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ABSTRACT OF THE DISSERTATION

On parameter estimation of state space models and its applications

by Liang Wang

Dissertation Director: Rong Chen

State space model is a class of models where the observations are driven by underlying stochas-

tic processes. It is widely used in computer vision, economics and financial data analysis, engineer-

ing, environmental sciences and etc. My thesis mainly addresses the parameter estimation problem

of state space model and the applications of it.

This thesis starts with a brief introduction and the motivation for studying the problems in the

first chapter. The second chapter follows the first one by covering the main tools used to study

the topics in the thesis. The general framework of state space models and its related filtering

methods, Kalman Filtering for linear Gaussian models and sequential Monte Carlo for other cases,

are introduced. The information criteria, as a tool for model selection, are also covered in this

chapter.

The parameter estimation problem is mainly discussed in the third chapter. Two algorithms

under the general framework of Stochastic Approximation methods are proposed. These two al-

gorithms attain much faster convergence rate and less computational cost by variance reduction
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techniques which utilize the property of sequential Monte Carlo methods. Two numerical exam-

ples are examined to compare the performance. Another contribution of Chapter 3 is the appli-

cation of sequantial Monte Carlo methods in modeling and predicting the bond yield curve with

regime-switching Dynamic Nelson-Siegel model.

The fourth chapter, which is a joint work with Hao Chang, develops a state space model with

regime switching to detect periodically collapsing rational bubbles in stock price. The present-

value stock-price model is expressed in a state space form and the bubble process is modeled as

a conditional dynamic linear system. The asset-bubble system is estimated by a novel sequential

Monte Carlo based method, Mixture Kalman Filter (MKF). The efficacy of the proposed method

is examined by simulated observations and real stock index of the US market.

Another application of state space model with regime switching is discussed in the fifth chapter,

in which real-time Blood Glucose Monitoring problem is addressed using a conditional dynamic

linear system modeling. A study with a biostatistical dataset, Star 1 dataset, has shown the advan-

tage of the proposed novel estimation framework.

In the sixth chapter, a nonparametric regression model, l1 trend filtering method is discussed.

Two trend filtering models out of state space representation, both of which have similar property

as l1 trend filtering, are proposed. With the implementation of sequential Monte Carlo methods as

well as a greedy Viterbi algorithm, both trend filtering models can operate on-line rather than just

on batch data. To better emphasize the two models’ improvement in on-line trend filtering, a real

world econometrics topic is introduced. The econometric example shows the competence of trend

filtering as well as the efficiency of the proposed models.

iii



Acknowledgements

First I would like to express my deepest gratitude to my thesis advisor, Professor Rong Chen.

Without his continuous guidance, brilliant ideas and strong support, I could not stand a chance to

finish this dissertation. I still remember the smile on his face and the Coke in his hand when I first

met with him in his office four years ago. Since then there have been so many precious advice,

encouragement, as well as critism, from which I have benefited so much and will never forget.

More than an advisor, he’s a role model that I would like to follow throughout my life, not only for

his curiosity to the unknown, but also positive attitude towards life.

I wish to thank the faculties in the department of statistics and biostatistics for providing an

inspring and accessible environment to do statistical research. I am grateful to the former graduate

director, Professor John Kolassa, for his valuable advices and continuous support for the graduate

study and life. Sincerely thanks to the department chair, Professor Regina Liu, for her efforts to

take care of every student.

I also want to say thanks to Professor Han Xiao, Professor Zhiqiang Tan and Professor Yangru

Wu for being my committee members and providing helpful comments on my dissertation.

This is also an opportunity to thank my colleague, Hao Chang, in the department of both statis-

tics and finance, for his important contribution to our collaborated work. His insights to potential

finance applications of state space models always inspire me.

Last but not least, I want to show my gratitude to my former and current colleagues in the

statistics program for the enlightening discussions on and beyond statistical research. They made

my life in the department enjoyable.

iv



Finally, great thanks to my family for their unconditional love and my girlfriend for her contin-

uous encouragement and help.

v



Dedication

To my parents Feng and Lingqin; To my girlfriend Linglin

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. State space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. The sequential Monte Carlo framework . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1. Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2. The sequential Monte Carlo methods . . . . . . . . . . . . . . . . . . . . 14

2.3.3. Likelihood estimation under SMC . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Conditional dynamic linear models and Mixture Kalman Filters . . . . . . . . . . 18

2.5. Information criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



3. A smoothed Stochastic-Approximation approach for likelihood estimation of State

space models and conditional dynamic linear models . . . . . . . . . . . . . . . . . . . 23

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Review of Stochastic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3. Two Stochastic Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1. Smoothed likelihood approximation . . . . . . . . . . . . . . . . . . . . . 26

3.3.2. Stochastic approximation with smoothed SMC likelihood . . . . . . . . . 29

3.3.3. Accelerated stochastic approximation with smoothed SMC likelihood . . . 30

3.4. Emiprical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1. Example 1: AR(1) observed with noise . . . . . . . . . . . . . . . . . . . 32

3.4.2. Example 2: Conditinal AR(1) plus noise model . . . . . . . . . . . . . . . 34

3.4.3. Example 3: Regime-Switching Nelson-Siegel term structure model . . . . 37

3.4.3.1. Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.3.2. Real data nalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. Estimating Periodically Collapsing Rational Bubble with Mixture Kalman Filter . . 48

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2. Basic bubble model with constant drift . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1. Model specification and notation . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2. The state space form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3. New bubble model with periodically collapsing . . . . . . . . . . . . . . . . . . . 54

4.3.1. Two-regimes model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2. Three-regimes nodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3. State space form with regime switching . . . . . . . . . . . . . . . . . . . 58

4.4. Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1. Artificial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



4.4.2. US real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5. A conditional dynamic linear model approach for real-time Blood Glucose Monitoring 68

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2. The state space representation of continuous glucose monitoring . . . . . . . . . . 70

5.2.1. The Star 1 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2. Modeling the blood glucose biosensors . . . . . . . . . . . . . . . . . . . 71

5.2.3. The state space representation . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3. Study on a subsample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1. CGM algorithm based on Kalman Filter . . . . . . . . . . . . . . . . . . . 78

5.3.2. CGM algorithm based on Mixture Kalman Filter . . . . . . . . . . . . . . 78

5.3.3. Summary on SSM-based CGM algorithms . . . . . . . . . . . . . . . . . 81

5.4. Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1. Estimation and prediction accuracy . . . . . . . . . . . . . . . . . . . . . 82

5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6. On-line Bayesian Trend Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2. Spike-and-slab trend filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1. Delayed MKF with optimal path on λt . . . . . . . . . . . . . . . . . . . 91

6.2.2. Delayed top-K greedy Viterbi Algorithm . . . . . . . . . . . . . . . . . . 92

6.3. On-line l1 trend filtering with state space representation . . . . . . . . . . . . . . . 93

6.3.1. Annealing method with empirical trial distribution . . . . . . . . . . . . . 94

6.4. Empirical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.1. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.2. Real data–Conditional beta in CAPM model . . . . . . . . . . . . . . . . 100

ix



6.4.2.1. Data and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5. Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



List of Figures

1.1.1.US S&P500 index quaterly price and dividend series. . . . . . . . . . . . . . . . . 3

1.1.2.An illustration of the blood blucose (estimated by CGM), interstitial signal (ISIG)

and fingerstick measurement (FS) system. Vertical lines represents the sensor re-

placement cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3.1.Likelihood approximation of an AR(1) model using SMC estimate and smoothed

SMC estimates simulating particles from different θ0. . . . . . . . . . . . . . . . . 28

3.4.1.Trajectories of paramter updates using N = 500 in SMC. . . . . . . . . . . . . . . 32

3.4.2.Trajectories of RMSE when each SMC run uses N = 500. . . . . . . . . . . . . . 33

3.4.3.Left: Trajectories of RMSE when total iterations are set equal. Right: Trajectories

of RMSE when total MC samples are set equal. . . . . . . . . . . . . . . . . . . . 34

3.4.4.Comparison of three algorithms, under same tuning parameters. m = 100. K = 10

in ASA-SMCw. an = c
n+5 , cn = 1/n1/3. . . . . . . . . . . . . . . . . . . . . . . 35

3.4.5.RMSE comparison based on 100 simulations. In the top two figures we set m =

100 and let total iterations change while the total iteration I = 500 and size m

varies in the bottom two figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.9.Yield surface from 1983:01 to 2010:08. . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.10.Comparison of filteredLt, St andCt using single-regime LS(blue and solid), single-

regime KF(red and dashed) and two-regime (green and dash-dotted). . . . . . . . . 42

xi



3.4.6.Likelihood estimates using independent and smoothing estimating. The solid line

represents the independent estimation. The blue dashed line is the smoothing esti-

mation starting from the cross mark. The dash-dot line is the smoothing estimation

starting from the faraway triangular mark. m = 500 . . . . . . . . . . . . . . . . 45

3.4.7.Convergence comparison of the three algorithms for 1000 iterations. Red solid line

is for SA-SMCw algorithm while blue dashed line is for ASA-SMCw algorithm.

Green solid line(rigid) is for OSA algorithm. Here Monte Carlo sample size m =

100. K = 10 in ASA-SMCw. Dashed horizontal line is the true parameter. . . . . 46

3.4.8.Boxplot of 100 estimations using the three algorithms. Each estimation is based on

1000 iterations and Monte Carlo sample size m = 100. K = 10 in ASA-SMCw.

Dashed horizontal line is the true parameter. . . . . . . . . . . . . . . . . . . . . 47

4.4.1.Evans-one regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2.Evans-two regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3.Evans-three regimes-V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.4.Evans-three regimes-V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.5.US-one regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.6.US-two regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.7.US-three regimes-V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.8.US-three regimes-V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1.ISIG(t), FS(t), CGM(t) and sensor replacement for Subject 1 in Star 1 dataset . . . 71

5.2.2.ISIG(t)/FS(t) for Subject 1 during the life period of sensor ID: A761 083210, with

the linear regression line in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3.Scatter plot of CGM(t) against CGM(t − 1) for Subject 1 with one day, with the

regression line. (a) takes the whole data while b seperates the data into three groups. 75

5.3.1.One day series of ISIG, FS and CGM for Subject 1, obtained by one biosensor with

no replacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2.KF estimated B̂Gt with 95% confidence band, compared with CGM, FS and ISIG. 79

xii



5.3.3.MKF filtered results. (a) records the estimated B̂Gt with 95% confidence band,

compared with CGM, FS and ISIG. (b) records the estimated marginal probability

for each state. (c) records the optimal state at each time. . . . . . . . . . . . . . . . 85

6.1.1.An example of l1 trend filtering with k = 1, 2, 3 respectively. Data are simulated

from piecewise polynomial function plus noise. The true level is included as blue

dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1.An example of spike-and-slab trend filtering(SAS TF) with k = 1, 2, 3 respectively

using MKF with m = 500. Simulated data are the same as Figure 6.1.1 with

xt ≡ 1. The true level is included as blue dashed line. The vertical yellow dashed

lines mark where λ∗t = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1.One-step full likelihood with λ = 100 and two approximations. . . . . . . . . . . . 95

6.3.2.An example of on-line l1 trend filtering with k = 1, 2, 3 respectively. Simulated

data are the same as Figure 6.1.1 with xt ≡ 1. The true level is included as blue

dashed line. The cyan dashed line is the original l1 trend filtering. The green line

is the Bayesian on-line l1 trend filtering estimation. δ = 16. . . . . . . . . . . . . 97

6.4.1.Boxplots of MSE’s on 500 simulations under different methods. From left to right

are l1 trend filtering, Bayesian on-line l1 trend filtering and Spike-and-slab trend

filtering type I and II. In Bayesian on-line l1 trend filtering, m = 2000 and δ = 16.

In SAS trend filtering, σb = 2 and σy = 0.5, 1, 2 respectively. m = 500 for type I

and K = 20 for type II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



List of Tables

3.4.1.Comparison of computational cost, measured by CPU time(s) . . . . . . . . . . . 33

3.4.2.Parameter specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.3.Fitted Parameters of two-regime method . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4.Forecasting comparison measured by RMSE. The bold ones are the best in each

column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1.Parameter Specification for the Evans Bubble Process . . . . . . . . . . . . . . . . 59

4.4.2.Estimation summary: Evans process . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.3.Estimation summary: S&P500 Quaterly . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1.MLE parameter estimation results for model (5.4) . . . . . . . . . . . . . . . . . . 78

5.3.2.MLE parameter estimation results for model (5.7) . . . . . . . . . . . . . . . . . . 79

5.3.3.Information criteria comparison between model (5.4) and (5.7) . . . . . . . . . . . 81

5.4.1.Summary statistics for accuracy comparison. K1 = 150, K2 = 5, k = 20 in

Algorithm 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.1.Mean and standard deviation of best MSE’s for different trend filtering methods

under various combinations of original functions and noise levels. . . . . . . . . . 101

6.4.2.Amortimzed computational time per stock per month for each model. . . . . . . . 103

6.4.3.Comparison of mean excess return between high and low β portforlios, associated

with t-stat. The last row records the difference between the highest and lowest beta

portfolios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiv



1

Chapter 1

Introduction

Statistical modeling and analysis for sequential data have many applications in both scientific

and industrial fields. In many of the applications, the driving forces behind the evolution of the

sequential data are not observable or measurable. State space models (Cappé et al., 2009; Liu and

Chen, 1998; West and Harrison, 1998) allow the researcher to model an observed time series as

being explained by a vector of unobserved state time series in a dynamic system. The long history

of state space models can be traced back to the early Kalman Filter literatures (see Kalman, 1960;

Kalman and Bucy, 1961) as an engineering problem. Early applications of Kalman Filter include

tracking objects, such as airplanes and missiles, from noisy measurements, such as radar. Since its

early success in engineering, state space models have gained increasing attentions in time series

forecasting (see Harvey, 1990; West and Harrison, 1998; Petris et al., 2009; Prado and West, 2010).

Due to their flexibility and easy interpretation in time series modeling, countless applications can

be found under the state space representation. Examples of state-observation variables include the

bubble and stock price in finance, original and received signal in wireless communication, running

speed and position in real-time tracking and many others. Its popularity leads to continuously

active discussions on state space modeling among researchers from engineering, statistics, finance

and many other disciplines (Kantas et al., 2015; Durbin and Koopman, 2012; Aoki, 2013).

1.1 Motivation

Despite of significant progress that have been made in state space modeling during the past

decades, there are still many unsolved issues that need to be explored. Moreover, there are growing



2

needs to calibrate the state space model to solve a real data application issue from practitioners

in different fields. Motivated by this, the thesis tries to make improvements in the following two

topics in state space models: model fitting or parameter estimation for a specific state space model,

and the applications of state space models.

State space models are first proposed from an engineering background, where the parameters

are often previously specified. Therefore early researches focused on model inference based on

given parameters(Doucet et al., 2001) while few mentioned the model fitting topic (Kantas et al.,

2015). Yet with the development of data-driven modeling, the task of calibrating the state space

model is an important problem frequently faced by practitioners and the observed data may be used

to estimate the parameters of the model. Attempts to address the parameter estimation issue include

gradient and EM-based maximum likelihood estimation algorithms (Poyiadjis et al., 2011; Andrieu

et al., 2004), which hardly accommodate the growth of data length due to efficiency issues. There-

fore, more efficient parameter estimation schemes for state space models are in deep need. With

the above motivation, the first topic of this thesis tries to fill this gap by proposing two gradient free

stochastic approximation (Kushner and Yin, 2003) algorithms for maximum likelihood estimation

under the framework of state space models. We will show in Chapter 3 that with variance reduction

techniques, the algorithms attain fast convergence rate with reduced computational cost.

The second topic is driven by the increasing need from various disciplines to make inferences

from sequentially obtained observations that has connections to underlying latent factors. For

example, Figure 1.1.1 shows a dynamic system of stock price and dividend for S&P500 index. It is

believed in financial literatures (Campbell and Shiller, 1988; LeRoy and Porter, 1981; Wu, 1997)

that this system is driven by an unobservable bubble series. A well-designed bubble detection

model would benefit the econometric analysis of the market periodicity and the understanding of

the economy situation. This leads to our proposed regime swithing state space model in Chapter 4,

which achieves better bubble detection performance and explains more of the bubble dynamic. In

clinic trial, the interstitial signals from a continuous glucose sensor and fingerstick measurement are

driven by a latent blood glucose series (Dicker et al., 2013), which can be illustrated in Figure 1.1.2.
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Figure 1.1.1: US S&P500 index quaterly price and dividend series.

An improvement in the continuous glucose monitoring algorithm will greatly advance the study of

diabetes treatment. This improvement can also result from our proposed state space model, which is

elaborated in Chapter 5. Furthermore, one might find state space models’ application in an existing

statistical model. For example, a generalized regression model, l1 trend filtering (Kim et al., 2009)

achieves the filtering function given a set of batch data. However, in time series analysis, the

filtering objective are often required to be carried out on-line in real time to accommodate the fact

that new observation often comes in sequentially. Chapter 6 addresses this issue by converting

this statistical model into state space representation. To summarize, the latter part of this thesis

is devoted to the above financial, biostatistics and statistical applications to provide a standard

procedure of sequential data analysis using state space representation.

1.2 Outline of the thesis

Given sequentially observed data, the framework of calibration via state space model consists

of three steps: converting the dynamic system into state space representation, fitting the model

based on the observed data and making inference based on the fitted model. The rest of the thesis

deals with several important aspects among the procedures. An outline of the subsequent chapter
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Figure 1.1.2: An illustration of the blood blucose (estimated by CGM), interstitial signal (ISIG) and finger-
stick measurement (FS) system. Vertical lines represents the sensor replacement cycle.

contents can be given as follows:

Chapter 2 covers the main tools used to study the above topics, including state space models

and its related filtering methods, Kalman Filtering for linear Gaussian models and sequential Monte

Carlo for other cases. As a special class of state space models, conditional dynamic linear mod-

els (CDLM) provide certain convenience for model inference. CDLM and its associated filtering

algorithm, Mixture Kalman Filter, are also widely adopted in the thesis. The toolkit also includes

information criteria, which provide a standard for model selection.

In Chapter 3, we discuss the problem of fitting a state space model using maximum likelihood

estimator. Two algorithms under the general framework of Stochastic Approximation methods are

proposed. These two algorithms attain much faster convergence rate and less computational cost

by variance reduction techniques which utilize the property of sequential Monte Carlo methods.

On each iteration, a finite difference estimate of the score function is calculated with smoothed
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approximate likelihood function which are calculated with one run of SMC algorithm. Two nu-

merical examples are examined to compare the performance. Another contribution of Chapter 2

is the application of sequantial Monte Carlo methods in modeling and predicting the bond yield

curve with regime-switching Dynamic Nelson-Siegel model, which also proves the improvements

of the two algorithms in parameter estimation.

Chapter 4 presents a joint work with Hao Chang, as an illustration of state space modeling

in finance applications. In this chapter we develop a state space model with regime switching to

detect periodically collapsing rational bubbles in stock price. The present-value stock-price model

is expressed in a state space form and the bubble process is modeled as a conditional dynamic linear

system. We allow two to three regimes that switch by Markovian transition probability matrices

while keeping the system conditionally linear and Gaussian given the regime. The asset-bubble

system is then estimated by Mixture Kalman Filter (MKF). The efficacy of the proposed method is

examined by simulated observations and real stock index of the US market. We demonstrate that

with the associated likelihood-based model selection techniques, our proposed model with regime-

switching better fits the bubble process and can detect most of the bubble collapsing periods in

history.

Another application of CDLM is explored in the Chapter 5, in which real-time Blood Glucose

Monitoring problem is discussed. Inspired by the biological structure of the biosensor signal, fin-

gerstick measurement and blood glucose system, we employ the CDLM framework to address the

continuous Glucose Monitoring problem. Detailed implementation of this SSM-based CGM al-

gorithm includes two main component: periodical and proper parameter estimation and statistical

inference(including estimation, prediction, etc) on blood glucose levels. The carefully designed

algorithm is applied and assessed via an important dataset, Star 1 dataset. The performance com-

parison in both estimation and prediction shows the advantage of the proposed model.

