MODELING AND MANAGING PROGRAM REFERENCES IN A MEMORY HIERARCHY

BY VIDYADHAR PHALKE

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
Graduate Program in Computer Science
Written under the direction of
Professor Bhaskarpillai Gopinath
and approved by

New Brunswick, New Jersey
October, 1995
ABSTRACT OF THE DISSERTATION

MODELING AND MANAGING PROGRAM REFERENCES IN A MEMORY HIERARCHY

by Vidyadhar Phalke, Ph.D.

Dissertation Director: Professor Bhaskarpillai Gopinath

Using data compression, we derive predictable properties of program reference behavior. The motivation behind this approach is that if a data source is highly predictable, then its output has very low entropy, thus leading to high compressibility. This approach has an important property that prediction can be carried out without assuming any rigid model of the data source.

We find the sequence of time instances when a given memory location is accessed (called Inter-Reference Gap or IRG) to be a highly compressible, and hence a highly predictable stream. We validate this predictability in two ways:

1. First, we present memory replacement algorithms, both under a fixed memory scenario, and a dynamic allocation setting, which exploit the predictable nature of the IRGs to improve upon known techniques for this task. For fixed buffer, we obtain miss ratio improvements up to 37.5% over the LRU replacement. For dynamic memory management we obtain up to 20% improvement in the space-time product over the Denning’s Working Set algorithm. The improvements are obtained at the cache (both L1 and L2), virtual memory, disk buffer and at the database buffer levels.

2. Second, we present trace compaction techniques, both lossless and lossy, using IRGs and show significant improvements over other known techniques for trace compaction.
Second, we use spatial locality, both at the memory reference, and at the page level, to propose a new technique for lossless trace compaction which improves upon the best known method of Samples [69] up to 60%.

We discover the predictable nature of missed cache lines under a variety of workloads, and propose a hardware scheme for prefetching based on the history of misses. This technique is shown to have a significant improvement in miss ratio (up to 32%) over the non prefetching schemes.

Finally, we propose a new measure for space-time product for dynamic memory management, since the known measures are inadequate for new multithreaded and shared memory architectures. Under this measure we show that the optimal online algorithm is a policy which alternates between two windows, unlike the fixed window scheme of the Denning’s Working Set algorithm. Additionally, we show empirical evidence supporting the need for these newer measures and algorithms.
Acknowledgments

First and foremost, I would like to thank Professor B. Gopinath for his guidance, encouragement, and moral support during the past four years. I would like to thank the other members of my thesis committee Professors Michael Fredman, Miles Murdocca, Edward G. Coffman, and Zoran Miljanic for their time and valuable comments.

I thank Arup Acharya, Ajay Bakre, Vipul Gupta, P. Krishnan, Peter Onufryk, and Vassilis Tsotras for reviewing my papers, thesis, and research documents, my colleagues T. M. Nagaraj and M. M. Suryanarayana for some very beneficial discussions, Knut Grimsrud, Digital Equipment Corporation, and P. Zabback for providing some of the program traces used for our simulations, and finally, John Scafidi of the Integrated Systems Laboratory and the LCSR Computing staff for being helpful and patient with my endless demands for computing resources.

I also thank Valentine Rolfe for providing me support and care throughout my stay at Rutgers.

Finally, I would like to thank my wife, Debjani, for continuously and selflessly providing me love and support during the ups and downs of my graduate career. She also reviewed my papers and my thesis, and gave very useful suggestions. My deepest gratitude goes to my brother Vinayak, my father Dattatreya Sadashiv Phalke, and Debjani’s family for having full confidence in me and my endeavors, and encouraging me all throughout.
DEDICATION

To my late mother Shyamala.
TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION iii

ACKNOWLEDGMENTS ... v

DEDICATION .. vi

LIST OF FIGURES .. ix

LIST OF TABLES .. xii

1. Overview and Contribution 1

2. Review of Previous Work 4
 2.1 Review of Program Reference Modeling 4
 2.2 Review of Online Issues in Memory Management 9

3. Program Reference Modeling 19
 3.1 Introduction .. 19
 3.2 Single Address Profile 23
 3.3 Temporal Correlation Charts 31
 3.4 Conclusions .. 42

4. Trace Compaction as a Tool for Discovering Program Regularities . 43
 4.1 Introduction .. 43
 4.2 Related Work and Mache Compression 45
 4.3 Page-mache and IRG Compression 46
 4.4 Results and Analysis 48
 4.5 Lossy Compression using IRG 50
 4.6 Conclusions .. 55

5. Inter Reference Gap Modeling 56
 5.1 Introduction .. 56
 5.2 Motivation for IRG Modeling 58
 5.3 Previous Work on Program Modeling and IRGs 59
5.4 IRG Model and Prediction ... 62
5.5 IRG Based Memory Replacement Algorithm 64
5.6 IRG Model Based Variable Space Management 81
5.7 Conclusions ... 88

6. More Experiments with Replacement 90
6.1 From LFU to LRU .. 90
6.2 Replacement at Level 2 (L2 cache) 93
6.3 Conclusions ... 98

7. A Miss Prediction Based Architecture for Cache Prefetching 100
7.1 Introduction ... 100
7.2 Program Model and Prefetching 101
7.3 Architecture of the Prefetcher 104
7.4 Simulation Description and Results 110
7.5 Performance of Remaining Benchmarks 119
7.6 Conclusions ... 120

8. Space-Time Trade-off in Virtual Memory 123
8.1 Introduction ... 123
8.2 Definitions .. 124
8.3 Minimal space for a fixed fault rate 125
8.4 Space-time functions ... 130
8.5 Experimental Verification .. 133
8.6 Conclusions ... 140

9. Conclusions and Future Work .. 141

References ... 143
LIST OF FIGURES

2.1: Cache model for Aven’s replacement algorithm .. 13
2.2: So and Rechtschaffen’s approximate replacement 16
3.1: IRG histogram of the most, 4
th most, and 20
th most referred items .. 26
3.2: IRG histogram of the most, 4
th most, and 20
th most referred items .. 27
3.3: Sequence of IRG values of the most, 4
th most, and 20
th most referred items .. 28
3.4: Sequence of IRG values of the most, 4
th most, and 20
th most referred items .. 29
3.5: Compression of IRG streams for the six traces ... 30
3.6: CC1 and EQN10 trace plot ... 32
3.7: KENBUS1 and MUL8 trace plot .. 33
3.8: OO1F and RBER1 trace plot ... 34
3.9: CC1 and EQN10 trace plots for I (Instruction +ve Y-axis) and D (Data -ve Y-axis) streams ... 36
3.10: Compression of the I and D streams ... 37
3.11: The stack and data temporal plots for CC1 ... 38
3.12: The code temporal plot for CC1 .. 39
3.13: Temporal plot of misses reaching the secondary store for filters of size 256 and 1K words ... 41
3.14: Temporal plot of misses reaching the secondary store for filter of size 4K words ... 42
4.1: Samples’ mache technique for trace compaction .. 45
4.2: Comparison of trace compression mechanisms ... 49
4.3: Schematic of the IRG filter process. IRG’() are actually stored on the disk. 51
4.4: Wrong ordering in the trace due to interleaving. 54
5.1: Pseudo code for the IRG replacement algorithm 67
5.2: Pseudo code for the IRG model update and the prediction subroutines 68
5.3: Miss ratio comparison in a fully associative cache 71
5.4: Miss ratio in a paged memory, object and disk buffer 72
5.5: Miss ratio comparison of log2 IRG approximation for order 0 74
5.6: Miss ratio variation with % of resident IRG models queried for replacement for a cache of size 16Kb .. 76
5.7: BIT0 algorithm for page replacement .. 78
5.8: Miss ratio comparison of BIT algorithms against LRU and OPT 79
5.9: Miss ratio comparison of SET0 algorithm for a 32 Kb cache 80
5.10: Pseudo code for the WIRG algorithm. \(\tau \) is the fault penalty 85
5.11: Fault rate as a function of average memory used (in number of pages) ... 86
5.12: Fault rate as a function of average memory used (in number of pages) ... 87
6.1: EXP algorithm for replacement ... 91
6.2: Performance of the EXP algorithm. \(\rho \) versus miss ratio plots are for a 32Kb 8-way set associative cache with a 4 byte line size. In the miss ratio comparison EXP uses \(\rho = 0.9999 \). .. 92
6.3: \(\rho \) versus miss ratio plot for the Independent Reference Model 93
6.4: Replacement comparison for 4-way caches for COMP0 94
6.5: Replacement comparison for 4-way caches for EQN0 95
6.6: Replacement comparison for 4-way caches for ESP0 95
6.7: Replacement comparison for 4-way caches for KENBUS1 96
6.8: Replacement comparison for 4-way caches for LI0 96
6.9: Replacement comparison for L2 caches with same number of sets as L1 for EQN0 .. 98
7.1: Probability estimates for misses on block P followed by misses of blocks Q, R, and S ... 102
7.2: Block diagram of the prefetch architecture ... 106
7.3: Timing diagram for the prefetch architecture 107
7.4: Prefetch–to–access delay for KENS trace, for a 4KB cache 109
7.5: In-cache architecture .. 110
7.6: Miss ratio improvement in a 4KB, 4-way set associative cache 112
7.7: Increase in data traffic in a 4KB, 4-way set associative cache 112
7.8: Miss ratio improvement and bus traffic increase versus cache size for a 4-way cache .. 112
7.9: Miss ratio improvement and bus traffic increase versus size of a direct mapped cache .. 113
7.10: Miss ratio improvement and bus traffic increase versus associativity . 115
7.11: Miss ratio improvement and bus traffic increase versus block size . . 116
7.12: Miss ratio as a function of k ... 117
7.13: Increase in data bus traffic as a function of k 117
7.14: Miss ratio improvement and bus traffic increase versus cache size for I and D caches ... 118
7.15: Miss ratio improvement and bus traffic increase for the in-cache architectures .. 119
7.16: Miss ratio improvement and bus traffic increase versus cache size for the SPEC92 traces .. 120
7.17: Miss ratio improvement and bus traffic increase versus cache size for the ATUM traces ... 121
8.1: A simplified view of a paged memory .. 123
8.2: s versus f for the example in lemma 2. 127
8.3: s versus f for FixWinw, and the convex hull LH. 128
8.4: Pictorial representation of the Markov decision process MDPp Labels on arcs denote (action, cost, transition probability). 132
8.5: f-s curve for FixWinw for the 12th, 16th, 20th, and 50th most referred pages of the EQN10 trace .. 134
8.6: Pseudo code for the OZ Algorithm ... 135
8.7: C space–time product for WS and OZ relative to VMIN 136
8.8: Markov Chain description of a two distribution model for item j . . 137
8.9: Pseudo code for the OZ2 Algorithm 139
8.10: C space-time product comparison for τ and μ equal to 100. 139
LIST OF TABLES

Table 3.1: Description of the traces used in our simulations 21
Table 3.2: Representative traces used in our simulations 22
Table 3.3: Statistics of IRG streams depicted in figures 3.1 and 3.2 25
Table 3.4: Division of I and D streams .. 36
Table 3.5: Trace length as seen by the secondary buffer 40
Table 4.1: Error in fault rate while simulating WS, PFF and LRU on the compacted traces for the SPIC trace .. 53
Table 4.2: Error in fault rate while simulating WS, PFF and LRU on the compacted traces for the CC1 trace .. 54
Table 5.1: Description of traces used for IRG simulations. 69
Table 5.2: Miss ratios for DEC0 trace under a fully associative cache. 70
Table 5.3: IRG improvement ... 73
Table 5.4: IRG simulation overheads ... 73
Table 5.5: BIT algorithm overheads ... 78
Table 5.6: ST Space-Time Product for the CC1, DEC0 and SPIC simulations.
For WIRG0 and WIRG3 we show the % improvement over WS. 88
Table 5.7: R and K errors for the CC1 simulations. ... 88
Table 6.1: Traces used in the L2 simulations ... 94
Table 7.1: Ratio of useful prefetches for a 4-way set associative cache 114
Table 8.1: Miss ratio under the WS algorithm with τ (WS window size) equal to 10,000 .. 133
Table 8.2: ST space-time comparison. Normalized by the trace length. 137
Chapter 1

Overview and Contribution

The motivation behind this thesis is to study program predictability using real execution traces, and then applying the findings to improve memory management algorithms. Our approach is not a model fitting one, but instead we try to learn program properties in the light of universal data compression schemes. The intuitive notion is that if a data source is highly predictable, then its output has very low entropy, and is very compressible. In this way, by using data compression and by computing the entropy of a stream we can quantify whether it is predictable or not. This approach has a nice property that prediction can be carried out without assuming any model of the source.

On the memory management side, policies like replacement, placement, prefetching, scheduling, I/O buffering, etc. are online in nature, i.e. decisions have to be made without any knowledge of the future. A bad decision can lead to extra costs later in time. Over the last couple of decades a tremendous amount of work has been done to decide online policies for caches, virtual memories, disk buffers, distributed caches, database buffers, and so on. Almost all of these online policies have been heavily tuned towards the need of that particular level of the memory hierarchy. For example, in cache memories, due to the high speeds and the technology involved, the replacement algorithm has been eliminated via direct mapping. Yet another example is the UNIX virtual memory, where a simple CLOCK program (an approximation of the Global LRU) is used for page removal and replacement. In short, the practical world is driven by what is simple and gives reasonably good performance.

Scientifically, the question of how well certain aspects of memory management can be handled, is still an open question. There are two well known approaches:

1. The earliest approach is to find the best solution assuming that the entire future of program behavior is known in advance, i.e. the concept of off-
line optimality. Algorithms like Belady's MIN for replacement, Prievé and Fabry's VMIN for dynamic memory management etc. fall under this category. These techniques give us a lower bound on the performance index and serve as a benchmark against which new algorithms can be compared.

2. Over the last ten years or so, a new approach called competitive analysis has been introduced to analyze and compare memory management algorithms. Simply put, this approach quantifies how “far” a certain algorithm is from the off-line optimal solution, in the worst case. Most of this work is theoretic, and not enough emphasis is placed in modeling real reference streams.

Our aim is to go one step beyond these two approaches and answer the following question: What is the best possible online algorithm for a particular memory management task? For which, we define online optimality, and try to fill the gap between the competitive and the off-line optimal concepts. Although it can be argued that a tight lower bound on the competitive factor can answer some of our questions, we do not take this theoretic approach, but instead concentrate on the empirical and try to tie up predictability with the best possible online solution. The main reason for doing so is that program reference characteristics pertaining to locality, clustering, and fractal like behavior differ drastically from one application to another, and from one level of memory hierarchy to another. These dramatic differences can not be captured by the simple and general models like Directed Graphs, Markov Chains etc. used for the competitive analysis.

The main contributions of this thesis are as follows:

1. We study the behavior of the most frequently accessed items\(^1\) in a trace. The sequence of time instances when a particular item is accessed (called Inter-Reference Gap or IRG) is shown to be highly compressible, highly predictable stream. We validate this predictability in two ways:

 a. We present memory replacement algorithms, both under a fixed memory scenario, and a dynamic allocation setting, which exploit the predictable

\(^1\) We use the terms item, address, and location interchangeably to mean the object being accessed by a program. The meaning is clear from the memory hierarchy level being considered, e.g. an address in a disk access trace will mean the location of a disk block.
nature of the IRGs to improve upon known techniques for this task. For a fixed buffer, we obtain miss ratio improvements up to 37.5% over LRU and other known techniques. For dynamic memory management we obtain up to 20% improvement in the space-time product over the well known Working Set algorithm. Chapter 5 has the details.

b. Second, we present trace compaction techniques, both lossless and lossy, and show significant improvement over other known techniques for trace compaction. These are presented in chapter 4.

2. We discover the hierarchical nature of spatial locality, i.e. if we look at the stream of references for a particular page, we notice that they also show spatial locality. We exploit this property to propose a new lossless trace compaction technique which improves upon the mache concept of Samples [69] by up to 60%. In addition, we extend this technique to do lossy compression of traces such that the trace lengths become about 5% of the original at the cost of introducing errors up to 3.7% and 0% for the LRU and WS simulations, respectively. Chapter 4 gives the details.

3. We discover the predictable nature of missed cache lines or blocks under a wide variety of workloads, and propose a hardware scheme for prefetching based on the history of misses. This technique is shown to have a significant improvement in miss ratio (up to 32%) over the non prefetching schemes. In addition, this technique improves upon the traditional sequential prefetching scheme in miss ratio, as well as in the number of prefetches. A complete description is given in chapter 7.

4. Finally, in chapter 8 we propose a new measure for space-time product for dynamic memory management, since the older measures are not adequate for the new types of memory architectures - multithreaded, distributed virtual memories, etc. Under this measure we derive some theorems about optimal online algorithms. Additionally, we show empirical evidence supporting the need for these newer measures.
Chapter 2

Review of Previous Work

In this chapter we review previous work that has been done in the field of program reference modeling and memory management. We only describe in detail the work that is the most recent. We first start with the description of different models of program behavior. After that, we discuss the work on memory management.

2.1 Review of Program Reference Modeling

Broadly speaking, there are two classes of program reference models - descriptive and simulation. The descriptive ones are used to characterize and explain specific characteristics of program behavior. These are usually validated via a qualitative comparison with the real world observations.

Simulation or Analytical models are used to produce artificial stream of memory references which can be used for queuing analysis, performance measurement, reasoning about memory management algorithms, and so on. Since they need to be tractable, they are usually very simple. Certain models are both, descriptive as well as simulation.

2.1.1 Descriptive Models

1. Working Set: The working set $W(t,T)$ description of Denning [26] is one of the earliest models which captures temporal locality in program behavior. The current locality at time t, is measured as the set of pages accessed in the last T steps or references, which is the set of distinct pages in $r_{t,T+1} \cdots r_{t-1} r_t$, where r is the reference string. The main contribution of this model has been in providing a good paging algorithm for virtual memory environments.

2. GLM: Spirn [82] proposes a General Locality Model (GLM) to capture changing locality patterns. The reference string is subdivided into a series of phases, where each phase is generated by a ranking. A ranking orders the
pages by their probability of reference. The probabilities can change within a phase, provided they keep the ranking constant. Each phase has a different ranking from the previous phase. Thus each phase can be represented by a permutation of \(1, 2, ..., N \) and by the probability distribution at each time instant. The duration of a phase is called the holding time for that permutation (also called locality list). This model allows either a slow drift among neighboring localities, or a sudden change to a disjoint locality.

3. BLI (Bounded Locality Interval): Madison and Batson [50] describe the bounded locality interval, a definition of temporal locality using an LRU stack. It is the interval in which the top \(k \) elements of the stack do not change (they can get reordered though) and each one is referenced at least once in that interval. Thus we get levels of locality depending upon how many top positions of the stack we are looking at. This model captures the rapidness with which the same set of items is being accessed. For example, if the BLI of \(k \) equal to 2 is of a very long duration, then it implies that exactly two fixed items are being accessed. By describing a program execution as a sequence of BLI hierarchies, various phases of the program can be captured. Majumdar and Bunt [51] experimentally show that the BLI model can also capture file system reference histories.

4. Easton proposes a model for database behavior [27] which characterizes each unique database item to be in either of two states. In one state the reference probability is very high, and in the other it is low. This model is validated qualitatively against several database traces.

5. Haikala [38] uses an autoregressive moving average (ARMA) model to describe the correlation structure in sequences of lifetimes – the inter-fault gaps. The ARMA(1,1) model is:

\[
x_t = \frac{\theta_0}{1 - \Phi_1} + a_t + (\theta_1 - \Phi_1)x_{t-1} + (\theta_1 - \Phi_1)\vartheta_1 x_{t-2} + (\theta_1 - \Phi_1)\theta_2^2 x_{t-3} + \ldots
\]

where \(x_t \) is the observed lifetime at time \(i \), \(a_t \)'s are a series of independent identically distributed random variables (white noise) and \(\theta_0, \theta_1, \text{ and } \Phi_1 \)
are constants. They empirically show that a trace’s lifetime history can be captured by this kind of an infinite series.

6. Power Law: Chow [16] proposes a power law for cache miss ratio behavior:

\[M = AC^\theta \]

where \(M \) is the miss ratio of a cache of size \(C \), and \(A, \theta \) are constants. Using this law Thiebaut [88] proposes a fractal random walk model for memory reference

\[Pr[U > u] = \left(\frac{u}{u_0} \right)^{-\theta} \quad u \geq u_0 \]

where \(U \) is the jump length to the next memory reference. \(u_0 \) is a constant and \(\theta \) is the fractal dimension. This is also a generative model. This technique is shown to have similar hit-ratio curves as the traces it is validated against.

7. Agarwal et al [1] model cache miss behavior using four parameters. The first parameter - Start-up effect, occurs when a program starts and the number of misses is the number of unique lines referred to. This is followed by the nonstationary behavior when the program’s working set changes slowly over time and new blocks which are never accessed before are accessed. Intrinsic interference occurs when multiple program blocks collide with each other. Finally, multiprogramming leads to extrinsic interference when blocks from another program collide and remove the active blocks of another program. They further analyze the effects of the block size on the basis of run length distribution and the distribution of space intervals between runs.

8. Singh [71] extends the work of Thiebaut [88] to include the effect of line size in the modeling of \(u(t,L) \), the number of unique lines accessed till time \(t \) using line size \(L \). They propose,

\[u(t, L) = W L^a t^b \log L \log t \]

where \(W, a, b, d \) are constants that are related, respectively, to the working set size, spatial locality, temporal locality and interactions between spatial locality and temporal locality. Their model is qualitatively validated using several ATUM benchmark traces.
2.1.2 Simulation / Analytical Models

The simulation models broadly fall into two categories - probabilistic models with the memory locations themselves being the range of random variables, and the stack distance based:

1. The probabilistic memory models associate a fixed or a time varying probability with each location and then use those to generate the reference streams.
 a. IRM: King [47] proposes the Independent Reference Model. The items have identically, independently distributed probability of reference at each instant of time. \(Pr(r_t=i) = p_i, \ i = 1, 2, \ldots, N; \ t = 1, 2, \ldots \) It can be assumed that items are numbered so that the probabilities satisfy \(p_1 \geq p_2 \geq \ldots \geq p_N \). Due to its simplicity, this model has been extensively used in analytical reasoning about memory management algorithms [47, 3, 33, 5, 76, 64, 6, 22, 9, 57, 59].
 b. Markov Model: The obvious generalization of the IRM is the Markov model, which describes the reference string \(r_1, r_2, \ldots \) by an ergodic, finite Markov chain. For a set of pages \(\{1,2,\ldots,N\} \) the chain is defined by the transition probability matrix \([p_{ij}]_{i,j=1}^N \), where \(p_{ij} = Pr(r_t=j | r_{t-1}=i) \). This model has also been used extensively for proving theorems about program behavior and memory management [30, 20, 34, 41, 42].
 c. Renewal model: Opderbeck and Chu [58] extend the IRM model to the continuous time domain. They describe the inter-reference gaps as being independent and identically distributed random variables. The IRM in the continuous time is given by the superposition of \(N \) independent Poisson processes with parameters \(p_1, p_2, \ldots, p_N \) with \(\sum_{i=1}^{N} p_i = 1 \). From continuous time distribution, mapping to the actual reference string is done by sorting the time values on the real number axis. This model provides a better empirical explanation for the Working Set behavior, than does the IRM model.

