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Quality engineering is an essential activity in production processes and its objective is to 

ensure the quality of the products throughout the production stages. Many processes have 

several attributes that need to be continuously monitored to detect any variable changes 

in the production process. We refer to the monitoring process with several quality 

characteristics as multivariate statistical process control (MSPC). Most of the quality 

control procedures assume that the characteristics of the process follow normal 

distributions; however, this is a limiting assumption since the underlying distribution of 

the processes may not be normal.  

In this dissertation, we present procedures to identify the faulty variables and detect 

anomalies in MSPC with high dimensional data when the underlying distribution of the 

process is unknown. We first propose a distribution-free adaptive step-down (DFASD) 

procedure, which is motivated by a well-known data description method called support 

vector data description (SVDD). This data description procedure includes the support 
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vectors which identify the hypersphere boundary for the available data by using the 

kernel concept. In a high-dimensional process, identifying the variable or a subset of 

variables, which cause an out-of-control (OC) signal, is a challenging issue in quality 

engineering. DFASD procedure utilizes conditional statistics for the identification of 

faulty variables. The proposed DFASD procedure selects a variable having no significant 

evidence of a change at each step based on the variables that are selected in the previous 

steps. The proposed DFASD stops when there are no longer variables to classify to the 

unchanged set. Therefore, it concludes the variables which are not in the unchanged set as 

changed variables.  

We then present a new distribution-free fault identification procedure based on Bayesian 

inference which is called Bayesian SVDD (BSVDD). While the traditional SVDD 

assumes that the process parameters are constants to be determined, the center of 

hypersphere may be considered as a random vector with inherent randomness based on a 

given training dataset. We introduce a Bayesian approach for SVDD by assuming that a 

transformed data into the higher dimensional space follow normal distribution. A distance 

from a point to the center of the hypersphere is inversely proportional to the likelihood in 

the proposed model. This is because SVDD is a special case of the proposed BSVDD 

model, which improves SVDD by utilizing the precise prior knowledge. Therefore, by 

combining proposed BSVDD with an adaptive step-down procedure, we drive a new 

BSVDD based fault identification procedure for the MSPC. This is the first research to 

identify the faulty variables by using the distribution-free approach based on Bayesian 

inference.  
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We also present an anomaly detection procedure which is easily applicable in detecting 

anomalies in multimode processes. Traditional quality control procedures assume that 

normal observations are obtained from a single distribution. However, due to the 

complexities of modern industrial processes, the observations might have multiple 

operating modes. In other words, normal observations may be obtained from more than 

one distribution. In such cases, conventional quality control procedures might trigger 

false alarms while the process is indeed in another operating mode. We propose a 

generalized support vector-based anomaly detection procedure called n-class SVDD 

which can be used to determine the anomalies in multimode processes. The proposed 

procedure constructs n hyperspheres by considering the relationship among modes. In 

addition, we introduce a generalized Bayesian framework by not only considering the 

prior information from each mode but also the relationships among the modes. 

Finally, we present a new Bayesian procedure for anomaly detection in multi-class data. 

The existing procedures for anomaly detection mostly take only the normal information 

into account. However, the anomaly information is often available from the engineering 

knowledge and the historical data of the process. The performance of the anomaly 

detection procedures can be improved when available anomaly data are utilized to obtain 

data description. We propose a multi-class Bayesian SVDD model that takes anomaly 

data into consideration when the anomaly data are available and an appropriate prior 

distribution of the anomaly data is obtained.  
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation of the Work 

The higher expectations of customers and the globalization of the world economy have 

further emphasized the role of quality engineering and process control. Therefore, 

industrial organizations have paid significant attention to the control and monitoring of 

the quality characteristics of products. Controlling and monitoring of the quality 

characteristics have been mostly achieved by using the Statistical process control (SPC) 

techniques.  

In the quality engineering research studies, SPC charts have been widely used to monitor 

product quality and detect changes in product and process parameters that occur due to 

the variability of the production processes. The variability can be reduced by using SPC 

charts which improve the quality of products (Montgomery, 2007). The SPC charts 

mainly focus on the detection of assignable causes of variation but do not identify or 

adjust the cause of variability which is a limited approach for process improvement.  

Shewhart (1931) sequential testing chart is the base for charts and procedures that have 

been proposed in the literature such as exponentially weighted moving average (EWMA) 

and cumulative sum (CUSUM). In addition, other researchers have introduced extensions 

of these charts (Crowder, 1989, Ewan, 1963, Gan, 1991, Hawkins, 1991, Hawkins, 1993, 
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Hawkins and Olwell, 1997, Lucas and Saccucci, 1990, Roberts, 1959, Woodall and 

Adams, 1993, Kim et al., 2013, Park et al., 2012, Jeong et al., 2006, Abdella et al., 2017). 

These charts are mainly used for the univariate case; however, most of the products have 

more than one quality characteristics and most of the production processes are correlated 

to each other. To monitor these kinds of processes, multivariate statistical process control 

(MSPC) charts have been introduced such as Hotelling‘s chi-square, multivariate 

exponentially weighted moving average (MEWMA) and multivariate CUSUM charts 

(Crosier, 1988, Lowry et al., 1992, Ngai and Zhang, 2001, Pignatiello and Runger, 1990, 

Kim et al., 2014). These charts monitor the quality characteristics simultaneously by 

considering the correlations among the product‘s characteristics and the process 

parameters.  

Despite the fact that these procedures are only effective in monitoring and controlling of 

the processes under the normality assumption, in a realistic case which is the violation of 

the normality assumption, there has been an increasing concern about their effectiveness 

in monitoring such processes. To overcome the drawback of non-normality, several 

nonparametric or distribution-free control charts have been designed to monitor the 

univariate processes (Bakir, 2004, Bakir, 2006, Bakir and Reynolds, 1979, Janacek and 

Meikle, 1997, Li et al., 2010, Liu et al., 2014, Park et al., 1987, Wang et al., 2016). 

Several multivariate nonparametric or distribution free control charts are also introduced 

(Chen et al., 2016, Liu, 1995, Sun and Tsung, 2003, Zhou et al., 2015, Zi et al., 2013, 

Zou and Tsung, 2011, Zou et al., 2012, Cho et al., 2006).  
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Once MSPC charts signal for the detection of process changes, identifying faulty 

variables becomes a more challenging issue. Even though MSPC charts identify the 

abnormal cases, they have limited ability to identify the variables that cause the out-of-

control (OC) signal because the monitoring statistics are calculated by considering all 

variables. There have been efforts to identify a root cause of the process abnormality. The 

first attempt to identify the faulty variables is developed by Doganaksoy et al. (1991). 

However, the main drawback of their procedure is due to the lack of the correlation effect. 

To overcome this drawback, several procedures have been proposed (Das and Prakash, 

2008, Hawkins, 1991, Hawkins, 1993, Kim et al., 2016b, Mason et al., 1995, Mason et 

al., 1997, Runger, 1996, Runger et al., 1996, Sullivan et al., 2007). These procedures 

assume that the process follows a multivariate normal distribution.  

The design of the above fault identification procedures is based on the assumption that 

the quality control process follows multivariate normal distribution. However, when the 

underlying process distribution is unknown or limited, these procedures may be 

inefficient and unable to identify the faulty variables. In this dissertation, we intend to 

investigate fault identification methods that do not assume any specific probability 

distribution for the process or product observation. 

Most of the research on MSPC procedures is based on the assumption that a process has a 

single operating region and follows a unimodal distribution. However, if a process has 

multiple operating regions, the performance of the conventional MSPC procedures may 

be inefficient. To overcome the inefficiency of the traditional MSPC procedures, several 
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studies have been introduced based on different approaches such as Gaussian mixture 

models, partial least squares, principle component analysis (PCA) and independent 

component analysis (ICA) (Choi et al., 2004, Xie and Shi, 2012, Xu et al., 2014, Xu and 

Deng, 2016, Yu and Qin, 2008, Zhao et al., 2004, Zhao et al., 2006). In addition to the 

statistical approaches, data mining based approaches have also been introduced (Kang 

and Kim, 2013, Kang et al., 2016). Both of these data mining approaches are based on 

the k-nearest neighbor data description. The k-nearest neighbor data description 

approaches are suitable for spherical data distribution (Yu et al., 2002), yet having 

spherical data distribution is not common in real-life applications. In this dissertation, we 

intend to detect the anomalies in multimode processes regardless of the number of classes 

or types of the distributions.  

1.2 Problem Description and Assumptions 

There are two types of SPC techniques, traditional SPC and multimode SPC. In the 

traditional SPC, identifying the faulty variables is considered one of the important areas 

of research in the MSPC. It is important to identify the faulty variables in processes under 

the assumption that the distribution of the characteristics of the processes is unknown, 

which makes the faulty identification much more challenging. Although the non-

normality assumption is realistic, there is limited research that investigates such processes 

to identify the faulty variables. In this dissertation, we assume that the underlying 

distribution of the process is unknown or distribution-free.  
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In a process control, a variable is called a faulty variable when its mean is changed. 

Therefore, in this dissertation, we identify the variables of the out-of-control (OC) 

observation whose mean has changed. We will also use different terminologies which 

represent the variables, such as ‗quality characteristics‘, ‗quality features‘, ‗process 

variables‘. Moreover, it is assumed that only a single observation is sampled and its 

faulty variables are identified at each sampling epoch. 

In contrast to the traditional SPC, multimode SPC procedures perform well if a process 

has multiple operating regions. Most of the multimode SPC procedures are highly 

dependent on the type of data, mostly the spherical distribution, which makes them 

inefficient if the data deviates from the spherical distribution. In this dissertation, we 

assume that the underlying distributions of multimode processes can be obtained from 

any distributions.  

In addition, it is assumed that a set of in-control data is available which are used to set up 

the parameters (Phase I) of the proposed method, such as critical values. We identify the 

faulty variables of the OC observation (Phase II) after setting up the parameters of the 

procedures. Therefore, we intend to concentrate on both Phases I and II.  
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1.3 Approaches to Identify Faulty Variables in MSPC and Detect Anomalies in 

Multimode Processes 

In research on fault identification of MSPC processes and anomaly detection in 

multimode process, a process is assumed to follow some parametric distributions, 

specially normal or spherical distribution. The statistical properties of the most of fault 

identification procedures and multimode processes are valid if the normality assumption 

is satisfied. However in some cases, information about the underlying distribution of a 

given process is limited or unknown; such cases pose a challenge for quality engineering 

because the properties (critical values and threshold values) of the parametric fault 

identification and multimode processes procedures may be affected. With the unknown 

distribution assumption, we will introduce different fault identification procedures as well 

as an anomaly detection procedure which can be used to detect anomalies in multimode 

processes.  

1.3.1. Distribution-Free Based Fault Identification  

Despite existing parametric methods‘ success under the normality assumption, there has 

been an increasing concern about situations when the normality assumption does not 

hold. A limited number of nonparametric or distribution-free procedures have been 

introduced by relaxing the normality assumption. The existing nonparametric methods 

for detection of process changes are based on the k-nearest neighbor data description and 

hybrid novelty score (Kim et al., 2011, Tuerhong and Kim, 2011), which are built under 

the assumption that there is only one variable change. These existing distribution-free 
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fault identification procedures will be reviewed prior to introducing proposed fault 

identification procedures in Chapter 2. 

We first review the data description method, support vector data description (SVDD), 

which is the fundamental of our proposed methods. SVDD is used to represent the data 

when the underlying distribution of the data is unknown. In spite of the wide applications 

of the SVDD, there has been limited research on the fault identification procedure. We 

adopt and propose a distribution-free based fault identification procedure and compare its 

performance with other existing parametric and distribution-free fault identification 

procedures.  

1.3.2. Bayesian Framework for Fault Variable Identification  

Traditional fault identification procedures such as 
2T  decomposition, regression-adjusted 

variables and distribution-free procedures have been applied to identify the faulty 

variables in industrial processes characterized by several measurable parameters. 

However, the true parameters of these methods can be random variables. It would be 

reasonable to assign a prior distribution to these parameters. The Bayesian approach 

focuses on determining the optimal policy to identify the parameters based on the 

posterior probability obtained from available in-control data. Therefore, in this 

dissertation, we propose a Bayesian distribution-free fault identification procedure. This 

the first research for distribution free fault identification method using Bayesian inference.  
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1.3.3. Generalized Support Vector Data Description with Bayesian Framework 

In real-life problems, identifying anomalies is important as they may have significant 

information about a procedure. Several anomaly detection procedures are introduced to 

identify anomalies. Among them, SVDD procedure has gained more attention and 

inspired a lot of researchers. The existing SVDD procedures assume that the normal data 

(operating mode) consist of one or two classes. However, a process can operate on more 

than two modes. In this dissertation, we propose n-class SVDD which is independent of 

the number of classes. The proposed procedure constructs n hyperspheres by considering 

relationships among classes. In addition, conventional SVDD procedures are built by 

ignoring prior information. Thus, we introduce a Bayesian framework by not only 

considering the prior information of each class but also the relationships among the 

classes.  

1.4 Dissertation Outline 

This dissertation is organized as follows. Chapter 2 provides a review of the relevant 

literature about parametric and non-parametric fault identification procedures as well as 

anomaly detection procedures. In Chapter 3, we introduce a distribution-free fault 

identification procedure by combining the data description procedure SVDD and the 

adaptive step-down (ASD) procedure. Chapter 4 proposes a Bayesian support vector data 

description (BSVDD). In addition, by combining BSVDD with an adaptive step-down 

procedure, we propose an BSVDD based distribution-free faulty variable identification 

procedure and we show the superiority of the fault identification procedure through 
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different simulation studies. In Chapter 5, an SVDD based anomaly detection procedure 

called n-class SVDD is introduced to identify the anomalies, which can be adapted to 

multimode processes. In addition, we introduce generalized Bayesian SVDD procedure 

which is based on a proposed n-class SVDD. In Chapter 6, we introduce a multi-class 

Bayesian SVDD model that takes anomaly data into consideration when the anomaly data 

are available. Finally, in Chapter 7, we discuss the conclusions and the future research 

topics related to the thrust of this dissertation.  
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CHAPTER 2   

LITERATURE REVIEW 

This chapter introduces a comprehensive review of work related to the research being 

investigated in this dissertation. We present relevant research for identification of faulty 

variables in high-dimensional multivariate processes for both parametric and distribution-

free diagnosis procedures and anomaly detection procedures which can be used to 

identify anomalies in multimode processes. We review different methodologies for these 

procedures and discuss their advantages and limitations. We begin with the description of 

the parametric methods for faulty variable identification. 

2.1 Parametric Methods for Identification of Faulty Variables 

In quality engineering, multivariate statistical process control (MSPC) charts have been 

widely used to monitor product quality in multi-dimensional process and to detect 

process changes. One of the advantages of the MSPC charts, such as Hotelling‘s chi-

square chart, multivariate exponentially weighted moving average (MEWMA) (Lowry et 

al., 1992), multivariate CUSUM (Crosier, 1988) is to monitor multiple variables 

simultaneously. However, they have limited abilities in identifying the sources of 

variability in the production processes since these charts monitor the quality 

characteristics simultaneously by considering the correlations among the product‘s 

characteristics and the process parameters. In addition, they are also limited in identifying 
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the variables that cause out-of-control (OC) signal since the monitoring statistics are 

calculated by considering all process variables. 

Suppose that a process has a total of p variables, once the MSPC chart signals an alarm 

with the detection of process abnormality, then identification of the faulty variables 

among the p variables is of interest since it often provides important information in 

process diagnosis and in taking corrective actions to adjust the process. Therefore, fault 

diagnosis in statistical process control remains an important and challenging issue for the 

quality engineers, specially in high dimensional data.  

Several investigators attempted to address the identification of the faulty variables. For 

example, Doganaksoy et al. (1991) propose an individual test statistic for each variable to 

identify the faulty ones. This method, however, is known to ignore the effect of the 

correlation between variables and is difficult to implement in high-dimensional 

processes.  

To consider the correlation effect, Hawkins (1991, 1993) proposes a novel method based 

on regression-adjusted variables. In this method, it is assumed that the process follows a 

multivariate normal distribution, 0 0( , )N μ ΢ , and OC occurs due to the shift in a single 

variable i by changing the distribution of the process to 0 0( , )iN μ e ΢  where ie  is the 

column vector with entries 1 in row i and 0 elsewhere and   is related to the size of shift. 

This procedure obtains the residual of variable ix  to identify whether ix  is a faulty 
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variable. The procedure is also built on the assumption that only one variable changes. 

Therefore, it may not perform well if more than one variable change, or when a single 

variable strongly correlated with other variables is shifted (Das and Prakash, 2008, 

Hawkins, 1993).  

A similar research to Hawkins (1993) is introduced by Runger et al. (1996), which 

investigates the contribution of a subset of variables causing a change in the mean shift. 

Based on the knowledge of a subset with unchanged variables, relative contribution of the 

complement of this subset can be calculated. The proposed procedure calculates the 

contribution of each variable to the mean shift by determining the difference between the 

overall 
2T  statistic and 

2

1, , 1, 1, ,j j pT      statistic. The contribution of variable j  can be 

expressed as follows: 

2 2 2

|1,2,.., 1, 1, , 1, , 1, 1, ,  j j j p j j pT T T        , 1, ,j p    

where 
2

1, , 1, 1, ,j j pT      is the 
2T  statistic using all variables except the j

 th
 variable. It is 

shown that 
2

|1,2,.., 1, 1, ,j j j pT     follows 
2

1,  with the degree of freedom one, where   is the 

significance level. However, the identification of the subset of variables which do not 

cause a mean shift is not straightforward. Therefore, this procedure is meaningful only 

when we have knowledge of a set of unchanged variables surely, otherwise it may lead to 

poor use of the procedure in fault identification.  
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Mason et al. (1995, 1997) propose a 2T  decomposition method based on the regression 

adjustment method (or conditional 2T ), which is known as the Mason–Tracy–Young 

(MTY). The MTY method decomposes the 2T  statistic into the combinatorial number of 

conditional statistics to identify a changed variable. The  decomposition-based 

approaches theoretically work well. However, their calculation complexity makes the 

procedures impractical for a large number of variables since these procedures consider 

!p  decompositions. To reduce the computational complexity, Sullivan et al. (2007) 

propose an algorithm which considers p kC  (p choose k) number of subsets, where k is the 

size of a set, and calculates the 2T  statistics for all of these subsets for p-variate 

observation. However, for large p , the computational complexity still remains an 

obstacle even though this approach reduces the computational work compared to the 

MTY method. 

When MSPC charts detect abnormality, in a high dimensional process, it is assumed that 

only a few variables, one or small set of variables, are responsible for a process shift 

which is known as the sparsity property (Zou and Qiu, 2009). Based on the variable 

selection methods and the sparsity assumption, Wang and Jiang (2009) and Zou and Qiu 

(2009) introduce process monitoring and diagnosis schemes. A procedure based on Least 

Absolute Shrinkage and Selection Operator (LASSO) for fault identification is proposed 

by Zou et al. (2011) by using an adaptive LASSO-type penalty function. Since this 

procedure is based on the maximum likelihood estimation (MLE) approach, its 

performance is dependent on the number of available OC observations obtained from the 

2T



14 

 

observations only after the estimated change point. If the size of a shift is not sufficiently 

small, the estimated change point is close to the OC signaled point, thus a small number 

of samples for the MLE-based fault identification is obtained. Therefore, the LASSO-

based procedure may not perform well because of the small number of OC observations 

(Kim et al., 2016b).  

Kim et al. (2016b) propose an adaptive step-down procedure under the sparsity 

assumption for identifying variables whose means are shifted. This procedure selects a 

variable having no significant evidence of a change at each step based on the variables 

that are selected in the previous steps. The algorithm stops when there are no variables to 

classify as the unchanged set. Therefore, it identifies the variables which are not in the 

unchanged set as changed variables. Instead of using !p  number of decompositions, it 

reduces the computational times using the identified unchanged variables.  

2.2 Distribution-Free Methods for Identification of Faulty Variables 

The parametric methods for fault identification procedures are based on the fundamental 

assumption that the process data follow multivariate normal distribution. However, it is 

well-known that, in many real life applications, the underlying process distribution is 

unknown or non-normal. Mostly, the process may have a highly skewed distribution. It 

may be suggested that the non-normal data can be transformed to multivariate normal 

data. However, this transformation may not be efficient (Qiu, 2008). In this case, 
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statistical properties of commonly used fault identification procedures, designed to 

perform well under the normality assumption could be highly affected.  

Although the limitations occurring due to the non-normality is crucial, the research work 

that addresses this problem is sparse. To overcome the concern of the normality 

assumption, Kim et al. (2011), by taking advantages of data description technique, 

propose a nonparametric fault identification method based on the  -nearest neighbor data 

description, which is called the 2K  decomposition method. In this method, an out of 

control observation is observed using the 2K –chart (Sukchotrat et al., 2009). The control 

chart statistic, 
2K , is defined as the average distance to the k-nearest neighbors. If the 

2K  statistic is greater than a predetermined threshold value, then a new observation is 

considered as an out of control observation. For the identification process, the 

contribution of each variable is calculated considering the difference between the overall 

2K  and the 2

1, , 1, 1, ,j j pK    
 statistics. The contribution of variable j  is obtained as 

follows: 

2 2 2

|1,2,.., 1, 1,..., 1,..., 1, 1,..., ) .( 1, .., )j j j p j j pK K K j p        

where 2

1, , j 1, j 1, ,pK    
 is the 

2K  statistic in the reduced space considering all variables 

except the 
thj  variable. The variables are identified as faulty variables if the 
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corresponding conditional 
2K  statistic is greater than a predetermined threshold value. 

The threshold value is obtained using the bootstrap method (Efron and Tibshirani, 1994).  

In addition, Tuerhong and Kim (2011) propose another distribution-free fault 

identification method based on a hybrid novelty score (HNS) to calculate a test statistic. 

Based on the decomposed HNS values, the variables are identified as faulty variables if 

the corresponding conditional HNS statistic is greater than the threshold value obtained 

using the bootstrap method. 

The contribution of each variable is determined by using the monitoring statistics of those 

approaches depend on the regression adjustment-based method, which illustrate good 

performance only in the case with a single mean shift, and their performance deteriorates 

as the number of faulty variables increase. The main disadvantage of these two methods 

is that they include the k-nearest data description procedure whose performance decreases 

in a high dimensional data (Tax and Duin, 2004). Consequently, if the process has high 

dimensional data, the performance of detection of faulty variables might deteriorate. 

Therefore, there is a need for a suitable fault identification scheme particularly when 

more than one variable changes in a high dimensional process. 

2.3 Bayesian Approach for Identification of Faulty Variables 

Existing distribution-free fault identification and parametric methods control the 

identification procedure through the fixed parameters for a given dataset, which may lead 
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to unstable parameter estimations. In this case, it would be reasonable to assume that a 

solution path of the parameter estimation can vary in a probabilistic way. For example, 

when the dataset includes several outliers around a specific direction, existing procedures 

may be biased by those outliers resulting in a poor performance. Li et al. (2008) 

introduce a causation-based decomposition fault identification method which integrates 

the traditional MTY decomposition with a Bayesian causal network by defining the 

causal relationship between variables. Recently, Tan and Shi (2012) introduce a Bayesian 

based approach to determine the mean shift and the direction of the shift to identify the 

root causes. Thus, a smaller number of decompositions may be obtained. Even though 

these approaches may be appropriate for some processes, they may not be appropriate in 

certain processes which have unknown causal or Bayesian hierarchical property. In 

addition, these approaches are built on the multivariate normality assumption. In the case 

of nonnormality, the identification performance of these procedures may decrease. Even 

though nonnormality is an important issue specially for real life problems, to date, this 

problem has received little attention in the research of distribution-free fault identification. 

Therefore, it will be interesting and beneficial for quality engineers to investigate 

Bayesian based distribution free fault identification procedures in high-dimensional 

process. 

2.4 Anomaly Detection Procedures  

In various applications of real-life problems, identifying the patterns which do not 

conform to normally behaved patterns is important since these patterns indicate critical 
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and significant information that can be used towards taking action to recover processes or 

the applications. This kind of pattern is mostly called an anomaly or an outlier. In the 

literature, several procedures based on classification based, nearest neighbor based, 

clustering based, nearest neighbor based, and statistical procedures have been developed 

to detect anomalies (Chandola et al., 2009).  

Among the classification based procedures, one-class classification procedures have a 

prominent place in the literature. These procedures describe data by obtaining a decision 

rule based on all the training observations. One of the well-known data description 

procedure called support vector data description (SVDD) proposed by Tax and Duin 

(1999) describes data with a hypersphere with minimal volume by transforming original 

observations into a new space using kernel functions. If the original data is complex, use 

of kernel trick improves the power of SVDD. SVDD has long been a question of great 

interest in a wide range of applications mainly focusing on the detection of the anomalies 

as well as other real-life problems such as face recognition, image processing, pattern 

detection and quality control (Bovolo et al., 2010, Lee et al., 2006, Ning and Tsung, 

2013, Kang et al., 2012, Jeong et al., 2012, Lee et al., 2014, Kim et al., 2016a, Shin et 

al., 2012).  

