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ABSTRACT OF THE DISSERTATION

Representation theory and Cohomology theory of
Meromorphic Open String Vertex Algebras

By FEI QI

Dissertation Director:

Yi-Zhi Huang

In this dissertation we systematically study the meromorphic open-string vertex alge-
bra, its representation theory, and its the cohomology theory. Meromorphic open-string
vertex algebra (MOSVA hereafter) is a natural noncommutative generalization of ver-
tex algebra. It is the algebraic structure of vertex operators satisfying associativity,
but not necessarily commutativity. We review the axiomatic system of MOSVA and its
left modules given by Huang and give the definition of right modules and bimodules.
We prove that the rationality of iterates follows from the axioms. We introduce a pole-
order condition which is used to simplify the axiomatic system and give a formulation
by series with formal variables. We introduce the skew-symmetry operator, define the
opposite MOSVA analogous to the opposite algebra of an associative algebra, and study
the relation between modules for a MOSVA and modules for the opposite MOSVA. We
consider the Mobius structure on MOSVA and its modules, and prove that the contrage-
dient of a module with Mobius structure is also a module. We compute an example of
MOSVA that is constructed from the two-dimensional sphere. We use rational function

taking values in the algebraic completion to develop cohomology theory of MOSVA and
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its bimodules. We prove that the first cohomology of a MOSVA is isomorphic to the set
of outer derivations. We prove also that if a MOSVA has vanishing first cohomology for
every bimodule, then the its left modules of finite length and satisfying a composability

condition is completely reducible.
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Chapter 1

Introduction

Vertex (operator) algebras are algebraic structures formed by (meromorphic) vertex op-
erators. In mathematics, they arose naturally in the study of representations of infinite-
dimensional Lie algebras and the Monster group (see [FLM] and [B]). In physics, they
arose in the study of two-dimensional conformal field theory (2d CFT hereafter, see
[BPZ] and [MS]). One of the most important properties of the vertex operators for a
vertex (operator) algebra is the commutativity, which plays an important role in the
study of these algebras and their representation theory. Mathematically, the commu-
tativity, especially the equivalent commutator formula, makes it possible to use the
Lie-theoretic methods to study vertex (operator) algebras and modules. Many results
are proved based on the commutativity. In physical terms, vertex operators for a ver-
tex (operator) algebra or a module correspond to fields of a special kind: meromorphic
fields. The commutativity of vertex operators is closely related to the locality of mero-
morphic fields in two-dimensional conformal field theory. This commutativity is one
of the most important reasons for the success of the mathematical construction of 2d
CFT using the vertex (operator) algebras, its modules and the intertwining operators
among the modules.

However, if we want to use vertex-algebraic methods to study quantum field theories
in general, the commutativity might not hold even for meromorphic fields. One impor-
tant class of quantum field theories is the nonlinear o-model with the target manifold
being a Riemannian manifold. If we want to realize certain differential operators on the
manifold as components of some vertex operators, then these vertex operators cannot
be commutative.

On the other hand, vertex (operator) algebras also have associativity, which is even



more fundamental. In physical terms, associativity of vertex operators can be viewed as
a strong form of the operator product expansion (OPE hereafter) of meromorphic fields.
And the OPE of fields is expected to hold for all quantum field theories. This is one of
the motivations for studying algebraic structures of suitable vertex operators that have
associativity but not necessarily commutativity. In 2003, Huang and Kong introduced
and constructed open-string vertex algebras in [HK]. In 2012, Huang introduced the
notion of meromorphic open-string vertex algebras in [H3], a special case of open-string
vertex algebra for which the correlation functions are rational functions.

Our motivation of studying meromorphic open-string vertex algebras (MOSVAs
hereafter) are the following: first, just as vertex (operators) algebras can be viewed as
analogues of commutative associative algebras, MOSVAs can be viewed as analogues
of associative algebras that are not necessarily commutative. In particular, all vertex
(operator) algebras are MOSVAs. So all the results for MOSVA also hold for vertex
(operator) algebras. Since all correlation functions are rational functions, it is easier
to deal with issues related to convergence and analytic extensions for MOSVAs than
general open-string vertex algebras.

In 2012, Huang also constructed an example of MOSVA using parallel sections
of tensor products of tangent bundles on any fixed Riemannian manifold (see [H4]).
More importantly, Huang constructed modules generated by eigenfunctions of Laplacian
operator. In physics, the eigenfunctions correspond to quantum states of a particle,
which can be viewed as a degenerated form of a string. Elements of the MOSVA modules
generated by eigenfunctions can be viewed as suitable string-theoretic excitations of
the particle states. It is Huang’s idea that the MOSVAs constructed from Riemannian
manifolds, together with modules generated by Laplacian eigenfunctions and the still-
to-be-defined intertwining operators among these modules may lead to a mathematical
construction of the quantum two-dimensional nonlinear o-model. Huang also hopes
that this will shed lights on the four-dimensional Yang-Mills theory, which, though
much more difficult, is indeed analogous to the two-dimensional nonlinear o-model
whose target manifold is a Lie group.

Another motivation for studying MOSVA is brought by the progress of developing



cohomological methods. In the representation theory of various algebras, one of the
main tools is the cohomological method. The powerful tool of homological algebra often
provides a unified treatment of many results in representation theory. Such a unified
treatment not only gives solutions to open problems, but also provides a conceptual
understanding of the results. Here we shall particular mention the following results
in associative algebras. Let A be an associative algebra. For an A-bimodule M, we
use H "(A, M) to denote the n-th Hochschild cohomology of A with coefficients in M.
When A is commutative and M is a module (viewed as A-bimodule with the left and
right A-module structures to be both the one from the original A-module structure),
we use H"(A, M) to denote the the n-th Harrison cohomology of A with coefficients in
M.

1. The first Hochschild cohomology H L(A, M) is isomorphic to the quotient of the
space of derivations from A to M by the space of inner derivations from A to M.
When A is commutative, the first Harrison cohomology H'(A, M) is isomorphic

to the space of derivations from A to M.

2. The second Hochschild cohomology H? (A, A) is in one-to-one correspondence with
the set of first-order deformations of A. When A is commutative, the second
Harrison cohomology H?(A, A) is in one-to-one correspondence with the set of

the first-order deformations of A.

3. All the left A-modules are completely reducible if and only if for every A-bimodules
B and every n € Z,, the Hochschild cohomology fl"(A, B) =0.

In [H1], Huang introduced the cohomology of a grading-restricted vertex algebra. As
vertex algebras can be viewed as an analogue to commutative associative algebras, the
cohomology introduced in [H1] can be viewed as an analogue of Harrison cohomology.
In [H2], using the cohomology established in [H1], Huang established the analogues of
the results (1) and (2) for a grading-restricted vertex algebra V' and grading-restricted
V-modules. To define this cohomology, Huang introduced a larger complex in [H1]

such that the complex for the grading-restricted vertex algebra is a subcomplex, just as



the Harrison complex is a subcomplex of the Hochschild complex for the commutative
associative algebra. In particular, the larger complex can be viewed as the analogue
of the Hochschild complex. But this complex was defined in [H1] only for a grading-
restricted vertex algebra.

In the dissertation, we give the definition of this larger complex for meromorphic
open-string vertex algebras V and V-bimodules W that are not necessarily grading-
restricted but satisfy the pole-order condition. Using the cohomology of this larger
complex, we can establish the analogues of results (1), (2) and (3). The results (1) and
(3) will be presented in this dissertation. The result (2) will be presented in the future
paper [Q4]. Since a vertex algebra is also a special kind of MOSVA, all these results
above also applies to vertex algebra.

The dissertation is organized as follows:

Chapter 2 focus on the study of the MOSVA. We recall the definitions of a MOSVA
V in [H3] and discuss the following topics for a MOSVA V: the V-valued map in-
terpretation of vertex operators; the rationality of products of any numbers of vertex
operators implies the rationality of iterates of any numbers of vertex operators; the
pole-order condition, together with rationality of products and iterates of two vertex
operators and other axioms, implies the rationality of any numbers of vertex operators;
the formal variable formulation of MOSVA with the pole-order condition; the opposite
MOSVA VP of a MOSVA V. Many of the results in this chapter relies on the technique
of analytic continuation of functions with several complex variables. We also gave an
exposition section to these lemmas.

Chapter 3 focus on the study of modules for a MOSVA V. We recall the definition
of left V-modules in [H3] and define right V-modules and V-bimodules. Aside from
the discussion of the topics in Chapter 2 under the context of left V-modules, right
V-modules and V-bimodules, we also discuss the following topics: the relation between
V-modules and V°P-modules; compatibility condition of a V-bimodule W in terms of
the left vertex operator YV%, and the skew-symmetry operator Y;,(R) of the right vertex
operator YM@; Mobius structure on MOSVAs and modules; Contragredient of a M&bius

V-module is also a Mobius V-module.



Chapter 4 computes an example of MOSVA constructed from parallel sections of
the tensors of tangent bundle of the 2-dimensional sphere. Some exposition is given on
the geometric backgrounds. Due to the limitation of time, we have not discussed the
result for general n-dimensional spheres. Nor have we discussed the modules generated
by the Laplacian eigenfunctions. These important topics will have to wait for future
work.

Chapter 5 establishes the cohomology theory for MOSVAs and bimodules. For
a MOSVA V and a V-bimodule W = ]_[(C W), we discuss W-valued rational func-

ne

tions, where W = [] Wiy is the algebraic completion of W. We also study series of
neC

W-valued rational functions and prove that the associativity (of Y& and of YV“{,(R)) and
commutativity (of Y;l and Y;,(R)) hold when acting on W-valued rational functions sat-
isfying certain convergence conditions. Then we use the linear maps from V®" to the
space of W-valued rational function that satisfy d-conjugation properties, D-derivative
properties and composable condition are used to construct the cochain complex. The
coboundary operators for the cochain complex is defined using the W-valued ratio-
nal functions that the relevant series converge to. which is the key (as observed by
Huang) for the cohomology theory to work as the defining series have disjoint regions
of convergence.

Chapter 6 applies the cohomology theory to give a cohomological criterion of re-
ductivity for left modules for MOSVAs. For a MOSVA V and a V-bimodule M that
are lower-bounded (not necessarily grading-restricted) and satisfy the pole-order condi-
tion, let H L (V, M) be the first cohomology of V with the coefficients in M. For a left
V-module W, a left V-submodule W5 of W and a graded subspace W7 of W such that
as a graded vector space, W = W; @ Wy, let my, and mw, be the projections from W
to W1 and Ws, respectively. For a left V-module W and a left V-submodule W5, we
say that the pair (W, Wy) satisfies the composability condition if there exists a graded
subspace W; of W such that W = W; @ Wy and such that for k,1 € N, w), € W,

wy; € Wi, v1,...,041,v € V, the series

(wh, Y, (v1,21) « - - Yy (i, 2i) T, Y (v, 2) 7w, Y (k415 2641) - Ty Y (Vi Z1)wa)



is absolutely convergent the region |z1| > -+ > |2k > |2] > -+ > |z > 0 to a
suitable rational function. We say that a left V-module W satisfies the composability
condition if for every proper nonzero left V-submodule Wy of W, the pair (W, W3)
satisfies the composability condition. We prove in this paper that if flolo(V, M) = 0 for
every Z-graded V-bimodule M, then every left V-module of finite-length satisfying the
composability condition is completely reducible. Since the first cohomology of V' with
coefficients in W is the quotient of the space of derivations from V to M by the space
of inner derivations, the condition H L (V,M) = 0 in our main theorem above can also

be formulated as the condition that every derivation from V to M is inner.



Chapter 2

Meromorphic open string vertex algebras

2.1 Basic Definitions

We first recall the notion of meromorphic open-string vertex algebra given in [H3].

2.1.1 The axiomatic definition

Definition 2.1.1. A meromorphic open-string vertex algebra (hereafter MOSVA) is
a Z-graded vector space V' = [], cz V(») (graded by weights) equipped with a vertex

operator map
Yy : VeV — Vz,z '
u®v = Yy(u,x)v
and a vacuum 1 € V, satisfying the following axioms:
1. Axioms for the grading:

(a) Lower bound condition: When n is sufficiently negative, V{,,) = 0.

(b) d-bracket formula: Let dy : V — V be defined by dyv = nv for v € V().

Then for every v € V

d
dy, Yy (v,z)] = IE%Y‘/(U, x) + Yy (dyv, ).

2. Axioms for the vacuum:

(a) Identity property: Let 1y be the identity operator on V. Then Yy (1,z) = 1y.

(b) Creation property: For u € V, Yy (u,2)1 € V][z]] and lim,_,o Yy (u, )1 = u.



3. D-derivative and D-bracket properties: Let Dy : V — V be the operator given
by

d
Dyv = lim d—YV(v,x)l

z—0 ax

for v € V. Then for v € V,

%YV(%‘T) = YV(DVv, (E) = [DV7YV(U7‘T)]'

4. Rationality: Let V' = [[,cz V(Z) be the graded dual of V. For ui,- - ,u,,v €
V,v' € V', the series

(W', Yy (u1, 21) -+ Yy (un, 2n)v)

converges absolutely when |z1| > -+ > |2,| > 0 to arational functionin z1, - - - , zp,
with the only possible poles at z; = 0,4 =1,...,n and z; = z;,1 <1 # j < n. For

uy,uz,v € V and v’ € V', the series

(W', Yy (Yy (u1, 21 — 22)ug, 22)v)

converges absolutely when |z2| > |21 — 22| > 0 to a rational function with the only

possible poles at 21 = 0,22 = 0 and 21 = 2».
5. Associativity: For uy,us,v € V and v € V', we have
(W', Yy (u1, 21) Yy (u2, 22)v) = (0, Yo (Yi (u1, 21 — 22)usg, 22)v)
when |z1] > |22]| > |21 — 22| > 0.

Such a meromorphic open-string vertex algebra is denoted by (V, Yy, 1) or simply

by V.

Definition 2.1.2. A meomorphic open-string vertex algebra V is said to be grading-

restricted it dim V) < oo for n € Z.

Throughout this thesis, all meromorphic open-string vertex algebras are assumed

to be grading-restricted.



Remark 2.1.3. If in addition, V satisfies commutativity, namely, for every uy, uo,v €
Vo' eV’
(W', Yy (ur, 21) Yy (u2, 22)v)
converges absolutely when |z1| > |z2]| > 0 to the same rational function that
(W', Yy (Y (u1, 21 — 22)us, 22)v)

converges to when |z3| > |z1 — 22| > 0, [FHL] shows that in this case the Jacobi identity
for vertex algebras holds and V is a vertex algebra with lower bounded Z-grading. So
MOSVA can be treated as a noncommutative generalization to the vertex algebra. We
have to redevelop a lot of basic results for MOSVA, since in vertex operator algebras

these results are proved using commutativity.

2.1.2 Some immediate consequences

Axioms 1, 2 and 3 make it possible to carry over some facts of vertex algebras to

MOSVA:
Proposition 2.1.4. Let V be a MOSVA. Then

1. Foru €V, Yy(u,z) can be regarded as a formal series in End(V)[[z, 2]

Yy (u,z) =Y (Y )n(u)z "

nezZ

where (Yy)n(u) : V. — V is a linear map for every n € Z. If u is homogeneous,

then (Yy )n(u) is a map of weight wt uw —n — 1.

2. For fixzed u,v € V, Yy (u,x)v is lower truncated, i.e, there are at most finitely

many negative powers of x.

3. ForuelV,

Yy (u,2)1 = e*PVa
4. Formal Taylor theorem: for u € V,
Yo (u,2 +y) = Yv(e?PVu,2) = PV Yy (u,z)e VPV,

in End(V)[[z, 271, y]].
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Remark 2.1.5. In the statement of the formal Taylor’s theorem, the series Y (u, z +y)
should not be regarded as a series with one single variable x 4+ y. Rather, it should
be regarded as a series with two variables x and y, expanded from the series with the

single variable x 4+ y with positive powers of y. Details are discussed in [LL]

Proof. 1. Follows from the linearity of Yy (u,z)v in both u and v, and the d-bracket

formula.

n—

2. When u, v are homogeneous, the coefficient (Yy),(u)v of 27! in Yy (u,x)v is

also homogeneous of weight m = wt u + wt v —n — 1. As n gets sufficient large,

m becomes sufficiently negative and by the lower bound condition, V,,) = 0. So

—n—1

(Yv)n(u)v = 0 when n gets sufficiently large, hence the series > (Yy ), (u)vz
ne”Z

is lower truncated.

3. Use the D-derivative property and induction, it is easy to show for n = 0,1, ...,
dn
Dyjv = ili% ?Y(v,x)l
So Yy (v,x)1, as a power series, has Dj,v/n! as the coefficient of ™. Hence
(1
Yy (v,2)1 = ZJ <n' @U) " = e*Pvy
n=

4. The first equality follows from the Dy -derivative formula. The second equality

follows from the exponentiation of the Dy -bracket formula.

2.1.3 On the product and iterate of two vertex operators

Note that Axiom 4 and 5 are formulated using complex functions. To understand these
axioms correctly, let’s consider the example the rationality of the product of two vertex
operators. Let uy,uo,v € V and consider the formal series

Yy (u1, 21)Yv (u2, 22)v = Yy (u1, 1) (Z (YV)m(“2)WU2m1>

meZ

- Z Yy (u1, 1) (Yo ) (ug)v) 25 ™
meZ

= > > W)alu)((YW)m(uz)v)ay "ty ™!

meZnel
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This is a formal series in V[[z1, 22, 27 ', 75 !]]. Note that there are only finitely many neg-
ative powers of 2, since Yy (ug, x2)v is lower truncated. However, in general there are in-
finitely many negative and positive powers of z1, since although Yy (u1, 1) ((Yv )m (u2)v)
is lower truncated for each m € Z, the lower bound of powers might not be uniform
with respect to m.
Pairing the formal series with v’ € V’
(W', Yo (ur, 1) Yo (ug, ma)o) = > > (0 (1) (Y ) (uz)v))ay ™oy ™
meZ nez
we get a formal series in C[[z1, 2] ', 29, 25 ']]. Since the weight of (Vi) (u1)((Yi)m (uz2)v)
will be larger than wt v" when n becomes sufficient negative, in this series there are at
most finitely many positive powers of xy.
After substituting z1,z2 by two complex numbers z1, 29, we will get a series of
complex numbers:

(W', Yo (ur, 20) Yy (ug, 22)v) = > (o, () (Vv )m(uz)v))z "t ™

MEZnEL

The first part of rationality says that this series of complex numbers converges abso-
lutely when |z1| > |22| > 0, and the limit is a rational function in 21, z2, with possible

poles only at z; = 0,29 = 0, 21 = 25. If we denote the rational function by

f(Zh 22)

1282 (2 — 29)P127

where f(z1,22) is a polynomial function in 21, z9, then the series of complex numbers

is precisely the series expansion of the rational function in the region |z1| > |z2| > 0,
o0

i.e., each (21 — z9) ! factor is expanded as 2,1 3 (22/21)".

To interpret the above in terms of formal variables, we let
) -1 -1 -1 -1 -1
L12 'V[mlvxl y L2, Lo ,(.Tl—l’g) ] %V[[xl’m%‘rl y Lo H

be the map that expands (x; — x2)~! by the positive powers of x3. Then the ra-
tionaly above amounts to say that for every v € V', uy,us,v € V, the formal series

(', Yy (u1, 1) Yy (ug, x2)v) can be obtained by applying ¢12 to the rational function, i.e.

/ B f(z1,22)
<1) ,Yv(ul,xl)Yv(UQ,m)U> = l12 (x;inx;gQ (331 _ xZ)Pm)
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Since the series Yy (ug,x2)v is lower-truncated, the power py of x3 in the denominator
is bounded above by a constant that depends only on us and v.

Also we consider the formal series

Yy (Y (un, mo)ug, 2)v = Yy (Y (Vi )m(ur)ugag™ ", z2)v
meZ

= Yy (Y )m (v )ug, z2)vzy ™!
meZ

=D > ()al(V)m(ur)ug)vay " g™

meZ ne
in V{zg, z2, 2y L Ty 1. Similarly, there are finitely many negative powers of zg, since
Yy (u1, xo)uz is lower truncated. However there might be infinitely many negative pow-
ers of x9.
Pairing the formal series with with v' € V'
W', Yy (Yy (u1, mo)uz, x2)v Z Z n (Y ) (ur)ug)v)ay " Loy ™!
meZnez
we get a formal series in C[[xg, 22,75 ", 25 ]]. Since the weight of (Yi)n((Yy)m (u1)uz)v
will be larger than wt v" when n becomes sufficient negative, in this series there are at
most finitely many positive powers of x».
After substituting xo = 21 — 22, x5 = 22, we will get a series of complex numbers

(v Yv(Yv(ul, Z1 — 22 ug, ZQ Z Z ’U YV YV (Ul)UQ)n/U>22_n_l<Zl — 22>_m_1.
mEZLNEL

The second part of rationality states that the series converges absolutely when |z2| >
|z1 — 22| > 0. Together with associativity, we know that the sum is equal to the same
rational function which (v, Yy (u1,21)Yv (ug, 22)v) converges to. In other words, the
series (v, Yy (Yy (u1, 21 — 22)uz, 22)v) is the series expansion of the same function but in
the different region region |22| > |21 — 22| > 0, i.e., each 2, ! factor is expanded as (22 +

oo
21— 29) "V =251 37 [(21 — 22)/22)F. As a consequence, in the series (v, Yy (Yy (u1, 21 —

k=0
z9)ug, z2)v), there are only finitely positive powers of zo and finitely many negative
powers of (z1 — z2).

To interpret the above in terms of the formal variables, let

to0 : Clzg, xo, :L‘al, x;l, (zo + x2) 7] = C[[zo, 2, 1‘51, x;l]]



13

be the map that expands (x¢ + z2)~! by the positive power of xy. Since the rational
function is the same, the formal series (v/, Yy (Yy (u1, zg)ug, z2)v) can be obtained by

applying tog to the rational function after substituting x1 = xg + x2, i.e.

f(:l:o + x9, 1’2) )

(o + ma)Prah? bt

(W', Yy (Y (u1, zo)uz, £2)v) = t29 (

In particular, since the series Yy (u1, xo)ue is lower-truncated, the power of pis of z¢ in
this series is bounded above by a constant that depends only on u; and wus.
As a consequence of the discussion above, we have the following weak associativity

in terms of correlation functions.

Proposition 2.1.6. Let V be a MOSVA. Let 112 and tag be defined as above. Then for

every v’ € V,uy,us,v €'V,
Lo (U, Yy (ug, 1) Yy (u2, 22)0) = 159 (0, Yir (Y (w1, 20)u2, 22)0) |11 =20+

Remark 2.1.7. Here we shall experience the first difference to usual VOA. In case the
commutativity is also present, then a similar argument shows that p; is also controlled
above by u; and v. Then because p1, pa, p12 are independent of the choice of v/, letting
v/ vary in V' we will be able to see that the formal series Y (u1,21)Y (ug, z2)v, after
multiplying suitable powers of z1,x2 and (z1 — x2), is a power series in V{[[z1,x2]].
However, we don’t have commutativity for MOSVA. In the most general sense p; can
be dependent to the choice of v’. So the best we can say is, for the integers ps and pio,

the formal series

xh? (21 — 22)P2 Yy (ug, 21) Yy (w2, m2)v € V{[z1, 271, 2]

In general, there might not exists an integer p; such that

o 22 (21 — 22)P2 Yy (ur, 1) Yy (ug, 22)v € V@1, 22]]

unless we know something about the pole z; = 0 of the rational function determined

by (v, Yy (u1, 21) Yy (ug, 22)v), as described in the following proposition.

Proposition 2.1.8. Let (V,Yy,1) be a MOSVA. Assume that for every uj,us,v € V,

there exists a positive integer py such that for every v’ € V', the order of the pole z1 = 0
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of the rational function determined by (v', Yy (uy, 21)Yy (ug, 22)v) is bounded above by

p1. Then the following associativity holds: for ui,us,v € V and the integer p1 above,
(w0 + 22)P* Yy (u1, 20 + 22) Y (U2, 22)v = (20 + 22)7* Yv/ (Y (U1, 0) U2, T2)V

where both sides are understood as Laurent series in V[[zo, z2]|[zy ", x5 ']

Proof. One sees easily that for every v’ € V’, there exists pi, p2, p12 € Z, such that
211?1 ZSQ (21 — 22)P*2 <U/7 Yy (uy, 21) Yy (ug, 22)v)

converges to a polynomial function. Thus with the formal variables x1, z2, the formal

series

$€11'12)2 (1'1 - m2)p12 <UI7 YV(ula $1)YV(U2, 5132)7)>

has no negative powers of z1,x2. Thus as a formal series with coefficients in W,

$1171 1:1202 (1 — 22)P Yy (uy, 1) Yy (ug, 2)v

has no negative powers of x1, zs and thus sits in V[[x1, z2]]. Replace z1 by zp+ x2 and

divide the resulting power series by xf'?25?, we see that

(o + 22)P' Yy (u1, 2o + 22) Yy (ug, 22)v € V [z, 22]][25 ", 25 ']
Similarly, we see that
(20 + 22)P Yy (Yyr (w1, 0 )uz, 2)v € V[[zo, 22]][zg ", 25 ']
The conclusion then follows from Proposition 2.1.6. 0

Remark 2.1.9. So to recover the commonly-known weak associativity for MOSVAs,

extra conditions on the correlation functions has to be assumed.

2.1.4 On the product of any number of vertex operators
The rationality of the product of n vertex operators can be understood in a similar
fashion: For fixed u1,us, ..., Uy, v € V, the formal series

Yv (ur, 21) Yy (u2, 22) - - - Yy (up, zp)v

= 3 D Ok (V) () (VD () -+ ™ g e

kn€Z k1€Z



15

isin V[[z1, ..., n, 2 ", ..., 2, 1]]. There are finitely many negative powers of z,, but there

are infinitely many positive and negative powers of all other variables. However the
“peeling off” trick (See for example [LL], Section 3.10) works here: if we look at the coef-
ficient of fixed power of z;,, then this coefficient is a series in V|[[x1, ..., 21, :cl_l, - $,;El“,
with only finitely many negative powers of x,,_1. Similarly if we look at the coefficient
of fixed powers of z,,_1 and z,, then it will be a series in V{[z1, ..., zp_2, xl_l, e :):;ig]]
with finitely many negative powers of z,_o. Similar story is true consecutively for
T3y eees T1-

Evaluating x1 = 21, ..., 7, = 2, and pair it with v' € V’, we get a series of complex

numbers
(', Yy (u1, 21) Yy (uz, 22) - - Y (tp, 2)0)

=) D> W () ky () (Y )y (u2) (- (Y (i )0) -+ )2y P g 2t g e

kn€Z k1€Z

The rationality states that the series converges absolutely when |z1| > |z2] > -+ >
|zn| > 0 to a rational function with possible poles only at z; = 0,1 < ¢ < n and
zi = zj,1 < i # j < n. Equivalently, the series of complex numbers is precisely the
series expansion of the rational function in the region |z1]| > |z2] > -+ > |2,| > 0, i.e.,
for any 1 <i < j < n, every (2; — z;)~! factor in the rational function is expanded as
P io: (zj/2)k. In particular, we know that there are at most finitely many negative
povvijs0 of z, and finitely many positive powers of z;.

To interpret the above in terms of formal variables, let .S be the multiplicative set
in the polynomial ring C[z1, ..., x,] generated by z;,i = 1,...,n, and (z; — ;)7 1,1 <

i # 7 < n. Consider the localization C[z1, ..., 2,]s of the polynomial ring with S. Let

L12.n - C[xla xn]S — C[[CEl, "'7xn7x1_17 7567:1]]

be the map that expands (z; — x;) 7! for each 1 <14 < j < n as the series with positive

powers in z;. Then for every v' € V', u1, ..., un,v € V, we have

flxy,.oyxn)
[T, = H1§i<j§n(xi — x;)Pii

for some polynomial f(z1,...,z,) € Clz1, ..., 5] and some integers p;,7 = 1, ..., n, p;j,1 <

(W, Yy (ur, 1) -+ Yy (un, p)v) = t12. 1 (

1 <7< n.
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Remark 2.1.10. We should mention that the rationality of the product of n vertex
operators turns out to be a very subtle issue. It is proved in [FHL], Section 3.5 that the
rationality involving any number of vertex operators holds automatically for a lower
bounded Z-graded vertex algebra, for which all the axioms are formulated using only
two vertex operators. However for MOSVA, commutativity does not hold in general.
So the argument in [FHL] fails for such algebras. To make sense of the product of any

number of vertex operators, it is necessary to assume Axiom 4 for every number n > 2.

Definition 2.1.11. A MOSVA is said to satisfy the pole-order condition, if for ev-
ery v € V' juj,us,v € V, the order of the pole z; = 0 of the rational function
(v, Yy (u1, 21)Yy (ug, 22)v) converges to is bounded above by a constant that depends

on u; and v.

The condition here is stronger than that the version used in Proposition 2.1.8. All
the vertex algebras satisfy this condition because of commutativity. With the pole-
order condition, we only need to assume Axiom 4 for n = 2. The rationality of the

product of n > 2 vertex operators is a consequence.

Proposition 2.1.12. Let V =[],z Viny, Yv : VRV — Vi[z,z71])] and 1 € Vo)
satisfy Aziom 1, 2, 8, 5, the Axziom 4 with only n = 2, and the pole-order condition.
Then Axiom 4 holds for every n > 2. Moreover, for the rational function determined by
(W, Yy (ui,z1) - Yy (un, 2n)v), the order of poles z; = 0 is bounded above by a constant
that depends only on u; and v for i = 1,...,n; the order of poles z; = z; is bounded

above by a constant that depends only on u; and u; for 1 <i < j < n.

Proof. We first prove the rationality of the product of three vertex operators. Without
loss of generality, let v € V', uy, us, u3, v € V be homogeneous elements. We first prove

that for some positive integers p1, p2, p12,
(1 — 22)P? (21 + 3)P (2 + x3)P? (v’, Yy (ur, z1 + x3) Yy (ug, x2 + x3) Yy (us, x3)v),

as a series in (C[[xl,xl_l,xg,x;l,mg,xgl]] where all negative powers of (z1 + x3) and
(z2 + z3) are expanded in positive powers of x3, is both upper and lower-truncated. In

other words, it is indeed a Laurent polynomial in C[z1, mfl, T9, x;l, T3, x;l].
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We start by peeling off the variable z3. First note the power of z3 is lower-truncated.

To see it is also upper-truncated, we use the weak associativity to see that

(1 — 22)P% (21 + 23)P" (22 + 23)P2 (v, Yi (w1, 21 + 23)Yv (u2, 22 + 23) Yy (us, 73)0)
=(z1 — 22)P2 (@1 + 23)P (w2 + 3)P*(V, Yy (u1, 21 + 23) Yy (Y (ug, 22)us, 3)0)

=(x1 — 22)"% (w1 + w3)P (22 + 23)P2 (v, Yy (Yo (ur, 21) Yy (u2, £2)us, 3)v)

Note that the second equality is guaranteed by the pole-order condition: since p; de-
pends only on u; and v, we don’t need to worry about the infinitely many terms given
by Yy (ug,z3)us. If py is only independent of the choice of v and depends on us as in
Proposition 2.1.8, then the equality may not hold.

