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ABSTRACT OF THE DISSERTATION 

From QSAR to QNAR, Developing Enhanced Models for Drug Discovery  

by WENYI WANG 

Dissertation Director: 

Dr. Hao Zhu 

 

Exploring new chemical entities in drug discovery requires extensive 

investigations on libraries of thousands of molecules. While conventional animal-based 

tests in drug discovery procedure are expensive and time consuming, the evaluation of a 

drug candidate can be facilitated by alternative computational methods. For example, the 

Quantitative Structure Activity Relationship (QSAR) model has been widely used to 

predict bioactivities for drug candidates. However, traditional QSAR models are solely 

based on chemical structures, and are less effective in the drug discovery procedure due 

to various limitations related to complicated structures or bioactivities. In this thesis, we 

aimed to establish high quality and predictive models by using novel modeling 

approaches beyond QSAR. First, we developed a methodology for predicting the Blood-

Brain Barrier permeability of small molecules by incorporating biological assay 

information (e.g. transporter interactions) into the modeling process. This method can be 

further extended to modeling and predicting in vivo bioactivities of drug candidates. 

Second, we created a new Quantitative Nanostructure Activity Relationship (QNAR) 

modeling strategy to extend the applicability of QSAR to predict bioactivities of 
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nanomaterials. The research presented in this thesis opens a new path to the precise 

prediction of bioactivities of molecules in the drug discovery procedure. 
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Chapter 1 Introduction 

1.1 Computer aided drug design 

The discovery of new drugs involves extensive evaluation of chemicals in various 

aspects, including efficacy, absorption, distribution, metabolism, excretion, toxicity 

(ADMET) and potential mechanisms of action (MOA). The traditional experimental 

animal testing approach requires considerable economic cost, laborious input, and 

protracted turnaround times. Utilizing computational models to directly predict the animal 

toxicity of new compounds before conducting organic synthesis and biological evaluation 

is a promising strategy to achieve a more efficient drug discovery process. During the last 

decades, informatics technology emerges from the availability of high quality data and the 

development of modeling approaches, which, in turn, enables the computational 

methodologies to be applied in various research disciplines including drug discovery. The 

various biological assays tested on millions of chemical compounds has been made 

publicly available through online portals like PubChem1 and ChEMBL2 etc.  

With the current available data for a biological endpoint, Quantitative Structure 

Activity Relationship (QSAR) model attempts to find the relationship between the 

chemical structures and biological properties. It is an effective tool to assist drug 

discovery. Firstly, QSAR models can be used to identify structures that are related to the 

binding affinity to a target protein, perturbation of pathways, or other toxicity related 

interactions. Thus, in the case of designing new drug entities, the identified structures can 

be considered or avoided accordingly. On the other hand, when there are a set of existing 
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drug candidates, QSAR models can be used to predict crucial properties of each of the 

candidates, and filter out those with potentially unwanted properties, i.e., toxicities. This 

procedure not only saves time and money for experimental testing, but also ensures 

higher probability of success in drug discovery. Lately, in many modeling efforts running 

through early drug discovery to later clinical development phase, such pharmacokinetic 

(PK), Quantitative System Pharmacology (QSP), and Quantitative System Toxicology 

(QST) models, also utilize predicted drug physical chemical properties from QSAR 

model when experimental test results are not available.3 After 20 years when the concept 

of QSAR was first introduced,4 it has stepped into a stage where the modeling technique 

is widely used in pharmaceutical companies throughout the drug discovery and 

development process, while the procedure is very well defined and generalized.   

 

1.2 QSAR principles and workflow 

1.2.1 Data curation 

 The original raw data that we get is the dataset with chemical structures 

represented as in structure-data file (SDF) format, simplified molecular-input line-entry 

system (SMILES), etc. While the dataset might come from multiple sources, it may 

contain duplicates, structural errors, or lack of concordance in format etc. Before anything 

can be done, the dataset should be curated and standardized. Specifically, the chemical 

structure of each compound should be standardized by keeping the largest molecule in 

mixtures, neutralizing salts and converting the original SMILES structure to canonical 

SMILES. Removal of compounds is upon undefined molecular structure, inorganics, 
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organometallics and duplicate entries. Only one of the duplicate compounds should be 

kept, while considering stereoisomers as one compound. There are several 

software/websites/packages that can accomplish the data curation process, e.g., 

ChemAxon Structural Standardizer and Structure Checker 

(https://chemaxon.com/products/chemical-structure-representation-toolkit), CASE Ultra 

(http://www.multicase.com), Cactus (https://cactus.nci.nih.gov/translate/), MolVS 

(https:// molvs.readthedocs.io) module in Python, etc.  

Another curation step specifically crucial for QSAR modeling is to balance the 

dataset. This is very important as an imbalanced dataset will give the model a biased 

impression and the resulting model will be biased as well. There are two cases, one is 

with continuous endpoint, and the other is with categorized endpoint. For a dataset with 

continuous endpoint, we need to examine the distribution of the dataset and make some 

operations accordingly. One of the common strategies is to take the logarithm of the 

original value so that the endpoint values are evenly distributed. While for a dataset with 

categorized endpoints (e.g., toxic, non-toxic, or active, inactive), the part with the 

majority category needs to be trimmed down to the same (or almost same) as the minority, 

which is to say, some of the data in the majority category should be sacrificed.  

1.2.2 Chemical descriptors  

In order to build QSAR models, the chemical structures need to be quantified to 

numeric chemical descriptors that can then be analyzed and used. This procedure in the 

general information technology field is called feature engineering. The set of features 

used, i.e., descriptors, is extremely important to the predictive models as their quality will 

greatly influence the modeling efficiency and performance. When there are not enough 
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useful and representative descriptors, no matter how advanced and sophisticated the 

machine learning algorithms, the model can never be success. On the other hand, as the 

saying goes: garbage in, garbage out. If there are too many irrelevant descriptors, it is 

very likely that the model will get lost in seeking the good ones. Thus, it is very important 

to calculate and select the most useful descriptors, as well as combining existing 

descriptors to produce a more useful one by dimension reduction.  

Fortunately, after the 20 years development of cheminformatics, many good 

descriptors are invented. The first type of descriptor is called chemical fingerprint.  This 

type of descriptor stores the topological structure of molecules into a bit string, for 

example, the existence of a chemical structure like benzene ring, or more than three 

oxygens, etc. A good example of fingerprint type descriptors is the MACCS keys of 166 

descriptors, which is especially useful for evaluating the structural similarity between 

chemicals. Other types of descriptors include physical properties like the molecular 

weight, polarizability, hydrophobicity, solubility, surface area; atom and bond counts; 

connectivity and shape indices; adjacency and distance matrix descriptors; 

pharmacophore features; partial charge descriptors; etc. There are several software or 

packages available for calculating different sets of descriptors like Molecular Operating 

Environment (MOE)5 and Dragon6 etc. Meanwhile, there are free and open source 

packages or modules in different programming languages capable of calculating 

descriptors with more flexibility, like RDKit (http://www.rdkit.org/) and ChemoPy7 in 

Python, ChemmineR8 in R etc.  

While the number and type of descriptors boost, redundancy occurs. As stated 

before, when there are too many irrelevant descriptors, dimension reduction is needed. A 
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common strategy is to delete one of the two descriptors that are highly correlated, i.e., low 

variance (e.g., standard deviation <0.01) and high correlation (e.g., R2>0.95).9 Another 

strategy is to convert the original set of descriptors into low-dimensional codes. 

Traditionally, this can be done by principal components analysis (PCA), which converts 

all descriptors into a set of values of linearly uncorrelated variables called principal 

components. Worth mentioning, the first three principal components can be used for 

visualization of distribution of the given molecule database. In the chemical space, 

indicated by the PCA, if a chemical sits far away from the main chemical space of the 

database, it is regarded an outlier, which is always removed before the modeling process. 

In place of PCA, while in this deep learning era, arises is Autoencoder,10 as it reduces 

dimension by training a multilayer neural network, which “works better than PCA”.11  

Another step for the chemical descriptors before building a model is feature 

scaling/normalization. It is used to standardize the range of descriptors and is generally 

performed during preprocessing of data of any type. As in cheminformatics, chemical 

descriptors have values of different range. In some machine learning algorithms, the 

function cannot properly work without normalization. For instance, Euclidean distance, 

which calculates the geographical distance between two compounds in chemical space, 

will be biased if one descriptor range is larger than the others. In this case, normalization 

should always be done so that each descriptor contributes approximately same to the final 

distance. The commonly used methods include min-max normalization, which rescale all 

descriptors in range [0, 1] or [-1, 1]; and standardization, which makes the values of each 

descriptor zero-mean and unit-variance. 
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The Euclidean distance is usually calculated after dimension reduction and 

normalization in order to identify any potential outliers to be removed and to get the 

applicability domain (AD) of a model. A molecule with large distances to other molecules 

is regarded as an outlier. If an outlier is identified in the dataset for modeling, it should be 

removed since it will negatively affect the goodness of a model. On the other hand, if an 

outlier is identified in the new dataset to be predicted using the previously built model, it 

should also be excluded for prediction since it is not reliable to predict activity of an 

outlier, in this case, it is regarded out of AD of the model.  

1.2.3 Machine learning models 

The modeling algorithm applying to QSAR is called machine learning. Machine 

learning is to use statistical techniques to give computers the ability to learn with data, 

without being explicitly programmed.12,13 It is especially suitable for problems requiring 

lots of hand-tuning or long lists of rules, complex problems with no information about the 

mechanisms of actions, or problems involving large amount of data. Thus, it perfectly 

applies to cheminformatics, as we aim at predicting biological responses that involves a 

complex set of unknown mechanisms and interactions.  

 The major machine learning algorithms used in this study are supervised learning 

and unsupervised learning. If an algorithm is aware of the target endpoint and tries to fit 

prediction to the target endpoint, it is called supervised learning. Examples of supervised 

learning algorithms include linear regression, logistic regression, decision trees, random 

forests (RF), k-nearest neighbors (kNN), support vector machines (SVM), neural 

networks, etc. On the opposite, unsupervised learning generates functions that describe 

the structure of "unlabeled" data, i.e., it does not know the outcome to be predicted. 
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Examples include clustering and PCA. In QSAR modeling, supervised learning is used to 

predict the biological endpoints, while unsupervised learning is usually for visualization 

or differentiating groups of chemicals.14  

 There are three types of supervised machine learning algorithms used throughout 

this study. RF predictor consists of many decision trees and produces a prediction that 

combines the outputs from individual trees 15. The kNN 16 method uses weighted average 

of nearest neighbors as its prediction and employs variable selection procedure to define 

neighbors. SVM regression attempts to find the most narrow band in the descriptor-

activity space containing most of the data points 17. There are many packages and 

modules in different programming languages, e.g., scikit-learn18 in Python, 

randomForest15 and e107119 in R, etc.  

1.2.4 Statistical Evaluation of Model Performance  

Once the models are built, the model performance and predictive power need to be 

evaluated and compared by using universal statistical metric. For models built to predict 

continuous activities, Pearson’s multiple linear correlation coefficient (R2) and mean 

absolute error (MAE) are used for evaluation purposes:  

R2 = 1 −  
∑ (predicted valuei – true valuei)2n

i=1

∑ (average value – true valuei)2n
i=1

  

MAE = 
1

n
 ∑ |predicted valuei –  true valuei|

n
i=1  

And when evaluating models predicting categorized activities (e.g., toxic, non-

toxic, or active, inactive), sensitivity (percentage of high oral bioavailable drugs predicted 
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correctly), specificity (percentage of low oral bioavailable drugs predicted correctly), and 

CCR (correct classification rate or balanced accuracy) are used:  

sensitivity =
true positives

true positives+false negatives
  

specificity =  
true negatives

true negatives+false positives
  

CCR =
sensitivity + specificity

2
  

1.2.5 Validation of models 

 A model built on a given dataset tends to fit well within the dataset itself, thus it 

performs well when predicting the compounds inside the dataset. However, it might over 

fit into the modeling dataset and might perform horribly bad, which will make the model 

less useful or even useless. Validation of the model using data it has never seen can tell 

how well the model actually performs. Thus, the validation of a model is always 

necessary. The approach is to leave an external validation set - a common technique is to 

use cross-validation. Take five-fold cross-validation as an example, a data set is randomly 

split into five equal size subsets. Four of the five subsets together (80%) are used as 

training set to develop the model, while the remaining one (20%) is used as the validation 

set to evaluate the performance of the model. This procedure is repeated five times so that 

each of the five subsets gets left out as the validation set once. Additional details about 

the modeling approaches can be found elsewhere 20,21. 

  



9 
 

 

1.3 Limitation of conventional QSAR and solutions  

QSAR usually performs very excellently while predicting biological or physical 

chemical properties as needed. However, when predicting in vivo activities involves very 

complex mechanisms, including exposure, various protein interactions, and multiple 

pathways, QSAR models become less effective and predictive. This may be due to the 

fact that the current machine learning algorithms are not yet able to capture all of the 

mechanisms from the chemical structures directly to the in vivo biological responses like 

drug toxicities. Another limitation of current QSAR models is that they are not capable to 

predict activities for larger molecules. Larger molecules like nanoparticles and proteins 

have thousands of atoms so it is difficult to calculate chemical descriptors that are diverse 

and representative, especially when regarding the current computational power and time.  

The first limitation of QSAR to predict complex in vivo biological end points can 

be addressed by using ‘higher level’ bioassay testing results as features to feed into the 

machine learning models. We call them biological descriptors.  Our previous studies 

showed that using hybrid descriptors, which are the combinations of chemical and 

biological descriptors, showed superior results compared to traditional QSAR models 

only based on chemical descriptors.22–24 The predictivity of hybrid models i.e., models 

built on both chemical and biological descriptors, is higher than the traditional QSAR 

models and the analysis of chemical-biological descriptor patterns in resulting models can 

reveal the relevant chemical biological mechanisms of target activities. In my research in 

chapter 2, a conventional QSAR model was built to predict the rat in vivo blood brain 

barrier (BBB) permeability. Then based on the assumption that BBB permeability of a 

drug strongly depends on its biological interactions with active transporters on the BBB, 
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we integrated some transporter interactions into our models as extra biological descriptors. 

This predictive power of the hybrid model is higher than the conventional QSAR model. 

Another potential solution is to use the deep learning techniques, i.e., deep neural network 

(DNN). The current QSAR models are very limited to the relatively simple machine 

learning algorithms. But the arising DNN, derived from the animal neural network, 

mimicking the complicated neuron connections and interactions, is very adaptable to 

simulate the complex biological system interactions in vivo since the mechanism of 

action is very similar.  

 The second limitation, that current QSAR is not capable of predicting larger 

molecules, can also be addressed by creating new approaches to efficiently calculate 

suitable descriptors for larger molecules. Some researchers found that descriptors 

calculated from the surface ligands of nanoparticles are useful in predicting the properties 

of the nanoparticles. However, descriptors solely derived from the surface ligand are not 

able to fully describe the chemical diversity of the nanoparticles. Thus in our research, as 

in Chapter 3, we designed a novel computational approach that develops large virtual 

nanomaterial (i.e. nanoparticle) libraries, calculates a diverse set of nano-scale descriptors, 

and builds quantitative nanostructure-activity relationship (QNAR)  models. And in 

Chapter 4, we constructed a virtual nanoparticle library and specifically developed a new 

computational approach simulating and assessing hydrophobicity of nanoparticles. With 

this research, QSAR applied on nanoparticle is made possible. And it is the first 

applicable tools to visualize and predict critical properties of new nanomaterials. 
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Chapter 2  Developing Enhanced Blood-Brain Barrier Permeability 

Models: Integrating External Bio-assay Data in QSAR 

Modeling 

Chapter Overview 

Purpose: Experimental Blood-Brain Barrier (BBB) permeability models for drug 

molecules are expensive and time-consuming. As alternative methods, several traditional 

Quantitative Structure-Activity Relationship (QSAR) models have been developed 

previously. In this study, we aimed to improve the predictivity of traditional QSAR BBB 

permeability models by employing relevant public bio-assay data in the modeling process. 

Methods: We compiled a BBB permeability database consisting of 439 unique 

compounds from various resources. The database was split into a modeling set of 341 

compounds and a validation set of 98 compounds. Consensus QSAR modeling workflow 

was employed on the modeling set to develop various QSAR models. A five-fold cross-

validation approach was used to validate the developed models, and the resulting models 

were used to predict the external validation set compounds. Furthermore, we used 

previously published membrane transporter models to generate relevant transporter 

profiles for target compounds. The transporter profiles were used as additional biological 

descriptors to develop hybrid QSAR BBB models. 

Results: The consensus QSAR models have R2=0.638 for five-fold cross-validation and 

R2=0.504 for external validation. The consensus model developed by pooling chemical 

and transporter descriptors showed better predictivity (R2=0.646 for five-fold cross-
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validation and R2=0.526 for external validation). Moreover, several external bio-assays 

that correlate with BBB permeability were identified using our automatic profiling tool.  

Conclusions: The BBB permeability models developed in this study can be useful for 

early evaluation of new compounds (e.g., new drug candidates). The combination of 

chemical and biological descriptors shows a promising direction to improve the current 

traditional QSAR models. 

 

2.1 Introduction 

The blood-brain barrier (BBB) separates the central nervous system (CNS) from 

the circulatory system and selectively limits many substances from entering the brain. The 

BBB is a sophisticated barrier system. Besides the tight junction and cell membranes that 

limit passive diffusion of molecular substances, the BBB is also composed of transporters 

that selectively regulate permeation of exogenous molecules 25. 

The study of BBB permeability is crucial for drug development. While BBB 

permeability is required for CNS drugs to work 26, unexpected passage of a drug through 

BBB may cause severe side effects 27. Traditional experimental approaches to evaluate 

drug BBB permeability, such as animal testing, are expensive and time consuming. 

Therefore, alternative methods with significantly lower cost, such as in vitro or 

computational models, are desirable for drug research and development. Various 

computational models, especially those using Quantitative Structure-Activity 

Relationship (QSAR) approaches, have been developed in the past decades. Table 2.1 

shows QSAR models on the BBB permeability published within the last five years. 
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However, the QSAR hypothesis that “chemically similar compounds tend to have similar 

activities” has its limitation when the modeling set is not large and diverse enough 28. In 

small datasets, the existence of structurally similar compounds with vastly different 

activities, also called “activity cliffs”, greatly affects the predictivity of QSAR models 29. 

With the development of high-throughput screening (HTS) techniques in the past 

decades, massive amounts of bio-assay data have become publically available. PubChem, 

the largest public data sharing portal, contains over 700,000 bio-assays with around 50 

million compounds tested 30. A substantial number of PubChem bio-assays showed 

relevance to BBB permeability. For example, brain adenylate cyclase assays (PubChem 

AID 34292 and 34293) indicate binding affinity of this membrane-associated enzyme, 

which catalyzes the formation of the secondary messenger cyclic adenosine 

monophosphate (cAMP) and regulates the permeability in the brain capillaries 31. While 

the current “Big Data” pool is large, complex, and informative, there still exists a major 

challenge in how to apply these available comprehensive data on systemic biological 

models (e.g., BBB permeability models) and benefit from it.  

In this study, we address the above challenges by improving the predictivity of 

conventional QSAR models on BBB permeability using publicly available bio-assay data. 

To this end, we compiled a large quantitative BBB permeability database of 439 unique 

compounds, which is larger than the training sets used in most of the previous modeling 

studies (Supplementary c). After applying various modeling approaches (i.e., k nearest 

neighbor, random forest and support vector machine), the external predictivity of the 

resulting combinatorial QSAR model is comparable to previous developed models.  Then, 

by applying the transporter assay data generated by our in-house models 32 as biological 
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descriptors, the predictivity of the resulting hybrid model was superior to the original 

QSAR models based only on chemical descriptors. Furthermore, we used our in-house 

automatic profiling tool 33 to generate a PubChem bio-assay profile for each compound in 

the dataset. The resulting profile contains 155 assays relevant to the BBB permeability. 

Although not suitable as additional descriptors due to missing data, some assays were 

able to provide possible explanations for some of the model’s prediction outliers 

(compounds with large prediction errors). 
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Table 2.1 QSAR models of BBB permeability in recent five years 

Study Feature Approach 
Training Set 

Database Size 
Validation Performance 

Suenderhauf et al.34 logPS Decision tree 153 CCR = 0.90 

Raevsky et al.35 BBB+/- Read-across 1513 CCR = 0.99                           

Raevsky et al.36 logBB Linear regression 42 R2 = 0.73 

Martins et al.37 BBB+/- SVM, RF 1970 CCR = 0.85 

Muehlbacher et al.38 BBB+/- RF 202 CCR=0.88 

Bolboacă et al.39 BBB+/- MLR 122 CCR=0.73 

Lanevskij et al.40 logBB Nonlinear regression 470 R2=0.54 

Zhang et al.41 logBB PLS regression 70 R2=0.85 

Shayafar et al.42 logBB MLR 122 R2=0.70 

Wu et al.43 logBB MLR 80 R2=0.81 

Sá et al.44 logBB MLR 21 R2=0.88 

Golmohammadi et al.45 logBB PLS regression, SVM 200 R2 = 0.99 

Bujak et al.46 logBB MLR 66 R2 = 0.84 

Our Work9 logBB kNN, SVM, RF 341 R2=0.62 

*Abbreviation: 
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logPS, logarithm of BBB permeability-surface area product 

BBB+/-, classified BBB permeability activity 

MLR, multi-linear regression 

PLS, Partial least squares regression 

CCR, correct classification rate, also known as balanced accuracy 
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2.2 Methods 

2.2.1 Dataset 

 A dataset of 484 compounds with experimental BBB permeability results was 

compiled from various public sources 38,47–49. The experimental values, which were 

represented as logBB (logarithm of brain-plasma concentration ratio at steady-state), 

range from -2.15 to 1.64 for these compounds. The chemical structure curation was 

performed using two chemical structure standardizer tools (Standardizer 6.3.0 from 

ChemAxon and CASE Ultra Datakurator 1.5.0.0 from Multicase Inc.) to remove 

duplicates, inorganics and mixtures. Since our descriptor generator cannot distinguish 

isomers and salts, they will be considered to have the same chemical structures as their 

parent compounds. For this reason, duplicate compounds with different logBB values 

were carefully examined. In this case, isomers or salts were removed and the parent 

compounds were kept. This effort resulted in a curated logBB dataset consisting of 439 

unique compounds. The source containing the largest number of compounds (total 362 

compounds reported, 341 unique compounds after the curation) 38, was used as the 

modeling set in our study. The remaining 98 compounds were used as the external 

validation set. The distribution of the dataset by logBB ranges is shown in Figure 2.1. 

Furthermore, after the QSAR models were developed, the compounds in this dataset were 

further classified as BBB permeable (logBB > 0) or non-permeable (logBB ≤ 0). This 

arbitrary threshold used for classification was reported in several previous studies 50,51. 
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Figure 2.1 Distribution of compounds by logBB values. Left (blue) are “non-permeable” 

compounds with logBB ≤ 0, right (red) are “permeable” compounds with logBB > 0. 

 

2.2.2 Overview of the Workflow in this Study 

 Figure 2.2 summarized the workflow designed for this study. After data curation, 

the QSAR approaches were applied to develop several QSAR logBB models. This 

procedure, framed red, represented the traditional QSAR modeling for the BBB 

permeability using rigorous external validation. Our in-house automatic profiling tool 

was used to extract all relevant biological response data for the compounds in the logBB 

dataset (framed by orange in Figure 2.2). Then the chemical descriptors obtained from 

the chemical structures and the biological descriptors generated by the QSAR models of 



19 
 

 

nine transporters were combined to develop an enhanced hybrid logBB model (framed by 

blue in Figure 2.2). 

 

Figure 2.2 Modeling workflow in this study. 

 

2.2.3 Chemical Descriptors 

 The 2D Molecular Operating Environment (MOE) descriptors include physical 

properties, atom and bond counts, connectivity and shape indices, adjacency and distance 

matrix descriptors, subdivided surface areas, pharmacophore feature descriptors and 
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partial charge descriptors, etc. A total of 192 2D descriptors were generated for each 

compound in the dataset using MOE version 2013.08. After the descriptors were range-

scaled to [0, 1], redundant descriptors were removed by deleting those with low variance 

(standard deviation < 0.01) and/or randomly keeping one of any pairs of descriptors that 

have high correlation (R2 > 0.95). The remaining 125 descriptors were used in the 

modeling process.  

2.2.4 Modeling and Approaches 

The QSAR models were developed using three different machine learning 

algorithms: Random Forest (RF), Support Vector Machine (SVM) and k Nearest 

Neighbor (kNN). RF predictor consists of many decision trees and produces a prediction 

that combines the outputs from individual trees 15. SVM regression attempts to find the 

most narrow band in the descriptor-activity space containing most of the data points 17. 

We used standard implementation of RF and SVM  algorithms as realized in R®.2.15.1 

using the package “e1071” 19. The settings of all statistical parameters to run these two 

algorithms were kept as default. The kNN 16 method uses weighted average of nearest 

neighbors as its prediction and employs variable selection procedure to define neighbors. 

It was developed using our in-house program implementation 52 (also available at 

chembench.mml.unc.edu). An extra consensus QSAR model was then generated by 

averaging predictions of the three individual models. The development and application of 

consensus QSAR models have been reported in our previous publications 22,53,54.  

All models were validated using a five-fold cross-validation. Briefly, the 

modeling set was randomly divided into five equivalent subsets. One subset was used as 

the test set (20% of the modeling set compounds) and the remaining four subsets (80% of 
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the modeling set compounds) were used as the training set. The training set was used to 

develop the QSAR models and the resulting models were validated by predicting the 

excluded test set. The procedure was repeated five times so that each modeling set 

compound was used in the test set once. Additional details regarding the QSAR modeling 

and validation procedure can be found elsewhere 20,21. 

2.2.5 Integration of Biological Descriptors 

We recently reported a QSAR modeling study for predicting chemical interactions 

of different Human Intestinal Transporters (HITs) 32. Some HITs presented on the BBB 

affect the permeability of compounds, e.g., Apical sodium-dependent bile acid transporter 

(ASBT) 55,56, Bile Salt Export Pump (BSEP) 57,58, monocarboxylic acid transporters 

(MCT) 59, multidrug resistance protein 1 (MDR1) 60, multidrug resistance-associated 

proteins (MRP1,3,4,5) 61, and organic anion transporting polypeptides (OATP) 62. In this 

study, the predicted values were obtained from previously developed transporter models 

32 available on chembench.mml.unc.edu, model ID: ASBT (112a, 112q, 112r), BSEP 

(242x, 242z), MCT1 (311q, 311x), MDR1 (313a, 313d, 313s, 313z), MRP1 (321x, 321z), 

MRP3 (333a, 333q, 333s, 333w), MRP4 (342x, 342z), MRP5 (344a, 344q), OATP 2B1 

(413x, 413z). There are multiple QSAR models available for each transporter, thus the 

average predictions from individual models of each transporter were calculated and used 

in constructing the transporter profile. Finally, nine transporter activities were obtained 

for all 439 compounds in our database. None of the nine transporter activities correlated 

with each other for our data set and neither of them correlated with any of the 125 

chemical descriptors (standard deviation ≥ 0.01, R2 ≤ 0.95) that were used in the 

modeling process. Thus, the predicted activities of nine transporters were directly 



22 
 

 

combined with the chemical descriptors to get the hybrid descriptors set. Then the hybrid 

models were built based on the hybrid descriptor set using the same modeling approaches.  

Additional bio-assay data was obtained from PubChem using our in-house 

automatic profiling tool 33. This tool aims to automatically extract experimental activities 

of PubChem assays for target compounds. The bioassays and their response data were 

kept when a bioassay has at least four active responses in our 439 compounds. The output 

file is a two-dimension matrix similar to the descriptor set used in the modeling process. 

The gathered bioassay data were then used for correlation analysis of BBB permeability. 

To simplify the identification and analysis of the bio-assays, the logBB values were 

categorized (logBB > 0 as permeable with activity as 1, logBB ≤ 0 as non-permeable with 

activity as -1; see Figure 2.1). The PubChem assays, with at least four compounds 

reported as permeable in our BBB database were kept for further analysis. Using this 

criterion, 310 PubChem assays and their response data were collected for the 275 

compounds in our BBB database. Correlation of each bioassay to BBB permeability was 

calculated as the predictivity (number of true predictions over total number of known 

predictions) of this assay results to BBB permeability classifications. To further evaluate 

the correlation between bio-assay data and BBB permeability, a Psum parameter was 

created as following:  

Psum = Sum(Responses)/N 

In which, Sum(Responses) is the sum of the classified assay activity (1 for actives 

and -1 for inactives) for all compounds tested in this bio-assay and N is the number of 

these compounds. Thus, Psum > 0 indicates that active response dominates while Psum < 0 

indicates negative response dominates.  
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2.3 Results 

2.3.1 Overview of the BBB Permeability Database 

We analyzed the chemical space of the logBB dataset by performing a Principle 

Component Analysis (PCA) with the 192 MOE 2D descriptors used in this study. The top 

three most important components were used to generate a three-dimensional distribution 

plot for all 439 compounds (Figure 2.3a). Since these three components explained 59% 

of the total descriptor variance in this dataset, Figure 2.3a can be viewed as the 

representation of chemical space covered by all compounds. There are several structural 

outliers, mostly non-permeable compounds. For example, Digoxin (PubChem CID 

30322), which is widely used in heart failure treatment, was proven to be actively 

transported out of the brain by MDR1 63. Excluding structural outliers from the modeling 

set may improve robustness of the QSAR models 64, while outliers in the external set 

should be detected by the model’s applicability domain 53,54. Since removing these 

structural outliers (e.g. Digoxin) did not show better modeling results (data not shown), 

and their logBB predictions might be improved after including biological descriptors, 

they were kept in this study. Using the same three principle components, the Figure 2.3b 

showed the chemical space distribution of both modeling and external validation sets. 
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Figure 2.3 Chemical space of logBB database (n = 439) using top three principal 

components of MOE 2D descriptors (59% variance explained). (a) Purple dots are “non-

permeable” compounds with logBB ≤ 0, red dots are “permeable” compounds with 

logBB > 0. (b) Pink dots are the 341 compounds in the modeling set, blue dots are the 98 

compounds in the external prediction set.  

 

2.3.2 Consensus QSAR Results 

 We developed three individual models and one consensus logBB model using the 

same modeling set. The performances of the models are represented by the five-fold 

cross-validation results and by predicting the external validation compounds (98 

compounds not used in model development). The performances for all models are shown 

in Figure 2.4. Among the individual models, the kNN model has a superior result for the 

five-fold external cross-validation (R2 = 0.690 and MAE = 0.302). However, the RF 

model has the best performance when predicting external compounds (R2 = 0.524 and 

MAE = 0.399). The conflicts between the results obtained from cross-validation and 

external prediction were reported in many previous QSAR studies 53,65. Meanwhile, 

Using AD did not show improvement of results for five-fold cross-validation or external 

set predictions. We therefore retained all predictions (100% coverage). This condition 

makes it difficult to select the “top model” from various individual models for the 

purpose of external prediction. The consensus model (represented as CSS in Figure 2.4), 

however, yielded better performance (R2 = 0.638 MAE = 0.315 in five-fold cross-

validation, and R2 = 0.504 MAE = 0.430 in external validation) when compared to SVM 

and RF models in cross-validation, and SVM and kNN models in external prediction. 

Since it considers the output of all of the individual models without making model 
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selection, yields better predictions for both cross-validation and external validation 

results than most individual models, the consensus model is more stable and reliable 

when predicting new compounds.  

