkm−1
vik(x)

◦
◦

and 1 ∈ V0 forms a grading-restricted MOSVA.
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Chapter 5

Cohomology theory of MOSVA

In this chapter we develop the cohomology theory of bimodules of a meromorphic open

string vertex algebras. The theory is generalized from that in [H1].

5.1 Classical Theory

5.1.1 Hochschild cochain complex of an associative algebra

Recall that for an associative algebra A over C and an A-bimodule M , the set of linear

maps from A⊗n to M , namely HomC(A
⊗n,M), is defined to be the n-th Hochschild

cochain complex with coefficients in M , for each natural number n. When n = 0, A⊗0

is identified with the base field C and thus the zero-th Hochschild cochain complex is

canonically isomorphic to M . When A is commutative and the the right action of A on

M is identical to the left action, the set HomC(A
⊗n,M) is referred as Harrison cochain

complex.

For each natural number n, the coboundary map

δn : HomC(A
⊗n,M) → HomC(A

⊗(n+1),M)

is defined by the following formula

(δnf)(a0 ⊗ · · · ⊗ an)

= a0 · f(a1 ⊗ · · · ⊗ an) +
n−1∑
i=1

(−1)if(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an) + (−1)n+1f(a0 ⊗ · · · ⊗ an−1) · an

To see that the sequence (HomC(A
⊗n,M), δn) form a cochain complex, we need to

verify that for each n ∈ Z+,

δn ◦ δn−1 = 0.
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Let f ∈ HomC(A
⊗n). We compute as follows:

δn−1(δnf)(a1 ⊗ · · · ⊗ an+2)

=a1δ
nf(a2 ⊗ · · · ⊗ an+2) +

n+1∑
i=1

(−1)iδnf(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+2)

+ (−1)n+2δnf(a1 ⊗ · · · ⊗ an+1)an+2

=a1(a2f(a3 ⊗ · · · ⊗ an+2) (1)

+
n+1∑
i=2

(−1)i+1a1f(a2 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+2) (2)

+ (−1)n+3a1f(a2 ⊗ · · · ⊗ an+1)an+2) (3)

+ (−1)a1a2f(a3 ⊗ · · · ⊗ an+2) (4)

+

n+1∑
i=2

(−1)ia1f(a2 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+2) (5)

+
n+1∑
i=3

(−1)i
i−2∑
j=1

(−1)jf(a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+2) (6)

+

n+1∑
i=2

(−1)i(−1)i−1f(a1 ⊗ · · · ⊗ ai−1aiai+1 ⊗ · · · ⊗ an+2) (7)

+

n∑
i=1

(−1)i(−1)if(a1 ⊗ · · · ⊗ aiai+1ai+2 ⊗ · · · ⊗ an+2) (8)

+
n−1∑
i=1

(−1)i
n+1∑

j=i+2

(−1)j−1f(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an+2) (9)

+
n∑

i=1

(−1)i(−1)n+1f(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)an+2 (10)

+ (−1)n+1(−1)n+1f(a1 ⊗ · · · ⊗ an)an+1an+2 (11)

+ (−1)n+2a1f(a2 ⊗ · · · ⊗ an+1)an+2 (12)

+

n∑
j=1

(−1)n+2(−1)jf(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)an+2 (13)

+ (−1)n+2(−1)n+1f(a1 ⊗ · · · ⊗ an)an+1an+2, (14)

where (1), (2) and (3) comes from the first term of δn−1(δnf) term, (12), (13), (14)

comes from the last δn−1(δnf) term, and (5) to (11) comes from the middle terms

δn−1(δnf). Among these middle terms, (4) and (5) come from the the first term δnf

respectively when i = 1 and i > 1. (11) and (12) come from the last term of δnf
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respectively when i < n+ 1 and i = n+ 1. (6) through (9) come from the middle term

of δnf , where (6) and (9) deals with the case when j < i− 1 and j > i, and (7) and (8)

deals the the case j = i− 1 and j = i.

It is easy to see that the paired sums (1) + (4), (2) + (5), (3) + (12), (6) + (9), (7) +

(8), (10)+(13), (11)+(14) are all zero. Thus δn(δn−1f) = 0 for any f ∈ HomC(A
⊗n,M),

and therefore (HomC(A
⊗n,M), δn) form a cochain complex.

5.1.2 Approached by the language of operad

For the convenience of generalization to MOSVA, we will rewrite the above prove using

the language of operads.

Let M1, ...,Mn,M,N be vector spaces. Let α : M1 ⊗ · · · ⊗ Mn → M be a linear

map. For a fixed integer i between 1 and n, let β : N → Mi be a linear map. We define

α ◦i β to be the map obtained by composing α with β at the i-th spot. More precisely,

α ◦i β is a linear map from M1 ⊗ · · · ⊗Mi−1 ⊗N ⊗Mi+1 ⊗ · · · ⊗Mn to M , such that

(α◦iβ)(m1⊗· · ·⊗mk−1⊗x⊗mi+1⊗· · ·⊗mn) = α(m1⊗· · ·⊗mi−1⊗β(x)⊗mi+1⊗· · ·⊗mn)

for any m1 ∈ M1, ...,mi−1 ∈ Mi−1, x ∈ N,mi+1 ∈ Mi+1, ...mn ∈ Mn,

Now for the associative algebra A, let EA : A⊗ A → A be the multiplication map,

i.e. EA(a1 ⊗ a2) = a1a2 for a1, a2 ∈ A. For the A-bimodule M , let El
M : A⊗M → M

and Er
M : M ⊗ A → M be the map given by the left and right action of A on M , i.e,

El
M (a ⊗m) = am,Er

M (m ⊗ a) = ma for a ∈ A,m ∈ M . Let f ∈ HomC(A
⊗n,M), i.e.,

f is a linear map from A⊗n to M . Then the δ map can be written as

δf = El
M ◦2 f +

n∑
i=1

(−1)if ◦i EA + (−1)n+1Er
M ◦1 f

Using this notation, we compute δ2f as follows:

δ2f =El
M ◦2 δf +

n+1∑
i=1

(−1)iδf ◦i EA + (−1)n+2Er
M ◦1 δf

=El
M ◦2 (El

M ◦2 f) +
n∑

j=1

(−1)jEl
M ◦2 (f ◦j EA) + (−1)n+1El

M ◦2 (Er
M ◦1 f)

+
n+1∑
i=1

(−1)i

(El
M ◦2 f) ◦i EA +

n∑
j=1

(−1)j(f ◦j EA) ◦i EA + (−1)n+1(Er
M ◦1 f) ◦i EA


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+ (−1)n+2

Er
M ◦1 (EL

M ◦2 f) +
n∑

j=1

(−1)jEr
M ◦1 (f ◦j EA) + (−1)n+1Er

M ◦1 (Er
M ◦1 f)


We rearrange the terms and indexes, to write the above as

δ2f =El
M ◦2 (El

M ◦2 f) +
n∑

i=1

(−1)iEl
M ◦2 (f ◦i EA) +

n+1∑
i=1

(−1)i(El
M ◦2 f) ◦i EA (1)

+ (−1)n+1El
M ◦2 (Er

M ◦1 f) + (−1)n+2Er
M ◦1 (El

M ◦2 f) (2)

+
n+1∑
i=1

n∑
j=1

(−1)i(−1)j(f ◦j EA) ◦i EA (3)

+

n+1∑
i=1

(−1)n+1+i(Er
M ◦1 f) ◦i EA +

n∑
i=1

(−1)n+2+iEr
M ◦1 (f ◦i EA)− Er

M ◦1 (Er
M ◦1 f) (4)

We argue that all (1), (2), (3), (4) are zero.

For (1), note that

El
M ◦2 (El

M ◦2 f) = (El
M ◦2 f) ◦1 EA

so the sum of the first term and the i = 1 term in the third summation cancel out. Also

note that

El
M ◦2 (f ◦i EA) = (El

M◦2) ◦i+1 EA

So the second sum and the third sum without i = 1 differs by an index shift and a (-1)

factor. That way they cancels out.

For (2), note that

El
M ◦2 (Er

M ◦1 f) = Er
M ◦1 (El

M ◦2 f)

So they cancel out.

For (3), note that if j ≤ i− 1, then

(f ◦j EA) ◦i EA = (f ◦i−1 EA) ◦j EA

and if j ≥ i, then

(f ◦j EA) ◦i EA = (f ◦i EA) ◦j+1 EA.

This hints that we should write (3) into two parts

n+1∑
i=2

i−1∑
j=1

(−1)i+j(f ◦j EA) ◦i EA +

n∑
i=1

n∑
j=i

(−1)i+j(f ◦j EA) ◦i EA
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Here the first sum starts from i = 2 because when i = 1, the inner sum does not exist.

Similarly the second sum ends at i = n because when i = n + 1, the inner sum does

not exist. We compute the first sum as follows

n+1∑
i=2

i−1∑
j=1

(−1)i+j(f ◦j EA) ◦i EA

=
n+1∑
i=2

i−1∑
j=1

(−1)i+j(f ◦i−1 EA) ◦j EA use the identity above

=

n∑
j=1

n+1∑
i=j+1

(−1)i+j(f ◦i−1 EA) ◦j EA change the order of summation

=
n∑

i=1

n+1∑
j=i+1

(−1)i+j(f ◦j−1 EA) ◦i EA interchange i and j

=

n∑
i=1

n∑
j=i

(−1)i+j+1(f ◦j EA) ◦i EA shift the index j

So the first sum is precisely the negative of the second sum. Thus the two sums add

up to be zero.

For (4), Note that

(Er
M ◦1 f) ◦n+1 EA = Er

M ◦1 (Er
M ◦1 f)

so the (n+ 1)-th in the first sum cancels out with the third term. Also note that

(Er
M ◦1 f) ◦i EA = Er

M ◦1 (f ◦i EA)

The rest of the first sum cancels out with the second sum.

So we managed to prove δ2 = 0 with the language of operads. As we will see, it will

be easier to generalize this argument to MOSVA.

Elements in Kerδn are called n-th cocycles. Elements in Imδn−1 are called n-th

coboundaries. The quotient of Kerδn modulo Imδn−1 is called the n-th Hochschild

cohomology group.

To construct an analogue of MOSVAs, the main challenge is to figure out the appro-

priate analogue of chain complexes, and take care of the parameter appropriately when

we perform the related operations. Most of the hard work has been done by Huang in

[H1], where he constructed the analogue of Harrison cohomology for vertex algebras.

Here we develop the analogue of Hochschild cohomology of MOSVA.
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5.2 W -valued rational functions

Throughout this chapter, V is a MOSVA; W =
⨿

n∈CW[n] is a V -bimodule that is

not necessarily grading-restricted; W ′ =
⨿

n∈CW ∗
[n] is the graded dual of W . We shall

assume that all the pole-order conditions hold for V and W .

5.2.1 Definition and basic properties

For n ∈ Z+, the configuration spaces is following region in Cn

FnC = {(z1, ..., zn) ∈ Cn : zi ̸= zj , i ̸= j}

We use W to denote the algebraic completion
∏

n∈CW[n] of W . Note that the dual

(W ′)∗ of W ′ does not coincide with W . Also note that any homogeneous linear map

L : W → W extends to a map W → W by the formal linearity

L(w) = L

(∑
k∈C

πkw

)
=
∑
k∈C

L(πkw)

where πk is the projection of W onto W[k]. More generally, any linear map L : W → W

that is a finite linear combination of homogeneous linear maps can be extended to

L : W → W . For convenience, we will not introduce new notations to distinguish the

extended map from the original map.

Definition 5.2.1. For n ∈ Z+, we consider the configuration space

FnC = {(z1, ..., zn) ∈ Cn : zi ̸= zj , i ̸= j}

A W -valued rational function in z1, ..., zn with the only possible poles at zi = zj , i ̸= j

is a map

f : FnC → W

(z1, ..., zn) 7→ f(z1, ..., zn)

such that

1. For any w′ ∈ W ′,

⟨w′, f(z1, ..., zn)⟩

is a rational function in z1, ..., zn with the only possible poles at zi = zj , i ̸= j.
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2. There exists integers pij , 1 ≤ i < j ≤ n and a formal series g(x1, ..., xn) ∈

W [[x1, ..., xn]], such that for every w′ ∈ W ′ and (z1, ..., zn) ∈ FnC,

∏
1≤i<j≤n

(zi − zj)
pij ⟨w′, f(z1, ..., zn)⟩ = ⟨w′, g(z1, ..., zn)⟩

as a polynomial function.

For simplicity, we will simply call such maps W -valued rational function when there

is no confusion. The space of all such functions will be denoted by W̃z1,...,zn .

Remark 5.2.2. From the second condition, we know that the order of poles of the

rational function ⟨w′, f(z1, ..., zn)⟩ is independent of the choice of w′. So for every

w′ ∈ W ′,

(z1, ..., zn) 7→
∏

1≤i<j≤n

(zi − zj)
pij ⟨w′, f(z1, ..., zn)⟩

is a holomorphic (in fact, polynomial) function on Cn, which can be expanded as a

multiple power series
∞∑

i1,...,in=0

ai1...in(w
′)zi11 · · · zinn

For each i1, ..., in ∈ N, w′ 7→ ai1...in(w
′) is an element in (W ′)∗. The second condition

further specifies that there exists bi1...in ∈ W , such that ai1...in(w
′) = ⟨w′, bi1...in⟩. Thus,∏

1≤i<j≤n(zi − zj)
pijf(z1, ..., zn) can be expanded as

∞∑
i1,...,in=0

bi1...inz
i1
1 · · · zinn ∈ W [[z1, ..., zn]]

and therefore, f(z1, ..., zn) can be expanded as

∞∑
i1,...,in=0

bi1...inz
i1
1 · · · zinn∏

1≤i<j≤n
(zi − zj)pij

∈ W [[z1, ..., zn]][(z1 − z2)
−1, ..., (zn−1 − zn)

−1]

For 1 ≤ i < j ≤ n, one can further expand the negative powers of zi − zj as a power

series in zj and multiply them out. It is clear that in the resulting series

∑
k1,...,kn∈Z

fk1...knz
k1
1 · · · zknn (5.1)
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each coefficient fk1...kn is a finite sum of various bi1...in ’s. Thus fk1...kn ∈ W . So (5.1) is

a series in W [[z1, z
−1
1 , ..., zn, z

−1
n ]] that converges absolutely to f(z1, ..., zn) in the region

{(z1, ..., zn) ∈ Cn : |z1| > · · · > |zn|}

We will also consider the expansion of f(z1, ..., zn) in other regions. In all the regions

that arise in our applications, all the coefficients of the corresponding series sit in W .

In an earlier draft of the paper, f takes value in the larger space (W ′)∗. The following

observation by Huang says that we can use W instead of (W ′)∗:

Proposition 5.2.3. Let f : FnC → (W ′)∗ satisfying the two conditions in Definition

5.2.1. In addition, assume that there exists a complex number C, such that for every

i1, ..., in ∈ N, the coefficient bi1,...,in of the power xi11 · · ·xinn in the series g(x1, ..., xn) are

homogeneous, with

wt bi1...in − i1 − · · · − in = C

Then f takes value in W .

Proof. We write

g(z1, ..., zn) =
∞∑
k=0

∑
i1+···+in=k

bi1,...,inz
i1
1 · · · zinn

Note that for every k ∈ N,

∑
i1+···+in=k

bi1,...,inz
i1
1 · · · zinn

is a finite sum of homogeneous elements in W of weight k+C. As k varies, the weight

of these elements varies. Thus for fixed (z1, ..., zn) ∈ FnC, g(z1, ..., zn) is an infinite

sum of homogeneous elements in W , thus an element in W . As f(z1, ..., zn) is simply a

quotient of g(z1, ..., zn) and products of (zi − zj), the same holds for f(z1, ..., zn).

Remark 5.2.4. The arguments above can be easily modified to give a much simpler

proof to Proposition 3.1.23.

Remark 5.2.5. It is possible to develop a cohomology theory with (W ′)∗-valued ra-

tional functions that do not satisfy the second condition. We choose not to do that

because we do not need to consider such general MOSVAs and modules.
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Proposition 5.2.6. Let n ∈ Z+ and take l = 0, ..., n. Let u1, ..., un ∈ V and w ∈ W

satisfying the condition that ∀u ∈ V, Y L
W (u, x)w ∈ W [[x]], Y

s(R)
W (u, x)w ∈ W [[x]]. Then

for every w′ ∈ W ′, the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩ (5.2)

converges absolutely when |z1| > · · · > |zn| to a rational function with the only possible

poles at zi = zj , 1 ≤ i < j ≤ n.

Proof. From rationality we know that the series (5.2) converges absolutely when |z1| >

· · · > |zn| > 0 to a rational function with the only possible poles at zi = 0, i =

1, ..., n, zi = zj , 1 ≤ i < j ≤ n. From the assumption, we see that the lowest power of

zn is nonnegative. Therefore, zn is allowed to take zero. So zn = 0 s not a pole.

Assume that zn−1 = 0 is a pole. By associativity, the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (Y s

V (un−1, zn−1 − zn)un, zn)w⟩,

is obtained by the expanding some rational function in some certain region, during

which one of the steps expands the negative powers of zn−1 = zn + (zn−1 − zn) as

a series with positive powers zn−1 − zn. So there should be infinitely many negative

powers of zn. However, since Y
s(R)
W (u, zn)w has no negative powers of zn, in particular,

for u = (YV )k(un−1)un with any k ∈ Z. Thus this series has no negative powers of zn.

So it is impossible for zn−1 = 0 to be a pole.

Similarly, assume zn−2 = 0 is a pole, we use the associativity again to see that

⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (Y s

V (un−2, zn−2 − zn)Y
s
V (un−1, zn−1 − zn)un, zn)w⟩,

is obtained by the expanding some rational function in some certain region, during

which one of the steps expands the negative powers of zn−2 = zn + (zn−2 − zn) as

a series with positive powers zn−2 − zn. So there should be infinitely many negative

powers of zn, which is not possible.

Similarly one can argue that zn−3 = 0 is not a pole, ..., zl+1 = 0 is not a pole. To

see that zl is not a pole, we use the commutativity of Y L
W and Y

s(R)
W to move all the
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Y L
W to the right. The resulting series

⟨w′, Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)Y

L
W (u1, z1) · · ·Y L

W (ul, zl)w⟩

converges absolutely when |zl+1| > · · · > |zn| > |z1| > · · · > |zl| > 0 to the same

rational function as (5.2) does. As Y L
W (u, zl)w has no negative powers of zl for every

u, we then see that zl is allowed to take zero and thus zl = 0 is not a pole. Then we

apply associativity of Y L
W and argue similarly that zl−1 = 0 is not a pole, ..., z1 is not

a pole.

Notation 5.2.7. We denote the rational function that the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩

converges to by

R
(
⟨w′, Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩

)
.

By the previous proposition, it is of the form

h(z1, ..., zn)∏
1≤i<j≤n

(zi − zj)pij

for some polynomial h(z1, ..., zn) and some integers pij , 1 ≤ i < j ≤ n. The polynomial

depends on the choice of w′ ∈ W ′, w ∈ W,u1, ..., un ∈ V . But since V andW satisfies the

pole-order condition, for each 1 ≤ i < j ≤ n, the integer pij depends only on ui and uj .

It is important thatR
(
⟨w′, Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩

)
is defined whenever zi ̸= zj , 1 ≤ i < j ≤ n. The inequality |z1| > · · · > |zn| is not nec-

essary.

Notation 5.2.8. For every (z1, ..., zn) ∈ FnC, the linear functional

w′ 7→ R
(
⟨w′, Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w⟩

)
determines an element in (W ′)∗ that will be denoted by

E
(
Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w

)
.

As will be seen soon, this element is indeed in W . It is important that this element of

W is defined whenever zi ̸= zj , 1 ≤ i < j ≤ n. The inequality |z1| > · · · > |zn| is not

necessary.
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Remark 5.2.9. The E-notation was introduced by Huang in [H1]. Instead of dealing

with the series, we are dealing with the holomorphic function obtained by the analytic

extension of the sum of the series. With the E-notation, the commutativity of Y L
W and

Y
s(R)
W can now be expressedas

E(Y L
W (u1, z1)Y

s(R)
W (u2, z2)w) = E(Y

s(R)
W (u2, z2)Y

L
W (u1, z1)w)

Notice that the series in the left-hand-side only makes sense in |z1| > |z2| > 0, and the

series in the right-hand-side only makes sense in |z2| > |z1| > 0. So we will not be able

to find z1, z2 ∈ C such that Y L
W (u1, z1)Y

s(R)
W (u2, z2)w and Y

s(R)
W (u2, z2)Y

L
W (u1, z1)w are

equal as elements in W . However, as they both converge to a common rational function

that determines an element in W defined for every (z1, z2) ∈ F2C.

Example 5.2.10. Let V be a MOSVA and W be a V -bimodule. Assume that both V

and W satisfies the pole-order condition. Fix n ∈ Z+ and l ∈ N such that 0 ≤ l ≤ n.

For every w ∈ W such that for every u ∈ V , Y L
W (u, x)w ∈ W [[x]], Y

s(R)
W (u, x)w ∈ W [[x]],

and for every u1, ..., un ∈ V , the map from FnC to W defined by

(z1, ..., zn) 7→ E
(
Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w

)
(5.3)

is a W -valued rational function in z1, ..., zn with the only possible poles at zi = zj ,

1 ≤ i < j ≤ n.

Proof. The first condition is seen from the discussions above. The second condition

follows from Theorem 3.3.10. For homogeneous u1, ..., un ∈ V,w ∈ W , one can computes

that the power series

∏
1≤i<j≤n

(zi − zj)
pijY L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w

satisfies the the conditions in Proposition 5.2.3 (C can be chosen as
n∑

i=1
wt ui +wt w−∑

1≤i<j≤n
pij .) Thus the rational function in question takes value in W .

Notation 5.2.11. We will use the notation

E
(l,n−l)
W (u1 ⊗ · · · ⊗ un;w)
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to denote the rational function (5.3), with n ∈ Z+, l ∈ N, u1, ..., un ∈ V and w ∈ W

chosen the same way as in the previous example. In particular, E
(l,n−l)
W (u1 ⊗ · · · ⊗

un;w) ∈ W̃z1...zn . It is also clear that when W = V and w = 1, E
(l,n−l)
V (u1, ..., un;1) is

the same for every l = 0, ..., n. In this case we will use the notation

E
(n)
V (u1, ..., un)

without explicitly mentioning l and 1.

5.2.2 Series of W -valued rational functions

In this paper we will be frequently dealing with series of W -valued rational function.

Here we illustrate some examples. Let (z1, ..., zn) ∈ FnC. Let u1, ..., un ∈ V and w ∈ W

such that Y L
W (u, x)w ∈ W [[x]] and Y R

W (w, x)u ∈ W [[x]] for every u ∈ V . Let v ∈ V

and x be a formal variable. Note that the components (Y L
W )n(v) of the vertex operator

Y L
W (v, x) are sums of homogeneous linear operators on W that extends naturally to W .

In particular, they acts on

w = (E
(l,n−l)
W (u1 ⊗ · · · ⊗ un;w))(z1, ..., zn)

= E(Y L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w)

Thus the vertex operator Y L
W (u, x) acting on w is the following single series of elements

in W :

Y L
W (v, x)w =

∑
n∈Z

(Y L
W )n(u)wx

−n−1

=
∑
n∈Z

(Y L
W )n(u)E(Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w)x

−n−1

If we pair the above with w′ ∈ W ′, then the coefficient of x−n−1 in ⟨w′, Y L
W (v, x)w⟩ is

just

⟨w′, (Y L
W )n(v)E(Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w)⟩

which is a rational function in z1, ..., zn with the only possible poles at zi = zj , 1 ≤ i <

j ≤ n. Moreover, if n is sufficiently negative, the coefficient is zero. Thus the series

⟨w′, Y L
W (v, x)w⟩ has at most finitely many positive powers.
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Proposition 5.2.12. Let u1, ..., un ∈ V,w ∈ W be chosen as above. Then the single

series

Y L
W (v, z)E(Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w)

converges absolutely when

|z| > |zi|, i = 1, ..., n

to the W -valued rational function

E(Y L
W (v, z)Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w)

Proof. For every w′ ∈ W ′, we know that the series

⟨w′, Y L
W (v, z)Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w)⟩

converges absolutely when |z| > |z1| > · · · > |zn| to the rational function with the only

possible poles at z = zi, i = 1, ..., n, zi = zj , 1 ≤ i < j ≤ n. For each fixed n ∈ Z, the

coefficient of z−n−1 is precisely the sum of the series

⟨w′, (Y L
W )n(v)Y

L
W (u1, z1) · · ·Y L

W (ul, zl)Y
s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w)⟩

in z1, ..., zn, which is the same as the coefficient of Y L
W (v, z)w. From the upper truncation

of z, we know that the series is obtained by expanding the negative powers of z − zi as

a power series in zi. Thus it converges absolutely whenever |z| > |zi|, i = 1, ..., n.

Proposition 5.2.13. Let u1, ..., un ∈ V,w ∈ W be chosen as above. Let m ∈ Z+, v1, ..., vm ∈

V . Then for each p = 0, ...,m, the series

Y L
W (v1, z1) · · ·Y L

W (vp, zp)Y
s(R)
W (vp+1, zp+1) · · ·Y s(R)

W (vm, zm)·

E(Y L
W (u1, zm+1) · · ·Y L

W (ul, zm+l)Y
s(R)
W (ul+1, zm+l+1) · · ·Y

s(R)
W (un, zm+n)w)

converges absolutely when

|z1| > · · · > |zm| > |zi|, i = m+ 1, ...,m+ n.

to the W -valued rational function

E(Y L
W (v1, z1) · · ·Y L

W (vp, zp)Y
s(R)
W (vp+1, zp+1) · · ·Y s(R)

W (vm, zm)·

Y L
W (u1, zm+1) · · ·Y L

W (ul, zm+l)Y
s(R)
W (ul+1, zm+l+1) · · ·Y

s(R)
W (un, zm+n)w)
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Proof. It suffices to notice that for each w′ ∈ W ′, the series

⟨w′, Y L
W (v1, z1) · · ·Y L

W (vp, zp)Y
s(R)
W (vp+1, zp+1) · · ·Y s(R)

W (vm, zm)·

E(Y L
W (u1, zm+1) · · ·Y L

W (ul, zm+l)Y
s(R)
W (ul+1, zm+l+1) · · ·Y

s(R)
W (un, zm+n)w)⟩

coincides with the expansion of the rational function

R(⟨w′, Y L
W (v1, z1) · · ·Y L

W (vp, zp)Y
s(R)
W (vp+1, zp+1) · · ·Y s(R)

W (vm, zm)·

Y L
W (u1, zm+1) · · ·Y L

W (ul, zm+l)Y
s(R)
W (ul+1, zm+l+1) · · ·Y

s(R)
W (un, zm+n)w)⟩

in the region {(z1, ..., zm+n) : |z1| > · · · > |zm| > |zi|, i = m+ 1, ...,m+ n}.

Remark 5.2.14. In terms of the E-notation, we have

E(Y L
W (v, z)E(Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w))

= E(Y L
W (v, z)Y L

W (u1, z1) · · ·Y L
W (ul, zl)Y

s(R)
W (ul+1, zl+1) · · ·Y

s(R)
W (un, zn)w))

and

E(Y L
W (v1, z1) · · ·Y L

W (vp, zp)Y
s(R)
W (vp+1, zp+1) · · ·Y s(R)

W (vm, zm)·

E(Y L
W (u1, zm+1) · · ·Y L

W (ul, zm+l)Y
s(R)
W (ul+1, zm+l+1) · · ·Y

s(R)
W (un, zm+n)w))

=E(Y L
W (v1, z1) · · ·Y L

W (vp, zp)Y
s(R)
W (vp+1, zp+1) · · ·Y s(R)

W (vm, zm)·

Y L
W (u1, zm+1) · · ·Y L

W (ul, zm+l)Y
s(R)
W (ul+1, zm+l+1) · · ·Y

s(R)
W (un, zm+n)w)

Here is another type of series of W -valued rational functions that will be considered.

Let u1, ..., un+1 ∈ V,w ∈ W such that Y L
W (u, x)w ∈ W [[x]] and Y R

W (w, x)u ∈ W [[x]].

Let (ζ, z3, ..., zn) ∈ FnC.

E
(l,n−l)
W (YV (u1, z1 − ζ)YV (u2, z2 − ζ)1⊗ u3 ⊗ · · · ⊗ un+1;w)(ζ, z3, ..., zn+1)

which expands as

∑
k1,k2∈Z

E
(l,n−l)
W ((YV )k1(u1)(YV )k2(u2)1⊗u3⊗· · ·⊗un+1;w)(ζ, z3, ..., zn+1)(z1−ζ)−k1−1(z2−ζ)−k2−1

For each k1, k2 ∈ Z, the coefficients of (z1−ζ)−k1−1(z2−ζ)−k2−1 is a W -valued rational

function in ζ, z3, ..., zn+1.
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Proposition 5.2.15. Let u1, ..., un+1 ∈ V and w ∈ W be chosen as above. Then the

series

E
(l,n−l)
W (YV (u1, z1 − ζ)YV (u2, z2 − ζ)1⊗ u3 ⊗ · · · ⊗ un+1;w)(ζ, z3, ..., zn+1) (5.4)

converges absolutely when

|z3 − ζ| > |z1 − ζ| > |z2 − ζ|

to the W -valued rational function

E(Y L
W (u1, z1) · · ·Y L

W (ul+1, zl+1)Y
s(R)
W (ul+2, zl+2) · · ·Y

s(R)
W (un+1, zn+1)w)

Proof. For every w′ ∈ W ′, we know that the series

⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul+1, zl+1)Y
s(R)
W (ul+2, zl+2) · · ·Y

s(R)
W (un+1, zn+1)w⟩

converges absolutely when |z1| > · · · > |zn+1| to a rational function with the only

possible poles at zi = zj , 1 ≤ i < j ≤ n+ 1. By associativity and Lemma *.*.* in [Q1],

we know that the series

⟨w′, Y L
W (YV (u1, z1−ζ)YV (u2, z2−ζ)1, ζ)Y L

W (u3, z3) · · ·Y L
W (ul+1, zl+1)Y

s(R)
W (ul+2, zl+2) · · ·Y

s(R)
W (un+1, zn+1)w⟩

with variables z1 − ζ, z2 − ζ, ζ, z3, ..., zn that expands as∑
k1,...,kn+2∈Z

⟨w′,(Y L
W )k3((YV )k1(u1)(YV )k2(u2)1)(Y

L
W )k4(u3) · · · (Y L

W )kl+2
(ul+1)

· (Y s(R)
W )kl+3

(ul+2) · · · (Y
s(R)
W )kn+2(un+1)w⟩(z1 − ζ)−k1−1(z2 − ζ)−k2−1ζ−k3−1z−k4−1

3 · · · z−kn+2−1
n+1

is obtained from the following expansion of the rational function:

1. Expand the negative powers of z1 − z2 = z1 − ζ − (z2 − ζ) as a power series of

z2 − ζ.

2. For s = 1, 2 and j = 3, ..., n, expand the negative powers of zs−zj = ζ+(zs−ζ+zj)

as a power series of zs−ζ+zj , then further expand the positive powers of zs−ζ+zj

as polynomials of zs−ζ and zj . Note that this expansion is the same as first expand

the negative powers of zs − zj = (zj − ζ) + (zs − ζ) as power series of (zs − ζ),

then further expand all the negative powers of zj − ζ as power series of zj .
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3. For 3 ≤ i < j ≤ n, expand the negative powers of zi − zj as power series of zj .

Thus the series converges absolutely when

|z1 − ζ| > |z2 − ζ|, |ζ| > |z3| > · · · > |zn|,

|zj − ζ| > |z1 − ζ|, j = 3, ..., n.

