
Precise Call Graph Construction in the Presence of Function Pointers∗

Ana Milanova Atanas Rountev Barbara G. Ryder

Rutgers University, New Brunswick, NJ 08903, USA

{milanova,rountev,ryder}@cs.rutgers.edu

Abstract

The use of pointers creates serious problems for optimiz-
ing compilers and software engineering tools. Pointers
enable indirect memory accesses through pointer deref-
erences, as well as indirect procedure calls (e.g., through
function pointers in C). Such indirect accesses and calls
can be disambiguated with pointer analysis. In this pa-
per we evaluate the precision of a pointer analysis by
Zhang et al. [17] for the purposes of call graph con-
struction for C programs with function pointers. The
analysis uses an inexpensive, almost-linear, flow- and
context-insensitive algorithm. To measure analysis pre-
cision, we compare the call graph computed by the anal-
ysis with the most precise call graph obtainable by a
large category of pointer analyses. Surprisingly, for all
our data programs the analysis from [17] achieves the
best possible precision. This result indicates that for the
purposes of call graph construction, even inexpensive
analyses can provide very good precision, and therefore
the use of more expensive analyses may not be justified.

1 Introduction

In languages like C, the use of pointers creates seri-
ous problems for optimizing compilers and software en-
gineering tools. Pointers enable indirect memory ac-

cesses. For example, the statement *p=1 may indirectly
modify all variables that are pointed to by variable p.
In addition, pointers allow indirect procedure calls—for
example, if fp is a function pointer in C, statement
(*fp)() may invoke all functions that are pointed to
by fp.

Precise information about memory accesses and pro-
cedure calls is fundamental for a large number of static
analyses used in optimizing compilers and software en-
gineering tools. To obtain such information, a variety
of pointer analyses have been developed [8, 7, 4, 1, 15,
14, 17, 12, 9, 6, 3, 5, 2]. These analyses provide different
tradeoffs between cost and precision. For example, flow-
and context-insensitive pointer analyses [1, 14, 17, 12, 3]

∗This research was supported by NSF grant CCR-9900988 and by

Siemens Corporate Research.

ignore the flow of control between program points and
do not distinguish between different calling contexts of
procedures. As a result, such analyses are relatively
inexpensive and imprecise. In contrast, analyses with
some degree of flow- or context-sensitivity are typically
more expensive and precise.

The precision of different analyses has been tradi-
tionally measured with respect to the disambiguation
of indirect memory accesses. However, there has been
no work on measuring analysis precision with respect to
the disambiguation of indirect procedure calls and its
impact on the construction of the program call graph.
The goal of our work is to measure the precision of a
pointer analysis by Zhang et al. [17] (referred to as the
FA pointer analysis) for the purposes of call graph con-
struction for C programs with function pointers. The
FA analysis is a flow- and context-insensitive analysis
with O(nα(n, n)) complexity, where n is the size of the
program and α is the inverse of Ackermann’s function.
The analysis is at the lower end of the spectrum with re-
spect to cost and precision, and is comparable to Steens-
gaard’s points-to analysis [14].

The FA analysis was implemented in the context of a
source code browser for C developed at the Software En-
gineering Department of Siemens Corporate Research.
The standard version of the browser provides syntactic
cross-reference information and a graphical user inter-
face for accessing this information. The PROLANGS
group at Rutgers University worked on extending the
browser functionality to provide and display semantic
information obtained through static analysis. In par-
ticular, we implemented the FA pointer analysis and
used its output to augment the call graph information
provided by the browser. In the standard syntax-based
browser version, indirect procedure calls could not be
handled. By using the output of the FA analysis, the
browser became capable of providing correct and com-
plete information about the program call graph.

To measure analysis precision, for each of our data
programs we compared the call graph computed by the
FA analysis with the call graph computed using the

most precise pointer analysis.1 By comparing these two
call graphs, we wanted to evaluate the imprecision of
the FA analysis and to gain insight into the sources of
this imprecision. Somewhat surprisingly, in all our data
programs there was no difference between the two call
graphs. This result indicates that for the purposes of
call graph construction, even analyses at the lower end
of the cost/precision spectrum can provide very good
precision, and therefore the use of more expensive anal-
yses may not be justified. This finding is particularly
interesting because in the context of disambiguating in-
direct memory accesses, the use of more expensive anal-
ysis provides substantial precision benefits.