Most of the SVDD procedures assume that all training observations are obtained from a 

single known distribution. However, in-real life problems, target data may belong to 

more than one class. To overcome this drawback, Huang et al. (2011) introduce a 

procedure called two-class SVDD (TC-SVDD) in which normal data consists of two-
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classes. However, in many real-world applications, normal data may be obtained from 

more than two classes. Thus, existing procedures may not recognize the differences 

between the classes, which results in poor anomaly detection performance. Therefore, in 

this dissertation, we propose a generalized SVDD procedure based on a Bayesian 

framework. The proposed procedure can be easily applicable to identify the anomalies in 

multimode processes.  
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CHAPTER 3   

DISTRIBUTION-FREE ADAPTIVE STEP-DOWN APPROACH FOR FAULT 

IDENTIFICATION 

3.1 Introduction 

In quality control area, multivariate statistical process control (MSPC) chart is the 

primarily used technique to monitor product quality in high-dimensional processes and 

detect process mean shift or variance change. Even though MSPC charts take advantage 

of monitoring several process variables simultaneously by considering the correlation 

among multiple variables, it has a limited ability to identify the variables causing the out-

of-control (OC) signal (Doganaksoy et al., 1991). To overcome this limitation, several 

researchers have developed approaches for identifying faulty variables when the process 

shift occurs. 

Doganaksoy et al. (1991) propose a test statistic for each variable to identify the faulty 

variables. However, this approach does not consider the effect of the correlation between 

variables. In addition, Hawkins (1991, 1993) proposes an approach based on regression-

adjusted variables considering the correlations among variables. This approach is 

effective under the condition that only one variable is changed. However, when more 

than one variable are shifted, the identification performance can be significantly 

decreased (Hawkins, 1991).  
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Runger (1996) develops a 2U  control chart based on the subset of the variables not 

causing the mean shift. Based on the subset of unchanged variables, relative contribution 

of complement of this subset is determined to identify the faulty variables. However, this 

approach is not suitable when either the subset of unchanged variables contains a large 

number of variables or the subset is unknown because the identification of the subset of 

variables which do not cause a mean shift is not straightforward. In addition, Runger et al. 

(1996) introduce another approach which investigates the contribution of variables 

causing the mean shift. This approach is a polynomial time algorithm for the calculation 

of conditional    statistic of each variable. Runger‘s approach is a special case of 

Hawkins‘ regression-adjustment approach when only one variable is considered. 

By drawing on the concept of conditional   , Mason et al. (1995, 1997) propose a 2T  

decomposition approach which is known as the Mason–Tracy–Young (MTY). This 

approach decomposes the 
2T  statistic into conditional 

2T  statistic to identify a changed 

variable. For large number of variables, however, the computational complexity makes 

the MTY approach impractical since it needs to examine !p  decompositions. To reduce 

the computational complexity, Sullivan et al. (2007) propose an approach which 

evaluates every possible subset of variables. For p-variate observation, this algorithm 

considers 
p

k

 
 
 

 number of subsets where k is the size of a set and calculates the 
2T  

statistic of these subsets. The computational complexity, for large p , still remains an 
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obstacle even though this approach reduces the computational effort compared to the 

MTY. 

When a process alarms an OC signal, in high-dimensional process, only a few variables 

are responsible for a process shift, which is known as sparsity property (Zou and Qiu, 

2009). Based on the sparsity assumption, Kim et al. (2016b) propose an adaptive step-

down (ASD) approach for identification of faulty variables by using the knowledge from 

the identified unchanged variables. Instead of using !p  decompositions, they reduce the 

computational times using the identified unchanged variables.  

Despite existing approaches‘ success under normality assumption, there has been an 

increasing concern about the normality assumption, it is impractical. Several distribution-

free approaches have been proposed (Sukchotrat et al., 2009, Sun and Tsung, 2003) to 

monitor processes which follow non-normal distribution. However, these approaches 

may be inefficient and unable to identify the faulty variables in a process. Kim et al. 

(2011) propose a nonparametric fault identification approach based on the  -nearest 

neighbor data description. Their approach is similar to the Hawkins‘ approach in 

determining the contribution of each variable. In addition, Tuerhong and Kim (2011) 

propose another distribution-free fault identification approach based on a hybrid novelty 

score (HNS). In this approach, they use a hybrid novelty score to calculate a test statistic. 

However, because existing nonparametric approaches depend on Hawkins‘ regression-

adjusted approach which performs well when only one variable shifts, the performance of 
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fault identification could significantly decrease when the number of faulty variables is 

more than one. Moreover, both approaches use the k-nearest neighbor data description for 

the fault identification approach. Yu et al. (2002) indicate that the k-nearest neighbor data 

description approach is suitable for spherical data distribution. On the other hand, having 

spherical data distribution is not common in real-life applications. Therefore, the power 

of the approaches based on the k-nearest neighbor data description may decrease when 

the data deviate from the spherical distribution. 

Therefore, in this chapter, we propose a distribution-free fault identification approach 

based on support vector data description (SVDD)-based test statistic. Sun and Tsung 

(2003) show the superiority of SVDD-based control chart when identifying more than 

two variables, SVDD uses kernel approaches that provide the advantage of dealing with 

high-dimension data. In addition, Tax and Duin (2004) show the superiority of the SVDD 

compared to the k-nearest data description in a high-dimensional data. 

The proposed distribution-free fault identification approach combines SVDD with an 

ASD approach to identify the changed variables. The proposed approach has the 

following distinctive advantages compared with existing ones. First, the proposed 

approach initially selects the unchanged variables in each step then eventually identifies 

the changed variables using the set of the selected unchanged variables. This approach 

reduces the computational times when a few variables are changed in a high dimensional 

process. Second, the proposed approach is not sensitive to the correlation between 
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variables, leading to stable performance regardless of the number of changed variables. 

We discuss the advantages of the proposed approach in further details in Section 3.4.  

This chapter is organized as follows. In Section 3.2, we review both parametric and 

distribution-free existing approaches. In Section 3.3, we propose a distribution-free 

adaptive step-down fault identification (DFASD) approach based on SVDD. In Section 

3.4, the performance of the proposed approach is demonstrated with extensive simulation 

studies followed by the conclusion in Section 3.5. 

3.2 Existing Parametric and Distribution-Free Approaches  

In this section, we briefly review some of the existing parametric and distribution-free 

approaches. The parametric approaches for the fault identification approach are based on 

the normality assumption while distribution-free approaches have been developed 

without assumptions about the distributions of the parameters.   

Runger et al. (1996) propose an approach which depends on the contribution of each 

variable to the mean shift by determining the difference between overall 
2T  statistic and 

2

1, , 1, 1, ,j j pT  
 statistic. The contribution of variable   can be expressed as follows: 

2 2 2

|1,2,.., 1, 1, , 1, , 1, 1, , ( 1, , )j j j p j j pT T T j p                                          (3.1) 
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where 2

1, , 1, 1, ,j j pT  
 is calculated by 

2T  statistic using all variables except the 
thj  variable. 

It is shown that 2

|1,2,.., 1, 1, ,j j j pT  
 follows a 2

1  with degree of freedom one. Because this 

approach is closely related to the regression-adjustment approach, performance of this 

approach could deteriorate when the number of changed variables is greater than one.  

To reduce computational effort of identifying a few changed variables in high 

dimensional process, Kim et al. (2016b) propose an ASD approach, which is based on the 

normality of observations, for fault variable identification approach which utilizes 

unchanged variables in each step by using conditional 2

|Γ̂j
T  statistic. In the thi  step, 

unchanged variable is selected as follows: 

ˆ

2

|Γ
 Γ

ˆargmini j
j

T


                                                                (3.2) 

where 
 

2 2 2

|Γ Γˆ Γˆ ˆj j
T T T


   and  1 2 1Γ , , ,ˆ

i      represents the set of unchanged variables 

identified in the previous steps. When the algorithm stops, it concludes that the variables 

which are not in  ̂ are considered faulty variables.  

On the other hand, if the data do not follow multivariate normal distribution, parametric 

approaches may perform poorly. To overcome this drawback, Kim et al. (2011)
 
propose a 

distribution-free fault identification 
2K  decomposition approach based on the k-nearest 

neighbor data description. In 
2K  decomposition approach, an out of control observation 
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is observed using 
2K  chart (Sukchotrat et al., 2009). The control chart statistic is defined 

as the average distance to the k-nearest neighbors. 

 
2 1

k

ii
NN

K
k





 z z

                                                         (3.3) 

where  iNN z  is the i
th

 nearest neighbor of the new observation .z  If the 
2K  statistic is 

greater than the predetermined threshold value, then this new observation is considered as 

an out of control observation. For the identification process, the contribution of each 

variable is calculated considering the difference between overall 
2K  and 2

1, , 1, 1, ,j j pK    
 

statistic. The contribution of variable j is obtained as follows: 

2 2 2

|1,2,.., 1, 1, , 1, , 1, 1, , ( 1, , )j j j p j j pK K K j p                            (3.4) 

where 2

1, , 1, 1, ,j j pK    is the 
2K  statistic in the reduced space considering all variables 

except the j
th

 variable. The variables are identified as faulty variables if the corresponding 

conditional    statistic is greater than the threshold value. The threshold value is 

obtained using the bootstrap approach.  

In addition, Tuerhong and Kim (2011) propose a distribution-free approach based on a 

HNS decomposition approach. Instead of using 
2K  decomposition statistic, the HNS 

decomposition approach calculates a test statistic as follows:  
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   
  

2

1 exp

k

average distance k

convex hull

HNS D
D





 
  
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 

z z
z

                   (3.5) 

where  
1

1 k
k

average distance

j

D
k





  jz z x  is the average distance to the k nearest neighbors 

and  
1

k
k

convex hull j

j

D W



  jz xz  is the distance to the convex hull obtained by k nearest 

neighbors. In this equation, convex hull is obtained from the following quadratic 

optimization problem: 

  
2

2

1

min
k

k

convex hull j
W

j

D W



  j
z z x                                       (3.6) 

1

. .    1,  0, 
k

j j

j

s t W W j


    

The effect of the variable j on the OC signal is evaluated as follows: 

     |1,2,.., 1, 1, , 1, , 1, 1, ,  , 1, , )j j j p j j pHNS HNS HNS j p          z z z                    (3.7) 

Based on the decomposed HNS values, the variables are identified as faulty variables if 

the corresponding conditional HNS statistic is greater than the threshold value which is 

obtained using the bootstrap approach.  
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The main limitation of existing distribution-free approaches is their sensitivity to the 

number of changed variables. If the number of shifted variables is greater than one, those 

approaches do not perform well because the control statistic based on regression 

adjustment might be distorted when unchanged variables are not well identified.  

3.3 The Distribution Free Fault Variable Identification Using Adaptive Step-Down 

Approach (DFASD)  

To overcome some of the drawbacks of the existing approaches such as the presence of 

correlation effects between variables, effects of the number of changed variables, and 

extensive computational efforts in high dimensional data, we propose an DFASD for 

fault identification. The proposed approach combines SVDD-based test statistic with an 

ASD approach which selects an unchanged variable at each step based on the variables 

that are selected in previous steps. 

3.3.1 Support Vector Data Description–Based Test Statistic  

Given in-control data  | , 1, , ,pR i N i ix x  the main goal of SVDD is to find a 

hypersphere which covers the data with minimal volume, with center a   and radius R  

(Tax and Duin, 1999). Misclassification in the in-control data is allowed by introducing 

variable i  to penalize outliers for the largest distance between ix  and .a  The primal 

formulation is constructed as follows: 
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 

2

1

2 2

min

. .  ,   0  1, ,

N

i

i

i i

R C

s t R i N



 





      



ix a

                              (3.8) 

where C  is the regularization parameter which adjusts the volume of the sphere by 

considering the number of in-control observations that fall outside the boundary. The 

dual formulation is obtained by using the Lagrangian function: 

       2 2

1 1 1

, , 
N N N

T

i i i i i i

i i i

L R R C R     
  

         i i
a x a x a         (3.9) 

where 0 i   and   0i   are the Lagrange multipliers. By taking the partial derivatives of 

Lagrangian function: 

1

0  1
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i

L
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




  


                                                           (3.10) 
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From the Eq. (3.12),   i iC    and since 0,  0i i   , Langrange multipliers   can be 

removed when we demand that 0 .i C   In this case, dual formulation is constructed 

by substituting the Eqs. (3.10), (3.11) and (3.12) into the Eq. (3.9).  

   
1 1 1

1

max

. .  0 , 1,2, , , 1

N N N

i i j

i i j

N

i i

i

s t C i N

  

 

  





  

 

 

 



i i i jx x x x

                                (3.13) 

In-control points corresponding to the positive    are called support vector and they are 

placed on the boundary or outside of the boundary. After SVDD boundary is obtained 

from the in-control data, a new observation   is considered out of control if the distance 

from   to the center   is greater than the radius R.  This is based on the new M   statistics 

which is defined by Eq. (3.14). 

2

1 1

T
N N

i i

i i

M  
 

   
       

   
 z a z x z xi i                                (3.14) 

1 , 1

2
N N

T

i i j

i i j

  
 

    i jz z x z x xT

i  

If the inner product is kernelized by a kernel function, more suitable boundary to cover 

the data can be obtained, thus the new formulation is given by Eq. (3.15) as follows: 
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   
1 1 1

1

max , ,

. . 0 , 1,2, , ,    1

N N N

i i j

i i j

N

i i

i

K K

s t C i N

  

 

  





    

 



i i i jx x x x

                            (3.15) 

Where  K   is a kernel function. Using Eq. (3.14), we obtain a new   statistic as shown 

in Eq. (3.16): 

     ,

1 , 1

  , 2 ,
N N

i i j

i i j

M K K K  
 

   i i jz z x z x x                               (3.16) 

3.3.2 Distribution Free Adaptive Step-Down Approach  

In this section, we propose an DFASD which utilizes the set of unchanged variables 

using conditional   statistic to identify the faulty variables. Starting with an empty set, 

we identify an unchanged variable in each step having no significant evidence of being 

changed. In the  th step, the unchanged variable is selected as follows: 

|Γ
 

ˆ
Γ̂

argmin    i j
j

M


                                                           (3.17) 

where ˆ| ΓΓ̂ Γ̂j j
M M M


   and  1 2 1Γ , , ,ˆ

i      is the set of variables assigned as 

unchanged set by the previous steps. When 2i  , the set Γ̂  contains only one variable. 

Thus 
Γ̂ jM M  , where 

jM  is the unconditional statistic of an individual variable which 
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is obtained in the first step. To calculate 
Γ̂j

M


 and 
Γ̂

M , we use the same support vectors 

obtained from the full dimension. For example, if 3p  , 
1|23M   can be expressed as 

1|23 123 23M M M                                                             (3.18) 

Vectors  1 2 3, ,i i ix x x S xi
, where S is a set of support vectors and corresponding dual 

variables { 0}i   are obtained by solving the optimization problem in Eq. (3.15) for the 

full dimension. In this case, for a new observation 1 2 3( , , )z z zz   

     123

,

, 2 , ,i i j

i i j

M K K K  
 

   i i jz z z x x x
S S

                        (3.19)

     23

,

', ' 2 ', ' ' , 'i i j

i i j

M K K K  
 

   i i jz z z x x x
S S

                   (3.20) 

where  2 3,i ix xix'  and  2 3' z , z .z   

Figure 3.1 shows the flow chart of the proposed approach.  
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Figure 3.1 Flowchart of the proposed DFASD approach 

3.3.2.1 Initial Variable Selection   

Since the proposed approach depends on identification of unchanged variables, in each 

step an unchanged variable is identified according to the Eq. (3.17). Since Γ̂  is empty in 

the first step, the first unchanged variable is identified as follows:  
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1 |1, , 1, 1, ,
1, ,

argmin j j j p
j p

M    
 

                                                        (3.21) 

where 
|1, , 1, 1, ,j j j pM    

 is the conditional   statistic of the j
th

 variable. In this case, 

|1, , 1, 1, , 1, , 1, 1, ,j j j p j j pM M M          where 
1, , 1, 1, ,j j pM    

 is the M  statistic of the reduced 

space spanned by variables  1, , 1, 1, , .j j p      

In the proposed DFASD approach, there are two rules to identify faulty variables. The 

first rule depends on conditional 
ˆ
.

i

M
 

 If the minimum conditional 
ˆ

i

M
 

 is greater than 

pre-determined threshold value 1h , then all ˆj  are considered as changed variables. 

The second rule is: if 
ˆ

i

M


 is greater than the threshold value ih , then the variables 

ˆj  whose 
1ˆj

M h

  are considered as a faulty variable. This rule prevents adding 

changed variable to the set of unchanged variables ˆ.  When ˆ
i

ihM

  or 

1ˆ
i

M h
 

 , we 

stop and conclude that the changed variables are all identified. However, if 
ˆ

i
ihM


  

and 
1ˆ

i

M h
 

 , i  is identified as unchanged variable. In the first step, if 

1, , 1, 1, ,
1, ,

min
j j j p

j p
M

 


 is greater than the threshold value 1h , then algorithm stops and all 

variables are identified as faulty variables.  
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3.3.2.2 Determination of Threshold Values  

To determine the faulty variables, appropriate threshold values should be established. If 

ˆ
i

M
 

 is greater than the threshold value 1h , then all ˆj are identified as faulty variables. 

Since the M  statistic is obtained in a distribution-free manner, it is difficult to conduct 

parametric inference on the M  decomposition values. To determine a threshold value 1h , 

in this chapter, bootstrap resampling approach is used. For the determination of 1h , we 

use the following steps: 

Step 1: Assume that there are p-variate N in-control observations. 

Step 2: Calculate all the possible conditional 
ˆ|Γi

M


 statistics. There are 1

2

p

i

p
n N

i

 
   

 
  

conditional statistic (For simplicity ˆ|Γi
CM M


 ). 

Step 3: Using bootstrap, obtain 
1, ,1 , ,1 , ,, , ,c r c r c r nM M M  conditional statistics from the r

th
 

bootstrap sample 1, , ).(r T    

Step 4: Sort the conditional statistics of each bootstrap sample 

     1, , 1 , , 2 , ,
 

c r c r c r n
M M M    
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Step 5: In each bootstrap sample, find the ths  statistic where 1 1(1 )s n     and 1  is the 

significance level for faulty variables ( s  is rounded to the closet integer). 

Step 6: Calculate the threshold value by taking the average of ths  statistics: 

 1 , ,

1

1
  

T

c r s

r

h M
T 

   

In addition, to prevent adding a changed variable to the set of unchanged variables  , we 

need to satisfy 
 Γ̂ i

iM h

 . The threshold value ih  can be obtained by using a bootstrap 

resampling approach which is similar to the calculation of 1.h  In Step 1, instead of 

calculating all the possible conditional 
ˆ|Γi

M


 statistic, all possible 
Γ̂ i

M


 statistic are 

calculated where  Γ̂ i i   (for simplicity   ̂      ). There is  2 1n N p    

statistic. In Step 5, find the 
thK  statistic where 2 2(1 )s n     and 2  is a significance 

level for the group of unchanged variables. Therefore, ih  is obtained as follows: 

 , ,

1

1
  

T

i U r s

r

h M
T 

   

Under the normal operating conditions, the contribution of each variable in the first step 

of ASD algorithm is approximately equal since the algorithm calculates the contribution 
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of one variable conditioning on all other variables. In the following steps, algorithm 

checks the only one variable‘s effect conditioning on the previously identified unchanged 

variables. For example,   
( )

 shows the critical value obtained in step ( 1).i i   In step ,i  

critical values are obtained by conditioning on previously identified 1i   variables. 

Therefore, according to our set up, these critical values should be similar to the each 

other because the critical values are obtained based on the only one variable‘s effect by 

removing the effect of previously identified 1i   unchanged variables.  

To compare the  
1

i
h  values, we conduct a simulation study and its results are shown in 

Table 3.1. We generate datasets that follow three distributions multivariate gamma 

multivariate lognormal and multivariate normal. By using the proposed bootstrap 

approach, we obtain the original    values. In addition, we use the similar bootstrap 

approach to obtain  
1

i
h  values for each step. The 1h  and  

1

i
h  results obtained from the 

bootstrap approach are shown in Table 3.1. 
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Table 3.1 Comparison of critical values for different datasets (   ) 

Step 1 (                   ) Step 2 (    ) Step 3 (      ) 

  
( )

   
( )

   
( )

 

Multivariate Gamma (Original          ) 

0.0322 0.0323 0.0322 

            

Multivariate Normal (Original          ) 

0.2869 0.2870 0.2869 

            

Multivariate Lognormal (Original          ) 

0.8800 0.8845 0.8800 

 

Table 3.1 shows the three different critical values obtained in each step. It concludes that 

even considering each step individually, it does not change the overall performance since 

the  
1

i
h  values are almost the same as the critical value 1.h  Therefore, decomposing 

critical value, 1h  as    1 2

1 1, h h  and  3

1h  may not affect the performance significantly 

considering the complexity of computations to obtain individual  
1 .

i
h   

3.4 Simulation Study 

3.4.1 Simulation Setup 

In this section, we evaluate the performance of the proposed approach for faulty variables 

compared with that of existing approaches such as ASD,    decomposition approach and 

HNS decomposition by using both normality and non-normality dataset. For non-normal 

distributions, we take several common distributions into our experiments such as 
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multivariate gamma and multivariate lognormal distribution. Moreover, for more 

irregular distributed data shape, multivariate banana-shaped data is considered in the 

experiment. For lognormal distribution dataset, we assume mean vector 00μ  and 

covariance 0 1 ,ij i j p


 
   ΢ , where 0.1ii  , 0.1ij  , and 1   in order to generate 

the data from a narrow range. This would be assumed for the other distributions as well. 

To generate a gamma distribution dataset, the same approach used in Stoumbos and 

Sullivan (2002) is employed by assuming the shape and scale parameters to have values 

of one. The banana-shaped dataset shown in Figure 3.2 is generated by the approach 

described in Duin et al. (2000). For instance, a six-dimensional dataset is obtained by 

integrating three two-dimensional banana-shaped datasets. In each simulation run, 500 in-

control and 1000 out of control observations are generated. The critical values of each 

approach are determined by using in control datasets.  
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Figure 3.2 Two-dimensional banana-shaped data 

A mean vector for out-of-control data is defined as 1 0   μ μ δ  where 1 2     p     δ  

and i   represents the shift size of the i
th

 variable. For example,  ,0,0,d   indicates that 

mean shift occurs at the first variable and the size of the shift is given by the standard 

deviation of corresponding variable. However, for the six dimensional banana-shaped 

data, we determine the shift size as an additive mean because the theoretical standard 

deviation is not straightforward. Moreover, for the optimization problem in Eq. (3.15), 

the parameter C  is determined using the following equation (Tax and Duin, 2004): 

 
1

   
C

N fractionof outliers



. This equation means that some of the in-control data are 

allowed to be outside of the SVDD boundary by controlling the C  value. Tax and Duin 
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(2004) show that Eq. (3.15) is optimized by choosing the optimum C  value. In our 

experiments, we set the fraction of outliers to 1  value.  

3.4.2 Measures of Performance  

For performance comparisons, in this chapter, two performance measures are used. The 

first measure checks whether the identification result matches mean shift vector. This is 

evaluated using the correctness rates (CR) which is defined as 

Γ Γ1 ˆ
CR

n

i
I

n




                                                             (3.22) 

where n is the number of identifications and   is the indicator function. However, CR 

may not be suitable as the number of variables increases. In this sense, we adopt the 

second measurement called the expected error rates (EER) in mean shift (Zou et al., 

2011): 

Number of errors
EER

Number of variables
E
 

  
 

                                                (3.23) 

Through EER, all variables in the observation vector are checked one by one whether 

they are correctly identified or not. Therefore, by using these two performance measures 

together, we can evaluate the effectiveness of the proposed approach in identifying the 

shifted variables.  
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3.4.3 Choice of Kernel Function for DFASD 

The performance of SVDD is strictly based on the choice of the kernel function and 

parameters of the kernel function which directly controls the nonlinear mapping of the 

features. Therefore, choices of the kernel function and kernel parameters play an 

important role in the performance of the proposed DFASD approach. Ning and Tsung 

(2013) mention that it would be easy to choose the appropriate kernel and its parameters 

for two dimensional data. However, in high-dimension, it would be difficult to obtain the 

optimal kernel function with appropriate parameters. Therefore, it is not easy to suggest 

the specific kernel function for the SVDD based approaches specially for high-

dimensional cases. In addition, different kernel functions have their own advantages and 

disadvantages according to the data properties such as the dimension, correlation and 

dispersion. Therefore, it is more difficult to suggest one optimal kernel function. One of 

the popular kernel functions is called Gaussian kernel function which is defined as: 

 
2

2
, exp

2
K

w

 
  

 
 

x y
x y                                                 (3.24) 

where   is a parameter of the Gaussian kernel. For the SVDD-based control chart such as 

 -chart, Ning and Tsung (2013) propose an approach to choose the parameters of the 

Gaussian kernel based on the cross validation. Another traditional kernel function is a 

polynomial kernel function defined as follows:  
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   , 1
d

K  x y x yT
                                                   (3.25) 

where   represents the order of the polynomial kernel.  