In Chapter 6, a nonparametric regression model, l1 trend filtering method (Kim et al., 2009)

is discussed as an example of state space models’ application in statistical methods. Two trend

filtering models out of state space representation, both of which have similar property as l1 trend
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filtering, are proposed. With the implementation of sequential Monte Carlo methods as well as

a greedy Viterbi algorithm, both trend filtering models can operate on-line rather than just on

batch data. To better emphasize the two models’ improvement in on-line trend filtering, a real

world econometrics topic is introduced. The econometric example shows the competence of trend

filtering as well as the efficiency of the proposed models.
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Chapter 2

Preliminary

2.1 State space models

State space models (Doucet et al., 2001; West and Harrison, 1998; Liu and Chen, 1998) are a

very popular class of time series models that have found numerous of applications in fields as di-

verse as statistics, ecology, econometrics, engineering and environmental sciences . A generalized

state space model consists of two time series {Xt}t≥0 and {Yt}t≥0, which are Rnx and Rny -valued

respectively. {Xt}t≥0 is a latent time series of initial density µθ(x) and follows a Markov transition

density fθ(·|xt−1) called state density, that is,

Xt|Xt−1 = xt−1 ∼ fθ(·|xt−1), (2.1)

and {Yt}t≥0 is observable and dependent on {Xt}t≥0 by the following observation density

Yt|Xt = xt ∼ gθ(·|xt). (2.2)

The state and observation densities can also be expressed as state and observation equations as

Xt = st(Xt−1, εt),

Yt = ht(Xt, et),
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where εt and et are known state and observation innovations. A simple example can be given from

an AR(1) plus noise system as below,

Xt = θXt−1 + Vt, Vt ∼ N(0, 1) (2.3)

Yt = Xt +Wt, Wt ∼ N(0, 1), (2.4)

which is linear and Gaussian. However the state and observation density can be non-Gaussian

and may also involve non-linearities. An example can be given by the Stochastic Volatility model

(Sandmann and Koopman, 1998):

Xt = φXt−1 + σxηt,

Yt = σye
Xt
2 ξt,

(2.5)

where ηt and ξt are independent standard Gaussian variables, Yt is the demeaned return of a port-

folio obtained by subtracting the average of all returns from the actual return and σy is the average

volatility level. Xt drives the specific volatility level at time t.

For fixed parameters θ, the main objective of state space models is to, at each time, obtain or

understand the latent states {Xt}t≥0, given the entire sequence of observations {Yt}t≥0. All the

information about {Xt}t≥0 are given in the posterior distribution

pθ(xt|yt) ∝
t∏

s=1

gθ(ys|xs)fθ(xs|xs−1). (2.6)

There are three main objectives under the framework of state space models:

(1) Filtering: One is interested in the marginal posterior distribution pθ(xt|yt), and estimating

the current state E(h(Xt)|Y1, ..., Yt).

(2) Prediction: One is interested in the marginal posterior distribution pθ(xt+1|yt), and estimat-

ing the current state E(h(Xt+1)|Y1, ..., Yt).
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(3) Smoothing: One is interested in the posterior distribution pθ(xt−1|yt), and estimating the

current state E(h(Xt−1)|Y1, ..., Yt).

It is often desired to perform the inference in an on-line manner. Therefore real-time iterative

algorithms are usually preferred due to its adaptivity to new incoming information. Depending on

model specifications, there are two kinds of iterative algorithms for state space models: Kalman

Filter (Kalman, 1960) for linear Gaussian models and sequential Monte Carlo (Liu and Chen, 1998;

Doucet et al., 2001) for the other forms.

2.2 Kalman Filter

Linear Gaussian state space model (Kitagawa, 1996) is a widely adopted dynamic system in

time series analysis. The popularity of linear Gaussian state space model comes from the model

simplicity for estimation and prediction. A linear Gaussian state space model takes the form

xt = Htxt−1 +Wtwt,

yt = Gtxt + Vtvt,
(2.7)

when Ht, Gt, Wt, Vt are given matrices and wt, vt follow standard normal distributions. The lin-

ear Gaussian state space model has connections to many classical time series model. The ARMA

model with Gaussian innovation (Brockwell and Davis, 2013) can be translated into a linear Gaus-

sian state space modle. For example, a AR(2) with Gaussian innovation model, denoted as

yt = φ1yt−1 + φ2yt−2 + et, et ∼ N(0, σ2),
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can be denoted as the following linear Gaussian model with no observation noise,

yt =
[
1 0

]
xt,

xt =

φ1 φ2

1 0

xt−1 +wt,

where xt = [yt, yt−1]′ and wt = [et, 0]′.The state space representation allows on-line inference

and forecasting using the below Kalman Filtering techniques. Equation (2.3) is another example of

linear Gaussian state space model.

With linear and Gaussian assumption, the posterior distribution pθ(xt|yt) is still Gaussian and

can be obtained on-line with Kalman Filter (Kalman, 1960; Kalman and Bucy, 1961). Here we

give a brief review of Kalman Filter. More details can be found in Harvey (1990) and Durbin and

Koopman (2012). Denote µt = E(xt|y1, ..., yt), Σt = Cov(xt|y1, ..., yt) as the posterior mean

and covariance given the observation series up to time t. Kalman Filter runs the following recursion

to update its estimation on µt and Σt:

Pt+1 = Ht+1ΣtH
′
t+1 +Wt+1W

′
t+1,

St+1 = Gt+1Pt+1G
′
t+1 + Vt+1V

′
t+1,

µt+1|t = Ht+1µt,

et = Yt+1 −Gt+1Ht+1µt,

µt+1 = µt+1|t + Pt+1G
′
t+1S

−1
t+1et,

Σt+1 = Pt+1 − Pt+1G
′
t+1S

−1
t+1Gt+1Pt+1,

(2.8)

where Pt+1 and St+1 stands for the predictive state and error covariances while µt+1|t and et are

the predictive state and error estimations. The matrix Pt+1G
′
t+1S

−1
t+1 is often called the forwards

(optimal) Kalman gain matrix. In addition, the data likelihood can be obtained as a by-product of
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Kalman Filter with

L(θ|yT ) = −Tp/2log(2π)− 1/2

T∑
t=1

log|St| − 1/2

T∑
t=1

e′tS
−1
t et, (2.9)

where p is the observation dimension.

Although initiated as a filtering algorithm, Kalman Filter can be extended to do prediction

and smoothing as well. Kalman prediction is a direct extension as the derivation of the predictive

mean and covariance µt+1|t and Pt+1. One needs to conduct those two equations for k steps if

µt+k|t = E(xt+k|yt) is needed. As for smoothing where the conditional mean and covariance,

µt|T = E(xt|yT ) and Σt|T = Cov(xt|yT ) , the below backward Kalman smoothing (Rauch et al.,

1965) steps are needed:

Jt , ΣtH
′
t+1P

−1
t+1,

µt|T = µt + Jt(µt+1|T − µt+1|t),

Σt|T = Σt + Jt(Σt+1|T − Pt+1)J ′t.

(2.10)

The matrix Jt is the backwards Kalman gain matrix.

Moreover, Kalman Filter can be further adapted to accommodate for general state space models

where linearity and Gaussian are partially violated. For example, the extended Kalman Filter (Gelb,

1974) and unscented Kalman Filter (Julier and Uhlmann, 1997) deals with non-linear but still

Gaussian state space models while Gaussian Sum Kalman Filtering (Sorenson and Alspach, 1971)

deals with state space models with mixture of Gaussian residuals. However, when faced with a non-

linear and non-Gaussian state space model, the above approximations fail and numerical methods

are needed.
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2.3 The sequential Monte Carlo framework

In most of the applications, a state space model is often non-linear and non-Gaussian. For

example, many important economic time series exhibit strong patterns of non-Gaussian or time-

varying behavior. Regime switching, stochastic volatility, and time-varying parameter models have

become increasingly popular over the last decade. In this section we discuss an effective Monte

Carlo approach designed specifically for dealing with non-linear or non-Gaussian state space mod-

els. It is referred to as the sequential Monte Carlo (SMC) (Kong et al., 1994; Liu and Chen, 1998;

Doucet et al., 2001) method. This method tries to utilize fully the sequential and dynamic nature of

the state space models, yet enjoys the flexibility of the powerful Monte Carlo approaches. In this

section, we briefly introduce the sequential Monte Carlo framework. We first briefly discuss the

important concept of importance sampling, then build the SMC framework on it.

2.3.1 Importance sampling

One of the key components of SMC is importance sampling, which comes from the general

Monte Carlo methods (Robert, 2004). A Monte Carlo method tries to generate a set of samples

x(1), ..., x(m) from a target distribution π(x). Statistical inferences, such as estimating Eπ(h(x))

can then be given by the Monte Carlo samples like the mean estimator

Eπ[h(x)] ≈
∑m

i=1 h(x(i))

m
.

Importance sampling operates in cases that the Monte Carlo samples are generated from a trial

distribution q different from the target distribution π. Then due to the fact that

Eπ[h(x)] =

∫
h(x)π(x)dx =

∫
h(x)

π(x)

q(x)
q(x)dx = Eq[h(x)w(x)],
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where w(x) = π(x)
q(x) , the mean estimator under such Monte Carlo samples can be obtained by

Eπ[h(x)] ≈
∑m

i=1 h(x(i))w(j)

m
,

where w(j) = π(x(j))

q(x(j))
.

It is often hard to calculate the exact value of w(j) due to the partial absence of the target

distribution π(x). Instead, if a normalized weight w̃(j) ∝ w(j), which differs from the true weight

with only a normalizing constant, can be calculated. Then combined with the fact that

Eq[w(x)] = Eq[
π(x)

q(x)
] = 1, Eq[

m∑
j=1

w(j)] = m,

A weighted average

1∑
w̃(j)

m∑
j=1

w̃(j)h(x(j)) =
1∑
w(j)

m∑
j=1

w(j)h(x(j)) ≈ Eπ[h(x)],

can therefore be taken for the estimation. With this formulation, the normalized weight w̃(x) often

avoids the evaluation of the normalization constants in the distributions of π and q.

The estimation variance,

V arq
{
h(x(i))w(j)

}
=

1

m

∫ {
h(x)

π(x)

q(x)

}2
q(x)dx− E2

π[h(x)],

is often considered as a criterion to measure the efficiency of a Monte Carlo estimation. This

quantity depends on the selection of trial distribution. Therefore a set of Monte Carlo samples from

a carefully selected trial distribution might provide an even more efficient estimator than that from

the target distribution. This is also one of the motivations of importance sampling. Alternatively,

efficient measurement can come from another quantity, named as effictive sample size (Kong et al.,
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1994)

ESS =
m

1 + cv2(w)
,

which represents the equivalent number of samples from target distribution π.

2.3.2 The sequential Monte Carlo methods

Based on the importance sampling structure, Liu and Chen (1998) summarized the follow-

ing sequential Monte Carlo (SMC) framework, which consists the sequential importance sam-

pling(SIS) and resampling step. The generalized SMC algorithm, under the state space model

setting is given below.

In the sequential Importance Sampling (SIS) step, when the system evolves from stage t to

t + 1, a set of Monte Carlo paths {x(j)
t+1}j=1,...,m are generated sequentially from a known trial

distribution qθ(xt+1|xt,yt+1) and assigned a normalized weight

w̃
(j)
t+1 ∝

πt+1(x
(j)
t+1)∏t

i=0 qθ(x
(j)
i+1|x

(j)
i ,yi+1)

,

where π denotes the target distribution. Adapted to the sequential characteristics of state space

models, the weight calculation are carried out step-wisely, where the incremental weight

u
(j)
t+1 ∝

πt+1(x
(j)
t+1)

πt(x
(j)
t )qθ(x

(j)
t+1|x

(j)
t ,yt+1)

,

is calculated and the new weight updated by

w̃
(j)
t+1 = u

(j)
t+1w̃

(j)
t .

Samely as importance sampling, the Monte Carlo estimator of any function h(·) can be obtained
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by

̂h(xt+1) =
1∑
ω̃

(j)
t+1

m∑
j=1

h(x
(j)
t+1)ω̃

(j)
t+1.

Specifically, in the scope of this thesis, πt+1(x
(j)
t+1) = pθ(x

(j)
t+1|yt+1). The weight becomes

w
(j)
t+1 =

πt+1(x
(j)
t+1)∏t

i=0 qθ(x
(j)
i+1|x

(j)
i ,yi+1)

,

and the normalized weight ω̃(j)
t+1 is set to be

w̃
(j)
t+1 = pθ(yt+1)ω

(j)
t+1 =

∏t
i=0 gθ(yi+1|x(j)

i+1)fθ(x
(j)
i+1|x

(j)
i )∏t

i=0 qθ(x
(j)
i+1|x

(j)
i ,yi+1)

, (2.11)

where the normalizing constant is the unknown likelihood function pθ(yt+1) while fθ(·) and gθ(·)

denote the state and observation densities. Therefore the sequential decomposition of ω̃(j)
t+1 leads

to the following formulation of sequential weight update,

u
(j)
t+1 =

gθ(yt+1|x(j)
t+1)fθ(x

(j)
t+1|x

(j)
t )

qθ(x
(j)
t+1|x

(j)
t ,yt+1)

,

ω̃
(j)
t+1 = u

(j)
t+1ω

(j)
t .

(2.12)

A good trial distribution that approximates the target distribution well is key to SMC. There are

continuous discussions on that (see Kitagawa, 1996; Lin et al., 2005; Pitt and Shephard, 1999). For

example, the basic bootstrap filter (Kitagawa and Gersch, 1996), proposes to use the state density

fθ(xt+1|xt) as the trial distribution thus u(j)
t+1 = gθ(yt+1|x(j)

t+1). This algorithm is usually easy and

fast when state density is easy to generate and observation density is easy to evaluate. However it

might lose efficiency if the state equation is not representative for the whole posterior.

It is shown that variance of ω̃(j)
t increases stochastically as t increases in the SIS step (Kong
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et al., 1994). The increasing variance of ω̃(j)
t leads to an undesired outcome called sample de-

generacy (Liu and Chen, 1995), leading to a shrinking effective sample size. Instead of carrying

the weight ω̃(j)
t as the system evolves, it is legitimate and sometimes preferable to insert a resam-

pling step between SIS recursions in order to stabilize the weight distribution (see Liu and Chen,

1995). Suppose at time t, streams of x′ts are generated as {x(j)
t }j=1,...,m from the trial distri-

bution qθ(xt|xt−1,yt) with the weight {w̃(j)
t }j=1,...,m. The resampling step samples a new set

of{x′(j)t }j=1,...,m from the old one according to probabilities proportional to α(j)
t . In order to offset

the resampling distribution, the new weight of x(j)
t is then set to ω̃(j)

t /α
(j)
t . A typical choice of αt

could be ω̃ρt with 0 < ρ ≤ 1. In many cases, ρ = 1.

Resampling step in algorithm allows more paths to naturally appear in areas of high posterior

probability, which increases the effective sample size. Resampling methods involves simple ran-

dom sampling, residual sampling (Liu and Chen, 1998), stratified sampling (Kitagawa, 1996) and

many others. Design issues of resampling also involves the control of when to resample. One

method is to resample with deterministic frequency every τ steps, where τ is some positive integer,

while an adaptive resampling schedule using effective sample size as the monitor (Liu and Chen,

1995) could also be implemented. Detailed discussions can be found in (Doucet et al., 2001).

The following statement of SMC algorithm is listed as a summary:

Algorithm 1. (Sequential Monte Carlo)

• SIS step

(A) At each time t + 1, for each j = 1, ...,m, generate an x(j)
t+1 from the trial distribution

qθ(xt+1|xt,yt+1); attach it toX(j)
t to form x(j)

t+1 = (x
(j)
t , X

(j)
t+1);

(B) Compute the incremental weight u(j)
t+1 thus normalized weight ω̃(j)

t+1 using Equation

(2.12).

• Resampling step(optional, when variance of ω(j)
t+1 are large)

(A) Sample a new set of {x′(j)t }j=1,...,m from the old one proportional to α(j)
t ;
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(B) If x(j)
t is sampled, assign it a new weight ω̃(j)

t /α
(j)
t .

2.3.3 Likelihood estimation under SMC

State space models in practice often contain unknown parameters. Maximum likelihood esti-

mation is one important strand of parameter estimation techniques which requires the evaluation of

the log likelihood function

l(θ) = log[L(θ|yT )] = log[pθ(yT )] = log
[ ∫

pθ(yT ,xT )dxT
]
.

With the existence of latent variables in state space model, it is often difficult to directly obtain the

likelihood function in closed form. However, SMC gives the likelihood estimation as a by-product

(Pitt, 2002). Due to the fact that pθ(yT ) is just the normalization constant in the weight Equation

(2.11), one can have

Eq w̃
(j)
t+1 = Eq ω

(j)
t+1pθ(yT ) = Ep pθ(yT ) = pθ(yT ). (2.13)

Therefore given a set of weighted Monte Carlo samples sequentially generated under θ, the particle

approximation of l(θ) can be given by

l̂(θ) = log p̂θ(yT ) = log
(
m−1

m∑
j=1

w̃
(j)
T

)
. (2.14)

Similarly, when resampling takes place in time t = t1, ..., tk,

l̂(θ) = log p̂θ(yT ) =
k+1∑
i=1

log
(
m−1

m∑
j=1

w̃
(j)
ti

)
, (2.15)

where we denote tk+1 = T . More discussions can be found in Chapter 3.
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2.4 Conditional dynamic linear models and Mixture Kalman Filters

In this section, we focus on a special case of state space models, the conditional dynamic linear

models (CDLM), which is a direct generalization of the linear Gaussian models and has been

widely used in practice, such as regime-switching econometrics models, signal detection from

jump dynamics, etc (see (Shephard, 1994) for more examples). A CDLM can be generally defined

as follows:

xt = Hλxt−1 +Wλwt,

yt = Gλxt + Vλvt

if Λt = λ (2.16)

where wt ∼ N(0, I), vt ∼ N(0, I) and all coefficient matrices are known given λ. CDLM is a

special case of state space models as it is linear and Gaussian given Λt. The Λt, which can be

either continuous or discrete, is a latent indicator process with certain probabilistic structure. With

discrete indicator variables, the model can be used to deal with ourliers, sudden jumps, system fail-

ures, regime changes and clutters. With carefully chosen continuous indicator variables, CDLMs

can also accommondate state space models which is linear but non-Gaussian by approximating the

non-Gaussian residuals using mixture of Gaussian distributions. In later chapters, calibration of se-

quential data which exhibits strong periodicity under the framework of CDLM will be elaborated.

They are all good examples to see the flexibility and easy interpretation of CDLM.

The conditional linearity and Gaussian leads to certain convenience than ordinary state space

models. Therefore an elegant and much more efficient marginalized SMC technique, called Mix-

ture Kalman Filter (MKF), was proposed by Chen and Liu (2000). Whereas a straightforward

sequential Monte Carlo filter uses a weighted sample of the state variable, {x(j)
t , ω

(j)
t }j=1,...,m

to approximate pθ(x
(j)
t |yt), the MKF operates in the indicator space Λt, which is equivalent to

marginalizing out the xt. Intuitively, MKF approximates the posterior of xt by a mixture of Gaus-

sian distributions based on the Monte Carlo samples of the indicator space Λ
(j)
t .

Note that given λ(j)
t+1, x

(j)
t , yt+1, the posterior mean and covariance matrix of xt+1, marked
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as KF (j)
t+1 = {µt+1(λ

(j)
t+1),Σt+1(λ

(j)
t+1)}, can be calculated through a one step Kalman Filter

(Kalman, 1960) by the following equations:

Pt+1 = Hλt+1ΣtH
′
λt+1

+Wλt+1W
′
λt+1

St+1 = Gλt+1Pt+1G
′
λt+1

+ Vλt+1V
′
λt+1

µt+1 = Hλt+1µt + Pt+1G
′
λt+1

S−1
t+1(Yt+1 −Gλt+1Hλt+1µt)

Σt+1 = Pt+1 − Pt+1G
′
λt+1

S−1
t+1Gλt+1Pt+1

(2.17)

Then by setting the target distribution as pθ(λt|yt) and trial distribution as qθ(λt+1|λt,KFt, yt+1),

the MKF algorithm, as a special case of sequential Monte Carlo algorithm, can be summarized as

below:

Algorithm 2. (Mixture Kalman Filter)

• SIS step

(A) At each time t + 1, for each j = 1, ...,m, generate a λ(j)
t+1 from the trial distribution

qθ(λt+1|λt,KFt, yt+1); attach it to λ(j)
t to form λ(j)

t+1 = (λ
(j)
t , λ

(j)
t+1);

(B) Obtain KF (j)
t+1 by the Kalman Filter described in (2.17);

(C) Compute the incremental weight u(j)
t+1 thus weight ω(j)

t+1 = ω
(j)
t × u

(j)
t+1, where

u
(j)
t+1 =

pθ(λt+1|yt+1)

pθ(λt|yt)qθ(λt+1|λt,KFt, yt+1)
.

• Resampling step(optional, when variance of ω(j)
t+1 are large)

(A) Sample a new set of {λ′(j)t }j=1,...,m from the old one according to α(j)
t . Accordingly, if

λ
(j)
t is sampled, let KF (j)

t be the one with it;

(B) If λ(j)
t is sampled, assign it a new weight ω(j)

t /α
(j)
t .
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... yt yt+1 ...

... → λt
p(λt+1|λt,KFt,yt+1)−−−−−−−−−−−→ λt+1 → ...

l l
... → KFt

Kalman Filter−−−−−−−−−→ KFt+1 → ...
↓ ↓

... → w̃t(θ)
ũ

(j)
t+1(θ)
−−−−−→ w̃t+1(θ) → ...