The rest of this paper is organized as follows. Sec-
tion 2 describes the FA pointer analysis. The notion
of “most precise pointer analysis” is discussed in Sec-
tion 3. Section 4 describes our empirical results and the
conclusions from these results.

2 The FA Pointer Analysis

The FA analysis is a pointer alias analysis2 for C which
is flow-insensitive and context-insensitive. A version of
FA has been initially defined in the context of program
decomposition [17] for programs without unions and
type casting. Later it has been extended to handle type
casting and unions [16]. The FA analysis is based on
fast UNION-FIND data structures and runs in almost
linear time. It is a relatively imprecise and computa-
tionally inexpensive memory disambiguation technique.
The features of FA which distinguish it from other pop-
ular unification-based pointer analyses such as [14] are
the following:

• It takes into consideration the declared types of
variables

• It makes distinction between structure fields

• It is designed to handle unions and type casting

In this section we briefly describe the FA analysis.
The algorithm first computes the PE equivalence rela-
tion on the names that appear in the program. The
PE relation is then used to derive the FA equivalence
relation which provides aliasing information.

2.1 The PE relation

The memory locations and the addresses of memory
locations are referred to as object names. The set of ob-
ject names for the example from Figure 1 is {p,&x,x,*p,

1The exact definition of the “most precise analysis” will be dis-

cussed in Section 3.
2Aliasing occurs when multiple names refer to the same memory

location. For example, after the statement p=&x, *p and x are aliases.

p = &x;

p->f = &z;

tt = p;

Figure 1: Example Program

p->f,z,&z,tt}. These are the names that appear syn-
tactically in the program; *p appears as a prefix of
(*p).f; x and z appear in &x and &z, respectively.

The goal of the PE relation is to group the object
names into equivalence classes by value equality. If the
members of a given equivalence class are pointers then
those pointers may point to the same memory location.
Similarly, if the members of an equivalence class are of
structure type, then the values of their fields are iden-
tical.

The algorithm builds an initial graph GPE , where
the nodes are the object names and the edges could be
dereference edges labeled with * or field edges labeled
with the field identifier. For our example, the initial
graph contains the following edges:

{p
∗

−→ *p, *p
f

−→ p->f, &x
∗

−→ x, &z
∗

−→ z}

The algorithm processes each pointer-related state-
ment in the program, and merges the nodes correspond-
ing to the equivalence classes of the object names on the
left-hand and right-hand sides of the statement. If there
are outgoing edges with the same label, those nodes
are subsequently merged recursively. For our example,
statement p=&x results in merging nodes p and &x; sub-
sequently, nodes *p and x are merged as well. Nodes
p->f and &z are merged due to statement p->f=&z; no
recursive merge follows because p->f has no outgoing
edges. Similarly, nodes tt and p are merged due to the
last statement.

The nodes in the final GPE are equivalence classes
of object names, and the edges are either dereference
edges or field edges. The resulting GPE for our program
contains the following equivalence classes, represented
in the graph as nodes:

{p,&x,tt}, {*p,x}, {p->f,&z}, {z}

The meaning of this information is that after deref-
erencing p and tt might have the same value, that is,
they may point to the same memory location. Similarly,
x and *p (which are of structure type) might have their
fields containing the same value.

2.2 The FA relation

The FA relation is derived from the PE relation in the
following way: suppose that two object names o1 and
o2 appear in the same equivalence class n in GPE . If

2

(i) there is a path in GPE which starts from n with a
dereference edge and leads to another equivalence class
m, and (ii) m contains object names o3 and o4 which
are derived from o1 and o2 respectively, then o3 and o4

are in the FA relation. It can be proven that if two
object names may be aliased at some program point,
these names are in the FA relation [16].

