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Uncertain objects arise in many applications such as sensor networks, moving object 

databases and medical and biological databases where each feature is represented by 

multiple observations or a given or fitted probability density function (PDF). In this 

dissertation we present a methodology to classify uncertain objects based on a probabilistic 

distance measure between an uncertain object and a group of uncertain objects. We call 

this newly proposed measure object-to-group probabilistic distance measure, OGPDM, 

noting that dozens of probabilistic distance measures (PDM) for the distance between two 

pdfs exist in the literature. To assess the accuracy of the OGPDM, we compare it to some 

existing classifiers, i.e., K-Nearest Neighbor (KNN) classifier on object means (certain 
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KNN) and uncertain naïve Bayesian classifier. In addition we compare OGPDM to an 

uncertain K-Nearest Neighbor (KNN) classifier, which we propose here, that uses existing 

PDMs to measure object-to-object distances and then classifies using KNN. We illustrate 

the advantages of the proposed OGPDM classifier with both simulated and real data. 

OGPDM captures the correlation among features within a class. Also, it takes into account 

the correlation among features within objects which is not taken into account in most of 

other uncertain data classification approaches.  

Because of existing levels of uncertainty for uncertain data objects, the scatter of this 

type of objects might be very different than the scatter of certain data objects. Measures of 

scatter for uncertain objects have not been defined before. Here in this dissertation, we 

define measures of scatter such as covariance matrix, within scatter matrix, and between 

scatter matrix, for uncertain data objects. Also, we extend the idea of Fisher Linear 

Discriminant Analysis (LDA) for uncertain objects. We also develop Kernel Fisher 

Discriminant for uncertain objects. The developed Uncertain Fisher LDA produces linear 

decision boundaries for separating classes of uncertain data objects while the developed 

Uncertain Kernel Fisher Discriminants produce nonlinear decision boundaries. The 

developed Uncertain Kernel Fisher Discriminants are for two cases: when the uncertain 

objects are given with PDF, and when the uncertain objects are given with multiple points. 

We show through examples that the obtained decision boundaries from our developed 

uncertain Fisher Discriminants seem very reasonable for separating classes of uncertain 

objects. Also, we compare the classification performance with many existing classifiers on 

simulated scenarios with uncertain objects modeled with skew-normal distribution and a 

real-world data set. 
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To evaluate the quality of formed clusters and determine the correct number of clusters, 

clustering validity indices can be used. They can be applied on the results of clustering 

algorithms to validate the performance of those algorithms. In this dissertation, two 

clustering validity indices named uncertain Silhouette and Order Statistic, are developed 

for uncertain data. To the best of our knowledge, there is not any clustering validity index 

in the literature that is designed for uncertain objects and can be used for validating the 

performance of uncertain clustering algorithms. Our proposed validity indices use 

probabilistic distance measures to capture the distance between uncertain objects. They 

outperform existing validity indices for certain data in validating clusters of uncertain data 

objects and are robust to outliers. The Order Statistic index, in particular, a general form of 

uncertain Dunn validity index (also developed here), is well capable of handling instances 

where there is a single cluster that is relatively scattered (not compact) compared to other 

clusters, or there are two clusters that are close (not well-separated) compared to other 

clusters. The aforementioned instances can potentially result in the failure of existing 

clustering validity indices in detecting the correct number of clusters. 
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 Introduction 

 

1.1  Overview 

In traditional data mining problems with numerical features, each object is associated 

with several features and each feature is a single point value. These problems are referred 

to as certain data mining problems. In many practical cases, though, features of each object 

are represented by multiple observations thus taking into account the probabilistic or 

uncertain nature of the features. These problems are referred to as uncertain data mining 

problems. Some common applications where the features of each object are represented by 

multiple observations are sensor networks, moving object databases and medical and 

biological databases (Qin et al., 2009a). 

The simplest way of dealing with uncertain objects is to consider only one single 

statistic such as mean or median for each data object. This is equivalent to applying 

traditional so-called certain data mining algorithms. However, this results in discarding 

valuable information about each data object that can be crucial to the final outcome. 

Uncertain data mining algorithms deal with this type of data objects by taking into account 

a level of uncertainty for each object. That makes the solutions of these algorithms more 

accurate than the solutions of certain data mining algorithms.  

When features of each object consist of many points, we can capture the uncertainty by 

fitting a probability density function (PDF) to the multiple points. The PDF approach has 

the advantage of capturing the main characteristics of each object through a few parameters 

rather than taking into account every single observation within the object.  
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There has been a lot of interest in developing uncertain data mining techniques in recent 

years. A good review of published works in four main categories of uncertain data mining 

problems: classification, clustering, outlier detection and frequent pattern mining, is 

provided in (Aggarwal and Philip, 2009) and (Liu, 2012). Some examples of the numerous 

publications in uncertain data mining are: a K-means algorithm and a density-based 

algorithm for clustering developed in (Chau et al., 2006),(Kriegel and Pfeifle, 2005), a 

support vector data description (SVDD) algorithm for outlier detection proposed in (Liu et 

al., 2013), and a frequent pattern mining algorithm developed in (Aggarwal et al., 2009). 

For classification; see (Lee et al., 2014), a support vector classifier considering 

uncertainty for the features as a certain level of noise is developed in (Bi and Zhang, 2005). 

Decision tree algorithms handling uncertainty in form of PDF are developed in (Qin et al., 

2009a) and (Tsang et al., 2011). Naïve Bayesian classifiers for uncertain data are proposed 

in (Ren et al., 2009) and (B. Qin et al., 2010), while a rule-based classifier is proposed in 

(Qin et al., 2009b). An associative classifier for uncertain data and a neural network for 

uncertain data classification are developed in (X. Qin et al., 2010) and (Ge et al., 2010) 

respectively. A credal classification rule based on the belief functions has been developed 

in (Liu et al., 2014). 

Despite the importance of classification, not enough classification algorithms have 

been developed. In this dissertation, we present new methodologies for uncertain data 

classification. At first we develop an uncertain K-nearest neighbor (UKNN) classifier that 

uses existing Probabilistic Distance Measures (PDM) to measure the distance between 

objects. Secondly, we propose a new probabilistic distance measure for measuring the 

distance between an object and a group of uncertain objects. We call this new distance 
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measure OGPDM as it stands for object-to-group probabilistic distance measure. A weight 

optimization framework to utilize OGPDM for uncertain data classification is also 

proposed. Moreover, we introduce definitions for covariance matrix, within, and between 

scatter matrices for uncertain data objects and use them to extend the Fisher Discriminant 

Analysis for uncertain data objects. 

Clustering validity indices are the main tools for evaluating the quality of formed 

clusters and determining the correct number of clusters. They can be applied on the results 

of clustering algorithms to validate the performance of those algorithms. In this 

dissertation, two clustering validity indices named uncertain Silhouette and Order Statistic, 

are developed for uncertain data. To the best of our knowledge, there is not any clustering 

validity index in the literature that is designed for uncertain objects and can be used for 

validating the performance of uncertain clustering algorithms. Our proposed validity 

indices use probabilistic distance measures to capture the distance between uncertain 

objects. They outperform existing validity indices for certain data in validating clusters of 

uncertain data objects and are robust to outliers. The Order Statistic index in particular, a 

general form of uncertain Dunn validity index (also developed here), is well capable of 

handling instances where there is a single cluster that is relatively scattered (not compact) 

compared to other clusters, or there are two clusters that are close (not well-separated) 

compared to other clusters. The aforementioned instances can potentially result in the 

failure of existing clustering validity indices in detecting the correct number of clusters. 

1.2 Dissertation outline 

This dissertation is organized as follows. Chapter 2 proposes a terminology for 

modeling uncertain data mining problems. This chapter includes the terminology for 
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modeling uncertain objects and also uncertain classes, given PDFs. Chapter 3 presents 

distance-based classifiers for uncertain data objects which includes the proposed uncertain 

K-nearest neighbor (UKNN) classifier along with the developed object-to-group 

probabilistic distance measure and also the framework for using the developed distance 

measure for classification of uncertain data objects. In Chapter 4, measures of scatter and 

Fisher Discriminant Analysis for uncertain data objects are presented. Chapter 5 presents 

two developed clustering validity indices for uncertain data objects. Chapter 6 includes the 

concluding remarks. 
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 Modeling uncertain data objects 
 

This chapter presents notation to describe uncertain objects as well as uncertain classes 

(groups), i.e., classes (groups) that are composed of uncertain objects. Concepts of 

variance, covariance, and correlation, for uncertain data objects are also explained. 

2.1. Modeling uncertain objects  

Uncertain objects may be given in two forms: 1) with multiple points 2) with a probability 

density function (PDF). Consider K classes of uncertain objects with nk objects in class k,

k = 1… , K. We can denote uncertain object i in class k  by 𝐎𝐢
𝐤. If uncertain data objects 

are given with multiple points, 𝐎𝐢
𝐤 denotes a set of points. 

If uncertain data objects are given with PDF, it can be written: 

𝐎𝐢
𝐤 ~gi,k(𝐱|θi,k) i = 1,2, … , nk   and k = 1… , K, (2.1) 

where gi,k and θi,k denote the PDF, and the set of parameters of the PDF for object i in 

class k.  

If we assume multivariate normal distributions, objects can be represented with: 

𝐎𝐢
𝐤 ~MVN(𝐱|𝛍𝐢

𝐤, Σi
k), i = 1,2, … , nk   and k = 1… , K, (2.2) 

where 𝛍𝐢
𝐤 is the object-mean vector and Σi

k is the object-covariance matrix of object i in 

group k. 

Given a new uncertain object, it can also be represented by a PDF: g(x|θnew) where 

θnew is the set of parameters of the PDF. If we assume multivariate normal distribution for 

the new object, we would have: 

𝐎𝐧𝐞𝐰~MVN(𝐱|𝛍𝐧𝐞𝐰, Σnew), (2.3) 
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where 𝛍𝐧𝐞𝐰 and Σnew are the object-mean vector and object-covariance matrix of the new 

object. 

Figure 2.1 is a two-dimensional representation of data depicting 5 blue solid line 

objects, all from class 1, and one red dashed line new object. The figure assumes each 

object has a bivariate normal distribution. The dot in the center of each object shows its 

mean vector, denoted by 𝛍𝐢
𝐤 ,  i = 1, … ,5 , k = 1 for the class, and 𝛍𝐧𝐞𝐰 for the new object. 

The ellipse around the dot shows the contour of the bivariate PDF that has all equal 

probability of 0.05. The ellipses for the objects in the class are angled to the right indicating 

that there is a positive correlation between the two features for each object. Similarly, the 

ellipse for the new object is also angled to the right. The covariance matrices for the class 

and new objects are labeled Σi
k, i = 1, … ,5 , k = 1 and Σnew respectively. These covariance 

matrices capture object-correlation. 

 

Figure 2.1   A new uncertain object vs class 1 of uncertain objects 

 

 

𝛍 1 
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2.2. Modeling uncertain classes  

We now introduce the concept of characterizing a class in uncertain data mining. Consider 

the object-mean vectors in the class. These object-mean vectors can be represented by a 

PDF: hk(x|θk) where θi,k denotes the set of parameters. If we assume multivariate normal 

distribution for object-mean vectors in class k, we will have: 

hk(x|θk) = MVN(𝐱|𝛍k, Σk), (2.4) 

where 𝛍k is the class-mean vector for  class k and can be estimated by: 

𝛍 k =
∑ 𝛍𝐢

𝐤 
nk
i=1

nk
, (2.5) 

and Σk is the class-covariance matrix for class k can be estimated by: 

Σ̂k =
∑ (𝛍𝐢

𝐤  − 𝛍 k)(𝛍𝐢
𝐤  − 𝛍 k)t 

nk
i=1

nk − 1
. (2.6) 

In uncertain data mining problems, there are two types of variance, covariance and 

correlation. One is the variance for each feature in a class of objects which is called class-

variance, covariance among features in a class of objects which is called class-covariance, 

and correlation among features in a class of objects which is called class-correlation. Class-

variance, class-covariance and class-correlation can be estimated from object means. This 

is the type of variance, covariance and correlation that exists in certain data mining 

problems as well. There is another type of variance, covariance and correlation too which 

is unique to the uncertain data problems. That is the variance for each feature within an 

object, covariance among features within an object and correlation among features within 

an object. We call this kind of variance, covariance and correlation: object-variance, object-

covariance and object-correlation respectively. To our best knowledge, the correlation 
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among features within objects is not taken into account in most of other uncertain data 

classification approaches.  

Figure 2.2 shows two classes, a red solid line class and a green dashed line class. Each 

consists of five objects with bivariate normal distributions. The “X” in the center of each 

class indicates the location of class-mean vector estimate as described in (2.5). 

On inspection, it is clear that the red solid line object variances are smaller than the 

green dashed line object variances; i.e., using the notation in (2.1)  the diagonal terms for 

𝚺𝐢
𝟏, 𝐢 = 𝟏,… , 𝐧𝟏 are smaller than the diagonal terms for 𝚺𝐢

𝟐, 𝐢 = 𝟏,… , 𝐧𝟐. We can also see 

that the features of objects in the red solid line class are uncorrelated (the ellipses are 

straight) while the features in the green dashed line class are negatively correlated (ellipses 

tilt to the left). In other words, there is no object-correlation for the red class while there is 

negative object-correlation for the green class. 

 

Figure 2.2   Two uncertain data classes with uncertain objects 

 

 

𝛍 𝟏 
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2 

𝛍𝟐
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𝟐 
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Σ4
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2 
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Further, we can observe another important difference between the red and green 

classes.  Consider now the object mean vectors only. The red object mean vectors are much 

more spread out than the green. Denoting the covariance matrix of the object mean vectors 

in class 1 and class 2 by Σ1 and Σ2, Figure 2.2 shows that the diagonal terms for Σ1  are 

larger in contrast to the smaller diagonal terms for Σ2. Further, Figure 2.2 shows that the 

off-diagonal terms for Σ1  are positive  in contrast to the negative off-diagonal terms for 

Σ2. 

Finally to better understand the definitions of object, class in uncertain data mining 

problems, consider a generic batch process where the goal is to classify each batch into 2 

categories, either conforming or non-conforming to the product specifications (Anzanello 

et al., 2009, 2012; Xu and Albin, 2006; Zhang et al., 2010; Zhang and Albin, 2007). 

Suppose it takes say 20 hours for a batch to run and that samples are taken every five 

minutes by sensors. Thus each feature of the batch is characterized by 240 measurements 

corresponding to the multiple samples. 

One way to deal with this data is to convert it into a certain data mining problem by 

averaging the samples over each batch (average the 240 measurements) in the training set. 

Using these averages we can compute the batch-to-batch variances and correlations for 

each class; i.e., class-variances and class-correlations. However, this approach discards 

important data. For example, we could not identify a non-conforming batch that is 

characterized by high variability in the features over its run time or unusual correlations or 

autocorrelation between features over the batch run.  



 10 

 

 

 

If instead of using averages we fit the training data for each batch to a joint PDF, say 

multivariate Normal, we can retrieve the important information such as object-variance and 

object-correlation that were missing in the averaging approach.  
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 Probabilistic distance-based 

classifiers for uncertain data objects 
 

In this chapter, we use the concept of probabilistic distance measures (PDM) (Basseville, 

1989; Cha, 2007) to develop new uncertain classification algorithms. Probabilistic distance 

measures are used to measure the distance between two PDFs. They have applications in 

many fields such as signal processing and communication (Basseville, 1989; Rauber et al., 

2008; Zhou and Chellappa, 2004). 

This chapter has a few contributions: at first we develop an uncertain K-nearest 

neighbor (UKNN) classifier that uses existing PDMs to measure the distance between 

objects. We call this type of distances object-to-object distances as well. UKNN classifies 

a new object in the same class as the majority of its K closest objects from the training set. 

This approach results in improvement compared to uncertain naïve Bayesian (UNB) (B. 

Qin et al., 2010; Ren et al., 2009), as it captures the object-correlation and class-correlation 

to some extent. In naïve Bayesian classifiers for uncertain data, not only object-correlation 

is ignored but class-correlation is not taken into account either. Although a possible 

approach to overcome this issue is to develop Bayesian classifiers (Devijver and Kittler, 

1982; Duda et al., 1973); the complexity of estimating the class-conditional joint PDF with 

multivariate kernel density estimation method makes that approach more complicated. 

Also, the complexity increases as the dimension gets higher.  

The main contribution of the chapter is a new probabilistic distance measure for 

measuring the distance between an object and a group of uncertain objects. We call our 

distance measure OGPDM as it stands for object-to-group probabilistic distance measure. 
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We also propose a weight optimization framework to utilize OGPDM for uncertain data 

classification.  

This proposed approach uses the assumption that the given PDFs describing each object 

are multivariate Normal. Normal distribution is the favorite in modeling uncertain data 

with PDF because of its wide range of properties. The concept of the proposed approach is 

based on classifying the objects to their closest class. One simple possible approach would 

be to obtain the distance of the object to the center of each class and then classify the object 

to the class with smaller distance. However, this would not capture any type of variance, 

class-correlation or object-correlation. Our OGPDM approach is successful in capturing 

class-correlation and object-correlation even to more extent compared to the proposed 

uncertain KNN classifier. We will show through various experiments that the OGPDM 

approach classifies more accurately than the naïve Bayesian classifier, the uncertain KNN 

classifier, and the certain KNN classifier. The certain classifier here is a KNN classifier 

that only uses the PDF mean for each object rather than the whole PDF.  

Another contribution of our work is to propose a method for simulating uncertain data. 

Most of the existing work in uncertain data classification is validated through using UCI 

Machine Learning Repository data sets (Lichman, 2013). UCI repository data sets are real 

data sets that contain certain data and include various types of data for different data mining 

applications. The common approach employed by most of the papers is to make UCI 

repository data uncertain by adding uncertainty to the original data (Ren et al., 2009; Tsang 

et al., 2011). This might not be the best validation method since the class labels are already 

set based on certain data and since we should regard uncertainty as a characteristic for each 

class, adding random uncertainty levels might change the nature of the original data. Our 
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proposed method does not face this issue and can be used to design various types of 

experimental scenarios. To have a more complete validation of our proposed approaches, 

we conduct experiments with the UCI repository data as well.  

3.1 Probabilistic distance measures 

Probabilistic distances are the distance measures that are defined to capture the distance 

between two probability density functions. PDMs have many applications in statistics, 

pattern recognition, communication theory and many other areas (Cover and Thomas, 

2012; Csiszár, 1967; Zhou and Chellappa, 2004). In statistics they are mainly used in 

asymptotic analysis. In pattern recognition probabilistic distance measures such as 

Chernoff (Chernoff, 1952), Bhattacharyya (Bhattacharyya, 1946), and Lissack-Fu (Lissack 

and Fu, 1976) are often used to provide a bound on Bayes classification error (Devijver 

and Kittler, 1982). In communication theory Bhattacharyya distance and KL divergence 

are used for signal selection. A very good classification of probabilistic distance measures 

is provided in (Basseville, 1989). The main classes of probabilistic distance measures are 

introduced as f-divergence family, �̅� distance, Jensen difference, contrast type measures 

and spectral distance measures.  