With these advantages and disadvantages of different kernel functions, the practitioners 

can choose the proper function based on their engineering knowledge. Once the 

appropriate kernel function is selected, then the complexity parameter that controls the 

feature of kernel is determined. Many criteria such as Akaike information criterion (AIC), 

Bayesian information criterion (BIC) and general cross validation (GCV) can be applied 

to obtain the optimal parameters. In this chapter, we compare the CR performances of 

DFASD approach under polynomial and Gaussian kernel setting. For simplicity, we use 

the polynomial kernel function as  

     , ,K  x y x y                                                 (3.26) 

where  
22 2

1 2 1 2
1 2, , , , , , , , , , , ,

2! 2! 2! ! ! !

dd d
p p

p

x xx x x x
x x x

d d d


 
      
 

x . Tables 3.2 and 3.3 

demonstrate the performances for different kernel functions.  
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Table 3.2 The effect of kernel functions according to different parameters under 

multivariate gamma distribution (   ) 

Kernel Type Polynomial kernel with parameter   Gaussian kernel with parameter   

Direction Size 2 3 4 5                  

{d 0 0} 

1.0   0.1360 0.1090 0.0961 0.1327 0.0760 0.1340 0.1280 0.1450 0.1110 

2.0   0.2070 0.1910 0.1947 0.1918 0.0630 0.2010 0.2030 0.1790 0.1610 

3.0   0.4350 0.4246 0.4047 0.4328 0.1230 0.5000 0.6170 0.4310 0.4220 

{d 0 d} 

1.0   0.0870 0.0858 0.0844 0.0823 0.0724 0.0990 0.0968 0.0877 0.0913 

2.0   0.2520 0.2431 0.2442 0.2471 0.1514 0.2268 0.2535 0.2548 0.2410 

3.0   0.4950 0.4882 0.4459 0.4703 0.1696 0.3014 0.4821 0.4859 0.4792 

 

Table 3.3 The effect of kernel functions according to different parameters under banana-

shaped data (   ) 

Kernel Type Polynomial kernel with parameter   Gaussian kernel with parameter   

Direction Size 2 3 4 5                

{d 0 0} 

1.0 0.1628 0.1582 0.1558 0.1506 0.1370 0.1310 0.1330 0.1350 0.1370 

2.0 0.3079 0.3011 0.3057 0.2971 0.2740 0.2860 0.2690 0.2430 0.2350 

3.0 0.4152 0.3904 0.4037 0.4150 0.3420 0.3580 0.3440 0.3770 0.3730 

{d 0 d} 

1.0 0.0485 0.0472 0.0431 0.0467 0.0390 0.0460 0.0570 0.0360 0.0390 

2.0 0.1340 0.1488 0.1348 0.1451 0.1010 0.1150 0.1130 0.1120 0.1160 

3.0 0.2459 0.2182 0.2113 0.2194 0.1930 0.1830 0.2210 0.1820 0.1720 

 

In Tables 3.2 and 3.3, the results suggest the use of a polynomial kernel with the second 

order for gamma distribution and Gaussian kernel with the appropriate parameter from 

the table for banana-shaped data. Although the tables provide a guide for choosing the 

kernel type and their parameters, discussing many different kernel functions in this 
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chapter is beyond the scope of this research. Therefore, in this chapter, we use the kernel 

defined in Eq. (3.26) due to the similar results obtained from the simulations.  

3.4.4 Simulation Results 

Tables 3.4 and 3.5 compare the performace of the proposed DFASD approach,    and 

HNS decomposition and ASD versions of    and HNS decomposition approaches  (  -

ASD and HNS-ASD) under multivariate gamma and multivariate normal distributions, 

respectively. Combining ASD with existing    or HNS decomposition approach affects 

the performance of these two approaches as shown in Tables 3.4 and 3.5. 

Table 3.4 Performance comparison of DFASD, 
2K  decomposition, HNS decomposition, 

2K -ASD and HNS-ASD with multivariate gamma distribution with     

Shift  DFASD K2 HNS  K2 ASD HNS ASD 

Direction Size CR EER CR EER CR EER CR EER CR EER 

{d 0 0 } 

1.0   0.2325 0.4101 0.4350 0.2679 0.4680 0.2454 0.4940 0.2435 0.4324 0.2586 

2.0   0.3237 0.3380 0.6644 0.1365 0.7635 0.1012 0.8927 0.0524 0.8519 0.0637 

3.0   0.5640 0.1893 0.5705 0.1530 0.7813 0.0824 0.9228 0.0349 0.8856 0.0459 

{d 0 d } 

1.0   0.2372 0.3158 0.0650 0.4930 0.2296 0.3601 0.1057 0.4241 0.1760 0.3762 

2.0   0.4577 0.2081 0.0707 0.4687 0.2650 0.3370 0.1809 0.3563 0.3437 0.2555 

3.0   0.6946 0.1193 0.0579 0.4342 0.2590 0.2594 0.1612 0.3579 0.3543 0.2435 
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Table 3.5 Performance comparison of DFASD, 
2K  decomposition, HNS decomposition, 

2K -ASD and HNS-ASD with multivariate normal distribution with     

Shift  DFASD K2 HNS K2 ASD HNS ASD 

Direction Size CR EER CR EER CR EER CR EER CR EER 

{d 0 0 } 

1.0   0.3783 0.3136 0.3003 0.2626 0.3602 0.2566 0.6710 0.1783 0.6172 0.2037 

2.0   0.6374 0.1720 0.3393 0.2264 0.4215 0.2061 0.8727 0.0668 0.8279 0.0864 

3.0   0.8014 0.0899 0.2818 0.2519 0.3754 0.2342 0.8717 0.0677 0.8435 0.0801 

{d 0 d } 

1.0   0.3082 0.3454 0.0061 0.6162 0.1233 0.5103 0.0472 0.5887 0.2236 0.4700 

2.0   0.5617 0.2254 0.0009 0.6226 0.1470 0.4642 0.0160 0.6866 0.1915 0.4899 

3.0   0.8066 0.0815 0.0004 0.5535 0.1941 0.3362 0.0035 0.5564 0.2346 0.3417 

 

Tables 3.4 and 3.5 indicate that the proposed DFASD approach is comparable with 

existing    and HNS decomposition approaches for large shift when more than one 

variable changes. On the other hand, when more than one variable changes, the proposed 

approach outperforms the existing approaches. In addition, results from Tables 3.4 and 

3.5 show that combining ASD with    or HNS slightly improves the performance of 

original approaches. Although   -ASD and HNS-ASD improves the performance of 

original    or HNS approaches, DFASD still outperforms   -ASD and HNS-ASD. 

Therefore, in this chapter, for the simulation studies, DFASD is compared only with    

and HNS decomposition approaches. 

Table 3.6 compares the performace of the proposed DFASD approach and the ASD 

approach under the six dimensional multivariate normal distribution. The performance 

results are an average of 1,000 simulation runs of each scenario. Table 3.6 shows that the 
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ASD approach outperforms the DFASD approach because ASD approach is designed for 

normally distributed data. However, as the number of the shifted variable increases, the 

performance of ASD significantly decreases because ASD is based on the sparsity 

assumption while our proposed DFASD has a stable performance regardless of the 

number of shifted variables.  

Table 3.6 Performance comparison of DFASD and ASD under multivariate normal data 

(   ) 

Shift DFASD ASD 

Direction Size CR EER CR EER 

{d 0 0 0 0 0} 

1.0  0.2624 0.2889 0.5256 0.1017 

1.5  0.4208 0.2057 0.7781 0.0478 

2.0  0.5509 0.1534 0.9100 0.0194 

2.5  0.6524 0.1200 0.9584 0.0083 

3.0  0.7148 0.0998 0.9706 0.0053 

{d 0 d 0 0 0} 

1.0  0.1468 0.3138 0.1230 0.2591 

1.5  0.2752 0.2427 0.3523 0.1751 

2.0  0.4283 0.1863 0.6598 0.0875 

2.5  0.5924 0.1339 0.8927 0.0281 

3.0  0.7056 0.0983 0.9728 0.0072 

{d 0 d 0 d 0} 

1.0  0.1129 0.3709 0.0292 0.4647 

1.5  0.2233 0.3013 0.1368 0.4051 

2.0  0.3800 0.2255 0.3599 0.3169 

2.5  0.5672 0.1490 0.5562 0.2612 

3.0  0.7082 0.0965 0.5729 0.2677 

 

Table 3.7 presents the performance of the banana-shaped data with six dimensions. Since 

the banana-shaped data are deviated from the normal distribution, it is difficult to obtain 



48 

 

an ellipsoid boundary. From Table 3.7, it is apparent that the performance of the 

proposed DFASD is better than that of existing approaches in all cases. All of the 

distribution-free approaches outperform ASD in this scenario as expected. In addition, 

the performance of    decomposition approach deteriorates and performance of HNS 

approach does not perform as well as the proposed approach when the number of shifted 

variables increases because the existing approaches are not optimal for identifying 

multiple changed variables. 

Table 3.7 Performance comparison of DFASD, ASD, 
2K  decomposition and HNS 

decomposition with six dimensional banana-shaped data 

Shift DFASD ASD K
2
 HNS  

Direction Size CR EER CR EER CR EER CR EER 

{d 0 0 0 0 0 } 

1.0 0.1628 0.2401 0.0065 0.1837 0.0519 0.2463 0.0142 0.5194 

1.5 0.2363 0.2124 0.0086 0.1806 0.0738 0.2306 0.0217 0.4844 

2.0 0.3079 0.1857 0.0186 0.1768 0.1119 0.2123 0.0350 0.4623 

2.5 0.3656 0.1651 0.0397 0.1713 0.1648 0.1921 0.0537 0.4312 

3.0 0.4152 0.1477 0.0754 0.1640 0.2258 0.1732 0.0600 0.4035 

{d 0 d 0 0 0 } 

1.0 0.0485 0.3277 0.0000 0.3421 0.0040 0.3700 0.0178 0.4903 

1.5 0.0868 0.2890 0.0000 0.3387 0.0031 0.3536 0.0299 0.4532 

2.0 0.1340 0.2546 0.0001 0.3346 0.0041 0.3357 0.0400 0.4202 

2.5 0.2395 0.2277 0.0007 0.3276 0.0080 0.3163 0.0541 0.3901 

3.0 0.2459 0.2061 0.0028 0.3176 0.0153 0.2966 0.0690 0.3628 

{d 0 d 0 d 0 } 

1.0 0.0260 0.4231 0.0000 0.5021 0.0004 0.5027 0.0249 0.4755 

1.5 0.0377 0.3763 0.0000 0.4996 0.0002 0.4924 0.0312 0.4462 

2.0 0.0502 0.3385 0.0000 0.4953 0.0002 0.4783 0.0406 0.4160 

2.5 0.0868 0.2993 0.0000 0.4876 0.0003 0.4615 0.0517 0.3885 

    0.1203 0.2723 0.0001 0.4744 0.0007 0.4401 0.0655 0.3646 
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The performance of distribution-free approaches from multivariate lognormal and gamma 

distribution scenarios for the three dimensional datasets are illustrated in Tables 3.8 and 

Table 3.9. It is shown that the DFASD approach is comparable with other distribution-

free approaches when one variable is shifted with a large shift. In addition, the DFASD 

approach outperforms others significantly when two variables are shifted. Since the test 

statistic in the    decomposition and HNS decomposition approaches are developed 

based on Hawkins‘ regression-adjusted variables approach, they only perform well when 

only one variable changes. These results provide further support for the hypothesis that 

the proposed DFASD is not affected by the number of shifted variables.  
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Table 3.8 Performance comparison of DFASD, 
2K  decomposition and HNS 

decomposition under multivariate lognormal when     

Shift DFASD K2 HNS  

Direction Size CR EER CR EER CR EER 

{d 0 0} 

1.0  0.1930 0.4506 0.3502 0.2600 0.3374 0.2746 

1.5  0.2575 0.3738 0.3737 0.2249 0.3727 0.2346 

2.0  0.3820 0.2890 0.3086 0.2400 0.3148 0.2518 

2.5  0.5651 0.2021 0.2308 0.2691 0.2353 0.2951 

3.0  0.7465 0.1233 0.1795 0.3009 0.1911 0.3300 

{d 0 d} 

1.0  0.1858 0.4935 0.0156 0.6368 0.0882 0.5738 

1.5  0.2530 0.4607 0.0085 0.6365 0.0876 0.5688 

2.0  0.3588 0.3791 0.0071 0.5949 0.0823 0.4949 

2.5  0.5252 0.2609 0.0062 0.5329 0.0802 0.4202 

3.0  0.7366 0.1335 0.0053 0.4793 0.0779 0.3495 
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Table 3.9 Performance comparison of DFASD, 
2K  decomposition and HNS 

decomposition under multivariate gamma when     

Shift DFASD K2 HNS  

Direction Size CR EER CR EER CR EER 

{d 0 0} 

1.0  0.2325 0.4101 0.4350 0.2679 0.4680 0.2454 

1.5  0.2727 0.3788 0.5743 0.1866 0.6120 0.1674 

2.0  0.3237 0.3380 0.6644 0.1365 0.7635 0.1012 

2.5  0.4046 0.2785 0.6414 0.1343 0.7763 0.0981 

3.0  0.5640 0.1893 0.5705 0.1530 0.7813 0.0824 

{d 0 d} 

1.0  0.2372 0.3158 0.0650 0.4930 0.2296 0.3601 

1.5  0.3422 0.2591 0.0662 0.4820 0.2362 0.3551 

2.0  0.4577 0.2081 0.0707 0.4687 0.2650 0.3370 

2.5  0.5695 0.1693 0.0651 0.4590 0.2814 0.3160 

3.0  0.6946 0.1193 0.0579 0.4342 0.2590 0.2594 

 

To explore the advantage of the proposed DFASD approach, five dimensional dataset, 

which follow a multivariate normal, multivariate lognormal and multivariate gamma 

distribution, respectively, are employed when one variable is shifted and when three 

variables are shifted. In Table 3.10, we show that when only one variable shifts, the    

decomposition approach is better than that of DFASD approach specially for smaller size 

shifts. However, when three variables are shifted, the proposed DFASD approach 

outperforms the    decomposition approach in all cases. The CR of    decomposition 

approach, for example, approaches zero when there are three faulty variables. These 
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results further support that the proposed DFASD approach shows superiority when 

compared with the other distribution-free approaches when several variables are faulty. 

Table 3.10 Performance comparison of DFASD and 
2K  decomposition when     

               Multivariate Normal Multivariate Lognormal Multivariate Gamma 

Shift DFASD K
2
 DFASD K

2
 DFASD K

2
 

Direction Size CR EER CR EER CR EER CR EER CR EER CR EER 

{d 0 0 0 0} 

1.0  0.288 0.293 0.392 0.157 0.132 0.392 0.529 0.136 0.136 0.380 0.498 0.177 

1.5  0.443 0.214 0.507 0.110 0.201 0.308 0.657 0.086 0.162 0.341 0.717 0.099 

2.0  0.569 0.160 0.563 0.092 0.328 0.233 0.664 0.077 0.207 0.297 0.804 0.062 

2.5  0.668 0.125 0.581 0.087 0.518 0.167 0.642 0.078 0.280 0.249 0.835 0.047 

3.0  0.736 0.100 0.575 0.089 0.688 0.115 0.622 0.081 0.435 0.175 0.840 0.041 

{d 0 d 0 d} 

1.0  0.153 0.390 0.000 0.592 0.068 0.523 0.001 0.594 0.087 0.345 0.006 0.497 

1.5  0.267 0.319 0.000 0.609 0.119 0.477 0.000 0.628 0.157 0.291 0.003 0.497 

2.0  0.417 0.240 0.000 0.619 0.221 0.383 0.000 0.631 0.252 0.247 0.001 0.506 

2.5  0.587 0.158 0.000 0.618 0.416 0.254 0.000 0.613 0.355 0.215 0.001 0.520 

3.0  0.736 0.095 0.000 0.602 0.665 0.129 0.000 0.584 0.495 0.160 0.001 0.530 

 

In addition, we explore the effect of    and    by using the multivariate normal 

distribution. Table 3.11 provides the CR performance of the DFASD approach by 

combining    with   . This table is quite revealing in several ways of choosing the α 

values. It is shown that identifying the large shift is accomplished successfully with 

different    values when only one variable is changed. On the other hand, when more 

than one variable is changed, smaller    can not identify the changed variables. Since the 

critical value is large for small   ,i.e., conditional   statistic is smaller than the critical 

values, so that error rate of misdetection increases. Moreover, if we adjust    value too 
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high, the critical value decreases. Thus, the error rate of false identification increases. To 

choose   , we need to consider the stopping criteria,   ̂   
    or      ̂    . If    

value is too large,    critical value becomes too small, so that algorithm may stop at the 

beginning of the approach. On the other hand, if      , the critical value    becomes 

small, so that    can terminate the algorithm without the following steps. Based on this 

experiments,       yields the best performance in identifying faulty variables. In all of 

our experiments, we use          . We also check the effect of    and    for 

different datasets and obtain the similar patterns as in multivariate normal case. 
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Table 3.11 Effect of 1  and 2  to the performance of the DFASD approach 

                            

    0.005 0.05 0.1  0.005 0.05 0.1  0.005 0.05 0.1 

Direction Size    0.75 

 

{d 0 0} 

 

1.0  

 

0.2958 

 

0.3162 

 

0.2798 

 

 

0.3699 

 

0.3725 

 

0.3650 

 

 

0.3745 

 

0.3835 

 

0.3783 

{d 0 0} 2.0  0.5085 0.5439 0.5511  0.6312 0.6336 0.6253  0.6379 0.6398 0.6374 

{d 0 0} 3.0  0.6597 0.6413 0.6573  0.7919 0.7855 0.7906  0.7976 0.8014 0.8014 

{d 0 d} 1.0  0.2527 0.2561 0.2671  0.3161 0.2992 0.3077  0.3150 0.3105 0.3082 

{d 0 d} 2.0  0.4246 0.4365 0.4423  0.5659 0.5537 0.5588  0.5780 0.5446 0.5617 

{d 0 d} 3.0  0.6901 0.6776 0.6445  0.8038 0.7980 0.7941  0.8035 0.8094 0.8066 

   

   0. 5 

 

{d 0 0} 

 

1.0  

 

0.3578 

 

0.3551 

 

0.3636 

 

 

0.4169 

 

0.4179 

 

0.4278 

 

 

0.4197 

 

0.4251 

 

0.4315 

{d 0 0} 2.0  0.5744 0.5696 0.5759  0.6589 0.6578 0.6618  0.6694 0.6746 0.6693 

{d 0 0} 3.0  0.6669 0.6757 0.6971  0.7724 0.7740 0.7796  0.7818 0.7816 0.7854 

{d 0 d} 1.0  0.3142 0.3090 0.3074  0.3649 0.3574 0.3639  0.3700 0.3799 0.3726 

{d 0 d} 2.0  0.4985 0.5124 0.5089  0.6277 0.6213 0.6208  0.6319 0.6343 0.6300 

{d 0 d} 3.0  0.6760 0.6893 0.6909  0.8032 0.7958 0.8113  0.8140 0.8081 0.8121 

   

   0.25 

             

{d 0 0} 1.0    0.3673 0.3715 0.3938  0.4041 0.4056 0.3977  0.4115 0.4021 0.4090 

{d 0 0} 2.0  0.6028 0.6668 0.5577  0.6353 0.6268 0.6246  0.6374 0.6356 0.6367 

{d 0 0} 3.0  0.6798 0.6836 0.6697  0.7456 0.7537 0.7465  0.7473 0.7512 0.8846 

{d 0 d} 1.0  0.2980 0.3070 0.2968  0.3477 0.3542 0.3557  0.3535 0.3586 0.3580 

{d 0 d} 2.0  0.5322 0.5211 0.5244  0.6074 0.6141 0.6018  0.6215 0.6195 0.6298 

{d 0 d} 3.0   0.6825 0.7149 0.6898  0.7932 0.7958 0.8006  0.8064 0.8047 0.8055 

 

Tables 3.12 and 3.13 show the correlation effect of the DFASD approach,    and HNS 

under multivariate normal and lognormal distribution, respectively. The results from 

these extensive simulations demonstrate that the proposed approach is robust to 

correlation. These results show that, in most cases, correlation does not affect to the 
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performance of the proposed approach. However,    and HNS depend highly on the 

correlation because the correlation among ‗nearest k‘ data points strongly affects to the 

computation of the statistic.  

Table 3.12 Correlation effect of DFASD, 2K  and HNS decomposition approaches under 

multivariate normal distribution when     

Multivariate Normal 

Shift  DFASD K2 HNS  

Direction Size CR EER CR EER CR EER 

        

{d 0 0 } 

1.0   0.3783 0.3136 0.3003 0.2626 0.3602 0.2566 

2.0   0.6374 0.1720 0.3393 0.2264 0.4215 0.2061 

3.0   0.8014 0.0899 0.2818 0.2519 0.3754 0.2342 

{d 0 d } 

1.0   0.3082 0.3454 0.0061 0.6162 0.1233 0.5103 

2.0   0.5617 0.2254 0.0009 0.6226 0.1470 0.4642 

3.0   0.8066 0.0815 0.0004 0.5535 0.1941 0.3362 

        

{d 0 0 } 

1.0   0.3756 0.3361 0.3489 0.2818 0.3174 0.3108 

2.0   0.7081 0.1373 0.5130 0.1732 0.4670 0.1990 

3.0   0.7845 0.0910 0.5758 0.1448 0.5633 0.1575 

{d 0 d } 

1.0   0.3617 0.3204 0.0326 0.5048 0.1995 0.4083 

2.0   0.5918 0.1805 0.0537 0.4833 0.2625 0.3587 

3.0   0.8157 0.0741 0.0791 0.4519 0.4165 0.2420 

        

{d 0 0 } 

1.0   0.4024 0.2999 0.4383 0.2764 0.3580 0.3068 

2.0   0.6308 0.1525 0.6684 0.1276 0.5609 0.1703 

3.0   0.7558 0.0917 0.7435 0.0891 0.6465 0.1274 

{d 0 d } 

1.0   0.3760 0.2869 0.1008 0.4060 0.2678 0.3436 

2.0   0.5520 0.1938 0.1557 0.3703 0.3631 0.2863 

3.0   0.7982 0.0751 0.3032 0.2796 0.6114 0.1537 
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Table 3.13 Correlation effect of DFASD, 
2K  and HNS decomposition approaches under 

multivariate lognormal distribution when     

Multivariate Lognormal 

Shift  DFASD K2 HNS  

Direction Size CR EER CR EER CR EER 

        

{d 0 0 } 

1.0   0.1930 0.4506 0.3502 0.2600 0.3374 0.2746 

2.0   0.3820 0.2890 0.3086 0.2400 0.3148 0.2518 

3.0   0.7465 0.1233 0.1795 0.3009 0.1911 0.3300 

{d 0 d } 

1.0   0.1858 0.4935 0.0156 0.6368 0.0882 0.5738 

2.0   0.3588 0.3791 0.0071 0.5949 0.0823 0.4949 

3.0   0.7366 0.1335 0.0053 0.4793 0.0779 0.3495 

        

{d 0 0  } 

1.0   0.3185 0.3925 0.3633 0.2907 0.2803 0.3251 

2.0   0.4659 0.2937 0.4736 0.1984 0.3435 0.2562 

3.0   0.6808 0.1463 0.4586 0.1876 0.3572 0.2419 

{d 0 d } 

1.0   0.2655 0.3559 0.0666 0.4939 0.1906 0.4218 

2.0   0.5102 0.2410 0.0986 0.4621 0.2659 0.3438 

3.0   0.7672 0.1026 0.1253 0.3883 0.3035 0.2573 

        

{d 0 0 } 

1.0   0.3217 0.3773 0.3972 0.2975 0.2713 0.3492 

2.0   0.4881 0.2475 0.5775 0.1729 0.3930 0.2463 

3.0   0.6181 0.1542 0.6768 0.1155 0.4471 0.2080 

{d 0 d } 

1.0   0.2503 0.3534 0.1528 0.4061 0.2215 0.3643 

2.0   0.5073 0.2071 0.3417 0.2819 0.4790 0.2179 

3.0   0.7622 0.0921 0.5105 0.1931 0.5795 0.1494 

 

To present the advantage of the proposed DFASD approach, we investigate its 

performance using a high-dimensional dataset. In high-dimensional cases, the CR would 

be possibly very small because it would be counted as ‗incorrect‘ even if only one miss or 

false identification occurs. For this reason, we introduce two more measurements for 
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high-dimensional cases. These two measurements enable us to evaluate the performance 

in terms of both missed identification and false identification. They are ER1 and ER2, 

which are defined as; 

         
ER1

       

thenumber of missidentified variables

thenumber of fault variables
  

and  

         
ER2

       

thenumber of falseidentified variables

thenumber of unchanged variables
  

In low dimensional cases with reasonable CR, there is no need to consider EER, ER1 and 

ER2. However, as dimension increases, the CR might be no longer useful to see the 

performance difference. Thus, we use ER1 and ER2 when CR is not comparable due to 

its small value in high-dimensional cases.  

