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Abstract

The research described in this dissertation consists of two projects. First, the ap-

plication and improvement of a subsystem DFT method to describe charge transfer

reactions in biosystems and molecular materials. Second, the development and valida-

tion of a constrained subsystem DFT method to model charge and excitation energy

transfer processes in molecules and condensed phases.

After introducing the theory of charge transfer reactions in condensed phases

(chapter 1), the candidate outlines original and well-established avenues to obtain

the electronic couplings (the key parameter to understand the dynamics of these

processes). The first project is presented in chapter 3, in which a benchmark study

against high-level methods is presented followed by the analysis of the environmental

effects on the hole transfer in DNA oligomers. In chapter 4 the advantages of the

candidate’s method are pointed out, especially its ability to combine Constrained

DFT and subsystem DFT formalisms. Such a flexible method enables the study of

the effects of the phosphate group on hole transfer couplings in DNA for the first

time in the literature. Additional applications of this method are given in chapter

5, where the quality of the calculated excited states is examined. Finally, in the last

chapter two applications are presented: modeling of (1) the hole transfer in Fe-TPP

dyads; and (2) charge transfer in the peptidylglycine-α-hydroxylating monooxygenase

enzyme.

Every project is published or in the process to be published by the candidate
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in co-authorship with the candidate’s scientific advisor and other collaborators in

peer-reviewed journals.
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Chapter 1

Introduction

Charge transfer (CT) plays an important role in processes that occur in biology (DNA

oxidative damage, protein communication) as well as in materials science (processes

such as, conduction in molecular semiconductors, recombination at interfaces, etc).

In order to achieve accurate yet realistic models of these processes, the scientific

community often needs to include several layers of complexity. In most cases this

leads to contemplate model systems containing hundreds-to-thousands of atoms and

an even larger number of electrons.

Such large system sizes preclude the use of high-level wavefunction-based quantum-

chemical methods. These methods are impractical because complexity of their algo-

rithms exceeds the computational resources available today. Researchers have tackled

this problem head-on and have invested efforts into developing fast-yet-accurate meth-

ods for modeling CT reactions. In this regard, methods based on Density-Functional

Theory (DFT, hereafter) especially popular because they provide a satisfactory range

of accuracy and low computational cost.

Eventhough DFT methods reduce the computational effort substantially, chem-

istry experiments rarely treats isolated molecules. Also, environmental effects are

sometimes crucial to understand the physical implications of chemical process. Thus,



typical DFT methods are still computationally too expensive for modeling realisti-

cally sized systems. Subsytem DFT aims at solving this issue. It partitions the elec-

tron density of a system in many smaller subsystems densities. Among the various

flavors of subsystem DFT, the Frozen Density Embedding (FDE) method provides

a simple and easy to implement prescription. In short, the subsystems composing

the supramolecular system interact through an embedding potential, where all the

interaction (nonadditive) terms are considered. In this thesis, we tackle the compu-

tational cost employing FDE. However, there is still a problem related to modeling

CT processes. How can this be achieved with susbsystem DFT?

Before entering in the details of the actual electronic structure methods, let us

introduce the framework at the foundation of this work: Marcus theory of electron

transfer. Marcus theory[65] is perhaps the most applicable theory for modeling a

CT process. It was originally derived under three main approximations. First, a

CT event is thought of in terms of a two-dimensional basis set of diabatic states

(donor state and acceptor state). The interaction matrix element (i.e., the off-diagonal

element of the Hamiltonian matrix in this basis) is the central quantity for determining

the probability of a transition between the donor state and the acceptor state. We

name this interaction electronic coupling, VDA. Second, it relies on the Condon

approximation, in which the electronic coupling is considered to be independent of

the nuclear motion when the CT occurs. Third, in its original formulation, reactants

and products are modeled as being enclosed by spheres on which the polarization

of the solvent is represented as a dielectric continuum. The rate constant of CT in

Marcus theory is given by [84],

kCT =
2π

~
|VDA|2

e
− (∆G+λ)2

4λKBT

√
4πλKBT

, (1.1)

where λ is the reorganization energy, and VDA is the electronic coupling. States

that most resemble the initial and final states of electron transfer are often referred

2



to as “diabatic states” and their corresponding wavefunctions “diabats”. Although

it is known that diabatic states have a formal definition [60], it was shown [90] that

charge-localized states satisfy the requirements for diabatic states for condensed phase

electron transfer reactions.

Three fast, reliable and all-electron methods to tackle charge transfer processes

in realistic size systems are herein proposed. The FDE-ET (ET stands for Electron

Transfer) is an extension of the capabilities given by the FDE method tailored for

modeling physically accurate diabatic states needed (charge localized states). Such

diabatic states can be generated by imposing a charge (either positive or negative)

onto the donor subsystem while the acceptor remains neutral and in the same way

but this time the charge will be in the acceptor. However, FDE can be only applied

to systems that posses noncovalently bond subsystems.

In order to cure this limitation of the FDE method, the Constrained DFT (CDFT)

method is employed when diabatic states need to be considered on with charge lo-

calization within a molecule. CDFT ensures the localization of an electronic charge

on a specific place on the system without needing to cut bonds. Charge localization

in CDFT is achieved by applying an additional potential that lures the electron den-

sity to satisfy a given constraint. FDE and CDFT methods can be coupled into a

single versatile method: the Constrained Subsystem DFT (CSDFT) approach. CS-

DFT aims to eliminate the limitations existed under the FDE scheme. Due to its

philosophy, FDE applicability is restricted to those transfers that occur from two (or

more) non-covalently bonded molecules. Therefore, CSDFT ensures the construction

of a diabatic state and also allows the inclusion of the environmental effects on the

energetics of these diabatic states using the FDE strategy.

Complementary, the implementation of a novel option to compute excited states is

explored. The eXcited Constrained DFT or XCDFT method, is a time–independent

method that resolves the space of virtuals by projection. Thus, the Fock operator is

3



augmented by a nonlocal constraining potential that exerts a force, pulling electrons

into the virtual space. As before, XCDFT can be utilized to obtain reliable excitations

in complex systems maintaining low computational penalty.

In this dissertation, the candidate first explains the theory behind charge transfer

reactions, in particular the evaluation of the electronic coupling quantum mechani-

cally with the FDE-ET method. Afterwards, two applications of FDE-ET are pre-

sented. In the second part of the dissertation, the candidate introduces CSDFT and

XCDFT algorithms. Both methodologies are implemented by the candidate in the

Amsterdan Density Functional (ADF) suite of programs. In each case, pros and cons

of the method are analyzed. At the end of each chapter a significant application study

is provided to showcase the qualities of the theory and software development.

4
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Chapter 2

Modeling Charge Transfer

Reactions With Subsystem DFT:

The FDE-ET Method

This Chapter is adapted from the following peer–reviewed journals

� Pablo Ramos and Michele Pavanello. Quantifying Environmental Effects on

the Decay of Hole Transfer Couplings in Biosystems. J. Chem. Theory Com-

put.,10:2546–2556, 2014.

� Pablo Ramos and Michele Pavanello. Performance of Frozen Density Embed-

ding for Modeling Hole Transfer Reactions. J. Phys. Chem. B, 119:7541–7557,

2015.



2.1 Background on FDE

In the FDE formalism the total electron density is expressed as the sum of subsystem

electron densities[123, 104, 19]. Namely,

ρtot(r) =
Ns∑
I=1

ρI(r). (2.1)

Where Ns is the number of subsystems.

For each subsystem the electron density is obtained by solving a Kohn–Sham (KS)

like equation. The KS–Hamiltonian is augmented by an embedding potential that

accounts for the interactions between subsystems. However, the electron density of

those subsystems is kept frozen in this step, the KS equation reads as

[
−∇2

2
+ υIKS(r) + υIemb(r)

]
φ(i)I(r) = ε(i)I(r)φ(i)I(r). (2.2)

Where φ(i)I(r) are the molecular orbitals of subsystem I, and υIemb(r) is the embedding

potential acting on the same subsystem and is defined as follows:

υIemb(r) =
Ns∑
J 6=I

[∫
ρJ(r′)

|r− r′|
dr′ −

∑
α∈J

Zα
|r−Rα|

]
+

+
δTs[ρ]

δρ(r)
− δTs[ρI ]

δρI(r)
+
δExc[ρ]

δρ(r)
− δExc[ρI ]

δρI(r)
. (2.3)

The terms Ts, Exc and Zα are kinetic and exchange–correlation energy functionals, and

the nuclear charge, respectively. Due to the nature of the KS method, Ts[ρ] is obtained

from the molecular orbitals of the entire system. However, these orbitals are not cal-

culated in FDE and therefore approximate kinetic energy functionals are employed

instead. In which the non-additive kinetic energy (NAKE) term is represented with a

semilocal functional. The use of these approximate functional are the biggest differ-

ence between an FDE and a full KS-DFT calculation of the supersystem[39, 122, 62].
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In the case of large overlap between subsystem electron densities, FDE in conjunction

with GGA NAKE functionals becomes unreliable when compared to regular KS-DFT

[33, 51]. To achieve selfconsistency, the subsystem densities are determined in an it-

erative way called freeze-and-thaw [124, 47].

2.2 How does FDE generate diabats?

In practical terms, an FDE calculation is performed on at least two interacting subsys-

tems (donor and acceptor fragments) whose electron densities are determined selfcon-

sistency via the freeze-and-thaw procedure. Given by the freeze-and-thaw procedure

two simulations are set up: in one a hole is placed on the donor fragment (i.e., the KS-

like equations are solved in such a way the density of the donor fragment integrates

to a number of electrons defecting by one compared to the neutral fragment), in the

second calculation the acceptor is now positively charged. We can revert the situation

by increasing the number of electrons by one – an excess electron is generated on the

subsystem. The result of the freeze-and-thaw procedure is that the charge, either a

hole or an electron, is completely localized onto the fragment (donor or acceptor).

An FDE calculation yields charge localize states [92] due to the following reasons:

first, the subsystem orbitals are not imposed to be orthogonal to orbitals of the other

subsystems. This is important as it implies that not imposing orthogonality removes

a bias towards delocalization, as noted by Dulak and Wesolowski [23]. However, this

reason alone is not enough. A second reason is that FDE calculations are carried out in

the monomer basis set [i.e., using the FDE(m) method [46]]. With no basis functions

on the surrounding frozen subsystems, a charge transfer between the subsystems

becomes an unlikely event and the SCF is biased to converge to a charge localized

solution. The third reason invokes the fact that FDE calculations are always initiated

with a subsystem localized guess density. The initial conditions also have a bias effect

7



o

Atom in a Frozen Subsystem

υI
emb

Figure 2.1: Depiction of the shape of the embedding potential (in red) in the region
of the atomic shells of surrounding subsystems. Reproduced with permission from
reference 98

on the final SCF solution – a localized initial guess density will likely yield an SCF

solution that is subsystem localized as well. Finally, the shape of the embedding

potential in the region of the surrounding fragments. Electrons remain localized

also because there are repulsive walls in the vicinity of the atomic shells of atoms

belonging to the surrounding subsystems. The approximate kinetic energy functionals

are unable to cancel out the attractive potential due to the nuclear charge in the

vicinity of the nucleus. However, the shape of most semilocal kinetic energy potentials

is such that in going towards the nucleus they start out too low compared to the exact

potentials, then cross the exact potential and become larger in the region of an atomic

shell. For a simplify picture of this behavior see Figure 2.1

2.3 Coupling calculations with FDE: the FDE-ET

method

The electronic coupling between non-orthogonal wavefunctions (approximated at DFT

level yet exact under Hartree–Fock theory) can be expressed as [92, 113, 25]:

HDA = 〈ψD|Ĥ|ψA〉 = SDAE
[
ρ(DA)(r)

]
. (2.4)

8



where Ĥ is the molecular electronic Hamiltonian, ψD and ψA are the two diabatic

states (D for donor, A for acceptor) and ρ(DA)(r) is the transition density defined as

follows:

ρ(DA)(r) = 〈ψD|
#ofelectrons∑

k=1

δ(rk − r)|ψA〉 (2.5)

If the wavefunctions are expressed in terms of single Slater determinants, the overlap

element appearing in Eq.(2.5) is determined by the following determinant:

SDA = det
[
S(DA)

]
, (2.6)

where SDAkl = 〈φ(D)
k |φ

(A)
l 〉 is the transition overlap matrix in terms of the occupied

orbitals (φ
(D/A)
k/l )[70, 113]. In this manner, the transition density is neatly written in

the basis of all occupied orbitals that constitute both the diabatic states ψD and ψA.

