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ABSTRACT 

 

A Robust Penalized Cox Prediction Model for Detection of Mis-Spliced Transcripts with 
Prognostic Impacts in Adult de novo Acute Myeloid Leukemia 

By  

Sheida Hayati 

 

Background: Our understanding of Acute Myeloid Leukemia (AML) has transformed 

over the recent years. We have yet to tackle an ongoing major challenge of high mortality 

rate in elderly AML. AML outcome differs usually depending on patient age, predisposing 

genomics variations (i.e., chromosomal abnormalities, mutations, gene expression profile, 

epigenomic patterns, and possibly aberrant mRNA splicing), infectious complications, 

severe bleeding, and complications after bone marrow/stem cell transplant.  Thus far, 

available AML risk assessment systems mainly rely on the well-established prognostic 

indicators in a form of chromosomal aberrations, and a few driver mutations often in 

patients with normal cytogenetics. Although these systems demonstrated acceptable 

performance in separating favorable and adverse groups, they faced limitation in defining 

patients with intermediate risk status. Pre-mRNA splicing regulation is a tissue dependent 

process, plays an important role in hematopoiesis including proliferation and 

differentiation. Several studies on a select number of genes reported expression of spliced 

variants with clinical implications in AML. Yet, a systematic approach to investigate 
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clinical relevance of alternative spliced (AS) variants, and their capacity to predict disease 

outcome in AML is lacking.  

Objectives: (i) To identify genes with AS variant (signature event) with capacity of 

predicting disease outcome in adult de novo AML (defined as AML in patients without 

history of antecedent hematologic disorder or treatment with cytotoxic reagents), 

outperforming a standard model built on the well-established AML prognostic risk factors; 

(ii) to evaluate capacity of signature events to serve as prognostic indicators in adult AML; 

and (iii) to distinguish common cis regulatory modules in genes with signature events. 

Methods: We employed available bioinformatics, machine learning, and statistical 

techniques to build two models: (i) a standard Cox proportional hazards (PH) model 

(referred to as S-Cox) fit to the well-established AML prognostic risk factors, i.e., age, 

cytogenetic and molecular risk status, and total peripheral blood white blood cell (WBC) 

counts at diagnosis; and (ii) a Cox PH model with the grouped lasso penalty (referred to as 

GL-Cox) built on age, cytogenetic and molecular risk status, WBC count, and Percent 

Spliced In (PSI) value of alternative exons. Overall survival was considered as clinical 

endpoint and death as event. We validated performance of these models by calculating area 

under time-dependent Receiver Operating Characteristic curve (AUROCt). 

Results: We developed our models on a training set (TS) of fifty-four adult de novo AML 

cases participated in the Cancer Genome Atlas (TCGA) study. Two non-overlapping 

validation sets (VSs) from TCGA cohort (n=25 and n=44) were used to evaluate model 

performance. Patients included in the TS and the VS-1 were treated with similar initial 

therapy. Patients in the VS-2 had a history of prior treatment with Hydrea (to reduce WBC 

counts) and were treated with different types of therapy. The GL-Cox model identified 19 
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signature events with improved prediction power compared to the S-Cox model. Time-

dependent ROC curve at 1-5 years survival for the GL-Cox model dominated the ROC 

curve for the S-Cox model in two VSs. These signature events belonged to genes including 

CLK4 (exon 5) a splicing regulator, MCPH1 (exons 5:6) a tumor suppressor gene, RFWD2 

(exons 10:8) a gene that encodes a ubiquitin-protein ligase to target and degrade different 

proteins including TP53 and JUN, and ABCB7 (exons 5:4) that involved in iron 

homeostasis and heme transportation, among others. Furthermore, we found that of the 19 

genes with signature event, 12 had at least one CTCF-binding module, a regulatory element 

involved in alternative exon inclusion by pausing RNA polymerase II.  

Conclusion: This study for the first time demonstrated capacity of mis-spliced transcripts 

in predicting disease outcome in adult AML, and their potential to serve as prognostic 

indicators. Presence of alternatively spliced CLK4 among the signature events suggested a 

possible role for this trans-splicing factor in global regulation of AS in adult AML. In 

addition, existence of CTCF-binding module in more than half of these signature events 

and very close to NCDN and RFWD2 target exons indicated a possible role for this 

regulatory element in mediating exon inclusion. Despite promising results of our study, we 

faced several limitations including small sample size and access to limited clinical data 

(e.g. time of transplant, and cause of death). We also did not evaluate our model on an 

independent patient cohort. Therefore, further investigation is essential to draw a more 

reliable conclusion.  
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CHAPTER I 

INTRODUCTION 

 

Background: Acute Myeloid Leukemia (AML), with the exception of acute 

promyelocytic leukemia (APL), is a heterogenous aggressive neoplasm of myeloid 

progenitor cells, and characterized as a blood malignancy with rapid proliferation and 

accumulation of immature, or abnormally differentiated, and non-functional myeloid 

lineage cells in the bone marrow (BM), and the peripheral blood (PB), and their infiltration 

to other tissues1,2. AML harbors various cytogenetic and molecular abnormalities, 

including chromosomal aberrations, mutations, epigenetic alteration, and impaired RNA 

splicing.3-8  

There are number of factors that determine the outlook of AML including age, 

white blood cell (WBC) count, chromosomal abnormalities, and driver mutations (i.e. 

NPM1, FLT3-ITD, TP53, and biallelic CEBPA) in cytogenetically normal (CN-AML) 

patients. Taking into consideration that CN-AML represents roughly half of cases, and 

sparsity of driver mutations in adult AML3, a significant number of patients do not harbor 

any well-established prognostic marker to measure their risk score. Thus, there is a need 

for identifying new group of prognostic indicators in  adult AML.  

Herein, we performed systems analysis of RNA-Seq data from adult AML patients 

to discover group of alternative spliced events associated with disease outcome.  
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Statement of the Problem: Our understanding of AML has transformed over the past 

decade. We have yet to tackle an ongoing major challenge of high mortality rate in elderly 

AML. The high risk of relapse signifies our lack of capacity to forecast AML outcome, and 

to apply more tailored disease management strategies. Thus far, available AML risk 

assessment systems mainly rely on the well-established prognostic indicators in a form of 

chromosomal aberrations, and a few driver mutations often in patients with normal 

cytogenetics. Although these systems demonstrated acceptable performance in separating 

favorable and adverse groups, they faced limitation in defining group of patients with no 

cytogenetic aberrations, or driver mutations, and classified them as intermediate risk group. 

Thus, there is a need for introducing new group of markers with ability to predict disease 

outcome in  adult AML. 

Research Hypothesis: The majority of multi-exon pre-mRNA undergo alternative 

splicing (AS). Erroneous splicing has been reported in genes associated with cancer 

progression and metastasis.5,9-12 Recently, several groups have investigated AS for selected 

genes in AML. 5,7,13-17 However, developing a robust disease outcome prediction model on 

mis-spliced transcripts is still underway. We hypothesize that (i) AS variants have the 

capacity of forecasting outcome in  adult AML regardless of the known prognostic risk 

factors. (ii) Signature events with AML outcome prediction capacity can serve as potential 

prognostic indicators.; (iii) genes with erroneous splicing can harbor specific cis regulatory 

module belong to regulatory elements with a role in splicing.  

Significance of the Study: According to the American Cancer Society's (ACS) 

(https://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/statistics), the 5-year 

survival rate for adult AML is approximately 24%, with a rise in incidence, poor prognosis, 
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and failure to respond to therapy with age. AML is becoming a challenge as the US 

population is growing and aging. Therefore, a great need exists for identifying novel AML 

risk stratifying and prognostic indicators. Disrupted mRNA splicing is a hallmark of cancer 

and has been reported in AML. However, systems analysis of mRNA splicing data from 

adult AML patients to identify AS events with contribution to disease outcome and 

predictive ability is lacking. This study offers a new method for risk assessment for adult 

AML by identifying a group of mis-spliced isoforms with contribution to patient overall 

survival (OS).  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 | AML a Complex Malignancy of Hematopoietic Progenitor Cells  

 

AML is an aggressive complex 

malignancy of myeloid blood cell lineage, 

characterized by aberrant proliferation and 

differentiation of myeloid blast, that result 

in accumulation of undifferentiated, 

immature, or mature non-functional 

leukemic cells in the BM, and the PB, as 

well as extramedullary tissues.2,18 In AML, 

production of healthy and functional blood 

cells from pluripotent hematopoietic stem 

cells in the BM is suppressed. (Figure 1.)  

  

 

 

Figure 1. Normal Hematopoiesis 

Illustration depicts normal blood cell formation a 
so-called hematopoiesis. All mature functional 
blood components are derived from multipotential 
hematopoietic stem cells. AML is a blood 
malignancy of the myeloid line of blood cells. 
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Recent advances in technology have revolutionized our understanding of AML 

heterogeneity, shed light on molecular landscape of disease. However, the primary focus 

of the majority of AML related studies has been on mutations and to a lesser extent on gene 

expression profile, methylation patterns, and miRNA regulation, leaving behind an 

important mis-regulated process of alternative mRNA splicing. 

2.1.1 | Epidemiology of AML 

 The ACS has estimated approximately 19,520 new cases of AML, and 10,670 

deaths from AML, for 2018. The median age of patients with AML at diagnosis is about 

65 years old.18 The incidence increases in elderly patients and is slightly higher in males.18 

2.1.2 | Diagnosis 

Normal bone marrow (BM) consists of 5% or less blasts. According to the 2016 

WHO guideline,19 the diagnosis of AML is based on the presence of 20% or more myeloid 

blasts in the marrow or the blood. In addition to a routine complete blood count (CBC), 

microscopic exams, measuring prothrombin time (PT), partial thromboplastin time (PTT), 

fibrinogen,  and evaluating chemistry profile such as uric acid and lactate dehydrogenase 

(LDH), a multidisciplinary diagnostic study on the BM including cytochemistry, 

flowcytometry, immunohistochemistry, and molecular genetics analysis are essential to 

precisely classify AML.20 

2.1.3 | AML Risk Factors 

For patients with de novo AML, incidence increases by age, most likely because of 

accumulating molecular and cytogenetic abnormalities over times, and physiological 

changes associated with aging that decrease treatment tolerance.21 
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There are several reported risk factors associated with secondary AML (referred to 

as therapy-related AML, or AML arising from an antecedent hematologic disorders) 

including exposure to alkylating agents (i.e., cyclophosphamides, procarbazine, 

chlorambucil, melphalan, busulfan, and nitrogen mustard), high-dose radiation, history of 

prior treatment with Topoisomerase II inhibitors (an important DNA repair enzyme) i.e., 

etoposide, teniposide, mitoxantrone, epirubicin, and doxorubicin,22  smoking and long term 

exposure to benzene.23 AML can also be secondary to myelodysplastic syndrome (MDS), 

myeloproliferative neoplasm (MPN), MDS/MPN, and aplastic anemia.  

2.1.4 | Recurrent Translocations and Genetic Rearrangements in AML 

The chromosomal aberrations or anomalies include numerical (aneuploidy) or 

structural disorder. Aneuploidy occurs when cells missing one of the diploid chromosomes 

(referred to as monosomy) or has gained two chromosomes of a pair (such as trisomy). 

Structural abnormalities include (i) translocations (abbreviated as: t), in which a segment 

of the chromosome is transferred to another chromosome; (ii) inversions (abbreviated as: 

inv); when a portion of the chromosome is reversed; (iii) deletions (abbreviated as: del) , 

when a part of the chromosome is missing; (iv) duplication, in which a portion of 

chromosome is duplicated; (v) isochromosome (abbreviated as: i), with loss of one arm of 

the chromosome and duplication of the other arm; and (vi) isodicentric (abbreviated as: 

idic), which an abnormal chromosome contains two repetitive elements and centrosomes.  

 Cytogenetic and chromosomal abnormalities have been detected in approximately 

50% of AML patients. AML chromosomal abnormalities include: (i) unbalanced 

abnormalities: del(7q), del(5q), i(17q)/t(17p), del(13), del(11q), del(12p)/t(12p), 

idic(X)(q13); (ii) balanced abnormalities: t(11;16)(q23;p13.3), t(3;21)(q26.2;q22.1), 
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t(1;3)(p36.3;q21.1), t(2;11)(p21;q23), t(5;12)(q33;p12), t(5;7)(q33;p12), t(5;17)(q33;p13), 

t(5;10)(q33,q21), and t(3;5)(q25;q34).24  

According to the 2016 World Health Organization (WHO)19 and the 2017 National 

Comprehensive Cancer Network (NCCN) 20guidelines, AML patients harboring 3 or more 

cytogenetic abnormalities are considered as complex karyotype (AML-CK) with poor 

prognosis and a frequency of 10-15%.3,24 Patients with two or more autosomal 

monosomies or one autosomal monosomy with another structural abnormality are referred 

to as a monosomal karyotype (AML-MK) with unfavorable risk status and frequency of 

5-10%.3 BCR-ABL1 fusion (t(9;22)(q34q11.2)), translocation in 11q23- non t(9;11) or 

t(11,v)(q23,v), GATA2-MECOM fusion (inv(3)(q21q26)/ t(3;3)), and DEK-NUP214 

fusion (t(6;9)(p23;q34)) are also associated with poor AML prognosis.19,25 AMLs with 

RUNX1-RUNX1T1 fusion (t(8;21)(q22;q22)), MYH11-CBFB fusion (inv(16)(p13q22)), 

or PML-RARA fusion (t(15;17)(q24;q21)) are referred to as core binding factor AML 

(CBF-AML) with favorable risk status.19 Finally, patients with MLLT3-KMT2A fusion 

(t(9;11)(p22;q23)) are considered as intermediate prognosis group.  

