Sahara: Guiding the Debugging of
Failed Software Upgrades

Rekha Bachwani, Olivier CramériRicardo Bianchini, Dejan Kosti¢ and Willy Zwaenepoél

Rutgers University 'EPFL
{rbachwan,ricardop@cs.rutgers.edu {olivier.crameri,dejan.kostic,willy.zwaenepd@epfl.ch

Rutgers Technical Report DCS-TR-676, October 2010, Raé\laauary 2011

Abstract—Today, debugging failed software upgrades is a long the developers examine the information to locate the likely
and tedious activity, as developers may have to consider lge causes of the misbehavior. This process is long and tedious,

sections of code to locate the bug. We argue that failed upgde 55 gevelopers may have to consider large chunks of code to
debugging can be simplified by exploiting the characteristis of | te th t f th isbehavi

upg_rade problgms to prioritize the set of rputines to consier, In '0cate . € root cause or the misbenavior. . .
particular, previous work has shown that differences betwen the In this paper, we propose Sahara, a system that simplifies the
computing environment in the developer’s and users’ sitesause debugging of environment-related upgrade problems by pin-
most upgrade problems. Based on this observation, we designpointing the subset of routines and variables that is mketyli

and implement Sahara, a system that identifies the aspects 8fe 1 goyrce of misbehavior. Sahara’s design was motivated by
environment that are most likely the culprits of the misbehavior, ¢ b Hi (1) si th bl db

finds the subset of routines that relate directly or indirecty to wo observations: (1) since 9 pro em.vv_as c.a_use y one or
those aspects, and selects an even smaller subset of routineMore aspects of the user environment, it is critical to ithent

to debug first. To achieve its goals, Sahara leverages feedita these suspect aspects and their effects throughout the code
from a large number of user sites, machine learning, and sta¢ and (2) since the previous version of the software behaved

and dynamic source analyses. We evaluate Sahara for threeak o o ; : ; :
upgrade problems with the OpenSSH suite, one synthetic prdbm Er?perly, tlrt] IS Cm.lcal 0 :jdentlfy éhz beh?\”oral diffenees
with the SQLite database, and one synthetic problem with the etween he previous and upgraded versions.

uServer Web server. Our results show that the system produse ~ Given these observations, the root cause of an upgrade
accurate recommendations comprising only a small number of problem is most likely to be in the code that is both (1)

routines. affected by the suspect aspects of the environment and (2)
whose behavior has deviated after the upgrade. To isolate
this code, Sahara combines information collected from many

I. INTRODUCTION : \ : .
. users of the software, machine learning techniques, saatic
Modern software systems are complex and comprise Magynamic source analyses. The machine learning and the stati

intergcting and dependent components._ Frequent upgraeles&alysis run at the developer's site, whereas the datectiolfe
required for some or all components to fix bugs, patch securiinq ‘4ynamic analysis run at the users’ sites (for those users
vulnerabilities, add or remove features, and othe_r chitgsks. \\ho are willing to run Sahara). Sahara targets C application
Unfortunately, many of the upgrades either fail or producgiten for Unix-like operating systems.
unwanted behavior. A survey conducted by Crane¢ral. [8] In more detail, Sahara applies feature selection [34] on the
showed thab0% of system administrators perform upgradegironment and upgrade success/failure informationivede
at least once a month, and that- 10% of these upgrades oy ysers to rank the aspects of the environment that aré mos
is problematic. Interestingly, they also found that the MOgyq|y 1o be the source of the misbehavior. Then, it uses def-
common source of upgrade problems is the difference betwegly “siatic analysis [1] to identify the set of variables vwehos
the environment (i.e., version of operating system an@fibs, 51 es derive directly or indirectly from the suspect aspec
configuration settings, environment variables, hardwate) the routines in which these variables are used become the
at the developer's site and the users’ sites. Such proble§; set of potential culprits. At this point, Sahara desloy
are difficult (or maybe impossible) to prevent because thesirmented versions of the current and upgraded version o
developer cannot foresee, much less test her softwarefeny @ yhe code to the user sites that reported misbehaviors. it the
possible environment in which the software might be used.,\; s the instrumented versions automatically (and with the
When upgrades misbehave at some user sites, the deygle inputs) to collect information about all routine calfed
opers receive bug reports _and complalr_ns. In some cases, ms. Using this information, it uses value spectra [&5]
developers may also receive logs of failed executions and{ganyify the set of routines that caused the behavior toatevi
core dumps. Developers often undergo several exchanges Wby one execution to the other at each misbehaving site.
the users to gather all the pertinent information. Theeaft thase sets of routines are also considered suspects. yEinall
This research was partially funded by NSF grant CSR-072GBg8BHasler Sahara 'nterseCtS.the sets of SUSpeCt.rOUtme.S resulu_rrgtfre
Foundation grant 2103. static and dynamic analyses; those in the intersectionldhou

COoNOOA~WNE

int env2 = 0, glob = 3;

int checklength(int len) {
if (len <= 9) % Upgrade changes sign to <
return |en;
el se
return -1;

int secondfunction(float a) {
int ai = ceil(a);
if ((glob + ai) < 5)
return 100;
el se
return 10;

. int main() {

char unane[80] ;
strcpy(unanme, getenv("SHELL"));
env2 = strlen(unane);
int retval1 = checkl ength(env2);
if (retvall > 0)
printf("Qutl: %", secondfunction(2.2));
el se
printf("Qut2: %", secondfunction(5.1));
return O;

-}

Fig. 1. Example.

be debugged first.

depends on the characteristics of the information recediad

Il. SAHARA: PRIORITIZING UPGRADEDEBUGGING
A. A Motivating Example

To make our exposition more concrete, let us look at a
simple example in Listing 1. The example takes the name
of an environment variable as input using a callgtgenv()

(line 18). It then checks if the length of the string is smalle
than or equal t® (line 4). Depending on the outcome of the
comparison, a different output is produced (lines 21-24).

Let us assume that the upgrade simply changes the sign
in line 4 from “<="to “<”. This upgrade will fail at user
sites where thesSHELL variable is set td bi n/ bash or
/ bi n/tcsh,butnot/ bi n/ csh or/ bi n/ ksh, forinstance.
More generally, the upgrade will fail where the length of
the value of theBSHELL environment variable is exactl§.
However, the program ran successfully at these sites b#fere
upgrade. This upgrade failure is similar to the ProxyComdhan
bug [27] that we detail in Section IlI-A.

The failure has two interesting characteristics. Firsg th
upgrade fails only at a subset of user sites, which may have
been the reason the bug went undetected during development.
Second, despite the fact that the two versions of the code

To evaluate Sahara, we study three real upgrade problegig input-compatible, the execution behavior changes thith
with the OpenSSH suite, one synthetic problem in the SQLitggrade both in terms of the path executed and the output
database engine, and one synthetic problem with the uSerygsduced.

Web server. Our results demonstrate that Sahara producegiven these characteristics, identifying the aspects ef th
recommendations that always include the routines resplnsienvironment that correlate with the failure is a necessasy fi
for the bugs. The exact number of recommended routinggp for efficiently diagnosing the failure. In this simpbeen-

ple, the name of the shell is the aspect of the environment tha

users. In experiments where we varied these characteristigggers the failure. It is also important to identify therizbles
widely, Sahara recommends 2-21 suspect routines thatdhoathd routines in the code that are directly or indirectly el

be debugged first. These numbers can be 20x smaller thgnthe environment. Note that the name of the shell is imjtial
the number of routines affected by the upgrades. Comparedgigsigned to theinane array; only later does variablenv2
static and dynamic analyses alone, Sahara reduces the reimggcome related to the environment. Thus, variahleane

of suspect routines by 1.4x-6x and 14x-40x, respectivelyndenv2, as well as routinesmi n andcheckl engt h are
Given its accuracy and these large reductions, we expett thaspect. However, identifying these suspects is not seffici
Sahara can significantly reduce debugging time in practicepecause the program behaved correctly before the upgrasie wa

Perhaps the most similar work to Sahara is [17]. It collec@Pplied in the same environment. We also need to determine
execution information in the form of predicates, such as th@W the upgraded version of the program has deviated from
number of times a branch is taken, and ranks the predicatdg current version. This analysis would then show thatineut
based on their correlation with the failures. Developers c&heckl engt h andsecondfuncti on behave differently
then inspect the highly ranked predicates and use them s hifi the two versions, meaning that they are also suspects. The
to locate bugs. Jiang and Su [15] built upon this infrastrceet 10Ot cause of the failure is most likely to be contained in
to compute the control flow paths connecting the highly rankéhe code that is affected Hyoth the suspect environment and
predicates. Unfortunately, these approaches do not certsie whose behavior has changed after the upgrade, i.e. routine
user environment when ranking predicates, and requiresusefeckl engt h. This routine is exactly where the bug is in

to constantly run instrumented code to sample the predicaf!l €xample.

and send feedback, both of which have overheads.

