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ABSTRACT OF THE THESIS

TYPICAL: A THEORY OF TYPICALITY AND TYPICALITY EXPLANATION
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Thesis Director:

Sheldon Goldstein

Typicality is routinely invoked in science and mathematics: typical gases in

a low-entropy macrostate evolve to a higher-entropy macrostate; typical quantum

systems exhibit probabilistic behavior; typical realizations of percolation models with

p ° 1
2 contain an infinite open cluster. And typicality facts like these back many

explanations. But what is it for something to be typical? And how do typicality facts

explain? In this paper, I analyze the notions of typical properties, typical objects,

and typicality explanations. I show how typicality is used to explain mathematical,

statistical mechanical, and quantum mechanical phenomena. Finally, I argue that

typicality is distinct from probability.
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1 Introduction

Consider a large box that has been divided in two by a retractable barrier. A

gas occupies the box’s left half. Now suppose that the barrier is removed. At first,

the gas remains on the left. But soon it expands, and after a little while, it is in

the equilibrium macrostate: the state in which, from a macroscopic point of view,

the gas does not appear to be changing. In other words, the gas’s microstate—that

is, the exact physical state of the gas, given by the positions and momenta of all its

particles—evolves from the gas’s initial macrostate to equilibrium.

Why is that? Because expanding gases are typical : nearly all microstates com-

patible with the gas’s initial macrostate evolve to macroscopic equilibrium after a little

while. In other words, typical gases evolve to equilibrium. Some do not, of course.

For some initial microstates, the gas particles stay on one side of the container. But

for nearly all initial microstates, gases with those microstates will eventually expand.

In this paper, I analyze typical properties and typical objects. I also provide

a formalism for typicality explanations, which are explanations that cite facts about

what is typical. Some formal accounts of typicality, applicable in some scientific

contexts, have been proposed.1 But there are no general accounts of what typicality

is. And there is no account of how typicality explains. The present paper provides

both.

There has been considerable resistance to the notion of typicality. And there

has been considerable resistance to the claim that typicality facts can be explanatory.

Frigg argues that contrary to Boltzmann (1897/2003b), Lebowitz (1993), Goldstein

(2001), and others, typicality cannot be used to explain why gases evolve towards

equilibrium (2011, p. 82). For the proffered explanations do not pay enough attention

to the dynamics governing the gas. Uffink argues that typicality cannot be used to
1
For examples, see (Goldstein et al., 2010) and (Frigg & Werndl, 2012).
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explain such thermodynamic phenomena because typicality explanations fall short

of rigorous mathematical proof (2007, p. 980). Typicality statements cannot be

explanatory, because the explanandum does not follow logically from the explanans.

Sklar (1973) argues against one kind of typicality explanation, which says that to

explain something, one sometimes need only show that the set of possible violations

has very small measure. Sklar argues that even if the set of violations has small

measure, it does not follow that those violations are unusual or exceptional (1973, p.

211).

Arguments like these gain traction because there is no theory of typicality and

typicality explanations. If there were such a theory, resistance to typicality would

probably be much less severe. Indeed, many of those who reject various typicality

explanations are sympathetic to the underlying, intuitive idea. For example, along

with Werndl, Frigg eventually came to argue in favor of one particular way of quan-

tifying typicality (2012). So objections to typicality can be understood as requests

for clarification. What is it for something to be typical? And how do typicality facts

explain? Advocates of typicality have also raised questions like these.2

In this paper, I propose some answers to these questions. In Section 2, I analyze

the notions of a typical property and a typical object. I also give several mathemat-

ical definitions of a notion which underlies these analyses: the notion of ‘nearly all’

objects of a particular sort. In Section 3, I propose a general formalism for typicality

explanations, and I give several examples of mathematical explanations which invoke

typicality facts. In Section 4, I present two typicality explanations of thermodynamic

phenomena. In Section 5, I present the details of a typicality explanation in quantum

mechanics. Finally, in Section 6, I discuss some differences between typicality and

probability.

2
For example, Goldstein writes that a comprehensive philosophical analysis of typicality expla-

nations “would be most welcome” (2012, p. 70).
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2 Analyses of Typicality

Pre-theoretically, something is typical just in case nearly all things, of a certain

sort, are like it. Expanding gases are typical because nearly all possible initial mi-

crostates lead to expansion. Typical quantum systems exhibit probabilistic behavior

because nearly all possible initial configurations do. So there is a close connection

between something being typical and nearly all of some things being a certain way.

In this section, I make that close connection precise. I propose an analysis of

typical properties and an analysis of typical objects. These are accounts of what typ-

ical properties and objects are. Collectively, they form an account of what typicality

itself is. They precisify the pre-theoretic idea that something is typical just in case

nearly all of the relevant things are a certain way.

Here is an analysis of typical properties.

Typical Property

Let � be a set and let P be a property. P is typical in � if and only if

‘nearly all’ of the elements in � exemplify P .

For example, let � be the set of all possible microstates of a gas with some fixed

energy, and let P be the property is in equilibrium. Then P is typical in � because

nearly all of those microstates are in equilibrium (the details of this typicality fact

are discussed in Section 4).

Different definitions of ‘nearly all’ yield different versions of Typical Prop-

erty. I will state some of those definitions soon. For now, here is an analysis of

typical objects.

Typical Object

Let � be a set, let P be a property, and let x be a member of �. Then x is

typicalo (relative to P and �) if and only if x has P and P is typical in �.

For example, let � be the set of all possible microstates of a gas with some fixed energy,
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let P be the property is in equilibrium, and let x be the microstate of a particular gas

which is in equilibrium. Then x is typicalo (relative to P and �) because x has P and

P is typical in �. In other words, x is typical relative to being a gas in equilibrium.

Both of the above analyses invoke the notion of ‘nearly all’. That notion is the

heart and soul of typicality: facts about typicality are just facts about what nearly

all entities of a certain sort are like. I shall now present three of the most common

definitions.