We claim that the series on the right-hand-side is upper-truncated in xs. This can
be seen by writing the series as

<v’,YV(YV(u1,u1)YV(u2, T9)us, T3) = Z(v’,Yv(umn,xg)v>x1_m_l$2_”_l
m,n

Note that the lowest weight of the components of u,,, is nonnegative. So the coefficient
of xgp_l in Yy (tmn, x3)v is nonzero only when mIIiLlél Wt Uy, + WtV —p —1 = wt v,

Thus

—p—1l=wtv —wtv— min wt um, < wt v —wt v
m,nEL

Hence the power of x3 is upper-truncated.

Now we compute the coefficient of x5 m=L for each m € Z.

(21 — 22)P2(21 + 23)P (T2 + 23)P2 (V/, € PV Yy (U1, 21) Yy (u2, 22) e3PV Yy (uz, 23)0)

p1 P p2 D
1\ pi—ki k 2\ po—ko_k
:($1 _ x2)P12 Z (k )xll 1x31 Z (k >$22 2$32,
k=0 1 ko=0 N2
00

1 . 1 o —m—
W)y 5:U§D%/Yv(u1, 1) Yy (u2,22) Y ﬁ(—xg)ﬂpﬂv > (Y )m(us)vay™ )

i=1 j=1"" meZ
_ ' P1\ pi—ki (P2\ po—k
— Z Z Z Z Z il (x1 — x9)P12 <k1>x11 1 <k2>$22 2
<’Ul, D%/Yv(’u,l, xl)YV (UQ, .TQ)D‘%/(YV)m(U3)U>x§m+k1+k2+i+j_1

S S S e (D ()
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(', DYy (ur, 21) Yy (2, 22) DY (Y iy i+ (ua)v) a3 ™

So the coefficient of xgm_l is

222y G () ()

(W, DY (ug, 1) Yy (2, 22) DY (Y )ik k45 (U3)0)

This is actually a finite sum, since for each fixed m, (Yv')m-k,+ko+it+j(ug)v = 0 when
wt ug +wt v — (m+ k1 + ka+ 7+ j) < 0. So both ¢ and j has an upper bound. And

for each fixed m, p1, p2,7,J, we know that

(w1 — 22)"2 (v, DY Yy (ur, 21) Y (2, 22) DY (Y0 Dok kg i (43)0)

is a Laurent polynomial. Therefore, we proved that for each m € Z, the coefficient of
Tq m=1 {5 a finite sum of Laurent polynomials. So the power of z; and z2 is both upper-
and lower-truncated for each m where m ranges in a finite set. So the powers of x1 and
9 in the series are also upper- and lower-truncated.

Since all the powers of z1,x9, x5 are lower-truncated, we can find positive integers

P13, P23, p3 such that
(.’El + 1'3)1)1 (1;2 + xg)p2x§3$€13m}2723 (371 — :E2)p12 <U/’ Yv(ul, I’l)YV(UQ, xQ)YV(U?” $3)U>

is a polynomial in C[x1, z2, x3]. So the transformation z1 — 1 —x3, x2 — x9 — 3, T3 —

3, makes sense and leads to the conclusion that
o ab? o (21 — 22)P2 (11 —23)P3 (w2 — 23)P2 (V) Yo (un, 1) Yy (ug2, ©2) Yy (ug, z3)v) (2.1)

is a polynomial in C[z1, x9, x3].

It remains to prove that all the powers p1, p2, p3, P12, P23, P13 are bounded above by
constants that depend only on the corresponding elements. We start by noting that
p3 is bounded above by a constant that depends only on ug and v, due to the lower
truncation of Yy (us, x3)v. If we rewrite Formula (2.1) as a sum

o (z1—x2)P2 (21 —23)P13 Z 2h? k3 (wg—x3)P?2 (V') (Vi ) (u1) Yo (ug, 22) Yy (us, xg)v>a:1_"_1,
nez
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and apply the pole-order condition to each summand, then we see that ps is bounded
above by a constant that depends only on us and v. The associativity tells that Formula

(2.1) equals

o b2 akd (21 — 22)P2 (w1 — 23)P3 (w2 — 23)P?2 (V) Yy (ur, 21) Yy (Yy (u2, ©2 — 23)us, x3)v).

Then po3 is bounded above by a constant that depends only on uo and ug. Similarly,

the associativity tells that Formula (2.1) equals

oV b2k (21 — 22)P2 (w1 — 23)P3 (w2 — 23)P2 (V) Yy (Y (w1, 21 — @2)ug, 22) Yy (us, 23)v).

Then p12 is bounded above by a constant that depends only on u; and us. Also, the

associativity tells that Formula (2.1) equals

o b2 ak? (21 —29)P'% (21 —23)P"3 (wo—23)P? (v, Y (Vv (u1, 11 —22) Yy (u2, 12—23)ug, 3)v),

which can be rewritten as

o ab? o (21 —20)P'? (11 —w3)P13 (wg—x3)P3 (0, Z(Yv)n(YV(ul, r1—23) Yy (ug, $2—$3)U3)U$§n_1>,
nez

Apply the pole-order condition to each summand, we see that pi3 is bounded above by
a constant that depends only on u; and ugz. Finally, the associativity tells that Formula

(2.1) is equal to

o ab? el (21 — w2)P2 (11 — 23)P3 (w2 — 23)P2 (V) Yy (ur, 21) Yy (Yy (ug2, T2 — 23)us, x3)v),

which can be rewritten as

o ab2al? () — )12 (w1 —23)P'® (22 —23)P Y (0, Yy (ur, 1) Yy (Yo )n(u2)us, 23)v(za—23) " 1)
nez

Apply the pole-order condition to each summand, to see that p; is bounded above by
a constant that depends only on u; and v.
The general case can be done by induction. For brevity, we only give a sketch

without the details:

1. The formal series

n—1

H(xz‘i’fﬁn)pl H (xr_xs)prs <U,7YV(ulax1+$n) e 'YV(unflaxn71+xn)YV(unaxn)'U>
=1 1<r<s<n-—1
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in C[[x1, 27", ..., ¥y, z;]] has lower-truncated powers of z,,. Use weak associativ-

ity to see it is equal to

n—1

[T @i + )P (0, Yo (Vo (ur, 1) - Yo (tn -1, T 1, )0)
i=1

and thus the power of z,, is upper-truncated.

2. Compute the coefficient of x;,” !, which looks like

Plye-sPn—1 oo n—1 i p.,k.(—l)j
> 2 211 <kl)x’ e Il (@ —=r

meZki,....kn—1=01,j=0 i=1 1<r<s<n-—1

(v, DY (ur, 21)Y (uz, 2) -+ Y (Un—1, n—1) DY (Yo Yt gty ooy (U V) (—1)7

argue it is a finite sum of Laurent polynomials in z1, ..., x,—1 which is seen by the

induction hypothesis.

3. So the series we are considering is a Laurent polynomial. Find all the integers

such that
n—1
Di ; .
abn H x, " (25 4 xp)P? H (X — xs)Pre-
=1 1<r<s<n—1

(W, Yy (ur, 21 + @) - Yy (1, Tn_1 + Tn) Yv (Un, Tn)v)

is a polynomial in C[z1,...,z,]. Then perform the transformation x; — z; —

T, Ty — T to see the rationality.

4. Repeatedly use associativity and the pole-order condition obtained in the previous

steps to show the dependence of the upper bounds of the order of poles.
O

Proposition 2.1.13. Let V = [[,cz Vo), Yv : VOV — v[[z,x7Y]] satisfy avioms
for the grading, D-derivative property, D-commutator formula, and the following weak
associativity with pole order condition: for every ui,us,v € V, there exists an integer

p1 that depends only on uy and v, such that
(zo + 22)" Yv (Y (ur, zo)uz, 22)v = (20 + 22)" Yv (U1, T0 + 22) YV (U2, 22)V

as formal series in V[[mo,azal,mg,xgl]], then (V,Yy,1) forms a MOSVA.
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Remark 2.1.14. From this proof one observes that the pole-order condition is crucial
for the formal variable approach. Although this condition holds for all the existing
MOSVAs, with the absence of commutativity this is still not a natural assumption.
That is why for the rest of the thesis, we will still develop the theory of MOSVA

without this condition.

2.2 V-valued map interpretation

Let
V=]V

be the algebraic completion of the graded space [] V(). Let
nez

v=TIve

be the full dual space of V' = ]_[Z V(Z) In general, V is a subspace of V. When V is
n
grading-restricted, we have V 2617.
We shall interpret the vertex operators as V-valued maps for grading-restricted
meromorphic open-string vertex algebras (which is of the most interest and shall be our

main focus). The modification for non-grading-restricted MOSVAs will be discussed in

Remarks 2.2.10, 2.2.14, 2.2.18, 2.2.23, 2.3.12, 2.3.15 and 2.4.9.

2.2.1 One single vertex operator

Since each vertex operator Yy (u,x),u € V admits a series expansion
Yo (u,z) =Y (Y )a(wa ™"
nez
When u is homogeneous, each (Yy),(u) : V — V of weight wt (u) —n — 1. Replacing
x by a nonzero complex number z and apply Yy (u, z) to a homogeneous v € V. Then
each (Y1), (u)vz~""! is homogeneous of weight wt (u) + wt (v) —n — 1, hence the

infinite sum

Z(Yv)n(u)vz_"_l

ne”l
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gives an element in [,z Vin) = V. This also holds for any u,v € V since they are

finite sums of homogeneous elements. So we conclude the following:

Summary 2.2.1. For a given nonzero z € C, the vertex operator map give rise to the
following map

YV(,z)V®V—>V

Remark 2.2.2. Note that here Yy (u, z)v is regarded as one single element in V, instead

of a series of elements in V.

Remark 2.2.3. This interpretation works no matter whether V is grading-restricted

or not.

2.2.2 Product of two vertex operators

Note that for fixed nonzero z; € C and u; € V, the map

Yv(ul,zl)- V=V

accepts only inputs of V. To apply the vertex operator Yy (u1, z1) to Yy (ug, 2z9)v, the
1Y y 1np PPy 1Y viu, viuz, )

following steps should be carried out:

1. For each k € Z, apply the projection operator 7 : [[ V() — V(i) to the V-
ne”L
element, so as to get an element 7Yy (ug, 22)v € V.

2. Apply the vertex operator Yy (uq, 21) to each mYy (uz, 22), to get

Y (w1, 21)m Yy (u2, 22) € H Vi =V
neL

3. Sum up all k € Z to get the following infinite series

Z Yv (w1, 21)mp Yy (u2, 22)v
kez

of elements in V.

To make sense of the infinite series, we need to define a topology on V.
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2.2.3 A note on topology
Here we recall some definitions and notions in topology.

Definition 2.2.4. Let X be a complex vector space. A seminorm on V is a map

p: X — [0,00) satisfying
L p(z +y) <p(z) +p(y), Yo,y € X;
p(Azx) = |A|p(z),Vz € X, € C.

Definition 2.2.5. Let X be a vector space over C, P be a set of seminorms. Define a

topology on X by
1. A basic neighborhood of 0 is a set N of the form
N ={z €V :p(z) < ¢, for finitely many p € P,¢e, > 0}

Note that N is convex, containing 0. Also note that the intersection of two basic

neighborhoods is also a basic neighborhood.
2. A neighborhood of 0 is a set that contains a basic neighborhood.
3. A set U is a neighborhood of p if U O p+ N for some neighborhood of 0.

4. U is open if U is a neighborhood for every z € U, i.e., Vp € V,3ey,...,e, €

R0, 3p1, .., pn € Po{q :p1(q — ) < e€1,...,pn(qg — ) < €y} CU

Theorem 2.2.6. With the topology defined above, X is a locally convex topological

vector space.
Proof. See [R]. O

Definition 2.2.7. Let V = [] V{;,) be a graded vector space over C. Let V=
nez

ez V() be the graded dual and let V= [1.ez Vin) be full dual space of V’. The

following set of seminorms
{pv’ V= C,pv/(?}) — <’U/,U>}

defines a locally convex topological vector space structure on V.
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Definition 2.2.8. Let {v) : A € A} be an indexed family of elements in V. We say the

series

Do

AEA

converges absolutely in V if for every v’ € V', the complex series

Z<UI7 U)\)

A€A

converges absolutely. In this case, the sum of the series is a well-defined element in V.

Remark 2.2.9. It suffices to check the definition for homogeneous v € V’, i.e. for

each | € Z and each v’ € V(’lk)

Remark 2.2.10. When V is grading-restricted, as V = ?, so in this case, the sum of an
absolutely convergent infinite series do fall in V. In general, V is only a linear subspace
of V and might not necessarily be closed. So the sum of an absolutely convergent

infinite series in V' does not necessarily fall in V.

Now we investigate the expression Yy (u1, 21) Yy (ug, z2)v. The rationality states that
for fixed z1, z9 € C such that |z1]| > |z2] > 0, the double series

(0, Yo (i, 20) Ve (i, 22)0) = 5 S (0, (V0 () () (12022,

MEZnEZL

converges absolutely to a complex number, for every v € V. Thus at the very least,
the sum of the double series Yy, (u1, 21)Yy (uz, 22)v is well-defined in V.
Moreover, note that when v, u1, ug, v are homogeneous, the coefficient (v/, (Y ) (u1) (Y1 )m (u2)v))

is nonzero only when
m+n=wt (u1) +wt (ug) +wt (v) —wt (v') —2
So in this case,
(W', Yy (u1, 21) Yy (ug, 29)v)

= > (W', (V) () (Y ) (uz)v)) 2y "2 ™

m4n=wt(u1)+wt(uz)+wt(v)—wt(v’')—2
And rationality states that the series converges absolutely when |z1| > |22] > 0. In

particular, any rearrangement of the series on the right-hand-side converges to the

same value.
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Proposition 2.2.11. For any uy,us,v € V and any complex numbers z1, zo satisfying
|z1| > |z2| > 0, the single series

> Vi (ur, 21)mk Yy (ug, 22)v

kEZ
of elements in V is absolutely convergent, i.e.,

ZW» Yy (u1, 21)mp Yv (uz, 22)v)
keZ

is absolutely convergent for any v’ € V'. Moreover, the sum of the series is equal to the
sum of

Yy (u1, 21) Yy (uz, 22)v
Proof. We first deal with homogeneous w1, ue,v € V. Since

Yv (ug, 22)v = Z (Y )m(uz)vzy ™"
meZ

For k € Z, we apply m:

e Yv (U2, 22)0 = (Yv ) (k) (uz)vz;m(k)fl

to get an element in V(y), where m(k) = wt (u2) + wt (v) —k —1. So
Yy (u1, 21)m Yy (ug, 22)v = Z(Yv)n(ul) ((Yv)m(k) (u2)v) z;m(k)flzfn_l
neZ

is an element in V, with each component in V(1) being

m Yy (u1, 21) 7Yy (ug, 22)v = (Yv)n(l)(ul) ((Yv)m(k) (uz)v) z;m(k)flz;n(l)fl,

where n(l) = wt (u1) + wt (u2) + wt (v) — 1 — m(k) — 2. Hence the infinite sum
> Yy (u1, 21)mk Yy (ug, 22)v of elements in V' converges absolutely to an element in V

kEZ
if for each | € Z and each v’ € V(}k), the infinite sum

> (V) () (V0 Y (w2)0) 2 "2 70
kEZ

converges absolutely. When |z1]| > |z2| > 0, this is true because the series is a rear-

rangement of the following absolutely convergent series

> (W', (Y )n(un) (Y)m(uz)v)) 2y " ey ™

m4n=wt(u1)+wt(uz)+wt(v)—1—2
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So when uj, ug,v € V are homogeneous, we proved that the series Y Yy (u1, z1)m Yy (u2, 22)v
converges absolutely to an element in V when |z1| > |22] > 0, Whel;izthe element is given
by Yy (u1, 21) Yy (ug, 22)v.

For general nonhomogeneous u1, ug, v, write

= Z Uip]ll),UQ = Z u;pi)?v = Z plam)
j1 finite jo finite m finite

We already know from above that for each fixed ji,j2,m and each fixed | € Z and
v € Vi,

(W Y @ )Y (), 22)0) = 3 (0 Y (@, 2w (g, 20)o(o),

keZ

it follows that

(0 Yy (ur, 20) Yy (ug, z0)0) = Y (0, YV(ngh), Zl)YV(ngjQ)a zo)v(am))

J1,J2,m finite

= D W, Yo (u, 20)m Yo (ug? zp)o@m))

j1,j2,m finite k€Z

- Z Z </U/7 YV (ugpjl), Zl)ﬂ'kYV (Uépjz)’ ZQ)’U(qm)>

k€E€Z j1,j2,m finite

= Z (UI, Yv (ut, 21)mp Yy (ug, 22)v),
kE€Z

the third equality of which is justified because a finite sum of absolutely convergent

series is still absolutely convergent, and for absolutely convergent series the order of

summation can be rearranged. So we proved that the sum > Yy (u1, z1)m Yy (u2, 22)v
keZ

absolutely converges to an element in V' when |21]| > |22] > 0, where the element is

given by Yy (uq, 21) Yy (ug, 22)v. O

Summary 2.2.12. For fized z1, zo satisfying |z1| > |z2| > 0, the product of two vertex

operators gives rise to the following map
Yv(-, Zl)Yv(~, 22)' VeVeV — V
which is equal to the map

ZYv(-, )Yy (h2)  VRVeV =V
keZ
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Remark 2.2.13. We emphasize that the sum > Yy (u1, 22)7, Yy (ug, 22)v should be re-
garded as a single series in V, while Yy, (u, zl)YI:/E(ZuQ, 2= 3 (Y9 )m(u) (Yo)n(ug)v)zy ™ Lzt
are regarded as a double series in V. The proof above arqrzl(ffr?teszto conclude the the
absolute convergence of the former series from the absolute convergence of the latter
series, which is guaranteed by the rationality. When w1, u9, v € V are homogeneous, the
double series Yy (u1, 21)Yy (ug, 22)v reduces to a single sum and indeed coincides with
the series Y Yy (uy, 20)m, Yy (ug, 22)v. When uy,uz,v € V are not homogeneous, these
keZ

two series no longer coincide and should not be recognized as identical to each other.

It is the sums of these series that are identical, not the series themselves.
Remark 2.2.14. When V is not grading-restricted:

1. The statement of Summary 2.2.12 do not hold when V is not grading-restricted.
In regarding to Remark 2.2.10, unless we know V is a closed linear subspace of 17,
we can only conclude that Yy (uq, 21)Yy (u2, 2z2)v and Y Yy (ug, 21)m Yy (ug, 22)v

kEZ
are elements in V. )

2. However, the conclusions in Proposition 2.2.11 do hold, as essentially we are real-
izing the single complex series > (v, Yy (uq, 21) 7, Yy (ug, 22)v) as a rearrangement
of the absolutely convergent dgelf)le complex series (v, Yy (u1, 21) Yy (ug, z2)v) and

use this realization to prove that the single series is absolutely convergent. Al-

though the sum falls outside V, the series still converges absolutely.

2.2.4 Product of any number of vertex operators

The above discussion generalizes to the product of any number of vertex operators.

Instead of getting into too much technical details, we sketch the steps here:

1. Rationality of the product of n vertex operators states that for each k € Z and

each v € V(i) when |z1] > |z2| > -+ > |zn| > 0, the multi-series
(U,) YV(ula Zl)YV(UZa 22) te YV(un7 Zn)v>

absolutely converges. Hence Yy (u1, 21)Yy (ug, 22) - - - Yy (up, 2 )v is well-defined in

V.
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2. When all uq, ..., u, and v are homogeneous, we have

(W', Yy (u1, 21)Yy (uz, 22) - Yy (un, 2n)0)

- Z (W', (Y9 )y (1) (- (Y )y, () 0) - - )zl_ml—l ...

mi+-Fmp=wt(u)+-+wt(un)—k—n
mi,...,Mmn€Z

Rationality states that this series is absolutely convergent when |z1| > -+ >

|zn| > 0.

3. We argue that when |z1]| > |22] > -+ > |2,], the series

> Yi(ur, z)me, Yo (g, 22)ky - - Yo (1, 20 1)k, -, Yo (i, 20)0
kl,...,kn,]_EZ

of elements of V' converges absolutely to an element in V identical to that Yy (u1, 21) - -

converges to. This is done by first arguing that for each [ € Z, each v’ € V(B and
each homogeneous uy, us, ..., un,v € V,
S Yo (ug, 2)mR Y (ug, 22) Ty -+ Ty Yo (U, 20)0)
k1,k2,....kn—1€Z

is a rearrangement of the multi-series

—mn—1>

Yy (un, 2n)v

) (0 (Y Yo (1) (V3 Yo (1t J0) -+ )) 7™ L zrmn =,

mi+-F+mp=wt(ui)+-+wt(un)—k—n
mi,....mMn€Z

Once we set up the equality for homogeneous elements, using the fact that a finite
sum of absolutely convergent series is absolutely convergent and thus the order
of summation can be rearranged, we generalize the equality to nonhomogeneous

U1, U2, ..., Un, v by a finite sum argument. Technical details are skipped here.

Summary 2.2.15. For any uq,...,un,v € V and any z1,...,z, € C satisfying |z1| >

|z2| > -+ > |z,| > 0, the series

> Yu(ur, z)me Yo (ug, 22)ma - Yo (Un 1, 20 1)k, Yy (tin, 20)0
klvnaknflez

of elements in V converges absolutely, The sum is equal to the V-element given by

Yy (ui, z1) - Yy (un, 2n)v
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For fized z1, za, ..., zn, € C satisfying |z1| > -+ > |zn| > 0, the product of any number of

vertex operators gives rise to a map
YV('a Zl)YV('a Z2) T YV(‘? Zﬂ)' : V®n ® V= V
and is equal to the sum
Z Yv(-, Zl)ﬂ'le\/(', ,22)71’/€2 o Yv(-, anl)ﬂ'kwﬁlY\/(-, Zn)' : V®n ® V — V
E1yeokn—1€7Z
Remark 2.2.16. So we also know that when |z1| > |z2| > -+ > |2,] > 0,
> Y, 2k Yo (2, 22) Ty - Yo (Un1, 20 )Tk, Yy (tin, 20)0)
k1o kn—1€7Z
converges absolutely to a rational function with the only possible poles at z; = 0,¢ =

1,2,..,n52; = zj,1,7 = 1,2,...,n. As we will see, this makes it easy to discuss of the

region of convergence.

Remark 2.2.17. Just as in Remark 2.2.13, We emphasize that for general u, ..., un, v €
V', the multiseries
> Yu(ur, z)me Yo (2, 22)mky - Yo (Un 1, 20 1)k, Yy (tin, 20)v

kl,...,kn,1€Z
is a (n — 1)-multiseries of elements in V and should not be recognized as the same series
as

o —mi1—1 —mnp—1
Yo(us,z1) - Yo (unz)o = Y (V) (w1) (- (Y )im, (n)0) )21 2
mly---,mnez

which is a n-multiseries of elements in V', though their sums are equal when |z1| > -+ >

|zn| > 0.
Remark 2.2.18. When V is not grading-restricted:

1. As shown in Remark 2.2.14, Yy (u2, 22)Yy (u3, z3)v does not necessarily sit in V.
The . in the series > ;o Y (w1, 21)m Yy (u2, 22) Y (u3, 23)v has to extend to Vv,

ie., T : V- V(’,‘;;
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2. As mpYy (ug, 22) Yy (us, z3)v does not fall in V| we would interpret the action of
Yy (u1,21) on the (’;S—element simply as a rearrangement of summation. More

precisely,
Yv (w1, 21)mp Yy (u2, 22) Yy (us, 23)

= > (Y0 ) () (Y o (12) (V¥ ) (g )2y g ™ g™ )

wt ug+wt us—n—p—2==k
n,pEZ

So although 7Yy (ug, 22)Yy (us, z3) falls in the space V(’]‘;; much larger than V{3,
Yy (u1,21) still “act” on it in the sense above. Such an action is well-defined

because of the rationality of products of three vertex operators.

3. The interpretation extends to the product of n vertex operators in a similar way,
ie.

Yv (w1, 21)mp Yy (u2, 22) - - - Yy (un, 2n)v

= 2 (0D (1) -+ (¥ o (o) 2 ™z
wt ug+--+wt up—mo—--—mp—n+1=k
ma,...,mMn€Z
4. The conclusion of Summary 2.2.15 has to be modified, as everything now sits in

V. Since all the Yy (u1, 21) - - - Yy (un, 2, )v spans only a very small subspace in V/,

we don’t think it necessary to give an explicit formulation.

5. The conclusion of Remark 2.2.16 still hold, as we did prove the absolute conver-

gence of the series > (v, Yy (u1, 21) 7k, Yy (u2, 22) < - 7k, Yy (Un, 21)0).
keZ

2.2.5 TIterate of two vertex operators

The V-description to vertex operators directly applies to the iterate of two vertex

operators. Let’s fix a nonzero z5 € C and v € V. Then the map
YV(‘722)'U V=V

accepts only inputs in V. Likewise, for each k € Z, we apply the projection operator
7 to get an element 7Yy (u1, 21 — 22)v in V. Then we apply the vertex operator to

get Yy (7 (Yy (u1, 21 — 22)uz), 22)v € V. Finally we sum up to get the infinite series

Z YV(Wk(YV(Ul, 21 — Zz)Ug), zg)v
keZ
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of elements in V. The following proposition makes sense of the infinite series for some

choices of z1, zo:

Proposition 2.2.19. For any ui,us,v € V and any complexr numbers z1, zo satisfying
|za| > |21 — 22| > 0, the single series
> Yo (m(Yo (u, 21 — 29)u), 22)v
keZ
of elements in V converges absolutely, i.e., the complex series
> W Yy (e (Y (ur, 21 — 22)u2), 22)0)
keZ

converges absolutely. Its sum is equal to the V element given by
Yy (Yv (u1, 21 — 22)ug, 22)v
Proof. We first verify this for homogeneous uy,us, v € V. Since
Yy (u1, 21 — 22)ug = Z (Y )m (ur)ug(z1 — 29) "1

mEeZ

For k € Z, we apply m:

WkYV(ul,Zl — 22)u2 = (YV)m(k)(ul)UQ(Zl _ 22)7m(k)—1

where m(k) = wt (u1) + wt (u2) —k — 1. So

Yy (miYv (u, 21 — 22)ug, 22)v = Z(YV)n((YV)m(k) (ur)ug)zy "1z — z9) "MK ~1
ne”

gives an element in V, with the projection in V(1) being

n(l)—1 )—m(k)—l

mYv (meYv (u1, 21 — 22)ug, 22)v = (Yv )n@) (Y )iy (u1)u2) 2o (21 — 22

where n(l) = wt u; +wt ug +wt v —m(k) —! —2. The summation Y Yy (7 Yy (u1,21 —
keZ
22)usg, 29)v makes sense in V if for every | € Z and every v’ € V(’l‘),

> W Yy (me Yy (un, 21 — 22)up, 22)0)
keZ

= W, )y (Y0 )iy (un)uz)y 25O () = 25) 01
keZ
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converges. Note that the the second part of the rationality (Axiom 4) states that when

|z2| > |21 — 22| > 0, the double series

(W, Yy (Yo (ur, 21— 2)ug, z0)v) = 3 Y (v, (Y )n(ur)uz) v)(z1—22) " 2™}
meZnel

converges absolutely. So Yy (Yy (u1, 21 — 22)usg, 22)v is an element in V. Moreover, since
u,ug,v are homogeneous, (v, (Yy ) (Yy)n(u1)uz)v) is zero except when wt (uq) +

wt (u2) + wt (v) —n —m —2 =1. So the series

3y (W, (V0 ) (V) (u)un) v) (21 — 29) "2y ™!

mAn=wt(u1)+wt(uz)+wt(v)—1—2
m,ne”

converges absolutely. With a rearrangement we will recover the series we want

S (Y Dty (V0 ey ()25 O (21— )01,

kEZ
So we proved that the sum > Yy (7 Yy (w1, 21 — 22)ug, 22)v absolutely converges to an

keZ
element in V' when |22| > |21 — 22| > 0, where the element is given by Yy (Yy (u1, 21 —

ZQ)UQ, ZQ).

For general nonhomogeneous u1, us, v, write

1 2
uy = Z uipyl)’uz _ Z u;pn),v _ Z p(@m)
71 finite 7 finite m finite
We already know from above that for each fixed ji,j2,m and each fixed | € Z and
/ *
v e V(l),
<v/,Yv(Yv(u§pj1), 21 — zQ)Uépjz), z9)0m)y = Z (W', Yv(ﬁka(ugpjl), 21 — 7)), z9)v(@m)),
kEZ

it follows that

(W, Yy (Yo (ur, 21 — z0)ug, 22)v) = ) W, Yo (Yo (@, 21— zo)uf?) | zp)0(am))

j,m,n finite

= . Z<U/7YV(MYV(U§%)721—22)U§pj2)72’2)v(qm)>

jym,n finite kEZ

=>. > (0, Yo (m Yy () 21 — za)ul”), z)olam))

k€EZ j,m,n finite

= (W, Yy (m Yy (u1, 21 — 22)ug, 22)0)
kez
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the third equality of which is justified because a finite sum of absolutely convergent series

is still absolutely convergent, and for absolutely convergent series the order of summa-

tion can be rearranged. So we proved that the sum > Yy (mi Yy (u1, 21 — 22)ug, 22)v
keZ

absolutely converges to an element in V when |23| > |21 — 22| > 0, where the element

is given by Yy (Yy (u1, 21 — 22)ug, 22)v. O

Summary 2.2.20. For fized z1,z2 satisfying |za| > |21 — 22| > 0, the iterate of two

vertex operators gives rise to a map
Yv(Yv(', 21 — 22)-, 22)' VeVeV — V
which is equal to the sum

ZYV(WkYV('azl — ZQ)-,Z2)~ VeVeV — Vv
keZ

Remark 2.2.21. Just as in Remark 2.2.13, We emphasize that for general uy, ug,v € V,

the series

Z Yv (miYv (ur, 21 — 22)ug, 22)v
kez

is a single series of elements in V' and should not be recognized as the same series as

Yy (Yo (ur, 21 — 22)u, 22)v = > Y (V) (Vi) (ua)v) (21 — 22) ™2y
MELNEL

which is a double series of elements in V. It is their sums that are equal when |z;| >

|z1 — 22| > 0, not the series themselves.
Taking the associativity in Axiom 5 into account, we have the following:

Summary 2.2.22. For fized z1, zo satisfying |z1| > |z2| > |21 — 22| > 0, the following
maps
Yv(-, Zl)Yv(-, 2’2)- VeVeV — V

ZYV(', 2)m Yy (22) VR VRV =V
keZ

Yy (Yy (21— 22),22) : VRVRV =V

ZYV(TFkYV(w% — %), 29)VRVRV =2V
kEZ

are equal.
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Remark 2.2.23. When V is not grading-restricted, all the maps in Summary 2.2.22

are Y?—Valued.