In summary, our main contributions are:

B. Design and Implementation
Overview. Figure 2 illustrates the steps involved in Sahara.

« We introduce a new approach for simplifying upgrade dé=irst, Sahara deploys the upgrade to any users that request i
bugging that is driven by user environments and includéstep 1). As the software executes at each user’s site, &ahar

a novel combination of techniques;

collects information about the environment and inputs used

« We build a system, called Sahara, that implements tketep 2). At the end of the execution, Sahara obscures and the

approach; and

transfers the collected environment information (tin@uts

« We evaluate Sahara for five upgrade problems with thréée never transferredn the network) to the developer’s site,

widely used applications.

along with a success/failure flag provided by the user (step
3). (Obviously, some users may decide not to allow any sort

U

Vendor Users Sahara uses the Mirage tracing infrastructure, which has

been described in detail in [8]. For this reason, next we only
Testupgrade, collect input describe the most important aspects of it. The infrastruc-
— and environment data ture identifies the “environmental resources” an applarati
(Cinputand env data] depends on and then fingerprints (i.e., derives a compact
@Machine learning algofithrn | representation for) them.

The infrastructure creates a log of all the external resesirc
accessed by an application by intercepting process creatio
o read or write, file descriptor-related and socket-relatgstesn

d binaries calls. For environment variables, it intercepts the cadlshte
getenv()function in libc. The log may include data files, in
addition to environmental resources. To separate them out,
Sahara uses a four-part heuristic to identify the enviramme
resources from multiple runs of the application. The heiaris

Suspect
environment

=

Intersection identifies as environmental resources: (1) all files accksse
the longest common prefix of the sequence of files acc_:essed in
the logs; (2) all files accessed read-only in all logs; (3¥ikds
Fig. 2. Overview of Sahara. of certain types (such as libraries) accessed in any siogjg |

and (4) all files named in the package of the application to be

of information to be collected or provided to Sahara.) Thgpgraded. This heuristic allows Sahara to exclude uninaport
information about the environment includes the versionhef t files, such as temporary and log files, that are written but
operating system, the version of the libraries, the confiian never read by the application. To complement the heuristic,
settings, the name and version of the other software paskagghara also includes an API that allows the developer to
installed, and a description of the hardware. A failure flaym include or exclude files or directories. In addition to the
mean that (a) the upgrade could not be properly installed @4ta accessed during application execution, Sahara tollec
executed, (b) the upgrade caused incorrect behavior orsh cranformation about the hardware and software installedh s
or (c) the upgrade caused another software to misbehave [§he and amount of memory, CPU data, the types and number

Now suppose that the upgrade misbehaved at one user sitefaievices present, and the list of kernel symbols and madule
least. With the environment and success/failure inforamatit ~ Again as in Mirage, Sahara creates a concise representation
the developer’s site, Sahara runs a machine learning #gori (fingerprint) for each environmental resource. Depending 0
to determine the aspects of the environment that are medy likthe resource type, a different fingerprint is generatedstFir
to have caused the mishehavior (step 4). Next, based on dghara provides parsers that produce the fingerprint for-com
use static analysis, Sahara isolates the variables in thetbat mon types such as libraries and executables. A parser knows
derive directly or indirectly from those aspects; the roa how to extract the relevant information from a file based on
that use these variables are considered suspect (step 5). its type. Second, the developer may provide parsers for cer-

Sahara then deploys instrumented versions of the curreaih application-specific resources, such as configurdities
and upgraded code to the user sites that reported failufisird, if there are no parsers for a resource, the fingerpsint
(step 6). At each of those sites, Sahara can now execute batbequence of hashes of chunks of the file that are content-
versions with the inputs collected in step 2 and collect dyica delineated using Rabin fingerprinting [30]. In practice, we
routine call/return information (step 7). Sahara then carep expect most resources to be handled by parsers, so resorting
the logs from the two executions to determine the routings Rabin fingerprinting should be the exception.
that exhibited different dynamic behavior (step 8). Thepsis |n each fingerprint, the name of the resource serves as a
done at the failed user sites to avoid transferring the di@tiyn key and the hash of its contents as the value. The parsers for

large execution logs back to the developer’s site. Saham thhe most common resource types produce fingerprints in the
transfers the list of routines that deviated at each failger u following formats:
site back to the developer’s site (step 9); the routines eseh

lists are considered suspect as well. . Libraries: Name:HASH+Version

Finally, Sahara intersects the set of suspects resultom fr Configuration files: Filename.KEY:HASH

the static and dynamic analyses (step 10). _This set is megbort . Binary files: Filename:CHUNKHASH
to the developer as the routines to debug first. If the problem

is not found in this first set, other suspect routines shoeld b The content-based fingerprints are of the form: File-
considered. name:CHUNKHASH. These fingerprints are more coarse
Next, we detail the implementation of these steps. grained than what is possible with parsers, since a parser

can choose the granularity at which the fingerprint for an
Upgrade deployment, tracing, and user feedback (steps environmentresource is produced. For instance, the gaaitwl
1-3). Upgrade deployment in Sahara is trivial. The upgradest which binary files are fingerprinted is typically coarser
code is available via a Web interface and can be downloadibdn that for configuration files. We use SHA-1 to compute
as a package/patch by any user that wants it. fingerprints of the resources.

o Environment variables: Name:HASH

For the users that choose to participate, Sahara sends the
tracing infrastructure and the parsers to their sites. imuthe
first several executions of the upgraded software (the numbe
of executions can be defined by the developer), Sahara col- | input |
lects the environment resource information and produces th
respective fingerprints. After each of these executionka&a :
also queries the user about whether the upgrade has sudceede —>[uname] |:>[main]
or failed. We ask the user to provide this success/failurg, fla

Suspects

because it may be difficult to determine failure in some cases global var enVZ] :{)[checklength]
For example, a software misbehavior is considered a failure

even if it does not cause a crash or any other OS-visible

event. In addition, the upgrade may cause another software Llocavar > etval

to misbehave [8]. :
. . Fig. 3. Def-use chain, suspect variables and routines fosioople example.
When the user provides a succeed/fail flag, Sahara sends this

information, along with the environment resource fingentsi These SERs serve as input to the static analysis step. We

back to the developer’s site. This data represents the @mfiil assess the impact of the accuracy of the feature selectpn st
the corresponding user site. After the first several exeosti in Section IlI.

Sahara turns its data collection otb minimize overheads. _ . .
User profiles from all sites serve as the input to the featufdatic analysis and suspect routines (step Spahara analyzes

selection step. Section Il systematically studies thedotpf the upgraded software using th@ Intermediate Language
user profiles with various characteristics. (CIL) [24]. Specifically, it implements two CIL modules, the

call-graph module and thedef-use module. As the name

Feature selection (step 4)Based on the information receivedsuggests, the call-graph module computes a whole-program
from the user sites, this step selects environment ressuregatic call graph by traversing all the source files, a ratin
(called features) with the strongest correlation to theeolsd at a time. Every node in the call graph is a routine, and its
upgrade failures. The fingerprints are never “unhashedhgur children nodes are the routines it calls. The root of the call
feature selection (or after it); it is enough for Sahara town graph is always thewi n() routine.
how many different fingerprints there are for each feature. The def-use module creates def-use chains [1] for each SER.