Namely,

ρ(DA)(r) =
occ∑
kl

φ
(D)
k (r)

(
S(DA)

)−1

kl
φ

(A)
l (r). (2.7)

Transferring the above equations to model charge transfer (CT) reactions, we

start by construction of two diabatic states: a state where the charge is on the donor

(D) also called initial state, and a state where the charge is on the acceptor (A).

However, by construction one should not expect that the charge localized states are

necessarily eigenstates of the molecular Hamiltonian of the total system, due to their

non-orthogonal nature. Thus, we expect the Hamiltonian and overlap matrix to be

non-diagonal. The Hamiltonian and overlap matrices are then written in terms of

this non-orthogonal basis. Namely,

H =

 HDD HDA

HAD HAA

 , S =

 1 SDA

SAD 1

 . (2.8)

where the off–diagonal elements are given by equation 2.4. However, the Hamil-

tonian coupling is not HDA, but it is generally reported as the coupling between the
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Löwdin orthogonalized ψD and ψA. For only two states this takes the form,

VDA =
1

1− S2
DA

(
HDA − SDA

HDD +HAA

2

)
, (2.9)

2.4 Distance dependence of the electronic coupling

In this section, we discuss calculations of the coupling matrix element (VDA) of hole

transfer from a donor to an acceptor molecule through the vacuum. This means that

the initial state of hole transfer is the donor molecule (D), and the final state the

acceptor molecule (A), and no intermediate bridge states are considered. Overall, our

couplings show a good agreement with previous computations (e.g. we reproduced

the decay factors, β, π-stacked dimers separated by vacuum).

When the HAB11 test set featuring high accuracy couplings became available [1],

we compare systematically the FDE-ET couplings with the benchmark values [98].

Benchmark calculations were ran on a set of 15 of π-stacked dimers (see Table 2.1).

This study was rigorous, and tested the effect of the basis set size, nonaddi-

tive kinetic energy functionals (NAKE) and exchange-correlation functionals (XC)

on the value of the computed couplings. The most important finding that resulted

from the benchmark work resided in the fact that GGA functionals coupled with a

medium sized basis set and the PW91k NAKE functional allow the FDE-ET method

to yield reliable electronic couplings as tested against high-level correlated wavefunc-

tion (MRCI+Q, NEVPT2 and SCS-CC2) methods applied to the array of dimers.

The PBE and PW91 functionals are found to be a good choice in each case consid-

ered with a MAX error lower than 50 meV and an overall MRUE of a little over 7%

in both cases[98].

Statistically, we found that hole transfer couplings are relatively insensitive to the

choice of NAKE functionals, while our analysis of the basis set dependence shows that
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Dimer Symbola Structure Reference methodb

Ethylene (EE) MRCI+Q

Acetylene (AC) MRCI+Q

Cyclopropene (CP) MRCI+Q

Cyclbutadiene (CB) MRCI+Q

Cyclopentadiene (CD) MRCI+Q

Furane (FF) MRCI+Q

Pyrrole (PY) MRCI+Q

Thiophene (TH) NEVPT2

Imidazole (IM) NEVPT2

Phenol (PH) NEVPT2

Benzene (BB) NEVPT2

Naphthalene (NN) SCS-CC2

Anthracene (AA) SCS-CC2

Tetracene (TT) SCS-CC2

Pentacene (PP) SCS-CC2

a Abbreviations used in this work.
b Ref.1

Table 2.1: Dimers of the HAB11 test set. Reproduced with permission from reference
98
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QZ4P basis set is the most problematic, as it often biases the FDE convergence to

nonphysical states at short intersubsystem separations – a problem already well doc-

umented in the FDE literature[31, 30]. Finally, Table 3.1 compares the performance

of FDE-ET for different levels of theory. The results for GGAs are in good agreement

with the benchmark values, and in some cases they showed to be superior to hybrid

and meta-GGA functionals, particularly PBE and PW91. B3LYP also stands out as

another valuable choice.

Generally, all functionals perform well in the FDE-ET coupling calculations mak-

ing FDE-ET a method that is relatively insensitive to the XC and NAKE functional

choice.

Set MUE(MeV) MRUE(%) MAX(meV)
PBE/PW91k/TZP 15.3 7.1 49.6

PW91/PW91k/TZP 15.2 7.1 49.1
B3LYP/PW91k/TZP 18.1 7.9 58.5
M06-2X/PW91k/TZP 18.0 8.2 54.9

Table 2.2: Mean statistical values for the best XC-functional choices. PW91k is the
NAKE along this work. Reproduced with permission from reference 98

2.5 Hole transfer in DNA oligomers

The electronic coupling for hole transfer in a completely dry B-DNA structure of

G(T)NG and G(A)NG was calculated. The structures considered in this analysis

lack water molecules, metal counterions and phosphate linker groups. The latter is

consequence of the applicability of FDE, which is restricted to non-covalently bound

fragments. Consequently, appropriate modifications to the B-DNA structure had

to be made: we first removed the phosphate groups (PO4) and capped the dangling

bonds with hydrogen atoms at 1.09 Å from the bonding atom. The modified structure

G(T)NG is ilustrated in Figure 2.2. Due to the FDE scheme we were able to considered
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308 atoms and 1322 electrons, where the counterstrand as well as the ribose groups

were taken into account. In this study, the role of the environment on the hole transfer

in DNA is elucidated and analyzed using a full–electron methodology.

Due to the

 T

A


N

bridge separating donor and acceptor assists the hole transfer

by lowering the effective tunneling barrier. We computed this effect by considering

the full Hamiltonian and overlap matrices of the hole pseudoparticle defined in Eqs.

(2.4–2.6). Namely,

H =


ED ... HDA

... HB
...

HAD ... EA

 , S =


1 ... SDA
... SB

...

SAD ... 1

 . (2.10)

In the matrices above, a clear distinction between matrix elements between states

where the hole is localized on the bridge molecules or on the donor and acceptor

molecule has been labeled. If we considered that during the hole tunneling the bridge

states are virtually occupied by the hole, an effective coupling can be obtained by

reducing the generalized eigenvalue problem constructed with the above Hamiltonian

and overlap matrices to a 2×2 effective eigenvalue problem [71, 110]. A Löwdin

orthogonalization of the basis set yields a transformed Hamiltonian matrix, Ṽ, from

which the following bridge-mediated effective hole coupling is derived [26, 83, 61, 57,

96]:

VDA(E) = ṼDA + ṼT
DBGB(E)ṼBA︸ ︷︷ ︸

Vbridge

, (2.11)

where the superscript T stands for transpose, GB(E) is the Green’s operator, defined

as

GB(E) = −(ṼB − E ĨB)−1, (2.12)

and ṼDB/BA is the row vector of the transformed Hamiltonian collecting the couplings
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between the donor/acceptor with the bridge states. Generally, E appearing above is

the energy at which the tunneling event occurs (i.e. at the crossing seam of the

Marcus parabolas). As we only considered static geometries of the DNA oligomers,

the Hamiltonian eigenvalues corresponding to the donor-acceptor energies do not

coincide. With that, the tunneling energy, E, is not well defined [66]. A natural

choice of E is to place it between EA and EB, with a common choice being ED+EA
2

.

For example, this choice is invoked by several works in the literature [43, 83, 66, 118].

Others[116], have favored the choice E = ED, which is non-symmetric (i.e. forward

CT become not equivalent to backward CT), however, it is still a valid choice. It was

Marcus [66] who first showed the mild dependence of the coupling with respect to

the choice of tunneling energy within ED and EA. Thus, we adopt E = ED+EA
2

in all

calculations.

Turning to the results of this study, it was noticed that an uneven stabilization of

the bridge states compared to donor/acceptor states occurs in both type of oligomers,

this effect is more pronounced in the G(T)NG system than in the G(A)NG system.

By inspection of the overall electrostatics of the interaction between G:C and T:A

[77], we notice that T has a strong permanent dipole pointing towards A, similarly to

C:G. Instead, A has a much weaker dipole compared to C or T and thus upon contact

of the GTG strand with the CAC strand the cytosines will stabilize much more the

holes on Gs than the adenines can stabilize the holes on Ts, hence the tunneling wall

increases from single strand to double strand.

Regarding the couplings, when the magnitude of the through space and through

bridge couplings are inspected, our calculations show that the effects of the ribose

groups and the nucleobases in the counterstrand are opposite and different in mag-

nitude depending on the oligomer size (see table 2.3). We conclude, however, that

the effect of the counterstrand on the computed superexchange couplings completely

overpowers any effect due to the presence of the ribose groups.
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ṼDA (meV) Vbridge (meV) EDB (eV) EBA (eV)
Single Strand no Ribose

GG 78.13
GTG 0.76 12.46 0.71 0.50
G(T)2G 0.01 1.13 0.79 0.66
G(T)3G – 0.09 0.79 0.77

Double Strand no Ribose
GG 92.6
GTG 0.65 7.66 0.93 0.96
G(T)2G 0.01 0.47 1.11 0.94
G(T)3G – 0.02 0.99 1.16

Single Strand with Ribose
GG 71.38
GTG 0.18 25.01 0.43 0.37
G(T)2G 0.02 1.70 0.58 0.37
G(T)3G – 0.21 0.41 0.41

Double Strand with Ribose
GG 91.07
GTG 0.02 7.35 0.62 0.87
G(T)2G 0.02 0.61 0.93 0.60
G(T)3G – 0.02 0.50 0.82

Table 2.3: Through-space and through-bridge electronic coplings and tunneling en-
ergy gaps for single and double strand G(T)NG B-DNA, including the effects of the
backbone (sugars). A – is shown for values below 0.01meV. Reproduced with permis-
sion from reference 97.
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Figure 2.2: The dephosphorilated G(T)NG B-DNA oligomer employed in the hole
transfer coupling calculations. As the figure depicts, the hole tunnels from the bottom
guanine (in balls and sticks) to the top guanine. The tunneling wall is provided by
a series of three thymines (red branch, labeled as “bridge”). The counterstrand,
C(A)NC, acts as a solvating environment (in yellow, labeled as “spectators”) and no
hole is allowed to localize on it. Reproduced with permission from reference 97.

When the through space and through bridge couplings are inspected, our calcu-

lations show that the effects of the ribose groups and the nucleobases in the counter-

strand are opposite and different in magnitude depending on the oligomer size. We

conclude, however, that the effect of the counterstrand completely overpowers any

effect due to the presence of the ribose groups. Nevertheless, the major limitation of

our calculations rests in the absence of nuclear dynamics. As dynamics plays a major

role in modulating the couplings and energies in biological hole transfer, we commit

to investigate such dynamical effects in a follow up work.
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Chapter 3

Linking Donor and Acceptor

States: The Constrained

Subsystem DFT Method

This Chapter is adapted from the following peer–reviewed journal

� Pablo Ramos and Michele Pavanello. Constrained Subsystem Density-Functional

Theory. Phys. Chem. Chem. Phys., 18:21172, 2016.

3.1 Introduction

Constrained DFT (CDFT) [20, 114, 49] is a formulation of KS-DFT that, in many

instances [69], allows the description of charge transfer phenomena in a quantitative

way even if the LDA or GGA approximations are employed in the density functional.

CDFT has been widely used not only in charge transfer reactions (with molecular

basis set[49] or plane waves basis set[85]) but also in ordinary chemical reactions[127],

magnetic properties and excited states[25, 21].

Similarly to KS-DFT, CDFT scales with the cube of system size. Although poly-



nomial, such a scaling becomes computationally intractable when tackling realistically-

sized molecular systems and materials. Tremendous effort has been made towards the

development of new DFT based methods and their implementations (see for exam-

ple, Refs. [8]) that can afford simulating thousands of atoms. Along these efforts,

our group has worked to advance density embedding methods, such as frozen density

embedding (FDE) [123], extending both its theoretical and computational applica-

bility [55] in an effort to produce simulations of molecules and materials that scale

almost linearly with system size [37]. FDE has been developed for some time now,

and it has been successfully employed to model a number of physical processes, such

as excited states[125, 81, 15, 89, 82], magnetic properties [48, 10, 50], and charge

transfer processes[97, 92, 111, 98].

In this work, we introduce a new method that combines the strengths of FDE

with the ones of CDFT. We call this method constrained subsystem DFT (CSDFT,

hereafter). To achieve it, at least two new constraints need to be included in the KS-

DFT Lagrangian (see the Theory section). The aims of CSDFT are to approach the

description of charge, spin and electronic excitation transfer reactions. In this work,

however, we will only focus on hole transfer reactions and leave to future developments

the other types of transfer phenomena. Although FDE was successfully formulated

also to model charge transfer reactions [91, 92], including photoinduced ones [111],

its applicability is limited to only those transfers that occur from two (or more) non-

covalently bonded molecules. That is, FDE cannot be applied if a transfer occurs

between regions of the same molecule. CSDFT cures this deficiency by allowing the

user to construct diabatic states for transfer reactions of embedded molecular species.