 

2.1.5 | Common Mutations in AML 

 In addition to recurrent cytogenetics and chromosomal abnormalities, several 

somatic mutations have been associated with AML prognosis. These genes include NPM1, 

the most common mutated gene, followed by DNMT3A, FLT3-ITD, WT1, RAS, TET2, 

CEBPA, IDH1, IDH2, ASXL1, TP53, RUNX1, ND4, PHF6, U2AF1, KIT, KMT2A-PTD, 

SRSF2, SF3B1, and CBL24. Table 1 represents approximate frequency of each mutation, 

its proposed prognostic risk, and altered function.24 
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2.1.6 | AML Classification and Risk Stratification 

The morphology based sub-classification of AML, known as French-American-

British (FAB) system, was developed in 1976.26  The FAB classification divides AML into 

8 subtypes, M0 through M7. (Table 2.)   

      Table 1. Common mutations in AML and their associated altered biological function 

Gene symbol Approximate 
frequency (%) 

NCCN risk 
stratification 

Altered mechanism of action 

NPM1 25-30 Favorable1 
 

Cytoplasmic mislocalization; 
inactivation of  tumor suppressor 
P53/ARF pathway 

DNMT3A 20 Unclear  Impact on methylation patterns 
FLT3-ITD 15 Poor2 

 
Activation of the tyrosine kinase FLT3; 
increase anti-apoptotic signal 

WT1 10-15 Unclear Global increase in DNA methylation by 
impaired regulation on TET2  

RAS (NRAS, KRAS) 10-15 Unclear Increase signal transduction 
TET2 10-15 Unclear DNA methylation 
CEBPA 10 Favorable3  Decrease transcription 
IDH1/2 10 Unclear Altered catalytic activity and the energy 

balance of Krebs cycle, epigenomic 
reprogramming 

ASXL1 10 Poor2 Chromatic modification 
TP53 5-10 Poor2 DNA damage repair 
RUNX1 5-10 Poor2 Decrease transcription 
ND4 5 Unclear  Electron transport 
PHF6 5 Unclear Transcription regulation 
U2AF1 5 Unclear  Pre-mRNA splicing 
KIT 5 Intermediate4 Signal transduction alteration 
CBL 1 Unclear Increase signal transduction  
SF3B1 1 Unclear Pre-mRNA splicing 
SRSF2 1 Unclear Pre-mRNA splicing 

1: In the absence of FLT3-ITD mutation or presence of FLT-ITD low; 2: with normal karyotype; 3 : if 
double mutated; 4: with core binding factor  
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Gradual improvement in AML diagnosis and risk classification started in 1999, 

when WHO offered a new cytogenetics based prognostic risk assessment system, and re-

set percent blast threshold at diagnosis from 30% offered by FAB group to 20% or more.  

Several years later, in 2008, WHO released a revised guideline that incorporated recurrent 

cytogenetic abnormalities and some molecular markers.27 In 2010, the European 

LeukemiaNet (ELN) proposed an AML risk assessment system based on cytogenetic and 

molecular abnormalities that divided AML to four sub-groups of (i) favorable in patients 

with core-binding factors, or NPM1 mutation in absence of FLT3-ITD, or CEBPA 

mutation, (ii) intermediate-I consisting of patients with FLT3-ITD mutation, (iii) 

intermediate-II including patients with MLLT3-MLL fusion or other cytogenetic 

abnormalities not classified as favorable or adverse outcome, and (iv) adverse28, which later 

was updated to three groups of favorable, intermediate, and adverse, by merging two 

        Table 2. The FAB morphology based sub classification of AML 

FAB subtype Name 
M0 Undifferentiated acute myeloblastic leukemia 
M1 Acute myeloblastic leukemia with minimal maturation 
M2 Acute myeloblastic leukemia with maturation 
M3 Acute promyelocytic leukemia (APL) 
M4 Acute myelomonocytic leukemia 
M5 Acute monocytic leukemia 
M6 Acute erythroid leukemia 
M7 Acute megakaryoblastic leukemia 

 

M0-M5 include myeloid undifferentiated cells; M6 starts in erythroid progenitor lineage; M7 
represents AML with megakaryoblastic cell lineage. 
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intermediate groups and addition of RUNX1, ASXL1, and TP53 mutations to the adverse 

group. (Table 3.)29 

 

 

 

Table 3. The 2017 European LeukemiaNet classification system 

 
Risk category 

Genetic abnormality 

Favorable t(8;21)(q22;q22.1); RUNX1-RUNX1T1 
  inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 
  Mutated NPM1 w/o FLT3-ITD or with FLT3-ITDlow 
  Biallelic mutated CEBPA 
Intermediate Mutated NPM1 and FLT3-ITDhigh 
  WT NPM1 w/o FLT3-ITD or with FLT3-ITD low (w/o adverse-risk lesions) 
  t(9;11)(p21.3;q23.3); MLLT3-KMT2A 
  Cytogenetic abnormalities not classified as favorable or adverse 
Adverse t(6;9)(p23;q34.1); DEK-NUP214 
  t(v;11q23.3); KMT2A rearranged 

  t(9;22)(q34.1;q11.2); BCR-ABL1 
  inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) 
  −5 or del(5q); −7; −17/abn(17p) 
  Complex karyotype, monosomal karyotype 
  WT NPM1 and FLT3-ITDhigh 
  Mutated RUNX1 
  Mutated ASXL1 
  Mutated TP53 

Low: low allelic ratio (<0.5); high: high allelic ratio (≥0.5); semiquantitative assessment of FLT3-
ITD allelic ratio: ratio of the area under the curve “FLT3-ITD” divided by area under the curve 
“FLT3-wild type” 
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The most recent version of WHO AML classification (version 2016)19 which 

remained mainly unchanged from the version 2008,27 contains a new category entitled  

‘AML with recurrent genetic abnormality”, encompassing all cytogenetic abnormalities 

and mutations with prognostic indicator. (Table 4.) 

 

Table 4. The 2016 WHO classification system of AML 

Categories 
I. AML with recurrent genetic abnormalities 

AML with t (8;21) (q22; q22.1); RUNX1-RUNX1T1 
AML with inv (16) (p13.1q22) or t (16;16) (p13.1; q22); CBFB-MYH11 
APL with PML-RARA 
AML with t (9;11) (p21.3; q23.3); MLLT3-KMT2A 
AML with t (6;9) (p23; q34.1); DEK-NUP214 
AML with inv (3) (q21.3q26.2) or t (3;3) (q21.3; q26.2); GATA2, MECOM 
AML (megakaryoblastic) with t (1;22) (p13.3; q13.3); RBM15-MKL1 
Provisional entity: AML with BCR-ABL1 
AML with mutated NPM1 
AML with biallelic mutations of CEBPA 
Provisional entity: AML with mutated RUNX1 

 

II. AML with myelodysplasia-related changes 

III. Therapy-related myeloid neoplasms 

IV. AML, not otherwise specified (NOS) 

AML with minimal differentiation 
AML without maturation 
AML with maturation 
Acute myelomonocytic leukemia 
Acute monoblastic/monocytic leukemia 
Pure erythroid leukemia 
Acute megakaryoblastic leukemia 
Acute basophilic leukemia 
Acute panmyelosis with myelofibrosis 

 

V. Myeloid sarcoma 

VI. Myeloid proliferations related to Down syndrome 

Transient abnormal myelopoiesis (TAM) 
Myeloid leukemia associated with Down syndrome 
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Finally, the NCCN prognostic risk stratification guideline that was designed based 

on the well-established molecular and cytogenetics abnormalities and classified patients 

into three groups of favorable, intermediate, and poor risk status, represented in Table 5.20 

 

 

 

2.1.7 | AML Therapy 

Although significant progress has been made in understanding the molecular 

pathogenesis of AML3,4,7,8,13,30,31, treatment options are limited, and therapeutic resistance 

is the main challenge specially in elderly AML. The 5-year survival rate is at the 

remarkably low 24% margin, according to the ACS.  

First-line treatment options for AML include induction therapy, followed by 

several cycles of consolidation therapy or allogeneic stem cell transplantation (aSCT).20 

 

    Table 5. The NCCN Guideline Version 3.2017 for AML classification guideline 

Risk Status Cytogenetics Molecular Abnormalities 
Favorable 
 
 

Core binding factor:  
inv(16) or t(6;16) or t(8;21) 
or t(15;17) 
 
 

Normal cytogenetics: 
NPM1 mutation w/o FLT3-ITD or isolated biallelic   

Intermediate 
 
 
 

Normal cytogenetics 
+8 alone; 
 t(9;11) Other non-defined 
 
 

Core binding factor w/ KIT mutation  
 

Poor 
 
 
 

Complex (≥3 clonal 
chromosomal abnormalities) 
 Monosomal karyotype 
 -5, 5q, -7, 7q-  
11q23-non t(9;11)  
inv(3), t(3;3) 
 t(6;9)  
t(9;22) 

Normal cytogenetics:  
with FLT3-ITD mutation 
TP53 mutation  
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For the past three decades the standard induction protocol remained unchanged, employing 

a continuous infusion of 100-200 mg/m2 cytarabine for 7 days, with an anthracycline, either 

daunorubicin (60-90 mg/m2 on days 1-3) or idarubicin (IDA, 12 mg/m2 for 3 days), with 

or without etoposide (75 mg/m2 for 3 days), hereinafter referred to as 7+3 or 7+3+3 

regimens.20,25 Induction therapy often preceded by hydroxyurea (Hydrea) to reduce WBC 

counts. (Table 6.) A successful treatment for Acute Promyelocytic Leukemia (APL), a 

subclass of AML with PML-RARA fusion, can be achieved with all-trans retinoic acid 

(ATRA, 25-45 mg/m2 until CR, max 90 days), in addition to IDA (12 mg/m2 days 

2,4,6,8),32 or in combination with standard induction therapy.25 PML-RARA is known for 

its role in repressing myeloid differentiation genes.33  ATRA detaches PML-RARA from 

DNA, results in promyelocyte maturation to neutrophil.34 

Complete remission (CR) in AML is defined as reduction of blast counts to less 

than 5% in the bone marrow while maintaining normal blood cell counts.35,36 Although 

evaluating the bone marrow and the peripheral blood with available techniques37,38 

indicates that a substantial number of  patients experience CR after induction therapy, a 

small subset of patients achieve a long-term remission. Larger number of patients fail re-

induction therapy and relapse. Relapse following complete response is defined as 

reappearance of myeloblast cells in the peripheral blood or finding more than 5% blasts in 

the bone marrow. 25 

For younger patients who achieve CR, matched sibling or alternative donor 

hematopoietic stem cell transplantation often gives promising outcome. 



 

14 
 
 

 For patients with relapsed or refractory disease, outcome of ongoing clinical trial 

targeted therapies is encouraging. Available treatment options include: (i) aggressive 

therapy with (1) a combination of cladribine, cytarabine, and granulocyte colony-

stimulating factor (G-CSF), with or without idarubicin or mitoxantrone25; (2) high dose 

cytarabine (HIDAC) with or without idarubicin or daunorubicin or mitoxantrone25; (3) a 

combination of fludarabine, G-CSF, and cytarabine, with or without mitoxantrone25; (4) 

etoposide and cytarabine with or without mitoxantrone25; (ii) less aggressive therapy with 

hypomethylating agents (HMA)(i.e., decitabine or 5-azacytidine)25 (iii) therapy for AML 

with FLT3-ITD mutation with decitabine and sorafenib39,40; (iv) therapy for AML with 

IDH2 mutation with enasidenib41; and  (v) therapy for CD33-positive AML with 

gemtuzumab ozogamicin.42  

In the recent years, the Leukemia and Lymphoma Society in collaboration with 

several academic institution and pharmaceutical industry have launched the “Beat AML 

Master Trial”.43 Their goal is to address drug resistance in elderly AML. The project offers 

biomarker based targeted therapy alone or in combination with the standard 7+3 

chemotherapy or an HMA agent. Although these efforts look promising, it is crucial to 

discover new therapeutic targets in AML. 
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Table 6. AML Chemotherapy agents and their mechanism of action 

Drug Mechanism of Action 
Cytarabine; Ara-C A pyrimidine nucleoside analog, act by direct DNA damage and 

incorporation into DNA 
Daunorubicin; 
Idarubicin (IDA) 

A very toxic anthracycline aminoglycoside antineoplastic, act by 
interaction with DNA in a variety of different ways including 
intercalation (squeezing between the base pairs), DNA strand breakage 
and inhibition with the enzyme topoisomerase II 

Etoposide An antineoplastic agent and an epipodophyllotoxin (a semisynthetic 
derivative of the podophyllotoxins). It inhibits DNA topoisomerase II, 
thereby ultimately inhibiting DNA synthesis. 