MKF algorithm

When Λt take values in a finite discrete set T, the incremental weight u(j)
t+1 can be simplified as

u
(j)
t+1 ∝ p(yt+1|KF (j)

t ) =
∑
i∈T

p(yt+1|KF (j)
t ,Λt+1 = i)p(Λt+1 = i|λ(j)

t ),

where p(Λt+1 = i|λ(j)
t ) is the prior transition probability for the indicator and p(yt+1|KF (j)

t ,Λt+1 =

i) is a by-product of the Kalman Filter, that is,

p(yt+1|y(j)
t , λt+1) ∼ N(Gλt+1Hλt+1µt, St+1). (2.18)

And the MKF SIS step becomes,

(A) At each time t + 1, for each j = 1, ...,m and then each Λt+1 = i, i ∈ T, run the one-step

Kalman Filter to obtain

v
(j)
i ∝ p(yt+1|KF (j)

t ,Λt+1 = i)p(Λt+1 = i|λ(j)
t );

(B) Sample a λ(j)
t+1 from the set T, with probability proportional to v(j)

i . Let KF (j)
t be the one

with it;

(C) The incremental weight u(j)
t+1 =

∑
i∈T v

(j)
i and weight is ω(j)

t+1 = ω
(j)
t × u

(j)
t+1.
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2.5 Information criteria

In time series modeling, one generally needs to deal with the problem of model selection.

A standardized criterion that favors the most appropriate model among a set of potentially good

ones is desired by both researchers and practitioners. There are many successful proposals to this

problems, among which the Akaike’s information criterion (AIC) (Akaike, 1998) and Bayesian in-

formation criterion (BIC ) (Schwarz et al., 1978) remain the most widely known and applied tools.

Below we briefly introduce those two information criteria. Details could be found in Sakamoto

et al. (1986).

Ultimately, AIC tries to evaluate the discrepancy between the approximating model represented

by a set of parameters θ and the ’true’ or generating model represented by another set of parameters

θ0. The discrepancy is then defined as

dn(θ, θ0) = E0{−2logL(θ|Y n)},

where E0 denote the expectation under the generating model, and L(θ|Y n) is the likelihood of

the approximating model. With a realized set of estimates θ̂n, the discrepancy could be further

represented by

dn(θ̂n, θ0) = E0{−2logL(θ|Y n)}|θ=θ̂n . (2.19)

However without knowledge of θ0 the evaluation (2.19) is still impossible. Akaike et al. (1973)

found that −2logL(θ̂n|Y n) is a biased estimator of dn(θ̂n, θ0) and the bias under θ0,

E0{dn(θ̂n, θ0)} − E0{−2logL(θ̂n|Y n)},

can often be asymptotically estimated by 2k where k is the dimension of θn. Therefore

AIC = −2logL(θ̂n|Y n) + 2k, (2.20)
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can be a good measure of the distance between the examined model to the ’true’ model. Intuitively,

the first term −2logL(θ̂n|Y n) explains the ’goodness of fit’ and the second term 2k corresponds

to the ’penalty’ of parameter numbers. If one candidate model A exhibits lower AIC than another

candidate model B, then model A is estimated to have better goodness of fit than model B by AIC

measurement.

There are several variants of AIC that also have gained acknowledgement, among which Bayesian

information criterion (BIC) is usually included in association of AIC. BIC approximates the same

discrepancy between the approximating model and the ’true’ model under the Bayesian structure

and exponential family assumption. The different construction leads to

BIC = −2logL(θ̂n|Y n) + 2klogn, (2.21)

where n is the sample size. Posada and Buckley (2004) presents more detailed discussion over

BIC. Intuitively, BIC penalizes more on the dimension of parameter space than AIC. Therefore

in practice AIC tends to favor complicated modles with more parameters while BIC agrees with

simpler models.
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Chapter 3

A smoothed Stochastic-Approximation approach for likelihood
estimation of State space models and conditional dynamic linear

models

3.1 Introduction

When performing paramter estimation of state space model, one issue of simulation-based

likelihood inference is that the approximate likelihood function is not continuous due to the in-

dependent Monte Carlo noise on each evaluation. This makes maximising the approximate likeli-

hood surface questionable and the standard optimisation algorithms unstable. For sequential Monte

Carlo, even when the same random seed is used for each evaluation, continuity is still not guranteed

due to the fact that a small change in the parameter may cause a different ordering in the resampling

step (Kantas et al., 2009). Poyiadjis, Doucet and Singh (2011) proposes to bypass this difficulty by

approximating the score function and observed information matrix, instead of likelihood, and apply

gradient ascent methods. The score functions is estimated through the Fisher identity where it can

be written as the expectation of∇pθ(xT ,yT ), where∇ denotes the gradient with respect to θ, un-

der the density pθ(xT | yT ), given the fact that particles from pθ(xT | xT ) can be obtained SMC

algorithms. This requires the ability to calculate ∇pθ(xT ,yT ). For situations where it is possible

to sample from the state equation but difficult to evaluate, Ionides et al (2006) and Ionides et al

(2011) propose a gradient-free method by applying the finite-difference estimate of score function.

They propose to add an artificial noise term with mean 0 and variance τ to the likelihood estima-

tion. Then the score function is estimated by the finite difference between the estimated posterior

mean and the parameter value. However a successful implementation requires proper tuning of the
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decreasing series of τ , for more runs of SMC algorithms are required when τ gets smaller. On the

other hand, Hrzeler, Knsch (2001) proposes to estimate the likelihood function by using the fil-

tered or smoothed particles simulated for a single parameter value as an importance sample. Then

maximum likelihood estimation can be obtained by grid-based optimisation on the approximate

likelihood surface, and the parameter value used to construct the importance sampler is updated

when the importance weights are dominated by a few of them. The drawback is that when using

filtered particles, the computation cost is O(TN2), and smoothing techniques are needed for the

cost to be O(TN). For some other techniques such as Bayesian estimation and on-line estimation,

see Kantas et al (2015) for a comprehensive review.

Here we propose to perform maximum likelihood estimation through a gradient-free stochastic

approximation algorithm using filtered sample andO(TN) computational cost. On each iteration, a

finite difference estimate of the score function is calculated with smoothed approximate likelihood

function which are calculated with one run of SMC algorithm. Specifically, at each iteration, the

filtered sample from the current parameter value is used as an importance sample to approximate

the likelihood function in a small neighbourhood. Even if the neighbourhood is very small in order

for the finite difference to be an accurate approximation of the score, smoothness is guranteed by

using the same set of filtered sample.

The remainder of this chapter is organized as follows. In Section 3.2, we review the two

schemes of finite-difference stochastic approximation. In Section 3.3, two new algorithms are

proposed and applied to the conditional dynamic linear model, which is a special case of general

state space model. In Section 3.4, the new algorithms are illustrated in two simulated examples

and a real data analysis with the regime-switching Dynamic Nelson Siegel model. The chapter is

concluded in Section 3.5.

3.2 Review of Stochastic Approximation

Stochastic approximation implements the gradient ascent optimisation with numerical approx-

imation of the gradient function. It is used when the gradient is in the form of an expectation. In
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the well-known Robbins-Monro algorithm (Robbins and Monro, 1951), in each iteration, instead

of using an accurate approximation by averaging many noisy measurements of the gradient, only

one measurement is used to update the parameter. The finite difference stochastic approximation

(FDSA) (Kiefer and Wolfowitz, 1952), or Kiefer-Wolfowitz algorithm, is a gradient-free stochastic

approximation which approximates the gradient function by finite-difference estimate. A direct

application of FDSA for maximising the likelihood of state space model, studied in Poyiadjis et al.

(2003), gives the following recursion

θn = θn−1 + an∇̃l(θn−1),

∇̃il(θn−1) =
l̃(θn−1 + cnei)− l̃(θn−1 − cnei)

2cn
, (3.1)

where ei denotes the p dimension vector with 1 in the ith entry and 0 elsewhere, i = 1, . . . , p, and

{an}n≥1, {cn}n≥1 are two sequences that are typically small, positive and converge to zero as n

goes to∞. When the following conditions hold,

an → 0, cn → 0,

∞∑
n=1

an =∞,
∞∑
n=1

(an/cn)2 <∞,

θn, and further the moving average of θn,
∑n

i=1 θi converges to the maximiser of l(θ) in probability

(Broadie et al., 2011). A typical choice of the tuning parameters is an = n−1 and cn = n−1/3.

Choices in the form of an = β/(n + γ), cn = n−1/3 are studied in Broadie et al. (2011). Futher

discussion of tuning parameters is out of the scope of this chapter.

Each iteration of FDSA requires 2p evaluation of l(θ), and the computation cost increases

with p. Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm (Spall, 1992) is

proposed to address this problem by introducing a p dimension random perturbation vector ∆n and

setting

∇̃il(θn−1) =
l̃(θn−1 + cn∆n)− l̃(θn−1 − cn∆n)

2cn∆n,i
. (3.2)
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Each iteration of SPSA only needs to evaluate l(θ) twice, and so the cost of each step when search-

ing in the parameter space is does not increase with p. Although theory shows that the number of

iterations needed for SPSA to achieve convergence may be similar to that for FDSA (Spall, 1992),

it is found that its performance is more sensitive to the tuning parameters and generally needs more

iterations (Poyiadjis et al., 2003).

Poyiadjis et al. (2003) applies FDSA and SPSA to state space model by evaluating the likeli-

hood values at each iteration with independent runs of SMC algorithms. There are two drawbacks

with this implementation. One is that due to the independent Monte Carlo noise in l̃(θ), the vari-

ances of the difference in (3.1) and (3.2) do not decrease with cn, and so the variance of ∇̃l(θ) in-

creases to infinity as cn decreases to 0. As pointed out in (Reference: Klaiman, Spall and Naiman

1994), when the variance of gradient estimate is unbounded, the convergence of θn in classical

FDSA or SPSA typically has the rate O(n−1/3), slower than the rate O(n−1/2) of Robbins-Monro

algorithm, hence requiring much more iterations. The other one is that even if common random

number is used to calculate l̃(θ), as in (Reference: Kleinman et al, 1999), l̃(θ) is still discontinuous

due to the fact that a small change in θ changes the importance weights {w(j)
t }Nj=1 in the resampling

step and generates a different set of resampled particles (Reference: Kantas et al, 2015). Therefore

the variance of ∇̃l(θ) is still unbounded.

3.3 Two Stochastic Approximation Schemes

3.3.1 Smoothed likelihood approximation

Suppose the resampling takes place at time t1, . . . , tk. The likelihood function at any θ can be

written as

pθ(yT )

pθ0(ytk)
=

∫
a(θ, θ0,xT ,yT )wT (xtk:T ; θ0, tk)pθ0(xtk |ytk)

T∏
t=tk+1

qθ0(xt|xt−1) dxT , (3.3)

where a(θ, θ0,xT ,yT ) =
pθ(xT ,yT )

pθ0(xT ,yT )
=

T∏
t=1

gθ(yt|xt)fθ(xt|xt−1)

gθ0(yt|xt)fθ0(xt|xt−1)
.
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Equation (3.3) suggests that with one run of SMC algorithm given parameter value θ0, after the

weighting step at time T , pθ(yT )/pθ0(ytk) can be estimated by N−1
∑N

j=1w
(j)
T a(θ, θ0,x

(j)
T ,yT ).

Therefore we propose the following estimate of pθ(yT ),

p̂θ(yT ) =
k∏
i=1

N−1
N∑
j=1

w
(j)
ti

N−1
N∑
j=1

w
(j)
T a(θ, θ0,x

(j)
T ,yT )

 , (3.4)

and the estimate of l(θ), l̂(θ) = log(p̂θ(yT )). By comparing p̂θ(yT ) with p̃θ(yT ), it can be seen in

the last factor of p̃θ(yT ) is replaced by the SMC estimate of pθ0(yT )Eθ0 [a(θ, θ0,xT ,yT ) | xT ]. As

N →∞, by slightly modifying the proof of asymptotic normality of p̃θ(yT ) in Del Moral (2004),

and that of ĥt in Chopin (2004), it is easy to show that p̂θ(yT )/pθ(yT ) is asymptotic normal with

mean being unity and variance given by,

1

N

(
k∑
i=1

∫
pθ0(xti | yT )2

pθ0(xti−1 | yti−1
)qθ0(xti−1+1:ti | xti−1)

dxti − k

+

∫
pθ0(xT | yT )2

pθ0(xtk | ytk)qθ0(xtk+1:T | xtk)

[
pθ(xT | yT )

pθ0(xT | yT )
− 1

]2

dxT

)
.

Asymptotic variances of p̃θ(yT ) and ĥt can also be seen in Doucet and Johansen (2009). Further-

more, p̂θ(yT ) is also unbiased of pθ(yT ), the proof of which is given in the appendix. Therefore

by delta method, l̂(θ) is asymptotically unbiased to l(θ) and asymptotic normal with convergence

rate
√
N .

Specifically for CDLM with indicator process in discrete space, the weight adjusting function

a(θ, θ0,λλλ
(j)
T ,yT ) equals,

pθ(λλλ
(j)
T ,yT )

pθ0(λλλ
(j)
T ,yT )

=

∏T
i=1 pθ(yi | λλλ

(j)
i ,yi−1)pθ(λ

(j)
i | λ̃

(j)
i−1)∏T

i=1 pθ0(yi | λλλ(j)
i ,yi−1)pθ0(λ

(j)
i | λ̃

(j)
i−1)

,

where pθ(yi | λλλ
(j)
i ,yi−1) is given in (2.18) and can be calculated by Kalman filter given the value

of θ. Since pθ(λλλT ,yT ) = pθ(yT | λλλT )pθ(λλλT ), a(θ, θ0,λλλ
(j)
T ,yT ) can be interpreted as the product
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of likelihood ratio of the linear-Gaussian model, conditional on the indicator process λλλT , and the

ratio of prior density of λλλT , between the new and simulator parameters, θ and θ0.

Example. To illustrate the accuracy of l̂(θ), consider estimating the log-likelihood function of an

autoregressive model with order one. The true parameter value generating observations is 0.7. We

compare l̃(θ) and three l̂(θ) using different simulation parameters θ0 for generating the particles,

and results are reported in Figure 3.3.1. We can see that when the true parameter value is used

for simulation, l̂(θ), using one set of particles, gives very similar approximation as l̃(θ) which

simulates a new set of partics for each θ. When θ0 is far away from the true parameter value, both

methods have similar approximation accuracy for θ around θ0, which is needed for an accurate esti-

mate of the gradient function at θ0 via finite difference. Although l̂(θ) is increasingly biased when

θ is far away from θ0, it still gives the correct direction of the maximum of likelihood function.

This is very useful in gradient descent algorithms.

Figure 3.3.1: Likelihood approximation of an AR(1) model using SMC estimate and smoothed SMC esti-
mates simulating particles from different θ0.
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3.3.2 Stochastic approximation with smoothed SMC likelihood

Let θn be the nth update of the parameter θ. Then with a single run of SMC algorithm at θn

and the proposed loglikelihood estimate l̂(θ), the finite-difference estimate of the score function at

θn can be given as

∇̂il(θn) =
l̂(θfn,i)− l̂(θbn,i)

2cn∆n,i

=
log
(
N−1

∑N
j=1w

(j)
T a(θfn,i, θn,x

(j)
T ,yT )

)
− log

(
N−1

∑N
j=1w

(j)
T a(θbn,i, θ,x

(j)
T ,yT )

)
2cn∆n,i

,

where θfn,i and θbn,i are the forward and backward parameters that, together with ∆n,i, are algorith-

mically specified. With ∇̂l(θn), we propose the following algorithm to maximise l(θ).

Algorithm 3. Stochastic Approximation with smoothed SMC likelihood(SA-SMCw)

Suppose the parameter estimate at iteration n is θn.

(A) For i = 1, . . . , p, let

– θfn,i = θn + cn+1ei and θbn,i = θn − cn+1ei, if FDSA is used,

– θfn,i = θn + cn+1∆n+1 and θbn,i = θn − cn+1∆n+1, if SPSA is used,

where ∆n is a random perturbation vector.

(B) Run the SMC algorithm using θn to obtain l̂(θ), and calculate the gradient function ∇̂l(θn).

(C) Update the parameter by θn+1 = θn + an∇̂l(θn)

Comparing to FDSA or SPSA in (Reference: Poyiadjis et al, 2006) where l̃(θ) is used to calcu-

late the finite difference, Algorithm 3 makes improvement in two aspects. First, in each iteration,

SMC algorithm only needs to run once for both FDSA and SPSA implementation, instead of 2p

runs for FDSA or 2 runs for SPSA in Poyiadjis et al(2006). Second, the variance of gradient esti-

mate is smaller than that when l̃(θ) is used. Intuitively, this is because when θfn,i and θbn,i are close,
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l̂(θfn,i) and l̂(θbn,i) are positively correlated while l̃(θfn,i) and l̃(θbn,i) are independant. Remark-

ably, the following result shows that as cn → 0, the variance of the gradient estimate is bounded,

comapred to the unbounded variance when l̃(θ) is used, as stated in Section 2.2. Assuming the

gradient function of pθ(xT ,yT ) with respect to θ exists, by Taylor expansion,

∇̂il(θn) =

∑N
j=1∇ia(θ, θn,x

(j)
T ,yT )w

(j)
T |θ=θ′∑N

j=1 a(θ′, θn,x
(j)
T ,yT )w

(j)
T

,

=

∑N
j=1∇ilogpθ(x

(j)
T ,yT ) |θ=θ′ a(θ′, θn,x

(j)
T ,yT )w

(j)
T∑N

j=1 a(θ′, θn,x
(j)
T ,yT )w

(j)
T

,

where θ′ satisfies ‖θ′− θbn,i‖ ≤ ‖θ
f
n,i− θbn,i‖. Then as cn → 0, θbn,i and θfn,i converges to θn almost

surely, and

∇̂il(θn)→
N∑
j=1

∇ilogpθn(x
(j)
T ,yT )

w
(j)
T∑N

j=1w
(j)
T

, (3.5)

almost surely. By standard SMC asymptotic results (Doucet and Johansen), as N →∞, the above

limit is asymptotic normal with finite variance. Therefore ∇̂il(θn) has bounded variance as cn → 0.

3.3.3 Accelerated stochastic approximation with smoothed SMC likelihood

To emphasize its dependence on the simulator parameter θ0, we denote the quasi-loglikelihood

function l̂(θ) from (3.4) by l̂(θ; θ0). Since l̂(θ; θ0) augments the observations with a sample of

the latent process simulated using parameter θ0, it is natural to consider maximising the likelihood

by iterating between maximising l̂(θ) and simulating the latent process using the maximiser of

l̂(θ; θ0). However when θ is further away from θ0, the approximation error of l̂(θ; θ0) may increase,

as illustrated in Figure 3.3.1 and the maxmiser of l̂(θ; θ0) may be further away from the maximum

likelihood estimator than θ0. This is because the particles generated using θ0 may not cover the

high density area of pθ(xT | yT ) well. Since many commonly used optimisation algorithms, e.g.

DFP (Davidon, 1991) and BFGS (Broyden, 1970), are iterative algorithms, instead of using the
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maximiser, it would help to be more conservative by running a fixed number of iteration along the

line and using the updated parameter. Therefore we propose the following recursive algorithm.

Algorithm 4. Accelerated Stochastic Approximation with smoothed SMC likelihood(ASA-SMCw)

Suppose the parameter estimate at iteration n is θn.

(A) Run the SMC algorithm using θn to obtain l̂(θ; θn).

(B) Iterates an optimisating algorithm for maximising l̂(θ; θn) over θ and stops when either K

of this inner iterations have been run or the algorithm converges.

(C) Let θn+1 be the ending update in (B).

Algorithm 3 is a special case of Algorithm 4, which can be seen by using FDSA or SPSA for

the maximisation and setting K to be 1 in step (B) above. The improvement of using K > 1 is

illustrated in numerical example 3.4.1.

The ASA-SMCw algorithm is different from the EM algorithm used for state space model

(Dempster et al., 1977) in that the M-step of those EM algorithms uses the maximiser of the likeli-

hood estimate to update the simulator parameter, while here a maximum number of inner iteration

is set to avoid using maximiser every time. It can be seen from the numerical examples that this is

necessary.

3.4 Emiprical Studies

Here the perform of the new algorithms for approximating the maximum likelihood estimator

are illustrated in three examples. Three methods are compared, including SA using the ordiniary

SMC/MKF likelihood(OSA), SA using the smoothed SMC likelihood(SA-SMCw) as in Algorithm

3 and the accelerated SA using the smoothed SMC likelihood(ASA-SMCw) as in Algorithm 4.

For ASA-SMCw, K = 10 is used. In all exmaples, results of using the FDSA scheme in all

three methods are reported(Comparison of those using the SPSA scheme show similar patterns).

Identical tuning parameters an = c/(n + 5) and cn = 1/n1/3 are used for all algorithms. For r
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experiment runs, define the root mean square error(RMSE) of estimating true parameter value θc

at iteration n by
√
r−1

∑r
l=1(θn − θc).

3.4.1 Example 1: AR(1) observed with noise

Consider the following linear-Gaussian state space model,

Xt = θXt−1 + Vt, Vt ∼ N(0, 0.72)

Yt = Xt +Wt, Wt ∼ N(0, 1),

where Vt and Wt are independent. Observations with length 200 are generated using θc = 0.7.

Trajectories of paramter updates given by the three methods are compared in Figure 3.4.1.

