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Laser powder bed fusion (L-PBF) is an additive manufacturing process which can 

produce nearly fully dense parts with complex geometry by using laser power 

which follows layer-to-layer scanning strategies on powder material with pre-

specified powder layer thickness. In L-PBF, the powder material is fully melted and 

then solidified to achieve the above target. It offers high flexibility in manufacturing 

complex shapes reducing high tooling cost with its simple and quick setup and 

providing wide range of high strength alloys to work with. The parts fabricated 

through L-PBF are widely used for industrial applications such as in automobile, 

aerospace and medical industries. Various process parameters and scan 

strategies affect the build quality and structural integrity of the finished parts. In-

process data analytics and statistical monitoring techniques are required to detect 
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meltpool area, localize material spatter and control the process. High speed video 

imaging provides some process insight for identifying meltpool and spatter and can 

be integrated into process monitoring and control for L-PBF advanced 

manufacturing process.  

In this thesis, we studied the use of high speed camera videos for in-situ monitoring 

of L-PBF of nickel alloy 625 to detect meltpool, spatter, and over melting regions 

to improve the process control capability. The quantities that can be measured via 

in-situ sensing can be referred to as process signatures and can represent the 

source of information to detect possible defects. The video images are processed 

for temporal-spatial analysis by using principal component analysis and T2 

statistics for identifying the history of pixel intensity levels through the process 

monitoring. These results are correlated as over melting and spatter regions. The 

results obtained from these studies will provide information about the process 

parameters which can be used for further validation of modelling studies or for 

industrial purposes. 
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CHAPTER 1  

INTRODUCTION 

 

Laser Powder Bed Fusion (L-PBF) processes were among the first commercialized 

Additive Manufacturing (AM) processes. The Powder Bed Fusion (PBF) processes 

include the following commonly used printing techniques: Direct metal laser 

sintering (DMLS), Electron beam melting (EBM), Selective heat sintering (SHS), 

Selective laser melting (SLM) and Selective laser sintering (SLS). Laser Powder 

Based Fusion process (L-PBF) or commonly known as Selective laser melting 

(SLM) is a rapid prototyping, 3D printing, or Additive Manufacturing (AM) 

technique designed to use high power-density laser to melt and fuse 

metallic powders. A component is built by selectively melting and 

fusing powders within and between layers. This technique has been proven to 

produce near net-shape parts up to 99.9% relative density. This enables the 

process to build near full density functional parts and has viable economic benefits. 

According to the Wohler report published in 2017 the sale of additive 

manufacturing products and services have already passed US$6 billion mark in 

2016. The generalized process steps involved during the L-PBF process are as 

follows- 
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Figure 1: The laser powder bed fusion system by EOS GmbH. 

Materials which can be processed through this process are stainless steel, 

titanium, aluminum, cobalt, nickel, copper, and tungsten. Recent developments of 

fiber optics and high-power lasers have also enabled L-PBF to process different 

metallic materials, ceramics, and composite materials.    

Step 1
• A thin layer of metal powder is deposited on a flat substrate via a 

powder deposition system.

Step 2
• Then, the laser melts the powder to realize the first slice of the 

part by following a predefined scanning path.

Step 3

• When the scan of the first layer is complete, the substrate is 
lowered, a new layer of powder is deposited, and the process is 
repeated to realize the following slice.

Step 4
• This process is repeated until the product is completed
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This layer-by-layer process was first used to produce prototypes, but the trend is 

towards direct manufacture of components because of its ability to net-shape 

manufacture complex structures from a Computer Aided Design (CAD) model and 

a wide range of materials without the need of expensive tooling and machining so 

that the delay between design and manufacture is minimized. Another advantage 

is that the powder is melted only locally by the laser and the rest of the powder can 

be recycled for further fabrication. This method has been used to selectively melt 

nickel-based super alloys, titanium-based alloys, aluminum-based alloys and 

niobium-based alloys to fabricate components and structures for automotive and 

aerospace applications. This manufacturing method is used for the manufacturing 

of tools for the plastic injection molding and the die casting as well. It is also 

possible to produce very filigree structures for dental and human implants. 

  

(a)     (b) 

Figure 2: Additively fabricated metal parts (a) Hip socket made on Arcam PBF 
machine, (b) Dental crowns and bridges on EOS PBF machine. 
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1.1 Metal Additive Manufacturing 

 

Metal Additive Manufacturing, also known as metal 3D printing, offers extensive 

design freedom with the ability to manufacture parts using a wide range of 

materials with a target to create complex parts without any design constraints 

which are quite common in traditional manufacturing processes. The use of 

Additive Manufacturing (AM) with metal powders is a new and still growing industry 

sector with many of its leading companies based in Europe. It has become a 

suitable process to produce complex metal final production shape parts, and not 

only prototypes, as before. Additive manufacturing now enables both a design and 

industrial revolution, in various industrial sectors such as aerospace, energy, 

automotive, medical, tooling and consumer goods. 

 

Figure 3: Technology readiness levels of additive manufacturing applications. 
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Looking at the report from Roland Berger published in 2015 it can be said that 

starting from prototypes, today's AM systems are not designed for series 

production.  Process speed, material costs and process control have not been an 

issue for prototyping. AM needs to show that it can manufacture parts 

economically, in volume and with constant quality for several applications. Several 

technologies have been developed for additive manufacturing however powder 

bed fusion remains to be the leading technology for fabricating metal objects. 

 

 

 

Figure 4: Classification of additive manufacturing technologies. Source: ASTM 
International Committee F42 on Additive Manufacturing Technologies.  
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AM has several advantages, with freedom of shape being the most important one, 

but also several drawbacks, especially slow build rates and feedstock availability. 

The advantages and disadvantages can be summarized as following: 

 

Advantages 

 

1. Design complexity and freedom: proliferation of metal products which 

involve levels of complexity that simply could not be produced physically in 

any other way. 

2. Speed of production: complex parts can be created within hours, with limited 

human resources and intervention.  

3. Customization: 3D printing processes allow for customization of metal 

products which is the ability to personalize products according to individual 

needs and requirements such as biomedical products. 

4. Tool-less production: For low to medium volume applications, industrial 3D 

printing or additive manufacturing can eliminate the need for tool production 

and, therefore, the costs, lead times and labor associated with it.  

5. Extreme lightweight design: Metal additive manufacturing enables weight 

reduction via topological optimization. 

6. No storage cost: Since it can “print” products as and when needed, and 

does not cost more than mass manufacturing, no expense on storage of 

goods is required. 
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Disadvantages 

 

1. Support material removal: When production volumes are small, the removal 

of support material is usually not a big issue. When the volumes are much 

higher, it becomes an important consideration. Support material that is 

physically attached is of most concern. 

2. Limitations of feedstock material: At present, 3D printers can work with 

approximately 100 different feedstock materials. This is insignificant when 

compared with the enormous range of feedstock materials used in 

traditional manufacturing processes.  

3. Material cost: Today, the cost of most materials for additive systems (in 

powder form) is slightly greater than that of those used for traditional 

manufacturing. 