2.3.3 Bio-assay Data Improve Model Predictive Power 

 Our previous studies showed that using hybrid descriptors, which are the 

combinations of chemical and biological descriptors, showed superior results compared 

to traditional QSAR models only based on chemical descriptors 22–24. The predictivity of 

hybrid modes is higher than the traditional QSAR models and the analysis of chemical-

biological descriptor patterns in resulting models can reveal the relevant chemical 

biological mechanisms of target activities. In this project, we assumed BBB permeability 

of a drug strongly depends on its biological interactions with active transporters on the 

BBB. Based on this hypothesis, we integrated the in-house transporter model predictions 

into our QSAR modeling process as extra biological descriptors. By combining the 

original chemical descriptors with transporter activities (as biological descriptors) into a 

hybrid (shown in Figure 2.2), the predictivity of both the cross-validation and external 

prediction models was improved. For the five-fold cross-validation, the results were 

improved for all three models. For example, in the SVM model, the R2 value increased 

from 0.477 to 0.529, and the MAE decreased from 0.375 to 0.359 after including the 

transporter descriptors. Improvements were also observed in the external validation 

models, with the exception of SVM. The kNN model, for instance, had the R2 value 

improved from 0.464 to 0.520, and the MAE decreased from 0.440 to 0.422 for the 

prediction of validation set after including the transporter descriptors. The consensus 

model, regardless of modeling tools, also yielded the same trend of improvement in both 
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cross-validation and external prediction (Figure 2.4). The Non-parametric paired 

permutation test (N = 10,000 on MAE and R2 metrics) using the in-house Matlab script, 

which compares various performance metrics for two sets of matching predictions, 

showed that the improvement was significant for SVM (p < 0.001) in five-fold cross-

validation, RF and kNN and Consensus model (p < 0.05) in external validation by paired 

permutation test comparison of MAE and R2, N = 10,000). 
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Figure 2.4 Performance of conventional QSAR (based on only MOE descriptors, 

represented as MOE) and hybrid models (based on both MOE descriptors and transporter 

assays, represented as HBD) on (a) five-fold cross-validation sets and (b) external set. 

Last category of each figure is the performance of the consensus model (represented as 

CSS). Prediction coverage was 100% in all cases. 

 

Driven by the benefit of including extra biological descriptors, we profiled 310 

PubChem assays for the current BBB database. Figure 2.5 shows the correlation between 

these assays and BBB permeability. Assays were sorted by their correlation to the 

categorized logBB values for compounds in our BBB dataset. There are 144 assays 

(highlighted in orange dots on the bottom) with positive correlation to BBB permeability 

and 11 assays (highlighted in green dots on the top) with negative correlation to BBB 

permeability. In Figure 2.5, according to the BBB permeability, the BBB database was 
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divided into eight subsets, each containing 32-37 compounds. The difference of the Psum 

value for each subset indicates the correlation of the relevant PubChem assay responses 

to the BBB permeability. At this time, this extra information cannot be applied to our 

modeling procedure due to missing data, as only 275 of 439 compounds in the data set 

were found to have at least four experimental data points from these assays as well as the 

incomplete profiles within the 275 compounds. Future QSAR modeling studies on these 

assays could supply the missing data and allow for this approach to be fully implemented. 
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Figure 2.5 The PubChem assay response-BBB permeability correlations: (a) Heat-map 

for the response profiles of 275 compounds against 310 PubChem assays. The assays 

were sorted by predictivity to BBB permeability, and the AIDs were shown every five 

assays. The Psum of each assay were calculated for the eight groups consist of 32 - 37 

compounds with similar logBB values within each group. Outlined assays are 11 assays 

negatively correlated to BBB permeability (circled by green dots) and 144 assays 

positively correlated to BBB permeability (circled by orange dots). (b) Average Psum 

values for different PubChem assays with the same compound distribution as above heat-

map. (Orange line: 144 positively correlated assays, green line: 11 negatively correlated 

assays, yellow line: remaining 155 uncorrelated assays).  

 

2.4 Discussion 

Since the BBB is a complex biological system composed of diverse receptors, 

enzymes, and transporters, the traditional QSAR studies meet the bottleneck of 

predictivity. Models built on chemical descriptors (e.g., MOE descriptors) obtained from 

a limited number of compounds are sometimes unable to distinguish two structurally 

similar compounds with different bio-activities (i.e., logBB values). This “activity cliff” 

issue limits the application of computational predictive models that are based only on 

chemical descriptors 28. 
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Table 2.2 Groups of compounds with transporter profiles comparison 

 

Structures CID 

Exp. 

logBB 

ChemSim 

Transporter Profile 
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Group A                         

 

Query Compound* 

Predictions:  

Pred(MOE) = -0.35  

Pred(HBD) = -0.52 

* 2249 -1.14 -  

 

 

18047 0.34 0.79 

 

2083 -1.14 0.65 
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Group B                           

 

Query Compound* 

Predictions:  

Pred(MOE) = -1.4  

Pred(HBD) = -1.23 

* 

31703 -0.83 - 

 

 

 

 

2583 0.01 0.64 

 

5978 -1.03 0.61 

Group C                         

 

* 

9864647 0.63 - 
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Query Compound* 

Predictions:  

Pred(MOE) = -0.05  

Pred(HBD) = 0.11 

 

10201984 0.88 0.94 

 

 

22620091 0.85 0.69 

Group D                          

 

Query Compound* 

Predictions:  

Pred(MOE) = -0.84  

Pred(HBD) = -1.13 

* 
55482 -1.88 - 

 

 72108 -2.00 0.80 

 

14022522 -1.30 0.64 



35 
 

 

Group E                            

 

Query Compound* 

Predictions:  

Pred(MOE) = -0.43  

Pred(HBD) = -0.65 

* 

475100 -0.67 - 

 

 

115237 -0.67 0.99 

 

10937291 -0.23 0.61 

Group F                              

 

Query Compound* 

Predictions:  

* 

3348 -0.98 - 
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Pred(MOE) = -0.45  

Pred(HBD) = -0.6 

 

5405 0.64 0.89 

 

 

6426129 -0.89 0.61 

Group G                        

 

Query Compound* 

Predictions:  

Pred(MOE) = -0.54  

Pred(HBD) = -0.33 

* 
92242 -0.01 - 

 

 

 
23274095 -0.01 0.84 

 

10352163 -0.24 0.84 

Notes: 
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In transporter profiles, blue: query compound, red: chemically nearest neighbor, green: combined nearest neighbor 

Abbreviations: Pred(MOE), predicted logBB value from model based on the MOE descriptors; Pred(HBD), predicted logBB value 

from the hybrid model; Exp. logBB, experimental logBB value; ChemSim, chemical similarity to the query compound.  

*Query compound, listed as the first compound in each group, was compared to the two neighbors using the chemical w/o transporter 

descriptors. Second compound in each group is the chemically nearest neighbor. The third compound in group is the top nearest 

neighbor (in groups A, B, C, F and G) or second nearest neighbor (in groups D and E when the second compound is also the top 

nearest neighbor) with hybrid descriptors.  
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The bio-assay responses of target compounds provide extra information that can 

be used to improve traditional QSAR models 23,24. Membrane transporters expressed in 

brain micro-vessels regulate the extent of flux and rate of exchange of substances 

between the circulatory system and CNS 66. Thus, a compound’s binding affinity to 

transporters will affect BBB permeability. As expected, our modeling results showed 

predictivity improvement by a simple combination of chemical descriptors and 

transporter descriptors (Figure 2.4). This indicates that the improvements of prediction 

were due to information provided by the transporter data.  

In order to interpret the mechanisms by which transporter interaction affects BBB 

permeability, we listed seven compounds that have better consensus predictions from the 

hybrid model compared to the conventional QSAR model, with their nearest neighbor 

compounds using chemical and transporter descriptors (Table 2.2). The predicted 

activities for the nine transporters can be viewed as the transporter interaction profile for 

each compound (the range-scaled transporter interaction profiles are listed in the last 

column of Table 2.2, blue: query compound, red: chemically nearest neighbor, green: 

combined nearest neighbor). The BBB permeability results, as well as transporter 

interaction profiles, indicate that chemically similar compounds do not always have 

similar biological responses. For example, in group A composed of beta adrenergic 

receptor antagonists/agonists (Table 2.2), Toliprolol (CID 18047, red line in transporter 

profile) is the most structurally similar compound to Atenolol (CID 2249, blue line in 

transporter profile), which is a drug used to treat hypertension, yet the BBB permeability 

and transporter interactions are quite different, especially for MRP4 and MRP5. However, 
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after including the transporter descriptors, the new nearest neighbor Salbutamol (CID 

2083), a drug used for the relief of bronchospasms, has the same BBB permeability and 

similar transporter interactions with Toliprolol. Similar conditions were also observed in 

group B and C (Table 2.2). This can potentially be a solution to the “activity cliff” issue 

in QSAR studies 22–24. The differences in transporter interaction activities are able to 

differentiate the two structurally similar compounds in chemical space but with different 

bio-activities, thus correct the prediction for the query compound. Therefore, including 

meaningful biological descriptors (e.g., transporter descriptors in this study) can improve 

the resulting models.  

Through the analysis of the transporter interaction profiles, we are able to 

interpret the biological mechanisms of BBB permeability for specific compounds. For 

example, in group B of Table 2.2, the query compound Doxorubicin (CID 31703, blue 

line in transporter profile), a DNA intercalator used in cancer chemotherapy, and its 

chemical nearest neighbor Carteolol (CID 2583, red line in transporter profile), a non-

selective beta blocker used to treat glaucoma, are not actually quite structurally similar 

(Tanimoto coefficient = 0.64) and significantly different logBB values. After including 

the transporter descriptors, Doxorubicin and its new nearest neighbor Vincristine (CID 

5978, green line in transporter profile), a mitotic inhibitor used in cancer chemotherapy, 

have closer logBB values. The transporter interaction profiles of these two compounds 

are similar and they both have higher affinity in four of the five efflux pump transporters 

(MDR1, MRP1, MRP3, MRP4 and MRP5) than Carteolol. This supports the theory that 

higher interaction activity with efflux transporters indicates lower BBB permeability. 

Regarding the two query compounds in group D and E in Table 2.2, their chemical 
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nearest neighbors have same logBB values but the model predictions are still not close. 

This is due to the existence of other chemically similar compounds with different logBB 

values that were used to predict the activities of the query compounds. The query 

compounds have higher similarities in the transporter interaction profile with their new 

neighbors after including the transporter descriptors (Table 2.2). The better predictions 

benefit from increasing the distance in chemical space for the structural nearest neighbors 

with different transporter interaction profiles as well as decreasing distance for those with 

similar transporter interaction profiles. In group F and G, specifically, the combined 

evaluation results in the same nearest neighbors, thus the third line in each of these 

groups showed the second combined nearest neighbor. The correction of prediction is not 

from the first nearest neighbor itself, but from a combination of neighbors. The first 

nearest neighbors in these cases have an “activity cliff” with the query compounds, and 

the next neighbors are to help minimize the prediction error. The limitation of transporter 

assays to clear “activity cliffs” also suggests the limitation of information provided by the 

9 transporter assays. 

Using our in-house automatic profiling tool 33, 310 PubChem assays were 

identified to have data for the compounds in our BBB permeability dataset. Among them, 

155 PubChem assays were identified to be somewhat correlated with the BBB 

permeability with Predictivity ≥ 70% or Predictivity ≤ 30% (Figure 2.5). Among these 

PubChem assays, many of the assay targets and receptors were proven to regulate, be 

regulated by or be relevant to BBB permeability, e.g., androgen receptor 67, MDR1 60, 

serotonin (5-HT) receptor 68, adenylate cyclase 69, etc. See Supplementary file Table S2.2 

for those assays and description. For example, for PubChem assays correlated to high 
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BBB permeability (144 assays as circled in the orange dots in Figure 2.5a), the 35 

compounds with the highest BBB permeability (logBB values range from 0.85 to 1.65) 

show higher Psum values in these assay results than the other compounds with lower BBB 

permeability. Therefore, if a compound shows an active response in these bio-assays, it is 

likely to have high BBB permeability. One particular useful assay (AID 943) is a qHTS 

assay to identify small molecule antagonists of the androgen receptor signaling pathway. 

Androgen was reported to upregulate the transmembrane transporter MRP4 through 

androgen receptor activation in prostate cancer cells 70, thus, it was considered as a 

potentially informative bio-descriptor resource. Among the compounds tested in this 

assay, the Psum increases with logBB value increment (data not shown). The average 

values of the 144 positively-correlated assay (as circled in the yellow dots in the bottom 

of Figure 2.5a) results show similar correlation with logBB values (orange line in Figure 

2.5b) and the average values of the other 11 negatively-correlated assays (as circled in 

the green dots in the top of Figure 2.5a) show reversed correlation with logBB values 

(green line in Figure 2.5b). The remaining assays, identified as non-correlated, (not 

circled in Figure 2.5a) show no/low correlation with logBB values (yellow line in Figure 

2.5b).  

This analysis provided many potential targets as meaningful biological descriptors, 

but their utilities are limited due to missing data. This can be addressed by deriving 

corresponding individual QSAR models whose predictions are then used as descriptors, 

or by developing novel algorithms to integrate the currently available assay data into the 

modeling process. The current hybrid logBB model is expected to be further enhanced 

when this information is included.  
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2.5 Conclusion 

 In this study, we compiled a large and diverse BBB permeability dataset consists 

of 439 unique compounds and applied a consensus QSAR approach to develop predictive 

logBB models. All of the resulting models showed predictivity that is better than or 

comparable to those previously reported. The consensus model obtained by averaging the 

predictions of individual models achieved similar predictivity to the best individual 

models. 

QSAR models for nine transporters were used to generate extra descriptors for the 

compounds in the BBB permeability dataset. Hybrid models, based on the combination of 

the same chemical descriptors and nine transporter descriptors, showed better 

performance than traditional QSAR models. Through analyzing the nearest neighbor 

compounds in the traditional QSAR and hybrid models, we found that some “activity 

cliff” issues could be resolved by using hybrid models. Using our in-house automatic 

profiling tool, some PubChem assays were also considered to be correlated to BBB 

permeability. These assays can be potential biological descriptors (after developing their 

corresponding QSARs) to further improve the current hybrid models. Our research 

proposed a new strategy to enhance the traditional predictive modeling (e.g., QSAR) of 

complex biological activities by including extra biological descriptors. 
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Chapter 3 Predicting Nano-bio Interactions by Integrating 

Nanoparticle Libraries and Quantitative Nanostructure 

Activity Relationship Modeling 

Chapter Overview 

The discovery of biocompatible or bioactive nanoparticles for medicinal 

applications is an expensive and time-consuming process that may be significantly 

facilitated by incorporating more rational approaches combining both experimental and 

computational methods. However, it is currently hindered by two limitations: 1) the lack 

of high quality comprehensive data for computational modeling, and 2) the lack of an 

effective modeling method for the complex nanomaterial structures. In this study, we 

tackled both issues by first synthesizing a large library of nanoparticles and obtained 

comprehensive data on their characterizations and bioactivities. Meanwhile, we virtually 

simulated each individual nanoparticle in this library by calculating their nanostructural 

characteristics and built models that correlate their nanostructure diversity to the 

corresponding biological activities. The resulting models were then used to predict and 

design nanoparticles with desired bioactivities. The experimental testing results of the 

designed nanoparticles were consistent with the model predictions. These findings 

demonstrate that rational design approaches combining high quality nanoparticle libraries, 

big experimental datasets and intelligent computational models can significantly reduce 

the efforts and costs of nanomaterial discovery. 
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3.1 Introduction 

Nanoscience and nanotechnology have made significant impacts on modern 

medicine,71 various technology fields and thousands of consumer products.72 For these 

applications, nanomaterials with desirable properties and low side effects are in high 

demand. However, the search for such nanomaterials depends heavily on traditional “trial 

and error” experimental protocols, which are time- and resource-consuming. Rational 

approaches that use in silico models to predict the bioactivities of nanomaterials before 

experimental testing would be an attractive approach for nanomaterial research.73 

However, there are currently two key limitations to this advancement: 1) Most existing 

data available for modeling were based on limited numbers of nanomaterials with limited 

experimental characterization of chemical properties (e.g. basic physicochemical 

properties).74–76 This is due to the fact that the conventional “one-at-a-time” experimental 

approach has been practiced in most laboratories allowing only limited numbers of 

nanoparticles to be made and tested. Furthermore, coming from different laboratories, 

even results for the same material may be contradictory due to poor characterization and 

different operations.77 2) Despite significant efforts from various researchers, the 

available modeling approaches were designed and applicable only for a specified small 

set of nanomaterials and rarely used to design nanomaterials. One such effort is based on 

molecular dynamics (MD). The reaction behaviors of individual nanoparticles were 

investigated under certain conditions using MD, e.g., interactions with or passing through 

membranes, along with the effects of the size, density, position, distribution, length and 

type of surface ligands on the biological properties of the nanomaterials.78–82 The 

advantage of MD simulations is that they can precisely simulate molecular structures. 
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However, the clear disadvantages are that 1) modeling procedures are computationally 

expensive and cannot provide rapid predictions for big databases due to the current 

limitation of computational resources; 2) these simulations require extensive prior 

expertise knowledge; 3) MD simulations are inherently unsuitable for the predictions of 

endpoints with complex mechanisms, such as cytotoxicity. Thus, the usage of this 

approach in designing nanomaterials is limited. Another computational approach is to 

apply traditional quantitative structure-activity relationship (QSAR) modeling methods to 

nanomaterials. QSAR modeling for small molecules requires precisely calculated diverse 

chemical descriptors.83 The lack of suitable chemical descriptors for nanomaterials 

strongly limits the applicability and predictability of QSAR models. Although the 

descriptors calculated only from the surface ligands are useful in predicting certain 

properties of nanoparticles,84–86 the effects of the nanoparticle size, and density, position, 

distribution, length and type of surface ligands on the biological properties were not 

considered in these studies. Some other studies have incorporated descriptors derived 

from some nanoparticle-related properties (e.g., nanoparticle size)87–90 or testing results 

(e.g., proteomics data)76,91–93 for computational models. Efforts were also made to 

combine molecular simulations and QSAR modeling.94,95 Instead of simulating the 

nanoparticles, metal oxide substructures were used as substitution, which is only 

applicable to metal oxides within a specific size range. To date, there are no universal 

“nano-QSAR” models that can model all nanomaterials for complex bioactivites.96 Thus 

a bottleneck to apply QSAR approaches for nanomaterial modeling is that nanostructure 

diversity is not accurately represented during the modeling process. 
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To address the above two limitations, we first assembled a large gold nanoparticle 

(GNP) library with comprehensive characterizations and bioactivities measurements. We 

then constructed a virtual gold nanoparticle (vGNP) library based on these experimental 

results and calculated a large set of nanodescriptors using precise surface chemistry 

simulations of each vGNP. Then predictive quantitative nanostructure activity 

relationship (QNAR) models were developed. With these QNAR models, we predicted 

and designed GNPs with different biological profiles and these GNPs were then 

synthesized and confirmed experimentally.  

 

3.2 Methods/experimental 

3.2.1 GNP library synthesis 

Each surface-modified member of the GNP library were made in one-pot 

synthesis. Hydrogen tetrachloroaurate (III) (HAuCl4) trihydrate solutions (0.05 mol/L) 

were stirred with ligands at room temperature. Then, sodium tetrahydroborate was added 

dropwise to the mixture. The mixture was stirred for four hours at room temperature. 

After the reaction is finished, the mixture was centrifuged, and the supernatant was 

discarded. The precipitate was re-suspended in deionized water. The centrifugation-

dissolution cycle was repeated five times. 

3.2.2 GNP library characterization 

The number of ligands on each GNP was characterized as described in our 

previous article.90,97 Briefly, the ligands on GNPs were first cleaved by I2. Then, the 

ligands was quantitatively analyzed by LC/MS to get number of ligand molecules per 
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nanoparticle. The diameters of the GNPs were analyzed by transmission electron 

microscopy observations (JEM-1011, JEOL, Tokyo, Japan). The hydrodynamic diameter 

and zeta potential were analyzed using a laser particle size analyzer (Malvern Nano ZS, 

Malvern, UK) in ultrapure water (18.2 MΩ) or in 10% fetal bovine serum (FBS).  

3.2.3 Experimental logP measurement 

The experimental LogP values of all the GNPs were determined using a modified 

“shaking flask” method as described in our previous paper.90 Briefly, GNPs were mixed 

with octanol-saturated water and water-saturated octanol. . The mixture was shaken for 

24 hours. Then, the mixture was kept still for three hours to separate the organic and 

water phases. The GNPs in both phases were quantitatively determined by ICP-MS. LogP 

values were then calculated using the following equation: 

 LogP =  Log[𝐶𝐺𝑁𝑃(Octanol)/𝐶𝐺𝑁𝑃(Water)] 

where CGNP(Octanol) is the concentration of GNPs in octanol and CGNP(Water) is 

the concentration of GNPs in water. 

3.2.4 Quantification of HO-1 level 

A549 cells were treated with GNPs (50 μg/mL) for 24 hours. Then, the cells were 

harvested and proteins were extracted after cell lysis. HO-1 protein was quantitatively 

determined by Western blot. The band intensity was quantified by ImageJ 1.47v 

(National Institute of Health, USA). 
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3.2.5 Cellular uptake 

GNPs (50 μg/mL) were incubated with A549 or HEK293 cells for 24 hours. After 

washing cells for three times with PBS, we detached the cells from the flask by 

trypsin−EDTA solution. The cells were counted and then lysed overnight in Aqua Regia. 

ICP-MS was used to quantify the concentration of GNPs. 

3.2.6 Virtual GNP construction and structure optimization 

The construction of vGNPs was accomplished by the in-house GNPrep program 

coded in Python 3.5, which takes input information of both the gold core and surface 

ligands and generates individual vGNPs as PDB format. First, according to the input size 

of the GNP, it forms a spherical gold core. In this study, only the gold shell (i.e., Au 

atoms on the core surface) was generated for each vGNP since (1) the atoms in the gold 

core are stable and compact, (2) the conformation of the gold core is unlikely to change, 

and (3) the simulation focuses mostly on the surface chemistry. Then, the surface ligands 

were connected to the shell by randomly attaching their sulfur-sulfur linkers to the 

surface Au atoms. Originally, the surface ligands were set at random angles and 

directions. To simulate the actual conformations of the GNPs under experimental 

conditions, the structures of the constructed vGNPs were refined and optimized under 

force field Amber10:EHT,98–100 function provided by Molecular Operating Environment 

(MOE® version 2015.10).100 Since the structure optimization using different force fields 

did not significant affect the descriptor calculation and the model development, this 

structure optimization method was chosen arbitrarily.  
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3.2.7 Virtual GNP chemical descriptor calculation 

 To simulate the surface chemistry of a GNP, two types of surfaces were identified 

and isolated using MOE:100,101 the interaction surface (also called van der Waals 

accessible surface) and the electron density surface. From the interaction surface, the total 

surface area of the vGNP and the average surface area per surface ligand were calculated. 

Furthermore, several types of potential vGNP-target interactions were simulated on the 

interaction surface: hydrophobicity, electrostatic features, non-bonded contact 

preferences and interaction potentials with certain fragmental structures. Then, the 

resulting interaction potentials obtained for each above interaction were quantified. 

Specifically, since the interaction potentials were calculated for each grid point on the 

vGNP surface, we calculated overall interaction potential scores of the vGNP. To 

calculate the scores, we (1) simply averaged the interaction values of all grid points or (2) 

counted the number of points that are above an interaction threshold, which is determined 

based on all the vGNPs in the modeling set. Meanwhile, the electron density surface, 

which represents electron density distribution in a grid unit cell, was also calculated for 

the vGNP as described above. The surface simulation was initially realized in MOE,100 

while the quantification was accomplished by in-house codes written in Python 3.5. The 

quantified features were then used as nanodescriptors in the following modeling 

procedures. For more information about the descriptors, please refer to supplementary 

Table S3.3.  

All descriptors were normalized in the range of zero to one. Then, if two 

descriptors showed redundant results in the modeling set (correlation coefficient 

R2 > 0.99), one of them was removed. The descriptors with low variance (standard 



50 
 

 

deviation <0.01 or less than three different values) were removed as well. This effort 

resulted in a set of 29 descriptors, which was used in the modeling process. As shown in 

Figure 3.5, these 29 descriptor values of the modeling set were shown as a clustered 

heatmap using the pHeatmap package102 in R version 3.1.1.  

3.2.8 QNAR modeling 

Using the remaining 29 descriptors and the kNN algorithm, we developed QNAR 

models for the cellular uptakes in the A549 cell line and the HEK293 cell line, the HO-1 

level in the A549 cell line and the logP values. The kNN method16 uses the bioactivities 

of each GNP’s k nearest neighbors, which have the lowest Euclidean distances between 

GNPs in multidimensional GNP chemical space, as its prediction and employs optimized 

selection of variables to define neighbors. It was developed using our in-house program 

implementation (also available at chembench.mml.unc.edu).52 All models were validated 

using a ten-fold cross-validation within the modeling set. Briefly, the modeling set was 

randomly divided into ten equivalent subsets. Nine subsets (90% of the modeling set 

GNPs) were used as the training set, as the remaining one served as the test set (10% of 

the modeling set GNPs). The training set was used to develop the QNAR models and the 

resulting models were validated by predicting the excluded test set. This procedure was 

repeated ten times so that each GNP was left out in the test set once. Then, seven external 

GNPs were synthesized and tested for the above four bioassays using the same 

experimental protocols. This experimental validation procedure was used to further 

validate the predictability of the resulting models and the whole modeling workflow. 

Details regarding the kNN modeling and validation procedure can be found in our 

previous publications.9,22  
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3.3 Results and discussion 

3.3.1 Workflow of experimental testing, QNAR modeling and rational nanomaterial 

design. 

Figure 3.1 shows the workflow of this project, including two major parallel 

components - the GNP library synthesis/testing and vGNP library construction, which are 

the key steps of the modeling process. First the initial nanoparticle library was 

synthesized and tested for their cellular uptake potentials and relevant properties. The 

nanostructure diversity was modulated by changing the surface ligands on the GNPs. As 

the parallel step, the vGNP library was virtually constructed for the same nanoparticles 

by computationally 1) building a gold core with proper GNP size, 2) simulating the 

nanostructural diversity by attaching the corresponding surface ligands on the gold core, 

and 3) simulating the surface chemistry by calculating important physicochemical 

properties (Figure 3.1).  
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Figure 3.1 Schematic workflow of virtual GNP (vGNP) development, predictive modeling, and experimental validation.  
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In this study, GNPs 1-34 were synthesized and experimentally tested in the first 

step to form the modeling set (Figure 3.1). Up to two types of surface ligands with 

different properties (e.g., one hydrophobic and the other hydrophilic) were attached to a 

gold core with a sulfur-gold linkage, and the GNP properties were changed by varying 

the ratio and density of these two ligands as well as the size of the gold core. The 

corresponding vGNPs were created, the structures of these vGNP were then optimized. 

Their surface chemistries were precisely simulated as the actually synthesized GNPs. 

Using the resulting optimized vGNPs, nanostructural descriptors were calculated, such as 

the surface area and potential energy. These nanodescriptors were then used to build 

QNAR models that quantitatively relate the nanostructures to their complex bioactivities 

(e.g., cellular uptake) that were determined experimentally. By screening the external 

vGNP library, which contains other vGNPs with various sizes, surface ligands and 

density, using the resulting QNAR models, GNPs (e.g., GNPs with different surface 

ligands) with desired bioactivities (e.g., high or low cellular uptake potentials) can be 

designed and prioritized. Seven GNPs 35-41 were designed and synthesized based on the 

prediction results for the experimental validation in this study. 

3.3.2 Design and synthesis of a chemically and biologically diverse GNP library. 

The library of GNPs used in this study was designed with diverse chemical and 

biological activities to simulate potential GNPs used in medicine. In our previous studies, 

we have shown that the physicochemical properties and other complex bioactivities of 

nanoparticles can be modulated by systematically changing the surface ligands.103–108 In 

this study, we designed and synthesized a total of seven GNP library series (GNPs 1-34), 

with GNP size ranging from 5 nm to 10 nm. For each series, different surface ligands 
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were designed to gradually change GNP hydrophobicity (SI, GNPs 1-7, red), positive 

charge density (S2, GNPs 8-12, navy), negative charge density (S3, GNPs 8, 13-16, 

green), surface hydrogen bond acceptor density (S4, GNPs 8, 17-20, magenta), surface 

hydrogen bond donor density (S5, GNPs 8, 21-24, orange), surface pi-bond density (S6, 

GNPs 25-29, blue) and molecular geometry (S7, GNPs 30-34, purple), as indicated by the 

colors in Figure 3.2. With the exception of S7 (GNPs 30-34), these GNPs each have two 

surface ligands with different properties as shown in Figure 3.2. By gradually changing 

the ratio of the two ligands, the major physicochemical properties of these GNP series are 

altered. Specifically, GNP 8 belongs to 4 series (S2, S3, S4 and S5) as shown in Figure 

3.2. The relevant information about the chemical synthesis and the resulting biological 

data are summarized in Table S3.1. This table shows that the bioactivities of GNPs (e.g., 

cellular uptakes) can be modulated by changing these properties. In this study, a total of 

34 GNPs, which made up these 7 GNP library series, were synthesized and 

experimentally characterized. The relevant experimental data are also shown in Table 

S3.1. These 9 experimentally tested properties cannot be directly used to predict the 

properties of vGNPs yet to be synthesized and thus are not suitable for prioritizing GNPs 

with desirable biological activities. However, some properties (i.e., size, number of 

ligands per GNP) are critical structural parameters of GNPs affecting their 

bioactivities,80,82 and should always be considered during computational modeling. 

Accordingly, the computational calculation of a precise and diverse set of descriptors is 

required in order to develop models for predicting external nanoparticles.   



55 
 

 

 

Figure 3.2 The gold nanoparticle (GNP) dataset. (a) The synthesis of the GNP libraries 

with a combination of surface ligands for each series. (b) Experimental data of (1) 
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cellular uptake by A549 cells; (2) cellular uptake by HEK293 cells; (3) HO-1 level in 

A549 cells; and (4) the partition coefficient (logP). The first six series (GNPs 1-29) were 

designed as dual surface ligand GNPs, and the last series (GNPs 30-34) was designed 

with single surface ligands. Series are distinguished by colors. Error bars represent the 

standard deviations (n=3). 

 

3.3.3 Virtual GNP construction and structure optimization. 

 An in-house GNPrep program was created to batch-construct the GNPs virtually, 

namely vGNPs, in the library by inputting three basic structural parameters: particle size, 

surface ligand structure and ligand density (number of ligands per GNP). Briefly, the 

surface ligands were randomly attached to the spherical gold particle shell through sulfur-

gold linkages at random angles and directions. To simulate the actual configuration of the 

GNP, the vGNP structures were then geometrically optimized with a minimized potential 

energy. Up to two types of surface ligands with different properties (e.g., one 

hydrophobic and one hydrophilic) could be attached to the gold core. 
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Figure 3.3 Simulated surface features of the vGNPs. First column: series 1 (GNPs 1-7); 

second: hydrophobic potentials; third: interaction potential with sodium cation; fourth: 

interaction potential with dry (hydrophobic) probe; fifth: electrostatic surface associated 

with hydrophobic interaction atom types; sixth: non-bonded contact preference with 

hydrophobic ligand atoms.  
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3.3.4 Virtual GNP chemical descriptor calculation.  

Nanodescriptors that are specifically useful for representing GNP chemical 

structure information can be calculated from the optimized vGNP structures and be used 

directly for modeling. It was shown in a previous study that the size, shape, surface area, 

surface charge, energy, functional groups, ligands, hydrophobicity, and electrostatic 

interactions are among the main physicochemical features that influence the interactions 

between nanoparticles and biological systems.109 In this study, this nanostructural 

information can be calculated and served as the key to correlate nanostructures to 

biological activities. Thus, 86 nanodescriptors were characterized and calculated based on 

the simulated structures of vGNPs (for details about the 86 descriptors, see Table S3.2, 

S3.3). These 86 descriptors provided massive information for the big vGNP library from 

diverse aspects, which can be used for QNAR modeling to predict complex biological 

activities.   

As an example, the S1 series (GNPs 1-7) shown in Figure 3.3 was designed 

specifically for changing the GNP hydrophobicity with different ratios of hydrophilic and 

hydrophobic ligands. In this study, for each vGNP in the constructed library, a specific 

descriptor was used to represent the hydrophobic potential, which can be visualized by 

the colored contours (i.e., green as the most hydrophobic and purple as the most 

hydrophilic) shown in the second column of Figure 3.3. Similarly, some other descriptor 

values of this GNP series (e.g., interaction potentials) can be visualized (e.g., third to 

sixth columns of Figure 3.3). For these four descriptors, the colored dots indicate the 

vGNP surface regions where the calculated descriptor values are above the original input 

threshold. For each surface property, there is a large range of values distributed along 
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with the surface ligands on each vGNP. In order to make use of these multidimensional 

massive structure information data, we designed several algorithms to quantify and unify 

simulated surface property features into sets of descriptors that can be used for modeling 

(see “Methods” and supplementary Table S3.3). 

