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This dissertation comprises two essays on big data and forecasting methods in

financial econometrics. Methods for analyzing “big data” have received considerable

attention by economists in recent years, given that applied practitioners now have

an incredible amount of data available to them, and given that a whole host of new

methods have been developed in various disciplines over the last 20 years or so. In

the first essay, I discuss some of the latest (and most interesting) methods currently

available for analyzing and utilizing big data when the objective is improved predic-

tion. Additionally, I address predictive accuracy testing in the context of big data,

and outline new loss function free methods that may be useful for forecast accuracy

and model selection assessment. We also provide a brief empirical illustration of big-

data in action, in which we show that big data are indeed useful when predicting

the term structure of interest rates. This is done in a series of simple prediction

experiments where the objective is to predict the term structure of interest rates, and

models used include benchmark econometric models, dynamic Nelson Siegel (DNS)

models (Diebold and Li, 2007) , diffusion index models (Stock and Watson, 2002),

and hybrids of the three. The diffusion indexes in our experiments are estimates

of the latent factors from principle component analysis of a macroeconomic dataset
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including 103 U.S. variables. It is suggested that much remains to be learned regard-

ing the ways in which extant econometric methods can be combined with dimension

reduction methods in order to achieve improvements in prediction.

In the second essay, an extensive set of forecast experiments is conducted in order

to explore the marginal predictive content of latent macroeconomic factors extracted

from a so-called “data rich” or real-time dataset in dynamic Nelson-Siegel (DNS) type

models. In particular, we assess the following classes of models: DNS type models

of the variety, dynamic Nelson Siegel Svensson (NSS) type models (see Svensson

(1994)), and various benchmark models, including vector autoregressive (VAR) and

autoregressive (AR) models. The macroeconomic factors, or so-called “big data”

diffusion indexes that we utilize are extracted using principle component analysis

of 130 U.S macro-variables for which McCracken and Ng (2016) have constructed

a real-time dataset. Experiments are carried out for various sub-samples between

2001 and 2018, and results are evaluated using a number of benchmark linear models.

Additionally, various different dimensions are considered when specifying the yield

cross section. Empirical results found are in contrast to the findings of Swanson and

Xiong (2017), where including diffusion indexes always yields predictive improvement,

although only fully revised macroeconomic data are utilized in that paper. Thus, the

usefulness of diffusion indexes appears to hinge on whether or not a data-rich real-time

environment is simulated in forecasting experiments or not.
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Chapter 1

Introduction

Methods for analyzing “big data”have received considerable attention by economists in recent years.

This is not surprising, given that applied practitioners now have an incredible amount of data

available to them, and given that a whole host of new methods have been developed in various

disciplines over the last 20 years or so for processing these big data. Two key questions that

economists continue to pose are, correspondingly, what are the forecasting gains associated with

using big data, and which new methods should we use in our analyses? A third question, which is

related, concerns which tools, such as predictive accuracy tests, to use for model selection with big

data. In the context of forecasting, this third question is relevant because many critical advances

have recently been made in the field of model selection and testing. In the first essay, we address

all three questions. First, we discuss select state of the art methods for big data analysis. These

include dimension reduction and shrinkage approaches that are currently being utilized not only in

economics, but also in a whole host of other fields ranging from aerospace engineering to neuroscience.

Second, we discuss recent advances in predictive accuracy testing and model selection, from the

perspective of picking the “best” forecasting model. Finally, we tie our discussions together by

considering the usefulness of big data when forecasting the term structure of interest rates.

In our empirical illustration, we show how important big data can be. Our objective is to predict

U.S. Treasury yields of various maturities (i.e., the term structure of interest rates). Predictions

will be made using “small data” models, including autoregressive, vector autoregressive, and dy-

namic Nelson-Siegel models, and “big data” models that utilize diffusion indexes estimated from a

largescale macroeconomic dataset. The diffusion indexes in our experiments are estimates of the

latent factors from principle component analysis of a macroeconomic dataset including 103 U.S.

variables. Although the experimental setup that we utilize is limited in its scope, it is nevertheless

interesting that the vast majority of mean square forecast error “best”models are hybrid DNS mod-

els that include diffusion indexes. Moreover, these hybrid models generally outperform standard

econometric models, as well as various forecast combinations.

In the second essay, we add to the literature on interest rate prediction by carrying out an
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extensive set of forecast experiments in order to explore the marginal predictive content of so-called

“data rich” or real-time latent macroeconomic factors in dynamic Nelson-Siegel (DNS) type models.

In our context, data-rich environments contain real-time data, which are data that include the

entire revision history for each variable. For example, real-time GDP observations for calendar date

December 2000 include the first ”reading” on 4th quarter 2000 GDP that was available in March

2001, and well as the 1st revised version of this datuum that became available in June 2001, and

so on, up until the present date. Thus, real-time datasets include entire sequence of revisions for

each calendar dated observation. Data such as these allow researchers to simulate ”truly” real-time

forecasting environments, which differs from the common practice of using so-called fully revised

data in forecasting experiments. This is important, as ”fully revised” data consist of observations

that were not actually available to market participants in real-time. The macroeconomic factors, or

so-called “big data” diffusion indexes that we utilize are extracted using principle component analysis

of 130 U.S macro-variables for which McCracken and Ng (2016) have constructed a real-time dataset.

In particular, we examine the usefulness of real-time macroeconomic diffusion indexes when

using dynamic Nelson-Siegel (DNS), dynamic Nelson-Siegel Svensson (NSS), and various econometric

models for forecasting the term structure of interest rates. We find that the marginal predictive

content of real-time diffusion indexes is significant for many of the models that we examine. We

also find that model performance, across the board, is much worse post Great Recession. Indeed,

not only does the predictive performance of DNS and NSS models worsen, in accord with the

findings of various recent authors, but the performance of all of our models, including ones that

utilize real-time diffusion indexes also worsens. Given the impressive predictive performance of

these models prior to the great recession, we argue that new models need to be developed to address

current economic conditions. Examples of models that might be useful include hybrid models in

which the inclusion of diffusion indexes is triggered by variables such as predicted probabilities of

recessions, economic variability, or the range of yields over some pre-defined prior period of time.

We also present strong new evidence of the usefulness of forecast combination, and note that mean

square error “best” (MSFE-best) forecast combinations often preclude the use of real-time diffusion

indexes. This differs from earlier findings by Xiong and Swanson (2017), where it is found that if fully

revised macroeconomic data are instead used in constructing diffusion indexes, then combinations

that include diffusion index type models are MSFE-best. Thus, the usefulness of diffusion indexes

appears to hinge on whether or not a data-rich real-time environment is simulated in forecasting

experiments or not.
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Chapter 2

Big Data Analytics in Economics: What Have We Learned

so Far, and Where Should We Go From Here?

2.1 Introduction

Methods for analyzing “big data” have received considerable attention by economists in recent

years. This is not surprising, given that applied practitioners now have an incredible amount of

data available to them, and given that a whole host of new methods have been developed in various

disciplines over the last 20 years or so for processing these big data. Two key questions that

economists continue to pose are, correspondingly, what are the forecasting gains associated with

using big data, and which new methods should we use in our analyses? A third question, which is

related, concerns which tools, such as predictive accuracy tests, to use for model selection with big

data. In the context of forecasting, this third question is relevant because many critical advances

have recently been made in the field of model selection and testing. In this paper, we address

all three questions. First, we discuss select state of the art methods for big data analysis. These

include dimension reduction and shrinkage approaches that are currently being utilized not only in

economics, but also in a whole host of other fields ranging from aerospace engineering to neuroscience.

Second, we discuss recent advances in predictive accuracy testing and model selection, from the

perspective of picking the “best” forecasting model. Finally, we tie our discussions together by

considering the usefulness of big data when forecasting the term structure of interest rates.

In its inception, machine learning was a field of computer science concerned with designing com-

puters (and computer programs) with the ability to learn, without the need for further programming.

Many types of machine learning have been developed in recent years. For example, in computer

science, key areas now include deep learning, shrinkage, and recall. Neural networks are perhaps the

most ubiquitous variety of machine learning method that economists have, up until recently, been

interested in. However, the landscape has changed dramatically in recent years, largely because of

the explosion in big data. One strand of research in big data analysis uses dimension reduction

methods, two main examples of which are principal components analysis (PCA) and partial least

squares. A closely related strand considers shrinkage (penalized regression) methods, including the
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likes of ridge regression, the least absolute shrinkage selection operator (lasso), the elastic net, and

the non-negative garrote. These and other shrinkage related methods are discussed in Bai and Ng

(2008,2009), Schumacher (2009), Stock and Watson (2012), Kim and Swanson (2014,2016), and Hi-

rano and Wright (2017), for example. Broadly speaking, the number of such methods available to

empiricists is now immense.

In the first part of this paper, we discuss a very few of the latest such techniques, and suggest

where we might go from here. For example, we discuss PCA and sparse PCA, in which the lasso

is applied to PCA in order to induce sparseness in the number of observable variables utilized in

the construction of latent factors or diffusion indexes resulting from application of PCA. We also

discuss a related latent factor dimension reduction technique called independent component analysis,

that takes the orthogonality condition imposed by PCA one step further by imposing statistically

independence. Finally, we discuss ridge regression, the lasso, and the elastic net, in the context of

penalized regression, where the number of regressors can be larger than the number of observations

in a dataset.

In the second part of this paper, we discuss out-of-sample predictive accuracy testing, given the

importance of accuracy assessment when comparing the many new “big data” methods available

for constructing forecasts. There is now a rich literature on predictive accuracy testing. One of

the most important contributions in the last 25 years is the seminal paper of Diebold and Mariano

(1995, hereafter DM), in which tests of equal predictive accuracy between two competing models are

proposed. Tests that generalize DM-type tests in order to account for parameter estimation error

include West (1996) and West and McCracken (1998), McCracken (2000), and Corradi and Swan-

son (2007). Conditional predictive accuracy tests are developed in Giacomini and White (2006), in

which the “estimated” model is conditioned on. Tests allowing for integrated and cointegrated vari-

ables are discussed in Clements and Hendry (1999,2001) and Corradi, Swanson and Olivetti (2001).

The important issue of the joint comparison of more than two competing models is addressed in

Sullivan, Timmermann and White (1999), White (2000), Hansen (2005), Romano and Wolf (2005),

and Corradi and Distaso (2011). Papers that consider predictive accuracy testing via the use of

encompassing and related tests include Phillips (1996), Harvey, Leybourne and Newbold (1997),

Chao, Corradi and Swanson (2001), Clark and McCracken (2001), Corradi and Swanson (2002), and

Giacomini and Komunjer (2005). Broadly speaking, predictive accuracy is assessed by comparing

point measures such as mean square forecast error (MSFE) and mean absolute forecast error devia-

tion (MAFD) in the above papers. The notion of considering predictive (error) densities rather than

point error loss, model evaluation using predictive intervals, conditional quantiles, and predictive

densities is addressed by Christoffersen (1998), Giacomini and Komunjer (2005), and Corradi and
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Swanson (2005,2006a,b). For comprehensive surveys of this burgeoning literature, see West (2006),

Clark and McCracken (2013), Corradi and Swanson (2013), and Diebold (2014).1

Recently, a new type of predictive accuracy tests have been devised that generalize the tests in

all of the above papers, in one key dimension. In order to understand how this is done, note that

most of the above papers consider forecast comparison based upon the examination of moments

or conditional moments of the forecast errors, and researchers must specify the objective function

(say, loss function or likelihood function) used in test formulation. As mentioned above, examples

of relevant loss functions include MSFE and mean absolute forecast error MAFD. Unfortunately,

the forecast superiority of one model, relative to other models, is dependent on the loss function

that is specified. To circumvent this issue, Granger (1999a) proposes the use of generalized loss

functions, L(·), with the following properties: (1) L(e) = 0, if the forecast error e = 0; (2) L(e) ≥ 0

and MineL(e) = 0; and (3) L(e) is monotonically non-decreasing as e moves away from zero (this

means that L(e1) ≥ L(e2) if e1 > e2 ≥ 0 or e1 < e2 ≤ 0). Corradi, Jin and Swanson (2017,

hereafter CJS) term the class of loss functions that satisfy the above three properties as general

loss (GL or LG) functions. A second class of loss functions are defined as convex loss (CL or LC)

functions, if in addition to satisfying the above three properties, they are convex. Examples of

convex functions include MSFE and MAFD, as well as asymmetric functions including lin-lin and

linex functions (see Elliott and Timmermann (2004) for further discussion). In CJS, it is supposed

that there are l sets of forecasts, with corresponding sequences of one-step-ahead forecast errors,

{e1t}, {e2t}..., {elt}, and the objective is to rank forecast sequences (or models), regardless of loss

function. They establish links between tests for GL (CL) forecast superiority and tests for first

(second) order stochastic dominance. This allows them to develop a forecast evaluation procedure

that is based on an out-of-sample generalization of the stochastic dominance tests introduced by

Linton, Maasoumi and Whang (2005, hereafter LMW), which is robust not only to the choice of loss

function, but also to the possible presence of outliers. In addition to summarizing DM and related

tests, the CJS test is discussed in detail below.2

In our empirical illustration, we show how important big data can be. This is done in a series of

simple prediction experiments where the objective is to predict the term structure of interest rates,

1Alternatives to the use of traditional moment-based forecast evaluation methods include decision based ap-
proaches. For example, Granger and Pesaran (2000) argue in favor of a close link between the decision and the
forecast evaluation problems. Pesaran and Skouras (2002) discuss a decision-based approach for evaluation and com-
parison of forecasts. Granger and Machina (2006) propose a class of realistic decision-based loss functions for forecast
evaluation.

2The approach of using stochastic dominance to rank distributions of forecast errors was first introduced in Corradi
and Swanson (2013), although they provide no theory, and their proposed tests are loss function specific. An alternative
somewhat related measure called stochastic error loss is discussed in Diebold and Shin (2015).
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and models used include benchmark econometric models, dynamic Nelson Siegel (DNS) models, dif-

fusion index models, and hybrids of the three. The diffusion indexes in our experiments are estimates

of the latent factors from principle component analysis of a macroeconomic dataset including 103

U.S. variables. Although the experimental setup that we utilize is limited in its scope, it is never-

theless interesting that the vast majority of mean square forecast error “best” models are hybrid

DNS models that include diffusion indexes. Moreover, these hybrid models generally outperform

standard econometric models, as well as various forecast combinations.

The rest of the paper is organized as follows. Section 2 summarizes recent advances in dimension

reduction and penalized regression - both of which are key areas in machine learning. In Section 3,

forecast evaluation is discussed, with emphasis on what the latest methods are, and where we need

to go. An empirical illustration based on predicting the term structure of interest rates is given in

Section 4. Finally, concluding remarks are gathered in Section 5.

2.2 Dimension Reduction and Penalized Regression

Dimension reduction and variable selection has never been more important in economics, given recent

massive increases in the amount of data available to forecasters.3 A key objective, given big data, is

to remove redundant and irrelevant information from datasets. This problem has historically been

be tackled via step-wise regression, for example. However, variables are typically highly correlated in

time series applications. Hence, statistical significance tests used in many regression type algorithms

suffer from severe size distortion issues. Ghysels, Hill, and Motegi (2017) address this issue by

examining multiple parsimonious regressions, each with one key regressor, while jointly accounting

for sequential testing problems.

A second solution to the dimension reduction problem with correlated regressors is the use of

partial least squares (PLS), which was originally proposed by Herman Wold in the mid 1960s.

Broadly speaking, PLS is a latent variable approach to modeling the covariance structure between

two sets of variables. One set might be a target variable or variables to be predicted (say Y ), while

the other might be a very large set of correlated predictor variables, say X. More precisely, the

model underlying PLS has

Y = F1L1 + E1

X = F2L2 + E2,

where F1 and F2 are projection matrices of X and Y ; and L1and L2 are so-called factor loading

3See the 2015 issue of the Journal of Econometrics entitled High Dimensional Problems in Econometrics.
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matrices that operate on the latent factors F1 and F2. Additionally, the error terms, E1 and E2 are

assumed to be identically and independently distributed, and all matrices are conformably defined,

given the dimensions of X and Y . In this setup, the decompositions of X and Y maximize the

covariance between the latent factors F1 and F2.

A third solution uses principle components analysis (PCA), in which latent factors (often called

diffusion indexes) are again estimated, but this time via use of an eigenvalue-eigenvector decompo-

sition of the covariance or correlation matrix of the data, for example. Just as in PLS, the objective

is to “explain” the data” using a reduced set of (latent) explanatory variables, with the idea being

that the useful information in a large set of predictors is often contained in a (much smaller) set

of latent factors, which are themselves simply linear combinations of the original variables. A key

difference between PCA and PLS is that PLS directly attempts to account for correlation between

the target variable and the predictors, while PCA is “unsupervised”, in the sense that correlation

with any given target variable is not emphasized in the construction of the latent factors. Rather,

overall explanation of the entire dataset is the focus of PCA. Needless to say, this particular feature

of PCA is of potential concern when targeting (predicting) a specific variable or variables. For this

reason, many supervised versions of PCA have been developed. For example, Carrasco and Rossi

(2016) use cross validation methods to supervise PCA, while Bai and Ng (2008) consider targeted

forecasting using subsets of X (see also Armah and Swanson (2010a,b)) and Cheng, Swanson, And

Yang (2017). Given its ease of application as well as recent empirical evidence on its usefulness, PCA

(which is the oldest of the methods discussed in this paper; see Spearman (1904) and the discussion

in Swanson (2016) for further details), has received the most attention in economics recently, and

hence will be discussed in considerably more detail below.

Penalized regression or shrinkage methods, which reduce or shrink redundant or irrelevant vari-

ables are also important in big data analysis. Key examples include ridge regression, the lasso,

and the elastic net. When viewed through the lens of multivariate regression analysis, all of these

methods involve shrinking the magnitude of coefficients in regression models. When the “penalty

functions” are carefully designed, and when the “regularization parameters” used to regulate the

strength of the penalties in these functions are of sufficient magnitude, then substantial dimension

reduction can be achieved. For example, when shrinkage is used in conjunction with PCA, factor

loading matrices can be induced to be sparse, in the sense that certain coefficients in the linear

combinations of the predictor variables are identically zero. This nice feature imposes parsimony

on the number of variables used to form latent factors in PCA, whereas under standard PCA; all

predictors receive non-zero weight in each latent factor. Just as in the case of PLS, the number

of predictors may be greater than the number of observations in the dataset being analyzed using
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PCA.

To fix ideas, let’s consider the “original” shrinkage estimator. Namely, assume that we are

interested in the model:

Y = Xθ + ε,

where Y contains data on a single variable, there are many (possibly highly correlated) variables

represented in the data matrix, X, and ε is an error term. Later, we shall introduce the ridge

estimator slightly differently, but for now, note that the ridge estimator can be expressed as:

θ̂ridge = (X ′X + λI)−1X ′Y.

The “ridge” down the diagonal in this estimator is equivalent to adding a penalty of λ
∑N
i=1 θ̂

2
i

to the usual residual sum of squares term that is minimized in least squares estimation, where N

is the number of predictors in X. Here, as λ → 0, θ̂ridge → θ̂ols, and as λ → ∞, θ̂ridge → 0.

Evidently, applying the ridge penalty shrinks parameter estimates towards zero, which increase bias

and reduces estimator variance. One very important feature of ridge regression is that invertibility

problems associated with X ′X when the number of predictors is too large relative to the number

of observations are no longer an issue, and there is always a unique solution (i.e., θ̂ridge). Other

shrinkage estimators that shall be discussed in the sequel include one where the penalty function is

λ
∑N
i=1

∣∣∣θ̂i∣∣∣ (the lasso) and another that combines both of the above penalty functions (the elastic

net).

Another shrinkage estimator is based on bootstrap aggregation (bagging), and was introduced

by Breiman (1996). Stock and Watson (2012) note that predictions of Y , at a point in time, T + 1,

conditional on information available up through period T, say yfT+1|T can be constructed as follows:

yfT+1|T =

N∑
i=1

ψ(λtθ̂(i))θ̂(i)XT (i),

where XT (i) is the datum on the ith variable in X for period T , θ̂(i) is the least squares estimator

from regressing XT−1(i) on YT , and ψ(λtθ̂(i)) is a regularized (through λ) function of the t-statistic

associated with the aforementioned regression.4 For bagging λ = 1, while various Bayesian predic-

tors, including Bayesian model averaging and empirical Bayes can also be formulated in this manner,

by setting λ appropriately. Interestingly, Hirano and Wright (2017) show that forecasting models

constructed using out-of-sample or split sample schemes perform well only when combined with

4In their setup, Stock and Watson (2012) assume that the predictors are zero mean random orthonormal variables.
Also, Yt is assumed to be zero mean, and the underlying model is assumed to be:

Yt = θ′Xt−1 + εt,

where εt is an error term with fixed variance.
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other methods, such as bagging. Broadly speaking, their results offer a glimpse into the benefits

of using state of the art (asymptotic) statistical analysis in order to examine new methods that

combine conventional out-of-sample approaches to model selection and estimation with algorithmic

approaches such as bagging. In their paper, they show that out-of-sample schemes so regularly used

for model selection (and estimation are inefficient when applied in the conventional manner. This

finding is reversed when bagging or other risk reduction methods are combined with conventional

out-of-sample schemes, however.

2.2.1 Static and Dynamic Factor Augmented Forecasting Models

Some of the most highly touted recent developments in forecasting center around estimation and

asymptotic properties of diffusion indexes based on PCA; and the use of diffusion indexes in the

construction of forecasting models. Following the discussion of Stock and Watson (2002a,b) and

Armah and Swanson (2010a,b), we summarize key features of recent developments by considering

static and dynamic factor models in order to motivate the use of diffusion indexes in forecasting.

Let yt+h be the scalar target forecast variable and Xt be an N -dimensional vector of predictor

variables, for t = 1, . . . , T . Assume that (yt+1, Xt) has a dynamic factor model representation with

r common dynamic factors, ft, which can be written as:

yt+h = β′Wt + α(L)ft + εt+h (2.1)

and

xit = λi(L)ft + eit, (2.2)

for i = 1, 2, . . . , N , where Wt is an l × 1 vector of observable variables with l << N, including lags

of yt; α(L) =
∑q
j=0 αjL

j and λi(L) =
∑q
j=0 λijL

j are finite order lag polynomials in nonnegative

powers of L; and h > 0 is the forecast horizon. Thus, all variables in Xt can be expressed as a linear

function of the dynamic factors (and an idiosyncratic shock, eit). This dimension reducing feature

of the model is the key feature worth noting. Now, we can write (2.1) and (2.2) in static form as:

yt+h = β′Wt + α′Ft + εt+h (2.3)

and

xit = Λ′iFt + eit, (2.4)

where Ft = (f ′t , . . . , f
′
t−q)

′ is an r×1 vector of static factors, with r = (q+1)r, α is an r×1 vector, and

Λi = (λ′i0, . . . , λ
′
iq)
′ is a vector of factor loadings on the static factors, where λij is an r×1 vector for

j = 0, . . . , q and β = (β1, . . . , βl)
′. The model in (2.3) is the “factor augmented forecasting model”
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presented in the diffusion index forecasting framework of Stock and Watson (2002a,b), and discussed

further in Bai and Ng (2007). The static factor in (2.4) is thus named because the contemporaneous

relationship between xit and Ft. One major advantage of the static representation of the dynamic

factor model is it enables us to use principal component analysis to estimate the factors. This involves

estimating Ft using an eigenvalue-eigenvector decomposition of the sample covariance matrix of the

data, after standardizing said data. Moreover, an important theoretical feature of the model in (2.3)

is that consistent estimation of the factors in Ft, which can be achieved via simple application of

PCA, allows for subsequent
√
T consistent estimation of α and β in (2.3) using quasi-maximum

likelihood, as long as
√
T/N → 0, as N,T → ∞. Thus, as shown in Bai and Ng (2006), Ft, when

estimated using the PCA method outlined in Stock and Watson (2002a,b), can be treated as a vector

of observed regressors, eschewing the need to address the generated regressor problem that often

arises in applied econometrics. For a discussion of alternative methods for factor forecasting based

on estimation of generalized dynamic factor (GDF) models, see Forni, Hallin, Lippi and Reichlin

(2005) and Forni, Hallin, Lippi and Zaffaroni (2015). For further discussion of consistent estimation

of factors in static as well as GDF models, see Ding and Hwang (1999), Forni, Hallin, Lippi and

Reichlin (2000), Stock and Watson (2002b), Bai and Ng (2002) and Bai (2003), who show that the

space spanned by both the static and dynamic factors can be consistently estimated when N and T

are both large.

For forecasting purposes, little is gained from a clear distinction between static and dynamic

factors (see Schumacher (2007) for a comparison of forecasts based on the use of factors estimated

using static, dynamic, and other estimation methods). Moreover, Boivin and Ng (2005) compare

alternative factor based forecast methodologies, and conclude that when the dynamic structure is

unknown and the model is characterized by complex dynamics, the approach of Stock and Watson

performs favorably.

Many important issues have been addressed in recent papers on diffusion index forecasting. For

example, Bai and Ng (2006a) stress that the regressors (factors) in diffusion index models are es-

timated, which substantially increases forecast error variances, relative to a simpler setup where

diffusion indexes are not estimated. In a related paper, Bai and Ng (2006b) examine whether ob-

servable economic variables can serve as proxies for the underlying unobserved factors. In particular,

they use a variety of statistics to determine whether a group of observed variables yields the same

information as that contained in the latent factors. Stock and Watson (2002a) have also attempted

to link factors to observed variables. Armah and Swanson (2010) argue that if individual observable

economic variables are indeed good proxies of the unobserved factors, then these proxies can be used

in place of the factors in the diffusion index model for prediction. Once the set of factor proxies is
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fixed, one effectively eliminates the incremental increase in forecast error variance (i.e., uncertainty)

associated with the use of estimated factors. Along these lines, they consider “smoothed”versions

of the Bai and Ng (2006b) statistics that pre-select a set of factor proxies prior to the ex-ante

construction of a sequence of predictions. Stock and Watson (1998,2009) demonstrate that when

PCA is used in estimation, factors remain consistent even when there is some time variation in

factor loadings and small amounts of data contamination, so long as the number of variables in the

panel dataset or the number of predictors is very large (i.e., N >> T ). The usefulness of factor

augmented models that include cointegration restrictions is discussed in Banerjee, Marcellino and

Marsten (2014). The importance of assessing and testing for structural breaks in these models is

discussed in Banerjee, Marcellino and Marsten (2008), Stock and Watson (2009), and Chen, Dolado

and Gonzalo (2014). Factor loading and parameter stability testing is addressed in Corradi and

Swanson (2014), Breitung and Eickmeier (2011), Goncalves and Perron (2014), and Han and Inoue

(2014). Finally, the empirical and theoretical properties of factor augmented VARMA models are

investigated in Dufour and Stevanovic (2013).

For readers interested in estimation of factors used in (2.3), we close this section by outlining

further details, drawing directly on Armah and Swanson (2010a,b). Let k (k < min{N,T}) be an

arbitrary number of factors, Λk be N ×k factor loadings matrix, (Λk1 , . . . ,Λ
k
N )′, and F k be the T ×k

matrix of factors (F k1 , . . . , F
k
T )′. From (2.4), estimates of Λki and F kt are obtained by solving the

optimization problem:

V (k) = min
Λk,Fk

(NT )−1
N∑
i=1

T∑
t=1

(xit − Λk′i F
k
t )2. (2.5)

Let F̃ k and Λ̃k be the minimizers of equation (2.5). Since Λk and F k are not separately identifiable,

if N > T , a computationally expedient approach would be to concentrate out Λ̃k and minimize

(2.5) subject to the normalization F k′F k/T = Ik. Minimizing (2.5) is equivalent to maximizing

tr[F k′(XX ′)F k]. This optimization is solved by setting F̃ k to be the matrix of the k eigenvectors of

XX ′ that correspond to the k largest eigenvalues of XX ′. Note that tr[·] represents the matrix trace.

Let D̃ be a k×k diagonal matrix consisting of the k largest eigenvalues of XX ′. The estimated factor

matrix, denoted by F̃ k, is
√
T times the eigenvectors corresponding to the k largest eigenvalues of

the T × T matrix XX ′. Given F̃ k and the normalization F k′F k/T = Ik, Λ̃k′ = (F̃ k′F̃ k)−1F̃ k′X =

F̃ k′X/T is the corresponding factor loadings matrix.

The solution to the optimization problem in (2.5) is not unique. If N < T , it becomes com-

putationally advantageous to concentrate out F
k

and minimize (2.5) subject to Λ
k′

Λ
k
/N = Ik.

This minimization is the same as maximizing tr[Λk′X ′XΛk], the solution of which is to set Λ
k
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equal to the eigenvectors of the N × N matrix X ′X that correspond to its k largest eigenval-

ues. One can thus estimate the factors as F
k

= X ′Λ
k
/N . F̃ k and F

k
span the same column

spaces, hence for forecasting purposes, they can be used interchangeably. Given F̃ k and Λ̃k, let

V̂ (k) = (NT )−1
N∑
i=1

T∑
t=1

(xit − Λ̃k′i F̃
k
t )2 be the sum of squared residuals from regressions of Xi on the

k factors, ∀i. A penalty function for over fitting, g(N,T ), is chosen such that the loss function

IC(k) = log(V̂ (k)) + kg(N,T ) (2.6)

can consistently estimate r. Let kmax be a bounded integer such that r ≤ kmax. Bai and Ng (2002)

propose three versions of the penalty function g(N,T ), namely, g1(N,T ) =
(
N+T
NT

)
log
(
NT
N+T

)
,

g2(N,T ) =
(
N+T
NT

)
logC2

NT , and g3(N,T ) =
(

log(C2
NT )

C2
NT

)
, all of which lead to consistent estimation

of r. Additional details on the estimation of r are contained in Bai and Ng (2002). Alternative

methods for selecting r are discussed in Chen, Huang, and Tu (2010), Onatski (2015), Carrasco and

Rossi (2016), and the references cited therein.

For further reading in the area of factor models, including high dimensional covariance matrix

estimation in approximate factor models and projected principal components analysis in factor

models, see Fan, Liao and Wang (2016) and Fan, Laio and Mincheva (2011).

2.2.2 New Directions in Diffusion Index Estimation

As discussed earlier, ongoing research efforts in the study of factor augmented forecasting models

include the analysis of problems associated with the “selection” of diffusion indexes that are most

useful for predicting yt+1. For example, see Bai and Ng (2008,2009) and Schumacher (2009), who

discuss using targeted predictors based on quadratic principal components and thresholding rules for

variable subset selection to estimate diffusion indexes. Armah and Swanson (2010a,b) also discuss

this issue. Further, Carrasco and Rossi (2016) propose cross validation methods for selecting the

“best” diffusion index for use in forecasting. A related area of research, which is the subject of

this subsection, is the development of alternative diffusion index estimators, important examples

of which use shrinkage methods in order to impose sparseness on the factor loadings used in the

construction of diffusion indexes. Two of the many interesting new estimators in this context include

sparse principal components analysis (SPCA) and independent component analysis (ICA).

Zou, Hastie, and Tibshirani (2006) note that diffusion indexes estimated using PCA are linear

combinations of all underlying predictor variables, and factor loadings are hence all nonzero, which

adversely affects the parsimony of forecasting models, a property known to be important in time

series forecasting. Moreover, they stress that diffusion indexes are thus difficult to interpret. In

light of this, they propose SPCA, in which the least absolute shrinkage selection operator (lasso)
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or the related shrinkage estimator called the elastic net is utilized in order to construct principal

components with sparse loadings. This is done this by first reformulating PCA as a regression

type optimization problem, and then by using a lasso (elastic net) on the coefficients in a suitably

constrained regression model.

Before further discussing SPCA, it is worth noting that the lasso and elastic net are important

techniques for big data analysis in and of themselves, and are related to the venerable ridge regression

estimator. Using the above notation, say that

yt = X ′tθ + εt.

Here, penalized (shrinkage type) regression is carried out as follows: For the ridge estimator, con-

struct:

θ̂ridge = arg min
θ

{∥∥y − ΣNi=1Xiθi
∥∥2

+ λ2ΣNi=1θ
2
i

}
,

where y is the Tx1 target variable, X = [X1, ..., XN ], i = 1, ..., N is the TxN predictor matrix,

with Xi = (X1,i, ..., XT,i)
′, and λ > 0 is the tuning parameter. Notice that this is an alternative

formulation of θ̂ridge to that given earlier. The more recently developed lasso and the elastic net

estimators involve imposition of L1 (lasso) and L1+L2 −norm penalties on parameter magnitudes,

and are formulated as:

θ̂lasso = arg min
θ

{∥∥y − ΣNi=1Xiθi
∥∥2

+ λ1ΣNi=1 |θi|
}
,

and

θ̂elastic net = (1 + λ2) arg min
θ

{∥∥y − ΣNi=1Xiθi
∥∥2

+ λ1ΣNj=1 |θj |+ λ2ΣNj=1θ
2
j

}
.

The choice of regularization parameters can impact on the predictive performance of models specified

using these sorts of methods. For a discussion further of the regularization parameters, including

values to use thereof, please refer to Kim and Swanson (2017), as well as the papers cited in Kim

and Swanson where the various estimation algorithms for these methods are developed.

Interestingly, SPCA follows directly by formulating PCA as a regression-type optimization prob-

lem, and then by subsequently imposing lasso (elastic net) constraints on the regression coefficients

in the optimization problem. Put simply, factor loading can be recovered by regressing principal

components on the N variables in Xt, as shown in Zou, Hastie, and Tibshirani (2006). Here, im-

position of the L2 −norm penalty in ridge regression allows for N > T. Moreover, when the lasso

or elastic net is utilized in this context, then large enough λ1 yields sparse θ̂. In this sense, SPCA

is a natural data reduction method. Since the important paper by Zou et al., many authors have

proposed modifications to SPCA, as discussed in Kim and Swanson (2017).
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Broadly speaking, the lasso and elastic net constitute two of the most important penalized

regression methods currently available, in which all predictor variables are retained in a model, but

are constrained (regularized) by shrinking them towards zero. For important descriptions of these

methods, see Tibshirani (1996), Zou and Hastie (2005), and Zou (2006).

All of the above penalized regression or shrinkage type methods are examples of machine learning.

Other machine learning algorithms have also recently been explored in economics. Two examples are

bagging and boosting. Bagging (also called bootstrap aggregation) involves first drawing bootstrap

samples from an in-sample training dataset, and then constructing predictions, which are later com-

bined. This algorithm is discussed above. Boosting is another so-called machine learning ensemble

meta-algorithm algorithm that utilizes a supervised and user-determined set of functions or learners

(e.g., least square estimators), and uses the set repeatedly on filtered data, which are typically out-

puts from previous iterations of the learning algorithm. Broadly speaking, boosting isolates which

variables, from amongst a large group of variables, are useful for predicting a target variable. More

specifically, boosting estimates an unknown function (e.g., the conditional mean) using sequential

step-wise forward regression, with learners that may not only be least squares estimators, but may

also be smoothing splines and kernel regressions, for example. For further discussion of boosting,

see Freund and Schapire (1997), Bai and Ng (2009), Kim and Swanson (2014), and the references

therein.

Two further examples include the non-negative garrote (see Breiman (1995) and Yuan and Lin

(2007)) and least angle regression (see Efron, Hastie, Johnstone and Tibshirani (2004) and Bai and

Ng (2008)), both of which are closely related to the elastic net.

Returning to the main subject of this section, we now discuss independent component analysis,

which is predicated on the idea of “opening” the black box in which principal components often

reside, and is an alternative to PCA and SPCA. ICA is used in many applications, from brain

imaging to stock price return modeling. In all cases, there is a large set of observed individual

signals, and it is assumed that each signal depends on several factors, which are unobserved. In this

sense, the motivation is exactly the same as that used to justify PCA.