4. Limitations of size: L-PBF printing technology is currently limited by size 

constraints. Very large objects are still not feasible when building using 3D 

printers. 

5. Residual stresses: Induced by uneven heating and cooling phenomenon 

that may prove to be significant in high-precision processes. 
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1.2 Rationale and Motivation 

 

Studies on in-situ process signatures in metal additive manufacturing such as 

spatter and over melting phenomenon can help to reduce defects and optimize 

layer structure with different layer thicknesses. Also, the study of melting regions 

can support the idea of introducing two and more laser systems (e.g. SLM 

Solutions) seems the most promising alternative to improve process capacity to 

overcome the application of energy (laser power) per focus point since it is limited 

by the process parameters. Process parallelization by simultaneous powder 

dispensing and laser melting can also be achieved depending upon the data 

obtained from Spatial mapping monitoring methods which focuses on controlling 

spatter during in-process and will eventually give user control over process stability 

using online monitoring systems. 

Another area where this research would affect is the machine prices which can go 

up once this self-learning monitoring system is equipped with existing ones to 

improve quality of parts being produced. Increasing addition of process and quality 

control electronics as well as number of lasers will raise the machine price, partly 

offset by economies of scales. 

Also, reliable systems will reduce effort for monitoring and troubleshooting 

techniques. This research will also help to reduce wastage of excess metal powder 
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in form of spatters happening during in-process as it will cut-off the process once 

amount of spatter reaches a preset value and asking user to re-adjust the process 

parameters. 

 

1.3 Research Objectives 

 

The objective of this research is to use of high speed camera videos for in-situ 

monitoring of L-PBF of nickel alloy 625 to detect spatter and over melting regions 

to improve the process control capability. The quantities that can be measured via 

in-situ sensing can be referred to as process signatures and can represent the 

source of information to detect possible defects. The video images are processed 

for temporal-spatial analysis by using principal component analysis and T2 

statistics for identifying the history of pixel intensity levels through the process 

monitoring. These results are correlated as over melting and spatter regions. The 

results obtained from these studies will provide information about the process 

parameters which can be used for further validation of modelling studies or for 

industrial purposes. 

Another objective of this research is to study meltpool locations and their types 

which are being generated during over melting, normal melting and under melting 

phenomenon. Meltpool measurements can be obtained using filtering and 

denoising techniques incorporated with studies done by Criales et al. (2017). 
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CHAPTER 2  

 

LASER POWDER BED FUSION PROCESS 

2.1 L-PBF Process Parameters 

 

To certify any new process and to understand various factors affecting the process 

and quality of products formed, it is relevant to carry out theoretical, experimental 

and mechanical testing investigations. These experimental investigations are 

affected by various process parameters which can be optimized for producing 

satisfactory parts using L-PBF processes. Therefore, the use of optimum process 

parameters is extremely important.  

 

In L-PBF, process parameters can be consolidated into four major categories:  

 

1. laser-related parameters e.g. laser power, laser-beam spot size 

2. scan related parameters e.g. scan strategy, scan velocity, hatch distance 

3. powder-related parameters e.g. powder size and layer thickness 

4. meltpool geometry and spatter  
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Figure 5: L-PBF terminology (Criales et al. 2017). 

2.1.1 Laser Power 

Laser is used as a primary energy source for melting and solidifying the powder 

material and manufacturing metallic products. Laser power is defined as power 

level that is transferred by the laser beam to the powder bed. It affects proper 

fusion of powder melt in powder bed to achieve fully dense part when laser scans 

the surface of the powder bed.   

2.1.2 Scan Strategy 

 

Scanning patterns have a major influence of various features e.g. porosity, 

microstructure, surface roughness and heat build-up in the products being formed 

by the L-PBF process. As mentioned in previous sections, L-PBF process flow 

consists of steps such as; components are digitalized into 3-d design using 

software, sliced and stacked into layers. Then, as per the algorithm in the software 

which is being used by the 3-D printing machine decides how to manage regions 
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by splitting it into various regions to control laser movement accordingly. The three 

main types of scanning patterns currently used are, stripe, checkerboard and 

islands patterns. 

 

Stripe pattern: This pattern is defined by various process parameters such as 

stripe width, the hatching space between adjacent tracks and the scan direction as 

well as the overlap with the neighboring stripes (see Fig. 6). 

 

 

Figure 6: Schematics of stripes and hatching pattern. 
Source: insidemetaladditivemanufacturing.com 

 

Chess-board pattern: The chessboard pattern also known as checkerboard 

pattern – which is defined by individual squares placed on a chess board. This 

pattern is defined by the side length of the square, the hatching distance between 

adjacent tracks and the overlap between squares. The sequence of processing 

these individual squares are automatically selected by the machine depending 

upon the similarities between them (see Fig. 7). 
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Figure 7: Schematics chessboard scanning and hatching patterns. 
Source: insidemetaladditivemanufacturing.com 

 

Islands pattern: This is just like chessboard pattern with an exception of squares 

being processed in random order. Here each square is printed randomly across 

the layer, in no order. Process parameters such as square side width, overlap and 

hatching distance ensure no powder is left unmelted (see Fig. 8). 

 

Figure 8: Schematics of islands and other hatching patterns. 
Source: insidemetaladditivemanufacturing.com 
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2.1.3 Scan Velocity 

 

According to study by Kamath et al. (2016) scan velocity is considered as the most 

important process parameters in L-PBF process. This study says that a higher 

scan velocity causes the interaction between material and the laser beam to be 

short, which allows the process to achieve narrow meltpool which also leads to 

surface roughness, whereas decreasing the scan velocity causes excessive 

heating and vaporization. Also, high value of scanning velocity when used during 

the process causes instability and droplet formation due to free cylindrical meltpool 

geometry and low values cause balling effect. Therefore, a tradeoff is required 

between the low and high values to achieve desired quality of products. 

 

2.1.4 Hatch Distance 

 

Hatch distance is the distance between two neighboring scan vectors, hatch lines. 

It is usually less than the laser beam diameter and can be varied. Some areas in 

the powder bed are exposed to multiple scanning. Cross section may not be fused, 

if the hatch spacing is too much.  
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2.1.5 Powder Bed 

 

Powder shape, size, and its distribution strongly affect laser absorption 

characteristics as well as powder bed density, powder bed thermal conductivity, 

and powder spreading. Finer grain particles give greater surface area and help in 

absorbing laser energy more efficiently than coarser particles. Powder bed 

temperature, laser power, scan speed, and scan spacing must be balanced to 

provide the best tradeoff between meltpool size, dimensional accuracy, surface 

finish, build rate, and mechanical properties. The powder bed temperature should 

be kept uniform and constant to achieve repeatable results. Generally, high-laser-

power/ high-bed-temperature combinations produce dense parts, but can result in 

part growth, poor recyclability, and difficulty cleaning parts. On the other hand, low-

laser-power/ low-bed-temperature combinations produce better dimensional 

accuracy, but result in lower density parts and a higher tendency for layer 

delamination. High-laser-power combined with low-part-bed-temperatures results 

in an increased tendency for non-uniform shrinkage and the build-up of residual 

stresses, leading to curling of parts. The powder bed density, as governed by 

powder shape, size, distribution, and spreading mechanism, can strongly influence 

the part quality. Powder bed densities typically range between 50 and 60 % for 

most commercially available powders, but may be as low as 30 % for irregular 

ceramic powders. Generally, the higher the powder packing density, the higher the 

bed thermal conductivity and the better the part mechanical properties. Layer 

thickness is an important element in L-PBF process. Layer thickness is defined as 
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the depth that build platform is lowered between each layer. Layer thickness 

defines powder layer thickness to be fused with one process cycle. It takes longer 

time to build part if smaller layer thickness is used, but on the other hand smaller 

layer thickness can decrease surface roughness. 

