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This dissertation comprises two essays on financial economics and econometrics. The

first essay reviews methodology associated with the construction of nonparametric

estimators of integrated volatility, jump tests, and realized volatility decompositions.

In an empirical analysis that draws on this methodology, we separate continuous asset

return variation and finite activity jump variation from U.S. excess returns on U.S.

market sector exchange traded funds (ETFs) during and around the Great Recession

of 2008. Our objective is to characterize the financial contagion that was present

during one of the greatest financial crises in U.S. history. In particular, we study

how shocks, as measured by jumps, propagate through nine different market sectors.

One element of our analysis involves the investigation of causal linkages associated

with jumps (via the analysis of vector autoregressions), and another involves the

examination of the predictive content of jumps for excess returns. We find that as

early as 2006, jump spillover effects became more pronounced in the markets. Another

important findings that we see is that jumps have a significant effect on excess returns

during 2008 and 2009. Thus, jumps play an important role in asset pricing during

volatile episodes. In the second essay, we utilize measures of jumps in the markets

in order to construct daily indexes of unexpected jump spillover risk associated with

major news announcements and events. The methodology that we implement is
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based on two novel new tools recently developed in the financial econometric and

machine learning literatures. First, we implement the jump decomposition methods

detailed in Aı̈t-Sahalia and Jacod (2012) in order to decompose quadratic variation

into continuous components and jump components; and we further separate large

and small jump variations. We then carry out shrinkage via application of ridge,

elastic net (EN), least absolute shrinkage operator (LASSO), and a cross validated

convex combination ridge, EN and LASSO methods in order to quantify (Granger)

causal jump spillover effects across sectors and markets, and construct risk indexes.

In an empirical analysis illustrating the methodology proposed for constructing jump

based risk indexes, we analyze equally spaced 5-minute high frequency trading data

on nine market sector ETFs as well as the S&P500 and the VIX for the period 2005 -

2010.In summary, we believe the indexes proposed in this paper are usefully condensed

indicators of the risk associated with unexpected events in the markets, and should

be of interest to market participants interested in hedging such risk.
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Chapter 1

Introduction

This dissertation will present empirical research in the field of high frequency volatility jumps.

Since 2006, High frequency trading has grown to become an essential part of the trading market.

According to Credit Suisse, which cited data from TABB Group, high frequency trading contributed

to roughly half of all equity trading in 2016. High frequency has reshaped the financial industry.

As a result, high frequency volatility jumps has received tremendous attention from both financial

economists and investors. We aim to expand the current literature on this topic, specifically in

two areas: jump spillover and jump contribution to excess returns. The economic rationale for the

dissertation draws on the idea that jumps are associated with specific economic events, which was

found empirically (See Andersen, Bollerslev, Diebold, and Vega (2003), Huang (2007), Bollerslev,

Law, and Tauchen (2008), Lee and Mykland (2008), Lahaye, Laurent, and Neely (2010), Asgharian

and Nossman (2011), Evans (2011), Lahaye, Laurent, and Neely (2011), Jiang and Verdelhan (2011),

Chatrath, Miao, Ramchander, and Villupuram (2014), Jawadi, Louhichi, and Cheffou (2015), Aı̈t-

Sahalia and Xiu (2016)) . In the second chapter, we review some recent advances in econometric

methodology of analyzing jumps using the high frequency data, such as the bipower-variation-

based tests of Barndorff-Nielsen and Shephard (2006a, 2006b, 2006c), Huang and Tauchen (2005),

Andersen, Bollerslev and Diebold (2007), and Lee and Mykland (2008); the swap-variance-based

test due to Jiang and Oomen (2008); and the truncated-power-variation based tests due to Aı̈t-

Sahalia and Jacod(2008, 2009a, 2009b) and Lee and Hanning (2010). We also discuss a so-called

long time span jump test dues to Corradi, Silvapulle and Swanson (2018), which is consistent (the

above fixed time span tests are not consistent, in the sense that power does not go to unity as the

sample size increases). Our main findings are: (1) strong large and total jump spillover effects (i.e.,

jumps from one sector (Granger) causing jumps from another sector) were seen as early as in 2006,
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and weakened as the recession unfolded. With small jumps, the opposite occurred. In particular,

2008 was the weakest year for large and total jump spillover effects and strongest year for small

jumps. This can be understood by examining the causes of jumps of different sizes. (2) Large

jump spillover effects seem to correlate with major news and events, while small jump spillover

effects are harder to interpret and seem more correlated with heterogeneous agent and firm specific

characteristics. (3) With regard to the jump contributions to excess returns, total jump and large

jump contributions were close to zero in years other than 2008 and 2009. This provides strong

evidence that jumps play an important role in asset pricing during crisis times.

The third chapter extends the findings in the second chapter and attempts to construct a new

type of daily frequency index that is associated with the jump spillover risks. The implemented

methodology is based recently developed tools in financial econometrics and machine learnings. The

first step is to decompose jump variation via methods detailed in Aı̈t-Sahalia and Jacod (2012).

We then implement shrinkage through ridge, elastic net (EN), LASSO and a cross validated convex

combination ridge, EN and LASSO methods in order to quantify (Granger) causal jump spillover

effects across sectors and markets. Last, we construct indexes for the U.S. market using equal

weighted and float-adjusted market capitalization weighted, as well as indexes for each market

sector. We then apply Markov regime switching models to analyze and compare our indexes with

S&P500 and VIX. We believe that the indexes proposed in this chapter are useful condensed

indicators of the jump spillover risk, which are connected to unexpected events and should be

of interest to market participants intereseted in hedging such risk.
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Chapter 2

Jump Spillover and Risk Effects on Excess Returns in the

United States During the Great Recession

2.1 Introduction

The so-called Great Recession of 2008-2009 has received considerable attention in the economics

and finance professions in recent years. Indeed, countless academic papers have studied its causes,

impact, and aftermath. This chapter provides a fresh perspective by looking at this important event

through the lens of high frequency trading data. First, we survey recent advances in the econometric

methodology of analyzing jumps using high frequency financial data. Then, we utilize five-minute

trading data and apply the aforementioned econometric methods to analyze jump spillover effects

and jump contributions to excess returns in U.S. markets during and around the Great Recession.

The economic rationale for the chapter draws on the idea that jumps are associated with specific

economic events. Andersen, Bollerslev, Diebold, and Vega (2003) study foreign exchange markets

and find that unexpected news announcements result in conditional mean jumps; and that negative

news has a greater impact than positive news. Huang (2007) analyzes jumps using intra-day high

frequency data in equity and fixed-income markets, and finds that more large jumps are present on

days with news than on days without news. Evans (2011) discovers that approximately one third

of jumps between July 1998 and June 2006 in the U.S. futures markets are connected with U.S.

macroeconomic news announcements, and that these news announcements lead to large jumps.

Jiang and Verdelhan (2011) find that pre-announcement liquidity shocks can be used to predict

jumps in treasury bond markets and are therefore useful for asset pricing. Lee and Mykland (2008)

apply nonparametric tests to search for jumps in equity markets. Their results suggest that different

pricing models should be applied for individual equity options and index options, due to the fact
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that jumps in individual stocks are associated with company-specific news events. Lahaye, Laurent,

and Neely (2011) focus on futures markets, and find that the size, frequency and timing of jumps

in futures markets are related to economic shocks. Bollerslev, Law, and Tauchen (2008) examine

jumps in both individual stocks and an aggregate market index. They conclude that the existence

and pattern of co-jumps provides evidence of a relationship between jumps and macroeconomic

news announcements. Similar results can also be seen in the currency markets. For example,

Chatrath, Miao, Ramchander, and Villupuram (2014) find that correlation exists between jumps

and news announcements. They also find evidence of co-jumps. Some authors focus on international

markets rather than just domestic markets. For example, Asgharian and Bengtsson (2006) focus

on the U.S. market and several European markets and find that significant jump spillover effects

exist in countries that have features in common, such as industry structure or geographic location.

Asgharian and Nossman (2011) inspect jumps in equity markets in several regions and conclude

that local European markets are under the influence of U.S. markets. Jawadi, Louhichi, and Cheffou

(2015) use nonparametric econometric methods to test contagion hypotheses, and provide evidence

of dependence between jumps in three European markets and U.S. markets. Lahaye, Laurent, and

Neely (2010) find that payroll announcements are important in stock and bond futures markets,

while trade related news often creates co-jumps in exchange rate markets. Aı̈t-Sahalia and Xiu

(2016) provide strong evidence of correlation between financial crises and increase in the quadratic

variation of assets.

In this chapter, we extend the findings of Asgharian and Bengtsson (2006), Asgharian and

Nossman (2011), Jawadi, Louhichi, and Cheffou (2015), and Aı̈t-Sahalia and Xiu (2016) in three

ways. First, our research centers on the domestic jump spillover effects in the U.S. during the

2008 financial crisis. Particularly, we look at jump spillover effects across nine market sectors.

Second, we decompose jumps based on their size and investigate financial market interactions using

different sized jumps. By using truncation in order to identify (small and large) jumps, we are

able to investigate how different economic shocks affect U.S. markets. This is important, since

macroeconomics news events often cause large jumps, while many (asset) price movements are

associated with small jumps. Our approach is to remain agnostic about the cause of jumps, and to

instead focus on the relationship among different jumps (in different market sectors, for example).
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Third, we focus attention on the importance of jumps for explaining excess returns.

Following the methodology used in much of the extant literature on jumps in financial markets,

our approach to examining jump propagation is based on the use of nonparametric tools. In

particular, we apply nonparametric jump tests and decomposition methods, which are discussed in

detail in the sequel, in order to characterize jumps. We then perform two regression analyses. In

a first analysis, we test the hypothesis that jump spillovers exists across different market sectors.

Our main findings are as follows. First, large jump spillover effects that impact multiple markets

seem to be correlated with the major news and events and can be industry-specific. This is because

large jumps are known to be related to unexpected major news and events. Second, total jump

spillover effects are similar to large jump spillover effects, as large jumps usually dominate the

jump process. Third, strong large and total jump spillover effects are observed prior to the onset

of the 2008-2009 recession, and weakened in 2008; while small jump spillover effects intensified as

the recession unfolded. This can be explained by the different origins of large jumps and small

jumps. It is also consistent with a hypothesis that that jumps are affected by trader’s behavior in

the markets. Finally, jumps from the XLF (i.e., the financial sector) are not a major player in our

findings, as might be expected. this might be explained in part by unmodelled nonlinear correlation

across market sectors, for example.

In a second regression analysis we study the contribution of jumps to excess returns. We find

that jumps are statistically significant in models of excess returns. Moreover, we observe a sharp

increase in jump contribution to sector excess returns in 2008 and 2009. This provides evidence

that jumps are important in asset pricing, especially in turbulent times.

The rest of the chapter is organized as follows. Section 2.2 reviews nonparametric jump tests and

decomposition methods. Section 2.3 outlines the empirical methodology used in our data analysis.

Section 2.4 contains our empirical findings. Finally, concluding remarks are gathered in Section 2.5.
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2.2 Jump Tests and Jump Decomposition Methods

2.2.1 Set-up

Define log prices as Yt = log(Pt), and assume that they follow an Itô semimartingale process,

Yt = Y0 +

∫ t

0

audu +

∫ t

0

σudWu +

∫ t

0

∫

{|y|≤ε}
y(j − ν)(du, dy) +

∫ t

0

∫

{|y|>ε}
yj(du, dy), (2.1)

where Y0 +
∫ t

0
audu +

∫ t
0
σudWu is a Brownian semi-martingale. Here,

∫ t
0
audu is the drift term,

with at being the instantaneous drift, and
∫ t

0
σudWu is the continuous part. with σt being the

spot volatility. Additionally, j is the jump measure of Yt, and its predictable compensator is the

Lévy measure ν. Finally,
∫ t

0

∫
{|y|≤ε} y(j − ν)(du, dy) is the so-called small jump component, and

∫ t
0

∫
{|y|>ε} yj(du, dy) is the so-called large jump component, with ε being an arbitrary cutoff level

specified in order to differentiate between small and large jumps.

Volatility is a latent variable, and realized measures are often employed to consistently estimate

it.1 In the high frequency literature, one of the most widely known measures is realized volatility

(RV). Suppose that t > 0 is a fixed time period, for example, one trading day, and the ith log-price

of an asset observed during day t is Yi,t. The intra-ith return on day t is ri,t = Yi,t − Yi−1,t, where

i = 1, 2, ..., t/δ and δ is the sampling frequency. For one trading day, we have the explicit expression

for RV:

RVt =

t/δ∑

i=1

r2
i,t. (2.2)

When sampling is at a high and fixed frequency (such as N → ∞ or δ → 0), then realized

volatility converges to so-called quadratic variation which is defined as follows:

[Y ]t = p lim
δ→0

t/δ−1∑

i=0

(Yti − Yti)2, (2.3)

for any sequence of partitions t0 = 0 < t1 < ... < tn = t, with supi{ti+1 − ti} → 0 for δ → 0. Thus

RVt
P→ [Y ]t

1Sometimes, in financial econometrics, the word variance is used interchangeably with volatility. Here we follow
the convention of equating volatility with sums of squared returns.
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where P denotes convergence in probability. Thus, realized quadratic variation (QV) is expressed

as:

QV = [Yδ]t =

t/δ∑

i=1

r2
i,t (2.4)

Another important measure is called integrated volatility, which is defined as
∫ t

0
σ2
udu. When

asset prices are continuous on a fixed interval [0, T ]:

[Y ]t
P→
∫ t

0

σ2
udu, (2.5)

and when asset prices also have a discontinuous component on [0, T ] (like in Equation (1)):

[Y ]t
P→
∫ t

0

σ2
udu+

∑

u≤t
(∆Yu)2, (2.6)

where
∑
u≤t(∆Yu) is a pure jump process and a jump at time s is defined as ∆Yt = Yu − Yu−.

Here,
∑
u≤t(∆Yu)2 is the variation of the jump component.

2.2.2 Jump Testing

The literature on jump testing has been active since 2002. Testing whether or not jumps are

present in a process is particularly useful to do prior to constructing realized measures of jump

and continuous components of a variable. For early relevant discussions in this area, see Andersen,

Benzoni, and Lund (2002) and Chernov et al. (2003), as well as Aı̈t-Sahalia (2002) and Johannes

(2004). In this chapter, we discuss three different tests including: the bipower-variation-based tests

of Barndorff-Nielsen and Shephard (2006a, 2006b, 2006c), Huang and Tauchen (2005), Andersen,

Bollerslev and Diebold (2007), and Lee and Mykland (2008); the swap-variance-based test due to

Jiang and Oomen (2008); and the truncated-power-variation based tests due to Aı̈t-Sahalia and

Jacod(2008, 2009a, 2009b) and Lee and Hanning (2010). We also discuss a so-called long time span

jump test dues to Corradi, Silvapulle and Swanson (2018), which is consistent (the above fixed

time span tests are not consistent, in the sense that power does not go to unity as the sample size

increases)
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Bipower Variation Tests

Under the assumption of Equation (1), Equation (6) shows that if the theoretical integrated volatil-

ity can be properly estimated, jumps can be measured using the difference between QV and realized

integrated volatility. This is the key idea underpinning bipower variation based tests. Barndorff-

Nielsen and Sharphard (2004) suggest using bipower variation to estimate integrated volatility.

Barndorff-Nielsen and Shephard (2006a) propose various bipower variation based jump test statis-

tics.

The quadratic variation defined in equation (3) is a special case of power variation. Additionally,

sth power variation is defined as:

{Y }[s]t = p lim
δ→0

δ1−s/2
t/δ∑

i=1

|ri,t|s,

where s > 0. The bipower variation process is defined as:

{Y }[s1,s2]
t = p lim

δ→0
δ1−(s1+s2)/2

[t/δ]−1∑

i=1

|ri,t|s1 |ri+1,t|s2 ,

where s1, s2 > 0. When s1 = s2 = 1, {Y }[1,1]
t can be consistently estimated using realized bipower

variation (BV), defined as follows:

BVt = {Yδ}[1,1]
t =

t/δ∑

i=2

|ri−1,t||ri,t|. (2.7)

Barndorff-Nielsen and Shephard (2004) show that the power variation and bipower variation

can be expressed as:

µ−1{Y }[s]t =





∫ t
0
σsudu s ∈ (0, 2)

[
Y
]
t

s = 2

∞ s > 2

and

µ−1
s1 µ

−1
s2 {Y }

[s1,s2]
t =





∫ t
0
σs1+s2
u du max(s1, s2) ∈ (0, 2)

x∗t max(s1, s2) = 2

∞ max(s1, s2) > 2

where x∗t is some stochastic process.
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A special case is when s1 = s2 = 1,

µ−2
1 {Y }

[1,1]
t =

∫ t

0

σ2
udu.

Thus, integrated volatility can be consistently estimated as:

µ−2
1 BV

P→
∫ t

0

σ2
udu (2.8)

where µ1 = E[u] =
√

2/
√
π ' 0.79788, and u is N(0, 1) random variable.