When � is finite, ‘nearly all’ can be quantified by counting. Let � be a large

finite set, let P be a property, and let AP be the set of elements in � which exemplify

P . Then nearly all elements in � have P if and only if |�zAP |
|�| ! 1. Call this the

‘counting-theoretic’ definition of ‘nearly all’.

In general, the sets � invoked in science and mathematics, for the purposes

of formulating typicality facts, are infinite. So other definitions of ‘nearly all’ are

required. A particularly simple one invokes cardinalities. Let � be an infinite set,

let P be a property, and let AP be the set of elements in � which exemplify P .

Then ‘nearly all’ elements in � have P if and only if |�zAP | † |�|.3 Call this the

‘cardinality-theoretic’ definition of ‘nearly all’.

For example, on the cardinality-theoretic definition, nearly all real numbers are

normal. Let � be the set of reals. A real number x is normal in base b just in case

each sequence of digits of length n, in the base b expansion of x, appears with an

average frequency of 1
bn . A real number is normal just in case it is normal in every

base. Let P be the property of being normal; so AP is the set of normal numbers.

Then the set of elements in � which are not in AP – the set of non-normal numbers

– is countable. The cardinality of � is uncountable. So nearly all reals are normal.

There are cases in which � is infinite, but ‘nearly all’ should not be understood

in terms of cardinals. For example, let � be a disk. Let S be a very small sector of
3
One consequence of this definition is that if nearly all elements in � have P , then |AP | “ |�|.
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�; so S is shaped like a very thin slice of pie. Let P be the property of not lying

within S, so that AP is the set of all points which lie outside the pie slice. Then �

has the same cardinality as the set of points in � that are not in AP ; that is, � and S

have the same cardinality. So on the cardinality-theoretic definition, it is not the case

that nearly all points in the disk lie outside the small sector. Thus, the cardinality-

theoretic definition of ‘nearly all’ is no good here. It provides an acceptable sufficient

condition, but not an acceptable necessary condition, for nearly all of the elements in

a set to exemplify a property.

A third definition of ‘nearly all’, used throughout statistical mechanics and quan-

tum mechanics, gets around some such problems. In full detail, it is quite technically

sophisticated. But the basic idea is extremely intuitive. Whereas the previous two

definitions quantified ‘nearly all’ by count or cardinality, this one quantifies ‘nearly

all’ with measures. Let � be a set, let P be a property, let AP be the set of elements

in � which exemplify P , and let m be a measure such that 0 † mp�q † 8. Then

‘nearly all’ of the elements in � exemplify P (relative to m) if and only if mp�zAP q
mp�q ! 1.

Call this the ‘measure-theoretic’ definition of ‘nearly all’.

For example, consider the disk � and the small sector S once more. As before,

P is the property of lying outside S, and AP is the set of points in � which exemplify

P . Let m be the standard measure of the areas of two-dimensional shapes; m is

called the two-dimensional Lebesgue measure. Then nearly all of the elements in �

exemplify P (relative to m). To see why, note that the area of the set of points in �

but not in AP—the area of the set of points in S—is much smaller than the area of

�. So mp�zAP q
mp�q ! 1.

The analyses Typical Property and Typical Object do not include a free

parameter for a measure. So to use the measure-theoretic definition of ‘nearly all’,

relativize both sides of the biconditional in each analysis to a measure parameter.

The resulting version of Typical Property is: P is typical in � (relative to m)
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if and only if nearly all of the elements in � exemplify P (relative to m). And the

resulting version of Typical Object is: x is typicalo (relative to P , �, and m) if

and only if x has P and P is typical in � (relative to m).

This completes my analysis of typicality. Roughly put, typical properties are

exemplified by nearly all members of the relevant set, and typical objects are objects

which exemplify typical properties. The three definitions of ‘nearly all’ give rise to

many different versions of these analyses. But in each case, the basic idea is the same.

Typicality is nearly all.
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3 Typicality Explanations

Now that precise analyses of typicality are on the table, it is clear that there

are typicality facts. It is clear that typicality is a real feature of our world.

What is less clear, however, is that typicality facts explain. Many different

explanations are backed by facts about what is typical. In this section, I propose a

formalism for typicality explanations, and I provide several examples of explanations

which invoke typicality facts.

The basic schema for typicality explanation is as follows.

x P �

P is typical in � (relative to mq

6

x has P

(1)

where x is a particular entity, � is a set, P is a property, and m is a measure. This

is a schema because different substitutions for the terms x, �, P , m and the ‘nearly

all’ in the analysis of typicality yield different explanations. If that ‘nearly all’ is

not defined measure-theoretically, then the parenthetical in the second line should

be dropped. The symbol 6indicates that the deduction is a typicality deduction,

which is different from a logical deduction 6 because in typicality deductions, the

conclusion is not a logical consequence of the premises. And as usual for theories of

explanation, for an instance of (1) to be explanatory, the premises and the conclusion

must all be true.

The typicality fact in the second premise of (1) does the bulk of the explanatory

work. For it says that nearly all elements of � are a certain way. So it is no wonder

that x is that way too, given that x is in �. Thus, the heart of a typicality explanation

is the typicality fact that it invokes.

Many different explanations are typicality explanations. In sections 4 and 5, I
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discuss two scientific examples of typicality explanations in detail. In the remainder

of this section, I present a few examples of typicality explanations in mathematics.

The first concerns the surface areas of spheres. Suppose a mathematician is

studying a series of points on the surface of high-dimensional sphere which satisfy

some given properties. She finds that every single one of these points happens to be

very close to the sphere’s equator. Her friend, who is also studying points on the

surface of a high-dimensional sphere, but who is interested in a very different set of

properties, has encountered the same phenomenon: all of the friend’s points are also

extremely close to the equator. This is surprising. Why should points, which are

more-or-less randomly selected from the sphere’s surface, all have this one feature in

common? Why should they all be extremely close to the equator?

