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This thesis explores to apply simulation-based mathematical tools to understand and 

improve continuous pharmaceutical manufacturing processes. On the basis of a 

continuous direct compaction process, we propose a framework consisting of global 

sensitivity analysis, feasibility analysis, and optimization to systematically extract process 

knowledge from simulation models. Under this framework, efficient analysis and 

optimization methods have been developed for both deterministic systems and stochastic 

systems. Specifically, mathematical techniques including surrogate modeling and 

adaptive sampling are adopted to address difficult problems involving computationally 

expensive black-box systems. The developed algorithms in this thesis can be used to 

obtain a comprehensive knowledge of solids-based pharmaceutical processes.   
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1 Introduction to Continuous Pharmaceutical Manufacturing 

Over the past decade, there has been a significant growth of research in modernizing manufacturing 

processes in the pharmaceutical industry. The main goal is to improve the agility, flexibility, and 

robustness of the manufacturing process, which is important for solving the drug shortage problems 

[1]. To achieve this goal, the continuous manufacturing (CM) process is considered as a promising 

approach and has attracted increasing research attention both from the academia and the industry. 

CM is an integrated flow process in which materials are continuously processed at each step and 

directly sent to the next step for further processing [2]. Compared to the traditional batch 

manufacturing process, CM has a great amount of potential in reducing process steps, using smaller 

equipment size and plant footprint, and having higher process controllability, all of which can result 

in lower capital and operation costs, fewer risks of defected products, and better final drug products 

[3].  

 

However, the advantages of a CM pharmaceutical process can only be realized based on an in-

depth process understanding. For the manufacturing process of solid-oral dosage forms, which are 

the majority of the drug products [4], it can be especially difficult since the powder systems are 

more complex than the fluid-based systems. Extensive experimental studies have been conducted 

to characterize material properties [5] and unit operation [6], investigate the traceability of materials 

[7], and develop online measurement tools [8] of critical quality attributes of intermediate and 

products. On the other hand, process models have also been built to supplement the experimental 

studies and enhance process understanding. First-principle models, such as discrete-element 

method (DEM) simulations, have been extensively used to study particle-level phenomena (e.g. 

segregation, agglomeration) [9]. However, its huge computational costs usually prohibit the use of 

DEM to model large numbers of particles. An alternative approach is to use the Population Balance 

Model (PBM), which has been widely used to model granulation [10], blending [11], and milling 

[12]. Moreover, semi-empirical models, such as residence time distribution (RTD) models [6] and 
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data-driven models [13] have also been implemented to describe the performance of continuous 

processes. Recently, integrated flowsheet models have been developed to capture the influence of 

material properties and process conditions on the final drug products [14].  

 

On the basis of a developed process model, we can apply advanced mathematical tools to 

systematically analyze and improve the process. In the rest of this chapter, we first give an overview 

of the models that are developed for a continuous direct compaction process in Section 1.1. These 

models are used throughout the following chapters as a case study for the developed process 

analysis and optimization methods. Then, we briefly introduce the process analysis and 

optimization methods for deterministic systems in Section 1.2. Such methods have been further 

extended to stochastic systems, which are mentioned in Section 1.3. Section 1.2 and 1.3 can be 

used as a guide to the work detailed in Chapters 4 to 8.  

 

1.1 An Overview of models for the Continuous Direct Compaction Process 

The flowsheet model in this work is built based on a continuous DC pilot plant that has been 

installed and situated at ERC C-SOPS, Rutgers University (flowsheet shown in Figure 5). In this 

DC process, an active pharmaceutical ingredient (API) and an excipient (substance added along 

with API to aid the processing of the drug) are first fed to the co-mill, which is used for the de-

lumping purpose. The lubricant is added after the co-mill to improve the flowability of the powder 

mixture. Then the raw materials are mixed in a continuous convective blender, in order to provide 

a homogeneous mixture of all the component ingredients. Finally, the well-mixed blends transport 

to a rotary feed frame, which feeds the powder mixture into dies where the press compacts the 

powders into tablets.  
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Figure 1. Flowsheet of Direct Compaction 

 

The flowsheet model we used in this work was developed in gPROMS, a dynamic simulation 

software by Process Systems Enterprise. gPROMS has a variety of built-in model libraries, and 

also allows users to customize and build their own models. It supports different numerical solvers 

that can be used for models that include differential algebraic equations (DAEs), and partial 

differential equations (PDEs), which makes gPROMS a quite useful tool for dynamic simulation. 

For pharmaceutical processes, gPROMS has been widely used to build both semi-empirical 

models[15] and population balance models (PBMs)[16]. In this paper, we use semi-empirical 

models for each unit operation because they require less computational cost (compared to PBMs) 

when integrated as a flowsheet model. The unit operation models that we used are described as 

follows.  

 

Loss-in-weight Feeder 

Loss-in-weight (LIW) feeders are used to feed ingredients in the continuous tablet manufacturing 

process. They usually consist of a hopper, which is used as a receptacle for raw materials to be fed, 
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a flow aid system which is used to break powder bridges and facilitate material flow, and a 

conveying system, e.g. a rotating screw, which is used to transport materials out of the feeder. A 

discharge screen can be used to break up clumps at the exit of the feeder. In order to get constantly 

stable and accurate feeding flow rate, LIW feeders are usually operated under the gravimetric mode, 

in which case the flow rate is controlled by automatically adjusting the screw speed according to 

the loss in weight of the materials in the feeder over time.  

 

Recently, research has been conducted to increase the understanding of LIW feeders. Engisch and 

Muzzio[17] have developed a method to characterize the LIW feeders, which can be used for the 

selection of feeding tools. Boukouvala, Muzzio et al.[18] proposed to use date-driven methods to 

investigate the design space of LIW feeders, and compare the performance of different designs by 

using optimization programming techniques. Boukouvala, Niotis et al.[15] and Rogers, Inamdar et 

al. [14] used a first-order delay differential equation to describe the dynamic behavior of a closed-

loop LIW feeder. In the current work, we use a semi-empirical model to simulate the feeder 

behavior, which was initially proposed by Escotet-Espinoza, Jayjock et al.[19] 

 

The actual mass flow rate out of a feeder is modeled with a time-dependent expression (Equation 

64): 

 𝐹CDE 𝑡 = 𝑓𝑓 𝑡 	𝜔(𝑡)   (1) 

where 𝜔(𝑡) is the screw speed controlled by a PID controller taken from the gPROMS model 

library. 𝑓𝑓 𝑡  is the feed factor, defined as the maximum mass of powder fitting in a screw flight. 

𝑓𝑓 𝑡  has the unit of mass per screw revolution, and is expressed by Equation 2. 

 𝑓𝑓 𝑡 = 𝜌KLLKMENOK 𝑡 	𝑉QMRKSTNEMℎ   (2) 

where 𝜌KLLKMENOK 𝑡  is the effective density of the materials in the screw pitch, which is a time-

dependent material property. This density also accounts for the fill efficiency of the screw pitches. 
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𝑉QMRKSTNEMℎ is the volume per screw pitch, which is an equipment-dependent constant. The feed 

factor was found to be dependent on the amount of materials available in the hopper, indicating 

that changes in the mass of material in the hopper could change the mass delivered per screw 

revolution. This phenomenon can be interpreted as the changes in the effective density of the 

powder entering the screws due to the changes in pressure exerted by the static head of the material 

above. This relationship was found to be pseudo-first-order in nature and dependent on material 

properties such as bulk density and flowability. 𝑓𝑓 𝑡  is modeled with Equation 3. 

 1
𝛽
𝑑 𝑓𝑓 𝑡
𝑑𝑊 𝑡

+ 𝑓𝑓 𝑡 = 𝑓𝑓YKOKYZ[E  

∴ 𝑓𝑓 𝑊(𝑡) = 𝑓𝑓YKOKYZ[E − 𝐸𝑥𝑝 −𝛽	𝑊(𝑡) 𝑓𝑓YKOKYZ[E − 𝑓𝑓YKOKY^N_  

  (3) 

In this equation, the feed factor can be computed as a function of the amount of materials in the 

feeder hopper (𝑊(𝑡)). The major coefficients of this equation are the saturated feed factor (𝑓𝑓YKOKYZ[E ), 

the minimum feed factor (𝑓𝑓YKOKY^N_ ), and the feed factor exponential decay constant (𝛽), which are 

regressed from data. These coefficients are related to material properties and therefore allow for 

relationship of bulk properties and equipment performance. The saturated and minimum feed 

factors were found to be directly correlated to the bulk density of the material. The pressure decay 

constant was found to be positively correlated to the material’s Hausner Ratio. (i.e. a flowability 

related number defined as “tapped bulk density” divided by “aerated  bulk density”[20])  The 

feed factor exponential decay constant is a lumped parameter which incorporates equipment 

geometry into the system by accounting for hopper area. This value can be used as an indicator of 

how much pressure the material distributes the compression forces to the walls of the system. 

Characterizing the feed factor exponential decay constant and the span of the feed factor 

coefficients is critical for both equipment design and selection.  

 

Co-mill 
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A high shear co-mill is used before blending for a de-lumping purpose. It is composed of a cone-

shaped screen and a rotating impeller in the center[21]. The impeller rotates at high speed and 

grounds the materials between the impeller and the screen until the materials have sizes less than 

the screen holes and exit the co-mill. Experimental work has been done by Vanarase, Osorio et 

al.[22] to investigate the effects of process parameters and material properties on the flow behaviors 

of the powder materials. Deng, Scicolone et al.[23] have used discrete element method (DEM) 

simulation to compute the residence time distribution (RTD) and mean residence time (MRT), and 

demonstrate the relationship between MRT and process parameters to be consistent with the finding 

in Vanarase, Osorio et al.[22].  

 

In this work, the co-mill model includes a mass balance equation, which relates the hold-up and 

flow-rate-in to the flow-rate-out (Equation 4). The model assumes the co-mill reaches a steady state 

mass accumulation following first-order dynamics based on the mean residence time of the unit. 

This assumption is based on the fact that the flow-rate-out of powder systems is dependent on the 

accumulation inside of the unit. 

 
𝜏
𝑑𝑀 𝑡
𝑑𝑡

+ 𝑀 𝑡 = 𝑀ZZ	

𝑀ZZ = 𝜏	𝐹N_
ECE[Y	

𝑑𝑀 𝑡
𝑑𝑡

= 𝐹N_
ECE[Y − 𝐹CDEECE[Y 

  (4) 

𝑀 𝑡  is mass hold-up in the co-mill; 𝜏 is the mean residence time; 𝑀ZZ is the mass hold-up at steady 

state; 𝐹N_
ECE[Y is the mass flow rate at the inlet of the co-mill, which is equal to the sum of the flow 

rate of API and Excipient; 𝐹CDEECE[Y is the mass flow rate at the outlet of the co-mill.  

 

The MRT is calculated with an empirical expression, as Equation 5.  
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𝜏 = 𝜏^[b 1 − exp −

𝑎
𝜔MCf^NYY − 𝜔^N_

−
𝑏

𝐹N_
ECE[Y    (5) 

where 𝜔MCf^NYY is the impeller speed; 𝜔^N_ is the minimum value of impeller speed; 𝑎, 𝑏, and 𝜏^[b 

are regressed parameters from experiments.  

 

Mixing of the co-mill has been modeled using a perfect mixing model based on RTD experiments. 

The short residence time of the system is what dictates the level of dissipation of incoming 

concentrations. The drug concentration (mass fraction) is calculated with a CSTR-based Equation 

6, where 𝐶N_
N  and 𝐶CDEN  are the concentration of component 𝑖 at inlet and outlet respectively. 

 𝑑(𝐶CDEN 𝑀 𝑡 )
𝑑𝑡

= 𝐶N_
N 𝐹N_

ECE[Y − 𝐶CDEN 𝐹CDEECE[Y   (6) 

Blender 

The continuous blender is used to dampen the high-frequency variations resulted from the feeding 

system, and is a crucial unit operation in the pharmaceutical industry which has stringent quality 

constraints on the concentration uniformity in the products[24]. A variety of modeling techniques 

has been used to simulate the powder dynamics in the blender. DEM simulations have been used 

to understand the mechanism of mixing in a tubular blender, when considering different equipment 

geometry, material properties, and operating conditions[25-27]. Population balance models (PBM), 

combined with DEM studies, have been developed to predict blender dynamics, including 

concentration, relative standard deviation (RSD) and RTD[16,28]. A discrete element reduced 

order modeling (DE-ROM) method has been implemented to map the velocity trajectories within 

a continuous convective blender[29]. In addition, RTD modeling approaches have also been used 

to characterize the non-ideality in mixing within a continuous blender[30,6].  

 

In this work, the blender is modeled as a two-level semi-empirical model. The first level is based 

on a CSTR in-series model, which is used to characterize RTD and obtain the mixing parameters. 
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The CSTR in-series model uses multiple perfect stirred tanks in series to simulate the mixing 

behaviors along the axial direct of the blender. After incorporating the delay time which represents 

the time that materials take to convectively travel the length of the blender while being mixed, the 

probability distribution function (PDF), used for representing the time distribution of particles, can 

be expressed by Equation 7. 

 

𝐸 𝑡 = 𝑈𝑛𝑖𝑡	𝑆𝑡𝑒𝑝[𝑡 − 𝜏lKY[m]
(𝑡 − 𝜏lKY[m)_foexp	 −

𝑡 − 𝜏lKY[m
𝜏

𝑛 − 1 ! 𝜏_
   (7) 

where 𝜏lK[Ym is the delay time; 𝑛 is the number of tanks; 𝜏 is the mean residence time of one tank 

in the CSTR in-series model.  Therefore, the blender’s mean residence time (𝜏qYK_lKR)	can be 

computed using Equation (8) 

𝜏qYK_lKR = 𝜏lKY[m + 𝑛𝜏 (8) 

The second level is based on an axial dispersion model, and is used for mixing calculations as a 

function of time, since the axial dispersion model cannot be implement in gPROMS through the 

convolution algorithm. The dispersion model is expressed by Equation 9. The coefficients of the 

axial dispersion equation are calculated from their relationship to the CSTR-in-series model 

constants. 

 
𝑛𝜏

𝜕𝐶CDEN

𝜕𝑡
=

1
𝑃𝑒

𝜕t𝐶CDEN

𝜕𝜉t
−
𝜕𝐶CDEN

𝜕𝜉
 

𝑃𝑒 = 𝑛 + 8𝑛 + 𝑛t, if	𝑛 < 10	

𝑃𝑒 = 2𝑛 − 1, if	𝑛 ≥ 10	

𝐼. 𝐶. 								𝐶CDEN |E{| = 0	

𝐵. 𝐶. 							𝐶CDEN |~{| = 𝐶N_
N 	

	
𝜕𝐶CDEN

𝜕𝜉
|~{o = 0 

  (9) 

where 𝐶CDEN  and 𝐶N_
N  are the concentration of component 𝑖 at outlet and inlet respectively; 𝜉 is the 

dimensionless axial length ranging from 0 to 1; 𝑃𝑒 is Peclet number.  
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The mass balance is modeled in the similar fashion with that of the co-mill (Equation 10), 

meaning that the accumulation inside of the blender reaches a steady state value asymptotically. 

From the accumulation and mass flow rate in, we can then compute a flow rate out of the system. 

This trend has been proven experimentally.[31] 

 
𝜏
𝑑𝑀 𝑡
𝑑𝑡

+ 𝑀 𝑡 = 𝑀ZZ	

𝑑𝑀 𝑡
𝑑𝑡

= 𝐹N_
ECE[Y − 𝐹CDEECE[Y 

(10) 

In this two-level model, the model parameters, including 𝜏lKY[m, 𝑛, 𝜏, 𝑃𝑒, and 𝑀ZZ, depend on the 

inlet flow rate and blade speed, and need to be regressed with experimental data. 

 

Tablet Press 

In tablet press equipment, materials from the previous unit are transferred via a feed frame to a 

series of dies. The shape of the dies and the fill depth of the materials determine the geometry and 

weight of the final tablet products. The dies can run continuously, during which time the materials 

within the dies are compressed by an upper and a lower punch into tablets, which are discharged 

afterwards[32]. A two-stage strategy is used by most of the tablet processes, namely pre-

compression and main-compression[33]. Pre-compression is employed to release the entrapped air 

and reduce the porosity of the materials. This step will help prevent tablet defects such as cracks 

and laminations when tablets are made during the main-compression step[34].   

 

Extensive research has been conducted to understand and model the compaction process. DEM 

simulation has been used to investigate the segregation behaviors during die filling[35] and the 

bonding interaction within compressed tablets[36,37]. Empirical models have also been developed 

to correlate the powder material properties (e.g. bulk density) and process parameters (e.g. 
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compression force, die geometry) with tablet attributes (e.g. weight, hardness). For example, 

Heckel’s model uses a first-order equation to describe the relationship between powder density and 

compression pressure[38]. Kawakita model predicts the compression force with powder volume 

and initial porosity[39]. Kuentz and Leuenberger developed a model to predict tablet hardness 

based on tablet density[40]. 

 

In this work, the tablet press model is based on the work by Singh, Gernaey & Gani[41] and Singh, 

Ierapetritou & Ramachandran[42]. For simplicity, only the key equations are listed below. The 

readers are referred to the original papers for details. 

 

The pre-compression and main compression pressure are modeled with equations adapted from 

Kawakita model[39], as in Equation 11 and 12. 

 𝐶𝑃�RK =
𝑉| − 𝑉�RK

𝑏�RK 𝑉| 𝜀| − 1 + 𝑉�RK
 (11) 

 𝐶𝑃 [N_ =
𝑉�RK − 𝑉E[qYKE

𝑏^[N_ 𝑉�RK 𝜀^[N_ − 1 + 𝑉E[qYKE
 (12) 

where 𝑏�RK and 𝑏^[N_ are Kawakita parameters for pre-compression and main compression 

respectively, with the unit in 1/MPa, and need to be obtained by experiments; 𝑉| is the initial 

volume in the die; 𝑉�RK is the powder volume after pre-compression; 𝑉E[qYKE is the volume of tablet; 

𝜀| and 𝜀^[N_ are the porosity of the material prior to pre-compression and prior to main-

compression respectively.  

 

The tablet hardness is predicted with the model by Kuentz and Leuenberger[40] (Equation 13) 

 𝐻 = 𝐻^[b 1 − 𝑒��f������  (13) 

where 𝐻^[b is the maximum hardness, which represents the tablet hardness at the zero porosity, 

and need to obtained from experiments; 𝜌RM is the relative critical density obtained from 
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experiments; 𝜌R is the relative density, which is defined as the ratio of solid volume over tablet 

volume (Equation 14); 𝜆� is an intermediate variable defined with Equation 15. 

 
𝜌R =

(1 − 𝜀|)𝑉|
𝑉E[qYKE

 (14) 

 𝜆� = log	
1 − 𝜌R
1 − 𝜌RM

 (15) 

 

1.2 Process analysis and optimization for deterministic systems 

Deterministic simulations are widely used as a simplified representation of a real-life systems. On 

the basis of a well-developed deterministic process model, risk assessment can be conducted by 

using a variety process analysis techniques. In this work, we mainly focus on two types of 

approaches: (1) global sensitivity analysis; and (2) feasibility analysis. Global sensitivity analysis 

investigates the process in a “forward” manner: within certain ranges of the inputs, understand 

how these inputs can contribute to the variability in the output. Such analysis can be used to 

prioritize the inputs by their influence on the outputs of interest, and reduce the dimension of the 

simulation model by fixing the inputs to their nominal values whose effects are negligible on the 

outputs. On the other hand, feasibility analysis evaluates the process in a “backward” manner: 

given specified ranges (i.e. process constraints) on the output, find the design space of the inputs 

within which a process is guaranteed to be feasible. For pharmaceutical processes, these two types 

of analysis can be used to reduce the problem definition, identify bottlenecks of the process, and 

facilitate the development of control strategies. A detailed review of the methods for global 

sensitivity analysis and feasibility is given in Chapter 2. Additionally, to better solve the feasibility 

analysis problem of computationally expensive simulations, we propose a novel surrogate-based 

adaptive sampling approach, which is discussed in Chapter 4. 
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Process models have also been used to facilitate the optimization of a process. For pharmaceutical 

manufacturing, a variety of optimization techniques have been adopted to improve the product 

qualities, decrease the environmental impacts, enhance the process robustness, and reduce the 

operating costs. A review of the applications of optimization in pharmaceutical processes is given 

in Chapter  3.  

 

For a comprehensive understanding of a pharmaceutical process, we propose a framework 

consisting of global sensitivity analysis, feasibility analysis, and process optimization. This 

framework is demonstrated with a direct compaction process, and details are given in Chapter 5.  

 

1.3 Process analysis and optimization for stochastic systems. 

Process variabilities have always been a critical issue in pharmaceutical processes. From the 

modeling point of view, a direct way to incorporate variabilities is by using stochastic simulations. 

A stochastic simulation may give different observed values when it is run multiple times at the 

same sample point. In such cases, the stochasticity can cause uncertainties to the evaluation of the 

system, which greatly increases the difficulties of process analysis and optimization.  

 

The difficulties of using stochastic systems are multi-fold. First, the randomness in the system can 

cause the derivative information of the system to be unreliable or hard to approximate. In this case, 

traditional derivative-based optimization methods cannot not be directly applied to process 

optimization problems. Second, when the simulation is computationally expensive to evaluate, it is 

usually required to conduct process analysis and optimization within a limited sampling budget. 

Therefore, efficient approaches need to be developed to extract process information. Third, the 

inherent noise level can vary depending on process inputs (i.e., heteroscedastic noise variances) 

which need to be considered when performing process analysis and optimization.  
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To address the difficulties of using stochastic systems, we have developed and compared three 

surrogate-based feasibility analysis methods, with details mentioned in Chapter 6. A novel “one-

stage” optimization algorithm is developed for unconstrained optimization problems of stochastic 

systems, which is described in Chapter 7. A feasibility-enhanced Kriging-based method is 

developed to solve stochastically constrained optimization problems, of which details are discussed 

in Chapter 8.  

 

Finally, the conclusions and suggested future work are given in Chapter 9.  
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2 Global Sensitivity and Feasibility Analysis of Continuous Pharmaceutical Manufacturing 

Processes 

2.1 Introduction 

Mathematical models have been used to investigate the input-output relationship for 

pharmaceutical manufacturing processes. With the increasing process knowledge that is obtained 

both in-line and off-line, the descriptive models also get more complex. Therefore, we need to use 

simulation-based mathematical methods to systematically and efficiently analyze the process, and 

use the analysis results to guide the development of control strategies and identify process 

bottlenecks. Sensitivity analysis and feasibility analysis are two powerful approaches that can 

facilitate this process analysis.  

 

Sensitivity analysis investigates how variability in the model inputs contribute to the variations in 

model outputs[43]. It can be used to support the initial risk assessment of the process by estimating 

the relative impact of variability in process parameters and material properties on the quality 

attributes[1]. Sensitivity analysis is usually implemented to prioritize the input factors by 

quantifying the influence on the output and identifying the subset of most important input factors 

while screening out the less important input factors whose effects can be considered negligible. 

Therefore, it is usually used to reduce the dimension of the model and simplify it for further 

feasibility analysis or optimization purpose. Generally, there are two categories of sensitivity 

analysis: local and global methods. Local methods reflect the sensitivity information around one 

base case (nominal point). On the other hand, global methods reveal the sensitivity information 

over the entire input space. In this chapter, we would focus on the global methods since it’s mostly 

used by the pharmaceutical process modeling community [15,14]. There are numerous global 
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sensitivity analysis methods available, and the choice of a specific method usually depends on the 

sampling budget that a user can afford.  

 

Feasibility and flexibility analysis is a mathematical approach to quantify and characterize the 

design space of a process[44]. The concept of feasibility and flexibility analysis was initially 

proposed by Grossmann and Morari[45] from the process systems engineering community, and has 

evolved to many different applications over the years[44]. The objective of this analysis is to 

quantify the maximum limit of variations in the input that a process can tolerate while retaining 

process robustness. For a pharmaceutical process, feasibility analysis can be used to indicate the 

feasible region in which the operation conditions need to be controlled, and/or the ranges where 

material properties can be varying, in order to ensure product qualities and process safety. Based 

on exhaustive sampling, process models can be directly used to identify the design space[46,47]. 

However, for computationally expensive models, more efficient methods such as surrogate-based 

adaptive sampling approaches [48] are more favorable to predict the design space. For process 

models with many input factors, an additional difficulty for the feasibility analysis is to visualize 

the design space in the high-dimensional space.  

 

Sensitivity analysis and feasibility analysis are two key aspects of a systems approach to extract 

process knowledge, and can facilitate the risk assessments and failure mode analysis for both 

individual unit operations and integrated processes. The results can be used as guidance for 

manufactures to foresee and address hidden process problems during the development of a CM 

process. Additionally, they can also help users identify the areas where process models need to be 

further developed[14]. On the other hand, sensitivity analysis and feasibility analysis are also 

beneficial to formulate and solve process optimization problems. For example, global sensitivity 

analysis can be applied to reduce the number of decision variables; surrogate-based feasibility 

analysis can be seen as a way of addressing black-box process constraints to the optimization 
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problems[49]. Therefore, it is important to consider sensitivity analysis and feasibility analysis as 

computer-aided process analysis tools when developing a continuous process.  

 

2.2 Global Sensitivity Analysis  

Global sensitivity analysis aims to evaluate how sensitive the model outputs are in response to the 

changes in the model inputs[50]. For pharmaceutical process models, the input factors usually refer 

to the operation conditions (e.g. flow rate, blender blade speed), raw material properties (e.g. bulk 

density). The output variables are the responses of the model (e.g. mean residence time, tablet 

properties) that are determined by the input factors. The results can help identify and prioritize the 

most influential input factors that contribute most to the output variability, and also find the model 

input that are insignificant to the output. Those less significant inputs can be fixed at their nominal 

values for further use because they do not have much effects on the outputs of interest. In addition, 

the global sensitivity analysis can also reflect if (and which) factors interact with each other, and 

how these interactions can affect the outputs. Note that before conducting the sensitivity analysis, 

users need to first specify the distribution and ranges of the inputs. Common distributions include 

the uniform distribution and the normal distribution. It is important to carefully choose the 

distributions and ranges of the inputs based on the actual process settings because such choices 

may affect the results from sensitivity analysis.  

 

Generally, there are four categories of global sensitivity analysis methods, including: (1) screening 

methods; (2) regression-based methods; (3) variance-based methods; and (4) metamodel-based 

methods[51]. In the following subsections, we will discuss each method by covering (1) basics of 

the methods, (2) calculation and interpretation of the sensitivity metrics, and (3) required sampling 

cost, followed by highlighting the commonly used approaches to visualize the results of this 

analysis. 
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2.2.1 Methods 

2.2.1.1 Screening methods 

A screening method is effective to find the few most influential factors of a model which may have 

many inputs, by using a relatively small sampling budget[43]. A mostly used screening method is 

the Morris method. It is based on one-at-a-time (OAT) designs, in which only one factor changes 

values between consecutive simulations. Morris method considers wide ranges of variations in the 

input and uses an average of local measures to provide global sensitivity information. Morris 

method is especially useful when there are a large number of inputs (e.g. tens of factors), and/or 

when the model is very costly.  

 

The Morris method depends on the calculation of the elementary effects (EE). For a selected base 

point, EE of the ith factor is defined with Equation 16, 

 
𝐸𝐸N =

𝑌 𝑥o, … , 𝑥Nfo, 𝑥N +ΔN , 𝑥N�o, … , 𝑥� − 𝑌(𝑥o, … , 𝑥�)
ΔN

 (16) 

where 𝑘 represents the number of inputs; (𝑥o, … , 𝑥�) is the selected base point; ΔN is the step 

change in the ith input factor; 𝑌(∙) is the model output.   

 

The original version of the Morris method[43] is performed by sampling r trajectories, of which 

the input factors are moved OAT on a grid of levels covering the entire input space. We use a 3-

dimensional example to illustrate this trajectory-based method, which is shown in Figure 2 (adapted 

from Campolongo, Saltelli et al.[52]). Along the trajectory (bold dashed line in Figure 2), each 

input is changed by the same step size Δ. In this example, Δ = 0.25. The EE effects are thus 

calculated sequentially. For example, the EE for the 1st input is calculated as 𝐸𝐸o =
� b(�) f�(b(�))

Δ
; 

the EE for the 2nd input is 𝐸𝐸t =
� b(�) f�(b(�))

Δ
 , etc. In order to more accurately reflect the global 
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sensitivity information, it is suggested that trajectories should be generated in a way so that their 

spread in the input space is maximized[43].  

 

 

Figure 2. Example of the trajectory in a 3D 

input space. 

Figure 3.  Example of the radial design in a 

3D input space 

 

A more efficient and accurate design was later proposed by Campolongo, Saltelli et al.[52] We also 

use a 3D model as an example, which is shown in Figure 3 (adapted from Campolongo, Saltelli et 

al.[52]). A “radial design” calculates each 𝐸𝐸N,N∈{o,t,�} by using the current visiting point 

(𝒙 N ,N∈{o,t,�}	) with the base point (𝒙 | ). Sobol’ quasi-random numbers[53] are used to generate 

radial sample points. Note that for both designs (trajectory-based design and radial design), the 

value of Δ must always represent the sampling step with the range [0, 1]. For non-uniform 

distributions (e.g. normal distribution), Δ should represent the variation in the quantiles of the 

input factors[43].  

 

Based on the calculation of EE, three sensitivity metrics can be calculated (Equation 17). 𝜇N is the 

average of 𝐸𝐸N, and indicates the individual sensitivity information. 𝜎Nt is the variance of 𝐸𝐸N, and 

980 F. Campolongo et al. / Computer Physics Communications 182 (2011) 978–988

Fig. 1. Example of trajectory in 3 dimensions for the original EE method.

OAT of a step !i in the inputs’ domain. The sensitivity test is based
on the elementary effect, from which the name of the method:

EEi = Y (x1, . . . , xi−1, xi + !i, xi+1, . . . , xk) − Y (x1, . . . , xk)

!i
. (2)

r different elementary effects are estimated by randomly sampling
r different trajectories; the final sensitivity measure adopted is the
average of these effects:

µi =
∑r

i=1 EEi

r
.

The original version [18] of the EE method is based on a sample
of r trajectories where factors are moved OAT on a grid of levels
covering the inputs’ domain, see Fig. 1 for a 3-dimensional case.
The number of points of each trajectory is (k + 1), where k is the
number of factors of the model. Along a trajectory each input is
increased or decreased by the same step !.2 In Fig. 1 the trajectory
is composed of the four points {x(1), . . . ,x(4)} and ! = 0.25. If we
consider, for instance, the first two consecutive points x(1) and x(2) ,
they differ only in the second component, which is increased by !:

EE2 = Y (x(2)) − Y (x(1))

0.25
.

A second measure is proposed in [18], which assesses the ex-
tent of interactions and non-linear effects of each factor:

σi =
∑r

i=1(EEi − µi)
2

r
.

In [3], Campolongo and co-workers presented an improved ver-
sion of the EE method, where:

• The sampling strategy is improved so to better scan the in-
put domain using the same number of points. This is achieved
by first generating a high number of different trajectories (e.g.
M ∼ 500–1000) and then selecting the r trajectories with the

2 We assume that each input is uniformly distributed in [0,1]. For non-uniform
factors, we sample quantiles in [0,1] and derive the input values through the in-
verse distribution function.

Fig. 2. Scheme of the cell-based sampling strategy.

largest dispersion in the input space.3 We call this improved
strategy that of ‘optimized trajectories’.

• A new measure µ∗ is defined which alone assesses the factors’
importance:

µ∗
i =

∑r
i=1 |EEi|

r
. (3)

The use of the absolute value of the EE allows to solve the
problem of the effects of opposite signs which occurs when
the model is non-monotonic. In [3] it was also empirically
demonstrated that for screening purposes there exists simi-
larities between results obtained via µ∗ and via the variance-
based total index ST .

A different design, that we call ‘cell-based’, is presented in [29],
where the input space is explored combining steps along the Xi
axis with steps along the X∼i axis, an axis where all inputs but Xi
change their values.4 Fig. 2 exemplifies how the sampling strategy
works. Starting from the first run x(1)

i x(1)
∼i , the strategy first moves

in the direction ∼ i, i.e. to the second run x(1)
i x(2)

∼i and then along

the i axis to the third run x(2)
i x(1)

∼i . The last run, where all factors
are changed respect to the first run, completes the cell.

With respect to the optimized trajectories strategy, this design
has the advantage of providing, at no extra computational cost, an
additional sensitivity measure (on top of the classic ones based on
the elementary effects) to assess interaction effects:

EI = 1
2

∣∣Y (1) − Y (2) + Y (4) − Y (3)
∣∣, (4)

where the super-indices refer to the corresponding input points in
Fig. 2. This second measure can be useful for non-additive mod-
els characterized by pure interactions terms. However tests on two
relevant benchmarks [29], the typically non-additive model intro-
duced by Saltelli et al. in [28] (see also Section 4), and a 10-inputs
version of the Morris function [18], showed that results obtained
via the cell-based strategy only slightly outperforms the ones ob-
tained via the design based on trajectories. Such findings are con-
firmed in the present study based on a larger set of test functions.

3 In [3] a dispersion measure is defined in terms of distance between couples of
trajectories.

4 Despite X∼i refers to (k − 1) variables, we will point to a variation of these
(k − 1) variables as a step taken onto the Xi axis.

x(0) x(1)

X1

x(3)

X3

X2

x(2)
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reflects the nonlinearity or the interaction in the ith input. 𝜇N and 𝜎Nt are usually used simultaneously 

to show the sensitivity information. This is to account for the cases when a significant input has 

𝐸𝐸N of different signs. In such situations, positive and negative values of 𝐸𝐸N may cancel out each 

other, and cause 𝜇N to be very small (close to zero). However, 𝜎Nt will still be large, and can thus be 

used to identify this input factor as significant. On the other hand, the third metric 𝜇N∗ can be more 

convenient. Since 𝜇N∗ is calculated as the average of the absolute values of 𝐸𝐸N, it is not vulnerable 

when the EE has both positive and negative values. Saltelli, Ratto et al.[43] suggested use all three 

metrics to extract the maximum sensitivity informaiton.  

 
𝜇N =

1
𝑟

𝐸𝐸N
�

R

�{o

	

𝜎Nt =
1

𝑟 − 1
𝐸𝐸N

� − 𝜇N
t

R

�{o

	

𝜇N∗ =
1
𝑟

𝐸𝐸N
�

R

�{o

 

(17) 

The total sampling cost of the Morris method is 𝑟(𝑘 + 1), where 𝑟 equals to the number of 

trajectories (or number of radial base points). This is because for each trajectory (or base point), 

the simulation needs to be evaluated at (𝑘 + 1) different locations. Iooss and Lemaître[51] 

recommended that 𝑟 should be selected between 2 and 10.  

 

After conducting the Morris method, the input factors with large values of 𝜇N and/or 𝜎Nt, also large 

values of 𝜇N∗ are considered to be significant. In practice, if a input factor has a sensitivity metric 

with values smaller than 10% of the largest of this metric, then this input can be treated as not 

significant[43,54]. Note that Morris method is only considered to be a qualitative approach. This is 

because it can only rank the input factors in the order of importance, but does not quantify how 

much an input factor is more important than others[50].  
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2.2.1.2 Regression-based methods 

Regression-based methods are based on the analysis of linear regression models which explain the 

output variable given the values of inputs[50]. A typical method of this category is the Partial Rank 

Correlation Coefficient (PRCC), which is an extension of the Partial Correlation Coefficient (PCC).  

 

For a model with multiple inputs, PCC is used to determine if an input is strongly linearly correlated 

to the output when all the linear effects of other variables are removed[55]. PCC can be calculated 

with Equation 18: 

 
𝑥N = 𝑐| + 𝑐�𝑥�

�

�{o,��N

	

𝑦 = 𝑏| + 𝑏�𝑥�

�

�{o,��N

	

𝑃𝐶𝐶 = 𝐶𝐶(𝑥N − 𝑥N, 𝑦 − 𝑦) 

(18) 

where 𝑘 is the number of input factors. In Equation 18, the ith input factor is expressed (𝑥N) with a 

linear regression model considering all the other input factors (𝑥�,��N). The output variable is also 

expressed (𝑦) with a linear model using the same set of input factors (𝑥�,��N). Then, PCC is 

calculated as the correlation coefficient between the two residual terms: (𝑥N − 𝑥N) and (𝑦 − 𝑦).  

 

When the relationship between the input and the output is nonlinear but monotonic, it can be 

transferred to a linear relationship by applying rank transformations to the data[55]. This means 

that the data values are replaced with their ranks when building the linear models in Equation 18. 

This procedure gives the values of PRCC. Marino, Hogue et al.[55] commented that PRCC is a 

reliable sensitivity metric for nonlinear but monotonic relationships between input and output as 

long as there is little to no correlation among the inputs.  
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PRCC is a standardized measure whose value is between -1 and 1. If PRCC is close to -1 (or 1), it 

means the input has a strong negative (or positive) effect on the output. If PRCC is close to 0, it 

indicates that the input and output are independent. Therefore this input is not significant to the 

output[51]. Latin Hypercube Sampling (LHS)[56] is usually adopted to sample the data points[55]. 

The number of sample points should be at least larger than 𝑘 for the purpose of constructing the 

linear regression models. Iooss and Lemaître[51] recommended the sampling budget between 2𝑘 

to 100𝑘.  

 

2.2.1.3 Variance-based methods 

Variance-based methods consider the decomposition of the variance of the output (i.e. 𝑉(𝑦)) into 

several components including individual inputs and the interactions between inputs[57]. Under the 

assumption that the input factors are independent, the decomposition of 𝑉(𝑦) can be expressed with 

Equation 19,  

 
𝑉 𝑦 = 𝑉N

�

N{o

+ 𝑉N,�
o�N����

+ ⋯+ 𝑉o,t,…,� (19) 

where 𝑉N is the partial variance term that is solely due to 𝑥N; 𝑉N,� is partial variance term due to the 

interaction between 𝑥N and 𝑥�; 𝑉o,t,…,� is the partial variance term due to the interaction of 𝑥o, … , 𝑥�. 

Based on such a variance decomposition, different sensitivity measures can be defined. Common 

measures are shown in Equation 20 to 22.  

 𝑆N =
𝑉N
𝑉 𝑦

 (20) 

 
𝑆N� =

𝑉N,�
𝑉 𝑦

 (21) 

  
𝑆�N =

𝑉N + 𝑉N,���N + ⋯+ 𝑉o,t,…,�
𝑉 𝑦

= 1 −
𝑉~N
𝑉 𝑦

 (22) 
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𝑆N is called “first-order sensitivity index” for the input factor 𝑥N, which measures the main effect 

of 𝑥N on the output. 𝑆N� is “second-order sensitivity index”, which is the interaction effects of 𝑥N 

and 𝑥� on the model output; 𝑆�N is the “total effect index”, which accounts for the main effect 

and all the higher-order interaction effects including 𝑥N.  

 

Sobol’ method 

Sobol’ method uses Monte Carlo techniques to compute the indices of 𝑆N and 𝑆�N, the expressions 

of these two indices[43] are shown in Equation 23 and 24,  

 
𝑆N =

𝑉¡¢ 𝐸𝑿~¢ 𝑌 𝑋N
𝑉 𝑌

 (23) 

 
𝑆�N = 1 −

𝑉𝑿~¢ 𝐸¡¢ 𝑌 𝑿~N
𝑉 𝑌

=
𝐸𝑿~¢ 𝑉¡¢ 𝑌 𝑿~N

𝑉 𝑌
 (24) 

where	𝐸(∙) is the expected value; 𝑿~N represents all possible combination of input values with 𝑋N 

being fixed. In Equation 24, 𝑆�N is calculated as the sum of all terms (i.e. “1”) subtracted by the 

terms that do not include 𝑥N (i.e. 
¥𝑿~¢ ¦§¢ 𝑌 𝑿~N

¥ �
).  

 

Saltelli, Annoni et al.[58] summarized several approaches to calculating 𝑆N and 𝑆�N with Sobol’ 

method, and recommended using the following expressions for efficiency and accuracy.  

 

𝑆N =

1
𝑁 𝑓 𝑩 � 𝑓 𝑨𝑩

N
�
− 𝑓 𝑨 �

«
�{o

𝑉 𝑌
 (25) 

 

𝑆�N =

1
2𝑁 𝑓 𝑨 � − 𝑓 𝑨𝑩

N
�

t
«
�{o

𝑉 𝑌
 

(26) 

In these expressions, 𝑨 and 𝑩 are two matrices, each having N rows of different sample points. 𝑨𝑩
(𝒊) 

is a matrix in which the 𝑖th column of 𝑨 is substituted by the 𝑖th column of 𝑩. 



	

25	
	

 
𝑨 =

𝑎oo 𝑎ot
𝑎to ⋱

⋯ 𝑎o�
	 ⋮

⋮ 	
𝑎«o 𝑎«t

⋱ ⋮
⋯ 𝑎«�

, 𝑩 =

𝑏oo 𝑏ot
𝑏to ⋱

⋯ 𝑏o�
	 ⋮

⋮ 	
𝑏«o 𝑏«t

⋱ ⋮
⋯ 𝑏«�

, 𝑨𝑩
(N) =

𝑎oo 𝑏oN
𝑎to ⋱

⋯ 𝑎o�
	 ⋮

⋮ 	
𝑎«o 𝑏«N

⋱ ⋮
⋯ 𝑎«�

 (27) 

The sample points in matrices 𝑨 and 𝑩 are generated by Sobol’ quasi-random numbers[53]. From 

Equation 27, we can notice that a total number of 𝑁(𝑘 + 2) sample points are required. In order to 

get accurate estimates of 𝑆N and 𝑆�N, N should be at least 500[58]. Iooss and Lemaître[51] 

recommended the total sampling budget between 100𝑘 to 1000𝑘. 

 

FAST and eFAST method 

Fourier Amplitude Sensitivity Test (FAST)[59] method is based on the idea of converting the 

calculation of 𝐸(𝑦) and 𝑉(𝑦) to one-dimensional integrals via the construction of a proper space-

filling curve (Equation 28): 

 𝑥N = 𝐺N(sin 𝜔N 𝑠) (28) 

where 𝐺N are transformation functions for 𝑖 = 1, … , 𝑘; 𝜔N are integers; 𝑠 ∈ (−𝜋, 𝜋) is a scalar 

variable. Then, 𝐸(𝑦) can be approximated with Equation 29,  

 
𝐸 𝑌 ≐

1
2𝜋

𝑓(𝑠)𝑑𝑠
´

f´
 (29) 

where 𝑓 𝑠 = 𝑓(𝐺o sin 𝜔o 𝑠 , … , 𝐺�(sin 𝜔� 𝑠)).  

Based on Fourier series properties[60], 𝑉(𝑦) can be approximated with Equation 30.  

 
𝑉 𝑦 ≐

1
2𝜋

𝑓t 𝑠 𝑑𝑠
´

f´
− [𝐸(𝑌)]t ≈ 2 (𝐴�t + 𝐵�t)

¶

�{o

 (30) 

where 𝐴� and 𝐵� are defined as follows: 

 
𝐴� =

1
2𝜋

𝑓 𝑠 cos(𝑗𝑠) 𝑑𝑠
´

f´
 (31) 

 
𝐵� =

1
2𝜋

𝑓 𝑠 sin(𝑗𝑠) 𝑑𝑠
´

f´
 (32) 

Furthermore, 𝑉N can be approximated as follows: 
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𝑉N ≐ 2 (𝐴�¹¢

t + 𝐵�¹¢
t )

¶

�{o

 (33) 

Extended FAST (eFAST) method[59] further approximated 𝑉~N as follows: 

 
𝑉~N ≐ 2 (𝐴�¹~¢

t + 𝐵�¹~¢
t )

¶

�{o

 (34) 

where 𝜔N is the integer (associated with 𝐺N) for the factor 𝑋N; 𝜔~N is a set of almost identical integers 

(different from 𝜔N) that are assigned to all the remaining factors but 𝑋N; 𝑀 is the maximum 

harmonic that’s considered, usually taken to be 4 or 6[59].  

 

Therefore, the sensitivity metrics 𝑆N and 𝑆�N from Equation 20 and 24 can be approximated with 

the following expressions: 

 
𝑆N ≐

(𝐴�¹¢
t + 𝐵�¹¢

t )¶
�{o

(𝐴�t + 𝐵�t)¶
�{o

 (35) 

  
𝑆�N ≐ 1 −

(𝐴�¹~¢
t + 𝐵�¹~¢

t )¶
�{o

(𝐴�t + 𝐵�t)¶
�{o

 (36) 

The minimum number of sample points should be (2𝑀𝜔^[b + 1), where 𝜔^[b is the maximum 

values in the set of 𝜔N. An automated algorithm of selecting 𝜔N can be found in Section 8.4.4 of 

Saltelli, Chan et al.[59] Iooss and Lemaître[51] recommended the total sampling budget between 

100𝑘 to 1000𝑘. 

 

For the variance-based methods, 𝑆N and 𝑆�N are within the range of [0, 1]. Those input factors with 

sensitivity metrics’ values close to 1 are significant to the output variable. The necessary and 

sufficient condition for an input factor to be non-influential is that 𝑆�N = 0.	Note that we always 

have 𝑆N ≤ 𝑆�N, and the difference between 𝑆N and 𝑆�N indicates the interaction effects on the model 

output.  
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2.2.1.4 Metamodel-based methods 

The metamodel-based method aims to build a surrogate model to approximate the original 

simulation. This surrogate should have good prediction accuracy and low computational costs, so 

that it can be used to conduct sensitivity analysis which may require huge numbers of sample points. 

In this subsection, we focus on the application of random sampling high dimensional model 

representation (RS-HDMR) method[61].  

 

The HDMR model maps the relationship between the inputs and output with the following 

equation: 

 
𝑓 𝑥 = 𝑓| + 𝑓N(𝑥N)

�

N{o

+ 𝑓N�(𝑥N, 𝑥�)
o�N����

+ ⋯+ 𝑓ot…�(𝑥o, 𝑥t, … , 𝑥�) (37) 

where 𝑓| is a constant representing the mean effect (zeroth-order term); 𝑓N denotes the first-order 

term, that is the effect of 𝑥N acting independently on the output; 𝑓N� is the second-order term 

considering the interaction effects of 𝑥N and 𝑥� on the model output. The HDMR model is 

computationally efficient if higher-order interactions of the inputs are not significant, and can be 

neglected. In most cases, a HDMR model with up to 2nd order terms is sufficient to capture the 

model behaviors[62].  

 

A RS-HDMR model can be constructed by using N randomly sampled points over the entire input 

space. A scaling procedure is conducted for all the input factors so that 0 ≤ 𝑥N ≤ 1 for all 𝑖. Then, 

the zeroth-term 𝑓| in Equation 37 is approximated with the average of 𝑓(𝑥) for all sample points: 

 
𝑓| ≈

1
𝑁

𝑓 𝑥(Z)
«

Z{o

 (38) 

By using analytical basis functions (such as orthonormal polynomials), the first-order and second-

order component functions can be approximated as follows: 
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𝑓N(𝑥N) ≈ 𝛼RN𝜑R(𝑥N)

^

R{o

 (39) 

  
𝑓N�(𝑥N, 𝑥�) ≈ 𝛽�½

N� 𝜑�(𝑥N)𝜑½(𝑥�)
Y′

½{o

Y

�{o

 (40) 

where 𝑚, 𝑙, 𝑙′ denote the orders of polynomial expansion, and can be chosen based on the 

algorithm in Ziehn and Tomlin[61]; 𝜑R, 𝜑�, 𝜑½ are orthonormal basis functions; 𝛼RN  and 𝛽�½
N�  are 

model coefficients, and can be determined with the following equations: 

 
𝛼RN ≈

1
𝑁

𝑓 𝑥 Z
«

Z{o

𝜑R 𝑥N
(Z)  (41) 

  
𝛽�½
N� ≈

1
𝑁

𝑓 𝑥 Z 𝜑� 𝑥N
(Z) 𝜑½ 𝑥N

(Z)
«

Z{o

 (42) 

With the constructed RS-HDMR model, the partial variances in Equation 19 can be obtained as 

follows: 

 𝑉 𝑦 = 𝑓t 𝑥 𝑑𝑥 − 𝑓| (43) 

  
𝑉N = 𝑓Nt(𝑥N)𝑑𝑥N

o

|
 (44) 

 
𝑉N,� = 𝑓N�t(𝑥N, 𝑥�)𝑑𝑥N𝑑𝑥�

o

|

o

|
 (45) 

Therefore, the sensitivity metrics 𝑆N and 𝑆N� can be calculated by their definitions in Equations 20 

and 21. LHS can be used to generate the sample points to build the RS-HDMR[14]. Iooss and 

Lemaître[51] suggested the number of sample points should be between 10𝑘 and 100𝑘. 

 

2.3 Feasibility Analysis  

Feasibility and flexibility analysis quantifies the capabilities of a process to remain feasible over a 

range of uncertain parameters[44]. This concept is based on the feasibility function, which 
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describes whether for a fixed value of uncertainty parameter 𝜃 a process can meet all constraints 

𝑓� ≤ 0 by adjusting its control variable 𝑧. This can be evaluated by choosing 𝑧 to minimize the 

maximum value of 𝑓�. This leads to the definition of feasibility function as follows: 

 𝜓 𝑑, 𝜃 = 	min
Ä
max
�∈Æ

	 𝑓� 𝑑, 	𝑧, 	𝜃 	

𝑧 ∈ 𝑍 = 𝑧: 	𝑧É ≤ 𝑧 ≤ 𝑧Ê 	

𝜃 ∈ 𝑇 = {𝜃: 	𝜃É ≤ 𝜃 ≤ 𝜃Ê} 

(46) 

where 𝜓 𝑑, 𝜃  denotes the feasibility function; 𝑑 represents the design variables, which are usually 

constant parameters for a fixed process design. If 𝜓 𝑑, 𝜃 ≤ 0, then the process is feasible over the 

whole input space. If 𝜓 𝑑, 𝜃 > 0, then we know there exists at least one constraint that’s violated 

no matter how we adjust the control variable 𝑧.  

 

If we treat all the input variables as uncertainty parameters, (i.e. no control variables 𝑧), then the 

feasibility function is simplified to the form in Equation 47.  

 𝜓 𝑑, 𝜃 = 	max
�∈Æ

	{𝑓� 𝑑, 	𝜃 } (47) 

In the following subsections, we will first overview the methods that are developed to solve the 

feasibility analysis problems for pharmaceutical processes, then illustrate the common measures 

that are taken to visualize the design space. Finally, we will discuss some extensions to the 

traditional feasibility analysis problems.  

 

2.3.1 Methods 

2.3.1.1 Traditional simulation-based approach 

When the simulation model is computationally fast, it can be directly used for feasibility analysis. 

For example, with the use of a response surface model, Huang, Kaul et al established the design 

space consisting of three parameters (water amount, wet massing time, and lubricant time) in order 
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to get desired tablet blend flow[63]. Prpich, am Ende et al. used two fundamental models to 

determine the design space of air temperature and air pressure for a tablet film coating process[47], 

with the results verified with experimental studies. Brueggemeier, Reiff et al. applied several 

process models to the characterization of design space for a drug API step[46].  

 

2.3.1.2 Surrogate-based adaptive sampling approach 

As the process model gets more complex, it can be computationally infeasible to directly use the 

model for feasibility analysis. In such cases, we need to seek for more intelligent ways to 

characterize the design space. Surrogate-based adaptive sampling approaches can be more 

appealing.  

 

This approach relies on building a surrogate model to efficiently approximate the feasibility 

function of the computationally costly simulation model. This surrogate model is then updated and 

gradually gets improved at the adaptive sampling stage, during which the new sample points are 

selected in a way that they can quickly get close to the feasible region boundary of the original 

simulation. It is reasonable that if we can correctly identify the feasible region boundary, then we 

will know where the feasible region is. Therefore, the adaptive sampling is efficient in that, instead 

of doing exhaustive sampling, it intelligently searches for sample locations that are most promising 

to provide information on the feasible region boundary. Below, we describe a Kriging-based 

method that is used in Ref. [64,65,48].  

 

Kriging-based adaptive sampling approach 

Kriging model[66] uses a stochastic process to model an unknown function 𝑦 (Equation 48), 

 
𝑦 𝑥 = 𝜇 + 𝜀(𝑥) 

 

 (48) 
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where 𝜇 is a constant representing the overall surface mean; 𝜀(𝑥) is a realization of a random 

variable with mean 0. 𝜀(𝑥) is assumed to have spatial correlations, which means that if 𝑥 is close 

to 𝑥′, then 𝜀(𝑥) and 𝜀(𝑥′) will tend to be similar. The covariance between 𝜀(𝑥) and 𝜀(𝑥′) can 

be expressed as 𝛴Í 𝑥, 𝑥′ = 𝜏t𝑅Í( 𝑥 − 𝑥′ ), where 𝜏t is the variance of 𝜀 for all 𝑥. 𝑅Í is the 

spatial correlation that can be modeled with different correlation kernel functions, of which the 

commonly used are listed in Table 1.  