In the following, we begin by explaining the theory behind CSDFT, including

details of the implementation (e.g., we assess the effect of employing two different

population analyses in the definition of the CDFT constraining potential). We also

address the setup and computation of superexchange couplings through a Löwdin
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orthonormalization of diabatic states generated with CSDFT. We then apply CSDFT

to explore and quantify the effect of the phosphate linkers in DNA hole conduction –

a simulation that was simply intractable before.

3.2 Theory

KS-DFT [53] relies on a one-to-one mapping of electron densities on to a set of

noninteracting electrons, also known as the KS system, whose single determinant

wavefunction is built from a set of Kohn–Sham orbitals, {φi}. The KS orbitals are

found by locating the minimum of the DFT Lagrangian

LDFT [ρ] = EHK [ρ] +

∫
vext(r)ρ(r)dr− µ

[∫
ρ(r)dr−N

]
, (3.1)

in which the Hohenberg–Kohn (HK) functional is partitioned into

EHK [ρ] = Ts [ρ] + EH [ρ] + Exc [ρ] . (3.2)

In the above, the electronic Coulomb repulsion energy (EH), the noninteracting kinetic

energy (Ts) and exchange–correlation energy (Exc) functionals are introduced. By

imposing LDFT [ρ] to be stationary, the KS equations are recovered [88].

3.2.1 Lagrangians for FDE and CDFT

Let us introduce two additional auxiliary Lagrangian expressions, one defining the

Frozen Density Embedding (FDE) flavor of subsystem DFT, and the other defining

the so-called Constrained DFT (CDFT). The combination of these two Lagrangians

will yield the working equations of CSDFT.
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FDE Lagrangian

In FDE, the total electron density is given by ρ(r) =
∑NS

I ρI(r), with {ρI} being

the set of subsystem electron densities. The energy functional is calculated as a sum

of subsystem energies, with the addition of a nonadditive component that accounts

for the communication between all subsystems. The electronic populations of each

subsystem are constrained to integrate to a set number, which is driven by the orbital

occupancy in the fragment. Thus, the FDE Lagrangian differs from LDFT [ρ], featuring

additional constraints [55, 121]:

LFDE[{ρI}] =

NS∑
I

EHK[ρI ] + Enad
HK [{ρI}]+

+

∫
vext(r)×

[
NS∑
I

ρI(r)

]
dr−

NS∑
I

µI

[∫
ρI(r)dr−NI

]
. (3.3)

The last term in the above equation, assures particle conservation for each subsystem

density with µI being the subsystem chemical potential. Enad
HK [{ρI}] is the nonadditive

HK functional, which takes the form

Enad
HK [{ρI}] = T nads [{ρI}] + Enad

H [{ρI}] + Enad
xc [{ρI}], (3.4)

with F nad [ρI , ρII , . . . , ρNS ] = F [ρ]−
∑NS

I F [ρI ].

CDFT Lagrangian

The main idea behind Constrained DFT is to bias the electronic self-consistent field

procedure so that the electron density satisfies an additional artificial constraint. If

such constraint can be expressed in real space as a local potential, then the CDFT

20



Lagrangian takes the following form,

LCDFT[ρ] = EHK[ρ] +

∫
vext(r)ρ(r)dr + Vc

[∫
ωc(r)ρ(r)dr−Nc

]
. (3.5)

The first two terms are defined similarly as in Eq.(3.3) and the third is the constraint.

Vc is a Lagrange multiplier, and ωc(r) is the weight operator defining the constraint

with Nc being the constraint value.

CDFT has been developed [49] to generate diabatic states for charge and spin

transfer reactions [114]. For this, the ωc(r) potential has generally been a population

analysis that spans only a portion of a molecule so that charge, spin or change and

spin localization is achieved [128].

3.2.2 Combining the two Lagrangians: the CSDFT method

The goal of CSDFT is to first use the FDE theory to treat the system as a collection

of interacting subsystems, and second, similarly to CDFT, to apply to each subsystem

(or a subset of them) a real-space constraint. This leads us to the CSDFT Lagrangian.

Namely,

LCSDFT[{ρI}] = LFDE[{ρI}] +

NS∑
I

V I
c

[∫
ωIc (r)ρI(r)dr−N I

c

]
(3.6)

As a result of the FDE treatment, each subsystem is mapped on its own KS system

with the subsystem KS orbitals given by the following set of coupled Schrödinger

equations solved selfconsistently:

[
−∇2

2
+ vI

KS(r) + vI
emb(r) + V I

c ω
I
c (r)

]
φ(i)I(r) = ε(i)I(r)φ(i)I(r). (3.7)

where φ(i)I(r), ε(i)I are the molecular orbitals and orbital energies of subsystem I.

In Eq.(3.7), vI
emb incorporates the interactions between subsystems and takes the
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following form:

vI
emb(r) =

NS∑
J 6=I

[∫
ρJ(r′)

|r− r′|
dr′ −

∑
α∈J

Zα
|r−Rα|

]
+

+
δTs[ρ]

δρ(r)
− δTs[ρI ]

δρI(r)
+
δExc[ρ]

δρ(r)
− δExc[ρI ]

δρI(r)
. (3.8)

The convergence of the set of equations in Eq.(3.7) is achieved in this work by the

so–called freeze-and-thaw procedure [124, 47], which allows convergence of each sub-

system density self–consistently with respect to the other subsystems.

CSDFT was implemented in a locally modified version of ADF[112] in such a way

to be compatible with all the exchange–correlation functionals available (including

orbital dependent functionals). The CSDFT algorithm can be summarized as follows:

1. The density matrix of subsystem I at SCF cycle n (Pn
I ) is employed to build

the subsystem Fock matrix.

2. The density matrices of the other subsystems are used to construct the embed-

ding potential, vI
emb.

3. An initial guess of the CSDFT constraint for that subsystem is given, V I
c (n, 0),

where 0 indicates the first CSDFT cycle.

4. Eq.(3.7) is solved for with V I
c = V I

c (n, 0).

5. The CSDFT constraint N I
c (n, 0) =

∫
ωIc (r)ρI(r)dr is evaluated and compared

to the given N I
c .

6. Using a function optimizer (braketing and a golden search algorithm adapted

from numerical recipes) a new value for V I
c is determined, which is now indicated

by V I
c (n, 1), and the subsystem Fock matrix is rediagonalized.

7. Steps 4–6 are repeated m times until |N I
c (n,m) − N I

c | < δ with δ set by the

user. In our simulations we used δ = 10−12a.u.. Each inner CDFT cycle takes a
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negligible fraction of the computational cost of building the Fock matrix. Values

of m between 30 and 50 are needed on average to reach convergence for each SCF

cycle. The number of CDFT iterations (i.e., m) needed are system dependent

and generally decrease as the SCF procedure nears convergence. Overall, the

SCF cycle is slowed down anywhere between 2 to 10 times the original timing.

However, our implementation is undergoing optimizations, and we expect to

improve upon such timings in future releases of the code.

8. A new density matrix, Pn+1
I , is found. m is set to 0, and Pn+1

I is used again in

Step 1 until the SCF reaches convergence.

9. Once convergence is achieved for subsystem I, its density matrix is frozen and

the above steps are repeated for the SCF of subsystem I + 1.

3.3 Computational Details

All computations have been carried out with a locally modified version of ADF

2015[112]. The GGA functional PBE[93] for the exchange–correlation along with

TZP basis set were employed in all computations. When carrying out a CSDFT

calculation we used the PBE/PW91K/TZP level of theory (e.g., PBE for exchange–

correlation, PW91k for the nonadditive kinetic energy, and the TZP basis set). A

series of three freeze–thaw cycles were used to bring the CSDFT subsystem densities

to selfconsistency. The DNA geometries were generated with the NAB tool of the

AMBERtools package[13].

As we have indicated in the theory section, the CDFT constraining potential,

ωc(r), is defined differently depending on the population analysis employed. In this

work, we make use of the newly formulated Yukawa population analysis[32]. As

such a population analysis has never been employed before in CDFT computations,

we first analyze its suitability for describing diabatic states for hole transfer. The
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unnormalized Yukawa population analysis function is defined by[32]:

Pi(r) = ηi
exp(−2r)

r3
, (3.9)

where the size–adjustment parameter ηi takes values of 0.3 for hydrogen and 1 for all

other elements (all quantities in atomic units). r is the distance from nucleus i. This

unnormalized function is then normalized as follows:

pi(r) =
Pi(r)∑
j Pj(r)

. (3.10)

In the results section, we will compare CDFT diabatic states computed with the

Yukawa and the well established Becke population analysis.

3.4 Population analysis: Yukawa vs. Becke

In this section we report benchmark calculations of the performance of two different

population analyses used in the definition of the ωc(r) CDFT potential for the con-

struction of diabatic states for hole transfer in two radical cation molecular systems:

byphenyl (BP) and diphenylmethane (DPM). This is of particular interest, due to

the fact that CDFT is dependent on the population analysis employed in defining the

ωc(r) potential. The population analyses are used to constrain a hole on one of the

phenyl rings. We employ the widespread Becke population analysis [5] in comparison

with the Yukawa population analysis [32], and as third-party monitor we compute

Hirshfeld and Mulliken charge analysis. For sake of clarity, let us stress that we do

not define the constraining potentials in terms of Mulliken or Hirchfield populations,

as it is well-known that the former leads to inaccurate diabatic states[129] and the

latter has not been implemented yet in our CSDFT code. This test shows whether

Becke or Yukawa population analyses lead to physically similar diabatic states.
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As the sought diabatic state is one in which one of the phenyl rings is positively

charged by one excess hole, the rest of the molecule is overall neutral showing some

polarization. In Figure 3.1, the considered molecules are displayed.

Figure 3.1: Color coated Hirshfeld atomic partial charges in BP and DPM radical
cations when the positive charge is constrained to be localized on the upper phenyl
rings. Blue denotes positive charges and Red denotes negative charges. Reproduced
with permission from reference 99

Table 3.1, shows that both Yukawa and Becke produce similar diabatic states.

Yukawa is consistent with Becke not only in the magnitude of the charge but also

in the sign of the charge on each atom. In addition, in DPM the sum of atomic

Hirshfeld charges for the positively constrained region is 1.0001 for both Becke and

Yukawa derived ωc(r) (0.9998 and 0.9999, respectively from Mulliken charge analysis).

For BP, once again Becke and Yukawa produce the same overall Hirshfeld charges in

the positively charged region.

Figure 3.1 displays qualitatively the Hirshfeld charges for BP and DPM. The

interesting point to note in the figure is the fact that of the atoms in the constrained

region (C: 2, 3, 5, 7, 9 and 11, H: 1, 4, 6, 8 and 10 for BP and C: 2, 3, 4, 6, 7 and 10,

H: 1, 5, 9, 11 and 15 for DPM) the ones situated at the boundary carry the largest

charge. This effect is more severe in BP than in DPM. We speculate this is because in

DPM a methylene group is acting as a bridge, and its sp3 hybridization is capable of
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Hirshfeld Mulliken
System Atom Becke Yukawa Becke Yukawa
DPM C2 0.1076 0.0807 0.399 0.372

C3 0.0232 0.0195 0.232 0.233
C4 0.1575 0.1614 0.363 0.288
C6 0.0795 0.0937 0.289 0.306
C7 0.0287 0.0233 0.308 0.297
C8 −0.1190 −0.1081 −0.001 0.042
C10 0.0972 0.0740 0.303 0.280
C12 −0.0175 −0.0118 −0.045 −0.019
C16 −0.0635 −0.0589 0.190 0.201
C17 −0.0543 −0.0503 0.200 0.209
C18 −0.0383 −0.0357 0.198 0.197
C20 −0.0352 −0.0322 0.193 0.194
C22 −0.0343 −0.0304 0.188 0.191

BP C2 0.0522 0.0511 0.337 0.321
C3 0.0393 0.0400 0.242 0.248
C5 0.1082 0.1086 0.324 0.325
C7 0.0393 0.0400 0.242 0.248
C9 0.0522 0.0511 0.337 0.321
C11 0.1697 0.1695 0.305 0.270
C13 −0.0574 −0.0563 0.163 0.178
C14 −0.0296 −0.0302 0.202 0.196
C16 −0.0199 −0.0202 0.203 0.202
C18 −0.0296 −0.0302 0.202 0.196
C20 −0.0574 −0.0563 0.163 0.178
C22 −0.0589 −0.0587 −0.248 −0.249

Table 3.1: Hirshfeld and Mulliken charge analyses of the carbon atoms belonging to
the region where the hole is constrained to reside in the radical cationic diphenyl-
methane (DPM) and byphenyl (BP). In the CDFT calculation, Becke and Yukawa
population analysis were employed in the construction of the ωc(r) potential. Atom
numbers and labels from Figure 3.1. Reproduced with permission from reference 99
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blocking electronic communication between the phenyl rings. Conversely, in BP the

polarization produces an induction not only to the first non-constrained atom but in

the atoms bonded to it.