The answer is a typicality fact: for large n, nearly all points on the surface

of an n-dimensional sphere are very close to the equator. This follows from a more

general result concerning the measures of subsets of spheres. Let �n be the uniform

probability measure on sphere Sn “ tx P Rn`1 | ||x|| “ 1u.4 For each measurable

A Ñ Sn and each t P r0,8q, define At “ tx P Sn | distpx,Aq † tu.5 The more general

result is as follows (Ledoux, 2001, p. vii):

Theorem 1. For each measurable A Ñ Sn
such that �npAq • 1

2 , and for each t ° 0,

1 ´ �npAtq § e
´ t2pn´1q

2 .

In other words, for small t and for very large n, the measure of the set of points in

Sn but not in At is extremely small.

It follows that for suitably large n, nearly all points on the sphere are within

✏ of the equator, where ‘nearly all’ is defined measure-theoretically. To see why, let

� ! 1, let t “ ✏, let A be the northern hemisphere of Sn, and let B be the southern

4
For all x “ px1, . . . , xnq P Rn

, ||x|| “
ˆ

n∞
i“1

x2
i

˙ 1
2

.

5
For any set A Ñ Sn and any x P Sn, distpx,Aq “ inf

yPA
||x ´ y||.
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hemisphere. For sufficiently large n, e´ t2pn´1q
2 † �

2 . By Theorem 1, it follows that

�npSnzAtq † �
2 , since �npSnzAtq “ 1 ´ �npAtq. Similarly, Theorem 1 implies that

�npSnzBtq † �
2 . Therefore, �n

`
SnzpAt X Btq

˘
† �npSnzAtq ` �npSnzBtq † �. The set

At X Bt is the set of all points on the sphere which are within ✏ of the equator. So

by the measure-theoretic definition of ‘nearly all’, nearly all points on the sphere are

near the equator.

This typicality fact relieves the surprise one might feel upon discovering that a

given point on the surface of a high-dimensional sphere is near the sphere’s equator.

The surface area of a high-dimensional sphere is concentrated near the equator, so

given any point on the sphere, it should be unsurprising if that point is near the

equator too.6

Infinite graphs in percolation models provide another example of typicality ex-

planation in mathematics. A graph is a pair xV,Ey where V is a set of vertices, E

is a set of edges, each edge connects exactly two vertices, and any two vertices have

at most one edge between them. Let V “ Z2, and fix p P r0, 1s. For each pair of

adjacent vertices i, j P Z2, p is the probability that there is an edge connecting i and

j. Whether or not there is an edge between any pair of vertices is independent of

whether or not there is an edge between any other pair of vertices. This distribution

over possible graphs is called a percolation model; denote it by Lp.

Some realizations of Lp—that is, some graphs on Z2—have an infinite open

cluster. Infinite open clusters are defined as follows. A subgraph of a graph xV,Ey

is a graph xV 1
, E

1y such that V
1 Ñ V and E

1 is the set of all edges in E between

vertices in V
1. A connected subgraph of a graph xV,Ey is a subgraph xV 1

, E
1y such

that for any pair of vertices i, j P V
1 there is a sequence of edges in E

1 connecting i

6
The same result holds for any other geodesic on an n-dimensional sphere, when n is large. For

any given geodesic, nearly all points on the surface of such a sphere are within ✏ of that geodesic.

It does not follow, of course, that nearly all points on the surface of such a sphere are within ✏ of

every geodesic. In statements about typicality, the order of the quantifiers is extremely important:

even though, for each geodesic g, nearly all points on the surface of such a sphere are within ✏ of g,
it is false that nearly all points on the surface of such a sphere are within ✏ of each g.



10

to j. An infinite connected subgraph of a graph is a subgraph with infinitely many

edges. Finally, an infinite open cluster of a graph is an infinite connected subgraph

of that graph.

Realizations of Lp are investigated for a variety of reasons: they help us under-

stand more physically realistic models of ferromagnets, such as Ising models (Grim-

mett, 1989), for instance. When p ° 1
2 , finite sections of those realizations are often

found to contain extremely large connected subgraphs. As the size of the finite section

increases, the connected subgraph therein tends to get larger and larger, suggesting

that the realization of Lp in question contains an infinite open cluster. But when

p § 1
2 , finite sections of those realizations are often found to lack large connected sub-

graphs. This suggests that the realization in question lacks any infinite open clusters.

So why is that? Why do realizations of Lp appear to contain infinite open clusters

for p ° 1
2 , but not for p § 1

2?

The explanation, once again, is a typicality fact. It can be shown that nearly

all realizations of Lp for which p ° 1
2 contain exactly one infinite open cluster, and

nearly all realizations of Lp for which p § 1
2 contain no infinite open cluster (Kesten,

1980, p. 42). So it should not be surprising that realizations of Lp seem to contain

an infinite open cluster when p ° 1
2 , and to lack an infinite open cluster when p § 1

2 .

Given that nearly all realizations of Lp adhere to that pattern, it is to be expected.

The theory of finite graphs provides striking examples of typicality examples

too. One concerns the sizes of complete subgraphs—called ‘cliques’—of large graphs.

A complete graph is a graph such that every pair of vertices is connected by an edge.

A clique is a set V of vertices in a graph G such that the induced subgraph of V —

the graph whose vertices are the members of V and whose edges are the edges in G

between vertices in V —is complete.

Suppose one is studying lots of different large finite graphs on n vertices, and

suppose one finds that the maximal cliques of these graphs all have exactly the same
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size. That is highly surprising. Why should these disparate graphs all have this

feature in common?

It turns out that there is a simple typicality explanation of this surprising fact.

It can be shown that for sufficiently large n, the largest cliques of nearly all graphs

of size n have exactly the same size. Typically, the size of the maximal clique will be

approximately 2 lnpnq
lnp1{pq (Alon & Spencer, 2000, p. 159). This typicality fact relieves the

surprise one might feel if, given a lot of different large finite graphs on n vertices, one

finds that all of those graphs have maximal cliques of the exact same size.

Typicality analyses are especially useful when it is difficult, or downright im-

possible, to prove that a specific system has some property. The example of large

cliques in finite graphs is a case in point. Because it is generally impossible to iden-

tify the maximal clique of a given graph in polynomial time, “the problem of finding

the largest clique in a general graph is intractable. It is thus natural to study this

problem for appropriately randomly generated input graphs” (Alon et al., 1998, p.

