
DATA PROTECTION VIA VIRTUAL MICRO
SECURITY PERIMETERS

By

GABRIEL SALLES-LOUSTAU

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Saman Zonouz

and approved by

New Brunswick, New Jersey

MAY, 2018

ABSTRACT OF THE DISSERTATION

Data Protection via Virtual Micro Security Perimeters

by Gabriel Salles-Loustau

Dissertation Director:

Saman Zonouz

Mobile devices have become the platform of reference for data consumption. Between

personal and work related usages, users entrust their mobile devices to handle data

from different sources with different sensitivity. Unfortunately, mobile device platforms

are not designed to accommodate these usages and fail to provide adequate security

mechanisms to guaranty users data protection or even isolation across sources.

This thesis focuses on client-oriented data protection solutions for embedded devices

and more specifically smartphone-based operating systems. Three main aspects are

explored.

First, this thesis introduces the concept of virtual micro security perimeters, or in

short data capsules, as a new primitive to track and protect user data on smartphone

devices. Data capsules consist in a set of data associated to a specific provenance

or to a specific device usage (e.g., work vs personal). Contrary to security through

compartmentalization solutions that often provide an inflexible isolation for data or

execution environments, capsules leverage information flow tracking techniques as a

primitive to track and protect capsules data. This approach enables the use of any

application the user might like to access data of different sensitivity while still providing

ii

strong data protection guaranties. We present an implementation and an evaluation of

this approach through a prototype developed on top of the Android operating system.

Second, we propose a new approach to detect sensor-based data flows via the in-

spection of numerical operations and their operands. This approach uses numerical

operations computed values as a flow detection mechanism rather than labels or taints

that are commonly used in information flow tracking systems. We evaluate our ap-

proach through the implementation of a prototype that run as a third-party applica-

tion and that does not require any system changes. This solution generates a minimal

computation and space overhead while not sacrificing the flow detection accuracy.

Finally, we present a data protection solution for point-of-care devices that greatly

reduce the trusted computing-based for data protection by using a hardware-based

domain specific scrambling mechanism for point-of-care medical devices.

iii

Acknowledgements

I would like first to thank my doctoral committee: Professors Dario Pompili, Marco

Gruteser, Janne Lindqvist, and Doctor Kaustubh Joshi for their valuable feedback.

I would like to thank Robin Berthier, without whom this amazing journey would

have not been possible, as well as my former intern advisors at University of Maryland:

Michel Cukier and Danielle Chrun. I would also like to thank my former professors at

the ENSI de Bourges for introducing me to the amazing field of system and network

security in the first place.

I would like to thank the researchers I had the chance of collaborating with includ-

ing Jill Jermyn, Ahmad Seify, Moustafa Alzantot, Mani Srivastava, Vidyasagar Saidu,

Tuan-Anh Le, Mehdi Javanmard, Laleh Najafizadeh as well as my labmates: Rui Han,

Sriharsha Etigowni, Luis Garcia, Rui Han, Pengfei Sun, and Mingbo Zhang.

I would like to thank Kaustubh Joshi for his valuable input and guidance on the

projects presented in this thesis and for welcoming me at AT&T for a summer intern-

ship.

I would like to address a very special thank you to my advisor, Saman Zonouz for

his constant trust, guidance and for offering me so many great opportunities. I really

look forward to pursuing our collaboration.

Finally, I would like to express my gratitude to my friends Mélanie, Ambroise, Cédric

and Pierre-Henri for keeping in touch and for visiting me despite the kilometers that

separate us; to my grand mother Manuela, for her love and for sharing with me the

secret of her best recipes, to Françoise for her advice and support, and to my father

Jean and my sister Thérèse for their unfailing support.

iv

Dedication

For my grand-mother Manuela, my father Jean and my sister Thérèse, for their

support and their love. For my mother Manuela and my grand-parents, Henriette,

Joseph and Luis, whom I wish could have read those lines.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

2. Virtual Micro-Perimeter via Information Flow Tracking 7

1. Introduction . 7

2. Motivations and Use Cases . 12

3. Swirls Overview . 15

4. Threat Model . 17

5. Capsules: Virtual Micro Security Perimeters 17

5.1. Capsule Architecture . 18

5.2. Secure Capsule Distribution . 19

5.3. Capsule Context . 21

6. Hybrid Information Flow Tracking Mechanism 21

6.1. Managed Applications . 22

6.2. Unmanaged Applications . 26

7. Evaluation . 28

7.1. Swirls Performance . 29

7.2. Capsule Boundary Evolution . 30

7.3. Capsule Policy Enforcement . 33

vi

7.4. Realized Smartphone Use Cases 34

7.5. Comparison with Existing Solutions 37

8. Related Work . 40

9. Discussion . 41

10. Conclusion . 41

3. Value-Based Information Flow Tracking 43

1. Introduction . 43

2. Metron Overview . 47

3. Threat Model . 49

4. Value-Based Information Flow Tracking 50

4.1. Sources and Sinks . 50

4.2. Tainted Data Computation History 51

4.3. Design Challenges . 52

5. Implementation . 56

5.1. Application Sandboxing . 58

5.2. Taint Tracking via Numerical Operations Interception 60

6. Evaluation . 65

6.1. Performance Overhead . 65

6.2. Flow Tracking Accuracy . 68

7. Limitations and Discussion . 70

8. Related Work . 72

9. Conclusion . 73

4. Hardware-Enabled Data Protection . 75

1. Introduction . 75

2. Overview . 78

3. Medsen System Design . 82

3.1. Bio-sensor . 82

3.2. Multi-Electrode Signal Encryption 83

vii

3.3. Microfluidic Channel . 85

4. Sensor-Based Analog Signal Encryption 85

4.1. Cipher Design . 86

4.2. Cipher Key Space Size Analysis 90

5. Cyto-Coded Authentication . 92

6. Implementation . 93

6.1. Medsen Bio-Sensor Fabrication 93

6.2. Sensor-Side Data Manipulation 95

6.3. Cloud-Based Data Analysis . 98

6.4. System Integration . 99

7. Evaluation . 101

7.1. Sensor-Based Data Encryption 101

7.2. Data Transfer and Cloud-Based Analysis 104

7.3. Cyto-Coded Passwords and Patient Authentication 108

8. Related Work . 109

9. Conclusion . 111

5. Conclusion . 112

Bibliography . 115

viii

List of Tables

2.1. Android Framework Enhancements by Swirls 28

2.2. Memory Usage of the 15 Vanilla Apps Running by Default 31

2.3. Observed Data Policy Violations . 31

2.4. Observed Data Mixing Incidents . 32

2.5. Context Switch (seconds) for Policy Violation Scenarios 33

3.1. Number of Floating Point Operations in the Cfree App 47

3.2. Entropy and Randomness Evaluation of Accelerometer Readings 54

3.3. App Launch Overhead (Without Compilation) 66

3.4. Numerical operations benchmarks . 66

3.5. Taint tracking comparison of Metron versus TaintDroid (TD) 69

3.6. Flow observed in two popular fitness tracking applications 70

3.7. Tested App Names, Package Names and Versions 71

3.8. DroidBench Results for Metron, TaintDroid, and BayesDroid 74

ix

List of Figures

2.1. Swirls’s High-Level Architecture . 14

2.2. Simplified Capsule Policy Grammar. 19

2.3. Swirls Capsule Installation via Google Play 20

2.4. Swirls’s System Components . 29

2.5. Antutu Benchmark v5.7.1 Performance Results 29

2.6. Runtime Battery Consumption . 30

2.7. Capsule Growth . 32

2.8. Swirls-Enabled Smartphone Use Cases 35

2.9. Violation Notification in a Managed App 35

2.10. Swirls User Interface . 36

3.1. Overview of Metron . 47

3.2. Accelerometer reading collision frequencies 53

3.3. Overview of Metron’s app components 56

3.4. Instrumentation of the app code by Metron’s compiler 61

3.5. Ring Buffer Usage for Several Applications 67

3.6. DroidBench results summary from Metron, BayesDroid and TaintDroid 68

4.1. Capture Chamber for Cytometry-Based Disease Diagnostics 78

4.2. Overview of MedSen . 79

4.3. Operation Model of the Planar Electrode Pair 81

4.4. Operation Model of the Integrated System 81

4.5. Design of the Electrodes . 84

4.6. Microfluidic Channel Design. 86

4.7. Voltage Drop When a Cell is Passing Through the Electrodes 87

4.8. Encrypted cytometry Signal for a Single Blood Cell 89

x

4.9. MedSen Full Experiment Setup . 99

4.10. Microfluidic Sensor . 102

4.11. Examples of Encrypted Cytometry Signals for a 9 Electrodes Sensor . . 103

4.12. Measured Bead Counts vs Number of Beads Expected (7.8 µm beads) . 105

4.13. Measured Bead Counts vs Number of Beads Expected (3.58 µm beads) . 105

4.14.Medsen’s Peak Analysis Performance on a Computer and Smartphone 106

4.15. Normalized Impedance Measurements of Beads and Blood Cells 107

4.16. Cluster Representing Beads of Multiple Size for Password Generation . 109

xi

1

Chapter 1

Introduction

Mobile devices and embedded systems have become ubiquitous in our everyday’s life.

They enable a constantly growing range of applications by leveraging new hardware

features. Their popularity has been fueled by app markets that enable new features

and use-cases via a simple app installation.

In order to facilitate third party applications development, mobile operating system

architects adapted their solutions to the constraints of mobile devices, including their

limited resources and their constrained user interfaces. Among these choices, they

designed the operating system to facilitate data aggregation from various sources under

standardized storages such as centralized user account databases, and user address

books. They also developed unified interfaces to access data. While this approach has

led to a great deal of convenience for the developers and user to organize and access

information, it has also opened the door for abuses.

Access control to these unified storages is enforced through permission mechanisms.

The most popular mobile operating systems on the market, Google Android and Apple

iOS, both use installation time or runtime permissions mechanisms to regulate appli-

cations access to the device sensitive data. However, permission mechanisms have been

proven inefficient: they provide coarse-grained permissions with no alternative but to

comply with the permission request [76, 39].

While users greatly benefit from applications functionalities, they also consciously

or unconsciously expect their phone operating system and third-party applications to

handle their personal data the way they, the users, expect to, to serve only a specific

functionality. Unfortunately, user data protections expectations are not always aligned

with the phone manufacturers or application developers’ intentions. This dissymmetry

2

boils down to the two following specific scenarios: either the application is malicious

or the user misuses the application. On the one side, the completely open application

store distribution system has suffered abuses from app writers. As any developer can

submit their app to the market, the application markets are crippled with malicious

applications. On the other hand, user mistakes are also a factor of data leaks. Common

reasons usually include usability issues or missing features [92].

Several solutions have been proposed to protect user data on consumer devices. A

first approach consists in providing security through compartmentalization, to protect

different sets of data and execution environments depending on the sensitivity of the

task they handle [8, 14]. Such isolation techniques have been proposed at different levels

in the operating system software stack. Virtualization techniques especially have been

widely adopted in industry over the last two decades. However, these solutions often

conflict with smartphone limitations: current devices only have limited resources with

constrained interfaces which makes a full isolation solution, such as a virtual machine

a burden on both the device resources and the user interface. Also, such attempts

usually go against the flexibility users expect from mobile devices where information is

aggregated and fully accessible.

A second approach relies on information flow tracking solutions to monitor sensitive

data flows. These solutions follow data flows from specific sources, where the sensi-

tive data is accessed, to specific sinks, where sensitive data leaves the device. While

this concept seems directly applicable for data protection, current designs and imple-

mentations are often limited by their coverage or precision. More specifically, existing

information flow tracking solutions provide different levels of granularity. For example,

HiStar [96] provides a system objects (file, processes, socket) information flow tracking

system. While these systems allow to monitor interactions between the system objects

they cover (e.g. processes, files), they are usually pessimistic about finer grained ob-

jects and treat them as higher level object. For example, each byte read from a string

generated by a sensitive process will be considered as sensitive. Conversely, too fined

grained information flow systems incur a heavy overhead that render them unusable

3

for real world use. Finally, all of these solutions require heavy system changes or ap-

plication instrumentation and fail to adapt to current application distribution models

where system changes or application changes are a luxury only available respectively

to phone resellers and application developers.

Unfortunately, all above-mentioned solutions assume a very restrictive threat model

that include the operating system in the trusted computing base of the solution. This

trusted computing based has been proven a very loose assumption over the years. Mo-

bile device operating system have large the code bases and are targets of choice for

all kind of attacks. Considering these limitations, this thesis proposes to answer the

following problems:

∙ How can we leverage current information flow tracking system techniques to pro-

vide a usable data protection mechanism for users?

∙ How can we enhance current information flow tracking system techniques to design

a lightweight and non-intrusive information flow mechanism that does not suffer

from the limitations of current solutions?

∙ How can we reduce the trusted computing base of current data protection solu-

tions?

This thesis proposes to investigate three data protection schemes for mobile devices.

We first propose a generic data protection scheme, named Swirls, that enhances existing

information flow tracking solutions to protect user data depending on specific device

usages. We then propose a new information flow tracking technique, called Metron,

that provide data tracking for numerical values as well as the computation history for

leaked values and does not require system changes. Last, we consider the case of a fully

untrusted device and propose a hardware protection mechanism for medical point of

care devices, called Medsen.

Swirls: enabling data protection through virtual micro security perimeters.

Mobile devices are increasingly becoming a melting pot of different types of data ranging

4

from sensitive corporate documents to commercial media to personal content produced

and shared via online social networks. While it is desirable for such diverse content

to be accessible from the same device via a unified user experience and through a

rich plethora of mobile apps, ensuring that this data remains protected has become

challenging. Even though different data types have very different security and privacy

needs and accidental instances of data leakage are common, today’s mobile operating

systems include few, if any, facilities for fine-grained data protection and isolation.

Chapter 2, presents Swirls, an Android-based mobile OS that provides a rich policy-

based information-flow data protection abstraction for mobile apps to support BYOD

(bring-your-own-device) use cases. Swirls allows security and privacy policies to be

attached to individual pieces of data contained in signed and encrypted capsules, and

enforces these policies as the data flows through the device. Unlike current solutions

such as VMs and containers that create duplication and cognitive overload, Swirls

provides a single environment that allows users to access content belonging to different

security contexts using the same applications without fear of inadvertent or malicious

data leakage. Swirls also unburdens app developers from having to worry about security

policies, and provides APIs through which they can create seamless multi-security-

context user interfaces.

To implement its abstractions, Swirls develops a cryptographically protected capsule

distribution and installation scheme, enhances Taintdroid-based taint-tracking mecha-

nisms to support efficient kernel and user-space security policy enforcement, implements

techniques for persisting security context along with data, and provides transparent

security-context switching mechanisms. Using our Android-based prototype (>25K

LOC), we show a number of data protection use-cases such as isolation of personal

and work data, limiting document sharing and preventing leakage based on document

classification, and security policies based on geo- and time-fencing. Our experiments

show that Swirls imposes a very minimal overhead in both battery consumption and

performance.

5

Metron: a value-based information flow tracking system. Mobile devices are

equipped with a variety of sensors that enable various useful applications. While it

is desirable to grant applications access to these sensors in order to accomplish their

legitimate functionalities, ensuring that the sensor readings are not leaked to other

parties is a challenging problem.

Information flow tracking techniques have been proposed to detect malicious data

flows. However, the existing solutions suffer from several usability and precision issues

that hinder their adoption.

Chapter 3 introduces Metron, an information flow tracking framework to detect

potential data disclosures. Metron leverages a new lightweight information flow tracking

technique that enables flow detection based on tainted values rather than a shadow

memory taint system.

Metron leverages an application sandbox mechanism to carry the analysis of a moni-

tored application. Unlike previous solutions, Metron implementation on Android works

as user-space application that do not require modifying either the operating system or

the target application. While legacy information flow tracking solutions rely on the

abandoned Dalvik VM, Metron is compatible with the latest Android Runtime (ART).

Our experimental results show that Metron provides a good accuracy for flow detection

compared to other state-of-art solutions. It reports less false positives than TaintDroid,

and similar accuracy to BayesDroid while handling numerical values that BayesDroid

can not handle. Moreover, Metron allows the investigation of data leakage without

modifying the operating system or the target application while adding acceptable over-

head.

MedSen: a hardware-based data protection scheme for point of care devices.

Trustworthy and usable healthcare requires not only effective disease diagnostic pro-

cedures to ensure delivery of rapid and accurate outcomes, but also lightweight user

privacy-preserving capabilities for resource-limited medical sensing devices.

Chapter 4 presents Medsen, a portable, inexpensive and secure smartphone-based

6

biomarker1 detection sensor to provide users with easy-to-use real-time disease diag-

nostic capabilities without the need for in-person clinical visits. To minimize the de-

ployment cost and size without sacrificing the diagnostic accuracy, security and time

requirement, Medsen operates as a dongle to the user’s smartphone and leverages the

smartphone’s computational capabilities for its real-time data processing.

From the security viewpoint, Medsen introduces a new hardware-level trusted sens-

ing framework, built in the sensor, to encrypt measured analog signals related to cell

counting in the patient’s blood sample, at the data acquisition point. To protect the

user privacy, Medsen’s in-sensor encryption scheme conceals the user’s private informa-

tion before sending them out for cloud-based medical diagnostics analysis. The analysis

outcomes are sent back to Medsen for decryption and user notifications. Additionally,

Medsen introduces cyto-coded passwords to authenticate the user to the cloud server

without the need for explicit screen password entry. Each user’s password constitutes a

predetermined number of synthetic beads with different dielectric characteristics. Med-

sen mixes the password beads with the user’s blood before submitting the data for

diagnostics analysis. The cloud server authenticates the user based on the statistics

and characteristics of the beads with the blood sample, and links the user’s identity to

the encrypted analysis outcomes.

We have implemented a working prototype of Medsen through bio-sensor fabrication

and smartphone app (Android) implementation. Our results show that Medsen can

reliably classify different users based on their cyto-coded passwords with high accuracy.

Medsen’s built-in analog signal encryption guarantees the user’s privacy by considering

the smartphone and cloud server possibly untrusted (curious but honest). Medsen’s

end-to-end time requirement for disease diagnostics is approximately 0.2 seconds on

average.

Chapter 5 concludes this thesis and opens the discussion to potential future work.

1A biomarker, or biological marker, generally refers to a measurable indicator of some biological
state or condition such as human disease. For example, the overabundance of certain blood cell types
or biomolecular levels may indicate an infection.

7

Chapter 2

Virtual Micro-Perimeter via Information Flow Tracking

1 Introduction

Mobile devices have become the primary platform over which data is consumed. This

data often have a large variety of privacy requirements. Today, confidential corporate

email and documents, sensitive health and financial records, private audio and video

conversation streams, and media intended for public dissemination on online social

networks all jostle for the user’s attention on the same phone. However, data isolation

facilities on current mobile platforms leave much to be desired, with few OS facilities for

preventing sensitive data from mixing with data for public consumption and leaking to

untrusted endpoints, either accidentally or maliciously, e.g., a sensitive corporate email

accidentally forwarded over a public email provider, or a private picture being shared

over social media.

Solutions do exist for specific use-cases. For example, to protect sensitive company

data, enterprises often require their employees to use different phones for work and

personal use, or to use variants of such a scheme, e.g., partitioning of a single device into

virtual “work phone” and “personal phone” through OS [8] or CPU virtualization [14].

Even when BYOD (bring-your-own-device) is permitted, content owners control the

access to protected content by allowing access only to curated apps that are known to

enforce fixed protection requirements. For instance, corporate email can be accessed

only through a special corporate email client, and movies, books, or music from a

particular publisher can be read only through that publisher’s app. In most cases

sharing data between apps is either completely disallowed, or restricted using install-

time or runtime permission-based schemes such as Android’s default permission control,

SEAndroid [80], or ASM [49]. When data protection cannot be guaranteed by any of

8

these approaches, mobile devices are simply prohibited. For instance, phones might not

be allowed in secret corporate labs to prevent leaked pictures of prototypes.

Unfortunately, these solutions fall short along key efficiency and usability dimen-

sions. For instance, the development and maintenance of isolation environments that

access similar types of content can become costly and burdensome for content owners

and users. Content owners have to develop, maintain, and update BYOD apps for the

sole purpose of enforcing data protection when, otherwise, a third party app might

have sufficed. These apps often live in silo’ed containers, unable to access services pro-

vided by the rest of the mobile platform for fear of information contamination, e.g.,

a corporate email app might require its own PDF reader. For users, these multiple-

environment systems present a fragmented and often inconsistent user experience that

increases cognitive effort. They also limit users’ choices to install only the specific rec-

ommended apps to access the sensitive material. Different apps for doing similar tasks

behave differently, and must be individually configured according to user preferences.

In cases where system resources such as cameras, microphones, or even device location

are concerned, container-based (non-system-wide) approaches fail completely. A corpo-

ration concerned with leakage of unauthorized pictures from a sensitive lab area cannot

simply publish a BYOD app to disable the camera, and the user may choose to simply

ignore the app completely.

We make the key observation that the above approaches are limited by a funda-

mental mismatch: while security and privacy requirements are a property of the data

being processed, the above schemes define security in terms of the actors, i.e., environ-

ments, processes, and apps. Therefore, they either suffer from an explosion of actors

(one for each data type that needs a different security context), or they suffer from low

granularity [41]. We propose a contrasting approach to address this dilemma: one in

which a security policy is directly associated with the data by the content owner and

flows through the system as the data it is attached to is processed by various apps. In

this model, the same app should be able to process data from different contexts, while

still ensuring that each data owner’s potentially differing security requirements are en-

forced. Such a scheme can prevent leakage by prohibiting mixing of data belonging to

9

different security contexts and benefit users, content-owners, and developers alike. It

allows users to use any apps they want to access content. It allows content-owners from

being forced to write and maintain curated apps simply to enforce security policies.

And finally, it frees app developers from having to implement security policies, and

enables them to focus on developing their apps.

To implement such a vision, we present Swirls, an OS-level solution based on

Android that provides system-wide policy-based data isolation by facilitating and con-

trolling the mixing of data from different contexts. An OS-level solution is necessary

to prevent malicious apps from bypassing the security policies required by data owners.

Swirls allows data to be packaged in micro security perimeters called capsules that

can be securely and dynamically installed or removed from the mobile device through

an authentication and certification protocol.

Each capsule lists initial sensitive source objects. These objects are either files or

system objects that generate data (SSL sockets). Capsule data is subject to policies

specified by the capsule owner that dictate whether mixing with data from other cap-

sules is allowed, whether the data may leave a device, and whether it must be encrypted

or password protected. Policies can be based on contextual information such as location,

time, data provenance, or online accounts.

Swirls tracks the capsule data propagation through the phone and enforces policies

on both the original capsule data as well as data derived from it as it is used by various

apps. To do so, we extend existing techniques for information flow tracking (TaintDroid)

to allow policy control by disallowing operations that result in data mixing or other

policy violations. As a result, Swirls monitors app execution from the system for

potential policy violation as third-party apps run under the constrains of installed data

policies.

This chapter details the challenges faced in designing and implementing such a

scheme. In particular, while information flow tracking solutions theoretically provide

an ideal approach to track and enforce policy on a piece of data, several limitations

of current implementations make their adoption difficult for this specific use case. In

particular, the level of granularity achieved by an information flow tracking solution as

10

well it’s precision are key factors to consider.

The level of granularity achievable by an information flow tracking solution deter-

mines the type of flow that can be supervised. For example, while HiStar’s [96] con-

fidentiality and integrity labels apply to high-level objects such as files, inter-process

communications, and socket connections, other solutions such as TaintDroid or Droid-

Scope achieve an intra-application variable-level granularity that provide a much more

refined view of a data flow. This granularity defines the level of separation or proximity

that can be achieved between two piece of data carrying conflicting policies. While

in the first case, no data from conflicting sources can coexist in a same process, for

example, a solution like TaintDroid can achieve this use case. The second limitation to

take into account is the precision of an information flow tracking solution. For example,

while TaintDroid supports variable-level information flow tracking, it is by default using

a single taint per array of variable stored in memory. Moreover, it does not track data

flow through native code 1.

These consideration are at the center of Swirls design. We answer this granularity

issue by providing an hybrid information flow tracking system that provide multiple

levels of granularity. Our first approach considers the ideal case of an application that

handles data with conflicting policies without merging it at any point in the execution.

We call these applications ”managed” apps. If such an approach is not achievable,

we propose two alternatives: either 1) modify the application, if the source code is

available, and improve it to prevent policy violations, or 2) run the application under

a more coarse-gained information flow control that provides a more rigid data isolation

and uses time sharing to accommodate access to data carrying conflicting policies. We

call this last category of applications ”unmanaged” apps. This chapter explores these

three approaches.

Contributions. Swirls enables a new model for system-wide and user-transparent

data isolation on mobile devices by associating security policies with data and enforcing

them as the data flows across multiple third-party apps. The technical contributions of

1Native code support is deactivated by default on TaintDroid for third party apps

11

this chapter are organized as follows:

∙ We propose a new OS abstraction called capsule that allows content-owners to

encapsulate sensitive data and its corresponding policies in a signed and encrypted

wrapper. We develop a security-verified framework for dynamic capsule definition,

distribution and on-device installation.

∙ We identify how existing information tracking engines (specifically, TaintDroid)

can be enhanced to provide data isolation. Our extensions include efficient sup-

port for synchronizing policy enforcement across kernel and user-space objects,

creating context-specific views of persistent data using union filesystems, persist-

ing policy information across executions in the filesystem and in system databases,

and developing efficient schemes for context switching from one security context

to another.

∙ We propose new OS API interfaces to help third-party developers develop man-

aged apps that present data from different security contexts to users in a cohesive

and policy-compliant unified view.

∙ We implement a fully-working prototype of Swirls (>25K LOC) on Android

4.1.1 r6, and validate its proposed dynamic security protection and perfor-

mance with real-world apps.

Swirls considerably raises the bar for sensitive data protection and prevents acci-

dental data leaks by third-party apps. However, like other taint analysis-based solu-

tions, Swirls is unable to defend against system compromises or malicious apps that

leverage side channels or implicit flows for information leakage.

The chapter is organized as follows. Section 3 overviews the three main requirements

of this scheme. Section 4 presents Swirls’s threat model. Section 5 presents the

concept of capsules. Section 6 details how we achieved the solutions requirements for

the managed and unmanaged apps. Section 7 describes the evaluation results. Section 8

and Section 9 go over past related work, and discusses Swirls’s limitations. Finally

Section 10 concludes the chapter.

12

2 Motivations and Use Cases

Swirls is motivated by the following BYOD use-cases, where employees use or are

asked to use their smartphones to produce, modify, and consume data with different

contexts and protection requirements. The context can range from coarse-grained, e.g.,

a user’s work data vs. personal data, to fine-grained, e.g., data belonging to a sensitive

corporate account vs. a general corporate newsletter.