 

Table 1.  Correlation kernel functions 

Name Form 

Exponential exp(−𝜃�|𝑑�|) 

Gaussian exp(−𝜃�|𝑑�|t) 

Linear max{0,1 − 𝜃�|𝑑�|} 

  

With 𝑛 sample points, the unbiased Kriging predictor at an unsampled point 𝑥∗ can be derived as 

follows: 

 𝑦(𝑥∗) = 𝜇 + 𝜮Í(𝑥∗, 𝒙)� 𝜮Í fo(𝒚 − 𝜇𝟏𝒏) (49) 

where 𝜮Í is the n-by-n covariance matrix for the sample points, 𝜮Í(𝑥∗, 𝒙) is the n-by-1 vector of 

covariance between 𝑥∗ and the 𝑛 sample points.  

 

A benefit of using Kriging is that it can provide the estimated prediction uncertainty (estimated 

mean squared error), which can be derived with the following equation: 

 
𝑠t 𝑥∗ = 𝜏t − 𝜮Í 𝑥∗, 𝒙 � 𝜮Í fo𝜮Í 𝑥∗, 𝒙 +

(1 − 𝟏_� 𝜮Í fo𝜮Í 𝑥∗, 𝒙 )t

𝟏_� 𝜮Í fo𝟏_
 (50) 

The model parameters (𝜇, 𝜏t, 𝜃�) of Kriging can be obtained by maximizing the log-likelihood 

function.  
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Based on the Kriging surrogate model, Boukouvala and Ierapetritou[64] proposed an adaptive 

sampling method, which is based on maximizing a modified Expected Improvement (EI) function, 

in order to search for new sample points. The modified EI function is shown in Equation 51 

 
𝐸𝐼LK[Z 𝑥 = 𝑠 ∙ 𝜙	

0 − 𝑦
𝑠

= 	𝑠 ∙
1
2𝜋

𝑒f|.Ô(
m�
Z�) (51) 

where 𝑠 is the standard error of the prediction from Equation 50; 𝑦 is the Kriging predictor from 

Equation 49; 𝜙(∙) is the standard normal density function. To understand how this function can be 

beneficial for feasibility analysis, we can take the partial derivative of 𝐸𝐼LK[Z with respect to 𝑦 and 

𝑠: 

 
𝜕𝐸𝐼LK[Z
𝜕𝑦

= −
1
2𝜋

	
𝑒
f|.Ôm�
Z� 𝑦
𝑠

	

𝜕𝐸𝐼LK[Z
𝜕𝑠

=
1
2𝜋

(𝑒
f|.Ôm�
Z� +

𝑒
f|.Ôm�
Z� 𝑦t

𝑠t
) > 0 

(52) 

In Equation 52, for the term 𝜕𝐸𝐼LK[Z/𝜕𝑦, because 𝑠 is non-negative by definition, 𝜕𝐸𝐼LK[Z/𝜕𝑦 will 

always have opposite signs with 𝑦. Therefore, when 𝑦 is positive, 𝐸𝐼LK[Z will increase if 𝑦 decreases 

and gets close to zero. Similarly, when 𝑦 is negative, 𝐸𝐼LK[Z will increase if y increases and gets 

close to zero. In other words, by maximizing 𝐸𝐼LK[Z, it will lead the search direction to the regions 

where Kriging predictor is close to zero, which is the feasible region boundary of the surrogate. On 

the other hand, it can be observed that 𝜕𝐸𝐼LK[Z/𝜕𝑠 is always positive, meaning that 𝐸𝐼LK[Z will 

increase as prediction uncertain gets higher. Therefore, by maximizing 𝐸𝐼LK[Z, it is also favored to 

sample points in the less explored regions. Also, we should notice that since prediction uncertainty 

𝑠 is always zero at sampled points, 𝐸𝐼LK[Z is also zero for sampled points. Therefore, when 

maximizing 𝐸𝐼LK[Z, it is less likely that the sample points converge to a certain local area. This 
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feature is beneficial to explore all the feasible region boundaries when the feasible region has 

complex landscapes or has multiple discrete sub-regions.  

 

In summary, by maximizing 𝐸𝐼LK[Z, the adaptive sampling strategy will keep a balance between 

sampling points near the feasible region boundary of the surrogate (local search), and sampling 

points in the less explored regions (global search). This is similar with the idea of surrogate-based 

global optimization methods (e.g. the Efficient Global Optimization (EGO) algorithm[67]). Only 

the objective is different: surrogate-based global optimization algorithms try to find the global 

optimum, which is usually a single point; while surrogate-based feasibility analysis methods 

attempt to identify the feasible region boundary, which is usually a complex surface.  

 

The algorithm of the Kriging-based adaptive sampling approach[65] is shown in Figure 4. We first 

use a space-filling design (e.g. LHS) to find the initial sample points. A rule of thumb is to use at 

least 10𝑘 LHS sample points to build the initial Kriging surrogate, where 𝑘 is the dimension of the 

problem. This is followed by a model selection step which is used to find the correlation kernel 

function that gives the best surrogate prediction accuracy. Then, the Kriging surrogate model is 

constructed. By maximizing the 𝐸𝐼LK[Z function, adaptive sampling is performed to find the next 

sample location, at which the original simulation is called and obtain the new sample point. The 

surrogate is then updated with the sample point. This adaptive sampling step is performed 

iteratively until it uses up all the sampling budget. Then, the final Kriging surrogate is used to 

predict the feasible region of the original simulation.  
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Figure 4. Algorithm of the Kriging-based adaptive sampling approach 

 

Extensions 

Several extensions to the surrogate-based adaptive sampling approaches have been developed to 

account for more complex cases. For example, Rogers and Ierapetritou[65] proposed dynamic 

surrogate-based feasibility analysis in order to investigate the change of design space with respect 

to time. Rogers and Ierapetritou[48] further applied the surrogate-based methods to calculating 

flexibility index and stochastic flexibility index, which are quantitative measures of the process 

flexibility when the uncertainties in the  have a uniform distribution (using flexibility index) or 

non-uniform distribution (using stochastic flexibility index). In addition, new flexibility metrics 

have been developed to quantify the flexibility in complex cases. Lai and Hui[68] defined a 

“volumetric flexibility index” as the hyper-volume ratio of the feasible region and the overall 

input uncertainty space. This flexibility index is suitable to quantify flexibility for nonconvex 
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constraints. Adi and Chang[69] proposed a “temporal flexiblity index” to reflect the cumulative 

effects of temporary disturbances within finite time intervals.  

 

2.4 Software 

The aforementioned sensitivity analysis and feasibility analysis methods are all based on simulation 

models. In the research of pharmaceutical process modeling, gPROMS ModelBuilder[70] is a 

useful platform to develop and run dynamic simulation models; gSOLIDS[71] provides a large 

model library to support the modeling for solids processes. For sensitivity analysis, Simlab[72] is 

a free software (based on Windows platform) for global sensitivity analysis. GUI-HDMR[73] is a 

free Matlab toolbox for users to implement RS-HDMR method. For surrogate-based feasibility 

analysis, the Kriging surrogate can be built with DACE toolbox[74] in Matlab.  

 

2.5 Summary 

In this chapter, we’ve reviewed two aspects of process analysis approaches that have been 

implemented and developed for pharmaceutical process models: (1) global sensitivity analysis; and 

(2) feasibility and flexibility analysis.  

 

For global sensitivity analysis, Morris method requires the smallest number of sample points and 

can be used to get a preliminary and qualitative knowledge on sensitivity information. Regression-

based methods (e.g. PRCC) can be applied to the cases where the output is monotonically related 

to the input. Variance-based methods (e.g. Sobol’, FAST and eFAST) evaluates how the variations 

in the inputs (including main effects and total effects) contribute the variance in the output variable. 

Metamodel-based methods (e.g. RS-HDMR) builds a surrogate model to approximate the original 

simulation, and can produce sensitivity indices that are equivalent to those from variance-based 

methods. This can be suitable for computationally expensive simulations, which cannot afford a 
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huge sampling budget to perform traditional variance-based sensitivity analysis methods. However, 

it can be difficult to validate the surrogate model. Note that most of the sensitivity methods 

reviewed in this chapter are based on the assumption that the input factors are independent. For 

those cases where this assumption is not satisfied, sensitivity analysis should be conducted on 

groups of correlated inputs[75].  

 

For feasibility analysis, surrogate-based adaptive sampling approaches were developed recently to 

facilitate the analysis for integrated flowsheet models, which can usually be computationally 

expensive. Kriging model has been adopted to approximate the feasibility function of the original 

simulation. After constructing the initial surrogate models, adaptive sampling can be iteratively 

performed (with surrogate getting updated at each iteration) to search for sample points with a 

balanced local search and global search. The objective is to efficiently identify the feasible region 

by finding the feasible region boundary. This approach has the potential to be efficient and accurate 

for process models with thousands of equations and constraints. However, the increase in problem 

dimensionality can be a challenge, known as the “curse of dimensionality”[76]. In addition, the 

definition and proof of the convergence of the surrogate-based approaches need to be further 

investigated.  

 

3 Applications of Optimization in Continuous Pharmaceutical Manufacturing 

3.1 Introduction 

There is an increasing number of collaborative efforts in improving the pharmaceutical process 

development and manufacturing, jointly from the academia, regulatory agencies, and the industry. 

Such a trend is stimulated by a few factors. From the economic perspective, it has been well 

acknowledged by the pharmaceutical industry that efficient manufacturing processes need to be 

developed and adopted in order to produce qualified products and maximize the profits within a 
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drug’s patent life. From the regulatory perspective, it is the vision for Food and Drug 

Administration (FDA) to have a highly efficient, agile, flexible pharmaceutical sector that can 

consistently provide drugs of high-quality [77]. To achieve the goal of improving pharmaceutical 

product quality, FDA had a number of initiatives, including process analytical technology (PAT) 

[78], Quality by Design (QbD) [79]. Recently, FDA has stressed the importance of emerging 

technologies (e.g., continuous manufacturing, 3D printing technologies [80], etc.) in the 

improvement of pharmaceutical product quality [81].   

 

In order to embrace the benefits of emerging technologies in the pharmaceutical manufacturing, it 

is critical to have an in-depth process knowledge. Process modeling tools have become increasingly 

important in gaining insights into processes and assisting risk assessment via prediction based on 

process data [9,82]. For a review on the recent development in the modeling of pharmaceutical 

processes, the interested readers are referred to [83] and Chapter 2 in [84]. Commonly used 

modeling approaches include first-principle models (e.g., discrete element models (DEM) [25], 

finite element models (FEM) [85]), population balance models [86], phenomenological models 

[84], and reduced-order models (e.g., response surface models [87], artificial neural network [88], 

latent variable methods [89], etc.). A well-developed process model is a powerful tool to predict 

process dynamics [90], characterize design space (Chapter 6 in [91]), investigate critical process 

parameters [14], facilitate process control [92], and perform process optimization [49].  

 

Based on process models, mathematical optimization approaches have long been used in other 

industries to improve process performance, with a variety of applications covering process design, 

operations, and control. A general classification of the mathematical optimization problem is given 

in [93], where the general formulation of an optimization problem is as follows: 
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 min 𝑍 = 𝑓 𝑥, 𝑦 	

𝑠. 𝑡.	

ℎ 𝑥, 𝑦 = 0	

𝑔 𝑥, 𝑦 ≤ 0	

𝑥 ∈ 𝑋, 𝑦 ∈ {0,1}^ 

(53) 

where 𝑓 𝑥, 𝑦  is the objective function (e.g., cost); ℎ 𝑥, 𝑦  are the equality constraints describing 

the process systems (e.g., mass balance); 𝑔 𝑥, 𝑦  are the inequality constraints defining the process 

constraints (e.g., specifications on product qualities); 𝑥 represents continuous variables; 𝑦 denotes 

discrete variables. Problem (53) corresponds to a mixed-integer problem (MIP). When no discrete 

variables are existent in the system, Problem (53) is reduced to a nonlinear program (NLP) when 

any of the functions involves nonlinearities, or a linear program (LP) when all the functions are 

linear.  

 

In the pharmaceutical process development, mathematical optimization approaches have been 

implemented to improve product formulations, drug delivery systems, and manufacturing 

processes. This chapter aims to provide an overview of the applications of optimization in the 

pharmaceutical process development, and briefly introduce the mathematical tools (e.g., data-

driven models, optimization algorithms) that are generally used.  

 

3.2 Different optimization objectives in the pharmaceutical process development 

In process optimization, the first thing that should to be considered is what needs to be optimized, 

namely the objective function. Depending on the nature of the study, there are a number of objective 

functions that have been used when optimizing a pharmaceutical process. In this section, we first 

introduce some commonly adopted objective functions for single-objective optimization, and then 

discuss the cases when we need to consider multiple objectives simultaneously.  
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3.2.1 Single-objective optimization 

One common choice for the objective function is to optimize the critical quality attribute (CQA) of 

a drug product. Velásco-Mejía et al. [94] determined the optimal operating conditions for a drug 

crystallization process that provided the highest crystal density. Monteagudo et al. [95] developed 

an optimized formulation to obtain the pharmaceutical product with best taste-masking efficiency. 

Chavez et al. [96] optimized the formulation of a pharmaceutical tablet product to maximize the 

joint probability for five CQAs to meet a minimum satisfactory level of quality. Pal et al. [87] 

determined the optimal formulation that can give a desired drug release profile.  

 

The optimization of process performance and efficiency has been investigated in various 

pharmaceutical processes. Based on a thermodynamic model that can predict phase equilibria of 

multicomponent systems, Sheikholeslamzadeh et al. [97] investigated the optimal operating 

conditions that maximized the crystallization yields for a batch cooling-antisolvent crystallization 

process. Zhang and Huang [98] calculated the optimal operating conditions that led to the largest 

chemical oxygen demand (COD) of a pharmaceutical wastewater treatment process in which wet 

peroxide oxidation (WPO) was used. Grom et al. [99] developed a mechanism-based reaction 

kinetic model and used it to obtain maximal desired product concentration of an API synthesis 

process for a benzazepine class of heterocyclic compound (a weight-loss drug).  

 

Economic objectives are often used in process optimization since they are critical to decicion 

making. Jolliffe and Gerogiorgis [100] formulated a NLP optimization problem of a conceptual 

upstream continuous process for the production and purification of ibuprofen, with the objective of 

minimizing the total cost consisting of capital and time-discounted operating expenditure. Abejón 

et al. [101] minimized the total costs for a separation process using multistage membrane cascades, 
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with the operation variables as independent variables and the product specifications as constraints. 

Boukouvala and Ierapetritou [49] formulated a constrained optimization problem to minimize the 

total cost of a continuous direct compaction (CDC) process while meeting product quality 

requirements.  

 

Recently, there is a growing interest in improving the flexibility of operating the pharmaceutical 

process. Flexibility is a quantitative measure of the capability of a process to remain feasible in the 

presence of process uncertainties (e.g., variations in the flow rate), which was initially proposed by 

Grossmann and Morari [102]. Grossmann et al. [44] provided an overview of recent advances in 

quantifying flexibility of chemical processes. The concept of flexibility has also been introduced 

to pharmaceutical processes and its applications are closely related to the problem of characterizing 

the design space. Rogers and Ierapetritou [65] developed a surrogate-based approach to investigate 

both the steady-state and the dynamically changing design space of a roller compaction process. 

Rogers and Ierapetritou [48] further evaluated the flexibility of the roller compaction process by 

computing the stochastic flexibility index, with the uncertainties in process inputs being described 

by an arbitrary probability distribution. Adi and Laxmidewi [103] computed the volumetric 

flexibility index to evaluate the operational flexibility of a separation process using membranes.  

 

The analysis of environmental impacts of pharmaceutical processes has gained increasing attention 

over the past few years. A systematic approach is via Life Cycle Assessment (LCA), which 

evaluates the environmental impacts throughout a product’s life cycle, covering raw material 

acquisition, production and usage, and waste disposal [104]. When integrating the environmental 

consideration to the pharmaceutical industry, it can make significant contribution to building a 

more sustainable and environmental benign pharmaceutical process. Ott et al. [105] presented a 

holistic life-cycle-based process optimization and intensification for an active pharmaceutical 

ingredient (API) production process of an anticancer drug, which investigated the main bottlenecks 
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of the process and made recommendations for strategies of optimization by accounting for a 

number of partly contradictory environmental effects. Jolliffe and Gerogiorgis [100] evaluated the 

environment impact of an API process by using the Environmental Factor (E-factor), which was 

defined as the total mass of waste generated per unit mass of product. Ott et al. [106] performed an 

environmental assessment of different pathways of the production of rufinamide, based on both 

simplified metrics (e.g., process mass intensity, cumulative energy demand) and a holistic LCA 

investigation, and showed the environmental benefits for switching from a multi-step batch process 

to a flow process.  

 

3.2.2 Multi-objective optimization 

Many pharmaceutical processes have more than one objective to be optimized. For example, when 

considering drug qualities, it is usually needed to simultaneously control their mean values (to be 

as close to targets as possible) and the variance (to be as small as possible). This multi-objective 

problem has been formulated into a robust design (RD) problem, with applications demonstrated 

in [107,108]. In addition, it has also been investigated to achieve target product qualities and 

meanwhile reduce the operational costs for a pharmaceutical granulation process [109]. Ardakani 

and Wulff [110] gave an overview of a wide range of methods for multi-objective optimization 

problems. Below, we first show the general form of a multi-objective optimization problem, then 

provide a review on the mathematical approaches that are widely adopted in pharmaceutical 

processes. Interested readers are referred to [111] for more mathematical details.  

 

A multi-objective optimization has the following general form 

 min 𝑓o 𝐱 , 𝑓t 𝐱 , … , 𝑓� 𝐱 	

𝑠. 𝑡. 𝐱 ∈ 𝑆, 
(54) 
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which has 𝑘	(≥ 2) conflicting objective functions 𝑓N: ℝ
_ → ℝ that need to be minimized 

simultaneously. The decision variable 𝐱 belong to a nonempty feasible region 𝑆 ⊂ ℝ_. Objective 

vectors are denoted as 𝐳 = 𝐟 𝐱 = 𝑓o 𝐱 , 𝑓t 𝐱 , … , 𝑓� 𝐱
�

. In the multi-objective optimization, 

objective vectors are regarded as optimal (i.e., Pareto optimal) if none of their components can be 

improved without deterioration to at least one of the other components [111].  

 

The most direct way of solving a multi-objective optimization problem is to find the Pareto curve 

consisting of multiple Pareto optimal solutions. Abejón et al. [101] used the Pareto curves to 

interrelate two variables (i.e., the product purity and the process yield) for a continuous organic 

solvent nanofiltration process. Brunet et al. [112] formulated MIP model for the process design of 

the production of Penicillin V, which aims to determine the optimal operating conditions of the 

pharmaceutical plant (continuous variables) and the plant topology (integer variables) that optimize 

simultaneously the profitability of the process and the associated environmental impact.  

 

Another way to solve a multi-objective optimization problem is by maximizing a desirability 

function. Derringer [113] calculated the desirability as a weighted geometric mean of transformed 

objectives 𝑓N (scaled to the range between 0 and 1). The advantage of using the desirability is that 

it can use a single measure to characterize the overall performance. However, the resulted optimal 

solution is highly sensitive to the assigned weights. Uttekar and Chaudhari [114] selected the 

optimal formulation that maximizes the desirability function in order to achieve the targeted particle 

size distribution for Budesonide (a drug used for the treatment of asthma), which was produced by 

using the amphiphilic crystallization process. Sato et al. [115] calculated the optimal conditions of 

a crystallization process that satisfy both the required amount of residual solvent and the particle 

size D50 based on the desirability. Chakraborty et al. [116] optimized the formulation of a fast-

dissolving pharmaceutical wafer containing Loratadine (a drug to treat allergies), with the 
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desirability as the objective function which involves four critical quality attributes (CQAs) of the 

drug. Kermet-Said and Moulai-Mostefa [117] applied electrocoagulation to a pharmaceutical waste 

water treatment process and investigated the optimal operating conditions to maximize COD 

removal and turbidity removal.  

 

Goal programming has also been used to solve the multi-objective optimization problem. It requires 

the decision maker to specify a goal point and finds a feasible solution that is as close to the goal 

as possible [110]. Nha et al. [107] developed a lexicographical dynamic goal programming to 

account for the dynamic nature of pharmaceutical quality characteristics and utilized it in testing 

for in vitro bioequivalence (considering two time-dependent responses: gelation kinetics and drug 

release rates) of a generic drug. Li et al. [118] proposed a priority-based optimization scheme, 

which incorporates goal programming methods, modified desirability functions, and higher-order 

response surface models, to address the multi-response pharmaceutical formulation optimization 

problem.  

 

3.3 Applications of data-driven models in optimization 

In order to formulate the optimization problem, data-driven models have been widely used for 

pharmaceutical process optimization. Such models investigate the system input-output relationship 

only on the basis of system data, without requiring any explicit knowledge of the physical behavior 

of the system [119]. In some research areas, the data-driven model is also known as “surrogate 

model” [120], “metamodel” [121], “reduced-order model” [122], or “response surface” 

[123]. For pharmaceutical processes, data-driven models are a useful tool to enhance the 

fundamental understanding when first-principle models are not available, due to, for example, a 

lack of knowledge on the mechanical and physiochemical properties of raw materials [124]. 

Moreover, even in the cases when first-principle simulations (e.g., DEM, FEM) can be performed, 
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they are usually too computationally expensive to be directly applied in the process optimization 

or design settings [121]. In such cases, data-driven models can be used as a computational efficient 

approximation to the expensive simulation and contribute to the formulation and solving of an 

optimization problem.  

 

In this section, we first briefly review the sampling plans for data-driven models, and then discuss 

a variety of modeling techniques that have been adopted in the pharmaceutical process, which is 

followed by the model validation methods. Finally, we will demonstrate how data-drive models 

can support the process optimization.   

 

3.3.1 Sampling plan 

In order to extract the most process information within a limited sampling budget, we need an 

organized sampling plan to determine how to sample the input space. The selection of a specific 

sampling depends on what kind of experiments are being conducted – whether it’s a physical 

experiment or a computational experiment – and on what data-driven modeling technique is being 

used.  

 

For pharmaceutical process development, it is mainly dependent on the physical experiments 

conducted to gain process knowledge. In such cases, sampling plans are chosen by using the 

“Design of Experiment” (DoE) theory. The main idea is to plan experiments in order to minimize 

the effects of random errors [121]. Singh et al. [125] presented an extensive review on the classical 

DoE sampling plans. Widely used designs include (fractional) factorial designs [87,126,116], 

central composite designs [114,98,108], mixture designs [107], Box-Behnken designs [127,128], 

and Plackett-Burman designs [129,130]. These experimental plans usually focus on sampling 

around the input space boundaries with a few at the center of the input space.  
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When computer experiments are to be conducted, since most of simulations are deterministic, the 

goal of an experimental plan is focused on reducing systematic errors rather than random errors. 

For this type of experiments, Sacks et al. [131] claimed that a good design should fill out the entire 

input space rather than only concentrate on the boundaries. Commonly used “space-filling” 

designs include Latin Hypercube designs (LHD) [56,132], Hammersley sequence sampling [133], 

orthogonal arrays [134], and uniform designs [135]. An extensive discussion of modern designs for 

computer experiments is provided in [136].  

 

3.3.2 Building a data-driven model 

There is a variety of data-driven models that have been developed and used in different engineering 

fields. Below we discuss four types of models that are widely used in modeling and optimizing 

pharmaceutical processes. These models can be applied when the following assumptions are valid: 

the process output to be modeled is continuous and smooth. These assumptions are generally valid 

for most engineering processes. Forrester and Keane [137] commented that when the continuity 

assumption is not guaranteed, the process can then be modeled with multi data-drive models which 

are patched together at discontinuities. Such an exception will not be considered in this chapter.  

 

Response surface methodology 

Response surface methodology (RSM) was first proposed by Box and Wilson [138] to improve 

chemical manufacturing processes. A RSM model approximated the process input-output 

relationship with a low-degree polynomial model [139] in the following form: 

 𝑦 = 𝒇′ 𝒙 𝜷 + 𝜀 (55) 

where 𝒙 = (𝑥o, 𝑥t, … , 𝑥�)′; 𝒇 𝒙  if a vector of function consisting of powers and cross-products 

of powers of 𝑥o, 𝑥t, … , 𝑥� up to a degree 𝑑	(≥ 1); 𝜷 is a vector of 𝑝 model parameters; 𝜀 is a 
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random experimental error with zero mean. Two commonly used RSM models are the first-degree 

model:  

 
𝑦 = 𝛽| + 𝛽N

�

N{o

𝑥N + 𝜀 (56) 

and second-degree model:  

 
𝑦 = 𝛽| + 𝛽N

�

N{o

𝑥N + 𝛽N�𝑥N𝑥�
N��

�

N{o

+ 𝛽NN𝑥Nt
�

N{o

+ 𝜀 (57) 

The values of 𝜷 can be estimated using analytical expressions (i.e., ordinary least-squares 

estimators) [140,139].  

 

In order to evaluate the significance of model parameters of a specific RSM model, ANalysis Of 

VAriance (ANOVA) can be carried out, together with Student’s t-test [125]. It is advised that only 

retain significant model parameters in the final model. In addition, to choose the best RSM model 

and prevent the danger of over-fitting, Singh et al. [125] suggested use several metrics to evaluate 

the model fitting, including 𝑅t, 𝑅[l�t , Predicted Residual Sum of Squares (PRESS), and 𝑄t.  

 

RSM is regression technique. A RSM model is usually constructed using experimental designs 

from the DoE theory [139]. The applications of RSM in modeling pharmaceutical processes can be 

found in a variety of studies [87,107,117,108,12]. Forrester and Keane [137] stated that RSM 

models are appropriate for problems with low dimensions, uni- or low-modality, where physical 

experiments were conducted. For deterministic computer experiments, however, Jones [123] 

demonstrated that RSM models could be insufficient to capture the shape of the function and thus 

may not be able to identify an optimal solution in optimization settings.  

 

Partial least squares 
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Partial least squares (PLS) regression, also termed as Projection to Latent Structures, is a 

multivariate regression approach [141,142]. Assuming the data have been mean centered and scaled 

to unit variance, PLS projects the process inputs 𝐗 (of size N-by-K) and process outputs 𝐘 (of size 

N-by-M) to the common latent space of A latent variables, with the following model structure: 

 𝐗 = 𝐓𝐏′ + 𝐄𝐗 (58) 

 𝐘 = 𝐓𝐐′ + 𝐄𝐘 (59) 

  𝐓 = 𝐗𝐖 (60) 

where 𝐓 (of size N-by-A) is the score matric; 𝐏 (of size K-by-A) and 𝐐 (of size M-by-A) are loading 

matrices; 𝐄𝐗 and 𝐄𝐘 represent residuals; 𝐖 (of size K-by-A) is the weight matrix.  

 

Different algorithms can be applied to calculate the PLS model, such as Non-linear Iterative PArtial 

Least Squares (NIPALS) algorithm [141], Expectation Maximization (EM) algorithm [143]. The 

number of latent variables A is determined by cross validation (CV), which is performed by 

dividing the data in a number of groups and then developing different models in parallel using 

reduced data with one of the groups removed [142]. Among different CV methods, Shao [144] 

suggested not use the leave-one-out approach. Details on CV will be further discussed in Section 

3.3.3. 

 

By collecting data based on the DoE theory, the PLS approach is a powerful tool of analyzing data 

with high-dimensions, noises, and strong collinearities in both 𝐗 and 𝐘 [142]. This modeling 

technique aims to well approximate both of the data tables 𝐗 and 𝐘 as well as maximize the 

correlation between 𝐗 and 𝐘 [145]. In cases when there exist strong collinearities in 𝐗, and/or 𝐘 is 

only sensitive to a reduced set of input combinations, PLS can sufficiently reduce the problem 

dimensions and simplify the problem without losing much information. Recently advances have 
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been made to extend PLS to the modeling of nonlinear systems [146]. Pharmaceutical process 

applications involving the PLS techniques can be seen in [109,95,147].  

 

Artificial neural network 

Artificial neural network (ANN) is a biologically inspired modeling technique that simulates the 

human brain’s way of processing information. An ANN model is formed by numbers of single 

units (known as processing elements (PE) or neurons), which are connected with coefficients 

(weights) and constitute the neural structure [148]. As the building component, a neuron passes a 

sum of weighted inputs to a transfer function (e.g., sigmoidal function) and yields the output. The 

versatility of ANN comes from the various ways that neurons can be connected in a network. A 

vast number of ANNs have been developed and are surveyed in [149], among which the most 

widely used type of ANN is the backpropagation (BP) network [150]. A BP network has a 

multilayer perception architecture: (1) an input layer of nodes representing the process inputs; (2) 

an output layer of nodes for the process outputs; and (3) one or more hidden layers containing nodes 

to capture the nonlinear relationship. Practically, the BP network with one hidden layer is sufficient 

to approximate most functions [151].  

 

For a BP network, the number of nodes in the input and output layers are determined by the 

dimension of process inputs and outputs, respectively. However, it is challenging to determine the 

number of nodes in the hidden layer. With the number being too large, it requires a high 

computational cost to train the model and also raises the risk of overfitting. On the other hand, if 

there are too few hidden nodes, it may not be able to accurately represent input-output relationship 

[152]. In most applications, the number of hidden nodes is still determined by trial-and-error, while 

some practical rules have been applied in [153,152].  
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The model coefficients (weights) of an ANN model are calculated by using a training algorithm. 

The mostly used algorithm is the feedforward error-backpropagation (BP) learning algorithm. 

[154]. Each iteration of the BP algorithm involves two steps. A forward propagation is performed 

to pass information from the input layer through the hidden layer to the output layer. Then a 

backpropagation of error stage is used to calculate the error of each layer of nodes sequentially 

from the output layer to the input layer. Based on the calculation, the weights are adjusted to reduce 

the error by using the gradient descent method. This BP algorithm is performed iteratively until it 

reaches a certain pre-specified level of accuracy.  

 

As a useful method of modeling nonlinearities, the ANN model and its different variants have been 

implemented both as a regression technique and an interpolation technique [155]. In pharmaceutical 

processes, the applications of ANN are described in [94,156-158].  

 

Kriging 

Kriging is a widely used interpolation method which is named after the South African mining 

engineer Krige [159]. In different fields, Kriging is also known as stochastic process model [67], 

Gaussian process model [160]. The ordinary Kriging represents a process output with the following 

model: 

 𝑦 𝒙 = 𝛽 + 𝜀 𝒙 , (61) 

where 𝛽 is a model parameter which represents the surface mean, 𝜀 𝒙  is the realization of a 

stationary Gaussian random field (ℝl → ℝ): 𝜀 𝒙 ~Normal(0, 𝜎t). It is assumed that 𝜀 𝒙  is 

spatially correlated: if two points 𝒙 and 𝒙′ are spatially close to each other, then 𝜀 𝒙  and 𝜀 𝒙′  

will tend to be similar. The spatial correlation can be modeled with various correlation functions. 

The mostly used is the Gaussian function: 
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Corr 𝜀 𝒙 , 𝜀 𝒙′ = exp − 𝜃ℎ 𝑥ℎ − 𝑥ℎ′

t
l

ℎ{o

, 𝜃ℎ ≥ 0  (62) 

With the Kriging model, the best linear unbiased predictor at 𝒙∗ can be expressed as:  

 𝑦 𝒙∗ = 𝛽 + 𝒓′𝑹fo(𝒚 − 𝟏𝛽) (63) 

where 𝒚 = 𝑦(o), … , 𝑦(_) ′ is the n-vector of observed function values; 𝑹 is the n-by-n matrix 

with the (𝑖, 𝑗) entry being Corr 𝜀 𝒙(N) , 𝜀 𝒙(�) ; 𝟏 is an n-vector of ones; 𝒓 is an n-vector with the 

𝑖-th entry being Corr 𝜀 𝒙∗ , 𝜀 𝒙(N) .  

 

In addition, the mean squared error of the predictor can be derived as follows: 

 
𝑠t 𝒙∗ = 𝜎t 1 − 𝒓′𝑹fo𝒓 +

1 − 𝟏′𝑹fo𝒓 t

𝟏′𝑹fo𝟏
 (64) 

The model parameters 𝛽, 𝜃ℎ, … , 𝜃l, 𝜎t are obtained by maximizing a likelihood function [67].  

 

Kriging is mostly used to approximate computer simulations with data sampled from a space-filling 

design (e.g. LHD). On the other hand, Kriging can be modified by introducing a “nugget” factor 

in order to approximate a stochastic simulation with a homogeneous noise level [161]. Recently, 

Ankenman et al. [162] developed a stochastic Kriging to deal with stochastic simulations with 

heterogeneous noises. For the pharmaceutical processes, the Kriging has been applied to model 

steady-state pharmaceutical processes with missing data [124], dynamic pharmaceutical processes 

[13], and a continuous blending process [12].  

 

3.3.3 Model validation 

As a critical step of the model development, model validation is defined as the process of 

determining the degree of accuracy to which a model can represent the real world within the 

intended use of the model [163]. Based on the calculation of quantitative validation measures to 
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assess the model fidelity, the user can decide whether it is needed to conduct more experiments to 

increase the model accuracy.  

 

Cross validation (CV) is a widely used approach to estimate the error of a constructed model [164]. 

Starting with a dataset of N samples, S{X, Y}, with a p-fold cross validation, this original dataset is 

divided (randomly) roughly equally into p different subsets: S{X, Y} = S1{X1, Y1}, …, Sp{Xp, Yp}. 

Then, the model is fitted p times, each time with one of the subset removed from the training set, 

and this left-out subset is used to calculate the error. As a variation of the p-fold cross validation, 

the leave-k-out approach considers 𝑁𝑘  subsets, each with k elements left out from the training set. 

The special case when k = 1 is called leave-one-out (LOO) cross validation which can be computed 

efficiently [165]. Meckesheimer and Booker [164] recommended that LOO cross validation was 

appropriate to estimate the prediction error for low-order RSM and radial basis function models (a 

special case of ANN). However, for the Kriging, it was suggested choose 𝑘 = 0.1𝑁 or 𝑘 = 𝑁.  

 

The advantage of CV is that it can provide a nearly unbiased estimation of the generalization error 

(compared to the “split sample” case where the sample data is divided once into a training set 

and a test set), since every point is used in a test set once and in a training set (k-1) times (for the 

LOO approach) [166]. The disadvantage, however, is that we need to fit the data-driven model 

multiple times, which can be computationally expensive. Further, Lin [167] stated that the LOO 

cross validation was not a sufficient metric to evaluate the model accuracy. The LOO method 

actually measures the insensitivity of a model to information loss at the data points, while an 

“insensitive” model is not necessarily equivalent to an “accurate” one. Therefore, it is 

suggested conduct additional experiments for model validation. A vast number of additional 

validation metrics have been surveyed in [76].  
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3.3.4 Data-driven models in support of optimization needs 

In the pharmaceutical process development, a data-driven model is used to support the process 

optimization mainly in two ways, which are shown in Figure 5.  

 

Figure 5.  Two approaches that use a data-driven model to support optimization. (a) sequential 

approach; (b) adaptive approach 

 

The first approach (Figure 5 (a)) is a “sequential approach”. Based on an initial dataset, a data-

driven model is constructed, which, after being validated (mostly with a CV approach), is optimized 

using a mathematical programming approach. Under some circumstances, after the optimal solution 

is found, a new experiment is performed at this optimal point. The idea is to validate whether the 

predicted optimal value is consistent with the experiment. Note that this “sequential approach” 

is mostly adopted when physical experiments are performed. Thus, the initial data points are usually 

sampled by using a DoE sampling plan. The advantage of this approach is its simplicity. However, 

the efficacy of this approach depends on the assumption that a sufficiently accurate model can be 

constructed based on a pre-specified number of sample points. In cases when the model is not 
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accurate enough (which can be reflected at Step 3 and Step 5), this approach does no give guidance 

on further sampling directions. In pharmaceutical processes, “sequential approach” is still the 

dominant method of process optimization, with applications in [87,115,98,109,94,95,117].  

 

The second approach (Figure 5 (b)) is an “adaptive approach” which features an adaptive 

sampling stage. Similar with “sequential approach”, the “adaptive approach” also starts with 

an initial data set and an initial data-driven model. In some cases, the model validation is optional 

after the initial data-driven model is built because the model accuracy can be further improved in 

the subsequent adaptive sampling stage. The crucial part of “adaptive approach” is the search 

criteria that are used in Step 4. Instead of directly optimizing the data-driven model, different 

mathematical approaches have been developed to guide the search direction, with a balance 

between finding a better optimal solution and reducing the uncertainty in the data-driven model. 

Once a new sample point is added, the data-driven model also gets updated. This adaptive sampling 

(i.e. from Step 4 back to Step 2) is iteratively performed until some stop criteria are met. This 

approach is also called surrogate-based optimization [137], of which details will be further 

discussed in Section 3.4. Since “adaptive approach” is mostly used when deterministic computer 

simulations are available, it usually does not require the validation of the optimal value with the 

experiment (i.e., Step 5 in Figure 5 (a)). Applications of “adaptive approach” in pharmaceutical 

processes can be found in [64,49].  

 

3.4 Optimization methods in pharmaceutical processes 

In previous sections, we have discussed different optimization objectives in pharmaceutical 

processes, and how data-driven models can be used within an optimization setting. One more 

import aspect that remains to be discussed is how we can find an optimization solution, i.e., the 

mathematical programming methods. A classification of optimization problems and solution 



	

54	
	

methods have been presented in [93]. Generally, there are two major approaches to solve an 

optimization problem: the (1) derivative-based methods; and (2) the derivative-free methods. In 

this section, we review the most popular algorithms under these two categories and refer interested 

readers to the applications in pharmaceutical process development.  

 

3.4.1 Derivative-based methods 

The derivative-based methods require the derivative information (e.g., gradient, Hessian, etc.) to 

direct the search to an optimal solution. Such methods are appropriate for problems whose 

derivative information is reliable and easy to obtain (either provided by users or estimated by 

computational tools). The advantages of this type of approach are the fast rate of convergence and 

its capability of dealing with large-scale problems.   

 

Successive quadratic programming 

Successive (or sequential) Quadratic Programming (SQP) [168] is a conceptual method that has 

evolved into numbers of different specific algorithms for constrained NLP problems. The basic 

idea is to model the NLP at iteration k (with an approximate solution 𝒙(�)) by a quadratic 

programming (QP) subproblem, to which the solution is used to direct to the search to the next 

iteration k+1. The process is iteratively conducted until it converges to a local optimal solution. 

There are two main reasons of using a QP subproblem: (1) it is relatively easy to solve; and (2) its 

objective can reflect the nonlinearities of the original problem. For the generation of QP 

subproblem, a Hessian matrix of the Lagrangian function needs to be constructed, which can be 

obtained by either (1) the second derivatives for the objective or constraint functions, or (2) positive 

definite quasi-Newton approximations [93].  
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SQP methods can only guarantee the convergence to a local optimal solution [168]. The 

convergence from poor starting points can be promoted by using a line search or a trust-region 

method [93]. It is found that SQP solvers generally require fewest function evaluations to solve 

NLPs [169,170]. In addition, SQP methods do not require feasible points at any stage of the process, 

which is advantageous because it can be usually difficult to find a feasible point in the existence of 

nonlinear constraints. However, modifications have been made to ensure SQP always remain 

feasible through the process [171]. A list of SQP-based solvers was presented in [93]. Aside from 

the SQP algorithm, a vast number of other gradient-based NLP solvers are also available, which 

can require more function evaluations than SQP but provide a good performance when interfaced 

to optimization model platforms (e.g., GAMS [172], AMPL [173]).  

 

Using the SQP method, Sen et al. [174] estimated the parameters of a 2-dimensional PBM of a 

cooling crystallization process based on experimental data. Acevedo et al. [175] calculated the 

optimal temperature profile for an unseeded batch cooling crystallization system, with the goal of 

achieving the desired shape and size distribution of crystals subject to a set of process constraints 

considering temperature range, product yield, and batch time. Yang and Nagy [176] identified the 

optimal steady state operating profiles of a continuous mixed suspension, mixed product removal 

(MSMPR) cascade system by maximizing the crystal mean size, which was constrained on 

temperature, solvent composition, and residence time. Gagnon et al. [177] computed the optimal 

control strategy based on a phenomenological state-space model of a fluid bed drying (FBD) 

process. Compared to traditional open-loop FBD operations, the control approach could improve 

the process by reaching the target particle moisture content while limiting operation problems 

including under/over drying and particles over-heating. With the CONOPT solver, Wang and 

Lakerveld [178] maximized the attainable region of crystal size of a continuous membrane-assisted 

crystallization (cMAC) process, and demonstrated the advantages of cMAC over conventional 

crystallization processes. In order to find the optimal reactor design of an API synthesis, Emenike 
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et al. [179] used the elementary process functions (EPF) methodology, which was formulated into 

a dynamic optimization problem and solved with the CONOPT solver. Further, in those references 

that were mentioned in previous sections of this chapter, applications of SQP can be seen in 

[109,112], while other derivative-based NLP solvers have been used in [101,100].  

 

3.4.2 Derivative-free methods 

The Derivative-free optimization (DFO) methods find the optimal solution only based on the 

objective functions values (and constraint values) without any derivative information. These 

methods are successful in cases where derivative-information is unreliable or impractical to get 

(e.g., when the model is expensive or noisy). However, for many algorithms, difficulties still remain 

for the proof of global convergence. A survey of DFO algorithms for bound-constrained was 

presented in [180]. Traditionally, most of the DFO methods are only suitable for low-dimensional 

problem. However, recent efforts have been made to adapt some of the methods to high-

dimensional problems, of which a review was provided in [76]. Below, we briefly introduced three 

types of DFO methods that have been applied to pharmaceutical processes.  

 

Direct search methods 

The Nelder-Mead algorithm [181] involves iteratively building and updating a simplex formed by 

a set of points (vertices). At each iteration, it aims to replace the worst vertex by a new vertex and 

then forms a new simplex. This process is conducted by a series of operations considering the 

centroid of the current simplex, including reflection, expansion, contraction, and shrink. The 

convergence of the Nelder-Mean algorithm was investigated in [182], while further developments 

can be found in [183]. Another direct search algorithm is the generalized pattern search (GPS) 

algorithm [184], which was initially developed for unconstrained problems. It is a generalization 

of direct search methods including the Hooke and Jeeves method [185] and the coordinate search 

method [186]. GPS updates the current iterate by sampling at a finite number of points along a 
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suitable set of search directions, with the goal of finding a decrease in the objective function values. 

It has been extended to bound-constrained problems [187] and linearly constrained problems [188]. 

GPS was further generalized as Generating Search Set (GSS) methods by Kolda et al. [189], which 

were shown to converge to stationary points under mild conditions [184].  

 

Grimard et al. [190] used the Nelder-Mead algorithm to evaluate the parameters for a mathematical 

model consisting of mass and energy balance equations for a hot-melt extrusion process. Besenhard 

et al. [191] combined Nelder-Mead with global optimization techniques to estimate the crystal 

growth model parameters of a PBM for crystallization processes. Based on a DoE, Paul et al. [192] 

identified and quantified critical process parameters (CPP) (i.e., sodium chloride concentration, pH 

value for elution) of a multimodal ion exchange step for the purification of biopharmaceuticals. 

The optimal values of the CPP were calculated to maximize the purity and recovery of this 

purification process. Zou et al. [193] fitted a Korsmeyer-Peppas (KP) model with dissolution data, 

which was used to describe the kinetics of an in vitro drug release process using nanoparticle 

formulations. Xi et al. [194] computed the optimal values for three categories of design variables 

(related to device, particles, and patients) to maximize the efficiency of an electric-guided drug 

delivery system for the treatment of rhinosinusitis. Moudjari et al. [195] estimated the values of 

interaction parameters of thermodynamic models for the solubility prediction of pharmaceutical 

compounds in various solvents. In earlier mentioned references from Section 3.2, direct-search 

algorithms were used in [117,118].  

 

Genetic algorithms  

Genetic algorithms (GA) [196], sometimes known as evolutionary algorithms, are a family of 

population-based heuristic search algorithms that mimic the mechanistic of natural selection and 

reproduction processes. A GA starts with a randomly sampled initial population of chromosomes 

(i.e., initial generation), which are basically sample points with variables represented by binary 
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strings. Then, the structures of the chromosomes are evaluated and reproductive opportunities can 

be allocated in a way so that those with a better solution have higher chances to reproduce. At each 

iteration, the descendant generation is generated successively via a series of operations including 

selection, recombination, and mutation. GA can be categorized as a stochastic global search 

algorithm [180]. It usually requires the objective function to be fast to evaluate [197], and is only 

suitable for low-dimensional problems [198].  

 

For a continuous crystallization process modeled with the PBM approach, Ridder et al. [199] used 

a GA technique to calculate the Pareto optimal solutions of a multi-objective optimization problem, 

which simultaneously maximized the average crystal size and minimized the coefficient of 

variation. Zaki et al. [200] used the ANN approach to model the fabrication process of Bupropion 

HCl loaded agar nanospheres which were used for sustained drug release. Based on this model, the 

GA approach was applied to optimize the process, namely, to minimize the particle size, release 

efficiency, and maximize loading efficiency, etc. Allmendinger et al. [201] formulated a 

constrained optimization problem to improve the performance (considering process cost, time, and 

product waste) of a chromatography purification process. Four types of GA methods were applied 

to identify the optimal equipment sizing strategies of this biopharmaceutical process.  

Rostamizadeh et al. [202] identified the optimal process parameters for fabricating a type of 

nanoparticles (used for oral insulin delivery) in order to achieve its best performance with respect 

to six performance measures. Kalkhorana et al. [203] applied the GA approach to estimate the 

parameters of a drug release model, which was developed to predict the drug diffusion rate from a 

hydrogel-based drug delivery system. Wang et al. [204] used the GA approach to find the optimal 

formulation of Doxy inclusion complex (a type of broad-spectrum antibiotic drug) that could lead 

to optimum inclusion efficiency and stability in the aqueous solution. For those references that were 

earlier mentioned in Section 3.2, case studies of applying GA can be found in [109,94].  
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Surrogate-based optimization methods 

Surrogate-based optimization (SBO) methods treat the original problem as a black-box process. 

Accordingly, a surrogate model is built as a fast approximation to this black-box process and then 

guides the search direction to the next sample point. The general optimization framework is shown 

in Figure 5 (b), and its description is mentioned in Section 3.3.4. Depending on the choice of 

surrogate models, there are mainly two SBO algorithms: (1) Kriging-based approach (sometimes 

known as Bayesian optimization); and (2) Radial Basis Function (RBF)- based approach. The 

seminal work of the Kriging-based approach is the Efficient Global Optimization (EI) algorithm 

by Jones [67], which used an Expected Improvement (EI) function as the infill criteria to search for 

the next sample point. Jones [123] presented a survey of various infill criteria that could be applied 

with the Kriging-based methods. The classical EGO algorithm can be seen as a greedy search 

approach. Recently, it has been combined with dynamic programming which can account for the 

remaining number of evaluations [205,206]. This look-ahead approach finds the optimal strategy 

by maximizing a long-term reward, and is shown to be more effective when a limited sampling 

budget is available. In terms of the RBF-based methods, Gutmann [207] proposed a RBF-based 

approach which used a bumpiness measure to search for the next sample point. This approach has 

very similar characteristics with the one-stage approach for the Kriging-based method that was 

discussed in [123]. Regis and Shoemaker [208] developed a RBF-based method for black-box 

constrained optimization problems. Regis [209] further proposed a RBF-based method for high-

dimensional constrained optimization problems.  

 

The number of applications of SBO methods in pharmaceutical processes is relatively small 

compared to other optimization algorithms. Luna and Martínez [210] used the Bayesian 

optimization approach to maximize biomass growth based on a hybrid cybernetic model which was 

used to simulate the animal cell metabolism of bioreactors. Based on a reduced model for a 

perfusion bioreactor, Mehrian et al. [211] applied the Bayesian optimization approach to find the 
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optimal medium refreshment regime that would result in the maximized neotissue growth kinetics 

in the bioreactor. Boukouvala and Ierapetritou [49] developed Kriging-based methods for the 

optimization of continuous direct compaction pharmaceutical manufacturing processes.  

 

3.5 Summary 

In this chapter, we have discussed recent developments of optimization in pharmaceutical 

processes. A review is first provided on various objectives that are mostly considered in different 

pharmaceutical processes, such as API processes, waste water treatment process, downstream 

tableting processes, etc. Further, we introduced four types of data-driven models that are commonly 

used under two optimization frameworks for pharmaceutical processes, including response surface 

methodology (RSM), partial least squares (PLS) regression, artificial neural network (ANN), and 

Kriging. We also included an overview on several optimization algorithms that are widely adopted 

to solve an optimization problem, which may or may not require the derivative information.  

 

Compared to traditional chemical and petrochemical processes, the applications of optimization 

tools in the pharmaceutical process development is still in a primary stage. Challenges remain to 

improve the mechanistic understanding and models’ predicting capabilities of the pharmaceutical 

processes. From this respective, hybrid models (e.g., [212]) which combine both the mechanistic 

knowledge from first-principle models and the efficiency from reduced order models can be a 

highly promising tool to be used in the optimization settings. In addition, the flowsheet modeling 

approach, acting as a representation of the whole integrated process, is also gaining an increasing 

attention from the research community. However, due to its high model complexity, it also raises 

the challenge of optimizing for large-scale systems, which can involve black-box model 

components and may potentially be computationally expensive to compute. A promising approach 

to address such difficulties is via the use of surrogate-based optimization methods. In addition, for 

pharmaceutical manufacturing processes, the variability of product qualities is usually a critical 
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aspect that requires attention. Such variabilities can be modeled by introducing a random error term 

to the simulation (i.e., a stochastic simulation). To address the challenges of optimizing with black-

box stochastic simulations, the simulation optimization (SO) methods can be used.  
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III. Process analysis and optimization for 

deterministic systems 
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4 A Novel Feasibility Analysis Method for Black-Box Processes using a Radial Basis Function 

Adaptive Sampling Approach    

Abstract 

Feasibility analysis is used to determine the feasible region of a multivariate process. This can be 

difficult when the process models include black-box constraints or the simulation is 

computationally expensive. To address such difficulties, surrogate models can be built as an 

inexpensive approximation to the original model and help identify the feasible region. An adaptive 

sampling method is used to efficiently sample new points towards feasible region boundaries and 

regions where prediction uncertainty is high. In this paper, cubic Radial Basis Function (RBF) is 

used as the surrogate model. An error indicator for cubic RBF is proposed to indicate the prediction 

uncertainty and is used in adaptive sampling. In all case studies, the proposed RBF-based method 

shows better performance than a previously published Kriging-based method.  

 

4.1 Introduction 

A process is considered to be feasible if it meets all operating, quality and production constraints. 

In the presence of uncertainty, including variability in inlet materials and operating conditions, etc., 

it is important to know whether a given process design is guaranteed to be feasible. This problem 

was initially formulated as a “flexibility test problem” in [213], which determines whether a 

process design is feasible over the whole uncertain domain by solving a max-min-max optimization 

problem. Many approaches have been developed to solve the flexibility test problem. The vertex 

solution method [213] considers the vertices and extreme values of the uncertain parameter sets 

and can be used under some convexity conditions. The active-set method [214] formulates the 

flexibility test problem into a mixed integer optimization problem. However, both of these methods 

require closed-form, differentiable constraints. Banerjee and Ierapetritou [215] used an α-shape 
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surface reconstruction method to represent the feasible domain with a polygon. Adi, Laxmidewi et 

al. [216] applied a random line search algorithm to find the feasible region boundary points. Both 

methods can be rather accurate in identifying nonconvex and disjoint feasible regions, but they may 

require large sampling costs. Michalewicz and Schoenauer [217] developed an efficient 

evolutionary algorithm to search for the boundary of the feasible region, but the success of such a 

heuristic method depends on the proper choice of algorithm parameters.   

 

Recently surrogate-based feasibility analysis methods have gained increasing attention [44]. These 

approaches are based on building surrogate models to approximate the original simulation model 

and use these approximations to find the feasible region. Because such methods are 

computationally more efficient, they are especially suitable for problems with black-box constraints 

or computationally expensive simulation models whose derivatives are difficult to calculate. There 

are two key factors for the surrogate-based feasibility analysis methodology: (1) which surrogate 

model to use; and (2) how to do sampling to efficiently build and update the surrogate models.  

 

Many different surrogate models have been used in the literature to address the feasibility problem. 

Goyal and Ierapetritou [218] developed an approach that is based on inner and outer approximation 

of the feasible region. Banerjee et al.  [219] built a high dimensional model representation (HDMR) 

surrogate over the whole range of uncertain parameters of the original model. Boukouvala and 

Ierapetritou [220] and Rogers and Ierapetritou [65] used Kriging as the surrogate model and could 

identify the feasible region boundary with high accuracy.  

 

In this paper, we introduce a new surrogate-based method for black-box feasibility analysis, which 

is based on Radial Basis Functions (RBFs). RBFs use a weighted sum of radial functions to emulate 

the original model [155]. The radial functions feature a monotonic behavior with distance from a 

central point (e.g. sample point). Park and Sandberg [221] showed that RBFs are capable of 
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universal approximation. RBFs have been widely used in surrogate-based optimization problems. 

