
POLYNOMIAL AND MOMENT CONIC
OPTIMIZATIONS:

THEORY AND APPLICATIONS

BY

MOHAMMAD MEHDI RANJBAR

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

Written under the direction of

Farid Alizadeh

and approved by

New Brunswick, New Jersey

May, 2018

ABSTRACT OF THE DISSERTATION

Polynomial and Moment Conic Optimizations:

Theory and Applications

by:

Mohammad Mehdi Ranjbar

Dissertation Director:

Farid Alizadeh

We investigate the non-negative univariate polynomial conic optimization (uPCO) prob-

lem from the perspective of applications and the algorithms.

We start by considering the applications of uPCO, specifically in: 1- Time-variant

network flow problems, and 2- Non-parametric estimation under shape constraints with

splines . Regarding algorithms, we use non-symmetric interior point methods (IPMs)

to solve this conic optimization problem.

It is well known that uPCO can be formulated as a semidefinite programming (SDP)

problem, and therefore, it can be solved by available software for SDP. However, doing

so will result in squaring the number of decision variables, and thus it is impractical

even for moderate size problems. In addition, straightforward SDP formulation involves

numerically unstable processes.

Regarding the latter issue, we propose an orthogonal change of basis. Using the

Chebyshev polynomials (which form an orthogonal basis), uPCO problems with sig-

nificantly higher dimensions can be solved. As for the former issue, we propose two

direct non-symmetric interior-point algorithms, by specializing the non-symmetric ho-

mogeneous self-dual predictor-corrector (HSD P-C) IPM (proposed by Skajaa-Ye 2015)

and a Mehrotra version (i.e. HSD M-P-C IPM) of this algorithm (proposed by Akle-Ye

2015).

We consider implementing these algorithms in two approaches. In the first ap-

proach, we develop these IPMs for the dual of the uPCO problem, i.e., the univariate

ii

moment conic optimization (uMCO) problem, where the algorithms can be utilized by

the efficient barrier function of the moment cone. In the second approach, we consider

developing the previous algorithms directly for the uPCO problem, by utilizing the

algorithms by the Faybusovich universal barrier function of the non-negative univari-

ate polynomial cone. We present numerical results of our implementations of these

algorithms for each approach and a comparison among them.

Next, we consider a general conic optimization problem which contains the non-

negative polynomial conic constraints, as well as second order and linear conic con-

straints. We propose a unified non-symmetric HSD IPM for this problem. Finally, we

present that the numerical results of our implementations are comparable to the re-

sults of the symmetric HSD IPM for the symmetric formulation of the general problem,

without the need to square the non-negative polynomial variables.

iii

Acknowledgements

Ph.D. is a work that cannot be accomplished without the help and support of others.

First and foremost, I would like to thank my adviser, professor Farid Alizadeh, for his

support, help, and ideas throughout this project. I sincerely appreciate his contribution

of time, ideas, and funding to make my Ph.D. happen. It was an honor to be one of

his students.

I would like to thank professor Tamas Terlaky for his time and ideas regarding

the numerical implementations part of my research. I thank my dissertation commit-

tee members, professor Farid Alizadeh, Jonathan Eckstein, Andrzej Ruszczynski and

Tamas Terlaky for their valuable guidance. Also, I would like to thank professor Yurii

Nestrov, Dr. Andres Skajaa, Dr. Santiago Akle Serrano and professor Yinyu Ye for

their outstanding research on non-symmetric interior point methods, which helped to

initiate and accelerate this project.

I am especially grateful to Rutgers University for being a wonderful place to learn

and grow, and for the opportunities it provided from facilities to a vast variety of offered

courses.

I would like to express my gratitude to Shaya Famenini for her support, help and

guidance, especially for introducing me to the beautiful world of economy and quanti-

tative finance.

I would like to thank professor Farid Alizadeh and professor Alexander Amati for

their time and valuable advice in the process of seeking an employment opportunity.

I would like to thank all of my teachers who I have learned from them. Specially, I

would like to thank professor Alexander Amati, professor Daniel Ocone and Dr. Gordan

Ritter, for all I have learned from their quantitative finance courses, and also professor

Vladimir Pavlovic for his wonderful machine learning courses.

iv

Lastly, I am deeply grateful to my family (mom, dad, brothers and sisters) for their

love, support, encouragement and sacrifice. Without them, this thesis would have never

materialized. They have taught me honesty, perseverance, faithfulness and optimism.

I learned from them not to give up hope and aspire to be a good human being, even

during the times of adversity. Thank you, mom and dad.

v

Dedication

I would like to dedicate this thesis to my parents, Maryam and Heidar Ali, my

brothers and sisters who are my true love.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

1. Introduction . 1

1.1. Outline of Thesis . 2

2. Convex Cones: Symmetric and Non-Symmetric 5

2.1. Convex Cones . 5

2.2. Symmetric Cones . 6

2.3. Non-Symmetric Cones . 7

2.3.1. The Non-Negative Univariate Polynomial Cone 7

2.3.2. The Moment Cone . 9

2.3.3. Other Non-Symmetric Cones . 12

2.4. Notation . 14

2.5. Semidefinite Representation of Pn[a,b] and Mn
[a,b] 15

3. Interior Point Methods . 17

3.1. A Brief History of Interior Point Methods 17

3.2. Conic Optimization . 19

3.2.1. LHSCB Function . 20

3.2.2. Conjugate Barrier Function . 23

3.3. Symmetric vs Non-Symmetric IPM . 26

3.4. Homogeneous Self-Dual Model . 30

3.4.1. Path-Following IPM for HSD Model 32

vii

3.4.2. Predictor-Corrector Path-Following Method 35

3.4.3. Mehrotra Predictor-Corrector Path-Following Method 37

4. Applications . 40

4.1. Approximation . 40

4.2. Time-Varying Network Flow Problems 43

4.3. Non-parametric Estimation Under Shape Constraints 44

4.4. Non-parametric Estimation Under Shape Constraints with Splines . . . 47

5. Moment Conic Optimization . 50

5.1. Non-Negative Polynomial and Moment Conic Optimizations 51

5.2. SDP Formulation of uPCO and uMCO in the Standard Basis 52

5.3. Drawbacks of SDP Formulation and Remedies 52

5.3.1. Ill-Conditioned Issue and Chebyshev Change of Basis 53

5.3.2. Squared Dimension Issue and Non-Symmetric IPM 55

5.4. Barrier Function of Non-Negative Polynomial and Moment Cones 56

5.4.1. Barrier Function of Non-Negative Polynomial Cone 56

5.4.2. Barrier Function of Moment Cone, its Gradient and Hessian in

Standard Basis . 57

5.4.3. Barrier Function of Moment Cone, its Gradient and Hessian in

Chebyshev Polynomial Basis . 58

5.5. Computation of gx and Hx . 60

5.5.1. Computation of gx and Hx in Standard Basis 60

5.5.2. Computation of gx and Hx in Chebyshev Basis 61

5.6. Non-Symmetric Homogeneous Self-Dual IPM 62

5.6.1. Central Path . 65

5.6.2. Approximately . 65

5.6.3. HSD Predictor-Corrector IPM 66

Predictor Phase . 66

Corrector Phase . 67

viii

5.6.4. HSD Mehrotra Predictor-Corrector IPM 68

Affine Phase . 68

Combined Phase . 69

5.7. Practical Issues . 70

5.7.1. Initial Point . 70

5.7.2. Step-Length and Neighborhood 70

5.8. Numerical Results . 71

5.8.1. Non-Symmetric HSD Predictor-Corrector vs. Non-Symmetric

HSD Mehrotra Predictor-Corrector 73

5.8.2. Even Degree vs. Odd Degree . 75

5.8.3. Non-symmetric HSD Mehrotra Predictor-Corrector vs. Symmet-

ric HSD Mehrotra Predictor-Corrector 78

5.9. Motivation for Large Degree Polynomials 80

5.10. Conclusion . 82

6. Polynomial Conic Optimization with Universal Barrier Function . . 84

6.1. Non-Negative Polynomial and Moment Optimizations in Primal-Dual

Setting . 84

6.2. Faybusovich LHSCB Function in Standard Basis 85

6.3. Gradient and Hessian of Faybusovich Barrier Function in Standard Basis 87

6.4. Numerical Results in Standard Basis . 88

6.5. Challenges . 91

6.6. Faybusovich LHSCB Function in Chebyshev Basis 93

6.7. Gradient and Hessian of Faybusovich Barrier Function in Chebyshev Basis 94

6.8. Numerical Results in Chebyshev Basis 95

6.9. Implicit Solution for Integrals . 96

6.9.1. Closed-Form Solution for Integrals 97

6.9.2. Partially Closed-From Solution for Integrals 97

6.10. Conclusion . 100

ix

7. Conic Optimization Containing Non-Negative Polynomial or Moment

Constraints as well as Second Order and Linear Constraints 101

7.1. General Conic Optimization . 101

7.2. A Unified HSD IPM . 103

7.3. Numerical Results . 106

7.4. Conclusion . 109

Appendix A. 111

References . 116

x

1

Chapter 1

Introduction

Optimization has become one of the most active fields in science for more than a half

century. A general class of optimization problems is the class of convex optimization.

Perhaps among all types of algorithms for solving this class of optimization problems,

Interior Point Methods (IPMs) are one of the most stable and efficient classes of algo-

rithms. Specifically, IPMs have been widely used for solving conic optimization prob-

lems which are a subset of the convex optimization problems.

One particular class of conic optimization problems which has been getting more

attention recently, is the non-negative univariate polynomial conic optimization prob-

lems. This is conic optimization over the cone of non-negative univariate polynomials,

which can represent many real world problems from a wide variety of areas, e.g., en-

gineering, statistics, mathematics, economy, finance, etc., that can be mathematically

formulated as this type.

In this thesis, we investigate the non-negative univariate polynomial conic optimiza-

tion problem from different perspectives, i.e. applications, formulation, and algorithms

for solving this type of optimization problems.

In terms of applications, we formulate several interesting problems in approxima-

tion, network flow problems, statistics and statistical learning, as a conic optimization

problem, which contains the non-negative univariate polynomial conic constraints, as

well as second order and linear conic constraints, to motivate the reader for the rest of

the thesis. We refer to the latter problem as general conic optimization problem.

In terms of formulation, conic optimization problems involving the non-negative uni-

variate polynomial cones can be cast as different conic optimization problems, i.e. as

the 1- Semidefinite programming problem, 2- Non-negative univariate polynomial conic

2

optimization problem (i.e. the original problem), and 3- Moment conic optimization

problem. Formulating the original problem as a semidefinite programming problem re-

quires embedding the non-negative univariate polynomial cone into a much larger cone,

i.e. the set of semidefinite matrices, by introducing many new decision variables. This

increases the size of the problem quadratically, and therefore, even solving a medium

size problem of this type becomes impractical. Solving the original problem directly

needs a non-symmetric interior point method, which needs an efficient barrier function

available for the non-negative univariate polynomial cone. However, the known barrier

function for the original cone is not efficient to the best of our knowledge. Alternatively,

using a well-known duality between the non-negative polynomial cone and the moment

cone, we can formulate the original problem as a moment conic optimization problem.

This keeps the size of the problem unchanged, and in addition, allows us to benefit

from an efficient barrier function for the moment cone. We intend to investigate these

issues in more details in this work.

Finally, in terms of algorithms, we develop two fast and numerically stable algo-

rithms based on two non-symmetric interior point methods which have been recently

proposed: 1- Homogeneous self-dual predictor-corrector interior point method (pro-

posed by Skajaa-Ye [48]), 2- Homogeneous self-dual Mehrotra predictor-corrector inte-

rior point method (proposed by Akle-Ye [2]). Our algorithms can directly be applied to

the original and moment conic optimization problems. Furthermore, we extend these

algorithms such that they can handle the general conic optimization problems, which

contain non-symmetric cones as well as symmetric cones.

1.1 Outline of Thesis

This thesis is organized as follows: Chapter 2 provides the necessary background on

general convex cones. The definition of three well-known symmetric cones, along with

a number of non-symmetric cones are given, specifically, the definition of non-negative

univariate polynomial cone and moment cone. In fact, the former is a subset of a more

general family of cones, i.e., the cone of sum of squared functions, and the latter is a

subset of a more general family of cones which are induced by the Chebyshev system.

3

Chapter 3 provides a brief overview of interior point methods for the conic opti-

mization problems. We give a general overview of interior point methods for both sym-

metric and non-symmetric conic optimization problems, which are conic optimization

over symmetric and non-symmetric cones, respectively. Then a homogeneous self-dual

embedding model will be reviewed. Finally, we give a general overview of a homoge-

neous self-dual predictor-corrector path-following algorithm, and a Mehrotra version of

this algorithm.

In Chapter 4, we formulate several interesting real world problems as the non-

negative univariate polynomial conic optimizations to highlight its importance. Specif-

ically, we formulate problems in approximation, network flow problems with time vary-

ing parameters and flow, and non-parametric estimation under shape constraints.

In Chapter 5, we investigate solving the non-negative univariate polynomial conic

optimization through solving the moment conic optimization. First, we formulate this

conic optimization problem as a semidefinite programming problem (SDP) to point out

the major drawbacks of this formulation: 1- The SDP formulation requires working

with semidefinite matrices which involve numerically unstable matrix computations,

2- Lifting the polynomial optimization problems to semidefinite programs increases

the number of decision variables by a quadratic factor. Working directly on the non-

negative univariate polynomial conic optimization has its own challenges, which will

be investigated in Section 6. Alternatively, using the existing duality between the non-

negative univariate polynomial cone and the moment cone, we can work directly on the

moment conic optimization problem instead of the original problem. By doing so, first

we avoid increasing the dimension of the problem quadratically. Second, we benefit

from an efficient logarithmic barrier function for the moment cone. Considering this

exchange of problems, we develop a fast and numerically stable interior point algorithm

directly for the moment conic optimization. Our approach is based on the general

non-symmetric method of Skajaa and Ye [48]. We improve our algorithm performance

by adopting a variant of Mehrotras predictor-corrector method, which is based on the

non-symmetric method of Akle and Ye [2]. Finally, we use the Chebyshev polynomial

basis to overcome the numerical instability of the standard basis, and in addition, to

4

be able to use the Fast Fourier Transform (FFT) algorithm for intermediate compu-

tations. FFT algorithm can be used in calculating the gradient and Hessian of the

barrier function of the moment cone. We demonstrate the effectiveness of our algo-

rithms for several classes of polynomial optimization problems, including non-negative

polynomial approximation and time-varying network flow problems. Specifically, we

develop numerical experiments to compare the performance of these two algorithms,

and to compare the performance of the non-symmetric algorithm with the symmetric

algorithm (i.e., the interior point method for the semidefinite programming).

In Chapter 6, we investigate solving the non-negative univariate polynomial conic

optimization directly by using a barrier function for the non-negative univariate poly-

nomial cone. We consider Faybusovich’s universal barrier function. He proposed this

class of barrier functions for the cones induced by the Chebyshev systems. Based on this

barrier function in the standard basis, the non-symmetric homogeneous self-dual model

is constructed, where this time, the primal and dual problems are the non-negative

univariate polynomial and the moment problems, respectively. Then, we adapt the

previous non-symmetric algorithm to this model. We compare the performance of this

algorithm with the one developed in Chapter 5. Finally, we investigate numerical is-

sues of this algorithm and suggest a few remediations. Specifically, we suggest the

change of basis and discuss a closed-form solution for the integrations that arise in the

computation of this barrier function.

In Chapter 7, we consider a more general conic optimization, i.e., the conic optimiza-

tion problems containing the non-negative univariate polynomial/moment constraints,

as well as second order and linear constraints. This is a conic optimization problem

which contains non-symmetric and symmetric cones. We develop a unified interior

point method for this general conic problem. We investigate the Newton systems and

the Schur complement, and compare them with the symmetric counterpart. Finally, we

present the numerical results of the implementations.

5

Chapter 2

Convex Cones: Symmetric and Non-Symmetric

The purpose of this chapter and the next is to give an overview and introduce the

fundamental concepts of conic optimization which are essential for this thesis. We

first start by overviewing the concept of convex cones and the properties of these sets,

which are the foundation of conic optimization. Generally speaking, conic optimization

is minimization of a linear objective function over linear constraints, where the decision

variables belong to a convex cone. The set of convex cones, in general, can be divided

into two classes: 1- Symmetric, and 2- Non-Symmetric.

Symmetric cones were the main subject of research for years, since several real

world applications can be formulated as a conic optimization problem using these cones.

Therefore, we begin with an overview of these cones.

Recently, non-symmetric cones have attracted more attention due to the variety

and applications of these cones. In particular, we consider the univariate non-negative

polynomials and the moment cones.

We continue this chapter by introducing a number of notations which will be used

throughout the thesis. At the end, we review the SDP representation of these cones.

2.1 Convex Cones

First, we present the definition of cone duality. Let K be a proper cone, and let 〈., .〉

show the inner product.

Definition 1. Suppose K is a proper cone. The dual cone of K is defined as:

K∗ = {s|〈s, x〉 ≥ 0 ∀x ∈ K}. (2.1)

The following properties of the dual cone are often useful:

6

Proposition 1.

The followings holds true.

1. If K is a cone, then the dual cone is a closed cone.

2. If K̄ denotes set closure, then K̄ = (K∗)∗. When K = (K∗)∗, we call K self-dual.

3. If K is a proper cone, then so is K∗.

Proof. Refer to any convex optimization book.

The definition of a dual cone depends on the choice of the inner product. For a

given cone, two different inner products yield different dual cones. For most of this

work, the selected inner product is the Euclidean dot product.

2.2 Symmetric Cones

Symmetric cones were the subject of research for many years, where the conic optimiza-

tion over these cones led to the so-called symmetric interior point methods. To define

symmetric cones, we need the following.

Definition 2. If the set of all linear maps L such that LK = K acts transitively on K,

then the cone K is called homogeneous. This means that for a homogeneous cone K, we

have:

∀x, y ∈ Int(K) : ∃L s.t. LK = K for which Lx = y. (2.2)

Definition 3. A convex proper cone that is both homogeneous and self-dual is called

symmetric.

It has been shown that any symmetric cone consists of a (unique) Cartesian product

of irreducible symmetric cones, of which only five exist (see e.g. [21]). These irreducible

cones can therefore be thought of as a basis of all symmetric cones. Three well-known

symmetric cones which are of practical interest in optimization are:

1. Positive Orthant:

Ln = {x ∈ Rn : xi ≥ 0 ∀i = 1, ..., n} (2.3)

7

where the conic optimization over this cone leads to the linear programming

(LP). This cone is reducible to a semidefinite cone. In fact, this is a special case

of semidefinite cones.

2. Lorentz Cone or Second Order Cone:

Sn = {(x0, x̄) ∈ Rn+1 : ||x̄||2 ≤ x0}. (2.4)

where the conic optimization over the direct sum of these cones leads to the second

order conic programming (SOCP).

3. Semidefinite Cone:

SDn = {X ∈ Rn×n : XT = X and sTXs ≥ 0, ∀s ∈ Rn} (2.5)

where the conic optimization over this cone leads to the semidefinite programming

(SDP).

Although the conic optimizations over these cones, model a large variety of real

world problems, many cannot be directly formulated into one of these cones.

2.3 Non-Symmetric Cones

We categorize the proper cones which are not symmetric as non-symmetric cones. Of

special interest in this work are two non-symmetric cones: 1- The non-negative univari-

ate polynomial cone and 2- The moment cone. Next, we will define these cones.

2.3.1 The Non-Negative Univariate Polynomial Cone

The cone of non-negative univariate polynomial is defined as:

Definition 4. The cone of non-negative univariate polynomial of degree n in the stan-

dard basis over interval [a, b] is defined as:

Pn+

[a,b] = {x ∈ Rn+1|
n∑
j=0

xjt
j ≥ 0, ∀t ∈ [a, b]}. (2.6)

8

From now on throughout this work, we use Pn+

[a,b] to show the non-negative univariate

polynomial cone. We use P+
[a,b] when the degree is clear from the context, and Pn+ is

used when the interval is understood from the context. Finally, we simply write P+ if

both the degree and interval are clear.

Like any cone, the boundary and interior of the cone can be defined. In particular,

the boundary of Pn+

[a,b], which is shown by ∂Pn+

[a,b], can be defined as the set of all non-

negative polynomials that have at least one real root in [a, b]. Also, the interior of the

cone is defined as the set of all non-negative polynomials that do not have any real

roots in [a, b], or in other words are strictly positive.

It is well-known that P2n+

R =
∑

2n,1 (the cone of sum of squares of degree 2n and

univariate). Specifically, we have:

Proposition 2.

Suppose p ∈ P2n+

R . Then the following are equivalent:

1. p ∈ P2n+

R .

2. p = q2 + r2 for some polynomials q and r of degree at most n.

3. p ∈
∑

2n,1.

4. There exists a X ∈ SDm+1 satisfying pk =
∑

i+j=k xi,j for k = 0, ..., 2n and

i,j=0,...,m.

Proof. See for example [44].

More generally, this theorem can be extended to the case of a non-negative polyno-

mial over an interval or half line, which is covered by the next theorem.

Proposition 3.

For every polynomial of degree n,

1. p ∈ P2m+

[a,∞) if and only if p(t) = r2(t) + (t− a)s2(t) for some polynomials r and s

of degree at most bn/2c.

9

2. p ∈ Pn+

[a,b] if and only if

p(t) =


r2(t) + (t− a)(b− t)q2(t), if n = 2m,

(t− a)r2(t) + (b− t)s2(t), if n = 2m+ 1,

(2.7)

for some polynomials r and s of degree k and q of degree k − 1.

Proof. See for example [42].

It can be seen that part 2 of proposition 3 can be written in terms of P2n
R as:

P2n
[a,b] = P2n

R +AP2n−2
R ,

P2n+1
[a,b] = BP2n

R + CP2n
R ,

where A,B,C are linear transformations representing multiplication by polynomials

(b− t)(t− a), (b− t) and (t− a), respectively.

2.3.2 The Moment Cone

To define the moment cone, we need the definition of the Chebyshev system:

Definition 5. Let u0(t), u1(t), ..., un(t) denote continuous real-valued functions for t ∈

[a, b]. Then we say {u0(t), u1(t), ..., un(t)} is a Chebyshev system of order n if

det


u0(t0) u0(t1) . . . u0(tn)

...
...

...
...

un(t0) un(t1) . . . un(tn)

 > 0, (2.8)

where a ≤ t0 < t1 < ... < tn ≤ b.

Let us consider several examples:

1. The functions

1, t, ..., tn (2.9)

form a Chebyshev system on any closed interval.

10

2. The functions

T0(t), T1(t), ..., Tn(t) (2.10)

where Ti(t) is the i-th Chebyshev polynomial form a Chebyshev system on any

closed interval.

3. The functions

1

t+ α0
,

1

t+ α1
, ...,

1

t+ αn
, (2.11)

for 0 < α0 < α1 < ... < αn form a Chebyshev system for any interval such that

a+ α0 > 0.

4. The functions

eα0t, eα1t, ..., eαnt (2.12)

for different αi’s form a Chebyshev system on any closed interval.

5. The functions

1, sin(t), ..., sin(nt), cos(t), ..., cos(nt) (2.13)

form a periodic Chebyshev system on [0, 2π].

It has been shown in [41] that the cones induced by these Chebyshev systems are

isomorphic to the cone of non-negative univariate polynomials.

Now the moment cone can be defined with respect to Chebyshev system {u0(t), u1(t), ..., un(t)}

as following:

Definition 6. Suppose u0(t), u1(t), ..., un(t) form a Chebyshev system. Then, the mo-

ment cone over interval [a, b] is defined as:

Mn
[a,b] = {c ∈ Rn+1 : ci =

∫ b

a
ui(t)dF, ∀i = 0, .., n}, (2.14)

where F traverses the set of all non-decreasing right continuous functions of bounded

variation.

It is worth mentioning that F can be considered as a non-negative multiple of a

cumulative distribution function (CDF) of a random variable with support set [a, b].

11

For example, if we consider the standard basis, {1, t, ..., tn}, as Chebyshev system,

then the moment cone in the standard basis over [a, b] is defined as:

Mn
[a,b] = {c ∈ Rn+1 : ci =

∫ b

a
tidF, ∀i = 0, .., n}. (2.15)

Equivalently, if we define unt =
(
u0(t), ..., un(t)

)T
, then the moment cone is defined

as:

Mn
[a,b] = cone{unt : ∀t ∈ [a, b]}, (2.16)

where cone mean the convex cone of the set.

