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Over the last few years, the proliferation of data-intensive applications on mobile devices has

contributed to the overwhelming mobile traffic volume that is pushing against the bound-

ary of the current communication networks’ capacity. Additionally, the rapidly growing

popularity of computation-intensive and latency-sensitive mobile services has placed severe

demands on cloud infrastructures and wireless access networks such as ultra-low latency,

user experience continuity, and high reliability. To keep up with these surging demands,

network operators have to spend enormous efforts to improve users’ experience while main-

taining healthy revenue growth. While several solutions have been proposed to improve

network capacity such as the deployment of ultra-dense small cells and massive antenna

arrays as well as the utilization of millimeter wave spectrum bands, these approaches are

fundamentally constrained by the limited spectrum resources, inter-cell interference, and

control signaling overheads. Therefore, in order to support the foreseen massive demands

from data- and computation-hungry users in the upcoming Fifth Generation (5G) of wire-

less systems in an affordable way, improving network capacity alone is not sufficient and

has to be accompanied by innovations at higher layers.

To overcome the limitations of current connection-centric Radio Access Networks (RANs),

cloud-assisted wireless networks are promising solutions that unite wireless networks and
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cloud-computing to deliver cloud services directly from the network edges. The two emerg-

ing paradigms for cloud-assisted wireless networks are Cloud Radio Access Network (C-

RAN), which aims at the centralization of base station (BS) functionalities via network vir-

tualization and optical fronthaul technologies, and Mobile-Edge Computing (MEC), which

proposes to empower the network edge by providing computing, storage, and networking

resources within the edge of the mobile RAN. These two paradigms are complementary

and have unique justifications within the 5G ecosystem: the centralized nature of C-RAN

provides higher degree of cooperation in the network to address the capacity fluctuation

and to increase the spectral and energy efficiency; on the other hand, the MEC paradigm

is useful in reducing service latency and improving localized user experience.

The goal of this research is to leverage the emerging C-RAN and MEC paradigms to

design disruptive innovations for the wireless access network that always make best use of the

resources available to satisfy service requests from the users. To this end, novel cooperative

frameworks are proposed to make optimized decisions for communications, caching, and

computation in 5G wireless systems. The proposed innovative solutions include: (i) a joint

user-centric radio clustering and beamforming scheme that maximizes the downlink sum

throughput of a C-RAN system, (ii) a cooperative hierarchical caching framework that

aims at minimizing the network cost of content delivery and at improving users’ Quality of

Experience (QoE) in a C-RAN, (iii) a joint collaborative caching and processing framework

that enhances Adaptive Bitrate (ABR)-video streaming in a MEC network, and (iv) a

joint computation offloading and resource allocation framework that helps improve users’

computation experience by offloading their computation tasks to the MEC servers. The

proposed innovations in this research can benefit a wide range of mobile applications and

services such as video streaming, augmented reality (AR)/virtual reality (VR), Internet-of-

Things (IoTs), public safety operations and real-time healthcare data analytics.
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Chapter 1

Introduction

1.1 5G Systems: Key Requirements and Technologies

Over the last few years, our daily lifestyle is increasingly exposed to a plethora of mobile ser-

vices and applications for entertainment, business, education, healthcare, social networking,

and so on. The proliferation mobile solutions in various domains with increasing requirement

for rich computation and low-latency response has placed severe demands on cloud infras-

tructure and wireless access networks such as ultra-low latency, user experience continuity,

and high reliability. At the same time, mobile data traffic is predicted to continue doubling

each year [1] while fundamentally shifting from traditional connection-centric communica-

tions, such as phone calls and text messages, to user- and content-centric communications

such as video streaming and content sharing. To keep up with these surging demands,

network operators have to spend enormous efforts to improve users’ experience while main-

taining healthy revenue growth. The development of the upcoming Fifth Generation (5G)

wireless systems is a cornerstone for realizing breakthroughs in the transformation of In-

formation and Communications Technology (ICT) network infrastructure [2]. Overtime,

any mobile app and any mobile service will be given the potential to connect to anything

at anytime – from people and communities to physical things, processes, content, working

knowledge, timely pertinent information and goods of all sorts in entirely flexible, reliable

and secure ways.

5G Requirements: The three fundamental requirements for building 5G wireless net-

works include: (i) capabilities for supporting massive capacity and massive connectivity; (ii)

support for an increasingly diverse set of services, application and users; and (iii) flexible

and efficient use of all available spectrum, energy, and computation resources for wildly

different network deployment scenarios. 5G is expected to enable connectivity for a wide



2

range of new use cases, including wireless connectivity for remote control of machinery,

wireless connectivity for traffic safety and control, and monitor/control of infrastructure,

etc. Furthermore, 5G should be flexible enough to enable connectivity also for future appli-

cations and use cases that may not even be partly anticipated. The very wide range of use

cases to be covered by 5G implies that the capabilities of 5G wireless access have to extend

far beyond that of previous generations. Some of the important performance target in 5G

are highlighted below.

• Data Rates: Providing the possibility for much higher data rates will be important

requirement in the 5G era, primarily as part of a quest for further enhanced mobile-

broadband experience. In general, data rates of several 100 Mbit/s is expected in

urban and suburban environments, with extremely high peak data rates of 10 Gbit/s.

• Latency: In terms of latency requirement, the possibility to provide an end-to-end

latency in the order of 1 ms is often mentioned in the context of 5G. Such capabil-

ity will enable new latency-critical wireless applications such as remote control with

haptic feedback and wireless connectivity for traffic safety. The end-to-end latency

requirement depends not only on the radio-access solution, but also on the physical

distance between the end points.

• Extreme Reliability: Another important characteristic expected in the context of 5G is

the possibility to enable connectivity with extremely high reliability. This might imply

(i) the ability of the wireless-access solution to provide connectivity with extremely

low error rate, for example, an error rate below 10−9; and/or (ii) the ability to retain

connectivity even in case of unexpected events including natural disasters.

• Low-cost Devices with Very Long Battery Life: With the emergence of IoT, some

applications such as the collection of data from a very large number of sensors, require

the possibility for devices of much lower cost compared to the devices of today. In

many cases, such applications also require the possibility for devices with extremely

low energy consumption enabling battery life of several years. At the same time, these

applications typically require only very modest data rates and can accept long latency.
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• Network Energy Efficiency: Another important requirement emerging during the last

few years has been the aim for significantly higher network energy efficiency. First,

increased network energy efficiency is one important factor to reduce the operational

cost of a network. Secondly, in many places where there is no easy access to the

electrical grid, improving the energy efficiency of the base stations by means of using

power from solar panels becomes a viable solution.

5G Technologies: The extremely higher aggregate data rates and the much lower

latencies required by 5G is extremely difficult to achieved with a mere evolution of the

status quo. This necessitates disruptive technologies that could lead to both architectural

and component design chances, as outlined in the following [3, 4].

• Cloud-assisted Wireless Networks: To support the expected massive growth of mobile

data, a large number of small cells are expected to be deployed indoors and outdoors,

giving rise to ultra-dense network (UDN), which are considered to be the key path

toward 5G. With such large-scale UDNs, network operators face many serious chal-

lenges in terms of operation and management, cost-effective small cell deployment,

and inter-cell interference mitigation. To deal with those issues, cloud-based plat-

forms are introduced to simplify the deployment, operation and management, and

facilitate around-the-clock optimization of the network.

• Millimeter Wave (mmWave): While spectrum has become scarce at microwave fre-

quencies, it is plentiful in the mmWave realm, ranging from 3 to 300 GHz. Many

bands therein seem promising, including most immediately the local multipoint dis-

tribution service at 28–30 GHz, the license-free band at 60 GHz, and the E-band at

71–76 GHz, 81–86 GHz, and 92–95 GHz. Foreseeably, several tens of gigahertz could

become available for 5G, offering well over an order of magnitude increase over what

is available at present. Needless to say, work needs to be done on spectrum policy to

render these bands available for mobile cellular.

• Massive MIMO: Massive multiple-input multiple-output (MIMO) proposes to utilize

a very high number of antennas to multiplex messages for several devices on each

time-frequency resource, focusing the radiated energy toward the intended directions
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while minimizing intra- and inter-cell interference. Massive MIMO may require major

architectural changes, particularly in the design of macro BSs, and it may also lead

to new types of deployments.

• Smarter devices: Previous generations of cellular networks were designed with the

premise of having complete control at the infrastructure side. However, it is expected

that 5G systems should exploit intelligence at the device side within different layers

of the protocol stacks, for example, by allowing device-to-device (D2D) connectivity

or exploiting smart caching at the mobile terminals.

• Native support for machine-to-machine (M2M) communication: A native inclusion

of M2M communication in 5G involves satisfying three fundamentally different re-

quirements associated with different classes of low-data-rate services: support of a

massive number of low-rate devices, sustaining a minimal data rate in virtually all

circumstances, and very-low-latency data transfer. Addressing these requirements in

5G requires new methods and ideas at both the component and architectural levels.

1.2 Cloud-assisted Wireless Networks

5G systems will imply major changes in the implementation and deployment of networking

infrastructure, based on software-defined networking (SDN) and network functions virtu-

alization (NFV). Network operations and services are becoming cloud-enabled in almost

every industry and it creates an apparent opportunity to generate value for the telecommu-

nications industry from exploiting distributed storage and cloud computing towards specific

clients and services. To overcome the limitations of current connection-centric Radio Access

Networks (RANs), cloud-assisted wireless networks are promising solutions that unite wire-

less networks and cloud-computing to deliver cloud services directly from the network edges.

The two emerging paradigms for cloud-assisted wireless networks are Cloud Radio Access

Network (C-RAN) which aims at the centralization of base station (BS) functionalities

via network virtualization and optical fronthaul technologies; and Mobile-Edge Computing

(MEC) which proposes to empower the network edge by providing computing, storage, and

networking resources within the edge of the mobile RAN.
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1.2.1 Cloud Radio Access Network (C-RAN)

C-RAN was introduced as a revolutionary redesign of the cellular architecture to address

the increase in data traffic and to reduce the capital expenditure (CAPEX) and operating

expenditure (OPEX) [5, 6]. The idea of C-RAN is to decouple the computational func-

tionalities from the distributed BS (a.k.a. eNodeB in LTE) and to consolidate them in a

centralized processing center. Its main characteristics are: (i) centralized management of

computing resources, (ii) reconfigurability of spectrum resources, (iii) collaborative commu-

nications, and (iv) real-time cloud computing on generic platforms.

CPRI

Virtual Base Station Pool

(PHY/MAC)

RRH RRH RRH

RRH
RRH

 

 

 

Figure 1.1: Illustration of a C-RAN.

C-RAN Architecture. As shown in Fig. 1.1, a typical C-RAN is composed of: (i) light-

weight, distributed Radio Remote Heads (RRHs) plus antennae, which are located at the

remote site and are controlled by a centralized virtual base station pool, (ii) the Base Band

Unit (BBU) (also known as the VBS pool) composed of high-speed programmable pro-

cessors and real-time virtualization technology to carry out the digital processing tasks,

and (iii) low-latency high-bandwidth optical fibers, which connect the RRHs to the BBU

pool. The communication functionalities of the VBSs are implemented on Virtual Ma-

chines (VMs) hosted over general-purpose computing platforms, which are housed in one or

more racks of a small cloud datacenter. As a precautionary measure and to be on the safe

side, the optical fiber transmission latency is limited to less than 1% of the PHY processing

latency. Hence, the range of VBS pool is limited by latency constraints of wireless systems.
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Figure 1.2: Functional split between BBU and RRH in 4G and 5G C-RANs. Shifting more
functionalities to the RRH decreases capacity requirement and increases delay requirement
on the fronthaul links.

The key concept of C-RAN is to offload computational functionalities from the RRHs

to the BBU in the cloud in order to better utilize the shared computing resources that are

co-located at the BBU pool, and to reduce the costs of densifying the RRHs. Depending

on the fronthaul capacity and the processing capabilities of the BBU, different functional

splitting between the RRHs are considered. Fig. 1.2 illustrates the functional split between

BBU pool and RRH and compares the 4G C-RAN with the new options in 5G C-RAN.

The “full centralized” C-RAN architecture is realized when the RRH only carries the

radio function. This option has has the advantages of easy upgrading and network capacity

expansion; it also has better capability for supporting multi-standard operation, maximum

resource sharing, and it is more convenient towards support of multi-cell collaborative signal

processing [5]. Its major disadvantage is the high bandwidth requirement between the BBU

and to carry the baseband I/Q signal. In the extreme case, a TD-LTE 8 antenna with

20MHz bandwidth will need a 10Gpbs transmission rate.

The “partial centralized” C-RAN architecture, where the RRH integrates not only the

radio function but also the baseband function and possibly the higher layer functions, has

the advantages of requiring much lower transmission bandwidth between BBU and RRH,
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by separating the baseband processing from BBU and integrating it into RRH. Compared

with the “full centralized” one, the BBU-RRH connection only need to carry demodulated

data, which is only 1/20 − 1/50 of the original baseband I/Q sample data. However, it

also has its own shortcomings. Because the baseband processing is integrated into RRH,

it has less flexibility in upgrading, and less convenience for multi-cell collaborative signal

processing.

With either one of these C-RAN architectures, mobile operators can quickly deploy

and make upgrades to their network. The operator only needs to install new RRHs and

connect them to the BBU pool to expand the network coverage or split the cell to improve

capacity. If the network load grows, the operator only needs to upgrade the BBU pool’s

HW to accommodate the increased processing capacity. Moreover, the “fully centralized

solution”, in combination with open platform and general purpose processors, will provide

an easy way to develop and deploy software defined radio (SDR) which enables upgrading of

air interface standards by software only, and makes it easier to upgrade RAN and support

multi-standard operation. Different from traditional distributed BS architecture, C-RAN

breaks up the static relationship between RRHs and BBUs. Each RRH does not belong to

any specific physical BBU. The radio signals from /to a particular RRH can be processed

by a virtual BS, which is part of the processing capacity allocated from the physical BBU

pool by the real-time virtualization technology. The adoption of virtualization technology

will maximize the flexibility in the C-RAN system [5].

Advantages of C-RAN. In a centralized VBS pool, since all the information from

the BSs resides in a common place, the VBSs can exchange control data at Gbps rate.

This centralized characteristic—along with virtualization technology and low-cost relay-like

RRHs—provides a higher degree of freedom to make optimized decisions and has made

C-RAN a promising technology candidate to be incorporated into the 5G wireless network,

especially for urban/high-density areas. The VBSs in C-RAN are virtualized instances

running on collocated computing servers, making it easy to share flexibly the common com-

puting resources of the physical-server pool. Recent efforts [7–10] have implemented C-RAN

prototypes and studied the computing resource consumption of the VBS pool with respect

to the processing load. Their profiling results have demonstrated that the CPU frequency
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needed to process the LTE subframes at the VBS in the allotted time (considered as 3 ms

in [11]) increases with the effective data rate. By fitting a model of the processing time

corresponding to different CPU frequencies, the computing resource consumption can be

approximated as a linear increasing function of the user data rate [9, 10, 12]. By exploiting

the global view of the network condition and traffic demand available at the BBU, dynamic

provisioning and allocation of spectrum, computing, and radio resources can improve net-

work performance [13–17]. Interestingly, C-RAN paves the way for bridging the gap between

two so-far disconnected worlds: cellular communications and cloud computing. The list of

other benefits brought by C-RAN can be summarized as follows [5, 18].

• Energy Efficient: Since in C-RAN a group of BSs are centralized in a common place,

the number of cell sites can be reduced several folds. Hence, the air conditioning and

power consumption of other site support equipments can be dramatically reduced.

In addition, since the cooperative interference reduction techniques can be applied

among the RRHs, a higher density of RRHs is allowed. Hence, smaller cells with

lower transmission power can be deployed, thus aiming for higher frequency reuse and

capacity, while the network coverage is not affected. Deploying small cells reduces

the energy used for signal transmission, which is especially helpful to reduce the RAN

power consumption and increase battery stand-by time. Lastly, because the BBU

pool is an aggregated collective resource shared among a large number of virtual BSs,

a much higher utilization rate of processing resources and lower power consumption

can be achieved via statistical computing multiplexing.

• Lower Operation and Maintenance Cost: Because the BBUs and site support equip-

ment are aggregated in a few big rooms, it is much easier for centralized management

and operation, saving a lot of the operation and maintenance cost associated with

the large number of BS sites in a traditional RAN network. Secondly, although the

number of RRHs may not be reduced in a C-RAN architecture its functionality is

simpler, size and power consumption are both reduced and they can sit on poles with

minimum site support and management. The RRH only requires the installation of
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the auxiliary antenna feeder systems, enabling operators to speed up the network con-

struction to gain a first-mover advantage. Thus, operators can get large cost saving

on site rental and operation and maintenance.

• Capacity Improvement: In C-RAN, VBSs are able to exchange the signaling, traffic

data, and CSI of active MSs in the system with low latency. This way, it becomes

much easier to implement joint processing and scheduling algorithms so to mitigate

inter-cell interference and improve spectral efficiency [19–21]. For example, CoMP

can efficiently be implemented under the C-RAN architecture.

• Adaptability to Non-uniform Traffic: C-RAN is also suitable to handle non-uniformly

distributed traffic due to its intrinsic load-balancing capability in the centralized BBU

pool [22]. Although the serving RRH changes dynamically according to the movement

of the UEs, the serving BBU is still in the same BBU pool. As the coverage of a BBU

pool is larger than in traditional BS, non-uniformly distributed traffic generated from

UEs can be distributed in a VBS as this sits in the same BBU pool.

1.2.2 Mobile-Edge Computing (MEC)

Core Network

Backhaul

Fronthaul

MEC ServerBS

Figure 1.3: Illustration of a MEC network.

In the past decade, we have witnessed cloud computing play as significant role for

massive data storage, control, and computation offloading. However, the rapid proliferation

of mobile applications and the IoT over the last few years has posed severe demands on
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cloud infrastructure and wireless access networks. Stringent requirements such as ultra-

low latency, user experience continuity, and high reliability are driving the need for highly

localized intelligence in close proximity to the end users. In light of this, MEC has been

envisioned as the key technology to assist wireless networks with cloud computing-like

capabilities in order to provide low-latency and context-aware services directly from the

network edge.

Differently from traditional cloud computing systems where remote public clouds are

utilized, the MEC paradigm is realized via the deployment of commodity servers, referred

to as the MEC servers, at the edge of the wireless access network as shown in Fig. 1.3.

Depending on different functional splitting and density of the BS, a MEC server can be

deployed per BS or at an aggregation point serving several BSs. With the strategic deploy-

ment of these computing servers, MEC allows for data transfer and application execution in

close proximity to the end users, substantially reducing end-to-end (e2e) delay and releasing

the burden on backhaul network [23]. Additionally, MEC has the potential to empower the

network with various benefits, including: (i) optimization of mobile resources by hosting

compute-intensive applications at the network edge, (ii) pre-processing of large data before

sending it (or some extracted features) to the cloud, and (iii) context-aware services with the

help of the RAN information such as cell load, user locations, and radio resource allocation.

Fueled by the promising capabilities and business opportunities, the MEC paradigm

has been attracting considerable attention from both academia and industry. A number of

deployment scenarios, service use cases, and related algorithms design has been proposed

to exploit the potential benefits of MEC and to justify its implementation and deployment

from both a technical and business point of view. In the following, we briefly review the

recent efforts from both standardization and research perspectives towards enabling MEC

technologies in wireless networks.

Proofs of Concepts and Standardization Efforts. In 2013, Nokia Networks in-

troduced the very first real-world MEC platform [24], in which the computing platform –

Radio Applications Cloud Servers (RACS) – is fully integrated with the Flexi Multiradio

BS. Saguna also introduced their fully virtualized MEC platform, so called Open-RAN [25],

that can provide an open environment for running third-party MEC applications. Besides
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these solutions, MEC standardization is being specified by the European Telecommunica-

tions Standards Institute (ETSI), which recently formed a MEC Industry Specifications

Group (ISG) to standardize and moderate the adoption of MEC within the RAN. In the

introductory white paper [26], four typical service scenarios and their relationship to MEC

have been discussed, ranging from Augmented Reality (AR) and intelligent video acceler-

ation to connected cars and IoT gateway. In the MEC World Congress 2016, ETSI has

announced six Proofs of Concept (PoCs) that were accepted by the MEC ISG, including:

• Radio Aware Video Optimization in a Fully Virtualized Network (RAVEN).

• Flexible IP-based Services (FLIPS)

• Enterprise Services

• HealthcareDynamic Hospital User, IoT, and Alert Status Management

• Multi-Service MEC Platform for Advanced Service Delivery

• Video Analytics

These PoCs strengthen the strategic planning and decision making of organizations, helping

them identify which MEC solutions may be viable in the network.

MEC Architecture and Virtualization. In recent years, the concept of integrating

cloud computing-capabilities into the wireless network edge has been considered in the

literature under different terminologies, including Small Cell Cloud (SCC), Mobile Micro

Cloud (MMC), Follow Me Cloud (FMC), and CONCERT [27]. The basic idea of SCC

is to enhance the small cells, such as microcells, picocells or femtocells, with additional

computation and storage capabilities so as to support edge computing [28]. By exploiting

the Network Function Virtualization (NFV) paradigm, the cloud-enabled small cells can

pool their computation power to provide users with services/applications having stringent

latency requirements. Similarly, the concept of MMC introduced in [29] allows users to have

instantaneous access to the cloud services with low latency. Differently from the SCC where

the computation/storage resources are provided by interworking clusters of enhanced small

cells, the User Equipment (UE) exploits the computation resources of a single MMC, which
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is typically connected directly to a BS. The FMC concept [30] proposes to move computing

resources a bit further from the UEs, compared to SCC and MMC, to the core network. It

aims at having the cloud services running at distributed data centers to be able to follow

the UEs as they roam throughout the network. In all these described MEC concepts,

the computing/storage resources have been fully distributed; conversely, the CONCERT

concept proposes hierarchically placement of the resources within the network to flexibly

and elastically manage the network and cloud services.

Computation Offloading. The benefits of computation offloading have been investi-

gated widely in conventional Mobile Cloud Computing (MCC) systems. However, a large

body of existing works on MCC assumed an infinite amount of computing resources available

in a cloudlet, where offloaded tasks can be executed in negligible delay [31, 32]. Recently,

several works have focused on exploiting the benefits of computation offloading in MEC

network [33]. The problem of offloading scheduling was then reduced to radio resource allo-

cation in [34], where the competition for radio resources is modeled as a congestion game of

selfish mobile users. The problem of joint task offloading and resource allocation was studied

in a single-user system with energy harvesting devices [35], and in a multi-cell, multi-user

systems [36]; however, the congestion of computing resources at the MEC server was not

taken into account. A similar problem is studied in [37] for single-server MEC systems,

where the limited resources at the MEC server were factored in, and later on extended to

multi-server MEC systems in [38].

Edge Caching. The increasing demand for massive multimedia services over mobile

cellular network poses great challenges on network capacity and backhaul links. Distributed

edge caching, which can well leverage MEC paradigm, has therefore been recognized as a

promising solution to bring popular contents closer to the users, to reduce data traffic going

through the backhaul links as well as the time required for content delivery, and to help

smoothen/regulate the traffic during peak hours. Taking into account the heterogeneity of

video transmissions in wireless networks in terms of video quality and device capabilities,

our work in [39] proposes to utilize both caching and processing capabilities at the MEC

servers to satisfy users’ requests for videos with different bitrates. In this scheme, the

collaborative caching paradigm has been extended to a new dimension where the MEC
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servers can assist each other to not only provide the requested video via backhaul links but

also to transcode it to the desired bitrate version.

1.2.3 C-RAN and MEC: Complementary Technologies for 5G

While the two technologies propose to move computing capabilities in a different direction

(to the cloud versus to the edge), C-RAN and MEC are highly complementary technolo-

gies and their co-location will help make the economics of each of them significantly more

attractive [40]. On the one hand, the centralized nature of C-RAN can be leveraged to

address the capacity fluctuation problem and to increase system energy efficiency in mo-

bile networks. The full centralization principle of C-RAN and the densification of cellular

BSs, however, entails heavy exchanges of radio signals between the radio heads and cloud

processing unit, which impose stringent requirement to the fronthaul connections in terms

of throughput and latency. On the other hand, the MEC paradigm is useful in reducing

latency and improving localized user experience. However, the amount of processing power

and storage at each MEC server is in orders of magnitude below that of the centralized cloud

in C-RAN, making the resource provisioning and allocation problem a critical challenge in

MEC networks.

From a Mobile Network Operator’s (MNO) point of view, collocating C-RAN and MEC

helps support some of the key 5G applications that it would not be able to support otherwise.

Firstly, a major challenge in enabling applications associated with the 5G use cases is the

significant investment required to deploy a sufficiently extensive network of edge computing

Points-of-Presence (PoPs), so that it becomes attractive to develop applications exploiting

the edge processing infrastructure in mind. Moreover, this investment must be made in

advance of applications being ready to take advantage of it, i.e., this is an investment in

anticipation of future revenue, but without any guaranteed near-term returns. One way to

mitigate the significant cost (and risk) of such strategic investment is to bootstrap a MEC

deployment to the deployment of a C-RAN: the cost of providing additional processing power

across an already planned BBU pool, should be significantly lower than a standalone MEC

deployment. Conversely, deployment of a C-RAN across generic computing infrastructure

(as opposed to dedicated, RAN-optimized hardware) is itself a significant investment for an
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MNO. In addition to the costs of deploying C-RAN processing units themselves, there is the

cost of moving towards virtualized RAN appliances, testing, integration and maintenance of

these new solutions. While the operational flexibility and network re-configurability offered

by virtualization may carry significant long-term benefits, the near-term effort and costs

can make it a tough pill to swallow. The significant strategic benefits of MEC can make

the decision a much clearer one [40].

1.3 Research Objectives and Contributions

The goal of this research is to design disruptive innovations for the wireless access network

that always make best use of the resources available to satisfy service requests from the

users. The new innovations should also make use of intelligence harvested from user and

network context information such as the popular content being requested at a given time in

a given location, the computing resources required to process baseband data and to execute

computation tasks for each user. These additional information can enable the network to

make optimized control decisions both proactively and reactively so as to improve the users’

communications and computation experiences.

Fueled by the potential advantages of C-RAN and MEC, we aim at designing novel

cooperative frameworks that optimize the control decisions for data transmissions, content

provisioning, and computation in 5G systems. Specifically, our innovative solutions focus

on improving downlink transmission throughput, reducing backhaul traffic load, and reduc-

ing end-to-end (e2e) latency for content delivery and mobile computation offloading. Our

contributions in this dissertation are summarized in four specific topics as follows.

1. Joint User-Centric Radio Clustering and Beamforming in C-RAN [14,41]:

In this work, we leverage the key capabilities of C-RAN in computing-resource sharing and

real-time communications among the VBSs in order to design a joint user-centric radio clus-

tering and beamforming scheme that maximizes the downlink Weighted Sum-Rate (WSR)

performance. Due to the combinatorial nature of the radio clustering process and to the

non-convexity of the joint beamforming design, the underlying optimization problem is

NP-hard, and is extremely difficult to solve for a large network. The proposed approach
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aims for a suboptimal solution by transforming the original problem into a Mixed-Integer

Second-Order Cone Program (MI-SOCP) and applying Sequential Convex Approximation

(SCA) to derive a novel iterative algorithm. Numerical simulation results show that our

low-complexity algorithm provides near-optimal performance in terms of WSR while signifi-

cantly outperforming conventional radio clustering and beamforming schemes. Additionally,

the results also demonstrate the significant improvement in computing-resource utilization

of C-RAN over a traditional RAN with distributed computing resources.

2. Cooperative Hierarchical Caching and Request Scheduling in C-RAN [42,

43]: We propose a novel cooperative hierarchical caching framework in C-RAN that aims

at minimizing the network cost of content delivery and at improving users’ Quality of Expe-

rience (QoE). A new cloud-cache layer in the Cloud Processing Unit (CPU) is proposed to

bridge the storage-capacity/delay-performance gap between the traditional edge-based and

core-based caching paradigms. Also, a delay-cost model is introduced to characterize and

formulate the cache-placement optimization problem, which is shown to be NP-complete.

Then, a low-complexity heuristic cache-management strategy comprising of a proactive

cache-distribution algorithm and a reactive cache-replacement algorithm is proposed. A

Cache-Aware Request Scheduling (CARS) algorithm is devised in order to optimize online

the tradeoff between content download rate and content access delay. Via extensive numer-

ical simulations—carried out using both real-world YouTube video requests and synthetic

content requests—it is demonstrated that the proposed cache-management strategy out-

performs traditional caching strategies in terms of cache hit ratio, average content access

delay, and backhaul traffic load. Additionally, the proposed cache-aware content request

scheduling algorithm achieves superior tradeoff performance over traditional approaches

that optimize either users’ rate or access delay alone.

3. Joint Collaborative Caching and Processing in MEC Networks [39, 44]:

We propose a joint collaborative caching and processing framework that supports Adap-

tive Bitrate (ABR)-video streaming in a MEC networks. We formulate an Integer Linear

Program (ILP) that determines the placement of video variants in the caches and the

scheduling of video requests to the cache servers so as to minimize the expected backhaul

cost of video retrieval. The considered problem is challenging due to its NP-completeness
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and to the lack of a-priori knowledge about video request arrivals. Our approach decom-

poses the original problem into a cache placement problem and a video request scheduling

problem while preserving the interplay between the two. We then propose practically effi-

cient solutions, including: (i) a novel ABR-aware proactive cache placement algorithm with

provable approximation performance when video popularity is available, and (ii) an online

low-complexity video request scheduling algorithm that performs very closely to the optimal

solution. Simulation results show that our proposed solutions achieve significant increase in

terms of cache hit ratio and decrease in backhaul traffic and content access delay compared

to the traditional approaches.

4. Joint Computation Offloading and Resource Allocation in MEC Net-

works [38]: In this work, a MEC enabled multi-cell wireless network is considered where

each BS is equipped with a MEC server that assists mobile users in executing computation-

intensive tasks via task offloading. The problem of Joint Task Offloading and Resource Al-

location (JTORA) is studied in order to maximize the users’ task offloading gains, which is

measured by a weighted sum of reductions in task completion time and energy consumption.

The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that

involves jointly optimizing the task offloading decision, uplink transmission power of mobile

users, and computing resource allocation at the MEC servers. Due to the NP-hardness

of this problem, solving for optimal solution is difficult and impractical for a large-scale

network. To overcome this drawback, we propose to decompose the original problem into

(i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task

Offloading (TO) problem that optimizes the optimal-value function corresponding to the

RA problem. We address the RA problem using convex and quasi-convex optimization

techniques, and propose a novel heuristic algorithm to the TO problem that achieves a sub-

optimal solution in polynomial time. Simulation results show that our algorithm performs

closely to the optimal solution and that it significantly improves the users’ offloading utility

over traditional approaches.
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1.4 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 details our solution for dynamic radio cooperation for user-centric C-RAN.

We provide details on the design of joint radio clustering and cooperative beamforming

algorithm that maximize the downlink weighted sum-rate performance. We also discuss the

limitation and practical considerations for the implementation of the proposed strategy in

practice. Performance evaluation is presented via numerical simulations that demonstrate

the superior performance of the proposed algorithm over existing approaches.

Chapter 3 presents our proposed cooperative hierarchical caching and request schedul-

ing strategies. A low-complexity cache management strategy that combines both proactive

and reactive caching is proposed. Given the cache availability at each BS, an online cache-

aware request scheduling algorithm is proposed to determine the user association decisions

as new requests arrive. Simulation results using both real-world YouTube video requests

and synthetic content requests demonstrate the advantages of using the proposed caching

and request scheduling algorithms.

Chapter 4 describes our novel framework for collaborative adaptive bitrate video

caching and processing in MEC networks. The problem of joint collaborative caching and

processing is formulated and efficient proactive and reactive cache-placement algorithms

are proposed for the cases with known and unknown content popularity. An online request

scheduling algorithm is proposed to make decision upon arrival of each new video request.

Simulation results demonstrate the significant performance improvement of the proposed

joint caching and processing scheme over traditional approaches.

Chapter 5 shows our study of joint task offloading and resource allocation in a multi-

server MEC network. The system model is explained and the task offloading problem is

formulated. To derive a practical solution, the considered optimization problem is decom-

posed into a resource allocation problem, which can be solved using standard techniques,

and a task offloading problem which can be solved using our proposed heuristic algorithm.

Numerical simulations show that our proposed algorithm significantly improves the users’

offloading gains over traditional approaches.
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Chapter 6 summarizes our main contributions and provides suggestions on future re-

search directions that will push the state-of-the-art in cloud-assisted wireless networks.
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Chapter 2

Joint User-centric Radio Clustering and Beamforming for

C-RANs

In this chapter, we present the design of a novel dynamic radio-cooperation strategy for

C-RANs. In particular, the key capabilities of C-RAN in computing-resource sharing and

real-time communication among the VBSs are leveraged to design a joint dynamic radio

clustering and cooperative beamforming scheme that maximizes the downlink Weighted

Sum-Rate System Utility (WSRSU). Due to the combinatorial nature of the radio cluster-

ing process and to the non-convexity of the cooperative beamforming design, the underlying

optimization problem is NP-hard, and is extremely difficult to solve for a large network.

The proposed approach aims for a suboptimal solution by transforming the original prob-

lem into a Mixed-Integer Second-Order Cone Program (MI-SOCP) and applying Sequential

Convex Approximation (SCA) to derive a novel iterative algorithm. Numerical simula-

tion results show that our low-complexity algorithm provides near-optimal performance

in terms of WSRSU while significantly outperforming conventional radio clustering and

beamforming schemes. Additionally, the results also demonstrate the significant improve-

ment in computing-resource utilization of C-RAN over a traditional RAN with distributed

computing resources.

2.1 Introduction

Over the last few years, the proliferation of personal mobile-computing devices along with

a plethora of data-intensive mobile applications has resulted in a tremendous increase in

demand for ubiquitous and high-data-rate wireless communications. To cope with this

challenge, the current trend in cellular networks is to densify the RAN by increasing the

number of small cells and to leverage the cooperation among multiple antennae and BSs
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via Coordinated Multi-Point (CoMP) transmission and reception techniques [45, 46]. In

CoMP, it is important to select clusters of BSs and design beamforming vectors within each

cluster so as to mitigate interference among users and thus increase the system throughput.

Within this context, there have been a number of works proposing different BS clustering

and cooperative beamforming techniques (see for example [47–51] and references therein).