The starting point for ICA is the very simple assumption that the components, say F, are

statistically independent in equation (2.3). This assumption is potentially much stronger than the

orthogonality imposed under PCA. The key issue in ICA is the measurement of the “level” of

independence between components. More specifically, ICA begins with statistically independent

(and unobserved) source data, S, which are mixed according to an unknown “mixing matrix”, Ω;

and X, which is observed, is a mixture of S, weighted by Ω. For simplicity, we assume that the

unknown mixing matrix, Ω, is square, although this assumption can be relaxed. Thus, it is assumed
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that X = SΩ. Stated differently, assume that:

X1 = ω11S1 + · · ·+ ω1NSN (2.7)

X2 = ω21S1 + · · ·+ ω2NSN

...

XN = ω1NS1 + · · ·+ ωNNSN ,

where ωij is the (i, j) element of Ω. Since Ω and S are unobserved, one must estimate the “demixing

matrix”, Ψ, which transforms the observed X into the independent components, F . That is, F =

XΨ, or F = SΩΨ. As detailed in Kim and Swanson (2017), if Ω is square, then so is Ψ, and Ψ = Ω−1,

so that F is exactly the same as S, and perfect separation occurs. In general, it is only possible to

find Ψ such that ΩΨ = PD, where P is a permutation matrix and D is a diagonal scaling matrix.

The independent components, F are latent variables, and are analogous to the principal components

discussed in the case of PCA. In summary, upon estimation of Ω and S, it is feasible to estimate the

demixing matrix Ψ, and the independent components, F. However (2.7) is not identified unless several

assumptions are made. The first assumption is that the sources, S, are statistically independent.

Since various sources of information (for example, consumer’s behavior, political decisions, etc.)

may have an impact on the values of macroeconomic variables, this assumption is not strong. The

second assumption is that the signals are stationary. For further details, see Tong, Liu, Soon, Huan

(1991). ICA maps the N components of X into the rank N matrix, F . However, we can simply

construct factors using up to r (< N) components, without loss of generality, for comparability with

PCA. Alternatively, one might carry out ICA using r principal components, hence further filtering

diffusion indexes constructed using PCA in order to obtain statistically independent variants thereof

(see Stone (2004) for further details). In general, the above model would be more realistic if there

were noise terms added. See Hyvärinen and Oja (2000) for a detailed discussion of the noise-free

model, and Hyvärinen (1998,1999) for a discussion of the model with noise added.

For a detailed comparison of ICA with PCA, see Kim and Swanson (2016), who note that the

main difference between ICA and PCA is in the properties of the factors obtained. Principal com-

ponents are uncorrelated and have descending variance so that they are naturally ordered in terms

of their variances. While setting the diffusion index in equation (2.1) equal to the highest variance

(correlation) principal components may well not equate with the specification of the indexes that

are most useful for forecasting a given variable, say yt, it is certainly the case that components ex-

plaining the largest share of the variance are often assumed to be the “relevant” ones. For simplicity,

consider two observables, X = (X1, X2) . PCA finds a matrix which transforms X into uncorrelated

components F = (F1, F2) , such that the uncorrelated components have a joint probability density
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function, pF (F ) with:

E (F1F2) = E (F1)E (F2) . (2.8)

On the other hand, ICA finds a demixing matrix which transforms the observed X = (X1, X2) into

independent components F ∗ = (F ∗1 , F
∗
2 ) , such that the independent components have a joint pdf

pF∗ (F ∗) with:

E
[
F ∗p1 F ∗q2

]
= E

[
F ∗p1

]
E
[
F ∗q2

]
, (2.9)

for every positive integer value of p and q. Evidently, ICA is more restrictive, and it should thus not

be surprising that implementation is much more difficult than PCA, in which estimation is much

simpler, since it just involves finding a linear transformation of components which are uncorrelated.

Moreover, there is no natural ordering of latent factors in ICA. This is perhaps a blessing in disguise.

Namely, as stated above, there is no a priori reason why the ordinal (correlation) ranking of diffusion

indexes corresponds to a ranking of their usefulness for predicting yt (see Kim and Swanson (2014),

Bai and Ng (2008) and Carrasco and Rossi (2016) for further discussion of this issue).

Even given all of the recent progress in the area, much remains to be done. There are innumerable

possible estimators and algorithms than can potentially be utilized for machine learning (indeed we

have touched in our discussion on only a very few of those already available). What will probably

differentiate the “good methods” from the “not so good” is their ability to properly marry the latest

tools in statistical inference with the latest algorithmic techniques. For example, step-wise methods

now often rely on learning functions and thresholding variables (such as t-statistics) centered around

conditional mean type prediction, while there is a clearly a need to fully incorporate conditional or

predictive density type prediction in new methods. As another example, recall our earlier discussion

on the use of asymptotic analysis to examine the combination of conventional out-of-sample schemes

with bootstrap aggregation. Many of these sorts of analyses remain to be done in the context of

combining conventional forecasting approaches with state of the art dimension reduction, machine

learning, and penalized regression algorithms.

2.3 Forecast Evaluation

One of the reasons why machine learning has taken so long to “catch on” in economics is the problem

of over-fitting. This issue is made very clear by considering the case of neural networks. We know,

from Hornik, Stinchcombe, and White (1989) that neural networks are universal approximators, in

the sense that properly designed neural networks with numbers of parameters that grow appropri-

ately, as the sample grows, can approximate an arbitrary function arbitrarily well. However, we also

know, from numerous empirical experiments, that more heavily parameterized models often tend
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to be outperformed, in a predictive sense, by more parsimonious models. The reasons for this are

many, and include the effect of specifying models that are crude approximations of reality, and the

fact that structural change is prevalent in time series models. Loosely speaking, then, it was the

poor predictive accuracy of models that have been too heavily parameterized, or over-fitted, that led

economists to eschew adopting machine learning and related big data methods. This is all changing,

though, in part because a plethora of new tests for assessing predictive accuracy which account for

over-fitting, have recently been developed. However, just as is the case in machine learning, much

remains to be done in the area of predictive accuracy testing.

We begin this section by discussing standard predictive accuracy tests that are used every day by

applied practitioners. Thereafter, we discuss novel new tests currently being developed that allow

for model forecast comparison without specification of a loss function.

2.3.1 Loss Function Dependent Model Evaluation and Selection

As previously, assume that the objective is to predict yt.The null hypothesis of equal predictive

accuracy between two models of yt, say model 0 and model 1, is specified as:

H0 : E(L(u0,t+h)− L(u1,t+h)) = 0

and

HA : E(L(u0,t+h)− L(u1,t+h)) 6= 0,

where L(·) is a loss function. In practice, we do not observe u0,t+h and u1,t+h, which are assumed to

be out-of-sample h-step ahead forecast errors, but only estimates thereof (i.e., say û0,t+h and û1,t+h,

respectively). When P/R → π = 0, as P,R → ∞ (asymptotically negligible parameter estimation

error), where P is the number of forecast errors that we have constructed for each model being

compared, and R is the initial “in-sample” estimation period (i.e., P + R = T ), under recursive or

rolling estimation, say, then we can construct the standard version of DM predictive accuracy test

in order to test H0. Namely:

DMP =
dt
σ̂dt

d→ N(0, 1),

where

dt =
1

P

T∑
t=R+1

dt, dt = L(û0,t+h)− L(û1,t+h), and σ̂dt =
σ̂dt√
P
.

In the above test, for which a heteroscedasticity and autocorrelation consistent estimator of σ̂dt is

utilized whenever h > 1, the assumption that parameter estimation error is asymptotically negligible

allows for the use of any loss function, L(·), including one that is non-differentiable. However, if

accounting for parameter estimation error, one can consider only differentiable loss functions (see
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Corradi and Swanson (2006b) for complete details). Moreover, regardless of loss function, the normal

limiting distribution does not obtain if models 0 and 1 are nested; in which case non-standard crit-

ical values must be used, as outlined in McCracken (2000) and Clark and McCracken (2001,2013).

An alternative test, which does not require correct dynamic specification and/or conditional ho-

moskedasticity, and which is robust to nonnestedness is proposed by Chao, Corradi, and Swanson

(2001). The test statistic is:

mP = P−1/2
T∑

t=R+1

û0,t+hXt, (2.10)

where û0,t+1 is the estimated prediction error, and Xt is some (possibly vector values) set of variables

that might be useful for predicting our target variable, yt. Here Xt may include lags. A simple

example of where this sort of test is useful involves testing for linear (predictive) Granger causality,

where the null and alternative models are (respectively):

yt =

q∑
j=1

βjyt−j + u0,t

and

yt =

q∑
j=1

βjyt−j +

k∑
j=1

αjxt−j + u1,t

In this example, the practitioner estimates the null model, constructs (recursive or rolling, say)

predictions, and utilizes the prediction errors (i.e., the û0,t+1, for forecast horizon h = 1) in the

construction of the test statistic, mP , where P denotes the number of prediction errors. A key

advantage of using this test is that models may be nested, thus avoiding issues associated with the

testing of nested models that arise when implementing DMP type tests.

More complex versions of this test that are consistent against generic nonlinear (Granger causal)

alternatives are discussed in Corradi and Swanson (2002). In this test, the hypotheses of interest

are:

H̃0 : E(u0,t+hXt−j) = 0, j = 0, 1, . . . k.

H̃A : E(u0,t+hXt−j) 6= 0 for some j, j = 0, 1, . . . k.

As an example, note that if the model being tested does not include a variable, say Zt, then inclusion

of Zt in Xt is equivalent to testing for out-of-sample Granger causality from Zt to yt. Notice also

that this test is a variety of the well known Bierens specification test, rather than a test which

directly compares two models, such as the DM test. When P/R → π = 0, as P,R → ∞, then

m′pŜ11mP
d→ χ2

k, where k is the number of new variables in Xt, and Ŝ11 is an estimator of a k × k

matrix S11, with:

S11 =

∞∑
j=−∞

E ((Xtu0,t+h − µ1)(Xt−ju0,t+h−j − µ1)′) ,
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where µ1 = E(Xtut+h). In empirical applications, one estimates S11 as follows:

Ŝ11 =
1

P

T−1∑
t=R

(û0,t+hXt − µ̂1)(û0,t+hXt − µ̂1)′

+
1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

(û0,t+hXt − µ̂1)(û0,t+h−τXt−τ − µ̂1)′

+
1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

(û0,t+h−τXt−τ − µ̂1)(û0,t+hXt − µ̂1)′,

where µ̂1 = 1
P

∑T−1
t=R û0,t+1Xt.

Alternatively, when comparing multiple different models, Sullivan, Timmermann and White

(1999) and White (2000) proposes using the following test statistic:

SP = max
k=1,...,m

SP (1, k),

where

SP (1, k) =
1√
P

T∑
t=R+1

(L(û0,t+h)− L(ûk,t+1)) , k = 1, ...,m.

The hypotheses are formulated as

H0 : max
k=1,...,m

E(L(u0,t+1)− L(uk,t+1)) ≤ 0.

HA : max
k=1,...,m

E(L(u0,t+1)− L(uk,t+1)) > 0.

Thus, under the null hypothesis, no competitor model, amongst the set of the m alternatives, can

provide a more (loss function specific) accurate prediction than the benchmark model (i.e., model

0). On the other hand, under the alternative, at least one competitor (and in particular, the best

competitor) provides more accurate predictions than the benchmark. Critical values for this test

can be constructed using the block bootstrap, as discussed in Corradi and Swanson (2007). An

interesting extension of this test, in which rolling data windows are used in model estimation and all

estimated parameters are conditioned on, is discussed in Giacomini and White (2006). For extensions

of the above tests to predictive density evaluation, see Corradi and Swanson (2005,2006a,b).

2.3.2 Loss Function Free Model Evaluation and Selection

In this section we summarize new developments in forecast evaluation which is valid under generalized

loss functions, and which is based directly on the evaluation of F (u), the CDF of the forecast error.

In particular, note that Corradi, Jin, and Swanson (2017) discuss testing for GL and CL forecast

superiority. Their tests allow for parameter estimation error, data dependence, and comparison of

multiple models, but require the underlying processes to be strictly stationary. To start, assume
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that the loss function (L) is defined such that L : R→ R+ is continuously differentiable, except for

finitely many points, with derivative L′, such that L′(z) ≤ 0, for all z ≤ 0, and L′(z) ≥ 0, for all

z ≥ 0.

Definition (Forecast Superiority): u1 General-Loss (GL) outperforms u2, denoted as u1 �G

u2, if and only if E(L(u1)) ≤ E(L(u2)), for all L ∈ LG; and u1 Convex-Loss (CL) outperforms u2,

denoted as u1 �C u2, if and only if E(L(u1)) ≤ E(L(u2)), for all L ∈ LC .

Here, u1 and u2 are sequences of forecast errors, as above. In order to connect the notion of

forecast superiority to that of stochastic dominance, CJS establish a mapping between GL forecast

superiority and first order stochastic dominance. They also establish linkages between CL forecast

superiority and second order stochastic dominance. They then derive direct tests for GL/CL forecast

superiority. Define:

G(x) = (F2(x)− F1(x))sgn(x), (2.11)

where sgn(x) = 1 if x ≥ 0, and = −1 if x < 0; and

C(x) =

∫ x

−∞
(F1(t)− F2(t))dt1(x < 0) +

∫ ∞
x

(F2(t)− F1(t))dt1(x ≥ 0), (2.12)

where 1(·) denotes the indicator function, which takes the value 1 if the condition is met, and 0

otherwise. CJS show that E(L(u1)) ≤ E(L(u2)), for all L ∈ LG, if and only if G(x) ≤ 0, for all

x ∈ X , where X is the union of the supports of all forecast errors; and E(L(u1)) ≤ E(L(u2)), for all

L ∈ LC , if and only if C(x) ≤ 0 for all x ∈ X .

Before implementing GL forecast superiority tests, one can construct a graph that contains a plot of

G(x) against x. When u1 �G u2, we expect all points to lie below or on the zero line. In other words,

a crossing of the zero line in the graph indicates a violation of GL forecast superiority. Similarly, one

can construct a graph that contains a plot of C(x) against x. When u1 �C u2, we expect all points

to lie below or on the zero line. In other words, a crossing of the zero line in the graph indicates a

violation of CL forecast superiority.

Now, suppose that there are m sets of forecast errors u1, ..., um, resulting from m forecasting

models, and that we wish to test the null that E(L(u1)) ≤ E(L(u2)), for all L ∈ LG, against

the negation thereof (see CJS (2017) for complete details). When testing this null of no forecast

superiority, it suffices to construct statistics as follows. For k = 1, ...,m, define:

Fk (x) = P (uk,t ≤ x) and

F k,n (x) = P−1
T∑
t=R

1 (uk,t ≤ x) ,
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The statistics discussed by CJS (2017) are constructed by calculating:

TG+
n = max

k=2,..,m
sup
x∈X+

√
nGk,n(x) and TG−n = max

k=2,..,m
sup
x∈X−

√
nGk,n(x)

and

TC+
n = max

k=2,..,m
sup
x∈X+

√
nCk,n(x) and TC−n = max

k=2,..,m
sup
x∈X−

√
nCk,n(x),

where Gk,n(x) =
(
F k,n (x)− F 1,n (x)

)
sgn(x)

and

Ck,n(x) =
{∫ x
−∞

(
F 1,n (s)

−F k,n (s)
)
ds1(x < 0) +

∫∞
x

(
F k,n (s)− F 1,n (s)

)
ds1(x ≥ 0)

}
.

Note that the positive and negative parts of X are treated separately in the above statistics.

This is because stochastic equicontinuity of the empirical processes cannot be otherwise established,

precluding inference based on statistics constructed without separately considering the positive and

negative regions of the support.

For discussion of computation of the suprema in these statistics, as well as discussion of more

general versions of the test statistics that explicitly account for parameter estimation error and

different model estimation schemes (e.g., rolling versus recursive model estimation), see CJS (2017).

Critical values are constructed by using bootstrap methods, as discussed in CJS (2017). Although

CJS make a substantial contribution in the nascent loss function robust forecast evaluation, their

tests are not uniformly valid, as they have correct asymptotic size only under the least favorable case

under the null hypothesis. It remains to develop tests that are uniformly asymptotically valid. Many

theoretical questions of this sort remain unanswered in the predictive accuracy and model selection

literature, and as new and increasingly complex machine learning methods are developed, theorists

will have their hands full keeping up. For a key example of the type of analytically sophisticated

analysis that is necessary in order to continue advancing our understanding of model selection, see

Hirano and Wright (2017).

2.4 Empirical Illustration: Predicting Interest Rates Using Big Data ver-

sus Small Data Methods

In order to fix some of the ideas discussed in this paper, we carry out a small empirical investigation

that utilizes a subset of the leading methods discussed above. Our objective is to predict U.S.

Treasury yields of various maturities (i.e., the term structure of interest rates). Predictions will

be made using “small data” models, including autoregressive, vector autoregressive, and dynamic
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Nelson-Siegel models, and “big data” models that utilize diffusion indexes estimated from a largescale

macroeconomic dataset.

2.4.1 Experimental Setup

All models in all experiments are re-estimated prior to the construction of each new prediction, using

rolling 120 month windows of data; and estimation is carried out using least squares and principal

components analysis. Monthly yield forecasts for horizons h = 1−, 3−, and 12− steps ahead are

constructed for a variety of bond maturities, and these are aggregated using mean square forecast

error (MSFE) criteria, and evaluated using the DMP predictive accuracy test discussed above. The

development of a more exhaustive set of experiments is left to future research, and all conclusions

made based on our experiments should thus be viewed with caution.

A summary of the models used in our prediction experiments is given below.

Small Data Models

Autoregressive (AR) and Vector Autoregressive (VAR) Models:

(Models in this section are summarized in Table 2.1, and include: AR(1), VAR(1), AR(SIC), and

VAR(SIC))

We utilize a number of benchmark time series models, specified as follows:

yt+h(τ) = c+ β′Wt + εt+h, (2.13)

where τ denotes the maturity of a bond (bill) for which the scalar, yt+h(τ), measures the annual yield.

Additionally, Wt contains lags of yt+h(τ) in autoregressive specifications, and contains lags of yt+h(τ)

and additional explanatory variables in vector autoregressive specifications, with β a conformably

defined coefficient vector.5 In AR and VAR specifications, up to 5 lags of yt+h(τ) are included

in our models, with the number of lags selected using the Schwarz information criterion (SIC). In

addition to AR(SIC) and VAR(SIC) models, straw-man AR(1) and VAR(1) models are estimated.

Additionally, in our unrestricted VAR models, Wt includes bonds of five different maturities (i.e. 1

year, 2 years, 3 years, 5 years, 10 years).

Dynamic Nelson Siegel (DNS) Models:

(Models in this section are summarized in Table 2.1, and include: DNS(1), DNS(2), DNS(3),

DNS(4), DNS(5), and DNS(6))

5When specifying VAR models, equation (2.13) constitutes only one (τ -maturity) equation in the VAR. As the
same set of explanatory variables is utilized in each equation in the VAR, the SUR (seemingly unrelated regression)
result ensures that consistent and efficient parameter estimates can be obtained via application of equation by equation
least squares.
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The DNS model introduced by Li and Diebold (2006) is a dynamic version of the term structure

based upon Nelson and Siegel (1987), where the cross-sectional movement of the term structure

model is summarized by the dynamics of three underlying latent factors interpreted as “level”,

“slope”, and “curvature” factors. We refer to the three latent factors as “Nelson-Siegel factors”,

and in our prediction experiments, both AR(1) and VAR(1) DNS type models are specified in order

to predict these factors for subsequent use in the prediction of yt+h(τ). For a detailed discussion

of yield curve modeling using the DNS models, see Diebold and Rudebusch (2013). For detailed

discussions comparing arbitrage free dynamic latent factor models, arbitrage free DNS models, and

DNS models, refer to Ang and Piazzesi (2003), Diebold, Rudebusch and Aruoba (2006), Christensen,

Diebold, and Rudebusch (2011), Duffie (2011), and the references cited therein. For a discussion of

the usefulness of survey information in related term structure modeling, see Altavilla, Giacomini,

and Ragusa (2016).

In the DNS model, estimates of the Nelson-Siegel factors are constructed at each point in time

by regressing {1, [ 1−exp(−λtτ)
λtτ

], [ 1−exp(−λtτ)
λtτ

−exp(−λtτ)]} on yt(τ), where λt is a decay parameter

(see below discussion). Namely, in a first step, the DNS model

yt(τ) = β1,t + β2,t[
1− exp(−λtτ)

λtτ
] + β3,t[

1− exp(−λtτ)

λtτ
− exp(−λtτ)] + εt, (2.14)

is fitted at each point in time, t, yielding sequences of estimates, β̂1,t, β̂2,t, and β̂3,t, for t = 1, ..., T.

Note that in this step, 3 model variants are considered. One variant defines:

y10
t (τ) = [yt(12) yt(24) yt(36) yt(48) yt(60) yt(72) yt(84) yt(96) yt(108) yt(120)]′.

In a second variant,

y6
t (τ) = [yt(12) yt(24) yt(36) yt(60) yt(84) yt(120)]′,

and in a third variant

y4
t (τ) = [yt(12) yt(36) yt(60)yt(120)]′.

Predictions of yt+h are constructed using the model:

yt+h(τ) = β̂f1,t+h + β̂f2,t+h[
1− exp(−λtτ)

λtτ
] + β̂f3,t+h[

1− exp(−λtτ)

λtτ
− exp(−λtτ)], (2.15)

where yt+h(τ) is a scalar, and β̂f1,t+h, β̂f2,t+h, and β̂f3,t+h and predictions constructed by specifying

simple AR or VAR models for β̂1,t, β̂2,t, and β̂3,t, including:

β̂fi,t+h = ĉi + γ̂iiβ̂i,t, for i = 1, 2, 3, (2.16)

where β̂fi,t+h, β̂i,t, ĉi and γ̂ii are scalars. We also construct predictions by using the following VAR(1)

model:

β̂ft+h = ĉ+ γ̂β̂t, (2.17)
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where β̂ft+h =
(
β̂f1,t+h, β̂

f
2,t+h, β̂

f
3,t+h

)′
, ĉ is 3x1 vector, and γ̂ = (γ̂1, γ̂2, γ̂3) , with γ̂j a 3x1 vector,

for j = 1, 2, 3. Note that the loading on β̂1,t is one, so it is often interpreted as the “level” factor.

Also, β̂2,t decreases as maturity increases, resulting in an increase in the “slope” of bond yield curve.

Finally, β̂3,t has initial loading zero, on the short end of yield curve, and reaches its peak at around

the 30 month maturity (when the rate of decay, λt, is fixed to 0.0609, as discussed by Diebold and Li

(2006)), and gradually decays to zero as the maturity goes to infinity. We set the decay parameter

equal to 0.0609. Since an increase in β̂3t has a larger effect on medium-term yields than on short-

and long-term yields, it is often called a “curvature” factor.

DNS Models with Macroeconomic Variables:

(Models in this section are summarized in Table 2.1, and include: DNS(1)+MAC, DNS(2)+MAC,

DNS(3)+MAC, DNS(4)+MAC, DNS(5)+MAC, and DNS(6)+MAC)

DNS models of the variety discussed above are also estimated, where latent factor prediction

models include macroeconomic variables. Namely, we consider predictions constructed using:

β̂fi,t+h = ĉi + γ̂iiβ̂i,t + α̂′iMt, for i = 1, 2, 3,

where Mt includes selected key macroeconomic variables discussed in Diebold and Li (2006), and α̂

is a 3x1 vector. Here, Mt includes manufacturing capacity utilization, the federal funds rate, and

the annual personal consumption expenditures price deflator. Analogous to the VAR(1) model given

in (2.17), we additionally construct predictions according to:

β̂ft+h = ĉ+ γ̂β̂i,t + α̂Mt, for i = 1, 2, 3,

where α̂ = (α̂1, α̂2, α̂3) , with α̂j a 3x1 vector, for i = 1, 2, 3.

Diffusion Index Models:

(Models in this section are summarized in Table 2.1, and include: DIF(1), DIF(2), DIF(3))

We construct predictions using the diffusion index model discussed extensively above, where

latent factors, F st are estimated using PCA with a set of 10 yields given by y10
t (τ),

yt+h(τ) = c+ β′Wt + α′F st + εt+h, (2.18)

where F st includes either 1, 2, or 3 latent factors corresponding to the largest eigenvalues of the

eigenvalue/eigenvector decomposition of a small (standardized) yield dataset consisting of our 10-

dimensional yield dataset, and Wt includes only one lag of the yield. This simple model is included

in order to facilitate direct comparison with the DNS models given in equations (2.16) and (2.17).
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Big Data Models

Diffusion Index Models:

(Models in this section are summarized in Table 2.1, include: DIF(4), DIF(5), DIF(6), VAR(1)+FB1,

VAR(1)+FB2, VAR(SIC)+FB1, VAR(SIC)+FB2, DIF(1)+FB1, DIF(2)+FB1, DIF(3)+FB1,

DIF(1)+FB2, DIF(2)+FB2, DIF(3)+FB2)

We utilize the prediction model given in equation (2.18), but with latent factors, say F bt , estimated

using PCA with a set of 103 macroeconomic variables (see below data description for a discussion of

the variables used). In particular, we estimate variants of the following factor augmented forecasting

model:

yt+h(τ) = c+ β′Wt + α′F bt + εt+h,

where setting β = 0 yields “pure” diffusion index models, andWt is defined as above, yielding AR and

VAR variants of these models. Inclusion of the lagged yield in Wt allows for direct comparison of our

diffusion index models with our pure econometric AR and VAR models discussed at the beginning

of this section. Here, F bt includes either 1 or 2 latent factors, and α and β are conformably defined

vectors of coefficients. For a related discussion of so-called unspanned macroeconomic factors in the

yield curve, see Bauer and de los Rios (2012) and Coroneo, Giannone and Modugno (2016).

Additionally, we construct predictions using diffusion index models of the following variety:

yt+h(τ) = c+ β′Wt + α′2F
b
t + α′2F

s
t + εt+h.

Note that although multiple yield lags were tried when specifying Wt, “MSFE-best” models always

included only the first lag of the yield(s). For this reason all empirical results discussed in the sequel

use one lag.

DNS Models with Diffusion Indexes:

(Models in this section are summarized in Table 2.1, and include: DNS(1)+FB1, DNS(2)+FB1,

DNS(3)+FB1, DNS(4)+FB1, DNS(5)+FB1, DNS(6)+FB1, DNS(1)+FB2, DNS(2)+FB2,

DNS(3)+FB2, DNS(4)+FB2, DNS(5)+FB2, DNS(6)+FB2)

The DNS model discussed above is augmented to include diffusion indexes. Namely, we consid-

ered DNS type predictions constructed using:

β̂fi,t+h = ĉi + γ̂iβ̂i,t + α̂′F bt , for i = 1, 2, 3,

where F bt again includes either 1, 2 or 3 latent factors, and so is a scalar or a 3x1 vector. All other

terms are conformably defined. Analogous to our above discussion of DNS models, we also construct
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predictions by using the following VAR(1) variant of this model:

β̂ft+h = ĉ+ Γ̂β̂t + Ξ̂F bt ,

where β̂ft+h =
(
β̂f1,t+h, β̂

f
2,t+h, β̂

f
3,t+h

)′
, ĉ is 3x1 vector, and Γ̂ = (γ̂1, γ̂2, γ̂3) , γ̂j is a 3x1 vector, for

j = 1, 2, 3, and Ξ̂ is a 3x1 vector (if F bt is a scalar), or is a 3x2 matrix (if F bt is a 2x1 vector).

Forecast Combination

In our prediction experiments, we also construct and analyze a select set of forecast combinations.

The particular combinations are detailed in Table 7. Although the focus of this paper is not forecast

combination, there are two reasons why we include at least a small set of combinations. First,

it is well known that forecast combination is useful in time series prediction. More importantly,

inclusion of combinations in our empirical illustration serves to stress that an important area for

future research involves combination of classical econometric and machine learning methods. Just

as shown in Kim and Swanson (2014), Carrasco and Rossi (2016), and Hirano and Wright (2017),

much can be gained via combination not only of forecasts, but also of methodologies.6

2.4.2 Data

Our term structure data are U.S. zero-coupon (end of month) yield curve data reported by the Federal

Reserve Board (see https://www.quandl.com/data/FED/SVENY-US-Treasury-Zero-Coupon-Yield-

Curve and Gurkaynak, Sack and Wright (2006)). In particular, we utilize monthly data for the

period January 1982 through July 2016, for 1 through 10 year maturities. Hence, we analyze a

panel of dataset containing N = 10 variables and T = 415 monthly observations. All yields are

standardized to mean zero unit variance series before principle component analysis.

Macro factors are constructed using a balanced panel of 103 macroeconomic variables obtained

from the FRED-MD dataset recently developed by the Federal Reserve Bank of St. Louis. A detailed

explanation on how the data set is collected and adjusted is given in McCracken and Ng (2016).

FRED-MD is maintained by FRED, is updated on a monthly basis, and can be accessed at

https://research.stlouisfed.org/econ/mccracken/fred-databases/. Our version of this dataset con-

tains observations for the period January 1982 through July 2016.

6For a discussion of forecast combination using the types of factor augmented regressions discussed in this paper,
see Cheng and Hansen (2015).
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2.4.3 Empirical Findings

Tables 2.2A - 2.2D contain relative MSFEs for yield forecasts constructed using the models listed in

Table 2.1, for h = 1, for 1, 2, 3, 5, and 10 year maturities, and for 4 different forecasting periods,

including: 1992:3-1999:12 (Subsample 1), 2000:1-2007:12 (Subsample 2), 2008:1-2016:7 (Subsample

3), and 1992:1-2016:7 (Subsample 4). The benchmark model used in the construction of relative

MSFEs is the AR(1) forecasting model. Tabulated entries denoted in bold are the lowest (relative)

point-MSFEs, for each maturity. Starred entries indicate rejection of the (DMP test) null hypothesis

of no difference between the benchmark and the alternative model listed in column 1 of the tables,

in favor of the alternative model.7 Tables 2.3A - D and 2.4A - D collect analogous results, but for

h = 3 and h = 12, respectively. Additionally, the “MSFE-best” models for each bond maturity, each

forecast horizon, and each subsample (i.e., the models denoted in bold in Tables 2.2A - 2.4D) are

given in Table 2.5; and Table 2.6 is an analogous table, but with two alternative subsamples (i.e.,

expansionary and recessionary periods). Finally, the results of forecast combination experiments

utilizing all of the models are summarized in Tables 2.7 and 2.8A - C.

Turning to the results based on Tables 2.2A through 2.4D, a number of clearcut conclusions

emerge.

First, inspection of the results in Tables 2.2A - 2.2D indicates that for Subsamples 1 and 2,

the MSFE-best model is usually a DNS model with added “big data” diffusion indexes. Namely,

DNS+FB models usually “win”. In particular, for forecast horizons of 1- and 3-steps ahead, this

is true in 17 of 20 maturity/horizon permutations, across Subsamples 1 and 2. Interestingly, in the

most recent subsample (i.e., Subsample 3), DNS+FB type models instead “win” in only 2 of 10

cases, for forecast horizons of 1- and 3-steps ahead. Thus, the post Great-recession period appears

to have “confused” our models. Nevertheless, when results based on the entire prediction period

(i.e., Subsample 4) are examined, it is noteworthy that DNS models with added “big data” diffusion

indexes still “win” in 7 of 10 cases, for h = 1 and 3. For our longest forecast horizon (i.e., h = 12),

the evidence in favor of using “big data” is not so clearcut, as baseline DNS models without diffusion

indexes and straw-man AR and VAR models almost always “win”.

Second, even cursory examination of Tables 2.2A - 2.4D indicates that models listed as MSFE-

best in Table 2.5 are almost always significantly better than our benchmark AR(1) model, based

upon application of the DMP test.

Third, the DNS type models that “win” in our experiments are usually the vector variety (i.e.,

DNS(4), DNS(5) and DNS(6)). This suggests that the factors in the DNS model do not evolve

7*** entries indicate rejection at the 1% level, while ** and * denote rejection at the 5% and 10% levels, respectively.
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independently of one another. Thus, not only can the factors (i.e., the “betas”) be better predicted

by utilizing “big data” diffusion indexes, as discussed above, but they can also be better predicted

by modeling their cross-correlation dynamics.

We now turn to a discussion of the results in Tables 2.5 - 2.8.

In Table 2.5, where point “MSFE-best” models are listed by subsample and maturity, a number of

further conclusions emerge. In this table, entries superscripted with ***, **, and * in Table 2.5 denote

rejections of the null hypothesis of equal predictive accuracy at 0.01, 0.05, and 0.10 significance levels,

respectively, based on application of the Diebold-Mariano test discussed in Section 3; and indicate

that the listed model is predictively superior to a “benchmark” DNS(τ) model, based on MSFE

loss. In particular, if the point “MSFE-best” model is DNS(τ)+mod, where mod denotes another

component of the model (for example, mod may be FB1 or FB2, etc.) then the “benchmark”

model is DNS(τ). If the point “MSFE-best” model is DNS(1), or if no DNS component appears

in point “MSFE-best” model, then DNS(1) is the “benchmark” model. Finally, for entries denoted

“DNS(1)”, no predictive accuracy test was carried out. These test results are included to highlight

the importance of incorporating “big data” in DNS type prediction models. Turning to the results of

these tests, note that for forecast horizons of 1- and 3-steps ahead, DNS(τ)+FB models significantly

outperform their DNS(τ) counterparts in almost all cases, across Subsamples 1 and 2. In Subsample

3 (2008:1-2016:7), the evidence is more mixed, with “less to choose” between the alternative models

in our experiments. Additionally, and as discussed above, our “straw-man” models perform well at

the 12-step ahead forecast horizon.

Needless to say, there are instances where AR type models outperform our more complex models.

The reasons for this may be many. For example, structural breaks may play an important role that is

not captured by any of our specifications, leading to cases where the “simplest” approximations (e.g.,

AR and VAR models) dominate, from the perspective of predictive accuracy. Of course, this does

not preclude the possibility that more complex models than ours may outperform (V)AR models in

such cases.

Additionally, note that (V)AR models perform better at longer horizons, which is not surprising,

and is a well know stylized fact in empirical economics; again probably stemming from issues per-

taining to the approximate nature of our models, and the ability of the most parsimonious models to

dominate under increased uncertainty, due to model specification and parameter uncertainty issues.

In Table 2.6, we see that the evidence in favor of DNS+FB type models is both stronger and

weaker when our prediction periods are broken into two alternative subsamples defined as “expan-

sionary” and “recessionary”, based upon application of NBER dating. In particular, in recessionary

times, DNS+FB models win in 13 of 15 maturity/horizon permutations, including maturities of 1,
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3, 5, and 10 years and horizons of h = 1, 3, and 12 months ahead. Thus, in recessionary times our

DNS+FB models even “win” for h = 12, which was not the case based upon our earlier analysis of

Subsamples 1-4. On the other hand, in expansionary times, DNS+FB models win in only 7 of 15

maturity/horizon permutations, and none of these wins occur when h = 12.

Finally, Table 2.7 lists a small number of different forecast combinations that were utilized in

order to construct alternative prediction models to compare with those discussed above. The “MSFE-

best” combination models are usually preferred to the AR(1) benchmark, based on application of

the DMP test, as might be expected, given our above discussion. However, it is noteworthy that

point MSFEs associated with the best combination models are usually higher than point MSFEs

associated with out best individual models. Indeed, combination models fail to “win” in 15 of 20

cases, for h = 1, Subsamples 1-4, and across all 5 bond maturities (see Table 2.8A). For h = 3,

the case against forecast combination is even stronger, with combination models failing to “win” in

18 of 20 cases, for Subsamples 1-4 and across all 5 bond maturities (see Table 2.8B). Similarly, for

h = 12, combination models fail to “win” in 17 of 20 cases (see Table 2.8C). Evidently, a richer set

of combination models needs to be entertained if the usual result that combination works is to be

found. Examination of this is left to future research.