In fact, the unt ’s can be considered as the extreme rays of Mn
[a,b]. Figure 2.1 shows

the moment cone of dimension 3.

Figure 2.1: Moment cone of dimension 3

Notice that the actual dimension of Mn
[a,b] and Pn+

[a,b] is n+ 1. We refer to n as the

degree of the cone.

Now let us consider two properties of the non-negative polynomial cone and the

moment cone which make them well-suited for optimization purposes.

Proposition 4.

Pn[a,b] and Mn
[a,b] are proper cones.

Proof. See for example Lemma 1 in [34].

The second property which is the foundation of primal-dual algorithms, is about

the duality of these two cones.

12

Proposition 5.

(Mn
[a,b])

∗ = Pn+

[a,b].

Proof. See for example [56].

From the previous duality, it can be seen that:

(APn+

[a,b])
∗ = A−T (Pn+

[a,b])
∗ = A−TMn

[a,b],

where A is an invertible matrix.

For more about the properties of Pn[a,b] and Mn
[a,b], refer to [56].

2.3.3 Other Non-Symmetric Cones

Recently, non-symmetric cones are getting more attention. We mention a few other

examples of non-symmetric cones and their dual, and refer the reader to the references

for more properties and applications of these cones.

Definition 7. The p-cone Kp ⊂ R3 is defined as:

Kp = {(x0, x̄) : ||x̄||p ≤ x0}, (2.17)

where ||.||p is the p-norm.

The dual cone of the p-cone is given by:

(Kp)∗ = {(x0, x̄) : ||x̄||q ≤ x0}, (2.18)

where 1
p + 1

q = 1. See more about these cones in [15].

Definition 8. The exponential cone Ke ⊂ R3 is defined as:

Ke = cl{(x, y, z) : z > 0, exp(
x

z
) ≤ y

z
}. (2.19)

The dual cone of the exponential cone is given by:

K∗e = cl{(u, v, w) : u < 0, exp(
w

u
) ≤ −ev

u
}, (2.20)

where e = exp(1). See more about these cones in [18] and [15].

13

Definition 9. For given α = (α1, ..., αm) with
∑m

i=1 αi = 1 and αi > 0 for i = 1, ..,m

the power cone is defined as:

Kα = {(x, y) ∈ Rm+ ×R : |y| ≤ xα1
1 ...xαm

m }. (2.21)

The dual cone of the power cone is given by:

(Kα)∗ = {(u, v) ∈ Rm+ ×R : |v| ≤
(
u1

α1

)α1

...

(
um
αm

)αm

} (2.22)

See more about these cones in [15].

Definition 10. The geometric cone Gn is defined as:

Gn = {(x, θ) ∈ R2
+ ×R+ :

n∑
i=1

exp(−xi
θ

) ≤ 1}. (2.23)

The dual cone of the geometric cone is given by:

(Gn)∗ = {(x∗, θ∗) ∈ R2
+ ×R+ : θ∗ ≥

∑
i|x∗i>0

x∗i log
x∗i∑n
i=1 x

∗
i

}. (2.24)

See more about these cones in [18] and [15].

Definition 11. The extended geometric cone Gn2 is defined as:

Gn2 = {(x, θ, κ) ∈ R2
+ ×R+ ×R+ : θ

n∑
i=1

exp(−xi
θ

) ≤ κ}. (2.25)

The dual cone of the extended geometric cone is given by:

(Gn2)∗ = {(x∗, θ∗, κ∗) ∈ R2
+×R+×R+ : θ∗ ≥ (

∑
0<x∗i<κ

∗

x∗i log
x∗i
κ∗
−x∗i)−

n∑
i=1

κ∗}. (2.26)

For more about this cone and its properties see Section 6 in [18].

As we have mentioned, non-symmetric cones often can be embedded into a symmet-

ric cone, which usually results in a much larger dimension space. Next, we are going to

show the semidefinite representation of Pn+

[a,b] and Mn
[a,b]. First, we need to introduce

notations that can be used to show the results in a matrix format and simplify the

formulations throughout this work.

14

2.4 Notation

Definition 12. The i-th elementary Hankel and Toeplitz matrices in R(n+1)×(n+1) are

defined as the following matrices:

([Hi](k,l))
2n
i=0 =


1, if k + l = i,

0, otherwise,

([Ti](k,l))
n
i=0 =


1, if |k − l| = i,

0, otherwise,

where k, l = 0, ..., n.

Definition 13. The Hankel operator is defined as:

H(.) : R2n+1 → R(n+1)×(n+1)

H(x) =



x0 x1 . . . xn

x1 x2 . .
.
xn+1

... . .
.

. .
. ...

xn xn+1 . . . x2n


and the symmetric Toeplitz operator as:

T (.) : Rn+1 → R(n+1)×(n+1)

T (x) =



x0 x1 . . . xn

x1 x0 . . . xn−1

...
. . .

. . .
...

xn . . . x1 x0


.

In fact, for x ∈ R2n+1, we have H(x) =
∑2n

i=0 xiHi and T (x) =
∑n

i=0 xiTi. Also,

since both operators are linear, therefore, H(x) + T (x) = (H + T)(x).

Notice the differences between Hi and H(.), where the latter means the Hankel

operator, and the former means the i-th elementary Hankel matrix. The same holds

for the Toeplitz.

15

Definition 14. The dehankel operator is defined as:

H∗(.) : R(n+1)×(n+1) → R2n+1

[H∗(Y)]2ni=0 = [〈Hi, Y 〉]2ni=0 =



y0,0

y0,1 + y1,0

...

yn,n


,

and the detoeplitz operator is defined as:

T ∗(.) : R(n+1)×(n+1) → Rn+1

[T ∗(Y)]ni=0 = [〈Ti, Y 〉]ni=0 =



y0,0 + ...+ yn,n

2(y0,1 + ...+ yn−1,n)

...

2y0,n


,

where 〈., .〉 means the matrix inner product. It is convenient to consider T ∗ as the

concatenation of the T ∗ with a zero vector of dimension n, to make it of the same

dimension of H∗.

In fact, H∗ and T ∗ are the adjoint linear operators of H and T , (see [35]). Since,

both operators are linear, therefore, H∗(Y) + T ∗(Y) = (H∗ + T ∗)(Y).

Also, in this work we consider the gradient of a function to be in a vector form

which makes the notation easier.

2.5 Semidefinite Representation of Pn[a,b] and Mn
[a,b]

It is well-known that Pn[a,b] andMn
[a,b] are semidefinite representable, which is shown in

the following propositions. (See [56] and [35] for a more general setting.)

The semidefinite representation of Pn[a,b] can be shown as:

Proposition 6.

a. P2n+

R = {p ∈ R2n+1| ∃Y < 0, s.t. p = H∗(Y)}, where Y ∈ R(n+1)×(n+1)

b. P2n+

[a,b] = {p ∈ R2n+1| ∃Y1, Y2 < 0, s.t. p = H∗(Y1) + AH∗(Y2)}, where Y1 ∈

R(n+1)×(n+1) and Y2 ∈ Rn×n.

16

c. P(2n+1)+

[a,b] = {p ∈ R2n+2| ∃Y1, Y2 < 0, s.t. p = BH∗(Y1) + CH∗(Y2)}, where Y1, Y2 ∈

R(n+1)×(n+1) where A,B, C are:

A :=



−ab a+ b −1

−ab a+ b −1

−ab a+ b −1

. . .
. . .

. . .


, (2.27)

B :=



−a 1

−a 1

−a 1

. . .
. . .


, (2.28)

C :=



b −1

b −1

b −1

. . .
. . .


. (2.29)

Proof. See for example, Theorem 17.1 part 1, Theorem 17.12 and Theorem 17.13 in

[35].

In fact, the linear transformations A, B and C represent polynomial multiplications

by (b− t)(t− a), (t− a) and (b− t), respectively.

Alternately, the semidefinite representation of Mn
[a,b] can be shown as:

Proposition 7.

a. (xi)
2n
i=0 ∈M2n

R ⇔ H(x) < 0.

b. (xi)
2n
i=0 ∈M2n

[a,b] ⇔


H(x) < 0,

H(Ax) < 0.

c. (xi)
2n+1
i=0 ∈M2n+1

[a,b] ⇔


H(Bx) < 0,

H(Cx) < 0.

Proof. See for example, Corollary 1.1 in [56], or more generally see Theorem 17.1 part

2, Theorem 17.12 and Theorem 17.13 in [35].

17

Chapter 3

Interior Point Methods

3.1 A Brief History of Interior Point Methods

Interior point methods (IPMs), primarily in the form of logarithmic barrier methods,

can be traced back to Frisch [54], and the seminal work of Fiaco and MaCormick [55],

where they were considering problems with nonlinear constraints. Research lost inter-

est in these techniques in the late 1960s and 1970s, when it became apparent that the

subproblems of the original nonlinear problem that needed to be solved, became in-

creasingly ill-conditioned as the solution was being approached. During the 1970s, new

techniques, like augmented Lagrangian and sequential quadratic programming meth-

ods, superseded barrier methods to the point that this technique was almost forgotten

by the early 1980s. Karmarkar’s paper [24] began a new chapter in the history of

optimization, where he proposed a polynomial-time interior point algorithm for linear

programming (LP). The importance of his algorithm was not just for the polynomiality

of the algorithm, but rather because this was a bridge from LP to nonlinear optimiza-

tion, where many techniques and algorithms for LP can be generalized to nonlinear

optimization. Soon after Karmarkar’s algorithm, rapid widespread efforts were ded-

icated to making IPMs as efficient as possible (see [60], [58], [59]), and generalizing

IPMs to other classes of optimization problems (see [38], [13], [45]). The most efficient

interior point algorithms in practice, use path-following techniques for symmetric conic

optimizations, where they can benefit from the symmetry between primal and dual

problems. Renegar [46] and Gonzaga [20] introduced path-following methods with an

improved iteration complexity. Megiddo [29] connected the logarithmic barrier to the

complementarity gap between primal and dual problems of LP. Kojima, Mizuno and

18

Yoshise [25] and later Monteiro and Adler [31], realized a feasible primal-dual path-

following algorithm which was the most successful algorithm in practice. Mehrotra [30]

introduced a remarkable higher order primal-dual logarithmic barrier for LP. Lusting

[27] and Lusting et al. [28] made important contributions to the development of the im-

plementation of an infeasible primal-dual Mehrotra predictor-corrector. The drawback

to their algorithm and its implementation was that it could not detect the infeasibility

and unbound status of LP. Ye et al. [53] presented a homogeneous self-dual primal-dual

IPM, where the model embeds the original LP into a slightly larger LP problem that

always has a solution and the algorithm is able to start from any feasible or infeasible

point near the central path. The optimal solution of the embedded model can detect

the infeasibility or unbounded status or can easily be converted to an optimal solution

of the original model. Xu et al. [52] simplified and generalized their algorithm, and

the numerical implementation of his algorithm showed that this algorithm was one of

the most efficient and stable implementations of an infeasible homogeneous self-dual

primal-dual predictor-corrector IPM (for more details see [7]). These algorithms have

been implemented in software packages like Mosek [32] (see the details about the imple-

mentation in [8]), or the solvers in CVX [19] (see the details about the implementations

in [49], [50]).

Nesterov and Nemirovski [38] investigated a more fundamental idea: “Which prop-

erties of IPMs made it so powerful for LP, and how to employ IPMs to a more general

class of optimizations?” It turned out that the key property is that the barrier function

should be self-concordant. This made it clear which class of optimization problems

can be solved in an efficient way using IPMs, at least in theory, and that was convex

optimization, since they proved that, at least in principle, any convex optimization

problem could be provided with a self-concordant barrier. Soon after their work an-

other wave of research occurred, which developed IPMs for other well-known convex

optimizations. Nesterov and Todd [39] [40], suggested primal-dual IPM for convex opti-

mization problems which admit a self-scaled barrier function and have a closed-form and

computationally tractable logarithmically homogeneous self-concordant barrier function

(LHSCB). But only a few convex optimization problems admit a well-defined LHSCB

19

function. A special subclass of these problems are the problems which contains only

self-scaled cones. Three important self-scaled cones which are also symmetric, are: 1.

Positive orthant, 2. Lorentz cone, and 3. Semidefinite cone. Although conic optimiza-

tions over these cones, model a large variety of real world problems, many cannot be

directly formulated as one of these, for example, entropy constraints (x log x ≤ t), p-

cone constraints (||x||p ≤ t), constraints in geometry (cxα1
1 xα2

2 ...x
αp
p ≤ 1), exponential

conic constraints exp(xz) ≤ y
z , power conic constraints xα1x

1−α
2 ≥ −z, single variable

non-negative polynomial constraints x <Pn+

[a b]

0, moment conic constraints x <Mn+1
[a b]

0,

etc.

Embedding these non-symmetric constraints into a symmetric conic constraint, usu-

ally introduces many new decision variables and many new constraints. In particular,

since the IPMs need to compute the Hessian and to store it, increasing the dimension

of the problem, increases both the running time and the memory usage. For example,

as we will see later in Chapter 5, embedding a non-negative single variable polynomial

constraint or a moment constraint into a semidefinite constraint requires squaring the

number of decision variables.

In this chapter, we give a brief overview of IPMs for conic optimization. We start

with some definitions and basic foundation. Then a general comparison of symmetric

vs non-symmetric IPM will be given. Finally, we focus on an important model, i.e.

homogeneous self-dual model, in a primal-dual setting. We elaborate on two impor-

tant primal-dual path-following algorithms for this model, i.e., homogeneous self-dual

predictor-corrector IPM and a Mehrotra version of this algorithm. We use these al-

gorithms for our numerical implementations. The main references for this chapter are

[15], [47], [18], [2], [33], [38].

3.2 Conic Optimization

An important subclass of optimization is the conic optimization. In fact, any convex

optimization problem can be converted to a conic optimization problem by introduc-

ing at most one variable. Throughout this work, we consider the multi-blocks conic

20

optimization problem, which can be formulated as following:

min cT1 x1 + · · ·+ cTk xk

s.t. A1x1 + · · ·+Akxk = b, (COP)

xi <Kni
i

0, i = 1, ..., k,

where Ai ∈ Rm×ni , b ∈ Rm, ci ∈ Rni and Kni
i are proper cones of dimension ni for

i = 1, ..., k. To simplify the notation in the rest of the work, we use Matlab notations

to concatenate matrices Ais and vectors cis as:

A = [A1, ..., Ak]

c = [c1; ...; ck]

Also, we denote K = Kn1
1 ⊗ ...⊗K

nk
k , where ⊗ means the sum product of the cones.

Therefore, the conic optimization in a compact format is formulated as:

min cTx

s.t. Ax = b, (3.1)

x <K 0,

Proper cones possess special properties that make them well-suited for optimization.

Having a well-defined dual cone is one of those properties which was briefly covered in

Chapter 2. Next, we will explain another important property, i.e. possessing a well-

characterized barrier function.

3.2.1 LHSCB Function

One important aspect of IPMs is the concept of barrier function, which is defined as:

Definition 15. Let C be a closed convex set with non-empty interior. A convex function

F is said to be a barrier function for C if

dom F = Int(C) (3.2)

and

F (x)→∞ for x→ ∂C (3.3)

21

where ∂C means the boundary of C.

To define a well-suited barrier function in the case of conic optimization, we need

the following definition:

Definition 16. A closed convex function F ∈ C3 (three times continuously differen-

tiable) with open domain is called self-concordant if

|D3F (x)[h, h, h]| ≤ 2D2F (x)[h, h]3/2, (3.4)

for all x ∈ dom F , and for all h ∈ Rn.

In order to have a well-defined convergence analysis we need to impose one more

assumption on the self-concordant barrier function F :

Definition 17. A self-concordant barrier function F is called ν-self-concordant barrier

for convex set C ⊆ Rn if

∇F (x)T∇2F (x)−1∇F (x) ≤ ν, ∀x ∈ Int(C). (3.5)

Finally, IPMs for the conic optimization problems are associated with specific self-

concordant barrier functions for cones, in particular, those that satisfy the so-called

logarithmic homogeneity condition.

Definition 18. A barrier function F is called a logarithmic homogeneous with barrier

parameter ν if F satisfies:

F (τx) = F (x)− ν log τ, ∀x ∈ Int(dom F), ∀τ > 0. (3.6)

If in addition, F is self-concordant, we call it a Logarithmically Homogeneous Self-

Concordant Barrier function, or in a short notation ν-LHSCB function.

The followings are a few examples of ν-LHSCB functions for well-known cones:

• Positive Orthant:

F (x) = −
n∑
j=1

log xj , ∀x ∈ Int(Ln) (3.7)

is a n-LHSCB function for C = Ln.

22

• Second Order Cone:

F (x) = − log(x2
0 − ||x̄||22), ∀x ∈ Int(Sn) (3.8)

is a 2-LHSCB function for C = Sn.

• Semidefinite Cone:

F (x) = − log det(X), ∀X ∈ Int(SDn+) (3.9)

is a n-LHSCB function for C = SDn+.

• Moment Cone: If n is an even integer number,

F (x) = − log det(H(x)), ∀x ∈ Int(Mn
R) (3.10)

is a n-LHSCB function for C =Mn
R. We will see more on this in Chapter 5.

• Positive Polynomial Cone: If n is an odd integer number,

F (x) = −1

2
ln detD(x), ∀x ∈ Int(Pn+

[a,b]) (3.11)

is a n-LHSCB function for C = Pn+

[a,b], where D(x) is a skew symmetric matrix of

size (n+ 1)× (n+ 1), and its (i, j)-th entry, i, j = 0, ..., n, is defined as:

Di,j(x) =

∫ b

a

(j − i)ti+j−1

(x0 + x1t+ ...+ xntn)2
dt.

We will see more on this in Chapter 6.

For more examples refer to [15] for p-cone and power cone, [18], [15], [2] for expo-

nential cone, and [18] for geometric cone as well as the extended geometric cone.

A direct consequence of Definition 18 is the following properties:

∇2F (x)x = −∇F (x) (3.12)

∇F (τx)x = τ−1 −∇F (x) (3.13)

∇2F (τx) = τ−2 −∇2F (x) (3.14)

xT∇F (x) = −ν (3.15)

||x||2x = ν (3.16)

23

where ||.||x is the Hessian norm. See [38] for the proofs and further details.

Next, we will describe an important property of convex cones, specifically in the

case of symmetric cones.

3.2.2 Conjugate Barrier Function

In Section (2.1) we have seen that for any given proper cone K, there is an associated

proper cone which is the dual cone. In the case of symmetric cones, the dual cone is

the cone itself, but this is not true anymore in the case of non-symmetric cones. The

same analogy exists for the ν-LHSCB function. This can be expressed in terms of the

conjugate barrier function, which is defined below.

Definition 19. Given a barrier function F for convex set C, the function

F ∗(s) = sup
x∈C
{−sTx− F (x)} (3.17)

is called conjugate barrier function of F .

Since the set of cones is a subset of convex sets, then the same definition holds for

the conjugate barrier of cones. But the advantage of cones over a convex set, is that,

if F is a barrier function for K, then F ∗ is also a barrier function for K∗. Furthermore,

if F is a ν-LHSCB function for K, then F ∗ is also a ν-LHSCB function for K∗.

The following equations connect the two barrier functions (see [38] for proofs):

−∇F (x) ∈ Int(K∗) (3.18)

−∇F ∗(s) ∈ Int(K) (3.19)

∇F (−∇F ∗(s)) = −s (3.20)

∇F ∗(−∇F (x)) = −x (3.21)

∇2F (−∇F ∗(s)) = (∇2F ∗(x))−1 (3.22)

∇2F ∗(−∇F (x)) = (∇2F ∗(s))−1 (3.23)

∇2F (x)x = −∇F (x) (3.24)

∇2F ∗(s)s = −∇F ∗(s) (3.25)

xT∇F (x) = −ν (3.26)

24

sT∇F (s) = −ν (3.27)

〈x,∇2F (x)x〉 = ν (3.28)

〈s,∇2F ∗(s)s〉 = ν (3.29)

〈∇F (x),∇2F (x)−1∇F (x)〉 = ν (3.30)

〈∇F ∗(s),∇2F ∗(s)−1∇F ∗(s)〉 = ν (3.31)

It can be shown that if K = K1 ⊗ ... ⊗ Kk, each with νi-LHSCB function Fi, then∑k
i=1 Fi is a ν-LHSCB function for K with ν =

∑k
i=1 νi.

Also, the local Hessian-norms on K and K∗ can be defined as:

||u||x = ||∇2F (x)1/2u||2 for x ∈ Int(K) (3.32)

||u||∗s = ||∇2F ∗(s)1/2u||2 for s ∈ Int(K∗) (3.33)

||u||∗x = ||∇2F (x)−1/2u||2 for x ∈ Int(K) (3.34)

The connection between F and F ∗ is very important, particularly in the case of

symmetric cones, and therefore, the conic optimization containing these cones. In fact,

because of this symmetry between K and K∗, and between F and F ∗, all information

about one cone can be transferred to information about the other cone without extra

computation. This property of symmetric cones makes the primal-dual interior point

methods computationally very cheap and efficient in practice. But this is not the case

for non-symmetric cones. To see the connection between F and F ∗, and the differences

between the symmetric cones and non-symmetric cones, we consider the following two

examples.

• Symmetric Cone: Positive Orthant (K = Rn+)

As we have seen previously, the LHSCB function for this cone is defined as:

F (x) = −
n∑
j=1

log(xj), ∀x ∈ Int(Rn+) (3.35)

Therefore, using Definition 19, the conjugate barrier function is defined as:

F ∗(s) = sup
x∈Rn

+

{−sTx+

n∑
j=1

log(xj)} (3.36)

25

for any given s ∈ Int(K∗) = Int(Rn+). After some calculation we have:

F ∗(s)−
n∑
j=1

log(sj)− n. (3.37)

Therefore, F ∗ is the same as F except for a constant parameter n.

• Non-Symmetric Cone: Moment Cone (K =M2n
R)

As we have seen, the LHSCB function for the moment cone in the standard basis

over R is defined as:

F (x) = − log det(H(x)), ∀x ∈ Int(M2n
R). (3.38)

Therefore, using Definition 19, the conjugate barrier function is defined as:

F ∗(s) = sup
x∈Int(M2n

R
)

{−〈x, s〉 − F (x)}

= − inf
x∈Int(M2n

R
)
{〈x, s〉+ ln det(H(x))} (3.39)

for any given s ∈ Int(K∗) = Int(P2n+

R). Since the function in (3.39) is convex,

from the first order condition, the minimizer will be:

∇x(xT s− ln det(H(x))|x∗ = 0 =⇒ H∗(H−1(x∗)) = s. (3.40)

Since (3.40) is a system of nonlinear equations, there does not exist a closed-

form formulation for F ∗. It is an interesting problem to see if there are fast

and numerically stable algorithms that can compute H∗, its gradient and Hessian

efficiently for the moment cone.

As we can see, computing the value of the conjugate barrier for non-symmetric cones

is not straightforward in comparison with symmetric cones anymore. Therefore, when

dealing with non-symmetric cones, it is preferable to work with algorithms that do not

require the dual barrier function. This will be the main topic of Chapter 5.

Before explaining a more sophisticated model for the conic optimization in (3.1) and

the interior point methods for that model, we can have a general comparison between

the interior point method for the conic optimizations over a symmetric cone and a non-

symmetric cone. We refer to them as symmetric and non-symmetric IPMs, respectively.

26

3.3 Symmetric vs Non-Symmetric IPM

The central path for the problem in (3.1), can be defined by the unique solution of the

following parametric problem:

min cTx+ µF (x)

s.t. Ax = b.

(3.41)

The Lagrangian function for the parametrized problem in (3.41) is defined as:

L(x, λ) = cTx+ µF (x) + λT (b−Ax). (3.42)

Applying the first order optimality condition to (3.42) results in:

∇xL(x, λ) = c+ µ∇F (x)−Aλ = 0

∇λL(x, λ) = b−Ax = 0.

(3.43)

Consider the change of variable s = −µ∇xF (x). Then, the KKT optimality condi-

tions states that, xµ is an optimal solution for (3.41) if and only if there exists (yµ, sµ)

such that:

c− sµ −AT yµ = 0

b−Axµ = 0

sµ + µ∇F (xµ) = 0.

(3.44)

On the other hand, using the duality theory, it is well-known that for any conic prob-

lem of the form (3.1), there exists an associated problem known as the dual problem,

which in a standard form is defined as:

max bT y

s.t. AT y+s = c (3.45)

s <K∗ 0.