However, due the scarce interconnection among the BSs and the lack of global Channel

State Information (CSI) at each BS, conventional clustering and cooperative beamforming

techniques are rather simplistic, i.e., the clustering decision is made based on the relative

signal strength and locations of the users, and the beamforming design does not account

for inter-cluster interference.

In this work, we leverage C-RAN architecture to enable the dynamic adaptation of RRH

clusters and cooperation within each cluster so to improve the overall network performance.

Firstly, the co-location model of the VBSs allows for their real-time inter-communication,

thus fully enabling a coordinated joint transmission of the RRHs that is currently prac-

tically constrained. In particular, control signals to realize CoMP between the BSs that

traditionally travel via back-haul links can now be exchanged through the InfiniBand in-

terconnection among the VBSs. A radio cooperation scheme deployed in C-RAN would be

fully dynamic and user specific, in the sense that we can form a virtual cluster of RRHs

to coordinate their downlink transmissions to each of the scheduled users. In this strategy,

each scheduled user is always the central of a RRH cluster, making it different from the

traditional CoMP techniques where the RRHs are grouped into fixed and non-overlapping

clusters.

In traditional RANs, each BS is equipped with a fixed amount of computing resources

for baseband processing and the BSs cannot share their resources with each other. As a

result, computing resources will be the bottleneck at some BSs where traffic demand is

high, and underutilized at other BSs where traffic demand is low. In contrast, the VBSs

in C-RAN are virtualized instances running on collocated computing servers, making it

easy to share flexibly the common computing resources of the physical-server pool. Recent

efforts [7–10,52] have implemented C-RAN prototypes and studied the computing resource

(mainly CPU) consumption of the VBS pool with respect to the processing load. Their
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profiling results have demonstrated that the CPU frequency needed to process the LTE

subframes at the VBS in the allotted time (considered as 3 ms in [11]) increases with the

effective data rate. By fitting a model of the processing time corresponding to different

CPU frequencies, the computing resource consumption can be approximated as a linear

increasing function of the user data rate [9, 10, 12]. In this article, we consider a general

computing resource constraint at the VBS pool and design a feasible radio cooperation

scheme.

In spite of its many promising advantages, C-RAN also poses various technical chal-

lenges in its design and deployment. Specifically, one must efficiently utilize the flexible

processing resources in the VBS pool, design suitable communication schemes to leverage

the cooperation among the RRHs, and minimize the overall energy consumption including

the transmit power at the RRHs and power consumed for computing and cooling at the

VBS pool. The overall system design and optimization in C-RAN is a complex problem in-

volving research issues at multiple layers, for example at system-level, the Virtual Machine

(VM, which holds the VBS) allocation strategy has to be energy-, thermal-, and user-QoS

aware. Specifically, thermal awareness, which is the knowledge of heat generation and heat

extraction at different regions inside the datacenter, is essential to maximize energy and

cooling efficiency as well as to minimize server system failure rates. In [13,53], the authors

have proposed to employ thermal-aware VM consolidation to exploit the various benefits:

(i) the energy spent on computation can be saved by turning off the unused physical servers

after VM consolidation, (ii) the utilization of servers that are in the “better cooled” areas

of the data centers (i.e., with high heat extraction) can be maximized, and (iii) according

to thermodynamics, heat can be extracted more efficiently (i.e., by doing a lower amount

of work) by the cooling system from the consolidated server racks, which are hotter than

non-consolidated racks. While the main object of this work is on the physical-layer prob-

lem of designing coordinated RRHs transmission strategy, the holistic consideration of the

overall system power consumption minimization is a subject for future investigation.

In wireless access networks, WSR system utility is a measure of accumulated users’

throughput with consideration of their corresponding QoS priorities. Maximizing WSR has

been an important subject in wireless resource management [54] and in recent studies in
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C-RAN transmission design. In [55], the authors studied the joint optimization of antenna

selection, regularization, and power allocation to maximize the average WSR. Along this

line, works in [56,57] proposed sparse precoding/beamforming design for WSR maximization

in C-RAN. In this article, we consider computing-resource constraint and investigate its

influence on the scale of RRH cooperation and thus WSR performance of C-RAN system.

In particular, we address a WSR maximization optimization problem under the computing-

resource constraint at the VBS pool and the transmit power constraints at the RRHs.

Main Contributions: We proposed a Dynamic Radio Cooperation (Dynamic-RC)

strategy that dynamically groups the RRHs into user-specific (potentially overlapping)

clusters and designs the downlink beamformers at each RRH in order to maximize the

WSRSU objective function. The underlying Dynamic-RC optimization problem that aims

at maximizing the WSRSU under the transmit-power constraints at the RRHs and the

total computing-resource constraint at the VBS pool is formulated. Due to the combina-

torial nature of the radio-clustering process and to the non-convexity of the cooperative

beamforming design, the Dynamic-RC problem is extremely difficult to solve in practical

time. As such, our approach aims for a low-complexity solution that achieves near-optimal

performance. In particular, we make the following contributions.

• We exploit conic programming techniques [58] and sequential convex approximation [59]

in order to derive a novel iterative algorithm for the Dynamic-RC problem. In each

iteration, we temporarily fix the clustering decision and solve the resulting Coopera-

tive Beamforming Design (CBD) problem. The beamforming solution obtained from

the CBD problem is used to adjust the clustering decision in the next iteration. As

such, the joint clustering and beamforming design is quickly identified and is adaptive

to the global network condition.

• While the CBD problem is NP-hard, we propose to first relax the computing-resource

constraint and solve the relaxed -CBD problem by transforming it into an equivalent
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SOCP problem. The obtained beamforming solution is verified against the computing-

resource constraint and a user-rate-dropping process might be performed to finally ob-

tain a suboptimal solution of the CBD problem. Furthermore, we present the Branch-

and-Bound (BnB) method to optimally solve the relaxed -CBD problem. However, the

BnB’s complexity scales exponentially with problem size and thus it is mainly used

for optimality benchmark.

• We propose to further reduce the complexity of Dynamic-RC via heuristically se-

lecting the candidate cluster for each user before running the optimization algorithm,

and performing clustering and beamforming updates in a two time-scale manner. Fur-

thermore, we quantify the training overhead of CSI estimation required to perform

Dynamic-RC and evaluate its impact on net-WSR performance.

• We carry out extensive numerical simulations in various user-distribution scenarios

and show that our proposed Dynamic-RC strategy significantly improves the WSRSU

performance over conventional radio clustering and beamforming schemes. Further-

more, the results also show the sizable gains of C-RAN using our Dynamic-RC strat-

egy over distributed RAN in terms of computing resource and transmit-power utiliza-

tion.

Chapter Organization: The remainder of this chapter is organized as follows: in

Sect. 2.2, we discuss the related work; Sect. 2.3, we present the system model and formulate

the problem under study; in Sect. 2.4 we present the proposed solution to the joint dynamic

radio clustering and beamforming design; in Sect. 2.5, we discuss the practical considerations

of the proposed approach; simulation results are illustrated in Sect. 2.6; finally, Sect. 2.7

concludes the chapter.

2.2 Related Work

Pioneering works on realizing the benefits of C-RAN have focused on the overall system

architecture with emphasis on system issues, feasibility of virtual software base station

stacks, performance requirements and analysis of optical links between RRHs and their
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VBSs. For example, several LTE RAN prototypes have been implemented over General-

Purpose Platforms (GPPs) such as the Intel solutions based on hybrid GPP-accelerator [60],

Amarisoft solution [61], and OpenAirInterface platform [62]. Studies on these systems

have demonstrated the preliminary potential benefits of C-RAN in improving statistical

multiplexing gains, energy efficiency, and computing resource utilization. Field trial results

in [5,63] show the feasibility of deploying C-RAN front-haul using CPRI compression, single

fiber bidirection, and wavelength-division multiplexing.

On the other hand, considerable attention has been paid on cooperative communications

techniques for C-RAN under various different objectives. For instance, the works in [64–67]

consider the power minimization problem via jointly optimizing the set of active RRHs

and precoding or beamforming design. The considered power models consist of the RRH

transmission power [64], and additionally the user transmission power in [66], transport

network power in [65], and power consumption at the VBS pool in [67]. In addition,

the optimal tradeoff design between transmission power and backhaul capacity is studied

in [68], while the tradeoff between transmission power and delay performance is investigated

in [69, 70] via a cross-layer based approach. Furthermore, the works in [71, 72] address the

front-haul uplink compression problem and [15] proposes a blind source separation method

to mitigate uplink interference. Tackling the inter-operation between cloud computing and

wireless networks, the authors in [73] jointly consider the spectrum efficiency in wireless

networks and pricing information in the cloud. The problems of determining the price to

charge for media services, resource allocation, and interference management are studied

under the Stackelberg game model. Recently, Liao et. al [12, 74] have studied the impact

of computing resource on the achievable sum-rate performance of a C-RAN system. In

particular, the computing resource consumption by transmissions that involve machine-to-

machine (M2M) communications is characterized in [12] while the work in [74] focuses on

determining how much computing resource is needed given certain number of RRHs and

user density. Different from these works, we take into account the computing resource

constraint at the VBS pool while focusing on designing a novel joint RRH clustering and

cooperative beamforming strategy.
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With a similar focus as ours, the authors in [56, 75] study the problem of user-centric

radio clustering for a C-RAN system, however, these solutions have a very slow conver-

gence rate and in general do not hold a convergence guaranty. In contrast, our approach

in this research aims at a low-complexity, fast-convergence solution with close-to-optimal

performance in order to realize the practical implementation of such schemes.

2.3 System Model and Problem Formulation

In this section, we firstly introduce the system model of the considered downlink C-RAN

system. The proposed dynamic radio cooperation strategy is then formulated as a joint

clustering and beamforming design problem.

2.3.1 System Model

System settings: We consider a typical C-RAN consisting of multiple distributed RRHs

that are connected to a VBS pool via low-latency, high-bandwidth CPRI links. The VBS

pool is composed of high-speed programmable processors and real-time VMs to carry out

PHY/MAC-layer functionalities.

Let R = {1, 2, ..., R} be the set of RRHs and U = {1, 2, ..., U} be the set of active users

in the system. We assume that each RRH r has Nr antennae while, realistically, all the

users are equipped with only a single antenna. Note that the solutions proposed here can

be extended to the multi-antenna-user case, and to account for capacity-limited backhaul.

The RRHs cooperate with each other to form virtual user-specific clusters, i.e., each RRH

cluster is formed for a scheduled user, while each RRH can be part of multiple clusters.

Hence, the number of virtual clusters is equal to the number of scheduled users in the

system. Let S = {sru |u ∈ U , r ∈ R} denote the clustering decision, in which sru is a binary

variable equal to 1 if RRH r is selected to serve user u, and 0 otherwise. Consequently, let

Vu = {r ∈ R |sru = 1} denote the serving cluster of user u. We consider the system in a

single time-frequency resource block, which is assumed to be spatially reused across all the

users.



26

Downlink transmissions: We assume that each user has a single traffic flow that is sta-

tistically independent of all other users’ flows. Baseband signals for user u and the corre-

sponding downlink beamforming information after being processed at the VBS pool will be

transported to all the RRHs in the serving cluster Vu. In each scheduling slot, all the RRHs

in Vu will jointly transmit the normalized symbol xu ∈ C of unit power to user u. It is

assumed that the signals for different users are independent from each other and from the

receiver noise. Now, let wr
u ∈ CNr×1 be the linear downlink beamforming vector at RRH

r corresponding to user u and W = {wr
u |∀u ∈ U , r ∈ R} denote the network beamforming

design. Note that W also implies the scheduling decision, i.e., user u, is not scheduled

for the current time-frequency slot if wr
u = 0,∀r ∈ R. In the current scheduling slot, the

received signal yu at user u is,

yu =
∑
r∈Vu

hruw
r
uxu︸ ︷︷ ︸

desiredsignal

+
∑

u′∈U ,u′ 6=u

∑
r′∈Vu′

hr
′
u wr′

u′xu′︸ ︷︷ ︸
interference

+zu, (1)

where hru ∈ C1×Nr is the channel coefficient vector from RRH r to user u and zu is the

zero-mean circularly symmetric Gaussian noise denoted as CN (0, σ2). For simplicity, let

Ψu,u′ =
∑

r′∈Vu′
hr
′
u wr′

u′ and Ψu = Ψu,u =
∑
r∈Vu

hruw
r
u. With this position, the received Signal-

to-Interference-plus-Noise Ratio (SINR) at user u simplifies to,

γu =
|Ψu|2∑

u′∈U ,u′ 6=u

∣∣Ψu,u′
∣∣2 + σ2

. (2)

We consider that each user decodes its intended signal by treating all other interfering

signal as noise. Without loss of generality, we assume that the spectral and the coding

efficiencies of the downlink C-RAN system equal to 1. Thus, under the clustering decision

S and the beamforming design W, the normalized downlink data rate (bits/s/Hz) of user

u can be calculated as

Ru (S,W) = log2 (1 + γu) . (3)

Computing resource constraint: In general, the computing-resource capacity of the VBS

pool can be modeled as a multi-dimentional vector representing the capacities of the CPUs,
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memory, and network interfaces. However, for the ease of analysis, in this work we only

consider scalar computing capacity. From the profiling results [7,9,10] of the VBS processing

time for LTE subframes, it has been suggested that the computing-resource consumption at

the VBS grows with the traffic load. In general, the computing-resource required for each

user u can be expressed as Γ (Ru), where Ru is the data rate of user u given in (3) and Γ(.)1

is the characteristic (increasing) function specifying the relationship between the utilized

computing resource and the processed user data rate. For example, in [12], the computing-

resource consumption is approximated as a linear function of the user data rate, whereby

Γ(.) is given as Γ (Ru) = Γb + θRu, in which Γb is the basic computing part independent of

the MCS and θ > 0 is the slope. In this work, however, we consider a general realization

of Γ(.) that is applicable for any other models. In particular, let C [cycles/s] denote the

total computing capacity in the VBS pool, i.e., the sum capacity of all the CPUs allocated

to the VBSs, which can be flexibly shared among all the VBSs. The computing-resource

constraint on the accumulated data rate of all the users in the system can be expressed as,

Γ

(∑
u∈U

Ru

)
≤ C, (4)

It should be noted that for a traditional system with distributed computing-resource at the

RRHs, the accumulated data rate processed at each RRH r will be subject to the per-RRH

computing-resource constraint Cr, i.e.,

Γ

(∑
u∈U

sruRu

)
≤ Cr, ∀r ∈ R. (5)

2.3.2 Dynamic-RC Problem Formulation

Our objective is to maximize the WSRSU under the transmit-power constraint at each

RRH and the total computing-resource constraint at the VBS pool. It is assumed that the

capacity of the front-haul links connecting RRHs to the VBS pool is sufficiently provisioned

1The realization of Γ(.) can be obtained by profiling the VBSs at different levels of offered load in a
Cloud-RAN implementation.
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to accommodate peak-capacity demand. Our proposed Dynamic-RC strategy involves find-

ing the joint optimal clustering decision S∗ and the beamforming design W∗, and can be

formulated as follows,

(S∗,W∗) = argmax
{sru,wr

u}
r∈R,u∈U

∑
u∈U

quRu (S,W) (6a)

s.t.
∑
u∈U
‖wr

u‖
2
2 ≤ Pr, ∀r ∈ R, (6b)

‖wr
u‖

2
2 ≤ s

r
uPr, (6c)

Γ

(∑
u∈U

Ru (S,W)

)
≤ C, (6d)

∑
u∈U

sru ≤Mr, s
r
u ∈ {0, 1} , (6e)

where qu is the utility marginal function corresponding to user u, which can represent the

user-specific Quality of Service (QoS) or priority in the system, and Pr [W] is the transmit-

power constraint at RRH r. Constraint (6c) represents the coupling between the clustering

variable sru and the beamforming vector wr
u, i.e., wr

u = 0 when sru = 0 and wr
u = 1 when

sru = 1. Constraint (6e) ensures that each RRH r only serves Mr users at a time and

this constraint is used to control the computational complexity as well as the CSI training

overhead associated with the proposed solution.

We refer to problem in (6) as the Dynamic-RC problem, which is a Mixed-Integer Non-

Linear Program (MINLP) and is intractable in practical time. Specifically, even when the

binary variables sru’s are fixed, solving for wr
u’s is still NP-hard. Given a large number of

variables that scales linearly with the number of users and RRHs in the system, our main

goal in this research is to design a low-complexity, suboptimal solution to the joint radio

clustering and beamforming optimization problem as will be presented in the next Section.

2.4 Joint Dynamic Radio Clustering and Beamforming Design

In this section, in order to solve the Dynamic-RC problem efficiently, we firstly fix the

clustering decision S and address the resulting problem, referred to as the CBD problem.
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We present two approaches to solve the CBD problem using a proposed novel iterative

SOCP algorithm in Sect. 2.4-A and using Branch-and-Bound algorithm in Sect. 2.4-B. The

Dynamic-RC problem will then be solved in Sect. 2.4-C using a proposed iterative algorithm

that make uses of the CBD solution to adjust the clustering decision at each iteration.

2.4.1 Cooperative Beamforming with Fixed Clustering Decision

In this subsection, we consider the problem of Cooperative Beamforming Design (CBD) for

a given radio clustering decision S. In particular, for given sru’s satisfying constraints (6e),

we need to find the optimal downlink beamformers wr
u’s by solving the CBD problem below.

max
wr
u,r∈R,u∈U

∑
u∈U

quRu (S,W) (7a)

s.t.
∑
u∈U
‖wr

u‖
2
2 ≤ Pr,∀r ∈ R, (7b)

Γ

(∑
u∈U

Ru (S,W)

)
≤ C. (7c)

Observe that the rate functions Ru’s appear in both the constraint and objective of (7),

making the problem difficult to deal with. To decouple this problem with respect to (w.r.t.)

Ru’s, we temporarily remove the constraint (7c) and consider the CBD problem with con-

straint (7b) only. The solution {w̃r
u} of the relaxed -CBD problem will be verified against

constraint (7c) so to finally obtain the solution of the original CBD problem by solving an

additional feasibility problem. In the following subsections, the relaxed -CBD first and then

the feasibility problem will be addressed sequentially.

Relaxed-CBD Problem. The relaxed -CBD problem is rewritten from (7) without the

computing-capacity constraint (7c), and is cast as follows,

max
wr
u,r∈R,u∈U

∑
u∈U

quRu (S,W) (8a)

s.t.
∑
u∈U
‖wr

u‖
2
2 ≤ Pr,∀r ∈ R. (8b)
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This is in fact a weighed sum-rate maximization problem, which is widely known to be NP-

hard. Our approach aims for a local solution using a low-complexity algorithm designed

by effectively exploiting the techniques of SOCP2. In order to use the efficient algorithms

developed for SOCP, one must reformulate the problem into the standard form that the

algorithms (e.g., those proposed in [76,77]) are capable of dealing with.

Firstly, we rewrite the objective function (8a) using (3) as,

∑
u∈U

quRu (S,W) =
∑
u∈U

log2(1 + γu)qu . (9)

Now, by introducing the variables tu’s, we can recast the relaxed -CBD problem in (8) as,

max
wr
u,tu,r∈R,u∈U

∏
u∈U

tu (10a)

s.t. γu ≥ t1/quu − 1, ∀u ∈ U , (10b)∑
u∈U
‖wr

u‖
2
2 ≤ Pr, ∀r ∈ R, (10c)

We can easily see that problem (10) is equivalent to problem (8) since the constraints

in (10b) are active at the optimum [78] or, in other words, {wr
u, tu} are optimal for (10) if

and only if {wr
u} are optimal for (8) and γu = t

1/qu
u − 1. We now introduce the following

Lemma.

Lemma 1. Let w̃r
u = wr

ue
jνru, where νru is the phase rotation such that the imaginary part

of hruw̃
r
u equals zero, ∀u ∈ U , r ∈ R. If wr

u is the solution of Problem (10), then so is w̃r
u.

Proof. We can express hruw
r
u as hruw

r
u = |hruwr

u| ejθ
r
u . By choosing νru = −θru, we have

hruw̃
r
u = hruw

r
ue
jνru = |hruwr

u|. If we recall γu, given in (2), it is straightforward to verify

that, by replacing wr
u with w̃r

u, ∀u ∈ U , r ∈ R, the constraints in (10b) and (10c) still hold.

Thus, if wr
u is a solution of Problem (10), then w̃r

u is also a solution.

According to Lemma 1, we can restrict ourselves to the beamformers in which each

product hruw
r
u ≥ 0, ∀u ∈ U , r ∈ Vu, has a non-negative real part and a zero imaginary

2Second-Order Cone Problems (SOCP) are convex-optimization problems in which a linear function is
minimized over the intersection of an affine set and the product of second-order (quadratic) cones.
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part. This does not affect the optimality of problem in (10). Notice that constraint (10b)

is equivalent to

|Ψu|2∑
u′∈U ,u′ 6=u

∣∣Ψu,u′
∣∣2 + σ2

≥ t1/quu − 1, ∀u ∈ U , (11)

which can be recast as,

Ψu ≥ βu
√
t
1/qu
u − 1, ∀u ∈ U , (12)

and,

√ ∑
u′∈U ,u′ 6=u

∣∣Ψu,u′
∣∣2 + σ2 ≤ βu, ∀u ∈ U , (13)

by introducing the slack variables βu’s and considering that both constraints (12) and (13)

are active at the optimum of problem (10). It can be verified that (10c) and (13) follow

the Linear Programming (LP) constraint expression with generalized equalities/inequalities,

which can be directly written as Second-Order Constraints (SOCs)3 [58]. To deal with the

non-convex constraint (12), we further exploit the sequential parametric convex-approximation

approach in [59] to approximate (12) as a convex constraint. Firstly, (12) can be rewritten

as,

Ψu ≥ βu
√
ξu, ∀u ∈ U , (14)

ξu + 1 ≥ t1/quu , ∀u ∈ U . (15)

Observe that, for a given φu, we have

βu
√
ξu ≤

φu
2
β2
u +

ξu
2φu

, (16)

which follows the inequality of arithmetic and geometric means of φuβ
2
u and ξuφ

−1
u . The

equality in (16) is achieved when φu =
√
ξu/βu, leading to the equivalent form of con-

straint (14), i.e.,

Ψu −
ξu

2φu
≥ φu

2
β2
u, ∀u ∈ U . (17)

3In a SOC representation, the hyperbolic constraint ab ≥ c2, with a, b ≥ 0, is equivalent to
||[(a− b) 2c]T ||2 ≤ a + b.
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Furthermore, without loss of generality, we scale qu’s in (7a) such that qu > 1, ∀u ∈ U to

make t
1/qu
u become concave. Thanks to the concavity of tu’s, we can adopt the results in [59]

to replace the right side of (15) by its iterative first-order approximation as,

t1/quu ≤ t(∗)
1/qu

u +
1

qu
t(∗)

(1/qu)−1

u

(
tu − t(∗)u

)
, (18)

where t
(∗)
u denotes the value of tu in the previous iteration. From (13), (17), and (18), the

relaxed -CBD optimization problem in (8) can be finally recast as,

max
wr
u,tu,r∈R,u∈U

∏
u∈U

tu (19a)

s.t.
∑
u∈U
‖wr

u‖
2
2 ≤ Pr,∀r ∈ R, (19b)

(13), (17), (18). (19c)

Note that the objective function and all the constraints in (19) admit a SOC representa-

tion; in particular, the product of optimization variables in (19a) can be transformed into a

set of hyperbolic constraints by collecting two variables at a time. To illustrate the trans-

formation of the objective function, we consider a simple example with U = 4 users, i.e.,

U = {1, 2, 3, 4}. In this case, we have
∏
u∈U

tu = t1t2t3t4, and the objective function in (19a)

becomes equivalent to

maxϑ0
1 s.t.

(
ϑ0

1

)2 ≤ ϑ1
1ϑ

1
2,
(
ϑ1

1

)2 ≤ t1t2, (ϑ1
2

)2 ≤ t3t4, (20a)

which can be expressed in SOC form as,

maxϑ0
1 (21a)

s.t.
∥∥∥[ 2ϑ0

1

(
ϑ1

1 − ϑ1
2

) ]∥∥∥
2
≤ ϑ1

1 + ϑ1
2, (21b)∥∥∥[ 2ϑ1

1 (t1 − t2)

]∥∥∥
2
≤ t1 + t2, (21c)∥∥∥[ 2ϑ1

2 (t3 − t4)

]∥∥∥
2
≤ t3 + t4. (21d)
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If U = 2M , where M is some positive integer, we can represent (19) in SOCP form as in (22);

otherwise, if U 6= 2M , by defining additional variables tk = 1 for k = U + 1, ..., 2dlog2Ue,

where dxe is the smallest integer not less than x, we can still apply the SOCP in (22).

max
wr
u,tu,ξu,βu,ϑ

k
j

r∈R,u∈U

ϑ0
1 (22a)

s.t.

∥∥∥∥[ 2ϑkj

(
ϑk+1

2j−1 − ϑ
k+1
2j

) ]∥∥∥∥
2

≤ ϑk+1
2j−1 + ϑk+1

2j , j = 1, ..2k; k = 0, ... (M − 2) , (22b)∥∥∥[ 2ϑM−1
j (t2j−1 − t2j)

]∥∥∥
2
≤ t2j−1 + t2j , j = 1, ...2M−1, (22c)∥∥∥∥[ 1

2

(
Ψu − ξu

2φ
(n)
u

− 1

)
βu

√
φ

(n)
u /2

]∥∥∥∥
2

≤ 1

2

(
Ψu −

ξu

2φ
(n)
u

+ 1

)
,∀u ∈ U , (22d)

t(n)1/qu
u +

1

qu
t(n)(1/qu)−1

u

(
tu − t(n)

u

)
≤ ξu + 1, ∀u ∈ U , (22e)

‖[σ,Ψu,1...Ψu,u−1,Ψu,u+1, ...Ψu,U ]‖2 ≤ βu,∀u ∈ U , (22f)∑
u∈U
‖wr

u‖
2
2 ≤ Pr,∀r ∈ R. (22g)

In (22), t
(n)
u and φ

(n)
u are the values of tu and φu in the nth iteration, respectively. The

SOCP in (22) can be solved very efficiently and quickly using standard solvers. The iterative

SOCP-based algorithm to solve the relaxed -CBD problem in (8) is described in Algorithm 1.

Algorithm 1 Iterative SOCP for the Relaxed-CBD problem.

1: Initialize n = 0, and t
(n)
u , φ

(n)
u randomly.

2: repeat

3: Given t
(n)
u , φ

(n)
u , solve (22) to obtain W̃ and

{
t
(n)∗
u , β

(n)∗
u , ξ

(n)∗
u

}
.

4: Set
{
t
(n+1)
u , β

(n+1)
u , ξ

(n+1)
u

}
=
{
t
(n)∗
u , β

(n)∗
u , ξ

(n)∗
u

}
.

5: Set φ(n+1)
u =

√
ξ
(n+1)
u /β

(n+1)
u .

6: Set W̃(n) = W̃, n = n+ 1.
7: until convergence.

Lemma 2. Algorithm 1 converges to a locally optimal solution of problem (22).

Proof. Let
(
ϑ0

1

)
n

be the out-come value of the objective function of problem (22) in the nth

iteration. We will prove that
(
ϑ0

1

)
n

increases over each iteration, and thus our proposed Al-

gorithm 1 converges. Firstly, in the nth iteration, given the values of
{
t
(n)
u , β

(n)
u , ξ

(n)
u , φ

(n)
u

}
,
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denote Fn as the feasible set of {tu, βu, ξu} satisfying constraints (22b)-(22g). The optimal

solutions obtained from the nth iteration are
{
t
(n)∗
u , β

(n)∗
u , ξ

(n)∗
u

}
and, hence,

(
ϑ0

1

)
n

= ϑ0
1

∣∣∣∣{tu,βu,ξu}={
t
(n)∗
u ,β

(n)∗
u ,ξ

(n)∗
u

} . (23)

Due to the update rules in steps 4, 5 of Algorithm 1, the solutions
{
t
(n)∗
u , β

(n)∗
u , ξ

(n)∗
u

}
constitute the feasible set in the next iteration, i.e.,

{
t(n)∗
u , β(n)∗

u , ξ(n)∗
u

}
⊆ Fn+1. (24)

Also, since
(
ϑ0

1

)
n+1

is the optimal objective value in the (n+ 1)th iteration, we have,

(
ϑ0

1

)
n+1
≥ ϑ0

1

∣∣{tu,βu,ξu}∈Fn+1
. (25)

From (23), (24) and (25), we can conclude that
(
ϑ0

1

)
n+1
≥
(
ϑ0

1

)
n
, or in other words, Al-

gorithm 1 leads to the monotonic increasing of the objective function in (22). In addition,

since problem (22) is upper bounded due to transmit power constraint, Algorithm 1 will

converge to a locally optimal solution.

Remark 1: (Feasible Initialization) It is crucial to generate the feasible values of

{tu, φu} that satisfy all the constraints to guarantee the feasibility and convergence of Algo-

rithm 1. Therefore, we provide Routine 1 to generate the initial values that ensure feasibility

in the first iteration.

Remark 2: (Complexity Analysis) The computational complexity of Algorithm 1

mainly lies in step 3 where a SOCP problem (22) is solved. Assuming the same number of

antennae Nr on the RRHs, the total number of variables in this SOCP problem is URNr.

The computational complexity of the interior-point method to solve such a SOCP problem

is approximately O
(

(URNr)
3.5
)

[79], which is advantageous for a large network compared

to the optimal design using existing solvers, which are characterized by an exponential-time

complexity.
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Routine 1 Generate Initial Values of {tu, φu}
1: Generate channel-matching beamforming vectors satisfying constraint (22g), i.e.,

wr
u =

(hru)H

‖hru‖
2
2

√√√√ Pr∑
u∈U

sru
, ∀u ∈ U , r ∈ R. (26)

2: Calculate βu and ξu satisfying the equality in (22f) and (14), respectively, as,

βu = ‖[σ,Ψu,1...Ψu,u−1,Ψu,u+1, ...Ψu,U ]‖2, ∀u ∈ U , (27)

ξu = |Ψu|2/β2
u,∀u ∈ U . (28)

3: Calculate tu and φu satisfying the equality in (15) and (17), respectively, as,

tu = (ξu + 1)qu , ∀u ∈ U , (29)

φu =
√
ξu/βu,∀u ∈ U . (30)

CBD Feasibility Problem. Here, the solution of the relaxed -CBD problem (8), which

was obtained using Algorithm 1, will be verified against the computing-capacity constraint

in (7c) to obtain finally the beamforming solution of the original CBD problem cast in (7).

Suppose that W̃ is the beamforming solution of problems (8). If W̃ satisfies the

computing-resource constraint (7c), i.e., Γ

(∑
u∈U

Ru

(
S,W̃

))
≤ C, then W̃ is also the

optimal solution of (7). In this case, the WSRSU is limited by the per-RRH power budget

only, and not by the computing-resource capacity of the VBS pool. Otherwise, when the

computing-resource constraint is violated, we need to selectively drop the rates of some

users. This can be done via a greedy user-rate-dropping algorithm that keeps dropping

rates of the users having the smallest marginal utility function qu from the current schedul-

ing interval until the total data rate of all the scheduled users satisfies the computing-

resource constraint. Let γ̃ be the set of SINR values and A = {u |u ∈ U , γu > 0} be the

set of scheduled users corresponding to the beamforming solution W̃. For simplicity, let

R (A) =
∑
u∈U

Ru

(
S,W̃

)
=
∑
u∈A

log2 (1 + γu). The user-rate-dropping process is summarized

in Routine 2.

Let {R∗u ≥ 0, u ∈ U} be the suboptimal user rates obtained after the greedy user-rate-

dropping process is applied and γ∗u = 2R
∗
u−1; the beamformer design W that achieves these

rates can be obtained via solving the feasibility problem given below,
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find {wr
u} , u ∈ U , r ∈ Vu (31a)

s.t.
∑
u∈U
‖wr

u‖
2
2 ≤ Pr, ∀r ∈ R, (31b)

|Ψu|2∑
u′∈U ,u′ 6=u

∣∣Ψu,u′
∣∣2 + σ2

≥ γ∗u, ∀u ∈ U . (31c)

Routine 2 Greedy User-Rate-Dropping.

1: repeat: Set u∗ = arg min
u∈A

{qu}, A∗ = A\{u∗}.

2: if R(A∗) > Ω then Set γu∗ = 0, A = A∗.
3: else Set γ′ = 0 and γ′′ = γu∗ .
4: repeat: Set γu∗ = (γ′ + γ′′)/2.
5: if Γ (R (A)) > C then Set γ′′ = γu∗ .
6: else Set γ′ = γu∗ .

7: until γ′′ − γ′ < εb. With small tolerance εb > 0.

8: until R(A) ≤ Ω.

The feasibility problem in (31) is not convex ; however, by exploiting its special structure,

we can transform this problem into a SOCP form, which can be solved efficiently. The

transformation is presented as follows. Firstly, notice that (31c) is equivalent to

(1 + 1/γ∗u) |Ψu|2 ≥
∑

u′∈U

∣∣Ψu,u′
∣∣2 + σ2,∀r ∈ R. (32)

Since we consider that hruw
r
u ≥ 0, taking the square root of both sides in (32) yields,

Ψu

√
1 + 1/γ∗u ≥

√∑
u′∈U

∣∣Ψu,u′
∣∣2 + σ2 = ‖[Ψu,1, ...Ψu,U , σ]‖2. (33)

It can be seen that (33) follows the SOC form. Furthermore, let wr be the long column

vector such that [wr]T =
[
(wr

1)
T
, (wr

2)
T
, ...(wr

U )
T
]
, ∀r ∈ R. We are now ready to recast the

feasibility problem in (31) in the standard SOCP form as follows,

find {wr
u} , u ∈ U , r ∈ Vu (34a)

s.t. ‖wr‖2 ≤
√
Pr,∀r ∈ R, (34b)

‖[Ψu,1, ...Ψu,U , σ]‖2 ≤ Ψu

√
1 + 1/γ∗u, (34c)
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The solution W∗ for (34) can be obtained using standard SOCP techniques such as the

interior-point methods [79] or the SOCP solvers (e.g., CPLEX, MOSEK).

2.4.2 Cooperative Beamforming Design via Branch-and-bound

In the previous subsection, the sub-optimal solution for the CBD problem can be obtained by

solving the relaxed -CBD problem using the proposed iterative SOCP method in Algorithm 1

and solving the feasibility problem. In this section, we present the Branch-and-Bound (BnB)

method to solve the relaxed -CBD problem in (8) to a globally optimal solution. While the

BnB method generally has very high computational complexity, which grows exponentially

with the problem size, we mainly use the resulting solution to benchmark the suboptimality

of the proposed iterative SOCP solution.