3.3.5 Nanostructure diversity visualization    

Based on the calculated nanodescriptors of the 34 GNPs, we first visualized how 

these vGNPs were structurally differentiated from each other. After performing principal 

component analysis using the 90 descriptors (calculated 86 descriptors, along with four 

experimentally determined basic properties - three surface ligand densities and GNP size), 

the two top-ranked principal components, covering 89% of the variance of all descriptors, 

were used to construct a GNP chemical space, which represent the distribution of vGNPs 

based on their structure diversities. As shown in Figure 3.4, within most vGNP series, 

individual vGNPs are structurally different from each other. However, the vGNPs within 

two series designed to have different positive and negative charge densities (S2 and S3: 

GNPs 8-16) showed relatively small structural differences in the current GNP chemical 

space (Figure 3.4). This issue may be due to the lack of suitable descriptors for 

describing their structural diversity and might negatively affect the model predictability 

for the external GNPs with similar surface ligands to these two series. This issue is 

further discussed in detail below. 
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Figure 3.4 The principal component analysis of the 41 GNPs based on the 90 chemical 

descriptors. Dots are GNPs in the modeling set and star points are those in the external 

validation set. 

 

3.3.6 Predictive computational modeling 

Among all 86 descriptors and their four physical properties (i.e., particle size and 

three types of ligand density), some descriptor values were highly correlated with each 

other. Highly correlated descriptors will induce issues during the modeling procedure and 

normally one of two highly correlated descriptors needs to be removed.9,53,110 After 

removing the correlated descriptors, 29 descriptors remained, as shown in Figure 3.5. 

These descriptors were then used in the following modeling procedure. 

Using the 29 descriptors and the k-nearest-neighbor (kNN) algorithm, we 

developed QNAR models for cellular uptake in human lung and kidney cells (A549 and 

HEK293 cells), ability to induce oxidative stress (indicated by the HO-1 level in the 



61 
 

 

A549 cells) and hydrophobicity (indicated by logP values). In each individual kNN 

model, up to eleven descriptors were used. The model performance was first shown by a 

10-fold cross-validation process of the modeling set. The resulting four models showed 

high predictabilities (modeling set GNPs are shown as dots in Figure 3.6) with 

correlation coefficients (R2) of 0.995, 0.990, 0.967 and 0.988, and mean absolute error 

(MAE) values of 0.11 (*107 GNPs/cell), 0.14 (*107 GNPs/cell), 0.14 and 0.18, 

respectively.   
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Figure 3.5 Heatmap of the chemical descriptors generated for 34 GNPs. Descriptor values were normalized between 0 and 1. 
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3.3.7 Nanoparticle discovery with the QNAR models and experimentation. 

The ultimate goal of any computational model is its applicability in prediction. To 

realize this goal, first we virtually designed and created seven vGNPs (shown in Table 

S3.4, GNPs 35-41) with different surface chemistries (i.e., sizes, surface ligand ratios, 

and densities) as shown in Figure 3.7a. Then the developed QNAR models were used to 

predict the physicochemical properties and bioactivities of these vGNPs (Figure 3.7b). 

These nanoparticles were intendedly designed with predicted diverse physicochemical 

properties and bioactivities. Experimental data convincingly confirmed most of modeling 

predictions (Figure 3.7, Tables S3.1, and S3.2). The correlations between model 

predictions and the experimental results (Figure 3.7c) were reflected by R2 values (0.918, 

0.919, 0.768 and 0.930); and MAE values (0.49 *107 GNPs/cell, 0.46 *107 GNPs/cell, 

0.26 and 0.43) for each endpoint, respectively (this external validation set of GNPs are 

shown as star points in Figure 3.6).  
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Figure 3.6 QNAR model performance in the 10-fold cross-validation (dots) and external 

validation (stars) results in: (a) cellular uptake in A549 cells; (b) cellular uptake in 

HEK293 cells; (c) HO-1 level in A549 cells; and (d) logP. 
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3.3.8 Design GNPs with desired bioactivities 

As shown above, using the resulted QNAR models and important nanodescriptors, 

we predicted and selected seven external GNPs, which were then experimentally 

synthesized and experimentally confirmed (Figure 3.7). The advantage of this study is 

that the GNPs can be characterized by critical physicochemical properties (e.g. 

nanodescriptors) and bioactivities (e.g., the precisely predicted cellular uptake levels). 

This approach allowed us to cover most known factors for designing potential 

nanomedicines.  These external GNPs were prioritized by QNAR models due to the 

diverse predicted bioactivities (e.g. low or high cellular uptake potentials). As shown in 

previous studies, GNPs with desired bioactivities can be designed by systematically 

changing the surface ligands.90 In this study, we not only successfully reached this goal 

by creating virtual nanoparticles and precisely simulating their surface chemistry but also 

predicted their target bioactivities before experimental synthesis. Those with optimal 

properties can be visualized and selected computationally upon requirements. For 

example, the biological profiles of vGNPs 35 and 40 were predicted to be relatively 

similar, aside the size difference (Figure 3.7b). vGNPs 41 and 35 have similar cellular 

uptakes in both HEK293 and A549 cells. But vGNP 41 was predicted to have higher HO-

1 activity and lower logP than 35 (Figure 3.7b). We may select the most suitable GNPs 

for future development by considering the whole biological profile. This way, we can 

precisely design nanomaterials that meet the therapeutic requirements of modern 

nanomedicines.  

 



66 
 

 

 

Figure 3.7 Computational profile, design and experimental validation of seven external nanoparticles. (a) Computationally designed 

vGNPs; (b) predicted properties and bioactivities of the vGNPs; and (c) experimental validation results.  
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3.3.9 Elucidate mechanisms of cellular uptake 

The important mechanisms of GNP cellular uptakes can be obtained by analyzing 

modeling results and used to guide nanomaterial design. The results showed that there are 

several descriptors that are critical to the QNAR models. For example, the descriptor 

hydrophobic potential has clear and high linear correlations with the experimental 

hydrophobicity logP values (R2 = 0.76), the cellular uptake in A549 cells (R2 = 0.74) and 

the cellular uptake in HEK293 cells (R2 = 0.74). Indeed, not surprisingly, in the models 

built for these three endpoints, the hydrophobic potential is the most important descriptor 

that is mostly used in all the acceptable kNN models (87%, 75% and 80% of all 

acceptable models for cellular uptake in A549 cells, cellular uptake in HEK293 cells, and 

logP, respectively). The other important descriptors for the cellular uptake models in the 

A549 cells are the partial charge, non-bonded hydrophobic contact preference and 

particle size, while those important for cellular uptake models in the HEK293 cells are 

the non-bonded hydrophobic contact preference, partial charge and surface area. For 

example, GNP 7, which has high cellular uptake potentials for both cells, was featured 

with a hydrophobic potential as high as 3.62 and a non-bonded hydrophobic contact 

preference as low as 0.49. Compared to the other three models, the top four descriptors 

that are most important to the oxidative stress induction model are the number of surface 

ligands, non-bonded hydrophobic contact preference, interaction potential with water 

molecules and electrostatic positivity. This indicated that different mechanisms of action 

and extra interactions are involved in oxidative stress induction by GNPs compared to 
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other nano-bio interactions, such as cellular uptake. These factors should be considered 

for the development of nanomaterials. 

3.3.10 Advance GNP design by applying applicability domain and additional 

experimental testing 

Although the current chemical descriptors have covered a variety of aspects of the 

GNP structural diversity and the resulting models yielded satisfactory predictability, 

more studies need to be conducted for GNP development. As shown in Figure 3.6, two 

external GNPs (36, the navy star, and 38, the magenta star) have relatively large 

prediction errors in at least two models. As shown in the GNP chemical space (Figure 

3.4), the diversity of GNP series S2 (GNP 8-12) with changes in the positive charge 

density cannot be distinguished, and GNP 36 belongs to this series. In our previous 

QSAR modeling studies, the use of the applicability domain (AD) could improve the 

model predictivity.64 The definition of the AD was normally based on the structure 

similarity between the external compounds and their nearest neighbors in the modeling 

sets. In this study, a similar analysis was applied. As expected, 36 was identified as a 

structural outlier with a normalized Euclidean distance as large as 0.86 to the closest 

GNP in the modeling set. For this reason, the relatively larger prediction error in the 

models of cellular uptake of this GNP may be due to the diversity limitation of the GNPs 

distributed in this created GNP chemical space (i.e., a lack of representative descriptors 

describing the cellular uptake relatives). Without extensively expanding the current 

nanostructure landscape by experimentally testing more GNPs, the AD cannot be defined 

without enough external prediction results. However, this issue can be resolved by 

developing more chemical descriptors from the vGNP library to better represent their 
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structure diversity. For example, the potential descriptors in the future can be derived by 

understanding biophysicochemical interactions at the nano-bio interface, such as 

receptor-ligand binding interaction potentials, nanomaterial conformational changes and 

etc. Probing these various biophysicochemical interactions may improve the current 

QNAR models by including additional knowledge information of nano-structures.109 

Meanwhile, the GNP 38 is shown to be structurally different from other GNPs in the 

current GNP chemical space. Its only nearest neighbor, GNP 33, has a high logP and 

cellular uptake, which is the opposite of those of GNP 38. This issue can be resolved by 

experimentally testing more GNPs within this series to generate more chemical nearest 

neighbors of GNP 38. For this reason, experimental testing is critical and needed when 

there is not enough data available to cover specific areas of the GNP chemical space. 

3.3.11 Potential pitfalls and future directions 

Currently the technical issues of limited computational power and lack of 

software can limit studies involving large sets of nanomaterials. For example, in this 

study, we used nanoparticles with sizes ranged from 5 nm to 10 nm and number of 

surface ligands ranged from 100 to 900. Based on the GNP library, the constructed 

vGNPs have almost reached the upper limit of the protein database (PDB) format used to 

store the relevant nanostructures (i.e. up to 99,999 atoms for each vGNP).111 For more 

complicated nanostructures (e.g. larger GNPs with more surface ligands), the PDB format 

cannot be used. And there is no any other generally acknowledged substitution file 

formats that can overcome this issue. To this end, we are designing other computational 

approaches to resolve this issue and make this strategy applicable for more complicated 

nanomaterials.  
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3.4Conclusions 

Nanoparticle discovery by experimental data and intelligent computer modeling 

approaches is the method of choice to overcome the current bottleneck in nanomaterial 

research. The performance of QNAR models, like the conventional QSAR models, 

depends heavily on the availability and the amount of high quality data. Only with big 

and comprehensive databases can models yield comprehensive and accurate prediction 

powers for nanomaterials with a wider range of applicability. Meanwhile, the modeling 

approaches need to be able to intelligently represent the real nanostructures’ diversity. By 

taking advantage of the precise simulation approaches that focus on understanding the 

individual actions of specific GNPs, the proposed method can virtually create a diverse 

collection of vGNPs from various aspects by simulating and calculating a broad set of 

surface features. Additionally, compared to previous QSAR studies on GNPs, this QNAR 

modeling approach has the advantage to not only rapidly screen big GNP datasets but 

also more accurately predict the properties of nanoparticles, which could help design or 

prioritize GNPs with desirable biological properties. Furthermore, the current workflow 

of QNAR modeling may be extended to other nanomaterials, such as other spherical 

nanoparticles or nanomaterials of various shapes, sizes, and surface coatings. 
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Chapter 4 Universal Nanohydrophobicity Predictions using Virtual 

Nanoparticle Library 

Chapter Overview 

To facilitate the development of new nanomaterials, especially nanomedicines, a 

novel computational approach was developed to precisely predict the hydrophobicity of 

gold nanoparticles (GNPs). The core of this study was to develop a large virtual gold 

nanoparticle (vGNP) library with computational nanostructure simulations. Based on the 

vGNP library, a nanohydrophobicity model was developed and then validated against 

externally synthesized and tested GNPs. This approach and resulted model is an efficient 

and effective universal tool to visualize and predict critical physicochemical properties of 

new nanomaterials before synthesis, thus guide nanomaterial design.   

 

4.1 Introduction 

Advances in nanotechnology and material sciences in the past decade have led to 

the rapid development of engineered nanomedicines in pharmaceutical sciences.112,113 

The traditional development route of new nanomaterials solely depends on experimental 

testing, which is costly and time consuming. With rapidly rising experimental and labor 

costs, computational approaches become promising low cost alternatives to study 

nanomaterials.73 To date, computational modeling approaches are broadly applied to the 

research and development procedure of small molecules, but rarely for larger molecules 

like nanomaterials.114 For example, there are many available commercial software 

tools115–117 to predict physicochemical properties for new druggable small molecules but 
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none are available for new nanomedicines. Compared to small molecules, the shape, size, 

composition and surface ligands of nanomaterials greatly increase the nanostructure 

complexity. Due to such complexities, the biological activities and therapeutic effects of 

nanomaterials are more difficult to model than small molecules. As a key determinant of 

drug pharmacokinetics, hydrophobicity influences the drug solubility, absorption, 

distribution, and target binding characteristics, which are eventually associated with the 

drug efficacy, potency and toxicity.118,119 Therefore, it is critical to evaluate 

hydrophobicity of nanomedicines in the early stage of development, even before 

chemical synthesis.  

In previous studies, researchers have been devoted to building quantitative 

structure activity relationship (QSAR) models for various bioactivities of different 

nanomaterials but they have limited applicability for new nanomaterial development.76,91–

93 The major bottleneck of these available modeling studies is the lack of approaches to 

correctly quantify and represent nanostructure diversity during modeling procedure. In 

our previous studies, we have shown that the surface chemistry was the most critical 

factor to determine bioactivities of gold nanoparticles (GNPs), including 

nanohydrophobicity.90 Furthermore, correctly simulating surface chemistry can result in 

novel nanodescriptors that can be used to develop quantitative nanostructure-activity 

relationship (QNAR) models, which showed superior advantages than traditional 

modeling studies.120 Here, we reported a novel approach to develop a virtual gold 

nanoparticle (vGNP) library with surface simulations precisely predicting 

nanohydrophobicity for new nanomaterials. Using this approach, a nanohydrophobicity 

model was developed based on surface chemistry simulation of a set of GNPs with 
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various surface ligands. The model predictivity was further proved by experimentally 

synthesizing and testing nine new GNPs, and comparing their experimental/predicted 

logP values. The predicted nanohydrophobicity showed high correlations with 

experimental results, indicating the applicability of using this universal predictive 

modeling approach to design and select new GNPs with desired hydrophobicity.  

In a recent study,120 we developed a novel method to construct vGNP libraries.120 

Using this approach, we constructed the vGNP library with a dataset of 41 GNPs, as 

shown in Figure 4.1. Specifically, using the structural information of surface ligands, 

ligand density of each GNP, as well as the GNP size, the virtual structure for each of the 

GNPs in the library was constructed as follows. First the gold core was constructed based 

on the GNP size. Then, the surface ligands, with ligand density information, were 

randomly attached to the gold core to simulate the experimental conditions. These 41 

GNPs were synthesized and tested for their hydrophobicity. The high nanostructure 

diversity of these 41 GNPs, including various surface ligands, different ligand densities 

per GNP and various GNP sizes, and high hydrophobicity diversity (experimental logP 

values range from -3 to 3) make this dataset suitable for modeling purposes. This dataset 

was used as the modeling set to develop nanohydrophobicity models. All the 

experimental data used to construct the vGNP library, including the structure information 

of surface ligands, were shared in supplemental Table S4.1. 
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Figure 4.1 The constructed vGNP library.  

 

 

5 nm
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4.2 Methods 

4.2.1 Experimental approaches 

4.2.1.1 GNP library synthesis 

In this process, sodium gold borohydride was used to prepare GNPs. The sodium 

borohydride was mainly used to reduce the chloroauric acid to gold nanometers. At the 

same time, the five-membered ring in the ligand of lipoic acid derivatives was opened 

and connected to the gold nanometer surface through the Au-S bond. Specific steps are as 

follows: 0.625 mL of a 20 mg/mL aqueous solution of HAuCl4·4H2O (12.5 mg, 0.032 

mmol) was added into a 100 mL round bottom flask and 6 mL of an N,N-

dimethylformamide (DMF) solution containing 0.0064 mmol ligand (one or two lipoic 

acid derivatives, the total molar amount is 0.0064 mmol) was slowly added dropwise. 

After stirring for 30 min at room temperature, 6 mL of an aqueous solution of NaBH4 

(5.0 mg, 0.131 mmol) was slowly added dropwise. The solution immediately turned red. 

After the addition was complete, the reaction was continued at room temperature for 4 h. 

After the reaction was completed, in order to remove excess ligand in the reaction 

solution, the reaction solution was centrifuged to remove the supernatant, and DMF: H2O 

(1:1) solution was added to the mixture after ultrasonic dispersion, followed by 

centrifugation, and DMF: H2O was repeatedly used (1:1). After washing the solution 5-6 

times, wash it twice with secondary water and finally disperse the GNPs in about 6 mL of 

secondary water. 

The shape and size of the nanoparticles can be visually observed by transmission 

electron microscopy (TEM). A sample solution of about 10 μL is dropped on the copper 
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grid and dried under an infrared lamp for at least half an hour, and measured by a JEM-

1011 (Japan) low resolution transmission electron microscope. All gold nanoparticles 

synthesized were spherical. The particle size of the nanoparticles in the TEM image was 

calculated using Image Pro Plus 6.0 software. The particle sizes were all around 5-7 nm, 

which ensured that the particle size of the nanoparticles were consistent. In a previously 

published article, it has been demonstrated that quantitative analysis of gold nanoparticle 

surface ligand molecules can be performed using an iodine cleavage method and HPLC-

MS method.106 Specific steps are as follows: Each containing 1 mg of gold nanoparticles 

solution was injected into a tube, vacuum dried. 100 μL of methanol 

(chromatographically pure) was added to each well and disperse them ultrasonically. 

Then 100 μL of 13 mg/mL I2 solution dissolved in methanol was added. After ultrasonic 

mixing, shake 1 h, centrifuge at 15000 rpm for 20 min to the supernatant 1. Transfer the 

supernatant 1 to a 1.5 mL liquid vial, and then add 200 μL of methanol 

(chromatographically pure) to wash the iodized gold nano precipitate and centrifuge at 

15000 rpm for 20 min to the supernatant 2. Supernatant 2 and supernatant 1 were mixed. 

The above supernatant solution was placed in an oven at 353 K, the solvent was 

evaporated while allowing I2 to sublime completely, and then cooled to room temperature. 

300 μL of methanol (chromatographically pure) was separately added to each of the 

above vials, dissolving them by sonication, the result was measured with HPLC-MS, and 

determined according to the retention time, and quantified according to the peak area. 

Ligand standard solutions were prepared using methanol (chromatographically pure). 

Ligand standard solutions were at concentrations of 0.05, 0.10, 0.50, 1.00, 2.50 and 5.00 

μmol/mL. Since the ligand molecules are all connected to the gold nanoparticles via gold-
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sulfur bonds, the addition of I2 destroys the Au-S bond and causes the ligand molecules to 

fall off the gold nano-surface. Using the HPLC-MS method, the peak area was used for 

quantification using the external standard method. The number of ligands per gold 

nanoparticle was obtained by converting the molar concentration obtained quantitatively, 

and the total number of ligands (~400 ligands per gold nanoparticle) remained relatively 

unchanged. 

4.2.1.2 Testing experimental logP values for GNPs 

The widely used “shaking flask” method was employed in the measurement of 

logP values for GNPs. To obtain octanol-saturated water and water-saturated octanol, 

octanol and water were premixed and stirred for 24 h. Then two phases were separated 

after reaching equilibrium. About 0.1 mg GNP (suspended in 100 mL water), 1.90 mL 

octanol-saturated water and 2.00 mL water-saturated octanol were added to the 4 mL 

polypropylene tubes and the mixture was shaken on an orbital shaker for 24 h at room 

temperature. The mixture was allowed to stand still for 3 h, followed by the separation of 

GNP from two phases. GNP in octanol and water was then quantified by ICP-MS 

measurements respectively. 

4.2.2 Steps to create vGNPs and calculate logGR 

4.2.2.1 Run the GNPrep to generate the vGNPs in pdb format.  

The input sdf file, e.g. univ_multi.sdf, where each ligand includes the following 

fields: 1) CAS, the index of the GNP; 2) graph.index, the number of ligands on each GNP; 

and 3) dipole, the nanoparticle radius (in Angstrom). Open a command window in the 
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same directory and type the command line as “python gnprep.py univ_multi.sdf”. 

Outputs will be individual pdb files, one vGNP in each file. 

4.2.2.2 Create lipophilicity surface  

Open a pdb file in MOE®. Go to Surface - surfaces and maps. In the pop-up 

window, select atoms: all atoms; near: all atoms; color: lipophilicity; Hydrophilic: pure 

red; Lipophilic: pure green. Then click “create” button. Save the result as a moe file (e.g. 

1_lipophilicity.moe).  

4.2.2.3 Generate logGR descriptor 

First create an input file (e.g. list.txt) in the same folder. The file should include 

three columns: CAS, dipole, and elogP. Then run the python code: colorQuantification.py. 

The results will be in the output file logGR_Ratio.txt (the second column will list the 

experimental logP values, obtained from elogPs of input file and the third column will be 

the calculated logGR values.  

 

4.3 Results 

In this study, a new computational approach was developed based on the 

constructed vGNP library to evaluate hydrophobicity of GNPs. The core of this technique 

was to evaluate the solvent accessible surface (SAS) of GNPs and to calculate the 

nanohydrophobicity accordingly. The SAS, also named the Connolly Surface,121  was 

identified for each GNP using a grid based method.122 The cross section (Grey area) of a 

vGNP surface ligand was constructed in a 2D grid and was shown in Figure 4.2a. The 
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SAS was determined by rolling a solvent probe, simulated by the size of a water molecule 

of radius 1.4 Å, over the surface of the vGNP. Probes were placed on grid points 

surrounding the vGNP surface ligand. A grid point was identified as a SAS point of this 

vGNP when the probe was within one grid unit distance to at least one vGNP atom, and 

does not overlap with any other vGNP atoms.122  

Once the SAS, with all identified grid points, was identified for a vGNP, its 

hydrophobicity potential was evaluated by calculating the octanol-water partition 

coefficient from a distance-dependent weighting function of atomic contributions.123,124 

The hydrophobic/hydrophilic potential of an identified SAS point was determined by 

nearby atoms and weighted by their distances to the SAS point. As shown in Figure 4.2a, 

hydrophilic SAS points were colored with red while hydrophobic SAS points were 

colored with green. The hydrophilic/hydrophobic potential for each SAS was represented 

as the intensity of the corresponding color - red as hydrophilic and green as hydrophobic. 

As an example, the hydrophobic potentials of eight vGNPs can be visualized in Figure 

4.2b. This series of GNPs were constructed with two types of surface ligands with 

different hydrophobicity: one ligand was hydrophilic and the other was hydrophobic. The 

ratio of these two types of surface ligands among the eight GNPs was gradually changed 

to modulate the nanohydrophobicity from low to high. From Figure 4.2b, this series of 

GNPs showed a clear trend of hydrophobicity change with an increased ratio of 

hydrophilicity / hydrophobicity surface ligands. Thus, the surface colored vGNPs could 

be a representation of nanohydrophobicity of GNPs.  
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Figure 4.2 Illustration of nanologP evaluations. (a) The SAS surface identified by rolling 

the solvent probe on the vGNP surface, and hydrophobicity potentials represented as 

colors. (b) A series of vGNPs with various calculated nanologP values.  
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(2) 

(1) 

The nanohydrophobicity was then quantified using the colored vGNP. The 

nanohydrophobicity of a vGNP can be calculated as: 

log G/R   =  log
∑ Ihydrophobicity

∑ Ihydrophilicity
  

Where, G and R represent the hydrophobic potential (green) and hydrophilic 

potential (red) for each SAS point, and I is the intensity of hydrophobic / hydrophilic 

potential. Then, log G/R values were used to calculate logP as: 

nanolog P   =  0.7334 ∗ log G/R −  2.4306 

The calculated logP values of all the 41 nanoparticles (nanologP), obtained from 

the above equation, were compared to their experimental logP results (elogP), which 

were obtained by experimentally testing the partition coefficients in n-octanol and water 

solutions.  

In previous studies, logP of nanomaterials were calculated based only on surface 

ligand structures84–86,125, and this might be a flaw of that effort.90 For comparison 

purposes, logP values of these 41 GNPs were calculated using four calculators, 

XlogP3,126 AlogPS 2.1,127 ClogP calculated in ChemDraw 17.0128 and logP model in 

MOE 2016.5 For GNPs with two different kinds of ligands, their logP values were 

calculated by averaging two ligand logP values weighted by the ratio of the two types of 

ligands. As shown in Figure 4.3 and supplemental Table S4.1, the best obtained logP 

results from commercial software, XlogP3, yielded a low correlation with elogP as R2 = 

0.577 and large prediction errors MAE = 2.633, which was much worse than that of 

nanologP developed in this study (R2 = 0.884 and MAE = 0.719).  
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Figure 4.3 Comparing the accuracy of calculated nanologP and commercial XLogP3.  

 

To further validate the performance of the proposed nanologP method, we 

synthesized nine new GNPs with different surface ligands compared to modeling set and 

experimentally obtained their elogP values. The calculated nanologP values show high 

predictivity for this external set with R2 = 0.762 and MAE = 1.182, similar to the 

modeling set result. In comparison, the best calculated logP values from commercial 

software (XlogP3) show much worse prediction accuracy with MAE = 3.097.  

In this study, an applicable nanohydrophobicity method was developed. The 

results showed that precisely simulated nanostructures using the virtual GNP library 

technique was the key to the accurate calculation of physicochemical properties of GNPs, 

such as hydrophobicity in this study. Due to the nature of this approach as surface 

chemistry simulations, the calculation of nanohydrophobicity can be performed, as we 
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expected, for other types of nanomaterials (e.g. nanotubes). This approach might also be 

applied to the modeling and evaluation of other critical properties or bioactivities, and 

help to select new biocompatible nanomaterials. 
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Table S2.1 BBB database  

SetNu

m 

 

CID SMILES logBB 

1  11 ClCCCl -0.14  

2  180 O=C(C)C -0.15  

3  241 c1ccccc1 0.35  

4  263 OCCCC -0.02  

5  338 Oc1ccccc1C(O)=O -1.11  

6  356 C(CCCC)CCC 0.69  

7  408 O=C1N(C)C(CC1)c1cccnc1 -0.22  

8  412 n1cc(ccc1)C1NCCC1 0.32  

9  444 Clc1cc(ccc1)C(=O)C(NC(C)(C)C)C 1.40  

10  702 OCC -0.16  

11  887 OC 0.02  

12  942 n1cc(ccc1)C1N(CCC1)C 0.38  

13  948 [O-][N+]#N 0.03  

14  1031 OCCC -0.15  

15  1140 c1ccccc1C 0.36  

16  1176 O=C(N)N -0.14  

17  1206 N(C(Cc1ccccc1)C)C 0.95  

18  1345 Clc1ccccc1-c1nc(cc2c1cccc2)C(=O)N(C(CC)C)C 0.48  

19  1775 O=C1NC(=O)NC1(c1ccccc1)c1ccccc1 -0.05  

20  1935 n1c2c(CCCC2)c(N)c2c1cccc2 -0.12  

21  1978 O(CC(O)CNC(C)C)c1ccc(NC(=O)CCC)cc1C(=O)C -0.15  

22  1983 Oc1ccc(NC(=O)C)cc1 -0.37  

23  2022 O=C1NC(=Nc2n(cnc12)COCCO)N -0.84  

24  2083 Oc1ccc(cc1CO)C(O)CNC(C)(C)C -1.14  

25  2118 Clc1cc2c(-n3c(nnc3C)CN=C2c2ccccc2)cc1 0.02  

26  2119 O(CC(O)CNC(C)C)c1ccccc1CC=C -0.23  

27  2153 O=C1N(C)C(=O)N(c2nc[nH]c12)C -0.32  
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28  2160 N(CCC=C1c2c(CCc3c1cccc3)cccc2)(C)C 0.90  

29  2164 O=C1NC(=O)NC(=O)C1(CCC(C)C)CC 0.11  

30  2206 O=C1N(N(C)C(=C1)C)c1ccccc1 -0.11  

31  2244 O(C(=O)C)c1ccccc1C(O)=O -0.61  

32  2249 O(CC(O)CNC(C)C)c1ccc(cc1)CC(=O)N -1.14  

33  2294 O=C1NC(=O)NC(=O)C1(CC)CC -0.14  

34  2337 O(C(=O)c1ccc(N)cc1)CC 0.27  

35  2366 n1ccccc1CCNC -0.34  

36  2369 O(CC(O)CNC(C)C)c1ccc(cc1)CCOCC1CC1 0.39  

37  2381 OC(CCN1CCCCC1)(C1C2CC(C1)C=C2)c1ccccc1 0.85  

38 

 

2443 

Brc1[nH]c2c3c1CC1N(CC(C=C1c3ccc2)C(=O)NC1(OC2(O)N(C(CC(C)C)C(=O)N3

C2CCC3)C1=O)C(C)C)C -1.10  

39  2448 Brc1ccc(cc1)C1(O)CCN(CC1)CCCC(=O)c1ccc(F)cc1 1.38  

40  2473 O(CC(O)CNC(C)(C)C)c1ccccc1C#N 0.38  

41  2477 O=C1N(CCCCN2CCN(CC2)c2ncccn2)C(=O)CC2(C1)CCCC2 0.49  

42  2482 O(C(=O)c1ccc(N)cc1)CCCC 0.42  

43  2519 O=C1N(C)C(=O)N(c2ncn(c12)C)C -0.04  

44  2520 O(C)c1cc(ccc1OC)C(C(C)C)(CCCN(CCc1cc(OC)c(OC)cc1)C)C#N -0.64  

45  2554 O=C(N)N1c2c(C=Cc3c1cccc3)cccc2 -0.04  

46  2555 O1C2C1c1c(N(c3c2cccc3)C(=O)N)cccc1 -0.34  

47  2578 ClCCN(N=O)C(=O)NCCCl -0.52  

48  2583 O(CC(O)CNC(C)(C)C)c1c2CCC(=O)Nc2ccc1 0.01  

49  2678 Clc1ccc(cc1)C(N1CCN(CC1)CCOCC(O)=O)c1ccccc1 -2.15  

50  2708 ClCCN(CCCl)c1ccc(cc1)CCCC(O)=O -1.70  

51  2726 Clc1cc2N(c3c(Sc2cc1)cccc3)CCCN(C)C 1.02  

52  2756 S(Cc1[nH]cnc1C)CCNC(NC)=NC#N -1.06  

53  2789 Clc1cc2N(C(=O)CC(=O)N(c2cc1)C)c1ccccc1 0.36  

54  2803 Clc1cccc(Cl)c1N=C1NCCN1 0.12  

55  2995 N(CCCN1c2c(CCc3c1cccc3)cccc2)C 1.08  

56  2997 Clc1cc2c(NC(=O)CN=C2c2ccccc2)cc1 0.52  
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57  3007 NC(Cc1ccccc1)C 0.93  

58  3016 Clc1cc2c(N(C)C(=O)CN=C2c2ccccc2)cc1 0.47  

59  3043 O1C(CCC1n1c2N=CNC(=O)c2nc1)CO -1.30  

60  3100 O(C(c1ccccc1)c1ccccc1)CCN(C)C 1.26  

61  3121 OC(=O)C(CCC)CCC -0.41  

62  3151 Clc1cc2NC(=O)N(c2cc1)C1CCN(CC1)CCCN1c2c(NC1=O)cccc2 -0.85  

63  3152 O(C)c1cc2c(CC(CC3CCN(CC3)Cc3ccccc3)C2=O)cc1OC 0.89  

64  3162 O(C(C)(c1ccccc1)c1ncccc1)CCN(C)C 0.64  

65  3226 ClC(F)C(F)(F)OC(F)F 0.22  

66 

 

