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THESIS ABSTRACT

A Comparative Study of Mesh Smoothing methods with Flipping

in 2D and 3D

by TIKESHWAR PRASAD

Thesis Director:

Dr. Suneeta Ramaswami

Abstract: Mesh smoothing is the process of relocating mesh vertices with the goal of

improving various quality metrics such as minimum angle, maximum angle and aspect

ratio. This thesis presents a study of computationally efficient smoothing methods

applied to triangle and tetrahedral meshes. It has been known in the meshing literature

that mesh smoothing is more efficient when vertex relocation is accompanied by the

edge flipping operation in order to maintain Delaunay properties. While flipping in 2D

is simple and proven to be effective, flipping in 3D does not give such guarantees. In

this comparative study, we implement four algorithms for triangular and tetrahedral

meshing with immediate flipping. While immediate flipping has been mentioned in

the mesh smoothing literature, it lacks experimental data, particularly for tetrahedral

meshes. We compare these four methods in terms of speed, quality and grading of the

mesh.
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Chapter 1

Introduction

Meshing is the process of discretization of a polygonal or polyhedral domain into simpler

geometric elements like triangles, quadrilaterals, tetrahedra, hexahedra, etc; such that

differential equations can be solved for simpler elements to model some real world

problems for the entire geometric domain. These meshes are extensively used in FEA

(Finite Element Analysis), FVM (Finite Volume Methods) and computer graphics. The

accuracy of the results depends on the quality of the meshes particularly for FEA and

FVM problems. A good quality mesh has a high number of good quality elements in

the area of interest and fewer elements in other areas, which is important for grading.

Grading can be defined as the variation of element size and count from different parts

of the mesh. For example, good grading allows a large number of elements near a region

of interest which varies smoothly to a small number of elements in other regions of the

mesh. Acceptable quality depends on the nature of the problem, but elements with

very small or very large interior angles are not considered to be of good quality.

The art and science of generating meshes is known as grid (or mesh) generation.

Meshes can be differentiated into structured, unstructured and hybrid grids. Structured

grids have regular and symmetrical connectivity and are easier to code, but they are

not able to adapt to complicated domains. Unstructured grids have irregular connec-

tivity and they are somewhat harder to code, but they can better adapt to complicated

domains. Hybrid grids contain a mixture of structured and unstructured grids. Struc-

tured and hybrid grids are out of the scope of this thesis and will not be discussed

further.

Among unstructured grid generation methods, Delaunay based methods have been
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of special interest to researchers due to their nice mathematical properties and guar-

antees. Algorithms for Delaunay triangulation have been developed for 2D and 3D

domains, but the initial mesh is usually coarse and not useful for solvers. For this

reason, the mesh is often refined by adding more nodes to it in the regions of interest.

Adding more nodes can improve mesh quality, but then solvers take more time to solve.

If higher quality elements are desired after the mesh refinement, the mesh is passed

through smoothing algorithms. Smoothing is the process of relocating mesh vertices to

new locations such that elements incident at that vertex have improved quality. This

is done iteratively for every vertex till the desired mesh quality is reached or it cannot

be improved further. Smoothing can also involve changing the connectivity of nodes

and change in connectivity can improve quality dramatically but is slower than vertex

relocation alone.

There are many methods for applying smoothing on triangular and tetrahedral

meshes, which can be broadly categorized into Laplacian based methods and Optimiza-

tion based methods. The Laplacian based methods involve taking the average of some

metric of elements, whereas optimization based techniques try to improve the metric

by solving an optimization problem framed to minimize or maximize the chosen qual-

ity metric. It is not guaranteed that the Laplacian based methods will improve mesh

quality; however the Laplacian methods perform reasonably well in practice given its

simplicity. The Laplacian methods are easily extendable to quadilateral and hexahe-

dral meshes. On the other hand, optimization based smoothing techniques yield better

results but are computationally more expensive than Laplacian methods.