Sahara uses the decision tree algorithm with feature rankin def-use chain links all the variables that derive directly
from the WEKA tool [www.cs.waikato.ac.nz/ml/weka/] foror indirectly from one SER. Each array is handled as a
selection. The algorithm builds a decision tree by firstctirdg single variable, whereas struct and union fields are handled
a feature to place at the root node, and creating a tree brageparately. Figure 3 shows the def-use chain (thin arrows)
for each possible value of the feature. This splits up thagit for our example program, linking variablesane, env2, and
into subsets, one for each value of the feature. The choicer@f val 1.
the root feature is based on Gain Ratio [29], a measure of aro find suspect routines, Sahara traverses all the routines i
feature’s ability to create subsets with homogeneous etasshe order they appear in the call graph, starting with the.roo
In Sahara, there are only two classes: success or failu. Thuring the course of the traversal, Sahara maintains tists |
Gain Ratio is higher for the features that create subsets W{tl) a list of global suspect variableSispectVais (2) a list
mostly success or mostly failure user profiles. For instairce of per-routine suspect variablessispectVans and (3) a list
the example of Listing 1, the root feature would be the SHELbf routines that are suspec®|spectRoutingsSuspectVarss
environment variable. The subsets that include SHELL g#injnjtialized with the variables corresponding to SERSs.
of Iength different than 9 are successes, whereas those thégahara proceeds through each routine Statement_by_
have strings of exactly 9 characters are failures. statement, starting with the root routine. For every vagab

After selecting the root feature, the process is repeatg@cess, it checks whether the variable is a suspect or depend
recursively for each branch, using only those profiles thah any suspect, either directly or indirectly. If so, the essed
actually reach the branch. When all the profiles at a node hawgiable becomes a suspect. If it is a local variable, it is
the same classification, the algorithm has completed that padded td_suspectVarsf the routine where the access appears;
of the tree. The output of the algorithm is a set of featuregtherwise, it is added tSuspectVarsThe routine containing
their Gain Ratios, and their ranks. the access is added SuspectRoutinet addition, if a routine

To validate the feature selection, Sahara uses 10-fold€rosalls another with a suspect variable as a parameter, ther cal
validation [16] to compute the standard deviation of theksanis added toSuspectRoutineand the corresponding formal
of each feature. When the standard deviations of the toparameter is added to thiesuspectVarsof the callee. The
ranked features are high, Sahara warns the developer haicillee becomes a suspect if the suspect parameter is used in t
results are not to be trusted, i.e. the reason for the falise function, and not otherwise. Furthermore, a routine becme
unlikely to be the environment. suspect if the return value of any of its callees is suspect,

When this condition is not met, Sahara considers all ttand it is used in the routine. Similarly, a routine becomes
features that have Gain Ratios within 30% of the highestispect if any parameter passed by reference to one of its
ranked feature asSuspect Environment Resources (SERggllees becomes suspect, and it is used in the routine. This

4

step outputsSuspectRoutinegfter the entire graph has beervalue; (4) the number of global variables accessed by it; or

traversed. (5) the value of one or more global variables accessed by it.
This step provides the developer with a set of routingkhis notion of deviation is similar to that proposed for valu

that are highly correlated with the failures. For the exampbkpectra [35].

in Listing 1, mai n and checkl engt h are the two suspect In Listings 4 and 5, two routines have deviated:

routines. The block arrows in Figure 3 show why theseheck! engt h andsecondf uncti on. Checkl engt h has de-

routines were included as suspects. viated in its return value (line 8), whereascondf uncti on

. C . has deviated in its argument (line 13).
Creating and distributing instrumented versions (step 6). . Sl ,
. . o Sahara transfers tHeeviatedRoutinebst to the developer’s

After the SuspectRoutineare identified, Sahara generates the.)
. : .. Site for the final step.
instrumented versions of the current and upgraded vergibns
the software. Intersection and list of primary suspects (step 10)Finally,

Sahara uses CIL to automatically instrument the applioatioSahara computes the union of tiieviatedRoutinesrom
The instrumentation is introduced by two new CIL moduleshe failed user sites. It then intersects this larger seh wit
instrument-callsindptr-analysis The instrument-calls module SuspectRoutinesThe intersection forms the set of prime
inserts calls to our C runtime library to log routine signas! suspects, i.e. the routines most likely to contain the raoise
for all the routines executed in a particular run. A rout®e’of the upgrade failure. For the exampteheck! engt h is the
signature consists of the number, name, and values of its p#ime suspect, despite the fact that all three routines baee
rameters, its return value, and any global state that isssete relationship to the users’ environment. The root cause ef th
by the routine. The global state comprises the number, namlure is indeedcheckl! engt h.
and values of all the global variables accessed by the mutin
This module works well for logging parameters of basic dat(e} Discussion
types. However, in order to correctly log pointer varialbdes ' S .
variables of complex data types, we have implemented th@hara and other systemsSahara simplifies the debugging
ptr-analysis module. This module inserts additional cédis Of upgrades that fail due to the user environment. As such,

our C library to keep track of all the heap allocations angahara s less comprehensive than systems that seek tifyident
deallocations. more classes of software bugs (e.g., [32]). However, Sahara

) .) _ takes advantage of its narrower scope to guide failed uggrad
Re-execution, value spectra analysis, and deviated routs gehugging more directly towards environment-related bugs
(steps 7-9).As we do not want to transfer inputs or largqwhich are the most common in practice [8]).
logs across the network, these steps are performed at thg, essencewe see Sahara as complementary to other
failed users’ sites themselves. To do so, Sahara first depl@ystemsin fact, an example combination of systems is the
infrastructure to those sites that is responsible for reeetion g|10wing. Steps 1-4 of Sahara would be executed first. If the
and value spectra analysis. It then transfers the instrtgdenser environment is likely the culprit (as determined by the

binaries of the current and upgraded versions. output of step 4), the other steps are executed. Otherwise,
Sahara leverages Mirage’s re-execution infrastructurgnsther system is activated.

which has been described in detail in [8]. Specifically, this
frastructure executes the instrumented binaries of batsises Dealing with multiple bugs. The feature selection algorithm
at the failed user sites, feeding them the same inputs tltht tig the only part of Sahara that could be negatively affected
caused the upgrade to fail. These inputs were collectedein f#fy an upgrade with multiple bugs. The other components
logs recorded during step 2. To allow for some level of noref Sahara are unaffected because (1) information about each
determinism during re-execution, Sahara maps the record@eecution (the resource fingerprints and a success/fdilagg
inputs to the appropriate input operations (identified bgirth represents at most one bug, (2) static analysis is indepéntle
system calls and thread ids), even if they are executed irth& number of bugs, (3) each dynamic analysis finds devigtion
different order in the log. associated with a single bug, and (4) the union+intersectio
As the instrumented versions execute, their dynamic reutistep is independent of the number of bugs.
call/return information is collected. Listing 4 shows tlog lfor Sahara is effective when faced with multiple bugs, even
the current version, whereas Listing 5 does so for the upgtadvhen feature selection does not produce the ideal restits.
version of the program. understand this, consider the two possible scenarios: (1) a
With these routine call/return logs, Sahara determinesébe bugs are environment-related; and (2) one or more bugs are
of routines, calledeviatedRoutingsvhose dynamic behavior unrelated to the environment.
has deviated after the upgrade. Specifically, we implementWhen all bugs are environment-related and involve the same
fDiff, a diff-like tool that takes two execution logs as input, andnvironment resources, feature selection works corresuiy
converts each of them into a sequence of routine signatiiresSahara easily produces the prime suspects for all bugs. If
uses the longest common subsequence algorithm to compiféerent bugs relate to different sets of environment teses,
the difference between the two sequences of signaturesfeature selection could misbehave. In particular, if thereot
routine has deviated, if one or more of the following differenough information about all bugs, feature selection couitd
between the two versions: (1) the number of arguments passadk the environment resources that are relevant to the less
to it; (2) the value of any of its arguments; (3) its returfrequent bugs to the point that they do not become SERs.