458). So in addition to explaining otherwise surprising facts, typicality analyses often

provide tractable approaches to problems for which no other tractable approaches are

forthcoming.

For another example of the utility of typicality analyzes like these, suppose we

wish to analyze the properties of the Hamiltonians of quantum systems, such as the

densities of the eigenvalues of those Hamiltonians per unit energy interval (Wigner,

1967, p. 4). In many cases, the specific Hamiltonian of a system is unknown, or it is

difficult to analyze on its own. Nevertheless, one can often discover whether or not

a given statistical property is the same for nearly all Hamiltonians. If so, then it is

reasonable to infer that the specific Hamiltonian at issue has that property too.

Wigner, in fact, makes precisely this point, in regards to the development of

random matrix theory. He writes that in many cases,

“[o]ne...deals with a specific system, with its proper (though in many cases un-
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known) Hamiltonian, yet pretends that one deals with a multitude of systems,

all with their own Hamiltonians, and averages over the properties of these sys-

tems. Evidently, such a procedure can be meaningful only if it turns out that

the properties in which one is interested are the same for the vast majority of

the admissible Hamiltonians. The first question, then, is what are the admis-

sible Hamiltonians, and what is the proper measure in the ensemble of these

Hamiltonians. The second question is, of course, whether, given the ensemble

of admissible Hamiltonians with a proper measure, the properties in which we

are interested are common for the vast majority of them”. (1967, p. 3)

In other words, one way to analyze the properties of a specific Hamiltonian is to

analyze the properties of ‘admissible’ Hamiltonians; all Hamiltonians of a certain well-

defined kind. If a property is shared by the vast majority of admissible Hamiltonians,

then it is reasonable to infer that the specific Hamiltonian has that property too.
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4 Typicality and Statistical Mechanics

In this section, I discuss typicality explanations of statistical mechanical phe-

nomena. I focus on the example mentioned in Section 1, in which a gas occupies

the left half of a large box, and is kept on the left by a retractable barrier. When

the barrier is removed, the gas begins to expand, and after a little while, it is in

equilibrium.

The final equilibrium state of the gas, and the gas’s approach to equilibrium,

can both be explained using the formalism in Section 3. Each explanation relies on

the theory of statistical mechanics. In this section, I define the relevant statistical

mechanical notions, and I present the two explanations.

4.1 Technical Preliminaries

Let N be the number of particles in the gas; suppose that N is at least 1020.

Let ⇤ “ R6N be the N -particle phase space. Each phase point X P ⇤ can be written

X “ p~q, ~pq, where ~q “ pq1, . . . , qNq, ~p “ pp1, . . . , pNq, and for each i, qi P R3 is the

position of particle i and pi P R3 is the momentum of particle i.

The evolution of a phase point is given by the following equations:

d~p

dt
“ ´BH

B~q (2)

d~q

dt
“ BH

B~p (3)

Here, H, called the Hamiltonian, is a function H : ⇤ Ñ R which maps each phase

point X to a number representing the total energy of X. Solutions to (2) and (3)

yield a function �t : ⇤ Ñ ⇤ such that �tpXq is the microstate to which X evolves in
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time t.

Consider again the gas in the box. Let Xptq P ⇤ denote the mircostate of the

gas at time t. Let E be the energy of microstate Xp0q. By conservation of energy (H

is a constant of the motion), E is the energy of each subsequent microstate Xptq as

well. Let ⇤E be the set of all microstates in ⇤ whose energy is E.

⇤E can be partitioned into sets called macrostates. To define a macrostate,

divide the box into K cells, where K is large but K ! N . Specify, to within a

given accuracy, the number of particles in each cell and the total energy of each

cell (Lebowitz, 1999, p. S347).7 Each such specification singles out a collection

of microstates in ⇤E: those microstates which agree with that specification. The

resulting collection is a macrostate. In general, let MpXq denote the macrostate to

which microstate X belongs.

One macrostate in ⇤E is particularly important for explaining the evolution of

gases: the equilibrium macrostate Meq. The important feature of Meq is its size: Meq

is, by far, the largest macrostate in ⇤E. The size of a set A Ñ ⇤E, denoted |A|, is

given by the modified Lebesgue measure. This measure is characterized by the fact

that it is stationary: the modified Lebesgue measure of a set of microstates A is equal

to the modified Lebesgue measure of the time-evolved set �tpAq of those microstates.

It can be shown that for a gas with just 1020 particles, |Meq| is roughly 1010
20 times

as big as all the other macrostates combined (Goldstein, 2001, p. 43). Meq is huge.

4.2 Explaining Equilibrium

In this subsection, I present a typicality explanation of the fact that the gas is

in equilibrium after a reasonably short amount of time tf . Suppose that as a matter

of empirical fact, tf is an hour. Let � “ ⇤E. Let P be the property of belonging
7
There is an issue here, concerning how to define the total energy of a cell. See (Lebowitz, 1999)

for discussion.
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to Meq at time tf . Since Meq is so massive, nearly all elements of � exemplify P

(relative to the modified Lebesgue measure). Therefore, P is typical in � (relative to

that measure).

This typicality fact can be used to explain why the gas is in equilibrium at time

tf .

Xptf q P �

P is typical in � (relative to the modified Lebesgue measure)

6X(tf ) has P

(4)

In other words, the gas is in equilibrium at time tf because its microstate is in ⇤E,

and nearly all microstates in ⇤E are in equilibrium at time tf .

This typicality explanation should remove any surprise one might feel to find

the gas in equilibrium at time tf . We should not be surprised, that is, that the

macrovariable values of the gas are the same ones we eventually observed when we

ran a similar experiment last week. Why? Because being in equilibrium is typical.

The vast majority of phase space is taken up by �E. So it is not surprising that the

gas is in equilibrium.

4.3 Explaining the Approach to Equilibrium

In this subsection, I outline a typicality explanation of the gas’s approach to

equilibrium. This is what the typicality explanation of the gas’s approach to equilib-

rium would be, if the typicality fact it invokes were proved in full generality (rather

than merely proved in some cases).