This thesis presents a comparative study of smoothing algorithms for two-dimensional

meshes and their direct three-dimensional counterparts. The remainder of the thesis is

organized as follows. In Chapter 2, we present the construction methods of Delaunay

triangulations in 2D and 3D and discuss various smoothing methods and mesh qual-

ity metrics. In Chapter 3, we present our smoothing framework with our mesh data

structure, implementation details and challenges. Chapter 4 gives an analysis of the

effectiveness of smoothing methods on 2D and 3D meshes, followed by Chapter 5 on

conclusion and future work.
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Chapter 2

Background

2.1 Delaunay Triangulation

Delaunay triangulation is a method of triangulation in which every simplex satisfies the

Delaunay property. In 2D triangulation, if every triangle has an empty circumcircle,

then it is a Delaunay triangulation. Similarly in 3D, if every tetrahedron has empty

circumsphere, then it is Delaunay. The empty circumcircle condition requires that

there should not be any point inside or on that circumcircle in 2D or circumsphere in

3D except the points of the simplex itself as shown in Figure 2.1.

Figure 2.1: Delaunay triangulation and empty circumcircle

For a point set in general position, there always exists a unique Delaunay triangu-

lation. In 2D, points are in general position when no 4 points lie on the same circle.

If they lie on same circle, then there is more than one way to connect those 4 points

to form a Delaunay triangulation as shown in Figure 2.2. To resolve this ambiguity,

perturbation techniques are used.

There are many ways to compute the Delaunay triangulation of a point set. Two

notable methods are incremental construction and divide-and-conquer. We will discuss
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Figure 2.2: Possible triangulations in points in non general position

incremental construction here as that is easier to understand and code. There are two

methods for incremental construction.

2.1.1 Bowyer-Watson Algorithm

The Bowyer-Watson algorithm [1, 13] constructs the Delaunay triangulation incremen-

tally by inserting the points one at a time. To insert point p, first all the triangles

are collected whose circumcicles contain p. The set of triangles are deleted to create a

cavity. This cavity is re-triangulated with the p as shown in Figure 2.3. The algorithm

is easily extensible to higher dimensions. In 3D, all tetrahedra are deleted whose cir-

cumspheres contain p forming a cavity. This cavity is then re-tetrahedralized to update

the Delaunay tetrahedralization.

It is fairly easy to implement but is prone to robustness issues if robust predicates

are not used. If points are not in general position, then Bowyer-Watson algorithm can

lead to invalid triangulation due to floating point round-off errors. This can lead to

catastrophic program crashes and failures.

2.1.2 Lawson flip Algorithm

The Lawson Flip algorithm uses the flip operation to construct the Delaunay trian-

gulation. In case of 4 points in convex position, there are two possible triangulations,
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(a) all triangles whose circumcircles contain the
new point are deleted

(b) updated triangulation with new point

Figure 2.3: Bowyer Watson Algorithm

but in general only one will be Delaunay; see Figure2.4. Non-Delaunay configuaration

of 4 points can be converted to Delauanay by flipping the edge. In 2D, one can start

with some arbitrary triangulation and then keep on flipping non-Delaunay edges until

all edges are Delaunay. In incremental construction, a point p is inserted in following

steps:

A

B

C

D

(a) Non-Delaunay Configuration
circumcircle of 4ABC contains D

A

B

C

D

(b) Delaunay Configuration
circumcircle of 4ABD does not contain C

Figure 2.4: Two possible triangulations of four points

1. First the triangle is found which contains the point p.

2. Each edge of that triangle is connected to the point to form 3 new triangles. The
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old triangle is deleted.

3. Apply flipping to all the non-Delaunay edges starting from the new triangles and

proceeding further with each new triangle until no non-Delaunay edge is left.

Theoretically,it can take n2 flips to make an arbitrary triangulation of n points into

Delaunay triangulation, but in practice, it is much less. See Figure 2.5 for flips in

action.

(a) Point is inserted in the triangle (b) Non-Delaunay edge is flipped

(c) Another non-Delaunay edge is flipped and
process stops as there are no more non-Delaunay
edges

Figure 2.5: Lawson Flip Algorithm

This flipping [9] technique is quite useful in smoothing. After relocating every vertex

to a new position, flipping is used to restore the Delaunay property.

Though the core of algorithm remains same in 3D, flipping is not as straight forward

in 3D as in 2D. In 3D, edges and faces both can be flipped. Unlike in 2D, not every

non-Delaunay configuration of edge/faces can be flipped. In 3D, to construct Delaunay
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tetrahedralization, we have two major types of flip operations[8]. A m−n flip operation

means that m tetrahedra are replaced by n tetrahedra.

1. 1-4 flip : This is equivalent to inserting point in a tetrahedron and splitting into

4 tetrahedron.