If F ∗(s) is the barrier function for the dual cone K∗, then the central path for the

problem in (3.45), can be defined by the unique solution of the following parametric

problem:

max bT y + µF ∗(s)

s.t. AT y + s = c.

(3.46)

27

With the same analogy as we have previously observed, the KKT optimality condi-

tions states that (yµ, sµ) is an optimal solution for (3.46) if and only if there exists xµ

such that:

c− sµ −AT yµ = 0

b−Axµ = 0

xµ + µ∇F ∗(sµ) = 0.

(3.47)

Although (3.44) and (3.47) are very similar in formulation, in principle they are

different since they result in different Newton directions. To understand this better

consider a strictly feasible point x and (y, s) for the primal and dual problems, respec-

tively. Then the first order approximation results in the following Newton directions

for (3.44) and (3.47), respectively:

∆s−AT∆y = 0

A∆x = 0

∆s+ µ∇2F (x)∆x = −s− µ∇F (x)

(3.48)

and

∆s−AT∆y = 0

A∆x = 0

∆x+ µ∇2F ∗(s) = −x− µ∇F ∗(s),

(3.49)

where F ∗ is the convex conjugate of F .

When K is symmetric, it can be shown that the Newton direction in (3.48) and (3.49)

can be defined in a symmetric form with respect to the primal and dual problems. In

order to demonstrate this, we need the concept of the scaling-point which needs the

definition of self-scaled barrier.

Definition 20. A ν-self-concordant barrier F for K is called a ν-self-scaled barrier if

for all v ∈ Int(K), ∇2F (v) maps Int(K) to Int(K∗) and

F ∗(∇2F (v)x) = F (x)− 2F (v)− ν. (3.50)

If a cone admits such self-scaled barrier, we call it a self-scaled cone.

28

It can be shown that if F is a self-scaled barrier for cone K, then the conjugate

barrier F ∗ is also a self-scaled barrier for the dual cone.

Nesterov and Todd [39] proposed the concept of scaling-point as follows:

Proposition 8.

If F is a ν-self-scaled barrier for K, then for every x ∈ Int(K) and s ∈ Int(K∗), there

is a unique w ∈ Int(K) such that:

∇2F (w)x = s. (3.51)

Moreover,

∇2F (w)∇F ∗(s) = ∇F (x) (3.52)

∇2F (w)∇2F ∗(s)∇2F (w) = ∇2F (x). (3.53)

For example, the scaling-point for Ln and SDn+, can be computed explicitly as:

• If K = Ln, then w = (
√
x1/s1, ...,

√
xn/sn).

• If K = SDn+, then w = X1/2(X1/2SX1/2)X1/2.

To see how using the concept of scaling-point defines a symmetric Newton direction,

consider the last equation of (3.48). Replacing µ∇2F (x) by ∇2F (w), results in:

∆s+∇2F (w)∆x = −s− µ∇F (x). (3.54)

Multiplying (3.54) by ∇2F (w)−1 results in:

∇2F (w)−1∆s+ ∆x = ∇2F (w)−1(−s− µ∇F (x)). (3.55)

Let v = −∇F (w) ∈ Int(K∗), then taking ∇F ∗ from both sides of (3.55) and using

(3.21) we have:

∇F ∗(v) = ∇F ∗(−∇F (w)) = −w. (3.56)

Now, we have

∇2F (−∇F ∗(v)) = ∇2F (w) ⇒

∇2F ∗(v)−1 = ∇2F (w) ⇒

∇2F ∗(v) = ∇2F (w)−1 (3.57)

29

which are applying ∇2F to both sides of (3.56), using (3.22) and taking the inverse.

Substituting ∇2F ∗(v) for ∇2F (w)−1 in (3.55), then using (3.51) and (3.52), results

in the following equation:

∇2F ∗(v)∆s+ ∆x = −x− µ∇F ∗(s). (3.58)

Comparing (3.54) and (3.58) shows that they are symmetric with respect to duality.

To see this symmetry better, we consider the affine search direction of (3.54), i.e.

∆s+∇2F (w)∆x = −s. (3.59)

Let B2 = ∇2F (w). Then (3.59) can be written as:

B−1∆s+B∆x = −B−1s. (3.60)

Now, if we switch the role of ∆x and ∆s, then B will be changed to B−1 according

to (3.57). Therefore, the symmetry of Newton direction with respect to the primal and

dual problems is clearly holding.

Nesterov and Todd [39], [40], used the concept of the scaling-point and developed

an efficient symmetric primal-dual interior point method for a general symmetric conic

optimization problem which contains linear, second order, and semidefinite conic con-

straints. These symmetric primal-dual interior point methods have been successfully

implemented in SDPT3 [50], SeDuMi [49] and Mosek [32].

In general, there are two main differences between the interior point methods for

symmetric cones and non-symmetric cones:

1. The conjugate barrier function in the case of symmetric cones is almost identical

to the primal barrier function except for a constant, while the conjugate barrier

function in the case of non-symmetric cones usually does not have a closed-form

and is not easy to compute.

2. The symmetric cones are provided with a self-scaled barrier function, which results

in a scaling-point. This makes the Newton direction symmetric with respect to the

primal and dual cones. But this is not true anymore in case of the non-symmetric

30

cones. Although, Nesterov [37] generalized the concept of scaling-point for the

non-symmetric cones (primal-dual lifting), the resulted Newton direction is not

symmetric anymore with respect to the primal and dual cones.

Next, we will present an overview of a general model for the conic optimization

problem in the form of (3.2), and the interior point algorithms for this model. We will

use these algorithms in the coming sections.

3.4 Homogeneous Self-Dual Model

Generic IPMs assume that the starting point (x, y, s) is strictly feasible with respect to

the primal and dual problems. This means, there exist a x ∈ Int(K) such that Ax = b

and a s ∈ Int(K∗) such that AT y + s = c. Also they assumed that both problems have

a bounded optimal solution.

In practice, these assumptions are too restrictive. For example, usually a feasible

point with respect to the primal and dual constraints is not directly available, and

finding one might be as difficult as solving the original problem.

There are different strategies that can handle these restrictions of which two most

efficient ones are:

1. Modify the algorithm to make it work with infeasible iterations, which leads to

infeasible primal-dual path-following interior point methods. These algorithms

have difficulty in detecting the source of infeasibility or unboundedness.

But more efficient approach is:

2. Embed the problem into the homogeneous self-dual model, which leads to infeasi-

ble homogeneous self-dual path-following interior point methods. This approach

can overcome all those restrictions.

In this work, we only consider the infeasible homogeneous self-dual path-following

interior point methods.

To move forward, we need to assume that the strong duality theorem is satisfied,

which guarantees the existence of an optimal solution. The strong duality says that,

31

if there exists x ∈ Int(K) such that Ax = b and s ∈ Int(K∗), y ∈ Rm such that

AT y+s = c, then, the primal and dual problems have an optimal solution that satisfies

Ax− b = 0

AT y + s− c = 0

x ◦ s = 0

x ∈ K, y ∈ Rm, s ∈ K∗

where ◦ is the inner product associated to the duality definition.

One can construct the homogeneous self-dual model from the primal and dual prob-

lems, which have been formulated in (3.1) and (3.45), respectively, by introducing two

extra non-negative variables τ and κ, as the following:

min 0

s.t. Ax−bτ = 0

AT y +cτ−s = 0 (HSD)

bT y−cTx −κ= 0

(x, τ) ∈ K ×R+, y ∈ Rm, (s, κ) ∈ K∗ ×R+.

The following theorem shows that the solution of (HSD) provides either an optimal

solution for (3.1) and (3.45), or it will detect infeasibility or unboundedness of them.

Proposition 9.

Assume (x∗, τ∗, y∗, s∗, κ∗) solves (HSD). Then

a) (x∗, τ∗, s∗, κ∗) is complementary, that is, x∗ ◦ s∗ + τ∗κ∗ = 0.

b) If τ∗ > 0 then x∗/τ∗ and (y∗, s∗)/τ∗ are optimal solution for (3.1) and (3.45),

respectively.

c) If κ∗ > 0, then either primal or dual is infeasible.

Proof. See [53], [48].

32

It is clear that (HSD) is self-dual (see [48] Appendix 2) and thus a path-following

primal-dual interior point algorithm is suitable for finding the solution of (HSD). This

follows next.

3.4.1 Path-Following IPM for HSD Model

The idea of path-following interior point algorithms is to follow the central path of the

model closely from an initial point towards the optimal solution.

The central path of (HSD) is defined by the unique solution of following parametrized

problem by γ ∈ [0, 1]:

Ax− bτ = γrp, x ∈ K, τ > 0

AT y + s− cτ = γrd, s ∈ K∗, κ > 0

cTx+ bT y − κ = γrc,

(3.61)

coupled with 
x ◦ s = γµe

τκ = γµ

(3.62)

if K is symmetric and coupled with


s+ γµ∇F (x) = 0

τκ = γµ

(3.63)

if K is non-symmetric where

rp = bτ −Ax (3.64)

rd = cτ −AT y − s (3.65)

rc = κ− bT y − cTx. (3.66)

Now to follow the central path of (HSD) closely one should approximately find the

solution of the system of nonlinear equations in (3.61) coupled with (3.62) in the case

33

of symmetric cones, or (3.61) coupled with (3.63) in the case of non-symmetric cones,

for a fixed parameter µ at each iteration.

In order to do so, suppose a given initial interior point z = (x, τ, y, s, κ) (which might

be infeasible with respect to the primal and/or the dual constraints) in some neighbor-

hood (we will define it later) of the central path. Using the first order approximation,

the Newton search direction is defined as:

Adx− bdτ = ηrp

ATdy + ds− cdτ = ηrd

cTdx+ bT y − dκ = ηrc

(3.67)

coupled with 
Bdx+B−1ds = −γµB−1∇F (x)−B−1s

κdτ + τdκ = γµ− τκ
(3.68)

if the cone is symmetric and coupled with
µ∇2F (x)∆x+ ∆s = −γµ∇F (x)− s

κdτ + τdκ = γµ− τκ
(3.69)

if the cone is non-symmetric.

The parameters η and γ are in [0, 1], where η is called infeasibility parameter and

γ is called centering parameter. In the case of η = γ = 1, the search direction defined

by (3.67) accompanied by (3.68) or (3.69), is equivalent to one iteration of Newton’s

method applied to (3.61) accompanied by (3.62) or (3.63), respectively.

After the search direction has been computed, the current point will be updated as:

z+ := (x+, τ+, y+, s+, κ+) = (x, τ, y, s, κ) + α(dx, dτ, dy, ds, dκ) (3.70)

where α ∈ [0, 1] is a suitable step-length.

This claim has been proven that by taking this step, the infeasibility will be de-

creased as:

(r+
p , r

+
d , r

+
g) = (1− αη)(rp, rd, rg) (3.71)

34

and the complementary gap (duality gap) will be decreased by:

µ(z+) ≈ (1− (1− γ)α)µ(z) (3.72)

where the duality gap is defined by µ(z) = (xT s+ τκ)/(ν + 1).

Also, if η = 1 − γ then (3.71) and (3.72) imply that the infeasibility and the com-

plementary gap are both reduced at the same rate η. For proofs and more details, see

[53] in the case of symmetric cones, and [48] in the case of non-symmetric cones.

The method of choosing the centering parameter, γ, distinguishes different path-

following algorithms. For example

• Short-step path-following method: In the short-step algorithm, the centering

parameter will be chosen near its largest value, i.e. 1. This usually allows to take a

full step on the Newton direction, but this step is usually very short, and therefore,

does not make too much progress towards the optimal solution. As a result of

this step, the next point stays near the central path.

• Long-step path-following method: In the long-step algorithm, the centering

parameter will be chosen near its smallest value, i.e. 0. This produces a larger

Newton direction and makes more progress towards the optimal solution, but this

step is generally infeasible, and needs to be damped such that the next point is

close to the central path.

• Predictor-corrector path-following method: In each iteration of this algo-

rithm one alternates between two phases, i.e. predictor and corrector. In the

predictor phase a large step can be taken without being concerned about the cen-

tering, and in the corrector phase the point will move back to the close vicinity of

the central path. Computational results showed that this method is more efficient

compared to other methods. We explain this with more details in next section.

First, we need a definition for the neighborhood of the central path which is based

on the Hessian-norm of the complementarity gap, as shown below:

N (β) = {z ∈ K ×R+ ×Rm ×K∗ ×R+ : ||ψ(x, τ, s, κ, µ(z))||∗x,τ ≤ βµ(z)},

35

where for a symmetric cone

ψ(x, τ, s, κ, µ(z)) =

x ◦ s− µ(z)e

τκ− µ(z)

 (3.73)

and for a non-symmetric cone

ψ(x, τ, s, κ, µ(z)) =

s+ µ(z)∇F (x)

τκ− µ(z)

 . (3.74)

Next, we give an overview of the predictor-corrector algorithm.

3.4.2 Predictor-Corrector Path-Following Method

In the predictor-corrector algorithm, the centering parameter alternates between its

extreme values, i.e. 0 and 1. In fact, this algorithm tries to make a balance between

moving towards the optimal solution and following the central path by alternating the

value of the centering parameter. The algorithm consists of the following two phases:

Predictor phase: When the centering parameter is set at its smallest value, the

resulting Newton direction, which will be referred as prediction direction dzp, is

large and points towards the boundary of the feasible area. Therefore, moving

the current point along the prediction direction results in a large reduction in the

infeasibility and the duality gap. But the new point will be far from the central

path. Figure 3.1 shows this phase.

z=(x,𝞃,y,s,𝜿)

Larg 𝓝

Small 𝓝

zp=(xp,𝞃p,yp,sp,𝜿p) dzp=(dxp,d𝞃p,dyp,dsp,d𝜿p)

Central Path

Figure 3.1: Prediction phase: In this phase the prediction

direction, dzp, is computed and the current point, z, will move

along dzp which results in zp = z + αpdzp. The updated point

has smaller infeasibility and duality gap than z.

36

Corrector phase: Alternatively, when the centering parameter is set at its

largest value, the resulting Newton direction, which will be referred as the cor-

rector direction dzc, points towards the central path and approximately perpen-

dicular to it. Therefore, moving the current point along the corrector direction

results in a reduction in distance from the central path but at the same time keeps

the infeasibility and the duality gap unchanged. This means that by taking this

direction, the next point will be once again close to the central path. Figure 3.2

shows this phase.

z=(x,,y,s,𝜿)

Larg 𝓝

Small 𝓝

zp=(xp,𝞃p,yp,sp,𝜿p) dzp=(dxp,d𝞃p,dyp,dsp,d𝜿p)

Central Path

Zc=(xc,𝞃c,yc,sc,𝜿c)

dzc=(dxc,d𝞃c,dyc,dsc,d𝜿c)

Figure 3.2: Correction phase: In this phase the corrector

direction, dzc is computed and the current point, zp, will move

along dzc which results in zc = zp + αcdzc. The updated point

is once again near the central path and has the same

infeasibility and duality gap compared to zp.

This algorithm is given in Algorithm 1.

Algorithm 1: Predictor-corrector path-following IPM

Initialize: Initialize 0 < βs < βl < 1, initial point z = (x0, τ0, y0, s0, κ0) ∈ N (βs)

While not converged do

Predictor Phase

Find the prediction direction dzp starting from the current z

Choose the largest αp ∈ [0, 1] such that z + αpdzp ∈ N (βl)

Set zp = z + αpdzp

Corrector Phase

37

Repeat

Find the corrector direction dzc starting from current zp

Choose αc ∈ [0, 1] such that minimizes ||ψ(zp + αcdzc)||∗x,τ
Set zp = zp + αcdzc

Until zp ∈ N (βs)

Set z = zp

End of while

There are different versions of the predictor-corrector path-following method that

are more efficient and common in practice. For example, Mehrotra [30] designed an

efficient way to update the centering parameter. The algorithm is called Mehrotra

predictor-corrector algorithm which comes next.

3.4.3 Mehrotra Predictor-Corrector Path-Following Method

A practical and efficient way of choosing the centering parameter is to choose its value

according to the progress which can be made in the current iteration. In other words,

the centering parameter will be set to a small value if we can take a large step along the

Newton direction obtained from a pre-iteration phase, and will be set to a large value

if a large step cannot be taken along this direction. The pre-iteration phase is called

the affine phase. The algorithm consists of the following two main phases:

Affine phase: In this phase, we are not concerned on the centering. This means

that the centering parameter is set equal to zero. Then, the Newton direction will

be computed, which will be referred to as affine search direction, and is shown by

dza. Then a suitable step-length αa will be computed, where z + αadza is in a

large neighborhood, usually the cone itself.

Combined phase: In this phase, first we measure how much progress has been

made in the affine phase, and then based on this measure, the centering parameter

will be set. Then, the Newton direction will be computed, which will be referred

to as combined search direction, and is shown by dzc. Finally, the current point

38

will move along this direction such that the new point will be in the neighborhood

of the central path.

The intuition for this approach is that if a large progress has been made in the affine

phase, this indicates that the current point is close to the central path, or at least far

from the boundary. Therefore, a small centering is enough. Alternatively, if a small

progress has been made in the affine phase, this indicates that the current point is close

to the boundary, and there is no room to move. Therefore, a large centering is needed.

The measure of progress can be computed based on different factors for different

applications. Two common factors are:

1. Duality measure: Mehrotra [30] suggested the following heuristic for linear

programming:

γ =

(
µk+1
a

µk

)3

(3.75)

where k shows the number of iterations and

µk+1
a =

(xk+1 + αadx
k+1
a)T (sk+1 + αads

k+1
a)

ν + 1
. (3.76)

In fact, this is the ratio of the duality measure obtained from the affine phase at

the current iteration, and the duality measure from the previous iteration.

2. Affine step-length: Andersen et al. [9], suggested the following heuristic cen-

tering parameter in the case of symmetric interior point algorithms:

γ = (1− αa)3. (3.77)

Recently, Akle [2] used this for non-symmetric interior point algorithms.

This algorithm is given in Algorithm 2.

Algorithm 2: Mehrotra predictor-corrector path-following IPM

Initialize: Initialize β0 ≈ .99, 0 < β < 1, initial point z = (x0, τ0, y0, s0, κ0) ∈ N (β)

While not converged do

Affine Phase

Find the affine search direction dza starting from current z

39

Choose the largest αa ∈ [0, 1] such that z + αadza ∈ N (β0)

Combined Phase

Set γ based on (3.75) or (3.77)

Find the combined direction dzc starting from current z

Choose αc ∈ [0, 1] such that minimizes z + αcdzc ∈ N (β)

Set z = z + β0αcdzc

End of while

This algorithm is one of the most efficient and stable interior point algorithms for

the conic optimization, which has been implemented in professional and commercial

solver packages in the case of symmetric cones (e.g. Mosek, SeDuMi, SDPT3, etc.),

and is becoming a popular algorithm in the case of non-symmetric cones.

40

Chapter 4

Applications

Conic optimization containing non-negative polynomial conic constraints (<Pn+

[a,b]

) and

moment conic constraints (<Mn
[a,b]

), has many applications, particularly in statistics,

finance, business, economics, and engineering.

In this chapter, we consider a number of the applications of non-negative univariate

polynomial conic optimization (referred to as polynomial conic optimization below, for

simplicity), or of the moment conic optimization in combination with other cones, i.e.

second order cones and positive orthant.

4.1 Approximation

One field where the polynomial optimization is intensively used is engineering, espe-

cially with the purpose of approximation. A key idea in approximation is given by

the Weierstrass approximation theorem, which states that every continuous function

defined on a closed interval [a, b], can be uniformly approximated as closely as desired

by a polynomial when the degree of polynomial is large enough. Now, let us con-

sider the situation where we are given a set of real value functions, fi : R → R for

i = 1, ..., k, and the goal is to find the best envelope curve of these functions. Here, the

best envelope curve means a curve which contains all other functions from below (or

above) and is the closest one to these functions. If we focus on the set of polynomials,

a broadly-studied family of curves with very well-behaved properties, the problem is

that of finding the best envelope polynomial x(t) of a fixed degree n for a given set

of functions. We will define what we mean by “the best” later. In addition to the

best envelope property, there might be cases where the envelope polynomial needs to

have other desired properties. For example, we may want the polynomial, or even its

41

derivatives, to be non-negative (or negative) or/and increasing (or decreasing) or/and

convex (or concave). We can formulate this with the following optimization problem,

involving polynomial conic constraints:

Best x

s.t. x(t) ≤ fi(t), ∀t ∈ [a, b], i = 1, ..., k,

x <Pn+

[a,b]

0 ←− positivity

x′ <Pn+

[a,b]

0 ←− monotonicity

x′′ <Pn+

[a,b]

0 ←− convexity

This formulation can be cast as a polynomial conic optimization problem if the

constraints of type x(t) ≤ fi(t) can be cast as a polynomial conic constraint. There are

different approaches to handle x(t) ≤ fi(t), ∀t ∈ [a, b], i = 1, ..., k. One is to approximate

functions fi by a polynomial, i.e. fi ≈ pi as closely as desired. We can then consider

the following substitution:

x(t) ≤ fi(t) is replaced by x 4Pn+

[a,b]

pi, (4.1)

where the latter is a polynomial conic constraint. An alternative approach is discretiza-

tion, where we consider a sufficiently refined grid of points:

S[a b] = {a ≤ t1 < t2 < ... < tp ≤ b}. (4.2)

and then consider the following substitution:

x(t) ≤ fi(t) is replaced by x(tj) ≤ fi(tj), ∀tj ∈ Sa,b, (4.3)

where the latter is a linear constraint. Although we consider the first approach here,

our methodology can be applied to the second approach as well.

Let us for now, consider the positivity constraints. We will see how other conic

constraints can be easily added into the formulation.

“The best” quantification for an envelope curve, can be defined in terms of inte-

gration
∫ b
a x(t)dt, which can be thought as the average area under polynomial x over

42

the interval [a, b]. It is clear that the integration of a polynomial can be defined as

a function of the inner product of the polynomial coefficients and a constant vector,

that is,
∫ b
a x(t)dt = 〈e[a,b], x〉, where the constant vector e[a,b] depends on the basis of

the polynomials and the interval. For example, in the Chebyshev polynomial basis,

the i-th element of vector e[a,b] is ei[a,b] =
∫ b
a Ti(t)dt, where Ti(t) is the i-th Chebyshev

polynomial basis. Therefore, finding the best non-negative envelope polynomial can

mathematically be formulated as:

max 〈e[a,b],x〉

s.t. x 4Pn+

[a,b]

pi(t), i = 1, ..., k, (Envelope)

x <Pn+

[a,b]

0.

Casting (Envelope) as a standard polynomial conic optimization problem results in

the following problem:

min −〈e[a,b], x〉

s.t.



I I 0 . . . 0

I 0 I . . . 0

...
...

... . . .
...

I 0 0 . . . I





x

z1

...

zk


=



p1

p2

...

pk


x, zi <Pn+

[a,b]

0, i = 1, ..., k,

where I is an identity matrix of appropriate dimension.

It will be shown later (see Chapter 6) that it is usually better to find the optimal

solution of the polynomial conic optimization from solving its dual problem, which we

will now derive. Using the conic duality between the non-negative polynomial cone and

the moment cone, the dual problem of (Envelope) can be written as:

min

k∑
i=1

〈pi,yi〉

s.t.
k∑
i=1

yi <Mn
[a,b]

e[a,b], (Dual-Envelope)

yi <Mn
[a,b]

0.

43

The standard conic formulation of (Dual-Envelope) is given by:

min pT1 y1 + ...+pTk yk

s.t.

[
I . . . I −I

]


y1

...

yn

s


= e[a,b], (Dual-Approx)

yi, s <Mn
[a,b]

0, i = 1, ..., k.

4.2 Time-Varying Network Flow Problems

Network flow problems are well-studied optimization problems with a variety of appli-

cations. Generic network flow problems are induced by a graph G(V,E), with given

constant input data V and E, corresponding to the sets of vertices and edges, respec-

tively. In this section, we focus on a particular network flow problem known as the

“maximum flow” problem, but the results we discuss can also be applied to other types

of network flow problems, like minimum cost flow, shortest path flow, etc.

The standard maximum flow problem is given by G(V,E, s0, s1, c), where s0 and s1

are source and sink nodes, and c is a constant edge capacity mapping, i.e.,

c : E → R+.

In other words, in the maximum flow problem one looks for the maximum flow that

can be pushed from the source node to the sink node, given the constant edge capacities.