Let tf be as before. Let t “ 0 be the time at which the retractable barrier

is removed. Let Xp0q be the initial microstate of the gas, and let MpXp0qq be its

macrostate at that time. Let � “ MpXp0qq. Let P be the property of evolving to
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Meq in time tf ; so microstate X exemplifies P just in case �tf pXq P Meq. Let AP be

the set of points in � which exemplify P .

Here is the typicality explanation.

Xp0q P �

P is typical in � (relative to the modified Lebesgue measure on �)

6X(0) has P

(5)

In other words, the gas evolves to the equilibrium macrostate by time tf because its

microstate is in MpXp0qq, and nearly all microstates which begin in MpXp0qq are in

Meq at time tf .

The first premise of (5) is true by definition. The conclusion is true because,

as a matter of empirical fact, the gas is in Meq at time tf . The second premise is an

open conjecture: it has not yet been proven in full generality. It certainly seems to

be true, however. It is supported by arguments due to Boltzmann (1877/2015), and

there are proofs of restricted versions of it in certain toy models.8

The literature features many explanations along the same lines as (5). While

summarizing his famous H-theorem, for instance, Boltzmann writes: “[i]t is just for

certain singular initial states that [equilibrium] is never reached, for example when all

the molecules are initially moving in a line perpendicular to two sides of the container.

For the overwhelming majority of initial conditions, on the other hand, [equilibrium

is reached in a relatively short amount of time]” (1896/2003a).9 As Boltzmann says,

a typicality fact about initial conditions explains why gases tend to approach equi-

librium. Of course, there are exceptions to this general rule. Boltzmann’s example

concerns a collection of particles, all confined to a single line which is perpendicular to

two parallel sides of the container: these particles will forever bounce off of each other
8
See (Lanford, 1974).

9
For other examples of explanations along the lines of (5), see Lebowitz (1993; 1999), Goldstein

(2001; 2012), and Lazarovici and Reichert (2015).
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and the container’s walls, and so never evolve to equilibrium. But that is a highly

atypical situation. The overwhelming majority of microstates are not like that. The

overwhelming majority of microstates approach equilibrium.
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5 Typicality and Bohmian Mechanics

In the Bohmian interpretation of quantum mechanics, the Born rule can be

explained via typicality. The explanation concerns two distributions: the distribution

given by the Born rule, which states that the distribution of the results of what are

called position measurements is | |2; and the empirical distribution of the actual

positions of particles. Moreover, as I briefly discuss at the end of this section, this

explanation has implications for the kind of knowledge which we can have of quantum

systems.

Nearly a century of experiments have shown that the empirical distribution is

always within experimental error of the Born rule distribution. On the Bohmian inter-

pretation of quantum mechanics, this close connection between the two distributions

can be explained. Typically, the empirical distribution for n qualitatively identical

systems converges to the Born rule distribution as n goes to infinity. So in Bohmian

mechanics, the Born rule is not a primitive theoretical posit. It can be explained by

typicality facts.

In this section, I present that typicality explanation. I focus on a special case

of Bohmian mechanics for a universe that has just one spatial dimension. I also

focus on subsystems consisting of a single particle at a particular time. The more

general explanation of the relationship between the empirical distribution and the

Born rule distribution—for three spatial dimensions, and for subsystems consisting

of any number of particles—is in all essentials the same. See (Dürr et al., 1992) for

the more general treatment.

In Bohmian mechanics, the state of the universe at any time consists of two

components: the configuration of the particles and the wavefunction at that time. Let

� “ RN be the set of all possible particle configurations, where N is the number of

particles in the universe. Each configuration Q P � can be written Q “ pQ1
, . . . , Q

Nq,
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where for each i, Qi P R represents the position of particle i. For each Q P � and for

each time t, Qt “ pQ1
t , . . . , Q

N
t q represents the configuration of all the particles in the

universe at time t. The initial configuration, for example, is represented by Q0.

In addition, for each time t, let  tpqq “  pq1, . . . , qNq (for qi P R) denote the

universal wavefunction at t. Throughout this section, I assume that the universal

wavefunction is normalized. That is, I assume that for each time t,
≥
� | tpqq|2dq “ 1,

where the integral is taken with respect to the standard Lebesgue measure on �.

Two equations govern the evolution of the particle configuration q P � and the

wavefunction  . The first, called the Schrödinger equation, is

i~ B
Bt tpqq “ ´

Nÿ

i“1

~2
2mi

�i tpqq ` V tpqq (6)

and the second, called the guidance equation, is the following first-order system of

differential equations:

dQ
i

dt
“ ~

mi
Im

˜ B
BQi tpQq
 tpQq

¸
(7)

Note that there is one instance of (7) for each i from 1 to N . The parameter mi in (6)

and (7) represents the “mass” of particle i. The ‘Im’ function outputs the imaginary

part of its input.

Together, equations (6) and (7) describe the evolution of the universe’s physical

state. Note that this evolution is deterministic. For a given initial configuration Q0

and a given  0, the configuration Qt and the wavefunction  t are determined for all

later times.

The universal wavefunction can be used to define wavefunctions—called condi-

tional wavefunctions—for subsystems. In general, whenever scientists perform calcu-

lations to predict the outcomes of a given experiment on a system of particles, they

do not use the wavefunction of the entire universe. They assume that the system
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of particles has a wavefunction of its own, and they perform their calculations using

that wavefunction instead. Bohmian mechanics has the formal and physical resources

to make that assumption precise. It allows for a rigorous definition of the wavefunc-

tion of a system of particles. That definition invokes (i) the positions of particles

comprising the environment of that system, and (ii) the wavefunction of the universe.

To distinguish between the configuration of the subsystem and the configuration

of its environment, I will use X to denote the configuration of the subsystem, and I will

use Y to denote the configuration of the environment. Thus, we may write Q “ pX, Y q

for the configuration of the universe. For the case of a single-particle subsystem,

X P R is the configuration of that subsystem, and Y “ pY 1
, . . . , Y

N´1q P RN´1 is the

configuration of its environment. We may write Qt “ pXt, Ytq for the configuration

to which the configuration pX, Y q evolves in time t.