The bipower jump test null hypothesis is that no jumps are present. Barndorff-Nielsen and

Shephard (2006a) propose a linear jump test statistic G, and a ratio jump test statistic H:

G =
δ−1/2(µ−2

1 BVt −QVt)√∫ t
0
ησ4

udu

d→ N(0, 1)

and

H =
δ−1/2(

µ−2
1 BVt

QVt
− 1)

√
η

∫ t
0
σ4
udu

{
∫ t
0
σ2
udu}2

d→ N(0, 1),

where η = (π2/4) + π − 5 ' 0.6090 and d means convergence in distribution. Here,
∫ t

0
σ4
udu is the

integrated quarticity and can be estimated using realized quadpower variation (QPV): 2

QPVt = {Yδ}[1,1,1,1]
t = δ−1

t/δ∑

i=4

|ri−3,t||ri−2,t||ri−1,t||ri,t| P→ µ4
1

∫ t

0

σ4
udu. (2.9)

Additionally,
∫ t

0
σ2
udu can be estimated using BV. This yields the following feasible linear jump and

ratio jump statistics, Ĝ and Ĥ :

Ĝ =
δ−1/2(µ−2

1 BVt −QVt)√
ηµ−4

1 QPVt

d→ N(0, 1).

and

Ĥ =
δ−1/2

√
ηQPVt/BV 2

t

(
µ−2

1 BVt
QVt

− 1)
d→ N(0, 1),

2Barndorff-Nielsen et al. (2005) discuss a more general case for realized multipower variation, and Barndorff-
Nielsen, Shephard, and Winkel (2006) analyze the case where the jump component is a Lèvy or non-Gaussian
Ornstein-Uhlenbeck (OU) process.
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Inference using these tests is straightforward, as both test statistics have limiting standard normal

distributions. Clearly, the ratio
∫ t
0
σ4
udu

µ−4
1 BV 2

≥ 1/t, and Barndorff-Nielsen and Shephard (2006a) suggest

replacing Ĥ by the adjusted ratio jump test

Ĵ =
δ−1/2

√
ηmax(t−1, QPVt

BV 2
t

)

(µ−2
1 BVt
QVt

− 1
) d→ N(0, 1). (2.10)

Huang and Tauchen (2005), Andersen, Bollerslev, and Diebold (2007) analyze the statistical

properties of bipower variation based jump tests using S&P index data, exchange rates, and bond

yields; as well as via Monte Carlo simulation. They suggest using a daily statistic, zTP,t, to test for

jumps on a daily basis, where

zTP,t =
RVt −BVt√

(vbb − vqq) 1
N TPt

d→ N(0, 1), (2.11)

with vqq = 2, vbb = (π2 )2 + π − 3, Here, realized tripower quarticity (TP) is defined and estimated

as follows:

TPt = δ−1µ−3
4/3

1/δ∑

j=3

|ri−2,t|4/3|ri−1,t|4/3|ri,t|4/3 P→
∫ t

0

σ4
udu (2.12)

Additionally, the asymptotic covariance of

δ−1/2
( RVt −

∫ t
0
σ2
udu

BVt −
∫ t

0
σ2
udu

)

is Π
∫ t

0
σ4
udu, where

Π =

( V ar(u2) 2µ−2
1 Cov(u2, |u||u′|)

2µ−2
1 Cov(u2, |u||u′|) µ−4

1 (V ar(|u||u′|) + 2Cov(|u||u′|, |u′||u′′|))
)

=

(
vqq vqb

vqb vbb

)

with vqb = 2. Inference is carried out by rejecting the null of no jumps if zTP,t exceeds the critical

value, Φα, leading to a conclusion that there are jumps during the day. A common choice for the

critical value is 1.96, equivalent to 5% significant level.
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Lee and Mykland (2008) focus on detecting jump at time t without assuming that there are (or

are not) jumps before or after time t. Their objective is to detect jumps over time. The main idea

behind Lee and Mykland (2008) centers around the difference between observed high returns caused

by jumps and by spot volatility. They standardize the return using instantaneous volatility σ(ti),

which only includes the local variance from the continuous part of the process. The instantaneous

volatility is consistently measured using realized bipower variation. The test statistic that they

propose is constructed as follows.

LM(ti) =
ri,t
σ̂i,t

,

where

σ̂i,t =
1

K − 2

i−1∑

j=i−K+2

|ri,t||ri−1,t|,

and K is the window size of a local movement of the process, and is chosen so that the effect of

jumps on the volatility estimator disappears. They suggest to choosing K = 10, when sampling at

a 5-minute frequency. Asymptotically, LM(ti) follows a normal distribution. Namely:

√
2

π
LM(ti)

d→ N(0, 1).

Swap Variance Based Tests

Inspired by the comparison between bipower variation and realized variance, as proposed in Barndorff-

Nielsen and Shephard (2004, 2006), Jiang and Oomen (2008) propose comparing a jump sensitive

variance measure and the realized variance. Their idea comes from a well known observation about

market microstructure noise in the finance literature. Namely, in the absence of jumps the accu-

mulated difference between the simple return and the log return captures one half of the integrated

variance in the continuous-time limit. Since this relation is the foundation of a variance swap repli-

cation strategy, the accumulated difference between simple returns and log returns is called the

swap variance. They compare this value to the realized variance in order to test for jumps.

Intuitively, when jumps are absent, the difference between the swap variance and the realized

variance should be indistinguishable from zero, while when jumps are present, it will reflect the

replication error of the variance swap, which leads to jump detection. The swap variance is defined
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as:

SwVt = 2

t/δ∑

i=1

(Ri,t − ri,t),

where Ri,t =
Pi,t

Pi−1,t
− 1, and ri,t = Yi,t − Yi−1,t.

Three types of swap variance jump tests are developed by these authors. Namely, they propose

the difference test
t/δ√
ΩSwV

(SwVt −RVt) d→ N(0, 1),

the logarithmic test
BV ∗N√

ΩSwVt

(lnSwVt − lnRVt) d→ N(0, 1),

and the ratio test
BV ∗N√

ΩSwVt

(lnSwVt − lnRVt) d→ N(0, 1),

where ΩSwVt
= µ6

9

N3µ−s
6/s

N−s+1

∑N−s
i=0

∏s
k=1 |ri+1|6/s, N = t/δ, and µs = E(|x|s) for x ∼ N(0, 1). Setting

s equal to either 4 or 6 (as a robust estimation of ΩSwVt
) is recommended.

Jiang and Oomen (2008) provide Monte Carlo simulation evidence that their SwV test is more

sensitive to jumps than the bipower variation tests discussed above, but the requirement of esti-

mating the sixticity can be challenging in practice. They also provide a useful discussion of jumps

when the sampling frequency is ultra-high and market microstructure noise needs to be taken into

consideration when testing for jumps.

Truncated Power Variation Tests

The truncated sth realized power variation as defined in Aı̈t-Sahalia and Jacod (2012) is expressed

as follows.

B(s, u, δ) =

t/δ∑

i=1

|ri,t|sI{|ri,t|≤u}.

Here, the truncation level u is set equal to bδω, for some constant ω ∈ (0, 1/2), with b > 0, which

results in u shrinking to 0. As above, δ is the sampling frequency. In this framework, ω < 1/2

ensures that all increments ”mainly” contain a Brownian contribution. Note, when u is set to

infinity, the truncated realized power variation becomes B(s,∞, δ), in which case no truncation is

applied.
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When δ → 0, B(s,∞, δ) converges in probability as follows.




s > 2 all Yt ⇒ B(s,∞, δ) P→ J(s)

all s on ΩcT ⇒ δ1−s/2

µs
1
B(s,∞, δ) P→

∫ t
0
|σu|sdu

where µs1 is the sth absolute moment of a standard normal random variable, and ΩcT ={Y is

continuous in [0, T ]} is a set defined pathwise on [0, T ]. Also, define ΩWT ={Y has a Wiener

component in [0, T ]}, and ΩJT ={Y has jumps in [0, T ]},which are additional sets defined pathwise

on [0, T ]. They recommend using the following test statistic:

AJ(s, k, δ) =
B(s,∞, kδ)
B(s,∞, δ) ,

where s > 2, and k > 2 is an integer that controls the sampling frequency. These authors show

that:

AJ(s, k, δ)→





1 on ΩJT

ks/2−1 on ΩcT ∩ ΩWT

ΩcT ∩ ΩWT means Yt is continuous and has a Wiener component in [0, T ].

Thus, when jumps are present, the variation converges to a finite limit and so the ratio,

AJ(s, k, δ), tends to 1, while when there are no jumps, the variation converges to 0, and so AJ(s, k, δ)

tends to a limit that is greater than 1, and depends on the choice of k. Essentially, this test com-

pares the estimator of integrated variance using different sampling frequencies, and is motivated by

the fact that sampling frequency should have no influence on the estimator when there are jumps.

Lee and Hanning (2010) also utilize truncated power variation, and develop a related test for

jump detection that is robust to infinite activity jumps. Their test is quite similar to the test

developed by Lee and Mykland (2008), although the Lee and Mykland test is designed to have

power against Poisson-type (finite activity) jumps. Namely, they propose using:

LH(ti) =
ri,t

σ̂i,tδ1/2

d→ N(0, 1),

with

σ̂
1/2
i,t =

δ−1

K

i−1∑

j=i−K
r2
j−m+1,tI{|rj−m+1,t|≤gδω}

where δ is the sampling frequency, g > 0, 0 < ω < 1/2, and K is the window size, which is usually

set to be bδc, with −1 < c < 0, and b a constant. As recommended by the Lee and Manning,

g = 1.2, ω = 0.47, K = bδc with −1 < c < 0 for some constant b.



14

Long Time Span Jump Tests

Building on the work by Aı̈t-Sahalia (2002, 2012), Corradi, Silvapulle, and Swanson (2018) construct

a jump test to detect jumps in the data by examining the intensity parameter in the data generating

process. In particular, they develop a jump test for the null hypothesis that the probability of a

jump is zero. Their test is based on realized third moments, and uses observations over an increasing

time span. The test offers an alternative to the standard finite time span jump tests discussed above,

and is designed to detect jumps in the data generating process rather than detecting realized jumps

over a fixed time span. They also provide a test for self-excitement (i.e., is the intensity parameter

constant or does the intensity follow a Hawkes diffusion process (as discussed in Andersen, Benzoni,

and Lund (2002), Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015)).

Let

µ̂3,T,δ =
1

T

n−1∑

k=1

(
Y(k+1)δ − Ykδ −

Ynδ − Yδ
n

)3

− 1

T+

n+−1∑

k=1

(
Y(k+1)δ − Ykδ −

Yn+δ − Yδ
n+

)3

1
{∣∣Y(k+1)δ − Ykδ

∣∣ ≤ τ (δ)
}
, (2.13)

where τ (δ) is a truncation parameter, δ is the sampling frequency, T and T+ are time spans (with

T+/T →∞) , and n = T
δ and n+ are analogously defined, but denote the number of observations,

as discussed in CSS (2018). Now, define the statistic for testing no null of no jumps as follows:

ST,δ =
T 1/2

δ
µ̂3,T,δ

d→ N (0, ω0) . (2.14)

where ω0 is defined in CSS (2018).

The test has power not only against constant and self-exciting intensity, but also against affine

jump diffusions where the intensity is an affine function of volatility, for example. As the variance of

the statistic is of larger order under the alternative of positive jump intensity, one cannot construct

a variance estimator which is consistent under all hypotheses. Thus, the authors construct an

estimator for the variance of ST,δ which is consistent under the null of no jumps and bounded in

probability under the (union of) alternatives. This is done by using a threshold variance estimator,
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which filters out the contribution of the jump component. In particular, define:

σ̂2
λ,T,δ

=
1

Tδ2

n−1∑

k=0

(
Y(k+1)δ − Ykδ −

Ynδ − Yδ
n

)3

I
{∣∣Y(k+1)δ − Ykδ

∣∣ ≤ τ (δ)
}
. (2.15)

It follows that the t-statistic version of this jump test is,

tλ,T,δ =
ST,δ
σ̂λ,T,δ

.

2.2.3 Jump Decompositions

In our empirical application, we utilize the jump decomposition methods discussed in Aı̈t-Sahalia

and Jacod (2012) in order to decompose quadratic variation into continuous components and jump

components. Furthermore, we consider large jump and small jump components, as discussed above.

When considering truncated sth realized power variation, if the power, s < 2, then the continuous

component in the process dominates, while if s > 2 then the jump component dominates. When

s = 2 both components have equal influence on the process. Thus, we can obtain important

information about quadratic variation by decomposing realized power variation into continuous

and jumps components, as follows.

Percentage of total QV due to continuous component (QV C) = B(2,u,δ)
B(2,∞,δ)

Percentage of total QV due to jump component (QV J) = 1− B(2,u,δ)
B(2,∞,δ)

(2.16)

In our empirical section, we use the value of u used in code available from Aı̈t-Sahalia and Jacod

(2012). We denote the variation due to jumps (i.e., increments “larger” than u) as:

U(s, u, δ) =

t/δ∑

i=1

|ri,t|sI{|ri,t|>u}

= B(s,∞, δ)−B(s, u, δ)

Jump decompositions based on this metric can be calculated as:

Percentage of QV due to large jump component (QV JL) = U(2,ε,δ)
B(2,∞,δ)

Percentage of QV due to small jump component (QV JS) = B(2,∞,δ)−B(2,u,δ)−U(2,ε,δ)
B(2,∞,δ)

(2.17)
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The large jump cut-off level is ε = bδω, which is arbitrarily chosen, by experimenting with multiple

values of ε.3 In our analysis, we set b = 3 and b = 5. We consider the following variations: QV J ,

QV JL3, QV JL5, QV JS3, and QV JS5 (where the “3” and “5” values correspond to the values of

b that we utilized in our empirical analysis).

2.3 Empirical Methodology

Two experiments are conducted in this chapter. In the first experiment, “jump spillover effects”

are examined by carrying out a regression analysis in which the causal linkages between quadratic

jump variations in nine SPDR sector ETFs (see Section 2.4.1 for complete details) are examined.

In the second experiment, causal linkages between excess returns from each of the sectors that we

examine and jump variations from all nine sectors are examined. Excess returns are defined to be

the difference between daily log-returns of an asset and the daily log-returns of the market. We use

an ETF based on S&P500 called SPY to obtain the log-returns of the market.

We adopt the year over year (YoY) method from finance to compare our results, which means

results are compared based on each calendar year. More specifically, for each experiment we fit

vector autoregression (VAR) models for each calendar year. Moreover, we categorize our analysis

by jump types (total jumps, large jumps, small jumps), as discussed above. To summarize, there are

five jump types (QV J , QV JL3, QV JL5, QV JS3, QV JS5), nine market sectors, and six calendar

years in our dataset. Thus, we have 270 models for each experiment.

Table 2.1 summarizes the experimental setup used in this chapter. First, we run Ĵ tests for

each trading day in our sample, and record the dates when we reject the null of no jumps. Second,

we use the methods described in Section 2.2.3 in order to obtain QV J ,QV JL3, QV JL5,QV JS3

and QV JS5 on trading days when we reject the null. On days when we do not reject the null,

QV J = QV JL3 = QV JL5 = QV JS3 = QV JS5 = 0, as no jumps are present. Finally, we conduct

regression analysis for each calender year using daily data and the two VAR models described below.

3Recall that u is set equal to bδω . In our calculations, we set b = 2 when calculating u.
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2.3.1 Modeling Jump Spillover Effects

Jump spillover effects measure whether or not jumps in a given sector (Granger) cause jumps in

other sectors. In our empirical experiment, we fit a linear VAR model to test for such effects. In

our tabulated results (i..e, Tables 2.3 and 2.4), we collect coefficients on jumps variables in a given

sector that are significantly different from zero at a 95% level of confidence (based on application

of t-tests), take the absolute value of these, and report the sum thereof, of each regression in our

VAR. This sum represents jump spillover effects of a given sector on one of the other sectors. The

VAR model that we fit is the following:




Sector1,t,h = β1,0,h +
∑9
j=1

∑k=22
k=1 β1,j,k,hSectorj,t−k,h + ε1,t,h

Sector2,t,h = β2,0,h +
∑9
j=1

∑k=22
k=1 β2,j,k,hSectorj,t−k,h + ε2,t,h

Sector3,t,h = β3,0,h +
∑9
j=1

∑k=22
k=1 β3,j,k,hSectorj,t−k,h + ε3,t,h

Sector4,t,h = β4,0,h +
∑9
j=1

∑k=22
k=1 β4,j,k,hSectorj,t−k,h + ε4,t,h

Sector5,t,h = β5,0,h +
∑9
j=1

∑k=22
k=1 β5,j,k,hSectorj,t−k,h + ε5,t,h

Sector6,t,h = β6,0,h +
∑9
j=1

∑k=22
k=1 β6,j,k,hSectorj,t−k,h + ε6,t,h

Sector7,t,h = β7,0,h +
∑9
j=1

∑k=22
k=1 β7,j,k,hSectorj,t−k,h + ε7,t,h

Sector8,t,h = β8,0,h +
∑9
j=1

∑k=22
k=1 β8,j,k,hSectorj,t−k,h + ε8,t,h

Sector9,t,h = β9,0,h +
∑9
j=1

∑k=22
k=1 β9,j,k,hSectorj,t−k,h + ε9,t,h




where Sectori,t,h is the variation of the jump component of the ith market sector at time t in year

h, with i = 1, ..., 9 representing our nine market sectors. Sectorj,t−k,h is the kth lagged variation

of the jump component of the jth market sector in year h, with j = 1, ..., 9 representing nine

market sectors. Here, h = 2005, ..., 2010 denotes the calendar year. Variations used as regressors

in the above model are QV J ,QV JL3, QV JL5,QV JS3 and QV JS5. βi,0,h is the intercept for

market sector i in year h. βi,j,k,h denotes the coefficient on the kth lagged jump in sector j, in the

regression of the ith sector in year h. Clearly, the βs quantify the causal or spillover effects for a

given year. The number of lags is chosen based on use of the Akaike Information Crietion (AIC).

Additionally, we believe that jump spillover effects can last for a long period, and in particular at

least one month (i.e., 22 trading days). Our use of the AIC confirms our choice (i.e., we find that

k = 22). Augmented Dickey-Fuller tests were conducted to ensure that variables are stationary.
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Maximum likelihood is used to estimate the model. As discussed above, jump spillover effects of

market sector j on market sector i (j 6= i) is calculated as
∑k=22
k=1 |β∗i,j,k,h|, where |β∗i,j 6=i,k,h| is set

to zero if not significantly different from zero based on application of a 5% level t-test. The total

jump spillover effects of market sector j in year h is then
∑
i

∑k=22
k=1 |β∗i,j,k,h|, and j 6= i.