Hydroxyurea An antineoplastic agent that inhibits DNA synthesis through the inhibition 
of ribonucleoside diphosphate reductase, producing cell death in S phase 

All-trans-retinoic 
acid (ATRA) 

It produces an initial maturation of the primitive promyelocytes derived 
from the leukemic clone, followed by a repopulation of the bone marrow 
and peripheral blood by normal, polyclonal hematopoietic cells 

Decitabine An analogue of cytidine that directly incorporates into DNA and inhibits 
DNA methyltransferase 

Fludarabine Inhibiting DNA polymerase alpha, ribonucleotide reductase and DNA 
primase, thus inhibiting DNA synthesis.  

Cladribine Incorporated into DNA after phosphorylation by deoxycytidine kinase 
and results in DNA strand breakage and inhibition of DNA synthesis and 
repair. 

Clofarabine  Inhibits DNA synthesis through an inhibitory action on ribonucleotide 
reductase, and by terminating DNA chain elongation and inhibiting repair 
through competitive inhibition of DNA polymerases. 

Gleevec (Imatinib) a small molecule kinase inhibitor, inhibits the BCR-ABLl tyrosine kinase 

Mitoxantrone Intercalates into DNA through hydrogen bonding, causes crosslinks and 
strand breaks. It also interferes with RNA, and is a potent inhibitor of 
topoisomerase II, an enzyme responsible for uncoiling and repairing 
damaged DNA 

Revlimid Induces cell apoptosis by inhibiting the expression of cyclooxygenase-2 
(COX-2) 

Genasense Anti-sense oligo-deoxyribonucleotide (bcl-2 anti-sense) 

(source DrugBank database: https://www.drugbank.ca/drugs) 
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2.2 | Alternative Splicing 

Over the past decade scientists 

have utilized high-throughput 

sequencing to assess genetic aberrations 

of cancer. The primary focus has been 

discovery of common cancer driver 

mutations that involve in tumorigenesis, 

cancer aggressiveness, and treatment 

response. However, a functional driver 

gene does not need to be mutated; 

ectopic expression can also promote 

tumorigenesis.44 Utilizing a systems 

analysis approach empowered 

researchers to study beyond mutation 

profile of AML.3,44-46 47,48This resulted in better understanding of AML epigenomics3,8,49, 

and shed light on differential gene expression patterns of AML.46-48 A key step in regulating 

tissue specific gene expression profile is post-transcriptional regulation via alternative 

precursor messenger RNA (pre-mRNA) splicing.50 

In 1961, Francois Jacob, along with Sydney Brenner and Matthew Meselson, 

announced discovery of mRNA as an informational molecule.51 A nascent pre-mRNA, a 

product of DNA transcription in the nucleus, consists of exons (i.e., coding regions) and 

intron(s) (i.e., non-coding regions). Introns present in a gene but not in a mature mRNA.  

 

Figure 2. Pre-mRNA editing 

Eukaryotic pre- mature mRNA undergoes splicing 
process prior to leaving the nucleus. This process 
includes intron excision and exon splicing that 
creates different isoforms in multi-exons transcripts. 
Five types of alternative spliced mRNA depicted in this 
schematic. 
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The process of cutting intron(s) out and joining the exon-exon boundaries (a.k.a splice 

junctions) to form a protein coding mature-sized mRNA is called RNA splicing.51  

The majority of human multi-exon pre-mRNAs can be spliced in more than one 

way, 50-52 a so-called alternative splicing (referred to as AS).  AS is delineated as various 

combinations of 5´ and 3´ exon splice sites to generate mRNA isoforms from a single 

mRNA precursor that results in structural RNA as well as regulatory RNA (i.e., lncRNA) 

variations, leading to proteome diversity.9,11,12 This leads to one or several splice variants 

known as (i) skipped exon (SE), (ii) mutually exclusive exons (MXE), (iii) retained intron 

(RI), (iv) alternative 5´ splice sites (A5SS), and, alternative 3´ splice sites (A3SS). (Figure 

2.)  

AS plays a crucial role during cell proliferation and differentiation. In cancer, the 

normal splicing process is often disrupted and cancer cells  make isoforms that contribute 

to cancer hallmarks.5,9,11,12 Several studies have shown aberrant splicing in genes related to 

apoptosis (BCL2L1, FAS, BIN1, CASP-2, and MCL1), angiogenesis (VEGFA), tumor 

progression, invasion, and metastasis (CD44, ENAH, MSTR1, RAC1, and KLF6), cell 

metabolism (PKM), and drug resistance (BCL2L11, and HER2) in various tumor types 

including hematologic, breast, bladder, colorectal, gynecologic, head and neck, kidney, 

liver, pancreatic, prostate, and skin.5,9-12 

Pre-mRNA splicing has profound effect in normal hematopoiesis and blood cell 

differentiation.53 In addition, a comparison between AS profile of AML patients and 

normal donor bone marrow CD34+ cells suggested that disrupted splicing is a common 

characteristic for AML.17 Aberrant expression of gene isoforms with a role in AML has 
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been reported in multiple studies. These include CD44, a cell-surface glycoprotein54 ; 

CD33 or SIGLEC-3, a transmembrane receptor of myeloid lineage and a target for AML 

therapy55-57; DIS3, a catalytic subunit of RNA processing exosome58; DNMT3A, a DNA 

methyltransferase with pathogenesis role in a subset of AML patients59; hTERT, 

telomerase reverse transcriptase60; and NOTCH2 and FLT361, among others. Moreover, 

risk stratifying capacity of AS has been suggested by a study on RNA-Seq profiling of an 

AML patient prior to chemotherapy and after CR.14 

Splicing in multi-exon genes is highly regulated by cis-regulatory modules (CRM), 

and trans splicing factors.51 Although several studies have shown recurrent splicing factor 

mutations as possible drivers of hematological malignancies62-64, study by the Cancer 

Genome Atlas (TCGA) group revealed that a small subset of adult AML cases harbor 

splicing factors mutation, the majority in U2AF1 (4%)3, stressing on importance of 

investigating other mechanisms by which activity of splicing factors is altered in AML. 

In the recent years, several computational tools with different splice variant calling 

and statistical approach have been developed to study differentially spliced  transcripts 

from RNA-Seq data.65-69  Yet, a system analysis approach to identify mis-spliced 

transcripts as prognostic and/or pre-disposing cancer indicators, and to assess their capacity 

to predict patients survival outcome is lacking.  

In the present study, we introduced a computational systems biology approach, 

developed using available bioinformatics, machine learning, and statistical algorithms to 

elucidate capacity of alternative splice variants in discriminating survival outcome in adult 

AML, and identify their contribution to AML prognosis.  
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CHAPTER III 

METHODOLOGY 

 

Considering shortcomings of AML risk stratification system, we aimed to introduce 

a method to address several existing issues by global analysis of alternative mRNA splicing 

from RNA-Seq data. Our goals include (aim 1) constructing a validated model on mRNA 

splicing data with a capacity of predicting disease outcome in  adult AML; (aim 2) 

evaluating capacity of mis-spliced transcripts to serve as novel prognostic indicators; (aim 

3) understanding the mechanism behind aberrant splicing in AML. 

Overview: In our method we employed  (i) Spliced Transcripts Alignment to Reference 

(STAR)70 for aligning RNA-Seq reads to the human reference genome (hg19), and (ii) 

replicate Multivariate Analysis of Transcript Splicing (rMATS)65 to calculate Percent 

Spliced In, abbreviated as PSI (or ψ ϵ[0,1]), and the effective length of inclusion and 

skipped isoforms for each splice variant. 

We utilized a penalized Cox’s proportional hazards (PH) model to investigate 

contribution of genes with AS events to patients `overall survival who assigned a specific 

initial therapy (i.e., 7+3 or 7+3+3). Since the number of observations (i.e., n = AML 

patients) was far less than the number of predictor variables (i.e., p = AS events and AML 

risk factors), we penalized Cox with the grouped lasso (hereinafter referred to as GL-Cox) 

to eliminate variables with no apparent contribution to disease outcome prediction.71,72 
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Our dataset consisted of 173 adult AML patients participated in TCGA study.3 To 

avoid overfitting, we started by focusing on patients treated with a 7+3 or 7+3+3 regimen 

after blood collection (core dataset; n = 79). We performed stratified random sampling by 

considering age, WBC count, history of transplant, treatment, and overall survival time as 

strata, and split the core dataset into two groups of training set (referred to as TS; n=54) 

and validation set-1 (referred to as VS-1; n =25). Ratio of male to female in both groups 

stayed the same (about 1.2, compare to 1.1 for the entire dataset). Patients with history of 

prior treatment with Hydrea who were treated with different types of initial therapy were 

considered as a validation set-2 (referred to as VS-2; n =44), and all patients with exclusion 

of the TS as a validation set-3 (referred to as VS-3; n =119).  

We fit the GL-Cox model on the TS and performed a 10-fold cross validation to 

identify tuning parameter (λ) that minimized partial likelihood deviance. Then, the model 

was re-fit using the selected tuning parameter to identify predictors with non-zero 

coefficients. Moreover, we validated our model by computing Area under time-dependent 

Receiver Operating Characteristic (ROC) Curve (AUROCt), constructed on different 

values of sensitivity and specificity estimated from the predicted values (i.e., linear 

predictor "LP ").  

To further demonstrate clinical relevance of the signature AS events identified by 

the GL-Cox, we set-up an LP cut-off (LPc), and performed Kaplan-Meier survival analysis 

on two groups of patients distinguished by this cut-off. Finally, we compared the prediction 

accuracy of the GL-Cox model to a standard Cox PH model (herein after referred to as S-

Cox) fit to the well-established AML risk factors. A schematic illustration of the study is 

shown in Figure 3. 
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3.1| Dataset  

Data that we analyzed for this study were from a study conducted by TCGA.3 We 

obtained the peripheral blood RNA sequencing data from 173 clinically annotated cases of 

adult de novo AML, from Genomic Data Commons (GDC) legacy portal 

(https://portal.gdc.cancer.gov/legacy-archive). Clinical data and mutation profile of 

patients were obtained from TCGA data portal (https://tcga-

data.nci.nih.gov/docs/publications/laml_2012 ) 

 

 

Figure 3. Schematic illustration of the study   

Step 1.  Study design and RNA-Seq data analysis: splitting patient cohort to two groups of (i) training 
set, and (ii) validation set; followed by analyzing raw RNA-Seq data to calculate inclusion level (PSI ϵ 
[0,1]). Step 2. Building a standard Cox’s proportional hazards model on the training set and evaluating 
model performance on the validation sets by computing Area Under time-dependent Receiver Operator 
Characteristic (ROC) curve (AUROCt) for survival data. Step 3. Fitting regularization paths on Cox’s 
proportional hazard model with the grouped lasso penalty, followed by a 10-fold cross-validation to 
identify tuning parameter (λ) with minimum partial likelihood deviance, and refitting model with λmin to 
calculate regression coefficients of predictor variables. lastly, calculating AUROC to assess the model 
performance. 
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3.2 | Study Design 

We performed a stratified random sampling on a core dataset of 79 patients treated 

with similar initial therapy, i.e., 7+3 or 7+3+3 regimen and split it to two groups: (1) TS 

(n=54), and (2) VS-1 (n=25). (Figure 4.) Strata included (i) age, (ii) history of transplant, 

(iii) WBC count, (iv) treatment, and (v) overall survival time.  We considered patients with 

prior history of Hydrea therapy and different types of induction therapy (Table 8.) as VS- 

2 (n=44).  A VS-3 included all patients excluding the TS (n=119) was used to evaluate 

prognostic capacity of signature events. (Figure 4., and Table 7.) 