2.3 Rationality of the iterate of n vertex operators

We shall use the V-valued maps interpretation to prove the rationality of the iteration

of any number of vertex operators, i.e., the series
W Yy (Yy (- Yy (ur, 21 — 22)u2, -+ 5 Zn—1 — 2n)Un, 2n)0)
converges absolutely to the same rational function
W Yy (u, 21) -+ Yy (un, 2n)0)
for certain choices of (z1,...,2,) € C™. As this is an analytic statement, some facts in
complex analysis will be needed.
2.3.1 A note on complex analysis

Definition 2.3.1. A multicircular domain E C C" (centered at the origin) is an open

subset such that
(21, ..., zn) € E implies (z1€, ..., z,e"") € E

for every 61, ...,0,, € R. The trace of a multicircular domain £ C C is given by
TrE = {(|z1], .- |2n]) € RY : (21,...,20) € E}

We need the following results in several complex variable functions (see for example

[KW]

Lemma 2.3.2. A multicircular domain E C C" is connected if and only if TrE C R}

1s connected.

Proof. Since the map ¢ : C* — R% : (21,...,2,) — (|21, .-, |2n|) is continuous, thus if
FE is connected then TrE is also connected. Conversely, if £ = FEy U Ey with E1 N Ey =

(), then both E; and FE, are multicircular, and ¢(F) = ¢(E1) U ¢(Es2). We claim
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that ¢(E1) N ¢(E2) = (0. Suppose this is not the case, then there exists two points
(#1, .-, 2n) € Ep and (wy,...,w,) € Ey such that |z1] = |wi],..., |2n| = |wn|. Hence

0

there exists 61, ...,0,, € R such that z; = ewlwl, vy 2n = €97w,. But since E» is also

multicircular, this is to say that (z1, ..., 2,) is also in Fy, O

Theorem 2.3.3. Let E be a connected multicircular domain. Let f be a holomorphic
function on E. Then there is a unique n-variable Laurent series with center 0 and
constant coefficients which converges to f(z1,...,2n) at every point of E for some total
ordering of its terms. It is the series
Z Cal..‘anzl_al_l . z;an—l
1 E€Zy...n €L

whose coefficients are given by the formula

1 (o5} Qn

for any r = (r1,...,ry) > 0 in the trace of E. The series will actually be absolutely

Coy...oy, —

convergent on E and it will converge uniformly to f on any compact subset of E.
Proof. See Theorem 1.5.4, Theorem 2.7.1 and the discussion in Section 2.8 of [KW]. [

Remark 2.3.4. If the Laurent series is lower-truncated in z,, let —M,, be a lower bound
of the powers of z,, then one can recover the coefficient of z, from the derivatives of
2Mnf (21, ..., 2,). More precisely, we have

o 1 a an+Mn, .
Z Caran?yt o 2yt = ————— lim <8z) (2" f(21, s 20))
n

1
+ | -
at,y..,0n_1€7Z (O[n Mn) 2n=0

Lemma 2.3.5. Let f be a rational function in z1, z9. Let T be a connected multicircular
domain on which the lowest power of zo in the Laurent series expansion of f(z1,z2) is
the same as the order of pole zo = 0. Let S be a nonempty open subset of T and S’ be
the image of S via the projection (z1,z2) — z1. Assume that for any fized ko € Z, the

series

k
E ak1k2zll

ki1€Z
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converges absolutely for every zy € S’, and

Z Zak1k2z]fl 252, (2.2)

ko€Z \k1€Z

viewed as a series whose terms are (Zklez aklk22f1> 252, s lower-truncated in zo and
converges absolutely to f(z1,z2) whenever (z1,22) € S. Then the corresponding multi-

series

k1 k
Z Ay kn 27" 2 (2.3)
k1,ko€Z

converges absolutely to f(z1,z2) whenever |z1] > |z2| > 0.

Proof. Fix z; € C and let z9 € C such that (z1,22) € S. Since S is open and the series

ki |,k
2| 2w | s

ko€Z \ki€Z
is lower-truncated in we, one can find a real number r > |z3| > 0 (depending on z)
such that the series converges absolutely in the region {wy € C : 0 < |wa| < r} to
f(z1,wz). By assumption, the power of wy is lower-truncated. Let Ms be the lowest

power of wo. Then

Mo k1 ko
Wy E E Ak ko ?1 | Woo,

ko€Z ki1€Z

is a power series with variable wy, which converges uniformly in the region {wy € C :
lwa| < r} to wi f(z1,ws). In particular, wd™ f(z1,ws) is defined when wy = 0. From
the limit ratio test and the fact that lim, s n/(n + 1) = 1 < 2, one sees that the
derivative of the series
Z (k2 + M2) Z ak1k2zi€l w§2+M2_1
ko€Z k1€Z
converges uniformly in the region {ws € C : |wy| < r/2}. Thus we can perform term-
by-term partial differentiation, then evaluate ws = 0, to conclude that for each ko € Z
. o ko+Ma o
Z Uiy = lim ( > (w3 f (21, w2))
wa=0 3’11)2
k1€Z
As the left-hand-side is an absolutely convergent series, the right-hand-side is a

holomorphic function in z; that is defined on an open set in C (the image of S via
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the projection (z1,z2) + 21, which is open). Thus one can find an annulus where
the left-hand-side converges absolutely. In particular, if we use gg,(z1) to denote the
holomorphic function defined by the right-hand-side, then g, (z1) is defined on an
annulus. With Theorem 2.3.3, we know that aklezfl is precisely the Laurent

k1€Z
series expansion of g, (z1), with

k-1
[T Z/Zl Y gk, (21)d2
5

for some circle ~.

Now we consider the Laurent series expansion of f(z1,z22). By Theorem 2.3.3, this
function can be expanded uniquely as a Laurent series in z1,z9 on T. By assumption,
the lowest power of z5 in this double series is bounded below by the order of pole zo = 0.
As pointed out above, the function zé\b f(z1, z2) is defined when z5 = 0, so the order
of pole is bounded below by —Ms,. Thus for each ko € Z, the coefficient of 252 in this

series expansion is precisely

o ko+M>
lim ( ) (222 f (21, 22))

22=0 \ Dzg
that coincides with gg,(z1). Moreover, from the way of expansion, one easily sees that
gk, (z1) is a polynomial function in z; (with possibly finitely negative powers of z1).
Thus gk, (21) is defined on « and one can perform the integration on . Therefore, the

coefficient of zfl 212“2

. i ) ko+DMo> Iy
/21 Y Gk, (21)d21 :/21 b lim <6) (252 f (21, 22))dz1
Y 2

in the Laurent series expansion of f(z1, z2) is precisely

which coincides with ag, ,-
So we proved that the double series
1k
Z Ukyky 2y 2o
k1,k2€Z
is precisely the Laurent series expansion of the function f(z1, z2) in the T'. In particular,

this double series converges absolutely for every (z1,292) € T

To generalize the above lemma, we need the following lemma:;:
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Lemma 2.3.6 (Hartogs’” Theorem). Let U C C" be an open set and f : U — C.

Suppose that for each i =1,....n and each fized 21, ...,2;—1, Zi+1, -+, 2n, the function

Crr f(21y e 2im1, Gy Zidk 1y ooy Zn)
18 holomorphic, in the classical one-variable sense, on the set
U(21y eoey Zie1y Zig 1y ooy 2n) = {C € C: (21, ey 2i-1,C, Zig 1y ooy 2n) € U}
Then f is holomorphic on U.
Proof. See [K], Theorem 1.2.5. O

Lemma 2.3.7. Let n be a positive integer. Let f be a rational function in z1, ..., zn. Let
T be a connected multicircular domain on which the lowest power of z, in the Laurent
series expansion of f(z1,...,zn) is the same as the negative of the order of pole z, = 0.
Let S be a nonempty open subset of T and S’ be the image of S wvia the projection
(215 ooy 2n) ¥ (21, ooy 2n—1). Assume that for each fized k,, € Z, the series
S hikaek ik
E1,k2,e k-1 €7

converges absolutely for every (z1,z2,...,2n—1) € S’, and

k1 Kk kn—1 k
Z Z Akyky.kn_1kn?1 22" Znt 1 | 20" (2.4)
kn€Z \kik2,...kn_1€7
. R k1 _ko kn—1 kn 2
viewed as a series whose terms are > Ay kg kon 1 kn 21 29" - 21 | Z0m, s
k1,k2,....kn—1€ZL
lower-truncated in z, and converges to f(z1,...,2zn) for every (21,22, ..., 2n—1,2n) € S.
Then the corresponding Laurent series
k1 _k kn—1_k
E , aklkznknzll'zQz e anl Zn"s (2'5)

k1,k2,....kn—1,kn€Z

converges absolutely to f(z1,...,zn) for every (z1,...,2n) € T

Proof. Fix z1,...,2p—1 € C and let z, € C such that (z1,...,2,) € S. Since the series

k kn—1 k
E E akl..-knzll T Znil wy",

En€Z \ki,....kn_1€7Z
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is lower-truncated in w, and converges when w, = z, and S is open, one can find a
real number r > |z,| > 0 (depending on zi, ..., z,—1) such that the series converges
absolutely in the region {w, € C: 0 < |w,| < r} to f(z1,..., 2n—1,wy). Let —M, be

the lowest power of w,. Then

M, k kn—1 k
w, " E E aklmknzll e anil wy",

kn€Z \ki,...kn_1€7
is a power series with variable w,,, which converges uniformly in the region {w, € C :
lwn| < 7} to wMf(21,...,2n_1,wy,). In particular, wMi (2, ..., 2,1, w,) is defined
when w,, = 0. From the limit ratio test and the fact that lim, oo n/(n+1) =1 < 2,

one sees that the derivative of the series
k kn—1 ko+Ms—1
Z (kn + M) Z Ahyokn 21 2y | W
kn€Z kiyeeskn—1€7Z

converges uniformly in the region {w, € C : |w,| < r/2}. Thus we can perform term-

by-term partial differentiation, then evaluate w, = 0, to conclude that for each k,, € Z

k © kn+Mn

1 n—1 __ 13 Mo

§ Qky. kn?1 """ Zp—1 = JHEIO <8w ) (wn f(zla -0y Bn—1, wn))
n=

k1,....kn—1€Z n

We denote the right-hand-side function as g, (21, ..., 2n—1) and prove that it is
holomorphic on S’. Here we will use Hartogs’ theorem. Fix ¢ = 1,....,n — 1 and
21y eeey Zie1s Zidtls ooy 2n—1. Then for every ¢ € S'(21,...,2i—1, Zit1, -+, Zn—1), Since the
left-hand-side series

D A AR SR
ki,..kn€Z
is an absolutely convergent multi-Laurent series in z1,...,(,...,2,—1, in particular, we

can arrange it as an absolutely convergent single Laurent series in (:
k1 ki—1_kit1 kn—1 ki
E E Qkyokn 1 " %11 Zig1 i1 | G
ki€Z \ki,..ki—1,kit1,.-,kn€Z

where the parenthesis sum is now treated as the coefficient of the single Laurent series.

Then from the absolute convergence, the limit function of this single Laurent series
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is holomorphic at every ¢ € S'(21,..., 2i—1, Zi+1, ---s 2n—1). In other words, the right-
hand-side function g, (21, ..., 2i—1,(, Zi+1, ..., 2n) 18 holomorphic in the classical one-
variable sense on §'(z1, ..., Zi—1, Zit1, ---s 2n—1)- S0 from Hartog’s theorem, we conclude

that g, (21, ..., 2n—1) is holomorphic on S’.

Since in the multicircular domain {(e®1zy, ..., =12, 1) : (21,..., 2n1) € 8,01, ..., 001 €

[0,27)}, the left-hand-side series converges absolutely, gk, (21, ..., 2n—1) is defined on this

kn—1

multicircular domain. With Theorem 2.3.3, we know that > Ak, .k, zf Loz, ™y

ki,....kn—1€Z
is precisely the Laurent series expansion of g, (21, ..., 2n), wWith

—k1—1 _knfl_l
Ay .. kn = / T / z Tz, Grn (21, -0y 2n1)d21 -+ - dzn 1
v

O . rp_1e¥=1):0y,...,0,_1 €[0,2m)} with any (rq,...,r,) €Tr S’

where v = {(r1€!

Now we consider the Laurent series expansion of f(z1,...,2,). By Theorem 2.3.3,
this function can be expanded uniquely as a Laurent series in zi,...,z, on 1. By
assumption, the lowest power of z, in this series is bounded below by the order of pole
2, = 0. As pointed out above, the function 222 f(21, ..., z,) is defined when z, = 0, so

the order of pole is bounded below by —Ms. Thus for each k,, € Z, the coefficient of

zF2 in this series expansion is precisely

a kn+My
lim < ) (M0 f (21, 20)

zn=0 8Zn

that coincides with g, (21, ..., 2n). Thus we can perform the integration on the multicir-

kn

#n in the Laurent series expansion of f(z1, ..., z,)

cle 7, to see the coefficient of 25 ... 2

is precisely
—k1—1 —kp_1—1
/~~/z1 e T g (21 ey Zn—1)d 21 - - d2p—
¥

_ /.../Zl—kl—l.‘.znn; lim (02) (M F (21, oy 20))d21 - dmt
Y " n

which coincides with ag, . g, -

So we proved that the multiseries

> k22

k1, kn€Z

is precisely the Laurent series expansion of the function f(z1,...,2y,) in the region 7. In

particular, this multiseries converges absolutely in 7T'. O
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The following generalization of Lemma 2.3.7 can be proved similarly and will be

frequently quoted in future papers.

Lemma 2.3.8. Let n be a positive integer. Let f be a rational function in z1, ..., z,. Let
T be a connected multicircular domain on which the lowest power of z, in the Laurent
series expansion of f(z1,...,2n) s the same as the order of pole z, = 0. Let S be a
nonempty open subset of T and S’ be the image of S wvia the projection (21, ..., 2,)

21y .y 2n—1). Assume that for each fixed kyi1, ..., kn € Z, the series
p+

k1 ko kP
E Ak ko..kp_1kn?1 22" "

.. Zp
k1,k2,....kp€EZ
converges absolutely for every (z1,z2,...,2p) € S’, and
k1 _k k kpt1 k
E E Qhoyky. ki 1kn?1 29" 2p | Zph1 = 2"
kn€Z \ki,ka,....kpEZ
. . k k
viewed as a series whose terms are > aklkg...kn,lkn2f12’§2 e 2ph zpiﬁl cov gl
kl,kg,...,kpeZ

satisfies the following:

1. The series is lower truncated in z,. Moreover, for everyi =p+2,....,n—1, every

fized kit1,....kn € Z, the series is lower-truncated in z;.
2. The series converges absolutely to f(z1,...,zn) for every (21,22, ..., 2n—1,2n) € S.

Then the corresponding Laurent series

kl k2 k -1 _k
§ a‘k‘lkz...k’nzl ZQ e Znyil Z’nn7
k1,k2,..kn—1,kn€Z

converges absolutely to f(z1, ..., zn) for every (z1,...,2n) €T
Proof. For convenience, we only give a sketch of the steps here:

1. Fix kpy1, ...,k € Z. We first conclude that there exists positive integers M, ..., M1,
such that

k M kn—+M,
. Ky ) o p+1+Mpy1 o n+Mp
Z Qky..kn?1 " %p = lim

w e (Wp1,eeswn ) —(0,...,0) Own,
yeesfvp

M,
(wpffl e wi\f”f(zl, ooy Zpy Wit 1, vy W) ).
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2. Denote by gk, ...k, (21, -+, zp) the function that maps (21, ..., 2,) to the right-hand-
side. Then we use Hartogs’ theorem to conclude that the g, ok (2150 2p) 18

holomorphic on S’

3. One sees that the left-hand-side series is precisely the Laurent series expansion of

Gkpi1..en (215 -+, 2p) on the multicircular domain{(e? 2y, ..., z,) : (21,...,2) €

S’ 61,...,0, € [0,27)}. In particular,
_ —kp—1
Ay .. ky = / / hi—1 cezp ¥ gkp+1,,,kn(zl, ...,zp)dz1 dzy
where v = {(r1€?, - rp,_1€®%) : 01, ...,0, € [0,27)} for any (r1,...,7,) €Tr .

4. Consider the Laurent series expansion of f(z1,...,2,) on T. Argue that the series

kn
n

—k1—1 —kp—1
/---/zl Yz T Gk ik (215 2p)dzr - dy
2l

which coincides with ag, . ,. Thus the series

coefficient of zfl -+-z¢n in the Laurent series expansion of f(z1, ..., 2y) is precisely

k1 ko kp kpt1 k
E E Akyko.kn1kn®1 %2 """ 20 | Zpy1 " Fn

kn€Z kl,k27...,kp€Z

converges absolutely for every (z1,...,2y) € T.

O]

For iterated series that are “locally” upper truncated, we also have a similar result.

Lemma 2.3.9. Let n be a positive integer. Let f be a rational function in z1, ..., z,. Let
T be a connected multicircular domain on which the highest power of z, in the Laurent
series expansion of f(z1, ..., zn) is the same as the negative of the order of pole z, = co.
Let S be a nonempty open subset of T and S’ be the image of S via the projection

(215 ey 2n) = (215 ory 2n—1). Assume that for each fized k,, € Z, the series

k1 _k kn—1
E Ay kg 1kn?1 29 * " 21
k1,k2,...kn—1€Z

converges absolutely for every (z1, 29, ..., 2n—1) € S’, and

k1 ko kn—1 k
E E Ak ky.. Ky — 1knzl Z9 znil Zn"

kn€Z \ki,k2,...kn_1€7Z
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. . Fen— .
viewed as a series whose terms are > aklkzmknflknzflz? ceezm ) 2k s
kl,k27...,kn_1EZ
upper-truncated in z, and converges to f(z1,...,zn) for every (21,22, ...,2n—1,2n) € S.

Then the corresponding Laurent series

k1 _k kn—1_k
E Qheyky. kn?1 23 """ 21 Zns

k1,ko,....kn—1,kn€Z

converges absolutely to f(z1, ..., zn) for every (z1,...,2,) €T

Proof. Tt suffices to perform the transformation z, — 1/z, and apply the Lemma

2.3.7 O

2.3.2 Iterate of three vertex operators

With the above preparation, we can start to deal with vertex operators. To make it

easier, we first investigate the iterate of three vertex operators, i.e.

W, Yy (Yy (Yy (u1, 21 — 22)ug, 20 — 23)us, 23)v).
To show that this series converges absolutely and to find the region of convergence, we
need the following intermediate proposition:
Proposition 2.3.10. For any ui,us,us,v € V,v' € V', fizred z1, 29,23 € C satisfying
|29| > |21 — 22 — 23|, |22] > |21 — 22| > 0, |22] > |23]| > 0, the series

D (0 Yo (m Y (un, 21 — 29)ua, 20 — 23)m Y (us, 23)v)
kez

converges absolutely to the rational function that is determined by
(W', Yy (ur, 21) Yy (ug, 22) Yy (u3, 23)v)
Proof. From Summary 2.2.15 and Remark 2.2.16,

(0, Yy (u1, 21) Y (2, 22) Yy (us, 23)0) = 3 Y (0, Yo (ur, 21) Yo (ug, 22)m Yy (g, 23)0)
keZ €T,

gives a rational function on {(21, 22, 23) € C3 : |21]| > |22| > |23] > 0} that has the only
possible poles at z1 = 0,29 = 0,23 = 0,21 = 29,20 = 23,21 = z3. Denote this rational

function by f(z1, 22, 2z3). Then

f(z o ) _ 9(31)327'23)
1,%2,%3 257121292253(21 _ Z2)p12(22 — 23)p23(21 — 23)1713
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for some integers pi, p2, P3, P12, P23, P13 > 0 and some polynomial g(z1, 29, 23).
Now we fix [ and consider the series

> Yy (ur, 20)me Yy (ug, 22) (m Yy (us, 23)v)
kez

where m Yy (us, z3)v is an element in V. As part of an absolutely convergent double
series, it is also absolutely convergent. From Summary 2.2.22, it is equal to

> Y (meYy (ur, 21 — 22)ug, 22)m Yy (us, z3)v
kez

when |z1| > |2z2] > |21 — 22| > 0 for each fixed I. We sum up all [ € Z to see that

Z (Z Yy (mpYv (ug, 21 — 22)ug, z2)m Yy (us, Z3)U>

€7, \keZ
viewed as a series whose terms are > Yy (mpYy (u1, 21 — 22)ug, 22)m Yy (us, z3)v, con-
verges absolutely and the sum is equaf‘ff Yv (u1, 21) Yy (ug, 22) Yy (us, 2z3)v when 21, 29, 23 €
C satisfy |z1]| > |z2| > |z3] > 0, |22| > |21 — 22| > 0. In other words,

> (Z(U',Yv(ﬂka(m, 21 — 22)ug, 22)mYy (us, Z3)U>>

1€Z \keZ
viewed as a complex series whose terms are Y (v, Yy (1 Yy (u1, 21 —22)ug, 22)m Yy (us, 23)v),
converges to f(z1, 22, 23) when |z1| > |29] ;jigl > 0, |z2] > |21 — 22| > 0.
To see that the double series

SN W Y (meYy (u, 21 — z2)ug, 20)m Yy (us, 23)v
1€ keZ

converges absolutely to f(z1, 22, z3) when |z2| > |23] + |21 — 22|, |23] > 0,|21 — 22| > 0,
we need to apply Lemma 2.3.7 with the following parameter transformation {; = z; —

z2,(o = 29,(3 = z3. Let
T ={(¢1,¢2,¢3) : |Gl > |G|+ |G, 1G] > 1G] > 03}

With Lemma 2.3.2, we see that T is a connected multicircular domain. Moreover, T is
a subset of {({1,(2,(3) : |G| > |¢3],7 = 1,2}. Now we express the function f(z1, 22, z3)in

terms of the variables (i, (2, (3 as

9(C1 + 2, (2, (3)
(C1 + G2)Pr¢RPCE° CY (G — (3)P23(C1 4 G2 — Ga)Pis”

admits an expansion as Laurent series in (3, (2, (3 by the following steps

(G4 G, Co,G3) =
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1. Expand the negative powers of (; + (2 as a power series (;. The resulted series

converges when [(2| > [(1].

2. Expand the negative powers of (3 — (3 as a power series of (3. The resulted series

converges when [(2| > [(3].

3. Expand the negative powers of (1 4+ (3 — (3 as power series of (; — (3, then further
expand all the positive power of {; — (3 as polynomials. The resulted series

converges in |Ca] > |¢1 — (3.

Obviously elements if ((1,(2,(3) € T, then all the above conditions are satisfied (note
that |Ca| > |C3| + |¢1| implies that |Ca| > [¢1 — 3] by triangle inequality). Thus f({; +
(2, (2,(3) is expanded as an absolutely convergent Laurent series in 7. From Theorem
2.3.3, the Laurent series is unique. Note that the lowest power of (3 in this Laurent is
—D3-

Set

S ={(¢1.¢2.¢3) € CP 1 |G+ G > [Co| > |¢s] > 0,[C| > [G1] >0}NT

Obviously, S is a nonempty open subset of T. We know that the series
> (! Vi ()l Yo (un, G )ug, G) ) Vi (us, Ga)w)
kEZ
is absolutely convergent whenever ({1, (2,(3) € S, and the series
> (Z@U’,Yv%/(WXYV(UhCl)u2,C2)7TlWYmL/(U37C3)w>) ;
leC \keZ
viewed as a series whose terms are Y (w', Yii(7) Yi (uy, (1)uz, G)m)V Vi (us, ¢3)w), is
kEZ
lower-truncated in z3 and absolutely convergent to f((1+C2, (2, ¢3) whenever (1, (2,(3) €
S. Thus Lemma 2.3.7 implies that the series
DO W Vi () Yo (ua, G )ug, G Vi (us, G)w)
1eC keZ

converges absolutely when ((1,(2,(3) € T

Finally, since the expansion of the rational function is done in the region

{(C1, G, ) € T2 [Go] > (G — Gl 1G] > 1G] > 0, ]Gl > |¢s] > 0},
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the Laurent series also converges absolutely in this region. That is to say, in terms of
variables z1, 29, 23, the series

DY W Vi () Y (ur, 21 — 22)ua, 20)m)" Vi (us, 23)w)

1eC keZ
converges absolutely to f(z1, 22, z3) when |z2| > |21 — 22 — 23|, [22] > |21 — 22| > 0, |22]| >

‘23’ > 0. ]

Proposition 2.3.11. For any ui,us,uz,v € V,v' € V', fized 21, 22,23 € C satisfying

|z3| > |21 — 23], |22 — 23| > |21 — 22| > 0, the series
W, Yy (Yy (Yy (u1, 21 — 22)ug, 20 — 23)us, 23)v)
converges absolutely to the rational function determined by
(W', Yy (uy, 21) Yy (ug, 29) Yy (ug, 23)v)

Proof. We proceed similarly based on the result above: in the double series
Z Z Yy (meYv (ur, 21 — 22)uz, 22)m Yy (u3, 23)v
€7 ke
we fix k and consider the series
> Yo (meYy (ur, 21 — 22)ug, 22)m Yy (us, z3)v
leZ
where Yy (u1,21 — 22)ug is an element in V. As part of an absolutely convergent
double series, this series is also absolutely convergent. From Summary 2.2.22; it is

equal to

> Yy (mYy (me Yy (un, 21 — 22)ug, 22 — 23)us, 23)v
ez

when |zg| > |23] > |22 — 23] > 0. We sum up all k¥ € Z. From the proof of the previous
proposition,

> <Z Yo (m Yy (mp Yy (ur, 21 — 2z2)u2, 22 — 23)us, Zs)v) ,

keZ \IleZ
viewed as a series whose terms are Y Yy (m Yy (mp Yy (u1, 21 — 22)ug, 22 — 23)us, 23)v,

leZ
converges absolutely and the sum is equal to Yy (ui,21)Yy (ug2, 22)Yy (us, z3)v when
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21, 22, 23 € C satisfy |za| > |20 — 23] > 0, |22] > |23] + |21 — 22],|21 — 22| > 0, |23] > 0. In
other words,
> (Z(U',YV(WZYV(MYV(M, 21 — 22)ug2, 22 — 23)us, 23)U>> ;
keZ \IeZ
viewed as a series whose terms are > (v, Yy (m Yy (7 Yy (u1, 21 — 22)ug, 22 — 23)us, 23)v),
converges absolutely to f(z1, ZQ,Z3)l€V§Z/hel’l |z2] > |za—23], |22| > |23|+|21— 22|, |21 —22] >
0, |z3| > 0. Moreover, one sees that the power of (21 —22) in this series is lower-truncated.
We claim that the double series
Z Z(v', Yv(mYy (mp Yy (u1, 21 — 22)ug, 22 — 23)us, 23)v),
kEZ IET,
converges absolutely to f(z1, 22, z3) when |z3| > |21 — 22|+ |22 — 23], |22 — 23] > |21 — 22| >
0.
To apply Lemma 2.3.7, we perform the transformation (1 = 21 —29, (s = 20—23,(3 =

z3. Set

T = {(¢1,¢2,C3) 1G] > [¢1| + [Cal, G2 > [¢C1] > 0}

With Lemma 2.3.2, we see that T is a connected multicircular domain Moreover, T is
a subset of {((1,¢2,¢3) € C? 1 |¢;] > |C1],i = 2,3}. We express the function f(z1, 22, 23)

in terms of the variables (i, (2, (3 as

9(C1+ G+, 0 +(3,0)
(C1+ G2+ G3)PL(Ca + Ca)P2CEP T 0% (Go + )P

f(G+ G+ (G + G, G) =
which admits a Laurent series expansion in the following steps:

1. Expand negative powers of (1 + (2 + (3 as power series of (1 + (2, then further
expand the positive powers of (; + (5 as polynomials in ¢; and (2. This series

converges absolutely when [(3] > |(1 + (2|

2. Expand negative powers of (o + (3 as power series of (2. This series converges

absolutely when |(3] > |(2

3. Expand negative powers of (1 + (o as power series of (1. This series converges

absolutely when [(a| > |(1]
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Obviously if (¢1, (2, (3) € E, then all the above conditions are satisfied (Note that |(3] >
|C1]+|C2| implies that [(3] > [¢1+(2| by triangle inequality). Thus f(¢1+(a, (2 +3,C3) is
expressed as an absolutely convergent Laurent series. From Theorem 2.3.3, the Laurent
series is unique.

Set
S ={(¢1,¢2,G3) : 1¢2| > |G| + |1l [C1] > 0,[¢3| > 0} N T

So S is a nonempty open subset of T. We know that the series
> (! Vi () Yo () Yo (ua, 1 ug, G2)us, Gs)w)
leZ
converges absolutely when ({3, (2,(3) € S, and the series
Z <Z<w/7 YV[[//(WZVYV (T‘—]‘g/YV(ula Cl)u% CQ)U37 C3)’UJ>> )
keZ \IEZ
viewed as a series whose terms are > (w', Vi (7} Yy (7)) Yy (u1, C1)uz, (2)us, (3)w), con-
leZ
verges absolutely to f(¢1 + (2,2 + (3,¢3) when ((1,(2,¢3) € S. Thus Lemma 2.3.7
implies that the series
Z Z(wla YI/%/(WZVYV(F]‘Q/YV(UD Cl)u% CQ)U37 <3)w>7
keZ I€Z

converges absolutely when ({1, (2,(3) € T.

Finally, as the expansion is done in the region

{(G15¢2,G3) € C 2 [Gs| > [G1+ Gl > 0,[Gsl > |Gl > [Gi] > 0}

the series also converges absolutely in this region. That is to say, in terms of variables
z1, 22, 23, the series

Z Z(w', Vib (7] Yy () Yy (u1, 21 — 22)ug, 22 — 23)us, 23)w)
kEZ lET

converges absolutely to f(z1, 22, 2z3) when |z3| > |21 — 23|, [23] > |22 — 23] > |21 — 22| > 0.