In [207] RBFs are used to solve global optimization problems (GOP).  The method using linear, 

cubic, or thin plate spline radial functions, is proved to converge for any continuous function. This 

method was used in a commercial solver TOMLAB/rbfSolve [222]. Regis and Shoemaker [208] 

proposed an approach to use RBFs to solve constrained global optimization problems with black-

box functions. Koch, Bagheri et al. [223] further introduced the repair mechanism to the RBF-based 

algorithm by Regis [209], which resulted in better final results and faster rate of convergence.  

 

Besides selecting the surrogate model, sampling strategy is also an important aspect for surrogate-

based feasibility analysis, because it is always desired to use an effective and efficient sampling 

strategy to build and update surrogate models. “Space filling” designs [224], such as uniform 

designs, Latin Hypercube Sampling (LHS), etc. can be used to sample points throughout the whole 

design space. Initial surrogate models are usually built based on space-filling designs.  Adaptive 

sampling methods can then be used to improve surrogate accuracy. This idea of adaptive sampling 

originates from the optimization literature [67] where the optimum is obtained by balancing 

exploitation sampling (sample points where surrogate model is minimized) with exploration 

sampling (sample points where prediction error may be high). In Refs. [220,65], the adaptive 

sampling method was tailored and developed for surrogate-based feasibility analysis for the 

purpose of reducing number of samples while maintaining surrogate accuracy.  

 

In this paper, we propose to use cubic RBF as the surrogate model, and apply adaptive sampling 

by using an error indicator to characterize prediction uncertainty from RBF predictors. This RBF-

based method shows better performance than the Kriging-based method proposed in our previous 

work [220,65]. The rest of the paper is organized as follows.  Current advances in feasibility 

analysis is overviewed in section “Feasibility analysis”. Surrogate models and the adaptive 
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sampling method are described in section “Surrogate-based feasibility analysis”. Results on test 

problems are shown in section “Computational study”. A real-world case study of roller 

compaction is illustrated in section “Case study of a roller compaction process”. The final 

conclusions and future work are discussed in section “Summary and future work”.   

 

Feasibility analysis 

Flexibility [45] describes the capability of a process to remain feasible over a range of uncertain 

parameters. A flexibility analysis problem can be mathematically formulated with a flexibility test 

problem [213], the derivation of which is given as following.  

To start with, in order to determine the feasibility of a process at steady state, we need to first define 

a feasibility function. This feasibility function is used to describe whether for a fixed value of 

uncertainty parameter 𝜃, a process can meet all constraints 𝑓� by simply adjusting control variable 

𝑧. This can be accomplished by selecting 𝑧 to minimize the largest value of 𝑓�. This feasibility 

function can be defined with Equation (65) 

 𝜓 𝑑, 𝜃 = 	min
Ä
max
�∈Æ

	{𝑓� 𝑑, 	𝑧, 	𝜃 } (65) 

where 𝜓 𝑑, 𝜃  is the feasibility function; 𝑑 represents the design variables, e.g. equipment size; 𝑧 

represents the control variables, 𝑧 ∈ 𝑍 = {𝑧: 	𝑧É ≤ 𝑧 ≤ 𝑧Ê}; 𝜃 represents the uncertain parameters, 

𝜃 ∈ 𝑇 = {𝜃: 	𝜃É ≤ 𝜃 ≤ 𝜃Ê}; 𝑓� 𝑑, 	𝑧, 	𝜃  represents the problem’s constraints. If 𝜓 𝑑, 𝜃 ≤ 0, it 

means the process design is feasible. If 𝜓 𝑑, 𝜃 > 0, it means one or more of the constraints are 

violated, no matter how we adjust the control variables 𝑧. If 𝜓 𝑑, 𝜃 = 0, it means we are at the 

boundary of the feasible region.  

 

Using the feasibility function, we can then define the flexibility test problem, which determines 

whether the process is feasible over the whole range of uncertain parameters. This is equivalent to 
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determining whether the maximum value of 𝜓 𝑑, 𝜃  in the whole uncertainty space is less than or 

equal to zero. Thus the flexibility test problem can be defined with Equation (66) 

 𝜒 𝑑 = max
ê

𝜓 𝑑, 𝜃 	

𝑠. 𝑡. 			𝜃 ∈ 𝑇 = {𝜃: 	𝜃É ≤ 𝜃 ≤ 𝜃Ê} 
(66) 

Generally, the flexibility test problem can be represented as a max-min-max formulation in 

Equation (67) 

 𝜒 𝑑 = max
ê

min
Ä
max
�∈Æ

	{𝑓� 𝑑, 	𝑧, 	𝜃 } (67) 

In this paper, we will focus our attention on the case when there are no control variables. In this 

case the feasibility function in (65) can be simplified as (68) 

 𝜓 𝑑, 𝜃 = 	max
�∈Æ

	{𝑓� 𝑑, 	𝜃 } (68) 

The flexibility test problem in (67) can be simplified and formulated as (69) 

 𝜒 𝑑 = 	max
ê

𝜓 𝑑, 𝜃 	

s. t.				𝜓 𝑑, 𝜃 = 	max
�∈Æ

	{𝑓� 𝑑, 	𝜃 }, 𝑗 ∈ 𝐽	

𝜃 ∈ 𝑇 = {𝜃: 	𝜃É ≤ 𝜃 ≤ 𝜃Ê} 

(69) 

In this paper, feasibility analysis is referred to as a procedure to identify the feasible region where 

𝜓 𝑑, 𝜃 ≤ 0. 

 

4.2 Surrogate-based feasibility analysis 

Surrogate-based methods are developed to solve feasibility analysis problems when we have black-

box constraints in the original model or when the simulation is computationally expensive to run. 

With a black-box simulation model, we can calculate the output feasibility function values given a 

set of uncertainty parameter values as input. The surrogate model is thereafter built based on the 

input and output of feasibility function. To improve the accuracy of the surrogate model, an 

adaptive sampling method is used to iteratively update the surrogate model. This adaptive sampling 
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method is considered to be more efficient than space-filling designs because it can automatically 

search for new points near the feasible region boundary as well as those points in less explored 

regions. The surrogate model is used for feasibility analysis after it is updated to be sufficiently 

accurate.  

 

In this work, we propose to use an RBF-based adaptive sampling method for feasibility analysis. 

The performance of this method is compared with a previously published Kriging-based method. 

A general overview on these two surrogate models is provided in Section “Surrogate Models”. 

The adaptive sampling method is described in Section “Radial Basis Function (RBF)”.  

 

Surrogate Models 

Kriging 

The ordinary Kriging model [66] predicts the value at an unknown point from sample data based 

on a stochastic model of continuous spatial variation. It is based on the assumption that variation is 

random and spatially dependent, and that the underlying random process has constant mean and 

variance that only depends on spatial distance. In the literature it is referred to with different names, 

such as stochastic process model in global optimization [67], Gaussian processes in statistics [225], 

and Kriging in geostatistics [66]. According to the DACE (Design and Analysis of Computer 

Experiments) theory [131], a Kriging predictor can be expressed in terms of a regression model 

and a correlation model, as is shown in Equation (70) 

 𝑦 𝑥 = 𝑓(𝑥)�𝛽 + 𝑟(𝑥)�𝛾 (70) 

where 𝑓(𝑥)� is a vector of regression model values at 𝑥; 𝑟(𝑥)� is a vector of correlation model 

values at 𝑥. The parameters in the Kriging (including those in the regression and correlation model) 

can be estimated by maximum likelihood estimation (MLE) [226]. There are many regression 

models and correlation models that can be used. The models that are considered in this work are 
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listed in Tables 2 and 3. These models are used because they are shown to perform well in previous 

literature on surrogate-based feasibility analysis problems [220,65].  

 

Table 2. Regression Models 

Model  Form 

Constant 𝑎 

Linear 𝑎N𝑥N + 𝑏 

Quadratic 𝑎N𝑥Nt + 𝑏N�𝑥N𝑥� + 𝑐N𝑥N + 𝑑 

 

Table 3. Correlation Models 

Model Form 

Exponential 𝑒𝑥𝑝(−𝜃�|𝑑�|) 

Gaussian 𝑒𝑥𝑝(−𝜃�|𝑑�|t) 

Linear 𝑚𝑎𝑥{0,1 − 𝜃�|𝑑�|} 

 

An important feature of Kriging is that it can provide an estimate of the mean squared error (MSE) 

of the predictor [131]. This is especially important for adaptive sampling which is discussed in 

Section “Adaptive sampling”. Note that the MSE estimation from DACE theory is reported to 

be slightly underestimated with small samples but it appears to have no serious consequences when 

it is used for global optimization [67].  

 

In this work, the DACE toolbox [226] in Matlab is used to fit the Kriging model. For the Kriging-

based method, a model selection phase is implemented as the first step when an initial design of 

experiment (DOE) is conducted. The goal of this initial model selection phase is to find the 

combination of regression and correlation model, which leads to lowest prediction error [65]. This 
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Kriging-based method is used as a comparison to the new RBF-based method described in Section 

“Radial basis function (RBF)”. Further details on this Kriging-based method can be found in 

[65].  

 

Radial basis function (RBF) 

Given 𝑛 distinctly sampled points 𝑥o, 𝑥t, … 𝑥_ ∈ 𝑅l with function values known as 𝑓 𝑥o , 𝑓 𝑥t ,

…,	𝑓 𝑥_ , the RBF surrogate model [222] can be expressed with Equation (71) 

 
𝑠_ 𝑥 = 𝜆N𝜙 𝑥 − 𝑥N t + 𝑏�𝑥 + 𝑎

_

N{o

 (71) 

where || ∙ ||t represents the Euclidean distance; 𝜙 is the basis function that can be one of the 

following forms in (72) 

 𝜙 𝑟 = 𝑟				 𝑙𝑖𝑛𝑒𝑎𝑟 	

𝜙 𝑟 = 𝑟�				 𝑐𝑢𝑏𝑖𝑐 	

𝜙 𝑟 = 𝑟t ln 𝑟 			 𝑡ℎ𝑖𝑛	𝑝𝑙𝑎𝑡𝑒	𝑠𝑝𝑙𝑖𝑛𝑒 	

𝜙 𝑟 = 𝑒fïR�				 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 	

𝜙 𝑟 = 𝑟t + 𝛾t				(𝑚𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐) 

(72) 

In this work, we choose to use cubic basis function because it can provide relatively accurate 

approximation without requiring a complex parameter estimation process (compared with Gaussian 

and multiquadric) [137]. Additionally, cubic RBF is shown to perform better than other basis 

functions in solving optimization problems in optimization literature [208,227,228]. 

 

The model coefficients 𝜆N, 𝑏, and 𝑎 can be obtained by Equation (73) 

 Φ 𝑃
𝑃� 0

𝜆
𝑐 = 𝐹

0  (73) 

where Φ is the 𝑛 by 𝑛 matrix with ΦN� = 𝜙 𝑥 − 𝑥N t , and  
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𝑃 =

𝑥o� 1
𝑥t�
⋮
𝑥_�

1
⋮
1

, 𝜆 =

𝜆o
𝜆t
⋮
𝜆_

, 𝑐 =

𝑏o
𝑏t
⋮
𝑏l
𝑎

, 𝐹 =

𝑓(𝑥o)
𝑓(𝑥t)
⋮

𝑓(𝑥_)

 (74) 

It is shown that if the rank of P is d + 1, where d is the dimension of the problem, then the matrix 

Φ 𝑃
𝑃� 0  is nonsingular [207,222]. Therefore, the coefficients 𝜆N, 𝑏, and 𝑎 in of 𝑠_ 𝑥  in Equation 

(71) are uniquely defined with the system (73)(74), which is important for RBF to be used as an 

interpolation technique.  

Unlike Kriging, cubic RBF cannot provide an estimated MSE for the predictor. However, Gutmann 

[207] introduced a term, namely “1/𝜇_ 𝑦 ”, for cubic RBF that can describe how well the region 

near an unsampled point has been explored. A short explanation on this term is given below. For a 

detailed derivation, the authors are referred to the original paper [207]. 

 

In [207], RBFs are used to solve global optimization problems by minimizing an objective function 

𝑔_(𝑦):   

 min
m
𝑔_ 𝑦 = −1 ^��o𝜇_ 𝑦 [𝑠_ 𝑦 − 𝑓_∗]t ,				𝑦 ∈ 𝐷\{𝑥o, 𝑥t, … , 𝑥_} (75) 

where 𝑦 is an unsampled point; min
m
	𝑔_(𝑦) can be seen as equivalent to minimizing the “

bumpiness” [207] of a RBF surrogate model; 𝑓_∗ is a variable dependent on the surrogate, 𝑓_∗ ∈ [−

∞, min
m∈ó

𝑠_ 𝑦 ]; 𝑚| is 1 for cubic and thin plate spline; 𝑚| is 0 for linear and multiquadric; 𝑚| is -

1 for Gaussian. 𝜇_ is the coefficient of the new term  𝜙 𝑥 − 𝑦 t  in the surrogate 𝑠_ 𝑥  if  a 

new (unsampled) point 𝑦 is added. 𝜇_ is calculated as the nth element of vector 𝑣, and 𝑣 can be 

calculated as:  

Φm 𝑃m
𝑃m� 0 𝑣 =

0_
1

0l�o
,Φm =

Φ 𝜙m
𝜙m� 0 , 𝑃m

𝑃
𝑦� 1 , (𝜙m)N = 𝜙 𝑥 − 𝑥N t

, 𝑖 = 1,2, … , 𝑛. 
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Gutmann [207] showed that we can sample points in unexplored region by choosing 𝑓_∗ = −∞, 

which is equivalent to minimizing −1 ^��o𝜇_ 𝑦 . In the case of cubic RBF, it is equivalent to 

minimizing 𝜇_ 𝑦  which is also equivalent to maximizing 1/𝜇_ 𝑦 . With this finding we can see 

that 1/𝜇_ 𝑦  can be used to indicate how well the region near the unsampled 𝑦 has been explored. 

The larger 1/𝜇_ 𝑦  is, the less its nearby region has been explored.  

 

Furthermore, we notice the following interesting properties that have been proved in [207]: 

• 1/𝜇_ 𝑦  is always positive when y is at an unsampled point 

• 1/𝜇_ 𝑦  is defined to be zero at sampled points where 𝑦 ∈ {𝑥o, 𝑥t, … , 𝑥_}. 

 

These properties of 1/𝜇_ 𝑦  are also shared by the estimated MSE for Kriging predictor. Therefore, 

we propose to use 1/𝜇_ 𝑦  as an indicator to show how well a region near a point 𝑦 has been 

sampled. In the rest of this paper, we will call 1/𝜇_ 𝑦  as an “error-indicator” for cubic RBF. 

This is used in the adaptive sampling for the RBF-based method for feasibility analysis.  

 

Adaptive sampling 

Adaptive sampling can be used to improve the accuracy of the surrogate model without the need to 

exhaustively sample the whole design space of the original simulation model [65]. Therefore, the 

method is considered to be more efficient than space-filling designs and is usually used in the 

optimization literature [220]. From the perspective of surrogate-based optimization, the adaptive 

sampling should direct search towards the region where surrogate model is minimized (in case of 

minimization problems) and also towards the region that has not been well explored. The goal of 

balancing global search and local search is to find the global minimum [67]. Similarly, from the 

perspective of surrogate-based feasibility analysis, the adaptive sampling should direct search 
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towards the feasible region boundaries and also towards unexplored regions. This balanced search 

can be achieved by maximizing a modified expected improvement (EI) function [220,65] as is 

shown in Equation (76) 

 
max
b

𝐸𝐼LK[Z 𝑥 = 𝑠 ∗ 𝜙	
−𝑦
𝑠

= 	𝑠 ∗
1
2𝜋

𝑒f|.Ô(
m�
Z�) (76) 

where 𝐸𝐼LK[Z 𝑥  is the modified EI function value at 𝑥; 𝑦 is the surrogate model predictor; 𝑠 is the 

standard error of the predictor; 𝜙(∙) represents the standard normal density function. To see how 

this modified EI can help balance local search and global search for feasibility analysis, we can 

take its partial derivatives: 

 
𝜕𝐸𝐼LK[Z
𝜕𝑠

=
1
2𝜋

(𝑒
f|.Ôm�
Z� +

𝑒
f|.Ôm�
Z� 𝑦t

𝑠t
) > 0 (77) 

 
𝜕𝐸𝐼LK[Z
𝜕𝑦

= −
1
2𝜋

	(
𝑒
f|.Ôm�
Z� 𝑦
𝑠

) (78) 

From Equation (77) we can see 
õ¦ö÷øùú
õZ

 is always larger than 0. This indicates that 𝐸𝐼LK[Z increases 

monotonically with the prediction error 𝑠. Thus maximizing 𝐸𝐼LK[Z is in favor of searching for new 

points with high uncertainty, which is to direct search in unexplored region (namely global search). 

From Equation (78) we notice that 
õ¦ö÷øùú
õm

 is of opposite sign with the surrogate value 𝑦. When 𝑦 

is less than zero, 
õ¦ö÷øùú
õm

 is positive, meaning that 𝐸𝐼LK[Z increases as 𝑦 increases and gets close to 

zero. Similarly, when 𝑦 is larger than zero, 
õ¦ö÷øùú
õm

 is negative, meaning that 𝐸𝐼LK[Z increases as 𝑦 

decreases and gets close to zero. In other words, Equation (78) indicates that maximizing 𝐸𝐼LK[Z 

favors to sample points where surrogate predictor is close to zero, which is the feasible region 

boundary predicted by the surrogate model (namely local search). Thus, we can see that modified 

EI function (76) is larger where prediction uncertainty is high and also near the feasible region 
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boundary of the surrogate model. Therefore, the properties of 𝐸𝐼LK[Z serve our objective to use this 

function for surrogate-based feasibility analysis.  

 

In the Kriging based method, the prediction error 𝑠 is equal to 𝑀𝑆𝐸, where 𝑀𝑆𝐸 is the estimated 

prediction variance. For the RBF-based method, even though we do not have the estimation for 

𝑀𝑆𝐸, we can use an “error-indicator” (1/𝜇) as explained in section “Radial basis function 

(RBF)”. Instead of using 1/𝜇 directly, at the first step we introduce a scale factor to balance the 

magnitude of 1/𝜇 with that of surrogate value 𝑦. In practice, we find that the RBF-based method 

works best if we let  

 
𝑠𝑐𝑎𝑙𝑒 = 	

max	(1/𝜇|)
max 𝑅𝐵𝐹| t /𝑛𝑢𝑚𝐼𝑛𝑖𝑃𝑡𝑠t

 (79) 

where max	(1/𝜇|) is the maximum value of 	(1/𝜇|) with the initial cubic RBF model; max 𝑅𝐵𝐹|  

is the maximum value of the initial cubic RBF model; 𝑛𝑢𝑚𝐼𝑛𝑖𝑃𝑡𝑠 is the number of initial sample 

points. With this scale factor, we can substitute prediction error 𝑠 with o/û
üýþÿ!

 for the RBF-based 

method, as is shown in Equation (80).  

 
1/𝜇
scale

=
1/𝜇

max	(1/𝜇|)
∗
max	(𝑅𝐵𝐹|)
𝑛𝑢𝑚𝐼𝑛𝑖𝑃𝑡𝑠

 (80) 

In Equation (80), max	(1/𝜇|) and max 𝑅𝐵𝐹|  are used to balance the order of magnitude for 1/𝜇 

to be similar to surrogate model value. 𝑛𝑢𝑚𝐼𝑛𝑖𝑃𝑡𝑠 is introduced because intuitively the prediction 

uncertainty should be lower with more initial sample points.  

 

The Kriging-based algorithm and the RBF-based algorithm are shown in Figure 6. For both 

methods, initial sample points are first selected based on a design of experiment (DOE). In this 

paper, a rectangular grid is used for the initial DOE because it was shown to have good performance 

for different feasibility analysis test problems [220,65]. After initial points are selected, the 
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Kriging-based method uses a model selection step to find the combination of regression model and 

correlation model that provides the smallest prediction variance. The initial Kriging model is then 

fit with the DACE software package [226] in Matlab. The RBF-based method uses the initial 

sample points to build an initial cubic RBF model and evaluates the scale factor for the error 

indicators. Then during the model improvement step, new points are added iteratively by 

maximizing the modified EI function. At each iteration a local optimization solver, “

tomlab/conopt” [229], is used to find the optimum solution. To find a relatively good initial guess 

point for the local optimization solver, the modified expected EI function is evaluated at 1000 

different points sampled over the whole uncertainty space using Latin Hypercube DOE. The point 

with largest modified EI value is selected as the initial guess for the local optimization solver. The 

adaptive sampling will terminate if the iteration exceeds an upper bound (itermax) defined by users.  

 

Figure 6. Framework for Kriging-based and RBF-based feasibility analysis algorithm 

 

4.3 Surrogate Model Accuracy 

To measure how well the surrogate-based methods perform for feasibility analysis, we use three 

metrics, namely percentage of Correct Feasible region (CF%), percentage of Correct InFeasible 
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region (CIF%), and percentage of Not Conservative feasible region (NC%). These three metrics 

are illustrated with Figure 29.  

 

Figure 7. Illustrating figure for the model accuracy metrics  

 

In Figure 7, the rectangle area represents the whole range of uncertain parameters of two 

dimensions; the solid circle represents the feasible region of the original function; and the dashed 

circle represents the feasible region predicted by the surrogate model. Ideally, we want these two 

feasible regions to overlap, meaning that the surrogate is 100% accurate. However, the surrogate 

model is always an approximation of the original model. For the purpose of calculating accuracy 

metrics, the whole range of uncertainty parameters is divided into four regions: CF (Correct 

Feasible region shaded in gray) represents the overlapped feasible regions; CIF (Correct InFeasible 

region in white) represents the overlapped infeasible region; ICF (InCorrect Feasible region shaded 

with dotted grids) represents the area where it’s feasible in the surrogate model but infeasible in the 

original function; ICIF (InCorrect InFeasible region shaded with upward diagonal lines) represents 

the area where it’s infeasible in the surrogate model but is feasible in the original function.  

With these definitions, we can then define the three metrics for model accuracy in Equation (81) 
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CF% = 	

𝐶𝐹	
𝐶𝐹 + 𝐼𝐶𝐼𝐹

∗ 100	

CIF% = 	
𝐶𝐼𝐹	

𝐶𝐼𝐹 + 𝐼𝐶𝐹
∗ 100	

NC% = 	
𝐼𝐶𝐹	

𝐼𝐶𝐹 + 	𝐶𝐹
∗ 100 

(81) 

CF%: the percentage of feasible region in original function, which has been correctly discovered 

by the surrogate model; 

CIF%: the percentage of infeasible region in original function, which has been correctly discovered 

by the surrogate model; 

NC%: the percentage of feasible region in surrogate model, which has been overestimated by the 

surrogate model;  

 

The first two metrics (CF% and CIF%) describe how well the uncertainty parameter space has been 

correctly explored and classified with respect to feasibility. The third metric (NC%) evaluates the 

conservativeness of the feasible region predicted by surrogate model. The goal of surrogate-based 

feasibility analysis is to predict feasible regions thoroughly and conservatively. Therefore, by 

definition, we can say surrogate-based methods can accurately approximate the feasible region if 

CF% and CIF% are close to 100%, and NC% is close to 0.  

 

4.4 Computational studies 

In the following sections, we first present a thorough analysis of the performance of RBF-based 

and Kriging-based method with case studies on low dimensional test problems, which consist of 

four 2D test problems and one 3D test problem. All of the test problems are nonlinear and 

nonconvex, and are considered to be difficult to accurately identify the feasible region. We’re 

especially interested in low dimensional problems because they can be easily visualized and are 

more common in real-life cases where feasibility analysis is needed, e.g. pharmaceutical process 
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unit models [65]. Then we also compare the performance of two surrogate-based methods on high 

dimensional test problems (5D and 6D) with nonlinear and/or linear constraints. Since these high 

dimensional problems cannot be easily visualized, only the model accuracy metrics are compared. 

The idea is to show the potential and limit of the current two surrogate-based approaches in high 

dimensional cases.  

 

Low dimensional test problems 

Modified Branin function (branincon)  

“branincon” is a 2D test problem [65]. It is defined by a single constraint shown in Equation 

(82). From the feasibility function value contour plot in Figure 8, we can see there are three disjoint 

feasible regions, which are shaded with dots. 

 

 (82) 

 

Figure 8. Contour of Feasibility function for branincon. (Feasible regions are shaded with dots.) 
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“ex3” is a 2D test problem [65] with one linear constraint and two nonlinear constraints which 

are shown in Equation (83). It has one nonconvex feasible region, which is shaded with dots in 

Figure 29.  

 

 
(83) 

 

Figure 9. Contour of Feasibility function for ex3. (Feasible region is shaded with dots.) 

Constrained Sasena function (sasenacon) 

 

“sasenacon” is a 2D test problem taken from [230]. Only the constraints are considered when it 

is used as a feasibility analysis test problem. The test problem is shown in Equation (84), and the 

contour of feasibility function in shown in Figure 29. For “sasenacon”, there are two disjoint 

feasible regions which are shaded with dots.  
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10𝑥o	 + 𝑥t	 − 	7 ≤ 0	

𝑥o − 0.5 t	 + 	 𝑥t − 0.5 t	 − 	0.2 ≤ 0	

0 ≤ 𝑥o ≤ 1	

0 ≤ 𝑥t ≤ 1 

 

Figure 10. Contour of feasibility function for sasenacon. (Feasible regions are shaded with dots.)  

 

Modified Camelback function (camelback) 

“camelback” is a 2D test problem from [231]. The original objective function is modified into a 

nonlinear constraint for the purpose of feasibility analysis. The test problem is shown in Equation 

(85), and the contour plot of feasibility function is shown in Figure 29. There are two large feasible 

regions and two small feasible regions which are shaded with dots.  

 

 
4	 − 	2.1𝑥ot	 +

𝑥o)

3
∗ 𝑥ot + 𝑥o𝑥t + 	 −4	 + 	4𝑥tt 𝑥tt ≤ 0	

−3 ≤ 𝑥o ≤ 3	

−2 ≤ 𝑥t ≤ 2 

(85) 
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Figure 11. Contour of feasibility function for camelback. (Feasible regions are shaded with dots.) 

 

Modified quadratic constrained function (qcp4con) 

“qcp4con” is a 3D test problem from [64]. Only the constraints are considered for the purpose 

of feasibility analysis. The test problem is shown in Equation (86), and the 3D plot of feasible 

region boundary is shown in Figure 29. The feasible region is the area within the feasible region 

boundary hull, which is shaded with dots. 

 𝑥o + 𝑥t + 𝑥� − 4 ≤ 0	

3𝑥t + 𝑥� − 6 ≤ 0	

− 𝒙′𝑨′𝑨𝒙 − 2𝒚′𝑨𝒙 + 𝒚
t
− 0.25 𝒃 − 𝒛

t
≤ 0 

𝒙YCS = 0, 	0, 	0 	

𝒙D� = 2, 	3, 	3 	

where	

𝑨 = 0,0,1; 0, −1,0;−2,1, −1 	

𝒃 = 3; 0;−4 ,	

𝒚 = 1.5;−0.5;−5 	

𝒛 = [0;−1;−6] 

 

(86) 
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Figure 12. 3D plot of feasible region boundary for qcp4con. (Feasible regions are shaded with dots.) 

 

Results on the performance of two surrogate-based methods 

The performance of the Kriging-based and RBF-based methods on test problems are compared and 

the results are shown in Table 4 and Figure 13 to Figure 17. For both methods, the rectangular grid 

sampling plan is used to build the initial surrogate model. With respect to the number of initial 

sample points, 49 (=72) initial points are used for two-dimensional problem, which is in accordance 

with that in [65]. Considering the increase in dimension, the 3D test problem uses 64 (=43) initial 

points, which is slightly more than that for two-dimensional problems. After the initial surrogate is 

built based on initial points, the adaptive sampling is then used to iteratively sample new points and 

improve the surrogate accuracy. The model accuracy metrics are calculated after 100 iterations of 

adaptive sampling.  

 

Table 4. Results on 2D and 3D test problems 
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test 

problem 
surrogate 

initial surrogate accuracy 
surrogate accuracy after 

100 iterations 

CF% CIF% NC% CF% CIF% NC% 

branincon 
RBF 57.89 99.79 3.75 99.88 100.00 0.00 

Kriging 26.10 100.00 0.00 98.22 99.87 1.43 

ex3 
RBF 93.53 98.55 2.63 99.31 99.76 0.41 

Kriging 91.53 98.25 3.22 98.57 99.43 0.99 

sasenacon 
RBF 75.83 98.83 9.09 98.20 99.91 0.61 

Kriging 58.03 98.06 17.85 88.74 99.55 3.19 

camelback 
RBF 57.06 84.10 79.98 99.69 99.93 1.07 

Kriging 99.39 76.21 77.44 94.79 99.30 9.52 

qcp4con 
RBF 81.52 98.94 12.78 97.94 99.81 2.09 

Kriging 84.80 96.74 30.76 96.34 99.60 4.53 

 

From the results on “branincon” and “ex3”, after 100 iterations of adaptive sampling, we 

notice that both the Kriging-based and RBF-based methods can correctly identify the feasible and 

infeasible regions with high accuracy (over 98% of the feasible regions and 99% of the infeasible 

regions are correctly discovered). They also exhibit a low percentage of overestimated feasible 

regions (less than 2% of the feasible regions are incorrectly predicted). It should be noticed that the 

RBF-based method is slightly more accurate than the Kriging-based approach in these two test 

problems. The final surrogate models after adaptive sampling are shown in Figure 13 and Figure 

14. We can observe that the adaptive sampled points (noted as circle points) are mostly located near 

the feasible region boundaries and with a small portion located in some other less explored regions. 

This is in accord with the analysis on the properties of modified expected improvement function in 

Section “Adaptive sampling”. 
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 (a) RBF model for branincon   (b) Kriging model for branincon 

Figure 13. Contour of surrogate models for branincon. (a) RBF model for branincon; (b) Kriging 

model for branincon. (Initial sample points are noted with dots. Adaptive sampling points are noted 

with circle points.) 

 

  

 (a) RBF model for ex3    (b) Kriging model for ex3 

Figure 14. Contour of surrogate models for ex3. (a) RBF model for ex3; (b) Kriging model for ex3. 

(Initial sample points are noted with dots. Adaptive sampling points are noted with circle points.) 

 

From the results of the other two case studies on “sasenacon” and “camelback”, the RBF-

based method shows significantly better performance than the Kriging-based method. For “
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sasenacon”, the RBF-based method (98.20% as CF%) is much more accurate in predicting the 

feasible region than the Kriging-based method (88.74% as CF%) by over 9%. Also the RBF-based 

method is more conservative in the prediction of feasible regions. For “camelback”, the 

advantage of the RBF-based method over the Kriging-based method is also very obvious, where 

the RBF-based method can correctly identify 99.69% of the feasible region compared to 94.79% 

from the Kriging-based method. In addition, the RBF-based method is also much more conservative 

(1.07% as NC%) than the Kriging-based method (9.52% as NC%). The final surrogate models after 

adaptive sampling are shown in Figure 15 and Figure 16. From Figure 15, it can be seen that the 

relatively small feasible region is not well explored by the Kriging-based method with 100 adaptive 

sampling points. A large portion of adaptive sampled points are located near the boundary of the 

relatively large feasible regions, while only a small portion is located near the small feasible region 

boundary. This explains why Kriging-based method cannot give accurate prediction within 100 

iterations of adaptive sampling. While for the RBF-based method, there appears to be a better 

balanced sampling in exploring both the larger and the smaller feasible regions. This can be 

attributed to the use of scale factor in RBF-based method. 

   

 (a) RBF model for sasenacon   (b) Kriging model for sasenacon 

Figure 15. Contour of surrogate models for sasenacon. (a) RBF model for sasenacon; (b) Kriging 

model for sasenacon. (Initial sample points are noted with dots. Adaptive sampling points are noted 

with circle points.) 
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 (a) RBF model for camelback   (b) Kriging model for camelback 

Figure 16. Contour of Surrogate models for camelback. (a) RBF model for camelback; (b) Kriging 

model for camelback. (Initial sample points are noted with dots. Adaptive sampling points are noted 

with circle points.) 

 

For the 3D test problem “qcp4con”, the RBF-based still shows higher accuracy in identifying 

feasible region boundaries and better conservativeness in predicting feasible regions. The final 

surrogate models after adaptive sampling are shown in Figure 17. In the figure, the circle points 

represent the initial 64 sampling points, and the asterisk points are the adaptive sampling points.  

   

 (a) RBF model for qcp4con   (b) Kriging model for qcp4con 
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Figure 17. 3D plot of feasible region boundaries from surrogate models for qcp4con. (a) RBF model 

for qcp4con; (b) Kriging model for qcp4con. (Initial sample points are noted with circle points. 

Adaptive sampling points are noted with asterisk points.) 

 

To illustrate the influence of the scale factor on the balance between local search and global search 

during adaptive sampling of the RBF-based method, we use the “sasenacon” function as an 

example. Based on the initial surrogate RBF model constructed with 49 grid sample points, in the 

first case, we try a larger scale factor value, which is 100 times the proposed one; and in the second 

case, we try a smaller scale factor value, which is 0.01 times the proposed one. With such changes, 

the values of “s” in the modified EI function will be smaller, namely 0.1 times the original value, 

in the first case; and “s” will be larger, namely 10 times the original value, in the second case. 

After 100 iterations of adaptive sampling, the final surrogate RBF models are shown in Figure 18. 

From Figure 18 (a), we notice that the adaptive sampling points are closely located near the bottom 

feasible region, but fails to explore the top feasible region. This indicates that with a larger scale 

factor, local search may be preferred over global search, and thus we face the risk of over trusting 

the surrogate model and failing to identify all the disjoint feasible regions. On the other, we notice 

from Figure 18 (b) that although both feasible regions are discovered, adaptive sampling points 

span a rather extensive area of the input space, and fails to exploit the feasible boundaries by 

sampling points near the boundaries. This indicates that with a smaller scale factor, global search 

may be preferred over local search, and thus we may face the risk of over exploring the input space 

and waste some sampling points in unnecessary regions. Such influences of the scale factor are also 

found in other test problems, and thus further similar results are not included here for conciseness.  
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(a) RBF model using a larger scale factor  (b) RBF model using a smaller scale 

factor 

Figure 18. Contour of surrogate models for sasenacon using different scale factors. (a) RBF model 

using a larger scale factor; (b) RBF model using a smaller scale factor (Initial sample points are 

noted with dots. Adaptive sampling points are noted with circle points.)  

 

To better understand the trends of surrogate accuracy for feasible region boundaries during adaptive 

sampling, and also to compare the performance of two surrogate-based methods by iteration of 

adaptive sampling, the accuracy metrics during adaptive sampling are checked every ten iterations 

in previous case studies. The results are shown in Figure 19 to Figure 23. From these comparisons, 

we can see the general trend of surrogate accuracy is to increase with more iterations of adaptive 

sampling. Namely CF% increases by iteration; CIF% increases by iteration; and NC% decreases 

by iteration. But there may exist some oscillations during the adaptive sampling process. The 

oscillations are because during the first few tens of iterations, the surrogate models are not ready to 

be trusted to predict the feasible region boundaries. In other words, as adaptive sampling proceeds, 

the newly explored regions may not have been exploited enough to provide accurate predictions on 

the feasible region boundaries. For example, for the case study of Kriging-based method on “

branincon” in Figure 19, comparing the results at iteration 10 with those at iteration 0, more 

regions get explored and more feasible regions are discovered (CF% increases in Figure 19 a). 
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However, among the newly discovered feasible regions, a small portion is actually overestimated 

(NC% increases in Figure 19 c), which is why the percentage of correctly discovered infeasible 

regions decreased (Figure 19 b). As the surrogate model gets updated with more adaptive sampling 

points, the accuracy of predicting feasible region boundaries increases, and this causes the 

oscillations to dampen.  

 

(a)                 (b)            (c) 

Figure 19. Comparison of surrogate accuracy by iteration of adaptive sampling for branincon. (a) 

CF% (b)CIF (c) NC% 

 

In terms of the comparison of accuracy for the RBF-based method and the Kriging-based method, 

the RBF-based method is generally more accurate than the Kriging-based method during the whole 

process of adaptive sampling (Figure 20, Figure 21, Figure 23), or after a few number of iterations 

of adaptive sampling (Figure 19, Figure 22). This indicates that the RBF-based method can be more 

efficient in that it requires fewer numbers of adaptive sampling points to improve the surrogate 

accuracy to a relatively high level. This is especially obvious for the case study of “sasenacon” 

in Figure 22, where the CF% of Kriging-based method at iteration 100 is merely approximately 

equal to that of RBF-based method at iteration 50, while with similar values of CIF% and NC%. 

The demonstrated efficiency of RBF-based method is quite important for surrogate-based 

feasibility analysis methods, especially when the black-box function is computationally expensive. 
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  (a)                 (b)            (c) 

 Figure 20. Comparison of surrogate accuracy by iteration of adaptive sampling for ex3. (a) CF% 

(b)CIF (c) NC% 

 

 

  (a)                 (b)            (c) 

 Figure 21. Comparison of surrogate accuracy by iteration of adaptive sampling for sasenacon. (a) 

CF% (b)CIF (c) NC% 
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  (a)                 (b)            (c) 

 Figure 22. Comparison of surrogate accuracy by iteration of adaptive sampling for camelback. (a) 

CF% (b)CIF (c) NC% 

 

 

  (a)                 (b)            (c) 

 Figure 23. Comparison of surrogate accuracy by iteration of adaptive sampling for qcp4con. (a) 

CF% (b)CIF (c) NC% 

 

Another important aspect about surrogate-based adaptive sampling method is its dependence on 

the number of initial sample points. This can be seen as to answer two questions:  

1) If fewer initial sample points are used, will the adaptive sampling method still be able to 

correctly identify the feasible regions? 
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2) If more initial sample points are used, will it reduce the number of adaptive sampling points 

required for accurate prediction and thus reduce the total number of sampling points? 

To understand this, both the RBF-based method and the Kriging-based method are tested with a 

range of various numbers of initial sample points. Starting from different initial surrogate models, 

it is desired to know how many adaptive sampling points are needed to improve the different initial 

surrogate models’ accuracy to a similarly high level. For comparison purpose, a common stopping 

criterion for this model accuracy level is set as “CF% > 97% && CIF% > 97% && NC% < 3%

”. This relatively mild model accuracy criterion is chosen to decrease computational cost. 

Meanwhile, it is also sufficient enough to guarantee that for each low dimensional test problem in 

this paper all feasible regions can be discovered thoroughly and conservatively. In practice, during 

the process of adaptive sampling, the surrogate model accuracy is only checked every 10 iterations 

due to its relatively high computational cost. The adaptive sampling will terminate if it is found 

that the surrogate model accuracy meets the accuracy criterion or the number of iterations of 

adaptive sampling exceeds the upper bound “itermax”. Here “itermax” is set as 300 to reduce 

the computational cost. The results are shown in Figure 24.  
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(c) 

 

(d) 
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(e) 

Figure 24. Number of adaptive sampling points v.s. number of initial sample points using the RBF-

based and the Kriging-based method. (a) branincon; (b) ex3; (c) sasenacon; (d) camelback; (e) 

qcp4con 

 

From the results, it can be noticed that there is a general trend that the number of adaptive sampling 

points decreases as initial sample points increases. However, there exist a few exceptions. These 

exceptions are more obvious in Kriging-based method, especially for “sasenacon” and “

camelback” test problems. One possible explanation for such exceptions is the poor choice of the 

initial sample points. Because the test problems are all highly nonlinear and nonconvex, poor 

selection of the initial sample points’ location may cause the initial surrogate model to misrepresent 

the original function and mislead adaptive sampling, especially when there are multiple disjoint 

feasible regions in the test problem. This indicates the necessity of trying different space-filling 

sampling plans, such as Latin Hypercube Sampling (LHS), when selecting initial sample points.  
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Additionally, it is most obvious that the RBF-based method is much more efficient than Kriging-

based in that the former method requires much fewer adaptive sampling points than the latter 

method in almost all cases. Note that in all cases, the RBF-based method can meet the accuracy 

criterion (CF% > 97% && CIF% > 97% && NC% < 3%) within 300 iterations. However, the 

Kriging-based method cannot achieve this in several cases, especially when there are fewer initial 

sample points. There are two possible explanations for this. First, RBF can usually give a smoother 

surface than Kriging, as can be noticed from Figure 13 to Figure 16. This indicates RBF may be a 

more suitable surrogate than Kriging when used for feasibility analysis on problems with relatively 

smooth landscapes. Second, when there are multiple disjoint feasible regions, the RBF-based 

method is less likely to be “trapped” in exploiting a certain feasible region than the Kriging-

based method, especially when there are few initial sample points, and the initial surrogate models 

are not good enough to make any predictions on feasible regions. For example, in test problem “

branincon”, there are three feasible regions of similar sizes. In the case starting with 4 (=22) initial 

sample points, the initial surrogate models from the RBF-based method and the Kriging-based 

method are similarly bad in accuracy (Figure 25). After adaptive sampling, the final surrogate 

models for the RBF-based method and the Kriging-based method are shown in Figure 26. After 90 

iterations, the RBF-based method can accurately identify all three feasible regions, however the 

Kriging-based method is trapped in exploiting in only one of the feasible region.  This is also the 

reason why “sasenacon” and “camelback” are so difficult for the Kriging-based method to 

solve. Each of these two problems has multiple feasible regions of different sizes. During the 

adaptive sampling process, the Kriging-based method is more likely to be trapped in exploiting the 

larger feasible regions than the RBF-based method. This indicates the importance of introducing 

scale factor to the RBF-based method for the purpose of better balancing global search and local 

search during adaptive sampling.  
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   (a)                   (b) 

Figure 25. Initial surrogate models for “branincon” with 4 (=22) initial sample points. (a) Initial 

RBF model. (b) Initial Kriging model 

 

 

   (a)                   (b) 

Figure 26. Final surrogate models for “branincon” after adaptive sampling. (a) Final RBF model 

after 90 iterations. (b) Final Kriging model after 300 iterations. Circle points represent adaptive 

sampling points.  

 

The data on the minimum number of total sampling points for each test problem using two 

surrogate-based methods are shown in Table 5. The results show that the RBF-based method is 

generally the most efficient when adaptive sampling starts with small numbers of initial sample 
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points, while Kriging-based method needs to start with a relatively larger number of initial sample 

points to guarantee efficiency. Because the purpose of using adaptive sampling is to improve 

sampling efficiency when limited information is provided about the system, the advantage of RBF-

based adaptive sampling method shows itself practically more useful than the Kriging-based 

adaptive sampling method. However, for both methods, the number of initial sample points for 

highest efficiency (namely the total number of sampling points being smallest) is actually a case-

by-case problem. For test problems with one feasible region, both methods need relatively fewer 

initial sample points (e.g. branincon, qcp4con). For test problems with multiple disjoint feasible 

regions, especially those of different sizes, slightly more initial sample points are generally needed. 

In summary, it still requires further study in order to determine how many initial sample to use for 

both of these surrogate-based adaptive sampling methods for black-box feasibility analysis.  

 

Table 5. Minimum number of total samples 

test 

problems 
surrogate 

total 

samples 

initial 

samples 
adaptive samples 

branincon 
RBF 49 9 40 

Kriging 115 25 90 

ex3 
RBF 44 4 40 

Kriging 59 9 50 

sasenacon 
RBF 96 16 80 

Kriging 311 121 190 

camelback 
RBF 114 64 50 

Kriging 180 36 150 

qcp4con 
RBF 98 8 90 

Kriging 254 64 190 
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High dimensional test problems 

5D test problem (g4con) 

“g4con” is taken from [232] and only the constraints are considered for feasibility purpose. This 

test problem contains 6 nonlinear constraints which are shown in Equation (87).  

 0 ≤ 85.334407 + 0.0056858𝑥t𝑥Ô + 0.0006262𝑥o𝑥) − 0.0022053𝑥�𝑥Ô ≤ 92	

90 ≤ 80.51249 + 0.0071317𝑥t𝑥Ô + 0.0029955𝑥o𝑥t + 0.0021813𝑥�t ≤ 110	

20 ≤ 9.300961 + 0.0047026𝑥�𝑥Ô + 0.0012547𝑥o𝑥� + 0.0019085𝑥�𝑥) ≤ 25	

78 ≤ 𝑥o ≤ 102, 33 ≤ 𝑥t ≤ 45, 27 ≤ 𝑥N ≤ 45	𝑓𝑜𝑟	𝑖 = 3, 4, 5. 

(87) 

6D test problem (t3con) 

“t3con” is taken from [233] and only the constraints are considered for feasibility purpose. This 

test problem contains 2 nonlinear constraints and 4 linear constraints which are shown in Equation 

(88).  

 𝑥� − 3 t + 𝑥) ≥ 4	

𝑥Ô − 3 t + 𝑥0 ≥ 4	

𝑥o − 3𝑥t ≤ 2	

−𝑥o + 𝑥t ≤ 2	

𝑥o + 𝑥t ≤ 6	

𝑥o + 𝑥t ≥ 2	

0 ≤ 𝑥o ≤ 5,	

0 ≤ 𝑥t ≤ 5,	

1 ≤ 𝑥� ≤ 5,	

0 ≤ 𝑥) ≤ 6,	

1 ≤ 𝑥Ô ≤ 5,	

0 ≤ 𝑥0 ≤ 10 

(88) 
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Results on the performance of two surrogate-based methods 

Considering that the number of sample points from rectangular grid sampling plan grows 

exponentially with dimensions, we only use 2-level grid points to build the initial surrogate models. 

For “g4con”, we use 32 (= 25) initial points; and for “t3con”, we use 64 (=26) initial points. 

After the initial surrogate models are built, 200 iterations of adaptive sampling are used to improve 

the surrogate accuracy. The values of surrogate accuracy metrics are shown in Table 6. From the 

initial surrogate accuracy, we can observe that CF% are very low, which indicates that very little 

information on the feasible regions can be obtained from initial surrogate models based on the 2-

level grid sampling. Such initial models do not seem to affect the performance of two surrogate-

based methods for the “g4con” test problem, because both methods can still well predict the 

feasible regions with relatively high accuracy (CF% around 95%, and CIF% around 98%) and good 

conservativeness (NC% around 5%) after 200 iterations of adaptive sampling, with the RBF-based 

method being slightly better than the Kriging-based method. However, for “t3con”, both 

surrogate-based approaches fail to give satisfactory predictions of feasible regions with the final 

surrogate models. Only around 60% of feasible regions have been correctly predicted, and with 

over 10% of the predicted feasible regions being non-conservative.  

 

Table 6. Results on 5D and 6D test problems with grid sampling plan for initial points 

test 

problem 
Surrogate initial surrogate accuracy 

surrogate accuracy after 

200 iterations 

CF% CIF% NC% CF% CIF% NC% 

g4con 
RBF 20.47 100.00 0.00 95.03 98.21 4.87 

Kriging 16.43 100.00 0.00 94.01 97.98 5.52 

t3con 
RBF 0.00 100.00 NA 62.06 98.41 11.79 

Kriging 0.00 100.00 NA 59.21 98.37 12.58 
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Given that the use of grid sampling plan can be rather limited in high dimensional cases, and also 

to test whether a different initial sampling plan with better space-filling properties can improve the 

results of “t3con”, we then use LHS as the initial sampling plan. For comparison purposes, we 

again use 32 LHS initial points for “g4con” and 64 LHS initial points for “t3con”. The results 

after 200 iterations of adaptive sampling are shown in Table 7. From the initial surrogate accuracy, 

we notice that significantly higher percentage of the feasible region is discovered, though not very 

conservative, compared with that from grid sampling plan. Such changes do not affect much the 

final results for “g4con”, as we can observe that both surrogate-based approaches result in 

similarly good accuracy metrics compared with that in Table 6. However, for “t3con”, both 

surrogate-based approaches can benefit from LHS initial sampling plan in that more feasible 

regions are correctly discovered after 200 iterations, though the conservativeness is slightly worse, 

than that in Table 6, and the Kriging-based method even outperforms the RBF-based method with 

a higher CF%. However, it must be noted that the performance of both surrogate-based methods is 

still not satisfactory because they still fail to sufficiently predict all of the feasible regions in “

t3con” correctly and conservatively.  

Table 7. Results on 5D and 6D test problems with LHS plan for initial points 

test 

problem 
Surrogate initial surrogate accuracy 

surrogate accuracy after 

200 iterations 

CF% CIF% NC% CF% CIF% NC% 

g4con 
RBF 86.76 96.17 10.70 94.44 98.52 4.09 

Kriging 78.19 95.26 14.12 95.59 98.64 3.72 

t3con 
RBF 62.89 93.41 35.44 65.01 98.07 13.45 

Kriging 54.75 95.77 28.78 72.73 97.83 13.50 
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To better understand the limitations of the approaches when dealing with high dimensional 

problems, we also checked the surrogate accuracy every 25 iterations, with results shown in Figure 

27 and Figure 28. From Figure 27, we find that for “g4con”, starting from 25 iterations when a 

large portion of the feasible region has been correctly discovered (CF% > 85%), the surrogate 

accuracy improves very slowly for both surrogate-based approaches. This is expected because with 

dimensions increasing, more sample points are needed to capture the landscape of the original 

model, which is known as “curse-of-dimensionality” [76]. From Figure 28, for “t3con”, in 

the cases where grid sample points are used, after 100 iterations, both methods tend to be stagnant 

with 50% to 60% feasible region correctly identified. From the analysis of 2D test problems, we 

can infer that a highly possible cause for this is there exist disjoint feasible regions in the high 

dimensional input space. Compared to low dimensional problems, high dimensional problems may 

require more adaptive sampling points to exploit the discovered feasible regions due to “curse-of-

dimensionality”. The difficulty of being trapped in exploiting a discovered feasible region may 

be slightly mitigated by using LHS, as can be seen from Figure 28 where CF% for both methods 

using LHS points are higher than those using grid points. This is because with better space-filling 

initial points, there is a higher chance that more disjoint feasible regions can be discovered by the 

initial surrogate models, though also with a risk of non-conservativeness in the prediction.  
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Figure 27. Comparison of surrogate accuracy by iteration of adaptive sampling for g4con. (a) CF% 

(b)CIF (c) NC% 

 

 

  (a)                 (b)            (c) 

Figure 28. Comparison of surrogate accuracy by iteration of adaptive sampling for t3con. (a) CF% 

(b)CIF (c) NC% 

 

4.5 Case study of a roller compaction process 

We applied the two surrogate-based feasibility analysis approaches to a real-world case study of a 

roller compactor simulation model from [234] in pharmaceutical manufacturing processes. The 

model is shown in Equation (89). This model can be used to predict ribbon properties (ribbon 

density 𝜌KbNE, ribbon thickness ℎ|) given operating conditions (hydraulic pressure 𝑃ℎ, rotating roll 

speed 𝜔, feed speed 𝑢N_) and inlet material properties (inlet angle θin, powder bulk density ρin). 

The product quality constraints are shown in Equation (90). The parameter values, operating 

conditions, and bounds used in this work are listed in Table 8, which are based on the process 

settings in [234] and consistent with the application in [65].  

 

Table 8. Parameter values and boundaries in the roller compactor case study 
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Parameter Symbol Value/Range Units 

Equipment parameters and model coefficients 

Roll radius R 0.125 m 

Roll width W 0.05 m 

Compression parameter K 4.97  

Compression parameter  C1 7.5x10-8 Pa/(kg/m3)4.97 

Compact surface area A 0.01 m2 

Effective angle of friction δ 0.7069 rad 

Nip angle α 0.173 rad 

Angular position θ NA rad 

Operating conditions 

Hydraulic pressure set point (roll 

pressure) 

Ph 0.9 MPa 

Rotating roll speed set point ω 5 rpm 

Powder feed speed uin 3.27x10-4  m/s 

Bounds 

Inlet powder density ρin 200 – 400 kg/m3 

Inlet angle θin 0.3 – 0.5 rad 

Ribbon thickness h0 1.7x10-3 – 1.9x10-3 m 

Ribbon density ρexit 850 – 950 kg/m3 
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 𝑑
𝑑𝑡
ℎ|
𝑅

=
𝜔 𝜌N_ cos 𝜃N_(1 +

ℎ|
𝑅 − cos 𝜃N_)

𝑢N_
𝜔𝑅 − 𝜌KbNE(

ℎ|
𝑅)

𝜌(𝜃) cos(𝜃)𝑑𝜃ê¢1
|

	

𝑃ℎ =
𝑊
𝐴

𝜎KbNE𝑅
1 + sin 𝛿

ℎ|
𝑅

(1 + ℎ| 𝑅 − cos 𝜃) cos 𝜃

3

cos 𝜃 𝑑𝜃
4

|
	

𝜎KbNE = 𝐶o𝜌KbNE3 

(89) 

 

 𝜌KbNEÉ ≤ 𝜌KbNE ≤ 𝜌KbNE
Ê 	

ℎ|
É ≤ ℎ| ≤ ℎ|

Ê 
(90) 

The objective of the steady state feasibility analysis is to identify the 2D feasible region of θin and 

ρin so that we can guarantee the products meet the quality constraints (𝜌KbNE and ℎ|) in Equation 

(90) under a certain set of operating conditions (𝑃ℎ, 𝜔, and 𝑢N_). The simulation model can be 

computationally expensive due to integral terms, and it requires reformulation to explicitly express 

the output ribbon properties (𝜌KbNE and ℎ|). Thus we can apply the surrogate-based methods to solve 

the feasibility analysis problem. Note here the product quality variables h0 and ρexit have very 

different magnitudes. So the constraint violations of h0 and ρexit are scaled with their corresponding 

upper bound values, namely 1.9x10-3 m and 950 kg/m3. This is to make sure the quality constraints 

can contribute to EIfeas on similar magnitude during the adaptive sampling stage.  