Now, let us consider the case where the capacities are univariate continuous functions

over [a, b]. Usually, the capacities are considered to be non-negative functions, thus the

capacity mapping can be defined as:

c : E → F[a,b] := {f : f : R→ R+ and continuous}.

Then, the goal in time-varying maximum flow problem, is to find the maximum

flows, i.e. xi,j(t), that can be pushed from source to sink with respect to the capacities,

44

i.e. xi,j(t) ≤ fi,j(t) for all t ∈ [a, b]. In this case, by “maximum flow” we actually mean

the coefficients of the polynomials representing the maximum flow, i.e. xi,j .

There are different approaches to convert these capacity constraints to the same

type of polynomial conic constraints we illustrated in the previous section. The first

approach consists of approximating each capacity function by a non-negative polynomial

pi,j ≈ fi,j for all (i, j) ∈ E with desired degree. We can then consider the following

substitution:

x(t) ≤ fi,j(t) is replaced by xi,j 4Pn+

[a,b]

pi,j , (i, j) ∈ E. (4.4)

Finally, one measure for maximality can be expressed in term of integration as we

have seen in Section 4.1. Therefore, the time-varying maximum flows problem can be

formulated as:

max
∑

i|(s0,i)∈E

〈e[a,b], xs0,i〉

s.t.
∑

j|(j,i)∈E

xj,i −
∑

j|(i,j)∈E

xi,j =Pn+

[a,b]

0, ∀i ∈ V, (Max-Flow)

xi,j 4Pn+

[a,b]

pi,j , (i, j) ∈ E,

xi,j <Pn+

[a,b]

0, (i, j) ∈ E.

It is clear that (Max-Flow) is a polynomial conic optimization problem. The dual

of (Max-Flow) is given by:

min
∑

(i,j)∈E

〈pi,jyi,j〉

s.t. ui − uj+yi,j <Mn
[a,b]

e[a,b], (i, j) ∈ E (Dual Max-Flow)

ui, uj ,yi,j <Mn
[a,b]

0, (i, j) ∈ E,

which is a moment conic optimization problem.

4.3 Non-parametric Estimation Under Shape Constraints

One important and well-known concept in statistical modeling is curve fitting, where

one tries to construct the best fit to a data set in two dimensions, that is, (ti, yi) ∈ R2 for

45

i = 1, .., p. In this context, we may be interested in finding the best fitting polynomial

of a given degree such that the fitting polynomial has some special characteristics, such

as being positive/negative, increasing/decreasing, convex/concave etc. In the realm of

statistics, this problem is called non-parametric estimation under shape constraints.

Applications of this problem can be drawn, for example, from economics and finance.

For instance:

• A cost function must be increasing and convex.

• A production function must be increasing and concave (see [5]).

• A utility function must be increasing and concave.

• A call option pricing function must be decreasing and convex (see [1]).

• An arrival-rate function of a non-homogeneous Poisson process should be non-

negative (see [4]).

If we consider the set of polynomials as fitting curve, then these shape-constraint

problems can be in general formulated as:

min
x

p∑
i=1

(x(ti)− yi)2

s.t x(t) ≥ 0, ∀ t ∈ [a, b], ←− positivity

x′(t) ≥ 0, ∀ t ∈ [a, b], ←− monotonicity

x′′(t) ≥ 0, ∀t ∈ [a, b], ←− convexity or concavity

where x′ and x′′ are the first and the second derivative of x, respectively. Clearly this

can be cast as a conic optimization problem, containing non-negative polynomial and

46

second order conic constraints, as shown below:

min r

s.t

 r

V x− y

 <S 0, (Shaped-Estim)

x <Pn+

[a,b]

0,

x′ <
P(n−1)+

[a,b]

0,

x′′ <
P(n−2)+

[a,b]

0,

where V is the Vandermonde matrix (Vi,j = tji), y is the vector of observations, and

<S 0 represents a second order conic constraint.

For the sake of simplicity, let us for the time being consider only the positivity

constraints, and rewrite (Shaped-Estim) as:

min r

s.t

1 0

0 V


r
x

 <S

0

y

 (Pos-Estim)

x <Pn+

[a,b]

0,

which is a conic optimization problem with second order and non-negative polyno-

mial conic constraints. The dual of (Pos-Estim) can be written as:

max

0

y


T

sS

s.t.

1 0 0

0 V T I


 sS

sM

 =

1

0

 (Dual-Pos-Estim)

sS <S 0, sM <Mn
[a,b]

0.

To include constraints involving derivatives of different order to (Pos-Estim) or

47

(Dual-Pos-Estim), we may consider the first order differential operator:

D =



0 1 0 . . . 0

0 0 2 . . . 0

...
...

... . . .
...

0 0 0 . . . n


(4.5)

and the second order differential operator:

DD =



0 0 2 0 . . . 0

0 0 0 6 . . . 0

...
...

...
... . . .

...

0 0 0 0 . . . n(n− 1)


, (4.6)

which give us the following equalities:

x′ <
P(n−1)+

[a,b]

0 ⇔ Dx <
P(n−1)+

[a,b]

0 (4.7)

x′′ <
P(n−1)+

[a,b]

0 ⇔ DDx <
P(n−1)+

[a,b]

0 (4.8)

4.4 Non-parametric Estimation Under Shape Constraints with Splines

In practice, it is common to use splines instead of a polynomial for estimation. With

splines, the interval on which the estimation is computed is divided into k sub-intervals,

and non-parametric estimation under shape constraints is then carried out in each of

these sub-intervals, possibly under smoothing constraints.

Let us consider a two-dimensional data set {(tj , yj)} ∈ R2 for j = 1, .., l, with

tj ∈ [a, b]. Let us consider a k-partition of [a, b]

[a, b] = ∪ki=1[ci, di] (4.9)

where the number of data points in each [ci, di] is li. For the sake of simplicity, let us for

the time being only consider the positivity constraints, and formulate non-parametric

48

estimation under shape constraints with splines as:

min

k∑
i=1

li∑
j=1

(xi(ti,j)− yi,j)2

s.t. xi(di)− xi+1(di) = 0, i = 1, ..., k − 1

x′i(di)− x′i+1(di) = 0, i = 1, ..., k − 1 (4.10)

x′′i (di)− x′′i+1(di) = 0, i = 1, ..., k − 1

xi <Pn+

[ci,di]

0, i = 1, ..., k.

The only thing we should take care of, to convert this problem into a standard

polynomial optimization, is to shift each sub-interval [ci, di] to [a, b], and consequently

shift each piece of polynomial xi(t) from [ci, di] to [a, b]. This implies finding the matrix

operator A[a,b]
[ci,di]

∈ R(n+1)×(n+1) that shifts xi ∈ Pn
+

[ci,di]
to xsi ∈ Pn

+

[a,b], that is:

Pn+

[a,b] = A[a,b]
[ci,di]

Pn+

[ci,di]
. (4.11)

To find A[a,b]
[ci,di]

, we first let t ∈ [ci, di], and define tsi as:

tsi : [ci, di] −→ [a, b] (4.12)

tsi =
a− b
ci − di

t+
cib− dia
ci − di

. (4.13)

Then we define t in terms of tsi as:

t =
di − ci
b− a

tsi +
cib− dia
b− a

. (4.14)

If xi(t) =
∑n

i=0 pit
i, then

xsi(ts) = xi(t) =

n∑
i=0

pi(
di − ci
b− a

tsi +
cib− dia
b− a

)i (4.15)

=

n∑
i=0

pi

i∑
j=0

(
i

j

)
(
cib− dia
b− a

))j(
di − ci
b− a

)i−jti−jsi . (4.16)

Therefore, the (i− j, i)-th entry of A[a,b]
[ci,di]

is defined as:

[A[a,b]
[ci,di]

]i−j,i =

(
i

j

)
(
cib− dia
b− a

))j(
di − ci
b− a

)i−j for i = 0, ..., n, j = 0, ..., i. (4.17)

49

Back to the problem in (4.10), we can use (4.11) to obtain the following change of

variable:

xi =
(
A[a,b]

[ci,di]

)−1
xsi . (4.18)

Now, using (4.7) and (4.8), and the change of variable in (4.18), the problem in

(4.10) can be written as:

min
k∑
i=1

ri

s.t.

1 0

0 Vi

(
A[a,b]

[ci,di]

)−1


 ri

xsi

 <Sli+1

 0

yi

 , for i = 1, ..., k,

(
A[a,b]

[ci,di]

)−1
xsi(di)−

(
A[a,b]

[ci+1,di+1]

)−1
xsi+1(di) = 0, for i = 1, ..., k,

D
(
A[a,b]

[ci,di]

)−1
xsi(di)−D

(
A[a,b]

[ci+1,di+1]

)−1
xsi+1(di) = 0, for i = 1, ..., k,

DD
(
A[a,b]

[ci,di]

)−1
xsi(di)−DD

(
A[a,b]

[ci+1,di+1]

)−1
xsi+1(di) = 0, for i = 1, ..., k,

xsi <Pn+

[a,b]

0, for i = 1, ..., k.

(N.P.E. Spline)

which is a conic optimization problem with linear, second order, and non-negative

polynomial conic constraints.

50

Chapter 5

Moment Conic Optimization

In this chapter we consider solving the non-negative univariate polynomial conic opti-

mization (uPCO) via the univariate moment conic optimization (uMCO) in a primal-

dual setting which is suitable for primal-dual interior point method algorithms. The

reason for this is that solving a non-negative univariate polynomial conic optimization

directly by IPM using its barrier function (see Section 5.4.1), is not computationally

efficient at least not with the available methodologies. We investigate this in more de-

tails in Chapter 6. Also, it is well-known that the non-negative univariate polynomial

cone is semidefinite representable. Therefore, a uPCO can be cast as a SDP. But this

is not desirable because the SDP is extremely ill-conditioned and increases the size

of the problem quadratically. These drawbacks make solving a uPCO of a small size

impossible.

Alternatively, instead of solving a uPCO directly, we can use the existing duality

between the non-negative univariate polynomial cone and the univariate moment cone

and solve a univariate moment conic optimization problem which can be solved more

efficiently. Then, the optimal solution of the uPCO can be obtained from the optimal

solution of the uMCO through duality. To solve a uMCO, we can use the well-known

semidefinite reprehensibility of the moment cone and cast the uMCO as a SDP. But

this is not desirable because again the SDP is (i) extremely ill-conditioned and (ii)

quadratically increases the size of the problem.

One remedy for the first issue is to use an orthogonal change of basis for which

we use the Chebyshev polynomial basis. Through this change of basis, problems of

a much larger size can be solved. Also, one remedy for the second issue is to use a

non-symmetric IPM that can be applied directly to the uMCO which keeps the size of

51

the original problem unchanged.

Therefore, to find the optimal solution of the uPCO, we consider solving a primal-

dual model, where the primal problem is a uMCO and the dual problem is a uPCO

where the computation is carried out on the moment cone. By doing so, first we avoid

increasing the dimension of the problem quadratically. Second, we benefit from an

efficient logarithmic barrier function for the moment cone in both bases (i.e. standard

and Chebyshev).

Based on the rationale explained above, we develop a fast and numerically stable

non-symmetric primal-dual interior point algorithm for the pair of uMCO and uPCO

problems. Our non-symmetric algorithm is based on the general non-symmetric al-

gorithm of Skajaa and Ye [48]. We improve the performance of our algorithm by

adopting a variant of the Mehrotras predictor-corrector method which is based on the

non-symmetric algorithm of Akle and Ye [2].

From now on, we drop “univariate” whenever possible, for brevity.

5.1 Non-Negative Polynomial and Moment Conic Optimizations

We consider the conic optimization problem in the standard form as follows:

min cT1 x1 + · · ·+ cTk xk

s.t. A1x1 + · · ·+Akxk = b, (COP)

xi <Kni
i

0, i = 1, ..., k,

where Ai ∈ Rm×ni , b ∈ Rm, ci ∈ Rni , and Kni
i is either of the following two non-

symmetric cones:

1. Non-negative polynomial cone of dimension ni + 1 over interval [a, b] which is

shown by Pn
+
i

[a,b].

2. Moment cone of dimension ni + 1 over interval [a, b] which is shown by Mni

[a,b].

When Kni
i = Pn

+
i

[a,b] for i = 1, ..., k, we refer to (COP) as the non-negative univariate

polynomial conic optimization problem (uPCO). This is the original problem which we

52

want to solve. Alternatively, when Kni
i = Mn

[a,b] for i = 1, ..., k, we refer to (COP) as

the moment univariate conic optimization problem (uMCO).

One approach to solve uPCO or uMCO is to cast these problems as SDP, as ex-

plained in the following section.

5.2 SDP Formulation of uPCO and uMCO in the Standard Basis

It was mentioned earlier that the non-negative polynomial and the moment cones are

semidefinite representable. Therefore, using proposition 6, one can cast the uPCO as

a SDP, depending on a particular case of interest. For example, in the case where

s ∈ P2n+

R , we have:

(uPCO) min cT s ⇒ (SDP) min H(c)•Y

s.t. As = b, s.t. H(ai)•Y = bi, i = 1, ..,m,

s <P2n+
R

0, Y < 0,

where • means the inner product and ai is the i-th row of matrix A. It is clear that the

optimal solution of the uPCO is s∗ = H∗(Y ∗), where Y ∗ is the optimal solution of the

SDP.

Alternatively, using proposition 7, one can cast the uMCO as a SDP, depending on

a particular case of interest. For example, for the case where x ∈M2n
R , we have:

(uMCO) min cTx ⇒ (SDP) min cTx

s.t. Ax = b, s.t. Ax = b,

x <M2n
R

0, H(x) < 0.

5.3 Drawbacks of SDP Formulation and Remedies

Formulating the non-negative polynomial and moment conic optimizations as a SDP is

problematic at least for two main reasons. These will be investigated in more details

along with the proposed remedy for each issue in Sections 5.3.1 and 5.3.2.

53

5.3.1 Ill-Conditioned Issue and Chebyshev Change of Basis

The SDP formulation of the uMCO or uPCO is extremely ill-conditioned. This is due

to working with Hankel matrices in the SDP formulation. It is well-known that the

condition number of Hankel matrices is exponential in the matrix dimension. We have

experimented that with this approach, even solving a problem of dimension n ≥ 50 with

the standard SDP solvers such as Mosek, SeDuMi or SDPT3, failed to converge since

the automatic SDP solvers attempt to solve SDP problems with standard methods such

as Cholesky factorization.

To avoid the ill-conditioned computations, we use a more suitable basis rather than

the standard {1, t, t2, ..., tn}. Orthogonal polynomials of various kinds are an obvious

alternative. We choose Chebyshev polynomials, since in addition to numerical stability,

it is possible to carry out certain parts of the computations using the Fast Fourier Trans-

form (FFT) and the FFT inverse in a straightforward manner. Chebyshev polynomials

of the first kind are defined as:

Tk(t) = cos(k arccos(t))

for −1 ≤ t ≤ 1. These polynomials form a basis for the linear space of polynomials of

degree at most n. So we can make a change of basis and represent a polynomial p(t)

as:

p(t) = p0 + p1t+ + pnt
n = q0 + q1T1(t) + + qnTn(t),

so that the new “coefficients” are q = (q0, q1, ..., qn)T . The vector q can be obtained

from p by a triangular linear transformation. Indeed, a well known three term recursive

representation of Chebyshev polynomials is:

T0(t) = 1, T1(t) = t,

Tn+1(t) = 2tTn(t)− Tn−1(t).

The non-negative polynomials and moment cones in the Chebyshev polynomial basis

54

over [−1, 1] are defined as:

Pn+

Ch = {x ∈ Rn+1|
n∑
j=0

xjTj(t) > 0, ∀t ∈ [−1, 1]}, (5.1)

Mn
Ch = Cone{(T0(t), T1(t), ..., Tn(t))T | ∀t ∈ [−1, 1]}. (5.2)

We fixed the interval to [−1, 1] to simplify the formulation but this is not restrictive

and any interval can be considered. Through our experiments, we observed that the

interval [−1, 1] is the best in terms of computations.

The semidefinite representation of the non-negative polynomial cone in the Cheby-

shev polynomial basis over [−1, 1] follows from the next lemma.

Lemma 10.

It can be shown that:

a. P2n+

RCh
= {p ∈ R2n+1| ∃ Y < 0, s.t. p = 1

2(H + T)(Y)},

b. P2n+

Ch = {p ∈ R2n+1| ∃ Y1, Y2 < 0, s.t. p = 1
2(H + T)∗(Y1) + 1

2A
T
Ch(H + T)∗(Y2)},

c. P(2n+1)+

Ch = {p ∈ R2n+2| ∃ Y3, Y4 < 0, s.t. p = 1
2B

T
Ch(H + T)∗(Y3) + 1

2C
T
Ch(H +

T)∗(Y4)},

where Y, Y1, Y3, Y4 ∈ R(n+1)×(n+1), Y2 ∈ Rn×n and the linear transformations ACh,

BCh and CCh represent, respectively, Chebyshev polynomial multiplications by (T0(t) −

T1(t))(T0(t) + T1(t)), (T0(t)− T1(t)) and (T0(t) + T1(t)) in the Chebyshev basis.

Proof. See the Appendix.

Alternatively, the semidefinite representation of the moment cone in the Chebyshev

polynomial basis over [−1, 1] follows from the following lemma.

Lemma 11.

It can be shown that:

a. x ∈M2n+1
Ch over R if and only if H(x) + T (x) < 0.

55

b. x ∈M2n+1
Ch over [−1, 1] if and only if

(H + T)(x) < 0,

(H + T)(AChx) < 0.

c. x ∈M2n+2
Ch over [−1, 1] if and only if

(H + T)(BChx) < 0

(H + T)(CChx) < 0,

Proof. See the Appendix.

By using the Chebyshev change of basis, a uPCO or uMCO of a much higher size

can be solved through the SDP formulation. We observed that problems with blocks of

dimension 3000 can be solved. The question that may arise here is, “why a polynomial

of such large degree is useful?”. A brief answer can be that, in many applications,

increasing the degree of solution gives a better optimal solution particularly when the

number of constraints is large. Refer to Section 5.9 for further details.

5.3.2 Squared Dimension Issue and Non-Symmetric IPM

Embedding a uPCO or uMCO problem into a SDP requires squaring the number of

the decision variables and increases the number of constraints. Table 5.1 shows these

for uPCO and uMCO problems with k blocks, and each block of dimension m× ni.

Formulation blk Constraints Variable

Non-Symmetric k m
k∑
i=1

ni + k

SDP of uPCO k m O(k
k∑
i=1

n2
i /2)

SDP of uMCO k m+ k
k∑
i=1

ni O(k
k∑
i=1

n2
i /2)

Table 5.1: Dimension of SDP formulation of uPCO and uMCO

56

This makes solving even a medium size uPCO or uMCO problem by SDP imprac-

tical, in terms of the running time and memory storage. For example, if uPCO has

2×103 blocks and the degree of each block is of size 103, then it needs 109 floating point

memory storage to only store the Hessian. The situation is worse in terms of the run-

ning time. As an example, it takes a PC with 32 GB RAM and 3GHz processor about

4 days to solve a problem of 200 blocks and each block of dimension 1200. Therefore,

we need to think of an algorithm that maintains the dimension of the original problem

unchanged. The non-symmetric interior point method achieves this. In the following

sections we describe our approach to circumvent semidefinite programming and work

directly with the moment cone, so that we avoid squaring the number of variables.

5.4 Barrier Function of Non-Negative Polynomial and Moment Cones

Interior point methods are accompanied with the barrier function of the primal and

dual cones. Since this is a second order method, it also needs the gradient and the

Hessian of the barrier function of the primal cone and possibly of the dual cone. In the

case of symmetric cones, the information about the dual barrier function can be simply

obtained from the primal barrier function without doing any extra computation. But

this is not true anymore in the case of non-symmetric cones. We begin with the barrier

function of the non-negative polynomial cone to justify the use of the moment cone.

5.4.1 Barrier Function of Non-Negative Polynomial Cone

Faybusovich [16] used the concept of the so-called universal barrier function for a convex

set in a finite dimensional vector space [38], and proposed a LHSCB function for cones

generated by the Chebyshev systems (see Theorems 4 and 5 in [16]). In fact, the non-

negative polynomial cone is a subset of this class of cones. For example, let us consider

his LHSCB function for the Pn+

[a,b] when n is odd, which is:

F (x) =
1

2
ln detD(x), when x ∈ Int(Pn+

[a,b])

Di,j(x) = (j − i)
∫ b

a

ti+j−1

x(t)2
dt, i, j = 0, ..., n.

57

It is evident that the barrier function requires a significant number of one-dimensional

integrals. Therefore, any interior point method which needs this barrier is not efficient.

We will investigate this more in Chapter 6. Alternatively, there exists an efficient LH-

SCB function for its dual cone, i.e. moment cone, which will be discussed in the next

section.

5.4.2 Barrier Function of Moment Cone, its Gradient and Hessian in

Standard Basis

As was observed in proposition 7, the moment cone can be represented by a semidefinite

matrix depending on the degree and the interval. Therefore, the barrier function for

the moment cone is a variant of the log barrier function for the semidefinite cone, i.e.:

a. F (x) = − ln det(H(x)), when x ∈ Int(M2n
R),

b. F (x) = − ln det(H(x))− ln det(H(Ax), when x ∈ Int(M2n
[a,b]),

c. F (x) = − ln det(H(Bx))− ln det(H(Cx)), when x ∈ Int(M2n+1
[a,b]).

Above barrier functions are LHSCB. All self-concordance properties of these barriers

are inherited from the semidefinite cone barrier.

Using the above barrier functions, it can be shown that:

Lemma 12.

The gradients of the moment barrier functions in the standard basis are as follows:

a. ∇x(F (x)) = −H∗(H−1(x)), when x ∈ Int(M2n
R),

b. ∇x(F (x)) = −H∗(H−1(x))−ATH∗(H−1(Ax), when x ∈ Int(M2n
[a,b]),

c. ∇x(F (x)) = −BTH∗(H−1(Bx))− CTH∗(H−1(Cx)), when x ∈ Int(M2n+1
[a,b]).

Proof. See the Appendix.

58

Lemma 13.

The Hessian of the moment barrier functions in the standard basis are as follows:

a. ∇2
x(F (x)) = conv2(H−1(x)), when x ∈ Int(M2n

R),

b. ∇2
x(F (x)) = conv2(H−1(x))+

AT conv2(H−1(Ax)A, when x ∈ Int(M2n
[a,b]),

c. ∇2
x(F (x)) = BT conv2(H−1(Bx))B+

CT conv2(H−1(Cx))C, when x ∈ Int(M2n+1
[a,b]).

Proof. See the Appendix.

Here, conv2(P,Q) is the convolution of two bivariate polynomials, P , Q, in the stan-

dard basis, and conv2(P) = conv2(P, P). In general, the input arguments of conv2(., .)

are two matrices of dimension (n + 1) × (n + 1) and (m + 1) × (m + 1), which are

the coefficients of the bivariate polynomials. This means that the (i, j) element of the

matrix is the coefficient of xiyj in a polynomial presentation. The result of conv2(.)

is a matrix of dimension (n + m + 1) × (n + m + 1), which is the matrix coefficient

corresponding to the multiplication.

It is clear from above that, the Hessian is a (2n + 1) × (2n + 1) positive definite

matrix. This is substantially smaller than the Hessian obtained from the direct SDP

formulation where the Hessian would be a (n+ 1)2 × (n+ 1)2 positive definite matrix.

As we have mentioned, the uMCO in the standard basis is extremely ill-conditioned.

Therefore, we use the Chebyshev polynomial basis.

5.4.3 Barrier Function of Moment Cone, its Gradient and Hessian in

Chebyshev Polynomial Basis

As it has been discussed earlier, the Chebyshev polynomial basis is preferable computa-

tionally. Therefore, with the same methodology mentioned for the moment cone barrier

in the case of standard basis and considering Lemma 11, the LHSCB functions for the

59

moment cone in the Chebyshev basis can be defined as follows:

a. F (x) = − ln det((H + T)(x)), when x ∈ Int(M2n
ChR

),

b. F (x) = − ln det((H + T)(x))− ln det((H + T)(AChx)), when x ∈ Int(M2n+1
Ch),

c. F (x) = − ln det((H + T)(BChx))− ln det((H + T)(CChx)),when x ∈ Int(M2n+2
Ch).

Using the above barrier functions, it can be shown that:

Lemma 14.