2. The stack based models assume all the items to be in a stack initially and then generate distance values in the stack using a probability distribution.
a. SSM: In the simple stack model, a distance string \(d_1, d_2, \ldots, d_k \) is generated as a sequence of independent trials, where \(\Pr(d_t = i) = a_i, i = 1, 2, \ldots, N \); \(t = 1, 2, \ldots \). The items are assumed to be in a \(N \) size stack. The set \(\{a_i\} \) is called the set of distance probabilities. The \(a_i \)'s are assumed to be stationary, so this model is the distance analog of the independent reference model. In this model a weak locality condition for a specific value of \(l \) is defined as \(\min\{a_1, \ldots, a_l\} \geq \max\{a_{l+1}, \ldots, a_N\} \). On the other hand a monotonically non-increasing ordering \(a_1 \geq a_2 \geq \ldots \geq a_N \) defines a strong locality condition. This is identical to the IRM model described earlier.

b. SLRUM: Extending SSM further, Spirn [83] proposes the Stack LRU model in which the generated address is moved to the top of the stack. Thus, at each time instant a random distance \(d \) is generated and the address at that position in the stack is moved to the top and all items at positions \(1, \ldots, d-1 \) are pushed down. In this way temporal behavior is captured. Many validations of this model have been done, and it has also been used for analytical reasoning [4, 18, 27, 37, 39, 49].

c. VSLM: Very Simple Locality Model [84] is a special case of SLRUM where the locality size is fixed to some \(l \). The distance probabilities \(d_1, d_2, \ldots, d_l \) are all equal to \((1 - \lambda)/l \) and \(d_{l+1}, d_{l+2}, \ldots, d_n \) have probabilities equal to \(\lambda/(n - l) \). Thus, it is a two state model for the distance probabilities.

d. Multiple distribution: A simple extension to the SLRUM is the analog of the GLM descriptive model. There are multiple stack distance distribution vectors and using a Markov process the trace generation can move from one distribution to another. The simplest case is the one where the stack is randomly shuffled at the end of each phase.

e. Shedler and Tung’s model: A more complex distance probability is specified under Shedler and Tung’s [70] Markov model. This model has a set of \(N \) nodes, out of which \(k \) nodes labelled 1, 2, \ldots \(k \) form a fully connected graph. Finite probabilities are assigned to \(p_{1,x} \) and \(p_{x,1} \), where \(x \) is \(k+1 \), \(k+2 \), \ldots, \(N \). In addition, there are edges from \(i \) to \(i+1 \), for \(i = k+1, k+2, \ldots \).
..., N-1. Using this Markov Model a random walk generates a sequence of distance values (the node id’s) which drives an LRU stack. Here k reflects upon the locality size and edges from i to $i+1$ are there to bring a contiguous stream of items into the locality, from time to time. They use this model for analyzing the time interval between faults in a paged memory.

f. LRU hit function model: Wong and Morris [93] use runs of type $1, 2, \ldots, i$ for varying values of i to generate traces which give a desired hit-ratio for an LRU cache. This process is then repeated (duplicate the trace) and replicated (generate identical trace pattern with a disjoint address space) to produce larger traces. These large traces have a property that they obey a desired LRU hit function, and provide a simple way of generating synthetic traces.

g. Fractal based: Thiebaut [89] proposes a fractal geometry based distance generating mechanism to drive an LRU stack.

$$P_r\{d i s t \geq x\} = \begin{cases} \frac{A^x}{\sigma} x^{(1-\theta)} & \text{for } x \geq C_c \\ \frac{A^x}{\sigma} \left(C_c^{(1-\theta)} + (1-x)C_c^{(1-\theta)} \right) & \text{for } x \leq C_c \end{cases}$$

where the critical cache size C_c is equal to

$$C_c = A^{\frac{\theta}{1-\theta}}$$

The variable θ is a measure of spatial locality and A a constant. This is based on the Random Walk Method proposed by the same authors [88]. This technique generates synthetic traces which have cache miss ratio curves similar to some real ones.

2.2 Review of Online Issues in Memory Management

There are three main online issues in memory management which are universal for any level of the memory hierarchy:

1. Fetch policy: This policy decides when a needed cache block, page or file will be brought into the higher level of the memory hierarchy. The two ways that
are possible are *fetch on demand* and *prefetching*. Fetch on demand is not an online issue, since it is a default policy, on the other hand, prefetching is a non trivial issue since it has to predict the future behavior of the program. Another issue is the placement of this prefetched item.

2. **Placement policy:** The second issue arises when there are multiple choices, as regards the placement of the fetched item. For example, in set-associative caches there are multiple sets in which a fetched block can be placed.

3. **Replacement policy:** Once a missed item is fetched in, we need to decide the item it is going to replace. This is also a critical task since we do not want to remove an item which will be accessed very near in the future.

2.2.1 Prefetch policies

Prefetching can be either hardware-based [75, 43, 13, 14] or software-directed [48, 67, 55]. Hardware-based prefetches are transparent to the program and do not affect the program semantics. In contrast, software-directed schemes involve static analysis of the program, leading to insertion of prefetch instructions in the code itself. Although the latter technique is more effective, it cannot uncover some useful prefetches (patterns which can be discovered only upon execution) and there is more execution overhead due to the extra prefetch instructions.

A. J. Smith [75] proposes one of the earliest cache prefetching strategies which upon miss on memory block a generates two block addresses a and $a+1$. After block a is fetched, a prefetch is initiated for block $a+1$. This strategy is categorized as **sequential prefetching**. A more general sequential prefetching would prefetch the next k consecutive blocks on a miss. Jouppi [43] improves sequential prefetching for the direct mapped cache by placing FIFO *steam buffers* between the cache and the main memory.

For cache memory systems, a large volume of research has been devoted to branch prediction in programs. Although the motivation behind this work is CPU pipelining, prefetching has also benefitted from it.

Fu, Patel, Chen and others [31, 32, 72, 13, 14] propose schemes called **stride** prefetching which use the past history of a program to predict the future. For each
instruction, the distance (the stride) between its past operands is computed. If this instruction is likely to be executed in the near future, then its stride is used to predict its future operand, which is then prefetched.

Song and Cho [81] propose a prefetch-on-fault strategy for a paged memory system. They maintain a history of page faults, and upon a fault on page p prefetch page q, if in the past a fault on page p was followed by a subsequent fault on page q.

A data compression based prefetch strategy is proposed by Curewitz et al [21] for databases, which uses the past history of accesses to predict the future and prefetch. They deal with a client-server architecture where the user application (client) accesses the database disk (server) for a database page and caches a finite number of pages. The page reference string is compressed using the LZ78 [94] compression techniques at the user site, which is then used for predicting the future pages. Their technique is based on Vitter and Krishnan’s [92] competitive prefetching algorithm.

Griffioen and Appleton [35] propose a scheme for file prefetching by building a Markov model for the file access patterns. Using this model and the current estimated state of the system, files are prefetched into the disk buffer.

2.2.2 Placement policies

In most set associative cache memories, placement is simply decided by using a fixed set of bits from the memory address being accessed. Although hashing based techniques have shown improvement [78], they are not used because they need extra levels of logic, making them impractical.

Recently, page placement has been gaining importance due to its impact on direct-mapped cache misses. In a virtual memory with caching, the mapping from the main memory to the cache is predefined. In which case if two frequently used pages are placed in page frames which map to the same set in the cache, then unnecessary conflict misses can occur at the cache level. The optimal placement strategy has been shown to be computationally intractable [56]. On the other hand, simple policies like bin hopping [46] have been shown to be very effective. Here, page frames are partitioned into equivalence classes (bins) based on their cache
mapping, and a round-robin allocation policy is used over these bins. Other online
techniques like page coloring [87] have also been shown to be efficient and practical.

2.2.3 Replacement policies

There are two types of replacement. In the first case the buffer (cache, main memory etc.) is of a fixed size and replacement is done only when a new item is brought in. In the second, replacement (removal) can be done at any time (even if no new item is brought in) because space usage is also an issue. An example of the former is a primary cache, and that of the latter is a multiprogrammed shared memory system. In the following discussion paging and caching terminologies are used interchangeably.

The simplest of the replacement algorithms are Random Replacement (RR), First In First Out (FIFO), LRU (Least Recently Used), Least Frequently Used (LFU), Working Set (WS), and the off-line Optimal (OPT). All these methods have been studied in the literature extensively, so we won't discuss their details here. Following is a chronological description of other work in the area of replacement algorithms:

The ATLAS loop detector [8] scheme uses the total time a page remains idle the last time it is swapped out, as an approximation for the inter-reference gap. This algorithm minimizes the number of faults if the pattern of reference is strictly cyclic.

Mattson et al [52] propose an analysis of LFU, LRU, RR and OPT. They use the concept of a “stack algorithm” to explain the performance differences. King [47] analyzes LRU, FIFO and A₀ (keeping items with the largest probability of reference) for the Independent Reference Model (IRM) and gives a general framework for analyzing replacement algorithms under the IRM model. Aho et al [3] demonstrate A₀ to be optimal under the IRM model.

Thorington et al [91] propose an adaptive caching algorithm (SIM), where they simulate multiple caching strategies like LRU, LFU, MRU (Most Recently Used) and MFU (Most Frequently Used), simultaneously and follow the one, which if used, would have been the best. For their sample set of programs, they obtain
a performance index (ratio of LRU’s miss ratio to that of SIM) greater than 1.00 (almost always) and up to 3.92.

Prieve [60] proposes a page partition technique for variable space management, in which the threshold τ, the WS window size, is different for each one of the pages. The value of τ for each page is decided using a space-time cost minimization on a per page basis.

Aven et al [5] propose a class of replacement algorithms denoted $A_i^b(m_1m_2 \ldots m_h)$. Where h, l, and m_i’s are integers, $l \leq m_1$ and $m_1+m_2+\ldots+m_h=m$. m is the cache size. Imagine the cache as depicted in figure 2.1.

![Figure 2.1: Cache model for Aven’s replacement algorithm](image)

Upon a hit, if the item is within the first l slots then it does not move. Else, if it is in the m_1^{th} partition then it is moved to the top of partition m_1 and the rest of the items in m_1 are pushed down. Otherwise, if it is in the m_i^{th} partition then it is moved to the top of the m_{i-1}^{th} partition. The last element of the m_{i-1}^{th} partition is moved on top of the m_i^{th} partition. Finally, if it is a miss, then the new item is brought at the top of the m_h^{th} partition, and rest of its elements are pushed down and the last one deleted. Consider the case when $h=1$. If $l = m$ then it is the FIFO policy. If $l = 1$ then it is LRU. The authors show that by varying the parameters of $A_i^b(m_1m_2 \ldots m_h)$, a spectrum of algorithms from A_0 to FIFO is created. Under the IRM model, the hit ratio degrades from A_0, to A_1^l, to $A_1^2\left(\frac{m}{2}\right)$, to LRU, and finally to FIFO.

Smith [74] proposes a modified working set algorithm called DWS (Damped Working Set). The main idea is to remove large accumulations of pages which happen in the WS algorithm at the time of locality changes. Their algorithm keeps the pages of the last τ references, but upon a fault replaces the least recently used page if it was referenced more than $\mu*\tau$ time units ago ($\mu < 1$). This method
performs slightly worse than WS, but brings down the space usage at locality transitions.

Chu and Opderbeck [18] analytically model a PFF (Page Fault Frequency) algorithm for variable memory management. In their method, if the page fault frequency goes above a certain threshold, then all the faulting pages are brought in the memory (extra memory is given if needed). If it falls below the threshold, then the unreferenced pages since the last page fault are removed to the disk. They use the LRU stack model for modeling program behavior and a semi-Markov model to analyze and derive statistical properties for the PFF algorithm.

Prieve and Fabry [61] formulate the VMIN algorithm for variable sized memory allocation. They show it to be optimal for a space-time criteria where an algorithm which has a curve of average memory size vs page fault rate closer to the origin is supposed to be better. If R is the cost of a page fault and U is the cost of keeping one page in memory for one reference time, then after an access to a page, it is removed if and only if it won’t be referenced again in the next R/U time units.

A. J. Smith [76] analyzes the OPT and the VMIN algorithms for the IRM and the LRU Stack models. He uses Markov models to capture the behaviour of these two algorithms under the two memory reference models, and concludes that OPT and VMIN have inherent advantages to account for the performance differences between practical demand paging algorithms and the theoretically optimal ones.

Denning and Slutz [25] generalize the Working Set notion to segments, where the cost of retaining and retrieval is different for each segment. They propose the Generalized Working Set (GWS) and the Generalized OPT (GOPT) algorithms under this model.

Rao [64] shows methods to compute fault rates for various cache organizations like direct-mapped, set-associative, fully-associative and sector-buffer under the IRM model. He also shows FIFO and RR to have identical performance under IRM. Also, a direct-mapped buffer under a near-optimal restructuring is shown to have a comparable performance as a fully-associative LRU buffer.

A. J. Smith [78] surveys the state of the art in cache memories in his paper.
Based on prior experiments and his research, he concludes that all fixed-space *non-usage based* algorithms (those which make a replacement decision on some basis other than and not related to usage, e.g. FIFO, RR) yield comparable hit-ratios. He shows LRU to perform better than FIFO. Further, he proposes that variable-space algorithms are unsuitable for cache memories since they (the caches) are too small to hold more than one working set.

Babaoglu and Ferrari [6] propose the notion of hybrid algorithms. The cache is split into two, and different strategies for replacement are used in the two partitions. They show that a FIFO-LRU combination is the same as Aven’s [5] A_{k}^{1}. They analyze other combinations like FIFO-LRU, RR-LRU, FIFO-WS, and RR-WS under the IRM model and present analytical values for the fault rates in each one of the cases. In addition, they show that steady state fault rates for FIFO-LRU and RR-LRU are the same. The steady state fault rates and the mean memory occupancies for FIFO-WS and RR-WS are the same too. For IRM simulations and some real traces, these algorithms show closeness to LRU for a large variation in the fraction of memory managed by a non-LRU policy. They conclude that a large fraction of a cache can be managed using a “cheaper” algorithm with a very small penalty in performance.

Smith and Goodman [79] propose a separate instruction cache. For a looping program (references of repeating patterns) they show RR to be better than both LRU and FIFO under a fully associative cache. They also analyze direct mapped and set associative caches under this model. For simple loops they show that a direct mapped cache outperforms a fully associative LRU, which in turn is bettered by a fully associative RR. Their experimental results with real traces support their claims.

So and Rechtschaffen [80] propose approximate replacement strategies based on the observation that most hit references are to a fraction of the cache (they call it the MFU region). Which implies that total ordering, as in LRU, is not that essential. They propose a Partitioned LRU (PLRU) algorithm which maintains a partial order among the elements in the cache using a tree. For example, consider figure 2.2. Here, the cache memory has 8 slots. Each node shows the number of bits it has. In this case each node has one bit and using that it creates an order among its two
children. For example, the bit at the root can be used to create an order between the sets \{1, 2, 3, 4\} and \{5, 6, 7, 8\}. This partial order is used for deciding which item to replace. They show PLRU to work comparably with LRU for two real traces.

Frequency Based Replacement (FBR), introduced by Robinson and Devarakonda [66] for disk block buffer replacement, shows up to 34% improvement over the LRU-OPT difference. Their method uses a basic LRU stack, but in addition maintains reference counts for each of the items. The buffer is divided into three regions - a new section (MRU), a middle, and an old section (LRU). A reference to a block increments its count if it is not in the new section. Upon a miss, the item with the smallest count in the old section is removed.

O'Neil et al [57] modify LRU (LRU-K) to take advantage of \(A_0\), and show the optimality of their method under the IRM model. They use the \(k^{th}\) backward distance of a page (i.e. the time at which the \(k^{th}\) last reference to a page is made) to approximate the probability of its future references. Upon a miss, the page with the oldest \(k^{th}\) backward distance is removed. When \(k=1\), we get the standard LRU method. They show LRU-2 to perform better than LRU-1 for a database trace and show consistent improvements for higher order LRU-K’s on a couple of synthetic database traces.
Choi and Ruschitzka [15] propose a near optimal method, using *locality sets*. Their PSETMIN algorithm is based on the assumption that certain executions can, in advance, know a superset of addresses out of which future references will be made. This is especially true for relational database transactions, because most of the databases, prior to query execution, preprocess the query, generate a plan, and optimize it. So, although the exact reference string itself is not known, a string of sets (which they call *locality sets*) can be determined in advance. This sequence of sets is then used in a similar fashion as in the off-line OPT algorithm.

Besides this work in the universal replacement schemes, the systems community has recently gotten interested in designing paging algorithms that adapt to the locality characteristics of a program. McNamee and Armstrong [53] extend the Mach OS to accommodate user-level replacement policies. In effect, each process can decide its own replacement policy. This is an attempt to define “locality” by the user rather than the system itself. Harty and Cheriton [40] provide a framework for memory control by the application itself. In the V++ system, the system page cache manager can reclaim page frames from applications, but the application itself has complete control over which page to surrender. Again, this leads to the application deciding its own replacement policy.

In the theory community too the concept of *competitive analysis* as introduced by Sleator and Tarjan [73] has created lot of interest in paging algorithms. Fiat et al [29] show some competitive randomized marking algorithms for page replacement. Their method is a randomized form of LRU with two stacks. Borodin et al [10] introduce a new notion of locality using graphs. Each page is a node on a graph and the next reference can only be to an adjacent node or the node itself. They show competitive marking algorithms for a wide class of graphs. Finally, Karlin et al [45] model locality using a Markov chain. They devise a competitive algorithm based on distances in the underlying graph of the Markov chain.

Finally, a word about *cache partitioning*. Under multiprogramming environments it might be useful to split up a cache among two competing processes. This has been shown to produce better results than an overall LRU by Stone et al [85].
They propose a method of modified-LRU, for two competing programs. Cache allocation to the two stream is modeled as a Markov chain and the optimum is derived as the partition where the miss rate derivatives for the two programs are equal. Thiebaut et al [90] extend this partitioning result to disk caches and show 1 to 2% improvement in the miss ratio over the conventional global LRU.
Chapter 3
Program Reference Modeling

3.1 Introduction

Our approach is a bottom-up study of program reference behavior. We start with the smallest unit of a program’s reference – a main memory reference, and continue on to cache block reference, to page reference, and finally to disk I/O and object reference for a database. This motivation behind this study is to deduce any predictability in a program’s access behavior. In order to ensure that our study is well founded and as general as possible, we collect program reference traces from a number of different sources and over a wide type of programs. Table 3.1 has a description of all the traces we use.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Trace Length (in thousands)</th>
<th>Total unique references Number (in thousands)</th>
<th>Normalized by trace length %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: ATUM Suite from Stanford University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC1</td>
<td>Gnu C compilation</td>
<td>1000</td>
<td>43.1</td>
<td>4.3</td>
</tr>
<tr>
<td>DEC0</td>
<td>DECSIM, a behavioral simulator at DEC, simulating some cache hardware</td>
<td>362</td>
<td>18.8</td>
<td>5.2</td>
</tr>
<tr>
<td>FORA</td>
<td>FORTRAN compilation</td>
<td>388</td>
<td>20.8</td>
<td>5.4</td>
</tr>
<tr>
<td>FORF</td>
<td>Another FORTRAN compilation</td>
<td>368</td>
<td>30.1</td>
<td>8.2</td>
</tr>
<tr>
<td>FSXZZ</td>
<td>Scientific code</td>
<td>239</td>
<td>24.1</td>
<td>10.1</td>
</tr>
<tr>
<td>IVEX</td>
<td>DEC Interconnect Verify, checking net lists in a VLSI chip</td>
<td>342</td>
<td>37.0</td>
<td>10.8</td>
</tr>
<tr>
<td>LISP</td>
<td>LISP runs of BOYER (a theorem prover)</td>
<td>291</td>
<td>5.95</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 3.1: Description of the traces used in our simulations (Continued) . . .
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Trace Length (in thousands)</th>
<th>Total unique references Number (in thousands)</th>
<th>Normalized by trace length %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACR</td>
<td>An assembly level compile</td>
<td>343</td>
<td>24.0</td>
<td>7.0</td>
</tr>
<tr>
<td>MEMXX</td>
<td>Simulation program</td>
<td>445</td>
<td>26.5</td>
<td>6.0</td>
</tr>
<tr>
<td>MUL2</td>
<td>VMS multiprogramming at level 2</td>
<td>372</td>
<td>14.5</td>
<td>3.9</td>
</tr>
<tr>
<td>MUL8</td>
<td>VMS multiprogramming at level 8 : spice, alloc, a Fortran compile, a Pascal compile, an assembler, a string search in a file, jacobi and an octal dump</td>
<td>429</td>
<td>33.1</td>
<td>7.7</td>
</tr>
<tr>
<td>PASC</td>
<td>Pascal compilation of a microcode parser program</td>
<td>422</td>
<td>14.2</td>
<td>3.4</td>
</tr>
<tr>
<td>SPIC</td>
<td>SPICE simulating a 2-input tri-state NAND buffer</td>
<td>447</td>
<td>9.2</td>
<td>2.1</td>
</tr>
<tr>
<td>SPICE</td>
<td>Another SPICE simulation</td>
<td>1000</td>
<td>15.3</td>
<td>1.5</td>
</tr>
<tr>
<td>TEX</td>
<td>Text formatting utility</td>
<td>817</td>
<td>38.2</td>
<td>4.7</td>
</tr>
<tr>
<td>UE02</td>
<td>Simulation of interactive users running under Ultrix</td>
<td>358</td>
<td>31.6</td>
<td>8.8</td>
</tr>
</tbody>
</table>

BACH-BYU: SPEC2 suite from Brigham-Young University

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Trace Length (in thousands)</th>
<th>Total unique references Number (in thousands)</th>
<th>Normalized by trace length %</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP0</td>
<td>compress: text compression utility</td>
<td>157500</td>
<td>870.8</td>
<td>0.55</td>
</tr>
<tr>
<td>EQN0</td>
<td>eqntott: conversion from equation to truth table</td>
<td>118100</td>
<td>740.0</td>
<td>0.63</td>
</tr>
<tr>
<td>ESP0</td>
<td>espress: minimization of boolean functions</td>
<td>138200</td>
<td>42.2</td>
<td>0.03</td>
</tr>
<tr>
<td>KENS</td>
<td>Kenbus1 SPEC benchmark simulating 20 users</td>
<td>4372</td>
<td>160.8</td>
<td>3.7</td>
</tr>
<tr>
<td>LI0</td>
<td>Lisp interpreter</td>
<td>145000</td>
<td>63.4</td>
<td>0.04</td>
</tr>
</tbody>
</table>

CAD page references: DEC Research Lab, MA

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Trace Length (in thousands)</th>
<th>Total unique references Number (in thousands)</th>
<th>Normalized by trace length %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD1P</td>
<td>Graphical display of a DEC CAD tool doing circuit design using ICs</td>
<td>74</td>
<td>1.67</td>
<td>2.3</td>
</tr>
<tr>
<td>CAD2P</td>
<td>A longer session of CAD1P</td>
<td>147</td>
<td>1.67</td>
<td>1.1</td>
</tr>
<tr>
<td>SALEMP</td>
<td>A CAD tool trace</td>
<td>50</td>
<td>0.16</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 3.1: Description of the traces used in our simulations (Continued) . . .
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Trace Length (in thousands)</th>
<th>Total unique references</th>
<th>Normalized by trace length %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object references: DEC Research Lab, MA and OO7 benchmark from University of Wisconsin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OO1F</td>
<td>OO1 database benchmark running on DEC Object/DB system with forward traversal of relations</td>
<td>11.7</td>
<td>0.52</td>
<td>4.4</td>
</tr>
<tr>
<td>OO1R</td>
<td>OO1 database benchmark with reverse traversal of relations</td>
<td>11.7</td>
<td>0.53</td>
<td>4.5</td>
</tr>
<tr>
<td>OO7T1</td>
<td>OO7 benchmark running on DEC Object/DB product doing query traversals</td>
<td>28.1</td>
<td>6.0</td>
<td>21.4</td>
</tr>
<tr>
<td>OO7T4</td>
<td>OO1 database trace with almost sequential access</td>
<td>1.53</td>
<td>1.52</td>
<td>99.5</td>
</tr>
<tr>
<td>OO7T3A</td>
<td>Another traversal trace like OO7T1</td>
<td>30.1</td>
<td>6.3</td>
<td>20.9</td>
</tr>
<tr>
<td>CAD1O</td>
<td>UID reference trace in CAD1P above</td>
<td>73.8</td>
<td>15.4</td>
<td>20.9</td>
</tr>
<tr>
<td>CAD2O</td>
<td>UID reference trace in CAD2P above</td>
<td>147</td>
<td>15.4</td>
<td>10.5</td>
</tr>
<tr>
<td>SALEMO</td>
<td>UID reference trace in SALEMP above</td>
<td>42.9</td>
<td>1.75</td>
<td>11.4</td>
</tr>
<tr>
<td>Disk References: Distributed file server traces from UC Berkeley Sprite System.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBER1</td>
<td>48 hour long trace of four file servers supporting about 40 workstations, from Jan 23 to Jan 25.</td>
<td>617.4</td>
<td>52.1</td>
<td>8.4</td>
</tr>
<tr>
<td>RBER2</td>
<td>48 hour long trace, from May 10 to May 12.</td>
<td>517.1</td>
<td>47.3</td>
<td>9.1</td>
</tr>
<tr>
<td>RBER3</td>
<td>48 hour long trace, from May 14 to May 16.</td>
<td>595.4</td>
<td>78.6</td>
<td>13.2</td>
</tr>
<tr>
<td>RBER5</td>
<td>48 hour long trace, from June 27 to June 28.</td>
<td>385.6</td>
<td>36.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Table 3.1: Description of the traces used in our simulations

Using the virtual address references of a program we derive the cache block reference traces and page reference traces assuming standard cache and page
mapping procedures.