1 Function main numArgs O 1 Function main nunmArgs O

2 G obal s at ENTRY: 0 2 G obal s at ENTRY: 0O

3. Function checkl ength numArgs 0 3. Function checkl ength numArgs 0
4. G obal s at ENTRY: 1 4. G obal s at ENTRY: 1

5 G obal : env2 Size: 4 Type: int Value: 9 5 G obal : env2 Size: 4 Type: int Value: 9
6 Gobals at EXIT: 1 6 Gobals at EXIT: 1

7 7

G obal : env2 Size: 4 Type: int Value: 9 . G obal : env2 Size: 4 Type: int Value: 9

Return: retVal Size: 4 Type: int Value: 9 8. Return: retVal Size: 4 Type: int Value: -1
9. 9.
10. Function secondfunction numArgs 1 10. Function secondfunction numArgs 1
11. G obal s at ENTRY: 1 11. G obal s at ENTRY: 1
12. G obal: glob Size: 4 Type: int Value: 3 12. G obal: glob Size: 4 Type: int Value: 3
13. Param a Size: 4 Type: float Value: 2.2 13. Param a Size: 4 Type: float Value: 5.1
14. Gobals at EXIT: 1 14. Gobals at EXIT: 1
15. G obal: glob Size: 4 Type: int Value: 3 15. G obal: glob Size: 4 Type: int Value: 3
16. Return: retVal Size: 4 Type: int Value: 10 16. Return: retVal Size: 4 Type: int Value: 10
17. G obals at EXIT: 0O 17. Gobals at EXIT: 0O
18. Return: retVal Size: 4 Type: int Value: 0 18. Return: retVal Size: 4 Type: int Value: 0
Fig. 4. Execution log of current version. Fig. 5. Execution log of upgraded version.

This would cause the remaining steps to eventually produegtremely unlikely in a single upgrade.
the prime suspects for the more frequent bugs only. After Execution replay at the failed sites is currently performed
those bugs are removed, Sahara can be run again to tacklewitbout virtualization. Using virtual machines would etals
less frequent bugs. This second time, feature selectiodvoto automatically handle applications that have side-éffdaut
rank the environment resources of the remaining bugs matthe cost of becoming more intrusive and transferring more
highly. Other systems rely on similar multi-round approash data to the failed sites. Sahara can be extended to use replay
for dealing with multiple bugs, e.g. [11]. virtualization. On the positive side, Sahara performs glsin
When one or more bugs are not related to the environmergplay at a failed site, which is significantly more efficigmin
feature selection could again misbehave if there is not ghouthe many replays of techniques such as delta debugging [38].
information about the bugs that are environment-relatésis T Our current approach for handling replay non-determinism
scenario would most likely cause feature selection to lankr is very simple: Sahara tries to match the recorded inputs to
all environment resources. In this case, the best appraaich i their original system calls when re-executing each versibn
resort to a different system, as discussed above. In cantrdlse application. Internal non-determinism (e.g., due tawman
if there is enough information about the environment-edat numbers or race conditions) is currently not handled and may
bugs, feature selection would select the proper SERs. Bespnislead the dynamic analysis if it changes: the number or
this good behavior, the dynamic analysis at some failed sitealue of the arguments passed to any routines, the number
would identify DeviatedRoutinegorresponding to bugs thator value of the global variables they touch, or their return
are not related to the environment. However, those routineslues. Sahara can be combined with existing deterministic
would not intersect with those from the static analysisdieg replay systems to eliminate these problems.
to the proper prime suspect results. Finally, Sahara guides the debugging process by pinp@ntin
a set of routines to debug first. Pinpointing a single routine
; . ;) even a single line causing the failure may not even be passibl
currently implements simple versions of its Componenss. since the root cause of the failure may span multiple linas an

a proof-of-concept, the goal of this_initigl implementa_ltibs routines. Moreover, the systems that attempt such pinjpgint
simply to demonstrate how to combine different techniques te 9., [17], [32], [38]) often incur substantial overheddtize

Limitations of Sahara’s current implementation. Sahara

a USF.“fu.l and novel way. However, as we discuss bglo_w, MQfers’ sites, such as running instrumented code all the, time

sophlsncatgd_components can easny replacg the existieg.o checkpointing state at regular intervals, and multipldagg.

Sahara limits the amount of user information transferred to

the developer site to the resource fingerprints (inputs aven lIl. EVALUATION

transferred). In our current implementation, the fingerf®i In this section, we describe our methodology and evaluate

are transferred in hashed form (SHA-1), which does n&ahara by analyzing three real bugs in OpenSSH, a synthetic

provide foolproof privacy guarantees. However, Sahara canog in SQLite, and a synthetic bug in uServer.

easily use more sophisticated schemes for these transferdVe chose OpenSSH because it is widely deployed in diverse

Regardless of the privacy scheme, the bandwidth required liser environments. Its upgrades are fairly frequent, aihic

these transfers (and that of tieviatedRoutingsshould be once every 3-6 months [26]. OpenSSH comprises many com-

negligible. Sahara requires substantially more commuioica ponents: (1)sshd the daemon that listens for connections

bandwidth for transferring the re-execution and value speccoming from clients; (2ssh the client that logs and executes

infrastructures, but only for failed user sites. commands on a remote machine; §8p the program to copy
Sahara employs static and dynamic analyses to narrow files between hosts; (4ftp, an interactive file transfer program

set of routines that are likely to contain the root cause atop the SSH transport; and (5) utilities suchsak-add ssh-

the failure. However, under certain conditions, theseym®sd agent ssh-keysigrssh-keyscarssh-keygerandsftp-serverin

may be unable to do so. In the worst case, all routines malf, OpenSSH has around 400 distinct files and 50-70K lines

be affected by the SERs, making static analysis ineffectivef code (LOC).

Similarly, all routines could be found to deviate from their SQLite is the most widely deployed SQL database [31]. It

original behaviors. Fortunately, these worst-case séenare implements a serverless, transactional SQL engine. SQage

67K LOC spread across 4 files. uServer [6] is an open-sourcbanged to use th&SHELL environment variable, causing the

event-driven Web server sometimes used for performancemmand to fail at user sites whe$SHELL was set to an

studies. It has 37K LOC spread across 161 files. empty string. The developers fixed this bug in one week, after
one user had already done a large amount of debugging [27].

A. Methodology SQLite and uServer bugs.To demonstrate Sahara’s general-
OpenSSH: Port forwarding bug. Port forwarding is com- ity, we synthetically created one buggy upgrade for SQLite
monly used to create an SSH tunnel. To setup a tunnel, orgssion 3.6.14.2 and one for uServer versiof.6.0. Note
forwards a specified local port to a port on the remote machiribat these two bugs are triviand could be identified by
SSH tunnels provide a means to bypass firewalls, so long as sitepler tools than Sahara. Howeverir goal is simply to
site allows outgoing connections. The bug [4] was a regoessidemonstrate that Sahara works without modification for a
bug in OpenSSH version 4.7. When using SSH port forwardirvgriety of applications.

for large transfers, the transfer aborts. Some users obdédine Before the upgrade of SQLite, the opti@eho oncaused

following buffer error: its shell to output each command before executing it. After
buffer_get _string_ret: bad string |ength 557056 our synthetic upgrade, it does not output the command when
buffer_get _string: buffer error executing ininteractive mode The bug we inject into the

These transfers executed successfully until version 416, tupgrade of uServer isot environment-related. The bug is a
the behavior changed after upgrading to version 4.7. Thepo in the function that parses user input causing dropped
failure was observed at a small subset of user sites. The atfefquests and occasional crashes.
was not reproducible at the developer site, so the developeiVe do not present complete results for the ProxyCommand,
needed volunteer users to reproduce the bug and test its $QLite, or uServer bugs due to space limitations. However, w
A correct and complete fix was submitted and tested by thle include a summary of their results in the end of the next
users on the second attempt after almost three months frenbsection.

the time it was submitted [4].)
hLépgrade deployment.To simulate a real-world deployment

The failure was caused by the following issues: (a) t X .
y g (@) of a software upgrade to a large number of users with varied

users had enabled port forwarding in tsh configuration) .)
file; (b) change in default window size from 128KB to 2I\/lBenwronment settings, we collected environment data frgdm 8

in the sshclient code in version 4.7; (c) port forwarding coderm’mh!m:“S at_ our site across tWO. c!usters. The settlng_s of the
advertising the default window size as the default packet:si machines within a cluster are similar, but they are différen
and (d) the maximum packet size set to 256KB$hd Given across cluzterhs. hodol d ibed i .