The gradients of the moment barrier functions in the Chebyshev basis are as follows:

a. ∇x(F (x)) = −(H∗ + T ∗)((H + T)−1(x)), when x ∈ Int(M2n
ChR

),

b. ∇x(F (x)) = −(H∗ + T ∗)((H + T)−1(x))−

ATCh(H∗ + T ∗)((H + T)−1(AChx)), when x ∈ Int(M2n
Ch),

c. ∇x(F (x)) = −BTCh(H∗ + T ∗)((H + T)−1(BChx))−

CTCh(H∗ + T ∗)((H + T)−1(CChx)), when x ∈ Int(M2n+1
Ch).

Proof. See the Appendix.

Lemma 15.

The Hessians of the moment barrier functions in the Chebyshev basis are as follows:

a. ∇2
x(F (x)) = conv2T ((H + T)−1(x)), when x ∈ Int(M2n

ChR
),

b. ∇2
x(F (x)) = conv2T ((H + T)−1(x))+

ATChconv2T ((H + T)−1(AChx))ACh, when x ∈ Int(M2n
Ch),

c. ∇2
x(F (x)) = BTChconv2T ((H + T)−1(BChx))BCh+

CTChconv2T ((H + T)−1(CChx))CCh, when x ∈ Int(M2n+1
Ch).

where conv2T (.) is the convolution of two bivariate polynomials in the Chebyshev poly-

nomial basis (inspired from the standard basis).

Proof. See the Appendix.

60

It is clear from above that, the Hessian of the moment barrier in the Chebyshev

polynomial basis is again a (2n+1)×(2n+1) positive definite matrix. This is in contrast

to the SDP representation where the Hessian is the Kronecker product of (H+T)−1(x)

by itself, which is a (n+ 1)2 × (n+ 1)2 positive definite matrix.

We refer to the gradient and Hessian of the moment barrier function, at a given

point x, by gx and Hx, respectively, for all bases when there is no ambiguity.

In the next section, we discuss the efficient and numerically stable computation of

these quantities.

5.5 Computation of gx and Hx

The main computational effort within each iteration of any interior point method for

uMCO, is computing the Hessian matrix, Hx, and solving a system of linear equation

containing Hx. This, in fact, is the result of applying the Newton method to minimize

the objective plus the barrier function. In this section, we describe how these quanti-

ties are calculated and how the resulting Newton system is solved efficiently and in a

numerically stable manner.

There are two parts in the computation of the Hessian: 1- Inverting a Hankel

matrix (or Hankel+Toeplitz in the case of the Chebyshev basis), and 2- Convolution of

the Hankel (or Hankel+Toeplitz in the case of the Chebyshev basis) inverse by itself.

For clarity we start with the standard basis, and then move on to the Chebyshev

basis.

5.5.1 Computation of gx and Hx in Standard Basis

• Solving a linear system of equations with a (n+1)× (n+1) Hankel matrix can be

accomplished in O(n log2 n) time and O(n) space using the FFT (see [10], [51]).

As a result, computing gx = H∗(H−1(x)) requires O(n log2 n) time.

• Convolution of two univariate polynomials of degree at most n in the standard

basis, can be accomplished by the FFT or type I Discrete Cosine Transform

(DCT) [17], in O(n log n) time and O(n) space.

61

• More generally, the convolution of two bivariate polynomials of degree n × n

in the standard basis can be accomplished by the convolution of two univariate

polynomials of degree n2 by reordering the power of the variables. Therefore,

the convolution of two bivariate polynomials is at most O(n2 log n) time and

O(n2) space using FFT. As a results, computing the Schur complement in a

non-symmetric formulation (i.e. AH−1
x AT) can be accomplished in O(mn2 log n)

whereas this is O(mn3) in a SDP formulation.

5.5.2 Computation of gx and Hx in Chebyshev Basis

• Solving a linear system of equations with a (n + 1) × (n + 1) Hankel+Toeplitz

coefficient matrix can be accomplished in O(rn2) time and O(rn) space by the

DCT algorithm (see [10]), where r is the displacement rank of (Hankel+Toeplitz)

matrix and is at most 4. As a result, in the Chebyshev basis, gx = (H∗+T ∗)(T +

H)−1(x) can be computed in O(n2). In our implementation we have used the

“drsolve” package developed by Arico and Rodriguez [10] as a subroutine code to

compute the inverse of the Hankel+Toeplitz matrix.

• The convolution of two polynomials of degree at most n in the Chebyshev basis

can be computed either through FFT [17], or through DCT [12], in O(n log n)

time and O(n) space.

• The convolution of two bivariate polynomials of degree n × n in the Chebyshev

basis can be reduced to the convolution of two univariate polynomials of degree

at most n2.

• We have used a version of the DCT method in our implementation based on the

work of Baszenski and Tasche [12]. The algorithm follows the same pattern as the

FFT: Compute the values of the two polynomials on the 2n equally spaced angels

between zero and 2π; multiply these values term by term; and finally, interpolate

the product on the 2n equally spaced values. In [12], it is showed that this process

62

can be expressed as:

conv2T (A,B) =
4

n2
Cn((CnAC

T
n) ◦ (CnBC

T
n))CTn (5.3)

where ◦ is the Hadamard product, A,B,Cn ∈ R(n+1)×(n+1), and Cn is:

Cn = (εn,j cos
ijπ

n
)ni,j=0,

with εn,0 = 1
2 and εn,j = 1, j = 1, ..., n−1. It can be shown that, similar to FFT,

multiplying a vector of length n + 1 by Cn, requires O(n log n) time and O(n)

space. Thus, the computation of the Hessian of barrier function in the Chebyshev

basis can be achieved in O(n2 log n). As a result, the Schur complement in the

Chebyshev basis can be accomplished in O(mn2 log n) whereas this is O(mn3) in

a SDP formulation. This is similar to the case in the standard basis.

5.6 Non-Symmetric Homogeneous Self-Dual IPM

So far, we have observed that in contrast to the non-negative polynomial cone, the

barrier of the moment cone, its gradient and Hessian, can be computed efficiently.

Therefore, instead of solving the uPCO, we consider solving its dual which is a uMCO.

Furthermore, to benefit from the maximum potential power of an interior point method

in the conic optimization, usually a primal-dual setting is needed for which the primal

and dual problems are required. Therefore, using the duality between the moment cone

and the non-negative polynomial, we have the following primal-dual setting:

min cTx
dual⇐⇒ max bT y

s.t. A x = b, s.t. AT y+s = c (M-NP CO)

x <Mn
[a,b]

0, s <Pn+

[a,b]

0.

For now on, we useM and P+ to showMn
[a,b] and Pn+

[a,b], when there is no ambiguity.

The first attempt towards a non-symmetric conic optimization has been made by

Nesterov [37]. He proposed a non-symmetric primal-dual predictor-corrector IPM,

which requires having a feasible primal and dual initial points and being able to com-

pute the value of the primal and dual barrier function efficiently. But as has been

63

observed earlier, the barrier function of the non-negative polynomial cone is not effi-

ciently computable. Therefore, his method cannot be applied to our case directly.

Recently, Skajaa and Ye [48] relieved those restrictions. They proposed a non-

symmetric homogeneous self-dual primal-dual predictor-corrector IPM (HSD P-C IPM)

which has the following properties:

• It does not need feasible initial points and can start from any point near the

central path.

• It detects infeasibility and unboundedness if applicable.

• It does not need any information from the dual barrier function.

Even more efficiently, a Mehrotra version of that algorithm has been proposed by

Akle and Ye [2]. We have developed these two algorithms for our cases. First, we

review the essential parts from Chapter 3 that are needed here. The HSD problem can

be constructed from (M-NP CO):

min 0

s.t. A x−bτ = 0

AT y +cτ−s = 0

bT y−cT x −κ= 0 (HSD M-NP)

µgx +s = 0

τκ= µ

(x, τ) ∈M×R+, y ∈ Rm, (s, κ) ∈ P+ ×R+.

Theorem 9 guarantees that the solution of (HSD M-NP) provides either an optimal

solution for (M-NP CO), or it will detect infeasibility or unboundedness of (M-NP CO).

It has been mentioned that (HSD M-NP) is self-dual (see [48] Appendix 2). There-

fore, a path-following primal-dual interior point algorithm is suitable for finding its

optimal solution. The idea of the path-following interior point algorithm is to approx-

imately follow the central path of the model and stay close to it towards the optimal

solution. Here, “central path” is defined as a parametric problem using the barrier

64

function, “approximately” uses the first order Newton’s method, and to stay close to

the central path, prediction and correction in each iteration are used.

Following the notations in [48], we show:

x̄ =

x
τ

 s̄ =

s
κ


F̄(x̄) = F (x)− log τ, F̄∗(s̄) = F ∗(s)− log κ

K̄ =M×R+, K̄∗ = P+ ×R+, ν̄ = ν + 1

where F (x) and F ∗(s) are the barrier functions of the moment and non-negative poly-

nomial cones, respectively, which depend on the basis, dimension and interval.

We define G and the residuals of (HSD M-NP) for a given point z = (x̄, y, s̄) as:

G =


0 A −b

−AT 0 c

bT −cT 0



rp

rd

rc

 = G

y
x̄

−
0

s̄


Define the duality gap and function ψ as:

µ(z) = x̄T s̄/v̄,

ψ(x̄, s̄, µ(z)) = s̄+ µ(z)gx̄(x̄).

The η-neighborhood of the central path is defined as:

N (η) = {z ∈ K̄ ×Rm × K̄∗ : ||ψ(x̄, s̄, µ(z))||∗x̄ ≤ ηµ(z)},

where the Hessian-norm is defined as ||v||∗x̄ = ||H−1/2
x̄ v||. For the general properties of

the Hessian-norm, see [48].

65

5.6.1 Central Path

The central path of (HSD M-NP) is defined as the unique solution of the following

parametrized system of equations:

G

y
x̄

−
0

s̄

 = γ


rp

rd

rc

 (CP)

s̄+ γµgx̄ = 0

where 0 ≤ γ ≤ 1, and is called the centering parameter.

The central path starts from an initial point, z0, (at µ0 = 1), and goes towards

the optimal solution of the (HSD M-NP) as µ→ 0. In path-following algorithms, it is

impossible to precisely follow the central path and step on it in each iteration. Instead,

we stay in the neighborhood of the central path, which preserves the centrality and gives

us more room to take a large step towards the optimal solution. This is in contrast to

what Fiacco and McCormick had done in their seminal work [55]. They knew about

the barrier function but they did not consider the central path and that the iterations

should stay close to it.

5.6.2 Approximately

To find the solutions of the central path (CP) approximately, one can use the first order

Newton’s method to find the Newton direction, and then update the current iteration

by taking a suitable step size along this direction.

The first order Newton’s method is: starting from a given point, (x̄, y, s̄), substitute

(x̄ + dx̄, y + dy, s̄ + ds̄) into (CP) and then linearize the system of equations. After

linearizing the system, the Newton direction will be the unique solution of the following

66

system of linear equations:

G

dy
dx̄

−
 0

ds̄

 = (1− γ)


rp

rd

rc

 (Direction)

ds+ µHxdx = −s− γµgx

τdκ+ κdτ = −τκ+ γµ.

To find a direction which decreases the residuals and duality gap and also stays near

the central path, the following algorithms are usually considered:

1. HSD Predictor-Corrector IPM

2. HSD Mehrotra Predictor-Corrector IPM

5.6.3 HSD Predictor-Corrector IPM

To make interior point algorithms efficient in practice, one usually alternates between

two phases of (i) Predictor, and (ii) Corrector.

Predictor Phase

In the predictor phase with the goal of taking a large step, one tries to find a direction

which is approximately tangent to the central path and points toward the direction

that reduces the residuals and duality gap simultaneously, and is not concerned about

the centrality. This means to put the centering parameter in (Direction) equal to zero

(γ = 0).

Therefore, given the starting point z = (x̄, y, s̄) ∈ N (η), the predictor direction is

going to be defined as the unique solution of the following system of equations:

G

dyp
dx̄p

−
 0

ds̄p

 =


rp

rd

rc

 (PD)

dsp + µHxdxp = −s

τdκp + κdτp = −τκ.

67

Now consider the step-length on this direction be αp and define:

zp := (x̄p, yp, s̄p) = (x̄+ αpdx̄p, y + αpdyp, s̄+ αpds̄p).

It is not difficult to see that the residual and the duality gap will be reduced pro-

portionally to (1 − αp), (see Lemma 3 in [48]). Skajaa and Ye [48] showed if η ≤ 1/6,

then by taking a fixed step-length, αp = Ω(1/
√
ν), zp ∈ N (2η). But in practical im-

plementation a larger step-length can be taken. To see how to choose the step-length,

refer to Section 5.7.2.

Corrector Phase

In the corrector phase, on the other hand, we try to find a search direction which points

towards the central path but at the same time keeps the residuals and the duality gap

unchanged. By taking a step on this direction, the next point, z+
c , will be near the

central path again, and then in the next predictor phase once again we can take a long

step toward the optimal solution. To find the direction pointing toward the central

path, we put the centrality parameter in (Direction) at its maximum value (γ = 1).

Therefore, starting from the current iteration, i.e. zp, the corrector direction, shown by

dzc, will be the unique solution of the following system of equations:

G

dyc
dx̄c

−
 0

ds̄c

 =


0

0

0

 (CD)

dsc + µpHxpdxc = −sp − µpgxp

τpdκc + κpdτc = −τpκp + µp.

Defining the step-length in the corrector phase by αc, the next iteration will be

zc := zp + αcdzc. Skajaa and Ye (see Lemma 6 in [48]) showed that if zp is in N (2η),

then by applying the corrector phase at most twice, the next point will be close to the

central path again, in the sense that zc ∈ N (η). But as the implementation results

show, even if zp is not in N (2η), applying the corrector phase twice will still result a

point in N (η).

68

Also, they showed that by using these two phases with the specified step-length, the

algorithm terminates with a ε-solution of (HSD M-NP) in no more thanO(
√

(ν) log(1/ε))

iterations. See Algorithm 1 in Chapter 3 for a general overview.

5.6.4 HSD Mehrotra Predictor-Corrector IPM

It is common in practice, to adjust the centering parameter in each iteration rather than

keeping it fixed. In addition to updating the centering parameter in each iteration, a

second order approximation to the central path can be used. See [30] for Mehrotra

second order approximation in the case of linear programming, and [6] for general self-

scaled conic problem. Akle [2] proposed a similar idea in the case of the non-symmetric

cones. We will not use the second order technique here, since this is still an active area

of research which requires more investigation.

There are many ways to update the centering parameter. One general way is to

update the centering parameter based on how much improvement can be made in the

current iteration. One measure to quantify the “improvement” can be defined based

on the step-length which can be taken.

The algorithm composes of two phases: (i) Affine, and (ii) Combined.

Affine Phase

In the affine phase, we are not concerned about the centering. Instead, we want to see

how much improvement can be made by taking a step on the affine search direction.

Therefore, setting the centering parameter equal to zero in (Direction), the affine search

direction, dza = (dx̄a, dya, ds̄c), will be defined as the unique solution of the following

system of linear equations:

G

dya
dx̄a

−
 0

ds̄a

 =


rp

rd

rc

 (Aff. Dir.)

dsa + µHxdxa = −s

τdκa + κdτa = −τκ.

69

Then, we define the step-length αa such that z + αadza ∈ N (β0) for 0 < β0 < 1.

It is evident that the affine search direction is the same as the predictor search

direction in the HSD predictor-corrector method.

Combined Phase

The combined phase is in fact a linear combination of the predictor and corrector

phases, i.e. (1− γ)PD + γCD. The centering parameter is chosen based on how much

improvement has been made in the affine phase. We will define “improvement” shortly.

This makes sense since if a large improvement can be made in the affine phase, then

that means the current point is more and less centered, and therefore, less centering

will be needed in the combined phase. On the other hand, if only a small improvement

can be made in the affine phase, then this means that the current point is more and

less close to the boundary, and therefore, more emphasis will be on centering in the

combined phase. This is in-line with the chosen coefficients in the linear combination.

Therefore, having set γ, the combined search direction, dzc = (dx̄c, dyc, ds̄c), will be the

unique solution of the following system of linear equations:

G

dyc
dx̄c

−
 0

ds̄c

 = (1− γ)


rp

rd

rc

 (Com. Dir)

dsc + µHxdxc = −s− γµgx

τdκc + κdτc = −τκ+ γµ.

Regarding the meaning of “improvement”, Andersen et al. [9] suggested the follow-

ing heuristic centering parameter in the case of symmetric interior point algorithms:

γ = (1− αa)expon (5.4)

where expon = 1, or 2 or 3. Recently, Akle [2] used this centering parameter in non-

symmetric interior point algorithms (see algorithm 5 in [2]). Our numerical experiments

confirmed that this is a good choice in the case of uMCO.

70

5.7 Practical Issues

Before showing the numerical results of suggested non-symmetric algorithms for the

uMCO, we should mention certain practical issues which are important in our imple-

mentation.

5.7.1 Initial Point

In practical IPMs, initial point plays an important role specially in the running time

and number of iterations. Our experiments show that

x0 = (

∫ b

a
t0dt,

∫ b

a
tdt, ...,

∫ b

a
tndt)T , s0 = −gx0 , τ0 = 1, κ0 = 1 (5.5)

is a suitable initial point for the uMCO in the standard basis, which lies exactly on the

central path (CP) for µ = 1.

The initial point in the Chebyshev basis, is simply the transformation of this initial

point, which is:

x0 = (

∫ b

a
T0(t)dt,

∫ b

a
T1(t)dt, ...,

∫ b

a
Tn(t)dt)T , s0 = −gx0 , τ0 = 1, κ0 = 1. (5.6)

5.7.2 Step-Length and Neighborhood

To make the implementation practical, the IPM algorithms usually consider a heuristic

approach to find a reasonable large step-length. Although the theory suggests to take

the step-length such that z+
p is in N (2η) in the predictor, and z+

c is in N (η) in the

corrector steps, for 0 < η < 1. But in practice we can take a larger step-length to

reduce the number of iterations. Generally, in the non-symmetric IPMs there are two

stages to compute the step-length. In the first stage, we choose the step-length such

that by taking that step-length, the new point will be on the boundary of the cone.

Then we take a step backwards such that the new point will be in the strict feasibility

area of the cones. This means,

α = .995 min{αx, αs, ατ , ακ},

where αx, αs, ατ and ακ are respectively the step-lengths in the moment cone, the

non-negative polynomial cone and positive orthant. In the second stage, we modify the

71

step-length found in the first stage by using backtracking line search [57], such that the

new point using this step-length will be in the right neighborhood. But since computing

the Hessian norm in line search is expensive, therefore, in practical implementation, the

infinite norm will be used. The η-infinite neighborhood is defined as in the following:

N (η) = {z = (x̄, y, s̄) ∈ K̄ ×Rm × K̄∗ :

∥∥∥∥∥∥∥∥
||∇F (x)||−1

∞ (s+ µ∇F (x))

τκ− µ


∥∥∥∥∥∥∥∥
∞

≤ ηµ(z)}.

It has been shown that these two neighborhoods are related. See Theorem 3.7.1 in

[45].

The step-length in the moment cone is similar to SDP. But how about the step-length

in the non-negative polynomial cone? In other words, suppose s ∈ Int(P+) and ds is the

solution of (PD) or (CD). The question is, “How to find α such that s+ αds ∈ ∂P+”?

One answer is to discretize the cone. This means, consider {a ≤ t1 < ... < tp ≤ b}.

Then αs will be:

αs = min
1≤i≤p

{− s(ti)

ds(ti)
}, ∀ti s.t. ds(ti) < 0.

We should be cautious about choosing p. This should be large enough to represent a

refined grid of points in the interval.

5.8 Numerical Results

To show the numerical results of the implementations, we have considered the following

three experiments:

1. The comparison between the performance of the non-symmetric HSD predictor-

corrector vs. the performance of the non-symmetric HSD Mehrotra predictor-

corrector.

2. The comparison between the performance of the odd degree vs. the performance

of the even degree.

3. The comparison between the performance of our implementations which is a non-

symmetric HSD Mehrotra predictor-corrector to solve the non-symmetric formu-

lation (i.e. uMCO) of the test problems vs. the performance of a commercial

72

solver (i.e. Mosek), which is a symmteric HSD Mehrotra predictor-corrector to

solve the symmetric formulation (i.e. SDP) of the test problems.

Before explaining the numerical experiments, let us show how to construct a set of

test problems which are formulated as uMCO. To do so, we consider the dual problem of

the approximation problem, i.e. (4.1) and the dual of time-varying maximum network

flow problem, i.e. (Max-Flow) (see Chapter 4).

The dual problem of approximation problem (4.1), after standardization, can be

formulated as follows:

min pT1 x1 + ...+ pTk xk

s.t. In1x1 + ...+ Ink
xk − Ink+1

xk+1 = e[a,b], (Dual Approx)

xi <Mni
[a,b]

0, i = 1, ..., k,

where Ini is the identity matrix of dimension ni, and pi’s are random generated pos-

itive polynomials in the Chebyshev basis, and e[a,b] has been defined in Section (4.1).

The numerical experiments have been shown that the best interval is [−1, 1] in the

Chebyshev basis. Therefore, (Dual Approx) is in fact a multi-block uMCO with:

c = [p1; ...; pk],

A = [In1 , ..., Ink
,−Ink+1

],

b = e[−1,1].

The second set of test problems are constructed from considering the dual problem

of (Max-Flow), which can be formulated as the following:

min
∑

(i,j)∈E

〈pi,jyi,j〉

s.t. ui − uj+yi,j <Mn
[a,b]

e[a,b], (i, j) ∈ E (Dual Max-Flow)

ui, uj ,yi,j <Mn
[a,b]

0, (i, j) ∈ E.

Again, after some standardization, (Dual Max-Flow) can be cast as a multi-block

uMCO. Since a library of benchmark test problems does not exist for this class of prob-

lems, the test problems were generated randomly. This means, first, we have generated

73

a network G(V,E, s0, s1). Then, the capacities, which are non-negative polynomials,

have been randomly generated.

5.8.1 Non-Symmetric HSD Predictor-Corrector vs. Non-Symmetric

HSD Mehrotra Predictor-Corrector

The first experiment will show the performance of two non-symmetric algorithms that

have been mentioned in Section 5.6, i.e. the non-symmetric HSD predictor-corrector

IPM, verses the non-symmetric HSD Mehrotra predictor-corrector IPM.

Table 5.2 shows the numerical results of the implementation of these two algorithms.

The columns of the table are divided to four blocks:

1. Net. Inf.: Shows the general information about each network flow. Specifically,

“V” is the number of vertices, “E” is the number of edges and “deg” is the degree

of the maximum flows which are the same along all edges.

2. Prob. Dim.: Shows the general information about the dimension of the non-

symmetric formulation of each test problem. Specifically, “blk” is the number

of blocks, “m” is the number of constraints and “n” is the number of decision

variables.

3. Perform. Inf. P-C: Shows the general information about the numerical perfor-

mance of HSD predictor-corrector IPM implementation. Specifically, “it.” shows

the number of iterations and “time” shows the running time (in second) that is

needed for the algorithms to reduce the infeasibility and the duality gap by a

factor of 10−7 as a general rule of convergency.

4. Perform. Inf. M-P-C: Shows the general information about the numerical

performance of HSD Mehrotra predictor-corrector IPM implementation. Specif-

ically, “it.” shows the number of iterations and “time” shows the running time

(in second) that is needed for the algorithms to reduce the infeasibility and the

duality gap by a factor of 10−7 as a general rule of convergency.

74

Net. Inf. Prob. Dim. Perform. Inf. P-C Perform. Inf. M-P-C

V E deg blk m n it. time it. time

4 5 99 14 500 1400 12 169 21 170

4 5 199 14 1000 2800 16 883 25 808

6 10 99 28 1000 2800 12 438 28 439

6 10 199 28 2000 5600 26 3540 38 2740

7 12 79 34 960 2720 16 443 26 353

7 12 99 34 1200 3400 12 438 17 345

9 16 69 46 1120 3220 15 417 25 383

10 20 79 56 1600 4480 25 1190 47 1180

11 26 39 70 1040 2800 12 251 15 192

11 26 59 70 1560 4200 12 519 16 366

12 33 39 86 1320 3440 12 352 16 265

17 26 29 82 780 2460 15 254 23 252

21 35 29 108 1050 3240 24 662 36 579

14 42 29 108 1260 3240 12 389 17 345

32 56 29 172 1680 5160 15 879 23 812

45 70 19 226 1400 4520 13 612 19 569

58 91 19 294 1820 5880 22 1730 33 1690

Table 5.2: Predictor-Corrector vs Mehrotra Predictor-Corrector for uMCO

Table 5.2 shows that the Mehrotra predictor-corrector demonstrates better perfor-

mances in term of running time as a general rule of superiority.