The user’s access level to data may also have to change based on the user’s role in

the company, time of the day, location, or any combination thereof. For instance, a

company’s accountant may access the financial database only during the work hours and

from within the company. System-wide enforcement of these protection requirements

across all apps without fragmenting the user experience is challenging and requires

system level support.

Employer-employee: enterprise sensitive data access. Rather than providing

employees with a separate smartphone for corporate use, enterprises are increasingly

looking to reduce costs, provide greater choice, and reduce multi-device clutter by

allowing workers to use their personal phones for work related apps (and vice versa).

Many solutions such as L4Android [57], VMWare MVP [14], and Cells [8], have been

proposed to address this need. They use either processor or OS virtualization to create

multiple “virtual phones”, one for work and another for personal use, that run on

the same physical device. Qubes [52] introduces virtual containers to separate multiple

domains based on Xen virtualization with a strict separation between different contexts.

Such container-based solutions provide complete isolation of contexts to keep enti-

ties related to each context absolutely separate from one another. Such an inflexible

fixed architecture does not allow any data transfer across the contexts (too restric-

tive), while it permits all data communication requests between apps that belongs to

the same context (too permissive). To guarantee context isolation, almost all existing

solutions duplicate a full subset of system resources, such as context-specific copies of

the same app, content provider, or system service. Besides wasting phone resources,

such duplication reduces usability by increasing cognitive load on users. The user has

13

to keep track of the contexts manually and switch between them explicitly through a

mechanism such as a touch screen swipe. The same apps have to be manually installed

and updated in each context. A change of user preferences in one context does not

automatically transfer to the other context. A practical solution that provides a unified

environment with a single set of apps and still isolates work from personal data would

greatly enhance usability while also reducing resource overheads.

Employee-employee: corporate-level secure data exchange. At enterprises,

mobile devices are commonly used to bring rich corporate-related content and docu-

ments to employees by the company managers or other employees. In practice, the

employees often have various levels of security clearance or roles within the company.

Therefore, they should be allowed to access only particular sets of corporate content

with specific security levels. As a more generic case, an employee may decide to share a

document with a subset of other employees, e.g., sharing a sensitive project-related pdf

file with teammates. Traditionally, such data separation is enforced at a human level:

the employees share the received sensitive contents only with other colleagues working

on the same project. However, data leakage may occur due to human error or due to

permissive corporate containers that may mix different corporate data.

A system-wide BYOD data protection would enable employees to securely pub-

lish the signed sensitive content along with the corresponding policies. The policy-

authorized employees could then access data through standard third-party apps, e.g.,

an Acrobat Reader for shared pdf documents or an MP4 player for video. The solu-

tion would enforce the policies across the system, and deny certain unauthorized action

requests such as an employee emailing a plaintext protected file to an out-of-context

contact.

Currently, Android does not provide fined-grained functionalities to access and pro-

tect data from several contexts with specific security clearances. Solutions like Blue-

box [16] provide specific security measures such as data encryption for corporate apps.

However, such coarse-grained measures cannot effectively support secure data transfer

use-cases where fine-grained security requirements need to be enforced.

14

Figure 2.1: Swirls’s High-Level Architecture

Additionally, the solution should support more complex time- and location-variant

policies for when/where the sensitive data may be accessed. Specifically, the virtual

micro security perimeter boundaries may change as a function of time and/or location.

For instance, the attendees of a Federal conference may be asked access the sensitive

shared contents only within the perimeter of the conference and during working hours.

Swirls allows definition of temporal and location-dependent policies within capsules

and controls the sensitive content movements. A capsule could define contexts and the

corresponding policies based on time ranges and geographic locations when/where the

capsule data is valid and can be accessed.

TempoGeoFence: limited device use enforcement. Some smartphone usage

policies may be time- and location-variant. In other words, the virtual micro security

perimeter boundaries may change as a function of time and/or location. For instance,

the attendees of a Federal conference may be asked to not access the sensitive shared

contents outside of the conference or off the working hours. Swirls allows definition

of temporal and location-dependent policies within capsules and controls the sensitive

content movements. A capsule could define contexts and the corresponding policies

based on time ranges and geographic locations when/where the capsule data is valid

and can be accessed.

15

3 Swirls Overview

Figure 2.1 shows Swirls’s high-level architecture. Swirls’s main objective is to facil-

itate data separation through deployment of virtual micro security perimeters that we

call capsules. Each capsule is an encrypted and signed package that includes sensitive

data and policies. These policies define how data should be treated when merged with

data from other capsules. Figure 2.1’s left block presents a simplified capsule policy.

Every capsule is packaged and signed by its corresponding data owner who could be i)

corporate admins who do not want the high-profile corporate data transferred from the

device or mixed with other data; ii) app developers who intend to prevent uncertified

parties from accessing specific files on the device; and iii) third-parties who may wish

to control access to their data. Swirls verifies the integrity of the installed capsule

signatures on the device before enforcing its associated policies. In the first case, the

corporate admins protect their sensitive data, against outsiders, whereas in the sec-

ond and third cases, the external parties (i.e., developers and third-parties) attempt to

protect against curious and potentially careless device users.

Three major steps are required to enforce data protection in Swirls. First, for

distribution and installation of a capsule, Swirls implements a secure protocol to

prevent malicious capsule modification and/or interception attacks. Second, to protect

sensitive data, Swirls employs dynamic taint analysis to keep track of the installed

capsule boundaries while data moves within the system. Third, Swirls implements

efficient mandatory access control at various data propagation points within Android

to prevent unauthorized data accesses.

Capsule definition, distribution and installation. Swirls leverages a PKI to

securely verify the origin of a capsule and perform a platform verification of the target

device. Both steps are required to securely bind a policy to a target system’s data.

Section 5.1 presents Swirls policy definition and distribution scheme and evaluates

the advantages of a data based policy against existing solutions.

16

Capsule boundary tracking. To guarantee data protection, Swirls keeps track

of capsule boundary growth by tracing the sensitive data propagation starting from

the capsule’s source objects. Swirls deploys system-wide taint tracking techniques

across various layers of Android to monitor data flow among the following system

entities2: files, Android content providers, apps, system processes and services, account

entries, secure socket connections, interprocess data exchanges, system service calls, as

well as incoming network traffic. To retain the capsule boundary information across

smartphone reboots, Swirls stores references to tainted objects for each capsule in a

global database and keeps its information up-to-date whenever new objects are tainted.

Capsule policy enforcement. The capsule policies mandate how Swirls should

handle access requests to different capsules’ data throughout the system. Swirls’s

runtime policy enforcement uses the real-time information from the aforementioned

capsule boundary database through a three level instrumentation of the Android frame-

work. First, Swirls controls data accesses within the Linux kernel to ensure that the

low-level capsule data propagation complies with the installed policies. This includes

filesystem operations and inter-process communications among apps. Unlike previ-

ous work [35], Swirls’s kernel-level support makes it resilient against malicious access

control evasions through Java Native Interface (JNI) code segments. Second, Swirls

instruments the Dalvik virtual machine (VM) layer with policy enforcement modules

to control fine-grained access requests to variables within individual apps. Swirls’s

kernel-level enforcement is more lightweight than its Dalvik VM counterpart; however,

it uses Dalvik layer enforcement for fine-grained access controls when a multi-context

app includes data from different capsules simultaneously (Swirls’s kernel-level imple-

mentation cannot distinguish different taints within an app). Finally, Swirls enhances

and controls data interactions among several key system services, e.g., the clipboard

service, that are accessed by multiple resources in the system and aggregate data from

various sources.

2TaintDroid [35] does not support policy enforcement at any level, dynamic taint source assignment,
and taint analysis across reboots, and among files, content providers, system services, accounts, syscalls,
and network sockets.

17

Section 6.1 and Section 6.2 respectively detail the tracking and policy enforcement

design for both managed apps, where several capsule’s data coexist in a single app at

the same time, and unmanaged app, that rely on a time sharing approach to access

multiple capsules’ data without breaking the policy.

4 Threat Model

Swirls’s trusted computing base (TCB) contains the Android system (kernel, Dalvik

VM, system services) and the Swirls server. For security, the server could be main-

tained by the company.

Swirls is primarily a system for preventing unforeseen mixing of data in apps.

Swirls does not trust app developers to follow a data owner’s desired data isolation

policies. With perfect information flow tracking (IFT), apps would be completely un-

trusted. However, because of current practical limitations of data-flow tracking to

support covert channels, our current implementation of Swirls cannot protect against

malicious apps that actively circumvent isolation using covert channels and implicit

flows. Fortunately, that requires deliberate effort from the developer, thus tagging them

as bad actors if caught. In practice, for perfect protection against advanced malicious

app, Swirls should be coupled with some mechanism to establish basic trustworthiness

of app developers, e.g., through a developer certification program.

Swirls’s primary use-case is to help the overwhelming majority of non-malicious

apps that fail to meet user privacy and data isolation expectations in specific circum-

stances. For example, the Mac email client defaults to using an outgoing server asso-

ciated with another account if the primary server associated with an account failed,

thus allowing sensitive email on an enterprise account to be unknowingly sent via an

untrusted public cloud-mail provider.

5 Capsules: Virtual Micro Security Perimeters

The next sections discuss Swirls’s capsules format (Section 5.1), their distribution and

on-device installation (Section 5.2) and discusses how they improve on existing policy

18

distribution approaches.

5.1 Capsule Architecture

Figure 2.2 presents Swirls’s capsule policy grammar. Capsule identifiers, contexts,

policies and objects are listed by section. Each object can be part of a specific context

and be subject to a policy action when leaving its context. Figure 2.1’s left-side box

shows an example of a simplified capsule policy.

Upon capsule installation, the policy entries are read and enforced on the system.

Specifically, each policy contains the following (possibly empty) entries. ID: A unique

capsule ID for its corresponding data owner; Apps: The set of apps that Swirls

initially marks with the capsule context. For apps that are not tagged by any installed

capsule, Swirls launches them as taint-free initially. However, they may get tainted

afterwards if they are destined by a data flow with a data context source. Data: The

files and directories are linked with the capsule context and are considered as context

sources. For instance, an app may come with its own sensitive files and directories

that need to be protected. Accounts: The accounts in Android’s Account Manager

service corresponding to the target capsule. Once an app establishes a connection

through a specific account, Swirls labels incoming data with the capsule context.

Connections: The connections, e.g., SSL certificates, that Swirls considers as context

sources. Geo/time contexts: Time intervals and geographic locations that determine

when or where the capsule data should be considered valid. The capsule also includes

an action (possibly NOP) that Swirls should take when leaving/entering the context,

e.g., deletion or encryption of sensitive corporate data objects when the smartphone

leaves the company location. The geographic locations are defined as circles (the center

points to latitude and longitude information along with a radius). Ruleset: The set

of policy rules that define how the mixing points among data from different capsules

(contexts) should be handled. Data owners could define capsules with a set of possible

policy actions in the case of any data mixing occurrence: the request may be allowed,

allowed and logged, denied, or denied and logged. Swirls’s policy enforcement engine

prioritizes deny over allow in the case of conflicting capsule policies. We consider more

19

⟨capsule⟩ ::= ⟨capsule-id⟩ ⟨context⟩ ⟨policy⟩ [[⟨file⟩][⟨application⟩][⟨connection⟩][⟨account⟩]]
⟨capsule-id⟩ ::= capsule ⟨cap-name⟩ ⟨cap-version⟩
⟨context⟩ ::= contexts { ⟨geo-context⟩ | ⟨time-context⟩ }
⟨policy⟩ ::= policy { ⟨capsule-id⟩ ⟨capsule-id⟩ ⟨action⟩ }
⟨action⟩ ::= ALLOW | DENY | ALLOW LOG | DELETE

⟨file⟩ ::= files { ⟨path⟩ ⟨context-id⟩ }
⟨application⟩ ::= applications { ⟨package-name⟩ ⟨context-id⟩ }
⟨connection⟩ ::= connections { ⟨ssl-cname⟩ ⟨context-id⟩ }
⟨account⟩ ::= accounts { ⟨account-id⟩ ⟨context-id⟩ }

Figure 2.2: Simplified Capsule Policy Grammar.

advanced system-wide policy consistency analyses outside the scope of this work.

Contrary to existing mandatory access control policies syntax, such as SEAndroid,

Swirls policies are simple to read and to write. Solutions like SEAndroid realize

fine grained access control to the cost of usually complex policies. Solutions like

EASEAndroid[90] have explored approaches to automate the policy writing process

for the Android platform but such a system still require human intervention and thus a

good knowledge of the policy structure. By comparison our structure is simple enough

so that even non-specialist users can express their data protection requirements in a

few lines.

5.2 Secure Capsule Distribution

Swirls implements a secure capsule distribution and installation interface for nontech-

nical users. Figure 2.3 describes the capsule distribution and installation procedure.

Upon the definition of a capsule, the capsule owner signs and encrypts it. The signa-

tures and encryption keys are pushed to Swirls’s remote server. Capsules are packaged

in Android app files, and hence are distributable via the Google Play Store. The user

downloads a signed and encrypted capsule, which is then installed by the Swirls sys-

tem app on the smartphone. The installation consists of two steps. First, during a

platform verification procedure, Swirls’s remote server verifies the authenticity of the

local agent on the system to ensure that capsule policies will be enforced correctly.

Second, the Swirls system app verifies the signature, decrypts the capsule, using the

keys obtained from the server, enforces the capsule policy and installs the capsule data.

20

Figure 2.3: Swirls Capsule Installation via Google Play

Upon capsule installation, Swirls allocates a new and unique taint label and dynam-

ically marks the capsule objects as sources. The objects can be apps and data files

included in the capsule or sensitive data sources such as network connections.

As simple as this capsule distribution may be, it improves on SEAndroid policies

distribution scheme since it does not require to be integrated into the application or the

system development. The capsule embeds all the data sources that require protection

along with optional files that are pushed to the device.

The capsule registration process is handled by the Swirls system application. This

application keeps a database of all known capsules and tainted objects in the system.

When modifications are performed (capsule installation or deletion), Swirls synchro-

nizes the capsules policies and objects with Swirls’s kernel security module policy

cache. The taint database allows Swirls to keep track of the capsule boundaries over

time and ensures the policy’s persistence. At the device boot time, Swirls reads the

capsule policies from the database and updates Swirls’s kernel module accordingly

through a communication channel. Once the installation is complete, Swirls allows

the capsule’s corresponding app to execute while Swirls traces the capsule’s boundary

throughout the system.

21

5.3 Capsule Context

Swirls enables the definition of location-based contexts defined within capsules. Swirls

extends the Android Geofence API [6] for location-awareness. Every extended Ge-

ofence class object contains a capsule context ID, the GPS coordinates of the capsule’s

geographical context circle center and radius. The geographical fences trigger transi-

tion notifications to the kernel upon entry/exit into/from the context using the Swirls

native library calls. To deploy the temporal contexts within the capsules, Swirls uses

the Android AlarmManager API, where two managers mark the start time (context

entry) and ending time (context exit). Like geographical fences, the temporal fences

use the Swirls native library to trigger the temporal fence-based context switches at

the kernel level. Upon the context change, the kernel will take the action defined in the

capsule, e.g., to encrypt the sensitive corporate data after work hours.

6 Hybrid Information Flow Tracking Mechanism

Swirls uses capsule objects as sources, and considers any object from other capsules as

data sinks where potential mixing of data from two capsules may violate the installed

policies. Any capsule data mixing that violates a policy are blocked, irrespectively of

the app since the data-flow monitoring and policy enforcement is driven outside the

app, at the system level. The Android framework was modified in several ways to track

capsule’s data flows while running apps. However, existing apps do not need to be

modified to run on top of Swirls. We therefore categorize apps in two groups:

Managed apps. They represent the ideal case where, by design, the app simultane-

ously accesses and processes data from different sources (capsules) that carry conflicting

policies and does not merge their data during execution. Initially, apps run on managed

mode as long as their execution does not lead to a policy conflict.

Unmanaged apps. They represent the apps that may not comply with the capsule

policies at a variable-level flow tracking granularity. As a solution, we introduce an

unmanaged execution mode that uses a stricter app isolation where capsule data is

accessed using a time sharing approach.

22

Based on our observations, only a very small subset of existing applications can

run in managed mode without accidentally merging data, including Android’s system

services that we had to modify to support the managed mode.

6.1 Managed Applications

This section first details the system changes made to the Android framework to support

managed application and we introduce a new development paradigm and specific API

methods that enable developers to enhance existing apps and ensure they can run as

managed apps. The section that follows detail the case of unmanaged applications.

Capsule Boundary Tracking and Policy Enforcement

Swirls implements its capsule boundary tracking agents in the kernel and the Dalvik

VM. It uses a kernel Linux Security Module (LSM) as a reference monitor for the

capsule policies and it enhances the Dalvik virtual machine to gather intra-app semantic

information, e.g., variables. Some other important changes were made to the system to

ensure that system components would isolate capsule data by design.

LSM reference monitor. The reference monitor is implemented as a LSM that pro-

vides a character device in order to allow data propagation reporting among Swirls

components within and outside the kernel. The LSM checks if the propagation report-

ings are compliant with the policy and return the result to the component.

Within the kernel, Swirls LSM makes use of the file system hooks to keep track

of file accesses. We instrumented LSM hooks, namely security dentry open(),

security file permission() and security path unlink(), to inform com-

ponents about the capsule they are accessing and to update Swirls’s capsule database

if a file gets deleted. Similarly, the read and write operations propagates the capsule

information to the variable receiving data or the file written to.

The Dalvik virtual machine uses this interface to report capsule object accesses in

applications to the LSM via ioctl syscall.

The capsule boundary tracing and reference monitor implementation in the kernel

23

have two major advantages: they provide a centralized and privileged domain to mon-

itor system-wide capsule data flow, and enables Swirls to keep track of native code

operations on OS objects.

Dalvik variable-level Information Flow Tracking. Swirls relies on TaintDroid’s

variable-level taint tracking framework to keep track of information flows within man-

aged apps. However, several changes were made to adapt the existing framework: 1)

we substituted the statically defined taints by the capsule identifiers, 2) we report flows

to the reference monitor on any data mixing involving different capsules, 3) we define a

new set of sources and sinks: the capsule objects. The variable-level IFT mechanism is

used in particular to detect incoming capsule data from SSL sockets and user accounts

related sockets.

As a matter of fact, the majority of apps (according to our studies, 85.9% of 217 top

apps) request the Internet access permission to open network sockets. Swirls treats

each secure network connection as a potential source based on the remote endpoint

indicated in its SSL certificates. We limit the incoming data sources that Swirls

considers to secure sockets because it requires a validation of the endpoint through

SSL/TLS certificate verification.

Swirls looks up the capsule database for each SSL/TLS connection during the

handshake phase. Swirls extracts the common name [45] that matches the fully qual-

ified domain name. Swirls compares the common name to the installed capsule con-

nection objects, and labels the SSL/TLS socket with the taint of the matching capsule.

The connection is not tracked if no matching capsule is found. Swirls instruments

the socket’s read and write calls to respectively mark data contexts or check policies to

block unauthorized outgoing flows, e.g., different outgoing data and socket contexts.

Swirls enhances the NativeCrypto SSL do handshake() function in An-

droid Apache Harmony framework to extract the certificate common name and at-

tach a context corresponding to the matching capsule, if any, and instruments the

NativeSSLSocket read() function to tag the incoming data its corresponding cap-

sule once the connection is established.

24

TaintDroid also implements a variable level IPC mechanism that we reuse between

managed apps and the three system components that follow.

System accounts. According to our experiments, 13.0% of apps read and/or write

all account credentials3 (Section 7.4). Swirls solves the lack of discrepancy among the

accounts through its app-level context analysis that is aware of the account semantics.

Monitoring such activities from within the kernel (lower overhead) is unfeasible as it

requires high-level semantic information.

Content providers. Swirls instruments Android ContentProvider to store the

context information along with the content of each individual entry. Many Android

components, such as Android contacts list, use content providers for their data

storage, and Swirls’s instrumentation turns them into context-aware entities. Thus,

Swirls can save the user’s contacts from different contexts within the same contacts

list database on the phone.

System services. The Android permission system restricts app accesses to system

services, such as clipboard, account manager, hardware devices and sensors. However, a

system service would mix data from different capsule. To provide capsule data isolation

inside system services, Swirls leverages the Android multi-user support (since Android

4.1.1 𝑟6) to separate capsule data.

Swirls API

To facilitate managed app development, Swirls provides a capsule-aware API that

allows developers to query variable taints and check the capsule policies before vari-

able value assignments. The API contains two main methods: gettaint(Object

o) returns the taint of a specific variable or resource (file, socket, account, variable);

isAllowed(Object o1, Object o2) checks if data flow from o1 to o2 is compli-

ant with the installed capsule policies. It is noteworthy that there is almost no sensitive

3Using the Android AccountManagerService after acquiring appropriate permissions, i.e.,
GET ACCOUNTS, USE CREDENTIALS, AUTHENTICATE ACCOUNTS and MANAGE ACCOUNTS.

25

system information leakage as the result of API function calls to apps because taint

IDs are opaque identifiers assigned to a capsule at its installation time and cannot be

created or manipulated by apps.

We use the case of Android’s AOSP email client app as a driving example. As a

basic requirement, we modified the email client such as it accesses emails from different

sources simultaneously while keeping their corresponding data separate in the system.

Moreover, Swirls’s API enables further modification of apps to make them capsule-

aware in order to i) provide an enhanced context-aware UI, e.g., different colors for

different emails based on their source; ii) change behavior based on capsule policies,

such as blocking the transfer of an email between two recipient belonging to two differ-

ent capsules; and iii) provide more user-friendly policy violation responses, such as a

notification before sending a email going against the policy out. Our Swirls-enabled

email client only required 320 LOC changes to a 183,076-line app to turn the original

app into a capsule-aware (managed) app. This section details how we modified the

Android system framework to handle this scenario and we present how Swirls enables

the development of managed apps through a simple API and a dynamic code analysis

technique.

Overtainting Resolution in Managed Application

Overtainting issues are likely to happen in applications running in managed mode.

Their origins are twofold: either the application purposely mixed data from different

capsules because its execution requires it or the taint tracking solution did generate a

false positive, due to a variable sensitivity limitation, e.g.: for example, TaintDroid use

a single taint per array.

Tracking down the changes required to avoid an accidental mixing between capsule

in an application code can be a delicate task. As a matter of fact, the execution point

where a policy violation was detected does not correspond to the root cause of an inexact

flow detection. As a debugging tool to help the developer to track both cases, we enable

a dynamic tainted instruction tracing feature in TaintDroid and use a backward slicing

analysis on the generated trace to identify the root cause behind conflicting flows.

26

We successfully used this technique to instrument the capsule-aware email applica-

tion.

6.2 Unmanaged Applications

For unmanaged apps that do not support an intra-app data flow policies, Swirls im-

plements an app container mechanism based on Linux namespaces. This mechanism

ensures the application handles only one capsule at a time and that different capsules

are accessed sequentially. When an unmanaged app is launched, the user choses which

capsule to process next via the interface. A policy violation inside an application be-

comes impossible. However, IPC between apps processing conflicting capsules remains

a problem. This section details our approach to address this case.

Unmanaged Applications Compartments

Through kernel-level taint tracking, Swirls ensures that unmanaged apps stay either

taint-free or single-tainted. When launching an unmanaged app, Swirls marks the app

process with a capsule, by updating an added process taint element within the kernel’s

task struct structure, if requested by an installed capsule. The startViaZygote()

method in the android.os.Process class queries Swirls kernel module for the taint

(possibly null) for the app, and passes it as an extra parameter to the Zygote process.

Consequently, the Zygote process assigns its child, i.e., the target app, with that taint

at the fork point.

Swirls uses mount namespaces on the forked Zygote processes to keep track of

tainted data generated by the launched app. Swirls assigns a directory to each cap-

sule in the system, e.g., /data/swirls/1, /data/swirls/2, etc. During an un-

managed app launch, Swirls i) maintains separation among processes by creating a

specific mount namespace for the launched process with the taint tid; and ii) sets up

a capsule-aware filesystem directory tree via mounting a stackable Unionfs [71] link be-

tween /data/data in read-only mode and /data/swirls/tid in read-write mode.

It is noteworthy that Android apps typically store their data under the /data/data

directory, and /data/data contains app libraries that do not need to be replicated for

27

each taint. Using the copy-on-write mechanism, the Unionfs mounts in Swirls mini-

mizes the amount of data replication from the initial installation data folder while the

app may run with several taints. Whenever a launched app with a specific taint tid re-

quests a shared data read from /data/data, e.g., a library file, the data is actually read

from /data/data, but the write requests cause data-writes in /data/swirls/tid.

Since /data/data needs to be shared and accessed by several processes, Swirls

mounts the corresponding directories using the bind option.

Inter-processes Policy Violation Resolution

Our manual investigation of 270 real Google Play market apps showed that such IPC-

based policy violations, especially through inter-app and app-service communications,

occur frequently. Hence an access control solution is needed. Binder-based policy

enforcement in Swirls is effective for all direct calls between processes with single or

no taint; however, managed apps with more than one taint bypass such kernel-level

enforcement and are addressed using the more fine-grained Dalvik layer mechanisms.

Swirls prevents unmanaged apps processing conflicting capsule data from exchang-

ing data through the Binder IPC. Swirls enforces the capsule policies within Android’s

Binder IPC mechanism. Swirls leverage a Binder SEAndroid LSM hook [81] to eval-

uate the capsules associated with the unmanaged apps performing a Binder call. If

the policy does not allow the call, Swirls transparently restarts the target app in the

right context. This restart process leverages the Android LowMemoryKiller feature,

initially intended to silently kill the apps over-consuming memory, to kill the target ap-

plication and prevent the unauthorized IPC data exchanges. Processes that run system

services4 cannot be simply restarted; Swirls whitelists the processes and implements

the per-service capsule-aware data flow control mentioned above. Section Section 7.3

provides an evaluation of the performance and usability cost of this approach.

Swirls also enhances the Android activity manager that is a system service used

for inter-app component call resolution. It is a critical component to monitor since

4Such as system server and surface flinger.

28

Table 2.1: Android Framework Enhancements by Swirls

Component Changes or Added Feature

Linux kernel (Grouper 3.1.10) Policy cache, interface through IOCTLs, LSM hooks
for files, binder hook

System services: ActivityManager, Clip-
board, Accounts

Check caller context on requests

SSL native interface Assign variable context according to data received
from socket

Taintdroid (AOSP v.4.1.1 r6) Data sources redifined, policy enforcement support
on capsules’ data merging

Zygote and Process class Context assignment on process fork

Content Provider framework Store data context for each database table row
system-wide

the indirect calls relayed by the activity manager would not be visible by Swirls’s

Binder policy enforcement module. Swirls implements an enforcement agent within

the activity manager that monitors the call chain as well as all the app launches and

activity switching requests by the running apps. If a call violates the capsule policies,

Swirls prompts the user for a response action, e.g., block.