 

When applying the two surrogate-based approaches to this 2D feasibility analysis problem, we use 

49 grid sample points to build the initial surrogate models, and use 100 iterations of adaptive 

sampling to improve the surrogate models. The contours of predicted feasibility function values are 

shown in Figure 29 and the surrogate accuracy values are listed in Table 9.  
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(a) RBF model for roller compaction   (b) Kriging model for roller compaction 

Figure 29. Contour of surrogate models for feasibility function values of roller compaction model. 

(a) RBF model for roller compaction; (b) Kriging model for roller compaction. (Black dash-dot 

line represents the feasible region boundary of the original model; blue dashed line represents the 

feasible region boundary predicted by the surrogate model.) 

 

Table 9. Comparison of accuracy between RBF-based method and Kriging-based method 

test 

problem 
Surrogate initial surrogate accuracy 

surrogate accuracy after 

100 iterations 

CF% CIF% NC% CF% CIF% NC% 

RC 
RBF 77.69 98.57 13.68 99.52 99.89 0.96 

Kriging 29.62 99.91 2.53 98.56 99.19 6.65 

 

From the results, we can see that both the surrogate-based methods can sufficiently predict the 

feasible region after 100 iterations of adaptive sampling, with the RBF-based method being more 

accurate and conservative than Kriging, which is consistent with the finding from 2D test problems. 

The feasible region (feasibility function values ≤ 0) reflects the ranges of variations in the inlet 

parameters (θin and ρin) that the process can tolerate in order to obtain qualified ribbon products 

(𝜌KbNE and ℎC) under the operating conditions. In addition, the feasible region also indicates that 
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when θin is small, ρin must be relatively large to guarantee qualified ribbon qualities and vice 

versa. This finding can help choosing the right inlet materials in order to get desired ribbon 

properties under a certain set of operating conditions.  

 

4.6 Summary and future work 

In this work, we propose a new RBF-based adaptive sampling method for feasibility analysis with 

black box constraints. We use an error-indicator for cubic RBF to indicate how well the nearby 

region of an unsampled point has been explored. The error-indicator is used with a scale factor in 

the adaptive sampling which can balance global search and local search to find the feasible region 

boundaries. For all case studies on 2D and 3D benchmark problems, the new RBF-based method 

shows better performance than a Kriging-based method in several aspects. First, the RBF-based 

method can generally be more accurate than the Kriging-based method with the same limited 

numbers of adaptive sampling points. Second, the RBF-based method is more efficient than the 

Kriging-based method in that it can provide accurate predictions with fewer adaptive sampling 

points. Third, the RBF-based method can be practically more useful since it is more efficient when 

starting with fewer initial sample points than the Kriging-based method. For 5D and 6D benchmark 

problems, both the RBF-based and the Kriging-based show their limitations due to “curse of 

dimensionality”.  

 

In our future work, more research is needed to improve the performance of surrogate-based 

feasibility analysis approaches in high dimensional test problems. Moreover, we are also interested 

in applying different initial sampling plans, and see their effects on the performance of adaptive 

sampling.  
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5 Process Analysis and Optimization of Continuous Pharmaceutical Manufacturing using 

Flowsheet Models 

Abstract 

Continuous manufacturing has attracted increasing research attention in the pharmaceutical 

industry within the last decade. Based on the extensive experimental studies, numerous modeling 

and computational approaches have been developed to capture the process information and make 

predictions. Moreover, flowsheet models have been built to simulate the dynamic behaviors of a 

plant-wide manufacturing process with respect to different process input factors. However, there 

still lacks a systematic way to make the best use of flowsheet models in pharmaceutical processes. 

In this work, we propose a framework of process analysis and optimization for the continuous 

pharmaceutical manufacturing process where flowsheet models are available. Specifically, 

sensitivity analysis is conducted to identify the input factors that are most influential on the output; 

feasibility analysis is then implemented to characterize the design space in the high-dimensional 

space. Finally, process optimization is performed to find the optimal operation conditions that result 

in the minimum cost.  

 

5.1 Introduction 

The pharmaceutical industry has put increasing efforts to improve process understanding over the 

past few years, with the main focus on improving product quality and reducing costs in product 

development and manufacturing[32]. Such a research trend to improve manufacturing processes is 

incented by various factors, including the urge to maximize profits within patent life[15], the 

increased difficulty in developing new competitive drugs[15], and the support from regulatory 

agencies[235,79], such as U.S. Food and Drug Administration (FDA). Among the recent advances 

in pharmaceutical manufacturing processes, a major change is a transition from a traditional batch 

mode to a continuous mode[32].  
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There are several benefits of applying continuous manufacturing (CM) to the pharmaceutical 

industry. First, CM can use the same equipment for large quantities of production, which eliminates 

the scale-up problem[236], and shortens the time to release products to the market[237]. Second, 

CM equipment usually has a much smaller footprint, which can potentially reduce the capital cost 

and increase the controllability[238]. Third, CM eliminates the need to store intermediates between 

steps[2], and reduces human factors in handling raw materials[15]. This can directly diminish the 

risks associated with material degradation and improve product quality. Therefore, with such 

benefits, CM is considered promising to improve agility, flexibility, and robustness in the 

manufacture of pharmaceuticals[2].  

 

However, there are also some challenges in implementing continuous pharmaceutical 

manufacturing. In this paper, we only consider the continuous manufacture of solid oral-dosage 

products, since this is the main form of drug products[4]. Because the powder materials flow 

continuously between unit operations, the first challenge that needs to be considered is 

understanding the material attributes and how they can affect the flowability and process dynamics. 

This would require a systematic method for material characterization and prediction of the 

intermediate material properties[239]. Moreover, the residence time of the materials needs to be 

monitored and controlled in order to ensure product quality. This needs advanced online 

measurement tools and control strategies that are specifically designed for the continuous 

equipment and processes[32,8]. Finally, the process design and optimization problems need to be 

solved with a systems approach, which considers the effect of material properties, equipment, and 

process parameters on the product qualities[32]. To address such difficulties, we can develop 

mathematical models, based on experimental studies, and use computer-aided tools to enhance the 

understanding of a continuous process[32]. 
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Numerous modeling techniques have been applied to simulate the particle-level or bulk behaviors 

of the material flow in the equipment of continuous processes. Discrete-element method (DEM) 

has been employed to study the dynamics of the material flow in a blender[240,29]. However, its 

high computational cost limits its use in integrated-process modeling applications. In comparison, 

population balance modeling (PBM), with a comparatively lower computational cost, has been 

extensively used to model blending[12,241] and granulation processes[242]. Furthermore, data-

driven models[13] and semi-empirical models based on residence-time distribution (RTD) 

theories[6,243] have also been developed for different powder processing unit operations. Based 

on the development of modeling individual continuous equipment, recent research has been focused 

on the integrated flowsheet modeling approach[15,14], which is an approximation of the actual 

plant-wide operation process. A flowsheet model can be used to predict the process dynamics 

affected by material properties and operating conditions of different component unit operations. 

More importantly, we can make a systematic process analysis of the flowsheet model, which gives 

insight on the characteristics and bottlenecks of the process and thus facilitates the development of 

control strategies[14]. In this paper, we focus on two aspects of the process analysis: sensitivity 

analysis and feasibility analysis.   

 

Sensitivity analysis is the study of how uncertainty in the output of a model can be apportioned to 

different sources of uncertainty in the model input[43]. Given a complex model consisting of 

numbers of input factors, it is usually the case that only a few factors have a large influence on the 

output variables of interest, while the rest majority only have a negligible contribution[43]. Thus, 

sensitivity analysis can be used to prioritize the input factors by influence and reduce the dimension 

of the model by screening out the less important input factors. In the pharmaceutical manufacturing 

processes, sensitivity analysis has been used to quantify the individual effects and the interaction 

effects of the input factors, including critical design parameters, material properties, and operating 

conditions, for unit operations[244,245] and integrated processes[15,14]. The results of sensitivity 



	

110	
	

analysis can also be used to guide where the models need to be further detailed, and to aid the 

development of control strategies for qualified products.  

 

Feasibility analysis is used to identify the feasible region (i.e. design space) within which all the 

process and quality constraints are met, including equipment capacity, production rate, and product 

quality[246]. Such analysis gives a systematic view, together with sensitivity analysis, on the 

relationship between materials, processes, and products properties, which can benefit the 

manufacturers with an understanding of the maximum limit of a process to remain robustness while 

conserving product quality. In the pharmaceutical industry, with the development of various 

models, mathematical approaches can be used to define and solve the feasibility analysis problems. 

For computational inexpensive models, the original models can be directly used to determine the 

feasible region. Examples include the design space identification for drug substance[46] and drug 

product[47]. When the models are computationally expensive, surrogate-based approaches have 

been developed to approximate the original models and predict the feasible region. Examples 

include the feasibility analysis for the mixer[18], the feeder[18], and the roller compactor[65,246]. 

However, little research has focused on the feasibility analysis problem of an integrated process. 

This is because the integrated process usually has a large number of input factors, which may 

include material properties and process parameters. The high dimensionality will make the 

feasibility analysis problem very complicated to solve. The difficulties may include high 

computational cost due to increased numbers of input factors and constraints, and the visualization 

problem of the design space in high dimensions.  

 

In this paper, we propose a systematic approach for process analysis, consisting of sensitivity 

analysis and feasibility analysis, and process optimization for the continuous pharmaceutical 

processes. More specifically, we aim to apply this approach to the integrated process which is 

computationally expensive and include large numbers of model inputs and constraints. The 
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approach first uses sensitivity analysis to rank the input factors by influence and reduce the 

dimension of the model. Then a surrogate-based feasibility analysis approach is used to depict the 

design space with efficiency and accuracy, after which the high-dimensional design space is 

visualized with a matrix of contour plots of feasibility. Finally, process optimization is conducted 

to find the optimal operation conditions to minimize the total operation costs. The rest of this article 

is organized as follows. The sensitivity analysis and feasibility analysis methods are explained in 

Section 5.2 and 5.3 respectively. The process analysis results are discussed in Section 5.4, and 

optimization results discussed in Section 5.5. Then, the conclusion and future work is discussed in 

Section 5.6.  

 

5.2 Sensitivity Analysis 

Given a complex flowsheet model, sensitivity analysis can be used to identify the subset of most 

influential input factors (e.g. material properties, process parameters), which need special attention 

when developing control strategies. On the other hand, it also makes it easier for the subsequent 

feasibility analysis and process optimization problems to concentrate on the most important 

parameters. 

 

Many sensitivity analysis methods have been developed for different uses by statisticians. 

Generally, these methods can be classified into two categories: (1) local methods, which focus on 

the effects of uncertain inputs around one single point (base case); and (2) global methods, which 

determine the influences of uncertain input factors over the whole input space[43]. Since we are 

usually interested in the overall sensitivity behaviors of the input factors within the whole uncertain 

region, global sensitivity analysis methods should be adopted for our flowsheet models.  

 

Under the category of global sensitivity analysis, there are numerous methods available, of which 

the following three are implemented in our work: (1) screening Method (e.g. Morris method); (2) 
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regression-based method (e.g. PRCC method); and (3) variance-based method (e.g. Sobol’s 

method). Various methods are adopted because they can altogether provide sensitivity analysis 

from a qualitative as well as a quantitative perspective. In practice, they have been shown effective 

in analyzing the pharmaceutical manufacturing processes[15,14,49].  

 

5.2.1 Morris Method 

Morris method is an efficient way of screening a few important input factors with small sampling 

cost, and is usually used when the model has a large number of input factors, and/or the model is 

computationally expensive[52]. To use the Morris method, we need to first define the elementary 

effect (EE) with Equation 16. 

 
𝐸𝐸N =

𝑌 𝑥o, … , 𝑥Nfo, 𝑥N +ΔN , 𝑥N�o, … , 𝑥� − 𝑌(𝑥o, … , 𝑥�)
ΔN

 (91) 

where 𝑘 is the number of input factors; (𝑥o, … , 𝑥�) is a selected base point; ΔN is the step change 

in the 𝑖th input factor; 𝑌(∗) is the output variable.   

 

In order to get the global sensitivity information, multiple base points need to be randomly chosen 

so that they can cover the whole input space. The Morris sensitivity metrics are thus calculated as 

a function of 𝐸𝐸. In specific, three sensitivity metrics have been proposed[43], which are shown in 

Equation 92: 
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where 𝑟 equals to the number of base points. The mean 𝜇N reflects the individual sensitivity 

information; the standard deviation 𝜎N reflects the nonlinearity or interaction with other factors. 

Usually 𝜇N is used simultaneously with 𝜎N for a reliable sensitivity analysis. This is because if a 

significant input factor has elementary effects of both positive and negative signs, 𝜇N can be small 

and close to zero (e.g. 𝐸𝐸N
� of different signs cancel out each other), but 𝜎N would still be large. In 

such cases, 𝜇N∗ can be more convenient, which is calculated as the average of the absolute values of 

the elementary effects. Generally, it is recommended[43] that all of these three metrics should be 

used together to get a thorough analysis of the sensitivity behaviors of the whole system. To 

calculate the sensitivity metrics, the sample points are chosen by following a “radial design”

[52], which proves to provide most accurate results for Morris method. Sobol’s quasi-random 

numbers[247,53] are used to generate the sample points, and the total sampling cost is 𝑟(𝑘 + 1). 

According to Iooss and Lemaître[51], 𝑟 is suggested be selected between 2 and 10. In this work, 𝑟 

is chosen as 10.  

 

To interpret the Morris results, for the input factors with large values of 𝜇 and/or 𝜎, or the input 

factors with large values of 𝜇∗, they are considered as most influential. In application, if an input 

factor has a sensitivity metric value smaller than 10% of the largest value of all the metric’s values, 

that input factor is considered to be non-influential[43,54].  

 

5.2.2 PRCC Method 

Partial Rank Correlation Coefficient (PRCC) is an extension of Partial Correlation Coefficient 

(PCC) for sensitivity analysis. In statistics, PCC is a measure of the strength of the linear 

relationship between two variables when all linear effects of other variables are removed[55]. To 

determine whether an input (e.g. 𝑋N) is strongly linearly correlated with the output (e.g. 𝑌), first 
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build two multivariate linear regression models for both the input 𝑋N and 𝑌, and then PCC is 

calculated as the correlation of the residual of 𝑋N and 𝑌, which is shown in Equation 93. 

 
𝑋5 = 𝑐| + 𝑐�𝑋�

�

�{o,��N

	

𝑌 = 𝑏| + 𝑏�𝑋�

�

�{o,��N

	

𝑃𝐶𝐶 = 𝐶𝐶(𝑋N − 𝑋5, 𝑌 − 𝑌) 

(93) 

Because PCC is based on the assumption that there exists a linear relationship between the input 

and output, it is not suitable for nonlinear models. However, if the relationship between input and 

output is nonlinear but monotonic, we can use rank transformed data of the input and output (e.g. 

replacing the raw data with their ranks) to transform the nonlinear relationship into a linear 

relationship[248]. With the rank transformed data, we can build the multivariate linear regression 

models (described in Equation 93) and calculate partial rank correlation coefficient (PRCC) to 

measure the sensitivity information. PRCC is suitable for both linear models and nonlinear but 

monotonic models.  

 

PRCC is a standardized sensitivity measurement with values between -1 and 1. For those will 

positive values, the output will increase as the input increases. While for those will negative values, 

the output will decrease as the input increases. Latin Hypercube Sampling (LHS)[249] is used to 

sample the data points. To get accurate sensitivity analysis results, the sampling cost should be 

larger than 50𝑘, where 𝑘 is the number of input factors[51]. Those input factors with PRCC values 

close to 1 or -1 are identified as influential. 
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5.2.3 Sobol’ Method 

Sobol’ method is a variance-based global sensitivity analysis method, which describes how the 

variance of output can be decomposed into terms depending on input factors and their 

interactions[51]. Sobol’ method generally uses two metrics to measure the sensitivity information, 

which are Si (first-order effect) and STi (total effect), as are defined by Equation 94: 

 
𝑆N =

𝑉¡¢ 𝐸𝑿~¢ 𝑌 𝑋N
𝑉 𝑌

	

𝑆�N = 1 −
𝑉𝑿~¢ 𝐸¡¢ 𝑌 𝑿~N

𝑉 𝑌
=
𝐸𝑿~¢ 𝑉¡¢ 𝑌 𝑿~N

𝑉 𝑌
 

(94) 

where 𝑉 ∗  represents the variance; 𝐸(∗) represents the expected value; 𝑋N is the 𝑖th input factor; 

𝑌 is the output variable; 𝑿~N represents all possible combination of input values with 𝑋N being fixed. 

𝑆N indicates the main effect of 𝑋N in the variance of the output. 𝑆�N is called total effect, which 

considers all the effect terms (first-order and higher-order interactions) that include the input factor 

𝑋N. It is derived as the difference between 1 (i.e. sum of all possible sensitivity terms) and 

¥𝑿~¢ ¦§¢ 𝑌 𝑿~N
¥ �

 (i.e. all terms of any order that do not include 𝑋N). 

In this work, a more efficient strategy is used to calculate these two metrics[58], which is shown in 

Equation (95): 

 

𝑆N =

1
𝑁 𝑓 𝑩 � 𝑓 𝑨𝑩

N
�
− 𝑓 𝑨 �

«
�{o

𝑉 𝑌
	

𝑆�N =

1
2𝑁 𝑓 𝑨 � − 𝑓 𝑨𝑩

N
�

t
«
�{o

𝑉 𝑌
 

(95) 

where 𝑨 and 𝑩 are two matrices (Equation 27), each consisting of N rows of different sample 

points, 𝑨𝑩
(𝒊) is a matrix in which the 𝑖th column of 𝑨 is substituted by the 𝑖th column of 𝑩.  
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 (96) 

Sobol’s quasi-random number[247,53] is used to generate the sampling points, and the total 

sampling cost should be larger than 500(𝑘 + 2) for accurate estimate of 𝑆N and 𝑆�N.[43] 

To interpret Sobol’s results, as both metrics are within the range of [0, 1], the larger the value is, 

the more influential the input factor is. The condition 𝑆�N = 0 is necessary and sufficient for 𝑋N to 

be a noninfluential factor[43]. As 𝑆N ≤ 𝑆�N, the difference between 𝑆N and 𝑆�N reflects the influence 

of the interaction effects on the variance of the output.  

 

5.3 Feasibility Analysis 

After applying sensitivity analysis to identify the subset of most influential input factors, feasibility 

analysis can be conducted on this subset of input to characterize the design space of the process. 

Mathematically, the feasibility of a process can be defined in the following manner. Given a process 

with 𝐽 constraints, we define that the 𝑗th constraint  𝑓� 𝑑, 	𝜃  is met if 𝑓� 𝑑, 	𝜃 ≤ 0, where 𝑑 

represents the design variables (e.g. equipment geometry) which are usually constant parameters 

after a process is determined;	𝜃 represents all the uncertain variables (e.g. blade speed, flow rate, 

etc.) A feasible process needs to meet all the constraints, meaning that 𝑓� 𝑑, 	𝜃 ≤ 0 for all 𝑗 ∈ 𝐽. 

To check whether there is a violation of any constraints, we simply need to check the maximum 

value of all the constraint function values, which can be defined with a “feasibility function”[44] 

in Equation 97.  

 𝜓 𝑑, 𝜃 = 	max
�∈Æ

	{𝑓� 𝑑, 𝜃 } (97) 

The objective of feasibility analysis is to identify the feasible region where	𝜓 𝑑, 𝜃 ≤ 0. Feasibility 

analysis problems have been well investigated by the process systems engineering community, and 

a good review of the recent advances on this topic can be found in Grossmann, Calfa et al.[44]. 
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5.3.1 Surrogate-based method 

The feasibility analysis problem can be rather difficult when the simulation is computationally 

expensive, which is usually the case for an integrated flowsheet model. To address such difficulties, 

the surrogate-based adaptive sampling approach can be used to efficiently explore the uncertain 

parameter space and identify the feasible region with high accuracy. This approach builds a 

surrogate as a computationally cheap approximation to the original flowsheet model, and use this 

surrogate to predict the feasible region. To make the best use of the sampling budget, the adaptive 

sampling strategy is used to iteratively sample new points in promising regions and update the 

surrogate. In this work, we applied a recently published RBF-based adaptive sampling method to 

solve the feasibility analysis problem for the integrated flowsheet model, which was shown to 

outperform the other surrogate-based approaches[246]. The RBF-based adaptive sampling method 

is briefly described below. The readers are referred to the original work by Wang and 

Ierapetritou[246] for the derivation and further details of this approach.  

 

5.3.1.1 Radial basis function (RBF) surrogate model 

Radial Basis Function (RBF)[222] uses a weighted sum of radial functions to predict the function 

value at an unsampled point (Equation 98). 

 
𝑠_ 𝑥 = 𝜆N𝜙 𝑥 − 𝑥N t + 𝑏�𝑥 + 𝑎

_

N{o

 (98) 

where 𝑥o, 𝑥t, … 𝑥_ ∈ 𝑅l are n distinct sample points with known function values 𝑓 𝑥o , 𝑓 𝑥t ,…

,	𝑓 𝑥_ ; || ∗ ||t represents the Euclidean distance; 𝜙 is the basis function. In this work, we choose 

to use cubic basis function with the form in Equation 99. 

 𝜙 𝑟 = 𝑟� (99) 

The model coefficients 𝜆N, 𝑏, and 𝑎 can be obtained by Equation 100. 
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 Φ 𝑃
𝑃� 0

𝜆
𝑐 = 𝐹

0  (100) 

where Φ is the 𝑛 by 𝑛 matrix with ΦN� = 𝜙 𝑥N − 𝑥� t
, and the rest terms are expressed as 

follows. 

 

𝑃 =

𝑥o� 1
𝑥t�
⋮
𝑥_�

1
⋮
1 _×(l�o)

, 𝜆 =

𝜆o
𝜆t
⋮
𝜆_ _×o

, 𝑐 =

𝑏o
𝑏t
⋮
𝑏l
𝑎 l�o ×o

, 𝐹 =

𝑓(𝑥o)
𝑓(𝑥t)
⋮

𝑓(𝑥_) _×o

   

For an unsampled point 𝑦, an error indicator “1/𝜇_ 𝑦 ”[246] is used to reflect the uncertainty 

of prediction, where 𝜇_ is the coefficient of the new term  𝜙 𝑥 − 𝑦 t  in the surrogate 𝑠_ 𝑥  if  

a new (unsampled) point 𝑦 is added. 𝜇_ is calculated as the nth element of vector 𝑣, and 𝑣 can be 

calculated using Equation 101. 

 Φm 𝑃m
𝑃m� 0 𝑣 =

0_
1

0l�o
,Φm =

Φ 𝜙m
𝜙m� 0 , 𝑃m =

𝑃
𝑦� 1 ,	

(𝜙m)N = 𝜙 𝑦 − 𝑥N t , 𝑖 = 1,2, … , 𝑛. 

(101) 

 

5.3.1.2 Adaptive sampling 

Adaptive sampling can be used to improve the accuracy of the surrogate model without the need to 

exhaustively sample the whole input space of the original simulation model[65]. New sample points 

are chosen by maximizing a modified expected improvement function (Equation 102). 

 
max
b

𝐸𝐼LK[Z 𝑥 = 𝑠×𝜙	
−𝑦
𝑠

= 	𝑠×
1
2𝜋

𝑒f|.Ô(
m�
Z�) (102) 

where 𝐸𝐼LK[Z 𝑥  is the modified EI function value at	𝑥; 𝑦 is the surrogate model predictor;	𝑠 is the 

standard error of the predictor; 𝜙(∗) represents the standard normal density function. For the RBF-

based method, 𝑠 is replaced with o/û
üýþÿ!

, which is calculated with Equation 103. 
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∗
max 𝑅𝐵𝐹|
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max 𝑅𝐵𝐹| t /𝑛𝑢𝑚𝐼𝑛𝑖𝑃𝑡𝑠t
 

(103) 

where max	(1/𝜇|) is the maximum value of 	(1/𝜇|) with the initial RBF model; max 𝑅𝐵𝐹|  is 

the maximum value of RBF predictor with the initial RBF model; 𝑛𝑢𝑚𝐼𝑛𝑖𝑃𝑡𝑠 is the number of 

initial sample points. 

 

If we take the derivative of 𝐸𝐼LK[Z, we would notice that its value is large when the surrogate 

predictor 𝑦 is close to zero, and also when prediction uncertainty 𝑠 is high. Therefore, by solving 

the optimization problem (102) iteratively, we can sample new points near the feasible region 

boundary of the surrogate (e.g. 𝑦 being 0) as well as sample new points in the highly uncertain 

regions (e.g. 𝑠 being large)[246]. In other words, the adaptive sampling will keep a balance between 

local search and global search for the feasible region boundary, which is the key to the efficiency 

and accuracy of the surrogate-based feasibility analysis strategy.  

 

The algorithm of conducting the RBF-based adaptive sampling approach for feasibility analysis is 

shown in Figure 30, which mainly consists of three steps. Step #1: build an initial surrogate model 

with sample points from a space-filling design of experiment (DOE), e.g. a rectangular grid 

sampling plan[246,65], so that the sample points are selected to cover the whole input space as 

uniformly as possible[250]. And use the initial surrogate to calculate the scale factor. Step #2: 

improve the surrogate model by adding new points iteratively based on the “adaptive sampling” 

strategy. The adaptive sampling will terminate if the iteration exceeds an upper bound defined by 

users. Step #3: use the improved surrogate model to predict the feasible region of the original 

model.  
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Figure 30. Algorithm of the RBF-based adaptive sampling approach for feasibility analysis 

 

5.4 Analysis of the Direct Compaction line for production of pharmaceutical tablets  

5.4.1 Sensitivity Analysis Results 

Sensitivity analysis is conducted when the simulated process is at steady state. With the integrated 

flowsheet model (Figure. 5), we take into account 22 input factors, which include material 

properties (e.g. bulk density, true density, particle size distribution), operation conditions (e.g. flow 

rate set point, blade speed, tablet die fill depth), and tablet geometry (e.g. tablet thickness). Note 

that “tablet die fill depth” is the height of powder in the die before compression, which 

determines the total weight of each tablet. In comparison, “tablet thickness” is the actual 

thickness of each tablet after the compression, which is a geometry parameter. These input factors 

are chosen because they are the main factors that can determine the output variables of interest. The 

input factors are considered to vary uniformly within the ranges listed in Table 1. In this work, the 

ranges are selected as +/- 5% of the nominal values, which are set depending on the actual 
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production requirements. For example, the flow rate set points (30 kg/hr in total) in the table are 

chosen based on the production capacity of the plant in the lab, which leads to a production rate of 

3.7379×100	tablets per day. The co-mill blade speed is set to a relatively low value to prevent over 

shearing. Accordingly, the sensitivity analysis investigates the input factors’ influence on 20 output 

variables, which include blends’ material properties (e.g. mean bulk density, mean true density, 

mean particle size distribution), operation safety (e.g. mass hold up at steady state, tablet 

compression pressure), mixing characterization (e.g. mean residence time), and tablet product 

qualities (e.g. API concentration, weight, hardness). The output variables are listed in Table 11.  

 

Table 10. 22 input factors for sensitivity analysis 

Input Nominal LB UB Unit 

API flow rate 3 2.85 3.15 kg/hr 

API bulk density 250 237.5 262.5 kg/m3 

API true density 2100 1995 2205 kg/m3 

API d10 38 36.1 39.9 μm 

API d50 75 71.25 78.75 μm 

API d90 125 118.75 131.25 μm 

EXP flow rate 26.7 25.365 28.035 kg/hr 

EXP bulk density 400 380 420 kg/m3 

EXP true density 2500 2375 2625 kg/m3 

EXP d10 30 28.5 31.5 μm 

EXP d50 120 114 126 μm 

EXP d90 250 237.5 262.5 μm 

LUB flow rate 0.3 0.285 0.315 kg/hr 
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LUB bulk density 200 190 210 kg/m3 

LUB true density 1900 1805 1995 kg/m3 

LUB d10 70 66.5 73.5 μm 

LUB d50 150 142.5 157.5 μm 

LUB d90 270 256.5 283.5 μm 

Co-mill blade speed 1120 1064 1176 RPM 

Blender blade speed 250 237.5 262.5 RPM 

Tablet fill depth 0.01 0.0095 0.0105 m 

Tablet thickness 0.0025 0.002375 0.002625 m 

 

Table 11. 20 output variables for sensitivity analysis 

 

Output Unit 

B
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Mean residence time s 

Delay time s 

Mass holdup SS kg 

Mean true density kg/m3 

Mean bulk density kg/m3 

MeanD10 μm 

MeanD50 μm 

MeanD90 μm 

C
o-

m
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MeanD10 μm 

MeanD50 μm 

MeanD90 μm 
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5.4.1.1 Results of Morris’ and PRCC methods  

We first implement Morris’ method using 230 (=10*(22+1)) sample points, which are sampled by 

using Sobol’s quasi-random numbers. The results are shown in the supplementary material [URL 

will be inserted by publisher], which shows that 14 input factors are identified as influential. 8 

material properties include: API bulk density, API true density, API d50, Excipient bulk density, 

Excipient true density, Excipient d10, Excipient d50, and Excipient d90. 6 operation conditions 

include: API flow rate, Excipient flow rate, Co-mill blade speed, Blender blade speed, Tablet fill 

depth, and Tablet thickness.  

 

From the results, we notice that the material properties and flow rate set points of API and Excipient 

have a major influence on the output variables. This finding is expected because these two 

components account for 99% of the entire mixed flow (approximately 89% Excipient and 10% 

API) in the simulation. Co-mill blade speed and blender blade speed are influential because they 

directly affect the residence time distribution and mass-hold up within each equipment. In addition, 

Mean bulk density kg/m3 

Mean true density kg/m3 

Mean residence time s 

Mass holdup SS kg 

Ta
bl

et
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ss

 

Concentration % 

Weight kg 

Hardness kp 

Main compression 

pressure MPa 

Pre-compression pressure MPa 
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tablet fill depth determines the materials that are fed to produce each tablet, which directly affects 

the tablet weight. Together with the influence of tablet thickness, these two parameters can greatly 

impact the tablet hardness and operation safety factors (e.g. compression pressure).  

 

We then implement the PRCC method using 1100 (=55*22) LHS sample points, with results 

visualized using an intensity plot (Figure. 31). In this intensity plot, the blue color indicates a 

negative effect of input on the output, and the red color indicates a positive effect. A darker color 

suggests there exists a stronger correlation between the input and the output. From the results, we 

can notice that PRCC identifies almost the same subset of most influential input factors as the 

results from Morris’ method, with an addition of “lubricant d50” which may have a strong effect 

on the “mean d50” of the blends out of the blender.  

 

Figure 31. PRCC results on the DC line.  
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5.4.1.1.1 Results of Sobol’s method 

After using Morris method and PRCC method to identify the subset of most influential input 

factors, practically we can implement Sobol’s method on the subset of input factors identified as 

influential to get a quantitative sensitivity analysis. However, for the purpose of verifying the 

results of the Morris’ and PRCC methods, we implement Sobol’s method on all of the 22 input 

factors for sensitivity analysis. The Sobol’s sensitivity analysis results are shown in Figure 32. Here 

only the values of total effect sensitivity index 𝑆�N are shown, since the values of the first-order 

effect 𝑆N are found to be very close to 𝑆�N, which indicates that the interaction effects between each 

input is so weak, compared to the first-order effect, that can be ignored in this case study.  

 

The Sobol’s method identified 10 input factors to be most influential. 4 material properties include: 

Excipient bulk density, Excipient true density, Excipient d50, and Excipient d90. 6 operation 

conditions include: API flow rate, Excipient flow rate, Co-mill blade speed, Blender blade speed, 

Tablet fill depth, and Tablet thickness.  

 

All these 10 input factors have been pre-identified as influential by Morris and PRCC methods, 

which suggests both of these methods are reliable for screening purposes in this case study. It 

should be noted that the mean residence time of the co-mill is more sensitive to blade speed than 

to flow rate. However, this is not the case for the mean residence time of the blender, in which flow 

rate plays a major role. One possible explanation for this is the different ranges of the blade speeds. 

For the co-mill, the blade speed is so fast (over 1000 rpm) that it can always quickly transfer the 

powder materials to the subsequent unit, without being much affected by the varying flow rate 

within its ranges. On the other hand, the blade speed of the blender (around 250 rpm) is not so fast, 
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and in this case the flow rate contributes mostly to the variance in the mean residence time of the 

blender.  

 

Note that the sensitivity analysis results are highly affected by the ranges that are set by users[43]. 

With the same flowsheet model, a change in the input ranges can result in a completely different 

set of sensitivity indices values. Therefore, when applied to real-life cases, the ranges of input 

factors must be carefully chosen according to the actual production conditions. In terms of 

computation costs, the calculation of sensitivity metrics is fast for all the three mentioned methods, 

which can usually be completed within seconds of CPU time. It is running the simulations that 

takes the majority of the overall computational time. Therefore, when the simulation is 

computationally costly, it can be unaffordable to directly use variance-based method (Sobol’s 

method) on the full set of input factors, which requires a large number of sample points. An 

alternative is to first implement the screening methods (Morris and/or PRCC) with a small number 

of sample points to get the preliminary sensitivity information and find the subset of most 

influential input factors. Then, use the Sobol’s method on the subset of influential input in order to 

get a more detailed and quantitative sensitivity information. Note that for screening purpose, Morris 

and PRCC can usually be used together so as to extensively extract the sensitivity information. 

However, if it is unknown whether the relationship between input and output is monotonic, it is 

suggested only apply Morris method.  



	

127	
	

 

Figure 32. Sobol’s total effect sensitivity index (𝑆�N) on the DC line.  

 

5.4.2 Surrogate-based Feasibility Analysis Results 

Following the sensitivity analysis results, 10 most influential factors should be taken into account 

for the feasibility analysis. Considering that for a process with specified component materials the 

material properties have constant values, when conducting the feasibility, we only investigate the 

6 operating conditions and fix the remaining 4 material properties at their nominal values (Table 

12). The constraints on the output variables are set as +/-5% of the nominal values, which are shown 

in Table 13. This gives us a 6D feasibility analysis problem with 40 inequality constraints based on 

the flowsheet model. To visualize the feasible region in high dimensions, we use a matrix of contour 

plots to describe feasibility, which is in the same manner by Forrester, Sobester et al.[251] The 

matrix consists of 15 contour plots, each of which depicts the feasibility of two distinct input 
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factors, with the rest four input fixed at the base line values. The base line can be any base case of 

interest, and may usually be chosen as the center point of the input space. We apply the surrogate-

based feasibility analysis strategy to each pair of the input factors. In each of the 15 cases, 49 grid 

sample points are used to build the initial surrogate model, with an additional 100 adaptive sample 

points to improve the surrogate accuracy. This sampling budget is used because it is shown to 

provide accurate prediction even in highly nonconvex case studies[246].  

 

Table 12. Ranges for 6 uncertain variables and nominal values for the remaining 4 material 

properties 

Input LB UB Unit 

API flow rate  2.85 3.15 kg/hr 

EXP flow rate  25.365 28.035 kg/hr 

co-mill blade speed 1064 1176 RPM 

blender blade speed 237.5 262.5 RPM 

TP fill depth 0.0095 0.0105 m 

TP thickness 0.002375 0.002625 m 

Fixed material properties Nominal values Unit 

EXP bulk density  400 kg/m3 

EXP true density 2500 kg/m3 

EXP d50 120 µm 

EXP d90 250 µm 

 

Table 13. Constraints for 20 output variables 

 

Output LB UB Unit 
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Mean residence time 15.609 17.252 s 

Delay time 26.797 29.618 s 

Mass holdup SS 0.402 0.444 kg 

Mean true density 2331.300 2576.700 kg/m3 

Mean bulk density 363.850 402.150 kg/m3 

Mean d10 16.908 18.688 µm 

Mean d50 110.010 121.590 µm 

Mean d90 203.112 224.492 µm 

C
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Mean d10 15.645 17.291 µm 

Mean d50 109.682 121.227 µm 

Mean d90 203.719 225.163 µm 

Mean bulk density 365.606 404.091 kg/m3 

Mean true density 2500.707 2763.939 kg/m3 

Mean residence time 21.922 24.229 s 

Mass holdup SS 0.181 0.200 kg 
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Concentration 9.5 10.5  % 

Weight 1.8289e-04 2.0214e-04 kg 

Hardness 4.465 4.935 kp 

Main compression 

pressure 
151.711 167.681 MPa 

Pre-compression pressure 46.735 51.655 MPa 

 

The results of the surrogate-based feasibility analysis are shown in Figure 33. From the results, we 

can notice that the input factors “API flow rate (FRAPI)”, “Excipient flow rate (FRExp)”, “

Blender blade speed (RPMblender)” are feasible almost over their whole ranges. The pair “Blender 
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blade speed (RPMblender)” – “API flow rate (FRAPI)” is feasible everywhere in the input ranges 

(contour in row 3, column 1). The other two pairs, namely “Excipient flow rate (FRExp)” – “

API flow rate (FRAPI)” (contour in row 1, column 1) and “Blender blade speed (RPMblender)” – 

“Excipient flow rate (FRExp)” (contour in row 3, column 2), also have feasible regions covering 

the majority of the space. This indicates that the process can tolerate most of the variations in these 

three input factors while remaining process robustness. On the other hand, the remaining three input 

factors “Co-mill blade speed (RPMco-mill)”, “tablet fill depth (FillDepth)”, and “tablet 

thickness (Thickness)” only have very narrow feasible regions. Especially for the two pairs, “

Tablet fill depth (FillDepth)” – “Co-mill blade speed (RPMco-mill)” (contour in row 4, column 

3) and “Tablet thickness (Thickness)” – “Co-mill blade speed (RPMco-mill)” (contour row 5, 

column 3), the feasible regions only take up small center areas. The co-mill blade speed has narrow 

feasible regions because it can drastically affect the mean residence time when it’s operated close 

to the minimum blade speed (in this case, 𝜔^N_ = 999 RPM). On the other hand, the variations in 

tablet fill depth and thickness set point can cause large deviations from nominal values of tablet 

properties, such as tablet weight and hardness, and compression force. Therefore, the variations in 

these three input factors can most likely cause potential violations of the process constraints, such 

as process safety issues or product quality defects.  

 

The matrix of feasibility contour plots gives a straightforward view on the extent to which the 

process is capable of tolerating the process variations while maintaining feasibility. Additionally, 

it also indicates where control strategies are needed to ensure better process robustness and product 

quality. The feasible regions can be used to guide the choice of target values of control variables 

when the process is experiencing deviations from normal production conditions.   
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To summarize the usage of sensitivity analysis and feasibility, sensitivity analysis tells us whether 

there’s strong relationship between a certain input and output (screening methods), and the 

percentage that a certain input can contribute to the output variations (variance-based methods). 

Meanwhile, feasibility analysis indicates how large the variations in the output can be when 

changing the input factors, which in turn gives us the maximum ranges of the input (design space) 

that the process can tolerate while maintaining process robustness. While sensitivity and feasibility 

investigates the process from different angles, the combined analysis results give us a thorough 

understanding of the whole manufacturing process.   

 

Figure 33. Contour plots of the feasibility of the DC line flowsheet model. (The red dotted line is 

the feasible region boundary. The area within the red dotted is the feasible region with feasibility 

function values less than or equal to zero.) 
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5.5 Optimization of the Direct Compaction line using flowsheet models 

After conducting the process analysis, our final goal is to find the optimal operation conditions that 

result in minimum total operation cost. In order to correctly define the optimization problem, we 

need to look back at the actual pharmaceutical manufacturing process. To operate the process in a 

continuous manner, the feeders need to be refilled manually at a certain frequency. This procedure 

is unavoidable and can lead to temporal variations in the feeder outlet flow rate, which will 

propagate along the whole process[49]. Even though the variations are only temporal and will not 

affect the steady state feasibility, there is a possibility that such variations may cause temporal 

unqualified products, which need to be disposed and increase the waste costs. Therefore, the refill 

strategy must be considered when defining the optimization problem.  

 

We define the refill strategy (RS) as the fill level of the feeder, below which the refill starts to take 

place. The refill will automatically stop once the fill level is over 90%. From the results of 

sensitivity analysis, we have identified the flow rate of API and Excipient as influential. Therefore, 

we add two more decision variables, 𝑅𝑆8Tö and 𝑅𝑆¦b�, when formulating the optimization problem. 

With this adjustment, the optimization problem can be defined as follows:  

 min
ê,9Q:;<,9Q=>?

𝑐𝑜𝑠𝑡ECE[Y = 𝑐𝑜𝑠𝑡^[EKRN[Y + 𝑐𝑜𝑠𝑡DENYNEm + 𝑐𝑜𝑠𝑡S[ZEK	

𝑠. 𝑡.	

𝜓 𝜃 ≤ 0	

TabletProductionRate 𝜃, 𝑅𝑆8Tö, 𝑅𝑆¦b� ≥ DesiredProductionRate	

𝜃Yq ≤ 𝜃 ≤ 𝜃Dq	

𝑅𝑆8TöYq ≤ 𝑅𝑆8Tö ≤ 𝑅𝑆8TöDq 	

𝑅𝑆¦b�Yq ≤ 𝑅𝑆¦b� ≤ 𝑅𝑆¦b�Dq 	

𝜃 = {𝐹𝑅8Tö, 𝐹𝑅¦b�, 𝑅𝑃𝑀MCf^NYY, 𝑅𝑃𝑀qYK_lKR, 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝐹𝑖𝑙𝑙𝐷𝑒𝑝𝑡ℎ} 

(104) 
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The objective total cost considers the operation cost of a 24-hour continuous manufacturing time. 

Specifically this includes the following three components: the material cost calculated based on the 

market price of the component materials; the utility cost and waste cost calculated according to 

Schaber, Gerogiorgis et al.[238], which suggests utility cost as $1.50/kg material input, and waste 

cost as $10.36/kg material input (adapted for the materials in this work). The inequality constraints 

mainly include the steady-state feasibility and the production rate of qualified tablet products. In 

this optimization problem, the generation of waste is implicitly affected by the decision variables 

and is very difficult to be expressed with an explicit model equation. This causes the two terms, 

namely “𝑐𝑜𝑠𝑡S[ZEK” and “TabletProductionRate”, to be black-box terms, for which we do 

not have easy access to the exact model expressions. The bounds of the decision variables are listed 

in Table 14, and the desired tablet production rate is 0.95×3.7379×100 tablets per day.  

 

Table 14. Bounds of the decision variables 

Input LB UB Unit 

𝐹𝑅8Tö  2.85 3.15 kg/hr 

𝐹𝑅¦b�  25.365 28.035 kg/hr 

𝑅𝑃𝑀MCf^NYY 1064 1176 RPM 

𝑅𝑃𝑀qYK_lKR 237.5 262.5 RPM 

𝐹𝑖𝑙𝑙𝐷𝑒𝑝𝑡ℎ 0.0095 0.0105 m 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 0.002375 0.002625 m 

𝑅𝑆8Tö 10 70 % 

𝑅𝑆¦b� 10 70 % 

 

This optimization problem is solved in Matlab 2015a with tomlab/conopt solver[252], using the 

mid-point (nominal values) as the initial guess. The interface “gO: MATLAB”[253] is used to 
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automatically communicate between Matlab and gPROMS at each function call during the 

optimization process. The flowsheet model in gPROMS consists of 5315 model equations (not 

including equations for initial conditions). In terms of the computational cost, each function call of 

gPROMS simulation takes approximately 30 to 60 seconds (cpu time) depending on the values of 

simulation input. With the formulated optimization problem (104), the feasible optimal solution is 

found after 39 iterations (1315 function evaluations), which is listed in Table 15. The minimum 

total cost is $ 94515.9 per day.  

 

Table 15. Optimal operation conditions 

Input Optimal Values (lb - ub) Unit 

𝐹𝑅8Tö  2.9119 (2.85 – 3.15) kg/hr 

𝐹𝑅¦b�  25.5759 (25.365 – 28.035) kg/hr 

𝑅𝑃𝑀MCf^NYY 1112.6 (1064 - 1176) RPM 

𝑅𝑃𝑀qYK_lKR 240.7924 (237.5 – 262.5) RPM 

𝐹𝑖𝑙𝑙𝐷𝑒𝑝𝑡ℎ 0.01 (0.0095 – 0.0105) m 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 0.0025 (0.002375 – 0.002625) m 

𝑅𝑆8Tö 40 (10 – 70)  % 

𝑅𝑆¦b� 39.88 (10 – 70) % 

 

It should be noticed that the flow rate of API and Excipient are both lower than their nominal 

values. This is because by using small flow rate the material and utility cost are reduced. 

Accordingly, the co-mill blade speed and blender blade speed slightly deviate from the nominal 

values, which will help ensure feasibility in terms of steady mass hold-up and mean residence time. 

On the other hand, the fill depth and thickness of the tablet press are strictly at their nominal values. 

From the feasibility analysis results, we know these two variables have very small feasible regions, 
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and thus need to stay near the nominal values in order to keep feasibility. Finally, in terms of the 

refill strategy, we notice that the optimal solution suggests both API and Excipient feeders start to 

refill around the level of 40%. Even though a more frequent refill strategy can generate even smaller 

variations in the flow rate[254], this won’t be necessary for the current process, because the 

variations can be dampened by the blender. This can be seen from Figure 34, which shows the 

concentration at the inlet (blue line) and the outlet (red line) of the blender at the current optimal 

operating conditions. For simplicity, we only show the first 1000 seconds of simulation. While we 

can notice very large variations at the inlet, they are dampened into much smaller ones after the 

materials transfer to the outlet of the blender.  

 

Figure 34. Dynamic simulation results of the concentration at inlet and outlet of the blender. (a) 

API concentration; (b) Excipient concentration; (c) Lubricant concentration.  

 

At the optimal operation conditions, the dynamic simulation results of the tablet product properties 

within the first 1000 seconds of manufacture are shown in Figure 35. (a), (b) and (c). The solid 

lines are the simulation results, and the dashed lines are the upper and lower bounds of the product 

qualities. (d) shows the index of the waste. When any of the three quality constraints is violated, 

the waste index is assigned the value of 1, meaning that such products are not qualified and need 

to be disposed. From the figure we can see that at the optimal operation condition, the only waste 

products are produced during the starting stage (40s to 100s), when the tablet weights are lower 

than the target values. As soon as the process arrives at its steady state, the process does not generate 
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any more waste products. Even though there exist variations resulted from feeder refill, they are 

within the bounds of the tablet product qualities. Because the refills occur periodically, we can 

anticipate that the process will not generate any more unqualified products after the 1000 seconds.  

 

 

Figure 35. Dynamic simulation results of tablet properties at the optimal operation conditions. (a) 

API concentration; (b) tablet weight; (c) tablet hardness; (d) waste index. (Solid line: simulation 

results. Dashed lines: upper and lower bounds of the quality constraints).  

 

5.6 Conclusion 

This work proposed a systematic way to conduct process analysis and optimization using a 

flowsheet model of a continuous DC pharmaceutical manufacturing process. Global sensitivity 

analysis is first implemented to analyze the effects of the 22 input factors on the 20 outputs, and 
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narrow down to a subset of 10 input factors which contribute most to the variations in the output. 

To reduce the overall sampling cost, the combination of screening methods (Morris and/or PRCC) 

and a variance-based method (Sobol’s) can be used to obtain the sensitivity information. Then, 

feasibility analysis is conducted to identify the feasible region (design space) of the process. A 

surrogate-based adaptive sampling approach is used to improve the efficiency and accuracy of the 

feasibility analysis, which is especially suitable for computationally expensive models. The 

feasibility analysis results provide a general view on the process capabilities of conserving 

robustness when facing variations in the input, and can direct the research in developing control 

strategies. Finally, process optimization is conducted to find the optimal operation conditions and 

refill strategy, in order to minimize the total operation costs. Future work includes improving the 

unit models, and developing strategies for process analysis to consider noises in the output. 
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IV. Process analysis and optimization for 

stochastic systems 
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6 Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic 

noise variances 

Abstract 

Feasibility analysis has been developed to evaluate and quantify the capability that a process can 

remain feasible under uncertainty of model inputs and parameters. It can be conducted during the 

design stage when the objective is to get a robust design which can tolerate a certain amount of 

variations in the process conditions. Also, it can be used after a design is fixed when the objective 

is to characterize its feasible region. In this work, we have extended the usage of feasibility analysis 

to the cases in which inherent stochasticity is existent in the model outputs. With a surrogate-based 

adaptive sampling framework, we have developed and compared three algorithms that are 

promising to make accurate predictions on the feasible regions with a limited sampling budget. 

Both the advantages and limitations are discussed based on the results from five benchmark 

problems. Finally, we apply such methods to a pharmaceutical manufacturing process and 

demonstrate its potential application in characterizing the design space of the process.  

 

6.1 Introduction 

Most realistic optimization problems are characterized by a degree of uncertainty. For example, in 

chemical processes, uncertainties can exist in different sources, such as the variations of reaction 

constants, material physical properties, and fluctuations of the flow rate of inlet streams. Such 

uncertainties can propagate along the process and affect the overall process behaviors and final 

product qualities. Therefore, it is essential to account for their influence on the optimal solution. In 

the process systems engineering community, process feasibility and flexibility analysis tools have 

been developed to evaluate and quantify the ability of a system to be operated feasibly in the 
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presence of uncertainties. The concepts and formulations for feasibility and flexibility analysis are 

reviewed as follows.  

 

Halemane and Grossmann [213] mathematically defined the feasibility with a feasibility function 

𝜓(𝐷, 𝜃) in Equation (105): 

 𝜓 𝐷, 𝜃 = min
Ä
max
�∈Æ

𝑓� 𝐷, 𝑧, 𝜃 , (105) 

where 𝐷 ∈ ℝ_H represents the design variables such as equipment sizes, which are constants for a 

fixed process design; 𝜃 ∈ ℝ_I is the uncertain parameters; 𝑧 ∈ ℝ_J denotes the control variables 

that can be adjusted during operations (e.g., flow rate). 𝑓�, 𝑗 ∈ 𝐽 = 1,2, … , 𝑛L , are a set of 𝑛L 

inequality constraints (𝑓� ≤ 0) that need to be met. With this definition, 𝜓 𝐷, 𝜃  is used to 

determine whether, for a fixed parameter 𝜃, the process can be feasible by adjusting the control 

variable 𝑧, which is simply accomplished by selecting 𝑧 in order to minimize the largest value of 

𝑓�. In the cases when there are no control variables, 𝜓 𝐷, 𝜃  is reduced to Equation (106): 

 𝜓 𝐷, 𝜃 = max
�∈Æ

𝑓� 𝐷, 𝜃 , (106) 

where the feasibility function can be seen as the maximum violation of all the constraints. A process 

is only feasible in regions where 𝜓 𝐷, 𝜃 ≤ 0.  

 

Based on the definition of feasibility function, traditional flexibility analysis can be formulated as 

a “flexibility test problem” [213]: 

 𝜒 𝐷 = max
ê∈�

min
Ä
max
�∈Æ

𝑓� 𝐷, 𝑧, 𝜃 . (107) 

If 𝜒 𝐷 ≤ 0, then the process is feasible over the whole range of parameter space 𝑇. If 𝜒 𝐷 > 0, 

it means that there exist some regions where the feasible operation cannot be achieved. 
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The limitation of “flexibility test problem” is that it only reflects whether a design can be feasibly 

operated over the whole parameter range. In order to quantitatively measure the flexibility for a 

process design, Swaney and Grossmann [255,256] further proposed the formulation of “flexibility 

index problem”: 

 𝐹 = max 𝛿	

𝑠. 𝑡.			𝜒 𝐷 = max
ê∈�

min
Ä
max
�∈Æ

𝑓� 𝐷, 𝑧, 𝜃 	

𝑇 𝛿 = 𝜃: 𝜃« − 𝛿Δ𝜃f ≤ 𝜃 ≤ 𝜃« + 𝛿Δ𝜃� 	

𝛿 ≥ 0, 

(108) 

where 𝜃« is the nominal point for the uncertain parameters, Δ𝜃� and Δ𝜃f are the expected 

deviations of the uncertain parameters in the positive and negative directions; 𝛿 is a nonnegative 

scalar variable. 𝐹 is called “flexibility index”. Geometrically, 𝑇(𝐹) can be interpreted as the 

largest hyper-rectangle inscribed within the operation region where the process is guaranteed to be 

feasible. Different approaches were proposed to solve the “flexibility test problem” and “

flexibility index problem”, including vertex enumeration method [213], active-set method [214], 

and global optimization strategy [257]. Based on the “flexibility index problem”, several 

extensions have been made. Pistikopoulos and Mazzuchi [258] defined the “stochastic flexibility 

index” for problems where the uncertain parameters 𝜃 are described by a joint probability 

distribution function rather than by lower and upper bounds. Dimitriades and Pistikopoulos [259] 

further extended flexibility analysis to dynamic systems which contain time-dependent uncertain 

parameters. Adi and Chang [69] formulated a temporal flexibility analysis problem to consider the 

cumulative effects of temporary disturbances on process feasibility.  