3230 

OC1CCC2(C3C(CCC2C1(C)C)(C)C1(C(C2CC(CCC2(CC1)C)(C(O)=O)C)=CC3=O

)C)C -1.40  

67  3282 O(CC)c1ccccc1C(=O)N -0.05  

68  3283 O(CC)CC 0.00  

69  3308 O1CCc2c([nH]c3c2cccc3CC)C1(CC(O)=O)CC -1.42  

70 

 

3310 

O1C2C(OC(OC2)C)C(O)C(O)C1OC1C2C(C(c3c1cc1OCOc1c3)c1cc(OC)c(O)c(OC)

c1)C(OC2)=O -2.00  

71  3345 O=C(N(C1CCN(CC1)CCc1ccccc1)c1ccccc1)CC 0.59  

72  3348 OC(C1CCN(CC1)CCCC(O)c1ccc(cc1)C(C(O)=O)(C)C)(c1ccccc1)c1ccccc1 -0.98  

73  3372 S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)CCO)cc(cc2)C(F)(F)F 1.51  

74  3373 Fc1cc2c(-n3c(CN(C)C2=O)c(nc3)C(OCC)=O)cc1 -0.29  

75  3380 Fc1ccccc1C1=NCC(=O)N(c2c1cc([N+](=O)[O-])cc2)C 0.07  

76  3386 FC(F)(F)c1ccc(OC(CCNC)c2ccccc2)cc1 0.72  

77  3469 Oc1ccc(O)cc1C(O)=O 0.09  

78  3510 O=C(NC1CC2N(C(C1)CCC2)C)c1nn(c2c1cccc2)C -0.69  

79  3559 Clc1ccc(cc1)C1(O)CCN(CC1)CCCC(=O)c1ccc(F)cc1 1.33  

80  3562 BrC(Cl)C(F)(F)F 0.32  

81  3608 O=C1N(C)C(=O)NC(=O)C1(C)C=1CCCCC=1 0.03  

82  3658 Clc1ccc(cc1)C(N1CCN(CC1)CCOCCO)c1ccccc1 0.36  

83  3672 OC(=O)C(C)c1ccc(cc1)CC(C)C -0.18  

84  3676 O=C(Nc1c(cccc1C)C)CN(CC)CC 0.34  
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85  3696 N(CCCN1c2c(CCc3c1cccc3)cccc2)(C)C 0.98  

86  3715 Clc1ccc(cc1)C(=O)n1c2c(cc(OC)cc2)c(CC(O)=O)c1C -1.26  

87  3763 ClC(OC(F)F)C(F)(F)F 0.37  

88  3776 OC(C)C -0.15  

89  3878 Clc1c(cccc1Cl)-c1nnc(nc1N)N 0.29  

90  3955 Clc1ccc(cc1)C1(O)CCN(CC1)CCC(C(=O)N(C)C)(c1ccccc1)c1ccccc1 0.77  

91  3958 Clc1ccccc1C1=NC(O)C(=O)Nc2c1cc(Cl)cc2 0.44  

92  4046 FC(F)(F)c1c2nc(cc(c2ccc1)C(O)C1NCCCC1)C(F)(F)F 0.63  

93  4078 S1c2c(N(c3c1cccc3)CCC1N(CCCC1)C)cc(S(=O)C)cc2 -0.28  

94  4112 OC(=O)C(NC(=O)c1ccc(N(Cc2nc3c(nc(nc3N)N)nc2)C)cc1)CCC(O)=O -1.51  

95  4116 ClC(Cl)C(F)(F)OC 0.23  

96  4171 O(CC(O)CNC(C)C)c1ccc(cc1)CCOC 1.15  

97  4184 N12C(c3c(Cc4c1cccc4)cccc3)CN(CC2)C 0.99  

98  4192 Clc1cc2c(-n3c(CN=C2c2ccccc2F)cnc3C)cc1 0.37  

99  4205 n1c2N3C(c4c(Cc2ccc1)cccc4)CN(CC3)C 0.53  

100  4421 O=C1c2ccc(nc2N(C=C1C(O)=O)CC)C -0.66  

101  4463 O=C1Nc2c(nccc2C)N(c2ncccc12)C1CC1 0.00  

102  4585 S1C2=Nc3c(NC(N4CCN(CC4)C)=C2C=C1C)cccc3 0.78  

103  4594 S(=O)(Cc1ncc(C)c(OC)c1C)c1[nH]c2cc(OC)ccc2n1 -0.82  

104  4616 Clc1cc2c(NC(=O)C(O)N=C2c2ccccc2)cc1 0.60  

105  4687 O=C1N(C)C(=O)Nc2ncn(c12)C 0.07  

106  4736 Oc1cc2c(CC3N(CCC2(C)C3C)CC=C(C)C)cc1 0.51  

107  4737 O=C1NC(=O)NC(=O)C1(C(CCC)C)CC 0.08  

108  4781 OC=1N(N(C(=O)C=1CCCC)c1ccccc1)c1ccccc1 -0.52  

109  4828 O(CC(O)CNC(C)C)c1c2c([nH]cc2)ccc1 -0.14  

110  4909 O=C1NCNC(=O)C1(CC)c1ccccc1 -0.07  

111  4914 O(C(=O)c1ccc(N)cc1)CCN(CC)CC 0.05  

112  4926 S1c2c(N(c3c1cccc3)CCCN(C)C)cccc2 1.08  

113  4943 Oc1c(cccc1C(C)C)C(C)C 0.63  

114  4946 O(CC(O)CNC(C)C)c1c2c(ccc1)cccc2 0.84  
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115  4992 O(C)c1ccc(cc1)CN(CCN(C)C)c1ncccc1 0.49  

116  5039 S(Cc1oc(cc1)CN(C)C)CCNC(=NC)C[N+](=O)[O-] -1.23  

117  5064 O1C(CO)C(O)C(O)C1n1nc(nc1)C(=O)N -0.67  

118  5073 Fc1cc2onc(c2cc1)C1CCN(CC1)CCC=1C(=O)N2C(=NC=1C)CCCC2 -0.02  

119  5092 O(c1cc(ccc1OC)C1CC(=O)NC1)C1CCCC1 0.61  

120  5095 O=C1Nc2c(C1)c(ccc2)CCN(CCC)CCC 0.08  

121  5142 S(C(N)=N)C -0.60  

122  5155 O1C(C=CC1N1C=C(C)C(=O)NC1=O)CO -0.48  

123  5184 O1C2C3N(C(CC(OC(=O)C(CO)c4ccccc4)C3)C12)C 0.23  

124  5193 O=C1NC(=O)NC(=O)C1(C(CCC)C)CC=C 0.20  

125  5206 FC(F)(F)C(OCF)C(F)(F)F 0.30  

126  5253 S(=O)(=O)(Nc1ccc(cc1)C(O)CNC(C)C)C -0.28  

127  5265 Fc1ccc(cc1)C(=O)CCCN1CCC2(N(CNC2=O)c2ccccc2)CC1 0.26  

128  5402 N(Cc1c2c(ccc1)cccc2)(CC=CC#CC(C)(C)C)C 0.08  

129  5405 OC(C1CCN(CC1)CCCC(O)c1ccc(cc1)C(C)(C)C)(c1ccccc1)c1ccccc1 0.64  

130  5429 O=C1NC(=O)N(c2ncn(c12)C)C -0.29  

131  5452 S1c2c(N(c3c1cccc3)CCC1N(CCCC1)C)cc(SC)cc2 0.26  

132  5538 OC(=O)C=C(C=CC=C(C=CC=1C(CCCC=1C)(C)C)C)C -0.49  

133  5556 Clc1ccccc1C1=NCc2n(-c3c1cc(Cl)cc3)c(nn2)C 0.67  

134  5566 S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)C)cc(cc2)C(F)(F)F 1.43  

135  5568 S1c2c(N(c3c1cccc3)CCCN(C)C)cc(cc2)C(F)(F)F 1.44  

136  5726 O1C(CO)C([N-][N+]#N)CC1N1C=C(C)C(=O)NC1=O -0.74  

137  5732 O=C(N(C)C)Cc1n2C=C(C=Cc2nc1-c1ccc(cc1)C)C -0.48  

138  5760 O(C(=O)c1ccccc1)C1CC2N(C(CC2)C1C(OC)=O)C 0.60  

139  5917 n12nnnc1CCCCC2 -0.03  

140  5953 O(C)c1cc2c(nccc2C(O)C2N3CC(C(C2)CC3)C=C)cc1 -0.21  

141 

 

5978 

O(C(=O)C)C1C2(C3N(CCC34C(N(c3cc(OC)c(cc34)C3(CC4CC(O)(CN(C4)CCc4c3

[nH]c3c4cccc3)CC)C(OC)=O)C=O)C1(O)C(OC)=O)CC=C2)CC -1.03  

142  5983 O(C(=O)NC)c1cc2c(N(C3N(CCC23C)C)C)cc1 0.08  

143  6009 O=C1N(N(C)C(C)=C1N(C)C)c1ccccc1 0.00  
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144  6047 Oc1cc(ccc1O)CC(N)C(O)=O -0.78  

145  6085 O(C)c1cc2C3C(Cc2cc1OC)CN(C3)CCCC 0.31  

146  6212 ClC(Cl)Cl 0.26  

147  6251 OC(C(O)C(O)CO)C(O)CO -1.60  

148  6276 OCCCCC 0.20  

149  6278 ClC(Cl)(Cl)C 0.24  

150  6344 ClCCl -0.17  

151  6351 C1CC1 0.03  

152  6354 O1CC1 0.01  

153  6358 BrC(C)C 0.56  

154  6365 ClC(Cl)C -0.28  

155  6386 OC(C)(C)C 0.11  

156  6403 C(CC)(C)(C)C 1.03  

157  6405 OC(CC)(C)C 0.07  

158  6408 ClCC(F)(F)F -0.08  

159  6468 N1(CCCCC1)C1(CCCCC1)c1ccccc1 0.58  

160  6473 O=C1NC(=O)NC(=O)C1(CCCC)CC 0.19  

161  6560 OCC(C)C -0.17  

162  6569 O=C(CC)C -0.07  

163  6574 ClC(Cl)CCl -0.10  

164  6575 ClC(Cl)=CCl 0.30  

165  6584 O(C(=O)C)C -0.13  

166  6623 Oc1ccc(cc1)C(C)(C)c1ccc(O)cc1 -0.12  

167  7174 O(C(=O)c1ccc(N)cc1)CCC 0.55  

168  7237 c1cccc(C)c1C 0.39  

169  7247 c1c(C)c(ccc1C)C 0.16  

170  7282 C(CC)(CC)C 1.01  

171  7296 C1CCCC1C 0.93  

172  7366 c1ccccc1C(C)(C)C 0.43  

173  7394 Clc1ccc(cc1)C(F)(F)F 0.17  
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174  7500 c1ccccc1CC 0.22  

175  7501 c1ccccc1C=C 0.45  

176  7558 N(C(CC1CCCCC1)C)C 1.08  

177  7809 c1cc(ccc1C)C 0.33  

178  7840 BrCCC 0.27  

179  7845 C(C=C)=C -0.17  

180  7855 N#CC=C -0.40  

181  7859 OCC#C -0.23  

182  7892 C(CCC)(C)C 0.98  

183  7895 O=C(CCC)C -0.01  

184  7915 O(C(C)C)C(=O)C 0.40  

185  7929 c1c(cccc1C)C 0.28  

186  7962 C1CCCCC1C 0.96  

187  7997 O(C(=O)C)CCC 0.12  

188  8003 C(CC)CC 0.75  

189  8038 O(C(=O)C)CC(C)C 0.45  

190  8058 C(CCC)CC 0.78  

191  8078 C1CCCCC1 0.96  

192  8125 C(CCC=C)CCC 0.74  

193  8141 C(CCCC)CCCC 0.52  

194  8252 C(C)=C -0.06  

195  8522 IC=1C(=O)N(N(C)C=1C)c1ccccc1 -0.10  

196  8723 OCC(CC)C 0.04  

197  8857 O(C(=O)C)CC 0.00  

198  8900 C(CCC)CCC 0.76  

199  8942 O=C1NC(=O)NC(=O)C1(CCCCCC)CC 0.36  

200  9034 O=C1N(C)C(=O)NC(=O)C1(C(C#CCC)C)CC=C -0.07  

201  9651 O1c2c3C4(C1CC(O)C=C4)CCN(Cc3ccc2OC)C 0.32  

202  9664 ClC=C(F)F -0.02  

203  9844 FC(F)(F)COC=C 0.13  
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204  10253 Oc1ccccc1C(=O)NCC(O)=O -0.44  

205  11416 C1CCCC(C)C1C 1.07  

206  11594 C(CCCCC)(C)C 0.86  

207  12348 O(C(=O)C)CCCCC 0.40  

208  12418 ClC(Cl)(Cl)CCl 0.33  

209  12512 O(C(C)(C)C)CC 0.22  

210  12598 S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)C)cc(cc2)C(=O)CCC 0.83  

211 

 

13342 

O(C(=O)C)C1C2(C3N(CCC34C(N(c3cc(OC)c(cc34)C3(CC4CC(O)(CN(C4)CCc4c3

[nH]c3c4cccc3)CC)C(OC)=O)C)C1(O)C(OC)=O)CC=C2)CC -0.07  

212  13379 C(CCCCCCC)(C)C 1.05  

213  13381 C(CCCC=C)CCCC 0.96  

214  15413 O(C(C)(C)C)C 0.36  

215  15600 C(CCCCC)CCCC 0.67  

216  17358 S(F)(F)(F)(F)(F)F 0.37  

217  18047 O(CC(O)CNC(C)C)c1cc(ccc1)C 0.34  

218  18508 C1CCCCC1C(C)(C)C 0.61  

219  18591 C(CCCCCC)(C)C 0.98  

220  22407 O=C1N2C(C3CC(C2)CNC3)=CC=C1 -1.09  

221  24066 O1C(CCC1N1C=CC(=NC1=O)N)CO -1.18  

222  28315 S1c2c(N(c3c1cccc3)CCCNC)cccc2 0.59  

223 

 

30322 

O1C(C)C(OC2OC(C)C(O)C(O)C2)C(O)CC1OC1C(OC(OC2CC3CCC4C(CC(O)C5(

C)C(CCC45O)C4=CC(OC4)=O)C3(CC2)C)CC1O)C -1.23  

224  31272 O(C(=O)C)CCCC 0.28  

225  31276 O(C(=O)C)CCC(C)C 0.55  

226  31285 C(CCCC)CCC=C 0.86  

227  31300 BrC(F)C(F)(F)F 0.27  

228  31373 ClC(Cl)=C(Cl)Cl 0.37  

229  31423 c12c3c4ccc1cccc2ccc3ccc4 0.23  

230 

 

31703 

O1C(C)C(O)C(N)CC1OC1CC(O)(Cc2c1c(O)c1c(C(=O)c3c(C1=O)c(OC)ccc3)c2O)

C(=O)CO -0.83  
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231  31765 S1c2c(N(c3c1cccc3)CCC1N(CCCC1)C)cc(S(=O)(=O)C)cc2 0.18  

232  33039 FC1CC(OC1CO)N1C=C(C)C(=O)NC1=O -0.59  

233  37614 O1c2c(OC1)cc1N(OC)C=C(C(O)=O)C(=O)c1c2 -0.92  

234  42113 FC(OC(F)F)C(F)(F)F 0.11  

235  47811 S(CC1CC2C(N(C1)CCC)Cc1c3c2cccc3[nH]c1)C 0.30  

236  50287 s1cc(nc1N=C(N)N)CSCCNC(NC)=NC#N -0.82  

237  51670 S(Cc1oc(cc1)C(N)(C)C)CCNC=1NC(=O)C(=CN=1)Cc1ccc(nc1)C -1.06  

238 

 

53024 

S1C(SC1=C(C(=O)N)C(O)=O)C(=O)NC1(OC)C2SCC(CSc3nnnn3C)=C(N2C1=O)C

(O)=O -1.89  

239  55482 Brc1cc(C)c(nc1)CCCCNC=1NC(=O)C(=CN=1)Cc1ccc(nc1)C -1.88  

240  57347 Fc1ccc(cc1)C(=O)NCCN1CCN(CC1)c1c2OCC(Oc2ccc1)CO -0.45  

241 

 

60944 

OC1Cc2c(cccc2)C1NC(=O)C(Cc1ccccc1)CC(O)CN1CCN(CC1C(=O)NC(C)(C)C)C

c1cccnc1 -0.74  

242  60949 O=C1CC(CC1)c1[nH]c2N(CCC)C(=O)N(CCC)C(=O)c2n1 -1.40  

243  61247 O(C(CC)(C)C)C 0.17  

244  62875 Clc1cc2N(c3c(Sc2cc1)cccc3)CCCNC 1.38  

245 

 

64143 

S(CC(NC(=O)c1cccc(O)c1C)C(O)CN1CC2C(CC1C(=O)NC(C)(C)C)CCCC2)c1cccc

c1 -0.93  

246  64814 OC(CC(=O)N)(CC)c1ccccc1 0.04  

247  65016 S(=O)(=O)(N(CC(C)C)CC(O)C(NC(OC1CCOC1)=O)Cc1ccccc1)c1ccc(N)cc1 -0.56  

248  66724 OC(=O)c1ccc(cc1)-c1ccccc1 -1.26  

249  67101 FC1CC2C3C(CCC2(C)C1O)c1c(cc(O)cc1)CC3 -0.30  

250  68617 Clc1cc(ccc1Cl)C1CCC(NC)c2c1cccc2 1.60  

251  69460 N1CCCc2c1cccc2 0.67  

252  72108 O(C)c1cccnc1CCCCNC=1NC(=O)C(=CN=1)Cc1ccc(nc1)C -2.00  

253  74981 Clc1cc2N(c3c(Sc2cc1)cccc3)CCCN 0.97  

254  77501 O(CCCCOC=C)C=C 0.12  

255  77991 O(C(=O)N(CC)C)c1cc(ccc1)C(N(C)C)C 0.88  

256  80554 n1ccccc1CCN(C)C -0.27  

257  83909 ClCCN(CCCl)c1ccc(cc1)CCCC(OC(C)(C)C)=O 1.00  
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258  87653 s1ccnc1CCN -0.42  

259  89657 Clc1cc2N(C(=O)CC(=O)Nc2cc1)c1ccccc1 0.35  

260  90274 Clc1cc(Cl)ccc1N=C1NCCN1 0.16  

261  91517 C1C(C)C(CCC1C)C 1.02  

262  91769 s1c2c(nc1NCCCOc1cc(ccc1)CN1CCCCC1)cccc2 0.14  

263  92242 FCC(O)Cn1ccnc1[N+](=O)[O-] -0.01  

264  92375 [O-][n+]1ccc(cc1)C=[N+]([O-])C(C)(C)C -0.38  

265  94957 Fc1ccc(N2N(C)C(=CC2=O)C)cc1 -0.05  

266  95705 O=C1NC(=O)NC(=O)C1(CC)C -0.22  

267  104972 O(C)c1cc(ccc1OC)C(C(C)C)(CCCNCCc1cc(OC)c(OC)cc1)C#N -0.64  

268  107917 Clc1cc2c(-n3c(CN=C2c2ccccc2F)cnc3CO)cc1 -0.08  

269  107926 Brc1c2c(-n3c(C4N(CCC4)C2=O)c(nc3)C(OC(C)(C)C)=O)ccc1 -0.09  

270  114376 S1c2c(N(c3c1cccc3)CCC1CCCNC1)cc(SC)cc2 0.76  

271  115237 Fc1cc2onc(c2cc1)C1CCN(CC1)CCC=1C(=O)N2C(=NC=1C)C(O)CCC2 -0.67  

272  119146 Fc1ccc(cc1)C(=O)CCCN1CCC2(N(CN(C)C2=O)c2ccccc2)CC1 0.46  

273  119329 O=C1NC2(CCCC2)C(=O)NC1C -0.26  

274  121249 Oc1cc2CCc3c(N(c2cc1)CCCNC)cccc3 0.53  

275  124449 Clc1cc2c(-n3c(cnc3C)C(O)N=C2c2ccccc2F)cc1 -0.22  

276  126761 Fc1cc2c(-n3c(CN(CCF)C2=O)c(nc3)C(OCC)=O)cc1 -0.14  

277  127382 s1c2c(-n3c(CN(C)C2=O)c(nc3)C(OC(C)(C)C)=O)cc1 -0.25  

278  129710 Clc1c2c(-n3c(CN(C)C2=O)c(nc3)-c2nc(on2)C(C)C)ccc1 -0.30  

279  133741 Oc1c2NC(=O)Cc2c(cc1)CCN(CCC)CCC -0.43  

280  156386 Brc1ccc(N2CNC(=O)C23CCN(CC3)CCCC(=O)c2ccc(F)cc2)cc1 0.07  

281  159642 NCCCN1c2c(CCc3c1cccc3)cccc2 1.05  

282  162244 Clc1cc2c(-n3c(nnc3CO)CN=C2c2ccccc2)cc1 -1.28  

283  166560 O1c2c(C3CN(CCC3(O)c3c1cccc3)C)cccc2C 0.82  

284  174174 O(C(=O)C(CO)c1ccccc1)C1CC2N(C(C1)CC2)C -0.06  

285  182017 Clc1cc2c(-n3c(nnc3C)C(O)N=C2c2ccccc2)cc1 -1.48  

286  192706 O(C(=O)Nc1ccccc1)c1cc2c(N(C3N(CCC23C)C)C)cc1 1.00  

287  198752 O=C(CCC1CCN(CC1)Cc1ccccc1)c1cc2NCCCCc2cc1 1.14  
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288  204104 Fc1ccc(Nc2nc(C)c(C)c(n2)N2CCc3c(cccc3)C2C)cc1 0.68  

289  343473 O=C1NC(=O)NC(=O)C1(CCCCCCC)CC 0.02  

290  346516 O=C1NC(=O)NC(=O)C1(CCC)CC 0.09  

291 

 

441243 

OC(C(NC(=O)C(NC(=O)c1nc2c(cc1)cccc2)CC(=O)N)Cc1ccccc1)CN1CC2C(CC1C(

=O)NC(C)(C)C)CCCC2 -0.95  

292  444008 OC1(CCC2C3C(C4=C(CC3C)CC(=O)CC4)CCC12C)C#C 0.40  

293  444031 O1CCc2cc(ccc12)CCN1CC(CC1)C(C(=O)N)(c1ccccc1)c1ccccc1 -0.62  

294  475100 Fc1cc2onc(c2cc1)C1CCN(CC1)CCC=1C(=O)N2CC(O)CCC2=NC=1C -0.67  

295  547559 S1(=O)c2c(N(c3c1cccc3)CCCN(C)C)cccc2 -0.48  

296  638186 ClC=CCl 0.04  

297  2733526 O(CCN(C)C)c1ccc(cc1)C(=C(CC)c1ccccc1)c1ccccc1 0.92  

298  2776666 s1cc(nc1NC(N)=N)C -0.04  

299  3000715 S=C1NC(=O)C(C(CCC)C)(CC)C(=O)N1 -0.19  

300  3035905 S=C(NC1CCCCC1)N1CCC(CC1)c1nc[nH]c1 -0.17  

301  3763607 s1cc(nc1NC(N)=N)-c1ccccc1 -0.18  

302  3946663 O=C(NC(CC)c1ccccc1)c1c2c(nc(-c3ccccc3)c1C)cccc2 0.30  

303  5281708 O1C=C(C(=O)c2c1cc(O)cc2)c1ccc(O)cc1 -0.15  

304  5284371 O1C2C34C(C(N(CC3)C)Cc3c4c1c(OC)cc3)C=CC2O 0.45  

305  5288826 O1C2C34C(C(N(CC3)C)Cc3c4c1c(O)cc3)C=CC2O -0.26  

306  5324346 FC(F)(F)c1ccc(cc1)C(=NOCCN)CCCCOC 0.79  

307  5359272 Oc1cc2C34C(C(N(CC3)C)Cc2cc1)CCCC4 0.00  

308  7138787 s1cc(nc1CCN)-c1ccccc1 -0.87  

309  9796408 Clc1nc(N2CCNCC2)ccc1C(F)(F)F 1.64  

310  9861160 o1nc(c2c1cccc2)-c1ccccc1C(N)CC=C 0.00  

311  9864749 IC=CCN1CCC(CC1)COc1ccc(cc1)C#N 1.13  

312  9903970 Clc1cc2C3C(c4c(Oc2cc1)cccc4)CN(C3)C 1.03  

313  9907401 FC(F)(F)c1cc(ncc1)N1CCN(CC1)CCCCN1CCCC1=O 0.16  

314  9971484 O(CCCNC(=O)C)c1cc(ccc1)CN1CCCCC1 -0.46  

315  10011896 S(CCF)C(N)=N -0.27  

316  10019237 O(CCCNc1ncccc1)c1cc(ccc1)CN1CCCCC1 0.69  
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317  10091748 Clc1c2c(-n3c(CN(C)C2=O)c(nc3)-c2nc(on2)C(O)(CO)C)ccc1 -1.82  

318  10313352 [O-][N+](=Cc1ccccc1)C(C)(C)C 0.05  

319  10352163 FCCCn1ccnc1[N+](=O)[O-] -0.24  

320  10377120 FCCCCCCCCn1ccnc1[N+](=O)[O-] -0.17  

321  10384745 Clc1c2c(-n3c(CN(C)C2=O)c(nc3)-c2nc(on2)C(O)(C)C)ccc1 -1.34  

322  10444765 O(CCCO)c1cc(ccc1)CN1CCCCC1 -0.02  

323  10451635 Ic1cc(ccc1N)-c1sc2cc(O)ccc2n1 0.18  

324  11115931 C(CCC)(CC)C 0.90  

325  12780299 Ic1ccc(cc1CN1CCCCC1)CN1CCCCC1 0.98  

326  12889418 [nH]1nc(nc1N)-c1cc(ncc1)N(C)C -1.17  

327  13720676 Ic1ccc(N2CCN(CC2)CCCCCC)cc1 1.01  

328  13755681 O=C1NC(=O)NC(=O)C1(CCCCCCCC)CC 0.24  

329  14022480 Brc1cccnc1CSCCNc1[nH]ccc1[N+](=O)[O-] -0.67  

330  14022481 S(Cc1ncccc1)CCNc1[nH]ccc1[N+](=O)[O-] -0.66  

331  14022483 S(Cc1ncccc1)CCNc1[nH]cc(Cc2ccccc2)c1[N+](=O)[O-] -0.12  

332  14022484 S(Cc1oc(cc1)CN(C)C)CCNc1[nH]cc(Cc2ccccc2)c1[N+](=O)[O-] -0.73  

333  14022497 s1ccnc1NCCCOc1cc(ccc1)CN1CCCCC1 0.44  

334  14022499 o1c2c(nc1NCCCOc1cc(ccc1)CN1CCCCC1)cccc2 0.22  

335  14022509 s1cc(nc1N=C(N)N)-c1cc(N)ccc1 -1.15  

336  14022517 Brc1cccnc1CSCCNC(NC#N)=NCC -2.15  

337  14022519 s1cc(nc1N=C(N)N)-c1cc(NC(NC)=NC#N)ccc1 -1.54  

338  18356503 BrC(Cl)CC(F)(F)F 0.35  

339  22154175 O1c2c(C3CNCCC3(O)c3c1cccc3)cccc2C 0.52  

340  23235109 BrC(F)CC(F)(F)F 0.27  

341  45268400 BrC1NCC2CC1C=1N(C2)C(=O)C=CC=1 -0.05  

e1  11582 CCCCC(C)C 0.86  

e2  6325 C=C 0.31  

e3  8024 C=COC=C 0.13  

e4  58486189 CCC(C)N1CCN(CC1)C2=CC=C(I)C=C2 1.38  

e5  451231 CN1N(C2=CC=CC=C2)C(=O)C(=C1C)F -0.05  
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e6  N/A CCC(C)NC1=CC(=C(I)C=C1)NC(C)CC 0.64  

e7  66994 CCCCCC1(CC)C(=O)NC(=O)NC1=O 0.09  

e8  N/A CN(C)C1=C(SC2=C(N)C=C(CCF)C=C2)C=CC=C1 0.55  

e9  N/A CCN1CN(C2=CC=C(Br)C=C2)C3(CCN(CCCC(=O)C4=CC=C(F)C=C4)CC3)C1=O -0.43  

e11 

 

13497176 

CCCN1CN(C2=CC=C(Br)C=C2)C3(CCN(CCCC(=O)C4=CC=C(F)C=C4)CC3)C1=

O -0.01  

e13  14590445 ClC1=CC=CC2=C1C(=NCC(=O)N2)C3=CC=CC=C3 0.50  

e14  N/A CC(F)OC(=O)C1=C2CN(C)C(=O)C3=CC(=CC=C3[N]2C=N1)F -0.09  

e15  23274095 OC(COCF)C[N]1C=CN=C1[N+]([O-])=O -0.01  

e16  10649604 CN1CN(C2=CC=CC=C2)C3(CCN(CCCC(=O)C4=CSC(=C4)I)CC3)C1=O -0.25  

e17  4375468 CN(C)CC1=CC=C(CSCCNC2=NC=C(CC3=CN=C(C)C=C3)C(=O)N2)O1 -1.06  

e18  25144104 CN1CCN(CC1)C2=NC3=CC=CC=C3NC4=C2C=C(C)S4 0.78  

e19  44568616 ClC1=CC=C2OC3=CC=CC=C3C4CNCC4C2=C1 0.39  

e21  14022511 CC(=O)NC1=CC(=CC=C1)C2=CSC(=N2)N=C(N)N -1.57  

e23  13646638 CN(C)CC1=CC=C(CSCCNC2=C(C=C[NH]2)[N+]([O-])=O)O1 -1.12  

e24  14022491 CN(C)CC1=CC=C(O1)C2=CC=CC(=C2)NC3=C(C=C[NH]3)[N+]([O-])=O -0.27  

e25  14022486 CN(C)CC1=CC=NC(=C1)C2=CC(=CC=C2)NC3=C(C=C[NH]3)[N+]([O-])=O -0.28  

e26  10498206 O=C(NCCCOC1=CC=CC(=C1)CN2CCCCC2)C3=CC=CC=C3 -0.24  

e29  N/A CN1CCN(CCCN2C3=CC=CC=C3SC4=CC=CC(=C24)C(F)(F)F)CC1 1.44  

e33  N/A CN(C)CC1=CC=C(O1)SCCNC2=C(C(=C[NH]2)CC3=CC=CC=C3)[N+]([O-])=O -0.73  

e34  70517986 CC1C(C2=CC=CC=C2N(C3=CC=CC=C13)C(=O)N)C -0.34  

e35  9864646 COC(=O)NC1=NC2=CC(=CC=C2[NH]1)C(=O)N3CCN(CC3)C4=CC=CC=N4 -1.40  

e36  51263 CCN1N=NN(CCN2CCC(CC2)(COC)N(C(=O)CC)C3=CC=CC=C3)C1=O -0.74  

e37  65860 CCC1=CC=C(C=C1)C(=O)C(C)CN2CCCC2 1.08  

e38  4158 COC(=O)C(C1CCCCN1)C2=CC=CC=C2 0.88  

e39  5505 CCCCNC(=O)N[S](=O)(=O)C1=CC=C(C)C=C1 -1.01  

e40  2050078 NCCC1=C[NH]2=C([NH]1)C=CC=C2 -1.40  

e41  14022522 CN(C)CC1=CC=C(CSCCNC2=NC=C(CC3=CC=C4C=CC=CC4=C3)C(=O)N2)O1 -1.30  

e43  1486 OC(=O)COC1=C(Cl)C=C(Cl)C=C1 0.15  

e44  46842852 CN1CCN(CC1)C2=NC3=CC(=CC=C3NC4=CC=CC=C24)Cl 1.30  
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e45  54429646 CNC(C[N+]([O-])=O)=NCCSC1=CC=C(CN(C)C)O1 -1.23  

e46  44214615 NCC[N]1N=CC2=CC(=C(Cl)C=C12)Cl 0.11  

e47  53394319 COC1=CC=C2N(C(C)C(CC(O)=O)C2=C1)C(=O)C3=CC=C(Cl)C=C3 -1.26  

e48  44213642 COC1=CC(=C2OCCC2=C1)CNC3CCCNC3C4=CC=CC=C4 0.39  

e49  19427054 CCC1=CC(=CC=C1)NC(C)=NC2=CC=CC(=C2)CC 1.20  

e50  N/A CCCN(CCC)CCC1=CC(=C2NC(=O)CC2=C1)O -0.43  

e51  44383796 CCCN(CCC)CCC1=CC=C2NC(=O)CC2=C1 0.25  

e52  25255 NC(=O)C1C2=CC=CC=C2C=CC3=CC=CC=C13 0.00  

e53  29939457 NC(=O)C1C2=CC=CC=C2C3OC3C4=CC=CC=C14 -0.34  

e54  N/A OC(=O)C1=C(NCCSCC2=C(Br)C=CC=N2)[NH]C=C1 -0.67  

e55  13071367 ClC1=C(NC2NCC=N2)C(=CC=C1)Cl 0.11  

e56  57162790 F\C=C\O\C=C\F 0.13  

e57  21440942 CC1CCN(CCCN2C3=CC=CC=C3SC4=CC=C(C=C24)C(F)(F)F)CC1 1.44  

e58  14840722 NC1=NC(=O)N(C=C1)C2CC(CO)C(CO)O2 -0.79  

e59  10388384 COC1=CC(=CC=C1)CC2CCN(CC2)C3CCC(CC3)(OC)C4=CC5=C(OCO5)C=C4 0.74  

e60  9807561 BrC1=CC=C2C3CNCC(C3)CN2C1=O -0.05  

e62  10937291 CC(C)(O)CN1N=C(C=CC1=O)C2=C3C=CC=C[N]3N=C2C4=CC=CC=C4 -0.23  

e63  11003252 CN(C)C(=O)CN1N=C(C=CC1=O)C2=C3C=CC=C[N]3N=C2C4=CC=CC=C4 -1.00  

e64  10884606 O=C1C=CC(=NN1CCN2CCCCC2)C3=C4C=CC=C[N]4N=C3C5=CC=CC=C5 0.38  

e65  9821511 CN1CCC(CC1)N2N=C(C=CC2=O)C3=C4C=CC=C[N]4N=C3C5=CC=CC=C5 0.06  

e66  11110698 CC(=O)CN1N=C(C=CC1=O)C2=C3C=CC=C[N]3N=C2C4=CC=CC=C4 -0.31  

e67  9846311 NC1=NC(=CC=C1)CN2CCC(CC2)NC(=O)C(O)(C3CCC(F)(F)C3)C4=CC=CC=C4 -0.89  

e68  10063598 COC(=O)C1C(C)CC(=CC1=O)NC2=CC=CC(=C2)[N+]([O-])=O -1.00  

e69  10088796 COC(=O)C1C(C)CC(=CC1=O)NC2=CC(=CC=C2)OC(F)(F)F -0.17  

e70  197322 COC(=O)C1C(C)CC(=CC1=O)NC2=CC=C(Cl)C=C2 -0.95  

e71  9916104 CC(C)(C)C1=NC(=CC(=N1)C(F)(F)F)N2CCN(CCCSC3=NC=CC(=O)N3)CC2 0.30  

e72  120 CC12NC(CC3=CC=CC=C13)C4=CC=CC=C24 1.11  

e73 

 