Table 2.1 resumes the changes made to the Android Framework.

7 Evaluation

We implemented Swirls on Android 4.1.1 6 (> 25𝐾 LOC C/C++/Java). Ta-

ble 2.1 summarizes the system components enhanced by Swirls modules. Figure 2.4

illustrates the components that store Swirls meta data and policies (gray boxes) as

well as the components that we modified to implement Swirls functionalities (white

boxes). Our empirical evaluations were on a Nexus 7 tablet device to answer the fol-

lowing questions: i) how much performance overhead does Swirls cause compared to

the vanilla Android system? ii) does Swirls detect unauthorized capsule boundary

mixing and enforce the dynamically-installed policies accurately? iii) are Swirls’s cap-

sule definition/distribution/installation, and system-wide policy enforcement usable in

practice? and iv) does Swirls realize the BYOD use-case scenarios successfully?

29

System Services Taint-Aware App Swirls App

K
e

rn
e

l S
p

ac
e

Capsule IDs App IDs

Files open Contexts IDs
Policy Cache

U
se

r
Sp

ac
e

Binder Hook

File System HooksProcesses Hooks

LSM

Swirls App Interface

Socket Hooks

Dalvik VM

Tainted var Hooks

Swirls API

CheckObjectTaint()

IsAllowed()

…

AccountManager

ActivityManager

Clipboard

Capsule Database
- Tainted Objects
- Policies

Capsule Operations
- Installation
- Deletion
- Tempo-Geo Fence

Detection

Figure 2.4: Swirls’s System Components

0	

20	

40	

60	

80	

100	

Ov
era
ll	
 S
co
re	

Mu
l3t
ask
ing
	

Ru
n3
me
	

CP
U	
 I
nte
ge
r	

CP
U	
 F
loa
3n
g	
 P
oin
t	

Sin
gle
-­‐Th
rea
d	
 I
nte
ge
r	

Sin
gle
-­‐Th
rea
d	

RA
M	

Op
era
3o
n	

RA
M	

Sp
ee
d	

2D
	
 Gr
ap
hic
s	

3D
	
 Gr
ap
hic
s	

Sto
rag
e	
 I
/O
	

Da
tab
ase
	
 I/O

	

Pe
rf
or
m
an

ce
	
 (%

)	

Antutu	
 Performance	
 Criterion	

Android	

TaintDroid	

Swirls	

Figure 2.5: Antutu Benchmark v5.7.1 Performance Results

7.1 Swirls Performance

We measured Swirls performance overhead on Antutu benchmark [9] that gives per-

formance scores for various criteria such as database IO, graphics, etc. Figure 2.5

shows Swirls’s performance compared to Android vanilla (the base) and TaintDroid

4.1.1 r6 for the userdebug build. Swirls’s overall performance is 96% of the base

Android’s performance, where TaintDroid’s is 97%. The runtime performance score

corresponds to the Dalvik VM, where most of the fine-grained (relatively high over-

head) capsule boundary tracking and policy enforcement occurs. Swirls’s relatively

low database performance (41%) is due to its fine-grained instrumentation of the con-

tent provider framework. Swirls stores and retrieves the context for each data row

30

78	

80	

82	

84	

86	

88	

90	

92	

94	

96	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Ba
#
er
y	

Le
)
	
 (%

)	

Time	
 (minutes)	

	
 Android	

	
 Swirls	

Figure 2.6: Runtime Battery Consumption

entry of the SQLite database. Swirls checks on every database INSERT or SELECT

if the target table/row is currently tainted and, if so, whether the access request vio-

lates the installed capsule policies. Table 2.2 shows Swirls’s runtime memory usage

averaged over 15 apps that run by default at Android startup. Compared to the base

Android, Swirls causes 9.5% memory overhead per app vs. 9% by TaintDroid. Finally,

Figure 2.6 shows how Swirls affects the device’s battery lifetime. Swirls drains the

battery 3.8% more than the base Android after one hour of use, which is promising

given Swirls’s practical usability.

7.2 Capsule Boundary Evolution

To validate the need for a capsule boundary tracking and policy enforcement, we ana-

lyzed the top-10 most-used Google Play market apps to determine whether they merge

sensitive data from different sources. Table 2.3 and Table 2.4 show the results of using

Swirls’s capsule boundary tracking engine. We considered established socket connec-

tions as separate data sources. We observed 2, 819 (117 unique) data mixing incidents

(Table 2.3) that were mostly caused by almost half of the apps (4th column). Most of

the mixings occurred at the filesystem level (2, 178). We also noticed a few cases where

the app merged data from different individual sockets destined to the same institute,

and hence did not violate Swirls’s data leakage policies. We manually investigated

the com.android.vending app, which mixes data from a large number of sockets;

31

Table 2.2: Memory Usage of the 15 Vanilla Apps Running by Default

Case Android TaintDroid Swirls

Memory usage (KB) 502,612 545,664 548,168

Table 2.3: Data Policy Violations (DM: data mixing; UDM: unique DM; RA: respon-
sible apps; UDMP: unique DM per process)

Object type #DM #UDM #RA #UDMP (top 3)

Files 2178 85 4 android.vending 71; system server 1;
whatsapp 14

Strings 536 26 10 android.vending 5; whatsapp 10; pan-
dora.android 3

Variables (bool,
double, int, array)

105 7 3 android.vending 3; system server 1;
whatsapp 3

however, all those sockets were connected to different servers at Google and the trans-

ferred data was mostly Google account parameters. Using certificate-based treatment

of sockets, Swirls was able to correctly mark all of those connections as a part of single

capsule that resulted in a single-context app with no policy violations.

Table 2.4 shows selected results for the top four popular applications. The second

column shows whether the data mixing occurred due to a background app process

(Facebook and Flashlight) or the user’s action on the app’s GUI. Third and last columns

show, respectively, the points dynamically marked as data sources by Swirls and where

data from different sources mix. The large number of mixing incidents by the current

apps necessitates deployment of policy-based data isolation solutions like Swirls in

practice.

Figure 2.7 illustrates the dynamic growth of two BYOD capsules that represent

two different email accounts (personal and professional). The vertical axis lists dif-

ferent application objects, and the horizontal axis shows the sequence of various user

activities over time. For instance, the database entry (object c; third line on vertical

axis) is marked with the personal context once the user sets up the first account (A1

on the horizontal axis). The details of the object c is explained by message box on

the figure. For each account, the capsule data sources consist of a single object entry:

the SSL/TLS common name of the IMAP server. Swirls marks the data received

32

Table 2.4: Observed Data Mixing Incidents

App Responsible ac-
tion/entry

Data sources Data mixing
points

Facebook Service (back-
ground)

Accounts and sockets (*.face-
book.com, a248.e.akamai.net,
*.xx.fbcdn.net)

App files, sockets,
strings

Play Store Adding account (UI) Accounts and sockets
(*.google.com)

App files, sockets

Pandora SignUpActivity (UI) Accounts and sockets
(tuner.pandora.com)

Strings

Brightest LED
Flashlight

Main activity (UI) Accounts and sockets
(*.flurry.com)

Flurry agent frame-
work file and socket,
binary blob

Ap
pl
ic
a'

on
	
 O
bj
ec
ts
	

a	
 DB	
 entry:	
 table	
 Account,	
 value	
 ``swirlstester@gmail.com’’	

b	
 DB	
 entry:	
 table	
 Mailbox,	
 value	
 ``INBOX’’	

c	
 DB	
 entries:	
 table	
 Mailbox,	
 values	
 ``Sent'',	
 ``[Gmail]'',	
 ``All	
 Mail'',	
 etc	

d	
 DB	
 entries:	
 table	
 Message,	
 values	
 Messages	
 1	
 and	
 2	
 (headers	
 and	
 bodies)	

e	
 File:	
 APP_PREFIX/shared_prefs/AndroidMail.Main.xml	

f	
 File:	
 APP_PREFIX/cache/body1588647328.tmp	

g	
 File:	
 APP_PREFIX/cache/body-­‐1921450400.tmp	

h	
 File:	
 APP_PREFIX/cache/body1387188396.tmp	

i	
 File:	
 APP_PREFIX/cache/body1818697067.tmp	

j	
 File:	
 APP_PREFIX/shared_prefs/com.android.email_preferences.xml	

k	
 DB	
 entry:	
 table	
 	
 Account,	
 value	
 ``author@work.email’’	

l	
 DB	
 entry:	
 table	
 Mailbox,	
 value	
 ``INBOX’’	

m	
 DB	
 entries:	
 table	
 Message,	
 values	
 Messages	
 (headers	
 and	
 bodies)	

System	
 Incidents	
 by	
 the	
 User	
 INIT	
 A1	
 INTER	
 A2	
 Final	

Local	
 account-­‐specific	
 variables	
 for	

subscribed	
 remote	
 IMAP	
 folders	
 Default	
 IMAP	
 mailbox	
 folder	
 (not	

modified	
 by	
 tainted	
 data	
 à	
 untainted)	
 	

Non-­‐system	
 account	
 name	
 (set	
 by	
 the	
 user	
 à	
 untainted)	

Account-­‐specific	
 email	
 database	
 (SQLite	

content	
 provider)	
 2	
 messages	
 received	

Temporary	
 mail	
 content	
 (for	
 display)	

Gets	
 removed	
 on	
 account	
 switch	

Temporary	
 mail	
 content	
 (for	
 display)	

Does	
 not	
 get	
 removed	
 because	
 it	
 is	

not	
 needed	
 for	
 the	
 second	
 account	

Email	
 database	
 (the	
 same	
 table	
 as	
 in	
 row	
 4)	

2	
 account	
 messages	
 (different	
 from	
 in	
 row	
 4)	
 	

Non-­‐system	
 account	
 name	
 	

(set	
 by	
 the	
 user	
 à	
 untainted)	
 Default	
 IMAP	
 standard	
 mailbox	
 folder	
 	

Different	
 remote	
 folder	
 from	
 in	
 row	
 2	
 	

(on	
 the	
 professional	
 mail	
 server)	
 	

Time	
 Taint	
 Free	
 Personal	
 Taint	
 Professional	
 Taint	

Figure 2.7: Capsule Growth for the Email Client Use-Case. (INIT = Contexts at
Initial State, A1 = Contexts After First Account Setup, INTER = Contexts After
First Account Use, A2 = Contexts After Second Account Setup, FINAL = Contexts
at Final State, APP PREFIX=/data/data/com.android.email)

33

Table 2.5: Context Switch (seconds) for Policy Violation Scenarios

Scenario mail & exchange mail & acore K9 & acore Avg.

Time 0.29 1.55 2.09 1.31

from the SSL/TLS with a specific capsule context depending on the end-point SSL

certificate. The enhanced email app checks the context information during the email

sending procedure to stop the process if the sensitive data transfer conflicts with the

installed policies (as in Figure 2.9). The email body, the recipients’ email addresses and

possible attachments’ contexts are inspected before allowing a mail to leave the device.

Swirls’s data flow policies enable the app to reuse the same file name in different con-

texts. For example, the temporary file body1588647328.tmp appears to be created

while consulting the first account, then deleted while switching accounts and created

again for the second account.

7.3 Capsule Policy Enforcement

Unmanaged app. We evaluated Swirls’s time requirement for BYOD applications

in the case of unmanaged apps where a policy violation causes a data context switch.

Table 2.5 shows the results. We created multiple scenarios that all eventually led to

policy violations; i) an unmanaged Android’s default mail client tries to use an Exchange

(professional) service while it is currently running in a different (personal) context; ii)

the Android’s default mail client tries to access the contact provider (the acore process)

for an entry from a different context; iii) similar to (ii) but using a third-party K9 mail

client app. The table shows the time requirement from the access request denial (e.g.,

Binder call rejection) because of the policy conflict until the launch completion of the

process with the new context. The context switch takes approximately 1.31 seconds

that is reasonable for practical usages.

Managed app development. We analyzed the default Android email client app by

reading its source code and using Swirls’s capsule boundary tracking to determine the

main challenges in rewriting legacy apps and turning them into context-aware managed

34

apps. The managed apps should use the Swirls API (Figure 2.4) to handle multiple

BYOD contexts simultaneously and prevent intra-app capsule data mixing such as an

email forwarding between two different context accounts. We observed that data mixing

occurred because of only a few points in app’s source code. The mixings occurred in

files (local mail account database entries and system service files), string variables,

and the content provider entries in the app’s data directory. We modified the app

accordingly with a small amount of effort; the updated app was context-aware and

did not mix data from different context accounts. Additionally, it was able to enforce

more complicated capsule policies in Swirls, e.g., encrypting work emails after the

work hours. Figure 2.8 (left block) shows the user interface of the updated app where

emails from each BYOD context are color encoded. Overall, we changed 13 source

code files adding/removing 320/5 lines of code within the app. The changes included

i) modification to remove or duplicate the variables that get doubly tainted; ii) policy

checking at sensitive places in the code, e.g., the sendMessage() function; and iii)

UI and response action implementations to raise a notification (Figure 2.9) and ask the

user to modify the mail to avoid the policy-violating data leak.

7.4 Realized Smartphone Use Cases

Employer-employee: enterprise sensitive data access. Most of the current apps

have limited or no support for BYOD use cases. Based on our analysis of 285, 457 top

free apps on Google Play store, many apps access universally accessible shared spaces

such as content providers and external storage, where data from different contexts could

mix leading to capsule policy violations. In particular, 245, 315 apps (85.9%) requested

Internet access; 133, 133 (46.6%) asked for access to external storage; 37, 153 (13.0%)

requested access to account information or credentials; and 13, 638 (4.7%) requested

access to contacts. Our findings through dynamic app analyses (Section 7.2) and the

static investigations above demonstrate actual and potential unauthorized mixing of

data from different contexts. This hinders the deployment of a secure environment

where various context data interactions should be regulated system-wide. For instance,

any two applications with shared space access permissions could set up a bi-directional

35

Figure 2.8: Swirls-Enabled Smartphone Use Cases

Figure 2.9: Violation Notification in a Managed App

36

(a) Policy Violation (b) Geofence (c) Geofence

Figure 2.10: Swirls User Interface

communication channel resulting in unauthorized data interactions.

Swirls facilitates an efficient way to realize a multi-context BYOD device usage ex-

perience. Capsules facilitate system-wide context/persona definition and data isolation.

Our developed context-aware email client (Figure 2.8) shows how a mail containing an

attachment downloaded from a professional account and forwarded to a professional

contact eventually gets blocked during the send process. We uploaded an anonymous

demo of Swirls’s BYOD use case in [84]. In the event of a policy violation, Swirls

asks the user for an action to take. Figure 2.10a shows a screenshot of Swirls pre-

venting an app from launching that is already running under a different context. In

the case of policy violations caught in the Binder driver, Swirls silently restarts the

target component process in the new context (Table 2.5).

Employee-employee: corporate-level secure data exchange. We evaluated

Swirls for the BYOD data exchange use-case where employees of the same company

could share data with another subset of employees, e.g., who are in the same sensitive

project team. Swirls enables data owners to export policies for sensitive files across

devices. The Swirls server accepts requests from registered systems/users and cre-

ates capsules on-the-fly. In our use-case, the employee initially downloaded a sensitive

37

project file sensitive-report.pdf (incorporated into the corresponding capsule)

from an email from his colleague at the same company. Figure 2.8 (middle block)

shows what the employee observed upon opening the email attachment. This step was

followed by the capsule installation and legitimate data access that was allowed by

Swirls. Later, the employee intended to send the file to another colleague who was

not a member of the project. Consequently, Swirls denied the email send request as

it would have violated the installed capsule policies. We also implemented a temporal

and location-based context switching app. Figure 2.10b- Figure 2.10c and Figure 2.8

(right block) show the Swirls notification when entering a geographically constrained

context. Based on our experiments, this use-case drains the battery faster compared

to other case studies mainly because of periodic GPS pooling by Swirls to check and

enforce the installed capsule policy.

7.5 Comparison with Existing Solutions

We now compare the security protection provided by Swirls with other existing most

related solutions.

TaintDroid [35]. Swirls significantly improves TaintDroid’s capabilities through

its policy enforcement agents across the system, dynamic taint source assignment, and

taint analysis across reboots, introducing several new data sources and sinks (files,

content provides, syscalls, and network sockets), IFT support of apps with native code,

a verified dynamic capsule definition/distribution/installation framework, system-level

API for context-aware app development, and isolation of tainted data processing in

system services, e.g., binder, clipboard, account manager, device managers.

TaintDroid uses extended file attributes to store taints. Therefore, apps could

change their taint information, that TaintDroid (and not apps) should maintain, at

will by updating their file attributes. Swirls takes an alternative kernel-level file taint

tracking approach for two reasons. First, Swirls should not allow app developers to

manipulate their app’s file taints (it is noteworthy that the app developers are often

38

different from the data owners who define data policies in Swirls). Second, the kernel-

level support allows Swirls to maintain a centralized real-time system-wide database

of capsule boundaries (the list of tainted system objects) rather than distributed la-

bels on individual files. Centralized capsule boundary maintenance enables Swirls to

accelerate enforcement of some policy types, e.g., “remove all professional data after

working hours”. For instance, in TaintDroid’s architecture, this would require sweeping

the whole filesystem, whereas in Swirls, removing files within the “professional data”

table of the capsule boundary database would suffice.

Asbestos [31] and Histar [96]. Swirls’s initial architecture for tainted system ser-

vices (that run Android services) followed Asbestos’s design; however, we had to totally

redesign it due to resource limitations in smartphones. Initially, Swirls duplicated the

system service process threads for every taint, so IPC communications among

tainted apps and system services would comply with the capsule policies. We dropped

this implemented approach due to the added complexity of concurrent threads access-

ing hardware-dependent services and its high overhead in the worst case (#threads =

#services*#taints). In our current implementation, we have instead modified the sys-

tem service implementations, e.g., Account Service, Clipboard, and Activity Manager,

to be taint-aware and keep different taints separate. This improved design reduced

Swirls’s performance overhead significantly.

Histar provides IFT using initially fixed Asbestos labels on kernel objects, e.g.,

threads, containers, and devices. Histar policy uses hierarchical fixed integrity levels

associated with categories, i.e., data operations such as read and write. Swirls allows

dynamic capsule policy updates, and enables enforcement of more expressive generic

policies that are not simply deployable using hierarchical integrity levels. For instance,

consider the following policy rules for contexts 𝐴, 𝐵, and 𝐶: 𝐴 can flow to 𝐵 and 𝐶;

𝐵 can flow to 𝐶; 𝐶 can flow to 𝐴 but not 𝐵. There is no straightforward hierarchical

integrity level assignment that would allow the information flow above. Additionally,

Swirls allows simultaneous and policy-compliant multi-taint data access by the same

39

process using its fine-grained IFT support. HiStar does not support multi-taint pro-

cesses.

SE-Android [80] and Knox [75]. SE-Android adapts SE-Linux mandatory access

control (MAC) policies for Android platform to protect system components such as sys-

tem services, Zygote-forked processes and third-party apps (it does not deploy different

policies for individual apps). AOSP [7] strongly encourages the users not to add, delete,

or modify any SE-Android policy. This could result in an inflexible architecture with

too generic and coarse-grained policies that are not customized for individual apps.

SE-Android policies mandate the object domains that each app can access. The

following SE-Android policy [80] marks the folder /data/data as app data file

type, puts all third-party apps in the untrusted app domain with the app data -

file type, allows them to create files and directories on SD-card, and lets third-party

apps read files with app data file type (does not distinguish data from different

apps, so an app can access other apps’ data) and allows to exchange binder calls with

any other app.

sepolicy/file_contexts

App sandboxes

/data/data/.* u:object_r:app_data_file:s0

sepolicy/seapp_contexts

user=app_* domain=untrusted_app type=app_data_file \

levelFromUid=true

sepolicy/apps.te

type untrusted_app, domain;

app_domain(untrusted_app)

App sandbox file accesses.

allow appdomain app_data_file:dir create_dir_perms;

allow appdomain app_data_file:notdevfile_class_set \

create_file_perms;

SDCard rw access.

bool app_sdcard_rw true;

if (app_sdcard_rw) {

allow untrusted_app sdcard:dir create_dir_perms;

allow untrusted_app sdcard:file create_file_perms;

}

Perform binder IPC to other apps.

40

binder_call(appdomain, appdomain)

binder_transfer(appdomain, appdomain)

Knox [75] deploys stricter fixed SE-Android policy rules for corporate apps to sup-

port BYOD, and similar to SE-Android, requires initial system-wide data labeling.

Using Knox for BYOD, employees need to use separate email apps to check their per-

sonal and professional emails. Swirls provides more usable solution through dynamic

secure policy definitions and distribution, and enables user-transparent data access con-

trol through its unified user interface for various contexts. Additionally, SE-Android

policies are app-based and monitor control flow (define what each app can do/access

unlike Swirls’s data flow-based policies). Finally, Knox cannot support simultaneous

multi-context data access by the same app.

8 Related Work

Strict app sandboxing has been proposed in FlaskDroid [19] and Saint [70] that extend

the existing permission policies by Android apps. Bluebox [16] provides a per-app

data encryption mechanism, and corporate data access tracking. Swirls goes one step

further and provides multiple contexts that are centrally monitored. Unlike Bluebox,

Swirls does not rely on any network tool to detect data leakages, and tracks the data

flow and enforces the policies within the system locally.

IFT-based solutions such as operating system-level frameworks, e.g., Asbestos [31],

HiStar [96], TaintDroid [35], Flume [56], employ kernel-enforced mechanisms [31, 96],

Dalvik machine-enabled techniques [35] or user-space engines [56] for IFT across system

objects. CleanOS [86] introduces a security-enhanced garbage collector to protect sensi-

tive data objects using encryption and data eviction. AppFence [51] suggests providing

fake information when apps ask for sensitive user data. DroidScope [94] introduces

offline VM introspection for IFT on Android emulators. Aquifer [68] and IpShield [21]

prevent data leakages using LSM-based and Android sensor-level data protection, re-

spectively.

Android permission system limitations or misuse is a well-studied problem [29, 77,

41

40, 41, 34, 51, 22]. SE-Android [81] deploys SE-Linux for Android at the kernel and mid-

dleware levels. Porscha [69] provides policy-based digital right management for smart-

phones without tracking the sensitive data flows. Trustdroid [18] provides a two-context

work/personal domain isolation based on Tomoyo Linux. DeepDroid [91] enforce isola-

tion policies at system server level. These MAC solutions rely on statically defined poli-

cies and do not support on-the-fly policy installation and enforcement. FlaskDroid [19]

and ASM [49] provide kernel and user-space hooks for developers, however, the scope

of the policy enforcement are limited by the hooks’ points.

9 Discussion

Like most of existing practical IFT technology today, Swirls is unable to handle ter-

mination, timing, and implicit flows that can be used to circumvent data isolation.

Even coarse-grained isolation techniques like virtualization do not always provide

protection against covert channel attacks by apps.

Rather than trying to improve on IFT, Swirls’s goal is to enable BYOD through a

more fine-grained and user-transparent data isolation model that gives data owners (not

apps) control over data protection policies. Until IFT advances enable covert channel

detection, we cope through a judicious choice of goals and threat model.

Additionally, the Swirls TCB contains the Android system (kernel, Dalvik, system

services), and the Swirls server (Section 4). This TCB does not prevent a user from

rooting the device and replacing the kernel to circumvent Swirls, no different from

other isolation solutions available today. To prevent those attacks, hardware support

such as TPM or TrustZone [5] are needed to ensure that the TCB has not been tampered

with, no different from what some manufacturers do today, e.g., Samsung Knox on

Galaxy S series phones [75]. We consider this problem outside the scope of this work.

10 Conclusion

Swirls enables BYOD through dynamic virtual micro security perimeters, i.e., cap-

sules, to protect data and data owners rather than apps and services within a system.

42

Swirls keeps track of each capsule boundary across the system, and enforces relevant

policies by deploying intra- and inter-process level mandatory access control. Our im-

plemented fully-working Swirls prototype (>25K LOC) runs on Android 4.1.1 r6,

causes a reasonably low overhead on the system’s overall throughput, and facilitates

two appealing BYOD use-cases for data interactions between corporates and their em-

ployees.

43

Chapter 3

Value-Based Information Flow Tracking

1 Introduction

Modern mobile devices embed a wide range of sensors that enable new usages such

as context awareness, activity recognition, and exercise tracking. Users have widely

adopted these new mobile device capabilities as they do not require purchasing extra

hardware but simply installing an application (app) that provides the new functionality.

While these new sensors and applications empower users by providing useful features,

these same sensors have also been exploited for malicious purposes. For example, pre-

vious research has shown that sensors such as accelerometer, gyroscope and ambient

light sensors can be used as a keylogger mechanism [66, 82].

Mobile operating systems currently offer only rudimentary protection mechanisms to

defend users against malicious inference attacks. The most popular mobile operating

systems on the market, Google’s Android and Apple’s iOS, use runtime permission

mechanisms to regulate application access to privacy-sensitive sensors, such as GPS or

microphone. Other sensors such as the accelerometer do not require any permission at

all. Permission mechanisms have been proven of limited efficiency: they provide coarse-

grained permissions with no alternative but to comply with the permission request [76,

39]. As a result, it is nearly impossible for a user to grasp if any app computes a specific

inference and if an app intentionally, or maliciously, leaks sensor values.

Information flow tracking (IFT) solutions have been proposed to identify applica-

tions that leak sensitive information. These solutions monitor data flows from a privacy-

sensitive source, e.g. sensor readings, and determine if a flow of sensitive data reaches

a sink which can be a network socket, a file, or a message shared with another app via

inter-process communication (IPC). State of the art approaches for information flow

44

tracking analysis techniques can be categorized as follow: off-line static analysis (e.g.,

FlowDroid [10] or Droidsafe [46]) and runtime dynamic analysis (e.g., BayesDroid [87],

TaintDroid [35] or Droidscope [94]). Both approaches have limitations. On one hand,

static analysis suffers from high processing cost and can be easily bypassed by dynamic

code loading. On the other hand, dynamic IFT solutions differ in the granularity they

provide: for example, HiStar [96] labels operate on high-level system objects such as

processes and files while TainDroid implements a variable-level IFT. This difference

directly impacts the precision of the information flow detection. Moreover, dynamic

analysis solutions tend to provide only minimal information in their leak reports. A

typical alert currently includes the tainted data along with its corresponding source.

It is then a challenging task to investigate qualitative aspects of a leak. Specifically,

beyond the type of source reporting, a user might wonder how much information from

a specific source a leak contains.

Dynamic IFT solutions provide “black-and-white” conclusions about whether a

given app discloses sensitive data to unauthorized parties. The common flow prove-

nance reporting adopted by IFT solutions fails to characterize a flow in several ways.