Table 3.1   Definition of various probabilistic distance measures 

Probabilistic distance 

measure  
Definition 

Variational distance 
1

2
∫
𝑥
|𝑝1(𝑥) − 𝑝2(𝑥)|𝑑𝑥 

Chernoff distance −log {∫
𝑥
𝑝1
𝑠(𝑥)𝑝2

1−𝑠(𝑥)𝑑𝑥} 

Bhattacharyya distance −log {∫
𝑥
𝑝1

1
2(𝑥)𝑝2

1
2(𝑥)𝑑𝑥} 

Generalized Matusita 

distance 
[∫

𝑥
|𝑝1(𝑥)

1
𝑟⁄ − 𝑝2(𝑥)

1
𝑟⁄ |
𝑟

𝑑𝑥]
1
𝑟⁄  

Hellinger distance 

(Jeffrey-Matusita) [∫
𝑥
|𝑝1(𝑥)

1
2⁄ − 𝑝2(𝑥)

1
2⁄ |
2

𝑑𝑥]
1
2⁄  
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Symmetric KL distance ∫
𝑥
[𝑝2(𝑥) − 𝑝1(𝑥)]log (

𝑝2(𝑥)

𝑝1(𝑥)
)𝑑𝑥 

 

Each of the introduced classes of probabilistic distance measures has properties that are 

useful depending on the application but in this paper we only focus on the f-divergence 

family class. The reason is that many of the f-divergence family PDMs have analytical 

solutions for certain probability distributions. Table 3.1 provides the definition of a few 

popular probabilistic distance measures which come from the f-divergence family. For 

Chernoff, 0 ≤ 𝑠 ≤ 1 and can be chosen arbitrarily or depending on the application through 

optimization. Bhattacharyya is a special case of Chernoff where 𝑠 = 0.5. For Generalized 

Matusita (Matusita, 1955), 𝑟 ≥ 1. The special case of Generalized Matusita, Helinger, is 

obtained when 𝑟 = 2.  

In (3.1), the analytical solutions for Bhattacharyya distance which is one of the f-

divergence family PDMs when the two PDFs are multivariate Normal, is shown. 

𝑑𝐵 =
1

4
(𝛍𝟐 − 𝛍𝟏)′(∑1 + ∑2)

−1(𝛍𝟐 − 𝛍𝟏) +
1

2
log(

|∑1 + ∑2|

2(|∑1|. |∑2|)
1
2

) (3.1) 

Here 𝛍𝟏, 𝛍𝟐, ∑1, ∑2 are the parameters of the two multivariate Normal PDFs. 

3.2 Uncertain KNN classifier with object-to-object probabilistic distance  

In this section we propose our first approach which is based on obtaining the object-to-

object probabilistic distance for classification. The approach consists of applying K-nearest 

neighbor (KNN) classifier using existing probabilistic distance measures. Given the 

training and test sets, for any single object from the test set (new object), UKNN finds the 

K closest objects from the training set and assigns the majority class label to the new object. 
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Since we deal with uncertain objects, in order to obtain the distance between objects, we 

propose use of probabilistic distance measures. We use K=1 nearest neighbor. 

As we model uncertain objects with multivariate Normal PDF, we can utilize the 

analytical solution of Bhattacharyya distance measure given in (3.1). As the analytical 

solution of (3.1) utilizes all elements of the object-covariance matrices, this approach 

should be able to capture the object-correlation and hence results in improved performance 

with respect to the naïve Bayesian classifier. 

3.3 Object-to-group probabilistic distance  

In this section we propose a new probabilistic distance measure for measuring the distance 

between an object and a group of objects and explain how we can utilize it for classifying 

uncertain objects. We call our distance measure OGPDM which stands for: Object-to-

Group Probabilistic Distance Measure. We use the term “Group” rather than “Class” since 

it implies applications broader than classification which the measure can be utilized for. 

Also in this section, we propose a method for determining the weight parameters of 

OGPDM when the goal is classification. 

3.3.1 OGPDM distance measure 

Given a new object and a group, say class k, our proposed OGPDM can be seen in (3.2): 

𝑑og (𝑛𝑒𝑤, 𝑘) = w1(𝛍𝐧𝐞𝐰 − 𝛍 𝐤)′(Σ̂k)−1(𝛍𝐧𝐞𝐰 − 𝛍 𝐤)+w2log (
|Σnew+Σ̅k |

2(|Σnew|.|Σ̅k |)
1
2

). (3.2) 

As it can be noted the measure consists of two components which are linked together 

through the weight parameters 𝐰𝟏 and 𝐰𝟐, where 𝐰𝟏 +𝐰𝟐 = 𝟏. 

The first component, given in (3.3) is: 
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𝑡𝑜𝑔
1 (𝑛𝑒𝑤, 𝑘) = (𝛍𝐧𝐞𝐰 − 𝛍 𝐤)′(Σ̂k)−1(𝛍𝐧𝐞𝐰 − 𝛍 𝐤). (3.3) 

As it can be seen from (3.3) the component takes into account the new object-mean vector, 

class-mean vector and class-covariance matrix. We can use the estimators introduced in 

(2.5) and (2.6) to obtain the estimates of 𝛍 𝐤 and Σ̂k. We can recall from those equations 

that the considered class-covariance matrix is based on object-mean vectors. The 

component returns smaller distance value as the distance between the new object-mean 

vector and the class-mean vector gets smaller. Also, the component returns smaller value 

as the diagonal elements of the class covariance matrix get bigger. The first component 

provides the advantage of taking into account the class-correlation explicitly which is 

missing in uncertain Naïve Bayesian and UKNN approach. The second component of the 

OGPDM is given in (3.4) 

𝑡𝑜𝑔
2 (𝑛𝑒𝑤, 𝑘) = log(

|Σnew + Σ̅k |

2(|Σnew|. |Σ̅k |)
1
2

) (3.4) 

Σ̅𝑘 is the average of covariance matrix of objects in class 𝑘 which is obtained as follows: 

Σ̅k =
∑ Σi

knk
i=1

nk
 (3.5) 

This component is inspired from the second component of the analytical solution of 

Bhattacharyya measure for multivariate Normal PDF as show in (3.1). The component 

returns smaller distance value, as the covariance matrix of the new object gets more similar 

to the average covariance matrix of the class. Higher difference in the covariance matrices 

results in returning higher distance value by the component. The component main 

advantage compared to the uncertain naïve Bayesian approach is to take into account the 

object-correlation.  
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Depending on the application, different ways of obtaining weights should be utilized. 

For classification, although choosing the weights arbitrarily is the simplest way; it may not 

result in the best possible classification. The optimal weights should be data-dependent. It 

means depending on the given data, if there is more difference between class-covariance 

matrices more weight should be assigned to the first component and if there is more 

difference between object-covariance matrices more weight should be assigned to the 

second component. We propose a method to find the weights in the next section. 

 

3.3.2 Determining OGPDM weights for classification  

In this section we demonstrate our proposed framework for determining the weights of 

OGPDM for uncertain data classification. We explain the framework for the two-class 

(K = 2) classification problem. The way it can be extended for higher values of K will be 

explained later in this section.  

The basic steps are 1) for each object in the training set, obtain the difference between 

the first terms of its object-to-group PDMs to class 1 and to class 2 using equations (3.3), 

and also obtain the difference between the second terms of its object-to-group PDMs to 

class 1 and to class 2 using equation (3.4). 2) standardize the obtained differences for 

simplicity and avoiding scale issues 3) use the obtained standardized differences for all of 

the objects in the training set and obtain the optimal weights which form the best hyper-

plane that separates the two classes.4) classify new objects or objects in the test set using 

the hyper-plane. 

Now, we explain the above steps in more details. Consider a training data set with two 

classes, k=1,2, and 𝑁 uncertain objects. As step 1, for each object i, compute the object-
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to-group PDM terms, 𝑡𝑜𝑔
1 (𝑖, 𝑘) and 𝑡𝑜𝑔

2 (𝑖, 𝑘),  in (3.3) and (3.4). Then, for each object i, 

compute the difference between the first terms 𝑑𝑜𝑔
1 (𝑖) as shown in (3.6)  

 

𝑑𝑜𝑔
1 (𝑖)  = 𝑡𝑜𝑔

1 (𝑖, 2)-𝑡𝑜𝑔
1 (𝑖, 1), (3.6) 

 

and the difference between the second terms 𝑑𝑜𝑔
2 (𝑖) as shown in (3.7).  

 

𝑑𝑜𝑔
2 (𝑖)  = 𝑡𝑜𝑔

2 (𝑖, 2)-𝑡𝑜𝑔
2 (𝑖, 1). (3.7) 

 

In step 2, for simplification and avoiding scale issues, we can convert the difference 

terms 𝑑𝑜𝑔
1 (𝑖)  and 𝑑𝑜𝑔

2 (𝑖) to the standardized difference terms 𝑧1𝑖 and 𝑧2𝑖  in (3.8).  

𝑧1𝑖 = (𝑑𝑜𝑔
1 (𝑖) −

∑ 𝑑𝑜𝑔
1 (𝑖)𝑁

𝑖=1

𝑁
)

√∑ (𝑑𝑜𝑔1 (𝑖) −
∑ 𝑑𝑜𝑔1 (𝑖)𝑁
𝑖=1

𝑁 )2𝑁
𝑖=1

𝑁 − 1
⁄  

𝑧2𝑖 = (𝑑𝑜𝑔
2 (𝑖) −

∑ 𝑑𝑜𝑔
2 (𝑖)𝑁

𝑖=1

𝑁
)

√∑ (𝑑𝑜𝑔2 (𝑖) −
∑ 𝑑𝑜𝑔2 (𝑖)𝑁
𝑖=1

𝑁 )2𝑁
𝑖=1

𝑁 − 1
⁄  

(3.8) 

 

In step 3, as mentioned before, the goal is to obtain the optimal weights that form the 

best hyper-plane that can separate the two classes based on the standardized difference 

terms. Denote the hyper-plane by 𝑤1𝑧1 + 𝑤2𝑧2 = 0. Note that the constant parameter of 

the hyper-plane is zero because we are using the standardized difference terms.  

We propose the use of the Kullback-Leilbler distance (Cha, 2007) to obtain the optimal 

weights 𝑤1 and 𝑤2. The Kullback-Leilbler distance can be used to determine the 

separability of the classes in terms of the standardized difference terms. The Kullback-
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Leibler distance of the two classes in terms of the standardized difference term  𝑧𝑗 , 𝑗 = 1,2 

can be denoted by: 

𝐾𝐿(𝑧𝑗 )  = ∫
𝑧𝑗
𝑝2(𝑧𝑗)𝑙𝑜𝑔 (

𝑝2(𝑧𝑗)

𝑝1(𝑧𝑗)
)𝑑𝑧𝑗 

𝑗 = 1,2 

(3.9) 

where 𝑝1(𝑧𝑗  ), 𝑗 = 1,2 is the pdf of the j-th standardized difference term for objects in 

class 1, and 𝑝2(𝑧𝑗), 𝑗 = 1,2 is the pdf of the j-th standardized difference term for objects 

in class 2. 

The weight for the standardized difference term 𝑧𝑗can be obtained after normalizing 

the Kullback-leibler distance as follows: 

𝑤𝑗 =
𝐾𝐿(𝑧𝑗) 

∑ 𝐾𝐿(𝑧𝑖)
2
𝑖=1

 

𝑗 = 1,2 

(3.10) 

It can be noticed from (3.10) that 𝑤1 + 𝑤2 = 1. After obtaining the optimal weights 𝑤1 

and 𝑤2,which form the best hyper-plane a new object can be classified in step 4. In this 

step, the classification rule is: if 𝑤1𝑧1𝑛𝑒𝑤 +𝑤2𝑧2𝑛𝑒𝑤 ≥ 0, the new object is classified to 

class 1. This is aligned with the fact that in this case the distance of the new object to class 

1 is smaller than its distance to class 2. Conversely, if 𝑤1𝑧1𝑛𝑒𝑤 + 𝑤2𝑧2𝑛𝑒𝑤 < 0 , the rule 

says classify into class 2 which matches with the fact that the new object distance to class 

2 is smaller than its distance to class 1. Having two sets of data, training and test, the 

optimal hyper-plane can be obtained from the training set and then be used for classifying 

the objects in the test set.  

This framework can be extended to the cases where 𝐾 is greater than 2. A common 

procedure to do so is "one class against the rest" where k hyperplanes are obtained that 
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each separates one class from the rest. The classification is performed by combining the 

results of the k classifiers. 

3.4 Experiments using simulated uncertain data 

We explain our proposed simulation method for creating uncertain objects and classes. In 

addition, using the proposed method, we give scenarios to compare the performance of our 

two proposed approaches with certain KNN and uncertain naïve Bayesian methods.  

3.4.1 Simulating uncertain data with multivariate Normal PDF 

We propose a new method to simulate uncertain data that can used to validate uncertain 

classification methods. We assume that both objects and classes have the multivariate 

Normal distribution as described in equations (2.1), (2.2), and (2.3). 

As we explained in the introduction section as well the common approach is to make 

the UCI repository data uncertain by adding levels of uncertainty. As we mentioned before, 

this might not be the best validation method since the class labels for the UCI data are 

already set based on certain data and randomly adding uncertainty might change the nature 

of the data. Our proposed method does not face this issue. It also enables us to design 

various types of experimental scenarios to mimic different situations of real data. Another 

advantage of our simulation method is that we can incorporate both object-correlation and 

class-correlation in creating uncertain data.  

We denote the parameters of the multivariate Normal PDF for object i with: 𝛍𝐢
𝐤, 

Σi
k; i = 1,… , nk. The random vectors depicting the object means for class k are generated 

from the multivariate Normal distribution with parameters 𝛍𝐤, Σk as shown in (3.11). 

𝐦𝐢
𝐤~MVN(𝛍𝐤, Σk), (3.11) 
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where 𝛍𝐢
𝐤 could be considered as a realization of the random vector 𝐦𝐢

𝐤. 

The class-covariance matrix Σk enables us to model classes where object-mean vectors 

within a class are correlated.  

Object-covariance matrices Σi
k;  i = 1,… , nk;  k = 1,… , K are generated using the 

Inverse Wishart distribution (O’Hagan et al., 2004). Inverse Wishart distribution is used 

extensively in the literature to simulate real-valued positive definite random matrices 

(Nydick, 2012). We can consider the object-covariance matrices Σi
k;  i = 1,… , nk;  k =

1, … , K as a realization of the random matrices Si
k;  i = 1,… , nk;  k = 1,… , K that are 

generated as follows: 

Si
k~W−1(Λk, dfk) ∗ (dfk − p − 1), i = 1,… , nk,      k = 1, … , K (3.12) 

where W−1(Λk, dfk) indicates the inverse Wishart distribution with the covariance 

matrix Λk; k = 1,… , K which is used as a base matrix for generating random covariance 

matrices in class k, and the degree of freedom parameter (df) which is used to define the 

level of deviation from the base matrix. Higher levels of df will result in generating less 

deviated covariance matrices while lower levels result in more variability.  

In the following subsection we compare the performance of our proposed approaches 

with two existing approaches. In the first approach the uncertain objects are modeled as 

certain objects by only using the mean vectors of multivariate Normal PDFs and KNN is 

used to classify. We choose K = 1 in our experiments but other values of K can also be 

tried. In the second approach the uncertain naïve Bayesian classifier proposed in (Ren et 

al., 2009) is used to classify. We will refer to these methods as “Certain KNN” and 

“Uncertain Naïve Bayesian Classifier,” respectively. 
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3.4.2 Review of the two existing classification methods: certain KNN and uncertain 

naïve Bayesian 

To classify uncertain objects using certain KNN, each uncertain object is represented by 

only the mean vector of object multivariate Normal PDF and then KNN with Euclidean 

distances is used to classify.  

Uncertain naïve Bayesian classifier, classifies the new object in the class with the 

highest posterior probability: argmax
𝑘

𝑃(𝐶𝑘|𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew)) , 𝑘 = 1,2, … , 𝐾, where 

𝑃(𝐶𝑘|𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew)) =
𝑃(𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew)|𝐶𝑘)𝑃(𝐶𝑘)

∑ 𝑃(𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew)|𝐶𝑘′)𝑃(𝐶𝑘′)𝑘′
, (3.13) 

and 𝑃(𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew)|𝐶𝑘) is the probability of observing the PDF of the new object 

𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew) given the event that the class is k. Further, 𝑃(𝐶𝑘) is the prior probability 

of 𝐶𝑘 (𝑘 = 1,2, … , 𝐾). In uncertain naïve Bayesian classifier (Ren et al., 2009) the features 

are assumed to be independent and the correlations among them are not taken into account. 

In other words 𝑃(𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew)|𝐶𝑘) = ∏ 𝑃(𝑔𝑗(𝒙|μ𝑛𝑒𝑤
(𝑗)

, Σ𝑛𝑒𝑤
(𝑗)

)|𝐶𝑘)
𝑝
𝑗=1  where 

𝑔𝑗(𝒙|μ𝑛𝑒𝑤
(𝑗)

, Σ𝑛𝑒𝑤
(𝑗)

) denotes the PDF of the new object along the j-th dimension. Therefore, 

neither class-correlation nor object-correlation can be captured, which are obvious 

drawbacks of the uncertain-naïve Bayes classifiers. 

For uncertain objects modeled with the multivariate Normal PDF, a closed-form 

solution for the class-conditional probabilities of uncertain naïve Bayesian classifier is 

given in (Ren et al., 2009) as follows: 
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𝑃(𝑔(𝒙|𝛍𝒏𝒆𝒘, Σnew)|𝐶𝑘) =∏

{
 
 

 
 

∑

exp (−
1
2(

μ𝑛𝑒𝑤
(𝑗)

− μ𝑖
𝑘(𝑗)

𝑣𝑘,𝑖
𝑗 )

2

)

𝑛𝑘𝑣𝑘,𝑖
(𝑗)
√2𝜋

𝑛𝑘

𝑖=1

}
 
 

 
 

𝑝

𝑗=1

, (3.14) 

where 𝑣𝑘,𝑖
(𝑗)

= √ℎ𝑘
(𝑗)
. ℎ𝑘

(𝑗)
+ Σ𝑛𝑒𝑤

(𝑗)
+ Σ𝑖

𝑘(𝑗) and  Σ𝑛𝑒𝑤
(𝑗)

, and Σ𝑖
𝑘(𝑗) respectively denote the 

variance of the new object along the j-th dimension, and the variance of the i-th object in 

class 𝑘 along the j-th dimension. ℎ𝑘
(𝑗)

= 1.06√Σ𝑘
(𝑗)
𝑛𝑘

−
1

5 , where Σ𝑘
(𝑗)

 is the variance of the 

mean of objects in class 𝑘 along the j-th dimension. The power of Bayesian classifiers 

relies on their ability to incorporate prior information as well. In our experiments we use 

𝑃(𝐶𝑘) =
𝑛𝑘

𝑁
, 𝑘 = 1,2, … , 𝐾. 