Summarizing the above discussion, the Yukawa partition function produces dia-

batic states that are comparable with the ones produced with a Becke population

analysis. In the following studies, we will only employ Yukawa population analysis

for generating diabatic states.

3.5 Phosphate effect on hole transfer couplings in

DNA.

Recently, our group has been interested in characterizing the environmental effects in

hole-transfer couplings in DNA [97]. We have analyzed the effect of polarization given

by the counterstrand and ribose groups on the hole transfer superexchange couplings

in two DNA oligomers, using FDE for the generation of each diabatic state[97]. We

concluded that the counterstrand affects hole transfer more strongly than the riboses.

In the absence of a counterstrand, the riboses slightly improve hole conduction by

decreasing the tunneling potential wall separating donor and acceptor.

However, in our previous study[97], as well as in all other previous studies of hole

conduction in DNA [40, 41, 106, 75, 74, 76, 7, 27, 117, 119, 116, 91, 92], couplings were

calculated in the absence of phosphate groups with the argument that the phosphates

are far away both geographically and energetically from the region of DNA where the

hole travels through (i.e., the nucleobases). There are studies that suggest the possi-

bility of counterions strongly affecting (even “gating”) the charge transfer/transport

in DNA [102, 36]. In order to model such a conducting regime, phosphate groups

need to be included in the quantum mechanical modeling. In this section, we decided

to shed light on the effect of the phosphate groups on the superexchange couplings in
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DNA by modeling two single-stranded, dry DNA oligomers: GTG and GAG.

3.5.1 Generation of diabatic states

Bridge States

G1

G2

PO4

T/A

Subsystem 2 

Subsystem 1 

Figure 3.2: Spin densities of the four computed diabatic states for GTG and GAG
systems: G1 and G2 feature hole localization on either guanine G1 or guanine G2; T or
A have the hole localized on the bridge composed of thymine or adenine, respectively;
PO4 has a hole localized on the P-atom and its four surrounding Oxygen atoms. Each
isosurface is the spin density of the constructed diabatic state for hole transfer in the
single-stranded DNA. Given the low spin contamination in our calculations, it also
represents the location of the hole. For sake of clarity, we rendered the spin density
of the bridge states in a different color. Reproduced with permission from reference
99

Figure 3.2 shows the spin densities of the diabatic states considered in the CSDFT

calculations. The supersystem is split into two subsystems. The first subsystem is

composite, formed by guanine and adenine/thymine linked together by a PO4 group.

The second subsystem is a single guanine nucleoside (no phosphate group). CSDFT

was used to calculate each diabatic state. Details of the definition of the constraining

region in each diabatic state can be found in the caption of Figure 3.2.

In each computed diabat, the spin density is entirely localized on the selected

atoms with insignificant spin polarization outside the selected region. The spin density

in the PO4 group is correctly mostly localized on the oxygen atoms. The HOMO
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orbital computed for the PO4-localized diabats has π character from the 2py orbitals

of the oxygen and a small contribution from the phosphorus d, in agreement with

previous studies [34]. Given the localized nature of the generated diabatic states, we

conclude that the constraints are physically meaningful and can be used to understand

the underlying properties of the hole transfer in DNA.

3.5.2 3- and 4-state models

We have considered three cases: two versions of a 3-state model, and a 4-state model.

In the 3-state models, the hole is allowed to occupy only the nucleobases (i.e., G1,

G2 and the bridge state T or A). In the 4-state model, in addition to the states

considered in the 3-state model, we also include a state in which the hole is localized

on the phosphate group. The 3-state model was considered in order to inspect how

the computed couplings are affected by the presence of the PO4 group.

However, we noticed that the Löwdin orthogonalization needed in Eq.(??) is no-

ticeably affected by the presence of the PO4-localized diabat. Therefore, we define

the following models: 3A, 3B and 4-state models. 4-state model, contains 4 diabats

before and after the Löwdin orthogonalization, 3A-state model takes the 4-state after

orthogonalization and removes the contribution to the Green operator from the dia-

batic state with the hole localized on the PO4 group. The 3B-state model, considers

3 diabatic states (i.e., G1, G2 and A/T) and performs the Löwdin orthogonalization

and subsequently the calculation of the Green operator and couplings. The 4 and

3A-state models are comparable (same orthogonalization) and allow us to access the

effect of including the PO4 group on the hole transfer coupling in both GTG and

GAG strands.

Table 3.2 summarizes the results. These results show that the PO4 group has

essentially no effect on the hole transfer coupling in both GAG and GTG. We will

need to perform additional computations to fully characterize these systems. For
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State 1 State 2 GTG GAG
G1 G2 0.006 0.008
G1 Adenine/Thymine 0.210 0.179
G1 PO4 0.054 0.225

Adenine/Thymine G2 0.064 0.003
PO4 G2 0.005 0.003

Adenine/Thymine PO4 0.260 0.040
Vbridge with PO4 0.98 2.87
Vbridge without PO4 0.97 2.90
VDA with PO4 7.26 11.27
VDA without PO4 7.26 11.29

Table 3.2: Calculated H̃ matrix elements (in eV) and superexchange couplings (Vbridge

and VDA in meV) for GTG and GAG using the full 4-state model. Vbridge without PO4

was computed with the 3A approximation (see text). Reproduced with permission
from reference 99

example, we will need to sample the nuclear degrees of freedom.

3.5.3 Comparison with earlier studies and 3A/B state models

In order to compare CSDFT against our previous analysis [97] (which was obtained by

chopping out the phosphate groups form the molecular geometry) we need to invoke

the 3B approximation (i.e., removal of the PO4 diabat from the Hamiltonian prior to

orthogonalization). We find that the GTG effective coupling for the 3B approximation

is VDA = 20.20 meV, which compares well with the 25 meV value obtained in the prior

study [97]. The couplings are not exactly the same because in our previous study we

used FDE to generate the various diabatic states. Here, instead, we construct them

with CSDFT. However the values are remarkably similar, showing that the CSDFT

diabats are similar to the FDE ones. For GAG, the coupling obtained from the 3B

approximation is 11.55 meV which is very similar to the value obtained from the

3A approximation. In our previous study we did not compute couplings for single

stranded GAG with riboses, thus we cannot compare to it.

Inspecting again our superexchange couplings for GTG (7 meV for 3A, and 20 meV
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for 3B), we see that they are in the same order of magnitude of the 7 meV value of

Blancafort and Voityuk[7]. For GAG, Blancafort and Voityuk obtain 21 meV while we

obtain 11 meV in all state models considered. We note, however, that Blancafort and

Voityuk only considered the nucleobases without including in the simulation neither

the riboses, nor the PO4 groups and thus the coupling values are not expected to

match quantitatively.

3.6 Conclusions

We have developed a method that combines the ability of constrained DFT to gener-

ate diabatic states for electron transfer reactions with the frozen density embedding

method that provides a more computationally tractable solution to the electronic

structure problem by breaking the system into interacting subsystems. We dub the

resulting method CSDFT.

Computationally, our implementation of the constraining potentials utilizes the

Yukawa population analysis. In two benchmark calculations we show that Yukawa

population analysis produces diabatic states that are very similar to the ones produced

by the commonly employed Becke population analysis.

Application of CSDFT to model DNA hole transfer allowed us to inspect the

effects on hole transport caused by the PO4 linkers present in the DNA backbone.

We found that the inclusion of the phosphate in the hole transfer, is irrelevant for

both GTG and GAG oligomers. Thus, we provide computational evidence that the

common practice of replacing phosphates with capping groups is well justified.

31



–1–

Chapter 4

The eXcited Constrained DFT

Method

This Chapter is adapted from the following peer–reviewed journal

� Pablo Ramos and Michele Pavanello. Low-Lying Excited States by Constrained

DFT. J. Chem. Phys., accepted.

4.1 Introduction

The ability to access excited electronic states and their properties is a desirable qual-

ity of modern electronic structure theory methods. In this regard, linear-response

time-dependent DFT [14] (TDDFT, hereafter) has been successfully applied to, for

instance, material science [11, 120, 87] and biological systems [9, 107, 17, 109, 130, 2].

However, although it is a formally exact theory [63], TDDFT has well-documented

deficiencies in the estimation of electronic excitation energies with charge-transfer and

Rydberg character[22, 42] as well as in reproducing the topology of conical intersec-

tions [58]. This is due to such approximations to the exchange-correlation potential as

time-locality (i.e., the adiabatic approximation) and space-locality (i.e., the common



employment of semilocal exchange-correlation density functionals) needed in practical

implementations of the method [63].

Alternatives to TDDFT that are still based on DFT exist. Such as the constrained

variational DFT method of Ziegler et al. [133, 131], the orthogonality-constrained

DFT method of Evangelista et al. [25, 115], and the commonly adopted ∆SCF method

and variations thereof [132, 35, 38, 54]. Although ∆SCF already provides a good esti-

mation of excitation energies for molecular systems [54], its tendency to variationally

collapse to the ground state was noted early on [132]. Such variational collapse during

the ∆SCF procedure has been characterized [103] and is particularly severe in systems

with dense energy spectrum near the Fermi energy. Several methods have been de-

veloped to cure this problem. The Maximum Overlap Method (MOM) [38] requires

the excited ∆SCF orbitals to resemble (via computation of overlap integrals) the

corresponding orbitals solution of the ground state SCF. The linear expansion ∆SCF

method [35] requires the excited particle orbital to resemble as much as possible a ref-

erence molecular orbital. In this way, excitations can be localized on molecules when

they are in contact with infinite systems (such as metal surfaces). Similarly, the local

SCF (LSCF) and the improved molecular orbitals methods [28, 95] optimize a single

determinant where one or more previously defined spin–orbitals are kept frozen. This

assumption ensures strict orthogonality between the excited and the ground states

and is often used in post-Hartree–Fock methods to more quickly converge correlation

energy wrt the number of virtual orbitals [12].

Through this chapter we aim at tackling several lingering deficiencies of commonly

adopted quantum chemical methods for the computation of excited states. We seek

the following qualities:

1. Once an XC functional is chosen, we wish to obtain excited states energies of

similar quality to the ground states ones.

2. Rate of convergence similar to the ground state SCF procedure.
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3. Balanced treatment of valence and charge-transfer excitations.

4. Ability to approach complex regimes, such as conical intersections and con-

densed phase systems.

5. Computationally efficient access to nuclear forces and to nonadiabatic coupling

vectors.

We present a constrained DFT method tailored to compute low-lying electronic

excitations such that it tackles the sought qualities. We call the method eXcited

Constrained DFT (XCDFT). Although the current formulation is appropriate for

molecular systems, it can be generalized to solids characterized by Bloch states rel-

atively effortlessly. XCDFT is fully ab-initio and does not require ad-hoc definitions

or choice of active molecular orbitals, nor does it require the inclusion of virtual or-

bitals. The main idea behind XCDFT is that the virtual space of a reference ground

state can be represented employing only the occupied orbitals of the reference state.

Similarly to certain formulations of density functional perturbation theory that do

not require the use of unoccupied bands (virtuals) [4], XCDFT resolves the space

of virtuals by projection. The Fock operator is then augmented by a nonlocal and

orbital dependent constraining potential that exerts a force pulling electrons into the

virtual space. The strength of that potential is tuned so that exactly one electron is

displaced from the occupied to the virtual space.

4.2 Theory

We use the conventional µ, ν, σ, τ labels for atomic orbital functions (AOs), i, j for

occupied orbitals, and a, b for virtual orbitals. The projector onto the occupied space
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of a reference “ground” state is given by

P̂ g
o =

occ∑
ig=1

|ig〉〈ig|, (4.1)

with ig being the labels of occupied KS orbitals for the reference ground state calcu-

lation.

The main idea of XCDFT is to provide a nonlocal potential pulling electrons into

the virtual space. We can construct a Fock matrix for the excited state calculation

as follows:

F = Fbare + VcWc, (4.2)

with

(Wc)µν = 〈µ|1̂− P̂ g
o |ν〉, (4.3)

and Fbare being the unmodified Fock matrix. The occupied orbitals resulting from

solving the mean field problem with the Fock matrix in Eq.(4.2) are denoted by |je〉.