The conditional wavefunction  tpxq for a single-particle subsystem at time t is

defined as follows:

 tpxq “  tpx, Ytq “  tpx, Y 1
t , . . . , Y

N´1
t q (8)

In other words, the conditional wavefunction for the subsystem at time t is obtained

by taking the actual positions of all other particles at t, and plugging those positions

into the universal wavefunction at that time.10

Let me use the above technical notions to explain, more intuitively, what we

want to show. Suppose that at time t, we do an experiment in which we take n

qualitatively identical particles—all with the same conditional wavefunction—and

measure their positions. For each region of space, we can use those measurements to

compute the frequency with which particles are found in that region. The empirical

distribution is the mathematical object which encodes those frequency facts. Of
10

The conditional wavefunctions given in (8) need not be normalized. So whenever the conditional

wavefunction is used in a probability formula, it is to be regarded as having been normalized, by

dividing (8) by
`≥

R | tpx, Y q|2dx
˘ 1

2
.
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course, before even doing the experiment, we can use the Born rule distribution to

compute the probability of finding a particle in that region. It turns out that for

each such region, the frequency and the probability are approximately equal. That is

what we want to explain. There is a close agreement between the frequencies given by

the empirical distribution and the probabilities given by the Born rule distribution.

But why is that? Why is the Born rule distribution the one that gets the empirical

frequencies right?

Let us now say, more precisely, what the empirical distribution is. Take n one-

particle subsystems: the one-particle subsystems corresponding to particles 1 through

n. The empirical distribution at time t for the ensemble of particles is

⇢emppxq “ 1

n

nÿ

i“1

�px ´ X
i
tq (9)

The empirical distribution is the probability measure which assigns an equal proba-

bility of 1
n to the position X

i
t of each particle (for 1 § i § n). When the delta function

�px´X
i
tq is integrated over a set A Ñ R, the result is 1 if X i

t P A and 0 if X i
t R A. So

when the distribution ⇢emppxq is integrated over a set A, the result is the proportion

of particles whose positions lie in A. That is how empirical frequencies are extracted

from the empirical distribution: the frequency with which the particles lie in a given

set A equals
≥
A ⇢emppxqdx ” ⇢emppAq, the integral of ⇢emp over A.

As for the Born rule distribution, suppose that the particles all have the same

conditional wavefunction relative to the chosen coordinate systems for those subsys-

tems; denote it by  . Then the Born rule distribution is

⇢bornpxq “ | pxq|2 (10)

Thus, the Born rule probability for the event Xi P A is
≥
A ⇢bornpxqdx ” ⇢bornpAq, the

integral of ⇢born over A.
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One finds, in practice, that for any given A Ñ R,

|⇢emppAq ´ ⇢bornpAq| † ✏ (11)

for some positive ✏ ! 1. There is a typicality explanation for this fact, but it requires

care to formulate properly. One reason for this is that most histories are such that

consideration of (11) would be inappropriate, because for most histories, the condi-

tional wavefunctions of the n one-particle subsystems are not all equal to each other.

Another reason is that it could be the case that the information contained in the

environment’s configuration Y gives us more information about our subsystems, and

that this alters the Born rule probabilities.

So we must show that this does not happen, and this means that we need a

version of (11) that involves conditioning on the configuration Yt of the environment

at time t. Towards that end, let  0 be the initial wavefunction of the universe,

and let Y be such that each conditional wavefunction of subsystem i is the same

at time t; so  tpx1q “  tpx2q “ ¨ ¨ ¨ “  tpxnq ”  pxq, where  pxq is the common

conditional wavefunction of each of the n one-particle systems. Define a distribution

on initial configurations Q0 P � by P pdQ0q “ | 0pQ0q|2dQ0. Then for time t, define

the conditional distribution P
Y
t pXt P dxq “ P pXt P dx|Yt “ Y q, where Xt is the

random configuration of the composite n one-particle subsystems at time t and Yt

is the random configuration of the environment of that composite system at time

t. The Bohmian equations of motion imply that the distribution of the random

variable Qt is equivariant: that is, with P pdQ0q “ | 0pQ0q|2dQ0, it follows that

P pdQtq “ | tpQtq|2dQt for all times t (Dürr et al., 1992, pp. 854-855). Therefore,

P pXt P dx|Yt “ Y q “ | tpx1, . . . , xnq|2dx (12)

where  tpx1, . . . , xnq is the conditional wavefunction of the composite subsystem con-
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sisting of the n one-particle subsystems. Suppose, as one would expect from the fact

that all the one-particle subsystems have the same conditional wavefunction  pxq,

that at time t, the wavefunction of the n-particle system consisting of all one-particle

subsystems equals the product of the wavefunctions for each of those systems in-

dividually.11 That is, suppose that  tpx1
, . . . , x

nq “  px1q ¨ ¨ ¨ pxnq. From (12), it

then follows that P pXt P dx|Yt “ Y q “ P pX1
t P dx1, . . . , X

n
t P dxn|Yt “ Y q “

| px1q|2 ¨ ¨ ¨ | pxnq|2dx1 ¨ ¨ ¨ dxn. This implies that the X
i
t are independent.

Let B be the set of initial configurations Q0 “ pX0, Y0q which evolve in such a

way that at time t, the configuration of the environment Yt is Y . Let G be the property

of being an initial configuration such that (11) holds. For each i (1 § i § n), let

ItXi
tPAu be the indicator function on A for X i

t . Since the X
i
t are independent random

variables, the ItXi
tPAu are independent random variables too. Note that

⇢emppAq “
ª

A

⇢emppxqdx

“ 1

n

ª

A

nÿ

i“1

�px ´ X
i
tqdx

“ 1

n

nÿ

i“1

ItXi
tPAu

And therefore, by the law of large numbers, as the number of subsystems n gets

large, P Y
t pGq—that is, the measure of the set of initial configurations which satisfy

(11)—goes to 1. In other words, for large n, and for typical configurations in B, the

n one-particle subsystems are distributed in accord with the Born rule distribution.