 

2.2 L-PBF Process signatures 

 

2.2.1 Meltpool Geometry 

 

There are basically two types of meltpool geometry data: a) meltpool dimensions 

(width and depth), b) meltpool shape among others such as length (see Fig. 9). 

 

Figure 9: Views of surfaces generated with L-PBF process in nickel alloy IN625 
(P=195 W, vs=800 mm/s, h=0.1 mm). (a) XY top view (b) YZ side view (Criales et 

al. 2017). 
 

Also, the different types of meltpool created during the L-PBF process have 

different geometries as well. There are mainly two types of meltpool observed due 

to different laser scanning process; 
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1. Type-I meltpool: meltpool area being processed is still within the heat-

affected zone of the previous hatch scanning (or track processing).  

2. Type-II meltpool: meltpool area currently being processed is no longer 

affected by the heat from laser scanning of the previous track or hatch. 

 

Figure 10: Definition of Type-I and Type-II meltpools (Criales et al. 2017). 

 

The size of the dynamic meltpool also depends on the scanning direction. Meltpool 

at a location at the beginning of the track will be larger (Type-I) and meltpool at a 

location at the end of a processed track will be smaller (Type-II). The difference in 

meltpool sizes can be attributed to the presence of a heat-affected zone (HAZ) and 

rapid cooling times. Digital optical microscopy imaging and thermal camera 

imaging were used to corroborate with these results by Criales et al. (2017). 

 

2.2.2 Meltpool Shape Analysis 

 

Laser heating and heat affected zone produces a notable effect on the geometrical 

shape of the meltpool so that meltpool shape may not be symmetrical. For this 
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analysis, Criales et al. (2017) considered the cross-sectional (YZ-plane) view of 

the meltpool as obtained from digital microscopy imaging. The meltpool width, w, 

and the distance from the edge of the meltpool farther away from the previous track 

to the location at which the maximum melted depth is observed, a, were measured 

(see Fig. 11). Then the measure for the meltpool shape was defined as follows, 

 Eq. (1) 

 

Figure 11: Meltpool shape definition (Criales et al. 2017). 

 

They made two kinds of observation: 1) If the meltpool is perfectly symmetrical 

about the z-axis, then a=w/2 and φ=0, or 0%. 2) On the completely skewed 

contrary, if the meltpool is completely skewed towards the previous processed 

hatch due to the heat-affected zone, then a→w, in which case φ→1, or 100%. In 

summary, they suggested that this measure gives a value between 0 and 1 (or 0% 

and 100%) that quantifies how asymmetrical the melt pool geometry is. 
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2.2.3 Material Spatter 
 

 

Strong temperature gradients below the laser generate temperature-dependent 

and complex hydrodynamic flows in the meltpool that generate spatter formation 

during laser processing of the powder material (Khairallah & Anderson 2014). 

 

Figure 12: Melt pool dynamic model (Khairallah & Anderson 2014). 

 

Among these effects, the surface tension gradient generates surface convection 

flows known as the Marangoni effect. It generally drives the melt flow from the hot 

laser spot toward the cold rear end of the track being processed. The result is an 

increase of the melt depth, recirculation of the melt flow and creation of spattering 

as high-speed surface liquid metal that may break away from the more viscous 

(cooler) body of the meltpool as explained in Khairallah & Anderson (2014). All of 

these complexities exist in L-PBF process which is not fully understood and 

requires much better in-situ process monitoring and analysis techniques. 
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CHAPTER 3  

MATERIAL AND EXPERIMENTAL SETUP 

 

3.1 Material 

 

In L-PBF experiments, an adequate quantity of commercially available nickel alloy 

625 powder which is produced by gas atomized process with the average particle 

size of 35 μm was used. This powder material has 325 mesh size (particles that 

measure less than 44 μm) and atomized spherical morphology that contains a 

particle size distribution of D60% =29.4 μm, D10%=13.5 μm, and D90%=43.0 μm.  The 

chemical composition of the powder material in weight % is given in Table 1. 

 

Table 1: Chemical composition of nickel alloy 625. 

Cr Fe Mo Nb C Mn Si P S Al Ti Co Ni 

21.01 

% 

0.85 

% 

8.77 

% 

3.35 

% 

0.02 

% 

0.36 

% 

0.39 

% 

0.005 

% 

0.003 

% 

0.1 

% 

0.1 

% 

0.1 

% 

64.94 

% 

 

3.2 Experimental Setup 

 

An EOS M270 Direct Metal Laser Sintering (DMLS) machine was utilized to carry 

out this experiment and build test coupons. This PBF machine has a single-mode, 

continuous wave (CW) ytterbium fiber laser with maximum power of 200 W. Nickel 
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alloy 625 powder was used and solid coupons in the shape of cubes (16 mm×16 

mm×15 mm) were manufactured using in the DMLS machine under nitrogen gas 

ambience at the National Institute for Standards & Technology (NIST) facility 

located in Gaithersburg, Maryland, USA. Experiments were designed to establish 

a relationship between process parameters and part quality. The Box- Behnken 

design for three factors is based on considering process parameter combinations 

at the midpoints of the edges of the process space cube, as well as at the center 

(Criales et al. 2017). Therefore, three levels of each factor are considered. These 

low, medium, and high levels for each factor are defined as: P=169 W, 182 W, and 

195 W, vs=725 mm/s, 800 mm/s, and 875 mm/s, and h=0.09 mm, 0.10 mm, and 

0.11 mm.  The energy density is defined as the amount of energy applied to the 

powder bed per unit volume and is a function of laser power (P), scan velocity (vs), 

hatch distance (h), and layer thickness (s), as given in Eq. (2). 

Eq. (2) 

 

(a)                                     (b) 
Figure 13: (a) Build platform layout, (b) Image of a built cube (Özel et al. 2017). 
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Criales et al. (2017) further describes their experimental studies as follows. The 

powder layer thickness is kept constant at s=20 μm. The test coupons fabricated 

using these parameter settings are 16 mm×16 mm at the base, and 15 mm in 

height. The final height of the coupons is less than 15 mm, as wire electrical 

discharge machining (w-EDM) is used to separate the built coupons from the 

platform, and some of the coupon remains attached to the platform. 16 mm was 

selected as the width and length of the coupons so that each processed layer of 

powder is composed of four 4-mm wide stripes. Stripe overlap, defined as the area 

of material in which laser scanning overlaps by consecutive stripes, is 0.1 mm. 