 

The drawback for “flexibility index problem” is that 𝑇(𝐹) (i.e., the hyper-rectangle feasible 

subdomain) is not an accurate reflection of the true feasible region, and it can largely underestimate 
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a design’s feasibility in cases when 𝐹 < 1. In order to describe the true feasible region (referred to 

as the “feasibility analysis problem”), Ierapetritou [260] developed a “Quickhull algorithm" 

which constructs a convex hull of the feasible region and proposed a new metric "feasible convex 

hull ratio" to compare designs' feasibility. The key to feasibility analysis is to have an accurate 

representation of the true feasible region. To achieve this, Goyal and Ierapetritou [218] described 

a simplicial approximation method for convex cases. Banerjee and Ierapetritou [215] presented a 

𝛼-shape surface reconstruction method which can handle both convex and non-convex feasible 

regions. Adi et al. [216] used a random line search algorithm to identify feasible region boundary 

points. Michalewicz and Schoenauer [217] utilized an evolutionary algorithm to search the 

boundary of the feasible region.   

 

Surrogate-based approaches have been adopted recently for feasibility analysis. Such methods 

build a surrogate model as an efficient approximation of the original feasibility function 𝜓 𝐷, 𝜃 . 

The advantages of surrogate-based methods are multifold. First, they do not require closed-form 

constraints to conduct feasibility analysis. Instead, they treat the whole process as a black-box, and 

only inputs (i.e., uncertain parameter values) and outputs (feasibility function values) are needed 

to build a surrogate. Second, they usually only need a few data points to build the surrogate that 

can give a high accuracy in approximating the original process. Therefore, they are quite suitable 

for computationally expensive simulations. Finally, when combined with adaptive sampling 

methods, the surrogate-based approaches can be even more efficient in sampling while maintaining 

prediction accuracy. Surrogate-based methods have been mentioned in numerous papers on 

feasibility analysis. Banerjee et al. [219] demonstrated a high dimensional model representation 

(HDMR) approach to approximate the black-box process and find the feasible region in the original 

problem dimension. Boukouvala et al. [18] compared the accuracy of different surrogate models in 

predicting the design space of pharmaceutical processes. Boukouvala and Ierapetritou developed a 
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Kriging-based adaptive sampling approach for feasibility analysis. Rogers and Ierapetritou [65,48] 

extended the Kriging-based approach to solving dynamic feasibility analysis and stochastic 

flexibility analysis problems. Wang and Ierapetritou [261] presented a Radial Basis Function (RBF-

based) adaptive sampling method that outperformed the Kriging-based approach for low-

dimensional problems.  

 

While the surrogate modeling techniques have been used in a variety of problems, there are a few 

characteristics of surrogate-based feasibility analysis that distinguish itself from other types of 

problems. Below, we list the similarities and differences between the surrogate-based feasibility 

analysis and four types of problems: 

 

(1) Global metamodeling problems use a surrogate model (metamodel) to “map” the process 

response surface (output variable) as a function of decision variables (input variables) and thus 

approximate the behavior of a complex computer simulation [262].  

Similarities 

• Both require sampling strategies to improve the approximation accuracy 

Differences 

• Surrogate-based feasibility analysis only focuses on improving modeling accuracy at (or 

near) the feasibility boundaries. 

• Global metamodeling aims to achieve high predictive accuracy across the entire input 

space 

 

(2) Surrogate-based global optimization problems rely on a surrogate model to search for the global 

optimum [67].  

Similarities 
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• Both require global search strategies to explore the unknown space, combined with local 

search strategies to exploit the regions of interest 

Differences 

• Surrogate-based feasibility analysis needs to predict the feasibility boundaries, which can 

be lines (of surfaces) that consist of infinite numbers of points 

• Surrogate-based global optimization attempts to find the global optimum, which is usually 

a single point (or a limited number of points) 

 

(3) Feasibility determination is to determine whether the performance of each alternative design, 

which can only be estimated via a stochastic simulation, exceeds a known threshold [263].  

Similarities  

• Both aim to distinguish between feasible designs (or regions) and infeasible designs (or 

regions). 

Differences 

• Surrogate-based feasibility usually considers deterministic simulations with continuous 

uncertain parameters 𝜃 ∈ ℝ_I. 

• Feasibility determination problems mostly consider stochastic simulations with discrete 

events.  

 

(4) System reliability analysis is aimed to analyze the probabilities of system success considering 

various system performances (process constraints) [264,265].  

Similarities 

• Both consider continuous uncertain parameters. 

Differences 
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• Surrogate-based feasibility analysis usually considers uncertain parameters specified by a 

fixed parameter set.  

• System reliability analysis considers uncertain parameters described by a joint probability 

density function. 

 

With the evolving concepts and formulations for flexibility and feasibility analysis, we have seen 

its applications in a variety of areas, ranging from chemical processes [44,266], pharmaceutical 

manufacturing processes [267,268], to energy systems [269], supply chain management [270,271]. 

Zhang and Grossmann [272] demonstrated the close relation between flexibility analysis and robust 

optimization for linear systems. Boukouvala and Ierapetritou [64] used feasibility analysis as a way 

to deal with black-box constraints and integrate it into a derivative-free optimization framework. 

 

Traditional feasibility analysis has been developed solely for deterministic models (or simulations). 

However, to the best of our knowledge, no research has been conducted to apply feasibility analysis 

to stochastic systems. In this paper, the term “stochastic” is used to describe the case where with 

replicated simulation runs for the same sample point, we will get different observed feasibility 

values due to random errors inherent to the simulation. Since feasibility analysis is closely related 

to optimization, and the optimization strategies for stochastic systems (generally categorized as 

“Simulation Optimization” [273]) has wide applications covering different areas from 

operations, manufacturing to medicine, engineering, etc. [273], it is important that we develop 

efficient methods to extend feasibility analysis to stochastic systems.  

 

In this work, we only consider stochastic simulations with continuous parameters 𝜃. We assume 

that the feasibility function 𝜓(𝐷, 𝜃) in Equation (106) cannot be directly observed, and can only be 
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estimated with the stochastic simulation. Thus, the user only has access to noisy observations of 

the feasibility 𝜓N(𝐷, 𝜃): 

 
𝜓N 𝐷, 𝜃 = 𝜓 𝐷, 𝜃 + 𝜔N 𝐷, 𝜃 , 

  (10

9) 

where 𝜓N 𝐷, 𝜃  is the observed feasibility function value on the 𝑖Eℎ replication of simulation 

evaluated at the parameter value 𝜃; 𝜔N(𝐷, 𝜃) is the observed noise term. In this paper, we make the 

following assumptions on the noise term, which were used in a simulation optimization literature 

[274]: the observed noises are normally distributed, centered at zero mean, and independent from 

different simulation runs: 

 𝜔N 𝐷, 𝜃 ~Norm 0, 𝜉t 𝐷, 𝜃 , (110) 

where 𝜉t(𝐷, 𝜃) is the variance of the noise term, which depends on the parameter value 𝜃, and the 

function form is assumed to be unknown. In such cases, the simulation has heteroscedastic noise 

inherently. The objective is to identify the feasible region {𝜃:	𝜓 𝐷, 𝜃 ≤ 0}, without any closed-

form expressions (i.e., no knowledge on 𝜓 𝐷, 𝜃  or 𝜉t(𝐷, 𝜃)) and the only accessible information 

is the noisy observations 𝜓N 𝐷, 𝜃  at parameter 𝜃.  

 

In this paper, we propose a surrogate-based adaptive sampling framework for the feasibility 

analysis of black-box stochastic systems. In this framework, stochastic Kriging [162] is used as the 

surrogate, and three adaptive sampling methods are developed to sequentially find the next sample 

point and improve the prediction accuracy of the true feasible region.  

 

6.2 Surrogate-based approaches for feasibility analysis 

6.2.1 Stochastic Kriging 

The Kriging model is a popular approach to approximating deterministic models and has been 

widely used in various science and engineering fields [275-277]. Kriging considers a response 
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surface as a realization of a Gaussian random field which has spatial correlations. Recently, 

Stochastic Kriging (SK) [162] was proposed as an extension to Kriging by accounting for the 

intrinsic noise associated with stochastic simulations. Aside from being used as a meta-modeling 

approach for stochastic systems, SK model also shows promising results in optimization algorithms 

for simulation optimization problems [278]. In this section, we provide a brief review on the basic 

formula for SK model. More details can be found in the original paper by Ankenman et al. [162] 

 

SK model represents the simulation output on 𝑗Eℎ replication at a sample point 𝒙 (𝒙 ∈ ℝl) as: 

 
𝑦� 𝒙 = 𝛽| + 𝑀 𝒙 + 𝜀� 𝒙 , 

  (11

1) 

where 𝛽| is a model parameter representing a constant trend; 𝑀 is a realized random field with a 

zero mean, which can be considered as 𝑀 being randomly sampled from a space of functions 

mapping ℝl → ℝ. It is assumed that the functions in this space exhibit spatial correlations: 𝑀(𝒙) 

and 𝑀(𝒙′) will tend to be similar if 𝒙 is close to 𝒙′. The correlation between 𝑀(𝒙) and 𝑀(𝒙′

) can be modeled with different forms of a correlation function. In this work, we apply the cubic 

correlation function:   

 
Corr 𝒉|𝜻 = Corr ℎN|𝜁N

l

N{o

, (112) 

where 

 

 
Corr ℎN|𝜗N =

1 − 6 ℎN /𝜗N t + 6 ℎN /𝜗N �, if	 ℎN ≤ 𝜗N/2
2 1 − ℎN /𝜗N �, if	𝜗N/2 ≤ ℎN ≤ 𝜗N

0, if	 ℎN ≥ 𝜗N
	

𝒉 = 𝒙 − 𝒙′, 𝜻 = 𝜗o, … ,𝜗l ,𝜗N > 0, and	Corr ℎN|0 ≡ 0. 

(113) 

The covariance between 𝑀(𝒙) and 𝑀(𝒙′) can thus be expressed as Cov 𝒉|𝜻 = 𝜏tCorr 𝒉|𝜻 , 

where 𝜏t can be interpreted as the variance of 𝑀 𝒙  for all 𝒙. 𝜀� 𝒙  in Equation (111) represents 
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the realized noise on replication 𝑗. In [162], 𝑀 is termed as “extrinsic uncertainty” as it is 

introduced to aid in developing the surrogate; 𝜀 is referred to as “intrinsic uncertainty” because 

it originates from the nature of stochastic simulations.  

 

For the SK model, Ankenman et al. [162] made the following assumptions: “the random field 𝑀 

is a stationary Gaussian random field, and 𝜀o(𝒙𝒊), 𝜀t(𝒙𝒊), … are independent and identically 

distributed with a normal distribution: Norm(0, 𝑉(𝒙𝒊)), independent of 𝜀�(𝒙𝒉) for all 𝑗 and ℎ ≠ 𝑖, 

and independent of 𝑀”. It is proved in [162] that such assumptions imply that for any set of 𝑘 

different sample points 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌, the random vector [𝑀 𝒙𝟏 ,𝑀 𝒙𝟐 , … ,𝑀 𝒙𝒌 ]� has a 

multivariate normal distribution with marginal mean 0, positive variance 𝜏t, and positive definite 

correlation matrix 𝑹¶.  

 

The intrinsic variance at a sample point 𝒙𝒊 can be estimated with 𝑛N replications: 

 
𝑉 𝒙𝒊 = 𝑦� 𝒙𝒊 − 𝑦(𝒙𝒊)

t
_¢

�{o

/ 𝑛N − 1 , (114) 

where 𝑦(𝒙𝒊) is the estimated mean at 𝒙𝒊, y(𝒙𝒊) = 𝑦� 𝒙𝒊_
�{o /𝑛N. Ankenman et al. [162] showed 

that the surrogate accuracy will not be sacrificed with the estimated 𝑉, as long as 𝑛N is not too small. 

 

Aside from estimating 𝑉, the model parameters (i.e., 𝛽|,𝜗o, … ,𝜗l, 𝜏t) are obtained by maximizing 

the log-likelihood (derived in Ref. [162]). Based on the assumptions for SK that were mentioned 

above, the unbiased predictor is derived as follows: 

 𝑦 𝒙 = 𝛽| + 𝜮𝑴 𝒙,∙ � 𝜮𝑴 + 𝜮𝜺
fo

𝒚 − 𝛽|𝟏𝒌 ,	 (115) 

where 𝜮𝑴 is the k-by-k covariance matrix for all the 𝑘 sample points 𝒙o, 𝒙t, …, 𝒙�; 𝜮𝑴 𝒙,∙  is k-

by-1 covariance vector with the 𝑖Eℎ element being Cov 𝒙, 𝒙𝒊 ; 𝜮𝜺 is the estimated covariance 
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diagonal matrix: 𝜮𝜺 = 𝐷𝑖𝑎𝑔{¥ 𝒙�
_�

, ¥ 𝒙�
_�

, … , ¥ 𝒙W
_W

}; 𝒚 is the k-by-1 vector with the 𝑖Eℎ element 

being 𝑦(𝒙N).  

 

SK model can also provide estimated prediction variance: 

 𝑠t 𝒙 = 𝜏t − 𝜮𝑴 𝒙,∙ � 𝜮𝑴 + 𝜮𝜺
fo
𝜮𝑴 𝒙,∙ + 𝜹�𝜹 𝟏�� 𝜮𝑴 + 𝜮𝜺

fo
𝟏�

fo
, (116) 

where 𝜹 = 1 − 𝟏�� 𝜮𝑴 + 𝜮𝜺
fo
𝜮𝑴 𝒙,∙ . The matrix 𝜮𝑴 + 𝜮𝜺  is always positive definite based 

on the assumptions made on SK model, which have been mentioned above.  

 

6.2.2 Adaptive sampling methods 

The purpose of adaptive sampling is to identify the next sample point (i.e., infill point) in the input 

space, and guide the search direction towards the promising regions. With the sequentially added 

infill points based on some infill criteria, the surrogate also gets updated. For feasibility analysis, 

the key to identifying feasible region is to accurately identify the boundary between feasibility and 

infeasibility (i.e., boundaries where 𝜓 𝐷, 𝜃 = 0). In this section, we present three infill criteria 

that can be used with SK model for feasibility analysis.  

 

6.2.2.1 Expected improvement for feasibility (𝑬𝑰𝒇𝒆𝒂𝒔) 

𝑇ℎ𝑒	𝐸𝐼LK[Z method was first proposed by Boukouvala and Ierapetritou [64], which was initially 

designed for Kriging-based feasibility analysis of deterministic models. This method determines 

the next sample point by maximizing the following objective function: 

 
𝐸𝐼LK[Z 𝒙 = 𝑠 ∙ 𝜙

𝑓E − 𝜇
𝑠

, (117) 

where 𝜇 is the Kriging predictor of the black-box feasibility function; 𝑠 is the prediction standard 

deviation; 𝜙 is the probability density function for a standard normal distribution. 𝑓E is equal to 0 
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for feasibility analysis. They called it as an “expected improvement based” (EI-based) criterion 

because it is actually the second term of the classical EI function used in the “efficient global 

optimization” (EGO) algorithm [67], with the only difference being that 𝑓E is set to 0. (Note: in 

the rest of this paper, 𝑓E is equal to 0 by default unless otherwise noted.)  

 

To understand how this infill criterion works, we can analyze the physical meanings of the two 

components of the 𝐸𝐼LK[Z function: 𝑠 and 𝜙 L^fû
Z

. 𝑠 is an indication of the prediction uncertainty; 

the probability density function 𝜙 L^fû
Z

 provides a relative likelihood of the random variable 

being equal to L^fû
Z

. 𝜙 L^fû
Z

 is largest when L^fû
Z

= 0 (i.e., 𝑓E = 𝜇). Therefore, when 

maximizing 𝐸𝐼LK[Z, it favors the area where 𝑠 is large, that is, where prediction uncertainty is high. 

This can be seen as a “global search” as it tends to sample in highly unexplored areas. On the 

other hand, maximizing 𝐸𝐼LK[Z also favors areas where 𝜙 L^fû
Z

 is larger, that is when 𝜇 is close 

to (or equal to) 𝑓E. This can be seen as a “local search” because it tends to sample near (or at) 

the feasibility boundary predicted by the current surrogate (i.e., 𝜇 = 0). Similar conclusions can 

also be drawn by analyzing the partial derivatives: 𝜕𝐸𝐼LK[Z 𝜕𝜇 and 𝜕𝐸𝐼LK[Z 𝜕𝑠. Details can be 

found in Ref. [261].  

 

In this paper, we derive 𝐸𝐼LK[Z by formally defining a new term “improvement for feasibility” 

and calculating its expected value. This procedure is closely related to the use of “expected 

improvement (EI)” [67] in global optimization. In various publications, the EI criterion is also 

termed as “average improvement” [279] or “Bayesian algorithm” [280,281], of which the 

theoretical substantiation and applications have been reviewed by Žilinskas and Zhigljavsky [279]. 
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For feasibility analysis, there are quite a few differences in the definition of “improvement” and 

the calculation of the expected value compared to the global optimization approaches.  

 

Suppose we have a Kriging model built with a set of sample points. At any unsampled point 𝒙, the 

value of 𝑦(𝒙) is not known. Such an uncertainty can be described using a Kriging model, which 

treats 𝑦(𝒙) as the realization of a normally distributed random variable 𝑌 with mean 𝜇, and variance 

𝑠t. This is demonstrated with the following one-dimensional problem (Figure 36). If we treat the 

function’s value at 𝒙∗ as a realization of the random variable 𝑌 with the density function shown in 

Figure 36, then there is probability that the function’s value will be smaller or larger than 𝜇. For 

example, if the realized value is 𝑦o, (𝑦o < 𝜇), then the deviation from the Kriging predictor is ∆o=

(𝜇 − 𝑦o); if the realized value is 𝑦t, (𝑦t > 𝜇), then the deviation is ∆t= (𝑦t − 𝜇). The deviation 

is in fact a measure of the “inaccuracy” of the Kriging predictor compared to a possible realized 

function value. 

 

Figure 36.  Demonstration of a one-dimensional Kriging model. 

 

The deviation has a wide range of possible values from 0 to ∞. Different deviations are associated 

with different density values. However, for feasibility analysis, we are not interested in all possible 

values. Instead, we are more interested in the range [|𝜇 − 𝑓E|,∞), where | ∙ | denotes the absolute 
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value. The expected value of deviations within this range evaluates the average deviations that can 

be larger than |𝜇 − 𝑓E|, which is a measure of the average uncertainty of 𝑌 to deviate further than 

𝑓E. If the value is large, then by sampling at 𝒙, we can achieve a large improvement on reducing 

the uncertainty of whether the function value is 𝑓E at the point 𝒙, which is translated to whether it 

can be the feasibility boundary at the point 𝒙. 

 

Based on the previous analysis, we give the formal definition of “improvement for feasibility 

(𝐼LK[Z)” as follows: 

 
𝐼LK[Z =

𝜇 − 𝑌, if	𝑌 ≤ 𝑓E ≤ 𝜇
0, else

𝑌 − 𝜇, if	𝑌 ≥ 𝑓E > 𝜇.
 (118) 

As we have mentioned above, 𝐼LK[Z is in fact the possible realized deviation (i.e., “inaccuracy” 

of the Kriging predictor) that is defined only in the range {𝑌: 0 < 𝑓E − 𝜇 ≤ 𝑌 − 𝜇 <∞ ∪ 0 ≤ 𝜇 −

𝑓E ≤ 𝜇 − 𝑌 <∞}. There are several things we should note for this definition: (1) In Equation 

(118), 𝑌 is a random variable which models the uncertainty around the black-box function’s value 

at 𝒙 (remember that with Kriging model, 𝑌 is normally distributed: 𝑌~Norm(𝜇, 𝑠t)); therefore, 

𝐼LK[Z is also a random variable; and (2) 𝐼LK[Z always has a non-negative value by definition.  

 

The expression for the expected value of 𝐼LK[Z (i.e., 𝐸 𝐼LK[Z(𝑌) ) can be obtained following the 

similar procedures that were considered in Ref. [67,282]. After derivation, we can get the same 

expression that is shown in Equation (117). Details on the derivation can be found in Appendix A 

of this paper.  

 

The geometric interpretation of defining 𝐼LK[Z with Equation (118) is shown in Figure 29. Here, we 

only discuss the case when 𝑓E ≤ 𝜇. The other case of 𝑓E > 𝜇 can be explained in a similar way by 
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symmetry. We know by definition that 𝐸 𝐼LK[Z(𝑌) = 𝐼LK[Z 𝑌 𝑃𝐷𝐹 𝑌 𝑑𝑌L^

f∞ . The probability 

density function of 𝑌 and 𝐼LK[Z is plotted in Figure 29 (a). We can see that the closer 𝑓E is to 𝜇, the 

more shaded area under the probability density function is integrated. Therefore, maximizing 

𝐸 𝐼LK[Z  favors the sample point at which 𝑓E is close to (or equal to) 𝜇 (i.e., local search). Figure 

29 (b) compares two values of 𝑠. When 𝑠 is larger, more shaded area under the probability density 

function is integrated with larger values of 𝐼LK[Z 𝑌 , which results in a larger integration value than 

that of a smaller 𝑠. Thus, maximizing 𝐸 𝐼LK[Z  also favors the sample point where 𝑠 is larger (i.e., 

global search).  

 

Figure 37.  Illustration of the geometric meaning of 𝐸𝐼LK[Z. 

 

From the previous analysis, we have demonstrated that the advantage of the 𝐸𝐼LK[Z method is to 

keep a balance between global search and local search for the feasible region boundaries during the 

adaptive sampling stage. The method can easily be adapted to SK model by replacing 𝜇 and 𝑠 with 

the SK predictor and prediction standard deviation. The algorithm of the 𝐸𝐼LK[Z is shown in Figure 

38. First, an initial SK model is built with sample points from a space-filling design. Latin 

Hypercube Sampling (LHS) is commonly used to obtain these points for Kriging-based surrogate 

modeling [283,278]. A rule of thumb is to have 10𝑑 initial sample points [67]. At each point, 𝑚 
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replications of the stochastic simulation runs are made. Then, the adaptive sampling stage begins. 

The next point 𝒙′ is identified by maximizing 𝐸𝐼LK[Z. After 𝒙′ is found, it needs to be checked 

whether this point has already been visited. If 𝒙′ is a new sample point, then 𝑚 replicated 

simulation runs are made at 𝒙′, and the estimated 𝑦(𝒙′) and 𝑉 𝒙′  are added to the dataset. 

Otherwise, with 𝑚 replicated simulations, 𝑦(𝒙′) and 𝑉 𝒙′  in the original dataset are updated 

with all the replicated simulation runs at the previously visited 𝒙′. The SK model is then updated 

with the new dataset. The adaptive sampling stage is conducted sequentially until the total sampling 

budget 𝑁^[b is used up. After the algorithm terminates, the feasible region is predicted with the 

surrogate as {𝒙: 𝑦(𝒙) ≤ 0}.  

 

Figure 38.  Algorithm of the 𝐸𝐼LK[Z method 

1.	Build	an	initial	SK	model	with	10d	LHS	sample	points,	each	of	m	replications	

2.	Find	the	next	sample	point	!" = arg	max
*∈,

-./012 ! .

5.	Update	the	SK	model	(45, 78 , 9:)	with	the	new	dataset

7.	Algorithm	terminates.	Feasible	region	is	predicted	as	the	areas	 {!:=>?(!) ≤ 0}

Yes

No

3.	!" ∉ !F ,… , !H ?

4.	Make	m	replications	at	!" to	
estimate	=J(!) and	K? ! ,	and	add	
them	to	dataset.

4.	Make	m	replications	at	!" , and	
update	the	=J(!") and	K? !" with	all	
the	replicated	simulation	runs	at	!"

6.	L > LN1*?

Yes No
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To demonstrate how the 𝐸𝐼LK[Z method works, we use a 2-dimensional (2D) test problem 

“branin” as an example (see Figure 39). The model equations can be found in Section 6.4. In 

Figure 39 (a), the thick-dashed line represents the true feasible region boundary, and the filled 

contour plot indicates the standard deviation of the noise (i.e., 𝜉 in Equation (110)). In this case 

study, the noise is set to increase linearly with 𝑥t. Figure 39 (b) shows the predicted feasible region 

boundary (thick-solid line) and the 𝐸𝐼LK[Z (filled contour) after an initial SK model is constructed 

(using 50 sample points, each with 50 replications). We can see that the prediction (thick-solid line) 

is far from accurate with the initial surrogate. However, the 𝐸𝐼LK[Z shows several promising regions 

in the neighborhood of the thick-solid line. After 50 infill points (circle points in Figure 39 (c)) are 

added during the adaptive sampling stage, the predicted feasible region boundary is shown in Figure 

39 (c) with the thick-solid line, and the 𝐸𝐼LK[Z is depicted with the filled contour. We can see that 

the prediction is quite close to that of the true function in Figure 39 (a). Therefore, with this 

example, we can see that the 𝐸𝐼LK[Z algorithm can be used for feasibility analysis of stochastic 

systems.   

 

Figure 39.  A case study of "branin” using the 𝐸𝐼LK[Z approach for feasibility analysis. (a) feasible 

region boundary (thick-dashed line) of the true function, and heteroscedastic noise (filled contour). 

(b) predicted feasible region boundary (thick-solid line) with the initial SK model, and 𝐸𝐼LK[Z (filled 
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contour). (c) predicted feasible region boundary (thick-solid) line with the updated SK model, and 

𝐸𝐼LK[Z (filled contour).  

 

6.2.2.2 Augmented expected improvement for feasibility (𝑨𝑬𝑰𝒇𝒆𝒂𝒔) 

The 𝐸𝐼LK[Z function has been shown to be effective for deterministic models [261]. However, when 

applied to noisy systems, a drawback is that it does not account for the noise of the future 

observation. For global optimization problems of stochastic systems, Huang et, al. [161] proposed 

a modified EI function, which introduced a multiplicative factor to incorporate the effects of noise. 

Adapting this to the 𝐸𝐼LK[Z function, we have an augmented 𝐸𝐼LK[Z function (𝐴𝐸𝐼LK[Z) as follows: 

 
𝐴𝐸𝐼LK[Z 𝒙 = 𝑠 ∙ 𝜙

𝑓E − 𝑦
𝑠

∙ 1 −
𝜉/ 𝑚

𝑠t + 𝜉t/𝑚
, (119) 

𝑦 is the SK predictor; 𝑠t is the SK prediction variance; 𝜉 is the standard deviation of the noise term. 

Compared to the 𝐸𝐼LK[Z function, the 𝐴𝐸𝐼LK[Z function penalizes sample points where prediction 

variance 𝑠t is small relative to the noise variance 𝜉t. For stochastic simulations with 

heteroscedastic noise, with limited replications at the design locations, it is known that the SK 

prediction variance 𝑠t can be more “inflated” where the noise variance 𝜉t is larger [162]. In 

such cases, 𝐴𝐸𝐼LK[Z can prevent over-exploiting the local promising regions where noise variance 

𝜉t is large. Thus, during the adaptive sampling stage, the new sample points are selected more 

evenly in the promising regions of the input space. From this perspective, we can say the 𝐴𝐸𝐼LK[Z 

function enhances the global search compared to 𝐸𝐼LK[Z.  

 

To implement the 𝐴𝐸𝐼LK[Z method, because the expression of 𝜉t(𝒙) is unknown, it is estimated 

with 𝑉 𝒙 . A Kriging model can be built to predict 𝑉 𝒙  at an unsampled location. In order to 

guarantee the predicted 𝑉 𝒙  is always non-negative, the Kriging model is built for log 𝑉 𝒙 . Such 

a method of estimating 𝑉 𝒙  has also been used by Chen and Zhou [262]. The algorithm of 𝐴𝐸𝐼LK[Z 
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follows the same framework as 𝐸𝐼LK[Z, which was shown in Figure 38, with the following two 

modifications: (1) In step 1 and 5, a separate Kriging needs to be built (or updated) for the log 𝑉 𝒙 , 

its predictions are used in the multiplicative factor of 𝐴𝐸𝐼LK[Z; (2) In step 2, the next sample point 

is determined by maximizing 𝐴𝐸𝐼LK[Z.  

 

To demonstrate the difference between 𝐸𝐼LK[Z and 𝐴𝐸𝐼LK[Z, we apply the 𝐴𝐸𝐼LK[Z to the same test 

problem that was used above. The adaptive sampling is conducted using the same total sampling 

budget (i.e., 20 initial points and 50 infill points, each with 50 replications). The results from the 

previous study using 𝐸𝐼LK[Z and the results of 𝐴𝐸𝐼LK[Z are shown in Figure 40, where thick-solid 

lines represent the predicted feasible region boundary, circle points are the added infill points. In 

Figure 40 (a) where 𝐸𝐼LK[Z is used, the sample points are much denser in the regions where the 

noise level is high (i.e., feasible region boundaries near the top), yet very scarce sample points are 

placed in the less noisy areas (i.e., feasible region boundaries near the bottom). In contrast, in Figure 

40 (b) where 𝐴𝐸𝐼LK[Z is used, sample points are assigned more evenly in the promising regions 

throughout the input space. The detailed comparison of the performance of different algorithms is 

discussed in Section 6.5. 

 

Figure 40.  A case study of "branin” using 𝐸𝐼LK[Z and 𝐴𝐸𝐼LK�Z. (a) Results of 𝐸𝐼LK[Z; (b) Results 

of 𝐴𝐸𝐼LK[Z 

!" !"

!# !#

(a) (b)
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6.2.2.3 Expected quantile improvement for feasibility (𝑬𝑸𝑰𝒇𝒆𝒂𝒔) 

A different way to account for the effects of noise on the feasibility improvement is by seeking to 

the quantile of the SK model. A 𝛽-quantile given by the SK model for a specified level 𝛽 ∈ 0,1  

is expressed with the following expression: 

 𝑞b = 𝑦 +Φ
fo

𝛽 ∙ 𝑠, (120) 

where Φ
fo

𝛽  is the inverse of the cumulative distribution function (CDF) for a normal 

distribution at the level of 𝛽. Picheny et al. [274] showed that the 𝑞b is also subject to a normal 

distribution. For an SK model, the mean and variance of 𝑞b can be expressed as follows: 

 
𝜇c = 𝑦 +Φ

fo
𝛽 ∙

𝜏t𝑠t

𝜏t + 𝑠t
	

𝑠ct =
𝑠t t

𝜏t + 𝑠t
, 

(121) 

where 𝑦 and 𝑠t are SK predictor and prediction variance respectively; 𝜏t = 𝜉t/𝑚. Based on the 

𝛽-quantile, Picheny et al. [274] proposed an expected quantile improvement method for global 

optimization problems of stochastic systems, which showed promising results with a proper choice 

of 𝛽. In this work, we adapt this approach to feasibility analysis by defining a quantile improvement 

for feasibility. This can be achieved by replacing “𝑌” and “𝜇” in (118) with “𝑞b” and 

“𝜇c”. Following similar steps of derivation, the expected quantile improvement (𝐸𝑄𝐼LK[Z) 

function can be expressed as follows: 

 
𝐸𝑄𝐼LK[Z,b 𝒙 = 𝑠c ∙ 𝜙

𝑞b
E − 𝜇c
𝑠c

, (122) 

where 𝑞b
E = 𝑓E +Φ

fo
𝛽 ∙ 𝑠. Following the analysis that we made on 𝐸𝐼LK[Z, maximizing 𝐸𝑄𝐼LK[Z 

favors to pick sample points where 𝑠c is large (i.e., global search), and where 𝑞E is close to 𝜇c (i.e., 

local search). After derivation, we can see that for 𝐸𝑄𝐼LK[Z, 𝑞b
E  being close to 𝜇c is equivalent to 
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say that 𝜇 is close to 𝑓E + 𝑠 ∙Φ
fo

𝛽 ∙ 1 − 𝜏/ 𝑠t + 𝜏t . Since 1 − 𝜏/ 𝑠t + 𝜏t  is always 

positive and 𝑠 is non-negative, when Φ
fo

𝛽 < 0, maximizing 𝐸𝑄𝐼LK[Z,b favors areas where 𝜇 is 

close to and slightly less than 𝑓E; otherwise when Φ
fo

𝛽 > 0, maximizing 𝐸𝑄𝐼LK[Z,b favors areas 

where 𝜇 is close to and slightly larger than 𝑓E. With the increasing number of infill points, 𝑠 will 

decrease, and the algorithm will tend more to sample where 𝜇 is close to 𝑓E.  

 

To demonstrate the effects of 𝛽 on the search direction, we use the “branin” test problem that 

was used in the previous analysis as an example. The 𝐸𝑄𝐼LK[Z,b function for two different 𝛽 (i.e., 

0.1, 0.9) are shown in Figure 41. The thick-solid line is the predicted feasible region boundary from 

the initial surrogate; filled contour is the 𝐸𝑄𝐼LK[Z,b function. Figure 41 (a) shows the case when 

𝛽 = 0.1, Φ
fo

0.1 = −1.2816. In this case, we can see that the promising regions are mostly 

from inside of the predicted feasible regions where 𝜇 ≤ 𝑓E. On the other hand, when 𝛽 = 0.9, 

Φ
fo

0.9 = 1.2816 (Figure 41 (b)), the promising regions are mostly from outside of the 

predicted feasible regions where 𝜇 ≥ 𝑓E. For feasibility analysis, we would like the search direction 

from both sides of the feasible region boundary. Therefore, in this work, we choose 𝐸𝑄𝐼LK[Z as the 

maximum value of 𝐸𝑄𝐼LK[Z,|.o and 𝐸𝑄𝐼LK[Z,|.d: 

 𝐸𝑄𝐼LK[Z 𝒙 = max 𝐸𝑄𝐼LK[Z,|.o 𝒙 , 𝐸𝑄𝐼LK[Z,|.d 𝒙 . (123) 

 

!" !"

!# !#

(a) (b)
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Figure 41. The difference between 𝐸𝑄𝐼LK[Z,|.o and 𝐸𝑄𝐼LK[Z,|.d. (1) Results of 𝐸𝑄𝐼LK[Z,|.o; (2) 

Results of 𝐸𝑄𝐼LK[Z,|.d. 

 

To implement the 𝐸𝑄𝐼LK[Z method, as we did for the 𝐴𝐸𝐼LK[Z method, 𝜉t(𝒙) is estimated with 

𝑉 𝒙 , and log 𝑉 𝒙 	is modeled using Kriging. The algorithm of 𝐸𝑄𝐼LK[Z also follows the same 

framework as 𝐸𝐼LK[Z shown in Figure 38, with the following two modifications: (1) In step 1 and 

5, a separate Kriging needs to be built (or updated) for the log 𝑉 𝒙 , its predictions are used in 

𝐸𝑄𝐼LK[Z,|.o and 𝐸𝑄𝐼LK[Z,|.d; (2) In step 2, the next sample point is determined by maximizing 

𝐸𝑄𝐼LK[Z 𝒙 .  

 

6.3 Convergence 

We first discuss the convergence of 𝐸𝐼LK[Z when Kriging model is used for feasibility analysis of 

deterministic simulations, which is based on the following theorem: 

 

    Theorem 1. Based on an ordinary Kriging model and the 𝐸𝐼LK[Z function defined in (117), 

lim
_→∞

sup
𝒙∈¡

𝐸𝐼LK[Z(𝒙) = 0. 

    Proof. The proof of this theorem uses a similar argument to that was given by Ranjan et al. [284], 

in which it was proved that the Kriging prediction variance 𝑠t(𝒙) → 0 as the number of sample 

points 𝑘 →∞. This implies that sup𝒙∈¡ 𝑠 (𝒙) → 0. From the expression of 𝐸𝐼LK[Z(𝒙) in (117), we 

know that 0 ≤ 𝐸𝐼LK[Z 𝒙 ≤ 𝑠(𝒙). Then, sup𝒙∈¡ 𝐸𝐼LK[Z(𝒙) ≤ sup𝒙∈¡ 𝑠 (𝒙). Therefore, we can see 

that lim_→∞ sup𝒙∈¡ 𝐸𝐼LK[Z(𝒙) = 0.  ∎ 
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Ranjan et al. [284] claimed that, with Theorem 1, it is equivalent to say that, as 𝑘 →∞, the 

feasibility boundary (a contour of the feasibility function) is known perfectly, and we cannot further 

improve our knowledge.  

 

Then, we proceed to the discussion on the convergence of 𝐸𝐼LK[Z, 𝐴𝐸𝐼LK[Z, and 𝐸𝑄𝐼LK[Z when 

stochastic Kriging model is used for feasibility analysis of stochastic simulations. Note that when 

the number of replications 𝑚 →∞, the matrix term 𝜮𝜺 will vanish from the stochastic Kriging 

predictor 𝑦 𝒙  (115) and prediction variance 𝑠t 𝒙  (116). Thus, (115) and (116) will reduce to the 

standard Kriging predictor and prediction variance that match the data 𝑦 at design points. In 

addition, based on the law of large numbers, as 𝑚 →∞, 𝑦 converges in probability to the mean of 

the stochastic simulation output.  

 

Based on these findings, as 𝑚 →∞, the expression for 𝐸𝐼LK[Z is reduced to the deterministic case 

where standard Kriging predictor and prediction variance is used; 𝐴𝐸𝐼LK[Z reduces to 𝐸𝐼LK[Z 

because the multiplicative term in (119): 1 − ~/ ^
Z��~�/^

→ 1 as 𝜉/ 𝑚 → 0; 𝐸𝑄𝐼LK[Z also reduces 

to 𝐸𝐼LK[Z because the quantile predictor 𝜇c and prediction variance 𝑠ct  in (121) reduce to the 

standard Kriging predictor and prediction variance, respectively, as 𝜏t → 0. Therefore, as 𝑚 →∞, 

the convergence of 𝐸𝐼LK[Z, 𝐴𝐸𝐼LK[Z, and 𝐸𝑄𝐼LK[Z directly follows on from the analysis for the 

deterministic case.  
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6.4 Computational experiments 

6.4.1 Test problems and noise scenarios 

Four 2D test problems and one 5D test problem are used to test the performance of the three 

algorithms. Such problems have also been used in feasibility analysis for deterministic models 

[261]. The deterministic constraints for each test problem are listed in Table 16.  

 

Table 16. Test problems 

Test problems Description 

“Branin” (2D)  

 

o
Ôo.dÔ

𝑥t −
Ô.ob��

)´�
+ Ôb�

´
− 6

t
+ 10 − o|

f´
cos 𝑥o − 44.81 + 0.9 ≤ 0 	

with	𝑥o = 15𝑥o − 5, 𝑥t = 15𝑥t 	

0 ≤ 𝑥N ≤ 1, for	𝑖 = 1, 2 	

𝑆𝑐𝑎𝑙𝑒 = 5.7762, 𝑅𝑓 = 5.9236  

“Camelback” 

(2D) 

 

4 − 2.1𝑥ot +
b�g

�
𝑥ot + 𝑥o𝑥t + 4𝑥tt − 4 𝑥tt ≤ 0 	

−2 ≤ 𝑥o ≤ 2;−1 ≤ 𝑥t ≤ 1 	

𝑆𝑐𝑎𝑙𝑒 = 5.7333, 𝑅𝑓 = 6.7649  

“Example3” 

(2D) 

 

−2𝑥o + 𝑥t − 15 ≤ 0 	

b��

t
+ 4𝑥o − 𝑥t − 5 ≤ 0 	

f b�f) �

Ô
− 2𝑥tt + 10 ≤ 0 	

−10 ≤ 𝑥o ≤ 5;−15 ≤ 𝑥t ≤ 15 	

𝑆𝑐𝑎𝑙𝑒 = 4.25, 𝑅𝑓 = 5.3119  

“Sasena” (2D) 

 

𝑥o − 3 t	 + 	 𝑥t + 2 tExp −𝑥t& − 12 ≤ 0  

10𝑥o	 + 𝑥t	 − 	7 ≤ 0 	

𝑥o − 0.5 t	 + 	 𝑥t − 0.5 t	 − 	0.2 ≤ 0 	
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0 ≤ 𝑥N ≤ 1, for	𝑖 = 1, 2 	

𝑆𝑐𝑎𝑙𝑒 = 4, 𝑅𝑓 = 4.1907  

“g4con” (5D) 

 

0 ≤ 85.334407 + 0.0056858𝑥t𝑥Ô + 0.0006262𝑥o𝑥) −

0.0022053𝑥�𝑥Ô ≤ 92 	

90 ≤ 80.51249 + 0.0071317𝑥t𝑥Ô + 0.0029955𝑥o𝑥t +

0.0021813𝑥�t ≤ 110 	

20 ≤ 9.300961 + 0.0047026𝑥�𝑥Ô + 0.0012547𝑥o𝑥� +

0.0019085𝑥�𝑥) ≤ 25 	

78 ≤ 𝑥o ≤ 102, 33 ≤ 𝑥t ≤ 45, 27 ≤ 𝑥N ≤ 45	𝑓𝑜𝑟	𝑖 = 3, 4, 5. 	

𝑆𝑐𝑎𝑙𝑒 = 5.0430, 𝑅𝑓 = 7.5430  

 

In this work, a random variable 𝜔 (i.e., 𝜔~Norm(0, 𝜉t 𝒙 ) is added to the feasibility function 

𝜓(𝒙) of each test problem. Two extreme noise scenarios are considered. In the first noise scenario, 

𝜉 increases linearly as the absolute value of 𝜓(𝒙) increases. We call this case as the "easy" noise 

scenario because the noise is smallest at the feasible region boundary. In the second noise scenario, 

𝜉 decreases linearly with the absolute value of 𝜓(𝒙) increases. This case is denoted as "hard" noise 

scenario since the noise is largest at the feasible region boundary. The range of the noise is linked 

to 𝑅𝑓, which is the range of 𝜓(𝒙) within the input space: 

 𝑅𝑓 = max𝜓(𝒙) − min𝜓 𝒙 . (124) 

In this work, the minimum value of 𝜉(𝒙) is set as 0.05𝑅𝑓, and the maximum value is set as 0.2𝑅𝑓. 

Such a range is selected according to the problem settings in a simulation optimization paper [278]. 

However, we use a relatively smaller range than that in [278] to reduce the difficulty of the problem. 

This is because the task of approximating feasibility boundaries can be more sampling-costly than 

approximating a single (or a few) optimal point(s). The expressions for 𝜉(𝒙) in the two noise 
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scenarios are shown in Table 17. The values for 𝑅𝑓 and 𝑠𝑐𝑎𝑙𝑒 for each test problem have been 

listed in Table 16.  

 

Table 17. Noise functions 

Noise scenarios Noise functions 

“easy” noise 𝜉(𝑥) = i(b)
ZM[YK

0.2 − 0.05 𝑅𝑓 + 0.05𝑅𝑓  

“hard” noise 𝜉(𝑥) = i(b)
ZM[YK

0.05 − 2 𝑅𝑓 + 0.2𝑅𝑓  

*	𝑠𝑐𝑎𝑙𝑒 = max
𝒙∈¡

𝜓(𝒙) .  

 

The filled-contour of the two noise scenarios and the feasible region boundaries for each of the 2D 

test problems are shown in Appendix B of this paper.  

 

6.4.2 Performance measures 

The goal of feasibility analysis is to identify all of the feasible regions, yet without “over-

predicting” (i.e., falsely treat an infeasible point to be feasible). To evaluate the accuracy of the 

feasibility analysis, the following three measures can be used [261].  

 
𝐶𝐹% =

|𝑥: 𝜓 𝑥 ≤ 0 ∩ 𝑦 𝑥 ≤ 0|
|𝑥: 𝜓 𝑥 ≤ 0|

×100	

𝐶𝐼𝐹% =
|𝑥: 𝜓 𝑥 > 0 ∩ 𝑦 𝑥 > 0|

|𝑥: 𝜓 𝑥 > 0|
×100	

𝑁𝐶% =
|𝑥: 𝜓 𝑥 > 0 ∩ 𝑦 𝑥 ≤ 0|

|𝑥: 𝑦 𝑥 ≤ 0|
×100 

(125) 

CF% is calculated as the percentage of true feasible regions that have been correctly discovered by 

the surrogate. On the other hand, CIF% reflects the percentage of the true infeasible regions 

correctly identified by the surrogate. A good prediction accuracy requires both of these measures 
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to be close to 100%. Additionally, NC% shows the percentage of “over-predicting” in the 

predicted feasible regions by the surrogate. For an accurate prediction, NC% needs to be small and 

close to 0.  

 

6.4.3 Implementation details 

The algorithms are implemented in Matlab 2017a. The SK model is built with the codes provided 

by Ankenman et al. [162]. Kriging model is built with DACE toolbox [285]. The optimization 

problems in the adaptive sampling stage are solved with fmincon in Matlab using the Sequential 

Quadratic Programming (SQP) method. A multi-start strategy is used to increase the chance of 

finding the global optimum for the infill criteria. Specifically, 10d sample points (sampled with 

LHS strategy) are used as the initial points when 𝐸𝐼LK[Z (𝐴𝐸𝐼LK[Z or 𝐸𝑄𝐼LK[Z) is maximized. For 

2D test problems, the total sampling budget is 11000 simulation runs; for the 5D test problem, the 

total sampling budget is 12500. For each test problem, the sampling budget is allocated with two 

plans: one with 50 replications at each newly sampled point; the other with 100 replications. The 

details of the two plans are shown in Table 18.  

 

Table 18. Summary of allocating the sampling budget 

Test 

problems  

Plans of using the sampling budget Sampling 

budget 

2D 

Plan A: 50 replications × (20 initial points + 200 iterations of 

adaptive sampling) 

Plan B: 100 replications × (20 initial points + 90 iterations of 

adaptive sampling) 

11000 

5D 
Plan A: 50 replications × (50 initial points + 200 iterations of 

adaptive sampling) 
12500 
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Plan B: 100 replications × (50 initial points + 75 iterations of 

adaptive sampling) 

 

To compare the performance of an algorithm for a given noise scenario and a specified sampling 

allocation plan for a certain test problem, we use 30 macro-replications: we make 30 runs of the 

algorithm, each with a different set of initial LHS points. For a given macro-replication, all the 

three algorithms start with the same set of initial points, and, thus, the same initial SK model. 

Similar designs of computational experiments have also been used in comparing different 

algorithms for simulation optimization problems [278,283]. The distribution of the three 

performance measures (i.e., CF%, CIF%, NC%) is visualized using boxplots for each algorithm. 

The results are shown in Section 6.5.  

 

6.5 Results 

Plan A: 50 replications at each newly sampled point 

We first show the results on the sampling allocation plan using 50 replications for each newly 

sampled point. The boxplots for each test problem are shown after 200 iterations of adaptive 

sampling. In each figure, CF%, CIF%, and NC% are shown in (a), (b), and (c) respectively. For 

each of the performance measure, the "easy" noise scenario is plotted on the left, and "hard" noise 

scenario on the right, each with a group of three boxplots, representing the results from 𝐸𝐼LK[Z, 

𝐴𝐸𝐼LK[Z, and 𝐸𝑄𝐼LK[Z methods. 

 

The results of “example3” and “g4con” are shown in Figure 42 and Figure 43. We notice that 

these two test problems are the easiest among the five tested. For the “example3” test function, 

in the “easy” noise scenario, with all the three algorithms, very high values for CF% (mostly > 

98%) and CIF% (mostly > 99%) are achieved, together with low values for NC% (mostly < 2%). 
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Even for the “hard” noise scenario, the degradation of accuracy is still small. On the other hand, 

for the 5D test function "g4con", the accuracy is slightly worse than that of "example3". This is 

expected because more sample points could be required for an accurate surrogate as the problem 

dimension increases. In the "easy" noise scenario, while the values for CIF% are still mostly over 

98%, CF% are mostly between 95% and 97%, and NC% mostly between 3% and 5%. In the "hard" 

noise scenario, the decrease in CF% and the increase in NC% is approximately by 2% compared to 

“easy” noise scenario. In summary, for these two test problems, all the three algorithms are able 

to give relatively accurate predictions, and little difference is found between the three algorithms 

from the tested cases. 

 

Figure 42.  Results of “example3” (plan A for sampling allocation). (a) CF%; (b) CIF%; (c) 

NC%. 

 

Figure 43.  Results of “g4con” (plan A for sampling allocation). (a) CF%; (b) CIF%; (c) NC% 

EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
Example3:	CF% Example3:	CIF%

“easy”	noise “hard”	noise
Example3:	NC%

(a) (b) (c)

EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
g4con:	CF% g4con:	CIF%

“easy”	noise “hard”	noise
g4con:	NC%

(a) (b) (c)
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We then examine the results for “branin” and “sasena”, which are shown in Figure 44 and 

Figure 45. Both of these two test functions have disjoint feasible regions (see Figure 71, Figure 

74 in Appendix B). For “branin”, in the “easy” noise scenario, with all the three algorithms, 

we have high accuracy with large CF% (mostly between 96% and 98%) and CIF% (mostly >98%), 

and small NC% (mostly between 2% and 4%). However, with “hard” noise scenario, although 

CIF% does not drop much, CF% drops significantly, with most values between 85% and 95%, and 

the NC% also drastically increases, with most values between 6% and 14%. For “sasena”, we 

are faced with similar situations. In the “easy” noise case, with large CF% (mostly between 93% 

to 96%), CIF% (>99%), and small NC% (mostly between 3% and 6%), all the three algorithms are 

still sufficient to make accurate predictions. However, in the “hard” noise case, CF% 

significantly drops, with most values between 82% to 90%, and NC% increases, with most values 

between 8% and 16%. For these two test problems, the difference between the three algorithms is 

small.  

 

The difficulty of the two test problems is mainly attributed to the landscapes of the test problems. 

For “branin” and “sasena”, the feasible region boundaries (or part of them) are located in a 

relatively “shallow” and "flat" region. To show the difference, the minimum value of the 

feasibility function, min𝜓, for “branin” is -0.1474; min𝜓 for “sasena” is -0.1907; while 

min𝜓 for “example3” is -1.0619. With test problems that are similar with “branin” and 

“sasena”, in the relatively flat neighborhood of the feasible region boundaries, the difference in 

the SK predictor 𝑦 is small. In such cases, the SK prediction uncertainty 𝑠 plays a more important 

role in the infill criteria. This causes the algorithms to be slow in making progress on 

“converging” to the true feasible region boundaries. Similar difficulties are also faced in solving 
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optimization problems. When a global optimum is located in a flat area, it is difficult to converge 

to the optimal solution. (See for example the “Rosenbrock” function tested in a simulation 

optimization framework in Ref. [283]).  

 

In addition, the “hard” noise structure further increases the difficulty of the problem. With the 

“hard” noise function defined in Table 17, when feasibility boundary is located in a flat region, 

large noise is observed in a broad neighborhood of such a boundary (see the filled contours in 

Figure 71, Figure 74 in Appendix). In such cases, it is more difficult to have an accurate estimate 

of 𝑉 and 𝑦 with a limited number of replications at sample points in promising regions. Hence, the 

SK model can be less accurate in approximating the neighborhood of the true feasible region 

boundaries, which can further mislead the infill criteria to searching towards less promising regions. 

Therefore, comparing to the “easy” noise scenarios, the prediction accuracy in the “hard” 

noise scenarios degrades drastically. Moreover, we can observe that the boxplots for the 

performance measures cover wider ranges for the “hard” noise case than the “easy” one, 

which indicates that the accuracy of each algorithm can be much different from one macro-

replication to another. This is due to the increased uncertainty in building the surrogate when large 

noise is observed at the sample points.  

 

Figure 44.  Results of “branin” (plan A for sampling allocation). (a) CF%; (b) CIF%; (c) NC% 

EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
Branin:	CF% Branin:	CIF%

“easy”	noise “hard”	noise
Branin:	NC%

(a) (b) (c)
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Figure 45.  Results of “sasena” (plan A for sampling allocation). (a) CF%; (b) CIF%; (c) NC% 

 

Finally, we show the results of “camelback” in Figure 46. This test function has four disjoint 

feasible regions: two larger ones in top-center and bottom-center, and two smaller ones in the top-

left and bottom-right corners (see Figure 72 in Appendix). For the “easy” noise scenario, with 

similar CIF% (over 99%) and NC% (mostly between 1% and 2.5%) for the three algorithms, 𝐸𝐼LK[Z 

has CF% values most between 97% and 98.5%, with a few outliers below 95%, while 𝐴𝐸𝐼LK[Z and 

𝐸𝑄𝐼LK[Z both have a slightly higher CF% value (mostly between 98% to 99%). For the “hard” 

noise scenario, a significant difference is found between the three algorithms. CF% for 𝐸𝐼LK[Z drops 

drastically, with values mostly between 89% and 93%. However, 𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z has a much 

smaller drop, with most values between 93% to 96%. This indicates that, for 𝐸𝐼LK[Z, the capability 

of exploring all the feasible regions in the “hard” noise scenario is much worse than that for the 

𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z methods. On the other hand, 𝐸𝐼LK[Z appears to have a better NC% (mostly 

between 2.5% to 4%) compared to that of 𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z (NC% mostly between 4% to 6.5% 

for both methods). This indicates that 𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z have a sacrifice in the conservativeness 

in the prediction, compared to the 𝐸𝐼LK[Z method.  