6426143 

COC1=C(CNC2C3CCN(CC3)C2C(C4=CC=CC=C4)C5=CC=CC=C5)C=C(C=C1)C

(C)C 0.48  

e74  10201984 FC(F)OC1=CC=C(OC(F)(F)F)C=C1CNC2CCCNC2C3=CC=CC=C3 0.88  
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e75  9866153 CC(C)OC1=CC=C(OC(F)(F)F)C=C1CNC2CCCNC2C3=CC=CC=C3 0.41  

e76  19696721 COC1=CC=C(C=C1CNC2CCCNC2C3=CC=CC=C3)[S](C)(=O)=O -0.15  

e77 

 

N/A 

COC1=CC2=C(C=C1CNC3C4CCN(C4)C3C(C5=CC=CC=C5)C6=CC=CC=C6)N(C

C2)[S](C)(=O)=O -1.00  

e78  19696654 COC1=CC2=C(C=C1CNC3CCCNC3C4=CC=CC=C4)N(C(C)C2)[S](C)(=O)=O -0.42  

e79  9907851 COC1=CC=C(C=C1CNC2CCCNC2C3=CC=CC=C3)C4=NC=CS4 0.36  

e80  22620062 COC1=C(CNC2CCCNC2C3=CC=CC=C3)C=C(C=C1)N4CCCC4=O -0.22  

e81  22620050 COC1=CC2=C(C=C1CNC3CCCNC3C4=CC=CC=C4)N=C(C)S2 0.48  

e82 

 

19696689 

COC1=CC=C(C=C1CNC2CCCNC2C3=CC=CC=C3)N(C4=NC(=C(C)S4)C)[S](C)(

=O)=O -0.37  

e83  22620080 COC1=CC2=C(C=C1CNC3CCCNC3C4=CC=CC=C4)N=C(C)O2 0.49  

e84 

 

17905241 

COC1=C(CNC2C3CCN(CC3)C2C(C4=CC=CC=C4)C5=CC=CC=C5)C=C(C=C1)C

(C)(C)C 0.46  

e85  22620075 COC1=C(CNC2CCCNC2C3=CC=CC=C3)C=C(C=C1)[N]4N=C(C)C=C4C 0.11  

e86  22620091 COC1=CC2=C(C=C1CNC3CCCNC3C4=CC=CC=C4)N=C(S2)C(C)(C)C 0.85  

e87  N/A CC(C)OC1=CC2=C(C=C1CNC3CCCNC3C4=CC=CC=C4)N=C(C)S2 0.32  

e88  22620066 COC1=CC2=C(C=C1CNC3CCCNC3C4=CC=CC=C4)N=C(S2)C5=CC=CC=C5 1.26  

e89  22620085 COC1=CC2=C(C=C1CNC3CCCNC3C4=CC=CC=C4)N=C(S2)C5CC5 0.62  

e90 

 

6426129 

COC1=C(CNC2C3CCN(CC3)C2C(C4=CC=CC=C4)C5=CC=CC=C5)C=C(C=C1)C

(C)(C)O -0.89  

e91  9931510 COC1=C(CNC2C3CCN(CC3)C2C(C4=CC=CC=C4)C5=CC=CC=C5)C=CC=C1 0.37  

e92  18435769 COC1=C(CNC2CCCNC2C3=CC=CC=C3)C=CC=C1 0.87  

e93  44433393 COC1=C(CNC2CCCNC2C3=CC=CC=C3)C=C(C=C1)C(C)(C)C 0.98  

e94  9864647 COC1=CC=C(OC(F)(F)F)C=C1CNC2CCCNC2C3=CC=CC=C3 0.63  

e95  9902443 COC1=C(CNC2CCCNC2C3=CC=CC=C3)C=C(C=C1)C(C)C 0.92  

e96  9909299 CC(C)(C)C1=CC(=C(OC(F)(F)F)C=C1)CNC2CCCNC2C3=CC=CC=C3 0.96  

e97  12765429 CN1C(=O)N(C)C2=C(N=C[NH]2)C1=O -0.34  

e98  11777724 ClC1=CC(=C(Cl)C=C1)N=C2NCCN2 0.38  

e99  77870 CC1=CC(=CC=C1N=C2NCCN2)Cl -0.87  

e100  72138 CC1=CC(=C(C=C1)N=C2NCCN2)Cl -0.65  
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e101  21675832 CC1=CC(=C(C=C1)N=C2NCCN2)C -1.30  

e102  137235 C1CN=C(N1)NC2=CC=CC=C2 -1.89  

e103  12032949 CC1=C(C=CC=C1)N=C2NCCN2 -1.39  

e104  10470115 ClC1=CC(=C(N=C2NCCN2)C(=C1)Cl)Cl 0.47  

e105  12406843 BrC1=CC(=C(N=C2NCCN2)C(=C1)Br)Br 0.58  

e106  10245368 BrC1=C(N=C2NCCN2)C(=CC=C1)Br 0.33  

e107  12406842 ClC1=CC(=CC(=C1N=C2NCCN2)Cl)Br 0.41  

e108  12406830 CC1=CC(=CC(=C1N=C2NCCN2)C)Br -0.28  

e109  12296941 FC1=C(N=C2NCCN2)C(=CC=C1)F -0.20  

 

*Note:  

SetNum: e-external set, other-modeling set 

CID: PubChem Chemical Identification number, empty are compounds cannot find CIDs 

SMILES: structure, simplified molecular-input line-entry system 

logBB: BBB permeability, Logarithm of Brain-Plasma Concentration Ratio at Steady-State 

  



101 
 

 

Table S2.2 PubChem Assays and their correlation with BBB permeability 

 

Index AID Description Predicitivity 

1 742498 Cyclooxygenase inhibitor 0.00  

2 977610 

Experimentally measured binding affinity data (Ki) for protein-ligand complexes derived 

from PDB [Other] 0.20  

3 1811 Experimentally measured binding affinity data derived from PDB [Other] 0.25  

4 54410 Binding affinity towards cytochrome P450 2C9 [Confirmatory] 0.25  

5 150618 

Concentration required for 50% inhibition at binding site of human P-Glycoprotein (P-gp) in 

one-affinity model [Confirmatory] 0.25  

6 150755 

Inhibition of P-glycoprotein using calcein-AM assay transfected in porcine PBCEC 

[Confirmatory] 0.25  

7 625229 

DRUGMATRIX: Thromboxane Synthetase enzyme inhibition (substrate: PGH2) 

[Confirmatory] 0.25  

8 651838 

qHTS assay for identifying genotoxic compounds that show differential cytotoxicity against 

a panel of isogenic chicken DT40 cell lines with known DNA damage response pathways 0.25  

9 721751 

Inhibition of human OCT2-mediated ASP+ uptake expressed in HEK293 cells after 3 mins 

by fluorescence assay [Confirmatory] 0.25  

10 721754 

Inhibition of human MATE1-mediated ASP+ uptake expressed in HEK293 cells after 1.5 

mins by fluorescence assay [Confirmatory] 0.25  

11 678715 

Inhibition of human CYP2D6 assessed as ratio of IC50 in absence of NADPH to IC50 for 

presence of NADPH using 4-methylaminoethyl-7-methoxycoumarin as substrate after 30 

mins 0.28  

12 1996 Aqueous Solubility from MLSMR Stock Solutions [Other] 0.32  

13 678712 

Inhibition of human CYP1A2 assessed as ratio of IC50 in absence of NADPH to IC50 for 

presence of NADPH using ethoxyresorufin as substrate after 30 mins 0.32  
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14 625243 

DRUGMATRIX: Cyclooxygenase COX-1 enzyme inhibition (substrate: Arachidonic acid) 

[Confirmatory] 0.33  

15 678714 

Inhibition of human CYP2C19 assessed as ratio of IC50 in absence of NADPH to IC50 for 

presence of NADPH using 3-butyryl-7-methoxycoumarin as substrate after 30 mins 0.35  

16 678717 

Inhibition of human CYP3A4 assessed as ratio of IC50 in absence of NADPH to IC50 for 

presence of NADPH using 7-benzyloxyquinoline as substrate after 30 mins 0.36  

17 678713 

Inhibition of human CYP2C9 assessed as ratio of IC50 in absence of NADPH to IC50 for 

presence of NADPH using 7-methoxy-4-trifluoromethylcoumarin-3-acetic acid as substrate 

after 30 mins 0.37  

18 625146 

DRUGMATRIX: Lipoxygenase 15-LO enzyme inhibition (substrate: Linoleic acid) 

[Confirmatory] 0.38  

19 678716 

Inhibition of human CYP3A4 assessed as ratio of IC50 in absence of NADPH to IC50 for 

presence of NADPH using diethoxyfluorescein as substrate after 30 mins 0.38  

20 743122 

qHTS assay to identify small molecule that activate the aryl hydrocarbon receptor (AhR) 

signaling pathway: Summary [Summary] 0.39  

21 743085 

qHTS assay for small molecule agonists of the antioxidant response element (ARE) signaling 

pathway [Confirmatory] 0.40  

22 220 

NCI In Vivo Anticancer Drug Screen. Data for tumor model Mammary Adenocarcinoma 

CD8F1 (subcutaneous) in CD8F1 0.40  

23 54923 Inhibition of human cytochrome P450 3A4 [Confirmatory] 0.40  

24 588215 FDA HLAED, alkaline phosphatase increase 0.40  

25 742738 Sodium channel alpha subunit blocker 0.40  

26 743036 

qHTS assay to identify small molecule agonists of the androgen receptor (AR) signaling 

pathway [Confirmatory] 0.41  

27 720552 qHTS Assay for Anthrax Lethal Toxin Internalization [Confirmatory] 0.41  
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28 743053 

qHTS assay to identify small molecule agonists of the androgen receptor (AR) signaling 

pathway: Summary [Summary] 0.41  

29 720516 

qHTS assay for small molecules that induce genotoxicity in human embryonic kidney cells 

expressing luciferase-tagged ATAD5: Summary [Summary] 0.41  

30 651634 

qHTS assay for small molecules that induce genotoxicity in human embryonic kidney cells 

expressing luciferase-tagged ATAD5 - cell viability [Confirmatory] 0.42  

31 743075 

qHTS assay to identify small molecule agonists of the estrogen receptor alpha (ER-alpha) 

signaling pathway [Confirmatory] 0.42  

32 743077 

qHTS assay to identify small molecule agonists of the estrogen receptor alpha (ER-alpha) 

signaling pathway: Summary [Summary] 0.42  

33 743040 

qHTS assay to identify small molecule agonists of the androgen receptor (AR) signaling 

pathway using the MDA cell line [Confirmatory] 0.42  

34 743084 qHTS assay to identify aromatase inhibitors - cell viability counter screen [Confirmatory] 0.42  

35 2061 Ligands of nucleotide-like (Class A) GPCRs [Other] 0.43  

36 41488 Selectivity for beta-2 adrenergic receptor 0.43  

37 72927 

Binding affinity for human recombinant gamma-aminobutyric-acid (GABA) A receptor 

alpha-1-beta-3-gamma-2 [Confirmatory] 0.43  

38 73089 

Binding affinity to human recombinant gamma-aminobutyric-acid (GABA) A receptor 

alpha-2-beta-3-gamma-2 [Confirmatory] 0.43  

39 73244 

Binding affinity for human recombinant gamma-aminobutyric-acid (GABA) A receptor 

alpha-3-beta-3-gamma-2 [Confirmatory] 0.43  

40 625204 

DRUGMATRIX: Adrenergic beta1 radioligand binding (ligand: [125I] Cyanopindolol) 

[Confirmatory] 0.43  

41 625205 

DRUGMATRIX: Adrenergic beta2 radioligand binding (ligand: [3H] CGP-12177) 

[Confirmatory] 0.43  

42 977608 

Experimentally measured binding affinity data (IC50) for protein-ligand complexes derived 

from PDB [Other] 0.43  
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43 743063 qHTS for Inhibitors of binding or entry into cells for Marburg Virus [Confirmatory] 0.44  

44 524796 

Antiplasmodial activity against Plasmodium falciparum W2 after 72 hrs by SYBR green 

assay [Confirmatory] 0.44  

45 678721 

Metabolic stability in human liver microsomes assessed as GSH adduct formation at 100 uM 

after 90 mins by HPLC-MS analysis 0.44  

46 720725 

qHTS assay to identify small molecule antagonists of the thyroid receptor (TR) signaling 

pathway [Confirmatory] 0.45  

47 743042 

qHTS assay to identify small molecule antagonists of the glucocorticoid receptor (GR) 

signaling pathway [Confirmatory] 0.45  

48 743069 qHTS assay to identify aromatase inhibitors [Confirmatory] 0.45  

49 743078 qHTS for Inhibitors of binding or entry into cells for Lassa Virus [Confirmatory] 0.45  

50 743080 

qHTS assay to identify small molecule antagonists of the estrogen receptor alpha (ER-alpha) 

signaling pathway using the BG1 cell line [Confirmatory] 0.45  

51 743091 

qHTS assay to identify small molecule antagonists of the farnesoid-X-receptor (FXR) 

signaling pathway - cell viability counter screen [Confirmatory] 0.45  

52 743079 

qHTS assay to identify small molecule agonists of the estrogen receptor alpha (ER-alpha) 

signaling pathway using the BG1 cell line [Confirmatory] 0.45  

53 720637 

qHTS assay for small molecule disruptors of the mitochondrial membrane potential: 

Summary [Summary] 0.45  

54 743219 

qHTS assay for small molecule agonists of the antioxidant response element (ARE) signaling 

pathway: Summary [Summary] 0.45  

55 977611 

Experimentally measured binding affinity data (Kd) for protein-ligand complexes derived 

from PDB [Other] 0.45  
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56 743083 

qHTS assay for identifying genotoxic compounds that show differential cytotoxicity against 

isogenic chicken DT40 cell lines with known DNA damage response pathways - 

Rad54/Ku70 mutant cell line [Confirmatory] 0.46  

57 743054 

qHTS assay to identify small molecule antagonists of the estrogen receptor alpha (ER-alpha) 

signaling pathway using the BG1 cell line: Summary [Summary] 0.46  

58 1194 

qHTS Assay for Antagonists of Acetylcholine Muscarinic M1 Receptor: Kinetic 

Measurement of Intracellular Calcium Response [Confirmatory] 0.46  

59 377 MDR-1 [Other] 0.46  

60 743014 

qHTS assay for identifying genotoxic compounds that show differential cytotoxicity against 

isogenic chicken DT40 cell lines with known DNA damage response pathways - Rev3 

mutant cell line [Confirmatory] 0.46  

61 743224 

qHTS assay to identify small molecule antagonists of the glucocorticoid receptor (GR) 

signaling pathway: Summary [Summary] 0.47  

62 893 

HTS Assay for Allosteric Agonists of the Human D1 Dopamine Receptor: Primary Screen 

for Antagonists [Confirmatory] 0.47  

63 743209 

Primary qHTS for delayed death inhibitors of the malarial parasite plastid, 48 hour 

incubation [Confirmatory] 0.47  

64 1030 qHTS Assay for Inhibitors of Aldehyde Dehydrogenase 1 (ALDH1A1) [Confirmatory] 0.47  

65 743015 qHTS Assay for Identifying Gametocytocidal Compounds [Confirmatory] 0.47  

66 743202 

qHTS assay to identify small molecule antagonists of the androgen receptor (AR) signaling 

pathway using the MDA cell line [Confirmatory] 0.47  

67 886 

qHTS Assay for Inhibitors of HADH2 (Hydroxyacyl-Coenzyme A Dehydrogenase, Type II) 

[Confirmatory] 0.48  
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68 743035 

qHTS assay for identifying genotoxic compounds that show differential cytotoxicity against 

isogenic chicken DT40 cell lines with known DNA damage response pathways - wild type 

cell line [Confirmatory] 0.48  

69 743199 

qHTS Validation Assay for Inhibitors of HP1-beta Chromodomain Interactions with 

Methylated Histone Tails [Confirmatory] 0.48  

70 743194 qHTS for Inhibitors of ATXN expression [Confirmatory] 0.48  

71 743012 

qHTS assay to identify small molecule agonists of the farnesoid-X-receptor (FXR) signaling 

pathway - cell viability counter screen [Confirmatory] 0.48  

72 743067 

qHTS assay to identify small molecule antagonists of the thyroid receptor (TR) signaling 

pathway: Summary [Summary] 0.48  

73 720635 

qHTS assay for small molecule disruptors of the mitochondrial membrane potential 

[Confirmatory] 0.48  

74 720692 

qHTS assay to identify small molecule antagonists of the androgen receptor (AR) signaling 

pathway using the MDA cell line: Summary [Summary] 0.49  

75 883 

qHTS Assay for Inhibitors of HSD17B4, hydroxysteroid (17-beta) dehydrogenase 4 

[Confirmatory] 0.49  

76 899 

qHTS assay to identify small molecule agonists of the peroxisome proliferator-activated 

receptor delta (PPARd) signaling pathway - cell viability counter screen [Confirmatory] 0.49  

77 651741 

qHTS assay for small molecule activators of the heat shock response signaling pathway - cell 

viability counter screen [Confirmatory] 0.49  

78 743203 qHTS for Inhibitors of binding or entry into cells for Lassa Virus [Confirmatory] 0.49  

79 1490 

qHTS Assay for Inhibitors of Bacillus subtilis Sfp phosphopantetheinyl transferase (PPTase) 

[Confirmatory] 0.50  
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80 2384 

A counter screen for small molecule screen for inhibitors of the PhoP regulon in Salmonella 

typhi [Confirmatory] 0.50  

81 40537 Selectivity for beta-1 adrenergic receptor 0.50  

82 40539 Selectivity for beta-1 receptor 0.50  

83 41891 

Tested for intrinsic sympathomimetic activity (ISA); antagonist with partial agonistic 

properties 0.50  

84 73523 

Binding affinity for human recombinant gamma-aminobutyric-acid (GABA) A receptor 

alpha-5-beta-3-gamma-2 [Confirmatory] 0.50  

85 82355 

K+ channel blocking activity in human embryonic kidney cells expressing HERG Kv11.1 

[Confirmatory] 0.50  

86 150735 

High affinity constant at binding site of human P-Glycoprotein (P-gp) in two-affinity model 

[Confirmatory] 0.50  

87 150754 

Inhibition of P-glycoprotein, mouse L-mdr1b expressed in LLC-PK1 epithelial cells using 

calcein-AM polarisation assay [Confirmatory] 0.50  

88 524790 

Antiplasmodial activity against Plasmodium falciparum 3D7 after 72 hrs by SYBR green 

assay [Confirmatory] 0.50  

89 524792 

Antiplasmodial activity against Plasmodium falciparum D10 after 72 hrs by SYBR green 

assay [Confirmatory] 0.50  

90 524794 

Antiplasmodial activity against Plasmodium falciparum GB4 after 72 hrs by SYBR green 

assay [Confirmatory] 0.50  

91 524795 

Antiplasmodial activity against Plasmodium falciparum HB3 after 72 hrs by SYBR green 

assay [Confirmatory] 0.50  

92 537733 Binding affinity to Candida albicans CaCdr1p expressed in yeast AD1-8u 0.50  

93 624231 Antagonists at Human 5-Hydroxytryptamine receptor 5-HT1D [Other] 0.50  

94 686978 

qHTS for Inhibitors of human tyrosyl-DNA phosphodiesterase 1 (TDP1): qHTS in cells in 

absence of CPT [Confirmatory] 0.50  
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95 743213 DSSTox (CPDBAS) Carcinogenic Potency Database Salmonella Mutagenicity [Other] 0.50  

96 743218 

High Throughput Screen to Identify Inhibitors of Mycobacterium tuberculosis H37Rv 

[Confirmatory] 0.50  

97 743221 Luminescence Cell-Based Primary HTS to Identify Inhibitors of STK33 [Primary] 0.50  

98 743064 

qHTS Screen for Compounds that Selectively Target Cancer Cells with p53 Mutations: 

Cytotoxicity of p53ts Cells at the Nonpermissive Temperature [Confirmatory] 0.50  

99 743211 p450-cyp1a2 [Confirmatory] 0.50  

100 884 qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay [Confirmatory] 0.50  

101 912 

qHTS Assay for Small Molecule Inhibitors of the Human hERG Channel Activity 

[Confirmatory] 0.51  

102 624032 S16 Schwann cell PMP22 intronic element firefly luciferase assay [Confirmatory] 0.51  

103 743065 qHTS for inhibitors of binding or entry into cells for Marburg Virus [Confirmatory] 0.51  

104 686979 

qHTS for Inhibitors of human tyrosyl-DNA phosphodiesterase 1 (TDP1): qHTS in cells in 

presence of CPT [Confirmatory] 0.51  

105 720659 

qHTS assay to identify small molecule antagonists of the androgen receptor (AR) signaling 

pathway [Confirmatory] 0.51  

106 604020 

Unbound drug concentration in Sprague-Dawley rat plasma administered in casettes of 2/3 

drugs at 4 hr constant rate intravenous infusions using flow rate of 1 (ml/kg)/hr 

corresponding to dosage rate of 2 (umol/kg)/hr by LC-MS/MS method 0.53  

107 902 qHTS assay for small molecule agonists of the p53 signaling pathway: Summary [Summary] 0.53  

108 179 NCI AIDS Antiviral Assay [Confirmatory] 0.53  
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109 590 qHTS Assay for Spectroscopic Profiling in A350 Spectral Region [Other] 0.53  

110 504332 qHTS Assay for Inhibitors of Histone Lysine Methyltransferase G9a [Confirmatory] 0.54  

111 2330 qHTS Assay for Inhibitors and Substrates of Cytochrome P450 3A4 [Confirmatory] 0.54  

112 588216 FDA HLAED, serum glutamic oxaloacetic transaminase (SGOT) increase 0.54  

113 1189 

DSSTox (CPDBAS) Carcinogenic Potency Database Summary SingleCellCall Results 

[Other] 0.54  

114 504834 

Primary qHTS for delayed death inhibitors of the malarial parasite plastid, 96 hour 

incubation [Confirmatory] 0.55  

115 588214 FDA HLAED, liver enzyme composite activity 0.55  

116 1195 DSSTox (FDAMDD) FDA Maximum (Recommended) Daily Dose Database [Other] 0.55  

117 588834 qHTS Assay for Inhibitors and Substrates of Cytochrome P450 2D6 [Confirmatory] 0.55  

118 1188 DSSTox (EPAFHM) EPA Fathead Minnow Acute Toxicity [Other] 0.55  

119 720533 

qHTS assay to identify small molecule antagonists of the estrogen receptor alpha (ER-alpha) 

signaling pathway [Confirmatory] 0.56  

120 488981 

qHTS assay to identify small molecule antagonists of the peroxisome proliferator-activated 

receptor gamma (PPARg) signaling pathway - cell viability counter screen [Confirmatory] 0.56  

121 743244 

qHTS assay to identify small molecule antagonists of the peroxisome proliferator-activated 

receptor gamma (PPARg) signaling pathway: Summary [Summary] 0.56  
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122 485317 

HTS-Luminescent assay for inhibitors of ALR by detection of hydrogen peroxide production 

Measured in Biochemical System Using Plate Reader - 2036-02_Inhibitor_SinglePoint_HTS 

[Primary] 0.57  

123 589 qHTS Assay for Spectroscopic Profiling in 4-MU Spectral Region [Other] 0.57  

124 488953 qHTS Assay for Inhibitors and Substrates of Cytochrome P450 2C9 [Confirmatory] 0.57  

125 504832 

qHTS assay to identify small molecule agonists of the vitamin D receptor (VDR) signaling 

pathway - cell viability counter screen [Confirmatory] 0.57  

126 1208 DSSTox (CPDBAS) Carcinogenic Potency Database Summary Rat Bioassay Results [Other] 0.57  

127 1205 

DSSTox (CPDBAS) Carcinogenic Potency Database Summary MultiCellCall Results 

[Other] 0.57  

128 150616 

Concentration giving half of the maximal ATPase activity calculated for the high-affinity 

binding site of the CHO P-Glycoprotein (P-gp) in two-affinity model [Confirmatory] 0.57  

129 524791 

Antiplasmodial activity against Plasmodium falciparum 7G8 after 72 hrs by SYBR green 

assay [Confirmatory] 0.57  

130 624031 qHTS Assay for Inhibitors and Substrates of Cytochrome P450 2C19 [Confirmatory] 0.57  

131 624215 Antagonists at Human 5-Hydroxytryptamine receptor 5-HT1A [Other] 0.57  

132 743279 

qHTS for Inhibitors of Inflammasome Signaling: IL-1-beta AlphaLISA Primary Screen 

[Primary] 0.57  

133 720532 

qHTS assay for small molecule agonists of the antioxidant response element (ARE) signaling 

pathway [Confirmatory] 0.57  

134 2629 

Fluorescence Polarization Cell-Free Homogeneous Primary HTS to Identify Inhibitors of the 

LANA Histone H2A/H2B Interaction [Primary] 0.58  
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135 1199 

DSSTox (CPDBAS) Carcinogenic Potency Database Summary Mouse Bioassay Results 

[Other] 0.58  

136 588217 FDA HLAED, serum glutamic pyruvic transaminase (SGPT) increase 0.58  

137 504333 qHTS Assay for Inhibitors of BAZ2B [Confirmatory] 0.60  

138 651635 

qHTS assay to identify small molecule antagonists of the thyroid receptor (TR) signaling 

pathway - cell viability counter screen [Confirmatory] 0.60  

139 41890 Tested for intrinsic sympathomimetic activity (ISA); Pure antagonist 0.60  

140 420668 Inhibition of human ERG in MCF7 cells [Confirmatory] 0.60  

141 588219 FDA HLAED, gamma-glutamyl transferase (GGT) increase 0.60  

142 1332 

qHTS assay for small molecule agonists of the antioxidant response element (ARE) signaling 

pathway - cell viability counter screen [Confirmatory] 0.61  

143 686970 

qHTS for induction of synthetic lethality in tumor cells producing 2HG: qHTS for the HT-

1080-NT fibrosarcoma cell line [Confirmatory] 0.61  

144 1850 

A small molecule screen for inhibitors of the PhoP regulon in Salmonella typhi 

[Confirmatory] 0.62  

145 588852 

Fluorescence-based cell-based primary high throughput screening assay to identify 

antagonists of the human M1 muscarinic receptor (CHRM1) [Primary] 0.62  

146 397743 Inhibition of human ERG channel [Confirmatory] 0.63  

147 493017 Wombat Data for BeliefDocking [Other] 0.63  

148 624040 

Fluorescence-based cell-based primary high throughput screening assay to identify 

antagonists of the human cholinergic receptor, muscarinic 5 (CHRM5) [Primary] 0.63  

149 624125 

Fluorescence-based cell-based primary high throughput screening assay to identify 

antagonists of the human cholinergic receptor, muscarinic 4 (CHRM4) [Primary] 0.63  
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150 588349 

qHTS assay to identify small molecule antagonists of the estrogen receptor alpha (ER-alpha) 

signaling pathway: Summary [Summary] 0.64  

151 485346 

uHTS for identification of Inhibitors of Mdm2/MdmX interaction in luminescent format. 