Therefore, total stripe width is 4.1 mm. At first, a set of 18 coupons were fabricated 

using 90° rotation in scanning direction (stripe orientation) between layers. A 

second set of coupons, following the same experimental design as the first set, 

was processed using the default scanning rotation (stripe orientation) setting of the 

L-PBF machine, which is estimated to be an approximately 67° rotation. 

Figure 14: Schematic of a stripe scan pattern with 90° (left) and 67° (right) CCW 
rotation between consecutively built layers (Özel et al. 2017). 
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3.3 In-situ Process Monitoring 
 
 

A high-speed camera was used for performing an in-situ process monitoring to 

quantitatively analyze meltpool size and understand spattering behavior and to 

analyze them. Video recordings of the process were obtained from a camera which 

was placed in the L-PBF process chamber (see Fig. 15). Due to the nature of the 

process, i.e., a laser beam moving at very high speeds, a high frame rate (HFR) 

camera is required. This setup was organized at the National Institute of Standards 

and Technology (NIST) facility in Gaithersburg MD, to observe a portion of the 

build area of an L-PBF machine, and the process has been recorded for a test 

coupon that was fabricated using P=195 W, vs=800 mm/s, and h=0.10 mm. 

 

Table 2. Parameters of high-speed camera. 

 

 

 

 

 

 

 

 

 

 

High Speed Camera Photron 

Integration Time 0.1 ms - 0.5 ms 

Frame Rate   

2000 frames/s 

10000 frames/s 

24000 frames/s 

Imaging window 
512 pixels x 128 pixels 

1024 pixel x 256 pixel 
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Figure 15: High speed camera set-up: (a) Side-view of the L-PBF machine, custom 
door, and high-speed camera, (b) CAD solid model of L-PBF machine build 
chamber and custom viewport, (c) optical axis, plane of focus and vertical iFoV 
projected on the build plane. (Criales et al. 2017). 
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CHAPTER 4  

STATISTICAL PROCESS MONITORING OF L-PBF PROCESS 

 

Statistical process control (SPC) is a dynamic monitoring method where product 

quality is actively measured and simultaneously controlled while manufactured 

goods are being mass produced when compared to quality assurance methods 

which typically collect process evidence after a production process has been 

completed. Today due to continuous growth and advancement in additive 

manufacturing processes for metals, the complexity of these manufacturing 

processes and the amount of in-situ data obtained by using various statistical 

monitoring equipment lead to growing demands on the company to control process 

parameters to produce quality products (Akandea et al. 2016). To control and 

eliminate the production of waste and improve the quality of future products, 

statistical process control (SPC) techniques are designed and applied to monitor 

production processes (Grasso & Colosimo 2017). The emphasis is on the 

prevention of problems before they occur instead of simply revealing and 

correcting past mistakes. The problem of defected products obtained through 

various AMs are detected too late which needs to be controlled and optimized. A 

possible approach to confront with these challenges is the development of self-

learning assistance systems, which would identify failures, anomalies happening 

during in-situ and would take statistical approach to identify and auto correct 

process parameters to achieve desired results. Different manufacturing systems 

can be synced with this assistance system to figure out various data acquisition 
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approaches and flexible methods for process monitoring, which can be adapted 

with model-learning approaches to changing process behavior. The assistance 

system comprises of data acquisition, process monitoring and anomaly detection 

in L-PBF processes. However, these approaches are not frequently used in 

industrial applications because they are not yet suitable for the required processing 

of big amounts of data.  

The quality of L-PBF made parts is known to be influenced by process parameters 

and the quality of input material. Monitoring the quality of parts manufactured using 

AMs machines is to be done regularly. Products with benchmark measures should 

be designed and manufactured to track key quality characteristics of strength, 

bending stiffness, density and dimensional accuracy of parts made in multiple 

builds. Using data collected from the benchmark tests, correlation analysis and 

statistical process control (SPC) charts needs to be established. SPC is a useful 

tool that can provide L-PBF users with the mean of identifying possible changes in 

the process. Therefore, it can be used for process monitoring in L-PBF process to 

ensure consistency in part quality for long term production. Real time melt pool 

and spatter analysis can help control to achieve desired quality using feedback 

control system in L-PBF processing technology for metal parts was proposed by 

Grasso et al. Based on the SPC analysis informed decisions can be taken to 

maintain the quality of the product. SPC can therefore serve as the voice of the 

process and by associating it with various control charts and statistical indicators. 

Two major types of Statistical monitoring procedures currently being used in this 
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sector are; i) statistical monitoring of product attributes, ii) statistical monitoring of 

process signatures. 

4.1 Statistical monitoring of product attributes  

 

Statistical monitoring can be used for quality attributes of discrete products such 

as geometric deviations, dimensions, surface roughness, flatness, roundness, 

straightness, cylindricity etc. (Colosimo et al. 2008, Colosimo et al. 2014). These 

attributes are measured and sampled to be incorporated into statistical monitoring 

and quality control scheme by using univariate or multivariate control charts, 

univariate or multivariate time series models and are frequently used in industrial 

applications since they are suitable not requiring big amounts of data (Colosimo et 

al. 2015). 

4.2 Statistical Monitoring of Process Signatures 

 

On the other hand, statistical monitoring can also be used for quality attributes of 

process signatures of especially emerging technologies e.g. micromanufacturing, 

additive manufacturing combined with new inspection solutions (e.g., non-contact 

systems, X-ray computer tomography) and fast multi-stream high-speed sensors 

(e.g., videos and images; acoustic, thermic, power and pressure signals) are 

paving the way for a new generation of industrial big-data requiring novel modeling 

and monitoring approaches for zero-defect manufacturing (Kamath et al. 2016). 

These process signatures are continuously inspected after dimension reduction to 
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be incorporated into statistical monitoring and quality control scheme by 

multivariate control charts or multivariate time series models but not frequently 

used yet in industrial applications since they require processing of big amounts of 

data. The quantities that can be measured via in-process monitoring can be 

referred to as “process signatures”, and can represent the source of information to 

detect possible defects (Grasso & Colosimo 2017; Grasso et al. 2017; Grasso et 

al. 2018). 

 

4.3 High Speed Camera Videos 

 
The experimental setup mentioned in previous sections was used to capture 

videos of ongoing process in a single layer focusing on specified cross-sectional 

area. The video files collected have the configurations and parameters given in 

Table 3. 

Table 3: Parameters of the high-speed camera videos. 