The Lagrange multiplier, Vc is chosen so that there is exactly one electron in the

virtual space of the ground state reference. Namely,

1 =
occ∑
j=1

〈je|1̂− P̂ g
o |je〉 ≡ Tr [WcD] = Ne −

occ∑
i,j=1

〈je|ig〉〈ig|je〉. (4.4)

Where we have introduced the density matrix, D, in the AO representation.

We can cast XCDFT in a Lagrangian formalism. Namely,

LXCDFT[D] = EHK[D] +

∫
vext(r)ρ[D](r)dr + Vc

[
Tr [WcD]−Nc

]
, (4.5)

where the electron density is considered to be a functional of the density matrix, D.

The XCDFT optimization involves ensuring the LXCDFT is stationary wrt variations
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in the density matrix, D, and the XCDFT Lagrange multiplier, Vc. The first term on

the rhs on Eq.(4.5) is given by,

EHK [D] ≡ EHK [ρ] = Ts [ρ] + EH [ρ] + Exc [ρ] , (4.6)

the second term is the interaction with the external potential, the third term is the

constraint that imposes the electronic transition to the virtual space of the reference

ground state and is defined in Eq.(4.4). If the XCDFT Lagrangian is differentiated

with respect to number of electrons undergoing the ground-to-excited state transition

(i.e., Nc), considering E[ρ] = EHK[ρ] +
∫
vext(r)ρ(r)dr, the following condition is

derived:

−δE[ρ]

δNc

= Vc. (4.7)

Thus, Vc is the work needed to pull one electron from the occupied orbital space

of the reference ground state to its virtual space and can be regarded as the first

excitation energy. In the results section we will compare excitation energies computed

from energy differences as well as from Vc.

4.2.1 Relation to the ∆SCF method

In ∆SCF, the variational problem is carried out with a non-Aufbau occupation of the

molecular orbitals. Specifically, throughout the SCF procedure, the occupation of a

selected occupied MO (typically the HOMO) is set to zero, and simultaneously the

occupation of a virtual orbital (typically the LUMO) is set to one.

To understand how XCDFT and ∆SCF are related, we start by expressing the

non-Aufbau occupation via an auxiliary system that is computed according to the

Aufbau occupations but the occupied orbital energies are modified in such a way that

they generate the wanted ∆SCF occupations. In doing so, we introduce an auxiliary
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potential, capable of achieving the needed orbital energy shift. Namely,

v̂ = s|LUMO〉〈LUMO|, (4.8)

where s is the energy shift. Inspection of the potentials in Eq.(4.8) and Eq.(4.3) re-

veals that they are equivalent if Vc = s in some limiting cases. Specifically, when sys-

tems have well separated orbital energies (including, but not exclusively, the HOMO–

LUMO gap). In systems where the KS energy spectrum is dense, ∆SCF typically

does not converge or collapses back to the original state (ground state), while XCDFT

is expected to converge in almost all cases.

4.3 Computational Details and Implementation

We have implemented XCDFT in a locally modified copy of ADF (version ADF

2017[3]). The XCDFT code relies on the previously implemented Constrained DFT

(CDFT) code by us [99], and handles the SCF procedure in exactly the same way

(see the flow chart in Figure 4.1). At each SCF cycle, the Lagrange multiplier, Vc, is

obtained so to satisfy the constraint (i.e., exactly one electron resides in the virtual

space of the reference ground state). Usually, the number of XCDFT nested iterations

needed to reach convergence for each SCF cycle decreases as the SCF procedure nears

selfconsistency.

This work comprises of two parts: benchmarking and applications. For the first

part, we calculate the excitation energies of a test set of organic molecules (see Table

4.1) using XCDFT, ∆SCF, TDDFT. In all computations, the BLYP, PBE, PBE0,

B3LYP and M06-2X exchange–correlation functionals were employed alongside a TZP

triple-ζ Slater-Type Orbital basis set. We set an SCF convergence criterion of 10−6 for

all calculations. The XCDFT convergence threshold, stepsize, and initial multipliers

inside the nested XCDFT cycle, were 10−9, 0.2 and -0.3 respectively for all systems
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considered.

The applications section is divided in two subsections. First, the photoisomer-

ization of azobenzene is analyzed by computing a relaxed scan from the trans to

cis structures. This scan is achieved by using the B3LYP XC functional along with

the def2-TZVP basis set as implemented in the ORCA program. At each optimized

geometry a vertical excitation energy is obtained with all methods described above.

Second, the solvation effects in the first excitation energy of benzaldehyde are ana-

lyzed using TDDFT, XCDFT and ∆SCF. The employed structure is taken from a

molecular dynamics simulation in which the Amoeba force field[59, 94].

The evaluation of electronic couplings between the states is carried out at the GGA

level using the ELECTRONTRANSFER module of ADF [92] in this way (hybrids are

not yet implemented in ELECTRONTRANSFER): BLYP functional was used when

the XCDFT states were obtained by B3LYP and BLYP functionals; and the PBE

functional was used when PBE, PBE0 and M06-2X functionals were employed. This

strategy was implemented successfully before [98].

4.4 Benchmark of XCDFT excitation energies

To asses the quality of XCDFT excitation energies, we turn to a benchmark set

composed of 15 organic molecules (from aliphatic chains to DNA nucleobases) [108].

Before considering the energy values, we first confirmed that XCDFT could reproduce

the character of the excitation. Table 4.1, reports the transition type of the excitation

and the character involved in the excitation. We find that almost all excitations

correspond to HOMO–LUMO transitions (the energy levels may be degenerate and

result in mixed excitations) with the exception of tetrafluoroethylene, which features

a HOMO to LUMO+2 transition. We confirmed that XCDFT reproduces the overall

character of the excitations in Table 4.1 which are taken from the literature [101, 108,
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IMPLEMENTATION IN ADF:
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𝒈
from 

reference gs.

Build Fock Matrix 
at SCF cycle n.

𝑭𝒏

Initial guess
𝑽𝒄 𝒏,𝒎 = 𝑽𝒄(𝒏, 𝟎)

S𝐨𝐥𝐯𝐞 𝐊𝐒 𝐟𝐨𝐫
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Rediagonalize

SC
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Figure 4.1: Diagram of the XCDFT algorithm implemented in ADF[3].
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67, 44, 29, 135].

Label System Transition type Character

1 Ethylene π → π∗ Single Orbital
2 Tetrafluoroethylene π → 3s Single Orbital
3 Isoprene π → π∗ Mixed
4 1,3-Butadiene π → π∗ Mixed
5 Formaldehyde n→ π∗ Single Orbital
6 Propanamide n→ π∗ Single Orbital
7 Acroleine n→ π∗ Single Orbital
8 Thiophene π → π∗ Mixed
9 Pyrrole π → 3s Single Orbital
10 Benzene π → π∗ Mixed
11 Naphthalene π → π∗ Mixed
12 Pentacene π → π∗ Mixed
13 Benzaldehyde n→ π∗ Single Orbital
14 Cytosine π → π∗ Single Orbital
15 Adenine π → π∗ Single Orbital

Table 4.1: Nature and main orbital transition of the first electronic excitations for all
the systems considered in this work.

In Figure 4.2, we report the absolute error of the obtained excitations with respect

to benchmark data. The bar colors are organized by XC functional employed in the

calculations. Overall, we notice a satisfactory performance of XCDFT which recov-

ers the benchmark excitation energy values to within 1 eV for most systems except

isoprene, butadiene and to some degree ethylene and benzene. Low-lying excitations

of these dienes are problematic for methods including only single excitations due to

their sizable double excitation character [58] a feature which cannot be reproduced by

linear response semilocal TDDFT [64, 24] or by the CI method when it is truncated to

the singles (CIS). In terms of the excitation energies, the addition of exact exchange

in the XC functional is beneficial for XCDFT and it is so on average across the entire

test set. The M06-2X functional stands out and its behavior will be discussed further

later.

All XC functionals yield XCDFT excitation energies in reasonable agreement with

40



the benchmark for system with heteroatoms (systems 5, 8, 13), aromatic rings and

DNA nucleobases (systems 12, 8, 9, 14 and 15).

Focusing on the values from the orthogonalized XCDFT (OXCDFT), on average

we find that the absolute errors slightly decrease compared to XCDFT. For instance,

in the case of PBE0 the orthogonalization procedure improves upon the XCDFT

excitation energies. However, if the overlap between ground end XCDFT excited

state is numerically high (specifically higher than 0.4) we notice that the excitation

energies become severely overestimated. We find this peculiarity in benzene and

pyrrole systems (systems 9 and 10). As benzene exemplifies a class of excitations

(i.e., excitations of mixed character), we further dwell on this system in the next

section aiming at uncovering any critical property of XCDFT.

Complementary to the above discussion, we also compare the numerical values

of the Lagrange multiplier, Vc, as a measure of the excitation energy. Vc from GGA

functionals tends to underestimate the excitation energies, while Vc from hybrid func-

tionals is more accurate. In the next section, we will show that Vc should yield more

reliable excitation energies than energy differences evaluated with the corresponding

KS Slater determinants.

Figure 4.2 also shows that ∆SCF is unable to compute the excited states for

tetrafluoroethylene and acroleine due to variational collapse to the ground state. For

the other systems, ∆SCF behaves similarly to XCDFT. Specifically, ∆SCF deviates

from the benchmark for the diene systems and benzene. While XCDFT is capable of

computing almost all of the systems for which ∆SCF variationally collapses.

We also notice that when employing the M06-2X functional in XCDFT calcula-

tions of tetrafluoroethylene, acroleine and pyrrole, the character of the S1 state differs

from the one computed with the other functionals. We attribute the large XCDFT

energy deviation in Figure 4.2 to this incorrect S1 symmetry. For Tetrafluoroethylene,

for example, the M06-2X excitation character is HOMO–LUMO while for the other
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Figure 4.3: Histogram collecting the spin contamination for all XCDFT calculations.
On the x-axis, deviation from 0 indicates spin contamination. The cases showing high
spin contamination (values around 0.5) are PBE0 excitations of Pyrrole, Benzene and
Naphthalene.

XC functionals is HOMO–LUMO+2.

In Figure 4.3 we report the spin contamination histogram for all the XCDFT

calculations presented in this work (75 calculations in total). Spin contamination

can be detrimental, and it is handled in this work by applying the approximate spin

purification formula [54, 132], Epurified
XCDFT = 2EXCDFT−Etriplet. From the figure we evince

that spin contamination is only a marginal concern for XCDFT. However, we do notice

that the spin purification formula improves the excitation energies, especially when

employing hybrid functionals.

4.4.1 Benzene highlights how XCDFT and ∆SCF handle ex-

citations with mixed character

Benzene has degenerate HOMO and LUMO orbitals. Therefore, the low-lying exci-

tations are mixed in character. Specifically, when the B3LYP functional is employed,

we obtain:

� S1 state, B2u symmetry: 50% HOMO to LUMO+1, 50% HOMO-1 to LUMO,
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� S2 state, B1u symmetry: 50% HOMO-1 to LUMO+1, 50% HOMO to LUMO,

Thus, the S0 → S1 TDDFT transition density is

ρ∗S0→S1
(r) =

1√
2

[φHOMO(r)φLUMO+1(r) + φHOMO−1(r)φLUMO(r)] , (4.9)

and the S0 → S2 TDDFT transition density is

ρ∗S0→S2
(r) =

1√
2

[φHOMO(r)φLUMO(r) + φHOMO−1(r)φLUMO+1(r)] . (4.10)

The above transition densities can only be achieved when the excited state wavefunc-

tion is composed by a linear combination of two Slater determinants.

For example, the S0 → S1 transition is achieved in XCDFT by a Slater determi-

nant where the selfconsistent procedure yields a HOMO orbital

φXCDFTHOMO (r) =
1√
2

[φHOMO + φLUMO+1] , (4.11)

and the HOMO-1 is given by

φXCDFTHOMO−1(r) =
1√
2

[φHOMO−1 + φLUMO] . (4.12)

Although it is clear that the work needed to promote 0.5 electrons from the

HOMO-1 to the LUMO and from the HOMO to the LUMO+1 is indeed given by the

XCDFT Lagrange multiplier Vc, the transition density (as well as the total S1 den-

sity) are not going to reproduce the TDDFT ones. The resulting Slater determinant

from Eq.(4.11–4.12) is

ΨXCDFT
S1

=
1

2

[
Ψ0 + ΨLUMO+1

HOMO + ΨLUMO
HOMO−1 + ΨLUMO,LUMO+1

HOMO−1,HOMO

]
, (4.13)

where we indicate by Ψa
i a Slater determinant differing from the ground state one
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by the exchange of occupied orbital φi with virtual orbital φa. The excited state

wavefunction in Eq.(4.13) contains the wanted excitation in the singly excited con-

figurations, but contain also a sizable amount of the ground state Slater determinant

and of a double excitation determinant.