The result then follow by noticing that the coefficients of the series (5.4), paired with

w′, are precisely the partial sums of the above series with respect to k3, ..., kn+2. In

particular, the series (5.4) is obtained from the following expansions of the rational

function

R(⟨w′, Y L
W (u1, z1) · · ·Y L

W (ul+1, zl+1)Y
s(R)
W (ul+2, zl+2) · · ·Y

s(R)
W (un+1, zn+1)w⟩)

1. Expand the negative powers of z1 − z2 = z1 − ζ − (z2 − ζ) as a power series of

z2 − ζ.

2. For s = 1, 2 and j = 3, ..., n, expand the negative powers of zs − zj = (zj − ζ) +

(zs − ζ) as power series of (zs − ζ).

Thus the series (5.4) converges absolutely when |z3 − ζ| > |z1 − ζ| > |z2 − ζ|.

Proposition 5.2.16. Let m,n ∈ Z+. Let α1, ..., αn be chosen such that α1+ · · ·+αn =

m+ n. Then the series

E
(l,n−l)
W (YV (u

(1)
1 , z

(1)
1 −ζ1) · · ·YV (u(1)α1

, z(1)α1
−ζ1)1⊗· · ·⊗YV (u

(n)
1 , z

(n)
1 −ζn) · · ·YV (u(n)αn

, z(n)αn
−ζn)1)(ζ1, ..., ζn)

converges absolutely when

|ζi − ζj | > |z(i)s − ζi|+ |z(j)t − ζj |, 1 ≤ i < j ≤ n, s = 1, ..., αi, t = 1, ..., αj

|z(i)s − ζi| > |z(i)t − ζi|, i = 1, ..., n, 1 ≤ s < t ≤ αi.

to the W -valued rational function

E(Y L
W (u

(1)
1 , z

(1)
1 ) · · ·Y L

W (u(1)α1
, z(1)α1

) · · ·Y L
W (u

(l)
1 , z

(l)
1 ) · · ·Y L

W (u(l)αl
, z(l)αl

)

· Y s(R)
W (u

(l+1)
1 , z

(l+1)
1 ) · · ·Y s(R)

W (u(l+1)
αl+1

, z(l+1)
αl+1

) · · ·Y s(R)
W (u

(n)
1 , z

(n)
1 ) · · ·Y s(R)

W (u(n)αn
, z(n)αn

)w)
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Proof. It suffices argue similarly that the series, paired with any w′ ∈ W ′, is obtained

from the expansion of the corresponding rational function in the region.

We end this section by a proposition dealing with the mixture of the above two

types of series of W -valued rational functions

Proposition 5.2.17. Fix m,n ∈ Z+. Let α0, α1, · · · , αn be chosen such that α0+α1+

· · ·+ αn = m+ n. Then for every l0 = 0, ..., α0, the the series

Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

)Y
s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

· E(l,n−l)
W (YV (u

(1)
1 , z

(1)
1 − ζ1) · · ·YV (u(1)α1

, z(1)α1
− ζ1)1⊗ · · · ⊗ YV (u

(n)
1 , z

(n)
1 − ζn) · · ·YV (u(n)αn

, z(n)αn
− ζn)1)(ζ1, ..., ζn)

converges absolutely when

|z(0)1 | > · · · > |z(0)α0
| > |ζi|+ |z(i)t − ζi|, i = 1, ..., n, t = 1, ..., αi

|z(i)1 − ζi| > · · · > |z(i)αi
− ζi|, i = 1, ..., n

|ζi − ζj | > |z(i)s − ζi|+ |z(j)t − ζj |, 1 ≤ i < j ≤ n, s = 1, ..., αi, t = 1, ..., αj .

to the W -valued rational function

E(Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

)Y
s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

· Y L
W (u

(1)
1 , z

(1)
1 ) · · ·Y L

W (u(1)α1
, z(1)α1

) · · ·Y L
W (u

(l)
1 , z

(l)
1 ) · · ·Y L

W (u(l)αl
, z(l)αl

)

· Y s(R)
W (u

(l+1)
1 , z

(l+1)
1 ) · · ·Y s(R)

W (u(l+1)
αl+1

, z(l+1)
αl+1

) · · ·Y s(R)
W (u

(n)
1 , z

(n)
1 ) · · ·Y s(R)

W (u(n)αn
, z(n)αn

)w)

Proof. It suffices to notice that the series in question, paired with any w′ ∈ W ′, is

obtained from the following expansions of the corresponding rational function:

1. For s = 1, ..., α0, i = 0, ..., n, t = 1, ..., αi, expand the negative powers z
(0)
s − z

(i)
t

as power series of z
(i)
t . When i ≥ 1, one further expands the positive powers of

z
(i)
t = ζi + (z

(i)
t − ζi) as polynomials of ζi and z

(i)
t .

2. For i = 1, ..., n, 1 ≤ s < t ≤ αi, expand the negative powers of z
(i)
s − z

(i)
t =

z
(i)
s − ζi − (z

(i)
t − ζi) as power series of (z

(i)
t − ζi).

3. For 1 ≤ i < j ≤ n, s = 1, ..., αi, t = 1, ..., αj , expand the negative powers of

z
(i)
s − z

(j)
t = (ζi− ζj)+ (z

(i)
s − ζi− z

(j)
t + ζj) as power series of (z

(i)
s − ζi− z

(j)
t + ζj),
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then further expand the positive powers of (z
(i)
s − ζi − z

(j)
t + ζj) as polynomials

of (z
(i)
s − ζi) and (z

(j)
t − ζj).

Thus the series in question converges absolutely when

|z(0)1 | > · · · > |z(0)α0
| > |ζi|+ |z(i)t − ζi|, i = 1, ..., n, t = 1, ..., αi

|z(i)1 − ζi| > · · · > |z(i)αi
− ζi|, i = 1, ..., n

|ζi − ζj | > |z(i)s − ζi|+ |z(j)t − ζj |, 1 ≤ i < j ≤ n, s = 1, ..., αi, t = 1, ..., αj .

5.2.3 Associativity and commutativity extended to W -valued rational

functions

In this subsection we consider the vertex operator action on more general W -valued

rational functions. Let (z1, ..., zn) ∈ FnC. Let v ∈ V and x be a formal variable. Let f

be a W -valued rational function. Then (Y L
W )n(v) acts on the W -element

w = f(z1, ..., zn)

Thus the vertex operator Y L
W (u, x) acting on w is the following single series of elements

in W :

Y L
W (v, x)w =

∑
n∈Z

(Y L
W )n(u)wx

−n−1

=
∑
n∈Z

(Y L
W )n(u)f(z1, ..., zn)x

−n−1

If we pair the above with w′ ∈ W ′, then the coefficient of x−n−1 in ⟨w′, Y L
W (v, x)w⟩ is

just

⟨w′, (Y L
W )n(u)f(z1, ..., zn))⟩

which is rational function in z1, ..., zn with the only possible poles at zi = zj , 1 ≤ i <

j ≤ n. Moreover, if n is sufficiently negative, the coefficient is zero. Thus the series

⟨w′, Y L
W (v, x)w⟩ has at most finitely many positive powers.

Similarly, for v1, v2 ∈ V and formal variables x1, x2, the series

Y L
W (v1, x1)Y

L
W (v2, x2)w
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and

Y L
W (YV (v1, x0)v2, x2)w

are understood as double series of elements in W

Y L
W (v1, x1)Y

L
W (v2, x2)w =

∑
k1,k2∈Z

(Y L
W )k1(v1)(Y

L
W )k2(v2)wx

−k1−1
1 x−k2−1

2

=
∑

k1,k2∈Z
(Y L

W )k1(v1)(Y
L
W )k2(v2)f(z1, ..., zn)x

−k1−1
1 x−k2−1

2

Y L
W (YV (v1, x0)v2, x2)w =

∑
k1,k2∈Z

(Y L
W )k1((YV )k1(v1)v2)wx

−k1−1
0 x−k2−1

2

=
∑

k1,k2∈Z
(Y L

W )k1((YV )k1(v1)v2)f(z1, ..., zn)x
−k1−1
0 x−k2−1

2

In general, we don’t know if these two series converge. But if w is chosen appropriately

and one of them converges absolutely under certain conditions, then the other also

converges absolutely. More precisely,

Proposition 5.2.18. Let v1, v2 ∈ V . Let f ∈ W̃z3,...,zn+2 such that for every (z1, ..., zn+2) ∈

Fn+2C with |z1| > |z2| > |zi|, i = 3, ..., n+ 2, the series

Y L
W (v1, z1)Y

L
W (v2, z2)f(z3, ..., zn)

converges absolutely to a W -valued rational function. Then for every (z1, ..., zn+2) ∈

Fn+2C such that |z2| > |z1 − z2|+ |zi|, i = 3, ..., n+ 2, the series

Y L
W (YV (v1, z1 − z2)v2, z2)f(z3, ..., zn)

also converges absolutely to the same W -valued rational function.

Proof. By Definition 5.2.1 and Remark 5.2.2, we know that f(z3, ..., zn) can be expanded

in the region

{(z3, ..., zn+2) ∈ Cn : |z3| > · · · > |zn|}

as an absolutely convergent series

f(z3, ..., zn+2) =
∑

k3,...,kn+2∈Z
fk3...,kn+2z

k3
3 · · · zkn+2

n+2
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in W [[z3, z
−1
3 , ..., zn+2, z

−1
n+2]]. This expansion is obtained by expanding each negative

power of zi − zj as a power series in zj , for 3 ≤ i < j ≤ n + 2. Thus the series is

lower-truncated in zn+2. The coefficient of each fixed power of zn+2, as a series in

z3, ..., zn+1, is lower-truncated in zn+1. In general, for each i = 3, ..., n + 1 and each

ki+1, ..., kn+2 ∈ Z, the coefficient of z
ki+1

i+1 · · · zkn+2

n+2 , as a series in z3, ..., zi, is lower-

truncated in zi. If we pick Mi ∈ Z such that the lowest power of zi is −Mi, then we

can recover the coefficient of the series from the following formula

fk3...kn+2 = lim
z3=0

· · · lim
zn+2=0

(
∂

∂z3

)k3+M3

· · ·
(

∂

∂zn+2

)kn+2+Mn+2

(zM3
3 · · · zMn+2

n+2 f(z3, ..., zn))

Now by assumption, the series

Y L
W (u1, z1)Y

L
W (u2, z2)f(z3, ..., zn+2)

=
∑

k1,k2∈Z
(Y L

W )k1(u1)(Y
L
W )k2(u2)f(z3, ..., zn+2)z

−k1−1
1 z−k2−1

2

converges absolutely when |z1| > |z2| > |zi|, i = 3, ..., n + 2 to a W -valued rational

function. This means the following iterated series

Y L
W (u1, z1)Y

L
W (u2, z2)

 ∑
k3,...,kn+2∈Z

fk3...,kn+2z
k3
3 · · · zkn+2

n+2


=

∑
k1,k2∈Z

 ∑
k3,...,kn+2∈Z

(Y L
W )k1(u1)(Y

L
W )k2(u2)fk3...,kn+2z

k3
3 · · · zkn+2

n+2

 z−k1−1
1 z−k2−1

2 ,

viewed as a double series in z1, z2 whose coefficients are∑
k3,...,kn+2∈Z

(Y L
W )k1(u1)(Y

L
W )k2(u2)fk3...,kn+2z

k3
3 · · · zkn+2

n+2 ,

converges absolutely when |z1| > · · · > |zn+2| to the same W -valued rational function.

Moreover, the power of z2 is lower-truncated. And for each fixed power of z2, the power

of z1 in coefficient series is also lower-truncated. Thus by Lemma *.*.* in [Q1], the

series ∑
k1,...,kn+2∈Z

(Y L
W )k1(u1)(Y

L
W )k2(u2)fk3...,kn+2z

−k1−1
1 z−k2−1

2 zk33 · · · zkn+2

n+2

is precisely the expansion of the W -valued rational function

E(Y L
W (u1, z1)Y

L
W (u2, z2)f(z3, ..., zn+2)) (5.5)
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in the region

{(z1, ..., zn+2) ∈ Cn+2 : |z1| > · · · > |zn+2|}

In particular, the series converges absolutely in this region.

By associativity, for fixed k3, ..., kn+2, when |z1| > |z2| > |z1 − z2| > 0, we have

Y L
W (u1, z1)Y

L
W (u2, z2)fk3...,kn+2 = Y L

W (YV (u1, z1 − z2)u2, z2)fk3...,kn+2

=
∑

k1,k2∈Z
(Y L

W )k1((YV )k2(u1)u2)(z1 − z2)
−k1−1z−k2−1

2

Thus the series

Y L
W (YV (u1, z1 − z2)u2, z2)

∑
k3,...,kn+2∈Z

fk3...,kn+2z
k3
3 · · · zkn+2

n+2

=
∑

k3,...,kn+2∈Z

 ∑
k1,k2∈Z

(Y L
W )k1((YV )k2(u1)u2)fk3...,kn+2(z1 − z2)

−k1−1z−k2−1
2

 zk33 · · · zkn+2

n+2

viewed as a series in z3, ..., zn+2 whose coefficients are∑
k1,k2∈Z

(Y L
W )k1((YV )k2(u1)u2)fk3...,kn+2(z1 − z2)

−k1−1z−k2−1
2 ,

converges absolutely when

|z1| > |z2| > · · · > |zn+2|, |z2| > |z1 − z2| > 0.

Moreover, for every i = n + 2, ..., 3 and every ki+1, ..., kn+2, the coefficient series of

z
ki+1

i+1 · · · zkn+2

n+2 is lower-truncated in zi. One then sees from the Lemma *.*.* in [Q1]

that the series

Y L
W (YV (u1, z1 − z2)u2, z2)

∑
k3,...,kn+2∈Z

fk3...,kn+2z
k3
3 · · · zkn+2

n+2

=
∑

k1,k2,k3,...,kn+2∈Z
(Y L

W )k1((YV )k2(u1)u2)fk3...,kn+2(z1 − z2)
−k1−1z−k2−1

2 zk33 · · · zkn+2

n+2

is the expansion of the W -valued rational function (5.5) in the region

{(z1, ..., zn+2) ∈ Cn+2 : |z2| > |z1 − z2|+ |z3|, |z1 − z2| > 0, |z3| > · · · > |zn+2|}

In particular, the series converges absolutely in the region. We then sum up all

k3, ..., kn+1, to see that the double series

Y L
W (YV (u1, z1 − z2)u2, z2)f(z3, ..., zn+2) =

∑
k1,k2∈Z

(Y L
W )k1((YV )k2(u1)u2)f(z3, ..., zn+2)



148

of elements in W is precisely the expansion of the W -rational function (5.5) in the

region

{(z1, ..., zn+2) : |z2| > |z1 − z2|+ |zi|, i = 3, ..., n+ 2}

In particular, the double series converges absolutely in the region.

Corollary 5.2.19. For u1, u2 ∈ V and f ∈ W̃z3,...,zn+2 chosen as above, we have

Y L
W (u1, z1)Y

L
W (u2, z2)f(z3, ..., zn+2) = Y L

W (YV (u1, z1 − z2)u2, z2)f(z3, ..., zn+2)

for every (z1, ..., zn+2) ∈ Fn+2C such that |z1| > |z2| > |z1 − z2| + |zi|, i = 3, ..., n + 2.

Moreover, we have

E(Y L
W (u1, z1)Y

L
W (u2, z2)f(z3, ..., zn+2)) = E(Y L

W (YV (u1, z1 − z2)u2, z2)f(z3, ..., zn+2))

where both sides are regarded as W -valued rational functions in W̃z1,...,zn+2.

One can generalize the above conclusions to the product of any numbers of Y L
W and

Y
s(R)
W vertex operators. For convenience, we list the conclusions we will need in this

paper in the following theorem.

Theorem 5.2.20. 1. Let u1, u2 ∈ V , f ∈ W̃z3,...,zn+2 such that

Y L
W (u1, z1)Y

s(R)
W (u2, z2)f(z3, ..., zn+2)

converges absolutely to a W -valued rational function for every (z1, ..., zn+2) ∈

Fn+2C such that |z1| > |z2| > |zi|, i = 3, ..., n+ 2. Then the series

Y
s(R)
W (u2, z2)Y

L
W (u1, z1)f(z3, ..., zn+2)

also converges absolutely to the same W -valued rational function for every (z1, ..., zn+2) ∈

Fn+2C such that |z2| > |z1| > |zi|, i = 3, ..., n+ 2. Moreover, we have

E(Y L
W (u1, z1)Y

s(R)
W (u2, z2)f(z3, ..., zn+2)) = E(Y

s(R)
W (u2, z2)Y

L
W (u1, z1)f(z3, ..., zn+2))

as elements in W̃z1,...,zn+2.
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2. Let u1, ..., um ∈ V , f ∈ W̃zm+1,...,zm+n such that

Y L
W (u1, z1) · · ·Y L

W (um, zm)f(zm+1, ..., zm+n)

converges absolutely to a W -valued rational function for every (z1, ..., zm+n) ∈

Fm+nC such that |z1| > · · · > |zm| > |zi|, i = m+ 1, ...,m+ n. Then the series

Y L
W (YV (u1, z1 − ζ) · · ·YV (um, zm − ζ)1, ζ)f(zm+1, ..., zm+n)

also converges absolutely to the same W -valued rational function whenever (z1, ..., zm+n) ∈

Fm+nC, |ζ| > |z1−ζ|+|zi|, i = m+1, ...,m+n, |z1−ζ| > · · · > |zm−ζ|. Moreover,

we have

E(Y L
W (u1, zm) · · ·Y L

W (um, zm)f(zm+1, ..., zm+n))

= E(Y L
W (YV (u1, z1 − ζ) · · ·YV (um, zm − ζ)1, ζ)f(zm+1, ..., zm+n))

as elements in W̃z1,...,zm+n.

3. Let u1, ..., um ∈ V , f ∈ W̃zm+1,...,zm+n such that

Y
s(R)
W (um, zm) · · ·Y s(R)

W (u1, z1)f(zm+1, ..., zm+n)

converges absolutely to a W -valued rational function for every (z1, ..., zm+n) ∈

Fm+nC such that |zm| > · · · > |z1| > |zi|, i = m+ 1, ...,m+ n. Then the series

Y
s(R)
W (YV (u1, z1 − ζ) · · ·YV (um, zm − ζ)1, ζ)f(zm+1, ..., zm+n)

also converges absolutely to the same W -valued rational function whenever (z1, ..., zm+n) ∈

Fm+nC, |ζ| > |z1−ζ|+|zi|, i = m+1, ...,m+n, |z1−ζ| > · · · > |zm−ζ|. Moreover,

we have

E(Y
s(R)
W (um, zm) · · ·Y s(R)

W (u1, z1)f(zm+1, ..., zm+n))

= E(Y
s(R)
W (YV (u1, z1 − ζ) · · ·YV (um, zm − ζ)1, ζ)f(zm+1, ..., zm+n))

as elements in W̃z1,...,zm+n.

5.3 The cochain complex and the cohomology group

Let n be a fixed positive integer. We will define cochain complexes from linear maps

V ⊗n → W̃z1,...,zn satisfying some natural properties.
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5.3.1 Linear maps V ⊗n → W̃z1...zn satisfying D-derivative and d-conjugation

properties

Definition 5.3.1. A linear map Φ : V ⊗n → W̃z1,...,zn is said to have the D-derivative

property if

1. For i = 1, ..., n, v1, ..., vn ∈ V,w′ ∈ W ′,

⟨w′, (Φ(v1⊗· · ·⊗vi−1⊗DV vi⊗vi+1⊗· · ·⊗vn))(z1, ..., zn)⟩ =
∂

∂zi
⟨w′, (Φ(v1⊗· · ·⊗vn))(z1, ..., zn)⟩

2. For v1, ..., vn ∈ V,w′ ∈ W ′,

⟨w′, DW (Φ(v1⊗· · · vn))(z1, ..., zn)⟩ =
(

∂

∂z1
+ · · ·+ ∂

∂zn

)
⟨w′, (Φ(v1⊗· · ·⊗vn))(z1, ..., zn)⟩

Definition 5.3.2. A linear map Φ : V ⊗n → W̃z1,...,zn is said to have the d-conjugation

property if for v1, ..., vn ∈ V,w′ ∈ W ′, (z1, ..., zn) ∈ FnC and z ∈ C× so that (zz1, ..., zzn) ∈

FnC,

⟨w′, zdW (Φ(v1 ⊗ · · · ⊗ vn))(z1, ..., zn)⟩ = ⟨w′, (Φ(zdV v1 ⊗ · · · zdV vn))(zz1, ..., zzn)⟩

Proposition 5.3.3. Let Φ : V ⊗n → W̃z1,...,zn be a linear map satisfying the D-derivative

property.

1. For v1, ..., vn ∈ V,w′ ∈ W ′, (z1, ..., zn) ∈ FnC, z ∈ C and 1 ≤ i ≤ n such that

(z1, ..., zi−1, zi + z, zi+1, ..., zn) ∈ FnC, the power series expansion of

⟨w′, (Φ(v1 ⊗ · · · ⊗ vn))(z1, ..., zi−1, zi + z, zi+1, ..., zn)⟩

in positive powers of z is equal to the power series

⟨w′, (Φ(v1 ⊗ · · · ⊗ vi−1 ⊗ ezDV vi ⊗ vi+1 ⊗ · · · ⊗ vn))(z1, ..., zn)⟩

in z, which converges absolutely when |z| < min
1≤i<j≤n

|zi − zj |.

2. For v1, ..., vn ∈ V,w′ ∈ W ′, (z1, ..., zn) ∈ FnC, z ∈ C so that (z1 + z, ..., zn + z) ∈

FnC, the power series expansion

⟨w′, (Φ(v1 ⊗ · · · ⊗ vn))(z1 + z, ..., zn + z)⟩
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in positive powers of z is equal to the power series

⟨w′, ezDW (Φ(v1 ⊗ · · · ⊗ vn))(z1, ..., zn)⟩.

which converges absolutely when |z| < min
1≤i≤n

|zi|

Proof. The argument of D-conjugation property carries over.

Definition 5.3.4. For every n ∈ N, we define Ĉn
0 (V,W ) to be the set of all linear maps

from V ⊗n → W̃z1,...,zn that satisfies D-derivative property and d-conjugation property.

Example 5.3.5. Let l = 0, 1, ..., n. For every w ∈ W such that for every u ∈ V ,

Y L
W (u, x)w ∈ W [[x]], Y

s(R)
W (u, x)w ∈ W [[x]], one checks easily that the map

u1 ⊗ · · · ⊗ un 7→ E
(l,n−l)
W (u1 ⊗ · · ·un;w)

is a linear map V ⊗n → W̃z1...zn that has the D-derivative property and d-conjugation

property.

Notation 5.3.6. We will use the notation E
(l,n−l)
W,w to denote the map in the previous

example.

Let Φ ∈ Ĉn
0 (V,W ), u(1), ..., u(n) ∈ V . Consider the following series of W -valued

rational functions:

Φ(YV (u
(1), z(1) − ζ1)1⊗ YV (u

(2), z(2) − ζ2)1⊗ · · · ⊗ YV (u
(n), z(n) − ζn)1)(ζ1, ..., ζn)

(5.6)

which is a series in variables z(i) − ζi, i = 1, ..., n with∑
k1,...,kn∈Z

Φ((YV )k1(u
(1))1⊗· · ·⊗(YV )kn(u

(n))1)(ζ1, ..., ζn)(z
(1)−ζ1)

−k1−1 · · · (z(n)−ζn)
−kn−1

For each k1, ..., kn ∈ Z, the coefficient of (z(1) − ζ1)
−k1−1 · · · (z(n) − ζn)

−kn−1 is a W -

valued rational function with variables ζ1, ..., ζn. If paired with w′ ∈ W ′, then for the

complex series∑
k1,...,kn∈Z

⟨w′,Φ((YV )k1(u
(1))1⊗· · ·⊗(YV )kn(u

(n))1)(ζ1, ..., ζn)⟩(z(1)−ζ1)
−k1−1 · · · (z(n)−ζn)

−kn−1

the coefficient of (z(1)− ζ1)
−k1−1 · · · (z(n)− ζn)

−kn−1 is a rational function with possible

poles at ζi = ζj for 1 ≤ i < j ≤ n.
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Proposition 5.3.7. The series (5.6) converges absolutely when

|ζi − ζj | > |z(i) − ζi|+ |z(j) − ζj |

to Φ(u1 ⊗ · · · ⊗ un)(z
(1), ..., z(n)).

Proof. From the creation property, we know that the series is the same as

⟨w′,Φ(e(z
(1)−ζ1)DV u1 ⊗ · · · ⊗ e(z

(n)−ζn)DV un)(ζ1, ..., ζn)⟩

We repeatedly use Proposition 5.3.3 to see that the series converges absolutely to the

rational function

R(⟨w′,Φ(u1 ⊗ · · · ⊗ un)(ζ1 + z(1) − ζ1, ..., ζn + z(n) − ζn)⟩)

when |z(s) − ζs| < |ζi − ζj |, s = 1, ..., n, s ≤ i < j ≤ n; |z(s) − ζs| < |z(t) − ζj |, s =

2, ..., n, 1 ≤ t < s ≤ j ≤ n. Note that the rational function is the same as

R(⟨w′,Φ(u1 ⊗ · · · ⊗ un)(z1, ..., zn)⟩)

that has the only possible poles at z(i) = z(j), 1 ≤ i < j ≤ n and does not depend on

ζ1, ..., ζn. We then apply Lemma *.*.* in [Q1] to see that the series (5.6) coincides with

the expansion of the rational function by expanding the negative powers of z(i)− z(j) =

ζi − ζj + (z(i) − ζi − z(j) + ζj), 1 ≤ i < j ≤ n. Thus the series (5.6) converges absolutely

when

|ζi − ζj | > |z(i) − ζi|+ |z(j) − ζj |, 1 ≤ i < j ≤ n

5.3.2 Linear maps V ⊗n → W̃z1...zn composable with vertex operators

Definition 5.3.8. Let Φ : V ⊗n → W̃z1,...,zn be a linear map. Let m ∈ Z+. Φ is said

to be composable with m vertex operators if for every α0, α1, ..., αn ∈ Z+ such that

α0 + · · ·+ αn = m+ n, every l0 = 0, ..., α0, and every v
(0)
1 , ..., v

(0)
α0 , ..., v

(n)
1 , ..., v

(n)
αn ∈ V ,
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the series of W -valued rational functions

Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

)Y
s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

·Φ(YV (v(1)1 , z
(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1

⊗ · · ·

⊗YV (v
(n)
1 , z

(n)
1 − ζn) · · ·YV (v(n)αn

, z(n)αn
− ζn)1)(ζ1, ..., ζn)

=
∑

k
(0)
1 ,...,k

(0)
α0

,

...,k
(n)
1 ,...,k

(n)
αn∈Z

(Y L
W )

k
(0)
1

(u
(0)
1 ) · · · (Y L

W )
k
(0)
l0

(u
(0)
l0

)(Y
s(R)
W )

k
(0)
l0+1

(u
(0)
l0+1) · · · (Y

s(R)
W )

k
(0)
α0

(u(0)α0
)

·Φ((YV )k(1)1

(u
(1)
1 ) · · · (YV )k(1)α1

(u(1)α1
)1

⊗(YV )k(2)1

(u
(2)
1 ) · · · (YV )k(2)α2

(u(2)α2
)1

⊗ · · ·

⊗(YV )k(n)
1

(u
(n)
1 ) · · · (YV )k(n)

αn
(u(n)αn

)1)(ζ1, ..., ζn)⟩
α0∏
i=1

(z
(0)
i )−k

(0)
i −1

n∏
i=1

αi∏
j=1

(z
(i)
j − ζi)

−k
(i)
j −1

converges absolutely when

|z(0)1 | > · · · > |z(0)α0
| > |ζi|+ |z(i)t − ζi|, i = 1, ..., n, t = 1, ..., αi

|z(i)1 − ζi| > · · · > |z(i)li
− ζi|, i = 1, ..., n;

|z(i)s − ζi − z
(j)
t + ζj | < |ζi − ζj |, 1 ≤ i < j ≤ n, 1 ≤ s ≤ αi, 1 ≤ t ≤ αj .

and the sum can be analytically extended to a rational function in z
(1)
1 , ..., z

(1)
α1 , ..., z

(n)
1 , ..., z

(n)
αn

that is independent of ζ1, ..., ζn and has the only possible poles at z
(i)
s = z

(j)
t , for

1 ≤ i < j ≤ n, s = 1, ..., αi, t = 1, ..., αj . We require in addition that for each i, j, s, t,

the order of the pole z
(i)
s = z

(j)
t is bounded above by a constant that depends only on

u
(i)
s and u

(j)
t .

Definition 5.3.9. We denote by Ĉn
m(V,W ) the set of linear maps V ⊗n → W̃z1,...,zn in

Ĉn
0 (V,W ) and are composable with m vertex operators. It is easy to see that

Ĉn
0 (V,W ) ⊇ Ĉn

1 (V,W ) ⊇ Ĉn
2 (V,W ) ⊇ · · ·

We denote by Ĉn
∞(V,W ) the intersection of all Ĉn

m(V,W ) for m = 0, 1, 2, ....



154

Example 5.3.10. Fix n ∈ Z+ and l = 0, ..., n. For w ∈ W satisfying ∀u ∈ V, Y L
W (u, x)w ∈

W [[x]] and Y R
W (w, x)u ∈ W [[x]], the map E

(l,n−l)
W ;w is an element in Ĉn

∞(V,W ).

Proof. This was proved in Proposition 5.2.17.

Remark 5.3.11. If V is a grading-restricted vertex algebra and W is a grading-

restricted V -module, then W can be viewed as a V -bimodule when we regard V as

a MOSVA. One can check easily that Definition 5.3.8 is equivalent to Definition 3.5 in

[H1]. The sets Ĉn
m(V,W ) we are defining here is precisely the same as the Ĉn

m(V,W ) in

[H1].

Remark 5.3.12. Let Φ ∈ Ĉn
1 (V,W ). Then Definition 5.3.8 implies the following

1. For every β = 1, ..., n, v(1), ..., v
(β)
1 , v

(β)
2 , ..., v(n) ∈ V , the series

Φ(YV (v
(1), z(1)−ζ1)1⊗· · ·⊗YV (v

(β)
1 , z

(β)
1 −ζβ)YV (v

(β)
2 , z

(β)
2 −ζβ)1⊗· · ·⊗YV (v

(n), z(n)−ζn)1)(ζ1, ..., ζn)

which expands as∑
k(1),...,k

(β)
1 ,k

(β)
2 ∈Z

k(β+1),...,k(n)∈Z

Φ((YV )k(1)(v
(1))1⊗ · · · ⊗ (YV )k(β)1

(v
(β)
1 )(YV )k(β)2

1⊗ · · · ⊗ (YV )k(n)(v(n))1)(ζ1, ..., ζn)

·(z(1) − ζ1)
−k(1)−1 · · · (z(β)1 − ζβ)

−k
(β)
1 −1(z

(β)
2 − ζβ)

−k
(β)
2 −1 · · · (z(n) − ζn)

−k(n)−1

converges absolutely when

|z(β)1 − ζβ| > |z(β)2 − ζβ|, |ζβ − ζi| > |z(β)s − ζβ|+ |z(i) − ζi|, s = 1, 2, 1 ≤ i ≤ n, i ̸= β.

|ζi − ζj | > |z(i) − ζi|+ |z(j) − ζj |, 1 ≤ i < j ≤ n, i, j ̸= β,

to a rational function that depends only on z(1), ..., z
(i)
1 , z

(i)
2 , ..., z(n), with the only

possible poles at z
(β)
1 = z

(β)
2 ; z

(β)
s = z(i), s = 1, 2, i = 1, ..., β − 1, β + 1, ..., n; z(i) =

z(j), 1 ≤ i < j ≤ n, i, j ̸= β. From arguments similar to those in Proposition

5.3.7, this is equivalent to say that the following series

Φ(v(1) ⊗ · · · ⊗ YV (v
(β)
1 , z

(β)
1 − ζβ)YV (v

(β)
2 , z

(β)
2 − ζβ)1⊗ · · · ⊗ v(n))(z(1), ..., ζβ, ..., z

(n))

=
∑

k
(β)
1 ,k

(β)
2 ∈Z

Φ(v(1) ⊗ · · · ⊗ (YV )k(β)1

(v
(β)
1 )(YV )k(β)2

1⊗ · · · ⊗ v(n))(z(1), ..., ζβ, ..., z
(n))

(z
(β)
1 − ζβ)

−k
(β)
1 −1(z

(β)
2 − ζβ)

−k
(β)
2 −1
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of W -valued rational functions converges absolutely when

|z(β)1 − ζβ| > |z(β)2 − ζβ|, |z(i)− z(β)s | > |zβs − ζβ|, i = 1, ..., β−1, β+1, ..., n, s = 1, 2.