2. 4-1 flip : This is equivalent to removing a point from the tetrahedral mesh. If

exactly 4 tetrahedra are incident at a vertex, then they can be replaced by 1

tetrahedron thus deleting the vertex.

4 - 1

1 - 4

Figure 2.6: 1-4 flip

Here 3 tetrahedra are combined to create 2 tetrahedra.

3. 2-3 flip : A face is flipped only when it is part of 2 tetrahedra and all points of

2 tetrahedra lie on the convex hull formed by the vertices of tetrahedra. So, 2

tetrahedra are flipped to give 3 tetrahedra.

4. 3-2 flip : A edge is flipped only when it is part of 3 tetrahedra and all vertices of

3 tetrahedra lie on the convex hull. Here 3 tetrahedra are combined to create 2

tetrahedra.

3 - 2

2 - 3

Figure 2.7: 2-3 flip
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There are other flips as well, such as 2-2 flip and 4-4 flip, which are useful in

degenerate cases. If 4 tetrahedra sharing an edge have degenerate points and 4 points

are planar, then there are two possible configurations as shown in Figure 2.8 and one

of better configurations can be chosen. If planar faces have exactly 2 tetrahedra on

one side of the face, then we have 2-2 flip configuration which occurs only at boundary

faces.

4 - 4

4 - 4

Figure 2.8: 4-4 flip

For performing flips after relocation of vertex to new point, flips are useful in 3D

similar to 2D. Delaunay by flips has one major advantage over Bowyer-Watson that

triangulation is always valid despite floating point errors. But in practice, flipping is

slightly slower than former method.

2.2 Smoothing Algorithms

Laplacian smoothing is one of the most popular smoothing schemes. It comprises of

those algorithms [5] that relocate the vertex to the weighted average of all its incident

vertices. This can lead to inverted or invalid elements, so the extra check of mesh validity

of is performed. However, it is still faster than other more sophisticated methods.

x∗ =
1

k

∑
xj∈Ωi,xj 6=xi

xj (2.1)

where x∗ is the new location, xi is the vertex in consideration and and Ωi is the star

of the vertex. Star of a vertex v is collection of all triangles in 2D or tetrahedra in 3D

incident on v. The polygon created by the vertices in star is known as the StarPolygon.
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In practice, smoothing is an iterative method and is performed until certain thresh-

old value of mesh quality is reached or a certain number of iterations are done. There

are many methods to perform smoothing. In the following sections, we describe some

of the commonly used smoothing methods in 2D.

2.2.1 Laplacian Smoothing

In Laplacian smoothing, a vertex v is simply relocated to the centroid of the vertices

incident on v. This centroid point can be treated as the solution of a spring torsion

system where each vertex in the star is fixed and applying force on v via a spring with

constant K connected to it. Energy in such a system is

E =
K

2

k∑
j=1

|vj |2 (2.2)

where k is the number of vertices in the star of v. K is the spring constant, vj is the

vector from v to every vertex in the star. The solution of system is the centroid of all

the vertices in the star.

It is simple and fast, however there is no guarantee for quality improvement and it

might produce inverted elements. It has been observed that it can give good results if

number of iterations are less.

2.2.2 Smart Laplacian Smoothing

The Smart Laplacian method addresses the shortcomings of the Laplacian method. The

relocation strategy is the same but before relocating any vertex, it is passed through

tests to see if it improves the quality of neighborhood simplices. The vertex’s current

position is not changed if there is no improvement. Despite the extra check for quality

evaluation, this method is still inexpensive and avoids inverted elements [6].

2.2.3 Angle Based Smoothing

Angle based smoothing was developed by Zhou and Shimada [15]. This method can

also be considered as solution to spring torsion system similar to the Laplacian method.
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The difference is that instead of distances, here angles made at v are considered. The

energy in such a system is given by

E =
K

2

2k∑
j=1

θ2
j (2.3)

where k is the number of vertices of the polygon, K the spring constant, and θ the angle

on the boundary of the polygon. Each pair of angles shares one vertex of the polygon,

therefore there are 2k angles in total to be considered. Finding an optimum location is

based on heuristics and notably there are two methods of finding new location due to

Zhou and Shimada [15] and Xu and Newman [14].

This method is computationally more expensive than the Laplacian, but offers bet-

ter results and avoids creating inverted elements without extra checks. We have not

implemented this method for our study as there is no direct counterpart in 3D.