If we consider a chromophore with 3 degeneracies in the HOMO and 3 in the

LUMO the situation is essentially unchanged. The XCDFT determinant will feature

a coefficient of 1√
6

for Ψ0 and collectively 3√
6

for the double excitations, and 1√
6

for

one triple excitation.

Thus, we can conclude this analysis of cases featuring excitations of mixed char-

acter with the following take-home messages

1. XCDFT excitation energies will be reliable if evaluated by the Lagrange multi-

plier, Vc, and not by energy differences. This is because the energy associated

with the XCDFT Slater determinant will be polluted by components in the

ground state wavefunction as well as in double and higher excitations.

2. As the number of degeneracies increases, we expect XCDFT to progressively

overestimate the excitation energy when energy evaluations with the XCDFT

Slater determinant are carried out. While we expect excitation energies carried

out with Vc to be more accurate.

3. Expectation values evaluated with the XCDFT Slater determinant will generally

not yield accurate results. For example, we do not expect XCDFT or ∆SCF

to reproduce the electron density of the excited states when these have mixed

character.
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4.4.2 Differential electron density analysis

We computed the real space representation of the differential electron density, ∆(r),

that is the density difference between the excited and ground states[78, 126]. Namely,

∆(r) = ρe(r)− ρg(r), (4.14)

where ρe/g(r) is the density of the excited/ground state.

Figure 4.4 depicts ∆(r) for an illustrative sample of the studied systems. The

result is that XCDFT density differences typically resemble TDDFT ones as well as

high level wavefunction calculations[126, 78], except for benzene.

From Figure 4.4, we also evince that ∆(r) has a significant dependence to the

amount of exact exchange in the density functional. This behavior is seen in highly

symmetric structures as well as in systems with high π-resonance along the structure

(i.e., where HF exchange can have the largest effect by removing degeneracies).

The set of acenes (benzene→ pentacene) stands out with benzene being the most

extreme case. For benzene, both XCDFT and ∆SCF qualitatively disagree with

TDDFT. According to our analysis in the previous section, we expect benzene to

present problems when XCDFT or ∆SCF wavefunctions are used to evaluate expec-

tation values, such as the excited state electron density. Again, this is ascribed to

the fact that XCDFT and ∆SCF can only represent the excited state with a single

Slater determinant while excitations of mixed character would require a multireference

wavefunction.

In the case of aliphatic structures (such as ethylene and isoprene), the electron

density difference is less affected by the amount of exact exchange in the density

functional.

Figure 4.4 also shows that XCDFT and ∆SCF yields similar but not exactly the

same result. We expect the two methods to yield the same result only in the limiting
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PBE B3LYP
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PBE B3LYP B3LYP
SCFXCDFT Δ

Figure 4.4: Comparison of the XCDFT (pink background) differential electron density
∆(r) with ∆SCF (blue background) and TDDFT (yellow background) computed with
the B3LYP functional. The isosurface value taken for the surfaces was 0.003 a.u..
Figures generated with VMD [45].

47



case of nondegeneracy in the LUMO and HOMO levels as well as large gaps between

LUMO and LUMO+1 and HOMO and HOMO-1.

4.4.3 Three parameters (p, m and d) aimed at analyzing the

computed excitations

While the results in Figure 4.4 were obtained by a pointwise difference of the electron

density functions of excited and ground states, we also evaluated the difference of

excited and ground state density matrices in the basis of the MOs of the excited state

[i.e., {|ie〉} in the notation of Eq.(4.1–4.4)]. Namely,

∆ij = δij −
∑
k

〈ie|kg〉〈kg|je〉. (4.15)

Evaluating this matrix is useful because it allows us to determine if the excited

state has strong orbital mixing character by inspecting its eigenvalues. Towards this

goal, we borrow a metric from Ref.69, which prescribes to calculate the eigenvalues

of ∆(r) (the eigenvalue equation ∆ti = λiti) and perform the following summation:

p =
1

4

∑
j

λ2
j − λ4

j . (4.16)

From the analysis of Mavros et al. [69], it is concluded that charge transfer states

generated with CDFT and featuring a value of p > 0.1 are mixed in character and will

yield incorrect distance dependence in the computed electronic couplings. Although

CDFT and XCDFT are very different methods and target very different constrained

states, we adopt this metric p because it can single out the excitations with mixed

character (such as the ones occurring in the benzene molecule). In our calculations,

the p values are typically several orders of magnitude lower than 0.1, thus in Table

4.2 we report −log (p) instead.
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System PBE BLYP B3LYP PBE0 M06-2X

Ethylene 3.1 3.1 2.9 2.9 3.0
Tetrafluoroethylene 3.4 3.5 3.1 3.0 2.5

Isoprene 3.5 3.5 3.1 1.6 1.5
1,3-Butadiene 3.6 3.6 3.1 1.6 2.1
Formaldehyde 3.3 3.3 2.9 2.8 2.6
Propanamide 1.9 1.6 2.4 2.4 1.1

Acroleine 2.6 2.6 2.1 1.9 1.9
Thiophene 3.0 3.0 1.5 2.7 1.5

Pyrrole 1.9 2.0 1.5 1.6 1.5
Benzene 1.0 1.0 1.0 1.0 1.0

Naphthalene 3.6 3.7 1.2 1.1 1.1
Pentacene 4.3 4.4 1.4 1.2 1.3

Benzaldehyde 2.1 2.2 1.6 1.4 1.1
Cytosine 2.2 2.2 1.8 1.5 1.9
Adenine 2.3 2.3 1.3 1.1 1.6

Table 4.2: Computed − log (p) for the transition from ground to first excited state
for all systems considered. The p values close to p = 0.1 threshold are given in bold
font.

To make use of the computed p values, we have determined that those excitations

with − log (p) values above 2.0 are strictly of single-orbital character. Below 1.5,

orbital mixing starts to be noticeable. While in principle orbital mixing is not a neg-

ative characteristic of an excitation, our analysis above regarding how single reference

theories like XCDFT and ∆SCF approach excitations of mixed character prompts us

to become aware of when a mixed character excitation occurs. This allows us to (1)

avoid using the KS determinant of the excited state for any expectation value; (2)

use the Lagrange multiplier, Vc, as a more reliable estimate of the excitation energy.

Figure 4.5 displays a summary for the p parameter as a function of the XC func-

tional employed. The figure demonstrates that when the % of HF exchange increases

the parameter p becomes larger. Thus, mixed-character excitations are more likely

when hybrid functionals are employed.

As pointed out by our previous analysis on benzene, excitations of mixed charac-

ter introduce in the XCDFT and ∆SCF determinants components from excitations
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Figure 4.5: Comparison of the amount of HF, exact exchange w.r.t. the total sum of
each value of the parameter − log (p) carried out for XC functional.
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Figure 4.6: Correlation (scatter) plots of p against d and m parameters. All values
in a −log scale. See Eq.(4.17) for the definition of the parameters.

higher than single. Thus, we carried out a thorough inspection of the higher-than-

single excitation character (e.g., doubles, triples, . . . ) of the XCDFT excitations. In

this regard, we consider two additional parameters: d, accounting for the amount of

higher-than-single excitations; and m, accounting for mixing of the excited state with

the reference ground state. The latter occurs because we do not impose orthogonality

between the Kohn-Sham determinants of ground and excited states. The parameters

are defined as follows:


p = 1

4

∑
j λ

2
j − λ4

j , from Eq.(4.16),

m = |〈Ψ0|Ψe〉|2,

d = 1− |〈Ψ0|Ψe〉|2 −
∑

ia |〈Ψe|Ψa
i 〉|2.

(4.17)

In Figure 4.6, we show correlation plots of d, m and p.

As indicated in Figure 4.6, m displays excellent correlation with p. This is a

further confirmation that when the XCDFT determinant has a component on the

ground state wavefunction, the excitation character is likely to be mixed. From the

figure we also notice that the d vs m correlation is not as good as the p vs m.

Several points in the m vs d correlation lie below the fit–line. These are exci-
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tations where the XCDFT wavefunction has significant overlap to the ground state

wavefunction and low contributions from the excitations higher than single. These

cases can occur if the excitation is represented as follows (or partially represented),

φXCDFTHOMO = aφHOMO + bφLUMO

φXCDFTHOMO−1 = cφHOMO−1 + dφLUMO. (4.18)

From the above equation, it is clear that we obtain some ground state contribu-

tions while the double excitations are partially removed. We find that this is the

case for Benzene when the M06-2X functional is employed featuring (from Table S1)

− log(m) = 0.6 and − log(d) = 1.1. This is also confirmed by inspecting the excitation

character of this transition (see Table 4.1).

4.5 Applications

4.5.1 Can XCDFT approach conical intersections?

With the purpose of testing the ability of XCDFT to model dynamical processes, we

computed a section of the potential energy surface of ground (S0) and excited state

(S1) of azobenzene. These states are involved in the photoisomerization process of this

molecule [134, 100]. Previous studies [18, 16, 68], showed that the isomerization path

from the trans-(E)-azobenzene to cis-(Z)-azobenzene occurs through rotation around

the central CNNC dihedral angle, γ, (see Figure 4.7), and a conical intersection

connecting S0 and S1 states occurs between 88° and 92°.

As shown in Figure 4.7, XCDFT recovers the correct topology at the crossing

point, which we find at 90°in agreement with previous works. A closer inspection of

this particular point reveals that both states S1 and S0 are slightly split by 0.04 eV

at the crossing.
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Figure 4.7: Photoisomerization of azobenzene, comparison of (a) XCDFT/B3LYP, (b)
TDDFT/B3LYP and (c) XCDFT/PBE PES scans along the CNNC dihedral angle, γ.
All energies are relative to the maximum energy value of the ground state occurring
at 90°. ∆SCF suffers from variational collapse and thus the data is not reported (see
comments in the text). All ground state constrained geometry optimizations were
done with the B3LYP functional using ORCA [79].The ground state computed with
the PBE functional did not converge at the crossing point.

We should point out that the ability to reproduce the correct topology of the

conical intersection is moderately dependent to the amount of exact exchange in

the functional. When employing PBE, for example, the geometry at the crossing

could not converge in the ground state calculation. Thus the subsequent XCDFT

calculation could not be carried out. For PBE, judging from the trends of ground

and excited state curves, the crossing would probably have slightly incorrect topology

behaving similarly to TDDFT (although not as severely) where rather than a conical

intersection, a double seam is present.

Furthermore, XCDFT produces accurate excitation energies for this mechanism,

the vertical excitation energy of trans-(E)-azobenzene and cis-(Z)-azobenzene are 2.40

and 2.50 eV, respectively. These are in close agreement to the experimental values and

also reproduce the experiment in that the Z isomer has a lower excitation energy than

E isomer. Strikingly, XCDFT is the only DFT method that within the conditions of

the experiment reproduces above trend, while in the literature is found that for both

TDDFT and ∆SCF the excitation energy for trans-(E)-azobenzene is higher [68].

This very good agreement with previous studies is further reinforced by low values
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of the metrics introduced before to assess the quality of the excitation. Specifically,

for all isomers, the maximum values of these metrics are: p = 0.009, d = 0.09 and

m = 0.02.

∆SCF, unfortunately, variational collapses along the PES scan. We also made

sure that this was not a basis set dependent behavior and recomputed the ∆SCF

excitations with ADF and ORCA (i.e., with Slater and Gaussian type of basis sets).

In both cases, ∆SCF collapses at the edges of the pathway, i.e. for γ between 0° and

50° and between 120° and 180°. However, when the Gaussian basis set is used, the

range 60-110° there is no variational collapse but the excitation energies are deviated

from the accepted values by over 1 eV.

4.5.2 Can XCDFT approach condensed phase systems?

We developed XCDFT hoping that it would be applicable to a wide range of processes.

Solvated systems offer a particularly challenging scenario because in principle the

solute and large portions of the solvent should be included in the quantum mechanical

simulation. Including the solvent, however, can be a daunting task due to the sheer

amount of quantum electrons that need to be accounted for in addition to the ones

belonging to the solute [73]. Additional complications arise when approximate XC

functionals are employed in linear response TDDFT. Artificially low-lying states of

solute–solvent charge transfer character can plague the computed spectra [22, 80].