Results of two experiment runs are reported. It can be seen that both new algorithms are more stable

and converge faster than OSA. Updates of both new algorithms converge to the true parameter value

after several hundred iterations, while OSA needs over ten thousand iterations to converge, which

is not reported in the plots. ASA-SMCw converges a bit faster than SA-SMCw in one run, and

almost the same in the other run.

Figure 3.4.1: Trajectories of paramter updates using N = 500 in SMC.

Their average performance in estimation accuracy and computational cost are compared using
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100 experiment runs. The accurarcy is compared by RMSEs, reported in Figure 3.4.2. The compu-

tational cost are compared by the runnning time under the same SMC particles size and number of

iterations, reported in Table 3.4.1. It can be seen that both new algortihms perform similarly, and

are more accurate than the OSA in all iterations and with all choices of particle sizes. Meanwhile,

the running time of both new algorithms is siginicantly less than the OSA in all settings, with re-

duction of approximately 50%. This is because OSA uses 2p SMC runs in each iteration while

the new algorithms use only 1 run. The running time of ASA-SMCw is approximately 5% of that

of OSA, 10% of SA-SMCw, since the latter simulates particles in every iteration while the former

reduces the frequence of simulation. In this example the simulation takes significantly larger com-

putational cost than weight adjustment. Therefore, with K = 10, the SA-SMCw takes 10 times

runtime with same total iteration.

Figure 3.4.2: Trajectories of RMSE when each SMC run uses N = 500.

OSA SA-SMCw ASA-SMCw
m = 100, I = 50 0.8180 0.3809 0.0429
m = 1000, I = 50 3.8645 1.7514 0.1855
m = 100, I = 500 8.2431 3.9567 0.4508
m = 4000, I = 50 15.3994 7.5079 0.8230

Table 3.4.1: Comparison of computational cost, measured by CPU time(s)

We then study the impact of inner iteration numbersK in ASA-SMCw. We pickK ∈ {1, 5, 10, 20,∞},

where ASA-SMCw becomes SA-SMCw when K = 1. A total of 100 simulations are generated
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and ASA-SMCw algorithms with different K’s are conducted under the same an and cn. Figure

Figure 3.4.3: Left: Trajectories of RMSE when total iterations are set equal. Right: Trajectories of RMSE
when total MC samples are set equal.

3.4.3 shows the comparison of RMSE’s in two different ways. On the left, we compare the RMSE’s

for each K when total iterations are set equal. For example, when I = 10 and K = 5, then two

set MC samples are generated. One can observe a small increase of RMSE with as K increases

when I = 50. This is due to lack of MC samples. On the right, we compare the the RMSE’s for

each K when total MC samples are set equal. For example, when S = 5 and K = 5, then we have

run a total of 25 iterations. Since the computation of likelihood adjustment is significantly cheaper

than Monte Carlo simulation, this comparison can be treated as a comparison with almost same

computational cost. This also illustrates the benefit of ASA-SMCw–it is a faster as well a efficient

algorithm.

3.4.2 Example 2: Conditinal AR(1) plus noise model

Consider the following CDLM,

Xt = θλtXt−1 + Vt, Vt ∼ N(0, 0.72),

Yt = Xt +Wt, Wt ∼ N(0, 1),
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Figure 3.4.4: Comparison of three algorithms, under same tuning parameters. m = 100. K = 10 in
ASA-SMCw. an = c

n+5 , cn = 1/n1/3.

where Vt andWt are independent and λt follows a Bernoulli distribution with parameter 0.1. When

conditioning on λt, this becomes the model in Example 1. Obervations with length 200 are gener-

ated using θ0 = 0.7 and θ1 = 5. When λt = 1, the state equation is non-stationary since θ1 > 1.

Performane of the three algorithms are compared in the similar ways as in Example 1. Trajec-

tories of paramter updates in two experiment runs are given in Figure 3.4.4. It can be seen that the

new algorithms improves OSA in two aspects: convergence speed and bias. First, the performance

of OSA are more stable than those in Example 1, since MKF is in general more efficient than SMC

and particle size 100 is a descent size for MKF. Despite the improvement of OSA, new algorithms

converge faster than OSA for both θ0 and θ1 due to the further improvement of efficiency of gra-

dient estimate. Second, OSA shows more bias in the approximated MLE of θ1 than that of θ0.

This is because the state λt = 1 has less data points, on average 20 out of 200 Y can be used to
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Figure 3.4.5: RMSE comparison based on 100 simulations. In the top two figures we set m = 100 and let
total iterations change while the total iteration I = 500 and size m varies in the bottom two figures.

estiamte l(θ1) with p = 0.1, and the bias of MLE of θ1 is higher than that of θ0. Note that all three

algorithms contain the same amount of MLE bias. The new algorithms reduce the bias through

reducing the Monte Carlo bias, although they are designed for reducing the Monte Carlo variance.

Similar comparison can be seen in the average performance of 100 experiment runs, reported

in Figure 3.4.5. As iteration proceeds, new algorithms converge faster than OSA in RMSE. As

particle size increases, RMSE of OSA gets closer to that of new algorithms since the Monte Carlo

bias gets closer.
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3.4.3 Example 3: Regime-Switching Nelson-Siegel term structure model

In this section we propose a multi-dimensional conditional dynamic linear system to model the

yield curve dynamics. The yield curve at certain time t gives interest rates across different contract

lengths, or maturities. Diebold and Li (2006) proposes the following state space model with latent

vector-AR(1) dynamics for the yield curve,

it(τ) = Lt + St

(1− e−λτ

λτ

)
+ Ct

(1− e−λτ

λτ
− e−λτ

)
+ εt(τ), (3.6a)

Lt

St

Ct

 =


µ1

µ2

µ3

+


φ1 0 0

0 φ2 0

0 0 φ3



Lt−1

St−1

Ct−1

+


w1 0 0

0 w2 0

0 0 w3



η1t

η2t

η3t

 , (3.6b)

where εt(τ) is a Gaussian noise with mean 0 and variance σ2
ε , η1t, η2t, η3t are independant standard

Gaussian noises and it(τ) is the zero-coupon yield for maturity τ at time t. Here the 9-dimensional

vector {it(τ)}τ is an observable time series, and Lt, St, Ct, the so called level, slope and curva-

ture parameters, are latent states. This is known as the dynamic Nelson-Siegel model. This model

is Gaussian and linear, thus can be estimated by standard Kalman Filtering procedure. Recent re-

searches (see Ang and Bekaert, 2002; Xiang and Zhu, 2013) show that it would be more reasonable

to take into account the change of economic environment, or the regime for more accurate filtering

and prediction.

From a statistical perspective, the incorporation of underlying dynamics of level, slope, cur-

vature factors balances the mean-variance trade-off in hope that the sacrifice in real-time Nelson-

Siegel fitting helps to stabilize the system and thus improve the prediction performance. Yet it is

obvious that a simple linear and Gaussian pattern is unrealistic. With the incorporation of Markov

regime-switching in (3.6), the conditional dynamic linear model further balances the goal of real-

time fitting and prediction. With a set of properly estimated parameters, Mixture Kalman Filter

can conduct the filtering and prediction task in an efficient way. Moreover, with the appropriate

likelihood estimation, we can do model selection using the AIC and BIC criterion.
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Here consider the situation of two different regimes, i.e.


Lt

St

Ct

 =


µs1

µs2

µs3

+


φ1 0 0

0 φ2 0

0 0 φ3



Lt−1

St−1

Ct−1

+


ws1 0 0

0 ws2 0

0 0 ws3



η1t

η2t

η3t

 ,

where s = H,L indicates the regime change. When s = H we have a higher drift and volatility

term, indicating the regime of higher interest rate. Here we assume that s follows a Markov process

with transition probability

P =

 p1 1− p1

1− p2 p2

 .
This is a model with 17-dimensional unknown parameter and used to illustrate our proposed

modelling and estimation strategy. Similar strategy can be applied to more complicated regime-

switching Nelson-Siegel models, e.g. incorporating the interaction between level, slope and curva-

ture factors and containing more regimes.

3.4.3.1 Simulation study

To begin with, observed yield curve simulated under the parameter specification in Table 3.4.2

and with maturities τ ∈ Γ = {1, 3, 6, 12, 24, 36, 60, 84, 120} are studied. Consider the observed

curve with a time length of 200, and denote it by i1:200.

µ1 µ2 µ3 w1 w2 w3

L 0.1969 -0.0651 -0.0158 0.2569 0.2214 0.6686
H 0.4924 -0.1628 -0.0396 0.4382 0.498 1.3387

λ p1 p2 φ1 φ2 φ3

0.039 0.922 0.934 0.957 0.969 0.901

Table 3.4.2: Parameter specification

For simplicity we set λ, p1, p2 and the observation volatilities σε as fixed and try to estimate
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the rest of the parameters in Table 3.4.2. For a single realisation i1:200, a comparison of inde-

pendent and smoothing SMC likelihood estimations is given in Figure 3.4.6. First it can be seen

that the SMC likelihood contains large Monte Carlo variation and a lot of local maximums, even

with a relatively large sample size. Especially for the variance parameters w1–w3, the likelihood

functions are relatively flat and the maximisers are unstable due to the Monte Carlo noise. In con-

trast, the weight adjusted SMC likelihood does not have local maximums due to its smoothness,

and when using θc as the simulator parameter, it is fairly close to the ‘smoothed’ SMC likelihood

and hence gives similar and more stable maximiser than the latter. Second, it can be seen that the

weight adjusted SMC likelihood around simulator parameters are accurate. Hence if we start from

the triangular point which is far away from θc, the SA update will lead us towards the right direc-

tion. When the simulator parameter gets close to θc, the new likelihood estimation would become

more reliable. Third, Figure 3.4.6 also shows that it is necessary to avoid using the maximizer in

Algorithm 4 due to the inaccuracy of the likelihood estimates beyond the close neighborhood of

the simulator parameter.

For the same realisation as above, trajectories of parameter updates using the three algorithms

are compared in Figure 3.4.7. It can be seen that the OSA algorithm fails in estimating most

parameters. One important reason is that once the AR parameters φ1–φ3 got larger than 1, as

φ2 estimated by OSA here, the model using these parameters losed stationarity. Then generated

particles would be very different from the true states, and cripple the likelihood estimation and

further parameter updates in SA. In this example, this often happens in other experiment runs due

to the instability of OSA. It can also be seen that ASA-SMCw converges faster than SA-SMCw,

hence reducing the computational cost.

Again all algorithms are compared using 100 experiment runs. Figure 3.4.8 shows the boxplot

of the 100 approximate MLEs. Clearly the new algorithms estimate the true parameters with much

less variance and bias than OSA.
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3.4.3.2 Real data nalysis

Here we study the same dataset as that in Xiang and Zhu (2013) which is the zero-coupon

yield curve from 1983:01 to 2010:08 with maturities τ = {1, 3, 6, 12, 24, 36, 60, 84, 120} months.

Figure 3.4.9 shows the yield surface.

Figure 3.4.9: Yield surface from 1983:01 to 2010:08.

We compare three methods to fit the yield curve which are stated below.

Single-regime LS: In the single-regime model (3.6), The naive method is to treat Equation (3.6a)

and (3.6b) separately. Given observations {it(τ)}t,τ , first estimate L̂t, Ŝt, Ĉt, λ and σε in

(3.6a) by minimising the squared error loss, then estimate the parameter in (3.6b) by plugging

the estimated series of L̂t, Ŝt and Ĉt and weighted least square.

Single-regime KF: The second method is to apply SA recursion to maximise the likelihood of

(3.6) obtained by Kalman filter, then obtain filtered states by Kalman filter. The SA re-

cursion is initialised at the estimated parameter value given by single-regime-LS method.

Here parameters λ is fixed at the estimated values from single-regime-LS method due to
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the model’s insensitivity to λ, and σε is also fixed in the similar way. The parameter value

estimated by this method is given in the following table:

L S C

µ̂ 0.0385 -0.0810 -0.0763

φ̂ 0.9909 0.9648 0.9136

ŵ 0.2870 0.3858 1.1036

This is the method used in Diebold and Li (2006).

Two-regime: The third method uses the regime-switching structure with two regimes, i.e. state

model (3.7), and estimate the parameter by the proposed ASA-SMCw algorithm with parti-

cles generated by MKF, as done in the simulation study. Then the filtered states are obtained

by MKF. The fitted parameter is listed in the following table.

µ1 µ2 µ3 w1 w2 w3

H 0.2346 0.1636 0.7466 0.3591 0.3144 1.2078

L -0.0837 -0.4378 -0.9348 0.2024 0.2917 0.9936

φ1 φ2 φ3 p1 p2

0.9962 0.9506 0.9217 0.8716 0.9278

Table 3.4.3: Fitted Parameters of two-regime method

The comparison of three parameter estimation algorithms in this real data analysis is similar

to that in the simulation study, thus not reported here.
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Figure 3.4.10: Comparison of filtered Lt, St and Ct using single-regime LS(blue and solid), single-regime
KF(red and dashed) and two-regime (green and dash-dotted).

The filtered Lt, St and Ct using these methods are presented in Figure 3.4.10. For the single-

regime model fitted with least square, filtered states are very noisy, since the estimation does not

consider the underlying state dynamics and at each t only 9 observations are used to estimate

the latent states. For the single-regime model fitted with Kalman filter, although it can capture

the rough patterns of the three states, it fails to react to the ‘peaks’ timely. In contrast, the well

estimated two-regime model performs better in balancing the smoothness and accuracy, or in other
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words, the bias-variance tradeoff.

We compare the single-regime and two-regime models using AIC and BIC, which are popular

criterion for model selection, with the estimated parameters, and the comparison in given below.

Single-regime Two-regimes

AIC 4913.9 4834.2

BIC 4967.9 4936.2

It is clear that the regime-switching model has a significant improvement in both AIC and BIC.

Secondly, to test the forecasting performance, we set the yield curve from 2005:09 to 2010:08(ev-

ery 4 months in order to reduce computational cost) as the training set. We fit the KF and MKF

parameters up to the time before forecasting and then use the fitted parameters. Table 3.4.4 shows

the results: Overall those forecasting models cannot prove efficiency than random walk. But within

3 months 6months 1 year 3 years 5 years 10 years
1-month-ahead forecasting RMSE

RW 0.259 0.234 0.233 0.255 0.254 0.240
Single-Regime 0.262 0.235 0.234 0.256 0.254 0.238
Two-Regimes 0.247 0.230 0.225 0.248 0.255 0.239

6-months-ahead forecasting RMSE
RW 0.999 0.990 0.950 0.851 0.771 0.621

Single-Regime 1.010 0.998 0.947 0.852 0.768 0.620
Two-Regimes 0.957 0.963 0.932 0.879 0.788 0.640

12-months-ahead forecasting RMSE
RW 1.818 1.758 1.623 1.218 0.981 0.689

Single-Regime 1.821 1.764 1.626 1.231 0.978 0.672
Two-Regimes 1.733 1.692 1.544 1.370 1.165 0.873

Table 3.4.4: Forecasting comparison measured by RMSE. The bold ones are the best in each column

a shorter maturities and nearer forecasting window, the regime switching model has a better pre-

diction power.



44

3.5 Conclusions

In this chapter, we have proposed the SA-SMCw and ASA-SMCw algorithms for parameter

estimation in state space models. Both methods have very simple requirement while achieve stable

and efficient results. All of our examples show that SA-SMCw and ASA-SMCw have signifi-

cant gains over ordinary Stochastic-Approximation-based algorithms in both convergence rate and

computational efficiency. In general, ASA-SMCw is preferable than SA-SMCw for its reduction in

computational cost, while its performance is more sensitive to the smoothing estimation and thus

needs special care.

Furthermore, since SA-SMCw and ASA-SMCw relies on a Stochastic Approximation scheme,

the performance of them can be further enhanced by existing Stochastic Approximation techniques

like adaptive tuning parameter selection. The development in this paper is thus an example to show

that Stochastic Approximation methods is powerful in parameter estimation in state space models.
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Figure 3.4.6: Likelihood estimates using independent and smoothing estimating. The solid line represents
the independent estimation. The blue dashed line is the smoothing estimation starting from the cross mark.
The dash-dot line is the smoothing estimation starting from the faraway triangular mark. m = 500
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Figure 3.4.7: Convergence comparison of the three algorithms for 1000 iterations. Red solid line is for SA-
SMCw algorithm while blue dashed line is for ASA-SMCw algorithm. Green solid line(rigid) is for OSA
algorithm. Here Monte Carlo sample size m = 100. K = 10 in ASA-SMCw. Dashed horizontal line is the
true parameter.
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Figure 3.4.8: Boxplot of 100 estimations using the three algorithms. Each estimation is based on 1000
iterations and Monte Carlo sample size m = 100. K = 10 in ASA-SMCw. Dashed horizontal line is the
true parameter.
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Chapter 4

Estimating Periodically Collapsing Rational Bubble with Mixture
Kalman Filter

4.1 Introduction

This chapter presents a joint work with Hao Chang on a regime-switching financial bubble

model.

Financial bubbles have long intrigued economists and gained growing interests. As many

economists believe that stock prices are too volatile to be attributed to market fundamentals, con-

necting the unexplained term to bubbles has become one practical and reasonable way of modeling

(Campbell and Shiller, 1988; LeRoy and Porter, 1981; Wu, 1997). Bubbles refer to asset prices

that exceed an asset’s fundamental value because the holders believe that they can resell the asset

at an even higher price in the future. Bubbles are typically associated with dramatic price increases

followed by a collapse (Brunnermeier, 2009).

So far, a variety of literature has discussed the econometric detection of rational bubbles, which

exhibit explosive behavior if investors have rational expectations and identical information. One

strand utilizes co-integration and unit-root tests to examine whether asset prices are more explosive

than dividends (Diba and Grossman, 1988; Hamilton and Whiteman, 1985). Evans (1991) criti-

cizes this approach by arguing that it fails to detect periodically collapsing bubbles. This problem

is overcome by Phillips et al. (2011), who propose a test procedure involving the recursive imple-

mentation of a right-side unit root test. Another strand, which this chapter follows, is to directly

estimate the bubble as an unobservable state vector in a state space model. Specifying the bubble
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dynamics by an AR(1) process, Wu (1995, 1997) identifies bubbles using the Kalman filtering tech-

nique. However, the linear specification here implies a continuous growth, a pattern inconsistent

with inherent non-linear characteristics of real-world data. This non-linearity is believed to origin

from the periodical switching of the underlying economic condition, also denoted as regime.

In line with Wu (1995, 1997) and the regime-switching idea, we adopt a conditional dynamic

linear system (CDLM) (Harrison and West, 1999) to model the bubble process. We allow two to

three regimes that switch by Markovian transition probability matrices while keeping the system

conditionally linear and Gaussian given the regime. With a two-regime model, we specify the

surviving and collapsing regimes, in which a bubble can grow at a speed greater or smaller than the

asset’s required rate of return. With a three-regime specification, we define the exploding, surviving

and collapsing regimes, in which the bubble can grow at a speed greater than, equal to, or smaller

than the asset’s required rate of return. We impose the restriction that the expected growth rate of

bubble is equal to the asset’s required rate of return in order to make the bubble satisfy the rational

expectations condition.

Presented as a state space model with regime switching, the asset-bubble system is estimated

by a novel Monte Carlo based filtering scheme, Mixture Kalman filter (MKF), proposed by Chen

and Liu (2000) and introduced in Section 2.4, in an efficient manner. This methodology has several

advantages over the existing Gibbs sampling method (Kim et al., 1999). First, it is not subject to

Bayesian bias from the choice of prior distribution of unknown parameters. Second, the MKF is

a likelihood-based approach so the associated model selection rules such as AIC and BIC can be

implemented to test whether our mixture linear framework yields a better fit than linear models.

We first examine the efficacy of the proposed method by applying it to simulated observations

by Evans (1991). Then the method is applied to real stock index of the US stock market. With the

associated likelihood-based model selection techniques, the proposed model with regime-switching

is proved to yield a better fit in bubble process. In addition, the estimated model provides a filtered

probability series of different regimes, which date stamps most of the bubble collapsing periods in

history.



50

The remainder of this chapter is organized as follows. Section 4.2 reviews the classical asset-

bubble model with the specification of a linear state space form. Section 4.3 is devoted to the elab-

oration of the proposed regime-switching model along with the corresponding estimation strategy,

the Mixture Kalman filtering technique. Section 4.4 reports the estimation results in both simulated

and real data. Section 4.5 concludes.

4.2 Basic bubble model with constant drift

4.2.1 Model specification and notation

In line with Wu (1997), we start from the stocks’ fundamental price. Consider the standard

linear rational expectations model of stock price determination,

[Et(Pt+1 +Dt)− Pt]/Pt = r, (4.1)

where:

Pt = the real stock price at time t;

Dt = the real dividend paid at time t;

Et = the mathematical expectations conditional on information available at time t; and

r = the required real rate of return, r > 0

After transferring the model in natural logarithms term and taking linear approximation (Camp-

bell and Shiller, 1988), equation (4.1) can be written as follows:

q = κ+ ψEtpt+1 + (1− ψ)dt − pt, (4.2)

where:

q = the required log gross return rate;

ψ is the average ratio of the stock price to the sum of the stock price and the dividend, 0 < ψ <

1;



51

κ = −ln(ψ)− (1− ψ)ln(1/ψ − 1);

pt = ln(Pt);

dt = ln(Dt).