2.3.2 Modeling Jump Contributions to Excess Returns

Our assessment of jump risk in excess returns measures the impact of jumps on excess returns of

an market sector return. As done above, we fit a linear VAR model in order to quantify jump risk.

Our tabulated results are presented in the same fashion as results based on our jump spillover effect

analysis. The VAR model is also the same, except that dependent variables are now excess market

sector returns rather than jump variations.




SectorEX1,t,h = β1,0,h + γ1,1,hSectorEX1,t−1,h +
∑9
j=1

∑k=22
k=0 β1,j,k,hSectorj,t−k,h + ε1,t,h

SectorEX2,t,h = β2,0,h + γ2,1,hSectorEX2,t−1,h +
∑9
j=1

∑k=22
k=0 β2,j,k,hSectorj,t−k,h + ε2,t,h

SectorEX3,t,h = β3,0,h + γ3,1,hSectorEX3,t−1,h +
∑9
j=1

∑k=22
k=0 β3,j,k,hSectorj,t−k,h + ε3,t,h

SectorEX4,t,h = β4,0,h + γ4,1,hSectorEX4,t−1,h +
∑9
j=1

∑k=22
k=0 β4,j,k,hSectorj,t−k,h + ε4,t,h

SectorEX5,t,h = β5,0,h + γ5,1,hSectorEX5,t−1,h +
∑9
j=1

∑k=22
k=0 β5,j,k,hSectorj,t−k,h + ε5,t,h

SectorEX6,t,h = β6,0,h + γ6,1,hSectorEX6,t−1,h +
∑9
j=1

∑k=22
k=0 β6,j,k,hSectorj,t−k,h + ε6,t,h

SectorEX7,t,h = β7,0,h + γ7,1,hSectorEX7,t−1,h +
∑9
j=1

∑k=22
k=0 β7,j,k,hSectorj,t−k,h + ε7,t,h

SectorEX8,t,h = β8,0,h + γ8,1,hSectorEX8,t−1,h +
∑9
j=1

∑k=22
k=0 β8,j,k,hSectorj,t−k,h + ε8,t,h

SectorEX9,t,h = β9,0,h + γ9,1,hSectorEX9,t−1,h +
∑9
j=1

∑k=22
k=0 β9,j,k,hSectorj,t−k,h + ε9,t,h




where SectorEXi,t,h is the excess return of the ith market sector at time t in year h, and other

variables and coefficients are discussed above. The jump contribution level of market sector j on

excess returns of market sector i is calculated as C
∑k=22
k=0 |β∗i,j,k,h|, where |β∗i,j,k,h| is set to zero if

not significantly different from zero based on application of a 5% level t-test and C is a constant

to adjust the contribution level, because the βs are very close to zero. The total jump contribution

level of market sector j in year h is then C
∑
i

∑k=22
k=0 |β∗i,j,k,h|, where C = 1017.
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2.4 Empirical Results

2.4.1 Data Description

We obtain daily millisecond trading data for the period January 2005 - December 2010 from the

TAQ database through the Wharton Research Data Services portal. To reduce the micro-structure

noise effects, we follow convention and choose a sampling frequency of 5 minutes, which yields

roughly 78 observations per day. When there is no price at an exact time stamp, we use the closest

one available.

Our dataset consists of nine SPDR market sector ETFs. These nine sector ETFs are XLY

(consumer discretionary sector), XLP (consumer staples sector), XLE (energy sector), XLF (fi-

nancials sector), XLV (health care sector), XLI (industrials sector), XLB (materials sector), XLK

(technology sector), and XLU (utilities sector). According to the SPDR website, XLY includes

companies from industries like: media, retail (specialty, multiline, internet and catalog), hotels,

restaurants and leisure, textiles, apparel and luxury goods, household durables, automobiles, auto

components, distributors, leisure products, and diversified consumer services. XLP includes food

and staples, retailing, household products, food products, beverages, tobacco, and personal prod-

ucts. XLE includes companies in oil, gas and consumable fuels, and energy equipment and services.

XLF includes diversified financial services, insurance, banks, capital markets, mortgage real estate

investment trusts (REITs), consumer finance, and thrifts and mortgage finance. XLV includes

companies in pharmaceuticals, health care equipment and supplies, health care providers and ser-

vices, biotechnology, life sciences tools and services, and health care technology. XLI includes a

wide range of industries, such as aerospace and defense, industrial conglomerates, marine, trans-

portation infrastructure, machinery, road and rail, air freight and logistics, commercial services and

supplies, professional services, electrical equipment, construction and engineering, trading compa-

nies and distributors, airlines, and building products. XLB includes a collection of companies in

chemicals, metals and mining, paper and forest products, containers and packaging, and construc-

tion materials. XLK includes companies in technology hardware, storage, and peripherals, software,

diversified telecommunication services, communications equipment, semiconductors and semicon-

ductor equipment, internet software and services, IT services, electronic equipment, instruments
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and components, and wireless telecommunication services. Finally, XLU includes companies in

electric utilities, water utilities, multi-utilities, independent power producers and energy traders,

and gas utilities. In 2015, SPDR launched a new ETF targeting real estate management and devel-

opment and REITs, excluding mortgage REITs, but since our analysis is between 2005 and 2010,

we exclude this new sector ETF from our data set.

For our the excess return calculations, we downloaded the S&P 500 index based ETF (SPY)

and the nine market sector ETFs from Yahoo Finance at a daily frequency for the period January

2005 - December 2010.

2.4.2 Empirical Findings

See Sections 2.3.1 and 2.3.2 for a discussion of our empirical setup. As discussed in that section,

tabulated results in Tables 2.3 and 2.4 collect coefficients on jumps variables in a given sector that

are significantly different from zero at a 95% level of confidence (based on application of t-tests),

take the absolute value of these, and report the sum thereof, for each regression in our VAR.4

Thus, for each of our 9 market sectors one can assess the impact each of the other 8 sectors has on

that sector. Our results based on QV JL5 and QV JS5 were found to be un-informative, so that

tabulated results are presented only for regressions that include QV J , QV JL3 and QV JS3 in this

chapter.5 This is not surprising, given the findings presented in Table 2.2, where it can be seen

that QV JL5 is often 0, suggesting that the cut-off level used in the calculation of QV JL5 is not

informative.6 Interestingly, Table 2.2 also indicates that jumps can either contribute as much as

80% of quadratic variation or as little as 20% on a given trading day. This suggests that market

sectors are frequently beset by shocks that cause jumps. However, it should be noted that, large

jumps usually dominate the quadratic variation, with a few exceptions, such as on January 11 and

February 8.

Before turning to our discussion of the results in Tables 2.3 and 2.4, note that Figures 2.1

- 2.3 plot jump spillover effects by sector, by year, based on Table 2.3. Examination of these

4Complete regression findings are available upon request, and are omitted here for the sake of brevity.
5Complete results are available upon request.
6Table 2.2 only contains results for the first 6 weeks in 2005. Similar results were found when constructing QV JL5

for the the rest of 2005, and for other calendar years in our sample.
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figures indicates that there are jump spillovers across all sectors, broadly speaking. Interestingly,

total jump spillovers was greater in 2005, 2006, and 2007 than in 2008, large jump spillovers were

greatest in 2006, and small jump spillovers peaked in 2008. This suggests that transmission of jumps

of different magnitudes across sectors is asymmetric, and dependent upon the state of the economy.

Finally, notice that there were no years where total jump spillover effects were notably fewer than

in other years. The same is not the case when one examines the propagation of jumps through

excess returns. Figures 2.4 - 2.6 plot jump contribution levels to excess returns, by year, based on

Table 2.4. Interestingly, even cursory examination of these figures indicates that excess returns are

affected much more significantly by both large and small jumps during 2008 and 2009, than during

any other calendar years in our analysis. Indeed, large jumps exhibit almost no correlation with

excess returns during 2005, 2006, 2007, or 2010; whereas there are significant excess return-jump

spillovers during 2008 and 2009. Thus, the effects of jump variations on excess returns are a clear

indicator of the Great recession, while the same cannot be said when considering jump spillover

effects.

We now turn to a discussion of Tables 2.3 and 2.4. A number of clear-cut conclusions emerge

upon inspection of the results in these tables. First, consider Table 2.3.

First, large jump spillover effects from each sector seem to coincide with sector-related major

events that happened around that time. For example, XLI, XLK, and XLP had the strongest large

jump spillover effects in 2006, and large jumps spillovers in XLI and XLP might be related to the

volatile housing market at the time. According to a report published by RealtyTrac, the number of

total foreclosure filings nationwide rose from about 885,000 in 2005 to 1,259,118 in 2006, which is

more than 42% increase. For the same reason, the large jump spillover effects for XLF in 2006 was

quite strong as well.7 In terms of the XLK, 2006 is often called a “tech bubble” year. For example,

Youtube was sold for $1.65 billion during 2006. Also, six prominent tech companies filed their IPOs

in 2006, but only one of them was profitable. Moreover, quite a few tech companies experienced

skyrocketing stock prices until early 2006, and slid dramatically afterwards.8 In 2009, XLF, XLV,

7For more details see: https://www.housingwire.com/articles/us-foreclosure-filings-42-percent-2006 for more
details.

8For more details see:
http://www.nytimes.com/2006/10/10/technology/10deal.html,
http://money.cnn.com/2006/05/16/technology/pluggedin fortuneipos0516/index.htm,
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and XLY exhibited their most spillovers. Similar news events can be used to explain many of the

other incidences of large spillover effects.

Second, small jump spillover effects are quite different from large jump effects. Most sectors had

their strongest spillover effects between 2007 and 2010. This discrepancy between the large jump

case and the small jump case can perhaps be best interpreted as a result of the different causes of

large jumps and small jumps: large jumps are associated with major news and events, while small

jumps are likely the result of things like high frequency trading and company specific events.

Third, total jump spillover effects (both large and small) are interesting. For example, it is

worth noting that 2008 was a relatively quiet year for all sectors as none of the sectors showed the

strongest spillover effects in that year. This may be related to the fact that 2008 was the peak

of the recession and fear dominated the market, which led to liquidity problems (Reavis (2012)).

These issues in turn may have affect the ease with which spillover effects occurred.

Fourth, a YoY comparison indicates that large jump spillover effects and total jump spillover

effects in the whole U.S. market peaked in 2006, bottomed in 2008. Small jump spillover effects

started to increase in 2006, peaked in 2008, dropped in 2009, and rose up again in 2010. This

is intriguing, since 2006 was the year of the “slowdown”. According to the Center for American

Progress, the U.S. economy experienced a fall in both economic growth and consumption growth

in 2006, for the first time in more than three years, indicating high risks in certain areas in the

market. Figures 2.1 - 2.3 illustrate this pattern quite clearly.9

Drilling down a bit further, the results in Table 2.3 does no show jumps from XLF dominating

the spillover effects prior to the recession. This is different from what we expected, as the financial

sector was the main cause of the recession. What we instead observe is that the large jump spillover

effects and total jump spillover effects peaked in 2006 and bottomed in 2008. This implies that

prior to the Great Recession, the market was more volatile but not necessarily concentrated only

in the financial sector.

and
https://seekingalpha.com/article/308397-we-may-be-nearing-a-third-tech-bubble-collapse
9For more details see: https://www.americanprogress .org/issues/economy/news/2006/12/21/2420/the-u-s-

economy-in-review-2006,
http://money.cnn.com/2008/09/15/markets/markets newyork2,
and
http://www.nytimes.com/2012/05/07/business/stock-trading-remains-in-a-slide-after-08-crisis.html
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Now, consider the results contained in Table 2.4. Again, a number of clear-cut conclusion emerge

upon inspection of the results in this table.

First, there were scarcely any large jump and total jump contributions to excess returns

before and after the recession (see Table 2.4 and Figures 2.4 and 2.6). Additionally, large jump con-

tributions were only prevalent during 2008 and 2009. This provides evidence that jumps, especially

large jumps should not be neglected in asset pricing, particularly in a volatile markets. Second,

small jump contribution levels were rather significant across all sampling years, and became inten-

sified between 2007 and 2009 (see Table 2.4 and Figure 2.5). It is also worth noting that while

large and total jump spillover effects weakened during the recession, the impact of jumps on excess

returns escalated, as discussed above. Finally, and similar to the spillover case, we do not observe

jumps from XLF contributing to excess returns more than jumps from other sectors.

2.5 Concluding Remarks

This chapter begins with a review of jump testing and variation decomposition methodology. There-

after, an empirical analysis is presented in which jump spillover effects in nine market sectors over

a six year period around the Great Recession of 2008-2009 are examined. Broadly speaking, strong

large and total jump spillover effects (i.e., jumps from one sector (Granger) causing jumps from

another sector) were seen as early as in 2006, and weakened as the recession unfolded. With small

jumps, the opposite occurred. In particular, 2008 was the weakest year for large and total jump

spillover effects and strongest year for small jumps. This can be understood by examining the

causes of jumps of different sizes. Large jump spillover effects seem to correlate with major news

and events, while small jump spillover effects are harder to interpret and seem more correlated with

heterogeneous agent and firm specific characteristics. With regard to the jump contributions to

excess returns, total jump and large jump contributions were close to zero in years other than 2008

and 2009. This provides strong evidence that jumps play an important role in asset pricing during

crisis times.
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Table 2.1: Experimental Setup

Sample Period: Jan. 3, 20005 to Dec. 31, 2010

Sampling Frequency: 5 minutes.

Regression Estimation

Scheme:

VAR estimation with time span equal to one calender year.

Jump types: Total jumps (QV J), large jumps at cutoff level b = 3 (QV JL3), large jumps at

cutoff level b = 3 (QV JL5), small jumps at cutoff level b = 3 (QV JS3), small

jumps at cutoff level b = 5 (QV JS5).

Evaluation Criterion: Coefficients are summed that are significant using a 5% level t-test.

Step 1: Jump Test Test for jumps on each trading day during sample period. For this, the bipower

variation based test zTP,t described in Section 2.2.1 is applied with significance

level α = 5%. The null hypothesis is that no jumps are present.

Step 2: Jump Decomposi-

tion

For trading days which reject the null in Step 1, the decomposition method

in Section 2.2.3 is applied to extract QV J , QV JL3, QV JL5, QV JS3, and

QV JS5 on that day. For trading days for which the null is not rejected in Step

1, jump quadratic variation is set equal to 0.

Step 3a: Jump Spillover

Analysis

Fit the model in Section 2.3.1 by calender year, for different jump types.

Step 3b: Jump Contribu-

tion to Excess Returns

Ft the model in Section 2.3.2 by calender year, for different jump types.
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Table 2.2: Disaggregate Quadratic Variation in the XLB Sector*

Date QV J QV JL3 QV JL5 QV JS3 QV JS5

1/3/2005 0.4352 0.2521 0 0.1831 0.4352

1/4/2005 0.2594 0 0 0.2594 0.2594

1/5/2005 0.84 0.8006 0.7301 0.0394 0.1099

1/6/2005 0.3481 0.1494 0 0.1987 0.3481

1/7/2005 0.3668 0.2417 0 0.1251 0.3668

1/10/2005 0.5789 0.3394 0 0.2395 0.5789

1/11/2005 0.5809 0.2611 0 0.3198 0.5809

1/12/2005 0.577 0.4163 0.2563 0.1607 0.3207

1/13/2005 0.3918 0.2224 0 0.1694 0.3918

1/14/2005 0.5241 0.2987 0 0.2254 0.5241

1/18/2005 0.6349 0.3646 0 0.2703 0.6349

1/19/2005 0 0 0 0 0

1/20/2005 0.5473 0.419 0 0.1283 0.5473

1/21/2005 0.3142 0.1824 0 0.1318 0.3142

1/24/2005 0.5531 0.387 0.387 0.1661 0.1661

1/25/2005 0.7079 0.5185 0.5185 0.1894 0.1894

1/26/2005 0.4206 0.2352 0 0.1854 0.4206

1/27/2005 0.5888 0.3594 0.3594 0.2294 0.2294

1/28/2005 0.3973 0.2494 0 0.1479 0.3973

1/31/2005 0.4323 0.3689 0.3689 0.0634 0.0634

2/1/2005 0.4831 0.3397 0.3397 0.1434 0.1434

2/2/2005 0.45 0.1362 0 0.3138 0.45

2/3/2005 0 0 0 0 0

2/4/2005 0.3565 0.1941 0 0.1624 0.3565

2/7/2005 0.4154 0.1396 0 0.2758 0.4154

2/8/2005 0.505 0 0 0.505 0.505

2/9/2005 0.7931 0.7931 0.6389 0 0.1542

2/10/2005 0.5243 0 0 0.5243 0.5243

2/11/2005 0.5517 0.2765 0 0.2752 0.5517

2/14/2005 0.3892 0.3229 0.3229 0.0663 0.0663

2/15/2005 0.3822 0 0 0.3822 0.3822

2/16/2005 0.4734 0 0 0.4734 0.4734

2/17/2005 0.629 0.4126 0.4126 0.2164 0.2164

2/18/2005 0 0 0 0 0

∗ Notes: This table shows the percentage of quadratic variation (QV) that is due to total jumps, jumps at the b = 3 cutoff

level, and jumps at the b = 5 cutoff level, for the period January 2005 - March 2005. Similar results for other time periods and

market sectors are omitted for the sake of brevity, but are available upon request.
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Table 2.3: Jump Spillover Analysis of Nine SPDR Sector ETFs

a: Results Based on Analysis of 2005 Jump Variation Data*

Lagged QV J from

QV J XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.000 0.440 0.000 0.000 0.000 0.000 0.000