 

 

 

Figure 4. Study design 

TCGA adult de novo AML cohort treated with 7+3 or 7+3+3 regimens after sample collection have 
been stratified on AML risk factors and split randomly to two groups: training set (n =54) and 
validation set-1 (n=25). Validation set-2 included Hydrea pre-treated cohort (n=44) with different 
therapy regimens and validation set-3 all treated AML patients excluding the training set. 
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                Table 7. Frequency of different induction therapies in TCGA AML cohort 

  Prior Hydrea therapy 
Induction therapy regimen No Yes 
7+3                           44 18 
7+3+3                           35 10 
7+3, daunorubicin                       2 1 
7+3, IT                        2 1 
7+3+3, gleevec                  0 1 
7+3+3, then 5+2+2                0 1 
7+3+3+PSC*                        2 2 
7+3+AMD                          1 1 
7+4+ATRA                         2 0 
7+3+ATRA                       11 1 
7+3+Genasense                  2 1 
7+3+study drug                  2 1 
Azacytidine                      1 0 
Clofarabine, Cytarabine and Mitoxantrone (CLAM)**                             0 2 
Cytarabine           1 0 
Decitabine                      13 0 
Decitabine then 7+3              1 0 
Hydrea + Idarubicin              0 1 
Hydrea, ATRA   1 0 
Hydrea 1 0 
LBH/Decitabine                   1 0 
Ara C(low dose)         1 0 
Revlimid                         5 3 
Revlimid then Decitbne,7+3,5+2     1 0 
No treatment 5 - 

 
Table represents frequency of each induction regimen for TCGA AML cohort with available RNA-
Seq data. Patients with history of prior treatment with Hydrea were counted separately. 
* valspodar: inhibits p-glycoprotein, the multidrug resistance efflux pump, thereby restoring the 
retention of chemotherapy drugs 
** cytarabine 750mg/m2/day for 5 days + clofarabine 30mg/m2/day for 5 days, Mitoxantrone 
12mg/m2/day for 3 days 
 Cases included in the training set and validation set-1 were highlighted in the table. 
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3.3 | Bioinformatics Pipeline 

The accuracy of downstream analysis of RNA-Seq data largely depends on the 

alignment step. The most commonly used spliced-aware aligners are based on direct 

alignment of RNA-Seq reads to the reference genome.73 

 We utilized STAR, which is a highly accurate, fast, and among the most reliable 

splice-aware aligner,73 to map short paired RNA-Seq reads to human reference genome. 

Then, we employed rMATS65 to (i) assign AS type (Figure 2.) to reads that mapped to 

alternative exon(s) and its associated boundaries, using transcripts `coordinates, (ii) 

calculate the effective length of each isoform, and (iii) estimate PSI value for each AS 

event. Finally, we defined a cut-off to capture AS events with more reliable PSI estimates 

across all 173 samples. MATS algorithm has advantage of correcting mapped reads counts 

to the length of target region (i.e., target exon or splice site) that results in more reliable 

PSI estimation. 

 

3.3.1 | STAR 

Precise alignment of millions of short reads belong to nearly 20,000 human genes 

with at least one isoform is an ongoing challenge.  Multiple tools have provided smart 

solutions to this problem, among them the popular STAR introduced an algorithm that 

starts by seed finding or sequential search for Maximal Mappable Prefix (MMP) using 

uncompressed suffix arrays (SAs), followed by stitching together all the aligned seeds 

within a user-defined window70. (Figure 5.) The stitching is directed by a local alignment 

scoring strategy with a pre/user-defined match, mismatch, indel, and splice junction gap 

penalties that led to quantification assessment of the alignment quality and rank.70  
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We employed STAR 2.5.170 to align Illumina Genome Analyzer IIx paired end 50 

bases RNA sequencing reads to the human reference genome (hg19) with slight 

modification in the default setting to capture splice variants. 65 (i.e., chimSegmentMin= 2, 

outFilterMismatchNmax= 3, alignEndsType= EndToEnd, alignIntronMax= 300,000, 

alignSJDBoverhangMin=8).70  

 

3.3.2 | rMATS 

We utilized rMATS 3.2.565 to estimate inclusion isoform reads (abbreviated as I) 

and skipped isoform reads (abbreviated as S) for each transcript. Briefly, I include the reads 

that map to the upstream splice junction, the body of alternative exon, and the downstream 

splice junction. (Figure 6.) S are the reads that align to the skipping splice junction that 

directly connects the upstream exon to the downstream exon. (Figure 6.) 

 For four AS types (i.e., SE, RI, A3SS, and A5SS) S were corrected to RNA-Seq 

read length (i.e., the effective length of skipping isoforms, referred to as ls) and I  to RNA-

 

Figure 5. Schematic illustration of the STAR 

Maximum Mappable Prefix (MMP) search for a read containing a splice junction (shown in purple 
color). STAR seeks for MMP1 that matches a substring of reference genome (shown in green color are 
exons separated by an intron/long gap in black color), starting from the first base of RNA-Seq read. 
MMP1 maps to donor splice site (exon at the left side). Then algorithm continues its search by remapping 
the unmapped portion of the read (i.e., MMP2) looking for acceptor splice site (in the second exon, at the 
right) in the same gene or another chimeric gene.   
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Seq read length plus alternative exon length (i.e., the effective lengths of inclusion isoforms 

referred to as li).65 (Figure 6.) For MXE isoforms, with two alternative exons, both I and 

S were corrected to RNA-Seq read length plus alternative exon length. (Figure 6.) The 

correction step is calculated as follow: 

𝐼𝐼𝑛𝑛 =
𝐼𝐼
𝑙𝑙𝑖𝑖

 

 

𝑆𝑆𝑛𝑛 =
 𝑆𝑆
 𝑙𝑙𝑠𝑠

 

 

where In represents the corrected inclusion counts and Sn shows the corrected skipped 

counts. Inclusion level or PSI (PSI ϵ [0,1]) reflects a proportion estimated from read counts, 

representing the percentage of transcripts with a specific exon or splice site, and is defined 

as  In over the sum of In and Sn. 65,69 

 
 

𝑃𝑃𝑆𝑆𝐼𝐼 =
𝐼𝐼𝑛𝑛

(𝐼𝐼𝑛𝑛 +  𝑆𝑆𝑛𝑛) 

 
 
 

To capture more reliable PSI estimate across all samples, we filtered out events if 

the minimum minor splice expression was less than 10% of the mean major splice 

expression across all samples. We performed filtering step as follow: 

 

𝑃𝑃𝑆𝑆𝐼𝐼 ������  ≥ 0.5 → 𝑒𝑒 = 1 (𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

𝑃𝑃𝑆𝑆𝐼𝐼 ������  < 0.5 → 𝑒𝑒 = 2 (𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

min(𝑆𝑆𝑛𝑛1  … 𝑆𝑆𝑛𝑛𝑛𝑛  ) ≥ 0.1 ∗  𝐼𝐼𝑛𝑛�    | 𝑒𝑒 = 1 

min(𝐼𝐼𝑛𝑛1  … 𝐼𝐼𝑛𝑛𝑛𝑛  ) ≥ 0.1 ∗  𝑆𝑆𝑛𝑛���  | 𝑒𝑒 = 2 
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where  𝑃𝑃𝑆𝑆𝐼𝐼 ������ represented mean PSI across all samples (1, ..., m), and major splice event (e) 

was considered inclusion isoform, if  𝑃𝑃𝑆𝑆𝐼𝐼 ������ ≥ 0.5 and skipping isoform otherwise. 𝑆𝑆𝑛𝑛���   and 

𝐼𝐼𝑛𝑛�    represented mean corrected skipped counts and inclusion counts, respectively. 

 

 

 

Figure 6. The schematic depiction of the effective lengths of isoforms 

For four types of AS event (i.e., SE, RI, A3SS, and A5SS), the reads of inclusion isoform (I) was defined 
as the RNA-Seq reads that mapped to two splice junctions, and the body of alternative exon (ae1) (shown 
in purple color), and the reads of the skipped isoform (S) as those that aligned to the skipping junction 
(shown in orange color). For MXE, reads that mapped to either of two alternative exons (ae1: inclusion 
isoform or ae2: skipped isoform) and their associated junctions were counted as I and S.  rMATS used 
read length (e.g., r = 50 bases) to estimate effective length of skipping isoforms and read length plus 
alternative exon length to calculate the effective lengths of inclusion isoforms (li and ls), for all AS types 
except MXE. 
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Statistical Analyses 

All statistical analyses were conducted in R version 3.4.3 (2017-11-30).74  We 

utilized coxph function in survival package to fit the S-Cox model, and grpsurv function in 

grpreg package to build the GL-Cox model. We used tdrocc function (a wrapper to 

survivalROC) in survcomp, a Bioconductor package, to construct time-dependent ROC 

curve from censored survival data, and compute AUROC. Furthermore, we used survfit 

function in survival package to create survival curve from survival estimate at each failure 

time (i.e., Kaplan Meier), and ggsurvplot function in survminer to plot survival curves. All 

other plots were graphed using ggplot2 package in R. 

 

3.4 | The Cox PH Model  

3.4.1 | Why the Use of a Cox PH Model 

The Cox PH regression model is a class of  survival models. Cox is a robust semi-

parametric model for investigating the relationship of predictor variables (i.e., covariates 

and confounders), and survival time while dealing with censored time-to-event data. With 

censored survival data the Cox model is preferred to a linear or logistic model, since the 

two latter ignore censoring information. 

Considering survival data of (y1, x1, δ1), . . ., (yn, xn, δn), for i ϵ (1 ,2, ..., n), where xi 

represents a predictor, and yi specifies the observed time of failure (i.e., death or relapse) 

if δi = 1, or right-censoring (when information about time to event is incomplete) if δi = 0; 

let’s further consider t1 < t2 < ...< tk to be the increasing list of unique failure times, and 

j(i) the index of failing at time ti. The Cox PH model closely approximates the hazard rate 

(i.e. rate of event or failure) for an individual at a unique failure time ti..75 Hazard rate is 
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the strength of the effect of covariates on the risk of failure, given that the participant has 

survived up to ti.. 

The Cox PH model formula consist of two parts, (i) the baseline hazard function 

(represented as  ℎ0(𝑡𝑡)) that involves failure time (t), and (ii) the exponential expression (e) 

of the sum of 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 that involves a vector of predictors X= (x1, x2, ..., xn) and their 

corresponding parameters, without considering failure time (t). The exponential expression 

(as oppose to linear) ensures a nonnegative estimate of hazard. Because both parts of Cox 

formula are non-negative the estimated hazard rates are always non-negative. The Cox PH 

formula at failure time t and with time-independent variables of X (i.e., not changing over 

time) is represented as follow: 

ℎ(𝑡𝑡|𝑋𝑋) = ℎ0(𝑡𝑡)𝑒𝑒∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1  

𝑥𝑥𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑒𝑒𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑡𝑡ℎ 𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙 

ℎ0(𝑡𝑡) = 𝑏𝑏𝑖𝑖𝑖𝑖𝑒𝑒𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒 ℎ𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 

0 ≪ ℎ(𝑡𝑡|𝐗𝐗) < ∞ 

 

3.4.2 | Partial Likelihood Estimation of the Cox PH Model 

 The covariate parameters ß= (ß1 , ß2 , ..., ßn) in the Cox PH formula can be estimated 

by maximizing the nonparametric partial likelihood, while ignoring the baseline hazard 

function ℎ0(𝑡𝑡). This is a so called partial likelihood, because it considers probabilities for 

subjects who had the event, and not explicitly for those who were censored.76 The survival 

information of censored subjects are only considered for subjects who were at risk prior to 

failure time, and number of individuals at risk decreases as failure time increases.76 The 

partial likelihood (L) is defined as a product of likelihood at each failure time and 

represented as below: 
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𝐿𝐿 = 𝐿𝐿1  × 𝐿𝐿2  × 𝐿𝐿3  × … × 𝐿𝐿𝐷𝐷 =  � 𝐿𝐿𝑗𝑗

𝐷𝐷

𝑗𝑗=1

  

Let’s consider 𝜑𝜑𝑖𝑖 = 𝑒𝑒∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1  (section 3.4.1), then partial likelihood is represented 

by the following equation: 

 𝐿𝐿(𝛽𝛽) = �
ℎ0�𝑡𝑡𝑗𝑗�𝜑𝜑𝑖𝑖

∑ ℎ0 �𝑡𝑡𝑗𝑗�𝜑𝜑𝑘𝑘𝑘𝑘∈𝑅𝑅𝑗𝑗

𝐷𝐷

𝑗𝑗=1

 

where j denotes an index of failure at time t; D represents number of event, Ri denotes risk 

set or all individual at risk of failure t. While nominator presents hazard rate for individual in 

the risk set who experienced the failure, denominator calculates the sum of all risks in the risk sets. 

Maximum likelihood estimates (i.e., the values of coefficients that maximize the 

value of the likelihood), is calculated by taking the derivative of natural log of L (𝑙𝑙𝑖𝑖 𝑳𝑳) 

with respect to each parameter in the model.  

Considering i as number of parameters  (𝑖𝑖 = 1, … , 𝑖𝑖), estimates of 𝛽𝛽𝑖𝑖
′ solves a 

derivative function presented as follow:76 

𝜕𝜕 ln 𝐿𝐿
𝜕𝜕𝛽𝛽𝑖𝑖

= 0 

𝑠𝑠 →  ∞  𝑖𝑖𝑖𝑖    𝛽𝛽𝑖𝑖          ������⃗
′   𝛽𝛽 

 
 

3.4.3 | Hazard Ratio 

 A hazard ratio (HR) is a ratio of hazard for one individual (or groups of subjects) 

over the hazard for different individual, compared on a set of predictors. Proportional 

hazards assumption premises that the relative difference between two survival curves 

(constructed by the hazard functions) stays constant over time. Considering sets of 

predictor variables (X and X*) for two subject groups, we can estimate the hazard rate for 
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each group as h(t | X) and h(t | X*)  (section 3.4.1) and estimate a HR by calculating a ratio 

of h(t | X*) over h(t | X).  The HR formula can be further simplified and shown as below:  

𝐻𝐻𝐻𝐻� =  
ℎ(𝑡𝑡|𝑋𝑋∗)
ℎ(𝑡𝑡| 𝑋𝑋)

= 𝑒𝑒∑ 𝛽𝛽(𝑋𝑋𝑖𝑖
∗−𝑋𝑋𝑖𝑖)𝑛𝑛

𝑖𝑖=1  

 

3.4.4 | Development of a S-Cox Model  

We used AML prognostic risk factors as predictor variable and overall survival 

(scaled in months) as outcome variable. The overall survival was defined as time from 

blood collection until death from any cause, and patients who survived were censored at 

the last follow-up time. 