Now for the typicality explanation. Let Q0 P � be the universe’s initial config-

uration. The typicality explanation is as follows.
11

This can be derived from the effective wavefunctions for these subsystems; see (Dürr et al., 1992,

pp. 866-867).
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Q0 P B

G is typical in B (relative to P
Y
t )

6

Q0 has G

(13)

Though lots of technical notions are involved in the formulation of (13), it is an

intuitively satisfying explanation. Why does the empirical distribution of the n sub-

systems’ actual configurations approximate, to arbitrarily high degree, the Born rule

distribution for those systems? Because for nearly all configurations which result

in the actual configuration of the environment, the empirical distribution of the n

subsystems is extremely close to the Born rule distribution of those systems. So we

explain the phenomenon of the Born rule by showing that among initial configura-

tions which lead to the actual configuration of the environment, nearly all of them

give rise to the Born rule distribution.

Of course, to simplify matters, I did not define everything needed to give a full

explanation of the Born rule. I only discussed one-particle subsystems. I assumed

that there is just one spatial dimension. And I focused on systems at a single time t.

But none of these assumptions were necessary; I made them simply in order to make

the technical definitions more accessible. Fully rigorous explanations of the Born rule,

which are typicality explanations, can be found in (Dürr et al., 1992) and (Dürr &

Teufel, 2009).

This typicality explanation shows that there is an absolute limitation on the

knowledge of quantum systems that we can obtain. Even if we knew everything

about the system’s environment, we would not have any more information about the

configuration of the system than the Born rule provides. For suppose we had more

precise information about the system’s configuration. That information would be

reflected in correlations between the system and its environment: correlations between

those features of the system to which the information refers, and those features of
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the environment in which that information is represented. But given the system’s

wavefunction, there are no such correlations, which is more-or-less what (12) directly

says. Even if we knew every microscopic detail of the environment, we would not

know any more about the system’s configuration than is given by the Born rule (Dürr

et al., 1992, p. 883).
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6 The Difference Between Probability and Typicality

The relationship between probability and typicality is subtle. Their close kin-

ship, in my view, is articulated by the law of large numbers: according to my preferred

reading, the law of large numbers says that the sample mean typically (rather than

‘probably’) approximates the population mean. But I shall not focus on that here.

Instead, I shall focus on the differences between probability and typicality. For

in conversation, people often question whether typicality is anything over and above

probability. What is typically the case, they tend to say, is just what is probably the

case. And they often claim that typicality explanations are nothing over and above

probabilistic explanations.

So it is worth spelling out the differences between probability and typicality in

some detail. There are formal differences: not all typicality facts can be expressed

using probability measures. And there are explanatory differences: some probabilistic

explanations are not typicality explanations, and some typicality explanations are not

probabilistic explanations.

6.1 Formal Differences

There are several big formal differences between probability and typicality. Here

I focus on one: in a precise sense, typicality facts ‘outstrip’ probabilistic facts. Typ-

icality is strictly more expressive, in the sense that some typicality facts—in which

‘nearly all’ is defined using cardinality—cannot be expressed using only probability

measures.

Against this, one might claim that there is a probability measure m such that

for each set � and each property P , if P is typical in � on the cardinality-theoretic

definition of ‘nearly all’ then according to m, the set of elements in � which do not
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exemplify P has extremely small probability. If this were true, then all typicality facts

which rely on the cardinality-theoretic definition of ‘nearly all’ could be expressed via

probability facts. But it can be shown that this claim is false. Here is a mathemati-

cally precise version of the claim: there exists a probability measure m such that for

each set � and each property P , if |�zAP | † |�| then mp�zAP q ! 1 (where AP is the

set of elements in � which exemplify P ). Suppose such an m exists. Since m is a

function, m is defined over a particular domain; call it D. Let � be PpDq, the power

set of D. Then m is not defined over �, so mp�zAP q is undefined for any A Ñ �.

Alternatively, one might claim that for each � there is a probability measure

m such that for each P , if P is typical in � on the cardinality-theoretic definition

of ‘nearly all’ then according to m, the set of elements in � which do not exemplify

P has extremely small probability. Again, if this were true, then all typicality facts

which rely on the cardinality-theoretic definition of ‘nearly all’ could be expressed

via probability facts. But again, it can be shown that this claim is false. Here is

a mathematically precise version of the claim: for each set � there is a probability

measure m over � such that for each property P , if |�zAP | † |�| then mp�zAP q † ✏

for some ✏ ° 0 such that ✏ ! 1 (where AP is the set of elements in � which exemplify

P ). To see that this is false, let � “ N, the set of natural numbers. For each i P N,

let Pi be the property of being greater than i; so APi “ ti` 1, i` 2, . . .u. Suppose for

reductio that the claim holds. Note that for each i, |�zAPi | † |�|. So by the claim,

there exists a probability measure m such that for all i, mp�zAPiq † ✏ (for some ✏ ° 0

such that ✏ ! 1). But by the upward continuity of measures,

1 “ mpNq

“ m

˜ 8§

i“1

�zAPi

¸

“ lim
iÑ8

mp�zAPiq
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† lim
iÑ8

✏

“ ✏

which is a contradiction.

These technical issues reveal a significant formal difference between probability

and typicality. While probability measures are upwards continuous, typicality is not.

It follows that when ‘nearly all’ is defined cardinality-theoretically, the measures of

certain typical sets must get arbitrarily small. So even though those sets are typical,

their probabilities must get arbitrarily low.