3.4.3 Simulation scenarios 

In this section we compare the performance of our proposed approaches with the certain 

KNN approach and uncertain naïve Bayesian classifier under four simulation scenarios. In 

the first scenario the performances are compared when only object-correlation exists. The 

second scenario evaluates the performances when only class-correlation exists. The third 

scenario compares the performances under the existence of both object-correlation and 

class-correlation. Finally, the fourth scenario investigates the performances for high 

dimensions when both types of correlation exist. Class-covariance matrices for the 

experiments can be expressed in the following form: 

Σk = [
dk ⋯ ok
⋮ ⋱ ⋮
ok ⋯ dk

] (3.15) 
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where dk represents diagonal elements of class k class-covariance matrix and ok represents 

off-diagonal elements of class k class-covariance matrix. Hence we consider equal 

diagonal elements as well as equal off-diagonal elements. Object-covariance matrices also 

can be expressed as follows: 

Λk = [

γk ⋯ τk
⋮ ⋱ ⋮
τk ⋯ γk

] (3.16) 

where γk represents diagonal elements of class k object-covariance matrix and τk 

represents off-diagonal elements of class k object-covariance matrix. Again, we consider 

equal diagonal elements as well as equal off-diagonal elements. 

Each scenario includes ten replicates; where for each, there are two sets of data: training 

and testing. The training set includes two classes with 1000 p-dimensional objects 

generated for each class. The testing set also includes two classes with 250 objects 

generated for each class. Each object from the testing set is classified by applying the 

classifiers that are firstly trained with the training set.  

In all scenarios we assume that the class-mean vectors are: 𝛍𝟏 = [0,… ,0]′, 𝛍𝟐 =

[1, … ,1]′,  diagonal elements of class-covariance and object-covariance matrices are: d1 =

d2 = 5, γ1 = γ2 = 1 and the degree of freedom parameters are df1 = df2 = 500. The 

chosen degree of freedom parameters result in relatively average amount of deviation from 

the base matrices. In all the tables, the first reported values correspond with the mean of 

the accuracies of ten replicates and the second reported values (the ones in parenthesis) 

correspond with the standard deviation of the accuracies of ten replicates. 
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3.4.2.1 Evaluating the performance when only object-correlation exists 

To compare the performance of our proposed approaches on data having only object-

correlation, we simulate scenarios for two-dimensional data where the levels of object-

correlation are extremely small, very small, and small. The considered object-correlation 

values are: ±0.05, ± 0.075, and ±0.1. The first column of Table 3.2 describes the scenarios. 

The next two columns give the off-diagonal parameters for the object-covariance matrices 

for each class.  

Table 3.2 shows, as we would expect, the certain approach (1NN with Euclidean 

distance on means) does not perform very well since it does not take into account object-

covariance matrix. Uncertain naïve Bayesian classifier takes into account object variances 

but it also performs poorly since it fails to consider the object-covariance. Uncertain KNN 

and OGPDM are shown to be able to differentiate the two classes well as the degree of 

correlation increases.  

 
Table 3.2   Accuracy of the approaches when only object-correlation exists for p=2 

Experiment 

Scenario 

Parameter Set 
Certain 

KNN  
UNB UKNN OGPDM 𝑜1 = 𝑜2 = 0 

𝜏1 𝜏2 

Extremely small 

correlation 
0.05 -0.05 

0.555 

(0.018) 

0.620 

(0.021) 

0.657 

(0.018) 

0.867 

(0.013) 

Very small 

correlation 
0.075 -0.075 

0.554 

(0.027) 

0.637 

(0.022) 

0.751 

(0.021) 

0.953 

(0.011) 

Small 

correlation 
0.1 -0.1 

0.536 

(0.028) 

0.619 

(0.025) 

0.818 

(0.020) 

0.987 

(0.004) 

 

Although the uncertain KNN approach is also successful in differentiating the two 

classes; OGPDM gives better results by finding the optimal weights and hence obtaining 

the best separating hyper-plane. It is noteworthy that although the object-correlations in the 

investigated scenarios were very small; the proposed approaches were able to achieve high 
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accuracies in classification. As the object-correlation increases further, the proposed 

approaches would achieve better classification.  

 

(a) OGPDM component 

1 

(b) OGPDM component 

2 

(c) Standardized 

components 

Figure 3.1 Capturing small object-correlation through OGPDM 

 

Figure 3.2 demonstrates the ability of the OGPDM in detecting small object-

correlation. The Figure demonstrates the objects in the training set. Objects in class 1 are 

shown with blue “+” and objects in class 2 with green “o.” As it can be seen in Figure 

3.1(a), the two classes cannot be differentiated from their class-correlation which is taken 

into account through OGPDM component 1, however, we can see from Figure 3.1(b) that 

perfect separation is possible through OGPDM component 2. Figure 3.1(c) demonstrates 

the separation of the two classes after weight optimization using standardized components. 

The red line demonstrates the separating hyper-plane. 

Table 3.3   OGPDM optimal weights when only object-correlation exists for p=2 

Experiment Scenario 𝑤1 𝑤2 

Extremely small correlation 0.076 0.924 

Very small correlation 0.041 0.959 

Small correlation 0.018 0.982 

 

 

 
log(

|Σnew + Σ̅1 |

2(|Σnew |. |Σ̅1 |)
1
2

) 

 
 

 

 
 (𝛍𝐧𝐞𝐰 − 𝛍 𝟏)′(Σ̂1)−1(𝛍𝐧𝐞𝐰 − 𝛍 𝟏) 
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The optimal weights for the three scenarios are shown in Table 3.3. As we can see from 

the table, as the level of object-correlation increases, OGPDM assigns more weight to the 

second standardized component. This shows the data-dependence nature of our approach.   

3.4.2.2 Evaluating the performances when only class-correlation exists 

In this section, the performance of our proposed approaches having only class-correlation 

is considered. Again, we consider three experiment scenarios and two classes. The 

following levels of class-correlation are considered in the scenarios: small correlation, 

medium, and high. The corresponding correlation values are: 0.1, ± 0.5, and ±0.8. The 

object-correlation values are set to be equal zero in all scenarios. Class mean vectors and 

degree of freedom parameters are the same as for the previous section. 

Table 3.4   Accuracy of the approaches when only class-correlation exists for p=2 

Experiment Scenario 

Parameter Set 

Certain KNN UNB UKNN OGPDM 𝜏1 = 𝜏2 = 0 

𝑜1 𝑜2 

Small correlation 0.5 -0.5 0.542(0.032) 0.613(0.029) 0.553(0.033) 0.615(0.030) 

Medium correlation 2.5 -2.5 0.613(0.022) 0.627(0.019) 0.611(0.022) 0.688(0.023) 

High correlation 4 -4 0.757(0.019) 0.680(0.028) 0.756(0.014) 0.801(0.021) 

 

As it can be seen from Table 3.4, uncertain naïve Bayesian classifier performs well for 

smaller class-correlation values but as class-correlation increases, it gets outperformed by 

other approaches. The certain KNN and the uncertain KNN approaches both achieve higher 

accuracies as the class-correlation increases. As there is not any object-correlation, the 

object-to-object correlation information does not provide any advantage over the certain 

approach. The OGPDM, though, has the advantage over all other approaches since it 

considers class-covariance matrices and uses the optimal hyper-plane to achieve a higher 

separation between the two classes. 
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(a) OGPDM component 

1 

(b) OGPDM component 

2 

(c) Standardized 

components 

Figure 3.3   Capturing high class-correlation through the second approach 

 

The ability of the OGPDM approach in detecting high class-correlation can be seen 

from Figure 3.3. The figure includes the objects in the training set. Again, objects in class 

1 are shown with blue “+” and objects in class 2 with green “o”. As it can be seen in Figure 

3.3(a), the two classes are very well differentiated from their class-correlation which is 

taken into account through OGPDM component 1, however, we can see from Figure 3.3(b) 

that separation is not possible through OGPDM component 2 as the object covariance 

matrices are very similar in the two classes. Figure 3.3(c) demonstrates the separation of 

the two classes after weight optimization using standardized components.  

Table 3.5   OGPDM optimal weights when only class-correlation exists for p=2 

Experiment Scenario 𝑤1 𝑤2 

Small 

correlation 
0.981 0.019 

Medium correlation 0.995 0.005 

High correlation 0.997 0.003 

 

The optimal weights are shown in Table 3.5. We can see from the table that as the level 

of class-correlation increases, the OGPDM approach assigns more weight to the first 
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standardized component. This again shows the data-dependence feature of this proposed 

approach.  

3.4.2.3 Evaluating the performances when a mixture of object-correlation and class-

correlation exists 

In this section we review a few scenarios in which both type of correlation: object-

correlation and class-correlation exist. Extremely small and small levels of object-

correlation in companion with medium and high levels of class-correlation are studied. The 

experiments results in Table 3.6 show the superiority of the OGPDM over all other 

approaches as it takes into account both types of correlation and uses optimal weights to 

obtain higher separation. The uncertain KNN is in the second place since it still captures 

object-correlation and class-correlation. Uncertain naïve Bayesian classifier and certain 

KNN approaches are next. The advantage of uncertain naïve Bayesian classifier to the 

certain approach is in considering object-variances. The advantage of the certain KNN 

approach to the uncertain naïve Bayesian classifier is in its relatively higher sensitivity to 

the class-correlation. 

Table 3.6   Accuracy of the approaches when both object-correlation and class-correlation exist 

for p=2 

Experiment 

Number 

Parameter Set Certain 

KNN 
UNB UKNN OGPDM 

𝑜1 𝑜2 𝜏1 𝜏2 

Medium, Ext small 2.5 -2.5 0.05 -0.05 0.623(0.021) 0.637(0.027) 0.724(0.008) 0.899(0.013) 

Medium, small 2.5 -2.5 0.1 -0.1 0.641(0.027) 0.647(0.024) 0.879(0.011) 0.989(0.004) 

High, Ext small 4 -4 0.05 -0.05 0.771(0.021) 0.672(0.020) 0.837(0.018) 0.907(0.012) 

High, small 4 -4 0.1 -0.1 0.759(0.022) 0.676(0.021) 0.938(0.011) 0.989(0.005) 

 

The ability of the OGPDM in detecting small object-correlation and medium class-

correlation can be seen from Figure 3.4. Once again, objects in class 1 are shown with blue 

“+” and objects in class 2 with green “o.” Figure 3.4(a) and Figure 3.4(b) show a relative 
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differentiation of the two classes based on their object-correlation and class-correlation 

which are captured through OGPDM components 1 and 2. Figure 3.4(c) demonstrates the 

separation of the two classes after weight optimization using standardized features.  

 

(a) OGPDM component 1 (b) OGPDM component 2 (c) Standardized components 

Figure 3.4   Capturing small object-correlation and medium class-correlation through OGPDM 

 

The optimal weights shown in Table 3.7 give interesting insight about the OGPDM. As 

both types of correlation exist in the designed scenarios, there exists a balance in the 

assigned optimal weights to the components. 

 
Table 3.7   OGPDM optimal weights when both object-correlation and class-correlation exist for 

p=2 

Experiment Number 𝑤1 𝑤2 

Medium, Ext small 0.235 0.765 

Medium, small 0.089 0.911 

High, Ext small 0.320 0.680 

High, small 0.113 0.887 

 

3.4.2.4 Evaluating the performances for higher dimensions 

Table 3.8 contains the results of simulation scenarios on two, five and ten dimensional data. 

The considered simulation parameters are: o1 = 0.5, o2 = −0.5, τ1 = 0.025, and  

τ2 = −0.025. The chosen degree of freedom parameters for these scenarios are df1 =
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df2 = 300 which implies more variation in the generated object-covariance matrices. As 

it can be seen from the table, once again, OGPDM outperforms other approaches in 

achieving high accuracy.  Uncertain KNN outperforms the certain KNN approach because 

of the existence of object-correlation. For these scenarios, uncertain naïve Bayesian 

produces good results too as the considered correlation values are relatively small. 

 
Table 3.8   Accuracy of the approaches when both object-correlation and class-correlation exist 

for p=2, 5, 10 

Experiment 

Number 

Certain 

KNN 
UNB UKNN OGPDM 

p=2 0.551(0.014) 0.625(0.022) 0.573(0.013) 0.711(0.012) 

p=5 0.608(0.019) 0.709(0.019) 0.610(0.018) 0.923(0.014) 

P=10 0.723(0.011) 0.836(0.014) 0.733(0.017) 0.998(0.017) 

 

3.5 Experiments using real data 

In order to have a more complete analysis on the performances of our proposed approaches, 

we applied them on a few real data sets adopted from the UCI Machine Learning 

Repository. The chosen data sets are listed in Table 3.9. These data sets are selected from 

the ones with numerical features. The data sets originally contain only certain objects. That 

means each object consists of only a single point value.  

Table 3.9   Selected data sets from the UCI Machine Learning Repository 

Data set Objects Features Classes 

Breast Cancer 560 30 2 

Ionosphere 350 32 2 

Wine 170 13 3 

Glass 210 6 6 

Blood Transfusion 740 4 2 

Heart Statlog 270 13 2 

Satellite 4430 36 6 

Parkinson’s  190 22 2 

Iris 150 4 3 

Bank note Authentication 1370 4 2 
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We can convert each object to an uncertain object in form of multivariate Normal PDF. 

In this regard, recall (3.1) for PDF of object i in class k, where 𝛍𝐢
𝐤 was the mean vector and 

Σi
k was the covariance matrix. We consider the original data as 𝛍𝐢

𝐤 and obtain Σi
k as a 

realization of Si
k using (3.17): 

Si
k = [

0.25 ∗ ci
k  ∗ r1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0.25 ∗ ci

k  ∗ rp

] 

i = 1,… , nk 

(3.17) 

where rj, j = 1, . . , p represents the range of the jth feature of the original certain data and 

ci
k~Uniform(0.95ck, 1.05ck) where ck is a controlled parameter defined for class k. As 

we consider uncertainty as a characteristic of a class, we can consider different ck values 

to have different levels of uncertainty for objects of different classes.  

We applied 10-fold cross-validation on the selected data sets to obtain the accuracy of 

the four studied approaches. The accuracy values along with the utilized ck values for each 

data set are shown in Table 3.10. The selected ck values for classes are chosen arbitrarily 

but we tried very close values for different classes. As it can be seen from the table, for 

majority of the data sets, OGPDM gives the highest accuracy value. “Bank note 

authentication” is the only data set where OGPDM stands in the second place with a very 

small difference compared to the certain KNN and uncertain KNN approaches.  The 

uncertain KNN approach also proves to be a beneficial approach as it outperforms the 

certain KNN approach in 8 of the 10 selected data sets. It stands in second place above the 

certain KNN and uncertain naïve Bayesian approaches in seven data sets as well.  
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Table 3.10   Accuracy of approaches on the selected UCI data sets 

Data set 𝑐𝑘, 𝑘 = 1,… , 𝐾 Certain KNN UNB UKNN OGPDM 

Breast Cancer 0.05,0.07 0.910(0.043) 0.910(0.043) 0.924(0.048) 0.966(0.019) 

Ionosphere 0.05,0.07 0.863(0.062) 0.652(0.070) 0.904(0.045) 0.996(0.008) 

Wine 0.05,0.06,0.07 0.763(0.064) 0.951(0.010) 0.959(0.041) 0.989(0.022) 

Glass 
0.05,0.06,0.07 

0.08,0.09,0.1 
0.735(0.091) 0.424(0.107) 0.739(0.103) 0.911(0.246) 

Blood 

Transfusion 
0.05,0.06 0.702(0.044) 0.756(0.046) 0.757(0.033) 0.983(0.017) 

Heart Statlog 0.05,0.07 0.576(0.109) 0.809(0.092) 0.746(0.089) 0.996(0.015) 

Satellite 
0.05,0.06,0.07 

0.08,0.09,0.1 
0.905(0.014) 0.722(0.016) 0.851(0.020) 0.954(0.018) 

Parkinson’s 0.05,0.07 0.853(0.093) 0.717(0.072) 0.924(0.059) 0.975(0.029) 

Iris 0.05,0.055,0.06 0.961(0.074) 0.918(0.069) 0.945(0.069) 0.981(0.030) 

Bank note 

Authentication 
0.05,0.06 0.999(0.004) 0.834(0.029) 0.999(0.003) 0.997(0.006) 

 

3.6 Conclusion 

We proposed two new approaches for classifying uncertain objects modeled with 

multivariate Normal PDF. Both of the proposed approaches are based on the concept of 

probabilistic distance measures. The first approach is based on obtaining object-to-object 

distances. It includes a K-nearest neighbor classifier that can use existing probabilistic 

distance measures. We choose Bhattacharyya distance measure as the probabilistic distance 

measure since it has analytical solution for multivariate Normal PDF. This approach was 

successful in classifying uncertain objects in experiment using both simulated and real data 

as it proved to be better than the certain KNN approach and uncertain naïve Bayesian 

classifier in majority of the verified cases.  

In order to achieve even better classification performance the second approach was 

proposed. The second approach is based on the object-to-group distance. In this regard, it 

uses a proposed probabilistic distance measure called OGPDM. Using OGPDM for 

classification both object-correlation and class-correlation are captured. The OGPDM 
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approach provides better classification performance compared to the other approaches as 

it uses the optimal separating hyper-plane.   
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 Measures of scatter and Fisher 

Discriminant Analysis for uncertain data 
 

Measures of scatter are extensively used in Statistics particularly in many certain data 

mining algorithms. They capture the scatter of a group which is either a class or possibly a 

cluster of data objects. One of the most applied measures of scatter for a group of 

multivariate data objects is covariance matrix. Covariance matrix conveys valuable 

information about the level of scatter of data along each dimension and also the scatter with 

regards to pairs of dimensions. Other types of scatter matrices are within and between 

scatter matrices. Within scatter matrix captures the scatter within a group of data objects. 

Between scatter matrix captures the scatter between groups of data objects. Famous 

applications of within and between scatter matrices are in Analysis of Variance (ANOVA) 

and also in clustering especially in many clustering validity indices. They are also used in 

classification algorithms such as Fisher Linear Discriminant Analysis (LDA) 

(G.McLachlan, 2004). 

For uncertain data objects, the existing level of uncertainty can make the scatter of data 

objects be very different compared to the certain case. Therefore, the scatter measures that 

are based on certain data objects may not capture the scatter of uncertain data objects 

properly. Measures of scatter have not been clearly defined for uncertain data objects.  

In this chapter, we introduce definitions for covariance matrix, within, and between 

scatter matrices for uncertain data objects. Our proposed measures of scatter are able to 

capture the scatter of uncertain objects very better than the measures of scatter for certain 

data objects. 
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In addition to introducing measures of scatter for uncertain data objects, in this chapter, 

we extend Fisher Discriminant Analysis for uncertain data objects. Fisher Discriminant is 

a well-known classification algorithm. Its popularity rises from the fact that it does not 

assume any particular probability density function for the distribution of data objects. This 

is an advantage compared to other Discriminant algorithms such as Linear Discriminant 

Analysis (LDA) or Quadratic Discriminant Analysis (QDA) that assume normal 

distributions for data objects.  