Tables 3.14 and 3.15 show the performances of the DFASD and the    decomposition 

approach under multivariate lognormal and gamma distributions, respectively. Similar to 

the previous results, when only one variable shifts, the performance of the    

decomposition approach outperforms the proposed DFASD approach in most of the cases. 

However, the performance reverses when more than one variable changes. In a more than 

one variable shift case, the    decomposition approach mostly identifies unchanged 
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variables as changed variable, thus the ER2 of the    decomposition approach is mostly 

greater than the ER2 of the DFASD approach. Therefore, the CR performance of the    

decomposition approach is significantly small. On the other hand, both approaches 

mostly identify the changed variables correctly, therefore their ER1 values are 

comparable.  

Table 3.14 Performance of the DFASD and the 
2K  decomposition approaches under 

multivariate lognormal distribution when      

Shift DFASD K
2
 

                CR EER ER1 ER2 CR EER ER1 ER2 

1.00 0.00 0.00 0.00 0.5690 0.1254 0.2290 0.1139 0.6780 0.0409 0.0010 0.0453 

0.00 0.88 0.00 0.00 0.4340 0.1569 0.4100 0.1288 0.6470 0.0470 0.0050 0.0517 

0.00 0.00 0.95 0.00 0.5530 0.1319 0.2330 0.1207 0.6510 0.0459 0.0010 0.0509 

0.00 0.00 0.00 1.46 0.6350 0.1016 0.0000 0.1129 0.7830 0.0272 0.0000 0.0302 

1.12 1.04 0.00 0.00 0.6440 0.1017 0.1195 0.0973 0.3190 0.0951 0.0020 0.1184 

1.22 0.00 1.20 0.00 0.6800 0.0870 0.0205 0.1036 0.4600 0.0685 0.0050 0.0844 

1.50 0.00 0.00 1.50 0.6810 0.0835 0.0000 0.1044 0.2520 0.1014 0.0000 0.1268 

0.00 1.43 1.38 0.00 0.6460 0.0918 0.0000 0.1148 0.4240 0.0782 0.0020 0.0973 

0.00 1.50 0.00 1.50 0.6830 0.0829 0.0000 0.1036 0.3780 0.0822 0.0015 0.1024 

0.00 0.00 2.88 2.93 0.6460 0.0918 0.0000 0.1148 0.0260 0.2049 0.0000 0.2561 
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Table 3.15 Performance of the DFASD and the 
2K  decomposition approaches under 

multivariate gamma distribution when      

Shift DFASD K
2
 

                CR EER ER1 ER2 CR EER ER1 ER2 

1.00 0.00 0.00 0.00 0.4410 0.1004 0.0000 0.1116 0.8630 0.0159 0.0000 0.0177 

0.00 0.88 0.00 0.00 0.4830 0.0873 0.0000 0.0970 0.3590 0.0722 0.0000 0.0802 

0.00 0.00 0.95 0.00 0.4260 0.1057 0.0000 0.1174 0.8980 0.0125 0.0000 0.0139 

0.00 0.00 0.00 1.46 0.4430 0.0986 0.0000 0.1096 0.8340 0.0190 0.0000 0.0211 

1.12 1.04 0.00 0.00 0.5140 0.0784 0.0000 0.0980 0.0070 0.1907 0.0000 0.2384 

1.22 0.00 1.20 0.00 0.4480 0.0959 0.0000 0.1199 0.0710 0.1690 0.0000 0.2112 

1.50 0.00 0.00 1.50 0.4480 0.0959 0.0959 0.1199 0.0040 0.2441 0.0000 0.3051 

0.00 1.43 1.38 0.00 0.4330 0.1012 0.0000 0.1265 0.0210 0.1846 0.0000 0.2308 

0.00 1.50 0.00 1.50 0.4350 0.1006 0.0000 0.1258 0.2650 0.1050 0.0000 0.1313 

0.00 0.00 2.88 2.93 0.4330 0.0997 0.0000 0.1246 0.0000 0.4981 0.0000 0.6226 

 

Tables 3.16, 3.17 and 3.18 illustrate the performances of the proposed DFASD approach 

and the    decomposition approach under multivariate gamma distribution with 

30, 50 p   and 100 , respectively. The CR values of the both approaches are mostly zero 

as the dimension increases, which is the expected result of the high dimensional 

observations. In Tables 3.16, 3.17 and 3.18, the changed variables are mostly identified 

correctly leading to the zero ER1 values. Moreover, the large ER2 values indicate that the 

   decomposition approach deteriorates in the identification of the unchanged variables. 

Although the CR values are not comparable in high-dimensional cases, ER1 and ER2 

demonstrate the superiority of the proposed identification approach. 
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Table 3.16 Performance of the DFASD and the 
2K  decomposition approaches under 

multivariate gamma distribution when      

Shift DFASD K
2
 

                   CR ER1 ER2 CR ER1 ER2 

0.45 0.65 0.00 0.00 0.00 0.0280 0.0000 0.1375 0.0140 0.0005 0.1462 

0.55 0.00 0.46 0.00 0.00 0.0210 0.0000 0.1390 0.0050 0.0015 0.1516 

0.88 0.00 0.00 1.06 0.00 0.0290 0.0000 0.1306 0.0050 0.0000 0.1586 

1.21 1.04 0.00 0.00 0.00 0.0230 0.0000 0.1360 0.0006 0.0000 0.1565 

1.15 0.00 0.00 1.46 0.00 0.0200 0.0000 0.1389 0.0000 0.0000 0.2132 

1.98 0.00 0.00 0.00 2.24 0.0250 0.0000 0.1407 0.0000 0.0000 0.2268 

1.15 0.80 1.46 0.00 0.00 0.0440 0.0000 0.1241 0.0000 0.0000 0.2215 

1.25 0.00 1.36 0.00 1.28 0.0240 0.0000 0.1438 0.0000 0.0000 0.2468 

 

Table 3.17 Performance of the DFASD and the 2K  decomposition approaches under 

multivariate gamma distribution when      

Shift DFASD K
2
 

                   CR ER1 ER2 CR ER1 ER2 

0.25 0.00 0.68 0.00 0.00 0.0000 0.0865 0.1458 0.0000 0.2330 0.1638 

0.75 0.75 0.00 0.00 0.00 0.0010 0.0000 0.1468 0.0010 0.0000 0.1499 

1.25 0.00 0.00 1.15 0.00 0.0030 0.0000 0.1459 0.0000 0.0000 0.1620 

1.95 0.00 0.00 2.28 0.00 0.0000 0.0000 0.1471 0.0000 0.0000 0.2287 

0.45 0.55 0.00 0.00 0.65 0.0020 0.0000 0.1480 0.0000 0.0087 0.1771 

0.75 0.00 0.65 0.95 0.00 0.0020 0.0000 0.1486 0.0000 0.0007 0.1717 

1.20 0.95 0.48 0.00 0.00 0.0030 0.0000 0.1516 0.0000 0.0000 0.2205 

1.18 0.00 1.25 0.00 1.33 0.0240 0.0000 0.1438 0.0000 0.0000 0.2489 
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Table 3.18 Performance of the DFASD and the 
2K  decomposition approaches under 

multivariate gamma distribution when       

Shift DFASD K
2
 

                   CR ER1 ER2 CR ER1 ER2 

0.28 0.60 0.00 0.00 0.00 0.0000 0.2530 0.1272 0.0000 0.3050 0.1334 

0.50 0.74 0.00 0.00 0.00 0.0000 0.0000 0.1377 0.0000 0.0000 0.1505 

0.74 0.95 0.00 0.00 0.00 0.0000 0.0000 0.1376 0.0000 0.0000 0.1341 

0.89 0.00 0.85 0.00 0.00 0.0000 0.0000 0.1381 0.0000 0.0000 0.1443 

1.25 0.00 1.35 0.00 0.00 0.0000 0.0000 0.1364 0.0000 0.0000 0.1627 

0.00 1.96 0.00 2.45 0.00 0.0000 0.0000 0.1370 0.0000 0.0000 0.1695 

1.12 2.05 1.66 0.00 0.00 0.0000 0.0000 0.1340 0.0000 0.0000 0.1812 

1.18 0.00 1.35 0.00 1.26 0.0000 0.0000 0.1382 0.0000 0.0000 0.1732 

 

3.5 Conclusions 

Fault diagnosis in statistical process control is a challenging issue for the processes in a 

high-dimensional space. Although many fault isolation approaches have been introduced, 

mostly based on   , they assume the underlying distribution of the process follow a 

multivariate normal distribution. Even though there have been several distribution free 

approaches, they are not effective when the numbers of changed variables are large. In 

this chapter, we propose a distribution-free fault variable identification approach by 

combining an SVDD-based test statistic with an ASD approach. The proposed DFASD 

approach identifies unchanged variables step by step under no significant evidence of a 

change and eventually obtains the changed variables by considering at most 
 1

2

 p p
 

decompositions. The proposed approach is superior to the existing approaches when the 

one variable is shifted with a large shift. In addition, the simulation experiments using 

different distribution datasets demonstrate that the proposed DFASD approach 
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outperforms existing distribution free approaches such as the    decomposition and the 

HNS decomposition approach when the number of shifted variable is more than one. We 

also introduce two performance measures for high-dimensional data: ER1 and ER2 which 

demonstrate the superiority of the proposed DFASD approach. Moreover, the proposed 

approach is not sensitive to the correlation between variables, leading to a stable 

performance regardless of the number of changed variables.  

As a future research, it is interesting to analyze the effects of different kernel types with 

different parameters. Another future research is the extension of the proposed approach to 

distribution-free variable selection-based control charts.  
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CHAPTER 4   

BAYESIAN FRAMEWORK FOR FAULT VARIABLE IDENTIFICATION 

4.1 Introduction 

Multivariate statistical process control (MSPC) charts are widely used to monitor product 

quality and detect process changes in multi-dimensional processes. MSPC charts such as 

Hotelling‘s chi-square chart, multivariate exponentially weighted moving average 

(MEWMA) (Lowry et al., 1992) and multivariate CUSUM (Crosier, 1988) are used to 

monitor multiple variables simultaneously by taking into account the correlation among 

variables and are designed only to detect process shifts but not to provide information 

about the cause of the shift (Jiang and Tsui, 2008, Wang and Jiang, 2009). Once MSPC 

charts detect a process abnormality, identifying faulty variables is of significant interest 

for engineers as it often provides important diagnostic information and enables taking 

corrective actions. However, identification of faulty variables is as a challenging issue 

(Kim et al., 2016b, Li et al., 2008, Zou et al., 2011). 

Approaches for identifying faulty variables have been investigated by many researchers. 

For example, Doganaksoy et al. (1991) propose an individual test statistic for each 

variable to identify the faulty variables ignoring the effect of the correlation among 

variables. Hawkins (1991, 1993) proposes another approach that considers the 

correlations among variables based on regression-adjusted variables. This approach is 

only effective when one variable is changed. However, when several variables are shifted 
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simultaneously, or when even a single variable that is strongly correlated with other 

variables is shifted, the identification performance may significantly decrease (Das and 

Prakash, 2008, Kim et al., 2016b).  

Runger (1996) expands the regression adjustment approach by investigating the 

contribution of a subset of variables to the mean shift. Based on the prior knowledge of a 

subset with unchanged variables, relative contributions of the complement of this subset 

can be calculated. However, in practice, the prior knowledge of a set of unchanged 

variables may not be available. In addition, Runger et al. (1996) propose a polynomial 

time algorithm for the calculation of conditional 2T  statistic of each variable to 

investigate the contribution of the variable causing the mean shift. Based on the 

regression adjustment procedure (or conditional 2T ), Mason et al. (1995, 1997) propose a 

2T  decomposition procedure known as the Mason–Tracy–Young (MTY). It decomposes 

the 2T  statistic into the combinatorial number of conditional statistic to identify a 

changed variable. Although the 2T  decomposition-based approaches theoretically work 

well, but they are impractical for a large number of variables because such approaches 

consider !p  decompositions (where p is the number of process parameters). Sullivan et al. 

(2007) propose an algorithm which considers p kC  number of subsets, where k is the size 

of the subset of the variables, and calculates the 2T  statistic for all of subsets for p-variate 

observation. However, the computational complexity, for large ,p  remains an obstacle for 

practical implementations even though this approach reduces the computational burden 

compared to MTY. 
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When a process with multiple variables is operating under abnormal conditions, only one 

or a small subset of variables would be possibly responsible for the process shift; this is 

known as the sparsity property (Jiang et al., 2012, Wang and Jiang, 2009, Zou and Qiu, 

2009). Based on the sparsity assumption, Kim et al. (2016b) propose an adaptive step-

down (ASD) procedure for diagnosis of faulty variables by identifying unchanged 

variables one by one in each iteration. It has an advantage in terms of computational 

intensity over MTY.  

The fault identification procedures mentioned above are based on the assumption that the 

underlying distribution of the process follows the multivariate normal distribution. In 

many real life applications, however, the underlying process distribution is usually 

unknown. There is limited research that addresses the identification procedure for faulty 

variables when the underlying probability distribution of a process is unknown or follows 

a general distribution. Kim et al. (2011) propose a distribution-free fault identification 

procedure based on the  -nearest neighbor data description. Tuerhong and Kim (2011) 

propose another distribution-free fault identification procedure based on a hybrid novelty 

score (HNS) obtained by using  -nearest neighbors to calculate a test statistic.  

However, existing distribution-free fault identification procedures have the following 

limitations. First, the k-nearest neighbor data description procedure is suitable only for 

spherical data distribution, which is not common in real-life applications (Yu et al., 

2002). Therefore, when the data deviate from the spherical distribution, the performance 

of the faulty variable identification procedures based on the k-nearest neighbor data 
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description may decrease. Second, in calculating the contribution of each variable to the 

process change, the test statistic of those approaches depend on the regression 

adjustment-based procedure, which may perform significantly poorly when multiple 

shifts cause abnormality of the process, although it has a good identification performance 

when only one variable shifts. Third, existing approaches control the identification 

procedure with a given dataset in a deterministic way, which may provide limited 

information of the result.  

Therefore, in this chapter, we propose a novel distribution-free fault identification 

procedure based on a Bayesian framework when a few variables are responsible for the 

process shift. A new test statistic based on Bayesian support vector data description 

(BSVDD), which is a kernel based one class classification procedure, is proposed and the 

changed variables are identified based on an efficient algorithm with significant 

computational advantage. The proposed procedure would not be limited to the spherical 

distribution by mapping the data into high-dimensional kernel space with an appropriate 

kernel function. Moreover, the proposed BSVDD considers a probabilistic behavior of 

the parameters by taking ‗prior knowledge‘ into account in the Bayesian framework. In 

this chapter, we improve the capability of the procedure based on the interpretation of the 

parameters with the prior distributions. Accordingly, we propose a local density degree 

function to select the parameters, which is more interpretable and offers better 

performance in the identification of faulty variables than the existing procedures.  
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This chapter is organized as follows. After the review of SVDD in Section 4.2, we 

propose the distribution-free BSVDD procedure based on a Bayesian statistic in Section 

4.3. In Section 4.4, simulation studies and results are demonstrated. In Section 4.5, we 

apply the proposed procedure in a real-life case study of bolts‘ dimensions monitoring, 

followed by the conclusion in Section 4.6. 

4.2 Support Vector Data Description (SVDD) 

There are several procedures to describe the data. SVDD is an effective procedure for 

describing irregularly patterned data (Ning and Tsung, 2013). For a given data set 

{ | , 1,..., },p

i i i m  D x x R  with respect to the p-dimensional vector x , SVDD finds a 

hypersphere which covers the data with minimal volume, with a center a  and a radius 

R  (Tax and Duin, 1999). To allow the misclassification in D , i  is introduced to 

penalize outliers for large distances between ix  and a . The primal formulation of this 

problem is constructed as follows: 

2

1

2 2

min

. . , 0 {1,..., }

m

i

i

i i i

R C

s t R i m



 





     



x a

 

where C  is the regularization parameter which controls the volume of the hypersphere 

by adjusting the number of observations that are located outside the boundary. The Dual 

formulation is obtained by using the Lagrangian function: 
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      2 2

1 1 1
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m m m

i i i i iL R R C R   
  

         a x a x a                 (4.1) 

where 0i   and 0i   are Lagrangian dual variables. Taking partial derivatives of 

Lagrangian function, we obtain 
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C


 


    


          (4.2) 

In this case, the dual formulation in Eq. (4.3) is constructed by substituting Eq. (4.2) into 

Eq. (4.1).  

   
1 1 1

1

max  

. . 1 {1, . }0 ,. .,

i i

m m m

i i

i i j

i

m

i

j j

i is t C i m

 

 


  



 

    

 



x x x x

                                      (4.3) 

Data points corresponding to the positive  i  are called support vectors and they are 

placed on or outside the boundary. Based on the SVDD boundary with a given C  from 

the in-control data, a new observation z  can be classified as ―in‖ or ―out‖ of the data 

boundary by checking the distance from z  to the center of the hypersphere. The inner 

product in Eq. (4.3) can be replaced by a kernel function ( , )i iK x x , defining 
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( , ) ( ), ( ) ,i j i jK  x x x x   and thus a more suitable nonlinear boundary to cover the data 

can be obtained (Tax and Duin, 1999). 

4.3 Proposed Methodology 

4.3.1 Bayesian SVDD with Non-Normal Prior for Fault Identification 

Although the traditional SVDD assumes that the parameters are fixed constants to be 

determined, the resultant center a  may be a random vector with inherent randomness 

based upon a given training dataset. With an underlying solution from SVDD in Eq. (4.2), 

the mean a  is determined as a weighted average of the training data. Ghasemi et al. 

(2016) introduce a Bayesian approach in SVDD by assuming that a transformation 

through ( )   maps the data into higher dimensional space in which the transformed data 

follow a Gaussian distribution with mean ( )
i i i a x  and an identity covariance. 

Since the distance of a point to the center of a hypersphere is inversely proportional to the 

likelihood in the weighted Gaussian model, SVDD is a special case of the weighted 

Gaussian model, which improves SVDD by utilizing precise prior knowledge. Thus, the 

unknown parameter i  can be estimated through a Bayesian approach with a proper prior 

distribution for τ  (Ghasemi et al., 2016). 

However, their approach assumes that prior distribution ( )ip   is normally distributed, 

which is inappropriate because i  is defined in 0 i C   to keep convexity in the SVDD, 

and the constraint 
1

1i

m

i



  must be satisfied. Therefore, in this chapter, we propose an 
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improved Bayesian SVDD which is more realistic with a proper prior distribution of the 

dual variable i  expressed as a truncated exponential as follows:  

( | ) ,
1

i

i

i

i

Ci

e
p C

e

 




 




  
0 .i C   

Similar to Ghasemi et al. (2016), it is assumed that training data mapped into a higher 

dimensional kernel space follow a Gaussian distribution, i.e., 

 2( ) ~ ( ), .j ii iN  x x I  Then the likelihood probability given parameter τ  becomes 

 

2

2
1 2

1
( ) ( )

2

ˆ /2 ˆ
1

1
( | ) .

2

m

i j j

j

m

p p
i

p e

 


 



 






x x

D τ  

Maximizing a posterior (MAP) is derived by the typical Bayesian rule as 

( | ) ( )
( | ) ,

( )

p p
p

p


τ τD
D

D
τ  

where D  is a set of training data. Since ( )p D  is a normalizing constant independent of 

τ , it can be ignored so that  

( | ) ( | ) ( ).p p pD Dτ τ τ                                                      (4.4)  
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The solution of MAP is given by  

arg max ( )ˆ | .p
τ

τ τ D                                                      (4.5)
 

By taking a logarithm and using the relationship in Eq. (4.4), then Eq. (4.5) is equivalent 

to  

1 2 2

1

arg min 2ˆ 2 2    



 
     

 


m
T T

i i

i

m
τ

τKτB1τ τ  

where B  is a diagonal matrix and , , ,i i i jj
B K  1  is an 1m  vector with all ones, and 

K  is the kernel matrix in which the ( , )thi j  element of the matrix is defined as 

( , ).ij i jKK x x  

The scale parameter 2  is proportionally associated with the radius R  in the feature 

space, and the radius is inversely proportional to .C  Since C  is inversely proportional to 

the number of training data m  (Tax and Duin, 2004), the relationship 

2( | , ) ( | , )p p m  τDτD  holds for the given data set. Then, Eq. (4.4) can be rewritten by 

replacing the probability ( | , ),p mτD  and the solution τ  is obtained by the following 

optimization problem: 
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1 1

1

arg min 2 2 2 .ˆ  



 
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 


m
T T

i i

i

m
τ

Bτ 1 τ τKτ                                      (4.6) 

Note that the optimization problem must satisfy the same constraints as those in SVDD 

with an association between SVDD and Bayesian SVDD.  

1

. . 1, 0 {1,..., }i

m

i

i

s t C i m 


     

From the structure of the objective function in Eq. (4.6), we conjecture that the 

determination of parameters would play a critical role in optimization (see Appendix A. 

for detailed derivations). 

4.3.1.1 Determination of the Prior Parameters  

In order to identify the proper values of ,i  its interpretation must be carried out in 

advance. The optimization problem in Eq. (4.6) is reduced to the original SVDD when 

the parameter i  is defined as follows: 

1

1 1

2




 
m

i ij ii

jm
K K                                                     (4.7)  
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Note that if the data point is inside the boundary, the corresponding i  is zero, otherwise, 

corresponding i  ( C ) is nonzero. Since i  is inversely proportional to the mean of the 

truncated exponential distribution, it should have a small value for data points far from 

the center a  in the feature space and vice versa.  

In Eq. (4.7), the first term represents the average distance from thi  data point to all data 

points including its own distance to the center. Thus, it can be seen as a relative distance 

to the other data points. Moreover, the second term iiK  in Eq. (4.7) represents an 

absolute distance to the center. Therefore, Eq. (4.7) can be interpreted in a way that a 

small value would be assigned to the data points located around the edge of the data set 

because their relative and absolute distances are both large resulting in a small .i  On the 

other hand, the points in a dense area which are close to the center will have a large 

relative distance but a small absolute value resulting in a large .i  

In addition, we propose a new procedure to determine a prior parameter i  based on the 

interpretation above. Now we define a local density degree of an observation in a given 

data set. Suppose that  

exp , {1,..., }
min

k

i i

i k

j D j j

i m 


  
    

  

x x

x x
                         (4.8) 
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where k

i ix x  denotes the distance between i
th

 and its k th 
neighbor point, and   is a 

parameter that controls the weight of density. It is straightforward that i  is inversely 

proportional to the density, i.e., a point which is located in a dense area and has a small 

ratio of / mink k

i i j D j j x x x x  leading to the large value of ,i  and vice versa. 

Thus, it holds the association .i i   Throughout the chapter, we assume i i  . In 

addition, we determine   as discussed in Section 4.  

4.3.2 A Framework for Identifying Faulty Variables  

4.3.2.1 Construction of the Conditional Statistic and Diagnosis Procedure 

In many parametric and nonparametric fault identification procedures, the marginal effect 

of each variable or the set of the variables is calculated using decomposition as 

1 0 0 1 0| ,M M M                                                         (4.9) 

where 0  and 1  are the complementary sets in  0 1 ,S      and S  is a set 

consisting of all variables. In the general framework of decomposition, measurements of 

distance can be well incorporated into Eq. (4.9). For example, when 
2 ,M T  the statistic 

becomes the decomposition of 
2T . The k -nearest neighbor and other distance 

measurements such as HNS are also replaceable with M  (Kim et al., 2011, Tuerhong 

and Kim, 2011).  
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In a higher dimensional space, the data point ix  is transformed to ( ).i x  Since the 

transformed data can be viewed as surrounding the center ( )i ii
 a x  in the feature 

space, the distance to the center in the feature space can be measured as 
2

2
( ) . z a  In 

this chapter, we determine our measurement of M  as 

     
2

,

2

, 2 ,

( )

,i ii i ji S j S ji

M

K K K



  
 

 

 

  z z x z x x

z a
 

Then, for an arbitrary set ,A  the statistic AM  is calculated as 

     , ,, ,, 2 ,,A A A i i A A i j i Ai S j Ai j S
M K K K  

 
  z z x z x x  

where Az  is an 1A   dimensional vector, and A  is the cardinality of the set ( ).A S  

Thus, the conditional statistic 
1 0|M   in Eq. (4.9) can be viewed as a contribution of a set 

of variables in 1  over the variables in .  For example, | ,jM   where   contains all 

variables without 
thj  variable, can be interpreted as a contribution of 

thj  variable over all 

other variables.  