Consider two different fitness sports apps, where one sends out accelerometer data

readings constantly while in use, whereas the other app only reports monthly running

distance averages. A typical dynamic data flow tracker would detect both flows since

the network outputs are tainted by the source sensor data. However, a single value

detected at a sink does not give any information about the type of computation it re-

sults from. Currently, taint tracking solutions do not differentiate a raw data leakage

(e.g., raw accelerometer data) from an inference computed value (e.g. number of steps

inferred from the raw accelerometer data). Static analysis solutions partially bridge

this gap, but at a very high computing cost, in terms of both space and time. Such

an extreme black-and-white treatment of sensitive data disclosures lead to unnecessar-

ily pessimistic conclusions about legitimate apps. Consequently, users would discard

reporting alerts due to their inaccurate reports.

A second limitation concerns the usability of current IFT solutions. Existing dy-

namic taint tracking solutions such as BayesDroid, TaintDroid or DroidScope require

45

system modifications. Generally, dynamic information flow solutions require substan-

tial system modifications and require the user to install a custom modified version of

Android and/or require root privileges. Such requirements have prevented the adop-

tion of information flow tracking technologies by common users who are incapable or

unwilling to replace their factory images of Android with a custom system in order to

check if an application is disclosing their personal data. As a result, the investigation

of privacy leakage by applications has been the work of a limited group of researchers

that do not have the resources to cover the gigantic amount of applications available

on smartphone platforms. Also, currently available solutions such as TaintDroid [35]

are implemented by modifying the Dalvik virtual machine. Unfortunately, these so-

lutions are not compatible with new versions of Android since Google has shifted the

Android application execution environment from the Dalvik virtual machine to the new

Android runtime (ART) as of Android 5.0. Recent work such as ARTist [12] proposes

an ART-based taint tracking but still requires system modifications.

We introduce Metron, a new practical information flow tracking solution and data

disclosure analysis framework for numerical values such as sensor measurements. To

address fundamental issues in current taint tracking solutions, Metron focuses on

three main aspects. First, Metron introduces a new value-based information flow

tracking system. Second, Metron tracks tainted data operation history and adds this

information to the sink reporting. Third, Metron’s design allows for deployment on

top of unmodified commodity versions of Android without requiring root access. Hence

Metron can be used by any user to check the privacy leakage of applications running

on her phone.

While the majority of previous IFT solutions [35, 94, 96] use a per-object shadow

memory (taint) to identify data flows, Metron introduces a new approach for tracking

sensitive data based on the sensitive data values. This chapter provides an evaluation of

this value-based IFT approach and shows how it achieves comparable performance and

precision to previous solutions while incurring less computation and memory overhead,

and having fewer deployment constraints. In addition to this flow detection mechanism,

46

Metron records each taint value arithmetic operation history. This enables a char-

acterization of data flows beyond a white and black assessment (i.e., whether a data

segment is tainted).

We evaluate this approach through a prototype of Metron implemented on top of

Android 5.0. The prototype runs as a third-party application that acts as a sandbox

layer between the unmodified Android system and the monitored application. Metron

evaluation is carried on unmodified Android systems running real world applications

installed directly from Google’s Play Store. In addition, Metron’s design was ported

back to Android 4.3 in order to compare its accuracy against the state of art legacy solu-

tions such as TaintDroid [35], and BayesDroid [87]. Compared to TaintDroid, Metron

improves the detection accuracy significantly and reports fewer false positives (2 vs 17

on DroidBench) mainly because of variable sensitivity considerations (i.e., a variable

tainted and reused with an untainted value stays tainted). Compared to BayesDroid,

Metron reports higher accuracy in terms of the number of true positives while being

able to handle numerical values whereas BayesDroid can only track strings.

While the Android framework provides a great platform to evaluate such a solution

considering the previous research effort, we strongly believe that this approach would

benefit even more domain-specific applications such as Internet of Things devices that

manipulate mostly sensor data and numerical values.

The contributions of this chapter are as follows:

∙ We designed a novel lightweight information flow analysis algorithm for numerical

values that does not require an exhaustive instruction instrumentation.

∙ We implemented a prototype of Metron and evaluated its performance and

accuracy versus other solutions. This evaluation was conducted using benchmarks

and real-world popular applications’ execution traces that manipulated sensors

values.

∙ We improved on current IFT solutions capabilities by providing insightful infor-

mation about leaks that go beyond a true/false detection mechanism through the

collection of tainted data operations history as an inference detection mechanism.

47

Sources
Sensors data

Sinks
Sockets, files

void StepDetector (long, float, float, float)
const/4 v5, #+3
new-array v0, v5, float[]
const/4 v5, #+0
aput v14, v0, v5
const/4 v7, #+0
aget v7, v0, v7
…
int-to-float v7, v7
div-float v6, v3, v7
aput v6, v4, v5
sub-float v1, v5, v6
add-float v5, v1, v6
…

= const1 / (int) sensor

= (int) sensor

= const2 – (const1 / (int) sensor)

= const3 – (const1 / (int) sensor)

METRON sandbox
Third-party App

classes.dex

app.oat

Targeted code
instrumentation

2

1

Runtime
value-based IFT

List of tainted values
& operation history

3

Figure 3.1: Overview of the system: selective instrumentation of tracee application
instructions and extended flow reporting

The rest of this chapter is organized as follows: Section 2 provides a high-level

overview of Metron. Section 3 presents the threat model for Metron’s current im-

plementation. Section 4 and Section 5 present the design of Metron’s value-tracking

approach and detail its implementation. Section 6 describes our experiments and eval-

uation results. Section 7 discusses the limitations and future directions of our work.

Section 8 summarizes the related work. Finally, Section 9 concludes the chapter.

2 Metron Overview

Table 3.1: Number of floating point operations encountered at execution time in the
Cfree pedometer app

DEX op executed 25,080,000
fp op executed 106,514 (0.42%)
numerical op executed 1,891,834 (7.5%)

Metron is a dynamic information flow tracking (DIFT) framework for numerical

values. Figure 3.1 presents the overview of the framework. Metron sources can be any

system component that generates numerical values, such as phone sensors. Contrary to

existing techniques [35, 94] that use a per object shadow memory to track information

flows, Metron employs a novel data flow tracking technique based on examining the

operands and return values of numerical operations. Metron keeps track of the re-

sult of numerical computations that involve tainted values which are either raw values

from a source or computed values that are functions of other previously tainted values.

Metron operates by instrumenting numerical instructions in order to track operand

48

values and record return values as a flow tracking mechanism. When data reaches

a sink, Metron detects the information flows involving tainted values by comparing

string representations of numerical values against the set of previously encountered

tainted values. The inspection of numerical operations operands and return values is

achieved by running the app within a virtualized environment (i.e., a sandbox) and by

instrumenting the application code using an modified version of the dex2oat compiler.

This sandbox and modified compiler are implemented and run as a third-party Android

application.

Most Android applications execute a small ratio of numerical instructions compared

to the overall number of instructions in an app. Table 3.1 shows the percentage of nu-

merical and, more specifically, floating point operations in a popular pedometer applica-

tion. Such an application, which constantly computes inferences from sensor data, has

a ratio of numerical instructions to the total number of instructions performed < 10%

(and < 1% for floating point operations). This observation motivates the design choice

of selectively monitoring numerical operations. Instead of instrumenting all operations

to detect information flows, Metron only instruments the subset of instructions which

handle numerical values.

This selective instruction coverage implies a tradeoff between Metron’s accuracy

versus traditional approaches for taint-tracking (e.g. taint stored in shadow memory).

We investigate this tradeoff by analyzing the limitations in terms of flow coverage and

correctness of the flows detected. Intuitively, limiting the scope of operations tracked

to numerical operations limits of the detection precision of the system. In practice, our

experimental evaluation of Metron reveals that this limitation does not heavily affect

the solution flow detection rate in comparison to other solutions. Also, employing the

values themselves as a propagation mechanism can lead to false positives: an identical

numerical value can be read multiple times from a sensor or can result from two different

sequences of operations, from two different data flows. As discussed in Section 4, such

false positives are monitored and mitigated through Metron’s design. In practice, we

did not observe many false positives resulting from value collisions. Section 6 discusses

this point further.

49

Metron provides extra information to the user regarding the nature of the flow

that reaches the sink (Figure 3.1). Metron keeps track of the computation history

of each tainted numerical value. This extra information provides a basis for further

analysis such as deriving a risk analysis based on the history of operations used to

compute the leaked value. While Metron provides this operation history tool for

further analysis, this research does not claim to evaluate the risk of observed data

leaks. In fact, the determination of a risk is closely related to specific use cases and

to users privacy expectations. Accordingly, Metron’s contribution is limited to the

framework to investigate data leakages. The risk assessment of a flow reaching a sink

is left for future research.

The user is required to install two apps to use this solution: the Metron app

and the application to be investigated. The Metron app tracks data leakage from

any other third-party apps, while not requiring any changes to the system or to the

investigated app. The target application is started through Metron. Metron trans-

parently uses dynamic code loading, compiler instrumentation and app virtualization

techniques to monitor the flows of sensitive values while the target app is running. Our

implementation is discussed in Section 5.

Our investigation of this novel IFT mechanism focuses on accelerometer-based ap-

plications. Many accelerometer inferences have been proposed in previous work for

applications as diverse as detecting stress [43], remotely capturing keyboard input [64]

or providing fitness tracking information. Such a diversity of computations provide a

great opportunity to evaluate our solution.

3 Threat Model

Metron threat model assumes that apps have full access to the device sensors and

leverage this access to achieve their purpose. This solution considers data leaks caused

by legitimate (as opposed to malicious) applications. We assume that applications

examined by Metron do not try to leverage any known or unknown vulnerability in the

underlying execution framework (kernel, system services). While the implementation

50

presented in this chapter follows this assumption, the design proposed could have a

relaxed threat model that only assumes that the hardware is trusted by leveraging

trusted hardware commodities such as ARM TrustZone to host the flow decision logic

and tainted values.

We assume that applications do not use any type of covert channel attack. Also,

we assume that no external actors try to defeat the analysis techniques presented by

tampering with the sensor environment. Metron does not detect information leaks

through side channels and assumes that there is no intentional tampering with the phone

environment to defeat the flow detection. Implicit data flows are also not covered by

Metron.

4 Value-Based Information Flow Tracking

This section presents the design challenges that were addressed while designingMetron

value-based information flow tracking system.

4.1 Sources and Sinks

Metron information flow tracking focuses on numerical value data flows. The informa-

tion sources are numerical value generators such as the accelerometer, the GPS, and the

heart-rate sensor. Generally, sensors that generate floating point values are Metron

targets of choice as data sources. This selection of sources fits well for smartphone and

IoT platforms: [28] enumerates the motion sensors supported by the Android OS and

their unit of measure. Most of these sensor readings are represented as floating point

values in Android and Android Things (formerly Brillo).

Metron uses classic detection interfaces as information flow sinks. Possible sinks

include network sockets, IPC messages, and files. At the sinks, Metron assumes the

data is encoded as cleartext ASCII byte arrays. Data leaks are detected by comparing

all numerical value representations in the string to the list of tainted numerical values

maintained by Metron. This detection relies on a regular expression that matches

any integer or floating point representation.

51

Listing 3.1 shows an example of a file written by a pedometer application, installed

from the Google Play Store, that utilizes the accelerometer to compute the number of

steps the user makes. On the file write operation, the string given as an argument is

detected at the sink and marked as containing sensor data. Not all integer or floating

point values carry sensitive information in this string. In our example, the XML version

number, 1.0, and the 8 of utf-8 are not tainted. However, the remaining numerical

values in this file are tainted values that derive from a computation from accelerometer

readings. In this case, the flow detection is triggered by the value 0.010439022. The

value 25 actually results from an implicit flow and is not detected. Such detection

results are similar to other dynamic IFT solutions: they indicate the origin of the data,

the source and the sink the tainted data was detected at.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’ ?>

<map>

<int name="lapsteps" value="25" />

<float name="distance" value="0.010439022" />

<float name="lapdistance" value="0.010439022" />

<long name="lapsteptime" value="11670" />

<long name="steptime" value="11670" />

<float name="calories" value="0.85382223" />

<float name="lapcalories" value="0.85382223" />

<int name="lapnumber" value="1" />

<int name="steps" value="25" />

</map>

Listing 3.1: Example of a flow detected (App: Accupedo)

4.2 Tainted Data Computation History

Metron improves on existing IFT solutions by recording the operation history each

tainted value is derived from. As presented in Listing 3.2 each source reading is rep-

resented by a symbol (e.g., S0 the for accelerometer on the X-axis) and an index to

indicate the order the value was read from the sensor. Each raw or computed tainted

value possess a computation history string that is eventually displayed at the sink if

the value is leaked.

52

(((((0 . 0909091* S0 114) +(0.909091*((0 .0909091*S0 138) +(0.909091*((0 .0909091*S0 36)
+(0.909091*((0 .0909091*S0 18) +(0.909091*((0 .0909091*S0 120) +(0.909091*((0 .0909091*S0 114)
+(0.909091*((0 .0909091*S0 12) +(0.909091*((0 .0909091*S0 102) +(0.909091*((0 .0909091*S0 0)
+(0.909091*((0 .0909091*S0 30) +(0.909091*((0 .0909091*S0 0) +(0.909091*((0 .0909091*S0 6)
+(0.909091*((0 .0909091*S0 36) +(0.909091*((0 .0909091*S0 0) +(0.909091*((0 .0909091*S0 60)
+(0.909091*((0 .0909091*S0 54) +(0.909091*((0 .0909091*S0 12) +(0.909091*((0 .0909091*S0 0)
+(0.909091*((0 .0909091*S0 36) +(0.909091*((0 .0909091*S0 30) +(0.909091*((0 .0909091*S0 24)
+(0.909091*((0 .0909091*S0 18) +(0.909091*((0 .0909091*S0 12) +(0.909091*((0 .0909091*S0 6)
+(0.909091*((0 .0909091*S0 0)+−0.0579258))

)))

Listing 3.2: Example of a flow history at the sink. The S0 prefix corresponds to the
accelerometer on the X-axis and the suffixes correspond to the order the values were
read from the sensor. (App: Accupedo)

4.3 Design Challenges

Contrary to metadata-based information flow tracking solutions where system objects

such as variables, process and files are tainted using shadow variables or file metadata

to indicate the belonging or the provenance of a flow, Metron relies on the comparison

between the numerical instruction operands and return values as a primitive to track

a data flow. If any of the operands belong to a list of tainted values maintained by

Metron, then the return value of the instruction is also added to the list of tainted

values. The list of tainted values is bootstrapped by the raw values obtained from the

source.

We discuss some design choices in Metron and their limitations. Using values as a

primitive to track flows requires investigating a few critical aspects: (1) the requirements

for unique values to achieve an accurate flow detection (or flow computation history

reconstruction), (2) the design of a storage method for values that belong to a flow, and

(3) a value lookup mechanism. The rest of this section describes our approach for each

of these aspects. Section 6 complements our discussions with actual measurements.

Numerical Values Unicity Requirements. Two levels of operation of Metron’s

information flow tracking solution should be distinguished: (1) the ability to differen-

tiate a tainted data flow from a non-tainted data flow and (2) the ability to identify

a flow along with its computation history. These two levels of operations have differ-

ent requirements regarding the values that are processed. Tainted value collisions (i.e.,

identical values read or computed from a sensor at different times) have no incidence

53

0

0.005

0.01

0.015

0.02

0.025

0.03

-0.2 0 0.2 0.4 0.6 0.8 1

FR
EQ

U
EN

C
Y

ACCELEROMETER READING (m/s2)

Tablet 1 X

Tablet 1 Y

Tablet 2 X

Tablet 2 Y

(a) Distribution of accelerometer readings for
static tablets

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

-25 -20 -15 -10 -5 0 5 10 15 20

FR
EQ

U
EN

C
Y

ACCELEROMETER READING (m/s2)

Tablet 1 X

Tablet 1 Y

Tablet 2 X

Tablet 2 Y

(b) Distribution of accelerometer readings for
randomly moving tablets

Figure 3.2: Accelerometer reading collision frequencies for two tablets attached together
on the X and Y axes over a 120s time period.

on the detection of a flow. However, an untainted computed value could coincidentally

equal to a tainted value. This case need to be handled as it would lead to a false pos-

itive (Requirement A). This first requirement also holds when trying to reconstruct

a flow computation history. Moreover, the distinction between two identical tainted

values that result from different computations (e.g., a raw tainted value vs. a computed

tainted value) need to be made (Requirement B) as they carry different computa-

tion histories. Also, the unicity of the values read from the sensor matters as they

correspond to the order the values were read at (Requirement C).

Requirements A and B are strong requirements since the correctness of the solu-

tion depends on them. However, requirement C only matters if the analysis of a flow

computation history requires information about the order of the sensor readings. For

example, the computation of a mean value of a set of sensor readings would not require

knowledge about the order of acquisition of the values. On the other hand, this order

might be useful to further investigate a raw data leak.

To evaluate how unique values generated from a sensor are, we consider the distri-

bution of accelerometer readings generated from two different tablets. We first sampled

them at 40Hz per axis over 120s time periods first by keeping them still on a table

then by moving them together randomly over a same time period. Figure 3.2a and Fig-

ure 3.2b show the distributions of the accelerometer readings for two identical devices in

both cases. For the static devices, the measurements revolve around 0 for 𝑥 and 𝑦 and

54

Table 3.2: Entropy, ratio of unique values, minimum, maximum and mean time intervals
in seconds over which a static and moving device acquired unique accelerometer readings
over 120s time frame for two identical devices.

Axis Device Static Moving
Ent. % uniq. Min Max Avg Ent. % uniq. Min Max Avg

X-axis
Tablet 1 4.29 1.06 0 0.153 0.048 9.21 53.90 0 2.389 0.140
Tablet 2 4.22 0.51 0 0.139 0.088 9.27 54.15 0 1.746 0.352

Y-axis
Tablet 1 4.31 0.56 0 0.136 0.060 9.10 47.77 0 1.440 0.093
Tablet 2 4.32 0.56 0 0.141 0.008 9.16 48.32 0 1.632 0.294

Z-axis
Tablet 1 5.07 1.02 0 0.241 0.037 6.84 45.60 0 0.821 0.046
Tablet 2 5.05 1.06 0 0.208 0.089 6.94 46.49 0 1.090 0.004

Maximum entropy (i.e. all distinct values) for the collected sample size: 10.11

𝐺 for 𝑧 (not shown in the graphs). The readings collision frequency generate Gaussian

distributions for static devices and more random distributions for the moving devices.

We estimated the entropy of these sets of values by empirically computing Shannon’s

entropy approximation using the approach mentioned in [17]:

𝐻𝑠 = −
𝑀∑︁
𝑖=1

𝑝𝑖 𝑙𝑛(𝑝𝑖) = −
𝑀∑︁
𝑖=1

𝑛𝑖

𝑁
𝑙𝑛(

𝑛𝑖

𝑁
)

where𝑀 is the set of unique values in the set of all values read𝑁 , 𝑝𝑖 is the probability

of reading the value 𝑖 from this set, 𝑛𝑖 is the number of occurrences of value 𝑖.

Table 3.2 presents our per-axis and per-device results. While there is a significant

increase in entropy for the moving devices the ratio of unique values was 50% maximum

over 120s. Table 3.2 also presents the minimum, maximum and mean time intervals

over which we acquired unique values from a sensor. The average time intervals over

which we can acquire unique values are usually less than a second. While it is possible

to have unique values over a small period of time, a solution to consistently achieve the

unicity of all values read from the sensor (Requirement C) is required.

A simple solution consists of adding some negligible perturbation (much smaller than

the sensors’ typical noise levels) to colliding values. By adding a very small variation

to the sensor values that stays within the limit of the bias of the sensor, we were able

to achieve a full set of unique values while minimally perturbing the input. For the

55

test above, we used two Nexus 7 tablets both equipped with a MPL accelerometer from

Invensense. According to the results from the SensMark benchmark [78], the resolution

achieved by this sensor is 0.039𝑚/𝑠2, with a detection range between ±19.6133𝑚/𝑠2.

On Android, accelerometer values are stored as floating point values that can achieve

up to nine significant decimal digits precision. This leaves sufficient room for our sub-

noise-level perturbation that eventually has no impact on the precision of the reading

and computations afterward, since the conventional measurement noise should already

be taken care of by data-consuming apps on the phone.

Finally, Requirement A can be monitored by checking that no result from untainted

values matches a tainted value. Similarly, Requirement B requires looking up known

tainted values before inserting a new value. Metron raises an alert to indicate any of

these cases. In practice, while running Metron alongside with TaintDroid, we did not

observe false positives due to either of these two cases.

Storage of Tainted Values. Despite the recent progress made by hardware con-

structors, smartphones are still embedded devices with limited resources. Android

operating system designers constrain the use of memory under a certain threshold by

using mechanisms such as Android’s lowmemorykiller. Metron’s design for value stor-

age adapts to this constraint by using a fixed per-app memory space to store tainted

values. Metron employs a ring buffer where only the most recent tainted values are

kept and the oldest ones are reused. Section 6.1 goes into the detail of this choice.

We also store the history of the computation applied to a tainted value along with the

value. This history consists of tainted values each represented as an arithmetic function

of the original sensor readings based on the computations performed by the app up to

this point. This feature requires a larger memory space as the computation history

depends on the underlying app algorithms.

Tainted Values Lookup. Metron uses a lookup mechanism on the ring buffer in

order to determine if a value is a part of a flow. Based on our observations, most of the

lookups match values at the beginning of the buffer, which is logical since a sequence of

56

Figure 3.3: Overview of Metron’s app components

operations in the code will often reuse the most recent computation results. Accordingly,

Metron uses a hybrid lookup mechanism that first searches the most recently inserted

values in the ring buffer and then uses a full binary tree search if the value was not

found. One important point to note, depending on either Metron is run to only track

flows or to additionally track flow computation histories, respectively one or multiple

lookups in the ring buffer are required. In order to detect a flow, a positive lookup on

any of the parameters that are given to a numerical operation is sufficient to detect a

flow. However, if Metron is employed to build the history of the flow, it is imperative

to look up all operands of the operation in order to build the precise operation history

linked to the flow. The taint propagation corresponds to the search for an exact match

between the values given as a parameter of an instruction and the values stored in the

ring buffer. At the sink, however, we look for an approximate match between the value

written to the sink and the values known in the ring buffer since developers sometimes

limit the number of decimals printed through printing functions modifiers.

5 Implementation

Metron is implemented as a userspace third-party app compatible with the mod-

ern versions of Android (5, 6 and 7). We carried out our evaluation experiments on

Android 5.0.1. Since version 5.0, Android uses by default a new runtime mechanism,

named Android Runtime (ART), which uses ahead-of-time compilation to compile DEX

57

applications bytecode into an ELF binary file (more specifically, OAT file format) at

application installation time. This compilation takes place on the device using the

dex2oat compiler. While switching from Dalvik to ART breaks legacy taint tracking

solutions (e.g., TaintDroid), Metron is compatible with the new runtime environment.

Metron can be used on commodity Android devices without modifying the operating

system nor the application to be examined.

To investigate data leaks in an installed third-party app, the user has to start

the target application through Metron’s app. Metron relies on two mechanisms to

perform its analysis: (1) an app sandboxing mechanism and (2) a recompilation of the

app DEX bytecode using Metron’s modified dex2oat compiler shipped as a binary

executable, inside the Metron app.

The app sandboxing mechanism enables the inspection of data flowing in and out the

target app. This sandboxing is achieved through system call interception. The modified

compiler enables tainted value tracking by instrumenting DEX numerical instructions

present in the target app DEX code. When an app is run for the first time within

Metron, the modified compiler generates an instrumented OAT file from the app

DEX bytecode. Metron does not replace the target app OAT file in the system

with our modified version (which is impossible because Metron does not have root

access), instead when an app is selected to run within Metron, we rely on system

call interception to redirect the open system call to the path of the modified OAT file

generated inside Metron’s app.

Figure 3.3 shows Metron’s architecture. At runtime, Metron manages two pro-

cesses. The first one is the tracee process within which the modified binary file of the

target app is loaded and executed. The other one is the tracer process that intercepts

all system calls, including sensor data delivery, files and network accesses, and IPC mes-

sages between the tracee process which runs the target app and the Android OS. Data

leak detection also relies on system call interception: when reaching a sink Metron

tracer compares the values being sent out the tracee process against the list of tainted

values maintained by the value tracker.

The next subsections 5.1 and 5.2 respectively detail the design and implementation

58

of the application sandboxing and the instrumented compiler.

5.1 Application Sandboxing

The core component of Metron is an application sandboxing process that is used to

execute the code of other third-party applications. Techniques to implement application

sandboxes have been demonstrated in [15, 11]. Both approaches use dynamic code

loading and system call interposition to implement the sandboxing mechanism. Our

implementation extends these approaches and adds information flow tracking through

the Metron app.

First, we use Android dynamic code loading APIs to load the code of the other

application. Second, within the main process of Metron we set up an environment

for intercepting system calls (including the ioctl system call used to perform Binder’s

IPC transactions). Lastly, we start the main activity of the target app while using

system call interposition to inspect and modify the content of the system calls and

Binder transactions payloads.

Target App Code Loading. Android provides well-documented APIs for dynamic

code loading. The DexClassLoader class loads classes from a given JAR or APK

file. In addition, Android provides the createPackageContext to create the con-

text object of a given installed application. The returned context object includes the

application resources from its APK file and optionally, can include the application code

as well.

Context target_context = getApplicationContext().createPackageContext(

targetPackageName,Context.CONTEXT_IGNORE_SECURITY | Context.

CONTEXT_INCLUDE_CODE);

ClassLoader loader = target_context.getClassLoader();

The security implications of dynamic code loading have been discussed in [38].

System Call Interception. Before starting the code loaded from the target applica-

tion, Metron enables system call interception in the tracer process. This is done using

59

the ptrace system call. First, Metron main app process uses the fork system call

to clone itself into another process. The new child process becomes the tracer process.

After making the fork system call, the parent process, the tracee, will allow the tracer

to use ptrace to control it via by the following code:

prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);

Listing 3.3: prctl system call

The tracer will then make the following system call to attach its parent:

ptrace(PTRACE_ATTACH, parent_pid, 0, 0);

Listing 3.4: ptrace system call to attach a process

As a result, the main process becomes a tracee controlled by the tracer process. Conse-

quently, the tracer will get interrupted for every system call made by the tracee. When

interrupted, the tracer is able to read and modify the registers and memory content of

its tracee.

Target Application Runtime Monitoring. With the system call interposition

ready, the tracee starts the main activity of the target application by using the

ClassLoader we created from the target application context to load the main ac-

tivity class. The loaded classes are wrapped with an Intent wrapper and ask the

ActivityManager frameworks service to start it by using StartActivity func-

tion call. While the normal behavior of Android is to disallow applications to start

the code loaded from other application packages in the same process, we make use of

the system call interception to modify the payload of the Binder transactions made by

the StartActivity framework method call. Namely, we use the tracer process to

modify the content of both the START ACTIVITY TRANSACTION, and SCHEDULE -

LAUNCH ACTIVITY TRANSACTION taking place between the Metron application

process (the tracee) and the Android framework ActivityManagerService pro-

cess. More details about the exact patching procedure can be found in [15].