XLE 0.336 NA 0.705 1.474 1.040 0.359 0.731 0.538 0.505

XLF 2.040 0.000 NA 0.000 0.000 0.436 0.000 0.000 1.716

XLI 0.472 0.000 0.000 NA 0.000 0.000 0.399 0.000 0.873

XLK 0.757 0.000 0.000 0.894 NA 0.431 0.000 0.365 0.399

XLP 0.000 0.000 0.000 0.309 0.348 NA 0.000 0.000 0.352

XLU 0.000 0.992 0.000 0.000 0.000 0.498 NA 0.501 0.575

XLV 0.324 0.478 0.000 0.000 0.000 0.415 0.478 NA 0.000

XLY 0.000 0.000 0.000 0.000 0.000 0.362 0.000 0.440 NA

Lagged QV JL3 from

QV JL3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.000 0.000 0.000 0.469 0.430 0.394 0.000

XLE 0.461 NA 0.000 0.000 0.254 0.219 0.000 0.000 0.465

XLF 0.000 0.000 NA 0.590 0.000 0.512 0.000 0.000 0.000

XLI 0.808 1.300 0.000 NA 0.000 0.609 0.977 0.420 0.000

XLK 0.283 1.020 0.000 0.257 NA 0.000 0.317 0.000 0.486

XLP 0.000 0.796 0.000 0.273 0.000 NA 0.000 0.664 0.000

XLU 0.000 0.649 0.000 0.390 0.000 0.463 NA 0.463 0.664

XLV 0.790 2.259 0.000 0.677 0.000 1.652 0.779 NA 0.454

XLY 0.792 0.000 0.911 0.000 0.476 0.866 0.710 0.000 NA

Lagged QV JS3 from

QV JS3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.502 0.865 0.406 0.443 0.000 1.378 0.941 0.000

XLE 0.000 NA 0.703 0.934 0.000 0.338 0.656 0.584 1.032

XLF 0.000 0.000 NA 0.000 0.382 0.000 0.000 0.000 0.000

XLI 1.132 2.847 0.325 NA 0.394 1.853 0.437 0.383 0.496

XLK 0.000 0.000 0.000 0.000 NA 0.000 0.000 0.000 0.000

XLP 0.000 0.525 0.391 0.000 0.347 NA 0.415 0.000 0.000

XLU 0.859 0.000 0.754 1.168 0.578 0.748 NA 0.000 0.735

XLV 0.000 0.416 0.361 0.000 0.000 0.000 0.000 NA 0.365

XLY 0.000 0.000 0.000 0.000 0.330 0.000 0.340 1.229 NA
∗

Notes: Entries are ”aggregate spillover effects” of lagged jumps from a given sector (see first row of entries)

on the jumps in each of the sectors listed in the first column of the table. Aggregate spillover effects are

aggregated absolute coefficient magnitudes, summed for statistically significant (at a 5% level, based on

application of t-statistics) coefficients on the lags in the VAR associated with the regression pertaining to

each sector listed in the first column of the table, for all lags in the regression pertaining to the sector listed

in the first row of entries in the table. For further details refer to Section 2.3.
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b: Results Based on Analysis of 2006 Jump Variation Data*

Lagged QV J from

QV J XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.362 0.000 0.347 0.508 0.766 0.929 1.836 0.772

XLE 0.861 NA 0.000 0.000 0.000 0.000 0.000 0.402 0.608

XLF 1.233 0.768 NA 0.398 0.588 2.179 0.328 0.966 0.780

XLI 0.000 0.338 0.369 NA 0.000 0.000 0.819 0.000 1.107

XLK 1.046 0.522 0.806 0.000 NA 1.003 0.806 1.117 1.633

XLP 0.000 0.000 0.000 0.000 0.000 NA 0.000 0.000 0.000

XLU 0.558 0.000 0.000 0.000 0.343 0.000 NA 0.000 0.000

XLV 0.364 1.707 0.000 0.000 0.581 1.679 0.000 NA 0.396

XLY 0.839 0.000 0.000 0.281 0.000 0.379 0.350 0.000 NA

Lagged QV JL3 from

QV JL3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.875 0.404 1.168 0.420 0.431 0.000 0.490

XLE 0.000 NA 1.100 0.000 0.000 0.000 0.000 0.000 0.000

XLF 0.000 1.223 NA 1.816 0.317 2.329 0.520 0.849 1.359

XLI 0.000 0.000 0.348 NA 0.000 0.354 0.000 0.000 0.000

XLK 0.000 0.000 1.028 0.000 NA 0.000 0.428 0.000 0.000

XLP 0.000 0.000 0.000 0.557 0.000 NA 0.535 0.000 0.499

XLU 3.211 2.889 2.807 1.741 4.453 3.005 NA 1.136 2.840

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 0.000

XLY 0.291 0.532 1.352 0.320 0.000 1.501 0.000 0.567 NA

Lagged QV JS3 from

QV JS3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.820 0.000 0.823 0.694 0.000 0.703 0.335 1.205

XLE 0.457 NA 0.000 0.000 0.964 0.000 0.424 0.000 1.308

XLF 0.882 0.500 NA 0.000 0.000 0.343 0.000 0.000 0.000

XLI 0.745 0.000 0.310 NA 0.000 0.797 0.000 0.000 0.000

XLK 0.516 0.962 0.787 0.325 NA 0.450 0.835 0.325 0.500

XLP 1.181 0.714 1.184 0.391 0.670 NA 0.415 0.916 0.405

XLU 0.457 0.000 0.000 0.000 0.337 0.364 NA 0.357 1.140

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 0.000

XLY 0.000 0.503 0.311 0.000 0.338 0.000 0.363 0.465 NA
∗ Notes: See notes to Table 2.3a.
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c: Results Based on Analysis of 2007 Jump Variation Data*

Lagged QV J from

QV J XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.000 0.000 0.370 0.403 0.000 0.000 0.000

XLE 0.458 NA 0.000 0.000 0.000 0.360 0.000 0.363 0.888

XLF 1.168 0.459 NA 0.334 1.033 0.732 0.000 0.000 0.838

XLI 1.557 0.587 0.000 NA 0.000 0.599 0.433 0.902 0.000

XLK 0.000 0.352 0.445 0.357 NA 0.465 0.000 0.372 0.511

XLP 0.000 0.583 0.525 0.000 0.481 NA 0.000 0.459 0.000

XLU 1.037 0.445 0.544 0.425 1.316 0.947 NA 0.000 1.019

XLV 0.468 1.062 0.548 0.000 0.377 0.488 0.000 NA 1.007

XLY 0.342 0.437 0.532 0.000 0.346 1.087 0.739 0.000 NA

Lagged QV JL3 from

QV JL3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.609 0.000 0.000 0.000 0.462 0.373 0.000 0.000

XLE 1.402 NA 1.075 1.216 0.336 0.428 0.802 0.634 0.788

XLF 0.463 0.000 NA 0.000 0.000 0.000 0.470 0.000 0.000

XLI 0.000 1.232 0.000 NA 0.815 0.521 0.000 0.000 0.573

XLK 0.787 0.691 0.599 1.037 NA 0.000 0.551 0.623 0.000

XLP 0.582 1.412 0.522 0.000 1.015 NA 0.446 0.550 0.598

XLU 0.000 1.601 0.452 0.000 0.000 2.060 NA 0.000 0.000

XLV 0.000 0.000 0.000 0.000 0.000 0.993 0.469 NA 0.000

XLY 0.566 0.994 0.749 0.889 0.441 0.000 0.418 0.321 NA

Lagged QV JS3 from

QV JS3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.827 0.406 0.364 0.977 0.325 1.072 0.364 0.738

XLE 0.429 NA 0.000 0.000 0.365 0.406 0.000 0.000 0.000

XLF 0.858 0.877 NA 0.248 1.178 0.805 1.207 1.474 0.772

XLI 0.496 0.400 0.545 NA 0.000 0.000 0.000 0.000 0.954

XLK 0.514 1.079 0.938 0.958 NA 1.591 0.399 0.863 1.792

XLP 0.000 0.000 0.000 0.000 0.000 NA 0.000 0.000 0.000

XLU 1.761 2.184 0.441 0.659 0.326 1.228 NA 0.840 0.000

XLV 0.444 0.000 0.980 0.385 0.000 0.378 0.000 NA 0.000

XLY 0.351 0.000 0.000 0.000 0.317 0.775 0.000 0.000 NA
∗ Notes: See notes to Table 2.3a.
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d: Results Based on Analysis of 2008 Jump Variation Data*

Lagged QV J from

QV J XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLE 0.000 NA 0.000 0.000 0.542 0.833 0.000 0.366 0.884

XLF 0.000 0.000 NA 0.000 0.000 0.000 0.522 1.086 0.651

XLI 0.000 0.000 0.274 NA 0.786 0.000 0.000 0.000 0.000

XLK 0.354 0.332 0.000 0.000 NA 0.000 0.000 0.447 0.000

XLP 0.000 0.000 0.392 0.442 0.000 NA 0.000 0.000 0.000

XLU 0.000 0.375 0.000 0.000 0.919 0.000 NA 0.414 0.000

XLV 0.385 0.000 0.286 0.000 0.000 0.872 0.390 NA 0.428

XLY 0.000 0.000 0.000 0.000 0.741 0.674 0.000 0.504 NA

Lagged QV JL3 from

QV JL3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.000 0.000 0.000 0.470 0.000 0.000 0.000

XLE 0.540 NA 0.396 0.433 0.563 1.193 0.390 0.342 1.059

XLF 0.000 0.000 NA 0.000 0.000 0.000 0.000 0.000 0.520

XLI 1.028 0.448 0.324 NA 2.220 1.131 1.140 1.214 1.910

XLK 1.884 1.740 1.172 0.969 NA 1.402 0.361 0.294 0.974

XLP 0.414 1.043 0.000 1.241 0.617 NA 0.000 0.000 0.000

XLU 0.374 0.656 0.445 0.000 1.302 0.000 NA 0.462 1.139

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 0.000

XLY 0.360 0.000 0.324 0.000 0.000 0.000 0.000 0.000 NA

Lagged QV JS3 from

QV JS3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.451 0.875 0.918 0.665 0.797 0.654 0.716 1.377

XLE 0.378 NA 0.000 0.468 0.942 0.000 0.000 0.000 0.000

XLF 0.408 0.360 NA 0.887 0.334 0.434 1.284 0.000 0.752

XLI 2.109 0.743 0.660 NA 1.563 0.825 1.303 0.353 0.302

XLK 0.531 0.000 0.456 0.000 NA 0.000 0.000 0.000 0.413

XLP 0.426 1.114 1.363 0.000 0.000 NA 0.560 1.791 0.865

XLU 0.494 0.432 0.462 0.489 0.312 0.998 NA 0.495 0.399

XLV 0.000 0.469 0.358 1.333 0.000 2.151 0.383 NA 0.366

XLY 0.440 0.000 0.000 0.000 1.391 0.000 0.517 0.386 NA
∗ Notes: See notes to Table 2.3a.
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e: Results Based on Analysis of 2009 Jump Variation Data*

Lagged QV J from

QV J XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 1.112 0.000 0.000 0.000 0.000 0.000 0.684 0.419

XLE 0.726 NA 0.000 0.545 0.000 0.900 0.474 0.830 0.697

XLF 1.000 0.000 NA 0.000 0.000 0.471 0.896 1.565 0.521

XLI 0.355 0.557 0.000 NA 0.000 0.000 0.920 0.442 1.173

XLK 0.000 0.703 0.801 0.000 NA 0.000 0.000 0.357 0.000

XLP 0.819 0.377 0.653 0.291 0.000 NA 1.095 0.418 0.000

XLU 0.370 0.400 1.139 0.367 1.035 0.347 NA 0.398 1.048

XLV 0.331 0.375 1.125 0.409 0.000 0.000 0.482 NA 0.963

XLY 0.762 0.000 0.384 0.705 0.000 0.000 0.000 0.331 NA

Lagged QV JL3 from

QV JL3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 2.769 4.471 1.648 2.612 0.819 0.418 1.719 1.762

XLE 0.716 NA 0.340 0.365 0.501 0.283 1.406 0.642 1.471

XLF 0.000 0.529 NA 0.436 0.000 0.000 0.000 1.451 1.459

XLI 0.905 0.431 0.861 NA 1.092 0.396 0.000 0.539 0.526

XLK 0.344 0.440 0.389 0.431 NA 0.000 0.000 0.387 0.000

XLP 0.000 0.969 0.997 1.038 1.226 NA 0.000 0.000 0.484

XLU 0.000 0.000 1.048 0.000 0.000 0.000 NA 0.429 1.423

XLV 0.548 0.000 0.000 0.000 0.000 0.000 0.000 NA 0.000

XLY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA

Lagged QV JS3 from

QV JS3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.000 0.463 0.000 0.000 0.000 0.000 0.439

XLE 0.426 NA 0.387 0.000 0.371 0.456 0.506 0.881 0.506

XLF 0.587 0.267 NA 0.801 0.328 0.000 0.694 0.323 0.000

XLI 0.000 0.000 0.845 NA 0.791 0.000 0.000 0.000 0.421

XLK 0.419 0.000 0.000 0.000 NA 0.000 0.000 0.000 0.000

XLP 0.000 0.000 0.000 0.000 0.000 NA 0.000 0.000 0.000

XLU 0.000 1.039 0.436 0.000 0.000 1.265 NA 0.000 0.904

XLV 3.408 1.108 1.112 2.649 0.000 2.390 0.830 NA 3.510

XLY 0.967 0.000 0.000 0.332 0.000 0.517 0.313 0.431 NA
∗ Notes: See notes to Table 2.3a.
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f: Results Based on Analysis of 2010 Jump Variation Data*

Lagged QV J from

QV J XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.000 0.384 0.000 0.000 0.000 0.000 0.000 0.000

XLE 0.000 NA 0.000 0.405 0.000 0.000 0.000 0.000 0.000

XLF 0.415 0.000 NA 0.397 0.485 0.000 0.000 0.399 0.488

XLI 0.347 0.000 0.667 NA 0.338 1.189 0.389 0.000 0.000

XLK 0.000 0.388 0.430 0.733 NA 0.895 1.513 0.000 0.450

XLP 1.426 0.000 0.833 1.080 0.000 NA 1.531 1.418 2.240

XLU 0.000 0.000 0.000 0.000 0.000 0.000 NA 0.000 0.000

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 0.000

XLY 0.000 0.000 0.000 0.000 0.841 0.000 0.571 0.469 NA

Lagged QV JL3 from

QV JL3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.353 0.000 0.433 0.854 0.000 0.334 0.000 0.000

XLE 0.000 NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLF 0.336 1.118 NA 0.513 0.000 0.528 0.000 0.420 1.288

XLI 0.000 0.000 0.368 NA 0.000 0.000 0.000 0.000 0.000

XLK 0.000 0.562 0.569 0.640 NA 1.688 0.000 2.114 0.600

XLP 1.029 0.848 0.704 0.953 0.904 NA 0.549 2.129 0.831

XLU 0.000 0.597 0.000 0.000 0.000 0.000 NA 0.000 0.000

XLV 0.822 0.708 0.310 0.482 0.000 1.328 0.000 NA 0.486

XLY 0.434 0.945 1.108 0.559 1.554 0.994 0.425 0.351 NA

Lagged QV JS3 from

QV JS3 XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB NA 0.356 0.000 0.000 0.399 0.377 0.000 0.333 0.000

XLE 0.379 NA 1.239 1.103 1.152 0.665 0.722 0.430 1.142

XLF 0.000 0.382 NA 0.526 1.342 0.928 1.056 0.335 1.048

XLI 0.485 0.634 0.632 NA 0.359 1.503 1.419 1.211 0.981

XLK 0.388 0.896 0.538 0.588 NA 0.000 0.409 0.393 0.000

XLP 0.750 0.000 0.000 0.000 0.000 NA 0.282 0.293 0.000

XLU 0.440 0.000 0.468 0.442 0.000 0.583 NA 0.339 0.402

XLV 1.878 2.021 0.951 0.784 0.666 1.386 0.747 NA 0.000

XLY 0.420 0.000 0.451 0.000 0.486 0.000 0.745 0.000 NA
∗ Notes: See notes to Table 2.3a.
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Table 2.4: Jump Contribution to Excess Returns For Nine SPDR Sector ETFs

a: Results Based on Analysis of 2005 Jump Variation Data*

Lagged QV J from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 0.000 1.255 0.000 2.858 0.000 0.000 1.360

XLE 0.000 1.949 0.996 0.860 0.883 1.332 0.000 1.502 0.792

XLF 0.000 0.000 0.000 0.000 0.000 0.211 0.000 0.000 0.000

XLI 0.000 0.000 0.000 0.000 0.000 0.371 0.000 0.000 0.139

XLK 0.000 0.000 0.000 3.164 6.182 2.348 2.458 0.000 0.000

XLP 0.000 0.241 0.141 0.000 0.181 0.324 0.000 0.000 0.305

XLU 0.000 0.000 0.000 0.786 0.816 0.748 0.328 0.000 0.000

XLV 0.000 0.000 0.000 0.308 0.000 0.243 0.000 0.000 0.000

XLY 0.000 0.000 0.000 0.000 0.308 0.000 0.000 0.000 0.000

Lagged QV JL3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 1.062 1.382 1.244 0.000 0.000 1.169 0.000 1.020 0.000

XLE 1.099 1.558 0.000 0.554 0.721 0.000 0.000 0.518 0.000

XLF 0.187 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLI 0.126 0.267 0.129 0.081 0.264 0.348 0.000 0.198 0.105