Once the effect of the variables is quantified, we identify unsuspicious variables 

(variables that are unlikely cause process changes) rather than suspicious ones since it 

would be reasonably easier to identify unchanged variables under the sparsity assumption 
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than to identify the changed variables directly. Moreover, several traditional 

identification procedures suffer from the computational issue with the combinatorial 

number of steps in the algorithms. To overcome this issue, we adopt an ASD procedure 

recently introduced by Kim et al. (2016b). Even though ASD is developed for parametric 

conditions, we modify the conditional statistic as in Eq. (4.9) and investigate the ASD 

procedure under nonparametric conditions. The algorithm conducts sequential tests with 

predetermined threshold values from the in-control dataset as follows:  
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Algorithm: BSVDD procedure for fault identification 

Initialize: 
1 |1,..., 1, 1,...,arg min ; 1;j j j p

j S
M i  


    

If 11 h    

Faulty Variables  1,..., p   

Else 

Do  

 ˆ ˆ: i   ; 

: 1;i i   

ˆ|ˆ
arg mini jj

M



 

While ˆ 1|i

M h
 

  and 
 ˆ

i
iM h


   

Faulty Variables = Find {
| ˆ 1

ˆ :
k

Mk S h


   } 

End 

 

The algorithm seeks the least contributor at inception and the most contributors at the end, 

one by one in each iteration. Thus, the variables not classified into the set ̂  after the end 

of the algorithm are considered faulty variables. This approach significantly reduces the 

computational complexity specially in high dimensional processes. Indeed, the 



78 

 

computational complexity of the proposed procedure is at most  2O p  which is quite 

efficient when compared to the existing decomposition procedures.  

4.3.2.2 Determination of the Thresholds 

Throughout the steps of diagnosis, the values of the thresholds, 1h  and ih  play an 

important role since they control the behavior of the solution path. Since the test statistic 

is obtained in a nonparametric manner according to the kernel type and the original data 

distribution, determining the exact distributions of the test statistic for the determination 

of threshold values is much more challenging. In this chapter, we determine the values of 

the thresholds by applying a bootstrap resampling procedure, which has been widely used 

to provide an accurate inference of unknown distribution (Efron and Tibshirani, 1994). 

Assume that there are m  numbers of p-variate in-control observations. The following 

procedure is proposed for the determination of general threshold 1h  that to classifies a 

variable into the set of unchanged variables ̂ .  

• Step 1: Calculate all the possible conditional ˆ|Γi

M


 statistics. There are 

1

2

 
p

i

p
n

i
m



 
   

 
  conditional statistic. Denote ˆ|Γi

CM M


  for simplicity. 

• Step 2: 
1, ,1 , ,2 , ,, , ,c r c r c r nM M M   are 1n -conditional statistic from the 

thr  bootstrap 

sample  1, ,r T  . 
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• Step 3: Sort the conditional statistic of each bootstrap sample in ascending order, 

i.e., 

     1, , 1 , , 2 , ,c r c r c r n
M M M 

 
. 

• Step 4: Find the 
ths  percentile value where  1 11s n     and 1  is the 

significance level for faulty variables. 

• Step 5: The threshold value is calculated by taking the average of ths  statistic: 

 1 , ,

1

1
 

T

c r s

r

h M
T 

 
 

 

In addition, to prevent adding a changed variable into the set of unchanged variables Γ̂,  

the condition 
 Γ̂

,
i

iM h

  where i  is the cardinality of the set  Γ̂ , i

 must be 

satisfied. The threshold value ih  can be obtained by using a bootstrap resampling 

procedure similar to the calculation of 1.h  Instead of calculating all the possible 

conditional ˆ|Γi

M


 statistic in Step 1, all possible 
Γ̂ i

M


 statistic are calculated with each 

significance level .i  Since the manner of all calculations after the second iteration is 

identical, we consider that 2i   for 2.i    

4.4 Performance Assessment 

In this section, we demonstrate various experiments to assess the performance of the 

proposed BSVDD-based fault identification procedure and compare it with the existing 

fault identification procedures such as 
2T  decomposition with ASD procedure (Kim et 
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al., 2016b), 
2K  and the HNS decomposition (Kim et al., 2011, Tuerhong and Kim, 

2011). These decomposition techniques can be interpreted in the same framework given 

in Eq. (4.9) for calculating the marginal effect of the subset of variables. For the 2T  

decomposition with ASD procedure, we follow the guidelines defined in Kim et al. 

(2016b) to determine the threshold parameters for 2K  as an average distance to the k-

neighbors, and the number of neighbors is used as suggested in Kim et al. (2011). 

Throughout this chapter, we represent 
2T  decomposition with ASD, 

2K  and HNS 

decomposition as simply 
2 ,T  

2K  and HNS, respectively.  

To determine the value of parameter ,C  we adopt the suggestion by Tax and Duin (2004) 

using the following  
1
,C m f


   where f  is a fraction of outliers. Because the 

threshold value 1h  can be determined by this fraction, f  is equal to 1.  Threshold values 

are obtained from 200 in-control data and 10,000 out-of-control observations are taken 

and averaged for the performance calculation.  

For performance comparisons, we use correctness ratio which is defined as follows:  

1
(Γ Γ)

CR
ˆn

i
I

n







 

where n is the number of identifications and ( )I   is the indicator function which equals 1 

when correctly identified and equals zero otherwise. However, CR may not be 
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appropriate for every case because the indicator function only considers the case when 

ˆ.    Thus, it would be zero even if 99% of the shifted variables are correctly identified 

in one out-of-control observation. To supplement this strictness, we introduce another 

measurement as the expected error rates (EER) in the mean shift (Zou et al., 2011) as 

Number of errors
EER .

Number of variables
E
 

  
 

 

In EER, we check all the variables one by one in the observation vector to determine 

whether they are correctly identified. Therefore, by using both performance measures 

together, we can properly assess each procedure in identifying the shifted variables. 

4.4.1 Performance Comparison under Conventional Non-Normal Dataset 

In literature on distribution-free fault identification, several well-known distributions are 

tested to evaluate proposed methodologies in non-normal data environment such as 

multivariate gamma, multivariate lognormal, and some irregular patterned data. Gamma 

distributed data are obtained by utilizing the procedure explained in Stoumbos and 

Sullivan (2002) by choosing the shape and scale parameters as one. On the other hand, 

lognormal observation x  is generated according to the normal variable y  and 

exp ( ).x y  The mean shift is obtained as 1  μ μ δ  and 1( ,..., ),p δ  where i  

represents the shift size of variable .i  In the comparison tables, for instance, { ,0,0, }s   

indicates that mean shift occurs at the first variable and the size of the additive shift is 1 .  
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Tables 4.1 and 4.2 show the performance of BSVDD against other fault identification 

approaches under the multivariate gamma and lognormal distributions with five 

dimensional datasets, respectively.  

Table 4.1 Performance comparisons of BSVDD, SVDD, 
2T  and 2K  procedures under 

multivariate gamma distribution 

Shift 2T  
2K   SVDD BSVDD 

Direction Size CR EER CR EER CR EER CR EER 

{s 0 0 0 0} 

0.50 0.0501 0.2031 0.3561 0.2244 0.1225 0.3760 0.1694 0.3568 

1.00 0.0675 0.1931 0.5822 0.1307 0.1790 0.3046 0.2688 0.2548 

1.50 0.0890 0.1855 0.7461 0.0756 0.2532 0.2389 0.4131 0.1804 

2.00 0.1486 0.1722 0.8169 0.0514 0.4598 0.1788 0.7091 0.1082 

2.50 0.2829 0.1444 0.8415 0.0411 0.6555 0.1294 0.7195 0.0996 

3.00 0.5926 0.0822 0.8486 0.0363 0.6750 0.1219 0.7192 0.1025 

{s 0 s 0 0} 

0.50 0.0056 0.3835 0.0326 0.3543 0.0563 0.4170 0.0684 0.3848 

1.00 0.0116 0.3735 0.0598 0.3014 0.1146 0.3770 0.1530 0.2938 

1.50 0.0184 0.3692 0.1240 0.2512 0.2000 0.3101 0.2950 0.2159 

2.00 0.0357 0.3588 0.3176 0.1814 0.4196 0.1929 0.6994 0.0901 

2.50 0.0903 0.3285 0.5064 0.1271 0.6709 0.0958 0.7667 0.0720 

3.00 0.3065 0.2302 0.4799 0.1232 0.7157 0.0830 0.7639 0.0723 

{s 0 s 0 s} 

0.50 0.0006 0.5755 0.0004 0.5093 0.0592 0.4489 0.0680 0.3768 

1.00 0.0013 0.5694 0.0004 0.4923 0.1210 0.3914 0.1513 0.2862 

1.50 0.0008 0.5733 0.0001 0.5050 0.1895 0.3602 0.2573 0.2328 

2.00 0.0034 0.5667 0.0005 0.5275 0.3318 0.2549 0.6750 0.0779 

2.50 0.0103 0.5415 0.0005 0.5152 0.474 0.1663 0.8121 0.0474 

3.00 0.0214 0.5100 0.0019 0.4961 0.5008 0.1602 0.8084 0.0482 
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Table 4.2 Performance comparisons of BSVDD, SVDD, 
2T  and 

2K  procedures under 

multivariate lognormal distribution 

Shift 2T  
2K  SVDD BSVDD 

Direction Size CR EER CR EER CR EER CR EER 

{s 0 0 0 0} 

0.50 0.0129 0.2120 0.1852 0.3358 0.0608 0.3736 0.0846 0.4199 

1.00 0.0119 0.2050 0.5050 0.1872 0.0792 0.3043 0.2477 0.2816 

1.50 0.0110 0.2004 0.7197 0.0952 0.0982 0.2736 0.5849 0.1408 

2.00 0.0156 0.1987 0.7696 0.0696 0.1917 0.2529 0.6399 0.1202 

2.50 0.0322 0.1948 0.7523 0.0660 0.4127 0.2001 0.6415 0.1172 

3.00 0.0902 0.1835 0.7085 0.0707 0.5895 0.1588 0.6375 0.1136 

{s 0 s 0 0} 

0.50 0.0003 0.4027 0.0256 0.4105 0.0265 0.4550 0.0750 0.3646 

1.00 0.0002 0.4008 0.0046 0.3714 0.0418 0.5161 0.2433 0.2578 

1.50 0.0006 0.3992 0.0091 0.3331 0.1081 0.3678 0.6744 0.0966 

2.00 0.0013 0.3975 0.0483 0.2789 0.3106 0.2464 0.7223 0.0749 

2.50 0.0029 0.3951 0.2439 0.2223 0.5057 0.1667 0.7432 0.0696 

3.00 0.0102 0.3911 0.3246 0.1926 0.6001 0.1347 0.7636 0.0644 

{s 0 s 0 s} 

0.50 0.0000 0.5913 0.0073 0.5243 0.0473 0.5022 0.1450 0.3461 

1.00 0.0001 0.5943 0.0032 0.5481 0.0802 0.5238 0.3953 0.2264 

1.50 0.0000 0.5959 0.0009 0.5891 0.1274 0.5453 0.7626 0.0832 

2.00 0.0004 0.5940 0.0009 0.6162 0.2485 0.4140 0.8173 0.0505 

2.50 0.0001 0.5922 0.0002 0.6285 0.3855 0.3097 0.8188 0.0502 

3.00 0.0006 0.5913 0.0003 0.6053 0.4724 0.2731 0.8057 0.0520 

 

The proposed BSVDD outperforms other procedures because BSVDD utilizes the 

density-based prior knowledge. In addition, the performance of 
2T  is poor because the 

two data sets are far from being normal. Interestingly, 
2K  underperforms others when 

more than one variable is shifted because it is based on the regression adjustment 

procedure, which shows poorer performances as the number of faulty variables increases. 

Since the indicator function in CR always assumes the value 1 when all changed and 

unchanged variables are correctly identified, it cannot provide sufficient information to 
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determine the exact number of faulty variables correctly, specially as the number of 

variables increases. Therefore, we introduce another performance measure, named the 

fault correctness ratio (FCR), which focuses only on the changed variables. FCR 

performance measure determines whether the changed variables are correctly identified. 

As shown, CR considers both changed and unchanged variables. However, if one is 

interested only in the possibly changed variables, CR may not be sufficient to result in a 

strong conclusion about the changed variables. In addition, EER considers both changed 

and unchanged variables; it may not provide broad information to decide whether 

changed variables are identified correctly, either. However, FCR is more appropriate to 

make conclusions about only the changed variables. Figure 4.1 illustrates the FCR 

performance. 
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(a) Gamma distribution: one variable shift    (b) Gamma distribution: two variable shift 

  

(c) Lognormal distribution: one variable shift  (d) Lognormal distribution: two variable 

shift 

Figure 4.1 FCR performances for multivariate gamma and lognormal distribution 

Figure 4.1 shows that the performance measures of BSVDD and 
2K  are comparable in 

many scenarios because 
2K  identifies several changes correctly but not exactly, while 

FCR of 
2T  still remains almost zero. It also demonstrates that the distribution-free 

approaches perform better when normality assumption is ignored. Moreover, Figure 4.1 

demonstrates the FCR performance measures of the BSVDD and the existing procedures 
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when one and two variables are changed. When one variable changes, Figure 4.1 (a) 

demonstrates that, for the gamma distribution, BSVDD identifies the changed variable 

more accurately than the 
2K  decomposition procedure for small shift and that BSVDD 

performance is still comparable with 2K  decomposition procedure for moderate shift. 

However, the BSVDD and SVDD outperform other approaches in case of large shifts. In 

addition, when two variables change, Figure 4.1 (b) indicates that the FCR performance 

measures of the BSVDD and SVDD are much higher than the existing procedures, but 

BSVDD is significantly better than SVDD due to the use of prior information. Figures 

4.1 (c) and (d) also illustrate the FCR performance for the multivariate lognormal 

distribution when one and two variables change, and show a similar performance to 

multivariate gamma distribution.  

In fact, the performance of the proposed procedure can be controlled by the weight 

parameter ( 0).   When   approaches infinity, i  approaches zero, which leads to 

ignoring the term 
1

m

i ii


  in Eq. (4.6). Moreover, as   becomes smaller, i  approaches 

1, i.e., it assigns equal weights to .i  By the nature of optimization problem of Eq. (4.6), 

as the value of i  approaches 1, it tends to have more sparse support vectors and vice 

versa. Since the magnitude of i  is inversely proportional to the density, the sensitivity of 

the procedure can be controlled by the parameter .  In this chapter, we assign the 

parameter weight from zero to one to determine the effect of .   
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Tables 4.3 and 4.4 show the CR performance of BSVDD for different ( 1)   parameters 

under the multivariate gamma and lognormal distributions, respectively. CR values are 

obtained by evaluating different   values using cross-validation for given data sets. 

From these tables, it is clear that, for a given data set, the CR performance of the BSVDD 

is better for   values between 0.2 and 0.4. Thus, we choose an appropriate   value, 

which is 0.3 for multivariate gamma and multivariate lognormal distributed data.  

Table 4.3 CR performance of BSVDD with different   parameters under multivariate 

gamma distribution with 5p    

Shift CR 

Direction Size   =0.2   =0.4   =0.6   =0.8   =1 

{s 0 0 0 0} 

1.00 0.2586 0.2604 0.2545 0.2580 0.2508 

2.00 0.7134 0.7142 0.7133 0.7115 0.7121 

3.00 0.7289 0.7280 0.7238 0.7157 0.7227 

{s 0 s 0 0} 

1.00 0.1531 0.1571 0.1503 0.1522 0.1513 

2.00 0.7256 0.7184 0.7142 0.7027 0.7075 

3.00 0.7654 0.7644 0.7641 0.7607 0.7678 

{s 0 s 0 s} 

1.00 0.1559 0.1550 0.1520 0.1445 0.1532 

2.00 0.6913 0.6816 0.6810 0.6769 0.6929 

3.00 0.8156 0.8157 0.8120 0.8078 0.8131 
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Table 4.4 CR performance of BSVDD with different   parameters under multivariate 

lognormal distribution with 5p    

Shift 
 

CR 

Direction Size   =0.2   =0.4   =0.6   =0.8   =1 

{s 0 0 0 0} 

1.00 0.2538 0.2538 0.2529 0.2528 0.2529 

2.00 0.6439 0.6446 0.6424 0.6431 0.6435 

3.00 0.6380 0.6379 0.6355 0.6362 0.6370 

{s 0 s 0 0} 

1.00 0.2443 0.2434 0.2435 0.2441 0.2453 

2.00 0.7182 0.7188 0.7090 0.7105 0.7108 

3.00 0.7623 0.7683 0.7565 0.7663 0.7645 

{s 0 s 0 s} 

1.00 0.3759 0.3744 0.3729 0.3723 0.3734 

2.00 0.8193 0.8178 0.8173 0.8101 0.8109 

3.00 0.8061 0.8067 0.7936 0.8058 0.8037 

 

In addition to the above non-normal data sets, we also consider the irregularly shaped 

data in our simulation study. Duin et al. (2000) introduce a procedure for obtaining an 

irregular two dimensional data called banana-shaped dataset. This procedure is used to 

generate six-dimensional datasets which are obtained by integrating three two-

dimensional banana-shaped datasets. Since this data set has an irregular shape, it is 

difficult to represent it with an ellipsoid boundary. The CR and FCR performance of the 

banana-shaped data are presented in Figure 4.2 for cases when one variable changes. 

Figure 4.2 (a) shows that CR performance of BSVDD and 
2K  are not comparable, 

specially for small shifts. However, in Figure 4.2 (b), FCR performance clearly shows 

that the proposed BSVDD outperforms the existing procedures in all cases. In addition, 

the performance of all of the distribution-free procedures is significantly higher than the 

2T  procedure, which is an expected result due to the underlying assumptions of 2T  
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procedure. Therefore, BSVDD still outperforms the existing procedures and the 

performance of both 2T  and 
2K  decreases when the number of shifted variables 

increases.  

  

(a)                                                            (b) 

Figure 4.2 CR (a) and FCR (b) performances of banana shaped data when one variable is 

changed 

4.4.2 Performance Assessment with Generalized Non-Normal Data  

Since the proposed BSVDD procedure does not assume any specific distribution, it is of 

interest to study the effects of deviation from normality on the proposed procedure. The 

multivariate skew normal (MSN) distribution takes advantage of general set-up for 

comparison under non-normal dataset by controlling skewness. In the following 
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subsection, we briefly review the MSN distribution and show the experimental results 

based on different skewness parameters.  

4.4.2.1 Multivariate Skew Normal Distribution 

A p-dimensional vector x  follows the MSN distribution with the density function 

defined as 12 ( ; ) ( ( )),T

p

  y ε ΢ Φ d w y ε  ( )px R  by defining  y ε wx , where 

( ; )p y ε ΢  is the p-dimensional normal density with location and scale parameters, 

1 1( ,..., ) , ( ,..., )T

p pw w  μ w  respectively, and correlation matrix ,΢  and ( )Φ  is the 

(0,1)N  distribution function. The parameter d  is defined as p-dimensional skewness 

parameter. If d  is a vector of zeros, ( )T
Φ d x  equals to 1/ 2 . Therefore, the density 

function defined above is reduced to p-dimensional normal distribution (0, )pN ΢  

(Azzalini and Capitanio, 1999, Azzalini and Dalla Valle, 1996). Throughout this chapter, 

we use the notation ~ ( , , )pSNy μ ΢ d  when y  follows an MSN distribution. Gupta et al. 

(2004) obtain mean and covariance of a vector and the mean of ~ ( , , )pSNy μ ΢ d  which 

is based on ,μ ΢  and .d  To obtain the shifted observations for the simulation study, we 

only focus on .μ  If μ  is the in-control mean, then the shifted observation is obtained 

from 1~ ( , , )pSNy μ ΢ d  where 1  μ μ δ  and 1( ,..., ).p δ   
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In addition, skewness parameter d  shows the deviance of the data from normality. When 

d  deviates from zero, the data also deviate from normality. Figure 4.3 shows the effect 

of skewness parameter on a bivariate normal distribution.  

 

Figure 4.3 Effect of skewness parameter on a bivariate normal distribution 

The first row in Figure 4.3 shows the change in the first parameter of d  in a bivariate 

data. Increasing the first parameter makes the distribution more skewed towards the 

positive x  axis. However, decreasing the first parameter increases the skewness towards 

the negative x  axis. A similar pattern occurs in the second row which shows the effect of 

second variable. The third row shows the changes when both skewness parameters are 
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changed. It is also clear that changing the skewness parameter not only changes the mean 

but also changes the variance.  

4.4.2.2 Performance of the BSVDD: Multivariate Skew Normal Data 

In this section, we compare the proposed BSVDD fault identification with the existing 

procedures by using MSN distribution for different values of the skewness parameter .d  

As discussed, if d  is a vector of zeros, the corresponding data follow multivariate normal 

distribution. First, we compare the proposed procedure with the existing procedures 

under the normality assumption, i.e., .d 0   

In the simulation study, we generate the in-control data from MSN distribution assuming 

the same μ  and ΢  for all of the multivariate skew normal cases. Therefore, the only 

parameter used to obtain the multivariate skew normal data is .d  We assume μ 0  and 

1 ,ij i j p


 
   ΢  where 1ii   and 0.75.ij   Therefore, the mean shift is obtained as 

1  μ μ δ  and 1( ,..., )p δ  where i  represents the shift size of variable .i   

Table 4.5 compares the CR performace of the proposed procedure and the existing 

procedures including the parametric procedure 2T  under the five dimensional 

multivariate normal distribution generated by MSN distribution by choosing d  as a 

vector of zero. Table 4.5 shows that the 
2T  procedure outperforms the existing 

procedures when the sparsity assumption is satisfied since it is designed for the normally 
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distributed data. Kim et al. (2016b) indicate that it may perform poor when the sparsity 

assumption is violated. In addition, since 
2K  decomposition and HNS decomposition 

procedures are based on the regression-adjusted variables (Hawkins, 1991), the 

performances of 2K  decomposition and HNS decomposition procedures are comparable 

to the BSVDD and the SVDD procedures when only one variable changes, specially for 

small shifts. On the contrary, the BSVDD and the SVDD performance measures are 

comparable with 
2 ,T  specially, for small shifts when two variables change. However, CR 

of 
2T  increases when the shift size is large. The most significant benefit of the BSVDD 

and the SVDD procedures occurs when the number of shifted variables increases. For 

example, when three variables are shifted, the performance of the BSVDD significantly 

outperforms the existing procedures including the SVDD. 

Table 4.5 CR performance comparison of BSVDD and existing procedures under 

multivariate normal distribution 

Direction Size 2T  2K  HNS SVDD BSVDD 

{s 0 0 0 0} 

0.5 0.3999 0.2024 0.0250 0.1284 0.1969 

1.0 0.7100 0.3653 0.0601 0.2889 0.3725 

1.5 0.8674 0.4627 0.0850 0.4278 0.5152 

2.0 0.9488 0.5224 0.1009 0.5743 0.6238 

{s s 0 0 0} 

0.5 0.0497 0.0239 0.0345 0.0698 0.0894 

1.0 0.1741 0.0433 0.0536 0.1712 0.2123 

1.5 0.3525 0.0691 0.0706 0.3163 0.3266 

2.0 0.6079 0.0913 0.0911 0.4522 0.4626 

{s s s 0 0} 

0.5 0.0034 0.0053 0.0207 0.0394 0.0728 

1.0 0.0099 0.0012 0.0699 0.1029 0.1783 

1.5 0.0315 0.0000 0.0945 0.1616 0.2833 

2.0 0.0609 0.0000 0.1208 0.2161 0.4135 
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Table 4.6 demonstrates the CR performance of the proposed and the existing procedures 

under MSN distribution with nonzero skew parameters. Two different data sets are 

considered by choosing =(-2, 1, -2, 1,-2)d  and = (2, -1, 2, -1, 2).d  By choosing this 

setting in which skewness parameters can be considered as symmetric, it is possible to 

observe how the proposed procedure responses to positive and negative skewness. From 

Table 4.6, we observe that the BSVDD shows ―good‖ performance in most of the cases. 

However, for the large shift, 
2T  performs ―well‖ since the data can be represented by an 

ellipsoid when OC signal is far from the boundary. On the other hand, when more than 

one variable shifts, the BSVDD outperforms the existing procedures due to the violation 

of the sparsity assumption.  
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Table 4.6 CR performance comparisons of BSVDD and existing procedures under MSN 

data with different skewness parameters 

Direction Size 2T  
2K  HNS SVDD BSVDD 

{s 0 0 0 0} 

0.5 0.1099 0.2192 0.0600 0.0764 0.1437 

1.0 0.3522 0.4229 0.1366 0.2482 0.3564 

1.5 0.6522 0.5482 0.1931 0.4625 0.5469 

2.0 0.8594 0.5893 0.2341 0.6503 0.6599 

{s s 0 0 0} 

0.5 0.0045 0.0111 0.0489 0.0544 0.0905 

1.0 0.0399 0.0159 0.1026 0.1926 0.2486 

1.5 0.1835 0.0439 0.1507 0.4062 0.4370 

2.0 0.5045 0.0871 0.1964 0.6059 0.6203 

{s s s 0 0} 

0.5 0.0003 0.0022 0.0377 0.0432 0.0448 

1.0 0.0053 0.0011 0.0770 0.1630 0.1665 

1.5 0.0516 0.0004 0.1284 0.3409 0.3724 

2.0 0.1878 0.0002 0.1948 0.4995 0.6078 

(a) Skewness parameter  2,  1, 2,  1, 2   d   

Direction Size 2T  
2K   HNS SVDD BSVDD 

{s 0 0 0 0} 

0.5 0.2075 0.3797 0.1150 0.0840 0.2314 

1.0 0.4844 0.5914 0.2207 0.2387 0.4309 

1.5 0.7674 0.6744 0.2674 0.4523 0.5760 

2.0 0.9121 0.6860 0.2854 0.6558 0.6659 

{s s 0 0 0} 

0.5 0.0063 0.0110 0.0478 0.0550 0.0831 

1.0 0.0513 0.0076 0.0721 0.1907 0.2264 

1.5 0.2238 0.0280 0.1055 0.4031 0.4098 

2.0 0.5543 0.0649 0.1403 0.6018 0.6097 

{s s s 0 0} 

0.5 0.0007 0.0014 0.0288 0.0375 0.0273 

1.0 0.0044 0.0002 0.0521 0.1172 0.1128 

1.5 0.0335 0.0001 0.0987 0.2379 0.3080 

2.0 0.1075 0.0000 0.1795 0.3134 0.5772 

(b) Skewness parameter  2, 1,  2, 1,  2  d   
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Table 4.7 demonstrates the CR performance of the proposed and the existing procedures 

with the same set up as in Table 4.5 with negative shift. Results for the negative shift are 

similar to the positive shift case. Briefly, when only one variable changes, 
2K  

decomposition outperforms other procedures in small shifts and the performance of ASD 

increases with large shifts. However, when more than one variable changes, the 

performance of the 2K  decomposition and 2T  decreases significantly and the BSVDD 

outperforms both procedures.  