Eventually, while the target app is running, the tracer process performs the following

tasks:

60

a) Virtualizing the resources of the target app: In order to keep the target app run-

ning within the context of our tracee process, the tracer has to virtualize the private re-

sources of the target app such as the application components (e.g. Activities, Services)

and the private data directory (/data/data/[application package name]).

Files accessed under the private data directory of the target app package are redi-

rected to the private data directory of Metron by intercepting the file-related system

calls. When the target app attempts to start another activity from its own pack-

age, the tracer intercepts the Binder transactions to replace the package name of

the activity to be started with the package name of the Metron app. When the

ActivityManagerService responds by providing the ActivityInfo of the activ-

ity to be started, the tracer replaces it by an instance of the ActivityInfo obtained

from the target app context we obtained by dynamic code loading.

b) Intercepting sensor values delivered to the app: The tracer process inter-

cepts IPC messages between the tracee process, which runs the target app, and the

sensor data sources within Android (e.g. SensorManagerService). For exam-

ple, to intercept accelerometer and gyroscope values the app receives, we intercept

the GET SENSOR CHANNEL exchanged between the application and the framework

SensorManagerService which contains a descriptor for a network socket used to

deliver sensor values to the application. The network socket (recvfrom) system call

is intercepted to inspect the actual values delivered via the socket descriptor we have

found. Sensor values are added to a list of sensitive values maintained by Metron.

c) Intercepting file and network-related system calls: The tracer will intercept file

and network related system-calls to inspect the data written to files and network sockets

for tainted values. Values written to files or network sockets are checked against the

list of sensitive values maintained by Metron.

5.2 Taint Tracking via Numerical Operations Interception

The sandbox system call interception allows the tracer to inspect values read from

sources (e.g., sensor readings from the accelerometer are received through a network

socket recvfrom system call) and values sent to sinks (which are leaked by either

61

float f1 = 4.05f;
float f2 = 5.04f;
float f3 = f1+f2;
float f4 = f2-f3;

Listing (3.5) Sequence of floating point
operations in an Android app

1: void com.example.floattrack.
MainActivity$1.onClick(android.view.
View) (dex_method_idx=18789)

DEX CODE:
0x0000: const v0, #+1082235290
0x0003: const v1, #+1084311470
0x0006: add-float v2, v0, v1
0x0008: sub-float v3, v1, v2

Listing (3.6) Generated DEX code extracted
with oatdump

rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg,

true);

+ NewLIR1(kThumbPush, rs_r0.GetReg());
+ NewLIR1(kThumbPush, rs_r7.GetReg());
+ LoadConstant(rs_r7, 382);
+ NewLIR1(kThumbSwi, 0);
+ NewLIR1(kThumbPop, rs_r7.GetReg());
+ NewLIR1(kThumbPop, rs_r0.GetReg());
+

NewLIR3(op, rl_result.reg.GetReg(),
rl_src1.reg.GetReg(), rl_src2.reg.
GetReg());

StoreValue(rl_dest, rl_result);

Listing (3.7) Approach 1: dex2oat compiler
numerical instruction instrumentation

ed9f9ab5 vldr.f32 s18, [pc, #724]
; 0x4081999a

ed9f8ab3 vldr.f32 s16, [pc, #716]
; 0x4081999a40a147ae

+ b480 push r7
+ b487 push r0
+ f44f77bf mov.w r7, #382
+ df00 swi 0
+ bc87 pop r0
+ bc80 pop r7
ee798a08 vadd.f32 s17, s18, s16
+ b480 push r7
+ b487 push r0
+ f44f77bf mov.w r7, #382
+ df00 swi 0
+ bc87 pop r0
+ bc80 pop r7
ee789a68 vsub.f32 s19, s16, s17

Listing (3.8) Approach 1: Generated assembly
code by Metron’s dex2oat

case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR:

+ GenInvoke(metron_callinfo);
GenArithOpFloat(opcode, rl_dest,

rl_src[0], rl_src[1]);
break;

Listing (3.9) Approach 2: dex2oat numerical
instruction instrumentation

ed9f9ab5 vldr.f32 s18, [pc, #724]
; 0x4081999a

ed9f8ab3 vldr.f32 s16, [pc, #716]
; 0x4081999a40a147ae

+ 1c38 mov r0, r7
+ 68c0 ldr r0, [r0, #12]
+ 6980 ldr r0, [r0, #24]
+ f8d0e028 ldr.w lr, [r0, #40]
+ 47f0 blx lr
ee798a08 vadd.f32 s17, s18, s16
+ 1c38 mov r0, r7
+ 68c0 ldr r0, [r0, #12]
+ 6980 ldr r0, [r0, #24]
+ f8d0e028 ldr.w lr, [r0, #40]
+ 47f0 blx lr
ee789a68 vsub.f32 s19, s16, s17

Listing (3.10) Approach 2: Generated
assembly code by Metron’s dex2oat

Figure 3.4: Instrumentation of the app code by Metron’s compiler and corresponding
implementation of the compiler for a function call value interception.

62

network sockets, written to file, or passed through Binder IPC to another application).

However, system call interception does not provide information about the computations

applied to the tainted values after being read from the source and before being sent to

the sink. Without this information, our information tracking solution would only be

able to identify direct leaks from a source and would not be able to detect leaks that

follow computed inferences from the sensitive values. In order to overcome this hurdle,

we rely on compiler instrumentation by shipping a modified version of the dex2oat

compiler within the Metron application.

Starting from Android 5.0, the ART runtime environment has been used as a re-

placement for Dalvik. One of the main features of this new runtime environment is

the Ahead-of-Time compilation that transforms the DEX bytecode that is embedded

in an android application to optimized native code. This ahead-of-time compilation is

a one-time operation performed during the app installation. The compilation process

is performed using the dex2oat utility that acts a compiler for DEX bytecode. The

resulting binary is an ELF executable with the application DEX code embedded in it

for debugging purpose. The dex2oat compiler has different compilation modes. The

default quick compilation mode uses Android’s own compilation backend, as opposed to

the portable compilation mode that relies on LLVM. The quick compilation takes place

in two phases. The first phase transforms each sequence of DEX instructions into a list

of instructions corresponding to the opcodes, referred to as the MIR representation.

The second phase transforms the MIR representation to a platform specific represen-

tation, referred to as LIR. Both steps include optimization phases such as garbage

collection optimizations and improved register mapping among others. Finally, the

compiler generates platform-specific native code from the LIR representation.

During the first target app startup, Metron runs the modified com-

piler on the application’s classes.dex file (which is accessible under the

/data/code/[package name] directory) to generate a modified OAT file. This

compilation step attaches a Metron library DEX file to the target app DEX file that

contains the numerical instruction hook functions in charge of keeping track of the data

flows.

63

The modified dex2oat compiler instruments the DEX numerical operation instruc-

tions (add-*, sub-*, mul-*, div-*, etc) while converting them to native code. We de-

scribe below the two injection approaches that we evaluated to keep track of the tainted

numerical values.

Approach 1: System Call Injection. Our first approach relies on system call

interception. The compiler adds an arbitrary selected unused system call number, such

as 382, right before any floating point operation in the code. Right before this syscall,

the register 7 and 0 (that respectively contain the system call number and the return of

the sys-call) are saved. The system call number injected is unknown to the kernel and

thus no operation is performed by the kernel. However, it is intercepted by Metron

sandbox as a marker that a floating point instruction is being executed. The tracer

then inspects the registers of the target application process (i.e., tracee) and looks up

both the operands and return value of the numerical operation. Finally, the syscall

returns and the application execution is resumed by restoring the original values of the

registers 𝑅7 and 𝑅0.

The placement of this system call before the operation is required in certain cases:

instructions such as add,sub,div,mul-2addr use the first register to both provide an

operand and store the return value. In that case, the return value is computed twice.

Listing 3.5 shows an example of Java code that manipulates numerical values. The

equivalent DEX bytecode is given in Listing 3.6. The native assembly code generated

via compiling this DEX bytecode by our modified compiler is shown in Listing 3.10.

Instructions injected due to our compiler extensions are marked with ‘+’ symbols.

In practice, this approach is quite rudimentary and globally leads to poor perfor-

mance (cf. Section 6).

Approach 2: Function Call Injection. A more efficient approach to intercept

numerical operation in the target program can be achieved by injecting a function call

before floating point operations rather than triggering a system call. A function call

injection prevents the tracee process interruption and the context switching overhead.

64

Instead, the floating point operation interception code is run inside the tracee process

itself.

Metron’s implementation for the function interception relies on a modified ART

quick compiler. The modified compiler (1) identifies the function code to inject from

the Metron interception library compiled along with the target app, and (2) injects

a call to the value interception function on the target app right before every numerical

operation seen on the DEX code. To include the code Metron uses to intercept

function calls, we use dex2oat’s multi-file compilation support (--dex-file option)

to combine the app’s DEX file, obtained through the APK, withMetron’s interception

library.

Android leverages hardware functionalities, when available, to speed up floating

point operations. In particular, Android makes use of the ARM Floating Point archi-

tecture (VFP) to handle floating point operations. The VFP architecture uses a set

of registers of either 32 bits or 64 bits that are dedicated to floating point operations.

We used the capstone [72] library to disassemble the floating point instruction to be

executed next. We record the operation to be executed as well as the registers in-

volved. By looking up the VFP registers that correspond to the operands we find the

corresponding numerical values and look them up in the ring buffer.

When the values are intercepted, they are stored in the shared memory zone between

the target application and the tracer process. Eventually, when the target application

reaches a sink, which always happens through a system call, the tracer layer verifies

the data passed as a parameter against the values in the ring buffer.

Listing 3.5 shows an example of Java code that manipulates numerical values. The

equivalent DEX bytecode is given in Listing 3.6. The native assembly code generated

via compiling this DEX bytecode by our modified compiler is shown in Listing 3.8.

Instructions injected due to our compiler extensions are marked with ‘+’ symbols.

Listing 3.7 presents a part of the modifications we made to the dex2oat com-

piler source code. Specifically, Metron adds a call to Metron’s library interception

function before numerical operations using the compiler GenInvoke() method.

65

Reference: Dalvik-Based Implementation

Lastly, in order to compare the precision of this solution versus existing solutions, we

have also ported back Metron design to Android version 4.3 r1, modified with

TaintDroid patches, to compare Metron performance with previous implementations

in Section 6.

6 Evaluation

Sections 6.1 and 6.2 detail the performance overhead and flow tracking accuracy results

respectively.

6.1 Performance Overhead

The overhead added by Metron can be attributed to the following factors: (1) The

overhead due to running the application inside the Metron sandbox instead of running

it directly on top of the Android OS. (2) The overhead due to the additional instruc-

tions injected by the modified dex2oat compiler. (3) The overhead due to looking

up the values of numerical operations operands into the ring-buffer to perform taint

propagation. This section provides our evaluation of these three factors.

Sandbox. Running the app within a sandbox allows us to dynamically examine the

app behavior while running without having to modify the operating system or the

app (APK) package. This advantage comes at the cost of runtime penalty due to the

interception and modification of the system calls and Binder transactions. We measure

the virtualization overhead on popular real-world apps downloaded from the Google

Play Store. We run each app in two modes: running natively on top of the OS and

running within the sandbox. For each mode, we conduct five experiments and report

the median time it takes to start the app’s main activity. More precisely, we measured

the time interval between the framework’s StartActivity method invocation (app

startup) and the end of the OnCreate method execution when the activity is started.

The result in Table 3.3 shows that the first two apps were launched around 36%

66

Table 3.3: App Launch Overhead (Without Compilation)

Application Native Exec. Sandboxed Exec.

SensorBox 455𝑚𝑠 620𝑚𝑠 (136%)
Linpack Mobile 813𝑚𝑠 1119𝑚𝑠 (137%)
Free Pedometer 1442𝑚𝑠 8596𝑚𝑠 (590%)

slower when they were started within the sandbox. The Free Pedometer application

experiences a more severe slowdown during the launch because it performs more oper-

ations to load and initialize ads and application analytics libraries during its execution.

Also, it performs multiple reads/writes to a private SQLite database.

Numerical Operations Instrumentation. The additional system calls or function

calls that are injected by the modified dex2oat compiler in order to intercept the

operands and return values of floating point operations also add a runtime overhead.

To measure this overhead, we use the Mobile Linpack benchmark app, which is a CPU-

intensive floating point benchmark. We compare the scores while running (1) natively

on top of OS. (2) within sandbox with system call interception. (3) within sandbox

with function call injection. The results are shown below in Table 3.4.

Table 3.4: Numerical operations benchmarks

Benchmark % Num. Op Native Execution Metron system call approach Metron function injection

Linpack Mobile 29.35 4.6 Mflops 0.01 Mflops 2.07 Mflops

Table 3.4 comparesMetron processing overhead against a vanilla system while run-

ning using either the system call injection method or the function call injection method

to capture tainted values. The Linpack benchmark evaluates the system floating points

operation performance by calculating the number of operations the system can execute

in a given time. Our results show that our initial approach using system call intercep-

tion creates a 500 times slowdown on this benchmark, which confirms previous studies

observations [4]. However, when run using the function call injection, we observed only

a two times slowdown for the instrumented version. This slowdown is actually much

lower in common applications: the Linpack micro-benchmark extensively uses numer-

ical operations, while common Android applications, such as pedometers, only have

67

Figure 3.5: Ring Buffer Usage for Several Applications

a very small fraction of numerical operations. In statistics presented in Table 3.1, a

general app used 0.42% floating point operations compared to the Linpack’s 29.35% in

Table 3.4, or an increase of 70% in operations to track. Therefore, the global overhead

of generic app revolves around 3%, depending on the ratio of numerical operations they

have.

Ring Buffer Lookup Optimizations. Figure 3.5 shows the cumulative percentage

of successful lookups on the ringbuffer at each position for a previously recorded tainted

value. Between 42-83% of the lookups for tainted values succeed by looking up the ten

most recently inserted values in the ring buffer. This justifies the design trade-off

described earlier for which a linear search on the few last values inserted is performed

first (in this example, on the five most recent values) followed by a tree based search

if any of the first values was a match. For this evaluation we used a 20,000-value ring

buffer. An average binary tree search in the ring buffer will thus require a maximum

of 15 comparisons. The size of the ring buffer we used for our tests was determined

empirically by executing Metron and TaintDroid on a same system. We increased the

size of the ring buffer until no failed values lookups were detected.

Memory Requirements. Metron globally requires a fixed 100KB of memory per

app in order to store the ring buffer. By comparison, solutions like TaintDroid re-

quire around 9.5% extra memory by application, depending on the number of variables

68

Figure 3.6: DroidBench results summary from Metron, BayesDroid and TaintDroid

allocated.

6.2 Flow Tracking Accuracy

This section evaluates Metron in terms of the information flow detection accuracy.

We present two kinds of evaluations. We first evaluate the accuracy of Metron using

the DroidBench benchmark by comparing Metron against TaintDroid and Bayes-

Droid. DroidBench provides us with fine grained comparison about the different kinds

of information flows that can be detected by each solution. Second, we evaluate the

practicality our system running and investigating real applications installed from the

Android market.

DroidBench. We ran the set of DroidBench tests presented in the BayesDroid pa-

per. Figure 3.6 shows DroidBench test results for TainDroid and Metron compared to

BayesDroid. Metron scored 34 true positives compared to 31 and 29 by TaintDroid

and BayesDroid respectively. Also, Metron significantly improved over TaintDroid

terms of false positives. Both Metron and BayesDroid reported only one false posi-

tive while TaintDroid reported 17 cases. Most of TaintDroid false positives were due

to variable sensitivity tests where untainted data was written to variables previously

tainted. Both BayesDroid and Metron reported two false negatives. The two false

negatives are due to two string obfuscation tests: Loop1 [3] and ImplicitFlow1 [2]. The

69

Table 3.5: Taint tracking comparison of Metron versus TaintDroid (TD)

App Name # tot inst. # num inst. # TD taint inst. # Metron taint inst. Comment

Accupedo 45550000 3935741 (8.64%) 217587 217585 (217585 fp) TD array false positives
Ffree 22350000 1524497 (6.82%) 22068 20709 (11368 fp) TD array false positives
Noom 46650000 4536839 (9.73%) 210138 209072 (93714 fp) TD array false positives
Runtastic 130750000 11304888 (8.65%) 10985 10985 (10985 fp) Identical flow detection

ImplicitFlow1 test is particularly interesting as it generates two data leaks from a sensi-

tive value using implicit flows by using correspondence tables. The first test obfuscates

the sensitive value while the second uses the correspondence table to recreate the orig-

inal string. Since Metron relies on the representation of the value at the sink in order

to detect a flow, this second implicit flow was actually detected. In general, Metron

does not support implicit flows. Metron and BayesDroid unique false positive was due

to the PrivateDataLeak3 test [1]. This test first write a sensitive value to a file (which

is not considered as a sink by the benchmark, but is by Metron and BayesDroid) and

then sends the data out via SMS. The legitimate leak happens when the data is sent

via SMS. Overall, Metron provides more robust results than TaintDroid while being

able to track the flow of numerical values which is not supported by BayesDroid. The

detailed evaluation results of DroidBench experiment are shown in Table 3.8.

Apps from Play Store. In addition to the DroidBench detection accuracy, we com-

pared Metron and TaintDroid taint detection while running popular real-world appli-

cations downloaded from the Google Play Store. Namely, we chose popular applications

that manipulate accelerometer data such as pedometer and fitness tracking applications.

We have ported our value-based information flow tracking implementation of to

Android 4.3 𝑟1 in order to run it side-by-side with Taindroid [35] and evaluated both

of them in terms of detection accuracy. We investigated how many tainted numerical

operations were missed on each side. Table 3.5 presents our results. Several observations

can be extracted from this table. First, by comparing the total number of instructions

executed versus the number of numerical operations executed we can see that generally

this last group represented less than 10% of the total number of instructions. As

an accuracy evaluation, we recorded the number of instructions manipulating tainted

70

Table 3.6: Flow observed in two popular fitness tracking applications

Application name Flow observed Notes

Guava Z accelerometer value saved to file Raw sensor values leaked
Accupedo Value lapdistance saved to a file Leaked value computed from multiple sensor measurements

values detected by Metron and TaintDroid.

Overall, we observe that the number of instructions detected by TaintDroid is gener-

ally higher than the number of instructions detected by Metron. However by looking

closer at individual results, we noticed that the difference between these detection num-

bers are due to two reasons. First, TaintDroid generated several false positive flows. For

the first three applications reported in Table 3.5, TaintDroid raised a false positive alert

and Metron did not. These false positive alerts were due to a wrongly tainted array

in TaintDroid. TaintDroid naively marks a whole array as tainted even when only one

value within the array is tainted. We observed that it is not uncommon for pedometer

applications to use arrays to store temporary computation results. Therefore, a false

positive was raised whenever any part of the array was sent to a sink.

We have used Metron to examine two popular real-world applications manipulat-

ing accelerometer values for information flow tracking. Table 3.6 provides the case of

two information leakage cases we captured. Metron also reports the history of oper-

ations that were used to compute the leaked value. Hence, it determines whether raw

sensor values were leaked or if it is a computed function of it. Listing 3.2 shows a sample

output of the detection mechanism at the sink for the Accupedo application. In this

sample we can see clearly the contribution of the accelerometer values for the X-axis

(denoted with the 𝑆0 prefix) at several time intervals. Likewise, our investigation of

the Guava app revealed flow of values directly recorded from the sensor on the Z-axis.

7 Limitations and Discussion

Non-numerical Data Flows. Metron is designed to track the flow of numerical

values alone. While numerical values represent most of the sensitive information (e.g.

accelerometer and GPS data), sensitive values can exist in different forms such as

strings. Complementary approaches for value-tracking such as BayesDroid, which track

71

Table 3.7: App name to application package name and version correspondance table

App name App package name Version

Accupedo com.corusen.accupedo.te 5.9.8
Ffree com.ffree.Pedometer 2.6.0
Noom com.noom.walk 1.4.0
Runtastic com.runtastic.android.pedometer.lite 1.6.2
Guava com.guava.pedometer.stepcounter 2.3.0
SensorBox imoblife.androidsensorbox 5.0
Linpack com.sqi.linpackbenchmark 1.4

the flow of strings can only be used jointly withMetron to provide exhaustive coverage

for value tracking.

Implicit Information Flows, Obfuscation and Encryption. All the three so-

lutions considered: TaintDroid, BayesDroid, and Metron fail to identify information

leakage via implicit flows. This chapter also assumes that the values computed are not

encoded, obfuscated or encrypted before reaching a sink. Application developers some-

times use encoding protocols such as base64 for convenience. While it would be possible

for our solution to detect known encoding and obfuscation schemes, the implementation

described in this chapter does not consider this case.

Native Code Support. Similar to TaintDroid and BayesDroid, Metron does not

track the flow of information within the native code libraries executed via JNI. However,

rewriting the native libraries by injecting additional code to track the propagation

of sensitive values through numerical operations within the native library could be

considered as an extension to Metron.

Risk Analysis of Information Leakages. The main purpose of Metron to provide

insights about the values being leaked by an application. We do not claim to replace

the user judgment about whether or not a flow is legitimate as different users may have

different sensibility regarding the data they are willing to share. However, Metron is

capable of providing the user with a log of the history of operations that were used to

compute the leaked values. This operations history can provide a good basis for further

research about how to quantify the risk associated with leaked computed values.

72

8 Related Work

Dynamic Information Flow Tracking. The state of the art in information flow

tracking on Android is Taintdroid [35]. In terms of granularity, TaintDroid provides

up to a variable-based information flow tracking solution. Its design relies on attaching

shadows memory taint values to every variable or object stored in the system memory.

TaintDroid, as observed by prior research, suffers from reporting false positive leaks

due to variable sensitivity. BayesDroid [87] was proposed as an alternative approach to

TaintDroid to reduce the false positives rate. BayesDroid uses Bayesian reasoning and

the Hamming distance between strings read at the source and to string detected at the

sink in order to detect flows. However, BayesDroid is only limited to tracking string

values and does not track dynamically computed values which are covered by Metron.

In addition, both TaintDroid and BayesDroid were implemented on top of the Dalvik

VM which is now replaced by the ART runtime environment. Therefore, they require

OS modifications and are not compatible with newer versions of Android.

Protections against unwanted inferences from sensor data have been presented in

previous research such as ipShield [21] which implements a firewall for sensor data.

However, such protection mechanism also requires using custom versions of Android.

Both [12, 83] presented preliminary research for how to revive dynamic informa-

tion tracking under the new Android Runtime (ART) environment. Similar to us, the

three solutions modify the dex2oat compiler, but both require system modification

and cannot work without elevated privileges. Also, we present a way to achieve taint

tracking with minimal compiler modifications and therefore make it easier to port our

solution to future versions of Android.

Programming languages such as Jeeves [95] enable the developer to define fine-

grained information flow rules in the application code. While this approach provides a

great control over information flows inside a program, it does not fit most of off-the-shelf

applications that are shipped already compiled.

73

Application Sandboxing Techniques. Boxify [11] and NJSAP [15] demonstrated

how to encapsulate the execution of a third-party application with a virtualized environ-

ment. While [15] relied , like us, on ptrace for system call interception, [15] relied on

libc function hooking. Our work shows a comparable result in terms of virtualization

overhead while extending the sandboxing environment to implement a fully-working

value-tracking environment by coordinating a modified version of dex2oat compiler.

Excuting both techniques rely on system call introspection in order to allow the execu-

tion of a third-party application in the context of another application. These solutions

provide the advantage of not requiring any system or application changes. Another ap-

proach to instrument an application without modifying the system or the application

consists of hooking virtual methods. ArtDroid [24] provides such a solution. While this

approach can be of some use for the specific task, we opted for the combination of a

modified compiler with function call injection to achieve an opcode granularity.

Stricter app sandboxing to protect against private data disclosures have been pro-

posed in FlaskDroid [19] and Saint [70]. They extend Android’s permission policies

and isolate data. However they do not provide a sufficient level of granularity to track

sensor inferences.

9 Conclusion

We presented Metron, a dynamic information flow tracking solution. The novelties

of Metron are running at application-level without having to modify the underlying

operating system nor require elevated privileges to examine other apps, and utilizing a

new approach for tracking information flows based on the values-themselves instead of

attaching tainted variables to them. Compared to previous work on dynamic informa-

tion flow tracking, Metron works on top of the latest commodity Android versions. It

also achieves better results than TaintDroid, with fewer false positives, and can handle

numerical values which are not covered by BayesDroid.

74

Table 3.8: Comparison of the Metron performances over other solutions: Taintdroid,
and BayesDroid

Benchmark Algorithm TP FP FN

ActivityCommunication1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

ActivityLifecycle1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

ActivityLifecycle2
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

ActivityLifecycle4
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

Library2
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

Obfuscation1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

PrivateDataLeak3
Metron 1 1 0
BayesDroid 1 1 0
TaintDroid 1 1 0

AnonymousClass1
Metron 2 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

ArrayAccess1
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

ArrayAccess2
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

HashMapAccess1
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

Button1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

Button3
Metron 2 0 0
BayesDroid 2 0 0
TaintDroid 2 0 0

Ordering1
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 2 0

RegisterGlobal1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

DirectLeak1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

FieldSensitivity2
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

FieldSensitivity3
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

FieldSensitivity4
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

Benchmark Algorithm TP FP FN

ImplicitFlow1
Metron 1 0 1
BayesDroid 0 0 2
TaintDroid 2 0 0

InheritedObject1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

ListAccess1
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

LocationLeak1
Metron 2 0 0
BayesDroid 0 0 0
TaintDroid 0 2 0

LocationLeak2
Metron 2 0 0
BayesDroid 0 0 0
TaintDroid 0 2 0

Loop1
Metron 0 0 1
BayesDroid 1 0 0
TaintDroid 1 0 0

Loop2
Metron 0 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

ApplicationLifecycle1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

ApplicationLifecycle3
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

MethodOverride1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

ObjectSensitivity1
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 1 0

ObjectSensitivity2
Metron 0 0 0
BayesDroid 0 0 0
TaintDroid 0 2 0

Reflection1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

Reflection2
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

Reflection3
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

Reflection4
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

SourceCodeSpecific1
Metron 5 0 0
BayesDroid 5 0 0
TaintDroid 5 0 0

StaticInitialization1
Metron 1 0 0
BayesDroid 1 0 0
TaintDroid 1 0 0

Total
Metron 34 1 2
BayesDroid 29 1 2
TaintDroid 31 17 0

75

Chapter 4

Hardware-Enabled Data Protection

1 Introduction

Healthcare management and delivery costs in developed countries are skyrocketing. In

response to this trend, federal agencies have supported diverse lines of applied research

in the use of technology for health monitoring and intervention [60, 79]. The inten-

tion is to take advantage of the state-of-the-art technologies to compile information

about medical health, securely, and in real-time, and thereby, transition from reactive

and hospital-centered to preventive, patient-centered and cost-effective health care and

management with greater focus on well-being.