 

EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
Sasena:	CF% Sasena:	CIF%

“easy”	noise “hard”	noise
Sasena:	NC%

(a) (b) (c)
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After checking all the figures of the final surrogate from the 30 macro-replications of each 

algorithm (not included in this paper, due to limited space), we found that the 𝐸𝐼LK[Z method is 

more likely to miss the two smaller feasible regions than 𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z methods. For each 

algorithm, we list in Table 19 the fractions of the overall 30 runs that can discover all of the four 

feasible regions. From this table, we can find that 𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z are significantly better than 

𝐸𝐼LK[Z in discovering all the feasible regions. This is because both of them have a slightly enhanced 

global search, which causes them to be less likely to get trapped in a local neighborhood of 

promising areas. However, this also increases the risks of being less conservative in the identified 

feasible regions for 𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z: sample points are scattered near all the feasible region 

boundaries rather than only being focused on part of the boundaries.  

 

Figure 46. Results of “camelback” (plan A for sampling allocation). (a) CF%; (b) CIF%; (c) 

NC% 

 

Table 19. Number fraction of 30 runs identifying all feasible regions for “camelback” 

 “easy” 

noise 

“hard” 

noise 

𝐸𝐼LK[Z 26/30 11/30 

EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
Camelback:	CF% Camelback:	CIF%

“easy”	noise “hard”	noise
Camelback:	NC%

(a) (b) (c)
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𝐴𝐸𝐼LK[Z 30/30 29/30 

𝐸𝑄𝐼LK[Z 30/30 27/30 

 

Plan B: 100 replications at each newly sampled point 

In order to investigate the effects of sampling allocation strategies on the algorithms’ performance, 

we further conducted computational studies using 100 replications at each newly sampled point 

(i.e., plan B in Table 18), and accordingly with fewer iterations of adaptive sampling so that the 

total sampling budget remains the same. For comparison purposes, the boxplots for both sampling 

strategies are plotted in parallel in each figure, with column “A” representing the strategy with 

50 replications; column “B” for the strategy with 100 replications.  

 

We first show the results for “example3” (Figure 47) and “g4con” (Figure 48). In the 

“easy” noise scenarios, for all three algorithms, plan “A” gives a consistent and noteworthy 

better accuracy: higher values in CF% and CIF% and smaller values in NC% are achieved by using 

plan “A”. In the “hard” noise scenarios, the difference between plan “A” and “B” is less 

significant compared to the “easy” noise cases.  

 

Figure 47.  Results of “example3”. (a) CF%; (b) CIF%; (c) NC% 

A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
Example3:	CF% Example3:	CIF%

“easy”	noise “hard”	noise
Example3:	NC%

(a) (b) (c)
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Figure 48.  Results of “g4con”. (a) CF%; (b) CIF%; (c) NC% 

 

The results for “branin” and “sasena” are shown in Figure 49 and Figure 50. For “branin”, 

no significant difference is found between plan “A” and “B” in the tested noise scenarios for 

the three algorithms. However, the “sasena” function is better solved with plan “A” in the 

easy noise case: consistently higher accuracy is achieved by all the three algorithms using plan 

“A” than plan "B", which is similar to what we found for the previous "example3" and "g4con" 

tested cases. 

 

Figure 49.  Results of “branin”. (a) CF%; (b) CIF%; (c) NC% 

A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
g4con:	CF% g4con:	CIF%

“easy”	noise “hard”	noise
g4con:	NC%

(a) (b) (c)

A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI EI AEI EQI

“easy”	noise “hard”	noise “easy”	noise “hard”	noise
Branin:	CF% Branin:	CIF%

“easy”	noise “hard”	noise
Branin:	NC%

(a) (b) (c)
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Figure 50.  Results of “sasena”. (a) CF%; (b) CIF%; (c) NC% 

 

The results for “camelback” is shown in Figure 51. In the “easy” noise, plan “A” only 

appears to give higher values in CF% that plan “B”, while the difference in CIF% and NC% is 

almost indistinguishable. Also, no obvious difference is observed in the “hard” noise scenario.   

 

Figure 51.  Results of “camelback”. (a) CF%; (b) CIF%; (c) NC% 

 

To summarize the results of the comparison of two sampling allocation strategies: consistent and 

better accuracy is achieved by plan “A” for the functions “example3”, “g4con”, and 

“sasena”, especially in the “easy” noise scenarios. Such findings indicate that for "easy" noise 

scenarios when a small number of replications can already give good estimates of 𝑉 and 𝑦, a 

relatively large number of sample locations are crucial to obtain a higher accuracy in finding the 
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feasible region boundaries. However, for the “hard” noise scenarios, without an accurate enough 

estimate of 𝑉 and 𝑦, the advantage of having more sample points will vanish. In other words, when 

the noise is larger in the promising regions (i.e., the neighborhood of true feasible region 

boundaries), it is of top priority to first have a relatively accurate estimate of 𝑉 and 𝑦, (e.g., using 

a larger number of replications at each sample locations). Otherwise, simply by increasing the 

number of sample points will not be efficient or effective in improving the overall prediction 

accuracy of the feasible regions.   

 

6.6 Application to a pharmaceutical manufacturing process model 

The three algorithms have been applied to the feasibility analysis for the operation of a roller 

compaction (RC) process in the pharmaceutical manufacturing process. RC is a dry granulation 

process in which solid-based raw materials are fed continuously and compacted under high pressure 

exerted by two rotating rolls, in order to produce compacted ribbon products [286]. Hsu et al. [234] 

developed a mathematical model to describe this unit operation. This model accounts for the 

operation conditions (i.e., hydraulic pressure 𝑃ℎ, rotating roll speed 𝜔, feed speed 𝑢N_) and powder 

material physical properties (i.e., inlet angle θin, powder bulk density ρin) as model inputs, and 

can be used to predict ribbon properties (i.e., ribbon density 𝜌KbNE, ribbon thickness ℎ|). The major 

model equations are shown in (126).  

 𝑑
𝑑𝑡
ℎ|
𝑅

=
𝜔 𝜌N_ cos 𝜃N_(1 +

ℎ|
𝑅 − cos 𝜃N_)

𝑢N_
𝜔𝑅 − 𝜌KbNE(

ℎ|
𝑅)

𝜌(𝜃) cos(𝜃)𝑑𝜃ê¢1
|

	

𝑃ℎ =
𝑊
𝐴

𝜎KbNE𝑅
1 + sin 𝛿

ℎ|
𝑅

(1 + ℎ| 𝑅 − cos 𝜃) cos 𝜃

3

cos 𝜃 𝑑𝜃
4

|
	

𝜎KbNE = 𝐶o𝜌KbNE3 

(126) 

To account for the variations in the actual ribbon product qualities, we add a normally distributed 

noise term: 𝜔LK[Z~Norm(0, 𝜉LK[Zt ) on the feasibility of ribbon properties involving 𝜌KbNE and ℎ|. 
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It has been experimentally verified that the hydraulic pressure, 𝑃ℎ, has a strong influence on the 

ribbon strength, and can significantly affect the variance of its observed values [286]. Since, for a 

general compaction process, the strength of a compacted product is strongly correlated to its density 

and thickness [42], in this work, we make the assumption that 𝜉LK[Z is a  function of 𝑃ℎ. According 

to the experimental data in [286], we make a rough estimate that 𝜉LK[Z grows linearly as 𝑃ℎ 

increases, ranging from 1% to 4% of the true feasibility function value. Hence, we have a stochastic 

simulation for the operation of roller compaction to represent the realistic production process. 

 

The feasibility analysis is then formulated as follows: identify the feasible region in the space of 

{𝑃ℎ, 𝑢N_} in which we can obtain qualified ribbon products having 𝜌KbNE and ℎ| within the following 

box constraints: 

 𝜌KbNEÉ ≤ 𝜌KbNE ≤ 𝜌KbNE
Ê 	

ℎ|
É ≤ ℎ| ≤ ℎ|

Ê 
(127) 

The values and ranges for the model parameters and variables are listed in Table 20.  

 

Table 20. Parameters and bounds for the roller compaction model 

Parameter Symbol Value/Range Units 

Equipment parameters and model coefficients 

Roll radius R 0.125 m 

Roll width W 0.05 m 

Compression parameter K 4.97  

Compression parameter  C1 7.5x10-8 Pa/(kg/m3)4.97 

Compact surface area A 0.01 m2 

Effective angle of friction δ 0.7069 rad 
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Nip angle α 0.173 rad 

Angular position θ NA rad 

Inlet powder density ρin 300 kg/m3 

Inlet angle θin 0.4 rad 

Operating conditions 

Hydraulic pressure set 

point (roll pressure) 

Ph 0.8 – 1  MPa 

Rotating roll speed set 

point 

ω 5 rpm 

Powder feed speed uin 2x10-4 – 4x10-4 m/s 

Product constraints 

Ribbon thickness h0 1.7x10-3 – 

1.9x10-3 

m 

Ribbon density ρexit 850 – 950 kg/m3 

 

The three algorithms are implemented by using 100 replications at each newly sampled point. 20 

initial LHS points are used to build the initial SK model, with additional 100 iterations of adaptive 

sampling to improve the surrogate accuracy. The performance measures are listed in Table 21. 

From this table, we can find that all the three proposed algorithms improve the CF% from 71.06% 

to over 90%, while maintaining the prediction conservativeness.   

 

Table 21.  Performance measures for the RC test problem 

 Initial 

Accuracy 

Final Accuracy 

 𝐸𝐼LK[Z 𝐴𝐸𝐼LK[Z 𝐸𝑄𝐼LK[Z 
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CF% 71.06 90.50 90.80 90.35 

CIF% 100 100 100 99.98 

NC% 0 0 0 0.16 

 

The feasible region is plotted in Figure 52. Since the predicted feasible region is almost identical 

from the three algorithms, only the results from 𝐸𝐼LK[Z is shown. The true feasible region boundary 

is denoted with thick-dashed lines, and the predicted feasible region with thick-solid lines. The 

feasible region is the area in between the two lines. We can see from the figure that the prediction 

is quite close to the original function. Such feasibility analysis results can be used to guide the 

process operations. As can be noted, the process is feasible almost over the whole range of 𝑃ℎ, while 

only within a small range of 𝑢N_. This means that, under the current process settings, the material 

feed speed must be carefully controlled within the characterized ranges in order to guarantee the 

desired product properties. 

 

Figure 52.  Feasible region for the RC process 

 

6.7 Summary and future work 

We have presented a surrogate-based adaptive sampling framework for feasibility analysis of 

stochastic systems. While classical feasibility analysis was initially formulated to account for the 

uncertain in the model parameters and inputs, by using the framework in this work, it is the first 

time that we can extend feasibility analysis to the cases in which the stochasticity of model outputs 

Ph [Pa]

u i
n
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/s
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can be considered. In this framework, an SK model is used to approximate the black-box stochastic 

feasibility function, which uses replicated function calls to estimate the mean and variance at each 

sample point. This surrogate model can be used to model stochastic processes with a 

heteroscedastic noise. Three adaptive sampling approaches, namely 𝐸𝐼LK[Z, 𝐴𝐸𝐼LK[Z, and 𝐸𝑄𝐼LK[Z, 

have been used to search for the next infill point. These three algorithms all have the advantage of 

keeping a balance between global search and local search for the feasible region boundaries. With 

five benchmark functions, we have found that all the three algorithms can be largely affected by 

the noise structure. With a larger noise existent in the neighborhood of feasible region boundaries, 

it is more difficult to have a high prediction accuracy, compared to the cases with a smaller noise. 

As such, a larger number of replications at each sample location is required in the first place, 

because only with a highly-accurate surrogate can the adaptive sampling method direct the search 

towards the actual promising regions. Otherwise, the adaptive sampling stage will only make little 

progress even with the increased number of sample points. The comparison between the three 

algorithms indicates that 𝐴𝐸𝐼LK[Z and 𝐸𝑄𝐼LK[Z can be more favored especially when there exist 

smaller feasible regions that are hard to be explored. This is because they both have a slightly more 

enhanced global search compared to the 𝐸𝐼LK[Z method, and thus, they are less likely to be trapped 

in local regions.   

 

For future work, it requires further studies on the average convergence rate for the proposed 

algorithms. Additional studies are also needed to investigate whether different correlation functions 

can affect the performance of the proposed feasibility analysis algorithm. In terms of 

implementation, it still remains a challenge of properly choosing the number of replications when 

building the SK model. Intelligent methods need to be investigated to determine the number of 

replications based on the variance (closed-form function assumed to be unknown) at each sample 

point. The Optimal Computing Budget Allocation [287] approach from simulation optimization 
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areas seems to be a promising choice. Finally, it should be noted that the calculation of 𝐸𝐼LK[Z (and 

also 𝐴𝐸𝐼LK[Z, 𝐸𝑄𝐼LK[Z) involves inverting a correlation matrix, which can be computationally 

expensive as the number of sample points increases. This limits the use of the proposed algorithms 

to be only appropriate for lower-dimensional problems with a relative small noise level. Rullière 

[288] proposed a global optimization algorithm for stochastic simulations, which applied the branch 

and bound framework with the partition of the search domain. This approach is promising in 

reducing the computational burden, and it would be interesting if we could combine similar 

techniques to our proposed algorithms and make them applicable to a broader range of problems. 

 

7 A novel surrogate-based optimization method for black-box stochastic simulations with 

heteroscedastic noises 

Abstract 

Simulation optimization (SO) problems can be difficult to solve due to the lack of knowledge of 

the algebraic model equations and the unknown structure of the noise inherent to the simulation. It 

is important to investigate approaches capable of handling noise in order to achieve optimal 

solution with efficiency. In recent years, surrogate-based methods for SO problems have gained 

increasing attention from different research communities. In this work, we adapted a one-stage 

adaptive sampling approach to a Kriging-based optimization framework for simulations with 

heteroscedastic noise. We compared its performance with another Kriging-based approach using 

expected improvement as the infill criterion. Based on the results of several test problems, each 

with various noise scenarios, we discussed the benefits and limitations of both algorithms. Finally, 

we show the application of both algorithms to finding the optimal operation conditions of a 

continuous pharmaceutical manufacturing simulation model.  
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7.1 Introduction 

Simulation models have always been a powerful tool to help investigate and predict phenomena 

and system behaviors for a variety of research areas including engineering, science, finance, etc. 

Such simulation models have also been used for optimization purposes. For deterministic 

optimization problems, there are numerous well-established methods to find the optimal solution 

of the simulation (e.g., LP, NLP, derivative-free optimization methods), which may or may not 

require explicit model equations [289,180]. For stochastic optimization problems whose model 

equations are available, a number of approaches have been developed following stochastic 

programming mathematical techniques [290]. However, for black-box stochastic simulations with 

unknown noise structure, challenges remain. Such stochastic optimization problems are categorized 

as Simulation Optimization (SO) problems in a recent review paper by Amaran, Sahinidis et al. 

[291] 

 

In this article, we only consider single-objective SO problems with continuous inputs and box 

constraints, of which the general form can be expressed with Problem 128 

 min
b
𝑓 𝑥 		

s. t.		𝑥Y ≤ 𝑥 ≤ 𝑥D	

𝑥 ∈ Rk 

(128) 

Under the paradigm of SO, the objective function 𝑓 𝑥  cannot be directly observed, and can only 

be estimated with a stochastic simulation. The user only has access to noisy observations of the 

model output 𝑓N(𝑥): 

 𝑓N 𝑥 = 𝑓 𝑥 + 𝜔N(𝑥) (129) 

where 𝑓N 𝑥  is the observed objective value at the 𝑖Eℎ replication of simulation evaluated at a 

specific input 𝑥, and 𝜔N(𝑥) is the observed noise term. In this article, we also make the same 



	

182	
	

assumptions for the noise term as were used by Picheny, Ginsbourger et al. [274] : the observed 

noises are normally distributed, centered, and independent from one run to another (Equation 130). 

 𝜔N(𝑥)~N(0, 𝜉t(𝑥)) (130) 

We consider the case where the noise variance depends on 𝑥 (i.e., 𝜉(𝑥)t), and thus we have 

heteroscedastic noise inherent to the simulation.  

 

The difficulties associated with solving such SO problems are as follows. First, due to the lack of 

available algebraic equations, one cannot directly apply traditional mathematical programming 

algorithms (e.g., LP, NLP) or stochastic programming algorithms. Second, the noise in the 

simulation outputs also makes it harder to estimate the derivative information. Derivative-free 

optimization (DFO) methods are mostly designed for deterministic models, and may not all be 

suitable for the black-box stochastic simulations. Third, the stochastic behavior also adds to the 

challenge of proving convergence [291]. Finally, compared to other optimization problems, there 

still lack sufficient test problems and an accepted standard to compare the performance of different 

SO algorithms [291].  

 

A variety of algorithms have been developed to solve SO problems. Deng and Ferris [292] adapted 

the DIRECT (DIviding RECTangles) algorithm to stochastic simulations, which is originated from 

Lipschitzian optimization methods. Chang [293] proposed a Stochastic Nelder-Mead simplex 

method, which used an effective sampling scheme to control the noise and a global-local search 

framework to ensure solution quality. Xu, Nelson et al. [294] developed an Industrial Strength 

COMPASS (ISE) algorithm to solve simulation optimization problems with integer-ordered 

decision variables and linear-integer constraints. In addition, Optimal Computing Budget 

Allocation (OCBA) [295,296] have been integrated with search algorithms to intelligently allocate 

simulation budget during the optimization process. Stochastic approximation methods, such as 

FDSA (Finite-Difference Stochastic Approximation) and SPSA (Simultaneous Perturbation 
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Stochastic Approximation) [297,298] have also been used for optimization problems with noisy 

observations of objective function.  

 

The algorithms mentioned above are attractive due to their effectiveness, but a common drawback 

is that they usually require huge sampling costs, and may not be suitable for computationally 

expensive simulations. In contrast, the surrogate-based optimization methods can be more 

appealing. Such methods approximate the simulation with a surrogate model that is used to direct 

the search. Considering that the detailed surrogate-based approaches may vary depending on the 

noise structure of the simulations, in the following paragraphs, we first give a literature review on 

surrogate-based optimization approaches for simulations with homoscedastic noise, which is then 

followed by recent work on optimization for simulations with heteroscedastic noise.  

 

In terms of the optimization algorithms for homoscedastic-noise simulations, Jakobsson, Patriksson 

et al. [299] proposed the “qualSolve” algorithm, which constructed a RBF-based approximation 

surrogate and chose the next point by evaluating the overall decrease in weighted uncertainty. 

Huang, Allen et al. [161] developed a Sequential Kriging Optimization (SKO) method, which 

accounted for the noise by adding one more model parameter (“nugget” factor) to Kriging model, 

and used a Augmented Expected Improvement (AEI) function to search for new sample points. 

This is probably the first attempt to extend Jones’ efficient global optimization (EGO) algorithm 

[67] to stochastic simulations. Vazquez, Villemonteix et al. [300] adapted the Informational 

Approach to Global Optimization (IAGO) method, which utilized Kriging as the surrogate and 

evaluated the expected decrease of the entropy to find the next sample point. J. Forrester, Keane et 

al. [301] demonstrated a re-interpolation approach to refine the Kriging surrogate and used EI as 

the infill criterion. Picheny, Wagner et al. [283] made a thorough comparison of multiple Kriging-

based optimization approaches using different infill criteria for homoscedastic-noise simulations.  
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When applied to stochastic simulations with heteroscedastic noise, the aforementioned surrogate-

based optimization algorithms can be inappropriate due to two aspects of reasons. On the one hand, 

the surrogate models utilized in these algorithms are usually constructed based on the assumption 

that the noise variance is constant. This assumption is no longer valid for the heteroscedastic-noise 

simulations, and thus the surrogate models have the risks of being unable to capture the behavior 

of such stochastic simulations [302,303]. Hence, the estimated optimum can deviate far from the 

true optimum due to an inadequate fit of the surrogate [303]. On the other hand, some of the well-

performed infill criteria from these algorithms cannot properly handle the noise with non-constant 

variances. For example, Quan et al. [303] demonstrated this with a test problem and showed that 

the AEI function from SKO algorithm [161] could be trapped in the local area with low variability, 

and miss the global minimum with high variability. Therefore, it is necessary to develop different 

surrogate-based optimization algorithms for stochastic simulations with heteroscedastic noise.  

 

The heteroscedastic noise may affect the surrogate modeling techniques, which leads to some 

changes in the surrogate-based optimization algorithms compared to those for homoscedastic-noise 

simulations. Therefore, it is beneficial to first take a look on the different surrogate models designed 

for simulations with heteroscedastic noise. Ji and Kim [304] proposed a regularized radial basis 

function model (R-RBF), and derived both the model predictor and prediction error (estimated 

mean squared error). For the Kriging-based surrogate, there are mainly two branches of strategies 

to consider noise, which are developed by different research communities. One leading approach 

is based on Stochastic Kriging (SK), initially proposed by Ankenman, Nelson et al. [162]. It 

considers the noise component as intrinsic uncertainty of the simulation, and makes replications at 

each sample location to estimate the mean and variance, which is used to construct the surrogate. 

Yin, Ng et al. [302] formed a Kriging model with modified nugget-effect, which has equivalent 

mathematical expressions to SK. Chen and Zhou [305] established a sequential design framework 
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to improve the surrogate accuracy of SK. Kleijnen and Mehdad [306] formulated a more accurate 

estimator of the predictor variance using bootstrapping. The other branch of kriging-based 

approaches follows the Heteroscedastic Gaussian Process Regression (HGPR), which is mostly 

investigated by the machine learning community [307]. Kersting, Plagemann et al. [308] presented 

a most likely HGPR (MLHGPR), which used two GPRs to model the mean and log-noise 

distributions, respectively. Unlike SK, the MLHGPR method does not require replications to build 

the surrogate. Boukouvalas and Cornford [309] later extended MLHGPR framework to the cases 

where replicated observations are available, and showed that using replications can increase the 

accuracy of MLHGPR. Schneider and Ertel [310] introduced a local GPR that clusters the input 

space into multiple sub-regions and trains a local HGPR for each set of data points. Muñoz-

González, Lázaro-Gredilla et al. [311] presented an Expectation Propagation (EP) GPR model, 

which used EP to approximate the posterior distribution for the log-noise. Lázaro-gredilla and 

Titsias [312] proposed a Variational Heteroscedastic Gaussian Process Regression (VHGPR), 

which used a variational approximation for the marginal log-likelihood of the HGPR. This VHGPR 

method is practically faster and more accurate compared to MLHGPR in all the datasets tested in 

Ref. [312]. It should be noted that these papers cited above usually make the general assumption 

that the noise term is subject to a normal distribution with zero mean, independent and identically 

distributed from one run to another, which is the same assumption that we make in this work. There 

is only one exception ,that is, Yin, Ng et al. [302] did not specify a distribution form for the noise 

term of stochastic simulations in their studies.  

 

Based on recent advances of surrogate models for heteroscedastic-noise simulations, the surrogate-

based optimization techniques are developed accordingly. Picheny, Ginsbourger et al. [274] 

utilized a Kriging-based surrogate and expected quantile improvement (EQI) for the infill criterion. 

However, this method requires the noise variance function (i.e., 𝜉t(𝑥)) to be known. Quan, Yin et 

al. [303] proposed a two-stage sequential framework using SK with EI, and incorporated a 
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computing budget allocation technique to determine the replications among sampled locations. This 

algorithm does not require known noise function. Mehdad and Kleijnen [313] applied stochastic 

intrinsic Kriging (SIK) with EI function to find the optimal solution, and introduced a new 

allocation rule. Jalali, Van Nieuwenhuyse et al. [314] compared the performance of six algorithms 

based on a SK model using different infill criteria for SO problems with heteroscedastic noise. 

Kuindersma, Grupen et al. [315] applied VHGPR with expected risk improvement (ERI) to the 

optimization framework.  

 

Based on the literature review, we can notice that the majority of work that uses Kriging-based 

approaches adopts expected improvement (and its extensions) as the infill criterion. This category 

of algorithm can be seen as a two-stage approach: in the first stage, the surrogate is built with the 

sample points; in the second stage, EI is evaluated based on the constructed surrogate. Although 

the two-stage approach works well in most cases for deterministic simulations, it should be noted 

that the performance of such algorithm can be misled by the initial samples and deceptively 

positioned optimum [137], which is more likely to happen with sparse sample points. In the 

optimization for stochastic simulations, we would expect to encounter more of such cases. This is 

because the noise further increases the complexity and uncertainty in building the surrogate, 

especially during the starting stage of the algorithm when the sample points are less sufficient. To 

address this issue, we revisited the one-stage (OS) approach [123], which “uses the minimum to 

find the surrogate”, rather than “use the surrogate to find the minimum” [137]. We are 

interested to see whether the OS algorithm can be more effective and robust compared to EI-based 

methods. Therefore, in this paper, we apply SK with OS approach to the optimization of simulation-

based models with heteroscedastic noise, and compare its performance with the two-stage (EI-

based) algorithm. Both of these two algorithms (i.e., SK-OS and SK-EI) in this work do not require 

the variance function (i.e., 𝜉t(𝑥)) of the noise term to be known. The rest of this article is organized 
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as follows. Section 7.2 introduces the stochastic Kriging surrogate model. Section 7.3 describes the 

two infill criteria, EI-based approach and OS-based approach, whereas the computational results 

are discussed in Section 7.4.  Section 7.6 is used for the application of the investigated approaches 

to a pharmaceutical manufacturing case study.  

 

7.2 Stochastic Kriging Model 

In this section, we briefly introduce the formulas for SK model that we use as the surrogate in the 

optimization framework. SK model represents a stochastic simulation’s output on replication 𝑗 at 

design point 𝑥 with the following model expression (Equation 131) 

 𝑦� 𝑥 = 𝛽| + 𝑀 𝑥 + 𝜀�(𝑥) (131) 

where 𝛽| is a constant term representing the overall surface mean; 𝑀 is a realization of a random 

field with mean 0; that is, 𝑀 is considered to be randomly sampled from a space of functions 

mapping 𝑅l → 𝑅. The functions in this space are assumed to exhibit spatial correlations, which 

indicates that value of 𝑀(𝑥) and 𝑀(𝑥′) will tend to be similar if the distance between 𝑥 and 𝑥′ 

is small. In Ref. [162], 𝑀 is referred to as “extrinsic uncertainty” since it is introduced to aid the 

development of the surrogate model. The first two terms (𝛽| and 𝑀) in Equation 131 share the 

same characteristics as those in ordinary Kriging [275] for deterministic simulations. 𝜀 is another 

random field (over the space of mapping 𝑅l → 𝑅) with mean 0. It is called “intrinsic uncertainty

” in Ref. [162] and it represents the sampling variability inherent to a stochastic simulation. The 

variance of 𝜀 would depend on 𝑥 if the simulations have heteroscedastic noise in the output.  

 

The stochastic Kriging is based on the following assumption [162]: the random field 𝑀 is a 

stationary Gaussian random field, and 𝜀o(𝑥N), 𝜀t(𝑥N), … are i.i.d. 𝑁(0, 𝑉(𝑥N)), independent of 

𝜀�(𝑥ℎ) for all 𝑗 and ℎ ≠ 𝑖, and independent of 𝑀. According to Ref. [162], this assumption implies 

that for any set of design points 𝑥o, 𝑥t, … , 𝑥� the random vector [𝑀 𝑥o ,𝑀 𝑥t , … ,𝑀 𝑥� ]� has a 
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multivariate normal distribution with marginal mean 0, positive variance 𝜏t, and positive definite 

correlation matrix 𝑹¶. These properties are important for modeling the correlation of 𝑀, estimating 

intrinsic variance 𝑉(𝑥N), and deriving the model prediction, which are discussed as follows.  

 

Several correlation kernel functions can be used to model the spatial correlations of 𝑀. In this 

article, we follow the approach of Ref. [162] and use the Gaussian correlation kernel (Equation 

132): 

 
Corr 𝑀(𝑥),𝑀(𝑥′) = exp( −𝜃ℎ 𝑥ℎ − 𝑥ℎ′

t
 

l

ℎ{o

) (132) 

where 𝑑 is the number of dimensions in the input space; 𝜃ℎ > 0 is the model parameter that controls 

how fast the correlation decays with distance in the ℎEℎ dimension. The covariance between 𝑥 and 

𝑥′ can thus be expressed as: Cov 𝑥, 𝑥′ = 𝜏tCorr 𝑥, 𝑥′ , where 𝜏t is the model parameter 

representing the variance of 𝑀.  

 

In Ref. [162], the intrinsic variance at the design point 𝑥N is estimated with 𝑛N replications using 

(Equation 133): 

 
𝑉 𝑥N =

1
𝑛N − 1

𝑦� 𝑥N − 𝑦(𝑥N)
t

_¢

�{o

, (133) 

where 𝑦(𝑥N) is the estimated mean at 𝑥N, y(𝑥N) =
o
_¢

𝑦�(𝑥N)
_¢
�{o . It is shown in Ref. [162] that the 

surrogate accuracy will not be sacrificed by estimating the intrinsic variance by 𝑉, as long as 𝑛N is 

not too small. In this work, we choose 𝑛N = 10 as is suggested in Ref. [162]. This number of 

replications was also used as a start point of sampling budget in Ref. [313].  

 

Using these equations, the model parameters can be obtained by maximizing the log-likelihood 

(derived in the supplement material of Ref. [162]). Based on the assumption on the independence 
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properties of 𝑀 and 𝜀 [162] which we mentioned earlier in this section, the unbiased predictor at 

any point 𝑥 can be derived as follows (Equation 134): 

 𝑦(𝑥) = 𝛽| + 𝜮𝑴(𝑥,∙)� 𝜮𝑴 + 𝜮𝜺
fo
(𝒚 − 𝛽|𝟏𝒌) (134) 

where 𝜮𝑴 is the k-by-k covariance matrix across all design points 𝑥o, 𝑥t, …, 𝑥�; 𝜮𝑴 𝑥,∙  is k-by-

1 covariance vector with the 𝑖Eℎ element as Cov 𝑥, 𝑥N ; 𝜮𝜺 is the estimated covariance diagonal 

matrix: 𝜮𝜺 = 𝐷𝑖𝑎𝑔{¥ b�
_�

, ¥ b�
_�

, … , ¥ bW
_W

}; 𝒚 is the k-by-1 vector with the 𝑖Eℎ element as 𝑦(𝑥N) 

 

The prediction uncertainty at any point 𝑥 can also be derived as follows (Equation 135): 

 𝑠t 𝑥 = 𝜏t − 𝜮𝑴 𝑥,∙ � 𝜮𝑴 + 𝜮𝜺
fo
𝜮𝑴 𝑥,∙ + 𝜹�𝜹(𝟏�� 𝜮𝑴 + 𝜮𝜺

fo
𝟏�)fo (135) 

where 𝜹 = 1 − 𝟏�� 𝜮𝑴 + 𝜮𝜺
fo
𝜮𝑴 𝑥,∙ . Note that the matrix 𝜮𝑴 + 𝜮𝜺  is positive definite 

because 𝜮𝑴 is a positive definite covariance matrix (based on the assumption for stochastic Kriging 

which was mentioned earlier in this section), and 𝜮𝜺 is also positive because it is a diagonal matrix 

with positive entry (i.e., 𝑉 𝑥N > 0 for any 𝑥N).  

 

7.3 Infill criteria 

An infill criterion is the standard way used to search for new sample locations where the black-box 

simulation needs to be evaluated. The step to search for infill points is also called adaptive 

sampling. For the purpose of global optimization, it is necessary that an infill criterion keeps a 

balance between local search (exploitation) and global search (exploration), which is important for 

asymptotic convergence and practical performance [316,137]. In this section, we first review the 

EI approach that is widely adopted by different research communities. Then we introduce the basic 

theory of OS approach. The modifications of these approaches are also discussed when considering 

the heteroscedastic-noise simulations.  
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7.3.1 Expected Improvement approach 

For deterministic models, Jones’ EGO algorithm [67] used the EI function as the infill criterion. 

The improvement function can be defined with Equation 136: 

 𝐼 𝑥 = max	(𝑓 N_ − 𝑦, 0) (136) 

where 𝑓 N_ is the minimum objective value of the already visited sample points, and 𝑦 is the 

Kriging predictor at design point 𝑥. Equation 136 computes the improvement (decrease from 𝑓 N_) 

we can achieve if we sample at 𝑥. The expected value of the improvement (EI function) can be 

derived as shown in Equation (137). 

 
𝐸 𝐼 𝑥 = 𝑓 N_ − 𝑦 Φ

𝑓 N_ − 𝑦
𝑠

+ 𝑠𝜙
𝑓 N_ − 𝑦

𝑠
 (137) 

where Φ is the normal cumulative distribution function, and 𝜙 is the normal probability density 

function. If we evaluate the derivatives of the EI function with respect to 𝑦 and 𝑠, we would notice 

that the EI value is larger with lower 𝑦 and higher 𝑠. Therefore, when maximizing the EI function, 

it will tend to find sample locations by a particular trade-off between local search (lower 𝑦) and 

global search (higher 𝑠). After the algorithm ends, the returned approximately optimal solution is 

the sample point with minimum observed objective function value.  

 

When applying EI to stochastic simulations, it is straightforward to substitute 𝑦 and 𝑠 with SK 

prediction and square root of estimated prediction variance. However, there are several additional 

difficulties that we need to address. First, the true value (deterministic values) of 𝑓 N_ is not exactly 

known when we only have access to noisy observations from the stochastic simulation. It is not 

plausible to choose 𝑓 N_ as the minimum of the estimated mean of the sample points (i.e., 𝑓 N_ =

min	{y 𝑥o , y 𝑥t , … , y 𝑥� }) because for stochastic Kriging the predicted surface does not 

necessarily go through every data point (𝑥N, y 𝑥N ), especially when the noise variance is high at 𝑥N 

[162]. Alternatively, in many papers on Kriging-based approaches for optimization with stochastic 

simulations (e.g., Ref. [161,283,303,314,300]), 𝑓 N_ is calculated by seeking to the surrogate 
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prediction (i.e., 𝑦 𝑥N ) at the sample points. In this work, we adopt the strategy by Vazquez, 

Villemonteix et al. [300] and choose 𝑓 N_ as the minimum of the SK prediction at all the sampled 

locations, as is shown in (Equation 138). 

 𝑓 N_ = min	{𝑦 𝑥o , 𝑦 𝑥t , 	 … , 𝑦 𝑥� } (138) 

Vazquez, Villemonteix et al. [300] claimed that by choosing 𝑓 N_ in this way we were evaluating 

the expected improvement upon the minimum of the surrogate prediction when maximizing the EI 

function (Equation 137). A second issue we need to consider is the choice of final returned optimal 

solution after the algorithm ends. This is a nontrivial problem because for stochastic simulations, 

unlike deterministic models, the observed objective value is no longer equivalent to its true value. 

Here we choose the returned optimal solution (denoted with 𝑥) as the sample point with the 

minimum SK prediction value, and the returned optimal objective value (denoted with 𝑦 ) as the 

SK prediction at this returned optimal solution (Equation 139): 

 𝑥 = 	 arg	min
b∈ b�,…,bW

𝑦 𝑥 	

𝑦 = 𝑦 𝑥 . 
(139) 

Jalali, Van Nieuwenhuyse et al. [314] mentioned that this identification strategy is promising to 

show better performance than others in finding the optimal solution. 

 

The algorithm for this SK-EI approach is shown in Figure 53. We first build an initial SK surrogate 

using a space-filling design. A common choice is to use a Latin Hypercube Sampling (LHS) [249] 

strategy consisting of 10d sample locations (see Ref. [67,283]), where d is the dimension of the 

problem. At each sample location, we make 𝑚 replications (𝑚 = 10) in order to estimate the mean 

and variance. In this work, we did not include the allocation strategy (e.g., Ref. [303]) to allocate 

different number of replications at different sample locations, because we would like to compare 

the performance of two algorithms under the same sampling and replication settings. Then, during 

the adaptive sampling stage, SK-EI searches from the unvisited locations (i.e., 𝑥 ∈Θ ∖
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{𝑥o, … , 𝑥�}) and find the new sample location (i.e., 𝑥_KS) with maximized EI function value. At 

the 𝑥_KS, we make 𝑚 replications (𝑚 = 10) of the stochastic simulation and update the surrogate 

with respect to the model parameters (𝛽|, 𝜏t, 𝜃ℎ). Note that we do not allow to revisit the sampled 

locations so that it is guaranteed that at each sample location we have the same number of 

replications of the simulation. This step of adaptive sampling continues repeatedly and terminates 

when the number of iterations exceeds the user-defined upper bound Nmax (i.e. the total sampling 

budget being depleted). Finally, after the algorithm terminates, the identified optimal solution (and 

its corresponding SK predictor value) is returned as the sample location at which the SK prediction 

is minimum among all the sample points.  

 

Figure 53. SK-EI algorithm  

 

1.	Build	an	initial	SK	model	based	on	a	space-
filling	design	(e.g.	LHS),	consisting	of	10d	
locations,	each	with	m	replications	

2.	Find	the	next	new	sample	location	!"#$ :
!"#$ = arg	max

,∈.∖{,1,…,,4}
67(!)

3.	Make	m	replications	at	!"#$ and	update	
the	SK	model	(:;, <= , >?) with	the	new	dataset

5.	Optimum	identification:	
!@ = 	 arg	min

,∈ ,1,…,,4
CDE !

C@ = CDE !@ .

Yes

No
4.	#	Iterations	>	Nmax?
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7.3.2 One stage approach 

The OS approach was initially proposed by Jones [123] in which it was used with Kriging for 

optimization problems with deterministic models. This approach assumes that we have a goal value 

𝑓∗ for the global optimum. Instead of searching for expectations of improvement, we assess the 

likelihood that the goal value 𝑓∗ could exist at a given point. For example, we make a hypothesis 

that 𝑓∗ is achieved at a point 𝑥. To evaluate this hypothesis, we compute the likelihood of the 

sample data conditional upon the assumption that the surface goes through the point (𝑥, 𝑓∗). The 

expression of this conditional likelihood for Kriging model can be found in Ref. [123] 

 

Based on the assumption for SK model that was mentioned Section 7.2, Ankenman, Nelson et al. 

[162] proved that the vector (𝑌 𝑥| , y 𝑥o , y 𝑥t , … , y(𝑥�))� follows a multivariate normal 

distribution. Therefore, based on the properties of multivariate normality [317], the conditional 

likelihood with SK can be derived in a similar fashion with that for Kriging. The expression for 

conditional log likelihood using SK is shown in Equation 140.  

 𝑙𝑙MC_l 𝑥, 𝛽|, 𝜏t, 𝜃ℎ = − 𝑙𝑛 2𝜋 |.Ô� − 0.5𝑙𝑛 𝑪 − 0.5(𝒚 −𝒎)� 𝑪 fo(𝒚 −𝒎) 

where 

𝑪 = 𝜮𝑴 + 𝜮𝜺 − 𝜮𝑴 𝑥,∙ 𝜮𝑴 𝑥,∙ �/𝜏t	

𝒎 = 𝛽|𝟏𝒌 + 𝜮𝑴 𝑥,∙ (𝑓∗ − 𝛽|)/𝜏t 

(140) 

Hence, the next sample point is found by maximizing 𝑙𝑙MC_l. An advantage of using 𝑙𝑙MC_l is that 

it optimizes the sample location 𝑥 together with the model parameters 𝛽|, 𝜏t, 𝜃ℎ, which prevents 

the risks of finding 𝑥 based on a pre-determined, possibly misleading, set of model parameters 

[123]. However, compared to EI approach, OS approach has a higher algorithmic complexity from 

several aspects. First, the value of 𝑓∗ is usually unknown and needs to be chosen in a certain way, 

and the method of this is presented in the next paragraph. Additionally, 𝑙𝑙MC_l function has a higher 

dimension than EI function due to the incorporation of (𝑑 + 2) model parameters, which makes it 
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a more difficult problem of maximizing 𝑙𝑙MC_l than maximizing the EI function. Finally, when 

maximizing 𝑙𝑙MC_l, it needs to be evaluated at many different 𝑥. At each 𝑥, we need to calculate a 

different matrix inverse (i.e., 𝑪 fo), which requires 𝑂 𝑘�  operations. In comparison, maximizing 

the EI function at different 𝑥 does not need to calculate a different matrix inverse because the 

calculation of 𝑦 (Equation 134) and 𝑠 (Equation 135) only involves the same matrix inverse (i.e., 

𝜮𝑴 + 𝜮𝜺
fo

) which is not dependent on 𝑥.  

 

For the OS approach, the strategy of choosing 𝑓∗ is important for the trade-off between global 

search and local search. An overly optimistic goal (e.g., 𝑓∗ = −∞) will result in too much global 

search, while a much too pessimistic goal (e.g., 𝑓∗ = min{𝑦 𝑥o , 𝑦 𝑥t , 	 … , 𝑦 𝑥� }) will lead to 

purely local search [137]. A practically effective approach is to try a set of different 𝑓∗ values, 

ranging from small to large, so as to keep a balanced search between exploration and exploitation. 

This method is shown to be very effective by Gutmann [207] when a radial basis function surrogate 

model is used. In this article, we adapted a similar method developed in Ref. [222] and applied it 

to the SK model, which is explained as follows. 

 

A cycle of N+1 types of 𝑓∗ values are used, where N = 5. At iteration 𝑛, 𝑓_∗ is calculated with 

Equation 141. 

 𝑓_∗ = min
b∈p

𝑇(𝑥) − 𝑊_ ∙ (maxN 𝑦 𝑥N − min
b∈p

𝑇(𝑥)) (141) 

with 

 𝑊_ = 1 − 𝑛	mod 𝑁 + 1 𝑁
t
	

𝑇 𝑥 = 𝑦 𝑥 − 𝑠 𝑥 	

𝛺 = {𝑥o, … , 𝑥�} 

(142) 
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where max
N
𝑦 𝑥N  varies depending on the cycle iteration. At the first step of the cycle, max

N
𝑦 𝑥N  

is calculated using all the sample locations. In the subsequent steps, the maximum is evaluated after 

the removal of the (𝑛 + 𝑛N_N − 𝑛^[b) points with largest SK prediction values, where 𝑛^[b is 

calculated using Equation 143. In this way, the value of max
N
𝑦 𝑥N  decreases until the cycle ends, 

after which all points are considered again and the cycle starts from the beginning.  

 𝑛^[b = max	{2, 𝑛N_N + 𝑛 − 𝑛/𝑁 } (143) 

In Equation 141, the parameter 𝑊_ changes its values from 1 (resulting in small 𝑓_∗) to 0 (resulting 

in large 𝑓_∗) during each cycle, which enables a balanced search between exploration (when 𝑓_∗ is 

small) and exploitation (when 𝑓_∗ is large). Note that, unlike the method in Ref. [222], we use a “

statistical lower bound” 𝑇 𝑥  (Equation 142) instead of 𝑦 𝑥 . This change is made to account for 

the effect of noise on building the SK model. Ankenman, Nelson et al. [162] demonstrated that for 

a SK model the prediction uncertainty 𝑠 𝑥  (Equation 135) at the sampled locations can be higher 

than zero when the noise variance is high. Therefore, when 𝑓_∗ cycles its values to local search (i.e., 

𝑊_ = 0), by choosing 𝑓_∗ = min
b∈p

𝑇(𝑥) = min
b∈p

(𝑦 𝑥 − 𝑠 𝑥 ) instead of 𝑓_∗ = min
b∈p

𝑦 𝑥 , we can 

prevent over trusting the SK prediction 𝑦 𝑥  at the sampled locations. In fact, the use of 𝑇 𝑥  not 

just affects the case of 𝑊_ = 0, but also affects all the remaining cases of the cycle. Generally, this 

strategy of choosing 𝑓_∗ can slightly enhance the global search and prevent the sampling from being 

trapped in a narrow local area during the adaptive sampling stage. Later in Section 7.4, we can see 

from the results that it is indeed beneficial for the optimization with stochastic simulations. 

 

The SK-OS algorithm follows similar steps with SK-EI (presented in Figure 53). The only 

difference is Step 2, where SK-OS algorithm first calculates the value 𝑓_∗, and then, from the 

unvisited sample locations, it determines the next new sample location (i.e. 𝑥_KS) by maximizing 

𝑙𝑙MC_l 𝑥∗, 𝛽|, 𝜏t, 𝜃ℎ . For the remaining steps, including building initial surrogate, updating 
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surrogate, and identifying optimal solution and optimum objective value, SK-OS and SK-EI follow 

the same procedures. The reader can refer to Figure 53 for details.  

 

7.4 Computational studies 

7.4.1 Noise scenarios 

The performance of the SK-EI and SK-OS algorithms can be affected by different noise structures 

(i.e., different heteroscedasticity). In this work, we consider two aspects of the noise structure: noise 

magnitude and noise pattern, which is similar with that in Ref.[314]. In terms of noise magnitude, 

we relate the square root of the noise variance (i.e., 𝜉(𝑥)) to 𝑅L, which is defined [314] as the range 

of the objective value within the input space Θ  (Equation 144), 

 𝑅L = max
b∈Θ

𝑓(𝑥) − min
b∈Θ

𝑓 𝑥 . (144) 

(Note that by the definition of 𝑅L, it is always a positive value for each test problem.) For “small

” noise magnitude, 𝜉(𝑥) changes in a narrower range of smaller values (i.e. varying between 

0.15𝑅L and 0.6𝑅L); whereas for “large” noise magnitude, 𝜉(𝑥) changes in a wider range of larger 

values (i.e. varying between 0.3𝑅L and 1.2𝑅L). In terms of noise pattern, we assume that 𝜉(𝑥) 

changes linearly with the objective value. For “easy” pattern, 𝜉(𝑥) increases linearly as the 

objective value increases, in which case the noise is smallest at the global minimum; whereas for 

“hard” pattern, 𝜉(𝑥) decreases linearly as the objective value increases, in which case the noise 

is largest at the global minimum. Based on such considerations, a total number of 4 noise scenarios 

are used for each test problem. The expressions of 𝜉(𝑥) for these 4 noise scenarios are shown with 

Equation 145. Note that with these expressions 𝜉(𝑥) is always positive by its definition. 

 Small noise magnitude 

- Easy pattern: 𝜉 𝑥 = 0.45 𝑓 − min
b∈Θ

𝑓 𝑥 + 0.15𝑅L 
(145) 
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- Hard pattern: 𝜉 𝑥 = −0.45 𝑓 − min
b∈Θ

𝑓 𝑥 + 0.6𝑅L 

Large noise magnitude 

- Easy pattern: 𝜉 𝑥 = 0.9 𝑓 − min
b∈Θ

𝑓 𝑥 + 0.3𝑅L 

- Hard pattern: 𝜉 𝑥 = −0.9 𝑓 − min
b∈Θ

𝑓 𝑥 + 1.2𝑅L 

 

These scenarios are illustrated with a D1 test problem in Figure 54. In this figure, the solid line is 

the objective function (e.g., 𝑓 𝑥  in Equation 128), and the dashed lines represent 𝑓 𝑥  +/- 2𝜉(𝑥).  

 

Figure 54. Illustration of 4 noise scenarios with D1 test problem. Solid line: 𝑓 𝑥 ; Dashed line: 

𝑓 𝑥  +/- 2𝜉(𝑥).  

 

7.4.2 Performance measures and data visualization 

Considering the randomness of the initial LHS design points and the stochastic simulations, both 

algorithms are run 30 times for all the noise scenarios of each test problem. For comparison 
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purpose, both algorithms share the same 30 sets of initial sample points (i.e., same noisy 

observations at the same sample locations) for each noise scenario. As is discussed in Section 7.3, 

the performance of the algorithm depends on the accuracy of locating the optimal solution (𝑥∗) and 

the accuracy of predicting the optimal objective value (𝑦∗). Therefore, in this article, we consider 

two performance measures, which are illustrated with a D1 test problem in Figure 55. In this figure, 

the solid line is the SK prediction 𝑦 𝑥 ; the dot-dashed line is the original function 𝑓 𝑥 ; the cross 

point represents the identified optimal solution (𝑥) returned from the algorithm. 𝑥∗ represents the 

true optimal solution of the test problem; 𝑦∗ represents the true optimal objective value of the test 

problem.  

 

The first performance measure is “𝑦CRNr 𝑥 ”, which is defined as the original function (i.e., 

𝑓 𝑥 ) value evaluated at the identified optimal location 𝑥. The algorithm’s performance is good if 

𝑦CRNr 𝑥  is close to 𝑦∗. This index indicates the algorithm’s capability of locating the optimal 

solution.  

 

The second performance measure is “𝑔𝑎𝑝(𝑥)”, which is defined as the absolute value of the 

difference between the SK prediction and the original function evaluated at 𝑥 (e.g., 𝑔𝑎𝑝 𝑥 =

𝑎𝑏𝑠 𝑦 𝑥 − 𝑦CRNr 𝑥 ). The algorithm’s performance is good if 𝑔𝑎𝑝 𝑥  is close to zero. This 

index reflects the accuracy of the prediction of optimal objective value.  
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Figure 55. Illustration of two performance measures with the D1 test problem. Black dot-dashed 

line: objective function 𝑓 𝑥 ; red solid line: SK prediction 𝑦 𝑥 . 

 

To visualize the data, we use the boxplot for 𝑦CRNr 𝑥  and for 𝑔𝑎𝑝 𝑥 , respectively at the last 

iteration of adaptive sampling. This shows the distribution of the algorithm performance (30 runs) 

when it terminates. Also, we use the data profiles [318] to show the fraction of problems solved at 

each iteration. For data profiles, two measures 𝜂mdÔ and 𝜂r[�|.t are used (associated to “𝑦CRNr 𝑥

” and “𝑔𝑎𝑝(𝑥)”, respectively), whose calculations are shown in Equation 146. 𝜂mdÔ calculates 

the percentage of runs whose 𝑦CRNr 𝑥  values are within the range [0.95𝑦∗, 1.05𝑦∗]. 𝜂r[�|.t 

measures the percentage of runs which have 𝑔𝑎𝑝 𝑥  values within the range [-0.2, 0.2].  

 
𝜂mdÔ =

|𝑦CRNr 𝑥 : 𝑎𝑏𝑠 𝑦CRNr 𝑥 − 𝑦∗ ≤ 𝑎𝑏𝑠( 1 − 0.95 𝑦∗)| 
30

×100	

𝜂r[�|.t =
|𝑔𝑎𝑝 𝑥 : 𝑔𝑎𝑝 𝑥 ≤ 0.2| 

30
×100 

(146) 

In practice, we have also evaluated other data profiles, for example, 𝑦CRNr 𝑥  varying in the ranges 

[0.8𝑦∗, 1.2𝑦∗], [0.9𝑦∗, 1.1𝑦∗], and [0.99𝑦∗, 1.01𝑦∗]; 𝑔𝑎𝑝 𝑥  varying in the ranges [-0.1, 0.1], [-

0.5, 0.5], and [-1, 1]. While for each test problem the data profiles show similar trends, 𝜂mdÔ and 
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𝜂r[�|.t provide a relatively better visualization on the comparison of algorithms’ performance. 

Therefore, in this paper we only show the figures of 𝜂mdÔ and 𝜂r[�|.t.  

 

7.4.3 Test problems and implementation details 

We use 7 standard test problems to compare the performance of SK-EI and SK-OS. A summary of 

these test problems is provided in Table 22. For detailed functions, the readers can refer to the 

supporting information of this article. These test problems have different dimensions ranging from 

1D to 4D, and different multi-modality properties. They are chosen because they have been used 

to test the optimization algorithms for stochastic simulations [283] and/or to compare the EI and 

OS approach for optimization on deterministic models [319].  

 

Table 22. Summary of 7 test problems 

test problems Dimension Multi-modal # global min Rf 

D1 1 Yes 1 21.8504 

Branin 2 Yes 3 5.9236 

Camelback 2 Yes 2 6.7649 

Michalewicz 2 Yes 1 1.8013 

Goldstein-Price 2 Yes 1 5.2461 

Hartmann3 3 Yes 1 3.8628 

Rosenbrock 4 No 1 7.2510 

 

To build the SK model, we use the code provided on http://stochastickriging.net/. For all the 4 noise 

scenarios of each test problem, we make 30 runs with SK-EI and SK-OS, using 100 iterations of 

adaptive sampling (10 replications at each sample location). The optimization problems (i.e., 

maximizing 𝐸𝐼 in Equation 137 and maximizing 𝑙𝑙MC_l in Equation 140) during the adaptive 
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sampling stages are solved with “fmincon” in Matlab 2016a. Because 𝐸𝐼 and 𝑙𝑙MC_l can have 

multiple local optimum, a multi-start strategy should be used when maximizing these two functions. 

In practice, at each iteration when 𝐸𝐼 (or 𝑙𝑙MC_l) is maximized, we used a number of 10𝑑 random 

sample points (sampled with the LHS strategy) as the initial points. Then, the returned optimal 

point with the best value of 𝐸𝐼 (or 𝑙𝑙MC_l) is taken as the next sample location where the expensive 

stochastic simulation (i.e., the test problem) is called. The computational results are provided in the 

following section.  