In the following discussion we use the term *address* to mean either of the following depending on the context, and the level of memory hierarchy we are talking about:

- **Cache block**: Between an external cache and a main memory system. Also referred to as cache line by other authors.
- **Level 2 block (L2 block)**: For references to a Level 2 cache, when a miss occurs on a Level 1 (possibly on-chip) cache.
- **Page**: In a virtual memory architecture with paging. This value is usually obtained by dividing the virtual address by the page size.
- **Sector**: Between a disk and a main memory environment where I/O operations are buffered.
- **File**: Between an auxiliary store (disk, collection of disks) and a file buffer. Similar to disk buffering, except that it has a different granularity.
- **Object**: In a CAD/database environment. The object could be a database record, a relation or a file depending on the granularity.

Although we carry out analyses and simulation studies of all the traces described in table 3.1, we will present results only for a small set of representative traces described in table 3.2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Memory hierarchy level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>ATUM virtual memory trace of a Gnu C compilation</td>
<td>Primary L1 cache</td>
</tr>
<tr>
<td>EQN10</td>
<td>4Kb size page reference trace of the eqntott SPEC92 trace</td>
<td>Page level in a virtual memory</td>
</tr>
<tr>
<td>KENBUS1</td>
<td>SPEC92 virtual memory trace of kenbus simulating 20 users</td>
<td>Primary L1 cache</td>
</tr>
<tr>
<td>MUL8</td>
<td>ATUM virtual memory trace of VMS multiprogramming</td>
<td>Primary L1 cache</td>
</tr>
<tr>
<td>OO1F</td>
<td>OO1 database trace of object-id's</td>
<td>Database object cache</td>
</tr>
<tr>
<td>RBER1</td>
<td>SPRITE file-id reference trace</td>
<td>Disk buffer</td>
</tr>
</tbody>
</table>

Table 3.2: Representative traces used in our simulations
We study an address’s behavior in a trace, in two stages:

1. First we look at a single address's behavior without considering other addresses. This we call the Single address profile.

2. Second, we study the correlation between program items in two ways:
 a. First we develop a tool for visually analyzing patterns in program traces. This tool is used to establish several known and some new program properties.
 b. Second we analyze the predictability in traces using trace compression.

3.2 Single Address Profile

An address is a component of the smallest granularity in a trace. From each trace we pick a sample of addresses representing the characteristics of a trace. These items are then individually analyzed to understand any temporal locality characteristics.

Inter Reference Gap (IRG) Model: We model the time at which a given item is accessed using a model for the difference in time of successive references. To understand the motivation consider the following pseudo-assembly example:

```assembly
loop1: mov M[i], %r1 ; 2 references (instruction + data)
        jmpz done ; 1 "
        addi %r1, -1, %r1 ; 1 "
        mov %r1, M[i] ; 2 "
        movi M[a], %r2 ; 3 " (indirect memory access)
        mov M[a], %r3 ; 2 "
        inc %r3 ; 1 "
        mov %r3, M[a] ; 2 "
        sub %r2, %r4, %r5 ; 1 "
        jneg big ; 1 "
        movi %r4, %r2 ; 1 "
big:   jmp loop1 ; 1 "
done:  ...
... 
org 1000
i:    dw 1
org 2000
a:    dw 1
```

It is not hard to see that this code is a part of a routine which finds the minimum
in an array. Now we look at the memory reference pattern generated by this code. Memory addresses used by the data in this code are 1000 and 2000. Address 1000 (variable i) is accessed at top of the loop and at the fourth instruction from top. So the time instances relative to the start of this code, when the location 1000 is accessed, is 1, 5, 19, 23, 37, 41, 55, 59, 72, 76, ... etc. The corresponding IRG string will be 4, 14, 4, 14, 4, 14, 4, 13, 4, ... etc. – a regular expression of the form \((4 (14+13))^*\) - which has a highly repetitive and predictable nature.

To get an idea of the IRG value distribution we study the most referred items in each one of the traces. In figures 3.1 and 3.2 we present the IRG value distribution of the most referred, the fourth most referred, and the twentieth most referred items of the six traces described in table 3.2. On the X axis we have the IRG value and on the Y axis we have the frequency count of the particular IRG value, for that particular address. Both axes are on a logarithmic scale. Some relevant statistics of these plots are presented in table 3.3. In addition, we plot the actual sequence of the IRG values for the first hundred references of each one of the items used in figures 3.1 and 3.2. Each IRG stream is plotted from left to right, with the IRG value on the Y axis. These are depicted in figures 3.3 and 3.4.

Four key features stand out from these plots:

1. A multimodal envelope of the distribution of the IRG values.
2. Certain IRG values never occur (vertical gaps in the histogram plots), and those that do occur form a small fraction of the possible IRG values.
3. A high degree of skew in the frequencies towards “smaller” values of IRG.
4. High correlation among successive IRG values.

Additionally to verify the predictiveness of the IRG values, we compress the IRG streams of all the addresses of each one of the traces. The compression figures in percentage are given in figure 3.5.

In chapter 5 we present a scheme for IRG prediction based on the compressibility of IRG streams. It is validated by showing its application to memory replacement algorithms.
<table>
<thead>
<tr>
<th>Trace</th>
<th>Address rank</th>
<th>Number of references</th>
<th>Minimum IRG value</th>
<th>Maximum IRG value</th>
<th>Mean IRG value</th>
<th>Std Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>1</td>
<td>2.3K</td>
<td>2</td>
<td>17K</td>
<td>145</td>
<td>696</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.0K</td>
<td>5</td>
<td>146K</td>
<td>407</td>
<td>4.4K</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.0K</td>
<td>4</td>
<td>2.1K</td>
<td>86</td>
<td>238</td>
</tr>
<tr>
<td>EQN10</td>
<td>1</td>
<td>68M</td>
<td>1</td>
<td>128K</td>
<td>1.7</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.9M</td>
<td>1</td>
<td>47K</td>
<td>24</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>158K</td>
<td>1</td>
<td>210K</td>
<td>748</td>
<td>9.1K</td>
</tr>
<tr>
<td>KENBUS1</td>
<td>1</td>
<td>35K</td>
<td>2</td>
<td>242K</td>
<td>115</td>
<td>3.2K</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12K</td>
<td>3</td>
<td>839K</td>
<td>113</td>
<td>8.8K</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.3K</td>
<td>8</td>
<td>69K</td>
<td>17</td>
<td>805</td>
</tr>
<tr>
<td>MUL8</td>
<td>1</td>
<td>4.0K</td>
<td>2</td>
<td>35K</td>
<td>31</td>
<td>562</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.9K</td>
<td>11</td>
<td>35K</td>
<td>31</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.3K</td>
<td>1</td>
<td>2.3K</td>
<td>53</td>
<td>111</td>
</tr>
<tr>
<td>OO1F</td>
<td>1</td>
<td>279</td>
<td>1</td>
<td>444</td>
<td>40</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>199</td>
<td>1</td>
<td>450</td>
<td>56</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>19</td>
<td>301</td>
<td>739</td>
<td>562</td>
<td>145</td>
</tr>
<tr>
<td>RBER1</td>
<td>1</td>
<td>41K</td>
<td>1</td>
<td>51K</td>
<td>7.7</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15K</td>
<td>1</td>
<td>50K</td>
<td>20</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.3K</td>
<td>1</td>
<td>1.6K</td>
<td>13</td>
<td>69</td>
</tr>
</tbody>
</table>

Table 3.3: Statistics of IRG streams depicted in figures 3.1 and 3.2
Figure 3.1: IRG histogram of the most, 4th most, and 20th most referred items
Figure 3.2: IRG histogram of the most, 4th most, and 20th most referred items
Figure 3.3: Sequence of IRG values of the most, 4th most, and 20th most referred items
Figure 3.4: Sequence of IRG values of the most, 4th most, and 20th most referred items
Figure 3.5: Compression of IRG streams for the six traces
3.3 Temporal Correlation Charts

A large number of program characteristics can be understood by merely looking at the patterns in program behavior. For this purpose we develop a tool for trace analysis. This tool takes as its input a trace stream of the format: [TYPE, ADDRESS]* where TYPE is either I (instruction), DR (data read), or DW (data write), and ADDRESS is the memory location being accessed. In the simplest form, it plots a chart with a unique id for each address accessed versus time. If memory address a is the k^{th} unique address accessed from the start of the trace, then we assign k as a unique id to address a. At each time instant t we plot the unique id k_t corresponding to the address a_t accessed at time t. The envelope of this curve corresponds to the total number of unique locations accessed till time t. In figures 3.6, 3.7, and 3.8 we plot the charts for the six representative traces.

The following conclusions can be drawn from these charts:

1. Chow’s power law [16], which proposes that the number of unique locations accessed is an exponential function of the total number of references, seems to hold only for virtual memory references and disk references.

2. Page level and object level references (EQN10 and OO1F) access all the locations they will ever need, early in the execution. Hence their envelope in the charts increases very steeply initially, and then flattens out.

3. Object and disk traces (OO1F and RBER1) exhibit less clustering and locality of references. The traces resemble the IRM model.
Figure 3.6: CC1 and EQN10 trace plot
Figure 3.7: KENBUS1 and MUL8 trace plot
Figure 3.8: OO1F and RBER1 trace plot
3.3.1 Correlation across segments

To distinguish between the Data stream behavior, and the Instruction stream behavior, the unique id plots described above are split into two. On the positive Y axis we plot a unique id for each unique instruction, and on the negative Y axis we plot unique points corresponding to data references. We use the CC1 trace as a representative trace in this subsection for the charts. In figure 3.9 we plot the Instruction stream unique ids on the positive Y axis, and the Data stream unique ids on the negative Y axis. In table 3.4 we show the statistical difference in the I and D streams. We also compressed the I and D streams separately using the IRG method described later in chapter 4. In figure 3.10 we show the compression obtained for the I, D, and the overall trace.

Further, we divide the traces using the spatial distance among addresses. For example, in the CC1 trace, there are three obvious memory address partitions - one starting at location 2^{22}, another starting at 2^{28}, and a third one at 2^{31}. The last one growing down. It is quite obvious that the three segments corresponded to code, data, and stack respectively. In figures 3.11 and 3.12 we plot the temporal profile of these three segments for the CC1 trace.

Following properties of the segments are observed from these charts:

1. I streams are much more compressible than D streams, implying that they are more predictable. This agrees very well with what is known about program behavior.

2. A high degree of correlation can be observed across different segments of a program. Pattern changes in time are correlated across space.

An important use of the address correlation observed across various segments is in predicting access patterns, which can be used effectively for prefetching in a memory hierarchy. We exploit this predictability for cache memories and show its advantages over sequential prefetching in chapter 7.
Figure 3.9: CC1 and EQN10 trace plots for I (Instruction +ve Y-axis) and D (Data -ve Y-axis) streams

<table>
<thead>
<tr>
<th>Trace</th>
<th>Percentage of instructions in the trace</th>
<th>Percentage of distinct addresses corresponding to instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>76</td>
<td>72</td>
</tr>
<tr>
<td>KENBUS1</td>
<td>76</td>
<td>59</td>
</tr>
<tr>
<td>MUL8</td>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>EQN10</td>
<td>74</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3.4: Division of I and D streams
Figure 3.10: Compression of the I and D streams
Figure 3.11: The stack and data temporal plots for CC1
Figure 3.12: The code temporal plot for CC1
3.3.2 Program patterns as seen by the next level of hierarchy

The plots above are from the viewpoint of a CPU, i.e. virtual memory references. Modeling and analyzing these access patterns is useful for managing a cache or a primary buffer. On the other hand, the patterns seen by an Level 2 (L2) cache or a secondary store can be quite different because only the misses reach these levels of the memory hierarchy. To see these references, we mask off the unique id points in the above plots which will hit in a primary buffer of a fixed size. By varying the buffer size, the patterns of misses are observed.

<table>
<thead>
<tr>
<th>Trace</th>
<th>Primary filter size</th>
<th>Fraction of trace reaching secondary buffer (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>256 words</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1024 words</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>4096 words</td>
<td>8.5</td>
</tr>
<tr>
<td>EQN10</td>
<td>4 pages</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>16 pages</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>64 pages</td>
<td>0.6</td>
</tr>
<tr>
<td>KENBUS1</td>
<td>256 words</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1024 words</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4096 words</td>
<td>21</td>
</tr>
<tr>
<td>MUL8</td>
<td>256 words</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1024 words</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>4096 words</td>
<td>11</td>
</tr>
<tr>
<td>OO1F</td>
<td>256 objects</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>512 objects</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1024 objects</td>
<td>4.5</td>
</tr>
<tr>
<td>RBER1</td>
<td>256 disk blocks</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1024 disk blocks</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4096 disk blocks</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 3.5: Trace length as seen by the secondary buffer

In table 3.5 we present the fraction of references reaching the secondary buffer as a function of the primary filter size, and in figures 3.13 and 3.14 we present the patterns of misses for the CC1 trace.
Figure 3.13: Temporal plot of misses reaching the secondary store for filters of size 256 and 1K words
Figure 3.14: Temporal plot of misses reaching the secondary store for filter of size 4K words

3.4 Conclusions

In this chapter we gave a flavor of the kind of information and data we are interested in. We described the wide range of traces, with a wide range of properties, that are used for our trace driven simulations for this thesis. We also gave evidence correlating known predictable properties with data compression, e.g. instruction streams are supposed to be more predictable than the data streams.

In the following chapter we discuss the details and results of various trace compression techniques based on known properties of program behavior. We also discuss program properties discovered via these experiments.
Chapter 4

Trace Compaction as a Tool for

Discovering Program Regularities

4.1 Introduction

Computer programs executing for a few seconds can produce references to millions of addresses, which are captured and stored in trace files. These files are then typically used for validating memory models, studying caching and paging algorithms, and data-flow analysis for code optimization, among other applications.

Due to the large size of these traces, it is almost impossible to analyze the predictable properties of a program by merely building stochastic models. Consider the following program segments (just follow the flow of control):

```
loop1: mov M[i], %r1
       addi %r1, -1, %r1
       mov %r1, M[i]
       jmp loop1

loop2: jz gosub
       mov %r1, M[i]
       jmp loop2

gosub: movi M[a], %r2
       mov M[a], %r3
       inc %r3
       mov %r3, M[a]
       sub %r2, %r4, %r5
       jmp loop2
```

If we denote a sequential execution as \(S \) and a jump as \(J \), then `loop1` has the behavior `SSJSSJSSSJ...`. On the other hand, `loop2` can have a typical behavior as `SSJSSJSSSSSJ...` etc. Although the percentage of sequentiality in both the traces is about the same (75%), it is obvious that we will consider `loop1` to be “more sequential” than `loop2`. This intuitive reasoning is based on the fact that the sequentiality in `loop1` is more predictable than in `loop2`.

Since data compression is a metric for measuring predictability in a data stream, we can build compression schemes based on different program properties, and then
use them to compare and contrast various predictable properties of a program. Consider a simple example: A program instruction stream produces a sequence of addresses 0004, 0008, 000c, 0010, 0014, 0018, ... etc. (a sequential trace). If we simply try to compress this stream we will get no compression, since each reference is a different new symbol. On the other hand, if we take the successive differences then we get a highly regular stream which has zero entropy in the limiting case. Thus, by using the sequential access property of a program, followed by compression, we are able to establish that this particular trace is highly sequential. On the other hand if by taking successive differences we do not get high compression then we can safely conclude that the initial trace did not posses large sequentiality.

In this chapter we compare various trace compression techniques based on different program properties and analyze the differences. The different methods are:

1. **UNIX gzip**: Standard compression utility used as a benchmark.
2. **Mache**: Samples [69] technique in which successive difference in the addresses of the I stream and D stream are compressed. Here spatial locality in program behavior is exploited for compression.
3. **Page-mache**: First a program trace is subdivided into a page level trace and an offset trace for each page. This subdivided trace is then compressed using the proximity technique of *mache*. This uses spatial locality at a page as well as the offset level within a page.
4. **IRG based**: The notion of inter reference gap as defined in section 3.2 can be used to compress traces by first generating the IRG stream for each address in a trace and then compressing each one of them individually. This technique exploits the temporal locality in a program behavior.

Section 4.2 describes some related work on trace compression and the *mache* method of Samples [69]. Section 4.3 describes our methods. In section 4.4 we present the compression results and analyze the differences. Finally, in section 4.5 we present an IRG based lossy compression scheme for speeding up trace driven simulations.
4.2 Related Work and Mache Compression

The main objective of the *lossy compaction* methods has been to reduce cache algorithm simulation time. Among them, two methods are proposed by Smith [77]. The first one removes the most frequent hits in a cache, assuming all caching algorithms perform equally well for the highly referenced addresses. The second method takes samples of a trace at regular intervals with the underlying assumption that locality does not change very rapidly. Puzak [63] proposes a method called *trace stripping* in which a direct-mapped cache (called a cache filter) with a fixed block size is simulated, only the misses are stored in the final compaction. This method does not introduce errors in simulations with caches containing more sets than those in the filter. Agarwal and Huffman [2] propose a method called *blocking*, where first they apply Puzak’s cache filter, followed by a block filter which removes spatially “nearby” references by doing a *div* operation and removing low order bits from the address. Their method can produce trace size reductions of one to two orders of magnitude, and introduces simulation errors of the order of 10%.

The simplest starting points for *lossless* trace compaction are the standard Ziv Lempel [95, 96] based methods like the UNIX\(^1\) *compress* and *gzip* schemes. We use these methods as our basis for comparison.

Samples [69] proposes a method called *mache* which improved upon UNIX *compress* by a factor of at least three.

Figure 4.1: Samples’ mache technique for trace compaction

His basic idea (depicted pictorially in figure 4.1) is to use sequentiality among successive addresses of the same *label* in a trace. The *label* refers to *read*, *write* and

\(^1\) UNIX is a trademark of AT&T Bell Laboratories.
Instruction Fetch. At each step, if the currently referenced address \(a_{\text{curr}} \) is within \(\delta \) (a predefined constant called *threshold*) of \(a_{\text{prev}} \), then the difference is sent out to a UNIX utility like `compress`; here \(a_{\text{curr}} \) is the currently referenced address and \(a_{\text{prev}} \) is the previous address of the same *label* as that of \(a_{\text{curr}} \). Else \(a_{\text{curr}} \) is sent out (with a special symbol called “miss”). Thus, each symbol size is at most \(\log_2 \delta \), or of the same size as the original address (plus a small number of bits for the *label* field).

If addresses for the same *label* type are spatially near then a few bits are needed to encode them because the differences are much smaller than the actual address values which are typically 32 bits wide.

In this way their method exploits spatial locality in the Instruction and the Data streams for getting an improved compression.

4.3 Page-mache and IRG Compression

4.3.1 Page Mache

Consider \(\Sigma = <l_1 a_1> <l_2 a_2> ... <l_t a_t> \) as the original reference string. Where \(l_i \)'s are one of the three labels: *instruction fetch*, *read* from a location or *write* to a location. The \(a_i \)'s are virtual addresses from an address space of size \(N \). Unless mentioned otherwise, \(N \) is \(2^{32} \) for all the traces used in this chapter.

Consider the virtual address space partitioned in pages, each of size \(P \). Thus, there are \(N/P \) pages (assuming both \(N \) and \(P \) are powers of 2). Now split address reference stream \(\Sigma \) into two levels. Level 1 is the corresponding page reference stream (call it \(\Pi \)) and level 2 is the offset stream for each of the pages (call them \(\pi_0, \pi_1, ...\pi_{N/P-1}; \pi_i \) being the trace of the \(i^{th} \) page). For example, consider the following piece of a trace. The left column is the label value and on the right is a 32 bit memory address in hexadecimal. Page size is 4096 words:
Having generated the page and offset level traces, we compress them by using the mache technique described above in section 4.2. This technique exploits spatial locality at the word level, as well as the page level to achieve improved compression.

4.3.2 Trace Compaction using IRG

We propose our second trace compression scheme based on the IRG model introduced in section . This technique exploits the temporal regularity in program behavior for compression.

In the first step, we isolate the IRG streams of each one of the addresses in a trace. After which, each one of the IRG streams (a sequence of integer pairs - label, IRG value) are compressed individually using the UNIX `compress` or `gzip` utility. To generate the original trace, we have to uncompress and interleave the IRG streams. We illustrate the process by the following example:
4.3.3 Other Techniques

Other techniques we tried out are:

1. Splitting trace at a segment level. Instead of splitting the trace at a page level, we first identify the code, data, and stack regions of a trace, and then segment mache them. This does not work better than page mache with a large page size, since code, data, and stack are usually located far-apart in the address space.

2. Byte splitting. Since an address is composed of 32 bits, we convert it to four streams of one byte each - taking the highest 8 bits, second highest 8 bits, etc. from the 32 bit original address. This technique improves upon the standard UNIX techniques up to 45%, but does not work better than our other methods.

4.4 Results and Analysis

4.4.1 Compression Results

Four virtual memory traces CC1, KENBUS1, MUL8, one page reference trace EQN10, one object trace OO1, and one disk trace RBER1 are used for validating our algorithm.

We experiment with both UNIX compress and gzip as the compression back-end, and find the latter to be significantly superior. All the following results are
presented using gzip as the backend. For the mache method, we experiment with threshold values ranging from 32 to 512M, and find 32 to be almost always the best.

In figure 4.2 we present the compression figures for the four techniques. Even though OO1F and RBER1 traces are not memory traces, page-mache works very well on them too.

4.4.2 Analysis

For the mache technique, define a “hit” to be the case when the next symbol in the stream is within the threshold value. We look into the working of the CC1 trace compression in a detailed manner. Maching the original trace gives 78.5% hits for a threshold of 32. On the other hand splitting the CC1 trace using a page size of 4K words and a threshold of 32 gives 93% hits in the level 1 page reference stream and 86% hits in the level 2 offset reference streams. The “misses” generate symbols which are less frequent and hence are potential points for an unmatch in the pattern searching of the backend compress or gzip programs. This intuitive reason along with the fact that the page-mached streams use less bytes for a miss than themachled stream (for a page size of 4K, a miss in page stream will need 3 bytes, and in offset stream it will need 2 bytes, whereas mache uses 5 bytes for
the same) leads to more regularity in the input to the backend *compress* or *gzip* programs. This in turn, results in a better overall compression ratio.

From the compression figures, the following conclusions can be drawn:

1. Main memory traces exhibit a high degree of spatial locality. This stems from the sequential behaviour of the instruction stream. Both mache and page mache benefit from this property.
2. At the database and disk trace level, mache does not work well because the references are to a data stream. There is less locality among successive references. Further, since disk I/O's are buffered before an actual read-write occurs to the disk, almost all the sequentiality is lost.
3. The IRG streams in the main memory as well as the object and file levels exhibit high correlation. Except for MUL8, this technique always works better than mache. Thus, there is “more” predictability in the successive time instances of the same address, than in the successive references in the instruction or data stream.

4.5 Lossy Compression using IRG

Finally in this section, we propose a scheme for compressing traces in a lossy manner so as to reduce the time taken for trace driven simulations. We store each IRG string for each page accessed in a trace, separately. These separate IRG strings are then interleaved to generate the original trace. The key idea is that if the WS algorithm with window size τ is to be simulated on a trace, then all IRGs with values smaller than τ can be ignored because they do not cause a fault.

4.5.1 IRG Filter

Consider a page p having an IRG stream g_1, g_2, g_3, \ldots etc. If g_i is smaller than the WS window size τ, then the reference following the g_i^{th} gap will not cause a fault on page p, otherwise it will. Also the faults in WS with a larger window form a subset of those in WS with a smaller window. In our IRG filter scheme with parameter T, we simply remove IRG values smaller than T in each of the IRG streams of a
trace and store them in separate files. The WS algorithm with a window size greater than T, will give the same number of faults on the compacted trace as in the original trace, resulting in zero error in the fault rate.

To simulate WS with window size τ in our scheme, we walk from one IRG stream to another, counting the number of gaps that are larger than τ. The sum of such gaps is the total number of faults. To simulate LRU and LRU-like algorithms, first we have to reconstruct a single trace from the IRG streams. We do this by simply interleaving the compacted IRG streams. The reason why we expect this to work is because most of the cache and memory algorithms fault when a reference is made to the same address or page after a long interval of time – which we do preserve in our compacted IRG models. The interleaving method does involve extra work in comparison to the stack deletion method. But then it is done only once, following which multiple simulations can be done. We leave out the details of interleaving in this presentation.