2.2.4 Centroidal Voronoi Tessellation (CVT) Based Smoothing

The Centroidal Voronoi tessellation [3] for a given point set is the collection of Voronoi

cells such that the generating point of each cell is also its centroid. CVT is applied

in image analysis, flow control, dimension reduction etc. CVT can be applied through

LLoyd [10] iterations to the initial Delaunay triangulation to improve the mesh quality.

In each Lloyd iteration, Voronoi regions of each point p is calculated and p is relocated to

centoid of the Voronoi region. This is similar to k-means algorithm with the difference

that k-means operates on points and Lloyd algorithm operates on continuous geometric

Euclidean space.

From the implementation point of view, Lloyd iteration is slow to converge. Hence,

researchers have come up with more deterministic ways to compute centroids. One of

the easier ways is Weighted Centroid of Circumcenters which is shown below

x∗ =
1

|Ωi|
∑

Tj∈Ωi

|Tj |Cj (2.4)

where x∗ is the new location, |Ωi| is the total area of all the elements in the star of

the point and Tj is jth triangle of star, |.| denotes the area in 2 dimension and Cj is

the circumcenter of jth triangle. There are other methods based on CVT, but Lloyd

iterations are well-suited for mesh smoothing despite its slow convergence.
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2.2.5 Optimal Delaunay Triangulation (ODT) Based Smoothing

Chen and Xu [2] studied Delaunay triangulation for minimizing the linear interpolation

error (measured in Lp-norm) for a given function. The Delaunay triangulation can then

be characterized as an optimal triangulation that minimizes the interpolation error for

the isotropic function among all the triangulations with a given set of vertices.

They devised a smoothing method based on this strategy which aims to distribute

the edge lengths in the star of a vertex based on the function to be approximated. For a

mesh with elements of roughly the same size also known as uniform mesh, the function

can be chosen as f(x) = |x|2. Then the new location can be computed as shown below.

v∗ = − 1

2|Ωi|
∑

Tj∈Ωi

(∇|Tj(v)|
∑

vk∈Tj ,vk 6=vi

|vk|2) (2.5)

In the above equation v∗ is the new location, |Ωi| is the area of all elements in the star

of the vertex v, ∇|Tj(v)| is the vector towards v perpendicular to the edge opposite

to v, |vk|2 is the square magnitude of the position vector of vk and Tj is jth triangle

incident on v.

2.2.6 Aspect Ratio Based smoothing

Aspect ratio based smoothing [7] method is a Laplacian based method which aims to

improve mesh quality by targeting aspect ratios of the triangles incident at a vertex.

The idea is that for each triangle T incident on v, we move v along the circumcircle of

T such that the perpendicular distance of v from the edge opposite to v is maximized.

We take the average of new locations calculated with respect to all triangles in the star

of v and call it v∗ which is the final new location of v.

In the Figure 2.9, v is moved along circumcircle of triangle to vnew. The algorithm

only moves the vertices if the ratio of lengths of longer to shorter edges incident at a

vertex is greater than 1.5. We have extended this algorithm to 3D, where we try to

maximize the distance of v from the face opposite to v by moving along the circum-

sphere.
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Figure 2.9: Moving v to vnew

2.3 Quality metrics

Quality of an element of a mesh is measured by its suitability and accuracy in the

simulation. Generally, very small or very large angles between edges or faces can impact

accuracy and speed, so angles closer to equilateral elements are desired. Various quality

metrics are used in the meshing community. Below are the most commonly used.

Table 2.1: Metrics table

Metric Triangle Tetrahedron

Aspect Ratio R
2
√

3L
R

2
√

6L

Radius Ratio R
2r

R
3r

Min Angle min of 3 internal angles min of 6 dihedral angles

R is radius of circumcircle in 2D or circumsphere in 3D. Similary r is inradius and

L is the length of the shortest edge of the element. Dihedral angle is defined as angle

between two planar faces. A tetrahedron has six pairs of dihedral angles between its

four faces. Ideal values for the metrics are shown in Table 2.2

Metric Triangle Tetrahedron

Aspect Ratio 1.0 1.0

Radius Ratio 1.0 1.0

Min Angle (deg) 60 70.528

Table 2.2: Ideal value table
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It has been shown that these metrics are related to each other and a bound on one

metric implies a bound on the other metric. Aspect ratio or radius ratio is primarily

used in refinement stage in 2D and 3D. Aspect ratio is used in refinement stage to

split tetrahedra with poor aspect ratio values. However, aspect ratios are not helpful

in identifying slivers. Slivers are very flat tetrahedra whose aspect ratios are as good as

those of good quality elements. Radius ratio is more useful in identifying slivers. Slivers

are discussed in some more depth in next section. There are other quality metrics which

are variation of aspect ratio and radius ratio.