 

7.5 Results 

Due to the space limitations, we only show the results on “D1” (Figure 56) and “Rosenbrock

” (Figure 57) to support the analysis in the following sub-sections. We choose to show these two 

test problems because they are two typical representatives that can show the advantages and 

limitations of the both the SK-EI and SK-OS algorithms. As for the remaining test problems, the 

result figures are included in the supporting information of this article. 

 

7.5.1 Interpretation on the data figures 

To explain how to read the computational results, we use the “D1” test problem as an example 

(Figure. 56). The left column includes the boxplot of 𝑦CRNr 𝑥  and data profiles of 𝜂mdÔ, which 

compare the algorithms’ capability to locate the minimum. The right column includes the boxplot 

of 𝑔𝑎𝑝(𝑥) and the data profiles of 𝜂|.t, which compare the accuracy of predicting the minimum 

objective value. In the first row of boxplots, SK-OS result is shown with red boxes; SK-EI result 

shown in blue boxes. The dashed lines indicate the target values that we are trying to achieve (i.e. 

the dashed line in (a) is the global minimum objective value -6.0207; the dashed line in (b) is 0, 

which is the ideal value of 𝑔𝑎𝑝(𝑥)). The second row of data profiles, (c) and (d), compares the 

algorithm’s performance in the two easy noise scenarios (“small-easy” and “large-easy”). The 
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third row of data profiles, (e) and (f), compares the algorithm’s performance in the two hard noise 

scenarios (“small-hard” and “large-hard”). In the data profile figures, SK-OS is noted with 

solid lines, SK-EI with dot-dashed lines. Detailed annotation on different data point marks is shown 

in the figure legend, where “S.E.” stands for “small-easy” noise scenario; “L.E.” -> “

large-easy”; “S.H.” -> “small-hard”; “L.H.” -> “large-hard”. 

 

To interpret the results, with boxplots, the performance of the algorithm is considered to be good 

if the boxplot is close to the target (dashed line) with smaller box spans, which indicates a larger 

fraction of runs can successfully locate the global minimum (using 𝑦CRNr 𝑥 ), or accurately predict 

the optimal objective value (using 𝑔𝑎𝑝(𝑥)). On the other hand, with data profiles, the algorithm 

has a good performance if the data increase faster and end up with higher percentage values, which 

suggest the algorithm can more quickly locate the global minimum (using 𝜂mdÔ) or improve the 

prediction accuracy of objective value (using 𝜂r[�|.t) within fewer iterations. It should be noted 

that, unlike the cases when we have deterministic test problems, data profiles of the ratios (i.e., 

𝜂mdÔ and 𝜂r[�|.t) for stochastic test problems are no longer monotone with respect to iterations. 

This is because the values of SK predictions at sampled locations can change when the surrogate 

gets updated at each iteration.   
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Figure 56. Boxplot and data profiles of “D1” test problem. (a) boxplot of 𝑦CRNr 𝑥  after 100 

iterations of adaptive sampling; (b) boxplot of 𝑔𝑎𝑝(𝑥) after 100 iterations of adaptive sampling; 

(c) data profiles of 𝜂mdÔ for easy noise scenarios; (d) data profiles of 𝜂r[�|.t for easy noise 

scenarios; (e) data profiles of 𝜂mdÔ for hard noise scenarios; (f) data profiles of 𝜂r[�|.t for hard 

noise scenarios. 
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Figure 57. Boxplot and data profiles of “Rosenbrock” test problem. (a) boxplot of 𝑦CRNr 𝑥  after 

100 iterations of adaptive sampling; (b) boxplot of 𝑔𝑎𝑝(𝑥) after 100 iterations of adaptive 

sampling; (c) data profiles of 𝜂mdÔ for easy noise scenarios; (d) data profiles of 𝜂r[�|.t for easy 

noise scenarios; (e) data profiles of 𝜂mdÔ for hard noise scenarios; (f) data profiles of 𝜂r[�|.t for 

hard noise scenarios. 
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7.5.2 Influence of noise structure on algorithms’ performance 

From the data obtained we notice some common features of both algorithms, that is, they can both 

be heavily affected by the noise structure in all the test problems. In terms of the noise magnitude, 

the “large” noise magnitude can severely degrade the performance of both algorithms, as we can 

observe that, for each algorithm, the boxplots of “large” noise magnitude have larger spans and 

deviate farther from the target line compared to those of small noise magnitude. The trend in data 

profiles also reflects this effect. For “large” noise scenarios, the trend is that the data profiles of 

“𝜂mdÔ” and “𝜂r[�|.t” increase slower with iteration and end up with smaller percentage values 

compared with those for “small” noise scenarios. On the other hand, considering the noise 

pattern, the “hard” pattern usually leads to the algorithm performing worse compared to the “

easy pattern”. Such findings are consistent with those provided by Ref. [314]. This is expected 

because the accuracy of the surrogate models is expected to decline with the increase in the noise 

magnitude and complexity. To alleviate this negative influence, Jalali, Van Nieuwenhuyse et al 

[314] claimed that increasing the number of replications can be effective in some cases.  

 

7.5.2.1 Comparison of performance between SK-OS and SK-EI 

Boxplots of 𝒚𝒐𝒓𝒊𝒈 𝒙  and data profiles of 𝜼𝒚𝟗𝟓 

With boxplots of 𝑦CRNr 𝑥  and data profiles of 𝜂mdÔ, the comparison on the two algorithms’ 

performance for each test problem is summarized in Table 23. In this table, a solid circle mark “

•” indicates that SK-OS method is better than SK-EI in a specific noise scenario of a test problem; 

an empty circle mark “○” means that SK-EI performs better than SK-OS; a short hyphen mark 

“-” represents that not much difference is observed between the two algorithms. 

 

Table 23. Summary of comparison between SK-EI and SK-OS with 𝑦CRNr 𝑥  and 𝜂mdÔ 
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  S.E. S.H. L.E. L.H. 

  EI OS EI OS EI OS EI OS 

D1 

 

• 

 

• 

 

• 

 

• 

Branin - - 

 

• - - ○ 

 Camelback 

 

• 

 

• 

 

• - - 

Michalewicz - - 

 

• 

 

• 

 

• 

Goldstein-Price 

 

• 

 

• - - - - 

Hartmann3 

 

• 

 

• 

 

• 

 

• 

Rosenbrock ○ 

 

○ 

 

○ 

 

○ 

  

From Table 23, we can see that SK-OS outperforms SK-EI in locating the minimum in most of the 

scenarios of the tested problem (i.e. 18 out of 28 cases). For the test problems “D1” and “

Hartmann3”, SK-OS has better performance than SK-EI in all the noise scenarios. From the data 

profiles of these two test problems, we can notice that the difference is especially profound for the 

hard noise scenarios. As for the 2D test problems “Branin”, “Camelback”, “Michalewicz”

, and “Goldstein-Price”, the advantage of using SK-OS varies depending on different noise 

scenarios, with one exception (i.e., large-hard noise scenario of “branin”), where SK-OS is 

noticeably worse than SK-EI. In the remaining scenarios, there is no obvious difference between 

SK-OS and SK-EI. However, with the test problem “Rosenbrock”, SK-OS performs worse than 

SK-EI in all four noise scenarios.  

 

After taking a careful look on the test problems’ characteristics, we notice that, with respect to 

locating the global minimum, SK-OS can be more favorable than SK-EI mostly in the multimodal 

cases where the global minimum is located in a wide-deep basin (e.g., “D1”, “Hartmann3”, 
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“Camelback”). This is because the SK-OS has more focus in the global search, which makes it 

less likely to be trapped in exhaustively searching some unpromising local regions when a test 

problem has multiple local minimums. In comparison, SK-EI has a higher chance of getting stuck 

in unpromising regions because its search direction can more easily be misled, due to either an 

inaccurate estimated 𝑓 N_ or surrogate model parameters, with the existence of simulation noise.  

 

However, SK-OS can be less competent than SK-EI when the global minimum is located in a 

narrow-flat valley (e.g., “Branin”, “Rosenbrock”). In such cases, although the valley of the 

global minimum is easy to find, the convergence to the global minimum is difficult [283]. This can 

be seen in the data profile of 𝜂mdÔ for “Rosenbrock” (Figure 57 c and e), where both algorithms 

make very slow progress in locating the minimum during the 100 iterations of adaptive sampling. 

For these test problems, the SK-EI (with more focus on local search than SK-OS) is more likely to 

make meaningful search within the identified valley with the global optimum.   

 

Boxplots of 𝒈𝒂𝒑(𝒙) and data profiles of 𝜼𝒈𝒂𝒑𝟎.𝟐 

The comparison of SK-EI and SK-OS with 𝑔𝑎𝑝(𝑥) and 𝜂r[�|.t is summarized in Table 24. In 

almost half of the total tested scenarios (13 out of 28), no obvious difference is observed between 

SK-EI and SK-OS. However, there are also 13 cases where SK-EI performs better than SK-OS in 

the prediction accuracy at the returned optimal location. There are only two scenarios (i.e., S.H. 

and L.H. for “Hartmann3”) where SK-EI is worse than SK-OS. Such results indicate that, 

although SK-OS can be more advantageous than SK-EI in locating the minimum, it is sacrificing 

the prediction accuracy in some cases. This is because SK-OS may lack sufficient exploitation 

around the neighborhood of the global minimum that is needed in order to make a more accurate 

prediction of the optimum objective value.  

Table 24. Summary of comparison between SK-EI and SK-OS with 𝑔𝑎𝑝(𝑥) and 𝜂r[�|.t 
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  S.E. S.H. L.E. L.H. 

  EI OS EI OS EI OS EI OS 

D1 - - - - - - - - 

Branin ○  ○  ○  - - 

Camelback - - ○  ○  - - 

Michalewicz ○  ○  - - ○  

Goldstein-Price - - ○  ○  - - 

Hartmann3 - -  • ○   • 

Rosenbrock ○  - - ○  - - 

 

7.6 Case study of a pharmaceutical manufacturing process 

We apply both algorithms to a Continuous Direct Compaction (CDC) flowsheet simulation model 

in order to find the optimal operating conditions that result in minimum total cost. This flowsheet 

model (Figure 58) was developed in gPROMS software (www.psenterprise.com), and is used to 

simulate the manufacturing process of producing an oral solid drug product. Two components, 

namely the active pharmaceutical ingredient (API) and Excipient are first fed to a co-mill for de-

lumping purposes. After that, lubricant is added to the powder mixture to improve the powder’s 

flowability. The three component materials are then mixed in a blender, and transferred to the tablet 

press where drug tablets are compressed. For a detailed description of the model equations, readers 

may refer to Ref. [320]  
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Figure 58. Flowsheet of DC line 

 

The optimization problem is formulated as shown in problem (104). Based on a previous sensitivity 

analysis, two operation conditions are selected as the decision variables, namely the API flow rate 

(𝐹𝑅8Tö) and the API refill strategy (𝑅𝑆8Tö). 𝐹𝑅8Tö is the flow rate set point in the API feeder; 𝑅𝑆8Tö 

is the fill level of API feeder, above which the refill begins. Those two variables are selected 

because they have huge influence (relative to other operation conditions) on the final product 

properties (e.g., API concentration, tablet uniformity). Also, the generation of out-of-spec products 

is most sensitive to these two factors. The total cost consists of three terms: material cost, utility 

cost, and waste cost. A detailed calculation of these three terms is shown in Ref. [320]. In this 

article, we add a noise term 𝜀MCZEzùú^ø to the objective in order to reflect the uncertainty associated 

to the estimation of waste cost. We assume that 𝜀MCZEzùú^ø is subject to a normal distribution: 

𝜀MCZEzùú^ø~𝑁(0, 𝜎
t(𝐹𝑅8Tö, 𝑅𝑆8Tö)), where 𝜎 is inherently related to 𝐹𝑅8Tö and 𝑅𝑆8Tö. The 

assumption we made on 𝜀MCZEzùú^ø is a plausible one because the cost waste is linearly dependent 

on the actual observed flow rate [238], and the observed flow rate is found to be subject to a normal 

distribution [17]. However, it will need to be further verified with experimental studies in the future.  
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 𝑚𝑖𝑛
{9:;<,	9Q:;<

𝑐𝑜𝑠𝑡ECE[Y = 𝑐𝑜𝑠𝑡^[EKRN[Y + 𝑐𝑜𝑠𝑡DENYNEm + 𝑐𝑜𝑠𝑡S[ZEK + 𝜀MCZEzùú^ø	

𝑠. 𝑡.	

𝐹𝑅8TöYq ≤ 𝐹𝑅8Tö ≤ 𝐹𝑅8TöDq   

𝑅𝑆8TöYq ≤ 𝑅𝑆8Tö ≤ 𝑅𝑆8TöDq   

(147) 

 

We use the gPROMS object “gO:MATLAB” to communicate between gPROMS and Matlab. 

Figure 59 depicts the landscape of the simulation without noise.  

 

Figure 59. Noise-free landscape of objective function. Left: 3D surface. Right: contour plot 

 

For a comparison purpose, we first solve the noise-free optimization problem (i.e., without 

considering 𝜀MCZEzùú^ø) using “fmincon” in Matlab, the results of which are shown in Table 25. 

After 48 function calls, a local minimum is returned with the minimum total cost of $98,181 per 

day. The optimal solution suggests that the API flow rate should be kept close to its lower bound, 

with a mid-range value of refill strategy, which is consistent with the findings in Ref. [320]. Then, 

we consider the noisy case (i.e. with 𝜀MCZEzùú^ø) and apply SK-OS and SK-EI to the optimization 

problem with stochastic simulation. The optimization results (after 100 iterations of adaptive 

sampling) are listed in Table 25. In terms of the optimal solution, 𝐹𝑅8Tö values from both SK-OS 
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and SK-EI are almost identical to that from the noise-free case; 𝑅𝑆8Tö values from SK-OS and SK-

EI are larger. Such results suggest a higher frequency of refilling, which is beneficial to alleviate 

the overall variations (and reduce the waste cost of subsequent out-of-spec products) due to refill 

operations [254]. On the other hand, considering the predicted optimal objective value, the 𝑦CRNr 𝑥  

values at the optimal solution are $ 98,180 (SK-OS) and $ 98,179 (SK-EI) respectively, indicating 

that both SK-OS and SK-EI can successfully locate the minimum. In addition, SK predictions 𝑦 𝑥  

at the returned optimal solution also show a high accuracy, as we can see the values of 𝑦 𝑥  are 

almost the same with 𝑦CRNr 𝑥  for both SK-EI and SK-OS. In summary, both SK-EI and SK-OS 

can be used to find the optimal solution with this stochastic simulation, and the quality of the 

solution is competent to that from the optimization with the noise-free simulation.   

 

Table 25.  Summary of optimization results 

   Noise-free Noisy 

     fmincon SK-EI SK-OS 

𝑥 
𝐹𝑅8Tö  [kg/h] 2.86 2.86 2.86 

𝑅𝑆8Tö  [%] 32.11 70.00 40.14 

𝑐𝑜𝑠𝑡ECE[Y 

𝑦∗  [$] 98,181 - - 

𝑦CRNr 𝑥   [$] - 98,180 98,179 

𝑦 𝑥   [$] - 98,180 98,179 

 

To have a detailed look at this problem, we plot the two performance measures 𝑦CRN� 𝑥 , 𝑔𝑎𝑝(𝑥), 

and the square root of estimated variance 𝑉 𝑥  by iteration (Figure 60), where the solid represents 

SK-EI and dot-dashed line for SK-OS. From Figure 60 (a) 𝑦CRNr 𝑥  and (b) 𝑔𝑎𝑝(𝑥), we can see 

that both SK-EI and SK-OS make progress mainly in the first 50 to 60 iterations. From (c) 𝑉 𝑥 , 

we can notice that the estimated variance is actually very small (compared to the objective value) 
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at returned optimal solution 𝑥, which is the main reason that both SK-EI and SK-OS can achieve 

high prediction accuracy at the returned optimal solution.  

 

Figure 60. Performance measures and estimated variance at returned optimal solution by iteration.  

 

7.7 Summary and future work 

We presented and compared the performance of two surrogate-based optimization approaches to 

solve optimization problems using simulation with heteroscedastic noise in the output. Specifically, 

we used stochastic Kriging as the surrogate, and adopted the one-stage approach as the infill 

criterion (SK-OS). Its performance is compared with the popular expected improvement approach 

(SK-EI). With the use of two performance measures, 𝑦CRNr 𝑥  and 𝑔𝑎𝑝 𝑥 , we make a comparison 

between SK-OS and SK-EI using 7 test problems, each with 4 different heteroscedastic noise 

scenarios. The results show that both algorithms are heavily affected by the noise structure. In most 

of the test cases, SK-OS is better than SK-EI in locating the global minimum, however it may 

sacrifice some accuracy in predicting the optimal objective value. The algorithms were finally 

applied to solve an optimization problem in the pharmaceutical manufacturing process with a black-

box stochastic simulation with artificial noise. In this case both SK-OS and SK-EI can find the 

optimum with a limited sampling budget, and the quality of the solution is competent to that from 

optimization with the noise-free simulation. For the future work, we would need to improve the 

efficiency of the surrogate-based optimization approaches. For example, it can be beneficial to 
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develop an intelligent allocation strategy to determine how to choose the number of replications of 

simulations at each sample location during adaptive sampling in order to make the best use of the 

overall sampling budget. Also, more research is needed on the convergence analysis and algorithm 

stopping criteria. Another interesting area is to investigate how different kernel functions for SK 

can affect the algorithm performance. 

 

8 A Kriging-based method with feasibility enhancements for constrained optimization of black-

box stochastic systems 

Abstract 

Stochastically constrained simulation optimization problems are difficult to solve because the 

inherent noise terms to a black-box system can bring uncertainties to both the objective and the 

constraint function. To address such difficulties, we propose a Kriging-based optimization 

framework, which uses stochastic Kriging models to approximate the objective and the constraint 

functions and an adaptive sampling approach to sequentially search for the next point that is 

promising to have a better objective. The main contribution of this work is to incorporate a 

feasibility-enhanced term to the infill sampling criterion, which improves the Kriging-based 

algorithm’s capabilities of returning a truly feasible near-optimal solution for stochastic systems. 

The efficacy of the Kriging-based algorithm is demonstrated with eight benchmark problems and 

a case study on a pharmaceutical process optimization problem.  

 

8.1 Introduction 

Simulation optimization (SO) refers to the optimization of the performance of a system, of which 

the objective and constraints can only be estimated by stochastic simulations. Unlike algebraic 

model-based mathematical programming, SO usually involves black-box simulations; that is, 

closed-form simulation expressions are not available to decision makers. In this paper, we consider 
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single-objective SO problems with an inequality constraint and continuous input variables. The 

general form of this problem is shown in Problem (148). 

 min
𝒙
𝑓 𝒙 	

s. t.	

𝑔 𝒙 ≤ 0	

𝒙Y ≤ 𝒙 ≤ 𝒙D	

𝒙 ∈ ℝl 

(148) 

In Problem (148), 𝑓 𝒙  and 𝑔 𝒙  cannot be directly observed, but only estimated with a stochastic 

simulation. Thus, the user only has access to the noisy observation of the objective function, 𝑓N 𝒙 , 

and noisy observation of the constraint, 𝑔N 𝒙 : 

 𝑓N 𝒙 = 𝑓 𝒙 + 𝜔N
L 𝒙 	

𝑔N 𝒙 = 𝑔 𝒙 + 𝜔N
r 𝒙 , 

(149) 

where 𝑓N 𝒙  is the observed objective value at the 𝑖Eℎ replication of simulation evaluated at a 

specific point 𝒙, and 𝜔N
L 𝒙  is the observed noise term of the objective function; 𝑔N 𝒙  is the 

observed constraint value at the 𝑖Eℎ replication of simulation evaluated at 𝒙, and 𝜔N
r 𝒙  is the 

observed constraint noise.  

 

Following the settings of SO problems in Ref. [274], we make assumptions that the noise terms, 

𝜔N
L 𝒙  and 𝜔N

r 𝒙 , are normally distributed, centered, and independent from one simulation run to 

another: 

 𝜔N
L 𝒙 ~𝒩 0, 𝜉Lt 𝒙 	

𝜔N
r 𝒙 ~𝒩 0, 𝜉rt 𝒙  

(150) 
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where the noise variances, 𝜉Lt 𝒙  and 𝜉rt 𝒙 , are dependent on the inputs 𝒙. Thus, the inherent noise 

terms to the simulation have heteroscedastic variances. Further, we also assume that the objective 

and the constraint are independent.  

 

SO has extensive applications in manufacturing, computer and communication network, and 

business processes. For a comprehensive review on the current progress on SO, the readers are 

referred to Refs. [321-323,291]. Below, we overviewed the commonly used approaches for SO, 

with a focus on constrained problems.  

 

Gradient-based approaches can be applied to SO problems when the objective and constraint are 

differentiable. The differentiability and continuity of the objective and constraint can be examined 

by coupling theory [324,323]. Stochastic approximation (SA) methods [325,326] use estimated 

gradient information to search for an optimal solution, which is closely related to the steepest 

descent methods in derivative-based optimization of deterministic models. Fu [321] summarized a 

variety of gradient approximation methods for SA algorithms. Among these methods, the 

Simultaneous Perturbation Stochastic Approximation (SPSA) approach [297] only requires two 

simulation runs to estimate the gradient, which makes it very promising for high-dimensional 

problems. Although SA methods generally return a local optimum, they can be extended by 

injecting a Monte Carlo randomness term in the SA recursion and combine global search techniques 

to the algorithm [327]. For stochastically constrained problems, Bhatnagar et al. [328] developed 

four algorithms for problems with multiple inequality constraints. These algorithms used the 

Lagrange multiplier method with the gradient (and the Hessian) estimated using the smoothed 

functional (SF) technique and the SPSA method. It should be noted that, for most SA methods, it 

remains challenging to wisely choose the algorithm parameters, which is critical for a successful 

implementation.  
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For practical problems where the gradient does not exist or is difficult to estimate, simulation 

optimization problems need to be solved by derivative-free optimization approaches. Direct search 

methods determine the search directions by simply comparing function values without the need to 

approximate derivatives. Trosset [329] examined the use of direct search methods in stochastic 

optimization, and modified the pattern search method to ensure global convergence for the 

optimization of noisy systems. Kim and Zhang [330] presented a Generating Set Search (GSS) 

method for simulation optimization problems with stochastic noise, and the optimization problem 

was approximated using a sample average approximation (SAA) scheme. Chang and Lu [331] 

proposed a stochastic Nelder-Mead (SNM) simplex method to solve simulation optimization 

problems with a quantile-based objective and introduced penalty functions to deal with inequality 

constraint. Alternatively, simulation optimization problems can be solved by random search 

algorithms. An overview of such algorithms in simulation optimization is given by Andradóttir 

[332]. For problems with stochastic constraints, Lacksonen [333] compared the performance of a 

genetic algorithm, simulated annealing, and two direct search methods, and found the genetic 

algorithm to be more robust for 25 tested problems. Klassen and Yoogalingam [334] developed a 

scatter search/tabu search optimization procedure to determine optimal rules for a stochastic 

appointment scheduling problem.  

 

Recently, surrogate-based optimization methods have been extensively developed and mostly used 

for continuous problems. This type of algorithm approximates the simulation by a surrogate model 

(also known as metamodel or response surface), which can be used to facilitate the search of the 

optimal solution. Recent advances in surrogate modeling and its applications in optimization are 

reviewed in Refs. [137,335,336]. For constrained simulation optimization problems, Angün et al. 

[337] developed a Generalized Response Surface Methodology (GRSM) strategy that used low-

order polynomials to locally approximate the unknown functions. Augustin and Marzouk [338] 
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introduced a trust-region optimization algorithm (S)NOWPAC (Stochastic Nonlinear Optimization 

With Path-Augmented Constraints), which utilized local fully linear models combined with 

Gaussian process models to approximate the objective and constraint functions with inherent noise. 

Nezhad and Mahlooji [339] presented an Artificial Neural Network (ANN) algorithm for expensive 

simulation optimization problems with constraints. Li et al. [340] compared five surrogate 

modeling techniques (ANN, Radial Basis Function, Support Vector Regression, Kriging, and 

Multivariate Adaptive Regression Splines) and proposed an optimization framework which 

integrated these models into a genetic algorithm.  

 

Among various surrogate-based methods, the Kriging-based optimization approach (also known as 

Bayesian optimization [341]) has gained an increasing popularity in different research 

communities. This type of method uses a stochastic process model to approximate an expensive 

simulation, and calculates a certain infill criterion to balance exploration and exploitation when 

searching for a new sample point. Early algorithms involving the use of stochastic process models 

include the Bayesian algorithm by Mockus [280] and P-algorithm by Žilinskas [342]. It was later 

popularized by the Efficient Global Optimization (EGO) method of Jones et al. [67], which used 

an Expected Improvement (EI) function as the infill sampling criterion. Reviews on the 

development of Kriging-based methods are in Refs. [343,279]. Note that the Kriging-based 

methods were first presented for deterministic unconstrained problems. For the purpose of handling 

constraints, several strategies have been developed. Sasena et al. [2012] proposed a penalty method 

to restrict it from searching in the infeasible region. Schonlau [344] suggested multiply the EI 

function by the probability that a point is feasible. This Schonlau’s method was furthered 

investigated in Refs. [345-347,230], and applied to solve robust optimization problems [348] and 

a pultrusion process optimization problem [349]. Parr et al. [346,347] proposed to transform 

constrained problems into multi-objective unconstrained problems. Bagheri et al. [350] surveyed 

the existing constraint handling methods for EGO and modified Schonlau’s method by introducing 
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a newly defined probability of feasibility. Wang et al. [351] proposed a two-phase approach, which 

first performed a feasibility analysis to search for the feasible region and then applied a modified 

Schonlau’s approach with a penalty to find a feasible optimal solution.  

 

The Kriging-based methods have been adapted to solve optimization problems of stochastic 

systems. For unconstrained problems with homoscedastic noise variances, the Kriging-based 

algorithms include the Sequential Kriging Optimization (SKO) [161], the Re-Interpolation (RI) 

method [301], and the Informational Approach to Global Optimization (IAGO) strategy [352]. 

Picheny et al. [283] presented a comprehensive study on the performance of different Kriging-

based optimization techniques for stochastic systems with homoscedastic noise variances. 

Additionally, for unconstrained problems with heteroscedastic noise variances, different modeling 

techniques have been developed, such as Stochastic Kriging (SK) [162], Stochastic Intrinsic 

Kriging (SIK) [353], and Variational Heteroscedastic Gaussian Process Regression (VHGPR) 

[354]. Such modeling approaches laid a solid foundation for the later developed Kriging-based 

optimization algorithms, including Expected Quantile Improvement (EQI) [303], Expected 

Improvement via Stochastic Intrinsic Kriging (EI-SIK) [355], Expected Risk Improvement (ERI) 

[315], and a One-Stage (OS) approach [356]. Jalali et al. [278] surveyed and compared the 

performance of various SK-based optimization algorithms. However, for constrained optimization 

of stochastic simulations, there is a relatively scarce research on applying Kriging-based 

approaches. Boukouvala and Ierapetritou [64] developed an optimization framework that first 

performed a global search to improve the surrogate of objective and characterized the feasible 

reigon boundary, and then utilized a local search within the feasible region to find an optimal 

solution. Kleijnen et al. [357] proposed a heuristic which combined the Design of Experiments, 

Kriging, and mathematical programming for optimization problems with integer input variables.  
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In this work, we apply the Stochastic Kriging modeling technique and adapt a “constrained 

Expected Improvement” method to solve constrained SO problems. Further, considering that the 

inherent noises can introduce uncertainties in determining the feasibility of sample points, we 

propose a “feasibility-enhanced Expected Improvement” to explicitly improve the feasibility 

knowledge while searching for a new sample point. The outline of this paper is as follows. The 

Kriging-based optimization framework is described in Section 8.2, including the stochastic Kriging 

modeling technique and two infill criteria for adaptive sampling. Section 8.3 mentions the 

benchmark problems and performance measures that are used to compare different algorithms. 

Computations results are discussed in Section 8.4. A pharmaceutical case study is included in 

Section 8.5. Conclusions and future work are given in Section 8.6.  

 

8.2 Kriging-based optimization approaches 

In this section, we first introduce the basics of Stochastic Kriging, which is used to model both the 

stochastic objective and stochastic constraint functions. Then, in Section 8.2.2, we explain the two 

infill criteria (i.e., constrained Expected Improvement, and feasibility-enhanced Expected 

Improvement) which are used to guide the search for new sample points. Both approaches follow 

the same optimization framework, which is discussed in Section 8.2.3.  

 

8.2.1 Stochastic Kriging Model 

Ankenman et al. [162] developed the Stochastic Kriging (SK) as an extension to the ordinary 

Kriging [275] in order to model a stochastic simulation with heteroscedastic noise variances. It 

expresses the output of a simulation on its 𝑗Eℎ replication run as: 

 𝑦� 𝒙 = 𝛽| + 𝑀 𝒙 + 𝜀� 𝒙 , (151) 

In Equation (111), 𝛽| is a parameter representing a constant surface trend. 𝑀 is named as the “

extrinsic uncertainty” term in Ref. [162], which is a realized random field with zero mean; namely, 
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𝑀 is considered to be randomly sampled from a space of function mapping ℝl → ℝ, which have 

characteristic spatial correlations: when 𝒙 is close to 𝒙′, we have 𝑀(𝒙) and 𝑀(𝒙′) tend to be 

similar. A variety of kernel functions can be used to model the correlation between 𝑀(𝒙) and 

𝑀(𝒙′). In this work, we apply the cubic correlation function (Equation (152)(153)), which was 

shown to give a robust modeling performance in our previous studies [358].    

 
Corr 𝒉|𝜻 = Corr ℎN|𝜁N

l

N{o

, (152) 

where 

 

 
Corr ℎN|𝜗N =

1 − 6 ℎN /𝜗N t + 6 ℎN /𝜗N �, if	 ℎN ≤ 𝜗N/2
2 1 − ℎN /𝜗N �, if	𝜗N/2 ≤ ℎN ≤ 𝜗N

0, if	 ℎN ≥ 𝜗N
	

𝒉 = 𝒙 − 𝒙′, 𝜻 = 𝜗o, … ,𝜗l ,𝜗N > 0, and	Corr ℎN|0 ≡ 0. 

(153) 

On the basis of the correlation function, the covariance between 𝑀(𝒙) and 𝑀(𝒙′) are expressed 

as Cov 𝒉|𝜻 = 𝜏tCorr 𝒉|𝜻 , where 𝜏t is a model parameter representing the variance of 𝑀 𝒙  for 

all 𝒙. 𝜀� 𝒙  in Equation (111) is known as the “intrinsic uncertainty” term in Ref. [162]. It 

represents the realized noise on the 𝑗Eℎ replication of a simulation run.  

 

It should be noted that the SK model in Ref. [162] is based on the following assumption:  

 

Assumption 1. The random field 𝑀 is a stationary Gaussian random field, and 𝜀o(𝒙𝒊), 𝜀t(𝒙𝒊), … 

are independent and identically distributed with a normal distribution: 𝒩(0, 𝑉(𝒙𝒊)), independent 

of 𝜀�(𝒙𝒉) for all 𝑗 and ℎ ≠ 𝑖, and independent of 𝑀.  

 

Ankenman et al. [162] proved that Assumption 1 implies that, for any set of different sample points 

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌, the random vector [𝑀 𝒙𝟏 ,𝑀 𝒙𝟐 , … ,𝑀 𝒙𝒌 ]� has a multivariate normal 



	

221	
	

distribution with marginal mean 0, a positive variance 𝜏t, and a positive definite correlation matrix 

𝑹¶.  

 

To apply the SK to model a stochastic simulation, we need to estimate model parameters. The 

intrinsic variance at a sample point 𝒙𝒊 can be estimated with 𝑛N replications: 

 

 
𝑉 𝒙𝒊 =

𝑦� 𝒙𝒊 − 𝑦 𝒙𝒊
t_¢

�{o

𝑛N − 1
, (154) 

where 𝑦(𝒙𝒊) is the estimated mean at 𝒙𝒊: y(𝒙𝒊) = 𝑦� 𝒙𝒊_
�{o /𝑛N. It has been shown by Ankenman 

et al. [162] that the estimated 𝑉 will not introduce much inaccuracy to the surrogate model as long 

as 𝑛N is not too small. A rule of thumb is to choose 𝑛N ≥ 10 [162]. Additionally, the model 

parameters (i.e., 𝛽|,𝜗o, … ,𝜗l, 𝜏t) are calculated by maximizing the log-likelihood, which was 

derived in Ref. [162].  

 

On the basis of previously mentioned Assumption 1 for SK, the unbiased predictor is derived as 

follows: 

 𝑦 𝒙 = 𝛽| + 𝜮𝑴 𝒙,∙ � 𝜮𝑴 + 𝜮𝜺
fo

𝒚 − 𝛽|𝟏𝒌 ,	 (155) 

where 𝜮𝑴 is the k-by-k covariance matrix for all the 𝑘 sample points 𝒙o, 𝒙t, …, 𝒙�; 𝜮𝑴 𝒙,∙  is k-

by-1 covariance vector with the 𝑖Eℎ element being Cov 𝒙, 𝒙𝒊 ; 𝜮𝜺 is the estimated covariance 

diagonal matrix: 𝜮𝜺 = 𝐷𝑖𝑎𝑔 ¥ 𝒙�
_�

, ¥ 𝒙�
_�

, … , ¥ 𝒙W
_W

; 𝒚 is the k-by-1 vector with the 𝑖Eℎ element 

being 𝑦(𝒙N).  

 

The derived prediction variance for a SK model is expressed as follows: 

 𝑠t 𝒙 = 𝜏t − 𝜮𝑴 𝒙,∙ � 𝜮𝑴 + 𝜮𝜺
fo
𝜮𝑴 𝒙,∙ + 𝜹�𝜹 𝟏�� 𝜮𝑴 + 𝜮𝜺

fo
𝟏�

fo
, (156) 
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where 𝜹 = 1 − 𝟏�� 𝜮𝑴 + 𝜮𝜺
fo
𝜮𝑴 𝒙,∙ . Note that the matrix 𝜮𝑴 + 𝜮𝜺  is always positive definite 

on the basis of Assumption 1 for the SK model.  

 

8.2.2 Infill criteria 

For a surrogate-based optimization method, it generally consists of two stages. In the first stage, a 

low-fidelity surrogate model is built with some initial points sampled using a specific sampling 

plan. In the second stage, the surrogate model gets improved with some update points that aim to 

increase modeling accuracy towards promising areas. The update points are selected using a certain 

infill criterion. This second stage is also known as the adaptive sampling stage and it is performed 

iteratively until a stop criterion is met. For the purpose of constrained optimization, an infill 

criterion should seek to points that lead to a better objective value and meanwhile prevent any 

constraint violations. Below, we describe two SK-based infill criteria: the constrained Expected 

Improvement and the Feasibility-enhanced Expected Improvement.  

 

8.2.2.1 Constrained Expected Improvement 

The concept of expected improvement was first proposed by Mockus [280] and later used in the 

Efficient Global Optimization (EGO) algorithm by Jones et al. [67]. Here, we introduce this concept 

on the basis of SK models. Let 𝑓∗∗ denote the current best objective function value. (Details of 

choosing 𝑓∗∗ will be discussed later.) The SK model treats an unknown objective function value 

𝑦L(𝒙) as an observation of a normally distributed random variable 𝑌L(𝒙) with mean 𝑦L and variance 

𝑠Lt. The expressions have been given in Equation (115) and (116). Therefore, at any unvisited point 

𝒙, there is some probability that the objective function value will be better than (or “improve upon

”) 𝑓∗∗. A formal definition of improvement for the objective function is given as follows. 

 𝐼L 𝒙 = max 𝑓∗∗ − 𝑌L 𝒙 , 0 . (157) 
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Following the procedures in Ref. [67], the expected value of 𝐼L (denoted as 𝐸𝐼) can be derived as 

follows: 

 
𝐸𝐼(𝒙) = 𝐸 𝐼L 𝒙 = 𝑓∗∗ − 𝑦L Φ

𝑓∗∗ − 𝑦L
𝑠L

+ 𝑠L𝜙
𝑓∗∗ − 𝑦L

𝑠L
, (158) 

where Φ is the standard normal cumulative distribution function (CDF); 𝜙 is the standard normal 

probability distribution function (PDF).  

 

For stochastic systems, to further account for the influence of simulation noise on future 

observations, Huang et al. [161] proposed an Augmented Expected Improvement (𝐴𝐸𝐼) algorithm 

that incorporates a multiplicative term. Applying this approach to the SK model, we have the 

following modified 𝐴𝐸𝐼 function: 

 𝐴𝐸𝐼 𝒙 = 𝐸 𝐼L 𝒙 ∙ 1 − 	𝜏L/ 𝜏Lt + 𝑠Lt , (159) 

where 𝜏Lt = 𝜉Lt/𝑛; 𝜉Lt is the noise variance in the objective function at 𝒙; 𝑛 is the number of 

replicated simulation runs to be made at 𝒙. In this paper, since the expression of 𝜉Lt(𝒙) is unknown, 

it is estimated with 𝑉L 𝒙 . A Kriging model is built to predict 𝑉L 𝒙  at any unvisited point. To 

ensure the predicted 𝑉L 𝒙  is always non-negative, the Kriging model is built for log 𝑉L 𝒙 . This 

method of estimating 𝑉L 𝒙  has also been used in Refs. [262,358]. In Equation (159), the 

multiplicative term 1 −	𝜏L/ 𝜏Lt + 𝑠Lt  is introduced to penalize areas where the prediction 

variance 𝑠Lt is relatively small compared to the estimated noise variance. For stochastic systems 

with heteroscedastic noise variances, it has been found that 𝑠Lt is more likely to be “inflated” 

where 𝜉Lt is larger [162]. In that case, the multiplicative term can prevent over-exploiting a local 

area, and thus result in a better balanced global search. The benefits of using the multiplicative term 

have been extensively investigated in Refs. [283,278,358].  
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With the discussions above, we now turn our attention to strategies of handling the constraint. 

Recall that a SK model considers an unknown constraint value 𝑦r(𝒙) as an observation of random 

variable 𝑌r(𝒙) subject to a normal distribution: 𝑌r 𝒙 ~𝒩(𝑦r, 𝑠rt), whose expressions are given in 

Equation (115) and (116). Thus, for any unvisited point 𝒙, there is some probability that it will be 

feasible. The probability of this point to be feasible can be expressed as: 

 
𝑃 𝑌r 𝒙 ≤ 0 =Φ

0 − 𝑦r
𝑠r

. (160) 

For the purpose of handling a constraint, Schonlau [344] proposed an infill criterion that uses the 

product of Expected Improvement (Equation (158)) and the probability of being feasible (Equation 

(160)). We adapt this constraint-handling approach to stochastic systems where 𝐴𝐸𝐼 is used 

(Equation (159)) and propose the following constrained Augmented Expected Improvement 

(denoted as 𝑐𝐴𝐸𝐼L) in Equation (161).  

 𝑐𝐴𝐸𝐼L 𝒙 = 𝐸 𝐼L 𝒙 ∙ 1 − 	𝜏L/ 𝜏Lt + 𝑠Lt ∙ 𝑃 𝑌r 𝒙 ≤ 0 	

= 𝑓∗∗ − 𝑦L Φ
𝑓∗∗ − 𝑦L

𝑠L
+ 𝑠L𝜙

𝑓∗∗ − 𝑦L
𝑠L

∙ 1 −
𝜏L

𝜏Lt + 𝑠Lt
∙Φ

0 − 𝑦r
𝑠r

. 

(161) 

 

This infill criterion determines the next sample point by maximizing 𝑐𝐴𝐸𝐼L. In the rest of this paper, 

this method will be referred to as the “constrained EI” approach.  

 

Before applying the “constrained EI” method, we need to determine how to choose the current 

best point 𝑓∗∗. For deterministic systems, 𝑓∗∗ should be the feasible point that has the best objective 

value among the visited sample points [351]. For stochastic systems, we follow a similar logic and 
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modify the approach developed by Huang et al. [161] for unconstrained problems.  The formulas 

of calculating 𝑓∗∗ are given as follows. 

 𝑓∗∗ = 𝑦L 𝒙∗∗ 	

where	

𝒙∗∗ = arg	min
𝒙∈}

𝑦L 𝒙 + 𝑐L ∙ 𝑠L 𝒙 	

𝑠. 𝑡.	

𝑦r 𝒙 + 𝑐r ∙ 𝑠r 𝒙 ≤ 0 

(162) 

where 𝜒 is the set of 𝑘 visited sample points: 𝜒 = {𝒙o, 𝒙t, … , 𝒙�}; 𝑐L and 𝑐r are non-negative 

constant parameters that are used to calculate quantile values for the objective and constraint. The 

term 𝑦L 𝒙 + 𝑐L ∙ 𝑠L 𝒙  was used by Huang et al. [161] to account for the uncertainty associated 

with the predicted objective value. In addition, we add a restrictive constraint 𝑦r 𝒙 + 𝑐r ∙ 𝑠r 𝒙 ≤

0 to further account for the uncertainty in the predicted constraint value. In this work, 𝑐L = 1 and 

𝑐r = 1 are selected as the default. In practice, however, the formulas in Equation (162) do not 

guarantee that a feasible point 𝒙∗∗ satisfying the constraint in (162) can always be found among the 

visited sample points. This can happen when a test problem has a really small feasible region (or 

several small disjoint feasible regions), which has not yet been covered by the sample points. If that 

is the case, the infill criterion will be switched to search for a feasible point. Details of this are 

discussed in Section 8.2.3.  

 

To demonstrate the difference between the three infill criteria (𝐸𝐼, 𝐴𝐸𝐼, and 𝑐𝐴𝐸𝐼L), we use a 2-

dimensional problem, “constrained Branin”, as an example. (Expressions for this test problem 

are mentioned in Appendix.) This test problem is depicted in Figure 29. For a better visualization 

of the problem, 𝑓 𝒙  and 𝑔 𝒙  (i.e., the noise-free terms) are shown in Figure 29 (a); 𝜉L(𝒙) and 

𝜉r(𝒙) (i.e., the inherent noise terms) are separately shown in Figure 29 (b) and (c).  
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In Figure 29 (a), the contour shows the surface of 𝑓 𝒙 . It can be observed that the objective 

function shows a multi-modal characteristic and has three global minima, which are denoted with 

the three diamond points. The feasible region is confined by three feasible region boundaries (i.e., 

𝑔 𝒙 = 0) that are denoted with thick solid lines. The three disjoint infeasible regions are shaded 

in white. From Figure 29 (a), it should be noted that only two of the global optima are feasible. In 

Figure 29 (b), the contour shows 𝜉L(𝒙), which increases linearly in the 𝑥t direction. Three diamond 

points are the three global minima of 𝑓 𝒙 . In Figure 29 (c), the contour shows 𝜉r(𝒙), which 

increases linearly in the 𝑥o direction. Thick solid lines are feasible region boundaries where 𝑔 𝒙 =

0. 

 

Figure 61.  2D Test problem “constrained Branin”. (a) Objective and constraint. Contours 

represent the objective function; diamond points are three global minima of the objective function; 

white-shaded areas are infeasible regions; thick solid lines are feasibility boundaries. (b) Noises in 

the objective function. Contours represent the standard deviation of the noise in the objective; 

diamond points are three global minima of the objective function. (c) Noises in the constraint 

function. Contours represent the standard deviation of the noise in the constraint; thick solid lines 

are feasibility boundaries.  

 

The three above mentioned criteria (𝐸𝐼, 𝐴𝐸𝐼, and 𝑐𝐴𝐸𝐼L) are plotted in Figure 62. Initial SK models 

are built for the objective and constraint using 50 initial points (each with 50 replicated simulation 

!"

!#
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!#

!"

!#

(a) (b) (c)
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runs) that are sampled with a space-filling Latin Hypercube Sampling (LHS) design [56]. The initial 

points are denoted with dot points in Figure 62. The SK predictions can thus be used to calculate 

the infill criteria. The surface of -𝐸𝐼 (Equation (158)) is shown with the contours in Figure 62 (a). 

It can be observed that there exist three promising regions that are located close to the three global 

minima. The top left region is significantly more promising than the other two near the bottom. 

Figure 62 (b) shows the surface of -𝐴𝐸𝐼 (Equation (159)). It can be found that the relative difference 

of the 𝐴𝐸𝐼 values between three promising areas is smaller in comparison to that of 𝐸𝐼 in Figure 

62 (a). In other words, the multiplicative term in 𝐴𝐸𝐼 causes more penalty on the top left promising 

region (where the objective noise level is higher) than the bottom two promising regions. As such, 

the 𝐴𝐸𝐼 criterion attempts to reduce the influence arising from the objective noise, and balance the 

global search by making the three promising regions more closely to be equivalent. Figure 62 (c) 

shows the surface of -	𝑐𝐴𝐸𝐼L (Equation (161)). The predicted feasible regions are confined by the 

predicted feasible region boundaries denoted with thick dashed lines. The predicted infeasible 

regions are shaded in white. It is obvious that with 𝑐𝐴𝐸𝐼L, there exist only two promising regions 

that are located in the predicted feasible regions. This shows the capability of the 𝑐𝐴𝐸𝐼L criterion 

in avoiding constraint violations while searching for the next sample point.  

 

Figure 62.  Infill criteria. (a) 𝐸𝐼. (b) 𝐴𝐸𝐼. (c) 𝑐𝐴𝐸𝐼L. Contour represent the infill criteria; dot points 

are initial points; thick dashed lines are predicted feasibility boundaries; white-shaded areas are 

predicted infeasible regions.  
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8.2.2.2 Feasibility-enhanced Expected Improvement 

The “constrained EI” approach only focuses on making improvements on the objective function, 

which maintains a balance between exploration (i.e., searching in highly uncertain areas for a point 

with a better objective value) and exploitation (i.e., adding points in a local promising area to reduce 

uncertainties of the current best objective value). However, it does not explicitly consider to 

improve the knowledge of the feasibility (i.e., constraint value) of the current best point. This 

requires attention for stochastic systems because the inherent noise can always bring uncertainties 

in the constraint, even for visited sample points. If there is a high uncertainty in the feasibility of 

the current best point, the decision-maker may face a high risk of choosing an infeasible point.  

 

A direct way to improve the knowledge of feasibility is by feasibility analysis. By concept, 

feasibility analysis aims to quantitatively characterize the feasible region of a process. A recent 

review on this topic is given by Grossmann, et al. [44]. For feasibility analysis of deterministic 

black-box systems, Boukouvala and Ierapetritou [64] proposed a Kriging-based infill criterion to 

sequentially search for feasible region boundaries, which is known as “Expected Improvement 

for Feasibility” (denoted as 𝐸𝐼𝐹). Below, we give its expression on the basis of a SK model.  

 

 
𝐸𝐼𝐹 𝒙 = 𝑠r ∙ 𝜙

𝑔E − 𝑦r
𝑠r

. (163) 

In Equation (163), 𝑔E is the target contour of feasibility value that needs to be found. By setting 

𝑔E = 0, the algorithm will search for all feasible region boundaries where 𝑔(𝒙) = 0. The 𝐸𝐼𝐹 

works in a similar way as the 𝐸𝐼 function. By maximizing 𝐸𝐼𝐹, it favors to search where the 

prediction uncertain 𝑠r is high and where the PDF value 𝜙
r^fm~
Z~

 is large. Note that the 𝜙
r^fm~
Z~

 

is largest when 𝑦r = 𝑔E; that is, maximizing 𝐸𝐼𝐹 favors areas where SK predictor is close to (or 

equal to) the target feasibility value. Therefore, maximizing 𝐸𝐼𝐹 function will keep a balance 
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between a global search (i.e., where 𝑠r is large) and a local search (i.e., where 𝑦r = 𝑔E) for the 

contour of feasibility value 𝑔E. Further mathematical details of this approach was discussed in Ref. 

[358,261].  

 

For stochastic systems, Wang and Ierapetritou [358] modified the 𝐸𝐼𝐹 function and proposed an 

infill criterion, known as “Expected Quantile Improvement for Feasibility” (denoted as 𝐸𝑄𝐼𝐹r). 

This criterion addresses the noise’s influence on feasibility analysis by considering the 𝛼-quantile 

of the SK prediction: 𝑞4 = 𝑦r +Φ
fo

𝛼 ∙ 𝑠r, with 𝛼 ∈ 0,1 . It was found that 𝑞4 is subject to a 

normal distribution [274], which makes the derivation of 𝐸𝑄𝐼𝐹r criterion to be closely related to 

that of the 𝐸𝐼𝐹 criterion. Below, we directly give the expression of 𝐸𝑄𝐼𝐹r on the basis of a SK 

model. Further details of the derivation can be seen in Ref. [356].  

 
𝐸𝑄𝐼𝐹r 𝒙 = 𝑠c ∙ 𝜙

𝑞E − 𝑦c
𝑠c

	

where	

𝑦c = 𝑦r +Φ
fo

𝛼 ∙
𝜏rt𝑠rt

𝜏rt + 𝑠rt
	

𝑠ct =
𝑠rt

t

𝜏rt + 𝑠rt
	

𝑞E = 𝑔E +Φ
fo

𝛼 ∙ 𝑠r 

(164) 

In Equation (164), 𝑦c and 𝑠ct  represent the mean and variance of the normally distributed 𝑞4. In 

the expressions of 𝑦c and 𝑠ct , 𝜏rt = 𝜉rt/𝑛 where 𝜉rt is the noise variance in the constraint function 

at 𝒙; 𝑛 is the number of replicated simulation runs to be made at 𝒙. In this paper, because the 

expression of 𝜉rt(𝒙) is unknown, it is estimated with 𝑉r 𝒙 . A Kriging model is built to predict 

𝑉r 𝒙  for an unvisited point. Specifically, the Kriging model is built for log 𝑉r 𝒙  to guarantee the 
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predicted 𝑉r 𝒙  is non-negative. Similar techniques were used in Refs. [262,358]. From Equation 

(164), it can be noticed that both 𝑦c and 𝑠ct  implicitly accounts for noise variance, which lays the 

foundation of the 𝐸𝑄𝐼𝐹r criterion to be effective to handle stochasticity in the constraint. 𝑔E is the 

target feasibility contour that needs to be found. Φ
fo

𝛼  is the inverse of a standard normal CDF 

at the level of 𝛼. The 𝐸𝑄𝐼𝐹r criterion has an expression very close to the above mentioned 𝐸𝐼𝐹, 

and it also works similarly with the 𝐸𝐼𝐹 criterion. An advantage of using 𝐸𝑄𝐼𝐹r is that the search 

direction can be controlled by choosing the value of 𝛼. With 𝛼 < 0.5, Φ
fo

𝛼 < 0, 𝐸𝑄𝐼𝐹r 

attempts to conservatively search from a more feasible area (i.e., 𝑦r < 𝑔E) towards the feasibility 

contour of 𝑔E. In contrast, with 𝛼 ≥ 0.5, Φ
fo

𝛼 ≥ 0, 𝐸𝑄𝐼𝐹r aggressively searches from a less 

feasible area (i.e., 𝑦r ≥ 𝑔E) towards the feasibility contour of 𝑔E.  

 

In this work, we apply the 𝐸𝑄𝐼𝐹r criterion to enhance the knowledge of feasibility of the current 

best point. Specifically, in Equation (164) the target feasibility value 𝑔E is replaced 𝑔∗∗, which is 

defined as the predicted constraint value at 𝒙∗∗:  

 𝑔∗∗ = 𝑦r(𝒙∗∗) (165) 

The calculation of 𝒙∗∗ is mentioned in Equation (162) of the “constrained EI” approach. 𝛼 = 0.1 

is set as the default for a more conservative search direction. Note that for the purpose of improving 

feasibility knowledge of an optimization problem, we don’t need to search for the entire feasibility 

contour of 𝑔∗∗, but should focus on promising areas where the objective is small. Consider that 

there is some uncertainty associated with 𝑓∗∗, we define 𝑠L∗∗ and 𝑓∗∗∗ as follows.  