Average Memory Usage: The other important parameter in a dynamic memory simulation is the average memory usage. Stack deletion and other stack based compacting methods drop the timing information and hence they give erroneous memory usage statistics when used for WS simulations. For example, simulation of WS on a stack deleted trace with $D=4$ gave an error of up to 240% for the SPIC trace.

The IRG filter with parameter T, will underestimate average memory usage if used directly, because all the gaps smaller than T are removed during compression.

Figure 4.3: Schematic of the IRG filter process. IRG'() are actually stored on the disk.
These small gaps represent intervals during which the corresponding page is memory resident. To solve this problem, all we need to maintain is the sum of all the gaps with value \(\leq T \), over all the IRG strings. This is just one extra integer and therefore the compression remains the same and we get zero error for the average memory usage in the WS simulations.

4.5.2 Compression results

We compare the IRG filter with Smith’s stack deletion method. The parameters for the two compression techniques are chosen such that nearly the same compression is obtained using both the techniques. We then simulate the WS, Page Fault Frequency (PFF) and the LRU algorithms on the compacted traces. Here we present results for the SPIC page reference trace with 512 lines per page and the CC1 page reference trace with 1024 lines per page. Similar results are obtained for other page reference traces. In tables 4.1 and 4.2, the \(\tau \) in the WS rows is the window size of the WS algorithm. The \(\theta \) in the PFF rows is the inter-fault duration threshold of the PFF algorithm. The \(M \) in the LRU rows is the size of the main memory in number of pages. Error is calculated as

\[
\left(\frac{\text{Miss Ratio(Compressed Trace)}}{\text{Miss Ratio(Original Trace)}} - 1 \right) \times 100 \%
\]

Positive error implies an overestimation and a negative error implies an underestimation. We define compression as the ratio of the number of references in the output trace to those in the original trace.

Tables 4.1 and 4.2 show results for two different compression values – one is of the order of 10%, and the other is of the order of 1%. The stack deletion method performs poorly for WS and PFF simulations in both the cases, for all values of \(\tau \) and \(\theta \) respectively, while IRG filter performs very well. On the other hand, LRU simulations after doing IRG filtering give errors up to 13.6%, and sometimes outperform the LRU simulations done on the stack deleted traces.

4.5.3 Error Analysis and Improvement

Stack deletion performs poorly for WS, VMIN and PFF simulations because the precise timing information is lost during compression. We remedy this by storing
the original clock-tick information in the compacted trace. This drops the miss ratio errors in the WS simulations for the CC1 trace to 6.8%, 14.8%, 11.3%, and 6.4% for \(\tau \) equal to 512, 1024, 2048, and 4096, respectively (stack size \(D=16 \)). Although this did improve the WS simulations, it still has the following disadvantages: (1) One more set of data (time stamps), as big as the compacted trace itself, needs to be maintained, (2) WS and VMIN miss ratio and average memory errors will still be nonzero, and (3) WS simulations will be slowed down because the sliding window algorithm will have to take into account the original clock-ticks.

IRG filtering, gives errors in LRU simulations because gap-removal followed by interleaving, can result in wrong ordering of references. Consider figure 4.4.

<table>
<thead>
<tr>
<th></th>
<th>(\tau = 512)</th>
<th>(\tau = 1024)</th>
<th>(\tau = 2048)</th>
<th>(\tau = 4096)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS VMIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau = 512)</td>
<td>0</td>
<td>-49.7</td>
<td>0</td>
<td>-73.4</td>
</tr>
<tr>
<td>(\tau = 1024)</td>
<td>0</td>
<td>-52.5</td>
<td>0</td>
<td>-92.0</td>
</tr>
<tr>
<td>(\tau = 2048)</td>
<td>0</td>
<td>-53.2</td>
<td>0</td>
<td>-91.7</td>
</tr>
<tr>
<td>(\tau = 4096)</td>
<td>0</td>
<td>-79.5</td>
<td>0</td>
<td>-90.5</td>
</tr>
<tr>
<td>PFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta = 128)</td>
<td>6</td>
<td>-45.8</td>
<td>7.2</td>
<td>-76.5</td>
</tr>
<tr>
<td>(\theta = 256)</td>
<td>10.2</td>
<td>-36.8</td>
<td>6.3</td>
<td>-80.6</td>
</tr>
<tr>
<td>(\theta = 512)</td>
<td>1.5</td>
<td>-55.7</td>
<td>-5.2</td>
<td>-88.1</td>
</tr>
<tr>
<td>(\theta = 1024)</td>
<td>-4.6</td>
<td>-67.5</td>
<td>-19.8</td>
<td>-91.6</td>
</tr>
<tr>
<td>LRU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M = 32)</td>
<td>-1.5</td>
<td>0.6</td>
<td>-13.6</td>
<td>0.2</td>
</tr>
<tr>
<td>(M = 64)</td>
<td>4.0</td>
<td>-0.1</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>(M = 128)</td>
<td>1.4</td>
<td>-0.1</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>(M = 256)</td>
<td>-1.2</td>
<td>0.1</td>
<td>-1.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 4.1: Error in fault rate while simulating WS, PFF and LRU on the compacted traces for the SPIE trace.
Table 4.2: Error in fault rate while simulating WS, PFF and LRU on the compacted traces for the CC1 trace

<table>
<thead>
<tr>
<th></th>
<th>≈11.5% Compression</th>
<th>≈2.7% Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRG Filter</td>
<td>Stack Deletion</td>
</tr>
<tr>
<td></td>
<td>$T=12$</td>
<td>$T=256$</td>
</tr>
<tr>
<td>Comp=$11.5%$</td>
<td>Comp=$11.6%$</td>
<td>Comp=$2.8%$</td>
</tr>
<tr>
<td>WS VMIN</td>
<td>$\tau = 512$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\tau = 1024$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\tau = 2048$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\tau = 4096$</td>
<td>0</td>
</tr>
<tr>
<td>PFF</td>
<td>$\theta = 128$</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>$\theta = 256$</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>$\theta = 512$</td>
<td>-4.3</td>
</tr>
<tr>
<td></td>
<td>$\theta = 1024$</td>
<td>11.1</td>
</tr>
<tr>
<td>LRU</td>
<td>$M = 64$</td>
<td>-2.7</td>
</tr>
<tr>
<td></td>
<td>$M = 128$</td>
<td>-2.2</td>
</tr>
<tr>
<td></td>
<td>$M = 256$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$M = 512$</td>
<td>0</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9 10 11 Time

IRG(x): x x x x x
IRG(y): y y y y y

Original trace

Compacted trace (T=2)

Figure 4.4: Wrong ordering in the trace due to interleaving.

After doing IRG filtering with $T=2$, the two original references $y(7)$ and $x(8)$ become $x(6)$ and $y(7)$ respectively. We remedy this problem by adding precise timing information as in the stack deletion improvement above. This worsens compression (doubles it) but the LRU error becomes less than 3.7% for all the simulations described in tables 4.1 and 4.2.
4.6 Conclusions

We effectively showed via compression that references at various levels of the memory hierarchy have predictable characteristics. We discovered that spatial locality is not only present within the code, data, and stack segments, but also at the page level within each of these segments. Temporal locality is also shown to exist via IRG compression. In addition, we showed that by using lossy IRG compression, trace driven simulations for memory management algorithms can be speeded up by two orders of magnitude.

In the next chapter, we further exploit the predictive characteristics of IRGs via memory replacement algorithms. We empirically show significant performance improvements over other known techniques for replacement.
Chapter 5

Inter Reference Gap Modeling

5.1 Introduction

There are two broad classifications of locality. *Temporal locality*, which proposes that an address just referred to, has a high probability of getting referred to in the near future; and *spatial locality* which says that an address nearby in memory space to the one just referred to has a high probability of being referenced in the near future. Use of the temporal locality principle is done for deallocating memory, e.g. the least recently used (LRU) cache replacement policy replaces the cache block which hasn’t been referred to for the longest duration. This is done assuming that the chances of the least-recently-used block being referred to again, are very low. Similarly, the working-set (WS) principle removes pages in a virtual memory system if they haven’t been referred to for a certain predefined amount of time (WS window size).

Spatial locality, on the other hand, is exploited to transfer chunks of data, larger than required, between successive levels in a memory hierarchy. For example, when a cache miss occurs, a block (usually much larger than a single word) is brought in from the main memory. The block, in addition to the required memory word, contains addresses which are physically adjacent to the one just referenced. Another example is the sequential prefetching strategy, which presumes spatial locality of reference when doing prefetching.

In this chapter, we study temporal locality using a wide array of program execution traces. A trace, in general, is a log of all the events that occur during a program run, but in our case we only look at all the memory addresses that get referenced. This is sufficient because temporal locality is concerned only with the addresses. Time is *virtual*, which means that each memory reference is assumed
to happen at a clock tick, the real absolute time between consecutive references is immaterial.

For the sake of completeness, we repeat the following definition: We define \textbf{IRG} (Inter-Reference Gap) for an address in a trace, as the time interval between successive references to that same address. The IRG stream for an address in a trace, is the sequence of successive IRG values for that address. For example, if an address \(a\) gets referred to at time \(t_1, t_2, t_3, t_4\) and so on, then the IRG stream for \(a\) will be \(t_2-t_1, t_3-t_2, t_4-t_3\) and so on. These time values (\(t_i\)'s) are virtual as explained before, and we are not measuring the absolute time at which the access is made.

Each of the IRG streams is modeled using an order \(k\) Markov chain. The motivation for using a \(k\)-th order Markov chain stems from the PPM compression technique \cite{86} which models the data source as an order \(k\) Markov chain. Using the past IRG values, these models are modified online and a prediction technique is defined to estimate the future IRG values. The prediction technique, and hence the model is validated in the following two different ways:

First, it is validated by applying it in the memory replacement process. Such prediction based algorithms, although space and time wise expensive, give an idea of how much improvement can be made in the miss ratios by modeling temporal locality. We then explore for a practical solution and propose an explicit predictor based replacement algorithm that works well in practice and does not consume prohibitive amount of space.

Second, we apply the prediction technique for improving variable memory management algorithms. Here both space and time have to be optimized for a process. Using our prediction model, we improve the space-time product over existing techniques like the Working Set (WS) and the Page Fault Frequency (PFF) algorithms.

We present our work in two parts. In the first part, we deal only with the IRG modeling, in the following way. In section 5.2 we describe some simple properties of the IRG streams and present the motivation for studying them in detail. In section 5.3 we describe related work on program modeling – both analytical and empirical, and show why it is inadequate for our purposes. In section 5.4 we formally describe
our model and the prediction technique based upon that.

In the second part, we present the two validations of our model. First, in section 5.5 we apply the prediction techniques to fixed memory replacement algorithms and present the improvements using trace driven simulations. Second, in section 5.6 we describe a new dynamic memory algorithm based on IRG modeling and show why it is better than the current algorithms.

5.2 Motivation for IRG Modeling

In chapter 3 we saw some simple characteristics of the IRG streams. All IRG streams, in all our traces showed similar characteristics, i.e. (a) a multimodal envelope of the distribution, (b) certain IRG values never occur (vertical gaps in the histogram plots), and those that do occur form a small fraction of the possible IRG values, (c) a high degree of skew in the frequencies, and (d) high correlation among successive IRG values. We now address the question of what we aim to achieve by studying IRG streams of a program execution.

First, IRG stream modeling isolates temporal locality from spatial locality. This is because it ignores the effect of other addresses and looks only at the past behavior of a particular address. Analysis of all the IRG streams in a trace will give all the information there is, about temporal locality of the whole trace. This has direct impact on memory replacement and deallocation algorithms.

Second, we expect a small fraction of all the IRG streams to capture the temporal behaviour of the entire trace. This is due to the fact that memory references are correlated, and a very small subset of addresses get referenced most of the time. Hence a few IRG streams can approximate the whole trace. This is useful in trace compaction and speeding up of trace driven simulations of memory management algorithms.

IRG stream modeling can provide a way to capture what we call *inter-cluster locality*. Addresses that are spatially far apart show correlation in certain cases. For example, between the code and the data address spaces, which are spatially disjoint, there is a direct correlation between an instruction word and the data memory...
word that is fetched upon its execution. Neither spatial locality nor temporal locality can capture this behavior, but by finding a correlation between different IRG streams we can model this property automatically. This can be utilized for improving prefetching algorithms, e.g. Chen and Baer [13] improve prefetching by just using the correlation between the successive operands of an instruction.

Changes in IRG stream behavior can be used to signal phase changes in a program. Intuitively speaking, a visible change in the IRG patterns of the frequently accessed variables, usually implies a global behavioral change. For example, consider the execution of a loop in a program, where a loop index is accessed every time at the top of the loop. While continuously looping, if a switch happens from rapid accesses (small values of IRGs) to infrequent accesses (large values of IRGs) to the loop index, this will imply that either the number of variables accessed inside the loop body has increased, or the same variables are getting accessed in a different pattern, inside the loop. In either case, it is a shift in the program behavior. If such phase changes are detected early enough via IRG modeling, then they can be applied to prefetching and avoiding cold misses at the onset of new program phases.

Lastly, in certain cases IRG streams are the only way to find performance related parameters. For example, in a distributed system, because of lack of knowledge of the global snapshot, we can only monitor each object separately. For example, we can only record the time instants a particular resource is accessed, which is nothing but the IRG stream of that particular resource.

5.3 Previous Work on Program Modeling and IRGs

Most of the work in modeling temporal locality can be classified into two broad categories. First are analytical models which are tractable and yield interesting results, but their precision is questionable. Other program models are more empirical and they try to capture some behavioral characteristics of a program. We discuss both of them, and try to show why they are inadequate for modeling IRGs.
5.3.1 Analytical Modeling

The simplest mathematical model is the independent reference model (IRM). In this model, each address has a fixed reference probability and references are mutually independent. In other words, the string of references is modeled as a sequence of i.i.d. random variables. King [47], Aven et al [5], Rao [64], among others, use this model to study performances of replacement algorithms and get closed-form expressions for the miss ratios. In order to use this model for IRG modeling, consider address i. Assuming i is accessed at time t, the probability that it will be accessed next at time $t+k$ is $Pr(\text{IRG}_i = k) = p_i(1 - p_i)^{k-1}$. This implies that in all IRG streams, every IRG value has a finite probability of occurrence. In addition, IRG values in a stream are independent of each other and have a unimodal distribution. Spirn’s [82] generalized locality model (GLM), also has the same drawbacks because it is made up of locality phases, each of which is an IRM. Thus, IRM based techniques are inadequate for capturing any of the temporal characteristics shown in section 5.2.

Opderbeck and Chu [58] propose a renewal model for program behavior. They model IRGs using continuous distributions which decay exponentially with time. In other words, the longer an address remains unreferenced, the smaller its probability of reference becomes. This will give a nonincreasing IRG value distribution, again not agreeing with our observations.

The stack model of Mattson et al [52] and its derivatives [70, 82, 89] try to capture temporal locality by generating reference strings via a probabilistic access to an LRU stack. If we look at the IRG streams in this model, all of them have the same behavior in the asymptotics. Second, each of the successive IRG values are independent and each of them can possibly take on any value. Finally, if the stack probabilities are nonincreasing, the IRG distribution will also be nonincreasing. None of these properties agree with our observations.

Stochastic models of Franklin and Gupta [30] model program behavior as a probabilistic transition matrix. As long as there is exactly one node per address in the transition graph, we will get independent successive IRG values. On the other
hand, if we have program transition graphs [30], we can get IRG streams which
might agree with our observations. But transition graphs are derived from the
programs themselves, and not from the traces. So in order to build an IRG model in
such a situation, first a transition graph will have to be derived from the trace, which
is similar to inferring a Markov chain from its output. This is an open problem in
the area of Information Theory [68], hence not applicable for IRG modeling.

5.3.2 Empirical Modeling

Almost all empirical models which are geared for capturing temporal locality do not
focus on each address separately. They see addresses as sets and try to model the
behavior of these entire sets. Thus, they are at a “macro-level”, as opposed to our
model which is at a “micro-level”.

Madison and Batson [7, 50] propose an LRU stack based model called the
bounded-locality-interval (BLI) model. It defines temporal locality as a series of
hierarchies S_k using the time periods during which the top k addresses of the LRU
stack remain unchanged. Since only the durations of no-change are modeled and
address-specific information is ignored, IRG modeling can not be extrapolated from
this scheme.

Denning’s working set [23] models temporal behavior using a threshold τ.
Temporal locality is represented as a two state model where an address is either in
the memory or it is not. The former occurring when there is at least one reference
to this address in the last τ memory accesses. This is a very simple approximation
which “forgets” an address’s IRG behavior once it is not referenced in the last τ
accesses.

Chow’s power law [16] and its extension by Thiebaut and others to fractal
behavior [88, 54] characterizes temporal locality at a macro level. Chow proposes
that the miss ratio of a finite cache almost universally obeys the rule $m = A \times c^\theta$
where m is the miss ratio, c the cache size, and A and θ are constants. Thiebaut et
al extend this idea to model program behavior as a fractal random walk over a one
dimensional lattice (the memory), with the jumps having a hyperbolic distribution.
Singh et al [71] also model temporal locality using a power law. Although these ideas
provide models which can be completely specified by a small set of parameters, they can not describe the behavior of the IRG streams, making them irrelevant in this discussion.

Choi and Ruschitzka [15] model database behavior as a sequence of phases. Each phase is denoted by a set-duration pair \((L_i, \tau_i)\) where \(L_i\) is a set out of which \(\tau_i\) references are made in the \(i^{th}\) phase. This is similar to Spirn’s GLM mentioned above and hence has the same drawbacks for modeling IRGs. In addition, reference behavior within a phase is not modeled, so specific timing information for a particular address is unknown.

A model proposed for databases by Easton [27] models each IRG stream individually. Each IRG stream is modeled as a two mode exponential distribution, i.e. an IRG takes a value from one of the two distributions depending on which mode – “cluster-mode” or “gap-mode”, the address is in. Although more powerful than the IRM model, all it does is split IRM into two modes, and hence has the same modeling drawbacks as the IRM.

5.4 IRG Model and Prediction

In this section we formally present our IRG model and explain how it is used for future reference estimation. We also present the correlation between data compression algorithms and our prediction techniques.

Consider the IRG stream of an address \(a\) in a program execution \(P\). Call it \(IRG_P(a)\). If address \(a\) gets referenced at virtual times \(t_1, t_2, t_3\) and so on, then,

\[
IRG_P(a) = X_1 X_2 X_3 \ldots \text{ where } X_i = t_i - t_{i-1}, \ t_0 = 0
\]

Each of the gap values, \(X_i\), is treated as a symbol generated from an unknown source \(IRG_P(a)\). These \(X_i’s\) take on values in the range \([1, \infty)\), although in a trace of length \(T\), the largest IRG value possible is \(T\). Also, in a finite trace, we ignore the last access of an address because the IRG following that last access is unknown.

We model \(IRG_P(a)\) for each \(a\), as a \(k^{th}\) order Markov chain, i.e.

\[
Pr\{X_t = x_t | X_i = x_i, 1 \leq i \leq t-1\} = Pr\{X_i = x_i | X_i = x_i, t-k \leq i \leq t-1\}
\]
Thus, X_t is dependent on the last k IRG values, and each distinct k tuple $<X_{i1}X_{i2}...X_{ik}>$ forms a state in the Markov chain. To estimate X_t, given all the past X_i’s ($1 \leq i \leq t-1$) we use a frequency count argument over Markov chains of all orders from 0 to k.

Let the current observed IRG $P(a)$ be $X=X_1X_2...X_{t-1}$. A substring X^q_p is the sequence of symbols occurring in the positions $X_pX_{p+1}...X_q$ ($1 \leq p \leq q \leq t-1$) of X. We say X^q_p occurs at position j in X, if X^{j+q-p}_j matches X^q_p symbol by symbol ($1 \leq j \leq t-1-(q-p)$).

The level z predictor ($0 \leq z \leq k$) works assuming a zth order Markov chain.

Level z predictor: We estimate the probability of the next symbol X_t being x, as the fraction of times symbol x occurred following the substring X^q_{i-1} in X^i_{-1}.

Let N_{t-1} be the number of occurrences of substring X^q_{i-1} in X^i_{-1}. Let m_x be the number of occurrences of substring $X^q_{i-1}+x$ (denotes concatenation) in X^i_{-1}. Then $Pr\{X_t = x | X_i = x_i, 1 \leq i \leq t-1\}$ is estimated by

$$\hat{Pr}\{X_t = x | X_i = x_i, 1 \leq i \leq t-1\} = \frac{m_x}{N_{t-1}}$$

where N_{t-1} is assumed to be non zero. Otherwise level z predictor is undefined.

So the level 0 predictor assumes IRG$_p(a)$ to be an i.i.d. source, and the level 1 predictor is a standard Markov chain. The motivation behind these multiple layers of predictors is to have a system which can make a “good” guess even when the kth level predictor fails. Failure of a level k predictor can happen in case X^q_{i-1} never occurs in X (N_{t-1} is zero). It can also happen that we “learn” some information about X_t which does not “agree” with the level k predictions, e.g. we might “learn” that X_t will be none of the symbols with nonzero probability estimates at level k. In such a case, we will switch to level $k-1$ for prediction, and recurse to lower levels if needed.

Our technique differs from the PPM data compression [86] predictor on one point. The difference is that, unlike PPM, at times, we can “learn” that a certain IRG value will not occur even before it is completely known, and hence can switch to a lower level predictor. For example, supposing level k predictor for IRG$_p(a)$ estimates X_t to be one of the values – { 2, 8, 12 } (say), with some finite probabilities. Now, if the time since the last reference to a is already greater than 12, then we “know” that the level k estimator will fail, so we can switch to the level $k-1$ predictor.
Example: We give an example to illustrate our model and the prediction method. Consider the following page reference string “bcaababbaccacabacda”. Page a is referenced at times $3, 4, 6, 9, 12, 14, 17, 19, 22$. The IRG string for a is thus, $X^o_1 = 3 1 2 3 3 2 3 2 3$. For the level 2 predictor, we look at the past occurrences of the two most recent IRG values (2 3). This gives us the following probability estimates:

Level 2: $\tilde{P}_r\{X_{10} = 2|X_8 = 2, X_9 = 3\} = 0.5$,

$\tilde{P}_r\{X_{10} = 3|X_8 = 2, X_9 = 3\} = 0.5$

Level 1: $\tilde{P}_r\{X_{10} = 1|X_9 = 3\} = 0.25$, \(\tilde{P}_r\{X_{10} = 2|X_9 = 3\} = 0.5\),

$\tilde{P}_r\{X_{10} = 3|X_9 = 3\} = 0.25$

Level 0: $\tilde{P}_r\{X_{10} = 1\} = 0.11$, $\tilde{P}_r\{X_{10} = 2\} = 0.33$, $\tilde{P}_r\{X_{10} = 3\} = 0.55$

5.5 IRG Based Memory Replacement Algorithm

In this section, we present the first application of our IRG model which is to improve memory replacement algorithms. We first describe the related work in this area, then our algorithm, followed by simulation results. At the end of this section we describe a page replacement algorithm which uses an approximation of the IRG model and is also practical.

5.5.1 Introduction

In the steady state of process execution, the higher level of memory is full, and a miss implies not only a fetch but also a replacement; an address must be removed from the higher level. The address to be replaced is decided by what is called the **replacement algorithm**. Various studies of memory reference models and simulations of program traces have been done to determine a good replacement algorithm. Belady [19] proposes a forward distance based optimal algorithm, called OPT or MIN, for replacement in a fixed memory scenario. It works under the assumption that all the future references are known beforehand. Whenever an address needs to be replaced, the algorithm finds out the one that is referenced farthest in the future (out of those in the memory), and replaces that one. If an address won’t be referenced ever in the future then its future reference time is assumed to be at ∞.
So the forward distance of an address x in reference string $r_1, r_2 \ldots r_t \ldots$, at time t is defined as:

$$d_t(x) = \begin{cases} k & \text{if } t_{t+k} \text{ is the first occurrence of } x \text{ in } r_{t+1}, r_{t+2}, \ldots \\ \infty & \text{if } x \text{ does not appear in } r_{t+1}, r_{t+2}, \ldots \end{cases}$$

Thus, the address with the largest d_t value is replaced. Previous prediction based techniques for replacement use heuristics, in a loose way, to pinpoint addresses that need to be retained, and those that can be replaced. We use our temporal locality models to predict forward distances more precisely and apply them to memory replacement algorithms. We validate our model using a variety of samples from cache traces, page reference traces, and CAD / database traces. The principles of predictability, which we propose, in general, hold at all these levels of memory hierarchy.