Table 4.7 Performance comparisons of BSVDD and existing procedures under MSN data 

with negative shifts 

Shifted Variables {1} 

 

Shifted Variables {1,2} 

Shift 

size 

2T   
2K   BSVDD 

 
Shift 

size 

2T   
2K   BSVDD 

 2,  1, 2,  1, 2   d
 
 

 

 2,  1, 2,  1, 2   d
 
 

-0.5 0.1232 
 

0.2548 
 

0.1294 

 

-0.5 0.0068 
 

0.0073 
 

0.0416 

-1.0 0.3421 
 

0.4901 
 

0.2972 

 

-1.0 0.0575 
 

0.0088 
 

0.1607 

-1.5 0.6321 
 

0.6111 
 

0.4811 

 

-1.5 0.2427 
 

0.0333 
 

0.3801 

    0,0,0,0,0d   

 

    0,0,0,0,0d   

-0.5 0.3819 
 

0.2207 
 

0.1872 

 

-0.5 0.0678 
 

0.0174 
 

0.1151 

-1.0 0.6754 
 

0.3693 
 

0.3622 

 

-1.0 0.2136 
 

0.0263 
 

0.2360 

-1.5 0.8605 
 

0.4718 
 

0.5023 

 

-1.5 0.4182 
 

0.0500 
 

0.3595 

    2, 1,  2, 1,  2  d   

 

    2, 1,  2, 1,  2  d   

-0.5 0.1290 
 

0.2935 
 

0.1772 

 

-0.5 0.0080 
 

0.0131 
 

0.0848 

-1.0 0.3704 
 

0.5304 
 

0.3875 

 

-1.0 0.0672 
 

0.0154 
 

0.2525 

-1.5 0.6528 
 

0.6796 
 

0.5473 

 

-1.5 0.2607 
 

0.0492 
 

0.4374 
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4.5 Case Study: Monitoring the Change of Bolt Dimensions 

In this section, we demonstrate the performance of the proposed procedure by applying it 

to a real dataset from an automated monitoring system for bolts‘ dimensions reported by 

Kim et al. (2017) using image-processing techniques. Bolts are placed on a conveyor belt 

system and infrared sensors are used to detect the presence of a bolt when it reaches the 

inspection station and cameras are triggered to take images of the bolts. Image processing 

is performed and several dimensions of the bolt are compared with corresponding 

threshold values. When any of the dimensions exceed the specified threshold values, the 

bolt is automatically removed from the conveyor using a diversion mechanism. We 

consider the bolts to have no faults if the dimensions are within the acceptable interval of 

the threshold values. Figure 4.4 shows the bolt inspection system.  



98 

 

 

Figure 4.4 Conveyor belt system for measuring bolt dimensions automatically 

In this experiment, we observe four characteristics: the head width ( 1x  ), the head height (

2x  ), the bolt width ( 3x  ), and the length of the bolt ( 4x  ) as shown in Figure 4.5.  

Camera

Conveyor 
belt

Bolt

DC motor

Censor
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Figure 4.5 Measurements from bolt image 

Sixty in-control observations are collected. In this experiment, it is desired to maintain 

bolt characteristics as close as possible to the target values 

 0 0.3673,  0.2449,  0.2502,  0.7346μ  and  0.0018 0.0063 0.0032 0.0075 .   The 

correlation matrix for the in-control data is obtained as: 

0

1 -0.1853  0.3231 0.2026

-0.1853 1 0.1025 -0.9511
=

 0.3231 0.1025 1 -0.1516

0.2026 -0.9511 -0.1516 1

 
 
 
 
 
 

΢  

In this study, fifteen out of control observations are obtained with a positive shift change 

for the mean of 2x  and 4x  to be 0.2575 and 0.7466, respectively (In-control and out-of-

control observations are shown in Appendix B.). These observations are utilized in the 

proposed BSVDD and 2K -decomposition procedures. Among fifteen out-of-control 
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observations, 
2K -decomposition procedure identifies all the variables correctly in 8 out 

of 15 (53.33%) observations. The proposed BSVDD-based approach identifies all the 

variables correctly in 13 out of 15 (86.67%) observations. These results show that the 

proposed BSVDD procedure significantly improves the fault identification ability when 

compared with the 2K -decomposition. 

4.6 Conclusions 

Fault diagnosis in statistical process control is a challenging issue. Although many fault 

detection procedures have been introduced, mostly based on 
2 ,T  they assume that the 

underlying distribution of the process follows a multivariate normal distribution. In this 

chapter, we propose a BSVDD based distribution-free faulty variable identification 

procedure which decreases the computational complexity of faulty variable identification 

in high-dimensional processes. We propose a local density degree of an observation by 

assigning different weights depending on the relative distance between the observations 

and their k
th

 neighbors in order to determine the prior parameters of the BSVDD.  

Experiments with diverse data sets show an important feature of the BSVDD procedure, 

which is the robustness to the non-normal data, specially for irregularly patterned data, in 

terms of fault detections. This feature is important in practice when the type of the 

distribution is unknown. In addition, the proposed approach shows better performance 

when the number of shifted variables is greater than one for non-normal distributions.  
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This work can be extended for both monitoring and diagnosis in multistage processes as a 

future research. Since fault identification can be used for variable selection, the extension 

of the proposed procedure to variable selection problems would be an interesting 

direction for future research.   
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CHAPTER 5   

GENERALIZED SUPPORT VECTOR DATA DESCRIPTION WITH BAYESIAN 

FRAMEWORK 

5.1 Introduction 

Identifying patterns that do not conform to normally behaved patterns is important since, 

in variety of applications, these patterns indicate critical and significant information that 

can be used to take actions to improve the applications. This kind of pattern is called 

anomaly or outlier. Several procedures based on classification-based, nearest neighbor-

based, clustering-based, and statistical procedures have been developed to detect 

anomalies (Chandola et al., 2009).  

Among the classification-based procedures, improved versions of support vector machine 

(SVM) proposed by (Vapnik, 1995) are used to detect the anomalies. Schölkopf et al. 

(2001) introduce a concept based on the SVM by transforming the features via a kernel 

function. This procedure assumes that the origin is the only member of the second class 

and separates the other objects from the origin by drawing a hyperplane. This method is 

improved by considering all points ―close enough‖ to the origin as second class along 

with the origin (Li et al., 2003). 
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A particular case of the classification-based procedures called one-class classification 

procedures have a prominent place in the literature. They assume that all training 

observations are obtained from a certain distribution and describe the data with a 

boundary obtained around the normal patterns. One-class classification procedures 

identify the pattern as anomaly if it is placed outside of the learned boundary. 

One of the promising data description procedure called support vector data description 

(SVDD) proposed by Tax and Duin (1999) finds a hypersphere which describes the data 

with minimal volume by transforming original observations into a new space using kernel 

functions. Usage of kernel transformation improves the power of SVDD specially if the 

original data are complex. SVDD has long been of a great interest in a wide range of 

applications mainly focusing on the detection of the anomalies as well as other real-life 

problems such as face recognition, image processing, pattern detection and quality 

control (Bovolo et al., 2010, Lee et al., 2006, Ning and Tsung, 2013). 

Since SVDD has emerged as a powerful approach to identify the anomalies and several 

researches based on the origin of SVDD have been proposed to improve the traditional 

SVDD. By drawing on the concept of local density, Lee et al. (2005) are able to improve 

the SVDD by introducing weight for each observation using the local densities. In 

addition, Lee et al. (2007) introduce similar procedure by obtaining the local densities 

using the nearest neighbor and Parzen window approaches (Parzen, 1962). Recently, 

Ghasemi et al. (2016) introduce an SVDD with Bayesian approach (BSVDD) by 

assuming that a transformed data in the higher dimensional space follow a Gaussian 



104 

 

distribution. They assume the dual variables of the SVDD follow Gaussian distribution 

and show the superiority of BSVDD. The procedures mentioned above only use the 

normal observation. However, Tax and Duin (2004) introduce a procedure that also 

utilizes the negative samples (objects which should be rejected). This procedure, called 

negative SVDD (NSVDD), introduces an additional constraint for the negative samples 

by forcing them to be outside of the boundary. 

In addition, extensive studies of SVDD have been introduced for classification. Lee and 

Lee (2007) introduce the classification procedure where the decision boundaries are 

based on the posterior probability distribution obtained from the SVDDs for each class. 

Mu and Nandi (2009) introduce a multistage multiclass classification procedure for 

obtaining the decision boundaries based on a combination of linear discriminant analysis 

and nearest-neighbor obtained from the NSVDDs for each class. Both of these 

procedures construct the boundary for each class by ignoring the interaction among 

classes. Kang and Cho (2012) propose a binary classification algorithm, named support 

vector class description (SVCD). Unlike the above classification procedures, SVCD 

penalizes the other class observations if they are not classified into their corresponding 

classes. However, these classification approaches do not identify the anomalies. In 

addition, most of the SVDD procedures for anomaly detection mentioned above assume 

that the target data has only one class of normal data. However, in many real-life 

problems, normal data may consist of more than one distribution or class. In this case, 

applying the traditional SVDD procedures may ignore the differences between the 

classes. To overcome this drawback, Huang et al. (2011) introduce an anomaly detection 
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procedure in which the normal data consists of two-classes called two-class SVDD (TC-

SVDD).  

However, existing one-class and two-class SVDD procedures have the following 

limitations. First, existing SVDD procedures are based on the assumption that normal 

data consist of one or two-classes. However, in many real-world applications, normal 

data may be obtained from more than two classes. Thus, existing procedures may not 

recognize the differences between the classes, and may result in a poor anomaly detection 

performance. Second, the existing deterministic SVDDs do not reflect the prior or 

domain-specific knowledge when they are applied to the real-world problems that are not 

considered to be in the same domain.  

In this chapter, we propose a generalized SVDD procedure which simultaneously finds 

the hyperspheres which describe each class accurately by including as many as possible 

of its class observations. Regardless of the number of classes, the proposed procedure 

identifies the anomalies, based on the relative distance to the center of each hypersphere 

of each class. Moreover, we introduce a Bayesian framework for generalized SVDD 

procedure. The procedure considers a probabilistic behavior of the parameters by taking 

‗prior knowledge‘ from each class. Determination of the prior and posterior probabilities 

is a key factor for each class. Finally, we obtain a closed form expression for the 

proposed procedure by specifying some of the prior distributions. 
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This chapter is organized as follows. After the review of the existing SVDD procedures 

in Section 5.2, we propose the generalized SVDD procedure in Section 5.3. In Section 

5.4, we propose the generalized Bayesian SVDD procedure. In Section 5.5, simulation 

studies and results are demonstrated. In Section 5.6, we apply the proposed procedure in 

a case study of a Continuous Stirred Tank Heater (CSTH), followed by the conclusions in 

Section 5.7. 

5.2 Benchmark Procedures 

By relaxing the normality assumption, we pursue an appropriate model to describe the 

data more accurately. Among a number of data description techniques, SVDD is an 

effective method for describing irregularly patterned data. For a given data set 

{ | , 1,..., }p

i i i N  D x x R , SVDD finds a hypersphere which covers the data with 

minimal volume, with a center a  and a radius R  (Tax and Duin, 1999). To allow the 

misclassification in D , we introduce i  to penalize outliers that have large distances 

between ix  and a . The primal formulation of the problem is constructed as follows: 

2

1

2 2

min

. . , 0 {1,..., }

N

i

i

i i i

R C

s t R i N



 





     



x a

 

where C  is the regularization parameter which adjusts the volume of the hypersphere by 

considering the number of observations that are located outside the boundary. Dual 

formulation is obtained by using the Lagrangian function: 
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      2 2

1 1 1

, , 
N N N

T

i i i

i i i

i i i i iL R R C R   
  

         a x a x a                      (5.1) 

where 0i   and 0i   are Lagrangian dual variables. By taking partial derivatives of 

the Lagrangian function, we obtain 

1

0  1
N

i

i

L

R





  


 , 1

1
1

0
i

N
N

ii
iN i

iii

L 










   








x
a x

a
, 0 0i i

i

L
C


 


    


            (5.2) 

In this case, dual formulation in Eq. (5.3) is constructed by substituting Eq. (5.2) into Eq. 

(5.1).  

   
1 1 1

1

max  

. . 1 {1,...,, 0 }

N N N

i ii i j i j

i i j

N

i i

i

is t C N

 

 


  



 

    

 



x x x x

                                                  (5.3) 

Data points corresponding to the positive i  are called support vectors and they are 

placed on the boundary or outside the boundary. Based on the SVDD boundary with 

given C  from the in-control data, a new observation z  can be classified as in or out of 

the data boundary by checking the distance from z  to the center of hypersphere. The 

inner products can be replaced by a kernel function ( , )i jK x x , defining 

( , ) ( ), ( )i j i jK  x x x x , then a more suitable boundary to cover the data can be 

obtained (Tax and Duin, 1999). 
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5.3 Generalized n-Class SVDD 

In real life problems, in-control observations can be formed in more than one or two 

classes. In this case, existing SVDD procedures do not differentiate between different 

classes and do not obtain a description for each class. Therefore, in this section, we 

introduce multiclass SVDD called n-class SVDD (n-SVDD).  

The n-SVDD is based on the assumption that the target data set contains n classes of 

objects. For given n classes,      
1 2

(1) (1) (2) (2) ( ) ( )

1 1 2 1 1, , , , , , , , ,
n

n n

N N n N  D x x D x x D x x , 

the goal of the n-SVDD is to find n hyperspheres which cover each class with minimal 

volume, with centers 1 2, , , na a a  and radiuses 1 2, , , nR R R . The primal formulation of 

the n-SVDD is constructed as follows: 

2

1

2
( ) 2

2
( ) 2

min

. . 1, , , 1,

, , 1, , 1, ,

n

kk

k

i k k k

m

i k k m

R

s t R k n i N

R m k m k n i N



   

    



x a

x a

                             (5.4) 

By the optimization problem in Eq. (5.4), every observation in class n falls inside the 

hypersphere n (constraint 1) and falls outside the other hyperspheres (constraint 2). 

However, to allow for some observations to be outside its class‘s boundary or to be inside 

the other classes‘ boundary, we introduce penalty functions ( )k

i  and ( , )m k

i . Then, the 

primal formulation of an optimization problem is given as follows: 
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   2 ( ) ( , )

( , )1 1 1 1 1 1

2
( ) 2 ( )

2
( ) 2 ( , )

( ) ( , )

min

. . 1, , , 1,

, , 1, , , 1, ,

, 0 , ,

k mn n N n n Nk m k

k k i m k ik k i m m k i

k k

i k k i k

m m k

i k k i m

k m k

i i

R C B

s t R k n i N

R m k m k n i N

i k m

 





 

      
 

    

     

 

     

x a

x a

                (5.5) 

where kC  and ( , )m kB  are the regularization parameters which control the volume of the 

hyperspheres.. The two constraints ensure that if an observation ( )k

ix  falls outside of the 

hypersphere k, the objective function increases by ( )k

k iC   and if an observation ( )m

ix  falls 

inside the hypersphere k the objective function increases by ( , )

( , )

m k

m k iB  . Table 5.1 shows 

the notations used to obtain n-SVDD. 

Table 5.1 Notations of n-SVDD 

kR  : radius of class k , (k=1,..,n) 

ka  : center of class k , (k=1,..,n) 

( )k

i  : penalty given to training samples of class k which lie outside the hypersphere k. 

( , )m k

i  
: penalty given to training samples of class m which lie inside the hypersphere k. 

 

Dual formulation of n-SVDD is obtained by introducing the following Lagrangian 

function as shown in Eq. (5.6).  
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 

 

( ) ( , ) 2 ( ) ( , )
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2
( ) 2 ( ) ( )

1 1

2
( , ) ( ) 2 ( , )

1 1 1

( ) ( )

1 1

, , ,
k m

k

m

k

n n N n n Nk m k k m k

n n i i k k i m k ik k i m m k i

n N k k k

i k i i kk i

n n N m k m m k

i i k k im m k i

n N k k
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(5.6) 

where ( ) ( , ) ( )0, 0, 0k m k k

i i i      ( ) ( , ) ( )0, 0, 0k m k k

i i i      and ( , ) 0m k

i  . By taking 

partial derivatives of the Lagrangian function  ( ) ( , ), , ,k m k

n n i iL R  a , the following 

equations are obtained. 

( ) ( , )

1 1 1

( ) ( ) (

( )

( )

( ) ( )

, ) ( )
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, , ,

( , )
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N n Nk m k
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i
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
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


   


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
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
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                             (5.7) 

Therefore, we obtain the dual formulation in Eq. (5.8) by substituting Eq. (5.7) into Eq. 

(5.6). 
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The vectors ( )k

ix  with ( ) 0k

i   and ( )m

ix  with ( , ) 0m k

i   ( )m k  are called support 

vectors for class k. For an in-control observation ( )k

ix , if ( ) 0k

i   and ( , )

( , )0 k m

i k mB  , 

then ( )k

ix  is inside hypersphere k and lies on the hypersphere m ( )m k . Briefly, a support 

vector ( )k

ix  with non-zero ( )k

i  and non-zero ( , )k m

i  is located on or outside of 

hypersphere k. 

We obtain the kR  by calculating the distance from the center ka  of the hypersphere to 

any of the support vectors of class k except the support vectors with ( )k

i kC   and 

( , )

( , )

m k

i m kB  . Let sx  be a support vector of class k with the conditions ( )0 k

s kC   and 

( , )

( , )0 m k

i m kB  . Then, 
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To decide whether a new observation z  is anomaly or not, we introduce a decision rule 

based on the knowledge obtained from the n hyperspheres, such as kR , ka . Introduced 

decision rule obtains the distances from a new observation z  to the center of the each 

hyperspheres, ka . Therefore, a new observation z  is called anomaly if Eq. (5.9) is 

satisfied  

2 2 1, , .k kR k n   z a
 
                                                (5.9) 

This equation shows that a new observation z  an anomaly if it is not placed in any of the 

hyperspheres.  

By replacing the dot products with kernel function, we can obtain the flexible boundaries. 

The inner products, i jx x  can be replaced by a kernel function ( , )i jK x x , defining 

( , ) ( ), ( )i j i jK  x x x x . In this chapter, we use Gaussian kernel function which is 

defined as: 

2

2
( , )

2
K exp

w

 
  

 
 

x y
x y  

where w  is a parameter of the Gaussian kernel. 
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5.4 Bayesian n-Class SVDD  

In this section, we introduce the Bayesian framework for generalized n-SVDD. In 

traditional SVDD procedures, parameters are deterministic. However, the centers of each 

hypersphere ( , 1, , )k k na  can be a random variable which allows us to obtain a 

probabilistic interpretation. Therefore, in this section, we introduce the Bayesian n-class 

SVDD (B-nSVDD). 

B-nSVDD approach assumes that in-control observation ( )k

ix   1, ,k n  is transformed 

into higher dimensional space through ( )   and the transformed data  ( )k

i x  follows a 

Gaussian distribution. 

 ( ) ( ) ( , ) ( )

1 1

( ) 2

1
( ) ~ , .

k mN n Nk k m k m

i i i ii

k

i kk m i kN  
   

  xx Ix  

Distance of a point ( )k

ix  to the center of a hypersphere k is inversely proportional to the 

likelihood in the weighted Gaussian model. Thus, n-SVDD is a special case of the 

weighted Gaussian model, which improves n-SVDD by utilizing precise prior knowledge. 

The unknown weight parameters α  is estimated through a Bayesian approach with a 

proper prior distribution for α  which is obtained from ( )k

iα  and ( , )m k

iβ  (dual variables of 

the n-SVDD).  
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   ( ) ( ) ( ) ( , ) ( , ) ( , )

1 1,
m

TT
k k k m k m k m k

Nk N    α β
 

B-nSVDD approach assumes that the prior distributions of the dual variables ( )k

i  and 

( , )m k

i  are Gaussian distributions which is the conjugate prior of the likelihood below  

 
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Since it is assumed that training data in each class ( )k

ix  mapped into a higher dimensional 

kernel space follow a Gaussian distribution, the likelihood probability given parameter α  

becomes 
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Maximizing a posterior (MAP) is derived by the typical Bayesian rule as 

( | ) ( )
( | ) ,

( )

p p
p

p


D α α
α D

D  
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where 1 n  D D D  is a set of training data. Since ( )p D  is a normalizing constant 

independent of α , it can be ignored so that  

( | ) ( | ) ( ).p p pα D D α α                                                         (5.10) 

The solution of MAP is given by  

ˆ arg max ( | ).p
α

α α D                                                               (5.11) 

We obtain the MAP solution by taking the logarithm and using the relationships in Eq. 

(5.10) and Eq. (5.11).  

If the number of classes is two (n=2), the MAP solution is obtained as in Eq. (5.12) (in 

this equation 
( , )m kβ  is replaced with 

( )mβ ). 
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where ( ) ( )

ij

m m

ii j
B K , ( )m

1  and ( , )m k
1  are 1 mN  vector with all ones and 

( , ) ( , )m k

ij

m k

ii j
B K  (see Appendix C. for detailed derivation of Eq. (5.12) ). Kernel matrix 

K  is identified for two classes as follows: 

(1) (1,2)

(2,1) (2)

 
  
 

K K
K

K K
 

 where ( )k
K  is a k kN N  matrix and for each element of ( )k

K  matrix 

is obtained by the kernel distances of each element in class k.  

     ( ) (1) ( ) (( ( ) )) ) (, , ,k k k k k

i

k

i j i j i jj kK    x y x y x y DK
  

     ( , ) ( ) ( ) ( ) ( ) ( ) ( ), , , , 1,2m k m k m k

i j i j i m j

m

i k

k

j K m k        x y x y x D y DK
 
 

Note that the optimization problem needs to satisfy the same constraints of the original 

optimization problem in Eq. (5.8). Thus, B-2SVDD satisfies the following constraints:  

1 2 2 1(1) (2) (2) (1)

1 1 1 1

(1) (2)

1 2

(1) (2)

(1,2) (2,1)

1 , 1

0 , 0

0 , 0

N N N N

i i i ii i i i

i i

i i

C C

B B

   

 

 

   
   

   

   

   

 

The optimization problem of B-2SVDD is represented in a matrix form as follows: 
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B-2SVDD is a quadratic programming formulation and it has an optimum solution.  

5.4.1 Determination of the Prior Parameters  

In the proposed optimization problem, the parameters of the distribution of α  are needed 

to be determined. To obtain some insight, we recall the original TC-SVDD concept. We 

provide the reasoning only for the elements of class 1 because the reasoning for class 2 is 

then straightforward to determine the parameters for the two classes 

 (1) (1) (2) (2), , ,α α β α β . 
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It is known that if the vector (1)

ix  is inside the boundary, the corresponding (1)

i  is zero. 

Since boundary covers the densest area (note that (1)

ix  which has (1) 0i   is close to the 

most of the vectors). Therefore, the sum of the kernel distances between (1)

ix  and other 

vectors in class 1 is small. However, if (1)

ix  vector is outside of the boundary, then (1)

i  

equals 1C . Since outside of the boundary is a less dense area, the sum of the kernel 

distance between (1)

ix  and other vectors in class 1 is large. In addition, if the (1)

ix  vector is 

on the boundary, corresponding (1)

i  satisfies (1)

10 i C  . This area is also less dense. 

Since the (1)

ix  vector is on the boundary, the sum of the kernel distance between (1)

ix  and 

other vectors is also large. 

Therefore it is reasonable to adjust (1)α  by assigning a smaller weight to vectors if it is 

inside the boundary and a larger weight for the others. Therefore, we can determine the 

(1)m  as follows: 

1

(1) (1)

,i i jj
m


  D

K  

where 
1

(1) (1) (1)

1( ,..., )Nm mm . Accordingly, it is expected that support vectors to be set with 

larger values. Therefore, sparse and accurate solution boundary is obtained. To control 

the sparsity of the solution (1)

im  is chosen as  1(1) (1)

,1

v
N

i i ji
m


   K  where (0 1)v v  . 
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In addition, class 2 observations, (2)

ix , which satisfy (2) 0i   are also the support vector 

for class 1. These second kind of support vectors lie on the boundary of class one if (2)

ix  

satisfies (2)

(2,1)0 i B   or inside the boundary of class 1 if (2)

ix  satisfies (2)

(2,1)i B  . 