For our example, the elements of the GPE equiva-
lence class {p,&x,tt} are not aliased because there is
no path in GPE which leads to it. The FA equivalence
classes are

{p}, {tt}, {*p,x}, {p->f}, {z}

For example, the meaning of FA equivalence class
{*p,x} is that *p and x may be aliased at some program
point. Note that the computation of the FA relation
also removes object names of the form &x.

For the purposes of our investigation, we used the
version of FA which handles unions and type casting.
Using this version of the analysis, we examined the
equivalence class of *fp for each function pointer fp.
This information was used to determine the possible
targets of all indirect calls through fp.

3 The Most Precise Pointer Analysis

In our comparison experiments, we wanted to deter-
mine the difference between the call graph computed
with the FA analysis and the “best possible” call graph.
Our notion of a “most precise analysis” is defined with
respect to a specific category of pointer analyses. Each
analysis from this category can be defined by a tuple
<G, L, F, M, η>, where:

• G = (N, E, n0) is a directed graph with node set
N , edge set E and starting node n0 ∈ N . For
our purposes, G is an interprocedural control flow
graph, as defined below.

• E+ ⊆ N × N is a set of additional edges that
may result from the resolution of indirect calls, as
described below.

• <L,≤,∧> is a finite meet semi-lattice [10] with
partial order ≤ and meet operation ∧.

• F ⊆ {f | f : L×E+ → L×E+} is a function space
closed under composition and arbitrary meets. We
assume that F is monotone [10].

• M : N → F is an assignment of transfer functions
to the nodes in G (without loss of generality, we
assume no edge transfer functions). The transfer
function for node n will be denoted by fn.

• η∈L is the solution at the bottom of n0.

The program is represented by an interprocedural

control flow graph (ICFG) [8], which contains control
flow graphs for all procedures in the program. Each
procedure has associated a single entry node (node n0

is the entry node of the starting procedure) and a single
exit node. Each call statement is represented by a pair
of nodes, a call node and a return node. For each direct

call, there is an edge from the call node to the entry
node of the called procedure, as well as an edge from
the exit node of the called procedure to the return node
in the calling procedure. For indirect calls, G does not
contains edges (call,entry) or (exit,return). Such edges
are discovered during the analysis, and are accumulated
in sets e ⊆ E+.

The lattice elements are points-to graphs represent-
ing the current points-to relationships in memory. Each
transfer function f : L×E+ → L×E+ takes as input a
points-to graph and a set of currently known (call,entry)
and (exit,return) edges at indirect calls. The function
produces a new points-to graph by adding new points-to
edges and removing “killed” points-to edges. In addi-
tion, f produces a set e ⊆ E+ of new (call,entry) and
(exit,return) edges at indirect calls.

The sequence of nodes n0, . . . , ni (where n0 is the
starting node) is a path if and only if n0, . . . , ni−1 is a
path, and

• (ni−1, ni)∈E, or

• (ni−1, ni)∈e, where

(l, e) = fni
(. . . (fn1

(fn0
(η, ∅))) . . .)

For each such path p = (n0, . . . , ni), let fp = fn0
◦

fn1
◦ . . . ◦ fni

. A realizable path is a path on which
every procedure returns to the call site which invoked
it [13, 8, 11]; only such paths represent potential se-
quences of execution steps. Let RP(n0, n) be the set of
all realizable paths from starting node n0 to any node n.
For each n∈N , the meet-over-all-realizable-paths

(MORP) solution at n is defined as

MORP(n) =
∧

p∈RP(n0,n)

fp(η, ∅)

The MORP solution is the most precise solution
computable by any analysis describable in this model.
For each of our data programs, we considered all n ∈ N

that represent indirect calls. For each such n, we manu-
ally computed MORP(n). This allowed us to determine
the best possible call graph computable by analyses that
belong to the category described above. Since the vast
majority of published pointer analyses fall in this cate-
gory, this “best call graph” is the most precise call graph

3

Name Description LOC Indirect Calls
diction GNU diction command 2652 3
072.sc Spreadsheet program 9192 2
gettext GNU gettext command 12327 23
find GNU find command 15200 22
minicom UNIX communication program 15607 6
m4 GNU macro processor 16375 17
less GNU less command 20397 4
unzip Extraction utility 26273 307

Table 1: Program Description

obtainable with the standard, widely-used pointer anal-
ysis technology. By comparing this call graph with the
call graph computed by the FA analysis, we evaluated
the amount of imprecision of the FA analysis.