AML risk factors include: (i) the cytogenetic abnormalities and driver mutations 

included in the stratified risk status (i.e., favorable, intermediate, poor); (ii) the total 

peripheral WBC count at diagnosis (WBC ≥ 16000/mm3 or WBC < 16000/mm3), with 

higher counts associated with worse prognosis ; and (iii) age, as elderly patients with an 

age greater than 60 years have greater chance of experiencing an adverse outcome.3 

 The training set was used to build the model. We utilized coxph function in survival 

package77,78 to fit a S-Cox model to cytogenetic/molecular risk status (classified according 

to the NCCN version 3.201720), and WBC, stratified on age. We used age as a stratifying 

variable rather than a covariate, because using age as a covariate violated the proportional-

hazards assumption.  

The goal was to estimate HR for the effect of covariates on disease outcome and 

estimate parameters (ß) to predict disease outcome in the VSs.  
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We used predict function in the survival package to calculate the predicted score 

(i.e., the linear predictor "LP ") from the model for each patient in the TS and the VSs. 

Then, LP values were used to assess model prediction on two non-overlapping VSs. 

(section 3.9) 

3.5 | Development of a GL-Cox Model  

The Cox PH model (section 3.4), performs well with many more observations than 

variables (n >> p where n is the number of observations, and p is the number of predictor 

variables) . However, it falls short when p > n, drives all coefficients to ±∞.  

To address this problem several strategies have been proposed, including 

regularization paths for the Cox PH model, i.e., Cox model with the  ridge regression 

penalty,79 or with a variable selection algorithm such as the lasso,80 the LARS,81,82 the 

elastic net,83 84 or the grouped lasso72 penalty. 

These penalties are applied to the Cox model during maximization step of partial 

likelihood. For instance, with a penalty 𝑃𝑃(𝛽𝛽), at failure time t, maximizing log partial 

likelihood considering that  𝑙𝑙(𝛽𝛽) = log 𝐿𝐿(𝛽𝛽) is equivalent to: 

𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑥𝑥 𝑙𝑙 (𝛽𝛽), 𝑖𝑖𝑖𝑖𝑏𝑏𝑠𝑠𝑒𝑒𝑖𝑖𝑡𝑡 𝑡𝑡𝑖𝑖 𝑃𝑃(𝛽𝛽) ≤  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑖𝑖  

The ridge regression79 considers  ∑ 𝛽𝛽𝑗𝑗
2𝑝𝑝

𝑗𝑗  penalty (or 𝑙𝑙2 norm as   ‖𝛽𝛽‖2 = �∑ 𝛽𝛽𝑗𝑗
2𝑝𝑝

𝑗𝑗=1  ) 

and builds a model under the constraint that sum of the squared regression coefficients does 

not exceed the ridge tuning parameter; while the lasso80 penalizes the Cox model by  ∑ �𝛽𝛽𝑗𝑗�𝑝𝑝
𝑖𝑖  

(or 𝑙𝑙1 norm of ‖𝛽𝛽‖1 =  ∑ |𝛽𝛽|𝑝𝑝
𝑗𝑗  ) and fits a model under the regularization that the sum of 

the absolute values of the coefficients does not exceed the lasso tuning parameter. 
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A tuning parameter (λ ≥ 0) of the models controls the relative impact of shrinkage 

penalty. When λ = 0, the penalty has no effect, as λ∞ the impact of shrinkage penalty 

grows and coefficient estimates will approach zero.85 

Although both solutions regulate the coefficients and shrink them toward zero, the 

lasso has advantage of variable selection, induces sparsity.71  However, the lasso selects 

maximum n variables (n= number of observations) before it saturates.83 

The elastic net regularization83 is another shrinkage model that addressed the 

limitation of the lasso by linear combination of 𝑙𝑙1 and  𝑙𝑙2 norms in a form of 

∑ 𝛼𝛼�𝛽𝛽𝑗𝑗� + (1 − 𝛼𝛼)𝛽𝛽𝑗𝑗 
2𝑝𝑝

𝑗𝑗=1   , and shrinks regression coefficients to zero while induce sparsity 

to the model. The parameter 𝛼𝛼 determines the combination of penalties and can get any 

value between 0.05 and 1. 

When dealing with variables with strong correlations (e.g., gene expression data), 

the lasso fails to perform group selection, behaves indifferently to correlated variables and 

selects only one variable from the group, and ignores others. The ridge also fails by 

shrinking coefficients of correlated variables toward each other. The elastic net results in 

more reliable model by encouraging sparsity while averaging highly correlated 

predictors.83 

Recently, several other shrinkage models (i.e., the adaptive lasso86, the grouped 

lasso,72 and the fused lasso87) evolved from the lasso.  

For large dataset (p>>n), when predictors belong to pre-defined groups, the 

grouped lasso outperforms the lasso and elastic net. It encourages sparsity at group level 



 

34 
 
 

as well as individual level, and shrinks a locally or group approximated coordinate to zero, 

depending on the penalty.72  

Let’s consider p predictors belonging to L groups, with pl  defined as the number of 

predictors in lth group, Xl  a matrix of predictors corresponding to the group l , and  ßl  as 

coefficient vector. The grouped lasso penalty is defined as 72  

𝜆𝜆 � �𝑠𝑠𝑙𝑙   ‖𝛽𝛽𝑙𝑙‖2

𝐿𝐿

𝑙𝑙=1

 

Where ‖𝛽𝛽𝑙𝑙‖2 is the Euclidean norm of a vector ßl   and is shrunk to exact zero if 

coefficients for all members of group are zero. Therefore, for some values of tuning 

parameter λ the entire predictors belonging to a group are dropped. 

 

3.6 | Determining Tuning Parameter by K-fold Cross Validation  

Cross-validation (CV) is the simplest and most precise method for estimating 

prediction error. K-fold CV starts by splitting data to K roughly equally-sized partitions, 

followed by fitting a model on the training set that includes K-1 of the partitions, and 

estimating prediction error of the fitted model when predicting the outcome of subjects in 

the test set. In each iteration (i = 1, 2, 3, ..., K), kth part (k = 1, 2, 3, ..., K) is considered as 

a test set (Figure 7.).  

A 5 or 10-fold CV (depending on the number of observations) on a sequence of λ 

values (i.e., a grid of λ values that ranges uniformly on log scale) is used to estimate partial 

likelihood deviance of the Cox model penalized with a shrinkage model penalty including 

the lasso, the elastic net, or the grouped lasso, among others.  
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The partial likelihood deviance (PLD) for each iteration is plotted against a grid of 

lambda values. The tuning parameter λ is defined as a lambda value that minimizes the 

partial likelihood deviance (Figure 7.) 

 

3.7 | Building the GL-Cox Model on AML Data  

Let’s consider PSI value of AS events (continuous variables), and AML well-

known prognostic risk factors (categorical variables), as predictor variables (x), and a 

survival object as outcome (y). The survival object was constructed using (i) time: overall 

survival time (scaled in month), which was defined as time from diagnosis to death or last 

follow-up (censored data), and (ii) event: death from any cause.  

We used the TS (i.e., training set) to fit a GL-Cox model. We began by constructing 

a matrix 𝑿𝑿�  with all predictor variables (i.e., PSI value of 1434 AS events, age, WBC, the 

 

Figure 7. Schematic illustration of the 10-fold cross-validation. 

 (left) For a 10-fold cross-validation, dataset is randomly split into 10 partitions. For k ϵ (1, ...,10), a model 
is fit to the nine parts (training set)  (shown in dark sea green color),  and tested on subjects in the validation 
set (shown in yellowish green color). (right) The tuning parameter lambda is a lambda (λ) value that 
minimizes the partial likelihood deviance. Abbr. PLD: partial likelihood deviance; λmin : minimum lambda 
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NCCN cyto-molecular risk status), and a Surv object 𝒀𝒀� with patients’ OS data and vital 

status (deceased =1, alive=0).  

We grouped PSI values on gene (i.e., gene symbol), and employed grpsurv function 

with default setting (alpha =1; the tuning parameter of the group (gamma) = 3;  number of 

lambda =100; max iterations =10000) to fit a GL-Cox model to the matrix 𝑿𝑿�. 71,72,80,84 The 

AML risk factors were penalized with the lasso.   

Then, we performed 10-fold CV for the fitted model over a grid of 100 lambda 

values, to identify the tuning parameter (λmin) that minimizes partial likelihood deviance. 

The model was re-fit using the selected tuning parameter to identify predictor variables 

with non-zero coefficient.  

Moreover, we validated our model by calculating predictor score (LP)  for patients 

in two non-overlapping VSs (section 3.2) from the fitted model, followed by computing 

time dependent AUROC (section 3.9.2). 

 

3.8 | Kaplan-Meier Survival Analysis 

In survival analysis, Kaplan-Meier (KM) is a non-parametric method to measure 

the fraction of patients living for a certain amount of time past entry into the study.  

Let’s denote by T a random variable for a subject survival time and t as any specific 

value for T. Considering failure as 1 and censorship as 0, the survivor function (referred to 

as 𝑆𝑆𝑡𝑡) at any given time interval t calculated as probability that the random variable T 

exceeds the time t shown as  𝑆𝑆𝑡𝑡 = Pr (𝑇𝑇 > 𝑡𝑡) and for any failure time 𝑡𝑡𝑓𝑓 the general KM 

formula that is a product limit function represented as below:76,88 
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�̂�𝑖�𝑡𝑡𝑓𝑓� = � 𝑃𝑃�𝑖𝑖
𝑓𝑓

𝑖𝑖=1

[𝑇𝑇 > 𝑡𝑡𝑖𝑖  |𝑇𝑇 ≥ 𝑡𝑡𝑖𝑖]  

This measures the probability of surviving past the previous failure time 𝑡𝑡𝑓𝑓−1 

multiplied by probability of surviving after time 𝑡𝑡𝑓𝑓 given survival until 𝑡𝑡𝑓𝑓. There is a 

relationship between survival function and hazard function (section 3.4.1). In fact, 𝑆𝑆𝑡𝑡 

equals to the exponential of the negative integral of the hazard function.76 

To construct the KM, the estimated survival probabilities are graphed in a plot with 

survival probability for ordered failure time 𝑆𝑆𝑡𝑡 on Y axis and time (as a vector starting at 0 

and incremating until study ends) on X axis. The plot consists of horizontal and vertical 

lines and illustrates how survival decline with time, drawn as a step function that starts 

with survival probability of 1 and drops to next survival probability as we move from one 

ordered failure time to another.76  

The popular log-rank test is used to assess statistical equivalency of KM curve for 

two groups. The log-rank test is a Chi-square test that make use of observed versus 

expected counts over all failure times for one of the two groups. 

𝐿𝐿𝑖𝑖𝑠𝑠 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 =
(𝑂𝑂1 − 𝐸𝐸1)

�𝑉𝑉𝑖𝑖𝑖𝑖(𝑂𝑂1 − 𝐸𝐸1)
 

 

3.8.1 | Linear Predictor Cut-off 

Let’s denote linear predicted values from the fitted GL-Cox model as LP, and the 

ordered natural log-transformed overall survival time (time scaled in month) corresponding 

to each patient as ln(OS).  
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We used the TS to graph a scatter plot of "LP " values (on a X axis) against ln(OS) 

(on a Y axis). Then, we fit locally weighted scatterplot smoothing (LOESS) regression 

curve 89-91 to the plotted data, and set up an LP cut-off (LPc ) by calculating x coordinate 

for regression line at 36 months survival (ln(36) =3.58). (Figure 9.) 

The LPc was used to predict outcome from LP value for each patient in the TS and 

VSs. Poor outcome was defined if LP was equal or greater than the LPc , and good outcome 

if  LP was less than the LPc.  

We graphed Kaplan-Meier survival curves to compare how well two groups of 

patients with predicted good and poor outcome were separated, and measured significance 

of non-equivalency with a log-rank p-value. 

3.9 | Prediction Assessment 

3.9.1 | Receiver Operating Characteristic Curve 

Receiver operating characteristic curve, abbreviated as ROC curve, is commonly 

used for assessing prediction accuracy of a fitted model. ROC demonstrates a tradeoff 

between sensitivity and specificity, where the sensitivity is the proportion of subjects with 

an event (i.e., death) that are correctly predicted by the model, and the specificity is the 

proportion of individuals without an event (i.e., alive) that are accurately identified by the 

model. 