Video # 
Frames per 

second 

Resolution 

(Pixels) 

Duration 

(seconds) 

Integration 

time 

No of 

Frames 
Zoom 

1 10000 512 X 128 0.2231 1/10,000 s 2232 No 

2 24000 512 X 128 0.1000292 1/10,000 s 2408 No 

4 24000 512 X 128 2.077833 1/24,000 s 49869 Yes (X1) 

 

Each video file was used to obtain stream of image frames for carrying out 

statistical monitoring methods to study spatter analysis and over melting 
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phenomenon. With the use of high spatial resolution camera and power lens, it is 

possible to obtain image stream for all layers. After obtaining these videos they 

were processed for removal of embedded logos inside them to prevent their effects 

on statistical descriptors. 

4.3.1 Frames per Second (FPS) 
 
 
FPS stand for frames per second, a measurement for how many unique 

consecutive images a camera can handle each second.  

4.3.2 Image Resolution 
 
 
Resolution is one of most commonly used ways to describe the image quantity of 

digital camera or other optical equipment. Images are usually represented in the 

spatial domain, and quantization is done for the brightness values. The domain of 

images is divided into N rows and M columns. The cross section of a row and a 

Coolum is known as pixel and the value assigned to each pixel is the average 

brightness of the regions. The position of each pixel was described by a pair of 

coordinates (i, j) (see Fig. 16). The resolution of an image is the number of pixel is 

the number of pixel presented in the number of columns × number of rows. For 

example, an image with a resolution of 640×480 means that it displays 640 pixels 

on each of the 480 rows. 
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.  

Figure 16: Representation of video frames in time and pixel space (Repossini et 
al. 2017).  
 

4.3.3 Integration Time 
 

Integration time is that time to process each frame to integrate into the video. If the 

integration time is greater than FPS then there is a possibility that some frames 

will be skipped. The captured frames will be integrated into the video, however 

there will no new frames capture until the integration is completed. 
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CHAPTER 5                                                                                 

METHODOLOGY 

 

The methodologies used in analyzing the high-speed videos will be described in 

this chapter. These methodologies include image processing and statistical 

analysis techniques such as Principal Component Analysis (PCA). Principal 

component analysis is used for image data processing to provide a temporal 

analysis of the high-speed camera image streams and a statistical descriptor 

based upon Hotelling’s T2 distance is used for image data to provide a spatial 

analysis of the image streams in a video. 

 

The following processing steps were followed for PCA of the image streams. 

1) Prepare the data: Center the data i.e. subtract the mean from each 

variable. This produces a data set with mean value as zero.  

2) Calculate the covariance/correlation matrix 

3) Calculate the Eigenvectors (vectors which are fixed in direction under a 

given linear transformation) and the Eigenvalues (scaling factor of 

eigenvectors) of the covariance matrix. 

4) Choose Principal Components: eigenvectors are ordered by eigenvalues 

from the highest to the lowest. The number of chosen eigenvectors will be 

the number of dimension of the new data set. 

5) Compute the new data set based upon eigenvalues and eigenvectors. 
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According to Grasso et al. (2017) the videos acquired from the experimental setup 

consists of image streams which is represented as a three-dimensional array 𝓤 ∈

ℝ𝑱×𝑴×𝑵 , where J is the total number of acquired frames from j=1 to J and (M X N) 

is the size in pixel of each frame. In other words, (U1, U2 …. Uj) represents stream 

of images where Uj ∈ RMXN is the jth image of size (M X N) and j= 1 to J. The 

vectorized PCA is the most common way of applying PCA techniques to image 

data, which involves transformation of bi-dimensional samples (i.e. frames) into 

one dimensional vectors. This conversion process is also known as ‘unfolding’ 

operation. There are two types of PCA techniques which were used into this study: 

 

1) Temporal Principal Component Analysis (Time dependent) 

2) Spatial Principal Component Analysis (Space dependent) 

5.1 Image Types 

 

There are three types of images considered, which are described below. 

5.1.1 Binary Image 

 

It is a logical array of 0s and 1s, interpreted as black and white, respectively. 

Any array of 0s and 1s whose values are of data class, say, uint8 is not 

considered a binary image in Matlab. A numeric array is converted to binary 

using function logical. 
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5.1.2 Grayscale Image 

 

It is a data matrix whose values represent shades of gray. It is also known 

as an intensity, gray scale, or gray level image. Array of class uint8, uint16, 

int16, single, or double whose pixel values specify intensity values. For 

single or double arrays, values range from [0, 1]. For uint8, values range 

from [0,255]. For uint16, values range from [0, 65535]. For int16, values 

range from [-32768, 32767]. 

5.1.3 True Color Image 

 

It is also known as an RGB image. A true color image is an image in which 

each pixel is specified by three values one each for the red, blue, and green 

components of the pixel scalar. M by-n-by-3 array of class uint8, uint16, 

single, or double whose pixel values specify intensity values. For single or 

double arrays, values range from [0, 1]. For uint8, values range from [0, 

255]. For uint16, values range from [0, 65535]. 
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CHAPTER 6  

TEMPORAL AND SPATIAL ANALYSIS OF IMAGE STREAMS  

 

6.1 Temporal Principal Component Analysis  

 

Temporal PCA is performed on the stream of images 𝓤 =

{𝑼𝟏,  𝑼𝟐, … , 𝑼𝟑}.According to Grasso et al. (2017) three-dimensional array i.e. 𝓤 ∈

ℝ𝑱×𝑴×𝑵  is transformed into a matrix  ∈ ℝ𝑱×𝒑 , where p = M X N. Each row of matrix 

in here consists of a pixel intensity profile. Principal components generated through 

vectorized PCA associates a weight to each frame (see Fig. 17).   

 

Figure 17: Statistical analysis methodology for temporal PCA. 

Spectral decomposition of the variance covariance matrix  ∈ ℝ𝑱×𝑱 , of the p X J 

data matrix is then done which is given by VTSV=L. Extracted PCs are linear 

combination of frames from j =1 to J. The relative importance of each PC i.e. the 
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amount of explained variance is represented by the value of the corresponding 

eigenvalue. Reduced number of principal components are used to represent the 

relevant information without any loss. 

Then a graph for mean gray level values vs the frames from j= 1 to J in the video 

file is plotted. Gray level resolution refers to the predictable or deterministic change 

in the shades or levels of gray in an image. The number of different colors in an 

image is depends on the depth of color or bits per pixel (0 = black and 256 = White). 

The mathematical relation that can be established between gray level resolution 

and bits per pixel can be given as. L = 2k in this equation L refers to number of 

gray levels. It can also be defined as the shades of gray. And k refers to bpp or 

bits per pixel. In our approach, we are quantizing the gray level value from 0 to 256 

on Y-axis against # of frames on X-axis (see Fig. 18). 

 

Figure 18: Representation of temporal PCA. 
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6.1.1 Process Flow for Temporal Principal Component Analysis  

 

 

1
• Create a sample video

2
• Remove in-built text from video

3
• Plot temporal graph for video

4
• Extract individual frames from video

5
• Remove frames when laser is off

6
• Create new video using remaining frames

7
• Plot temporal graph for new video

8
• Separate frames into different tracks

9
• Make video for individual tracks using frames

10
• Plot temporal graph for individual track videos

11
• Save mean pixel intensity for individual tracks (Type-I and Type-II)

12
• Perform statistical analysis for Type-I andType-II track’s mean pixel 

intensity value

13
• Plot Statistical graphs for both Type-I and Type-II tracks
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Step 1: First, we used video cutter software for cutting a small sample of video file 

so that it can be easily processed in Matlab. 