More specifically, the deployment of an ideal medical diagnostics solution necessi-

tates meeting three core requirements:

i) portability and low-cost. Ease-of-use and user convenience requires a portable

solution so that the users, e.g., elderly patients with regular diagnostic/testing pre-

scriptions, can get themselves tested without having to make hospital visits. Addition-

ally, replacing legacy inexpensive (though sometimes tedious) clinical testing calls for

a low-cost solution that can be purchased and used by ordinary civilians;

ii) accuracy and performance. Due to their importance and potential life-changing

impact, the correctness of the outcome of medical tests, e.g., HIV tests, is crucial.

Furthermore, because of the same reasons, patients are often willing to pay higher cost

for more accelerated testing procedures. Consequently, the proposed solution must

satisfy both needs.

iii) usable security and privacy guarantees. Based on Gallup Poll for the Institute for

Health Freedom [42], 70% of the respondents were concerned about the confidentiality

76

of their medical records [32]. Potentially sensitive information disclosure may result in

undesired consequences such as insurance premium raises and negative social affects.

Mobile-based Point-of-Care (POC) diagnostics by taking advantage of miniatur-

ized devices and mobile technology can dramatically increase the role patients take in

their own health care, and consequently reduce health care costs. POC diagnostics

refer to in-vitro diagnostic tests that do not require the involvement of laboratory staff

and facilities to make results available both to the medical professional and the pa-

tient [48, 55, 36]. The possibility of integrating POC systems with mobile platforms

has been recently demonstrated through the diagnosis of a series of conditions includ-

ing vitamin-D deficiency and Kaposi’s Sarcoma disease [63, 59, 61]. At the same time,

the recently increasing popularity of using information technologies for health care has

attracted cyber criminals to this area as well, giving birth to various types of malware

and adversarial intrusions against medical critical infrastructures. The number of data

breaches across health care sectors have increased by 30% during the last year [53]. As

a result, while the availability of mobile-based POC diagnostics systems to the public

creates great opportunities in the health care domain, it will be associated with serious

privacy and security concerns, due to vulnerabilities on the cyber end.

To address the requirements associated with portability, accuracy and security for

mobile-based POC systems, in this chapter, we present Medsen, an integrated trust-

worthy POC diagnostic solution, as a portable device plugged into smartphones, that

provides end-users with real-time local medical diagnostics, while maintaining privacy

guarantees.

As a running example, in the proposed work, we will focus on a POC system that

utilizes impedance cytometry to provide blood cell counting for medical diagnostic and

disease staging information. Cytometry and particle quantification have been exten-

sively used for the diagnosis of a wide range of pathological conditions such as cancer

and infectious (both viral and bacterial) diseases [47, 65, 23, 62, 89, 88, 58]. Therefore,

Medsen’s design can be broadly applicable to a large number of medical diagnostics

devices, as they begin to become integrated with smartphones.

The development of the proposed POC solution consisted of two major tasks: First,

77

we designed and implemented a microfluidic bio-sensor that utilizes impedance cy-

tometry for biomarker detection. Through innovative hardware-based analog signal

encoding scheme, realized via multi-electrode excitation, Medsen becomes enable of

implementing cryptographic one-time padding encryption to realize trustworthy analog

signal encryption.

Second, we designed and deployed a new password and authentication scheme, called

cyto-coded scheme, for POC devices. Each password consists of a specific secret ratio

of micron-sized synthetic beads, that will be mixed with individual’s blood sample.

Feeding the mixture to the POC device will constitute the autonomous authentication

mechanism without the user’s explicit password entry that prevents cyber intruders

from accessing patient’s sensitive medical results.

The contributions of this chapter are the following:

∙ We introduce a new portable medical diagnostics solution that leverages smart-

phone and cloud computational capabilities for heavyweight data processing of

bio-sensor measurements.

∙ We present a domain-specific usable security and authentication technique for

POC medical devices via cyto-coded passwords. The proposed scheme removes

the need for traditional explicit password entries by the users.

∙ We propose a user privacy-preserving algorithm for medical healthcare platforms

through in-sensor built-in analog signal encryption and decryption schemes. Sim-

ilar to digital homomorphic cryptographic solutions, the proposed framework al-

lows for cloud-based signal processing on encrypted measurements.

∙ We have implemented a real-world integrated working prototype of the proposed

algorithms and designs. Our empirical evaluation results prove the deployability

of Medsen in real practical settings.

Medsen’s sensor encrypts the analog signals using an embedded micro-controller.

Medsen’s software-based diagnostics data processing runs on either Android 𝑣4.1 (for

smaller datasets) or a cloud server that runs Matlab framework.

78

Figure 4.1: Capture Chamber for Cytometry-Based Disease Diagnostics

This chapter is organized as follows. Section 2 presents Medsen’s components

and how they are interconnected logically. Sections 3-5 explain in details the design

of Medsen’s individual components and how they provide their corresponding func-

tionality. Section 6 describes fabrication procedures and details of system integration

to implement Medsen for disease diagnostics. Section 7 presents our empirical and

integrated evaluation of Medsen’s components in real-world settings including using

real blood cells. Section 8 reviews the most related existing work and discusses how

Medsen addresses their shortcomings in terms of portability, security, and real-time

diagnostics. Section 9 concludes the chapter.

2 Overview

Medsen provides a new portable privacy-preserving microfluidic biomarker detection

sensor for cost-effective human disease diagnosis and management using smartphone

computational resources. Medsen leverages cytometry [67] to measure the biomarkers

in blood. Figure 4.1 shows a functional and low cost implementation for a cytome-

try framework that uses a probe-molecule (antibodies) coated microfluidic channel to

pre-concentrate target biomolecules (cells, viruses, proteins, nucleic acids, etc..) of in-

terest on the channel surface. These specifically bound cells are then released from

the surface and then flow though an electrical impedance sensor, where they are singly

counted when passing through a set of electrodes. The total electrical cell count is

proportional to the total concentration of target biomolecules that were present in the

test sample. The peak detection typically requires a software-based implementation of

79

Figure 4.2: Blood sample (<0.01mL) is drawn from patient and injected into the
bio-sensor, which detects the cells and encrypts the data. A powerful server, used to
quantify data, will obtain a convoluted result. The microprocessor integrated with the
bio-sensor will obtain the convoluted results and use a unique key sequence to decrypt
the encoded result.

signal processing for denoising and removal of baseline drift and peak detection.

Figure 4.2 shows Medsen’s high-level architecture. In addition to biomolecular

analysis and disease diagnosis, Medsen protects user privacy, while enabling secure

authentication to a remote healthcare database server. The patient collects a blood

sample using a specifically crafted mini-pipette. Medsen feeds the blood sample to the

biomarker sensor device that is attached to the smartphone. During data acquisition,

the sensor dynamically changes its configuration (i.e., number of active electrodes) to

encrypt the outgoing analog signal to the smartphone. Each cell that passes through a

pair of active electrodes causes a peak in the measured signal due to the inter-electrode

dielectric characteristic changes. The smartphone sends the encrypted measurements

to a remote powerful server for disease diagnosis analysis (Figure 4.2).

The server analyzes the signals and counts the number of peaks, which does not nec-

essarily correspond to the true number of cells/biomolecules/beads that were present,

because more than one electrode pair may have been activated during data acquisi-

tion. The number of activated electrodes is confidential to Medsen’s sensor device.

The server sends the counted number of peaks back to the Medsen sensor for decod-

ing. Medsen simply decodes the number and determines the user’s disease condition

through a simple threshold comparison, and notifies the user accordingly. Medsen’s

in-sensor analog signal encryption, as opposed to traditional cryptographic digital data

80

point encryption, eliminates the need for complicated analog-digital conversion circuitry

and powerful cryptographic encrypting processors within the sensor.

For authentication, the user’s blood sample is mixed with a user-specific number of

artificial beads before passing through the Medsen’s sensor (Figure 4.2). The peaks

caused by the artificial beads differ in amplitude from the peaks caused by the true

biomarker cells and can be distinguished on the server side. Based on the number of

counted artificial beads, the server authenticates the user (similar to password checking)

without the need to explicitly screen password entry by the user. Consequently, the

diagnostic information can be returned to a patient or stored in cloud for a later access

by the patient’s practitioner.

Threat model. We have microfabricated a multi-electrode cytometer with the abil-

ity to obtain, modulate and obfuscate peak number during data acquisition. A crypto-

graphic algorithm is imposed on the bio-sensor via electrode key multiplexing, making

the true number of peaks unattainable to potential eavesdroppers who do not have the

appropriate security key. The proposed method allows for elevated security in diag-

nostic devices against confidentiality attacks when transmitting sensitive medical data

over the network or their processing in the cloud. Contrary to previous work that

uses encryption or authentication as an independent component in a system design,

our encryption is embedded in the cytometry operations. This close coupling between

the signal acquisition and the encryption process allows our setup to have a very small

trusted computing base (TCB). Medsen’s trusted computing base is its sensor. Aside

from the sensor, which physically manipulates the patient blood sample, and the com-

bination of a small controller and a multiplexer responsible for managing the diagnostic

experiment settings (electrodes voltage and current), no other component has access

to the true cytometry information. Medsen neither trusts the smartphone nor the re-

mote server, because they both see only the encrypted measurements and the analysis

outcomes. Those parties are assumed to follow a curious but honest adversarial model.

81

Figure 4.3: Model of operation of planar electrode pair. The electrode-electrolyte
interface is modeled by the double layer capacitance. The electrical impedance in the
channel fluctuates as the cell/bead passing between the measurement electrodes.

1 4 3 2 . . . N

1 3 2 . . . N

Figure 4.4: Operation model of the integrated system. Input electrodes connected
to AC voltage source. Ouptut electrodes connected to analog switch controlled by
microprocessor. Controller randomly activates different subsets of electrodes, resulting
in multiple peaks for each cell detected.

82

3 Medsen System Design

3.1 Bio-sensor

Medsen bio-sensor is integrated in its microfluidic system and acquires data by moni-

toring the electrical impedance across the channel. Figure 4.3 shows Medsen’s electri-

cal impedance measurement setup in the microfluidic channel that consists of co-planar

electrodes. The electrical impedance of a bead (micro-particle) passing through the

microfluidic channel is detected by changes in measured impedance between the elec-

trode pair (capacitor). The input electrode is excited with a continuous AC signal

at a fixed frequency. The output electrodes are connected to a lock-in-amplifer that

converts the current to voltage, and locks into the AC excitation frequency. As the

bead passes between the electrode pair, the electrical impedance increases because of a

partial occlusion of ions passing between the two electrodes. Thus, changes in voltage

at the output of the lock-in-amplifer correspond to the beads being detected.

Figure 4.3 shows how the sensing electrode pair in the microfluidic channel can be

modeled as a series of capacitors and resistors [33]. The resistor depicts the resistance

of fluid and contents passing through Medsen’s microfluidic channel. The parasitic ca-

pacitance results from a double layer of ions forming at the electrode, i.e., the electrolyte

interface. When voltage applied to the electrode, a layer of ions polarity accumulates

at the surface of electrode. The electric field from the electrodes is screened by the

free ions in the double layer, similar to a parallel plate capacitor. The system of ca-

pacitors and resistors in series will have a distinctive capacitance dominant region and

resistance dominant region in response to a range of applied frequencies. At low fre-

quencies (<10 kHz), the system response is dominated by the electrical characteristic

of capacitance, and thus the measured impedance is relatively high (MΩ range). At

higher frequencies (>100 kHz), the capacitance is short circuited. This prompts the

resistance to dominate the impedance. We desire to operate in the regime where resis-

tance is dominant since we are measuring changes in ionic resistance resulting from the

presence of beads in between the electrodes. Each bead or cell passing by results in a

single peak in the output voltage.

83

3.2 Multi-Electrode Signal Encryption

Medsen expands the simple impedance cytometer and uses multiple electrodes with

multiple inputs shorted together and multiple independent outputs. This results in

multiple peaks as each cell or particle passes by. The individual outputs are used as

the key component in our biomedical microelectromechanical system (BioMEMS)-based

signal encryption. The output of the electrodes can be selected or discarded through the

multiplexer by the (pseudo-)random selection of a micro-controller. The signals of the

independent output electrodes can be randomly switched on or off through a multiplexer

chip. The details of signal encryption using random keying of output electrodes are

described in Section 4. The repeated readings of cell impedance of a single cell when

passing through the electrode pairs in the bio-sensor can be manipulated to a random

sequence of peaks response by arbitrarily selecting the outputs from the electrodes pairs.

Figure 4.4 describes the operation model of the integrated system. This results in a

randomly varying number of peaks for each bead passing by. A potential eavesdropper,

without access to the signal encryption key, will not be able to discern the true number

of beads that have passed by. The number of beads is a crucial parameter for disease

diagnostics analyses. For instance, the white blood CD-4 cell count is the strongest

predictor of human immunodeficiency virus (HIV) progression in lab tests nowadays.

We designed the microfluidic channel with integrated multi-electrode pair configu-

ration to mask the number of peak count for passing cells in microfluidic channel to

protect user privacy and security in diagnostic devices against confidentiality attacks.

Figure 4.5 shows the computed aided design (CAD) of the microfluidic bio-sensor. Fig-

ures 4.5a and 4.5b show the designs of multiple bio-sensors embedded along a single

microfluidic channel. Figure 4.5a shows the designs of two sets of sensing electrodes.

On the left side, the bio-sensor has two independent outputs; on the right side, the

bio-sensor has three independent outputs. Similarly, Figure 4.5b describes the design

of bio-sensors with five and nine independent outputs on the left and right sides, re-

spectively. The input excitation to all electrode pairs in each sensing region are tied

together to a common excitation source. The analog front-end circuitry connected to

84

(a) (b)

(c) (d)

Figure 4.5: Design of the electrodes. (a) Bio-sensor design with 2 outputs (left) and 3
outputs (right). (b) Bio-sensor design with 5 outputs (left) and 9 outputs (right). (c)
Details of the sensing regions of 2 and 3 output electrodes. (d) Details of the sensing
regions of 5 and 9 output electrodes. The red outlines on the bio-sensors depict the
microfluidic channels.

85

the output electrodes captures the current change between the electrode pairs in mi-

crofluidic channel independently as a cell passes through. Figures 4.5c and 4.5d show

the details of the active regions each sensor in Figures 4.5a and 4.5b, respectively. The

lead electrode in the array of output electrodes, is defined as the lower left electrode in

each sensing region. The lead electrode is only complemented by one input electrode on

its right side. Thus, it will respond with a single voltage drop per passing cell; whereas

the remaining output electrodes are surrounding on both sides by common excitation

electrodes. Each of the remaining electrodes in the sensing regions will respond with a

signature of double peak per passing cell.

3.3 Microfluidic Channel

For evaluation and testing of the sensing platform, we analyze the impedance of different

synthetic bead types (7.8 µm and 3.58 µm) and the blood cells passing though electrode

pairs embedded in the microfluidic channel. These specific bead sizes are chosen as they

approximate the dimension of various cells found in human blood. The microfluidic

channel is designed to accommodate the transport of blood cells and beads passing

through electrode pairs. In the interest of counting and modulating the number of cell

counts passing in the microfluidic channel, the channel dimension were designed to pass

a single bead or cell through electrode pairs one at a time. Figure 4.6 describes the

design of microfluidic channel. The measurement pore, which is the narrow channel at

center, helps to single out and deliver synthetic beads and blood cells in succession. The

wide regions at both ends of the measurement pore allow the beads or blood cells to

disperse before entering the measurement pore of microfluidic channel. The two circles

depict the inlet and outlet of the channel after the PDMS is removed using biopsy

punchers.

4 Sensor-Based Analog Signal Encryption

We describe how Medsen encrypts cell signal measurements. It uses a symmetric

analog encryption scheme that relies on the choice and secrecy of a key to protect

86

Figure 4.6: Microfluidic channel design. The measurement pore (thinner channel at
center) has width of 30 µm and length of 500 µm. The larger regions at both ends of the
measurement pore allow the beads/cells to disperse before entering the measurement
pore. The two circles depict the inlet and outlet of the microfluidic channel after the
PDMS is remove with biopsy punchers.

the encrypted measurements. The encryption operations are embedded in the sensor

itself and infer no overhead for the encryption operation in terms of time overhead. To

enable encryption, the sensor components have been specifically crafted using multiple

electrodes to modulate peak counts generated by cells, such that no external entity can

recover knowledge of the number of cells passing through the channel from a specific

number of peaks on a signal acquired. This encryption scheme can also alter the

measured signal peaks’ amplitude and width such that the resulting encrypted signal

can be analyzed by an untrusted third party processing resource, like a cloud service,

without revealing any useful cytometry information. Eventually, only the bio-sensor in

possession of the patient, can decipher the information carried in the analyzed signals

based on the randomly generated key that it had generated initially.

4.1 Cipher Design

The strength of Medsen’s signal encryption methodology relies on its bio-sensor’s

reconfigurability to generate various signal measurements, possibly with different am-

plitudes and shapes for a single cell passing through the channel. The sensor configura-

tion is determined dynamically by the randomly generated key on Medsen’s bio-sensor

micro-controller. Medsen’s sensor design hides the information carried by a signal from

the external untrusted entities by generating multiple signal peaks of different shapes.

A cell passing through electrodes consistently generates a voltage drop between the

electrodes. Figure 4.7 shows such a variation in our empirical experiments. The peak

87

Figure 4.7: Voltage Drop When a Cell is Passing Through the Electrodes

used to infer a diagnosis (Section 2). Our cipher leverages a specific sensor design and

a custom protocol to multiply and transform a signal acquired from a single cell into a

random sequence of signals unrelated to the cell properties. Only the random sequence

issued by the micro-controller, which defines the sensor configuration can decrypt the

values behind the sensor measurements. To randomly clone a single peak signal into

multiple peaks signal, the sensor activates and uses multiple electrodes that are selec-

tively powered on or off in such way that the bio-sensor generates a random succession

of electrode order. The response of such electrodes configuration will precipitate signal

with peak count number output larger than the actual number of cells passing through

the micro channel. The resulting multi-peak signal conceals the actual number of cells

passing through the channel. For example, Figure 4.8 shows the resulting signal of a

single blood cell detected by Medsen, resulting in a five-peak signature for a single

cell.

This resulting signal hides the number of cells, but still carries information about the

cells. Specifically, the amplitude or the width of a voltage drop can reveal information

about the composition or shape of the cell. To protect both information, Medsen cipher

design leverages two more parameters to protect this information. First, randomly

chosen voltage gains can be applied by electrode such that none of the peaks carries

the amplitude drop of the original signal. This gain information is incorporated as part

of the encryption key. Similarly, a modification of the flow speed on the channel would

88

result in peaks of arbitrary widths for cells of identical type. By leveraging these three

parameters, the number of active electrodes, the electrodes gain and the fluid flow speed

on the channel, the controller can generate any number of peaks with any shape. These

transformations allow the sensor to conceal the sensitive cell information and to later

recover them thanks to the parameters embedded in the key.

The specific sequence of electrodes turned on or off, the set of output gains applied

to electrodes and the fluid flow speed in the micro channel constitute the encryption key

of the biomarker measurement signal. To preserve the initial signal’s confidentiality,

every peak 𝑝 associated to a cell would have a different set of chosen parameters, or

key 𝐾𝑝, such that:

𝐾𝑝 = (𝐸𝑝, 𝐺𝑝, 𝑆𝑝) (4.1)

with 𝐸𝑝 is the binary vector representing the sequence of on/off electrodes, 𝐺𝑝 is the

sequence of electrodes gains, and 𝑆𝑝 represents flow speed on the channel. Such a

design choice would lead to a key size of length 𝐿 = 𝑐𝐾𝑝 for 𝑐 number of cells passing

through the channel. Such a setup is comparable to the perfectly secret one-time

pad encryption scheme [73]; every signal peak is encrypted with its own randomly

generated key. Accordingly, the key length varies linearly as function of the number of

cells. Such an encryption algorithm would ensure a perfectly secret encryption since

it can produce any resulting shape for a given original signal. In practice, applying a

different set of parameters per cell measurement is challenging as it increases the key

size, and would require Medsen to be aware of every cell entering and leaving the

channel. Moreover, we observed that multiple cells can pass through the channel with

a distance interval inferior to the distance between the first and last electrode. Thus,

two or more cells may appear among the electrodes simultaneously; this complicates

the signal encryption and decryption procedures. Consequently, Medsen implements

an alternative scheme that periodically changes the encryption parameters every time

unit: 𝐾(𝑡) = (𝐸(𝑡), 𝐺(𝑡), 𝑆(𝑡)).

This cipher has the key characteristic that the encrypted signal can still be processed

to detect voltage peaks. A peak detection algorithm (Section 6.1) can be performed

89

Figure 4.8: Encrypted cytometry Signal for a Single Blood Cell. Output electrodes 1-3
turned on by switch matrix results in five peaks due to one cell passing by the sensor.

on the encrypted signal and returns encoded peak count, with associated time-stamps,

amplitudes and widths. Given a ciphertext, it is impossible for a domain knowledge-

able attacker to infer the patient diagnostic. Only the controller, which knows the

input values applied to each control parameter, is able to recover the real signal am-

plitude and cell count associated to the ciphertext signal peaks. It is noteworthy that

the presented encryption scheme do not infer any noticeable encryption computation

overhead or delay since it is based only on hardware configuration, built in the sensor.

The decryption requires light computation (multiplications and divisions) and can be

performed on Medsen’s resource-constrained controller.

Medsen hides the number of cells with the multiple electrodes sensor deployment

that generates multiple peaks per cell. So, the attacker cannot recover the number of

cells captured in the chamber. A determined attacker would then try to recover the

number of electrodes turned on and off in a particular channel to recover the peak

multiplication factor generated by the multiple electrodes. By dividing the number of

peaks observed in a data set by the multiplication factor, the attacker would recover

the initial number of cell passing through the channel. Considering that each cell has

a specific signature in term of voltage drop when passing through a set of electrodes,

the attacker would try to detect consecutive peaks of the exact same amplitude and

then infer the number of electrodes on. The cipher design protects this information by

applying random gains on each electrode output. This changes the signal amplitude

90

and thus conceals the initial signal characteristic. Similarly, an attacker could try to

recognize peaks that correspond to a single cell by observing the width of the curve

that would remain unchanged by modifying the amplitude. By modifying the fluid flow

speed through the channel, Medsen can alter the width of the resulting signal and

thus protect this information as well. The slow fluid speed results in peaks with larger

widths.

4.2 Cipher Key Space Size Analysis

The encryption key chosen to encrypt the original signal corresponds to different design

parameters. All combined, these parameters define possible combinations to obfuscate

the signal. These parameters must be chosen carefully so that the resulting signal

remains detectable and measurable without introducing an attack surface for bruteforce

password attacks because of a limited key space size.

Minimum and maximum measurable signal amplitude The key space and the

entropy of the cipher is closely related to the signal to noise ratio that the sensor can

achieve. Intuitively, if an electrode gain is so large that it “buries” another electrode

signal in its noise, the peak recognition as well as the decryption would fail. In practice,

this is not always true, since multiple measurements allow some redundancy and permit

to decrypt the signal even with high noise. We here provide a conservative analysis

(ignoring extra information due to multiple measurements) of the entropy of this cipher.

Condition C1: The minimum gain applied to an electrode during one period multi-

plied by the minimum peak size must be superior to the maximum gain applied multiplied

by the noise amplitude for the same period.

Practically, the decryption phase considers signal peaks that exceed a predefined

threshold above the average. The electrode encryption gains must be chosen such that

no encrypted signal has a cumulative gain on the electrodes too low in comparison to

other periods. This results in a constraint on having uniform cumulative gains across

various periods, which makes the encrypted signal indistinguishable to the adversaries.

Consequently, it becomes harder to detect a change based on the average noise over

91

time periods.

Condition C2: The sum of the gains of the electrodes over various signal periods

must add up to a single value throughout the experiment.

The feasible amplitude range is dictated by the circuit’s physical constraints, i.e.,

𝑚𝑖𝑛𝑖𝑚𝑢𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 vs 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑜𝑖𝑠𝑒. The signal to noise ratio impacts the amount

of entropy attainable per encrypted peak.

Encryption time period duration in addition to the experiment parameters that

obfuscate the signal (multiple electrodes, gains, flow speed), the encryption key can be

changed periodically in order to add entropy to the obfuscated signal. This rekeying

allows a better protection by obfuscating the original signal following different param-

eters over time. The duration of the key period must be chosen carefully. In an ideal

scenario, the time period would correspond to the time for a cell to transit across all

of the electrodes assuming that cells are passing through the channel at a constant

interval rate. In practice, the period depends on the concentration of cells and the time

length of the measurement corresponding to one cell passing. The encryption period

must be defined such that it is not too long, because otherwise, an extrapolation of

the result over the cell transit period would lead to the diagnostic false positive. The

period should not be too short either, since a period switch might happen during a

single measurement and generate a distorted signal caused by the same single cell.

Formulation of the key length in function of the experiment parameters we

provide below a calculation of the number of possible key combinations that can be

used for encryption by combining the different experiment parameters. The number of

key combination possible by simply turning electrodes on or off for a 𝑛 electrode pair

sensor is 2𝑛−1, assuming that zero electrode on is not a valid combination and that

shifted combinations are equivalent (e.g.: on a four electrode sensor, 1 denoting a pair

of active electrode and 0 denoting a pair of electrode off, 0101 is the same as 1010,

1100 is the same as 0110 and 0011, etc). Moreover, assuming that 𝑚 different levels of

gains can be applied per electrode pair and that the same gain is not used twice on two

92

electrodes pairs in a same combination, we obtain a number of possible key combination

equal to:

𝑛−1∑︁
𝑘=0

(𝑛− 1)!

𝑘!(𝑛− 1− 𝑘)!

𝑚!

(𝑚− 𝑘 − 1)!

where (𝑛−1)!
𝑘!(𝑛−1−𝑘)! corresponds to the number of different combination possible with

𝑘 + 1 electrode(s) on for 𝑛 electrodes sensor and 𝑚!
(𝑚−𝑘−1)! corresponds to the number

of ways of choosing 𝑘 + 1 different gains levels for these pair of electrodes on.

In addition to the electrode pattern and gains applied per electrode a rekeying

happens periodically and a different flow speed is used at each one of this phase.

5 Cyto-Coded Authentication

Cloud-based medical services often require user authentication for various reasons such

as billing and/or data storage for later remote access by the users’ doctors. For server-

side patient authentication, existing solutions leverage traditional methods such as ex-

plicit on-screen password entry by the user [74]. Medsen’s trusted computing base

does not include the user’s smartphone; hence, it cannot rely on phone-based user

credential entry. On the other end, adding password entry screen and authentication

data processing facilities would increase Medsen’s complexity, size and cost. Instead,

Medsen eliminates the need for explicit password entry completely, and makes use of

the user’s blood entry channel for automated authentication of the user. We introduce

a new authentication mechanism that rely on unique identifier based on a new type of

alphabet.