Thus, we can recognize that the second kind of support vectors are close the class 1 

observations rather than class 2 observations. Therefore, we can determine 
(2,1)

m  as 

follows: 

1

(2,1) (2,1)

,i i jj
m


  D

K  

Thus, (2,1)

im  is chosen as  1(2,1) (2,1)

,1

v
N

i i ji
m


   K  where (0 1)v v  . 

5.4.2 Effect of the Penalty Parameters 

In this section, we analyze the effects of different penalization and Gaussian kernel 

parameters as shown in Figure (5.1). Two banana-shaped data are obtained with equal 

size of sixty three observations (blue and red points for class 1 and class2, respectively). 

B-2SVDD boundaries are obtained with a Gaussian kernel function with width parameter 

w. Similar to the traditional SVDD, increase of w increases the volume of the 

hypersphere which decreases the number of support vectors and draws a simple boundary. 

On the other hand, if the w becomes smaller, then the boundaries become more complex, 

thus it may cause over fitting since every normal observation becomes a support vector. 

In addition, we can see the effects of 1C  and 2C  from Figure 5.1. Large 1C  2( )C  
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increases the volume of the hypersphere 1 (2). This fact can also be explained using Eq. 

(5.5). Large 1C  or 2C  tends to increase the objective function although it is a 

minimization problem. To remove the effect of 1C  and 2C , most of the observations are 

placed inside the boundary by assigning the penalty functions zero ( i ‘s). Thus, the 

volume of the hypersphere increases. On the other hand, small 1C  and 2C  decrease the 

effect of the penalty. Thus, some of the observations are placed outside of the boundary 

resulting in a smaller hypersphere.  
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Figure 5.1 Effect of penalty parameters ( 1 2,C C ) on B-2SVDD 

5.5 Simulation Study 

In this section, we provide a comparison of the proposed B-2SVDD method with TC-

SVDD, traditional SVDD and BSVDD using both an artificial data set and a real data set. 

We consider two different performance measures: the total classification accuracy rate 

(TCAR) is used for the determination of the best parameters with validation dataset and 

the classification accuracy rate for the testing dataset which is defined as follows: 
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# 1 2 #


of trueclassificationsinClass and Class of trueidentificationsof Outliers
TCAR

total number of observations
 

However TCAR is not suitable for the performance comparison of the traditional SVDD 

and the Bayesian SVDD. Therefore, we introduce another performance measure called 

overall classification accuracy rate (OCAR) which considers the Class 1 and Class 2 

observations as one class.  

# #


of trueclassification for combined class of trueidentificationinOutlier
OCAR

total number of observations
 

In this study, 10-fold cross validation is used for the performance measures for all data 

sets since available data are not separated as training and testing data. The parameters of 

the B-2SVDD and benchmarks procedures are optimized based on the intervals in Table 

5.2.  
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Table 5.2 Parameters for each algorithm 

Algorithm Parameters Candidates 

B-2SVDD 

Kernel Parameter 2
-2

, 2
-1

, 2
0
,1,1.2,1.25, 1.5, 2

1
, 2

2
, 5, 5.5, 6, 2

3
, 10

1
, 10

2
 

C1,C2 10
-3

, 10
-2

, 0.025, 0.05, 0.075,10
-1

, 2
-2

, 2
-1

, 2
0
 ,5

2
 

B(1,2), B(2,1) 0.05, 0.05 

TC-SVDD 

Kernel Parameter 2
-2

, 2
-1

, 2
0
, 1.5, 2

1
, 2

2
, 5, 5.5, 6, 2

3
, 10

1
, 10

2
 

C1,C2 10
-3

, 10
-2

, 0.025, 0.05, 0.075,10
-1

, 2
-2

, 2
-1

, 2
0
 ,5

2
 

B(1,2), B(2,1) 0.05, 0.05 

SVDD 
Kernel Parameter 2

-2
, 2

-1
, 2

0
, 1.5, 2

1
, 2

2
, 5, 5.5, 6, 2

3
, 10

1
, 10

2
 

C 10
-3

, 10
-2

, 0.025, 0.05, 0.075,10
-1

, 2
-2

, 2
-1

, 2
0
 ,5

2
 

BSVDD 

Kernel Parameter 2
-2

, 2
-1

, 2
0
, 1.5, 2

1
, 2

2
, 5, 5.5, 6, 2

3
, 10

1
, 10

2
 

C 10
-3

, 10
-2

, 0.025, 0.05, 0.075,10
-1

, 2
-2

, 2
-1

, 2
0
 ,5

2
 

V 0.1 ,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

 

In this part, two classes of banana-shaped data in two-dimensions, introduced by Duin et 

al. (2000), is sampled with the size of each class of objects being 70 (Figure 5.2 (a)). Two 

different multivariate normal data sets are generated with means [5 -5] and [-5 -4] with a 

size of 50 for each class as outlier data sets. In addition to the banana-shaped data, we use 

multivariate skew normal (MSN) distribution which takes advantage of general set-up for 

comparison under non-normal dataset by controlling skewness (Azzalini and Capitanio, 

1999, Azzalini and Dalla Valle, 1996). Two different target data are obtained from 

multivariate skew normal data with size 100 for each of the classes (Figure 5.2 (b)) as 

well as the abnormal data which are generated from the three normal distributions and 

placed between the normal classes with the size of each abnormal class being 30.  
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(a) (b) 

Figure 5.2 (a) Banana-shaped data (b) MSN data 

Table 5.3 illustrates the performance of B-2SVDD against other benchmark procedures 

under MSN and banana-shaped data with two dimensional datasets. The results show that 

B-2SVDD outperforms the other support vector data description methods of traditional 

SVDD, BSVDD and TC-SVDD.  

Table 5.3 Performance comparisons of SVDD, BSVDD, TC-SVDD and B-2SVDD under 

two-dimensional MSN and banana-shaped data 

Data MSN Banana-Shaped 

Performance OCAR TCAR OCAR TCAR 

SVDD 0.9870 NA 0.9614 NA 

BSVDD 0.9870 NA 0.9623 NA 

TC-SVDD 0.9870 0.9870 0.9649 0.9640 

B-2SVDD 0.9890 0.9890 0.9675 0.9649 
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Table 5.4 demonstrates the performances of the proposed and the existing procedures 

under the MSN distribution with nonzero skew parameters. Two classes of MSN data 

with the sizes 100 in five-dimensions are obtained by choosing the skewness parameters 

as =(-2, 1, -2, 1,-2)d  and = (2, -1, 2, -1, 2)d . By choosing this setting in which skewness 

parameters can be considered as symmetric, it is possible to observe how the proposed 

procedure responds to positive and negative skewness. Two hundred outliers are obtained 

by shifting the mean of the original mean. From Table 5.4, we show that the B-2SVDD 

outperforms the existing procedures.  

Table 5.4 Performance comparisons of SVDD, BSVDD, TC-SVDD and B-2SVDD under 

five-dimensional MSN data 

Data MSN 

Performance OCAR TCAR 

SVDD 0.9395 NA 

BSVDD 0.9400 NA 

TC-SVDD 0.9445 0.9409 

B-2SVDD 0.9482 0.9414 

 

5.6 Case Study: Continuous Stirred Tank Heater (CSTH)  

The stirred tank heater plant is used in the Department of Chemical and Materials 

Engineering at the University of Alberta (Thornhill et al., 2008). In this plant, hot and 

cold water are mixed and heated using steam through a heating coil. The mixed water is 

drained from the tank through a long pipe as shown in Figure 5.3. Hot and cold water are 
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well stirred and mixed in the tank by assuming the temperature in the tank to be the same 

as the outflow temperature and keeping the volume of the water level in the tank as the 

desired objective. The tank has a circular cross section with a volume of 8l cm3 and 

height of 50 cm. 

 

Figure 5.3 Continuous Stirred Tank Heater (Thornhill et al., 2008) 

The steam temperature (TC), the thermocouple temperature (TT), the cold water flow 

(FC), the heating flow (FT), the level controller (LC), and the heating level (LT) are the 

instruments used for operation of the plant. The cold and hot water (CW and HW) enters 

the plant with 60–80 psi, and the hot water boiler is heated by the steam supply. Control 

valves in the CSTH plant are controlled by the air pressure using 3–15 psi compressed air 
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supply. Flow instruments show signals with a nominal 4–20 mA output. The signals of 

level instruments are also shown using the same scale, mA. 

The inputs of the process are the CW, HW and steam valve demands, and the outputs 

consist of the electronic measurements from the level, cold and hot water flow and 

temperature instruments. Disturbances of the experiment include a deterministic 

oscillatory disturbance to the cold water flow rate, a random disturbance to the water 

level, and the temperature measurement noise. 

The aim of this study is to determine the dynamic responses of the outputs for specified 

inputs. For a given input values, it is desired to keep the volume and the outflow 

temperature in steady conditions. In other words, the system is considered in normal 

operating condition if the desired volume and outflow temperature are obtained by 

adjusted input values. It is not always possible to have the desired volume and outflow 

temperature even when the input values are adjusted. Therefore, if the desired values are 

obtained for the adjusted input values, then the process operates in normal conditions. 

This kind of operating conditions is called a normal operating mode. Two operating 

conditions of CSTH are shown in Table 5.5.  
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Table 5.5 Operating conditions of CSTH plant 

Input Variables Mode 1 Mode 2 

Desired Volume 12 12 

Desired Temperature 10.5 10.5 

HW Valve 0 5.5 

 

The CSTH plant achieves the steady state conditions where the desired variables are 

satisfied if the adjustments are chosen as one of the modes in Table 5.5.  

In this study, we obtain the data from three controlled variables, water level, temperature, 

and CW flow. Two modes of CSTH are obtained under normal operating modes with the 

size of each mode of objects being 100. In addition, abnormal observations are obtained 

from each mode with sizes of 100 by introducing sudden step change of -0.75 into the 

level measurement at steps 101 to 200. The plots of the normal and abnormal data are 

given in Figure 5.4. 
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Figure 5.4 CSTH normal and abnormal data 

By using the water level, CW flow and temperature, we obtain the three-dimensional 

vector for each observation, that is, total 400 vectors, 100 normal and 100 abnormal for 

each modes. The plot of normal observations is shown in Figure 5.5.  



130 

 

 

Figure 5.5 Mode 1 (*) and Mode 2 (+) 

By using the three-dimensional observations, the boundaries are obtained for each SVDD 

procedure. Table 5.6 shows the results obtained from each of the SVDD approaches. As 

shown in Figure 5.5, these data are not complicated as the banana-shaped data set and the 

modes are well separated. The procedures identify the normal observations correctly. 

Therefore, two performance measures provide the same conclusion. The results show that 

B-2SVDD outperforms the existing procedures. 
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Table 5.6 Performance comparisons of TC-SVDD and B-2SVDD for CSTH data 

Data CSTH 

Performance OCAR TCAR 

TC-SVDD 0.8982 0.8982 

B-2SVDD 0.9309 0.9309 

 

5.7 Conclusions 

In real-life problems, identifying the anomalies is important due to the fact that they may 

have significant information. Several anomaly detection procedures are introduced to 

identify anomalies in data. Among them, the support vector data description (SVDD) 

procedure has gained more attention. Most of the SVDD procedures are built assuming 

that the normal data have only one or two-classes. However, this is not a general case if 

the data have more than two-classes.  

In this chapter, we propose a generalized SVDD procedure called n-SVDD which is 

independent of the number of classes. The proposed procedure finds n hyperspheres. 

Each hypersphere keeps as many as observations of the same class inside the boundary 

and tries to keep other class‘s observations outside the hypersphere. In addition, we 

propose a Bayesian SVDD procedure by assuming that the normal data consist of two-

classes. B-nSVDD is built assuming the transformed variables and the prior distributions 

follow normal distribution.  
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Experiments with diverse data sets show that the B-nSVDD is superior to the existing 

SVDD procedures. In future research, this work can be extended to determine the 

appropriate prior distributions which have a direct effect on the performance of the B-

nSVDD procedure. This can also be extended to cases where the boundaries among 

classes are not ―crisp‖ and the sizes of the classes are significantly different. 
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CHAPTER 6   

MULTI-CLASS BAYESIAN SUPPORT VECTOR DATA DESCRIPTION WITH 

ANOMALIES  

6.1 Introduction 

In Chapter 5, the anomaly detection procedure based on SVDD in Bayesian framework is 

developed. It is designed to obtain the boundary that separates the anomaly data from the 

normal data. This chapter proposes a multi-class Bayesian SVDD model that takes 

anomaly data into consideration when the anomaly data are available and an appropriate 

prior distribution of the anomaly data is obtained. 

In real-life applications, having information about the anomaly data is more desirable 

than knowing only normal patterns. For instance, anomalies in credit card transaction 

data may indicate a stolen credit card or identity theft (Aleskerov et al., 1997). Anomalies 

in MRI images may reveal tumor formations (Spence et al., 2001). An anomalous pattern 

in a computer network may imply that computer is hacked and sends out sensitive data to 

an unknown destination (Kumar, 2005). Anomaly information which includes critical and 

significant indicators can be used effectively to fix or improve applications (Chandola et 

al., 2009). Several attempts have been made to develop anomaly detection procedures 

based on classification, nearest neighbor, clustering, and statistical procedures (Chandola 

et al., 2009, Hodge and Austin, 2004).  
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Among the anomaly detection techniques, significant attention has been focused on the 

provision of support vector machine (SVM) proposed by Vapnik (1995). SVM 

transforms data into the kernel space and detects anomalies by separating other objects 

from the origin with a hyperplane (Amer et al., 2013, Erfani et al., 2016, Li et al., 2003, 

Schölkopf et al., 2001, Sotiris et al., 2010). Another prominent technique is one-class 

classification procedures, a particular case of the classification-based procedures (Moya 

et al., 1993). One of the one-class classification procedure is called support vector data 

description (SVDD), proposed by Tax and Duin (1999). SVDD identifies a given pattern 

as anomalous if it is placed outside of the decision boundary. SVDD procedures are 

widely used in the literature and several versions of SVDD have been developed (Bovolo 

et al., 2010, Ghasemi et al., 2016, Kang and Cho, 2012, Lee and Lee, 2007, Lee et al., 

2005, Lee et al., 2007, Lee et al., 2006, Ning and Tsung, 2013).  

The SVDD procedures for anomaly detection are based on the assumption that the target 

data have only one class of normal data. However, many real-life data consist of more 

than one distribution. To consider the differences between the classes, Huang et al. 

(2011) introduce an anomaly detection procedure by assuming normal data consisting of 

two-classes called two-class SVDD (TC-SVDD).  

The procedures mentioned above are only based on normal data. However, the 

performance of these procedures can be improved when available anomaly data are 

utilized to obtain data description. Tax and Duin (2004) introduce a procedure that 

considers anomaly observations. This procedure introduces extra constraints based on 
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anomaly observations to the traditional SVDD and it incorporates the anomaly 

observations into the training procedure to improve the boundary description. Thus, 

normal data are placed within a sphere and anomaly data are placed outside it. This 

procedure is based on the L1-norm of slack variables with two regularization parameters. 

Mu and Nandi (2009) improve this procedure in two ways by involving different forms of 

slack vectors. The first extension includes the L2-norm for slack variables with two 

regularization parameters and the second extension introduces only one regularization 

parameter. However, these procedures assume that the normal data are obtained from one 

distribution.  

This chapter introduces a new Bayesian procedure of anomaly detection in multi-class 

data where the prior distribution of the anomaly is known. The proposed procedure 

simultaneously finds the hyperspheres for each class by including as many of its class 

observations as possible and keeps the other class observations and anomalies outside the 

boundary. To construct the Bayesian framework, a probabilistic behavior of the 

parameters is considered by taking ‗prior knowledge‘ of each class as well as the 

anomaly distribution into account.  

The proposed procedure differs from the existing procedures as follows: First, the 

existing procedures for anomaly detection mostly take only the normal information into 

account (Moya et al., 1993). However, the anomaly information is often available from 

the engineering knowledge and the historical data of the process. Thus, the proposed 

procedure describes the multi-class normal data more accurately by considering the 
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anomalies. Second, the existing deterministic procedures do not reflect the prior or 

domain-specific knowledge when they are applied to the real-world problems that are not 

considered to be in the same domain. On the other hand, the prior information of the 

anomaly can be effectively applied through the Bayesian framework leading to more 

precise data description. It is expected that a more accurate boundary for the normal data 

can be obtained by considering the location of the anomaly data. For example, if we have 

knowledge of the anomaly locations, the proposed procedure attempts to obtain a 

boundary of normal data in a way to avoid the anomaly data. In addition, even when the 

anomaly data are placed in unexpected locations, the information of those anomalies are 

helpful to better describe the normal data because using the information of anomalies 

makes the boundary of the normal data much tighter.  

This chapter is organized as follows. After the review of the existing procedures in 

Section 6.2, we propose a new Bayesian procedure of anomaly detection in multi-class 

data environment in Section 6.3. In Section 6.4, we conduct simulation studies for 

performance comparison with existing procedures. In Section 6.5, we illustrate the 

proposed procedure in a real-life case study of a continuous stirred tank heater (CSTH), 

followed by conclusions and future research directions in Section 6.6. 

6.2 Preliminaries 

Given data set { | , 1,..., }p

i i i N  D x x R  where xi
 is observation i , the SVDD 

procedure finds a hypersphere by covering the data with minimal volume, with a center 
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a  and a radius R  (Tax and Duin, 1999). By allowing the misclassification in D , some 

observations can be kept outside the hypersphere. The SVDD is formulated as follows: 

2

1

2 2

min

. . , 0 {1,..., }

N

i

i

i i i

R C

s t R i N



 





     



x a

                                                (6.1) 

where C  is the regularization parameter, which controls the volume of the hypersphere 

by keeping some of the observations outside the boundary.  i
 is the slack variable and N  

is the number of observations in the data set. Dual formulation is obtained by using the 

Lagrangian function: 

   
1 1 1

1

max  

. . 1, 0 {1,..., }

N N N

i i i j i ji

i i j

N

i i

i

s t C i N

 

 

  







 

  

 



x x x x

                                                  (6.2) 

The observations with positive i  are called support vectors and are placed on the 

boundary or outside the boundary. SVDD‘s decision rule is based on checking the 

distance from an observation to the center. A new observation z  can be classified as ―in‖ 

or ―out‖ of the data boundary based on the distance from z  to the center of the 

hypersphere. The inner product in Eq. (6.2) can be replaced by a kernel function 

( , )i iK x x , defining ( , ) ( ), ( ) ,i j i jK  x x x x  and thus a more suitable nonlinear 

boundary to cover the data can be obtained (Tax and Duin, 1999). 
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6.3 Multi-Class SVDD with Anomaly Observations 

In some of the real life applications, available data consist of more than one class along 

with a few anomaly data. In such situations, utilizing the existing SVDD techniques may 

not provide a good boundary representation for the available data. Therefore, this section 

introduces a new SVDD procedure called n-class SVDD with anomalies (nSVDD-A). 

The proposed nSVDD-A assumes that the target data set consists of n normal classes 

     
1 2

(1) (1) (2) (2) ( ) ( )

1 1 2 1 1, , , , , , , , ,
n

n n

N N n N  D x x D x x D x x  and a few anomaly data 

 ( ) ( )

1 , ,
A

A A

A ND x x . By utilizing the anomaly data, the goal of the nSVDD-A for given n 

classes is to find n hyperspheres which cover each class with minimal volume, with 

centers 1 2, , , na a a  and radii 1 2, , , .nR R R  The primal formulation of the nSVDD-A is 

constructed as follows: 

2

1

2
( ) 2

2
( ) 2

2
( ) 2

min

. . 1, , , 1,

, , 1, , , 1, ,

1, , , 1, ,

n

kk

k

i k k k

m

i k k m

A

i k k A

R

s t R k n i N

R m k m k n i N

R k n i N



   

    

   



x a

x a

x a

                             (6.3) 

where kN  is the size of the class k ( 1, ,k n ) and AN  is the size of the anomaly data.  

With the optimization problem above, each observation in class n is placed inside the 

hypersphere n (constraint 1) and falls outside the other hyperspheres (constraint 2). In 
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addition, all of the anomalies are placed outside of each hypersphere (constraint 3). 

However, by introducing penalties ( )k

i  and ( , )m k

i , some observations can be placed 

outside of its class‘s boundary or inside of the other classes‘ boundary. In addition, to 

allow some anomalies to be placed inside the one of the hyperspheres, we introduce the 

O  penalty. Then, the primal formulation of the proposed optimization problem is 

obtained as follows: 

   ( )2 ( ) ( , )

1 1 1 1 1 1 1

2
( ) 2 ( )

2
( ) 2 ( , )

2 ( )( ) 2

( ) ( ,

min

. . 1, , , 1,

, , 1, , , 1, ,
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,

k A mk
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k k i i ik k i i m m k i

k k

i k k i k

m m k

i k k i m
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i i
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x a
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( )) , 0 , ,kA

i i k m  

       (6.4) 

where kC , B  and O  are called regularization parameters which control the volume of the 

hyperspheres. The first two constraints ensure that if an observation ( )k

ix  falls outside the 

hypersphere k, the objective function increases by ( )k

k iC   and if an observation ( )m

ix  falls 

inside the hypersphere k, the objective function increases by ( , )m k

iB . In addition, if the 

anomaly observation ( )A

ix  is placed inside the hypersphere k, the objective function 

increases by 
( )kA

iO . Table 6.1 shows the notations used to obtain nSVDD-A. 
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Table.6.1 Notations of nSVDD-A 

kR  
: radius of class k , (k=1,..,n) 

ka  
: center of class k , (k=1,..,n) 

( )k

i  : penalty given to training sample i of class k which lies outside hypersphere k.  

( , )m k

i  : penalty given to training sample i of class m which lies inside hypersphere k. 
( )kA

i  : penalty given to anomaly sample i which lies inside hypersphere k. 

 

By introducing the Lagrangian function, dual formulation of nSVDD-A is obtained.  
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        (6.5) 

where ( ) ( , ) ( )0, 0, 0k m k k

i i i     , ( , ) 0m k

i   and 
( )

0kA

i  . By taking partial derivatives 

of the Lagrangian function  ( )( ) ( , ), , , , kAk m k

n n i i iL R   a , the following equations are 

obtained. 
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Therefore, by substituting Eq. (6.6) into Eq. (6.5), the dual formulation in Eq. (6.7) is 

obtained.  
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( )
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called support vectors for class k. For an in-control observation ( )k

ix , if ( )k
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hypersphere k). In addition, for an anomaly observation ( )A

ix , if 
( )k

i

A
O   ( ( )

0 kA

i O  ), 

( )A

ix  is placed inside hypersphere k (on the boundary of hypersphere k). 

To find the radius of each hypersphere, kR , we calculate the distance from the center ka  

of the hypersphere to any of the support vectors of class k except the support vectors with 
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A
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The new observation z  is called an anomaly if the following Eq. (6.8) is satisfied, i.e., 

the distance from observation z  to the center of each hypersphere, ka  is greater than the 

corresponding radius kR   

2 2 1, , .k kR k n   z a
 
                                                (6.8) 
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To obtain flexible boundaries, the inner products, ( )i jx x  can be replaced by a kernel 

function ( , )i jK x x , defining ( , ) ( ), ( ) .i j i jK  x x x x  In this chapter, we use Gaussian 

kernel function defined as: 
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where w  is a parameter of the Gaussian kernel.  

The optimization problem of nSVDD-A can be represented in a matrix form as follows: 
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where ke  is a column vector with size 1kN   where 1,2, , ,k n A  and 0  is a matrix of 

zeros. ( )k
K  and ( , )k m

K  are matrices with sizes k kN N  and k mN N , respectively. Each 

element of ( )k
K  and ( , )k m

K  are obtained by the kernel distances of each element in class 

k and m.  
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6.3.1 Bayesian Framework of Multi-Class SVDD with Anomaly Observations 

This section introduces the Bayesian framework for generalized nSVDD-A. In traditional 

SVDD procedures, parameters are deterministic. However, the center of the hyperspheres, 

ka , can be a random variable which allows us to obtain a probabilistic interpretation of 

the anomalies. Therefore, in this section, we introduce a Bayesian n-class SVDD with 

anomalies (B-nSVDD-A). 

In the B-nSVDD-A approach, we assume that in-control observation ( )k

ix   1, ,k n  is 

transformed into the higher dimensional space through ( )   and the transformed data 

 ( )k

i x  follow a Gaussian distribution. 