We test XCDFT for computing the solvatochromic shift in the first excitation

energy of benzaldehyde when it is surrounded by 8 water molecules. In Figure 4.8 the

solute–solvent system considered is depicted. XCDFT, TDDFT and ∆SCF methods

were employed in two calculations each: isolated benzaldehyde (i.e., in vacuo), and

the full system (i.e., benzaldehyde including the 8 water molecules). The B3LYP XC

functional was employed in all calculations, because this functional provides the most

accurate excitation energies for benzaldehyde for the methods employed (see Figure
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TDDFT XCDFT

Figure 4.8: Depiction of the benzaldehyde in water system considered in this work.
The differential electron density, ∆(r), calculated by TDDFT and XCDFT is also
depicted. Figure obtained by VMD[45] with an isosurface value of 0.003 a.u for ∆(r).

4.2).

The differential electron density, ∆(r), does not show any significant difference

between XCDFT and TDDFT. We find that the excitations obtained from XCDFT

(both from energy differences, labelled as XCDFT, and Vc) and TDDFT are red

shifted compared to in vacuo.

Method Efull Evacuo zfull

XCDFT 3.10 3.26 -0.16
Vc 3.13 3.32 -0.19

TDDFT 2.97 3.16 -0.19
∆SCF v.c. v.c. – –

Table 4.3: Excitation energies for the composed system in Figure 4.8 with the B3LYP
XC functional. Efull refers to the computation on the whole system, while Evacuo is
the energy for the isolated benzaldehyde at the same geometry of the full case. z
represents the energy shift from isolated to solvated benzaldehyde. All values are
reported in eV.

XCDFT and TDDFT energies differ by less than 10 %. Moreover, there is con-

sistency in the data as the solvathochromic shift values computed by XCDFT and

TDDFT are the same and can be related to available experimental data[6] where a

red shift due to solvation effects is reported. This indicates that XCDFT is a suitable

method for describing the electron dynamics in a condensed phase system. Conversely,

∆SCF suffers from variational collapse in both full and in vacuo simulations.
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Figure 4.9: Mean unsigned error (MUE) of the excitation energy for each DFT method
used in the excitation energy calculations against benchmark values. We have indi-
cated by blurred bars the contribution to the ∆SCF errors from calculations involving
variational collapse of the excited state to the ground state.

4.6 Conclusions

In sum, we have proposed XCDFT, a variational method for the computation of

low-lying excited states. The method is found to produce excitation energies in quan-

titative agreement with TDDFT and semiquantitative agreement with benchmark

calculations. We summarize this finding in Figure 4.9.

All the XCDFT variants introduced in this work (i.e., XCDFT, OXCDFT and Vc)

are compared in Figure 4.9 where the mean unsigned error (MUE) is also compared

to TDDFT and ∆SCF. The MUE for XCDFT is typically larger that the one from

TDDFT but is much smaller than ∆SCF. Unexpectedly, for several of the systems

considered ∆SCF suffers from variational collapse independently of the employed

functional. Variational collapse is particularly severe when the M06-2X functional is

used.

We also analyze the ability of XCDFT to approach complex processes. We chose
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a system featuring a conical intersection between S0 and S1 (azobenzene), and a

solvated benzaldehyde. XCDFT is found to excellently reproduce the known trends

for these systems, marking a decisive improvement over semilocal and hybrid linear

response TDDFT and ∆SCF. Although we cannot claim that XCDFT will deliver

good results for all systems featuring conical intersection or solvated chromophores,

and despite limitations due to the single Slater determinant form of the XCDFT

excited state’s wavefunction, the success story outlined here for the two prototypical

systems considered provides us with much needed hope, expectation and enthusiasm

for further investigations of this method.
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Chapter 5

Applications

This Chapter is adapted from the following peer–reviewed journals

� Pablo Ramos, Marc Mankarious, Michele Pavanello and Damien Reidel. Prob-

ing Real-Space Charge Transfer Dynamics in an Iron-Tetraphenylporphyrin

Dyad on a CaF2/Si(100) Surface. Submitted.

� Pablo Ramos, Agostino Migliore and Michele Pavanello. Charge Transfer Anal-

ysis in Peptidylglycine α-hydroxylating Monooxygenase (PHM) Enzyme. Sub-

mitted.

5.1 Fragment Orbital DFT

The fragment orbital DFT or FODFT is a computationally low-cost method to cal-

culate electronic couplings. This is because the wavefunctions of each diabatic state

are approximated by the fronteer orbitals of the isolated donor/acceptor fragments

[105, 56, 86]. The underlying approximations in FODFT are that (1) the interactions

between donor and acceptor have not effect on the orbital shape, (2) the coupling

component related to orbitals below the fronteer is neglected (e.g. frozen core). In

FODFT, the wavefunctions can be described by a single determinant of N − 1 spin-



orbitals φ, where N = NA + ND i.e. the sum of the number of electrons of the

neutral donor and acceptor. These determinants are built from the KS orbitals of the

noninteracting isolated donor and acceptor fragments.

ψa ≈ ψD
+A

a =
1√

(ND − 1 +NA)!
det
(
φ1
D . . . φ

ND−1
D φ1

A . . . φ
NA
A

)
ψb ≈ ψDA

+

b =
1√

(ND +NA − 1)!
det
(
φ1
D . . . φ

ND
D φ1

A . . . φ
NA−1
A

)
(5.1)

The Hamiltonian used to calculate the CT matrix elements is the KS-Hamiltonian.

Namely,

HKS
a =

ND+NA−1∑
i=1

hKSa,i

HKS
b =

ND+NA−1∑
i=1

hKSb,i (5.2)

where hKSa,i are the one–particle KS–Hamiltonians for either the ”a” diabat or the ”b”

diabat. One feature of these Hamiltonians is that they are state dependent, thus,

they are made of the combination of orbitals of donor and acceptor species at the

given state. The transfer integral, or coupling between states, is calculated as:

ψa ≈ ψD
+A

a =
1√

(ND − 1 +NA)!
det
(
φ1
D . . . φ

ND−1
D φ1

A . . . φ
NA
A

)
ψb ≈ ψDA

+

b =
1√

(ND +NA − 1)!
det
(
φ1
D . . . φ

ND
D φ1

A . . . φ
NA−1
A

)
(5.3)
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The Hamiltonian used to calculate the CT matrix elements is the KS-Hamiltonian.

Namely,

HKS
a =

ND+NA−1∑
i=1

hKSa,i

HKS
b =

ND+NA−1∑
i=1

hKSb,i (5.4)

where hKSa,i are the one–particle KS–Hamiltonians for either the ”a” diabat or the ”b”

diabat. One feature of these Hamiltonians is that they are state dependent, thus,

they are made of the combination of orbitals of donor and acceptor species at the

given state. The transfer integral, or coupling between states, is calculated as:

Ha,b =〈ψa|H|ψb〉

≈〈ψD+A
a |HKS

a |ψDA
+

b 〉

≈〈φNa |hKSa,i |φNb 〉 (5.5)

Where N above is the fronteer orbital for D or A.

Following section are dedicated to the study of two applications, in which FODFT

was used as complementary method to FDE or CSDFT methods.

5.2 Hole Transfer at NanoScale

The distance dependence of the hole transfer rate between both chromophores is eval-

uated when one chromophore is locally excited. In this manner, four local excitations

were induced at each pyrrole group that conforms the porphyrin ring. A motif of

the system can be seen at Figure 5.6, the system is made of two porphyrins at 15 Å

separation between the molecular origins. Both molecules are rotated by a γ angle of

23°. Given the angle θ, two options are considered: one with the donor molecule at

60



2

14

3

DONOR

ACCEPTOR

Figure 5.1: System of study, the donor molecule shows the different excitation sites.

the configuration given by the θ angle equal to 45°and one with angle of θ = 10°, in

both options the acceptor molecule is at the “Flat” configuration i.e. with θ = 10°.

The rate of hole transfer Γ(E) is obtained by the following equation:

Γ(E) =
2π

~
∑

i∈initial

PI(εi) fI(εi − µI) δ(E − εi)
∑
j∈final

Θ(εj − εi) fF (εj − µF ) |Vij|2

where E is the tunneling energy, PI is the partial density of states (PDOS) of

the donor at each pyrrole group, FI/F is the Fermi distribution function, Θ is the

Heavyside step function to ensure thermodynamic irreversibility, Vij is the electronic

coupling between the molecular orbitals of donor and acceptor, µI/F is the Fermi

level, ε the energy levels and δ(E) is the Dirac delta function.

The electronic coupling is calculated using fragment orbital DFT or FODFT.

The energy levels and the PDOS are calculated individually per pyrrole site and the

energy levels are computed by a single point calculation of the isolated molecule. The

O3LYP exchange–correlation functional was used along with the TZP basis set for

all computations.

In order to analyze the intensity of the hole rates across the energy spectrum

considered, both the energy values and the electronic couplings were interpolated
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using Gaussian curves. In this way, we can plot the rate of transfer as a function

of the energy. In which, each peak was broaden by the following 2–dimensional

smoothing function:

p(x, y) = e−[(x−xo)2+(y−yo)2]/σ2

where xo and yo are the energy levels of the donor and the acceptor within the

energy range and σ is the broadening parameter which in this calculations was equal

to 0.1. This 2D–Gaussian function was used for the electronic couplings, while for

the energy values a one-dimensional Gaussian was sufficient.
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Figure 5.2: Hole transfer rates as a function of the energy for both cases in consid-
eration. One Flat case, means that the donor molecule is a porphyrin with θ = 45°,
while, two Flat means the donor porphyrin has an angle of θ = 10°. Note the dif-
ference in the scaling of the hole rate magnitudes between the two cases. The color
distinction is given by the place of the induced excitation as previously cited in Figure
5.6. The Fermi level is represented by the dashed line.

As shown in Figure 5.2, two main restrictions are spotted. In first place, the

geometry configuration plays an important role in the intensity of the calculated

rate. If the θ angle has small values the rate intensity increases, specifically the rates

are two times more intense when the donor chromophore has the “Flat” configuration.

Secondly, an amount of energy equivalent to 2.0 eV below the Fermi level is required

to peak the rate of transfer. In both situations, when the excitation is induced at
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pyrrole 2 (yellow) and pyrrole 4 (red) the intensity is from 3 to 4 times higher than

the rates when the pyrrole 1 (blue) and 3 (green) are excited. Both restrictions can

be understood by looking at the molecular orbitals (MO) and DOS across the energy

spectrum.

HOMO-14 HOMO-13 HOMO-12 HOMO-11 HOMO-10

HOMO-9 HOMO-8 HOMO-7 HOMO-6 HOMO-5

HOMO-4 HOMO-3 HOMO-2 HOMO-1 HOMO

LUMO LUMO+1 LUMO+2 LUMO+3 LUMO+4

Figure 5.3: Molecular orbitals within the energy range of the donor porphyrin in the
One Flat case.

Figures 5.3 and 5.4 show all MOs involved in the hole transfer within the energy

range considered in the computations. The main difference between these two sets of

orbitals is the electronic contribution that spreads onto the benzene radicals. When

the “Flat” configuration is allow (Figure 5.4), two alternative effects to the “T”

configuration occur: first, the electron density easily populate the benzene radicals as

the angle is less restrictive. This effect can be seen in the virtual orbitals as well as

the HOMO. On the other hand, the second effect is related to the symmetry on the

population of the electron density in the benzene radicals. While in the One Flat case

(Figure 5.3) the density on the benzene radicals are equally distributed, in the Two

Flat case there is a non-symmetric distribution of the density. Which can explain

why additional electron density can be seen at the pyrrole groups in the low energy

orbitals shown in the Figures. The appreciation of the electron density in the benzene

radicals might explain the difference in rate intensity. Therefore, these radicals act

as bridges that reinforce the electronic communication between donor and acceptor
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chromophores.

HOMO-14 HOMO-13 HOMO-12 HOMO-11 HOMO-10

HOMO-9 HOMO-8 HOMO-7 HOMO-6 HOMO-5

HOMO-4 HOMO-3 HOMO-2 HOMO-1 HOMO

LUMO LUMO+1 LUMO+2 LUMO+3 LUMO+4

Figure 5.4: Molecular orbitals within the energy range of the donor porphyrin in the
Two Flat case

Additionally, the variance in the hole transfer rates at different excited pyrrole

can be easily understood by the divergence in the electron density population of each

pyrrole group in every molecular orbital. As above cited, pyrrole 2 and 4 are favor

by the non-symmetric “Flat” configuration. It is worth mention, that due to the

coordinated bonds of the porphryrin ring with the metal center, there are more MOs

where the electron density is located at pyrrole 2 and 4 within the energy range

considered.