5.5.2 Related Work

All classic replacement algorithms try to estimate the address with the longest forward distance, using some information from their past behavior. Forward distance of an address is the number of time units, from the current time, when that address will be referred to next. This is done because Belady’s MIN algorithm (also called OPT in the literature), which is off-line optimal for the number of misses for a fixed size memory, replaces the address with the largest forward distance.

LRU estimates that the address with the longest backward distance (analogously defined like the forward distance) has the largest forward distance. LRU-K [57], estimates the address with the k^{th} earliest reference to be the one with the largest forward distance. (Note – LRU-1 is the same as LRU). Least frequently used (LFU) replaces the address with the smallest number of references. This is the same as estimating the forward distance by averaging all the IRGs of the past. First in first out (FIFO), uses the time since the arrival as an estimate for the forward distance. Other replacement algorithms like A_{1}^{n}, CLIMB [5] and frequency based replacement (FBR) [66] use an underlying stack, which implies an LRU kind of forward distance estimation. Only random replacement (RR) does not try to estimate the forward distance. It works on the principle that a random replacement will rarely throw out a frequently used address because they are very small in number.
5.5.3 IRG Replacement Algorithm

Assume that the memory can hold only M addresses (an address, as mentioned before, could be a cache block, a page or a data object depending on the context) at a time. For each address, we maintain IRG stream information as will be needed by the underlying predictor. Upon reference to an address x at time t_{now}, assuming x was referred to last at time t_{prev}, we get the new IRG symbol $t_{\text{now}} - t_{\text{prev}}$ for x's IRG stream. Procedure access() (figure 5.1) is invoked every time a memory access is made. If the requested address a is found in memory, a hit occurs, otherwise it is a miss. When a miss occurs, procedure access() invokes another routine $\text{estimate_farthest()}$ to find the address with the highest forward predicted distance. If the process of estimation does not succeed, the least recently used address is replaced. Otherwise, the address with the largest predicted forward distance is replaced. In addition, upon access to a, the latest IRG symbol of a's IRG stream is generated, which is taken care of by the $\text{update_irg_stream()}$ procedure. Figure 5.1 has the pseudo code.

The procedures $\text{update_irg_stream()}$ and $\text{estimate_forward()}$ are dependent upon the order k of the underlying model. When $\text{update_irg_stream}(x)$ is invoked, a new IRG symbol is added and it updates frequency counts for all the level z predictors ($0 \leq z \leq k$). Figure 5.2 has the pseudo code for these subroutines.

Array $\text{Count}[C, s]$ maintains frequencies of symbols occurring after substring C. It takes two parameters, a context (C) and a symbol (s). C is a sequence of symbols, following which s occurs. C is NULL when u is 0 in the $\text{update_irg_stream()}$ procedure. Procedure $\text{estimate_forward()}$ uses level z predictors of all orders from $z=k$ to $z=0$, till it finds an IRG symbol with value greater than the current gap. If nothing appropriate is found, it returns a FAIL.

This technique requires frequency counts for all possible context-symbol pairs, for all contexts of length 0 to k. A context tree, as defined in [65] is used to keep these counts. The tree has k levels and the number of children per node is at most i, where i is the number of distinct symbols in the IRG stream. At each node a frequency table of size at most i is maintained, making the space requirement $O(i^{k+1})$. At
PROC access(address a, memory M)
 update_irg_stream(a);
 IF(a not in M)THEN
 x = estimate_farthest(M);
 replace x by a;
 ENDIF
 bring a to TopOfStack of M;
 RETURN a;
ENDPROC

PROC estimate_farthest(memory M)
 max = 0; pmax = NULL;
 FOR each x in M DO
 y = estimate_forward(x);
 IF(y == FAIL)THEN
 RETURN LRU(M);
 ENDIF
 IF(y > max)THEN
 max = y;
 pmax = x;
 ENDIF
 ENDFOR
 RETURN pmax;
ENDPROC

Figure 5.1: Pseudo code for the IRG replacement algorithm.

each update_irg_stream() \(k \) frequency counts are incremented and a pointer set at the appropriate leaf at level \(k \). Hence the process of estimate_forward() involves only a search in the frequency tables along a path from a leaf to the root. We only deal with models of order smaller than three in our simulations, in which case space is not prohibitive.

5.5.4 Description of Experiments

In table 5.1 we give the details of the representative traces used in our simulations. We do our simulations with the 0th and the 1st order predictors, labelled as IRG0 and IRG1 in the plots. For comparison purposes we also simulate least recently used (LRU) and the off-line optimal algorithm (OPT).
PROC update_irg_stream(address a)
/* S: S_1...S_{v-1} be a’s current IRG stream. S_v be the new IRG symbol added. */
 FOR u=k to 0 DO
 Count[S_{v-u}...S_{v-1},S_v]++;
 ENDFOR
ENDPROC

PROC estimate_forward(address a)
/* S: S_1...S_v be a’s current IRG stream. G be the current gap i.e. the time since last reference to a. */
 FOR u=k to 0 DO
 find d, (d > G) which has the highest frequency count among Count[S_{v-u}...S_{v-1},D];
 IF(such d is found)THEN
 RETURN d-G;
 ENDFIN
 ENDFOR
 RETURN FAIL;
ENDPROC

Figure 5.2: Pseudo code for the IRG model update and the prediction subroutines.

With the ATUM traces and the KENS trace, which are main memory references, we simulate a fully associative cache with block size of 4 words. The IRG modeling is done with respect to the block references rather than each memory word having its own IRG model.

For the DEC0 trace we also simulate the 2nd order predictor (IRG2). In addition, we compare the performance of IRG algorithms with the LRU-K algorithms [57], for K equal to 2 and 3. We present these results in a chart (table 5.2) instead of a graph, for the sake of clarity.

For the rest of the ATUM and the KENS traces, figure 5.3 has the miss ratio plots for the OPT, LRU, IRG0 and IRG1 algorithms. The cache size (in number of memory bytes) is on the X-axis and the Y-axis has the miss ratio.

Two important features stand out in these experiments. First IRG1 is only marginally superior to IRG0. In fact, in some cases it performs worse than IRG0.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Trace Length</th>
<th>Total unique references</th>
<th>Number</th>
<th>Normalized by trace length (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>Gnu C compilation</td>
<td>1M</td>
<td>43K</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>DEC0</td>
<td>DECSIM, a behavioral simulation of some cache hardware</td>
<td>362K</td>
<td>19K</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>KENBUS1</td>
<td>Kenbus1 SPEC92 benchmark simulating 20 users</td>
<td>4.4M</td>
<td>161K</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>MUL8</td>
<td>VMS multiprogramming at level 8 : spice, alloc, a Fortran compile, a Pascal compile, an assembler, a string search in a file, jacobi and an octal dump</td>
<td>429K</td>
<td>33K</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>EQN10</td>
<td>eqntott SPEC92 benchmark</td>
<td>118M</td>
<td>2.3K</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>OO1F</td>
<td>OO1 database benchmark running on DEC Object/DB system with forward traversal of relations</td>
<td>12K</td>
<td>0.52K</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>RBER1</td>
<td>Berkeley SPRITE disk trace</td>
<td>413K</td>
<td>40K</td>
<td>9.7</td>
<td></td>
</tr>
</tbody>
</table>

Virtual memory references

Page references

Object references

Disk trace

Table 5.1: Description of traces used for IRG simulations.

The main reason for this is that it adapts at a slower rate to a drastic change in an IRG stream than does IRG0. Thus, when some IRG stream changes its pattern drastically, IRG1 makes more incorrect predictions than IRG0.

Second, for larger cache sizes, IRG0 and IRG1 tend away from OPT towards LRU. The main reason for this is the inability of IRG0 and IRG1 to predict for large sized caches. When the cache becomes larger, more and more blocks with very few references (very small IRG history) are present, so the predictors return a FAIL, most of the time. In this case we replace the least recently used block. On the other
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Cache Size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2K</td>
</tr>
<tr>
<td>LRU</td>
<td>0.4290</td>
</tr>
<tr>
<td>LRU-2</td>
<td>0.4532</td>
</tr>
<tr>
<td>LRU-3</td>
<td>0.4626</td>
</tr>
<tr>
<td>IRG0</td>
<td>0.3860</td>
</tr>
<tr>
<td>IRG1</td>
<td>0.3804</td>
</tr>
<tr>
<td>IRG2</td>
<td>0.3780</td>
</tr>
<tr>
<td>OPT</td>
<td>0.3125</td>
</tr>
</tbody>
</table>

Table 5.2: Miss ratios for DEC0 trace under a fully associative cache.

On a side note, the reason why LRU-K performs poorly is that it assumes an Independent Reference Model as the underlying program model. In practice this is not true since our algorithms, which assume a discrete and predictable IRG stream, perform better.

We simulate a paged memory environment for the EQN10 page reference traces and apply our IRG algorithms for replacement. The number of page frames is varied from 2 to 64 for this simulation. Notice that although with a very small number of page frames, a very low miss ratio is obtained, our method still improves upon LRU. Figure 5.4 shows the comparison of the LRU, IRG0, IRG1 and OPT algorithms for the EQN10, OO1F and RBER1 traces. The X-axis has the size of the memory in number of pages, objects and disk blocks, respectively. Notice that for OO1F, although LRU does not have a “smooth” curve, IRG0 does, because it “mimics” OPT more accurately than LRU. We do not show IRG1 for the OO1F and RBER1 traces because it is almost identical to IRG0.

Finally in table 5.3 we summarize the improvement in the miss ratio over LRU. For the virtual memory traces we only present the results for the associative cache, although for set-associative caches the improvements are slightly higher.
5.5.5 Implementation Overheads

The replacement decisions using the IRG strategy have large time and space overheads. An IRG model has to be maintained for each one of the referenced addresses. In addition, at every access the IRG model of the referenced address has to be updated. On the prediction side, at each miss, each of the IRG models have to be
queried to predict the address with the farthest expected reference.

Table 5.4 describes the space-time overheads for the simulations from subsection 5.5.4. For the CC1, KENBUS1 and MUL8 traces the overheads are for the associative cache simulations. We normalize IRG time with the time taken for the LRU simulations. Absolute time taken by the IRG methods decreases with cache size, because a larger cache implies a smaller number of misses and hence a fewer
<table>
<thead>
<tr>
<th>Trace</th>
<th>Miss ratio improvement of IRG0 over LRU (%)</th>
<th>Max. improvement</th>
<th>Avg. improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td></td>
<td>14.5</td>
<td>9.8</td>
</tr>
<tr>
<td>KENBUS1</td>
<td></td>
<td>13.1</td>
<td>8.5</td>
</tr>
<tr>
<td>MUL8</td>
<td></td>
<td>24.5</td>
<td>17.7</td>
</tr>
<tr>
<td>EQN10</td>
<td></td>
<td>12.4</td>
<td>7.2</td>
</tr>
<tr>
<td>OO1F</td>
<td></td>
<td>37.5</td>
<td>15.2</td>
</tr>
<tr>
<td>RBER1</td>
<td></td>
<td>7.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Table 5.3: IRG improvement

<table>
<thead>
<tr>
<th>Trace</th>
<th>Average IRG0 overhead</th>
<th>Average IRG1 overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Space (bytes)</td>
<td>Time (Relative to LRU)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Per address</td>
</tr>
<tr>
<td>CC1</td>
<td>5.9M</td>
<td>154</td>
</tr>
<tr>
<td>KENBUS1</td>
<td>5.9M</td>
<td>99</td>
</tr>
<tr>
<td>MUL8</td>
<td>2.1M</td>
<td>81</td>
</tr>
<tr>
<td>EQN10</td>
<td>0.44M</td>
<td>481</td>
</tr>
<tr>
<td>OO1F</td>
<td>115K</td>
<td>225</td>
</tr>
<tr>
<td>RBER1</td>
<td>1.6M</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 5.4: IRG simulation overheads

number of replacement decisions. The time here is the simulation time and should not be mistaken for the cache access time. These numbers merely depict the overheads of IRG methods over LRU. The space shown is the average number of words needed per IRG model. This space is not always needed because once an address is replaced, its IRG model can also be removed from the higher level memory.

5.5.6 Some Practical Implementations

As observed in our experiments, order 0 model achieves improvements up to 37.5% over the LRU miss ratio. In order to implement a replacement algorithm with the order 0 predictor, we need to keep frequency counts of all possible IRG values that occur in the past for each of the addresses. In addition, at each replacement decision, prediction needs to be done for each of the resident addresses. Both of these tasks
make it impossible to have a practical solution even while using the 0th order IRG model. To alleviate these problems, we considered some approximations, and in the following describe the effect of those approximations using trace driven simulations.

Space reduction: First we address the storage issue. If counters for each IRG value are kept, we will need space proportional to the number of different IRG symbols that occur. This will imply a very low space requirement for the rarely referenced addresses. But this argument will not hold when memory is small and most of the addresses in the memory are the highly referenced ones, implying a large overall space requirement. To circumvent this problem, we can approximate IRG values. We cannot do a simple divide operation to approximate the IRGs because small IRG values are important in modeling loop behavior etc. On the other hand, a large enough IRG value will usually make an address a candidate for replacement, so two large IRG values can be approximated by one. A simple strategy will be to approximate an IRG value by its logarithm, i.e. approximate IRG \(g \) by \(2^{[\log(g)]} \). Figure 5.5 shows the effect of approximating IRG using the logarithmic scheme. For the CC1 trace, replacement decisions are with respect to an associative cache, and for EQN10, they are for a paged memory system. The X-axis shows the memory size, and the Y-axis has the increase in miss ratio for logarithmic approximation of IRG0. We denote the IRG0 approximation by LOG0.

![Figure 5.5: Miss ratio comparison of \(\log_2 \) IRG approximation for order 0](image)

For the CC1 trace, IRG0 uses 38.5 words on the average, per IRG0 model. On the other hand LOG0 uses only 12.2 words per model. In comparison, the block size
is 16 bytes, making this LOG0 scheme impractical for cache memories. Additionally, cache memories are usually direct or 2–way, in which case replacement decisions are not that critical.

For the EQN10 trace, 120.3 words are used per IRG0 model, whereas the logarithmic approximation uses only 31 words per model. Moreover, the number of bits needed to code logarithmic IRG values are even smaller. Another observation is that LOG0 sometimes performs better than IRG0. So, for these kinds of numbers, a simple implementation is to keep about 100 bytes reserved in each page (each page being 4K bytes) and use the LOG0 model for replacement. Other schemes like LFU, LRU-K [57] also use some extra bytes for each page.

Other methods for saving space are:

1. Keeping an address’s IRG model only for the duration that address is in the memory. Whenever an address is replaced, its IRG model is reset. This method does not work well (tends away from OPT towards LRU) because deleting the entire IRG model of the replaced address implies less information for the predictor. This results in a greater number of no predictions (FAILs) and hence more LRU replacements.

2. Keeping only a few of the frequent IRG values and approximating the rest. This method does improve upon LRU but does not work better than the logarithmic approximation.

3. Keeping only the IRG values of the last k (a predefined threshold) IRG symbols. This saves on space for a small enough k, but does not work better than logarithmic approximation for too small a k. This also has a larger overhead of recomputing the IRG frequencies every time a new IRG symbol is encountered.

Time reduction: Extra time is spent both on a hit, as well as on a miss. Upon a hit on address a, a new IRG value gets generated for $IRG_P(a)$. The frequency count corresponding to this value needs to be incremented. Also, a pointer keeping track of a’s last reference needs to be updated. Upon a miss, in addition to the above steps, predictions need to be carried out for all the addresses in the memory. The
overhead in a hit is very small so we only consider ways to save time whenever a replacement decision has to be made.

We know that LRU is a good replacement algorithm, in general. So, we keep our memory as an LRU stack. At the time of replacement, we choose one of the \(m \) lowest addresses in the LRU stack for replacement. We query only these \(m \) IRG models for the farthest. We simulate a fully associative cache with 4 byte block size for our traces. Figure 5.6 shows the miss ratio as a function of the fraction of IRG models queried. 0\% is the same as LRU and 100\% is the original IRG0. For example, 20\% querying for a cache size of 4K words (1024 blocks) implies that 205 least recently used IRG models are queried, instead of all the 1024.

![Image of Figure 5.6: Miss ratio variation with % of resident IRG models queried for replacement for a cache of size 16Kb](image)

The second graph in figure 5.6 describes the time overhead in simulations using the selective querying process. Time is relative with respect to the LRU simulation. Again, these numbers are merely for quantizing the overheads of prediction and are not to be mistaken for the real cache access time. As the size of query becomes larger, the time taken also increases. On the other hand, with increase of cache size, the time taken usually decreases because there are fewer misses and hence, fewer replacement decisions. An interesting observation is that the miss ratio is not the best for 100\% (=IRG0) querying. This happens because in large caches there are blocks with IRG models having less information. In such case, it is better to use a combination of the LRU ranking and the IRG model.
As expected, time overhead for set associative caches is small since only a small number of cache blocks need to be queried. For example, for the CC1 trace the time overhead for IRG0 is 3.2 for a 2-way set associative cache. Similarly for MUL8 it is 2.2.

5.5.7 A Practical IRG Replacement Algorithm for Virtual Memory

Extrapolating the approximation from the previous section 5.5.6, to a minimal possible one, we implement two versions, one is an IRG0 approximation, and the other an IRG1 approximation, for a paged virtual memory.

We approximate an IRG value g, as before, to the closest power of 2, i.e. $2^{[\log_2(g)]}$. In addition, we neglect values of g greater than 2^{16}. Furthermore we do not compute the probability of the occurrence of an IRG via a frequency count. Instead, if an IRG g occurs then we use a single bit to remember its approximation. In this way for IRG0 approximation, which we call BIT0, we will need only 16 bits (2 bytes) per page. For IRG1 approximation, we will need $16 \times 16 + 16$ bits = 34 bytes. In addition we will need to keep track of the last reference to a page, and in case of BIT1, the last state of the model. In all, we will need 4 bytes for BIT0, and 36 bytes for BIT1, which is a minor increase in the size of a page map table entry.

In figure 5.7 we present an implementation of the BIT0 algorithm. BIT1 has a similar implementation, except that it needs to update extra bits, and the prediction process is a bit more complex. In the procedure, CLOCK represents a global clock which gets incremented at each page reference. Function LMB retrieves the position of the leftmost bit of its argument if it is a power of 2, otherwise it adds 1 to it (approximation to log). POWER2 computes the power of two.

We present the results of trace driven analysis for the BIT0 and BIT1 algorithms in figure 5.8. We use the CC1, KENBUS1, MUL8, and EQN0 traces by mapping virtual addresses to 1Kb page addresses. In table 5.5 we present the average improvement in miss ratio over LRU, and the simulation time with respect to LRU for the BIT0 and the BIT1 algorithms. The number of page frames is varied from 2 to 1K.
PROC access(Page p)
 IF(PMT[p].last!=0 && CLOCK-PMT[p].last < 0x10000)THEN
 PMT[p].bitvector[LMB(CLOCK-PMT[p].last)] = 1 ;
 ENDIF
 PMT[p].last = CLOCK ;
 IF(page_fault(p))THEN
 FOR each page i in memory DO
 x[i]=least significant set bit j in PMT[i].bitvector
 such that PMT[i].last+POWER2(j)>t ;
 ENDFOR
 q = ArgMax(x[i]) over all pages i in memory ;
 replace q with p ;
 ENDIF
ENDPROC

Figure 5.7: BIT0 algorithm for page replacement

<table>
<thead>
<tr>
<th>Trace</th>
<th>BIT0 Miss ratio improv.</th>
<th>Simulation time</th>
<th>BIT1 Miss ratio improv.</th>
<th>Simulation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>6.0</td>
<td>15.2</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>EQN0</td>
<td>2.9</td>
<td>7.8</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>KENBUS1</td>
<td>4.4</td>
<td>8.9</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>MUL8</td>
<td>4.5</td>
<td>13.2</td>
<td>1.10</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.5: BIT algorithm overheads
5.5.8 A Practical IRG Replacement Algorithm for Cache Memory

We also analyze the performance of BIT0 for a set associative cache. Unlike paged memory, where a PMT entry exists for all the pages in the virtual space, in a cache memory there is no mechanism for maintaining the IRG history of a cache block once it has been replaced. So we reset the IRG history whenever a block is removed from the cache, the rest of the BIT0 implementation is the same as in figure 5.7. We call this algorithm SET0. In figure 5.9 we present the miss ratio versus associativity comparison plots for the CC1, KENBUS1 and MUL8 traces. Associativity is varied from 2 to 16, the block size is 16 bytes, and the cache size is 32Kb.
Comparing with figure 5.3, we notice that full associativity does not have any advantage over a 16-way cache. For a 32Kb cache, SET0 has significant advantage over LRU for the CC1 and the KENBUS1 traces. For the MUL8 trace it performs marginally worse than LRU. As the associativity is increased, SET0 degrades
to LRU since the probability of having blocks in the cache with no IRG history increases.

5.6 IRG Model Based Variable Space Management

In this section we propose the second application of our IRG model – a variable memory management algorithm. A variable (or dynamic) memory management algorithm’s task is to allocate and deallocate pages to a process in such a way so as to keep the space-time product as low as possible. This is applicable in multiprogramming environments where miss ratio as well as space has to be minimized for each of the processes. We use our IRG model to predict pages which will be accessed “far” in the future and remove them from memory. We first briefly describe the problem and the significant algorithms that have tried to solve it. Then we describe our IRG based algorithm and present simulation results for the same.

5.6.1 Introduction

In a multiprogrammed paged environment, the two most important criteria on which the overall system performance depends are, memory usage, and the fault rate of each process. Memory is a shared resource among multiple processes which makes it a critical parameter – unlike the fixed space uniprogrammed scenario where reducing the fault rate is the only concern. Space-Time Product (ST) as defined by Denning [23] is a standard measure for evaluating the performance of a process. It is defined as the integral of the memory used over the time the process is running or waiting for a missing page to be swapped into the main memory:

$$ST = \sum_{i=1}^{T} s(t) + \tau \times \sum_{i=1}^{M} s(t_i)$$

where T is the total time a process lasts, $s(t)$ is the memory (in number of pages), occupied by it at time t, τ is the fault penalty or the swapping delay, t_i ($i = 1, 2 \ldots M$) is the time at which the i^{th} fault took place and M are the total number of faults. Prieve and Fabry [61] define a simpler Space-Time Product (C) which makes a simplifying assumption that all faults have the same cost τ, thus:

$$C = \sum_{i=1}^{T} s(t) + \tau \times M$$
Under both these measures, the smaller the space-time product, the better is the performance of the system. All the standard algorithms try to minimize this product by estimating pages which need not be kept in the memory. These are the pages which either will never be accessed in the future, or they will be accessed so far away in the future that keeping them in the memory for that long is not cost effective. IRG modeling gives us a direct method for estimating how far in the future a page will be referenced. Our algorithm is validated via trace driven simulations by showing space-time improvements over the current best known algorithms.

5.6.2 Related Work

To achieve a lower space-time product, numerous algorithms have been proposed. We will only sketch the important ones. Denning proposes the Working Set (WS) algorithm [23] which keeps the pages referenced in the last τ memory accesses, in the memory. Upon a fault it fetches the faulted page, and after each memory reference it removes the page that has not been referenced in the last τ memory accesses, if any. The Page Fault Frequency (PFF) algorithm [17], on the other hand, does swapping of pages only at fault times. At a fault it swaps in the faulting page, and if the time since the last fault is less than θ (some predefined constant) then it keeps the pages as such, otherwise it removes the pages that are not referenced since the last fault. Thus it can be viewed as an algorithm which tries to keep the fault rate less than $1/\theta$. Experimental and analytical studies have shown WS to perform better than PFF and to be more stable [23, 37]. Smith’s Damped Working Set [74] has less than 5% space-time product improvements over WS and its main purpose is to remove temporary memory overflows and not to improve the space-time product. Fixed space algorithms, e.g. LRU, in general have been shown to have worse space-time product than WS and PFF [24, 76], so we won’t discuss them here.

Prieve and Fabry [61] propose VMIN - an optimal variable space algorithm for the C (see above) space-time product measure, i.e. an algorithm that produces the minimal fault rate for a given average memory usage. But their algorithm is offline in the sense that it needs to know the next τ references beforehand. After each fault it brings in the faulting page, and after each reference it swaps out the
referred page if it will not be accessed in the next τ memory accesses. Budzinski et al [12] propose DMIN, an off-line optimal algorithm for the space-time cost criteria ST. They need to know the entire trace beforehand and map the ST minimization problem to the maxflow problem in graphs.