2.5 Concluding Remarks

This paper discusses recent advances in the analysis of big data using latent factor type dimension

reduction methods as well as various other machine learning and shrinkage approaches. It is sug-

gested that much remains to be learned regarding the ways in which extant econometric methods

can be combined with dimension reduction methods in order to achieve improvements in prediction.

We show how readily standard econometric models can be augmented to include predictive error

reducing information from big datasets, in an illustration in which the term structure of interest

rates is predicted. Finally, we address predictive accuracy testing in the context of big data, and

outline new loss function free methods that may be useful for forecast accuracy and model selection

assessment.
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Table 2.1: Models Used in Forecast Experiments*

Model Description

AR(1) Autoregressive model with one lag

VAR(1) Five-dimensional vector autoregressive model with one lag

VAR(1)+FB1 VAR(1) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

VAR(1)+FB2 VAR(1) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

AR(SIC) Autoregressive model with lag(s) selected by the Schwarz information criterion

VAR(SIC) Five-dimensional vector autoregressive model with lag(s) selected by the Schwarz information criterion

VAR(SIC)+FB1 VAR(SIC) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

VAR(SIC)+FB2 VAR(SIC) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(1) Dynamic Nelson-Siegel (DNS) model with underlying AR(1) factor specifications fitted with ten-dimensional yields:

maturity τ = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months

DNS(2) DNS model with underlying AR(1) factor specifications fitted with six-dimensional yields: maturity τ = 12, 24, 36, 60, 84, 120 months

DNS(3) DNS model with underlying AR(1) factor specifications fitted with four-dimensional yields: maturity τ = 12, 36, 60, 120 months

DNS(4) DNS model with underlying VAR(1) factor specifications fitted with ten-dimensional yields: maturity τ = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months

DNS(5) DNS model with underlying VAR(1) factor specifications fitted with six-dimensional yields: maturity τ = 12, 24, 36, 60, 84, 120 months

DNS(6) DNS model with underlying VAR(1) factor specifications fitted with four-dimensional yields: maturity τ = 12, 36, 60, 120 months

DNS(1)+FB1 DNS(1) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(2)+FB1 DNS(2) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(3)+FB1 DNS(3) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(4)+FB1 DNS(4) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(5)+FB1 DNS(5) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(6)+FB1 DNS(6) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(1)+FB2 DNS(1) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(2)+FB2 DNS(2) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(3)+FB2 DNS(3) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(4)+FB2 DNS(4) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(5)+FB2 DNS(5) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(6)+FB2 DNS(6) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(1)+MAC DNS(1) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(2)+MAC DNS(2) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(3)+MAC DNS(3) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(4)+MAC DNS(4) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(5)+MAC DNS(5) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(6)+MAC DNS(6) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DIF(1) Diffusion index model with one principle component estimator based on all ten-dimensional yields

DIF(2) Diffusion index model with two principle component estimators based on all ten-dimensional yields

DIF(3) Diffusion index model with three principle component estimators based on all ten-dimensional yields

DIF(4) Diffusion index model with one principle component estimator based on all 103 macroeconomic variables

DIF(5) Diffusion index model with two principle component estimators based on all 103 macroeconomic variables

DIF(6) Diffusion index model with three principle component estimators based on all 103 macroeconomic variables

DIF(1)+FB1 DIF(1) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DIF(2)+FB1 DIF(2) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DIF(3)+FB1 DIF(3) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DIF(1)+FB2 DIF(1) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DIF(2)+FB2 DIF(2) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DIF(3)+FB2 DIF(3) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

* Notes: This table summarizes the models utilized in all forecasting experiments.
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Table 2.2A: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 1:

1992:3-1999:12)*

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.099 1.108 1.103 1.098 1.141

VAR(1)+FB1 0.819** 0.868* 0.893* 0.927 1.045

VAR(1)+FB2 0.844 0.874 0.897 0.940 1.106

AR(SIC) 0.864** 0.942* 0.958 0.974 0.972**

VAR(SIC) 1.099 1.108 1.103 1.098 1.141

VAR(SIC)+FB1 0.819** 0.868* 0.893* 0.927 1.045

VAR(SIC)+FB2 0.844 0.874 0.897 0.940 1.106

DNS(1) 1.032 1.097 1.061 1.039 1.067

DNS(2) 1.036 1.088 1.053 1.046 1.064

DNS(3) 1.040 1.123 1.066 1.045 1.037

DNS(4) 1.088 1.160 1.104 1.070 1.102

DNS(5) 1.095 1.147 1.095 1.081 1.098

DNS(6) 1.094 1.190 1.107 1.065 1.071

DNS(1)+FB1 0.900 0.862* 0.895 0.981 0.981

DNS(2)+FB1 0.891 0.865* 0.903 1.000 0.980

DNS(3)+FB1 0.876 0.868* 0.896 1.006 0.990

DNS(4)+FB1 0.784** 0.861** 0.870** 0.922 0.990

DNS(5)+FB1 0.785** 0.854** 0.867** 0.934 0.987

DNS(6)+FB1 0.775*** 0.882** 0.872** 0.930 0.985

DNS(1)+FB2 0.960 0.908 0.948 1.053 1.053

DNS(2)+FB2 0.948 0.911 0.957 1.074 1.051

DNS(3)+FB2 0.933 0.911 0.948 1.081 1.073

DNS(4)+FB2 0.789** 0.844** 0.858** 0.920 0.988

DNS(5)+FB2 0.790** 0.840** 0.857** 0.934 0.985

DNS(6)+FB2 0.775** 0.863** 0.860** 0.929 0.987

DNS(1)+MAC 1.028 1.099 1.073 1.056 1.095

DNS(2)+MAC 1.029 1.089 1.065 1.063 1.091

DNS(3)+MAC 1.032 1.123 1.079 1.062 1.063

DNS(4)+MAC 1.132 1.147 1.129 1.154 1.191

DNS(5)+MAC 1.130 1.140 1.125 1.164 1.184

DNS(6)+MAC 1.119 1.165 1.130 1.161 1.188

DIF(1) 3.048 2.655 1.926 0.919** 2.245

DIF(2) 1.274 1.067 1.038 1.029 1.199

DIF(3) 0.973 1.046 1.044 1.049 1.128

DIF(4) 2.238 2.303 2.337 2.382 2.438

DIF(5) 2.253 2.338 2.386 2.455 2.588

DIF(6) 2.236 2.320 2.359 2.410 2.514

DIF(1)+FB1 2.208 2.182 1.717 0.950 2.239

DIF(2)+FB1 1.340 1.074 1.026 1.039 1.254

DIF(3)+FB1 0.958 1.006 1.021 1.060 1.164

DIF(1)+FB2 2.002 1.933 1.489 0.969 2.065

DIF(2)+FB2 1.269 1.052 1.016 1.029 1.247

DIF(3)+FB2 0.947 1.007 1.022 1.057 1.177

* Notes: Table 2.2A reports the mean squared forecast error (MSFE) relative to that from the benchmark AR(1)

model based on 1-step-ahead forecasts of monthly U.S. Treasury bond yields of various maturities. The models, as

listed in column 1, are summarized in Table 2.1. Entries in bold denote models with lowest mean square forecast error

(MSFE) for a given bond maturity. Entries superscripted with ***, **, and * denote rejections of the null of equal

predictive accuracy at 0.01, 0.05, and 0.10 significance levels, respectively, based on application of the Diebold-Mariano

test discussed in Section 3; and indicate that the listed model is predictively superior to the AR(1) benchmark, based

on MSFE loss. For complete details, refer to Section 4.
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Table 2.2B: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 2:

2000:1-2007:12) *

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.970 1.029 1.032 1.045 1.110

VAR(1)+FB1 0.733** 0.858* 0.906 0.971 1.084

VAR(1)+FB2 0.810 0.899 0.936 1.003 1.157

AR(SIC) 0.939 1.033 1.033 1.035 1.015

VAR(SIC) 0.970 1.029 1.032 1.045 1.110

VAR(SIC)+FB1 0.733** 0.858* 0.906 0.971 1.084

VAR(SIC)+FB2 0.810 0.899 0.936 1.003 1.157

DNS(1) 1.211 1.015 1.000 1.094 0.959*

DNS(2) 1.182 1.016 1.012 1.121 0.958**

DNS(3) 1.150 1.015 0.998 1.126 0.983

DNS(4) 1.017 1.067 1.031 1.082 1.026

DNS(5) 1.014 1.058 1.034 1.110 1.027

DNS(6) 1.021 1.099 1.037 1.099 1.032

DNS(1)+FB1 0.780* 0.851 0.860 0.947 0.947

DNS(2)+FB1 0.773* 0.842 0.859* 0.966 0.944

DNS(3)+FB1 0.770* 0.873 0.863 0.966 0.944

DNS(4)+FB1 0.708*** 0.853** 0.866** 0.962 0.959

DNS(5)+FB1 0.703*** 0.840** 0.865** 0.987 0.960

DNS(6)+FB1 0.713*** 0.884* 0.872** 0.979 0.965

DNS(1)+FB2 0.717** 0.741** 0.763** 0.887 0.855**

DNS(2)+FB2 0.707** 0.734** 0.766** 0.912 0.854**

DNS(3)+FB2 0.697** 0.756** 0.765** 0.915 0.877**

DNS(4)+FB2 0.727*** 0.793*** 0.824*** 0.961 0.933

DNS(5)+FB2 0.721*** 0.791*** 0.832** 0.991 0.935

DNS(6)+FB2 0.703*** 0.810*** 0.824*** 0.983 0.960

DNS(1)+MAC 1.065 0.982 1.002 1.099 0.979

DNS(2)+MAC 1.037 0.983 1.011 1.125 0.977

DNS(3)+MAC 1.000 0.983 1.000 1.129 0.997

DNS(4)+MAC 0.972 1.040 1.056 1.165 1.064

DNS(5)+MAC 0.960 1.037 1.065 1.197 1.065

DNS(6)+MAC 0.949 1.057 1.056 1.190 1.097

DIF(1) 2.474 2.046 1.688 1.062 1.788

DIF(2) 1.288 1.112 1.104 1.061 1.214

DIF(3) 1.029 1.128 1.114 1.073 1.121

DIF(4) 1.566 1.733 1.830 1.930 1.961

DIF(5) 1.349 1.688 1.805 1.884 1.937

DIF(6) 1.389 1.697 1.804 1.868 1.919

DIF(1)+FB1 1.575 1.633 1.468 1.045 1.794

DIF(2)+FB1 1.093 1.001 1.027 1.038 1.227

DIF(3)+FB1 0.892 1.021 1.049 1.053 1.115

DIF(1)+FB2 1.435 1.673 1.521 1.039 1.667

DIF(2)+FB2 1.117 1.024 1.039 1.046 1.184

DIF(3)+FB2 0.875 1.023 1.058 1.059 1.122

* Notes: See notes to Table 2.2A.
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Table 2.2C: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 3: 2008:1-2016:7)

*

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.177 1.242 1.222 1.180 1.158

VAR(1)+FB1 1.249 1.311 1.293 1.281 1.297

VAR(1)+FB2 1.369 1.451 1.406 1.345 1.320

AR(SIC) 0.920 1.028 1.005 0.999 1.009

VAR(SIC) 1.177 1.242 1.222 1.180 1.158

VAR(SIC)+FB1 1.249 1.311 1.293 1.281 1.297

VAR(SIC)+FB2 1.369 1.451 1.406 1.345 1.320

DNS(1) 2.108 1.044 1.137 1.444 0.932*

DNS(2) 1.966 1.085 1.223 1.542 0.928*

DNS(3) 1.710 1.003 1.098 1.521 0.980

DNS(4) 1.396 1.156 1.141 1.387 1.042

DNS(5) 1.317 1.127 1.167 1.459 1.030

DNS(6) 1.231 1.220 1.137 1.450 1.071

DNS(1)+FB1 2.132 1.536 1.390 1.511 1.078

DNS(2)+FB1 2.030 1.522 1.421 1.583 1.072

DNS(3)+FB1 1.914 1.577 1.379 1.582 1.110

DNS(4)+FB1 1.420 1.315 1.212 1.387 1.132

DNS(5)+FB1 1.373 1.275 1.223 1.452 1.123

DNS(6)+FB1 1.306 1.403 1.213 1.437 1.138

DNS(1)+FB2 2.259 1.661 1.469 1.523 1.075

DNS(2)+FB2 2.149 1.645 1.497 1.591 1.068

DNS(3)+FB2 2.044 1.707 1.462 1.595 1.106

DNS(4)+FB2 1.553 1.467 1.327 1.454 1.177

DNS(5)+FB2 1.503 1.423 1.332 1.513 1.166

DNS(6)+FB2 1.442 1.552 1.325 1.501 1.180

DNS(1)+MAC 1.720 1.051 1.094 1.331 0.943

DNS(2)+MAC 1.604 1.064 1.149 1.413 0.939

DNS(3)+MAC 1.429 1.060 1.078 1.406 0.966

DNS(4)+MAC 1.316 1.137 1.141 1.382 1.056

DNS(5)+MAC 1.228 1.108 1.162 1.447 1.041

DNS(6)+MAC 1.144 1.199 1.132 1.437 1.077

DIF(1) 2.521 2.326 2.076 1.245 1.621

DIF(2) 1.581 1.336 1.315 1.215 1.196

DIF(3) 1.058 1.392 1.388 1.259 1.257

DIF(4) 4.145 3.409 2.884 2.440 2.219

DIF(5) 4.718 3.707 2.960 2.305 1.980

DIF(6) 4.699 3.805 3.151 2.573 2.192

DIF(1)+FB1 4.053 3.207 2.411 1.280 1.575

DIF(2)+FB1 2.127 1.637 1.439 1.270 1.226

DIF(3)+FB1 1.367 1.666 1.532 1.326 1.320

DIF(1)+FB2 4.438 3.232 2.257 1.179 1.452

DIF(2)+FB2 2.100 1.615 1.403 1.182 1.106

DIF(3)+FB2 1.341 1.623 1.448 1.190 1.147

* Notes: See notes to Table 2.2A.
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Table 2.2D: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 4: 1992:3-2016:7)

*

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.063 1.103 1.101 1.102 1.139

VAR(1)+FB1 0.874* 0.955 0.990 1.046 1.165

VAR(1)+FB2 0.940 1.003 1.029 1.081 1.213

AR(SIC) 0.906* 0.998 0.999 1.004 1.001

VAR(SIC) 1.063 1.103 1.101 1.102 1.139

VAR(SIC)+FB1 0.874* 0.955 0.990 1.046 1.165

VAR(SIC)+FB2 0.940 1.003 1.029 1.081 1.213

DNS(1) 1.331 1.052 1.053 1.177 0.976

DNS(2) 1.291 1.058 1.075 1.218 0.973

DNS(3) 1.226 1.053 1.046 1.213 0.996

DNS(4) 1.123 1.120 1.083 1.166 1.053

DNS(5) 1.108 1.106 1.086 1.201 1.047

DNS(6) 1.093 1.158 1.085 1.189 1.059

DNS(1)+FB1 1.109 0.996 0.994 1.122 1.012

DNS(2)+FB1 1.081 0.991 1.003 1.155 1.008

DNS(3)+FB1 1.050 1.016 0.993 1.157 1.027

DNS(4)+FB1 0.886* 0.951 0.946 1.071 1.041

DNS(5)+FB1 0.874* 0.935 0.947 1.104 1.037

DNS(6)+FB1 0.861** 0.990 0.950 1.095 1.045

DNS(1)+FB2 1.132 0.993 0.992 1.127 1.001

DNS(2)+FB2 1.100 0.988 1.003 1.162 0.998

DNS(3)+FB2 1.069 1.010 0.991 1.167 1.027

DNS(4)+FB2 0.924 0.951 0.951 1.090 1.052

DNS(5)+FB2 0.911 0.939 0.955 1.123 1.047

DNS(6)+FB2 0.885 0.982 0.951 1.115 1.061

DNS(1)+MAC 1.188 1.040 1.049 1.152 0.995

DNS(2)+MAC 1.153 1.040 1.063 1.187 0.991

DNS(3)+MAC 1.102 1.052 1.047 1.187 1.001

DNS(4)+MAC 1.105 1.101 1.102 1.224 1.094

DNS(5)+MAC 1.081 1.091 1.109 1.258 1.086

DNS(6)+MAC 1.055 1.127 1.100 1.252 1.112

DIF(1) 2.702 2.334 1.863 1.067 1.838

DIF(2) 1.344 1.141 1.128 1.095 1.203

DIF(3) 1.014 1.151 1.151 1.119 1.181

DIF(4) 2.361 2.293 2.256 2.229 2.198

DIF(5) 2.397 2.349 2.281 2.197 2.128

DIF(6) 2.404 2.366 2.314 2.253 2.193

DIF(1)+FB1 2.334 2.165 1.774 1.081 1.818

DIF(2)+FB1 1.403 1.159 1.120 1.105 1.234

DIF(3)+FB1 1.016 1.147 1.149 1.134 1.215

DIF(1)+FB2 2.279 2.092 1.677 1.056 1.681

DIF(2)+FB2 1.381 1.156 1.114 1.080 1.167

DIF(3)+FB2 1.000 1.140 1.134 1.096 1.147

* Notes: See notes to Table 2.2A.
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Table 2.3A: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 1:

1992:7-1999:12) *

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.014 1.062 1.074 1.063 1.035

VAR(1)+FB1 0.981 1.037 1.055 1.050 1.030

VAR(1)+FB2 1.070 1.119 1.134 1.130 1.114

AR(SIC) 0.885** 0.963 0.974 0.969 0.933**

VAR(SIC) 1.014 1.062 1.074 1.063 1.035

VAR(SIC)+FB1 0.981 1.037 1.055 1.050 1.030

VAR(SIC)+FB2 1.070 1.119 1.134 1.130 1.114

DNS(1) 1.061 1.079 1.065 1.047 1.029

DNS(2) 1.067 1.082 1.069 1.054 1.031

DNS(3) 1.065 1.080 1.062 1.046 1.028

DNS(4) 0.990 1.075 1.063 1.024 1.003

DNS(5) 0.996 1.071 1.058 1.024 1.002

DNS(6) 1.000 1.086 1.063 1.017 0.989

DNS(1)+FB1 0.922 0.914 0.954 1.013 1.000

DNS(2)+FB1 0.923 0.924 0.964 1.024 1.004

DNS(3)+FB1 0.918 0.914 0.955 1.025 1.022

DNS(4)+FB1 0.855** 0.961 0.973 0.966 0.959

DNS(5)+FB1 0.861** 0.957 0.969 0.966 0.956

DNS(6)+FB1 0.860** 0.968 0.972 0.961 0.951

DNS(1)+FB2 1.033 1.019 1.039 1.063 1.008

DNS(2)+FB2 1.032 1.027 1.048 1.074 1.013

DNS(3)+FB2 1.034 1.024 1.045 1.080 1.035

DNS(4)+FB2 0.920* 1.016 1.025 1.014 0.998

DNS(5)+FB2 0.930 1.017 1.025 1.019 0.999

DNS(6)+FB2 0.919* 1.018 1.021 1.008 0.990

DNS(1)+MAC 1.056 1.099 1.091 1.063 1.025

DNS(2)+MAC 1.063 1.102 1.093 1.068 1.028

DNS(3)+MAC 1.060 1.102 1.089 1.061 1.020

DNS(4)+MAC 0.942 1.043 1.052 1.040 1.031

DNS(5)+MAC 0.945 1.037 1.045 1.036 1.026

DNS(6)+MAC 0.950 1.053 1.054 1.038 1.025

DIF(1) 1.678 1.558 1.285 0.987 1.381

DIF(2) 1.272 1.252 1.227 1.207 1.248

DIF(3) 1.209 1.241 1.218 1.181 1.195

DIF(4) 1.217 1.278 1.312 1.355 1.430

DIF(5) 1.465 1.533 1.563 1.568 1.541

DIF(6) 1.489 1.558 1.587 1.587 1.538

DIF(1)+FB1 1.272 1.340 1.196 0.998 1.406

DIF(2)+FB1 1.216 1.199 1.178 1.176 1.240

DIF(3)+FB1 1.050 1.100 1.111 1.124 1.184

DIF(1)+FB2 1.395 1.513 1.388 1.200 1.408

DIF(2)+FB2 1.316 1.305 1.276 1.244 1.266

DIF(3)+FB2 1.140 1.203 1.209 1.199 1.229

* Notes: See notes to Table 2.2A.
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Table 2.3B: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 2:

2000:1-2007:12) *

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.832*** 0.880*** 0.885** 0.909* 1.013

VAR(1)+FB1 0.837*** 0.880*** 0.882** 0.905** 1.009

VAR(1)+FB2 0.839*** 0.889** 0.895** 0.924* 1.043

AR(SIC) 0.819*** 0.877** 0.873** 0.881** 0.937

VAR(SIC) 0.832*** 0.880*** 0.885** 0.909* 1.013

VAR(SIC)+FB1 0.837*** 0.880*** 0.882** 0.905** 1.009

VAR(SIC)+FB2 0.839*** 0.889** 0.895** 0.924* 1.043

DNS(1) 1.250 1.068 1.009 1.051 0.913***

DNS(2) 1.233 1.069 1.019 1.066 0.913***

DNS(3) 1.232 1.063 1.009 1.078 0.977

DNS(4) 0.905*** 0.919** 0.895** 0.915** 0.929

DNS(5) 0.900*** 0.916** 0.897** 0.926** 0.929

DNS(6) 0.915*** 0.930* 0.897** 0.920** 0.942

DNS(1)+FB1 0.676** 0.705** 0.724** 0.827** 0.846**

DNS(2)+FB1 0.674** 0.706** 0.730** 0.840* 0.846**

DNS(3)+FB1 0.672** 0.703** 0.720** 0.842* 0.891*

DNS(4)+FB1 0.830*** 0.857*** 0.846*** 0.884** 0.909*

DNS(5)+FB1 0.830*** 0.857*** 0.851*** 0.898** 0.909*

DNS(6)+FB1 0.833*** 0.863** 0.845*** 0.889** 0.925*

DNS(1)+FB2 0.794* 0.755** 0.773** 0.898 0.921

DNS(2)+FB2 0.784* 0.754** 0.779** 0.912 0.920

DNS(3)+FB2 0.793 0.757** 0.777** 0.929 0.998

DNS(4)+FB2 0.833*** 0.860*** 0.849*** 0.887** 0.915*

DNS(5)+FB2 0.833*** 0.860*** 0.854*** 0.901** 0.916*

DNS(6)+FB2 0.836*** 0.866** 0.848*** 0.892** 0.931*

DNS(1)+MAC 1.073 1.026 1.026 1.097 0.963*

DNS(2)+MAC 1.055 1.028 1.036 1.111 0.962*

DNS(3)+MAC 1.049 1.018 1.025 1.122 1.020

DNS(4)+MAC 0.853*** 0.897* 0.900* 0.952 0.972

DNS(5)+MAC 0.849*** 0.896* 0.903* 0.964 0.970

DNS(6)+MAC 0.854*** 0.901* 0.898* 0.959 0.996

DIF(1) 1.641 1.460 1.331 1.146 1.286

DIF(2) 1.234 1.217 1.191 1.188 1.354

DIF(3) 1.186 1.280 1.261 1.241 1.340

DIF(4) 0.946 1.084 1.188 1.330 1.358

DIF(5) 0.970 1.143 1.210 1.305 1.488

DIF(6) 1.007 1.182 1.247 1.331 1.511

DIF(1)+FB1 0.943 1.057 1.096 1.196 1.428

DIF(2)+FB1 0.915 1.018 1.082 1.184 1.462

DIF(3)+FB1 0.911 1.081 1.149 1.227 1.413

DIF(1)+FB2 1.090 1.273 1.266 1.189 1.728

DIF(2)+FB2 0.913 1.059 1.124 1.196 1.414

DIF(3)+FB2 0.905 1.098 1.171 1.242 1.432

* Notes: See notes to Table 2.2A.
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Table 2.3C: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 3: 2008:1-2016:7)

*

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.975 0.998 0.974 0.927* 0.926*

VAR(1)+FB1 0.937 0.976 0.961 0.924 0.935

VAR(1)+FB2 0.942 0.978 0.963 0.926 0.936

AR(SIC) 0.975 0.971 0.946** 0.921** 0.917**

VAR(SIC) 0.975 0.998 0.974 0.927* 0.926*

VAR(SIC)+FB1 0.937 0.976 0.961 0.924 0.935

VAR(SIC)+FB2 0.942 0.978 0.963 0.926 0.936

DNS(1) 1.825 1.278 1.304 1.407 0.971

DNS(2) 1.762 1.310 1.357 1.453 0.968

DNS(3) 1.652 1.203 1.260 1.431 1.022

DNS(4) 1.046 0.974 0.990 1.050 0.907*

DNS(5) 1.025 0.973 1.001 1.071 0.899*

DNS(6) 0.997 0.979 0.987 1.070 0.919*

DNS(1)+FB1 2.186 1.848 1.660 1.545 1.093

DNS(2)+FB1 2.154 1.846 1.675 1.571 1.089

DNS(3)+FB1 2.118 1.823 1.633 1.563 1.136

DNS(4)+FB1 0.957 0.929 0.948 1.014 0.914

DNS(5)+FB1 0.939 0.927 0.957 1.035 0.907

DNS(6)+FB1 0.915 0.939 0.947 1.032 0.920*

DNS(1)+FB2 2.215 1.871 1.643 1.478 1.041

DNS(2)+FB2 2.184 1.863 1.651 1.499 1.036

DNS(3)+FB2 2.158 1.853 1.619 1.493 1.074

DNS(4)+FB2 0.984 0.948 0.964 1.027 0.923

DNS(5)+FB2 0.966 0.945 0.972 1.047 0.916

DNS(6)+FB2 0.943 0.960 0.964 1.045 0.930

DNS(1)+MAC 1.864 1.393 1.372 1.423 1.006

DNS(2)+MAC 1.811 1.417 1.416 1.467 1.003

DNS(3)+MAC 1.721 1.337 1.339 1.451 1.056

DNS(4)+MAC 1.039 0.977 0.992 1.045 0.903*

DNS(5)+MAC 1.017 0.978 1.004 1.065 0.895*

DNS(6)+MAC 0.988 0.981 0.987 1.061 0.911**

DIF(1) 1.367 1.366 1.315 1.124 1.230

DIF(2) 1.514 1.527 1.428 1.249 1.170

DIF(3) 1.483 1.602 1.535 1.369 1.219

DIF(4) 2.757 2.332 2.023 1.677 1.430

DIF(5) 2.918 2.444 2.107 1.728 1.429

DIF(6) 3.131 2.713 2.456 2.145 1.729

DIF(1)+FB1 2.756 2.260 1.817 1.282 1.270

DIF(2)+FB1 2.146 1.940 1.674 1.376 1.230

DIF(3)+FB1 1.867 1.948 1.741 1.460 1.272

DIF(1)+FB2 2.826 2.300 1.852 1.328 1.252

DIF(2)+FB2 2.111 1.912 1.662 1.377 1.244

DIF(3)+FB2 1.810 1.895 1.702 1.437 1.256

* Notes: See notes to Table 2.2A.
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Table 2.3D: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 4: 1992:7-2016:7)

*

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.927** 0.974 0.977 0.972 0.987

VAR(1)+FB1 0.909*** 0.960 0.966 0.965 0.988

VAR(1)+FB2 0.941** 0.994 1.001 1.002 1.027

AR(SIC) 0.878*** 0.930** 0.928*** 0.925*** 0.928***

VAR(SIC) 0.927** 0.974 0.977 0.972 0.987

VAR(SIC)+FB1 0.909*** 0.960 0.966 0.965 0.988

VAR(SIC)+FB2 0.941** 0.994 1.001 1.002 1.027

DNS(1) 1.320 1.119 1.101 1.150 0.976

DNS(2) 1.300 1.129 1.118 1.171 0.976

DNS(3) 1.273 1.101 1.089 1.166 1.012

DNS(4) 0.967* 0.989 0.981 0.994 0.946*

DNS(5) 0.962* 0.986 0.982 1.004 0.943*

DNS(6) 0.963* 0.999 0.981 0.999 0.949**

DNS(1)+FB1 1.111 1.041 1.034 1.100 0.995

DNS(2)+FB1 1.103 1.045 1.044 1.116 0.995

DNS(3)+FB1 1.092 1.035 1.027 1.114 1.031

DNS(4)+FB1 0.868*** 0.912** 0.918** 0.952** 0.928**

DNS(5)+FB1 0.866*** 0.910*** 0.920*** 0.962* 0.925**

DNS(6)+FB1 0.861*** 0.919** 0.917** 0.956** 0.932**

DNS(1)+FB2 1.206 1.106 1.081 1.124 0.997

DNS(2)+FB2 1.194 1.106 1.089 1.139 0.997

DNS(3)+FB2 1.193 1.104 1.079 1.145 1.040

DNS(4)+FB2 0.898*** 0.938* 0.943** 0.974 0.947*

DNS(5)+FB2 0.897*** 0.938** 0.947** 0.987 0.945*

DNS(6)+FB2 0.889*** 0.944* 0.940** 0.979 0.951**

DNS(1)+MAC 1.251 1.136 1.133 1.177 1.001

DNS(2)+MAC 1.234 1.144 1.148 1.196 1.001

DNS(3)+MAC 1.209 1.121 1.124 1.192 1.034

DNS(4)+MAC 0.927** 0.969 0.979 1.011 0.966

DNS(5)+MAC 0.921** 0.967 0.981 1.020 0.961

DNS(6)+MAC 0.918** 0.976 0.978 1.017 0.974

DIF(1) 1.589 1.475 1.310 1.081 1.298

DIF(2) 1.312 1.300 1.261 1.212 1.246

DIF(3) 1.263 1.339 1.310 1.255 1.243

DIF(4) 1.460 1.438 1.435 1.438 1.411

DIF(5) 1.591 1.582 1.557 1.523 1.484

DIF(6) 1.665 1.668 1.664 1.658 1.604

DIF(1)+FB1 1.477 1.434 1.306 1.147 1.359

DIF(2)+FB1 1.304 1.294 1.260 1.235 1.295

DIF(3)+FB1 1.181 1.284 1.276 1.254 1.279

DIF(1)+FB2 1.598 1.594 1.452 1.233 1.433

DIF(2)+FB2 1.329 1.343 1.310 1.265 1.297

DIF(3)+FB2 1.195 1.318 1.312 1.281 1.293

* Notes: See notes to Table 2.2A.
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Table 2.4A: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 1:

1994:1-1999:12) *

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.312 1.302 1.280 1.207 1.049

VAR(1)+FB1 1.299 1.290 1.267 1.194 1.036

VAR(1)+FB2 1.292 1.282 1.260 1.189 1.031

AR(SIC) 1.208 1.217 1.206 1.132 0.967

VAR(SIC) 1.312 1.302 1.280 1.207 1.049

VAR(SIC)+FB1 1.299 1.290 1.267 1.194 1.036

VAR(SIC)+FB2 1.292 1.282 1.260 1.189 1.031

DNS(1) 0.635*** 0.682*** 0.730*** 0.846** 0.954

DNS(2) 0.640*** 0.688*** 0.737*** 0.853** 0.956

DNS(3) 0.624*** 0.669*** 0.718*** 0.845** 0.973

DNS(4) 1.276 1.298 1.259 1.165 1.022

DNS(5) 1.283 1.298 1.258 1.168 1.025

DNS(6) 1.284 1.301 1.256 1.157 1.013

DNS(1)+FB1 0.905 0.889 0.952 1.097 1.159

DNS(2)+FB1 0.902 0.895 0.960 1.104 1.157

DNS(3)+FB1 0.897 0.882 0.950 1.113 1.200

DNS(4)+FB1 1.225 1.265 1.237 1.157 1.024

DNS(5)+FB1 1.232 1.265 1.236 1.158 1.027

DNS(6)+FB1 1.234 1.270 1.236 1.150 1.017

DNS(1)+FB2 1.055 0.980 1.049 1.226 1.295

DNS(2)+FB2 1.047 0.984 1.056 1.233 1.293

DNS(3)+FB2 1.059 0.984 1.060 1.256 1.351

DNS(4)+FB2 1.210 1.252 1.227 1.152 1.020

DNS(5)+FB2 1.216 1.250 1.225 1.153 1.022

DNS(6)+FB2 1.220 1.257 1.226 1.147 1.014

DNS(1)+MAC 0.685** 0.729** 0.776** 0.889 0.977

DNS(2)+MAC 0.689** 0.734** 0.782** 0.895 0.978

DNS(3)+MAC 0.672** 0.716** 0.765** 0.889 0.998

DNS(4)+MAC 1.228 1.275 1.253 1.181 1.050

DNS(5)+MAC 1.233 1.273 1.250 1.180 1.050

DNS(6)+MAC 1.237 1.280 1.253 1.176 1.045

DIF(1) 0.984 0.925* 0.838*** 1.124 1.829

DIF(2) 1.328 1.346 1.493 1.748 1.905

DIF(3) 1.254 1.224 1.348 1.586 1.812

DIF(4) 1.122 1.156 1.184 1.225 1.292

DIF(5) 1.619 1.610 1.647 1.689 1.690

DIF(6) 1.718 1.695 1.723 1.747 1.712

DIF(1)+FB1 1.340 1.283 1.158 1.371 2.125

DIF(2)+FB1 1.622 1.749 1.871 2.054 2.170

DIF(3)+FB1 1.459 1.542 1.653 1.850 2.084

DIF(1)+FB2 1.487 1.503 1.548 1.960 2.324

DIF(2)+FB2 1.883 1.908 2.002 2.166 2.262

DIF(3)+FB2 1.593 1.637 1.752 1.961 2.176

* Notes: See notes to Table 2.2A.
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Table 2.4B: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 2:

2000:1-2007:12) *

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.567*** 0.475*** 0.432*** 0.431*** 0.557***