2. For u1, ..., un+1 ∈ V , the series

Y L
W (u1, z1)Φ(u2 ⊗ · · · ⊗ un+1)(z2, ..., zn+1)

=
∑
k∈Z

(Y L
W )k(u1)Φ(u2 ⊗ · · · ⊗ un+1)(z2, ..., zn+1)z

−k−1
1

of W -elements converges absolutely when |z1| > |zi| > 0, i = 2, ..., n+1 to an W -

valued rational function (here the operator (Y L
W )k(u1) is extended to W → W .)

3. For u1, ..., un+1 ∈ V , the series

Y
s(R)
W (un+1, zn+1)Φ(u1 ⊗ · · · ⊗ un)(z1, ..., zn)

=
∑
k∈Z

(Y
s(R)
W )k(un+1)Φ(u1 ⊗ · · · ⊗ un)(z1, ..., zn)z

−k−1
n+1

of W -elements converges absolutely when |zn+1| > |zi| > 0, i = 1, ..., n to an W -

valued rational function (here the operator (Y
s(R)
W )k(un+1) is extended to W →

W .)

Definition 5.3.13. Let Φ ∈ Ĉn
m(V,W ).

1. For every i = 1, ..., n, we define the map

Φ ◦i E(2)
V : V ⊗(n+1) → W̃z1,...,zn+1

by setting

(Φ ◦i E(2)
V )(v1 ⊗ · · · ⊗ vn+1)

to be the W -valued rational function

E(Φ(v1⊗· · ·⊗YV (vi, zi−ζ)YV (vi+1, zi+1−ζ)1⊗vi+2⊗· · ·⊗vn+1)(z1, ..., zi−1, ζ, zi+2, ..., zn+1))

2. We define the map

E
(1,0)
W ◦2 Φ : V ⊗(n+1) → W̃z1,...,zn+1
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by setting

(E
(1,0)
W ◦2 Φ)(v1 ⊗ · · · ⊗ vn+1)

to be the W -valued rational function

E(Y L
W (v1, z1)Φ(v2 ⊗ · · · ⊗ vn+1)(z2, ..., zn+1))

3. We define the map

E
(0,1)
W ◦2 Φ : V ⊗(n+1) → W̃z1,...,zn+1

by setting

(E
(0,1)
W ◦2 Φ)(v1 ⊗ · · · ⊗ vn+1)

to be the W -valued rational function

E(Y
s(R)
W (vn+1, zn+1)Φ(v1 ⊗ · · · ⊗ vn)(z1, ..., zn))

Proposition 5.3.14. The maps Φ ◦i E(2)
V , E

(1,0)
W ◦2 Φ and E

(0,1)
W ◦2 Φ are elements of

Ĉn+1
m−1(V,W )

Proof. Let α0, ..., αn+1 ∈ N such that α0 + · · ·+αn+1 = m+ n. Let l0 = 0, ..., α0. Take

v
(j)
s ∈ V, j = 0, 1, , ..., n+ 1, s = 1, ..., αj .

1. For the first conclusion, we first note that the associativity implies that

YV (v
(i)
1 , z

(i)
1 − ζ) · · ·YV (v(i)αi

, z(i)αi
− ζ)YV (v

(i+1)
1 , z

(i+1)
1 − ζ) · · ·YV (v(i+1)

αi+1
, z(i+1)

αi+1
− ζ)1

=YV (YV (v
(i)
1 , z

(i)
1 − ζi) · · ·YV (v(i)αi

, z(i)αi
− ζi)1, ζi − ζ)

· YV (YV (v(i+1)
1 , z

(i+1)
1 − ζi+1) · · ·YV (v(i+1)

αi+1
, z(i+1)

αi+1
− ζi+1)1, ζi+1 − ζ)1

when

|z(i)1 − ζ| > · · · > |z(i)αi
− ζ| > |z(i+1)

1 − ζ| > · · · > |z(i+1)
αi+1

− ζ|

|z(i)s − ζi| > |z(i)t − ζi|, 1 ≤ s < t ≤ αi, |z(i+1)
s − ζi+1| > |z(i+1)

t − ζi+1|, 1 ≤ s < t ≤ αi+1

|ζi − ζ| > |ζi+1 − ζ|+ |z(i)s − ζi|+ |z(i+1)
t − ζi+1|, s = 1, ..., αi, t = 1, ..., αi+1.
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Then we can prove that the series

Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

)Y
s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

·(Φ ◦i E(2)
V )(YV (v

(1)
1 , z

(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1

⊗ · · · ⊗ YV (v
(n+1)
1 , z

(n+1)
1 − ζn+1) · · ·YV (v(1)αn+1

, z(n+1)
αn+1

− ζn+1)1)(ζ1, ..., ζn+1)

=
∑

k
(0)
1 ,...,k

(0)
α0

...k
(n+1)
1 ,...,k

(n+1)
αn+1

∈Z

(Y L
W )

k
(0)
1

(u1) · · · (Y L
W )

k
(0)
l0

(ul0)(Y
s(R)
W )kl0+1

(ul0+1) · · · (Y
s(R)
W )kα0

(uα0)

·(Φ ◦i E(2)
V )((YV )k(1)1

(v
(1)
1 ) · · · (YV )k(1)α1

(v(1)α1
)1

⊗ · · · ⊗ (YV )k(n+1)
1

(v
(n+1)
1 ) · · · (YV )k(n+1)

αn+1

(v(n+1)
αn+1

)1)(ζ1, ..., ζn+1)

·
α0∏
j=1

z
(0)
j

n∏
j=1

(z
(j)
1 − ζj)

−k
(j)
1 −1 · · · (z(j)αj

− ζj)
−k

(j)
αj

−1

is the expansion of the W -rational function

E(Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

)Y
s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

·Φ(YV (v(1)1 , z
(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1

⊗ · · ·

⊗YV (v
(i)
1 , z

(i)
1 − ζ) · · ·YV (v(i)αi

, z(i)αi
− ζ)YV (v

(i+1)
1 , z

(i+1)
1 − ζ) · · ·YV (v(i+1)

αi+1
, z(i+1)

αi+1
− ζ)1

⊗ · · ·

⊗YV (v
(n+1)
1 , z

(n+1)
1 − ζn+1) · · ·YV (v(n+1)

αn+1
, z(n+1)

αn+1
− ζn+1)1)(ζ1, ..., ζ, ζi+2, ..., ζn+1))

in the region

|z(0)1 | > · · · > |z(0)α0
| > |ζi|+ |z(i)t − ζi|, i = 1, ..., n+ 1, t = 1, ..., αi

|z(i)1 − ζi| > · · · > |z(i)li
− ζi|, i = 1, ..., n+ 1;

|z(i)s − ζi − z
(j)
t + ζj | < |ζi − ζj |, 1 ≤ i < j ≤ n+ 1, 1 ≤ s ≤ αi, 1 ≤ t ≤ αj .

2. For the second conclusion, we first note that from Theorem 5.2.20 Part (2),

Y L
W (v

(1)
1 , z

(1)
1 ) · · ·Y L

W (v(1)α1
, z(1)α1

)w = Y L
W (YV (v

(1)
1 , z

(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1, ζ1)w

where

w = E(Φ(YV (v
(2)
1 , z

(2)
1 − ζ2) · · ·YV (v(2)α2

, z(2)α2
− ζ2)1
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⊗ · · ·

⊗YV (v
(n+1)
1 , z

(n+1)
1 − ζn+1) · · ·YV (v(n+1)

αn+1
, z(n+1)

αn+1
− ζn+1)1)(ζ2, ..., ζn+1)) ∈ W

and z
(1)
1 , ..., z

(n+1)
αn+1 ∈ C such that

|z(1)1 | > · · · > |z(1)α1
| > |z(i)j |, i = 2, ..., n+ 1, j = 1, ..., αi;

|ζ1| > |z(1)1 − ζ1|+ |z(i)j |, i = 2, ..., n+ 1, j = 1, ..., αi;

|z(1)1 − ζ| > · · · > |z(1)α1
− ζ1|;

z(i)s ̸= z
(j)
t , 1 ≤ i ≤ j ≤ n+ 1, s = 1, ..., αi, t = 1, ..., αj , s ̸= t when i = j;

Then with the commutativity of Y L
W and Y

s(R)
W operators, we can prove that the

series

Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

)Y
s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

·(E(1,0)
W ◦2 Φ)(YV (v(1)1 , z

(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1

⊗ · · · ⊗ YV (v
(n+1)
1 , z

(n+1)
1 − ζn+1) · · ·YV (v(1)αn+1

, z(n+1)
αn+1

− ζn+1)1)(ζ1, ..., ζn+1)

=
∑

k
(0)
1 ,...,k

(0)
α0

...k
(n+1)
1 ,...,k

(n+1)
αn+1

∈Z

(Y L
W )

k
(0)
1

(u1) · · · (Y L
W )

k
(0)
l0

(ul0)(Y
s(R)
W )kl0+1

(ul0+1) · · · (Y
s(R)
W )kα0

(uα0)

·(E(1,0)
W ◦2 Φ)((YV )k(1)1

(v
(1)
1 ) · · · (YV )k(1)α1

(v(1)α1
)1

⊗ · · · ⊗ (YV )k(n+1)
1

(v
(n+1)
1 ) · · · (YV )k(n+1)

αn+1

(v(n+1)
αn+1

)1)(ζ1, ..., ζn+1)

·
α0∏
j=1

z
(0)
j

n∏
j=1

(z
(j)
1 − ζj)

−k
(j)
1 −1 · · · (z(j)αj

− ζj)
−k

(j)
αj

−1

is the expansion of the W -rational function

E(Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

) · Y L
W (v

(1)
1 , z

(1)
1 ) · · ·Y L

W (v(1)α1
, z(1)α1

)

· Y s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

· Φ(YV (v(2)1 , z
(2)
1 − ζ2) · · ·YV (v(2)α2

, z(1)α2
− ζ2)1

⊗ · · ·

⊗ YV (v
(n+1)
1 , z

(n+1)
1 − ζn+1) · · ·YV (v(n+1)

αn+1
, z(n+1)

αn+1
− ζn+1)1)(ζ2, ..., ζn+1))

in the region

|z(0)1 | > · · · > |z(0)α0
| > |ζi|+ |z(i)t − ζi|, i = 1, ..., n+ 1, t = 1, ..., αi
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|z(i)1 − ζi| > · · · > |z(i)li
− ζi|, i = 1, ..., n+ 1;

|z(i)s − ζi − z
(j)
t + ζj | < |ζi − ζj |, 1 ≤ i < j ≤ n+ 1, 1 ≤ s ≤ αi, 1 ≤ t ≤ αj .

3. For the third conclusion, we first note that from Theorem 5.2.20 Part (2),

Y
s(R)
W (v(n+1)

αn+1
, z(n+1)

αn+1
) · · ·Y s(R)

W (v
(n+1)
1 , z

(n+1)
1 )w

= Y
s(R)
W (YV (v

(n+1)
1 , z

(n+1)
1 − ζn+1) · · ·YV (v(n+1)

αn+1
, z(n+1)

αn+1
− ζn+1)1, ζn+1)w

where

w = E(Φ(YV (v
(1)
1 , z

(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1

⊗ · · ·

⊗YV (v
(n)
1 , z

(n)
1 − ζn) · · ·YV (v(n)αn

, z(n)αn
− ζn)1)(ζ1, ..., ζn)) ∈ W

and z
(1)
1 , ..., z

(n+1)
αn+1 ∈ C such that

|z(n+1)
αn+1

| > · · · > |z(n+1)
1 | > |z(i)s |, i = 1, ..., n, s = 1, ..., αi;

|ζn+1| > |z(n+1)
1 − ζn+1|+ |z(i)s |, i = 1, ..., n, s = 1, ..., αi;

|z(n+1)
1 − ζn+1| > · · · > |z(n+1)

αn+1
− ζn+1|;

z(i)s ̸= z
(j)
t , 1 ≤ i ≤ j ≤ n+ 1, s = 1, ..., αi, t = 1, ..., αj , s ̸= t when i = j

for every w ∈ W and z
(n+1)
1 , ..., z

(n+1)
αn+1 ∈ C such that the left-hand-side converges.

Then with the commutativity of Y L
W and Y

s(R)
W operators, we can prove that the

series

Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

)Y
s(R)
W (u

(0)
l0+1, z

(0)
l0+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

·(E(0,1)
W ◦2 Φ)(YV (v(1)1 , z

(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1

⊗ · · · ⊗ YV (v
(n+1)
1 , z

(n+1)
1 − ζn+1) · · ·YV (v(1)αn+1

, z(n+1)
αn+1

− ζn+1)1)(ζ1, ..., ζn+1)

=
∑

k
(0)
1 ,...,k

(0)
α0

...k
(n+1)
1 ,...,k

(n+1)
αn+1

∈Z

(Y L
W )

k
(0)
1

(u1) · · · (Y L
W )

k
(0)
l0

(ul0)(Y
s(R)
W )kl0+1

(ul0+1) · · · (Y
s(R)
W )kα0

(uα0)

·(E(0,1)
W ◦2 Φ)((YV )k(1)1

(v
(1)
1 ) · · · (YV )k(1)α1

(v(1)α1
)1

⊗ · · · ⊗ (YV )k(n+1)
1

(v
(n+1)
1 ) · · · (YV )k(n+1)

αn+1

(v(n+1)
αn+1

)1)(ζ1, ..., ζn+1)

·
α0∏
j=1

z
(0)
j

n∏
j=1

(z
(j)
1 − ζj)

−k
(j)
1 −1 · · · (z(j)αj

− ζj)
−k

(j)
αj

−1
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is the expansion of the W -rational function

E(Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l0

, z
(0)
l0

) · Y L
W (v

(1)
1 , z

(1)
1 ) · · ·Y s(R)

W (u
(0)
l0+1, z

(0)
l0+1)

· Y s(R)
W (v

(n+1)
1 , z

(n+1)
1 ) · · ·Y s(R)

W (v(n+1)
αn+1

, z(n+1)
αn+1

)

·Φ(YV (v(1)1 , z
(1)
1 − ζ1) · · ·YV (v(1)α1

, z(1)α1
− ζ1)1

⊗ · · ·

⊗YV (v
(n)
1 , z

(n)
1 − ζn) · · ·YV (v(n)αn

, z(n)αn
− ζn)1)(ζ1, ..., ζn))

in the region

|z(0)1 | > · · · > |z(0)α0
| > |ζi|+ |z(i)t − ζi|, i = 1, ..., n+ 1, t = 1, ..., αi

|z(i)1 − ζi| > · · · > |z(i)li
− ζi|, i = 1, ..., n+ 1;

|z(i)s − ζi − z
(j)
t + ζj | < |ζi − ζj |, 1 ≤ i < j ≤ n+ 1, 1 ≤ s ≤ αi, 1 ≤ t ≤ αj .

5.3.3 The coboundary operators and the cochain complex

For m,n ∈ Z+, we define the coboundary operator as follows

δ̂nm : Ĉn
m(V,W ) → Ĉn+1

m−1(V,W )

by

δ̂nmΦ = E
(1,0)
W ◦2 Φ+

n∑
i=1

(−1)iΦ ◦i E(2)
V + (−1)n+1E

(0,1)
W ◦2 Φ

More explicitly, δ̂nmΦ is a map from V ⊗(n+1) to W̃z1,...,zn+1 satisfying

((δ̂nmΦ)(v1 ⊗ · · · ⊗ vn+1))(z1, ..., zn+1)

=E(Y L
W (v1, z1)(Φ(v2 ⊗ · · · ⊗ vn+1))(z2, ..., zn+1))

−E((Φ(YV (v1, z1 − ζ1)YV (v2, z2 − ζ1)1⊗ v3 ⊗ · · · ⊗ vn+1))(ζ1, z3, ..., zn+1))

+E((Φ(v1 ⊗ YV (v2, z2 − ζ2)YV (v3, z3 − ζ2)1⊗ v4 ⊗ · · · ⊗ vn+1)(z1, ζ2, z4, ..., zn+1))

− · · · · · · · · · · · · · · · · · ·

+(−1)iE

 (Φ(v1 ⊗ · · · ⊗ vi−1 ⊗ YV (vi, zi − ζi)YV (vi+1, zi+1 − ζi)1⊗ vi+2 ⊗ · · · ⊗ vn+1))

(z1, ..., zi−1, ζi, zi+2, ..., zn+1)


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+ · · · · · · · · · · · · · · · · · ·

+(−1)nE(Φ(v1 ⊗ · · · ⊗ vn−1 ⊗ YV (vn, zn − ζn)YV (zn+1 − ζn)1))(z1, ..., zn−1, ζn))

+(−1)n+1E(Y
s(R)
W (un+1, zn+1)(Φ(v1 ⊗ · · · vn))(z1, ..., zn))

One can also write

((δ̂nm(Φ))(v1 ⊗ · · · ⊗ vn+1))(z1, ..., zn+1)

=E(Y L
W (v1, z1)(Φ(v2 ⊗ · · · ⊗ vn+1))(z2, ..., zn+1))

+

n∑
i=1

(−1)iE

 (Φ(v1 ⊗ · · · ⊗ vi−1 ⊗ YV (vi, zi − ζi)YV (vi+1, zi+1 − ζi)1⊗ vi+2 ⊗ · · · ⊗ vn+1))

(z1, ..., zi−1, ζi, zi+2, ..., zn+1)


+(−1)n+1E(Y

s(R)
W (un+1, zn+1)(Φ(v1 ⊗ · · · vn))(z1, ..., zn))

provided that i = 1 and i = n term in the sum is well-understood.

When n = 1, we have

(δ̂1m(Φ)(v1 ⊗ v2))(z1, z2)

= E(Y L
W (v1, z1)(Φ(v2))(z2))− E(Φ(YV (u1, z1 − ζ)YV (u2, z2 − ζ)1))(ζ) + E(Y o

W (v2, z2)(Φ(v1))(z1))

Remark 5.3.15. It is crucial that in all the explicit summations above, we are not

adding series, but adding the analytic extensions of the sums of these series, which

are W -valued rational functions, aka., W -elements that depends on z1, ..., zn+1. Those

series refuse to be added up directly because the region of convergence of the first series

and that of the last series do not intersect.

Theorem 5.3.16. For every m ∈ Z+, n ∈ N, δ̂nm(Ĉn
m(V,W )) ⊆ Ĉn+1

m−1(V,W ).

Proof. This follows from Proposition 5.3.14.

Theorem 5.3.17. For m,n ∈ Z+, δ̂
n+1
m−1 ◦ δ̂nm = 0

Proof. Let Φ ∈ Ĉn
m(V,W ). We compute as follows:

δ̂n+1
m−1(δ̂

n
mΦ)

=E
(1,0)
W ◦2 δ̂nmΦ+

n+1∑
i=1

(−1)i(δ̂nmΦ) ◦i E(2)
V + E

(0,1)
W ◦0 δ̂nmΦ



162

=E
(1,0)
W ◦2 (E(1,0)

W ◦2 Φ+

n∑
j=1

Φ ◦j E(2)
V + E

(0,1)
W ◦0 Φ)

+

n+1∑
i=1

(−1)i

(E
(1,0)
W ◦2 Φ) ◦i E(2)

V +

n∑
j=1

(−1)j(Φ ◦j E(2)
V ) ◦i E(2)

V + (−1)n+1(E
(0,1)
W ◦1 Φ) ◦i E(2)

V


+ (−1)n+2

E
(0,1)
W ◦1 (E(1,0)

W ◦2 Φ) +
n∑

j=1

(−1)jE
(0,1)
W ◦1 (Φ ◦j E(2)

V ) + (−1)n+1E
(0,1)
W ◦1 (E(0,1)

W ◦1 Φ)


We rearrange the terms and indexes to write δ̂n+1

m−1(δ̂
n
mΦ) as

E
(1,0)
W ◦2 (E(1,0)

W ◦2 Φ) +
n∑

i=1

(−1)iE
(1,0)
W ◦2 (Φ ◦i E(2)

V ) +
n+1∑
i=1

(−1)i(E
(1,0)
W ◦2 Φ) ◦i E(2)

V (I)

+ (−1)n+1E
(1,0)
W ◦2 (E(0,1)

W ◦1 Φ) + (−1)n+2E
(0,1)
W ◦1 (E(1,0)

W ◦2 Φ) (II)

+

n+1∑
i=1

n∑
j=1

(−1)i(−1)j(Φ ◦j E(2)
V ) ◦i E(2)

V (III)

+
n+1∑
i=1

(−1)n+1+i(E
(0,1)
W ◦1 Φ) ◦i E(2)

V +
n∑

i=1

(−1)n+2+iE
(0,1)
W ◦1 (Φ ◦i E(2)

V )− E
(0,1)
W ◦1 (E(0,1)

W ◦1 Φ) (IV)

We argue that (I), (II), (III) and (IV) are all zero.

For (I), we need the following lemma

Lemma 5.3.18. E
(1,0)
W ◦2 (E(1,0)

W ◦2 Φ) = (E
(1,0)
W ◦2 Φ) ◦1 E2

V

Proof. For any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈ FnC, we have

[E
(1,0)
W ◦2 (E(1,0)

W ◦2 Φ)(v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(1,0)
W (v1; [(E

(1,0)
W ◦2 Φ)(v2 ⊗ · · · ⊗ vn+2)](z2, ..., zn+2))](z1)

=E(Y L
W (v1, z1)[E

(1,0)
W (v2; [Φ(v3 ⊗ · · · ⊗ vn+2)](z3, ..., zn+2))](z2)

=E(Y L
W (v1, z1)Y

L
W (v2, z2)[Φ(v3 ⊗ · · · ⊗ vn+2)](z3, ..., zn+2),

and

[(E
(1,0)
W ◦2 Φ) ◦1 E(2)

V ](v1 ⊗ · · · ⊗ vn+2)(z1, ..., zn+2)

=[(E
(1,0)
W ◦2 Φ)(YV (v1, z1 − ζ)YV (v2, z2 − ζ)1⊗ v3 ⊗ · · · ⊗ vn+2)](ζ, z3, ..., zn+2)

=[E
(1,0)
W (YV (v1, z1 − ζ)YV (v2, z2 − ζ)1; [Φ(v3 ⊗ · · · ⊗ vn+2)](z3, ..., zn+2))](ζ)

=E(Y L
W (YV (v1, z1 − ζ)YV (v2, z2 − ζ)1, ζ)[Φ(v3 ⊗ · · · ⊗ vn+2)](z3, ..., zn+2))
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It follows from Theorem 5.2.20 Part (2) and the identity property of vacuum that these

rational functions are equal.

We also need the following lemma

Lemma 5.3.19. E
(1,0)
W ◦2 (Φ ◦i E(2)

V ) = (E
(1,0)
W ◦2 Φ) ◦i+1 E

(2)
V

Proof. For any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈ FnC, we have

[E
(1,0)
W ◦2 (Φ ◦i E(2)

V )(v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(1,0)
W (v1; [(Φ ◦i E(2)

V )(v2 ⊗ · · · ⊗ vn+2)](z2, ..., zn+2))](z1)

=[E
(1,0)
W (v1; [Φ(v2 ⊗ · · · ⊗ [E

(2)
V (vi+1, vi+2)](zi+1 − ζ, zi+2 − ζ)⊗ · · · ⊗ vn+2)](z2, ..., ζ, ..., zn+2))](z1)

=E(YW (v1, z1)[Φ(v2 ⊗ · · · ⊗ YV (vi+1, zi+1 − ζ)YV (vi+2, zi+2 − ζ)1⊗ · · · ⊗ vn+2)](z2, ..., ζ, ..., zn+2)

and

[(E
(1,0)
W ◦2 Φ) ◦i+1 E

(2)
V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[(E
(1,0)
W ◦2 Φ)(v1 ⊗ · · · ⊗ [E

(2)
V (vi+1, vi+2)](zi+1 − ζ, zi+2 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., zn+2)

=[E
(1,0)
W (v1; [Φ(v2 ⊗ · · · ⊗ [E

(2)
V (vi+1, vi+2)](zi+1 − ζ, zi+2 − ζ)⊗ · · · ⊗ vn+2)](z2, ..., ζ, ..., zn+2))](z1)

=E(YW (v1, z1)[Φ(v2 ⊗ · · · ⊗ YV (vi+1, zi+1 − ζ)YV (vi+2, zi+2 − ζ)1⊗ · · · ⊗ vn+2)](z2, ..., ζ, ..., zn+2)

So they are equal.

So the second sum and the third sum without i = 1 differs by an index shift and a

(−1) factor. That way they cancels out.

For (II), we need the following lemma:

Lemma 5.3.20.

E
(1,0)
W ◦2 (E(0,1)

W ◦1 Φ) = E
(0,1)
W ◦1 (E(1,0)

W ◦2 f)

Proof. For any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈ FnC, we have

[E
(1,0)
W ◦2 (E(0,1)

W ◦1 Φ)(v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(1,0)
W (v1; [(E

(0,1)
W ◦1 Φ)(v2 ⊗ · · · ⊗ vn+2)](z2, ..., zn+2)](z1)

=[E
(1,0)
W (v1; [E

(0,1)
W ([Φ(v2 ⊗ · · · ⊗ vn+1)](z2, ..., zn+1); vn+2)(zn+2)](z1)
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=E(Y L
W (v1, z1)Y

s(R)
W (vn+2, zn+2)[Φ(v2 ⊗ · · · ⊗ vn+1)](z2, ..., zn+1),

and

[E
(0,1)
W ◦1 (E(1,0)

W ◦2 Φ)(v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(0,1)
W ([(E

(1,0)
W ◦2 Φ)(v1 ⊗ · · · ⊗ vn+1)](z1, ..., zn+1); vn+2)](zn+2)

=[E
(0,1)
W ([E

(1,0)
W (v1; [Φ(v2 ⊗ · · · ⊗ vn+1)](z2, ..., zn+1))(z1); vn+2)(zn+2)

=E(Y
s(R)
W (vn+2, zn+2)Y

L
W (v1, z1)[Φ(v2 ⊗ · · · ⊗ vn+1)](z2, ..., zn+1),

It follows from Theorem 5.2.20 Part (1) that these rational functions are equal.

So the two terms in (II) add up to zero.

For (III), We need the following lemmas

Lemma 5.3.21. If j ≤ i− 1, then

(Φ ◦j E(2)
V ) ◦i E(2)

V = (Φ ◦i−1 E
(2)
V ) ◦j E(2)

V .

Proof. Consider the case when j < i− 1. Then for any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈

FnC, we have

[(Φ ◦j E(2)
V ) ◦i E(2)

V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦j E(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V (vj , vj+1)](zj − η, zj+1 − η)

⊗ · · · ⊗ [E
(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., η, ..., ζ, ..., zn+2)

=E([Φ(v1 ⊗ · · · ⊗ YV (vj , zj − η)YV (vj+1, zj+1 − η)1

⊗ · · · ⊗ YV (vi, zi − ζ)YV (vi+1, zi+1 − ζ)1⊗ · · · ⊗ vn+2)](z1, ..., η, ..., ζ, ..., zn+2))

and

[(Φ ◦i−1 E
(2)
V ) ◦j E(2)

V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦i−1 E
(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vj , vj+1)](zj − ζ, zj+1 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V (vj , vj+1)](zj − ζ, zj+1 − ζ)

⊗ · · · ⊗ [E
(2)
V (vi, vi+1)](zi − η, zi+1 − η)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., η, ..., zn+2)
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=E([Φ(v1 ⊗ · · · ⊗ YV (vj , zj − ζ)YV (vj+1, zj+1 − ζ)1

⊗ · · · ⊗ YV (vi, zi − η)YV (vi+1, zi+1 − η)1⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., η, ..., zn+2))

Since the resulting W -valued rational functions are independent of the choice of ζ and

η, they are equal.

Now consider the case when j = i− 1. Then for any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈

FnC, we compute the left-hand-side as follows:

[(Φ ◦i−1 E
(2)
V ) ◦i E(2)

V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦i−1 E
(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V (vi−1, [E

(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ))](zi−1 − η, ζ − η)

⊗ · · · ⊗ vn+2)](z1, ..., zi−2, η, zi+2..., zn+2)

=E([Φ(v1 ⊗ · · · ⊗ YV (vi−1, zi−1 − η)YV (YV (vi, zi − ζ)YV (vi+1, zi+1 − ζ)1, ζ − η)1

⊗ vi+2 ⊗ · · · ⊗ vn+2)](z1, ..., zi−2, η, zi+2..., zn+2)),

=E([Φ(v1 ⊗ · · · ⊗ YV (vi−1, zi−1 − η)YV (vi, zi − η)YV (vi+1, zi+1 − η)YV (1, ζ − η)1

⊗ vi+2 ⊗ · · · ⊗ vn+2)](z1, ..., zi−2, η, zi+2..., zn+2)),

=E([Φ(v1 ⊗ · · · ⊗ YV (vi−1, zi−1 − η)YV (vi, zi − η)YV (vi+1, zi+1 − η)1⊗ · · · ⊗ vn+2)]

(z1, ..., zi−2, η, zi+2..., zn+2))

where the fourth equality follows from the associativity in V , the fifth equality follows

from the identity property of the vacuum. Also by Definition 5.3.8, the resulting rational

function is independent of η.

Now we compute the right-hand-side as follows:

[(Φ ◦i−1 E
(2)
V ) ◦i−1 E

(2)
V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦i−1 E
(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vi−1, vi)](zi−1 − ζ, zi − ζ)⊗ · · · ⊗ vn+2)](z1, ..., zi−2, ζ, zi+1, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V ([E

(2)
V (vi−1, vi)](zi−1 − ζ, zi − ζ), vi+1)](ζ − η, zi+1 − η)

⊗ · · · ⊗ vn+2)](z1, ..., zi−2, η, zi+2, ..., zn+2)

=E([Φ(v1 ⊗ · · · ⊗ YV (YV (vi−1, zi−1 − ζ)YV (vi, zi − ζ)1, ζ − η)YV (vi+1, zi+1 − η)1

⊗ · · · ⊗ vn+2)](z1, ..., zi−2, η, zi+2, ..., zn+2))
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=E([Φ(v1 ⊗ · · · ⊗ YV (vi−1, zi−1 − η)YV (vi, zi − η)YV (1, ζ − η)YV (vi+1, zi+1 − η)1

⊗ · · · ⊗ vn+2)](z1, ..., zi−2, η, zi+2, ..., zn+2))

=E([Φ(v1 ⊗ · · · ⊗ YV (vi−1, zi−1 − η)YV (vi, zi − η)YV (vi+1, zi+1 − η)1⊗ · · · ⊗ vn+2)]

(z1, ..., zi−2, η, zi+2, ..., zn+2))

where the fourth equality follows from the associativity extended to
>
V -valued rational

functions (see Theorem 5.2.20 Part (2)), the fifth equality follows from the identity

property of the vacuum. Also by Definition 5.3.8, the resulting rational function is

independent of η. So the left-hand-side and the right-hand-side are equal.