Fisher Discriminants for certain objects are in two types. One is Fisher Linear 

Discriminant (LDA) which produces a linear decision boundary and is good when classes 

of data objects are linearly separable. The other type is Kernel Fisher Discriminant (Mika 

et al., 1999), which is able to produce both linear and non-linear decision boundaries and 

therefore works well also for cases where the classes of data objects are not linearly 

separable.  

In this chapter, we extend Fisher LDA to the case for uncertain data objects as well and 

call it Uncertain Fisher LDA. Also we develop Uncertain Kernel Fisher Discriminant for 

two cases: 1) when the given uncertain objects are in form of multiple points 2) when the 

uncertain objects are in form of PDF. For each case, we provide an analytical solution to 

obtain the decision boundary. The developed within and between scatter matrices for 

uncertain data are used in deriving the solutions for Uncertain Fisher LDA and uncertain 

Kernel Fisher Discriminants. 

4.1 Scatter matrix for uncertain objects 

As it was mentioned in the introduction section, the definitions of covariance, within, and 

between scatter matrices are well-defined for certain data objects. However, for uncertain 
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data objects, the definitions have not been worked out yet. For uncertain data objects we 

need new definitions where unlike the certain objects case, here each data object has a level 

of uncertainty by itself that needs to be taken into account. Our proposed definitions for 

the three mentioned measures of scatter are provided in this section.  

Figure 4.1 shows three groups of uncertain data objects. Uncertain objects in the figures 

are considered in form of PDF and are shown with dots and ellipses. Dots represent the 

mean vectors and ellipses represent covariance matrices. In Figure 4.1(a) group of 

uncertain data objects with positive object-correlation is depicted. Figure 4.1(b) shows a 

group of uncertain data objects with negative object-correlation. Finally in Figure 4.1(c) a 

group of data objects with no object-correlation is showed. As we can see, in all three 

figures there is not much correlation among features considering object-mean vectors only. 

Considering only object-mean vectors is the procedure that the existing measures of scatter 

use. Therefore, if the existing measures of scatter are used, the existing correlation among 

the features in Figure 4.1(a) and Figure 4.1(b) cannot be captured. In addition to capturing 

correlation structure, the existing scatter matrices fail in capturing the variance.  
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(c) 

Figure 4.1   Groups of uncertain data objects with: (a) positive, (b) negative, (c) zero correlation 

among the features within objects 

 

Figure 4.2   Three uncertain data objects with two levels of variance (solid red line and dashed 

blue line) depicted for each 

 

4.1.1 Covariance matrix for uncertain data objects 

As it was already explained, the problem with the existing measures of scatter when used 

on uncertain data objects is that they don’t capture the uncertainty of each data object. In 

order to overcome this issue, we may consider an uncertain data object as a vector of 
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random variables that can follow any desired probability density function. For a univariate 

case, the vector size would be 1 ∗ 1 but for the multivariate case with p variables, the vector 

size would be p ∗ 1.  

Consider a group of n uncertain data objects. Random vector 𝐎𝐢 can be used to 

represent the i − th object in the group. Although 𝐎𝐢 can follow different type of 

distributions; we can denote the first moment with 𝛍𝐢 and the covariance matrix of the 

object obtained using the first and second moments with ∑i. We call 𝛍𝐢 as object-mean 

vector and ∑i as object-covariance matrix for object i. Denoting the group-mean with 𝛍 we 

can define the covariance matrix ∑U for the group of uncertain data objects as follows: 

∑U = E𝛍𝐢,∑i[E𝐎𝐢[(𝐎𝐢 − 𝛍)(𝐎𝐢 − 𝛍)t|𝛍𝐢, ∑i]], 
(4.1) 

where 𝛍 =
1

n
∑ 𝛍𝐢
n
i=1  can be used as the estimate of the group-mean 𝛍. ∑U can be further 

expanded as: 

∑U = E𝛍𝐢,∑i(E𝐎𝐢 [((𝐎𝐢 − 𝛍𝐢) + (𝛍𝐢 − 𝛍))((𝐎𝐢 − 𝛍𝐢) + (𝛍𝐢 − 𝛍))
t
|𝛍𝐢, ∑i]) =

E𝛍𝐢,∑i(E𝐎𝐢[(𝐎𝐢 − 𝛍𝐢)(𝐎𝐢 − 𝛍)t|𝛍𝐢, ∑i] + E𝐎𝐢[(𝛍𝐢 − 𝛍)(𝛍𝐢 − 𝛍)t|𝛍𝐢, ∑i]) = E𝛍𝐢,∑i([∑i +

(𝛍𝐢 − 𝛍)(𝛍𝐢 − 𝛍)t|𝛍𝐢, ∑i]). 

Eventually, we can use the following as an unbiased estimate for the covariance matrix of 

uncertain data objects: 

∑Û =
∑ [∑i + (𝛍𝐢 − 𝛍)(𝛍𝐢 − 𝛍)t]n
i=1

n
=
∑ (∑i)
n
i=1

n
+ ∑Ĉ, 

where ∑Ĉ is the certain covariance matrix estimate which  only considers object-mean 

vectors. Correlation matrix for uncertain objects can be also obtained using the developed 

covariance matrix: 

RU = (diag(∑Û))−
1
2∑Û(diag(∑Û))−

1
2 

(4.2) 
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Now having a new definition for covariance matrix and correlation matrix of uncertain 

data objects, we can revisit Figure 4.1. The correlation among the two dimensions in Figure 

4.1(a) using the definition of correlation for certain data objects is 0 while the correlation 

coefficient using the newly defined correlation structure for uncertain data objects is 0.485. 

Moreover, the variance along the two dimensions using the definition for certain data 

objects are 1.25 and 0.7, while the corresponding values using the new definition are 2.25 

and 1.7. For Figure 4.1(b) the correlation values using the existing and newly defined 

correlation structures are 0 and -0.485 respectively. The variance values along the two 

dimensions are also 1.25 and 0.7 for the existing, and 2.25 and 1.7 for the new definition. 

Finally for Figure 4.1(c) the correlation values would be 0 and 0 for the two definitions. 

Also variance values are 1.25 and 0.7 for the certain definition versus 2.25 and 1.7 for the 

uncertain definition. As it is clear from these results, the newly developed definition can 

better capture the scatter of uncertain data objects.  

4.1.2 Total, within, and between scatter matrices for uncertain data objects 

Total, within, and between scatter matrices have a lot of applications in clustering, 

classification and many other fields. Similar to covariance matrix definition that was not 

well-defined for uncertain data objects, the definition of total within and between scatter 

matrices also needs to be worked out. Total and within scatter matrices have very similar 

definitions. For uncertain data we define the total scatter matrix to be: TU =

∑ E𝐎𝐢[(𝐎𝐢 − 𝛍)(𝐎𝐢 − 𝛍)t]n
i=1 . Following similar approach to the one used for developing 

uncertain covariance matrix definition, the formula can be expanded to: TU =
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∑ [∑i + (𝛍𝐢 − 𝛍)(𝛍𝐢 − 𝛍)t]n
i=1 , where again 𝛍 is the group-mean and 𝛍 =

1

n
∑ 𝛍𝐢
n
i=1  can be 

used as its estimate. 

For a one-group problem within scatter matrix and total scatter matrix are the same. 

For a problem with K groups of uncertain objects where each group consists of nk objects 

(n = ∑ nk
K
k=1 ) within scatter matrix can be defined as: 

WU = ∑Wk
U

K

k=1

, (4.3) 

where Wk
U is the within scatter matrix for group k and can be written as: 

Wk
U =∑ [∑i

k + (𝛍𝐢
𝐤 − 𝛍𝐤)(𝛍𝐢

𝐤 − 𝛍𝐤)
t
]

nk

i=1
, (4.4) 

where 𝛍𝐤 is the mean of group k which can be estimated by 𝛍 𝐤 =
1

nk
∑ 𝛍𝐢

𝐤nk
i=1 . Now that the 

definitions of total and within scatter matrices are extended for uncertain data objects, the 

between scatter matrix formulation for uncertain data objects can be obtained as follows: 

TU =∑E𝐎𝐢[(𝐎𝐢 − 𝛍)(𝐎𝐢 − 𝛍)t]

n

i=1

=∑∑E𝐎𝐢 [((𝐎𝐢 − 𝛍𝐤) + (𝛍𝐤 − 𝛍))((𝐎𝐢 − 𝛍𝐤) + (𝛍𝐤 − 𝛍))
t
]

nk

i=1

K

k=1

=∑∑(E𝐎𝐢[(𝐎𝐢 − 𝛍𝐤)(𝐎𝐢 − 𝛍𝐤)
t] + E𝐎𝐢[(𝛍𝐤 − 𝛍)(𝛍𝐤 − 𝛍)t])

nk

i=1

K

k=1

 

= ∑ ∑ [∑i
k + (𝛍𝐢

𝐤 − 𝛍𝐤)(𝛍𝐢
𝐤 − 𝛍𝐤)

t
]

nk
i=1

K
k=1 + ∑ ∑ (𝛍𝐤 − 𝛍)(𝛍𝐤 − 𝛍)t

nk
i=1

K
k=1 = 

= ∑ Wk
UK

k=1 + ∑ ∑ (𝛍𝐤 − 𝛍)(𝛍𝐤 − 𝛍)t
nk
i=1

K
k=1 = WU + ∑ ∑ (𝛍𝐤 −

nk
i=1

K
k=1

𝛍)(𝛍𝐤 − 𝛍)t = WU +∑ nk(𝛍𝐤 − 𝛍)(𝛍𝐤 − 𝛍)tK
k=1 . 
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Knowing that TU should be composed of within and between scatter matrices, BU, the 

between scatter matrix is obtained as:  

BU =∑nk(𝛍𝐤 − 𝛍)(𝛍𝐤 − 𝛍)t
K

k=1

 
(4.5) 

The obtained scatter matrix for uncertain data is the same as the between scatter matrix 

B for certain data. 

4.2 Fisher Linear Discriminant Analysis 

One of the main approaches for discrimination problem is Fisher Linear Discriminant 

Analysis (Fisher LDA). Advantage of the Fisher LDA over other discrimination 

approaches such as Linear Discriminant Analysis (LDA) or Quadratic Discriminant 

Analysis (QDA) is that it does not assume any particular parametric form for the 

distribution of classes of data objects. This is unlike the normality assumption which is 

utilized in LDA and QDA.  

The criterion that Fisher LDA uses is based on obtaining the direction for which the 

projected data objects have the highest ratio of between sum of squares to within sum of 

squares. In other words, the criterion for Fisher LDA is to find the vector 𝐰 that maximizes 

the function in below: 

J(𝐰) =
𝐰tB𝐰 

𝐰tW𝐰 
. (4.6) 

B is the between scatter matrix and can be written as B = ∑ ∑ (�̅�𝐤 − �̿�)(�̅�𝐤 − �̿�)t
nk
i=1

K
k=1 =

∑ nk(�̅�𝐤 − �̿�)(�̅�𝐤 − �̿�)tK
k=1  and W is the within scatter matrix and can be written as W =

∑ Wk
K
k=1 = ∑ ∑ [(𝐱𝐢 − �̅�𝐤)(𝐱𝐢 − �̅�𝐤)

t]nk
i=1

K
k=1  where �̅�𝐤, k = 1,2 is the mean of objects in 

class k and �̿� =
1

n
∑ 𝐱𝐢
n
i=1  is the global mean. It can be proven that vector 𝐰 is the 
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eigenvector of W−1B. For the two-class problem 𝐰 can be written as W−1(�̅�𝟏 − �̅�𝟐). Given 

the direction vector 𝐰,  𝐰t𝐱 + b = 0 would be the decision boundary for classification. 

There are many ways to obtain the coefficient b but the most conventional one is b =

𝐰t(�̅�𝟏+�̅�𝟐) 

2
 . For a new data object 𝐱new , if 𝐰t𝐱𝐧𝐞𝐰 + b > 0 , the object is classified to class 

1 and conversely, if 𝐰t𝐱𝐧𝐞𝐰 + b < 0 , it would be classified to class 2. 

 

Figure 4.3   Fisher LDA for discriminating two classes of data objects 

 

Figure 4.3 is a demonstration of the direction vector 𝐰 along with the linear decision 

boundary obtained using Fisher LDA for a two-dimensional two-class problem. As we can 

see the direction vector and the decision boundary are perpendicular.  

4.3 Uncertain Fisher Linear Discriminant Analysis 

Fisher LDA solution for certain data may not be the best solution for uncertain data as it 

totally ignores the uncertainty information of objects. In order to overcome this issue, we 
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propose Uncertain Fisher LDA. Recall the ratio function in (4.6),we rewrite it for uncertain 

objects as is shown in (4.7). 

J(𝐰) =
𝐰tBU𝐰 

𝐰tWU𝐰 
, 

 (4.7) 

where BU = ∑ nk(𝛍𝐤 − 𝛍)(𝛍𝐤 − 𝛍)tK
k=1  and WU = ∑ ∑ [∑i

k + (𝛍𝐢
𝐤 − 𝛍𝐤)(𝛍𝐢

𝐤 −
nk
i=1

K
k=1

𝛍𝐤)
t
]. As we can see although the between scatter matrix is not different than the one in 

Certain Fisher LDA formulation; the within scatter matrix takes into account uncertain 

objects covariance matrices and hence the uncertainty information to some extent. Very 

similar to the case for certain data, vector 𝐰 is the eigenvector of (WU)−1BU, 𝐰 can be 

written as (WU)−1(𝛍𝟏 − 𝛍𝟐) for a two-class problem, and 𝐰t𝐱 + b = 0 would be the 

decision boundary for classification. Dealing with uncertain objects, the classification rule 

needs revision compared to the certain case. If objects are modeled with PDF, given a new 

object, we can use the following classification rule: 

{
class 1, if P(𝐰t𝐎new + b > 0) > 0.5

class 2, if P(𝐰t𝐎new + b < 0) > 0.5
 , (4.8) 

where 𝐎new is a random vector that can follow any type of PDF and is used to model the 

new object. If objects are modeled with multiple points, given a new object, we can use the 

following classification rule: 

{
  
 

  
 
class 1, if ∑ I(𝐱𝐭𝐣

𝐤)

lj
k

t=1

>
lj
k

2

class 2, if ∑ I(𝐱𝐭𝐣
𝐤)

lj
k

t=1

<
lj
k

2

, (4.9) 
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where 𝐱𝐭𝐣
𝐤 , t=1,…, lj

k denotes the t-th point within the j-th object in the k-th class. Also, I(𝐱) 

is an indicator function where I(𝐱) = {
1 ,  if  𝐰t𝐱 + b > 0

0, if   𝐰t𝐱 + b < 0
. Figure 4.4, shows three 

situations for two-dimensional two-class problem.  

 

 

Figure 4.4   Comparing the decision boundaries of Uncertain Fisher LDA with Certain Fisher 

LDA for two classes of data objects 

 

4.4 Uncertain Kernel Fisher Discriminant Analysis 

The developed Uncertain Fisher Discriminant shows improvement compared to the Certain 

Fisher LDA in regards with the classification accuracy for uncertain objects. However, 

when classes of uncertain objects are not linearly separable, Fisher LDA would not perform 

satisfactory. In order to overcome this issue, we use Kernels to obtain non-linear decision 

boundary. Kernelization consists of transforming data from the original space (linear 

space) to a higher space (Kernel space). Kernel Fisher Discriminant for certain data objects 

is developed in (Mika et al., 1999). In this section, we develop Kernel Fisher Discriminant 

for uncertain data objects and call it “Uncertain Kernel Fisher Discriminant”. We develop 
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the new algorithm for two forms of uncertain objects: uncertain objects given with multiple 

points and uncertain objects given with probability density function (PDF).  

 

4.4.1 Uncertain Kernel Fisher Discriminant for objects given with multiple points 

Suppose uncertain object are given in form of multiple points where the mean vectors and 

covariance matrices for objects can be estimated with: 

𝛍 𝐣
𝐤 =

∑ 𝐱𝐭𝐣
𝐤

lj
k

j=1

lj
k  and ∑ j

k =
∑ (𝐱𝐭𝐣

𝐤−𝛍 𝐣
𝐤)(𝐱𝐭𝐣

𝐤−𝛍 𝐣
𝐤)

tlj
k

t

lj
k  for j = 1,… , nk, k = 1,… , K, t=1,…, lj

k. 

Recall the Fisher LDA ratio formula in (4.6). Kernelizing procedure for uncertain data 

consists of two parts: first part is about kernelizing the numerator of the ratio (𝐰tBU𝐰 ) 

and second part is about kernelizing the denominator of the ratio (𝐰tWU𝐰 ). In the 

following, we explain the procedure of kernelizing 𝐰𝐭BU𝐰 for objects given with multiple 

points.  

Let ∅(𝐱) be the map (transformation) of 𝐱 into the Kernel space. Recalling the 

developed formula for the between scatter matrix BU, for a two-class problem, it can be 

simplified to BU = (𝛍𝟏 − 𝛍𝟐)(𝛍𝟏 − 𝛍𝟐)
t, we can use B∅

U = (𝛍𝟏
∅ − 𝛍𝟐

∅)(𝛍𝟏
∅ − 𝛍𝟐

∅)
t
 to 

denote the between scatter matrix of mapped uncertain data objects, where 𝛍𝐤
∅, k = 1,2 is 

the mean of the mapped data objects means in class k. As an estimate for 𝛍𝐤
∅ we can use 

𝛍 𝐤
∅ =

1

nk
∑ ∅(𝛍 𝐣

𝐤)
nk
j=1 .  

Based on the theory of reproducing kernels (Aronszajn, 1950), 𝐰 must lie in the span 

of all samples in the kernel space. This can be written as: 𝐰 = ∑ αi∅(𝛍 𝐢)
n
i=1  where αi is a 

coefficient parameter for object i . 
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For a two-class problem, by replacing 𝐰 and B∅
U with ∑ αi∅(𝛍 𝐢)

n
i=1  and (𝛍𝟏

∅ −

𝛍𝟐
∅)(𝛍𝟏

∅ − 𝛍𝟐
∅)

t
 respectively, we can write:  

𝐰tB∅
U𝐰=𝛂𝐭Mp𝛂, 

(4.10) 

where 𝛂𝐭 = [α1, α2, … , αn]; Mp = (𝐦𝐩𝟏 −𝐦𝐩𝟐)(𝐦𝐩𝟏 −𝐦𝐩𝟐)
𝐭
;  𝐦𝐩𝐤 =

[
 
 
 
 
1

nk
∑ k(𝛍 𝟏, 𝛍 𝐣

𝐤)
nk
j=1

.

.
1

nk
∑ k(𝛍 𝐧, 𝛍 𝐣

𝐤)
nk
j=1 ]

 
 
 
 

. 

k(𝐱, 𝐲) is the kernel function for 𝐱 and 𝐲 and is defined as k(𝐱, 𝐲) = ∅(𝐱)t∅(𝐲). 