The BnB method presented in the following is an extension of the method in [80] for

a Multiple Input Single Output (MISO) network with non-cooperative BSs. Firstly, let us

express problem in (8) in an equivalent form as,

min
γu,wr

u
u∈U ,r∈R

∑
u∈U
−qulog2 (1 + γu) (35a)

s.t. γu ≤
|Ψu|2∑

u′∈U ,u′ 6=u

∣∣Ψu,u′
∣∣2 + σ2

,∀u ∈ U (35b)

∑
u∈U
‖wr

u‖
2
2 ≤ Pr,∀r ∈ R. (35c)

Let γ = [γ1, ...γU ]. We denote the objective function and the feasible region of γ in (35),

respectively, as

f (γ) =
∑
u∈U
−qulog2 (1 + γu), (36)

G = {γ|(35b), (35c)} . (37)

The idea of the BnB algorithm is to generate a sequence of asymptotically tight upper and

lower bounds for the objective function such that they both converge to a global optimal

value. The algorithm starts with a known U -dimensional rectangle Qinit that contains the
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feasible region G, which can be specified as follows,

Qinit =

{
γ

∣∣∣∣∣0 ≤ γu ≤ Pr/σ2
∑
r∈R
‖hru‖

2
2 , ∀u ∈ U

}
. (38)

It is easy to verify that G ⊆ Qinit. In each iteration, the lower and upper bounds are

updated by partitioning Qinit into smaller rectangles. In order for the algorithm to converge,

the bounds should be chosen such that they become tight as the number of partitions

of Qinit increases. The iterative BnB algorithm terminates when the difference between

the upper and lower bounds is within a predefined accuracy level ε. For any rectangle

Q = {γ |γu,min ≤ γu ≤ γu,max , ∀u ∈ U} such that Q ⊆ Qinit, we define the functions to

calculate the lower and upper bounds as flb (Q) and fub (Q), respectively. For clarity, the

BnB algorithm is summarized below (Algorithm 2).

Algorithm 2 BnB algorithm for the Relaxed-CBD problem.

1: Initialize Qinit using (38) and optimality tolerance ε > 0.
2: Set Q̄ = Qinit, B =

{
Q̄
}

, Fub = fub
(
Q̄
)
, and Flb = flb

(
Q̄
)
.

3: repeat
4: Split Q along its longest edge into QI and QII using bisection subdivision.

5: Update B = (B\ {Q}) ∪ {QI ,QII}.
6: Set Fub = minQ∈B {fub (Q)}, Flb = minQ∈B {flb (Q)}, Q̄ = argminQ∈B {flb (Q)}.
7: until Fub − Flb ≤ ε. Return Q̄.

We use the bounding functions derived in [80], which can be expressed as,

fub (Q) =

 f (γmin) , γmin ∈ G,

0, otherwise;
(39)

and

flb (Q) =

 f (γ̄) , γmin ∈ G,

0, otherwise.
(40)

In (40), γ̄ = [γ̄1, ...γ̄U ] can be obtained using bisection search on each edge of the rectangle

Q as described in Routine 3. Define the optimal value of γ for problem (35) as γ̃ = inf
γ∈G

f (γ).

By using the bounding functions in (39) and (40), it is shown in [80–82] that Algorithm 2

will converge in a finite number of iterations to a solution arbitrarily close to γ̃.
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Routine 3 Bisection search for finding γ̄ for a given Q.

1: for u = 1 : U do Set a = γmin, a [u] = a [u] + γmax [u]− γmin [u].
2: if a ∈ G then Set γ̄[u] = γmax [u].
3: else Set γ ′ = γmin, γ ′′ = a, and tolerance εb > 0.
4: repeat: Set m = (γ ′ + γ ′′)/2.
5: if m ∈ G then Set γ ′ = m.
6: else Set γ ′′ = m.

7: until ‖γ ′ − γ ′′‖2 ≤ εb. return γ̄[u] = m[u].

8: Return γ̄.

It should be noted that verifying whether γ ∈ G, which is required in (39) and (40)

as well as in lines 4 and 10 of Routine 3, is equivalent to solving a feasibility problem to

determine if the set of SINR values specified by γ are achievable and, if so, return a set of

feasible beamforming vectors wr
u’s. Such a feasibility problem can be addressed using our

method presented in Sec. 2.4.1.

2.4.3 Joint Dynamic Radio Clustering and Beamforming Design

In the previous subsections, we have addressed the CBD problem for a given clustering

decision. Using the solution of the CBD problem, we now go back to address the original

Dynamic-RC problem in (6), which involves making a joint radio clustering decision and

beamforming design. Generally, in a network with U users and R RRHs, there are 2UR pos-

sible clustering patterns. The optimal solution to the clustering decision could be found via

exhaustive search or using standard global optimization solvers; such approaches, however,

would have a prohibitive complexity growing exponentially with the problem size.

In this work, we leverage the efficient iterative SOCP algorithm proposed for the CBD

problem in Sect. 2.4 to design a low complexity joint radio clustering and CBD algorithm.

One method is to combine SOCP with mixed-integer programming. In particular, the

framework developed in Algorithm 1, which iteratively solves problem (22), can be used

to solve the Mixed-Integer SOCP (MI-SOCP) form of the original Dynamic-RC problem

in (6). This way of solving (6) is referred to as the MI-SOCP method in our simulations

where the MI-SOCP in (41) below with binary variables sru’s, is solved in line 3 in each

iteration of Algorithm 1.
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max
wr
u,s

r
u,tu,ξu,βu,ϑ

k
j

r∈R,u∈U

ϑ0
1 (41a)

s.t. ‖wr
u‖

2
2 ≤ s

r
uPr,∀u ∈ U , r ∈ R, (41b)∑

u∈U
sru ≤Mr, s

r
u ∈ {0, 1} , (41c)

(22b)− (22g). (41d)

The derivation of problem (22) becomes particular useful as it reduces each iteration to a

MI-SOCP in (41), which can be solved efficiently using available solvers such as MOSEK.

However, the complexity of this method is still too complex for practical systems. Another

method of dealing with the joint radio clustering and beamforming problem is to employ

l1-reweighing technique to find a sparse solution of the beamforming vectors, as explored

in [41,56]. However, this method does not hold a convergence guaranty.

Motivated by these shortcomings, we propose a low complexity method that can find a

good feasible point via applying Sequential Convex Approximation (SCA) on the continuous

relaxation of problem (41), which we referred to as the iterative SCA-SOCP method. The

continuous relaxation of (41) allows sru to take any value in the interval [0, 1]; this makes

the problem become a SOCP and can be solved directly. However, the resulting solution

will contains many sru’s that are infeasible to the original MI-SOCP (41) and thus it is

very difficult to decide the clustering pattern. In the following, we will consider a tighter

continuous relaxation that allows us to apply sequential convex approximation on the con-

straint (41b). Firstly, we can rewrite (41b) as ‖wr
u‖

2
2 /Pr ≤ sru. Following the approach

in [83], we replace sru on the right side of the constraint with the tighter bound (sru)2 and

consider an equivalent formulation of the continuous relaxation of (41) as,

max
wr
u,s

r
u,tu,ξu,βu,ϑ

k
j

r∈R,u∈U

ϑ0
1 (42a)

s.t. ‖wr
u‖

2
2 /Pr ≤ (sru)2,∀u ∈ U , r ∈ R, (42b)∑

u∈U
sru ≤Mr, (42c)

(22b)− (22g). (42d)
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which follows from that fact that (sru)2 ≤ sru,∀sru ∈ [0, 1]. We note that both sides of (42b)

are convex and thus a SCA method can be applied. In particular, problem (42) can be

solved iteratively, in which in the (k+ 1)th iteration, the constraint in (42b) is replaced by

‖wr
u‖

2
2 /Pr ≤

(
sr(k)
u

)2
+ 2sr(k)

u

(
sru − sr(k)

u

)
, ∀u ∈ U , r ∈ R, (43)

where s
r(k)
u denotes the value of sru in the kth iteration. It should be noted that the

right hand side of (43) is the linear approximation of (sru)2 in the (k + 1)th iteration. We

summarize the steps to solve problem (42) in Algorithm 3.

Algorithm 3 SCA-based Algorithm for Problem (42).

1: Given {t′u, φ′u} ,∀u.

2: Set k = 0, and randomly generate s
r(k)
u ∈ [0, 1] ,∀u, r.

3: repeat
4: Solve the problem below using standard SOCP solver to obtain{

s
r(k)∗
u , t

(k)∗
u , β

(k)∗
u , ξ

(k)∗
u

}
max

wr
u,s

r
u,tu,ξu,βu,ϑ

k
j

r∈R,u∈U

ϑ0
1 (44a)

s.t.
∥∥∥[ 1

2

(
Ψu − ξu

2φ′u
− 1
)

βu
√
φ′u/2

]∥∥∥
2
≤ 1

2

(
Ψu −

ξu
2φ′u

+ 1

)
, ∀u ∈ U , (44b)

t′
1/qu

u +
1

qu
t′

(1/qu)−1

u

(
tu − t′u

)
≤ ξu + 1,∀u ∈ U , (44c)

(22b), (22c), (22f), (22g), (42c), (43). (44d)

5: Set s
r(k+1)
u = s

r(k)∗
u , k = k + 1.

6: until convergence.

7: Return
{
t
(k)∗
u , β

(k)∗
u , ξ

(k)∗
u

}
.

Lemma 3. Algorithm 3 converges to a locally optimal solution of problem (42).

Proof. The proof is similar to the proof of Lemma 2. Let Sk and
(
ϑ0

1

)
k

be the feasible set of

{sru} and the returned objection function, respectively, of problem (44) in the kth iteration.

We have, (
ϑ0

1

)
k

= ϑ0
1

∣∣∣∣{sru,tu,βu,ξu}={
s
r(k)∗
u ,t

(k)∗
u ,β

(k)∗
u ,ξ

(k)∗
u

} . (45)
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Due to the linear approximation in (43) and the updating rule in Step 5 of Algorithm 3,

it can be verified that the returned values
{
s
r(k)∗
u

}
in kth iteration are feasible for the

problem in the next iteration, i.e.,

{
sr(k)∗
u

}
⊆ Sk+1. (46)

Moreover, since
(
ϑ0

1

)
k+1

is the optimal objective value in the (k + 1)th iteration, it holds

that (
ϑ0

1

)
k+1
≥ ϑ0

1

∣∣{sru,tu,βu,ξu}∈Sk+1
. (47)

From (45), (46), and (47), we have
(
ϑ0

1

)
k+1
≥
(
ϑ0

1

)
k
. In other words, Algorithm 3 yields a

non-deceasing sequence of the objective function. Due to the power constraint, the objective

function is bounded above; hence, Algorithm 3 will converge to a locally optimal solution.

In summary, by combining SOCP and SCA, the original Dynamic-RC problem can be

solved iteratively using Algorithm 1 as the outer-loop, within which, Step 3 solves prob-

lem (42) using Algorithm 3. After obtaining the continuous solutions of sru’s, a simple

mapping scheme can be used to set Mr highest values of sru’s to ‘1’ and the rest to ‘0’,

∀r ∈ R. While characterizing the degree of suboptimality of the proposed iterative ap-

proach is a non-trivial task and thus beyond the scope of this research, in our simulations,

we have compared the performance of Algorithm 1 and Algorithm 3 with the globally op-

timal counterparts using BnB and MI-SOCP, respectively.

2.5 Discussion on Practical Considerations

In the previous section, we have designed a low-complexity joint dynamic radio clustering

and beamforming strategy to maximize the WSRSU performance in C-RAN system. Nev-

ertheless, as with any CoMP-based techniques, the proposed scheme comes with the cost of

increased optimization overhead, more channel estimation effort, and a tight synchroniza-

tion requirement. In the following, we provide some discussion on these technical challenges

and provide possible approaches to mitigate such issues. As mentioned earlier, the low
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computational complexity of our proposed strategy is already significantly advantageous

compared to existing approaches. However, it is expected that a dense C-RAN would man-

age a large number of users and RRHs; consequently, the proposed solution may become

costly when making decision in every scheduling time-slot and for every possible user-RRH

pair. In addition, it is shown that the training overhead for CSI estimation required to per-

form user-centric clustering and beamforming scales with the RRH cluster size [84]. Hence,

we hereby discuss on how to further reduce the computational complexity and CSI training

overhead of our proposed strategy.
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 Figure 2.1: Example of candidate and optimized serving clusters for user 1.

Candidate Cluster Selection. Observe that, in practice, a RRH r should not be

included in the serving cluster of user u if the channel gain between r and u is very weak.

Considering a network of hexagonal cells, we can pre-select a small group Cu consisting of

RRHs that have high potential to be included in the optimized serving cluster Vu of user u.

Here, we refer to Cu as the candidate cluster of user u, which is formed by selecting Vmax

RRHs having the strongest channel gains to user u. This Vmax parameter is used to control

the maximum candidate cluster size. The candidate cluster selection process can be run

instantly as we only need to sort the channel gains for each user in a descending order. After

that, Dynamic-RC algorithm will identify the optimal serving cluster Vu as a subset of Cu.

For example, Fig. 2.1 illustrates the candidate cluster and optimized cluster of user 1 when

we set Vmax = 7. In particular, the candidate cluster of user 1 is pre-selected to include RRHs

{1, 2, 3, 4, 5, 6, 7}; under the current channel condition, the solution of Dynamic-RC yields
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the optimized cluster for user 1 consisting of RRHs {1, 2, 3, 4}. Note that the candidate

clusters implicitly impose bias constraints on Dynamic-RC problem, i.e., sru = 0, ∀r /∈ Cu,

resulting in small performance loss as will be shown in our simulations. However, this

significantly reduces the complexity of our proposed algorithm from O
(

(URMr)
3.5
)

to

O
(

(UVmaxMr)
3.5
)

, where Vmax is much smaller than R.

Training Resource Allocation. The clustering and beamforming design in Dynamic-

RC are based on instantaneous CSI and thus it requires estimation of the downlink channels

in every time slot. In a TDD system, this can be done through uplink training by exploiting

the reciprocity between uplink and downlink channels. The uplink training overhead is

characterized by (i) the percentage of resources taken by the uplink training of each user

in TDD systems, denoted as η, and (ii) the occupied uplink resources, denoted as T , to

ensure the orthogonality among the training signals of multiple users connecting to the

same RRH [84]. Taking into account the uplink training overhead, the net downlink data

rate of user u can be expressed as,

R̂u (S,W) = (1− ηT )Ru (S,W) . (48)

According to the LTE specification [85], η is set to 1% for 10 ms training period. While

increasing η leads to more accurate channel estimation, a large value of η will cost more

system resources and eventually decreases the net downlink data rate. On the other hand,

the value of T depends on the cluster formation and it should be chosen so that the training

signals of all users connected to the same RRH are orthogonal in order for the RRH to

distinguish the users. Intuitively, if we select large candidate clusters for the users, each

RRH needs to perform uplink training with more users, resulting in a large value of T .

For a user-centric RRH clustering scheme, T can be computed by solving a graph coloring

problem on a graph representation of the network where each vertex represents a user and

each edge represents two users sharing at least one RRH in their clusters [84].

Two-time-scale Dynamic-RC. Here, we propose to perform Dynamic-RC in a two-

time-scale manner. In particular, at the beginning of each large time-slot, the clustering



45

decision is updated based on channel statistics to adapt to large-scale fading due to shad-

owing. Within each large time-slot, the beamforming solution is computed in every small

scheduling slot based on instantaneous CSI, which is changing much faster. Once the can-

didate clusters are selected, each user only needs to feed back the instantaneous CSI to the

RRHs in its candidate cluster. Therefore, this strategy significantly reduces the overhead

of CSI acquisition process during each large time-slot.

Impact of Synchronization Errors. In C-RAN, each RRH is equipped with a local

clock with individual synchronization parameters. In order to facilitate coherence coopera-

tion, the clock boards of the RRHs must be synchronized to a common external reference

clock (for example via GPS). In particular, these RRHs’ clocks have to be synchronized in

frequency such that Inter Carrier Interference (ICI) be avoided, and in time in order to avoid

both ICI and Inter Symbol interference (ISI) [86]. In this work, we consider the downlink

C-RAN system operating in a single frequency band, and assume that the RRHs are pre-

cisely synchronized. However, in practice, if not carefully designed, the system performance

may be compromised by the time-synchronization errors. These errors, referred to as clock

jitters, are the differences in time between the individual RRH clocks and the reference

clock. The effect of clock jitters at the RRHs is that the composite pulse shape (sum of the

pulses from each RRH antenna shifted by the corresponding clock jitters) seen at the user’s

receiver will no longer be Nyquist [87]. Hence, the neighboring bits will cause ISI, reducing

the mean of the received signal and increasing the variance of the noise. Consequently, the

average SINR at the users will be reduced and so the system WSR performance. Therefore,

considering the design of a good RRH synchronization strategy is important in a future

study in order to preserve the cooperation gains.

2.6 Performance Evaluation

In this section, simulation results are presented to evaluate the performance of our proposed

Dynamic-RC strategy. We consider a C-RAN system consisting of multiple hexagonal cells

with a RRH in the center of each cell. The neighboring RRHs are 1 Km apart from each

other. We assume that all the wireless channels in the system experience block fading such

that the channel coefficients stay constant during each scheduling interval but can vary



46

from interval to interval, i.e., the channel coherence time is not shorter than the scheduling

interval. We assume that all the RRHs have the same number of transmit antennae Nr

and transmit power budget Pr = P,∀r. To ensure fair comparison with the baselines, we

also set Mr = Nr, ∀r. The channel coefficients are calculated following the path-loss model,

given as L [dB] = 148.1 + 37.6 log10 d[km], and the log-normal shadowing variance set to

8 dB. In addition, it is assumed that the channel bandwidth B, reused across all the users,

is 10 MHz, and that the noise power is −100 dBm. Unless otherwise stated, the maximum

candidate cluster size is set to Vmax = 7 and the utility marginal functions qu’s are generated

randomly such that 0 < qu ≤ 1,∀u ∈ U .

2.6.1 Convergence Rate of Proposed Beamforming Algorithm

Firstly, we evaluate the performance of Algorithm 1 in yielding the CBD solution, com-

pared to that of the optimal BnB method in Algorithm 2 and of a popular method so-called

iterative Weighted Minimum Mean Square Error (WMMSE) [56, 88, 89]. Since the compu-

tational complexity of the BnB method is high, it is difficult to solve the CBD problem

with a large number of variables. Hence, we carry out the comparison in a small network

as reported in Fig. 2.2(a, b, c) in which we set U = 4, R = 4, Nr = 4, P = 10 dBm (for (a)

and (b)), sru = 1, ∀u, r and the optimality tolerance set to ε = 10−3;

We generate one random channel realization and set the same initial point for both

Algorithm 1 and WMMSE. We observe from Fig. 2.2(a) that the objective value (WSRSU)

obtained from Algorithm 1 is comparable to that of WMMSE and very close to the optimal

value obtained via BnB method. Iteration run time until convergence of the BnB algo-

rithm for one random channel realization is also depicted in Fig. 2.2(b). Additionally, in

Fig. 2.2(b), we record the average iteration number and iteration run time of Algorithm 1

and WMMSE over 100 random channel realizations. It can be seen that the BnB method

takes extremely long time to converge and is clearly not a practical solution. The solu-

tion of Algorithm 1 converges the fastest, at an order of magnitude faster than that of the

WMMSE algorithm both in average number of iterations and average iteration run time.

This fast-convergence performance of Algorithm 1 is very important for the practical feasi-

bility of Dynamic-RC since we want to optimize the beamforming design in each scheduling
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slot. In Fig. 2.2(c), we compare the CBD solution of the three algorithms over different

values of transmit power P at the RRHs, each with 100 random channel realizations. It can

be seen that when P is small all three algorithms perform the same; conversely, at higher

P Algorithm 1 slightly outperforms WMMSE while both are very close to the optimal BnB

performance.

 

 

 

 

 

Figure 2.3: Different user distribution scenarios.

2.6.2 Weighted Sum-rate Performance

We now consider a system without the computing-resource constraint and evaluate the

performance of the following joint clustering and beamforming schemes.

• MI-SOCP : The WSRSU of this scheme is obtained by using the solver MOSEK to

solve problem (41) in each iteration of Algorithm 1.

• Dynamic-RC1 : Our proposed dynamic radio cooperation scheme where the clustering

and beamforming decisions are updated simultaneously in each scheduling slot.

• Dynamic-RC2 : Our proposed dynamic radio cooperation scheme where the clustering

decision is updated in each shadowing realization while the beamforming decision is

updated in every small-scale fading realization.

• CVSINR: A downlink user-centric joint scheduling and clustering scheme in [47] where

the clustered virtual SINR (CVSINR) algorithm is used to design the beamforming

vectors.
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• Greedy : A greedy clustering algorithm in [49] that solves an equivalent set-covering

problem to select the set of non-overlapping base station clusters. This scheme uses

zero-forcing beamforming and greedy user scheduling.
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Figure 2.4: WSRSU of a C-RAN downlink system using different radio cooperation schemes,
evaluated on three different user distribution scenarios.

We performed simulations in a network of 16 cells with three different user-distribution

scenarios, as shown in Fig. 2.3, including: Scenario 1 with all medium cells; Scenario 2,

light and heavy cells are intermixed together to simulate micro-tidal effect; Scenario 3,

heavy cells are grouped together, and the heavy cell group is surrounded by light cells to

simulate macro-tidal effect. Note that light, medium, and heavy cells are to describe user

density in each cell. We randomly generate 100 large-scale fading (shadowing) realizations,

each consisting of 20 small-scale fading (Rayleigh) instances. For each large-scale fading

realization, we place 32 users in random locations in the network such that there are 1 user

in each light cell, 2 users in each medium cell, and 3 users in each heavy cell.

Figure 2.4(a-c) plots the WSRSU performance of the considered radio cooperation

schemes in Scenario 1, 2, and 3, respectively. It can be seen that Dynamic-RC1 scheme

performs very closely to MI-SOCP scheme. Note that in MI-SOCP the clustering solu-

tion obtained by the global optimization solver is optimal. Dynamic-RC2 exposes a small

loss compared to Dynamic-RC1 due to less frequent updates of clustering decision, while

still significantly outperforming CVSINR and Greedy schemes. This is because the heuris-

tic clustering of the RRHs in the last two schemes is suboptimal, plus their beamforming

algorithms only aim at minimizing the intra-cluster interference but not the inter-cluster

interference. On the other hand, our proposed Dynamic-RC schemes take into account the
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global network condition that is available at the VBS pool, which provides better clus-

tering decision and beamforming design. Compared to the optimal scheme, our proposed

Dynamic-RC strategy has a significant advantage in reducing the execution time. In fact,

in our simulation for the considered system configuration (U=32, R=16), MOSEK solver

takes more than 100 s to obtain the optimal solution of the MI-SOCP problem, while each

iteration in Dynamic-RC -1, 2 takes less than a second.
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Figure 2.5: CDF of average user rate obtained by Dynamic-RC1.

2.6.3 Impact of Maximum Cluster Size

Figure 2.5(a-b) plots the CDF of average user rate (w.r.t. 32 users) achieved by Dynamic-

RC1 scheme with different values of the maximum candidate cluster size, Vmax. When

Vmax = 1, there is no cooperation among the RRHs. The results in Fig. 2.5(a-b) are obtained

by performing 100 drops on Scenario 2 and Scenario 3, respectively, with P = 10 dBm. The

utility marginal functions are updated in each drop according to the proportional fairness

criterion, i.e., qu = 1/R̄u, where R̄u is the long-term average data rate for user u. We

observe that the improvement in average user rate due to larger cluster size in Scenario 3

(macro-tidal effect) is greater than that of Scenario 2 (micro-tidal effect). For instance, the

Dynamic-RC1 scheme with Vmax = 3, 5, 7 provides 30%, 37%, and 38.6% gain, respectively,

for the 60th-percentile average user rate over the non-cooperation scheme (Vmax = 1) in

Scenario 2; while the corresponding gains in Scenario 3 are 45%, 59%, and 64%, respectively.

Figure 2.6(a-b) plot the average net-WSR of a downlink C-RAN system using Dynamic-

RC1 scheme with different values of Vmax and the percentage of allocated uplink resources

training η on the three described user-distribution scenarios. We observe the same trend in

all three scenarios than when the cluster size is small, i.e., the average net-WSR increases
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Figure 2.6: Average net-WSR of a downlink C-RAN system using Dynamic-RC1 strategy,
evaluated on three different user distribution scenarios.

with cluster size. When the cluster size becomes higher, the average net-WSR eventually

decreases since the training overhead used too many resources.

2.6.4 Benefits of Computing Resource Sharing

Figure 2.7 compares the WSRSU performance of our considered system with the centralized

computing-resource constraint versus a conventional system with a distributed computing-

resource constraint. In particular, we consider a network of 4 medium cells. For a fair com-

parison, we set arg Γ(C) to 400 Mbps and arg Γ(Cr) to 100 Mbps, and ran the Dynamic-RC1

scheme on both systems. Note that, in this setting each of the 4 RRHs in the distributed

system is provisioned to process maximum 100 Mbps of user baseband traffic at a time,

while in the centralized system the VBS pool is provisioned to process maximum 400 Mbps

baseband traffic at a time. We say that the computing resource is saturated in each system

when the achieved Sum Rate (SR) of all the users reaches the maximum provisioned pro-

cessing traffic rate. As the transmit power increases, observe in Fig. 2.7 that the computing

capacity of the VBS pool in the centralized system saturates earlier than the distributed sys-

tem does (when the computing capacity is saturated at all the RRHs). In fact, the WSRSU

and SR of the distributed system saturate almost at the same time while the WSRSU of

the centralized system continues to increase after the saturation point (of the SR), and is

significantly higher (up to 150% gain) than that of the distributed system. This demon-

strates the significant potential gains of C-RAN over the conventional distributed RAN in

terms of WSRSU, computing resource, and transmit-power utilization.
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Figure 2.7: WSRSU of a downlink C-RAN system with centralized computing resource
versus that of a traditional system with distributed computing resources.

2.7 Summary

In this chapter, we proposed a novel dynamic radio cooperation strategy for a Cloud Radio

Access Network (C-RAN) that takes advantage of real-time communication and computing-

resource sharing among Virtual Base Stations (VBSs). The underlying optimization prob-

lem was formulated as a mixed-integer non-linear program, which is NP-hard. Our approach

decomposes the original problem into a cooperative beamforming design (CBD) problem

with fixed clustering decision and a master problem that iterative adjusts the clustering

solution. We effectively exploit conic programming and sequential convex approximation

techniques to derive a novel iterative algorithm to solve the Dynamic-RC problem. Simula-

tion results showed that our proposed low-complexity algorithm provides close-to-optimal

performance in terms of weighted sum-rate system utility while significantly outperforming

conventional radio clustering and beamforming schemes.
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Chapter 3

Cooperative Hierarchical Caching and Request Scheduling in

C-RANs

In this chapter, we present a novel caching framework aimed at fully exploiting the potential

of C-RAN systems through cooperative hierarchical caching which minimizes the network

costs of content delivery and improves users’ Quality of Experience (QoE). In particular,

we consider the cloud-cache in the cloud processing unit (CPU) as a new layer in the RAN

cache hierarchy, bridging the capacity-performance gap between the traditional edge-based

and core-based caching schemes. A delay-cost model is introduced to characterize and for-

mulate the cache placement optimization problem, which is shown to be NP-complete. As

such, a low complexity, heuristic cache management strategy is proposed, constituting of

a proactive cache distribution algorithm and a reactive cache replacement algorithm. A

Cache-Aware Request Scheduling (CARS) algorithm is devised in order to optimize online

the tradeoff between content download rate and content access delay. Via extensive numer-

ical simulations—carried out using both real-world YouTube video requests and synthetic

content requests—it is demonstrated that the proposed cache-management strategy out-

performs traditional caching strategies in terms of cache hit ratio, average content access

delay, and backhaul traffic load. Additionally, the proposed cache-aware content request

scheduling algorithm achieves superior tradeoff performance over traditional approaches

that optimize either users’ rate or access delay alone.

3.1 Introduction

Over the last few years, the demand on mobile networks has fundamentally shifted from

being a steady increase in traffic for connection-centric communications such as phone

calls and text messages to an explosion of content-centric communications such as video
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streaming and content sharing. According to a recent forecast by Cisco [90], global mobile

data traffic will reach 30.6 exabytes per month by 2020 with 75% of that being video

traffic. The resulting demand poses immense pressure on the mobile network capacity and

challenges the efficiency of the backhaul link that connects the access network to the core

network. In order to prevent the backhaul capacity from becoming the system bottleneck

(especially during peak-traffic hours), edge caching has been recognized as a promising

solution to mitigate backhaul usage while reducing content-access latency [91,92]. In cellular

edge caching, popular contents are cached at the BSs so that demands from users to the same

content can be accommodated easily without duplicate transmissions from remote servers

in the Content Delivery Network (CDN). This directly translates into sizable reduction in

Capital Expenditure (CapEx) and Operational Expenditure (OpEx) [93].

One key limitation of caching in wireless networks is that the relatively small cache stor-

age at individual BSs often lead to moderate cache hit performance. Recently, a number of

solutions have been proposed to improve cache hit performance via collaborative caching,

in which different cache entities share their contents, thus forming a larger cache-storage

pool [94–97]. Existing collaborative-caching paradigms can be categorized as horizontal

collaboration among the BSs’ caches or vertical collaboration (hierarchical caching) between

the BSs’ caches and cache at the Core Network (CN). While offering great potential to

improve cache hit ratio over non-collaborative schemes, there are several challenges that

fundamentally limit the effectiveness of these collaborative-caching paradigms. First, in

hierarchical caching, fetching contents from CN’s cache to the BSs often undergoes con-

siderable delay that is many-fold higher than the delay of transferring content among the

BSs [94, 95, 97–99]. Second, current collaborative-caching techniques at the BSs rely on

the direct interconnections between the BSs, which have very limited capacity and cannot

handle large amount of content sharing. Since the BSs in the current 4G cellular network

are connected with each other via the X2 interface, which is designed for exchanging control

information or users’ data buffer during handover [100,101], it is impractical to exploit such

interface for inter-cache data transfer and to realize the benefits of collaborative caching.

Our Vision: In C-RAN, the computational functionalities of the BSs can be fully or

partially implemented in a common Cloud Processing Unit (CPU) that can be hosted in
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Figure 3.1: Illustration of a C-RAN caching system where the cloud-cache is deployed at
the CPU and the edge-caches are deployed at the BSs.

a small data center. Fueled by the strong computing capabilities and storage resources at

the CPU, C-RAN can provide a central port for traffic offload and content management

in order to handle effectively the fast-growing multimedia traffic and meet the demands of

mobile users. By leveraging the C-RAN architecture, we propose a cooperative hierarchical

caching strategy making use of distributed edge-caches at the BSs and the cloud-cache at

the CPU (see Fig. 3.1). The deployment of edge-caches and cloud-cache are complementary

and inter-operable. Unlike existing solutions, the cloud-cache presents a new layer in the

RAN cache hierarchy, compromising between the edge-based caching (small cache size, low

access latency) and core-based caching schemes (large cache size, high access latency) to

improve cache hit performance. In particular, we leverage the high-bandwidth, low-latency

fronthaul links (e.g., optical fiber) [11, 102] connecting the BSs for cache content sharing;

this way, each BS retrieves cache contents from the neighboring BSs via a “U-turn” (BS-

CPU-BS), which is much more latency- and cost-effective than fetching content from the

original remote server in the CDN via backhaul network [94, 95, 98]. The cloud-cache and

edge-caches collaboratively form an “octopus-like” caching network and thus we name our

proposed caching scheme Octopus. This scheme has the potential to exploit in full the extra

degrees of cooperation brought by C-RAN to pool the storage resources and increase cache

hit ratio as well as to reduce outbound requests to the higher-level network elements.

Traditionally, the request scheduling problem has been considered in the literature in

the form of the user-BS association problem, in which the main objective is to achieve

load balancing. Specifically, the key inputs to traditional user-association policies are the
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wireless channel and interference characteristics as well as the number of users already

associated with each BS. Most existing works consider caching and user association sepa-

rately [103,104], both in the solutions and objective functions. In contrast, our work brings

the additional consideration of caching into user association, thus providing an additional

degree of freedom in allowing the users the flexibility of associating with the BS depending

on both channel condition and content availability.

Challenges and Contributions: To exploit the benefits of the envisioned cooperative

hierarchical caching paradigm, there are several important challenges that need to be ad-

dressed. First, the presence of multiple cache layers coupled with the geographical variation

of content popularity at different cell sites makes the cache-placement problem difficult. As

the number of available content files is huge, the overhead and complexity of the cache-

management algorithm need to be carefully considered. Second, when a user’s request for

content arrives, one needs to decide to which BS the user should be connected, depend-

ing on different performance objectives. From the users’ perspective, some might want to

download the content from the BS that can provide the highest rate so as to maximize the

user rate utility [103, 104]; whereas, with the presence of caches, the network might want

to direct the user to the BS that already stores the requesting content so as to mitigate

backhaul usage. The latter case also benefits those users who prefer lower content access

delay. Therefore, it is imperative to design a content request scheduling algorithm that

optimizes the tradeoff between users’ rate utility and content access delay. In summary, the

novelty and contributions of this work are as follows.

• To the best of our knowledge, we are the first to introduce the cooperative hierarchical

caching paradigm in C-RAN, which comprises the edge-caches distributively deployed

at the BSs and the cloud-cache at the CPU. All the cache entities are managed by

the Central Cache Manager (CCM) at the CPU.

• We formulate a cache-management optimization problem that addresses the questions

of what content and where to place it among the cache nodes so as to minimize the

average content access delay cost, subject to the cache-size constraint at each node.

We show that this is an NP-hard problem and propose a low-complexity, heuristic
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strategy that combines both proactive and reactive caching, and that yields at least

1
2 of the optimal value.

• We propose an online Cache-Aware Request Scheduling (CARS) that—in conjunction

with the cache management policy—optimizes the tradeoff between content download

rate and content access delay. The algorithm achieves a formal competitive perfor-

mance bound, and allows flexible control of content download rate and content access

delay.

• We carry out extensive numerical simulations using both a real-world YouTube video

request trace and synthetic content requests following Zipf-based popularity model.