2.4 Slivers

In the context of mesh generation a sliver is a bad element which is flat with dihedral

angles close to 0◦ or 180◦. In Figure 2.10, all four points of tetrahedron are almost

coplanar.

Figure 2.10: Sliver

There are other types of elements with poor shape like needle, wedge etc. but slivers

constitute most of the bad elements in our meshes due to Delaunay condition. During

refinement stage, elements with poor aspect ratios are eliminated by inserting more

vertices in the mesh. However, slivers can have good aspect ratios close to the aspect

ratios of nicely shaped elements, therefore they are not eliminated completely in mesh

refinement stage. Sliver treatment is often done post refinement and smoothing as the

last stage of mesh generation. We will discuss in detail the effect of the smoothing

methods on slivers in the section of Chapter 4.
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Chapter 3

Smoothing Methodology

Laplacian methods involve calculation of a new location which may lie outside of the

star of the vertex. In such a case, inverted elements are created. If the star of the

vertex is convex, then the new location is bound to lie inside the star. In theory,

smoothing algorithms are applied to convex region of the star of the vertex [2] as shown

in Figure 3.1 and convex star can be calculated using linear programming. But this is

an expensive operation considering the fact that we want our smoothing methods to be

computationally efficient. So to avoid inverted elements, we simply avoid relocating to

the new vertex if it leads to inverted elements in 2D and 3D.

Figure 3.1: Feasible region in local Patch [2]

Furthermore, we immediately restore Delaunay property of the new location which

works well in 2D and is theoretically guaranteed. But in 3D, there are simple config-

urations which are not Delaunay and can not be made Delaunay even by flipping. In

addition to this, slivers exist in Delaunay configurations. One can try to avoid creat-

ing new slivers by performing tests on each flip operation; however it is an additional

computation cost and configurations may end up not being Delaunay. To demonstrate
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the effectiveness of delaunizing immediately, we compared it with smoothing without

flipping.

3.1 Framework

In this section, we present the framework for vertex relocation and flipping.

Algorithm 1 smoothing(flipflag)

while i ≤ iterations do
for every inner vertex v do

Ω← star region of v
v∗ ← smoothing(v,Ω)
if flipflag is true then
if invertedElements(v∗) is false then
v ← v∗
makeDelaunay(v∗)

end if
else
minq ← worstQualityElement(v,Ω)
minq∗ ← worstQualityElement(v∗,Ω)
if minq ≤ minq∗ then
v ← v∗

end if
end if

end for
end while

Algorithm 2 makeDelaunay(v)

queue← all non− delaunay edges/faces
while queue is not empty do
e← dequeueTop()
if checkIfNotDelaunay(e) is true then
λ← delaunayF lip(e)
enqueue(λ)

end if
end while

We observed that naively moving the vertex to the new location can sometimes

worsen the mesh depending on the quality criterion being evaluated. We tested two

approaches; first we move the vertex v to new location v∗ followed by flipping only

when it does not form inverted elements. Second, we move the vertex v to new location

v∗ only when it improves the minimum quality measure in the star region and does
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not form inverted elements, and it is not followed by flipping. We discuss the results in

chapter 4 in details for above mentioned approaches. We developed the above smoothing

framework after considering these factors.

3.2 Implementation

We downloaded surface meshes from the stanford repository (http://graphics.stanford.

edu/data/3Dscanrep/) and grabcad (https://grabcad.com/). We generated volume

mesh using Tetgen (http://wias-berlin.de/software/tetgen/) for generating 3D meshes

and Gmsh (http://gmsh.info/) for generating 2D meshes. We implemented 2D and 3D

Delaunay algorithm in C++ using both Lawson’s flip and Bowyer-Watson algorithm.

Lawson’s flip in 2D and it’s 3D counterpart are extensively used in topological trans-

formation of the meshes. We first read the input file and fill our mesh datastructure,

and then perform the smoothing and flipping on it.

We used 2.2 GHz machine with 8 GB RAM to generate our results. We used Par-

aview based on VTK (https://www.vtk.org/) geometric library for generating snapshots

and graphs for distribution of aspect ratios and min angles.