5.6.3 Drawbacks of the WS Algorithm

We analyze why the WS algorithm does not perform as well as the VMIN algorithm. These observations along with our IRG model are used to improve on the WS algorithm.

1. VMIN and WS have identical faults for a given τ (fault penalty) and a given reference string. This is because the only difference between VMIN and WS is that VMIN removes those pages early which WS removes after they leave its window. Consider a page referenced at time t and next at time $t+x$. If $x \leq \tau$ then a hit will happen at time $t+x$ for both VMIN and WS. On the other hand if $x > \tau$ then VMIN will remove that page immediately at time t whereas WS will remove it at time $t+\tau$, and in both cases a fault will occur at time $t+x$. But VMIN saves one page of space for an entire duration τ.

2. Consider a page which is accessed at time t and then again at time $t+\tau+x$, where $0 < x \leq \tau$. At time $t+\tau$, WS will remove this page. On the other hand if we keep this page for x more units of time then we will avoid a fault and get a better C space-time product. WS assumes that a page not referenced for τ time units, will not be accessed in the next τ references. This gives bad performance when IRG values are in between τ and 2τ.

3. The WS algorithm can be looked at as a crude IRG predictor. Immediately after a page is referenced, it “predicts” its next IRG value to be $\leq \tau$ and keeps it in the memory. If the page stays unreferenced for τ time units, it “predicts” the next IRG to be greater than 2τ and removes it. A better knowledge of the past IRG behavior of a page, and a flexibility to “predict” at more time instances (instead of just two) can improve this prediction technique.
5.6.4 WIRG Dynamic Memory Algorithm

We propose a dynamic space management algorithm WIRG-\(k\), that uses an underlying level \(k\) IRG prediction technique. This prediction technique is similar to the one used in the fixed space scenario in section 5.5.

At each reference to a page \(p\), we predict the next IRG value of \(p\), using its past IRG history. If the predicted value is \(\leq \tau\) then we keep that page, else we remove it. There are two scenarios when we can make an error. First, when due to overestimation we remove the page, when in fact, it is referenced within the next \(\tau\) references. In this case we will cause an extra fault, which we call an \(R\) (remove) error. Second, we might underestimate and keep a page when it is actually referenced at a time beyond the next \(\tau\) references (or not referenced at all in the future). To alleviate this problem, which we call the \(K\) (keep) error, we again use IRG prediction for a resident page that has not been referenced for more than \(\tau\) time units. If the predicted next IRG value is smaller than \(\tau\) then we keep the page else we remove it. Note that IRG predictions in the case of the \(K\) errors will use the added information about the current non reference interval for that page, i.e. if a page hasn't been referenced for the last \(m\) time units then its next IRG value has to be larger than \(m\). In figure 5.10 we give the pseudo code of the algorithm.

In the algorithm, when \texttt{estimate_forward()} returns a FAIL because the current duration of non reference is greater than any of the IRGs seen so far, we remove that page. We did this because such an event usually implies a change in access pattern of that page, making its IRG history obsolete.

5.6.5 Simulation Experiments

We use the same set of traces as used in section 5.5 for our IRG cache memory simulations. Additionally we use some more ATUM traces to authenticate our prediction model and algorithms. Simulations are done for a paged virtual memory environment using 512 words per page. The page level traces are obtained from the virtual address traces by dividing the address value by \(2^9\). One IRG model is built for each unique page in a trace.
PROC access(address a, memory M)
 update_irg_stream(a); /*Same as in IRG replacement*/
 IF(a not in M)THEN
 Fetch (a);
 ENDIF
 Access (a); /*Use page a*/
 FOR each x in M DO
 IF(x was just accessed OR x was accessed more than τ units ago)THEN
 y = estimate_forward(x);
 IF(y > τ)THEN
 remove(x);
 ELSEIF(y==FAIL AND x has been accessed more than once)THEN
 remove(x);
 ENDIF
 ENDIF
 ENDFOR
ENDPROC

Figure 5.10: Pseudo code for the WIRG algorithm. τ is the fault penalty.

We compare our WIRG-i algorithms that use an i level IRG predictor as defined in section 5.4, with the Working Set (WS) and the VMIN algorithms. Figures 5.11 and 5.12 depict the average memory used (in pages) versus the fault rate for these traces. The experiments are carried out by varying the value of τ. We also simulate the PFF algorithm, but do not present its results since it performs worse than WS for all the simulations.

In table 5.6 we present the space-time product under the ST measure for the CC1, DEC0, and SPIC trace simulations. The values are normalized with respect to the length of the trace.

Finally, in table 5.7 we present the normalized R and K errors for our WIRG algorithms for the CC1 trace simulations. The R error is multiplied with τ, since an error which results in a fault causes a space-time overhead proportional to τ. Similar results are obtained for other traces.
Error Analysis: (1) The number of K errors is always an order of magnitude larger than R errors. The main reason is that the decision to remove a page is only made either right after an access, or after an interval of τ non-references to that page. This reduces the number of places where an R error could be made. (2) The number of K errors goes down with an increase in the order of the underlying predictor. This is mainly because a higher order predictor implies more accurate predictions. (3) The R errors slightly go up with the order of the underlying predictor. This is due to the fact that most of the R errors occur during the initial references to a page when the IRG history is too small to benefit from the higher order predictors.

5.6.6 Variations in WIRG

As explained in section 5.5, IRG models consume a large amount of extra space and time, so we try the following variations in our WIRG algorithm in order to find a practical improvement over WS:

1. Doing prediction for removal at every instant of time. In this case the number of R errors goes up, although the K errors do not go down substantially, resulting in worse performance than WS for large values of τ.

2. Approximating the IRG stream to 0’s and 1’s, when the IRG value is $\leq \tau$ and $> \tau$, respectively. Although this results in smaller prediction overheads, the R and K errors go up considerably for high values of τ. The performance is better than WS for very small values of τ only.
3. Averaging for prediction. Instead of using the IRG value with the highest probability, we take the mean of the likely IRG values weighted by their probabilities. This degrades performance considerably due to the fact that IRGs do not have a continuous distribution. Averaging them can predict an IRG value that has a zero probability of occurrence in reality.
Normalized Space-Time product $ST = \text{AvgMem} \times (1 + \text{MissRatio} \times \tau)$

<table>
<thead>
<tr>
<th>τ (miss penalty)</th>
<th>CC1</th>
<th>DEC0</th>
<th>SPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS</td>
<td>WIRG0</td>
<td>WIRG3</td>
<td>WS</td>
</tr>
<tr>
<td>Imp. over WS</td>
<td>Imp. over WS</td>
<td>Imp. over WS</td>
<td>Imp. over WS</td>
</tr>
<tr>
<td>512</td>
<td>323</td>
<td>1.8</td>
<td>7.6</td>
</tr>
<tr>
<td>1024</td>
<td>667</td>
<td>5.9</td>
<td>7.7</td>
</tr>
<tr>
<td>2048</td>
<td>1193</td>
<td>9.7</td>
<td>7.3</td>
</tr>
<tr>
<td>4096</td>
<td>1833</td>
<td>0.7</td>
<td>-3.7</td>
</tr>
<tr>
<td>8192</td>
<td>3397</td>
<td>1.5</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Table 5.6: ST Space-Time Product for the CC1, DEC0 and SPIC simulations. For WIRG0 and WIRG3 we show the % improvement over WS.

<table>
<thead>
<tr>
<th>τ (miss penalty)</th>
<th>Normalized R and K errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIRG0</td>
<td>WIRG1</td>
</tr>
<tr>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>512</td>
<td>2.6</td>
</tr>
<tr>
<td>1024</td>
<td>4.8</td>
</tr>
<tr>
<td>2048</td>
<td>6.6</td>
</tr>
<tr>
<td>4096</td>
<td>7.2</td>
</tr>
<tr>
<td>8192</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Table 5.7: R and K errors for the CC1 simulations.

4. Approximating the prediction by looking only at the last k (some predefined constant) IRG values in each of the IRG streams. Although storage gets reduced, prediction becomes difficult as the statistics have to be recomputed at the occurrence of each new IRG value. A better solution is to maintain frequency counts in a fixed buffer and use it as a cyclic queue. This slightly improves performance over WS.

5.7 Conclusions

In this chapter, we presented replacement methods which use the past temporal characteristics of an address to predict the future behavior. These methods show
universal applicability at all levels of the memory hierarchy and we obtain significant performance improvements in the miss ratio over other known methods. We also proposed some approximate strategies which are both practical and better than other known methods.

The work in this chapter was based on the inherent predictable property of the IRG streams. In the next chapter we explore other techniques for replacement which are based on some other properties of program behavior.
Chapter 6

More Experiments with Replacement

6.1 From LFU to LRU

In the theoretical study of program reference strings, two models have been used extensively. These are the Independent Reference Model (IRM) [47], and the Stack LRU Model (SLRUM) [83]. Most of the other complex models have been derived by extending these two.

The online optimal replacement algorithm for IRM model is known to be the A_0 algorithm [47] which maintains the top $k-1$ pages with the highest probability of reference in the memory (k is the memory size). This can be easily approximated by the Least Frequently Used (LFU) algorithm. In the case of the SLRUM model, if the strong locality constraint is observed, i.e. $Pr(dist=i) \geq Pr(dist=i+1)$ for all i, then LRU has been shown to be the online optimal replacement algorithm [24]. In practice, LRU and its derivatives have been shown to perform better than LFU, at all levels of the memory hierarchy [78, 66, 57]. The main drawback of LFU is its property to hold back items. Even when an item is no longer needed, it is kept in memory for a much longer period than LRU because it has a high frequency count.

Programs behave in a phase like manner [50, 23], where each phase is marked by an affinity to a distinct set of memory locations. This can be also observed from the trace plots in chapter 3. A simple behavioral model to capture this property is Spirn’s GLM [82] model (refer chapter 2). It is not hard to see that an online optimal replacement policy in this case is an LFU policy which resets all the reference counters when the program changes its phase. Since it is a non trivial task to detect a phase change in a program, we propose a simple technique which uses exponentially decaying frequency counters, and study its properties (we call it the EXP algorithm). Specifically,

$$C_a[t] = \rho C_a[t-1] + \mu_{t,a}$$
where $C_a[t]$ is the reference count of address a at time t, ρ is the scaling factor ($0 < \rho \leq 1$), and $\mu_{t,a}$ is 1 if address a is accessed at time t, else it is 0. In figure 6.1 we have the detailed pseudo-code for this algorithm. CLOCK is a global timer. MinSet function returns all items with the minimal counter value. Notice that counters are decayed only upon a replacement decision.

PROC access(item a, memory M)
 SetCounter(a,1) ;
 IF(a not in M)THEN
 X = MinSet(SetCounter(m,0): for all m in M);
 z = Least Recently Used item in X;
 Replace z by a;
 ENDIF
 RETURN a;
ENDPROC

PROC SetCounter(item p, int i)
 C[p] = $\rho^{CLOCK-LAST[p]} x C[p] + i$;
 LAST[p] = CLOCK;
 RETURN C[p];
ENDPROC

Figure 6.1: EXP algorithm for replacement

The space complexity of EXP is mainly due to the floating point counters it has to maintain (unlike the integer counters which LFU uses). The time overhead is because to the computation ($\rho^{CLOCK-LAST[p]}$) which needs to be done at every replacement decision.

In figure 6.2 we present the miss ratio as a function of ρ for a 8-way, 32Kb, 4 byte per line cache for the CC1 and KENBUS1 traces. Notice that $\rho=1$ is the same as LFU, and $\rho=0$ is LRU. The miss ratio for CC1 for LFU is 33.4%, and for LRU it is 16.9%. The local minima for this configuration is obtained at $\rho=0.999865$, where the miss ratio is 15.2% (an improvement of 9.8%). To find the effect of associativity, we find the miss ratios for $\rho=0.9999$, for 2-way, 4-way and 16-way caches, with the number of sets remaining constant. In addition we compute the miss ratios for the
LFU, LRU, and OPT algorithms. The comparison is shown in figure 6.2. In addition we plot the miss ratio for our predictive algorithm BIT0, explained in chapter 5.

![Miss ratio comparison for CC1](image1)

![Miss ratio comparison for KENBUS1](image2)

Figure 6.2: Performance of the EXP algorithm. ρ versus miss ratio plots are for a 32Kb 8-way set associative cache with a 4 byte line size. In the miss ratio comparison EXP uses $\rho=0.9999$.

We also validate the EXP algorithm against other traces for different cache configurations. The results obtained are similar. A value of ρ very close to 1, results in a miss ratio better than both LFU and LRU. We also experiment with replacement in paged memory, object traces, and disk traces. For the page references and disk traces, LFU is worse than LRU, but the miss ratio as a function of ρ is monotonic. Same characteristics are observed for object traces, where sometimes LFU is better than LRU.

To characterize the behavior of the EXP algorithm for the Independent Reference Model (IRM), in figure 6.3 we plot the ρ versus miss ratio plot for a 32Kb 8-way set associative cache on an IRM trace generated using the probabilities of the CC1
Figure 6.3: \(\rho\) versus miss ratio plot for the Independent Reference Model trace. Notice that the miss ratios are much higher than the corresponding original CC1 trace, and that LFU performs better than LRU.

6.2 Replacement at Level 2 (L2 cache)

When an access misses at a higher level in the memory hierarchy, a reference to the next level in the hierarchy is made. In the context of cache memory, L2 means the second level cache which is accessed after a miss in the primary cache. Due to high locality of reference, primary caches usually have a very low miss ratio. This locality of reference is lost upon reaching the L2 cache. In this section we investigate the L2 cache references, and some suitable replacement policies.

We simulate an 8Kb direct mapped cache with 16 byte block size as the primary L1 cache. In table 6.1 we describe the traces used. These were primarily chosen because of their long lengths (few hundred million references), such that the number of references reaching L2 be large enough to make the L2 simulations meaningful.

In order to compare replacement policies at the L2 level, we simulate the OPT (off-line optimal), LRU, LFU, FIFO, RR (random replacement), and our BIT0 (IRG based with history maintained forever) and SET0 (IRG based with history being reset upon replacement) replacement strategies using a 2-way, a 4-way, and a 8-way L2 cache. The L2 cache size is varied from 32Kb to 2Mb. We use worseness in the miss ratio with respect to the OPT algorithm, as the performance criteria. In figures 6.4, 6.5, 6.6, 6.7, and 6.8 we present the OPT miss ratio and the worseness of
<table>
<thead>
<tr>
<th>Trace name</th>
<th>Miss ratio at L1 (%)</th>
<th>Number of references reaching L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP0: SPEC92 text compression utility</td>
<td>15.4</td>
<td>24.3M</td>
</tr>
<tr>
<td>EQN0: SPEC92 eqntott conversion from equation to truth table</td>
<td>7.6</td>
<td>8.9M</td>
</tr>
<tr>
<td>ESP0: SPEC92 espress minimization of boolean functions</td>
<td>7.6</td>
<td>10.5M</td>
</tr>
<tr>
<td>KENBUS1: SPEC92 kenbus1 simulating 20 users</td>
<td>47.5</td>
<td>2.1M</td>
</tr>
<tr>
<td>LI0: SPEC92 lisp interpreter</td>
<td>23.5</td>
<td>34.0M</td>
</tr>
</tbody>
</table>

Table 6.1: Traces used in the L2 simulations

rest of the replacement algorithms for a 4-way set associative cache. Similar results are obtained for the case of 2-way and 8-way caches.

![Miss ratio comparison](image)

Figure 6.4: Replacement comparison for 4-way caches for COMP0
Figure 6.5: Replacement comparison for 4-way caches for EQN0

Figure 6.6: Replacement comparison for 4-way caches for ESP0
From these simulations of the L2 cache, following features about the known replacement strategies and our methods stand out:
1. Miss ratios are very high at the L2 level. For example, for a 2-way 32Kb L2 cache, LRU has miss ratios from 25 to 67%. Even for a large cache like a 8-way 2Mb, the miss ratios are between 2 to 17%.

2. LRU is not unbeatable in comparison to the well known LFU, FIFO, and RR policies. In fact for the ESP0 trace it is almost as bad as the RR policy.

3. FIFO and RR have similar miss ratios at the L2 level. This has been already demonstrated for primary cache memories [78].

4. LFU has a very high variation across different benchmarks. In some cases it performs better than other known techniques and in some cases it is even worse than RR.

5. Our BIT0 technique, which uses a predictive approach, works the best in almost all the cases.

6. The SET0 technique, which has a very small overhead, works better than all the known replacement techniques.

To analyze these properties, consider the L1 cache behavior. It is a direct mapped cache with 512 sets. The CPU memory reference pattern can be visualized as an interleaving of 512 disjoint reference streams, where a reference to block \(r \) belongs to stream numbered \(r \mod 512 \). It is obvious that if we keep the number of sets the same for the L2 cache, then the references which reach L2 are the same as that of L1 minus the successive repetitions in each one of the 512 streams. The successive repetitions all hit at L1. This implies that a policy which works well for L1, will also work well for L2. To validate this hypothesis, we simulate an L2 cache with 512 sets and vary the L2 associativity from 2 to 64. In figure 6.9 we present the worseness of different algorithms with respect to the optimal, for the EQN0 trace. Similar results are obtained for the rest. We notice that LRU performs better than other known replacement strategies, and that BIT0 improves upon it.
Interestingly, all replacement algorithms degrade with respect to OPT as the associativity is increased. This is in contrast to the behavior we saw before where the cache size is increased by increasing the number of sets. The miss ratio difference between the OPT algorithm and the other algorithms remains almost constant as the associativity is increased. This is mainly because of capacity misses which occur if the working set of blocks mapping to the same set has a size larger than the associativity. Only when the associativity is made as large as 32, the miss ratios improve.

6.3 Conclusions

We presented two interesting results for replacement algorithms in this chapter. It is shown that LFU on a per phase basis can be better than LRU for cache memories. We believe that with a compiler directed mechanism for signalling phase changes, LFU can be used for making replacement decisions. Our solution (EXP) needs floating point counters which can be expensive in today’s VLSI technology.
For L2 caches, we showed that LRU need not be the best replacement policy. LFU proves to be better in some cases. This is mainly because at the L2 level, references show lesser locality of reference as compared to the L1 level. This was also proposed in figures 3.13 and 3.14.

We continue with the discussion of cache memories in the next chapter. This time we look at prefetching using the past history of misses.
Chapter 7

A Miss Prediction Based Architecture for Cache Prefetching

7.1 Introduction

When a program executes, the memory reference behavior is governed by the principle of locality [84], i.e. the accesses are clustered in space and time. In addition, programs show correlation across spatially disjoint address spaces, which we call the inter-cluster locality. This could happen between the code and the data segment, for example. Another situation where it could happen is in procedure calls, where the program line making the call and the procedure code itself will always be correlated in time. Yet another example is the correlation between the last instruction and the first instruction of a loop. Since miss patterns are a subset of the reference patterns, it is quite natural to assume that misses would also be similarly correlated. We aim to exploit this correlation in our prefetch algorithm.

Another important characteristic of the missed references is their fractal nature [88]. Misses are grouped over time in clusters, each cluster is comprised of smaller subclusters, each subcluster contains more clusters, and so on. In addition, two clusters which are made up of misses on almost the same set of memory references, have similar miss patterns over time. If two such miss clusters are far apart in time, any simple replacement algorithm, e.g. LRU, will repeat those patterns. On the other hand, if we “remember” such patterns then we can avoid the misses by prefetching, if the onset of a repeating miss pattern can be detected quickly enough.

In this chapter, we propose a new prefetch-on-miss technique based on the history of misses during a program’s execution. We model the sequence of missed block addresses as a walk on a first order Markov chain. Using this model we predict the next likely misses and prefetch the blocks predicted to be missed in the future. Since a complete Markov model is impractical, we only keep an approximation,
which is practical. This is done by using extra space at the hierarchy level of the main memory (which is not expensive) and a bidirectional address bus from the CPU to the main memory. The extra memory is used to store the Markov model history of misses. The address bus is utilized in its idle state to notify the CPU as to which blocks to prefetch next.

We gain significant performance improvement over sequential prefetching via this technique. For a 4-way cache of 4KB size, and at most one prefetch on a miss, we obtain miss ratio improvements up to 14% over the sequential technique. In addition we reduce data bus traffic up to 17% over the sequential method. The corresponding numbers for a 32KB cache are 14% and 19%, respectively. The improvements in miss ratio over a non-prefetching scheme are up to 32% and 37%, for cache sizes of 4KB and 32KB, respectively. The simulations are done over ATUM and SPEC benchmarks over a wide range of cache configurations. We vary the number of sets, the associativity, and the block size, with cache sizes ranging from 4KB to 256KB.

In section 7.2 we describe our program model and the prefetching algorithm. In section 7.3 we give details of our prefetch architecture. In sections 7.4 and 7.5 we evaluate the performance of our system and describe the simulation results. Finally, in section 7.6 we present the conclusions.

7.2 Program Model and Prefetching

In this section, we first describe the program model and the prefetch technique. Then we discuss an approximation of this technique suitable for cache prefetching.

7.2.1 Model of Prefetching

Let a program memory access behavior be represented as a reference string \(R_t = r_1r_2...r_t \). Here each \(r_i \) is a memory block address to which the \(i^{th} \) reference is made.

Let \(F(R_t, m) = r_1r_2r_3... \) denote the sequence of block addresses where misses happen upon executing \(R_t \). Assume the string \(F(R_t, m) \) is generated by a first-order Markov chain, where each \(r_{ik} \) represents a state. The best estimate of such a Markov chain is done by a probabilistic finite state machine \(P(F) \) defined as follows:
1. \(P(F) \) has \(N(F) \) number of states where \(N(F) \) is the number of unique symbols in \(F(R_t, m) \). Each state is labelled by the corresponding block address.

2. In \(P(F) \), a directed edge connects state \(u \) to \(v \) iff substring \(\text{"uv"} \) (\(u \) followed by \(v \)) occurs in \(F(R_t, m) \). The probability associated with such an arc is the ratio of occurrences of substring \(\text{"uv"} \) in \(F(R_t, m) \) to that of \(u \) in \(F(R_t, m) \).

We illustrate this model by an example. Refer to figure 7.1. \(P, Q, R, \) and \(S \) are unique block numbers. In the past, a miss on block \(P \) is followed by a miss on block \(Q, K_1 \) number of times. A miss on \(P \) is followed by a miss on \(R, K_2 \) times, and by a miss on \(S, K_3 \) times. The probability of a miss occurring on block \(X \) (\(X = Q, R, \) or \(S \)), given that a miss occurs at block \(P \), is given by \(\text{Pr}(P,X) \).

\[
\begin{align*}
\text{Pr}(P,Q) &= \frac{K_1}{K_1 + K_2 + K_3} \\
\text{Pr}(P,R) &= \frac{K_2}{K_1 + K_2 + K_3} \\
\text{Pr}(P,S) &= \frac{K_3}{K_1 + K_2 + K_3}
\end{align*}
\]

![Figure 7.1: Probability estimates for misses on block P followed by misses of blocks Q, R, and S](image)

Let a miss occur at block reference \(u \). Let state \(u \) have outgoing edges to states \(v_1, v_2 \ldots \) in \(P(F) \). The arcs with the highest probability of transition amongst \((u, v_1), (u, v_2) \ldots \) are found and the corresponding blocks \((v_i)'s\), up to a maximum of \(k \) (a prespecified parameter), are prefetched.

If the string of misses is known to be generated by a first-order Markov chain, the above described method is a provably optimal online prefetcher for a fixed \(k \) [21]. But this method cannot be directly applied for cache prefetching due to its large computations. Hence we will approximate it as per the requirements of our caching environment.
7.2.2 A simple k predictor

Consider the following execution of a pseudo assembly program:

```
loop: ld [X], %r0 /* Load r0 with word at location X
ld [Y], %r1 /* Load r1 with word at location Y
::: /* Instructions with no reference to X or Y
  bne loop /* Loop back
```

Assume memory words X and Y are in different main memory blocks and the blocks containing the above instructions are already in the cache. A miss happens on memory word X. At the next instruction, a miss occurs on memory word Y. If we remember this sequence of misses, then the next time a miss occurs at X, we not only fetch the block containing X, but also prefetch the block containing Y. This could happen, for example, if the loop in the above example is large enough to flush X and Y out of the cache by the time it returns to the line labelled `loop`.