We demonstrate that our caching strategy outperforms traditional caching deployment

architectures and cache-management algorithms in terms of cache hit ratio, average

content access delay, and backhaul traffic load. Furthermore, we show that the pro-

posed cache-aware content request scheduling achieves superior tradeoff performance

over the existing approaches.

Note that the overall design for such caching system, which could involve the prediction

of content popularity, request arrival rate, and user mobility pattern, is a complex problem

and goes well beyond the scope of this work. Here, we assume that such information is

available at the CCM to make cache-management and request scheduling decisions.

Chapter Organization: The remainder of this chapter is organized as follows. In

Sect. 3.2, we review the related work. In Sect. 3.3, we present the system architecture

and introduce the content access delay cost model; in Sect. 3.4, we describe our cache-

management strategy to minimize the content access delay cost; in Sect. 3.5, we present our

cache-aware request scheduling algorithm; in Sect. 3.6, we discuss performance evaluation

via numerical simulations; finally, in Sect. 3.7, we conclude the chapter.

3.2 Related Work

There have been a number of works exploiting the benefits of content caching in cellular

networks (cf. [92, 105–108]), which have different settings from traditional caching on the
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Internet. In these works, the authors propose to alleviate backhaul congestion via proactive

caching at the small cell BSs, whereby files are proactively cached during off-peak hours

based on file popularity and on correlations between users and file patterns. In [91], the

notion of femtocaching is introduced, in which the femtocell-like BSs are used to form a

distributed caching network that assists the macro BS to handle requests of popular files.

To overcome the cache-size limitation at individual BSs, collaborative caching has been

exploited in small-cell networks [94–96, 109] and among the operators [110]. Along this

line, the authors in [95, 111] propose online collaborative caching algorithms that aim at

minimizing the total cost paid by the content providers without requiring prior knowledge

about the content popularity. Recently, we propose in [112] a collaborative joint caching

and processing strategy for multi-bitrate video streaming in Mobile-Edge Computing (MEC)

networks. In this paradigm, each MEC server deployed next to a BS acts as both the cache

server and the video transcoding server. In [113], Poularakis et al. propose to combine

caching and multicast to improve energy efficiency in 5G cellular network with a massive

demand for delay-tolerant content.

While offering great potential to bring popular content closer to the users, the aforemen-

tioned caching schemes only rely on the deployment of edge-caches. Hence, due to limited

cache-size at the BSs (compared to the very large amount of popular content), these edge-

only caching schemes suffer from high cache miss ratio. To overcome this issue, the authors

in [94] consider caches both in the RAN edge and in the Evolved Packet Core (EPC). Along

this line, the techniques in [105] are further extended to a hierarchical caching scheme in [96]

where the gateways in the EPC also have video caches. While it is possible to implement

relatively large cache size at the EPC so as to improve the cache hit ratio, fetching content

from EPC to the BSs still undertakes considerable delay due to the involvement of multi-

ple intermediate network components. More recently, caching in C-RAN has been studied

in [114], which focuses on resource allocation and BS association with the presence of clus-

ter content caching, and in [115], which focuses on dynamic BS clustering and multicast

beamforming. Differently form these works which only consider static caching, our strategy

dynamicaly updates and optimizes the cache placement at each node given cached contents

at other nodes.



59

Traditionally, the problem of user-BS association was mostly addressed using offline

approaches, see for example [103,116]. While providing optimal solutions, these approaches

are not practical as they require a-priori knowledge of the users’ arrivals and rates, and often

result in re-scheduling large numbers of on-going connections. On the other hand, practical

online algorithms for user-BS association are exploited recently in [104, 117] to maximize

the sum-rate utility of users. Differently from these works, we consider the presence of

cache contents at the BSs and designs a content request scheduling that optimizes the

tradeoff between content download rate and content access delay. There are also several

existing works considering the joint design of content caching and request scheduling policy

in wireless networks. For example, [118] designs a video caching and user association scheme

to minimize the user experienced delay, while [119] focuses on designing the joint user

association and data caching strategy to minimize the requests served by the macro BSs.

In addition, [120] studies the complexity of the joint user association and caching scheme.

Most of these works, however, do not consider heterogeneity aspects such as the difference

of wireless channel quality among different users, and their solutions do not allow control

of the tradeoff between content download rate and content access delay.

3.3 Caching System Model

In this section, we describe the considered cooperative hierarchical caching system and

introduce the content access delay cost model. The key parameters used in this chapter are

listed in Table 5.1.

3.3.1 System Architecture

We consider a C-RAN that consists of multiple distributed BSs, all connected to a common

CPU via low-latency, high-bandwidth fronthaul links, as illustrated in Fig. ??. The CPU

is connected to the EPC via a backhaul network that further connects the EPC to the

Internet and the CDN. Most of the content providers make use of CDN to distribute their

content geographically closer to the end users. While serving a large portion of the Internet

content, the CDN servers are deployed outside of the mobile network domain.
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Table 3.1: Summary of Key Parameters for C-RAN Caching System

Symbol Description

R Set of R BSs
U Set of U users
Ur Set of users served by BS r
F Set of F files
pir Probability of file i being requested from cell r
Mr Storage capacity [files] of edge-cache at BS r
M0 Storage capacity [files] of cloud-cache
Cr Set of files cached at BS r
C0 Set of files cached at cloud-cache
V Cache placement ground set
Vr Set of files that might be placed in cache Cr
fir Copy of file i in cache Cr
C Cache placement decision
cik(C) Indicator of whether (I.o.w) fik ∈ Ck
xkir I.o.w a request for file i from BS r is retrieved from Ck
xR+1
ir I.o.w a request for file i from BS r is retrieved from the CDN
dr Delay cost of transferring a file between cloud-cache and BS r
d0 Delay cost of transferring a file from the CDN to the CPU
drk Delay cost of transferring a file between BS r and BS k
Pr Transmit power of BS r
hur Channel gain between BS r and user u
yur I.o.w user u is scheduled to download content from BS r
β Trade-off parameter

The realization of fronthaul links in C-RAN allows the BSs to retrieve cache contents

from each other via the “U-turn” (BS-CPU-BS). This way of getting content is more latency-

and cost-effective than fetching content from the original remote server in the CDN via

backhaul network [94, 95, 98]. In this work, we introduce a cooperative hierarchical caching

paradigm that consists of the cloud-cache deployed at the CPU and the distributed edge-

caches at the BSs. In the proposed system, we consider that there is a CCM implemented

at the CPU to monitor all the requests generated from users within the local RAN, and is

responsible for making cache (re)placement decisions as well as content request scheduling.

In addition, fueled by the powerful processing capability at the CPU, one can implement

sophisticated machine-learning and data-mining algorithms to estimate the content pop-

ularity in each cell. Such methods would involve analyzing data from popular websites,
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newspapers, and social networks to determine, around a specific BS, what kinds of contents

people like, search for, and what the consumer profiles of these people are [121,122]. While

the actual content files are physically stored in separated caches, a global indexing table

can be maintained by the CCM to facilitate content lookup and cache management.

Let R = {1, 2, ...R} denote the set of R BSs in the considered C-RAN, U = {1, 2, ...U}

denote the set of active users in the system, and F = {1, 2, ..., F} denote the set of indexes

of all content files available for download. For notational convenience, we assume an equal

size [MB] for all files (as also considered in [91,92]). This assumption could be easily lifted

by considering a finer packetization, and by breaking longer files into blocks of the same

length. In this work, we extend the analysis in [42], which only considers global content

popularity. Rather, we assume to have content popularity at cell level, and define the

popularity distribution of the files at each cell r as P = {p1r, p2r, ..., pFr}, where pir ∈ [0, 1]

is the probability of file i being requested from a user in cell r and
∑

i∈F pir = 1,∀r ∈ R.

We consider that each BS integrates not only the front Radio Frequency (RF), but also

certain capabilities to enable caching such as content storage and look up. We assume

that each BS r ∈ R is equipped with an edge-cache, with normalized storage capacity

of Mr [files], and that the CPU is equipped with a cloud-cache, with normalized storage

capacity of M0 [files] (usually M0�Mr, r = 1, ..., R). The total cache capacity in the system

is thus given by M =
∑R

r=0Mr. We refer to Cr, r ∈ R, as the cache at BS r, which implies

the set of files stored at BS r. Similarly, we refer to C0 as the cache or equivalently the set

of files stored at the CPU. To describe the cache-placement decision, i.e., which files should

be stored in which caches, we define the cache-placement ground set as,

V = {f10, f20, ..., fF0, ..., f1R, f2R, ..., fFR} , (1)

where fir denotes the copy of file i in cache Cr. Note that the indexing of caches Cr’s,

r = 0, 1, ..., R, includes all the edge-caches and cloud-cache. In the subsequent analysis,

unless otherwise stated, we will refer to file i and to its copy fir interchangeably. The ground

set V can be partitioned into R+1 disjoint sets, V0,V1, ...,VR, where Vr = {f1r, f2r, ..., fFr}

is the set of all files that might be placed in the cache Cr. Hence, we can write Cr ⊆ Vr. A
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Figure 3.2: Illustration of Octopus caching system constituted of cloud-cache C0 and edge-
caches C1, ..., CR, which can share cached contents via fronthaul links.

feasible cache-placement decision, denoted as C = {C0, C1, ..., CR}, must satisfy the storage

capacity constraints as follows,

|Cr| ≤Mr, ∀r = 0, 1, ..., R. (2)

When a user makes a request to BS r for file i that is already stored in the local edge-

cache Cr, it can directly download file i from Cr without incurring traffic on the fronthaul

and backhaul links. If the requested file i is not stored in the local edge-cache, the request

is forwarded to the CCM at the CPU. Upon receiving the request for file i from BS r, the

CCM will firstly search for file i in the cloud-cache C0, and then in the neighboring caches

of BS r, i.e., Ck’s, k 6= r. If file i is found in one of the caches, the CCM will direct the

user to download the file directly from that cache via fronthaul links; otherwise the user

will download the file from the origin server in the CDN, incurring traffic in the backhaul

links. In Fig. 3.2 we illustrate the overview of our proposed Octopus caching system with

an example where requests from user 1 (in cell 1) and user 2 (in cell 2) are retrieved from

edge-cache C1, whereas request from user 3 in cell R is retrieved from cloud-cache C0.

To facilitate subsequent analyses, let us define the following binary variables for a given

cache-placement decision C as follows (∀i ∈ F , r ∈ R, k ∈ {0} ∪ R),

cik(C) =

 1 fik ∈ Ck,

0 otherwise,
(3)
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xkir =

 1 if request for file i from BS r is retrievedfrom Ck,

0 otherwise;
(4)

xR+1
ir =

 1 if request for file i from BS r is retrievedfrom the CDN,

0 otherwise.
(5)

Since each request should be downloaded from only one place, we impose the following

constraint, ∑R+1

k=0
xkir = 1,∀i ∈ F , r ∈ R. (6)

3.3.2 Content Access Delay Cost

Although storage resources (e.g., hard disk) are cheap nowadays, it is neither cost-efficient

nor feasible to store all available files in the caches. When a user requests for a file that is

not available in the cache of the serving BS, it has to retrieve the file from other places, thus

incurring additional access delay. The content access delay reflects the time it takes for a

user to send the request for content until it first receives the data, which includes the time

for the data to traverse the user-BS wireless link and backhaul network to the CDN. In this

work, we will focus on the cost model for content access delay as considered in [91,94].

Let dr denote the delay cost incurred when transferring a file from the cloud-cache to

BS r via fronthaul link, which we assume to be the same as the delay cost of retrieving that

file from edge-cache Cr to the CPU. Let d0 denote the delay cost incurred when transferring

a file from the CDN to the CPU. Furthermore, we assume the cost of transferring a file

from cache of BS k to BS r is drk = dr + dk. In practice, d0 is usually much greater than dr

and drk as the backhaul link connecting the CPU to the original content server is many-fold

further than the fronthaul links between the BSs and the CPU. This makes it cost-effective

to retrieve content from the in-network caches whenever possible rather than downloading

them from the remote server [94,97,98]. We consider that the incurred delay cost of a user

downloading a file directly from its serving BS’s cache is zero [98]. This is because such

delay is negligible and will incur no matter whether caching is used or not.
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Let us denote Ur ⊆ U as the set of users served by BS r. Thus, for a given cache-

placement decision C and popularity distribution P, we can calculate the average delay cost

of user u ∈ Ur as in (7) below.

D̄u,r =
∑
i∈F

pir

x0
irdr +

∑
k∈R\{r}

xkirdrk + xR+1
ir (dr + d0)

 . (7)

This delay cost reflects the expected content access delay that the users have to wait before

having access to the requested content. Reducing the average access delay cost also directly

translates to a decrease in backhaul network usage, i.e., the amount of data traffic going

through the backhaul links, and thus to a reduced network resource consumption. Another

key aspect that affects the users’ QoE is the content download rate. For example, both the

initial access delay and content download rate directly affect the initial buffer time and the

number of stalls during the video streaming session.

3.3.3 Decomposition Approach

The overall goal of our design is to improve Quality of Experience (QoE) for content-

downloading users, which is mainly characterized by the content access latency and content

download rate. To this end, our solutions for content caching and request scheduling strive to

minimize the average content access delay and maximize the average content download rate,

which are not always achieved simultaneously, and hence, an optimized tradeoff between

the two objectives is targeted.

Interestingly, content placement and request scheduling generally occur at different time

scales: content popularity often varies slowly, at the scale of hours or days based on the

measurement and prediction from various sources; on the other hand, request-scheduling

decisions have to adapt to the dynamics in user location and channel conditions, which vary

in the order of seconds. This makes a joint optimization to react promptly to the dynamic

network changes difficult; hence, it motivates the decomposition of the overall problem

into (i) the cache management subproblem, which takes the long-term content popularity

as input, and (ii) the content request scheduling subproblem, which takes into account

the incoming specific requests, the corresponding channel condition of the users, and the
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cache availability at the BSs and the CPU. Although the two sub-problems are addressed

separately due to their different time-scales, the coupling between the two is reflected by

the fact that the solution of the cache-placement policy is used as input to the request

scheduling policy. Likewise, the request-scheduling solution will affect the cache-placement

decision the next time it is recalculated. This is because the content popularity is calculated

based on the number of requests to each content at different BSs as the result of the request

scheduling policy; hence, after a long-time-scale period (hours or days), the cache-placement

decision will be made based on the updated content popularity.

In the following, the cache management subproblem first and then the cache-aware

request scheduling subproblem will be presented in Sects. 3.4 and 3.5, respectively.

3.4 Cache Management Strategy

We present here the formulation of the cache management problem, followed by the back-

ground material and intuition of our approach. We then describe our proposed greedy

solution, with guaranteed performance, consisting of a cache-distribution algorithm and of

a replacement algorithm.

3.4.1 Problem Formulation

As described in the previous section, the reduction of content access delay cost directly

translates into the improvement in users’ QoE and the reduction in network operational

cost. It is therefore imperative to design an efficient cache-management strategy so as to

minimize the expected content access delay. In particular, we consider a dynamic cache-

management strategy that proactively distributes content files in the caches and reactively

updates the cached files. Notice that multiple copies of the same file can be stored at

different caches.
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The underlying optimization problem to realize the proposed strategy can be formulated

as follows,

min
C,xkir

∑
r∈R

∑
u∈Ur

D̄u,r, (8a)

s.t.
∑

i∈F
cir(C) ≤Mr, ∀r = 0, 1, ..., R, (8b)∑R+1

k=0
xkir = 1, ∀r = 1, ..., R, (8c)

xkir ≤ cik(C), ∀r ∈ R, k ∈ {0} ∪ R, i ∈ F , (8d)

xkir ∈ {0, 1} , xR+1
ir ∈ {0, 1} , cik (C) ∈ {0, 1} , ∀r ∈ R, k ∈ {0} ∪ R, i ∈ F , (8e)

with D̄u,r given by (7). The objective function (8a) represents the total average delay cost

incurred by satisfying content requests from all users in the network. The constraint (8b)

imposes the cache storage capacities and the constraint (8d) represents the cache availability

constraint, i.e., ensuring that a content file can be retrieved from a cache only if it has been

stored in that cache. Note that, mathematically, the average delay cost of user u served

by BS r in a non-hierarchical caching system (cf. [95, 111]) may be viewed as a special

case of the average delay cost D̄u,r presented in (7) when the cloud cache C0 and the CDN

are considered as edge-cache nodes. However, the whole optimization problem considered

in (8) is fundamentally different from that of the non-hierarchical case, given the different

constraints and settings. For instance, there is no constraint on the cache capacity at the

CDN and the content popularity at the cloud-cache is unknown; hence, the CDN and the

cloud-cache are fundamentally different from the edge-caches.

From constraint (8c), by substituting xR+1
ir by 1−

∑R
k=0 x

k
ir into (7), we get,

D̄u,r =
∑

i∈F
pir (do + dr − Sir) , (9)

where

Sir = x0
ird0 + xrir (d0 + dr) +

∑
k∈R\{r}

xkir (d0 − dk). (10)

Observe that Sir can be seen as the delay cost saving when file i is requested by a user u at BS

r, and that Sir is the only term in (9) that depends on the optimization variables. Hence,
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problem (8) can be recast as a problem of maximizing the average delay cost reduction,

expressed as,

max
C,xkir

∑
r∈R

∑
u∈Ur

∑
i∈F

pirSir, (11a)

s.t.
∑

i∈F
cir(C) ≤Mr, ∀r = 0, 1, ..., R, (11b)∑R

k=0
xkir ≤ 1, ∀r = 1, ..., R, i ∈ F , (11c)

xkir ≤ cik(C), ∀r ∈ R, k ∈ {0} ∪ R, i ∈ F , (11d)

xkir ∈ {0, 1} , xR+1
ir ∈ {0, 1} , cik (C) ∈ {0, 1} , ∀r ∈ R, k ∈ {0} ∪ R, i ∈ F . (11e)

The objective function (11) can be seen as the sum of the utility value seen by each BS

and our goal here is to maximize the sum utility value seen by all BSs. The intractability

of this problem can be shown in Theorem 1 below.

Theorem 1. The cache-placement optimization problem in (11) is NP-complete.

Proof. See Appendix in [42] or Theorem 1 in [110].

Due to the NP-completeness of the problem, a global optimal solution usually comes

with exponential computational complexity, which is impractical to implement. Therefore,

our approach aims for a low-complexity, suboptimal solution that can be implemented in a

practical system. In particular, we will show that problem (11) belongs to the classical class

of problems of maximizing a monotone submodular function over a matroid constraint [123,

124]. We then propose a greedy cache-management solution for problem (11) consisting of

a cache-distribution algorithm and a backtracking cache-replacement algorithm.

Before going into details of our proposed solution, we introduce some essential back-

ground material and intuition of our approach.

3.4.2 Preliminaries

In the following, we provide the basic definitions of matroids and submodular functions [125],

which will be used in the analysis of our proposed cache-management strategy.
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Matroids. A matroid is a pair (V, I) such that V is a finite set and I ⊆ 2V is a

collection of subsets of V satisfying the following two properties:

• I is downward closed, i.e., if A ⊆ B ⊆ V and B ∈ I, then A ∈ I;

• If A,B ∈ I and |A| < |B|, then there exists e ∈ A\B such that B ∪ {e} ∈ I.

Matroids generalize the concept of linear independence found in linear algebra to general

sets, and sets in I described above are called independent. One of the important applications

of matroids is the concept of matroid constraint defined via the partition matroid. Consider

a finite ground set V that is partitioned into n disjoint sets V1,V2, ...Vn with associated

integers m1,m2, ...,mn, a partition matroid I is given as,

I = {A ⊆ V : |A ∩ Vi| ≤ mi,∀i = 1, ..., n} . (12)

Submodular functions. Consider a finite ground set V, a set function g : 2V → R is

submodular if, for all sets A,B ⊆ V,

g (A) + g (B) ≥ g (A ∪B) + g (A ∩B) . (13)

Given a submodular function g : 2V → R and A,S ⊂ V, the function gA defined by

gA (S) = g (A ∪ S)−g (A) is also submodular, and if g is monotone then gA is also monotone.

For i ∈ V, we abbreviate A∪{i} by A+ i. Let gA (i) = g (A+ i)−g (A) denote the marginal

value of an element i ∈ V with respect to the subset A ⊆ V. Then, g is submodular if, for

all A ⊆ B ⊆ V and for all i ∈ V\B, we have,

gA (i) ≥ gB (i) . (14)

Intuitively, submodular functions capture the concept of diminishing returns: as the set

becomes larger the benefit of adding a new element to the set will decrease. The function

g is monotone if, for A ⊆ B ⊆ S, we have g (A) ≤ g (B).
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3.4.3 Online Cache Management Algorithms

We exploit the special structure of problem (11) to formulate it as the problem of maxi-

mizing a submodular function subject to matroid constraints. In particular, motivated by

the approach in [91], we will show that the constraints in (11) can be expressed as the

independent sets of a matroid and the objective function can be expressed as a monotone

submodular function.

Cache Placement via Monotone Submodular Maximization: Firstly, recall that

every cache-placement decision C is a subset of the ground set V defined in (1), and that

Cr = C ∩ Vr. With this position, the cache-capacity constraints in (11b) are equivalent to

the condition C ⊆ I, where,

I = {C ⊆ V : |C ∩ Vr| ≤Mr,∀r = 0, 1, ..., R} . (15)

From (12) and (15), we see that our constraints form a partition matroid M = (V, I).

Also, notice from (3) that the set {cir(C) : i ∈ F} can be considered as the Boolean repre-

sentation of Cr. We now have the following Lemma.

Lemma 4. The objective function in (11a) is a monotone submodular function.

Proof. For each file i ∈ F and BS r ∈ R, we introduce the new variables tkir’s as: t0ir = d0,

trir = d0 + dr, t
k
ir = d0 − dk, ∀k ∈ R\r. Denote the objection function in (11a) as g(C), it

can now be expressed as,

g (C) =
∑
r∈R

∑
u∈Ur

∑
i∈F

pirSir =
∑
r∈R

∑
u∈Ur

∑
i∈F

pir

R∑
k=0

xkirt
k
ir. (16)

Since sum of monotone submodular functions is monotone submodular, it is enough

to prove that for each BS r ∈ R, the set function gir (C) = Sir is monotone submodular.

Firstly, notice that from (16), we have,

gir (C) = max
xkir

∑R

k=0
xkirt

k
ir s.t. (11c), (11d), (11e), (17)
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which can be simplified to,

gir (C) = max
{

0, t0irci0 (C) , t1irci1 (C) , ..., tRirciR (C)
}
. (18)

For a new file fin ∈ V\C, let Cin = C+fin. It is straightforward to verify that gir (Cin) ≥

gir (C) and, therefore, gir (C) is a monotonic function ∀C ⊆ V. Intuitively, adding a new file

to a cache-placement set cannot decrease the value of the set function. Let us now consider

another cache-placement set (decision) K such that K ⊆ C. Denote Kin = K+ fin, we have

gir (K) = t
(K)
ir and gir (Kin) = t

(Kin)
ir . Since gir (.) is monotone, we have,

gir (C) ≥ gir (K) . (19)

The marginal value of adding the file fin to the sets C and K can be expressed, respectively,

as,

gir,C (fin) = gir (Cin)− gir (C) , (20)

gir,K (fin) = gir (Kin)− gir (K) . (21)

To prove that gir (.) is submodular, we need to show that gir,K (fin) ≥ gir,C (fin) or, equiv-

alently, that ∆in
r = gir,K (fin)− gir,C (fin) ≥ 0. Using (18), we distinguish three cases,

(i) tnir > gir (C): we have gir (Cin) = gir (Kin) = tnir; hence, ∆in
r = gir (C) − gir (K) ≥ 0,

which stems from the inequality in (19).

(ii) gir (K) ≤ tnir ≤ gir (C): we have gir (Cin) = gir (C) and gir (Kin) = tnir; hence, ∆in
r =

tnir − gir (K) ≥ 0.

(iii) tnir < gir (K): in this case, adding fin does not provide any added value; we have

gir (Cin) = gir (C) and gir (Kin) = gir (K), hence ∆in
r = 0.

In summary, we always have ∆in
r ≥ 0, which implies that gr (.) is submodular function in

V. The proof is complete.
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A popular approach to the problem of maximizing a monotone submodular function

subject to a matroid constraint is to use a greedy algorithm [123,124]. Based on the result

from Lemma 4, we extent such algorithm to solve our problem in (11). Our proposed

cache-management solution consists of two phases: first, the content files are proactively

distributed to the caches using proactive caching; then, every time there is a cache miss

and a new file is downloaded from the content server, the CCM will decide whether to

replace this file with existing ones in the caches via reactive caching. The proposed Utility-

based Hierarchical Proactive Cache Distribution (UHPCD) and Utility-based Hierarchical

Reactive Cache Replacement (UHRCR) algorithms, which constitute the Octopus cache

management strategy, are detailed in the following.

Proactive Cache Distribution: The UHPCD algorithm incrementally builds a place-

ment solution starting with an empty cache placement set. In each iteration, it adds a new

file with the highest marginal value to the cache-placement set, until all the caches are full.

Since the objective function is submodular, the marginal value of a new file decreases as

the cache-placement set grows. We outline the procedure of the greedy UHPCD algorithm

as in Algorithm 4. Thanks to the monotone submodular property of problem 11, the solu-

tion obtained by Algorithm 4 is guaranteed to achieve a ratio of at least 1
2 of the optimal

value [124].

Algorithm 4 Utility-based Hierarchical Proactive Cache Distribution (UHPCD)

1: Initialize: Vr = {f1r, f2r, ..., fFr}, Cr = ∅, r = 0, 1, ..., R,
V = (V0,V1, ...,VR), C = (C0, C1, ..., CR).

2: repeat
3: fj′r′ = arg max

fjr∈V\C
[g (C + fjr)− g (C)]

4: C ← C + fj′r′

5: if |Cr′ | = Mr′ then V ← V\Vr′
6: until V = ∅
7: Output: C

Algorithm 4 initializes all the caches as empty sets in step 1 and begins the iteration

process in step 2. In each iteration, step 3 identifies the placement of file j′ in cache Cr′ ,

denoted by fj′r′ , that provides the highest marginal value when adding to the current cache

placement set C. Hence, fj′r′ can be seen as the next best cache placement among the

unplaced files {fjr ∈ V\C}. Step 4 adds fj′r′ to the current cache placement set. In step 5,
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if a cache is full, it will be excluded from the evaluation in the next iteration. The iteration

process terminates in step 7 when the candidate set is empty.

Remark 3: (Complexity of Algorithm 4) In Algorithm 4, there are
∑R

r=0Mr iterations

until all the caches are full, each of which involves calculating the marginal value of at most

(R+ 1)F elements that have not been included in the cache set. Evaluating each marginal

value takes O(U) time; hence, the total running time is O
(

(R+ 1)FU
∑R

r=0Mr

)
. When

Mr is a constant fraction of F , the time complexity is given by O
(

(R+ 1)2F 2U
)

.

Reactive Cache Replacement: Algorithm 4 described above initializes the cache

distribution, which can be done during off-peak traffic hours (e.g., night-time) to utilize

the unused backhaul bandwidth. Over the course of the day, following each cache miss, a

new file will be downloaded from the remote content server to the BSs and delivered to the

requesting user. As all the caches are full already, the CCM will decide to replace this new

file with existing files in the caches only if such replacement could improve the value of the

objective function. This approach ensures that the up-to-date cache-placement set always

yields the highest marginal value. The UHRCR algorithm is shown in Algorithm 5.

Algorithm 5 Utility-based Hierarchical Reactive Cache Replacement (UHRCR)

1: For a new file request i: fir /∈ C, ∀r = 0, 1, ..., R
2: for t = 0 : R do
3: fj′r′ = arg min

fjr∈C
[g (C)− g (C − fjr)]

4: if g
(
C − fj′r′ + fir′

)
> g (C) then

5: C ← C − fj′r′ + fir′

6: else Break
7: Output: C

Step 1 in Algorithm 5 indicates that the process will be initiated any time there is a

cache miss, e.g., a request for file fir that is not in the caches. Step 2 initiates the search for

R+1 iterations. This is because there are potentially at most R+1 files, one in each cache,

that can be replaced by the new file while ensuring the cache capacity constraint. In each

iteration, step 3 finds a file with the least utility value. If swapping the least-valued file

with the new file can increase the overall objective value, as verified in step 4, the swapping

operation will be performed in step 5. This ensures that the cache replacement process will

not decrease the objective value initially achieved by the UHPCD process.
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Remark 4: (Complexity of Algorithm 5) The running time of step 3 in each iteration

is O
(
U
∑R

r=0Mr

)
. Since there are at most R+ 1 iterations, the overall time complexity of

Algorithm 5 is O
(

(R+ 1)U
∑R

r=0Mr

)
, which simplifies to O

(
(R+ 1)2FU

)
when Mr is

a constant fraction of F .

3.5 Online Cache-aware Request Scheduling

In this section, we design the content request scheduling policy that, in conjunction with the

cache-management policy designed in the previous section, optimizes the tradeoff between

content download rate and content access delay.

Without loss of generality, we consider that each user only requests for one content file

at a time. Hence, a user becomes active when it is downloading a content file and remains

inactive otherwise. Each new content request is coupled with a new user arrival to the

network. Upon each new content request, one needs to decide to which BS should the user

be associated, depending on different performance desire. On one hand, to maximize the

sum-rate utility, each user should connect to a BS that could provide high download rate

without degrading too much the rates of other users; on the other hand, to minimize the

content access delay, the requesting user should download data from the BS whose cache

contains the requested content.

In the following, we formulate the request scheduling problem in Subsection 3.5.1 and

present the online solution with guaranteed performance bound in Subsection 3.5.2.

3.5.1 Problem Formulation

We assume that there are N content requests arriving online to the network, one after the

other. Each request is associated with the arrival of a new user and the user departs after

it finishes downloading the content. The users are indexed by their order of arrival, e.g.,

user 1 arrives first and user N arrives last. We denote tn as the time of the n-th departure

for which a user (possibly different from user n) departs the network. Hence, there is no

departure except at tn during each time window [tn, tn+1). Suppose there is a new request

arrival at time t ∈ [tn, tn+1) and let U(t) be the current set of active users. Without loss of
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generality, our analysis in the following will focus on the scheduling decisions in one time

window, in which the system at each arrival time t is investigated. For simplicity, the time

index t is dropped in subsequent analysis.

We consider that both the BSs and the users are equipped with a single antenna each.

Each BS r transmits at a fixed power Pr, r ∈ R, over a single-carrier system with bandwidth

W . Note that the analysis can be easily extended to a multi-carrier system where the

spectrum is divided into resource blocks. Denote hru ∈ C as the channel gain between BS

r and user u ∈ U , which captures the effect of path-loss, shadowing, and antenna gain.

Note that the user-BS association usually takes place in a large time-scale (duration of the

content download session) that is much larger than the time-scale of small-scale fading.

Hence, similar to [103,104], we consider that the effect of fast-fading is averaged out during

the association. In this case, the Signal-to-Interference-plus-Noise Ratio (SINR) of user u

when associated with BS r is given by,

SINRur =
|hru|2Pr∑

s 6=r |hsu|
2Ps + σ2

, ∀u ∈ U , r ∈ R, (22)

where σ2 is the background noise power.

Let the scheduling variables be yur ∈ {0, 1} ,∀u ∈ U , r ∈ R, where yur = 1 if user

u is scheduled to download content from BS r and yur = 0 otherwise. We denote the

request scheduling policy as Ψ = {yur |u ∈ U , r ∈ R}. Here, we employ equal time-sharing

allocation when a BS is associated with multiple users, which has been shown to be optimal

in terms of maximizing the log-utility of user data rates [103]. Consequently, the data

rate [bits/s] of user u when downloading content from BS r is calculated as,

Γur =
φur∑
v∈U yvr

, (23)

where φur = W log2 (1 + SINRur) ,∀u ∈ U , r ∈ R.

To provide proportional fairness among users in a wireless network, the logarithmic

user-rate utility is popularly used [103] and is defined as
∑

r∈R yur log (Γur) for each user

u ∈ U . Thus, the network rate utility can be seen as the sum log-rate utility of all users,



75

expressed as,

Ω (Ψ) =
∑
u∈U

∑
r∈R

yur log

(
φur∑
v∈U yvr

)
. (24)

The cache-aware request scheduling optimization problem, which determines {yur} so

as to maximize a weighted objective of users’ sum log-rate utility and content access delay

cost saving, is formulated as follows,

max
Ψ

∑
u∈U

∑
r∈R

yur log

(
φur∑
v∈U yvr

)
+ β

∑
u∈U

∑
r∈R

yur
∑
i∈F

pirSir, (25a)

s.t.
∑

r∈R
yur = 1, ∀u ∈ U , (25b)

yur ∈ {0, 1} , ∀u ∈ U , r ∈ R. (25c)

In (25a), β is a parameter that can be varied to control the tradeoff between users’ sum

log-rate utility and content access delay. In this case, each point on the tradeoff curve

corresponds to a specific value of β. In practice, for a video streaming client, the initial

access delay and download rate directly affect the initial buffer time as well as the number of

stalls during the video session, which are the two key factors determining users’ QoE [126].

Therefore, it is imperative to find an efficient solution to problem (25) that optimizes the

tradeoff between users’ download rate and content access delay, while ensuring proportional

fairness among the users.

3.5.2 Proposed CARS Algorithm

Let Ur denote the set of users that BS r ∈ R is associated with, i.e., Ur = {u ∈ U |yur = 1},

and |Ur| be the cardinality of Ur. The objective function (25a) can be seen as the sum

of rate-delay tradeoff utility of all BSs in the network. In particular, for a given request

scheduling policy Ψ, the tradeoff utility of BS r ∈ R can be defined by,

Ωr (Ur) =
∑
u∈Ur

log

(
φur
|Ur|

)
+ β |Ur|

∑
i∈F

pirSir. (26)

It can be seen that the objective function (25a) is now equivalent to
∑

r∈RΩr (Ur). To

facilitate the analysis, we will now show that Ωr (Ur) is monotone submodular.
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Lemma 5. If φur ≥ Ue [bits/s], ∀u ∈ U , where U = |U| is the total number of users and e

is the Euler’s constant, then the tradeoff utility function Ωr (·) defined by (26) is monotone.