Polynomial or Gaussian are of the many types that can be used as kernel function.  

The detailed procedure of kernelizing 𝐰𝐭BU𝐰 for objects given with multiple points, 

is provided in Appendix I.a. It is noteworthy that, as B∅
U is the same as B∅

C (for certain data 

objects), the expanded 𝐰tB∅
U𝐰 is the same as the one developed by (Mika et al., 1999) for 

Kernel Fisher Discriminant. This formula also holds for the case that data objects are given 

with PDF except that there is no need to estimate the mean vector and covariance matrix 

for uncertain objects as they are given.  

The second part of the Fisher LDA formula (𝐰𝐭WU𝐰), can be kernelized as follows: 

Recalling the developed formula for uncertain within scatter matrix WU, again we can use 

the estimates of objects mean vector and covariance matrix and rewrite the formula as 

WU = ∑ ∑ [(𝛍 𝐣
𝐤 − 𝛍 𝐤)(𝛍 𝐣

𝐤 − 𝛍 𝐤)
t
+ ∑ j

k]
nk
j=1

K
k=1 . W∅

U which is the within scatter matrix for 

the mapped uncertain data objects in the Kernel space can be written as: 
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W∅
U = ∑ ∑ [(∅(𝛍 𝐣

𝐤) − 𝛍 𝐤
∅)(∅(𝛍 𝐣

𝐤) − 𝛍 𝐤
∅)

𝐭
+

nk
j=1

K
k=1

∑ (∅(𝐱𝐭𝐣
𝐤)−∅(𝛍 𝐣

𝐤))(∅(𝐱𝐭𝐣
𝐤)−∅(𝛍 𝐣

𝐤))
𝐭lj

k

t=1

lj
k ]. 

(4.11) 

Again, using the reproducing Kernel theory where 𝐰 = ∑ αi∅(𝛍 𝐢)
n
i=1 , we can write: 

𝐰tWU
∅𝐰 =𝛂𝐭Np1𝛂 + 𝛂𝐭Np2𝛂 = 𝛂𝐭Np𝛂, 

(4.12) 

  

where Np1 = ∑ Up1k(I − 1nk)
K
k=1 Up1k

t, Np2 = ∑ Up2k(I − 1
lj
k)K

k=1 Up2k
t , and also  

Up1k = [

k(𝛍 𝟏, 𝛍 𝟏
𝐤) ⋯ k(𝛍 𝟏, 𝛍 𝐧𝐤

𝐤 )

⋮ ⋱ ⋮
k(𝛍 𝐧, 𝛍 𝟏

𝐤) ⋯ k(𝛍 𝐧, 𝛍 𝐧𝐤
𝐤 )

];  Up2k =

[
 
 
 
 ∑ k(𝛍 𝟏, 𝐱𝟏𝐣

𝐤 )
nk
j=1 ⋯ ∑ k(𝛍 𝟏, 𝐱𝐥𝐣𝐤𝐣

𝐤 )
nk
j=1

⋮ ⋱ ⋮

∑ k(𝛍 𝐧, 𝐱𝟏𝐣
𝐤 )

nk
j=1 ⋯ ∑ k(𝛍 𝐧, 𝐱𝐥𝐣𝐤𝐣

𝐤 )
nk
j=1 ]

 
 
 
 

; 

1nk = [

1
nk⁄ ⋯ 1

nk⁄

⋮ ⋱ ⋮
1
nk⁄ ⋯ 1

nk⁄

] ; 1
lj
k =

[
 
 
 
 
1
lj
k⁄ ⋯ 1

lj
k⁄

⋮ ⋱ ⋮
1
lj
k⁄ ⋯ 1

lj
k⁄
]
 
 
 
 

.  

The detailed procedure of kernelizing 𝐰𝐭WU𝐰 for objects given with multiple points, 

is provided in Appendix I.b. 

Now, the ratio function in Fisher formula can now be written as: 

J(𝐰) =
𝐰𝐭BU

∅𝐰 

𝐰𝐭WU
∅𝐰 

=
𝛂𝐭Mp𝛂

𝛂𝐭Np𝛂
= J(𝛂) (4.13) 

𝜶 that maximizes J(𝐰) is obtained as 𝜶 = Np
−𝟏(𝐦𝟏 −𝐦𝟐). Since Np might be singular, 

we can use 𝜶 = (Np + λI)
−𝟏
(𝐦𝐩𝟏 −𝐦𝐩𝟐);  λ>0 to overcome the possible issues.  

The optimal, 𝐰 can also be obtained by replacing the optimal 𝜶 in 𝐰 = ∑ 𝛂𝐢∅(𝛍 𝐢)
𝐧
𝐢=𝟏 . 
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4.4.2 Uncertain Kernel Fisher Discriminant for objects given with PDF 

Suppose uncertain object are given in form of probability density function (PDF) and the 

mean vectors and covariance matrices for objects are known: 𝛍𝐣
𝐤and ∑j

k for j = 1,… , nk, 

k = 1,… , K. 

Same as the case for uncertain objects given with multiple points, the kernelization 

procedure consists of two parts: kernelizing 𝐰tBU𝐰 and kernelizing 𝐰tWU𝐰. 

Kernelizing 𝐰𝐭BU𝐰 for objects given with PDF is the same as the one for Uncertain 

Kernel Fisher Discriminant for objects given with multiple points. The only difference is 

that instead of using estimates of mean vectors in the formulation, the actual parameter 

values are used. Hence, once again: 

𝐰𝐭B∅
U𝐰 = 𝛂𝐭Md𝛂, (4.14) 

where 𝛂𝐭 = [α1, α2, … , αn];  Md = (𝐦𝐝𝟏 −𝐦𝐝𝟐)(𝐦𝐝𝟏 −𝐦𝐝𝟐)
𝐭;   𝐦𝐝𝐤 =

[
 
 
 
 
1

nk
∑ k(𝛍𝟏, 𝛍𝐣

𝐤)
nk
j=1

.

.
1

nk
∑ k(𝛍𝐧, 𝛍𝐣

𝐤)
nk
j=1 ]

 
 
 
 

.  

For kernelizing 𝐰𝐭WU𝐰 for objects given with PDF, once again, recall the developed 

formula for uncertain within scatter matrix WU = ∑ ∑ [(𝛍𝐣
𝐤 − 𝛍𝐤)(𝛍𝐣

𝐤 − 𝛍𝐤)
t
+

nk
j=1

K
k=1

∑j
k]. W∅

U which is the within scatter matrix for the mapped uncertain data objects in the 

Kernel space can be written as: 

W∅
U =∑∑[(∅(μj

k) − μk
∅)(∅(μj

k) − μk
∅)

t
+ (∑j

k)∅]

nk

j=1

K

k=1

. (4.15) 

Using the reproducing kernels theory where 𝐰 = ∑ αi∅(𝛍𝐢)
n
i=1 , we can write: 

𝐰tWU
∅𝐰 =𝛂𝐭Nd1𝛂 + 𝛂𝐭Nd2𝛂 = 𝛂𝐭Nd𝛂, 

(4.16) 
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where Nd1 = ∑ Ud1k(I − 1nk)
K
k=1 U1k

t,  Nd2 = ∑ Ud2k
K
k=1 Ud2k

t , and also 

Ud1k = [

k(𝛍𝟏, 𝛍𝟏
𝐤) ⋯ k(𝛍𝟏, 𝛍𝐧𝐤

𝐤 )

⋮ ⋱ ⋮
k(𝛍𝐧, 𝛍𝟏

𝐤) ⋯ k(𝛍𝐧, 𝛍𝐧𝐤
𝐤 )

]; Ud2k =

[
 
 
 
 
∑ 𝐃𝟏𝐣

𝐤 . Aj
k𝐧𝐤

𝐣=𝟏
.
.
.

∑ 𝐃𝐧𝐣
𝐤 . Aj

k𝐧𝐤
𝐣=𝟏 ]

 
 
 
 

; and 𝐃𝐢𝐣
𝐤 = ∅(𝛍𝐢)Jj

k =

∅(𝛍𝐢).
∂∅(𝐗)

∂𝛍𝐣
𝐤 =

∂∅(𝛍𝐢).∅(𝐗)

∂𝛍𝐣
𝐤 =

∂𝐊(𝛍𝐢,𝐗)

∂𝛍𝐣
𝐤  , for i = 1,… , n; j = 1,… , nk. 

The detailed procedure of Kernelizing 𝐰𝐭WU𝐰 for objects given with PDF, is provided 

in Appendix II. Again, similar to the work for the developed formula for multiple points, 

the ratio function in Fisher formula can now be written as: 

J(𝐰) =
𝐰𝐭BU

∅𝐰 

𝐰𝐭WU
∅𝐰 

=
𝛂𝐭Md𝛂

𝛂𝐭Nd𝛂
= J(𝛂). (4.17) 

Once again, 𝜶 that maximizes J(𝐰) is 𝜶 = Nd
−𝟏(𝐦𝐝𝟏 −𝐦𝐝𝟐), but for overcoming 

issues related to singularity of Nd, we can use 𝜶 = (Nd + λI)−𝟏(𝐦𝐝𝟏 −𝐦𝐝𝟐); λ>0. Again, 

after obtaining the optimal 𝛂, the optimal 𝐰 can also be obtained from 𝐰 = ∑ 𝛂𝐢∅(𝛍𝐢)
𝐧
𝐢=𝟏 . 

4.5 Simulated examples 

In this section first, we provide examples to show the potential of the proposed Uncertain 

Fisher Discriminants. The examples include two types of uncertain data objects. The ones 

given with PDF and also the ones given with multiple points. Then, we provide examples 

to show the potential of the developed Uncertain Fisher Discriminants over the Certain 

Fisher Discriminants for classification of uncertain data objects.  
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4.5.1 Uncertain Fisher Discriminants for objects given with PDF and for objects 

given with multiple points 

In this section we present examples to show the potential of the developed Fisher 

Discriminants for classifying uncertain data objects. For each example, two cases are 

considered: One where uncertain objects are given with PDF and one where uncertain 

objects are given with multiple points. The simulation framework to model uncertain 

objects is the same as the one in (Tavakkol et al., 2017). For each example the decision 

boundary that is produced by the developed Fisher Discriminants is depicted.  

Figure 4.5 shows the linear decision boundaries obtained by the developed Uncertain 

Fisher LDA. Figure 4.5(a) shows the linear decision boundary for two classes of uncertain 

objects given with PDF and Figure 4.5(b) shows the linear decision boundary for two 

classes of uncertain objects given with multiple points. In both Figures the two classes 

contain objects with positive correlation among their features similar to the case shown in 

Figure 4.5(a). As we can see the generated decision boundaries for both PDF and multiple 

points cases are very similar and seem very reasonable for separating the two classes. 

Comparing this Figure with Figure 4.4 where the generated decision boundary from Certain 

Fisher LDA is also depicted, we realize the potential of the developed Fisher LDA 

algorithm for classifying uncertain data objects. 
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(a) (b) 

Figure 4.5   Linear decision boundary obtained by Uncertain Fisher LDA for two classes of 

positively correlated uncertain objects modeled with a) PDF b) multiple points 

 

Figure 4.6 shows examples where two classes of uncertain objects are not linearly 

separable and therefore linear decision boundary does not perform well for separating 

them. However, second-order polynomials seem appropriate to separate the two classes. 

Figure 4.6(a) shows the second-order polynomial decision boundary obtained from the 

developed Uncertain Kernel Fisher Discriminant for objects given with PDF while Figure 

4.6(b) shows the second-order polynomial decision boundary obtained from the developed 

Uncertain Kernel Fisher Discriminant for objects given with multiple points. 
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(a) (b) 

Figure 4.6   Second-order polynomial decision boundary obtained by Uncertain Kernel Fisher 

Discriminant for two classes of positively correlated uncertain objects modeled with a) PDF b) 

multiple points 

 

Finally, Figure 4.7 shows examples where third-order polynomial decision boundaries 

seem reasonable for separating the two classes of data objects. Figure 4.7(a) shows the 

third-order polynomial decision boundary obtained from the developed Uncertain Kernel 

Fisher Discriminant for objects given with PDF while Figure 4.7(b) shows the third-order 

polynomial decision boundary obtained from the developed Uncertain Kernel Fisher 

Discriminant for objects given with multiple points.  

 

  
(a) (b) 

Figure 4.7   Third-order polynomial decision boundary obtained by Uncertain Kernel Fisher 

Discriminant for two classes of positively correlated uncertain objects modeled with: a) PDF b) 

multiple points 

 

As we can see from Figure 4.7, the generated decision boundaries from the developed 

discriminant for PDF and the one for multiple points are very similar and they all seem 

very reasonable for separating the generated classes of uncertain data objects.  
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4.5.2 Performance of uncertain Fisher Discriminants for classification of uncertain 

data objects 

This section gives scenarios that show the potential of the proposed uncertain Fisher 

discriminants (UFLDA and UKFDA) compared with a few existing classification methods 

in classifying uncertain objects. The benchmark methods are uncertain K-nearest neighbor 

(UKNN) (Tavakkol et al., 2017), uncertain naïve Bayesian (UNB) (Ren et al., 2009), 

uncertain K-means (UK-means) (Xu and Hung, 2011), object-to-group probabilistic 

distance based classifier (OGPDM) (Tavakkol et al., 2017), Fisher linear discriminant 

Analysis (FLDA), and kernel Fisher discriminant Analysis (KFDA).  

In our simulated scenarios, we consider modeling uncertain objects with the 

multivariate skew-normal distribution. The skew-normal distribution (Azzalini and 

Capitanio, 1999; Azzalini and Valle, 1996) is a family of distributions including the normal 

distribution but it has one more parameter to adjust the skewness. The three parameters of 

the skew-normal distribution are  , , .   is a vector that contains the location 

parameters. It is very similar to the mean vector parameter in multivariate normal 

distribution.   is a positive-definite matrix which conveys the characteristics of a 

covariance matrix.   is a vector of parameters that regulates skewness of the distribution. 

We used the “sn” package in R (Adelchi Azzalini, n.d.) to generate multiple points and 

model uncertain data objects based on skew-normal distribution.  

We considered two sets of simulated scenarios for classifying uncertain data objects. 

In the first set, we created five scenarios where each contains two classes. The distance 

between the two classes is different in the scenarios. We labeled the scenarios based on 

this distance as 1 to 5, where 1 denotes the scenario with smallest distance between location 
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parameters and 5 is the one with largest. Moreover, for each scenario we considered two 

sets of data: training set and test set. Training set includes 200 objects (100 class 1 and 100 

class 2) and test set includes 100 objects (50 class1 and 50 class 2). Each uncertain object 

includes 20 generated points. In all five scenarios same Ω and   parameters are used for 

all objects:
1 0.95

0.95 1


 
  
 

 and  1000 0  .Thus, for object i  of class k  we can 

write: ( , )~ kk

i SN    , , 1,..., , 1,...,ki n k K  , where   is a random vector where 

each of its elements follows ( 0.05,0.05)uniform  . Also parameter 
1  in all scenarios is 

 1 0 0  . 

Table 4.1 shows the results of classifying uncertain objects in the five scenarios with 

our proposed UFLDA and also five existing methods: UKNN (with K=3), UNB, UK-

means, OGPDM and FLDA. As it can be seen from the table, the performance of all of the 

classifiers improve as the distance between the location parameters increases. However, in 

all scenarios, UFLDA performs better classification compared to other methods. 

In addition to the first set of scenarios, we considered another set with four more 

scenarios for classifying uncertain objects but this time the scenarios contain nonlinearly 

separable uncertain objects. Again, based on the distance between the two classes, we label 

the four scenarios as: 1, 2, 3, and 4.  

Number of data objects in training and test sets and 𝛂 parameter are the same as in the 

first set of scenarios. Here uncertain data objects in class 1 are generated in two parts: half 

of them based on 
1

1  and the other half based on 
1

2 . Uncertain data objects in class 2 are 

generated with  2 0 0  . Also for all objects 
1 0.95

0.95 1


 
  

 
.  
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Table 4.1   Comparing classification accuracies for UKNN, UNB, UK-means, OGPDM, FLDA, 

and UFLDA classifiers 

Scenario 
2  UKNN UNB 

UK-

means 
OGPDM FLDA UFLDA 

1 [0.1,0] 0.65 0.68 0.57 0.60 0.63 0.70 

2 [0.2,0] 0.71 0.91 0.59 0.62 0.89 0.92 

3 [0.25,0] 0.73 0.91 0.63 0.64 0.91 0.93 

4 [0.5,0] 0.75 1.00 0.69 0.94 1.00 1.00 

5 [0.75,0] 0.77 1.00 0.83 1.00 1.00 1.00 

 

Table 4.2 shows the results for the four scenarios of classifying uncertain data objects. 

For all of the scenarios, classification is performed with UKNN (with K=3), UNB, UK-

means, OGPDM, the KFDA with 2nd-order polynomial kernel, as well as our proposed 

UKFDA with 2nd-order polynomial kernel.  

Table 4.2   Comparing classification accuracy UKNN, UNB, UK-means, OGPDM, KFDA, and 

UKFDA 

Scenario 
1

1  
1

2  UKNN UNB 
UK-

means 
OGPDM KFDA UKFDA 

1 [-0.25,0] [0.25,0] 0.73 0.71 0.52 0.80 0.77 0.84 

2 [-0.5,0] [0.5,0] 0.75 0.69 0.53 0.95 0.94 0.97 

3 [-0.75,0] [0.75,0] 0.75 0.67 0.51 1.00 0.93 1.00 

4 [-1,0] [1,0] 0.75 0.82 0.56 1.00 0.91 1.00 

 

The results of Table 4.2 can be interpreted in a similar fashion as the one in Table 4.1. 

As we can see when the distance between the location parameters of the two classes is 

small, UKFDA results in better classification accuracy compared to other methods. As the 

distance between the location parameters increases, performances of all classifiers 

improve.  
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We evaluated the performance of our proposed uncertain Fisher discriminants with real 

data as well. For real data, we collected a weather data set that from the National Center 

for Atmospheric Research data archive (https://rda.ucar.edu/datasets/ds512.0/) (Jiang et 

al., 2013). The data set contains average daily temperature and precipitation for 1520 

weather stations around the globe in year 2011. We used Kӧppen-Geiger climate 

classification (Peel et al., 2007) to assign a climate type to each weather station. The 

assigned climate types are: polar, cold, temperate, tropical, and dry. Using the data set, we 

performed five-fold cross-validation to compare the performance of UKNN, UNB, UK-

means, OGPDM, FLDA, KFDA, UFLDA, and UKFDA. Table 4.3, reports the average 

accuracy values for the mentioned classifiers. As it can be seen, our proposed uncertain 

Fisher discriminants perform reasonably on this dataset. The best result (0.81 accuracy) is 

produced by UKFDA with 3rd order polynomial kernel. UKFDA with 2nd-order polynomial 

kernel and OGPDM produce reasonable results as well.  