This alphabet is build by choosing unique combinations of types and quantities of

beads that are mixed with the patient blood sample. These micro-beads generate peaks

in the ciphertext signal, similar to blood cells with different peak characteristics, that

can be recovered by the controller after the decryption stage and used to associate

a stored ciphertext in the cloud service to an unique bead-based identifier that only

the patient possess. This cyto-coded identifier protects the patient privacy by default

since it is embedded in the diagnostic protocol and carries no biometric information.

93

It can be associated either to a single diagnostic (different identifiers per pipette),

several diagnostics (multiple pipettes carrying the same identifier) or the entire set of

diagnostics from a specific user (all pipettes from a user) depending on the diagnostic

privacy requirements. Also, it is not linked with any patient related information or

knowledge, relieving him or her from the task of ensuring the privacy of his or her data.

Also, this identifier permits to check the integrity of the ciphertext. More precisely,

it provides a verification code to ensure that the integrity of the signal processing.

The results returned by the cloud-based server is preserved if the decoded synthetic

bead types numbers matches the ones submitted initially. If the identifier recovered

from the ciphertext differs from the the one used to fetch the data from the remote

service, then the ciphertext is not the one corresponding to the identifier. Section 6

and Section 7 describe how to chose the bead types and concentrations in order to

generate a dictionary of unique identifiers with limited risk of collisions of passwords

by different users.

Additionally, the abovementioned cyto-coded identifier could also be used for server-

side user authentication. The bead sample (cyto-coded identifier) is fed to Medsen’s

bio-sensor with the bio-sensor level encryption turned off such that the server-side can

reconginize the actual number and types of the submitted beads for authentication pur-

poses. Consequently, the proposed cyto-coded identifier could be leveraged differently

based on the specific use-case, where Medsen is being deployed for.

6 Implementation

6.1 Medsen Bio-Sensor Fabrication

Medsen’s microfluidic channel master mold is fabricated on a silicon (Si) substrate us-

ing standard process of soft-lithography [93]. The photomask for the photolithography

process is design in AutoCAD and fabricated by Advance Reproductions Corp. (North

Andover, MA). The silicon substrate is cleaned in acetone and methanol baths using

ultrasonic cleaner before fabrication. To fabricate the mold, the Si wafer is coated

coated with SU-8 photoresist (MicroChem Inc., Westborough, MA) and exposed to UV

94

light under the photomask to create the molding patterns. The coated wafer is then

developed in MicroChem’s SU-8 developer and baked to harden the micro-patterns on

the wafer.

Microfluidic channel. Medsen’s microfluidic channel is constructed with poly-

dimethylsiloxance (PDMS) using standard molding techniques [93]. PDMS is an alter-

native material to silicon micro-machining for fabricating microfluidic channels enabling

low-cost rapid prototyping. One of the most important characteristics of PDMS is the

optical transparency of the material. The PDMS elastomer is transparent under optical

frequencies. Micro-fabricated channels are inspected both visually or under a micro-

scope. Additionally, PDMS can be covalently bonded to Si, glass substrates or to PDMS

itself by oxygen plasma treatment. This allows the fabrication of multi-layer structures

in microfluidic systems [54]. The major advantages of PDMS in microfluidic system

construction is the inexpensive process and rapid fabrication of devices. Microfluidic

channels can be cast repeatedly using a master mold. The elasticity of PDMS allows

casting of the devices to release the master mold without damaging it. Thus, a single

master mold can be used in mass production of microfluidic channels. Furthermore,

the construction of simple microfluidic channels can be done in one single casting stage

of PDMS as opposed to multiple steps required with silicon and glass micromachining

techniques. This channel fabrication technique reduces the time of microfluidic channel

construction.

A microfluidic channel with dimension of 30 µm width and 20 µm height is cast using

master mold as designed. Sylgard R○ 184 silicone elastomer base and curing agent (Dow

Corning) are mixed uniformly at 10:1 in weight ratio to produce PDMS solution. To

create the channel features, the solution is slowly poured on top of the mold to establish

conformal contact with the mold. The mixture is cured in 80 ∘C before peeling off to

make microfluidic channel. Due to the high viscosity of elastomer, microfluidic channels

take on the designed configurations of the master mold. Biopsy punches are used to

create inlet and out outlet ports for the microfluidic channel.

95

Micro-electrode fabrication. Micro-electrodes are fabricated on the glass substrate

using standard photolithography [93]. Similar to previous fabrication of the mold, the

glass substrate is coated with photoresist AZ5214 (MicroChem, Westborough, MA)

and exposed to UV light under photomask for the electrodes. The coated wafer is

then developed in AZ5412 developer to create the micro-patterns for the sensor. A

thin layer of chromium and gold (50 Å and 100 nm respectively) are deposited on the

micro-patterns using electron beam evaporation to create the sensor. In this design,

Medsen’s electrodes have width of 20 µm, and 25 µm pitch. Figure 4.5 shows the

electrodes that are designed with one common rake of electrodes. This common junction

takes excitation inputs of multiple carrier frequencies from the lock-in amplifier. The

output electrodes are interpolated in between the electrodes of the common junction.

Microfluidic device. PDMS can be covalently bonded to glass or Si substrates by ox-

idizing the contact surfaces. Cross-linked polymer exposed to oxygen plasma generates

a thin layer of silanol terminations (SiOH) on the surface. When brought in contact to

the oxidized glass surface, the silanol terminated layers condense with each other. The

reaction creates conformal Si-O-Si bonds between the polymer and glass [30]. These

covalent bonds create an irreversible, water tight seal between the layers for microflu-

idic channels. Furthermore, Oxygen plasma treatment on PDMS changes its surface

properties from hydrophobic to hydrophilic [85]. Intrinsically, cross-linked PDMS is

hydrophobic. Hydrophobicity in microfluidic systems would make it difficult to wet

the channels. The introduction of the polar function silanol group by exposing the

microfluidic channel to Oxygen plasma renders the surface of the channel hydrophilic.

The change from hydrophobicity to hydrophilicity of PDMS is observed by the relative

change in the advancing contact angle of deionized water and PDMS surface [50].

6.2 Sensor-Side Data Manipulation

We implemented Medsen’s peak count-based encryption scheme using the multi-

electrode sensor, a controller for random key generation, and a multiplexer for con-

verting the key to a specific sequence of electrodes.

96

We used a Raspberry Pi as a controller, which is in charge of generating the key that

is later used to set a specific sequence of electrodes on or off. For our proof-of-concept

demonstrations, we used the controller’s Linux operating system /dev/random inter-

face as the entropy source for the key sequence parameters. Based on the key, the

electrodes are turned on and off via the Raspberry Pi general purpose input-output

(GPIO) interfaces that are connected to a multiplexer, which in turn is connected to

the electrodes. The key generation and key renewal over time is handled by a python

custom library that is embedded in the program. The encryption keys always remain

on the controller and never get sent out to the phone or cloud. This keeps the controller

as Medsen’s minimal trusted computing base.

To ensure accurate sensor cell count repeatability and device fidelity, the blood

sample evaluated should reach a certain size in terms of the number of cells counted.

From repeated experimentation, we empirically determined that samples containing at

least 20K cells can provide repeatable cell count with minimal standard deviation from

run to run using Medsen sensor. For the ideal encryption design (Section 4), i.e. one

different key for individual successive cells, this would result in a key of length 𝐿 bits:

𝐿 = 𝑁cells × (𝑁elec +
𝑁elec

2
×𝑅gain +𝑅flow), (4.2)

where 𝑁cells represents the number of cells in the blood sample; 𝑁elec is the number

of activated electrodes; 𝑅gain the representation bit-length (or resolution of the gain

in bits) for subsequent pairs of activated electrodes 𝑁elec/2 each forming a capacitor;

and 𝑅flow the representation (or resolution) of the flow speed in the channel.

Considering a 20𝐾-cell sample, with a 16 output electrode bio-sensor, with 16 dif-

ferent choices of gains (4-bit representation) and 16 different flow speeds, that would

lead us to a 20𝐾 * (16 + 8 * 4 + 4) = 1𝑀 -bits key (0.12MB). The 16 different gain and

flow speed resolution granularity are empirical choices and can be adjusted based on

the security and sensor precision requirements. We made those choices based on the

following observations. The amplitude and width of a peak associated with a signal will

97

typically be as much as four times larger than the smallest peak observable. Specif-

ically, let’s take the 3.58 µm synthetic beads as a reference. Human blood cells will

typically have peaks of approximately twice the amplitude, and the 7.8 µm synthetic

beads approximately have four times the amplitude of the 3.58 µm beads. Choosing a

16-level granularity providesMedsen with (more than) sufficient entropy and flexibility

to change peak characteristics in order to conceal cell types and masquerade them to

external untrusted entities such as the cloud. Needless to mention, higher granularity

would help to improve the homogeneity of the signals in the ciphertext and thus provide

better protection at the cost of larger key size.

Cyto-coded authentication. Medsen’s cyto-coded identifiers and authentication

alphabet relies on different types of beads mixed together at different concentrations.

These two features are used together to provide an alphabet large enough such that we

can create large number of distinguishable identifiers for different patients. To avoid

an identifier collisions, i.e. two different sets of beads types and concentrations that

result in the same measured/classified identifier, we carefully chose different types of

beads as well as specific bead concentrations that provide a measurement resolution

good enough to avoid any undesired case. This is tightly linked to the sensor precision.

Section 7 provides further empirical details on this identifier construction and resolution.

From the patient perspective, this approach provides a completely transparent and

privacy preserving authentication mechanism. This feature can be especially useful for

patients that use this diagnostic framework multiple times such as daily medical tests

by the elderly. A set of miniaturized micro-pipettes purchased by the same user would

embed the same identifier. Patients do not need to enter any information such as their

credentials on the phone or controller. Medsen considers the identifier as the patient’s

credential, and stores the analysis outcomes from the same patient under the same

class.

98

6.3 Cloud-Based Data Analysis

Medsen encrypts the acquisition signal by randomizing the number of electrodes

(peaks) according to the generated key. For server-side encrypted signal analysis, Med-

sen implements a peak counting method to extract the number of peaks and their char-

acteristics in the encrypted signal. The outcomes are sent back to Medsen’s bio-sensor

micro-controller for decoding and diagnostic decisions. Peak detection is performed

by thresholding the acquired signal and computing the number of peaks whose ampli-

tudes are above a predefined minimum value threshold. However, in the long succession

of data acquisition, the measured signal changes in the baseline measurement. These

changes can be caused by many conditions such as the change in fluid concentration

over long acquisition time and the temperature drift of the fluid.

In order to perform peak detection, the signal needs to be detrended before thresh-

olding the signal. Signal detrending is achieved by fitting the polynomial to the signal

and detrending the signal according to the polynomial line. Strategically, higher order

polynomial fitting is desired to match the baseline drifting of the signal. However, for

the large sequence of data, the high order of the polynomial fitting would cause addi-

tional unwanted effects such as over-fitting. This would cause the peaks of the signal

to deform to a larger degree. For lower order of polynomial fitting, the fitted line might

not be conformal to the baseline drifting of the signal. This would be under-fitting and

the signal cannot be detrended as desired.

According to our repeated experimentation, we empirically found optimal a second

order polynomial fitting line to detrend the baseline drifting of the signal. For the large

sequence of the signal, a second order polynomial line clearly under-fits the baseline

drift of the signal. However, by partitioning the signal sequence into a smaller train

of data sub-sequences, the second order polynomial fitting line would be sufficient to

conform the baseline drifting of each section in the train set of the signal. The detrended

sub-sequences will be concatenated to create the original signal sequence with signal

detrending applied. After fitting the sub-sequence with a second order polynomial, the

data section is detrended and normalized by dividing the subsection of data by the

99

Figure 4.9: Full Experiment Setup: A-microcontroller, B-multiplexer, C-microfluidic
device, D-external peristaltic pump, E-lock-in amplifier. F-cloud infrastructure, G-
mobile platform.

fitted polynomial. The sub-sequences of the signal are detrended with overlap sections

to minimize the error of the fitted polynomial at both ends of the sub-sequences. The

baseline of the detrended sub-sequences has a mean value of one. Peak detection is

achieved by setting a minimum threshold on the data section of one minus the detrended

subsequence.

6.4 System Integration

Figure 4.9 describes the implementation of the Medsen’s proof-of-concept apparatus.

Figure 4.10 shows the details of the microfluidic device and its interactions with the

local micro-controller, smartphone, and the cloud server. Figure 4.10a shows Medsen

withdrawing the fluid solution from the microfluidic channel through the outlet of the

microfluidic device. The microfluidic channel is video recorded under a microscope

100

for observing the ground truth (for our experiments) and validation of the recovered

signals. Figure 4.10b shows the setup for how the output electrodes of the bio-sensor

are connected to the input of the multiplexer. Figure 4.10c and Figure 4.10d show

the details of the fabricated micro-electrodes and the embedded micro-electrodes in the

microfluidic channel (the two parallel lines run perpendicular to the set of electrodes).

The microfluidic channel flow is driven by the external peristaltic pump labeled D, i.e.,

Harvard Apparatus 11 Pico Plus Elite (Figure 4.9). The Raspberry Pi microcontroller

(label A) is used to generate the random selection sequence of the output electrodes

in the microfluidic device (label C) through the 16:2 multiplexer MAX14661 (labeled

B; Maxim Integrated). The selected output sequence of the signal is recovered by the

lock-in amplifier (labeled E).

To upload the encrypted signal to the remote signal processing unit, the controller

(Raspberry Pi A) is connected to a mobile phone (labeled G) that shares its Internet

connection. The mobile phone also acts as a user interface to display the progression of

the test. In our implementation we used a Google Android mobile phone LG Nexus 5

with a 4G connection. The Raspberry Pi and the Android device are connected through

a micro-USB to USB cable. We developed an Android application that leverages the

Android USB accessory API [27], which allows the phone to detect the Raspberry Pi

as soon as it is connected and launches the corresponding app. This app has two

purposes: it provides an interface for the user to start the blood test and provides

a test progression feedback to the user via information on the screen, and relays the

measurements to the cloud infrastructure, labeled F, in charge of performing the heavy

computation. It also receives the analysis outcomes and forwards them to Medsen

device. The Raspberry Pi runs a daemon listening for events on the USB port. When

the phone is connected, the daemon exchanges information with the device using the

Android Open Accessory Protocol [26]. This first exchange invites the user to download

the diagnostic application from the Google Play Store. The implementation of the

daemon running on the Raspberry Pi relies on libusb library via the pyusb package

in order to detect events, read and write data on the USB ports. No specific security

requirements for the user privacy are addressed at this layer. The mobile device is

101

not part of the trusted computing base and the valuable information confidentiality is

already ensured though the encryption mechanisms above mentioned.

In our implementations for data acquisition, a Zurich Instruments HF2IS impedance

spectroscope coupled with a HF2TA trans-impedance amplifier are used to measure

the electrical impedance across the microfluidic channel. The bio-sensor in the mi-

crofluidic system is excited with the continual AC signals with a fixed discrete set of

frequencies. The HF2IS impedance spectroscope can operate simultaneously at eight

frequency carriers. The electrical impedance measurement between the electrode pairs

in the microfluidic channel is modulated by the carrier frequencies. In recovering the

signal measurement, the signal is demodulated by the same carrier frequencies. Med-

sen outputs the measurement from eight channels corresponding to the carrier fre-

quencies, per measurement of electrical impedance. The choice of excitation voltage,

frequencies, and measurement bandwidth is based on empirical test results of the sys-

tem. The input electrode of the microfluidic channel is excited with a combination

of [500, 800, 1000, 1200, 1400, 2000, 3000, 4000]kHz carrier frequencies. Excitation volt-

age is at 1V per excitation signal. The recovered signal is sampled at 450Hz. The

recovering low pass filter is set to have cut off frequency at 120Hz.

7 Evaluation

In our experiments, we evaluated the performance of the Medsen using micron-sized

synthetic beads (synthetic beads 7.8 µm and 3.58 µm -MicroChem) as well as blood cells,

suspended in PBS 0.9%. The solution is pumped through the microfluidic channel at

a rate of 0.08 µL.

7.1 Sensor-Based Data Encryption

Figure 4.11 illustrates how we can duplicate data generated for one electrode into mul-

tiple signals preventing the disclosure of number of beads passing through the channel.

The figure shows the response of the bio-sensor to the 7.8 µm synthetic bead solution

at 2MHz. When selecting the random sequence of output electrodes, the remaining

102

(a) (b)

(c) (d)

Figure 4.10: Microfluidic sensor. (a) Microfluidic device under test. (b) Microfluidic
device connected to multiplexer. (c) Image of fabricated biosensor. (d) Details of
embedded electrodes in microfluidic channel (two parallel lines).

103

(a) (b)

(c) (d)

Figure 4.11: Representative encrypted cytometry data of a sensor with 9 input elec-
trodes and 9 output electrodes detecting a single bead. Pseudo-random sequence se-
lection of output electrodes. Output activated electrode numbers are specified. True
number of peaks can only be detected/decrypted using unique key sequence.

unselected electrodes need to be grounded to prevent interference. Maxim Integrated

MAX14661 16 : 2 multiplexer provides a dual output channel that can be utilized for this

purpose. The encrypting algorithm will select a random sequence of output electrodes

and route it to the first output channel of the multiplexer. The remaining unselected

electrodes will be routed to the second output channel, which is proceeding to ground

port. Figure 4.11a shows the measured response of the bio-sensor when one output elec-

trode is selected and the remaining output electrodes are routed to the ground port.

Figure 4.11b shows the response where the lead electrode (or electrode 9) is selected

along with the last electrode (or electrode 1). Figure 4.11c shows the response of the

bio-sensor when lead electrode 9 and electrode 1, 2 are selected. Figure 4.11d shows

the outcomes when all the electrodes are activated. These measurements are then send

for cloud-based peak detection analyses.

In Figure 4.11, the response time for each peak is approximately 20ms. The distance

each bead travels through a pair of electrodes, so a peak can be measured, is 45 µm

(25 µm pitch, and 20 µm of two halves of electrode). The microfluidic channel dimension

is 30 µm width, and 20 µm height. By dividing the volume of the solution passing

through a pair of electrodes in the channel at the approximated time, the actual flow

104

rate in the channel can be calculated to be 0.081 µL/min.

Medsen’s current deployment presents two limitations. First, the ninth electrode,

for all signals (Figure 4.11), only generates one peak while all other electrodes generate

double peaks. This is a minor fabrication flaw of the sensor that can be solved by

adding another input electrode after the ninth electrode. Second, successive electrodes

do not generate distinct non-differentiable peaks. Instead, a passing bead has an in-

fluence on multiple adjacent electrodes. Figure 4.11b illustrate this effect where the

double peak at time 41.42s is not a double clone of the signal at time 41.65s. Similarly,

if we consider multiple beads passing through the channel, we can notice that, due to

the small distance interval between electrodes by comparison to the longer distance

separating beads passing through the channel, there is a long delay between groups of

peaks corresponding to a specific cell. This effect is illustrated in Figure 4.11d where

all the electrodes are selected; the resulting signature is a relatively flat periodic train

of 17 peaks, which is dissimilar from randomly passing cells. This information could

be leveraged by a domain knowledgeable attacker to recover the true number of cells

in the sample and thus the final diagnostic outcome. Both limitations can be solved

by either putting more space between the electrodes or by selecting an electrode key

pattern that does not use successive electrodes. Both of these changes are minor de-

sign modifications that increase the ciphertext strength against adversarial information

disclosure attempts.

7.2 Data Transfer and Cloud-Based Analysis

To validate the accuracy of Medsen platform, we performed runtime diagnosis analy-

sis multiple times over several blood samples. Medsen’s typical diagnostics procedure

takes a 0.01mL of blood sample and complete all the steps, including sensor-side encryp-

tion, cloud processing, Medsen decoding and diagnostics, within 1 minute. However,

to exercise and evaluate Medsen’s ability to handle large data sets, we ran each sample

through our bio-sensor for 3 h which generated approximately 600MB of encrypted bio-

sensor measurements, captured in csv files. To improve the network transfer efficiency,

105

Estimated bead counts - 7.80 um
-50 0 50 100 150 200 250 300 350E

m
pi

ric
al

 b
ea

d
co

un
ts

0

100

200

300

400

Figure 4.12: Measured bead counts vs number of beads expected for different concen-
trations of 7.8 µm synthetic beads.

Estimated bead counts - 3.58 um
-200 0 200 400 600 800 1000 1200E

m
pi

ric
al

 b
ea

d
co

un
ts

0

200

400

600

800

Figure 4.13: Measured bead count vs number of beads expected for different concen-
trations of 3.58 µm synthetic beads.

Medsen implements zip data compression on the smartphone. This reduced the sam-

ple size to 240MB. This provides a more adaptable solution to smartphone data plans

when interacting with our cloud service. As discussed earlier in the chapter, the key size

turns out to be less than 1 MB, i.e., 0.12MB accurately, that stays on the Medsen con-

troller through the whole experiment. Medsen’s design also allows (not implemented)

sharing of the generated keys with trusted parties, e.g., the patient’s practitioners, so

that they could also access the cloud-based analysis outcomes remotely.

In peak-analysis, the accuracy of the bio-sensor is evaluated by comparing the em-

pirically detected peaks and the estimated elements passing through the microfluidic

channel. We diluted the 7.8 µm and 3.58 µm beads with PBS, which is a commonly used

biological buffer that mimicks physiological samples like blood. We diluted at different

concentrations to evaluate the empirical peak detection. The estimated number of ele-

ments in the solution is calculated according to the concentration information provided

by the manufacturer, where we purchase the sample from. Four samples of each con-

centration are collected. The bead count data is taken from the first 5min from each

106

Figure 4.14: Medsen’s Peak Analysis Performance on a Computer and Smartphone

sample. Figure 4.12 and 4.13 show the correlation of the empirical peak detection to

the estimated peak counts in the microfluidic channel for 7.8 µm and 3.58 µm synthetic

beads. As expected, the empirical peak detection varies linearly to the estimated peaks

at different concentrations. The difference in bead counts is due to several reasons. For

synthetic beads, the longer the experiments run, the more error would be expected on

the empirical bead counts as many beads sink to the bottom of the inlet well and never

make it to the sensor downstream in the micro-channel. The other reason for the bead

count loss is due to the beads being adsorbed to microfluidic channel walls. These are

issues that can be ultimately resolved with optimization of channel material and surface

chemistry, which was beyond the scope of the current work.

Figure 4.14 shows a performance comparison of the peak detection algorithm, when

it runs on a standard computer system (possibly a cloud virtual machine) and on a

smartphone device. It is noteworthy that a standard system provides much better per-

formance than a mobile device, as the sample size grows larger. Aside from the storage

capabilities, the enhanced computing power motivates the use of a cloud based service

for handling peak detection and post-processing rather than using the smartphone. For

smaller samples, however, Medsen could be configured to perform the peak counting

signal processing on the smartphone locally.

107

time (s)
55.65 55.7 55.75 55.8N

or
m

al
iz

ed
 A

m
p.

 (
V

)

0.994

0.996

0.998

1

1.002

500kHz
1000kHz
2000kHz
2500kHz
3000kHz

(a)

time (s)
60.2 60.22 60.24 60.26 60.28 60.3 60.32N

or
m

al
iz

ed
 A

m
p.

 (
V

)

0.997

0.998

0.999

1

1.001

500kHz
1000kHz
2000kHz
2500kHz
3000kHz

(b)

time (s)
52.58 52.6 52.62 52.64 52.66 52.68 52.7 52.72N

or
m

al
iz

ed
 A

m
p.

 (
V

)

0.985

0.99

0.995

1

1.005

500kHz
1000kHz
2000kHz
2500kHz
3000kHz

(c)

Figure 4.15: Normalized impedance measurement of (a) blood cell, (b) 3.58 µm synthetic
beads, and (c) 7.8 µm synthetic beads at different frequencies.

108

7.3 Cyto-Coded Passwords and Patient Authentication

Section 5 described Medsen’s cyto-coded authentication using synthetic micro-beads

mixed with the patient’s blood sample. Every patient-specific unique identifier con-

sists of a particular number (concentrations) of beads from different types. In concep-

tual comparison to traditional password paradigms, the number of password characters

would correspond to the number of bead types involved, and specific character value

within the password would correspond to the number (concentration) of beads of a

particular type. Therefore, having larger number of bead types would increase the

cyto-coded password space size and hence the overall security. The two crucial require-

ments, however, are i) Medsen’s design and peak counting analysis can distinguish the

peaks caused by the different types of beads; and ii) Medsen can distinguish different

concentration levels of the same bead type within the blood samples for different pa-

tients. In other words, keeping concentration levels of two patients too close to each

other may confuse Medsen, possibly lead to false user identification.

We evaluated the difference between the measured electrical impedance of 3.58 µm,

7.8 µm synthetic beads and actual blood cells. Figure 4.15 shows the results. The

normalized electrical impedance of synthetic beads and blood cells is evaluated at mul-

tiple frequencies. Figure 4.15a shows at the frequency of 2MHz and higher, the blood

cell has lower electrical impedance response comparing to the impedance response of

synthetic beads in Figure 4.15b and 4.15c. All those impedance measurements for dif-

ferent bead types at different frequencies are considered as features. Medsen uses the

features for its classification procedures to distinguish between different particles. Fig-

ure 4.16 shows the results. The proposed solution is able to differentiate different types

of synthetic beads and actual blood cells with clear margins. Furthermore, as discussed

above, Medsen is able to recover the concentration of different types of beads quite

precisely (Figures 4.12 and 4.13). Thus, Medsen can utilize both different bead types

and bead concentration levels to generate unique identifiers in the patient blood sample

efficiently. We noticed that low bead concentrations have less variance and improved

resolution compared with higher concentrations (see the figures). This means that lower

109

Amplitude (V) - 500kHz
0 0.005 0.01 0.015 0.02

A
m

pl
itu

de
 (

V
)

-
25

00
kH

z

#10-3

-1

0

1

2

3

4

5

6

7

8

3.58um Beads
7.8um Beads
Blood Cells

Figure 4.16: Cluster Representing Beads of Multiple Size for Password Generation

bead concentrations allow Medsen to define different concentration levels of the same

bead types close to each other. This increases the password space size and entropy, and

hence improves the design’s overall security against bruteforce intrusions.

8 Related Work

Here, we review the most recent related past work that have been proposed in signal

encryption, medical device security, and microfluidic biomarker detection.