these characteristics, when users issued large tranbfersgh We used the methodology described in Section 11-B to

the sshtunnel, some of the packets had size larger than ti%entify the envirqnmental resources in OpenSSH, SQ.Lhd’ a
daemon’s maximum, resulting in the buffer error after th erver. Table | lists the parsers used to parse and fingéerpri
ese environmental resources. CHUNKS and CHUNKS2

upgrade. The port forwarding code using the default windo
size as the default packet size was not an issue before nk and fingerprint the binary files, SUCh. as the kemel
upgrade, as the size was always below the maximum. SYMbols; KEYVAL parses and chunks any file in they-
delimiter-valueformat, such as shell environment or cpu data;
OpenSSH: X11 forwarding bug. This bug [3] manifested LIBS chunks and fingerprints all the libraries; LINES.c pea's
when users upgraded to OpenSSH version 4.2pl from 4.13id fingerprints a file one line at a time, such as the file
and tried to start X11 forwarding. The failure was observecbntaining the list of kernel modules; and SSH and SSHD
at the user sites that had SSH forwarding support enabled ard application-specific parsers to parse and fingerpriat th
the command was executed in the background. Users obsersgl config and sshd config configuration files, respectively.
the following error: It took us only 8 person-hours to implement these parsers.
xterm Xt error: Can’'t open display: local host:10.0 SQLite and uServer did not require any application-specific
In version 4.2p1, developers modified the X11 forwardingarsers. The environmental resources of a single machine,
code to fill a number of X11 channel leaks, including destroyparsed/chunked and fingerprinted, along with the sucaglss/f
ing the X11 sessions whose session has ended. As a resuk, flag constitute a single user profile.
when the X11 forwarding process is started in the background In our experiments, we assume by default that 20 profiles
the child (and the channel) starting it would exit immediate include environment settings that can activate a bug, vasere
It took the developers more than two weeks to fix this bug7 of them do not. We study the impact of this parameter
[3]. below.

OpenSSH: ProxyCommand bug.The ProxyCommand op- User site environments.To evaluate Sahara’s behavior in

tion specifies the command that will be used by the SSH cliethie face of the uncertainties that may occur in practice,

to connect to the remote server. The bug [27] was a regressioa perform six types of experimentsandom perfect ran-

in OpenSSH version 4.9; ssh with ProxyCommand would fadlom imperfect 60, random imperfect 20, realconfig perfect

for some users with &No such file" error. realconfig imperfect 60, and realconfig imperfect 20. In the
Until version 4.7, ProxyCommand would uséi n/ sh to random perfect experiments, the values of all the environment

execute the command. However, in version 4.9, the codesources related to the application are chosen at random, e

Parser Name | Description
CHUNKS Chunks and fingerprints a binary file into 1KB chunks
CHUNKS2 | Chunks and fingerprints a file into variable sized chunks
KEYVAL Chunks and fingerprints a key-value pair file
LIBS4 Chunks and fingerprints a library and all its dependencies
LINES.c Fingerprints a file line-by-line
SSHD Application-specific parser to fingerprint the sshdnfig file
SSH Application-specific parser to fingerprint the sshnfig file

TABLE |
PARSERS

cept for the resources that relate directly to the bug. Megeo B. Results
the 20 profiles with environment settings that can activate _ i i
the bug are classified as failed profiles, whereas the other 8peNSSH: Port forwarding bug. Recall that this bug was

are classified as successful ones. As a result, there is 10B8toduced in the ssh code by version 4.7. This version has

correlation between those resources and the failure. 'EhisSiBK LOC and_ 1529 routines (729 routi_nes in SSh)'_-ﬂMf
the best case for feature selection in Sahara, as it finds {HfgWeen versions 4.6 and 4.7 comprises approximately 400
minimum set of SERs. LOC and 65 routines. Sahara identified 101 environmental

In the two randomimperfect cases, the environment setting<&S04ces, including the parameters in the configuraties,fil
are the same as in the randgperfect case. However, not allt"€ operating system and library dependencies, hardwazae da
profiles with environment settings that cause the failure aft"d Other relevant files. Many of these resources, such as
labeled as failures. In particular, only 60% of these prefildiPrary files, are split into smaller chunks; for others, uc
are labeled failures in the randoimperfect60 case, and as configuration files, each parameter is con3|.dered aISepara
only 20% in the randomimperfect 20 case. These imperfectfeat“re' Overall, there are 325 features, forming the irtput
experiments mimic the situation where some users simpfy¢ feature selection step.
have not activated the bug yet, possibly because they havdable Il shqws the reSl_JIts for each of the a_malyses in Sahara
not exercised the part of the code that uses the problematid all techniques combined for every experiment. The featu
settings. These scenarios may lead feature selection to pi€lection step results in merely 1 feature (out of 325) chose
more SERSs than in the randoperfect case. as suspect in the randogerfect, randommperfect 60, and

In the three types of experiments described above, tihdomimperfect20 cases. In these experiments, the envi-
application-related environment includes random vallres, fonment resource that is actually determinant in the fagur
more realistic (realconfig) scenarios, we downloaded eigf@nfiguration parameteTunnel , was the only suspect be-
different complete OpenSSH configuration files from the WeBause the other environmental resources were assignedmand
For each of the bugs, we modify three of these files i@lues in all user profiles. This resulted in a very high
include the settings that activate the bug. One of theset ei@ﬁrrelation between the failure and this resource, evemén t
configuration files (three with problematic settings and fivtndomimperfect cases. The Tunnel parameter corresponds
with only good settings) is assigned to each of the 87 udér4 suspect variables in ssh.
profiles randomly, but in the same proportion as before: 20In contrast, in the realconfigerfect, realconfigmper-
users should get problematic settings and 67 should notiein fect 60 and realconfigmperfect 20 experiments, 3 features
realconfig perfect case, all the 20 profiles with problemati@re selected: configuration paramet&tsinel , Bat chMbde,
settings are labeled as failures, whereas the 67 others aRglRSAAut henti cati on. Features BatchMode and RSAAuU-
labeled as successful. In the realconiigperfect 60 and re- thentication have 3 possible values: yes, no, or missing. In
alconfig imperfect 20 experiments, only 60% and 20% of théhe real configurations we collected, it so happened that
profiles with these settings are labeled as failures, rasphe RSAAuthentication was set to yes, and BatchMode to no in
The realconfig experiments are likely to lead to more SER@O of the three failed profiles, causing them to be highly
than the random ones. We do not study realconfig scenarfs$related with the failure. Recall that we did not assigesth
for SQLite because the bug we inject into it is synthetic. values; we retrieved the configurations from the Web and

In the six types of experiments described above, we aganged only the setting of the Tunnel parameter. These thre
sume that there are 20 users with problematic settings fearameters correspond to 8 suspect variables in ssh.
the OpenSSH-related environment. To assess the impact ofhe static analysis results in 12 suspect routines in the
having different numbers of sites with these bad settings, wandom cases, and 22 in the realconfig cases. The 12 routines
consider four more types of experimentandom perfect 30, comprise those that (1) read the configuration fitaain
random perfect 10, realconfig perfect 30, and realconfig- and processconfig line) and initialize the environment of
perfect 10. The 30 and 10 suffixes refer to the number ahe ssh client ifitialize_options and fill_default optiong;
profiles that exhibit the environment settings that can eaug?) create, enable, or disable a tunndun(open and
the upgrades to fail. a2tun); (3) place the tunnel data into a buffer or a packet

In all of our experiments, we consider the features rankégduffer_put int and packet put_int); and (4) enable the port
within 30% of the highest ranked feature as suspects. fiorwarding over this tunnel and create a channel for it
addition, we use inputs that we know will activate the bugs(ssh init_forwarding, channelnew client requesttun fwd,

Bug Experiment diff Routines SERs Suspect Routines | Deviated Routines | Primary suspects
(feature selection)| (static analysis) | (dynamic analysis) (Sahara)
random perfect 65 1 12 124 6
random imperfect 60 65 1 12 124 6
Port random imperfect 20 65 1 12 124 6
realconfig perfect 65 3 22 124 7
realconfigimperfect 60 65 3 22 124 7
realconfigimperfect 20 65 3 22 124 7
random perfect 137 1 18 157 6
random imperfect 60 137 1 18 157 6
X11 random.imperfect 20 137 1 18 157 6
realconfig perfect 137 3 21 157 7
realconfigimperfect 60 137 3 20 157 6
realconfigimperfect 20 137 3 20 157 6
TABLE Il

RESULTS FOR TWOOPENSSHBUGS. PORT = PORT FORWARDING X11 = X11 FORWARDING.

and clear_forwardingy. Routine channehew contains the in Sahara and all techniques combined for every experi-

root cause of this failure. ment. The feature selection step again results in 1 feature
In the realconfig cases, the same 12 routindsut of 354) chosen as suspect in the randpenfect, ran-

are suspect, in additon to those affected bgom imperfect60, and randonimperfect20 cases. This fea-

RSAAuthentication ¢heckhostkey confirm key free, ture is exactly the environment resource that is directigtes

key sign, load_identity file, sshuserauthl try_challenge- to the bug: configuration paramet&t1For war di ng. Like

responseauthentication try_passwordauthentication before, feature selection for this bug is extremely aceunat

try_rsa_authentication and userauthpubkey. BatchMode the random experiments, due to the way we assigned values

is used only during the initialization in ssh, so it does nde the other environment resources. This feature corredpon

produce other suspects. to 3 variables in the sshd code.