 𝑓∗∗∗ = 𝑓∗∗ + 3𝑠L∗∗	

where	

𝑠L∗∗ = 𝑠L(𝒙∗∗) 

(166) 
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Recall that with a SK model, we have 𝑌L 𝒙 ~𝒩(𝑦L, 𝑠Lt). Then, for any point, the probability of its 

objective to be smaller than 𝑓∗∗∗ can be expressed as: 

 
	𝑃 𝑌L 𝒙 ≤ 𝑓∗∗∗ =Φ

𝑓∗∗∗ − 𝑦L
𝑠L

 (167) 

Now, we compute the “penalized feasibility-enhancement term” as the product of 𝐸𝑄𝐼𝐹r and the 

probability of the objective to be smaller than 𝑓∗∗∗: 

 𝑝𝐸𝑄𝐼𝐹r 𝒙 = 𝐸𝑄𝐼𝐹r 𝒙 ∙ 𝑃 𝑌L 𝒙 ≤ 𝑓∗∗∗  (168) 

To simultaneously search for a better objective as well as enhance the feasibility knowledge of the 

current best point, we add 𝑝𝐸𝑄𝐼𝐹r to 𝑐𝐴𝐸𝐼L, and propose the “Feasibility-enhanced Expected 

Improvement” criterion (denoted as 𝐹𝐸𝐼) as follows: 

 𝐹𝐸𝐼 𝒙 = 𝑐𝐴𝐸𝐼L 𝒙 + 𝑝𝐸𝑄𝐼𝐹r 𝒙 	

= 𝑓∗∗ − 𝑦L Φ
𝑓∗∗ − 𝑦L

𝑠L
+ 𝑠L𝜙

𝑓∗∗ − 𝑦L
𝑠L

∙ 1 −
𝜏L

𝜏Lt + 𝑠Lt

∙Φ
0 − 𝑦r
𝑠r

+ 𝑠c ∙ 𝜙
𝑔∗∗ +Φ

fo
𝛼 ∙ 𝑠r − 𝑦c
𝑠c

∙Φ
𝑓∗∗∗ − 𝑦L

𝑠L
 

(169) 

 

This approach will be referred to as the “feasibility-enhanced EI” method in the rest of the paper.  

 

To demonstrate the difference between the “constrained EI” approach and the “Feasibility-

enhanced EI” approach, we use a 2-dimensional test problem, “G24”, as an example. 

(Expressions for this test problem are mentioned in the Appendix.) This test problem is shown in 

Figure 29 (a). It has two disjoint feasible regions that are bounded by thick solid lines; infeasible 
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regions are shaded in white. There is a global minimum (denoted as the diamond point) located at 

a feasible region boundary. Figure 29 (b) shows the standard deviation of the noise in the objective, 

which increases from bottom-left to top-right. Figure 29 (c) shows the standard deviation of the 

noise in the constraint, which is noisier near the feasible region boundaries.  

 

Figure 63. 2D Test problem “G24”. (a) Objective and constraint. Contours represent the 

objective function; diamond point is the global minimum of the objective function; white-shaded 

areas are infeasible regions; thick solid lines are feasibility boundaries. (b) Noises in the objective 

function. Contours represent the standard deviation of the noise in the objective; the diamond point 

is the global minimum of the objective function. (c) Noises in the constraint function. Contours 

represent the standard deviation of the noise in the constraint; thick solid lines are feasibility 

boundaries.  

 

The criteria of 𝑐𝐴𝐸𝐼L, 𝐸𝑄𝐼𝐹r, and 𝐹𝐸𝐼 are plotted with contours in Figure 29. Initial SK models 

are built with 50 LHS points, each with 50 replicated simulation runs. These initial points are 

denoted with dot points in each plot. Figure 29 (a) shows the surface of -𝑐𝐴𝐸𝐼L. The predicted 

feasible regions are bounded by thick solid lines, with predicted infeasible regions shaded in white. 

It can be noticed that the promising area lies closely towards the top of the predicted feasible region, 

which is near to the location of the global optimum. Figure 29 (b) depicts the surface of -𝐸𝑄𝐼𝐹r, 

which is the “feasibility-enhancement” term. The thin solid line is the predicted feasibility 

!"

!#

!"

!#

!"

!#

(a) (b) (c)
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contour that has the value equal to the feasibility of the current best point: 𝑦r = 𝑔∗∗. It can be 

observed that 𝐸𝑄𝐼𝐹r determines the promising area as the vicinity of the feasibility contour 𝑦r =

𝑔∗∗, especially the inner side (i.e., the more feasible side) of the contour. The promising area is 

bounded from below by the thin dotted line, which is the contour of the objective: 𝑦L = 𝑓∗∗∗. This 

is caused by the probability term 𝑃 𝑌L 𝒙 ≤ 𝑓∗∗∗  introduced in 𝐸𝑄𝐼𝐹r. Therefore, it can be seen 

that 𝐸𝑄𝐼𝐹r attempts to improve the feasibility knowledge of the current best point, (or in other 

words, reduce the uncertainty of 𝑔∗∗) by searching towards the bounded local areas of the contour 

𝑦r = 𝑔∗∗. The sum of 𝑐𝐴𝐸𝐼L and 𝐸𝑄𝐼𝐹r constitutes the 𝐹𝐸𝐼 criterion, which is plotted in Figure 29 

(c). Compared to 𝑐𝐴𝐸𝐼L in Figure 29 (a), the effect of incorporating 𝐸𝑄𝐼𝐹r in 𝐹𝐸𝐼 is to slightly pull 

back the promising region towards the inner side (i.e., the more feasible side) of the predicted 

feasible region. As such, it keeps a relatively “restrictive” way (in terms of maintaining feasible) 

to search for a point with a better objective. More discussion on benefits of using the 𝐹𝐸𝐼 criterion 

is given in Section 8.4.  

 

Figure 64. Infill criteria. (a) 𝑐𝐴𝐸𝐼L; (b) 𝐸𝑄𝐼𝐹r; (c) 𝐹𝐸𝐼. Contours represent the surface of the infill 

criteria. Dot points are initial point. Thick dashed lines are predicted feasibility boundaries. White-

shaded areas are predicted infeasible regions. The thin dotted line in (b) is the contour of the 

predicted objective equal to 𝑓∗∗∗. The thin solid line in (b) is the contour of the predicted constraint 

equal to 𝑔∗∗.  

 

!∗∗ = −0.27

)*

)+

)*

)+
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)+
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8.2.3 Framework of optimization 

Both the “constrained EI” method and the “feasibility-enhanced EI” method share the same 

optimization framework, which is shown in Figure 65.  

 

Step 1 is the initialization step. In Step 1.1, A number of 10𝑑 initial points are sampled with a LHS 

design, each with 𝑚 replicated simulation runs. In this work, 𝑚 = 50 is set as the default. Surrogate 

models are built separately for the objective and the constraint. For the “constrained EI” method, 

it requires to build a SK model for the objective (𝑆𝐾L), a SK model for the constraint (𝑆𝐾r), and a 

Kriging model for the noise in the objective (𝐾𝐺L). For the “feasibility-enhanced EI” method, it 

requires an additional Kriging model for the noise in the constraint (𝐾𝐺r). In Step 1.2, the current 

best point 𝒙∗∗ is found by the method in Equation (162). For the “constrained EI” method, it 

requires to calculate 𝑓∗∗. For the “feasibility-enhanced EI” method, it requires the additional 

calculation of 𝑔∗∗ (Equation (165)), 𝑓∗∗∗ and 𝑠∗∗ (Equation (166)).  

 

Step 2 to Step 6 is the adaptive sampling stage. Step 2 calculates an infill criterion to determine the 

next sample point 𝒙′. As is mentioned in Section 8.2.2, using Equation (162) in Step 1.2 does not 

guarantee to always return a feasible point 𝒙∗∗ (among visited points) that satisfies the constraint 

in (162). In that case, the infill criterion should be switched to find a feasible point without 

considering the objective. This is achieved by using the Expected Quantile Improvement (detonated 

as 𝐸𝑄𝐼r) criterion developed by Picheny et al. [274] to search for the minimum of the constraint. 

The 𝐸𝑄𝐼r criterion is given in Equation (170).  
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𝐸𝑄𝐼r 𝒙 = 𝑞∗∗ − 𝑦c ∙Φ

𝑞∗∗ − 𝑦c
𝑠c

+ 𝑠c ∙ 𝜙
𝑞∗∗ − 𝑦c

𝑠c
	

where	

𝑦c = 𝑦r + 𝑐r ∙
𝜏rt𝑠rt

𝜏rt + 𝑠rt
	

𝑠ct =
𝑠rt

t

𝜏rt + 𝑠rt
	

𝑞∗∗ = min
b∈}

𝑦r 𝒙 + 𝑐r ∙ 𝑠r 𝒙  

(170) 

 

Therefore, Step 2 involves a “checking” step on the result from Step 1.2. If no feasible point 𝒙∗∗ 

can be returned from Step 1.2, then both the “constrained EI” method and the “feasibility-

enhanced EI” method will switch to find the next sample point 𝒙′ by maximizing 𝐸𝑄𝐼r (Equation 

(170)) for the purpose of finding a feasible point. Otherwise, if a feasible point 𝒙∗∗ is returned from 

Step 1.2, then the “constrained EI” method determines 𝒙′ by maximizing the 𝑐𝐴𝐸𝐼L criterion 

(Equation (161)); the “feasibility-enhanced EI” method finds 𝒙′ by maximizing the 𝐹𝐸𝐼 

criterion (Equation (169)). After 𝒙′ is determined, Step 3 checks whether 𝒙′ has been visited. In 

Step 4, if 𝒙′ is a new sample point that hasn’t been visited, 𝑚 replicated simulation runs are made 

at 𝒙′. The calculated 𝑦L(𝒙′), 𝑉L(𝒙′), 𝑦r(𝒙′), and 𝑉r(𝒙′) are added to the dataset. Otherwise, 

if 𝒙′ has already been visited, with the additional 𝑚 replicated simulation runs at 𝒙′, the values 

of 𝑦L(𝒙′), 𝑉L(𝒙′), 𝑦r(𝒙′), and 𝑉r(𝒙′) are re-estimated and the dataset is updated with these 

values. Step 5.1 update surrogate models. For the “constrained EI” method, the models 𝑆𝐾L, 

𝑆𝐾r, and 𝐾𝐺L are updated. For the “feasibility-enhanced EI” method, an additional model 𝑆𝐾r 

is updated. Step 5.2 update the information on the current best point 𝒙∗∗. The “constrained EI” 
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method updates 𝑓∗∗, while the “feasibility-enhanced” methods updates the additional terms 𝑔∗∗, 

𝑓∗∗∗ and 𝑠∗∗. The adaptive sampling stage is performed iteratively until Step 6 detects that the total 

sampling budget 𝑁^[b is used up.  

 

Step 7 returns the predicted near-optimal solution 𝒙∗ and the predicted objective value 𝑓∗, which 

are calculated as follows: 

 

 𝑓∗ = 𝑦L 𝒙∗ 	

where	

𝒙∗ = arg	min
𝒙∈}

𝑦L 𝒙 	

𝑠. 𝑡.	

𝑦r 𝒙 + 𝑐r ∙ 𝑠r 𝒙 ≤ 0	

𝜒 = {𝒙o, 𝒙t, … , 𝒙�} 

(171) 

 

A complete list of differences between the “constrained EI” method and the “feasibility-

enhanced EI” method in the optimization framework is shown in Table 26.  
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Figure 65.  Optimization framework of the Kriging-based approach 

 

Table 26.  Differences between the “constrained EI” method and the “feasibility-enhanced EI” 

method 

Steps “Constrained EI” method “Feasibility-enhanced EI” method 

1.1 Build surrogate models: 𝑆𝐾L, 𝑆𝐾r, 

𝐾𝐺L 

Build surrogate models: 𝑆𝐾L, 𝑆𝐾r, 𝐾𝐺L, 

𝐾𝐺r 

1.2 Calculate 𝒙∗∗ and 𝑓∗∗ Calculate 𝒙∗∗, 𝑓∗∗, 𝑔∗∗, 𝑓∗∗∗, and 𝑠∗∗  

1.1. Build initial surrogate models for the objective and constraint with 10! LHS 
sample points, each with " replications. 
1.2. Find information on the current best point #∗∗

2. Find the next sample point #′ by an infill criterion

5.1. Update surrogate models for the objective and constraint
5.2. Update the information on the current best point #∗∗

7. Return the identified near-optimal solution

Yes

No

3. #′ ∉ #' ,… , #* ?

4(Y). Make "	replications at #′ . Add 
the estimated mean and variance at 
#′ to the dataset.

4(N). Make "	replications at #′ . 
Update the dataset by re-estimating 
the mean and variance with all the 
simulation runs at #- 	

6. . > ."01?

Yes No
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2 If a feasible 𝒙∗∗ is returned from Step 

1.2, 𝒙′ = arg	max 𝑐𝐴𝐸𝐼L 𝒙   

If a feasible 𝒙∗∗ is returned from Step 1.2, 

𝒙′ = arg	max 𝐹𝐸𝐼 𝒙   

5.1 Update surrogate models: 𝑆𝐾L, 𝑆𝐾r, 

𝐾𝐺L 

Update surrogate models: 𝑆𝐾L, 𝑆𝐾r, 𝐾𝐺L, 

𝐾𝐺r 

5.2 Update 𝒙∗∗ and 𝑓∗∗ Update 𝒙∗∗, 𝑓∗∗, 𝑔∗∗, 𝑓∗∗∗, and 𝑠∗∗  

 

8.3 Computational studies 

8.3.1 Test problems and additional competitive solvers 

The performance of the two Kriging-based approaches are compared by using eight standard test 

problems which have been widely adopted in the optimization literature. The dimensionality of the 

problems ranges from 2 to 5. Note that only low-dimensional problems are chosen because it is 

known that Kriging-based algorithms are mostly viable for problems with not too large dimensions 

[350]. Some of the test problems have multimodal characteristic in the objective and disjoint 

feasible regions, which increases the difficulty of finding the feasible global optimal solution. A 

summary on these test problems is given in Table 22, where 𝑅r is defined as: 𝑅r = max 𝑔(𝑥) , 𝑅L 

is defined as: 𝑅L = max 𝑓(𝑥) − min 𝑓(𝑥). Functions of the test problems are mentioned in the 

Appendix.  

 

Table 27.  Summary of the test problems 

# 
Test 

Problems 

𝑑  𝑓 is multi-

modal 

𝑔 has disjoint 

feasible regions 

# of global 

optima 

𝑅L  𝑅r  

1 Gomez 2 yes yes 1 4.2650 3.0000 

2 
Constrained 

Branin 
2 yes no 2 5.9236 5.5000 
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3 New Branin 2 no yes 1 5.6250 5.8350 

4 Sasena 2 no yes 1 1.2500 4.0000 

5 qcp4 3 - - 1 10.0000 6.0000 

6 G4 5 - - 1 4.9573 5.0430 

7 G24 2 no yes 1 5.0000 5.0000 

8 Angun 2 no no 1 5.0000 5.0000 

 

In addition to the proposed Kriging-based algorithms, two other competitive solvers are added for 

a comparison purpose: NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search) [359] 

and ISRES (Improved Stochastic Ranking Evolution Strategy) [360]. These two algorithms are 

selected because they are suitable for constrained black-box optimization problems and have been 

tested in other global optimization literatures [64,361].  

 

8.3.2 Noise scenarios 

In this paper, we consider stochastic systems where the inherent noises have heteroscedastic 

variances. Thus, for each test problem, two noise scenarios are constructed. In the “easy” noise 

scenario, 𝜉L(𝒙) decreases linearly as the objective value 𝑓(𝒙) approaches to the feasible global 

optimum 𝑓∗; 𝜉r(𝒙) decreases linearly as the constraint value 𝑔(𝒙) gets close to the feasible region 

boundary (𝑔(𝒙) = 0). As such,	𝜉L(𝒙) and 𝜉r(𝒙) introduce small uncertainties to the identification 

of promising areas where 𝑓(𝒙) is close to 𝑓∗ as well as the determination of whether a point is 

feasible. On the other hand, in the “hard” noise scenario, 𝜉L(𝒙) increases linearly as the objective 

value 𝑓(𝒙) approaches to 𝑓∗; 𝜉r(𝒙) increases linearly as the constraint value 𝑔(𝒙) gets close to the 

feasible region boundary. In this case, 𝜉L(𝒙) and 𝜉r(𝒙) cause large uncertainties to the search of 

promising areas where 𝑓(𝒙) is close to 𝑓∗ as well as determining feasibility near feasible region 
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boundary. Similar settings of constructing noise functions have been considered in Refs. 

[278,356,358]. The expressions for 𝜉L(𝒙) and 𝜉r(𝒙) are included in Table 28.  

 

Table 28.  Expressions for the noise functions 

Noise scenarios Noise functions 

“easy” noise 𝜉L 𝒙 = 0.15 − 0.05 𝑓 𝒙 − 𝑓∗ + 0.05𝑅L 	

𝜉r 𝒙 = 0.15 − 0.05 𝑔 𝒙 − 0 + 0.05𝑅r  

“hard” noise 𝜉L 𝒙 = 0.05 − 0.15 𝑓 𝒙 − 𝑓∗ + 0.15𝑅L 	

𝜉r 𝒙 = 0.05 − 0.15 𝑔 𝒙 − 0 + 0.15𝑅r  

 

8.3.3 Performance measures 

For a stochastically constrained optimization problem, the quality of a returned near-optimal 

solution depends on the following three aspects: (A) whether the returned solution is feasible at a 

specified tolerance; (B) how accurate the algorithm is in “locating” the optimal solution; (C) 

how accurate the algorithm is in “predicting” the objective value.  

 

By selecting a tolerance of 10f0 as the default, Quality (A) can be measured by checking whether 

the following condition is satisfied.  

 𝑔 𝒙∗ < 10f0 (172) 

Quality (B) can be measured by the difference between 𝑓 𝒙∗  and 𝑓∗, which is denoted as 𝑔𝑎𝑝1 

and expressed as follows. 

 𝑔𝑎𝑝1 = 𝑓 𝒙∗ − 𝑓∗  (173) 

Quality (C) can be measured by the difference between 𝑦L 𝒙∗  and 𝑓 𝒙∗ , which is noted as 𝑔𝑎𝑝2 

with the following expression. 
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 𝑔𝑎𝑝2 = 𝑦L 𝒙∗ − 𝑓 𝒙∗  (174) 

Similar performance measures have been adopted in Refs. [278,356].  

 

8.3.4 Implementation details 

Computational studies are performed in Matlab 2017a. Implementations of NOMAD and ISRES 

are from the OPTimization Interface (OPTI) Matlab toolbox available at 

(www.inverseproblem.co.nz/OPTI/). SK models are built on the basis of the work by Ankenman 

et al. [162] with Matlab codes available at (stochastickriging.net/). Kriging models are built with 

the DACE toolbox [226] and the Matlab codes are available at (www2.imm.dtu.dk/projects/dace/). 

For each Kriging-based algorithm, the infill criterion is maximized using “fmincon” in Matlab, 

which implements a sequential quadratic programming algorithm. A multi-start strategy is used to 

increase the probability of finding the global optimum. In specific, a number of 10𝑑 LHS points 

are used every time the 𝑐𝐴𝐸𝐼L or 𝐹𝐸𝐼 is maximized. In each test, 80 iterations of the adaptive 

sampling stage are used. Therefore, the total sampling budget for each test is: 𝑁^[b =

10𝑑	intial	points + 80	iterations ×50	replications.  

 

To account for the randomness in the initial LHS sampling and stochastic simulations, we make 

100 mega-repetitions for every algorithm: an algorithm is run 100 times for the two noise scenarios 

of every test problem. For a fair comparison, each algorithm shares the same 100 sets of initial 

sample points (same noisy observations at the same sample points) for each noise scenario.  

 

8.4 Results 

8.4.1 Capabilities of returning a truly feasible solution 

We first examine different algorithms’ capabilities of returning a near-optimal solution that is 

actually feasible, which corresponds to the Quality (A) mentioned in Section 8.3.3. This is reflected 
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by the number of mega-repetitions (among the total number of 100) of each algorithm that fulfill 

the requirement 𝑔 𝒙∗ < 10f0. The results are summarized in Table 29.  

 

Among the four algorithms, NOMAD performs generally worse than the other three algorithms. It 

is noticed that NOMAD returns a significantly smaller number of 𝒙∗ that satisfy the feasibility 

requirement, and it happens in both the “easy” and “hard” noise scenarios. The only exception 

that NOMAD shows competitiveness is in the test problem “constrained Branin”, which is the 

only problem where the global optimal solution 𝒙∗ lies inside the feasible region and the constraint 

is not active at 𝒙∗. This characteristic makes “constrained Branin” the easiest one in terms of 

returning a truly feasible solution because the promising area surrounding 𝒙∗ is mostly feasible and 

𝒙∗ is relatively far from infeasible regions.  

 

For the ISRES algorithm, it shows a competitive performance to the two Kriging-based algorithms 

in two test problems (i.e., “Gomez” and “constrained Branin”) for both noise scenarios. 

Further, ISRES exceeds other algorithms in “G24” for the “easy” noise scenario, and shows 

comparable to “feasibility-enhanced EI” for the “hard” noise scenario. However, notable 

disadvantages of using ISRES are found for “new Branin”, “Sasena”, and “G4” in their 

“easy” noise scenarios. Such disadvantages become even more significant in the “hard” noise 

scenarios of these test problems. In addition, two more test problems (“qcp4” and “Angun”) 

become more challenging in their “hard” noise scenarios for ISRES than the two Kriging-based 

algorithms.  

 

Comparing the “constrained EI” method and the “feasibility-enhanced EI” method, it is found 

that, for “easy” noise scenarios, it is more favorable to use “feasibility-enhanced EI” for the 
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“Sasena” test problem. For “hard” noise scenarios, significant advantages of using the 

“feasibility-enhanced EI” are found for “new Branin”, “Sasena”, and “G24”.  

 

For each algorithm, the total numbers of mega-repetitions that satisfy 𝑔 𝒙∗ < 10f0  are listed at 

the end of Table 29. It can be found that “hard” noise scenarios generally cause more difficulties 

than “easy” noise scenarios for all the algorithms. By using the “constrained EI” method as a 

reference, for “easy” noise scenarios, NOMAD is significantly worse than ISRES, which is 

slightly less competent than “constrained EI” which is slightly worse than “feasibility-

enhanced EI”. For “hard” noise scenarios, although this rank remains the same, the differences 

between ISRES, “constrained EI”, and “feasibility-enhanced EI” get sufficiently enlarged.  

 

In summary, in terms of capabilities of returning a truly feasible solution, the two Kriging-based 

algorithms are generally more competitive than NOMAD and ISRES, with NOMAD being the 

worst. For some test problems, the “feasibility-enhanced EI” method shows improved 

performance than the “constrained EI” method. Such an improvement becomes more significant 

for “hard” noise scenarios where the stochasticity in the constraint introduces a larger uncertainty 

near feasible region boundaries. This type of noise structures can make problems especially 

difficult to solve when the global optimum is located at an active constraint.   

 

To further understand in what cases the “feasibility-enhanced EI” method becomes significantly 

useful, we check the landscapes of constraints for “new Branin” and “Sasena”. These two 

problems are selected because they appear to be most difficult for all four algorithms according to 

the data in Table 29, while “feasibility-enhanced EI” tends to give a significantly better 

performance than the other three algorithms. Figure 29 shows the contours of constraint functions 
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for “new Branin” (Figure 29 (a)) and “Sasena” (Figure 29 (b)), where thick solid lines are 

feasible region boundaries. It can be observed that both problems have feasible region boundaries 

located in a relatively flat neighborhood. In such cases, a relatively large noise variance in the 

vicinity of feasible region boundaries can drastically degrade the estimation of constraint values. 

When the global optimum is located at (or near) the feasible region boundary, it becomes greatly 

difficult for all algorithms to determine the current best point as a truly feasible one. In such 

situations, the “feasibility-enhanced EI” method can be especially beneficial because it explicitly 

accounts for improving the knowledge on feasibilities in the infill criterion as it searches for the 

next sample point.  

 

Table 29.  Total numbers of returned near-optimal solutions being feasible 

 Test 

problems  

"Easy" noise "Hard" noise 

# NOMAD ISRES 𝑐𝐴𝐸𝐼L 𝐹𝐸𝐼 NOMAD ISRES 𝑐𝐴𝐸𝐼L 𝐹𝐸𝐼 

1 Gomez 84 100 100 100 82 98 98 97 

2 
constrained 

Branin 
98 100 100 100 99 100 100 100 

3 new Branin 14 77 84 86 16 54 76 87 

4 Sasena 5 63 72 86 1 22 47 71 

5 qcp4 88 97 95 99 82 84 95 95 

6 G4 82 90 99 95 70 79 91 93 

7 G24 25 88 80 81 22 73 63 73 

8 Angun 51 87 88 94 50 76 93 92 

Total numbers 447 702 718 741 422 586 663 708 

Overall 

difference -271 -16 Ref!þü� +23 -241 -77 Ref�þ�k +45 
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Figure 66.  Contours of constraint functions. (a) new Branin; (b) Sasena. Thick solid lines are 

feasible region boundaries 

 

8.4.2 Accuracies of “locating” the feasible global optimum 

As is discussed in Section 8.3.3, 𝑔𝑎𝑝1 can be computed to measure how accurate an algorithm can 

“locate” the global optimum solution. The results are shown with boxplots of log10 𝑔𝑎𝑝1  at 

the last iteration of each algorithm (Figure 67). Note that the boxplots are created only on the basis 

of those mega-repetitions that return a truly feasible solution satisfying 𝑔 𝒙∗ < 10f0. In Figure 

67, each subplot (corresponding to one test problem) consists of two groups of boxplots: the left 

group of four boxplots shows algorithms’ performances in the “easy” noise scenario; the right 

group of four boxplots is for the “hard” noise scenario.  

 

Compared to the two Kriging-based methods, NOMAD has relatively larger values of 

log10 𝑔𝑎𝑝1  for six test problems in both “easy” and “hard” noise scenarios. These test 

problems include “Gomez”, “constrained Branin”, “new Branin”, “Sasena”, “qcp4”, 

“G4”. Among these test problems, “Sasena” in the “hard” noise scenario only has a boxplot 

as a short line for the NOMAD algorithm. This is because the NOMAD algorithm only has one 

!"

!#

!"

!#

(a) (b)
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mega-repetition (among total 100 runs) that satisfies 𝑔 𝒙∗ < 10f0, which is reflected in Table 29. 

Although this run has a smaller log10 𝑔𝑎𝑝1  than other algorithms in the “Sasena”-“hard”  

noise scenario, it is only a rare case and does not prove NOMAD to be effective in this test problem. 

For the test problem “G24” in both noise scenarios, NOMAD shows a competitive performance 

to Kriging-based methods, but the boxplots for NOMAD in “G24” have wider spans. This 

indicates that NOMAD can be less capable of returning a consistently good near-optimal solution 

than the Kriging-based methods. For the test problem “Angun” in the “easy” noise scenario, 

NOMAD has a performance comparable to Kriging-based methods. However, in the “hard” 

noise scenario, NOMAD becomes much worse.  

 

The ISRES algorithm performs generally worse than other three algorithms in almost all test 

problems. Only in the “hard” noise scenario of “Sasena”, ISRES has a boxplot that are close 

to Kriging-based methods. However, recalling the data in Table 29, ISRES only has 22 mega-

repetitions that return a truly feasible solution, which is significantly fewer than that of the 

“constrained EI” approach (47 feasible) and the “feasibility-enhanced EI” (71 feasible). 

Therefore, ISRES is still far less competent than Kriging-based algorithms for “Sasena”.  

 

Comparing the two Kriging-based methods, it is found that the “constrained EI” method 

performs better than “feasibility-enhanced” method for “Gomez” and “qcp4” in both noise 

scenarios and for “Sasena” in the “easy” noise scenario. For the rest test problems, these two 

Kriging-based methods show performances that are almost indistinguishable.  

 

In summary, for almost all test problems, the Kriging-based methods are sufficiently better at 

“locating” the global optimal solution than the NOMAD and ISRES when using the same 
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sampling budget. Only in rare cases (e.g., “G24”, “Sasena”), NOMAD or ISRES shows a 

competitive performance to Kriging-based algorithms. However, in such cases, given the fact that 

NOMAD and ISRES can only return much fewer truly feasible solutions than Kriging-based 

methods, it is still less reliable of using NOMAD or ISRES than using Kriging-based methods for 

the optimization of stochastic systems. The advantages of using Kriging-based methods are 

expected because direct-search methods (e.g., NOMAD) and evolutionary algorithms (ISRES) 

generally require more sample points to find a near-optimal solution that is close enough to the 

global optimal solution [361]. In addition, it is found that in a few cases, the “feasibility-enhanced 

EI” method is can be slightly less accurate than the “constrained EI” method in “locating” 

the global optimum.  

 

To further understand the difference between “constrained EI” and “feasibility-enhanced EI”, 

we plot the profiles of log10 𝑔𝑎𝑝1  versus iterations for each test problem using these Kriging-

based algorithms (Figure 68). Similar with the boxplots, only those mega-repetitions that result in 

a truly feasible solution are considered when making the profile plots. In Figure 68, the thick solid 

line represents the median profile of “constrained EI”; the thick dashed line represents the 

median profile of “Feasibility-enhanced EI”. The lower and upper thin solid lines represent the 

1st quartile and 3rd quartile profile of “constrained EI”; the lower and upper thin dashed lines 

represent the 1st quartile and 3rd quartile profile of “feasibility-enhanced EI”.  

 

It is observed that profiles of “feasibility-enhanced EI” generally show a slightly slower decrease 

in log10 𝑔𝑎𝑝1  than “constrained EI”, especially for “Gomez” and “qcp4”. This can be 

attributed to the “penalized feasibility-enhancement term” (𝑝𝐸𝑄𝐼𝐹r in Equaiton (168), which 

requires to search near a bounded vicinity of the feasibility contour of the current best point. The 
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addition of 𝑝𝐸𝑄𝐼𝐹r causes a small portion of sampling budget to be allocated to locally increase 

the knowledge of the feasibility, and thus slightly slows down the progress of searching for a point 

with a better objective. This is a compromise that we need to make as we attempt to maintain 

feasible while approaching to the optimum of stochastically constrained problems. For black-box 

systems where the noise variance in the constraint is unknown, it is worthwhile of considering 

“feasibility-enhanced EI” approach because it makes the algorithm less vulnerable to the 

stochasticity in the constraint and thus more reliable than the “constrained EI” approach in 

returning a truly feasible near-optimal solution.  
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Figure 67.  Boxplots of log10 𝑔𝑎𝑝1 . 

“Easy” noise “Hard” noise “Easy” noise “Hard” noise

“Easy” noise “Hard” noise “Easy” noise “Hard” noise

“Easy” noise “Hard” noise “Easy” noise “Hard” noise

“Easy” noise “Hard” noise “Easy” noise “Hard” noise

!"#$: Gomez !"#$: constrained Branin

!"#$: new Branin !"#$: Sasena

!"#$: qcp4 !"#$: G4

!"#$: G24 !"#$: Angun

Lo
g1
0(

)

Lo
g1
0(

)

Lo
g1
0(

)

Lo
g1
0(

)

Lo
g1
0(

)

Lo
g1
0(

)

Lo
g1
0(

)

Lo
g1
0(

)



	

250	
	

 

Figure 68.  Profiles of log10 𝑔𝑎𝑝1 . Thick solid lines represent median profiles for “constrained 

EI”; thick dashed line represent median profiles for “Feasibility-enhanced EI”; lower and upper 

thin solid lines represent the 1st quartile and 3rd quartile profiles for “constrained EI”; lower and 
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upper thin dashed lines represent the 1st quartile and 3rd quartile profiles for “feasibility-enhanced 

EI”.  

 

8.4.3 Accuracies of “predicting” the objective value at the near-optimal solution 

For each algorithm, 𝑔𝑎𝑝2 is calculated to measure the accuracy of “predicting” the objective 

value. Figure 69 shows the boxplots of log10 𝑔𝑎𝑝2  at the last iteration of each algorithm. Similar 

with 𝑔𝑎𝑝1, the calculation of 𝑔𝑎𝑝2 only considers those mega-repetitions that return a truly 

feasible solution satisfying 𝑔 𝒙∗ < 10f0. In Figure 69, each subplot (corresponding to one test 

problem) consists of two groups of boxplots: the left group shows boxplots for the “easy” noise 

scenario; the right group is for the “hard” noise scenario. 

 

For all test problems, the performances of NOMAD and ISRES are much worse than the two 

Kriging-based methods, and there is no obvious difference between “constrained EI” and 

“feasibility-enhanced EI”. This can be attributed to the different methods that algorithms use to 

estimate the near-optimal objective value: NOMAD and ISRES use sampling average 𝑦L 𝒙∗ , 

while Kriging-based algorithms use the SK predictor 𝑦L 𝒙∗ . Mathematically, Chen and Zhou 

[262] demonstrated that the uncertainty associated with 𝑦L 𝒙∗  is upper bounded by the uncertainty 

associated with 𝑦L 𝒙∗ . Therefore, it is more accurate to use 𝑦L 𝒙∗  than 𝑦L 𝒙∗  to estimate the 

near-optimal objective. Such results further indicate the advantages of using SK models to 

approximate stochastic systems in an optimization framework.  
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Figure 69. Boxplots of log10 𝑔𝑎𝑝2 . 
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8.5 Optimization of a continuous pharmaceutical manufacturing process 

After realizing the advantages of the Kriging-based algorithms, we apply them to a pharmaceutical 

manufacturing case study. The goal is to optimize the operation of a Continuous Direct Compaction 

process which is used to produce drug products in a solid-oral dosage form. The process flowsheet 

is shown in Figure 29. Three feeders are used to continuously feed powder components (including 

Active Pharmaceutical Ingredient (API), Excipient, and Lubricant). A co-mill is used to de-lump 

any large-sized chunks in API and Excipient. A blender is used to continuously mix the three raw 

materials. The mixtures are sent to a tablet press unit where tablet products are made. A more 

detailed description on the mathematical models of this process is given in Ref. [362].  

 

Figure 70. Flowsheet of a Continuous Direct Compaction process 

 

In this work, the optimization problem is formulated with Problem (175). The objective is to 

minimize the total operation cost per day, which involves the material, utility and waste costs. For 

a pharmaceutical manufacturing process, it is critical to reduce wasted products. Therefore, a 

constraint is added to enforce that wasted products can only be generated during the starting stage 

of the process. Two decision variables are considered: the API flow rate set point (𝐹𝑅8Tö) and the 
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refilling strategy of the API feeder (𝑅𝑆8Tö). 𝐹𝑅8Tö controls how fast API is fed to the system. 𝑅𝑆8Tö 

is defined as the fill level of the API feeder where a refilling operation is conducted. For the 

operation of a feeder, it requires a certain amount of materials to be refilled to the equipment 

periodically to prevent the feeder gets empty. Therefore, 𝑅𝑆8Tö determines the frequency of 

refilling. 𝐹𝑅8Tö and 𝑅𝑆8Tö are selected as the decision variables because they are influential to the 

calculation of total costs as well as the generation of wasted products caused by temporal process 

variations [362]. To account for the uncertainty in estimations of the total cost and the time of 

generating wasted products, two noise terms (𝜀L and 𝜀r) are added respectively to the objective and 

constraint. We further assume that 𝜀L and 𝜀r are subject to normal distributions, with the variances 

dependent on the decision variables: 𝜀L~𝒩 0, 𝜎Lt 𝐹𝑅8Tö, 𝑅𝑆8Tö , 𝜀r~𝒩 0, 𝜎rt 𝐹𝑅8Tö, 𝑅𝑆8Tö . 

This assumption is plausible because it was experimentally found that 𝐹𝑅8Tö, 𝑅𝑆8Tö can introduce 

a normally distributed process variation [17], which is the main source of the uncertainties in the 

objective and constraint function. However, further experimental studies are needed to verify this 

assumption.  

 min
{9:;<,	9Q:;<

𝑐𝑜𝑠𝑡ECE[Y = 𝑐𝑜𝑠𝑡^[EKRN[Y + 𝑐𝑜𝑠𝑡DENYNEm + 𝑐𝑜𝑠𝑡S[ZEK + 𝜀L	

𝑠. 𝑡.   

WasteProductTime 𝐹𝑅8Tö, 	𝑅𝑆8Tö + 𝜀r ≤ StartupTime  

𝑅𝑆8TöYq ≤ 𝑅𝑆8Tö ≤ 𝑅𝑆8�ö
Dq 	

𝐹𝑅8TöYq ≤ 𝐹𝑅8Tö ≤ 𝐹𝑅8TöDq  

(175) 

The flowsheet model is built in the gPROMS simulation platform. The interface “gO:MATLAB

” is used to transfer information between gPROMS and Matlab. Each Kriging-based algorithm 

uses a total sampling budget of 100 sample points (20 initial points + 80 iterations of adaptive 

sampling), each point with 50 replicated simulation runs. The returned near-optimal solutions and 

the predicted objective values are listed in Table 30. The results suggest a small value for 𝐹𝑅8Tö, 
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which is beneficial to reduce the total cost. Further, both algorithms suggest a refilling frequency 

in a mid-high range. According to experimental studies, this is helpful to reduce temporal process 

variations [254] and thus reduce potential wasted products. The estimated total costs from both 

algorithms are over 98,000 $/day, and the values are close.  

 

Table 30.  Optimization results for the pharmaceutical case study 

 

𝑐𝐴𝐸𝐼L  𝐹𝐸𝐼  

𝐹𝑅8Tö [kg/hr] 

(lb~ub) 

2.8691 

(2.85~3.15) 

2.8622 

(2.85~3.15) 

𝑅𝑆8Tö [%] 

(lb~ub) 

64.54 

(10~70) 

54.49 

(10~70) 

Predicted total 

cost [$/day] 98,193 98,175 

 

8.6 Summary and future work 

A Kriging-based optimization framework is used to solve stochastically constrained simulation 

optimization problems. Stochastic Kriging is used to model black-box objective and constraint 

functions which have inherent noises with heteroscedastic variances. A “constrained Expected 

Improvement” infill criterion is adapted for stochastic systems to seek for the next sample point. 

To better account for the stochasticity in the constraint, we propose a “feasibility-enhanced 

Expected Improvement” infill criterion that explicitly considers to improve feasibility knowledge 

while searching for new sample points with a better objective value. The two Kriging-based 

algorithms are shown to perform better than a direct search method (NOMAD) and an evolutionary 

algorithm (ISRES) in three aspects: in most cases, Kriging-based methods are (1) more reliable in 

returning a truly feasible solution; (2) more accurate in “locating” the feasible global optimal 
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solution; (3) more accurate in “predicting” the objective value. Additionally, the comparison 

between the two Kriging-based methods reveals that the “feasibility-enhanced Expected 

Improvement” approach is more robust than “constrained Expected Improvement” to return a 

truly feasible solution when the stochasticity in the constraint increases, although the former 

approach may result in a slightly slower progress in approaching to the feasible global optimum. 

The two Kriging-based algorithms are further applied to optimize the operations of a 

pharmaceutical manufacturing process.  

 

For future work, there are still several aspects that are worth further attention for the Kriging-based 

algorithms. First, theoretical proof on the convergence of the algorithms needs to be investigated. 

This is helpful to understand the average performance of the algorithms. Second, the current 

Kriging-based methods are based on the assumption that stochastic systems have noise terms 

subject to a normal distribution. Further studies are needed to expand the algorithms to be suitable 

for simulations with other types of stochasticity. Finally, the proposed Kriging-based algorithms 

are developed for simulation optimization problem with one constraint. They still need to be 

improved to address multi-constraint problems. In Refs. [344,350], the “constrained Expected 

Improvement” method was used to address problems with 𝑛 constraints by multiplying 𝑛 

probabilities of being feasible for each constraint. However, such methods become less effective 

when there are many active constraints [350]. Alternatively, we envision that a more effective way 

is to transform multiple constraints into a single new constraint. This can be achieved by defining 

the new constraint as the maximum violation of all the constraints. Similar approaches have been 

used in feasibility analysis problems in Ref. [64,261] for deterministic models. However, for 

multiple stochastic constraints, this transformation will cause the newly defined constraint to 

possibly have a completely different (and unknown) distribution. Therefore, the effectiveness of 

this rough idea should depend on the second future work that we mentioned above, which is to 
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expand the Kriging-based algorithms to stochastic systems with a diverse range of noise 

distributions.   
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V. Conclusions 
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9 Conclusions and Future Work 

In this thesis, we investigate to enhance pharmaceutical process knowledge via simulation-based 

process analysis and optimization approaches. A framework of global sensitivity, feasibility, and 

optimization is proposed to have a comprehensive understanding of the process and provide guide 

to improve the process performance. This framework is applied to a direct compaction process 

where deterministic simulations are available to approximate process behaviors. In order to further 

expand the applications of such framework, we have developed process analysis and optimization 

approaches that are suitable for stochastic systems. These approaches can be useful when stochastic 

simulations are adopted to model the random behaviors of a real-life pharmaceutical process.  

 

Below, we outline the major contributions made in this thesis, and provide some future directions 

that are worth research attention.  

 

9.1 Major contributions 

• Literature reviews are given respectively on process analysis (Chapter 2) and optimization 

(Chapter 3) for pharmaceutical manufacturing processes. These two reviews can be used 

as a guide on choosing the proper method in a real-life case to conduct simulation-based 

process analysis and optimization. This choice depends on the problem dimensionality, 

computational cost (and sampling budget), transparency of the model (i.e., whether closed-

forms model functions are available), and types of constraints of the problem.  

 

• For deterministic systems, we focus on developing and applying efficient approaches that 

are suitable for computationally expensive simulations. Specifically, a Radial Basis 

Function (RBF-based) adaptive sampling approach is developed for feasibility analysis 
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problems (Chapter 4). This method proves to be more efficient and accurate than a 

competitive Kriging-based algorithm. Additionally, a process analysis and optimization 

framework is proposed and demonstrated with a direct compaction process (Chapter 5). 

This framework provides a systematic way to extract process knowledge via simulations. 

 

• For stochastic systems, we first address the feasibility analysis problems by comparing 

three Kriging-based approaches (Chapter 6). Among these approaches, two of them prove 

to be more reliable for noisy systems, as well as more accurate in identifying non-convex 

feasible regions. Then, we propose a “one-stage” algorithm for stochastically 

unconstrained optimization problems (Chapter 7). This algorithm is more capable than a 

“two-stage” algorithm in “locating” the global optimal solution when the noise level 

is high in promising regions. Finally, we solve stochastically constrained optimization 

problems by developing a Kriging-based algorithm with feasibility enhancements (Chapter 

8). This algorithm shows more robustness than competitive solvers in returning a feasible 

and near-optimal solution in a variety of stochastic systems.  

 

9.2 Future work  

With respect to deterministic systems, there are a few directions that require further research, that 

are listed as follows.  

• Currently, the global sensitivity analysis and feasibility analysis are conducted separately 

in two stages. In this case, these two types of analysis each require an independent set of 

data samples, which can be less efficient for the analysis of computationally expensive 

simulations. There still lacks a “bridge” that can connect sensitivity analysis and 

feasibility analysis, and make it possible for them to share data samples. A possible way to 

build this “bridge” is by using a common surrogate model for both the sensitivity 
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analysis and the feasibility analysis. Further research is needed to choose an appropriate 

model, and choose the sampling plan.  

• The proposed RBF-based method for feasibility analysis can be computationally expensive 

as the problem dimension increases. It would be interesting to combine this approach with 

model-reduction (or dimension-reduction) techniques, and apply it to higher-dimensional 

problems. An attempt has been made recently to combine the Partial Least Squares (PLS) 

approach to the RBF-based algorithm.  

• The visualization of design space becomes an issue as the problem dimension increases. It 

requires additional research on displaying the high-dimensional space that can show 

interactions between input factors when characterizing the design space.  

 

With respect to stochastic systems, the suggested future research directions are mentioned as 

follows.  

• The stochastic Kriging used in the feasibility analysis and optimization algorithms requires 

a pre-defined number of replications at each sample point. Currently, there still lacks a 

proper way of choosing this number depending on different problems. This problem has 

been addressed for systems with discrete variables. It would be interesting if we can adapt 

those approaches to problems with continuous variables. 

• The currently developed algorithms are still suitable for relatively small-scale problems. 

More research is needed to extend the algorithms to larger-scale problems.  

• We have only considered stochastic systems where the inherent noise is subject to a normal 

distribution. This can be a limitation for a broader range of applications when other types 

of stochasticity are existent.  

• The proposed simulation optimization algorithms can be used in other applications than 

pharmaceutical processes, including supply chain management, inventory management 
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problems, control under uncertainties. It would be interesting if we can gather more types 

of problems to test our proposed algorithm.  
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Appendix 

A. Derivation of 𝑬𝑰𝒇𝒆𝒂𝒔 

Rewrite the improvement of feasibility as follows: 

𝐼LK[Z =
𝑠(0 − 𝑧), if	𝑧 ≤ 𝑓E′ ≤ 0

0, else

𝑠(𝑧 − 0), if	𝑧 ≥ 𝑓E′ > 0,

 

where 𝑧 = mfû
Z
, 𝑓E′ = L^fû

Z
. 

Due to the assumed normal distribution for 𝑦, in the case when 𝑓E′ ≤ 0, the expected value of 

𝐼LK[Z can be derived as follows: 

𝐸 𝐼LK[Z = 𝑠 0 − 𝑧 𝜙 𝑧 𝑑𝑧
L^′

f∞
	

= 𝑠
𝑒f

Ä�
t

2𝜋
f∞

L^′

	

= 𝑠𝜙 𝑓E′ 	

= 𝑠𝜙
𝑓E − 𝜇
𝑠

. 

In the case when 𝑓E′ > 0, the same expression for 𝐸 𝐼LK[Z  can be obtained by taking similar 

derivation steps as mentioned above.  

 

B.  Figures for the 2D test problems 

Below, we show the figures depicting the feasible region boundaries (denoted with thick-dashed 

line) and noise standard deviation 𝜉 (denoted with filled contour) for the four 2D test functions. “

Branin” in Figure 71; “Camelback” in Figure 72; “Example3” in Figure 73; “Sasena” in 

Figure 74.  
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Figure 71. “Branin” test function. (a) “easy” noise; (b) “hard” noise. Thick-dashed line: 

feasible region boundaries; filled contour: standard deviation of the noise term 

 

 

Figure 72. “Camelback” test function. (a) “easy” noise; (b) “hard” noise. Thick-dashed 

line: feasible region boundaries; filled contour: standard deviation of the noise term 
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Figure 73. “Example3” test function. (a) “easy” noise; (b) “hard” noise. Thick-dashed line: 

feasible region boundaries; filled contour: standard deviation of the noise term 

 

 

Figure 74. “Sasena” test function. (a) “easy” noise; (b) “hard” noise. Thick-dashed line: 

feasible region boundaries; filled contour: standard deviation of the noise term 
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C. Test problem functions 

Gomez [363,364] 

min 𝑓 = 4 − 2.1𝑥ot +
1
3
𝑥o) 𝑥ot + 𝑥o𝑥t + −4 + 4𝑥tt 𝑥tt	

s. t.	

𝑔 = − sin 4𝜋𝑥o + 2 sint 2𝜋𝑥t ≤ 0	

−1 ≤ 𝑥N ≤ 1	for	𝑖 = 1,2	

	

The best known solution is at 𝑥∗ = (0.1093, −0.6234)  where 𝑓∗ = −0.9711 

 

Constrained Branin 

This is a modified version of the “constrained Branin Function” in Ref. [64].  

min 𝑓 =
1

51.95
𝑎𝑥t − 𝑏𝑥ot + 𝑐𝑥o − 𝑑 t + ℎ 1 − 𝑓𝑓 cos 𝑥o − 44.81 	

s. t.	

𝑔 = 𝑚𝑎𝑥
�∈ o,t

𝑔� ≤ 0	

𝑔o =
1
10

𝑥o 1 − 𝑥t − 𝑥t 	

𝑔t =
1
10

1 −
𝑥o − 5 t

8
+

𝑥t − 15 t

4
	

𝑎 = 1, 𝑏 =
5.1
4𝜋t

, 𝑐 =
5
𝜋
, 𝑑 = 6, ℎ = 10, 𝑓𝑓 =

1
8𝜋
	

−5 ≤ 𝑥o ≤ 10, 0 ≤ 𝑥t ≤ 15	

 

The best known solutions are at 𝑥∗ = (9.42478, 2.475) and 𝜋, 2.275   where 𝑓∗ = −1.0474 
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New Branin 

This is a scaled version of the “newBranin” function in Ref. [364].  

min 𝑓 =
1
80

− 𝑥o − 10 t − 𝑥t − 15 t 	

s. t.	

𝑔 =
1

51.95
𝑎𝑥t − 𝑏𝑥ot + 𝑐𝑥o − 𝑑 t + ℎ 1 − 𝑓𝑓 cos 𝑥o − 5 + ℎ ≤ 0	

𝑎 = 1, 𝑏 =
5.1
4𝜋t

, 𝑐 =
5
𝜋
, 𝑑 = 6, ℎ = 10, 𝑓𝑓 =

1
8𝜋
	

−5 ≤ 𝑥o ≤ 10, 0 ≤ 𝑥t ≤ 15	

 

The best known solutions are at 𝑥∗ = (3.273, 0.0489) where 𝑓∗ = −3.3599 

 

Sasena [364,365] 

min 𝑓 = − 𝑥o − 1 t − 𝑥t − 0.5 t	

s. t.	

𝑔 = 𝑚𝑎𝑥
�∈ o,t,�

𝑔� ≤ 0	

𝑔o = 𝑥o − 3 t + ( 𝑥t + 2 t 𝑒fb�
�
− 12	

𝑔t = 10𝑥o + 𝑥t − 7	

𝑔� = 𝑥o − 0.5 t + 𝑥t − 0.5 t − 0.2	

0 ≤ 𝑥N ≤ 1	for	𝑖 = 1,2 

 

The best known solutions are at 𝑥∗ = (0.2017, 0.8332) where 𝑓∗ = −0.7483 

 

Qcp4 [233] 

min 𝑓 = −2𝑥o + 𝑥t − 𝑥�	
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s. t.	

𝑔 = 𝑚𝑎𝑥
�∈ o,t,�

𝑔� ≤ 0	

𝑔o = 𝑥o + 𝑥t + 𝑥� − 4	

𝑔t = 3𝑥t + 𝑥� − 6	

𝑔� = −𝒙′𝑨′𝑨𝒙 + 2𝒚′𝑨𝒙 − 𝒚 t + 0.25 𝒃 − 𝒛 t	

𝑨 = 0,0,1; 0, −1,0;−2,1, −1 , 		

𝒃 = 3; 0;−4 ,	

𝒚 = 1.5;−0.5;−5 , 		

𝒛 = 0;−1;−6 	

𝒙 = 𝑥o; 𝑥t; 𝑥� 	

0 ≤ 𝑥o ≤ 2, 0 ≤ 𝑥N ≤ 3	for	𝑖 = 2,3 

 

The best known solutions are at 𝑥∗ = (0.5, 0, 3) where 𝑓∗ = −4 

 

G4 

This is a scaled version of the “G4” function in Ref. [366]. 

min 𝑓 =
5.3578547𝑥�t + 0.8356891𝑥o𝑥Ô + 37.293239𝑥o − 40792.141

2000
	

s. t.	

𝑔 = 𝑚𝑎𝑥
�∈ o,t,�,),Ô,0

𝑔� ≤ 0	

𝑔o = 0 − 𝑢	

𝑔t = 𝑢 − 92	

𝑔� = 90 − 𝑣	

𝑔) = 𝑣 − 110	

𝑔Ô = 20 − 𝑤	
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𝑔0 = 𝑤 − 25	

𝑢 = 85.334407 + 0.0056858𝑥t𝑥Ô + 0.0006262𝑥o𝑥) − 0.0022053𝑥�𝑥Ô	

𝑣 = 80.51249 + 0.0071317𝑥t𝑥Ô + 0.0029955𝑥o𝑥t + 0.0021813𝑥�t	

𝑤 = 9.300961 + 0.0047026𝑥�𝑥Ô + 0.0012547𝑥o𝑥� + 0.0019085𝑥�𝑥)	

78 ≤ 𝑥o ≤ 102, 33 ≤ 𝑥t ≤ 45, 27 ≤ 𝑥N ≤ 45	𝑓𝑜𝑟	𝑖 = 3, 4, 5	

 

The best known solutions are at 𝑥∗ = (78, 33, 29.995, 45, 36.7758) where 𝑓∗ = −15.3328 

 

G24 

This is a scaled version of the “G24” function in Ref. [366].  

min 𝑓 =
5
7
−𝑥o − 𝑥t 	

s. t.	

𝑔 = 𝑚𝑎𝑥
�∈ o,t

𝑔� ≤ 0	

𝑔o =
1
4
−2𝑥o) + 8𝑥o� − 8𝑥ot + 𝑥t − 2 	

𝑔t =
1
4
−4𝑥o) + 32𝑥o� − 88𝑥ot + 96𝑥o + 𝑥t − 36 	

0 ≤ 𝑥o ≤ 3, 0 ≤ 𝑥t ≤ 4	

	

The best known solutions are at 𝑥∗ = (2.0627, 3.9686) where 𝑓∗ = −4.3081 

 

Angun 

This is a scaled version of the “Angun” function in Ref. [337] 

min 𝑓 =
5

34.8
5 𝑥o − 1 t + 𝑥t − 5 t + 4𝑥o𝑥t 	

s. t.	
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𝑔 = 𝑚𝑎𝑥
�∈ o,t

𝑔� ≤ 0	

𝑔o =
5

17.1544
𝑥o − 3 t + 𝑥tt + 𝑥o𝑥t − 4 	

𝑔t =
5

17.1544
𝑥ot + 3 𝑥t + 1.061 t − 9 	

0 ≤ 𝑥o ≤ 𝑥�, −2 ≤ 𝑥t ≤ 1	

 

The best known solutions are at 𝑥∗ = (1.2411, 0.5159) where 𝑓∗ = 3.2987 
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