4 Empirical Results

We have performed preliminary experiments on a set of
realistic C programs, ranging in size from 2652 to 26273
lines of code. The description of the dataset is given in
Table 1. Each program employs function pointers; the
number of indirect calls in the program is shown in the
last column of Table 1.

Our comparison of the FA-based call graphs with the
best possible call graphs showed no differences. This
surprising result can be explained with the fact that the
usage of function pointers in C programs is simpler than
the usage of data pointers; in fact, we observed several
stylistic patterns of usage of function pointers. The
results from this experiment indicate that inexpensive
analyses such as FA may provide sufficient precision for
the purposes of call graph construction. In this context,
the use of more pointer expensive analyses may not be
justified.

References

[1] L. Andersen. Program Analysis and Specializa-

tion for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, 1994.

[2] B. Cheng and W. Hwu. Modular interprocedural
pointer analysis using access paths. In Conference

on Programming Language Design and Implemen-

tation, pages 57–69, 2000.

[3] M. Das. Unification-based pointer analysis with di-
rectional assignments. In Conference on Program-

ming Language Design and Implementation, pages
35–46, 2000.

[4] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the

presence of function pointers. In Conference on

Programming Language Design and Implementa-

tion, pages 242–257, 1994.

[5] M. Fähndrich, J. Rehof, and M. Das. Scalable
context-sensitive flow analysis using instantiation
constraints. In Conference on Programming Lan-

guage Design and Implementation, pages 253–263,
2000.

[6] J. Foster, M. Fähndrich, and A. Aiken. Polymor-
phic versus monomorphic flow-insensitive points-
to analysis for C. In Static Analysis Symposium,
LNCS 1824, pages 175–198, 2000.

[7] M. Hind, M. Burke, P. Carini, and J. Choi. In-
terprocedural pointer alias analysis. ACM Trans.

Programming Languages and Systems, 21(4):848–
894, May 1999.

[8] W. Landi and B. G. Ryder. A safe approximation
algorithm for interprocedural pointer aliasing. In
Conference on Programming Language Design and

Implementation, pages 235–248, 1992.

[9] D. Liang and M. J. Harrold. Efficient points-to
analysis for whole-program analysis. In Symposium

on the Foundations of Software Engineering, LNCS
1687, pages 199–215, 1999.

[10] T. Marlowe and B. G. Ryder. Properties of data
flow frameworks: A unified model. Acta Informat-

ica, 28:121–163, 1990.

[11] T. Reps, S. Horwitz, and M. Sagiv. Precise inter-
procedural dataflow analysis via graph reachabil-
ity. In Symposium on Principles of Programming

Languages, pages 49–61, 1995.

[12] M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In Symposium on

Principles of Programming Languages, pages 1–14,
1997.

[13] M. Sharir and A. Pnueli. Two approaches to inter-
procedural data flow analysis. In S. Muchnick and

4

N. Jones, editors, Program Flow Analysis: The-

ory and Applications, pages 189–234. Prentice Hall,
1981.

[14] B. Steensgaard. Points-to analysis in almost linear
time. In Symposium on Principles of Programming

Languages, pages 32–41, 1996.

[15] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In Conference

on Programming Language Design and Implemen-

tation, pages 1–12, 1995.

[16] S. Zhang. Practical Pointer Aliasing Analyses for

C. PhD thesis, Rutgers University, August 1998.

[17] S. Zhang, B. G. Ryder, and W. Landi. Program
decomposition for pointer aliasing: A step towards
practical analyses. In Symposium on the Founda-

tions of Software Engineering, pages 81–92, 1996.

5