Lemma 5.3.22. If j ≥ i, then

(Φ ◦j E(2)
V ) ◦i E(2)

V = (Φ ◦i E(2)
V ) ◦j+1 E

(2)
V .

Proof. Consider the case when j > i. Then for any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈ FnC,

we have

[(Φ ◦j E(2)
V ) ◦i E(2)

V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦j E(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ)

⊗ · · · ⊗ [E
(2)
V (vj , vj+1)](zj − η, zj+1 − η)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., η, ..., zn+2)

=E([Φ(v1 ⊗ · · · ⊗ YV (vi, zi − ζ)YV (vi+1, zi+1 − ζ)1

⊗ · · · ⊗ YV (vj , zj − η)YV (vj+1, zj+1 − η)1⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., η, ..., zn+2))

and

[(Φ ◦i−1 E
(2)
V ) ◦j E(2)

V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦i−1 E
(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vj , vj+1)](zj − ζ, zj+1 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ)

⊗ · · · ⊗ [E
(2)
V (vj , vj+1)](zj − η, zj+1 − η)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., η, ..., zn+2)

=E([Φ(v1 ⊗ · · · ⊗ YV (vi, zi − ζ)YV (vi+1, zi+1 − ζ)1
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⊗ · · · ⊗ YV (vj , zj − η)YV (vj+1, zj+1 − η)1⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., η, ..., zn+2))

They are equal because the resulting W -valued rational functions are independent of ζ

and η.

Now consider the case when j = i. Then for any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈

FnC, we compute the left-hand-side as follows:

[(Φ ◦i E(2)
V ) ◦i E(2)

V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦i E(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., zi−1, ζ, zi+2, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V ([E

(2)
V (vi, vi+1)](zi − ζ, zi+1 − ζ), vi+2)](ζ − η, zi+2 − η)

⊗ · · · ⊗ vn+2)](z1, ..., zi−1, η, zi+3, ..., zn+2)

=E([Φ(v1 ⊗ · · · ⊗ YV (YV (vi, zi − ζ)YV (vi+1, zi+1 − ζ)1, ζ − η)YV (vi+2, zi+2 − η)1

⊗ · · · ⊗ vn+2)](z1, ..., zi−1, η, zi+3, ..., zn+2))

=E([Φ(v1 ⊗ · · · ⊗ YV (vi, zi − η)YV (vi+1, zi+1 − η)YV (1, ζ − η)YV (vi+2, zi+2 − η)1

⊗ · · · ⊗ vn+2)](z1, ..., zi−1, η, zi+3, ..., zn+2))

=E([Φ(v1 ⊗ · · · ⊗ YV (vi, zi − η)YV (vi+1, zi+1 − η)YV (vi+2, zi+2 − η)1⊗ · · · ⊗ vn+2)]

(z1, ..., zi−1, η, zi+3, ..., zn+2))

where the fourth equality follows from the associativity extended to
>
V -valued rational

functions (see Theorem 5.2.20 Part (2)), the fifth equality follows from the identity

property of the vacuum. Also by Definition 5.3.8, the resulting rational function is

independent of η.

Now we compute the right-hand-side as follows

[(Φ ◦i E(2)
V ) ◦i+1 E

(2)
V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[Φ ◦i−1 E
(2)
V (v1 ⊗ · · · ⊗ [E

(2)
V (vi+1, vi+2)](zi+1 − ζ, zi+2 − ζ)⊗ · · · ⊗ vn+2)](z1, ..., ζ, ..., zn+2)

=[Φ(v1 ⊗ · · · ⊗ [E
(2)
V (vi, [E

(2)
V (vi+1, vi+2)](zi+1 − ζ, zi+2 − ζ))](zi − η, ζ − η)

⊗ · · · ⊗ vn+2)](z1, ..., zi−1, η, zi+3..., zn+2)

=E([Φ(v1 ⊗ · · · ⊗ YV (vi, zi − η)YV (YV (vi+1, zi+1 − ζ)YV (zi+2 − ζ)1, ζ − η)1

⊗ vi+3 ⊗ · · · ⊗ vn+2)](z1, ..., zi−1, η, zi+3..., zn+2)),
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=E([Φ(v1 ⊗ · · · ⊗ YV (vi, zi − η)YV (vi+1, zi+1 − η)YV (zi+2 − η)YV (1, ζ − η)1

⊗ vi+3 ⊗ · · · ⊗ vn+2)](z1, ..., zi−1, η, zi+3..., zn+2)),

=E([Φ(v1 ⊗ · · · ⊗ YV (vi, zi − η)YV (vi+1, zi+1 − η)YV (zi+2 − η)1⊗ vi+3 ⊗ · · · ⊗ vn+2)]

(z1, ..., zi−1, η, zi+3..., zn+2)).

where the fourth equality follows from the associativity in V , the fifth equality follows

from the identity property of the vacuum. The resulting W -valued rational function is

independent of η. So the left-hand-side and the right-hand-side are equal.

Once we proved these two lemmas, we write (III) as

n+1∑
i=2

i−1∑
j=1

(−1)i+j(Φ ◦j E(2)
V ) ◦i E(2)

V +

n∑
i=1

n∑
j=i

(−1)i+j(Φ ◦j E(2)
V ) ◦i E(2)

V

Here the first sum starts from i = 2 because when i = 1, the inner sum does not exist.

Similarly the second sum ends at i = n because when i = n + 1, the inner sum does

not exist. The first sum is computed as follows

n+1∑
i=2

i−1∑
j=1

(−1)i+j(Φ ◦j E(2)
V ) ◦i E(2)

V

=
n+1∑
i=2

i−1∑
j=1

(−1)i+j(Φ ◦i−1 E
(2)
V ) ◦j E(2)

V use the identity above

=

n∑
j=1

n+1∑
i=j+1

(−1)i+j(Φ ◦i−1 E
(2)
V ) ◦j E(2)

V change the order of summation

=
n∑

i=1

n+1∑
j=i+1

(−1)i+j(Φ ◦j−1 E
(2)
V ) ◦i E(2)

V interchange i and j

=

n∑
i=1

n∑
j=i

(−1)i+j+1(Φ ◦j E(2)
V ) ◦i E(2)

V shift the index j

So the first sum is precisely the negative of the second sum. Thus the two sums add

up to be zero.

For (IV), we need the following lemma

Lemma 5.3.23.

(E
(0,1)
W ◦1 Φ) ◦n+1 E

(2)
V = E

(0,1)
W ◦1 (E(0,1)

W ◦1 Φ)
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Proof. For any v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈ FnC, we compute the left-hand-side as

follows:

[(E
(0,1)
W ◦1 Φ) ◦n+1 E

(2)
V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(0,1)
W ◦1 Φ(v1 ⊗ · · · ⊗ vn ⊗ [E

(2)
V (vn+1, vn+2)](zn+1 − ζ, zn+2 − ζ))](z1, ..., zn, ζ)

=[E
(0,1)
W ([Φ(v1 ⊗ · · · ⊗ vn)](z1, ..., zn); [E

(2)
V (vn+1, vn+2)](zn+1 − ζ, zn+2 − ζ))](ζ)

=E(Y
s(R)
W (YV (vn+1, zn+1 − ζ)YV (vn+2, zn+2 − ζ)1, ζ)[Φ(v1, ..., vn)](z1, ..., zn))

=E(Y
s(R)
W (vn+2, zn+2)Y

s(R)
W (vn+1, zn+1)Y

s(R)
W (1, ζ)[Φ(v1, ..., vn)](z1, ..., zn))

=E(Y
s(R)
W (vn+2, zn+2)Y

s(R)
W (vn+1, zn+1)[Φ(v1, ..., vn)](z1, ..., zn)),

where the fourth equality follows from the associativity of Y
s(R)
W extended to W -valued

rational functions (see Theorem 5.2.20 Part (3)). The fifth equality follows from the

identity property of vacuum.

Now we compute the right-hand-side as follows:

[E
(0,1)
W ◦1 (E(0,1)

W ◦1 Φ)(v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(0,1)
W ([E

(0,1)
W ◦1 Φ(v1 ⊗ · · · ⊗ vn+1)](z1, ..., zn+1); , vn+2)](zn+2)

=[E
(0,1)
W ([E

(0,1)
W ([Φ(v1 ⊗ · · · ⊗ vn+1)](z1, ..., zn); , vn+1)](zn+1); , vn+2)](zn+2)

=E(Y
s(R)
W (vn+2, zn+2)Y

s(R)
W (vn+1, zn+1)[Φ(v1 ⊗ · · · ⊗ vn)](z1, ...zn))

So it is equal to the left-hand-side.

So the (n+ 1)-th term in the first sum cancels out with the third term.

We also need the following lemma

Lemma 5.3.24. (E
(0,1)
W ◦1 Φ) ◦i E(2)

V = E
(0,1)
W ◦1 (Φ ◦i E(2)

V )

Proof. For v1, ..., vn+2 ∈ V, (z1, ..., zn+2) ∈ FnC,

[(E
(0,1)
W ◦1 Φ) ◦i E(2)

V (v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(0,1)
W ◦1 Φ(v1 ⊗ · · · ⊗ [E

(2)
V (vi ⊗ vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+2](z1, ..., ζ, ..., zn+2)

=[E
(0,1)
W ]([Φ(v1 ⊗ · · · ⊗ [E

(2)
V (vi ⊗ vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+1)](z1, ..., ζ, ..., zn+1); vn+2)(zn+2)

=E(Y
s(R)
W (vn+2, zn+2)[Φ(v1 ⊗ · · · ⊗ YV (vi, zi − ζ)YV (vi+1, zi+1 − ζ)1⊗ · · · ⊗ vn+1)](z1, ..., ζ, ..., zn+1))
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and

[E
(0,1)
W ◦1 (Φ ◦i E(2)

V )(v1 ⊗ · · · ⊗ vn+2)](z1, ..., zn+2)

=[E
(0,1)
W ([Φ ◦i E(2)

V (v1 ⊗ · · · ⊗ vn+1)](z1, ..., zn+1); vn+2)](zn+2)

=[E
(0,1)
W ]([Φ(v1 ⊗ · · · ⊗ [E

(2)
V (vi ⊗ vi+1)](zi − ζ, zi+1 − ζ)⊗ · · · ⊗ vn+1)](z1, ..., ζ, ..., zn+1); vn+2)(zn+2)

=E(Y
s(R)
W (vn+2, zn+2)[Φ(v1 ⊗ · · · ⊗ YV (vi, zi − ζ)YV (vi+1, zi+1 − ζ)1⊗ · · · ⊗ vn+1)](z1, ..., ζ, ..., zn+1))

So they are equal.

Therefore, the rest of the first sum cancels out with the second sum.

Remark 5.3.25. We remind the readers again that all the equalities in the lemmas

above are in the space of W -valued rational functions. The only requirements on the

parameters z1, ..., zn+1 is that they are mutually distinct to each other.

We have given the definitions of Ĉn
m(V,W ) and δ̂nm for all integers m ≥ 1, n ≥ 1.

Here we discuss the case n = 0.

Definition 5.3.26. We define Ĉ0(V,W ) to be the set of vaccum-like vectors w ∈ W ,

i.e., w ∈ W(0) and DWw = 0

Proposition 5.3.27. Let w ∈ W be a vaccum-like vector. Then for every v ∈ V, Y L
W (v, x)w ∈

W [[x]], Y
s(R)
W (v, x)w ∈ W [[x]].

Proof. Fix v ∈ V . From the D-commutator formula, we have

d

dx
Y L
W (v, x)w = DWY L

W (v, x).

Thus for the series e−xDW Y L
W (v, x)w, we have

d

dx

(
e−xDW Y L

W (v, x)w
)
= −e−xDWDWY L

W (v, x)w + e−xDWDWY L
W (v, x) = 0,

which then shows e−xDW Y L
W (v, x)w has only constant term. If we denote this con-

stant term by v−1w, then Y L
W (v, x)w = exDW v−1w ∈ W [[x]]. One similarly proves the

conclusion for Y
s(R)
W .
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Definition 5.3.28. We define δ̂0 : Ĉ0(V,W ) → Hom(V, W̃z) by the following: for

w ∈ Ĉ0(V,W )

((δ̂0(w))(v))(z) = E(Y L
W (v, z)w − Y

s(R)
W (v, z)w)

Proposition 5.3.29. For every w ∈ Ĉ0(V,W ), δ̂0(w) ∈ C1
∞(V,W ), and δ̂1(δ̂0(w)) = 0

Proof. It is easy to check that δ̂0(w) satisfies the d-conjugation property and D-

derivative property. From the arguments in Example 5.2.10, δ̂0(w) is composable with

any numbers of vertex operators. The last conclusion follows from a computation that

is essentially the same as those in Theorem 5.3.17.

Thus we proved the following theorem:

Theorem 5.3.30. For any m ∈ Z+, the following sequence

Ĉ0(V,W )
δ̂0−→ Ĉ1

m(V,W )
δ̂1m−−→ Ĉ2

m−1(V,W )
δ̂2m−−→ Ĉ3

m−2(V,W ) → · · · → Ĉm+1
0 (V,W )

forms a cochain complex. The following sequence

Ĉ0(V,W )
δ̂0−→ Ĉ1

∞(V,W )
δ̂1−→ Ĉ2

∞(V,W )
δ̂2∞−−→ Ĉ3

∞(V,W ) → · · · Ĉm
∞(V,W ) · · ·

forms a cochain complex.

5.3.4 Cohomology groups

Definition 5.3.31. For every n ∈ N, the n-th cohomology group is defined as

Ĥn
∞(V,W ) = kerδ̂n∞/imδ̂n−1

∞

Remark 5.3.32. We can similarly define the cohomology groups Ĥn
m(V,W ) with

Ĉn
m(V,W ).

5.3.5 Derivations and the first cohomology

In this section we will study the first cohomology Ĥ1
∞(V,W ) and prove isomorphic to

the vector space spanned by the outer derivations.
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Definition 5.3.33. A linear map f : V → W is a derivation if f is of weight 0, and

f(YV (u1, x)u2) = Y L
W (u1, x)f(u2) + Y R

W (f(u1), x)u2 ∈ W [[x, x−1]]

The space consisting of derivations will be denoted by Der(V,W ).

Lemma 5.3.34. Let f : V → W be a derivation. Then

1. f(1) = 0.

2. For v ∈ V , f(ezDV v) = ezDW f(v). Thus f(YV (v, z)1) = Y R
W (f(v), z)1.

3. The map Φf : V → W̃z defined by

(Φf (v))(z) = f(ezDV v)

is in Ĉ1
∞(V,W )

Proof. 1. We compute as follows:

f(1) = f(YV (1, z)1) = Y L
W (1, z)f(1) + Y R

W (f(1), z)1 = f(1) + ezDW f(1).

So ezDW f(1) = 0 for every z ∈ C. In particular, f(1) = 0.

2. We compute as follows:

f(ezDV v) = f(YV (v, z)1) = Y L
W (v, z)f(1) + Y R

W (f(v), z)1 = ezDW f(v).

3. We first verify that Φf satisfies the d-conjugation property andD-derivative prop-

erty. We compute as follows: fix a ∈ C,

adW (Φf (v))(z) = adW Y R
W (f(v), z)1 = Y R

W (adW f(v), a−1z)adW 1 = awt(f(v))Y R
W (f(v), a−1z)1

= awt(v)(Φf (v))(a
−1z) = (Φf (a

dW v))(a−1z).

For any z0 ∈ C,

(Φf (e
z0DV v))(z) = f(ez0DV ezDV v) = f(e(z0+z)DV v) = (Φf (v))(z0 + z);

ez0DW (Φf (v))(z) = ez0DW ezDW f(v) = e(z0+z)DW f(v) = (Φf (v))(z + z0).
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The conclusion that Φf is composable with any numbers of vertex operators

essentially follows from following, that for every m ∈ Z+, every α0 ∈ N, α1 ∈ Z+

such that α0 + α1 = m+ 1, every l = 0, ..., α0, every i = 1, ..., α1, the series

Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l , z

(0)
l )Y

s(R)
W (u

(0)
l+1, z

(0)
l+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)

· Y L
W (v

(1)
1 , z

(1)
1 ) · · ·Y L

W (v
(1)
i−1, z

(1)
i−1)Y

R
W (f(vi), z

(1)
i )YV (v

(1)
i+1, z

(1)
i+1) · · ·YV (v

(1)
α1

, z(1)α1
)1

is the expansion of the W -valued rational function

E(Y L
W (u

(0)
1 , z

(0)
1 ) · · ·Y L

W (u
(0)
l , z

(0)
l )Y L

W (v
(1)
1 , z

(1)
1 ) · · ·Y L

W (v
(1)
i−1, z

(1)
i−1)

· Y s(R)
W (u

(0)
l+1, z

(0)
l+1) · · ·Y

s(R)
W (u(0)α0

, z(0)α0
)Y

s(R)
W (v(1)n , z(1)n ) · · ·Y s(R)

W (v
(1)
i+1, z

(1)
i+1)e

z
(1)
i DW f(v

(1)
i ))

in the region |z(0)1 | > · · · > |z(0)α0 | > |z(1)1 | > · · · > |z(1)α1 |. For brevity, we shall not

elaborate the technical details.

Theorem 5.3.35. As vector spaces, Der(V,W ) is isomorphic to ker δ̂1m ⊆ Ĉ1
m(V,W )

for every m ≥ 1.

Proof. Given f ∈ Der(V,W ), we prove that the map Φf : V → W̃z defined by

(Φf (v))(z) = ezDW f(v) is an element in ker δ̂1∞. Fix u1, u2 ∈ V . Then for |z1| >

|z2|, |ζ| > |z1 − ζ| > |z2 − ζ|,

(Φf (YV (u1, z1 − ζ)YV (u2, z2 − ζ)1))(ζ) = f(eζDV YV (u1, z1 − ζ)YV (u2, z2 − ζ)1)

Since eζDV YV (u1, z1−ζ)YV (u2, z2−ζ)1 = YV (u1, z1)e
z2DV u2 for every z1, z2, ζ ∈ C such

that |z1| > |z2|, we have

E[(Φf (YV (u1, z1 − ζ)YV (u2, z2 − ζ)1))(ζ)] = E[f(YV (u1, z1)e
z2DV u2)]

Now let z1, z2 ∈ C such that |z1| > |z2|, we have

f(YV (u1, z1)e
z2DV u2) =

∞∑
i=0

1

i!
zi2f(YV (u1, z1)D

i
V u2)

=

∞∑
i=0

1

i!
zi2(Y

L
W (u1, z1)f(D

i
V u2) + Y R

W (f(u1), z1)D
i
V u2)

= Y L
W (u1, z1)f(e

z2DV u2) + Y R
W (f(u1), z1)e

z2DV u2
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= Y L
W (u1, z1)(Φf (u2))(z2) + ez1DW Y

s(R)
W (ez2DV u2,−z1)f(u1)

From the D-conjugation property, the second term on the right-hand-side converges

absolutely when |z1| > |z2| to the W -valued function E(ez1DW Y
s(R)
W (u2,−z1+z2)f(u1)),

which is equal to E(Y s
W (R)(u2, z2)e

z1DW f(u1)) = E(Y
s(R)
W (u2, z2)(Φf (u1))(z1). Thus

we have

E((Φf (YV (u1, z1−ζ)YV (u2, z2−ζ)1))(ζ)) = E(Y L
W (u1, z1)(Φf (u2))(z2))+E(Y

s(R)
W (u2, z2)(Φf (u1))(z1)

and hence Φf ∈ ker δ̂1∞.

Conversely, given Φ ∈ ker δ̂1m ⊆ Ĉ1
m(V,W ), we note first that for every v ∈ V ,

(Φ(v))(z) can be expanded as a series in W [[z, z−1]]. Also, since z = 0 is not a pole

of the W -valued rational function (Φ(v))(z), the series expansion of (Φ(v))(z) has no

negative powers. Thus one can evaluate z = 0 to get a map (Φ(·))(0) : V → W . Denote

this map by f : V → W . By D-derivative property, (Φ(v))(z) = ezDW f(v) = f(ezDV v).

Thus by Φ ∈ ker δ̂1m,

E(f(eζDV YV (u1, z1−ζ)YV (u2, z2−ζ)1)) = E(Y L
W (u1, z1)e

z2DW f(u2)+E(Y
s(R)
W (u2, z2)e

z1DW f(u1)).

From the discussions above, this can be simplified as

E(f(YV (u1, z1)e
z2DV u2)) = E(Y L

W (u1, z1)e
z2DW f(u2)) + E(Y R

W (f(u1), z1)e
z2DW u2)

Evaluate z2 = 0 to see that

E(f(YV (u1, z1)u2)) = E(Y L
W (u1, z1)f(u2)) + E(Y R

W (f(u1), z1)u2)

So the rational function defined by the complex series f(YV (u1, z1)u2), Y
L
W (u1, z1)f(u2)

and Y R
W (f(u1), z1)u2) satisfies the above equation. Hence one can find a r > 0, such

that for every z1 ∈ C, 0 < |z| < r,

f(YV (u1, z1)u2) = Y L
W (u1, z1)f(u2) + Y R

W (f(u1), z1)u2.

Therefore,

f(YV (u1, x)u2) = Y L
W (u1, x)f(u2) + Y R

W (f(u1), x)u2.

as formal series in W [[x, x−1]].
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Remark 5.3.36. In particular, we showed that for everym ∈ Z+, ker δ̂
1
m are isomorphic

to Der(V,W ). So for maps Φ : V → W̃z that are cocycles, being composable with one

vertex operator is equivalent to being composable with any number of vertex operators.

Whether or not this holds for cocycles in Ĉ2
m(V,W ) is still a problem that needs further

investigation.

Definition 5.3.37. A linear map f : V → W is an inner derivation if there exists

w ∈ C0(V,W ) such that for every v ∈ V ,

f(v) = Y L
W (v, 0)w − Y

s(R)
W (v, 0)w

Proposition 5.3.38. Let f : V → W be an inner derivation. Then Φf : V → W̃z

is in the image of δ̂0. Conversely, for any Φ in the image of δ̂0, (Φ(·))(0) is an inner

derivation. Thus the space of inner derivations and imδ̂0(V,W ) are isomorphic as

vector spaces.

Proof. The first conclusion follows from the following computation

(Φf (v))(z) = f(ezDV v) = Y L
W (ezDV v, 0)w−Y

s(R)
W (ezDV v, 0)w) = Y L

W (v, z)w−Y
s(R)
W (v, z)w = δ̂0(w).

To see the second conclusion, we note that there exists w ∈ Ĉ0(V,W ), such that

(Φ(v))(z) = Y L
W (v, z)w − Y

s(R)
W (v, z)w

Since Φ is in ker δ̂1, (Φ(·))(0) : V → W is a derivation. The conclusion is then seen

from evaluating z = 0 in the above equality.

Theorem 5.3.39. For every m ∈ Z+,

Ĥ1
m(V,W ) ≃ {Derivation V → W}/{Inner derivation V → W}
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Chapter 6

Reductivity theorem

6.1 The classical theory

Let A be an associative algebra over a field k and M be a finite dimensional left A-

module. Regarding the complete reducibility of M , we have the following criterion:

Theorem 6.1.1. If for every A-bimodule B, the first Hochschlid cohomology HH1(A,B) =

0, then every A-submodule M2 of M is complemented, i.e., there exists a left A-

submodule M1 such that M = M1 ⊕M2.

We shall give a rough sketch of the proof, as it helps to understand the more technical

case for MOSVAs.

Proof. Let M2 be an A-submodule of M and let N1 be a subspace of M such that

M = N1 ⊕M2. Let π1 : M → N1 and π2 : M → M2 be the corresponding projection

operators. Then for every a, b ∈ A,m ∈ M , since

(ab)x = a(bx)

we have

π1(ab)m = (π1a ◦ π1b)m

π2(ab)m = (π2a ◦ π1b)m+ (π2a ◦ π2b)m

Now let H = Homk(N1,M2). We define a A-bimodule structure on H by defining the

left and right action of a ∈ A on f ∈ H

(L(a)f)(x) = af(x), (fa)(x) = f(π1ax)



177

(since (f(ab))(x) = f(π1(ab)x) = f(π1a ◦ π1bx) = (fa)(π1bx) = ((fa)b)(x) for every

a, b ∈ A, we have a right action). Consider the map ∆ : A → H defined by

∆(a) = π2a : x 7→ π2ax

We check that ∆ is a (1,H)-cocycle.

a∆(b)−∆(ab) + ∆(a)b : x 7→ aπ2bx− π2abx+ π2aπ1bx = 0

Since HH1(A,H) = 0, there exists a map f : N1 → M2 such that

∆(a) = af − fa

Define F : N1 → M by F (x) = x− f(x) and let M1 be the image of F . We claim that

M2 is a A-submodule: if m ∈ M2, then there exists x ∈ N1 such that m = x − f(x).

Then

am = ax− af(x) = ax− (∆(a))(x) + (fa)(x)

= ax− π2ax+ f(π1ax)

= ax− π2ax+ f(ax− π2(ax))

= F (ax− π2ax) ∈ ImF

Since M is finite-dimensional, the map f is nilpotent and hence F (x) is invertible. This

shows that N1 and M1 are isomorphic as vector spaces. Hence M = M1 ⊕M2

To generalize the above arguments to MOSVAs, the following questions must be

answered:

1. Does the MOSVA-analogue of π1a and π2a make sense?

2. What is the MOSVA-analogue of Homk(N1,M1)?

3. How to guarantee the isomorphism of N1 and M1 for the MOSVA-analogue.

The answers to the above questions are not trivial. One has to deal with the technical

issues brought by the related convergence.
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6.2 The space H(W1,W2) and HN(W1,W2)

In this section we give the definition of the spaces analogous to the space of linear

functions of two left V -modules. We start by defining the space of rational functions

which take values in the algebraic completion of a module and possess possible poles

at zero. Then we will choose linear maps from one module to the space of rational

functions to construct the spaces.

6.2.1 The space Ŵζ and Hom(W1, (Ŵ2)ζ))

Definition 6.2.1. A W -valued rational function in ζ with the only possible pole at ζ

is a map

f : F1C = C× → W

ζ 7→ f(ζ)

satisfying the following condition: there exists an integer k and a series g(x) ∈ W [[x]],

for every w′ ∈ W ′

ζk⟨w′, f(ζ)⟩ = ⟨w′, g(ζ)⟩

is a polynomial function.

In other words, f(ζ) is obtained from evaluating x = ζ of a lower-truncated formal

series
∑

n∈Z fnx
−n−1 with all coefficients fn ∈ W . We know that fn = 0 when n is

sufficiently large. For any fixed w′ ∈ W ′, ⟨w′, fn⟩ = 0 when n is sufficiently negative.

Remark 6.2.2. For each u ∈ V , the vertex operator Y L
W2

(u, z) can act on it in the

usual sense:

Y L
W2

(u, z)f(ζ) =
∑
k∈Z

Y L
W2

(u, z)fkζ
−k−1

We can also interpret the vertex operator action of u as

Y L
W2

(u, z)f(ζ) =
∑
m∈C

Y L
W2

(u, z)πW
m (f(ζ))

Notation 6.2.3. We denote by (Ŵ )ζ the space of W -valued rational functions in ζ

satisfying Definition 6.2.1. By an abuse of terminology, we will still call elements of

(Ŵ )ζ as
>
W -valued rational function.
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Definition 6.2.4. LetW1,W2 be two grading-restricted left V -modules. Let Hom(W1, (Ŵ2)ζ)

be the space of C-linear maps fromW1 to (Ŵ2)ζ . Let a be a nonzero real number. Define

adH operator on Hom(W1, (Ŵ2)ζ) by

((adHϕ)(w1))(ζ) = adW2 (ϕ(a−dW1w1)(a
−1ζ)

It is easy to see that adH is a linear operator on Hom(W1, (Ŵ2)ζ). By taking the

derivative with respect to the variable a, one recovers the dH operator on Hom(W1, (Ŵ2)ζ).

We will call eigenvectors of dH as dH -homoegenous maps. The corresponding eigen-

values will be referred as weights.

Remark 6.2.5. For ϕ ∈ Hom(W1, (Ŵ2)ζ) homogenous of weight m, and for w1 ∈ W

homogeneous, we know that

am(ϕ(w1))(ζ) = ((adHϕ)(w1))(ζ) = adW2 (ϕ(adW1w1))(a
−1ζ)

Expanded in series, the coefficients of ζ−k−1 on both sides are

amϕ(w1)k = adW2ϕ(w1)ka
−wt w1+k+1

Thus as an element in W2, ϕ(w1)k is also homogeneous of weight wt w1 +m − k − 1,

for each integer k.

Definition 6.2.6. For ϕ ∈ Hom(W1, (Ŵ2)ζ), we define the operator DH by

((DHϕ)(w1))(ζ) =
∂

∂ζ
(ϕ(w1))(ζ)

Proposition 6.2.7. If ϕ ∈ Hom(W1, (Ŵ2)ζ) is homogeneous of weight wt ϕ, then DHϕ

is also homogeneous of weight wt ϕ+ 1.

Proof. First we compute the components of DHϕ:

[(DHϕ)(w1)](ζ) =
∑
n∈Z

(−n− 1)ϕn(w1)ζ
−n−2

Since ϕ is of weight wt ϕ,

[(adHϕ)(w1)](ζ) = adW2 (ϕ(a−dW1w1))(a
−1ζ)
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=
∑
n∈Z

a−wt w1+n+1adW2ϕn(w1)ζ
−n−1

=
∑
n∈Z

awt ϕϕn(w1)ζ
−n−1

So we have adW2ϕn(w1) = awt ϕ+wt w1−n−1ϕn(w1). In particular, ϕn(w1) is also homo-

geneous of weight wt ϕ+wt w1 − n− 1. Therefore,

[(adHDHϕ)w1](ζ) = adW2 [(DHϕ)(a−dW1w1)](a
−1ζ)

=
∑
n∈Z

a−wt w1adW2ϕn(w1)a
n+2(−n− 1)ζ−n−2

=
∑
n∈Z

a−wt w1+wt ϕ+wt w1−n−1ϕn(w1)a
n+2(−n− 1)ζ−n−2

=
∑
n∈Z

awt ϕ+1ϕn(w1)(−n− 1)ζ−n−2

= awt ϕ+1[(DHϕ)w1](ζ)

Remark 6.2.8. The space Hom(W1, (Ŵ2)ζ) is too large for our use. So we proceed to

find an appropriate subspace.

6.2.2 Composable condition

Definition 6.2.9. Let m ∈ Z+. A linear map ϕ : W1 → (Ŵ2)ζ is composable with m

vertex operators if for every l = 0, ...,m, u1, ..., um ∈ V,w1 ∈ W1, w
′
2 ∈ W ′

2, the series

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)(ϕ(Y
L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)⟩

converges absolutely in the region

|z1| > · · · > |zl| > |ζ| > |zl+1| > · · · > |zm| > 0

to a rational function with poles at

zi = 0, i = 1, ...,m

zi − zj = 0, 1 ≤ i < j ≤ m

zi − ζ = 0, i = 1, ...,m



181

ζ = 0.