There are three main reasons why we expect this method to show significant performance improvement:

1. First, since successive memory accesses tend to be correlated, the misses will also be. This has been demonstrated empirically by Haikala [38]. Further, Puzak [63] has shown that the sequence of misses captures the temporal features of the original reference string. Therefore, by maintaining a model of the misses we can “remember” most of the behavioral characteristics of the original reference stream.

2. Second, miss patterns repeating after long periods of time are “forgotten” by most of the cache management algorithms. For example, if a reference substring repeats after a reasonably long gap, then LRU will have identical miss patterns at both times. This can be avoided, assuming that we can store the miss correlations over long periods of time.

3. Finally, between two consecutive misses there will usually be a sequence of hits (on an average $(\text{miss ratio})^{-1}$ hits). Thus, for low miss ratios we expect a large number of prefetches to complete successfully, i.e. a miss does not happen before the prefetch is over. This is in contrast to a reference stream model [21], where the very next reference is predicted and prefetched.
We limit our predictor to prefetch k blocks on a miss, k being a constant. Upon a miss on block b, we need to know the k most likely misses which will happen next. This is done by “remembering” the last k misses which had followed the miss on block b in the past. The k entries are maintained as a simple FIFO buffer for ease of implementation. We illustrate this process by an example. Consider the sequence of missed blocks as “0 2 1 2 1 0 1 4 2 3 1 4”. For k equal to 2, the history will look as follows:

<table>
<thead>
<tr>
<th>Current State</th>
<th>Probable Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 2</td>
</tr>
<tr>
<td>1</td>
<td>4 0</td>
</tr>
<tr>
<td>2</td>
<td>3 1</td>
</tr>
<tr>
<td>3</td>
<td>1 -</td>
</tr>
<tr>
<td>4</td>
<td>2 -</td>
</tr>
</tbody>
</table>

In this way, we approximate the optimal Markov model described in section 7.2.1 in the following ways:

1. The k highest probabilities of transition out of a state are approximated by a FIFO ranking. Keeping the count of each transition will involve keeping all the outgoing edges, which is expensive, and therefore not done.
2. An access to a prefetched block (a miss in the original non-prefetch scheme) does not lead to a Markov model transition. This assumption is needed since a transition involves prefetching and book keeping, which is too expensive to do upon each hit.

7.3 Architecture of the Prefetcher

In this section, we describe the architecture of our prefetching hardware. It is presented assuming a very simple cache-main memory organization. However, it should be noted that we are doing this only for the sake of completeness, and the main emphasis is on the model of prefetching and its results. The actual
implementation will vary depending on the type of memory, processor and other hardware parameters. We also describe an alternate technique for prefetching which can be built by merely changing the CPU control logic.

We specify a cache by three parameters, B is the size of the block - the smallest unit of data transfer between the cache and the main memory, S is the number of sets in the cache, and A is the associativity of each set. We use the triple (S, A, B) to represent a cache configuration. The caches use the Least Recently Used (LRU) technique for replacement in each set. Each prefetched block is placed in the least recently used slots of the set.

7.3.1 Prefetch Architecture

We maintain a separate prefetch engine to keep the Markov model approximation, and to initiate prefetches. This prefetch engine is at the same level in the memory hierarchy as the main memory. It has the capacity to read-write on the address bus, much like a DMA device. In addition it can reverse the direction of the address bus, and send data to the CPU. For storing the history of misses, it has a memory table called the signal buffer, made up of M rows with k entries in each row. M is the total number of blocks in main memory. Each row b of the signal buffer is a FIFO buffer, which stores the addresses of the blocks (up to a maximum of k), which were missed right after a miss on block b in the past. A single register L is used to store the latest miss address.

The CPU needs a bank of k registers to store the prefetch addresses sent by the prefetch engine. This is not a significant overhead since k is 1 or 2 (due to reasons of practicality we can not prefetch larger number of blocks in a cache environment). Figure 7.2 has the block diagram of our architecture.

We note that when a block is accessed for the first time, it causes a cold miss. This will not trigger any history based prefetches. If the number of cold misses is very high, it can degrade performance considerably. To alleviate this problem, our prefetch engine incorporates sequential prefetching upon a cold miss, i.e. when the history information of a missed block b is null, then it prefetches block $b+1$, for k equal to 1. Initially, row b of the signal buffer contains values $b+1, b+2, \ldots, b+k$.
When a miss occurs on block b, the CPU places the value b on the address bus. This value is latched on by main memory which then starts transferring data from the main memory block b to the cache. The prefetch engine inserts b in the signal buffer row pointed to by L. L is then updated to point to row b of the signal buffer. Next the prefetch engine reverses the address bus (it is idle at this point), and puts out the k entries from the row pointed to by L on the address bus. This is done in k clock cycles, after which, the address bus direction is restored back. The CPU stores the k prefetch addresses received from the prefetch engine in its prefetch registers. We assume that main memory to CPU data transfer (fetch on miss) takes more than k clock cycles (k is typically 1 or 2).

After the missed block is brought in the cache, the CPU has k addresses to prefetch. It matches these addresses against the cache tags and initiates prefetches for the blocks that are not in the cache. If a prefetch is successful, i.e. a miss does not occur before it is completed, then that prefetched block is placed in the least recently used slot of the cache.

The issue of another miss occurring before a prefetch is over, is an orthogonal problem. What we have provided is an “oracle” to the CPU which does not alter the timing sequence. All it does is give a “smart” choice for prefetching. This is
done with a small overhead at the main memory level. For a block size of 16 words per block, and k equal to 1, the size of the signal buffer will be $1/16^{th}$ of the main memory (a 6.25% increase).

Now we address the issue of the bidirectional address bus in more details. DMA is an instance where an address bus is used both by the CPU and another device. In the case of DMA, the address bus is used for main memory read or write. We however need to use it to send an address value to the CPU. This can be easily achieved by an extra control line which the prefetch engine has the ability to turn on or off. During a miss processing, when the address bus becomes idle, the REV (reverse) control line is turned on by the prefetch engine, disabling any input to the main memory. Simultaneously it disconnects the MAR (memory address register) of the CPU and redirects the traffic of the address bus into the CPU prefetch registers. REV is turned off by the prefetch engine after the prefetch address transfer is over. A timing diagram is given in figure 7.3.

Another issue is the design of the prefetch engine. It needs the ability to snoop on the address bus and find out when a miss happens. This can be done obviously.
The prefetch engine also needs to update its miss history efficiently, which can be done by maintaining each row in the signal buffer as a cyclic FIFO. The cyclic part is needed to read off the \(k \) entries. We can use the address decoding logic of the main memory itself to set the \(L \) pointer in the prefetch engine. Alternately, the entire prefetch engine can be built as part of the main memory design itself. With each main memory block we attach additional \(k \) memory words to store the history. But this scheme will need multiple ports to the main memory, since the fetch and the history prediction needs to be carried out in parallel.

Finally, we present the \textit{prefetch-to-access delay} characteristics of our technique. We define prefetch-to-access delay as the number of memory references between the time a block is prefetched and the time when it is actually accessed. Here we only count the “useful” prefetches, i.e. a prefetch which avoids a miss. This delay quantifies the time available for carrying out the actual prefetch. More the prefetch-to-access delay, greater is the CPU flexibility in bringing in a block. This is suitable for pipelined prefetching where a prefetch is pipelined (delayed) when a miss occurs before the prefetch is complete. Obviously, the prefetch-to-access delay has no effect on a prefetcher which aborts prefetching if a miss happens.

Figure 7.4 has the cumulative distribution of the prefetch-to-access delay value for the KENS trace, simulating a 4KB, 4-way set associative cache, with block size 16 words. SEQL denotes the distribution for the sequential prefetching, and HIST is our technique with \(k \) equal to 1. In general, (as observed from other experiments too), our method has a larger prefetch-to-access delay than the sequential technique.

7.3.2 \textbf{A simpler in-cache Architecture}

A simpler architecture in comparison to the one described above is one where the prefetch engine is maintained as part of the CPU-cache unit itself. In this architecture no modifications are needed to the CPU or the address bus, only the CPU control logic needs to be changed. Obviously, we can not maintain the entire signal buffer in cache, e.g. for a 24 bit address machine, with 16 words per block, and \(k \) equal to 1, we need a 4MB signal buffer – obviously infeasible. Hence we keep the Markov model of only \(l \) number of states, where \(l \) is typically 1K or less.
This restriction will add one extra field to the signal buffer since we will need to store the Markov model transitions as a pair of states.

Assume a miss happens on block a, followed by a miss on block b. First we search for an entry corresponding to a in the signal buffer. If it exists then we add b to its FIFO queue. If it does not then we create a row for a and add b to it. In case the signal buffer is full, we use the FIFO policy to purge an entry. Next, we look for an entry for block b. If the entry exists, then we prefetch the k addresses given in that entry.

The overheads, besides the size of the signal buffer, are the adding of a new row to the signal buffer when all its rows are occupied, and the search for a block address upon a miss. The addition of a new entry is simply done in a FIFO manner by maintaining the rows as a cyclic queue. This obviously implies that we “forget” some history. The search is carried out associatively, which can be expensive for large number of entries. However, it occurs only upon a miss, providing us with a large time interval for carrying it out. Additionally, this expense can be reduced by partitioning the signal buffer into sets (like the cache) and doing the search only in a set, or by using a fast hashing technique.

The overheads of such a technique can be reduced by increasing the block size. This will decrease the total number of unique block references, and hence the signal buffer search will be reduced.
7.4 Simulation Description and Results

We do performance evaluation of our architecture using ATUM and SPEC benchmark traces, and in this section we present the results. These traces are described in table 3.1.

We use two figures of merit to evaluate our technique. One is the miss ratio improvement over a non-prefetching scheme, and the other is the increase in data bus traffic, due to prefetching. Since our comparison basis is the sequential technique, we also present results for the same. In the following discussion we refer to the sequential method as “SEQL”, and our technique as “HIST”. Throughout, we use the term memory word to imply 4 bytes, and unless otherwise noted, k - the maximum number of prefetches upon a miss, is 1 block. We also assume that no prefetch is aborted, which means that in reality, the performance figures will be lower than those presented here.
For algorithm A, the two figures of merit are defined as:

\[
\text{Miss ratio improvement:} \quad A\text{ miss imp} = \frac{\text{miss ratio}(\text{NONPREF}) - \text{miss ratio} (A)}{\text{miss ratio} (\text{NONPREF})}
\]

\[
\text{Increase in data traffic:} \quad A\text{ traffic inc} = \frac{\text{#miss}(A) + \text{#prefetch} (A) - \text{#miss} (\text{NONPREF})}{\text{#miss} (\text{NONPREF})}
\]

Where NONPREF refers to the non-prefetching, fetch-on-demand strategy. \text{#miss} is the total number of misses, and \text{#prefetch} is the total number of blocks prefetched.

To limit cache simulation time, only the first 5 million references from each benchmark, or the trace length, whichever smaller is used. Results using the full reference streams are similar. Moreover, the relative merit of our technique increases for longer traces, since it “learns” more about the history of misses.

Since the total number of benchmarks is large, we only present a summary for them in this section (in section 7.5 we have plots for all traces). After that we present results describing the effect of changing various cache and prefetch parameters using DEC0 and LISP as the “representative” benchmarks. Results are similar for other benchmarks.

7.4.1 Summary of results for a 4-way 4KB cache

In figure 7.6 we plot the miss ratio improvements with respect to a non-prefetching cache, for both the SEQL and HIST techniques, for all traces. The cache is a 4KB, 4-way set associative cache with a block size of 16 words (represented by (16, 4, 16) – using the notation in section 7.3). LRU policy is used in each set for replacement. Figure 7.7 shows the increase in data bus traffic with respect to a non-prefetching scheme for the same set of simulations.

Using our technique, all the benchmarks show a 25 to 32% improvement in the miss ratio over the non-prefetching scheme. In addition, bus traffic is substantially reduced in comparison to the sequential method.
7.4.2 Effect of cache size on performance

We study the effect of cache size on our prefetching scheme, by varying the number of sets from 16 to 4K. Figure 7.8 shows the plots where the block size is 16 words, and the cache is 4-way set associative, i.e. \((*, 4, 16)\) caches. We also simulate a direct mapped cache with 16 words per block. Figure 7.9 has the corresponding plots. Results are similar for different block sizes.

Figure 7.8: Miss ratio improvement and bus traffic increase versus cache size for a 4-way cache
Figure 7.9: Miss ratio improvement and bus traffic increase versus size of a direct mapped cache

Although the overall miss ratio goes down with an increase in the number of sets (in figure 7.8, for DEC0 trace, the non-prefetching miss ratio reduces from 19% to 2%), the miss ratio improvements and the traffic increase stays constant. This implies that the misses which get eliminated due to the increase in the number of sets, do not drastically change the regularities in the original miss patterns. For example, the original miss string “... abc ... abc ...”, on increasing the number of sets, will change to “... ac ... ac ...”. This is also obvious from the way set mapping is done. In the above example, if a miss on a triggers a prefetch of block b in the original case, then for the larger number of sets, a miss on a will prefetch block c, preserving the miss ratio improvements.

On a side note, this explanation can not be applied for the case when the cache size is increased via an increase in the set size. This is due to the fact that regularity can not be guaranteed for the eliminated misses when they are governed by the LRU stack behavior of other blocks in the set.

An important issue for the direct mapped cache is the case where a prefetched block maps onto the same block which is just missed. If we assume that the CPU accesses the missed block prior to the prefetched block coming in, then we do not need to change our architecture. Otherwise, we will have to either delay the prefetch or abort it. In our experiments we find that less than 5% of the prefetches map to the...
Table 7.1: Ratio of useful prefetches for a 4-way set associative cache

same block as the one just missed. For such low values, neglecting these prefetches will not degrade the HIST performance significantly.

For a direct mapped cache, we also compare our method against Jouppi’s stream buffer [43] of length 1. For the DEC0 trace, his method yields a miss ratio improvement of 15% for a 32KB direct mapped cache with 16 word lines. On the other hand, for the same configuration, SEQL yields a 21%, and our technique yields a 24% miss ratio improvement. For other traces too, his technique with stream length 1 does not show any significant improvement over the sequential technique.

An important feature of any prefetch algorithm is the number of useful prefetches, i.e. a prefetch that results in a miss getting avoided. Table 7.1 lists the ratio of useful prefetches to the total prefetches for the simulations in figure 7.8. The percentage of useful prefetches for our technique is much larger than that of the sequential technique.

7.4.3 Effect of degree of associativity on performance

Keeping the block size and the number of sets fixed, we vary the number of blocks in a set and evaluate its impact on our technique. Figure 7.10 presents the miss ratio improvement and the data traffic increase for both the SEQL and HIST methods,
where the block size is 16 words per block and the number of sets is 16, i.e. (16, *, 16) caches. Results with block size of 4 words, and 64 and 256 sets, are similar.

As the cache size is increased by increasing the number of blocks per set, the number of hot misses goes down. Hot misses are those which are caused due to the cache being too small to accommodate the entire “working set”. These hot misses are the ones which primarily assist our algorithm. As they reduce in number, cold-misses start dominating, and our algorithm degenerates to the sequential technique for very large associativity.

7.4.4 Effect of block size on performance

We vary the block size, keeping the number of sets and the set size (in terms of memory blocks) constant. Figure 7.11 presents plots for miss ratio improvement and data bus traffic increase, for a 4-way cache with 16 sets, i.e. (16, 4, *) caches. Results for direct mapped, as well as 64 and 256 sets per cache, are similar.

As the block size is increased, for both the techniques, the miss ratio improvement decreases. This is expected since sequentiality gets reduced due to merger of consecutive blocks to create larger blocks. This reduction in sequentiality is also evident from the fact that the performance gap between our technique and the sequential technique (see figure 7.11) increases with the block size. On the other
hand, the correlation between spatially far apart addresses (inter-cluster locality) in a large address space (32 bit, for example), is independent of small block size (4 to 64 words per block), and therefore the predictive part of our architecture is not affected by the block size.

7.4.5 Prefetch $k = 2, 4, 8$ blocks on a miss

Although $k = 8$ is impractical for certain cache architectures, we simulate our architecture for that value also. This is done so as to study the miss ratio improvement as a function of k. We compare our technique against the general sequential method, where upon a miss on block a, blocks $a+1$, $a+2... a+k$ are prefetched. Figure 7.12 has the miss ratio as a function of k for both sequential and our technique. In the figure, k equal to 0 denotes the non-prefetch miss ratio. The plots are for a 16KB, 4-way cache with a block size of 16 words. Figure 7.13 has the increase in data bus traffic for the plots depicted in figure 7.12.

Interestingly, the sequential technique degrades for higher values of k. Although the number of prefetches go up, the miss ratio more or less remains constant. This is mainly due to unneeded blocks (blocks which will not be accessed at all) displacing blocks from the “working set”. On the other hand, for higher values of k, our technique works well, wherein the miss ratio is brought down by more than 50% at the cost of doubling the data bus traffic.
7.4.6 Instruction Prefetching vs Data Prefetching

Our architecture, as presented, can not distinguish between instruction references and data (operand) references. Minor modifications to the prefetch engine, and a control line from the CPU can add this facility. To find out the domain (instruction stream or data stream) which chiefly benefits from our technique, we simulate separate instruction (I) and data (D) caches. A miss in the data cache triggers a prefetch only in the data cache and the same holds for the instruction cache. Thus we maintain two parallel histories at the prefetch engine level. In figure 7.14
we present the miss ratio improvement and traffic increase for the DEC0 trace, for the two separate streams. Both the I and D caches are 4-way set associative with 16 words per block.

![Graph showing miss ratio improvement and traffic increase](image)

From these plots, it is obvious that instruction streams are, in general, highly sequential. For the I cache, both techniques – sequential and ours, perform very well. Although, for smaller caches our technique works better – it has a lower bus traffic increase.

By using separate data and instruction histories, the overall miss ratio improvement is lower than a common history cache (see figure 7.8). This is due to the fact that we do not use the correlation between the code and the data to prefetch.

7.4.7 In-Cache prefetch engine

Finally, we discuss the simulation results where the signal buffer is part of the cache, as described in section 7.3.2. We present results for two signal buffer sizes. One has 256 rows and the other has 1K rows. In both the cases k is equal to 1. Assuming each block address takes one memory word, a 256 row signal buffer will need 2KB space. Similarly for 1K rows we need a 8KB signal buffer. In figure 7.15 we present the miss ratio improvement and data bus traffic increase for the two
signal buffer configurations, with 4-way, 16 words per block caches. For comparison, we also show the values for the original architecture which has no limitations on the size of the signal buffer.

\[
\begin{array}{c|c|c}
\text{Cache Size (bytes)} & \text{Percent change} & \text{Percent change} \\
\hline
4K & 10 & 30 \\
16K & 20 & 40 \\
64K & 30 & 50 \\
256K & 40 & 60 \\
\end{array}
\]

Figure 7.15: Miss ratio improvement and bus traffic increase for the in-cache architectures

For caches of all sizes, the in-cache technique yields significant improvements over the sequential method. However, this gain is annulled for small caches due to the extra space taken by the signal buffer. On the other hand, increasing the block size decreases the signal buffer size limitations, since the number of unique blocks goes down.

7.5 Performance of Remaining Benchmarks

In figures 7.16 and 7.17 we present the miss ratio improvement and the increase in data bus traffic values for the sequential method (SEQL) and our technique (HIST) for all the benchmarks. The cache is a 4-way set associative cache with 16 words per block. The cache size is varied by increasing the number of sets. Maximum number of prefetches at each miss \((k)\) is 1 block.
7.6 Conclusions

We have defined a notion of inter-cluster locality to explain the predictable nature of misses in a non-prefetching cache. We have proposed a Markov model based technique for capturing this behaviour, and have used that model to prefetch in a cache memory environment. A simple prefetch-on-miss architecture, which does not add to the complexity of the CPU, is proposed to implement this technique. It involves a minor increase in main memory size (less than 6.25%) and a bidirectional address bus, both of which are extensions of a practical nature. We have analyzed the performance of our technique using ATUM and SPEC benchmark traces, obtaining significant miss ratio improvements over conventional schemes. For a 4-way set associative 32KB cache, with at most one prefetch on a miss, we obtain consistent
miss ratio improvements over a non-prefetching scheme in the range of 23 to 37%. The increase in bus traffic, in this case, is in the range of 11 to 39%. In comparison to the sequential method, the miss ratio improvements are up to 14% and the
reduction in bus traffic is up to 17%. Similar improvements over the sequential technique are obtained for larger and direct mapped caches. For the case where up to 8 prefetches are allowed on a miss, the miss ratio improves up to 30% over the sequential method.

We have provided a Markov model based “oracle” to the CPU to identify which blocks to prefetch. In conjunction with the recent results of Song and Cho for virtual memory [81], and Griffioen and Appleton for file systems [35], this technique implies that history based systems can provide substantial improvements in memory management algorithms at all levels of the hierarchy.

In the next chapter, we shift our focus on to the next levels of the memory hierarchy, i.e. the page level in a virtual memory setting, disk blocks and database buffer management. We propose new measures for the space-time product, and propose online optimal algorithms for page management.
Chapter 8

Space-Time Trade-off in Virtual Memory

8.1 Introduction

In a multiprogrammed uniprocessor paged environment, the two most important criteria on which the overall system performance depends are, memory usage, and the fault rate of each process. Memory is a shared resource among multiple processes which makes it a critical parameter – unlike the fixed space uniprogrammed scenario where reducing the fault rate is the only concern. A number of pages reside on a secondary store, like a disk, and a subset of them are present in main memory. A simplified view is shown in figure 8.1. Here processes P and Q use pages p_1, p_2, p_3 and q_1, q_2, respectively. Out of which, pages p_2, q_1, and q_2 are currently in main memory.

Figure 8.1: A simplified view of a paged memory

We model the time-instances at which references to a page p are made, using the Inter-Reference-Gap (IRG) sequence for a page. If page p is accessed at times t_i, $i=1, 2, 3, \ldots$ (from any process), then the sequence of IRGs is $t_{i+1}-t_i$, $i=1, 2, 3, \ldots$. Here time t_i could be real (absolute time) or virtual (at each clock tick one page is referenced). Using this IRG model for each page, we study the space and
time trade-off. Specifically, we assume a demand fetched scenario, where a page is brought into memory only on a fault, and can be removed to the disk at any time. Space is computed as the total duration of stay of a page in main memory, and time is computed as the number of faults on that page.

We show the following results:

1. For a fixed fault rate on a page, the lower bound on space is achievable by an online randomized policy.
2. When the overall space-time cost for a page is defined as a linear combination of space and time, the online optimal policy is deterministic.

In related work, Denning [26] defines the well known Working Set (WS) notion for memory management. Under this policy, pages accessed in the last \(\tau \) memory accesses are kept in memory. By varying \(\tau \), the trade-off in average space versus fault rate can be found under this model. Although practical, this policy does not propose any notion of optimality. On the other hand, Prieve and Fabry [61] propose an optimal strategy VMIN, which achieves the minimal average space for a fixed fault rate. Their technique needs to know the next \(\tau \) memory accesses a priori, and hence is not online.

Other related work on space-time trade-off in virtual memory has focussed on reducing maximum working set size [74], generalizing the WS notion to segments [25], and analyzing the working set characteristics [11, 58, 37, 41]. A comprehensive review of these papers has appeared in Denning’s paper [23].

8.2 Definitions

Let page \(p \) be referenced, by any process, at times \(t_1, t_2, t_3, \ldots \), etc. To simplify, we consider time to be virtual, i.e. at each unit of time, some page is referenced.

Define: The Inter-Reference-Gap (IRG) is defined as the duration of time between successive references to page \(p \). The sequence of IRGs for page \(p \) are \(t_2-t_1, t_3-t_2, t_4-t_3, \ldots \), and so on.

Example:
Define: Independent-Gap-Model (IGM). We model the IRG values for a page p, as a sequence of i.i.d. random variables. The range of the IRG values is I^+, the set of positive integers. The probability of an IRG value being i is fixed at g_i, and is independent of the history of IRGs. Obviously, $\sum_{i \in I^+} g_i = 1$.

Space s_p: We measure space via the duration of stay of page p in memory, i.e.:

$$s_p = \lim_{T \to \infty} \frac{Lt}{T} - \frac{\sum_{i=1}^{K_T} (r_i - b_i)}{T}$$

where s_p is the normalized duration of stay of page p in memory. T is the total time since the first reference to page p, K_T is the number of times page p is faulted on up to time T, b_i is the time instant of the ith fault on p, and r_i is the time when page p is removed from memory after its ith fault. If the page hasn't been removed after the K_Tth fault, then r_{K_T} equals T.