3.2.1 2D mesh data structure

Our data structure for 2D meshes is based on half-Edge data structure. It allows

for output-sensitive query time, and one frequent query was finding all the triangles

incident on a vertex. Below is a representation of two triangles based on the half-edge

data structure. Edges a, b, c are half-edges of triangle face f1. And edges d, e, f are

half-edges of triangle face f2 with d as the half-edge twin of c. A half-edge is oriented

such that the triangle it bounds lies to its left. Triangle class has pointers to its 3

half-edges. Each half-edge has a pointer to its twin half-edge and the origin vertex.

Notice that f1 and f2 are counter clockwise orientated. Oriented elements are useful

in detecting inverted elements.

We implemented a Tessellation2D class which contains arrays of pointers of V ertex,
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b

c

d
e

f

f1
f2

a

Figure 3.2: Half-edge data structure

Edge and Triangle. Tessellation2D data structure is filled when any file format con-

taining 2D mesh is read from STL, OFF, VTK and mesh files. STL, OFF, VTK are

different file formats to store mesh data as collections of vertices, edges and faces. More-

over, we implemented Lawson’s flip algorithm to generate the Delaunay mesh on given

points and boundary edges. Each vertex is inserted in an incremental manner followed

by edge recovery using only flips. So, with above mentioned methods,Tessellation2D

data structure is filled and passed onto our smoothing framework.

3.2.2 3D mesh data structure

Our 3D mesh data structure is loosely based on half-face data structure. Similar to 2D,

we maintain orientation of the elements. Tetra class contains pointers to its 4 vertices

and 4 faces. Each Face class contains pointers to 3 edges and 3 vertices. Each Edge

has pointers to its 2 end points vertices. There is no half-face or half-edge, because we

maintain orientation by ordering of the vertices such that volume given by that order

is positive.
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a b

c

(a) Postive orientation (a,b,c)

d

a

c

b

(b) Postive orientation (a,b,c,d)

Figure 3.3: Triangle and Tetrahedron with positive orientation

Similar to 2D, we implemented a Tessellation3D class which contains arrays of

pointers of V ertex, Edge, Triangle and Tetra. Tessellation3D data structure is filled

when any file format containing 2D mesh is read from vtk and mesh files. Stl and off

files are not adequate enough to represent tetrahedral mesh. We used Tetgen [12] to

generate 3D mesh for given input points and surface mesh. And we implemented 3D

flips presented in section 2.1 to perform flipping in smoothing which were first described

in detail in Joe’s [8] flip algorithm.

3.2.3 Robustness

Delaunay based algorithms are quite sensitive to floating point errors. Despite correct-

ness of algorithm and efficiency of data structure, it is very hard to scale to a large

number of points. One of the common problems faced was inverted or overlapping

elements which would later result to incorrect data causing the program to crash. So,

for robustness, we used Jonathan Schewchuck’s [11] code for robust predicates which is

free for academic purposes. Schewchuck presents an adaptive technique, where the ex-

act arithmetic is used only to determine the sign of the determinant and not its value,

thus saving on the computational speed. Alternatively, one can use CGAL’s exact

arithmetic predicates. Delaunay’s code needs only two or three predicates orient2D,

orient3D, inCircle, inSphere so getting them right reduces floating point errors sig-

nificantly. Both Schewchuck’s and CGAL’s predicated are tested and proven for their
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robust computations. Another issue was repetition of points or almost identical points

in input files. Tolerance value of 10−8 is employed to distinguish between two points.

While inserting vertex v in data structure, v is checked for closeness to its surrounding

triangle or tetrahedral vertices, and if distance to any other vertex from v is less than

our tolerance value, then v is not inserted. Precision arithmetic is extremely critical for

tetrahedral meshes.
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Chapter 4

Results and Discussions

In this chapter we will compare the results of our smoothing algorithms with each other

with and without flipping in 2D and 3D. First we present a comparison of smoothing

algorithms in terms of speed, quality and grading of the meshes on the scale of Poor,

Medium, Good. Then we will show the results based on distribution of min angles

and radius ratios. In figures 4.1 and 4.2, first on the left are mesh output, in the

middle are distribution of min angles, on the right are distribution of radius ratios. For

aspect ratios, all elements with aspect ratios ≥ 5 are characterized as bad elements

due to deformed shapes. In all iterations, smoothing are performed on interior vertices.