Moreover, there exists integers r ∈ N depending only on the choice of ϕ and w1, qi ∈ N

for i = 1, ...,m depending only on the choice of ui and w1, pi ∈ N for i = 1, ...,m

depending only on the choice of ui and ϕ, pij ∈ N for 1 ≤ i < j ≤ m depending only

on the choice of ui and uj , and g(z1, ..., zm, ζ) ∈ W [[z1, ..., zm, ζ]], such that for every

w′
2 ∈ W ′

2,

ζr
m∏
i=1

zqii

m∏
i=1

(zi − ζ)pi
∏

1≤i<j≤m

(zi − zj)
pij

·R
(
⟨w′

2, Y
L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)(ϕ(Y
L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)⟩
)

is a polynomial and is equal to ⟨w′
2, g(z1, ..., zm, ζ)⟩. Moreover, for i = 1, ...,m, pi

depends only on ui and ϕ; for 1 ≤ i < j ≤ m, pij depends only on ui and uj .

Remark 6.2.10. The second part of the composable condition holds if and only if all

the following conditions on the rational function hold:

1. The order of the pole ζ = 0 are bounded above by an integer r depending only

on the choice of ϕ and w1.

2. For i = 1, ...,m, there exists qi ∈ N depending only on the choice of ui and w1,

such that the order of pole zi = 0 is bounded above by pi.

3. For i = 1, ...,m, there exists pi ∈ N depending only on the choice of ui and ϕ,

such that the order of pole zi = ζ is bounded above by pi.

4. For each i, j = 1, ...,m, i ̸= j, there exists pij ∈ N depending only on the choice

of ui and uj , such that the order of pole zi = zj is bounded above by pij .

Remark 6.2.11. With the same argument as in Remark 5.2.2,

Y L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)(ϕ(Y
L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)

is a series in W [[z1, z
−1
1 , ..., zm, z−1

m , ζ, ζ−1]] that converges absolutely to a W -valued

rational function with only possible poles specified as above.
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Remark 6.2.12. One could also say that the following formal series

yr
m∏
i=1

xqii

m∏
i=1

(xi − y)pi
∏

1≤i<j≤m

(xi − xj)
pij

· Y L
W2

(u1, x1) · · ·Y L
W2

(ul, xl)(ϕ(Y
L
W1

(ul+1, xl+1) · · ·Y L
W1

(um, xm)w1))(y)

has no negative powers and thus is in W [[x1, ..., xm, y]].

Proposition 6.2.13. Let ϕ : W1 → (Ŵ2)ζ be a map that is composable with m vertex

operators, then DHϕ : W1 → (Ŵ2)ζ is also composable with m vertex operators, then

DHϕ

Proof. It suffices to notice that the series

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)(DHϕ(Y L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)⟩

is simply the partial derivative of ζ of the absolutely convergent series

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)(ϕ(Y
L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)⟩.

The conclusion then follows from complex analysis.

Remark 6.2.14. We will be mainly using the composable condition formulated with

a different set of parameters: for every l = 0, ...,m, u1, ..., um ∈ V,w1 ∈ W1, w
′
2 ∈ W ′

2,

the series

⟨w′
2, Y

L
W2

(u1, z1+ζ) · · ·Y L
W2

(ul, zl+ζ)(ϕ(Y L
W1

(ul+1, zl+2+ζ) · · ·Y L
W1

(um−1, zm+ζ)Y L
W1

(um, ζ)w1))(ζ)⟩

converges absolutely in the region

|z1 + ζ| > · · · > |zm + ζ| > |ζ| > 0

to a rational function with poles at

zi + ζ = 0, i = 1, ...,m

zi − zj = 0, 1 ≤ i < j ≤ m

zi = 0, i = 1, ...,m

ζ = 0.
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Moreover, there exists integers r ∈ N depending only on the choice of ϕ and w1, qi ∈ N

for i = 1, ...,m depending only on the choice of ui and w1, pi ∈ N for i = 1, ...,m

depending only on the choice of ui and ϕ, pij ∈ N for 1 ≤ i < j ≤ m depending only

on the choice of ui and uj , and g(z1, ..., zm, ζ) ∈ W [[z1, ..., zm, ζ]], such that for every

w′
2 ∈ W ′

2,

ζr
m∏
i=1

(zi + ζ)qi
m∏
i=1

zpii
∏

1≤i<j≤m

(zi − zj)
pij

·
R
(
⟨w′

2, Y
L
W2

(u1, z1 + ζ) · · ·Y L
W2

(ul, zl + ζ)

·(ϕ(Y L
W1

(ul+1, zl+2 + ζ) · · ·Y L
W1

(um−1, zm + ζ)Y L
W1

(um, ζ)w1))(zl+1 + ζ)⟩
)

is a polynomial and is equal to ⟨w′
2, g(z1, ..., zm, ζ)⟩.

6.2.3 N-weight-degree condition

Definition 6.2.15. Let m ∈ Z+ and ϕ : W1 → (Ŵ2)ζ be a homogeneous linear map

that is composable with m vertex operators. For N ∈ Z, ϕ is said to satisfy the N -

weight-degree condition if for every homogeneous u1, ..., um ∈ V , the Laurent series

expansion of the rational function

R
(
⟨w′

2, Y
L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)

· (ϕ(Y L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)⟩
)

(6.1)

in the region |zm| > |z1 − zm| > · · · > |zl − zm| > |ζ − zm| > |zl+1 − zm| > · · · >

|zm−1−zm| > 0, as a Laurent series in z1−zm, ..., zl−zm, ζ−zm, zl+1−zm, ..., zm−1−zm

with coefficients in C[[zm, z−1
m ]], has total degree at least as large as N −wt u1 − · · · −

wt um − wt ϕ.

Proposition 6.2.16. Let ϕ : W1 → (Ŵ2)ζ be a homogeneous linear map that satisfies

the N -weight-degree condition. Then DHϕ : W1 → (Ŵ2)ζ also satisfies the condition.

Proof. It suffices to notice that the total degree of each monomial in expansion of the

rational function

R
(
⟨w′

2, Y
L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)
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· (ϕ(Y L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)⟩
)

in the region |zm| > |z1 − zm| > · · · > |zl − zm| > |ζ − zm| > |zl+1 − zm| > · · · >

|zm−1− zm| > 0 as Laurent series in z1− zm, ..., zl− zm, ζ− zm, zl+1− zm, ..., zm−1− zm

with coefficients in C[[zm, z−1
m ]], is one less than that for ϕ. Thus the lowest total degree

is at least as large as

N − (

m∑
i=1

wt ui +wt ϕ)− 1 = N − (

m∑
i=1

wt ui +wt DHϕ).

Hence DHϕ also satisfies the N -weight-degree condition.

Remark 6.2.17. We will be mainly using the condition formulated with a different

set of parameters: for every homogeneous u1, ..., um ∈ V , the Laurent series expansion

of the rational function

R
(
⟨w′

2, Y
L
W2

(u1, z1 + ζ) · · ·Y L
W2

(ul, zl + ζ)

· (ϕ(Y L
W1

(ul+1, zl+2 + ζ) · · ·Y L
W1

(um−1, zm + ζ)Y L
W1

(um, ζ)w1))(zl+1 + ζ)⟩
)
(6.2)

in the region |ζ| > |z1| > · · · > |zm| > 0, viewed as a Laurent series in z1, ..., zm with

coefficients in C[[ζ, ζ−1]], has total degree at least as large as N −wt u1−· · ·−wt um−

wt ϕ.

Remark 6.2.18. We note that the order of z1, ..., zm in the definition given in Remark

6.2.17 can be switched. From the composability, we know that the rational function

(6.2) has poles at ζ = 0, zi = 0, zi+ζ = 0 for i = 1, ...,m, and zi = zj for 1 ≤ i < j ≤ m.

The expansion in |ζ| > |z1| > · · · > |zm| amounts to expand all the negative powers

of zi + ζ as a power series in zi for i = 1, ...,m, and expand all the negative powers of

zi− zj as a powers series in zj for 1 ≤ i < j ≤ m. It is easy to see that the lower bound

of the total degree is not changed if we expand the negative powers of zi − zj instead

as a power series in zi for some i ̸= j.

Example 6.2.19. Let V be a MOSVA satisfying the pole-order condition. Let W be

a left V -module. Then for W1 = W,W2 = W and for a fixed v ∈ V , we consider the
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map

ϕv :W → (Ŵ )ζ

w 7→ Y L
W (v, ζ)w

First we note that this map is homogeneous of weight wt v.

adW2 (ϕv(w1))(ζ) = adW2Y L
W (v, ζ)w1

= Y L
W (adV v, aζ)adW1w1

= awt v(ϕv(a
dW1w1))(aζ)

where the second equality follows from the d-conjugation property of Y L
W .

Then we verify that this map is composable with any number of vertex operators.

The convergence part follows directly from the rationality of products: for every m ∈

Z+, w
′ ∈ W ′, u1, ..., um+1 ∈ V,w ∈ W

⟨w′, Y L
W (u1, z1) · · ·Y L

W (um+1, zm+1)w⟩

converges absolutely to a rational function of the form

f(z1, ..., zm, zm+1)
m+1∏
i=1

zpii
∏

1≤i<j≤m+1
(zi − zj)pij

For any fixed l between 1 and m+1, replace ul by v, zl by ζ and uj by uj−1, zj by zj−1

for every j = l+1, ...,m+1, to see the that ϕv converges to the rational function in the

specified area. The second part of composable condition follows from the pole-order

condition.

Let N be a lower bound of the weights of V . We show that ϕ satisfies the N -weight-

degree condition. Note that the series

⟨w′,Y L
W (YV (u1, z1) · · · · · ·YV (ul, zl)

· YV (v, zl+1)YV (ul+1, zl+1) · · ·YV (um, zm)um+1, ζ)w⟩

=
∑

n1,...,nm∈Z
⟨w′,Y L

W ((YV )n1(u1) · · · (YV )nl
(ul)

· (YV )nl+1
(v)(YV )nl+2

(ul+1) · · · (YV )nm(um−1)um, ζ)w⟩z−n1−1
1 · · · z−nm−1

m
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is the expansion of the rational function

R
(
⟨w′

2, Y
L
W (u1, z1 + ζ) · · ·Y L

W (ul, zl + ζ)

· Y L
W (v, zl+1 + ζ)Y L

W (ul+1, zl+2 + ζ) · · ·Y L
W (um−1, zm + ζ)Y L

W (um, ζ)w1⟩
)

which is precisely

R
(
⟨w′, Y L

W (u1, z1 + ζ) · · ·Y L
W (ul, zl + ζ)

· (ϕv(Y
L
W (ul+1, zl+2 + ζ) · · ·Y L

W (um−1, zm + ζ)Y L
W (um, ζ)w))(zl+1 + ζ)⟩

)
in the region

|ζ| > |z1| > · · · > |zm| > 0

Since for every n1, ..., nm ∈ Z,wt (YV )n1(u1) · · · (YV )nm(um)um+1 ≥ N , the indices

n1, ..., nm satisfies the following inequality

wt u1 + · · ·+wt um +wt um+1 − n1 − · · · − nm −m ≥ N,

In other words, as a Laurent series with coefficients in C[[zm+1, z
−1
m+1]] in variables

z1, ..., zm, the total degree has to be at least as large as N − (wt u1 + · · · + wt um +

wt um+1).

Remark 6.2.20. We remind the reader that every grading-restricted vertex algebra

with nonnegative grading satisfiesN -weight-degree condition, whereN can be any lower

bound of the weights of the vertex algebra. So the story in this chapter works for any

such vertex algebras.

Definition 6.2.21. Let H(W1,W2) be the subspace of Hom(W1, (Ŵ2)ζ) spanned by all

the homogeneous maps ϕ that are composable with any number of vertex operators. For

N ∈ Z, let HN (W1,W2) be the subspace of H(W1,W2) spanned by the maps satisfying

the N -weight-degree condition.

Notation 6.2.22. For simplicity, we will use the notations H and HN respectively

for the space H(W1,W2) and HN (W1,W2). We will use H[n] and HN
[n] respectively to

denote the weight n subspace of H and HN . A generic element in H or HN will be

denoted by ϕ.
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6.3 V -bimodule structure on HN(W1,W2)

In this section, we endow the space HN (W1,W2) a V -bimodule structure. In general,

this bimodule is not necessarily grading-restricted.

6.3.1 The left V -module structure on HN

Definition 6.3.1. We define the following left action of V on HN : for u ∈ V, ϕ ∈ HN

[(Y L
H (u, z)ϕ)(w1)](ζ) = ιζzE(Y L

W2
(u, z + ζ)(ϕ(w1))(ζ))

The definition is understood as follows:

1. Since ϕ is composable with any number of vertex operators, in particular, for any

w′
2 ∈ W ′

2, the complex series

⟨w′
2, Y

L
W2

(u, z + ζ)(ϕ(w1))(ζ)⟩

converges absolutely in the region

|z + ζ| > |ζ| > 0

to a rational function with poles at z + ζ = 0, ζ = 0, z = 0. Because of the

N -weight-degree condition, the order of the pole z = 0 is controlled above by

wt u+wt ϕ−N .

2. Expand the negative powers of (z + ζ) as a power series of z. Then we get a

complex series ∑
n∈Z

cn(w
′
2 ⊗ u⊗ ϕ⊗ w1; ζ)z

−n−1

Note that because of the N -weight-degree condition, the lowest power of z is at

least as large as −wt u− wt ϕ+N . The coefficient of each power of z is then a

rational function with poles at ζ = 0.

3. For each fixed ζ ̸= 0, the linear functional w′
2 7→ cn(w

′
2⊗u⊗ϕ⊗w1; ζ) would then

be defining an element in
>
W2. From the definition of composability, note that the

series
∑

n∈Z cn(·⊗u⊗ϕ⊗w1; ζ)z
−n−1 of

>
W -elements is obtained from expanding
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a localized formal series in W [[z, ζ]][z−1, ζ−1, (z + ζ)−1]. Thus the coefficients

cn(·⊗u⊗ϕ⊗w1; ζ) is a lower-truncated series in W2((ζ)). One then checks easily

that for every n ∈ Z and every fixed u ∈ V,w1 ∈ W1, cn(·⊗u⊗ϕ⊗w1; ζ) ∈ (Ŵ2)ζ.

Therefore, for each n ∈ Z, the map

w1 7→ cn(· ⊗ u⊗ ϕ⊗ w1; ζ)

is an element of Hom(W1, (Ŵ2)ζ). If we denote this map by (Y L
H )n(u)ϕ, then we

have

Y L
H (u, z)ϕ =

∑
n∈Z

(Y L
H )n(u)ϕz

−n−1

as a series with coefficients in Hom(W1, (Ŵ2)ζ).

4. In terms of coefficients, we have the following identity∑
n2∈Z

∑
n1∈Z

⟨w′
2, (Y

L
W2

)n1(u)ϕn2(w1)⟩(z + ζ)−n1−1ζ−n2−1

=
∑
n1∈Z

∑
n2∈Z

⟨w′
2, [(Y

L
H )n1(u)ϕ]n2(w1)⟩ζ−n2−1z−n1−1

when |z + ζ| > |ζ| > |z| > 0. Since both sides are Laurent series expansion of

a rational function, the order of summation can be switched. Thus we can also

write∑
n∈Z

⟨w′
2, (Y

L
W2

)n(u)(ϕ(w1))(ζ)⟩(z + ζ)−n−1 =
∑
n∈Z

⟨w′
2, [((Y

L
H )n(u)ϕ)(w1)](ζ)⟩z−n−1

Because of the second part of the composability, we can drop w′
2 ∈ W ′

2, to see

that when |z + ζ| > |ζ| > |z| > 0,∑
n∈Z

(Y L
W2

)n(u)(ϕ(w1))(ζ)(z + ζ)−n−1 =
∑
n∈Z

[((Y L
H )n(u)ϕ)(w1)](ζ)z

−n−1 (6.3)

Proposition 6.3.2. Let ϕ : W1 → (Ŵ2)ζ be a homogeneous map composable with any

number of vertex operators. Then for every n ∈ Z, u ∈ V ,

wt (Y L
H )n(u)ϕ = wt u− n− 1 + wt ϕ.

Proof. Let |z + ζ| > |ζ| > |z| > 0. Since

⟨w′
2, a

dW2Y L
W2

(u, z + ζ)(ϕ(w1))(ζ)⟩ = ⟨w′
2, Y

L
W2

(adV u, az + aζ)adW2 (ϕ(w1))(ζ)⟩



189

= ⟨w′
2, Y

L
W2

(adV u, az + aζ)awt ϕ(ϕ(adW1w1))(aζ)⟩

we thus have

⟨w′
2, a

dW2 [(Y L
H (u, z)ϕ)(w1)](ζ)⟩ = ⟨w′

2, [(Y
L
H (adV u, az)ϕ)(adW1w1)](aζ)⟩

Expand Y L
H (u, z)ϕ as the sum of (Y L

H )n(u)ϕ and use the definition of the dH , we see

that

adH (Y L
H )n(u)ϕ = awt u+wt ϕ−n−1

Remark 6.3.3. As a consequence of the N -weight-degree condition, we know that

−n− 1 ≥ −wt u− wt ϕ+N , and thus

wt (Y L
H )n(u)ϕ = wt (u)− n− 1 + wt ϕ ≥ N.

Proposition 6.3.4. Let ϕ : W1 → (Ŵ2)ζ be a homogeneous map composable with any

number of vertex operators. Then for every n ∈ Z, u ∈ V , (Y L
H )n(u)ϕ is also composable

with any number of vertex operators and satisfies the N -weight-degree condition.

Proof. Fix any m ∈ Z+. Since ϕ is composable with, in particular, m + 1 vertex

operators, for every l = 0, ...,m,w′
2 ∈ W ′

2, u1, ..., um ∈ V and w1 ∈ W1, the following

complex series

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)Y
L
W2

(u, z + ζ)(ϕ(Y L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(ζ)⟩

converges absolutely when

|z1| > · · · > |zl| > |z + ζ| > |ζ| > |zl+1| > · · · > |zm| > 0

to a rational function that is of the form

f(z1, ..., zm, z, ζ)

(z + ζ)r1zpζr2
m∏
i=1

zqii (zi − ζ)p
′
i(zi − z − ζ)p

′′
i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

with

1. p depends only on u and ϕ;



190

2. p′i depending only to ui and ϕ, p′′i depending only on ui and u for i = 1, ...,m;

3. p′′′ij depending only on ui and uj for 1 ≤ i < j ≤ m;

4. r1 depends only on u and w1;

5. r2 depends only on ϕ and w1;

6. qi depends only on ui and ϕ for i = 1, ...,m.

In particular, the series, rewritten as,

∑
n1,...,nm∈Z,n∈Z

⟨w′
2, (Y

L
W2

)n1(u1) · · · (Y L
W2

)nl
(ul)(Y

L
W2

)n(u)(ϕ((Y
L
W1

)nl+1
(ul+1) · · · (Y L

W1
)nm(um)w1))(ζ)⟩·

z−n1−1
1 · · · z−nl−1

l (z + ζ)−n−1z
−nl+1−1
l+1 · · · z−nm−1

m

converges absolutely to the same rational function in the smaller region

|z1| > · · · > |zl| > |ζ|+ |z|, |ζ| − |z| > |zl+1| > · · · > |zm| > 0, |z + ζ| > |ζ|, |z| > 0

Notice |ζ| > |z|, thus |z+ ζ| > |ζ| > |z| > 0. By Eqn. (6.3), we know that the following

iterated series

∑
n1,...,nm∈Z

(∑
n∈Z

⟨w′
2, (Y

L
W2

)n1(u1) · · · (Y L
W2

)nl
(ul)[((Y

L
H )n(u)ϕ)((Y

L
W1

)nl+1
(ul+1) · · · (Y L

W1
)nm(um)w1)](ζ)⟩·

z−n−1

)
z−n1−1
1 · · · z−nl−1

l z
−nl+1−1
l+1 · · · z−nm−1

m

which also converges to the same rational function. We note that the series coincides

with the expansion of the rational function in the region

|z1| > · · · > |zl| > |ζ|+ |z|, |ζ| − |z| > |zl+1| > · · · > |zm| > 0, |z| > 0

where the negative powers of

• z + ζ are expanded as a power series of z;

• zi − ζ are expanded as a power series of ζ when i ≤ l;

• zi − ζ are expanded as a power series of zi when i > l;
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• zi − z − ζ are expanded first as a power series of (z + ζ) when i ≤ l, then further

expand the positive powers of z + ζ as polynomials in z, ζ;

• zi − z− ζ are first expanded as a power series of (z+ zi) when i > l, then further

expand the positive powers of z + zi as polynomials in z, zi;

• zi − zj are expanded as a power series of zj when i < j.

In particular, the order of summation can be switched. Thus we know that the following

series∑
n∈Z

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)[((Y
L
H )n(u)ϕ)(Y

L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1)](ζ)⟩z−n−1

converges absolutely to the same rational function when

|z1| > · · · > |zl| > |ζ|+ |z|, |ζ| − |z| > |zl+1| > · · · > |zm| > 0.

Now we rewrite the rational function as∑K
k1=0 fk1(z1, ..., zm, ζ)zk1

[1 + z/ζ]r1zpζr1+r2
m∏
i=1

zqii (zi − ζ)p
′
i+p′′i [1− z/(zi − ζ)]p

′′
i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

and expand the bracketed denominators in the as the power series of the second term.

In other words, the expansion is done in the region

|ζ| > |z| > 0, |zi − ζ| > |z|

Organize the series according to the power of z, we will obtain the following:

∑
−n−1≥−p


K∑

k1=0

∑
k31,...,k3m≥0

k31+···+k3m≤−n−1+p−k1

ak2k31...k3mfk1(z1, ..., zm, ζ)

ζr1+r2+k2
m∏
i=1

zqii (zi − ζ)p
′
i+p′′i +k3i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

z−n−1

where k2 = −n − 1 + p − k1 −
∑m

i=1 k3i is a nonnegative integer. Thus for each fixed

n ∈ Z, the series

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)[((Y
L
H )n(u)ϕ)(Y

L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1)](ζ)⟩

converges absolutely when

|z1| > · · · > |zl| > |ζ| > |zl+1| > · · · > |zm| > 0



192

to the rational function

K∑
k1=0

∑
k31,...,k3m≥0

k31+···+k3m≤−n−1+p−k1

ak2k31...k3mfk1(z1, ..., zm, ζ)

ζr1+r2+k2
m∏
i=1

zqii (zi − ζ)p
′
i+p′′i +k3i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

with the only possible poles at ζ = 0, zi = 0, zi = ζ for i = 1, ...,m, and zi − zj = 0 for

1 ≤ i < j ≤ m. This proves the first part of composability.

To see the second part of composability, it suffices to verify the conditions specified

in Remark 6.2.10 in the rational function above.

1. For each i = 1, ...,m, qi depends on ui and w1.

2. For each i = 1, ...,m,

p′i + p′′i + k3i ≤ p′i + p′′i − n− 1 + p− k1 ≤ p′i + p′′i − n− 1 + p

which depends only on ui, u, n and ϕ. In particular, it is independent of the choice

of uj , j ̸= i, w1 and w′
2.

3. For each 1 ≤ i < j ≤ m, p′′′ij depends only on the choice of ui and uj .

4. Since k2 ≤ −n− 1− p, we know r1 + r2 + k2 ≤ r1 + r2 − n− 1− p which depends

only on u, n, ϕ and w1. In particular, it is independent of ui(i = 1, ...,m) and w′
2.

Now we check the N -weight-degree condition for each (Y L
H )n(u)ϕ. Sincd ϕ ∈ HN ,

the expansion of the rational function

R
(
⟨w′

2 ,YW2(u1, z1 + ζ) · · ·YW2(ul, zl + ζ)

YW2(u, z + ζ)(ϕ(YW1(ul+1, zl+2 + ζ) · · ·YW1(um, ζ)w1)(zl+1 + ζ)⟩)

in the region |ζ| > |z1| > · · · > |zl| > |z| > |zl+1| > · · · > |zm| > 0 as a Laurent series

in z1, ..., zm, z with coefficients in C[[ζ, ζ−1]] has lowest total weight at least as large as

N − (wt u1 + · · · + wt um + wt u + wt ϕ). From Remark 6.2.18, the same condition

holds for the expansion in the region

|ζ| > |z1| > · · · > |zl| > |zl+1| > · · · > |zm| > |z| > 0
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From the analysis above, we see that this expansion coincides with the following series

∑
n∈Z

⟨w′
2,YW2(u1, z1 + ζ) · · ·YW2(ul, zl + ζ)

[((Y L
H )n(u)ϕ)(YW1(ul+1, zl+2 + ζ) · · ·YW1(um, ζ)w1)](zl+1 + ζ)⟩z−n−1

with the coefficients of each z−n−1 further expanded in the region |ζ| > |z1| > · · · >

|zm| > 0. For each monomial in this expansion, the total degree of z1, ..., zm, z is

nothing but the total degree of z1, ..., zm plus −n − 1, which is at least as large as

N − (wt u1 + · · · + wt um + wt u + ϕ). Thus, the total degree of z1, ..., zm in the

expansion of the rational function

R
(
⟨w′

2, YW2(u1, z1 + ζ) · · ·YW2(ul, zl + ζ)

[((Y L
H )n(u)ϕ)(YW1(ul+1, zl+2 + ζ) · · ·YW1(um, ζ)w1)](zl+1 + ζ)⟩

)
in the region |ζ| > |z1| > · · · > |zm| > 0 is at least as large as

N − (
m∑
i=1

wt ui +wt u+wt ϕ) + n+ 1 = N − (
m∑
i=1

wt ui +wt (Y L
H )n(u)ϕ)

Thus for each n ∈ Z, (Y L
H )n(ϕ) also satisfies the N -weight-degree condition.

So we have proved that for every ϕ ∈ HN , the series Y L
H (u, x) =

∑
n∈Z(Y

L
H )n(u)ϕx

−n−1

is actually a series in HN [[x, x−1]], i.e., the map

Y L
H : V ⊗HN → HN [[x, x−1]]

gives an action of V on HN .

Theorem 6.3.5. (HN , Y L
H ,dH , DH) forms a left V -module.

Proof. We know that HN is graded by the eigenvalues of dH operator, equipped with

a vertex operator map Y L
H : V ⊗H → H[[x, x−1]], an operator dH of weight 0 and an

operator DH of weight 1. Now we verify all the axioms.

1. The lower bound condition and the d-grading condition is obviously satisfied.

The d-bracket property easily follows from the weight formula proved above.
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2. The identity property follows from that of Y L
W2

.

3. The D-derivative property follows from the computation below:[(
d

dz
Y L
H (u, z)ϕ

)
(w1)

]
(ζ) =

d

dz

[
(Y L

H (u, z)ϕ)(w1)
]
(ζ)

=
d

dz
[ιζzE(Y L

W2
(u, z + ζ)(ϕ(w1))(ζ))]

= ιwz

[
E

(
d

dz
Y L
W2

(u, z + ζ)(ϕ(w1))(ζ)

)]
= ιwz

[
E

(
d

d(z + ζ)
Y L
W2

(u, z + ζ)(ϕ(w1))(ζ)
d(z + ζ)

dz

)]
= ιwzE

(
Y L
W2

(DV u, z + ζ)(ϕ(w1))(ζ)
)

= [(Y L
H (DV u, z + ζ)ϕ)(w1)](ζ).

The D-bracket formula follows from the computation below:

[(DHY L
H (u, z)ϕ)(w1)](ζ)

=
d

dζ
ιwz[E(Y L

W2
(u, z + ζ)(ϕ(w1))(ζ))]

=ιwz

[
E

(
d

dζ
Y L
W2

(u, z + ζ)(ϕ(w1))(ζ)

)]
=ιwz

[
E

(
d

d(z + ζ)
Y L
W2

(u, z + ζ)
d(z + ζ)

dζ

)
(ϕ(w1))(ζ) + Y L

W2
(u, z + ζ)

(
d

dζ
(ϕ(w1))(ζ)

)]
=ιwz[E(Y L

W2
(DV u, z + ζ)(ϕ(w1))(ζ)) + Y L

W2
(u, z + ζ)(DHϕ(w1))(ζ)]

=[(Y L
H (DV u, z)ϕ)(w1)](ζ) + [(Y L

H (u, z)(DHϕ))(w1)](ζ)

4. We prove the rationality of products of two vertex operators elaborately The

rationality of products of any numbers of vertex operators will be seen immedi-

ately from Proposition 3.1.21 and the composable condition once associativity is

proved.

Since ϕ is composable with any number of vertex operators, in particular, when

m = 2, l = 2, for any u1, u2 ∈ V,w1 ∈ W1, w
′
2 ∈ W ′

2, we know that

⟨w′
2, Y

L
W2

(u1, z1 + ζ)Y L
W2

(u2, z2 + ζ)(ϕ(w1))(ζ)⟩

=
∑
n1∈Z

∑
n2∈Z

⟨w′
2, (Y

L
W2

)n1(u1)(Y
L
W2

)n2(u2)(ϕ(w1))(ζ)⟩(z2 + ζ)−n2−1

 (z1 + ζ)−n1−1

(6.4)
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converges absolutely in the region

S = {(z1, z2, ζ) ∈ C3 : |z1 + ζ| > |z2 + ζ| > |ζ| > 0}

to a rational function of the form

f(z1, z2, ζ)

(z1 + ζ)q1(z2 + ζ)q2ζrzp11 zp22 (z1 − z2)p
′
12

(6.5)

Note that (ϕ(w1))(ζ) is indeed also a series. We are not expanding it for sim-

plicity. Also, from the second part of the composable condition, we can take

r, q1, q2, p1, p2, p
′
12 to be sufficiently large, so that they are independent of the

choice of w′
2.