A rough comparison between the two algorithms is given by counting the number of

computation of the most expensive machinery in each iteration of the algorithms. This

is given in Table 5.3.

75

Machinery Number of Computation

HSD m-P-C HSD P-C

Computing Hx and H−1
x 1 time 2 times

Constructing Schur 1 time 2 times

Schur Factorization 1 time 2 times

Solving Newton System 2 times 2 times

Table 5.3: The most expensive machinery and their number of computation

5.8.2 Even Degree vs. Odd Degree

As we have seen in Sections 5.4.2 and 5.4.3, the barrier functions for the moment

cone with an even degree and an odd degree are different. Therefore, in the second

experiment we have considered a set of test problems from (Dual Approx) and (Dual

Max-Flow) to test the performance of these barrier functions.

We have considered the non-symmetric Mehrotra predictor-corrector algorithm for

this experiment. To compare the performance of these barriers in a fair manner, the

parameters are set to be similar. In addition, we have considered the problems which

are exactly the same in terms of input data. The only difference is the degree of optimal

solution which differs by one degree.

Table 5.4 shows the numerical results. The first five rows are the results for the

approximation problems, and the rest are for the maximum network flow problems.

The columns of the table are divided to four blocks:

1. Net. Inf.: Shows the general information about the network flow (similar to

table 5.2). The (±1) in the column named “deg” shows that the degree of flows

increases/decreases by one.

2. Prob. Dim.: Shows the general information about the dimension of each test

problem. Since the degree of optimal solution differs by one, therefore the number

of linear constraints and the number of decision variables are slightly different.

The increases or decreases implied by this difference are shown by ±number in the

76

related columns. For example, for the first problem in the first row, the number

of linear constraints with the even degree solution (i.e. 10) is 11, whereas with

an odd degree solution (i.e. 11) is 12. Similar analogy holds for the number of

decision variables.

3. Perf. Inf. E. D.: Shows the general performance information of the HSD

predictor-corrector IPM implemented for the cones with even degree. Columns

“it.” and “time” have the same meaning as in Table 5.2.

4. Perf. Inf. O. D.: Shows the general performance information of the HSD

predictor-corrector IPM implemented for the cones with even degree. Columns

“it.” and “time” have the same meaning as before.

Table 5.4 shows that the performance of these two barrier functions are not signifi-

cantly different. In particular, the number of iterations for both barriers are marginally

different, if there are any differences at all. Also, the running time is not significantly

different. In fact, on average they are different by less than 2%. These marginal

differences can be justified by remembering that the algorithms terminate when the in-

feasibility and the duality gap are reduced by a factor of 10−7. Therefore, the observed

marginal differences can be attributed to the marginal differences in the algorithms’

performance.

77

Net. Inf. Prob. Dim. Perf. Inf. E. D. Perf. Inf. O. D.

V E deg blk m n it. time it. time

3 2 10+1 3 11+1 34+3 10 3.7 10 3.3

3 2 210+1 3 211+1 634+3 15 101 15 108

3 2 410+1 3 411+1 1234+3 18 662 18 688

3 2 510+1 3 511+1 1534+3 18 1140 18 1180

3 2 610+1 3 612+1 1837+3 18 1860 18 1900

4 4 150+1 12 604+4 1813+12 22 247 22 270

4 5 80+1 14 405+5 1135+14 24 102 24 111

6 8 76-1 24 616-8 1849-24 31 175 33 191

6 10 120+1 28 1210+10 3389+28 36 753 38 762

7 12 66-1 34 804-12 2279-34 22 151 22 150

9 16 60+1 46 976+16 2807+46 29 235 29 249

11 26 150+1 70 3926+26 10571+70 19 1830 19 1980

11 26 56-1 70 1482-26 3991-70 17 230 17 229

12 33 140+1 86 4653+33 12127+86 18 2590 18 2690

12 33 50+1 86 1683+33 4387+86 17 243 17 257

17 26 110+1 82 2886+26 9103+82 42 2690 42 2970

14 42 130+1 108 5502+42 14149+108 18 3630 18 3670

14 42 46-1 108 1974-42 45077-108 18 318 18 323

19 35 120+1 108 4235+35 13069+108 58 7460 57 7710

19 35 40+1 108 1435+35 4429+108 48 580 53 679

17 26 36-1 82 962-26 3035-82 34 267 33 260

32 56 30+1 172 1736+56 5333+172 32 619 32 661

45 70 25-1 226 1890-70 6130-226 72 1600 77 1690

58 91 20+1 294 1911+91 6175+294 77 1950 78 2080

Table 5.4: Mehrotra Predictor-Corrector for Even and Odd degree uMCO

78

5.8.3 Non-symmetric HSD Mehrotra Predictor-Corrector vs. Sym-

metric HSD Mehrotra Predictor-Corrector

In the third experiment, we have considered the comparison between the performance

of our non-symmetric HSD Mehrotra predictor-corrector and the performance of a

symmetric HSD Mehrotra predictor-corrector. We have used Mosek [32], a commer-

cial solver for solving symmetric conic optimizations, as a benchmark. Mosek uses

a symmetric Mehrotra predictor-corrector which is the closest algorithm to our non-

symmetric algorithm which was used previously. We should mention that Mosek uses

a large number of techniques, prepossessing, scaling and subroutines written in C or

Java, which makes the solver one of the fastest and most efficient commercial solvers

available.

The set of test problems has been constructed once again from (Dual Approx) and

(Dual Max-Flow). The test problems have been constructed such that we have two

set of problems: (i) Problems with few blocks but large degree polynomials, and (ii)

Problems with many blocks but medium degree polynomials. The reason for these

choices is first to see how fast the dimension of the problem in the SDP presentation

grows when dealing with large degree polynomials (to see why large degree polynomial

are considered refer to Section 5.9), and second, to see how Mosek benefits from its

embedded enhancements when dealing with problems with many blocks. Therefore, if

similar enhancements are applied to the non-symmetric Mehrotra predictor-corrector

algorithm, its performance will further improve.

Table 5.5 shows the numerical results. The first seven rows are the results for the

approximation problems, and the rest are for the maximum network flow problems.

The columns of the table are divided into three blocks:

1. Net. Inf.: Shows the general information about the each network, as has been

mentioned earlier.

2. Perf. Inf. NS M-P-C: Shows the general information about the non-symmetric

79

formulation (i.e. uMCO), and the performance of the non-symmetric HSD Mehro-

tra predictor-corrector IPM for uMCO. In particular, “m” and “n” show the num-

ber of linear constraints and the number of decision variables, respectively, in the

uMCO formulation, and “it.” shows the number of iterations that is needed by

the non-symmetric Mehrotra predictor-corrector algorithm to converge.

3. Perf. Inf. SDP/Mosek: Shows the general information about the symmetric

formulation (i.e SDP), and the performance of symmetric algorithm for the same

test problems. In particular, “m” and “n” show the number of linear constraints

and the number of decision variables, respectively, in the SDP formulation, and

“it.” shows the number of iterations that are needed by Mosek to converge.

The general rule of convergency here is a reduction of the infeasibility and the

duality gap by a factor of 10−7. The running time is not mentioned because of the

enhancements in Mosek which speed up its convergence.

Table 5.5 shows that formulating the uMCO as SDP, increases the dimension of

the problem significantly. Also, we can see that the number of iterations of these two

algorithms are not significantly different for the first set of test problems (problems with

few blocks but large degree polynomials). This is because, for these problems, Mosek

does not benefit much from the enhancements mentioned earlier. However, the number

of iterations are noticeably different for the second set of test problems (problems with

many blocks but medium degree polynomials). This is because, for these problems,

Mosek benefits significantly from those enhancements.

It should be noted that, in each iteration, Mosek constructs and solves a much

larger system of linear equations and computes the Schur in O(mn3), whereas the non-

symmetric algorithm deals with a much smaller system of linear equations and computes

the Schur in O(mn2 log n).

80

Net. Inf. Perf. Inf. NS M-P-C Perf. Inf. SDP/Mosek

V E deg blk m n it. m n it.

3 2 10 3 11 34 11 31 117 9

3 2 111 3 112 337 13 335 9687 9

3 2 212 3 213 640 16 637 34558 13

3 2 313 3 314 943 16 941 74731 18

3 2 414 3 415 1246 17 1243 130205 15

3 2 515 3 516 1549 18 1547 200981 16

3 2 616 3 617 1852 17 1849 287058 15

4 4 47 12 192 577 18 572 7388 12

4 4 185 12 744 2233 21 2228 105644 17

6 8 186 24 1488 4465 37 4460 211292 36

4 5 45 14 230 645 20 640 7954 12

6 8 43 24 352 1057 23 1052 12492 13

6 10 41 28 420 1177 34 1172 13352 16

7 12 39 34 480 1361 15 1355 14755 9

9 16 37 46 608 1748 28 1743 18083 12

11 26 35 70 936 2521 16 2514 24870 10

12 33 33 86 1122 2925 16 2914 27428 10

14 42 31 108 1344 3457 17 3381 30645 10

21 37 30 108 1050 3241 43 3231 26961 22

17 26 27 82 728 2297 29 2289 17941 15

32 56 31 172 1456 4472 31 4460 32748 16

Table 5.5: Non-symmetric HSD Mehrotra predictor-corrector vs. SDP for uMCO

5.9 Motivation for Large Degree Polynomials

To give an intuition about the maximum network flow with capacities in the non-

negative polynomial cone and how a large degree polynomial might be needed, consider

81

the network flow in Figure 5.1, where V = 4, E = 4 and pi,j ∈ P5+ .

1Source

2

3

4 Sink

p1,2(t)

p1,3(t)

p2,4(t)

p3,4(t)

Figure 5.1: Network Flow with V = 4, E = 4

There are two augmenting paths in the above network flow, i.e. 1 → 2 → 4 and

1 → 3 → 4. Figures 5.2 and 5.3 show the capacities of each augmenting path along

with the maximum flows of degree 10, 20 and 50. It is evident from the figures that

increasing the degree of the maximum flows increases the flows from source to sink.

Therefore, to obtain a desirable solution in a large network with a long augmenting

path, increasing the degree of the maximum flows is necessary.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
2.5

3

3.5

4

4.5

5

5.5
Capacities of Aug. Path 1-2-4 and Max Flow with Diff. Degree

P12
P24
Max Flow12, deg=10
Max Flow12, deg=20
Max Flow12, deg=50

Figure 5.2: Maximum flow of different degrees along with

capacities of augmenting path 1→ 2→ 4.

82

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5
Capacities of Aug. Path 1-3-4 and Max Flow with Diff. Degree

P13
P34
Max Flow13, deg=10
Max Flow13, deg=20
Max Flow13, deg=50

Figure 5.3: Maximum flow of different degrees along with

capacities of augmenting path 1→ 3→ 4.

5.10 Conclusion

In this chapter, we have investigated solving the non-negative univariate polynomial

conic optimization via the univariate moment conic optimization. We have shown

solving uPCO directly using the barrier function for the non-negative polynomial is not

efficient. Also, we have observed that the semidefinite presentation of uPCO drastically

increases the dimension of the problem and is numerically unstable in the standard basis.

In regard to the latter issue, the Chebyshev change of basis resolved the numerical

instability of the standard basis without extra computation. In regard to the former

issue, we have considered the dual problem. We have observed that in contrast to the

non-negative polynomial cone, the moment cone has an efficient barrier function in both

bases. Also, we have seen that the Schur in uMCO representation can be computed in

O(mn2 log n), while this is O(mn3) in the semidefinite representation.

Next, we have developed a non-symmetric HSD predictor-corrector IPM, and a

Mehrotra version of this algorithm to solve uMCO-uPCO in a primal-dual setting,

where the moment and the non-negative polynomial problems were the primal and

dual problems, respectively.

83

Finally, we have shown the numerical results for the implementation of these al-

gorithms, which indicate that the non-symmetric algorithms are competitive with the

symmetric algorithm in terms of the number of iterations. Note that in the non-

symmetric models the problem dimension has been kept unchanged.

84

Chapter 6

Polynomial Conic Optimization with Universal Barrier

Function

In this chapter, we investigate solving the uPCO using a non-symmetric primal-dual

IPM utilized by a universal barrier function for the cone of non-negative polynomials.

We will use the primal-dual setting, where the primal problem is the uPCO problem

and the dual problem is the uMCO problem. This is in contrast to the previous chap-

ter. Particularly, we develop a non-symmetric HSD predictor-corrector IPM for solving

the uPCO-uMCO setting. We show the numerical results of this implementation and

mention the observations. Finally, we investigate certain difficulties of this approach

and point out possible remedies.

6.1 Non-Negative Polynomial and Moment Optimizations in Primal-

Dual Setting

In this chapter, we will once again consider the conic optimization involving the non-

negative conic constraints, but this time we keep the uPCO as the primal problem, in

which we carry out all the computations. In the standard form, this problem is defined

as:

min cTx

s.t. A x = b, (uPCO)

x <Pn+

[a,b]

0.

We have seen in (6.2) that A, b, c and Pn+

[a,b] can be considered in a multi-blocks

sense. Using the duality between Pn+

[a,b] and Mn
[a,b] the dual problem of (uPCO) can be

85

formulated in a standard form as in the following:

max bT y

s.t. AT y+s = c, (uMCO)

s <Mn
[a,b]

0.

As explained in previous chapters, the HSD model has attractive practical and

theoretical properties for solving conic optimizations. Regarding that, the HSD model

for (uPCO) and (uMCO) is as follows:

min 0

s.t. Ax−bτ = 0

AT y +cτ−s = 0 (HSD NP-M)

bT y−cTx −κ= 0

(x, τ) ∈ Pn+

[a,b] ×R
+, y ∈ Rm, (s, κ) ∈Mn

[a,b] ×R
+,

Comparing (HSD NP-M) with (HSD M-NP) from the previous chapter, here the

non-negative polynomial cone is considered as the primal cone and the moment cone

as the dual cone. This is in contrast to (HSD M-NP) where the moment cone was the

primal cone and the non-negative polynomial cone was the dual cone.

We have observed that to consider any path-following IPM for the HSD model,

it is required that at least the primal cone has been provided with a suitable barrier

function, which has a closed-form gradient and Hessian. Faybusovich has proposed one

barrier function [16]. We explain this in the next section.

6.2 Faybusovich LHSCB Function in Standard Basis

Faybusovich [16] proposed a LHSCB function for the class of cones induced by the

Chebyshev systems (see definition 5), on intervals of the real line and the circle. This

class of cones includes almost all cones of “sum of squared”, considered by Nesterov in

[35]. The cone of non-negative polynomials is a subset of this class of cones.

86

To define this class of cones, let {u0, ..., un} be a Chebyshev system. Then

K = {x =
n∑
i=0

aiui ai ≥ 0 : x(t) ≥ 0 ∀t ∈ [a, b]} (6.1)

is called the cone induced by the Chebyshev system {u0, ..., un}.

Based on this definition, he proved that:

Proposition 16.

Let {u0, ..., u2ν−1} be a Chebyshev system of continuously differentiable functions on

[a, b] of odd order. Then

F (x) = ln εPf(D(x)) when x ∈ Int(K) (6.2)

is a LHSCB function for K where ε = ±1, Pf is Pfaffian (see [16]) and the (i, j)-th

entry of matrix D(x) is

Di,j(x) =

∫ b

a

ui(t)u
′
j(t)− u

′
i(t)uj(t)

x(t)2
dt, i, j = 0, ..., 2ν − 1. (6.3)

Proof. See Theorem 4 in [16].

The case for the Chebyshev system of even order is slightly different. See Theorem

5 in [16] for this case. In this work, we only consider the case when the order is odd.

The Chebyshev systems of special interest in this work are the standard and Cheby-

shev bases of polynomials. We present Theorem 16 for the standard basis first, and

later on, we will show it for the Chebyshev basis.

Consider the Chebyshev system when ui(t) = ti for i = 0, ..., n and t ∈ [a, b]. Then,

adjusting Theorem 16 for this system gives:

F (x) = −1

2
ln detD(x), when x ∈ Int(Pn+

[a,b]), (6.4)

is a LHSCB function for Pn+

[a,b], where D(x) is a skew symmetric matrix of size (n+ 1)×

(n+ 1). The (i, j)-th entry of this matrix has the form

Di,j(x) =

∫ b

a

ti(tj)
′ − (ti)

′
tj

(x0 + x1t+ ...+ xntn)2
dt

= (j − i)
∫ b

a

ti+j−1

x(t)2
dt, i, j = 0, ..., n. (6.5)

87

Considering the components of Di,j(x), we can write D(x) as

D(x) = T ◦H(h(x)), (6.6)

where T ∈ R(n+1)×(n+1) is a constant Toeplitz matrix with (i, j)-th entry equal to j− i,

◦ is the Hadamard product, H is the Hankel operator and h(x) is following vector:

h(x) =



0∫ b
a

1
x(t)2

dt

...∫ b
a
t2n−2

x(t)2
dt

0


2n+1×1

. (6.7)

Therefore, (6.4) can be written as:

F (x) = −1

2
ln det T ◦H(h(x)), when x ∈ Int(Pn+

[a,b]). (6.8)

To simplify the notations, we use h and D instead of h(x) and D(x), respectively.

Considering the definition of the convex conjugate for this barrier function, it is

evident that the conjugate barrier does not have a closed-form solution. Therefore, a

non-symmetric IPM will be needed, where the gradient and the Hessian of the barrier

function of the primal cone are required.

6.3 Gradient and Hessian of Faybusovich Barrier Function in Stan-

dard Basis

To perform a non-symmetric IPM, at least the gradient and the Hessian of the primal

barrier function should be computable efficiently. In the case of K = Pn+

[a,b] with the

barrier function defined in (6.8), the gradient can be computed as:

gxi := ∇xiF = −1

2
〈D−1, T ◦H(

∂h

∂xi
)〉, i = 0, ..., n.

After some algebraic manipulations, the gradient can be written as:

gx = H([Dh]n0 , [Dh]3n−2
n)[H∗(D−1 ◦ T)]2n1 , (6.9)

88

where

Dh =


∫ b
a

1
x(t)3

dt

...∫ b
a
t3n−2

x(t)3
dt


(3n−1)×1

. (6.10)

On the other hand, the Hessian can be computed as follows:

[Hx]i,j := ∇2
xi,xjF =− 1

2
〈−D−1(T ◦H(

∂h

∂xj
))D−1, T ◦H(

∂h

∂xi
)〉

− 1

2
〈D−1, T ◦H(

∂2h

∂xi∂xj
)〉. (6.11)

To compute the Hessian more efficiently by matrix multiplication, we use the Hankel

and Toeplitz operators. In order to do that, we need the second derivative of (6.7), which

is as follows:

DDh =


∫ b
a

1
x(t)4

dt

...∫ b
a
t4n−2

x(t)4
dt


(4n−1)×1

. (6.12)

6.4 Numerical Results in Standard Basis

We have developed and implemented a non-symmetric HSD predictor-corrector algo-

rithm (we refer to it as uPCO-uMCO) for the model in (HSD NP-M) using the gradient

and Hessian in (6.9) and (6.11), respectively.

To show the numerical result of this implementation and compare it with the one

developed in the previous chapter, we consider following two packages:

• uMCO-uPCO: This package is developed to solve the HSD model in (HSD

M-NP) in standard basis.

• uPCO-uMCO: This package is developed to solve the HSD model in (HSD

NP-M) in standard basis.

We have considered the set of test problems from the class of maximum network

flow problems with univariate input data which was explained in Section 5.8. For

each test problem, once it was formulated as a standard non-negative polynomial conic

89

optimization, i.e. (Max-Flow), and then solved by the uPCO-uMCO package. Next,

the same problem was formulated as a standard moment conic optimization, i.e. (Dual

Max-Flow), and then solved by the uMCO-uPCO package.

The numerical results are given in Table 6.1, where the columns are divided to six

blocks:

1. Package: Shows the name of the package that is used to solve the test problems

in each formulation.

2. Net. Inf.: Shows the general information about the network flow. Specifically,

“V”, “E” and “deg” show the number of the vertices, the number of the edges

and the degree of the flows, respectively.

3. Formulation Dim. Shows the dimension of the primal problem of each formu-

lation in the standard form. Specifically, “blk”, “m” and “n” show the number of

blocks, the number of constraints and the number of variables, respectively.

4. Status: Shows the status of solving the problem by the corresponding package.

Specifically, “Y” means the package was able to solve the problem with desired

accuracy, and “N” means the package failed to solve the problem due to numerical

issues.

5. Perform. Inf.: Shows the general performance information of each package.

Specifically, “it.” shows the number of iterations to reduce the primal and dual

infeasibility and the duality gap by a factor of 10−6, “A.C” shows the average

number of centering phase per each problem, and “time” shows the running time

(in second) that is needed by the package to reach the desired accuracy.

6. SDP: Shows the number of iterations needed by Mosek to solve the semidefinite

representation of each formulation.

90

Package Net. Inf. Formulation Dim. Status Perform. Inf. SDP

V E deg blk m n it. A.C. time it.

uPCO-uMCO 3 2 5 4 18 24 Y 7 1.1 217 12

uMCO-uPCO 3 2 5 14 40 112 Y 10 1.4 2 7

uPCO-uMCO 4 5 7 10 56 80 Y 8 1.2 128 10

uMCO-uPCO 4 5 7 14 40 112 Y 10 1.1 8 8

uPCO-uMCO 6 8 7 16 96 128 Y 8 1.6 232 13

uMCO-uPCO 6 8 7 24 64 192 Y 9 1.6 13 12

uPCO-uMCO 7 12 9 24 170 240 Y 9 1.8 483 10

uMCO-uPCO 7 12 9 34 120 340 Y 9 1.6 26 9

uPCO-uMCO 9 16 9 32 230 320 Y 11 1.8 802 10

uMCO-uPCO 9 16 9 46 160 460 Y 10 1.5 38 9

uPCO-uMCO 11 26 9 52 350 520 Y 9 1.6 1010 14

uMCO-uPCO 11 26 9 70 260 700 Y 9 1.6 67 9

uPCO-uMCO 14 42 9 84 540 840 Y 9 1.8 1720 14

uMCO-uPCO 14 42 9 108 420 1080 Y 10 1.6 96 9

uPCO-uMCO 14 42 13 84 756 1176 N – – – 11

uMCO-uPCO 14 42 13 108 588 1512 Y 12 1.3 183 10

uPCO-uMCO 17 26 52 7 328 416 Y 9 1.7 907 13

uMCO-uPCO 17 26 82 7 208 656 Y 11 1.5 53 9

uPCO-uMCO 17 26 52 9 410 520 N – – – 10

uMCO-uPCO 17 26 82 9 260 820 Y 12 1.2 71 9

uPCO-uMCO 32 56 112 9 860 1120 N – – – 10

uMCO-uPCO 32 56 172 9 560 1720 Y 12 1.7 201 15

uPCO-uMCO 56 91 182 7 1176 1456 N – – – 24

uMCO-uPCO 56 91 249 7 728 2352 Y 14 2 383 23

Table 6.1: uPCO-uMCO vs uMCO-uPCO in Standard Basis

Two important observations that can be noticed from Table 6.1 are:

91

• Running time: The running time of uMCO-uPCO is much smaller than the one

from uPCO-uMCO. This is because of the computation of the integrals in (6.7),

(6.10) and (6.12).

• Numerical issue: It can be seen that when the degree of the flows or the

dimension of the problem gets large, uPCO-uMCO encounters numerical issues.

Therefore, the package is not able to converge to an optimal solution with the

desired accuracy. For example, consider the rows related to the problem with a

network of V = 14 and E = 26. When the degree of the flows is small (deg = 9),

uPCO-uMCO is able to solve the problem, but when the degree is increased

(deg = 13), uPCO-uMCO does not converge. Alternatively, consider the rows

related to the last three problems. These show that when the dimension of the

network increases, once again, uPCO-uMCO is not able to solve the problem.

Next, we further investigate these challenges.

6.5 Challenges

As discussed earlier, uPCO-uMCO has certain drawbacks compared to uMCO-uPCO.

The drawbacks are related to computing the gradient and Hessian of the barrier function

of the non-negative polynomial cone. Computing the gradient and Hessian in standard

basis has the following major issues:

1. Numerical issue resulting from the basis: As we have seen in Chapter 5,

polynomials in the standard basis are extremely ill-conditioned. Therefore, com-

putation with large degree polynomials in this basis results in numerical errors.