Handling of boundary vertices needs extra care and needs an extension to the algorithms

[4] to accommodate them. Inner vertices can be moved freely inside the mesh whereas

vertices on the boundary can only be moved along the boundary edge or face which

requires extensions to current smoothing algorithms.

4.1 Smoothing on 2D mesh

Figures 4.1 and 4.2 show smoothing algorithms with and without flipping respectively.

The square contains approximately 300 points and original figure 4.2a shows the un-

smoothed Delaunay triangulation. The histogram in the middle shows the distribution

of minimum internal angles of triangles. The histogram on the right shows the distri-

bution of radius ratios. It’s a bad triangulation to start with but effectiveness of the

smoothing algorithms can be seen from mesh output.
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Smoothing method Ease of
Implementation

Speed Quality Grading

Smart Laplacian Good Good Medium Good

Optimal Delaunay
Triangulation based

Medium Good Good Poor

Aspect ratio based Medium Medium Good Poor

Average circumcenter Good Medium Good Good

Table 4.1: Qualitative comparison of smoothing methods in 2D

2D smoothing without flipping
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(c) Optimal Delaunay triangulation
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(d) Aspect ratio based
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Figure 4.1: Smoothing result on 2D mesh without flipping

Smart Laplacian has previously been reported to perform well despite its simplicity [5].

Average circumcenter also performs well. Both methods are able to move elements to

good radius ratios. ODT did not improve the mesh quality much which is evident from
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the number of elements with radius radio ≥ 5.

2D smoothing with flipping

6

min angle
0

4

20

12

2

8

40
0

60

# 
o

f 
el

em
en

ts

80

10

15

radius ratio
1

10

2

30

5

20

3
0

4

# 
o

f 
el

em
en

ts

5

25

(a) Original

10

20

5

40
0

min angle
600

# 
o

f 
el

em
en

ts

80

15

1

40

2

20

3

60

0

radius ratio
4

# 
o

f 
el

em
en

ts

5

80

(b) Smart Laplacian

min angle
0

10

20

5

20

40

15

0
60

# 
o

f 
el

em
en

ts

80

25

1

100

2

50

3

150

0

radius ratio
4

# 
o

f 
el

em
en

ts

5

200

(c) Optimal Delaunay triangulation
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(d) Aspect ratio based
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(e) Average circumcenter

Figure 4.2: Smoothing result on 2D mesh with flipping

Mesh improvement is greater with flipping as flipping restores Delaunay property, and

Delaunay triangulation maximizes the minimum angle. ODT performs the best in terms

of overall improvement and effectiveness of ODT was observed on other meshes too.

Aspect ratio comes close to ODT followed by average circumcenter.

4.2 Smoothing on 3D mesh

Figure 4.4 shows smoothing algorithms with flipping in 3D. The mesh shown is a cross-

section of cylinder with approximately 1000 vertices, most of them are on the surface.

Original figure 4.4a shows the unsmoothed Delaunay tetrahedralization. The histogram

in the middle shows the distribution of minimum internal dihedral angles and the one

on the right shows the distribution of radius ratios. It’s a refined mesh to start with
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but smoothing nevertheless improves the overall quality of the mesh.

Smoothing method Ease of
Implementation

Speed Quality Grading

Smart Laplacian Good Good Poor Poor

Optimal Delaunay
Triangulation based

Medium Medium Good Poor

Aspect ratio based Medium Medium Good Poor

Average circumcenter Good Good Good Good

Table 4.2: Qualitative comparison of smoothing methods in 3D

3D smoothing without flipping
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(b) Smart Laplacian
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(c) Optimal Delaunay triangulation
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(d) Aspect ratio based
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Figure 4.3: Smoothing results on 3D mesh without flipping

We observe that Laplacian does not perform well compared to other methods. Other

methods are able to produce more elements with better minimum dihedral angles but

they may still perform poorly when it comes to slivers. For slivers, the radius ratio
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distribution is a better indicator. The number of elements with aspect ratio ≥ 5 contains

slivers too.

3D smoothing with flipping
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(d) Aspect ratio based
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(e) Average circumcenter

Figure 4.4: Smoothing results on 3D mesh with flipping

In 3D, analysis is not straight forward as in 2D. ODT improves overall aesthetics of

the mesh but it can worsen sliver counts as discussed in the next section. Average

circumcenter consistently performs the best, and is able to preserve grading, improves

the sliver situation, and is one of simpler and faster smoothing methods.