Time f_p: Time on a per page basis, is measured using the fault rate of that page. The per-page fault rate f_p is simply the number of faults on page p (K_T) divided by the total number of references to page p.

$$f_p = \lim_{T \to \infty} \frac{Lt}{T} \frac{K_T}{N_T}$$

where N_T is the total number of references to page p up to time T.

8.3 Minimal space for a fixed fault rate

We drop the subscript p from f_p and s_p, in the following discussion, since we are only looking at a single page’s behavior.

It is obvious that for a fault rate f equal to 0, s is 1, i.e. we keep the page forever; and for f equal to 1, s is 0, i.e., we never keep the page.

If we know the entire IRG string a priori, the minimal off-line space required to achieve a fault rate of f, is to keep the page for the smallest length IRGs such
that the fraction of remaining IRGs is less than or equal to \(f \). In other words, the minimal off-line space \(s_{\text{min}}(f) \) is given by the largest \(k \) such that:

\[
 f < \sum_{i > k} g_i
\]

and the corresponding space is given by the sum of all the IRGs of length smaller than \(k \), normalized by the total duration:

\[
 s_{\text{min}}(f) = \frac{1}{E(t)} \sum_{i \leq k} i \cdot g_i
\]

where \(E(t) \) is the expected IRG value. (We assume that \(E(t) \) exists and is finite).

Lemma 1: \(s_{\text{min}}(f) \) is a convex function of \(f \).

Proof: For simplicity, we consider the continuous domain (assume IRGs are distributed over a continuous distribution \(g(t) \) of positive reals). In which case:

\[
 f = 1 - \int_{0}^{k} g(t) \, dt
\]

\[
 s_{\text{min}}(f) = \frac{1}{E(t)} \int_{0}^{k} t \cdot g(t) \, dt
\]

where \(E(t) \) is the expected IRG value, which we assume exists and is finite. The second derivative of \(s_{\text{min}}(f) \) is given by:

\[
 \frac{d^2}{df^2} s_{\text{min}}(f) = \frac{1}{E(t) \cdot g(G^{-1}(1 - f))}
\]

where \(G^{-1} \) is the inverse c.d.f. of \(g(t) \). The second derivative is obviously positive, proving the lemma. An analogous, albeit complex proof exists for the discrete case.

Next, we address the online algorithm question, i.e. given the IGM distribution of a page, what is the minimal space achievable by an online algorithm.

Define: A fixed window algorithm \(\text{FixWin}_w \) is defined as an algorithm, which after a reference to page \(p \), keeps it in memory till its next reference, or \(w \) more time steps, whichever happens first (Denning’s WS algorithm falls under this class). We denote the fault rate and the space used by \(\text{FixWin}_w \) as \(f(w) \), and \(s(w) \), respectively,
Lemma 2: For fixed window algorithms FixWin_w, $s(w)$ need not be a convex function of $f(w)$.

Proof: A simple example will suffice. Let $g_1=0.2$, $g_2=0.8$, and $g_i=0$, $i>2$. There are only three possible window sizes, $w=0$, 1, and 2. Figure 8.2 has the f versus s plot for these values of w.

Using FixWin_w for $w=0, 1, 2, ...$, we get a set of points $(f(w), s(w))$ in the f-s plane. Given two such points $(f(w_1), s(w_1))$ and $(f(w_2), s(w_2))$, corresponding to FixWin_{w_1} and FixWin_{w_2}, respectively, a randomized algorithm can achieve points on the line joining $(f(w_1), s(w_1))$ to $(f(w_2), s(w_2))$ in the f-s plane. After each reference to page p, this algorithm chooses either w_1 or w_2 as the window to be used till the next reference. The value of the probability of choosing w_1 over w_2 decides the exact position of this algorithm on the line joining $(f(w_1), s(w_1))$ to $(f(w_2), s(w_2))$. If μ is the probability of choosing w_1 ($1-\mu$ is the probability of choosing w_2), then it can
be easily verified that the fault rate will be $(\mu f(w_1)+(1-\mu)f(w_2))$, and the space will be $(\mu s(w_1)+(1-\mu)s(w_2))$. Generalizing this fact, we have the following lemma, which has an obvious proof:

Lemma 3: Given a set of windows $S = \{w_1, w_2, w_3, \ldots\}$, an algorithm A which chooses some window from S after each reference (probabilistically or otherwise), has a fault rate of $f(A)$ and space usage equal to $s(A)$, such that the point $(f(A), s(A))$ in the f-s plane lies inside the convex hull of points corresponding to the fixed window algorithms FixWin_w, for all $w \in S$.

Consider all the points in the f-s plane corresponding to FixWin_w for $w=0, 1, 2, \ldots$, and so on. Let LH be the lower convex hull of these points. For example consider $g_1=0.44$, $g_2=0.01$, $g_3=0.349$, $g_4=0.001$, $g_5=0.2$, and $g_i=0, i>5$, using $w=0, 1, 2, 3, 4, 5$, we get the points of FixWin_w on the f-s plane as depicted in figure 8.3. LH marks the convex hull of these points.

Theorem 1: The convex hull LH of $(f(w), s(w))$ for $w=0, 1, 2, \ldots$, and so on, is the range of all online algorithms, i.e. the (f,s) point corresponding to any online algorithm lies inside the convex hull LH.

Proof: No online algorithm can benefit from the history of the IRG values of page p, since they are independent of each other (IGM assumption). The only information
an algorithm has is the length of the current gap, i.e. the duration since the last reference to the page p.

In the most general case, an online algorithm A is a function $z:I\rightarrow R$, which maps k, the length of the current gap, to a probability $z(k)$ of keeping the page, i.e. if the number of time steps since the last reference to the page is k, then with probability $z(k)$, algorithm A keeps the page, otherwise it removes it.

We transform algorithm A to another algorithm A' which chooses a window probabilistically using function $u:I\rightarrow R$.

$$u(w) = \left(\prod_{k=0}^{w-1} z(k) \right) (1 - z(w))$$

A' chooses a window of size w with probability $u(w)$ after a reference to the page. If the page is accessed within the next w steps then its a hit, else it removes the page after w steps.

We show that the distribution of space and time for A and A' are the same, proving that they are equivalent.

Given that a gap $g (>0)$ occurs, the probability that A keeps the page for a duration i, $i=0, 1, ..., g$, is given by:

$$\text{Prob}(\text{space} = i|\text{IRG} = g, A) = \begin{cases}
\left(\prod_{k=0}^{i-1} z(k) \right) (1 - z(i)) & \text{if } i < g \\
\prod_{k=0}^{g-1} z(k) & \text{if } i = g
\end{cases}$$

Similarly, the probability of fault for A is given by:

$$\text{Prob}(\text{fault}|\text{IRG} = g, A) = \text{Prob} \left(\text{Page getting removed at the } i^{th} \text{ step, } 0 \leq i < g \right) = 1 - \left(\prod_{k=0}^{g-1} z(k) \right)$$

For algorithm A', the probability of keeping a page for duration i, $i=0, 1, ..., g$ is given by:

$$\text{Prob}(\text{space} = i|\text{IRG} = g, A') = \begin{cases}
\text{Prob}(\text{choosing window size} = i|\text{IRG} = g, A') & \text{if } i < g \\
\text{Prob}(\text{choosing window size} \geq g|\text{IRG} = g, A') & \text{if } i = g
\end{cases}$$

$$= \begin{cases}
\left(\prod_{k=0}^{i-1} z(k) \right) (1 - z(i)) & \text{if } i < g \\
\prod_{k=0}^{g-1} z(k) & \text{if } i = g
\end{cases}$$
Similarly, the probability of fault for A' is given by:

$$\text{Prob}(\text{fault|IRG} = g, A') = \text{Prob(choosing window size} < g)$$

$$= 1 - \left(\prod_{k=0}^{g-1} z(k)\right)$$

Therefore A' has the same space and time distribution as algorithm A. From lemma 3, the space-time point for A' in the f-s plane will lie within the convex hull of points corresponding to FixWin_w, $w=0, 1, 2, \ldots$, proving our theorem. §

Corollary 1: An optimal online algorithm for a fixed fault rate q, is the algorithm which randomly chooses between fixed window sizes w_1 and w_2, with probability of choosing w_1 being μ. Segment $((f(w_1), s(w_1)), (f(w_2), s(w_2)))$ is an edge in the lower convex hull of LH, which intersects the vertical line $f=q$. μ is computed using $\mu = \left(\frac{q-f(w_1)}{f(w_1)-f(w_2)}\right)$. In case the line $f=q$ intersects the lower hull of LH on a vertex of LH, then the optimal algorithm is a fixed window algorithm corresponding to that vertex.

Proof: The proof follows from Lemma 3 and Theorem 1. §

8.4 Space-time functions

In this section we consider functions which combine space and time, producing a single value, and discuss the online optimality under such functions.

The *Space-Time Product (ST)* defined by Denning [26], for a process, in units of byte-second, is the integral of the memory used over the time the process is running or waiting for a missing page to be swapped into the main memory. On a per page basis, normalized with time, it can be approximated to the following (See [61]):

$$ST_p = s_p + \tau r_p \mu_p f_p$$

where τ is the swapping delay, r_p is the average amount of memory blocked by a process due to a fault on page p, μ_p is the rate of accessing page p. Assuming r_p and μ_p to be constant, this definition is a linear combination of space and time defined in section 8.2.
Theorem 2: If the space-time function is a linear combination of space \(s_p \) and time \(f_p \), then the optimal online algorithm is a fixed window algorithm.

Proof: A linear combination of \(s_p \) and \(f_p \) \((s_p + \alpha \ f_p)\) as a space-time cost measure, along with the IGM model for a page makes the space-time optimization problem a Markov decision process \(MDP_p \) as follows:

Decision epochs: At each unit of time, a decision to either remove or keep the page has to be made.

States: The states are “just referenced”, “in memory for \(i \) units since the last reference”, “not in memory and \(i \) units since the last reference”, for \(i = 1, 2, 3, ... \), and so on. We denote these states by \(M_0, M_i, D_i, i=1, 2, 3, ... \), and so on, respectively.

Actions: If the page is in memory, a decision to either keep or remove that page has to be made. Once the page is removed, no decision can be made till the next reference. We denote the action of keeping by \(K \), removing by \(R \), and no action as \(Z \).

Cost: The cost of \(K \) is 1 unit of space. The cost of \(R \) and \(Z \) is \(\alpha \) if the next state is \(M_0 \), else it is 0.

Transition probabilities:

\[
p(M_0|M_i, a) = \pi_{i+1}, \text{ for } a = K, R
\]

\[
p(M_{i+1}|M_i, K) = 1 - \pi_{i+1}
\]

\[
p(D_{i+1}|M_i, R) = 1 - \pi_{i+1}
\]

\[
p(M_0|D_{i+1}, Z) = \pi_{i+2}
\]

\[
p(D_{i+2}|D_{i+1}, Z) = 1 - \pi_{i+2} \quad i = 0, 1, 2, ...
\]

where \(\pi_i \) is the residual probability:

\[
\pi_i = \frac{g_i}{\sum_{j \geq i} g_j}
\]

Since we know from Markov decision theory [62] that deterministic policies are optimal under the expected total cost criteria, \(MDP_p \) will also have a deterministic optimal policy. In this case, the only non-deterministic part is in the \(M_i, i=0, 1, 2, ... \) states. Let \(w \) be the smallest integer such that at state \(M_w \) the \(R \) (remove) decision is made deterministically. It is not hard to see that it implies a fixed
window algorithm of window size w, i.e. $FixWin_w$. In case no such w exists, then it is a fixed window algorithm of window size ∞. §

The window size for the optimal online algorithm can be found by simply minimizing the expected space-time function. As before, to simplify, we consider the continuous domain (assume IRGs are distributed over a continuous distribution $g(t)$). In which case, if the fixed window is w, then:

\[
 f(w) = 1 - \int_0^w g(t) \, dt
\]

\[
 s(w) = \frac{1}{E(t)} \left(\int_0^w t \, g(t) \, dt + w \int_w^\infty g(t) \, dt \right)
\]

We get the cost function $c(w)$ as:

\[
 c(w) = s(w) + \alpha f(w)
\]

\[
 = \frac{1}{E(t)} \int_0^w t \, g(t) \, dt + \left(\frac{w}{E(t)} + \alpha \right) \left(1 - \int_0^w g(t) \, dt \right)
\]

Minimizing with respect to w, we get:

\[
 \alpha E(t) g(w_{\text{min}}) = 1 - G(w_{\text{min}})
\]

\[
 \alpha E(t) g'(w_{\text{min}}) + g(w_{\text{min}}) < 0
\]

Figure 8.4: Pictorial representation of the Markov decision process MDP_p

Labels on arcs denote (action, cost, transition probability).
where \(G \) is the c.d.f. of \(g(t) \), and \(g'(w_{\text{min}}) \) is the derivative of \(g(t) \) at \(t=w_{\text{min}} \).

Corollary 2: Under the Independent Reference Model (IRM) of program behavior, and a linear combination of space and time, the optimal policy is either \(w=0 \) or \(w=\infty \).

Proof: Under IRM, the analogue continuous IGM is an exponential distribution, for which \(c'(w) \) is non zero for \(w \geq 0 \). Hence, the minimal has to lie at the extreme points of \(w \)’s range. (A different proof for this corollary has been presented in [59]).

8.5 Experimental Verification

8.5.1 Virtual memory references

We experiment with the EQN10 4Kb page reference trace, to understand the \(f-s \) space-time characteristics. It has 118M page references, where 2340 unique pages are accessed in the entire trace. In figure 8.5 we plot the \(\text{FixWin}_w \) curve for four pages - the 12th (page address 32), the 16th (page address 1d67), the 20th (page address 44), and the 50th (page address c2d) most referred pages of the trace. For the sake of comparison, we also present the miss ratio and the space usage under the WS algorithm with \(\tau \) (WS window size) equal to 10,000, in table 8.1.

<table>
<thead>
<tr>
<th>Page number</th>
<th>Reference count rank</th>
<th>WS miss ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>12</td>
<td>0.35</td>
</tr>
<tr>
<td>1d67</td>
<td>16</td>
<td>0.78</td>
</tr>
<tr>
<td>44</td>
<td>20</td>
<td>0.72</td>
</tr>
<tr>
<td>c2d</td>
<td>50</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Table 8.1: Miss ratio under the WS algorithm with \(\tau \) (WS window size) equal to 10,000

From the two figures, it is obvious that for pages 32 and 44, significant improvements in the space-time product over WS are possible, since the \(f-s \) curve is concave around the fault rates depicted in table 8.1.
Space-Time trade-off issues occurring in database and disk buffer management are analogous to the virtual memory scenario. If multiple transactions or processes share a buffer, then dynamic partitioning of the buffer needs to be done.

An obvious solution is to extend the virtual memory solutions to object buffers and disk buffers. In this subsection, we show that virtual memory solutions are not adequate, and indeed a solution based on corollary 2 of section 8.4 is far superior. The new algorithm (OZ - one/zero) either keeps an item forever in the buffer, or always faults on it. The criteria for choosing between the two options is based on the estimated probability of reference of that item. If that probability is greater than $1/\tau$ (where τ is the penalty for a fault), then that item is kept forever, else it is never kept. The online optimality of this algorithm under the IRM model follows

8.5.2 Object and Disk traces

Figure 8.5: f-s curve for $FixWin_w$ for the 12th, 16th, 20th, and 50th most referred pages of the EQN10 trace

The new algorithm (OZ - one/zero) either keeps an item forever in the buffer, or always faults on it. The criteria for choosing between the two options is based on the estimated probability of reference of that item. If that probability is greater than $1/\tau$ (where τ is the penalty for a fault), then that item is kept forever, else it is never kept. The online optimality of this algorithm under the IRM model follows
PROCEDURE PageAccess(Page p)
{
 Clock ++;
 IF(p not in Memory)THEN
 Fetch(p); /*Fetch page*/
 Access(p); /*Use page p*/
 IF(PMT[p].First==NULL)THEN
 PMT[p].First=Clock;
 PMT[p].Current=Clock;
 PMT[p].Freq ++;
 FOR(all pages q in Memory)DO
 {
 IF(Clock-PMT[q].Current ≥ τ
 OR Clock-PMT[q].First > τ*PMT[q].Freq
)THEN
 Remove(q); /*Remove if out of window or low probability*/
 }
}

Figure 8.6: Pseudo code for the OZ Algorithm

from corollary 2 of section 8.4, and is also given using a different approach in [59]. The details of the algorithm with the assumptions are given in figure 8.6.

The traces used for the validation of our OZ algorithm are OO1, OO7 benchmarks, CAD object reference traces, and RBER1, RBER3 SPRITE traces. We simulate the OZ, the VMIN and the WS algorithm, for each one of the traces. The C space-time product [61] is used as the performance criteria, and we use the following measure for our comparisons:

$$\text{Worse}(A) = \frac{C_A - C_{\text{VMIN}}}{C_{\text{VMIN}}}$$

where C_A is the C space-time product for algorithm A. In Fig.8.7, we present the two numbers Worse(WS) and Worse(OZ), as a function of τ, the fault penalty, for the OO1F, OO7T1, CAD1O, CAD2O, RBER1, and RBER3 traces. We also present the ST space-time products [26] for two of the representative traces in table 8.2. Results are similar for rest of the traces.

Two distribution IRG model In this section we extend the IRM model to a two distribution model to incorporate some realistic features of program behavior.
Program references, in general, exhibit temporal locality of reference, i.e. a page recently referred, has a high probability of getting accessed again. An IRM model does not capture this behavior since the probability of reference of each page is
Table 8.2: ST space-time comparison. Normalized by the trace length.

<table>
<thead>
<tr>
<th>Trace</th>
<th>Algorithm</th>
<th>τ (fault penalty)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>OO1F</td>
<td>WS</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>OZ</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>VMIN</td>
<td>0.6</td>
</tr>
<tr>
<td>RBER1</td>
<td>WS</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>OZ</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>VMIN</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Figure 8.8: Markov Chain description of a two distribution model for item j.

invariant with time. We propose to capture temporal locality via a two distribution model for each item. A burst distribution where the probability of reference is very high, a lean distribution where it is low. Other authors have used similar models to characterize program behavior. Easton [28] proposes a two state model to analyze WS algorithm characteristics in a database reference stream. Guimaraes [36] uses a two state geometric IRG distribution model where all the pages have the same stochastic behavior.

Each item j is characterized by three probabilities a_j, b_j, and p_j. These three probabilities correspond to the burst distribution, the lean distribution, and the probability of a burst type reference, respectively. After a reference to item j, its next distribution is decided by probability p_j. After the distribution is fixed, the probability of reference to item j stays fixed at either a_j or b_j till a reference to j actually happens. Figure 8.8 depicts the behavior. State labelled “ref” denotes reference to item j.

Under this model of temporal locality, by using theorems from the previous
section, we derive the following OZ2 online optimal algorithm for the C space-time product.

Three cases, depending on the values of a_j, b_j, p_j, and τ, arise (the first two are similar to the OZ algorithm):

1. Both $1/a_j$ and $1/b_j$ are smaller than τ. In this case the item j is never removed from memory.
2. Both $1/a_j$ and $1/b_j$ are larger than τ. In this case item j is never kept in memory.
3. When $1/a_j < \tau < 1/b_j$ we get a fixed window algorithm $FixWin_w$ with $w(j)$ the window size for item j given by:

$$w(j) = \log \left(\frac{(1-p_j) (\frac{1}{a_j} - \tau)}{p_j (\tau - \frac{1}{a_j})} \right), \frac{\log(1-b_j)}{\log(1-a_j)}$$

(A)

We use a simple heuristic to identify the two distributions. If an Inter-Reference Gap (IRG) value is greater than τ then we assume the reference to be lean, otherwise it is burst. The probabilities a_j and b_j are estimated as the reciprocal of the average IRG value in each one of the two distributions. Finally, the transition probabilities are estimated by counting the number of occurrences of the two distributions. Figure 8.9 describes the algorithm in detail.

Finally, in figure 8.10 we present the C space-time product for various algorithms for four traces. The value of τ and μ in the simulations is 100, and the C values depicted are normalized with respect to the trace length.
PROCEDURE UpdateIRGmodel(Object p, Time t)
 IF(t-LastRef[p] > \tau) THEN state=b; ELSE state=a;/*Find state*/
 SigmaIRG[p][state]+=t-LastRef[p];
 Count[p][state]++; /*Update probability model*/
 LastRef[p]=t;
 Compute X_min[p]; /*Use equation (A)*/

PROCEDURE ObjectAccess(Object p)
 GlobalClock ++;
 UpdateIRGmodel(p, GlobalClock);
 IF(p not in Memory) THEN Fetch(p); /*Fault on object p*/
 Access(p); /*Use object p*/
 FOR(all objects q in Memory) DO
 IF(GlobalClock \geq LastRef[q]+X_min[q]) THEN Remove(q);
 /*For X_min use Eqn.(A)*/
8.6 Conclusions

In this chapter, we presented theoretical results for space-time optimization in paged virtual memory, and in database and disk buffers. The notion of treating IRG sequence for each item (page, database object, file etc.) independently, was also introduced. This notion is especially useful for the upcoming new architectures where large scale threading and memory sharing results in the IRG streams for different addresses becoming more independent of each other. Additionally, the older definitions of space-time (ST, C, etc.) are becoming obsolete, since a stall on a thread need not stall the entire process (some other thread can be switched). In which case, the penalty for a fault can be anything from the thread switching overhead to the actual swapping delay. Moreover, sharing of address space can not be handled by the traditional space-time measures.

On the other hand, our method of looking at space-time on a per address basis, presents a general framework for space-time computation since the cost of a fault can be customized for each address, and each reference, individually.
Chapter 9

Conclusions and Future Work

In this thesis we showed that data compression is an effective tool for discovering program properties. In particular, in chapter 5 we looked at the sequence of Inter-Reference Gaps (IRGs), i.e. the time difference between successive references to the same address in a program execution, and showed that they are highly compressible, and hence highly predictable. We exploited this predictability to propose a universal replacement algorithm, for both fixed and variable memory, and showed its applicability via a significant performance improvement over other known techniques for replacement.

We further used this notion of IRGs in chapter 8 to model sequence of references in a threaded architecture where consecutive references generated by a CPU need not be correlated (generated by different threads, for example). In this context, we proposed new methods for computing the space-time trade-off, and showed online optimal algorithms for achieving them. We also showed the practical use of the new algorithms via performance improvement over other known methods.

The BIT0 and the SET0 implementations of the IRG replacement algorithms, showed that LRU can be considerably improved by using the reference behavior of the past, without adding considerable overheads. Further applications of this technique are possible for:

1. Replacement in cache prefetching: When a block is prefetched into a cache, we need to remove some block from the cache. By using IRG prediction we can try to remove the one which would be accessed farthest in the future.

2. Prefetching in paged memory, databases and file systems: Using the IRG history of an item not in memory, we can predict when it will be accessed next, and prefetch it before it is referenced.

In the process of discovering predictable properties of program behavior, we showed two new techniques for storing program traces losslessly, and one technique
for lossy compression of traces for speeding up trace-driven simulations. These results were presented in chapter 4.

We used the predictiveness of misses in a cache memory to propose a prefetch scheme in chapter 7. This was shown to be a much better mechanism than sequential prefetching since data streams generally do not have sequential characteristics like those of the instructions. We also proposed an architecture for implementing such a scheme. This scheme needs to be tested under a real setting where prefetches might not complete before the next miss. In addition, other methods for history based prefetching with lesser overheads need to be investigated.

Finally, in chapter 6 we presented some results for replacement at L1 and L2 cache memory levels. It was shown that LRU need not be the best practical policy at the L1 level. An LFU based scheme which can recognize phase changes (or working set changes) will work better than LRU. Additionally, at the L2 level, due to “loss” of locality, LRU was not the best replacement policy among the known methods of replacement. We also showed that our IRG based scheme performed better than all the other methods for replacement, both at the L1, as well as at the L2 levels. Future work in L2 replacement includes, finding effective techniques for identifying program phases, building simple predictive models, and prefetching. Recent work on exclusive replacement in L2 caching [44] has been one such step, where a non-traditional replacement approach is taken.
References

Vita

Vidyadhar Phalke

1973-85 Central School, Dehradun and New Delhi, India.

1985-89 B.Tech., Computer Science and Engineering Indian Institute Technology, New Delhi, India.

1989-92 M.S., Computer Science, Rutgers University, NJ, USA.

1992-95 Ph.D., Rutgers University, NJ, USA.

Publications