XLK 0.000 7.106 4.254 2.618 3.642 5.234 2.180 1.807 0.000

XLP 0.000 0.000 0.000 0.000 0.000 0.118 0.000 0.000 0.000

XLU 0.643 0.511 0.000 0.000 0.000 0.637 0.000 0.000 0.000

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.167 0.000

XLY 0.203 0.235 0.000 0.000 0.000 0.251 0.000 0.000 0.000

Lagged QV JS3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 0.000 0.000 1.505 0.000 1.790 2.064 5.254

XLE 0.000 0.000 0.000 0.979 0.000 0.000 0.000 1.056 1.364

XLF 0.000 0.000 0.000 0.368 0.000 0.000 0.000 0.000 0.409

XLI 0.000 0.332 0.000 0.192 0.000 0.000 0.000 0.000 0.259

XLK 0.000 0.000 0.000 0.000 3.122 0.000 3.696 0.000 9.986

XLP 0.000 0.567 0.000 0.246 0.153 0.000 0.625 0.214 0.790

XLU 0.000 0.717 0.000 0.000 0.394 0.000 0.579 0.599 1.278

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.410

XLY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.464
∗ Notes: Entries are ”aggregate jump effects on excess returns” of lagged jumps from a given sector (see first row of entries)

on the excess return for each of the sectors listed in the first column of the table. Aggregate jump effects on excess returns

are aggregated absolute coefficient magnitudes, summed for statistically significant (at a 5% level, based on application of

t-statistics) coefficients on the lags in the VAR associated with the regression pertaining to each sector listed in the first column

of the table, for all lags in the regression pertaining to the sector listed in the first row of entries in the table. For further details

refer to Section 2.3.
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b: Results Based on Analysis of 2006 Jump Variation Data*

Lagged QV J from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 1.523 0.000 0.000 0.000 0.000 0.955 1.458 0.000

XLE 0.000 1.653 1.611 1.189 0.000 0.000 1.239 1.530 1.063

XLF 0.000 0.575 0.218 0.000 0.000 0.000 0.214 0.308 0.227

XLI 0.000 0.703 0.000 0.621 0.274 0.000 0.249 0.648 0.644

XLK 0.468 1.203 0.728 0.447 0.390 0.000 0.782 2.108 0.385

XLP 0.871 2.522 0.000 0.769 0.000 0.000 0.924 1.287 0.930

XLU 0.000 0.938 0.509 0.000 0.000 0.000 0.328 0.000 0.000

XLV 1.025 2.615 1.225 2.476 0.000 1.209 0.816 2.492 1.836

XLY 0.000 1.308 0.000 0.000 0.000 0.000 0.459 0.847 0.000

Lagged QV JL3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.763 0.000

XLE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLF 0.000 0.000 0.226 0.227 0.000 0.192 0.000 0.160 0.000

XLI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLK 0.000 0.000 0.000 0.369 0.000 0.373 0.000 0.000 0.000

XLP 0.000 0.000 0.000 0.952 0.000 0.847 0.000 0.000 0.000

XLU 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.268 0.000

XLV 0.000 0.000 0.000 0.972 0.000 0.931 0.000 0.000 0.000

XLY 0.000 0.000 0.000 0.544 0.000 0.515 0.000 0.346 0.000

Lagged QV JS3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 3.959 0.000 1.660 1.620 0.000 0.000 0.000 0.000 0.000

XLE 2.108 0.000 1.954 0.000 0.000 0.000 1.588 0.000 0.000

XLF 0.421 0.000 0.402 0.000 0.000 0.000 0.000 0.000 0.000

XLI 0.503 0.000 0.000 0.000 0.000 0.000 0.419 0.000 0.540

XLK 0.000 0.000 0.742 0.000 0.000 0.000 0.000 0.000 0.000

XLP 0.000 0.000 2.825 1.580 0.000 1.526 1.160 1.290 0.000

XLU 0.615 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLV 1.973 0.000 1.581 1.263 0.000 0.000 0.000 0.000 1.695

XLY 1.026 0.000 0.981 0.000 0.000 0.000 0.000 0.000 0.000
∗ Notes: See notes to Table 2.4a.
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c: Results Based on Analysis of 2007 Jump Variation Data*

Lagged QV J from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 0.000 1.107 1.732 1.317 0.000 0.000 1.737

XLE 2.423 0.000 0.000 1.226 1.969 1.218 0.949 0.988 0.000

XLF 0.000 0.000 0.000 0.850 1.432 1.046 0.000 0.000 0.000

XLI 0.630 0.433 0.154 0.184 1.084 0.696 0.312 0.126 0.285

XLK 0.220 0.447 0.405 0.337 1.100 0.747 0.241 0.522 0.588

XLP 0.000 0.000 0.000 0.281 0.528 0.346 0.000 0.000 0.000

XLU 0.000 0.000 0.299 0.207 0.000 0.229 0.000 0.000 0.000

XLV 0.000 0.000 0.000 0.407 0.716 0.474 0.000 0.000 0.000

XLY 0.227 0.000 0.000 0.000 0.195 0.365 0.000 0.229 0.000

Lagged QV JL3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 1.431 0.000 0.000 0.000 1.954 0.000 0.000

XLE 0.000 0.000 0.000 0.000 0.000 0.000 1.575 0.000 0.000

XLF 0.000 0.000 1.228 1.041 0.000 0.000 1.567 0.000 1.063

XLI 0.000 0.830 0.246 0.204 0.462 0.279 0.553 0.203 0.263

XLK 0.000 0.647 0.274 0.454 0.466 0.274 0.688 1.003 0.312

XLP 0.000 0.000 0.412 0.405 0.000 0.000 0.936 0.372 0.000

XLU 0.000 0.338 0.727 0.000 0.353 0.000 0.311 0.000 0.000

XLV 0.000 0.000 0.582 0.000 0.000 0.000 0.670 0.000 0.000

XLY 0.299 0.000 0.000 0.287 0.000 0.215 0.271 0.000 0.000

Lagged QV JS3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 7.860 1.975 0.000 0.000 1.544 0.000 0.000 1.717 1.509

XLE 6.079 1.941 1.503 0.000 2.799 3.131 1.891 1.348 3.072

XLF 10.805 1.864 1.592 0.968 2.285 2.943 2.824 1.563 2.512

XLI 0.364 0.245 0.000 0.221 0.252 0.516 0.191 0.456 1.001

XLK 1.757 0.000 0.638 0.554 0.614 0.864 0.257 0.350 0.263

XLP 1.816 0.459 0.000 0.684 0.767 0.488 0.000 0.371 0.387

XLU 1.251 0.920 0.902 0.698 0.000 0.296 0.617 0.297 1.007

XLV 3.968 0.732 0.000 0.992 1.569 1.312 1.214 0.779 0.708

XLY 1.530 0.328 0.916 0.602 0.937 0.463 1.036 0.680 1.175
∗ Notes: See notes to Table 2.4a.
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d: Results Based on Analysis of 2008 Jump Variation Data*

Lagged QV J from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 5.318 0.000 4.341 3.399 0.000 1.608 1.908

XLE 0.180 0.181 0.000 0.000 0.238 0.439 0.506 0.232 0.562

XLF 0.000 0.000 1.027 1.727 2.185 1.332 0.000 1.506 1.655

XLI 0.000 0.000 2.541 0.000 3.953 2.262 0.000 1.251 1.302

XLK 0.000 0.000 0.000 0.000 2.929 1.719 0.883 0.905 0.921

XLP 0.000 0.000 1.543 0.000 2.607 1.926 0.000 1.040 1.178

XLU 0.000 0.000 2.030 2.575 4.329 2.347 0.000 1.414 1.269

XLV 0.475 0.000 1.311 2.587 0.690 0.632 0.000 0.617 0.514

XLY 0.236 0.000 0.213 0.000 0.000 0.000 0.264 0.614 0.242

Lagged QV JL3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 5.715 0.000 2.583 3.032 5.530 4.535 1.943 1.743 0.000

XLE 1.281 1.313 0.859 0.579 1.000 1.406 1.444 1.091 2.059

XLF 4.947 0.000 2.197 0.000 5.508 4.302 1.937 4.035 2.151

XLI 3.733 0.000 3.287 1.878 3.944 3.163 1.281 2.695 1.432

XLK 3.010 0.000 2.435 1.422 4.264 2.420 0.998 2.035 0.000

XLP 4.862 0.000 2.879 2.745 5.331 2.809 1.325 3.687 1.220

XLU 11.193 6.285 12.577 6.376 12.264 9.282 3.588 7.181 6.544

XLV 2.184 0.000 1.688 1.000 2.170 0.867 0.658 1.655 0.736

XLY 1.857 0.930 1.460 0.525 1.752 1.698 1.173 1.053 2.737

Lagged QV JS3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 3.633 10.667 0.000 0.000 3.759 0.000 2.744 0.000 0.000

XLE 0.000 0.000 0.000 0.000 0.708 0.000 0.413 0.000 0.000

XLF 6.898 12.000 6.824 3.493 8.858 0.000 9.562 0.000 0.000

XLI 4.361 7.352 0.000 0.000 2.854 0.000 0.000 0.000 0.000

XLK 1.699 5.255 0.000 0.000 1.884 0.000 1.311 0.000 0.000

XLP 6.263 7.300 0.000 2.283 2.396 0.000 3.993 0.000 1.487

XLU 4.972 8.400 0.000 0.000 2.950 0.000 2.149 0.000 0.000

XLV 0.000 4.595 0.000 1.529 0.000 0.000 2.839 0.000 2.124

XLY 0.000 0.000 0.000 0.000 0.433 0.462 0.000 0.524 0.000
∗ Notes: See notes to Table 2.4a.
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e: Results Based on Analysis of 2009 Jump Variation Data*

Lagged QV J from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 3.134 2.922 4.434 0.885 4.933 0.000 5.807 5.157 3.197

XLE 4.841 8.950 8.662 2.693 4.988 2.398 7.035 8.543 6.908

XLF 6.728 11.083 13.736 2.934 19.275 0.000 22.079 13.582 4.253

XLI 0.498 0.596 1.025 0.186 1.079 0.207 0.781 0.521 0.326

XLK 1.820 2.210 3.418 0.607 3.155 0.000 4.279 2.682 1.731

XLP 3.794 4.623 6.767 1.311 7.525 0.000 8.664 4.891 4.562

XLU 5.691 6.468 8.408 1.749 11.409 0.000 13.116 8.053 0.000

XLV 2.246 3.715 4.685 2.274 5.347 0.000 6.222 2.176 3.128

XLY 2.803 2.517 3.111 0.616 3.735 0.000 4.903 2.843 0.924

Lagged QV JL3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 1.485 3.585 1.735 1.946 0.000 1.316 0.892 5.074

XLE 2.131 1.387 5.301 4.211 3.337 0.000 3.726 0.000 3.405

XLF 9.185 18.613 19.640 21.273 21.665 4.287 11.449 0.000 27.862

XLI 0.370 0.000 0.839 0.543 0.000 0.398 0.680 0.235 0.000

XLK 1.816 1.208 2.630 2.423 1.658 0.000 1.120 0.000 1.670

XLP 1.784 2.315 4.898 2.714 3.328 0.000 4.365 0.000 5.484

XLU 5.593 3.598 11.883 11.540 8.914 2.704 9.382 0.000 9.509

XLV 1.545 2.170 6.682 4.529 4.627 0.000 3.995 0.000 7.153

XLY 2.169 1.350 5.418 4.540 1.795 2.110 2.493 0.720 3.666

Lagged QV JS3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 2.242 2.132 0.000 1.925 0.000 0.000 4.873 4.227

XLE 0.000 1.936 1.638 0.000 1.724 3.211 0.000 3.033 5.869

XLF 0.000 8.467 0.000 0.000 7.602 0.000 0.000 0.000 7.216

XLI 0.665 0.555 2.065 1.788 0.946 1.129 2.226 2.216 1.831

XLK 0.000 1.664 0.000 0.000 1.426 2.825 0.000 0.000 1.575

XLP 3.026 0.000 0.000 0.000 2.583 0.000 0.000 0.000 5.777

XLU 0.000 8.165 8.282 0.000 0.000 8.443 0.000 14.484 15.314

XLV 0.000 2.357 3.009 0.000 2.489 0.000 0.000 6.500 2.714

XLY 0.000 3.119 0.000 0.000 1.368 3.170 0.000 1.556 5.798
∗ Notes: See notes to Table 2.4a.
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f: Results Based on Analysis of 2010 Jump Variation Data*

Lagged QV J from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 0.000 2.205 0.000 0.000 0.000 0.000 0.000

XLE 0.000 0.000 3.229 6.696 0.000 0.000 0.000 0.000 0.000

XLF 0.000 0.000 1.105 2.479 0.000 0.000 0.000 0.000 0.000

XLI 0.000 0.000 1.067 1.728 0.000 0.000 0.000 0.000 0.000

XLK 0.000 0.000 1.371 1.431 0.000 0.610 0.000 0.000 0.614

XLP 0.000 0.000 0.000 2.384 0.000 0.000 0.000 0.000 0.000

XLU 0.000 0.000 0.000 0.727 0.000 0.000 0.000 0.000 0.929

XLV 0.332 0.000 0.693 0.348 0.000 0.000 0.000 0.000 0.000

XLY 0.000 0.000 3.671 5.368 0.000 2.236 0.000 0.000 0.000

Lagged QV JL3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLE 0.000 0.000 0.000 4.984 0.000 0.000 0.000 0.000 0.000

XLF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLK 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLU 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.483 0.000

XLY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lagged QV JS3 from

Excess Returns of XLB XLE XLF XLI XLK XLP XLU XLV XLY

XLB 0.000 0.000 0.000 0.000 0.000 0.000 0.721 0.000 0.000

XLE 0.000 0.000 0.000 4.551 0.000 4.809 0.000 4.007 0.000

XLF 0.000 0.000 0.000 0.000 0.000 0.000 1.693 1.505 0.000

XLI 0.000 0.000 0.000 0.000 0.000 0.819 0.948 0.825 0.811

XLK 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLU 0.000 0.000 0.000 0.000 0.000 0.000 1.174 0.000 1.087

XLV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

XLY 0.000 2.272 12.386 9.018 7.471 8.746 10.176 10.696 3.685
∗ Notes: See notes to Table 2.4a.
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Chapter 3

Jump Spillover Based Risk Indexes

3.1 Introduction

We like indexes because they are straightforward, they are easy to interpret, and they can be

simple signals for something quite complicate, like the U.S. economy. In this chapter, we attempt

to construct a group of indexes that could serve as indicators for a particular type of risk in the

U.S. market - risks associated with unexpected events. To be specific, this type of risk is quantified

through a concept called jump spillover effects. The theoretical background and empirical findings

of the relationship between jumps and unexpected news announcements can be found in numerous

financial econometric papers, such as in Andersen, Bollerslev, Diebold, and Vega (2002), Huang

(2007), Bollerslev, Law, and Tauchen (2008), Evans (2011), and Chatrath, Miao, Ramchander,

and Villupuram (2014). Based on such observation, financial econometricians are interested in

studying the interaction across financial markets. Asgharian and Bengtsson (2006) find that the

U.S. market and several European markets show significant jump spillover in countries that have

features in common, such as industry structure or geographic location. Asgharian and Nossman

(2011) conclude that local European equity markets are under the influence of the U.S. market and

regional markets through jumps. Jawadi, Louhichi, and Cheffou (2015) provide evidence showing

the dependence between jumps in three European markets and U.S. markets. Aı̈t-Sahalia and Xiu

(2016) find the correlation between financial crisis and an increase in the quadratic variation of

an asset in the futures market. Chapter 2 finds jump spillover effects across nice market sectors

increased right prior to the Great Recession and dropped as the recession unfolded. This gives us

some clues on revealing risks related to jumps.

We extend the findings in Chapter 2 to construct daily frequency indexes based on the jump spillover

effects across the market sectors for the U.S. market. The main idea is that the index represents
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risks associated with jumps and are presented through spillover effects. Since there are nine sectors,

we calculate this risks in each sector and then the whole U.S. market.

The reason we have a need for such indexes is because, to the best knowledge of the authors, there

have been no similar indicators for unexpected risks in the market. One of the biggest reason is

the complication of the causes of such risks. We know that the market is changing all the time,

and is affected by countless events that make it impossible to track all of them. In this chapter,

we propose our indexes as a simple way to solve this complex issue. Instead of trying to track all

possible events that can sway, we look at the end-results - volatility jumps. Despite of the causes

of the jumps, we can directly measure the changes of the market through these jumps. Thus, we

find a straightforward and feasible method to quantify risks related to market-related events.

Moreover, what differentiate our indexes and some of the most popular indexes, like S&P500 and

VIX, are their unique characteristics. VIX is the most well-known index to measure market risks.

It is calculated using the implied volatility over the following 30 days. It is fair to say, VIX is based

on future/unknown knowledge. In this sense, our indexes are completely different from VIX. First,

we are not based on expected information from the future, instead, we are based on what happened

in the past. Second, we are interested in identifying the dynamics of risk transmission and not the

volatility in the market. Knowing how the risk transmits from one market sector to another, or

from one asset from another, enables us to hedge loss during trading. Third, VIX only covers the

whole U.S. market, while our indexes offers the option for the whole U.S. market and nine market

sectors. Comparing to existing indexes, our indexes offer a fresh prospective to evaluate the market.

Several features are selected to construct our indexes. First, we segregate various types of jumps.

