On the genus of the star graph

Sarmad Abbasi
Department of Computer Science,
Rutgers University,
Piscataway NJ 08855.

Abstract

The star graph S_n is a graph with S_n the set of all permutations over $\{1, \ldots, n\}$ as its vertex set; two vertices π_1 and π_2 are connected if π_1 can be obtained form π_2 by swapping the first element of π_1 with one of the other $n-1$ elements. In this paper we establish the genus of the star graph. We show that the genus, g_n, of S_n, is exactly equal to $n!(n-4)/6 + 1$ by establishing a lower bound and inductively giving a drawing on a surface of appropriate genus.

Keywords: Cayley graphs, graph genus, interconnection networks, star graph.

1 Introduction

In [1] Akers, Harel and Krishnamurthy introduced the star graph as a computational network for parallel computing. It was also shown that the star graph has many properties which are desirable for practical networks; such as low diameter, low degree, symmetry and low fault diameter. They also designed efficient routing algorithms on the star graph. Since then some work has been done to design efficient parallel algorithms for the star graph[6]. In this paper we are concerned with the genus of this graph. Akers, Harel and Krishnamurthy [1, 2] conjectured that the genus of the star graph is $n - 3$. We show that this conjecture is far from the truth: in fact the genus, g_n of S_n, is given by

$$g_n = \frac{n!(n-4)}{6} + 1.$$

2 Cayley graphs

Given Γ a group and $\rho_1, \rho_2, \ldots, \rho_k$ a set of generators for Γ, the Cayley graph $G(\Gamma; \rho_1, \ldots, \rho_k)$ is obtained by taking Γ as the vertex set; two vertices π_1, π_2 are connected if and only if $\pi_1 = \rho_j \pi_2$ for some j. Many well known interconnection networks can be expressed as Cayley graphs. For example, we can realize the n-cube as a Cayley graph by taking Γ as the product of n copies of Z_2, that is,

$$\Gamma = \bigoplus_{i=1}^{n} Z_2.$$
The generators of Γ are given by $(1, 0, 0, \ldots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, 0, 0, \ldots, 1)$. In [2] it has been suggested that in general Cayley graphs make a good choice for interconnection networks.

We want to study Cayley graphs of familiar groups. Therefore, S_n, the group of permutations of $\{1, \ldots, n\}$ is a natural choice. We shall restrict our attention to Cayley graphs obtained from a set of transpositions as generators of S_n. Given a set of transpositions T, we can construct a transposition graph G_T on n vertices $\{1, \ldots, n\}$, such that $\{i, j\}$ is an edge in G_T if and only if $(i, j) \in T$. The following theorem, first given by Cayley himself, characterizes when T is a minimal set of generators for S_n.

Theorem 2.1 (Cayley) A set of transpositions T is a minimal set of generators for S_n if and only if the transposition graph G_T is a tree spanning $\{1, \ldots, n\}$.

The star graph S_n is a Cayley graph obtained by taking $\Gamma = S_n$, the group of all permutations of $\{1, 2, \ldots, n\}$ with set of generators $T_n = \{(1, 2), (1, 3), \ldots, (1, n)\}$. Thus there is an edge between two permutations π_1 and π_2, if π_2 can be obtained from π_1 by swapping the first element of π_1 with one of the other $n - 1$ elements. The transposition graph G_{T_n} can be drawn to look like a star (This explains the reason for the name “star graph”). The star graph S_n is $n - 1$ regular with $n!$ vertices and $n!(n - 1)/2$ edges.

Figure 1 shows the star graphs S_3 and S_4. We have labeled the vertices by appropriate permutations written in straight line notation (In straight line notation a permutation π is written as $(\pi(1), \pi(2), \ldots, \pi(n))$, which we will use henceforth. Note that S_4 consists of four copies of S_3, where the i-th copy of S_3 is obtained by considering vertices with $\pi(4) = i$. We can generalize this decomposition as follows. Let S_n^i be the subgraph of S_n induced by all the permutations π with $\pi(n) = i$. Then it is easy to see that S_n^i is isomorphic to S_{n-1}. Hence S_n consists of n copies of S_{n-1}. In order to understand the genus of the star graph we will have to further decompose S_n into smaller star graphs. For every $\pi = (\pi(1), \ldots, \pi(n))$, we write $\pi = (\alpha_\pi, \beta_\pi, \gamma_\pi, \delta_\pi)$, where $\alpha_\pi = (\pi(1), \pi(2))$, $\beta_\pi = \pi(3)$, $\gamma_\pi = (\pi(4), \ldots, \pi(n - 1))$, and $\delta_\pi = \pi(n)$. Hence we view every permutation π as illustrated below:
Let $S_n[\gamma = \gamma_0; \delta = i]$ denote the graph induced by all the permutations π such that $\gamma_{\pi} = \gamma_0$ and $\delta_{\pi} = i$; that is, $S_n[\gamma = \gamma_0; \delta = i]$ consists of all the permutations whose last $n-3$ entries are fixed as (γ_0, i). Similarly, we can define $S_n[\gamma = \gamma_0]$ etc. For example, $S_6[\gamma = (2, 6)]$ is the graph induced by all permutations of the form $(*, *, *, 2, 6, *)$. It can easily be seen that for any γ_0 and i, $S_n[\gamma = \gamma_0; \delta = i]$ is isomorphic to S_3 and $S_n[\gamma = \gamma_0]$ is isomorphic to S_4. Lastly, we also note that $S_n' = S_n[\delta = i]$.