The unique forward-looking, no-bubble solution to (4.2), denoted by pft is given by

pft = (κ− q)/(1− ψ) + (1− ψ)

∞∑
i=0

ψiEt(dt+i), (4.3)

provided that the transversality condition is satisfied,

lim
t→∞

ψiEt(pt+i) = 0. (4.4)

Equation (4.3) is the present value relation which states that the log stock price is equal to the

present value of expected future log dividend streams. Notice that if the transversality condition is

violated, then (4.3) is only a particular solution to (4.2). Nevertheless, the transversality can hardly

hold in real-world stock market. To fill in the gap, a general solution to (4.3) brings in the bubble

term which represent the difference between the stock price and its fundamental value:

pt = (κ− q)/(1− ψ) + (1− ψ)
∞∑
i=0

ψiEt(dt+i) + bt = pft + bt, (4.5)

where bt satisfies the following homogeneous difference equation:

Et(bt+i) = (1/ψ)ibt, for i = 1, 2, ... (4.6)

In equation (4.5), the no-bubble solution pft is exclusively determined by dividends and is often

called the market-fundamental solution, while bt can be driven by events extraneous to the market

and is referred to as a rational speculative bubble. The existence of a bubble causes the actual stock

price to deviate from its market-fundamental value.
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Since the log dividends appear to be non-stationary, Wu (1997) specify the model in its differ-

ence form. Taking the first difference of (4.6) yields

∆pt = (1− ψ)
∞∑
i=0

ψi[Et(dt+i)− Et−1(dt+i−1)] + ∆bt = ∆pft + ∆bt (4.7)

To obtain a parsimonious specification, the log dividends can be assumed to follow an ARIMA(h,1,0)

process as follows:

∆dt = µ+
h∑
j=1

ϕj∆dt−j + δt (4.8)

where δt is an i.i.d. error term and distributed N(0, σ2
δ ). The autoregressive order h in (4.8) is to

be determined by the data.

In companion form, equation (4.8) can be written as

Yt = U +AYt−1 + νt, (4.9)

where Yt = (∆dt,∆dt−1, ...,∆dt−h+1)′, U = (µ, 0, 0, ..., 0)′, and νt = (δt, 0, 0, ..., 0)′ are all

h-vector and A =



ϕ1 ϕ2 ... ϕh−1 ϕh

1 0 ... 0 0

0 1 ... 0 0

... ... ... ... ...

0 0 ... 1 0


is an h × h matrix. Therefore, equation (4.7)

becomes

∆pt = ∆dt +M∆Yt + ∆bt, (4.10)

where:

g = (1, 0, 0, ..., 0) is an h-row vector; and

M = gA(I − A)−1[I − (1 − ψ)(I − ψA)−1] is an h-row vector and I is an h × h identity

matrix.

When estimating the stock price equation (4.10), we are confronted with the problem that the
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bubble component bt is unobservable. In fact bt is also the only unobserved series. Instead of

directly estimating the bubble using equation (4.10), a more efficient way is to build up a state

space model which utilizes both the information from equation (4.10) and the dynamic of bubble

series itself.

A linear rational speculative bubble is believed Wu (1997) to have the following parametric

dynamic:

bt = (1/ψ)bt−1 + ηt, (4.11)

where the innovation ηt is assumed to be serially uncorrelated and have zero mean and finite vari-

ance σ2
η . It is also assumed that η is uncorrelated with the dividend innovation, δ in equation (4.8).

4.2.2 The state space form

In a companion form, a linear bubble-dividend-stock system follows the following state space

model:

xt = Hxt−1 +Wwt, (4.12)

zt = Gxt +Dgt + V vt, (4.13)

where

xt = (bt, bt−1)′ is the (2× 1) vector of unobserved variable referred to as state variables;

zt = (∆dt,∆pt)
′ is the (2× 1) vector of observable output variables;

gt = (1,∆dt,∆dt−1, ...,∆dt−h)′ is ((h+ 1)× 1) vector of observable input variables;

H =

1/ψ 0

1 0

, G =

0 0

1 −1

, W =

ση 0

0 0

, V =

σδ 0

0 0


D =

µ 0 ϕ1 ϕ2 ... ϕh−1 ϕh

0 (1 +m1) (m2 −m1) (m3 −m2) ... mh −mh−1 −mh

 where mi is the

i-th component of the (h×1) vector M . wt and vt are i.i.d two dimension standard normal random

vector. Since this model only involves one regime, in the following part, it is denoted as the one-

regime model or the model R1. Model R1 is both linear and Gaussian, thus can be filtered using
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Kalman Filter in section 2.2 with equation (2.8). The only difference here is that the expected µ

needs to include the drift Dgt. Model fitting can also be done by maximizing (2.9).

4.3 New bubble model with periodically collapsing

Non-linear economic models have been more preferable due to its flexibility and accordance

to financial data. This is also the case in bubble models. The dynamic of bubble series is peri-

odically changing in their nature (Brunnermeier, 2009). The simplest argument for this goes with

the following: a bubble in financial crisis usually collapses and has negative return. Therefore, in

equation (4.11), it is reasonable and desirable to consider at least one more situation, in which the

AR coefficient is smaller than 1. Moreover, besides a rational bubble which grows with the asset’s

required rate of return, there are scenarios that bubble grows irrationally with the rate higher than

the required rate of return in an over-invested economic situation, and then followed by collapses.

This dynamic is depicted in Evans (1991) and believed to be more realistic.

We now introduce two classes of conditional dynamic linear models to describe the stock-

dividend-bubble system. Both of the models assume the state equation (4.12) have different pa-

rameters under different regimes. The underlying regime λt follows a Markov-switching process

with transition probability matrix P . The first class assumes two regimes, the surviving (λt = 1)

and collapsing regimes (λt = 2), in which a bubble can grow at a speed larger than or less than

the asset’s required rate of return. While the second class assumes three regimes, the surviving

(λt = 1), exploding (λt = 2) and collapsing (λt = 3) regimes, in which the bubble can grow at a

speed equal to, larger than, or less than the assets required rate of return. We impose the restriction

that the expected growth rate of bubble is equal to the asset’s required rate of return in order to

make the bubble satisfy the rational expectations condition. Our model specification allows bub-

bles exhibit irrational behaviors in the short-run, but over the long-run, they still satisfy the rational

expectations condition and can be classified as the rational bubbles.
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4.3.1 Two-regimes model

In this subsection, we introduce the specification of the first class of models mentioned above.

We assume the two regime-switching conditional linear bubble process as follows,

bt+1 =


a1bt + η

(1)
t , η

(1)
t ∼ N(0, σ2

η1
) if λt = 1,

a2bt + η
(2)
t , η

(2)
t ∼ N(0, σ2

η2
) if λt = 2,

(4.14)

where the probabilistic nature of the regime-indicator λt (λt = 1, 2) are specified by a first-order

Markov-process with time-invariant transition probabilities pij = Pr[λt = j|λt−1 = i] which we

collect in the transition-probability matrix

P =

 p11 1− p11

1− p22 p22

 . (4.15)

The unconditional probabilities for two regimes are

π1 =
1− p22

2− p11 − p22
, π2 =

1− p11

2− p11 − p22
. (4.16)

To satisfy rational expectations condition (4.6), the constraint we put on the parameters are

a1π1 + a2π2 = 1/ψ, a1 > a2. (4.17)

In two-regime Markov-switching CDLM, the collapsing regime helps to fit the downward shift in

the filtered bubble series. In addition, volatilities in different regimes are allowed to be different in

the belief that the bubble series may be more volatile in collapsing state. In the subsequent analysis,

the two-regimes model is also denoted as the model R2.
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4.3.2 Three-regimes nodel

It is more realistic and appealing to consider a three-regimes model to depict the dynamic of

the bubble series. In reality, the bubble process starts with a period that most investors are rational

and bubble grows with the rational drift term a1 = 1/ψ > 1. Then gradually the bubble grows out

of control with a drift term a2 > a1, which we call explosive drift, until it collapses with a drift

term a3 < a1, i.e.

bt+1 =


a1bt + η

(1)
t , η

(1)
t ∼ N(0, σ2

η1
) if λt = 1,

a2bt + η
(2)
t , η

(2)
t ∼ N(0, σ2

η2
) if λt = 2,

a3bt + η
(3)
t , η

(3)
t ∼ N(0, σ2

η3
) if λt = 3,

(4.18)

where a1 = 1/ψ > 1, a2 > a1 > a3.

In a three-regimes model, the construction of transition probability matrices needs careful con-

sideration in the sense that some of the transition should be restricted. For example, right after

the financial crisis, the bubble is not likely to explode due to the cautious investment environment.

Besides, in a pessimistic but realistic perspective, once in an explosive regime, the bubble can only

collapse other than turning rational. Therefore we provide two relatively reasonable specifications

of transition probability matrices.

In the first probability setting, a rational regime can only transfer to exploding regime but not

collapsing one, i.e.

P =


p11 1− p11 0

0 p22 1− p22

1− p33 0 p33

 , (4.19)

The stationary distribution can be calculated as follows,

π1 =
q−1

11

q−1
11 + q−1

22 + q−1
33

, π2 =
q−1

22

q−1
11 + q−1

22 + q−1
33

, π3 =
q−1

33

q−1
11 + q−1

22 + q−1
33

, (4.20)

where qii = 1− pii, i = 1, 2, 3. By the rational expectations condition
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a1π1 + a2π2 + a3π3 = 1/ψ = a1, (4.21)

which suggests the following parameter constraint,

q22(a1 − a3) = q33(a2 − a1). (4.22)

In the subsequent analysis, this model is also denoted as the first version of three-regimes model or

the model R3V1.

The second probability setting allows the transition from rational regime directly to collapsing

regime, thus

P =


p11 p12 1− p11 − p12

0 p22 1− p22

1− p33 0 p33

 , (4.23)

in which case the stationary distribution can be calculated as follows,

π1 =
q22q33

q22q33 + q11q22 + p12q33
, π2 =

p12q33

q22q33 + q11q22 + p12q33
, π3 =

q11q22

q22q33 + q11q22 + p12q33
,

(4.24)

where qij = 1 − pij . With the same condition as equation (4.21) we can derive the following

parameter constraint

q11q22(a1 − a3) = p12q33(a2 − a1). (4.25)

In the subsequent analysis, this model is also denoted as the second version of three-regimes model

or the model R3V2.
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4.3.3 State space form with regime switching

The periodically collapsing bubble-dividend-stock system can be expressed as the following

state space model with regime switching:

xt = Hλtxt−1 +Wλtwt, (4.26)

zt = Gxt +Dgt + V vt, (4.27)

where

xt = (bt, bt−1)′ is the (2× 1) vector of unobserved variable referred to as state variables;

zt = (∆dt,∆pt)
′ is the (2× 1) vector of observable output variables;

gt = (1,∆dt,∆dt−1, ...,∆dt−2)′ is ((h+ 1)× 1) vector of observable input variables;

H =

aλt 0

1 0

, G =

0 0

1 −1

, W =

σηλt 0

0 0

, V =

σδ 0

0 0


D =

µ 0 ϕ1 ϕ2 ... ϕh−1 ϕh

0 (1 +m1) (m2 −m1) (m3 −m2) ... mh −mh−1 −mh


System (4.26) and (4.27) forms a conditional dynamic linear model. The inference of this

CDLM, including estimating and predicting the xt series as well as the λt series needs to be carried

out by Mixture Kalman Filter introduced in Section 2.4. The more complicated while equivalently

important parameter estimation mission needs to be conducted under the framework of Chapter 3.

4.4 Empirical analysis

In this section we apply both the one-regime model with the Kalman Filtering technique and our

proposed multiple-regimes models with the Mixture Kalman Filtering scheme to both artificial data

and real data. In order to obtain artificial data, we simulate the stock price, dividend, and bubble

observations following the processes described in Evans (1991). For the real data, we mainly focus

on the US stock market by studying its most representative market index — S&P-500 stock index
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with quarterly frequency through the whole history.

4.4.1 Artificial data

We follow Evans (1991) to simulate periodically collapsing bubble series. The artificial bubbles

have the form,

Bt+1 =


(1 + r)Btut+1, if βt < α,[
δ + 1+r

π (Bt − δ
1+r )ξt+1

]
ut+1 if βt > α,

(4.28)

where δ and α are real scalars such that 0 < δ < (1 + r)α. {ut} is a sequence of non-negative ex-

ogenous i.i.d lognormal variables withEt(ut+1) = 1. Here we assume {ut} to be i.i.d. lognormally

distributed and scaled to have unit mean, i.e., ut = exp(yt − τ2

2 ) with {yt} being i.i.d. N(0, τ2).

{ξt} is an exogenous i.i.d Bernoulli process independent of {ut} with Pr(ξt = 0) = 1 − π and

Pr(ξt = 1) = π for 0 < π < 1. The data-generating process for the dividends follows a pure

random walk, Dt = Dt−1 + εt, where {εt} is a Gaussian white-noise process with mean zero

and variance σ2
ε . Therefore, the fundamental stock price is PDt = Dt

r . Hence the stock price is

Pt = PDt +Bt. The parameters for simulation is listed in table 4.4.1,

The upper panel in Figure 4.4.1 presents the realization of one trial of simulation using the

Evans model with parameters in Table 4.4.1. The simulated stock price, dividend as well as the

Table 4.4.1: Parameter Specification for the Evans Bubble Process

No. of obs. α τ2 r δ D0 B0 σ2
ε π

100 1 0.0025 0.05 0.5 1.3 0.5 0.1574 0.85

bubble series are plotted. One feature of the bubble series, which also aligns the equation (4.28), is

the relatively sudden and strong collapse. The Evans process approximates the reality by creating a

threshold, under which the bubble is rationally growing. However once the bubble grows out of the

rational threshold, it starts to explode faster than the rational growing speed, and accompany with a

probability to collapse to a certain low level, after which the bubble continues to behave rationally

again.
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Figure 4.4.1: Evans-one regime

One can either use the two-regimes model or the three-regimes model to filter out both the

bubble and probability series. The first step is the model fitting. We adopt maximum likelihood

estimation utilizing Mixture Kalman Filter and equation (2.9) to estimate unknown parameters.

A by-product of this step, also a benefit from MKF, is the log-likelihood, which can be used to

compute several criteria of model selection. To be more specific, Akaike information criterion

(Akaike, 1998), also known as AIC can be calculated by

BIC = 2k − 2log(L̂), (4.29)

where k is the number of parameters. AIC can be directly applied as a criterion as the goodness of

fit of a model to the data. The smaller the AIC, the better the model fits the data. Another tool of

model evaluation is the Bayesian Information Criterion (BIC), which is defined as

AIC = log(n)k − 2log(L̂), (4.30)

where n is the number of data points. Once the model is fitted, the series of bubble and probability

of each stage can be filtered by Mixture Kalman Filter.

As we have discussed before, there are two versions of the three regime models. The first
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version (R3V1) has the transition probability matrix specified by the equation (4.19), while the

second version (R3V2) is equipped with the transition probability matrix specified by the equation

(4.23). The estimated parameters and the associated log likelihood, AIC and BIC for all models

are reported in Table 4.4.2.

Table 4.4.2: Estimation summary: Evans process

1 Regime 2 Regimes 3 Regimes - V1 3 Regimes - V2

Model Evaluation
loglike 108.4176 loglike 202.9590 loglike 205.0493 loglike 205.1933

AIC -204.8351 AIC -387.9181 AIC -390.0986 AIC -388.0986
BIC -189.5119 BIC -364.9332 BIC -390.1863 BIC -388.1951

Estimated Paras

µ 0.0171*** (0.0024) µ 0.0320*** (0.0024) µ 0.0141*** (0.0051) µ 0.0154 *** (0.0053)
ϕ1 0.0170*** (0.0094) ϕ1 -0.1022*** (0.0094) ϕ1 -0.1167*** (0.0205) ϕ1 -0.1166 *** (0.0263)
ϕ2 -0.2895*** (0.0097) ϕ2 -0.1808*** (0.0097) ϕ2 -0.1760*** (0.0237) ϕ2 -0.1747 *** (0.0292)
σδ 0.1480*** (0.0016) σδ 0.1512*** (0.0016) σδ 0.1483*** (0.0106) σδ 0.1519 *** (0.0103)
ση 0.1309*** (0.0013) ση 0.0418*** (0.0013) ση 0.0410*** (0.0029) ση 0.0406 *** (0.0030)
ψ 1.0000*** (0.0159) ψ 0.9988*** (0.0159) a1 1.0034*** (0.0071) a1 1.0033 *** (0.0139)

a1 1.0887*** (0.0213) a1 − a3 0.9475*** (0.0481) a1 − a3 0.9358 *** (0.0511)
p11 0.9442*** (0.0552) p11 0.8059*** (0.0590) p11 0.8055 *** (0.0596)
p22 0.3965*** (0.1211) p22 0.9149*** (0.0309) p12

1−p11
0.9954 *** (0.0020)

p33 0.1280 (0.0717) p22 0.9135 *** (0.0550)
p33 0.1236 *** (0.0683)

Implied Paras

R 0.0000 R 0.0012 R 0.0034 R 0.0033
a1 a1 1.0887 a1 1.0034 a1 1.0033
a2 a2 0.0544 a2 1.0959 a2 1.0961
a3 a3 a3 0.0560 a3 0.0674
π1 π1 0.9154 π1 0.2853 π1 0.2890
π2 π2 0.0846 π2 0.6511 π2 0.6469
π3 π3 π3 0.0635 π3 0.0642

A quick glance at the model selection criteria reveals that the multiple-regimes models are much

more preferable than the one- regime model. For example, after the number of regimes increase

from 1 to 2, the log likelihood increase by 87.20%, while the AIC (BIC) decrease by 89.38%

(92.56%). We can also find that the estimated collapsing drifts are small (around 0.05) for all

multiple-regimes models, which are consistent with the fact that the bubble collapses dramatically

only in one step in the Evans process.

By comparing three multiple-regimes models with AIC and BIC, we find the model R3V1

works best while the model R2 performs worst. The predominance of the model R3V1 stems

from the fact that the the specification of the transitional probability matrix of its bubble process is

consistent with the transitional process of the Evans’ bubble, which recursively follows the order

of rational surviving, exploding, and collapsing. The model R2 can not differentiate the rational

surviving and exploding states and have to combine these two states into one regime, which leads
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to smaller log likelihood. Although the model R3V2 allow the bubble in the surviving state to enter

the collapsing regime directly, the estimate of the corresponding transition probability is close to

zero and the overall parameter estimation is similar to that of R3V1. This is because the simulated

evans bubble process doesn’t have this feature. Because R3V2 has 1 more parameter, it is equipped

with worse AIC and BIC than R3V1.

The second and third figures in Figure 4.4.2, 4.4.3 and 4.4.4 present the filtered bubble and state

probability series for multiple-regime models. We can see all of them can detect the collapsing

bubble periods accurately. And both three-regimes model can detect the exploding states, whose

filtered probabilities grow gradually to almost 1 right before each collapsing.

Figure 4.4.2: Evans-two regimes
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Figure 4.4.3: Evans-three regimes-V1

4.4.2 US real data

We follow the same modeling procedures as the one used in artificial data to the quarterly real

S&P500 index and dividend data through the whole history from 1871 to 2017. The real data

is obtained by adjusting the nominal data with CPI. The overall conclusions we can draw match

those in the artificial data, which indicates the reasonableness of the Evans process, as well as our

proposed models. To be more specific, we can infer from table 4.4.3 that the regime-switching

models achieve better approximation to the data than one-regime model since both AIC and BIC

are in favor of the latter three models.

In this real data example, the model R3V2 produces best AIC and BIC while the model R3V1

gets dominated by the other two. One possible explanation of this is that the collapse of bubble

happens more unexpectedly in real life. More often a crisis happens while the bubble is still ra-

tionally growing. Therefore, the model that forces the bubble to collapse only after the exploding

regime may be too strict. This can also be shown by the filtered probabilities exhibited in Figure

4.4.7 and 4.4.8. With strong restriction, R3V1 only detects one collapse, which is during the big
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Figure 4.4.4: Evans-three regimes-V2

recession in 1930s, while R3V2 identifies most of the financial collapsing periods.

Since the data shows that it is more often that the collapse follows directly by rational regime

in the US market, both R2 and R3V2 performs well in the probability filtering task in the sense

that they successfully detects several major crises in history including: a series of panics during

the Long Depression, the Great Depression followed by Wall Street Crash of 1929, the Secondary

Banking Crisis of 1973-75, Black Monday in 1987 and the Subprime Mortgage Crisis in 2007.

The only major crisis our model fails to detect is the Dot-com Bubble during which stock price

decreased gradually rather than collapsed all of a sudden.