Now we claim that the triple series

(', Yy (Yy (Yv (u, 21 — 29)ug, 22 — 23)us, 23)v)

= D W )W) (Y0 ) () uz)us)v) (21 — 22) ™2y — 23) " g

m,n,pEZ
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of elements in V' converges absolutely when |z3]| > |21 —22|+|22—23|, |22—23| > |21—22| >
0. We start by the special case when v/ € V,uq,us,u3,v € V are homogeneous, when
the triple series degenerates to a double series

> (W', (V) (V) (Y0 ) (1 Jua ug)v) (21=22) "™ (20— 23) " 25?7

m4n+p=wt(ui)+wt(uz)+wt(uz)—wt(v')—3
mi,....mn€Z

Note that in this case,
Yy (ur, 21 — 22)uz = (Yo )nge (w1 ua(z1 — 29) (R~

where n(k) = wt (u1) + wt (u2) —k — 1, and

MYy (MY (w1, 21—22)u2, 2a—23)us = (Yo )ity (Y gy (w1 Juz Jug (21— 22) 7" F) (29 —z5) (1

where m(l) =k —1— 1+ wt (us). So

Yy (mYv (mpYy (u1, 21 — 22)ug, 22 — 23)ug, 23)v

= V) (Y )my (Y0 )y (i Jug)uz)v(z1 — 22) 7" H) (2 — 29) 7O 1 g P
p
and finally

W, Yy (mYy (m Yy (u1, 21 — 22)ug, 22 — 23)us, 23)0)
= (', (V) p (Y0 )iy (Y )iy (wr Jua)ug o) (21 — 22) ") (29 — 2g) D=1 o0p!

where p =1 — wt v/ — 1 + wt v. Since the double series

SN W Yy (mYy (me Yy (un, 21 — 22)up, 29 — 23)us, 23)0)
keZ €T,

=33 W, V) (V1)) (Vg (i Jun us)v) (21 — 22) ") (2 — 2g) 7Ly P

keZ leZ
converges absolutely to f(z1, 22, z3) when |z3]| > |21 — 29|+ |22 — 23], |22 — 23| > |21 — 22| >

0, so does the double series

> (W, (V) p (Y0 (Y0 ) (u Jug Jus v) (z1=22) ™ H(za—25) " 1257

m4n+p=wt(ui)+wt(uz)+wt(uz)—wt(v')—3
mi,...,mn€Z

as it is a rearrangement.
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For nonhomogeneous v' € V', uy,us, u3,v € V, we similarly write

v = Z (U/)(i)7u1: Z ng;l),’u,gz Z U;pi),’llg: Z uép%)’v: Z ’U(qm),

¢ finite 71 finite j2 finite j3 finite m finite

It follows that

SN W Y (m Yy (me Yy (un, 21 — 22)ug, 22 — 23)us, 23)0)
AT
1 2

. . 2 3
=D 3D DREED DEE(CORE Yo (mYy (¥ (a1 = za)uy ™, 2 — za)ug ™, z3)0(em))

kE€Z I€Z i,51,52,j3,m finite

(p5,) ®3,) %)
— Z Z Z ) YV lYV( kYV( Jl , 21 — 22)u2p]2 , 29 — Z3)U3pj3 ,Z3)U(qm)>

1,91,j2,43,m finite k€Z I€Z
1 2 3

=Y OO s - )™z — ™ el
i,41,42,j3,m finite

=", Yy (Yv (Yv (u1, 21 — 22)us, 22 — 23)us, 23)v).

the third equality of which is justified because a finite sum of absolutely convergent
series is still absolutely convergent, and for absolutely convergent series the order of
summation can be rearranged. So we proved that the triple series (v', Yy (Yy (Y (u1, 21 —
29)Ug, 29 — 23)Uu3, 23)v) converges absolutely to f(21, 22, 23) when |23] > |21 — 22| + |22 —
23, |22 — 23| > |21 — 22| > 0, where f(z1,22,23) is the same rational function that

(', Yy (u1, 21) Yy (ug, 22) Yy (us, z3)v) converges to. O

Remark 2.3.12. Although we are guided by the V-valued map interpretation laid
down in the previous sections, in the proof we only used the absolute convergence of
the corresponding complex series. So all the proofs and discussion here extends to the

case when V is not grading-restricted.

2.3.3 Iterate of any number of vertex operators

With induction one can prove:
Proposition 2.3.13. For uy,us,...,u,,v € V,v' € V', the series

W Yy (Yy (- Yy (Yy(ur, 21 — 22)ug, 22 — 23)U3 5 2p—1 — 2n)Un, 2n)V)
converges absolutely in the region

( Jen |zn| > |2i — 20| > 0,i=1,...n
21y .09 2n) € :
‘Zi_2i+1| > |Zj—Zi| >0,1<j<1<n—1
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to the rational function that

(W', Yy (u1, 21)Yy (u2, 22) - - - Yy (tn, 2n)0)
converges to.

Proof. Here we only give a brief sketch without going into the details. Assume the

conclusion is true for the product of n — 1 vertex operators.
1. Use Summary 2.2.15 to write

Yy (ui, z1) - Yy (un, 2n)v

= > Yy(ur,z)me Yo (uz, 22) k- Yo (U1, 20 1)k, -, Yo (i, 20)v
kl,.--,kn71€Z

and hence

(', Yy (ur, 21) -+ Yy (Un, 20)0)

= Y (W Y (ur, 2)me, Yy (ug, 22) Ty - Yy (tno1, Zn-1) Tk, Yo (Un, 20)0)
ki,e.oskn—1€Z

when |z1] > |2z2] > -+ > |z, > 0.
2. For each fixed k,,_1, we use the induction hypothesis to see that
> Y, 2k Y (g, 22) Ty - Yo (Un1, 20 1)k, Yy (tin, 20)0)
E1,eokn_2€Z

= > WY Y (e m, Yy (u, 21— 22)g, - Y1, Zn1) T, Y (Un, 20)0)
Kt yroin—2€7

when |z1] > |z2] > -+ > |zn| > 0, |2n—1] > |20 — 2n—1] > 0,i =1,...,n — 2, |z —
Zit1| > |25 — 2] > 0,1 < j <i <n—2. In particular, the right hand side, as an

(n — 1)-multiseries in 21 — 29,22 — 23, ..., Zn—2 — Zn—1, Zn—1, converges absolutely.

3. Summing up all k,_1’s to see that

> S W Y Yo (o, Yo (un, 21 — 22)t2, - Vi1, Zne1) Ty Y (Un, 20)0)

kn_1€Z kl,...,k)n_QEZ

viewed as a single complex series whose terms are

> WY (e Yo (- Y (un, 21 — 22)tg, - Yttt 20 1) T,y Yo (i, 20)0)
k1,....kn—2€Z



52

converges to the rational function that (v/, Yy (u1,21) - - - Yy (un—1, 2n—1) Yv (un, 2n)0)
converges to, when |z1| > |za] > -+ > |zn] > 0,|zn—1] > |20 — 2n—1| > 0,1 =
L.,n—2,|zi — ziy1| > |25 — 2] > 0,1 < j <i<n—2. Note that the power of

zp, 18 lower-truncated.

4. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that

the series

> (W Yy (e, Yo (- -, Y (u, 21 — 20)ug, - Yun—1, 201y, Yv (U, 20)0)
k17---7kn727kn—1 €Z

converges absolutely when
|zn—1] > |zn|+|21—22| 4 - +|2n—2—2n-1|, |2n] > 0, |2n—2—2n—1] > -+ > |21—22| > 0

to the rational function that (v/, Yy (uq, 21) - - - Yy (un—1, 2n—1)v) converges to. From
the way of expansion, one can further enlarge the region of convergence and obtain

a generalization of Proposition 2.3.10, i.e., the series
W, Yy (Yy (Y (- Yy (ur, 21— 22)ug, -+ Yn—2, Zn—2—2n—1)Un—1, 2n—1) Yy (Un, 2 )0)
converges absolutely in the region

lzn| >0, |zn—1] > |2zi = 2p—1] > 0,i=1,....,.n — 2

(217 7Zn> e C": ‘Zn71| > |ZZ — Zp—1 — Zn| >0,1=1,....n—2

|zj—1 —zj| > |zi —2j—1| > 0,1 <i<n—-2,i+2<j<n
(2.6)

to the rational function that
(W', Yy (u1,21) - Yy (Un, 2n)0)
converges to.

5. For each fixed k1 € Z, we use the associativity to see that

Z Yy (g, Yy (- g, o Yv(ur, 21 — 22)ug, - Yun—1, 2n—1)Tk, _, YV (Un, 2n)0
kQunknflGZ

= > V(e Yo (e Yo (o e,y Yo (un, 21 — 22)Ua, -+ )Un1, Zn-1)Un, 2n)V
ko,....kn_1€Z
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when |z,—1| > |zn|+ |2n—2 — 2n—1|+- -+ |21 — 22|, [2n—2 — 2n—1| > -+ > |21 — 22| >
0,|2zn| > |zn—1 — 2n|. In particular, we know that

> Yk Y (e Yo (- oy, Yo (U, 21— 22) U2, - Y1, 20 1)ty 20)0),
k2""7kn71€Z

as part of an absolutely convergent m-multiseries in z; — 29,20 — 23, ..., 2n—2 —

Zn—1, Zn—1 — Zn, Zn, converges absolutely.

. Summing up all k1’s to see that

> > W Yk Yo (e, Yo (o g, Yo (un, 21 — 22)tg, -+ Y1, 2n1) i, 20)0) |
k1€Z \k2,....,kn_1€Z

viewed as a single complex series whose terms are
> Yk Y (i Y (o i, Yo (u, 21 — 22)tg, - Y1, 201, 20)0) |
ko,...,kn_1€7Z
converges to the rational function that (v/, Yy (u1,21) - - - Yy (un—1, 2n—1) Yv (un, 2n)0)
converges to, when [2,—1] > |2zn| + [2n—2 — Zn—1| + - +[21 — 22|, [2n—2 — 2n—1| >

<>z — 22| > 0, |20] > |21 — 2nl-
. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that

the series

> Y (e Yo (e, Yo (- Yo (i, 21— 20) U2, -+ i1, 201 )Un, 2n)0),
k1,k2,....kn—1€Z

converges absolutely when
|2n] > |2n—1—2n|+|2n—2—2n—1]+ - +|z1—22|, |2n—1—2n| > |2n—2—2n-1] > -+ > |z1—22| > 0

to the rational function that (v', Yy (uy,21) - Yy (up, 2,)v) converges to. From
the way of expansion, one can further enlarge the region of convergence, thus

proving that the series

(W, Yy (Yv (- Yy (u1, 21 — 22)u2, - JUn—1, Zn—1)Un, Zn)V)
converges absolutely in the region
. |zn| > |2zi — 20| > 0,i=1,...,m;

(21y...,2n) € C
|2zi — zig1] > |25 — 2| >0,1<j<i<n-—1
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to the rational function that
(W', Yy (u,21) -+ Yy (U, 20)0)
converges to.

O

Because of the rationality, it is easy to obtain the following analogue of Summary

2.2.15:

Summary 2.3.14. For any uy,....,u, € V and any z1, ..., z, satisfying |zp| > |z;i—zp| >

0,i=1,...,n |2 — zig1] > |25 — 2] >0,1<j<i<n-—1,

Yv(Yv (- - Yo (Yv(ur, 21 — 22)ug, 22 — 23)U3 -+, Zp—1 — Zn)Un, Zn)V
= Z Yy (i, Yy (- - - Yy (mg, Yy (ui, 21 — 22)u2, 22 — 23)ug - -+, Zn—1 — 2Zn)Un, 2n )V
k1,...,kn,1€Z

For fized z1,z9,...,2n, € C satisfying |z,| > |zi — zn| > 0,0 = 1,...,n; |2z — zigp1| >
|zj — 2] > 0,1 < j <i<n—1, the iterate of any number of vertex operators gives rise

to the following map
Yy (Yy (- Yy (Yy (21 —22) 22— 23) - s Zn1 — Zn) 2n)-  VE"QV = V
If in addition, |z1| > |z2| > -+ > |2,]|, then the map coincides with
Yi(2) Yy (s z) - Yy (o 2,) VO @V =V
Remark 2.3.15. When V is not grading-restricted:

1. just as Remark 2.3.12 mentioned, the proof of Proposition 2.3.13 is also valid. So

the rationality of iterate of n vertex operators still holds.

2. In the Summary 2.3.14, all the maps involved are actually V-valued. However as

we have explained in Remark 2.2.18, an explicit formulation is not necessary.
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2.4 Opposite MOSVA

In this section, for a given MOSVA, we will introduce its opposite MOSVA using the
skew-symmetry opposite vertex operator. This can be viewed as the analogue of the
opposite associative algebra of a given associative algebra. Analogously, we prove that
a right module for the MOSVA is the same as the left module for the opposite MOSVA,
and a left module for the MOSVA is the same as the right module for the opposite
MOSVA. The rationality of iterates we proved in the previous section will be used in

the proofs of these theorems.

2.4.1 The opposite vertex operator

Definition 2.4.1. Let (V,Yy,1) be a MOSVA. The opposite vertex operator map Y77

of Yy is defined as follows

Yi: VeV = Vza
u®@v e e*PVYy (v, —z)u

where e*PVYy (v, —x)u is understood as a single series that is obtained by multiplying

two formal series e*Pv and Yy (v, —z)u.

One sees easily that the series defining the skew-symmetry opposite vertex operator
is lower truncated. Moreover, for any nonzero complex number z that is substituting
x, the resulted complex series gives a well-defined element in V.

2.4.2 Rationality and Associativity

Proposition 2.4.2. For v’ € V', uy,us,v € V, the double complex series
(W, Y3 (ur, 21) Y (ug, 22)v)

converges absolutely when |z1| > |z2| > 0 to a rational function with the only possible

poles z1 = 0,290 = 0,21 = 2z9.

Proof. The proof will be divided in three steps.
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1. From the conclusion of Theorem 2.3.13 that the series
(W', Yy (Yy (v, —22)uz, —21 + (2)u1)

converges absolutely when | — 21 + (2| > |22| > 0 to a rational function that has
the only possible poles at zo = 0,21 = (2,21 + 22 = (2, with the D-conjugation
property (See Part (4) of Proposition 2.1.4) and Lemma 2.3.7, we can prove that
the series

W', Yy (e2PV Yy (v, —29)ug, —21)u1)

converges absolutely when |z1| > |za—(a], |21] > |¢2],|22| > 0 to a rational function
that has the only possible poles at z; 4+ 20 = (2,29 = 0, 21 = (2. The argument is

very similar to that in the proof of Theorem 2.3.13 and is omitted here.

2. Since (o = 29 is contained in the region of the convergence, we then evaluate

(5 = 29 to see that the series
W, Yy (e2PV Yy (v, —29)ug, —21 )uy)
converges absolutely when |z1]| > |2z2| > 0 to the rational function determined by
W, Yy (Yy (v, —22)ug, —21 + 22)u1)
that has the only possible poles at z; = 0,20 = 0, 21 = 29.
3. Now we argue that for every v € V', uy,us,v € V, the series
W', e PV Yy (e2PV Yy (v, —29)ug, —21)u) (2.7)

converges absolutely in the same region S. We first note that the adjoint Dj, :

V* — V* of Dy, defined by
(D' vy = (v, Dyv),v" € Vv eV,

restrics to a homogeneous linear operator on V' of weight —1. Thus for every
z € C*, the action of e*Pv on v/ € V' is a finite sum of elements of V. So the

series (2.7) is the same as

(€ PV Y (e2PVYy (v, —22)us, —21)ur)
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which is a finite sum of series that converges absolutely to rational functions with
the only possible poles at z;y = 0,29 = 0,21 = 29. Thus the sum also converges

absolutely in the same region to a rational function of the same type.

O]

Remark 2.4.3. The argument we have used in dealing with e*” operator can be
generalized to products and iterates of any numbers of vertex operators. One should
also note that we don’t need V to be grading-restricted. The same result also holds for
left modules, right modules and bimodules for MOSVAs. For brevity, in the future we

will not repeat the argument, but refer to this remark when we need the e*? operator.
Proposition 2.4.4. Forv' € V', uq,...,un,v € V, the complex n-multiseries

(0, Vit (ur,21) - Y (s 20)0)
converges absolutely when |z1| > -+ > |z,| > 0 to a rational function with the only
possible poles at z; = 0,i=1,...,n;2z = z;,1 <i<j<n.
Proof. Likewise, the proof is divided into three steps. For brevity, we only state the

conclusions of each step.

1. With the conclusion of Theorem 2.3.13, the D-conjugation property (See Part (4)

of Proposition 2.1.4) and Lemma 2.3.8 we can prove that the series

<U/7 YV(e@DV T YV(ecnilDVYV(eanVYV(Ua _Zn)uny _Zn—l)un—lv _Zn—Z) T _Zl)u1>

converges absolutely when
26| > [Crr1 + (=2kg1 + Ce2) + -+ (—2n1 + ) —2a, k=1,..,n — 1,
|zk| > [Cet1 + (—2kr1 + Cog2) + -+ (—2i + Gir1) [, k=1,..on—1i=k,...,n— 1.
to the rational function determined by
(W Yy (- Yo (Y (Yv (0, —20)tn, —2n—14Ca)un—1, =2n—2+Cn-1) - -+ s —21+C2)ua)
that has the only possible poles at

—zn+ (Zno1+G)+ o+ (2 + 1) =0,k=1,...,n — 1;

(_ZZ._|_Ci+1)_|_..._|_(—zk—|—ck+1):O,k:1,...,n—1,i:k,...,n—1.
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2. Since (; = z;,7 = 2,...,n is contained in the region of the convergence, we then

evaluate (; = z; for every i = 2,...,n, to see that the series

<U/7 YV(€Z2DV e YV(eznilDVYV(eanVYV('Ua _Zn)una _anl)unflv _an2) ety _Zl)ul>
converges absolutely when |z1| > --- > |2,| > 0 to the rational function deter-
mined by

W, Yy (- Yo (Yv (Yv (v, =2n)Un, —Zn—1+2n)Un—1, —Zn—2+2n_1) -+ , =21+ 22)u1)

that has the only possible poles at z; = 0,i =1,...,n;2 = 2;,1 <i < j < n.
3. Finally we use Remark 2.4.3 to conclude that the series
(0", Y9 (u1, 21) - Y§ (un, 2n)0),
which is precisely
W', e Pvyy (e2PV . Yy (e PV Y (e PV Yy (0, — 20 ), —Zn—1)Un—1, —Zn—2) - -+ 5 —21)U1),

converges absolutely when |z1| > -+ > |z,| > 0 to a rational function that has

the same types of poles.

Proposition 2.4.5. Forv' € V', uy,us,v € V, the complex double series
(W, YO (VP (u1, 21 — 22)ug, 22)0)
converges absolutely when |z2| > |z1 — 22| > 0 to a rational function with the only
possible poles at z1 = 0,29 = 0,21 = 29
Proof. 1. With the rationality of products the D-conjugation property and Lemma
2.3.7, we can prove that the series

(v, eCDVYV(U, —ZQ)G_CDVYV(UQ, —21 + 2z2)u1)

converges absolutely when |za| > (], |22] > |21 — 22 + (], |21 — 22] > 0 to the

rational function determined by
(v, Yy (v, =22 + Q)Yv (u2, —21 + 22)u1)

that has the only possible poles at z9 = (, 21 = 20,21 — 29+ ( = 29
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2. Since ( = —z1 + 29 is contained in the region of the convergence, we then evaluate

( = —z1 + 29 to see that the series
(W, TRV (1, —20)e P TPV (ug, —21 + 20)un)

converges absolutely when |zo| > |21 — 22| > 0 to the rational function determined
by

<’Ul, YV(’U, _Zl)YV(UQa —Z1 + 22)U1>

that has the only possible poles at 21 = 0,21 = 22,20 = 0.
3. Finally we use Remark 2.4.3 to conclude that the series
(W', Y9 (Y9 (u1, 21 — 22)uz, 22)v),
which is precisely
(W, eZzDVYV(U, —22)€(Z1_Z2)DVYV(’LL2, —z1 + 2z2)u1),

converges absolutely when |z2| > |21 — 22| > 0 to a rational function that has the

same types of poles.

2.4.3 (V,Yy,1) forms a MOSVA

Proposition 2.4.6. Given a MOSVA (V, Yy, 1), with the opposite vertex operator map
Yi: VeV - Vz,z Y
u® v *PVYy (v, —z)u

(V,Y3,1) s also a MOSVA.

Proof. 1. The lower bound condition is trivial. We verify the dy -bracket formula:

for every u € V.
S d S S
[dy, Y (u,2)] = x%YV(u, x) + Y (dyu, x)
Without loss of generality, let u,v be homogeneous element

dv, Yy (u, z)|v = dy Yy (u, z)v — Y3 (u, z)dyo
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=dye*PVYy (v, —z)u — e*PV Yy (dyv, —z)u
—Zdv< DR o)) a(-0) "
—Z L Dpp(wt o) (V) u(0)ua ()

1
= Z(wt u—n—1+wtv+m—wt ’L))%DW(Yv)n(U)Ul‘m(—:E)_n_l

m,n

_ Z(Wt w—n—1+ m)%(Dy(yv)n(v)u)xm(—x)—n—l

—Z (wt u) Dv(Yv) (v)u)z™(—z) ™"

d
=Yy (dyu, z)v + a:d—Y‘fv(u, x)v
x

2. Since for v € V,
Y1, 2)v = e*PVYy (v, —2)1 = "PVePvy =y,
the identity property follows. Since for u € V,
Yi(u, 2)1 = 2PvYy (1, —z)u = e PV,
the creation property follows.
3. It follows directly from Yi3(u,z)1 = e*PVu that

d
Du = a%li% %Yv(u x)1

We prove the D-derivative formula as follows:
Y (Dyu, z)v = e*PVYy (v, —2) Dyu = PV Dy Yy (v, —z)u 4 €*PV Dy, Yy (v, —2)|u

= emDVDVyv(U, —z)u + e"Pv

d
d(—x)YV(v’ —z)u
d

o d
= dq; DVYV(U *SU) IYV( )
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Then the Dy -bracket formula follows from
[Dy, Yy (u, z)|v = Dy Y (u, z)v — Y3 (u, z) Dy v
= Dye*Pvy (v, —x)u — *PVY (Dyv, —2)u

="V Dy Yy (v, —x)u + PV

d )
d(—m)YV(U’ —x)u =Y’ Dyu,x)V

4. This has been done in Proposition 2.4.4 and Proposition 2.4.5

5. Fix uy,ug,v € V and v/ € V'. Let S1 = {(z1,22) : |21] > |22] > 0} and Sy =
{(#1,22) : |z2| > |21 — 22| > 0}. A careful analysis of the proof to Proposition

2.4.4 shows that, the series
(v, Y (w1, 21) Y (u2, 22)v)
converges absolutely in S to the same rational function as that
(W, eleVYV(YV(v, —zo)u — 2, —21 + z2)uq)

converges to (in the region |z — 22| > |z2| > 0). Also the proof to Proposition

2.4.5 shows that when |z9| > |21 — 22| > 0, the series
(v', Yo (Y (ui, 21 — 22)us, 22)v)
converges absolutely in Sy to the same rational function as that
(W', eleVYV(v, —21)Yvy (ug, —21 + 22)uy)

converges to (in the region |z1| > |21 — 22| > 0). From the associativity of Yy, we
know that these rational functions are identical. In other words, (v, Y{%(u1, 21) Y2 (u2, 22)v)
and (v/, Y{2(Y{2(u1, 21 —22)u2, z2)v) converges absolutely to the same rational func-

tion respectively in the region S; and S2. So in S1 NSy their sums are equal.

2.4.4 Other Remarks
Remark 2.4.7. Given a MOSVA (V) Yy, 1), from the fact that
(V) (u, z)v = e*PVYE (v, —2)u = e®PV e PVY (u, 2)v = Y (u, x)v

we have (VP)P = V.
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Remark 2.4.8. For a vertex algebra with a lower-bounded grading, we know that
Yy = Y7 because this is precisely the skew-symmetry identity. Conversely, if a MOSVA

V satisfies Yy = Y3, i.e. for v’ € V', uy,uz2,v € V and any z # 0,
W', Yy (u, 2)v) = (W, PV Yy (v, —2)u)

then V is a vertex algebra with a lower-bounded grading, since associativity and skew-
symmetry identity imply the Jacobi identity (see [H5] Proposition 2.2 and [LL], Section
3.6.)

Remark 2.4.9. The discussion here works also when V' is not grading-restricted.
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Chapter 3

Modules of meromorphic open string vertex algebras

Throughout the whole chapter, all MOSVAs are assumed to be grading-restricted.

3.1 Left V-modules

The notion of left V-module for a meromorphic open-string vertex algebra was intro-
duced in [H3]. Here we recall the definition.
3.1.1 The axiomatic definition

Definition 3.1.1. Let (V,Yy, 1) be a meromorphic open-string vertex algebra. A left
V-module is a C-graded vector space W = [[,,cc Wi (graded by weights), equipped

with a vertex operator map

YiE:Vew — Wiz Y]

u@w — Y (u,x),

an operator dyy of weight 0 and an operator Dy, of weight 1, satisfying the following

axioms:

1. Axioms for the grading:

(a) Lower bound condition: When Re(m) is sufficiently negative, W, = 0.
(b) d-grading condition: for every w € Wy, dww = mw.

(¢) d-bracket property: For u € V,
L L d L
[dw, Yy (u, z)] = Yy (dyu, z) + x%YW(u,x).

2. The identity property: Y (1,z) = 1.
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3. The D-derivative property and the D-commutator formula: For u € V,
d

T YiE(u,2) = Y (Dyu,2)

= [Dw,Yif(u,2)].
4. Rationality: For uy,...,u, € V,w € W and w’ € W’, the series
(W', Vi (w1, 21) - - Yifr (s 20)0)

converges absolutely when |z1| > --- > |2,] > 0 to a rational function in z1,..., 2z,
with the only possible poles at z; = 0 for 7 = 1,...,n and 2; = z; for ¢ # j. For

u,ug € V,w € Woand w' € W/, the series
(w', YV%/(Yv<’U,1, Z1 — ZQ)UQ, ZQ)U)

converges absolutely when 23| > |21 — 22| > 0 to a rational function with the only

possible poles at z;1 =0, 29 = 0 and z; = 2».
5. Associativity: For uy,us € V,w e W, w' € W/,
<w’,YmL/(u1,zl)Y1%/(u2,z2)v) = <w/,Y1§/(YV(u1,zl — 22)Ug, 22)V)
when |z1| > |z2] > |21 — 22| > 0.

A left V-module is said to be grading-restricted if dim W,,; < oo for every m € C.
We denote the left V-module just defined by (W, Y;E, dw, Dw) or simply W when

there is no confusion.

3.1.2 Some immediate consequences

Similarly, the following proposition holds
Proposition 3.1.2. Let V be a MOSVA and W be a left V-module. then

1. Foru €V, YiE(u,x) can be regarded as a formal series in End(W)[[z,z™1]]

Y (u2) = Y (Yip)a(w)z ™!
neL

where (YV{:/)n(u) : W — W is a linear map for every n € Z. If u is homogeneous,

then (Yi£)n(u) is a map of weight wt u —n — 1.
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2. For firted u € V,w € W, Yvﬁ(u,x)w 1s lower truncated, i.e, there are at most

finitely many negative powers of x.
3. Formal Taylor theorem: foru €V,
YiE(u, 2 4+ y) = Yy (e¥PVu, ) = e?Pv Yk (u, z)e vPW,
in End(W)[[z,y,x"1]].

Proof. Similar to the argument of Proposition 2.1.4. For the second statement, note

that W is lower truncated in the sense that W, <0 when Rem << 0. O

Remark 3.1.3. If we let

f(z1y s 2n)
[ T (-2

i=1  1<i<j<n

be the rational function determined by the series
<wlv YVl[}(ub Zl) T YVl[}(um Zn)w>7

then for homogeneous u1,...,u, € V,w € W,w' € W/, we can explicitly compute the
total degree of the homogeneous polynomial f(z1,...,2,) in terms of the weights and

pi,pij's. We start by expanding the series as

3w () () -~ ()i, (g w2y 2 e
kl’“-»kn

then the coefficients are nonzero only when
wtw =wtuy —k; — 1+ +wtu, —k, —1+wtw
In particular,
Rewt w' =wtuy —k1 —1+---4+wtu, — k, — 1 +Re wtw
Thus

degf=> pit > pijt(—ki—1-ky—1——k,—1)
i=1

1<i<j<n

:ipﬁ- Z pij—i—Rewtw’—iwtui—Rewtw
i=1

1<i<j<n i=1
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In particular, when there are only two vertex operators, the total degree of the homo-

geneous polynomial in the numerator is just

p1 + p2 + p12 + Re wt w' — wt u; — wt us — Re wt w

3.1.3 W-valued map interpretation

In Chapter 2, we interpreted vertex operators as V-valued maps, under the assumption
that V is grading-restricted. Since we always work with grading-restricted MOSVA, all
the results concerning non-grading-restricted MOSVAs were given in Remarks. This
is no long the case when we talk about modules: modules W = [] Wi, that are
not grading-restricted (dim W},,) need not be finite) arise naturally i?legur studies. In
this scenario, the full dual W = nl;lc W[f;]‘ of the graded dual W' = n]EIC W[Z] no longer

coincides with the algebraic completion W = [] Wi of W. As a result, we need to
neC

modify all the previous summaries and interpret vertex operators as W-valued maps.
For m € C, let ﬂﬂvlv W — W[*r;:] be the projection operator. This projection operator
can be restricted to W to give the projection W — W), which we also denote by .