Proof. Let W ⊂ U , v ∈ U and v /∈ W. We will show that adding user v to the set W will

not decrease the utility value Ωr. In particular, the marginal value of adding v to the set

W, denoted as Ωr,W (v), can be calculated as,

Ωr,W (v) = Ωr (W + v)− Ωr (W) (27a)

= β
∑
i∈F

pirSir +
∑

u∈W∪{v}

log

(
φur
|W|+ 1

)
−
∑
u∈W

log

(
φur
|W|

)
(27b)

= β
∑
i∈F

pirSir + log (φvr)− Λ (|W|) , (27c)

in which the function Λ (·) over z > 0 is defined as,

Λ (z)
∆
= log (z + 1) + log

(
z +

1

z

)z
. (28)

Since W ⊂ U , it holds that |W|+ 1 ≤ |U| = U . Furthermore, recall that lim
n→∞

(
1 + 1

n

)n
= e,

where e is the Euler’s constant. Therefore it follows from (28) that,

Λ (|W|) ≤ logU + log

(
1 +

1

|W|

)|W|
= log(Ue). (29)

From (27c) and (29), we have,

Ωr,W (v) ≥ β
∑
i∈F

pirSir + log (φvr)− log(Ue). (30)

Therefore, if φvr ≥ Ue [bits/s], ∀v ∈ U , we have Ωr,W (v) ≥ 0, which confirms that Ωr (·) is

monotone.

Remark 5: Note that for Lemma 5 to hold, it is required that the data rate (measured

in bits/s) of user u scheduled to BS r, φur, is greater than e ≈ 2.72 times the number

of active users U between any two consecutive departures, which is trivially satisfied in

any real-world system. Such threshold is anyway necessary in an LTE system since a user
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whose channel power is weaker than a minimum threshold will never be selected as it cannot

support the smallest Modulation and Coding Scheme (MCS).

Lemma 6. The tradeoff utility function Ωr (·) defined by (26) is submodular.

Proof. Let W ⊂ T ⊂ U and v ∈ U , v /∈ T . The marginal value of adding v to the sets W

and T are, respectively,

Ωr,W (v) = β
∑
i∈F

pirSir + log (φvr)− Λ (|W|) , (31)

Ωr,T (v) = β
∑
i∈F

pirSir + log (φvr)− Λ (|T |) . (32)

By taking the derivative of Λ (z) in (28) with respect to (w.r.t.) z, it can be verified

that Λ (·) is an increasing function with z > 0. Hence, since |W| < |T |, it follows that

Λ (|W|) < Λ (|T |). As a result, from (31) and (32), we have Ωr,W (v) > Ωr,T (v). This

confirms that Ωr (·) is a submodular function.

From Lemmas 5 and 6, it is confirmed that the objective function in problem (25) is

monotone submodular. Note that a similar result can be obtained by considering the aver-

age content-access-delay saving β
∑

i∈F pirSir as a bias term added to the log-rate of each

user in (26). It is shown in [127] that adding the non-negative bias term does not affect

the submodularity and monotonicity of the log-rate function. With this position, one can

employ a greedy algorithm that assigns each new arriving user to the BS whose added

marginal utility value gets maximized. Based on the classical result in online combinatorial

auction [124,128], such greedy algorithm achieves at least 1
2 the optimal objective value. As

we consider the scheduling during each time window [tn, tn+1) between two consecutive de-

partures, the performance bound can be generalized for the whole considered period of time

with any N departures. The proposed online Cache-Aware Request Scheduling (CARS) is

summarized in Algorithm 6.

Step 1 in Algorithm 6 initiates the scheduling algorithm any time there is a new request,

which is coupled with the arrival of a new user. Step 2 starts the loop to evaluate the utility

marginal value associated with assigning the incoming user to each of the BSs, as calculated
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Algorithm 6 Cache-Aware Request Scheduling (CARS)

1: for each new arrival, user u requests for content i do
2: for r ∈ R do
3: Calculate the utility marginal value at each BS r w.r.t. the current associated

user set Ur,
Ωr,Ur (u) = [Ωr (Ur + u)− Ωr (Ur)] (33)

4: Select k = arg max
r∈R

Ωr,Ur (u)

5: Direct user u to download i from BS k,

Uk ← Uk + u (34)

in step 3. Step 5 selects the BS that gets the highest marginal value when associating with

the new user and step 6 directs this user to download content from the selected BS.

Remark 6: The complexity of Algorithm 6 mainly comes from the iteration process

in step 2; thus, it increases linearly with the number of BSs, e.g., O (R).

3.6 Performance Evaluation

We present now numerical results to evaluate the performance of the proposed caching

and request scheduling strategies. In particular, we evaluate the effects of the proposed

cooperative hierarchical caching architecture, cache-management, and cache-aware request

scheduling algorithms compared to the existing approaches. Thorough simulations are car-

ried out using both real-world trace-based and synthetic content requests. In the following,

we describe the simulation settings followed by different performance evaluation scenarios

in the corresponding subsections.

We consider a C-RAN system with R = 7 hexagonal cells, with 6 cells forming a ring

around one central cell. Each cell has one BS located at the cell’s center and the distance

between two BSs of the two neighboring cells is 1 km. It is assumed that the backhaul

and fronthaul links’ capacities are sufficiently provisioned to handle all the generated traffic

requests. We consider the content requests being video requests that arrive one-by-one to

the network following a Poisson process with arrival rate equals to λR [reqs/min]. Each

content request is coupled with a user arrival, and the location of the user is randomly and

uniformly placed in the network’s coverage area.
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The end-to-end (e2e) latency of retrieving a video from the CDN to the CPU, d0, is

considered to be 80 ms 1, while the e2e latency of transferring a video between the BSs

and the CPU, dr’s, are randomly assigned, following a uniform distribution in the range

[10− 30ms] [94]. In addition, we consider that the size of each video is 20 MB and the

duration of each video is 2 min. For brevity of presentation, we consider a representative

case where the cloud-cache and each of the 7 edge-caches are allocated 30% and 10% of

the total cache capacity, respectively. The extension to different cache capacity allocation

is straightforward.

To compare the performance of different cache management schemes, we consider three

key metrics: (i) cache hit ratio: the fraction of requests that can be retrieved from one of

the caches; (ii) average access delay [ms]: average latency of the contents traveling from the

caches or the CDN server to the requesting user; and (iii) backhaul traffic load [TB]: the

volume of traffic going through the backhaul network due to users downloading contents

from the CDN servers.

Unless otherwise stated, the simulation results are based on the YouTube request trace

data collected on the University of Massachusetts’ Amherst campus during the day of March

12th, 2008 [129]. We consider the content files being the requested videos, whereas the video

popularity is extracted directly from the trace, which consists of 122, 280 requests for 77, 414

different videos.

3.6.1 Impact of Cooperative Cloud-cache

Here, we evaluate the benefits of the proposed caching scheme from the architectural per-

spective by comparing against traditional caching architectures as described below.

• Edge Non-Cooperative (EdgeNC): This scheme only caches most popular files at the

edge-caches and these cache entities do not cooperate with each other. If the re-

quested file from a mobile user is found in the cache of the serving BS, the file will be

downloaded immediately from the cache; otherwise, it will be fetched from the CDN

server.

1Refer to: 3GPP TS 23.203, V13.5.1, Sept. 2015
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• Edge Cooperative (EdgeCP): This scheme only caches most popular files at the edge-

caches while allowing the BSs to retrieve contents from other edge-caches using fron-

thaul links.

• Hierarchical Non-Cooperative (HrchNC): This is a hierarchical caching scheme em-

ploying both the edge-caches and the cloud-cache; these cache entities, however, do

not cooperate with each other. Each edge-cache stores the most popular files seen

by the corresponding BS and the cloud-cache stores the most popular files based on

global popularity.

• Octopus: This is our proposed cooperative hierarchical caching scheme employing

both the edge-caches and the cloud-cache; each BS can retrieve contents from the

cloud-cache or from other edge-caches using fronthaul links.

To ensure a fair comparison, we set the total capacity of all caches in each architecture

to be the same. Figure 3.3(a-c) compares the performance of the considered four caching

architectures using three key performance metrics: (a) cache hit ratio, (b) average access

delay [ms], and (c) backhaul traffic load [TB]. The relative total cache capacity M is

measured as the fraction of the total content library size. Note that, when M = 0.2 and

M = 0.3, the backhaul traffic load of HrchCP architecture is zero. Observe that the

proposed caching architecture, Octopus, significantly improves cache hit ratio and reduces

average access delay as well as backhaul traffic load compared to the other baselines for any

total cache capacity value. On the other hand, deploying hierarchical caching alone without

cooperation as in HrchNC will result in performance degradation compared to EdgeCP.

3.6.2 Impact of Proposed Cache Management Algorithms

In this subsection, considering a hierarchical caching system, we evaluate the performance

of different cache-management algorithms that identify the files to be stored in each cache.

In particular, we compare the proposed Octopus scheme (which employs the UHPCD and

UHRCR algorithms) with five baselines below.

• Layered-aware Cooperative Caching (LCC): In this scheme, we extend the LLC algo-

rithm proposed in [110] to exploit the cooperative hierarchical caching architecture
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Figure 3.3: Comparison of different caching architectures using three key performance met-
rics: (a) cache hit ratio, (b) average access delay, and (c) backhaul traffic load.

in C-RAN. In particular, in addition to the local edge-cache at each BS, we add the

cloud-cache that stores the most popular files according to the global content popu-

larity. Since we do not consider layered-videos, the algorithm will treat each file as

one video with a single layer.

• Exclusive Most Popular Caching (ExMPC): In this scheme, each edge-cache stores the

most popular files based on the content popularity observed at the corresponding BS.

The cloud-cache stores the most popular files based on the global content popularity

observed at the CPU, excluding the files that have been cached at the edge-caches.

This scheme is the realization of the greedy cache-placement algorithm in [130] for

inter-level cache cooperation. The exclusive mechanism in ExMPC avoids the redun-

dancy in the pure MPC scheme [114, 115, 131] as the same files might be cached at

both the edge and cloud layers.

• FemtoCaching Extension (FemtoX): This scheme is an extension of the FemtoCaching [91]

to a hierarchical caching system in C-RAN. In FemtoCaching, the femtocell-like BSs

act like helpers with weak backhaul links but large storage capacity. These helpers

form a distributed caching network that assists the macro BS by handling requests

and caching content according to a greedy algorithm. In FemtoX in this simulation,

we map each helper’s cache in FemtoCaching to an edge-cache and introduce the

additional cloud-cache.
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• Least Frequently Used (LFU): We apply the LFU scheme [132] to the hierarchical

caching system; when the cache is full and if there is a cache miss, LFU fetches the

file from the CDN server and replaces it with the file in the cache that has been least

frequently used.

• Least Recently Used (LRU): This scheme is analogous to the LFU scheme; however,

when the cache is full, it chooses to evict the file that has been least recently used.

The cache hit ratio of LRU scheme depends on the overlap of content requests of the

active users in the local RAN.
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Figure 3.4: Comparison of different cache management policies using three key performance
metrics: (a) cache hit ratio, (b) average access delay, and (c) backhaul traffic load.

Again, we use the YouTube trace for this simulation. In Fig. 3.4(a-c), we compare the

performance of Octopus caching policy with the five baselines. It can be seen that Octopus

always achieves superior performance in terms of cache hit ratio, average access delay, and

backhaul traffic load. This is because the UHPCD algorithm reduces the redundancy among

the caches compared to ExMPC and LLC schemes and the UHRCR algorithm updates the

caches upon cache misses.

3.6.3 Impact of Cache-aware Request Scheduling

Here, we evaluate the performance of our proposed cache-ware request scheduling, CARS,

presented in Sect. 3.5. We assume that the locations of the users making request to each BS r

follow a uniform distribution inside r’s cell area. In order to obtain a scenario where content

popularities are different at different BSs, we randomly shuffle the popularity distribution
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extracted from the YouTube trace. For the radio network setting, we assume the transmit

power of each BS to be Pr = 20 dBm, ∀r ∈ R, and the background noise power to be

σ2 = −100 dBm. The channel gains are generated using distance-dependent path-loss

model, given as L [dB] = 140.7 + 36.7log10d[km], and the log-normal shadowing variance is

set to 8 dB. In addition, the channel bandwidth is set to W = 10 MHz.

We first compare the tradeoff between average user rate and content access delay of

the proposed CARS algorithm with the three baselines described below that decide how

to associate a new arriving user to a BS. In our simulation, the average user rate and

content access delay are calculated over the one-day period for which the YouTube request

trace [129] was recorded.

• MaxChn: the user is associated to the BS having the strongest channel gain to the

user.

• MaxRate: the user is associated to the BS that maximizes the user rate utility, similar

to the algorithm in [104].

• MinDelay : the user is associated to the BS that minimizes the content access delay.

In Figs. 3.5 and 3.6, we compare the tradeoff performance of the four algorithms while

varying the total cache capacity and request arrival rate, respectively. Notice that for

each given cache capacity and request arrival rate, the tradeoff points of the three baseline

algorithms are given by fixed points. In all cases, the MaxRate scheme provides the highest

average user rate with the highest average access delay while the MinDelay scheme provides

the lowest average user rate with lowest average access delay. For each subfigure, different

values of the tradeoff factor β are given by the series [0.1, 1, 2, ..., 9, 10, 15, 20, 30, 50, 100],

which corresponds to different tradeoff points of the CARS scheme, from bottom-left to top-

right on the plot, respectively. Note that when β = 0, CARS becomes MinDelay ; whereas

when β =∞, CARS becomes MaxRate. The tradeoff performance of CARS scheme can be

controlled by varying the tradeoff factor β.

It can be seen in both figures that when β is small, CARS can achieve similar average

access delay as that of MinDelay scheme with significantly higher average user rate; on the
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Figure 3.5: Tradeoff between average user rate utility and content access delay of different
request scheduling algorithms: the total cache capacity M in (a-d) is given as % of the total
content library size, λ = 1 reqs/min, β = [0.1, 1, 2, ..., 9, 10, 15, 20, 30, 50, 100] (from bottom
left to top right).

other hand, when β is large, CARS achieves an average user rate that approaches that of

the MaxRate scheme, albeit with significantly lower average access delay when the request

arrival rate λ is 2 or higher, as seen in Fig. 3.6. In summary, the proposed CARS scheme

allows for flexible control of the average user rate and content access delay tradeoff while

achieving superior performance over the existing baselines in wide ranges of cache capacity

and request arrival rate.

3.6.4 Impact of Content Popularity Skewness

In the previous subsections, using the YouTube request trace, we have demonstrated the

superior performance of our proposed caching (Octopus) scheme and request scheduling

scheme (CARS) over traditional policies. Here, in order to generalize the results, we employ

an analytical content-request model where the popularity distribution of the files is assumed
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Figure 3.6: Tradeoff between average user rate utility and content access delay of dif-
ferent request scheduling algorithms: M = 20% total content library size and β =
[0.1, 1, 2, ..., 9, 10, 15, 20, 30, 50, 100] (from bottom left to top right).

to follow a Zipf distribution [133, 134]. In particular, the request probability of the i-th

most popular content (among the set of F contents) at BS r can be calculated as pir =

1/iα∑F
n=1 1/nα

,∀r ∈ R, where α is the Zipf skewness parameter, which determines the rate

of popularity decline as i increases. The observed value of α might vary from different

measurements; however, it was estimated that α ranges from 0.64 to 0.83 based on the

measurements of [135, 136]. To generate the synthetic content requests, we consider a

library of 10, 000 files with equal size of 20 MB. We randomly generate 100, 000 requests

following the Zipf-based popularity distribution with α ∈ [0.6, 0.7, 0.8].

Figure 3.7(a-c) depicts the performance of Octopus caching scheme over the baselines

with different content popularity distributions. Observe that, as α increases, the perfor-

mance of Octopus scheme in terms of cache hit ratio, average content access delay, and

backhaul traffic load significantly improves. In all cases, Octopus always performs the best;
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Figure 3.7: Performance of different cache management policies with synthetic content
requests generated using the Zipf-based popularity distribution; M = 30% library size and
Zipf parameter α ∈ [0.6, 0.7, 0.8].

however, as α increases, the performance gaps between Octopus and the baselines become

smaller.
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Figure 3.8: Performance of the proposed CARS policy with synthetic content requests
generated using the Zipf-based popularity distribution; M = 30% library size, β =
100, λ = 1 reqs/min, Zipf parameter α ∈ [0.6, 0.7, 0.8], and the tradeoff factor β =
[0.1, 1, 2, ..., 9, 10, 15, 20, 30, 50, 100] (from bottom left to top right).

In Fig. 3.8, we compare the performance of the proposed CARS policy with different

content popularity distributions. It can be seen that, as α increases, the average user rate

and access delay tradeoff performance of CARS is improved. In other words, with the same

average access delay, CARS yields higher average user rate when α is larger.
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3.7 Summary

In this chapter, we introduced a cooperative hierarchical caching paradigm for Cloud Radio

Access Networks (C-RAN) with the deployment of the cloud-cache at the Central Pro-

cessing Unit (CPU) and the distributed edge-caches at the Base Stations (BSs). We pro-

posed a low-complexity, efficient cache-management strategy, Octopus, comprising of two

low-complexity, utility-based hierarchical caching algorithms. Furthermore, we proposed

an online Cache-Aware Request Scheduling (CARS) algorithm that provides a compet-

itive tradeoff between the content download rate and content access delay. We carried

out extensive simulations using both a real-world YouTube video request trace and the

Zipf-based synthetic content request model. We demonstrated that our cache-management

strategy outperforms traditional caching deployment architectures and cache management

algorithms in terms of cache hit ratio, average content access delay, and backhaul traf-

fic load. Additionally, we illustrate that our CARS algorithm achieves superior tradeoff

performance over existing approaches that optimize either users’ rate or access delay alone.

Discussion on Practical Implementation: The low complexity of the cache man-

agement and online content request scheduling algorithms proposed in this work greatly

facilitates the implementation of real C-RAN systems. In particular, the decision-making

CCM can be implemented as a logical entity, co-located at the CPU, that periodically

collects information from each cache node, such as user request logs and temporal chan-

nel gains. This information can be collected through the outband interface such as the

IP/MPLS interface implemented in the commercial mobile caching system. In order to

integrate efficiently the proposed caching system into C-RAN, however, there are several

technical challenges that need to be addressed. First, due to the centralized nature of our

cooperative hierarchical caching scheme, the issue of scalability is of concern. This could

be addressed by implementing the CCM and the learning agent for content popularity es-

timation in the resourceful CPU. Second, not all BSs are suitable for cache deployment or

the cache provisioned at each BS needs not be the same. Depending on the population of

users at different locations, the number of edge-cache nodes and the cache capacities should

be carefully selected. Last, but not least, the impact of user mobility should be taken into
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account; for example, if the mobility pattern of users can be predicted, the CCM might be

able to make informed decision and provision interested content at the cells where a user is

moving to.
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Chapter 4

Adaptive Bitrate Video Caching and Processing in MEC

Networks

In this chapter, we propose a joint collaborative caching and processing framework that sup-

ports Adaptive Bitrate (ABR)-video streaming in MEC network. We formulate an Integer

Linear Program (ILP) that determines the placement of video variants in the caches and the

scheduling of video requests to the cache servers so as to minimize the expected backhaul

cost of video retrieval. The considered problem is challenging due to its NP-completeness

and to the lack of a-priori knowledge about video request arrivals. Our approach decom-

poses the original problem into a cache placement problem and a video request scheduling

problem while preserving the interplay between the two. We then propose practically effi-

cient solutions, including: (i) a novel ABR-aware proactive cache placement algorithm with

provable approximation performance when video popularity is available, and (ii) an online

low-complexity video request scheduling algorithm that performs very closely to the optimal

solution. Simulation results show that our proposed solutions achieve significant increase in

terms of cache hit ratio and decrease in backhaul traffic and content access delay compared

to the traditional approaches.

4.1 Introduction

Motivation: Over the last few years, the proliferation of Over-The-Top (OTT) video

content providers (YouTube, Amazon Prime, Netflix,...), coupled with the ever-advancing

multimedia processing capabilities on mobile devices, have become the major driving factors

for the explosion of on-demand mobile video streaming. According to the prediction of

mobile data traffic by Cisco, mobile video streaming will account for 72% of the overall

mobile data traffic by 2019 [137]. While such demands create immense pressure on mobile
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network operators, distributed edge caching has been recognized as a promising solution to

bring video contents closer to the users, to reduce data traffic going through the backhaul

links and the time required for content delivery, as well as to help in smoothing the traffic

during peak hours. In wireless edge caching, highly sought-after videos are cached in the

cellular Base Stations (BSs) or wireless Access Points (APs) so that demands from users to

the same content can be accommodated easily without duplicate transmissions from original

content servers.

In wireless video streaming, users’ preference and demand towards specific quality

and/or format of a video might be different due to the high dynamics of network con-

dition, coupled with the the heterogeneity of users’ processing capabilities. For example,

users with highly capable devices and fast network connection usually prefer high resolu-

tion videos while users with low processing capability or low-bandwidth connection may

not enjoy high quality videos because the delay is large and the video may not fit within

the device’s display. By leveraging such behavior, Adaptive Bitrate (ABR)-streaming tech-

niques [138, 139] have been widely used in commercial Content Delivery Network (CDN)

to improve the users’ Quality of Experience (QoE). In ABR-video streaming, different bi-

trate versions of a video, referred to as video variants hereafter, can be generated and

transmitted to the users according to their devices’ capabilities, network connection, and

specific requests. While a video variant can be transcoded from another variant of the

same video [140], existing video caching systems often overlook this dependency and offer

each video variant as an independent stream (data file) to the user, resulting in the caching

inefficiency.

Our vision: In contrast to most of the existing works on video caching (see related

works in Sect. 4.2) which are not ABR-aware and mainly rely on the “store and transmit”

mechanism without any processing, we propose a framework to utilize both caching and

processing capabilities at the MEC servers to satisfy users’ requests for videos with different

bitrates. To the best of our knowledge, we are the first to introduce a collaborative joint

caching and processing framework in MEC networks. Specifically, owing to their real-

time computing capability, MEC servers can perform transcoding of a video to different

variants to satisfy the user requests. Each variant is a bitrate version of the video and
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we consider that a lower bitrate variant can be obtained from a higher bitrate variant via

transcoding [141]. For example, a video at bit-rate of 5 Mbps (720p) can be transcoded

from the same video at bitrate of 8 Mbps (1080p). Moreover, we extend the collaborative

caching paradigm to a new dimension where the MEC servers can assist each other to not

only provide the requested video via backhaul links but also transcode it to the desired

variants (for example, when the requesting server is overloaded, the other servers can help

to perform the transcoding tasks). In this way, the requested variant of a video can be

transcoded by any MEC server on the delivery path from where the original video is located

(data provider node) to the home MEC server (delivery node) of the end user. The potential

benefits of this strategy is three-fold: (i) the original remote content server does not need to

generate all different variants of the same video, (ii) users can receive videos that are suited

for their network condition and multimedia processing capabilities as content adaptation

is more appropriately done at the network edge, and (iii) collaboration among the MEC

servers enhances cache hit ratio and balance processing load in the MEC network.

Challenges and contributions: The proposed framework, however, faces several chal-

lenges. Firstly, caching multiple variants of a videos incurs high overhead in terms of storage

which is a limited resource at the network edge. In order to improve the cache efficiency,

one needs to take into account the transcoding dependency among different video vari-

ants, which in turn adds up the complexity of traditional cache placement problem where

different video files are treated independently. Secondly, real-time video transcoding is a

computation-intensive task and transcoding of a large number of videos simultaneously

might quickly exhaust the available processing resources on the MEC servers. Therefore,

it is very important to design a caching and request scheduling scheme that efficiently uti-

lizes both the given cache and processing resources. To this end, we make the following

contributions in this work.

• We formulate the collaborative joint caching and processing problem as an Integer

Linear Program (ILP) that minimizes the average backhaul network cost of delivering

videos to all users, subject to the cache and processing capacity constraints at each

MEC server.
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• To overcome the complexity of the considered ILP and the lack of a-priori knowledge

about video request arrivals, we follow the “divide and conquer” approach to decom-

pose the original problem into two subproblems, i.e., a cache placement problem and

a request-scheduling problem.

• We address the cache placement problem in two scenarios: (i) when content popularity

is not available, we adopt the popular Least Recently Used (LRU) caching policy; and

(ii) when content popularity is available, we propose a novel ABR-aware proactive

cache placement algorithm with provable approximation performance.

• We propose a low-complexity online request scheduling algorithm while showing that

no non-trivial competitive algorithms existed for the request scheduling problem in the

general case. We show via numerical simulations that our proposed online algorithm

performs very closely to the optimal solution using global optimization solver with

exponential complexity.

• We carry out extensive simulations to evaluate the performance of the proposed solu-

tions over traditional caching approaches, and show that our proposed collaborative

joint caching and processing framework provides significant increase in terms of cache

hit ratio and decrease in backhaul traffic and content access delay.

Chapter Organization: The remainder of this chapter is organized as follows. In

Sect. 4.2, we review the related literature and highlight the novelties and significance of

the proposed work. In Sect. 4.3, we present the caching system model and formulate the

underlying optimization problem. In Sect. 4.4, we propose efficient solutions to the consid-

ered collaborative joint caching and processing problem. Sect. 4.5 presents our simulation

results. Finally, we draw the conclusions in Sect. 4.6.

4.2 Related Work

In general, the use of content caching to reduce backhaul traffic and content access delay

has been extensively studied and adopted in the CDN (cf. [142–147] and the references
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therein). Differently from the CDN settings, considerable recent research efforts have fo-

cused on content caching in wireless networks [91,92,105]. For example, in [91], the notion

of femtocaching is introduced, in which the femtocell-like BSs are used to form a distributed

caching network that assists the macro BS to handle requests of popular files. To overcome

the cache-size limitation at individual BSs, collaborative caching has been exploited in

small-cell networks [94–96,109] and among the operators [110]. Along this line, the authors

in [95] propose online collaborative caching algorithms that aim at minimizing the total

cost paid by the content providers without requiring prior knowledge about the content

popularity. In the context of C-RAN, we proposed in [42, 148] a cooperative hierarchi-

cal caching strategy where the cloud-cache is introduced as a bridging layer between the

edge-based and core-based caching schemes. In [149], the authors proposed a coordinated

data assignment algorithm to minimize the network cost with respect to both the precoding

matrix and the cache placement matrix in a C-RAN. In [150], a coded-caching scheme is

proposed for C-RAN that takes into account user mobility in order to minimize the total

energy consumption of the network including the transport and the caching energy con-

sumptions. The energy-efficiency performance comparison of coded and uncoded caching

in wireless network was investigated in [151].

Given the benefits of ABR streaming in improving the quality of delivered video over

the rate-varying connections, several commercial techniques have been deployed including

Apple HTTP Live Streaming (HLS) [152], Microsoft Smooth Streaming [153], and Dynamic

Adaptive Streaming over HTTP (DASH) [138], etc. The experiment of ABR streaming using

Software Defined Networking (SDN) was carried out in [154] where the proposed system

utilizes the information on network condition and cache contents to guide video streaming

clients for improved QoE. Lee at al. [155] investigated the bitrate oscillations problem

caused by the interactions between a DASH client and a cache server and proposed a rate

adaptation approach to address this problem.

In summary, most existing works on wireless caching and ABR streaming mainly focused

on their respective problems of cache placement and rate adaptation while there was little

study on the connection between the two technologies. To account for ABR video streaming,

several works have focused on the use of caching with Scalable Video Coding (SVC) [110,
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156, 157]. In these approaches, each video is encoded into multiple SVC layers that can

be combined at the end user to render the requested video quality. In [156], the authors

study multi-layer video streaming and propose a network coding scheme that combines

inter-layer with intra-layer coding to determine the distribution of video packets to the

cache nodes. The work in [157] proposes a heuristic-based solution to the problem of joint

video caching (video-layer placement) and scheduling as a reward maximization problem.

Furthermore, a collaborative caching scheme of layered videos is studied in [110] where the

authors propose an approximate solution to the cache placement problem using a connection

with the multiple-choice knapsack problem. However, SVC was not preferred in industry in

the past, which is partly due to the lack of hardware decoding support in most traditional

mobile devices. Another important factor that limits the applicability of SVC is that the

decoding of multiple video layers may significantly increase power consumption on mobile

devices whose battery capacity is always limited.

In contrast with the prior approaches using SVC, our work considers a multi-bitrate video

caching framework in which different variants of the video are generated (via transcoding)

and stored at the cache nodes, thus requiring minimal video decoding at the end users.

While this use of multi-bitrate video caching has previously been considered by Shen et

al. [158] and Ahlehagh et al. [141,159,160], they are fundamentally different from our work

in three aspects. First, these works only study a caching system with one cache node,

as opposed to the collaborative framework of multiple caching/processing servers in our

work. Second, these works consider offline request scheduling approaches that resolve the

optimization problem from scratch every time there is a new request arrival; this approach is

inefficient and non-scalable due to the high complexity of the optimal solution while it results

in re-directing large numbers of pre-scheduled requests. Third, only simple reactive cache

placement algorithms were considered in these works; whereas we consider both reactive

cache placement when content popularity is not available and proactive ABR-aware cache

placement when content popularity is available.
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4.3 System Model and Problem Formulation

In this section, we present the envisioned distributed caching system deployed on MEC net-

works, followed by the settings of the considered model; finally the joint caching and request

scheduling optimization problem is formulated. Table 5.1 summarizes the key parameters

used in this chapter.

Table 4.1: Summary of Key Parameters for MEC Caching System

Symbol Description

K Set of K BSs/MEC servers
T Set of videos available for download
L Number of bitrate variants each video has
V Set of all video variants
vl lth variant of video v
rl Size of vl
phl Computing cost of transcoding vh to vl
cvlj Indicator of placement of vl at BS j

Mj Storage capacity of cache server at BS j
Pj Processing capacity of cache server BS j
xvlj Indicator of service (IoS) for vl directly from cache of BS j

yvlj (IoS) for vl by transcoding at BS j

zvljk (IoS) for vl at BS j by retrieving from BS k

tvljk (IoS) for vl at BS j by transcoding at BS k

wvljk (IoS) for vl at BS j by retrieving from BS k and transcoding at BS j

djk Backhaul cost of retrieving unit-size video from BS k to BS j
dj0 Backhaul cost of retrieving unit-size video from remote server to BS j
N t
j Set of video requests being served at BS j at time t

fvlj Probability that a request sent to BS j is for video vl
λj Average video request arrival rate at BS j

4.3.1 MEC-based Caching System Architecture

As shown in Fig. 4.1, a MEC network consists of multiple MEC servers connected via

backhaul links. Each MEC server is deployed side-by-side with the BS in a cellular RAN,

providing computation, storage and networking capabilities to support context-aware and

delay-sensitive applications in close proximity to the users. In this work, we envisage the

use of the MEC server for both caching (i.e., video storage) and processing (i.e., video
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Figure 4.1: Illustration of collaborative video caching and processing framework deployed
on MEC network. The cache server implemented on MEC server acts as both RTP/RTSP
client and server.

transcoding). The use of MEC server as a caching server is similar to the use of cache

proxy server in the Internet [158]; however, we consider here a MEC network where the

connected MEC servers could share their cached content and assist each other for video

transcoding. In particular, each MEC server is equipped with a cache unit and a transcoding

unit (transcoder). Each cache unit in a MEC server acts as a client to the origin content

server (in the Internet) and to other peer cache units (from other MEC servers). An

RTP/RTSP client is built into the server to receive the streamed content from other servers

via backhaul links and put it into the input buffer. If needed, the transcoder will transcode

the input stream to a desired bitrate stream and pushes it out to the output buffer; otherwise

the input buffer is directly moved to the cache and/or output buffer for transmitting to the

end users. Here, an RTP/RTSP server is built within each MEC server to stream the video

to the end users and to other servers. The data in the output buffer is obtained either from

the transcoder or from the cache.

In Fig. 4.2, we illustrated the possible (exclusive) events that happen when a user request

for a video; these events are then associated with different video request scheduling decisions

as described later in this section. Here, we describe the event when the requested variant

of the video exists in the cache as exact hit, and the event when the requested variant

does not exist in the cache but the transcodable version does exist as soft hit. Video

transcoding, i.e., compressing a higher bitrate video to a lower bitrate variant, can be done

by various techniques [140]. Among those, compressed domain based approaches, such as
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Figure 4.2: Illustration of possible (exclusive) events that happen when a user request for
a video. (a) The video is obtained from cache of the home BS; (b) a higher bitrate version
of the video from cache of the home BS is transrated to the desired bitrate version and
deliver to the user; (c) the video is retrieved from cache of a neighboring BS or from the
origin content server; (d) a higher bitrate version of the video from cache of a neighboring
BS is transrated using the co-located transcoder and is then transfered to the home BS; (e)
similar to (d) but the transcoding is done at the home BS’s transcoder.

bitrate reduction and spatial resolution reduction, are the most favorable [158]. In general,

video transcoding is a computation-intensive task. The cost of a transcoding task can be

regarded as the CPU usage on the MEC cache server.

4.3.2 Settings

We consider a MEC network of K cache servers, denoted as K = {1, 2, ...K}. Each cache

server is attached to a BS in the cellular RAN that spans K cells. Additionally, k = 0

denotes the origin content server. The MEC servers are connected to each other via backhaul

mesh network. The collection of videos available for download is indexed as T = {1, 2, ...V }.

Without loss of generality, we consider that all videos have the same length (playtime

duration) and each has L different bitrate variants. Hence, the size of each video variant l,

denoted as rl [bytes], is proportional to its bitrate. The set of variants of video v is indexed

by an ordered list {v1, v2, ...vL} of increasing bitrates. Hence, the set of all video variants

that a user can request is V = {vl |v ∈ T , l = 1, ...L}. In the subsequent analysis, unless
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otherwise stated, we will refer to video and video variant interchangeably. We consider that

video vl can be transcoded from video vh if l ≤ h and the cost (CPU usage) of transcoding

vh to vl is denoted as phl, ∀v ∈ T and l, h = 1, ...L. As considered in [141], we assume that

phl is proportional to rl.

We consider that each user only connects to and receives data from the nearest BS (in

terms of signal strength), which is later referred to as the user’s home BS. Further extension

to the system employing Coordinated Multi-Point transmission (CoMP), where each user

can be served by multiple BSs, is a subject for future investigation.