4.5 Conclusion

This chapter has proposed a new framework for modeling the periodically growing and col-

lapsing bubble process. Under this framework, one set of discrete conditional Dynamic Linear

models are introduced to capture the regime-switching characteristic of speculative bubbles. The

novel Monte Carlo based Mixture Kalman Filtering method has been employed to fulfill the model



65

Table 4.4.3: Estimation summary: S&P500 Quaterly

1 Regime 2 Regimes 3 Regimes - V1 3 Regimes - V2

Model Evaluation
loglike 1666.2583 loglike 1709.9061 loglike 1699.2991 loglike 1719.9248

AIC -3320.5167 AIC -3401.8122 AIC -3378.5981 AIC -3417.8496
BIC -3296.1061 BIC -3362.5760 BIC -3335.0024 BIC -3369.8943

Para Estimates

µ 0.0029*** 0.0001 µ 0.0033*** 0.0010 µ 0.0031*** 0.0007 µ 0.0026 0.0027
ϕ1 0.2448*** 0.0024 ϕ1 0.2255*** 0.0866 ϕ1 0.2379*** 0.0185 ϕ1 0.2186*** 0.0984
ϕ2 -0.0093*** 0.0018 ϕ2 -0.0278 0.0445 ϕ2 -0.0151 0.0147 ϕ2 -0.0072 0.0966
σδ 0.0345*** 0.0001 σδ 0.0356*** 0.0033 σδ 0.0346*** 0.0006 σδ 0.0346*** 0.0031
ση 0.0963*** 0.0003 ση 0.0821*** 0.0101 ση 0.0890*** 0.0012 ση 0.0830*** 0.0068
ψ 1.0000*** 0.0013 ψ 0.9999*** 0.0925 a1 1.0002*** 0.0006 a1 1.0001*** 0.0028

a1 1.0118*** 0.0196 a1 − a3 0.9890*** 0.0692 a1 − a3 0.6635*** 0.2118
p11 0.9851*** 0.0900 p11 0.9981*** 0.0029 p11 0.9922*** 0.0701
p22 0.2200* 0.1288 p22 0.2584*** 0.0601 p12

1−p11
0.3920** 0.1701

p33 0.5077*** 0.0316 p22 0.0225 0.0789
p33 0.7004*** 0.2047

Implied Paras

R 0.0000 R 0.0001 R 0.0002 R 0.0001
a1 a1 1.0118 a1 1.0002 a1 1.0001
a2 a2 0.3906 a2 2.4900 a2 1.5189
a3 a3 a3 0.0112 a3 0.3366
π1 π1 0.9812 π1 0.9936 π1 0.7007
π2 π2 0.0188 π2 0.0025 π2 0.2810
π3 π3 π3 0.0038 π3 0.0183

fitting and estimation task.

To check the validity of this framework, we apply it to simulated observations and US stock

market data. Results show a significant gain on goodness of fit as well as a set of theory-coherent

estimators. Moreover, our model exhibits a strong capability in bubble detection in both artificial

and real-data examples. In the mean-time, the rational expectation condition is satisfied in the

model construction.

The proven goodness of fit of our proposed model also shows the fact that the speculative bubble

process should be inherently non-linear. Certain consideration on this non-linearity is needed when

specifying this periodical process.

Although we only show three Markov-switching models to approximate the bubble process,

other more general specifications can be employed under this framework. For example, a four-

regimes model with certain probability construction can be studied. A three regimes model which

allows the bubble to explode immediately after collapsing could be another possibility. The same

model fitting and estimation procedure as described above can be taken.
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Figure 4.4.5: US-one regime

Figure 4.4.6: US-two regimes
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Figure 4.4.7: US-three regimes-V1

Figure 4.4.8: US-three regimes-V2



68

Chapter 5

A conditional dynamic linear model approach for real-time Blood
Glucose Monitoring

5.1 Introduction

Diabetes mellitus (DM), commonly referred to as diabetes, is a group of metabolic disorders

in which there are high blood sugar levels over a prolonged period (World Health Organization

and others, 2014). According to World Health Organization (World Health Organization and oth-

ers, 2016), an estimated 422 million adults were living with diabetes in 2014, which has nearly

doubled in ratio since 1980. Type 1 diabetes mellitus, also referred to ”insulin-dependent diabetes

mellitus” (IDDM) or ”juvenile diabetes”, is characterized by loss of the insulin-producing beta

cells of the pancreatic islets, leading to insulin deficiency (Rother, 2007). Insulin-injection type

of treatments, including insulin pumps, multiple injections have been proved to be necessary and

most effective methods to manage blood glucose levels for Type 1 Diabetes patients, according to

a series of researches including the Diabetes Control and Complication Trial(DCCT) (Centers for

Disease Control and Prevention and others, 2011). Following this, a system of closed-loop artifi-

cial pancreas (Weinzimer et al., 2008) incorporating continuous glucose sensors and insulin pumps

has been proposed and proved significant effectiveness in glycemic management. The closed-loop

artificial pancreas closely monitor the patient’s blood glucose level in a real-time manner and con-

duct insulin injection accordingly, leading to a relatively stable blood glucose level of the patient.

Relevant studies on artificial pancreas has shed some light on continuous blood glucose control and

hyperglycemia prevention.

One of the keys to a powerful system of artificial pancreas is an accurate and robust real-time
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continuous glucose monitoring(CGM) algorithm relying on both the glucose biosensors and the

fingerstick measurements. Insulin pumps’ injection dose rely on the output of CGM algorithm. An

under- or overestimation of real-time blood glucose level may lead to over- or under-injection of

insulin, which could result in patients’ deteriorated health condition. However, the incompetence

of accurate continuous glucose monitoring remains the main challenge in the artificial pancreas

development. The difficulty comes from both the technical deficiency of the biosensor and the

inefficient statistical modeling of the CGM algorithm. Due to the technical limit in the biosensor,

the CGM algorithm requires routine calibration according to the device and patient. This procedure

is in principle challenging and more care should be taken in statistical modeling of CGM algorithm.

In this chapter we address the above challenge by proposing a time series model which cap-

tures the nature of the CGM problem thus yields accurate and precise real-time blood glucose

level estimation and prediction. Inspired by the biological structure of the biosensor signal, fin-

gerstick measurement and blood glucose system as well as the on-line property of the algorithm,

we employ the state space framework and associated filtering techniques to fit the real-time CGM

problem. Detailed implementation of this SSM-based CGM algorithm includes two main com-

ponent: periodical and proper parameter estimation and statistical inference(including estimation,

prediction, etc) on blood glucose levels. The carefully designed algorithm is applied and assessed

via an important dataset, Star 1 dataset. The performance exhibited in different dimensions all

show a significant improvement over the existing CGM algorithm.

The rest of this chapter is organized as follows. In section 5.2, we introduce the dataset and

derivation of the model. A detailed algorithm go-through based on a subsample will be illustrated in

section 5.3. Section 5.4 covers the numerical analysis of the estimation and prediction performance

over different CGM algorithms. A brief conclusion and discussion will be in section 5.5.
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5.2 The state space representation of continuous glucose monitoring

5.2.1 The Star 1 dataset

In the Star 1 study (Hirsch et al., 2008), 137 subjects with type 1 diabetes were followed for

6 months, on average, using a CGM device (developed by Medtronic MiniMed). The first series

of information comes from the blood glucose biosensor every 5 minutes in a form of electrical

current measurement (Wang, 2008). Throughout this chapter, we denote this interstitial signal as

ISIG(t). ISIG(t) is measured in nano amps, nA. Another more accurate but less frequent source

of measurement is fingerstick measurement–each patient in the study pricks their finger to obtain

a small droplet of blood to be analyzed by a blood glucose meter. Due to its strict procedure, the

fingerstick measurement(in mg/dL), denoted as FS(t) is only taken every 6 hours on average. The

above two measurements are entered into the CGM system and processed by the CGM algorithms

to yield the blood glucose estimation.

Since most of the time there’s only ISIG(t) available, the blood glucose estimation is based

mainly on ISIG(t). Ultimately, for an artificial pancreas, one hopes to get free from fingerstick

measurements. However, FS(t) is essential helping calibrating the algorithm due to the limit of the

existing CGM device. For simplicity, we scale t as every 5 minutes since this is the smallest time

interval in our study. Notation-wise, we record FS(t) = NA if there’s no fingerstick measurement.

While one should build a continuous glucose monitoring algorithm based mainly on ISIG(t)

and FS(t), there’s other useful information in the Star 1 dataset. The biosensor are replaced ap-

proximately every three days on average. The sensor ID codes are recorded to help tracking the

replacement of the sensor. There’s also a time series of output of an existing, proprietary CGM

algorithm denoted by CGM(t). CGM(t) provides a standard of comparison by which we can test

the performance of our proposed methods. Figure 5.2.1 shows the ISIG and FS measurement with

CGM output and indicator of replacement.
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Figure 5.2.1: ISIG(t), FS(t), CGM(t) and sensor replacement for Subject 1 in Star 1 dataset

5.2.2 Modeling the blood glucose biosensors

As stated above, essentially the CGM algorithm aims at estimating the blood glucose density

inside the patient’s body, denoted as BG(t), given the interstitial signal ISIG(t) and fingerstick

measurement FS(t). There have been discussions on the relationship between the measurements

and the blood glucose density (see Khan et al., 2006; Mahoney and Ellison, 2007; Steil et al., 2005;

Wang, 2008). The fingerstick measurements taken at t = τk, are believed to be more reliable than

CGM measurements, although there’s still error term existing. Therefore we have

FSk = BGk + σ1εk, (5.1)

where εk are iid error terms with Eεk = 0 and Var(εk) = 1. Here we assume εk ∼ N(0, 1).

There’re studies on potential bias of fingerstick measurements(Eεk 6= 0) (Khan et al., 2006), which

haven’t reached to any conclusive results. So for the scope of this Chapter we take FS(t) as the bet-

ter measurement of the two which should in principle reflect the BG(t) with minor error. The main
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and obvious drawback of FS(t) is that they are mostly NA’s thus can only be taken for calibration.

On the other hand, the CGM measurement ISIG(t) reflects the glucose density near the inter-

stitial fluid, denoted as IG(t). There is a time lag between IG(t) and BG(t) due to the diffusion of

blood glucose molecules into interstitial fluid. The lag can be modeled (Steil et al., 2005) by the

equation

IG(t) =

∫ ∞
0

BG(t− u)ρ−1e−u/ρdu.

Differentiating the equation leads to

BG(t) = IG(t) + ρIG′(t).

In reality, ρ is relatively small and the second term in the above equation contributes very little to

BG(t). Therefore, it is sometimes legitimate (Dicker et al., 2013) to assume ρ = 0 for simplicity.

We’ll assume BG(t) = IG(t) in the following discussions while leave the scenario of ρ 6= 0 in the

discussion.

It remains to discuss the relationship between ISIG(t) and IG(t). A linear approximation is

suggested (Heller and Feldman, 2008), i.e.

ISIG(t) = α(t)IG(t),

where α(t) is a slowly changing stochastic process. In principle the CGM biosensor attempts to

get a stable estimation of IG(t), i.e. α(t) ≡ α. However, there are two obstacles to this due to the

limit of current biosensors. Firstly, the biosensors’ measurements base on interstitial signal, which

is much more volatile than fingerstick measurements. So to be more rigorous, the equation should

take the form

ISIG(t) = α(t)IG(t) + σ2η(t),
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where η(t) is modeled as iid standard normal distribution, and σ2 is in natural larger than σ1

after scaling. Secondly, the biosensors’ sensitivity decays over time due to biofouling from the

CGM device. Thus one can observe decreasing α(t) during the life period of one sensor. A basic

approach on α(t) is to depict it as a linear process α(t) = α0 +α1(t−ti), t ∈ (ti, ti+1), where ti is

when a new sensor is installed. Figure 5.2.2 records the available ratios of ISIG(t)/FS(t) during the

lifetime of a randomly picked sensor for Subject 1. Since FS(t) is approximately BG(t), the points

Figure 5.2.2: ISIG(t)/FS(t) for Subject 1 during the life period of sensor ID: A761 083210, with the linear
regression line in red.

are approximately samples of α(t). This supports our linear assumption on α(t). Considering

BG(t)=IG(t), we have the second observation equation

ISIGt = (α0 + α1(t− ti))BGt + σ2ηt, t ∈ (ti, ti+1). (5.2)

Equations (5.1) and (5.2) together build the relationships between BG(t) with ISIG(t) and FS(t),

with which a CGM algorithm can make statistical inference.

5.2.3 The state space representation

While Dicker et al. (2013) uses FS(t) as the true BG(t) to calibrate α(t) when it’s available, we

propose to take this series as an additional source of observation, only with much higher accuracy.

To better support the estimation, we make assumptions on the patients’ blood glucose dynamics to



74

form a state equation, i.e.

BGt+1 | BGt ∼ f(· | BGt), (5.3)

which, together with equations (5.1) and (5.2), forms a state space representation of continuous

blood glucose monitoring problem.

To start with, a tentative assumption one can make for blood glucose dynamic is simply setting

the state space model as

ISIGt = (α0 + α1(t− ti))BGt + σ2ηt, t ∈ (ti, ti+1),

FSt = BGt + σ1εt, t = τk,

BGt+1 = µ+ βBGt + σbνt+1,

(5.4)

where ηt, τt, νt are iid standard normal variables. This is an over-simplified model in the sense that

we don’t take the periodicity of blood glucose dynamic into account. Instead we assume a simple

AR(1) dynamic to represent the state equation. This model can be efficiently fitted and estimated

by Kalman Filter techniques since all components are linear and Gaussian. Figure 5.2.3a shows

the scatter plot of CGM(t) against CGM(t − 1) from a subsample of Subject 1. In the belief that

existing CGM time series can reflect the rough shape of BG dynamic, this preliminary study shows

some reasoning of initiating with a simple AR(1) process.

The limit of model (5.4) is as obvious–the periodicity of the BG dynamic suggested by Figure

5.2.1 is ignored. This would lead to a relatively large σb, thus less estimating power from the

state equation. Moreover, the prediction is mainly based on the state equation while the AR(1)

assumption may not do well in prediction. For example, when the patient just finishes taking

meal, a good CGM algorithm should expect a higher BGt+1 than BGt while the AR(1) assumption

wouldn’t.

In hope to allow more flexibility to help blood glucose estimation and prediction, we introduce
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(a) (b)

Figure 5.2.3: Scatter plot of CGM(t) against CGM(t − 1) for Subject 1 with one day, with the regression
line. (a) takes the whole data while b seperates the data into three groups.

the three regimes Markov switching model as follows,

ISIGt = (α0 + α1(t− ti))BGt + σ2ηt, t ∈ (ti, ti+1),

FSt = BGt + σ1εt, t = τk,

BGt+1 = BGt − θ(BGt −m) + Jt+1M1 − It+1M2 + σb(Jt+1, It+1)νt+1,

(5.5)

where the indicator series Jt and It takes value 0 and 1 respectively. The series Jt indicates the

body’s absorbing outside blood glucose molecules, leading to a constantly increasing blood glu-

cose level. Similarly, It indicates the injection of insulin which cause a constant decreasing blood

glucose level. When there’s no meal activity or insulin injection, the blood glucose should be main-

tained in a relatively stable way through a mean reverting process caused by the insulin inside the

patient’s body. We also allow the variation term σb to be stage dependent. In practice, the injection

of insulin is associated with the meal activity. That’s also why there’s always a sharp decreas-

ing(insulin’s effect) after a sharp increasing(meal’s effect). So we restrict Jt and It to begin at the

same time while Jt ends earlier than It. To be more specific, we combine the two indicators into

one series λt which takes value 1, 2 and 3, representing stable(Jt = 0, It = 0), increasing (Jt = 1,

It = 1) and decreasing(Jt = 0, It = 1) stages. And we set λt to be a Markovian stochastic process
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with transition probability P(λt+1 = j | λt = i) = pij forming the transition probability matrix

P =


p1 1− p1 0

0 p2 1− p2

1− p3 0 p3

 . (5.6)

Figure 5.2.3b shows a simple grouping of the three stages. The top red up triangles have a relatively

larger drift while the bottom blue down triangles have smaller drift. The green round dots stays in

between, representing the stable stage.

Ultimately, the regime detection job could be done by outside input in the CGM device since

the timing of meal and insulin injection is determined. Yet the current biosensor does not take

this input. Under the conditional dynamic linear model framework, we are still able to detect the

regime from the observation and knowledge on the blood glucose dynamic. One might have doubt

on the assumption of a Markovian structure on the trajectory transition, arguing that probability of

being decreasing in the next step in a high blood glucose level cannot be the same as that in a low

blood glucose level. Although the nature of blood glucose dynamic links the transition probability

to the blood glucose level, it’s hard to model this relationship in a concrete way. Instead, our

flexible Markovian assumption leaves the detection of regime switching to the combination of

both observation equation and state equation. The numerical study will show that with properly

estimated parameters, the regime allocation is reasonable.

Combining (5.5) and (5.6) with β = 1− θ, µ1 = θm, µ2 = θm+M1 −M2, µ3 = θm−M2,

we have the following companion form of a conditional dynamic linear model of continuous blood

glucose monitoring problem:

ISIGt = (α0 + α1(t− ti))BGt + σ2ηt, t ∈ (ti, ti+1),

FSt = BGt + σ1εt, t = τk,

BGt+1 = µλt+1 + βBGt + σbλt+1νt+1,

P(λt+1 = j | λt = i) = pij , i, j = 1, 2, 3,

(5.7)
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where pij follows (5.6).

5.3 Study on a subsample

Based on model (5.4) and (5.7), one can apply Kalman Filter and Mixture Kalman Filter to

make blood glucose estimation and prediction. Beforehand, the model fitting can be done via

maximum likelihood estimator discussed in chapter 3. There are several issues that need to be

addressed in the CGM algorithm. Given the interstitial signal ISIG(t) and sometimes fingerstick

measurement FS(t), the proposed CGM algorithm should yield the estimator B̂G(t) and predictor

B̂G(t+ h). In this section, we illustrate our proposed CGM algorithm based on techniques associ-

ated with Kalman Filter(in model (5.4)) and Mixture Kalman Filter(in model (5.7)). We start with

a subsample of time series to go through the procedure. The estimation and prediction performance

will be discussed in section 5.4.

As an example to discuss the detailed implementation of our proposed CGM algorithm, we pick

a random subsample of Subject 1 when there are sufficient CGM algorithm estimation, which is

missing approximately 17.5% of the whole length of Subject 1 in a clustered manner. Figure 5.3.1

shows the time series of the necessary information–ISIG and FS are the input of CGM algorithm

while CGM is for comparison.

Figure 5.3.1: One day series of ISIG, FS and CGM for Subject 1, obtained by one biosensor with no
replacement.
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5.3.1 CGM algorithm based on Kalman Filter

Model (5.4) is linear and Gaussian and thus can be solved by Kalman Filter which is introduced

in Section 2.2. Therefore the model can be fitted by finding the MLE θ̂ = argminθ{−logL(ISIGT ,FSK | θ)},

the estimated parameters with standard deviation are reported in Table 5.3.1. One can observe that

the parameter estimations from the observation equation are much sharper than those in the state

equation(except for σ1 which is due to the lack of fingerstick measurements). Also σ2/α0 is still

smaller than σb, which means that the observation equation is the main contributor in filtering. This

is due to the over-simplification of blood glucose dynamic modeling.

α0 α1 σ2
1 σ2

2 µ β σb
M 0.213 -9.472×10−5 5.097 3.365 2.903 0.985 20.250
SD 0.011 1.521×10−5 2.585 0.756 1.384 0.012 4.112

Table 5.3.1: MLE parameter estimation results for model (5.4)

With the fitted model, the blood glucose estimator B̂Gt and its associated variance Var(BGt)

can be obtained by the posterior mean µ̂t|t and variance Σ̂t|t from Kalman Filter. Figure 5.3.2

shows the estimated B̂Gt and 95% confidence interval. The difference between the KF estimation

and the CGM estimation in the early stage comes from our assumption of a gradually decreasing

ISIG/IG ratio, which is shown in figure 5.2.2. In addition one would find B̂Gτk ’s be closer to

FSk’s when the latter is available, which also supports the decreasing ISIG/IG ratio assumption.

Moreover, the prediction based on Kalman Filter can be done by setting B̂Gt+1 = µ̂t+1|t and

Var(BGt+1) = Σ̂t+1|t, the RHS of the two equations being the predictive mean and covariances in

Kalman Filtering. We’ll leave the details in the later section.

5.3.2 CGM algorithm based on Mixture Kalman Filter

Table 5.3.1 and Figure 5.3.2 both show the improvement of model (5.4) as a CGM algorithm

along with its potential drawbacks. As stated in section 5.2.3, model (5.7) tries to cover the draw-

backs of model (5.4) by a more realistic depiction on the blood glucose dynamics. As stated in
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Figure 5.3.2: KF estimated B̂Gt with 95% confidence band, compared with CGM, FS and ISIG.

section 2.4, Mixture Kalman Filter(MKF) aims to efficiently do estimation and prediction of the

conditional dynamic linear model. Still maximum likelihood estimator is employed for model

fitting, referring to chapter 3. The estimated parameters and standard deviations are recorded

in Table 5.3.2. The first line of the table includes the trajectory-independent parameters, which

α0 α1 σ2
1 σ2

2 β

M 0.202 -5.618×10−5 5.535 3.423 0.982
SD 0.013 1.716×10−5 2.329 0.749 0.009

µ1 µ2 µ3 σ2
b1 σ2

b2 σ2
b3

M 3.096 7.617 -5.860 10.467 11.157 12.112
SD 0.926 1.361 1.070 3.428 3.275 4.174

p1 p2 p3

M 0.9268 0.9251 0.8402
SD 0.0295 0.0425 0.0566

Table 5.3.2: MLE parameter estimation results for model (5.7)

are similar as those in Table 5.3.1, especially those parameters in the observation equation. The

trajectory-dependent parameters, on the other side, gives much more information than model (5.4).