The identity (6.3) shows that when |z2 + ζ| > |ζ| > |z2| > 0,

∑
n2∈Z

(Y L
W2

)n(u2)(ϕ(w1))(ζ)(z2 + ζ)−n−1 =
∑
n2∈Z

[((Y L
H )n2(u2)ϕ)(w1)](ζ)z

−n−1
2

Thus the right hand side of the identity (6.4) can be rewritten as

∑
n1∈Z

∑
n2∈Z

⟨w′
2, (Y

L
W2

)n1 [((Y
L
H )n2(u2)ϕ)(w1)](ζ)⟩z−n2−1

2

 (z1 + ζ)−n1−1

=⟨w′
2, Y

L
W2

(u1, z1 + ζ)[(Y L
H (u2, z2)ϕ)(w1)](ζ)⟩ (6.6)

Thus the series on the right-hand-side of Eqn. (6.6), as a series in z1 + ζ, z2, ζ,

converges to the rational function (6.5) in the region

S∩ = {(z1, z2, ζ) ∈ C3 : |z1 + ζ| > |z2 + ζ| > |ζ| > |z2| > 0}

Note that the rational function (6.5) can be expanded as an absolutely convergent

Laurent series in the region

S1 = {(z1, z2, ζ) ∈ C3 : |z1 + ζ| > |ζ|+ |z2|, |ζ| > |z2| > 0}

by expanding the negative powers of z1 = z1 + ζ − ζ as a power series of ζ, the

negative powers of z2 + ζ as a power series of z2, and the negative powers of

z1 − z2 = z1 + ζ − (ζ + z2) as a power series of ζ + z2, then further expand the

positive powers of ζ + z2 as polynomials of ζ and z2. Note that in this expansion,
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the power of z1 + ζ is upper-truncated by the order of pole z1 + ζ = ∞. So if we

set S′
1 = S1 ∩ S∩, then since S′

1 ̸= ∅, we can apply Lemma 2.3.9 to see that the

series in Eqn. (6.6) converges absolutely in S1. In particular, one can switch the

order of summation. To sum up, the series

⟨w′
2, Y

L
W2

(u1, z1 + ζ)[(Y L
H (u2, z2)ϕ)(w1)](ζ)

converges absolutely to the rational function (6.5) in the region S1 and can be

written as

∑
n2∈Z

∑
n1∈Z

⟨w′
2, (Y

L
W2

)n1 [((Y
L
H )n2(u2))ϕ(w1)](ζ)⟩(z1 + ζ)−n1−1

 z−n2−1
2

=
∑
n2∈Z

Y L
W2

(u1, z1 + ζ)[((Y L
H )n(u2)ϕ)(w1)](ζ)z

−n2−1
2 (6.7)

Now for each fixed n2 ∈ Z, we use the Eqn. (6.3) again, to see that when |z1+ζ| >

|ζ| > |z1| > 0, the right-hand-side of (6.7) equals to

∑
n2∈Z

[(Y L
H (u1, z1)(Y

L
H )n(u2)ϕ)(w1)](ζ)z

−n2−1
2 (6.8)

=
∑
n2∈Z

∑
n1∈Z

⟨w′
2, [((Y

L
H )n1(u1)(Y

L
H )n2(u2)ϕ)(w1)](ζ)⟩z−n1−1

1

 z−n2−1
2

=⟨w′
2, [(Y

L
H (u1, z1)Y

L
H (u2, z2)ϕ)(w1)](ζ)⟩ (6.9)

Thus the right-hand-side of Eqn. (6.8) converges absolutely to the rational func-

tion (6.5) in the region

S∩
1 = {(z1, z2, ζ) ∈ S1 : |z1 + ζ| > |ζ| > |z1| > 0}

= {(z1, z2, ζ) ∈ C3 : |z1 + ζ| > |ζ|+ |z2|, |ζ| > |z1| > 0, |ζ| > |z2| > 0}

Note that the rational function (6.5) can be expanded as an absolutely convergent

Laurent series in the region

S2 = {(z1, z2, ζ) ∈ C3, |ζ| > |z1| > |z2| > 0}

by expanding the negative powers of z1 + ζ as a power series of z1, the negative

powers of z2 + ζ as a power series of z2, the negative powers of z1 − z2 as a power
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series of z2. Moreover, the lowest power of z2 is bounded below by the order of

pole of z2 = 0. So if we set S′
2 = S2∩S∩

1 , then since S′
2 ̸= ∅, we can apply Lemma

2.3.7 to see that the double series

⟨w′
2, [(Y

L
H (u1, z1)Y

L
H (u2, z2)ϕ)(w1)](ζ)⟩

=
∑

n1,n2∈Z
⟨w′

2, [((Y
L
H )n1(u1)(Y

L
H )n2(u2)ϕ)(w1)](ζ)⟩ (6.10)

converges absolutely to the rational function 6.5 in the region S2.

Therefore, we know that

zp11 zp22 (z1 − z2)
p′12⟨w′

2, [(Y
L
H (u1, z1)Y

L
H (u2, z2)ϕ)(w1)](ζ)⟩

is precisely

f(z1, z2, ζ)

ζr
ιζz1

(
1

(z1 + ζ)q1

)
ιζz2

(
1

(z2 + ζ)q2

)
,

which has no negative powers of z1, z2. For each fixed n1, n2 ∈ Z, the coefficient of

z−n1−1
1 z−n2−1

2 is a Laurent polynomial in ζ. We denote this coefficient by gn1n2(ζ)

and claim that the W2-valued rational function determined by

w′
2 7→ gn1n2(ζ)

is an element in (Ŵ2)ζ .

From the second part of the composable condition, the orders of poles of the

rational function (6.5) are bounded above by constants that are independent of

the choice of w′
2. One sees that the series

Y L
W2

(u1, z1 + ζ)Y L
W2

(u2, z2 + ζ)(ϕ(w1))(ζ)

multiplied with the denominator of (6.5) is actually a power series with coefficients

inW2. The above procedure shows that the series [(Y
L
H (u1, z1)Y

L
H (u2, z2)ϕ)(w1)](ζ)

converges to the same W2-valued rational function. Therefore, after multiplied

with the denominators of (6.5), we should get the same power series. Thus, the

series

zp11 zp22 (z1 − z2)
p′12 [(Y L

H (u1, z1)Y
L
H (u2, z2)ϕ)(w1)](ζ)
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is the expansion of the quotient of this power series and powers of (z1+ζ), (z2+ζ)

and ζ. The denominators are expanded as power series of z1 and z2. The coeffi-

cient of each z−n1−1
1 z−n2−1

2 is precisely theW2-valued rational function determined

by w′
2 7→ gn1n2(ζ). Thus this function is in (Ŵ2)ζ .

Hence, the map

w1 7→
(
w′
2 7→ gn1n2(ζ)

)
gives an element in Hom(W1, (Ŵ2)ζ). Thus we see that

zp11 zp22 (z1 − z2)
p′12Y L

H (u1, z1)Y
L
H (u2, z2)ϕ

is indeed a power series of with coefficients in Hom(W1, (Ŵ2)ζ). As pointed out

by Proposition 6.3.4, these coefficients are necessarily in H. Thus what we get is

a power series in H[[z1, z2]].

Note that if we take homogeneous u1, u2 ∈ V, ϕ ∈ H, then the coefficient of each

z−n1−1
1 z−n2−1

2 in the series

Y L
H (u1, z1)Y

L
H (u2, z2)ϕ =

∑
n1,n2∈Z

(Y L
H )n1(u1)(Y

L
H )n2(u2)ϕz

−n1−1
1 z−n2−1

2 ,

has weight

wt u1 +wt u2 +wt ϕ− n1 − n2 − 2

If we pair the series with some ϕ′ ∈ (HN )′, then the coefficient of z−n1−1
1 z−n2−1

2

is zero unless

wt ϕ′ = wt u1 +wt u2 +wt ϕ− n1 − n2 − 2

Thus −n1−n2−2 would equal to a fixed number. Since the power of z2 is bounded

below, we thus know that the power of z1 is bounded above. After multiplying

zp11 zp22 (z1− z2)
p′12 , we know that the power of z1 is also bounded below. And thus

the power of z2 is bounded above. Therefore we proved that

zp11 zp22 (z1 − z2)
p′12⟨ϕ′, Y L

H (u1, z1)Y
L
H (u2, z2)ϕ⟩

is a polynomial in C[z1, z2]. It is easy to see that the total degree of the polynomial

is precisely

wt ϕ′ − wt u1 − wt u2 − wt ϕ+ p1 + p2 + p′12.
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For nonhomogeneous u1, u2 ∈ V, ϕ ∈ HN , the conclusion also holds: a finite sum

of the homogeneous polynomials is still a polynomial. Therefore we proved that

for every u1, u2 ∈ V, ϕ ∈ H,

zp11 zp22 (z1 − z2)
p′12⟨ϕ′, Y L

H (u1, z1)Y
L
H (u2, z2)ϕ⟩ ∈ C[z1, z2] (6.11)

Since the complex series

⟨ϕ′, Y L
H (u1, z1)Y

L
H (u2, z2)ϕ⟩ (6.12)

the power of z2 is lower-truncated and the power of z1 is upper-truncated, so if

we denote the polynomial given in (6.11) by h(z1, z2), then (6.12) must coincide

with

ιz1z2

(
h(z1, z2)

zp11 zp22 (z1 − z2)p
′
12

)
Thus we proved that for every ϕ′ ∈ H ′, u1, u2 ∈ V, ϕ ∈ HN

⟨ϕ′, Y L
H (u1, z1)Y

L
H (u2, z2)ϕ⟩

converges absolutely when

|z1| > |z2| > 0

to a rational function with the only possible poles at z1 = 0, z2 = 0, z1 = z2.

5. We prove the rationality of the iterate of two vertex operators. As many steps are

similar, here we only give a sketch. First notice that for every w′
2 ∈ W ′

2, u1, u2 ∈

V, ϕ ∈ HN , w1 ∈ W1, from associativity of YW and Lemma 2.3.7, the series

⟨w′
2, Y

L
W2

(YV (u1, z1 − z2)u2, z2 + ζ)(ϕ(w1))(ζ)⟩

converges absolutely when

|z2 + ζ| > |z1 − z2|+ |ζ| > 0

to the rational function

R(⟨w′
2, Y

L
W2

(u1, z1 + ζ)Y L
W2

(u2, z2 + ζ)(ϕ(w1))(ζ)⟩)
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which is of the form

f(z1, z2, ζ)

zp11 zp22 (z1 − z2)p
′
12(z1 + ζ)q1(z2 + ζ)q2ζr

.

We use identity (6.3) and Lemma 2.3.7 to see that

⟨w′
2, [(Y

L
H (YV (u1, z1 − z2)u2, z2)ϕ)(w1)](ζ)⟩

also converges to the rational function in the region

|ζ| > |z1 − z2|+ |z2|, |z2| > |z1 − z2| > 0

Multiplying both sides by powers of z1, z2 and z1 − z2, one sees that

zp11 zp22 (z1 − z2)
p12⟨w′

2, [(Y
L
H (YV (u1, z1 − z2)u2, z2)ϕ)(w1)](ζ)⟩

=
f(z1, z2, ζ)

ζr
ιζz1

(
1

(z1 + ζ)q1

)
ιζz2

(
1

(z2 + ζ)q2

)
has no negative powers of z1, z2.

We denote the coefficient of each z−n1−1
1 z−n2−1

2 by gn1n2(ζ) and claim that the

W2-valued rational function

w′
2 7→ gn1n2(ζ)

is an element in (Ŵ2)ζ .

Since the orders of poles of the rational function (6.5) is bounded above by con-

stants that are independent of the choice of w′
2, one sees that the series

Y L
W2

(YV (u1, z1 − z2)u2, z2 + ζ)(ϕ(w1))(ζ)

multiplied with the denominator of (6.5) is actually a power series with coef-

ficients in W2. The above procedure shows that the series [(Y L
H (YV (u1, z1 −

z2)u2, z2)ϕ)(w1)](ζ) converges to the same W2-valued rational function. There-

fore, after multiplied with the denominators of (6.5), we should get the same

power series. Thus, the series

zp11 zp22 (z1 − z2)
p′12 [(Y L

H (YV (u1, z1 − z2)u2, z2)ϕ)(w1)](ζ)
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is the expansion of the quotient of this power series and powers of (z1+ζ), (z2+ζ)

and ζ. The denominators are expanded as power series of z1 and z2. The coeffi-

cient of each z−n1−1
1 z−n2−1

2 is precisely theW2-valued rational function determined

by w′
2 7→ gn1n2(ζ). Thus this W2-valued rational function is in (Ŵ2)ζ .

Thus we know that the series

zp11 zp22 (z1 − z2)
p12Y L

H (YV (u1, z1 − z2)u2, z2)ϕ

is a power series in H[[z1, z2]]. If we take u1, u2 ∈ V, ϕ ∈ H to be homogeneous

elements and pair this power series to some homogeneous ϕ′ ∈ H, then we will get

a homogeneous polynomial of degree wt ϕ′−wt u1−wt u2−wt ϕ+ p1+ p2+ p12.

Thus for general nonhomogeneous u1, u2 ∈ V, ϕ ∈ H,ϕ′ ∈ (HN )′, we have

zp11 zp22 (z1 − z2)
p12⟨ϕ′, Y L

H (YV (u1, z1 − z2)u2, z2)ϕ⟩ ∈ C[z1, z2]

Dividing the polynomial by zp11 zp22 (z1 − z2)
p′12 and expand the negative powers of

z1 = z2+(z1−z2), we see that the resulting series coincides with ⟨ϕ′, Y L
H (YV (u1, z1−

z2)u2, z2)ϕ⟩. Thus, the series

⟨ϕ′, Y L
H (YV (u1, z1 − z2)u2, z2)ϕ⟩

converges absolutely to a rational function that has poles at z1 = 0, z2 = 0 and

z1 = z2.

6. To see the associativity, it suffices to notice that

⟨w′
2, Y

L
W2

(u1, z1 + ζ)Y L
W2

(u2, z2 + ζ)w1⟩

converges absolutely when

|z1 + ζ| > |z2 + ζ| > |ζ| > 0

to the same rational function that

⟨w′
2, Y

L
W2

(YV (u1, z1 − z2)u2, z2 + ζ)(ϕ(w1))(ζ)⟩

converges to. Thus in the region

|z1 + ζ| > |z2 + ζ| > |ζ| > |z1| > |z2| > 0,
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these two series are equal. Therefore,

zp11 zp22 (z1−z2)
p12Y L

H (u1, z1)Y
L
H (u2, z2)ϕ = zp11 zp22 (z1−z2)

p12Y L
H (YV (u1, z1−z2)u2, z2)ϕ

Hence the associativity is proved.

7. From the second part of composable condition, p1 depends only on the choice of

u1 and ϕ, p2 depends only on the choice of u2 and ϕ, p′12 depends only on the

choice of u1 and u2. Thus the pole-order condition is satisfied. The rationality of

products of any numbers of vertex operators then follows from Proposition 3.1.21.

6.3.2 The right V -module structure on HN

Definition 6.3.6. We define the following right action of V on HN : for u ∈ V, ϕ ∈ HN

[(Y R
H (ϕ, z)u)(w1)](ζ) = ιζzE(ϕ(Y L

W1
(u, ζ)w1)(z + ζ))

The definition is understood as follows:

1. Since ϕ is composable with any number of vertex operators, in particular, for any

w′
2 ∈ W ′

2, the complex series

⟨w′
2, ϕ(Y

L
W1

(u, ζ)w1)(z + ζ)⟩

converges absolutely in the region

|z + ζ| > |ζ| > 0

to a rational function with poles at z + ζ = 0, ζ = 0, z = 0. Moreover, the order

of the pole z = 0 is controlled above by wt u+wt ϕ.

2. Expand the negative powers of (z + ζ) as a power series of z. Then we get a

complex series ∑
n∈Z

cn(w
′
2 ⊗ u⊗ ϕ⊗ w1; ζ)z

−n−1

Note that because of the N -weight-degree condition, the lowest power of z is at

least as large as −wt u−wt ϕ. The coefficient of each power of z is then a rational

function with poles at ζ = 0.
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3. For each fixed ζ ̸= 0, the linear functional w′
2 7→ cn(w

′
2⊗u⊗ϕ⊗w1; ζ) would then

be defining an element in
>
W2. From the definition of composability, note that the

series
∑

n∈Z cn(·⊗u⊗ϕ⊗w1; ζ)z
−n−1 of

>
W -elements is obtained from expanding

a localized formal series in W [[z, ζ]][z−1, ζ−1, (z + ζ)−1]. Thus the coefficients

cn(·⊗u⊗ϕ⊗w1; ζ) is a lower-truncated series in W2((ζ)). One then checks easily

that for every n ∈ Z and every fixed u ∈ V,w1 ∈ W1, cn(·⊗u⊗ϕ⊗w1; ζ) ∈ (Ŵ2)ζ.

Therefore, for each n ∈ Z, the map

w1 7→ cn(· ⊗ u⊗ ϕ⊗ w1; ζ)

is an element of Hom(W1, (Ŵ2)ζ). If we denote this map by (Y R
H )n(ϕ)u, then we

have

Y R
H (ϕ, z)u =

∑
n∈Z

(Y R
H )n(ϕ)uz

−n−1

as a series with coefficients in Hom(W1, (Ŵ2)ζ).

4. In terms of coefficients, we have the following identity

∑
n2∈Z

∑
n1∈Z

⟨w′
2, ϕn2((Y

L
W1

)n1w1)⟩(z + ζ)−n1−1ζ−n2−1

=
∑
n1∈Z

∑
n2∈Z

⟨w′
2, [(Y

R
H )n1(u)ϕ]n2(w1)⟩ζ−n2−1z−n1−1

when |z+ζ| > |ζ| > |z|. Since both sides are Laurent series expansion of a rational

function, the order of summation can be switched. Thus we can also write

∑
n∈Z

⟨w′
2, [ϕ((Y

L
W1

)n(u)w1)](z + ζ)⟩ζ−n−1 =
∑
n∈Z

⟨w′
2, [((Y

R
H )n(u)ϕ)(w1)](ζ)⟩z−n−1

(6.13)

Proposition 6.3.7. Let ϕ : W1 → (Ŵ2)ζ be a homogeneous map composable with any

number of vertex operators. Then for every n ∈ Z, u ∈ V ,

wt (Y R
H )n(ϕ)u = wt u− n− 1 + wt ϕ.

Proof. Let |z + ζ| > |ζ| > |z| > 0. Since

⟨w′
2, a

dW2ϕ(Y L
W1

(u, ζ)w1)(z + ζ)⟩ = ⟨w′
2, a

wt ϕ(ϕ(adW1Y L
W1

(u, ζ)w1))(az + aζ)⟩
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= ⟨w′
2, a

wt ϕ(ϕ(Y L
W1

(adV u, aζ)adW1w1))(az + aζ)⟩

we thus have

⟨w′
2, a

dW2 [(Y R
H (ϕ, z)u)(w1)](ζ)⟩ = ⟨w′

2, [(Y
R
H (awt ϕϕ, az)adV u)(adW1w1)](aζ)⟩

Expand Y R
H (ϕ, z)u as the sum of (Y R

H )n(ϕ)u and use the definition of the dH , we see

that

adH (Y R
H )n(ϕ)u = awt u+wt ϕ−n−1

Remark 6.3.8. As a consequence of the pole condition in the definition of compos-

ability, we know that −n− 1 ≥ −wt u− wt ϕ, and thus

wt (Y R
H )n(ϕ)u = wt u− n− 1 + wt ϕ ≥ 0.

Proposition 6.3.9. Let ϕ : W1 → (Ŵ2)ζ be a homogeneous map composable with any

number of vertex operators. Then for every n ∈ Z, u ∈ V , (Y R
H )n(ϕ)u is also composable

with any number of vertex operators.

Proof. Fix any m ∈ Z+. Since ϕ is composable with, in particular, m + 1 vertex

operators, for every l = 0, ...,m,w′
2 ∈ W ′

2, u1, ..., um ∈ V and w1 ∈ W1, the following

complex series

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)(ϕ(Y
L
W1

(u, ζ)Y L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1))(z + ζ)⟩

converges absolutely when

|z1| > · · · > |zl| > |z + ζ| > |ζ| > |zl+1| > · · · > |zm| > 0

to a rational function of the form

f(z1, ..., zm, z, ζ)

(z + ζ)r1zpζr2
m∏
i=1

zqii (zi − z − ζ)p
′
i(zi − ζ)p

′′
i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

with

1. p depends only on u and ϕ;
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2. p′i depending only to ui and ϕ, p′′i depending only on ui and u for i = 1, ...,m;

3. p′′′ij depending only on ui and uj for 1 ≤ i < j ≤ m;

4. r1 depends only on ϕ and w1;

5. r2 depends only on u and w1;

6. qi depends only on ui and ϕ for i = 1, ...,m.

In particular, the series, rewritten as,

∑
n1,...,nm∈Z,n∈Z

⟨w′
2, (Y

L
W2

)n1(u1) · · · (Y L
W2

)nl
(ul)[ϕ((Y

L
W1

)n(u)(Y
L
W1

)nl+1
(ul+1) · · · (Y L

W1
)nm(um)w1)](z + ζ)⟩·

z−n1−1
1 · · · z−nl−1

l ζ−n−1z
−nl+1−1
l+1 · · · z−nm−1

m

converges absolutely to the same rational function in the smaller region

|z1| > · · · > |zl| > |ζ|+ |z|, |ζ| − |z| > |zl+1| > · · · > |zm| > 0, |z + ζ| > |ζ|, |z| > 0.

As we have |z + ζ| > |z| > 0, by the identity (6.13), the series is equal to

∑
n1,...,nm∈Z

(∑
n∈Z

⟨w′
2, (Y

L
W2

)n1(u1) · · · (Y L
W2

)nl
(ul)[((Y

R
H )n(ϕ)u)((Y

L
W1

)nl+1
(ul+1) · · · (Y L

W1
)nm(um)w1)](ζ)⟩·

z−n−1

)
z−n1−1
1 · · · z−nl−1

l z
−nl+1−1
l+1 · · · z−nm−1

m

which also converges to the same rational function. We note that the series coincides

with the expansion of the rational function in the region

|z1| > · · · > |zl| > |ζ|+ |z|, |ζ| − |z| > |zl+1| > · · · > |zm| > 0,

where the negative powers of

• z + ζ are expanded as a power series of z;

• zi − ζ are expanded as a power series of ζ when i ≤ l;

• zi − ζ are expanded as a power series of zi when i > l;

• zi − z − ζ are expanded first as a power series of (z + ζ) when i ≤ l, then further

expand the positive powers of z + ζ as polynomials in z, ζ;
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• zi − z− ζ are first expanded as a power series of (z+ zi) when i > l, then further

expand the positive powers of z + zi as polynomials in z, zi;

• zi − zj are expanded as a power series of zj when i < j.

In particular, the order of summation can be switched. Thus we know that the following

series

∑
n∈Z

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)[((Y
R
H )n(ϕ)u)(Y

L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1)](ζ)⟩z−n−1

converges to the same rational function when

|z1| > · · · > |zl| > |ζ|+ |z|, |ζ| − |z| > |zl+1| > · · · > |zm| > 0,

Now we rewrite the rational function as∑K
k1=0 fk1(z1, ..., zm, ζ)zk1

[1 + z/ζ]r1zpζr1+r2
m∏
i=1

zqii (zi − ζ)p
′
i+p′′i [1− z/(zi − ζ)]p

′′
i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

and expand the bracketed denominators in the as the power series of the second term.

In other words, the expansion is done in the region

|ζ| > |z| > 0, |zi − ζ| > |z|

Organize the series according to the power of z, we will obtain the following:

∑
−n−1≥−p


K∑

k1=0

∑
k31,...,k3m≥0

k31+···+k3m≤−n−1+p−k1

ak2k31...k3mfk1(z1, ..., zm, ζ)

zpζr1+r2+k2
m∏
i=1

zqii (zi − ζ)p
′
i+p′′i +k3i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

z−n−1

where k2 = −n − 1 + p − k1 −
∑m

i=1 k3i is a nonnegative integer. Thus for each fixed

n ∈ Z, the series

⟨w′
2, Y

L
W2

(u1, z1) · · ·Y L
W2

(ul, zl)[((Y
R
H )n(ϕ)u)(Y

L
W1

(ul+1, zl+1) · · ·Y L
W1

(um, zm)w1)](ζ)⟩

converges absolutely when

|z1| > · · · > |zl| > |ζ| > |zl+1| > · · · > |zm| > 0
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to the rational function

K∑
k1=0

∑
k31,...,k3m≥0

k31+···+k3m≤−n−1+p−k1

ak2k31...k3mfk1(z1, ..., zm, ζ)

zpζr1+r2+k2
m∏
i=1

zqii (zi − ζ)p
′
i+p′′i +k3i

∏
1≤i<j≤m

(zi − zj)
p′′′ij

with the only possible poles at ζ = 0, zi = 0, zi = ζ for i = 1, ...,m, and zi − zj = 0 for

1 ≤ i < j ≤ m. This proves the first part of composability.

To see the second part of composability, it suffices to verify the conditions specified

in Remark 6.2.10 in the rational function above.

1. For each i = 1, ...,m, qi depends only on ui and ϕ.

2. For each i = 1, ...,m,

p′i + p′′i + k3i ≤ p′i + p′′i +−n− 1 + p− k1 ≤ p′i + p′′i − n− 1 + p

which depends only on ui, u, n and ϕ. In particular, it is independent of the choice

of uj , j ̸= i, w1 and w′
2.

3. For each 1 ≤ i < j ≤ m, p′′′ij depends only on the choice of ui and uj .

4. Since k2 ≤ −n−1−p, we know r1+r2+k2 ≤ r1+r2−n−1−p which depends only

on u, ϕ, n and w1. In particular, it is independent of the choice of ui(i = 1, ...,m)

and w′
2.

Now we check the N -weight-degree condition for each (Y R
H )n(ϕ)u. Sincd ϕ ∈ HN ,

the expansion of the rational function

R
(
⟨w′

2 ,YW2(u1, z1 + ζ) · · ·YW2(ul, zl + ζ)

(ϕ(YW1(u, zl+1 + ζ)YW1(ul+1, zl+2 + ζ) · · ·YW1(um, ζ)w1)(z + ζ)⟩)

in the region |ζ| > |z1| > · · · > |zl| > |z| > |zl+1| > · · · > |zm| > 0 as a Laurent series

in z1, ..., zm, z with coefficients in C[[ζ, ζ−1]] has lowest total weight at least as large as

N − (wt u1 + · · · + wt um + wt u + wt ϕ). From Remark 6.2.18, the same condition

holds for the expansion in the region

|ζ| > |z1| > · · · > |zl| > |zl+1| > · · · > |zm| > |z| > 0
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From the analysis above, we see that this expansion coincides with the following series

∑
n∈Z

⟨w′
2,YW2(u1, z1 + ζ) · · ·YW2(ul, zl + ζ)

[((Y R
H )n(ϕ)u)(YW1(ul+1, zl+2 + ζ) · · ·YW1(um, ζ)w1)](zl+1 + ζ)⟩z−n−1

with the coefficients of each z−n−1 further expanded in the region |ζ| > |z1| > · · · >

|zm| > 0. For each monomial in this expansion, the total degree of z1, ..., zm, z is

nothing but the total degree of z1, ..., zm plus −n − 1, which is at least as large as

N − (wt u1 + · · · + wt um + wt u + ϕ). Thus, the total degree of z1, ..., zm in the

expansion of the rational function

R
(
⟨w′

2, YW2(u1, z1 + ζ) · · ·YW2(ul, zl + ζ)

[((Y R
H )n(ϕ)u)(YW1(ul+1, zl+2 + ζ) · · ·YW1(um, ζ)w1)](zl+1 + ζ)⟩

)
in the region |ζ| > |z1| > · · · > |zm| > 0 is at least as large as

N − (
m∑
i=1

wt ui +wt u+wt ϕ) + n+ 1 = N − (
m∑
i=1

wt ui +wt (Y R
H )n(ϕ)u)

Thus for each n ∈ Z, (Y L
H )n(ϕ) also satisfies the N -weight-degree condition.

So we have proved that for every ϕ ∈ HN , the series Y R
H (ϕ, x)u =

∑
n∈Z(Y

R
H )n(ϕ)ux

−n−1

is actually a series in HN [[x, x−1]], i.e., the map

Y R
H : HN ⊗ V → HN [[x, x−1]]

gives an action of V on HN .

Theorem 6.3.10. (HN , Y R
H ,dH , DH) forms a right V -module.

Proof. We know that H is graded by the eigenvalues of dH operator, equipped with a

vertex operator map Y R
H : V ⊗ H → H[[x, x−1]], an operator dH of weight 0 and an

operator DH of weight 1. Now we verify all the axioms.

1. The lower bound condition and the d-grading condition is obviously satisfied.

The d-bracket property easily follows from the weight formula proved above.
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2. The creation property follows from that the following computations:

[(Y R
H (ϕ, z)1)(w1)](ζ) = [ϕ(Y L

W1
(1, ζ)w1)](z + ζ)

= (ϕ(w1))(z + ζ)

= [(ezDHϕ)(w1)](ζ)

Thus Y R
H (ϕ, z)1 = ezDHϕ. In particular, Y R

H (ϕ, z)1 ∈ H[[z, z−1]] and limz→0 Y
R
H (ϕ, z)1 =

ϕ.

3. The D-derivative property follows from the computation below:[
d

dz

(
Y R
H (ϕ, z)u

)]
(w1, ζ) =

d

dz

[(
Y R
H (ϕ, z)u

)
(w1, ζ)

]
=

d

dz
[ιζzE (ϕ(YW1(u, ζ)w1, z + ζ))]

=

[
ιζzE

(
d

dz
ϕ(YW1(u, ζ)w1, z + ζ)

)]
= ιζzE

[
d

d(z + ζ)
ϕ(YW1(u, ζ)w1, z + ζ)

d(z + ζ)

dz

]
= ιζzE [(DHϕ)(YW1(u, ζ)w1, z + ζ)]

= [Y R
H (DHϕ, z)u](w1, ζ)

The D-bracket formula follows from the computation below:

[DHY R
H (ϕ, z)u](w1, ζ)

=
d

dζ
[Y R

H (ϕ, z)u](w1, ζ)

=
d

dζ
ιζzE [ϕ(YW1(u, ζ)w1, z + ζ)]

= ιζzE

[
d

dζ
(ϕ(YW1(u, ζ)w1, z + ζ))

]
= ιζzE

[
d

d(z + ζ)
ϕ(YW1(u, ζ)w1, z + ζ)

d(z + ζ)

dζ

]
+ ιζzE

[
ϕ

(
d

dζ
YW1(u, ζ)w1, z + ζ

)]
= ιζzE [(DHϕ)(YW1(u, ζ)w1, z + ζ)] + ιζzE [ϕ(YW1(DV u, ζ)w1, z + ζ)]

= [Y R
H (DHϕ, z)u](w1, ζ) + [Y R

H (ϕ, z)DV u](w1, ζ)

4. We prove the rationality of products of two vertex operators elaborately The

rationality of products of any numbers of vertex operators will be seen immedi-

ately from Proposition 3.2.15 and the composable condition once associativity is

proved.
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Since ϕ is composable with any number of vertex operators, in particular, when

m = 2, l = 0, for any u1, u2 ∈ V,w1 ∈ W1, w
′
2 ∈ W ′

2, we know that

⟨w′
2, [ϕ(Y

L
W1

(u1, z2 + ζ)Y L
W1

(u2, ζ)w1)](z1 + ζ)⟩ (6.14)

converges absolutely in the region

S = {(z1, z2, ζ) ∈ C3 : |z1 + ζ| > |z2 + ζ| > |ζ| > 0}

to a rational function of the form

f(z1, z2, ζ)

(z1 + ζ)q1(z2 + ζ)q2ζrzp11 zp22 (z1 − z2)p
′
12

(6.15)

Note that ϕ(·, z1+ζ) is indeed also a series. We are not expanding it for simplicity.

The associativity of Y L
W1

shows that

Y L
W1

(u1, z2 + ζ)Y L
W1

(u2, ζ)w1 = Y L
W1

(YV (u1, z2)u2, ζ)w1

when

|z2 + ζ| > |z2| > |ζ| > 0.