For all cut-points values of  "c", with linear predictors of LP (a higher value is more 

predictive of event) and D as a binary disease status indicator, the ROC estimates the 

sensitivity as the probability of LP greater than a cut-point given the patient died and the 
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specificity as the probability of LP equal or less than a cut-point given the patient 

survived.92 

 𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 ∶ 𝑃𝑃𝑖𝑖(𝐿𝐿𝑃𝑃 > 𝑖𝑖 |𝐷𝐷 = 1) 

𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠: 𝑃𝑃𝑖𝑖(𝐿𝐿𝑃𝑃 ≤ 𝑖𝑖 |𝐷𝐷 = 0) 

 𝑖𝑖 𝜖𝜖 (−∞, +∞)] 

𝐻𝐻𝑂𝑂𝑅𝑅 ∈ [0,1] 

 
 
ROC demonstrates as a graph of sensitivity (also known as true positive rate 

abbreviated as TPR) against 1-specificity (also known as false positive rate abbreviated as 

FPR) for all possible cut-points. It starts at origin (0,0), goes vertically up across the y-axis 

and then horizontally across to (1,1), with the perfect scenario of sensitivity and specificity 

both equal to 1. A model with no prediction power would be equally likely to produce a 

false positive or a true positive result.  

The performance of a fitted model can be quantified by calculating the area under 

the ROC curve (AUROC). AUROC can be computed as a sum of the areas of trapeziums. 

While, a random guess will result to AUROC of 0.5, an ideal AUROC would be 1. 

Commonly accepted criteria are shown in Table 8. 
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3.9.2 | Time-dependent ROC Curve for Censored Survival Data 

 The time-dependent ROC (ROC(T)) curve and corresponding AUROC evaluate 

disease status change with time.92  

 Considering ti as failure time, xi as a covariate value, and Ci as the censoring time 

for subject i. Zi =min (ti, Ci) denotes the follow-up time, and censoring indicator of δi =1 

if ti ≤ Ci ; and δi =0 if ti ≥ Ci. The counting process at any time (t) considers Di(t) = 1 when 

ti ≤ t (indicates that subject i has an event prior to time t), and Di(t) = 0 if ti > t.  The 

sensitivity and specificity of the ROC(T) are estimated as: 

𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑠𝑠(𝑖𝑖, 𝑡𝑡) =  𝑃𝑃𝑖𝑖(𝐿𝐿𝑃𝑃 > 𝑖𝑖 |𝐷𝐷(𝑡𝑡) = 1) 

𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠(𝑖𝑖, 𝑡𝑡) =  𝑃𝑃𝑖𝑖(𝐿𝐿𝑃𝑃 ≤ 𝑖𝑖 |𝐷𝐷(𝑡𝑡) = 0) 

 

A ROC(T) curve is defined for any time t as a plot of sensitivity against 1- specificity 

with a set of cutoff points of c. The Nearest Neighbor Estimation (NNE)93 method for the 

bivariate distribution function is used for estimating conditional probabilities.  

 

Table 8. AUROC commonly accepted guideline 

AUROC Model Performance 
0.9-1 Excellent 

0.8-0.9 Good 
0.7-0.8 Fair 
0.6-07 Poor 

0.5 No prediction 
< 0.5 Negative prediction 
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3.9.2.1 | Setting Cut-points for the Risk Score 

We employed survcomp package in Bioconductor to assign risk score (i.e., LP) cut-

points. Let’s consider F as an ordered vector of unique LP values. We calculated delta as 

the minimum differences between all consecutive values of vector F, divided by 2: 

𝑝𝑝𝑒𝑒𝑙𝑙𝑡𝑡𝑖𝑖 =
min (𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝐹𝐹))

2
 

We subtracted delta from each unique LP value and added delta to the maximum LP value. 

A vector of the resulting values was considered as cut-points.  

𝑖𝑖𝑖𝑖𝑡𝑡 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 = (𝐹𝐹 − 𝑝𝑝𝑒𝑒𝑙𝑙𝑡𝑡𝑖𝑖, max(𝐿𝐿𝑃𝑃) + 𝑝𝑝𝑒𝑒𝑙𝑙𝑡𝑡𝑖𝑖) 

We utilized survcomp package, which is a wrapper for the survivalROC, to estimate 

sensitivity and specificity for ROC at 5 time points (t = 1, 2, 3, 4, 5 years) via the Nearest 

Neighbor Estimation (NNE) method.92 Then, we quantified AUROC for each curve 

(AUROC(1-5 years)). While an AUC between 0.9-1 represents an excellent predictability, 

AUC equal to 0.5 indicates a random classification model. (Table 8.)  

3.10 | Limitations 

We employed the popular statistical and machine learning techniques including 

Cox PH model, regularization paths on Cox model, AUROC, and Kaplan-Meier to 

investigate disease outcome prediction capacity of alternative spliced variants. While we 

used the same dataset for comparison of two models (i.e., the S-Cox and the GL-Cox), 

further evaluation of our introduced method on an independent group of patients to get an 

unbiased result is essential. 
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We declare that we faced several limitations when we conducted this study 

including: (i) small sample size; (ii) unclear cause of death; (iii) unknown time of 

transplant; (iv) low depth of sequencing; and (v) RNA-Seq data that obtained from mixed 

population of leukemic and normal hematopoiesis clones. 

We also used time to death as clinical endpoint and did not consider relapse-free 

survival time, mainly because there was no indication of change in treatment strategy that 

resulted in prolonged survival of patients (i) without history of transplant, or (ii) with 

history of a transplant but missing time of transplant. 
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CHAPTER IV 

RESULTS 

 

4.1 | Patients Characteristics 

We examined clinical data for TCGA adult AML patients with available RNA-

sequencing and treatment data (n=173). RNA samples were extracted from Peripheral 

blood cells.3 While treatment choices were not uniform,3 roughly 60% of patients were 

treated with the conventional induction therapy, i.e.,7+3 or 7+3+3 regimen (Table 8.), and 

nearly 45% of cases received transplant during the course of treatment, 3 times more in the 

younger adults compare to the elderly patients (< 60 years, median age= 45, n= 96, t= 60 

; age >= 60, median age= 67, n=77, t= 19, where n represents number of patients and t 

indicates number of cases with transplant). Median age at diagnosis was 57 years young, 

median overall survival was 18.5 months. While 90% of patients were White, dataset was 

balanced on sex, with a ratio of male to female equal to 1.1. 

Since this clinical dataset was released in May 2013, we followed the NCCN AML 

guidelines version 3.201720 to update cyto-molecular risk status of patients. This resulted 

in 55 patients with favorable, 56 with intermediate, and 62 cases with adverse risk status.  

We also examined frequency of driver mutations in this dataset. (Figure 8.) NPM1 

represented the highest frequency, as expected3, followed by DNMT3A, and FLT3-ITD.  

Splicing factor mutation occurred in very small subset of patients, (U2AF1 4% and SF3B1 

0.5%). 
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4.1.1 | Training Set 

 Using stratified random sampling (section 3.4.4) we selected 54 patients as a 

training set (TS). This set was balanced on age, transplant, WBC count, treatment choice, 

and overall survival time. Median age of patients was 56.5, with median overall survival 

of 18.5 months. (Table 9.) 

 

 

 

 

 

 

 

Figure 8. Frequency of recurrent mutations in TCGA AML cohort (n=173) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

 

Table 9. Training set characteristics 

Status Transplant Age WBC Sex Induction Cyto-risk group 

Death: 33 Yes: 28 > 60: 16 > 16,000/μl: 25 M: 30 7+3+3: 28 Favorable: 16 

Censored: 21 No: 26 ≤ 60: 38 ≤ 16,000/μl: 29 F: 24 7+3: 26 Intermediate: 16 

      Poor: 22 
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4.2 | The Standard Cox PH model 

We used the training set to fit a S-Cox model to AML prognostic risk factors 

(section 3.4.4). To ensure that recurrent AML mutations (Table 10.) did not have any 

causal association with altered splicing pattern in patients included in the training set, we 

added each mutation (except for mutations included in molecular risk stratification, i.e., 

FLT3-ITD, NPM1, TP53, CEBPA, and KIT) separately to the base Cox model (i.e., S-Cox 

model), and examined Wald statistics (Z value), hazard ratio, 95% confidence interval, and 

Chi-square p-value. Our analysis suggested that there was no significant change in hazard 

rate for patients with or without a mutation. (Table 11.) 

 

Table 10. Frequency of common mutations in the training set. 

Gene n Gene n Gene n 
ASXL1 2 CEBPA 6 TP53 5 
KRAS 1 IDH1 8 RUNX1 4 
U2AF1 2 FLT3-ITD 9 TET2 2 
KIT 4 DNMT3A 13 IDH2 6 
WT1 3 NPM1 14 NRAS 3 

      
 
NPM1, FLT3-ITD, TP53, KIT, and CEBPA were considered in 
the NCCN molecular risk status of patients. 
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To evaluate disease status over time, we calculated AUROCt at 1-5 years survival 

based on predicted values from the fitted S-Cox model. (Figure 9.) Our results represented 

a maximum AUROC value of 0.71 at 5 years for the TS, and 0.74 at 1, 3, 4, and 5 years 

for the VS-1. Evaluating the S-Cox model on the VS-3 indicated that AML risk factors 

reversely predicted disease outcome in this group of patients, with a minimum AUROC of 

0.32 at 5 years. (Figure 9.)  

 

Table 11. Multivariate survival statistics in the training set 

Covariates ß SE z p-value HR CI 

NCCN Poor 1.17 0.48 2.4 0.016 3.2 1.24 - 8.3 
NCCN Intermediate 0.67 0.54 1.26 0.2 1.96 0.68 - 5.6 
WBC > 16000 /μl - 0.06 0.36 -0.16 0.87 0.94 0.46-1.91 
       
Sex (Male) - 0.017 0.37 -0.048 0.96 0.98 0.47 - 2.03 
IDH1 0.189 0.51 0.37 0.7 1.2 0.44 – 3.28 
IDH2 0.11 0.5 0.2 0.8 1.11 0.4 – 3.06 
TET2 -0.2 1.08 -0.197 0.84 0.81 0.097 - 6.7 
NRAS -0.2 0.75 -0.285 0.77 0.8 0.18 – 3.5 
RUNX1 1.05 0.71 1.48 0.137 2.8 0.7 – 11.5 
DNM3TA 0.67 0.4 1.67 0.095 1.96 0.89 - 4.3 
WT1 -1.18 1.03 -1.15 0.25 0.31 0.04 - 2.3 
U2AF1 -0.26 0.76 -0.347 0.729 0.77 0.17 – 3.4 
ASXL1 0.56 0.85 0.655 0.51 1.75 0.33 – 9.3 

 

The S-Cox model (stratified by age group) was fit to the known AML risk factors (rows highlighted in 
light grey color). Having poor cyto/molecular risk status increased hazard with significant p-value, as 
expected. To evaluate significance of common mutations in estimating hazard, mutated genes were 
separately added to the base S-Cox model. Risk of experiencing an event did not change between male 
and female patients in the TS.  Abbr. Regression coefficient (ß); Standard error of Reg. Coef. (SE); Wald 
statistics (z); Chi-square p-value (p); Hazard Ratio (HR); 95% Confidence Interval of HR (CI). 
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Figure 9. AUC for ROC at 1-5 years 

Four plots of ROC curves at 1-5 years survival for (top-left) the training set, (top-right) the validation set-1 
, (bottom-left) the validation set-2, and (bottom-right) the validation set-3, illustrate prediction accuracy of 
the standard Cox model. A maximum AUROC of 0.71 at 5 years ROC (dotted line green colored curve), 
0.74 for the validation set 1, 0.46  at 1 year for the validation set 2 at one-year ROC (purple colored curve), 
and 0.68 for the validation set-3 at one-year ROC were detected. A table of AUROC value associated to 
each ROC curve is presented for each plot. Abbr. TPP: true positive rate (sensitivity); FPR: False positive 
rate (1- specificity). 
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4.5 | AS Events for TCGA AML Cohort 

We employed STAR70 version 2.5.1 to align RNA-Seq reads from all 173 TCGA 

AML samples to the human genome (hg19), and rMATS65 version 3.2.5 to estimate PSI 

value for 5 different types of alternative splicing. (Figure 2.) 

We identified 24248 spliced events for 6385 genes, expressed across all samples 

(n=173). The majority of these events belonged to skipped exons (n=18643), followed by 

mutually exclusive exons (n=3307), alternative 3´ splice sites (n=1017), alternative 5´ 

splice sites (n=852), and retained introns (n=429). A great number of these events showed 

very small variance across patients. (Figure 10.) After applying 10 % filtering to discard 

events with low minor splice read coverage across all samples (section 3.3.2), the number 

of events reduced to 1434 belonged to 1005 genes. We tested performance of different cut-

offs (i.e., 0.1%, 1%, 5%, and 15%).  The GL-Cox exceled with 10% cut-off. (Figure 9.) 