Firstly, the σ2
b ’s are approximately half than that in Table 5.3.1, which indicates a much larger

contribution from state equation, i.e. the blood glucose dynamics. Secondly, the parameters in

the original regime-switching model (5.5) are: θ̂ = 1 − β̂ = 0.018, m̂ = µ̂1/θ̂ = 172.00,

M̂1 = µ̂2 − µ̂3 = 13.477, M̂2 = µ̂1 − µ̂3 = 8.856. These implied parameters together reflect
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the patient’s blood glucose dynamics, thus can help understand the patients health condition. For

example, m stands for the stationary blood glucose level while θ represents the mean reverting

speed.

Applying the appropriately estimated parameters into the Mixture Kalman Filter algorithm,

The blood glucose mean and variance estimator, B̂Gt and Var(BGt), can be obtained by taking

weighted average of µ̂(j)
t|t and Σ̂

(j)
t|t , where j corresponds to sampled trajectory paths. To better

detect the trajectory variable λt, a 4-steps delayed strategy is adopted, i.e. p(λt+1 | λt,KFt,yt+5)

is employed as the trial distribution. Here y = (ISIG,FS). Figure 5.3.3 includes a summary of the

MKF results on the specific subsample. Figure 5.3.3a covers the filtered series along with the con-

fidence band. With more flexibility introduced by the state equation, one can observe both sharper

increase and decrease than Figure 5.3.2. Due to the assumption that fingerstick measurements con-

tains small error, both filter ’drags’ the estimator B̂Gt towards FS when the latter is available. Yet

this transition is much smoother in the MKF case than that in the KF case, which also indicates a

better fitting.

Figure 5.3.3b and 5.3.3c addresses the detection of trajectory in two dimensions: the former

records the marginal probability of P (λt = i | yT ) while the latter records the optimal trajectory

path, the paths with the highest weight. They both are coherent to the shape of the blood glucose

level. In addition, the prediction algorithm can be derived utilizing P (λt = i | yT ). For example

when h = 1,

B̂Gt+1 =
∑
i

{
P̂ (λt = i | yt)

∑
j

p̂ijµ̂t+1|t

}
= β̂B̂Gt +

∑
i

{
P̂ (λt = i | yt)

∑
j

p̂ijµ̂j

}
,

Var(B̂Gt+1) =
∑
i

{
P̂ (λt = i | yt)

∑
j

p̂ijΣ̂t+1|t

}
.

(5.8)
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Kalman Filter Mixture Kalman Filter
AIC 1303.15 1240.50
BIC 1329.07 1281.24

Table 5.3.3: Information criteria comparison between model (5.4) and (5.7)

One might also choose the most probable state to do prediction by setting

B̂Gt+1 = P̂ (λt = i∗ | yt)
∑
j

p̂ijµ̂t+1|t,

Var(B̂Gt+1) = P̂ (λt = i∗ | yt)
∑
j

p̂ijΣ̂t+1|t,

where i∗ = argmaxiP̂ (λt = i | yt). In practice both prediction methods have similar prediction

accuracy. Here we adopt equation (5.8).

Since both Kalman Filter and Mixture Kalman Filter yield the data likelihood during model

fitting, we provide the comparison of both Akaike Information Criterion AIC = 2k − 2log(L̂)and

Bayesian Information Criterion BIC = log(n)k − 2log(L̂) as metrics of goodness of fit. Table

5.3.3 records the comparison of information criteria, both of which lean towards model (5.7).

5.3.3 Summary on SSM-based CGM algorithms

The CGM algorithm based on the state space model with or without regime-switching has been

illustrated through the previous sections. A formalization of the state space model based CGM

algorithm is now stated as follows:

Algorithm 5. (ssm-based CGM algorithm)

(A) Given yt, t ∈ (ti, ti + Ki) where ti is the time for sensor replacement, fit the model by

either Kalman Filter or Mixture Kalman Filter, depending on the adopted model. HereKi =

min{k ≥ K1|#{FSt 6= NA} ≥ K2}.

(B) Based on the estimated parameters, conduct model inference in either blood glucose estima-

tion B̂Gt or prediction B̂Gt+h.
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(C) At time ti + Ki + jk where j is an integer and ti + Ki + jk < ti+1, re-estimate the model

parameters. Repeat step (B) until sensor replacement.

Enough initial data is needed to generate an accurate state space model to fullfill the inference

task. Therefore we introduce integers K1 and K2 for minimal ISIG and FS size to initiate the

algorithm. Also the observation parameters α0, α1, σ
2
2 depend on the sensor’s specification. So

we set the period of the CGM algorithm as the life circle of the sensor. The small k is a tuning

parameter balancing the performance and the computational cost. When k = 1, the CGM algorithm

reset the parameters at every step, which may yield a more up-to-date model while requires more

computational cost. Since the model parameters is in nature stable, a longer k is preferred from the

consideration of efficiency.

5.4 Numerical study

5.4.1 Estimation and prediction accuracy

Ultimately the desired CGM algorithm should accurately estimate and predict the blood glucose

level. Therefore we test the performance of the ssm-based CGM algorithms as stated in Algorithm 5

on the patient database. As for a metric of accuracy, we adopt a widely used overall measurement of

performance for continuous blood glucose monitoring, mean absolute relative difference(MARD)

(see Kovatchev et al., 2008; Dicker et al., 2013), in the form of

MARD(B̂G) = Avg(ARD) =
1

#{t}
∑
t

{
|B̂Gt − BGt|

BGt

}
.

However BGt is not attainable and FSk is the only golden standard for testing performance. Thus

replacing BGt by FSk, one gets

MARD(B̂G) = Avg(ARD) =
1

#{k}
∑
k

{
|B̂Gτk − FSk|

FSk

}
. (5.9)

Following Dicker et al. (2013), Table 5.4.1 reports the summary of performance measurements
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as a comparison of the three algorithms. The performance measurements include:

Method MARD(SD) MedARD ∆MARD NMARD(N)

Estimation Mixture Kalman Filter 0.0132(0.0106) 0.0101 0.1589 10(10)
Kalman Filter 0.0151(0.0109) 0.0110 0.1570 10(10)

CGM 0.1721(0.1646) 0.1307
Prediction Mixture Kalman Filter 0.1317(0.1097) 0.1132 0.0563 10(10)

w/ h=1 Kalman Filter 0.1629(0.1293) 0.1408 0.0251 10(10)
CGM 0.1880(0.1674) 0.1396

Prediction Mixture Kalman Filter 0.2098(0.1132) 0.1437 0.0239 10(10)
w/ h=3 Kalman Filter 0.2295(0.1963) 0.1688 0.0042 9(10)

CGM 0.2337(0.2009) 0.1736

Table 5.4.1: Summary statistics for accuracy comparison. K1 = 150, K2 = 5, k = 20 in Algorithm 5.

(1) MARD(SD): The total MARD’s over all the subjects, associated with there standard devia-

tions.

(2) MedARD: The Median of the ARD’s over all the subjects.

(3) ∆MARD: The difference between MARD of the desired CGM alrogithm and the existing

CGM algorithm.

(4) NMARD(N): NMARD denotes the counts of subjects that the MARD of the desired CGM al-

rogithm is less than that of the existing CGM algorithm whileN is the total subjects number.

The estimation performance of the SSM-based CGM algorithms is spuriously good because the

target FSk is also included in the model. In principle, one would always prefer to include FSk into

the observations for the purpose of absorbing more information. Yet if the true blood glucose level

is presented, one can measure the accuracy at every step, with only a few FSk’s available. Still,

accuracy performance would be better than the existing CGM algorithm with the incorporation of

FSk’s.

To address the issue of double-incorporating FSk’s, we test the three CGM algorithms’ predic-

tion performance, replacing the B̂Gτk by B̂Gτk−h+h in equation (5.9). As discussed in the earlier
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sections, B̂Gτk−h+h from SSM-based CGM algorithms are only based on observations up to time

τk−h, excluding FSk. For the existing CGM algorithm, we directly set B̂Gτk−h+h = B̂Gτk−h. The

cases h = 1 and h = 3 are examined with results shown in Table 5.4.1. Overall, both KF-based

and MKF-based algorithms outperform the existing CGM algorithm in all metrics. Moreover, with

the better fitted blood glucose dynamics, the MKF-based algorithm achieves significant predic-

tion error reduction. Throughout the dataset, the Markov-switching MKF-based CGM algorithm

is preferred to do both estimation and prediction.

5.5 Discussion

In this chapter the newly designed state space model for continuous blood glucose monitoring

problem has been proposed. One can construct the CGM algorithms following the steps described

in the chapter. The derivation of the model has shown its biological rightfulness as well as statistical

efficiency. Then its great improvement in both blood glucose estimation and prediction are justified

by comparing to the existing CGM algorithm under the Star 1 dataset. Among the two types

of SSM-based CGM algorithms, the Markov-switching model yields further improvement in its

goodness of fit to the human blood glucose dynamic, thus is preferred in clinical application, given

sufficient computational resource.

Throughout the chapter, we have assumed that the time lag duration parameter ρ = 0 for sim-

plicity. An extension to the model would be BG(t) = IG(t)+ρIG′(t) when ρ 6= 0. A possible way

of modeling is taking IG(t) instead of BG(t) as the state variable and thus changing the fingerstick-

associated observation equation to FSt = IGt + ρ(IGt − IGt−1) + σ1εt. However the dynamic of

interstitial glucose level might differ from that of the blood glucose. Further consideration should

be made.

With the limitation of data, we take FSk directly as BGt to test performance, while FSk may

still contains error. If more information about the true blood glucose level can be obtained, a better

performance comparison can be made. In principle, FSk should be taken just as a more accurate

measurement to be included in the model, as the SSM-based CGM algorithms do.
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(a)

(b)

(c)

Figure 5.3.3: MKF filtered results. (a) records the estimated B̂Gt with 95% confidence band, compared with
CGM, FS and ISIG. (b) records the estimated marginal probability for each state. (c) records the optimal
state at each time.
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Chapter 6

On-line Bayesian Trend Filtering

6.1 Introduction

A general nonparametric regression model, under a time series setting goes in the form

yt = f0(zt) + εt, t = 1, ..., T, (6.1)

where the observation yt’s are generated via the function f0 : [0, 1]→ R plus independent Gaussian

errors εt. In most cases, xt is evenly distributed, i.e., zt = t/n.

A newly proposed nonparametric regression method, l1 Trend Filtering (Kim et al., 2009),

achieves the optimal(minimax) convergence rate (Tibshirani et al., 2014) to the true function by

estimating β̂ = (β̂1, ..., β̂T ) of (f0(z1), ..., f0(zT )) via a penalized least squares optimization prob-

lem,

β̂ = argmin
β∈Rn

{1

2
‖y − β‖22 + λ‖D(k)β‖1

}
,

where λ is the tuning parameter, and D(k) ∈ R(T−k)×T , k ≥ 1 is the kth order difference operator

on β. When k = 1,

D(1) =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

· · ·

0 0 0 · · · −1 1

 .
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For k > 1, we have

D(k) = D(1) ×D(k−1) = {D(1)}k.

l1 trend filtering can also be adapted to solve a dynamic regression problem where another

series xt is observed sequentially. The optimization problem then becomes

β̂ = argmin
β∈Rn

{1

2
‖y − βx‖22 + λ‖D(k)β‖1

}
, (6.2)

where β is still of interest, representing the evolving coefficient between the observed y and x.

Intuitively, l1 trend filtering is a generalized LASSO method under a filtering framework. When

k = 1 and x ≡ 1, Equation (6.2) can be specified as

1

2

T∑
t=1

(yt − βt)2 + λ

T−1∑
t=1

|βt+1 − βt|, (6.3)

which filters yt via penalizing the absolute smoothness of βt. Similar to LASSO, given a relatively

large λ, l1 trend filtering will shrink most of the |βt+1 − βt|’s to 0. Therefore the β series is shown

(Kim et al., 2009) to be piecewise constant except for some turning points (also called ’kinked

points’) where |βti+1 − βti | 6= 0. Likewise, kth order l1 trend filtering generates a piecewise

(k−1)th polynomial series of β. Figure 6.1.1 gives an example of k th order l1 trend filtering, with

k = 1, 2, 3.

In this chapter we propose a Bayesian corresponding model to l1 trend filtering. By reformu-

lating (6.2) into a state space representation with a Laplace residual in the state equation, one can

recover the optimal β̂ from the MAP(maximum a posteriori) estimation of that state space model.

The benefit from the state space representation is that, with the adoption of sequential Monte Carlo

methods, the trend filtering can be conducted on-line. In scenario where observation comes in se-

quentially, which is very often in econometrics, biology, etc, a batch algorithm like l1 trend filtering
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Figure 6.1.1: An example of l1 trend filtering with k = 1, 2, 3 respectively. Data are simulated from piece-
wise polynomial function plus noise. The true level is included as blue dashed line.

suffers from multiple algorithm calls while the estimation update is minor. The worst-case com-

putational complexity for l1 trend filtering is O(n3/2), thus leads to an O(n5/2) rolling cost. Our

proposed on-line Bayesian trend filtering algorithm would only require O(mn) time complexity

with m the Monte Carlo sample size. It benefits a lot when n is relatively large.

Since l1 trend filtering essentially finds some limited ’kinked points’ where the kth difference

of β is non-zero, it is legitimate and sometimes preferable to operate directly on this goal using

regime switching state space model. Therefore we also propose a comparable Bayesian trend

filtering model with a spike-and-slab state residual, i.e.

{D(k)β}t = σλtηt, (6.4)

where ηt ∼iid N(0, 1), λt ∼iid Ber(p), σ0 = 0, σ1 = σx. This prior aims directly at finding

the ’kinked points’ and thus the MAP estimation of β would still be piecewise kth polynomial.

In addition, now this conditional dynamic linear model can be solved even more efficiently using

Mixture Kalman Filter with a rolling computational cost O(mn). Since MKF usually requires far

less Monte Carlo samples, this model is easier to compute. The computational cost can be further

reduced to O(Kn) by a greedy Viterbi algorithm, where K is some tens number which is smaller
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than m.

The rest of this chapter is organized as follows. We introduce the Bayesian trend filtering with

spike-and-slab prior and the associated MKF and Viterbi algorithm in section 6.2. The Laplace

prior Bayesian trend filtering model, which corresponds to l1 trend filtering, will be covered in

section 6.3. Section 6.4 reports a numerical analysis with simulated data as well as an econometric

application. A brief conclusion and discussion is included in 6.5.

6.2 Spike-and-slab trend filtering

Equation (6.3) gives the target function to be minimized for 1st order l1 trend filtering. In

practice, as shown in Figure 6.1.1, it operates to shrink most of the |βt+1 − βt|’s to zero while

leaving only limited non-zero |βti+1 − βti |’s, also known as ’kinked points’ at ti. In other words,

1st order l1 trend filtering achieves ’kinked points’ selection in a time series setting, as LASSO

achieves variable selection under the regression framework. Bayesians (George and McCulloch,

1997) have shown that a spike-and-slab prior can fulfill similar variable selection goals as LASSO

while providing a more probabilistic insight than LASSO. In detail, while LASSO minimize the

objective function

1

2

n∑
i=1

(yi − xiβ)2 + λ‖β‖1,

the spike-and-slab regression assumes that yi|xi ∼ N(xiβ, σ
2
y) and βj ∼ N(0, σλj ), λj ∼

Ber(p), j = 1, ..., p. The spike and slab prior standard deviation σ0 and σ1 are specified as 0

and σb. The variable is only selected when the estimated indicator λ̂j = 1.

Following this logic, one can build its time series equivalent under the state space construction.

For example, when k = 1, the state space representation of spike-and-slab filtering is as follows,

yt = xtβt + σyεt,

βt = βt−1 + σλtηt,
(6.5)
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where εt, ηt ∼iid N(0, 1), λt ∼iid Ber(p), σ0 = 0, σ1 = σx. The ’kinked point’ is indicated

when λt = 1. For k > 1, the state space representation goes as

yt = xtβt + σyεt,

{Dkβ}t = σλtηt,
(6.6)

where the residual settings are the same as (6.5) and {Dkβ}t is the tth element of Dkβ. This can

then be further written into a companion form as

yt = GtBt + σyεt,

Bt = HBt−1 +Wλtwt,
(6.7)

where Bt = (βt, ..., βt−k+1)′, Gt is k × 1 and H is k × k. For example, when k = 2, the

representation (6.6) becomes

yt = xtβt + σyεt,

βt − βt−1 = βt−1 − βt−2 + σλtηt,

and Bt = (βt, βt−1)′, Gt = (xt, 0)′, H =

2 −1

1 0

, Wλt =

σλt 0

0 0

, wt ∼iid N(0, I2) in the

companion form (6.7).

With the state space representation, spike-and-slab filtering is even more intuitive than its equiv-

alent in the regression setting and the corresponding l1 trend filtering: the time series exhibits

regime-switching patterns where they follow different polynomial trends between two ’kinked

points’ when λt 6= 0. Thus the optimal indicator series yields the best ’kinked points’ selection

and the MAP β̂ based on the optimal indicator series is therefore piecewise polynomial. While the

MAP can be obtained similarly as spike-and-slab regression using MCMC methods based on the

batch dataset, state space style on-line filtering methods are preferred for the speed consideration.

Given the optimal indicator path λ∗t , computing the MAP β̂ is faster due to the sparsity of λ∗t . In
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the rest of this section we propose a two-step on-line filtering framework to obtain the β̂. In the

first step, two algorithms are employed to estimate the optimal indicator path λ∗t . The second step

is simply optimizing based on λ∗t .

6.2.1 Delayed MKF with optimal path on λt

Noticing (6.7) is essentially a conditional dynamic linear model, a ∆-steps look-ahead Mixture

Kalman Filtering algorithm can be adopted to find the optimal path λ∗t as follows:

(A) At each time t + 1, for each j = 1, ...,m and then each Λt+1 = i, i ∈ T, run the ∆-steps

Kalman Filter to obtain

v
(j)
t+1,i

∆
= P (Λt+1 = i|λ(j)

t ,yt+∆+1)

∝ p(Λt+1 = i|λ(j)
t )

×
∑

λt+∆+1
t+2

[ ∆∏
τ=0

P (yt+τ+1 | yt+τ ,Λt+1 = i,λ
(j)
t , λt+τ+1

t+2 )

×
∆∏
τ=1

P (λt+τ+1 | Λt+1 = i,λ
(j)
t , λt+τt+2)

]
,

where λt+τ+1
t+2 denotes the path from t+ 2 to t+ τ + 1, inclusive.

(B) Sample a λ(j)
t+1 from the set T, with probability proportional to v(j)

i . Let KF (j)
t be the one

associated with it,

(C) The incremental weight

u
(j)
t+1,i =

p(yt|yt−1,λ
(j)
t )p(Λt = i|λ(j)

t−1)

v
(j)
t,i

∑
k∈T

v
(j)
t+1,k,

and weight is ω(j)
t+1 = ω

(j)
t × u

(j)
t+1. The optimal path λ∗t+1 is λ(j)

t+1 that has the highest ω(j)
t+1.

(D) (Optional)Resample when variance of ω(j)
t+1 is large.
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Intuitively the above Mixture Kalman Filter looks ∆ steps ahead to check if the likelihood is imply-

ing a ’jump’. In practice, the prior frequency is relatively low to guarantee the sparsity. Therefore

delayed sampling by trial distribution P (Λt+1 = i|λ(j)
t ,yt+∆+1) helps the on-line ’kinked points’

detection.

6.2.2 Delayed top-K greedy Viterbi Algorithm

In the spike-and-slab filtering settings, the indicator series is binary and mostly 0’s. Therefore

a Monte Carlo sample of sizemmay end up with heavy duplications. To further utilize the sparsity

of the λt series, we propose the following ∆-steps look-ahead top-K greedy Viterbi Algorithm:

(A) At each time t+1, suppose we have the top K paths ofλ(j)
t that has the highestP (λ

(j)
t |yt+∆).