In summary, the rate of transfer is highly dependent of the excited pyrrole site,

in which, the pyrrole 2 peaks the rates due to the PDOS and the closer distance

separation with the acceptor site (see Figure 5.5). The benzene radicals reinforce

the hole transfer rate, where the smaller the angle θ the higher the electron density

population at the benzene radicals and therefore the higher the rate intensity. Finally,

the energy range of 2.0 eV given by the “tip” is justify, the energy levels situated at

this energy range below the Fermi level are represented with high electron density at

the pyrrole groups.
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Figure 5.5: Distance dependence of the calculated rates for both cases. The distance
values plotted are the separation between the molecular origin of the acceptor with
the geometric center of each pyrrole group in the donor molecule. Therefore, pyrrole
1 is at 14 Å from the origin of the acceptor, pyrrole 2 at 11.7 Å, pyrrole 3 at 16.9
Åand pyrrole 4 at 18.6 Å.
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5.3 Charge Transfer Analysis in peptidylglycine α-

hydroxylating monooxygenase (PHM) enzyme

The Hole transfer process occurring between the two copper complexes of the pep-

tidylglycine α-hydroxylating monooxygenase (PHM) enzyme is studied. We base our

analyses on the fragment orbital density functional theory (FODFT) and frozen den-

sity embedding electron-transfer theory (FDE-ET). These analyses are done by cal-

culating the electronic coupling between the two Cu–complexes alone (2-state model)

and including two additional bridges states (4-state model) which presumably are

involved in the transfer. In Figure 5.6 the total system is depicted. The Cu–complex

labelled as B has a Cu(II) metal center, and is bound to three histidines. Thus, its

overall charge is +2. The second Cu–complex is labelled as D and has a Cu(I) metal

center bound to four ligands: two histidines, one methionine, and one oxo group.

We have considered 3 oxidation states for the oxo group: neutral (with charge of 0),

superoxo (with charge of −1), and peroxo (with charge of −2). Thus, the overall

charge of the complex is +1, 0 or −1 depending on the oxidation state of the oxo

group. There are two additional “bridge” fragments: tyrosine (labelled as C) and a

propionate anion (labelled as A).

The calculations were performed with the ADF program. For the FODFT cal-

culations, we ran a restricted single point (SP) calculation for each fragment. In all

isolated calculations we used the hybrid exchange-correlation (XC) functional PBE0

along with the TZP basis set of Slater-Type Orbitals. After the isolated calcula-

tions, the couplings were determined using the PBE functional with the previously

determined PBE0 orbitals.

For the FDE jobs the combination PBE/TZP/PW91K was used for the XC–

functional, basis set and non–additive kinetic energy functional. The initial guess

orbitals information and energetics for each fragment were borrowed from the previous
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Figure 5.6: Depiction of the four fragment that composed the hole transfer system.
(A) propanoate, (B) initially Cu(II) complex, (C) tyrosine, (D) initially Cu(I) com-
plex.

SP calculations of the isolated fragments. The subsystems charge and multiplicity

were carried out as described in Table 5.1 with the special treatment of fragment D,

where three oxidation state were considered (i.e., oxo, peroxo and superoxo).

Fragment Charge with hole Spin with hole Charge w/out hole Spin w/out hole

A 0 doublet −1 singlet
B 2 doublet 1 singlet
C 1 doublet 0 singlet
D (oxo) 2 doublet 1 singlet or triplet
D (superoxo) 1 singlet or triplet 0 doublet
D (peroxo) 0 doublet −1 singlet or triplet

Table 5.1: Charge and multiplicities of each fragment with and without a hole local-
ized on them. Fragment labels are in Figure 5.6
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Figure 5.7: Comparison of the isolated and embedded HOMO orbitals for fragments
A, B and C. In the FDE orbitals both HOMO’s are depicted when the hole is in
(FDE+) and out (FDE0) of the fragment. An isosurface value of 0.03 a.u. is used.[45]

5.3.1 FDE-ET results

All possible states involved in the hole transfer are shown in Figure 5.7 and 5.8

(fragment D). In all cases the HOMO orbital is illustrated when the hole is in and

out of the fragment. We also compare the difference between the isolated HOMO’s

at PBE0 with the embedding ones ran with PBE (see FDE0 in Figure 5.7). As it

is expected the PBE HOMO’s tend to be more delocalized than the PBE0 ones.

Generally, PBE and PBE0 orbitals are quite similar, allowing us to compare between

the FDE and FODFT electronic couplings.

Focusing on each fragment individually, we notice that when the hole is on a

fragment (labelled as FDE+ in Figure 5.7), fragment A (the propionate ion) has its

HOMO (i.e. the beta HOMO orbital with respect to FDE0 orbitals) orbital mainly

located at the oxygen atom. The tyrosine (fragment C in Figure 5.7) has the hole

spread onto the whole π region perpendicular to the molecular plane. In the donor

Cu-complex (fragment B in Figure 5.7) the HOMO is located at the Cu center and
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symmetrically spreads on the π orbitals of the histidine rings. Instead when the hole

is away form the fragment (FDE0 in the figure), the HOMO in fragment A acquires

a node. Fragment C shows no appreciable difference when the hole is or not present.

The HOMO in fragment B localizes more onto the metal center with some small

contributions on the adjacent histidine ring, therefore a higher contribution from the

d orbitals of Cu is witnessed compared to FDE+.

For fragment D (see Figure 5.8), we have considered a number of possible oxidation

states for the oxo ligand. The character of the orbitals involved is affected by the

oxo ligand oxidation state. Generally speaking the HOMO of the various states of

fragment D are localized on the oxo ligand. Among them there are two motifs,

one involving one set of O2-localized π∗ orbitals, and the other involving the other

(orthogonal) set of π∗ orbitals. We also note that the most delocalized state is achieved

by the neutral oxo ligand in the triplet multiplicity. An important difference between

isolated and embedding HOMO’s is found for the superoxo and peroxo oxidation

states, the isolated HOMO’s were obtained from a restricted type of calculation where

not specific spin state is given, therefore the most stable configuration reached self–

consistenly resembles the triplet configuration of the +1 case of the oxo and superoxo

states (see Figure 5.8).

The calculated couplings are collected in Table 5.2. Once again, the oxidation

state of the oxo ligand determines the magnitude of the couplings. Specifically, we

notice that the superoxo and the peroxo oxidation states yield the largest couplings.

Among the two, the superoxo oxidation state is believed to exist in the enzyme [52].

Small numerical differences in the coupling computed with the 2- and 4-state

models are expected. Let us consider the following important points: Small numerical

differences in the coupling computed with the 2- and 4-state models are expected.

Let us consider the following important points:

1. Orthogonality: the Löwdin orthogonalization procedure will yield, even though
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Figure 5.8: HOMO orbitals for fragment D in the three oxidation states for the O2

group considered in the study. An isosurface value of 0.03 a.u. is used.

Oxo ligand Active subsystems Initial/Final spina VDA H̃DA Vbridge

D(oxo)

4 1/2 7.81e−5 5.90e−5 1.90e−5

3/2 5.03e−4 3.16e−4 1.87e−4

2 1/2 6e−6 6e−6 –
3/2 8.17e−4 8.17e−4 –

D(superoxo)

4b 2/3 1.32e−3 1.32e−3 4.19e−6

2 2/1 7.1e−5 7.1e−5 –
2/3 4.1e−3 4.1e−3 –

D(peroxo)

4 1/2 3.6e−3 3.4e−3 1.6e−4

3/2 1.2e−2 1.2e−2 5.5e−5

2 1/2 1.6e−5 1.6e−5 –
3/2 7.2e−3 7.2e−3 –

a The electronic multiplicity adopted for fragment D. 1=singlet, 2=doublet,
3=triplet.

b Fragment D in its final state with singlet multiplicity did not reach
self–consistency.

Table 5.2: Electronic couplings obtained for all studied cases using FDE-ET. All
values are in eV.
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slightly, different diabatic states in the 2- and 4-state models due to the fact

that orthogonalization is applied globally and not only pair-wise.

2. State polarization: due to the self-consistent FDE procedure, all subsystems’

electronic structure is polarized by the other susbsystems. Thus, the full 4-

fragment system will feature slightly different local diabats from the 2-fragment

system.

In our previous work [99], we noticed that imposing orthogonality globally could affect

the character of far-away diabatic states. This is a side effect of the orthogonalization

and highlights the difficulty of defining universal quasi-diabatic states [90, 72].

5.3.2 FODFT calculations

FODFT confirms the trends observed in the FDE-ET calculations. However, the

FODFT electronic couplings are lower than the FDE-ET ones when the oxo and

superoxo oxidation states and in the same order of magnitude for the peroxo state.

This behavior can be explained by considering the origin of the orbitals use for the

TI calculation, i.e. PBE0 orbitals which are slightly more localized that the PBE

orbitals used in the FDE-ET calculations. In Figure 5.7, the HOMOs from the PBE0

calculations of the isolated fragments appear to be more localized than the PBE ones

used in the FDE-ET calculations.

Due to technicalities of the FODFT program in ADF, an explicit triplet cannot

be considered in FODFT calculations. Thus we decided to approximate the triplet’s

diabatic state in the FODFT calculations by the LUMO of the isolated fragment D

when oxo and peroxo oxidation states were present. Although this is a very rough

approximation, we have visually confirmed that the LUMO orbital of the isolated

fragment is similar to the HOMO orbital when a triplet multiplicity is adopted in the

FDE calculations. Again, FODFT follows the same trend as the FDE-ET calculations,
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Oxo ligand Active subsystems Initial/final spin VDA H̃DA Vbridge

D(oxo)

4 1/2 1.1e−5 1.1e−5 4.2e−7

3/2 2.1e−5 1.8e−5 3.2e−6

2 1/2 1.1e−5 1.1e−5 –
3/2 3.5e−5 3.5e−5 –

D(superoxo)

4 2/1 3.8e−3 3.3e−3 4.8e−4

2/3 2.4e−2 2.3e−2 4.7e−4

2 2/1 3.8e−4 3.8e−4 –
2/3 9.3e−4 9.3e−4 –

D(peroxo)

4 1/2 1.6e−3 1.6e−3 3.0e−5

3/2 3.2e−2 2.8e−2 3.9e−3

2 1/2 7.1e−5 7.1e−5 –
3/2 1.1e−3 1.1e−3 –

Table 5.3: Electronic couplings obtained for all studied cases using FODFT. All values
are in eV.

and the triplet multiplicity on fragment D leads to the highest hole coupling.
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Chapter 6

Conclusions

In this dissertation the candidate describes his work on the development and valida-

tion of new alternative electronic structure methods intended to model charge transfer

processes. Both FDE and CSDFT methods are found to be reliable and accurate in

the construction of diabatic states suitable for CT reactions. On top of that, sub-

system DFT offers a way to include the environmental effects from first principles

without the need to parametrize the interactions between subsystems.

The FDE-ET modeling of the hole transfer in B–DNA outlined in this dissertation

showed that the effects of the ribose groups and the nucleobases in the counterstrand

are opposite and different in magnitude depending on the oligomer size. Hence, the

effect of the counterstrand completely overpowers any effect due to the presence of

the ribose groups.

The combination of both CDFT and FDE Lagrangians provides a more computa-

tionally tractable solution to the electronic structure problem of composed systems.

In this regard, CSDFT method was successfully applied to understand the impact of

the phosphate groups on the hole transfer in DNA. It was found that the phosphate

group is irrelevant when a hole is transfered for both GTG and GAG oligomers.

The Adiabatic version XCDFT gives accurate electronic excitations. Where the



correct behavior of various physical phenomena were achieved. The excitation ener-

gies evaluated by Vc are more accurate than direct energy evaluation. In addition,

XCDFT casts itself as a versatile tool in the analysis of complex systems such as

conical intersections.

The study of the two applications demonstrate not only the scale of the systems

that can be tackle but also the accuracy that can be achieved by these methods, where

a realistic picture of the physics behind the problems is exposed. In addition, the

implementation of new routines to quantify nonadiabatic effects to the energy and the

electronic coupling in composed systems would constitute a significant contribution

to molecular quantum mechanics.
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[39] A.W. Götz, S.M. Beyhan, and L. Visscher. Performance of Kinetic Energy

Functionals for Interaction Energies in a Subsystem Formulation of Density

Functional Theory. J. Chem. Theory Comput., 5:3161–3174, 2009.

[40] Ferdinand C. Grozema, Yuri A. Berlin, and Laurens D. A. Siebbeles. Mecha-

nism of Charge Migration through DNA: Molecular Wire Behavior, Single-Step

Tunneling or Hopping? J. Am. Chem. Soc., 122:10903–10909, 2000.

[41] Ferdinand C. Grozema, Stefano Tonzani, Yuri A. Berlin, George C. Schatz,

Laurens D. A. Siebbeles, and Mark A. Ratner. Effect of Structural Dynamics

on Charge Transfer in DNA Hairpins. J. Am. Chem. Soc., 130:5157–5166, 2008.

80
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