To model the cache placement decision, we define the variables cvlj ∈ {0, 1} , j ∈ K, vl ∈ V,

in which cvlj = 1 if vl is cached at server j and cvlj = 0 otherwise. Accordingly, the cache

placement set is denoted by C =
{
cvlj

∣∣∣cvlj = 1, j ∈ K, vl ∈ V
}

. To account for the limited

cache storage at each MEC server, we assume that each server is provisioned with a storage

capacity of Mj [bytes]. The cache storage capacity constraint at each server j ∈ K can then

be expressed as, ∑
vl∈V

rlc
vl
j ≤Mj ,∀j ∈ K. (1)

To model the possible events that happen when a request for video vl arriving at server

j ∈ K, we introduce the binary variables
{
xvlj , y

vl
j , z

vl
jk, t

vl
jk, w

vl
jk

}
∈ {0, 1}, which are ex-

plained as follows.

(a) xvlj = 1 indicates that vl can be served directly from cache of BS j (as illustrated in

Fig. 4.2(a)); and xvlj = 0 otherwise.

(b) yvlj = 1 when vl is retrieved from cache at BS j after being transcoded from a higher

bitrate variant (as illustrated in Fig. 4.2(b)); and yvlj = 0 otherwise.

(c) zvljk = 1 if vl is retrieved from cache of BS k 6= j, k ∈ K ∪ {0} (including the remote

server, as illustrated in Fig. 4.2(c)); and zvljk = 0 otherwise.

(d) tvljk = 1 when vl is obtained by transcoding a higher bitrate variant from cache of BS

k 6= j, k ∈ K and the transcoding is performed at BS k (as illustrated in Fig. 4.2(d));

and tvljk = 0 otherwise.
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(e) wvljk = 1 when vl is obtained by transcoding a higher bitrate variant from cache of BS

k 6= j, k ∈ K and the transcoding is performed at BS j (as illustrated in Fig. 4.2(e));

and wvljk = 0 otherwise.

When a specific video quality is requested, the corresponding variant will be served

following one of the event described above. To ensure there is one delivery for each request,

we impose the following constraint (∀j ∈ K, vl ∈ V),

xvlj + yvlj +
∑

k 6=j,k∈K

(
zvljk + tvljk + wvljk

)
+ zvlj0 = 1. (2)

4.3.3 Content Access Delay Cost

Let djk denote the delay incurred when the jth cache server retrieves a video from the kth

cache server, and let dj0 denote the delay incurred when the jth cache server retrieves a

video from the origin content server in the Internet. This delay cost model incorporates

both the users’ QoE via content access delay and the backhaul network cost via backhaul

bandwidth consumption. In the best scenario, a user would like to receive its requested

video from the local BS, which results in the lowest cost. Similar to [110], we consider

this reference cost to be zero, i.e., djj = 0,∀j ∈ K. If we associate a cost between any

two directly connected BSs, then for any two BSs j and k we can calculate djk using the

minimum cost path between j and k. In practice, dj0 is usually much greater than djk

as the backhaul link connecting a BS to the origin content server is of many-fold further

than the backhaul links between the BSs. In the literature (cf. [42, 94, 95]), it is typically

considered that dj0 � djk,∀j, k ∈ K. This makes it cost-effective to retrieve content from

the in-network caches whenever possible rather than downloading them from the remote

server. Nevertheless, the assumption that dj0 � djk is not necessarily required for our

analysis and proposed solutions in this work.

The incurred delay cost for video vl requested at BS j, ∀j ∈ K, vl ∈ V, is calculated as,

Dj (vl) = dj0z
vl
j0 +

∑
k 6=j,k∈K

djk

(
zvljk + tvljk + wvljk

)
. (3)
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The content access delay cost reflects the initial delay that the users have to wait before

starting to play the requested videos. Reducing the content access delay cost (by retriev-

ing content from shorter paths) directly translates into the decrease in backhaul usage.

Therefore, it is very important to minimize the content average access delay cost of all

video requests, which contribute to the improvement in users’ QoE as well as network cost

reduction.

4.3.4 Problem Formulation

To design the envisioned joint collaborative caching and processing in a MEC network, we

now formulate the optimization problem that aims at minimizing the total delay cost of all

the video requests. In particular, given the available resources (cache storage and processing

capability), the objective is to jointly determine (i) a cache placement policy C and (ii) a

video request scheduling policy R ∆
=
{
xvlj , y

vl
j , z

vl
jk, t

vl
jk, w

vl
jk

}
in order to minimize the total

content access delay cost, calculated as,

Ω =
∑
j∈K

∑
vl∈Nj

Dj (vl), (4)

where Nj is the set of video request arrivals at BS j over the time period under study. To

take the user dynamics into account, we denoteN t
j as the set of video request being served at

BS j at every time t whenever there is a new request arrival such that
⋃
tN t

j = Nj . Hence,

the optimal solutions {C,R} that minimize the total delay cost Ω can be determined by

solving the static joint collaborative caching and processing problem (denoted as J t in (5))

at every time t.

The constraints in problem (5b) can be explained as follows: constraints (5b) and

(5c) ensure availability of the exact video variants; constraints (5d), (5e), and (5f) en-

sure the availability of the higher bitrate variants for transcoding; constraint (5g) ensures

that there is one delivery for each request; constraint (5h) ensures the cache storage ca-

pacity; and constraint (5i) ensures the availability of processing resource (in terms of

encoded bits that can be processed per second) for transcoding at each cache server.



101

(J t) : min
C,R

∑
j∈K

∑
vl∈N tj

Dj (vl), (5a)

s.t. xvlj ≤ c
vl
j , ∀j ∈ K, vl ∈ V, (5b)

zvljk ≤ c
vl
k , ∀j, k ∈ K, vl ∈ V, (5c)

yvlj ≤ min

(
1,

L∑
m=l+1

cvmj

)
, ∀j ∈ K, vl ∈ V, (5d)

tvljk ≤ min

(
1,

L∑
m=l+1

cvmk

)
, ∀j ∈ K, vl ∈ V, (5e)

wvljk ≤ min

(
1,

L∑
m=l+1

cvmk

)
, ∀j, k ∈ K, vl ∈ V, (5f)

xvlj + yvlj +
∑

k 6=j,k∈K

(
zvljk + tvljk + wvljk

)
+ zvlj0 = 1, ∀j ∈ K, (5g)

∑
vl∈V

rlc
vl
j ≤Mj ,∀j ∈ K, (5h)

∑
vl∈N tj

pl

yvlj +
∑

k 6=j,k∈K
wvljk

+
∑

k 6=j,k∈K

∑
vl∈N tk

plt
vl
kj ≤ Pj , ∀j ∈ K, (5i)

cvlj , x
vl
j , y

vl
j , z

vl
jk, t

vl
jk, w

vl
jk ∈ {0, 1} , ∀j ∈ K, vl ∈ V. (5j)

Problem J t in (5) is an ILP and is NP-complete, which can be shown by reduction from

a multiple knapsack problem [161]. Thus, solving this problem to optimality in polynomial

time is extremely challenging. Furthermore, while solving problem J t for every time t when

there is a new request arrival will minimize the total backhaul network cost, this approach

faces two critical challenges. First, optimizing the request scheduling at every time t might

result in re-directing on-going requests and thus wasting buffer data. Second, the a-priori

information about the request arrival sets N t
j ’s is rarely available in practice, or can only

be estimated probabilistically.

To overcome the aforementioned drawbacks, our goal in this work is to design low-

complexity algorithms that are easily implementable yet provide competitive performance

for the considered objective function Ω. Specifically, we follow the “divide and conquer”

approach to decompose the original problem of solving a series of problems J t into a cache
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placement problem and a request-scheduling problem. We address the cache placement prob-

lem in two scenarios: (i) when content popularity is not available, the reactive LRU cache

placement policy is employed; and (ii) when content popularity is available, we propose a

novel ABR-aware Proactive Cache Placement (APCP) algorithm using the relation with

the problem of maximizing a monotone submodular set function. In addition, to preserve

the interplay between the cache placement decision and the request scheduling decision, we

introduce a scaling factor in the APCP algorithm that is adaptive to the processing capacity

constraint at the BSs. We show that the proposed APCP algorithm achieves an approxima-

tion performance guarantee. Furthermore, we propose a low-complexity online algorithm

for the request scheduling problem, referred to as OnRS, using the relation with the online

knapsack problem. We argue that no non-trivial competitive algorithm existed for the re-

quest scheduling problem in the general case and show via numerical simulations that our

proposed OnRS algorithm yields performance that is very close to that of the optimal al-

gorithm using global optimization solver. Specific details on the derivation of our proposed

algorithms are presented in the following section.

4.4 Proposed Efficient Algorithms

In this section, we design low-complexity efficient algorithms to the cache placement problem

and the request scheduling problem in order to minimize the total backhaul network cost

Ω.

4.4.1 Adaptive Bitrate Cache Placement

We consider both scenarios when the video popularity, i.e., the probability that each specific

video variant is requested at each BS, is known and is not known.

(a) Cache Placement with Unknown Video Popularity

In this case, one has to make cache placement decision reactively following each cache

miss, i.e., the requested video variant is neither available in the caches nor transcodable from

other videos in the caches. The reactive cache placement policy has to be simple enough in

order to quickly response to the large number of requests arriving to the system. As such,
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we use the widely adopted LRU cache placement policy (LRU) [132,141,158]. Specifically,

following each cache miss, the LRU policy fetches the requested video from the neighboring

caches or the origin content server. It then saves the retrieved video file in the cache and if

there is not enough space, the entries that have been least recently used are evicted to free

up space for the newly added file.

It should be noted that, depending on the available processing resource at the MEC

servers, one might choose to modify the pure LRU policy to take advantage of video

transcoding. For example, if Pj is very large at some server j, it is beneficial (in terms

of cache storage efficiency) for this server to only cache the highest bitrate variant of each

video. Whereas, if Pj is small, multiple variants of popular videos should be stored to avoid

processing-resource shortage for transcoding. Nevertheless, without the video popularity

information, designing a reactive cache replacement algorithm that optimally adapts to the

processing capacity at the MEC servers is a very challenging task that deserves a separate

work.

(b) Cache Placement with Known Video Popularity

In MEC-enabled wireless systems, by leveraging sophisticated machine-learning and

data-mining algorithms that can be implemented at the MEC servers, it is highly expected

that estimation of the content popularity in each cell can be achieved. Such methods

would involve analyzing data from popular websites, newspapers, and social networks to

determine, around a specific BS, what kinds of contents people like, search for, and what

the consumer profiles of these people are [121, 122]. By exploiting the availability of video

popularity, we design a low-complexity APCP algorithm that determines the provisioning

of cache contents at each server, which can be done during off-peak-traffic hours.

Transcodability Factor and Request Scheduling Abstraction: While the APCP algorithm

does take into account the request scheduling decisions that happen at later times when

the requests arrive, we aim at making the algorithm adaptive to the processing capacity

constraints at the BSs by introducing the transcodability factor as follows. Firstly, denote

the content popularity distribution at each BS j as,

Fj =
{
fvlj

∣∣∣vl ∈ V,∑
vl∈V

fvlj = 1
}
,
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in which fvlj is the probability that a request sent to BS j is for video vl. We consider that

the video requests arrive one-by-one at each BS j with average arrival rate of λj [reqs/min].

Hence, the expected maximum processing load at BS j due to transcoding, for any arbitrary

cache placement policy, can be calculated as,

P̄max
j = λj

∑
v∈V

∑L−1

l=1
fvlj pl. (6)

We define the transcodability factor at each BS j to reflect the ratio between processing

capacity at BS j and the expected maximum processing load required, given by,

τj
∆
= Pj/P̄

max
j . (7)

As we are addressing the cache placement problem, the request scheduling variables in (5)

are abstracted using the new variables αvljk ≥ 0, which indicates the availability of video vl

at BS k to serve request from BS j, such that,

αvljk
∆
=


xvlj + yvlj if k = j,

zvljk + tvljk + wvljk if k ∈ K, k 6= j,

zvlj0 if k = 0.

(8)

From (8), we can recast the constraints in (5b)–(5f) w.r.t αvljk while incorporating the

transcodability factor in the constraint as,

αvljk ≤ min

(
1, cvlk + τk

∑L

m=l+1
cvmk

)
,∀j, k ∈ K, vl ∈ V. (9)

From the constraint above, we can see that when τj = 0, BS j does not have transcoding

capability; and when τj ≥ 1, BS j has infinite transcoding capacity. Let us denote αvl
j =[

αvlj1, ..., α
vl
jK

]
. In addition, due to the constraint in (9), αvljk might take partial value when

k 6= 0. Therefore, we recast constraint (5g) as,

αvlj0 +
∑

k∈K

∥∥∥αvljk∥∥∥
0

= 1,∀j ∈ K, vl ∈ V, (10)

where αvlj0 ∈ {0, 1} and ‖·‖0 is the l0-norm.
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Cache Placement for Average Delay Cost Minimization: Given the information about

Fj , we can calculate the average delay cost associated with requests for video vl from BS j

from (3) and (8) as,

D̄j (vl) = fvlj
∑

k∈K∪{0}

djkα
vl
jk. (11)

The ABR-aware proactive cache placement problem that aims at minimizing the ex-

pected content access delay cost can now be reduced from problem J t as follows,

min
C,αvljk

∑
j∈K

∑
vl∈V

D̄j (vl), (12a)

s.t. αvljk ≤ min

(
1, cvlk + τk

L∑
m=l+1

cvmk

)
, ∀j, k ∈ K, vl ∈ V, (12b)

αvlj0 +
∑
k∈K

∥∥∥αvljk∥∥∥
0

= 1, ∀j ∈ K, vl ∈ V, (12c)

αvlj0 ∈ {0, 1} , ∀j ∈ K, vl ∈ V, (12d)

αvljk ≥ 0,∀j, k ∈ K, k 6= j, vl ∈ V, (12e)∑
vl∈V

rlc
vl
j ≤Mj , ∀j ∈ K. (12f)

Problem (12) contains a special case of a traditional cooperative cache placement prob-

lem where each video only has one bitrate variant, i.e., L = 1, and different videos cannot be

transcoded from each other. Such problem has been shown to be NP-hard using reduction

from a set cover problem as in [42, 95]. Thus, problem (12) is NP-hard. To overcome the

intractability of problem (12), we transform it into the problem of maximizing a monotone

submodular set function in order to utilize the efficient techniques for this problem class.

To proceed, we rewrite D̄j (vl) in (11) using (12c) as follows,

D̄j (vl) = fvlj

[∑
k∈K

djkα
vl
jk + dj0

(
1−

∑
k∈K

∥∥∥αvljk∥∥∥
0

)]
(13a)

= fvlj dj0 − f
vl
j

∑
k∈K

(
dj0

∥∥∥αvljk∥∥∥
0
− djkαvljk

)
(13b)

≤ fvlj dj0 − f
vl
j

∑
k∈K

(dj0 − djk)αvljk. (13c)
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The transition from (13b) to (13c) stems from the fact that 0 ≤ αvljk ≤
∥∥∥αvljk∥∥∥

0
,∀j, k ∈ K.

It can be seen on the right hand side (RHS) of (13c) that the first term is a constant while the

second term depends on the cache placement set C and it can be interpreted as the average

backhaul network cost saving. Specifically, minimizing D̄j (vl) is equivalent to maximizing∑
k∈K

(dj0 − djk)αvljk. Accordingly, we can recast problem (12) as an equivalent problem of

maximizing the average content access delay cost saving, given by,

max
C

∑
j∈K

∑
vl∈V

fvlj S
vl
j (C), (14a)

s.t.
∑
vl∈V

rlc
vl
j ≤Mj ,∀j ∈ K, (14b)

in which,

Svlj (C) ∆
= max
k,α

vl
jk

(dj0 − djk)αvljk (15a)

s.t. (12b), (12c), (12d), (12e). (15b)

Note that for given C, it is trivial to solve the simple Linear Program (LP) in (15) to obtain

Svlj (C). We exploit the structure of problem (14) via the following key lemma.

Lemma 7. The objective function in problem (14) is monotone submodular over the cache

placement ground set defined by G =
{
cvlj |j ∈ K, vl ∈ V

}
.

Proof. Since sum of monotone submodular functions is monotone submodular, it is enough

to prove that for each BS j and file vl, the set function Svlj (·) is monotone submodular over

G. The monotonicity and submodularity of Svlj (·) are proven sequentially as follows.

Monotonicity. For a given cache placement set C ⊂ G and an arbitrary new placement

cuni ∈ G\C, we denote Ci,un = C ∪ {cuni }. According to (12b) we have,

αvljk (C) ≤ min

1, cvlk + τk

L∑
cvmk ∈C,m=l+1

cvmk

 , (16)

αvljk (Ci,un) ≤ min

1, cvlk + τk

L∑
cvmk ∈Ci,un ,m=l+1

cvmk

 . (17)
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Since C ⊆ Ci,un , the RHS of (17) is greater than or equal to the RHS of (16). Therefore,

it can be easily verified in problem (15) that the feasible region of
{
αvljk (Ci,un) |k ∈ K

}
is

greater than or equal to the feasible region of
{
αvljk (C) |k ∈ K

}
. Hence, by solving (15), we

will obtain Svlj (Ci,un) ≥ Svlj (C), which confirms the monotonicity of Svlj (·).

Submodularity. Let us consider another cache placement decision A such that A ⊆ C,

and denote Ai,un = A ∪ {cuni }. The marginal value of adding cuni to the cache placement

set C and A can be calculated, respectively, as,

∆Cuni = Svlj (Ci,un)− Svlj (C) (18)

∆Auni = Svlj (Ai,un)− Svlj (A) (19)

To prove that Svlj (·) is submodular, we need to show that ∆Auni ≥ ∆Cuni , i.e., the marginal

value decreases as the cache placement set growths. Notice that when u 6= v or u = v, n < l

the request for video vl cannot be served using un. In this case, adding cvli does not change

the objective value, and thus, ∆Auni = ∆Cuni = 0.

On the other hand, when u = v and n ≥ l, the placement cuni can lead to an exact

hit (n = l) or to a soft hit (n > l) for the request of vl at BS j. In this case, we have

Ai,un = Ai,vn and Ci,un = Ci,vn . Let us define,

δvlji
∆
=

 1 when n = l,

τi when n > l.
(20)

Then, from (12b) and (15a), it is straightforward to verify that,

Svlj (Ci,vn) = max
{
Svlj (C) , δvlji (dj0 − dji)

}
, (21)

Svlj (Ai,vn) = max
{
Svlj (A) , δvlji (dj0 − dji)

}
. (22)

Additionally, since Svlj (·) is monotone and A ⊆ C, it follows that Svlj (A) ≤ Svlj (C). We

now distinguish three cases below,

(i) δvlji (dj0 − djk) ≤ Svlj (A): We have Svlj (Ci,vn) = Svlj (C) and Svlj (Ai,vn) = Svlj (A).

Thus, ∆Aumn = ∆Cumn = 0.
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(ii) Svlj (A) ≤ δvlji (dj0 − djk) ≤ Svlj (C): In this case, Svlj (Ci,vn) = Svlj (C) and Svlj (Ai,vn) =

δvlji (dj0 − djk). It follows that ∆Cumn = 0 ≤ ∆Aumn .

(iii) Svlj (C) < δvlji (dj0 − djk): We have Svlj (Ci,vn) = Svlj (Ai,vn) = δvlji (dj0 − djk). It follows

from (18) and (19) that ∆Cumn ≤ ∆Aumn .

In summary, we always have ∆Cumn ≤ ∆Aumn , which confirms the submodularity of Svlj (·).

Lemma 7 provides valuable results as it shows the relationship between the cache place-

ment problem in (14) with the problem of maximizing a monotone submodular set function

subject to linear packing constraints. This allows us to exploit a wide range of efficient

algorithms that have been proposed to deal with this problem, in which a greedy algorithm

is preferable due to its low complexity, ease of implementation, and provable performance

guarantee [162]. Let Γ (C) denote the value of the objective function in (14a) for a given C.

The pseudo code for the greedy-based APCP algorithm for the cache placement problem is

provided in Algorithm 7.

Algorithm 7 ABR-Aware Proactive Cache Placement(APCP)

1: Initialize: V={vl |v = 1, ...V ; l = 1, ...L}; G=
{
cvlj |j ∈ K, vl ∈ V

}
; C = ∅; ρ ∈ R+

2: Set µj := 1/Mj ,∀j ∈ K
3: while

∑
j∈K

Mjµj ≤ ρ and C 6= G do

4: cuni = arg min
c
vl
j ∈G\C

rn
Γ(C∪{cvlj })

5: C ← C ∪ {cuni }
6: µi ← µiρ

cuni rn/Mi

7: if
∑
vl∈V

rlc
vl
j ≤Mj , ∀j ∈ K then

8: Return C
9: else if Γ (C\ {cuni }) ≥ f ({cuni }) then

10: Return C\ {cuni }
11: else
12: Return {cuni }

Lemma 8. Algorithm 7 outputs a feasible solution to the cache placement problem in (14).
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Proof. Let C be the cache placement set obtained after the main loop terminates, i.e., at

line 7. We argue that: (i) if C satisfies the first condition in line 3, it is a also a feasible solu-

tion, i.e., satisfying the condition in line 8 (argument 1 ); otherwise (ii) C became infeasible

only at the last iteration of the loop in which element cuni was selected (argument 2 ).

At the end of iteration t of the algorithm, denote Ct as the obtained cache placement set

and µjt as the updated value of µj . Note that C0 = ∅ and µj0 = 1/Mj ,∀j ∈ K. We have,

Mjµjt = Mjµj0
∏
c
vl
j ∈Ct

ρc
vl
j rn/Mj = ρ

∑
c
vl
j
∈Ct

c
vl
j rn/Mj

. (23)

Suppose that the loop in Algorithm 7 terminates at iteration t. Argument 1 is easy to

see. Assuming
∑
j∈K

Mjµjt ≤ ρ, it is obvious that Mjµjt ≤ ρ,∀j ∈ K. Using (23), we get,

∑
c
vl
j ∈Ct

cvlj rn/Mj ≤ 1, (24)

which confirms the feasibility of Ct.

To establish argument 2, let cuni be the first element that induces a violation in some

constraint. Specifically, suppose cuni induces a violation in constraint i at iteration t. Ac-

cordingly, Ct = Ct−1 ∪ {cuni } and
∑

c
vl
i ∈Ct

cvli rl > Mi. Therefore, from (23), we have,

Miµit = ρ

∑
c
vl
i
∈Ct

c
vl
i rl/Mi

> ρ. (25)

This implies that
∑

j∈KMjµjt > ρ; hence, by checking the stopping condition of the main

loop (line 3), we conclude that the loop must have terminated immediately after iteration t.

Thus, argument 2 holds; therefore, the returned solution must be feasible as it is either

Ct\ {cuni } or {cuni }.

Notice that constraint (14b) presents a linear packing constraint whose width can be

defined as W
∆
= min {Mj/rl |j ∈ K, l ∈ L}. The approximation guarantee of Algorithm 7 is

established via the following lemma.

Lemma 9. Algorithm 7 achieves Ω
(
K−1/W

)
-approximation by choosing the update factor

ρ = K × exp (W ).
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Proof. The proof follows the proof of Lemma 2.4 in [162], which establishes a lower bound

on the value of the objective function using its monotonic and submodular properties.

This result also matches the best known approximation guarantee for the case that the

objective function is linear, achievable using continuous relaxation and randomized rounding

techniques [163].

Remark 7: (Complexity of Algorithm 7) Recall that the minimum size of a video

variant is r1; hence, each server j can store at most Mj/r1 video files. Therefore, the main

loop in Algorithm 7 will go over at most
∑

j∈KMj/r1 iterations. Each iteration involves

calculating the marginal value of at most V × L elements in the ground set G that have

not been included in the cache placement solution C. Evaluating each marginal value takes

O (K) time; hence, the total running time of the algorithm is O
(
KV L

∑
j∈KMj/r1

)
.

4.4.2 Video Request Scheduling

In the previous subsection, we have presented two cache placement algorithms: a reactive

solution when content popularity is not known (LRU algorithm); and a proactive solution

when content popularity is known (Algorithm 7). In this section, we address the request-

scheduling decision that determines how and where to get the requested video to the users

upon each request arrival.

The request-scheduling problem at each time t, denoted as Qt, is formulated by a re-

duction from problem J t in (5) for a given cache placement decision C as follows,

(Qt) : min
R

∑
j∈K

∑
vl∈N tj

Dj (vl) (26a)

s.t. (5b)− (5g), (5i), (26b)

xvlj , y
vl
j , z

vl
jk, t

vl
jk, w

vl
jk ∈ {0, 1} , ∀j ∈ K, vl ∈ V. (26c)

(a) Optimal Request Scheduling

The optimal request scheduling approach would be to solve problem Qt from scratch at

every time t when a new video request arrives. This way, the obtained request scheduling

decision would be optimal at every time t, yielding optimal solution in the long run. As Qt
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is an ILP, the optimal solution can be obtained using standard optimization solver, such

as MOSEK [164]. We refer to the optimal request scheduling approach that solves Qt at

every time t using the ILP optimal solver as OptRS. The drawback of the OptRS approach,

however, is that it might cause re-directing the existing (on going) video requests whenever

the optimal request scheduling solution is re-calculated, thus wasting the buffered data at

the BSs. Additionally, the complexity of solving problem Q scales with the number of

request arrivals and number of caching servers and thus it is highly impractical to re-solve

this problem when there is a large number of request arrivals in a very short time.

(b) Online Video Request Scheduling

To overcome the impracticality of the optimal approach, we propose an online algorithm

for the video request scheduling problem. Specifically, we consider the online version of

problem Qt, in which the set of video requests N t
j ’s is not known at the beginning and

video requests arrive one at a time. At each instance t, the request scheduling algorithm

must decide what to do with the new incoming request (e.g., accepting the request as an

exact hit, soft hit, or retrieving the video from remote server), and the decision once made

is irrevocable—requests once scheduled cannot be re-directed. To simplify the notation,

we drop the subscript t from this point on. The online algorithm will make video request

scheduling decision immediately upon each video request arrival at one of the BSs.

Firstly, given the current set of videos Nj being served at the BS j, we can compute the

current processing load (due to transcoding) at BS j as,

Uj (Nj) =
∑
vl∈Nj

pl

yvlj +
∑

k∈K\{j}

wvljk

+
∑

k∈K\{j}

∑
vl∈Nk

plt
vl
kj . (27)

Furthermore, we define the closest (in terms of bitrate) transcodable variant of video vl at

BS j as T (j, vl) = vh, in which,

h = arg min
m>l

cvmj s.t. cvmj = 1. (28)

For each video request vl arriving at BS j ∈ K, we outline the online request scheduling

decision as in Algorithm 8 on page 112. In particular, if vl cannot be directly retrieved
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(line 2) or transcoded (lines 3, 4) from cache of BS j, the algorithm will search for vl or

its transcodable variant from other neighboring caches. Lines 5, 6, and 7 find the exactly

requested video vl from the neighboring caches and, if that exists, vl will be retrieved from

the cache with lowest backhaul cost. Otherwise, a transcodable variant of vl will be searched

from neighboring caches in line 9. If the transcodable version exists in the cache of BS k,

the algorithm will select the cache server (either server k or the requesting server j) with

most available processing resource to perform transcoding. Finally, if vl cannot be satisfied

by the cache system, it will be fetched from the origin content server (in line 17), which

incurs the highest backhaul cost.

Algorithm 8 Online Video Request Scheduling (OnRS)

1: For each video request vl arriving at BS j ∈ K, proceed.
2: if cvlj = 1 then stream vl from cache of BS j to the user.
3: else if T (j, vl) 6= ∅ and Pj − Uj (N )− pl ≥ 0 then
4: Transcode T (j, vl) from cache of BS j to vl and then stream it to the user.

5: else if
∑

k∈K\{j}
cvlk ≥ 1 then

6: Find f = arg min
k∈K\{j}

djk s.t. cvlk = 1

7: Retrieve vl from cache of BS f , send it to BS j, and then stream it to the user.

8: else if
⋃

k∈K\{j}
T (k, vl) 6= ∅ then

9: else if K̃ ∆
= {k ∈ K\ {j} |T (k, vl) 6= ∅} 6= ∅ then

10: Calculate the computing-resource availability

Qk (N ) = Pk − Uk (N )− pl, ∀k ∈ K̃ ∪ {j} (29)

11: Find f = arg max
k∈K̃∪{j}

Qk (N ) s.t. Qk (N ) ≥ 0

12: if f = j then
13: Retrieve T (k, vl) from cache of BS k ∈ K̃ with the least backhaul cost.

14: Transcode T (f, vl) to vl at BS j and then stream it to the user.

15: else if f 6= ∅ then
16: Transcode T (f, vl) from cache of BS f to vl.
17: Send vl from BS f to BS j and then stream it to the user.

18: else Go to line 21.
19: else
20: Retrieve vl from the origin content server and then stream it to the user.

The online request scheduling problem can be seen as an instance of the Online Multiple-

Choice Knapsack Problem (ON-MCKP) where the items are the video requests that require
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transcoding, the weight of each item is the transcoding cost of the video and the value of

each item is the backhaul network cost saving associated with the scheduling decision. In a

general case, it has been shown that the ON-MCKP is NP-hard and there are no non-trivial

competitive algorithms existed for this problem [165]. Due to this impossibility result, we

will compare performance of Algorithm 8 with the optimal counter part—the OptRS method

using global optimization solver—via numerical simulations. As we will see in Sect. 4.5, our

proposed OnRS method in Algorithm 8 yields performance that is very close to that of the

OptRS method.

Remark 8: (Complexity of Algorithm 8) The complexity of Algorithm 8 mainly comes

from lines 6 and 10, which are simple sorting processes; thus, it scales linearly with the

number of BSs, i.e., O (K).

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed adaptive bitrate collaborative

video caching and processing solutions under various cache sizes, processing capacities and

video request arrival rates. We consider a MEC networks consisting of 3 MEC servers,

each deployed on a BS of a cellular RAN. We assume the video library V that consists of

V = 1000 unique videos, each having L = 4 bitrate variants. Like in [141], we set the

relative bitrates of the four variants (r1, ..., r4) to be 0.45, 0.55, 0.67, and 0.82 of the original

video bitrate (2 Mbps), respectively. We assume that all video variants have equal length of

10 minutes. The popularity of the videos being requested at each BS is generated following

a Zipf distribution with the skew parameter α = 0.6, i.e., the probability that an incoming

request is for the i-th most popular video is given as qi = 1/iα∑V
j=1 1/jα

.

In order to obtain a scenario where the same video can have different popularities at

different locations, we randomly shuffle the distributions at different BSs. Video requests

arrive one-by-one at each BS j following a Poisson distribution with rate λj [reqs/min]. Note

that our solutions are applicable for any request arrival distribution. For each simulation,

we randomly generate 10, 000 requests at each BS. The end-to-end latency of fetching video

content from the local BS, from a neighboring BS, and from the origin content server are
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Table 4.2: Summary of Competing Schemes for Video Caching and Processing

Reactive Caching and Processing Proactive Caching and Processing

LRU-OnRS This scheme uses
the reactive caching
algorithm LRU
(presented in
Sect. 4.4.1(a)) and
the proposed online
request scheduling
OnRS (Algorithm 8).
This scheme was
referred to as Online-
JCCP in our previous
work [39].

APCP-OnRS This scheme uses
the proposed APCP
algorithm (Algo-
rithm 7) for cache
placement and the
OnRS algorithm
(Algorithm 8) for
request scheduling.

LRU-OptRS This scheme uses
the LRU caching
algorithm and the
optimal request
scheduling algorithm
OptRS presented in
Sect. 4.4.2(a).

APCP-OptRS This scheme uses the
cache placement al-
gorithm APCP and
the optimal request
scheduling algorithm
OptRS.

LRU-CachePro A joint caching and
processing scheme
without collaboration
among the cache
servers, as proposed
in [141]. The LRU
cache placement
algorithm is used.

APCP-CachePro This scheme is simi-
lar to LRU-CachePro,
but it uses the APCP
algorithm for cache
placement.

LRU-CoCache A collaborative
caching scheme with-
out transcoding, i.e.,
using Algorithm 8
with zero processing
capacity at the BS,
and the LRU cache
placement policy is
employed.

APCP-CoCache This scheme is simi-
lar to LRU-CoCache,
but it uses the APCP
algorithm for cache
placement.
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randomly assigned following the uniform distribution in the ranges [5, 10](ms), [20, 50](ms),

and [100, 200](ms), respectively [166]. The per-unit-data backhaul cost dj0’s and djk’s are

set equal to the corresponding delays. In terms of resources, we set the cache storage

capacity relative to the total size of the video library, and the processing capacity is regard

as the number of encoded bits that can be processed per second.

In our performance evaluation, we consider the following three important metrics: (i) cache

hit ratio—the fraction of requests that can be satisfied either by retrieving from the cache

or by transcoding; (ii) average access delay [ms]—average latency of the contents traveling

from the caches or the origin server to the requesting user; (iii) external backhaul traffic load

[TB]—the volume of data traffic going through the backhaul network due to users down-

loading videos from the origin server. In the simulation results, we compare performance of

the competing schemes as summarized in Table 4.2, in which LRU-OnRS and APCP-OnRS

are our proposed algorithms for the two scenarios: (1) reactive caching for unknown content

popularity, and (2) proactive caching for known content popularity, respectively.

4.5.1 Impact of Cache Capacity

We compare performance of the considered schemes in terms of cache hit ratio, average

access delay, and external backhaul traffic load at different relative cache capacities, given by

the ratio between the cache size at each BS and the total size of the video library. The results

are reported in Fig. 4.3(a, b, c) for the case of reactive caching and in Fig. 4.3(d, e, f) for the

case of proactive caching, in which Pj = 10 Mbps and λj = 8 reqs/minute, ∀j ∈ K. From

the figures, we can see that increasing the cache size results in performance improvement

for all schemes. Notice that our proposed schemes, LRU-OnRS and APCP-OnRS, always

significantly outperform the baselines in the corresponding scenarios. At small and moderate

cache sizes, the performance of LRU-OnRS and APCP-OnRS schemes are slightly lower than

that of the optimal request scheduling schemes LRU-OptRS and APCP-OptRS, respectively.

On the other hand, when the cache size is high (greater than 50% and 30% of the library

size for reactive and proactive caching, respectively), the performance of LRU-OnRS and

APCP-OnRS approaches that of LRU-OptRS and APCP-OptRS, respectively.
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Figure 4.3: Performance comparison of different caching and processing schemes when
increasing relative cache capacity at each server.

4.5.2 Impact of Processing Capacity

To evaluate the impact of processing capacity, we compare performance of the consid-

ered scheme at different processing capacities as in Fig. 4.4(a, b, c) for reactive caching,

and in Fig. 4.4(d, e, f) for proactive caching, in which Mj = 20% [Library Size] and

λj = 8 reqs/minute, ∀j ∈ K. As the two schemes LRU-CoCache and APCP-CoCache

do not involve transcoding, their performance does not change with processing capacity.