 

 

 

 

 

 

 

 

Figure 10. PSI variance density plot and comparison of different AS cut-offs 

(left to right) Density plot of PSI variance (a log2 scale) for all AS events (n=24248) shows 
majority of events have very low variance across all patients (n=173).  Density plot after filtering 
indicates that a shift of plot toward events with more variance across patients. Comparison of 
different cut-off shows 10 % cut-off outperformed others. Abbr. PSI: Percent Spliced In.; TS: 
training set; VS: validation set, AUROC: area under receiver operating characteristic curve. 
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4.6 | Penalized Cox Regression Analysis and Its Performance 

To identify alternative spliced events in the training set that can predict disease 

outcome upfront chemotherapy in the validation sets, we fit regularization paths on Cox 

model penalized with the grouped lasso (GL).72 We grouped PSI values on their 

corresponding gene and fit a model to PSI value of 1434 events and AML risk factors.  

The GL-Cox model considered a penalty for AS events that became a larger value 

as the number of events per gene increased. However, AML risk factors only penalized 

with the lasso l1 norm. A 10-fold CV for the fitted model had led us to find a tuning 

parameter (λ) that minimized partial likelihood deviance. (Figure 11.)  Re-fitting the GL-

Cox model with λmin identified 19 AS events (referred to as signature events) with AUROC 

at 1-5 years greater than 0.97 (Table 12.; Figure 11.) and shrunk coefficients of AML risk 

factors, and other 1415 AS events exactly to zero. Validation of this model on two non-

overlapping VSs showed dominant performance of this approach over the standard Cox 

model. Comparison of AUROC for two models is shown in Table 12.  

 

Table 12. Comparison of AUROC for two fitted models 

 AUROC for the Cox model with the GL AUROC for the standard Cox model 
Year  1 2 3 4 5 1 2 3 4 5 
TS 0.97 0.98 0.98 0.98 0.98 0.58 0.68 0.69 0.69 0.71 
VS-1 0.74 0.73 0.79 0.79 0.79 0.74 0.66 0.74 0.74 0.74 
VS-2 0.62 0.61 0.75 0.75 0.72 0.46 0.4 0.34 0.34 0.32 
VS-3 0.56 0.57 0.63 0.64 0.62 0.68 0.67 0.66 0.65 0.63 

 

AUROC at 1-5 year survival for the Cox model penalized with the grouped lasso (GL) (highlighted in dark 
sea green color) and the standard Cox model fit to well established AML risk factors (highlighted in light 
grey), represent outperformance of the GL Cox model. Abbr. TS: training set; VS-1 validation set-1; VS2: 
validation set-2; VS3: validation set-3 
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Further, we used the TS to calculate a predictor value cut-off (LPc) (section 3.8.1) 

(Figure 11.) We employed LPc to classify AML patients into two groups of (i) good-

outcome if LP < LPc; and (ii) poor-outcome, if  LP  ≥ LPc.  

The Kaplan-Meier survival curves for the length of time after diagnosis until death 

from any cause were graphed for the good-outcome and poor-outcome groups, which 

demonstrated a significant difference in survival times between two defined groups (VS-1 

: log rank test p = 0.0086, hazard ratio= 2.47, likelihood ratio p =0.016; VS-2: log rank test 

p = 0.013, hazard ratio= 1.78, likelihood ratio p =0.017) (Figure 12.). 
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Figure 11. Development of a penalized Cox PH model 

 (left to right) We used the training set (TS, n=54) to construct a disease outcome prediction model. 
We considered PSI value of AS events, and AML risk factors as predictor variables, overall survival 
(OS) scaled in months was considered as clinical endpoint. We fit a Cox model penalized with the 
grouped lasso on PSI values of 1434 events in 1005 genes and main AML risk factors (top-left). A 
10-fold cross-validation on a grid of 100 lambda values identified a tuning parameter λ with partial 
likelihood deviance minima (top- middle). We graphed a bar plot where height represents non-zero 
regression coefficients, to highlight AS events with more contribution to good or poor outcome (top-
right). We evaluated performance of this model on the TS with AUROC at 1-5 years (bottom-left).  
We used the TS to set an LP cut-off (LPc) point at 36 months survival. We fit a LOESS curve to a 
scatterplot of OS (natural log transformed) against LP value for each patient. Horizontal dashed line 
started at 3.58 (ln (36 months survival)) touched LOESS curve at a point that directed us to LPc = 0 
on X-axis. (bottom-middle) Patients were assigned a group (good-outcome, if LP < LPc, or a poor-
outcome if LP   ≥ LPc). Kaplan-Meier survival curve for two groups of AML patients showed a 
significant log rank test P =6.69e-12 (bottom-right). Abbr. PSI: Percent Spliced In; PLD: partial 
likelihood deviance; Ŝt: proportion surviving; OS: overall survival (months); LP: linear predictor; 
AUROC: area under the receiver operating characteristic curve. 
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Poor performance of the GL-Cox on the VS-3 (Table 12.) led us to investigate 

association between predictor score (LP) and OS from 50 AML patients who did not belong 

to the VS-1 and VS-2. We plotted distribution of OS against LP for these patients and 

labeled points with mis-predicted outcome with corresponding treatment regimen (Figure 

13- top) or FAB sub-group (Figure 13- bottom). We also labeled other points if patient 

belonged to M3 sub-group. Our results showed that APL patients (FAB = M3, RX 

=7+3+ATRA) responded well to therapy regardless of LP score. We also observed poor 

prediction of the GL-Cox for patients treated with an HMA (i.e., decitabine). 

 

 

 

 

Figure 12. Model validation 

Model validation on two sets of non-overlapping data demonstrated significant separation for two LPc 

based pre-defined groups (log rank test P = 0.0086 for the VS-1 (n=25, left), log rank test P = 0.013 for 
the VS-2 (n=44, top-middle)). The VS-3 included all patients excluding the TS (n=119) showed significant 
log rank test P =0.0028 (right). Abbr. OS: overall survival (months); �̂�𝑆t: proportion surviving; VS: 
validation set. 
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Figure 13. Treatment with ATRA or decitabine altered disease outcome 

We graphed a scatterplot of natural log transformed overall survival (ln(OS)) on Y-axis against the linear 
predictor score (LP) on X-axis, highlighted the LPc with a vertical dashed line, and ln (36 months survival) 
with a horizontal dashed line. Dots represented deceased patients, and triangle illustrated alive patients at 
the last follow-up time. Patients who had LP ≥ LPc and survived longer than 36 months, or had LP < LPc 

and died or censored in less than 36 months were labeled with their corresponding initial therapy (top) or 
FAB sub-group (bottom, color guideline represented each 8 FAB sub-group). All M3 FAB sub-group 
were labeled on the plot (right, red colored dots and triangles). Abbr. M1-M7 FAB sub-groups; NC: not 
clear 
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4.7 | PSI Distribution in the Training Set and the Healthy Bone Marrow 

We obtained RNA-Seq data for four healthy bone marrow (BM) from The National Center 

for Biotechnology Information Gene Expression Omnibus (GEO) repository, with project 

number of PRJNA232593 and GEO number of GSE53655. We analyzed these data using 

our bioinformatics pipeline. (section 3.3) Our results indicated that these four healthy BM 

expressed 16 out of 19 signatures events. (Figure 14. B.)  

We graphed two PSI density plots for each AS event, (i) for 54 patients in the TS; 

(ii) for four healthy BM. The AML PSI density plot covered an area containing both 

skipping and inclusion isoforms. While we observed consistency in the healthy BM PSI 

distribution for several AS events, sample size limitation introduced noise in others. 

(Figure 14.)  
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4.8 | Characteristics of Signature Events 

 Although in our primary analysis the most frequently detected alternatively exon 

splicing was in the form of a skipped exon, consistent with other reports, our further 

analysis revealed that a small subset of these isoforms was differentially expressed among 

AML patients. In fact, the vast majority of spliced variants with differential read coverage 

belonged to the mutually exclusive exons (MXE) isoforms. Therefore, except for 2 skipped 

exon events (CLK4, and RWDD1) and one A5SS event (RBMS1), all signature events 

were a MXE isoform. Table 13 represents genomic coordinates of each signature event.  

 

Figure 14. PSI distribution for the training set (n=54) and the healthy bone marrow (n=4) 

(A) Density plot depiction for PSI values of 19 signature AS events. The red arrows are pointing to the 
genes without AS event in the healthy bone marrow. (B) Distribution of AS events for the healthy bone 
marrow. Abbr. PSI: Percent Spliced In 
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Study of four healthy bone marrow RNA-Seq data showed that all except three 

signature events have been expressed in the healthy BM. These events include KNTC1 

(MXE; ae44:ae45) , SRBD1 (MXE; ae14:ae13), and UNC50 (MXE; ae3:ae4). 

All 19 events belonged to protein coding genes and cover a wide range of cellular 

functions. (Table 15.) One of the most important events occurred in CLK4 ae5.  The 

splicing regulatory CLK4 (CDC like kinase 4) is a member of the Clk class of enzymes 

that targets both serine/threonine and tyrosine-containing substrates, and perform a 

distinguished role in phosphorylating serine and arginine rich (SR) proteins of the 

spliceosomal complex, such as SRSF1 and SRSF3. 94 95  

Other genes with an alternative spliced event include (i) MCPH1 (Microcephalin 

1), a tumor suppressor gene96 that contributes to DNA repair, post-transcriptional 

modification and stability of P53 by blocking Mdm2 mediated ubiquitination of TP53; (ii) 

RFWD2 (Ring Finger And WD Repeat Domain 2, also known as E3 ubiquitin-protein 

ligase COP1) with an MXE event between e10, and e8, an E3 ubiquitin-protein ligase97 that 

plays a direct role in destabilizing TP53 and JUN by ubiquitination and degradation of 

these proteins, and an indirect role in AKT activation that results in cell survival. 

Intriguingly, ubiquitinates CEBPA, a transcription factor involved in myeloid lineage 

differentiation, upon binding to TRIB198 ; (iii) ABCB7 (ATP-binding cassette sub-family 

B member 7, mitochondrial), involved in heme transportation from the mitochondria to 

cytoplasm, and cellular iron homeostasis via maturation of cytoplasmic iron-sulfur (Fe/S) 

cluster-containing proteins, iron accumulation in the mitochondria in Sideroblastic 

anemia99,100; (iv) TMEM63A (Transmembrane Protein 63A), an osmolarity sensitive ion 

channel,101 involved in innate immune response through regulating proliferation and 
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migration of peripheral blood mononuclear cells102 ; (v) POLG (DNA polymerase subunit 

gamma-1), the catalytic subunit of mitochondrial DNA polymerase, a 3´-5´ exonuclease 

involved in mitochondrial DNA replication and repair103; (vi) ZFAND2B (Zinc Finger 

AN1-Type Containing 2B) encodes an zinc finger motif containing endoplasmic reticulum 

(ER) protein that regulates translocation and ubiquitination mediated proteasomal 

degradation of the nascent proteins, including IGF1 receptor (IGF1R), at the ER104; (vii) 

KNTC1 (Kinetochore Associated 1) an essential component of the mitotic checkpoint105, 

involved in proper chromosome segregation during cell division106,107; (viii) RBMS1 

(RNA Binding Motif Single Stranded Interacting Protein 1), encodes a single-stranded 

DNA and RNA binding protein, with several proposed roles including DNA replication108, 

transcription, cell cycle progression, c-MYC mediated apoptosis through binding to 

upstream region of c-MYC109,110, and miR-383 regulated steroidogenesis through c-

MYC111; (ix) CLKF (Chemokine Like Factor) plays an essential role in immune response 

by chemotactic activity112,113; (x) TARS2 (Threonyl-tRNA Synthetase 2, Mitochondrial), 

encodes an aminoacyl-tRNA synthase that catalyzes threonine loading reaction of tRNA 

in the mitochondria114;  (xi) NCDN (Neurochondrin), provides instruction for translation 

of a guanine(G)-protein-coupled-receptor (GPCR)-adaptor protein Norbin, first recognized 

in the nervous system for its role in neurite outgrowth115,116 and its hydroxyapatite 

restorative function in the osteoclast-like bone marrow cells117, more recently for its 

function in promoting translocation of proteins from cytosol to plasma membrane in 

collaboration with P-Rex1118; (xii) UNC50 encodes Unc-50 inner nuclear membrane RNA 

binding protein, an RNA binding protein localized in the nuclear inner membrane and 

Golgi apparatus of different cell types, plays various roles including regulation of EGFR 
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in human hepatocellular carcinoma (HCC),119 neuron signal transduction at neuromuscular 

junction,120 and transportation121; (xiii) PARVG, encodes Parvin gamma that mediates 

leukocyte migration via binding to integrin-linked kinase (ILK)122; (xiv) ARPC4 (Actin-

related protein 2/3 complex subunit 4), acts as actin polymerization regulator123 and 

contributes to cell migration in different cancers124,125; (xv) PROSER1 (Proline and serine-

rich protein 1), encode a proline-serine rich domain with possible protein-protein 

interaction role; (xvi) ANKRD10 (Ankyrin Repeat Domain 10), involved in regulation of  

canonical Wnt signal transduction pathway (http://amigo.geneontology.org) ; (xvii) 

SRBD1 (S1 RNA Binding Domain 1), encodes an RNA binding protein with unclear 

function ; and (xviii) RWDD1 (RWD domain-containing protein 1), involved in cell 

aging126, cellular response to oxidative stress, and regulation of androgen receptor 

activity127. 
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4.9 | Cis-regulatory Modules   

To investigate presence of cis-regulatory modules in 19 genes with AS event, we 

obtained curated regulatory annotation data from The Open Regulatory Annotation 

ORegAnno database (http://www.oreganno.org/) (version 3.0, 2016). This dataset 

contained information about miRNA, and transcription factor binding sites, and other 

regulatory elements.128,129 We focused on regulatory elements (i.e., miRNA, or trans-

regulatory factors) that had been expressed in the TCGA  adult AML cohort.  After filtering 

out elements without expression, our dataset was limited to 122 miRNAs and 213 trans-

regulatory factors.  Of the 19 genes with an AS event, USP50 did not contain binding 

module for any expressed regulatory elements. We mapped regulatory module coordinates 

to genes coordinates (i.e., genes with signature events), and found 18 regulatory elements 

with at least one cis-regulatory module in at least one gene. (Table 16.) 