For one single operator, a similar discussion to Summary 2.2.1 with Proposition

3.1.2 will lead us to the following summary:

Summary 3.1.4. Foru e V,w € W and any nonzero complexr number z, the summa-
tion

Vi (u, 2)w = Z Vi (u)pwz"t
nes

gives an element in W. For a given nonzero z € C, the vertex operator map give rise
to the following map
YiE(2) VW - W C W

Since the Vi (u, 2)w € W, there is not much trouble in understanding the product
of two vertex operators Y& (u1, 21)Yik (ug, 22)w: for each 7 € C we apply the operator
W W — Wi to the W element Yk (u2, z2)w, then act Yi (u1, 21) to the W element

WYk (u1, z1)w. The proof of Proposition 2.2.11 applies similarly here: we know that
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the series of W-elements

Z Yk (ur, 21) Y Vil (ug, z0)w
reC

converges absolutely in the sense of Definition 2.2.8 and it should coincide with the
element Vi (u1,21) Y (ug, 22)w. However since W is in general not a closed subspace
of I//i\/, we can only say that the sum of the series is an element in W and it does not

necessarily fall in W. So the summary must be modified as follows

Summary 3.1.5. For any ui,us € V, w € W and any complex numbers z1, zo satis-
fying |z1] > |22| > 0, the single series

ZYV%/(ul,zl)ﬂKYv%,(ug,zg)w

reC
of elements in W converges absolutely, i.e., for any w' € W',

> (W', Vi (ur, 20)m i (ug, 22)w)
reC

converges absolutely. Moreover, the sum of the series is equal to the sum of the double
series

YVIL/('UJ, Zl)Yv%/(UQ, Zg)w

For fized z1, zo satisfying |z1| > |z2| > 0, the product of two vertex operators gives rise

to the following map
Vb2V () VOVOW = W
which is equal to the map

Zyv%/(wzl)ﬂfanv%/(',%)- VeVeWw W
reC

Remark 3.1.6. Although the summation is over C, it is easy to see that only countably
many indexes will be involved, as every element in W must be a finite sum of homoge-
neous elements, and vertex operators acting on homogeneous elements w € W[m] only
gives a series of elements with weights in the equivalent class m + Z € C/Z. Also note
that when paired to w’ € W, the complex series is still of integral power. No fractional

powers should arise here.
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When we want to consider the product of three vertex operators, say Yik (u1, 21) Vi (u2, 22) ik (us, 23)w,

w
m

problems arise, as Y (ug, 22) Yk (us, 23)w € W, thus = Vi (ug, 22) ik (us, 23)w is no
longer an element in W/,,), but in a larger space W[jr*b}, and we don’t have any definition
of Vi (u1, 21) acting Wi

One way to resolve the problem is to understand each term Yi& (uq, 21)m)Y Vi& (ug, 20) Vil (us, 23)w
simply as part of the triple series YML,(ul, zl)YML,(uQ, zg)YV%, (us, z3)w. More precisely, for
homogeneous ug,u3 € V and w € W, as
o Yot (ug, 22) Vi (us, z3)w = > (Y315 ) (02) (V3 ) (g )z "2~ g ™0

whug+wtus +wtw—na—nz—2=m

no,n3EZL

we naturally have

Vil (ur, 21) 7,y Vit (u2, 22) Vil (us, z3)w

=Yy (u1, 21) > (Y3 ) (u2) (Vi g (ug)wzg "2~ 2o
wtugs+wtug+wtw—ng—ng—2=m
no,n3EL
L L L —ng—1_—n3z—1 —ni1—1

= 3 () (w) ) (Yl Y () (Vi g (Yo ™2 200 | 2
ni1€Z wtug+wtuz+wtw—no—nz—2=m

no,n3EL

L L L —n1—1_-ng2—1_-—n3—1
= > (Y9 )ma (1) (Y37 g (u2) (Yo g (ug)wzy ™7 25 ™27 2™

wtug+wtus+wtw—ng—nsz—2=m
ni,n2,n3EZ

If we treat the element in the parenthesis as an element of W[%, then the sum gives an

element in . So summing up all r € C will yield a series in w. However, after pairing it

with w’, we see that the resulted complex series > (w’, Yif (uy, z1)m)Y ViE (u2, 22)ViE (us, 23)w)

is just a rearrangement of the absolutely converg?;ii triple series Y& (u1, 21)Yik (u2, 22) Vi (us, 23)w.
For nonhomogeneous ug,us € V and w € W, we use the same argument as in Propo-

sition 2.2.11 to write the corresponding series as a finite sum of absolutely convergent

series.

With the above argument in mind, one can modify the arguments in Summary

2.2.15 similarly, to get

Summary 3.1.7. For any ui,...,un, € V, w € W and any z1,...,2n, € C satisfying
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|z1| > |z2| > -+ > |zn| > 0, the series
Z Vi (uy, Zl)ﬂx[;lYV%/(’LLQ, ZQ)?TX,‘; Y (o, zn_l)W%L71Yﬁ(un, Zp )W
my,...,Mnp—1€Z

of elements in W converges absolutely, The sum is equal to the W element given by

YML/(ul, z1) - YV{J/(un, Zp )W

For fized z1, 22, ..., zn, € C satisfying |z1| > -+ > |zn| > 0, the product of any number of

vertexr operators gives rise to a map
Vb 2) Vi 20) - Vi 2n) s VE @ W — W
and is equal to the sum

Z YV%/(V zl)ﬁmYV%/(-, 22)7TW2 e YV%/(', Zn_l)ﬂ'W YV%/(-, 2p) VI QW — w

m Mnp—1

my,...,Mp—1€Z
Remark 3.1.8. We put all ﬁnvfi ’s on for completeness. In practice it is absolutely fine

to omit any number of them.

Remark 3.1.9. Another way to resolve this issue is to extend the vertex operator
actions to W using the double adjoint process. Let L : W — W be a homogeneous
linear operator, then L can be extended to W W by the double adjoint process: first

define the adjoint L' on L by
(L'w',w) = (w', Lw)

One checks that L’ is also a homogeneous operator on W’. In particular, for every
w € W', L'w'" € W'. Thus the image of L' on W’ still falls in W’ (if L is not
homogeneous, then we only know that L'W’ C W* and not necessarily in W’). Hence

L' : W' — W' is an operator. We then define the extension L : W W by
(w', Lw) = (L'vw', w)

In particular, the operators dy, a®™ (a € C*), Dw, and (Yi¥),(u), (Yif)n(u) for

n € Z obtained from the vertex operators with homogeneous v € V' can be extended to
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operators on W. For convenience, we will not add an arc on these extended operators,
but simply use the same notation.

Now let L : W — W be a finite sum of homogeneous linear operators on L, by
extending each summands we see that L also admits an extension to W. In particular,
the components of vertex operators (Y;),(u) and (Yif}),(u) admits an extension for
every w € V and n € Z.

Thus, for each fixed z € C*, the actions of the vertex operator Y (u,z)- and
Yv‘}}(‘,z)u on an element W € W amounts be giving infinite sums of elements w.
To make sense of Yl (u,2)w and Y;f(w,z)u, both w and z has to be chosen care-
fully so that these infinite sums converge absolutely. For example, if w is chosen as
Vik(ur,21) - Y (un, 2,) for |21] > -++ > |2,] > 0 and z is chosen such that |z| > |21],
then Yil:(u, 2)w converges absolutely and thus is a well-defined element in w.

Similar to the principle above, the e*PW operator on W is extended to an operator on
W, provided that z and @ are carefully chosen to make sure the series S0 1/ilz Dy w

converges absolutely.

Remark 3.1.10. From the extension process, one can easily check that the equality of
two vertex operator actions on W extends to I//i\/, provided the actions are well-defined on
W. For example, let W be a left V-module, for uqi,us € V, if w € W and 21,29 € C are
chosen such that both YML/(ul, zl)YML/ (u2, z2)w and YWL, (Yy (u1, 21 — 22)ug, 22)w converges
absolutely, then the sums of these series in W are equal.

We remind the reader that it is crucial to check if the actions are well-defined, i.e.,

the corresponding series in W converges absolutely.

3.1.4 Rationality of iterates

For left V-modules, it is relatively easier to make the modifications on the iterates. As

the MOSVA is always assumed to be grading-restricted, the interpretation

YiE (Y (w1, 21 — 22)usg, 20)w = ZYML/(WkYV(ul, 21 — 22)Uu2, 22)W
keZ
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and
Vi (Vv (- Yo (Y (ug, 21 — 22)ug, 29 — 23)U3 - -+ 5 Zn1 — 2n)Un, Zn)W
= > Vi Yo (- Y (e Yo (ur, 21 — 22)ug, 22 — 23)U3 -+, 201 — Zn)tn, Zn )W
k1,...,kn,1€Z

in Chapter 2 still applies here, for any u1,...,u, € V,w € W. Of course, the resulted

element may still fall outside of W. But the following conclusions similarly hold.

Summary 3.1.11. For fized z1,z2 satisfying |z2| > |z1 — 22| > 0, the iterate of two

vertex operators gives rise to a map
YiE(Yy (21— 20),20) VRV RW — W
which is equal to the sum

ZYVZI}(WIQYV(HZI ) zm)  VRVeW - W
kez

Summary 3.1.12. For fized 21,z satisfying |z1| > |z2| > |21 — 22| > 0, the following

maps
ij%/(wzl)YmL/(',Zz)' VeVeWw — w
Z Vi) T Y (L ) VeVe W —» W
meC
(Y 21— 20)20) VRV OW - W
Z YVIL/(WXnVYV%/('azl —22),22) : VRVRW — w
meC
are equal.

For the iterate of n vertex operators, the module version is formulated similarly as

in Chapter 2:

Proposition 3.1.13. For ui,us,...,u, € V,w € W,w’' € W', the series
(W, Y55 (Yo (- Yy (Yo (ur, 21 — 22)u2, 22 — 23)Us "+, Zn—1 — Zp)Un, 20 )W)

converges absolutely in the region

( )
|zn] > |2n—1 — 2n| + |2n—2 — 2n—1| + -+ + |21 — 29|,

i—1

(21,...,Zn) eC": ‘Zz - Zi+1‘ > Z ’Zj - Zj+1’,’i =3,..,n—1
j=1

|29 — 23| > |21 — 22| >0
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to the rational function that
<w/7 YV[[}(UL Zl)YV%/(u% ZQ) e YV%/(unv ZTL)w>
converges to.

Proof. The formulations in Section 2.2 and 2.3 and the proof of Proposition 2.3.13
carry over to the modules. Alternatively, one can formulate a proof using the extended
operators. Here we only show this approach in detail for 3 vertex operators. The
argument of induction is similar to that in Proposition 2.3.13.

We first prove the following intermediate conclusion: for any wui,uo,us € V,w €
W,w' € w', fixed z1, 29, z3 € C satisfying |zo| > |21 — 22 — 23|, [22] > |21 — 22| > 0,]22| >

|z3| > 0, the series
(w, YI/IL/(YV(UL 21 — 22)u2, 22 — Z3)YV[L/(u3, z3)w)
converges absolutely to the rational function that
(W', Vi (un, 21) Vi (ua, 22) Yifr (uz, z3)w)

converges to.

From the rationality of products, we know that

<w/7 YI/%/(ulv Zl)YV%/(UQv ZQ)YI/%/(U’& 23)w>

= ) (! () k() (Vi kg () (Vi s (g )w) 2y ™y 2 g !
kl,kg,k3€Z

converges absolutely in the region {(z1, 22, z3) € C3 : |21]| > |22| > |23] > 0} to a rational
function that has the only possible poles at z1 = 0,20 = 0,23 = 0,21 = 29,20 = 23,21 =

z3. Denote this rational function by f(z1, 22, 23). Then

9(21, 22, Z3)

3.1
21 — 29)P12(29 — 23)P23(21 — 23)P13 (3.1)

21429, % =
f( 1, <2, 3) Z{nzéngg(

for some integers pi, p2, p3, P12, P23, P13 > 0 and some polynomial g(z1, 29, 23).

Now for each fixed k3 € Z, we consider the series

<w/7 Yi/%/(ula Zl)YI/%/(u% 22)(YVIL/)/€3 (U3)w>
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= Z <w” (YVLV)kl(ul)(YV%/)kQ(UQ)(YV%/)]%(u:;)w)z;kl*lz;ka*l.
k1,k2€Z

As part of an absolutely convergent series, it is also absolutely convergent. From asso-

ciativity, its sum is equal to

(W', i (Yv (w1, 21 — 22)uz, 22) (Vi iy (ug)w)
when |21| > |22 > |21 — 22| > 0 for each fixed I. We multiply it with z3 "' and sum
up all k3 € Z to see that

Y (W Vi (Yo (un, 21 — 22)us, 20) (Y Dag (us)w) 27
k3s€Z

= > | D @ (ke (Y0 )k (wn)ua) (Vi )i (ua)w) (21 — 22) TF 7y ot | 2ot
k3s€Z \ki,k2€Z

viewed as a single complex series whose terms are

Z (W', (Vi) ey (Y )y (w1 Ju2) (Vi Vg ()0 (21 — 22) TFL 7L g Rt | ket
k1,k2€Z

converges to f(z1, 22, 2z3) when |z1| > |22| > |z3] > 0, |22| > |21 — 22| > 0. Moreover, one
checks easily that the power of z3 is lower-truncated.

We now use Lemma 2.3.7 to elaborately show that the series

(W', Vil (Yo (uy, 21 — 20)ug, 20) Vil (us, 23)w)

= ) W (ko (Y0 )k (u)u2) (Vi )y () w) (21 — 22) 7R oy 2t hom!
k1,ko,k3€Z

converges absolutely to f(z1, 22, 23) when |2z9| > |21 — 20 — 23|, | 22| > |21 — 22| > 0, |22| >

|z3| > 0. First we set (1 = z1 — 22,(2 = 22,(3 = z3. Let

T = {(C1,¢2,¢3) : |G| > |C3] + [Cul, [¢1] > 0,¢3| > 0}

With Lemma 2.3.2, we see that T is a connected multicircular domain. Now we express

the function f(z1, 22, 23) in terms of the variables (i, (2, (3 as

g(Cl + Cza CQ? C3)

f(G+ G2, G) = (G + G 52 3]?3{{)12(@ —(3)P23(C + G2 — C3)P13’

which admits a Laurent series expansion in (1, (2, (3 by the following steps:
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1. Expand the negative powers of (1 4+ (2 as a power series in (;. The resulted series

converges when [(2| > [(1].

2. Expand the negative powers of (o — (3 as a power series in (3. The resulted series

converges when |(a| > [(3].

3. Expand the negative powers of (1 + {3 — (3 as power series in (; — (3, then further
expand all the positive power of {; — (3 as polynomials. The resulted series

converges in |Ca] > |¢1 — (3.

Obviously if (¢1,(2,(¢3) € T, then all the above conditions are satisfied (note that
|C2| > [¢3|+[C1] implies that [¢2| > [¢1 — (3] by triangle inequality). Thus f(¢1+C2, (2, (3)
is expanded as an absolutely convergent Laurent series in 7. From Theorem 2.3.3, the
Laurent series is unique. Note that the lowest power of (3 in this Laurent is —ps.

Set

={(¢1,6,G) €CP |G+ Gl > |Gl > |G| > 0,|G| > |G| >0}nT

Obviously, S is a nonempty open subset of T. We know that the series
D w (Vi Dy (Y0 )k () u2) (Y3 Dy (wg) )G G R e
k1,ko€Z

is absolutely convergent whenever ({1, (2,(3) € S, and the series

S D @ (Ve (VW )k (un)u2) (Vi s (wa)w) G G | G,

k3€Z \ki,k2€Z

viewed as a series whose terms are Y (w’, Vi (7} Yi (ur, (1)uz, G)m)V Vil (us, 3)w), is
kEZ
lower-truncated in (3 and absolutely convergent to f((1+(s, (2, (3) whenever (1, (2,(3) €
S. Thus Lemma 2.3.7 implies that the series
D W (G )k (V0 )iy (2 Jug) (Vi ) ()G G2 g e
k3 €Z k1,ko€Z

converges absolutely when ({1, (2,(3) € T. Finally, since the expansion of the rational

function is given in the region

{(C1. G, ) € T2 [Go] > (G — Gl 1G] > 1G] > 0, (G| > |¢s] > 0},
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the Laurent series also converges absolutely in this region. That is to say, in terms of
variables z1, 29, 23, the series
> (W () ke (Y0 )k () ug) (Vi iy (ug)w) (21 — 22) P17y 2t pghe
k1 ,k2,k3€Z
converges absolutely to f(z1, 22, z3) when |z9| > |21 — 29 — 23|, |22] > |21 — 22| > 0, |22] >
|zg] > 0.
Now we prove that for any wui,us,uz3 € V,w € W,w' € w', fixed 21,29,23 € C

satisfying |z3| > |21 — 23], |23] > |22 — 23| > |21 — 22| > 0, the series
(w', YV{;(YV(YV(ul, 21 — 22)Ug, 29 — 23)U3, 23)W)
converges absolutely to the rational function that
(', Yy (ur, 21) Yo (a2, 22) Vi (us, 23)w)

converges to.

The process is similar: in the series

(w', YV%,(YV(ul, z1 — 22)ug, zQ)Y‘f/(u;g, z3)w)
ST (D (Y0 i (00 u2) (Vi Dy ()0} (21 — 29) Lo o
k1,ko,k3€Z

we fix k1 and consider the series

(', Yy (Yo )k, (w1 )uz, 22) Yy (us, z3)w)

= D W, (Vi )k (Y )k, (1)) (Vi )y (s )w) 25 ™2 g ™o
ka,k3eC

As part of an absolutely convergent series, this series is also absolutely convergent.

From associativity, its sum is equal to

<w/7 YV%/(YV((YV)k’l (u1)ug, 22 — 23)u3, 23)w)
= Z <w/7 (YV%/)ka((YV)kg((Yv)kl (U1)u2)U3)w>(zQ — 23)_’?2_123_]‘33_1‘
ko,k3€Z

when |z2| > |23] > |22 — 23] > 0. We multiply it with (27 — zo) ¥ ! sum up all k; € Z.

With the conclusion of the previous proposition, we see that

D W Y (Y (Y )k, (u)ug, 22 — 23)us, 23)w) (21 — 20) 7
k1€Z
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=3 D0 @ ks (W) ke (Y )iy (wnJu2)ug)w) (20 — 23) 7R 1y ™omh | (21 — z9) 77T,
k1€Z \ka2,k3€Z

viewed as a single complex series whose terms are

D (! (ks (V) ko (Y )k (u iz )ug)w) (20 — 23) 2712y M7 | (20 — 29) M7,
ko,k3€Z

converges absolutely to f(z1, 22, z3) when |22| > |22 — 23], |22| > |23+ |21 — 22], |21 — 22| >
0, |z3| > 0, for the same f(z1, 22, 23) as that in Formula (3.1). Moreover, one sees that
the power of (21 — z2) in this series is lower-truncated.

We similarly use Lemma 2.3.7 to elaborately show that the series

(W', Vi (Y (Yy (w1, 21 — 22)us, 20 — 23)us, z3)w)

= > (W () ks (V) (V) () uz)ug)w) (21 — 22) 171 (20 — 23) P21y e,
k1,ko,k3s€Z

converges absolutely to f(z1, 22, z3) when |z3| > |21 — 23], |22 — 23| > |21 — 22| > 0.

First we perform the transformation {; = 21 — 29,(s = 20 — 23,(3 = z3. Set

T ={(C1,¢2,C3) : [¢G3] > G| + 1Cal, |G| > [C1] > 0}

With Lemma 2.3.2, we see that T" is a connected multicircular domain. Moreover, T is
a subset of {((1,¢2,(3) € C? 1 |¢;] > |C1],i = 2,3}. We express the function f(z1, 22, 23)

in terms of the variables (1, (2, (3 as

g(G1+ G +E,0+E,E0B)
(G + G+ G)PH (G + )PP B (G + Q)P

which admits a Laurent series expansion in the following steps:

G+ +EGB,Ge+3G,33)=

1. Expand negative powers of (i + (2 + (3 as power series in (; + (2, then further
expand the positive powers of (; + (5 as polynomials in ¢; and (2. This series

converges absolutely when [(3] > |(1 + (2|

2. Expand negative powers of (s + (3 as power series in (o. This series converges

absolutely when [(3] > |(2]

3. Expand negative powers of (; 4+ (2 as power series in (;. This series converges

absolutely when |(a| > [¢1]
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Obviously if (¢1, (2, (3) € T, then all the above conditions are satisfied (Note that |(3| >
|C1]+|C2| implies that [¢3] > [¢1+(2| by triangle inequality). Thus f(¢1+(a, (2 +3,C3) is
expressed as an absolutely convergent Laurent series. From Theorem 2.3.3, the Laurent
series is unique.

Set
S ={(¢1,¢2,G3) : 1C2| > |G| + 1], [C1] > 0,[¢3| > 0} N T

So S is a nonempty open subset of T. We know that the series
D (W (Vi ks (Y0 ) kg (Y0 Dy (i Jug)ug)w) G ¥ g g,
ko,ks€Z

converges absolutely when ((1,(2,{3) € S, and the series

Z Z (W', (Vi) ks (Y ) o (Y )y (i Jug)ug)w) G P2t =t | ¢t

k1€Z \k2,k3€Z
viewed as a series whose terms are
D (W )k (W) (00 )iy (unJu s ) G52 G,
k2,k3€Z

converges absolutely to f((1 + (2,2 + (3,(3) when ((1,(2,(3) € S. Thus Lemma 2.3.7
implies that the triple series

D> (W ks (ko (Y )y (wn Ju)ug)w) G ™21 oM,

k1€Z ko, k3 €Z
converges absolutely when ((1,(2,(3) € T. Finally, as the expansion is done in the
region

{(G1,6,G) € CP 1 |G| > |G+ Gl > 0,¢s] > || > |G| > 0}

the series also converges absolutely in this region. That is to say, in terms of variables
z1, 29, 23, the series
> W (ks (Y0 (Y0 )y (w2 Jug g )w) (22 — 25) 52 g ™87 (2 — 29) M1t
kl,kg,kgez
converges absolutely to f(z1, 22, 23) when |z3| > |21 — 23], |23] > |22 — 23] > |21 — 22| >

0. O
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Remark 3.1.14. One can also use the approach with the projection operator after
having extended the vertex operators to W. The convergence of corresponding series

still holds because they are part of absolutely convergent series.

Summary 3.1.15. For any uq,...,u, € V,w € W and any 21, ..., 2z, satisfying |z,| >

|2n—1—2n|+|2n—2—2n—1|+ - -+|21— 22, |2n—1—2n| > |2n—2—2n—1] > -+ > |z1—22| > 0,

YV%/(YML/( . -YV%/(Y‘,%/(ul, 2] — 29)U2,22 — 23)U3*** , Zn—1 — Zn)Un, Zn )W

= > Vi, Yo (- Y (e Yo (ur, 21 — 22)un, 22 — 23)U3 -+ 5 Zn1 — 2n)tn, Zn)W
kl,-..,kn71€Z

For fized z1,z9,...,2n € C satisfying |zn| > |2n—1 — 2n| + |2n—2 — 2n—1| + -+ + |21 —
2o, |2n—1 — zn| > |2n—2 — 2Zn—1| > -+ > |21 — 22| > 0, the iteration of any number of

vertex operators gives rise to the following map
YEN (- Yy (Yy (21— 22) 22 — 23) - 3 21 — 2Zn) s 2n) - VE QW — W
If in addition, |z1| > |z2| > -+ > |2y]|, then the map coincides with
ViEC, )Y (L ze) - Vi zn) VO @ W — W

Remark 3.1.16. Because of the rationality of iterates, we know that for fixed z1, ..., z, €
Csuch that |z1] > -+ > |2p| > |zn—1—2n|+ - -+|21—22|, |2n—1—2n| > -+ > |21—22| > 0,
the vector subspace spanned by {Yi¥(u1,z1) - ViE (un, 20)w : up, coyun, € V,w € W}
in W is isomorphic to that spanned by {YV%,(YV(- - (Yy(ur, 21 — z2)ua, 22) -+, Zpn—1 —
Zn)Un—1, 2p)W : UL, ..., up € Vw € W}. Taking account the change of parameters, the
subspace is at most of dim W times the continuum. This in general is much smaller
than the full W. So in general, the maps we mention above take values in a much

smaller subspace of W than W itself.

Remark 3.1.17. Similarly we can prove the rationality of products and iterates of any

number of vertex operators.

3.1.5 Pole-order condition and formal variable formulation

Similar to the discussion in Chapter 2, we have the pole-order condition for modules.
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Definition 3.1.18. Let V bea MOSVA. Let W = [] W}, Vil : VW — Wz, 27|
satisfy axioms for gradings, rationality of productsn;iii iterates of two vertex operators
and associativity in Definition 3.1.1 . YML, is said to satisfy the pole-order condition,
if for every w’ € W', uy,us € V,w € W, the order of the pole z; = 0 of the rational
function that(w’, Vi (u1, 21) Vi (ug, 22)w) converges to is bounded above by an integer

that depends only on u; and w.

Remark 3.1.19. With the same notations and assumptions in Definition 3.1.18, we

see that for every uj,us € V,w € W, p; appearing in the weak associativity
(20 + 22)P Y5 (u1, 20 4 29) Vi (ug, 22)w = (20 4 22)P ik (Y (w1, 20)ua, z2)w

can be chosen as an integer that depends only on u; and w. Conversely, if W and YV%,
satisfy axioms for gradings, weak associativity with the choice of p; depending only on
u1 and w, then one can prove that YML/ satisfies the rationality of products and iterates

for two vertex operators, associativity and the pole-order condition.

Remark 3.1.20. Note that this condition holds automatically when the commutativity
holds. Therefore for vertex algebras, we don’t need any extra condition to have a formal

variable formulation.

Proposition 3.1.21. Let V' be a MOSVA. Let W = [, cc Wiy, YE VoW —
W[z, 2~ Y]] satisfy the axioms for the grading, the D-derivative and D-commutator
properties, rationality of products and iterates of two vertex operators, associativity, and
the pole-order condition in Definition 3.1.18. Then rationality of products holds for any
numbers of vertex operators. More precisely, for every ui,...,u, € V,w' € W, w e W,
the series

(W', Vi (w1, 21) - Yip (un, 2n)w)

converges absolutely when |z1| > -+ > |z,| > 0 to a rational function with the only
possible poles at z; = 0,1 = 1,...,n and z; = z;. Moreover, for each i = 1,...,n, the
order of the pole z; = 0 is bounded above by an integer that depends only on u; and w;
for each i,j with 1 < i < j < n, the order of the pole z; = z; is bounded above by an

integer that depends only on u; and u;.
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Proof. The proof is similar to that in Proposition 2.1.12. We shall not repeat it here. [

In regards of Remark 3.1.19, we have the following theorem:

Theorem 3.1.22. Let V be a MOSVA, Let W =11, cc Vi), Yot : VOW — Wz, 2], dw
W — W of weight 0, and Dy : W — W of weight 1 satisfy axioms for the grading, D-
derivative property, D-commutator formula, and the following weak associativity with
pole-order condition: for every ui,us € V, w € W, there exists an integer p1 that

depends only on uy and w, such that
(20 + T2)P Vi (Y (uy, 20)ug, 22)w = (z0 4 20)PL Yk (ur, 20 + 22) Yik (ug, 22)w

as formal series in W|[xo, xal, x9, :1:2_1]], then (W, YV%,, dw, Dw) forms a left V-module,

with Yv%/ satisfying the pole-order condition.

Not only is the pole-order condition crucial for the formal variable approach, it also

provides the following surprising result.

Proposition 3.1.23. For every ui,..,un, € V;w € W and z1,...,z, € C satisfying

|z1| > -+ > |zn| > 0, the sum of the series
YV%/(ul,zl) . --Ylf/(un,zn)w
takes value in W.

Proof. Consider the easier case when n = 2. Thus, we want to argue that the projection
of the series

YML,(ul, Zl)YVIL/(UQ, Zo)w

onto any fixed homogeneous subspace of W' is a finite sum. In other words, for every
fixed r € Z, we want to have

D () (i) r—m(ug)mwzy " 2y

meZ
to be a finite sum. Obviously, m is upper-truncated. So it suffices to prove that m is

lower-truncated.



From the pole condition, we know that there exists pi, p2, p12, such that

oo
PP (21 — 22)P2 Y (ua, 21) Vil (ug, 22)w Z biyin 2 22 € W{[21, 22]]
11,12=0

Multiplying both sides with the series

(oo}
—p1,,—P2 D12 PPz JJ—p2
2y Ttzg PPia(z1 — 20) P2 E < 2

Jj=0
to see that
(o) [ee) p
L i1 02 —P12\ —p1—pi2—k_—p2+k
YiE (uy, 21) Vi (ug, 20)w E bivin2' 25 < L) 25
2=0 k=0

o o0
_ —P12 le —p1—p12—k %2 pa+k
- Z112 k 1 )

11,12=0 k=

o
P12\ i1—pi—pia—Fk ij
2 : E : E :bi17i/2+p2k< k <1 %9

i1=0 ié:*pg k=0

oo oo
_ b —P12\ i i
= E E i\ +p1+pi2+k,ih+p2—k k 21 %9

i) €L ih=—p2 k=0

Thus we have the equality

—P12
(u1) —1(“2 ih—1W = Z b +p1+P12+/€7i’2+p2—k< k >

o0
_ b —P12
(u1)my (u2)mow = Z —mi—ltpitprath,—me—ltpa—k{
k=0

Thus

Z (u1)p—n(ug)pw = Z Z b b1t proth—n—1—k <—i12>

MEZ n€eZ k=0

81

Note that the sum of the indices is —k — 2 4+ p1o. It is clear that there are at most

finitely many (i1,12) satisfies i1 + io = —k — 2 + p12 and b;;;, # 0. Thus the sum is

indeed finite. Thus the left-hand-side is also a finite sum.

In general, the pole-order condition yields integers p;; depending only on u; and u;,

such that

n o0

Hzfi H (zi — 2PV (ug, 21) - Vil (un, 20)w = Z biy. iy 200 - 2

i=1  1<i<j<n i1,eenyin=0



is in W{[z1, ..., zn]]. Thus

L L
Yy (u1, 21) - - - Yy (un, 2n)w
n o0
=117 11 wite—2)™ 3 baansoar
i=1 1<i<j<n ©1yeeeyin=0
» 00
) - _ S
= I 2 ()ammoss 3 bt
1<i<j<n k;; yin=0
(o, 0]
= H E < p”) E H < pm) 5 Pin—Kin kin
Z n
1<i<j<n—1k;;= Kinyeokn—1n=01<i<n
. H § : ( plj) j: H ( pm) —pin—Fkin
— 1 ---Z
1<i<j<n—1k;; kij Kinyeookn—1n=0 1<i<n Kin
—Dp1 in—
E bi, . 1n21 ez
01 yeenyin=0
- 1 z(p“) > T ()
1<i<j<n—1k; kij Kinyeooskn_1n=0 1<i<n
> - anlk
) i1 —p1—Pin—k1 7:'nfl_pnfl_Pnfl,'n_knfl,n in—Pn+t i=1
§ bzl...znzl . Zn—1 Zn ’

i1,..,0n=0

HZ

1<i<j<n—1k;;

> I

Jkn—1n=01<i<n

( pw>
kl'ru

Z —pin—k
b’L‘l...an?[l —P1—Pin in >

Z >l

<in=0k;;2>0,1<i<j<n 1<i<j<n

()

n—1

iy iy

(e

—p1=2" 1 (P1j+k1s)

== s (P thi )220 kit in—1=Pn-1—Pn—1n—kn-1,0+3 )1 k
2 g
If we set

./ .

i =11 —p1— Z(plj + k1j)
j>1

./ .

iy =iy —p2— Y _(pa + kaj) + kr
5>2

f=i—p— Y (P + ki) + Dk

3> g<i

. . 1
anl_pnfl_pnfl,n_knfl,n zlnfpn+2?:1 k
n
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(e.)
. =p1 | in—Dn
g bi, .in21 2y
1 yeeeyin=0

—Pn— lnfkn in k1n+ +kn in
n—1

in

in

i2—p2—>_ ;o (P2jtkaj)+kiz

29

. : n—1
Jjm—1 ln_pn“!‘E i=1 kin
Zn
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in—l =lp_1— Pn—1 — Pn—-1,n — knfl,n + E k",nfl
j<n—1

n—1

./ .

by = tp — Pn + § Ein
i=1

Then the series can be written as

Z Z H v
inin €2 kij>0,1<i<i<n  1<i<j<n
plus other inequalities

’i,

. - - 1 .« e .
bl'1+p1+zj>1(p1j+k1j)7~-,l§+pz+zj>z(PzJ‘Jrk‘zj)*ZKl KjlyeeesinAPn =35 p kin?1 Zn

.
s

For fixed #, ..., i, since i, is nonnegative, for each fixed 7/, we have """ " k; < i, +py.
In particular, all k1, ..., kn—1,, are bounded above. Since 4,1 is nonnegative, we have
Zj<n_1 kjn—1 < i1+ Pn—1+Pn—1n+kn_1, where k,_1 ,, is bounded above. Thus all
kjn—1's are bounded above. Repeating the argument to see that all k;;’s are bounded
above. Thus the summation involving the k;;’s are all finite.