 ( )( ) ( ) ( , ) ( )( ) 2( )

1 1 1 1
( ) ~ , .

k m A k
N n N Nk k m k m A

i i i i i ii k m

Ak

i kki i
N   

    
     xx x Ix  

In the weighted Gaussian model, distance of an observation ( )k

ix  to the center of a 

hypersphere k is inversely proportional to the likelihood. Thus, nSVDD-A is a special 

case of the weighted Gaussian model, which improves nSVDD-A by utilizing prior 

knowledge. We estimate the unknown weight parameters α  through a Bayesian approach 

with a proper prior distribution for α , obtained from the dual variables of the nSVDD-A 

(
( ) ( , ),k m k

i i  and 
( )kA

i ). B-nSVDD-A approach assumes that the prior distributions of the 

dual variables ( ) ( , ),k m k

i i   and 
( )kA

i  are Gaussian distributions which is the conjugate 

prior of the likelihood below  
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Assuming that the training data information in each class ( )k

ix  follow a Gaussian 

distribution in kernel space, we can obtain the likelihood probability function given 

parameter α  as follows: 

 
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By using the Bayesian rule, maximizing a posterior (MAP) is derived as follows: 

( | ) ( )
( | ) ,

( )

p p
p

p


D α α
α D

D  

 

where 1 n  D D D  is a set of training data. Since ( )p D  is a normalizing constant 

independent of α , it can be ignored, thus 

( | ) ( | ) ( ).p p pα D D α α                                                         (6.9) 

The MAP solution is obtained by  

ˆ arg max ( | )p
α

α α D                                                               (6.10) 
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which can be obtained as in Eq. (6.11).  
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τ m

 

where ( ) ( )

ij

m m

ii j
B K , ( )m

1  and ( , )m k
1  are 1 mN  vector with all ones 

( , ) ( , )B K
A k

ij

A k

ii j
 

and 
( , ) ( , )m k

ij

m k

ii j
B K  (see Appendix D for detailed derivation of Eq. (6.11) ).  

Since we use the dual formulation to obtain the B-nSVDD-A, it should satisfy the same 

constraints of the original optimization problem in Eq. (6.7). Thus, B-nSVDD-A has the 

following constraints:  
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The optimization problem of B-nSVDD-A can be represented in a matrix form as 

follows: 
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where θ , S  and each element of ( )k
K  and  ( , ) 1,2, , ,k m m k n A  K  are obtained 

as described in Section 6.3.  
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6.3.2 Parameter Settings of the Prior Distribution  

To solve the above optimization problems, we need to know the parameters of the 

distribution of α  beforehand. We determine the parameters of ( )kα  and 
( , )k mβ  (

1, ,k m n  ) by adopting the procedure explained in Ghasemi et al. (2016). Thus, the 

parameters of ( )k

i  and ( , )m k

i  are determined as follows:  

 ( ) ( )

,1

k
v

Nk k

i i jj
m


   K  where 1,2, ,k n  and (0 1) v v   

and 

 ( , ) ( , )

,1

m
v

Nk m k m

i i jj
m


   K  where 1,2, ,k m n   and (0 1). v v  

In addition to the parameters of ( )kα  and 
( , )k mβ , we also need to determine the parameters 

of 
( )kA
τ  ( 1, ,k n ). Anomaly class observations, ( )A

ix , which satisfy 1( ) 0A

i   are also 

the support vector for class 1. These support vectors lie on the boundary of class 1 if 

1( )0 A

i O  , or they are placed inside hypersphere 1 if 1( )

i

A O  . Therefore, we can 

determine 1( )A

im  for 1( )A

i  as follows: 

1

1

( ) ( ,1)

,
 

A A

i i jj
m

D
K  

Thus, 1( )A

im  is chosen as  11( ) ( ,1)

,1

v
NA A

i i jj
m


   K  where (0 1).v v   
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6.4 Performance Comparison 

In this section, we demonstrate the performance of the proposed procedure by conducting 

simulations on some artificial data sets and a real data set. The performance of the 

proposed procedures is compared with existing SVDD procedure and its variants such as 

traditional SVDD, TC-SVDD and Bayesian TC-SVDD (BTC-SVDD).  

The performances of different procedures are compared using the total anomaly accuracy 

ratio (TAAR) for the testing dataset under the same error ratio of normal classes. TAAR 

is defined as follows: 

#of trueidentifications in anomalies
TAAR

total number of anomalies


 

In this study, 10-fold cross validation is used to measure the performances of all data sets. 

The parameters of the proposed and benchmark procedures are optimized based on cross 

validation procedure introduced by Kang and Cho (2012) .  

6.4.1 Simulated Examples 

6.4.1.1 Banana-Shaped Data 

Two classes of banana-shaped data in two-dimensions, introduced by Duin et al. (2000), 

are well sampled with the size of each class of objects being 70. Four different anomaly 

data sets with the size 50 are generated from multivariate normal distribution with means 
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[-1,-6.2] (a), [0,-6.5] (b), [4,-5] (c) and [4.5,-5] (d) and covariance 0.25 times identity 

matrix as shown in Figure 6.1 (a,b,c,d). By using the normal data set (blue dot) and 

anomaly data (yellow dot), we obtain the 2SVDD-A and B-2SVDD-A boundaries for 

each case. For the testing data, 100 observations are obtained for each case from the same 

distributions as anomaly data sets.  
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Figure 6.1 Banana-shaped data (blue dot) with anomaly data (yellow dot). (a), (b), (c) 

and (d) denote the location of the anomaly data obtained from the means [-1,-6.2], [0,-

6.5], [4,-5] and [4.5,-5], respectively. 

Figure 6.2 shows the boundaries of the proposed procedure for each case. Note that the 

proposed SVDD gives two descriptions for the training data set that contains two classes 

of the training data and the anomaly set simultaneously.  
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Figure 6.2 Illustration of the proposed procedure applied to the banana-shaped data set. 

(a), (b), (c) and (d) denote the boundaries of the cases where the anomalies are obtained 

with means [-1,-6.2], [0,-6.5], [4,-5] and [4.5,-5], respectively. 

Table 6.2 illustrates the performance of the proposed procedures against other benchmark 

procedures under banana-shaped data for the cases a, b, c, d explained above. The results 

show that 2SVDD-A outperforms traditional SVDD and TC-SVDD. For the Bayesian 

procedures, proposed B-2SVDD-A procedure outperforms other existing Bayesian 

SVDD procedures. In addition, Figure 6.1 shows that the anomaly data are closest to the 

target data in the case (a) and farthest from the target data in the case (d). Table 6.2 shows 

that each procedure‘s performance increases and becomes similar to the others when the 
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anomaly data are far from the normal data. However, the proposed B-2SVDD-A still 

outperforms other procedures even if anomaly data are close to the normal data.  

Table 6.2 Performance comparisons (TAAR) under banana-shaped data when testing data 

are same as anomaly data 

  Cases  

Procedure a b c d 

SVDD 0.6120 0.6800 0.7780 0.9120 

TC-SVDD 0.6400 0.7020 0.7880 0.9120 

BTC-SVDD 0.7360 0.8060 0.8680 0.9400 

2SVDD-A 0.6590 0.7229 0.8267 0.9362 

B-2SVDD-A 0.7800 0.8524 0.9000 0.9543 

 

In addition, Figure 6.3 illustrates the normal (banana-shaped), anomaly and testing data 

sets. In this study, anomaly points (yellow dot) and normal points (blue dot) are used to 

obtain the boundary for 2SVDD-A and B-2SVDD-A. Anomaly data are obtained from 

multivariate normal distribution with mean [4,-5] and covariance 0.25 times identity 

matrix (a). Testing points (red dot) are generated from the normal distribution for the 

cases b, c and d with means [-7.7, 0.5], [6.8,-2] and [0,-6.5] and same covariance matrix 

as anomaly data, respectively. 
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Figure 6.3 Banana-shaped data (blue dot) with anomaly (yellow dot) and testing data 

(red dot). (a) denotes the location of the anomaly data obtained from the mean [4,-5]. (b), 

(c) and (d) denote the location of the testing data obtained from the means [-7.7, 0.5], 

[6.8,-2] and [0,-6.5], respectively. 

Table 6.3 shows that B-2SVDD-A outperforms other procedures regardless of the 

location of the anomalies for the cases b, c and d explained above. In addition, 2SVDD-

A‘s performance improvement is significantly more than traditional SVDD and TC-

SVDD. If the testing data are far from the normal data, the performances of the 

procedures become similar to one another. 
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Table 6.3 Performance comparisons (TAAR) under banana-shaped data when testing data 

are different than anomaly data 

  Cases  

Procedure b c d 

SVDD 0.4800 0.6420 0.6825 

TC-SVDD 0.5060 0.6440 0.7040 

BTC-SVDD 0.5760 0.7420 0.8060 

2SVDD-A 0.5810 0.6724 0.7295 

B-2SVDD-A 0.6162 0.7876 0.8543 

 

6.4.1.2 Multivariate Skew Normal Distribution 

In addition to the banana-shaped data, we also obtain data from multivariate skew normal 

(MSN) distribution. A p-dimensional vector x  follows the MSN distribution with the 

density function defined as 
12 ( ; ) ( ( )),T

p

  y ε ΢ Φ d w y ε  ( )px R  by defining 

 y ε wx , where ( ; )p y ε ΢  is the p-dimensional normal density with location and 

scale parameters, 1 1( ,..., ) , ( ,..., )T

p pw w  μ w  respectively. Correlation matrix is 

denoted by ,΢  and ( )Φ  is the (0,1)N  distribution function. The parameter d  is defined 

as p-dimensional skewness parameter. If d  is a vector of zeros, ( )T
Φ d x  equals to 1/ 2 . 

Therefore, the density function defined above is reduced to p-dimensional normal 

distribution (0, )pN ΢  (Azzalini and Capitanio, 1999, Azzalini and Dalla Valle, 1996). 

Throughout this paper, we use the notation ~ ( , , )pSNy μ ΢ d  when y  follows an MSN 

distribution. Gupta et al. (2004) show how to obtain mean and covariance of a vector and 
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the mean of ~ ( , , )pSNy μ ΢ d  which is based on ,μ ΢ and .d  To obtain the shifted 

observations for the simulation study, we only focus on .μ  If μ  is the in-control mean, 

then the shifted observation is obtained from 1~ ( , , )pSNy μ ΢ d  where 1  μ μ δ  and 

1( ,..., ).p δ  In addition, skewness parameter d  shows the deviance of the data from 

normality. When d  deviates from zero, the data also deviate from normality.  

Two different MSN data sets with size 100 for each of the classes are utilized as normal 

data (Figure 6.4 (a)). We also generate different anomaly data sets from normal 

distribution with means [0, -2.5], [0.485, 2] and [1, -0.1] and covariance 0.01 times 

identity matrix as shown in Figure 6.4 (b, c, d) and obtain testing points from the same 

distribution as anomaly data.  
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Figure 6.4 Multivariate skew normal data (blue dot) with anomaly data (yellow dot). (a) 

denotes the two classes multivariate skew normal data. (b), (c) and (d) denote the location 

of the anomaly data obtained from the means [0, -2.5], [0.485, 2] and [1, -0.1], 

respectively. 

Performances of the different procedures are summarized in Table 6.4 for the cases b, c 

and d. Similar to the banana-shaped case, B-2SVDD-A outperforms all of the existing 

SVDD procedures and 2SVDD-A outperforms other non Bayesian SVDD procedures. In 

addition, the performances of the SVDD procedures become similar to one another when 

the anomaly data are placed far from the normal data.  
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Table 6.4 Performance comparisons (TAAR) under two-dimensional MSN data when 

testing data are same as anomaly data 

  Cases 

Procedure b c d 

SVDD 0.5611 0.6578 0.8367 

TC-SVDD 0.6467 0.6667 0.8422 

BTC-SVDD 0.7533 0.7700 0.8756 

2SVDD-A 0.6978 0.7935 0.9141 

B-2SVDD-A 0.8043 0.8707 0.9609 

 

In addition to the two dimensional skew normal data, Table 6.5 summarizes the 

performances of the proposed and the existing procedures under two classes of MSN data 

sets with sizes 100 in five-dimension. Five-dimensional normal data are obtained by 

choosing the skewness parameters as =(-2, 1, -2, 1,-2)d  and = (2, -1, 2, -1, 2).d  By 

choosing this setting in which skewness parameters can be considered as symmetric, it is 

possible to observe how the proposed procedure responds to positive and negative 

skewness. Three different anomaly data sets are used to obtain the boundaries for 

2SVDD-A and B-2SVDD-A by shifting the mean of normal MSN distribution as 1*[1 1 

1 0 0] (a), 1.25*[1 1 1 0 0] (b) and 1.5*[1 1 1 0 0] (c). Eighty testing points are obtained 

in the same way as obtaining anomaly data. The results show the same performance 

pattern as in the previous simulation studies. B-2SVDD-A outperforms all of the existing 

SVDD procedures and the performances of the SVDD procedures become similar to one 
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another for the large shift. In addition, we observe that increasing the dimension of the 

data does not affect the pattern of the results.  

Table 6.5 Performance comparisons (TAAR) under five-dimensional MSN data 

    Cases 

Procedure a b c 

SVDD 0.3700 0.5675 0.7500 

TC-SVDD 0.3825 0.5763 0.7512 

BTC-SVDD 0.4825 0.6875 0.8725 

2SVDD-A 0.4707 0.6585 0.8122 

B-2SVDD-A 0.5683 0.7793 0.8854 

 

6.5 Case Studies: Continuous Stirred Tank Heater   

In this section, we use the same case study introduced in Chapter 5.6, namely, continuous 

stirred tank heater (CSTH). We obtain the data from three controlled variables, level, 

temperature, and CW flow. The two modes of CSTH are obtained under normal 

operating modes with the size of each mode of objects being 100 as explained in Chapter 

5.6. In addition, three different anomaly data sets are obtained from Mode 1 each with 

size 20 by introducing step change of -0.5 (a), -0.75 (b) and -1 (c) into the level 

measurement. In addition, eighty testing points are obtained from Mode 1 in the same 

way that the anomaly data are obtained. 
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By using the normal and anomaly data, the boundaries are obtained for each B-2SVDD-A 

and 2SVDD-A procedures. Table 6.7 shows the results obtained from the each SVDD 

approaches. These results demonstrate that the proposed B2SVDD procedure 

significantly improves the ability of anomaly detection compared to the other SVDD 

procedures. It is also clear that the performances of the SVDD procedures become similar 

to one another while the shift size increases.  

Table 6.7 Performance comparisons (TAAR) for CSTH data 

  Cases 

Procedure a b c 

TC-SVDD 0.6762 0.8250 0.8938 

BTC-SVDD 0.6937 0.8463 0.9025 

2SVDD-A 0.6939 0.8451 0.9049 

B-2SVDD-A 0.8293 0.9073 0.9634 

 

6.6 Conclusions 

Identifying anomalies is crucial since they may include significant information for a 

given process or real-life problems. When normal data consist of more than one class and 

some anomaly data are available, existing SVDD procedures may not be efficient for 

detection of anomalies.  

In this chapter, we propose a generalized SVDD procedure called nSVDD-A which 

utilizes the anomaly information and is independent from the number of classes. The 
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proposed procedure determines n number of hyperspheres. Each hypersphere keeps as 

many corresponding observations as possible inside its boundary and places observations 

of other classes and anomalies outside hypersphere. Furthermore, we introduce a 

Bayesian SVDD procedure by assuming that n-classes normal data and some anomaly 

data are available. B-nSVDD-A is built by assuming that transformed variables and prior 

distributions follow normal distribution in the feature space. Experimental results based 

on different data sets show that B-nSVDD-A is superior to the existing SVDD procedures 

in terms of detection of anomalies.  

In future research, it would be reasonable to develop a method that obtains the 

probabilistic outputs of B-nSVDD-A, which may provide even more information when 

detecting the anomalies. In addition, a new framework can be developed by decreasing 

the number of the parameters, which allows us to decrease computational time of 

parameter selection.  
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CHAPTER 7   

CONCLUSIONS AND FUTURE WORK 

This dissertation proposes and subsequently develops procedures for distribution-free 

fault identification and anomaly detection in high-dimensional data. This chapter presents 

the summary and conclusions of this dissertation and describes the possible future research 

related to this dissertation. 

7.1 Summary and Conclusions 

7.1.1 Distribution-Free Adaptive Step-Down Approach for Fault Identification 

In chapter 3, we introduce a distribution-free adaptive step-down approach for faulty 

variable identification. The proposed procedure integrates adaptive step-down approach 

with an SVDD-based test statistic. The proposed procedure called DFASD selects a 

variable having no significant evidence of a change based on the p variables that are 

selected in previous steps and eventually obtains the changed variables. This strategy can 

reduce computational times when a few variables are changed in a high-dimensional 

process. In addition, the proposed procedure is robust to the correlations between 

variables, resulting in stable performance regardless of the number of changed variables. 

The experiment results with diverse dataset demonstrate superiority of the proposed 

distribution-free procedure. 
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7.1.2 Bayesian Framework for Fault Variable Identification 

In chapter 4, we propose a Bayesian approach for fault identification that addresses the 

limitations posed by the normality assumption, a distribution-free procedure. The 

proposed approach is based on Bayesian support vector data description (BSVDD) and 

the faulty variables are identified based on an efficient algorithm with significant 

computational advantage. In addition we also propose a local density degree function to 

assign the parameters of the prior distribution. The proposed local density degree 

function is more interpretable and offers better performance in the identification of faulty 

variables than the existing procedures. Experiments with diverse data sets show that 

BSVDD procedure is robust to the non-normal data, specially for irregularly patterned 

data, in terms of fault detections. This feature is important in practice when the type of 

the distribution is unknown. 

7.1.3 Generalized Support Vector Data Description with Bayesian Framework 

Chapter 5 introduces an anomaly detection procedure which is independent of the number 

of classes, called n-SVDD. Regardless of the number of classes, anomalies are identified 

based on the relative distance to the center of each hypersphere of each class. In addition, 

we introduce a Bayesian framework for the proposed n-SVDD procedure by assuming 

the transformed variables and the prior distributions follow normal distribution. 

Experiments with diverse data sets show that the proposed Bayesian procedure is superior 

to the existing SVDD procedures. 
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7.1.4 Multi-Class Bayesian Support Vector Data Description with Anomalies 

In chapter 6, we propose a multi-class Bayesian procedure called B-nSVDD-A for 

anomaly detection. The proposed procedure describes the multi-class normal data more 

accurately by considering the prior information of the anomaly data. Regardless of the 

location of the anomalies, the information of those anomalies is helpful to better describe 

the normal data since anomaly information makes the boundary of the normal data much 

tighter. To show the superiority of the proposed procedure, we conduct simulation studies 

with diverse data sets and a real-life case study of a continuous stirred tank heater 

(CSTH). These studies indicate that the proposed procedure is superior to the existing 

SVDD procedures in terms of detection of anomalies.  

7.2. Future Research 

In Chapters 3 and 4, this dissertation focuses on identification of faulty variables with 

high dimensional data when the underlying distribution of the process is obtained from 

one class. These works can be extended by studying the identification of the faulty 

variables where underlying distribution of the process is obtained from multi-class data. 

In addition, in future work, we may extend our procedures for multimode multistage 

processes. 

In Chapters 5 and 6, we introduce anomaly detection procedures under the assumption 

that there are given n number of classes (normal data consist of n distributions) and 

anomaly data. In particular, the introduced procedures can be extended for the case where 
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the number of classes is known but the labels of the observations are unknown. Therefore, 

extended procedures can identify the classes and anomalies simultaneously under the 

assumption that the number of classes is given. 

In addition, when there is no information available about the classes, it is challenging to 

obtain the critical values for multi-class anomaly detection procedures. Thus, it is 

important to know the number of classes of the normal data to detect anomalies in multi-

class environment. Therefore, we can extend Chapters 5 and 6 to detect anomalies in 

multi-class environment where there is no class information. 
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Appendix A. Derivation of Eq. (4.6) 

Starting with the Eq. (4.5), 
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Two terms in Eq. (A.1) can be written as 
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The results of ln( ( | ))p D τ  and  ln ( )p τ  are substituted in Eq. (A.1) as follows: 
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 where B  is a diagonal matrix and , ,i i i jj
B K , 1  is a 1m  vector with all ones, and 

K  is the kernel matrix in which ( , )thi j  component of the matrix is defined as 

( , )ij i jKK x x . Since C  is inversely proportional to the number of training data m  (Tax 

and Duin, 2004), the relationship 
2( | , ) ( | , )p p m  τDτD  holds for given data set. 

Therefore, by using m  instead of 2 , the Eq. (4.6) is obtained. 
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Appendix B. Raw Data of Bolt Measurements 

Table B.1 In-control observations 

Sample Number 1x  2x  3x  4x  

1 0.36827 0.23753 0.25885 0.73546 

2 0.37060 0.24296 0.25457 0.73476 

3 0.36323 0.25096 0.25227 0.72170 

4 0.36885 0.25071 0.24852 0.72502 

5 0.36787 0.25409 0.24995 0.72280 

6 0.36495 0.24696 0.24808 0.73149 

7 0.36652 0.23617 0.25224 0.73826 

8 0.36792 0.23990 0.24933 0.74028 

9 0.37374 0.23415 0.25543 0.74557 

10 0.37228 0.25622 0.24819 0.72031 

11 0.36487 0.24266 0.24742 0.73358 

12 0.37276 0.24599 0.25128 0.73093 

13 0.36861 0.24286 0.24615 0.73417 

14 0.36719 0.25047 0.25212 0.72510 

15 0.36859 0.23933 0.25138 0.73799 

16 0.36693 0.23646 0.24935 0.74291 

17 0.36708 0.23624 0.24534 0.74545 

18 0.36998 0.24618 0.25536 0.73093 

19 0.36984 0.24216 0.25261 0.73433 

20 0.36985 0.24203 0.25067 0.73668 

21 0.36851 0.25290 0.25171 0.72312 

22 0.36513 0.24811 0.24832 0.72555 

23 0.36859 0.24529 0.24583 0.73434 

24 0.37023 0.25283 0.25187 0.72384 

25 0.36818 0.23935 0.24780 0.73868 

26 0.36916 0.24800 0.24872 0.72997 

27 0.36861 0.24922 0.24794 0.72806 

28 0.36675 0.24375 0.24817 0.73099 

29 0.36783 0.24589 0.24465 0.73120 

30 0.36588 0.23860 0.25164 0.73771 

31 0.36890 0.23676 0.25206 0.73949 

32 0.36524 0.24689 0.24901 0.73292 

33 0.36538 0.25062 0.24937 0.72299 

34 0.36584 0.26185 0.24835 0.71166 

35 0.36200 0.24421 0.24984 0.72965 
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36 0.36989 0.24438 0.25139 0.72990 

37 0.36789 0.24401 0.24836 0.73260 

38 0.36594 0.23381 0.25243 0.74262 

39 0.36977 0.24058 0.25071 0.74030 

40 0.36422 0.23579 0.24573 0.74125 

41 0.36712 0.25022 0.24966 0.72334 

42 0.36687 0.23968 0.24695 0.74147 

43 0.36787 0.24515 0.24724 0.73474 

44 0.36786 0.24116 0.25777 0.73407 

45 0.36574 0.24779 0.25440 0.72393 

46 0.36725 0.24122 0.25077 0.73458 

47 0.36700 0.24813 0.24654 0.72822 

48 0.36843 0.24874 0.24866 0.72846 

49 0.36927 0.25422 0.25171 0.72083 

50 0.36930 0.24240 0.25360 0.73523 

51 0.36575 0.23267 0.24420 0.74676 

52 0.36744 0.23961 0.24289 0.73595 

53 0.36511 0.25470 0.24534 0.71892 

54 0.36530 0.23956 0.24948 0.73555 

55 0.36729 0.25086 0.25187 0.72355 

56 0.37006 0.24388 0.25320 0.73211 

57 0.36591 0.25469 0.24978 0.72051 

58 0.36797 0.23233 0.25009 0.73893 

59 0.36689 0.24394 0.24844 0.73185 

60 0.36931 0.23612 0.25329 0.74408 
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Table B.2 Out of control observations 

Sample Number 1x  2x  3x  4x  

1 0.36511 0.25464 0.24799 0.74997 

2 0.37090 0.25729 0.25017 0.74833 

3 0.36739 0.25926 0.25054 0.74562 

4 0.36542 0.25847 0.25446 0.74427 

5 0.36801 0.25625 0.25036 0.74659 

6 0.36783 0.25884 0.25450 0.74476 

7 0.36460 0.25406 0.25036 0.75071 

8 0.36947 0.25623 0.25773 0.74769 

9 0.36714 0.26044 0.24735 0.74205 

10 0.37005 0.26412 0.25263 0.73650 

11 0.37118 0.25561 0.24887 0.74715 

12 0.36578 0.25435 0.24800 0.75066 

13 0.36740 0.25282 0.24338 0.75712 

14 0.36786 0.25458 0.25043 0.74833 

15 0.36699 0.25749 0.24721 0.74831 
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Appendix C. Derivation of Eq. (5.12) 

Starting with the Eq. (5.11), 
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Two terms in Eq. (C.1) can be written as 
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The results of   ln |p D α  and   ln p α  are substituted in Eq. (C.1). Therefore, the Eq. 

(5.12) is obtained as follows: 
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Appendix D. Derivation of the Eq. (6.11) 

Starting with the Eq. (6.10), 
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Two terms in Eq. (D.1) can be written as 
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The results of   ln |p D α and   ln p α  are substituted in Eq. (D.1). Therefore, the Eq. 

(6.11) is obtained as follows: 
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