The dynamic analysis identifies 124 routines whose behavIn the realconfigperfect — experiment, Sahara
ior has deviated when going from version 4.6 to 4.7. Nogelects 3 features: configuration parameters
that the number of deviations is higher than the number &t1For war di ng, Aut hori zedKeysFi | e, and
routines that actually changed. The reason is that the comdm&hal | engeResponseAut henti cat i on. In the

succeeds before the upgrade and many more routines @lconfigimperfect60 and realconfigmperfect20 cases,
invoked, as compared to after the upgrade when the comméarhara also selects three features: configuration paresnete
fails. In our fDiff implementation, the routines that weretn X11Forwarding, AuthorizedKeysFile, and PidFile.
called after the upgrade are considered deviations. AuthorizedKeysFile and PidFile were assigned the default

The intersection of SuspectRoutines and DeviatedRoutingdue in two out of the three failed real user profiles, wherea
is only 6 routines in the random cases and 7 routines frhallengeResponseAuthentication was set to no value in
the realconfig cases. In the random cases, the four routifé® Of them. These four features correspond to seven actual
pertaining to reading the configuration file and setting uyariables in sshd.
the environment, and two routines pertaining to enabling or The static analysis results in 18 suspect routines in the
disabling the tunnel, were pruned out after intersectibiejrt randomperfect and randommperfect cases, 21 in realcon-
behavior did not change after the upgrade. In the realconfig_perfect, and 20 in the realconfignperfect cases. The
perfect case, confirm was the additional routine identifisd 48 routines comprise those that: (1) read the configura-
primary suspect. The 6 or 7 primary suspects reported Hgn file (auth clear_options and auth parse optiong and
Sahara include the actual culprit (routine channei). initialize the environment of sshdnftialize_server options

From the top six rows in Table I, we can see that the nurd@dfill_default server optiong; (2) authenticate the incoming
ber of primary suspects output by Sahara is 2x-3x lower th&Hent connection with the options specified and setup the
that by static analysis, 17x-20x lower than that by dynamf@nnection do_authenticated1do child, do_exec do_exec-
analysis, and 9x-10x lower than the number of routines th@» do_execno_pty, and do_login); (3) start a packet for
were modified in the upgrade. Furthermore, we can see tRgkl forwarding packetstarf); and (4) setup X11 forwarding,
Sahara is resilient to users that do not report their upgradd®ate the channel, process X11 requests, and do the cleanup
to have failed despite having problematic settings for tH&erverinput.channelreq, sessioninput channelreq, ser-
environment resources that cause the failure. ver_input channelreq, sessionx11 req, sessionsetupx11-

fwd, sessionclose anddisable forwarding).

OpenSSH: X11 forwarding bug. Recall that the X11 for- |n the realconfig cases, all the 18 routines mentioned above
warding bug affected the sshd program of OpenSSH versiare suspect, in addition to those affected by Authorized-
4.2. This version has 52K LOC and 1439 routines (85&eysFile @uthorizedkeysfile and expandauthorizedkeys
routines in sshd). Theli f f between versions 4.1 and 4.2 isand ChallengeResponseAuthenticatiato_authentication
approximately 900 LOC and 137 routines. Sahara identifigddFile did not result in additional suspect routines, hsea
123 environmental resources, resulting in a total of 35#is used once in the initialization to store the pid of sshd,
features. and never again. As a result, the realconfigrfect case has 1

Table Il presents the results for each of the analysetore routine reported as suspect than the realcanfigerfect

Bug Experiment SERs Suspect Routines | Deviated Routines | Primary Suspects
(feature selection)| (static analysis) | (dynamic analysis) (Sahara)
random perfect 30 1 12 124 6
Port random perfect 1 12 124 6
random perfect 10 1 12 124 6
realconfig perfect 30 1 12 124 6
realconfig perfect 3 22 124 7
realconfig perfect 10 3 22 124 7
random perfect 30 1 18 157 6
X11 random perfect 1 18 157 6
random perfect 10 1 18 157 6
realconfig perfect 30 1 18 157 6
realconfig perfect 3 21 157 7
realconfig perfect 10 2 20 157 6
TABLE Il

IMPACT OF NUMBER OF PROFILES WITH FAILUREINDUCING SETTINGS

cases. routines and primary suspects) tends to increase when we
The dynamic analysis identifies 157 routines whose behdewer the number of profiles with failure-inducing settings
ior has deviated when going from version 4.1 to 4.2. Agaie, tHnterestingly, the realconfig results for the X11 forwaglisug
number of deviations is higher than the number of modifieghow that lowering noise (going from realconfigrfect to
routines, because the upgraded code fails much earlier tigalconfigperfect 10) can indeed improve results as well.

the or|gl|nal one..) Impact of feature selection accuracyFeature selection is a

The intersection of the two analyses results in only §ai5r component of Sahara in that it defines the scope of the
routines (lo_child, do_exec do_execno_pty, packetstar, gic analysis. Recall that Sahara’s feature selectiosiders
sessionsetupx11fwd andsessionclosg in the random case, o the features that are within 30% of the highest ranked
and 7 QO_authentlcatlon2|s the addltlpnal routine) in th_e feature as SERs by default. Here, we study two additional
realconfig cases. 3 of the 6 (or 7) primary suspect routingSenarips: (1) all features that are within 50% of the highes
are key to understanding the failure. However, the single, e feature are considered SERs, and (2) all OpenSSH con-
modification in the upgrade that directly causes the failufgy ration parameters are considered SERs. These scenarios
is in the sessiorsetupx11fwd routine. cause an increasing humber of unnecessary SERSs.

From these results, we can see that the number of primarqr the port forwarding bug and scenario (1), the number
suspects found by Sahara is at least 3x lower than WhgnsSERs remains the same in all th@ndom cases and the
using static analysis alone, at least 20x lower than whegg|config perfectcase. In therealconfigimperfect 60 case,
using dynamic analysis alone, and 15x lower than the numhlge SERs increase from 3 to 4 and the prime suspects from 7
of routines that were actually modified. Again, these resulip 14. |n therealconfigimperfect 20 case, the SERs increase
illustrate Sahara’s ability to focus the debugging of failefrom 3 to 6 and the prime suspects from 7 to 18. In scenario
upgrades on a small number of routines, even when mamy the number of SERs is 22 (all ssh parameters) and the
users do not experience failures despite having envirohmegmber of prime suspects is 34.
resources that could trigger bugs in the upgrade. For the X11 forwarding bug and scenario (1), the number

of SERs remain the same in all ttrandom cases. In the

Impact of number of profiles with failure-inducing set- . . i
tings. So far, we have studied the impact of imperfections irnealconflg_perfectcase, the SERs increase to 9 and the prime

A) %uspects to 10. In theealconfig imperfect 60 case, the SERs
the categorization of success/failure of the upgrades en f{l .)
increase to 11 and the prime suspects to 10, whereas in the

behavior of Sahara. Another key factor for the effectivanes . .
o X realconfig imperfect 20 case, the SERs increase to 12 and

of feature selection is the percentage of user profiles t . :

: . : e prime suspects to 11. In scenario (2), the number of SERs
actually include the environment resource settings thatea . .

. . increases to 51 (all sshd parameters) and the number of prime

the upgrade failures. On one hand, the lower this percentage

. . . uspects to 43.
the less information we have about the failures and, thues, t

worse the feature selection results should be. On the othe;rhese results illustrate the hehavior we expected: the less

. . . : accurate feature selection is, the more prime suspectsr&aha
hand, lowering this percentage reduces noise (i.e., stipgor _ o

X - finds. Defining a few more SERs than necessary does not
evidence for resources that are not related to the falluresr}: ; .