Table 4.3   Comparison of classification accuracies of UKNN, UNB, UK-means, OGPDM, 

FLDA, UFLDA, KFDA, and UKFDA 

UKNN UNB UK-means OGPDM FLDA 

KFDA 

(2nd order 

polynomial 

kernel) 

KFDA 

(3rd order 

polynomial 

kernel) 

UFLDA 

UKFDA 

(2nd order 

polynomial 

kernel) 

UKFDA 

(3rd order 

polynomial 

kernel) 

0.58 0.53 0.55 0.71 0.52 0.53 0.54 0.55 0.77 0.81 

 

4.6 Conclusion  

In this chapter, we defined measures of scatter for uncertain data objects. We developed 

the definition of covariance matrix for uncertain data objects. Within and between scatter 

matrices were also defined for uncertain objects. Using the developed measures of scatter, 

we extended the Fisher linear discriminant analysis for uncertain data objects. Also we 

https://rda.ucar.edu/datasets/ds512.0/
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developed kernel Fisher discriminants for uncertain data objects. The derivations were 

developed for two cases: 1) when uncertain objects are given with probability density 

functions (PDF), 2) when uncertain objects are given with multiple points. We showed 

through examples that the obtained decision boundaries from our developed uncertain 

Fisher discriminants seem very reasonable for separating classes of uncertain objects. Also, 

we evaluated the classification performance on simulated scenarios with uncertain objects 

modeled with skew-normal distribution and a real data set.   
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 Validity indices for clusters of 

uncertain data objects 
 

Clustering, one of the main techniques in data mining, falls under the category of 

unsupervised techniques. Unsupervised techniques work with no class label information 

provided. Clustering is about organizing the objects in a data set into coherent and 

contrasted groups or as we call them clusters (Pakhira et al., 2004). The objective is to form 

clusters so that the objects in the same cluster are close to each other but are far from the 

objects in other clusters. In other words, the objective of clustering is to form clusters so 

that they are compact and also well-separated from each other. 

For certain data, many popular clustering algorithms exist in the literature (Shin et al. 

2012). One of the most well-known is K-means (Chiang et al. 2011; Hartigan and Wong 

1979).With the number of clusters known a priori, the K-means algorithm optimizes either 

by minimizing the within-cluster spread (forming compact clusters), or by maximizing the 

between-cluster spread (forming separated clusters). 

Uncertain data clustering algorithms have been the topic of a few research studies that 

appear in (Aggarwal and Philip, 2009; Chau et al., 2006; Lee et al., 2007; Gullo et al., 

2008b, 2010, 2017, 2013; Kao et al., 2010; Gullo et al., 2008a; Yang and Zhang, 2010; 

Kriegel and Pfeifle, 2005). A comprehensive survey of uncertain data algorithms which 

includes clustering algorithms as well is provided in (Aggarwal and Philip, 2009). In (Chau 

et al., 2006), a K-means clustering algorithm for uncertain data objects is developed which 

uses the expected distance to capture the dissimilarity between two uncertain objects. It is 

shown in (Lee et al., 2007) that the uncertain K-means algorithm of (Chau et al., 2006) can 

be reduced to certain K-means algorithm. A hierarchical clustering algorithm for uncertain 



 60 

 

 

 

data is proposed in (Gullo et al., 2008b) and (Gullo et al., 2017). Clustering uncertain data 

using Voronoi diagrams and r-tree index is developed in (Kao et al., 2010). Mixture model 

clustering of uncertain data objects is investigated in (Gullo et al., 2010, 2013). In (Gullo 

et al., 2008a; Yang and Zhang, 2010), K-medoids clustering algorithms for uncertain data 

objects using the expected distance as the distance between the two objects are proposed. 

In (Jiang et al., 2013; Kriegel and Pfeifle, 2005), density-based clustering algorithms 

ƑDBSCAN and uncertain DBSCAN with probabilistic distance measures are developed. 

A K-medoids clustering algorithm that uses probabilistic distance measures for capturing 

the distance between uncertain objects is also developed in (Jiang et al., 2013). In this 

paper, we use the uncertain K-medoids clustering algorithm with probabilistic distance 

measures to evaluate the performance of our proposed clustering validity indices. 

There are two important questions that need to be addressed in any clustering problem 

(Fraley and Raftery, 1998; Halkidi et al., 2001). One is about the actual number of clusters 

that are present in the data set. And another question is about the validity and goodness of 

the formed clusters. The answers to these two questions can be obtained by using clustering 

validity indices. Clustering validity indices are single numerical values that are obtained 

by incorporating both the compactness and separation of clusters (Pal and Biswas, 1997). 

When the question is to find the best number of clusters, first, a clustering algorithm such 

as K-means should be used. The desirable number of generated clusters k, k=1,…,n can be 

set as an input for the clustering algorithm. Clustering validity indices provide a value for 

each k, k=1,…,n. Depending on the index, the best number of clusters might be detected as 

the one that produces the largest or smallest value of the index. Similar to the procedure 

used to find the best number of clusters, clustering validity indices can be used to evaluate 
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the goodness of clusters. For any fixed number of clusters, different clustering algorithms 

might produce different clusters. In these cases also, the best formed clusters can be 

detected as the ones that produce the largest or smallest index values. 

There are many clustering validity indices for certain data objects such as Dunn (Dunn, 

1973), Davies-Bouldin (Davies and Bouldin, 1979), Xie-Beni (Xie and Beni, 1991), 

Silhouette (Rousseeuw, 1987), Calinski-Harbasz (Caliński and Harabasz, 1974), and 

Pakhira-Bandyopadhyay-Maulik (Pakhira et al., 2005). The first four indices, i.e. Dunn, 

Davies-Bouldin, Xie-Beni, and Silhouette, are of the most well-known and widely used 

ones in the literature, and therefore are used for evaluation purposes in this paper. To the 

best of our knowledge, there is not any clustering validity index in the literature that is 

designed for uncertain objects modeled with pdf or multiple points and can be used for 

validating the performance of uncertain clustering algorithms. 

In this dissertation, we propose two uncertain clustering validity indices for uncertain 

data objects: uncertain Silhouette and Order Statistic (OS) index. Our proposed indices not 

only are superior to existing certain clustering validity indices for validating clusters of 

uncertain data objects, are also robust to existence of outlier objects. The developed OS 

index is specifically designed to handle the type of problems where there is either a large 

dominant compactness value (a very spread cluster), or there is a small dominant separation 

value (two very close clusters). Those are the two type of problems for which uncertain 

Dunn index (special case of the OS index which is developed in this paper as well) fails to 

perform well. Both of the developed indices use probabilistic distance measures to capture 

the distance between uncertain data objects. Through several experiments, we evaluate the 

performance of our proposed clustering validity indices over the certain clustering validity 
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indices. The experiments include three two-dimensional synthetic data sets, a three-

dimensional synthetic data set, and a real weather data set. We also show the ability of 

handling outliers with an experiment with a synthetic data set. 

In this chapter, four of the most widely used clustering validity indices for certain data 

objects are explained in detail: Dunn; Davies-Bouldin; Silhouette; and Xie-Beni. The 

utilized uncertain K-medoids algorithm is also explained in this chapter. Our proposed 

uncertain clustering validity indices are explained along with experiments for evaluating 

the performance of the developed clustering validity indices on synthetic and real data are 

also presented.  

5.1 Clustering validity indices for certain data objects 

In this chapter we only consider crisp clusters, i.e., clusters in which objects only belong 

to one cluster. For this reason, four clustering validity indices that are widely used for crisp 

certain data are explained in this section. These indices are used for benchmarking. The 

four indices are Dunn (Dunn, 1973), Davies-Bouldin (Davies and Bouldin, 1979), Xie-

Beni (Xie and Beni, 1991), and Silhouette (Rousseeuw, 1987). Dunn, Davies-Bouldin, and 

Silhouette are indices that are derived based on crisp clusters. Xie-Beni though, is 

originally derived for fuzzy clusters, i.e., clusters in which objects can belong to more than 

one cluster. However, its reduced form can be used for crisp clusters. For further discussion 

on validity indices for crisp and fuzzy clusters, see (Halkidi et al., 2001).  

5.1.1 Dunn index 

Dunn index is a clustering validity index for clusters of certain data objects. It considers 

the distance between the two least separated clusters as the separation of the K clusters. It 
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also considers the compactness of the least compact cluster as the compactness of the K 

clusters. The index is defined in (5.1) for K clusters: 

 

𝐷𝑈𝐾 =

min
1≤𝑖,𝑗≤𝐾
𝑗≠𝑖

(𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗))

max
1≤𝑚≤𝐾

{𝑑𝑖𝑎𝑚(𝐶𝑚)}
 (5.1) 

 

where 𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗) denotes the distance between two clusters 𝐶𝑖 and 𝐶𝑗 and is defined as 

the distance between the two closest objects of the two clusters:  

 

𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗) = min
𝒙∈𝐶𝑖,𝒚∈𝐶𝑗

{𝑑(𝒙, 𝒚)} (5.2) 

 

and 𝑑𝑖𝑎𝑚(𝐶𝑚) denotes the diameter of cluster 𝐶𝑚 which is used for capturing the 

compactness of the cluster. The diameter of a cluster, as can be seen in (5.3), is defined as 

the distance between the two farthest objects in the cluster. 

 

𝑑𝑖𝑎𝑚(𝐶𝑚) = max
𝒙,𝒚∈𝐶𝑚

{𝑑(𝒙, 𝒚)} (5.3) 

 

In the above equations, 𝑑(𝒙, 𝒚) denotes the distance between two certain objects 𝒙 and 𝒚. 

𝑑(𝒙, 𝒚) can be computed using Euclidean distance measure: 𝑑(𝒙, 𝒚) =

√(𝑥1 − 𝑦1)2 +⋯+ (𝑥𝑝 − 𝑦𝑝)
2
 where, 𝑥𝑗 , 𝑗 = 1,… , 𝑝 denotes the j-th dimension of object 

𝒙. 

Large values of the Dunn index indicate existence of compact and well-separated clusters. 
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5.1.2 Davies-Bouldin 

Davies and Bouldin (Davies and Bouldin, 1979) propose incorporating separation and 

compactness of all pairs of certain data clusters 𝐶𝑖 and 𝐶𝑗, with 𝑅𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝐾, 𝑖 ≠ 𝑗, 

where  

 

𝑅𝑖𝑗 =
(𝑆𝑖 + 𝑆𝑗)

𝑑𝑖𝑗
 (5.4) 

 

and captures both the separation and compactness for the pair of clusters 𝐶𝑖 and 𝐶𝑗. 𝑆𝑖 and 

𝑆𝑗 are the components that capture the compactness of certain data clusters 𝐶𝑖 and 𝐶𝑗, and 

𝑑𝑖𝑗 captures the distance between the two clusters. The compactness of cluster 𝐶𝑖 can be 

defined as: 

 

𝑆𝑖 = {
1

𝑛𝑖
∑|𝒙𝒋 − 𝒛𝒊|

𝑞

𝒙𝒋∈𝐶𝑖

}
1
𝑞 (5.5) 

 

where 𝑛𝑖 is the number of objects in cluster 𝐶𝑖 and 𝒛𝒊 is the centroid of cluster 𝐶𝑖. If q=1, 

𝑆𝑖 becomes the average Euclidean distance of objects in cluster 𝐶𝑖.to the centroid of the 

cluster, 𝒛𝒊. If q=2, 𝑆𝑖 becomes the standard deviation of the distance of objects in the cluster 

to the cluster center. In general, higher values of 𝑆𝑖 indicate less compact and more 

dispersed clusters.  

The distance between clusters 𝐶𝑖 and 𝐶𝑗 is used to capture the separation of the two clusters. 

It can be defined as the distance between the centroids of clusters 𝐶𝑖 and 𝐶𝑗: 
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𝑑𝑖𝑗 = {∑|𝑧𝑖𝑑 − 𝑧𝑗𝑑|
𝑤

𝑝

𝑑=1

}
1
𝑤 (5.6) 

 

where, 𝑧𝑖𝑑 , 𝑑 = 1,… , 𝑝 denotes the d-th dimension of 𝒛𝒊. When w=1, 𝑑𝑖𝑗 becomes the "city 

block" distance and when w=2, 𝑑𝑖𝑗 becomes the Euclidean distance between two centroids. 

For further discussions on q and w, see (Davies and Bouldin, 1979). In this chapter, we 

consider q=w=2. 

Davies-Bouldin uses max
𝑗=1,…,𝐾,𝑖≠𝑗

𝑅𝑖𝑗 to define 𝑅𝑖 for cluster 𝐶𝑖 and eventually returns the 

index value as 𝐷𝐵𝐾 =
1

𝐾
∑ 𝑅𝑖
𝐾
𝑖=1 . Small values of the Davies-Bouldin index may indicate 

more compact and well-separated clusters. 

5.1.3 Silhouette  

The Silhouette index captures separation and compactness for every single certain object. 

For 𝐾 clusters the index is defined in (5.7) as follows:  

 

𝑆𝐼𝐾 =
1

𝑛
∑

(𝑏𝑖 − 𝑎𝑖)

max (𝑎𝑖, 𝑏𝑖)

𝑛

𝑖=1

 . (5.7) 

 

In this index, separation and compactness are captured through two components. 

Compactness for object 𝒙𝒊 is captured by component 𝑎𝑖 that is defined in (5.8). 𝑎𝑖 is defined 

as the average pairwise distance between object 𝒙𝒊 and all objects in the same cluster as 

object 𝒙𝒊 which is denoted by 𝐶𝑙𝑖 , 𝑙𝑖 ∈ {1,… , 𝐾}.  

 

𝑎𝑖 =
1

|𝐶𝑙𝑖|
∑ 𝑑(𝒙𝒊, 𝒚)

𝒚∈𝐶𝑙𝑖

, (5.8) 
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where |𝐶𝑙𝑖|, denotes the number of objects in cluster 𝐶𝑙𝑖. 

Separation for object 𝒙𝒊 is captured by component 𝑏𝑖 that is shown in (5.9).  𝑏𝑖 is considered 

as the separation between object 𝒙𝒊 and the closest cluster to it 𝐶𝑗 , 𝐶𝑗 ≠ 𝐶𝑙𝑖. The separation 

between object 𝒙𝒊 and cluster 𝐶𝑗 is defined as the average pairwise distance between object 

𝒙𝒊 and all objects in cluster 𝐶𝑗. 

 

𝑏𝑖 = min
𝑗
[
1

|𝐶𝑗|
∑ 𝑑(𝒙𝒊, 𝒚)𝒚∈𝐶𝑗 

𝐶𝑗≠𝐶𝑙𝑖

] (5.9) 

 

As it can be seen from (5.7), Silhouette, for each object, computes a scaled value of the 

difference between separation and compactness and eventually, returns the average of the 

scaled differences over all objects. Higher values of the index imply large separation and 

also more compactness which are the desirable characteristics of clusters. 

5.1.4 Xie-Beni 

Xie-Beni index for crisp certain data is defined in (5.10). The index captures compactness 

by obtaining the mean of squared distances between data objects and their cluster centroids. 

Separation is captured with the minimum squared distance between cluster centroids. 

 

𝑋𝐵𝐾 =
∑ ∑ 𝑑(𝒙, 𝒛𝒊)

2
𝒙∈𝐶𝑙𝑖

𝐾
𝑖=1

𝑛 ∙ min
𝑖,𝑗=1,⋯,𝐾

𝑖≠𝑗

𝑑(𝒛𝒊, 𝒛𝒋)
2
 (5.10) 

 

For Xie-Beni, smaller values of the index indicate large separation and more compactness.  
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5.2. Probabilistic distance measures and an uncertain K-medoids 

clustering algorithm 

5.2.1 Measuring the distance between two uncertain objects 

In this paper, we utilize probabilistic distance measures (PDM) to capture the distance 

between two uncertain objects. There are numerous applications for PDMs in many areas 

such as pattern recognition, communication theory, and statistics (Cover and Thomas, 

2012; Csiszar and Körner, 2011; Zhou and Chellappa, 2004). They are also used for 

estimating the bound on Bayesian classification error, signal selection, and asymptotic 

analysis (Basseville, 1989; Chernoff, 1952; Devijver and Kittler, 1982). Some of the most 

well-known probabilistic distance measures are: Variational, Chernoff, Generalized 

Matusita, Kullback-Leibler, Hellinger, and Bhattacharyya (Basseville, 1989). Hellinger 

and Bhattacharyya are special cases of Generalized Matusita and Chernoff respectively. 

Any of these PDMs can be used to capture the distance between two uncertain objects but 

in this paper, we use Bhattacharyya PDM (Bhattacharyya, 1946), one of the most well-

known measures. The definition of Bhattacharyya distance is shown in (5.11):  

 

𝑝𝑑𝐵(𝑿, 𝒀) = −log (∫
𝒕
√𝑝𝑿(𝒕)𝑝𝒀(𝒕)𝑑𝒕) (5.11) 

 

where 𝑝𝑿(𝒕) and 𝑝𝒀(𝒕) denote the pdfs of uncertain objects 𝑿 and 𝒀 and 𝒕 ∈ 𝑅𝒑. If 

uncertain objects are given in form of multiple points, instead of pdfs, histograms can be 

built for each object. (5.12) shows the definition of Bhattacharyya PDMwhen objects are 

given in form of multiple points (Cha, 2007). 
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𝑝𝑑𝐵(𝑿, 𝒀) = −ln (∑√𝑝𝑿(𝑖)𝑝𝒀(𝑖)
𝑏

𝑖=1

) (5.12) 

 

where 𝑝𝑿
(𝑖) and 𝑝𝒀

(𝑖) denote the frequency of points in the i-th bin for uncertain objects 𝑿 

and 𝒀 respectively. In the equation, 𝑏 denotes the number of bins. 

One of the main advantages of using Bhattacharyya PDM is when uncertain objects follow 

multivariate normal distributions, Bhattacharyya yields an analytical solution for the PDM 

between the two objects as shown in (5.13): 

 

𝑝𝑑𝐵(𝑿, 𝒀) =
1

4
(𝝁𝑿 − 𝝁𝒀)′(𝛴𝑋 + 𝛴𝑌)

−1(𝝁𝑿 − 𝝁𝒀) +
1

2
log(

|𝛴𝑋 + 𝛴𝑌|

2(|𝛴𝑋||𝛴𝑌|)
1
2

), (5.13) 

 

where 𝑿~𝑀𝑉𝑁(𝝁𝑿, 𝛴𝑋) and 𝒀~𝑀𝑉𝑁(𝝁𝒀, 𝛴𝑌). Here, 𝝁𝑿 and 𝝁𝒀 are means, and 𝛴𝑋 and 

𝛴𝑌 are covariance matrices. 

5.2.2 Uncertain K-medoids clustering algorithm 

Different uncertain K-medoids clustering algorithms have been proposed in the literature. 