VAR(1)+FB1 0.583*** 0.488*** 0.444*** 0.441*** 0.561***

VAR(1)+FB2 0.587*** 0.493*** 0.451*** 0.452*** 0.584***

AR(SIC) 0.574*** 0.485*** 0.444*** 0.445*** 0.547***

VAR(SIC) 0.567*** 0.475*** 0.432*** 0.431*** 0.557***

VAR(SIC)+FB1 0.583*** 0.488*** 0.444*** 0.441*** 0.561***

VAR(SIC)+FB2 0.587*** 0.493*** 0.451*** 0.452*** 0.584***

DNS(1) 0.708*** 0.602*** 0.571*** 0.631*** 0.770***

DNS(2) 0.707*** 0.605*** 0.576*** 0.638*** 0.771***

DNS(3) 0.702*** 0.599*** 0.570*** 0.639*** 0.811***

DNS(4) 0.593*** 0.507*** 0.460*** 0.454*** 0.564***

DNS(5) 0.593*** 0.506*** 0.459*** 0.456*** 0.564***

DNS(6) 0.599*** 0.510*** 0.460*** 0.452*** 0.563***

DNS(1)+FB1 0.548*** 0.507*** 0.520*** 0.658*** 0.999

DNS(2)+FB1 0.547*** 0.508*** 0.523*** 0.662*** 0.996

DNS(3)+FB1 0.543*** 0.502*** 0.516*** 0.661*** 1.036

DNS(4)+FB1 0.595*** 0.509*** 0.461*** 0.455*** 0.564***

DNS(5)+FB1 0.595*** 0.508*** 0.461*** 0.457*** 0.565***

DNS(6)+FB1 0.598*** 0.511*** 0.461*** 0.452*** 0.562***

DNS(1)+FB2 1.023 1.049 1.143 1.530 2.724

DNS(2)+FB2 1.023 1.055 1.152 1.541 2.725

DNS(3)+FB2 1.010 1.036 1.130 1.521 2.739

DNS(4)+FB2 0.594*** 0.510*** 0.464*** 0.460*** 0.574***

DNS(5)+FB2 0.594*** 0.510*** 0.464*** 0.462*** 0.575***

DNS(6)+FB2 0.597*** 0.511*** 0.463*** 0.456*** 0.571***

DNS(1)+MAC 0.671*** 0.609*** 0.604*** 0.700*** 0.884***

DNS(2)+MAC 0.669*** 0.611*** 0.609*** 0.706*** 0.884***

DNS(3)+MAC 0.665*** 0.606*** 0.604*** 0.708*** 0.922**

DNS(4)+MAC 0.579*** 0.495*** 0.451*** 0.449*** 0.567***

DNS(5)+MAC 0.580*** 0.495*** 0.450*** 0.451*** 0.566***

DNS(6)+MAC 0.583*** 0.497*** 0.450*** 0.447*** 0.568***

DIF(1) 1.244 1.157 1.124 1.142 1.537

DIF(2) 1.895 1.456 1.321 1.372 1.801

DIF(3) 2.284 1.721 1.565 1.569 1.959

DIF(4) 0.842*** 0.966 1.112 1.448 1.910

DIF(5) 1.019 1.109 1.243 1.765 3.530

DIF(6) 1.037 1.146 1.299 1.857 3.729

DIF(1)+FB1 1.001 1.056 1.129 1.539 2.403

DIF(2)+FB1 1.544 1.364 1.412 1.711 2.703

DIF(3)+FB1 1.798 1.664 1.720 2.028 2.985

DIF(1)+FB2 1.032 1.138 1.272 1.842 3.941

DIF(2)+FB2 1.850 1.804 1.980 2.589 4.305

DIF(3)+FB2 2.098 2.053 2.226 2.832 4.471

* Notes: See notes to Table 2.2A.
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Table 2.4C: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 3:

2008:1-2016:7) *

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.737*** 0.716*** 0.695*** 0.663*** 0.709***

VAR(1)+FB1 0.778*** 0.756*** 0.731*** 0.686*** 0.707***

VAR(1)+FB2 0.796*** 0.773*** 0.747*** 0.697*** 0.713***

AR(SIC) 0.729*** 0.714*** 0.687*** 0.674*** 0.737***

VAR(SIC) 0.737*** 0.716*** 0.695*** 0.663*** 0.709***

VAR(SIC)+FB1 0.778*** 0.756*** 0.731*** 0.686*** 0.707***

VAR(SIC)+FB2 0.796*** 0.773*** 0.747*** 0.697*** 0.713***

DNS(1) 1.468 1.389 1.483 1.559 1.118

DNS(2) 1.451 1.412 1.520 1.591 1.118

DNS(3) 1.423 1.356 1.467 1.583 1.179

DNS(4) 0.765*** 0.689*** 0.697*** 0.737*** 0.687***

DNS(5) 0.759*** 0.694*** 0.708*** 0.748*** 0.683***

DNS(6) 0.747*** 0.679*** 0.692*** 0.747*** 0.706***

DNS(1)+FB1 1.744 1.554 1.511 1.534 1.209

DNS(2)+FB1 1.734 1.557 1.524 1.552 1.206

DNS(3)+FB1 1.736 1.542 1.502 1.554 1.274

DNS(4)+FB1 0.813*** 0.730*** 0.737*** 0.771*** 0.703***

DNS(5)+FB1 0.804*** 0.735*** 0.746*** 0.781*** 0.699***

DNS(6)+FB1 0.791*** 0.718*** 0.730*** 0.780*** 0.723***

DNS(1)+FB2 1.895 1.779 1.792 1.842 1.427

DNS(2)+FB2 1.887 1.785 1.809 1.863 1.425

DNS(3)+FB2 1.877 1.757 1.771 1.851 1.486

DNS(4)+FB2 0.827*** 0.742*** 0.747*** 0.777*** 0.703***

DNS(5)+FB2 0.816*** 0.745*** 0.755*** 0.786*** 0.699***

DNS(6)+FB2 0.804*** 0.730*** 0.740*** 0.786*** 0.723***

DNS(1)+MAC 1.579 1.583 1.729 1.824 1.274

DNS(2)+MAC 1.555 1.600 1.761 1.850 1.269

DNS(3)+MAC 1.543 1.557 1.723 1.865 1.353

DNS(4)+MAC 0.758*** 0.685*** 0.695*** 0.739*** 0.694***

DNS(5)+MAC 0.751*** 0.690*** 0.705*** 0.749*** 0.691***

DNS(6)+MAC 0.739*** 0.675*** 0.689*** 0.747*** 0.711***

DIF(1) 1.190 1.280 1.277 1.357 1.155

DIF(2) 2.405 2.453 2.228 1.789 1.155

DIF(3) 2.787 2.711 2.641 2.260 1.472

DIF(4) 1.978 1.719 1.539 1.291 1.086

DIF(5) 1.859 1.677 1.611 1.564 1.457

DIF(6) 2.332 2.278 2.257 2.110 1.711

DIF(1)+FB1 2.036 1.789 1.563 1.316 1.167

DIF(2)+FB1 2.280 2.164 1.982 1.663 1.171

DIF(3)+FB1 2.490 2.487 2.410 2.139 1.569

DIF(1)+FB2 1.886 1.726 1.614 1.618 1.462

DIF(2)+FB2 2.289 2.228 2.123 1.907 1.430

DIF(3)+FB2 2.503 2.530 2.505 2.297 1.737

* Notes: See notes to Table 2.2A.
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Table 2.4D: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 4:

1994:1-2016:7) *

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.706*** 0.660*** 0.643*** 0.665*** 0.767***

VAR(1)+FB1 0.724*** 0.674*** 0.655*** 0.673*** 0.763***

VAR(1)+FB2 0.730*** 0.680*** 0.661*** 0.680*** 0.771***

AR(SIC) 0.695*** 0.652*** 0.635*** 0.657*** 0.748***

VAR(SIC) 0.706*** 0.660*** 0.643*** 0.665*** 0.767***

VAR(SIC)+FB1 0.724*** 0.674*** 0.655*** 0.673*** 0.763***

VAR(SIC)+FB2 0.730*** 0.680*** 0.661*** 0.680*** 0.771***

DNS(1) 0.879** 0.784*** 0.794*** 0.910** 0.953

DNS(2) 0.875** 0.792*** 0.806*** 0.923* 0.954*

DNS(3) 0.863*** 0.773*** 0.788*** 0.919* 0.994

DNS(4) 0.725*** 0.673*** 0.656*** 0.686*** 0.753***

DNS(5) 0.724*** 0.674*** 0.658*** 0.690*** 0.753***

DNS(6) 0.725*** 0.674*** 0.655*** 0.685*** 0.756***

DNS(1)+FB1 0.880 0.794** 0.810** 0.975 1.125

DNS(2)+FB1 0.876 0.796** 0.816** 0.983 1.122

DNS(3)+FB1 0.873 0.787** 0.805** 0.985 1.173

DNS(4)+FB1 0.730*** 0.678*** 0.661*** 0.692*** 0.759***

DNS(5)+FB1 0.729*** 0.679*** 0.663*** 0.696*** 0.759***

DNS(6)+FB1 0.729*** 0.677*** 0.659*** 0.692*** 0.764***

DNS(1)+FB2 1.234 1.195 1.264 1.539 1.807

DNS(2)+FB2 1.232 1.201 1.274 1.551 1.806

DNS(3)+FB2 1.222 1.183 1.254 1.543 1.850

DNS(4)+FB2 0.731*** 0.679*** 0.663*** 0.695*** 0.761***

DNS(5)+FB2 0.730*** 0.680*** 0.665*** 0.699*** 0.760***

DNS(6)+FB2 0.729*** 0.678*** 0.661*** 0.695*** 0.766***

DNS(1)+MAC 0.889* 0.838** 0.875** 1.022 1.054

DNS(2)+MAC 0.882** 0.844** 0.886* 1.032 1.052

DNS(3)+MAC 0.875** 0.828*** 0.872** 1.036 1.101

DNS(4)+MAC 0.708*** 0.662*** 0.649*** 0.687*** 0.765***

DNS(5)+MAC 0.707*** 0.662*** 0.651*** 0.690*** 0.764***

DNS(6)+MAC 0.707*** 0.661*** 0.647*** 0.687*** 0.770***

DIF(1) 1.197 1.146 1.104 1.191 1.492

DIF(2) 1.941 1.653 1.546 1.561 1.602

DIF(3) 2.267 1.854 1.755 1.744 1.738

DIF(4) 1.149 1.159 1.216 1.358 1.419

DIF(5) 1.299 1.312 1.395 1.698 2.204

DIF(6) 1.435 1.478 1.581 1.895 2.367

DIF(1)+FB1 1.292 1.250 1.227 1.445 1.871

DIF(2)+FB1 1.729 1.598 1.617 1.777 1.984

DIF(3)+FB1 1.917 1.821 1.855 2.015 2.192

DIF(1)+FB2 1.295 1.323 1.395 1.813 2.540

DIF(2)+FB2 1.959 1.912 2.014 2.324 2.627

DIF(3)+FB2 2.127 2.088 2.199 2.502 2.764

* Notes: See notes to Table 2.2A.
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Table 2.5: Top 3 Forecast Models with Lowest MSFE*

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

Forecast Sample Horizon

DNS(6)+FB2*** DNS(5)+FB2*** DNS(5)+FB2*** DIF(1)** AR(SIC)**

1 Step DNS(6)+FB1*** DNS(4)+FB2*** DNS(4)+FB2*** DNS(4)+FB2** DNS(2)+FB1*

DNS(4)+FB1*** DNS(5)+FB1*** DNS(6)+FB2*** DNS(4)+FB1*** DNS(1)+FB1*

DNS(4)+FB1*** DNS(3)+FB1** DNS(1)+FB1* DNS(6)+FB1** AR(SIC)**

1992:3-1999:12 3 Step DNS(6)+FB1*** DNS(1)+FB1** DNS(3)+FB1* DNS(5)+FB1** DNS(6)+FB1*

‘1st Subsample DNS(5)+FB1*** DNS(2)+FB1** DNS(2)+FB1* DNS(4)+FB1** DNS(5)+FB1**

DNS(3)*** DNS(3)*** DNS(3)*** DNS(3) DNS(1)

12 Step DNS(1) DNS(1) DNS(1) DNS(1) DNS(2)

DNS(2) DNS(2) DNS(2) DNS(2) AR(SIC)

DNS(3)+FB2*** DNS(2)+FB2** DNS(1)+FB2** DNS(1)+FB2*** DNS(2)+FB2**

1 Step DNS(5)+FB1*** DNS(1)+FB2** DNS(3)+FB2** DNS(2)+FB2*** DNS(1)+FB2**

DNS(6)+FB2*** DNS(3)+FB2** DNS(2)+FB2*** DNS(3)+FB2*** DNS(3)+FB2**

DNS(3)+FB1*** DNS(3)+FB1*** DNS(3)+FB1*** DNS(1)+FB1*** DNS(2)+FB1

2000:1-2007:12 3 Step DNS(2)+FB1*** DNS(1)+FB1*** DNS(1)+FB1*** DNS(2)+FB1*** DNS(1)+FB1

‘2nd Subsample DNS(1)+FB1*** DNS(2)+FB1*** DNS(2)+FB1*** DNS(3)+FB1*** DNS(3)+FB1*

DNS(3)+FB1** VAR(1)** VAR(1)*** VAR(1)*** AR(SIC)***

12 Step DNS(2)+FB1** VAR(SIC)** VAR(SIC)*** VAR(SIC)*** VAR(SIC)***

DNS(1)+FB1** AR(SIC)** VAR(SIC)+FB1*** VAR(SIC)+FB1*** VAR(1)***

AR(SIC)*** AR(1) AR(1)** AR(SIC)*** DNS(2)

1 Step AR(1)*** DNS(3)* AR(SIC)** AR(1)*** DNS(1)

DIF(3)*** AR(SIC) DNS(3)+MAC DIF(1)+FB2* DNS(2)+MAC

DNS(6)+FB1* DNS(5)+FB1 AR(SIC)*** AR(SIC)*** DNS(5)+MAC

2008:1-2016:7 3 Step VAR(1)+FB1*** DNS(4)+FB1 DNS(6)+FB1 VAR(1)+FB1*** DNS(5)*

‘3rd Subsample VAR(SIC)+FB1*** DNS(6)+FB1 DNS(4)+FB1 VAR(SIC)+FB1*** DNS(4)+MAC

AR(SIC)*** DNS(6)+MAC AR(SIC)*** VAR(1)*** DNS(5)***

12 Step VAR(1)*** DNS(6)*** DNS(6)+MAC VAR(SIC)*** DNS(4)***

VAR(SIC)*** DNS(4)+MAC DNS(6)*** AR(SIC)*** DNS(5)+MAC

DNS(6)+FB1 DNS(5)+FB1 DNS(4)+FB1 AR(1)*** DNS(2)

1 Step VAR(SIC)+FB1** DNS(5)+FB2 DNS(5)+FB1 AR(SIC)*** DNS(1)

VAR(1)+FB1** DNS(4)+FB1 DNS(6)+FB1 VAR(SIC)+FB1 DNS(2)+MAC

DNS(6)+FB1* DNS(5)+FB1 DNS(6)+FB1 AR(SIC)*** DNS(5)+FB1

1992:3-2016:7 3 Step DNS(5)+FB1* DNS(4)+FB1 DNS(4)+FB1 DNS(4)+FB1 AR(SIC)

‘Whole Sample DNS(4)+FB1* DNS(6)+FB1 DNS(5)+FB1 DNS(6)+FB1 DNS(4)+FB1

AR(SIC)*** AR(SIC)*** AR(SIC)*** AR(SIC)*** AR(SIC)***

12 Step VAR(1)*** VAR(1)*** VAR(1)*** VAR(1)*** DNS(5)***

VAR(SIC)*** VAR(SIC)*** VAR(SIC)*** VAR(SIC)*** DNS(4)***

* Notes: See notes to Table 2.2A. This table reports the top three performing forecast models (based on MSFE) from lowest-

MSFE to highest-MSFE, for all subsamples, horizons, and maturities, summarizing the results of Tables 2A-4D. Entries in

bold denote models with lowest MSFE for a given maturity. Entries superscripted with ***, **, and * denote rejections of the

null hypothesis of equal predictive accuracy at 0.01, 0.05, and 0.10 significance levels, respectively, based on application of

the Diebold-Mariano test discussed in Section 3; and indicate that the listed model is predictively superior to a “benchmark”

DNS(τ) model, based on MSFE loss. In particular, if the point “MSFE-best” model is DNS(τ)+mod, where mod denotes

another component of the model (for example, mod may be FB1 or FB2, etc.) then the “benchmark” model is DNS(τ). If

the point “MSFE-best” model is DNS(1), or if no DNS component appears in point “MSFE-best” model, then DNS(1) is the

“benchmark” model. Finally, for entries denoted “DNS(1)”, no predictive accuracy test was carried out. These test results

are included to highlight the importance of incorporating “big data”in DNS type prediction models. For complete details,

refer to Section 4.
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Table 2.6: Top 3 Forecast Models with Lowest MSFE in Expansionary and Recessionary Periods*

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

Forecast Sample Horizon

DNS(4)+FB1 VAR(SIC)+FB1 VAR(1) DNS(3)+FB2 DIF(2)+FB2

1 Step DNS(5)+FB1 VAR(1)+FB1 VAR(SIC) DNS(2)+FB2 DNS(3)

VAR(SIC)+FB1 DNS(2)+MAC DNS(1)+MAC VAR(SIC) DNS(2)

DNS(6)+FB1 DNS(6)+FB1 DNS(6)+FB1 DNS(2)+FB1 DNS(3)+FB1

Recession 3 Step DNS(6)+MAC DNS(4)+FB1 DNS(4)+FB1 DNS(3)+FB1 DNS(2)

DNS(1)+FB1 DNS(6)+MAC DNS(5)+FB1 DNS(1)+FB1 DNS(1)

DNS(3)+FB1 DNS(3)+FB1 DNS(3)+FB1 DNS(1)+FB1 VAR(1)

12 Step DNS(2)+FB1 DNS(1)+FB1 DNS(1)+FB1 DNS(2)+FB1 VAR(SIC)

DNS(1)+FB1 DNS(2)+FB1 DNS(2)+FB1 DNS(3)+FB1 DNS(5)

DNS(6)+FB2 DNS(5)+FB2 DNS(6)+FB2 AR(1) DNS(2)+FB2

1 Step DNS(6)+FB1 DNS(4)+FB2 DNS(4)+FB2 AR(SIC) DNS(1)+FB2

VAR(1)+FB1 DNS(3)+FB2 DNS(5)+FB2 DIF(1) DNS(2)+FB1

DNS(5)+FB1 DNS(5)+FB1 AR(SIC) AR(SIC) DNS(5)+FB1

Expansion 3 Step DNS(6)+FB1 DNS(4)+FB1 DNS(5)+FB1 DNS(4)+FB1 DNS(4)+FB1

DNS(4)+FB1 AR(SIC) DNS(4)+FB1 DNS(6)+FB1 AR(SIC)

DNS(4)+MAC AR(SIC) AR(SIC) AR(SIC) AR(SIC)

12 Step DNS(5)+MAC DNS(5)+MAC DNS(5)+MAC VAR(1)+FB1 DNS(6)

DNS(6)+MAC DNS(4)+MAC DNS(6)+MAC VAR(SIC)+FB1 DNS(4)

* Notes: See notes to Table 2.5. Recessions and expansion are defined according to NBER business cycle dates.
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Table 2.7: Forecast Combination Models Used in Forecast Experiments*

Model Description

All Average of all forty four forecast models

FB Average of twenty five models that contain principle component(s), principle component analysis based on all 103 macroeconomic variables

FS Average of nineteen non-FB type models

Econometrics Average of all eight AR and VAR type models

DNS Average of all twenty two DNS type models

DI Average of twelve diffusion index type models

* Notes: This table summarizes the combination models utilized in all forecast experiments.
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Table 2.8A: 1-Step-Ahead Relative MSFEs of Forecast Combination Models*

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

All 0.922 0.976 0.971 0.999 1.066

FB 0.906 0.949 0.958 1.008 1.101

1992:3-1999:12 FS 1.003 1.062 1.030 1.020 1.063

‘Subsample 1’ Econometrics 0.842** 0.893** 0.912** 0.930* 0.993

DNS 0.861** 0.928** 0.932** 0.982 0.998

DIF 1.293 1.292 1.196 1.142 1.468

All 0.740*** 0.866*** 0.903** 0.981 0.967

FB 0.652*** 0.812** 0.864** 0.949 0.964

2000:1-2007:12 FS 0.933 0.991 0.996 1.052 0.999

‘Subsample 2’ Econometrics 0.769*** 0.871** 0.899* 0.933 1.005

DNS 0.751*** 0.838*** 0.866*** 0.997 0.931**

DIF 0.926 1.076 1.091 1.047 1.201

All 1.227 1.174 1.147 1.239 1.081

FB 1.654 1.527 1.359 1.313 1.155

2008:1-2016:7 FS 1.135 1.010 1.067 1.235 1.013

‘Subsample 3’ Econometrics 0.969 1.079 1.092 1.098 1.125

DNS 1.365 1.129 1.134 1.419 1.030

DIF 1.841 1.702 1.466 1.216 1.335

All 0.911 0.971 0.984 1.061 1.042

FB 0.958 1.011 1.011 1.074 1.082

1992:3-2016:7 FS 1.002 1.022 1.025 1.094 1.022

‘Subsample 4’ Econometrics 0.839*** 0.922* 0.947 0.980 1.053

DNS 0.922 0.932* 0.951 1.114 0.991

DIF 1.257 1.286 1.215 1.127 1.329

All 0.814 0.991 0.968 0.920 0.996

FB 1.052 1.287 1.190 0.997 1.063

Recession FS 0.887* 0.907 0.943* 0.999 0.956

Econometrics 0.692** 0.805* 0.841 0.899 1.061

DNS 0.707** 0.910 0.877 0.893** 1.052

DIF 1.506 1.517 1.404 1.109 0.984

All 0.948 0.966 0.987 1.089 1.054

FB 0.923 0.938* 0.972 1.089 1.087

Normal FS 1.045 1.052 1.042 1.113 1.040

Econometrics 0.894* 0.953 0.971 0.995 1.051

DNS 1.002 0.938** 0.967 1.157 0.975

DIF 1.163 1.225 1.174 1.131 1.419

* Notes: See notes to Table 2.2A. Forecast combination models are listed in Table 2.7.
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Table 2.8B: 3-Step-Ahead Relative MSFEs of Forecast Combination Models*

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

All 0.943 1.011 1.021 1.024 1.027

FB 0.941 1.013 1.032 1.046 1.057

1992:7-1999:12 FS 0.984 1.037 1.029 1.010 1.003

‘Subsample 1’ Econometrics 0.989 1.041 1.055 1.050 1.028

DNS 0.881** 0.953 0.970 0.982 0.968

DIF 1.168 1.228 1.194 1.174 1.278

All 0.779*** 0.842*** 0.864*** 0.935* 0.959**

FB 0.701*** 0.789*** 0.828*** 0.916* 0.971

2000:1-2007:12 FS 0.911** 0.930** 0.926** 0.970 0.960**

‘Subsample 2’ Econometrics 0.844*** 0.886*** 0.888*** 0.907** 0.996

DNS 0.770*** 0.790*** 0.802*** 0.887** 0.873***

DIF 0.881* 1.030 1.076 1.142 1.286

All 1.049 1.067 1.088 1.125 0.995

FB 1.284 1.280 1.230 1.187 1.040

2008:1-2016:7 FS 1.141 1.054 1.078 1.122 0.954

‘Subsample 3’ Econometrics 0.934 0.960 0.945 0.914** 0.923**

DNS 1.105 1.004 1.052 1.174 0.942

DIF 1.614 1.597 1.472 1.314 1.262

All 0.897** 0.955 0.976 1.022 0.997

FB 0.918 0.983 1.001 1.041 1.027

1992:7-2016:7 FS 0.989 0.998 1.001 1.028 0.973**

‘Subsample 4’ Econometrics 0.914*** 0.960* 0.964* 0.962* 0.979

DNS 0.885** 0.899** 0.925** 1.004 0.933***

DIF 1.149 1.232 1.215 1.203 1.274

All 0.794** 0.826* 0.831* 0.873** 0.973

FB 0.856 0.897 0.875 0.880 1.009

Recession FS 0.946* 0.910** 0.915** 0.962 0.972

Econometrics 0.868*** 0.874*** 0.863*** 0.863** 1.001

DNS 0.759*** 0.763** 0.770** 0.828*** 0.935

DIF 1.105 1.089 1.053 1.061 1.216

All 0.962 1.016 1.032 1.060 1.000

FB 0.957 1.024 1.048 1.082 1.030

Normal FS 1.016 1.040 1.034 1.045 0.973*

Econometrics 0.943** 1.001 1.003 0.988 0.976

DNS 0.965 0.963 0.984 1.049 0.933***

DIF 1.177 1.299 1.277 1.239 1.283

* Notes: See notes to Table 2.8A.
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Table 2.8C: 12-Step-Ahead Relative MSFEs of Forecast Combination Models∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

All 0.852 0.923 0.966 1.044 1.071

FB 0.912 0.983 1.034 1.126 1.164

1994:1-1999:12 FS 0.889* 0.933 0.951 0.988 0.990

‘Subsample 1’ Econometrics 1.241 1.235 1.215 1.147 0.999

DNS 0.773** 0.844** 0.880* 0.931 0.920**

DIF 1.204 1.281 1.363 1.607 1.888

All 0.673*** 0.619*** 0.616*** 0.717*** 1.006

FB 0.706*** 0.676*** 0.699*** 0.868*** 1.341

2000:1-2007:12 FS 0.641*** 0.559*** 0.527*** 0.558*** 0.686***

‘Subsample 2’ Econometrics 0.591*** 0.509*** 0.470*** 0.467*** 0.577***

DNS 0.548*** 0.486*** 0.470*** 0.535*** 0.712***

DIF 1.348 1.309 1.378 1.719 2.708

All 0.809*** 0.868** 0.965 1.081 0.950*

FB 0.986 1.022 1.084 1.158 1.008

2008:1-2016:7 FS 0.979 0.975 1.025 1.071 0.884***

‘Subsample 3’ Econometrics 0.768*** 0.753*** 0.733*** 0.704*** 0.738***

DNS 0.746*** 0.764*** 0.881** 1.056 0.894***

DIF 1.567 1.598 1.599 1.575 1.317

All 0.729*** 0.722*** 0.754*** 0.882*** 1.006

FB 0.800*** 0.800*** 0.842*** 0.998 1.166

1994:1-2016:7 FS 0.754*** 0.709*** 0.711*** 0.783*** 0.853***

‘Subsample 4’ Econometrics 0.720*** 0.678*** 0.662*** 0.680*** 0.768***

DNS 0.625*** 0.603*** 0.633*** 0.754*** 0.843***

DIF 1.381 1.367 1.422 1.658 1.949

All 1.033 1.016 1.023 1.072 1.063

FB 0.948 0.963 0.999 1.103 1.254

Recession FS 1.173 1.103 1.067 1.037 0.842***

Econometrics 1.191 1.087 0.995 0.854*** 0.631***

DNS 1.024 0.950 0.945 0.971 0.806***

DIF 0.972 1.117 1.222 1.476 2.163

All 0.630*** 0.639*** 0.687*** 0.843*** 1.000

FB 0.752*** 0.754*** 0.803*** 0.977 1.157

Normal FS 0.618*** 0.598*** 0.622*** 0.731*** 0.854***

Econometrics 0.567*** 0.564*** 0.578*** 0.645*** 0.782***

DNS 0.495*** 0.506*** 0.554*** 0.710*** 0.847***

DIF 1.514 1.437 1.472 1.695 1.927

* Notes: See notes to Table 2.8A.
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Chapter 3

Data Rich Real-Time Dynamic Nelson Siegel Modeling

3.1 Introduction

The term structure of interest rates contains crucial information for forecasting macroeconomic

variables and pricing interest rate contingent assets. As a consequence, forecasts of U.S. Treasury

bill and bond yields are, as always, as important input in models used in industry and government.

Broadly speaking, then, researchers want to understand how interest rates are determined, with

the hope of effectively forecasting future yield curves. In this paper, we add to the literature on

interest rate prediction by carrying out an extensive set of forecast experiments in order to explore

the marginal predictive content of so-called “data rich” or real-time latent macroeconomic factors in

dynamic Nelson-Siegel (DNS) type models. In our context, data-rich environments contain real-time

data, which are data that include the entire revision history for each variable. For example, real-

time GDP observations for calendar date December 2000 include the first ”reading” on 4th quarter

2000 GDP that was available in March 2001, and well as the 1st revised version of this datuum that

became available in June 2001, and so on, up until the present date. Thus, real-time datasets include

entire sequence of revisions for each calendar dated observation. Data such as these allow researchers

to simulate ”truly” real-time forecasting environments, which differs from the common practice of

using so-called fully revised data in forecasting experiments. This is important, as ”fully revised”

data consist of observations that were not actually available to market participants in real-time.

We carry out our prediction experiments for various sub-samples between 2001 and 2018, and

results are evaluated using a number of benchmark linear models. In particular, we assess the

following classes of models: (i) DNS type models of the variety recently examined by Diebold and

Li (2007), (ii) dynamic Nelson Siegel Svensson (NSS) type models (see Svensson (1994)), and (iii)

various benchmark models, including vector autoregressive (VAR) and autoregressive (AR) models.

The macroeconomic factors, or so-called “big data” diffusion indexes that we utilize are extracted

using principle component analysis of 130 U.S macro-variables for which McCracken and Ng (2016)

have constructed a real-time dataset.

Although there many sophisticated models of the term structure have been examined in the
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literature, simpler regression-based approaches to forecasting treasury yields have the best track

record for minimizing out-of-sample mean squared forecast error (MSFE). The most popular of these

models is currently the Dynamic Nelson-Siegel model, as discussed in Diebold and Li (2006). Their

DNS model is a dynamic version of the term structure model introduced by Nelson and Siegel (1987),

where the cross-section movements of the term structure are summarized by the dynamics of level,

slope, and curvature factors, assumed to follow AR(1) (or VAR(1)) processes. Although DNS type

models have become the leading method for yield curve forecasting at many policy institutions (see

BIS (2005)), and although this development is largely due to the successful empirical performance of

these models, findings in the recent literature suggest that DNS model performance has deteriorated

in recent (post credit crisis) years (see e.g. Altavilla, Giacomini and Ragusa (2014), Diebold, and

Rudebusch (2012), and Mönch (2008)). This might be explained by the change of economic regime

or structural breaks in time series models of interest rates, although research is ongoing in this area.

Other potential causes include generic model misspecification, model over-fitting, and measurement

error. One possible solution to this problem has centered around the introduction of new variants of

DNS type models. One such model, which we examine in this paper is the so-called dynamic NSS

model mentioned above.

Another possible solution to the problem mentioned above centers around the recent general

consensus that has emerged in the literature stating that should look beyond the cross section of

yields (as done in DNS models, for example) to pin down the dynamic behavior of interest rates

(Duffee et al. 2012). Along these lines, modeling the co-movements of the underlying economy

by specifying diffusion indexes (Stock and Watson, 2002a) or using key macroeconomic indicators

has proven useful in predicting government bond yields. For example, using dynamic factor model

framework, Coroneo et al. (2016) find that real economic activity and real interest rates contain

predictive content for government bond yields that are not spanned by the cross-section of yields.

Ang and Piazzesi (2003) and Mönch (2008) also report improved forecasts using affine models which

include principal component-based macro factors. Additional recent studies consider enlarging the

information set used in prediction with either observable macroeconomic factors (Diebold et al.

(2006) and Rudebusch and Wu (2008)) or surveys (Altavilla et al. (2014)). Ludvigson and Ng

(2009) find that adding macro factors helps when forecasting bond risk premia. As discussed above,

our empirical analysis adds to this literature by assessing the marginal predictive content of real-

time diffusion indexes constructed in a data-rich environment. These indexes are used alone and

as inputs into other models including DNS, NSS, and benchmark linear models; and predictions of

yields at various maturities and for various forecast horizons are constructed. Additionally, a number

of forecast combinations are examined, in which various permutations of our individual models are
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combined. Finally, results are tabulated for various sub-samples between 2001 and 2018 in order to

assess whether model rankings are dependent upon sample period.

A number of clear-cut conclusions can be made based on our experiments. First, the use of

real-time diffusion indexes increases the marginal predictive performance of all individual models

considered in our analysis, for sample periods ranging from 2001 through 2010. Second, after 2010

no “data-rich” prediction models can beat an AR(1) benchmark. Third, DNS and NSS type models

are the “best” MSFE “performers” over the 2001 through 2010 period. Fourth, forecast combination

models that combine all models that do not include diffusion indexes (i.e., DNS, NSS, and benchmark

models) yield the lowest overall MSFEs, dominating all other models across all sample periods,

forecast horizons and bond maturities. This result is in contrast to the findings of Swanson and

Xiong (2017), where including diffusion indexes always yields predictive improvement, although only

fully revised macroeconomic data are utilized in that paper. Thus, the usefulness of diffusion indexes

appears to hinge on whether or not a data-rich real-time environment is simulated in forecasting

experiments or not.

The rest of the paper is organized as follows. Section 2 describes the Dynamic Nelson Siegel and

Svensson models, and Section 3 discusses yield curve prediction with added macroeconomic diffusion

indexes. Section 4 includes details describing our empirical setup, and discusses our empirical

findings. Concluding remarks are gathered in Section 5.

3.2 The Dynamic Nelson Siegel Model

3.2.1 Three-factor Dynamic Nelson Siegel Model

Motivated by rational expectation theory, Nelson and Siegel (1985) express spot interest rates in

terms of instantaneous forward rates. Namely, the instantaneous forward interest rate of a bond

with maturity m is denoted as f(m), and the spot interest rate of a bond with maturity τ as y(τ).

Then, the yield to maturity of a bond can be written as the average of forward rates

y(τ) =
1

τ

∫ τ

0

f(m)dm.

Nelson and Siegel (1985) motivate the use of the following model of the forward rate that can generate

monotonically increasing, humped, and occasionally S-shaped yield curves, a range of shapes for yield

curves:

f(m) = β1 + β2 · exp(
m

θt
) + β3 · [(

m

θt
)exp(

m

θt
)],

where λt = 1
θt

is the so-called decay parameter, which must be estimated, is assumed fixed in this

model, and is time varying in the dynamic version of the model discussed below. It is then easy to
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derive the following model for bond yields:

y(τ) = β1 + β2 · [
1− exp(− τ

θt
)

τ
θt

] + β3 · [
1− exp(− τ

θt
)

τ
θt

− exp(− τ
θt

)].

In the above model, the latent factors (i.e., the “betas”) are fixed. Diebold and Li (2006) generalize

this model to allow for time-varying betas: β1,t, β2,t and β3,t. Their so-called Dynamic Nelson-

Siegel (DNS) model is estimated using a two-step procedure. First, the rate of decay λt is set to

a constant. Next, at each point in time, t, the yield cross section is linearly projected onto the set

of factor loadings (1, 1−exp(−λtτ)
λtτ

, 1−exp(−λtτ)
λtτ

− exp(−λtτ)). In our experiments, various different

dimensions are considered when specifying the yield cross section. Namely, we consider yield cross

sections using 10, 12, and 30 different yield maturities. For example, with our 12-dimensional cross

section, we estimate the latent factors by fitting the following regression:

yt(τ1)

yt(τ2)

yt(τ3)

...

yt(τ12)


12×1

=



1 1−exp(−λtτ1)
λtτ1

1−exp(−λtτ1)
λtτ1

− exp(−λtτ1)

1 1−exp(−λtτ2)
λtτ2

1−exp(−λtτ2)
λtτ2

− exp(−λtτ2)

1 1−exp(−λtτ3)
λtτ3

1−exp(−λtτ3)
λtτ3

− exp(−λtτ3)

...
...

...

1 1−exp(−λtτ12)
λtτ12

1−exp(−λtτ12)
λtτ12

− exp(−λtτ12)


12×3


β1,t

β2,t

β3,t


3×1

The betas (i.e., β̂1,t, β̂2,t, and β̂3,t) are called the “level”, “slope”, and “curvature” factors. In

particular, note that the loading on β̂1,t is one, which is naturally interpreted as the “level” factor.

The loading on β̂2,t decreases as bond maturity increases, resulting in an increase of the “slope” of

bond yield curve. Finally, the loading on the third latent factor, β̂3,t, starts from zero on the short

end of yield curve, reaches its peak at some maturity in the middle, and gradually decays to zero as

maturity goes to infinity. Figures 3A - 3B exhibit the three NS factors estimated with ordinary least

squares and non-linear least squares methods for sample period 1988:8 - 2017:10.1 In summary, the

DNS model can be written as follows:

ŷt(τ) = β̂1,t + β̂2,t · [
1− exp(−λtτ)

λtτ
] + β̂3,t · [

1− exp(−λtτ)

λtτ
− exp(−λtτ)]. (3.1)

In order to construct predictions using the DNS model, we fit estimated factors to AR and VAR

models, as follows.