3 The genus of the star graph

The genus of a graph is the minimal genus of an orientable surface on which the graph can be drawn without any edge crossings. The genus of a graph may be considered as a measure of non-planarity. Hence if we can draw a graph on a plane without any edge crossings then its genus is 0. Graphs with high genus are "extremely non-planar." For more formal treatment of this subject see [3, 4].

In this section our goal is to prove the following theorem:

Theorem 3.1 For $n \geq 3$, the genus of the star graph S_n is given by,

$$g_n = \frac{n!(n-4)}{6} + 1.$$

Our method is based on that of Beineke and Harary [5], who computed the genus of the n-cube. To show the above result we first establish a lower bound for g_n which follows from the Euler characteristic formula.

Theorem 3.2 Let g_n denote the genus of S_n, then for $n \geq 3$,

$$g_n \geq \frac{n!(n-4)}{6} + 1.$$

Proof: Consider any optimal embedding of S_n in a orientable surface of genus g_n. Let F_n be the number of faces of S_n on the surface. Further, let V_n and E_n denote the number of vertices and edges in S_n. Notice, that for $n \geq 3$, the girth\(^3\) of S_n is 6. Therefore, it follows that each face in the embedding has at least 6 edges. Thus,

$$6F_n \leq 2E_n. \tag{1}$$

Now, according to Euler characteristic formula we have,

$$2g_n = E_n - F_n - V_n + 2.$$

Using inequality (1) we get,

$$2g_n \geq 2/3 E_n - V_n + 2.$$

\(^3\)The girth of a graph G is the length the smallest cycle in G.

3
Since S_n has $n!$ vertices and $n!(n - 1)/2$ edges, a simple calculation gives us the desired result.

To obtain the upper bound we have to do a little more work. We start by observing that $n!(n - 4)/6 + 1$ is a unique solution to the following recursion:

$$f_n = \begin{cases}
0, & \text{if } n = 3, \\
nf_{n-1} + \frac{n!}{6} - n + 1, & \text{otherwise}
\end{cases} \quad (2)$$

To prove Theorem 3.1 it suffices to show that $g_3 = 0$ and $g_n \leq ng_{n-1} + n!/6 - n + 1$. S_3 is a hexagon; hence $g_3 = 0$. However, S_4 is more interesting. We want to embed S_4 in a surface of genus 1. We think of a torus (a surface of genus 1) as a square whose opposite sides are identified appropriately. Therefore Figure 2 shows that $g_4 = 1$ by drawing it on a square with opposite sides identified. This figure will play an important role in the proof for the upper bound. We observe that in Figure 3(a) every $S_4[\delta = i]$ is a face. Also, every $S_4[\beta = i]$ is a face (see Figure 3(b)).

Figure 4 is obtained by simply sliding each S_4^i to align them in a line. Figure 5 shows that we can think of a torus as four spheres with four handles attached between them. Hence our original drawing of Figure 2, can be used to obtain a drawing of S_4 such that each S_4^i is drawn on a sphere (Figure 6). Four handles have been attached between the spheres to complete
the drawing. Further, every face in Figure 2 is still a face in Figure 6. For simplicity, the edges between the different S_4 are not drawn.

To embed S_n in an orientable surface we will take n embedded copies of S_{n-1} in a surface of genus g_{n-1} such that $S_n[\gamma = \gamma_0; \delta = i]$ is a face for every γ_0 and i. For every γ_0, we will then use four handles as in Figure 6 to connect the rest of the edges in $S_n[\gamma = \gamma_0]$. Therefore by attaching a total of $n!/6$ handles we will obtain a drawing of S_n. The next lemma and recursion (2), tell us that $n!/6$ handles are sufficient for our purpose.