We thus have

k.-
ki; finite 1<i<j<n v
bil1+p1+zj>1(p1j+klj)7~~~7i;+pl+2j>z(plj+klj)_2j<z kjt, iAo =25 kin

In other words,

() (Un)m,w=>_ ] <—kpz'j>

kij finite 1<i<j<n >
b_ml_1+p1+2j>1(plj"!‘klj)w-v_ml_1+pl+2j>l(plj+klj)_2j<l kjl7“‘7_m”_1+pn_2j<n Ein

To show that for each fixed r € Z,

Z (u)m, -+ (Un)mnwzl_ml_l SR i

mi+-+mp=r

T T I (e

mi+-+mp=rk;; finite 1<i<j<n

b_ml_1+p1+2]‘>1(plj+klj)a---7_ml_1+pl+2j>l(17lj+klj)_zj<l Ejiyees—mn—14pn—=32; ., kin
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is a finite sum, it suffices to notice that that the sum of the indices of b is indeed a fixed

constant

n
—T’—TH‘ZPH- Z Dij
i=1

1<i<j<n

It is clear that there are at most finitely many (i1, ...,%,) such that the sum of all i;’s

is equal to the constant, and b;, ;, # 0. Thus the sum above must be finite. ]
Remark 3.1.24. This result is observed by Huang. His argument uses W-valued

rational functions, which is more conceptual than what was shown above.

3.2 Right V-modules

We now introduce the notion of right V-modules. This notion and the elementary

properties have been known to Huang.

3.2.1 Basic definitions

Definition 3.2.1. Let (V, Yy, 1) be a meromorphic open-string vertex algebra. A right
V-module is a C-graded vector space W = [[,,cc W}, (graded by weights), equipped

with a wvertex operator map
V- WeVv — Wz Y]
weu —  Yi(w, z)u,
an operator dyy and an operator Dy of weight 1, satisfying the following axioms:
1. Axioms for the grading:

(a) Lower bound condition: When Re(n) is sufficiently negative, W, = 0.
(b) d-grading condition: for every w € W, dww = nw.

(¢) d-bracket property: For w € W,

d
dw Vi (w, z) — Vi (w, z)dy = Vi (dww,z) + J;d—YMI}?(w, x).
x

2. The Creation property: For w € W, Yii}(w,z)1 € W{[z]] and lin% Vi (w, )1 = w.
r—r
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3. The D-derivative property and the D-commutator formula: For u € V,

d
%Ym};(w, ) = Y (Dww,z)

= Dy Y (w,z) — Vil (w,x)Dy.
4. Rationality: For uy,...,u, € V,w € W and w’ € W', the series

(W', Yiff (w, 21) Yo (1, 22) - Yo (Un—1, 2n ) )

converges absolutely when |z1| > - -+ > |z,| > 0 to a rational function in 21, ..., z,
with the only possible poles at z; = 0 for i = 1,...,n and z; = z; for i # j. For

uy,up € V,w € Woand w' € W, the series
(w', YW}}(YW};(TU, Z1 — 22)u1, 22)U)

converges absolutely when |23 > |21 — 22| > 0 to a rational function with the only

possible poles at z1 =0, zo0 = 0 and z1 = 25.
5. Associativity: For uy,us € V,w e W, w' € W/,
<w/,Ym€(w,zl)YV(u1,22)u2> = <w/,YM};(YV§(w,Zl — 29)uq, 22)U)
when |2z1] > |22| > |21 — 22| > 0.

A right V-module is said to be grading-restricted if dim W, < oo for n € C.

When there is no confusion, we also denote the right V-module just defined by

(W, YMI}?, dy, Dy) or simply W.

Remark 3.2.2. The right module is defined with the following philosophy: all the
properties of intertwining operators of type (WI;VV) that make sense hold. With such a
formulation, all the issues on convergence can be analyzed similarly as the usual vertex

operators.

3.2.2 Some immediate consequences

Proposition 3.2.3. Let V be a MOSVA and W be a right V-module. then
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1. Foru €V, Y{f(-,z)u can be regarded as a formal series in End(W)[[z, x|

Yo o)yu =Y (Yia(wz "
neL

where (Vi) (u) : W — W s a linear map for every n € Z. If u is homogeneous,

then (Vi) (u) is a map of weight wt u —n — 1.

2. For fitedu €V and w € W, le[?(w,a:)u 1s lower truncated, i.e, there are at most

finitely many negative powers of x.

3. Forwe W,

Vil (w,z)1 = e*Puy
4. Formal Taylor theorem: for w € V,
Yil(w,z +y) = Vi (VP w, ) = VPW Y (w, 2)e ¥V,
in End(W)[[z,y,z"1]].

Proof. The arguments for (1), (2) and (4) are similar to those for Proposition 2.1.4. To

see (3), one first note that

d
T R N T R
Dyw = :}:1—>m0 Yiv (Dww, z)1 = il_)lno o Yiy (w, x)

(the first equality follows from the creation property, the second from D-derivative

property), then apply the arguments in Proposition 2.1.4. ]

3.2.3 TW-valued map interpretation

Just like what we did for left V-modules, similar results work for right modules: for

one vertex operator, we have

Summary 3.2.4. Foru € V,w € W and any nonzero complexr number z, the summa-
tion

Vi (w, 2)u = Z Vil (u)wz"t
nez

gives an element in W. For a given nonzero z € C, the verter operator map give rise
to the following map
Vii(,2) :WeV =W C w
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For the product of two vertex operators, we have

Summary 3.2.5. For any ui,us € V, w € W and any complex numbers z1, zo satis-

fying |z1| > |22| > 0, the single series
Zyvg(wyzl)ﬂka(m,Zz)uz
keZ

of elements in W converges absolutely, i.e., for any w' € W',

Z@Ul, Vit (w, 21)mp Yy (u1, 22)us)
kEZ

converges absolutely. Moreover, the sum of the series is equal to the sum of the double

series

Vit (w, 21) Yo (u1, 22)uz

For fized z1, zo satisfying |z1| > |z2| > 0, the product of two vertex operators gives rise

to the following map
YR 2V z) WV eV - W
which is equal to the map

ZYvﬁ(-,zl)vrkaﬁ(',@)- WeVeV W
kel

For the product of three vertex operators, although we don’t know if ;& (w, 21) Yy, (u1, 21)us

sits in W, since Yy (u1, 22) Yy (uz, z3)us is in V, the expression
Vit (w, 20)me Yy (w1, 21) Yy (u2, 20)us

can be understood just as in Chapter 2. So no modifications is needed to give the

following:

Summary 3.2.6. For any ui,..,up € V, w € W and any z1,...,zn € C satisfying

|z1] > |22 > -+ > |zn] > 0, the series

Z Vgt (w, z1) e, Yy (ur, 20)m2 -+ Yo (U1, 2n—2) T,y Yo (Un—1, 2n)n,
ki,eoskn—1€Z
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of elements in W converges absolutely, The sum is equal to the W element given by

Vi (w, 210) Yy (u, 22) -+ Yo (n—1, 2n ) tin
For fized z1, 23, ..., zn, € C satisfying |z1| > -+ > |zn| > 0, the product of any number of
verter operators gives rise to a map
Y 2) Yo (s 2) - Yo () s W@ VE 5 W

and is equal to the sum

Z Vil () 20) 7, Yy (, 22) kg - - - Yy (55 20 1)k, Yy (5, 20) - W @ VO™ W
k17~"7kn—leZ

Remark 3.2.7. We put all m,’s on for completeness. In practice it is absolutely fine

to omit any number of them.

3.2.4 Rationality of iterates

For the iterate of two vertex operators, since Ym}}(w, 21 — 29)uy € W, we still have the

following interpretation:

Summary 3.2.8. For anyui,us € V,w € W and any complex numbers z1, zo satisfying
|za| > |21 — 22| > 0, the single series

Z Vi (my Vi (w, 21 — z2)u1, 22)us
meC

of elements in W converges absolutely, i.e., the complex series

Z <w,’ YMR/(WT‘:}L/YMR;(M7 z1 — 22)u1, 22)u2)
meC

converges absolutely. The sum is equal to the W element given by
YRV (w, 21 — z0)u1, 20)us

For fized z1,zo satisfying |za| > |21 — 22| > 0, the iterate of two vertex operators gives
rise to a map
YRR, 21— ) 20)  WRV OV W

which is equal to the sum

Z YRV 2 = 2) ) WOV RV 5 W
meC



89

Summary 3.2.9. For fized 21, zy satisfying |z1| > |z2| > |21 — 22| > 0, the following

maps
Vi, a)Yv(hz)  WoVeV - W
ZYIE(HZI)WCYV(',@)' WeVeV W
kEZ
VEVE( 21— 2)2)  WRVRV 5 W
Z V(W Yi (21 — 22)n 22) WRV RV — w
meC
are equal.

For the iterate of more than three vertex operators, problems arise, as we don’t
know how to define Y{¥(-, z,)un, on the W-element ViR VEYE(w, 21 — 22)ur, 20 —

23) ", 2Zn—1 — Zn)Un—1. We have to prove the convergence of the iterate first.

Proposition 3.2.10. For ui,us,...,u, € V,w € W,w' € W', the series
(W, ViV Vg (Vi (w, 21 — z0)u1, 20 — 23)Un -+, Zpe1 — 2n)Un—1, 2n)Un)

converges absolutely in the region

)
|zn] > |2n-1 — 2n| + |2n—2 — 2n—1| + - + |21 — 29|,

i—1

(21,...,Zn) eC": ’ZZ‘ — Zi—&-l‘ > Z ’Zj — Zj.,.l’,i =3,..,n—1
j=1

|zo — 23| > |21 — 22| >0

to the rational function that
(w', Yk (w, 21) Yy (u1, 22) - - Yy (Un—1, 2n ) i)
converges to.

Proof. The steps are similar to the proof of Proposition 2.3.13. We give only a sketch

here: Assume the conclusion is true for the iterate of n — 1 vertex operators:
1. Use Summary 3.2.6 to write

Vil (w, 21) Yy (w1, 22) - - Yo (Un_1, 2 )tn
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= > YyH(w, z)me, Yo (ur, 22)m, Yy (u2, 28) -+ Ty, Yo (Un1, 20 )t
k‘1,...,k‘n71€Z

and hence

<U}/, YV[Rj'(wa Zl)YV(Ula Z2) Tt YV(unfla Zn)un>

= > (W Yy (w, 20)me, Yo (un, 20)me, Yo (us, 23) - g,y Yy (1, 2n)un)
ki,....kn_1€Z

when |z1] > [z2] > -+ > |z, > 0.
. For each fixed ko, we use the associativity to see that

S (W Vi (w, z)me, Yo (ua, 22) kYo (ug, 28) < - Tk, Yo (1, 20 i)
k1,k3,....kn—1€7Z

=Y Y (W N Yk (w, 21 — 29)un, z0)me, Yo (2, 23) - g, Vi (1, 20 )
r1€Cks,....kn_1€Z

when |z1] > |z2| > -+ > |z5| > 0,|22] > |z1 — 22| > 0. In particular, the right
hand side, as part of an absolutely convergent n-multiseries in z; — 29, 29, ..., 2n,

converges absolutely.

. Summing up all k2’s to see that
! vR. Wy R
Z Z Z (W', Yiy (m, Yy (w, 21 — 22)ut, 20) g, Yv (U2, 23) - - Ty YV (Un—1, 20 Un)
ko€Z \r1€Cks,...kn_1€Z
viewed as a single complex series whose terms are
! v R Wy R
Z Z (w', Yy (m,0 Y (w, 21 — 22)ut, 22) T, Yy (U2, 23) - gy, YU (Un—1, 2n)Un) |
r1€Cks,....kn_1€7Z

converges to the rational function that (w’, YVI[? (w, z21) Yy (u1, 22) - Yy (up—1, 2n)un)

converges to, when |z1]| > |z2] > -+ > |z,] > 0, |22 > |21 — 22| > 0.

. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that

the series

XY W YRV (w, z—22)un, 22)me, Yy (U2, 23) -+ Ty Y (tn o1, 20) )
ko€Z r1€Cks,....kn_1€Z
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converges absolutely to the rational function that (w’, YV[}; (w, 21)Yy (u1, 22) - - Yy (up—1, 2n)un)
converges to, when |z2| > |21 — 22| + |23], |21 — 22| > 0,|23] > |24| > -+ > |zn| > 0.

In other words, the series
(W', YR (Y (w, 21 — 20)uy, 22) Yy (ug, 23) -+ Yy (Un—1, 20 ) tn)
converges absolutely in the region
{(21, -y 2n) € C" ¢ |29| > |21 — 22| + |23], |21 — 22| > 0, |23] > |24| > -+ > |zn| > 0}
to the rational function that
(w', Ym@(w, 21) Yy (u1,z2) -+ Yy (un—1, 2n)tn)
converges to.

. For each fixed r € C, we use the the induction hypothesis to see that
S (! YV Vil (w, 21 — z2)un, 29)m, Vi (un, 23) - i, Yo (Un—1, 20 )tin)
ko,....kn—1€Z

= > (W YRRV Y Vi (w, 21— 20)un, 20 — 23)u, - Y1, 20)un)
72,...,7n—1€C

when |z9] > |21 — 22| + |23], |21 — 22| > 0,|z3] > |24 > -+ > |zn| > |22 — 23| +
<o+ |zn = Zn—1ls |Zn—1 — Zn| > -+ > |22 — 23| > 0. In particular, the right hand
side, as an (n — 1)-multiseries in 2o — 23, ..., Zn—2 — Zn—1, Zn—1 — Zn, Zn, CONVErges

absolutely.

. Summing up all r1’s to see that

> S W Vi, Y, Vi (e Vi (w, 21 — 20)un, 20 — 23)u, -+ JUn1, 20 )n) |
r1€C \r2,..,rn_1€C

viewed as a single complex series whose terms are

Z (UJ/, YI/{R;(FTQYVIR;( T 7T7’n_1YI/IR;(7TT1YV[I—;(w7 21— ZQ)Ul, 22 — Z3)“27 U )un—la Zn)un> )
7‘27“~77‘n716(c

converges to the rational function that (w’, Vi (w, 21) Yy (u1, 22) - - - Yi (tn—1, 25 ) ts)
converges to, when |z > |21 — 22| + |23], |21 — 22| > 0, |z3| > |z4] > -+ > |2p] >

|lzo — zg| 4+ -+ |20 — 2n—1l, |2n-1 — 2n| > -+ > |22 — 23] > 0.



92

7. With the help of a parameter transformation, we apply Lemma 2.3.7 to see that
the series
Z (w', YV};(WTQYM];(- . wrn_lYVI‘?(leV]‘;(w, 21— 22)UL, 22— 23) U2, * * VUn—1, Zn)Un),
71,r2,...,Tn—1€C
converges absolutely to the rational function that (w’, it (w, 21) Yy (u1, 22) - - - Yy (tn—1, 2n )t )
converges to, when |z,| > |zn—1 — 2n| + |2n—2 — 2n—1| + - -+ |21 — 22|, |2n—1 — 20| >

|Zn_2 —Zn_ﬂ > > ‘21 —2’2| > 0.
]

Because of this proposition, we can now understand the action of Yvﬁ(-,zg)u?, on
TV YR (Vi (w, 21— 22)u1, 20—23)us € W, as the part of the triple series YRRV (w, 21—

Z9)uq, 22 — 23)U2, 23)us. More precisely, for homogeneous uy,us € V and w € W, as

T Vi (Yak(w, 21 — 22)u1, 20 — 23)un

m
= > (Vi )ng (w2) (Vi) (w)w(z1 — 29) 7™ 7 (20 — 23) "2
wtul +wtus+wtw—ngs—ng—2=m

n2,N3EZL

we naturally have

YVIIE(WKYV[I;(YVI@(U% z21 — 22)u1, z2 — 23)U2, 2’3)U3

=Yy} > (Vi ns (w2) (Vi )my (w)w(z1 — 20) 7™ 7 (22 — 23) 7" 71, 23 | ug
wtui +wtug+wtw—ng—n3—2=m
no,n3EZL

= (Vit)ns (us):

n3EZ

> (Y3t o (u2) (Vi (un)w(zn — 22) ™™ 7 (2 — 23) 270 | 2577
wtul +wtug+wtw—ng—nz—2=m
no,n3EL

= > (V) (1) (Vi (1) (Vi () (21 = 22) 77 (29 — 23) "2 71) 257071

wtui +wtus+wtw—ngs—n3z—2=m

n1,n2,n3€%

If we treat the element in the parenthesis as an element of [j; P then the sum gives an el-
ement in . So summing up all m € C will yield a series in w. However, after pairing it

with w’, we see that the resulted complex series Y (w’, it (uy, z1)m Vil (u2, 22) Y (us, 23)w)
reC
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is just a rearrangement of the absolutely convergent triple series (w', i (u1, 21) Vi (uz, 22) Yif (us, 23)w).
For nonhomogeneous us,us € V and w € W, we use the same argument as in Propo-
sition 2.2.11 to write the corresponding series as a finite sum of absolutely convergent

series.

Remark 3.2.11. Alternatively, we can also extend the operator YVII}(-, z)u using the
double adjoint process in the same way as in Remark 3.1.9. The proof of Proposition
3.2.10 can also be rewritten without using the projection operators. The details are

similar to those in Proposition 3.1.13.
Similarly, we have the following summary

Summary 3.2.12. For any uq,...,u, € V,w € W and any 21, ..., 2z, satisfying |z,| >
|2n—1—2n|+[2n—2—2n-1]+- - +]21—22|; [2n—1—2n| > |2n—2—2n-1] > -+ > [21—22] > 0,
YI/II;(YMIE( : YM};(YV[};(wa 21 — ZZ)Ula z2 — ZB)UZ Tty Rn—1 — Zn)unfla Zn)un

= Z Vit (T Vi (- Vi (7o, YigH(w, 21 — 20)u1, 20 — 23)Un ++ , Zn1 — 2n)Un—1, 2n)Un,

M1,y Mp—1E€ZL
For fized z1,z9,...,2n, € C satisfying |zn| > |2n—1 — 2n| + |2n—2 — 2n—1| + -+ + |21 —
2o, |2n—1 — zn| > |2n—2 — 2Zn—1| > -+ > |21 — 22| > 0, the iteration of any number of

vertex operators gives rise to the following map
YRR VEYER(C 21— 20) 20— 23) -+ 201 — 2n) Zn) : W Q VO — W
If in addition, |z1| > |z2| > -+ > |zn]|, then the map coincides with

YEC )Yy (hze) Yyl zn) WRVE 5 W

3.2.5 Pole-order condition and formal variable formulation

We similarly have the following pole-order condition for right V-modules. All the proofs

are similar to those proved for the left modules. We shall not repeat them here.

Definition 3.2.13. Let V bea MOSVA. Let W = [] W, Vi : WRV — Wz, 2]
meC
satisfy axioms for gradings, rationality of products and iterates of two vertex operators

and associativity in Definition 3.1.1 . YML/ is said to satisfy the pole-order condition,
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if for every w’ € W', uy,us € V,w € W, the order of the pole z; = 0 of the rational
function that(w’, Vit (w, 21) YR (u1, 22)us) converges to is bounded above by an integer

that depends only on w and ws.

Remark 3.2.14. With the same notations and assumptions in Definition 3.2.13, we

see that for every uy,us € V,w € W, p; appearing in the weak associativity
(o + 22)" Vit (w, o + 22) Yy (1, ) ug = (0 + 22)P Vit (Vi (w, mo)us, 22)up

can be chosen as an integer that depends only on w and wuy. Conversely, if W and YV%/
satisfy axioms for gradings, weak associativity with the choice of p; depending only on
w and us, then one can prove that Yvﬁ satisfies the rationality of products and iterates

for two vertex operators, associativity and the pole-order condition.

Proposition 3.2.15. Let V' be a MOSVA. Let W = [],cc Wi, Ym}; T WeV -
Wz, Y] satisfy the axzioms for the grading, the D-derivative and D-commutator
properties, rationality of products and iterates of two vertex operators, associativity, and
the pole-order condition in Definition 3.2.13. Then rationality of products holds for any
numbers of vertex operators. More precisely, for every ui,...,u, € V,w' € W, w e W,
the series

(w', Yt (w, 21)Yar (ur, 22) -+ Yor (Un—1, 2n ) )

converges absolutely when |z1| > -+ > |z,| > 0 to a rational function with the only
possible poles at z; = 0,1 = 1,...,n and z; = z;. Moreover, the order of the pole z1 = 0
1s bounded above by an integer that depends only on w and u,; for each i =2, ...,n, the
order of the pole z; = 0 is bounded above by an integer that depends only on u;—1 and
Uy, for each i = 2,...,n, the order of the pole z1 = z; is bounded above by an integer
that depends only on w and u;—1; for each i,j with 2 < i < j < n, the order of the pole

zj = zj is bounded above by an integer that depends only on u;—1 and uj_1.

In regards of Remark 3.1.19, we have the following theorem:

Theorem 3.2.16. Let V be a MOSVA, Let W = 1], cc Vinp, Yiit : WOV — Wz, 2], dw
W — W of weight 0, and Dy : W — W of weight 1 satisfy axioms for the grading, D-

derivative property, D-commutator formula, and the following weak associativity with
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pole-order condition: for every ui,ug € V, w € W, there exists an integer p1 that

depends only on w and uo, such that
(w0 + )P Vi (Vi (w, mo)ur, x2)ug = (20 + 22)P Vigh(w, 20 + 22) Yy (u, 22)un

as formal series in W[z, 9361, To, x;l]], then (W, Yt dw, Dw) forms a right V -module,

with YV}I} satisfying the pole-order condition.

Proposition 3.2.17. For every ui,...,u, € V,w € W and z,...,z, € C satisfying

|z1] > -+ > |zn| > 0, the sum of the series
Yig(w, 20) Yy (u1, 22) - Yy (un—1, 2n )t

takes value in W.

3.2.6 V-modules and V°%-modules

If V is a vertex algebra, then a left V-module automatically makes a right V-module.

More generally, we have the following proposition:

Proposition 3.2.18. Given a right V-module (W, Y}, dw, Dw), we define the vertex
operator map
Y vew - w
v @ w i “PWY R (w, —x)v
Then (W, Y‘f[,(R), dyw, Dw) is a left VoP-module.
Conversely, given a left VP-module (W, YV‘;,(R), dw, Dw), we define the vertex operator
map
VEWeV W
wR U e“"DWY;/(R) (v, —z)w

then (W, YVII}z,dW, Dw) is a right V-module.

Proof. Let (W, Y, dw, Dw) be a right V-module. We verify all the axioms of the left

VoP_module.
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. The grading of W obviously satisfy the lower bound condition and the d-grading
condition. The proof of the d-commutator formula is similar to that in the proof

of Proposition 2.4.6.
. The identity property follows from Proposition 3.2.3

Y;}R)(l,:n)w = " Pwy i (w, —2)1 = "PW e PWyy =

. We first prove the D-derivative property
d
(P —0)0) = DYoo + P AL (W,
d
= P Dy ¥, —a) + P L (w0, —a)0)

d
= """ Dy, Vit (w, —2)]v + e"PW Yiik(w, —2) Dyv + PV — dx (i (w,
d
d(~z)
_ exDWYV[Ii(m —x)Dyv = Y‘fV(R)(va,a:)w

Dy

d
=e Y (w, —z)v + e"PW Y (w, —2) Dy v + "Pw — T (Vi (w,

The D-commutator formula follows
[Dyy, Y;,(R) (v, 2)]Jw = Dy e*PW Y (w, —x)v — PV YVE(Dyw, —z)v

d
= e”CDWDWYM]?(w, —z)v + etPw — T (YW( :U)U)

d d

S (emDWYM}?(w, —x)v) d:UY s(R )( , )W

dzr

. It suffices to replace Yy by YME and Y7 by Y;,(R) in the arguments of Proposition
2.4.4 and Proposition 2.4.5.

. Tt suffices to replace Yy by Yt and ;% by YVSV(R) in the arguments of Part (5) of

Proposition 2.4.6.

The converse can be proved similarly. We omit the details here. 0

Similarly, one can prove the following theorem:

Proposition 3.2.19. Given a left V-module (W, YML,,dW,DW), we define the vertex

operator map

D wev-w

w@v = e PWYE (v, —z)w
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Then (W, YVSV(L),dW, D) is a left VP-module.

Conversely, given a right V°P-module (W, YV?,(L), dw, Dw), we define the vertex operator

map
YiEVew W

VR W e””DWY‘fV(L) (w, —x)v

then (W, Yk, dw, Dw) is a left V-module.

3.3 V-bimodules

In this section we define V-bimodules. Many results in the previous sections can be
generalized to V-bimodules. We will list these results without giving any explicit ar-
guments. Then we will discuss some convergence results that will be used in the later

Chapters.

3.3.1 The definition and the summaries

Definition 3.3.1. Let (V. Yy, 1) be a meromorphic open-string vertex algebra. A V-
bimodule is a vector space equipped with a left V-module structure and right V-module
structure such that these two strutcure are compatible. More precisely, a V-bimodule

is a C-graded vector space

w =TT W

neC

equipped with a left vertex operator map

YiE:Vew — Wzz Y]

u@w — YiE(u,x),
a right vertex operator map

YR WeVv — Wz Y]

wou —  Yii(w, x)u,
and linear operators dy, Dy on W satisfying the following conditions.

1. (W, YV%,, dw, Dw) is a left V-module.
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2. (W, YV[}}, dw, Dy ) is a right V-module.
3. Compatibility:

(a) Rationality of left and right vertex operator maps: For uq, ..., Up, Upt1, oy Uptm €

V, w € W, the series

<w/> YI/%/(ulv 21) - YV%/(“H: zn)YVI[}'(w, 20+ 1) YV (Unt1, 2nt2) - YV (Undm—15 Zntm) Untm)

converges absolutely in the region |z1| > |22 > -+ > |2zp| > |21 > -+ >

|Zn+m| > 0 to a rational function in z1, ..., Zn, Znt1, vy Zntm.

(b) Associativity for left and right vertex operator maps: For u,v € V, w € W

and w’ € W/, the series
(W', Yiir (u, 21) Vi (w, 29)v)

<w/7 YVIR;(YI/IL/(uv z1 = 22)w’ 22)U>

converges absolutely in the region |z1| > |z2| > 0 and |z2| > |21 — 22| >
0, respectively, to a common rational function in z; and ze with the only

possible poles at z1,2z2 = 0 and 21 = 29.
The V-bimodule just defined is denoted by (W, Y}, Vi, dw, Dw) or simply by W.

Remark 3.3.2. It is possible to generalize the definition to allow the left and right
module structure on W to wield different d and D operators. Since we don’t have
any essential examples and certain subtlety also arise when modules are not grading-

restricted, we choose not to discuss it here.

Remark 3.3.3. If V is a vertex algebra and W is a V-module (a vertex algebra module),
then W can be regarded as a bimodule of the MOSVA V. Just as a module of a
commutative associative algebra A can be viewed as a A-bimodule when A is viewed as
an associative algebra. However, not all V-bimodules come in that way. In general, on
the same space W one may have two different VV-module action that are compatible, so

as to make W a V-bimodule.
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3.3.2 W-valued map interpretation and rationality of iterates
Likewise, we have the following summaries

Summary 3.3.4. For any ui,ue € V, w € W and any complex numbers z1, zo satis-
fying |z1] > |2z2| > 0, the single series

Z Yk (ug, 20) 7V Vi (w, 22)uo
reC

of elements in W converges absolutely, i.e., for any w' € W',

Z<w,a YV%/(ub ZI)W;/I/YVI;(wv 22)u2>
reC

converges absolutely. Moreover, the sum of the series is equal to the sum of the double
series

YML,(ul,zl)YVII}z(w,zg)uQ
For fized z1, zo satisfying |z1| > |z2| > 0, the product of two vertex operators gives rise
to the following map
Y )Y m)  VeW eV = W
which is equal to the map

ZYVZI}(HZI)W?WYWI?(';@)' VeWeV - W
reC

Summary 3.3.5. For any w1, ..., Un, Upt1, -, Untm € V, w € W and any z1, ..., Zn+m €

C satisfying |z1| > |z2| > -+ > |zn4m| > 0, the series

Z Z Yvﬁ(ul, zl)wffYV]%/(ug, Z9) - WF571Y%/(UH, zn)WKYV}[E(w, Zn+1)
71,...,rn €C k’n+1,...k2n+m_1€Z

Tkpt1 YV (Un+1a Zn+2) T hptm—1 YV (unerfla Zn+m)un+m

of elements in w converges absolutely, The sum is equal to the W element given by

YI/%/ (u17 Zl) ce YI/%/ (un, Zn)YV[IE (’LU, 2n+1)YV(UrL+1a Zn+2) ce YV (unerfl» Zn+m)un+m

For fixed 21,22, .oy Zny Znt 1y ooy Znem € C satisfying |z1] > -+ > |zn4m| > 0, the product

of any number of vertex operators gives rise to a map

YV%/("Zl) o YV%/(vzn)YV[]}z(a Zn+1)YV('7zn+2) e 'YV('azn+m)' yen QW ® yem _, I//i\/
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and is equal to the sum

> S v YEC z) T YR 2ns)

Tl,...,T'nG(C kn+17---7kn+m71€Z

7Tkn+1YV('aZ2)7rkn+2 cee YV(’aZn—l)ﬂ'kn+m,1YV(’aZn)' W ® V®n — W

Summary 3.3.6. For fized 21, zy satisfying |z1| > |z2| > |21 — 22| > 0, the following

maps
Vi, )Y z)  VOW oV - W
ZYV%/("ZI)WWYM};(HZQ)’ VeoWeV W
reC
VB 21— 20)2) VW RV - W
S YRV - ) ) VOW eV - W
reC
are equal.

Also, the rationality of iterates holds:

Proposition 3.3.7. For uy, ..., Up, Uni1, - Unim € V,w € W,w' € W', the series
R RvL
<wla YW( T YW(YW<YV( t (YV(uh 21_32) crUp, zn_zn+1)w7 Zn+1_zn+2) o Un4+m—1, zn+m)un+m>

converges absolutely in the region
( )
|zn] > |2n—1 — 2n| + |2n—2 — 2n—1| + -+ + |21 — 29|,
i—1
(21, 0y 2n) € C™ ¢ |25 — 2Ziqa| > Z |zj — zj+1],1 =3,...,n—1
j=1

’22 —2’3‘ > ’21 —2’2’ >0
to the same rational function that

<’UJI, YI/%/ (Ul, zl) c YI/%/ (un7 Zn)YVI[-} (w, Zn+1)YV(un+1; zn+2) te YV (un+mfl> Zn+m)un+m>
converges to.