Step 2: Then, we used Wondershare Filmora software to remove inbuilt text so 

that it does not affect the statistical results obtained after processing. We also 

cropped video to focus only on workspace area for laser. Then we saved this edited 

video sample. 

Step 3: Then we used Matlab script video.m to perform temporal analysis and plot 

graph. This script processes video frame by frame (see Appendix). For each frame, 

we converted it from RGB image to gray scale intensity image mainly to make the 

image simpler for analysis, and reduce the amount of code to be written in 

Matlab.  When an image is digitized or processed, a brightness levels that vary 

continuously must be quantized i.e. assigned a value on a scale between white 

and black and shades of grey in between: that value is the gray level. We collected 

average of the gray scale intensity values for all pixels in individual frames called 

mean gray level value and plotted it against time (frame). 

Step 4: Then we used Matlab script frameextraction.m to segregate individual 

frames of the video sample and saved it in a separate folder (see Appendix). 

Step 5: Then we identified frames which included the time for which laser is 

inactive while changing tracks. We removed these frames from the existing pool 

of frames. 

Step 6: Then we used Matlab script makevideo.m to combine the remaining 

frames from above step to make a new video sample (see Appendix).  
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Step 7: Again, we used Matlab script video.m to perform temporal analysis and 

plot graph (see Appendix).    

Step 8: Also, we separated frames obtained in step 5 into different tracks the laser 

follows during the process and saved it in different folders marked as track 1, track 

2….and so on. 

Step 9: We recombined the frames obtained for individual tracks to create video 

sample for individual tracks using Matlab script makevideo.m (see Appendix).    

Step 10: Again, we used Matlab script video.m to perform temporal analysis and 

plot graph.   

Step 11: One of the outputs of Matlab script video.m gives an array of mean gray 

level intensity values for each frame. We performed statistical analysis using these 

values by calculating mean and standard deviation of the mean gray level intensity 

values obtained for all tracks in Type-I and-II separately. 

Step 12 and 13: Then we plotted a statistical analysis graph to study and 

understand the melt pool types formed during the process. 

 

6.1.2 Additional Processing 

 

Gray scale images have some flares coming out of meltpool. We can eliminate 

minor flares if we convert it to BW image. We also introduce a new variable called 

threshold value in this processing. It is obtained by taking average of the mean 

gray level values of each frame obtained using Matlab script video.m. 
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According to Matlab we can convert a gray Image to BW image by using following 

code: 

• BW = imbinarize(I) creates a binary image from image I by replacing all 

values above a globally determined threshold with 1s and setting all other 

values to 0s. By default, imbinarize uses Otsu's method, which chooses the 

threshold value to minimize the intraclass variance of the thresholded black 

and white pixels. imbinarize uses a 256-bin image histogram to compute 

Otsu's threshold. BW is the output binary image. 

• BW = imbinarize (I, method) creates a binary image from image I, using the 

thresholding method specified by method: 'global' or 'adaptive'. 

• BW = imbinarize (I, T) creates a binary image from image I, using the 

threshold value T. T can be a global image threshold, specified as a scalar 

luminance value, or a locally adaptive threshold, specified as a matrix of 

luminance values. 

• BW = imbinarize (I, ‘adaptive’, Name, Value) creates a binary image from 

image I, using name-value pairs to control aspects of adaptive thresholding. 

• J = imbinarize (V, ___) binarizes volume V, using the same defaults as the 

syntax for grayscale images. imbinarize supports 3-D binary conversion for 

both global and adaptive thresholding. J is the output binary volume. 
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Step 1: As explained above, we used the Matlab script video.m to obtain mean 

gray level intensity values for each frame in an array format (J X 1) where J 

represents # of frames. We then calculated average value of all the mean gray 

intensity level for all frames and named it as threshold value. 

Step 2: We used Matlab script pixel.m to first convert these gray images into BW 

images and count the number of pixels whose intensity values is greater than the 

threshold value for each frame. Then we stored this data into an array format for 

all frames. 

Step 3 and 4: After that we calculated mean and standard deviation of the pixel 

count for each video. And plotted meltpool area in terms of pixels count exceeding 

the threshold value against Frames (time). 

1
• Calculate threshold value of pixel intensity

2
• Calculate # of pixels whose pixel intensity value is greater than the 

threshold value

3
• Calculate mean and standard deviation for all frames in the individual 

videos

4
• Plot this meltpool area in terms of pixels vs Frames (time)

5
• Perform statistical analysis for Type-I and Type-II tracks
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Step 5: We plotted similar graphs for individual tracks (Both Type-I and Type-II) 

segregated form the video file using the above steps. In this analysis we 

considered two cases: 

i. When frames where laser was off during the process have been included 

ii. When frames where laser was off during the process were not included 

We also performed a separate analysis just for video 1 to show the effects when 

this method was applied directly to gray image (without converting to BW Image). 

 

6.2 Spatial Principal Component Analysis  

 

In spatial principal component analysis, the initial steps remain the same as 

temporal PCA. Transformation of a three-dimensional array i.e. 𝓤 ∈ ℝ(𝑴×𝑵)×𝑱  is 

transformed into a matrix  ∈ ℝ𝒑×𝑱 , where p = M X N. Here each row of the matrix 

consists of a vectorized frame. Principal components generated through 

vectorized PCA associates a weight to each pixel (see Fig. 19). 
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Figure 19: Statistical analysis methodology for spatial PCA. 

A new term W is added while doing the spectral decomposition which represents 

the addition of frames as new videos are being recorded and added by using the 

experimental setup. 

6.3 Spatial Mapping  
 

A statistical descriptor based upon Hotelling’s T2 distance which is a spatial index 

i.e. a function T2 (X, Y) of pixel location within the image which maps a T2 value to 

each pixel is added. Then a three-dimensional map is plotted using this T2 values 

against the pixel location. T2 values are based upon all principal components but 

it can be restricted to a few Principal Components which contribute most to the 

video file without any loss of information. 
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CHAPTER 7                                                                                             

RESULTS 

 
 
In this Chapter, we present the results obtained from temporal and spatial 

statistical analysis of high frame rate videos. At first the videos are analyzed 

without removing frames that represent “laser off condition”. That means that there 

are certain frames with no laser scanning was performed and as a result the mean 

gray levels were very low during laser off condition. Later, the frames with laser off 

conditions have been identified and removed from the videos so that the entire 

video represents laser scanning and processing during the L-PBF process. 

 

7.1 Temporal Principal Component Analysis  

 

The first set of results are for Video #1 that consisted of 2232 frames and 0.2232 

seconds in length (10000 fps, 512 pixels x 128 pixels resolution, with no zoom). 
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Figure 20: The run sequence plot obtained from temporal PCA. 