β̂i,t+1 = ci + γiβ̂i,t + εt i = 1, 2, 3 or, (3.2)

1An increase in the “level” component, β1t, affects all yields equally, thus it determines the level of the yield curve.
Also, as maturity τ goes to infinity, β1t = yt(∞) by definition. An increase in “slope” component β2t affects short
rates more than long rates, thereby changing the slope, or the so-called “term spread” of the yield curve. Finally, an
increase in β3t, the “curvature” component, will increase medium-term yields and have little effect on the short and
long end of the curve. Therefore, the yield curve will becomes more hump shaped. As demonstrated in Diebold and Li
(2006), the “level” factor can be approximated with the 10-year bond yield, the “slope” factor can be approximated
with 10-year - 3-month bond yield spreads, and the “curvature” factor moves closely with two times the 2-year yield
minus the sum of the 3-month and 10-year yields.
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β̂t+1 = c + Γβt + εt, (3.3)

where εt is a scalar stochastic disturbance term, εt is a 3×1 vector of stochastic disturbance terms,

and ci, c, γi, and Γ, i = 1, ..., 3, are conformably defined constants, constant vectors and constant

matrices. With these last two models, one con construct predictions of the β̂i,t, for i = 1, ..., 3, which

can in turn be inserted into the above model of ŷt(τ) in order to generate predictions thereof. In

all experiments in the sequel, rolling estimation is carried out when estimating the above models

(and all other models), using windows of length 120 months, so that “real-time” predictions are

constructed in all cases. Additionally, we consider two types of prediction models. In one, the decay

paraemter is fixed. In the other, the decay parameter is re-estimated prior to the construction of

each new prediction. For further details, including a recent review of Treasury yield curve modeling

using DNS models, see Diebold and Rudebusch (2013) and De Pooter (2007). For further discussios

comparing arbitrage free dynamic latent factor and DNS models, see Ang and Piazzesi (2003),

Diebold, Rudebusch and Aruoba (2006), Christensen, Diebold, and Rudebusch (2011), Duffie (2011),

and the references cited therein.

3.2.2 Four-factor Nelson-Siegel-Svensson Model

Svensson (1994) extends the Nelson-Siegel Svensson (NSS) model by adding a fourth term, that

allows for a second “hump” shape. In particular, he proposed the following four-factor model for

fitting the instantaneous forward interest rate:

f(m) = β1 + β2 · exp(
m

θ1,t
) + β3 · [(

m

θ1,t
) · exp(

m

θ1,t
)] + β4 · [(

m

θ2,t
) · exp(

m

θ2,t
)].

Notice that in the above equation there are now two different decay parameters controlling the

double-hump shape of the forward curve, called θ1 and θ2. Similar to the DNS model, we consider a

dynamic version of the NSS model. Thus, we utilize the following variant of the DNS model (factor

estimation and prediction construction is carried out using the DNS modeling approach discussed

above).

ŷt(τ) = β̂1,t + β̂2,t · [
1− exp(−λ1,tτ)

λ1,tτ
] + β̂3,t · [

1− exp(−λ1,tτ)

λ1,tτ
− exp(−λ1,tτ)]

+ β̂4,t · [
1− exp(−λ1,tτ)

λ2,tτ
− exp(−λ2,tτ)],

where we now have two decay parameters, as discussed above. These are called λ1,t and λ2,t. As

discussed in De Pooter (2007), the second hump in the NSS model is difficult to identify without

imposing additional restrictions. We adopt his approach to solving this issue, which includes as-

sumptions that the two humps are at least one year apart, and that the second hump reaches its

maximum for a maturity which is at least twelve months shorter than the first hump. Additionally,
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it is assumed that λ1 6= λ2, in order to avoid multicollinearity. Figures 4A - B plots the four NSS

factors estimated with static and dynamic decay parameters, λ1,t and λ2,t. Figure 3.4C plots esti-

mated rates of decay used in the construction of the four Nelson-Siegel-Svensson factors, where the

rates of decay (λ1,t, λ2,t) are either set to fixed numbers, or estimated recursively using nonlinear

least squares. See Section 3.1.2 for details on model estimation.

3.3 Unspanned Risks and Diffusion Indexes

Whether or not macroeconomic, financial and other non-yield information is useful in fitting and

forecasting the yield curve remains an open question. As Duffee (2012) points out, yields are usually

hypothesized to follow Markov a process, which implies that all information in fundamental eco-

nomic variables should already be embedded in yield cross sections. This leaves no role for so-called

“unspanned risks”, as proxied for by additional economic variables and/or diffusion indexes con-

structed in a data rich environment. Namely, he argues that, at least theoretically, it is redundant

to add current non-yield information in the above forecast equation for interest rates. On the other

hand, in the empirical literature there are many examples where adding economic variables and

diffusion indexes has proven to be effective in improving yield curve fitting as well as forecasting. In

particular, Ang and Piazzesi (2012) find that macroeconomic variables are significant for explain-

ing Treasury security yield dynamics, based on a VAR analysis. Mönch (2008) shows that adding

estimated diffusion indexes to an affine Gaussian term structure model improves out-of-sample fore-

cast performance. Diebold, Rudebusch, and Aruoba (2006) investigate the bidirectional causality

between yield betas and macro variables and discover strong evidence in favor of linkages between

macroeconomic variables and future yield curve dynamics.

Recently, focus has turned to so-called big data, and to the analysis of the usefulness of largescale

datasets in the above context. As noted in Bernanke (2003), monetary policy-makers and academics

alike are very interested in examining the (predictive) usefulness of a wide range of variables in a

data-rich environments. For example, the predictive usefulness of diffusion indexes constructed using

largescale datasets has been examined in countless academic papers in the past few years. The same

is certainly true in industry, where the prevalence of big data and related machine learning methods

is readily apparent. One important aspect of big data in our context is the use of so-called real-time

data, as discussed in the introduction. Recently, McCracken and Ng (2016) and St. Louis Federal

Reserve Bank’s data desk created the FRED-MD, which is a large monthly real-time database that

contains over 130 macro-variables and all revisions of all of these variables. The dataset contains

variables summarizing economic output and income, labor markets, consumption, money and credit,



59

housing, and stock market, for example. Moreover, they show that diffusion indexes extracted from

their FRED-MD dataset contain the same predictive content as diffusion indexes constructed using

the classic Stock and Watson dataset (Stock and Watson (2002)). However, the FRED-MD is a

real-time database, while the Stock and Watson dataset contains only fully revised data. Several

studies have revealed the importance of collecting and updating such real-time datasets including

Diebold and Rudebusch (1991), Hamilton and Perez-Quiros (1996), Bernanke and Boivin (2003),

and the papers cited therein.

In this paper, we ask the following question: Are diffusion indexes useful for predicting yields,

when the data used to construct the indexes are purely “real-time”, rather than fully revised as in

Swanson and Xiong, (2017), for example. We motivate the use of diffusion indexes by adopting a

dynamic factor model framework resembling that used by Coroneo et al. (2016) and many others.

Namely, we assume that yields curve factors, (which are the betas in the above discussion are are here

called Fy,t), are driven by both past yield curve factors and macro factors, called Fx,t. Additionally,

it is assumed that macroeconomic variables are driven only by Fx,t only. Thus, we posit the following

model: Fy,t+h
xt

 =

cy
cx

+

Γy Γx

0 Γxx

Fy,t
Fx,t

+

ey,t+h
ex,t

 ,

where cy, cx are vectors containing constant terms, h is the forecast horizon, Γy contains factor

loadings on yield factors, Γxx contains factor loadings on the macro factors, and Γx summarizes

the marginal effect of macro factors on yield factors. Additionally, ey,t+h and ex,t are idiosyncratic

stochastic disturbance terms. In their paper, Coroneo et al. (2016) use a so-called expectation

conditional restricted maximization algorithm for model estimation, and measure the effect of “un-

spanned” macroeconomic variables (risks) on the yield curve. We use principal component analysis

(PCA) for estimating our macro diffusion indexes (i.e., macro factors), following Stock and Wat-

son (2002a,b), and consider various alternative models that utilize macro diffusion indexes. For

instance, we examine whether adding macro diffusion indexes to our DNS and NSS models improves

the predictive accuracy of these models. Of course, we also consider baseline DNS (or NSS) models

that contain only yield factors. More concretely, h−step ahead predictions for yield factors are

constructed using the following model:

F̂ fy,t+h = ĉy + Γ̂′yF̂y,t, (3.4)

where F̂y,t is our estimated DNS (or NSS) latent factor (i.e. F̂y,t are our betas in the above dis-

cussion), F̂ fy,t+h is our prediction constructed by specifying simple AR(1) or VAR(1) models, ĉy is

an estimate of cy, and Γ̂y is an estimate of Γy. We additionally add the first rx principle compo-

nents from a PCA analysis of our real-time dataset, denoted as F̂x,t, to the above prediction model,
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yielding:

F̂ fy,t+h = ĉy + Γ̂′yF̂y,t + Γ̂′xF̂x,t (3.5)

where Γ̂x is an estimate of Γx. When predicting yields, in addition to utilizing DNS and NSS models,

we also examine whether adding macro diffusion indexes to benchmark AR and VAR models improves

predictive accuracy. In particular, we consider the following model:yt+h
xt

 =

 c

cx

+

∆y ∆x

0 Γxx

 yt

Fx,t

+

et+h
ex,t

 ,

where c is the vector containing constant terms, all coefficient matrices (i.e., ∆y, ∆x, and Γxx) are

a conformably defined coefficient matrices, ∆x summarizes the marginal effect of macro diffusion

indexes on yields, and et+h is an idiosyncratic stochastic disturbance term. Summarizing, our focus

of interest is on h-step ahead yield predictions constructed using the following model:

ŷt+h(τ) = ĉ(τ) + δ̂′yyt, (3.6)

where ĉ(τ) is an estimate of c(τ), which is an element of c. Also, δ̂y is an estimate of δy, which

is a row vector of ∆y. yt contains lags of yt+1(τ) in autoregressive specifications, and contains

lags of yt+1 in vector autoregressive specifications. We additionally add the macro diffusion indexes

discussed above, F xt , to this model, yielding:

ŷt+h(τ) = ĉ(τ) + δ̂′yyt + δ̂′xF̂x,t, (3.7)

where δ̂x is an estimate of δx, which is a row vector of ∆x.

3.4 Empirical Results

We carry out an empirical investigation that utilizes the various models and methods discussed

above. Our objective is to predict U.S. Treasury yields at various maturities (i.e., the term structure

of interest rates). Predictions are made using “small data” models (i.e. models which only use

historical yield cross sections for calibrating models), as well as “big data” models that include

diffusion indexes constructed from the real-time FRED-MD dataset discussed above. Our small data

models include autoregressive, vector autoregressive, dynamic Nelson-Siegel and dynamic Nelson-

Siegel-Svensson models, and our “big data” models are specified as pure diffusion index models or

as hybrids that cobmine our small data models with diffusion indexes. In the remaining subsections,

we summarize our empirical setup, the data used in our analysis, and our experimental findings.



61

3.4.1 Empirical Setup

Predictive Accuracy Testing

When comparing the predictive performance of our models, we report the mean square forecast error

(MSFE), defined as:

MSFEh(τ) =

P∑
t=1

(ŷt+h(τ)− yt+h(τ))2 (3.8)

where ŷt+h(τ) is the h-step-ahead forecast of the Treasury bond yield, with maturity τ . P is the

number of ex ante predictions used in our analysis. Additionally, all model parameters are estimated

with maximum likelihood and PCA; and parameters are updated prior to the construction of each

forecast using a rolling window of 120 months of historical data. Model MSFEs are compared using

the predictive accuracy test introduced by Diebold and Mariano (1995). The null hypothesis of the

DM test is: H0 : E[L(ε
(1)
t+h)]− E[L(ε

(2)
t+h)] = 0, where the ε

(i)
t+h is the prediction error of model i, for

i = 1, 2. In our analysis, L(.) is a quadratic loss function. The DM test statistic is:

DMP (τ) = P−1
P∑
t=1

dt+h(τ)

σ̂d̄
(3.9)

where dt+h(τ) = [ε̂
(1)
t+h(τ)]2 − [ε̂

(2)
t+h(τ)]2, d̄ denotes the mean of dt+h(τ), σ̂d̄ is a heteroskedasticity

and autocorrelation consistent estimate of the standard deviation of d̄, and P denotes the number

of ex ante predictions used to construct the test statistic. If the DMP statistic has a negative

value, Model 1 is preferred to Model 2. If the DMP statistic is significantly different from zero, the

difference between Model 1 and Model 2 is statistically significant. In the sequel, we assume that

the DMP test is asymptotically N(0,1), although in cases where models being compared are nested,

modified critical values tabulated by McCracken (2000) should be used (see Corradi and Swanson

(2006) for complete details).

Models Used in Forecasting Experiments

A summary of the models used in our prediction experiments is given below.

Small Data Models

Autoregressive (AR) and Vector Autoregressive (VAR) Models:

Models in this section are summarized in Table 3.1, and include: AR(1), VAR(1), AR(SIC), and

VAR(SIC).

We utilize a number of benchmark time series models, specified as follows:

yt+h(τ) = c(τ) + δ′yWt + εt+h, (3.10)
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where τ denotes the maturity of a bond (bill) for which the scalar, yt+h(τ), measures the annual yield.

Additionally, Wt contains lags of yt(τ) in autoregressive specifications, and contains lags of yt(τ)

and additional explanatory variables in vector autoregressive specifications, with δy a conformably

defined coefficient vector. c(τ) contains the constant term. 2 In AR and VAR specifications, up to 5

lags of yt(τ) are included, with the number of lags selected using the Schwarz information criterion

(SIC). In addition to AR(SIC) and VAR(SIC) models, straw-man AR(1) and VAR(1) models are

estimated. Additionally, in our unrestricted VAR models, Wt includes five bond yields with matu-

rities 3 months, 1 year, 3 years, 5 years, and 10 years.

Dynamic Nelson Siegel (DNS) Models:

Models in this section are summarized in Table 3.1, and include: DNS(1), DNS(2), DNS(3), DNS(4),

DNS(5), and DNS(6).

As discussed above, the DNS model introduced by Li and Diebold (2006) is a dynamic version

of the term structure based upon Nelson and Siegel (1987), where cross-sectional movements in the

term structure are summarized by the dynamics of three underlying latent factors (betas) interpreted

as “level”, “slope”, and “curvature” factors. We refer to the three betas as “Nelson-Siegel factors”

(NS-factors), and in our prediction experiments, both AR(1) and VAR(1) type models are specified

in order to predict these factors for subsequent use in the prediction of yt+h(τ).

We estimate the latent factors by fitting the following regression:

yt(τ) = β1,t + β2,t · [
1− exp(−λtτ)

λtτ
] + β3,t · [

1− exp(−λtτ)

λtτ
− exp(−λtτ)] + εt, (3.11)

which is discussed in Section 2.1. Again as discussed above, we utilize yield cross sections that

include 10, 12, and 30 different yield maturities. Predictions of yt+h are constructed using the

model:

ŷt+h(τ) = β̂f1,t+h + β̂f2,t+h · [
1− exp(−λtτ)

λtτ
] + β̂f3,t+h · [

1− exp(−λtτ)

λtτ
− exp(−λtτ)], (3.12)

where yt+h(τ) is a scalar, and β̂f1,t+h, β̂f2,t+h, and β̂f3,t+h are predictions constructed by specifying

simple AR(1) models for β̂1,t, β̂2,t, and β̂3,t, including:

β̂fi,t+h = ĉi + γ̂y,iβ̂i,t, for i = 1, 2, 3, (3.13)

where β̂fi,t+h, β̂i,t, ĉi and γ̂i are scalars. Note that ĉi is an element of ĉy in equation (3.1). Also, γ̂y,i

is an element of Γ̂y as defined in equation (3.1). We also construct predictions by using the following

2When specifying VAR models, equation (4.3) constitutes only one (τ -maturity) equation in the VAR. As the same
set of explanatory variables is utilized in each equation in the VAR, the SUR (seemingly unrelated regression) result
ensures that consistent and efficient parameter estimates can be obtained via application of equation by equation least
squares.
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VAR(1) model:

β̂
f

t+h = ĉy + Γ̂yβ̂t, (3.14)

where β̂
f

t+h = (β̂f1,t+h, β̂f2,t+h, β̂f3,t+h)′, ĉ is a 3 × 1 vector, and Γ̂y = (γ̂1, γ̂2, γ̂3), with γ̂j a 3 × 1

vector, for j = 1, 2, 3. In our experiments, the decay parameter is estimated both statically and

dynamically (prior to the construction of each new prediction). For prediction models with a static

rate of decay (i.e., models DNS(1) and DNS(4) in Table 3.1), λt is set equal to 0.0609, as in Diebold

and Li (2006). DNS(2), DNS(3), DNS(5), and DNS(6)) utilize a dynamically estimated decay para-

meter, which is estimated as follows. First, a grid search for the decay parameter ( 1
λt

) is carried

out on the domain of (6.69, 33.46), which corresponds to the domain of a “curvature hump” of one

to five years. The range for the grid search is selected on the basis of bond maturities.3 Next,

NS-factors are calculated with the selected rate of decay for the “curvature” factor that minimizes

squared in-sample fitted errors. Finally, either an AR(1) or VAR(1) models are estimated in order

to generate forecasts of the NS-factors, as discussed above.

Dynamic Nelson-Siegel-Svensson (NSS) Models:

Models in this section are summarized in Table 3.1, and include: NSS(1), NSS(2), NSS(3), NSS(4),

NSS(5), and NSS(6).

The dynamic Nelson-Siegel-Svensson (NSS) model is included in our prediction experiments

because it is one of the most widely used in zero-coupon yield curve construction by major central

banks (see BIS (2005)). As discussed above, in the model, Svensson (1994) adds an additional

factor to the classic 3-factor Nelson-Siegel model that captures a second “curvature hump”. In our

experiments, the four latent factors are referred to as “Nelson-Siegel-Svensson factors” (NSS-factors).

Although Svensson did not consider a dynamic version of his model in his original paper, we do so,

following the approach of Diebold and Li (2006). The framework of our prediction experiments using

the NSS model is, thus, analogous to that discussed above in the case of DNS model. In particular,

estimates of the NSS-factors (i.e. β1,t, β2,t, β3,t, and β4,t) are constructed at each point in time

by regressing (1,
1−exp(−λ1,tτ)

λ1,tτ
,

1−exp(−λ1,tτ)
λ1,tτ

− exp(−λ1,tτ),
1−exp(−λ2,tτ)

λ2,tτ
− exp(−λ2,tτ)) on yt(τ).

Additionally, the model is now:

yt(τ) = β1,t + β2,t · [
1− exp(−λ1,tτ)

λ1,tτ
] + β3,t · [

1− exp(−λ1,tτ)

λ1,tτ
− exp(−λ1,tτ)]

+ β4,t · [
1− exp(−λ2,tτ)

λ2,tτ
− exp(−λ2,tτ)] + εt,

(3.15)

3We find that setting domains too wide results in occasional ‘extreme’ estimates for NS-factors, which in turn leads
to occasional poor yield forecasts. For further discussion, see below. For an extensive discussion of decay parameter
estimation, refer to De Pooter (2007).
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Resultant sequences of estimates, β̂1,t, β̂2,t, β̂3,t, and β̂4,t, for t = 1, ..., T are used to construct

predictions of yt+h(τ) using:

ŷt+h(τ) = β̂f1,t+h + β̂f2,t+h · [
1− exp(−λ1,tτ)

λ1,tτ
] + β̂f3,t+h · [

1− exp(−λ1,tτ)

λ1,tτ
− exp(−λ1,tτ)]

+ β̂f4,t+h · [
1− exp(−λ2,tτ)

λ2,tτ
− exp(−λ2,tτ)]

(3.16)

where yt+h(τ) is a scalar, and β̂f1,t+h, β̂f2,t+h, β̂f3,t+h, and β̂f4,t+h are predictions constructed by

specifying simple AR models:

β̂fi,t+h = ĉi + γ̂y,iβ̂i,t, for i = 1, 2, 3, 4 (3.17)

where β̂fi,t+h, β̂i,t, ĉi, and γ̂y,i are scalars. We also construct NSS-factor predictions by using the

following VAR(1) model:

β̂
f

t+h = ĉy + Γ̂yβ̂t, (3.18)

where β̂
f

t+h = (β̂f1,t+h, β̂
f
2,t+h, β̂

f
3,t+h, β̂

f
4,t+h)′, hatcy is 4× 1 vector, and Γ̂y is a 4× 4 matrix of con-

stants. To estimate NSS model parameters, again, two estimation methods for the decay parameters

are utilized. In the case of a fixed (static) decay parameter, λ1,t is equal to 0.0609, which is the same

value as that used when estimating our three-factor DNS model; and the second rate of decay, λ2,t,

is set equal to 0.2985, corresponding to a second curvature hump at approximately 6 months.4 The

subsequent forecasting procedure used to construct yield predictions is the same as that discussed

above for our DNS models.

Big Data Models

AR and VAR Models with Macro Diffusion Indexes:

Models in this section are summarized in Table 3.1, and include: AR(1)+FB1, AR(1)+FB2,

AR(1)+FB3, VAR(1)+FB1, VAR(1)+FB2, and VAR(1)+FB3.

We utilize the prediction model given in equation (4.3), but with latent factors (i.e., diffusion

indexes), F xt , estimated using PCA with a real-time macroeconomic dataset (see Section 3 for a

discussion of diffusion indexes and Section 4.2 for a discussion of the data used in our analysis). In

particular, we estimate variants of the following factor augmented forecasting model:

yt+h(τ) = c(τ) + δ′yWt + δ′xF
x
t + εt+h, (3.19)

4Restrictions on the decay parameters for the NSS model are imposed to ensure that the two curvature humps
are at least one year apart, for identification purposes. In addition to this restriction that 1

λ1,t
≥ 1

λ2,t
+ 6.69 (see

De Pooter (2007)), restrictions are imposed on the domain of the two decay parameters. Namely, the grid search for
the first decay parameter 1

λ1,t
is over the domain of (6.69, 33.46); and for the second decay parameter 1

λ2,t
is on (0,

26.77). These restrictions ensure identification of two curvature factors individually, and avoids ‘extreme’ estimates
for NSS-factors.
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where F xt includes either 1, 2 or 3 diffusion indexes, and Wt is defined as above, yielding AR and

VAR variants of these models. Here, c(τ) is a constant term, and δy and δx are conformably defined

vectors of coefficients, as discussed in Section 3. Note that although multiple yield lags were tried

when specifying Wt, ‘MSFE-best’ models always included only the first lag of the yield(s). For this

reason all empirical results discussed in the sequel use one lag.

DNS Models with Macro Diffusion Indexes:

Models in this section are summarized in Table 3.1, and include: DNS(1)+FB1, DNS(2)+FB1,

DNS(3)+FB1, DNS(4)+FB1, DNS(5)+FB1, DNS(6)+FB1, DNS(1)+FB2, DNS(2)+FB2,

DNS(3)+FB2, DNS(4)+FB2, DNS(5)+FB2, DNS(6)+FB2, DNS(1)+FB3, DNS(2)+FB3,

DNS(3)+FB3, DNS(4)+FB3, DNS(5)+FB3, DNS(6)+FB3.5

In this section, diffusion indexes (principle components) constructed using macro variables are

augmented to DNS models discussed above. Namely, we considered DNS type predictions con-

structed using:

β̂fi,t+h = ĉi + γ̂′y,iβ̂i,t + γ̂′x,iF
x
t , for i = 1, 2, 3,

where F xt again includes either 1, 2 or 3 latent factor(s). All other terms are conformably defined.

We also construct predictions by using the following VAR(1) variant of this model:

β̂
f

t+h = ĉy + Γ̂yβ̂t + Γ̂xF
x
t ,

where β̂
f

t+h = (β̂f1,t+h, β̂
f
2,t+h, β̂

f
3,t+h)′), ĉy is 3× 1 vector, Γ̂y = (γ̂1, γ̂2, γ̂3), with γ̂j a 3× 1 vector,

for j = 1, 2, 3, and Γ̂x is a conformably defined matrix of constants.

NSS Models with Macro Diffusion Indexes:

Models in this section are summarized in Table 3.1, and include: NSS(1)+FB1, NSS(2)+FB1,

NSS(3)+FB1, NSS(4)+FB1, NSS(5)+FB1, NSS(6)+FB1, NSS(1)+FB2, NSS(2)+FB2,

NSS(3)+FB2, NSS(4)+FB2, NSS(5)+FB2, NSS(6)+FB2, NSS(1)+FB3, NSS(2)+FB3,

NSS(3)+FB3, NSS(4)+FB3, NSS(5)+FB3, NSS(6)+FB3.

Analogous to our DNS models, NSS model predictions constructed using:

β̂fi,t+h = ĉi + γ̂′y,iβ̂i,t + γ̂′x,iF
x
t , for i = 1, 2, 3, 4

where F xt includes either 1, 2 or 3 latent factors. All other terms are conformably defined and

analogous to our above discussion. We also construct predictions using the following VAR(1) variant

5FB1, FB2, and FB3 denote models that have been augmented to include either 1, 2, or 3 diffusion indexes,
respectively.
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of this model:

β̂
f

t+h = ĉy + Γ̂yβ̂t + Γ̂xF
x
t ,

where β̂
f

t+h = (β̂f1,t+h, β̂
f
2,t+h, β̂

f
3,t+h, β̂

f
4,t+h)′, ĉ is 4 × 1 vector, and Γ̂y = (γ̂1, γ̂2, γ̂3, γ̂4), γ̂j is a

4× 1 vector, for j = 1, 2, 3, 4 and Γ̂x is a conformably defined matrix of constants.

As a final note, it is worth mentioning that all macroeconomic variables are standardized to zero

mean and unit variance series before principle component analysis is utilized to construct diffusion

indexes.

Forecast Combination:

In our experiments, we also construct and analyze various forecast combination models. The

particular combinations are detailed in Table 3.8. Although the focus of this paper is not forecast

combination, there are two reasons why we include combinations in our analysis. First, it is well

known that forecast combination is useful in time series prediction. As shown in Kim and Swanson

(2014), Carrasco and Rossi (2016), and Hirano and Wright (2017), much can be gained via combi-

nation not only of forecasts, but also of methodologies.6 More importantly, it turns out that while

combination does not play an important role when comparing DNS and NSS type models with and

without diffusion indexes if fully revised data are used in model and prediction construction, as

discussed in Xiong and Swanson (2017), the same is not true when real-time data are used in our

data rich environment. Indeed, we shall see that various forecast combinations dominate all of the

models discussed above, when real-time data are utilized. This is important because it suggests that

the use of fully revised data may be quite misleading in the types of experiments carried out in this

paper.

Finally, note that in all experiments, models are estimated using rolling windows of 120 monthly

observations, as discussed above. Thus, all models are re-estimated prior to the construction of each

new h-step ahead forecast. Additionally, the first observation in our dataset is August 1988, and

experiments are carried out for 4 different prediction periods, as discussed in the next section.

3.4.2 Data

Yield Data: Our term structure data are monthly U.S. zero-coupon (end of month) yield curve

data reported by the Federal Reserve Board (see https://www.quandl.com/data/FED/SVENY-US-

Treasury-Zero-Coupon-Yield-Curve and Gürkaynak, Sack and Wright (GSW: 2006)). In particular,

we utilize GSW monthly data for the August 1988 through October 2017, which contains data on 1

6For a discussion of forecast combination using the types of factor augmented regressions discussed in this paper,
see Cheng and Hansen (2015).
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to 30 years maturity bond yields. In addition to GSW zero-yields, 3- and 6-months T-bill yields7 are

utilized in order to “fill-out” the short end of the yield curve. Hence, we analyze a panel of dataset

containing N = 32 dimensional yields and T = 351 monthly observations. When constructing betas,

we consider three variants of this data. In one variant, we utilize 12 yields (i.e., 3- and 6-months,

1 year, 2 year, ..., and 10 year yields); in a second variant, we utilize 10 yields, as done in Xiong

and Swanson (2017) (i.e., 1 year, 2 year, ..., and 10 year yields); and in a third variant we utilize 30

yields (i.e., 1 year, 2 year, ..., and 30 year yields).

While Dickey-Fuller tests cannot reject the null hypothesis of a unit root in yields, preliminary

forecast experiments using both yields and first-difference yields resulted in little differences when

comparing MSFEs of yield predictions. Moreover, finance theory is not consistent with the presence

of a unit root in yield processes. For these reasons, we use only yield “levels” data in our experiments.

Macroeconomics Variables:

Macroeconomic factors (i.e., diffusion indexes) are constructed using PCA. The dataset used

is the FRED-MD dataset, which is a real-time monthly database of over 130 macroeconomic time

series that covers categories ranging from output and income, to labor market, prices, and in-

terest rates. The FRED-MD dataset is developed and maintained by the Federal Reserve Bank

of St. Louis. For details, see McCracken and Ng (2016), and for access to the dataset, visit

https://research.stlouisfed.org/econ/mccracken/fred-databases/. In their paper, McCracken and Ng

(2016) conduct an empirical research which shows that diffusion indexes extracted from the dataset

share the same predictive content as those based on the classic (non-real-time) Stock and Watson

(2002) dataset used so frequently in analyses such as ours. As discussed above, one advantage of

FRED-MD is that all time series are updated monthly by the Federal Reserve Bank of St. Louis.

Thus, researchers have truly real-time data available for conducting forecasting experiments, in

which all vintages (revisions) of all variables are available. Use of such data ensures that future

information cannot inadvertently be used to revise data from prior periods, which is a serious po-

tential problem with non-real-time or fully revised data. Moreover, fully revised datasets “mix”

vintages of observations, in the sense that the most recent observation in a fully revised dataset

is a so-called “first release”, while earlier calendar dated observations have possibly been revised

and re-released many times. Interestingly, we find that real-time data does matter, as findings from

Xiong and Swanson (2017) supporting the use of macro diffusion indexes in DNS type models are

reversed when real-time instead of fully revised data are used in index construction. Finally, note

73- and 6-months T-bill yields are constant-maturity, as reported in the FRED database of the Federal Reserve
Bank of St. Louis. This “hybrid” zero-yield dataset is widely utilized in yield curve estimation, see Gürkaynak and
Wright (2012), Hamilton and Wu (2012).
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that only the use of real-time datasets makes it possible to replicate truly real-time modeling and

forecasting of U.S. Treasury yields, when using macroeconomic data that are subject to revision.

3.4.3 Empirical Findings

A number of clear-cut conclusions emerge upon examination of the results collected in Tables 3.1 -

3.9C.

First, let us turn to a discussion of the results in Tables 3.2A - 3.4C. Tables 3.2A - 3.2C include:

(i) the three“MSFE-best” (i.e., lowest MSFE model) models for each yield maturity/forecast horizon

permutation, in descending order from 1st to 3rd (see Table 3.2A); (ii) MSFE for the three models

listed in Table 3.2A (see Table 3.2B); and relative MSFEs (relative to the AR(1) benchmark) for

the 3 models (see Table 3.2C). All of these tables report results for DNS and NSS type models

with betas constructed using our 12-dimensional historical yield dataset (see Section 4.2 for details),

and results are presented for 3 forecast horizons (h = 1, 3, 12), for 6 yield maturities (3- and 6-

month, 1 year, 3 years, 5 years, and 10 years), and for 4 different forecasting periods, including:

2001:1-2005:12 (Subsample 1), 2006:1-2010:12 (Subsample 2), 2011:1-2017:10 (Subsample 3), and

2001:1-2017:10 (Subsample 4). Analogous results, but with different historical yield datasets are

reported in Tables 3A-C (for our 12-dimensional historical yield dataset) and Tables 4A-C (for

our 12-dimensional historical yield dataset). In this first set of tables, the MSFE-best across all 3

historical yield datasets, and for each maturity, horizon, and subsample is denoted in bold. Thus, for

example, we see in Table 3.5A that there are many bolded entries, indicating that the 12-dimensional

historical yield dataset is yielding many MSFE-best models. For example, at the h = 1-step ahead

horizon, and for τ = 3-months, 1 year and 3-years, the MSFE best models (which are all based

on the 12-dimensional historical yield dataset) are VAR(1)+FB2, AR(1)+FB2, and DNS(1)+FB1,

respectively. (See Table 3.1 for a list of model mnemonics.) All of these models include diffusion

indexes, two include linear benchmark type AR and VAR models, and one utilizes a DNS type

model.

Notice that many of the models that are MSFE-best in Tables 3.2A - 3.4C include diffusion

indexes (i.e., models with FB1, FB2, or FB3 in their names). Additionally, many models are of

the DNS and NSS variety. This pattern prevails across all forecast horizons and bond maturities.

Thus, we have strong evidence that DNS and NSS models are useful, as previously found by many

authors, and that the usefulness of all models including DNS type models can often be improved by

including diffusion indexes. This result is not completely ubiquitous, however. For example, in the

third subsample (post Great Recession), diffusion indexes are not in any MSFE-best models, when

considering our 12-dimensional historical yield dataset (see Table 3.2A), indicating a deterioration
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in predictive gains associated with using diffusion indexes, post Great Recession. However, they

are in the 2nd and 3rd “best” models, in many for many yield maturities. Thus, the usefulness of

diffusion indexes appears to be somewhat sample dependent. This is not surprising, and suggests,

for example, a possible use for hybrid models in which the inclusion of diffusion indexes is triggered

by variables such as predicted probabilities of recessions, economic variability, or the range of yields

over some pre-defined prior period of time.

As stated above, Tables 3.2A - 3.4D indicate that DNS or NSS type models are often the MSFE-

best models. In Table 3.2A DNS or NSS type models are MSFE-best in 12 of 15 maturity/horizon

permutations for Subsample 1, and are top three MSFE performers in 37 of 45 maturity/horizon

permutations. However, in Subsample 2, the results deteriorate slightly, where analogous “wins”

are 10 of 15 and 28 of 45. Finally, in Subsample 3, DNS or NSS type models “win” in only 7 of

15 cases and 19 of 45 cases, respectively. These are consistent with findings in the recent literature

suggesting that DNS type model performance has deteriorated in recent post credit crisis years (see,

e.g. Altavilla, Giacomini and Ragusa (2014), Diebold, and Rudebusch (2012), and Mönch (2008)).

On a different note, DNS and NSS model performance is optimized when our 12-dimensional

historical yield dataset is used to construct historical betas. Adding further information from the

long end of the yield curve appears, thus, to add more noisiness than information when estimating

betas. This is not altogether surprising, given the well known difficulty in “pinning-down” the long

end of the yield curve in empirical settings.

Second, let us turn to a discussion of the results in Tables 3.5A - 3.7D. Tables 3.5A - 3.5D contain

relative MSFEs (relative to the AR(1) benchmark model) for all models (rather than just the top 3)

examined in our 12-dimensional historical yield dataset for Subsample 1 (Table 3.5A), Subsample 2

(Table 3.5B), Subsample 3 (Table 3.5C), Subsample 4 (Table 3.5D), for the h = 1 case. Analogous

results for h = 4 are contained in Tables 6A-6D, and for h = 12 results are contained in Tables

7A-7D. In Tables 5A-7D, the results of DMP tests are also reported, where the benchmark is the

AR(1) model, and the alternative is model listed in the first column of the tables. In particular,

starred entries indicate rejection of the (DMP test) null hypothesis of no difference between the

benchmark and the alternative model.8 Similar to Tables 2A-4C, in these tables, the “MSFE-best”

(i.e., lowest MSFE model) for the 12-dimensional historical yield dataset for each maturity, horizon,

and subsample is denoted in bold. Thus, for example, we see in Table 3.5A that the MSFE-best

model for τ = 3-months is VAR(1)+FB2, which is our VAR(1) model with 2 diffusion indexes.