Following the jump testing and jump separation methods shown in the first chapter, we obtain

daily quadratic variation caused by jumps, large jumps and small jumps. Doing so allows us to

analyze risks caused by unexpected events overall, major news announcements, and small-scale price

fluctuation respectively. Truncation level is chosen arbitrarily as shown in Aı̈t-Sahalia and Jacod

(2012). Based on the results in Schlossberg and Swanson (2018), we applied the same truncation

level to obtain the decomposed jump information. For simplicity, we denote each type of jumps as

QV J - quadratic variation due to jumps, QV JL - quadratic variation due to large jumps, QV JS -

quadratic variation due to small jumps. For each data type, we use rolling window method to extract
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the spillover coefficients among nine market sectors. We adopt the SPDR market sector ETF for

accurate sector trading information, as these ETFs are a microcosm of its corresponding industry.

During this process, we run into the number of parameters exceeds the number of observations.

We rely on three popular shrinkage and regularization methods in machine learning to tackle the

problem: Ridge, LASSO, and elastic net. At last, we construct a group of indexes for the U.S.

market and its sectors. In addition, for the U.S. market index, we provide two versions: equal

weighted and float adjusted market capitalization weighted. We also account for seasonality and

periodicity.

We find that float adjusted market capitalization weighted index works better than the equal

weighted version. Index based on QV J is preferred than index based on QV JL or QV JS, no

matter it is for the sector or the whole market. The best shrinkage and regularization method is to

let the data decide which shrinkage and regularization method to apply.

The rest of the chapter is organized as follows. Section 3.2 reviews nonparametric jump tests,

decomposition methods, and data shrinkage and regularization methods. Section 3.3 outlines the

empirical methodology used in our data analysis. Section 3.4 contains our empirical findings.

Finally, concluding remarks are gathered in Section 3.5.

3.2 Theoretical Background

The construction of this index is achieved through a series of steps, involving statistical testing and

analysis:

• Jump test and decomposition

• Volatility jump spillover based risk quantification

3.2.1 Jump Test and Decomposition

Jump test and decomposition obtains jump information from 5-min trading data. First, a bipower

variation based jump test is applied to identify whether or not there are jumps in an asset on

a trading day. Then, a truncated method power variation based method is used to decompose

jumps from the variation process. We denote QV C as percentage of quadratic variation caused
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by continuous component, QV J as percentage of quadratic variation caused by jumps, QV JL as

percentage of quadratic variation by large jumps, and QV JS as percentage of quadratic variation

by small jumps. For days when no jumps are present, QV J = QV JL = QV JS = 0. Below is the

detailed theoretical background.

The information presented in this section is quite similar to what is described in Chapter 2.

Set-up

Define log prices as Yt = log(Pt), and assume that they follow an Itô semimartingale process,

Yt = Y0 +

∫ t

0

audu +

∫ t

0

σudWu +

∫ t

0

∫

{|y|≤ε}
y(j − ν)(du, dy) +

∫ t

0

∫

{|y|>ε}
yj(du, dy), (3.1)

where Y0 +
∫ t

0
audu +

∫ t
0
σudWu is a Brownian semi-martingale. Here,

∫ t
0
audu is the drift term,

with at being the instantaneous drift, and
∫ t

0
σudWu is the continuous part with σt being the

spot volatility. Additionally, j is the jump measure of Yt, and its predictable compensator is the

Lévy measure ν. Finally,
∫ t

0

∫
{|y|≤ε} y(j − ν)(du, dy) is the so-called small jump component, and

∫ t
0

∫
{|y|>ε} yj(du, dy) is the so-called large jump component, with ε being an arbitrary cutoff level

specified in order to differentiate between small and large jumps.

Several important concepts are presented here: realized volatility (RV), quadratic variation, and

integrated volatility.

Suppose that t > 0 is a fixed time period, for example, one trading day, and the ith log-price of

an asset observed during day t is Yi,t. The intra-ith return on day t is ri,t = Yi,t − Yi−1,t, where

i = 1, 2, ..., t/δ and δ is the sampling frequency. For one trading day, we have the explicit expression

for RV:

RVt =

t/δ∑

i=1

r2
i,t. (3.2)

Quadratic variation is defined as:

[Y ]t = p lim
δ→0

t/δ−1∑

i=0

(Yti − Yti)2, (3.3)

for any sequence of partitions t0 = 0 < t1 < ... < tn = t, with supi{ti+1− ti} → 0 for δ → 0. When

sampling is at a high and fixed frequency (such as N →∞ or δ → 0),

RVt
P→ [Y ]t
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where P denotes uniform convergence in probability. Thus, realized quadratic variation (QV) is

expressed as:

QV = [Yδ]t =

t/δ∑

i=1

r2
i,t (3.4)

The definition of integrated volatility is
∫ t

0
σ2
udu. When asset prices are continuous on a fixed

interval [0, T ],

[Y ]t
P→
∫ t

0

σ2
udu, (3.5)

and when asset prices also have a discontinuous component on [0, T ] (like in Equation (1)),

[Y ]t
P→
∫ t

0

σ2
udu+

∑

u≤t
(∆Yu)2, (3.6)

where
∑
u≤t(∆Yu) is a pure jump process and a jump at time s is defined as ∆Yt = Yu − Yu−.

Here,
∑
u≤t(∆Yu)2 is the variation of the jump component.

Jump Test

Under the assumption of Equation (1), Equation (6) shows that if the theoretical integrated volatil-

ity can be properly estimated, jumps can be measured using the difference between QV and realized

integrated volatility. This is the key idea underpinning bipower variation based tests.

The sth power variation is defined as:

{Y }[s]t = p lim
δ→0

δ1−s/2
t/δ∑

i=1

|ri,t|s,

where s > 0.

The bipower variation process is defined as:

{Y }[s1,s2]
t = p lim

δ→0
δ1−(s1+s2)/2

[t/δ]−1∑

i=1

|ri,t|s1 |ri+1,t|s2 ,

where s1, s2 > 0. More importantly, when s1 = s2 = 1,

µ−2
1 {Y }

[1,1]
t =

∫ t

0

σ2
udu.

Thus, integrated volatility can be consistently estimated as:

µ−2
1 BV = µ−2

1

t/δ∑

i=2

|ri−1,t||ri,t| P→
∫ t

0

σ2
udu (3.7)
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where µ1 = E[u] =
√

2/
√
π ' 0.79788, and u is N(0, 1) random variable.

Barndorff-Nielsen and Shephard (2006a) suggest an adjusted ratio jump test

Ĵ =
δ−1/2

√
ηmax(t−1, QPVt

BV 2
t

)

(µ−2
1 BVt
QVt

− 1
) d→ N(0, 1). (3.8)

where d denotes convergence in distribution, and QPV is the realized quadpower variation

QPVt = {Yδ}[1,1,1,1]
t = δ−1

t/δ∑

i=4

|ri−3,t||ri−2,t||ri−1,t||ri,t| (3.9)

Huang and Tauchen (2005), Andersen, Bollerslev, and Diebold (2007) extends the test by Barndorff-

Nielsen and Shephard (2006a) and suggest using a daily statistic, zTP,t, to test for jumps on a daily

basis:

zTP,t =
RVt −BVt√

(vbb − vqq) 1
N TPt

d→ N(0, 1), (3.10)

with vqq = 2, vbb = (π2 )2 + π − 3, Here, realized tripower quarticity (TP) is defined and estimated

as follows:

TPt = δ−1µ−3
4/3

1/δ∑

j=3

|ri−2,t|4/3|ri−1,t|4/3|ri,t|4/3 P→
∫ t

0

σ4
udu (3.11)

Inference is carried out by rejecting the null of no jumps if zTP,t exceeds the critical value, Φα,

leading to a conclusion that there are jumps during the day. A common choice for the critical value

is 1.96, equivalent to 5% significant level.

Jump Decomposition

In our empirical application, we utilize the jump decomposition methods discussed in Aı̈t-Sahalia

and Jacod (2012) in order to decompose quadratic variation into continuous components and jump

components. Furthermore, we consider large jump and small jump components, as discussed above.

When considering truncated sth realized power variation, if the power, s < 2, then the continuous

component in the process dominates, while if s > 2 then the jump component dominates. When

s = 2 both components have equal influence on the process. Thus, we can obtain important

information about quadratic variation by decomposing realized power variation into continuous

and jumps components, as follows.
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The truncated sth realized power variation as defined in Aı̈t-Sahalia and Jacod (2012) is expressed

as follows.

B(s, u, δ) =

t/δ∑

i=1

|ri,t|sI{|ri,t|≤u}.

Here, the truncation level u is set equal to bδω, for some constant ω ∈ (0, 1/2), with b > 0, which

results in u shrinking to 0. As above, δ is the sampling frequency. In this framework, ω < 1/2

ensures that all increments ”mainly” contain a Brownian contribution. Note, when u is set to

infinity, the truncated realized power variation becomes B(s,∞, δ), in which case no truncation is

applied.

Percentage of total QV due to continuous component (QV C) = B(2,u,δ)
B(2,∞,δ)

Percentage of total QV due to jump component (QV J) = 1− B(2,u,δ)
B(2,∞,δ)

(3.12)

In our empirical section, we use the value of u used in code available from Aı̈t-Sahalia and Jacod

(2012). We denote the variation due to jumps (i.e., increments “larger” than u) as:

U(s, u, δ) =

t/δ∑

i=1

|ri,t|sI{|ri,t|>u}

= B(s,∞, δ)−B(s, u, δ)

Jump decompositions based on this metric can be calculated as:

Percentage of QV due to large jump component (QV JL) = U(2,ε,δ)
B(2,∞,δ)

Percentage of QV due to small jump component (QV JS) = B(2,∞,δ)−B(2,u,δ)−U(2,ε,δ)
B(2,∞,δ)

(3.13)

The large jump cut-off level is ε = bδω, which is arbitrarily chosen, by experimenting with multiple

values of ε.1 Based on the findings in Chapter 2 we set b = 3. We consider the following variations:

QV J , QV JL, QV JS.

3.2.2 Volatility Jump Spillover Based Risk Quantification

Volatility jump spillover based risk quantification allows us to quantify risks through jump spillover

effects, which ultimately are related to major news/events and high frequency trading strategies.

After we obtain QV J , QV JL, QV JS, we would like to quantify the jump spillover effects across

1Recall that u is set equal to bδω . In our calculations, we set b = 2 when calculating u.
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all market sectors on a particular day. Several questions we need to ask first:

(1) which data to use: total jumps (QV J), large jumps (QV JL), or small jumps (QV JS)

(2) how to obtain the spillover effects on a daily basis

(3) how to decide number of lags in the regression

(4) how to solve the problem that the number of regressors is larger than the observations

Empirical evidence shows that large jumps are usually associated with major news announcement

and events, and small jumps are a result of high frequency trading strategies. Thus, we conduct our

linear regression analysis on each type of jumps: QV J , QV JL, QV JS. In order to obtain jump

spillover effects at a daily frequency, we adopt the rolling window method. We choose the length of

the rolling window to be half a year - 132 days (assuming each month has 22 trading days). This

length is chosen based on the economic logic that half a year seems to be a reasonable length for

any particular events to take an effect. Then for each rolling window, we conduct linear regression

for each sector in the form as below:

Sectori,t,h = βi,0,h +
∑

j 6=i

k=22∑

k=1

βi,j,k,hSectorj,t−k,h + ε1,t,h (3.14)

where Sectori,t,h is the variation of the jump component of the ith market sector at time t in

year h with i = 1, ..., 9 representing nine market sectors. Sectorj,t−k,h is the k lagged variation of

the jump component of the jth market sector in year h with j = 1, ..., 9 representing nine market

sectors. h = 2005, ..., 2010 is the calendar year. Variation of the jump component are categorized

as QV J ,QV JL, and QV JS. βi,0,h is the intercept for market sector i in year h. βi,j,k,h denotes the

coefficient of kth lagged jump in sector j in regards to the jump in ith sector in year h. Clearly, these

βs quantify the spillover effects in that year. The number of lags is chosen based on both economic

analysis and Akaike information criterion (AIC). We believe that jump spillover effects can last for

a long period, such as one month (22 trading days). AIC also confirms this choice (k = 22). We

did not use BIC because it penalizes large models and results in neglecting lagged regressors from

multiple market sectors. Augmented DickeyFuller test is conducted to ensure all input data meeting

the stationary requirement. Maximum likelihood is used to estimate the model. The jump spillover

effects of market sector j on market sector i (j 6= i) is calculated as
∑k=22
k=1 |β̂i,j,k,h|, where β̂ is



52

the estimated coefficient of lagged jumps in market sectors. The jump spillover effects contained in

sector i is then
∑
j 6=i
∑k=22
k=1 |β̂i,j,k,h|, which is the base of our index.

For each regression, there are 199 parameters while our observation has only 132 (22*6) data points,

we now face a high dimensional issue. This issue arises when when the number of regressors are

larger than the number of observations. The traditional least squares fitting procedure estimates

the coefficients βj by minimizing sum of squared errors

min
n∑

i=1

(yi −
p∑

j=1

βjxij)
2 (3.15)

This method only works when the number of the regressors is much smaller than the number of

observations. If not, there will be either infinite solutions to this minimization problem or the

estimate have poor predictive accuracy. We apply shrinkage and dimensional reduction methods

from machine learning, particularly Ridge, LASSO (least absolute shrinkage and selection operator),

and elastic-net method to estimate the coefficients.

Ridge Regression

Ridge regression is proposed to constrain βs so that we can solve the problem that the number of

regressors exceed the number of observations. The ridge regression is constructed as below:

PRSS(β)l2 =
n∑

i=1

(yi −
p∑

j=1

βjxij)
2 + λ

n∑

j

β2
j (3.16)

where PRSS stands for penalized residual sum of squares, λ is the tuning parameter and controls

the impact of the shrinkage penalty λ
∑n
j β

2
j in the minimization problem. When λ = 0, there is

no penalization and we have p parameters. When λ → ∞, the parameters are mostly constrained

and the degrees of freedom is decreasing to 0. Moreover, x is assumed to have mean 0 and unit

variance, while y is assumed to be centered.

Now the problem becomes to minimize PRSS, and since PRSS(β)l2 is convex, it has a unique

solution. The beta here is biased and called the ridge estimator, denoting as βridge. If we calculate

the ratio between the squared loss with ridge and without ridge (the traditional one), we can see

that the ridge regression can reduce the expected squared loss despite being a biased estimator.
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LASSO Regression

One pitfall of the ridge regression is the difficult interpretation, as no regressors are eliminated

from the regression. As a result, Tibshirani (1996) proposes LASSO (least absolute shrinkage and

selection operator) to shrink the estimates of βj towards zero.

β̂λ = arg min{
n∑

i=1

(yi −
p∑

j=1

βjxij)
2 + λ

n∑

j

|βj |} (3.17)

similar to ridge regression, λ is the tuning parameter and controls the impact of the shrinkage

penalty λ
∑n
j |βj | in the minimization problem.

Unlike ridge regression, LASSO has no closed form. Efron et al. (2004) suggest using the LARS

algorithm and prove that the LASSO solution paths grow piecewise linearly in a predictable way.

In this chapter, we rely on the glmnet packages in R, which is discussed at the end of this section.

Elastic Net Regression

Zou and Hastie (2005) build their work on LASSO and proposed the elastic net regularization

method. Similar to LASSO, it serves a way to select and regulate regression models; and unlike

LASSO, it emphasizes the grouping effect, where correlated regressors tend to stay in and leave the

model together.

min
N∑

i=1

(yi − β0 − xTi β)2 + λ[(1− α)||β||22/2 + α||β||1] (3.18)

where λ ≥ 0 is the tuning parameter as before and 0 < α < 1 is the mixing parameter balancing

the effect of ridge and LASSO. Clearly, when α = 1, the minimization problem becomes LASSO

and when α = 0, the minimization problem becomes ridge.

Zou and Hastie (2005) propose an algorithm called LARS-EN to solve the elastic net efficiently,

which is very similar to the LARS algorithm of Efron et al. (2004). The coordinate decent in the

glmnet packages in R is applied in this chapter.

R glmnet packages

The glmnet packages in R applies the coordinate descent to provide solutions to the three shrink-

age and regularization methods above. Specifically, suppose the current estimates are β̃s. The
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updated estimates are obtained by computing the gradient at the current estimates. Without loss

of generality, the objective function for the Gaussian family can be written as:

min
1

2N

N∑

i=1

(yi − β0 − xTi β)2 + λ[α||β||1 + (1− α)||β||22/2] (3.19)

where λ and α is the tuning and mixing parameter as described above.

Then the update of the estimates is calculated as

βupdate ←
S( 1

N xij(yi −
˜

yupdatei ), λα)

1 + λ(1− α)
(3.20)

where ỹupdatei = β̃0 +
∑
i6=j xij β̃j . S(z, γ) is the soft-thresholding operator with value sign(z)(|z| −

γ)+.

The requirement for the above three shrinkage methods is to standardize our data to have a unit

variance for each rolling window. To find the best tuning parameter λ and best mixing parameter

α, the cross validation method recommended by Rob Hyndman is applied. 2 The common K-fold

cross validation is not always suitable because of the inherent serial correlation and possible non-

stationarity in time series data as discussed in Arlot and Celisse (2010), Bergmeir, Hyndman, and

Koo(2018). In our chapter, we first define a default shrinkage and regularization method, such as

ridge, LASSO, and elastic net by setting the α = 0, α = 1, 0 < α < 1 respectively. To complete

our experiments, we also create a case where we let the data in each rolling window decide which

shrinkage and regularization method to use. We call it mixed. So in total, we have four cases:

ridge, LASSO, elastic net, and mixed.

3.3 Empirical Methodology

3.3.1 Index Creation

From section 3.2, we obtain jump spillover coefficients for each sector for each trading day. Since

our data are always between 0 and 1 (it is a percentage), our coefficients are in the same scale.

Each index is constructed following the steps below:

• Take the absolute value of the coefficients β̂i,j,k,h, called it AbsCoefficient |β̂i,j,k,h|, based on

the targeting market, jump variation type, and data shrinkage and regularization method.