Therefore (6.14) equals to

⟨w′
2, [ϕ(Y

L
W1

(YV (u1, z2)u2, ζ)w1)](z1 + ζ)

=
∑
n1∈Z

∑
n2∈Z

⟨w′
2, [ϕ((Y

L
W1

)n1((YV )n2(u1)u2)w1)](z1 + ζ)⟩z−n2−1
2

 ζ−n1−1,

(6.16)

which is a series in z1 + ζ, z2, ζ converging absolutely to the rational function

(6.15) in the multicircular region

S∩ = {(z1, z2, ζ) : |z1 + ζ| > |z2 + ζ| > |z2| > |ζ| > 0}

Note that the rational function (6.15) can be expanded as an absolutely convergent

Laurent series in the region

S1 = {(z1, z2, ζ) : |z1 + ζ| > |z2|+ |ζ|, |z2| > 0, |ζ| > 0}
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by expanding the negative powers of z2 + ζ as power series of ζ, z1 = z1 + ζ − ζ

as power series of ζ, z1− z2 = z1+ ζ− (ζ+ z2) first as power series of z2+ ζ, then

expand the positive powers of (z2 + ζ) as polynomials of z2 and ζ. Note that in

this expansion, the power of ζ is upper truncated by the order of pole ζ = ∞. So

if we set S′
1 = S1 ∩ S∩, then since S′

1 ̸= ∅, we can apply Lemma 2.3.9 to see that

the series (6.14) converges absolutely to the rational function (6.15) in the region

S1. In particular, one can switch the order of summation. To sum up, the series

⟨w′
2, (ϕ(Y

L
W1

(YV (u1, z2)u2, ζ)w1))(z1 + ζ)⟩

converges absolutely to the rational function (6.15) in the region S1 and can be

written as

∑
n2∈Z

∑
n1∈Z

⟨w′
2, (ϕ((Y

L
W1

)n1((YV )n2(u1)u2)w1)(z1 + ζ)⟩ζ−n1−1

 z−n2−1
2 (6.17)

converges absolutely to (6.15) in S1

The identity (6.13) shows that when |z1 + ζ| > |ζ| > |z1| > 0, for every fixed

n2 ∈ Z,

∑
n1∈Z

⟨w′
2, (ϕ((Y

L
W1

)n1((YV )n2(u1)u2)w1))(z1 + ζ)⟩ζ−n1−1

=
∑
n1∈Z

⟨w′
2, [((Y

R
H )n1((YV )n2(u1)u2)ϕ)(w1)](ζ)⟩z−n1−1

1

Thus the series (6.17) can be rewritten as

∑
n2∈Z

∑
n1∈Z

⟨w′
2, [ϕ((Y

L
W1

)n1((YV )n2(u1)u2)w1)](z1 + ζ)⟩z−n1−1
1

 z−n2−1
2

=⟨w′
2, [(Y

R
H (ϕ, z1)YV (u1, z2)u2)(w1)](ζ)⟩ (6.18)

in the region

S∩
1 = {(z1, z2, ζ) : |z1 + ζ| > |z2|+ |ζ|, |z1 + ζ| > |ζ| > |z1| > 0, |z2| > 0}

Thus the series (6.18), as a series in z1, z2, ζ, converges to the rational function

(6.15) in the region S∩
1 .
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Note that the rational function (6.15) can be expanded as an absolutely convergent

Laurent series in the region

S2 = {(z1, z2, ζ) ∈ C3 : |ζ| > |z1| > |z2| > 0}

by expanding the negative powers of z1 + ζ as power series of z1, z2 + ζ as power

series of z2, and z1 − z2 as power series of z2. Note that the power of z2 is lower

truncated. So if we set S′
2 = S2 ∩ S∩

1 , then since S′
2 ̸= ∅, we can apply Lemma

2.3.7 to see that the series on the right hand side of (6.18) converges absolutely

in S2.

Therefore, we know that

zp11 zp22 (z1 − z2)
p′12⟨w′

2, [(Y
R
H (ϕ, z1)YV (u1, z2)u2)(w1)](ζ)⟩

is precisely

f(z1, z2, ζ)

ζr
ιζz1

(
1

(z1 + ζ)q1

)
ιζz2

(
1

(z2 + ζ)q2

)
,

which has no negative powers of z1, z2. For each fixed n1, n2 ∈ Z, the coefficient of

z−n1−1
1 z−n2−1

2 is a Laurent polynomial in ζ. We denote this coefficient by gn1n2(ζ)

and claim that the W2-valued rational function determined by

w′
2 7→ gn1n2(ζ)

is an element in (Ŵ2)ζ .

From the second part of the composable condition, orders of poles of the rational

function (6.15) is bounded above by constants that are independent of the choice

of w′
2, one sees that the series

(ϕ(Y L
W1

(u1, z2 + ζ)Y L
W1

(u2, ζ)w1))(z1 + ζ)

multiplied with the denominator of (6.15) is actually a power series with coeffi-

cients inW2. The above procedure shows that the series [(Y
R
H (ϕ, z1)YV (u1, z2)u2)(w1)](ζ)

converges to the same W2-valued rational function. Therefore, after multiplied

with the denominators of (6.15), we should get the same power series. Thus, the

series

zp11 zp22 (z1 − z2)
p′12 [(Y R

H (ϕ, z1)YV (u1, z2)u2)(w1)](ζ)
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is the expansion of the quotient of this power series and powers of (z1+ζ), (z2+ζ)

and ζ. The denominators are expanded as power series of z1 and z2. The coeffi-

cient of each z−n1−1
1 z−n2−1

2 is precisely theW2-valued rational function determined

by w′
2 7→ gn1n2(ζ). Thus this function is in (Ŵ2)ζ .

Hence, the map

w1 7→
(
w′
2 7→ gn1n2(ζ)

)
gives an element in Hom(W1, (Ŵ2)ζ). Thus we see that

zp11 zp22 (z1 − z2)
p′12Y R

H (ϕ, z1)YV (u1, z2)u2

is indeed a power series of with coefficients in Hom(W1, (Ŵ2)ζ). As pointed out

by Proposition 6.3.9, these coefficients are necessarily in H. Thus what we get is

a power series in H[[z1, z2]]. Note that if we take homogeneous u1, u2 ∈ V, ϕ ∈ H,

then the coefficient of each z−n1−1
1 z−n2−1

2 in the series

Y R
H (ϕ, z1)YV (u1, z2)u2 =

∑
n1,n2∈Z

(Y R
H )n1((YV )n2(u1)u2)ϕz

−n1−1
1 z−n2−1

2 ,

has weight

wt u1 +wt u2 +wt ϕ− n1 − n2 − 2

If we pair the series with some ϕ′ ∈ (HN )′, then the coefficient of z−n1−1
1 z−n2−1

2

is zero unless

wt ϕ′ = wt u1 +wt u2 +wt ϕ− n1 − n2 − 2

Thus −n1−n2−2 would equal to a fixed number. Since the power of z2 is bounded

below, we thus know that the power of z1 is bounded above. After multiplying

zp11 zp22 (z1− z2)
p′12 , we know that the power of z1 is also bounded below. And thus

the power of z2 is bounded above. Therefore we proved that

zp11 zp22 (z1 − z2)
p′12⟨ϕ′, Y R

H (ϕ, z1)YV (u1, z2)u2⟩

is a polynomial in C[z1, z2]. It is easy to see that the total degree of the polynomial

is precisely

wt ϕ′ − wt u1 − wt u2 − wt ϕ+ p1 + p2 + p′12.
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For nonhomogeneous u1, u2 ∈ V, ϕ ∈ HN , the conclusion also holds: a finite sum

of the homogeneous polynomials is still a polynomial. Therefore we proved that

for every u1, u2 ∈ V, ϕ ∈ HN , ϕ′ ∈ (HN )′,

zp11 zp22 (z1 − z2)
p′12⟨ϕ′, Y R

H (ϕ, z1)YV (u1, z2)u2⟩ ∈ C[z1, z2] (6.19)

Since the complex series

⟨ϕ′, Y R
H (ϕ, z1)YV (u1, z2)u2⟩

the power of z2 is lower-truncated and the power of z1 is upper-truncated, so if

we denote the polynomial given in (6.19) by h(z1, z2), then (6.12) must coincide

with

ιz1z2

(
h(z1, z2)

zp11 zp22 (z1 − z2)p
′
12

)
Thus we proved that for every ϕ′ ∈ H ′, u1, u2 ∈ V, ϕ ∈ HN

⟨ϕ′, Y R
H (ϕ, z1)YV (u1, z2)u2⟩

converges absolutely when

|z1| > |z2| > 0

to a rational function with the only possible poles at z1 = 0, z2 = 0, z1 = z2.

5. We prove the rationality of the iterate of two vertex operators. First notice that

for every w′
2 ∈ W ′

2, u1, u2 ∈ V, ϕ ∈ HN , w1 ∈ W1, the series

⟨w′
2, [ϕ(Y

L
W1

(u1, z2 + ζ)Y L
W1

(u2, ζ)w1)](z1 + ζ)⟩

converges absolutely when

S = {(z1, z2, ζ) ∈ C3 : |z1 + ζ| > |z2 + ζ| > |ζ| > 0}

to the rational function (6.15).

We use identity (6.13) to see

⟨w′
2, [Y

R
H (ϕ, z1 − z2)u1](YW1(u2, ζ)w1, z2 + ζ)⟩ (6.20)
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converges absolutely to the rational function (6.15) in the region

S∩ = {(z1, z2, ζ) ∈ C3 : |z1 + ζ| > |z2 + ζ| > |ζ| > |z1 − z2| > 0}

Note that this series is lower-truncated in ζ. Also note that the rational function

(6.15) can be expanded as an absolutely convergent Laurent series in z1− z2, z2+

ζ, ζ in the region

S1 = {(z1, z2, ζ) : |z2 + ζ| > |z1 − z2|+ |ζ|, |z1 − z2| > 0, |ζ| > 0}

by expanding negative powers of z1 + ζ = z2 + ζ + (z1 − z2) as power series of

(z1 − z2), z1 = z2 + ζ + (z1 − z2 − ζ) as a power series of z1 − z2 − ζ, then

further expand the positive powers of z1− z2− ζ as polynomials of z1− z2, ζ, and

z2 = z2 + ζ − ζ as power series of ζ. Since S1 ∩ S∩ ̸= ∅, we use Lemma 2.3.7 to

see that the series (6.20) converges absolutely to the rational function (6.15) in

the region S1.

We use identity (6.13) again to see that

⟨w′
2, [(Y

R
H (Y R

H (ϕ, z1 − z2)u1, z2)u2)(w1)](ζ)⟩

also converges absolutely to the same rational function in the region

S∩
1 = {(z1, z2, ζ) ∈ C3 : |z2 + ζ| > |z1 − z2|+ |ζ|, |ζ| > |z2| > 0}

Note that this series is lower-truncated in z1 − z2. Also note that the rational

function (6.15) can be expanded as an absolutely convergent Laurent series in

z1 − z2, z2, ζ in the region

S2 = {(z1, z2, ζ) ∈ C3 : |ζ| > |z1 − z2|+ |z2|, |z2| > |z1 − z2| > 0}

by expanding negative powers of z1 = z2+(z1− z2) as a power series in (z1− z2),

z2 + ζ as power series in z2, z1 + ζ first as power series in z1 = z1 − z2 + z2, then

further expand the positive powers of z1 as polynomials in z1 − z2 and z2. Since

S∩
1 ∩ S2 ̸= ∅, we then apply Lemma 2.3.7 to see that the series

⟨w′
2, [(Y

R
H (Y R

H (ϕ, z1 − z2)u1, z2)u2)(w1)](ζ)⟩
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converges absolutely to the rational function (6.15).

Multiplying both sides by powers of z1, z2 and z1 − z2, one sees that

zp11 zp22 (z1 − z2)
p12⟨w′

2, [(Y
R
H (Y R

H (ϕ, z1 − z2)u1, z2)u2)(w1)](ζ)⟩

=
f(z1, z2, ζ)

ζr
ιζ,z1−z2+z2

(
1

(z1 + ζ)q1

)
ιζz2

(
1

(z2 + ζ)q2

)
has no negative powers of z1, z2.

We denote the coefficient of each z−n1−1
1 z−n2−1

2 by gn1n2(ζ) and claim that the

W2-valued rational function

w′
2 7→ gn1n2(ζ)

is an element in (Ŵ2)ζ .

Since the orders of poles of the rational function (6.15) is bounded above by

constants that are independent of the choice of w′
2, one sees that the series

[ϕ(Y L
W1

(u1, z2 + ζ)Y L
W1

(u2, ζ)w1)](z1 + ζ)

multiplied with the denominator of (6.15) is actually a power series with co-

efficients in W2. The above procedure shows that the series [(Y R
H (Y R

H (ϕ, z1 −

z2)u1, z2)u2)(w1)](ζ) converges to the same W2-valued rational function. There-

fore, after multiplied with the denominators of (6.15), we should get the same

power series. Thus, the series

zp11 zp22 (z1 − z2)
p′12 [(Y R

H (Y R
H (ϕ, z1 − z2)u1, z2)u2)(w1)](ζ)

is the expansion of the quotient of this power series and powers of (z1+ζ), (z2+ζ)

and ζ. The denominators are expanded as power series of z1 and z2. The coeffi-

cient of each z−n1−1
1 z−n2−1

2 is precisely theW2-valued rational function determined

by w′
2 7→ gn1n2(ζ). Thus this W2-valued rational function is in (Ŵ2)ζ .

Thus we know that the series

zp11 zp22 (z1 − z2)
p12Y R

H (Y R
H (ϕ, z1 − z2)u1, z2)u2

is a power series in H[[z1, z2]]. If we take u1, u2 ∈ V, ϕ ∈ H to be homogeneous

elements and pair this power series to some homogeneous ϕ′ ∈ H, then we will get
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a homogeneous polynomial of degree wt ϕ′−wt u1−wt u2−wt ϕ+ p1+ p2+ p12.

Thus for general nonhomogeneous u1, u2 ∈ V, ϕ ∈ H,ϕ′ ∈ (HN )′, we have

zp11 zp22 (z1 − z2)
p12⟨ϕ′, Y R

H (Y R
H (ϕ, z1 − z2)u1, z2)u2ϕ⟩ ∈ C[z1, z2]

Dividing the polynomial by zp11 zp22 (z1 − z2)
p′12 and expand the negative powers of

z1 = z2+(z1−z2), we see that the resulting series coincides with ⟨ϕ′, Y R
H (Y R

H (ϕ, z1−

z2)u1, z2)u2⟩. Thus, the series

⟨ϕ′, Y R
H (Y R

H (ϕ, z1 − z2)u1, z2)u2⟩

converges absolutely to a rational function that has poles at z1 = 0, z2 = 0 and

z1 = z2.

6. To see the associativity, it suffices to notice that

⟨w′
2, [ϕ(Y

L
W1

(u1, z2 + ζ)Y L
W1

(u2, ζ)w1)](z1 + ζ)⟩

converges absolutely when

|z1 + ζ| > |z2 + ζ| > |ζ| > 0

to the same rational function that

⟨w′
2, [ϕ(Y

L
W1

(YV (u1, z2)u2, ζ)w1)](z1 + ζ)⟩

converges to. Thus in the region

|z1 + ζ| > |z2 + ζ| > |ζ| > |z1| > |z2| > 0,

these two series are equal. Therefore,

zp11 zp22 (z1−z2)
p12Y R

H (Y R
H (ϕ, z1−z2)u1, z2)u2 = zp11 zp22 (z1−z2)

p12Y R
H (ϕ, z1)YV (u1, z2)u2

Hence the associativity is proved.

7. From the second part of composable condition, p1 depends only on the choice of

u1 and ϕ, p2 depends only on the choice of u2 and ϕ, p′12 depends only on the

choice of u1 and u2. Thus the pole-order condition is satisfied. The rationality of

products of any numbers of vertex operators then follows from Proposition 3.2.15.
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6.3.3 Compatibility of the left and right V -module structure

In order to conclude that H is a V -bimodule, what remains to be shown is the following

compatibility condition

Proposition 6.3.11. For every m ∈ Z+, l = 0, ...,m, u1, ..., um ∈ V, ϕ ∈ H,ϕ′ ∈

(HN )′,

⟨ϕ′, Y L
H (u1, z1) · · ·Y L

H (ul, zl)Y
R
H (ϕ, zl+1)YV (ul+1, zl+2) · · ·YV (um−1, zm)um⟩

converges absolutely when

|z1| > · · · > |zm| > 0

to a rational function with the only possible poles at zi = 0, i = 1, ...,m; zi = zj , 1 ≤ i <

j ≤ m.

Proof. The idea of the proof is similar. Here we only give a brief sketch:

Fix m ∈ Z+, u1, ..., um ∈ V, ϕ ∈ HN . It suffices to discuss only the case when

l = 1, ...,m− 1. Take also w′
2 ∈ W ′

2, w1 ∈ W1. Since ϕ is composable with any number

of vertex operators, we know that

⟨w′
2, Y

L
W2

(u1, z1+ζ) · · ·Y L
W2

(ul, zl+ζ)[ϕ(Y L
W1

(ul+1, zl+2+ζ) · · ·Y L
W1

(um−1, zm+ζ)Y L
W1

(um, ζ)w1)](zl+1+ζ)⟩

converges absolutely when

|z1 + ζ| > · · · > |zm + ζ| > |ζ| > 0

to a rational function of the form

f(z1, ..., zm, ζ)

ζr
m∏
i=1

zpii (zi + ζ)qi
∏

1≤i<j≤m
(zi − zj)

p′ij

(6.21)

We repeatedly use associativity to see that the following series

⟨w′
2, Y

L
W2

(u1, z1+ζ) · · ·Y L
W2

(ul, zl+ζ)[ϕ(Y L
W1

(YV (ul+1, zl+2) · · ·YV (um−1, zm)um, ζ)w1)](zl+1+ζ)⟩

is the expansion of the rational function (6.21) in the region

{(z1, ..., zm, ζ) ∈ Cm+1 : |z1+ζ| > · · · > |zl+1+ζ| > |ζ|+|zl+2|, |ζ| > |zl+2| > · · · > |zm|}

with the negative powers of
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• zi = zi + ζ − ζ expanded as power series of ζ, for i = 1, ..., l + 1;

• zi + ζ expanded as power series of zi, for i = l + 2, ...,m;

• zi− zj = zi+ ζ− (zj + ζ) expanded as power series of zj + ζ, for 1 ≤ i < j ≤ l+1;

• zi − zj expanded as power series of zj , for l + 2 ≤ i < j ≤ m;

• zi − zj = zi + ζ − (zj + ζ) expanded as power series of zj + ζ first, then further

expand the positive powers of zj + ζ as polynomials of zj and ζ, for 1 ≤ i ≤

l + 1, l + 2 ≤ j ≤ m.

We repeatedly use the identities (6.3) and (6.13), to see that the series

⟨w′
2, [(Y

L
H (u1, z1) · · ·Y L

H (ul, zl)Y
R
H (ϕ, zl+1)YV (ul+1, zl+2) · · ·YV (um−1, zm)um)(w1)](ζ)⟩

is the expansion the rational function (6.21) in the region

{(z1, ..., zm, ζ) ∈ Cm+1 : |ζ| > |z1| > · · · > |zm| > 0}

with the negative powers of

1. zi + ζ expanded as power series of zi, for 1 ≤ i ≤ m;

2. zi − zj expanded as power series of zj , for 1 ≤ i < j ≤ m.

Now we multiply the series with the powers of zi’s and (zi − zj)’s, to see that

m∏
i=1

zpii
∏

1≤i<j≤m

(zi − zj)
p′ij

⟨w′
2, [(Y

L
H (u1, z1) · · ·Y L

H (ul, zl)Y
R
H (ϕ, zl+1)YV (ul+1, zl+2) · · ·YV (um−1, zm)um)(w1)](ζ)⟩

=
f(z1, ..., zm, ζ)

ζr

m∏
i=1

ιζzi
1

(zi + ζ)qi

where for each i = 1, ...,m the ιζzi operator expands the negative powers of ζ + zi as

a power series of zi. Thus the left-hand-side has no negative powers of z1, ..., zm. We

similarly verify that for every fixed n1, ..., nm ∈ Z, the
>
W -valued rational function

w′
2 7→ gn1...nm(ζ)
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is an element in (Ŵ2)ζ , where gn1...nk
is the coefficient of z−n1−1

1 · · · z−nm−1
m in the power

series above. Thus we know that the series

m∏
i=1

zpii
∏

1≤i<j≤m

(zi−zj)
p′ijY L

H (u1, z1) · · ·Y L
H (ul, zl)Y

R
H (ϕ, zl+1)YV (ul+1, zl+2) · · ·YV (um−1, zm)um

is also a power series in H[[z1, ..., zm]]. If we take u1, ..., um ∈ V and ϕ ∈ H to be

homogeneous elements and pair this power series to some homogeneous ϕ′ ∈ (HN )′,

then we will get a homogeneous polynomial of degree wt ϕ′ −wt (u1)− · · · −wt(um)−

wt ϕ+
∑m

i=1 pi+
∑

1≤i<j≤m p′ij . So for general nonhomogeneous u1, ..., un ∈ V, ϕ ∈ HN ,

we have

m∏
i=1

zpii
∏

1≤i<j≤m

(zi − zj)
pij ⟨ϕ′, Y L

H (u1, z1) · · ·Y L
H (ul, zl)Y

R
H (ϕ, zl+1)YV (ul+1, zl+2) · · ·YV (um−1, zm)um⟩

∈ C[z1, ..., zm]

Dividing both sides by the powers of zi’s and (zi−zj)’s and expand the rational function

in the region |z1| > · · · > |zm| > 0, we see that

⟨ϕ′, Y L
H (u1, z1) · · ·Y L

H (ul, zl)Y
R
H (ϕ, zl+1)YV (ul+1, zl+2) · · ·YV (um−1, zm)um⟩

converges absolutely in the region

|z1| > · · · > |zn| > 0

to a rational function with poles at zi = 0, i = 1, ...,m and zi = zj , 1 ≤ i < j ≤ m.

Thus the rationality of the product of any number of vertex operators is proved.

Proposition 6.3.12. For every u1, u2 ∈ V, ϕ ∈ H,ϕ′ ∈ (HN )′,

⟨ϕ′, Y L
H (u1, z1)Y

R
H (ϕ, z2)u2 = ⟨ϕ′, Y R

H (Y L
H (u1, z1 − z2)ϕ, z2)u2

when |z1| > |z2| > |z1 − z2| > 0

Proof. Since ϕ is composable to any number of vertex operators, in particular, for every

w′
2 ∈ W ′

2, w1 ∈ W1, u1, u2 ∈ V ,

⟨w′
2, YW2(u1, z1 + ζ)(ϕ(YW1(u2, ζ)w1))(z2 + ζ)
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converges absolutely to a rational function with the only possible poles at z1 + ζ =

0, z2+ ζ = 0, ζ = 0, z1 = 0, z2 = 0, z1 = z2. From the preceding proposition, we see that

⟨w′
2, [(Y

L
H (u1, z1)Y

R
H (ϕ, z2)u2)(w1)](ζ)⟩

is precisely the expansion of the rational function in the region |ζ| > |z1| > |z2| > 0.

Now we first use Identity (6.3) to see that

⟨w′
2, YW2(u1, z1+ζ)(ϕ(YW1(u2, ζ)w1))(z2+ζ) = ⟨w′

2, [(Y
L
H (u1, z1−z2)ϕ)(YW1(u2, ζ)w1)](z2+ζ)⟩

when |z1 + ζ| > |z2 + ζ| > |ζ| > |z1 − z2| > 0. One uses Lemma 2.3.7 to see that

the right-hand-side coincides with the expansion of the rational function in the region

{(z1, z2, ζ) : |z2 + ζ| > |ζ|+ |z1 − z2|, |ζ| > 0, |z2| > 0}. Then we use Identity (6.13) to

see that

⟨w′
2, [(Y

L
H (u1, z1−z2)ϕ)(YW1(u2, ζ)w1)](z2+ζ)⟩ = ⟨w′

2, [(Y
R
H (Y L

H (u1, z1−z2)ϕ, z2)u2)(w1)](ζ)⟩

One uses Lemma 2.3.7 again to see that the right-hand-side coincides with the expansion

of the the rational function in the region {(z1, z2, ζ) : |ζ| > |z2| > |z1 − z2| > 0}.

Therefore, when |ζ| > |z1| > |z2| > |z1 − z2| > 0, we have

[(Y L
H (u1, z1)Y

R
H (ϕ, z2)u2)(w1)](ζ) = [(Y L

H (Y R
H (ϕ, z1 − z2)u1, z2)u2)(w1)](ζ)

as W2-valued rational functions. From the second part of the composable condition,

one sees that

(Y L
H (u1, z1)Y

R
H (ϕ, z2)u2)(w1) = (Y L

H (Y R
H (ϕ, z1 − z2)u1, z2)u2)(w1)

defines the same W2-valued rational function, and there exists p1, p2, p12 ∈ N, such that

zp11 zp22 (z1−z2)
p12(Y L

H (u1, z1)Y
R
H (ϕ, z2)u2) = zp11 zp22 (z1−z2)

p12(Y L
H (Y R

H (ϕ, z1−z2)u1, z2)u2)

as series in HN [[z1, z2]]. Thus for every fixed ϕ′ ∈ (HN )′,

⟨ϕ′, Y L
H (u1, z1)Y

R
H (ϕ, z2)u2⟩ = ⟨ϕ′, Y L

H (Y R
H (ϕ, z1 − z2)u1, z2)u2⟩

when |z1| > |z2| > |z1 − z2| > 0.

Combining all the results in this section, we have proved the following

Theorem 6.3.13. For every N ∈ Z, (HN , Y L
H , Y R

H ,dH , DH) forms a V -bimodule.
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6.4 The reductive theorem

In this section, given a left V -module W and a left V -submodule W2 of W and assuming

a composability condition, we construct a 1-cocycle in Ĉ1
∞(V,H(N,F (V ))) where N is a

lower bound of the weights of the elements of V , F (V ) is the image of a suitable linear

map F from V to HN , HN is the V -bimodule constructed in the preceding section and

H(N,F (V )) is the V -subbimodule of HN generated by F (V ). For brevity we shall denote

H(N,F (V )) simply by HF (V ).

6.4.1 Assumption of Composability and the bimodule HF (V )

Let W be a left V -module and W2 a V -submodule of W . Let W1 be a graded subspace

of W such that as a graded vector space, we have

W = W1 ⊕W2.

Then we can also embed W ′
1 and W ′

2 into W ′ and we have

W ′ = W ′
1 ⊕W ′

2.

Let πW1 : W → W1 and πW2 : W → W2 be the projections given by this graded space

decomposition of of W . For simplicity, we shall use the same notations πW1 and πW2 to

denote their natural extensions to operators on W 1 and W 2, respectively. By definition,

we have πW1+πW2 = 1W , πW1◦πW1 = πW1 , πW2◦πW2 = πW2 , πW1◦πW2 = πW2◦πW1 = 0.

Since W2 is a submodule of W , we have πW2 ◦ Y L
W ◦ (1V ⊗ πW2) = YW2 , DW2 =

πW2 ◦DW ◦ πW2 and dW2 = πW2 ◦ dW ◦ πW2 . We also have πW1 ◦ Y L
W ◦ (1V ⊗ πW2) = 0.

Let YW1 = πW1 ◦Y L
W ◦(1V ⊗πW1), DW1 = πW1 ◦DW ◦πW1 and dW1 = πW1 ◦dW ◦πW1

which is equal to the operator giving the grading on W1. As we have done above, we

use the same notations DW1 and dW1 to denote their natural extensions to W1. We

also use the same convention for notations for extensions of operators on W and W2.

Proposition 6.4.1. The graded vector space W1 equipped with the vertex operator map

YW1 and the operator DW1 is a left V -module.

Proof. The axioms for the grading and the identity property are obvious.
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For v ∈ V ,

d

dz
YW1(v, z) = πW1

(
d

dz
Y L
W (v, z)

)
πW1

= πW1Y
L
W (DV v, z))πW1

= YW1(DV v, z). (6.22)

Also using (6.22), we have

d

dz
YW1(v, z) = πW1Y

L
W (DV v, z)πW1

= πW1DWY L
W (v, z)πW1 − πW1Y

L
W (v, z)DWπW1

= πW1DWπW1Y
L
W (v, z)πW1 + πW1DWπW2Y

L
W (v, z)πW1

− πW1Y
L
W (v, z)πW1DWπW1 − πW1Y

L
W (v, z)πW2DWπW1

= DW1YW1(v, z) + πW1DWπW2Y
L
W (v, z)πW1

− YW1(v, z)DW1 − πW1Y
L
W (v, z)πW2DWπW1 . (6.23)

Since W2 is a V -submodule of W , πW1DWπW2 = πW1DW2πW2 = 0. Again since W2 is

a V -submodule of W , πW1Y
L
W (v, z)πW2 = πW1YW2(v, z)πW2 = 0.

For v, v1, . . . , vk ∈ V , w′
1 ∈ W ′

1 and w1 ∈ W1, using the properties of πW1 , πW2 , YW1 ,

YW2 given above, we have

⟨w′
1, YW1(v1, z1) · · ·YW1(vk, zk)w1⟩ = ⟨w′

1, Y
L
W (v1, z1) · · ·Y L

W (vk, zk)w1⟩. (6.24)

Since the right-hand side of (6.24) is absolutely convergent in the region |z1| > · · · >

|zk| > 0 to a rational function in z1, . . . , zk with the only possible poles zi = 0 for

i = 1, . . . , k and zi = zj for 1 ≤ i < j ≤ k, so is the left-hand side. This proves the

rationality.

For v, v1, v2 ∈ V , w′
1 ∈ W ′

1 and w1 ∈ W1, using the properties of πW1 , πW2 , YW1 ,

YW2 again and the associativity for Y L
W , we obtain

⟨w′
1, YW1(v1, z1)YW1(v2, z2)w1⟩

= ⟨w′
1, Y

L
W (v1, z1)Y

L
W (v2, z2)w1⟩

= ⟨w′
1, Y

L
W (YV (v1, z1 − z2)v2, z2)w1⟩
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= ⟨w′
1, YW1(YV (v1, z1 − z2)v2, z2)w1⟩, (6.25)

proving the associativity for YW1 .

Remark 6.4.2. Note that although W1 is a graded subspace of W , (W1, YW1) is not

a submodule of W since the vertex operator YW1 is not the restriction of the vertex

operator Y L
W to V ⊗W1.

We now have two left V -modules W1 and W2. From Theorem 6.3.13, for N ∈ Z, we

have a V -bimodule HN ⊂ Hom(W1, (̂W2)z).

We need the following assumption (called composability condition) on the map πW2 ◦

Y L
W ◦ (1V ⊗ πW1):

Assumption 6.4.3 (Composability condition). For every m ∈ Z+, l = 0, ...,m,

v, v1, . . . , vm ∈ V , w′
2 ∈ W ′

2 and w1 ∈ W1,

⟨w′
2, YW2(v1, z1) · · ·YW2(vl, zl)πW2Y

L
W (v, ζ)πW1YW1(vl+1, zl+1) · · ·YW1(vm, zm)w1⟩

(6.26)

is absolutely convergent in the region |z1| > · · · |zl| > |ζ| > |zl+1| > · · · > |zm| > 0 to

a rational function in z1, . . . , zm, ζ with the only possible poles zi = 0 for i = 1, . . . ,m,

ζ = 0, zi = zj for 1 ≤ i < j ≤ m and zi = ζ for i = 1, . . . ,m. Moreover, the orders

of the poles ζ = 0, zi = 0 for i = 1, ...,m, zi = ζ for i = 1, . . . ,m and zi = zj for

i, j = 1, . . . ,m, i ̸= j are bounded above by nonnegative integers depending only on

the pairs (v, w1), (vi, w1), (vi, v) and (vi, vj), respectively, and there exists N ∈ Z such

that when (6.26) is expanded as a Laurent series in the region |zm| > |z1 − zm| > · · · >

|zl− zm| > |ζ− zm| > |zl+1− zm| > · · · > |zm−1− zm| > 0 as a Laurent series in zi− zm

for i = 1, . . . ,m−1 and ζ−zm with Laurent polynomials in zm as coefficients, the total

degree of each monomial in zi − zm for i = 1, . . . ,m− 1 and ζ − zm in the expansion is

larger than or equal to N −
∑m

i=1wt vi +wt v.

We now assume that πW2 ◦ Y L
W ◦ (1V ⊗ πW1) satisfies the composability condition.

For v ∈ V , let F (v) ∈ Hom(W1, (̂W2)ζ) be given by

((F (v))(w1))(ζ) = πW2Y
L
W (v, ζ)πW1w1
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for w1 ∈ W1. Thus we obtain a linear map F : V → Hom(W1, (̂W2)ζ).

Proposition 6.4.4. For N ∈ Z such that wt v ≥ N for any homogeneous v ∈ V , the

image of F is in fact in HN and is thus a map from V to HN . Moreover, F preserve

the gradings.

Proof. Let v ∈ V be homogeneous. For a ∈ C× and w1 ∈ W1,

adW2 ((F (v))(w1))(ζ) = adW2πW2Y
L
W (v, z)πW1w1

= πW2Y
L
W (adV v, aζ)πW1a

dW1w1

= awt v((F (v))(adW1w1))(aζ),

proving the d-conjugation property of F (v) and wt F (v) = wt v.