Moreover, this situation is not particular to the cardinality-theoretic definition

of ‘nearly all’. The exact same situation arises for other definitions. For example,

consider the following ‘topology-theoretic’ definition of ‘nearly all’: ‘nearly all’ of the

elements in � exemplify P (relative to topology ⌧) if and only if �zAP is nowhere

dense, where AP is the set of elements in � which exemplify P .12 On parallel with the

previous discussion, one might claim that for each � and each topology ⌧ on �, there

is a probability measure m such that for each property P , if �zAP is nowhere dense

then mp�zAP q † ✏ for some ✏ ° 0 such that ✏ ! 1 (where AP is the set of elements in

� which exemplify P ). But this is false. Once again, let � “ N. Let ⌧ be the cofinite

topology on �: so the open subsets of � are the sets whose complement is finite. As

before, let Pi be the property of being greater than i; so APi “ ti ` 1, i ` 2, . . .u. It

can be shown that each �zAPi is nowhere dense. Suppose for reductio that the claim

holds. Then there is a probability measure m such that for all i, mp�zAPiq † ✏ (for

some ✏ ° 0 such that ✏ ! 1). But just as before, the upward continuity of measures

implies that 1 “ mpNq “ lim
iÑ8

mp�zAPiq † ✏, which is a contradiction.

12
This definition of ‘nearly all’ is drawn from the discussion in (Frigg & Werndl, 2012).
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6.2 Explanatory Differences

Probabilistic explanations and typicality explanations come apart. In particu-

lar, some probabilistic explanations are clearly not typicality explanations, and some

typicality explanations are clearly not probabilistic explanations. That is another

reason to think that typicality and probability are not the same. The explanations

they support are sometimes different.

Here is an example of a probabilistic explanation which is not a typicality expla-

nation, adapted from an example due to Railton (1978, p. 214). Let i be a uranium

atom, let F be the predicate ‘is a uranium atom’, and let G be the predicate ‘emits

an alpha particle’. Let r be the probability that a uranium atom undergoes such an

emission within a particular interval of time. For the sake of the example, suppose

that r is fairly small: 1
2 or less, say. And suppose that i actually does emit an alpha

particle. Now plug all these facts into Hempel’s schema for probabilistic explanation

(1965).

Fi

ppG,F q “ r

6 rrs Gi

(14)

Nowadays, it is generally assumed that some events can be explained by probabilities

which are not high, and even by probabilities which are relatively low. So (14) is a

probabilistic explanation.13

(14) is not a typicality explanation, however. Since r is relatively low, it is

not the case that typical uranium atoms emit alpha particles in the time interval in

question. For in that time interval, most do not. The property of emitting an alpha

particle in the relevant time interval is not typical in the set � of uranium atoms.
13

For discussion of the view that low probabilities can explain, see Salmon (1971, p. 56), Scriven

(1959, p. 480), and Strevens (2000, p. 368).
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So there is no typicality explanation of Gi. The second premise of the corresponding

instance of explanatory schema (1)—the premise which would state that P is typical

in �—is false in this case.

There is a typicality explanation which is clearly not a probabilistic explanation.

It crops up within a version of the Everettian interpretation of quantum mechanics.

According to this version of the Everettian interpretation, there is a multiplicity of

approximately classical, approximately non-interacting regions of the wavefunction

which can be described as classical worlds (Wallace, 2012, p. 38). These regions are

often called ‘branches’, and together they comprise the Everettian multiverse.

Everettian quantum mechanics differs from orthodox quantum mechanics in

many ways, but one will prove especially important here. Of course, in both or-

thodox quantum mechanics and Everettian quantum mechanics, there are multiple

possible outcomes for any given experiment. In orthodox quantum mechanics, only

one of those outcomes ever actually occurs after measurement. Only one of the many

possible outcomes ultimately obtains. In Everettian quantum mechanics, however, all

possible outcomes obtain after measurement. All are actual. For example, suppose

an electron’s wavefunction is in a superposition of the electron being on the left and

the electron being on the right. Suppose we do an experiment to detect an electron’s

location, and suppose we find it on the left. In orthodox quantum mechanics, there

is no electron on the right. Physical reality does not include the right-located elec-

tron. In Everettian quantum mechanics, however, there is an electron on the right.

Each possibility—the electron being on the left, and the electron being on the right—

corresponds to a distinct, and actual, physical situation. Each possibility obtains.

We happened to detect the electron on the left, but the other electron is still there.

It is just on a different branch.

In this version of Everettian quantum mechanics, there is a typicality expla-

nation which cannot be a probabilistic explanation. The explanandum is that the



31

observed outcomes of our experiments, taken together, match the probabilities for

those outcomes which the Born rule predicts. To explain this agreement between

observation and the Born rule, let � be the set of all sequences of observations which

we could have made. Let o be the sequence of observations which we did in fact

make. Let P be the property of matching, to within some very small �, the Born rule

probabilities. As a matter of fact, o exemplifies P and o is in �. It can be shown

that relative to a particular typicality measure R, P is typical in � (Barrett, 2017,

pp. 33-35). So here is a typicality explanation of the fact that the observed sequence

of outcomes conforms to the probabilities given by the Born rule.

o P �

P is typical in � (relative to R)

6

o has P

(15)

In other words, our observations agree with the Born rule probabilities because the

property of agreeing with those probabilities is typical in the set of all possible se-

quences (relative to R).

Clearly, (15) is a typicality explanation. But it is not a probabilistic explanation.

For as discussed earlier, in this version of Everettian quantum mechanics, the various

possible outcomes of any given experiment all obtain. Everett himself makes this

point: it would be a mistake, he says, to think of just one outcome as obtaining, to

the exclusion of the rest (1956/2012, p. 149). But in probabilistic explanations, the

explanandum is the only outcome, of the various possible outcomes, that occurs. (15)

cannot be a probabilistic explanation because the alternative possibilities—such as the

possible sequences of observations which contradict the Born rule probabilities—occur

too. Probabilistic explanations presuppose that only one of the mutually exclusive

possibilities obtains: that is just what ‘mutually exclusive’ means. So (15) cannot be

a probabilistic explanation.
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7 Conclusion

Typicality is ‘nearly all’: typical properties are properties exemplified by nearly

all elements of the relevant set, and typical objects exemplify typical properties. Typ-

icality facts can back explanations. And typicality explanations are quite common:

they appear throughout science and mathematics.
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