2. Numerical issue resulting from computing the integrals: Computing the

integrals in (6.7, 6.10, 6.12), which are the elements in the gradient and Hessian,

becomes an ill-posed problem when x(t) gets close to the optimal solution which

is on the boundary of Pn+

[a,b]. In other words, when x(t) gets close to possess real

roots, the integrals become ill-posed problems.

92

3. Running time issue: Computing the integrals by numerical integration are

costly which results in long running times. Furthermore, the running time of the

integrals in (6.7, 6.10, 6.12) increases as x(t) gets close to the boundary of Pn+

[a,b].

As shown in Table 6.1, polynomials of large degree in the standard basis cannot be

handled. We explain the other two issues by a numerical example.

For example, consider x(t) = 2 − 3t + 4t3, which is a polynomial of degree 3. If

we naively use the functionalities available in Matlab, like “integral()”, then as the

polynomial approaches the boundary of Pn+

[a,b], the magnitude of the integral and the

running time increases. These are shown in Figures 6.1 and 6.2.

0 1 2 3 4 5 6 7 8 9 10

-Log of distance of x(t) from real axis

-5

0

5

10

15

20

25

30

35

Lo
g

of
 in

te
gr

al

Integral against distance from real axis

Figure 6.1: log magnitude of
∫ b
a

t
x(t)4

against -log of distance

of x(t) from real axis

0 1 2 3 4 5 6 7

-Log of distance of x(t) from real axis

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

R
un

ni
ng

 ti
m

e
of

 H
es

si
an

 o
f b

ar
rie

r
F

un
ct

io
n

Running time against distance from real axis

Time

Figure 6.2: Running time of computing the Hessian at x(t)

against -log of distance of x(t) from real axis

93

To overcome these difficulties, we suggest the following remedies:

1. Change of basis: As we have seen in the case of moment formulation, the change

of basis can alleviate numerical difficulties of working with polynomials of large

degree. Among all orthogonal bases, the Chebyshev basis is more favorable. We

will examine this in the next section.

2. Closed-form solution for the integrals: It was observed previously that com-

puting the integrals in the gradient and the Hessian are ill-posed problems. If these

integrals can be computed in a closed-form way, then the numerical issue and run-

ning time difficulties of computing the gradient and Hessian will be alleviated. We

will explain this in Section 6.9.1.

6.6 Faybusovich LHSCB Function in Chebyshev Basis

Let us consider the Chebyshev system when ui(t) = Ti(t) for i = 0, ..., n and t ∈ [a, b]

where Ti(t) is the i-th Chebyshev polynomial in the Chebyshev basis. Then, based on

theorem 16,

F (x) = −1

2
ln detD(x), when x ∈ Int(Pn+

Ch), (6.13)

is a LHSCB function for Pn+

Ch , where D(x) is a skew symmetric matrix of size (n+ 1)×

(n+ 1). The (i, j)-th entry of this matrix has the form

Di,j(x) =

∫ b

a

Ti(t)T
′
j (t)− T

′
i (t)Tj(t)

x(t)2
dt, i, j = 0, ..., n. (6.14)

To drive the gradient and Hessian of F , we need the following facts:

(Ti)
′(t) = i.Ui−1 (6.15)

Ti(t)Uj(t) =


1
2(Ui+j(t) + Uj−i(t)) if j ≥ i− 1

1
2(Ui+j(t)− Ui−j−2(t)) if j ≤ i− 2

(6.16)

where Ui(t) is the i-th Chebyshev polynomial of the second kind.

Using (6.15) and (6.16), matrix D(x) in (6.17) can be written as:

D(x) = T ◦H(h(x)) +H ◦ T ([h(x)]n−1
i=0), (6.17)

94

where H and T are the Hankel and Toeplitz operators:

T =



0 1
2 . . . n

2

−1
2 0

. . . n−1
2

...
. . .

. . .
...

−n
2 −n−1

2 . . . 0


(6.18)

H =



0 1
2 . . . n

2

−1
2

. .
.

. .
. ...

... . .
.

. .
. 2n−1

2

−n
2 . . . −2n−1

2 0


(6.19)

h(x) =



0∫ b
a
U0(t)
x(t)2

dt

...∫ b
a
U2n−2(t)
x(t)2

dt

0


2n+1×1

. (6.20)

Again, to simplify the notations, we use h and D instead of h(x) and D(x), respec-

tively.

6.7 Gradient and Hessian of Faybusovich Barrier Function in Cheby-

shev Basis

The gradient of (6.13) with D(x) in (6.17) can be computed as:

gxi := ∇xiF = −1

2
〈D−1, T ◦H(

∂h

∂xi
) +H ◦ T (

∂h

∂xi
)〉. (6.21)

After algebraic manipulations, the gradient can be written as:

gx =
1

2
HT1[H∗(D−1 ◦ T)]2n1 +

1

2
HT2[T ∗(D−1 ◦ H)]n1 , (6.22)

where

HT1 = H([Dh]n0 , [Dh]3n−2
n) + T (


Dh0

0

−[Dh]n−2
0

, [Dh]2n−2
0), (6.23)

95

HT2 = H([Dh]n0 , [Dh]2n−1
n) + T (


Dh0

0

−[Dh]n−2
0

, [Dh]n−1
0), (6.24)

and

Dh =


∫ b
a
U0(t)
x(t)3

dt

...∫ b
a
U3n−2(t)
x(t)3

dt


3n−1×1

. (6.25)

Furthermore, the (i, j)-th entry of Hessian can be computed as:

[Hx]i,j =− 1

2
〈−D−1(T ◦H(

∂h

∂xj
) +H ◦ T (

∂h

∂xj
))D−1, T ◦H(

∂h

∂xi
) +H ◦ T (

∂h

∂xi
)〉

− 1

2
〈D−1, T ◦H(

∂2h

∂xi∂xj
) +H ◦ T (

∂2h

∂xi∂xj
)〉. (6.26)

To compute the Hessian more efficiently by matrix multiplication, we use the Hankel

and Toeplitz operators. In order to do that, we need the second derivative of (6.20) as:

DDh =


∫ b
a
U0(t)
x(t)4

dt

...∫ b
a
U4n−2(t)
x(t)4

dt


4n−1×1

. (6.27)

We will see the numerical results of this change of basis in the next section.

6.8 Numerical Results in Chebyshev Basis

To show the numerical results in Chebyshev basis, we have considered the package

uPCO-uMCO which was developed in Section 6.4. But, this time the package is adapted

for the Chebyshev basis, i.e. using the barrier function in (6.13), the gradient in (6.22)

and the Hessian in (6.26). Furthermore, we compare the performance of this package

with the one which was developed in the previous chapter, i.e. uMCO-uPCO for the

Chebyshev basis.

The set of test problems are generated similar to the ones in Section 6.4 but this

time the capacities are in Pn+

Ch . The numerical results are given in Table 6.2, and column

definitions are similar to Table 6.1.

96

Package Net. Inf. Formulation Dim. Status Perform. Inf. SDP

V E deg blk m n it. A.C time it.

uPCO-uMCO 3 2 9 4 30 40 Y 7 1 37 11

uMCO-uPCO 3 2 9 6 20 60 Y 7 1 6 10

uPCO-uMCO 3 2 19 4 60 80 Y 8 1 92 7

uMCO-uPCO 3 2 19 6 40 120 Y 7 1 7 8

uPCO-uMCO 3 2 59 4 180 240 Y 8 1 635 8

uMCO-uPCO 3 2 59 6 120 360 Y 8 1 22 8

uPCO-uMCO 6 8 9 16 120 160 Y 9 1 157 10

uMCO-uPCO 6 8 9 24 80 240 Y 8 1 23 11

uPCO-uMCO 6 8 16 16 240 320 Y 9 1 452 12

uMCO-uPCO 6 8 16 24 160 480 Y 9 1 33 13

uPCO-uMCO 6 8 39 16 480 640 Y 8 1 1130 12

uMCO-uPCO 6 8 39 24 320 960 Y 10 1 76 13

Table 6.2: uPCO-uMCO vs uMCO-uPCO in Chebyshev Basis

By comparing Tables 6.1 and 6.2, we observe that:

• Polynomials of larger degree can be handled in the Chebyshev basis.

• The average number of centering (corrector) phases are less in the Chebyshev

basis. This is due to the effect of the change of basis. In fact, this change of basis

rescales the neighborhood of the central path and makes the central path more

symmetric. Therefore, less centering phases are needed.

6.9 Implicit Solution for Integrals

As we have seen, the computation of the integrals in (6.7, 6.10, 6.12), or in (6.20,

6.25, 6.27) is required for computing the gradient and Hessian of the barrier function

for standard or Chebyshev bases. The computation of these integrations, however, is

troublesome both numerically and in terms of the running time. Therefore, if these

97

integrations are formulated as closed-form or at least partially as closed-form, then the

computation of the gradient and Hessian can be done in a more stable manner and with

less time.

6.9.1 Closed-Form Solution for Integrals

In terms of closed-form integration, Faybusovich [16] considered the following two cases:

1. Chebyshev system {1, u1} for any interval [a, b]. Then, the barrier function for

the cone induced by this system is:

F (x) = − lnx(a)− lnx(b) + ln |U1(b)− u1(a)|. (6.28)

In our case, this system is corresponding to {1, t} and the induced cone is P1+

[a,b].

2. Chebysev system {1, sin t, cos t} on [0, 2π]. Then the barrier function for the

cone induced by this system is:

F (x) = − ln(x2
0 − x2

1 − x2
2) +

2

3
ln(2π), (6.29)

where x0, x1 and x2 are the coefficients of x, i.e. x(t) = x0 + x1sin t+ x2cos t.

It can be seen that, the gradient and Hessian of the barrier based on these bases

can be calculated in a closed-form way, (see Section 4 in [16]). But these systems are

not of a practical interest. In the best of our knowledge, a Chebyshev system, in which

the integrals have an implicit solution, and is practically interesting, is not known.

6.9.2 Partially Closed-From Solution for Integrals

As we have observed, there does not exist an interesting Chebyshev system with a

closed-form integration. But there might be ways that the integrals in (6.7, 6.10, 6.12)

or similarly (6.20, 6.25, 6.27) can be computed at least partially in a closed-form way.

For example, consider the integrals in (6.7, 6.10, 6.12). One can use a partial

fraction of the integrand in the integrals. Therefore, the integrand can be decomposed

into fractions with the residues in the numerators and (t− poles) in the denominators.

98

This means:

ti

(x0 + x1t+ ...+ xntn)k
=

l∑
j=1

rj
(t− pj)mj

(6.30)

where if x(t) has root of multiplicity, say mj , then the summation in (6.30) contains all

powers of that root.

Applying the integral on both sides of (6.30), results in:∫ 1

−1

ti

(x0 + x1t+ ...+ xntn)k
=

l1∑
j=1

∫ 1

−1

rj
t− pj

+

l2∑
j=1

∫ 1

−1

rj
(t− pj)mj

(6.31)

where mj > 1.

Now, if we combine the fractions with the conjugate poles and with the same power,

we will have:

(6.31) =

l
′
1∑

j=1

∫ 1

−1

ajt+ bj
(t− uj)2 + v2

j

+

l
′
2∑

j=1

∫ 1

−1

amj t
mj + ...+ a0j

((t− uj)2 + v2
j)
mj

(6.32)

From calculus, we know that:∫
1

t2 + 1
dt = arctan(t) + constant (6.33)∫

tj

(t2 + 1)k
dt =

t1+j
2F1(1+j

2 , k; 1 + 1+j
2 ;−t2)

1 + j
+ constant (6.34)

where 2F1(a, b; c; z) is the Gauss Hypergeometric function.

Hypergeometric functions are well-known functions, and are defined as:

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk, (6.35)

where (a)k = Γ(a + k)/Γ(a) (with the same relationship for (b)k and (c)k). Successful

numerical methods exist to compute the hypergeometric functions by Taylor series

expansion, efficiently and in a stable way. For example, refer to the R package “hpergeo”

by Hankin [22], the work by Pearson and the Matlab code implementation [43].

The right hand side of Equation (6.32), can be analytically computed considering

the Equations (6.33) and (6.34).

To some extent, this alleviates the issues mentioned earlier. For example, consider

the polynomial mentioned in Section 6.5. Figure 6.3 depicts the log magnitude of

99

the residues and the log magnitude of
∫ 1
−1

t
x(t)4

. It is clear that the magnitude of the

integrals are on the same scale as the magnitude of the residues. This is because, the

integrals are a linear combination of 2F1 plus a linear combination of arctan, where the

coefficients of the linear combination are the residues. As we can see, the magnitude of

the residues behave better than the magnitude of the integrals.

0 1 2 3 4 5 6 7 8 9 10

-log of distance of x(t) from real axis

-5

0

5

10

15

20

25

30

35
lo

g
of

 r
es

id
ue

s
an

d
lo

g
of

 in
te

gr
al

Residues vs Integral against distance of x(t) from real axis

Magnitude of residues
Magnitude of integrals

Figure 6.3: Log magnitude of residues and integral of t
x(t)4

against -Log of distance of x(t) from real axis

If we naively use the functionalities available in Matlab, like “residue()”, then as

the polynomial approaches towards the boundary of the non-negative polynomial cone,

the magnitude of the residues increases, as shown in Figure 6.3. This is because, the

problem of the partial fraction itself is an ill-posed problem, especially, if the degree of

the multiplicity or the degree of the polynomial in the denominator is large. Therefore,

even a small change in the data, including round-off errors, can result in arbitrarily

large changes in the resulting poles and residues. One way to alleviate this issue is, to

make use of the state-space or the zero-pole representations for finding the poles and

the residues. The state-space representations are beyond the scope of this work and we

leave it as an open area of research.

Furthermore, when we want to compute the following integrations:

F (x, i, k) =

∫ 1

−1

ti

(x0 + x1t+ ...+ xntn)k
dt, (6.36)

100

where x ∈ Int(Pn+

[−1,1]) and i, k are:

i =


0, ..., 2n− 1 k = 2,

0, ..., 3n− 1 k = 3,

0, ..., 4n− 1 k = 4.

Then the questions that are open for future research are:

1. Is there any way that the integrals can be computed analytically?

2. Is there any way that the integrals can be computed inductively? Namely, given

a fixed x ∈ Int(Pn+

[−1,1]), is there any way F (x, i, k) can be recursively computed

base on knowing F (x, i−1, k), F (x, i, k−1) and F (x, i−1, k−1) or other previous

terms?

6.10 Conclusion

We have seen that formulating a non-negative polynomial conic optimization as (HSD

M-NP) model and then solving it by the uMCO-uPCO package, which uses the mo-

ment cone barrier function, is more stable and more efficient. But formulating the

original problem as (HSD NP-M) model and then solving it by uPCO-uMCO package,

which uses the Faybusovich barrier function of the non-negative polynomial cone has

its own advantages. Particularly, a larger class of optimization problems containing the

non-negative polynomial conic constraints can be solved. For example, consider the

non-negative polynomial conic optimization problem where the objective function is a

nonlinear convex function, e.g. the negative of maximum log likelihood function.

101

Chapter 7

Conic Optimization Containing Non-Negative Polynomial

or Moment Constraints as well as Second Order and

Linear Constraints

As we discussed in Chapter 4, many real-world problems can be formulated as a conic

optimization problem containing non-negative polynomial or moment, as well as second-

order and linear constraints. For example, non-parametric estimation under shape

constraints with splines, i.e. (Pos-Estim), which is conic optimization with non-negative

polynomial, second-order and linear constraints. The dual of these problems are conic

optimizations containing moment, second-order and linear constraints.

In this chapter, a unified interior point method for these conic optimizations will

be discussed. We will show the Newton system and Schur complement are similar to

the one of symmetric conic optimization, and therefore, can be computed efficiently.

Finally, we will show numerical results of our implementations and point out some

observations.

7.1 General Conic Optimization

In general, a conic optimization problem with non-negative polynomial, second-order

and linear constraints can be formulated as follows:

min cTl xl +

NS∑
j=1

cTsjxsj +

NP+∑
k=1

cTP+
k

xP+
k

s.t. Alxl +

NS∑
j=1

Asjxsj +

NP+∑
k=1

AP+
k
xP+

k
= b, (7.1)

xl ≥ 0, xsj <Snj 0 ∀j = 1, ..., NS , xP+
k
<
P

n+
k

[ak,bk]

0 ∀k = 1, ..., NP+ .

102

To simplify the notation, let us use a Matlab-like notation for matrix/vector con-

catenations:

As = [As1 , ..., AsNS], AP+ = [AP+
1
, ..., AP+

NP+

]

cs = [cs1 ; ...; csNS], cP+ = [cP+
1

; ...; cP+
NP+

]

xs = [xs1 ; ...;xsNS], xP+ = [xP+
1

; ...;xP+
NP+

]

S = Sn1 ⊗ ...⊗ SnNs
, P+ = Pn

+
1

[a1,b1] ⊗ ...⊗ P
n+
NP+

[aNP+
,bNP+

].

Using this notation, problem (7.1) can be shown as:

min cTl xl + cTs xs + cTP+ xP+

s.t. Alxl +Asxs +AP+xP+ = b, (NP-S-L)

xl ≥ 0, xs <S 0, xP+ <Pn+ 0.

As discussed in Chapter 6, conic optimization over the non-negative polynomial

cone, suffers from large running time and numerical instability, unless a stable Cheby-

shev system with closed-form integration is available. However, in Chapter 5, with

numerical results we have also shown that conic optimization over the moment cone

is practically very efficient and stable. Therefore, using the duality between the non-

negative polynomial cone and the moment cone and the self-duality of symmetric cones,

one can attempt to solve the dual problem instead of solving (NP-S-L). To start from

standard conic optimization, the dual problem can be considered as:

min cTl xl + cTs xs + cTM xM

s.t. Alxl +Asxs +AMxM = b, (M-S-L)

xl ≥ 0, xs <S 0, xM <M 0.

Next, we will try to develop a primal-dual interior point method for this problem,

and show that having non-symmetric cones in the conic optimization problem will not

ruin the structure of the Newton system in the interior point method computations.

103

7.2 A Unified HSD IPM

As it was shown in the previous chapters, to develop a HSD primal-dual IPM, the primal

as well as the dual problems are needed. Therefore, the dual problem of (M-S-L) in the

standard form can be formulated as:

max bT y

s.t. ATl y + sl = cl,

ATs y + ss = cs, (Dual M-S-L)

ATMy + sP+ = cM,

y free, sl ≥ 0, ss <S 0, sP+ <P+ 0.

Assuming that strong duality holds, then the first order optimality says that (xl, xs, xM) ∈

Ln×Sn×M and (sl, ss, sP+) ∈ Ln×Sn×P+ are the optimal solutions for the primal

and dual problems, respectively, if the following equations hold:

Alxl +Asxs +AMxM = b,

ATl y + sl = cl,

ATs y + ss = cs,

ATMy + sPn+ = cM,

xTl sl = 0,

xs ◦ ss = 0,

xTMsP+ = 0.

104

With the same analogy to Section 5.6, the homogeneous self-dual problem for (M-

S-L) and (Dual M-S-L) can be formulated as:

min 0

s.t. Alxl +Asxs +AMxM − bτ= 0,

ATl y + clτ − sl= 0,

ATs y + csτ − ss= 0,

ATMy + cMτ − sP+= 0, (HSD M/NP-S-L)

bT y − cTl xl − cTs xs − cTP+xP+ − κ= 0,

(xl, xs, xM, τ) ∈ L × S ×M×R+,

(sl, ss, sP+ , κ) ∈ L × S × P+×R+, y ∈ Rm.

Similar to (CP) in Chapter 5, the central path of this model can be defined. Then,

given a strictly feasible (with respect to the cones) initial point, the Newton search

direction is defined by the solution of the following system of linear equations:

Al As AM −b 0 0 0 0 0

0 0 0 −cl ATl I 0 0 0

0 0 0 −cs ATs 0 I 0 0

0 0 0 −cM ATM 0 0 I 0

−cTl −cTs −cTM 0 bT 0 0 0 −1

Sl 0 0 0 0 Xl 0 0 0

0 Arw(s) 0 0 0 0 Arw(x) 0 0

0 0 µHxM 0 0 0 0 I 0

0 0 0 κ 0 0 0 0 τ





dxl

dxs

dxM

dτ

dy

dsl

dss

dsP+

dκ



=



η.rp

η.rdl

η.rds

η.rdP+

η.rg

−Xlsl + σµel

−Arw(xs)ss + 2σµes

−sP+ − σµgxM

−τκ+ σµ



(7.2)

Now, we multiply the sixth, seventh and ninth rows by X−1
l , Arw(xs)

−1 and τ−1,

respectively, and subtract them from the second, third and fifth rows, and then subtracts

the forth row from the eighth. Next, we delete the last four rows and four columns.

105

Finally, by reordering rows and columns, we get the following system of linear equations:

−X−1
l Sl 0 0 ATl −cl

0 −Arw(xs)
−1Arw(ss) 0 ATs −cs

0 0 −µHxM ATM −cM

Al As AM 0 b

−cTl −cTs −cTM bT κ/τ





dxl

dxs

dxM

dy

dτ


=



η.rdl + sl − σµX−1
l el

η.rds + ss − 2σµArw(xs)
−1es

η.rdM + sP+ + σµgxM

η.rp

η.rg − κ+ σµ/τ


(7.3)

To solve (7.3) for (dxl, dxs, dxM, dy, dτ), we first solve it for dτ , which results in:

dτ =

(
cT ,−bT

)u
v

+ η.rg − κ+ σµ/τ

(
−cT , bT

)p
q

+ κ/τ

(7.4)

where c = [cl; cs; cM] and u = [ul;us;uM] and v are the solutions of the following

system of linear equations:

−X−1
l Sl 0 0 ATl

0 −Arw(xs)
−1Arw(ss) 0 ATs

0 0 −µHxM ATM

Al As AM 0





ul

us

uM

v


=



η.rdl + sl − σµX−1
l el

η.rds + ss − 2σµArw(xs)
−1es

η.rdM + sP+ + σµgxM

η.rp


(7.5)

and p = [pl; ps; pM] and q are the solutions of the following system of linear equations:

−X−1
l Sl 0 0 ATl

0 −Arw(xs)
−1Arw(ss) 0 ATs

0 0 −µHxM ATM

Al As AM 0





pl

ps

pM

q


=



cl

cs

cM

b


. (7.6)

Notice that the left hand side of (7.5) and (7.6) are the same matrices. Therefore,

to solve (7.5) and (7.6), factorization of this matrix is needed once.

The Schur complement of (7.5) and (7.6) can be computed as:

Schur =Al(X
−1
l Sl)

−1ATl +

As(Arw(xs)
−1Arw(ss))

−1ATs + (7.7)

AM(µHxM)−1ATM.

106

It is not hard to show that:

Schur∗v = (Al(X
−1
l Sl)

−1(η.rdl + sl − σµX−1
l el)+

As(Arw(xs)
−1Arw(ss))

−1(η.rds + ss − 2σµArw(xs)
−1es)+

AM(µHxM)−1(η.rdM + sP+ + σµgxM) + η.rp), (7.8)

and

Schur∗q = (Al(X
−1
l Sl)

−1cl+

As(Arw(xs)
−1Arw(ss))

−1cs+

AM(µHxM)−1cM + b). (7.9)

Having u, v, p and q in hand, then

dxl

dxs

dxM

dy


=



ul

us

uM

v


+



pl

ps

pM

q


dτ. (7.10)

All prior equations are similar to the case of symmetric IPM for symmetric cones

(e.g., see [8]), except here, we have a new term for the non-symmetric cone. Also, it

can be seen that all prior systems of equations can efficiently be computed. Again, this

is similar to the symmetric cases. In addition, the structure of each input data can be

exploited in the computation of Schur, v and q. One may wonder if a Nesterov-Todd

scaling technique can be used with a non-symmetric cone. This is an open area of

research.

Next, we will show the numerical results from the implementation of the algorithm

above.

7.3 Numerical Results

We developed two packages of M-S-L and P-S-L. In both packages the HSD Mehrotra

predictor-corrector IPM has been used. The algorithm in M-S-L package is based on

the homogeneous self-dual model in (HSD M/NP-S-L), where the moment cone is in

107

the primal cone, and the non-negative polynomial cone is in the dual cone. In fact, all

formulations in (7.2)-(7.10) are used in this package. The algorithm in P-S-L package is

developed based on the same homogeneous self-dual model, except this time, the roles

of the moment cone and the non-negative polynomial cone are exchanged. This means

that this time, the non-negative polynomial cone is in the primal cone, and the moment

cone is in the dual cone.