The key take-away from these tables is that many of our models are significantly better than our

AR(1) benchmark. This is particularly true for our first and second subsamples, when comparing

8*** entries denote rejection at the 1% level, while ** and * denote rejection at the 5% and 10% levels, respectively.
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predictions for h = 1 and h = 3, and for all subsamples when comparing predictions for h = 12.

On the other hand, there is less to choose between models when comparing predictive performance

during subsample 3, for h = 1 and h = 3. This suggests that it is not only diffusion index based

models that perform poorly, post Great Recession (see below discussion), but all models perform

more poorly, relative to our simple AR(1) benchmark model, post recession. Thus, is is perhaps

not surprising that DNS type models do not perform as well as previously, as no models seem to.

This in turn indicates the need for the development of new models (such as the hybrid models

discussed above) for addressing the unique set of economic conditions that characterize the post

Great Recession period.

Third, note that Table 3.8 lists the forecast combination models that were utilized in our exper-

iments. Relative MSFEs for all combinations are given in Table 3.9A (h = 1-step ahead forecasts),

Table 3.9B (h = 3-step ahead forecasts), and Table 3.9C (h = 12-step ahead forecasts). Results

in these tables are quite interesting. For instance, models with diffusion indexes (e.g., FB1, FB2,

and FB3) often significantly outperform the AR(1) benchmark, for all five maturities and all three

forecast horizons in Subsamples 1, 2, and 4. However, results are mixed for Subsample 3 (2011:1-

2017:10), again indicating a deterioration in predictive gains associated with using diffusion indexes,

post Great Recession. Another conclusion emerges when comparing NS(AR) and NS(VAR) forecast

combination models. As discussed previously, NS-factors and NSS-factors can be better predicted by

modeling their cross-correlation dynamics. This is borne out in the data. For example, in Subsam-

ple 1, 3, and 4, forecasts generated by combination model NS(VAR) have lower point MSFEs than

NS(AR) models in 43/45 cases, across all three forecast horizons, and across all five bond maturities.

A key result to emerge from our combination experiments is that the MSFE-best models are

almost always the “FS” type forecast combinations. As noted in Table 3.8, FS forecast combination

models utilize the average of 16 non-diffusion index type models (i.e., AR(1), AR(SIC), VAR(1),

VAR(SIC), DNS(1) - DNS(6), NSS(1) - NSS(6)). Indeed, FS models “win” in 19 of 20 cases, for

h = 1, across all five bond maturities and all four subsamples (see Table 3.9A). For h = 3 and h = 12,

FS combination model again “win” in 19 of 20 cases (see Tables 9B and 9C). Furthermore, all of the

“best” MSFEs are much lower than point MSFEs associated with the best individual models. Thus,

combination dominates under our real-time setup, and the best combinations do not utilize macro

diffusion indexes. This result differs markedly from that reported in Xiong and Swanson (2017),

where big data matters. However, Xiong and Swanson (2017) carries out experiments using a fully

revised macroeconomic dataset rather than a real-time macroeconomic dataset. This indicates that

fully revised data may have an important confounding effect upon results obtained be carrying out

real-time prediction experiments. Examination of this issue using a richer set of individual and
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combination models is left to future research.

3.5 Concluding Remarks

In this paper, we examine the usefulness of real-time macroeconomic diffusion indexes when us-

ing dynamic Nelson-Siegel (DNS), dynamic Nelson-Siegel Svensson (NSS), and various econometric

models for forecasting the term structure of interest rates. We find that the marginal predictive

content of real-time diffusion indexes is significant for many of the models that we examine. We also

find that model performance, across the board, is much worse post Great Recession. Indeed, not

only does the predictive performance of DNS and NSS models worsen, in accord with the findings of

various recent authors, but the performance of all of our models, including ones that utilize real-time

diffusion indexes also worsens. Given the impressive predictive performance of these models prior

to the great recession, we argue that new models need to be developed to address current economic

conditions. Examples of models that might be useful include hybrid models in which the inclusion of

diffusion indexes is triggered by variables such as predicted probabilities of recessions, economic vari-

ability, or the range of yields over some pre-defined prior period of time. We also present strong new

evidence of the usefulness of forecast combination, and note that mean square error “best” (MSFE-

best) forecast combinations often preclude the use of real-time diffusion indexes. This differs from

earlier findings by Xiong and Swanson (2017), where it is found that if fully revised macroeconomic

data are instead used in constructing diffusion indexes, then combinations that include diffusion

index type models are MSFE-best.
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Table 3.1: Models Used in Forecast Experiments*

Model Description

AR(1) Autoregressive model with one lag

AR(SIC) Autoregressive model with lag(s) selected by the Schwarz information criterion

AR(1)+FB1 AR(1) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

AR(1)+FB2 AR(1) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

AR(1)+FB3 AR(1) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

VAR(1) Five-dimensional vector autoregressive model with one lag

VAR(SIC) Five-dimensional vector autoregressive model with lag(s) selected by the Schwarz information criterion

VAR(1)+FB1 VAR(1) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

VAR(1)+FB2 VAR(1) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

VAR(1)+FB3 VAR(1) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(1) Dynamic Nelson-Siegel (DNS) model with underlying AR(1) factor specifications fitted with twelve-dimensional yields:

maturity τ = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months, with a static rate of decay parameter λ = 0.0609

DNS(2) Dynamic Nelson-Siegel (DNS) model with underlying AR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (most recent λt are selected in generating predictions)

DNS(3) Dynamic Nelson-Siegel (DNS) model with underlying AR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (median λt are selected in generating predictions)

DNS(4) Dynamic Nelson-Siegel (DNS) model with underlying VAR(1) factor specifications fitted with twelve-dimensional yields,

with a static rate of decay parameter λ = 0.0609

DNS(5) Dynamic Nelson-Siegel (DNS) model with underlying VAR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (most recent λt are selected in generating predictions)

DNS(6) Dynamic Nelson-Siegel (DNS) model with underlying VAR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (median λt are selected in generating predictions)

DNS(1)+FB1 DNS(1) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

DNS(2)+FB1 DNS(2) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

DNS(3)+FB1 DNS(3) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

DNS(4)+FB1 DNS(4) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

DNS(5)+FB1 DNS(5) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

DNS(6)+FB1 DNS(6) model with one diffusion index added, principle component analysis based on real-time macroeconomic dataset

DNS(1)+FB2 DNS(1) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(2)+FB2 DNS(2) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(3)+FB2 DNS(3) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(4)+FB2 DNS(4) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(5)+FB2 DNS(5) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(6)+FB2 DNS(6) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(1)+FB3 DNS(1) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(2)+FB3 DNS(2) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(3)+FB3 DNS(3) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(4)+FB3 DNS(4) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(5)+FB3 DNS(5) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

DNS(6)+FB3 DNS(6) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(1) Dynamic Nelson-Siegel-Svensson (NSS) model with underlying AR(1) factor specifications fitted with twelve-dimensional yields,

with a static rate of decay parameter λ = [0.0609, 0.2985]

NSS(2) Dynamic Nelson-Siegel-Svensson (NSS) model with underlying AR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (most recent λt are selected in generating predictions)

NSS(3) Dynamic Nelson-Siegel-Svensson (NSS) model with underlying AR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (median λt are selected in generating predictions)

NSS(4) Dynamic Nelson-Siegel-Svensson (NSS) model with underlying VAR(1) factor specifications fitted with twelve-dimensional yields,

with a static rate of decay parameter λ = 0.0609

NSS(5) Dynamic Nelson-Siegel-Svensson (NSS) model with underlying VAR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (most recent λt are selected in generating predictions)

NSS(6) Dynamic Nelson-Siegel-Svensson (NSS) model with underlying VAR(1) factor specifications fitted with twelve-dimensional yields,

with a dynamic rate of decay parameter λt (median λt are selected in generating predictions)

NSS(1)+FB1 NSS(1) model with one principle component added, principle component analysis based on real-time macroeconomic dataset

NSS(2)+FB1 NSS(2) model with one principle component added, principle component analysis based on real-time macroeconomic dataset

NSS(3)+FB1 NSS(3) model with one principle component added, principle component analysis based on real-time macroeconomic dataset

NSS(4)+FB1 NSS(4) model with one principle component added, principle component analysis based on real-time macroeconomic dataset

NSS(5)+FB1 NSS(5) model with one principle component added, principle component analysis based on real-time macroeconomic dataset

NSS(6)+FB1 NSS(6) model with one principle component added, principle component analysis based on real-time macroeconomic dataset

NSS(1)+FB2 NSS(1) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(2)+FB2 NSS(2) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(3)+FB2 NSS(3) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(4)+FB2 NSS(4) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(5)+FB2 NSS(5) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(6)+FB2 NSS(6) model with two diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(1)+FB3 NSS(1) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(2)+FB3 NSS(2) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(3)+FB3 NSS(3) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(4)+FB3 NSS(4) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(5)+FB3 NSS(5) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

NSS(6)+FB3 NSS(6) model with three diffusion indexes added, principle component analysis based on real-time macroeconomic dataset

* Notes: This table summarizes the models utilized in all forecasting experiments.
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Table 3.2A: Top 3 MSFE-Best Models with Betas Calculated Using a 12-Dimensional Historical

Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

VAR(1)+FB2 AR(1)+FB2 DNS(1)+FB1 NSS(5) NSS(5)+FB3

1 Step NSS(4)+FB1 AR(1)+FB3 DNS(1) NSS(5)+FB1 NSS(5)

NSS(4)+FB3 AR(1)+FB1 DNS(1)+FB2 NSS(5)+FB3 NSS(5)+FB1

DNS(6)+FB2 AR(1)+FB1 NSS(5) NSS(5) NSS(5)

2001:Jan - 2005:Dec 3 Step DNS(6)+FB1 VAR(SIC) NSS(5)+FB1 NSS(5)+FB1 NSS(5)+FB1

1st Subsample DNS(5)+FB2 VAR(1)+FB1 VAR(SIC) NSS(5)+FB2 DNS(1)

DNS(3)+FB1 DNS(3)+FB1 DNS(6)+FB1 NSS(6) NSS(6)

12 Step DNS(2)+FB1 DNS(2)+FB1 NSS(2)+FB1 NSS(6)+FB1 NSS(6)+FB1

NSS(3)+FB1 DNS(6)+FB1 DNS(6)+FB2 NSS(6)+FB2 NSS(6)+FB2

NSS(3) DNS(1) VAR(SIC) VAR(SIC) NSS(1)

1 Step NSS(2) DNS(5) VAR(1) VAR(1) DNS(1)

VAR(1)+FB2 NSS(1) VAR(1)+FB2 VAR(1)+FB3 AR(SIC)

NSS(6) DNS(5)+FB1 VAR(1)+FB1 VAR(1)+FB1 NSS(1)

2006:Jan - 2010:Dec 3 Step NSS(3) DNS(4)+FB1 VAR(SIC) VAR(SIC) DNS(1)

2nd Subsample NSS(6)+FB1 DNS(5)+FB2 VAR(1) VAR(1) DNS(4)

DNS(1)+FB1 NSS(2)+FB1 NSS(1)+FB1 AR(1)+FB1 DNS(4)

12 Step NSS(2)+FB1 NSS(3)+FB1 DNS(1)+FB1 VAR(1)+FB1 DNS(4)+FB2

NSS(3)+FB1 DNS(1)+FB1 NSS(3)+FB1 VAR(SIC) DNS(4)+FB1

AR(SIC) AR(1) AR(1) AR(1) DNS(1)

1 Step AR(1) AR(1)+FB1 AR(1)+FB1 AR(SIC) DNS(1)+FB1

AR(1)+FB1 AR(SIC) AR(SIC) AR(1)+FB1 NSS(1)

VAR(1) DNS(5) AR(1) AR(1) DNS(4)

2011:Jan - 2017:Oct 3 Step VAR(SIC) DNS(5)+FB1 DNS(4) AR(SIC) DNS(4)+FB3

3rd Subsample VAR(1)+FB1 DNS(5)+FB2 DNS(4)+FB2 NSS(5)+FB2 DNS(4)+FB2

DNS(5) NSS(4) DNS(4) VAR(SIC) NSS(6)

12 Step DNS(6) NSS(4)+FB2 DNS(4)+FB1 VAR(1) NSS(6)+FB3

DNS(5)+FB1 NSS(4)+FB1 DNS(4)+FB2 DNS(4) NSS(6)+FB1

VAR(1)+FB2 VAR(1)+FB2 AR(1) AR(1) DNS(1)

1 Step VAR(1)+FB3 AR(SIC) AR(1)+FB1 AR(1)+FB1 NSS(1)

VAR(1)+FB1 DNS(5)+FB1 AR(1)+FB2 AR(SIC) AR(SIC)

DNS(5)+FB1 DNS(5)+FB1 VAR(1)+FB1 VAR(SIC) DNS(1)

2001:Jan - 2017:Oct 3 Step DNS(6)+FB1 DNS(5)+FB2 VAR(SIC) VAR(1) DNS(4)

Whole Sample DNS(5)+FB2 DNS(5)+FB3 VAR(1) VAR(1)+FB1 DNS(4)+FB1

DNS(6) DNS(6) VAR(1) VAR(1) NSS(6)

12 Step DNS(6)+FB1 DNS(6)+FB1 VAR(SIC) VAR(SIC) NSS(6)+FB1

DNS(6)+FB2 DNS(6)+FB2 VAR(1)+FB1 VAR(1)+FB1 NSS(6)+FB3

* Notes: This table reports top three performing forecast models (based on MSFE), in descending order, for various sub-

samples, horizons, and yield maturities. For a description of the models listed in this table, refer to Section 4.1 and Table

3.1. Entries in bold denote lowest MSFE models for a given forecast horizon and yield maturity, across all three historical

datasets (i.e., 10-, 12-, and 30-dimensional datasets) used in the construction of the betas utilized in DNS and NSS type

models. For further discussion, refer to Section 4.3.
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Table 3.2B: Point MSFEs of Top 3 MSFE-Best Models with Betas Calculated Using a

12-Dimensional Historical Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

0.029 0.057 0.112 0.110 0.086

1 Step 0.029 0.059 0.112 0.113 0.087

0.029 0.059 0.114 0.115 0.089

0.217 0.313 0.345 0.283 0.192

2001:Jan - 2005:Dec 3 Step 0.218 0.316 0.349 0.289 0.197

1st Subsample 0.219 0.317 0.355 0.297 0.199

2.067 2.338 1.515 0.918 0.381

12 Step 2.126 2.559 1.520 0.931 0.391

2.563 2.648 1.521 0.944 0.393

0.082 0.052 0.079 0.077 0.092

1 Step 0.086 0.053 0.079 0.078 0.093

0.089 0.055 0.079 0.081 0.094

0.316 0.284 0.342 0.277 0.189

2006:Jan - 2010:Dec 3 Step 0.316 0.286 0.349 0.279 0.189

2nd Subsample 0.332 0.288 0.349 0.280 0.202

2.330 1.580 1.195 0.832 0.363

12 Step 2.339 1.699 1.206 0.844 0.369

2.367 1.799 1.220 0.846 0.371

0.005 0.006 0.020 0.036 0.052

1 Step 0.005 0.007 0.022 0.037 0.052

0.006 0.007 0.022 0.038 0.053

0.016 0.015 0.051 0.109 0.172

2011:Jan - 2017:Oct 3 Step 0.016 0.015 0.052 0.111 0.173

3rd Subsample 0.016 0.015 0.054 0.116 0.173

0.043 0.064 0.140 0.339 0.484

12 Step 0.044 0.064 0.141 0.340 0.487

0.044 0.064 0.142 0.347 0.492

0.039 0.041 0.069 0.076 0.075

1 Step 0.040 0.042 0.070 0.079 0.076

0.040 0.042 0.072 0.080 0.078

0.182 0.190 0.234 0.226 0.192

2001:Jan - 2017:Oct 3 Step 0.183 0.193 0.234 0.227 0.194

Whole Sample 0.183 0.195 0.234 0.228 0.197

1.723 1.462 0.989 0.721 0.428

12 Step 1.731 1.469 0.990 0.721 0.439

1.736 1.473 0.993 0.727 0.441

* Notes: See notes to Table 3.2A. Entires are point MSFEs.
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Table 3.2C: Relative MSFEs of Top 3 MSFE-Best Models with Betas Calculated Using a

12-Dimensional Historical Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

0.488 0.793 0.955 0.933 0.937

1 Step 0.491 0.810 0.959 0.957 0.948

0.492 0.815 0.976 0.975 0.966

0.583 0.773 0.789 0.759 0.847

2001:Jan - 2005:Dec 3 Step 0.585 0.780 0.797 0.775 0.869

1st Subsample 0.589 0.782 0.812 0.797 0.878

0.424 0.401 0.314 0.288 0.306

12 Step 0.436 0.439 0.315 0.293 0.314

0.525 0.454 0.315 0.297 0.316

0.896 0.783 0.913 0.859 0.906

1 Step 0.935 0.802 0.915 0.864 0.918

0.964 0.824 0.920 0.906 0.929

0.883 0.834 0.931 0.869 0.828

2006:Jan - 2010:Dec 3 Step 0.883 0.841 0.949 0.876 0.830

2nd Subsample 0.928 0.846 0.949 0.877 0.886

0.690 0.592 0.699 0.755 0.768

12 Step 0.693 0.637 0.706 0.765 0.781

0.701 0.674 0.714 0.767 0.785

0.978 1.000 1.000 1.000 0.972

1 Step 1.000 1.048 1.054 1.030 0.978

1.119 1.091 1.074 1.055 0.986

0.784 0.691 1.000 1.000 0.877

2011:Jan - 2017:Oct 3 Step 0.785 0.697 1.016 1.017 0.882

3rd Subsample 0.801 0.706 1.053 1.062 0.884

0.154 0.243 0.438 0.644 0.576

12 Step 0.157 0.244 0.444 0.647 0.580

0.158 0.245 0.445 0.660 0.586

0.837 0.947 1.000 1.000 0.953

1 Step 0.853 0.950 1.019 1.036 0.955

0.862 0.950 1.045 1.045 0.981

0.809 0.826 0.900 0.906 0.896

2001:Jan - 2017:Oct 3 Step 0.814 0.836 0.901 0.907 0.903

Whole Sample 0.816 0.848 0.902 0.911 0.920

0.672 0.556 0.478 0.485 0.503

12 Step 0.675 0.559 0.478 0.485 0.516

0.677 0.560 0.480 0.489 0.519

* Notes: See notes to Table 3.2A. Entries are relative MSFEs, when compared with the AR(1) benchmark model.
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Table 3.3A: Top 3 MSFE-Best Models with Betas Calculated Using a 10-Dimensional Historical

Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

VAR(1)+FB2 AR(1)+FB2 DNS(1)+FB1 AR(1) DNS(1)

1 Step VAR(1)+FB1 AR(1)+FB3 DNS(1)+FB2 AR(1)+FB1 DNS(1)+FB1

VAR(1)+FB3 AR(1)+FB1 DNS(1) AR(1)+FB2 DNS(2)

AR(1)+FB3 AR(1)+FB1 NSS(3)+FB1 NSS(3)+FB1 DNS(5)

2001:Jan - 2005:Dec 3 Step AR(1)+FB2 VAR(SIC) NSS(2)+FB1 NSS(3) DNS(5)+FB1

1st Subsample VAR(1)+FB1 VAR(1)+FB1 NSS(3) NSS(2)+FB1 DNS(5)+FB2

DNS(3)+FB1 DNS(3)+FB1 DNS(6)+FB1 DNS(6)+FB1 DNS(6)+FB2

12 Step DNS(2)+FB1 NSS(2)+FB1 DNS(3)+FB1 DNS(6) DNS(6)+FB3

VAR(1) DNS(2)+FB1 DNS(6) DNS(6)+FB2 DNS(6)

VAR(1)+FB2 NSS(4) VAR(SIC) VAR(SIC) DNS(1)

1 Step VAR(1)+FB3 DNS(4)+FB3 VAR(1) VAR(1) DNS(3)

VAR(1)+FB1 VAR(1)+FB3 VAR(1)+FB2 VAR(1)+FB3 AR(SIC)

AR(1) VAR(1)+FB1 VAR(1)+FB1 VAR(1)+FB1 DNS(3)

2006:Jan - 2010:Dec 3 Step VAR(1)+FB1 NSS(4) VAR(SIC) DNS(6) DNS(6)

2nd Subsample AR(SIC) DNS(4)+FB1 VAR(1) VAR(SIC) DNS(6)+FB1

DNS(1)+FB1 DNS(1)+FB1 NSS(1)+FB1 NSS(1)+FB1 DNS(6)

12 Step DNS(2)+FB1 DNS(2)+FB1 DNS(1)+FB1 DNS(6) DNS(6)+FB1

DNS(3)+FB1 DNS(3)+FB1 DNS(3)+FB1 AR(1)+FB1 DNS(6)+FB2

AR(SIC) AR(1) AR(1) AR(1) AR(1)

1 Step AR(1) AR(1)+FB1 AR(1)+FB1 AR(SIC) AR(SIC)

AR(1)+FB1 AR(SIC) AR(SIC) AR(1)+FB1 DNS(1)

VAR(1) DNS(5) AR(1) AR(1) DNS(4)

2011:Jan - 2017:Oct 3 Step VAR(SIC) DNS(5)+FB2 DNS(5) AR(SIC) DNS(4)+FB3

3rd Subsample VAR(1)+FB1 DNS(5)+FB1 DNS(5)+FB1 NSS(4) DNS(4)+FB2

VAR(1)+FB3 DNS(5) DNS(4) NSS(6) NSS(6)

12 Step VAR(1) DNS(5)+FB1 DNS(4)+FB1 NSS(4)+FB3 NSS(6)+FB1

VAR(SIC) DNS(5)+FB2 DNS(4)+FB2 NSS(4) NSS(6)+FB3

VAR(1)+FB2 VAR(1)+FB2 AR(1) AR(1) DNS(1)

1 Step VAR(1)+FB3 AR(SIC) AR(1)+FB1 AR(1)+FB1 AR(SIC)

VAR(1)+FB1 AR(1)+FB1 AR(1)+FB2 AR(SIC) AR(1)

VAR(1)+FB1 VAR(1)+FB1 VAR(1)+FB1 VAR(SIC) DNS(4)

2001:Jan - 2017:Oct 3 Step VAR(1)+FB2 NSS(4) VAR(SIC) VAR(1) DNS(4)+FB1

Whole Sample AR(SIC) VAR(1)+FB2 VAR(1) VAR(1)+FB1 DNS(4)+FB2

VAR(1)+FB1 VAR(1)+FB1 VAR(1) DNS(6) DNS(6)

12 Step VAR(1) VAR(1) VAR(SIC) VAR(1) DNS(6)+FB2

VAR(SIC) VAR(SIC) VAR(1)+FB1 VAR(SIC) DNS(6)+FB1

* Notes: See notes to Table 3.2A.
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Table 3.3B: Point MSFEs of Top 3 MSFE-Best Models with Betas Calculated Using a

10-Dimensional Historical Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

0.029 0.057 0.112 0.118 0.088

1 Step 0.029 0.059 0.114 0.120 0.090

0.030 0.059 0.115 0.122 0.092

0.233 0.313 0.258 0.256 0.202

2001:Jan - 2005:Dec 3 Step 0.240 0.316 0.337 0.291 0.207

1st Subsample 0.252 0.317 0.340 0.302 0.207

2.383 2.462 1.687 1.062 0.511

12 Step 2.405 2.542 1.693 1.066 0.514

3.052 2.587 1.698 1.066 0.515

0.089 0.055 0.079 0.077 0.092

1 Step 0.089 0.056 0.079 0.078 0.094

0.090 0.057 0.079 0.081 0.094

0.358 0.317 0.342 0.277 0.161

2006:Jan - 2010:Dec 3 Step 0.358 0.322 0.349 0.279 0.177

2nd Subsample 0.359 0.325 0.349 0.279 0.189

1.994 1.613 1.087 0.752 0.316

12 Step 2.344 1.767 1.130 0.830 0.332

2.370 1.820 1.271 0.832 0.334

0.005 0.006 0.020 0.036 0.054

1 Step 0.005 0.007 0.022 0.037 0.054

0.006 0.007 0.022 0.038 0.054

0.016 0.014 0.051 0.109 0.180

2011:Jan - 2017:Oct 3 Step 0.016 0.014 0.053 0.111 0.180

3rd Subsample 0.016 0.014 0.054 0.114 0.181

0.062 0.056 0.140 0.317 0.412

12 Step 0.062 0.059 0.140 0.324 0.433

0.062 0.060 0.142 0.326 0.442

0.039 0.041 0.069 0.076 0.075

1 Step 0.040 0.042 0.070 0.079 0.078

0.040 0.042 0.072 0.080 0.079

0.188 0.197 0.234 0.226 0.199

2001:Jan - 2017:Oct 3 Step 0.192 0.199 0.234 0.227 0.202

Whole Sample 0.193 0.201 0.234 0.228 0.203

1.797 1.566 0.989 0.713 0.439

12 Step 1.797 1.568 0.990 0.721 0.448

1.798 1.569 0.993 0.721 0.448

* Notes: See notes to Table 3.2B.
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Table 3.3C: Relative MSFEs of Top 3 MSFE-Best Models with Betas Calculated Using a

10-Dimensional Historical Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

0.488 0.793 0.957 1.000 0.960

1 Step 0.503 0.810 0.977 1.019 0.977

0.508 0.815 0.980 1.039 1.000

0.626 0.773 0.590 0.686 0.890

2001:Jan - 2005:Dec 3 Step 0.646 0.780 0.770 0.782 0.913

1st Subsample 0.676 0.782 0.777 0.809 0.914

0.488 0.423 0.350 0.334 0.411

12 Step 0.493 0.436 0.351 0.335 0.413

0.625 0.444 0.352 0.335 0.414

0.964 0.838 0.913 0.859 0.904

1 Step 0.970 0.850 0.915 0.864 0.920

0.978 0.856 0.920 0.906 0.929

1.000 0.931 0.931 0.869 0.705

2006:Jan - 2010:Dec 3 Step 1.000 0.946 0.949 0.875 0.778

2nd Subsample 1.003 0.956 0.949 0.876 0.827

0.591 0.604 0.636 0.683 0.669

12 Step 0.695 0.662 0.661 0.753 0.702

0.702 0.682 0.743 0.755 0.706

0.978 1.000 1.000 1.000 1.000

1 Step 1.000 1.048 1.054 1.030 1.006

1.119 1.091 1.074 1.055 1.006

0.784 0.642 1.000 1.000 0.916

2011:Jan - 2017:Oct 3 Step 0.785 0.655 1.032 1.017 0.917

3rd Subsample 0.801 0.655 1.049 1.041 0.920

0.221 0.215 0.438 0.603 0.491

12 Step 0.221 0.225 0.439 0.617 0.516

0.221 0.229 0.445 0.620 0.527

0.837 0.947 1.000 1.000 0.951

1 Step 0.853 0.950 1.019 1.036 0.981

0.862 0.950 1.045 1.045 1.000

0.834 0.857 0.900 0.906 0.926

2001:Jan - 2017:Oct 3 Step 0.855 0.863 0.901 0.907 0.941

Whole Sample 0.859 0.874 0.902 0.911 0.944

0.700 0.595 0.478 0.480 0.516

12 Step 0.701 0.596 0.478 0.485 0.526

0.701 0.597 0.480 0.485 0.526

* Notes: See notes to Table 3.2C.
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Table 3.4A: Top 3 MSFE-Best Models with Betas Calculated Using a 30-Dimensional Historical

Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

VAR(1)+FB2 AR(1)+FB2 AR(1)+FB1 AR(1) AR(1)

1 Step VAR(1)+FB1 AR(1)+FB3 DNS(1)+FB1 AR(1)+FB1 AR(SIC)

VAR(1)+FB3 AR(1)+FB1 AR(1) AR(1)+FB2 NSS(4)

AR(1)+FB3 AR(1)+FB1 VAR(SIC) DNS(3) DNS(4)

2001:Jan - 2005:Dec 3 Step AR(1)+FB2 VAR(SIC) VAR(1) DNS(4) NSS(4)

1st Subsample VAR(1)+FB1 VAR(1)+FB1 VAR(1)+FB2 VAR(SIC) DNS(4)+FB2

DNS(3)+FB1 DNS(3)+FB1 DNS(3)+FB1 DNS(3)+FB1 DNS(3)

12 Step DNS(2)+FB1 DNS(1)+FB1 VAR(1) DNS(3) DNS(3)+FB1

DNS(1)+FB1 DNS(2)+FB1 VAR(SIC) VAR(1) DNS(5)

VAR(1)+FB2 VAR(1)+FB3 VAR(SIC) VAR(SIC) NSS(1)

1 Step VAR(1)+FB3 VAR(1)+FB2 VAR(1) VAR(1) DNS(1)

VAR(1)+FB1 VAR(1) VAR(1)+FB2 VAR(1)+FB3 DNS(2)

AR(1) NSS(4) VAR(1)+FB1 VAR(1)+FB1 NSS(4)+FB1

2006:Jan - 2010:Dec 3 Step VAR(1)+FB1 VAR(1)+FB1 VAR(SIC) VAR(SIC) NSS(4)+FB2

2nd Subsample AR(SIC) VAR(1)+FB2 VAR(1) VAR(1) DNS(1)

DNS(3)+FB1 DNS(3)+FB1 DNS(1)+FB1 AR(1)+FB1 DNS(3)

12 Step DNS(2)+FB1 DNS(2)+FB1 AR(1)+FB1 VAR(1)+FB1 DNS(4)

AR(SIC) DNS(1)+FB1 DNS(3)+FB1 VAR(SIC) NSS(4)+FB1

AR(SIC) AR(1) AR(1) AR(1) AR(1)

1 Step AR(1) AR(1)+FB1 AR(1)+FB1 AR(SIC) AR(SIC)

AR(1)+FB1 AR(SIC) AR(SIC) AR(1)+FB1 NSS(1)+FB1

VAR(1) NSS(4) AR(1) AR(1) DNS(5)

2011:Jan - 2017:Oct 3 Step VAR(SIC) AR(1) AR(SIC) AR(SIC) DNS(5)+FB1

3rd Subsample VAR(1)+FB1 VAR(1) NSS(4) DNS(4) DNS(5)+FB2

VAR(1)+FB3 DNS(6)+FB2 DNS(6) VAR(SIC) DNS(5)+FB3

12 Step VAR(1) DNS(6)+FB1 DNS(6)+FB3 VAR(1) DNS(4)+FB3

VAR(SIC) DNS(6) NSS(4)+FB1 DNS(6) DNS(4)+FB2

VAR(1)+FB2 VAR(1)+FB2 AR(1) AR(1) NSS(1)

1 Step VAR(1)+FB3 AR(SIC) AR(1)+FB1 AR(1)+FB1 AR(SIC)

VAR(1)+FB1 AR(1)+FB1 AR(1)+FB2 AR(SIC) AR(1)

VAR(1)+FB1 VAR(1)+FB1 VAR(1)+FB1 VAR(SIC) DNS(5)

2001:Jan - 2017:Oct 3 Step VAR(1)+FB2 VAR(1)+FB2 VAR(SIC) VAR(1) DNS(5)+FB1

Whole Sample AR(SIC) VAR(SIC) VAR(1) VAR(1)+FB1 DNS(5)+FB2

VAR(1)+FB1 VAR(1)+FB1 VAR(1) VAR(1) DNS(4)

12 Step VAR(1) VAR(1) VAR(SIC) VAR(SIC) DNS(4)+FB1

VAR(SIC) VAR(SIC) VAR(1)+FB1 VAR(1)+FB1 DNS(5)

* Notes: See notes to Table 3.2A.
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Table 3.4B: Point MSFEs of Top 3 MSFE-Best Models with Betas Calculated Using a

30-Dimensional Historical Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

0.029 0.057 0.115 0.118 0.092

1 Step 0.029 0.059 0.116 0.120 0.094

0.030 0.059 0.117 0.122 0.094

0.233 0.313 0.355 0.306 0.205

2001:Jan - 2005:Dec 3 Step 0.240 0.316 0.357 0.320 0.209

1st Subsample 0.252 0.317 0.360 0.323 0.210

2.628 2.489 1.375 0.869 0.374

12 Step 2.690 2.742 1.750 1.044 0.405

2.949 2.832 1.755 1.114 0.477

0.089 0.057 0.079 0.077 0.075

1 Step 0.089 0.058 0.079 0.078 0.082

0.090 0.059 0.079 0.081 0.087

0.358 0.316 0.342 0.277 0.179

2006:Jan - 2010:Dec 3 Step 0.358 0.317 0.349 0.279 0.187

2nd Subsample 0.359 0.327 0.349 0.280 0.187

2.149 1.791 1.188 0.832 0.365

12 Step 2.169 1.807 1.278 0.844 0.365

2.434 2.066 1.336 0.846 0.368

0.005 0.006 0.020 0.036 0.054

1 Step 0.005 0.007 0.022 0.037 0.054

0.006 0.007 0.022 0.038 0.054

0.016 0.018 0.051 0.109 0.163

2011:Jan - 2017:Oct 3 Step 0.016 0.022 0.054 0.111 0.165

3rd Subsample 0.016 0.022 0.055 0.114 0.168

0.062 0.062 0.143 0.339 0.588

12 Step 0.062 0.062 0.148 0.340 0.591

0.062 0.063 0.154 0.342 0.592

0.039 0.041 0.069 0.076 0.078

1 Step 0.040 0.042 0.070 0.079 0.078

0.040 0.042 0.072 0.080 0.079

0.188 0.197 0.234 0.226 0.187

2001:Jan - 2017:Oct 3 Step 0.192 0.201 0.234 0.227 0.190

Whole Sample 0.193 0.202 0.234 0.228 0.193

1.797 1.566 0.989 0.721 0.501

12 Step 1.797 1.568 0.990 0.721 0.503

1.798 1.569 0.993 0.727 0.505

* Notes: See notes to Table 3.2B.
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Table 3.4C: Relative MSFEs of Top 3 MSFE-Best Models with Betas Calculated Using a

30-Dimensional Historical Yield Dataset∗

Horizon

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

0.488 0.793 0.983 1.000 1.000

1 Step 0.503 0.810 0.992 1.019 1.020

0.508 0.815 1.000 1.039 1.021

0.626 0.773 0.812 0.821 0.906

2001:Jan - 2005:Dec 3 Step 0.646 0.780 0.816 0.858 0.920

1st Subsample 0.676 0.782 0.822 0.866 0.927

0.538 0.427 0.285 0.273 0.300

12 Step 0.551 0.471 0.363 0.328 0.325

0.604 0.486 0.364 0.350 0.383

0.964 0.856 0.913 0.859 0.739

1 Step 0.970 0.877 0.915 0.864 0.807

0.978 0.890 0.920 0.906 0.860

1.000 0.929 0.931 0.869 0.786

2006:Jan - 2010:Dec 3 Step 1.000 0.931 0.949 0.876 0.822

2nd Subsample 1.003 0.961 0.949 0.877 0.822

0.637 0.671 0.695 0.755 0.772

12 Step 0.643 0.677 0.748 0.765 0.773

0.721 0.774 0.781 0.767 0.779

0.978 1.000 1.000 1.000 1.000

1 Step 1.000 1.048 1.054 1.030 1.006

1.119 1.091 1.074 1.055 1.007

0.784 0.813 1.000 1.000 0.832

2011:Jan - 2017:Oct 3 Step 0.785 1.000 1.055 1.017 0.843

3rd Subsample 0.801 1.018 1.083 1.041 0.856

0.221 0.236 0.450 0.644 0.700

12 Step 0.221 0.236 0.463 0.647 0.703

0.221 0.239 0.483 0.651 0.705

0.837 0.947 1.000 1.000 0.980

1 Step 0.853 0.950 1.019 1.036 0.981

0.862 0.950 1.045 1.045 1.000

0.834 0.857 0.900 0.906 0.873

2001:Jan - 2017:Oct 3 Step 0.855 0.874 0.901 0.907 0.886

Whole Sample 0.859 0.876 0.902 0.911 0.898

0.700 0.595 0.478 0.485 0.589

12 Step 0.701 0.596 0.478 0.485 0.591

0.701 0.597 0.480 0.489 0.594

* Notes: See notes to Table 3.2C.
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Table 3.5A: h=1-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 1:

2001:1-2005:12) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.758*** 0.941 1.089 1.086 1.020

AR(1)+FB1 0.721** 0.815* 0.983 1.019 1.027

AR(1)+FB2 0.632*** 0.793* 1.019 1.039 1.049

AR(1)+FB3 0.631*** 0.810* 1.037 1.048 1.052

VAR(1) 0.536*** 0.952 1.052 1.088 1.173

VAR(SIC) 0.523*** 0.941 1.042 1.082 1.176

VAR(1)+FB1 0.503*** 0.860 1.039 1.086 1.169

VAR(1)+FB2 0.488*** 0.855 1.059 1.115 1.217

VAR(1)+FB3 0.508*** 0.860 1.070 1.125 1.221

DNS(1) 1.156 1.151 0.959 1.091 0.975

DNS(2) 1.062 1.409 1.073 1.141 0.978

DNS(3) 1.113 1.859 2.357 2.774 2.225

DNS(4) 0.639*** 1.209 1.018 1.114 1.102

DNS(5) 0.653** 1.085 1.022 1.084 1.015

DNS(6) 0.792 1.567 1.984 2.291 1.917

DNS(1)+FB1 0.885 0.867 0.955 1.083 0.988

DNS(2)+FB1 0.778* 1.032 1.007 1.089 0.976

DNS(3)+FB1 0.871 1.628 2.444 2.844 2.294

DNS(4)+FB1 0.575*** 1.036 0.985 1.109 1.076

DNS(5)+FB1 0.554** 0.941 0.980 1.068 1.005

DNS(6)+FB1 0.683* 1.402 1.939 2.287 1.928

DNS(1)+FB2 0.870 0.846 0.976 1.107 1.026

DNS(2)+FB2 1.026 1.294 1.082 1.150 1.017

DNS(3)+FB2 1.044 1.593 2.100 2.509 2.061

DNS(4)+FB2 0.588*** 1.038 1.001 1.128 1.089

DNS(5)+FB2 0.585** 0.975 0.988 1.069 1.008

DNS(6)+FB2 0.714* 1.432 1.938 2.277 1.920

DNS(1)+FB3 0.886 0.904 1.030 1.147 1.048

DNS(2)+FB3 1.011 1.346 1.161 1.220 1.078

DNS(3)+FB3 1.023 1.647 2.169 2.542 2.058

DNS(4)+FB3 0.566*** 1.034 1.001 1.123 1.092

DNS(5)+FB3 0.617** 0.986 0.994 1.066 1.009

DNS(6)+FB3 0.752 1.447 1.928 2.250 1.898

NSS(1) 2.301 1.954 1.118 1.173 0.986

NSS(2) 3.136 3.138 1.500 1.217 1.054

NSS(3) 3.573 3.348 1.627 1.331 1.180

NSS(4) 0.517*** 0.980 1.025 1.121 1.091

NSS(5) 1.590 1.546 0.998 0.933 0.948

NSS(6) 1.751 2.046 1.416 1.244 1.178

NSS(1)+FB1 1.577 1.517 1.089 1.154 1.007

NSS(2)+FB1 2.238 2.094 1.273 1.139 1.057

NSS(3)+FB1 2.554 2.254 1.442 1.301 1.211

NSS(4)+FB1 0.491*** 0.919 1.020 1.121 1.091

NSS(5)+FB1 1.605 1.576 1.026 0.957 0.966

NSS(6)+FB1 1.754 2.072 1.450 1.273 1.200

NSS(1)+FB2 2.530 2.134 1.244 1.213 1.055

NSS(2)+FB2 3.312 2.662 1.226 1.038 0.966

NSS(3)+FB2 3.516 2.862 1.371 1.189 1.150

NSS(4)+FB2 0.494*** 0.939 1.055 1.151 1.127

NSS(5)+FB2 1.665 1.688 1.098 0.995 0.969

NSS(6)+FB2 1.814 2.197 1.560 1.358 1.253

NSS(1)+FB3 2.397 2.154 1.320 1.272 1.088

NSS(2)+FB3 3.078 2.586 1.298 1.098 0.980

NSS(3)+FB3 3.257 2.799 1.462 1.273 1.187

NSS(4)+FB3 0.492*** 0.943 1.050 1.135 1.118

NSS(5)+FB3 1.680 1.699 1.087 0.975 0.937

NSS(6)+FB3 1.830 2.221 1.554 1.341 1.222

* Notes: See notes to Table 3.2A. Entries are MSFEs, relative to the benchmark AR(1) MSFE. A 10-dimensional historical

yield dataset is used in the construction of betas in all DNS and NSS type models reported on in this table. Entries in

bold denote models with lowest MSFE, for a given maturity. Starred entries denote rejection of the null of equal predictive

accuracy, based on application of the Diebold-Mariano test discussed in Section 4.1.1, where the benchmark model is an

AR(1) process. Significance levels for the test are reported as ***p < 0.01, **p < 0.05, and *p < 0.1.
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Table 3.5B: h=1-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 2:

2006:1-2010:12) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 1.025 0.941 1.003 0.999 0.929

AR(1)+FB1 1.101 1.085 1.057 1.047 1.069

AR(1)+FB2 1.197 1.115 1.031 1.012 1.030

AR(1)+FB3 1.154 1.058 0.993 0.975 1.011

VAR(1) 0.996 0.890 0.915 0.864* 0.963

VAR(SIC) 0.999 0.891 0.913 0.859* 0.956

VAR(1)+FB1 0.978 0.917 0.968 0.955 1.097

VAR(1)+FB2 0.964 0.877 0.920 0.907 1.039

VAR(1)+FB3 0.970 0.856 0.920 0.906 1.056

DNS(1) 1.831 0.783** 1.229 1.385 0.918

DNS(2) 1.331 0.896 1.209 1.108 1.022

DNS(3) 1.329 0.954 2.257 2.905 2.621

DNS(4) 1.177 0.899 1.137 1.309 0.958

DNS(5) 1.010 0.802* 1.128 1.115 1.074

DNS(6) 1.039 0.847 2.050 2.823 2.726

DNS(1)+FB1 1.226 1.461 1.166 1.305 1.052

DNS(2)+FB1 1.077 1.286 1.230 1.170 1.105

DNS(3)+FB1 1.049 1.056 1.526 2.230 2.588

DNS(4)+FB1 1.081 1.211 1.125 1.250 1.084

DNS(5)+FB1 1.001 0.902 1.156 1.164 1.143

DNS(6)+FB1 1.018 0.867 1.896 2.645 2.617

DNS(1)+FB2 1.222 1.522 1.135 1.245 1.027

DNS(2)+FB2 1.111 1.350 1.259 1.211 1.161

DNS(3)+FB2 1.073 1.075 1.607 2.410 2.807

DNS(4)+FB2 1.060 1.216 1.058 1.181 1.036

DNS(5)+FB2 1.002 0.882 1.119 1.118 1.096

DNS(6)+FB2 1.020 0.866 1.919 2.678 2.634

DNS(1)+FB3 1.273 1.391 1.098 1.206 1.043

DNS(2)+FB3 1.072 1.305 1.218 1.182 1.147

DNS(3)+FB3 1.025 1.014 1.547 2.348 2.758

DNS(4)+FB3 1.011 1.205 1.022 1.137 1.037

DNS(5)+FB3 0.991 0.862 1.095 1.097 1.088

DNS(6)+FB3 1.007 0.836 1.877 2.638 2.611

NSS(1) 1.003 0.824* 0.986 1.232 0.906

NSS(2) 0.935 1.311 1.975 2.017 1.521

NSS(3) 0.896 1.825 1.618 1.986 1.990

NSS(4) 1.012 0.923 1.054 1.243 0.988

NSS(5) 1.088 1.328 1.766 1.761 1.426

NSS(6) 1.011 2.511 2.508 3.050 2.750

NSS(1)+FB1 1.232 1.365 1.083 1.185 1.039

NSS(2)+FB1 1.091 1.520 1.941 2.055 1.709

NSS(3)+FB1 1.281 1.776 1.834 2.561 2.374

NSS(4)+FB1 1.074 1.027 1.126 1.293 1.055

NSS(5)+FB1 1.271 1.482 1.816 1.803 1.476

NSS(6)+FB1 1.133 2.766 2.864 3.433 3.045

NSS(1)+FB2 1.208 1.377 1.075 1.151 1.018

NSS(2)+FB2 1.082 1.638 1.994 2.043 1.667

NSS(3)+FB2 1.152 1.743 1.993 2.756 2.521

NSS(4)+FB2 1.083 1.030 1.073 1.218 1.001

NSS(5)+FB2 1.310 1.529 1.835 1.803 1.446

NSS(6)+FB2 1.168 2.815 2.912 3.474 3.037

NSS(1)+FB3 1.335 1.602 1.040 1.071 1.040

NSS(2)+FB3 1.260 1.919 1.737 1.777 1.513

NSS(3)+FB3 1.253 2.149 2.170 2.892 2.635

NSS(4)+FB3 1.089 1.029 1.043 1.140 1.013

NSS(5)+FB3 1.332 1.490 1.799 1.773 1.444

NSS(6)+FB3 1.216 2.822 3.040 3.644 3.188

* Notes: See notes to Table 3.5A.
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Table 3.5C: h=1-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 3:

2011:1-2017:10) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.978 1.091 1.074 1.030 1.006

AR(1)+FB1 1.119 1.048 1.054 1.055 1.024

AR(1)+FB2 1.534 1.459 1.201 1.149 1.077

AR(1)+FB3 1.613 1.515 1.333 1.291 1.171

VAR(1) 2.277 2.490 1.827 1.538 1.281

VAR(SIC) 2.314 2.533 1.833 1.538 1.280

VAR(1)+FB1 2.350 2.566 1.876 1.573 1.304

VAR(1)+FB2 2.087 2.236 1.738 1.469 1.216

VAR(1)+FB3 2.210 2.472 1.866 1.555 1.276

DNS(1) 7.708 2.545 1.660 1.998 0.972

DNS(2) 8.505 4.500 2.584 2.015 1.396

DNS(3) 8.694 4.316 5.046 5.754 3.669

DNS(4) 5.397 3.026 1.391 1.797 1.019

DNS(5) 3.364 1.532 1.948 1.862 1.547

DNS(6) 3.307 1.691 5.550 6.508 4.326

DNS(1)+FB1 10.007 2.557 2.005 2.215 0.978

DNS(2)+FB1 17.098 9.410 4.575 3.115 1.949

DNS(3)+FB1 17.318 8.148 5.395 5.656 3.622

DNS(4)+FB1 6.258 2.554 1.517 1.936 1.025

DNS(5)+FB1 3.169 1.388 1.935 1.851 1.550

DNS(6)+FB1 3.108 1.570 5.561 6.505 4.326

DNS(1)+FB2 9.315 3.068 2.042 2.168 1.035

DNS(2)+FB2 14.695 8.377 4.211 2.880 1.789

DNS(3)+FB2 14.876 7.251 5.350 5.681 3.621

DNS(4)+FB2 6.136 2.801 1.497 1.883 1.008

DNS(5)+FB2 3.179 1.541 1.876 1.775 1.491

DNS(6)+FB2 3.101 1.730 5.552 6.466 4.282

DNS(1)+FB3 9.208 2.614 1.825 2.008 1.021

DNS(2)+FB3 12.533 6.652 3.460 2.449 1.575

DNS(3)+FB3 12.713 5.893 5.127 5.641 3.643

DNS(4)+FB3 6.073 2.707 1.561 1.936 1.022

DNS(5)+FB3 3.454 1.598 2.042 1.895 1.546

DNS(6)+FB3 3.403 1.940 5.879 6.700 4.401

NSS(1) 4.293 2.824 1.493 1.909 0.986

NSS(2) 7.286 8.454 3.760 2.406 1.572

NSS(3) 7.686 8.427 7.105 7.646 4.721

NSS(4) 2.971 2.379 1.501 1.962 1.077

NSS(5) 2.771 3.675 2.051 1.496 1.140

NSS(6) 4.015 4.253 8.703 9.549 5.592

NSS(1)+FB1 6.521 4.326 1.856 2.149 1.004

NSS(2)+FB1 10.959 12.740 5.440 3.294 1.976

NSS(3)+FB1 11.011 12.108 6.637 6.660 4.113

NSS(4)+FB1 3.622 2.937 1.577 1.959 1.101

NSS(5)+FB1 2.961 3.260 1.928 1.447 1.117

NSS(6)+FB1 4.221 3.793 8.627 9.578 5.643

NSS(1)+FB2 6.312 4.577 1.939 2.099 1.054

NSS(2)+FB2 10.456 12.243 5.361 3.257 1.903

NSS(3)+FB2 10.634 11.740 6.949 6.971 4.267

NSS(4)+FB2 3.410 2.766 1.487 1.841 1.050

NSS(5)+FB2 3.173 3.730 2.132 1.524 1.117

NSS(6)+FB2 4.434 4.085 9.040 9.820 5.732

NSS(1)+FB3 5.209 3.915 1.683 1.899 1.033

NSS(2)+FB3 7.969 9.702 4.775 3.016 1.797

NSS(3)+FB3 8.205 9.518 7.595 7.718 4.702

NSS(4)+FB3 3.993 3.199 1.749 2.068 1.099

NSS(5)+FB3 3.389 4.266 2.409 1.674 1.191

NSS(6)+FB3 4.909 4.726 9.308 9.966 5.794

* Notes: See notes to Table 3.5A.
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Table 3.5D: h=1-Step Ahead Relative MSFEs of All Forecasting Models (Whole Sample:

2001:1-2017:10) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.923 0.950 1.055 1.045 0.981

AR(1)+FB1 0.961 0.950 1.019 1.036 1.042

AR(1)+FB2 1.002 0.977 1.045 1.051 1.049

AR(1)+FB3 0.980 0.964 1.056 1.070 1.069

VAR(1) 0.882* 1.015 1.094 1.096 1.123

VAR(SIC) 0.881* 1.013 1.089 1.092 1.121

VAR(1)+FB1 0.862* 0.987 1.114 1.134 1.179

VAR(1)+FB2 0.837** 0.947 1.089 1.111 1.149

VAR(1)+FB3 0.853 0.954 1.110 1.131 1.174

DNS(1) 1.841 1.068 1.144 1.368 0.953

DNS(2) 1.550 1.362 1.306 1.298 1.110

DNS(3) 1.576 1.597 2.644 3.394 2.773

DNS(4) 1.164 1.178 1.107 1.314 1.024

DNS(5) 0.982 0.984 1.173 1.245 1.184

DNS(6) 1.048 1.250 2.439 3.290 2.888

DNS(1)+FB1 1.489 1.234 1.161 1.379 1.009

DNS(2)+FB1 1.677 1.644 1.521 1.508 1.293

DNS(3)+FB1 1.704 1.758 2.458 3.172 2.771

DNS(4)+FB1 1.123 1.205 1.101 1.318 1.065

DNS(5)+FB1 0.931 0.950 1.161 1.253 1.207

DNS(6)+FB1 0.986 1.171 2.360 3.225 2.850

DNS(1)+FB2 1.450 1.282 1.164 1.360 1.029

DNS(2)+FB2 1.682 1.740 1.526 1.505 1.284

DNS(3)+FB2 1.675 1.696 2.308 3.086 2.774

DNS(4)+FB2 1.109 1.223 1.082 1.292 1.046

DNS(5)+FB2 0.943 0.967 1.144 1.223 1.174

DNS(6)+FB2 0.999 1.195 2.367 3.224 2.842

DNS(1)+FB3 1.481 1.225 1.152 1.334 1.039

DNS(2)+FB3 1.558 1.643 1.460 1.443 1.241

DNS(3)+FB3 1.543 1.614 2.294 3.072 2.761

DNS(4)+FB3 1.070 1.210 1.076 1.284 1.052

DNS(5)+FB3 0.961 0.967 1.158 1.237 1.187

DNS(6)+FB3 1.019 1.201 2.386 3.243 2.858

NSS(1) 1.632 1.497 1.114 1.335 0.955

NSS(2) 2.035 2.631 1.950 1.726 1.375

NSS(3) 2.192 2.964 2.285 2.777 2.463

NSS(4) 0.915 1.037 1.094 1.326 1.048

NSS(5) 1.350 1.574 1.412 1.330 1.183

NSS(6) 1.419 2.386 2.703 3.476 2.991

NSS(1)+FB1 1.595 1.615 1.179 1.357 1.018

NSS(2)+FB1 1.955 2.468 2.025 1.874 1.558

NSS(3)+FB1 2.186 2.624 2.215 2.774 2.453

NSS(4)+FB1 0.970 1.087 1.127 1.342 1.080

NSS(5)+FB1 1.470 1.634 1.429 1.347 1.202

NSS(6)+FB1 1.501 2.486 2.844 3.628 3.125

NSS(1)+FB2 1.926 1.939 1.265 1.362 1.040

NSS(2)+FB2 2.327 2.770 2.012 1.817 1.491

NSS(3)+FB2 2.452 2.886 2.276 2.851 2.530

NSS(4)+FB2 0.967 1.088 1.114 1.307 1.058

NSS(5)+FB2 1.525 1.738 1.498 1.379 1.192

NSS(6)+FB2 1.553 2.587 2.967 3.728 3.165

NSS(1)+FB3 1.901 2.010 1.259 1.323 1.055

NSS(2)+FB3 2.234 2.708 1.881 1.705 1.408

NSS(3)+FB3 2.307 2.905 2.466 3.080 2.706

NSS(4)+FB3 0.996 1.115 1.132 1.317 1.073

NSS(5)+FB3 1.553 1.757 1.512 1.388 1.200

NSS(6)+FB3 1.608 2.640 3.044 3.808 3.229

* Notes: See notes to Table 3.5A.



86

Table 3.6A: h=3-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 1:

2001:1-2005:12) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.703*** 0.863* 1.068 1.111 1.155

AR(1)+FB1 0.688*** 0.773*** 1.002 1.143 1.170

AR(1)+FB2 0.646*** 0.897 1.112 1.150 1.200

AR(1)+FB3 0.626*** 0.897 1.119 1.155 1.207

VAR(1) 0.682*** 0.783*** 0.816*** 0.869** 1.035

VAR(SIC) 0.680*** 0.780*** 0.812*** 0.866** 1.032

VAR(1)+FB1 0.676*** 0.782*** 0.825*** 0.884** 1.058

VAR(1)+FB2 0.692*** 0.788*** 0.822*** 0.876** 1.038

VAR(1)+FB3 0.717*** 0.806*** 0.832*** 0.883** 1.043

DNS(1) 1.183 1.145 0.938 1.013 0.878***

DNS(2) 1.084 1.254 1.017 1.029 0.957

DNS(3) 1.060 1.258 1.350 1.628 1.687

DNS(4) 0.679*** 0.890*** 0.817*** 0.872*** 0.949

DNS(5) 0.624*** 0.864*** 0.826*** 0.858*** 0.885**

DNS(6) 0.617*** 0.873* 1.036 1.253 1.403

DNS(1)+FB1 0.784* 0.811* 0.829* 0.942 0.880**

DNS(2)+FB1 0.717** 0.874 0.857 0.918 0.939

DNS(3)+FB1 0.720** 0.972 1.307 1.609 1.731

DNS(4)+FB1 0.654*** 0.859*** 0.814*** 0.883** 0.956

DNS(5)+FB1 0.592*** 0.829*** 0.813*** 0.854*** 0.884**

DNS(6)+FB1 0.585*** 0.840** 1.031 1.263 1.423

DNS(1)+FB2 0.723** 0.932 1.024 1.095 1.006

DNS(2)+FB2 0.755*** 1.103 1.136 1.203 1.249

DNS(3)+FB2 0.734*** 1.100 1.405 1.700 1.872

DNS(4)+FB2 0.668*** 0.875*** 0.821*** 0.887** 0.959

DNS(5)+FB2 0.589*** 0.838*** 0.828*** 0.869*** 0.903*

DNS(6)+FB2 0.583*** 0.851* 1.046 1.277 1.439

DNS(1)+FB3 0.687** 0.920 1.042 1.116 1.040

DNS(2)+FB3 0.721*** 1.099 1.156 1.228 1.304

DNS(3)+FB3 0.697*** 1.090 1.428 1.723 1.912

DNS(4)+FB3 0.688*** 0.893** 0.830*** 0.893** 0.964

DNS(5)+FB3 0.607*** 0.851*** 0.832*** 0.871*** 0.904*

DNS(6)+FB3 0.603*** 0.868* 1.053 1.282 1.444

NSS(1) 1.666 1.573 1.062 1.087 0.913***

NSS(2) 1.899 1.855 1.053 0.900 0.913

NSS(3) 1.857 1.930 1.112 0.906 0.911

NSS(4) 0.688*** 0.818*** 0.823*** 0.875** 0.945

NSS(5) 1.099 1.121 0.789** 0.759** 0.847**

NSS(6) 1.056 1.251 0.896 0.808 0.895

NSS(1)+FB1 0.981 1.049 0.897 0.979 0.903**

NSS(2)+FB1 1.168 1.169 0.909 0.909 1.030

NSS(3)+FB1 1.131 1.231 0.945 0.899 1.006

NSS(4)+FB1 0.694*** 0.832*** 0.836*** 0.891** 0.961

NSS(5)+FB1 1.080 1.108 0.797** 0.775** 0.869**

NSS(6)+FB1 1.038 1.233 0.898 0.818 0.912

NSS(1)+FB2 1.311 1.502 1.221 1.189 1.043

NSS(2)+FB2 1.731 1.640 1.027 0.991 1.195

NSS(3)+FB2 1.558 1.751 1.087 0.973 1.162

NSS(4)+FB2 0.713*** 0.841*** 0.837*** 0.882** 0.952

NSS(5)+FB2 1.093 1.144 0.828** 0.797** 0.886*

NSS(6)+FB2 1.054 1.268 0.931 0.845 0.936

NSS(1)+FB3 1.235 1.463 1.233 1.208 1.074

NSS(2)+FB3 1.585 1.524 1.021 1.001 1.219

NSS(3)+FB3 1.450 1.617 1.056 0.970 1.184

NSS(4)+FB3 0.747*** 0.863*** 0.844*** 0.886** 0.953

NSS(5)+FB3 1.111 1.162 0.836* 0.802** 0.889*

NSS(6)+FB3 1.074 1.290 0.941 0.851 0.939

* Notes: See notes to Table 3.5A.
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Table 3.6B: h=3-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 2:

2006:1-2010:12) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 1.003 0.995 1.013 1.012 1.007

AR(1)+FB1 1.358 1.220 1.150 1.106 1.089

AR(1)+FB2 1.456 1.331 1.187 1.133 1.119

AR(1)+FB3 1.476 1.355 1.179 1.113 1.099

VAR(1) 1.060 0.977 0.949 0.877** 0.912*

VAR(SIC) 1.061 0.978 0.949 0.876** 0.910*

VAR(1)+FB1 1.000 0.931 0.931 0.869* 0.913

VAR(1)+FB2 1.027 0.961 0.957 0.899* 0.957

VAR(1)+FB3 1.029 0.964 0.958 0.898* 0.950

DNS(1) 1.477 0.914** 1.162 1.216 0.830**

DNS(2) 1.233 0.966 1.132 1.088 0.991

DNS(3) 1.249 1.045 1.494 1.691 1.660

DNS(4) 1.152 0.847** 1.047 1.088 0.886

DNS(5) 1.077 0.851** 1.026 1.015 0.993

DNS(6) 1.098 0.912* 1.292 1.490 1.596

DNS(1)+FB1 1.186 1.280 1.183 1.209 1.004

DNS(2)+FB1 1.264 1.343 1.328 1.262 1.079

DNS(3)+FB1 1.241 1.196 1.127 1.196 1.403

DNS(4)+FB1 1.058 0.841 1.021 1.057 0.924

DNS(5)+FB1 1.027 0.834** 1.011 1.009 1.001

DNS(6)+FB1 1.045 0.878* 1.230 1.413 1.516

DNS(1)+FB2 1.256 1.315 1.177 1.201 1.025

DNS(2)+FB2 1.339 1.409 1.347 1.275 1.093

DNS(3)+FB2 1.306 1.228 1.104 1.170 1.410

DNS(4)+FB2 1.067 0.851 1.024 1.057 0.929

DNS(5)+FB2 1.043 0.846** 1.018 1.015 1.009

DNS(6)+FB2 1.061 0.890* 1.237 1.419 1.521

DNS(1)+FB3 1.287 1.320 1.177 1.188 1.035

DNS(2)+FB3 1.376 1.466 1.373 1.283 1.076

DNS(3)+FB3 1.342 1.283 1.112 1.147 1.350

DNS(4)+FB3 1.074 0.852 1.027 1.062 0.926

DNS(5)+FB3 1.047 0.848** 1.020 1.016 1.004

DNS(6)+FB3 1.064 0.891* 1.241 1.423 1.522

NSS(1) 1.036 0.903* 1.003 1.116 0.828***

NSS(2) 1.005 1.104 1.384 1.438 1.273

NSS(3) 0.883 1.108 1.017 0.904 0.913

NSS(4) 1.077 1.007 1.032 1.078 0.917

NSS(5) 1.016 1.061 1.140 1.151 1.102

NSS(6) 0.883* 1.301 1.352 1.494 1.658

NSS(1)+FB1 1.440 1.301 1.115 1.117 0.978

NSS(2)+FB1 1.341 1.256 1.260 1.359 1.387

NSS(3)+FB1 1.373 1.363 1.242 1.246 1.230

NSS(4)+FB1 1.112 1.056 1.073 1.117 0.952

NSS(5)+FB1 1.076 1.120 1.172 1.175 1.123

NSS(6)+FB1 0.928 1.367 1.428 1.579 1.749

NSS(1)+FB2 1.661 1.423 1.110 1.100 0.997

NSS(2)+FB2 1.606 1.469 1.230 1.329 1.378

NSS(3)+FB2 1.637 1.628 1.260 1.243 1.231

NSS(4)+FB2 1.178 1.117 1.117 1.166 1.013

NSS(5)+FB2 1.154 1.223 1.259 1.258 1.205

NSS(6)+FB2 1.019 1.506 1.512 1.641 1.803

NSS(1)+FB3 1.877 1.611 1.132 1.082 1.009

NSS(2)+FB3 1.850 1.892 1.303 1.313 1.324

NSS(3)+FB3 1.887 2.138 1.407 1.290 1.248

NSS(4)+FB3 1.207 1.143 1.131 1.177 1.019

NSS(5)+FB3 1.154 1.221 1.255 1.255 1.204

NSS(6)+FB3 1.018 1.492 1.511 1.647 1.815

* Notes: See notes to Table 3.5A.
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Table 3.6C: h=3-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 3:

2011:1-2017:10) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 1.088 1.085 1.055 1.017 1.024

AR(1)+FB1 1.576 1.528 1.236 1.135 1.052

AR(1)+FB2 1.738 1.671 1.284 1.162 1.058

AR(1)+FB3 2.174 2.031 1.554 1.338 1.123

VAR(1) 0.784* 1.018 1.193 1.063 0.938*

VAR(SIC) 0.785* 1.029 1.202 1.067 0.939*

VAR(1)+FB1 0.801 1.030 1.203 1.069 0.942*

VAR(1)+FB2 0.819 1.045 1.213 1.074 0.943*

VAR(1)+FB3 0.935 1.148 1.255 1.097 0.960

DNS(1) 5.613 2.500 2.072 1.775 0.967

DNS(2) 5.712 4.778 2.978 1.922 1.279

DNS(3) 5.857 4.762 3.530 2.695 1.533

DNS(4) 1.420 1.175 1.016 1.148 0.877

DNS(5) 0.885 0.691*** 1.292 1.227 1.053

DNS(6) 0.906 0.919 2.797 2.662 1.667

DNS(1)+FB1 8.158 3.500 2.698 2.049 1.008

DNS(2)+FB1 10.102 8.219 4.713 2.680 1.581

DNS(3)+FB1 10.290 7.865 4.507 3.011 1.669

DNS(4)+FB1 1.598 1.070 1.056 1.189 0.885

DNS(5)+FB1 0.905 0.697*** 1.300 1.231 1.058

DNS(6)+FB1 0.928 0.930 2.806 2.665 1.670

DNS(1)+FB2 8.037 3.475 2.637 2.005 1.003

DNS(2)+FB2 9.954 8.148 4.691 2.671 1.578

DNS(3)+FB2 10.137 7.812 4.551 3.041 1.677

DNS(4)+FB2 1.577 1.078 1.053 1.186 0.884

DNS(5)+FB2 0.921 0.706** 1.309 1.236 1.059

DNS(6)+FB2 0.946 0.945 2.820 2.672 1.672

DNS(1)+FB3 8.636 3.932 2.460 1.828 0.943

DNS(2)+FB3 9.185 8.066 4.401 2.476 1.462

DNS(3)+FB3 9.341 7.854 4.559 3.009 1.631

DNS(4)+FB3 1.649 1.090 1.072 1.197 0.882

DNS(5)+FB3 1.145 0.817* 1.387 1.275 1.071

DNS(6)+FB3 1.172 1.053 2.882 2.702 1.681

NSS(1) 5.816 4.389 2.066 1.791 1.017

NSS(2) 7.439 8.268 3.923 2.153 1.371

NSS(3) 7.200 8.484 4.277 2.903 1.439

NSS(4) 0.897 0.869 1.075 1.214 0.903

NSS(5) 0.983 1.641 1.322 1.082 0.924*

NSS(6) 1.321 1.876 4.034 3.509 1.744

NSS(1)+FB1 8.693 6.816 2.775 2.100 1.069

NSS(2)+FB1 11.022 12.049 5.413 2.752 1.594

NSS(3)+FB1 10.611 12.160 4.657 2.739 1.343

NSS(4)+FB1 0.986 0.928 1.072 1.200 0.898

NSS(5)+FB1 0.975 1.472 1.267 1.065 0.917*

NSS(6)+FB1 1.310 1.691 3.974 3.498 1.746

NSS(1)+FB2 8.538 6.707 2.714 2.053 1.061

NSS(2)+FB2 10.630 11.796 5.500 2.825 1.610

NSS(3)+FB2 10.167 11.801 4.796 2.854 1.377

NSS(4)+FB2 1.014 0.967 1.086 1.201 0.901

NSS(5)+FB2 0.978 1.466 1.264 1.062 0.914*

NSS(6)+FB2 1.306 1.692 4.002 3.515 1.752

NSS(1)+FB3 8.409 7.008 2.506 1.838 0.991

NSS(2)+FB3 10.381 12.676 5.981 2.932 1.583

NSS(3)+FB3 9.887 12.696 6.214 3.583 1.599

NSS(4)+FB3 1.308 1.175 1.159 1.256 0.902

NSS(5)+FB3 1.103 1.603 1.297 1.070 0.918*

NSS(6)+FB3 1.490 1.855 4.062 3.549 1.771

* Notes: See notes to Table 3.5A.
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Table 3.6D: h=3-Step Ahead Relative MSFEs of All Forecasting Models (Whole Sample:

2001:1-2017:10) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.859* 0.930 1.044 1.057 1.060

AR(1)+FB1 1.037 0.997 1.083 1.128 1.101

AR(1)+FB2 1.068 1.117 1.157 1.146 1.122

AR(1)+FB3 1.084 1.141 1.179 1.172 1.142

VAR(1) 0.864*** 0.877*** 0.902*** 0.907** 0.960*

VAR(SIC) 0.864*** 0.876*** 0.901*** 0.906** 0.959*

VAR(1)+FB1 0.834*** 0.857*** 0.900** 0.911** 0.969

VAR(1)+FB2 0.855*** 0.874*** 0.910** 0.920** 0.977

VAR(1)+FB3 0.872*** 0.888*** 0.919** 0.927** 0.983

DNS(1) 1.481 1.095 1.123 1.226 0.896***

DNS(2) 1.321 1.262 1.222 1.210 1.087

DNS(3) 1.322 1.298 1.585 1.842 1.622

DNS(4) 0.930* 0.882*** 0.929** 1.003 0.903*

DNS(5) 0.847*** 0.852*** 0.947* 0.983 0.981

DNS(6) 0.854*** 0.892** 1.284 1.593 1.562

DNS(1)+FB1 1.240 1.119 1.127 1.240 0.967

DNS(2)+FB1 1.314 1.359 1.363 1.362 1.222

DNS(3)+FB1 1.311 1.332 1.487 1.702 1.604

DNS(4)+FB1 0.879*** 0.859** 0.920** 1.003 0.920*

DNS(5)+FB1 0.809*** 0.826*** 0.935* 0.980 0.985

DNS(6)+FB1 0.814*** 0.860*** 1.256 1.570 1.544

DNS(1)+FB2 1.239 1.196 1.217 1.297 1.011

DNS(2)+FB2 1.363 1.505 1.509 1.491 1.322

DNS(3)+FB2 1.344 1.411 1.530 1.738 1.654

DNS(4)+FB2 0.889*** 0.872** 0.925** 1.005 0.922

DNS(5)+FB2 0.816*** 0.836*** 0.946* 0.990 0.994

DNS(6)+FB2 0.822*** 0.872** 1.268 1.579 1.551

DNS(1)+FB3 1.257 1.210 1.212 1.270 1.002

DNS(2)+FB3 1.336 1.525 1.506 1.471 1.291

DNS(3)+FB3 1.313 1.431 1.545 1.733 1.630

DNS(4)+FB3 0.905** 0.882** 0.932** 1.011 0.922

DNS(5)+FB3 0.834*** 0.848*** 0.955 0.998 0.998

DNS(6)+FB3 0.841*** 0.885** 1.278 1.588 1.556

NSS(1) 1.518 1.386 1.117 1.223 0.925**

NSS(2) 1.676 1.770 1.421 1.327 1.197

NSS(3) 1.589 1.818 1.325 1.260 1.107

NSS(4) 0.879*** 0.903*** 0.931** 1.012 0.920*

NSS(5) 1.056 1.115 0.979 0.965 0.956

NSS(6) 0.984 1.297 1.338 1.548 1.451

NSS(1)+FB1 1.476 1.379 1.139 1.231 0.988

NSS(2)+FB1 1.605 1.621 1.416 1.407 1.352

NSS(3)+FB1 1.587 1.704 1.367 1.358 1.202

NSS(4)+FB1 0.902** 0.933** 0.954 1.032 0.934

NSS(5)+FB1 1.074 1.127 0.992 0.978 0.967

NSS(6)+FB1 0.996 1.309 1.367 1.583 1.485

NSS(1)+FB2 1.737 1.665 1.294 1.309 1.035

NSS(2)+FB2 1.993 1.951 1.470 1.445 1.407

NSS(3)+FB2 1.906 2.079 1.456 1.410 1.264

NSS(4)+FB2 0.944 0.967 0.974 1.046 0.952

NSS(5)+FB2 1.118 1.191 1.044 1.019 0.997

NSS(6)+FB2 1.047 1.388 1.420 1.622 1.512

NSS(1)+FB3 1.797 1.739 1.292 1.272 1.023

NSS(2)+FB3 2.027 2.109 1.536 1.462 1.387

NSS(3)+FB3 1.961 2.266 1.616 1.556 1.358

NSS(4)+FB3 0.985 0.998 0.990 1.062 0.955

NSS(5)+FB3 1.131 1.205 1.049 1.021 0.999

NSS(6)+FB3 1.062 1.400 1.430 1.632 1.524

* Notes: See notes to Table 3.5A.
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Table 3.7A: h=12-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 1:

2001:1-2005:12) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.945 0.995 1.077 1.065 1.015

AR(1)+FB1 0.658*** 0.805*** 1.070 1.410 1.814

AR(1)+FB2 0.871** 1.046 1.171 1.557 2.745

AR(1)+FB3 0.888* 1.083 1.223 1.621 2.838

VAR(1) 0.625*** 0.513*** 0.363*** 0.350*** 0.451***

VAR(SIC) 0.626*** 0.515*** 0.364*** 0.351*** 0.454***

VAR(1)+FB1 0.631*** 0.518*** 0.367*** 0.355*** 0.458***

VAR(1)+FB2 0.637*** 0.522*** 0.370*** 0.358*** 0.460***

VAR(1)+FB3 0.634*** 0.520*** 0.369*** 0.357*** 0.464***

DNS(1) 0.767*** 0.626*** 0.533*** 0.596*** 0.679***

DNS(2) 0.638*** 0.565*** 0.479*** 0.505*** 0.554***

DNS(3) 0.624*** 0.523*** 0.436*** 0.504*** 0.670***

DNS(4) 0.645*** 0.542*** 0.397*** 0.388*** 0.448***

DNS(5) 0.609*** 0.524*** 0.387*** 0.382*** 0.416***

DNS(6) 0.577*** 0.457*** 0.315*** 0.330*** 0.455***

DNS(1)+FB1 0.535*** 0.493*** 0.515*** 0.672*** 0.995

DNS(2)+FB1 0.436*** 0.439*** 0.443*** 0.528*** 0.718***

DNS(3)+FB1 0.424*** 0.401*** 0.396*** 0.514*** 0.810***

DNS(4)+FB1 0.638*** 0.536*** 0.394*** 0.387*** 0.451***

DNS(5)+FB1 0.605*** 0.522*** 0.386*** 0.382*** 0.417***

DNS(6)+FB1 0.573*** 0.454*** 0.314*** 0.330*** 0.456***

DNS(1)+FB2 0.978 0.940 1.000 1.260 1.940

DNS(2)+FB2 0.739*** 0.733*** 0.765*** 0.935 1.402

DNS(3)+FB2 0.727*** 0.693*** 0.703*** 0.892** 1.443

DNS(4)+FB2 0.643*** 0.540*** 0.396*** 0.387*** 0.449***

DNS(5)+FB2 0.610*** 0.525*** 0.389*** 0.384*** 0.419***

DNS(6)+FB2 0.578*** 0.457*** 0.315*** 0.330*** 0.454***

DNS(1)+FB3 1.012 0.974 1.036 1.300 1.993

DNS(2)+FB3 0.765*** 0.759*** 0.784*** 0.949 1.411

DNS(3)+FB3 0.753*** 0.718*** 0.720*** 0.906* 1.451

DNS(4)+FB3 0.643*** 0.540*** 0.396*** 0.387*** 0.450***

DNS(5)+FB3 0.610*** 0.525*** 0.388*** 0.383*** 0.418***

DNS(6)+FB3 0.578*** 0.458*** 0.316*** 0.331*** 0.455***

NSS(1) 0.795*** 0.695*** 0.554*** 0.615*** 0.704***

NSS(2) 0.832*** 0.660*** 0.400*** 0.374*** 0.497***

NSS(3) 0.783*** 0.667*** 0.417*** 0.363*** 0.449***

NSS(4) 0.632*** 0.538*** 0.392*** 0.384*** 0.447***

NSS(5) 0.721** 0.588*** 0.349*** 0.303*** 0.344***

NSS(6) 0.686*** 0.602*** 0.360*** 0.288*** 0.306***

NSS(1)+FB1 0.526*** 0.526*** 0.513*** 0.667*** 1.001

NSS(2)+FB1 0.570*** 0.486*** 0.315*** 0.328*** 0.566***

NSS(3)+FB1 0.525*** 0.489*** 0.326*** 0.312*** 0.508***

NSS(4)+FB1 0.658*** 0.558*** 0.405*** 0.398*** 0.461***

NSS(5)+FB1 0.728** 0.593*** 0.351*** 0.307*** 0.352***

NSS(6)+FB1 0.693*** 0.607*** 0.363*** 0.293*** 0.314***

NSS(1)+FB2 0.943 0.961 0.994 1.261 1.976

NSS(2)+FB2 1.016 0.820*** 0.525*** 0.547*** 0.948

NSS(3)+FB2 0.916 0.848** 0.571*** 0.550*** 0.894

NSS(4)+FB2 0.665*** 0.564*** 0.409*** 0.400*** 0.463***

NSS(5)+FB2 0.736** 0.599*** 0.356*** 0.311*** 0.354***

NSS(6)+FB2 0.700*** 0.614*** 0.368*** 0.297*** 0.316***

NSS(1)+FB3 0.964 0.990 1.023 1.293 2.024

NSS(2)+FB3 1.042 0.841** 0.541*** 0.565*** 0.969

NSS(3)+FB3 0.934 0.873* 0.593*** 0.571*** 0.918

NSS(4)+FB3 0.657*** 0.558*** 0.406*** 0.399*** 0.468***

NSS(5)+FB3 0.733** 0.599*** 0.356*** 0.311*** 0.356***

NSS(6)+FB3 0.697*** 0.613*** 0.369*** 0.298*** 0.319***

* Notes: See notes to Table 3.5A.
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Table 3.7B: h=12-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 2:

2006:1-2010:12) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.721*** 0.816** 0.984 1.020 0.970**

AR(1)+FB1 0.914 0.777* 0.748** 0.755** 0.909**

AR(1)+FB2 1.095 0.889 0.866 0.973 1.442

AR(1)+FB3 1.119 0.907 0.888 0.997 1.474

VAR(1) 0.864*** 0.815*** 0.794*** 0.769*** 0.794**

VAR(SIC) 0.863*** 0.814*** 0.793*** 0.767*** 0.789**

VAR(1)+FB1 0.854*** 0.801*** 0.786*** 0.765*** 0.799*

VAR(1)+FB2 0.860*** 0.807*** 0.791*** 0.771*** 0.807*

VAR(1)+FB3 0.860*** 0.808*** 0.793*** 0.774*** 0.815*

DNS(1) 1.127 1.021 1.235 1.366 1.015

DNS(2) 0.998 0.963 1.094 1.115 1.019

DNS(3) 1.004 1.000 1.261 1.431 1.472

DNS(4) 0.893** 0.768*** 0.839*** 0.881** 0.768**

DNS(5) 0.867** 0.796*** 0.839*** 0.836*** 0.887

DNS(6) 0.867*** 0.806*** 0.946 1.075 1.305

DNS(1)+FB1 0.690** 0.674** 0.706*** 0.888** 1.012

DNS(2)+FB1 0.793* 0.766* 0.809 0.884 0.913

DNS(3)+FB1 0.786* 0.734** 0.743*** 0.871** 1.257

DNS(4)+FB1 0.876** 0.756*** 0.825*** 0.866** 0.785*

DNS(5)+FB1 0.880** 0.809*** 0.854*** 0.851** 0.900

DNS(6)+FB1 0.880** 0.820*** 0.965 1.098 1.335

DNS(1)+FB2 0.876 0.923 1.039 1.243 1.434

DNS(2)+FB2 0.993 0.992 1.046 1.114 1.128

DNS(3)+FB2 0.973 0.931 0.949 1.063 1.437

DNS(4)+FB2 0.878** 0.759*** 0.826*** 0.867** 0.781*

DNS(5)+FB2 0.879** 0.808*** 0.852*** 0.848** 0.889

DNS(6)+FB2 0.879** 0.818*** 0.961 1.091 1.318

DNS(1)+FB3 0.901 0.955 1.067 1.264 1.452

DNS(2)+FB3 1.016 1.017 1.070 1.134 1.135

DNS(3)+FB3 0.995 0.955 0.967 1.071 1.420

DNS(4)+FB3 0.880** 0.761*** 0.830*** 0.871** 0.788*

DNS(5)+FB3 0.880** 0.810*** 0.854*** 0.851** 0.895

DNS(6)+FB3 0.880** 0.820*** 0.964 1.094 1.323

NSS(1) 1.020 1.053 1.174 1.329 1.043

NSS(2) 1.070 1.320 1.753 1.947 1.981

NSS(3) 1.002 1.266 1.510 1.492 1.312

NSS(4) 0.872** 0.826*** 0.824*** 0.872** 0.789*

NSS(5) 0.869** 0.853** 0.852*** 0.864*** 0.896

NSS(6) 0.781*** 0.885* 0.941 0.907 0.846

NSS(1)+FB1 0.796 0.728** 0.699*** 0.852** 0.987

NSS(2)+FB1 0.693** 0.592*** 0.811** 1.140 1.913

NSS(3)+FB1 0.701** 0.637*** 0.714*** 0.778** 0.934

NSS(4)+FB1 0.897** 0.854*** 0.847*** 0.896** 0.792**

NSS(5)+FB1 0.932 0.929 0.937 0.957 0.999

NSS(6)+FB1 0.838*** 0.964 1.019 0.972 0.879

NSS(1)+FB2 1.163 1.115 1.078 1.208 1.365

NSS(2)+FB2 0.907 0.813* 0.958 1.249 1.930

NSS(3)+FB2 0.918 0.900 0.938 0.980 1.070

NSS(4)+FB2 0.919* 0.872** 0.864** 0.909* 0.793*

NSS(5)+FB2 0.937 0.932 0.940 0.959 0.993

NSS(6)+FB2 0.842*** 0.967 1.026 0.981 0.886

NSS(1)+FB3 1.212 1.162 1.109 1.224 1.372

NSS(2)+FB3 0.938 0.841 0.976 1.265 1.949

NSS(3)+FB3 0.948 0.936 0.973 1.015 1.105

NSS(4)+FB3 0.923* 0.877** 0.869** 0.915* 0.804*

NSS(5)+FB3 0.941 0.937 0.945 0.964 1.001

NSS(6)+FB3 0.846*** 0.972 1.031 0.988 0.896

* Notes: See notes to Table 3.5A.
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Table 3.7C: h=12-Step Ahead Relative MSFEs of All Forecasting Models (Subsample 3:

2011:1-2017:10) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 2.008 1.704 1.201 1.052 1.107

AR(1)+FB1 3.138 3.030 2.200 1.474 1.100

AR(1)+FB2 3.210 3.090 2.281 1.524 1.134

AR(1)+FB3 4.989 4.567 3.213 1.832 1.141

VAR(1) 0.221*** 0.315*** 0.511*** 0.647*** 0.756***

VAR(SIC) 0.221*** 0.316*** 0.508*** 0.644*** 0.754***

VAR(1)+FB1 0.225*** 0.320*** 0.526*** 0.662*** 0.766***

VAR(1)+FB2 0.224*** 0.319*** 0.527*** 0.662*** 0.767***

VAR(1)+FB3 0.221*** 0.315*** 0.529*** 0.666*** 0.771***

DNS(1) 2.391 1.614 1.993 1.680 1.039

DNS(2) 3.369 3.185 3.151 2.207 1.580

DNS(3) 3.380 3.035 2.527 1.652 1.135

DNS(4) 0.202*** 0.284*** 0.438*** 0.660*** 0.702***

DNS(5) 0.154*** 0.247*** 0.520*** 0.704*** 0.823***

DNS(6) 0.157*** 0.306*** 0.823* 0.955 0.861***

DNS(1)+FB1 4.706 3.596 3.530 2.442 1.263

DNS(2)+FB1 7.672 7.268 6.286 3.861 2.313

DNS(3)+FB1 7.712 7.097 5.412 3.115 1.795

DNS(4)+FB1 0.206*** 0.280*** 0.444*** 0.667*** 0.707***

DNS(5)+FB1 0.158*** 0.252*** 0.543*** 0.723*** 0.836***

DNS(6)+FB1 0.161*** 0.311*** 0.847* 0.976 0.876***

DNS(1)+FB2 4.689 3.569 3.515 2.443 1.283

DNS(2)+FB2 7.490 7.106 6.164 3.795 2.278

DNS(3)+FB2 7.529 6.936 5.311 3.068 1.772

DNS(4)+FB2 0.207*** 0.287*** 0.445*** 0.666*** 0.706***

DNS(5)+FB2 0.158*** 0.253*** 0.545*** 0.725*** 0.838***

DNS(6)+FB2 0.161*** 0.314*** 0.853 0.981 0.879**

DNS(1)+FB3 5.602 4.207 3.691 2.407 1.227

DNS(2)+FB3 7.016 6.645 5.712 3.486 2.044

DNS(3)+FB3 7.071 6.549 4.987 2.846 1.583

DNS(4)+FB3 0.194*** 0.319*** 0.470*** 0.679*** 0.718***

DNS(5)+FB3 0.162*** 0.261*** 0.542*** 0.720*** 0.833***

DNS(6)+FB3 0.165*** 0.327*** 0.869 0.990 0.881**

NSS(1) 2.188 2.018 1.962 1.697 1.085

NSS(2) 2.880 3.157 2.934 2.041 1.437

NSS(3) 2.872 3.067 1.898 1.046 0.591***

NSS(4) 0.203*** 0.243*** 0.483*** 0.704*** 0.733***

NSS(5) 0.245*** 0.483*** 0.716*** 0.793*** 0.811***

NSS(6) 0.269*** 0.493*** 0.995 0.965 0.576***

NSS(1)+FB1 4.678 4.614 3.654 2.533 1.331

NSS(2)+FB1 5.235 5.914 5.220 3.230 1.904

NSS(3)+FB1 5.197 5.727 3.585 1.805 0.916

NSS(4)+FB1 0.200*** 0.245*** 0.496*** 0.716*** 0.740***

NSS(5)+FB1 0.235*** 0.463*** 0.715*** 0.798*** 0.815***

NSS(6)+FB1 0.255*** 0.473*** 1.008 0.981 0.586***

NSS(1)+FB2 4.582 4.526 3.617 2.524 1.348

NSS(2)+FB2 5.074 5.743 5.107 3.182 1.891

NSS(3)+FB2 5.038 5.552 3.495 1.774 0.911

NSS(4)+FB2 0.201*** 0.244*** 0.498*** 0.721*** 0.742***

NSS(5)+FB2 0.239*** 0.469*** 0.719*** 0.801*** 0.817***

NSS(6)+FB2 0.259*** 0.480*** 1.016 0.987 0.590***

NSS(1)+FB3 4.993 4.918 3.671 2.439 1.279

NSS(2)+FB3 5.321 5.968 5.119 3.079 1.755

NSS(3)+FB3 5.210 5.846 3.704 1.812 0.860

NSS(4)+FB3 0.229*** 0.257*** 0.488*** 0.716*** 0.731***

NSS(5)+FB3 0.273*** 0.505*** 0.692*** 0.768*** 0.799***

NSS(6)+FB3 0.298*** 0.525*** 1.007 0.970 0.580***

* Notes: See notes to Table 3.5A.
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Table 3.7D: h=12-Step Ahead Relative MSFEs of All Forecasting Models (Whole Sample:

2001:1-2017:10) *

Model rMSFE

Maturity 3 month 1 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

AR(SIC) 0.904* 0.970 1.062 1.053 1.045

AR(1)+FB1 0.868* 0.887** 1.061 1.275 1.379

AR(1)+FB2 1.062 1.081 1.166 1.423 1.885

AR(1)+FB3 1.160 1.171 1.265 1.514 1.933

VAR(1) 0.701*** 0.596*** 0.478*** 0.485*** 0.630***

VAR(SIC) 0.701*** 0.597*** 0.478*** 0.485*** 0.629***

VAR(1)+FB1 0.700*** 0.595*** 0.480*** 0.489*** 0.638***

VAR(1)+FB2 0.706*** 0.600*** 0.483*** 0.493*** 0.640***

VAR(1)+FB3 0.704*** 0.599*** 0.483*** 0.494*** 0.645***

DNS(1) 0.979 0.785*** 0.797*** 0.921 0.879***

DNS(2) 0.900** 0.791*** 0.797*** 0.884* 1.042

DNS(3) 0.895** 0.769*** 0.769*** 0.873** 0.989

DNS(4) 0.722*** 0.600*** 0.508*** 0.535*** 0.603***

DNS(5) 0.689*** 0.595*** 0.506*** 0.528*** 0.657***

DNS(6) 0.672*** 0.556*** 0.502*** 0.584*** 0.758***

DNS(1)+FB1 0.781*** 0.674*** 0.750*** 0.974 1.105

DNS(2)+FB1 0.896 0.815** 0.898 1.085 1.389

DNS(3)+FB1 0.888 0.773*** 0.794** 0.966 1.278

DNS(4)+FB1 0.712*** 0.592*** 0.503*** 0.533*** 0.609***

DNS(5)+FB1 0.693*** 0.597*** 0.511*** 0.534*** 0.665***

DNS(6)+FB1 0.675*** 0.559*** 0.507*** 0.592*** 0.769***

DNS(1)+FB2 1.103 1.041 1.167 1.426 1.593

DNS(2)+FB2 1.137 1.069 1.171 1.385 1.707

DNS(3)+FB2 1.124 1.018 1.051 1.242 1.574

DNS(4)+FB2 0.716*** 0.596*** 0.504*** 0.533*** 0.607***

DNS(5)+FB2 0.695*** 0.599*** 0.512*** 0.535*** 0.664***

DNS(6)+FB2 0.677*** 0.560*** 0.507*** 0.591*** 0.767***

DNS(1)+FB3 1.172 1.100 1.210 1.451 1.597

DNS(2)+FB3 1.140 1.075 1.162 1.354 1.619

DNS(3)+FB3 1.127 1.026 1.048 1.221 1.499

DNS(4)+FB3 0.716*** 0.598*** 0.507*** 0.536*** 0.613***

DNS(5)+FB3 0.696*** 0.600*** 0.512*** 0.535*** 0.663***

DNS(6)+FB3 0.678*** 0.562*** 0.509*** 0.594*** 0.769***

NSS(1) 0.945* 0.857*** 0.794*** 0.927 0.913***

NSS(2) 1.016 0.960 0.891 0.960 1.118

NSS(3) 0.961 0.945 0.778*** 0.710*** 0.648***

NSS(4) 0.706*** 0.613*** 0.504*** 0.537*** 0.618***

NSS(5) 0.758*** 0.664*** 0.495*** 0.497*** 0.622***

NSS(6) 0.705*** 0.683*** 0.542*** 0.522*** 0.503***

NSS(1)+FB1 0.815** 0.752*** 0.755*** 0.975 1.131

NSS(2)+FB1 0.824** 0.738*** 0.743*** 0.924 1.325

NSS(3)+FB1 0.801*** 0.746*** 0.625*** 0.629*** 0.742***

NSS(4)+FB1 0.731*** 0.634*** 0.519*** 0.553*** 0.627***

NSS(5)+FB1 0.786*** 0.689*** 0.518*** 0.521*** 0.644***

NSS(6)+FB1 0.730*** 0.709*** 0.564*** 0.541*** 0.516***

NSS(1)+FB2 1.190 1.152 1.178 1.430 1.624

NSS(2)+FB2 1.153 1.018 0.918 1.080 1.488

NSS(3)+FB2 1.099 1.054 0.844** 0.820*** 0.930

NSS(4)+FB2 0.744*** 0.644*** 0.526*** 0.558*** 0.629***

NSS(5)+FB2 0.792*** 0.694*** 0.522*** 0.524*** 0.645***

NSS(6)+FB2 0.736*** 0.715*** 0.570*** 0.547*** 0.520***

NSS(1)+FB3 1.240 1.201 1.209 1.443 1.618

NSS(2)+FB3 1.191 1.049 0.934 1.080 1.446

NSS(3)+FB3 1.129 1.093 0.881* 0.847** 0.925

NSS(4)+FB3 0.742*** 0.642*** 0.525*** 0.559*** 0.629***

NSS(5)+FB3 0.794*** 0.697*** 0.521*** 0.521*** 0.640***

NSS(6)+FB3 0.737*** 0.718*** 0.571*** 0.546*** 0.519***

* Notes: See notes to Table 3.5A.
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Table 3.8: Forecast Combination Models*

Model Description

All Average of all fifty eight forecast models

FB Average of forty two models that contain macro diffusion index(es), principle component analysis based on all macroeconomic variables

FB(1) Average of fourteen models that contain one diffusion index, namely all “+FB1” models.

FB(2) Average of fourteen models that contain two diffusion indexes, namely all “+FB2” models.

FB(3) Average of fourteen models that contain three diffusion indexes, namely all “+FB3” models.

FS Average of sixteen non-FB type models

Econometrics Average of all ten AR and VAR type models

AR Average of all five AR type models

VAR Average of all five VAR type models

DNS Average of all twenty four DNS type models

NSS Average of all twenty four NSS type models

NS(AR) Average of all twenty four DNS and NSS type models with underlying AR(1) factor specifications

NS(VAR) Average of all twenty four DNS and NSS type models with underlying VAR(1) factor specifications

NS(OLS) Average of all sixteen DNS and NSS type models with fixed decay parameter(s), estimated with OLS.

NS(NLS) Average of all thirty two DNS and NSS type models with dynamic decay parameter(s), estimated with NLS.

* Notes: This table summarizes the combination models utilized in all forecast experiments.
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Table 3.9A: h=1-Step Ahead Relative MSFEs of Forecast Combination Models*

Model rMSFE

Maturity 3 months 1 year 3 years 5 years 10 years

All 0.457*** 0.574*** 0.442*** 0.466*** 0.412***

FB 0.512*** 0.651*** 0.521*** 0.545*** 0.489***

FB(1) 0.477*** 0.601*** 0.525*** 0.556*** 0.495***

FB(2) 0.572** 0.697** 0.522*** 0.542*** 0.491***

FB(3) 0.527*** 0.687** 0.535*** 0.550*** 0.496***

FS 0.370*** 0.441*** 0.284*** 0.301*** 0.246***

2001:Jan - 2005:Dec Econometrics 0.559*** 0.833** 1.007 1.037 1.078

1st Subsample AR 0.675*** 0.820** 0.999 1.016 1.013

VAR 0.498*** 0.883 1.046 1.093 1.183

DNS 0.624*** 0.993 1.059 1.215 1.012

NSS 1.531 1.493 1.015 0.973 0.956

NS(AR) 1.322 1.481 1.105 1.131 0.972

NS(VAR) 0.717*** 1.120 0.972 0.998 0.959

NS(OLS) 0.660*** 1.035 0.999 1.112 1.044

NS(NLS) 1.057 1.324 1.057 1.065 1.018

All 0.349*** 0.401*** 0.478*** 0.470*** 0.383***

FB 0.416** 0.510** 0.560*** 0.546*** 0.462***

FB(1) 0.442** 0.524** 0.575*** 0.557*** 0.463***

FB(2) 0.434*** 0.527*** 0.582*** 0.564*** 0.467***

FB(3) 0.408** 0.527** 0.548*** 0.536*** 0.470***

FS 0.253*** 0.239*** 0.345*** 0.331*** 0.219***

2006:Jan - 2010:Dec Econometrics 0.900 0.825 0.897 0.891 0.968

2nd Subsample AR 0.963 0.897 0.961 0.968 0.975

VAR 0.953 0.847 0.897 0.869 0.996

DNS 0.998 0.878 1.174 1.358 1.138

NSS 0.773* 1.022 1.051 0.919 0.889

NS(AR) 0.847 0.997 1.020 0.996 0.886

NS(VAR) 0.938 0.913 1.141 1.081 0.894

NS(OLS) 0.908* 0.946 1.009 1.181 0.988

NS(NLS) 0.787** 0.931 1.100 1.007 0.922

All 2.816 1.507 0.904 0.893 0.509***

FB 3.291 1.788 1.060 1.029 0.590***

FB(1) 3.718 1.980 1.075 1.041 0.591***

FB(2) 3.330 1.909 1.086 1.034 0.592***

FB(3) 3.095 1.719 1.103 1.056 0.614***

FS 1.799 0.931 0.576*** 0.599*** 0.337***

2011:Jan - 2017:Oct Econometrics 1.248 1.342 1.284 1.208 1.107

3rd Subsample AR 1.085 1.061 1.075 1.060 1.010

VAR 2.128 2.364 1.798 1.518 1.260

DNS 6.462 2.202 2.093 2.165 1.259

NSS 4.303 3.891 2.046 1.727 1.089

NS(AR) 8.315 5.336 2.424 2.043 1.114

NS(VAR) 2.984 1.644 1.689 1.707 1.124

NS(OLS) 4.479 2.259 1.541 1.936 0.998

NS(NLS) 5.224 3.806 2.444 2.251 1.447

All 0.499*** 0.552*** 0.512*** 0.549*** 0.427***

FB 0.579*** 0.655*** 0.601*** 0.639*** 0.507***

FB(1) 0.601** 0.648*** 0.610*** 0.650*** 0.510***

FB(2) 0.614*** 0.692*** 0.612*** 0.645*** 0.509***

FB(3) 0.571*** 0.676*** 0.609*** 0.643*** 0.518***

FS 0.365*** 0.379*** 0.342*** 0.369*** 0.261***

2001:Jan - 2017:Oct Econometrics 0.789*** 0.860** 1.000 1.019 1.044

Whole Sample AR 0.861* 0.869* 0.994 1.008 0.998

VAR 0.836** 0.955 1.081 1.097 1.133

DNS 1.101 1.013 1.227 1.448 1.128

NSS 1.212 1.423 1.153 1.099 0.967

NS(AR) 1.355 1.492 1.232 1.259 0.979

NS(VAR) 0.947 1.058 1.122 1.164 0.980

NS(OLS) 0.975 1.068 1.068 1.295 1.010

NS(NLS) 1.084 1.294 1.241 1.273 1.099

* Notes: See notes to Table 3.5A. Forecast combination models are listed in Table 3.8.
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Table 3.9B: h=3-Step Ahead Relative MSFEs of Forecast Combination Models*

Model rMSFE

Maturity 3 months 1 year 3 years 5 years 10 years

All 0.370*** 0.442*** 0.363*** 0.378*** 0.394***

FB 0.415*** 0.510*** 0.436*** 0.454*** 0.483***

FB(1) 0.387*** 0.456*** 0.401*** 0.424*** 0.452***

FB(2) 0.444*** 0.548*** 0.458*** 0.474*** 0.504***

FB(3) 0.431*** 0.542*** 0.464*** 0.480*** 0.514***

FS 0.294*** 0.317*** 0.217*** 0.222*** 0.212***

2001:Jan - 2005:Dec Econometrics 0.661*** 0.801*** 0.906** 0.959 1.065

1st Subsample AR 0.658*** 0.837*** 1.028 1.087 1.126

VAR 0.688*** 0.787*** 0.821*** 0.875** 1.040

DNS 0.628*** 0.850*** 0.876* 0.986 1.012

NSS 1.049 1.121 0.830** 0.806** 0.880**

NS(AR) 0.941 1.140 0.976 1.006 1.018

NS(VAR) 0.750*** 0.923** 0.800** 0.822** 0.898*

NS(OLS) 0.728*** 0.896** 0.860** 0.933* 0.927*

NS(NLS) 0.852** 1.018 0.849* 0.872* 0.979

All 0.378*** 0.360*** 0.422*** 0.422*** 0.367***

FB 0.467*** 0.462*** 0.509*** 0.503*** 0.448***

FB(1) 0.462*** 0.460*** 0.518*** 0.510*** 0.447***

FB(2) 0.470*** 0.459*** 0.507*** 0.504*** 0.452***

FB(3) 0.483*** 0.484** 0.510*** 0.500*** 0.449***

FS 0.276*** 0.238*** 0.286*** 0.279*** 0.204***

2006:Jan - 2010:Dec Econometrics 0.898 0.896 0.963 0.937 0.965

2nd Subsample AR 0.994 0.976 1.027 1.026 1.042

VAR 1.033 0.959 0.946 0.881** 0.924

DNS 0.966 0.847 1.025 1.065 0.961

NSS 0.835 0.846 0.945 0.914 0.855

NS(AR) 1.012 0.979 0.984 0.967 0.875*

NS(VAR) 1.035 0.961 1.064 1.021 0.886

NS(OLS) 0.909 0.850 1.008 1.085 0.933

NS(NLS) 0.866 0.841 0.963 0.925 0.866*

All 1.829 1.435 0.838* 0.613*** 0.370***

FB 2.172 1.715 0.995 0.722** 0.443***

FB(1) 2.295 1.767 1.013 0.735** 0.449***

FB(2) 2.200 1.702 1.009 0.735** 0.449***

FB(3) 2.116 1.798 1.023 0.719** 0.438***

FS 1.096 0.849 0.504*** 0.376*** 0.215***

2011:Jan - 2017:Oct Econometrics 0.892 0.982 1.109 1.057 0.982

3rd Subsample AR 1.334 1.255 1.131 1.086 1.034

VAR 0.819 1.049 1.211 1.073 0.944*

DNS 3.423 2.053 1.855 1.512 0.980

NSS 3.369 3.446 1.738 1.204 0.807**

NS(AR) 7.732 6.656 3.089 1.843 1.016

NS(VAR) 0.967 0.867 1.177 1.083 0.821**

NS(OLS) 3.118 1.776 1.517 1.485 0.924

NS(NLS) 3.413 3.385 2.024 1.405 0.927

All 0.426*** 0.444*** 0.426*** 0.437*** 0.377***

FB 0.503*** 0.535*** 0.511*** 0.520*** 0.457***

FB(1) 0.491*** 0.508*** 0.499*** 0.512*** 0.449***

FB(2) 0.520*** 0.553*** 0.522*** 0.532*** 0.467***

FB(3) 0.516*** 0.564*** 0.528*** 0.530*** 0.465***

FS 0.315*** 0.303*** 0.269*** 0.271*** 0.211***

2001:Jan - 2017:Oct Econometrics 0.781*** 0.849*** 0.946* 0.968 1.002

Whole Sample AR 0.841* 0.914 1.036 1.064 1.065

VAR 0.856*** 0.872*** 0.905** 0.912** 0.967

DNS 0.889** 0.895* 1.017 1.110 0.984

NSS 1.032 1.088 0.951 0.918* 0.845***

NS(AR) 1.220 1.279 1.148 1.140 0.972

NS(VAR) 0.892*** 0.937** 0.941 0.944 0.866***

NS(OLS) 0.900* 0.909 0.975 1.089 0.928*

NS(NLS) 0.951 1.030 0.991 0.987 0.924*

* Notes: See notes to Table 3.9A.
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Table 3.9C: h=12-Step Ahead Relative MSFEs of Forecast Combination Models∗

Model rMSFE

Maturity 3 months 1 year 3 years 5 years 10 years

All 0.261*** 0.222*** 0.157*** 0.163*** 0.215***

FB 0.318*** 0.276*** 0.203*** 0.214*** 0.287***

FB(1) 0.264*** 0.228*** 0.162*** 0.169*** 0.227***

FB(2) 0.348*** 0.302*** 0.227*** 0.242*** 0.327***

FB(3) 0.354*** 0.309*** 0.232*** 0.245*** 0.329***

FS 0.143*** 0.111*** 0.065*** 0.065*** 0.084***

2001:Jan - 2005:Dec Econometrics 0.638*** 0.627*** 0.590*** 0.649*** 0.874***

1st Subsample AR 0.831*** 0.958 1.084 1.294 1.746

VAR 0.631*** 0.518*** 0.367*** 0.354*** 0.457***

DNS 0.569*** 0.505*** 0.425*** 0.480*** 0.632***

NSS 0.658*** 0.568*** 0.383*** 0.378*** 0.506***

NS(AR) 0.709*** 0.658*** 0.566*** 0.647*** 0.943

NS(VAR) 0.647*** 0.542*** 0.362*** 0.337*** 0.387***

NS(OLS) 0.618*** 0.552*** 0.469*** 0.538*** 0.695***

NS(NLS) 0.610*** 0.529*** 0.374*** 0.378*** 0.510***

All 0.299*** 0.292*** 0.354*** 0.398*** 0.390***

FB 0.361*** 0.353*** 0.416*** 0.464*** 0.473***

FB(1) 0.322*** 0.309*** 0.371*** 0.425*** 0.444***

FB(2) 0.381*** 0.377*** 0.442*** 0.489*** 0.498***

FB(3) 0.387*** 0.383*** 0.447*** 0.493*** 0.502***

FS 0.239*** 0.235*** 0.271*** 0.288*** 0.229***

2006:Jan - 2010:Dec Econometrics 0.688*** 0.661*** 0.741*** 0.776*** 0.842**

2nd Subsample AR 0.649*** 0.616*** 0.728*** 0.820*** 1.047

VAR 0.860*** 0.809*** 0.791*** 0.769*** 0.799*

DNS 0.708*** 0.669*** 0.798*** 0.894** 0.910*

NSS 0.681*** 0.685*** 0.818*** 0.895** 0.882**

NS(AR) 0.665*** 0.645*** 0.791*** 0.940 1.099

NS(VAR) 0.877** 0.839*** 0.883** 0.892** 0.829*

NS(OLS) 0.700*** 0.668*** 0.804*** 0.933 0.827**

NS(NLS) 0.691*** 0.680*** 0.808*** 0.872*** 0.934*

All 0.701*** 0.661*** 0.658*** 0.508*** 0.355***

FB 0.905 0.858** 0.835*** 0.632*** 0.438***

FB(1) 0.955 0.902* 0.872** 0.658*** 0.453***

FB(2) 0.927 0.876** 0.857*** 0.651*** 0.452***

FB(3) 0.892 0.860* 0.822** 0.613*** 0.422***

FS 0.312*** 0.292*** 0.307*** 0.251*** 0.180***

2011:Jan - 2017:Oct Econometrics 0.831*** 0.867*** 0.948* 0.907*** 0.886***

3rd Subsample AR 2.543 2.364 1.760 1.271 1.044

VAR 0.222*** 0.317*** 0.520*** 0.656*** 0.763***

DNS 1.595 1.268 1.509 1.248 0.932

NSS 1.342 1.488 1.312 0.997 0.747***

NS(AR) 4.543 4.391 3.570 2.222 1.281

NS(VAR) 0.194*** 0.311*** 0.536*** 0.628*** 0.650***

NS(OLS) 1.232 0.940 1.286 1.253 0.884***

NS(NLS) 1.572 1.641 1.468 1.055 0.822***

All 0.295*** 0.261*** 0.236*** 0.264*** 0.300***

FB 0.361*** 0.323*** 0.295*** 0.329*** 0.378***

FB(1) 0.317*** 0.280*** 0.258*** 0.295*** 0.353***

FB(2) 0.387*** 0.348*** 0.319*** 0.355*** 0.405***

FB(3) 0.391*** 0.353*** 0.322*** 0.353*** 0.395***

FS 0.188*** 0.156*** 0.131*** 0.141*** 0.147***

2001:Jan - 2017:Oct Econometrics 0.666*** 0.647*** 0.649*** 0.714*** 0.873***

Whole Sample AR 0.835*** 0.912** 1.039 1.186 1.350

VAR 0.702*** 0.597*** 0.480*** 0.489*** 0.636***

DNS 0.669*** 0.585*** 0.584*** 0.681*** 0.798***

NSS 0.697*** 0.641*** 0.548*** 0.581*** 0.665***

NS(AR) 0.862** 0.806*** 0.809*** 0.938 1.104

NS(VAR) 0.717*** 0.622*** 0.501*** 0.501*** 0.565***

NS(OLS) 0.677*** 0.602*** 0.602*** 0.728*** 0.792***

NS(NLS) 0.684*** 0.620*** 0.549*** 0.584*** 0.705***

* Notes: See notes to Table 3.9A.
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