Of the 19 cis-regulatory modules, 7 were located within close proximity of the 

alternative exon(s). While the majority of these regulatory elements are transcription 

activator or silencer, CCCTC-Binding Factor (CTCF) - a transcription repressor- serves as 

a splicing regulator. In total,12 genes had CTCF binding sites. NCDN and RFWD2 had 

CTCF binding site downstream alternative exon. Our analysis showed that 10 out of 19 

genes contained at least one CEBPA binding module, ZFAND2B contained a CEBPA 

binding module very close to the target exon. CEBPA (CCAAT/enhancer-binding protein 

alpha) plays a role in myeloid cell differentiation, but there is no report indicating its 

splicing regulatory capacity. 
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4.10 | Correlation of Age and % Blast Count with Linear Predictor 

 Since age is among AML prognostic risk factors, we included it in the GL-Cox and 

S-Cox model. To demonstrate that there was no correlation between age and the signature 

events, we performed a Spearman ’rank-order correlation between age (natural log 

transformed) and linear predictor for all patients in this study (n=173).  We found no 

correlation between these pairs of variables (Spearman's rank correlation coefficient or 

Spearman's rho = 0.11, p-value=0.13). (Figure 15., left) 

 The RNA-Seq that was used for this study was collected from peripheral blood cells 

of AML patients. Considering that AML is a clonal disease and it originates from a single 

errant leukemic committed stem cell or leukemic myeloblast, we would expect to have 

normal hematopoietic cell among leukemic population in the PB. To address this issue, we 

conducted Spearman ’rank-order correlation between PB % blast and linear predictor. This 

resulted in Spearman's rank correlation coefficient of 0.086 with p-value=0.26, indicating 

there was no correlation between these two variables. (Figure 15. right) 
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Figure 15. Correlation of age and the PB % blast with LP 

Spearman ’rank-order correlation between age (natural log transformed), and linear predictors (LP) 
(left), and PB % blast and linear predictors (right) for 173 AML cases showed no correlation between 
pairs. Abbr. ln(Age): natural log of age, PB: peripheral blood; LP: linear predictor 



 

65 
 
 

 

CHAPTER V 

DISCUSSION  

 

Adult AML, with exception of APL, is a very lethal disease in elderly patients. 

Despite our better understanding of AML, well-established prognostic factors fail to 

predict disease outcome in a subset of patients without chromosomal abnormalities or 

driver mutations. While the primary focus for prognostic marker discovery has been on 

cytogenetic aberrations and mutations, other genetic alterations may contribute to AML 

prognosis. Alternative pre-mRNA splicing plays a major role in hematopoiesis and several 

studies indicated different AS patterns in normal cell compared to leukemic cell, with 

clinical implication in a number of isoforms.54,55,59,61 

This study was organized to infer the clinical relevance of alternative splicing in 

adult AML,  manifest overperformance of a penalized Cox prediction model (i.e., GL-Cox) 

built on PSI value of AS events , and the existing well-established AML prognostic risk 

factors, examine potential of signature AS events to serve as prognostic marker, and shed 

new light on the potential causal-effect role of cis-regulatory modules and trans-splicing 

factors on widely disrupted RNA splicing in adult AML.    

We exploited available bioinformatics, machine learning, and statistics techniques, 

to build a disease outcome prediction model based on AS data. To deal with the censored 

survival data and a large number of predictor variables, we utilized an extension to Cox 

regression that penalized predictors with the grouped lasso penalty. 
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Our designed disease outcome prediction model on a balanced sample of 54 AML 

patients with similar initial therapy identified 19 signature mis-spliced transcripts, majority 

in a form of mutually exclusive exons (MXE).  Intriguingly, none of AML prognostic risk 

factors contributed to survival outcome prediction. 

Among the 19 signature events, ARPC4 (MXE ae4:ae5) exhibited the highest 

contribution to a good-outcome prediction, and NCDN (MXE ae4:ae5) held the highest 

coefficient among AS events with poor-outcome association. Interestingly, study of cis-

regulatory modules uncovered presence of two CTCF (CCCTC-binding factor) binding 

sites downstream NCDN alternative-exons. A systematic CTCF binding site study 

suggested its indirect role in promoting weak exon inclusion by pausing RNA polymerase 

II.130 In addition to NCDN, RFWD2 also contained a CTCF module downstream the target 

exons, indicating a potential role for CTCF in regulating AS in these two genes. There was 

no report indicating any association between other 18 cis-regulatory modules and 

alternative splicing. However, several of these binding sites belonged to elements that 

regulate transcription. Our analysis showed that 10 out of 19 genes with signature event 

contained at least one CCAAT/enhancer-binding protein alpha (CEBPA) binding module. 

This module was located in close proximity to ZFAND2B alternative exon. CEBPA 

belongs to a family of leucine zipper transcription factors and plays a role in myeloid cell 

differentiation,131 but its impact on exon splicing is not clear. 

A comprehensive literature review for gene with signature event led us to perform 

a function-based gene classification. We assigned each gene with a spliced variant to one 

of nine sub-groups: (i) splicing regulator: CLK494 (ii) immune response and inflammation: 

CKLF112,113, TMEM63A101,102, and PARVG122; (iii) cell division, cell cycle progression, 
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and DNA replication: KNTC1106, and RBMS1108; (iv) ubiquitination mediated protein 

degradation: RFWD297, ZFAND2B104, and MCPH196; (v) cell migration: ARPC4125; (vi) 

mitochondrial DNA replication and translation: POLG103, and TARS2114; (vii) protein 

translocation: NCDN118, and ABCB7100; (viii) RNA binding: UNC50 , and SRBD1; (ix) 

others: PROSER1, ANKRD10, and RWDD1. 

Impaired splicing of a key splicing regulator CLK4 with clinical implications 

suggested a potential role for this isoform in global aberrant splicing in adult de novo AML. 

Besides critical role of majority of genes with signature event, their variation or aberrant 

expression have been reported in different cancers including hematologic malignancies.  

For instance, (i) differentially expressed ABCB7 in Myelodysplastic Syndromes (MDS) 

patients with mutated splicing factor SF3B1132; (ii) myeloid transformation via 

deregulation of IGF-1 signaling pathway as a result of loss of  ZFAND2B encoded 

protein104,133 ; (iii) genomic variation of POLG in hepatocellular carcinoma,134 and breast 

cancer in the African-American women135 ; and (iv) overexpression of  ARPC4 in invasive 

breast cancer,136 liver cancer,137 lung adenocarcinoma125,138, colorectal carcinoma, and 

pancreatic cancer. 125,139,140 Moreover, downregulation of iron transporter gene ABCB7 has 

been associated with sideroblastic anemia,99,100 a form of anemia that in some cases can 

develop into hematological malignancy including AML.141 

Model validation on two non-overlapping validation sets (i.e., VS-1, VS-2) 

revealed better performance of AS-based GL-Cox over a standard model. A decrease in 

AUROC from 0.98 in the TS (n=54) to 0.79 in the VS-1 (n=25) can be related to sample 

size.  In addition, using different underlying population (i.e., patients treated with various 

types of therapy) resulted in relatively low AUROC in VS-2 compare to the TS.  
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Kaplan-Meier survival analysis on two VSs resulted in a significant log rank p-

value, and signified capacity of the signature events in separating two groups of patients 

defined by the GL-Cox model. 

We investigated the poor performance of the signature events in predicting disease 

outcome in the VS-3.  Looking into FAB subgroup and treatment choices of mis-classified 

patients, we noticed that the majority of these patients either belonged to M3 sub-group 

(APL) or treated with decitabine. APL is a well-characterized subtype of AML with PML-

RARA fusion and account for 10% of AML cases. APL usually responds well to a targeted 

therapy with a combination of ATRA and the standard induction therapy. While PML-

RARA represses cell differentiation by suppressing CEBPA,142 ATRA binds to retinoic 

acid receptor (RARA) and triggers differentiation activation which leads to promyelocyte 

maturation. A study on NB4 cells showed that ATRA induced cyclin D1 degradation via a 

member of E2 ubiquitin-conjugating enzyme family UBE2D3.143 Although RFWD2 (a 

gene with a signature event associated to poor outcome) encodes an E3 ubiquitin ligase 

that involves in CEBPA ubiquitination upon binding to TRIB,  as well as P53 

ubiquitination, its association to ATRA mediated proteolytic activity is not clear.  

On the other hand, decitabine is a hypomethylating agent. It is very well known that 

DNA methylation regulates alternative splicing at least by two mechanisms (i) modulating 

elongation rate of Pol II by CTCF and methyl-CpG binding protein 2 (MeCP2); (ii) by 

heterochromatin 1 (HP1) that recruits splicing factors onto alternative exons.144 

Decitabine-mediated DNA hypomethylation most likely disrupted splicing patterns of 

signature events. Consequently, the signature events failed to predict disease outcome. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

 

To assess how altered splicing of pre-mRNA was contributed to disease outcome 

in  adult AML, we constructed a validated predictive Cox model with the grouped lasso 

penalty that outperformed a standard model with AML well-characterized risk factors. 

(Figure 16.) 

 

Figure 16. Summary of Study 

RNA-sequencing, mutation profile, and clinical data from TCGA adult de novo AML project were 
plugged into the bioinformatics to machine learning pipeline to discover signature events with disease 
outcome prediction power. Abbr. RX: treatment; AS: alternatively spliced; WBC: white blood cell 
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We identified signature events in genes with various central cellular functions 

including splicing regulation, DNA synthesis, protein ubiquitination and degradation, iron 

hemostasis, immune response, and mitochondrial DNA replication and translation.   

Identifying two mitochondrial associated genes with signature event (PARVG that 

involved in mitochondrial DNA replication, and TARS2 that encodes an enzyme 

responsible for loading tRNA with a threonine) indicated a possible link between altered 

mitochondrial metabolism and  adult AML outcome. In addition, inactivation of TP53 by 

RFWD2 ubiquitination suggested a potential role for RFWD2 signature event in TP53 

degradation in adult AML patients with poor outcome, as oppose to MCPH1 (a tumor 

suppressor gene with a signature event associated with good outcome) that stabilizes TP53 

by inhibiting Mdm2 mediated ubiquitination of TP53. Finding signature event in genes 

associated with immune response including CKLF, TMEM63A, and PARVG showed 

possible splicing regulated disruption of immune system in  adult AML. 

Presence of CTCF module in genes with signature event, as well as detection of 

mis-spliced CLK4 by the GL-Cox model suggested that mRNA mis-splicing in AML can 

be regulated by both cis and trans regulatory mechanisms. 

Although our results look encouraging, we need to acknowledge several 

limitations. (i) we worked with RNA-seq data from samples with a mixed population of 

leukemic and normal hematopoietic cells; (ii) our sample size was small; (iii) having very 

limited information about time to relapse and time of transplant, we defined our model 

outcome based on overall survival as clinical end-point and death as event; (v) we stratified 

the training set on number of patient treated with transplant, but we did not have any 
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information about time of transplant, so our results can still be impacted by transplant. (v) 

we observed no correlation between %blast and predictor score, but with limited sample 

size we could not test our model on a pure leukemic clone. (vi) we did not use an 

independent patient cohort to obtain an unbiased AUROC estimate. (vii) we did not assess 

function of target exon(s) in genes with signature event. 

In conclusion, despite all limitations, our introduced method based on available 

bioinformatics, machine learning, and statistical techniques, demonstrated potential of 

alternative splicing data in predicting risk of death in adult AML regardless of age, WBC 

count, cytogenetic abnormalities and mutations. Identified signature events showed 

capacity to serve as prognostic indicators. However, model validation on an independent 

patient cohort for an unbiased conclusion is essential. Thus, until further investigation we 

consider these events as predictor markers of  adult AML outcome. 
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