On the other hand, the performance of the other schemes is observed as follows. When

processing capacity at the MEC servers is small, increasing processing capacity always re-

sults in performance improvement to all schemes. Performance of the LRU-OnRS scheme

approaches that of the LRU-OptRS scheme when processing capacity is high, whereas per-

formance of the APCP-OnRS scheme approaches that of the APCP-OptRS scheme when

processing capacity is low. Notice that the performance of LRU-OnRS and APCP-OnRS

always significantly outperform that of the baseline schemes in the corresponding scenarios.
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4.5.3 Impact of User Dynamics

User dynamics in each cell, i.e., the frequency that potential video-requesting users enter a

cell and the duration that they stay in each cell, result in how frequently the cache server

needs to make cache updates (in case of reactive caching) and request scheduling decisions.

Hence, we want to study the impact of high user dynamics on the performance of our

proposed caching and request scheduling schemes. Suppose video-requesting users arrive at

each BS j with average arrival rate λuj [users/min] and their average active time is W [min].

Additionally, we assume the mean video request arrival rate per active user is λv. Thus,

the video request arrival rate at each BS j can be calculated as λj = λuj λ
vW . Therefore,

high user dynamics will result in high video request arrival rate, and vice versa.

In Fig. 4.5(a, b), we illustrate the cache hit ratio performance of LRU-OnRS scheme

and APCP-OnRS scheme at different values of video request arrival rate and processing

capacity, in which Mj = 20%[Library Size], ∀j ∈ K. It can be seen that, when the request

arrival rate increases, the cache hit performance of both schemes decreases. On the other
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Figure 4.4: Performance comparison of different caching and processing schemes when
increasing processing capacity at each server.
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Figure 4.5: Hit ratio performance of (a) LRU-OnRS and (b) APCP-OnRS.

hand, when the processing capacity increases, the cache hit performance of LRU-OnRS

scheme increases while that of APCP-OnRS scheme decreases at high request arrival rate

and increases at low request arrival rate. The behavior of the APCP-OnRS scheme can

be explained as follows. The cache placement strategy in APCP-OnRS depends on the

transcodability factor τj (defined in (7)) at each BS j, which increases with high processing

capacity and decreases with high request arrival rate. Thus, when the processing capacity is

dominating, we might get high value of τj which results in a cache placement strategy that

prefers to cache less number of variants for each video and relies more on video transcoding.

However, such adaptation might not be optimal at very high processing capacity and high

request arrival rate regime, and thus it leads to degradation in cache hit ratio in such regime

as shown in Fig. 4.5(b). In future work, it is worth investigating a proactive cache placement

strategy that better utilizes the high processing capacity to improve cache hit performance.

In Fig. 4.6(a, b), we illustrate the processing resource utilization of our proposed LRU-

OnRS and APCP-OnRS schemes versus different video request arrival rates and cache

capacities, in which Pj = 20 Mbps,∀j ∈ K. We observe that the processing utilization of

both schemes increases with arrival rate and moderate cache capacity; however, it decreases

at high cache capacity. This can be explained as follows: when the cache capacity is high,

the MEC servers can store a large number of video variants and thus there are fewer requests

requiring transcoding.
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Figure 4.6: Average processing resource utilization at the cache servers using (a) LRU-OnRS
and (b) APCP-OnRS.

4.6 Summary

In this chapter, we proposed the idea of deploying a collaborative caching and processing

framework in a multi-cell Mobile-Edge Computing (MEC) networks, whereby the MEC

servers attached to the Base Stations (BSs) can assist each other for both caching and

transcoding of Adaptive Bitrate (ABR) videos. The problem of joint collaborative caching

and processing is formulated as an Integer Linear Program (ILP) aiming at minimizing the

total cost of retrieving video contents over backhaul links. Due to the NP-completeness of

the problem and to the absence of the request arrival information in practice, we design low-

complexity algorithms that are easily implementable and provide solutions with competitive

performance. Specifically, we decompose the original problem into two subproblems, a cache

placement problem and a request-scheduling problem. Our main contributions include a

novel ABR-aware proactive cache placement algorithm with provable approximation per-

formance when video popularity is available and a low-complexity online request scheduling

algorithm that performs very closely to the optimal solution using optimization solver. Ex-

tensive simulation results showed that our proposed joint caching and processing framework

provides significant performance improvement in terms of cache hit ratio, backhaul traffic

load, and content access delay, over the traditional approaches.
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Chapter 5

Joint Task Offloading and Resource Allocation for

Multi-Server MEC

In this chapter, a MEC enabled multi-cell wireless network is considered where each BS is

equipped with a MEC server that assists mobile users in executing computation-intensive

tasks via task offloading. The problem of Joint Task Offloading and Resource Alloca-

tion (JTORA) is studied in order to maximize the users’ task offloading gains, which is

measured by a weighted sum of reductions in task completion time and energy consumption.

The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that

involves jointly optimizing the task offloading decision, uplink transmission power of mobile

users, and computing resource allocation at the MEC servers. Due to the NP-hardness

of this problem, solving for optimal solution is difficult and impractical for a large-scale

network. To overcome this drawback, we propose to decompose the original problem into

(i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task

Offloading (TO) problem that optimizes the optimal-value function corresponding to the

RA problem. We address the RA problem using convex and quasi-convex optimization

techniques, and propose a novel heuristic algorithm to the TO problem that achieves a sub-

optimal solution in polynomial time. Simulation results show that our algorithm performs

closely to the optimal solution and that it significantly improves the users’ offloading utility

over traditional approaches.

5.1 Introduction

Motivation: With the emergence of MEC, the ability of resource-constrained mobile de-

vices to offload computation tasks to the MEC servers is expected to support a myriad
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of new services and applications such as augmented/virtual reality [167, 168], IoTs, au-

tonomous vehicles, and image processing [169]. Example applications such as face detection

and recognition for airport security and surveillance [170], video crowd-sourcing that recon-

structs multi-view live videos of an event [171], or real-time healthcare data analytics [172]

can highly benefit from the collaboration between mobile devices and MEC platform. In

the former case, a central authority such as the Federal Bureau of Investigation (FBI) would

extend their Amber alerts such that all available cell phones in the area where a missing

child was last seen that opt-in to the alert would actively capture images. In the latter case,

the MEC servers collect individual input videos (views) captured for the same event from

multiple attendees and combine them into multi-view videos, allowing viewers to watch the

event from various angles. In both applications, the user devices only provide input data

(images, videos) and the computation-intensive tasks (face recognition, multi-view video

construction) are then performed at the MEC servers.

Task offloading, however, incurs extra overheads in terms of delay and energy consump-

tion due to the communication required between the devices and the MEC server in the

uplink wireless channels. Additionally, in a system with a large number of offloading users,

the finite computing resources at the MEC servers considerably affect the task execution

delay [173]. Therefore, offloading decisions and performing resource allocation become a

critical problem toward enabling efficient computation offloading. Previously, this problem

has been partially addressed by optimizing either the offloading decision [173,174], commu-

nication resources [34,175], or computing resources [176,177]. Recently, Sardellitti et al. [36]

addressed the joint allocation of radio and computing resources, while the authors in [178]

considered the joint task offloading and resources optimization in a multi-user system. Both

of these works, however, only concentrate on a system with a single MEC server.

Our Vision: Unlike the traditional approaches mentioned above, our objective is to

design a holistic solution for joint task offloading and resource allocation in a multi-server

MEC-assisted network so as to maximize the users’ offloading gains. Specifically, we con-

sider a multi-cell ultra-dense network where each BS is equipped with a MEC server to

provide computation offloading services to the mobile users. The distributed deployment of
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the MEC servers along with the densification of (small cell) BSs—as foreseen in the 5G stan-

dardization roadmap [179]—will pave the way for real proximity, ultra-low latency access

to cloud functionalities. Additionally, the benefits brought by a multi-server MEC system

over the single-server MEC (aka single-cloud) system are multi-fold: (i) firstly, as each MEC

server may be overloaded when serving a large number of offloading users, one can release

the burdens on that server by directing some users to offload to the neighboring servers from

the nearby BSs, thus preventing the limited resources on each MEC server from becoming

the bottle neck; (ii) secondly, each user can choose to offload its task to the BS with more

favorable uplink channel condition, thus saving transmission energy consumption; (iii) fi-

nally, coordination of resource allocation to offload users across multiple neighboring BSs

can help mitigate the effect of interference and resource contention among the users and

hence, improve offloading gains when multiple users offload their tasks simultaneously.

The envisioned scheme requires global knowledge about the computation tasks at the

users, the computational resources at the MEC servers, and the channel condition between

users and BSs. The mechanism to gather these information can be done similarly as in

the CoMP transmission systems [45] where the BSs exchange their channel information

with each other using the logical X2 interface. Alternatively, in C-RAN [14] where all the

BSs are connected to the same BBU via high-capacity backhaul links, the global system

state can be easily accessible at the BBU. Hence, the proposed scheme can be implemented

at a central entity which might be located at an aggregation point in the traditional RAN

hierarchy [26] or at the BBU pool in C-RAN. Similar to the system that performs centralized

joint transmission for interference management [45] and/or joint user scheduling [103], our

proposed scheme comes with the cost of increased demand on backhaul due to additional

signaling overhead. However, it is anticipated that this issue can be overcome when different

BSs are connected together in the form of C-RAN.

Challenges and Contributions: To exploit in full the benefits of computation offload-

ing in the considered multi-cell, multi-server MEC network, there are several key challenges

that need to be addressed. Firstly, the radio resource allocation is much more challenging

than the special cases studied in the literature (cf. [178]) due to the presence of inter-cell

interference that introduces the coupling among the achievable data rate of different users,
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which makes the problem nonconvex. Secondly, the complexity of the task-offloading de-

cision is high as, for each user, one needs to decide not only whether it should offload the

computation task but also which BS/server to offload the task to. Thirdly, the optimiza-

tion model should take into account the inherent heterogeneity in terms of mobile devices’

computing capabilities, computation task requirements, and availability of computing re-

sources at different MEC servers. In this context, the main contributions of this work are

summarized as follows.

• We model the offloading utility of each user as the weighted-sum of the improvement

in task-completion time and device energy consumption; we formulate the problem

of Joint Task Offloading and Resource Allocation (JTORA) as a Mixed Integer Non-

linear Program (MINLP) that jointly optimizes the task offloading decisions, users’

uplink transmit power, and computing resource allocation to offloaded users at the

MEC servers, so as to maximize the system offloading utility.

• Given the NP-hardness of the JTORA problem, we propose to decompose the prob-

lem into (i) a Resource Allocation (RA) problem with fixed task offloading decision

and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function

corresponding to the RA problem.

• We further show that the RA problem can be decoupled into two independent prob-

lems, namely the Uplink Power Allocation (UPA) problem and the Computing Re-

source Allocation (CRA) problem; the resulting UPA and CRA problems are ad-

dressed using quasi-convex and convex optimization techniques, respectively.

• We propose a novel low-complexity heuristic algorithm to tackle the TO problem and

show that it achieves a suboptimal solution in polynomial time.

• We carry out extensive numerical simulations to evaluate the performance of the

proposed solution, which is shown to be near-optimal and to improve significantly the

users’ offloading utility over traditional approaches.

Chapter Organization: The remainder of this chapter is organized as follows. In

Sect. 5.2, we review the related works. In Sect. 5.3, we present the system model. The
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joint task offloading and resource allocation problem is formulated in Sect. 5.4, followed by

the decomposition of the problem itself. We present our proposed solution in Sect. 5.5 and

numerical results in Sect. 5.6. Finally, in Sect. 5.7 we conclude the chapter.

5.2 Related Work

A number of solutions have also been proposed to exploit the potential benefits of MEC

in the context of the IoTs and 5G. For instance, our previous work in [180] proposed to

explore the synergies among the connected entities in the MEC network and presented

three representative use-cases to illustrate the benefits of MEC collaboration in 5G net-

works. In [112], we proposed a collaborative caching and processing framework in a MEC

network whereby the MEC servers can perform both caching and transcoding so as to fa-

cilitate Adaptive Bit-Rate (ABR) video streaming. Similar approach was also considered

in [181] which combined the traditional client-driven dynamic adaptation scheme, DASH,

with network-assisted adaptation capabilities. In addition, MEC is also seen as a key en-

abling technique for connected vehicles by adding computation and geo-distributed services

to the roadside BSs so as to analyze the data from proximate vehicles and roadside sensors

and to propagate messages to the drivers in very low latency [182].

Recently, several works have focused on exploiting the benefits of computation offloading

in MEC network [183]. Note that similar problems have been investigated in conventional

Mobile Cloud Computing (MCC) systems [184]. However, a large body of existing works on

MCC assumed an infinite amount of computing resources available in a cloudlets, where the

offloaded tasks can be executed with negligible delay [31,32,185]. The problem of offloading

scheduling was then reduced to radio resource allocation in [34] where the competition for

radio resources is modeled as a congestion game of selfish mobile users. In the context of

MEC, the problem of joint task offloading and resource allocation was studied in a single-

user system with energy harvesting devices [35], and in a multi-cell multi-user systems [36];

however the congestion of computing resources at the MEC server was omitted. Similar

problem is studied in [178] considering the limited edge computing resources in a single-

server MEC system.
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Computation offloading in MEC can also utilizes the heterogeneous resource pool con-

stituted by the end-user devices. In our previous work [180], a novel resource management

framework was envisioned to orchestrate both the horizontal collaboration at the end-user

layer and at the MEC layer as well as the vertical collaboration between end-users, edge

nodes, and cloud nodes. Along this line, Chen et al. [186] proposed a Device-to-Device

(D2D) Crowd framework where a massive crowd of devices at the network edge leverage

network-assisted D2D collaboration for computation and communication resource sharing.

Using game theoretic approach, the work in [187] considered a computation offloading prob-

lem that involves selfish mobile users that want to maximize their individual performance.

However, the difference between [186, 187] and our work is multi-fold. First, the focus

of [186,186] is on the task assignment problem in which the data rates of the wireless links

are considered as constants, whereas our work considers the joint design of task assignment

and resource allocation policy for which the varying wireless channels and multi-user in-

terference are taken into account when calculating the data rates. Second, the objective

in [186] is to minimize the total energy consumption on mobile devices while we consider a

parameterized objective function that can be tuned to optimize both the energy consump-

tion and task execution time. Third, it is assumed in [187] that the users always use a

constant transmit power while our approach aims at optimizing user transmit power.

In summary, most of the existing works did not consider a holistic approach that jointly

determines the task offloading decision and the radio and computing resource allocation in

a multi-cell, multi-server system as considered in this work.

5.3 System Model

We consider a multi-cell, multi-server MEC system as illustrated in Fig. 5.1, in which

each BS is equipped with a MEC server to provide computation offloading services to the

resource-constrained mobile users such as smart phones, tablets, and wearable devices. In

general, each MEC server can be either a physical server or a virtual machine with moderate

computing capabilities provisioned by the network operator and can communicate with the

mobile devices through wireless channels provided by the corresponding BS. Each mobile

user can choose to offload computation tasks to a MEC server from one of the nearby BSs
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it can connect to. We denote the set of users and MEC servers in the mobile system as

U = {1, 2, ..., U} and S = {1, 2, ..., S}, respectively. For ease of presentation, we will refer to

the MEC server s and BS s interchangeably. The modeling of user computation tasks, task

uploading transmissions, MEC computation resources, and offloading utility are presented

here below. For ease of reference, the key parameters used in this chapter are summarized

in Table 5.1.

Potential associationMobile user BS with MEC server

Figure 5.1: Example of a cellular system with MEC servers deployed at the BSs.

5.3.1 User Computation Tasks

We consider that each user u ∈ U has one computation task at a time, denoted as Tu, that

is atomic and cannot be divided into subtasks. Each computation task Tu is characterized

by a tuple of two parameters, 〈du, cu〉, in which du [bits] specifies the amount of input data

necessary to transfer the program execution (including system settings, program codes, and

input parameters) from the local device to the MEC server, and cu [cycles] specifies the

workload, i.e., the amount of computation to accomplish the task. The values of du and

cu can be obtained through carefully profiling of the task execution [173, 188]. Each task

can be performed locally on the user device or offloaded to a MEC server. By offloading

the computation task to the MEC server, the mobile user would save its energy for task

execution; however, it would consume additional time and energy for sending the task input

in the uplink.

Let f lu > 0 denote the local computing capability of user u in terms of CPU cycles/s.

Hence, if user u executes its task locally, the task completion time is tlu = cu
f lu

[seconds]. To

calculate the energy consumption of a user device when executing its task locally, we use the
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Table 5.1: Summary of Key Parameters for MEC Offloading System

Notation Description

U Set of U users
S Set of S BSs/MEC servers
Tu Computation task of user u
du Input data of computation task Tu
cu Workload of computation task Tu
f lu Local computing capability of user u
Elu Energy consumption of user u when executing its task locally
Eu Energy consumption of user u when offloading its task
κ Energy coefficient of user device
tlu Local execution time of task Tu
tuup Transmission time of task Tu to the MEC server

tuexe Execution time of task Tu at the MEC server
tu Delay experienced by user u when offloading its task
B Uplink system bandwidth
N Number of orthogonal sub-bands in the uplink
N Set of N orthogonal sub-bands

xjus Task offloading indicator, ∀u ∈ U , s ∈ S, j ∈ N
G Task offloading ground set
X Task offloading policy
UOff Set of all users that offload their tasks
Us Set of users that offload their tasks to server s

hjus Uplink channel gain between user u and BS s on sub-band j
pu Transmission power of user u
Pu Maximum transmission power of user u

γjus SINR from user u to BS s on sub-band j
Rus Uplink data rate from user u to BS s
fs Computing capacity of server s
fsu Computing resource that server s allocates to task of user u
F Computing resource allocation policy
Ju Offloading utility of user u
βtu Preference of user u on task completion time
βeu Preference of user u on energy consumption
λu Resource provider’s preference towards user u

widely adopted model of the energy consumption per computing cycle as E = κf2 [34,189],

where κ is the energy coefficient depending on the chip architecture and f is the CPU

frequency. Thus, the energy consumption, Elu [J ], of user u when executing its task Tu

locally, is calculated as,

Elu = κ
(
f lu

)2
cu. (1)



128

5.3.2 Task Uploading

In case user u offloads its task Tu to one of the MEC servers, the incurred delay comprises:

(i) the time tuup [s] to transmit the input to the MEC server on the uplink, (ii) the time

tuexe [s] to execute the task at the MEC server, and (iii) the time to transmit the output from

the MEC server back to the user on the downlink. Since the size of the output is generally

much smaller than the input, plus the downlink data rate is much higher than that of the

uplink, we omit the delay of transferring the output in our computation, as also considered

in [34,178,187]. Note that when the delay of downlink transmission of output data is non-

negligible, our proposed algorithm can still be directly applied for a given downlink rate

allocation scheme and known output data size.

In this work, we consider the system with OFDMA as the multiple access scheme in the

uplink [190], in which the operational frequency band B is divided into N equal sub-bands

of size W = B/N [Hz]. To ensure the orthogonality of uplink transmissions among users

associated with the same BS, each user is assigned to one sub-band. Thus, each BS can

serve at most N users at the same time. Let N = {1, ..., N} be the set of available sub-

band at each BS. We define the task offloading variables, which also incorporate the uplink

sub-band scheduling, as xjus, u ∈ U , s ∈ S, j ∈ N , where xjus = 1 indicates that task Tu from

user u is offloaded to BS s on sub-band j, and xjus = 0 otherwise. We define the ground set

G that contains all the task offloading variables as G =
{
xjus |u ∈ U , s ∈ S, j ∈ N

}
and the

task offloading policy X expressed as X =
{
xjus ∈ G

∣∣∣xjus = 1
}

. As each task can be either

executed locally or offloaded to at most one MEC server, a feasible offloading policy must

satisfy the constraint below,

∑
s∈S

∑
j∈N

xjus ≤ 1, ,∀u ∈ U . (2)

Additionally, we denote Us =
{
u ∈ U

∣∣∣∑j∈N x
j
us = 1

}
as the set of users offloading their

tasks to server s, and Uoff =
⋃
s∈S Us as the set of users that offload their tasks.

Furthermore, we consider that each user and BS have a single antenna for uplink trans-

missions (as also considered in [178,191]). Extension to the case where each BS uses multiple

antennas for receiving uplink signals will be addressed in a future work. Denote hjus as the
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uplink channel gain between user u and BS s on sub-band j, which captures the effect of

path-loss, shadowing, and antenna gain. Note that the user-BS association usually takes

place in a large time scale (duration of an offloading session) that is much larger than

the time scale of small-scale fading. Hence, similar to [103], we consider that the effect

of fast-fading is averaged out during the association. Let P = {pu |0 < pu ≤ Pu, u ∈ Uoff }

denote the users’ transmission power, where pu [W] is the transmission power of user u

when uploading its task’s input du to the BS, subject to a maximum budget Pu. Note that

pu = 0,∀u /∈ Uoff . As the users transmitting to the same BS use different sub-bands, the

uplink intra-cell interference is well mitigated; still, these users suffer from the inter-cell

interference. In this case, the Signal-to-Interference-plus-Noise Ratio (SINR) from user u

to BS s on sub-band j is given by,

γjus =
puh

j
us∑

r∈S\{s}

∑
k∈Ur

xjkrpkh
j
ks + σ2

, ∀u ∈ U , s ∈ S, j ∈ N , (3)

where σ2 is the background noise variance and the first term at the denominator is the

accumulated intra-cell interference from all the users associated with other BSs on the same

sub-band j. Since each user only transmits on one sub-band, the achievable rate [bits/s] of

user u when sending data to BS s is given as,

Rus (X ,P) = W log2 (1 + γus) , (4)

where γus =
∑

j∈N γ
j
us. Moreover, let xus =

∑
j∈N x

j
us, ∀u ∈ U , s ∈ S. Hence, the trans-

mission time of user u when sending its task input du in the uplink can be calculated as,

tuup =
∑

s∈S

xusdu
Rus (X ,P)

,∀u ∈ U . (5)

5.3.3 MEC Computing Resources

The MEC server at each BS is able to provide computation offloading service to multiple

users concurrently. The computing resources made available by each MEC server to be

shared among the associating users are quantified by the computational rate fs, expressed
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in terms of number of CPU cycles/s. After receiving the offloaded task from a user, the

server will execute the task on behalf of the user and, upon completion, will return the

output result back to the user. We define the computing resource allocation policy as

F = {fus |u ∈ U , s ∈ S }, in which fus [cycles/s] > 0 is the amount of computing resource

that BS s allocates to task Tu offloaded from user u ∈ Us. Hence, clearly fus = 0,∀u /∈ Us.

In addition, a feasible computing resource allocation policy must satisfy the computing

resource constraint, expressed as,

∑
u∈U

fus ≤ fs,∀s ∈ S. (6)

Given the computing resource assignment {fus, s ∈ S}, the execution time of task Tu at the

MEC servers is,

tuexe =
∑

s∈S

xuscu
fus

,∀u ∈ U . (7)

5.3.4 User Offloading Utility

Given the offloading policy X , the transmission power pu, and the computing resource

allocation fus’s, the total delay experienced by user u when offloading its task is given by,

tu = tuup + tuexe =
∑
s∈S

xus

(
du

Rus (X ,P)
+

cu
fus

)
, ∀u ∈ U . (8)

The energy consumption of user u, Eu [J ], due to uploading transmission is calculated as

Eu =
putuup
ξu

,∀u ∈ U , where ξu is the power amplifier efficiency of user u. Without loss of

generality, we assume that ξu = 1,∀u ∈ U . Thus, the uplink energy consumption of user u

simplifies to,

Eu = put
u
up = pudu

∑
s∈S

xus
Rus (X ,P)

, ∀u ∈ U . (9)

In a mobile cloud computing system, the users’ QoE is mainly characterized by their task

completion time and energy consumption. In the considered scenario, the relative im-

provement in task completion time and energy consumption are characterized by tlu−tu
tlu

and
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Elu−Eu
Elu

, respectively [178]. Therefore, we define the offloading utility of user u as,

Ju =

(
βtu
tlu − tu
tlu

+ βeu
Elu − Eu
Elu

)∑
s∈S

xus, ∀u ∈ U , (10)

in which βtu, β
e
u ∈ [0, 1], with βtu + βeu = 1,∀u ∈ U , specify user u’s preference on task

completion time and energy consumption, respectively. For example, a user u with short

battery life can increase βeu and decrease βtu so as to save more energy at the expense

of longer task completion time. In practice, the value of βeu can be set by the mobile user

through different power saving modes; for instance, βeu = 1 at “extreme power saving” mode

and βeu = 0 at “maximum performance” mode. Alternatively, βtu can be set proportional to

the battery percentage level of the device. Note that offloading too many tasks to the MEC

servers will cause excessive delay due to the limited bandwidth and computing resources at

the MEC servers, and consequently degrade some users’ QoE compared to executing their

tasks locally. Hence, clearly user u should not offload its task to the MEC servers if Ju ≤ 0.

The expressions of the task completion time and energy consumption in (10) clearly

shows the interplay between radio access and computational aspects, which motivates a

joint optimization of offloading scheduling, radio, and computing resources so as to optimize

users’ offloading utility.

5.4 Problem Formulation

We formulate here the problem of joint task offloading and resource allocation, followed by

the outline of our decomposition approach.

5.4.1 Joint Task Offloading and Resource Allocation Problem

For a given offloading decision X , uplink power allocation P, and computing resource al-

location F , we define the system utility as the weighted-sum of all the users’ offloading

utilities,

J (X ,P,F) =
∑

u∈U
λuJu, (11)
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with Ju given in (10) and λu ∈ (0, 1] specifying the resource provider’s preference towards

user u, ∀u ∈ U . For instance, depending on the payments offered by the users, the resource

provider could prioritize users with higher revenues for offloading by increasing their corre-

sponding preferences. Additionally, λu can also be set based on user type and the criticality

of the computation task. For example, computation tasks from mobile devices involved in

public safety operations (e.g., devices carried by police officers and first responders) should

be prioritized with high value of λu. We now formulate the Joint Task Offloading and

Resource Allocation (JTORA) problem as a system utility maximization problem, i.e.,

max
X ,P,F

J (X ,P,F) (12a)

s.t. xjus ∈ {0, 1} ,∀u ∈ U , s ∈ S, j ∈ N , (12b)∑
s∈S

∑
j∈N

xjus ≤ 1,∀u ∈ U , (12c)

∑
u∈U

xjus ≤ 1,∀s ∈ S, j ∈ N , (12d)

0 < pu ≤ Pu,∀u ∈ Uoff , (12e)

fus > 0,∀u ∈ Us, s ∈ S, (12f)∑
u∈U

fus ≤ fs,∀s ∈ S. (12g)

The constraints in the formulation above can be explained as follows: constraints (12b)

and (12c) imply that each task can be either executed locally or offloaded to at most

one server on one sub-band; constraint (12d) implies that each BS can serve at most one

user per sub-band; constraint (12e) specifies the transmission power budget of each user;

finally, constraints (12f) and (12g) state that each MEC server must allocate a positive

computing resource to each user associated with it and that the total computing resources

allocated to all the associated users must not excess the server’s computing capacity. The

JTORA problem in (12) is a Mixed Integer Nonlinear Program (MINLP), which can be

shown to be NP-hard; hence, finding the optimal solution usually requires exponential time

complexity [192]. The NP-hardness proof of the JTORA problem is deferred to Sect. 5.5-

C where we show that this problem contains a special case that is equivalent to a set
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of submodular maximization problems. Given the large number of variables that scale

linearly with the number of users, MEC servers, and sub-bands, our goal is to design

a low-complexity, suboptimal solution that achieves competitive performance while being

practical to implement.

5.4.2 Problem Decomposition

By exploiting the structure of the objective function and constraints in the formulation of

JTORA problem in (12), we observe that by temporarily fixing the binary variables {xus},

problem (12) can be decomposed into multiple subproblems with separated objective and

constraints. Leveraging this characteristic and motivated by the approach in [193], we

can employ Tammer decomposition method [194] to transform the original problem with

high complexity into an equivalent master problem and a set of subproblems with lower

complexity. Firstly, we rewrite the JTORA problem in (12) as,

max
X

(
max
P,F

J (X ,P,F)

)
(13a)

s.t. (12b)− (12g). (13b)

Note that the constraints on the offloading decision, X , in (12b), (12c), (12d), and the RA

policies, P,F , in (12e), (12f), (12g), are decoupled from each other; therefore, solving the

problem in (13) is equivalent to solving the following Task Offloading (TO) problem,

max
X

J∗ (X ) (14a)

s.t. (12b), (12c), (12d), (14b)

in which J∗ (X ) is the optimal-value function corresponding to the RA problem, written as,

J∗ (X ) = max
P,F

J (X ,P,F) (15a)

s.t. (12e), (12f), (12g), (15b)

Note that the decomposition from problem (12) to problems (14) and (15) does not

change the optimality of the solution [194]. In the next section, we will present our solutions
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to both the RA problem and the TO problem so as to finally obtain the solution to the

original JTORA problem.

5.5 Proposed Low-complexity Algorithm

We present now our low-complexity approach to solve the JTORA problem by solving first

the RA problem in (15) and then using its solution to derive the solution of the TO problem

in (14).

Firstly, given a feasible task offloading decision X that satisfies constraints (12b), (12c),

and (12d), and using the expression of Ju in (10), the objective function in (15a) can be

rewritten as,

J (X ,P,F) =
∑
s∈S

∑
u∈Us

λu
(
βtu + βeu

)
− V (X ,P,F) , (16)

where

V (X ,P,F) =
∑
s∈S

∑
u∈Us

λu

(
βtutu
tlu

+
βeuEu
Elu

)
. (17)

We observe that the first term on the right hand side (RHS) of (16) is constant for a

particular offloading decision, while V (X ,P,F) can be seen as the total offloading overheads

of all offloaded users. Hence, we can recast (15) as the problem of minimizing the total

offloading overheads, i.e.,

min
P,F

V (X ,P,F) (18a)

s.t. (12e), (12f), (12g). (18b)

Furthermore, from (8), (9), and (17), we have,

V (X ,P,F) =
∑
s∈S

∑
u∈Us

φu + ψupu
log2 (1 + γus)

+
∑
s∈S

∑
u∈Us

ηu
fus

, (19)

in which, for simplicity, φu = λuβtudu
tluW

, ψu = λuβeudu
EluW

, and ηu = λuβ
t
uf

l
u. Notice from (18b) and

(19) that the problem in (18) has a separable structure, i.e., the objectives and constraints

corresponding to the power allocation pu’s and computing resource allocation fus’s can be
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decoupled from each other. Leveraging this property, we can decouple problem (18) into

two independent problems, namely the Uplink Power Allocation (UPA) and the Computing

Resource Allocation (CRA), and address them separately in the following subsections.

5.5.1 Uplink Power Allocation

The UPA problem is decoupled from problem (18) by considering the first term on the RHS

of (19) as the objective function. Specifically, the UPA problem is expressed as,

min
P

∑
s∈S

∑
u∈Us

φu + ψupu
log2 (1 + γus)

(20a)

s.t. 0 < pu ≤ Pu,∀u ∈ U . (20b)

Problem (20) is non-convex and difficult to solve because the uplink SINR γjus corresponding

to user u ∈ Us depends on the transmit power of the other users associated with other BSs

on the same sub-band j through the inter-cell interference Ijus =
∑

w∈S\{s}

∑
k∈Uw

xjkspkh
j
ks,

as seen in (3). Our approach is to find an approximation for Ijus and thus for γjus such

that problem (20) can be decomposed into sub-problems that, in turn, can be efficiently

solved. The optimal uplink power allocation P∗ still generates small objective value for (20).

Suppose each BS s ∈ S calculates its uplink power allocation independently, i.e., without

mutual cooperation, and informs its associated users about the uplink transmit power; then,

an achievable upper bound for Ijus is given by,

Ĩjus
∆
=

∑
w∈S\{s}

∑
k∈Uw

xjksPkh
j
ks,∀u ∈ Us, s ∈ S, j ∈ N . (21)

Similar to [195], we argue that Ĩjus is a good estimate of Ijus since our offloading decision X

is geared towards choosing the appropriate user-BS associations so that Ĩjus is small in the

first place. This means that a small error in Ijus should not lead to large bias in γjus [195].

By replacing Ijus with Ĩjus, we get the approximation for the uplink SINR for user u

uploading to BS s on sub-band j as,

γ̃jus =
puh

j
us

Ĩjus + σ2
,∀u ∈ Us, s ∈ S, j ∈ N . (22)
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Let ϑus =
∑
j∈N

hjus/
(
Ĩjus + σ2

)
and Γs (pu) = φu+ψupu

log2(1+ϑuspu) . The objective function

in (20a) can now be approximated by
∑
s∈S

∑
u∈Us

Γs (pu). With this position, it can be seen

that the objective function and the constraint corresponding to each user’s transmit power

is now decoupled from each other. Therefore, the UPA problem in (20) can be approximated

by
∑

s∈S |Us| sub-problems, each optimizing the transmit power of a user u ∈ Us, s ∈ S,

and can be written as,

min
∑

u∈Us
Γs (pu) (23a)

s.t. 0 < pu ≤ Pu. (23b)

Problem (23) is still non-convex as the second-order derivative of the objective function

with respect to (w.r.t) pu, i.e., Γ′′s (pu), is not always positive. However, we can employ

quasi-convex optimization technique to address problem (23) based on the following lemma.

Lemma 10. Γs (pu) is strictly quasi-convex in the domain defined in (23b).

Proof. Firstly, it is straightforward to verify that Γs (pu) is twice differentiable on R. We

now check the second-order condition of a strictly quasi-convex function, which requires

that a point p satisfying Γ′s (p) = 0 also satisfies Γ′s (p) > 0 [78].