2For more details see: https://robjhyndman.com/hyndsight/tscv/
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• In rolling window h, sum all the AbsCoefficients appears in the regression on jumps in sector

i and denote it as Indi =
∑
j 6=i
∑22
k=1 |β̂i,j,k,h|. It is worth noting that i 6= j is to ensure to

exclude the coefficients from the autoregression process and only account for the jump spillover

effects. For example, the jump spillover affects jumps in XLB in window h is IndXLB =
∑
j 6=1

∑22
k=1 |β̂1,j,k,h|, where h = 1, ..., 1380.

• For market index, we construct two versions: equal weighted index and float-adjusted weighted

index. To calculate weights for each market sectors, we obtain the historical S&P500 sector

weightings between 2005 and 2010 from the SPDR website. Appendix 3.I describes more

detailed information.

Specifically, the equal weighted market index and the float adjusted weighted market index

are constructed as below:

IndFW = WXLB ∗ IndXLB +WXLE ∗ IndXLE +WXLF ∗ IndXLF +WXLI ∗ IndXLI+

WXLK ∗IndXLK+WXLP ∗IndXLP +WXLU ∗IndXLU +WXLV ∗IndXLV +WXLY ∗IndXLY
(3.21)

The equal weighted indexes for the U.S. market is constructed by adding the spillover coeffi-

cients from each market sector assuming each sector has the same weight.

IndEW = IndXLB+IndXLE+IndXLF+IndXLI+IndXLK+IndXLP+IndXLU+IndXLV +IndXLY

(3.22)

• To construct the index for the whole U.S. market, we can choose to time the impact from

each sector with or without its corresponding weight. For the index for each market sector,

we just change the weight of the corresponding sector to be 1 and the rest of the weights to be

0. For example, our initial market index for one day is Indextemp =
∑9
i=1Wi ∗ Indi, where i

is the ith sector.

• The final step is to factor the seasonality and periodicity. We first apply the apply the

exponential function on the trend Iexp = eIndextemp , which aims to enhance the contrast

between unexpected-events period and normal period, and then use stl package in R to extract

the trend of Iexp to obtain our final Index Ind.
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As a result, a total of 132 indexes are constructed based on the different choices made in each step.

First, there are three types of data that we want to obtain the jump spillover coefficients: QV J ,

QV JL, and QV JS. Second, we have four cases to conduct the regression analysis: ridge, LASSO,

elastic net, and mixed. Last, we can construct the U.S. market index by summing up the spillover

coefficients from nine market sectors using equal weights or their equivalent weights from the S&P

500 index, as well as indexes for each market sector. Appendix 3.II shows the complete list of 132

indexes.

3.3.2 Markov Regime Switching Model

To better illustrate our indexes, the markov regime switching model is applied to use our indexes to

detect different economic regimes, and then the results are compared with regime detection using a

S&P500 based ETF called SPY and VIX. The joint likelihood of observation Yt = {y1, ..., yn} and

latent states St = {s1, ..., sn} is expressed as:

P (Yt, St) = P (s1)P (y1|s1)
n∏

2

P (st|st−1)P (yt|st) (3.23)

where si is the state at time i and can take two values sa and sb. In other words, at any time t, we

have two possible states sa and sb. P (s1) is the prior probability distribution on the initial state.

P (st|st−1) describes the probability of a transition from the state at time t− 1 to the state at time

t. P (yt|st) is the observation/measurement probability.

To obtain the maximum likelihood estimates of te model parameters, the marginal likelihood of

the observation is calculated using dynamic programming. In this chapter, we adopt depmixS4

package from R to estimate the parameters, which is achieved by the expectation-maximization

(EM) algorithm. Interested readers can read more in Visser and Speekenbrink (2010).

3.4 Empirical Results

3.4.1 Data Description

We obtain daily millisecond trading data between January 2005 to December 2010 from TAQ

database though Wharton Research Data Services (WRDS). To reduce the micro-structure noise

effects, we follow literature standard and choose the sampling frequency to be at the 5 minute
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frequency between 9:30am to 4pm, which yields roughly 78 observations per day. When there is no

price at the exact time stamp, we use the closest one available.

We choose nine market sector ETFs constructed by SPDR. These nine sector ETFs are XLY (con-

sumer discretionary sector), XLP (consumer staples sector), XLE (energy sector), XLF (financials

sector), XLV (health care sector), XLI (industrials sector), XLB (materials sector), XLK (technol-

ogy sector), and XLU (utilities sector).

According to SPDR website, XLY includes companies from industries like: media, retail (specialty,

multiline, internet and catalog), hotels, restaurants and leisure, textiles, apparel and luxury goods,

household durables; automobiles; auto components, distributors, leisure products, and diversified

consumer services. XLP covers food and staples retailing, household products, food products; bev-

erages, tobacco, and personal products. XLE consists of companies in oil, gas and consumable fuels,

and energy equipment and services. XLF is about diversified financial services, insurance, banks,

capital markets, mortgage real estate investment trusts (”REITs”), consumer finance, and thrifts

and mortgage finance. XLV provides a picture of companies in pharmaceuticals, health care equip-

ment and supplies, health care providers and services, biotechnology, life sciences tools and services,

and health care technology. XLI has a wide range of industries, including aerospace and defense, in-

dustrial conglomerates, marine, transportation infrastructure, machinery, road and rail, air freight

and logistics, commercial services and supplies, professional services, electrical equipment, construc-

tion and engineering, trading companies and distributors, airlines, and building products. XLB is a

collection of companies in chemicals, metals and mining, paper and forest products, containers and

packaging, and construction materials. XLK aggregate companies in technology hardware, stor-

age, and peripherals, software, diversified telecommunication services, communications equipment,

semiconductors and semiconductor equipment, internet software and services, IT services, electronic

equipment, instruments and components, and wireless telecommunication services. XLU provides

information about companies in electric utilities, water utilities, multi-utilities, independent power

producers and energy traders, and gas utilities. In 2015, SPDR launched a new ETF targeting

real estate management and development and REITs, excluding mortgage REITs, but since our

analysis is between 2005 and 2010, we exclude this new sector ETF from our data set.

To compare our indexes with industry benchmarks, we download the S&P 500 index based ETF
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SPY and VIX from Yahoo!Finance at a daily frequency between January 2005 to December 2010,

so that we can use Markov regime-switching model on the SPY, VIX and our indexes.

3.4.2 Empirical Findings

Based on the three different jump types and four data shrinkage and regularization methods, as well

as market types, we created 132 indexes. Among those 132 indexes, 24 of them focus on the whole

U.S. market with 12 using equal weighted methods and 12 float-adjusted market capitalization

weighted methods. The rest are 12 incices for each market sectors. Due to the large amount of

information, only key points and results are presented in this chapter. indexes result in redundant

or useless information are omitted from discussion.

Market Indexes

As described above, two types of market indexes are constructed: the equal weighted indexes

and float-adjusted market capitalization weighted indexes. For each weighting type, we categorize

indexes based on the type of jumps considered: total jump variation QV J , large jump variation

QV JL, and small jump variation QV JS. For each jump type, four shrinkage and regularization

cases are applied to find the spillover coefficients: ridge, LASSO, elastic net, and mixed.

USIndex1 to USIndex 12 are the float-adjusted market capitalization weighted indexes after adjust-

ing seasonality and periodicity. Weights for each sector is calculated using the method in Appendix

3.III. Figure 3.1 compares the USIndex group with SPY and VIX. Several conclusions can be made.

First, prior to the Great Recession, we see an increase in jump spillover based index for indicex

using total and large jump variation. This matches the findings in Chapter 2. Second, we see

LASSO and ridge works better for large and small jump variation (USIndex5, USIndex6, USIn-

dex11, USIndex12) respectively, while elastic net works better for total jump variation (USIndex1).

This can be explained by the theoretical background of those methods. As explained in Section

3.2.2, LASSO penalizes large models and ridge keeps all the explanatory variables. LASSO is able

to catch rare and meaningful regressors, and Ridge can preserve information on all possible jumps

that affect the dependent variable. In some way, both methods are capable to explain the dynamics

among a specific type of jump variation. However, for the same reason, LASSO does not work that
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well in the total jump case (USIndex4), which is probably due to some information are lost during

shrinking regressors. Ridge method results (USIndex10) can be noisy and misleading. While elastic

net aims to filter regressors as a group. We can say that it looks at only partial information when

balancing regressors, so no strong patterns for USIndex2 and USIndex3, but works well when data

are total jumps (USIndex1). Mixed, which uses data to decide the shrinkage and regularization

method, seems to provide a good justification in all cases (as seen USIndex7, USIndex8, USIn-

dex9). Third, total jumps, large jumps, and small jumps captures different aspects in the market

movements, comparing USIndex7, USIndex8, and USIndex9. Large jump risks appeared as early

as in late 2006, due to the housing bubble, while small jump risks spiked right before the recession

started. Total jump risks shows that 2007 is a volatile year.

USIndexEW1 to USIndexEW12 are the equal weighted indexes for the U.S. market using different

types of jumps and data shrinkage and regularization methods. Figure 3.2 aggregates them with

SPY and VIX. We see huge spikes appearing in various places along the timeline, which is quite

different from the float-adjusted case. While each spikes can be associated with some major eco-

nomic events, such as the housing bubble in 2006, the rise and fall of crude oil prices between 2005

and 2009, the Great Recession, etc., the drastic changes in levels of the index can be deceptive. In

other words, graphs is not the most reliable way for analysis. Thus, we turn to Hidden Markov

models described earlier to investigate the regime states in these indexes and comparing them to

SPY and VIX. The depmixS4 R package is applied to achieve this goal. Figure 3.3 presents the

regime posterior probabilities using SPY, VIX, USIndex7 and USIndexEW7. Clearly that SPY

and VIX indicate the business cycles changed around mid-2008, while USIndex7 and USIndexEW7

present regimes at a finer grid. Both USIndex7 and USIndexEW7 show that regime switching hap-

pened more frequently between 2006 and 2007. Yet USIndex7 fluctuates more in 2008-2009 period,

while USIndexEW7 not so much. However, all of these observations provide some clues for our

economy. To conclude, float-adjusted weighted and equal weighted indexes are both useful in terms

of detecting regimes, and jump sizes affect the type of risks showing in the indexes.
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Market Sector Indexes

To expand our experiments, we attempt to construct jump-spillover-based indexes for each market

sectors. Similar to the whole market indexes, we categorize indexes based on the type of jumps

considered: total jump variation, large jump variation, and small jump variation. For each jump

type, four shrinkage and regularization cases are applied to find the spillover coefficients: ridge,

LASSO, elastic net, and mixed.

XLB indexes target jump spillover risks in the XLB (materials) sector (Figure 3.4). We still focus

on indexes using mixed data shrinkage and regularization method. XLBIndex7, which is based on

the total jump variation, shows spikes in late 2006, late 2007 and early 2008, while XLBIndex8

focusing large jumps indicates spikes happening in early 2009, and XLBIndex9 shows small jumps

based spikes appearing in 2005 and 2010. Different timestamps with spikes lead to the conclusion

that jump sizes associate with different types of risks presented here. The industry is affected both

by the overall economic environment (the recession), specific industry news (2009 chemical industry

faced sharp declines), and unknown causes.3

XLE indexes target jump spillover risks in the XLE (energy) sector (Figure 3.5). We focus on

indexes using mixed data shrinkage and regularization method. XLEIndex7, which is based on the

total jump variation, shows spikes in late 2005, early 2007, while XLEIndex8 focusing large jumps

indicates spikes happening in 2007 and mid-2010, and XLEIndex9 sees small jumps based spikes

appearing in 2005, 2006, 2009 and 2010. Different timestamps with spikes lead to the conclusion

that jump sizes associate with different types of risks presented here. The industry is affected both

by the many events (strong growth in 2005, Hurricane Katrina in Aug. 2005, decline in 2007 for

the U.S. market), specific industry news (a volatile global energy market in 2007), and unknown

causes. 4

XLF indexes target jump spillover risks in the XLF (financials) sector (Figure 3.6). We focus

on indexes using mixed data shrinkage and regularization method. XLFIndex7, which is based

on the total jump variation, shows spikes in mid-2006, mid-2007, late 2009 and mid-2010, while

3For more details see: https://pubs.acs.org/cen/coverstory/88/8827cover.html for details
4For more details see:

https://www.ferc.gov/market-oversight/reports-analyses/reports-analyses.asp
http://www.nytimes.com/2005/08/30/us/hurricane-katrina-slams-into-gulf-coast-dozens-are-dead.html
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XLFIndex8 focusing on large jumps indicates spike happening in late 2005, mid-2007, and mid-

2008, and XLFIndex9 sees small jumps based spikes appearing in early 2007 and late 2009, as

well as in 2010. Different timestamps with spikes lead to the conclusion that jump sizes associate

with different types of risks presented here. The industry is affected both by the overall economic

environment (total jumps - housing bubble in 2006-2007, a recovering U.S. economy in late 2009

with Dow ended above 10,000 the first time in a year, and impact of European debt crisis and

weaker-than-expect June job report with Dow closed at a 7 month low in July 2010), specific

industry news (an unexpected sudden fall in the economy in 2005 and the beginning of the financial

crisis and Great Recession in 2007 and 2008) and unknown causes. 5

XLI indexes target jump spillover risks in the XLI (industrials) sector (Figure 3.7). We focus on

indexes using mixed data shrinkage and regularization method. XLIIndex7, which is based on

the total jump variation, shows spikes concentrate on times prior to the Great Recession, while

XLIIndex8 focusing large jumps indicates spikes happening in 2005-early 2007, 2009, and 2010, and

XLIIndex9 sees small jumps based spikes appearing between 2008 and 2009. Different timestamps

with spikes lead to the conclusion that jump sizes associate with different types of risks presented

here. The industry is affected both by the overall economic environment, specific industry news,

and unknown causes.

XLK indexes target jump spillover risks in the XLK(technology) sector (Figure 3.8). We focus on

indexes using mixed data shrinkage and regularization method. XLKIndex7, which is based on

the total jump variation, shows spikes concentrate during 2006-2007, while XLKIndex8 focusing

large jumps indicates spikes happening in late 2005, and XLKIndex9 sees small jumps based spikes

appearing between 2008 and 2009. Different timestamps with spikes lead to the conclusion that

jump sizes associate with different types of risks presented here. The industry ETF is affected

both by the economic environment (a sharp slowdown in late 2005 and in late 2006), and unknown

causes. 6

5For more details see:
http://www.nytimes.com/2009/10/15/business/15markets.html
http://money.cnn.com/2010/12/31/markets/2010 stock market review/index.htm
http://www.nytimes.com/2006/01/28/business/us-economy-slowed-sharply-at-end-of-2005.html
6For more details see:

http://www.nytimes.com/2006/01/28/business/us-economy-slowed-sharply-at-end-of-2005.html
https://www.americanprogress.org/issues/economy/news/2006/12/21/2420/the-u-s-economy-in-review-2006/
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XLP indexes target jump spillover risks in the XLP (consumer staples) sector (Figure 3.9). We fo-

cus on indexes using mixed data shrinkage and regularization method. XLPIndex7, which is based

on the total jump variation, shows spikes in late-2008, late 2009, and late 2010, while XLPIndex8

focusing large jumps indicates spikes happening in early 2005, late 2008, and late 2009, and XLPIn-

dex9 sees small jumps based spikes appearing between 2007 and 2008. Different timestamps with

spikes lead to the conclusion that jump sizes associate with different types of risks presented here.

It is quite interesting to see that in the XLP case, indexes based on total jumps and large jumps

are quite similar. This is due to the nature of the sector, which is an industry that people behave

the same way regardless of their financial situations. The industry is affected mainly by the need

from consumers, which is affected by the overall economy.

XLU indexes target jump spillover risks in the XLU (utilities) sector (Figure 3.10). We focus on

indexes using mixed data shrinkage and regularization method. XLUIndex7, which is based on

the total jump variation, shows spikes in 2005, 2006 and 2007, while XLUIndex8 focusing large

jumps indicates spikes happening around the same time as XLUIndex7 shows, and XLUIndex9 sees

small jumps based spikes appearing in early 2007. Different timestamps with spikes lead to the

conclusion that jump size associate with different types of risks presented here. Moreover, we can

see XLUIndex7 and XLUIndex8 is quite similar to XLFIndex8, this is because the housing market

is closely related to the real estate companies as well as construction and utility companies.

XLV indexes target jump spillover risks in the XLV (health care) sector (Figure 3.11). We focus on

indexes using mixed data shrinkage and regularization method. XLVIndex7, which is based on the

total jump variation, shows spikes concentrate on late 2005 and early 2007, while XLVIndex8 focus-

ing large jumps indicates spikes happening in early 2009, and XLVIndex9 sees small jumps based

spikes appearing across sampling years. Different timestamps with spikes lead to the conclusion

that jump sizes associate with different types of risks presented here. The industry is affected by

the economic environment, specific industry news (Hurricane Katrina in Aug. 2005, the Deficit Re-

duction Act of 2005 in October, the development of Obamacare in 2009-2010), and price movement

due to causes that are hard to quantify (such as the E. coli breakout in Sep. 2006).7

7For more details see:
http://www.nytimes.com/2005/08/30/us/hurricane-katrina-slams-into-gulf-coast-dozens-are-dead.html
https://www.congress.gov/bill/109th-congress/senate-bill/1932
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XIY indexes target jump spillover risks in the XLY (consumer discretionary) sector (Figure 3.12).