Uncertain K-medoids algorithms that use the expected distance to capture the dissimilarity 

between two uncertain objects are developed in (Gullo et al., 2008a; Yang and Zhang, 

2010). In (Jiang et al., 2013), an uncertain K-medoids algorithm that uses PDMs to capture 

the distance between uncertain objects, is proposed. In this chapter, we use the latter 

algorithm and use Bhattacharyya as the PDM. The steps of the uncertain K-medoids 

algorithm are as follow: 
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Step 1: pick K initial uncertain objects (medoids) randomly. Form clusters by assigning 

each object to the cluster for which the probabilistic distance between the object and the 

cluster medoid is smallest. 

Step 2: Obtain the new medoids, 𝑚𝑘, 𝑘 = 1,… , 𝐾, as follow: 

 

𝑚𝑘 = 𝑎𝑟𝑔 min
𝑿𝒊∈𝐶𝑘

∑ 𝑝𝑑𝐵(𝑿𝒊, 𝑿𝒋)

𝑿𝒋∈𝐶𝑘\{𝑿𝒊}

 (5.14) 

where, 𝑝𝑑𝐵(𝑿𝒊, 𝑿𝒋) denotes the Bhattacharyya probabilistic distance between 𝑿𝒊 and 𝑿𝒋. 

Step 3: Using the new medoids, re-assign each object to the cluster of its nearest medoid. 

Repeat Step 2 and Step 3 until there is no change in the clusters. 

5.3 The proposed uncertain clustering validity indices 

In this section we explain the reason uncertain data objects require their own clustering 

validity indices through an example. Fig. 5.1(a) shows a two-dimensional example where 

there are two clusters of uncertain data objects. Objects in both clusters are in form of 

bivariate normal pdfs and are represented by ellipses. But objects in one cluster (shown in 

red) have positive correlation among their two dimensions, while objects in the other 

cluster (shown in blue) have negative correlation. Applying uncertain K-medoids 

clustering algorithm with K=2 on the objects, the two clusters are detectable.  
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                  (a)                                    (b) 

Figure 5.1   Two clusters of uncertain data a) each uncertain object shown with its whole pdf. 

b) each uncertain object from (a) shown with its mean only. 

In order to find the correct number of clusters of this example (i.e. two), a clustering 

validity index is needed. If the clustering validity indices for certain data objects that only 

use the object means, are used, the results would not be desirable and one cluster would be 

preferred to two clusters. The reason can be seen in Fig. 5.1(b), where only the object 

means are shown and it is impossible to distinguish between the red and blue clusters. 

Clustering validity indices designed for uncertain data objects should prefer two clusters 

over a single cluster in this example. We show in the experiments section that our 

developed uncertain clustering validity indices are well capable of doing so. 

5.3.1 Uncertain Silhouette 

Our first proposed cluster validity index for uncertain data objects is called uncertain 

Silhouette index. The definition of the uncertain Silhouette is shown in (5.15).  

 

𝑈𝑆𝐼𝐾 =
1

𝑛
∑

(𝑢𝑏𝑖 − 𝑢𝑎𝑖)

max (𝑢𝑎𝑖, 𝑢𝑏𝑖)

𝑛

𝑖=1

 (5.15) 
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where 𝑢𝑎𝑖 denotes the compactness and 𝑢𝑏𝑖 denotes the separation for uncertain object 𝑿𝒊. 

The definitions of 𝑢𝑎𝑖 and 𝑢𝑏𝑖 are shown in (5.16) and (5.17) respectively. As it can be 

seen from (5.16), similar to the case for certain data as in (5.8), compactness of an object 

𝑿𝒊 is defined as the average pairwise distance between the object 𝑿𝒊 and all objects in the 

same cluster as object 𝑿𝒊. The main difference between 𝑢𝑎𝑖 and 𝑎𝑖 (compactness 

component of Silhouette index for certain data objects) is that in 𝑢𝑎𝑖 PDMs are used to 

better capture the distance between uncertain objects, while in 𝑎𝑖 distance measures for 

certain data objects such as Euclidean are used. 

 

𝑢𝑎𝑖 =
1

|𝐶𝑙𝑖|
∑ 𝑝𝑑(𝑿𝒊, 𝒀)

𝒀∈𝐶𝑙𝑖

 (5.16) 

 

As it can be seen from (5.17), similar to the case for the original Silhouette index, 𝑢𝑏𝑖 

is considered as the separation between object 𝑿𝒊 and the closest cluster to it 𝐶𝑗 , 𝐶𝑗 ≠ 𝐶𝑙𝑖. 

The separation between object 𝑿𝒊 and cluster 𝐶𝑗 is defined as the average pairwise distance 

between object 𝑿𝒊 and all objects in cluster 𝐶𝑗. Again, the main difference between 𝑢𝑏𝑖 and 

𝑏𝑖 is that in 𝑢𝑏𝑖 PDMs are used to capture the distance between objects, while in 𝑏𝑖 distance 

measures for certain data objects are used.  

 

𝑢𝑏𝑖 = min
𝑗
 (
1

|𝐶𝑗|
∑ 𝑝𝑑(𝑿𝒊, 𝒀)
𝒀∈𝐶𝑗
𝐶𝑗≠𝐶𝑙𝑖

) 
(5.17) 

 

In this, we use Bhattacharyya as the PDM for computing the uncertain Silhouette index. 

Same as the original Silhouette, the optimal setting is the one that produces the largest 

index value and possibly the one that has the most compact and well-separated clusters. 
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5.3.2 OS index 

In this section we propose a new clustering validity index for uncertain data objects, named 

Order Statistic (OS). The OS index can be considered as a general form of uncertain Dunn 

index, which is also developed in this paper. The OS index is composed of two components 

for capturing separation and compactness of clusters. It considers the average of r (r >1) 

smallest inter-cluster distances for separation, and also the average of r (r >1) largest intra-

cluster distances for compactness. This enables the index to correctly detect the correct 

number of clusters in cases where there is either a very scattered cluster, or two very close 

clusters. The aforementioned cases are the ones for which uncertain Dunn index (r =1) will 

fail in detecting the correct clusters. We propose r=K-1 and find it a reasonable choice for 

r. The OS index is shown in (5.18). 

 

𝑂𝑆 =

∑ 𝑠𝑝(𝑖)
𝑟
𝑖=1

𝑟⁄

∑ 𝑐𝑝(𝑗)
𝐾
𝑗=𝐾−𝑟+1

𝑟⁄
 (5.18) 

 

where 𝑠𝑝(𝑖), 𝑖 = 1,… ,
𝐾(𝐾−1)

2
 is the i-th smallest order statistic of inter-cluster distances. 

The first order statistic of inter-cluster distances is 𝑠𝑝(1) = min
1≤𝐶𝑖,𝐶𝑗≤𝐾

𝐶𝑖≠𝐶𝑗

[𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗)]. Here, 

for 𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗), which denotes the distance between clusters 𝐶𝑖 and 𝐶𝑗, we propose the 

average of s smallest pairwise probabilistic distances between objects in cluster 𝐶𝑖 and 

objects in cluster 𝐶𝑗. Capturing the distance between two clusters in this fashion has the 

advantage of being more robust to the existence of outlier values. 

𝑐𝑝(𝑗), 𝑗 = 1,…𝐾, is the j-th smallest order statistic of intra-cluster distances. The K-th 

order statistic of intra-cluster distances is 𝑐𝑝(𝐾) = 𝑚𝑎𝑥
1≤𝐶𝑚≤𝐾

[𝑑𝑖𝑎𝑚(𝐶𝑚)]. Here, 𝑑𝑖𝑎𝑚(𝐶𝑚) 



 73 

 

 

 

denotes the diameter of cluster 𝐶𝑚 and basically captures the compactness of the cluster. 

For 𝑑𝑖𝑎𝑚(𝐶𝑚), we propose the average of t largest pairwise probabilistic distances 

between objects in cluster 𝐶𝑚. Capturing the diameters of clusters in this fashion has the 

advantage of being more robust to the existence of outlier values as well.  

In the experiment section, we try two settings for the parameters s and t of the OS: 1) 

s=t=3, and 2) s=t=5. If we choose r=s=t=1, the OS index will reduce to an index that we 

call uncertain Dunn. Uncertain Dunn index is defined in (5.19).  

 

𝑈𝐷𝑈𝐾 =
𝑠𝑝(1)

𝑐𝑝(1)
=

min
1≤𝑖,𝑗≤𝐾
𝑗≠𝑖

(𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗))

max
1≤𝑚≤𝐾

{𝑑𝑖𝑎𝑚(𝐶𝑚)}
 (5.19) 

In this index, 𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗) and 𝑑𝑖𝑎𝑚(𝐶𝑚) are defined based on (5.20) and (5.21).  

 

𝑑𝑖𝑠𝑡(𝐶𝑖, 𝐶𝑗) = min
𝑿∈𝐶𝑖,𝒀∈𝐶𝑗

{𝑝𝑑(𝑿, 𝒀)} (5.20) 

 

𝑑𝑖𝑎𝑚(𝐶𝑚) = max
𝑿,𝒀∈𝐶𝑚

{𝑝𝑑(𝑿, 𝒀)} (5.21) 

 

(5.19-5.21), can be compared with (5.1-5.3) for certain Dunn index. Large values of the 

index indicate existence of compact and well-separated clusters.  

One of the drawbacks of this uncertain Dunn index is its sensitivity to outlier values. 

Existence of outliers can highly affect (5.20) and (5.21), and therefore the whole index. 

Another drawback of the uncertain Dunn index is its poor performance in the presence of 

either dominant small separation or large compactness values. 

In the experiments section we show the capability of the OS and Silhouette indices over 

uncertain Dunn in overcoming these drawbacks through several experiments.  
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5.4 Experiments 

The effectiveness of our proposed uncertain clustering validity indices is demonstrated 

through experiments on the following data sets: four two-dimensional synthetic data sets, 

a three-dimensional synthetic data set, and the weather data set. Uncertain objects in each 

synthetic data set are modeled with multivariate normal distribution. Performance of Dunn, 

Davies-Bouldin, Xie-Beni, Silhouette, uncertain Dunn, uncertain Silhouette, and OS with 

different parameters are compared.  

5.4.1 Two dimensional synthetic data sets 

We conducted experiments on four two-dimensional data sets named SD1, SD2, SD3, and 

SD4. For each data set, different number of clusters was generated and each cluster 

contained 50 uncertain objects. Fig. 5.2 shows the generated clusters for each data set. For 

SD1, SD3, SD4, three, and for SD2, five clusters were generated. SD3 and SD4 are very 

similar, except that for SD4 there exist a major outlier (shown with dashed ellipse). This 

can be observed by comparing Fig. 5.2(c) and Fig. 5.2(d). 

  
(a) (b) 

  
(c) (d) 
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Figure 5.2   Four two dimensional synthetic data sets of uncertain data objects, a) SD1, b) SD2, c) 

SD3 and d) SD4. The correct number of clusters for (a) to (d) are respectively 3,5, 3, and 3.  

 

Figures 5.3-5.6 show the optimal formed clusters for each k, k=2,3,…,8, after applying the 

uncertain K-medoids algorithm on SD1-SD4 respectively. As it can be also verified from 

the figures, the optimal number of clusters should be respectively 3, 5, 3, 3 for SD1-SD4.  

 

Figure 5.3   The optimal formed clusters for k, k=2,3,…,8, after applying the 

uncertain K-medoids algorithm on the two dimensional data set SD1 

 

Figure 5.4   The optimal formed clusters for k, k=2,3,…,8, after applying the 

uncertain K-medoids algorithm on the two dimensional data set SD2 
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Tables 5.1-5.3, contain the values of eight different indices: Dunn, Davies-Bouldin, Xie-

Beni, Silhouette, uncertain Dunn (OS with r=1, s=t=1), uncertain Silhouette, OS with 

r=K-1, s=t=3, and OS with r=K-1, s=t=5 for SD1-SD3. Table 5.4 contains one more index 

compared to Tables 5.1-5.3. That index is OS with r=K-1, s=t=1.  

 

Figure 5.5   The optimal formed clusters for k, k=2,3,…,8, after applying the 

uncertain K-medoids algorithm on the two dimensional data set SD3 
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Figure 5.6   The optimal formed clusters for k, k=2,3,…,8, after applying the 

uncertain K-medoids algorithm on the two dimensional data set SD4 

  

As it can be seen from Table 5.1, Dunn, Davies-Bouldin, Xie-Beni, and Silhouette, the four 

clustering validity indices for certain data objects that only use the mean of each object, 

fail in detecting the correct number of clusters for SD1, which is 3. However, it can be seen 

from the table that the developed clustering validity indices for uncertain data objects: 

uncertain Dunn (OS with r=1, s=t=1), uncertain Silhouette, OS with r=K-1, s=t=3, and 

OS with r=K-1, s=t=5 are all successful in detecting the correct number of clusters. 

 

Table 5.1   Applying certain and uncertain clustering validity indices on the two dimensional data 

set SD1. Uncertain clustering validity indices are all successful in detecting the correct number of 

clusters while all the certain validity indices fail 

K Dunn 
Davies-

Bouldin 
Xie-Beni Silhouette 

Uncertain 

Dunn 

r=1 

s=t=1 

Uncertain 

Silhouette 

OS 

r=K-1 

s=t=3 

OS 

r=K-1 

s=t=5 

2 0.0029 57.8018 19.0056 -0.1014 1.8400 0.8933 1.7833 1.8400 

3 0.0019 20.6739 13.8479 -0.0697 4.7321 0.9817 8.1492 9.2647 

4 0.0019 16.3579 25.6527 -0.0634 0.1479 0.7700 3.4246 4.0633 

5 0.0005 28.3027 199.6638 -0.2966 0 0.4666 1.4602 1.7265 

6 0.0019 10.1117 5.3224 -0.1009 0.1062 0.5019 1.4644 1.7998 

7 0.0010 9.9790 27.2011 -0.5010 0.0214 0.4158 0.1059 0.1454 

8 0.0005 21.1325 838.8978 -0.4815 0 0.2677 0.2240 0.3109 

 

From Table 5.2, it can be seen that in addition to Dunn, Davies-Bouldin, Xie-Beni, and 

Silhouette, uncertain Dunn (OS with r=1, s=t=1) also fails in detecting the correct number 

of clusters for SD2, which is 5. The reason for that is large dominant compactness and 

small dominant separation values. Again, it can be seen from the table that uncertain 

Silhouette, OS with r=K-1, s=t=3, and OS with r=K-1, s=t=5 are all successful in 

detecting the correct number of clusters. 

Same conclusions are valid for the results of Table 5.3. Again, Dunn, Davies-Bouldin, 

Xie-Beni, and Silhouette fail because of disability to capture the uncertain nature of the 
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data objects, and uncertain Dunn (OS with r=1, s=t=1) also fails because of large dominant 

compactness and small dominant separation values. Uncertain Silhouette, OS with r=K-1, 

s=t=3, and OS with r=K-1, s=t=5, again successfully detect the correct number of clusters 

for SD3 which is 3. 

 

Table 5.2   Applying certain and uncertain clustering validity indices on the two dimensional data 

set SD2. Uncertain clustering validity indices uncertain Silhouette, OS with r=K-1, s=t=3, and 

OS with r=K-1, s=t=5 are all successful in detecting the correct number of clusters while all the 

certain validity indices fail 

K Dunn 
Davies-

Bouldin 

Xie-

Beni 
Silhouette 

Uncertain 

Dunn 

r=1 

s=t=1 

Uncertain 

Silhouette 

OS 

r=K-1 

s=t=3 

OS 

r=K-1 

s=t=5 

2 0.9075 0.3360 0.0006 0.8507 0.2569 0.8285 0.2483 0.2569 

3 4.6451 0.0593 0.0000 0.9975 16.2640 0.9535 44.1609 47.3189 

4 0.0092 0.7717 0.0171 0.7411 0.5816 0.9595 44.0676 48.0640 

5 0.0092 3.8580 0.4700 0.3686 2.0522 0.9614 57.3715 70.1076 

6 0.0092 3.7491 0.4940 0.5140 0.1609 0.8264 19.7402 23.6331 

7 0.0018 4.9815 1.2939 0.1897 0  0.6832 1.9928 2.4392 

8 0.0100 22.7409 67.6587 0.1742 0.1397 0.6926 2.0621 2.5426 

 

Table 5.3   Applying certain and uncertain clustering validity indices on the two dimensional data 

set SD3. Uncertain clustering validity indices uncertain Silhouette, OS with r=K-1, s=t=3, and 

OS with r=K-1, s=t=5 are all successful in detecting the correct number of clusters while all the 

certain validity indices fail 

K Dunn 
Davies-

Bouldin 

Xie-

Beni 
Silhouette 

Uncertain 

Dunn 

r=1 

s=t=1 

Uncertain 

Silhouette 

OS 

r=K-1 

s=t=3 

OS 

r=K-1 

s=t=5 

2 7.7244 0.0269 0.0000 0.9995 35.2860 0.9710 34.3055 35.2860 

3 0.0059 12.6706 2.1931 0.4564 4.9203 0.9899 110.6491 136.6136 

4 0.0093 7.1799 1.0184 0.5371 0.0173 0.6208 0.0572 0.0710 

5 0.0012 11.5813 5.2946 -0.0506 0 0.5502 1.7286 2.0808 

6 0.0012 12.1038 19.2728 -0.4720 0 0.4898 1.4815 1.7834 

7 0.0011 2.6580 2.7301 -0.0824 0.0759 0.2533 2.3242 2.9036 

8 0.0025 6.2771 6.3955 0.2959 0.1178 0.5061 0.2339 0.4163 

 

Table 5.4 results lead to the same conclusion as Table 5.3 except that they also demonstrate 

the advantage of using OS with r=K-1, s=t=3, and OS with r=K-1, s=t=5, over OS with 
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r=K-1, s=t=1 in the case of an existing outlier. As it can be seen from the table, in addition 

to the validity indices for certain data objects and uncertain Dunn that fail in detecting the 

correct number of clusters, if OS with r=K-1, s=t=1 is used, the correct number of clusters 

which is 3, is also not detected and 2 clusters are detected as the correct number of clusters 

instead. 