We also stored the likelihood P (yt|λ
(j)
t ). For each j = 1, ...,m and then each Λt+1 = i, i ∈

T, run the ∆-steps Kalman Filter to obtain

p
(j)
t+1,i

∆
= P (λ

(j)
t ,Λt+1 = i|yt+∆+1)

∝ P (yt|λ
(j)
t )× P (yt+∆+1|λ

(j)
t ,Λt+1 = i,yt)× P (λt,Λt+1 = i)

= P (yt|λ
(j)
t )× P (λ

(j)
t ,Λt+1 = i)

×
∑

λt+∆+1
t+2

[ ∆∏
τ=0

P (yt+τ+1 | yt+τ ,Λt+1 = i,λ
(j)
t , λt+τ+1

t+2 )

×
∆∏
τ=1

P (λt+τ+1 | Λt+1 = i,λ
(j)
t , λt+τt+2)

]
,

(B) From the K × I paths, pick the highest k paths that maximizes p(j)
t+1,i, along with the neces-

sary KF quantities. The highest one is the optimal path estimation λ∗t+1.

(C) Update the likelihood

P (yt+1|λ
(j)
t+1) = P (yt|λ

(j)
t )× P (yt+1|yt,λ

(j)
t , λ

(j)
t+1).
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The top-K greedy Viterbi algorithm follows the logic of Viterbi algorithm (Forney, 1973) in

the sense that it iteratively update the most likely path up to time t in a dynamic programming

fashion. Yet with the existence of latent variable βt, there’s no guarantee that the optimal path is

covered among the top-K paths. However with the sparsity assumption where most of the λt’s are

0’s, the optimal path building aims to find the best ’kinked points’ from a limited candidate pools.

Therefore a size-K candidate pool suffices with the sparsity assumption.

Given the optimal path λ∗t , the MAP β̂t can be obtained by maximizing the full log-likelihood

log{p(yt,βt|λ
opt
t )} = −

∑
t

(yt − xtβt)2

2σ2
y

−
∑
t

{Dkβ}2t
2σ2

λ∗t

. (6.8)

Although the maximization seems to be a batch method, it can be calculated on-line. Suppose

λ∗ti = 1, i = 1, ..., l, then (6.8) becomes

log{p(yt,βt|λ
opt
t )} = −

l∑
i=1

∑
t∈(ti,ti+1)

(yt − xtβt)2

2σ2
y

−
l∑

i=1

{Dkβ}2ti
2σ2

1

.

Thus this maximization is size-l and the coefficients
∑

t∈(ti,ti+1) yt and
∑

t∈(ti,ti+1) xt can be calcu-

lated on-line with a total cost O(l2n) with l relatively small due to the sparsity assumption. Figure

6.2.1 conducts the Spike-and-slab filtering on the same data as Figure 6.1.1 with σy = 1, p = 0.01

and σ1 = 4, 1, 0.1 respectively when k = 1, 2, 3.

6.3 On-line l1 trend filtering with state space representation

The l1 trend filtering can be rewritten into state space representation in the following form,

yt|xt, βt ∼ N(xtβt, σ
2
y),

βt|βt−1
t−k ∼ Laplace(fk(β

t−1
t−k), σb),

(6.9)
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Figure 6.2.1: An example of spike-and-slab trend filtering(SAS TF) with k = 1, 2, 3 respectively using MKF
with m = 500. Simulated data are the same as Figure 6.1.1 with xt ≡ 1. The true level is included as blue
dashed line. The vertical yellow dashed lines mark where λ∗t = 1.

where βt−1
t−k = (βt−k, ..., βt−1), and fk(βt−1

t−k) is a linear function. For example f1(βt−1
t−1) = βt−1

and f2(βt−1
t−2) = 2βt−1 − βt−2. We have the correspondence λ = 2σ2

y/σb,

P (βt|yt) ∝ exp(−
∑
t

(yt − xtβt)2

2σ2
y

− ‖D
kβ‖1
σb

)

Therefore l1 trend filtering is equivalent to finding the MAP of βt in (6.9).

6.3.1 Annealing method with empirical trial distribution

We here propose an Annealing sequential Monte Carlo method to approach the MAP

β̂t = argmax
βt

P (βt|yt).

Denote

P δ(βt|yt) ∝ exp(−δ
∑
t

(yt − xtβt)2

2σ2
y

− δ‖D
kβ‖1
σb

),
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then

EP δβt → β̂t, δ →∞ (6.10)

where β̂t is the MAP which maximizes P (βt|yt), since P δ converges to single point density at β̂t.

An Annealing sequential Monte Carlo algorithm starts with an initial trial distribution q(0)(βt|yt)

and δ = 1. It then repeatedly estimates a new trial distribution q(δ)(βt|yt) from the weighted

Monte Carlo samples where weight is calculated by P δ(βt|yt)/qδ−1(βt|yt). The Monte Carlo

samples will get denser as δ increases since qδ gets sharper. After several iterations, β̂t is just the

weighted average of the δth Monte Carlo samples. δ can grow exponentially as δ = 1, 2, 4, 8, ...

until the sampled paths converge.

The key to the above annealing sequential Monte Carlo method is an appropriate initial trial dis-

tribution q(0)(βt|yt), which should approximate the posterior distribution p(βt|yt) closely. How-

ever in practice the normal plus Laplace full distribution is hard to approximate sequentially with a

large λ. Figure 6.3.1 shows an example of a one-step full likelihood to be approximated in sequen-

Figure 6.3.1: One-step full likelihood with λ = 100 and two approximations.
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tial Monte Carlo algorithms. While it is impractical to simulate directly from the full likelihood

due to its complexity, a simple Gaussian approximation usually fails to approximate it closely. Yet

mixture of Gaussian provides a much better approximation since it emphasizes the density around

zero as the Laplace part does. On the other hand, it is also important to adaptively increase the

non-zero density for those potential ’kinked points’. Otherwise, a general q(0) will stuck in zeros,

being reluctant to picking out ’kinked points’. Therefore, we infer an initial empirical distribution

q(0) from the Monte Carlo samples β(j)
t (up to time t) obtained in the SAS filtering procedure.

As discussed in previous section, the samples β(j)
t adaptively provides a good approximation to

p(βt|yt), having most of the q(βt|βt−1, yt) zero-dense while some potential ’kinked points’. Then

the weight calculation calibrate the difference between the trial distribution and the full distribution.

In summary, the Annealing sequential Monte Carlo method goes like following:

Algorithm 6. 1 At each time t, run ∆-step look-ahead MKF algorithm to get a weighted sam-

ple β(j)
t,0 with weightw(j)

t,0 , an implied empirical distribution can be estimated as q(0)
t (βt|βt−1)

2 For δ = 1, 2, 4, 8..., sample β(j)
t,k from q

(δ−1)
t (βt|βt−1), set the cumulative weight

u
(j)
t,δ = exp

{
− k(yt − (xt)βt)

2

2σ2
y

− k|βt − βt−1|
σb

}
/qk−1
t (βt|βt−1),

an implied empirical distribution can be estimated as qkt (βt|βt−1).

3 Repeat step 2 until convergence.

From the implementation’s perspective, this procedure can be conducted on-line. At time t, the

trial distributions qδ can be updated one by one for δ = 1, 2, 4, ..., given the stored Monte Carlo

samples βjt−1,δ. The total time complexity is O(Tmlog(δ))). In practice a δ = 16 or 32 suffices.

Thus the time complexity can be treated as O(Tm)).

Figure 6.3.2 shows the comparison between the original and Bayesian on-line l1 trend filtering

estimations. One can observe almost identical behavior between the two estimations. However,

the annealing step adds noise to implementing Monte Carlo sampling in each iteration. Therefore
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Figure 6.3.2: An example of on-line l1 trend filtering with k = 1, 2, 3 respectively. Simulated data are the
same as Figure 6.1.1 with xt ≡ 1. The true level is included as blue dashed line. The cyan dashed line is the
original l1 trend filtering. The green line is the Bayesian on-line l1 trend filtering estimation. δ = 16.

the filtered β̂t is not strictly flat, but with some noise in vision. Yet the mechanism of annealing

sequential Monte Carlo guarantees the convergence between β̂t and the optimal β̂
∗
t .

6.4 Empirical studies

In this section we compare the traditional l1 trend filtering with the newly proposed Spike-and-

Slab trend filtering(two algorithms) and Bayesian on-line l1 trend filtering in different metrics un-

der both simulation and real data scenarios. For simulated data, we consider piecewise polynomial

functions as the true value and add different levels of noises. We then apply the four methods with

various tuning parameters using whole batch data to study their dependence on hyper-parameters.

In the real data example, we introduce an econometric model where l1 trend filtering can have

application while an on-line filtering algorithm is preferred. Run-time performance as well as

predictive results are compared within the mentioned methods.
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6.4.1 Simulation results

To begin with, we take a simple step function as follows,

f0(t) =



2, t ≤ 30;

−1, 30 < t ≤ 50;

1.5, 50 < t ≤ 75;

−0.5, 75 < t ≤ 100,

which is also shown in Figure 6.1.1. The observations are simulated following yt = f0(t) + εt,

where εt ∼ N(0, σ2), with xt ≡ 1. We test the performance of the four methods respectively on

three levels of noises with σ = {0.5, 1, 2}, each with 500 realizations. For each noise level, the

filtering algorithms are conducted with several levels of hyper-parameters. For l1 and Bayesian l1

trend filtering, we set the candidate hyper-parameter to be λ ∈ {1, 20, 50, 100, 400} while p1 ∈

{0.2, 0.1, 0.01, 0.001, 10−4} for the two Spike-and-slab trend filtering algorithms.

The boxplots of error metrics MSE = 1
100

∑
(f0(t) − βt)2(truncated to adjust for the extreme

variance from lagged effect in SAS TF) are recorded in Figure 6.4.1. In the l1 trend filtering case,

λ = 1 leads to over-fitting while λ = 400 penalizes the smoothness too much. The prior parameter

p1 in SAS trend filtering also serves similar functionality as λ in l1 TF, with p1 = 0.2 to over-fit and

p1 = 10−4 beging too strong restriction. Overall the four methods have very similar performance.

The left two share almost same boxplots since Bayesian on-line l1 TF has the same target function

as l1 TF. The SAS TF has comparable MSE levels as l1 TF. However it is more hyper-parameter

indifferent in the sense that a wide range of p1 can generate a reasonably good estimation while in

l1 TF one needs to be more careful in specifying λ. There’s negligible differences between Mixture

Kalman Filter and Top-K greedy Viterbi Algorithm, except for very rare cases in which the greedy

Viterbi Algorithm fails to find the optimum path, thus leads to the extreme MSEs.

Then the same experiment was conducted on the first and second order case with piecewise
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(a) σ = 0.5

(b) σ = 1

(c) σ = 2

Figure 6.4.1: Boxplots of MSE’s on 500 simulations under different methods. From left to right are l1 trend
filtering, Bayesian on-line l1 trend filtering and Spike-and-slab trend filtering type I and II. In Bayesian on-
line l1 trend filtering, m = 2000 and δ = 16. In SAS trend filtering, σb = 2 and σy = 0.5, 1, 2 respectively.
m = 500 for type I and K = 20 for type II.
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linear and quadratic functions as follows:

f1(t) =


t

20 , t ≤ 40;

− t
30 + 10

3 , 40 < t ≤ 70;

t
15 −

11
3 , 70 < t ≤ 100,

f2(t) =


1−

(
t−20

20

)2
, t ≤ 40;

0.75×
{(

t−55
15

)2 − 1
}
, 40 < t ≤ 70;

1.25− 1.25×
(
t−95

25

)2
, 70 < t ≤ 100.

f1 and f2 corresponds to the true levels in the second and third figures in Figure 6.1.1. The four

methods are then applied to observations with independent noise levels with σ = {0.5, 1, 2}, 500

realizations each. We directly take the best hyper-parameter out of grid search and record the

MSE’s in Table 6.4.1(the case k=1 corresponds to Figure 6.4.1). In low noise cases, the SAS trend

filtering outperforms l1 trend filtering due to its flexibility in filtering after finding the ’kinked

points’. However, with increasing noise level, finding turning points on-line becomes more diffi-

cult, which leads to a higher MSE of SAS TF algorithm than l1 TF. Within the l1 TF class, the MSE

of Bayesian l1 TF is slightly higher than l1 TF estimation due to the rigidness of Bayesian l1 TF

estimations. Similarly, within SAS TF class, the greedy Viterbi algorithm has slightly higher MSE

due to some extreme cases where the top-K paths fails to maintain the optimal.

6.4.2 Real data–Conditional beta in CAPM model

Conditional beta has been proven necessary in explaining the stock dynamic in the asset pricing

literature.The general form of conditional CAPM model goes like below

Ri,t = αi,t + βi,tRm,t + εi,t
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k=1
l1 TF (λ = 100) Bayesian l1 TF (λ = 100) SAS TF-I (p1 = 0.01) SAS TF-II (p1 = 0.01)
mean std mean std mean std mean std

σ = 0.5 0.0374 0.0160 0.0378 0.0161 0.0335 0.0158 0.0338 0.0159
σ = 1 0.172 0.0591 0.174 0.0602 0.163 0.0594 0.165 0.0598
σ = 2 0.422 0.160 0.430 0.164 0.503 0.163 0.505 0.164

k=2
l1 TF (λ = 1000) Bayesian l1 TF (λ = 1000) SAS TF-I (p1 = 0.01) SAS TF-II (p1 = 0.01)
mean std mean std mean std mean std

σ = 0.5 0.0150 0.00792 0.0155 0.00801 0.0138 0.00753 0.0140 0.00754
σ = 1 0.0968 0.0409 0.0970 0.0406 0.0932 0.0430 0.0934 0.0433
σ = 2 0.243 0.0920 0.250 0.0975 0.263 0.105 0.267 0.107

k=3
l1 TF (λ = 5000) Bayesian l1 TF (λ = 5000) SAS TF-I (p1 = 0.01) SAS TF-II (p1 = 0.01)
mean std mean std mean std mean std

σ = 0.5 0.0165 0.00841 0.0167 0.00844 0.0160 0.00812 0.0162 0.00813
σ = 1 0.0878 0.0431 0.0881 0.0435 0.0846 0.0419 0.0848 0.0422
σ = 2 0.234 0.119 0.239 0.121 0.260 0.137 0.263 0.139

Table 6.4.1: Mean and standard deviation of best MSE’s for different trend filtering methods under various
combinations of original functions and noise levels.

whereRi,t = ri,t − rf,t is the risk premium return of the stock, rf,t is the risk free rate, Rm,t =

rm,t − rf,t is the market risk premium. βi,t explains the risk exposure a single stock has to the

market-a higher return corresponds to higher risk exposure.

One strand of research in estimating and interpreting conditional CAPM is Bali et al. (2009),

which uses intra-month daily return to estimate monthly beta, i.e.

Ri,d,t = αi,t + βi,tRm,d,t + εi,d,t

where t is the month index and d is the day index. For each single stock in every month, a regression

model is fitted to get β̂i,t. After that a classical time series model is fitted on β̂i,t with respect to t.

For example an AR(1) process where

βi,t = µ+ sβi,t−1 + ηi,t,
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is employed as a tool to predict ˆβi,t+1 given all the information up to time month t. Compared

to the classical CAPM model where monthly return is the main sourse to make beta inference,

Bali’s method utilize the daily stock return which enlarges the data resolution from a statistical

perspective. But the drawback of this intra-monthly fitted beta is that it could be too noisy to

produce a stable prediction. Thus adding a dynamic on beta to stabilize the prediction makes the

model more preferable to the classical CAPM model.

However this method has its drawback in the sense that it is a two-step method–the time series

fitting takes the estimated beta as observation and makes prediction on top of the pre-estimated

betas. Moreover, the choice of period of daily stock return is fixed to be one month while the betas

dynamic might not strictly follow a monthly pattern. While still utilizing the daily return series, we

propose a piecewise-constant conditional beta dynamic follows

Ri,d = αi + βi,dRm,d + εi,d,

βi,d = βi,d + ηi,d,

where εi,d are still normal residuals while ηi,d are Laplace or Spike-and-slab residuals. The idea

is to further utilize the daily return to automatically determine when to shift the beta and alpha

level. With the l1 or spike and slab penalty, the smoothing is automatically fulfilled thus further

time series prediction is no longer needed.

6.4.2.1 Data and Results

The data we have are the whole stock data (from DataStream) from 1980.01.01 - 2016.12.31

including 12807 stock ID’s. Due to stock enlist/unlist, on a single day, there are only around 3000

stocks available. The associated market return and risk-free return are also included. Four different

models are applied to predict the next months’ betas for each single stock:

I Apply the intra-month regression on daily stock return to get monthly observed beta. Fit the

monthly-observed beta series with an AR(1) model in a rolling basis with lookback period
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equal to 60 months to get the predicted beta.

II At the last day of each month, apply an l1 trend filtering model using the time series tracing

back 120 days. Take the last day’s beta as the prediction of next month. The tuning parameter

of the l1 trend filtering is fixed at λ = 100.

III Run an on-line Spike-and-slab trend filtering algorithm using greedy Viterbi Algorithm with

k = 100. For each month, take the last day’s beta as the prediction of next month. The

variance parameters are updated yearly and the probability parameters are pre-specified as

p1 = 0.01.

IV Run a Bayesian on-line l1 trend filtering algorithm, which refreshes yearly, with λ = 100.

The Annealing algorithm runs by m = 2000 and δ = 16. For each month, take the last day’s

beta as the prediction of next month.

The amortized computational time per stock per month is recorded in Table 6.4.2 In each month

Model I II III IV
Amortized Runtime/ms 0.8528 4.591 0.1369 13.72

Table 6.4.2: Amortimzed computational time per stock per month for each model.

a 20 points regression and 60 points AR fit is needed for model I. The computational cost is thus

moderate, mainly from AR fits. Although there’s only 120 data points long l1 trend filtering, which

in principle takes only linear time, model II consumes more than model I. Model III is most time

efficient since it only runs forward 20 steps per month with a relatively small k. Model IV is most

time consuming in this case due to the multiplication from m and log(δ). However its on-line

property would be more advantageous if the rolling frequency is higher. For example, if a daily

beta prediction is needed, both model I and II needs 20 times more runtime while model III and IV

stays invariant to this change.

A monthly predicted beta series by stock is generated by each model. A cross sectional

portfolio-wise comparison is conducted to test the predictive performance in the following way.
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For each month, the stocks are grouped into 10 portfolios according to their rankings of predicted

betas. Then the excess return of the portfolio is calculated to be the equally-weighted average of

its covering stocks. Table 6.4.3 records the average excess return of the portfolios with the associ-

ated t statistics. According to classical CAPM theory, a high-beta stock is expected to have higher

Portfolio Model I Model II Model III Model IV
ExRet t-stat ExRet t-stat ExRet t-stat ExRet t-stat

1(Low β) 0.96906 2.91184 0.909879 2.76661 0.954353 2.90829 0.939146 2.81359
2 0.526947 2.18122 0.559714 2.29602 0.531982 2.14402 0.57844 2.38901
3 0.782335 3.21431 0.778728 3.11595 0.7737 3.13909 0.769304 3.2084
4 0.874882 3.36867 0.66223 2.58902 0.798438 3.06969 0.725961 2.72817
5 0.933109 3.35959 0.890967 3.25586 0.937662 3.5292 0.91701 3.47295
6 1.02805 3.53906 0.947417 3.23868 0.964801 3.28126 0.944437 3.35897
7 1.09133 3.47708 1.09043 3.44471 1.06623 3.28797 1.08483 3.26455
8 1.0715 3.08341 1.05387 2.95146 1.01918 2.94474 1.03944 3.03203
9 1.34523 3.22055 1.26276 2.98852 1.27933 3.02787 1.23343 3.1412
10(High β) 1.78069 3.05721 1.78728 3.15944 1.88794 3.339 1.82304 3.20251
10 - 1 0.811635 2.03268 0.877405 2.17964 0.93359 2.35604 0.883892 2.22923

Table 6.4.3: Comparison of mean excess return between high and low β portforlios, associated with t-stat.
The last row records the difference between the highest and lowest beta portfolios.

return due to larger market exposure. So a beta predictor should have predictive power in excess

return, which leads to a diversified return profile among the 10 portfolios. The t-stat between the

highest and lowest portfolio is also used to reflect the predictive power. One can observe from

Table 6.4.3 that all three trend filtering models have a decent beta predictive power, outperforming

Bali’s method if measured by the t-statistics of highest-lowest difference.

6.5 Discussions

In this chapter we discussed two trend filtering models out of state space representation, both

of which have similar property as l1 trend filtering. With the implementation of sequential Monte
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Carlo methods as well as a greedy Viterbi algorithm, both trend filtering models can operate on-

line rather than just on batch data. We then compare the proposed two methods with the original

l1 trend filtering on various simulated datasets to check the validity of state space representation.

To better emphasize the two models’ improvement in on-line trend filtering, we introduced a real

world econometrics topic where on-line trend filtering can be applied. The econometric example

shows the competence of trend filtering as well as the efficiency of our proposed models.

Other than the discussed Spike-and-slab state equation or Laplace residual distribution, one can

construct other versions of Bayesian Trend Filtering using different forms of state distribution, i.e.,

{D(k)β}t ∼ ft(θt),

and still apply sequential Monte Carlo methods to do on-line filtering. A possible choice would be

ft(θt) = N(0, σ2
t ) where σ2

t follows some prior distribution. This hierarchical structure allows the

filter to adaptively shrink the σt’s according to the data. However more considerations should be

taken in picking appropriate trial distributions.
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