We focus on indexes using mixed data shrinkage and regularization method. XLYIndex7, which

is based on the total jump variation, shows spikes in 2008, while XLYIndex8 focusing large jumps

indicates spikes happening in early 2005 and late 2010, and XLYIndex9 sees small jumps based

spikes appearing in 2007-2008 and 2009-2010. The different time with spikes lead to the conclusion

that jump sizes associate with different types of risks presented here. Since this industry is mainly

affected by the consumer financial situation, it is not surprising to see that the spikes in total jump

and small parts based indexes corresponds to the overall economic environment, while large jump

variation based index to the industry specific events, such as strong consumer confidence in early

2005 and an unexpected gain in consumer borrowing in 2010.

3.5 Concluding Remarks

This chapter experiments a novel way to construct a new type of index that aims at risks associated

with volatility jump spillovers. Volatility jumps are generally believed to be related to major news

announcement/events, as well as high frequency trading strategies. Thus, in some sense, our indexes

offer a way to reveal information that are quite complicated, because news announcement/event

worldwide and trading strategies are not easy to keep track with. We find some evidence that our

indexes provide useful information to signal the market, as well as market sectors.

https://www.cnn.com/2013/06/28/health/e-coli-outbreaks-fast-facts/index.html
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Appendix 3.I

The historical S&P500 sector weightings between 2005 and 2010 are obtained from the webpage:

http://www.sectorspdr.com/sectorspdr/Pdf/All%20Funds%20Documents/Document%20Resources/

10%20Year%20Sector%20Returns

Sector Historical Weights in S&P500

Sector Sector ETF 2005 2010

Consumer Discretionary XLY 10.7 10.6

Consumer Staples XLP 9.6 10.6

Energy XLE 9.3 12.0

Financials XLF 21.3 16.1

Health Care XLV 13.3 10.9

Industrials XLI 11.4 10.9

Information Technology XLK 15.3 18.8

Materials XLB 3.0 3.7

Telecom 5.5 3.1

Utilities XLU 3.8 3.3

The above data is obtained from the sector returns document from sectorspdr.com and its source

is quoted as Standard and Poor’s. While it is not clear how the XLK (technology) sector is related

to the Information Technology and Telecom, we decide to only use the Information Technology to

represent the weight of the XLK.

Since our data run between 2005 and 2010, we take the average of the 2005 and 2010 weights to

apply it over the 5-year period. The weights for each sector is listed as below:

Sector Weights Used In Our Research

Sector ETF 2005 - 2010

Consumer Discretionary XLY 10.65

Consumer Staples XLP 10.1

Energy XLE 9.65

Financials XLF 18.7

Health Care XLV 12.1

Industrials XLI 11.15

Information Technology XLK 34.1

Materials XLB 3.35

Utilities XLU 3.55



65

A
p
p

e
n
d
ix

3
.I

I

L
is

t
o
f

In
d

ic
e
s

In
d
e
x

N
a
m

e
In

d
e
x

D
e
sc

ri
p
ti

o
n

In
d
e
x

N
a
m

e
In

d
e
x

D
e
sc

ri
p
ti

o
n

In
d
e
x

N
a
m

e
In

d
e
x

D
e
sc

ri
p
ti

o
n

In
d
e
x

N
a
m

e
In

d
e
x

D
e
sc

ri
p
ti

o
n

U
S
In

d
e
x
1

w
e
ig

h
te

d
e
la

st
ic

n
e
t
Q
V
J

X
L

B
In

d
e
x
1
0

x
lb

ri
d
g
e
Q
V
J

X
L

II
n
d
e
x
7

x
li

m
ix

e
d
Q
V
J

X
L

U
In

d
e
x
4

x
lu

la
ss

o
Q
V
J

U
S
In

d
e
x
2

w
e
ig

h
te

d
e
la

st
ic

n
e
t
Q
V
J
L

X
L

B
In

d
e
x
1
1

x
lb

ri
d
g
e
Q
V
J
L

X
L

II
n
d
e
x
8

x
li

m
ix

e
d
Q
V
J
L

X
L

U
In

d
e
x
5

x
lu

la
ss

o
Q
V
J
L

U
S
In

d
e
x
3

w
e
ig

h
te

d
e
la

st
ic

n
e
t
Q
V
J
S

X
L

B
In

d
e
x
1
2

x
lb

ri
d
g
e
Q
V
J
S

X
L

II
n
d
e
x
9

x
li

m
ix

e
d
Q
V
J
S

X
L

U
In

d
e
x
6

x
lu

la
ss

o
Q
V
J
S

U
S
In

d
e
x
4

w
e
ig

h
te

d
la

ss
o
Q
V
J

X
L

E
In

d
e
x
1

x
le

e
la

st
ic

n
e
t
Q
V
J

X
L

II
n
d
e
x
1
0

x
li

ri
d
g
e
Q
V
J

X
L

U
In

d
e
x
7

x
lu

m
ix

e
d
Q
V
J

U
S
In

d
e
x
5

w
e
ig

h
te

d
la

ss
o
Q
V
J
L

X
L

E
In

d
e
x
2

x
le

e
la

st
ic

n
e
t
Q
V
J
L

X
L

II
n
d
e
x
1
1

x
li

ri
d
g
e
Q
V
J
L

X
L

U
In

d
e
x
8

x
lu

m
ix

e
d
Q
V
J
L

U
S
In

d
e
x
6

w
e
ig

h
te

d
la

ss
o
Q
V
J
S

X
L

E
In

d
e
x
3

x
le

e
la

st
ic

n
e
t
Q
V
J
S

X
L

II
n
d
e
x
1
2

x
li

ri
d
g
e
Q
V
J
S

X
L

U
In

d
e
x
9

x
lu

m
ix

e
d
Q
V
J
S

U
S
In

d
e
x
7

w
e
ig

h
te

d
m

ix
e
d
Q
V
J

X
L

E
In

d
e
x
4

x
le

la
ss

o
Q
V
J

X
L

K
In

d
e
x
1

x
lk

e
la

st
ic

n
e
t
Q
V
J

X
L

U
In

d
e
x
1
0

x
lu

ri
d
g
e
Q
V
J

U
S
In

d
e
x
8

w
e
ig

h
te

d
m

ix
e
d
Q
V
J
L

X
L

E
In

d
e
x
5

x
le

la
ss

o
Q
V
J
L

X
L

K
In

d
e
x
2

x
lk

e
la

st
ic

n
e
t
Q
V
J
L

X
L

U
In

d
e
x
1
1

x
lu

ri
d
g
e
Q
V
J
L

U
S
In

d
e
x
9

w
e
ig

h
te

d
m

ix
e
d
Q
V
J
S

X
L

E
In

d
e
x
6

x
le

la
ss

o
Q
V
J
S

X
L

K
In

d
e
x
3

x
lk

e
la

st
ic

n
e
t
Q
V
J
S

X
L

U
In

d
e
x
1
2

x
lu

ri
d
g
e
Q
V
J
S

U
S
In

d
e
x
1
0

w
e
ig

h
te

d
ri

d
g
e
Q
V
J

X
L

E
In

d
e
x
7

x
le

m
ix

e
d
Q
V
J

X
L

K
In

d
e
x
4

x
lk

la
ss

o
Q
V
J

X
L
V

In
d
e
x
1

x
lv

e
la

st
ic

n
e
t
Q
V
J

U
S
In

d
e
x
1
1

w
e
ig

h
te

d
ri

d
g
e
Q
V
J
L

X
L

E
In

d
e
x
8

x
le

m
ix

e
d
Q
V
J
L

X
L

K
In

d
e
x
5

x
lk

la
ss

o
Q
V
J
L

X
L
V

In
d
e
x
2

x
lv

e
la

st
ic

n
e
t
Q
V
J
L

U
S
In

d
e
x
1
2

w
e
ig

h
te

d
ri

d
g
e
Q
V
J
S

X
L

E
In

d
e
x
9

x
le

m
ix

e
d
Q
V
J
S

X
L

K
In

d
e
x
6

x
lk

la
ss

o
Q
V
J
S

X
L
V

In
d
e
x
3

x
lv

e
la

st
ic

n
e
t
Q
V
J
S

U
S
In

d
e
x
E

W
1

e
q
u
a
l

w
e
ig

h
t

e
la

st
ic

n
e
t
Q
V
J

X
L

E
In

d
e
x
1
0

x
le

ri
d
g
e
Q
V
J

X
L

K
In

d
e
x
7

x
lk

m
ix

e
d
Q
V
J

X
L
V

In
d
e
x
4

x
lv

la
ss

o
Q
V
J

U
S
In

d
e
x
E

W
2

e
q
u
a
l

w
e
ig

h
t

e
la

st
ic

n
e
t
Q
V
J
L

X
L

E
In

d
e
x
1
1

x
le

ri
d
g
e
Q
V
J
L

X
L

K
In

d
e
x
8

x
lk

m
ix

e
d
Q
V
J
L

X
L
V

In
d
e
x
5

x
lv

la
ss

o
Q
V
J
L

U
S
In

d
e
x
E

W
3

e
q
u
a
l

w
e
ig

h
t

e
la

st
ic

n
e
t
Q
V
J
S

X
L

E
In

d
e
x
1
2

x
le

ri
d
g
e
Q
V
J
S

X
L

K
In

d
e
x
9

x
lk

m
ix

e
d
Q
V
J
S

X
L
V

In
d
e
x
6

x
lv

la
ss

o
Q
V
J
S

U
S
In

d
e
x
E

W
4

e
q
u
a
l

w
e
ig

h
t

la
ss

o
Q
V
J

X
L

F
In

d
e
x
1

x
lf

e
la

st
ic

n
e
t
Q
V
J

X
L

K
In

d
e
x
1
0

x
lk

ri
d
g
e
Q
V
J

X
L
V

In
d
e
x
7

x
lv

m
ix

e
d
Q
V
J

U
S
In

d
e
x
E

W
5

e
q
u
a
l

w
e
ig

h
t

la
ss

o
Q
V
J
L

X
L

F
In

d
e
x
2

x
lf

e
la

st
ic

n
e
t
Q
V
J
L

X
L

K
In

d
e
x
1
1

x
lk

ri
d
g
e
Q
V
J
L

X
L
V

In
d
e
x
8

x
lv

m
ix

e
d
Q
V
J
L

U
S
In

d
e
x
E

W
6

e
q
u
a
l

w
e
ig

h
t

la
ss

o
Q
V
J
S

X
L

F
In

d
e
x
3

x
lf

e
la

st
ic

n
e
t
Q
V
J
S

X
L

K
In

d
e
x
1
2

x
lk

ri
d
g
e
Q
V
J
S

X
L
V

In
d
e
x
9

x
lv

m
ix

e
d
Q
V
J
S

U
S
In

d
e
x
E

W
7

e
q
u
a
l

w
e
ig

h
t

m
ix

e
d
Q
V
J

X
L

F
In

d
e
x
4

x
lf

la
ss

o
Q
V
J

X
L

P
In

d
e
x
1

x
lp

e
la

st
ic

n
e
t
Q
V
J

X
L
V

In
d
e
x
1
0

x
lv

ri
d
g
e
Q
V
J

U
S
In

d
e
x
E

W
8

e
q
u
a
l

w
e
ig

h
t

m
ix

e
d
Q
V
J
L

X
L

F
In

d
e
x
5

x
lf

la
ss

o
Q
V
J
L

X
L

P
In

d
e
x
2

x
lp

e
la

st
ic

n
e
t
Q
V
J
L

X
L
V

In
d
e
x
1
1

x
lv

ri
d
g
e
Q
V
J
L

U
S
In

d
e
x
E

W
9

e
q
u
a
l

w
e
ig

h
t

m
ix

e
d
Q
V
J
S

X
L

F
In

d
e
x
6

x
lf

la
ss

o
Q
V
J
S

X
L

P
In

d
e
x
3

x
lp

e
la

st
ic

n
e
t
Q
V
J
S

X
L
V

In
d
e
x
1
2

x
lv

ri
d
g
e
Q
V
J
S

U
S
In

d
e
x
E

W
1
0

e
q
u
a
l

w
e
ig

h
t

ri
d
g
e
Q
V
J

X
L

F
In

d
e
x
7

x
lf

m
ix

e
d
Q
V
J

X
L

P
In

d
e
x
4

x
lp

la
ss

o
Q
V
J

X
L
Y

In
d
e
x
1

x
ly

e
la

st
ic

n
e
t
Q
V
J

U
S
In

d
e
x
E

W
1
1

e
q
u
a
l

w
e
ig

h
t

ri
d
g
e
Q
V
J
L

X
L

F
In

d
e
x
8

x
lf

m
ix

e
d
Q
V
J
L

X
L

P
In

d
e
x
5

x
lp

la
ss

o
Q
V
J
L

X
L
Y

In
d
e
x
2

x
ly

e
la

st
ic

n
e
t
Q
V
J
L

U
S
In

d
e
x
E

W
1
2

e
q
u
a
l

w
e
ig

h
t

ri
d
g
e
Q
V
J
S

X
L

F
In

d
e
x
9

x
lf

m
ix

e
d
Q
V
J
S

X
L

P
In

d
e
x
6

x
lp

la
ss

o
Q
V
J
S

X
L
Y

In
d
e
x
3

x
ly

e
la

st
ic

n
e
t
Q
V
J
S

X
L

B
In

d
e
x
1

x
lb

e
la

st
ic

n
e
t
Q
V
J

X
L

F
In

d
e
x
1
0

x
lf

ri
d
g
e
Q
V
J

X
L

P
In

d
e
x
7

x
lp

m
ix

e
d
Q
V
J

X
L
Y

In
d
e
x
4

x
ly

la
ss

o
Q
V
J

X
L

B
In

d
e
x
2

x
lb

e
la

st
ic

n
e
t
Q
V
J
L

X
L

F
In

d
e
x
1
1

x
lf

ri
d
g
e
Q
V
J
L

X
L

P
In

d
e
x
8

x
lp

m
ix

e
d
Q
V
J
L

X
L
Y

In
d
e
x
5

x
ly

la
ss

o
Q
V
J
L

X
L

B
In

d
e
x
3

x
lb

e
la

st
ic

n
e
t
Q
V
J
S

X
L

F
In

d
e
x
1
2

x
lf

ri
d
g
e
Q
V
J
S

X
L

P
In

d
e
x
9

x
lp

m
ix

e
d
Q
V
J
S

X
L
Y

In
d
e
x
6

x
ly

la
ss

o
Q
V
J
S

X
L

B
In

d
e
x
4

x
lb

la
ss

o
Q
V
J

X
L

II
n
d
e
x
1

x
li

e
la

st
ic

n
e
t
Q
V
J

X
L

P
In

d
e
x
1
0

x
lp

ri
d
g
e
Q
V
J

X
L
Y

In
d
e
x
7

x
ly

m
ix

e
d
Q
V
J

X
L

B
In

d
e
x
5

x
lb

la
ss

o
Q
V
J
L

X
L

II
n
d
e
x
2

x
li

e
la

st
ic

n
e
t
Q
V
J
L

X
L

P
In

d
e
x
1
1

x
lp

ri
d
g
e
Q
V
J
L

X
L
Y

In
d
e
x
8

x
ly

m
ix

e
d
Q
V
J
L

X
L

B
In

d
e
x
6

x
lb

la
ss

o
Q
V
J
S

X
L

II
n
d
e
x
3

x
li

e
la

st
ic

n
e
t
Q
V
J
S

X
L

P
In

d
e
x
1
2

x
lp

ri
d
g
e
Q
V
J
S

X
L
Y

In
d
e
x
9

x
ly

m
ix

e
d
Q
V
J
S

X
L

B
In

d
e
x
7

x
lb

m
ix

e
d
Q
V
J

X
L

II
n
d
e
x
4

x
li

la
ss

o
Q
V
J

X
L

U
In

d
e
x
1

x
lu

e
la

st
ic

n
e
t
Q
V
J

X
L
Y

In
d
e
x
1
0

x
ly

ri
d
g
e
Q
V
J

X
L

B
In

d
e
x
8

x
lb

m
ix

e
d
Q
V
J
L

X
L

II
n
d
e
x
5

x
li

la
ss

o
Q
V
J
L

X
L

U
In

d
e
x
2

x
lu

e
la

st
ic

n
e
t
Q
V
J
L

X
L
Y

In
d
e
x
1
1

x
ly

ri
d
g
e
Q
V
J
L

X
L

B
In

d
e
x
9

x
lb

m
ix

e
d
Q
V
J
S

X
L

II
n
d
e
x
6

x
li

la
ss

o
Q
V
J
S

X
L

U
In

d
e
x
3

x
lu

e
la

st
ic

n
e
t
Q
V
J
S

X
L
Y

In
d
e
x
1
2

x
ly

ri
d
g
e
Q
V
J
S



66

Appendix 3.III

Experimental Setup

Sample Period: Jan. 3, 20005 to Dec. 31, 2010
Sampling Frequency: 5 minutes.
Regression Estimation
Scheme:

Linear Regression.

Jump types: Total jumps (QV J), large jumps (QV JL), and small jumps (QV JS).
Evaluation Criterion: Three data shrinkage and regularization methods: Ridge, LASSO, and Elastic

net.
Step 1a: Jump Test Test for jumps on each trading day during sample period. For this, the bipower

variation based test zTP,t described in Section 2.1.2 is applied with significance
level α = 5%. The null hypothesis is that no jumps are present.

Step 1b: Jump Decompo-
sition

For trading days which reject the null in Step 1a, the decomposition method
in Section 2.1.3 is applied to extract QV J , QV JL, and QV JS on that day.
For trading days for which the null is not rejected in Step 1a, jump quadratic
variation is set equal to 0.

Step 2: Volatility jump
spillover based risk quan-
tification

Fit the model in Section 2.2 for each jump variation type and each market
sector.

Step 3: Jump Construc-
tion

Follow the instructions in Section 3.1 to construct a group of indices for the
U.S. market and each market sector.
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