 

Figure 21: The run sequence plot obtained from temporal PCA. 
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The temporal PCA graph for two cases were performed for video #1. 

1. When frames having laser off condition were include (Fig 20) 

2. When frames having laser off conation were not included (Fig 21) 

The mean gray level values in case 1 were going as low as 0.1 where as in case 

2 it was going till 0.12. This states the fact that by removing the frames with laser 

off condition the data was cleaned and accurate results can be obtained from 

further analysis.  

 

 

Figure 22: The run sequence plot obtained from temporal PCA for Type-I and 
Type-II tracks. 
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After segregating frames from the original video into different tracks and 

performing the Temporal analysis, the mean gray values for Type-I tracks started 

from a higher value and got reduced to a lower value as the laser moved, whereas 

the mean gray level values for Type-II tracks started from a lower value and 

increased later. This supports the fact that Type-I tracks were still within the heat-

affected zone of the previous hatch scanning and Type-II tracks were no longer 

affected by the heat from laser scanning of the previous track or hatch during the 

process as stated by Criales et al. 2017. 

 

 

Figure 23: Statistical analysis of Type-I tracks. 
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Figure 24: Statistical analysis of Type-II tracks. 

 

Fig 23 and Fig 24 were results obtained after performing a statistical analysis of 

Type-I and Type-II tracks which includes calculation of mean and standard 

deviation of the mean gray level values as the laser processes each track. It can 

be inferred from these statistical graphs that the process goes out of control for the 

range between µ+σ and µ-σ whereas it remains within the limit for a range between 

µ+2σ and µ-2σ. These results can be used for setting up control limits as an in-situ 

process monitoring technique which can in turn be used to identify defects and 

minimize them by altering the process parameters to obtain high quality products. 

 

The results were also obtained for Video #2 and #4 to support this theory as shown 

in below figures. 
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The second set of results are for Video #2 that consisted of 2408 frames and 

0.1003 seconds in length (24000 fps, 512 pixels x 128 pixels resolution, with no 

zoom). The temporal analysis results for Video #2 are given in Figs. 25-27. 

 

  

Figure 25: The run sequence plot obtained from temporal PCA. 
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Figure 26: The run sequence plot obtained from temporal PCA. 

 

Figure 27: The run sequence plot obtained from temporal PCA for Type-I and 
Type-II tracks. 
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Figure 28: Statistical analysis of Type-I tracks. 

 

 

Figure 29: Statistical analysis of Type-II tracks. 
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The third set of results are for Video #4 that consisted of 49869 frames and 2.0779 

seconds in length (24000 fps, 512 pixels x 128 pixels resolution, with X1 zoom). 

The results of temporal analysis for Video #4 are given in Figs. 30-32. 

 

Figure 30: The run sequence plot obtained from temporal PCA. 

 

Figure 31: The run sequence plot obtained from temporal PCA. 
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Figure 32: The run sequence plot obtained from temporal PCA for Type-I and 
Type-II tracks. 

 

Figure 33: Statistical analysis of Type-I tracks. 
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Figure 34: Statistical analysis of Type-II track. 

 

7.2 Meltpool Area Analysis 

 

 

In this section, we present results from meltpool area analysis. The pixels with 

values exceeding the specified threshold value are counted to represent the 

meltpool area that also includes spattered pixels. These graphs are presented as 

number of pixels versus frames (in other words versus the time).  

 

The first set of results are for Video #1 that consisted of 2232 frames and 0.2232 

seconds in length (10000 fps, 512 pixels x 128 pixels resolution, with no zoom). 
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Case 1: When frames where laser was off during the process have been included 

Case 2: When frames where laser was off during the process were not included 

 

 

Figure 35: Comparison of Case 1 when RGB images were converted to gray 
images and BW images. 
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Figure 36: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 3. 

 

 

Figure 37: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 5. 
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Figure 38: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 7. 

 

 

Figure 39: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 9. 
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Figure 40: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 2. 

 

 

Figure 41: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 4. 
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Figure 42: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 6. 

 

 

Figure 43: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 8. 

 
 



59 
 

 

The second set of results are for Video #2 that consisted of 2408 frames and 

0.1003 seconds in length (24000 fps, 512 pixels x 128 pixels resolution, with no 

zoom). 

 

Figure 44: Statistical analysis of Meltpool area in terms of # of pixels when 
frames having laser off time included. 

 

 

Figure 45: Statistical analysis of Meltpool area in terms of # of pixels when 
frames having laser off time not included. 
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Figure 46: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 3. 

 

 

Figure 47: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 5. 
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Figure 48: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 7. 

 

 

Figure 49: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 2. 
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Figure 50: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 4. 

 

 

Figure 51: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 6. 
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The third set of results are for Video #4 that consisted of 49869 frames and 2.0779 

seconds in length (24000 fps, 512 pixels x 128 pixels resolution, with X1 zoom). 

 

Figure 52: Statistical analysis of Meltpool area in terms of # of pixels when 
frames having laser off time included. 

 

 

Figure 53: Statistical analysis of Meltpool area in terms of # of pixels when 
frames having laser off time not included. 



64 
 

 

 

Figure 54: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 3. 

 

 

Figure 55: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 5. 
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Figure 56: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 7. 

 

 

Figure 57: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 9. 
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Figure 58: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 11. 

 

 

Figure 59: Statistical analysis of Meltpool area in terms of # of pixels of Type-I 
Track 13. 



67 
 

 

 

Figure 60: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 2. 

 

 

Figure 61: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 4. 
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Figure 62: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 6. 

 

 

Figure 63: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 8. 
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Figure 64: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 10. 

 

 

Figure 65: Statistical analysis of Meltpool area in terms of # of pixels of Type-II 
Track 12. 
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7.3 Spatial Principal Component Analysis  

 

The results of Spatial principal component analysis show that the T2 descriptor can 

be represented in the similar domain of image stream i.e. T2 (X, Y), where X and 

Y denote the pixel location of the individual image.  The spatial distribution is 

performed as VPCA (Vectorized PCA) is applied to the entire image stream of the 

video files. In our study we considered all principal components contributing to the 

video to restrict any loss of information but as an alternative it can be limited to 

only few principal components which contribute most to the video file.  

 

 

 

Figure 66: The plot of T2 values against the pixel location obtained from Video#1. 
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According to Grasso et al. (2017) higher T2 statistic value represents over melting 

phenomenon happening during the L-PBF process. The magnitude of T2 statistic 

for Type-I tracks (Fig 67) ranges from 0 to 2.5 whereas for Type-II tracks (Fig 68) 

it ranges from 0 to 2, which states the fact that over-melting occurs more frequently 

while processing of Type-I tracks compared to Type-II tracks. Such high values 

are usually occurring since pixel in these areas are characterized by an intensity 

profile that is mainly different from the underlying pattern that describes the image 

stream. The knowledge of spatial localization of these spikes is important from an 

in-situ perspective, because they can provide information about local anomalies 

that may result to defects happening in products. In Fig 66 it can be noticed that 

there are more than one spikes getting formed as the laser moves on from one 

track to another. These different types of spikes formed during the spatial 

distribution of T2 (X, Y) can be categorized into 1. Primary spikes and 2. Secondary 

spikes. Occurrence of more number of secondary spikes along with the primary 

spikes represents spatter phenomenon happening during the processing. In Fig 

67, Type-I tracks show higher number of secondary spikes formed in the spatial 

distribution of T2 (X, Y) compared to Type-II tracks in Fig 68. This states the fact 

that spattering defects are more consistent during processing of Type-I tracks 

rather than Type-II tracks. 
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Figure 67: The plot of T2 values against the pixel location obtained from Type-I 
meltpool for Video #1. 