The first-order and second-order derivatives of Γs (pu) can be calculated, respectively,

as,

Γ′s (pu) =
ψuCu (pu)− ϑusDu(pu)

Au(pu) ln 2

C2
u (pu)

, (24)

and

Γ′′s (pu) =
ϑus [Gus (pu)Cus (pu) + 2ϑusDus (pu) / ln 2]

A2
us (pu)C3

us (pu) ln 2
, (25)

in which,

Aus (pu) = 1 + ϑuspu, (26a)

Cus (pu) = log2 (1 + ϑuspu) , (26b)

Dus (pu) = φu + ψupu, (26c)

Gus (pu) = ϑusDus (pu)− 2ψuAus (pu) . (26d)
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Suppose that p̄u ∈ (0, Pu]; to satisfy Γ′s (p̄u) = 0, it must hold that,

Ωs (p̄u) = ψulog2 (1 + ϑusp̄u)− ϑus (φu + ψup̄u)

(1 + ϑusp̄u) ln 2
= 0. (27)

By substituting p̄u into (25), we obtain,

Γ′′s (p̄u) =
ϑ3
usD

2
us (p̄u)

A2
us (p̄u)C3

us (p̄u)ψuln22
. (28)

It can be easily verified that both ϑus and D2
us (p̄u) are strictly positive ∀p̄u ∈ (0, Pu]. Hence,

Γ′′s (p̄u) > 0, which confirms that Γs (pu) is a strictly quasi-convex function in (0, Pu].

In general, a quasi-convex problem can be solved using the bisection method, which

solves a convex feasibility problem in each iteration [78]. However, the popular interior

cutting plane method for solving a convex feasibility problem requires O
(
n2/ε2

)
iterations,

where n is the dimension of the problem. We now propose to further reduce the complexity

of the bisection method.

Firstly, notice that a quasi-convex function achieves a local optimum at the diminishing

point of the first-order derivative, and that any local optimum of a strictly quasi-convex

function is the global optimum [196]. Therefore, based on Lemma 10, we can confirm that

the optimal solution p∗u of problem (23) either lies at the constraint border, i.e., p∗u = Pu or

satisfies Γ′s (p∗u) = 0. It can be verified that Γ′s (pu) = 0 when,

Ωs (pu) = ψulog2 (1 + ϑuspu)− ϑus (φu + ψupu)

(1 + ϑuspu) ln 2
= 0. (29)

Moreover, we have, Ω′s (pu) = ϑ2us(φu+ψupu)

(1+ϑuspu)2 ln 2
> 0, and Ωs (0) = −ϑusφu

ln 2 < 0. This implies

that Ωs (pu) is a monotonically increasing function and is negative at the starting point

pu = 0. Therefore, we can design a low-complexity bisection method that evaluates Ωs (pu)

in each iteration instead of solving a convex feasibility problem, so as to obtain the optimal

solution p∗u, as presented in Algorithm 9.

In Algorithm 9, if Ωs (Pu) > 0, the algorithm will terminate in exactly dlog2 (Pu/ξ)e

iterations, where ξ is the convergence threshold in line 14. Let P∗ = {p∗u, u ∈ U} denote the
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Algorithm 9 Bisection Method for Uplink Power Allocation

1: Calculate Ωs (Pu) using (29)
2: if Ωs (Pu) ≤ 0 then
3: p∗u = Pu
4: else
5: Set optimality tolerance ε > 0
6: Initialize p′u = 0 and p′′u = Pu
7: repeat
8: Set p∗u = (p′u + p′′u) /2
9: if Ωs (p∗u) ≤ 0 then

10: Set p′u = p∗u
11: else
12: Set p′′u = p∗u
13: until p′′u − p′u ≤ ξ
14: Set p∗u = (p′u + p′′u) /2

optimal uplink transmit power policy for a given task offloading policy X . In addition, we

denote now as Γ (X ,P∗) the objective value of problem (20) corresponding to P∗.

5.5.2 Computing Resource Allocation

The CRA problem optimizes the second term on the RHS of (19) and is expressed as follows,

min
F

∑
s∈S

∑
u∈Us

ηu/fus (30a)

s.t.
∑

u∈U
fus ≤ fs, ∀s ∈ S, (30b)

fus > 0,∀u ∈ Us, s ∈ S. (30c)

Notice that the constraints in (30b) and (30c) are convex. Denote the objective function

in (30a) as Λ (X ,F); by calculating the second-order derivatives of Λ (X ,F) w.r.t. fus, we

have,

∂2Λ (X ,F)

∂f2
us

=
2ηu
f3
us

> 0,∀s ∈ S, u ∈ Us, (31a)

∂2Λ (X ,F)

∂fus∂fvw
= 0,∀ (u, s) 6= (v, w) . (31b)

It can be seen that the Hessian matrix of the objective function in (30a) is diagonal

with the strictly positive elements, thus it is positive-definite. Hence, (30) is a convex
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optimization problem and can be solved using Karush-Kuhn-Tucker (KKT) conditions. We

have the following Lemma.

Lemma 11. The optimal computing resource allocation f∗us for problem (30) and the cor-

responding optimal objective function Λ (X ,F∗) are given, respectively, as,

f∗us =
fs
√
ηu∑

u∈Us
√
ηu
,∀s ∈ S, u ∈ Us, (32)

Λ (X ,F∗) =
∑

s∈S

1

fs

(∑
u∈Us

√
ηu

)2
. (33)

Proof. The Lagrangian of problem (30) can be calculated as,

L (Λ (X ,F) , ν) =
∑
s∈S

∑
u∈Us

ηu
fus

+
∑
s∈S

νs

(∑
u∈U

fus − fs

)
, (34)

where ν = [v1, ...vS ] is the vector of Lagrangian multipliers. Taking the derivatives of the

Lagrangian w.r.t. fus’s, we get,

∂L (Λ (X ,F) , ν)

∂fus
= − ηu

f2
us

+ νs,∀s ∈ S, u ∈ Us. (35)

By equating the gradient of the Lagrangian to zero and solving for fus, the optimal com-

puting resource allocation solution for problem (30) is obtained as,

f∗us =
√
ηu/ν∗s ,∀s ∈ S, u ∈ Us, (36)

in which ν∗s > 0 is the constant satisfying,

∑
u∈U

f∗us = fs,∀s ∈ S. (37)

By substituting (36) into (37) and noting that f∗us = 0, ∀u /∈ Us, we obtain the optimal

Lagrangian multiplier ν∗s as,

ν∗s =

(
1

fs

∑
u∈Us

√
ηu

)2

,∀s ∈ S (38)
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Finally, by substituting (38) into (36), we can obtain the optimal solution to problem (30)

in closed form as,

f∗us =
fs
√
ηu∑

u∈Us
√
ηu
,∀s ∈ S, u ∈ Us, (39)

and the optimal objective function of problem (30) is then calculated as,

Λ (X ,F∗) =
∑

s∈S

1

fs

(∑
u∈Us

√
ηu

)2
. (40)

5.5.3 Joint Task Offloading Scheduling and Resource Allocation

In the previous sections, for a given task offloading decision X , we obtained the solutions

for the radio and computing resources allocation. In particular, according to (15), (16),

(19), and (33), we have,

J∗ (X ) =
∑
s∈S

∑
u∈Us

λu
(
βtu + βeu

)
− Γ (X ,P∗)− Λ (X ,F∗) , (41)

where P∗ can be obtained through Algorithm 9 and Λ (X ,F∗) can be calculated using the

closed-form expression in (33). Now, using (41), we can rewrite the TO problem in (14) as,

max
X

∑
s∈S

∑
u∈Us

λu
(
βtu + βeu

)
− Γ (X ,P∗)− Λ (X ,F∗) (42a)

s.t. xjus ∈ {0, 1} , ∀u ∈ U , s ∈ S, j ∈ N , (42b)∑
s∈S

∑
j∈N

xjus ≤ 1,∀u ∈ U , (42c)

∑
u∈U

xjus ≤ 1, ∀s ∈ S, j ∈ N . (42d)

Problem (42) consists in maximizing a set function J∗ (X ) w.r.t X over the ground set

G defined by (42b), and the constraints in (42c) and (42d) define two matroids over G1. We

now show the intractability of problem (42) in the following theorem.

Theorem 2. Problem (42) is NP-hard.

1For detailed definition of matroid constraint on set function, refer to [197].



141

Proof. We will show the NP-hardness of problem (42) by reduction from a submodular

maximization problem subject to matroid constraints, which is known to be NP-hard [197].

Firstly, we reduce problem (42) to a special case where each user can only offload its task

to the closest server by setting hjus > 0 if s is the closest BS to user u, and hjus = 0

otherwise. In this case, problem (42) can be decomposed into S independent Single-Server

Task Offloading (SSTO) problems, each corresponding to a server s. Let Ũs be the set of

users that can only offload tasks to server s; additionally, denote Gs =
{
xjus

∣∣∣u ∈ Ũs, j ∈ N },

and Xs =
{
xjus ∈ Gs

∣∣∣xjus = 1
}

. The s-th SSTO problem can be expressed as follows.

max
Xs

∑
u∈Us

λu
(
βtu + βeu

)
− Γ (Xs,P∗)− Λ (Xs,F∗) (43a)

s.t. xjus ∈ {0, 1} ,∀u ∈ Ũs, j ∈ N , (43b)∑
j∈N

xjus ≤ 1,∀u ∈ Ũs, (43c)

∑
u∈Ũs

xjus ≤ 1, ∀s ∈ S, j ∈ N . (43d)

We now show that the objective function in (43a), denoted as J∗s (Xs), is submodular

over the ground set Gs. For any xkvs ∈ Gs and xkvs /∈ Xs, the marginal value of the objective

function corresponding to the addition of xkvs to the current set Xs is calculated as,

J∗s,vk (Xs) = J∗s

(
Xs ∪

{
xkvs

})
− J∗s (Xs) . (44)

Using (20a) and (33) we have,

J∗s,vk (Xs) = λv
(
βtv + βev

)
− φv + ψvp

∗
v

log2 (1 + γvs)
−
(
ηv + 2

√
ηv
∑

u∈Us

√
ηu

)
/fs. (45)

Recall that Us =
{
u ∈ U

∣∣∣∑j∈N x
j
us = 1

}
; it is straightforward to verify that, on the RHS

of (45), the last term increases with Xs while the first two terms do not depend on Xs.

Therefore, the marginal value J∗s,vk (Xs) monotonically decreases with the offloading decision

set Xs. In other words, we get diminishing return in offloading utility as the offloading set

gets bigger. Thus, the objective function in (43a) is a submodular function; and hence, each
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SSTO problem is a submodular maximization problem over matroid constraints, which is

NP-hard according to [197]. This confirms that the TO problem in (42), which contains as

special case a set of SSTO problems, is also NP-hard.

Given the NP-hardness of the TO problem, solving for an optimal solution in polynomial

time is extremely challenging. One straightforward approach to solve problem (42) is to

use exhaustive search method over all possible task offloading decisions. However, the total

number of candidate task offloading decisions would be 2n where n = S × U ×N . Hence,

the exhaustive search method is clearly impractical. Hence, we propose a low-complexity

heuristic algorithm that can find a local optimum to problem (42) in polynomial time.

Specifically, our algorithm starts with an empty set X = ∅ and repeatedly performs one of

the local operations, namely the remove operation or the exchange operation, as described

in Routine 4, if it improves the set value J∗(X ). As we are dealing with two matroid

constraints, the exchange operation involves adding one element from outside of the current

set and dropping up to 2 elements from the set, so as to comply with the constraints. Our

proposed heuristic algorithm for task offloading scheduling is presented in Algorithm 10.

Routine 4 remove and exchange operations

remove
(
X , xjus

)
1: Set X ← X\

{
xjus
}

2: Output: X

exchange
(
X , xjus

)
3: for w ∈ S, i ∈ N do
4: X ← X\

{
xiuw

}
5: for v ∈ U do
6: X ← X\

{
xjvs
}

7: Set X ← X ∪
{
xjus
}

8: Output: X

Remark 9: (Complexity Analysis of Algorithm 10) Parameter ε > 0 in Algorithm 10

is any value such that 1
ε is at most a polynomial in n. Let Opt (G) be the optimal value of

problem (42) over the ground set G. It is easy to see that J∗
({
xikw

})
≤ Opt (G) /n where

xikw is the element with the maximum J∗
({
xjus
})

over all elements of G. Let t be the

number of iterations for Algorithm 10. Since after each iteration the value of the function



143

Algorithm 10 Heuristic Task Offloading Scheduling

1: Initialize: X = ∅
2: Find xikw = arg max

xjus,j∈N ,s∈S,u∈U
J∗
({
xjus
})

3: Set X ←
{
xikw

}
4: if there exists xjus ∈ X such that J∗

(
remove

(
X , xjus

))
>
(
1 + ε

n2

)
J∗ (X ) then

5: Set X ← remove
(
X , xjus

)
6: Go back to step 4

7: else if there exists xjus ∈ G\X such that J∗
(
exchange

(
X , xjus

))
>
(
1 + ε

n2

)
J∗ (X )

then
8: Set X ← exchange

(
X , xjus

)
9: Go back to step 4

10: Output: X

increases by a factor of at least
(
1 + ε

n2

)
, we have

(
1 + ε

n2

)t ≤ n, and thus t = O
(

1
εn

2 log n
)
.

Note that the number of queries needed to calculate the value of the objective function in

each iteration is at most n. In each query, one needs to solve an UPA problem and a CRA

problem. Since the CRA problem has a closed-form solution, the running time complexity

in each query mainly comes from solving the UPA problem, which takes dlog2 (Pu/ξ)e

iterations. Therefore, the running time of Algorithm 10 is O
(

1
ε dlog2 (Pu/ξ)en3 log n

)
,

which is polynomial in n. Furthermore, since the queries in each iteration can be computed

independently, the runtime can be greatly reduced by utilizing parallel computing.

Remark 10: (JTORA solution) Let X ∗ be the output of Algorithm 10. The cor-

responding solutions P∗ for the uplink power allocation and F∗ for computing resource

sharing can be obtained using Algorithm 9 and the closed-form expression in (32), respec-

tively, by setting X = X ∗. Thus, the local optimal solution for the JTORA problem is

(X ∗,P∗,F∗). While characterizing the degree of suboptimality of the proposed solution is

a non-trivial task—mostly due to the combinatorial nature of the task offloading decision

and the nonconvexity of the original UPA problem—in the next section we will show via

numerical results that our heuristic algorithm performs closely to the optimal solution using

exhaustive search method.
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5.6 Performance Evaluation

Simulation results are presented to evaluate the performance of our proposed heuristic joint

task offloading scheduling and resource allocation strategy, referred to as hJTORA. We

consider a multi-cell cellular system consisting of multiple hexagonal cells with a BS in the

center of each cell. The neighboring BSs are set 1 km apart from each other. We assume

that both the users and BSs use a single antenna for uplink transmission and reception,

respectively. The uplink channel gains are generated using a distance-dependent path-loss

model given as L [dB] = 140.7+36.7log10d[km] [198], and the log-normal shadowing variance

is set to 8 dB. In most simulations, if not stated otherwise, we consider S = 7 cells and the

users’ maximum transmit power set to Pu = 20 dBm. In addition, the system bandwidth is

set to B = 20 MHz and the background noise variance is assumed to be σ2 = −100 dBm.

In terms of computing resources, we assume the CPU capability of each MEC server and

of each user to be fs = 20 GHz and f lu = 1 GHz, respectively. According to the realistic

measurements in [188], we set the energy coefficient κ as 5 × 10−27. For computation

task, we consider the face detection and recognition application for airport security and

surveillance [170], which can highly benefit from the collaboration between mobile devices

and MEC platform. Unless otherwise stated, we choose the default task input size as

du = 420 KB (following [170, 175]), and the preference parameters as βtu = 0.2, βeu = 0.8,

and λu = 1, ∀u ∈ U . In addition, the users are dropped in random locations, with uniform

distribution, within the coverage area of the network, and the number of sub-bands N is

set equal to the number of users per cell. We compare the system utility performance of

our proposed hJTORA strategy against the following baselines.

• Exhaustive: This is a brute-force method that finds the optimal offloading scheduling

solution via exhaustive search over 2n possible decisions; since the computational

complexity of this method is very high, we only evaluate its performance in a small

network setting.

• Greedy Offloading and Joint Resource Allocation (GOJRA): All tasks (up to the

maximum number that can be admitted by the BSs) are offloaded, as in [36]. In each

cell, offloading users are greedily assigned to sub-bands that have the highest channel
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gains until all users are admitted or all the sub-bands are occupied; we then apply

joint joint resource allocation across the BSs as proposed in Sect. 5.5-A, B.

• Independent Offloading and Joint Resource Allocation (IOJRA): Each user is ran-

domly assigned a sub-band from its home BS, then the users independently make

offloading decision [31]; joint resource allocation is employed.

• Distributed Offloading and Resource Allocation (DORA): Each BS independently

makes joint task offloading decisions and resource allocation for users within its

cell [178].

5.6.1 Suboptimality and Convergence Behavior

Firstly, to characterize the suboptimality of our proposed hJTORA solution obtained using

Algorithm 10, we compare its performance with the optimal solution obtained by the Ex-

haustive method, and then with the three other described baselines. Since the Exhaustive

method searches over all possible offloading scheduling decisions, its runtime is extremely

long for a large number of variables; hence, we carry out the comparison in a small network

setting with U = 6 users uniformly placed in the area covered by S = 4 cells, each having

N = 2 sub-bands. We randomly generate 500 large-scale fading (shadowing) realizations

and the average system utilities, with 95% Confidence Interval (CI), of different schemes

are reported in Fig. 5.2 when we set cu = 1000, 1500, and 2000 Megacycles, respectively.

It can be seen that the proposed hJTORA algorithm performs very closely to that of the

optimal Exhaustive algorithm while it significantly outperforms the other baselines. We also

observe that the performance of all schemes increases with the task workload. In all cases,

hJTORA achieves an average system utility within 1% of that of the Exhaustive algorithm,

while providing average gains of 31%, 38%, and 91% over DORA, GOJRA, and IOJRA

schemes, respectively.

In Table 5.2, we report the average runtime per simulation drop of different algorithms,

running on a Windows 7 desktop PC with 3.6 GHz quad-core CPU and 16 GB RAM. It

can be seen that the Exhaustive method takes very long time, about 100× longer than the

hJTORA algorithm for such a small network. The DORA algorithm runs slightly faster
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Figure 5.2: Comparison of average system utility.

than hJTORA, while IOJRA and GOJRA requires the lowest runtimes.

Table 5.2: Runtime Comparison Among Competing Schemes for MEC Offloading

IOJRA GOJRA DORA hJTORA Exhaustive

Runtime [ms] 0.2± 0.03 1.8± 0.2 6.8± 0.22 19.3± 0.7 1, 923± 1.4

Furthermore, in order to evaluate the runtime of Algorithm 10 when more BSs cooperate

with each other, we consider three deployment scenarios: denser, very dense, and ultra dense

networks for which the BS spacing (distance between two neighboring BSs) are set to 237 m,

209 m, and 112 m according to [199]. The number of BSs and users are set as in Table 5.3,

and the average runtime of Algorithm 10 (with 95% CI) are reported therein. We can see

that the runtime increases considerably when there are many BSs cooperating with each

other (e.g., 16 or 25). Therefore, in order to make the proposed solution practical, it is

advisable to divide the network region into groups of cooperating BSs, each with fewer than

10 BSs.

5.6.2 Impact of Number of Users

In Fig. 5.3(a), we evaluate the convergence behavior of Algorithm 10 against different num-

ber of users by showing the average number of iterations with 95% CI. It can be seen that
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Table 5.3: Runtime of Algorithm 10 Versus Network Size

Scenario No. BSs BS spacing No. Users Runtime [s]

Dense 9 237 m 18 0.59± 0.02
Very dense 16 209 m 32 3.29± 0.12
Ultra dense 25 112 m 50 12.46± 0.35
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Figure 5.3: (a) Average number of iterations versus number of users, and (b) Average
number of handovers per offloading decision versus number of users; cu = 2000 Megacycles.

with a small and moderate number of users the number of iterations grows linearly (but

less than) the number of users and the variation across different simulation runs is small.

When the number of users is high, e.g., greater than 60, there is greater variation in the

number of iterations but the growing rate of the average number of iteration gets lower.

This shows that Algorithm 10 can scale well with the number of users. In Fig. 5.3(b), we

plot the average number of handovers per simulation drop. While it can be seen that the

average number of handovers (over 500 drops) varies with different number of users, it does

not appear to follow a consistent trend.

We now evaluate the system utility performance against different number of users wish-

ing to offload their tasks, as shown in Fig. 5.4(a,b,c) with different task workloads. The

number of users per cell is increased from 1 to 10. Note that the number of sub-bands N

is set equal to the number of users per cell, thus the bandwidth allocated for each user de-

creases when there are more users in the system. Observe from Fig. 5.4(a,b,c) that hJTORA

always performs the best, and that the performance of all schemes significantly increases
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Figure 5.4: Comparison of average system utility against different number of users, evalu-
ated on three different task workloads: (a) cu = 1000 Megacycles, (b) cu = 1500 Megacycles,
and (c) cu = 2000 Megacycles,∀u ∈ U .

when the tasks’ workload increases. This is because when the tasks require more computa-

tion resources, the users will benefit more from offloading their tasks to the MEC servers.

We also observe that, when the number of users is small, the system utility increases with

the number of users; however, when the number of users exceeds some thresholds, the sys-

tem utility starts to decrease. This is because, when there are many users competing for

radio and computing resources for task offloading, the overheads of sending the tasks and

executing them at the MEC servers will be higher, thus degrading the offloading utility.

5.6.3 Impact of Task Profile

Here, we evaluate the system utility performance w.r.t. the computation tasks’ profiles in

terms of input size du’s and workload cu’s. We consider two configuration of the MEC

servers: (i) homogeneous servers—where all servers have the same CPU speed of 20 GHz,

and (ii) heterogeneous servers—where the servers’ CPU speeds are randomly selected from

{10, 20, 30} GHz. The average system utility of the four competing schemes are plotted in

Fig. 5.5(a, b) with different values of cu; and in Fig. 5.6(a, b) with different values of du. It

can be seen that the average system utilities of all schemes increase with the task workload

and decrease with the task input size. This implies that the tasks with small input sizes

and high workloads benefit more from offloading than those with large input sizes and low

workloads do. Moreover, we observe that the performance gains of the proposed hJTORA

scheme over the baselines also follow the similar trend, i.e., they increase with task workloads
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and decrease with task input size. Notice that the difference in performance of all schemes

in the homogeneous server setting versus in the heterogeneous server setting is marginal.
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Figure 5.5: Comparison of average system utility against different task workloads, with
U = 28 and du = 420 KB.
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Figure 5.6: Comparison of average system utility against different task input size, with
U = 28 and cu = 3000 Megacycles.

5.6.4 Impact of Users’ Preferences

Figure 5.7(a,b) show the average time and energy consumption of all the users when we vary

the users’ preference to time, βtu’s, from 0.1 to 0.9 while changing the users’ preference to

energy accordingly as βeu = 1−βtu,∀u ∈ U . It can be seen that the average time consumption

decreases when βtu increases, at the cost of higher energy consumption. In addition, the

users experience a larger average time and energy consumption when there are more users in

the system. This is because when there are more users competing for the limited resources,
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the chance that a user can benefit from offloading its task is lower.
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Figure 5.7: Average time consumption—(a) and energy consumption—(b) of all users ob-
tained using hJTORA; with cu = 2000 Megacycles,∀u ∈ U .

5.6.5 Impact of Inter-cell Interference Approximation

To test the effect of the approximation to model the inter-cell interference as in (21) in

Sect. 5.5-A, we compare the results of the hJTORA solution to calculate the system utility

using the approximated expression versus using the exact expression of the inter-cell in-

terference. Figure 5.8 shows the system utility when the users’ maximum transmit power

Pu’s vary between 0 and 35 dBm. It can be seen that the performance obtained using the

approximated interference is almost identical to that of the exact interference when Pu is

below 25 dBm, while an increasing gap appears when Pu > 25 dBm. However, as specified

in the LTE standard, 3GPP TS36.101 section 6.2.32, the maximum UE transmit power is

23 dBm; hence, we can argue that our approximation can work well in practical systems.

5.7 Summary

We proposed a holistic strategy for a joint task offloading and resource allocation in a multi-

cell Mobile-Edge Computing (MEC) network. The underlying optimization problem was

formulated as a Mixed-Integer Non-linear Program (MINLP), which is NP-hard. Our ap-

proach decomposes the original problem into a Resource Allocation (RA) problem with fixed

2Refer to: 3GPP TS36.101, V14.3.0, Mar. 2017
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Figure 5.8: Average system utility obtained by hJTORA with exact expression and approx-
imation of the inter-cell interference; with cu = 1000 Megacycles, ∀u ∈ U .

task offloading decision and a Task Offloading (TO) problem that optimizes the optimal-

value function corresponding to the RA problem. We further decouple the RA problem into

two independent subproblems, namely the uplink power allocation and the computing re-

source allocation, and address them using quasi-convex and convex optimization techniques,

respectively. Finally, we proposed a novel heuristic algorithm that achieves a suboptimal so-

lution for the TO problem in polynomial time. Simulation results showed that our heuristic

algorithm performs closely to the optimal solution and significantly improves the average

system offloading utility over traditional approaches.

To further reduce the runtime of the proposed hJTORA algorithm, two approaches can

be exploited: (i) parallel computing—since the queries in each iteration of Algorithm 10 are

independent, they can be run in parallel to reduce the runtime in each iteration; (ii) pre-

disassociation—for each user, the task offloading variables corresponding to the BSs that are

far away can be set to zeros, thus reducing the search space of the task offloading decision

before running Algorithm 10. In addition, as future work, it is worth characterizing the

approximation ratio of the proposed algorithm with regard to the approximation of the

interference term used in the uplink power allocation problem. Furthermore, it is also

desirable to design a mistreatment-free solution where each user cannot improve its own

performance by not following the network-wide solution.
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Chapter 6

Conclusion and Future Directions

This chapter summarizes the main contributions of this dissertation and discusses future

research directions that are worth investigation and can leverage the frameworks proposed

in this dissertation.

6.1 Summary of Dissertation Contributions

This dissertation describes novel cooperative frameworks that exploit the synergies between

communications, caching, and computing in cloud-assisted wireless networks. The proposed

innovations leverage the emerging 5G paradigms—C-RAN and MEC—to design optimized

control policies aimed at making best use of the resources available to satisfy the data- and

computation-service requests from mobile users. Firstly, given the high degree of coopera-

tion provided by the centralized nature of C-RAN, we proposed a novel joint user-centric

radio clustering and beamforming scheme that maximizes the downlink sum throughput.

The proposed algorithm, with reasonably low-complexity, was demonstrated to significantly

improve the WSR performance over traditional approaches. Secondly, we focused on data

offloading mechanisms that take advantage of context and content information to design

content caching solutions that decide “what” (content) and “where” to store within the

wireless access network. Specifically, we proposed: (i) a cooperative hierarchical caching

and request scheduling in a C-RAN that exploits both the vertical collaboration between the

edge-caches and the cloud-cache and the horizontal collaboration among the edge-caches to

form a heterogeneous cache storage pool; and (ii) a joint cooperative caching and process-

ing framework in a MEC network where the MEC servers perform both cache storage and

video transcoding in order to enhance the performance of ABR video streaming. Numeri-

cal results showed the significant advantages of the proposed caching solutions in terms of
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improvement in cache hit ratio as well as reduction in content access latency and backhaul

network usage. Finally, we studied an ultra-dense MEC network where mobile devices can

offload computation-intensive tasks to multiple nearby MEC servers. We proposed a cross-

layer optimization framework that jointly optimizes the task offloading decision and radio

as well as computation resource allocation in order to maximize the computation offloading

gain of mobile devices.

6.2 Future Directions

The emergence of cloud-assisted wireless networks provides a multitude of benefits to the 5G

evolution. Research on the two complementary cloud-assisted wireless network paradigms,

C-RAN and MEC, lies at the intersection of wireless communications and cloud computing

which has resulted in many interesting research opportunities and challenges. The spectrum

of research required to fully achieve the promises of these paradigms in 5G systems require

significant investigation along many directions. In the following, we highlight and discuss

the key open directions for future research.

6.2.1 Edge Caching for User-generated Content Uploading

Edge caching has been recognized as a promising solution, by which popular videos are

cached in the BSs or wireless Access Points (APs) so that demands from users to the same

content can be accommodated easily without duplicating transmissions from remote servers;

this way backhaul usage and content access delay can be substantially reduced. However,

traditional caching systems are geared towards supporting data transfer from the servers

to users, i.e., focusing on the downlink. They are not meant to support mobile users to

upload and share real-time captured/collected data to their peers and to the remote servers.

Motivated by this limitation, we propose as future work to design an edge caching strategy

to enable the asynchronous upload of user-generated multimedia content in a bandwidth-

and energy-efficient manner. The development of such mechanism will bring benefits to

both (i) the mobile users, as it reduces the transmission time for users to send their content

in the uplink; and (ii) to the network, as it helps smoothen the uplink traffic in peak-traffic
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hours or during crowd events by slightly shifting the uploading timing without incurring

much extra delay to the delivery of important and time-sensitive content.

There has been a vast body of works focusing on the development of advanced mobile

content caching and delivery techniques (see, e.g., [42,92] and references therein); however,

these works rarely address the problem of uploading user-generated content. A recent

study [200] shows that the traffic uploading for user-generated content accounts for a large

portion of the current Internet traffic and brings new challenges to the network design. In

light of this, it is highly desirable to design an edge caching and scheduling mechanism

in which mobile users selectively send their content to the edge caching servers instead of

directly uploading all of the content to the remote cloud servers. The design and problem

at hand differ from the design of CDN in several aspects. Firstly, while the source content

of the CDN is static, the content-generating devices in our context are usually mobile; thus

it makes the scheduling in the cache pre-fetching phase highly challenging. Secondly, the

cache placement in CDN is mostly based on content popularity, which can be estimated

offline using historical data; however, the notion of content popularity is not relevant for

the considered context because the content is generated from mobile users, which are very

different from time to time. Therefore, the decision on “what” content to be cached needs

to take into account the classification of live content so as to decide (1) which content should

be transmitted to the remote server in real-time; and (2) which content is less time-sensitive

and could be uploaded at a later time for storage/post-event investigation.

6.2.2 Exploiting Collaborative Caching and Multicasting

Due to the broadcast/shared nature of the wireless medium, multicast transmissions can

be exploited to serve multiple requests for identical contents occurring in certain time win-

dow. This technique has been employed by many network operators to utilize efficiently

the available spectrum of their networks. For example, multicast is often used for the de-

livery of sponsored contents in certain locations such as advertisements, weather updates,

stock market reports, and sporting events. Recently, multicast technology has been incorpo-

rated in 3GPP LTE standard under the term Evolved Multimedia Broadcast and Multicast
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Services (eMBMS) [201]. This technology can be used across multiple cells where the trans-

missions are carried over the same frequency. As a consequence, the radio resources needed

for multicast are a fraction of those needed for multiple unicast transmissions, and thus

the network spectral efficiency is greatly enhanced. Unfortunately, current approaches from

academia and industry consider caching and multicast independently as they often need to

achieve different purposes. On the one hand, caching is leveraged to temporally shift the

traffic demand from peak to off-peak hours by proactive content provisioning; on the other

hand, multicast is used to reduce energy and bandwidth consumption by serving concurrent

user requests for the same content via single point-to-multipoint transmission rather than

many point-to-point (unicast) transmissions. Intuitively, caching is more effective when

there are many duplicated requests for a few content files over time. Conversely, multicast

is more effective when there are more concurrent requests for the same contents across mul-

tiple users. Such scenarios would be more common in a dense cellular network with a large

number of co-located users that are interested in the same contents, such as in sporting

events, stock market updates, etc. In the next generation 5G systems, where demands for

mobile data is often massive and a variety of new services will arise (such as those us-

ing social networking and those employing the one-to-many communication paradigm, e.g.,

updates in Tweeter, Facebook Live), it is expected that multicast will become very popular.

Given the potential of caching and multicasting, it is interesting to exploit the syn-

ergy between the two technologies. Specifically, a joint design of caching and multicasting

strategy could enable the possibility of serving users’ requests with minimized backhaul

usage and spectrum resources. The design problem at hand involves the interplay between

three problems: (i) the content popularity prediction and cache placement problem, (ii) the

cache-aware multicasting problem, and (iii) the content encryption design, which allows the

secure and privacy-preserving implementation of caching within the wireless network.

6.2.3 MEC-based Low-latency Smart Healthcare Monitoring

With the emergence of edge-computing paradigm and advanced mobile sensing technologies,

smart (or connected) healthcare is getting significant attention from academia, governments,

and healthcare industry. It is envisioned that a smart healthcare system will provide greater
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accountability, enhance care services, and enable patient monitoring anytime, anywhere, on

any device. In such systems, the adoption of emergent mobile sensing solutions coupled

with MEC platform can play a key role in supporting reliable and scalable connectivity as

well as intelligent services in close-proximity to the patients and caregivers. For instance,

healthcare providers can port powerful deep learning and decision-support tools to the MEC

servers for assisting clinicians with synthesis of data from multiple sources and low-latency,

context-aware decision making. While numerous research efforts have been devoted to im-

prove performance of mobile sensing solutions and healthcare services individually, little

attention has been given to make cost-effective and affordable smart healthcare solutions

by integrating these technologies and leveraging their synergies. Moreover, to exploit the

potential of such integration, there are several challenges that need to be addressed, in-

cluding: (i) how to exploit the emerging mobile wireless and edge-computing technologies

to develop rich and real-time services and applications aiming at assisting patients with

the right care, at the right time, and in the right place; and (ii) how to design a network

infrastructure that facilitates the representation, storage, integration, and analysis of het-

erogeneous medical data for effective healthcare solutions. Therefore, it is imperative to

develop a wireless networking and computing framework that supports highly connected

healthcare environments and to address each of these challenges effectively.

Given the need and potential benefits of smart healthcare, it is a promising approach to

design a MEC-based framework that effectively integrates mobile sensing, edge computing,

and deep learning to enable a smart healthcare system. In particular, a potential architec-

ture could employ emergent mobile solutions (e.g., novel biosensors and wearable devices)

for data collection, MEC platform for data integration and real-time analysis using deep

learning, and remote cloud computing for long-term medical data storage and statistical

research. The realization of such framework has unprecedented potential for delivering

automated, intelligent, and sustainable healthcare services. By exploring the synergies

among the three layers—sensing, edge computing, and cloud computing—the envisioned

smart healthcare framework will enable the transformation of heterogeneous multimodal

raw physiological data into valuable information and then into knowledge that is critical for

patients and care givers.
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opérationnelle. Mathématique, vol. 6, no. 1, pp. 15–26, 1972.

[197] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko, “Non-monotone submodular
maximization under matroid and knapsack constraints,” in Proc. Annual ACM Symp.
Theory of Comput., pp. 323–332, 2009.
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