. . inCrease the number of prime suspects excessively (roughly
in the dataset and may lead to better selection results. 10 . .

. . . b}/ 2x at most, in comparison to our default results). However
confirm these observations, we performed some experimentst, ' .

. . . . adding too many unnecessary SERs can increase the number
which we varied the number of such profiles. In particular, we]c rime suspects by 6x-7x, as in scenario (2)
considered cases in which 30 or 10 profiles (out of 87) had tReP P y ' '
failure-inducing settings. Recall that our default res@bove OpenSSH: ProxyCommand bug.This bug affected ssh in
assumed 20 such profiles. version 4.9, which comprises 58K LOC and 1535 routines

Table Il presents the “perfect” results from these ex712 routines in ssh). The upgrade to this version modified
periments. The default results (randgmerfect and realcon- 122 routines. We performed the same 10 experiments with
fig_perfect) and the dynamic analysis results are included fthvis upgrade as above. Depending on the type of experiment,

clarity. As expected, the number of SERs (as well as suspéeature selection produces 2-5 SERs and static analysis pro

10

duces 10-29 suspect routines. Dynamic analysis producks 28eractive Decision Trees (IDT) to allow the developer to
deviated routines. In contrast, Sahara outputs 7 or 11 pyimauide the troubleshooting process, starting from configoma
suspects in all but one experiment (realconfierfect 10, for traces from many users.

which it recommends 21 routines). Overall, Sahara improvesConfAid [2] helps debug misconfigurations without infor-
on static analysis by 1.4x and on dynamic analysis by 14x-4Gation from other users. Instead, it instruments the b&sari
for this bug. to track the causal dependencies between applicatioh-leve

. - . .)) configuration parameters and output behavior. The binaries
SQLite bug. We injected this bug in SQLite versidh6.14.2, arameters, and outputs of interest are specified manually.

which comprises 67K LOC and 1338 routines. The u|‘?9r"’“§]eThese three systems assume that the software is correct,
modified two routines. We ran only the random family of, ¢ \yas misconfigured by its users. Sahara is fundamentally
experiments, since this was not a real upgrade bug. Theggerent it seeks to help find upgrade bugs that are trigder
results show that feature selection identified 2-3 SER51;|,cstaby proper configurations and environments. Moreover, Sahar
analysis produced 12-13uspectRoutineand dynamic anal- gneq well beyond finding the environment resources most
ysis identified 14DeviatedRoutinesSahara outputs 2 primary jikely to be related to a bug (i.e., feature selection).

suspects in eac_h. of the three random cases (exactly theesulti Qin et al. [28] observe that many bugs are correlated with
that were mocﬁﬂed); one of the prime suspects is th.e "offe “execution environment” (which they define to include
cause of the failure. Again, although trivial, these expents .,nfigurations and the behavior of the operating and runtime
illustrate that Sahara can be used without modification foré’i‘/stems). Based on this observation, they propose Rx, @rsyst

variety of applications. that tries to survive bugs at run time by dynamically chaggin

uServer bug. We injected this bug in uServer version.0, the execution environment. A follow-up to Rx, Triage [32]
which comprises 37K LOC and 404 routines. The upgrad9®s furt_her by dyr_lam|call_y changmg the execution environ
modified 10 routines. Again, we ran only the random famil{)‘e”t while attempting to diagnose fallurc_as at us_ers’ sites.

of experiments, since this was not a real upgrade bug. The>ahara focu_ses on upgrade bugs or_mlsbehawor, r_ather than
experiments stopped at the feature selection step, siree RTWare bugs in general as Rx and Triage do. For this reason,
ranks of the top-ranked features consistently exhibit high@hara can be much more specific about which variables

standard deviations. Thus, feature selection properlysftaig and routines should be considered first during debugging.
bug as unrelated to the environment. Moreover, Sahara can handle bugs due to aspects of the

environment that would be difficult (or impossible) to chang
Summary. The Sahara results for the five bugs and the difvithout semantic knowledge of the application. Finally, Rx
ferent imperfections we studied indicate that our systeny mand Triage do not leverage data from many users, machine
significantly reduce the time and effort required to diagnosearning, or static analysis. Using any of these featuresdco
the root cause of upgrade failures. speed up Triage’s diagnosis. In fact, as we argue in Section
[I-C, Sahara is complementary to systems like Triage.

V. RELATED WORK Statistical debugging with user site feedbackSeveral pre-

A. Upgrade Deployment and Testing vious papers [7], [11], [18], [19], [20], [38] rely on low-

A few studies [8], [21], [22] have proposed automatedverhead, privacy-preserving instrumentation infrastines to
upgrade deployment and testing techniques. McCamant grdvide user execution data back to developers. For example
Ernst [21], [22] automatically identify incompatibilitewhen Cooperative Bug Isolation (CBI) [17] constitutes a feedbac
upgrading a component in a multi-component system. Howoop between developers and users. Developers provideinst
ever, neither of these works attempted to isolate the rosdeca mented software to users, and users provide data about that
of these incompatibilities. Similarly, Crameat al. [8] did not software’s behavior in their environments. The instruraéion
seek to determine the root cause of upgrade failures at gemnsists of predicates placed at different points of the@m.

users’ sites. Developers then use sophisticated statistical and ragress
algorithms to rank predicates based on how well they caeela
B. Automated Debugging to bugs. Based on this ranking, developers manually try tb fin

. he r f th .Tor he manual work, [1
Troubleshooting misconfigurations. The idea of PeerPres—t e root cause of the bugs. To reduce the manual work, [15]

sure [33] and Snitch [23] is to identify the root cause oﬁgﬁlr;dre; nli:e?jl ptroegllir(]:gtéze control flow paths connecting the

software misconfigurations using machine leaming teakesq Sahara also relies on information gathered at user sités, bu

PeerPressure performs statistical analysis of Windowsirgg the data collection only lasts temporarily to lower ovelitiea

snapshot; fro_m a large number of machines. After a mig; addition, Sahara restricts its statistical analysisat{iee
configuration is detected, PeerPressure re-executes the

. ial traci . it ture th e %relection) to the aspects of the environment that may have
gram in a special tracing environment fo capiure the relevall, ooy 5 upgrade to misbehave. Moreover, Sahara goes
registry data. It then uses Bayesian estimation to comp

h mi i d hine’ st | ith th fFther by automatically relating the results of the state
each misconfigured machine's regisiry vajues wi 0S€ & alysis to the variables and routines that most likely edus
the machines that can successfully run the same progr

: : . . misbehavior.
Rare registry values that correlate well with misconfigiomas
are coerced to the more common values. Snitch introdud@gnamic invariants. Some studies [10], [12] automatically

11

extract likely program invariants based on dynamic programay from most other approaches: it does not use it to find
behavior (possibly after running multiple times with diféat the bugs themselves; rather, we use it to constrain the set of
inputs to increase coverage). The detection of invariargg mroutines of interest.
involve significant overhead. Software can be deployed to

users with instrumentation to check the invariants. Dgvets

can then use the invariants and any violations of them to aid

in debugging, just as the predicates above can be used.

V. CONCLUSION

In this paper, we sought to reduce the effort developers
Sahara focuses on misbehavior relating to the user’s enWySt spend to debug failed upgrades. We proposed Sahara,

ronment, involves less overhead than these approaches gnsa/stem that prioritizes the set of routines to considerrwhe
automati'cally guides debugging " debugging. Driven by the fact that most upgrade failures

result from differences between the developers’ and users’
Delta debugging.Delta debugging aims to resolve regressioanvironments, Sahara combines information from user site
faults automatically and effectively. Several studies [I§], executions and environments, machine learning, and static
[38] have focused on comparing program states of failed aadd dynamic analyses. We evaluated our system for five
successful runs to identify the space of variables or ratkgs in three widely used applications. Our results showed
program statements that are correlated with the failure. that Sahara produces accurate recommendations with only a
Sahara’s dynamic analysis also considers the differengmall set of routines. Importantly, the set of recommended
between two runs of a program. However, our approach rigutines remains small and accurate, even when the user site
driven by environment resources and combines informatidgnformation is misleading or limited.

from a collection of users, machine learning, static anglys
and dynamic analysis. Furthermore, unlike delta debugging
Sahara requires neither instrumenting the production cmde |4
replaying the execution multiple times at the users’ sites. 2

Dynamic behavior deviations.Xie and Notkin [35] proposed
program spectra to compare versions and get insights into
their internal behavior. Harroldet al. [13] found that the (3
deviations between spectra of two versions frequentlyatate

with regression faults. [41

Sahara uses value spectra to compare the execution cgil
traces from before and after the upgrade is applied. However
merely identifying the deviations in the upgraded version
leads to a large number of candidates for exploration, &gg)
our experiments demonstrate. The same is likely to occur
for most large applications or major upgrades. Sahara éurth .,
narrows down the deviation sources by cross-referenciegth
with suspect routines found through information from users(8]
machine learning, and static analysis.