4.3 Effect on Slivers

A Sliver is a very flat tetrahedron such that the configuration of its vertices can be

Delaunay. The minimum dihedral angle in 3D Delaunay is not guaranteed, therefore,

there is no known method which produces sliver free tetrahedralization for all kinds

of vertex sets. Generally sliver treatment is taken as a post process step to improve

the mesh. Smoothing in general can help reduce the number of slivers but some may
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aggravate the sliver situation. We tested the effect of our smoothing methods on the

mesh in the context of sliver counts. We measured the number of slivers before and

after out smoothing methods on the models shown below.

(a) liver

points:26184

cells: 92347

(b) hand

points:25962

cells: 97342

(c) yakima

points:1535

cells: 5070

Figure 4.5: 3D models for sliver count

Smoothing method liver hand yakima

Original 10 735 75

Smart Laplacian 6 532 61

Optimal Delaunay Triangulation based 7 600 69

Aspect ratio based 6 504 58

Average circumcenter 5 494 58

Table 4.3: Sliver count without flipping

Smoothing method liver hand yakima

Original 10 735 75

Smart Laplacian 1933 2505 37

Optimal Delaunay Triangulation based 690 1856 116

Aspect ratio based 330 1308 85

Average circumcenter 29 278 41

Table 4.4: Sliver count with flipping

We generated the mesh using Tetgen [12] without any optimization switches on.

These meshes were of good quality to start with but still have tetrahedral elements
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with very small or very large dihedral angle. To capture such elements, we counted

the elements whose radius ratio is greater than 10.0. Most of the slivers were captured

along with some bad elements which may not qualify as slivers. Tetrahedral mesh im-

provement remains an active area of research in terms of providing guarantees. Clearly

our results show the heuristic nature of smoothing but average circumcenter method

outperformed all other methods with and without flipping. Our 3D counterpart of

Aspect Ratio [7] based smoothing improves upon Optimal Delaunay Triangulation [2]

based smoothing.
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Chapter 5

Conclusion and Future Work

This thesis presents a comparative study of smoothing methods that are not compu-

tationally expensive and improve the original mesh effectively. The Laplacian based

methods can be used as a precursor to more computationally expensive methods. As

the Laplacian is based on heuristics, there is no provable guarantee that for every shape

and size of model, they are effective. In practice, however they perform well and are

faster.

5.1 2D methods

The Results section showed that flipping right after vertex relocation produces better

quality meshes. For 2D meshes, flipping works very well as it has been shown that

Delaunay meshes maximize the minimum angle and flipping restores the Delaunay

property of the vertex in consideration. Of the four methods, ODT produced the mesh

with the most triangles that are close to equilateral. On the other hand, ODT is the

slowest, taking more to converge to the given epsilon displacement.

Aspect ratio based method is comparable to ODT and slightly faster than ODT.

Average circumcenter method is able to maintain some grading of the meshes and given

some mesh density function, the Laplacian and average circumcenter methods can be

easily modified as per mesh density.

5.2 3D methods

For 3D meshes, slivers are a big problem and can not be avoided either in refining or in

smoothing stages. Smoothing can help reduce the number of bad elements as seen in the
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case of average circumcenter for 3D meshes. Nevertheless, a Postprocessing of slivers is

advised after performing smoothing stage. Naive implementation of flipping after vertex

relocation can aggravate the sliver situation. This is evident from the fact that in 3D,

flipping is not guaranteed to restore the Delaunay property of the star polyhedron of

the vertex, which is why in 3D, we can have arrangement of tetrahedron which are not

Delaunay. Also, slivers are formed even in Delaunay based configurations of vertices.

While flipping, an extra check is needed to make sure that current configuration is free

from slivers, which adds to the cost of the methods.

Overall, ODT performs well for 2D with immediate flipping and average circumcen-

ter for 3D meshes.

5.3 Future work

We have implemented a direct extension of aspect ratio based smoothing2.2 and com-

pared other cost effective smoothing methods without any special handling of the ver-

tices on or near the boundary. In future, we would like to extend these methods to

handle the boundary. Especially for tetrahedral meshes, handling of boundaries is

challenging even for simple smoothing methods. Also, we would like to see how these

methods can be extended to smoothing of quadilateral and hexahedral meshes.
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