Summary 3.3.8. For any ui,...,Uupnt+m € V,w € W and any 21, ..., Znem Satisfying

|Zn+m| > ‘Znerfl - szrm’ + |Zn+m72 - Zn+m71| + -+ ‘Zl - 22‘; |Zn+m71 - Zner‘ >
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‘Zn+m—2 - Zn+m—1| > > |Zl - 22| >0,

YI/I@( Y] (YI/%/(YV( e (YV(UL Z1 — 22) c ot Up,y Bp — Zn+l)w7 Zn+1 — Zn+2) © o Un4+m—1, Zn+m)un+m

R
w
= Z Z Vi (ug, Zl)ﬂ'},/‘l/YV%<U2, z9) - W,U:71Y&/(un, zn)Tr}fZng(w, Zn+1)
150" €C kn41,..kntm—1€Z

T ki1 Yy (un+1a Zn+2) Tk tm—1 Yy (unerflu Zn+m)un+m

For fized z1, 22, ..., zn, € C satisfying |zn+m| > |Zn+m—-1 — Zn+m| + |Zntm-2 — Zntm—1| +
sz — 22y |Zndm—1 — Znam| > 12nem—2 — Znbm—1] > -+ > |21 — 22| > 0, the iteration

of any number of vertex operators gives rise to the following map

R Ry L %0 em _y 17
Yip (- Yig(Yw (Y (- (Y, zi—22) 0 ) 2n—2n41) s 21— 2n42) 0 ) Zngm) - 2 VE"QWRVET — W
If in addition, |z1| > |z2| > -+ > |2n4m]|, then the map coincides with

Vi (21) - Vi (o 2 Vi G 2n ) Y0 (s 2nsa) - Yo (s 20)- 1 VER @ W @ VE™ 5 T

3.3.3 The pole-order condition and formal variable formulation
For V-bimodules, we can define the following pole-order condition:

Definition 3.3.9. Let V be a MOSVA with Yy satisfies the pole-order condition in
Definition 2.1.11. Let W = [ Wi, i : V@ W — Wz, z Y : WV —
neC
Wz, 27 1], dw : W — W satisfy the following
1. The axioms for grading in Definition 3.1.1 hold for (W, Y{%, dw ). The axioms for

grading in Definition 3.2.1 hold for (W, Vi, dw).

2. The rationality of products and iterates of two vertex operators, and the associa-
tivity in Definition 3.1.1 hold for YV%,. The rationality of products and iterates of

two vertex operators, and the associativity in Definition 3.2.1 hold for YV}[}.
3. The compatibility condition in Definition 3.3.1 hold for two vertex operators.
We say the pair (YV{;, YW}?) satisfies the pole-order condition if

1. YV]{; satisfies the pole-order condition in Definition 3.1.18. YMR; satisfies the pole-

order condition in Definition 3.2.13.



102

2. For every ui,us € V, there exists C' > 0, such that for every w’ € W, w € W,

the pole z; = 0 of the rational functions determined by
(w, Yv%/(ul, ZI)YV}[;(W’ Z2)u2)
has order less than C.

Proposition 3.3.10. Let V be a MOSVA. Let W = [ W, Yif : VoW —
neC
Wiz, 2,V WeV — Wz,z7Y,dw : W — W,Dw : W — W satisfy the

following

1. The axioms for grading in Definition 3.1.1 hold for (W, YV%, dw). The axioms for
grading in Definition 3.2.1 hold for (W, YV[}}, dw).

2. The rationality of products and iterates of two vertex operators in Definition 3.1.1

hold for YML,. The rationality of products and iterates of two vertex operators in

Definition 3.2.1 hold for YVI[‘;'.

3. The D-derivative and D-commutator properties in Definition 3.1.1 hold for YV%/.

The D-derivative and D-commutator properties in Definition 3.2.1 hold for Ym}?
4. The compatibility condition in Definition 3.53.1 holds for two vertex operators.

Then the compatibility condition holds for any numbers of vertex operators. More pre-

cisely, for every Ui, ..., Un, Uni1y -y Untm € V,w' € W w € W, the series
<w/’ YV%(’LLl, Zl) t YI/%/(”H) Zn)YI/IRi'(wa Zn+1)YV(un+17 Zn+2) T YV(Un-i-m—L Zn+m)un+m>

converges absolutely when |z1| > -+ > |zp4m| > 0 to a rational function with the only

possible poles at z; = 0,i=1,....,n+m and z; = z;,1 <i < j <n+m. Moreover,

e For each i = 1,...,n the order of the pole z; = 0 is bounded above by an integer

that depends only on u; and Upim,.

e The order of the pole zp+1 = 0 is bounded above by an integer that depends only

on w and Upqm-
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e Foreachi=n+2,...n+m, the order of the pole z; = 0 is bounded above by an

integer that depends only on u;—1 and Upim.

e For each i,j with 1 <1 < j <n, the order of the pole z; = z; is bounded above by

an integer that depends only on w; and u;

o Foreachi=1,...,n, the order of the pole z; = z,11 is bounded above by an integer

that depends only on u; and w.

o Foreachi=n+2,...,n+m, the order of the pole z,+1 = z; is bounded above by

an integer that depends only on w and w;—q.

o For each i,j withn+2 <1 < j <n+m, the order of the pole z; = z; is bounded

above by an integer that depends only on u;—1 and uj_1.

Theorem 3.3.11. Let V be a MOSVA, Let W = [T, cc Vinp, Yot : VOW — Wz, 27 1]], Vit :
WV — W,z )],dw : W — W of weight 0, and Dy : W — W of weight 1 sat-
1sfy axioms for the grading, D-derivative property, D-commutator formula, and the

following weak associativities with pole-order condition:

1. For every ui,us € V, w € W, there exists an integer p1 that depends only on w

and us, such that
(w0 + @2)P Vi (Yvr (w1, mo)ug, ma)w = (w0 + w2)P Yy (un, w0 + x2) Yy (ug, x2)w
as formal series in W[[mo,l‘al,xz,ﬂvg_l]],

2. For every ui,us € V, w € W, there exists an integer p1 that depends only on w

and ug, such that
(20 + 2)P Y (Vi (w, wo)ur, w2)us = (w0 + 22)P Vil (w, o + 22) Yy (w1, w2)us
as formal series in W[[a:o,wal,JUQal"z_le

3. For every ui,ug € V, w € W, there exists an integer p1 that depends only on uy

and us, such that
(xo + azg)plYVﬁ(YmL/(ul, xo)w, r2)ug = (o + mg)plYV%/(ul, T + mg)Yvﬁ(w, xo)uz

as formal series in W{[xo, x5 ", 22, 75 1],
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Then (W, YV]‘;,,YVIE,dW,DW) forms V -bimodule, with YV]ILNYI/I]; and the pair (YV]‘;/,YW};)

satisfying the corresponding pole-order conditions.

Proposition 3.3.12. For every i, ..., Un, Unt1s ooy Uptm € V,w € W oand 21, ..., 2, € C

satisfying |z1| > -+ > |zn| > 0, the sum of the series
YV[[}(uly Zl) T YV[[}(un; Zn)YMIE(’LU, zn-‘,—l) e YI/II}B(Un—i-m—Ia Zn+m)un+m

takes value in W.

3.3.4 In terms of the opposite MOSVAs

Recall that in the previous sections, we proved that for a MOSVA (V| Yy, 1), the space

V with the following vertex operator

Vi :VeV = V2l

Y (u, x)v = e*PVYy (v, —z)u

and the vacuum 1 € V also forms a MOSVA, called the opposite MOSVA of V and
denoted V°P. We also proved that a right V-module (W, YV{?, dw, Dw) is equivalent to

a left VP-module (W, Y‘fV(R), dyw, Dy ), where YV‘;,(R) is defined by

YV‘;,(R) (v,2)w = e‘”DWYV[I?(w, —z)v.

In Chapter 5, we will use the Y‘fV(R) operator extensively. For convenience, we list

some properties here.
Proposition 3.3.13. Let V be a MOSVA and W be a right V-module. Then

1. ForueV, YI;(R)(U,I') can be regarded as a formal series in End(W)[[z, z™1]]

s(R s(R —n—
Vi 2) = S0 )
nez
where (YV‘;,(R))n(u) : V= V is a linear map for everyn € Z. If u is homogeneous,

then (Y;,(R))n(u) is a map of weight wt u —mn — 1.

2. For fized u,v € V, Yy (u,x)v is lower truncated, i.e, there are at most finitely

many negative powers of x.
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3. D-conjugation property: foru € V,
sz;/(R) (u,z+y) = Y‘}S[,(R)(eyDVu, x) = eyDWYV‘;,(R) (u, z)e YvPw
in End(V)[[z, 271, 5]].
4. d-conjugation property: for u €'V,
evdv YV‘:,(R) (u,z)e ¥V = Y;,(R) (e¥dVu, zy)
in End(V)[[z,2= v,y ).

Theorem 3.3.14. Let W be a V-bimodule. Then the compatibility condition can be

formulated in terms of YV%, and Y;/(R) as follows
1. Foreveryne€ Zy,l=1,...,n, uy,...,u, € V,we W, w € W,
R R
(W' Yifh(un, 21) - Vil (g, 20) Vg™ (s 20) - Vil ™ (a2} )

converges absolutely to a rational function with the only possible poles at z; =

0,i=1,...,n and z; = 2,1 <i<j<n.
2. For every uy,us € V,w € W,w' € W,
R
(W', Yif (w1, 20) V™ (g, 22)w)

(w', Y‘fV(R) (ug, zz)YV%, (u1, 21)w)

converges absolutely to a common rational function respectively in the region |z1| >

|z2| > 0 and |z2| > |z1] > 0.
Proof. We only give a sketch here. From the compatibility condition of YV’{; and YMR;,
(W', Vi (ur, z1=z141) - Yol (wy 2= 2000 Y (w, —2000) Yo (n, =201 420) - - Yo (g2, =201 +202) i)
converges absolutely when

‘21 — Zl+1’ > e > ’Zl — Zl+1| > ‘Zl+1| > ‘Zl—o—l —Zn‘ > e > ‘Zl+1 — Zl+2| >0
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to a rational function with the only possible poles at z; = 0,i =1,...,nand z; = z;,1 <

1 < j <n. Then one uses Lemma 2.3.7 to argue that
(w', Yy (ur, 21— 2041) - - Yipr (up, 20— 200) i (- - ViV (0, =20 tn, —Zn—1+20 )1, -+, =241+ 2042 U1
converges absolutely when

|21 — zi41| > - > 2 — 2141l > a1 — 2142 00+ 201 — 20| + L2405

|zi — zix1| > |zig1 — zig2| + -+ |2Zne1 — 2| + |20 > 0,i=1,...,n — 1.

to the same rational function. If we further expand the negative powers of z; — 2141 as a
power series in 2,41 for ¢ = 1, ..., 1, and further expand the negative powers of —z; + z;41

as a power series z;+1 for ¢ =1+ 1,...,n — 1, the resulting series in z1, ..., 2, is precisely
(w', e 2 Pwyliuy 20) VB (w, 2) e PV YR e PV YR (w, — 2w, - — 201 ) i)
One uses Lemma 2.3.7 that this series converges absolutely when
|z1]| >+ > |zn| >0
to the same rational function. Thus we proved that the series
(w', e PWYE (ug, 21) - Vi (g, ZZ)Y;/(R) (U1, 2141) - - Yviz(R) (Un, 2n)w)

converges absolutely when |z;| > -+ > |2z,| > 0. The conclusion of (1) then follows
from Remark 2.4.3, which allows us to apply another e#+1PW to the front and keep the
convergence (though the rational function might change).

For (2), note that
(W', e?PWYL (uy, 21 — 20) Vit (w, —z0)ug) = (W', PV YR(YViE (uy, 210)w, —20)ug

when |21 — 22| > |22] > |z1] > 0. Both sides converge to the same rational function.
If the negative powers of z; — z5 in the series on the left-hand-side are expanded as a
power series in z, then the resulting series is precisely (w’, Vi (uy, zl)YVSV(R) (ug, z2)w)
and converges absolutely in the region |z1| > |22] > 0, |21 — 23] > 0 to the same rational

function. We then use Lemma 2.3.7 to see that (w’, Y} (u1, zl)Y‘fV(R) (ug2, z2)w) converges
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absolute when |z1| > |22| > 0 to the same rational function as the right-hand-side, while
the right-hand-side is precisely (w', Y}, (R)(u2, z2)Yi¥ (u1, z1)w). Thus the conclusion is

proved. ]

Remark 3.3.15. The associativity relation of YV{J/ and YV}[; translates to the commuta-

tivity relation of YV%, and the skew-symmetry operator Y‘fV(R).

Remark 3.3.16. The pole-order condition can also be expressed in terms of Y;,(R).
More precisely, if V' is a MOSVA and W is a V-bimodule with all vertex operators

satisfying the corresponding pole-order condition, then

1. For every u; € V,w € W, there exists C > 0 such that for every w’ € W/, us € V,

the pole z; = 0 of the rational function determined by
(w', YV“;,(R) (uq, zl)Y‘fV(R) (ug, z2)w)

has order less than C. In fact, C' can be chosen to be the same upper bound of

the order pole 21 = 0 for (w', Vi (w, z1) Yy (uz2, 22)u1).

2. For every uj,us € V, there exists C' > 0 such that for every w’ € W/, w € W, the

pole z1 = z5 of the rational function determined by
(', Vi (a1, 2) Vg™ (2, 22)w)

has order less than C. In fact, C' can be chosen to be the same upper bound of

the order pole z; = 0 for (w', Vil (u1, 21) Vi (w, 22)us).
Remark 3.3.17. Similarly, one can prove that for the rational function determined by
R R
(W', Vi (un, 21) - il (wa, 20) Vg™ (s, 200) -+~ Y™ (i, 20)0)

the order of the pole z; = 0 is bounded above by a constant that depends only on wu;
and w, ¢ = 1,...,n; and the order of the pole z; = z; is bounded above by a constant

that depends only on u; and u;, 1 <i < j <n.
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3.4 Mobius Structure and Contragredient Modules

In this section we define Mobius structure on MOSVAs and the left (right, bi-) modules
for such MOSVAs. With this structure, we prove that the graded dual of a grading-
restricted left module for a MOSVA forms a Mobius right module for the MOSVA. For
Mobius left modules that are not grading-restricted, we prove the same result under a
pole-order condition stronger than that in Definition 2.1.11. The results in this section
generalize the theory of contragredient modules for Mobius vertex algebras developed

in [FHL] and [HLZ].

3.4.1 Basic definitions

Definition 3.4.1. A Mébius MOSVA is a MOSVA (V, Yy, 1) with a representation py

of the Lie algebra sl(2) on V, given by
Ly (0) = pv(Lo) = dv, Lv(—1) = pv(L1) = Dv, Lv(1) = pv(L1)
where {L_1, Lo, L1} is a basis of s[(2) with Lie commutators
[Lo,L_1] = L_1,[Lo, L1] = —L1, and [L_y, L] = —2Lo,
and the following conditions hold for every u € V:
[Ly (1), Yy (u, z)] = Y (Ly (1)u, x) + 22Y (Ly (0)u, ©) + 22V (Ly (—1)u, x)
We will use the notation (V, Yy, 1, py) to denote a Mobius MOSVA. When there is no
confusion, we will simply use the notation V.

Remark 3.4.2. Since dy = Ly(0) and [Ly(0), Ly (1)] = —Ly (1), we know that Ly (1)
is actually a linear operator of weight —1. Since the grading on V is lower-bounded,
the operator is actually locally nilpotent, i.e., for every v € V, there exists m € Z,
such that Ly (1)™v = 0. Moreover, with the identity property and creation property,

we can see that

Ly(j)1=0,j =0,+1

Proposition 3.4.3. Let (V, Yy, 1, pv) be a Mébius MOSVA. Then the opposite MOSVA
(V,Y3,1, pv) is also a Mobius MOSVA.
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Proof. Tt suffices to check the commutator formula
[Lyv (1), Y (u, 2)] = Y (Ly (D)u, ) 4+ 223 (Ly (0)u, 2) + 22YE (Ly (—1)u, x).
We first compute the left-hand-side:

[Lyv (1), Yy (u, z)jv = Ly (1) Yy (u, z)v — Yy (u, z) Ly (1)v
= Ly (1)e™v DYy (v, —2)u — eV VY (Ly (D)0, —2)u

zLy(-1)

In order to interchange Ly (1) and e that appear in the first term, we note that

for every n € N,
Ly(1) Ly (=1)" = Ly (=1)"Ly (1) 4+ Ly (=1)"""2nLy(0) + n(n — 1) Ly (=1)" ",

which can be easily proved by induction. Then a straightforward computation shows

that
Ly (1)e"tv (D = e Lv(ED Ly (1) + 22V CD Ly (0) + 222 D Ly (—1).
So the left-hand-side is

e VD Ly (D) Yy (v, —2)u + 22V D Ly (0) Yy (v, —2)u

+ 22"V D Ly (D) Yy (v, —2)u — eV EVY (Ly (1w, —2)u

Then we use the commutator relation between Ly (j),7 = 0,£1 and Yy (v, —x) to deal

with the first three terms. The first term is equal to

VY (v, —2) Ly (Du 4+ 2LV VY (Ly (1), —2)u

— 22V VYL (Ly (00, —z)u + 222V VY (Ly (= 1)v, —2)u
The second term is equal to
22V VY (v, —2) Ly (0)u+2ze” VY (Ly (0)v, —2)u—222e"2Y VY (Ly (1), —2)u
The third term is equal to
22"V (0, —2) Dy (= 1)u + 2262 CVYy (Ly (< 1), —2)u

The summation of the above three formulas, together with the fourth term, would then

simplify to the right-hand-side. O
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Definition 3.4.4. Let (V, Yy, 1, py) be a Mébius MOSVA. A Mébius left V-module W
is a left V-module (W, Y}, dw, Dy) with a representation py of the Lie algebra s[(2)

on W, such that
Lw (0) = pw(Lo), Lw(—1) = pw(L-1) = Dw, Lw (1) = pw(L1),
and for every u € V,
[Lw (0), iy (u, 2)] = Yig (Lv (0)u, ) + 2Yyp (Ly (~1)u, z)

[Lw (1), Yip (u, 2)] = Yig (Lv (Vu, @) + 22Yy5 (Ly (0)u, 2) + 2V (Ly (= 1)u, 2),
and for every n € C,w € W), there exists m € N such that (Ly (0) —n)™w = 0.

We will use the notation (W, YML,, pw) to denote Mdbius left V-modules. The oper-
ator dy can be defined as the semisimple part of Ly (0), and the operator Dyy is just
Ly (—1). So the representation py has all the information of these two operators and
thus we don’t need to include them in the notation. When there is no confusion, we

will simply use W.

Remark 3.4.5. In [HLZ], modules in which Ly (0) is not semisimple are called gen-
eralized modules. In the MOSVA setting, we don’t use this terminology because we
are not requiring the operator dy to be coincide with Ly (0). Indeed, given Ly (0)
satisfying the commutator formulas, one can define dy as the semisimple of Ly (0).

By similar arguments as those in [HLZ], we have
[dw, (Yi#)n(v)] = [Lw (0), (Y )n(v)] for all v € V and n € Z;

[dw, Lw (7)] = [Lw (0), Lw (j)] for j =0, £1.

Thus a Mobius left V-module is still a left V-module and should not be entitled with

the word “generalized”.

Remark 3.4.6. In accordance with convention, when we discuss MOSVA and mod-
ules with Mdbius structure, we will refer d-commutator formula as L(0)-commutator
formula, D-derivative property and D-commutator formula as L(—1)-commutator for-

mula.
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Definition 3.4.7. Let (V, Yy, 1, py) be a Mébius MOSVA. A Mébius right V-module
W is a right V-module (W, YVIE, dw, Dy ) with a representation py of the Lie algebra
s[(2) on W, such that

Lw(0) = pw(Lo), Lw(—1) = pw(L-1) = Dw, Lw(1) = pw (L),
and for every w € W,
[Lw (0), i (u, )] = i (Lw (0)w, ) + 2Yyp (Lw (—Dw, x)
L ()Y (w, 2) =Y (w, 2) Ly (1) = Vii (Lw (Dw, )+ 22V (L (0)w, 2)+22 Vi (L (= 1)w, ),
and for every n € C,w € W), there exists m € N such that (Ly (0) —n)™w =0

Remark 3.4.8. With similar arguments as Proposition 3.4.3, one can prove the Mobius
version of Theorem 3.2.18. In particular, (W, YVI[?, pw) is a Mébius right V-module if
and only if (W, Y‘fV(R), pw) is a Mobius left V°P-module, where YV‘?/(R) and YV[}; are skew-
symmetry opposite vertex operators to each other. This will be used in the proof of

Theorem 3.4.14 and 3.4.17.

Definition 3.4.9. Let (V, Yy, 1, py) be a Mobius MOSVA. A Mébius V -bimodule W is
a V-bimodule (W, Yi¥, Vi dw, Dy) with a representation py of the Lie algebra sl(2)
on W, such that (W, YV{;, pw) forms a Mobius left V-module, and (W, YVII}z, pw ) forms a

Mobius right V-module.

3.4.2 The opposite vertex operator

Definition 3.4.10. Let (V,Yy,1,py) be a Mébius MOSVA and (W, YV%,,pW) be a
Mobius left V-module. We define the opposite vertexr operator on W associated to
u €V by

VS (u, ) = Vi (ePH D (—z=2) L0y =1,

For homogeneous u € V', we have

Y (u, ) = Y (Vi )a(wz ™!
nez

= Z ((‘Um “ Z i(Yv%/)—n—n~b—2+2wt u(L(l)mv)> z !

m!
nel m=0
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Note that since L(1) is locally nilpotent, the summation about variable m is actually
finite. Thus each component (Yif,),(u) is well-defined. Also, the order of summation

can be switched at our convenience.

Remark 3.4.11. The opposite vertex operator we are defining here should not be

confused with the skew-symmetry operator we introduced in the previous section.

Proposition 3.4.12. For every uy,...,u, € V,w € W,w' € W', the series
<U)/, YV(I)/<U’77»7 ZTZ) e YVO[/(U17 Zl)’U))

converges absolutely when |z1| > -+ > |z,| > 0 to a rational function with the only

possible poles at z; = 0,i =1,...,n and z; = z;,1 <i < j <n.

Proof. 1t suffices to consider the case when uq,...,u,, € V are homogeneous. In this

case,

(W', Vi (tn, 20) - - Vi (un, 21)w)

= Y (v 0 Y (LD ), 2w - Vi (L() M, 2 ).

mi,...,my finite
By the rationality of Yik, for fixed my, ..., my, (W', ViE (L(1)™ ), 2 DYw - - Vi (L(1) ™, 271))

converges absolutely when |z, 1| > -+ > |z1|7! > 0 to a rational function of the form

n
) n Pit leij
- -1 j=it
-1 -1 f(zl ) e Zp ) H Z
f(Zl 7"'7277, ) o i=1
n . ~.\Pij
—pi -1 —1\p; IT (2 —=)Ps
11 % [T G =z 1<i<j<n
i=1 1<i<j<n
As the polyonomial f(zl_l,...,zg”) provides negative powers of z;,¢ = 1,...,n, this
fraction is a rational function with possible poles at z; = 0,7 = 1,...,n and z; =

zj,1 <i < j <n. Then (W', Y} (un, zn) - - - Y5, (u1, 21)w), as a finite sum of absolutely
convergent series, also converges absolutely when |z1| > -+ > |z,] > 0 to a rational
function with the only possible poles at z; = 0,¢ = 1,...,n and z; = 2;,1 <17 < j <

n. O
Proposition 3.4.13. For every uy,us € V,w € W,w' € W'. the series

(W', Vi3, (Yy (ug, 29 — 21)uq, 21)w)
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converges absolutely when |z1| > |z2 — z1| > 0 to a rational function with the only

possible poles at z1 = 0,29 = 0,21 = z9. Moreover,

(W', Yi$ (ug, 22) Vi3 (u, 21)w) = (W', Vi3, (Y (ug, 29 — 21)uq, 21)w)
when |z1| > |z2| > |21 — 22| >0
Proof. We will use Formula (5.2.35) in [FHL]: for every u € V, we have

exL(l)(_fo)L(O)YV(UWTO) =Yy <e(x+xo)L(l)(_($ + :CO)fZ)L(O)u, _@_fz())gj) exL(l)(_x72)L(0)

as formal series in (End V)[[z, 27, 0,25 ']] where all the negative powers of x + x
are expanded as power series in xg. The proof of the formula can be found in [FHL],
Section 5.2. The idea is to use the L(0)-commutator formula and L(1)-commutator
formula to obtain L(0)-conjugation formula and L(1)-conjugation formula. No other
property was needed. So the proof carries over to MOSVAs and their modules.

To apply this formula, we first study the formal series
(w', ik <€x1L(1)(—$1_2)L(0)Yv<’U,2,:Bo)ul,.’El_l) w)

in C[[zo, a:al, z1, xl_l]]. By the formula above, the formal series is equal to

<w’,YML/ (Yv <€($1+x0)L(1)(_(m1 +ﬂco)_2)L(0)u, _(xlf(;o)xl> ele(1)(_x1—2)L(o)uhx1—1> w>
(3.2)
in C[[zo, x5 ", z1, 27 ']], with all the negative powers of z1 +z¢ expanded as power series
in xg. Moreover, it is easy to see that this series has at most finitely many negative
powers of xg and at most finitely many positive powers of xy.
In order to substitute xg and x; by complex numbers 2y and z;, we first note from
the rationality of iterates of two vertex operators, for complex numbers zg, 21, (o, (1

with [(1| > |20¢1/((z1 + o))| > 0, i.e., |21 + Co| > |z0] > 0,]C1| > 0, the complex series

2 _ 201 . _
<w’,YV%/ <YV <6( 1+CO)L(1)(_(21 + CO) 2)L(0)u’ _w> e 1L(1)(_Z1 2)L(0)’U,1,C1> w>

—-m—1
= Z Zamni(zl +CO)Z <_(leo_fl<0)> (Cl)inil

¢ finite m,n

(with variables —z0(1/((21 + (o)) and (1) converges absolutely to a rational function

with the only possible poles at zg = 0,21 = 0,1 = 0,21 + (o = 0,21 + (o = 20 (note
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L(O) and

the operators e(?11¢0)L(1) and e14() acts as polynomials, and (—(z1 + ¢p)~2)~
(=21 2)L(O) acts by a scalar multiplication on homogeneous elements). Note that in
this expansion, the power of (—z0(1/(z1 + (o)) is lower-truncated, i.e., m is bounded
above. In particular, the power of zy is lowert-truncated. Moreover, for each fixed m,
the power of (7 is lower-truncated, i.e., n is also bounded above for each fixed m.
Now, we further expand the negative powers of z; + (o as power series in (p, i.e.,

i C ol —n—
Z Zamm’(zl +<0) (_(leo—|—1CO)> Cl !

i finite m,n

m —-m—1,—m—-n— - m+1+1 m i—
- 5 Sttt (3 (M i)

¢ finite m,n k=0
The resulting iterated series on the right-hand-side converges absolutely to the rational
function when |21 + (o| > |z0| > 0, |21| > [(ol, [¢1] > 0. We check that all the conditions
of Lemma 2.3.8 is satisfied. Thus the complex series corresponding to the iterated
series on the right-hand-side is precisely the Laurent series expansion of the rational
function when |z1] > [(ol, |21] > [Co — 20l, |C1| > 0,]20| > 0. In particular, the complex
series converges absolutely when |z1| > |(ol, |z1] > [Co — 20],|¢1] > 0, |z0] > 0. Now we

substitute (o = 20,1 = 21 ! to see that the complex series

1
<’ZUI,YV%/ (YV <e(z1+zo)L(l)(_(zl + 20)72)L(0)u7 _ZOZI)) ezlL(l)(_Zl—Z)L(O)ul,zl_1> U}>

converges absolutely when |z1| > |z9| > 0 to a rational function with the only possible
poles at zg = 0,21 = 0,21 + z0 = 0. And this series is precisely the complex series
obtained from substituting 2o = zp and z; = z; in the formal series (3.2).

We then perform the transformation zg — z9 — z1 to see that the complex series

<w,7YVlL/ (Yv <em(”<—z52>“°)u, — Zl) D (=27 2)E Oy 2 1) “’>

Z221

=(w', Vi (VW (M0 (=23 %) O, =217 + 557 e M (—27) Oy, 27w
which is equal to
(W', Vi (Yv (ug, 22 — 21)u1, z1)w),

converges absolutely when |z1] > |21 — 22| > 0 to a rational function with the only

possible poles at z1 = 0,20 = 0,21 = 29.
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Now we use the definition of Y}j, to rewrite the left-hand-side as
(W', Vi (e (=25 2) 2Oy 20 Vil (e PV (=20 2) FOuy, 27 w)

This series converges absolutely when |z;| > |25 | > 0 to a rational function with
the only possible poles at z; = 0,22 = 0,21 = 29. Moreover, by associativity, when

Izt > |27t > 20t — 25t > 0, dee., |21] > |22] > |21 — 22| > 0, it is equal to
(', Vi (Y (€20 (=2 2) M Vug, 2yt — 27 e PO (2 2) Oy, 21 Hw)

Thus left-hand-side is equal to right-hand-side when |z1| > |z2| > |21 — 22| > 0. O

3.4.3 Contragredient of a Mobius left VV-module

We first discuss the results for grading-restricted Mobius left V-modules. Then we deal

with the non-grading-restricted case with a stronger pole-order condition.

Theorem 3.4.14. Let (V, Yy, 1, py) be a Mobius MOSVA and (W, Y, pw) be a grading-
restricted Mdobius left V-module. On the graded dual W' = [],cc W[jl], we define a

vertex operator action of V' by
(Vi (u, 2)w', w) = (', Vi (u, 2)w) = (0, Vi (7D (=272) O, 27 w),
and an sl(2)-action py, by piy (Lj) = L'(j) for j = 0,£1, where
(L (j)w',w) = (W', Ly (—j)w).

Then (W', Yy, phy;) forms a Mébius right V-module.

Proof. The commutator formulas for Li;, (0), Ly, (—1) and Li;, (1) follows from the com-
putations in [HLZ], Lemma 2.22. The argument there carries over to MOSVAs and
requires some work. For brevity we will not include them here but redirect the reader to
[HLZ], Page 59 to 61. From Remark 3.4.8, it suffice to verify that (W', Y{;,, dy;, Liy (—1))

forms a left V°P-module.