The aim of [25], [37] is to detect the root cause of regression
failures automatically. Ness and Ngo [25] used a linearcear [9]
algorithm on the fully-ordered source management archove t
identify a single failure-inducing change. In [37], the laarts [10]
proposed an algorithm to determine the minimal set of faHur
inducing changes.

These studies sought to isolate the fault-inducing change
after a regression test fails at the developer’s site. Irtrash

Sahara assumes that the upgrade has been tested thoroMng)é]a

the developer’s site and is deployed after all tests havegoas
Sahara helps isolate the fault-inducing code that is aftect
by specific user environments. These failures are not eaéﬂff
reproducible at the developer’s site because of envirotahen

differences.
[14]

Other approaches.Researchers have actively been consider-

ing other approaches to automated debugging, such as stﬁgj:

analysis, model checking, and symbolic execution, e.g[9$]
[36]. Sahara is not closely related to any of these appraache

. ’ : 16]
except peripherally for its use of static def-use analysk.
However, Sahara’s use of static analysis differs in a major

12

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles,
Practices and Techniquef\ddison-Wesley, 1986.

ATTARIYAN, M., AND FLINN, J. Automating Configuration Trou-
bleshooting With Dynamic Information Flow Analysis. Rroceedings
of the Symposium on Operating Systems Design and Impleinenta
(2010).

X forwarding will not start when a command is executed ackground.
https://bugzilla.mindrot.org/shovbug.cgi?id=1086.
Connection aborted on large data
https://bugzilla.mindrot.org/shqvbug.cgi?id=1360.
CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complest&ys
Programs. IrProceedings of the International Symposium on Operating
Systems Design and Implementati@®08).

CHANDRA, A., MOSBERGER D., AND PERFORMANCE, L. Scalability

of linux event-dispatch mechanisms. Rroceedings of the USENIX
Annual Technical Conferend2001).

CLEVE, H.,AND ZELLER, A. Locating causes of program failures. In
Proceedings of International conference on Software exgging(2005).
CRAMERI, O., KNEzEVIC, N., KOsTIC, D., BIANCHINI, R., AND
ZWAENEPOEL W. Staged deployment in mirage, an integrated software
upgrade testing and distribution system. Rroceedings of ACM
Symposium on Operating Systems Princi&307).

ENGLER, D.,ET AL. Bugs as Deviant Behavior: A General Approach
to Inferring Errors in Systems Code. Rroceedings of the International
Symposium on Operating Systems Princiff&301).

ERNST, M., COCKRELL, J., GRISwOLD, W. G., AND NOTKIN, D.
Dynamically discovering likely program invariants to sappprogram
evolution. In Proceedings of International conference on Software
engineering(1999).
GLERUM, K., ET AL.
implementation and experience.
Operating Systems Principl¢2009).
HANGAL, S., AND LAM, M. Tracking down software bugs using
automatic anomaly detection. Rroceedings of International conference
on Software engineerin¢2002).

-R transfer.

Debugging in the (very) large: Ten years of
Rroceedings of Symposium on

] HARROLD, M. J., ROTHERMEL, Y. G., SAYRE, Z. K., Wu, Z. R.,

AND Z, L. Y. An empirical investigation of the relationship beten
spectra differences and regression faulieurnal of Software Testing,
Verification and Reliability(2000).

JEFFREY, D., GUPTA, N., AND GUPTA, R. Fault localization using
value replacement. IfProceedings of the International Symposium on
Software Testing and Analys{2008).

JIANG, L., AND Su, Z. Context-aware statistical debugging: from bug
predictors to faulty control flow paths. Iroceedings of the IEEE/ACM
international conference on Automated software engimgef2007).
KoHavi, R. A study of cross-validation and bootstrap for accuracy
estimation and model selection. Proceedings of the International
Joint Conference on Artificial Intellligencél995).

[17]

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]
(30]

[31]
(32]

(33]

[34]

[35]

(36]

[37]

(38]

LisLiT, B. Cooperative Bug Isolatian PhD thesis, University of
California, Berkeley, 2004.

LiBLIT, B., AIKEN, A., ZHENG, A. X., AND JORDAN, M. |. Scalable
statistical bug isolation. IProceedings of ACM Conference on Pro-
gramming Language Design and Implementat{@005).

LiBLIT, B., ET AL. Bug isolation via remote program sampling. In
Proceedings of ACM Conference on Programming Languagegbesi
and Implementatior{2003).

Liu, C., YaN, X., FEl, L., HAN, J., AND MIDKIFF, S. Sober:
Statistical model-based bug localizationProceedings of European
Software Engineering conference held jointly with the AG¥hSosium
on Foundations of software Engineerifg005).

MCCAMANT, S., AND ERNST, M. Predicting problems caused by
component upgrades. Proceedings of European Software Engineering
conference held jointly with the ACM Symposium on Foundatiof
Software Engineering2003).

MCCAMANT, S.,AND ERNST, M. Early identification of incompati-
bilities in multi-component upgrades. Proceedings of the European
Conference on Object-Oriented Programmifgp04).

MICKENS, J., ZUMMER, M., AND NARAYANAN , D. Snitch: interactive
decision trees for troubleshooting misconfigurations. Warkshop on
Tackling Computer Systems Problems with Machine Learniach-T
niques(2007).

NECULA, G., MCPEAK, S., RaHUL, S. P.,AND WEIMER, W. Cil:
Intermediate language and tools for analysis and transftiom of c
programs. InProceedings of the International Conference on Compiler
Construction(2002).

NESS B.,AND NGO, V. Regression containment through source change
isolation. In Proceedings of International Computer Software and
Applications Conferencé€1997).

OpenSSH release dates. http://openbsd.mirrorslir@om/OpenSSH/portable.
ProxyCommand not working if $SHELL not defined.
http://marc.info/?I=openssh-unix-dev&m=125268210680&w=2.

QIN, F., TUCEK, J., SINDARESAN, J.,AND ZHOU, Y. RX: treating bugs
as allergies - a safe method to survive software failure?rbteedings
of ACM Symposium on Operating Systems Princi(2&95).

QUINLAN, J. R. Induction of decision treeMachine Learning1986).
RABIN, M. O. Fingerprinting by random polynomial¥echnical Report
TR-15-81, Center for Research in Computing Technology, vatdr
University (1981).

SQLite home page. http://www.sglite.org/.

TUCEK, J., LU, S., HUANG, C., XANTHOS, S.,AND ZHoU, Y. Triage:
diagnosing production run failures at the user’s site Ploceedings of
ACM Symposium on Operating Systems PrinciB8907).

WANG, H. J., RATT, J. C., GHEN, Y., ZHANG, R., AND WANG,

Y. Automatic misconfiguration troubleshooting with pe@gsure. In
Proceedings of the USENIX Symposium on Operating SystesigrDe
and Implementatior{2004).

WITTEN, |I. H., AND FRANK, E. Data Mining: Practical Machine
Learning Tools and Techniquetorgan Kaufmann, 2005.

XI1E, T.,AND NOTKIN, D. Checking inside the black box: Regression
testing based on value spectra differences. Poceedings of IEEE
International Conference on Software Maintenar{2604).

ZAMFIR, C.,AND CANDEA, G. Execution Synthesis: A Technique for
Automated Software Debugging. Proceedings of Eurosy@010).
ZELLER, A. Yesterday, my program worked. today it does not. why? In
Proceedings of European Software Engineering confereete jbintly
with the ACM Symposium on Foundations of Software Engingeri
(1999).

ZELLER, A. Isolating cause-effect chains from computer programs.
In Proceedings of the ACM Symposium on Foundations of Software
Engineering(2002).

13