General-purpose symmetric encryption [25] would require to decipher the samples

on the server side for analysis and would reveal the clear dataset. Existing homomor-

phic encryption algorithms [44] currently do not provide the calculus flexibility and

performance required to deal with biomarker sensor measurements. Additionally, con-

ventional cryptography work on digital data points that would require addition of fairly

complex analog-to-digital circuitry to Medsen’s design.

For analog signal protection, the past work has proposed signal scrambling tech-

niques [97] that implement a limited set of transformations using a key. In the medical

110

field, INTRAS proposes a key exchange and data encryption method based on in-

terpolation and random sampling as an alternative symmetric encryption technique

for electrocardiogram physiological signals [20]. These techniques are implemented in

software, and require powerful processors to encrypt fine-grained analog signals once

original measurements are acquired by the sensor hardware. Medsen reconfigures the

sensor hardware such that the acquired measurements are already encrypted. This

eliminates the need for powerful computational and memory resources as large trusted

computing bases. Hence it brings down the size, complexity and cost of the device,

while improving the overall security. To the best of our knowledge, Medsen is the first

physical based encryption scheme for cytometry that do not rely on any software-based

analog or digital signal manipulation.

Flow cytometry has been studied extensively as alternative methods to impedance

cytometry for diagnosing and monitoring diseases such as HIV, malaria, and tubercu-

losis [13, 65]. For instance, [13] has shown the high correlation of CD4+T-lymphocytes

counts by flow cytometry and the standard of Coulter cytosphere assay. White blood

cell counts have also been studied to characterize Plasmodium falciparum-infected pa-

tients, Plasmodium vivax-infected patients, and the uninfected patients [65]. However,

the technique is expensive and requires highly trained technicians adhering to the strict

protocols. These challenges call for the design and development of cost-effective dis-

posable testing solutions without sacrificing the sensitivity[33]. Microfluidic protein

quantification also has been conducted using a mobile platform [37, 63, 59]. The pro-

tein is aggregated with gold nanoparticles and detected with LED light . The results

from the experiment are stored in text file and distributed over the network via Google

Drive. However, for sensitive medical information, such as HIV diagnosis, the results

should be kept secured for patient’s privacy. Our method now enables for higher diag-

nostic accuracy through single-cell and single particle detection, but also for embedding

security at the physical sensor level.

111

9 Conclusion

In this chapter, we presented Medsen, a portable point-of-care disease diagnostics

solutions that ensures low-cost and accurate outcomes through use of the smartphone

computational resources. Medsen provides in-sensor hardware-based analog signal

encryption along with cyto-coded authentication services. Medsen’s specific encryption

design enables cloud-based analysis of encrypted analog signals without disclosing the

users’ privacy and confidential medical information. Our real-world implementation

of Medsen’s bio-sensor circuitry and software stack proves its accurate and secure

diagnostics capabilities empirically.

112

Chapter 5

Conclusion

The smartphones have brought a lot of convenience to perform daily tasks. Their wide

adoption, their proximity to the end users and the large range of sensors they provide

make them a target of choice to gather and access detailed customer data. Protecting

this data protection is a priority for end users as well as for corporations providing

services through these devices. This thesis detailed three complementary approaches

to solve this problem.

Contributions of this thesis

∙ Chapter 2 introduces the concept of virtual micro-security perimeters to provide a

dynamic separation between data from different sources without the cost of a full

virtualization. Our approach utilizes an hybrid information flow tracking system

that is able to provide two level of data tracking: a very fine grained variable-

level data tracking for application that do support it, or a application-level data

tracking approach for applications that do not support it. We propose a prototype

of the solution on top of commodity devices and evaluate our approach though

the use of real-word third-party apps.

∙ Chapter 3 proposes a new approach to track numerical information flows. By

limiting the focus on numerical type, we demonstrate how to achieve a good

coverage of information flow with a small instrumentation requirement by only

monitoring numerical operations. We detail an implementation of this solution

via a third-party application, that do not require any system changes on the target

device.

113

∙ Chapter 4 considers a data protection mechanism for point-of-care medical devices

with a very limited trusted computing base. The solution provides an analog

signal encryption scheme that operates on a cytometry sensor. This domain

specific scrambling scheme masks the exact measurements, while the ciphertext

still conserves enough information such that the analysis can be done on a curious

but honest system without the risk of revealing the diagnostic outcome. Chapter 4

also presents an authentication scheme that relies on enhancing the measured test

sample to create a transparent authentication scheme.

Future lines of approach

Tailoring the use of information flow tracking to specific use cases. As seen

in Chapter 2 and Chapter 3, the use of information flow tracking system has limits

based on the type of use cases, applications or implementations that are considered. In

particular, an approach based on numerical values such as the one presented in Metron

would greatly benefit embedded devices that only manipulate numerical values such as

Internet of Things devices or cyber-physical systems.

The use of hardware facilities to complement information flow tracking sys-

tem. Recent advances in processor technologies such as ARM TrustZone and Intel

SGX would greatly benefit the models presented in Chapter 2 and Chapter 3. Mainly,

the storage of policies and flow information aside from the target system or program

memory would greatly improve the threat model for our approaches.

Binary rewriting approaches for information flow tracking systems. Chap-

ter 2 and Chapter 3 require changes on the target application and on the compiler

respectively to implement information flow tracking for the target application. In the

first case, this require extensive system changes and application changes in order to

support some features while in the second case, it requires recompiling the source code.

Many applications are not provide with their source code. In this case, the possibil-

ity to rewrite and instrument a target binary would allow to automatize the use of

114

information flow tracking for general COTS applications. This instrumentation effort

would benefit from a prior simplification of the binary, as the complexity of the software

implementation usually generates

115

Bibliography

[1] 2018, Android private data leak benchmark available at https://github.
com/secure-software-engineering/DroidBench/blob/master/eclipse-project/
AndroidSpecific/PrivateDataLeak3/src/de/ecspride/MainActivity.java.

[2] 2018, Android Implicit flow benchmark available at https://github.
com/secure-software-engineering/DroidBench/blob/master/eclipse-project/
ImplicitFlows/ImplicitFlow1/src/de/ecspride/ImplicitFlow1.java.

[3] 2018, Android Loop1 benchmark available at https://github.com/
secure-software-engineering/DroidBench/blob/master/eclipse-project/
GeneralJava/Loop1/src/de/ecspride/LoopExample1.java.

[4] “System call overhead,” http://www.linux-kongress.org/2009/slides/system
call tracing overhead joerg zinke.pdf.

[5] T. Alves and D. Felton, “Trustzone: Integrated hardware and software security,”
ARM white paper, vol. 3, no. 4, pp. 18–24, 2004.

[6] Android, 2015, location API; available at https://developer.android.com/training/
location.

[7] Android Developers Manual - Customizing SELinux, 2015, https://source.android.
com/devices/tech/security/selinux/customize.html.

[8] J. Andrus, C. Dall, A. Hof, O. Laadan, and J. Nieh, “Cells: a virtual mobile
smartphone architecture,” in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 2011, pp. 173–187.

[9] AnTuTu, 2015, android AnTuTu performance benchmark; available at http://
www.antutu.net.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,” Acm Sigplan Notices,
vol. 49, no. 6, pp. 259–269, 2014.

[11] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-Rekowsky, “Box-
ify: Full-fledged app sandboxing for stock android,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 691–706.

[12] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weisgerber,
“Artist: The android runtime instrumentation and security toolkit,” CoRR, vol.
abs/1607.06619, 2016. [Online]. Available: http://arxiv.org/abs/1607.06619

https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/AndroidSpecific/PrivateDataLeak3/src/de/ecspride/MainActivity.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/AndroidSpecific/PrivateDataLeak3/src/de/ecspride/MainActivity.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/AndroidSpecific/PrivateDataLeak3/src/de/ecspride/MainActivity.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/ImplicitFlows/ImplicitFlow1/src/de/ecspride/ImplicitFlow1.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/ImplicitFlows/ImplicitFlow1/src/de/ecspride/ImplicitFlow1.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/ImplicitFlows/ImplicitFlow1/src/de/ecspride/ImplicitFlow1.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/GeneralJava/Loop1/src/de/ecspride/LoopExample1.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/GeneralJava/Loop1/src/de/ecspride/LoopExample1.java
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/GeneralJava/Loop1/src/de/ecspride/LoopExample1.java
http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
https://developer.android.com/training/location
https://developer.android.com/training/location
https://source.android.com/devices/tech/security/selinux/customize.html
https://source.android.com/devices/tech/security/selinux/customize.html
http://www.antutu.net
http://www.antutu.net
http://arxiv.org/abs/1607.06619

116

[13] P. Balakrishnan, M. Dunne, N. Kumarasamy, S. Crowe, G. Subbulakshmi, A. K.
Ganesh, A. J. Cecelia, P. Roth, K. H. Mayer, S. P. Thyagarajan, and S. Solomon,
“An inexpensive, simple, and manual method of cd4 t-cell quantitation in hiv-
infected individuals for use in developing countries,” JAIDS Journal of Acquired
Immune Deficiency Syndromes, vol. 36, no. 5, pp. 1006–1010, 2004.

[14] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch, and
B. Zoppis, “The vmware mobile virtualization platform: is that a hypervisor in
your pocket?” ACM SIGOPS Operating Systems Review, vol. 44, no. 4, pp. 124–
135, 2010.

[15] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “Njas: Sandboxing unmod-
ified applications in non-rooted devices running stock android,” in Proceedings of
the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices. ACM, 2015, pp. 27–38.

[16] Bluebox, 2014, https://bluebox.com/.

[17] J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, “Entropy estimates of small
data sets,” Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 20, p.
202001, 2008.

[18] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry,
“Practical and lightweight domain isolation on android,” in ACM workshop on
Security and privacy in smartphones and mobile devices, 2011, pp. 51–62.

[19] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained mandatory ac-
cess control on android for diverse security and privacy policies.” in Usenix security,
2013, pp. 131–146.

[20] F. M. Bui and D. Hatzinakos, “Biometric methods for secure communications in
body sensor networks: Resource-efficient key management and signal-level data
scrambling,” EURASIP J. Adv. Signal Process, vol. 2008, pp. 109:1–109:16, Jan.
2008. [Online]. Available: http://dx.doi.org/10.1155/2008/529879

[21] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry, M. Millar, and M. Srivas-
tava, “ipshield: a framework for enforcing context-aware privacy,” in Proceedings of
the 11th USENIX Conference on Networked Systems Design and Implementation.
USENIX Association, 2014, pp. 143–156.

[22] K. Z. Chen, N. Johnson, V. DSilva, S. Dai, K. MacNamara, T. Magrino, E. Wu,
M. Rinard, and D. Song, “Contextual policy enforcement in android applications
with permission event graphs,” in Proc. NDSS, 2013.

[23] X. Cheng, D. Irimia, M. Dixon, J. C. Ziperstein, U. Demirci, L. Zamir, R. G.
Tompkins, M. Toner, and W. R. Rodriguez, “A microchip approach for practical
label-free cd4+ t-cell counting of hiv-infected subjects in resource-poor settings,”
JAIDS Journal of Acquired Immune Deficiency Syndromes, vol. 45, no. 3, pp.
257–261, 2007.

[24] V. Costamagna and C. Zheng, “Artdroid: A virtual-method hooking framework
on android art runtime.”

https://bluebox.com/
http://dx.doi.org/10.1155/2008/529879

117

[25] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013.

[26] A. Developers, “Android Open Accessory Protocol,” https://source.android.com/
accessories/protocol.html, 2015, [Online; accessed 19-July-2015].

[27] ——, “USB Accessory,” https://developer.android.com/guide/topics/
connectivity/usb/accessory.html, 2015, [Online; accessed 19-July-2015].

[28] ——, 2017, android Motion Sensors; available at https://developer.android.com/
guide/topics/sensors/sensors motion.html.

[29] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. Wallach, “Quire: Lightweight
provenance for smart phone operating systems,” in 20th USENIX Security Sym-
posium, 2011.

[30] D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid pro-
totyping of microfluidic systems in poly (dimethylsiloxane),” Analytical chemistry,
vol. 70, no. 23, pp. 4974–4984, 1998.

[31] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazieres, F. Kaashoek, and R. Morris, “Labels and event processes in the
asbestos operating system,” ACM SIGOPS Operating Systems Review, vol. 39,
no. 5, pp. 17–30, 2005.

[32] J. M. Eisenberg, “Can you keep a secret?” Journal of general internal medicine,
vol. 16, no. 2, pp. 131–133, 2001.

[33] S. Emaminejad, M. Javanmard, R. W. Dutton, and R. W. Davis, “Microfluidic
diagnostic tool for the developing world: Contactless impedance flow cytometry,”
Lab on a Chip, vol. 12, no. 21, pp. 4499–4507, 2012.

[34] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android security,” Secu-
rity & Privacy, IEEE, vol. 7, no. 1, pp. 50–57, 2009.

[35] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth,
“Taintdroid: an information-flow tracking system for realtime privacy monitor-
ing on smartphones,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association, 2010, pp. 1–6.

[36] N. Engel and N. Pant Pai, “Qualitative research on point-of-care testing strategies
and programs for hiv,” Expert review of molecular diagnostics, no. 0, pp. 1–5, 2015.

[37] D. Erickson, D. O’Dell, L. Jiang, V. Oncescu, A. Gumus, S. Lee, M. Mancuso,
and S. Mehta, “Smartphone technology can be transformative to the deployment
of lab-on-chip diagnostics,” Lab on a Chip, vol. 14, no. 17, pp. 3159–3164, 2014.

[38] L. Falsina, Y. Fratantonio, S. Zanero, C. Kruegel, G. Vigna, and F. Maggi, “Grab’n
run: Secure and practical dynamic code loading for android applications,” in Pro-
ceedings of the 31st Annual Computer Security Applications Conference. ACM,
2015, pp. 201–210.

https://source.android.com/accessories/protocol.html
https://source.android.com/accessories/protocol.html
https://developer.android.com/guide/topics/connectivity/usb/accessory.html
https://developer.android.com/guide/topics/connectivity/usb/accessory.html
https://developer.android.com/guide/topics/sensors/sensors_motion.html
https://developer.android.com/guide/topics/sensors/sensors_motion.html

118

[39] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions
demystified,” in Proceedings of the 18th ACM Conference on Computer and
Communications Security, ser. CCS ’11. New York, NY, USA: ACM, 2011, pp.
627–638. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046779

[40] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of application per-
missions,” in Proceedings of the 2nd USENIX conference on Web application de-
velopment. USENIX Association, 2011, pp. 7–7.

[41] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions de-
mystified,” in Proceedings of the 18th ACM conference on Computer and commu-
nications security. ACM, 2011, pp. 627–638.

[42] I. for Health Freedom, “Public attitudes toward medical privacy. report submit-
ted by the gallup organization; available at http://www.forhealthfreedom.org/
Gallupsurvey/,” 2001.

[43] E. Garcia-Ceja, V. Osmani, and O. Mayora, “Automatic stress detection in working
environments from smartphones accelerometer data: a first step,” IEEE journal of
biomedical and health informatics, vol. 20, no. 4, pp. 1053–1060, 2016.

[44] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.” in STOC,
vol. 9, 2009, pp. 169–178.

[45] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov,
“The most dangerous code in the world: validating ssl certificates in non-browser
software,” in Proceedings of the 2012 ACM conference on Computer and commu-
nications security. ACM, 2012, pp. 38–49.

[46] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard,
“Information flow analysis of android applications in droidsafe.” in NDSS. Cite-
seer, 2015.

[47] B. Greve, R. Kelsch, K. Spaniol, H. T. Eich, and M. Götte, “Flow cytometry in
cancer stem cell analysis and separation,” Cytometry Part A, vol. 81, no. 4, pp.
284–293, 2012.

[48] V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care
diagnostics: status and future,” Analytical chemistry, vol. 84, no. 2, pp. 487–515,
2011.

[49] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “Asm: a programmable inter-
face for extending android security,” Intel CRI-SC at TU Darmstadt, North Car-
olina State University, CASED/TU Darmstadt, Tech. Rep. TUD-CS-2014-0063,
2014.

[50] H. Hillborg and U. Gedde, “Hydrophobicity changes in silicone rubbers,” IEEE
Transactions on Dielectrics and Electrical insulation, vol. 6, no. 5, pp. 703–717,
1999.

http://doi.acm.org/10.1145/2046707.2046779
http://www.forhealthfreedom.org/Gallupsurvey/
http://www.forhealthfreedom.org/Gallupsurvey/

119

[51] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These aren’t the
droids you’re looking for: retrofitting android to protect data from imperious ap-
plications,” in Proceedings of the 18th ACM conference on Computer and commu-
nications security. ACM, 2011, pp. 639–652.

[52] Invisible Things Lab, 2011, http://www.qubes-os.org/.

[53] A. Jayakumar, “Cyberattacks are on the rise, and healthcare data is the biggest
target; available at http://www.washingtonpost.com/,” 2014.

[54] B.-H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-
dimensional micro-channel fabrication in polydimethylsiloxane (pdms) elastomer,”
Microelectromechanical Systems, Journal of, vol. 9, no. 1, pp. 76–81, 2000.

[55] W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (poct) di-
agnostic systems using microfluidic lab-on-a-chip technologies,” Microelectronic
Engineering, vol. 132, pp. 46–57, 2015.

[56] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Mor-
ris, “Information flow control for standard os abstractions,” in ACM SIGOPS Op-
erating Systems Review, vol. 41. ACM, 2007, pp. 321–334.

[57] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter, “L4android:
a generic operating system framework for secure smartphones,” in Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile devices.
ACM, 2011, pp. 39–50.

[58] O. Lazcka, F. Campo, and F. X. Munoz, “Pathogen detection: A perspective of
traditional methods and biosensors,” Biosensors and Bioelectronics, vol. 22, no. 7,
pp. 1205–1217, 2007.

[59] S. Lee, V. Oncescu, M. Mancuso, S. Mehta, and D. Erickson, “A smartphone
platform for the quantification of vitamin d levels,” Lab on a Chip, vol. 14, no. 8,
pp. 1437–1442, 2014.

[60] C. LeRouge, V. Mantzana, and E. V. Wilson, “Healthcare information systems re-
search, revelations and visions,” European Journal of Information Systems, vol. 16,
no. 6, p. 669, 2007.

[61] X. Liu, T.-Y. Lin, and P. B. Lillehoj, “Smartphones for cell and biomolecular
detection,” Annals of biomedical engineering, vol. 42, no. 11, pp. 2205–2217, 2014.

[62] C. Logan, M. Givens, J. T. Ives, M. Delaney, M. J. Lochhead, R. T. Schooley, and
C. A. Benson, “Performance evaluation of the mbio diagnostics point-of-care cd4
counter,” Journal of immunological methods, vol. 387, no. 1, pp. 107–113, 2013.

[63] M. Mancuso, E. Cesarman, and D. Erickson, “Detection of kaposi’s sarcoma as-
sociated herpesvirus nucleic acids using a smartphone accessory,” Lab on a Chip,
vol. 14, no. 19, pp. 3809–3816, 2014.

[64] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone: decoding vibra-
tions from nearby keyboards using mobile phone accelerometers,” in Proceedings

http://www.qubes-os.org/
http://www.washingtonpost.com/

120

of the 18th ACM conference on Computer and communications security. ACM,
2011, pp. 551–562.

[65] F. E. McKenzie, W. A. Prudhomme, A. J. Magill, J. R. Forney, B. Permpanich,
C. Lucas, R. A. Gasser, and C. Wongsrichanalai, “White blood cell counts and
malaria,” Journal of Infectious Diseases, vol. 192, no. 2, pp. 323–330, 2005.

[66] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury, “Tapprints:
your finger taps have fingerprints,” in Proceedings of the 10th international con-
ference on Mobile systems, applications, and services. ACM, 2012, pp. 323–336.

[67] J. Mok, M. N. Mindrinos, R. W. Davis, and M. Javanmard, “Digital microfluidic
assay for protein detection,” Proceedings of the National Academy of Sciences, vol.
111, no. 6, pp. 2110–2115, 2014.

[68] A. Nadkarni and W. Enck, “Preventing accidental data disclosure in
modern operating systems,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, ser. CCS ’13.
New York, NY, USA: ACM, 2013, pp. 1029–1042. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516677

[69] M. Ongtang, K. Butler, and P. McDaniel, “Porscha: Policy oriented secure con-
tent handling in android,” in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 221–230.

[70] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically rich
application-centric security in android,” Security and Communication Networks,
vol. 5, no. 6, pp. 658–673, 2012.

[71] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok, “Unionfs: User-and community-
oriented development of a unification filesystem,” in Proceedings of the 2006 Linux
Symposium, vol. 2, 2006, pp. 349–362.

[72] N. A. Quynh, “Capstone: Next-gen disassembly framework,” Black Hat USA, 2014.

[73] R. A. Rueppel, “Stream ciphers,” in Analysis and Design of Stream Ciphers.
Springer, 1986, pp. 5–16.

[74] J. Sametinger, J. Rozenblit, R. Lysecky, and P. Ott, “Security challenges for
medical devices,” Commun. ACM, vol. 58, no. 4, pp. 74–82, Mar. 2015. [Online].
Available: http://doi.acm.org/10.1145/2667218

[75] Samsung Knox, 2014, http://www.samsungknox.com/.

[76] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
“Android permissions: A perspective combining risks and benefits,” in Proceedings
of the 17th ACM Symposium on Access Control Models and Technologies, ser.
SACMAT ’12. New York, NY, USA: ACM, 2012, pp. 13–22. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295141

[77] B. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy, “Android
permissions: a perspective combining risks and benefits,” in Proceedings of the

http://doi.acm.org/10.1145/2508859.2516677
http://doi.acm.org/10.1145/2667218
http://www.samsungknox.com/
http://doi.acm.org/10.1145/2295136.2295141

121

17th ACM symposium on Access Control Models and Technologies. ACM, 2012,
pp. 13–22.

[78] SensMark, 2018, the Benchmark For Mobile Sensor Technologies; available at http:
//sensmark.info.

[79] P. Shekelle, S. C. Morton, and E. B. Keeler, “Costs and benefits of health infor-
mation technology,” 2006.

[80] S. Smalley, 2015, sE-Android; available at http://seandroid.bitbucket.org/.

[81] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing flexible mac to
android,” in Proceedings of Network and Distributed System Security Symposium
(NDSS). IEEE, 2013.

[82] R. Spreitzer, “Pin skimming: Exploiting the ambient-light sensor in mobile de-
vices,” in Proceedings of the 4th ACM Workshop on Security and Privacy in Smart-
phones & Mobile Devices. ACM, 2014, pp. 51–62.

[83] M. Sun, T. Wei, and J. Lui, “Taintart: A practical multi-level information-flow
tracking system for android runtime,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016, pp. 331–342.

[84] Swirls, 2015, swirls anonymous demonstration; available at http://goo.gl/ofsC5N
(capsule installation) and http://tinyurl.com/knvg77a (capsule boundary tracking
and policy enforcement).

[85] S. H. Tan, N.-T. Nguyen, Y. C. Chua, and T. G. Kang, “Oxygen plasma treat-
ment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel,”
Biomicrofluidics, vol. 4, no. 3, p. 032204, 2010.

[86] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and N. Sarda,
“Cleanos: Limiting mobile data exposure with idle eviction.” in OSDI, vol. 12,
2012, pp. 77–91.

[87] O. Tripp and J. Rubin, “A bayesian approach to privacy enforcement in smart-
phones,” in 23rd USENIX Security Symposium (USENIX Security 14), 2014, pp.
175–190.

[88] V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, and C. Adley, “An overview
of foodborne pathogen detection: in the perspective of biosensors,” Biotechnology
advances, vol. 28, no. 2, pp. 232–254, 2010.

[89] R. S. Wallis, M. Pai, D. Menzies, T. M. Doherty, G. Walzl, M. D. Perkins, and
A. Zumla, “Biomarkers and diagnostics for tuberculosis: progress, needs, and
translation into practice,” The Lancet, vol. 375, no. 9729, pp. 1920–1937, 2010.

[90] R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning, D. Xu, W. Zhou, and A. M.
Azab, “Easeandroid: automatic policy analysis and refinement for security en-
hanced android via large-scale semi-supervised learning,” in Proceedings of the
24th USENIX Conference on Security Symposium. USENIX Association, 2015,
pp. 351–366.

http://sensmark.info
http://sensmark.info
http://seandroid.bitbucket.org/
http://goo.gl/ofsC5N
http://tinyurl.com/knvg77a

122

[91] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically enforcing
enterprise policy on android devices.” in NDSS, 2015.

[92] A. Whitten and J. D. Tygar, “Why johnny can’t encrypt: A usability evaluation
of pgp 5.0.” in Usenix Security, vol. 1999, 1999.

[93] Y. Xia and G. M. Whitesides, “Soft lithography,” Annual review of materials
science, vol. 28, no. 1, pp. 153–184, 1998.

[94] L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis,” in USENIX conference on
Security symposium, 2012, pp. 29–29.

[95] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for automatically enforc-
ing privacy policies,” pp. 85–96, 2012.

[96] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making information
flow explicit in histar,” in Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, vol. 7, 2006, pp. 19–19.

[97] W. Zeng and S. Lei, “Efficient frequency domain selective scrambling of digital
video,” Multimedia, IEEE Transactions on, vol. 5, no. 1, pp. 118–129, 2003.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Virtual Micro-Perimeter via Information Flow Tracking
	Introduction
	Motivations and Use Cases
	Swirls Overview
	Threat Model
	Capsules: Virtual Micro Security Perimeters
	Capsule Architecture
	Secure Capsule Distribution
	Capsule Context

	Hybrid Information Flow Tracking Mechanism
	Managed Applications
	Unmanaged Applications

	Evaluation
	Swirls Performance
	Capsule Boundary Evolution
	Capsule Policy Enforcement
	Realized Smartphone Use Cases
	Comparison with Existing Solutions

	Related Work
	Discussion
	Conclusion

	Value-Based Information Flow Tracking
	Introduction
	Metron Overview
	Threat Model
	Value-Based Information Flow Tracking
	Sources and Sinks
	Tainted Data Computation History
	Design Challenges

	Implementation
	Application Sandboxing
	Taint Tracking via Numerical Operations Interception

	Evaluation
	Performance Overhead
	Flow Tracking Accuracy

	Limitations and Discussion
	Related Work
	Conclusion

	Hardware-Enabled Data Protection
	Introduction
	Overview
	Medsen System Design
	Bio-sensor
	Multi-Electrode Signal Encryption
	Microfluidic Channel

	Sensor-Based Analog Signal Encryption
	Cipher Design
	Cipher Key Space Size Analysis

	Cyto-Coded Authentication
	Implementation
	Medsen Bio-Sensor Fabrication
	Sensor-Side Data Manipulation
	Cloud-Based Data Analysis
	System Integration

	Evaluation
	Sensor-Based Data Encryption
	Data Transfer and Cloud-Based Analysis
	Cyto-Coded Passwords and Patient Authentication

	Related Work
	Conclusion

	Conclusion
	Bibliography