 

 

Figure 68: The plot of T2 values against the pixel location obtained from Type-II 
meltpool for Video #1. 
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Figure 69: The plot of T2 values against the pixel location obtained from Video 
#2. 

 

The results for video #2 follows the same trend as of video #1. Since this video 

was captured at a higher frame rate per seconds therefore it helps in gathering 

more data about the in-situ process of laser moving from one track to another. The 

spatial distribution of T2 (X, Y) in this case gives more detailed 3-D representation 

of data. The magnitude of T2 statistic for Type-I tracks in Fig 70 ranges from 0 to 

6 and in some cases, e.g. track 8 it goes till 8 also whereas for Type-II tracks Fig 

71 it ranges from 0 to 5, which states the fact that over-melting occurs more 

frequently while processing of Type-I tracks compared to Type-II tracks. 
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Figure 70: The plot of T2 values against the pixel location obtained from Type-I 
meltpool for Video #2. 

 

Figure 71: The plot of T2 values against the pixel location obtained from Type-II 
meltpool for Video #2. 
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Figure 72: The plot of T2 values against the pixel location obtained from Video 

#4. 
 

Video #4 was captured at a zoom condition (X1) and results obtained from its 

spatial analysis were quite resourceful to identify over melting and spattering 

phenomenon occurring during the process. The magnitude of T2 statistic for Type-

I tracks Fig 73 ranges from 0 to 4 and in some cases, e.g. track 11 it goes till 5 

also whereas for Type-II tracks Fig 74 it ranges from 0 to 3, which states the fact 

that over-melting occurs more frequently while processing of Type-I tracks 

compared to Type-II tracks. The number of secondary spikes formed (which are 

an indicator of spattering phenomenon) are more in Type-I tracks rather than Type-

II. The spatial distribution of T2 (X, Y) also states that a higher rate of Frames Per 

Second and a zoom condition gives more detailed 3-D representation of the 

process. 
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Figure 73: The plot of T2 values against the pixel location obtained from Type-I 
meltpool for Video #4. 
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Figure 74: The plot of T2 values against the pixel location obtained from Type-II 
meltpool for Video #4. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE SCOPE 

8.1 Conclusion 

  

Metal additive manufacturing using L-PBF process and its application fields are 

tremendously increasing nowadays, and to fulfil its true potential knowledge about 

process parameters and process signatures and their effects on product quality 

needs to be researched and studied in detail. Otherwise defects may carry on from 

initial layers to subsequent affecting the overall quality of the product. The aim and 

purpose of this study is to capture in-situ videos using a high frame rate camera 

and to study them to improve process control capability. This study is based upon 

initial experimental investigation proposed by Criales et al. (2017) in which test 

coupons were manufactured at National Institute for Standards & Technology 

(NIST) facility located in Gaithersburg, Maryland, USA.  

This thesis presents a method for in-situ monitoring of L-PBF process via using 

image and video analysis with help of statistical monitoring tools which allows both 

detection and spatial localization of meltpool and spatter occurring during the 

process. Also, it includes the study of change in mean gray scale values against 

time i.e. frames to give an overview of regions categorized on this basis of melting 

zones.  
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The results obtained from this study proves that the method is more than suitable 

in developing a self-learning assistance system which can help in detecting spatter 

as the product is being made layer by layer. Also, the robustness of PCA 

methodology used in this study can be easily verified by associating it with a 

statistical descriptor called Hotelling’s T2 distance which gives a spatial mapping 

against the pixel location using principal components which contribute most 

towards the video file and restricting loss of the information too. 

 

8.2 Future Scope 

 

Additional development and research work in future can be directed in field of use 

of machine learning techniques to run algorithms of spatial mapping automatically 

as the product is being additively fabricated. It can be equipped with spatial 

clustering alarm rule which detects defect such as high amount of spatter and over 

melting phenomenon occurring during the process and alerting the user to 

reconfigure and change process parameters of the machine to get product without 

any defects. This technique will also solve the quality related problems which 

cannot be addressed once the product is completed such as surface finish, relative 

part density etc. Another important area where research can be conducted is big 

data stream management to study large video files with higher resolution at a time 

rather than splitting it smaller files. This way we can easily study all layers being 

made during L-PBF process at once without any loss of information. In addition to 
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this, research work can be done to study meltpools and their types which are being 

generated during over melting, normal melting and under melting phenomenon. 

Meltpool measurements can be obtained using filtering and denoising techniques 

incorporated with studies done by Criales et al. (2017) and others. 
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APPENDIX 

 

Properties Image Status 

Video Number: 1. Avi 
File Size: 2.196 GB 
Frame rate(FPS): 
10000 
Resolution: 512 
pixels X 128 pixels 
Integration time: 
1/10,000 s 
Number of Frames: 
2232 
Duration: 0.2231s 
Total Frames/Total 
time: 98304 FR 

 

Unprocessed 

RGB Image 

with inbuilt 

text 

 

Unprocessed 

RGB Image 

without inbuilt 

text 

 

Processed 

Gray Image 
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Processed 

BW Image 

 

Processed 

Image of 

Type I track 

 

Processed 

Image of 

Type II track 
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Video Number: 2. Avi 

File Size: 2.32 GB 

Frame rate(FPS): 

24000 

Resolution: 512 

pixels X 128 pixels 

Integration time: 

1/10,000 s 

Number of Frames: 

2408 

Duration: 0.1000292 

Total Frames/Total 

time: 98304 FR 

 

Unprocessed 

RGB Image 

with inbuilt 

text 

 

Unprocessed 

RGB Image 

without inbuilt 

text 

 

Processed 

Gray Image 
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Processed 

BW Image 

 

Processed 

Image of 

Type I track 

 

Processed 

Image of 

Type II track 
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Video Number: 4. Avi 

File Size: 3.19 GB 

Frame rate(FPS): 

24000 

Resolution: 512 

pixels X 128 pixels 

Integration time: 

1/24,000 s 

Number of Frames: 

49869 

Duration: 2.077833s 

Total Frames/Total 

time: 98304 FR 

Zoom: X1 

 

Unprocessed 

RGB Image 

with inbuilt 

text 

 

Unprocessed 
RGB Image 
without inbuilt 
text 

 

Processed 

Gray Image 
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Processed 

BW Image 

 

Processed 

Image of 

Type I track 

 

Processed 

Image of 

Type II track 
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