1. The lower bound condition obviously hold. The d-grading condition and d-
commutator formula follow from the discussions in Remark 3.4.5. In particular,
from the d-commutator formula and the lower bound condition, one sees that the

series Y, (u, z)w’ is lower truncated.
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2. To see the identity property, note that Ly (1)1 = 0 and Ly(0)1 = 0, thus
et (—3=2) 101 = 1. So V%, (1,2) = Vi (1,27) = 1. Then follows Yy}, (1, z)w’ =

w'.

3. The L(—1)-derivative property is verified in [FHL|. See [FHL], Page 47 and 48.

4. Since W is grading restricted, (W’)" = W. Thus for the rationality of products,

it suffices to verify that for every w’ € W/, w € W,uyq,...,u, € V, the series
<YI;V (ub Zl) T YI;V (um Zn)w,a w> = <w/> YI/(I)/(um Zn) T YV?/(UD Zl)w>

converges absolutely when |z1| > -+ > |z,| > 0 to a rational function with the
only possible poles at z; = 0,4 = 1,...,n and 2z; = 2;,1 < ¢ < j < n. This was
shown in Proposition 3.4.12. For the rationality of iterates, it suffices to show

that for every w’ € W/, w € W, uq,us € V, the series
(Y (Y3 (u1, 21 — 2z2)ug, z2)w’, w)

converges absolutely when |z3| > |21 — 22| > 0 to a rational function with the only
possible poles at z1 = 0,22 = 0 and z; = 22. We first use the definition of Y3,

then use L(—1)-conjugation property to see that

<Y‘§V(Y‘§(u1, 21 — 29)uz, z2)w , W)
:<YV,V(€(Z17Z2)L(71)Yv<UQ, 29 — 21)u1, 22)w W)
=Yy Yy (ug, 20 — 21)u1, 21)w’, w)
Note that from Remark 2.1.5, this series is still in variables zo and z; — z9, where
z1 should be regarded as the sum 2z + z; — 25 and thus negative powers of z;

should be expanded as power series in (z; — z2). Then we use the definition of

Yljv to see that this series is equal to
(W', Yig,(Yy (ug, z2 — 21)u1, 21)w).

And the proof of Proposition 3.4.13 shows that this series converges absolutely

when |zp| > |21 —22] > 0 to the same rational function as (w’, Yi§, (u2, 22)Y}§ (u1, 21)w)
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5. The associativity follows from the discussion above and Proposition 3.4.13.
O

Definition 3.4.15. The module (W', Y]y, pi;/) is referred as the contragredient module
of (W, YV%,, pw). In case there is no confusion, we just use W’ to denote it. From the
results in Section 5 and Proposition 3.4.3 , one easily sees that W' also a Mobius right

V-module.

Remark 3.4.16. When W is not grading restricted, one has to verify the rationality
with w taking value in the much larger space (W’). So the above proof does not
work. To construct the contragredient module for non-grading-restricted modules, an

additional condition has to be assumed.

Theorem 3.4.17. Let (V, Yy, 1, pv) be a Mébius MOSVA and (W, YWL/, pw) be a Mébius
left V-module. If the vertex operator YV%/ satisfies the strong pole-order condition, that
there exists a real number C, such that for every homogeneous ui,us € V,w' € W' and

w € W, the order of the pole z1 = 0 in the rational function given by
(W', Vi (u1, 21) Vi (ug, 20)w)

is bounded above by wt uy + Re wt w + C, then with Yy, and pjy, are defined in the

same way as the above theorem, (W', Yy, ply,) forms a Mébius left VP-module.

Proof. Tt suffices to deal with the rationality and associativity axioms. The idea is to
use the formal variable approach. With the strong pole-order condition, we proceed
to verify the weak associativity with the pole-order condition in Theorem 3.1.22 based
on the results of Proposition 3.4.12 and 3.4.13. Then the conclusion follows from the
theorem.

Let w' € W/, uy,us € V,w € W be homogeneous. We rewrite the series

(Yiy (u1, 21) Yiy (u2, z2)w’, w) = (w', Vi§, (ug, 22) Vi, (w1, 21)w)
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as

finite finite

Z Z (_1)Wt ug+wt UJL 1 'Z;ng 2wt u2Z’]r_n1 —2wt u1 (33)

mi!m
mi1=0mo=0 1 2

(W', Yip (L(1)™2uz, 23 ) Vi (L(1) ™, 21 w)

We shall use the computations in Remark 3.1.3 to give an explicit upper bound of the
order of the pole z; = 0 for the rational function given by each term in the sum.
For each fixed my, ma, the rational function determine by (w', Yi& (L(1)"2ug, 25 1)V (L(1) ™y, 27 1w)

is of the form

fzt ) B =t ah

-p1.,—P2/.,—1 —1\P12 — _—p1—pi12 _—DP2—p12 P12
zg 2y (2 — 21 ) 29 21 (21 — 22)

Note that YML/ satisfies the strong pole-order condition, thus
p1 < wt (L(1)"?u2) + Re wt w+ C
Let d be the degree of f as a polynomial in 22_1, zl_l. From Remark 3.1.3,
d=p1+p2+pi2+wtw —wt (L(1)"2uz) —wt (L(1)™wuy) — wt w

Note that though wt w’ and wt w might be complex numbers, their difference is sup-

posed to be an integer. In particular, we know that
wt w’ — wt w = Re wt w’ — Re wt w

If we write

331,962 g akxlm )

then
flzy ,z1 Zakz 2y

where the lowest possible power of z1 is —d. Therefore, the order of pole of the rational

function that each term in (3.3) converges to is bounded above by

d—py — p12 —m1 + 2wt up = p1 + wt w' — wt (L(1)™2ug) — wt (L(1)™uy) — wt w — my + 2wt ug

=p1 + Re wt v’ —wt (L(1)2u3) — Re wt w + wt uy
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< Re wt w' + wt uy + C.

This upper bound is independent of mi,mo. Thus we have proved that the order of

the pole z; = 0 of the rational function given by
(Y (w1, 21)Yiy (u2, 22)w’, w) = (0, Vi (g, 22) Vi (ur, 21)w)

is controlled above by the real number that depends only u; and w;. So with the as-
sumption here, the vertex operator Yy, satisfies the pole-order condition as in Definition
2.1.11.

Now with the conclusion of Proposition 3.4.12 and 3.4.13, we know that one can
choose ¢ = wt w’ + wt u; + C depending only on u; and w’, ¢ depending only on us

and w’, q12 depending only on u; and us, such that
(zo+22) 1 28 28" (Vi (u1, 20+22) Yip (u2, 20)w’, w) = (z0+22) T 282 282 (Yiy (Y7 (w1, 20)uz, z2)w’, w)

converges absolutely to a polynomial function. Thus as formal series with coefficients

in W/,
(wot2) g’ 2 (Yiy (ur, ot+a2) iy (ug, w2)w’ = (vo+a2) a2 (Vi (Vi (u1, 20)uz, m2)w’ € W[zo, 22]].

has no negative powers of zg and x3. Thus they all live in W'[[zg, xz3]]. The weak

12 Moreover, the

associativity relation is then seen by dividing both sides by 24’ and z{
choice of q; depends only on u; and w’. Thus, as a consequence of Theorem 3.1.22, the

rationality and associativity axioms hold. O

Remark 3.4.18. This strong pole-order condition is natural because it is satisfied by

all the Mobius left modules for vertex algebras.
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Chapter 4

MOSVA constructed from 2d unit sphere

In this chapter we study the MOSVA constructed on the 2-dimensional sphere. Through-
out this chapter, S? denotes the unit sphere in the three-dimensional Euclidean space.
T.S? denotes the tangent bundle of S?. We will use the parallel sections of the tensor

bundles (T'S?)®* k = 0,1, ... to construct the MOSVA.

4.1 Basic Geometry Facts

Most of the results in this section can be found in [KN], and [P] and [T]. To be
self-contained, we will still give some brief arguments regarding these facts.

Let E be a vector bundle over a connected Riemannian manifold M with a con-
nection V. Fix a point p € M and a piecewise smooth path ~ : [0,1] — M based at
p- A smooth section along vy is a smooth map X : [0,1] — E with X(t) € E 4. A
smooth section X along v is parallel if V45X = 0. For every vector Xg € E),, from the
existence and uniqueness of ODE, there exists a parallel smooth section X : [0,1] — E
with X (0) = Xp. This gives rise to the notion of parallel translation, which is a family
of linear maps P,(t) : E, — E,4 that maps Xo to X(¢). In case v is a loop with
v(0) = v(1) = p, then P, (1) : E, — E, is an automorphism of the fiber E,. The
subgroup of GL(E),) generated by all such P,(1)’s is the holonomy group of E at p.
Since M is connected, the holonomy group of E at different p are isomorphic to each

other. We should use the notation Hol(E) to denote it.
Theorem 4.1.1. The holonomy group on T'S? is precisely SO(2,R).

Proof. Fix p,q,r on the sphere. Let ~1,72,73 be geodesics connecting pq, gr and rp.

Let oy, agy, o be the angles formed by the tangent vectors of spherical triangle pgr. Let
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v € T, M be a unit vector. One sees easily that that composition of parallel transport
along 1,72 and 3 will end up with a unit vector w € T, M, such that the angle of w
and v is ag + ag + a3, which by Gauss-Bonnet theorem, is precisely 7 + Area(pgr). As
p,q,r varies, the angle varies from (7, 27]. Wrapping around the loop again to see that

the angle varies from (27, 47] that covers all the rotations in SO(2,R). O

Let X : M — FE be a smooth section. X is parallel if for every Y € T, Vy X = 0.
Equivalently, for every p € M and every piecewise smooth path v based at p, X, ;) =

P,y Xp. The space of parallel sections of E is denoted by II(E).

Proposition 4.1.2. Let E be a vector bundle over a Riemannian manifold M with a
connection. Fiz a point p on M. The space of parallel sections II(E) of E is isomorphic

to the fixed point subspace EfOZ(E) of E,, under the action of the holonomy group Hol(E).

Proof. Given a parallel section, its restriction at p is obviously a vector fixed by all
parallel transports along piecewise smooth loops. Conversely, given a vector that is
invariant under the holonomy group action, the parallel transport along the path con-
necting p and any other point ¢ on M yields a parallel vector field. Easy to see that

these two operations are inverse to each other. O

Proposition 4.1.3. Let E1, Eo,... be a sequence of vector bundles on M. Let E =
D2, Ei. Then the parallel sections of E is the direct sum of the parallel sections of

Proof. Obviously ;2 II(E;) C II(E). We show the inverse inclusion here. Let X
be a parallel section of E. Fix any p € M and piecewise smooth path v based on p.
Consider X, = > (Xj)p, which is a finite sum of components in (E1),, (E2)p, ... The
parallel tramspollr‘il nllgjz(’l)
Since it is a direct sum, we necessarily have Pﬁil) (Xi)p = (Xi)p. Since v is arbitrarily

chosen, we see that (X;), € (Ei)EOI(E). That is to say, X, is a finite sum of elements

applied on X amounts to the sum of the action of P'féi]-) on Xj;.

in (Ei),I,SIOl(E). Thus X is a finite sum of parallel sections in E;. So we proved that

II(E) C @;2, U(E;). O
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4.2 Complexified parallel tensor fields on S?

We start with the following elementary problem: fix an arbitrary positive integer k, we

proceed to determine all the parallel k-tensor fields on the tangent bundle (7°.5%)%*.

Proposition 4.2.1. The holonomy group of @*T'S? is SO(2,R)/{£1} when k is even;
SO(2,R) when k is odd. In any case, SO(2,R) acts on the vector tensor space @FT,S?:
V1, ey vk € 1,82, g € SO(2,R),

g1 ® - @) =gu ® - @ gug

Proof. For simplicity we just proceed with & = 2. For higher k’s the proof easily
generalizes. Let v : [0,1] — S? be a path based on p and denote by Ty - T,8% —
Tyt 5?2 the parallel transportation along v over the tangent bundle, and TWQ(t) (TS?*®
TS?), - (TS?®T S2)7(t) the parallel transportation along « over the tensor bundle

TS? ® TS?. We claim that for every vy, vy € TpSz,

T3 (01 ® v2) = Ty yv1 @ Ty gy 2

As the equality stands for ¢t = 0, it suffices to verify that the derivatives of both sides

are equal. By the definition of parallel transportations,

d
% |:T’$(t) ('Ul X 'UQ):| = V,YT')?(t) ('Ul &® 'UQ) =0

d

7 [T © Tyyvz] = Vs(Tygyor © Tyyes)

= V3T v @ Typyv2 + Typyv1 @ Vi Ty yv2
=0
So the claim is proved.
As every element in the holonomy group of T'S?®@T'S? is of the form T3(1)’ the claim
we proved implies that the map Hol,(T'S?) — Hol,(TS* @ T'S?) : Ty1y = (Ty1), Ty(1))

is surjective. All it remains is to study the kernel of the map. Fixing v and a basis of

T, pSQ, so that 7’1y admits a matrix representation

ail  a12
A=

a21 Q22
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Then the matrix representation of (7’1, T(1y) on TS 2®T, »S 2 is simply the Kronecker

product

annA appA

anA axnA
Now if T’,(1) lies in the kernel, then the above 4-by-4 matrix must be the identity. To
achieve this, it is necessary that ajo = a9; = O,a%1 = a%Q = aj1a99 = 1 = A =1id or

A= —id. O

Corollary 4.2.2. For the complezified tensor bundle T'S?®rC where C is regarded as a
trivial bundle with two-dimension fiber over S?, we have Hol((T S?@grC)®*) =Hol((T'S%)%*).

Proof. 1t suffices to notice that Vs (v(t) ® a(t)) = Vyv(t) ® a(t). All the computation

above generalizes easily. O
Proposition 4.2.3. For odd k, I1((T'S?)%*) = 0.
Proof. 1t suffices to notice that —id is an element in the holonomy group. O

Proposition 4.2.4. For even k, the parallel k-tensor fields are described as follows:

Pick a generic

cosf sinf
9(0) ==
—sinf cos6

O over the com-

in SO(2,R). Let vy € C? be an eigenvector of g(#) with eigenvalue €'
plexified tangent space (TPSZ)C and vy be its complex conjugate. Then the invariant
subspace of ®kTpS2 (aka, parallel k-tensor fields) are spanned by the real parts and the

imaginary parts of the k-tensors vy, ® - - - ®@wv;, satisfying #{j :i; = 1} = #{j : i; = 2}.

Proof. To see the second conclusion, let I = (i1, ...,i;) be a sequence of length k& with
ij € {1,2} foreach j =1,....,k. Set vy = v;, ®---®v;, and N(I) = #{j :i; = 1} —#{j :
i; = 2}. It’s easy to see that as I ranges through all sequences, all vectors v;’s form a
basis of complexified (®*7},5%)C and each vy is an eigenvector of g(f) with eigenvalue
etNU0 Qo the complexified invariant space is spanned by those v;’s with N(I) = 0.

Since v and vy are conjugate to each other, the complexified invariant space is closed
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under conjugation. Therefore the real invariant space in TpS2 is spanned by real and

imaginary parts of vy (with N(I) = 0). O

4.3 Parallel Sections of T(f]\\/[_) and the MOSVA

Recall that
TM_ =TM @ (M x t 'C[t™1])

and

T(TM_ )=C&TM_&TM_@cTM_&---

We consider the following grading structure on T(f]\?,), that

n  ki+-kn=n

:é @ @ (TM ®pr (MX(Ct*’ﬁ)) ®c - ®¢c (TM Qg (MX(Ctikm))

n=0 \m=0ky,....km€Z4+
Thus, for any open subset U of M,

n  ki+-km=n

n7T(TM ) @ P P HIrMer(MxCt™)ac - oc(TMer (M x Ct))]
n=0 \m=0ky,....km€Z+

which is isomorphic to

n  ki+-km=n

T(m )Hol @ EB @ [<TPM(C)®m]Hol(U)

n=0 \m=0ky,....km€Z4

In case M = S2, it is isomorphic to

n  ki+-kn=n

EB & D span {{(Uz'l R @@ (v, @t iy e (1,28, #{j iy =1} = #{j iy = 2}}

n=0m=0kq,..., km€Z4+
In other words, our MOSVA V is a graded vector space V = @72V, with each V,

spanned by the elements

(v, Rt @ @ (v, @t7F) 0 <m <nyky, ok > 0,k1 + -+ kpy =1,

11, vy lm € {172}’#{j : ij = 1} = #{] : ij = 2}

The vertex operator is defined the same way as in [H3]. We recall the definition

here. Let h = T, M, which is a finite-dimensional Euclidean space over R. Let

hb=borClt,t '] ®Ck
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be the ambient vector space of the Heisenberg algebra. Note that h= 6_ ® b ® 6+.
Let N(h) be the quotient of the tensor algebra T'(h) of h modulo the two-sided ideal I

generated by

(axtM) e bet") - (bet") @ (a@t™) —m(a,b)dninok,
(atF) @ (bt — (bt @ (a @ th),

(atF) @k —k® (a®tF)

for a,b € b, m € Z,, n € —Z4, k € Z. Note that in the quotient, there are no
relations between X ® ™ and Y ® t" for m,n € Z, and for m,n € Z_. Also note that
N(h) ~T(h_) @ T(ho) @ T(h,) ® T(Ck) as vector spaces.

Let C = C1 be a one-dimensional vector space on which h acts by 0. Define the

) ON (b, eh0) C

~ ~

action of k by 1 and 6+ by 0. One can prove that the induced module N (6
is isomorphic to T'(h_) as a vector space. We regard T'(h_) now as an N (h)-module and
denote the action of h @ t* by h(k). Then T'(h_) is spanned by hy(—k1) - - - b (—km)1
forme N hy,....;hm €0, k1, .. by € 2.

Huang proved the following theorem in [H3|

Theorem 4.3.1 (Huang, 2012). The left N (h)-module T(h_) forms a grading-restricted

MOSVA with the following vertex operator action:

Y (hi(—k1) - hi(—km)1, )
1 dh! 1 dhn!
Gy~ Dl daFi= 1) G e )

— ©
o

where hi(z) =Y, 7 hi(n)z™" !

With the knowledge of the parallel sections of the bundle T(f]\\l _), from the con-
clusions of [H4], we have the following theorem:

~

Theorem 4.3.2. The subspace V = P,,5o Va C N(h-) with

m
0<m<n ki, km >0, kj=n
Vo = span S vi, (—k1) - - vi, (—km)1 : j=1

vits ik €120 95 sy =1} = #{j 115 = 2}
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together with the following vertex operator

1 dh! 1 gkt

Y (viy (k1) - vi, (ki) 1, @) = ¢ (ky — 1) dmkl—lvil(x) T (ky — 1) dmkm—lvik($)2

and 1 € Vi forms a grading-restricted MOSVA.
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Chapter 5

Cohomology theory of MOSVA

In this chapter we develop the cohomology theory of bimodules of a meromorphic open

string vertex algebras. The theory is generalized from that in [H1].

5.1 Classical Theory

5.1.1 Hochschild cochain complex of an associative algebra

Recall that for an associative algebra A over C and an A-bimodule M, the set of linear
maps from A®" to M, namely Homc(A®", M), is defined to be the n-th Hochschild
cochain complex with coefficients in M, for each natural number n. When n = 0, A%?
is identified with the base field C and thus the zero-th Hochschild cochain complex is
canonically isomorphic to M. When A is commutative and the the right action of A on
M is identical to the left action, the set Homg(A®™, M) is referred as Harrison cochain
complex.

For each natural number n, the coboundary map
6" : Home (A", M) — Home (A M)
is defined by the following formula
0" flap®@ -+ @ ay)
n—1 '
— a0 fla1 @@ an) + 3 (1) a0 @ ® Qi1 @+ © an) + (~1) L (@0 @ - @ an1) - an
i=1

To see that the sequence (Homg(A®", M),§™) form a cochain complex, we need to
verify that for each n € Z,
5" o™t = 0.



128

Let f € Homg(A®™). We compute as follows:

5" ) (a1 ® -+ ® anga)
n+1
=a10" f(aa @ - @ an42) + Z )'6" flar ® -+ ® aiGi41 @ -+ @ Anga)

+ (_1>n+25nf(a1 Q- an+1)an+2

=a1(azf(as ® @ ania) (1)

n+1

+ Z erlalf (a2 ® - ® ;041 @ -+ @ apy2) (2)

+ (—1)n+3a1f(a2 (SRR an+1)an+2) (3)

+ (=1Darazflaz ® - @ ant2) (4)
n+1

+ Z alf ag ® -+ ® ajai41 @+ @ apt2) (5)
n+1 i—2

+Z( )! flar® -+ ®ajajp @ ®ajai41 @ @ anio) (6)
=3 j:l
n+1 )

+ Z V(=1 (a1 ® -+ ® ai—10ii41 @ -+ © apga) (7)

+ Z fla1 ® -+ ®a;ai410i12 @ - @ apg2) (8)

n+1 )
+Z 'Y ()7 a1 @ @011 @ @ ajaj4 @ D anga)  (9)
J=i+2

+ Z i ”+1f(a1 ® - ® g1 © - @ Apg1)Gng2 (10)

+ (=D (=1)" M f(a1 ® - @ an)ani1an12 (11)

+ (—1)”+2a1f(a2 R ® an+1)an+2 (12)

n

+ Z(—l)”+2(—1)jf(a1 Q@ A4 @ - @ Upg1)Ant2 (13)
j=1

+ (_1)n+2(_1)n+1f(a1 ®"'®an)an+1an+27 (14)

where (1), (2) and (3) comes from the first term of 6" 1(6"f) term, (12), (13), (14)
comes from the last 6"~ 1(6"f) term, and (5) to (11) comes from the middle terms
§"1(6"f). Among these middle terms, (4) and (5) come from the the first term 6" f

respectively when ¢ = 1 and ¢ > 1. (11) and (12) come from the last term of §"f
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respectively when ¢ < n+1 and i =n+ 1. (6) through (9) come from the middle term
of " f, where (6) and (9) deals with the case when j <i—1 and j > ¢, and (7) and (8)
deals the the case j =7 —1 and j = 1.

It is easy to see that the paired sums (1) + (4), (2) + (5), (3) + (12),(6) + (9), (7) +
(8), (10)4(13), (11)+(14) are all zero. Thus 6*(6" 1 f) = 0 for any f € Homc(A®", M),

and therefore (Homg(A®™, M), 6") form a cochain complex.

5.1.2 Approached by the language of operad

For the convenience of generalization to MOSVA, we will rewrite the above prove using
the language of operads.

Let Mq,..., M,, M, N be vector spaces. Let o : M1 ® --- ® M,, — M be a linear
map. For a fixed integer ¢ between 1 and n, let 3 : N — M; be a linear map. We define
@ o; B to be the map obtained by composing a with 5 at the i-th spot. More precisely,
ao; B is a linear map from M1 ® -+ @ M;—1 @ N ® M;11 ® --- ® My, to M, such that

(a0 B)(M1®- - @My _1QTE@M;{1Q - -@My) = a(M1@- - -@M;_1QB() @M1 1®- - -@Mmy)

for any my € My, ....m;—1 € M;_1,2 € N,mjyr1 € Miy1,..mp € My,

Now for the associative algebra A, let 4 : A® A — A be the multiplication map,
ie. Ex(a1 ® ag) = ayag for ay,as € A. For the A-bimodule M, let E§\4 TAQM —- M
and Ey; : M ® A — M be the map given by the left and right action of A on M, i.e,
El(a®m) = am, By, (m ® a) = ma for a € A;m € M. Let f € Homc(A%", M), i.e.,

f is a linear map from A®n to M. Then the § map can be written as

of = EMo2f+Z ) foi Ea+ (=1)""'Ej oy f
=1

Using this notation, we compute 62 f as follows:

n+1
52 f EM025f+Z )i6f 0i Ea+ (—1)"t2E}, 01 6 f

n
=Ej 02 (B o2 f)+ Y (1) Ely 02 (f o5 Ea) + (=1)""' By 03 (B 01 f)
7j=1

n+1
‘*’Z(—l)i EMO2f>OEA+Z I(fojEa)oi Ea+ (=1)""'(Ejy o1 f) 0 Ea
; =
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+ (=" [ Efpor (Biyoa )+ Y (1) Ejo1 (f o5 Ba) + (=1)" " Ejy o1 (B o1 f)
j=1

We rearrange the terms and indexes, to write the above as

n n+1
62f =B}y o2 (Ehroa £)+ > (=1)'Ehy o2 (£ 01 Ba) + Y (—1)(Ehs 03 f) o1 Ea
=1 =1

+ (=) EY 09 (Ef o1 f) + (—1)" 2B}y o1 (B 0o f)

n+l n

+Y> ) (-1 7(f oj Ea)oi Ea

i=1 j=1
n+1

+ Z DBy o1 f) oi Ba+ Y (=) Ey o1 (f 01 Ba) — Ejy o1 (Ey o1 f)
We argue that all (1), (2), (3), (4) are zero.

For (1), note that
Epy 03 (Epy 02 f) = (Epp o2 f) o1 Ea

so the sum of the first term and the ¢ = 1 term in the third summation cancel out. Also
note that

Ely o2 (f 0; Ea) = (E}02) 041 Ea
So the second sum and the third sum without 7 = 1 differs by an index shift and a (-1)
factor. That way they cancels out.

For (2), note that

Ely oo (B o1 f) = Ejy o1 (Bl oo f)

So they cancel out.

For (3), note that if j <4 — 1, then
(foj Ea)oij Ea= (foi—1Ex)o; Ea
and if 7 > ¢, then
(foj Ea)oi Ea= (fo; Ea)oji1 Ea.

This hints that we should write (3) into two parts

n+1i—1

DD (1™ (foj En) OZEA+ZZ 1)+ (f o; Ea) 01 s

=2 j=1 =1 j=1
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Here the first sum starts from ¢ = 2 because when ¢ = 1, the inner sum does not exist.
Similarly the second sum ends at ¢ = n because when ¢ = n + 1, the inner sum does

not exist. We compute the first sum as follows

n+1i—1

>N (-1 (fo; Ea)o; En

=2 j=1
n+1i—1
— Z Z 1) (f o;—1 Ea) oj Ex use the identity above
=2 j=1
n  n+l
— Z Z 1) (fo;_1 Ea)oj Ea change the order of summation
j=1i=j+1
n  n+l

_Z Z zﬂ (foj_1Ea)0; Ea interchange 7 and j
=1 j=1+1

_ZZ 1)+ (f o Ea)o; Ea shift the index j
=1 j=1

So the first sum is precisely the negative of the second sum. Thus the two sums add
up to be zero.

For (4), Note that
(Ehr o1 f) ont1 Ea = Ejyy o1 (Epy o1 f)
so the (n + 1)-th in the first sum cancels out with the third term. Also note that
(Epro1 f)oi Ea = Ejyo1(fo; Ea)

The rest of the first sum cancels out with the second sum.

So we managed to prove 62 = 0 with the language of operads. As we will see, it will
be easier to generalize this argument to MOSVA.

Elements in Kerd” are called n-th cocycles. Elements in Imé” ! are called n-th
coboundaries. The quotient of Kerd” modulo Imé™ ! is called the n-th Hochschild
cohomology group.

To construct an analogue of MOSVAs, the main challenge is to figure out the appro-
priate analogue of chain complexes, and take care of the parameter appropriately when
we perform the related operations. Most of the hard work has been done by Huang in
[H1], where he constructed the analogue of Harrison cohomology for vertex algebras.

Here we develop the analogue of Hochschild cohomology of MOSVA.
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5.2 TW-valued rational functions

Throughout this chapter, V' is a MOSVA; W = [],cc W}, is a V-bimodule that is
not necessarily grading-restricted; W' =[], c¢ W[Z] is the graded dual of W. We shall

assume that all the pole-order conditions hold for V and W.

5.2.1 Definition and basic properties

For n € Z., the configuration spaces is following region in C"
F,C= {(217 7Zn) eC":z 7& Zj,i 7&]}

We use W to denote the algebraic completion [1,cc Win) of W. Note that the dual
(W")* of W' does not coincide with . Also note that any homogeneous linear map
L:W — W extends to a map W — W by the formal linearity

L(w)=1L <Z 7rkw> = ZL(TFkW)

keC keC

where 7, is the projection of W onto Wj;. More generally, any linear map L : W — W
that is a finite linear combination of homogeneous linear maps can be extended to
L : W — W. For convenience, we will not introduce new notations to distinguish the

extended map from the original map.

Definition 5.2.1. For n € Z, we consider the configuration space

F”C = {(zla "-7zn) eC": Zq 7é 2]72 #]}

A W -valued rational function in z1, ..., z, with the only possible poles at z; = 2,0 # j

is a map

f:F,C—W

(215 ey 2n) = f(21, 00y 20)

such that

1. For any w’ € W/,
(W', (21,0 20))

is a rational function in z1, ..., z, with the only possible poles at z; = z;,i # j.
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2. There exists integers p;;,1 < ¢ < j < n and a formal series g(z1,...,2,) €
W{[x1, ..., x,]], such that for every w’ € W' and (z1, ..., 2,) € F,C,
I Gi—z)@ f(z1, o 2) = (W g(21, s 20))
1<i<j<n

as a polynomial function.

For simplicity, we will simply call such maps W -valued rational function when there

is no confusion. The space of all such functions will be denoted by Wzl,...,zn-

Remark 5.2.2. From the second condition, we know that the order of poles of the
rational function (w’, f(z1,...,2,)) is independent of the choice of w’. So for every
w e W',

(214 eey 2n) — H (zi — )P (W', f(21, .., 2n))

1<i<j<n

is a holomorphic (in fact, polynomial) function on C", which can be expanded as a

multiple power series

o0
. . Ay e in
§ iy ., (W )Zl Zn
i1yeenrin=0

For each i1, ...,4, € N, w' — a;, ;, (w') is an element in (W’)*. The second condition
further specifies that there exists b;,. i, € W, such that a;, _;, (w') = (W', b;, . 4,). Thus,

H1§i<j§n(zi — zj)P f(21, ..., zp) can be expanded as

o
Z biy.in 2t -2 € W21, on 20]]
7;19-~~:in20

and therefore, f(z1,...,2,) can be expanded as

o ) A
Z bil-..’inzil R Zqi_bn
11 yennyin =0 ) )
1 nH (zi — z;)Pis € Wllz1, ..., za][(z1 — 22) L, (Zn-1— 2n) 1]
1<i<j<n

For 1 < i < j < n, one can further expand the negative powers of z; — z; as a power

series in z; and multiply them out. It is clear that in the resulting series

> ka2 (5.1)

ki,....kn€Z
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each coefficient fy, &, is a finite sum of various b;, ;,’s. Thus f, %, € W. So (5.1) is

-1

'] that converges absolutely to f(z1, ..., z,) in the region

a series in W{[z1, zfl, veey 2y 2
{(z1y000y2n) €C" 21| > -+ > |20}

We will also consider the expansion of f(z1,...,2,) in other regions. In all the regions

that arise in our applications, all the coefficients of the corresponding series sit in W.

In an earlier draft of the paper, f takes value in the larger space (W’)*. The following

observation by Huang 