[Primary] 0.64  

152 410 

HTS Assay for Allosteric Agonists of the Human D1 Dopamine Receptor: Primary Screen 

for Agonists [Confirmatory] 0.65  

153 504749 qHTS profiling for inhibitors of Plasmodium falciparum proliferation 0.65  

154 576612 Inhibition of human ERG [Confirmatory] 0.65  

155 720553 qHTS for Inhibitors of KCHN2 3.1: Mutant qHTS [Confirmatory] 0.66  

156 157 NCI Yeast Anticancer Drug Screen. Data for the mec2-1 strain 0.67  

157 485344 

HTS Assay for Allosteric Antagonists of the Human D2 Dopamine Receptor: Primary 

Screen for Antagonists [Primary] 0.67  

158 488983 

qHTS assay to identify small molecule antagonists of the peroxisome proliferator-activated 

receptor delta (PPARd) signaling pathway - cell viability counter screen [Confirmatory] 0.67  

159 588506 

Phenotypic HTS multiplex for antifungal efflux pump inhibitors with Validation compound 

Set [Primary] 0.67  

160 652054 qHTS of D3 Dopamine Receptor Antagonist: qHTS [Primary] 0.67  

161 1851 Cytochrome panel assay with activity outcomes 0.68  

162 2062 Ligands of bioamine (Class A) GPCRs [Other] 0.68  

163 155 NCI Yeast Anticancer Drug Screen. Data for the rad50 strain 0.69  

164 175 NCI Yeast Anticancer Drug Screen. Data for the mlh1 rad18 strain 0.69  

165 540276 S16 Schwann cell viability assay (CellTiter-Glo assay) [Confirmatory] 0.70  

166 540256 

qHTS assay to identify small molecule that activate the aryl hydrocarbon receptor (AhR) 

signaling pathway [Confirmatory] 0.70  
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167 438555 Binding affinity to 5HT1A receptor [Confirmatory] 0.71  

168 625162 

DRUGMATRIX: Opiate kappa (OP2, KOP) radioligand binding (ligand: [3H] 

Diprenorphine) [Confirmatory] 0.71  

169 625163 

DRUGMATRIX: Opiate mu (OP3, MOP) radioligand binding (ligand: [3H] Diprenorphine) 

[Confirmatory] 0.71  

170 625185 

DRUGMATRIX: Protein Tyrosine Kinase, Fyn enzyme inhibition (substrate: Poly(Glu:Tyr)) 

[Confirmatory] 0.71  

171 742882 Serotonin 2a (5-HT2a) receptor antagonist 0.71  

172 1883 

qHTS for differential inhibitors of proliferation of Plasmodium falciparum line W2 

[Confirmatory] 0.72  

173 2063 Ligands of peptide (Class A) GPCRs [Other] 0.72  

174 624223 Antagonists at Human 5-Hydroxytryptamine receptor 5-HT2A [Other] 0.73  

175 3695 

Evaluated for binding affinity towards rat cortical membranes at 5-hydroxytryptamine 1 

receptor binding site by using [3H]-5-HT as a radioligand. [Confirmatory] 0.75  

176 31163 Ex vivo inhibition of human erythrocyte Acetylcholinesterase. [Confirmatory] 0.75  

177 31964 In vitro inhibitory effect on rat Acetylcholinesterase [Confirmatory] 0.75  

178 44285 Ex vivo inhibition of human plasma Butyrylcholinesterase. [Confirmatory] 0.75  

179 65133 

Displacement of [125I]iodosulpiride from human Dopamine receptor D3 expressed in CHO 

cells [Confirmatory] 0.75  

180 196752 

Compound was evaluated for its activity at membrane-bound receptor (M+L+P fraction) 

from rat frontal cortex [Confirmatory] 0.75  

181 196753 

Compound was evaluated for its activity at solubilized receptor (CHAPS/salt-solubilized 

preparation) from rat frontal cortex [Confirmatory] 0.75  
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182 196754 

Compound was evaluated for its activity at membrane-bound receptor (M+L+P fraction) 

from rat frontal cortex [Confirmatory] 0.75  

183 196755 

Compound was evaluated for its activity at solubilized receptor (CHAPS/salt-solubilized 

preparation) from rat frontal cortex [Confirmatory] 0.75  

184 238989 Inhibition of [3H]rauwolscine binding to Alpha-2A adrenergic receptor [Confirmatory] 0.75  

185 238990 Inhibition of [3H]rauwolscine binding to Alpha-2C adrenergic receptor [Confirmatory] 0.75  

186 238991 Inhibition of [3H]prazosin binding to rat Alpha-1 adrenergic receptor [Confirmatory] 0.75  

187 239052 Inhibition of [3H]-spiperone binding to human Dopamine receptor D2 [Confirmatory] 0.75  

188 239069 

Inhibition of [3H]mesulergine binding to human 5-hydroxytryptamine 2C receptor 

[Confirmatory] 0.75  

189 239091 Inhibition of [3H]pyrilamine binding to human Histamine H1 receptor [Confirmatory] 0.75  

190 239149 Inhibition of [3H]5-HT binding to human 5-hydroxytryptamine 7 receptor [Confirmatory] 0.75  

191 243151 Inhibitory concentration against potassium channel HERG [Confirmatory] 0.75  

192 255079 

Inhibitory concentration against human Adenosine A3 receptor expressed in HEK293 cells 

using 0.1 nM [3H]AB-MECA [Confirmatory] 0.75  

193 298278 Inhibition of human recombinant acetylcholinesterase [Confirmatory] 0.75  

194 298279 Inhibition of human recombinant butyrylcholinesterase [Confirmatory] 0.75  
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195 386625 

Inhibition of 4-(4-(dimethylamino)styryl)-N-methylpyridinium uptake at human OCT1 

expressed in HEK293 cells by confocal microscopy [Confirmatory] 0.75  

196 482894 Inhibition of AChE [Confirmatory] 0.75  

197 594820 Inhibition of AChE-induced amyloid beta aggregation [Confirmatory] 0.75  

198 594821 Inhibition of BChE [Confirmatory] 0.75  

199 600978 Inhibition of human erythrocytes AChE [Confirmatory] 0.75  

200 600979 Inhibition of human plasma AChE [Confirmatory] 0.75  

201 600980 Inhibition of human erythrocytes BChE [Confirmatory] 0.75  

202 600981 Inhibition of human plasma BChE [Confirmatory] 0.75  

203 624210 Agonists at Human 5-Hydroxytryptamine receptor 5-HT1A [Other] 0.75  

204 625186 

DRUGMATRIX: Protein Tyrosine Kinase, ERBB2 (HER2) enzyme inhibition (substrate: 

Poly(Glu:Tyr)) [Confirmatory] 0.75  

205 625206 

DRUGMATRIX: Adrenergic beta3 radioligand binding (ligand: [125I] Cyanopindolol) 

[Confirmatory] 0.75  

206 625219 

DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT3 radioligand binding (ligand: [3H] 

GR-65630) [Confirmatory] 0.75  

207 625261 

DRUGMATRIX: GABAA, Flunitrazepam, Central radioligand binding (ligand: [3H] 

Flunitrazepam) [Confirmatory] 0.75  

208 724167 Inhibition of butyrylcholinesterase (unknown origin) [Confirmatory] 0.75  

209 724168 Inhibition of acetylcholinesterase (unknown origin) [Confirmatory] 0.75  

210 742743 D2-like dopamine receptor antagonist 0.75  

211 742885 Serotonin 2c (5-HT2c) receptor antagonist 0.75  

212 504652 Antagonist of Human D 1 Dopamine Receptor: qHTS [Primary] 0.76  

213 504660 Allosteric Agonists of the Human D1 Dopamine Receptor: qHTS [Primary] 0.76  
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214 161281 Inhibition of human Potassium channel HERG expressed in mammalian cells [Confirmatory] 0.77  

215 408340 

Inhibition of human ERG expressed in CHO cells by whole cell patch clamp technique 

[Confirmatory] 0.79  

216 625190 

DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT1A radioligand binding (ligand: 

[3H] 8-OH-DPAT) [Confirmatory] 0.79  

217 625225 

DRUGMATRIX: Sodium Channel, Site 2 radioligand binding (ligand: [3H] Batrachotoxin) 

[Confirmatory] 0.79  

218 891 

qHTS assay for small molecule activators of the human pregnane X receptor (PXR) signaling 

pathway [Confirmatory] 0.80  

219 1876 

qHTS for differential inhibitors of proliferation of Plasmodium falciparum line 3D7 

[Confirmatory] 0.80  

220 6648 Binding affinity towards rat 5-hydroxytryptamine 7 receptor [Confirmatory] 0.80  

221 88009 

Displacement of [3H](-)-trans-H2-PAT from histamine H2 PAT binding site by competition 

binding assay. 0.80  

222 238855 Inhibition of [3H]SCH-23390 binding to rat Dopamine receptor D1 [Confirmatory] 0.80  

223 239010 

Inhibition of [125I]R91150 binding to human 5-hydroxytryptamine 2A receptor 

[Confirmatory] 0.80  

224 239150 Inhibition of [125I]iodosulpiride binding to human Dopamine receptor D3 [Confirmatory] 0.80  

225 240820 Inhibitory concentration against IKr potassium channel [Confirmatory] 0.80  

226 262754 Anticholinesterase activity against human erythrocyte AChE [Confirmatory] 0.80  

227 262755 Anticholinesterase activity against human plasma BChE [Confirmatory] 0.80  

228 496819 Antimicrobial activity against Plasmodium falciparum [Confirmatory] 0.80  

229 511766 Inhibition of human AChE by Ellmans test [Confirmatory] 0.80  
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230 624218 Antagonists at Human 5-Hydroxytryptamine receptor 5-HT2B [Other] 0.80  

231 625161 

DRUGMATRIX: Opiate delta1 (OP1, DOP) radioligand binding (ligand: [3H] Naltrindole) 

[Confirmatory] 0.80  

232 625200 

DRUGMATRIX: Alpha-1D adrenergic receptor radioligand binding (ligand: prazosin) 

[Confirmatory] 0.80  

233 625227 

DRUGMATRIX: Tachykinin NK2 radioligand binding (ligand: [3H] SR-48968) 

[Confirmatory] 0.80  

234 625249 

DRUGMATRIX: CYP450, 2D6 enzyme inhibition (substrate: 3-Cyano-7-ethoxycoumarin) 

[Confirmatory] 0.80  

235 625254 

DRUGMATRIX: Dopamine D3 radioligand binding (ligand: [3H] Spiperone) 

[Confirmatory] 0.80  

236 625256 

DRUGMATRIX: Dopamine Transporter radioligand binding (ligand: [125I] RTI-55) 

[Confirmatory] 0.80  

237 1816 

qHTS for differential inhibitors of proliferation of Plasmodium falciparum line GB4 

[Confirmatory] 0.81  

238 625198 

DRUGMATRIX: Alpha-1D adrenergic receptor radioligand binding (ligand: prazosin) 

[Confirmatory] 0.81  

239 625207 

DRUGMATRIX: Norepinephrine Transporter radioligand binding (ligand: [125I] RTI-55) 

[Confirmatory] 0.81  

240 625270 

DRUGMATRIX: Histamine H2 radioligand binding (ligand: [125I] Aminopotentidine) 

[Confirmatory] 0.82  

241 1815 

qHTS for differential inhibitors of proliferation of Plasmodium falciparum line 7G8 

[Confirmatory] 0.82  

242 1877 

qHTS for differential inhibitors of proliferation of Plasmodium falciparum line D10 

[Confirmatory] 0.83  

243 944 

qHTS Assay for Antagonists of Acetylcholine Muscarinic M1 Receptor: Measurement of IP-

One Response [Confirmatory] 0.83  

244 241560 Inhibitory concentration against human plasma Butyrylcholinesterase [Confirmatory] 0.83  
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245 241692 Inhibitory concentration against human erythrocyte Acetylcholinesterase [Confirmatory] 0.83  

246 625151 

DRUGMATRIX: Muscarinic M1 radioligand binding (ligand: [3H] N-Methylscopolamine) 

[Confirmatory] 0.83  

247 625184 

DRUGMATRIX: Protein Tyrosine Kinase, EGF Receptor enzyme inhibition (substrate: 

Poly(Glu:Tyr)) [Confirmatory] 0.83  

248 625191 

DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT1B radioligand binding (ligand: 

[125I] Cyanopindolol) [Confirmatory] 0.83  

249 625203 

DRUGMATRIX: Adrenergic Alpha-2C radioligand binding (ligand: [3H] MK-912) 

[Confirmatory] 0.85  

250 625253 

DRUGMATRIX: Dopamine D2L radioligand binding (ligand: [3H] Spiperone) 

[Confirmatory] 0.85  

251 625269 

DRUGMATRIX: Histamine H1, Central radioligand binding (ligand: [3H] Pyrilamine) 

[Confirmatory] 0.85  

252 625218 

DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2C radioligand binding (ligand: 

[3H] Mesulergine) [Confirmatory] 0.85  

253 547622 

Antitrypanosomal activity against Trypanosoma cruzi amastigotes infected in BESM cells 

measured after 88 hrs postinfection by HTS assay [Confirmatory] 0.86  

254 624192 Antagonists at Human 5-Hydroxytryptamine receptor 5-HT6 [Other] 0.86  

255 624209 Antagonists at Human 5-Hydroxytryptamine receptor 5-HT2C [Other] 0.86  

256 625199 

DRUGMATRIX: Alpha-1B adrenergic receptor radioligand binding (ligand: prazosin) 

[Confirmatory] 0.87  

257 625201 

DRUGMATRIX: Alpha-2A adrenergic receptor radioligand binding (ligand: MK-912) 

[Confirmatory] 0.87  

258 625202 

DRUGMATRIX: Alpha-2B adrenergic receptor radioligand binding (ligand: Rauwolscine) 

[Confirmatory] 0.87  

259 943 

qHTS assay to identify small molecule antagonists of the androgen receptor (AR) signaling 

pathway: Summary [Summary] 0.87  



119 
 

 

260 1886 

qHTS for differential inhibitors of proliferation of Plasmodium falciparum line HB3 

[Confirmatory] 0.87  

261 624181 Antagonists at Human 5-Hydroxytryptamine receptor 5-HT7 [Other] 0.88  

262 624222 Antagonists at Rat 5-Hydroxytryptamine receptor 5-HT2A [Other] 0.88  

263 205267 

Inhibition of binding of Batrachotoxinin [3H]BTX-B to high affinity sites on voltage 

dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex 

[Confirmatory] 0.88  

264 625222 

DRUGMATRIX: Transporter, Serotonin (5-Hydroxytryptamine) (SERT) radioligand 

binding (ligand: [3H] Paroxetine) [Confirmatory] 0.88  

265 624180 Antagonists at Rat 5-Hydroxytryptamine receptor 5-HT7 [Other] 0.89  

266 624190 Antagonists at Rat 5-Hydroxytryptamine receptor 5-HT6 [Other] 0.89  

267 625192 

DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2A radioligand binding (ligand: 

[3H] Ketanserin) [Confirmatory] 0.89  

268 540234 Cerep Phospholipidosis assay (HepG2 cells) 0.90  

269 625152 

DRUGMATRIX: Muscarinic M2 radioligand binding (ligand: [3H] N-Methylscopolamine) 

[Confirmatory] 0.90  

270 625217 

DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2B radioligand binding (ligand: 

[3H] Lysergic acid diethylamide) [Confirmatory] 0.90  

271 625153 

DRUGMATRIX: Muscarinic M3 radioligand binding (ligand: [3H] N-Methylscopolamine) 

[Confirmatory] 0.91  

272 625154 

DRUGMATRIX: Muscarinic M4 radioligand binding (ligand: [3H] N-Methylscopolamine) 

[Confirmatory] 0.91  

273 625272 

DRUGMATRIX: Imidazoline I2, Central radioligand binding (ligand: [3H] Idazoxan) 

[Confirmatory] 0.91  

274 625155 

DRUGMATRIX: Muscarinic M5 radioligand binding (ligand: [3H] N-Methylscopolamine) 

[Confirmatory] 0.92  

275 625171 

DRUGMATRIX: Potassium Channel HERG radioligand binding (ligand: [3H] Astemizole) 

[Confirmatory] 0.92  
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276 625252 

DRUGMATRIX: Dopamine D1 radioligand binding (ligand: [3H] SCH-23390) 

[Confirmatory] 0.92  

277 625215 

DRUGMATRIX: Calcium Channel Type L, Benzothiazepine radioligand binding (ligand: 

[3H] Diltiazem) [Confirmatory] 0.92  

278 625221 

DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT6 radioligand binding (ligand: [3H] 

Lysergic acid diethylamide) [Confirmatory] 0.92  

279 742652 GABA-A receptor; anion channel positive allosteric modulator 0.92  

280 625234 

DRUGMATRIX: Calcium Channel Type L, Phenylalkylamine radioligand binding (ligand: 

[3H] (-)-Desmethoxyverapamil (D-888)) [Confirmatory] 0.93  

281 918 

qHTS Assay for Identification of Small Molecule Antagonists for Thrombopoietin (TPO) 

Signaling Pathway [Confirmatory] 1.00  

282 32248 Inhibition of acetylcholinesterase. [Confirmatory] 1.00  

283 32280 IC50 against acetylcholinesterase; value ranges from 1-4900 nM. [Confirmatory] 1.00  

284 34292 

Compound was tested for its binding affinity towards brain (Hippocampus) Adenylate 

cyclase [Confirmatory] 1.00  

285 34293 

Compound was tested for its binding affinity towards brain (neocortex) Adenylate cyclase 

[Confirmatory] 1.00  

286 36847 

In vitro affinity for cortical alpha-1 adrenergic receptor labelled with [3H]WB-4101 

[Confirmatory] 1.00  

287 61326 

Compound was tested in vitro for its affinity towards rat striatal Dopamine receptor D2 

labeled with [3H]- spiperone [Confirmatory] 1.00  

288 65908 

Binding affinity towards dopamine receptor D2 by displacing [3H]spiperone radioligand in 

rat striatum [Confirmatory] 1.00  

289 87513 Compound tested for its inhibitory activity against Histamine H1 receptor [Confirmatory] 1.00  

290 87880 Inhibitory activity against brain adenylate cyclase Histamine H2 receptor [Confirmatory] 1.00  
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291 196062 Inhibition of uptake of tritiated norepinephrine (NE) in rat synaptosomes [Confirmatory] 1.00  

292 214654 

Inhibitory activity against recombinant Trypanosoma cruzi (Trypanosoma cruzi) 

Trypanothione reductase (linear competitive type) [Confirmatory] 1.00  

293 540237 Phospholipidosis-positive literature compound observed in rat 1.00  

294 547621 Cytotoxicity against BESM cells after 88 hrs by HTS assay [Confirmatory] 1.00  

295 581672 

Inhibition of Pdr5p-mediated rhodamine 6G transport in Saccharomyces cerevisiae 

MKPDR5h plasma membrane by spectrofluorometric assay [Confirmatory] 1.00  

296 581806 

Inhibition of Saccharomyces cerevisiae MKPDR5h multidrug transporter Pdr5p assessed as 

concentration required to threefold increase in rate of fluorescence signal relative to absence 

of inhibitor by fluorescein diacetate based high-throughput screening spectrofluorometric 

assay 1.00  

297 581807 

Inhibition of Saccharomyces cerevisiae MKCDR1h multidrug transporter Cdr1p assessed as 

concentration required to threefold increase in rate of fluorescence signal relative to absence 

of inhibitor by fluorescein diacetate based high-throughput screening spectrofluorometric 

assay 1.00  

298 581808 

Inhibition of Saccharomyces cerevisiae MKSNQ2h multidrug transporter Snq2p assessed as 

concentration required to threefold increase in rate of fluorescence signal relative to absence 

of inhibitor by fluorescein diacetate based high-throughput screening spectrofluorometric 

assay 1.00  

299 624183 Antagonists at Mouse 5-Hydroxytryptamine receptor 5-HT7 [Other] 1.00  

300 625149 

DRUGMATRIX: Melanocortin MC5 radioligand binding (ligand: [125I] NDP-alpha-MSH) 

[Confirmatory] 1.00  

301 625223 DRUGMATRIX: Sigma1 radioligand binding (ligand: [3H] Haloperidol) [Confirmatory] 1.00  
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302 625224 DRUGMATRIX: Sigma2 radioligand binding (ligand: [3H] Ifenprodil) [Confirmatory] 1.00  

303 625247 

DRUGMATRIX: CYP450, 2C19 enzyme inhibition (substrate: 3-Cyano-7-ethoxycoumarin) 

[Confirmatory] 1.00  

304 625255 

DRUGMATRIX: Dopamine D4.2 radioligand binding (ligand: [3H] Spiperone) 

[Confirmatory] 1.00  

305 742628 Glycine receptor (alpha-1/beta) positive modulator 1.00  

306 742735 Potassium channel subfamily K member 10 opener 1.00  

307 742736 Potassium channel subfamily K member 18 opener 1.00  

308 742759 Potassium channel subfamily K member 3 opener 1.00  

309 742762 Potassium channel subfamily K member 9 opener 1.00  

310 742764 Potassium channel subfamily K member 2 opener 1.00  

*Notation:  

Index: Index of assays shown in the heatmap Figure 2.5(a) 

AID: PucChem Assay Identification Number 

Description: the corresponding AID's title 

Predicitivity: Number of true predictions over total number of known predictions 
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Table S3.1 Experimental characterization of the GNP library members including seven series 

Series 1 

GNP 

index 

# Ligand / GNP  

Size 

(TEM)  

(nm) 

Zeta  

potential   

in water  

(mV) 

Zeta 

potential 

in 10% 

FBS  

(mV) 

Hydrodynamic 

diameters in 

water (nm) 

PDI 

in 

water 

Hydrodynamic 

diameters in 

10% FBS (nm) 

PDI 

in 

10% 

FBS 

LogP 

HO-1 

level in 

A549 

Cell 

uptake in 

A549 (107 

GNP/cell) 

Cell 

uptake in 

HEK293 

(107  

GNP/cell) 

1 
459 

(100%) 
0 (0%) 7.3 -13.1±1.6 -19.4±0.4 221.0±10.0 0.367 133.2±0.7 0.224 

-

2.67±0.06 
0.44±0.11 0.2±0.02 0.43±0.03 

2 
346 

(90%) 

40 

(10%) 
6.8 -10.0±1.3 -18.5±0.9 149.9±7.21 0.145 151.1±1.1 0.124 

-

2.47±0.08 
0.47±0.08 0.41±0.33 0.5±0.18 

3 
311 

(74%) 

107 

(26%) 
8.5 -10.3±0.2 -18.3±0.8 156.5±8.06 0.2 157.7±0.7 0.222 

-

1.61±0.15 
1.33±0.13 1.32±0.23 1.71±0.21 

4 
240 

(49%) 

251 

(51%) 
8 -14.1±0.3 -18.5±1.0 301.2±4.8 0.211 216.6±2.9 0.176 

-

0.88±0.17 
1.93±0.12 1.73±0.08 1.93±0.08 

5 
147 

(27%) 

390 

(73%) 
7.5 -17.5±1.2 -18.5±0.8 247.8±8.8 0.139 252.8±4.8 0.205 

-

0.66±0.05 
3.4±0.28 2.41±0.18 3.18±0.19 

6 
86 

(15%) 

477 

(85%) 
8 -20.7±0.1 -17.3±0.7 261.0±2.1 0.207 329.8±3.0 0.322 

-

0.02±0.26 
3.23±0.18 2.51±0.27 3.33±0.08 

7 0 (0%) 
727 

(100%) 
6.7 -21.1±0.2 -19.4±1.0 269±0.8 0.232 303.8±1.1 0.343 2.4±0.1 4.1±0.41 6.13±1.24 5.39±0.55 
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Series 2 

GNP 

index 

 

 

 

# Ligand / GNP  

Size 

(TEM)  

(nm) 

Zeta  

potential   

in water  

(mV) 

Zeta 

potential 

in 10% 

FBS  

(mV) 

Hydrodynamic 

diameters in 

water (nm) 

PDI 

in 

water 

Hydrodynamic 

diameters in 

10% FBS (nm) 

PDI 

in 

10% 

FBS 

LogP 

HO-1 

level in 

A549 

Cell 

uptake in 

A549 (107 

GNP/cell) 

Cell 

uptake in 

HEK293 

(107  

GNP/cell) 

8* 
232 

(100%) 
0 (0%) 5.8 -7.2±0.3 -21.4±0.3 106.1±1.4 0.154 133.5±2.5 0.238 

-

2.56±0.02 
1.42±0.44 0.49±0.02 0.49±0.02 

9 
116 

(85%) 

21 

(15%) 
5.8 39.4±0.5 -23.1±0.2 105.5±2.3 0.208 127.4±5.4 0.176 

-

2.52±0.11 
1.95±0.54 0.75±0.02 0.65±0.03 

10 
101 

(77%) 

31 

(23%) 
5.8 42.9±0.6 -26.1±0.7 105.4±1.6 0.183 102.2±3.4 0.149 

-

2.68±0.11 
2.98±0.4 1.64±0.03 1.81±0.27 

11 
75 

(48%) 

82 

(52%) 
5.8 47.6±1.2 -29.3±0.9 70.8±7.4 0.423 99.2±5.8 0.338 

-

2.35±0.11 
3.75±0.44 2.39±0.11 2.64±0.32 

12 0 (0%) 
144 

(100%) 
5.8 65.3±1.7 -22.4±0.2 70.7±7.8 0.332 102.4±6.9 0.294 

-

1.74±0.19 
3.93±0.60 4.86±0.41 4.12±0.69 

*This one (GNP #8) is same as the first ones in the following three series (series 3,4,5), thus they are all marked as GNP #8.  
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Series 3 

GNP 

index 

 

 

 

# Ligand / GNP  

Size 

(TEM)  

(nm) 

Zeta  

potential   

in water  

(mV) 

Zeta 

potential 

in 10% 

FBS  

(mV) 

Hydrodynamic 

diameters in 

water (nm) 

PDI 

in 

water 

Hydrodynamic 

diameters in 

10% FBS (nm) 

PDI 

in 

10% 

FBS 

LogP 

HO-1 

level in 

A549 

Cell 

uptake in 

A549 (107 

GNP/cell) 

Cell 

uptake in 

HEK293 

(107  

GNP/cell) 

8 
232 

(100%) 
0 (0%) 5.8 -7.2±0.3 -21.4±0.3 106.1±1.4 0.154 133.5±2.5 0.238 

-

2.56±0.02 
1.42±0.44 0.49±0.02 0.49±0.02 

13 
201 

(87%) 

31 

(13%) 
5.8 -30.7±0.2 -26.3±0.8 121.6±1.1 0.122 102.5±3.7 0.283 

-

2.59±0.07 
0.94±0.17 0.41±0.03 0.45±0.05 

14 
108 

(47%) 

124 

(53%) 
5.8 -33.9±1.2 -30.6±0.9 130.8±1.8 0.188 124.6±2.6 0.183 -2.4±0.07 1.26±0.1 0.48±0.04 0.46±0.02 

15 
62 

(27%) 

170 

(73%) 
5.8 -38.8±0.5 -29.3±0.5 137.7±2.9 0.167 145.3±2.9 0.174 -2.3±0.16 0.88±0.32 0.42±0.02 0.44±0.04 

16 0 (0%) 
287 

(100%) 
5.8 -41.5±1.1 -25.9±0.7 147.7±0.9 0.191 112.4±4.6 0.116 

-

2.21±0.12 
0.89±0.32 0.44±0.04 0.42±0.04 
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Series 4 

GNP 

index 

 

 

 

# Ligand / GNP  

Size 

(TEM)  

(nm) 

Zeta  

potential   

in water  

(mV) 

Zeta 

potential 

in 10% 

FBS  

(mV) 

Hydrodynamic 

diameters in 

water (nm) 

PDI 

in 

water 

Hydrodynamic 

diameters in 

10% FBS (nm) 

PDI 

in 

10% 

FBS 

LogP 

HO-1 

level in 

A549 

Cell 

uptake in 

A549 (107 

GNP/cell) 

Cell 

uptake in 

HEK293 

(107  

GNP/cell) 

8 
232 

(100%) 
0 (0%) 5.8 -7.2±0.3 -21.4±0.3 106.1±1.4 0.154 133.5±2.5 0.238 

-

2.56±0.02 
1.42±0.44 0.49±0.02 0.49±0.02 

17 
676 

(91%) 

67 

(9%) 
6.9 -25.1±0.8 -9.19±0.4 160.1±3.3 0.193 167.9±3.0 0.191 

-

1.72±0.35 
2.86±0.32 0.69±0.02 0.69±0.03 

18 
472 

(75%) 

158 

(25%) 
6.6 -25.3±1.1 -10.2±0.3 207.9±4.6 0.366 175.9±3.2 0.288 

-

2.08±0.06 
2.38±0.29 0.61±0.03 0.59±0.02 

19 
327 

(55%) 

268 

(45%) 
6.4 -17.8±0.4 -12.9±0.2 162.5±8.7 0.261 184.9±3.9 0.295 

-

2.19±0.16 
2.07±0.27 0.58±0.07 0.57±0.04 

20 0 (0%) 
720 

(100%) 
6.5 -11.3±0.2 -21.4±0.7 154.7±2.7 0.003 143.3±4.7 0.392 

-

1.92±0.06 
2.46±0.25 0.62±0.05 0.6±0.02 
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Series 5 

GNP 

index 

 

 

 

# Ligand / GNP  

Size 

(TEM)  

(nm) 

Zeta  

potential   

in water  

(mV) 

Zeta 

potential 

in 10% 

FBS  

(mV) 

Hydrodynamic 

diameters in 

water (nm) 

PDI 

in 

water 

Hydrodynamic 

diameters in 

10% FBS (nm) 

PDI 

in 

10% 

FBS 

LogP 

HO-1 

level in 

A549 

Cell 

uptake in 

A549 (107 

GNP/cell) 

Cell 

uptake in 

HEK293 

(107  

GNP/cell) 

8 
232 

(100%) 
0 (0%) 5.8 -7.2±0.3 -21.4±0.3 106.1±1.4 0.154 133.5±2.5 0.238 

-

2.56±0.02 
1.42±0.44 0.49±0.02 0.49±0.02 

21 
673 

(88%) 

92 

(12%) 
4.9 -13.0±0.2 -24.6±1.3 459.8±10.2 0.314 260.2±3.6 0.145 -1.8±0.2 2.89±0.24 0.85±0.04 0.81±0.01 

22 
502 

(69%) 

226 

(31%) 
5 -4.0±0.1 -20.9±0.9 450.0± 9.8 0.395 252.3±3.3 0.235 

-

0.96±0.05 
1.41±0.24 0.68±0.04 0.7±0.04 

23 
221 

(29%) 

542 

(71%) 
5.7 -11.6±0.4 -12.2±0.3 546.3±10.4 0.391 218.0±2.2 0.066 

-

2.42±0.04 
1.73±0.1 0.49±0.06 0.47±0.02 

24 0 (0%) 
810 

(100%) 
8 -15.8±0.3 -18.5±0.5 149.6±1.8 0.431 192.4±1.9 0.18 

-

2.28±0.13 
1.06±0.11 0.48±0.02 0.45±0.06 
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Series 6 

GNP 

index 

 

 

 

# Ligand / GNP  

Size 

(TEM)  

(nm) 

Zeta  

potential   

in water  

(mV) 

Zeta 

potential 

in 10% 

FBS  

(mV) 

Hydrodynamic 

diameters in 

water (nm) 

PDI 

in 

water 

Hydrodynamic 

diameters in 

10% FBS (nm) 

PDI 

in 

10% 

FBS 

LogP 

HO-1 

level in 

A549 

Cell 

uptake in 

A549 (107 

GNP/cell) 

Cell 

uptake in 

HEK293 

(107  

GNP/cell) 

25 
869 

(100%) 
0 (0%) 7.3 -24.4±0.6 -29.3±0.5 273.2±2.1 0.138 224.5±4.3 0.248 2.06±0.28 2.58±0.3 4.87±0.47 5.04±0.55 

26 
695 

(80%) 

174 

(20%) 
7.3 -27.9±1.1 -32.4±0.9 281.2±3.4 0.283 224.3±2.9 0.195 2.38±0.19 2.28±0.23 5.03±0.59 5.31±0.66 

27 
348 

(40%) 

521 

(60%) 
7.3 -22.0±1.1 -28.6±0.7 236.3±5.7 0.199 233.2±1.8 0.374 2.72±0.2 2.21±0.14 5.39±0.60 5.58±0.26 

28 
174 

(20%) 

695 

(80%) 
7.3 -22.5±0.5 -23.4±0.2 249.5±4.6 0.273 244.9±4.3 0.294 2.67±0.07 1.89±0.15 5.59±0.73 5.26±0.33 

29 0 (0%) 
869 

(100%) 
7.3 -23.0±0.5 -28.3±0.7 238.2±7.5 0.263 213.8±5.3 0.327 2.7±0.14 2.21±0.28 5.8±0.65 5.26±0.49 
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Series 7 

GNP 

index 
# Ligand / GNP  

Size 

(TEM)  

(nm) 

Zeta  

potential   

in water  

(mV) 

Zeta 

potential 

in 10% 

FBS  

(mV) 

Hydrody

namic 

diameters 

in water 

(nm) 

PDI 

in 

water 

Hydrody

namic 

diameters 

in 10% 

FBS (nm) 

PDI 

in 

10% 

FBS 

LogP 

HO-1 

level in 

A549 

Cell 

uptake in 

A549 (107 

GNP/cell) 

Cell 

uptake in 

HEK293 

(107  

GNP/cell) 

30 

   795 (100%) 

5.9 -8.0±0.8 -13.8±0.3 236.0±6.1 0.178 212.0±5.0 0.299 2.52±0.13 2.28±0.14 5.33±0.75 5.16±0.65 

31 

   682 (100%) 

5.9 -8.5±0.2 -21.1±0.4 252.5±5.5 0.259 154.0±2.7 0.444 2.28±0.25 2.06±0.16 5.84±0.4 5.27±0.76 

32 

   830 (100%) 

5.9 -7.4±0.3 -21.8±0.5 225.8±8.5 0.185 189.9±3.0 0.342 2.57±0.07 1.92±0.19 5.4±0.49 5.09±0.43 

33 

698(100%) 

5.9 
-

12.4±0.6 
-11.7±0.4 232.4±1.6 0.219 189.1±3.3 0.389 1.76±0.06 2.11±0.28 5.39±0.58 5.2±0.58 

34 

   703 (100%) 