To show the numerical results of these implementations, we have considered the

non-parametric estimation problem under shape constraints with splines, which was

formulated in (4.10). To solve the set of test problems by these packages, once we have

formulated (4.10) as a standard conic optimization problem containing the non-negative

polynomial, second order and linear constraints, i.e. the problem in (NP-S-L). This

formulation is given in (N.P.E. Spline). This is the standard format that can be fed to

the P-S-L package. Next, the same problem, i.e. (4.10), has been formulated as a stan-

dard conic optimization containing the moment, second order and linear constraints,

i.e. the problem in (M-S-L). This is the standard format that can be fed to the M-S-L

package. Finally, to compare the performance of these two packages to the benchmark,

we have used Mosek. In order to solve the test problems by Mosek, we have used the

semidefinite presentations of the non-negative polynomial and the moment cones given

in Theorems 6 and 7, respectively. Using those theorems, we have formulated each of

the previous formulations as a conic optimization containing semidefinite, second order

and linear conic constraints.

The numerical results of the implementations of these packages are given in Table

7.1, where the columns are divided into four blocks:

1. PKG: Package name that is used to solve the test problems.

2. Prob. Dim.: Problem dimension of each formulation. Particularly, “m” and “n”

show the number of constraints and the number of decision variables, respectively.

“k” shows the number of splines. “nblk.L”, “nblk.S” and “nblk.M/P” show the

dimension of positive orthant, the number of second order cones multiplied by the

dimension of each cone, and the number of the moment/non-negative polynomial

108

cones multiplied by the dimension of each cone, respectively.

3. Less Accurate (ε = 10−4): General performance of each package to reach 10−4

accuracy. Particularly, “it.” and “time” show the number of iterations and the

time (in second) needed by each package to reduce the primal and dual infeasibility

and the duality gap to less than 10−4. Also “it./Mosek” shows the number of

iterations needed by Mosek to reach the same level of accuracy.

4. More Accurate (ε = 10−6): General performance of each package to reach 10−6

accuracy. Particularly, “it.” and “time” show the number of iterations and time

(in second) needed by each package to reduce the primal and dual infeasibility

and the duality gap to less than 10−6. Also “it./Mosek” shows the number of

iterations needed by Mosek to reach the same level of accuracy.

Several observations can be made from the numerical results in Table 7.1:

1. Comparing the performance of packages (M-S-L and P-S-L) shows that, for a

less accurate optimal solution, the number of iterations of both packages are not

significantly different.

2. The running time of M-S-L package is much smaller than the P-S-L package.

3. In contrast to M-S-L package, for the more accurate optimal solution, P-S-L

package ran into numerical issues.

4. Comparing the number of iterations of M-S-L package and Mosek for both ac-

curacies, shows that they are not significantly different except for the first few

instances. This is because Mosek benefits substantially from pre-processing and

scaling techniques.

5. On the other hand, comparing the number of iterations of P-S-L package and

Mosek for the less accurate solution, shows a significant discrepancy, which may

suggest possible improvements for the P-S-L package.

109

PKG Prob. Dim. Less Accurate (ε = 10−4) More Accurate (ε = 10−6)

m n k nblk.L nblk.S nblk.M/P it. time it./Mosek it. time it./Mosek

M-S-L 7 107 1 0 1*101 1*6 9 2 5 11 2.3 7

P-S-L 107 115 1 2 1*101 2*6 12 19.6 6 – – 8

M-S-L 10 116 2 6 2*61 2*4 9 2.3 5 13 2.9 6

P-S-L 113 122 2 4 2*61 4*4 10 18 5 13 25.3 7

M-S-L 20 238 4 18 4*51 4*4 11 2.8 6 15 3.6 8

P-S-L 229 244 4 8 4*51 8*4 10 36 6 – – 8

M-S-L 40 282 8 42 8*26 8*4 11 3.6 11 14 4.3 13

P-S-L 261 288 8 16 8*26 16*4 16 92.9 7 – – 9

M-S-L 40 482 8 42 8*51 8*4 13 4 11 16 4.9 13

P-S-L 461 488 8 16 8*51 16*4 17 119 7 – – 10

M-S-L 50 504 10 54 10*41 10*4 12 3.7 11 16 5 14

P-S-L 477 510 10 20 10*41 20*4 15 122 7 – – 9

M-S-L 40 882 8 42 8*101 8*4 13 4.1 10 17 5.2 12

P-S-L 881 888 8 16 8*101 16*4 14 112 7 – – 10

M-S-L 60 925 12 66 12*66 12*4 13 4.8 13 16 5.8 16

P-S-L 892 931 12 24 12*66 24*4 14 142 7 – – 10

M-S-L 60 1135 12 66 12*84 12*4 13 4.7 13 16 5.8 17

P-S-L 1092 1131 12 24 12*84 24*4 14 152 7 – – 10

M-S-L 75 1358 15 84 15*80 15*4 13 5.7 11 17 7.2 18

P-S-L 1316 1364 15 30 15*80 30*4 17 240 8 – – 10

M-S-L 100 1713 20 114 20*75 20*4 16 8.7 13 19 10.3 20

P-S-L 1656 1719 20 40 20*75 40*4 17 397 9 – – 11

M-S-L 150 2323 30 174 30*67 30*4 18 14.1 13 22 17.3 22

P-S-L 2236 2329 30 60 30*67 60*4 16 651 10 – – 12

Table 7.1: M-S-L vs P-S-L

7.4 Conclusion

In this chapter, we have seen a unified interior point method for the conic optimiza-

tion, which contains the non-symmetric cones as well as the symmetric cones. It has

been shown that the Newton systems and Schur complement of this conic optimiza-

tion can be efficiently computed. Also, we have shown the numerical results from the

110

implementation of this unified interior point method for the conic optimizations con-

taining non-negative polynomial or moment cones as well as other symmetric cones.

The numerical results showed that M-S-L package is superior to P-S-L package, and is

competitive to the benchmark.

111

Appendix A

To show the proofs of Lemma 10 and Lemma 11, we need some facts about polynomial

multiplication in Chebyshev basis to use them towards the proofs. Let us consider the

Chebyshev polynomial basis for Pn+

[a,b] in a vector form as:

unCh(t) := (T0(t), T1(t), ..., Tn(t))T when t ∈ [a, b]. (A.1)

For simplicity of notation, let us drop (t) from unCh(t). It can be seen that:

unChu
nT

Ch =
1

2



T0(t) T1(t) . . . Tn(t)

T1(t) T2(t) . .
.
Tn+1(t)

... . .
.

. .
. ...

Tn(t) Tn+1(t) . . . T2n(t)


+

1

2



T0(t) T1(t) . . . Tn(t)

T1(t) T0(t) . . . Tn−1(t)

...
. . .

. . .
...

Tn(t) . . . T1(t) T0(t)


=

1

2
H(u2n

Ch) +
1

2
T (unCh)

=
1

2
(H + T)(u2n

Ch). (A.2)

Also, we have the following equations:

(1− T1(t))(1 + T1(t))un−1
Ch u

n−1T

Ch

=

(
1− T2(t)

2

)
un−1
Ch u

n−1T

Ch

=

(
1− T2(t)

2

)(
H + T

2

)
(u2n−1
Ch)

=
1

2
H([Ti − 1

2
Ti+2]2n−2

i=0 − 1
2
[T2;T1; [Ti]

2n−4
i=0])+

1

2
T ([Ti − 1

2
Ti+2]n−1

i=0]− 1
2
[T2;T1; [Ti]

n−3
i=0])

=
1

2
(H + T)(AChu2n

Ch), (A.3)

where ACh is:

ACh :=



1 0 −1

0 1
2 0 −1

2

−1
2 0 1 0 −1

2

−1
2 0 1 0 −1

2

. . .
. . .

. . .


. (A.4)

112

Similarly, we can show:

(1 + T1(t))unChu
nT

Ch =
1

2
(H + T)(BChu2n+1

Ch), (A.5)

(1− T1(t))unChu
nT

Ch =
1

2
(H + T)(CChu2n+1

Ch), (A.6)

where BCh and CCh are:

BCh :=



1 1

1
2 1 1

2

1
2 1 1

2

1
2 1 1

2

1
2 1 1

2

. . .
. . .

. . .


, (A.7)

CCh :=



1 −1

−1
2 1 −1

2

−1
2 1 −1

2

−1
2 1 −1

2

−1
2 1 −1

2

. . .
. . .

. . .


. (A.8)

Proof. Lemma 10

a. To show part a, define the linear operator Λ in Equation (17.2) in [35] as (A.2).

Then the rest of the proof can be followed from part 1 of Theorem 17.1 in [35].

b. To show part b, in Theorem 17.12 in [35] defines the linear operators Λ1 as (A.2)

and Λ2 as (A.3). In fact, the adjoint operator Λ∗2 in our case is 1
2A

T
Ch(H + T)∗.

c. Part c can be worked out in a similar manner, using the rhs of (A.5) and (A.6).

Proof. Lemma 11

Considering the facts in (A.2) and (A.3) and Lemma 10, proving Lemma 11 is straight-

forward. In fact, we have:

a. Considering Λ as (A.2), part a will be followed from part 2 of Theorem 17.1 in

[35].

b. Considering Λ1 and Λ2 respectively as (A.2) and (A.3), part b will be followed

from Theorem 17.12 in [35].

c. Considering Λ1 and Λ2 as in the rhs of (A.5) and (A.6), respectively, part c will

be followed from Theorem 17.13 in [35].

113

To show the proofs of Lemma 12 and Lemma 13, we need following facts about

matrix differentiations. Considering the first order derivatives, we can show:

∂

∂xi
ln detH(Ax) = H−1(Ax) •

[
∂H(Ax)

∂Ax

∂Ax

∂xi

]
= aTi H

∗
i (H−1(Ax)), (A.9)

where ai is the i-th column of A, and H∗i is the dehankel of i-th elementary Hankel

matrix defined in Definition 12. Therefore, in a more compact form we have:

gx := ∇x ln detH(Ax) = ATH∗(H−1(Ax)), (A.10)

Also, taking the second order derivatives give us:[
∂2

∂xi∂xj
ln detH(Ax)

]n
i,j=0

= −AT
[
H−1(Ax)HiH

−1(Ax) •Hj

]n
i,j=0

A. (A.11)

Finally, let us show the (i, j)-th element of H−1(Ax) by zi,j . Then it is easy to show

that:

H−1(Ax)HiH
−1(Ax) •Hj =

∑
a+b=i
k+l=j

za,kzb,l. (A.12)

If we consider the H−1(Ax) as the coefficient of a bivariate polynomial in the stan-

dard basis where its (i, j)-th element is the coefficient of tisj in the polynomial, then

the rhs of (A.12) can be considered as the coefficient of the tisj in the convolution of

H−1(Ax) by itself. Therefore, in more compact form we have:[
H−1(Ax)HiH

−1(Ax) •Hj

]n
i,j=0

= conv2(H−1(Ax), H−1(Ax)). (A.13)

Substituting the rhs of (A.13) into (A.11), results in:

Hx := −AT conv2(H−1(Ax), H−1(Ax))A. (A.14)

Proof. Lemma 12

a. To show part a, it is enough to substitute I for A in (A.10).

b. To show part b, it is enough that for the first and second part, substitute I and

A, respectively, for A in (A.10), where A was defined in (2.27).

c. To show part c, it is enough that for the first and second part, substitute B and

C, respectively, for A in (A.10), where B and C were defined in (2.28) and (2.29).

114

Proof. Lemma 13

a. To show part a, it is enough to substitute I for A in (A.14).

b. To show part b, it is enough that for the first and second part, substitute I and

A, respectively, for A in (A.14), where A is defined in (2.27).

c. To show part c, it is enough that for the first and second part, substitute B

and C, respectively, for A in (A.14), where B and C are defined in (2.28) and (2.29),

respectively.

To show the proofs of Lemma 14 and Lemma 15, we need following facts:

∂

∂xi
ln det(H + T)(Ax) = (H + T)−1(Ax) •

[
∂(H + T)(Ax)

∂Ax

∂Ax

∂xi

]
= aTi (Hi + Ti)

∗((H + T)−1(Ax)), (A.15)

where Ti is the i-th elementary Toeplitz matrix defined in Definition 12. Therefore, in

a more compact form we have:

gx := ∇x ln det(H + T)(Ax) = AT (H + T)∗((H + T)−1(Ax)), (A.16)

Also, taking the second order derivatives give us:[
∂2

∂xi∂xj
ln det(H + T)(Ax)

]n
i,j=0

=

−AT
[
(H + T)−1(Ax)(Hi + Ti)(H + T)−1(Ax) • (Hj + Tj)

]n
i,j=0

A. (A.17)

Finally, let us show the (i, j)-th element of (H + T)−1(Ax) by zi,j . Then it is easy

to show that:

(H + T)−1(Ax)(Hi + Ti)(H + T)−1(Ax) • (Hj + Tj) =

1

4

 ∑
a+b=i
k+l=j

za,kzb,l +
∑
a+b=i
|k−l|=j

za,kzb,l +
∑
|a−b|=i
k+l=j

za,kzb,l +
∑
|a−b|=i
|k−l|=j

za,kzb,l

 . (A.18)

If we consider the (H+T)−1(Ax) as the coefficient of a bivariate polynomial where its

(i, j)-th element is the coefficient of Ti(t)Tj(t) in the polynomial, then the rhs of (A.18)

115

can be considered as the coefficient of the Ti(t)Tj(t) in the convolution of (H+T)−1(Ax)

by itself. Therefore, in more compact form we have:

[
(H + T)−1(Ax)(Hi + Ti)(H + T)−1(Ax) • (Hj + Tj)

]n
i,j=0

=

conv2T ((H + T)−1(Ax),(H + T)−1(Ax)). (A.19)

Substituting the rhs of (A.19) into (A.17), results in:

Hx := AT conv2T ((H + T)−1(Ax), (H + T)−1(Ax))A. (A.20)

Proof. Lemma 14

a. To show part a, it is enough to substitute I for A in (A.16).

b. To show part b, it is enough that for the first and second part, substitute I and

ACh, respectively, for A in (A.16), where ACh is defined in (A.4).

c. To show part c, it is enough that for the first and second part, substitute BCh

and CCh, respectively, for A in (A.16), where BCh and CCh are defined in (A.7) and

(A.8).

Proof. Lemma 15

a. To show part a, it is enough to substitute I for A in (A.20).

b. To show part b, it is enough that for the first and second part, substitute I and

ACh for A in (A.20), where ACh is defined in (A.4).

c. To show part c, it is enough that for the first and second part, substitute BCh and

CCh for A in (A.20), where BCh and CCh are respectively defined in (A.7) and (A.8).

116

References

[1] Aı̈t-Sahalia, Y., Duarte, J., Nonparametric option pricing under shape restrictions,
Journal of Econometrics, 116, 9-47 (2003)

[2] Akle Serrano S., Algorithms for unsymmetric cone optimization and an implementa-
tion for problems with the exponential cone, PhD Thesis, Stanford university (2015)

[3] Alizadeh, F., Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization, 5, 13-51 (1995)

[4] Alizadeh, F., Eckstein, J., Noyan, N., Rudolf, G., Arrival Rate Approximation by
Nonnegative Cubic Splines, Operations Research, 56(1), 140-156 (2008)

[5] Allon, G., Beenstock, M., Hackman, S., Passy, U., Shapiro, A., Nonparametric esti-
mation of concave production technologies by entropic methods, Journal of Applied
Econometrics, 22(4), 795-816 (2007)

[6] Andersen, E., Roos, C., Terlaky, T., On implementing a primal-dual interior-point
method for conic quadratic optimization, Math. Program., Ser. B 95: 249 (2003)

[7] Andersen, E. D., Gondzio, J., Meszaros, C., Xu, X., Implementation of interior point
methods for large scale linear programming. In Terlaky, T., editor, Interior-point
methods of mathematical programming, pp. 189-252. Kluwer Academic Publishers,
Germany (1996)

[8] Andersen, E. D., Andersen, K. D., The MOSEK interior point optimization for
linear programming: An implementation of the homogeneous algorithm, Frenk, H.,
and et al, editor, High Performance Optimization, pp. 197-245, Kluwer Academic
Publishers, Germany (2000)

[9] Andersen, M. S., Dahl, J., Vandenberghe, L., CVXOPT: A python package for
convex optimization, version 1.1.5, (2012)

[10] Arico, A., Rodriguez, G., A fast solver for linear systems with displacement struc-
ture, NUMERICAL ALGORITHMS, 55, 529-556 (2010)

[11] Artin E., Über die Zerlegung definiter Funktionen in Quadrate, Abh. math. Sem.
Hamburg 5, 110−115 (1927)

[12] Baszenski, G., Tasche, M., Fast Polynomial Multiplication and Convolution Re-
lated to the Discrete Cosine Transform, Linear Algebra and Its Applications, 252,
1-25 (1997)

[13] Ben-Tal, A., Nemirovski, A. S.: Lectures on Modern Convex Optimization: Anal-
ysis, Algorithms and Engineering Applications. SIAM, Philadelphia (2001)

117

[14] Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J., A superfast algorithm for
Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29(4), 1247-1266
(2007)

[15] Chares, P. R., Cones and Interior-Point Algorithms for Structured Convex Opti-
mization involving Powers and Exponentials. PhD thesis, Universite Catholique de
Louvain, (2007)

[16] Faybusovich, L., Self-Concordant Barriers for Cones Generated by Chebyshev Sys-
tems, SIAM J. Optim., 12(3), 770-781 (2002)

[17] Giorgi, P., On Polynomial Multiplication in Chebyshev Basis, IEEE Transactions
on Computers, 61(6), 780-789 (2012)

[18] Glineur, F., Topics in Convex Optimization: Interior-Point methods, Conic Duality
and Approximations. Ph.D. thesis, Faculte Polytechnique de Mons, Mons, Belgium,
(2001)

[19] Grant, M., Boyd, S., CVX: Matlab software for disciplined convex programming,
version 2.0 beta. http://cvxr.com/cvx, September 2013

[20] Gonzaga, C. C., An algorithm for solving linear programming problems in O(n3L)
operations. In: Progress in Mathematical Programming. Interior Point and Related
Methods (ed. by N. Megiddo), pp. 1-28, Springer-Verlag, New York (1989)

[21] Güler, O., Barrier Functions in Interior Point Methods, Math. Oper. Res. 21, 860-
885 (1996)

[22] Hankin, R. K. S., Numerical evaluation of the Gauss hypergeometric function with
the hypergeo package. https://cran.r-project.org/web/packages/hypergeo/

(2016)

[23] Hilbert, D., Über die Darstellung definiter Formen als Summe von Formen-
quadraten, Math. Ann., 32(1888), 342350

[24] Karmarkar, N., A new polynomial-time algorithm for linear programming, Com-
binatorica, 4(4), 373-395 (1984)

[25] Kojima, M., Mizuno, S., Yoshise, A., A polynomial-time algorithm for a class of
linear complementarity problems. Mathematical Programming, 44, 1-26 (1989)

[26] Lima, J., A Karatsuba-Based Algorithm for Polynomial Multiplication in Cheby-
shev Form, IEEE TRANSACTIONS ON COMPUTERS, 59(6), 835-841 (2010)

[27] Lustig, I. J., Feasibility issues in primal-dual interior-point methods for linear
programming. Math. Programming, 49, 145-162 (1990)

[28] Lustig, I. J., Marsten, R. E., Shanno, D. F., Interior point methods for linear
programming: Computational state of the art. ORSAJ. on Comput., 6(1),1-15 (1994)

[29] Megiddo, N., Pathways to the optimal set in linear programming. In N. Megiddo,
editor, Progress in Mathematical Programming: Interior Point and Related Methods,
Springer Verlag, New York, pp. 131-158 (1989)

118

[30] Mehrotra, S., On the Implementation of a Primal-Dual Interior Point Method,
SIAM J. Optim., 2(4), 575-601 (1992)

[31] Monteiro,R. D. C., Adler, I., Interior path following primal-dual algorithms: Part
I: Linear programming. Mathematical Programming, 44, 27-41 (1989)

[32] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version
7.1 (Revision 28), url = ”http://docs.mosek.com/7.1/toolbox/index.html”, (2015)

[33] Nesterov, Y. E., Long-step strategies in interior-point primal-dual methods, Math-
ematical Programming, 76, 47-94 (1996)

[34] Nesterov, Y. E., Structure of Non-Negative Polynomials and Optimization Prob-
lem, (1997)

[35] Nesterov, Y. E., Squared Functional Systems and Optimization Problems, High
Performance Optimization, 33, 405-440, Kluwer Academic Press, (2000)

[36] Nesterov, Y. E., Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, (2003)

[37] Nesterov, Y. E., Towards Nonsymmetric Conic Optimization. Optim. Method.
Softw., 27, 893-917 (2012)

[38] Nesterov, Y. E., Nemirovskii, A.S., Interior-Point Polynomial Algorithms in Con-
vex Programming, SIAM, Philadelphia (1994)

[39] Nesterov, Y. E., Todd, M. J., Self-scaled barriers and interior-point methods for
convex programming. Math. Oper. Res., 22, 1-42 (1997)

[40] Nesterov, Y. E., Todd, M. J., Primal-dual interior-point methods for self-scaled
cones. SIAM J. Optim., 8, 324-364 (1998)

[41] Papp, D., Alizadeh, F., Semidefinite Characterization Of Sum-Of-Squares Cones
In Algebras, SIAM J. Optim., 23, 1398-1423 (2013)

[42] Papp, D., Optimization models for shape-constrained function estimation prob-
lems involving nonnegative polynomials and their restrictions, PhD thesis, Rutgers
University, USA (2011)

[43] Pearson, J., Computation of Hypergeometric Functions. Master thesis, University
of Oxford, UK (2009)

[44] Pölya, G., Szegö, G., Problems and Theorems in Analysis, vol. 2. Springer, New
York (1976)

[45] Renegar, J., A Mathematical View of Interior-Point Methods in Convex Optimiza-
tion, SIAM, Philadelphia (1987)

[46] Renegar, J., A polynomial-time algorithm based on Newton’s method for linear
programming, Mathematical Programming, 40 , 59-94 (1988)

[47] Skajaa A., The homogeneous interior-point algorithm: nonsymmetric cones, warm-
starting, and applications. PhD thesis, Technical University of Denmark, Denmark
(2013)

119

[48] Skajaa A., Ye Y., A homogeneous interior-point algorithm for nonsymmetric con-
vex conic optimization, Math. Program., Ser. A, 150, 391-422 (2015)

[49] Sturm, J.F., Using sedumi 1.02, a matlab toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11-12:625653, (1999)

[50] Toh, K. C., R. H. Tütüncü, Todd, M. J., SDPT3 — a Matlab software package for
semidefinite programming, Optimization Methods and Software, 11, 545-581 (1999)

[51] Van Barel, M., Heinig, G., Kravanja, P., A stabilized superfast solver for non-
symmetric Toeplitz systems. SIAM J. Matrix Anal. Appl. 23(2), 494-510 (2001, elec-
tronic)

[52] Xu, X., Hung, P. -F., Ye, Y., A simplified homogeneous and self-dual linear pro-
gramming algorithm and its implementation, Annals of Operations Research, 62,
151-171 (1996)

[53] Ye, Y., Todd, M. J., Mizuno, S., An O(
√
nL) - iteration homogeneous and self-dual

linear programming algorithm, Math. Oper. Res., 19, 53-67 (1994)

[54] Frisch, K.R., The logarithmic potential method of convex programming, unpub-
lished manuscript, University Institute of Economics, Oslo, Norway (1955)

[55] Fiacco, A., McCormick, G., Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley and Sons, New York (1968)

[56] Karlin, S., Studden, W. J., Tchebyshev Systems: with Applications in Analysis
and Statistics, Interscience Publisher, John Willy & Sons, New York, (1968)

[57] Nocedal, J., Wright, S. J., Numerical Optimization, Springer, 2nd edition (2006)

[58] Roos, C., Vial, J.-P., and Terlaky, T., Theory and Algorithms for Linear Opti-
mization : An Interior Point Approach, John Wiley and Sons, New York (1997)

[59] Ye, Y., Interior Point Algorithms : Theory and Analysis, John Wiley and Sons,
New York (1997)

[60] Primal-Dual Interior-Point Methods, SIAM Publications, Philadelphia (1997)