Lemma 3.1 Let M_1, \ldots, M_n be orientable surfaces, all of genus g. If we add $k \geq n - 1$ handles between them to make a connected orientable surface M, then the genus of M is $ng + k - n + 1$.

Proof: Consider two disconnected surfaces of genus g_1 and g_2. If the two surfaces are connected by a handle then the resulting surface has genus $g_1 + g_2$. Further, if we add a handle to a connected surface we increase its genus by one. Now the result follows from noting that if we attach k handles between n surfaces one by one to obtain M, then exactly $n - 1$ handles will be used to connect disconnected surfaces. ■

Comparing the above lemma and recursion for $n!(n-4)/6+1$, we notice that if we start with S_n and embed every S_{n-1} inductively in n surfaces of genus g_{n-1} then we are allowed
to attach \(n! / 6 \) handles between the \(n \) surfaces. Call an edge in \(S_n \) old if it connects two vertices in \(S^i_n \) for some \(i \). Further, an edge is new if it is not old. Hence all the new edges of \(S_n \) connect some vertex in \(S^i_n \) to some vertex in \(S^j_n \) for \(i \neq j \). For example, the thin edges in Figure 2(a) are the new edges of \(S_4 \). The following lemma gives us a nice drawing of \(S_4 \) provided we have a nice drawing of its old edges.

Lemma 3.2 Assume we have a drawing of \(S_4 \) which contains the old edges of \(S_4 \) on some (not necessarily connected) surface \(M \). Further, in this drawing \(S^i_4 \) is a face for every \(i \). Then we can obtain a drawing of \(S_4 \) by attaching four handles to this surface such that, every \(S_4[\beta = i] \) is a face for every \(i \).

Proof: Given a drawing in which every \(S^i_4 \) is a face we can “inflate” the surfaces under each \(S^i_4 \) to form spheres over \(S^i_4 \). Now four handles can be attached to these spheres as shown in Figure 6 to route all the new edges. Since this new Figure is similar to Figure 6, it can be readily seen that every \(S_4[\beta = i] \) is a face.

Now we are ready to prove our upper bound. The proof is by induction on a slightly stronger statement.

Theorem 3.3 For \(n > 3 \) there exists a embedding of \(S_n \) on a surface of genus \(n!(n-4)/6+1 \) such that every \(S_n[\gamma = \gamma_0; \delta = i] \) is a face.
Proof: For $n = 4$ the result follows from Figure 2. Assume that $n \geq 5$; then by induction we can embed every S_n^i in a surface of genus g_{n-1} such that every $S_n[\gamma = \gamma_0; \delta = i]$ is a face. Hence we have a drawing of all the old edges of S_n. Fix a γ_0 and consider $S_n[\gamma = \gamma_0]$ which is isomorphic to S_4. The new edges of $S_n[\gamma = \gamma_0]$ correspond to the thin edges of S_4 in Figure 3(a). Further, for every i, $S_n[\gamma = \gamma_0; \delta = i]$ corresponds to S_4^i. Since each $S_n[\gamma = \gamma_0; \delta = i]$ is a face by Lemma 3.2 we can add all the new edges in $S_n[\gamma = \gamma_0]$ by attaching only four handles. Notice that every new edge of S_n is a new edge in $S_n[\gamma = \gamma_0]$ for some unique γ_0. Hence, if we repeat this process for all choices of γ_0 we get a embedding of S_n. Furthermore, in this drawing every $S_4[\beta = i; \gamma = \gamma_0]$ is a face. There are $\binom{n}{4}(n - 4)!$ choices for γ_0, and each requires 4 handles. We have added $4\binom{n}{4}(n - 4)! = \frac{n^4}{6}$ handles. Hence by Lemma 3.1 the genus of the new surface is $n g_{n-1} + n!/6 - n + 1$. Further, from our construction this drawing of S_n has every $S_n[\beta = i; \gamma = \gamma_0]$ as a face. To continue the induction on this stronger statement we must obtain a drawing of S_n such that every $S_n[\gamma = \gamma_0; \delta = i]$ is a face. Hence by renaming every vertex $\pi = (\alpha_x, \beta_x, \gamma_x, \delta_x)$ to $(\alpha_x, \delta_x, \gamma_x, \beta_x)$ we get the desired drawing.

Acknowledgments: I would like to thank Daniel Gordon for helping with this project and Andrew Granville for giving me valuable suggestions to improve the presentation. I would also like to thank Rod Canfield for his constant encouragement and guidance.

References