5.9 -5.7±0.4 -17.0±0.2 284.5±8.3 0.213 210.7±5.8 0.407 1.98±0.07 2.21±0.23 5.55±0.48 5.19±0.67 
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Table S3.2 The calculated nanodescriptors with their nano-composition and structure 

 

Index Series Radius(Ang) #lig1 #lig2 total#Ligand

TotalSurface

Area

AverageSurfa

ceAreaPerLig

and

1 HY 1 36.5 459 0 459 76,869 167

2 HY 2 34 346 40 386 69,746 181

3 HY 3 42.5 311 107 418 100,385 240

4 HY 4 40 240 251 491 98,719 201

5 HY 5 37.5 147 390 537 89,277 166

6 HY 6 40 86 477 563 99,999 178

7 HY 7 33.5 0 727 727 83,923 115

8 PO 1 29 0 232 232 39,980 172

9 PO 2 29 21 116 137 38,158 279

10 PO 3 29 31 101 132 37,158 281

11 PO 4 29 82 75 157 39,017 249

12 PO 5 29 144 0 144 40,072 278

13 NE 2 29 31 201 232 40,324 174

14 NE 3 29 124 108 232 40,960 177

15 NE 4 29 170 62 232 42,036 181

16 NE 5 29 287 0 287 44,688 156

17 HA 2 34.5 67 676 743 59,553 80

18 HA 3 33 158 472 630 55,987 89

19 HA 4 32 268 327 595 62,725 105

20 HA 5 32.5 720 0 720 65,224 91

21 HD 2 24.5 92 673 765 39,259 51

22 HD 3 25 226 502 728 42,573 58

23 HD 4 28.5 542 221 763 52,685 69

24 HD 5 40 810 0 810 99,863 123

25 PI 1 36.5 0 869 869 78,732 91

26 PI 2 36.5 174 695 869 76,487 88

27 PI 3 36.5 521 348 869 76,351 88

28 PI 4 36.5 695 174 869 75,533 87

29 PI 5 36.5 869 0 869 74,966 86

30 MG 1 29.5 795 0 795 45,299 57

31 MG 2 29.5 682 0 682 43,279 63

32 MG 3 29.5 830 0 830 48,982 59

33 MG 4 29.5 698 0 698 54,508 78

34 MG 5 29.5 703 0 703 47,638 68

35 HY_e 32.5 0 536 536 79,934 149

36 Po_e 29 42 102 144 38,379 267

37 Ne_e 29 47 185 232 40,446 174

38 HA_e 26 380 126 506 47,689 94

39 HD_e 25 235 275 510 43,634 86

40 PI_e 36.5 348 521 869 78,833 91

41 MG_e 29.5 869 0 869 48,407 56
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Index

TotalPartialCh

arge

AverageParti

alChargePerL

igand

HydrophobicP

otential

PotentialEner

gy

contactprefer

ence_hyd.grid

_ave

contactprefer

ence_hyd.grid

_aboveThresh

old

contactprefer

ence_lpa.grid

_ave

1 -78 -0.17 -0.37 7.95E+08 0.68 8,368 0.56

2 -71 -0.18 0.01 6.59E+08 0.69 7,542 0.55

3 -54 -0.13 0.47 7.11E+08 0.67 7,236 0.55

4 -61 -0.12 1.17 8.55E+08 0.70 8,345 0.53

5 -68 -0.13 1.83 9.21E+08 0.71 9,065 0.52

6 -96 -0.17 2.18 9.82E+08 0.71 9,574 0.52

7 -83 -0.11 3.62 1.26E+09 0.72 10,355 0.49

8 -55 -0.24 0.65 3.85E+08 0.64 14,221 0.58

9 -6 -0.04 0.52 2.31E+08 0.61 11,263 0.58

10 2 0.01 0.31 2.25E+08 0.61 9,947 0.58

11 43 0.27 0.22 2.63E+08 0.62 8,733 0.58

12 105 0.73 0.07 2.49E+08 0.63 7,757 0.58

13 -69 -0.30 0.65 3.91E+08 0.64 14,298 0.58

14 -165 -0.71 0.50 3.93E+08 0.63 13,913 0.58

15 -220 -0.95 0.45 3.92E+08 0.63 14,359 0.58

16 -346 -1.20 0.24 4.87E+08 0.63 12,972 0.59

17 -125 -0.17 -0.06 1.27E+09 0.67 10,857 0.59

18 -107 -0.17 -0.01 1.08E+09 0.69 9,651 0.56

19 -98 -0.16 0.15 1.01E+09 0.70 9,606 0.55

20 -87 -0.12 1.05 1.23E+09 0.72 8,307 0.52

21 -81 -0.11 -1.62 1.35E+09 0.62 9,698 0.63

22 -118 -0.16 -1.92 1.25E+09 0.62 7,928 0.62

23 -134 -0.18 -2.12 1.30E+09 0.62 6,603 0.63

24 -134 -0.17 -1.16 1.37E+09 0.64 8,292 0.62

25 -128 -0.15 2.92 1.49E+09 0.72 8,789 0.50

26 -149 -0.17 3.04 1.50E+09 0.72 9,562 0.51

27 -115 -0.13 3.34 1.49E+09 0.72 12,183 0.51

28 -90 -0.10 3.65 1.50E+09 0.71 13,700 0.51

29 -101 -0.12 4.22 1.50E+09 0.71 15,243 0.51

30 -138 -0.17 4.99 1.38E+09 0.72 16,759 0.45

31 -145 -0.21 6.38 1.18E+09 0.72 16,226 0.46

32 -130 -0.16 4.10 1.45E+09 0.72 17,354 0.47

33 -90 -0.13 2.68 1.21E+09 0.72 13,643 0.49

34 -101 -0.14 5.03 1.23E+09 0.73 6,783 0.50

35 -61 -0.11 3.04 9.38E+08 0.72 11,031 0.50

36 -11 -0.08 0.37 2.41E+08 0.62 10,930 0.58

37 -98 -0.42 0.60 3.90E+08 0.64 14,379 0.58

38 -67 -0.13 0.59 8.79E+08 0.71 11,098 0.53

39 -91 -0.18 -1.12 8.75E+08 0.64 9,344 0.61

40 -118 -0.14 3.06 1.48E+09 0.72 11,075 0.51

41 -109 -0.13 4.33 1.51E+09 0.72 4,788 0.49
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Index

contactprefer

ence_lpa.grid

_aboveThresh

old

electrondensit

y.grid_ave

electrondensit

y.grid_aboveT

hreshold

electrostaticm

ap_acc.grid_a

velog

electrostaticm

ap_acc.grid_a

boveThreshol

d

electrostaticm

ap_don.grid_a

velog

electrostaticm

ap_don.grid_a

boveThreshol

d

1 8,602 -3.46 113,728 0.55 82,444 0.66 82,403

2 7,121 -1.71 96,320 0.35 66,018 0.53 65,924

3 5,928 -3.47 147,206 0.24 60,422 0.49 60,444

4 5,152 -1.89 123,387 0.27 57,445 0.49 57,459

5 3,959 1.30 113,758 0.44 68,064 0.57 68,361

6 3,686 0.98 130,611 0.46 71,326 0.59 71,368

7 1,661 3.22 87,989 0.66 86,678 0.71 86,934

8 18,212 1.83 59,880 0.36 60,618 0.55 60,694

9 15,993 -1.35 63,071 0.32 62,267 0.50 62,144

10 16,091 -0.46 57,257 0.24 52,672 0.47 52,440

11 14,193 0.55 63,345 0.22 56,077 0.45 56,197

12 14,651 2.45 59,098 0.20 48,729 0.44 48,656

13 17,903 0.23 67,533 0.43 72,184 0.58 72,020

14 18,802 -0.27 66,248 0.43 71,752 0.58 71,638

15 19,784 -1.69 62,861 0.47 71,993 0.59 71,819

16 19,659 0.19 58,549 0.50 65,536 0.60 65,517

17 13,086 -0.12 89,320 0.57 77,223 0.66 77,094

18 9,944 1.27 89,900 0.52 70,359 0.62 70,405

19 7,089 -2.52 84,782 0.44 65,115 0.57 65,228

20 3,185 -6.14 83,007 0.87 92,134 1.42 196,239

21 21,345 0.37 55,887 0.86 105,525 0.87 105,339

22 21,829 3.02 60,001 0.88 107,789 0.87 107,584

23 22,829 -0.95 65,320 0.98 114,291 0.92 114,039

24 19,647 4.04 141,632 0.70 89,442 0.75 89,319

25 3,865 0.47 119,384 0.95 109,215 0.89 109,247

26 3,607 -3.10 113,058 0.90 107,931 0.89 107,914

27 3,464 -5.18 107,103 0.91 105,749 0.90 105,695

28 3,319 -3.35 108,897 0.90 104,350 0.89 104,287

29 3,127 -0.79 116,524 0.84 103,367 0.84 103,234

30 1,247 5.59 64,612 1.16 116,160 1.04 115,976

31 798 4.98 69,283 1.19 123,430 1.05 123,880

32 1,628 0.00 63,942 1.13 119,301 1.03 119,649

33 2,838 -3.40 58,519 0.87 90,823 0.83 91,161

34 1,548 -0.11 62,331 1.14 120,280 1.02 120,720

35 2,639 -2.41 90,678 0.57 73,854 0.63 74,236

36 16,499 1.15 59,137 0.26 54,062 0.48 53,639

37 18,770 0.35 57,760 0.42 60,192 0.56 60,148

38 5,482 -0.33 57,272 0.85 90,725 0.82 91,024

39 20,506 1.11 53,507 0.72 90,526 0.76 90,359

40 3,973 -3.15 111,636 0.91 106,720 0.89 106,656

41 1,373 -0.30 64,126 1.17 129,708 1.05 130,137
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Index

electrostaticm

ap_hyd.grid_a

velog

electrostaticm

ap_hyd.grid_a

boveThreshol

d

interactionpot

ential_br.grid_

avelog

interactionpot

ential_br.grid_

aboveThresho

ld

interactionpot

ential_br-

.grid_avelog

interactionpot

ential_br-

.grid_aboveTh

reshold

interactionpot

ential_c1=.gri

d_avelog

1 1.11 82,774 2.88 32,358 2.89 32,512 2.70

2 0.91 66,297 2.69 26,278 2.70 26,402 2.52

3 0.82 60,545 2.66 20,910 2.67 20,995 2.49

4 0.84 57,651 2.70 22,712 2.72 22,800 2.54

5 0.99 68,053 2.82 29,300 2.84 29,434 2.66

6 1.01 71,480 2.86 29,437 2.88 29,585 2.70

7 1.20 86,921 3.20 38,889 3.23 39,106 3.01

8 0.95 61,014 2.21 22,278 2.05 17,892 2.05

9 0.87 62,551 1.99 20,487 1.99 20,563 1.85

10 0.81 52,512 2.02 17,331 2.02 17,383 1.89

11 0.78 56,391 2.10 19,331 2.10 19,391 1.97

12 0.76 48,936 2.09 17,154 2.09 17,218 1.97

13 1.00 72,527 2.22 26,066 2.23 26,185 2.06

14 1.00 72,021 2.19 25,880 2.20 26,005 2.02

15 1.02 72,257 2.17 25,714 2.18 25,835 2.00

16 1.05 65,664 2.25 24,501 2.28 24,615 2.07

17 1.10 77,540 3.04 33,200 3.06 33,399 2.84

18 1.07 70,443 2.88 33,245 2.90 33,437 2.70

19 0.98 65,279 2.91 29,219 2.93 29,390 2.74

20 1.42 92,136 3.41 45,302 3.43 45,598 3.21

21 1.40 105,927 3.33 48,688 3.36 48,983 3.11

22 1.42 108,243 3.29 50,938 3.33 51,222 3.07

23 1.52 115,086 3.38 57,271 3.42 57,584 3.15

24 1.27 89,708 3.09 38,928 3.12 39,114 2.86

25 1.46 109,531 3.33 47,126 3.36 47,365 3.14

26 1.46 108,246 3.35 46,682 3.37 46,937 3.15

27 1.47 106,171 3.33 45,560 3.36 45,822 3.14

28 1.45 104,751 3.34 45,278 3.36 45,545 3.14

29 1.37 103,737 3.34 44,542 3.36 44,801 3.13

30 1.69 116,286 3.58 57,161 3.61 57,489 3.39

31 1.73 123,513 3.50 59,249 3.53 59,591 3.30

32 1.68 119,326 3.53 60,346 3.56 60,685 3.34

33 1.41 90,897 3.22 44,224 3.24 44,480 3.03

34 1.66 120,133 3.56 60,373 3.58 60,716 3.39

35 1.11 73,883 2.80 35,063 2.82 35,244 2.63

36 0.83 54,271 2.04 18,178 2.04 18,222 1.91

37 0.96 60,291 2.21 21,660 2.22 21,747 2.05

38 1.38 90,727 3.15 43,632 3.17 43,861 2.97

39 1.28 90,916 2.98 41,108 3.02 41,304 2.77

40 1.46 107,103 3.31 46,097 3.34 46,335 3.12

41 1.70 129,772 3.65 64,360 3.68 64,739 3.47
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interactionpot

ential_c1=.gri

d_aboveThres

hold

interactionpot

ential_c2.grid

_avelog

interactionpot

ential_c2.grid

_aboveThresh

old

interactionpot

ential_c3.grid

_avelog

interactionpot

ential_c3.grid

_aboveThresh

old

interactionpot

ential_cl.grid_

avelog

interactionpot

ential_cl.grid_

aboveThresho

ld

1 31,789 2.69 31,818 2.76 31,912 2.22 20,047

2 25,871 2.50 25,881 2.57 25,939 2.55 27,736

3 20,537 2.48 20,632 2.55 20,670 2.52 22,046

4 22,304 2.53 22,333 2.60 22,390 2.57 23,933

5 28,979 2.64 29,081 2.71 29,102 2.68 31,092

6 29,004 2.68 29,002 2.70 27,702 2.72 31,142

7 38,365 3.00 38,517 3.07 38,539 3.05 41,309

8 22,001 2.04 21,973 2.10 21,987 2.07 23,272

9 20,037 1.84 20,088 1.89 20,163 1.86 21,547

10 16,913 1.88 16,898 1.93 16,912 1.89 18,031

11 19,073 1.96 19,041 2.02 19,055 1.98 20,225

12 16,837 1.96 16,856 2.01 16,897 1.98 18,077

13 25,600 2.05 25,650 2.11 25,712 1.67 16,166

14 25,394 2.01 25,432 2.07 25,534 2.05 27,283

15 25,303 1.99 25,325 2.05 25,391 2.02 27,084

16 24,220 2.06 24,186 2.12 24,203 2.10 25,986

17 32,831 2.82 32,817 2.90 32,860 2.88 35,193

18 32,815 2.68 32,792 2.76 32,835 2.74 35,320

19 28,868 2.72 28,853 2.79 28,893 2.77 31,037

20 44,837 3.20 44,778 3.28 44,823 3.26 48,071

21 48,171 3.09 48,128 3.17 48,197 3.16 51,604

22 50,407 3.05 50,370 3.13 50,439 3.12 54,160

23 56,945 3.13 56,869 3.21 56,907 3.21 60,407

24 38,323 2.85 38,356 2.92 38,486 2.91 41,385

25 46,493 3.12 46,501 3.20 46,577 3.18 49,944

26 46,156 3.14 46,138 3.22 46,218 3.19 49,540

27 45,025 3.12 44,992 3.20 45,071 3.18 48,352

28 44,712 3.12 44,674 3.20 44,757 3.18 47,915

29 43,978 3.11 43,970 3.19 44,034 3.18 47,152

30 56,717 3.38 56,656 3.45 56,699 3.43 61,196

31 58,648 3.28 58,605 3.36 58,671 3.34 62,865

32 58,549 3.33 59,217 3.40 59,879 3.38 63,704

33 43,793 3.01 43,746 3.09 43,796 3.07 46,870

34 59,295 3.37 59,235 3.44 59,335 3.41 63,890

35 34,673 2.61 34,645 2.68 34,683 2.66 37,178

36 17,920 1.90 17,907 1.95 17,910 1.92 18,751

37 21,570 2.04 21,542 2.10 21,552 2.07 22,881

38 43,328 2.95 43,284 3.03 43,307 3.01 46,965

39 40,641 2.76 40,620 2.83 40,689 2.82 43,543

40 45,524 3.10 45,506 3.18 45,580 3.16 48,868

41 63,917 3.45 63,801 3.53 63,834 3.51 68,271
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Index

interactionpot

ential_cl-

.grid_avelog

interactionpot

ential_cl-

.grid_aboveTh

reshold

interactionpot

ential_dry.grid

_avelog

interactionpot

ential_dry.grid

_aboveThresh

old

interactionpot

ential_f.grid_a

velog

interactionpot

ential_f.grid_a

boveThreshol

d

interactionpot

ential_f-

.grid_avelog

1 2.74 32,059 0 791,925 2.22 30,817 2.22

2 2.55 26,089 0 800,191 2.07 25,126 2.07

3 2.52 20,760 0 784,821 2.04 19,790 2.03

4 2.57 22,483 0 744,465 2.09 21,629 2.09

5 2.69 29,300 0 781,004 2.19 28,167 2.19

6 2.73 29,234 0 773,937 2.22 28,125 2.22

7 3.06 38,854 0 811,750 2.50 37,326 2.52

8 2.07 22,117 0 656,566 1.66 21,304 1.64

9 1.85 20,198 0 710,979 1.49 19,359 1.45

10 1.88 16,975 0 645,912 1.52 16,345 1.48

11 1.97 19,170 0 755,050 1.59 18,475 1.56

12 1.97 16,968 0 664,449 1.59 16,199 1.55

13 2.08 25,838 0 736,749 1.67 24,763 1.65

14 2.05 25,615 0 739,343 1.64 24,536 1.62

15 2.03 25,500 0 728,877 1.61 24,428 1.59

16 2.11 24,359 0 665,605 1.67 23,129 1.65

17 2.90 33,084 0 753,607 2.35 31,868 2.36

18 2.75 33,121 0 783,571 2.23 31,886 2.24

19 2.78 29,123 0 773,368 2.27 28,054 2.28

20 3.27 45,211 0 777,623 2.68 43,675 2.71

21 3.18 48,569 0 802,977 2.65 46,832 2.66

22 3.14 50,844 0 825,749 2.61 49,054 2.63

23 3.22 57,367 0 879,447 2.66 55,783 2.69

24 2.93 38,659 0 806,684 2.39 37,357 2.40

25 3.19 46,865 0 769,463 2.61 45,130 2.63

26 3.21 46,534 0 752,886 2.62 44,832 2.64

27 3.19 45,381 0 721,663 2.61 43,695 2.63

28 3.19 45,074 0 721,763 2.61 43,375 2.63

29 3.19 44,332 0 762,127 2.60 42,716 2.62

30 3.45 57,150 0 720,884 2.88 55,377 2.89

31 3.36 59,142 0 780,155 2.78 57,041 2.79

32 3.40 59,811 0 752,179 2.83 56,748 2.85

33 3.08 44,144 0 722,520 2.53 42,597 2.55

34 3.43 59,808 0 790,540 2.85 56,892 2.88

35 2.67 34,951 0 794,424 2.16 33,757 2.17

36 1.91 18,004 0 653,996 1.54 17,509 1.50

37 2.07 21,669 0 647,665 1.66 20,736 1.64

38 3.02 43,647 0 762,599 2.47 42,409 2.49

39 2.84 40,952 0 801,699 2.33 39,463 2.34

40 3.17 45,883 0 739,142 2.59 44,158 2.61

41 3.52 64,404 0 799,286 2.92 62,417 2.96
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interactionpot
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interactionpot
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velog

interactionpot

ential_i.grid_a

boveThreshol

d

interactionpot
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interactionpot

ential_k+.grid

_aboveThresh

old

interactionpot

ential_n..grid_

avelog

interactionpot

ential_n..grid_

aboveThresho

ld

1 29,435 3.05 32,990 2.44 31,854 2.45 31,601

2 23,996 2.85 26,771 2.26 25,940 2.28 25,733

3 20,398 2.82 21,409 2.25 20,367 2.26 20,376

4 20,492 2.86 23,148 2.28 22,359 2.31 22,195

5 29,040 2.98 29,926 2.38 29,146 2.41 28,968

6 29,103 3.03 30,017 2.42 29,171 2.45 28,881

7 38,678 3.38 39,700 2.70 38,750 2.75 38,248

8 21,855 2.38 22,630 1.87 21,914 1.86 21,821

9 19,832 2.14 21,027 1.71 19,821 1.67 19,824

10 16,673 2.17 17,439 1.75 16,711 1.70 16,740

11 18,919 2.25 19,477 1.81 18,965 1.77 19,078

12 16,698 2.22 17,551 1.81 16,680 1.77 16,649

13 25,501 2.39 26,679 1.88 25,528 1.86 25,417

14 25,318 2.37 26,441 1.84 25,303 1.83 25,210

15 25,154 2.35 26,325 1.81 25,156 1.80 25,101

16 23,833 2.44 25,081 1.86 23,914 1.86 23,895

17 33,049 3.22 33,821 2.56 33,085 2.59 32,673

18 33,056 3.04 33,889 2.43 33,177 2.46 32,712

19 29,156 3.07 29,764 2.46 29,212 2.49 28,793

20 45,370 3.59 46,058 2.91 45,537 2.94 44,787

21 48,582 3.53 49,586 2.82 48,726 2.86 48,050

22 50,890 3.50 51,842 2.79 51,069 2.82 50,292

23 57,743 3.60 57,970 2.86 57,976 2.89 56,972

24 38,602 3.31 39,840 2.58 38,747 2.61 38,112

25 46,776 3.52 47,998 2.83 46,851 2.87 46,304

26 46,408 3.53 47,603 2.85 46,467 2.88 45,965

27 45,239 3.52 46,397 2.83 45,329 2.86 44,821

28 44,991 3.52 46,112 2.84 45,097 2.86 44,523

29 44,257 3.53 45,337 2.83 44,397 2.86 43,792

30 57,522 3.76 58,620 3.08 57,733 3.12 56,696

31 59,268 3.69 60,179 2.99 59,502 3.02 58,521

32 59,049 3.71 61,110 3.03 59,270 3.07 58,316

33 44,241 3.39 44,857 2.73 44,400 2.76 43,686

34 59,239 3.74 61,182 3.07 59,364 3.11 59,251

35 34,976 2.96 35,638 2.34 35,087 2.38 34,573

36 17,884 2.20 18,279 1.76 17,933 1.72 17,923

37 21,427 2.38 22,194 1.87 21,328 1.85 21,401

38 43,919 3.32 44,980 2.68 44,100 2.71 43,334

39 40,920 3.19 41,816 2.50 41,034 2.54 40,485

40 45,762 3.50 46,977 2.82 45,873 2.85 45,329

41 64,832 3.83 65,221 3.15 65,108 3.19 63,898
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Index

interactionpot

ential_n1.grid

_avelog

interactionpot

ential_n1.grid

_aboveThresh

old

interactionpot

ential_n1..grid

_avelog

interactionpot

ential_n1..grid

_aboveThresh

old

interactionpot

ential_n1+.gri

d_avelog

interactionpot

ential_n1+.gri

d_aboveThres

hold

interactionpot

ential_n1=.gri

d_avelog

1 2.50 31,651 2.50 31,650 2.52 31,649 2.56

2 2.33 25,764 2.33 25,764 2.35 25,764 2.39

3 2.30 20,407 2.31 20,407 2.34 20,407 2.37

4 2.35 22,224 2.35 22,224 2.37 22,223 2.41

5 2.46 29,023 2.46 29,023 2.48 29,021 2.52

6 2.50 28,931 2.50 28,929 2.51 28,929 2.55

7 2.80 38,324 2.80 38,324 2.81 38,323 2.85

8 1.88 21,856 1.89 21,855 1.94 21,855 1.97

9 1.69 19,842 1.70 19,842 1.78 19,842 1.80

10 1.72 16,750 1.73 16,750 1.82 16,750 1.84

11 1.80 19,094 1.81 19,094 1.88 19,094 1.90

12 1.80 16,671 1.81 16,671 1.87 16,671 1.90

13 1.89 25,453 1.86 24,256 1.95 25,453 1.97

14 1.86 25,262 1.86 25,262 1.91 25,261 1.94

15 1.83 25,137 1.83 25,137 1.88 25,137 1.91

16 1.90 23,939 1.90 23,938 1.93 23,937 1.96

17 2.64 32,733 2.64 32,730 2.65 32,729 2.69

18 2.50 32,785 2.50 32,785 2.51 32,784 2.55

19 2.54 28,863 2.54 28,862 2.55 28,861 2.59

20 3.00 44,866 3.00 44,865 3.00 44,863 3.05

21 2.90 48,131 2.90 48,131 2.91 48,130 2.95

22 2.86 50,386 2.87 50,386 2.87 50,386 2.91

23 2.94 57,088 2.93 57,088 2.94 57,083 2.99

24 2.65 38,177 2.66 38,176 2.67 38,174 2.71

25 2.92 46,379 2.92 46,379 2.93 46,379 2.98

26 2.94 46,065 2.94 46,065 2.94 46,062 2.99

27 2.92 44,919 2.92 44,919 2.93 44,918 2.98

28 2.92 44,601 2.92 44,601 2.93 44,601 2.98

29 2.92 43,875 2.92 43,875 2.92 43,873 2.97

30 3.18 56,813 3.18 56,813 3.18 56,813 3.23

31 3.08 58,650 3.08 58,650 3.09 58,647 3.14

32 3.13 58,438 3.13 58,437 3.13 58,437 3.18

33 2.82 43,787 2.82 43,786 2.82 43,785 2.87

34 3.17 59,407 3.17 59,407 3.17 59,406 3.22

35 2.43 34,632 2.43 34,632 2.44 34,632 2.48

36 1.74 17,940 1.75 17,940 1.83 17,939 1.85

37 1.88 21,426 1.88 21,426 1.94 21,426 1.96

38 2.76 43,421 2.76 43,421 2.77 43,421 2.81

39 2.57 40,555 2.57 40,555 2.58 40,554 2.62

40 2.91 45,413 2.91 45,413 2.91 45,412 2.96

41 3.25 64,036 3.25 64,036 3.25 64,032 3.30
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interactionpot

ential_n1=.gri

d_aboveThres

hold

interactionpot

ential_n2.grid

_avelog

interactionpot

ential_n2.grid

_aboveThresh

old

interactionpot

ential_n2+.gri

d_avelog

interactionpot

ential_n2+.gri

d_aboveThres

hold

interactionpot

ential_n2=.gri

d_avelog

interactionpot

ential_n2=.gri

d_aboveThres

hold

1 31,756 2.57 31,738 2.59 31,738 2.63 31,750

2 25,859 2.40 25,834 2.41 25,834 2.45 25,840

3 20,472 2.37 20,453 2.40 20,451 2.43 20,463

4 22,301 2.42 22,294 2.44 22,293 2.47 22,303

5 29,136 2.53 29,040 2.54 29,040 2.58 29,079

6 29,063 2.57 28,990 2.58 28,990 2.62 29,018

7 38,514 2.88 38,350 2.88 38,349 2.92 38,430

8 21,932 1.94 22,042 1.99 22,040 2.02 21,903

9 19,898 1.75 19,932 1.82 19,932 1.84 19,912

10 16,799 1.78 16,761 1.86 16,761 1.88 16,774

11 19,160 1.87 19,104 1.93 19,104 1.95 19,127

12 16,714 1.86 16,731 1.92 16,731 1.94 16,725

13 25,544 1.95 25,520 2.00 25,519 2.02 25,529

14 25,343 1.92 25,336 1.96 25,335 1.99 25,334

15 25,217 1.89 25,217 1.93 25,216 1.96 25,221

16 24,037 1.96 24,097 1.99 24,095 2.01 24,140

17 32,882 2.71 32,791 2.72 32,787 2.76 32,833

18 32,956 2.58 32,820 2.58 32,819 2.62 32,887

19 28,981 2.61 28,910 2.62 28,908 2.65 28,949

20 45,081 3.08 44,938 3.08 44,936 3.12 45,000

21 48,349 2.98 48,204 2.98 48,204 3.02 48,272

22 50,638 2.94 50,457 2.94 50,455 2.98 50,541

23 57,360 3.01 57,111 3.02 57,108 3.06 57,217

24 38,348 2.73 38,388 2.74 38,387 2.78 38,455

25 46,594 3.00 46,476 3.01 46,474 3.05 46,523

26 46,250 3.02 46,153 3.02 46,152 3.06 46,207

27 45,113 3.00 45,016 3.01 45,016 3.05 45,058

28 44,819 3.00 44,695 3.01 44,694 3.04 44,760

29 44,090 3.00 43,955 3.00 43,954 3.04 44,025

30 57,117 3.26 56,863 3.26 56,860 3.30 56,956

31 58,942 3.16 58,720 3.17 58,719 3.21 58,825

32 58,739 3.21 58,586 3.21 58,583 3.25 58,630

33 43,991 2.90 43,834 2.90 43,832 2.94 43,910

34 59,149 3.25 59,446 3.25 59,444 3.29 59,559

35 34,801 2.50 34,687 2.51 34,685 2.54 34,732

36 17,983 1.80 17,951 1.87 17,951 1.89 17,967

37 21,505 1.94 21,431 1.99 21,431 2.01 21,460

38 43,604 2.84 43,448 2.84 43,445 2.88 43,518

39 40,726 2.65 40,612 2.65 40,611 2.69 40,658

40 45,604 2.98 45,488 2.99 45,488 3.03 45,533

41 64,359 3.33 64,075 3.33 64,073 3.37 64,191
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interactionpot
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hold
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d_avelog
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hold

interactionpot

ential_o.grid_

avelog
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ld

interactionpot

ential_o-

.grid_avelog

1 2.66 31,791 1.94 29,840 2.39 31,572 2.52

2 2.48 25,872 2.85 75,214 2.22 25,710 2.34

3 2.47 20,518 1.81 19,083 2.19 20,341 2.31

4 2.51 22,322 1.82 20,812 2.24 22,167 2.37

5 2.61 29,052 1.88 27,083 2.32 27,578 2.48

6 2.65 29,050 1.91 27,298 2.37 28,850 2.51

7 2.96 38,378 2.12 36,510 2.67 38,233 2.83

8 2.05 22,048 1.54 20,208 1.79 21,811 1.88

9 1.87 19,996 1.44 18,354 1.60 19,807 1.68

10 1.91 16,939 1.48 15,419 1.63 16,727 1.71

11 1.98 19,110 1.51 17,942 1.70 19,068 1.80

12 1.97 16,782 1.51 15,410 1.70 16,635 1.80

13 2.05 25,569 1.54 23,734 1.79 25,393 1.89

14 2.02 25,392 1.50 23,568 1.76 25,189 1.86

15 1.99 25,294 1.48 23,471 1.73 25,070 1.83

16 2.05 24,106 1.49 22,718 1.78 23,719 1.91

17 2.80 32,857 2.03 31,082 2.52 32,643 2.66

18 2.66 32,872 1.91 31,406 2.39 32,693 2.53

19 2.69 28,937 1.95 27,503 2.42 28,780 2.56

20 3.16 44,982 2.28 43,152 2.86 44,762 3.03

21 3.06 48,250 2.28 46,003 2.80 48,012 2.94

22 3.02 50,512 2.24 48,308 2.77 50,254 2.90

23 3.10 57,131 2.27 52,948 2.84 56,949 2.97

24 2.82 38,404 2.05 36,536 2.56 38,094 2.68

25 3.09 46,545 2.23 44,083 2.79 46,271 2.95

26 3.10 46,202 2.24 43,760 2.80 45,927 2.97

27 3.09 45,078 2.23 42,669 2.79 44,783 2.95

28 3.09 44,764 2.23 42,401 2.78 44,491 2.95

29 3.08 44,023 2.22 41,764 2.78 43,766 2.95

30 3.34 56,882 2.47 54,101 3.04 56,673 3.21

31 3.25 58,785 2.38 56,246 2.95 58,481 3.12

32 3.29 58,682 2.42 56,378 2.99 58,263 3.17

33 2.98 43,871 2.15 41,972 2.70 43,661 2.85

34 3.33 59,476 2.43 56,652 3.03 58,437 3.20

35 2.58 34,716 1.83 33,117 2.31 34,558 2.46

36 1.92 17,957 1.48 16,235 1.65 17,921 1.74

37 2.04 21,435 1.53 20,152 1.78 21,395 1.88

38 2.92 43,474 2.10 41,217 2.64 43,329 2.80

39 2.73 40,673 2.00 38,673 2.49 40,461 2.60

40 3.07 45,557 2.22 43,181 2.77 45,294 2.94

41 3.41 64,105 2.50 62,206 3.11 63,858 3.29
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Index