The composable condition and the N -weight-degree condition obviously hold for

F (v) under the Assumption 6.4.3.

6.4.2 Constructing a 1-cocycle in Ĉ1
∞(V,HF (V ))

Proposition 6.4.4 says in particular that F (V ) is independent of such lower bound N of

the weights of V . Thus we shall denote H(N,F (V )) simply by HF (V ). Now we construct

a 1-cochain Ψ ∈ Ĉ1
∞(V,HF (V )). Since

Ĉ1
∞(V,HF (V )) ⊂ Hom(V, ˜(HF (V ))z),

For v ∈ V , w1 ∈ W1 and w′
2 ∈ W ′

2,

⟨w′
2, ((e

zDHF (v))(w1))(ζ)⟩ = ⟨w′
2, ((F (v))(w1))(ζ + z)⟩

= ⟨w′
2, πW2Y

L
W (v, ζ + z)w1⟩

in the region |ζ| > |z|. Let E(ezDHF (v)) ∈ ˜(HF (V ))z be defined by

⟨w′
2, ((E(ezDHF (v)))(w1))(ζ)⟩ = ⟨w′

2, πW2Y
L
W (v, ζ + z)w1⟩

v ∈ V , w1 ∈ W1 and w′
2 ∈ W ′

2 in the region ζ + z ̸= 0.

We define

(Ψ(v))(z) = E(ezDHF (v)).
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More explicitly, for v ∈ V , w1 ∈ W1 and w′
2 ∈ W ′

2,

⟨w′
2, (((Ψ(v))(z))(w1))(ζ)⟩ = ⟨w′

2, πW2Y
L
W (v, ζ + z)w1⟩. (6.27)

in the region ζ + z ̸= 0. In the region |ζ| > |z|, the series ezDHF (v) is convergent

absolutely to Ψ(v). We shall also use ezDHF (v) to denote (Ψ(v))(z) in the region

|ζ| > |z|. By definition, Ψ(v) ∈ ˜(HF (V ))z and thus Ψ ∈ Hom(V, ˜(HF (V ))z).

Theorem 6.4.5. Ψ ∈ ker δ̂1∞ ⊂ Ĉ1
∞(V,HF (V )).

Proof. We first prove that Ψ satisfies the D-derivative property and the d-conjugation

property and is composable with any number of vertex operators.

For v ∈ V , w1 ∈ W1, in the region |ζ| > |z|,((
∂

∂z
(Ψ(v))(z)

)
(w1)

)
(ζ)

=

((
∂

∂z
ezDHF (v))

)
(w1)

)
(ζ)

= ((ezDHDHF (v))(w1))(ζ)

= e
z ∂
∂ζ

∂

∂ζ
((F (v))(w1))(ζ)

= e
z ∂
∂ζ

∂

∂ζ
πW2Y

L
W (v, ζ)πW1w1

= e
z ∂
∂ζ πW2Y

L
W (DV v, ζ)πW1w1

= e
z ∂
∂ζ ((F (DV v))(w1))(ζ)

= (((ezDHF (DV v)))(w1))(ζ)

= (((Ψ(DV v))(z))(w1))(ζ).

Thus we obtain

∂

∂z
(Ψ(v))(z) = (Ψ(DV v))(z).

Also

DH(Ψ(v))(z) = DHE(ezDHF (v))

=
∂

∂z
E(ezDHF (v))

=
∂

∂z
(Ψ(v))(z)
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for v ∈ V . Thus we also obtain

∂

∂z
(Ψ(v))(z) = DH(Ψ(v))(z).

So Ψ satisfies the D-derivative property.

For a ∈ C× and v ∈ V ,

adH (Ψ(v))(z) = adHE(ezDHF (v))

= E(eza
dHDHa−dH adHF (v))

= E(eazDHF (adV v))

= (Ψ(adV v))(az).

This proves the d-conjugation property. Thus Ψ ∈ Ĉ1
0 (V,H

F (V )).

Now we prove that Ψ is composable with one vertex operator, i.e., for every u, v ∈ V ,

h′ ∈ H ′, the series

⟨h′, Y L
H (u, z1)(Ψ(v))(z2)⟩,

⟨h′, Y s(R)
H (u, z2)(Ψ(v))(z1)⟩,

⟨h′, [(Ψ(YV (u, z1 − η)YV (v, z2 − η)1))(w1)](η)⟩

converge absolutely respectively in |z1| > |z2|, |z2| > |z1| and |z1 − η| > |z2 − η| to

rational functions with the only possible poles at z1 = z2, and order of the pole z1 = z2

is bounded above by a constant that depends only on u and v.

From the assumption of composability of πW2 ◦ Y L
W ◦ (1V ⊗ πW1), we know that for

every w′
2 ∈ W ′

2, w1 ∈ W1, the series

⟨w′
2, YW2(u, z1 + ζ)πW2Y

L
W (v, ζ + z2)πW1w1⟩ = ⟨w′

2, YW2(u, z1 + ζ)[(F (v))(w1)](ζ + z2)⟩

converges absolutely to a rational function when |z1 + ζ| > |ζ + z2| > 0 with the only

possible poles at z1+ ζ = 0, z2+ ζ = 0, z1− z2 = 0. Use the identity (6.27) and Lemma

2.3.9, we see that the series

⟨w′
2, YW2(u, z1 + ζ)[(ez2DHF (v))(w1)](ζ)⟩
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is the expansion of the rational function in the region |z1 + ζ| > |z2|+ |ζ|, |ζ| > |z2|. In

particular, it converges absolutely. Use the identity (6.3) and Lemma 2.3.7, we see that

the series

⟨w′
2, [Y

L
H (u, z1)(e

z2DHF (v))(w1)](ζ)⟩

is the expansion of the rational function in the region |ζ| > |z1| > |z2|. In other words,

the series ∑
n1∈Z

∑
n2≤−1

⟨w′
2, [((Y

L
H )n1(u)D

−n2−1
H F (v))(w1)](ζ)⟩z−n1−1

1 z−n2−1
2

converges absolutely in this region to a rational function with the only possible poles

at z1 + ζ = 0, z2 + ζ = 0, z1 − z2 = 0. Moreover, one can find integers p1 depending

only on the choice of u and w1, p2 depending only on the choice of v and w1, and p12

depending only on the choice of u and v, and a polynomial f(z1, z2, ζ), such that

(z1 − z2)
p12
∑
n1∈Z

∑
n2≤−1

1

(−n2 − 1)!
⟨w′

2, [((Y
L
H )n1(u)D

−n2−1
H F (v))(w1)](ζ)⟩z−n1−1

1 z−n2−1
2

= ιζz1(z1 + ζ)−p1ιζz2(z2 + ζ)−p2f(z1, z2, ζ)

which have no negative powers of z1, z2. One can then see that the series

(z1 − z2)
p12
∑
n1∈Z

∑
n2≤−1

1

(−n2 − 1)!
((Y L

H )n1(u)D
−n2−1
H F (v))z−n1−1

1 z−n2−1
2 ,

as a formal series in z1, z2 with coefficients in H, has no negative power. From the

d-conjugation property of Y L
H and F (v), one can see that after pairing with h′ ∈ H ′,

the series

(z1 − z2)
p12
∑
n1∈Z

∑
n2≤−1

1

(−n2 − 1)!
⟨h′, ((Y L

H )n1(u)D
−n2−1
H F (v))⟩z−n1−1

1 z−n2−1
2

= (z1 − z2)
p12⟨h′, Y L

H (u, z1)e
z2DHF (v)⟩ = (z1 − z2)

p12⟨h′, Y L
H (u, z1)(Ψ(v))(z2)⟩

is a polynomial in C[z1, z2]. Thus the first series is the expansion of the quotient of

the polynomial by (z1 − z2)
p12 in the region |z1| > |z2|. In particular, the first series

converges absolutely.

For the second series, we first note that for ϕ ∈ HF (V ), w1 ∈ W1, we can compute

to see that

[(Y
s(R)
H (u, z)ϕ)(w1)](ζ) = ιζzE[ϕ(YW1(u, z + ζ)w1)](ζ)
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Similarly as the discussions after Definition of Y L
H and Y R

H , when |ζ| > |z+ ζ| > |z| > 0

[(Y
s(R)
H (u, z)ϕ)(w1)](ζ) = [ϕ(YW1(u, z + ζ)w1)](ζ) (6.28)

From the assumption of composability of πW2 ◦ Y L
W ◦ (1V ⊗ πW1), for every w′

2 ∈

W ′
2, w1 ∈ W1, the series

⟨w′
2, πW2Y

L
W (v, ζ + z1)πW1YW1(u, z2 + ζ)w1⟩ = ⟨w′

2, [(F (v))(YW1(u, z2 + ζ)w1)](ζ + z1)⟩

converges absolutely when |ζ + z1| > |z2 + ζ| > 0 to a rational function with the only

possible poles at z1 + ζ = 0, z2 + ζ = 0, z1 − z2 = 0. Using Identity (6.27) and Lemma

2.3.7, we can show that the series

⟨w′
2, [(e

z1DHF (v))(YW1(u, z2 + ζ)w1)](ζ)⟩

is the expansion of the rational function in the region |ζ| > |z2 + ζ|+ |z1|, |z2 + ζ| > 0.

In particular, it converges absolutely. Using the Identity (6.28) and Lemma 2.3.9, we

can show that the series

⟨w′
2, [(Y

s(R)
H (u, z2)e

z1DHF (v))(w1)](ζ)⟩

is the expansion of the rational function in the region |ζ| > |z2| > |z1|. In other words,

the series ∑
n2∈Z

∑
n1≤−1

1

(−n1 − 1)!
⟨w′

2, [((Y
s(R)
H )n2(u)D

−n1−1
H F (v))(w1)](ζ)⟩

converges absolutely in this region to a rational function with the only possible poles

at z1 + ζ = 0, z2 + ζ = 0, z1 − z2 = 0. Moreover, one can find integers p1 depending

only on the choice of v and w1, p2 depending only on the choice of u and w1, and p12

depending only on the choice of u and v, and a polynomial f(z1, z2, ζ), such that

(z1 − z2)
p12
∑
n2∈Z

∑
n1≤−1

1

(−n1 − 1)!
⟨w′

2, [((Y
s(R)
H )n2(u)D

−n1−1
H F (v))(w1)](ζ)⟩

= ιζz1(z1 + ζ)−p1ιζz2(z2 + ζ)−p2f(z1, z2, ζ)

which has no negative powers of z1, z2. One can then see the series

(z1 − z2)
p12
∑
n2∈Z

∑
n1≤−1

1

(−n1 − 1)!
(Y

s(R)
H )n2(u)D

−n1−1
H F (v)
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as a formal series in z1, z2 with coefficients in H, has no negative power. From the

d-conjugation property of Y L
H and F (v), one can see that after pairing with h′ ∈ H ′,

the series

(z1 − z2)
p12
∑
n2∈Z

∑
n1≤−1

⟨h′, 1

(−n1 − 1)!
(Y

s(R)
H )n2(u)D

−n1−1
H F (v)⟩

= (z1 − z2)
p12⟨h′, Y s(R)

H (u, z2)e
z1DHF (v)⟩ = (z1 − z2)

p12⟨h′, Y s(R)
H (u, z2)(Ψ(v))(z1)⟩

is a polynomial in C[z1, z2]. Thus the second series is the expansion of the quotient of

the polynomial by (z1 − z2)
p12 in the region |z2| > |z1|. In particular, the second series

converges absolutely.

For the third series, note that from the associativity of Y L
W , for every w′

2 ∈ W ′
2, w1 ∈

W1, the series

⟨w′
2, πW2Y

L
W (YV (u1, z1 − η)YV (u2, z2 − η)1, ζ + η)πW1w1⟩

converges absolutely when |ζ + η| > |z1 − η| > |z2 − η| to a rational function that is

independent of η and ζ and has the only possible poles at z1+ζ = 0, z2+ζ = 0, z1−z2 =

0. Using Identity (6.27) and Lemma 2.3.7, we can show that the series

⟨w′
2, [(e

ηDHF (YV (u, z1 − η)YV (v, z2 − η)1))(w1)](ζ)⟩

is the expansion of the rational function in the region |ζ| > |η| + |z1 − η|, |z1 − η| >

|z2 − η|. Moreover, one can find integers p1 depending only on the choice of u and w1,

p2 depending only on the choice of v and w1, and p12 depending only on the choice of

u and v, and a polynomial f(z1, z2, ζ), such that

(z1 − z2)
p12⟨w′

2, [(e
ηDHF (YV (u, z1 − η)YV (v, z2 − η)1))(w1)](ζ)⟩

is the expansion of f(z1, z2, ζ)/(z1 + ζ)p1(z2 + ζ)p2 obtained by expanding the negative

powers of zi + ζ first as a power series of zi, then further expand the positive powers of

zi = zi− η+ η as polynomials in zi− η and η, for i = 1, 2. In particular, there does not

exist negative powers of z1 − η and z2 − η. One can see the series

(z1 − z2)
p12eηDHF (YV (u, z1 − η)YV (v, z2 − η)1),
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as a formal series in z1 − η, z2 − η and η, does not have negative powers. From the

d-conjugation property of F (v) and YV , one can see that after pairing with h′ ∈ H ′,

the series

(z1−z2)
p12⟨h′, eηDHF (YV (u, z1−η)YV (v, z2−η)1)⟩ = (z1−z2)

p12⟨h′, (Ψ(YV (u, z1−η)YV (v, z2−η)1))(η),

is a polynomial in C[z1, z2] that does not depend on η. Thus the third series is the

expansion of the quotient of this polynomial by (z1−z2)
p12 in the region |z1−η| > |z2−η|.

In particular, the third series converges absolutely in this region.

Now we prove δ̂11Ψ = 0. Let v1, v2 ∈ V , w1 ∈ W1 and w′
2 ∈ W ′

2. Using the properties

of πW1 , πW2 , YW1 , YW2 , we obtain

⟨w′
2, Y

L
W (v1, z1)Y

L
W (v2, z2)w1⟩

= ⟨w′
2, πW2Y

L
W (v1, z1)πW1YW1(v2, z2)w1⟩+ ⟨w′

2, YW2(v1, z1)πW2Y
L
W (v2, z2)πW1w1⟩

(6.29)

and

⟨w′
2, Y

L
W (YV (v1, z1 − z2)v2, z2)w1⟩ = ⟨w′

2, πW2Y
L
W (YV (v1, z1 − z2)v2, z2)πW1w1⟩. (6.30)

By the rationality for Y L
W , the left-hand sides of (6.29) and (6.30) are absolutely con-

vergent in the region |z1| > |z2| > 0 and |z2| > |z1 − z2| > 0, respectively, to a common

rational function in z1, z2 with the only possible poles z1, z2 = 0 and z1 = z2. In particu-

lar, the right-hand side of (6.30) is absolutely convergent in the region |z2| > |z1−z2| > 0

to the same rational function that the the left-hand sides of (6.30) converges to. On

the other hand, by Assumption 6.4.3, both terms in the right-hand side of (6.29) are

also absolutely convergent in the region |z1| > |z2| > 0 to a rational function in z1, z2

with the only possible poles z1, z2 = 0 and z1 = z2. By the associativity of Y L
W , (6.29)

and (6.30) , we obtain

⟨w′
2, πW2Y

L
W (v1, z1)πW1YW1(v2, z2)w1⟩+ ⟨w′

2, YW2(v1, z1)πW2Y
L
W (v2, z2)πW1w1⟩

= ⟨w′
2, πW2Y

L
W (YV (v1, z1 − z2)v2, z2)πW1w1⟩

in the region |z1| > |z2| > |z1 − z2| > 0 or, equivalently,

R(⟨w′
2, πW2Y

L
W (v1, z1)πW1YW1(v2, z2)w1⟩) +R(⟨w′

2, YW2(v1, z1)πW2Y
L
W (v2, z2)πW1w1⟩)
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= R(⟨w′
2, πW2Y

L
W (YV (v1, z1 − z2)v2, z2)πW1w1⟩). (6.31)

Replacing z1 and z2 in (6.31) by z1 + ζ and z2 + ζ, we obtain

R(⟨w′
2, πW2Y

L
W (v1, z1 + ζ)πW1YW1(v2, z2 + ζ)w1⟩)

+R(⟨w′
2, YW2(v1, z1 + ζ)πW2Y

L
W (v2, z2 + ζ)πW1w1⟩)

= R(⟨w′
2, πW2Y

L
W (YV (v1, z1 − z2)v2, z2 + ζ)πW1w1⟩). (6.32)

By (6.27) and the definition of Y R
H , the first term of the left-hand side of (6.32) is

equal to

R(⟨w′
2, ((Ψ(v1))(z1))(YW1(v2, z2 + ζ)w1))(ζ)⟩)

= R(⟨w′
2, (Y

R
H ((Ψ(v1))(z1),−z2)v2)(w1))(z2 + ζ)⟩)

= R(⟨w′
2, (e

z2DHY R
H ((Ψ(v1))(z1),−z2)v2)(w1))(ζ)⟩). (6.33)

By (6.27) and the definition of Y L
H , the second term of the left-hand side of (6.31) is

equal to

R(⟨w′
2, YW2(v1, z1 + ζ)(((Ψ(v2))(z2))(w1))(ζ)⟩)

= R(⟨w′
2, (Y

L
H (v1, z1)((Ψ(v2))(z2))(w1))(ζ⟩)). (6.34)

By (6.27), the right-hand side of (6.31) is equal to

R(⟨w′
2, (((Ψ(YV (v1, z1 − z2)v2))(z2))(w1))(ζ)⟩). (6.35)

Using (6.33)–(6.35) and the definition of δ̂11 , we see that (6.31) becomes

R(⟨w′
2, (((δ̂

1
1Ψ)(v1 ⊗ v2))(z1, z2))(w1)(ζ)⟩) = 0

for v1, v2 ∈ V , w1 ∈ W1 and w′
2 ∈ W ′

2. Thus we obtain δ̂11Ψ = 0. Thus Ψ ∈ ker δ̂11 we

see from Theorem 5.3.35 and Remark 5.3.36 that Ψ ∈ ker δ̂1∞.

6.4.3 The main theorem and the proof

In this section, we formulate and prove our main result on complete reducibility of

modules of finite length for a meromorphic open-strong vertex algebra V .
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Let W be a left V -module. Assume that W is not irreducible. Then there exists

a proper nonzero left V -submodule W2 of W . We say that the pair (W,W2) satisfies

the composability condition if there exists a graded subspace W1 of W such that W =

W1⊕W2 as a graded vector space such that πW2 ◦Y L
W ◦ (1V ⊗πW1) satisfies Assumption

6.4.3. If for every proper nonzero left V -submodule W2 of W , the pair (W,W2) satisfies

the composability condition, we say that W satisfies the composability condition.

Proposition 6.4.6. Let W be a completely reducbile left V -module. Then W satisfies

the composability condition.

Proof. Let W2 be a left V -submodule of W . Since W is completely reducible, there is a

left V -submodule W1 of W such that W as a left V -module is the direct sum of the left

V -modulesW1 andW2. Then πW1 and πW2 are module maps. Thus πW2◦Y L
W ◦(1V ⊗πW1)

satisfies Assumption 6.4.3.

Now let W be a left V -module which is not irreducible and W2 a proper nonzero

left V -submodule W2 of W . Assuming that the pair (W,W2) satisfies the composability

condition. Then there exists a graded subspace W1 of W such that as a graded vector

space, W is the direct sum of W1 and W2 and πW2 ◦Y L
W ◦(1V ⊗πW1) satisfies Assumption

6.4.3. By Theorem 6.3.13, Proposition 6.4.4 and Theorem 6.4.5, there exist a left V -

module structure on W1, a V -bimodule HN ⊂ Hom(W1, (̂W2)z1) for a lower bound N

of V , a grading preserving linear map F : V → HN and Ψ ∈ ker δ̂1∞ ⊂ Ĉ1
∞(V,HF (V )),

where HF (V ) is the V -subbimodule of HN generated by F (V ).

Theorem 6.4.7. Let W , W1, W2 and HF (V ) be as above. If Ĥ1
∞(V,HF (V )) = 0, then

there exists another left V -submodule W̃1 of W such that W is the direct sum of the left

V -submodules W̃1 and W2.

Proof. Since Ĥ1
∞(V,HF (V )) = 0, Ψ must be a coboundary. By definition, there exists

a 0-cochain Φ ∈ Ĉ0
∞(V,H) such that Ψ = δ̂0∞Φ. Note that such a 0-cochain Φ is an

element of H
F (V )
[0] such that DHΦ = 0 and, in particular, ((δ̂0∞Φ)(v))(z) is an HF (V )-

valued holomorphic function on C. Thus the equality Ψ = δ̂0∞Φ gives

(Ψ(v))(z2) = Y L
H (v, z2)Φ− ez2DHY R

H (Φ,−z2)v. (6.36)
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Applying both sides of (6.36) to w1 ∈ W1, evaluating at z1, pairing with w′ ∈ W ′ and

using (6.27), we obtain in the region |z1| > |z2| > 0,

⟨w′, πW2Y
L
W (v, z1 + z2)w1⟩

= ⟨w′, ((Y L
H (v, z2)Φ)(w1))(z1)⟩ − ⟨w′, ((ez2DHY R

H (Φ,−z2)v)(w1))(z1)⟩. (6.37)

We now define a linear map η : W1 → W by

η(w1) = w1 − πwt w1(Φ(w1))(1)

for homogeneous w1 ∈ W1. Let W̃1 = η(W1). We show that W̃1 is in fact a left

V -submodule of W .

We first consider w1 − (Φ(w1))(z1) ∈ W . Applying Y L
W (v, z1 + z2) to this element

and pairing the result with w′ ∈ W ′, taking the rational function that the resulting

series converges to, using (6.37) and then using (6.3) and (6.13), we obtain

R(⟨w′, Y L
W (v, z1 + z2)(w1 − (Φ(w1))(z1))⟩)

= R(⟨w′, (πW1Y
L
W (v, z1 + z2)w1 + πW2Y

L
W (v, z1 + z2)w1 − YW2(v, z1 + z2)(Φ(w1))(z1))⟩)

= R(⟨w′, (YW1(v, z1 + z2)w1 + ((Y L
H (v, z2)Φ)(w1))(z1)

−((ez2DHY R
H (Φ,−z2)v)(w1))(z1)− YW2(v, z1 + z2)(Φ(w1))(z1))⟩)

= R(⟨w′, (YW1(v, z1 + z2)w1 − (ez2DHY R
H (Φ,−z2)v)(w1)(z1))⟩)

= R(⟨w′, (YW1(v, z1 + z2)w1 − (Y R
H (Φ,−z2)v)(w1)(z1 + z2))⟩)

= R(⟨w′, (YW1(v, z1 + z2)w1 − (Φ(YW1(v, z1 + z2)w1))(z1))⟩). (6.38)

Since DHΦ = 0, Y R
H (Φ,−z2)v is independent of z2 and hence z2 = 0 is not a pole of the

rational function (6.38). Replacing z1 + z2 by z in the two sides of (6.38), we obtain

R(⟨w′, Y L
W (v, z)(w1 − (Φ(w1))(z1))⟩) = R(⟨w′, (YW1(v, z)w1 − (Φ(YW1(v, z)w1))(z1))⟩).

(6.39)

Since z2 = 0 is not a pole of the rational function (6.38), z = z1 is not a pole of (6.39).

Thus the only poles of the rational function (6.39) are z = 0 and z1 = 0. So (6.39)

must be a Laurent polynomial in z and z1. Since ⟨w′, (Y L
W (v, z)(w1 − Φ(w1)(z1)))⟩

and ⟨w′, (YW1(v, z)w1 − (Φ(YW1(v, z)w1))(z1))⟩ are Laurent series in z and z1 and are



235

convergent absolutely to a Laurent polynomial in z and z1, these series must be Laurent

polynomials in z and z1 themselves and are equal to the Laurent polynomial (6.39).

Thus we obtain

⟨w′, Y L
W (v, z)(w1 − (Φ(w1))(z1)))⟩ = ⟨w′, (YW1(v, z)w1 − (Φ(YW1(v, z)w1))(z1))⟩ (6.40)

in the region z, z1 ̸= 0. Subtracting the Laurent polynomial ⟨w′, YW1(v, z)w1⟩ from

both sides of (6.40), using

Y L
W (v, z)w1 = YW1(v, z)w1 + πW2Y

L
W (v, z)w1

and multiplying the resulting equality by −1, we obtain

−⟨w′, πW2Y
L
W (v, z)w1⟩+⟨w′, Y L

W (v, z)(Φ(w1))(z1)⟩ = ⟨w′, (Φ(YW1(v, z)w1))(z1)⟩ (6.41)

in the region z, z1 ̸= 0. Moving the first term in the left-hand side of (6.41) to the

tight-hand side and then taking the coefficients of z−n−1 of both sides of (6.41), we

obtain

⟨w′, (Y L
W )n(v)(Φ(w1))(z1)⟩ = ⟨w′, (Φ((YW1)n(v)w1))(z1)⟩+ ⟨w′, πW2(Y

L
W )n(v)w1⟩

(6.42)

Since w′ is arbitrary, we obtain

(Y L
W )n(v)(Φ(w1))(z1) = (Φ((YW1)n(v)w1))(z1) + πW2(Y

L
W )n(v)w1. (6.43)

Applying the projection πwt v−n−1+wt w1 to both sides of (6.43) and taking z1 = 1, we

have

πwt v−n−1+wt w1(Y
L
W )n(v)(Φ(w1))(1)

= πwt v−n−1+wt w1(Φ((YW1)n(v)w1))(1) + πwt v−n−1+wt w1πW2(Y
L
W )n(v)w1. (6.44)

Using (6.44), we have

(Y L
W )n(v)η(w1)

= (Y L
W )n(v)(w1 − πwt w1(Φ(w1))(1))

= (Y L
W )n(v)w1 − (Y L

W )n(v)πwt w1(Φ(w1))(1)
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= (Y L
W )n(v)w1 − πwt v−n−1+wt w1(Y

L
W )n(v)(Φ(w1))(1)

= (Y L
W )n(v)w1 − πwt v−n−1+wt w1(Φ((YW1)n(v)w1))(1)− πwt v−n−1+wt w1πW2(Y

L
W )n(v)w1

= (YW1)n(v)w1 − πwt v−n−1+wt w1(Φ((YW1)n(v)w1))(1)

= η((YW1)n(v)w1). (6.45)

The formula (6.45) means in particular that the space W̃1 is invariant under the action

of Y L
W . Thus W̃1 is a submodule of W . Moreover, the sum of W̃1 and W2 is clearly W

and the intersection of W̃1 and W2 is clearly 0. So W is equal to the direct sum of W̃1

and W2, proving the theorem.

We shall need the following result:

Proposition 6.4.8. Let W be a left V -module satisfying the composability condition.

Then every left V -submodule of W also satisfies the composability condition.

Proof. Let W0 be a left V -submodule of W . Then any proper nonzero left V -submodule

W2 of W0 is also a proper nonzero left V -submodule of W . Then there is a graded

subspace W3 of W such that W = W3 ⊕ W2 as a graded vector space and πW
W2

◦

Y L
W ◦ (1V ⊗ πW

W3
) satisfies Assumption 6.4.3 with W1 in Assumption 6.4.3 replaced by

W3, where πW
W2

and πW
W3

are projections from W to W2 and W3, respectively. Let

W1 = W3 ∩ W0. Then W0 = W1 ⊕ W2 as a graded vector space. Let πW0
W1

and πW0
W2

be the projections from W0 to W1 and W2, respectively. Then πW0
W1

= πW
W3

∣∣
W0

and

πW0
W2

= πW
W2

∣∣
W0

. So we have

πW0
W2

◦ YW0 ◦ (1V ⊗ πW0
W1

) = πW
W2

◦ Y L
W ◦ (1V ⊗ πW

W3
)
∣∣
V⊗W0

.

Since πW
W2

◦ Y L
W ◦ (1V ⊗ πW

W3
) satisfies Assumption 6.4.3, πW

W2
◦ Y L

W ◦ (1V ⊗ πW
W3

)
∣∣
V⊗W0

satisfies Assumption 6.4.3 with W in Assumption 6.4.3 replaced by W0. Thus πW0
W2

◦

YW0 ◦ (1V ⊗ πW0
W1

) satisfies Assumption 6.4.3 with W replaced by W0.

Definition 6.4.9. A left V -module W is said to be of finite length if there is a finite

sequenceW = U1 ⊃ · · · ⊃ Un+1 = 0 of left V -modules such that Ui/Ui+1 for i = 1, . . . , n

are irreducible left V -modules. The finite sequence is called a composition series of W
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and the positive integer n is independent of the composition series and is called the

length of W .

Remark 6.4.10. Note that as a graded vector space, W is a direct sum of the under-

lying graded vector spaces of Ui/Ui+1 for i = 1, . . . , n. If Ui/Ui+1 for i = 1, . . . , n are

grading restricted, then W must also be grading restricted.

From Theorem 6.4.7 and Propostion 6.4.8, we obtain immediately the following

main result of this paper:

Theorem 6.4.11. Let V be a meromorphic open-string vertex algebra. If Ĥ1
∞(V,M) =

0 for every Z-graded V -bimodule M , then every left V -module of finite length satisfy-

ing the composability condition is completely reducible. Assume in addition that the

following condition also holds: For every left V -module W satisfying the composability

condition and every nonzero proper left V -submodule W2 of W , there exists a graded sub-

space W1 of W such that W = W1⊕W2 as a graded vector space, πW2 ◦Y L
W ◦ (1V ⊗πW1)

satisfies Assumption 6.4.3 and the submodule HF (V ) of HN is grading restricted for

the grading preserving linear map F : V → HN given by Proposition 6.4.4. Then

the conclusion still holds if Ĥ1
∞(V,M) = 0 only for every grading-restricted Z-graded

V -bimodule M .

Proof. Let W be a left V -module of finite length satisfying the composability condition.

If it is not irreducible, then there is a nonzero proper left V -submodule W2 of V . Since

W satisfies the composability condition, there is a graded subspace W1 of W such that

W = W1 ⊕W2 as a vector space and πW2 ◦ Y L
W ◦ (1V ⊗ πW1) satisfies Assumption 6.4.3.

By Theorem 6.4.7, there is a left V -submodule W̃1 of W such that W = W̃1 ⊕W2 as a

left V -modules. Since W is of finite length, both W̃1 and W2 are of lengths less than

or equal to the length of W . Since W2 is nonzero and proper in W , W̃1 is also nonzero

and proper in W .

We use induction on the length of W . In the case that the length of W is 1, W is

irreducible and thus is completely reducible. Assuming that when the length of W is

less than n, it is completely reducible. When the length of W is n, the length of W̃1 and
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W2 are less than n. So they are completely reducible and thus W is also completely

reducible.

In the case that the additional condition also holds, since HF (V ) is grading re-

stricted, Ĥ1
∞(V,M) = 0 for every grading-restricted Z-graded V -bimodule M implies

in particular Ĥ1
∞(V,HF (V )) = 0. Then the conclusion of Theorem 6.4.7 still holds.

Thus W is completely reducible.

Remark 6.4.12. By Theorems 5.3.39 and 6.4.11, we can replace Ĥ1
∞(V,M) = 0 by

the statement that every derivation from V to M is an inner derivation.

We also have the following conjecture:

Conjecture 6.4.13. Let V be a meromorphic open-string vertex algebra. If every

left V -module of finite length is completely reducible, then Ĥ1
∞(V,M) = 0 for every

V -bimodule M .

Note that because of Proposition 6.4.6, we do not need to require that left V -modules

satisfy the composability condition in this conjecture.
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