 

Table 5.4   Applying certain and uncertain clustering validity indices on the two dimensional data 

set SD4. In addition to all the certain validity indices which fail in detecting the correct number of 

clusters, OS with r=K-1, s=t=1 also fails due to the existing outlier. Uncertain clustering validity 

indices uncertain Silhouette, OS with r=K-1, s=t=3, and OS with r=K-1, s=t=5 are all successful 

in detecting the correct number of clusters  

K Dunn 

Davies

-

Bouldi

n 

Xie-

Beni 

Silhouett

e 

Uncertai

n Dunn 

r=1 

s=t=1 

Uncertai

n 

Silhouett

e 

OS 

r=K-1 

s=t=1 

OS 

r=K-1 

s=t=3 

OS 

r=K-1 

s=t=5 

2 
1.166

3 
0.0721 0.0000 0.9939 8.3014 

0.8868 7.947

2 
8.1401 8.3014 

3 
0.008

5 
5.5387 0.4185 0.4156 3.2962 

0.9850 4.583

5 
16.361

2 

25.542

4 

4 
0.008

0 
3.0342 0.1601 0.4479 0.0177 0.6729 

1.520

3 

2.9987 
4.0152 

5 
0.001

0 
3.2160 1.7455 0.1968 0 0.5173 

0.591

0 

1.2890 
1.8138 

6 
0.001

0 
5.3456 

-

0.3045 
0.0625 0.4267 0.4267 

0.591

9 

1.2668 
1.7419 

7 
0.001

0 
3.8207 

20.957

5 
0.0819 0 0.4341 

0.061

3 

0.1793 
0.2975 

8 
0.001

6 
4.3963 3.4262 0.1286 0.0524 0.4476 

0.058

7 

0.1811 
0.2991 

 

The values of the studied indices with respect to k, k=2,3,…,8 for SD1-SD4 are shown in 

Fig. 5.7. As it can be seen from the figures, the developed clustering validity indices for 

uncertain data uncertain Silhouette, OS with r=K-1, s=t=3, and OS with r=K-1, s=t=5 produce 

relatively sharp peaks for the correct number of clusters. 
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(a) (b) 

 

 

 

 
(c) (d) 

 

Figure 5.7   Values of the studied indices with respect to k, k=2,3,…,8, for a) SD1, b) 

SD2, c) SD3, and d) SD4. The developed clustering validity indices for uncertain data uncertain 

Silhouette, OS with r=K-1, s=t=3, and OS with r=K-1, s=t=5 produce relatively sharp peaks for 

the correct number of clusters. 

5.4.2 Three dimensional synthetic data set 

In order to show the ability of our proposed indices in detecting the correct number of 

clusters of uncertain objects with dimensions higher than two, we conducted an experiment 

on a three-dimensional synthetic data set as well. The data set is called SD5 and contains 

four generated clusters of uncertain data objects. Fig. 5.8(a) demonstrates three scatterplots 

for the generated clusters. The scatterplots respectively from left to right, are two-

dimensional representations of the uncertain data objects along the first and second 
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dimensions, the first and third dimensions, and the second and third dimensions. Figures 

5.8(b-h), show the optimal formed clusters for each k, k=2,3,…,8, after applying the 

uncertain K-medoids algorithm on SD5. 

For this three-dimensional data set also, as it can be seen from Table 5.5, Dunn, Davies-

Bouldin, Xie-Beni, Silhouette, and uncertain Dunn (OS with r=1, s=t=1) fail respectively 

because of their disability to capture the uncertain nature of the data objects, and large 

dominant compactness and small dominant separation values. The correct number of 

clusters for SD5, which is 4, is again successfully detected by uncertain Silhouette, OS 

with r=K-1, s=t=3, and OS with r=K-1, s=t=5. 

 

Figure 5.8   Scatterplots of dimensions 1 and 2, 1 and 3, and 2 and 3 for a) the four 

generated clusters of uncertain data objects, b-h) the optimal formed clusters after applying the 

uncertain K-medoids algorithm with k, k=2,3,…,8 on the three dimensional data set SD5  

 

   
(a) (b) (c) 

 
  

(d) (e) (f) 

  
(g) (h) 
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Table 5.5   Applying certain and uncertain clustering validity indices on the three-dimensional 

data set SD5. Uncertain clustering validity indices uncertain Silhouette, OS with r=K-1, s=t=3, 

and OS with r=K-1, s=t=5 are all successful in detecting the correct number of clusters while all 

the certain validity indices fail 

K Dunn 
Davies-

Bouldin 

Xie-

Beni 
Silhouette 

Uncertain 

Dunn 

r=1 

s=t=1 

Uncertain 

Silhouette 

OS 

r=K-1 

s=t=3 

OS 

r=K-1 

s=t=5 

2 0.9316 0.5349 0.0013 0.7949 1.6084 0.7613 1.4970 1.6084 

3 4.5841 0.0731 0.0000 0.9978 7.2314 0.9017 22.1590 23.6563 

4 0.0151 8.0019 3.0704 0.6033 3.9559 0.9825 46.1158 51.1849 

5 0.0151 5.1799 1.3351 0.3406 0.0956 0.7925 19.7584 21.8096 

6 0.0028 16.4242 18.2464 0.1221 0.1389 0.5975 17.0608 19.4601 

7 0.0028 8.2641 7.3788 0.2546 0.0569 0.6011 2.9664 3.3417 

8 0.0030 11.3456 9.9485 0.0173 0 0.3798 1.0924 1.3263 

Fig. 5.9 demonstrate the values of the studied indices with respect to k, k=2,3,…,8 for 

SD5. 

 

 

Figure 5.9   Values of the studied indices with respect to k, k=2,3,…,8, for SD5. The 

developed clustering validity indices for uncertain data uncertain Silhouette, OS with r=K-1, 

s=t=3, and OS with r=K-1, s=t=5 produce relatively sharp peaks for the correct number of 

clusters. 

 

As it can be seen from the figure, uncertain Silhouette, OS with r=K-1, s=t=3, and OS 

with r=K-1, s=t=5 all produce relatively sharp peaks for the correct number of clusters 

which is four. 
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5.4.3 Weather data set 

The weather data set in this paper is a data set that was collected from the National Center 

for Atmospheric Research data archive (https://rda.ucar.edu/datasets/ds512.0/). The 

collected data set contains the daily weather information (average temperature and 

precipitation level) of 1522 weather stations around the world for the year 2011. Each 

station in this data set, can be considered as an uncertain object with 365 two-dimensional 

points. Based on Kӧppen-Geiger climate classification (Peel et al., 2007), these stations are 

of five climate types: polar, cold, temperate, tropical, and dry. Fig. 5.10 demonstrates 

examples of stations with the five climate types. 

 

 
(a) 

https://rda.ucar.edu/datasets/ds512.0/
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(b) 

 

Figure 5.10   Examples of stations with the five climate types: polar, cold, temperate, tropical, 

dry, a) plotted separately, b) plotted together 

 

We performed the uncertain K-medoids algorithm with Bhattacharyya pdm on the weather 

data set with k=2,3,…,8. For each k, we ran the algorithm 10 times and compared the 

performance of eight indices: Dunn, Davies-Bouldin, Xie-Beni, Silhouette, Uncertain 

Dunn (OS with r=1, s=t=1), Uncertain Silhouette, OS with r=K-1, s=t=3, and OS with 

r=K-1, s=t=5.The numbers for each particular k in Table 5.6, demonstrate the best results 

out of the 10 runs for each index.  

 

Table 5.6   Applying certain and uncertain clustering validity indices on the weather data set. 

Uncertain clustering validity indices uncertain Silhouette, OS with r=K-1, s=t=3, and OS with 

r=K-1, s=t=5 successfully detect the correct number of clusters which is five while others fail 

K Dunn 
Davies-

Bouldin 

Xie-

Beni 
Silhouette 

Uncertain 

Dunn 

r=1 

s=t=1 

Uncertain 

Silhouette 

OS 

r=K-1 

s=t=3 

OS 

r=K-1 

s=t=5 

2 0.0002 1.2389 0.0005 0.4795 0 0.4466 0 0 

3 0.0001 0.8873 0.0004 0.4387 0.0011 0.4017 0.0017 0.0019 

4 0.0001 1.2076 0.0029 0.4899 0.0404 0.5197 0.0732 0.0740 

5 0.0003 1.0342 0.0025 0.0452 0.0016 0.5802 0.1363 0.1375 

6 0.0006 1.4505 0.0041 0.0025 0 0.5244 0.1191 0.1198 



 85 

 

 

 

7 0.0002 2.6987 0.0518 -0.5712 0.0008 0.3363 0.0284 0.0290 

8 0.0002 5.3586 0.9361 -0.6211 0.0019 0.3165 0.0651 0.0663 

 

As it can be seen from the table, our developed uncertain clustering validity indices, 

uncertain Silhouette and OS perform very well in detecting the correct number of clusters 

(five). The four clustering validity indices for certain data, i.e. Dunn, Davies-Bouldin, Xie-

Benie, and Silhouette fail in detecting the correct number of clusters. Also, we can see that 

Uncertain Dunn, which is a simple case of the OS algorithm, fails, possibly because of its 

sensitivity to outlier values or either dominant separation values, or compactness values. 

The values of the eight indices with respect to the number of clusters k, k=2,3,…,8, is 

plotted in Fig. 5.11. 

 

 

Figure 5.11   Values of the studied indices with respect to k, k=2,3,…,8, for the weather 

data set. The developed clustering validity indices for uncertain data uncertain Silhouette, OS 

with r=K-1, s=t=3, and OS with r=K-1, s=t=5 produce relatively sharp peaks for the correct 

number of clusters. 

Table 5.7 shows a summary of the performance of the studied clustering validity indices 

on all of the data sets. As it can be seen from the table, our proposed clustering validity 

indices for uncertain data objects, i.e. uncertain Silhouette and OS are both successful in 
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detecting the correct number of clusters for all of the data sets. Uncertain Dunn which is a 

reduced and simplified form of the OS is only successful for one data set (SD1), while all 

the clustering validity indices for certain data objects, i.e. Dunn, Davies-Bouldin, Xie-Beni, 

and Silhouette, fail to detect the correct number of clusters for all data sets. 

Table 5.7   Summary of the performance of the studied clustering validity indices on all of the 

data sets. The developed uncertain clustering validity indices successfully detect the correct 

number of clusters for all the studied data sets while uncertain Dunn is only successful for one 

data set and the certain clustering validity indices fail for all of the data sets 

Data set 
True 

clusters 
Dunn 

Davies-

Bouldin 

Xie-

Beni 
Silhouette 

Uncertain 

Dunn 

r=1 

s=t=1 

Uncertain 

Silhouette 

OS 

r=K-1 

s=t=3 

OS 

r=K-1 

s=t=5 

SD1 3 1 7 6 4 3 3 3 3 

SD2 5 3 3 3 3 3 5 5 5 

SD3 3 2 2 2 2 2 3 3 3 

SD4 3 2 2 2 2 2 3 3 3 

SD5 4 3 3 3 3 3 4 4 4 

Weather 5 6 3 3 2 4 5 5 5 

 

Fig. 5.12, demonstrates the values of the studied indices: Dunn, Davies-Bouldin, Xie-Beni, 

Silhouette, uncertain Dunn, uncertain Silhouette, OS with r=K-1, s=t=3, and OS with r=K-

1, s=t=5, with respect to k, k=2,3,…,8 for all of the data sets: SD1, SD2, SD3, SD4, SD5, 

and weather. As it can be seen from the figure, uncertain Silhouette, OS with r=K-1, s=t=3, 

and OS with r=K-1, s=t=5 are the only indices that produce sharp peaks for the correct 

number of clusters of all of the studied data sets. 
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Figure 5.12   Values of the studied indices with respect to k, k=2,3,…,8, for all of the data sets. 

Uncertain Silhouette, OS with r=K-1, s=t=3, and OS with r=K-1, s=t=5 are the only indices that 

produce sharp peaks for the correct number of clusters of all of the studied data sets 

 

5.5 Conclusion 

In this chapter, we proposed two indices, named uncertain Silhouette and Order Statistics 

index (OS), for validation of clusters of uncertain data objects. To our best knowledge, 

prior to this work, there was not any clustering validity indices in the literature, designed 

to handle uncertain objects given in forms of multiple points or probability density 

functions. 

Our proposed indices not only outperform existing certain clustering validity indices in 

validating clusters of uncertain data objects, they also show robustness to existence of 

outlier objects. We particularly designed the OS index to handle the type of problems where 

either a very scattered cluster or two very close clusters, can impede detection of correct 

number of clusters. We showed in the experiments that the OS index clearly outperforms 

uncertain Dunn (also developed here) which is a simplified case of the OS index in dealing 
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with such cases. The effectiveness of our developed indices was evaluated through several 

experiments on synthetic and real data sets.  

Besides the two developed clustering validity indices in this dissertation, more indices for 

uncertain data objects can be significant in a conducting a comprehensive validation of 

clusters of uncertain data objects.  
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 Conclusion  
 

In this dissertation, we proposed two new approaches for classifying uncertain objects 

modeled with multivariate Normal PDF. Both of the proposed approaches are based on the 

concept of probabilistic distance measures. The first approach is based on obtaining object-

to-object distances. It includes a K-nearest neighbor classifier that can use existing 

probabilistic distance measures. We choose Bhattacharyya distance measure as the 

probabilistic distance measure since it has analytical solution for multivariate Normal PDF. 

This approach is successful in classifying uncertain objects in experiment using both 

simulated and real data as it proves to be better than the certain KNN approach and 

uncertain naïve Bayesian classifier in majority of the verified cases.  

In order to achieve even better classification performance another approach was 

proposed. The second approach is based on the object-to-group distance. In this regard, it 

uses a proposed probabilistic distance measure called OGPDM. Using OGPDM for 

classification both object-correlation and class-correlation are captured. The OGPDM 

approach provides better classification performance compared to the other approaches as 

it uses the optimal separating hyper-plane.  

We also defined measures of scatter for uncertain data objects. We developed the 

definition of covariance matrix for uncertain data objects. Within and between scatter 

matrices were also defined for uncertain objects. Using the developed measures of scatter, 

we extended the Fisher Linear Discriminant Analysis for uncertain data objects. Also we 

developed Kernel Fisher Discriminants for uncertain data objects. The derivations were 

developed for two cases: 1) when uncertain objects are given with probability density 

functions, 2) when uncertain objects are given with multiple points. We showed through 
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examples that the obtained decision boundaries from our developed Fisher Discriminants 

for uncertain objects seem very reasonable for separating classes of uncertain objects. 

Moreover, we showed scenarios with uncertain objects modeled with skew-normal 

distribution that when the distance between classes of the uncertain objects is small our 

developed Uncertain Fisher Discriminants performs better than Certain Fisher 

Discriminants in terms of classification accuracy. 

Finally, we proposed two indices, named uncertain Silhouette and Order Statistics 

index (OS), for validation of clusters of uncertain data objects. To our best knowledge, 

prior to this work, there was not any clustering validity indices in the literature, designed 

to handle uncertain objects given in forms of multiple points or probability density 

functions. 

Our proposed indices not only outperform existing certain clustering validity indices in 

validating clusters of uncertain data objects, they also show robustness to existence of 

outlier objects. We particularly designed the OS index to handle the type of problems where 

either a very scattered cluster or two very close clusters, can impede detection of correct 

number of clusters. We showed in the experiments that the OS index clearly outperforms 

uncertain Dunn (also developed here) which is a simplified case of the OS index in dealing 

with such cases. The effectiveness of our developed indices was evaluated through several 

experiments on synthetic and real data sets.  
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Appendix I.a: Kernelizing 𝐰𝐭𝐁𝐔𝐰 for objects given with multiple points 
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U𝐰 = [∑αi∅(𝛍 𝐢)

n
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Appendix I.b: Kernelizing 𝐰𝐭𝐖𝐔𝐰 for objects given with multiple 

points 
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where it can be further simplified into a two-parts formula:  

𝐰tWU
∅𝐰

= [∑αi∅(𝛍 𝐢)

n

i=1

]

𝐭

[∑∑[(∅(𝛍 𝐣
𝐤) − 𝛍 𝐤

∅)(∅(𝛍 𝐣
𝐤) − 𝛍 𝐤

∅)
𝐭
]

nk

j=1

K

k=1

] [∑αi∅(𝛍 𝐢)

n

i=1

]

+ [∑αi∅(𝛍 𝐢)

n

i=1

]

𝐭

[∑∑[
∑ (∅(𝐱𝐭𝐣

𝐤) − ∅(𝛍 𝐣
𝐤)) (∅(𝐱𝐭𝐣

𝐤) − ∅(𝛍 𝐣
𝐤))

𝐭lj
k

t

lj
k

]

nk

j=1

K

k=1

] [∑αi∅(𝛍 𝐢)

n

i=1

] 

Same as the derived formula by (S. Mika, et al., 1999), Part 1 of the above formula can 

be written as:  
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Part 2 of the formula can be expanded as follow: 
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Appendix II: Kernelizing 𝐰𝐭𝐖𝐔𝐰 for objects given with PDF 
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Again, the first part of the formulation above is the same as the one developed for 

Uncertain Kernel Fisher Discriminant for objects given with multiple points. Instead of 

using estimates for mean vectors, actual parameter values are used. Therefore, we can 

write it as: 
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The second part of the formulation includes the mapped object-covariance 

matrices. Using the idea in (J.Yang & S.Gunn, 2007), the mapped covariance matrix of 

object j in class k can be written as: (∑j
k)∅ = Jj

k∑j
k(Jj

k)T where Jj
k =

∂∅(𝐗)

∂𝛍𝐣
𝐤  is the Jacobian 

matrix for the mapped vector examined at 𝛍𝐣
𝐤 (the mean of object j in class k). 

The second part of the formulation can be expanded as follows: 
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[∑αi∅(𝛍𝐢)

n

i=1

]

𝐭

[∑∑[(∑j
k)∅]

nk

j=1

K

k=1

] [∑αi∅(𝛍𝐢)

n

i=1

]

= [∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

]

𝐭

[∑∑Jj
k∑j

k(Jj
k)T

𝐧𝐤

𝐣=𝟏

𝐊

𝐤=𝟏

] [∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

] 

As ∑j
k is a real symmetric matrix, it can be decomposed by its eigenvalues and 

eigenvectors ∑j
k = Qj

kɅj
kQj

k where Qj
k is a p*p matrix of eigenvectors and Ʌj

k is a p*p 

diagonal matrix of aeigenvalues. The formula can be further simplified: 

[∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

]

𝐭

[∑∑Jj
k∑j

k(Jj
k)t

𝐧𝐤

𝐣=𝟏

𝐊

𝐤=𝟏

] [∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

]

= [∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

]

𝐭

[∑∑Jj
k [Qj

k(Ʌj
k)

1
2(Ʌj

k)
1
2Qj

k] (Jj
k)t

𝐧𝐤

𝐣=𝟏

𝐊

𝐤=𝟏

] [∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

]

= [∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

]

𝐭

[∑∑Jj
k [(Aj

k)(Aj
k)

t
] (Jj

k)t

𝐧𝐤

𝐣=𝟏

𝐊

𝐤=𝟏

] [∑𝛂𝐢∅(𝛍𝐢)

𝐧

𝐢=𝟏

]

= 𝛂𝐭 [∑Ud2k

K

k=1

Ud2k
t ] 𝛂 = 𝛂𝐭Nd2𝛂 

where Ud2k =

[
 
 
 
 
∑ 𝐃𝟏𝐣

𝐤 . Aj
k𝐧𝐤

𝐣=𝟏
.
.
.

∑ 𝐃𝐧𝐣
𝐤 . Aj

k𝐧𝐤
𝐣=𝟏 ]

 
 
 
 

 and 𝐃𝐢𝐣
𝐤 = ∅(𝛍𝐢)Jj

k = ∅(𝛍𝐢).
∂∅(𝐗)

∂𝛍𝐣
𝐤 =

∂∅(𝛍𝐢).∅(𝐗)

∂𝛍𝐣
𝐤 =

∂𝐊(𝛍𝐢,𝐗)

∂𝛍𝐣
𝐤    
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