interactionpot

ential_o-

.grid_aboveTh

reshold

interactionpot

ential_o...grid

_avelog

interactionpot

ential_o...grid

_aboveThresh

old

interactionpot

ential_o=.grid

_avelog

interactionpot

ential_o=.grid

_aboveThresh

old

interactionpot

ential_o1.grid

_avelog

interactionpot

ential_o1.grid

_aboveThresh

old

1 31,799 2.52 31,799 2.52 31,799 2.52 33,245

2 25,895 2.34 25,895 2.34 25,895 2.30 25,634

3 20,417 2.31 20,417 2.31 20,417 2.28 20,264

4 22,330 2.37 22,330 2.37 22,330 2.37 23,363

5 29,127 2.48 29,127 2.48 29,127 2.43 28,893

6 29,119 2.52 29,119 2.52 29,119 2.47 28,748

7 38,626 2.83 38,626 2.83 38,626 2.77 38,127

8 21,847 1.88 21,847 1.89 21,847 1.87 21,761

9 19,870 1.68 19,870 1.68 19,870 1.67 19,781

10 16,661 1.72 16,661 1.72 16,661 1.71 16,703

11 19,050 1.80 19,050 1.80 19,050 1.78 19,036

12 16,712 1.80 16,712 1.80 16,712 1.78 16,602

13 25,554 1.89 25,554 1.89 25,554 1.87 25,334

14 25,351 1.86 25,351 1.86 25,351 1.84 25,127

15 25,192 1.84 25,192 1.84 25,192 1.81 25,006

16 23,976 1.91 23,976 1.91 23,976 1.87 23,652

17 33,026 2.66 33,026 2.66 33,026 2.61 32,558

18 33,044 2.53 33,044 2.53 33,044 2.48 32,592

19 29,099 2.57 29,099 2.57 29,099 2.51 28,675

20 45,273 3.03 45,273 3.03 45,273 2.97 44,607

21 48,550 2.94 48,550 2.94 48,550 2.88 47,857

22 50,854 2.90 50,854 2.90 50,854 2.84 50,092

23 57,654 2.97 57,654 2.97 57,654 2.91 56,770

24 38,526 2.68 38,526 2.68 38,526 2.63 38,001

25 46,757 2.95 46,757 2.95 46,757 2.89 46,138

26 46,395 2.97 46,395 2.97 46,395 2.91 45,789

27 45,230 2.95 45,230 2.95 45,230 2.89 44,646

28 44,979 2.95 44,979 2.95 44,979 2.89 44,352

29 44,249 2.95 44,249 2.95 44,249 2.88 43,626

30 57,423 3.21 57,423 3.21 57,423 3.15 56,524

31 59,198 3.12 59,198 3.12 59,198 3.05 58,317

32 58,998 3.17 58,998 3.17 58,998 3.10 58,059

33 44,203 2.85 44,203 2.85 44,203 2.79 43,515

34 59,125 3.20 59,126 3.20 59,125 3.14 58,228

35 34,927 2.46 34,928 2.46 34,927 2.40 34,469

36 17,872 1.74 17,872 1.74 17,872 1.73 17,885

37 21,403 1.88 21,403 1.88 21,403 1.86 21,357

38 43,820 2.80 43,820 2.80 43,819 2.73 43,202

39 40,878 2.60 40,878 2.61 40,878 2.55 40,363

40 45,748 2.94 45,748 2.94 45,747 2.88 45,182

41 64,713 3.29 64,713 3.29 64,713 3.22 63,681
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Index

interactionpot

ential_oc2.gri

d_avelog

interactionpot

ential_oc2.gri

d_aboveThres

hold

interactionpot

ential_oes.grid

_avelog

interactionpot

ential_oes.grid

_aboveThresh

old

interactionpot

ential_oh.grid

_avelog

interactionpot

ential_oh.grid

_aboveThresh

old

interactionpot

ential_oh2.gri

d_avelog

1 2.37 31,264 2.37 31,264 2.51 31,679 2.51

2 2.20 25,465 2.20 25,465 2.34 26,324 2.33

3 2.18 20,110 2.18 20,110 2.31 20,418 2.31

4 2.22 21,942 2.22 21,942 2.36 22,239 2.36

5 2.32 28,581 2.32 28,581 2.47 29,053 3.06

6 2.35 28,565 2.35 28,565 2.51 28,957 2.50

7 2.64 37,816 2.64 37,816 2.81 38,371 2.80

8 1.77 21,496 1.76 21,496 1.89 21,876 1.90

9 1.58 19,667 1.58 19,667 1.69 19,850 1.71

10 1.62 16,591 1.61 16,590 1.73 16,765 1.74

11 1.69 18,777 1.69 18,777 1.81 19,110 1.82

12 1.69 16,485 1.69 16,485 1.80 16,685 1.81

13 1.77 25,174 1.77 25,174 1.89 25,472 1.90

14 1.74 24,949 1.74 24,949 1.86 25,270 1.87

15 1.71 24,820 1.71 24,820 1.83 25,151 1.84

16 1.76 23,514 1.76 23,514 1.90 23,962 1.90

17 2.48 32,337 2.48 32,337 2.65 32,761 2.64

18 2.36 32,323 2.36 32,323 2.51 32,823 2.51

19 2.40 28,469 2.40 28,469 2.55 28,891 2.54

20 2.83 44,251 2.83 44,251 3.01 44,916 3.00

21 2.78 47,480 2.78 47,480 2.92 48,185 2.91

22 2.75 49,706 2.75 49,706 2.88 50,443 2.87

23 2.81 56,380 2.81 56,380 2.95 57,149 2.94

24 2.53 37,755 2.53 37,755 2.67 38,211 2.66

25 2.76 45,809 2.76 45,809 2.94 46,421 2.93

26 2.78 45,478 2.78 45,478 2.95 46,116 2.94

27 2.76 44,346 2.76 44,346 2.93 44,976 2.92

28 2.76 44,026 2.76 44,026 2.93 44,654 2.92

29 2.75 43,314 2.75 43,314 2.93 43,930 2.92

30 3.01 56,111 3.01 56,111 3.19 56,875 3.18

31 2.92 57,858 2.92 57,858 3.10 58,716 3.08

32 2.97 57,586 2.97 57,586 3.14 58,504 3.13

33 2.67 43,175 2.67 43,175 2.83 43,831 2.82

34 3.00 57,778 3.00 57,778 3.18 59,341 3.17

35 2.29 34,230 2.29 34,230 2.44 34,672 2.43

36 1.64 17,806 1.64 17,806 1.75 17,954 1.76

37 1.76 21,084 1.76 21,084 1.88 21,443 1.89

38 2.61 42,890 2.61 42,890 2.78 43,464 2.76

39 2.47 40,059 2.47 40,059 2.59 40,600 2.58

40 2.74 44,835 2.74 44,835 2.92 45,460 2.91

41 3.07 63,171 3.07 63,171 3.26 64,103 3.25
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Index

interactionpot

ential_oh2.gri

d_aboveThres

hold

interactionpot

ential_on.grid

_avelog

interactionpot

ential_on.grid

_aboveThresh

old

interactionpot

ential_po4.gri

d_avelog

interactionpot

ential_po4.gri

d_aboveThres

hold

interactionpot

ential_po4h.gr

id_avelog

interactionpot

ential_po4h.gr

id_aboveThre

shold

1 31,685 2.53 31,799 3.13 32,985 3.13 32,985

2 25,800 2.35 25,895 2.92 26,745 2.92 26,745

3 20,460 2.32 20,417 2.89 21,401 2.89 21,402

4 22,271 2.38 22,330 2.93 23,154 2.94 23,154

5 49,860 2.49 29,127 3.06 29,880 3.06 29,880

6 28,918 2.52 29,119 3.11 29,989 3.11 29,989

7 38,250 2.83 38,626 3.47 39,622 3.47 39,622

8 21,996 1.90 21,847 2.43 22,782 2.44 22,782

9 19,936 1.70 19,870 2.18 21,036 2.19 21,039

10 16,737 1.73 16,661 2.21 17,791 2.22 17,791

11 19,069 1.82 19,050 2.29 19,629 2.30 19,629

12 16,727 1.81 16,712 2.27 17,575 2.28 17,575

13 25,485 1.90 25,554 2.44 26,688 2.45 26,689

14 25,300 1.87 25,351 2.43 26,458 2.43 26,458

15 25,188 1.85 25,192 2.41 26,325 2.42 26,325

16 24,032 1.92 23,977 2.52 25,040 2.52 25,040

17 32,721 2.67 33,026 3.31 33,788 3.31 33,788

18 32,746 2.53 33,044 3.12 33,845 3.12 33,845

19 28,816 2.57 29,098 3.15 29,734 3.15 29,734

20 44,805 3.03 45,273 3.68 45,989 3.68 45,989

21 48,077 2.94 48,550 3.62 49,555 3.62 49,557

22 50,315 2.90 50,854 3.59 51,789 3.58 51,790

23 56,953 2.97 57,654 3.69 57,859 3.69 57,861

24 38,291 2.69 38,526 3.39 39,754 3.39 39,755

25 46,382 2.96 46,757 3.60 47,968 3.61 47,968

26 46,039 2.97 46,396 3.62 47,586 3.62 47,588

27 44,917 2.96 45,230 3.61 46,355 3.61 46,358

28 44,592 2.96 44,979 3.61 46,057 3.61 46,059

29 43,853 2.95 44,249 3.61 45,297 3.62 45,298

30 56,699 3.22 57,423 3.85 58,497 3.85 58,499

31 58,561 3.12 59,197 3.78 60,111 3.78 60,112

32 58,434 3.17 58,998 3.80 60,995 3.80 60,995

33 43,727 2.86 44,203 3.48 44,794 3.48 44,794

34 59,271 3.21 59,125 3.83 61,095 3.83 61,096

35 34,617 2.46 34,927 3.04 35,582 3.05 35,582

36 17,922 1.76 17,872 2.24 18,270 2.25 18,270

37 21,398 1.90 21,403 2.44 22,163 2.45 22,163

38 43,339 2.80 43,819 3.40 44,894 3.40 44,895

39 40,529 2.61 40,878 3.27 41,783 3.27 41,783

40 45,403 2.94 45,746 3.58 46,923 3.58 46,924

41 63,894 3.29 64,712 3.92 65,099 3.92 65,100
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Table S3.3 Nanodescriptors list 

Descriptions Nanodescriptors 

Estimation of the exposed water-accessible surface area of the vGNP TotalSurfaceArea 

Average surface area per ligand to estimate the exposure level of the surface 

ligands calculated by the surface area devided by number of ligands 
AverageSurfaceAreaPerLigand 

Total atomic partial charges TotalPartialCharge 

Average atomic partial charges per ligand AveragePartialChargePerLigand 

Van der Waals accessible surfaces (Interaction surfaces) that contour the regions 

of space accessible to the center of ligand atoms, hydrophobic potential accessed 

from hydrophobicity of the surface  

HydrophobicPotential 

The Potential Energy Functions are used to evaluate the potential energy function 

on the current system. The potential energy of the system can be affected by atom 

properties, crystal cell properties, geometric restraints and the currently loaded 

forcefield parameters. 

PotentialEnergy 

Probabilistic receptor preference maps that predict non-bonded contact 

preferences -- the preferred locations of hydrophobic and hydrophilic ligand 

atoms  

contactpreference_hyd.grid_ave 

contactpreference_hyd.grid_aboveThreshold 

contactpreference_lpa.grid_ave 

contactpreference_lpa.grid_aboveThreshold 

An electron density surface is a representation of the electron-density distribution 

in a unit cell, sampled over a grid and visualized as an isosurface. 

electrondensity.grid_ave 

electrondensity.grid_aboveThreshold 
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Electrostatic Feature Maps that predict the electrostatically preferred locations of 

hydrophobic, H-bond acceptor and H-bond donor sites from the solutions of the 

Poisson-Boltzmann Equation 

electrostaticmap_acc.grid_avelog 

electrostaticmap_acc.grid_aboveThreshold 

electrostaticmap_don.grid_avelog 

electrostaticmap_don.grid_aboveThreshold 

electrostaticmap_hyd.grid_avelog 

electrostaticmap_hyd.grid_aboveThreshold 

An Interaction Potential map provides a 

graphical representation of where a chemical 

probe has favorable interactions with a 

molecular surface. To calculate these 

descriptors, a probe is an atom representation 

of a particular chemical functionality. These 

descriptors cover basic physico-chemical 

properties of surface ligands such as sizes, 

charges, and hydrogen bond donor/acceptor 

properties. The descriptor calculation was 

based upon the work of GRID 

[Goodford 1985] [Boobbyer 1989], including 

calculating a three-term interaction energy for 

each point in a rectilinear grid. Interaction 

Bromine atom 
interactionpotential_br.grid_avelog 

interactionpotential_br.grid_aboveThreshold 

Bromide ion 
interactionpotential_br-.grid_avelog 

interactionpotential_br-.grid_aboveThreshold 

Aromatic CH group 
interactionpotential_c1=.grid_avelog 

interactionpotential_c1=.grid_aboveThreshold 

Methylene CH group 
interactionpotential_c2.grid_avelog 

interactionpotential_c2.grid_aboveThreshold 

Methyl CH3 group 
interactionpotential_c3.grid_avelog 

interactionpotential_c3.grid_aboveThreshold 

Chlorine atom 
interactionpotential_cl.grid_avelog 

interactionpotential_cl.grid_aboveThreshold 

Chloride ion 
interactionpotential_cl-.grid_avelog 

interactionpotential_cl-.grid_aboveThreshold 
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Potentials that predict the preferred location of 

user-specified probe atoms of varying 

parameters, based on a force field 

incorporating van der Waals, charge and 

hydrogen bonding terms 

Dry (hydrophobic) probe 
interactionpotential_dry.grid_avelog 

interactionpotential_dry.grid_aboveThreshold 

Fluorine atom 
interactionpotential_f.grid_avelog 

interactionpotential_f.grid_aboveThreshold 

Fluoride ion 
interactionpotential_f-.grid_avelog 

interactionpotential_f-.grid_aboveThreshold 

Iodine atom 
interactionpotential_i.grid_avelog 

interactionpotential_i.grid_aboveThreshold 

Potassium cation 
interactionpotential_k+.grid_avelog 

interactionpotential_k+.grid_aboveThreshold 

Nitrogen atom with lone pair 
interactionpotential_n..grid_avelog 

interactionpotential_n..grid_aboveThreshold 

Amide NH group 
interactionpotential_n1.grid_avelog 

interactionpotential_n1.grid_aboveThreshold 

sp3 NH group with lone pair 
interactionpotential_n1..grid_avelog 

interactionpotential_n1..grid_aboveThreshold 

sp3 NH cation 
interactionpotential_n1+.grid_avelog 

interactionpotential_n1+.grid_aboveThreshold 

sp2 cationic NH group 
interactionpotential_n1=.grid_avelog 

interactionpotential_n1=.grid_aboveThreshold 
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Amide NH2 group 
interactionpotential_n2.grid_avelog 

interactionpotential_n2.grid_aboveThreshold 

sp3 cationic NH2 group 
interactionpotential_n2+.grid_avelog 

interactionpotential_n2+.grid_aboveThreshold 

sp2 cationic NH2 group 
interactionpotential_n2=.grid_avelog 

interactionpotential_n2=.grid_aboveThreshold 

sp3 cationic NH3 group 
interactionpotential_n3+.grid_avelog 

interactionpotential_n3+.grid_aboveThreshold 

Sodium cation 
interactionpotential_na+.grid_avelog 

interactionpotential_na+.grid_aboveThreshold 

Carbonyl oxygen atom 
interactionpotential_o.grid_avelog 

interactionpotential_o.grid_aboveThreshold 

Anionic phenolate oxygen atom 
interactionpotential_o-.grid_avelog 

interactionpotential_o-.grid_aboveThreshold 

Carboxy oxygen atom 
interactionpotential_o...grid_avelog 

interactionpotential_o...grid_aboveThreshold 

Phosphate oxygen atom 
interactionpotential_o=.grid_avelog 

interactionpotential_o=.grid_aboveThreshold 

Aliphatic hydroxyl group 
interactionpotential_o1.grid_avelog 

interactionpotential_o1.grid_aboveThreshold 
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Ether oxygen atom 
interactionpotential_oc2.grid_avelog 

interactionpotential_oc2.grid_aboveThreshold 

Ester oxygen atom 
interactionpotential_oes.grid_avelog 

interactionpotential_oes.grid_aboveThreshold 

Phenolic hydroxyl group 
interactionpotential_oh.grid_avelog 

interactionpotential_oh.grid_aboveThreshold 

Water 
interactionpotential_oh2.grid_avelog 

interactionpotential_oh2.grid_aboveThreshold 

Nitro oxygen atom 
interactionpotential_on.grid_avelog 

interactionpotential_on.grid_aboveThreshold 

PO4 dianion 
interactionpotential_po4.grid_avelog 

interactionpotential_po4.grid_aboveThreshold 

PO4H phosphate anion 
interactionpotential_po4h.grid_avelog 

interactionpotential_po4h.grid_aboveThreshold 

 

*Notes: 

All descriptors were calculated against the vGNPs 

_avelog: average of the log values of the interaction potential for each point in a rectilinear grid 

_aboveThreshold: number of points that possess interaction potential above the user-defined interaction threshold 

For more details describing the surface feature extraction, please refer to ChemicalComputingGroupInc. Molecular Operating Environment (MOE). 

(2016). 
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Table S3.4 The seven new GNPs external set 

GNP 

index 

vGNPs Predicted properties Experimentally characterized properties  

# Ligand / vGNP* 

Size  

(nm

) 

LogP 

HO-1 

level 

in 

A549 

Cell 

uptak

e in 

A549 

(107 

GNP/

cell) 

Cell 

uptake 

in 

HEK29

3 (107  

GNP/ce

ll) 

# 

Ligand 

/ GNP 

TEM  

Size 

(nm) 

LogP 

HO-1 

level 

in 

A549 

Cell uptake 

in A549 

(107 

GNP/cell) 

Cell uptake 

in HEK293 

(107  

GNP/cell) 

35 
500 (100%) 

6.5 0.81 2.76 4.61 4.61 
536 

(100%) 
6.5 

0.55± 

0.12 

2.38± 

0.15 
5.11±0.4 4.22±0.25 

36 

100 (67%) 

5.8 -2.32 2.85 1.3 1.47 

102 

(71%) 
5.8 

-2.54± 

0.07 

2.7± 

0.66 
2.34±0.14 2.31±0.42 

50 (33%) 42 

(29%) 

37 

200 (80%) 

5.8 -2.46 1.19 0.55 0.55 

185 

(80%) 
5.8 

-2.13± 

0.5 

0.9± 

0.21 
0.4±0.02 0.4±0.01 

50 (20%) 47 

(20%) 

38 

100 (25%) 

5.2 -0.79 1.99 1.65 1.88 

126 

(25%) 
5.2 

-2.29± 

0.06 

2.41± 

0.37 
0.63±0.02 0.61±0.04 

400 (75%) 380 

(75%) 

39 

250 (50%) 

5 -1.84 1.91 0.63 0.66 

275 

(54%) 
5 

-2.3± 

0.15 

2.04± 

0.28 
0.58±0.05 0.59±0.03 

250 (50%) 235 

(46%) 

40 

540 (60%) 

7.3 2.32 2.28 5.04 5.26 

521 

(60%) 
7.3 

2.39± 

0.2 

2.16± 

0.15 
5.3±0.57 5.58±0.35 

360 (40%) 348 

(40%) 

41 
    850 (100%) 

5.9 2.12 2.17 5.47 5.16 
    869 

(100%) 
5.9 

2.3± 

0.03 

1.87± 

0.23 
5.04±0.38 5.34±0.67 
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*The number of ligands per GNP is approximated according to our rational design 
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Table S4.1 Experimental and calculated logP of the GNP library 

 

Index lig1SMILES lig2SMILES Radius(Ang) #lig1 #lig2

1 S1SC(CC1)CCCCC(NCCOCCOCCO)=O - 36.5 459 0

2 S1SC(CC1)CCCCC(NCCOCCOCCO)=O S1SC(CC1)CCCCC(NCCCCCCCCCCC)=O 34.0 346 40

3 S1SC(CC1)CCCCC(NCCOCCOCCO)=O S1SC(CC1)CCCCC(NCCCCCCCCCCC)=O 42.5 311 107

4 S1SC(CC1)CCCCC(NCCOCCOCCO)=O S1SC(CC1)CCCCC(NCCCCCCCCCCC)=O 40.0 240 251

5 S1SC(CC1)CCCCC(NCCOCCOCCO)=O S1SC(CC1)CCCCC(NCCCCCCCCCCC)=O 37.5 147 390

6 S1SC(CC1)CCCCC(NCCOCCOCCO)=O S1SC(CC1)CCCCC(NCCCCCCCCCCC)=O 40.0 86 477

7 - S1SC(CC1)CCCCC(NCCCCCCCCCCC)=O 32.5 0 536

8 - S1SC(CC1)CCCCC(NCCCCCCCCCCC)=O 33.5 0 727

9 - S1SC(CC1)CCCCC(N)=O 29.0 0 232

10 S1SC(CC1)CCCCC(NCCCN)=O S1SC(CC1)CCCCC(N)=O 29.0 21 116

11 S1SC(CC1)CCCCC(NCCCN)=O S1SC(CC1)CCCCC(N)=O 29.0 31 101

12 S1SC(CC1)CCCCC(NCCCN)=O S1SC(CC1)CCCCC(N)=O 29.0 42 102

13 S1SC(CC1)CCCCC(NCCCN)=O S1SC(CC1)CCCCC(N)=O 29.0 82 75

14 S1SC(CC1)CCCCC(NCCCN)=O - 29.0 144 0

15 S1SC(CC1)CCCCC(O)=O S1SC(CC1)CCCCC(N)=O 29.0 31 201

16 S1SC(CC1)CCCCC(O)=O S1SC(CC1)CCCCC(N)=O 29.0 47 185

17 S1SC(CC1)CCCCC(O)=O S1SC(CC1)CCCCC(N)=O 29.0 124 108

18 S1SC(CC1)CCCCC(O)=O S1SC(CC1)CCCCC(N)=O 29.0 170 62

19 S1SC(CC1)CCCCC(O)=O - 29.0 287 0

20 S1SC(CC1)CCCCC(NCCOCCOCCOCCOC)=O S1SC(CC1)CCCCC(N)=O 34.5 67 676

21 S1SC(CC1)CCCCC(NCCOCCOCCOCCOC)=O S1SC(CC1)CCCCC(N)=O 33.0 158 472

22 S1SC(CC1)CCCCC(NCCOCCOCCOCCOC)=O S1SC(CC1)CCCCC(N)=O 32.0 268 327

23 S1SC(CC1)CCCCC(NCCOCCOCCOCCOC)=O S1SC(CC1)CCCCC(N)=O 26.0 380 126

24 S1SC(CC1)CCCCC(NCCOCCOCCOCCOC)=O - 32.5 720 0

25 S1SC(CC1)CCCCC(NCC(C(C(C(O)O)O)O)O)=O S1SC(CC1)CCCCC(N)=O 24.5 92 673

26 S1SC(CC1)CCCCC(NCC(C(C(C(O)O)O)O)O)=O S1SC(CC1)CCCCC(N)=O 25.0 226 502

27 S1SC(CC1)CCCCC(NCC(C(C(C(O)O)O)O)O)=O S1SC(CC1)CCCCC(N)=O 25.0 235 275

28 S1SC(CC1)CCCCC(NCC(C(C(C(O)O)O)O)O)=O S1SC(CC1)CCCCC(N)=O 28.5 542 221

29 S1SC(CC1)CCCCC(NCC(C(C(C(O)O)O)O)O)=O - 40.0 810 0
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Index ElogP XLOGP3 ALOGPS 2.1 ChemDraw 12.0 MOE logG/R1 logG/R2 logG/R3 logGR

1 -2.67 0.54 1.76 0.85 1.55 0.41 0.58 0.51 0.50

2 -2.47 1.15 2.31 1.46 2.12 0.98 1.10 1.14 1.07

3 -1.61 2.06 3.13 2.37 2.96 1.59 1.73 1.76 1.70

4 -0.88 3.57 4.49 3.89 4.36 2.49 2.61 2.54 2.55

5 -0.66 4.85 5.64 5.16 5.54 3.31 3.44 3.44 3.40

6 -0.02 5.56 6.28 5.88 6.20 3.76 3.93 3.90 3.86

7 0.55 6.47 7.10 6.79 7.04 5.03 5.17 5.18 5.12

8 2.40 6.47 7.10 6.79 7.04 5.42 5.22 5.25 5.30

9 -2.56 1.03 2.30 1.47 2.19 1.10 1.10 1.11 1.10

10 -2.52 0.95 2.21 1.43 2.11 1.15 1.06 1.15 1.12

11 -2.68 0.90 2.16 1.42 2.06 0.98 1.01 1.02 1.00

12 -2.54 0.87 2.13 1.40 2.03 0.95 1.00 0.96 0.97

13 -2.35 0.75 1.99 1.35 1.90 0.71 0.77 0.89 0.79

14 -1.74 0.49 1.70 1.25 1.63 0.54 0.47 0.55 0.52

15 -2.59 0.65 1.84 1.40 1.80 0.98 0.94 0.89 0.94

16 -2.13 0.73 1.91 1.48 1.89 0.79 0.85 0.85 0.83

17 -2.40 1.13 2.26 1.86 2.32 0.50 0.50 0.51 0.50

18 -2.30 1.36 2.47 2.08 2.58 0.35 0.36 0.36 0.36

19 -2.21 1.68 2.75 2.39 2.93 0.05 0.05 0.06 0.06

20 -1.72 1.01 2.28 1.47 2.13 0.70 0.74 0.74 0.72

21 -2.08 0.98 2.24 1.48 2.01 0.86 0.87 0.80 0.84

22 -2.19 0.94 2.20 1.50 1.87 1.02 1.06 1.01 1.03

23 -2.29 0.89 2.13 1.52 1.65 1.35 1.33 1.29 1.32

24 -1.92 0.84 2.08 1.53 1.48 1.64 1.68 1.64 1.65

25 -1.80 0.71 2.03 1.22 1.88 -0.49 -0.58 -0.64 -0.57

26 -0.96 0.20 1.60 0.82 1.40 -0.96 -0.94 -0.95 -0.95

27 -2.30 -0.20 1.27 0.51 1.02 -0.69 -0.72 -0.80 -0.74

28 -2.42 -0.86 0.71 0.00 0.38 -1.42 -1.44 -1.36 -1.41

29 -2.28 -1.63 0.06 -0.60 -0.36 -1.06 -1.05 -1.05 -1.05
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Index lig1SMILES lig2SMILES Radius(Ang) #lig1 #lig2

30 - S1SC(CC1)CCCCC(NC1CCCCC1)=O 36.5 0 869

31 S1SC(CC1)CCCCC(Nc1ccccc1)=O S1SC(CC1)CCCCC(NC1CCCCC1)=O 36.5 174 695

32 S1SC(CC1)CCCCC(Nc1ccccc1)=O S1SC(CC1)CCCCC(NC1CCCCC1)=O 36.5 348 521

33 S1SC(CC1)CCCCC(Nc1ccccc1)=O S1SC(CC1)CCCCC(NC1CCCCC1)=O 36.5 521 348

34 S1SC(CC1)CCCCC(Nc1ccccc1)=O S1SC(CC1)CCCCC(NC1CCCCC1)=O 36.5 695 174

35 S1SC(CC1)CCCCC(Nc1ccccc1)=O - 36.5 869 0

36 S1SC(CC1)CCCCC(NC(C(C)(C)C)C)=O - 29.5 795 0

37 S1SC(CC1)CCCCC(N(CCC)CCC)=O - 29.5 682 0

38 S1SC(CC1)CCCCC(NC(CC(C)C)C)=O - 29.5 830 0

39 S1SC(CC1)CCCCC(NCCCCCC)=O - 29.5 698 0

40 S1SC(CC1)CCCCC(NC1CCCCCC1)=O - 29.5 869 0

41 S1SC(CC1)CCCCC(NC12CC3CC(CC(C3)C1)C2)=O - 29.5 703 0

e1
O=C(NCC(O)C(C(C(CO)O)O)O)C(NC(C1=CC=C(

C(F)(F)F)C=C1)=O)CCCCNC(CCCCC2SSCC2)=O
- 25.2 182 0

e2
O=C(NCC(O)C(C(C(CO)O)O)O)C(NC(C1=CC=CC

=C1)=O)CCCCNC(CCCCC2SSCC2)=O
- 20.7 108 0

e3
O=C(NCC1CCCO1)C(NC(CCC)=O)CCCCNC(CCC

CC2SSCC2)=O
- 26.2 122 0

e4
O=C(NCCC1=CC=C(OC)C(OC)=C1)C(NC(CCC)=

O)CCCCNC(CCCCC2SSCC2)=O
- 24.2 146 0

e5
O=C(NC1CCCCC1)C(NC(C2=CC=CC=C2)=O)CCC

CNC(CCCCC3SSCC3)=O
- 23.4 280 0

e6
O=C(NCCCC)C(NC(C1=CC=CC=C1)=O)CCCCNC

(CCCCC2SSCC2)=O
- 24.7 229 0

e7
O=C(NC(C(O)=O)C1=CC=C(O)C=C1)C(NC(C2CC

CCC2)=O)CCCCNC(CCCCC3SSCC3)=O
- 25.0 259 0

e8
O=C(NCCC1=CC=C(OC)C(OC)=C1)C(NC(C2CCC

CC2)=O)CCCCNC(CCCCC3SSCC3)=O
- 28.5 271 0

e9
O=C(NC(C(O)=O)C1=CC=C(O)C=C1)C(NC(C2=C

C=CC=C2)=O)CCCCNC(CCCCC3SSCC3)=O
- 23.2 144 0
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Index ElogP XLOGP3 ALOGPS 2.1 ChemDraw 12.0 MOE logG/R1 logG/R2 logG/R3 logGR

30 2.06 3.24 4.20 3.53 4.53 4.94 4.84 4.70 4.83

31 2.38 3.19 4.22 3.57 4.46 5.07 5.03 5.02 5.04

32 2.39 3.14 4.24 3.62 4.40 5.26 5.18 5.37 5.27

33 2.72 3.08 4.27 3.66 4.33 5.45 5.38 5.50 5.45

34 2.67 3.03 4.29 3.70 4.27 5.71 5.76 5.80 5.76

35 2.70 2.98 4.31 3.74 4.20 6.36 6.40 6.34 6.37

36 2.52 3.59 4.70 3.67 4.72 7.55 7.53 7.68 7.59

37 2.28 3.40 4.87 3.89 4.66 7.36 7.72 7.41 7.50

38 2.57 3.55 4.76 3.80 4.77 6.04 6.11 6.20 6.12

39 1.76 3.76 5.13 4.15 4.83 4.56 4.48 4.52 4.52

40 2.30 3.78 4.70 4.09 4.97 5.79 6.01 6.06 5.95

41 1.98 4.10 4.61 4.16 5.19 7.76 7.53 7.45 7.58

e1 -1.78 0.58 1.92 0.46 1.99 0.21 0.39 0.43 0.34

e2 -1.21 -0.30 1.07 -0.46 1.05 0.38 0.59 0.60 0.52

e3 -1.12 2.43 3.36 1.52 3.86 1.56 1.68 1.75 1.66

e4 -0.44 3.92 4.54 3.14 4.87 2.07 2.21 2.18 2.16

e5 0.48 4.66 4.77 3.75 6.02 2.50 2.48 2.49 2.49

e6 -0.56 4.10 4.69 3.45 5.43 2.26 2.44 2.38 2.36

e7 1.10 4.21 4.12 3.04 5.16 2.15 2.40 2.36 2.30

e8 1.12 5.17 5.16 4.04 5.63 2.15 2.49 2.44 2.36

e9 1.28 3.79 3.59 2.97 5.14 2.08 2.08 2.02 2.06
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